
HAL Id: tel-02167416
https://hal.science/tel-02167416

Submitted on 27 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Study of the environment of Titan : the stratosphere
and the surface of the satellite, future mission

experiments & educational activities
Georgios Bampasidis

To cite this version:
Georgios Bampasidis. Study of the environment of Titan : the stratosphere and the surface of the
satellite, future mission experiments & educational activities. Sciences of the Universe [physics].
Observatoire de Paris, 2012. English. �NNT : 2012OBSP0212�. �tel-02167416�

https://hal.science/tel-02167416
https://hal.archives-ouvertes.fr


OBSERVATOIRE DE PARIS

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

ECOLE DOCTORALE

ASTRONOMIE ET ASTROPHYSIQUE D’ILE-DE-FRANCE

Doctorat en co-tutelle

ASTRONOMIE ET ASTROPHYSIQUE

Georgios Bampasidis

STUDY OF THE ENVIRONMENT OF

TITAN

The stratosphère and the surface of the satellite,

future mission experiments
& educational activities

Thesis Supervisors: Athéna COUSTENIS
Xenophon MOUSSAS
Panagiota PREKA-PAPADEMA

Date of Defence: 30 October 2012

Jury :

Christos S. ZEREFOS

Ioannis DANDOURAS

Panagiotis NASTOS
Olivier MOUSIS

Olivier GRASSET

President :

Rapporteurs :

Examiners :



OBSERVATOIRE DE PARIS

NATIONAL & KAPODISTRIAN UNIVERSITY OF ATHENS

ECOLE DOCTORALE

ASTRONOMIE ET ASTROPHYSIQUE D’ILE-DE-FRANCE

Doctorat en co-tutelle

ASTRONOMIE ET ASTROPHYSIQUE

Georgios Bampasidis

STUDY OF THE ENVIRONMENT OF

TITAN

The stratosphère and the surface of the satellite,

future mission experiments
& educational activities

Thesis Supervisors: Athéna COUSTENIS
Xenophon MOUSSAS

Panagiota PREKA-PAPADEMA

Date of Defence: 30 October 2012

Jury :

President :

Rapporteurs :

Examiners :

Christos S. ZEREFOS

Ioannis DANDOURAS

Panagiotis NASTOS
Olivier MOUSIS

Olivier GRASSET



This PhD Thesis is a joint supervision Doctorate (co-tutelle) between, the Paris Doctoral

School of Astronomy (Ecole Doctorale d'Astronomie et Astrophysique d’Ile-De-France),

Paris Observatory and the National & Kapodistrian University of Athens, School of Sciences,

Faculty of Physics.

The specialty of the Thesis is Astronomy and Astrophysics (Paris Observatory) and

Astrophysics, Astronomy and Mechanics (Faculty of Physics, National & Kapodistrian

University of Athens).

The author's student IDs:

• 0g5egj00055 (Paris Observatory)

• 2007509 (Faculty of Physics, National & Kapodistrian University of Athens)

The Jury Composition:

Thesis supervisors:

- Dr. Athéna Coustenis, Research Directror, CNRS, LESIA, Observatoire de Paris, France

- Prof. Xenophon Moussas, Professor, Faculty of Physics, National & Kapodistrian University

of Athens

- Prof. Panagiota Preka-Papadema, Assistant Professor, Faculty of Physics, National &

Kapodistrian University of Athens

President of the Jury:

- Prof. Christos S. Zerefos, Professor, National Academy of Athens, Greece

- Dr. Ioannis Dandouras, Research Director, CNRS, IRAP (ex-CESR), Institut de Recherche

en Astrophysique et Planétologie, Toulouse, France

- Dr. Panagiotis Nastos, Assistant Professor, Faculty of Geology and Geoenvironment,

National & Kapodistrian University of Athens

- Prof. Olivier Mousis, Professor, Université de Franche-Comté, France

- Prof. Olivier Grasset, Professor, Université de Nantes, France



Acknowledgements

For the completion of this work I am indebted to my supervisors Dr. Athéna Coustenis, Prof.

Xenophon Moussas and As. Prof. Panayota Preka-Papadema not only for their invaluable

guidance and insight but also for their constant encouragement over the last years.

I am grateful to the Goddard Team (R. Achterberg, D. Jennings, C. Nixon, R. Carlson, E.

Guandique, M. Segrura) for the support they offered in data retrieval. Without them this work

would hâve never existed.

I would also like to thank S. Vinatier and M. Hirtzig from Paris Observatory for their help in

scientific interprétation, G. Kollias and S. Stamogiorgos for helping in software, D. Couritis

and T. Hadzistergos for helping in future missions chapter, as well as R. Kirk for the fruitful

discussions on RADAR image processing.

It is also a great pleasure to acknowledge E. Bratsolis for his guidance in despeckle filtering

technique and A. Hayes for providing RADAR data and interprétations of software.

I owe particular thanks to my ffiends and colleagues A. Solomonidou for her valuable help

during my Thesis and E. Mitsakou for her tolérance with my last minute planning.

Deserving of spécial mention are I. Dandouras and P. Nastos for reviewing my thesis and

improving significantly the manuscript with comments and suggestions.

Last, but by no means least, I would like to record a spécial note of thanks to my wife, my

parents and sister whose patience, understanding and support, I hâve so heavily drawn upon.

There are no words enough to thank them for ail they hâve offered.



Abstract

This study concems Titan's environment from the analysis of spatial data acquired by the

Cassini orbiter. On one hand, the température and the Chemical composition of Titan's

stratosphère is determined by the exploitation of spectra recorded by the instrument CIRS of

Cassini. The thesis describes a complété work on the data since their extraction, their

calibration and up to their analysis by a radiative transfer code. The results permitted to

highlight the presence of variations in latitude but also in time, due to the seasons of the

satellite. The study also contains contributions to the détermination of the abundance of the

water vapor and in the variations between hemispheres in the gaseous and aérosol content.

Furthermore, a search for new molécules was initiated from large CIRS spectra. A second part

deals with the surface of the satellite and its liquid components, the lakes of methane, from

Cassini/RADAR data and brings information on the geology and on the cycle of the methane

which links the atmosphère with the surface and the interior. The astrobiological implications

of this work are discussed within the framework of the quest for habitable environments in

our solar System among the icy satellites of the giant planets. Ail these studies hâve an impact

on the préparation of future space missions to Titan, Satum and the System of Jupiter and

possible instrumentation is proposed. Finally, the context for éducation and outreach

possibilities is discussed.



Résumé

Cette étude porte sur l’environnement de Titan à partir de l’analyse de données spatiales

enregistrées par la sonde Cassini. D’une part, la température et la composition chimique de la

stratosphère de Titan sont déterminées par l’exploitation des spectres fournis par l’instrument

CIRS de Cassini. La thèse décrit un travail complet sur les données depuis leur extraction,

leur calibration et jusqu’à leur analyse par un code de transfert radiatif. Les résultats ont

permis de mettre en évidence la présence de variations en latitude mais aussi avec le temps,

dues aux saisons du satellite. L’étude comporte aussi des contributions à la détermination de

l’abondance de la vapeur d’eau et aux variations entre hémisphères des gaz et de la brume sur

Titan. De plus, une recherche de nouvelles molécules a été initiée à partir de larges spectres

CIRS. Un second volet traite de la surface du satellite et de ses composantes liquides, les lacs

de méthane, à partir des données Cassini/RADAR et apporte des informations sur la géologie

et sur le cycle du méthane qui relie l’atmosphère à la surface et à l’intérieur. Les implications

astrobiologiques de ces recherches sont discutées dans le cadre de la quête pour des habitats

dans notre système solaire parmi les satellites de glace des planètes géantes. Tous ces travaux

ont un impact sur la préparation de futures missions spatiales vers Titan, Saturne et le système

de Jupiter et des instruments possibles sont proposés. Enfin, le contexte pédagogiques et les

retombées dans l’éducation et l’information du grand public sont discutés à la fin du

manuscrit.
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Il£piX,T|l|/T|

H 7iaponoa peÀôxp acpopà gto 7iepipà}Aov xon Tixava pe pàap xriv avàXnap 5e8opévcov a7iô

TO 5iaaxppÔ7iÀ,oio Cassini. ApxiKà, KaGopiÇexai p GeppoKpaaia Kai XTipixicri anaxaap xpç

axpaxôacpaipaç xon Tixava péaco xpç aÇi07roipapç xcov cpaopàxcov xon opyàvon CIRS xon

8iaaxppo7iAoion Cassini. H ôiaxpipp a7ioxeÀ£i pia oÀ,OKÀppcopévp 87reÇepyaaîa xcùv

ôeôopévcov, anô xr| axiypp xpç Kaxaypacppç, xpç paGpovôppapç Kai xpç avàAnapç xonç pe xp

Xppap 8vôç A,oyiapiKon e7iiAnapç xpç eÇiacoapç ôiàôoopç xpç evépyeiaç pe aKxivopoÀaa. Ta

a7iox8À£opaxa xoviÇonv xpv îiaponaia ôiapaGpiaecov axp GeppoKpaaia Kai xp anaxaap xpç

oxpaxôocpaipaç, eixe G8 yecoypacpucp Kaxà tcMxoç Kaxavopf), eixe xpoviKà, Xàyco xcov ercoxcov

oxo Sopncpôpo. H pe^éxp eîriapç anveiocpépei gxov KaGopiopô xpç 7i8piSKxiKÔxrixaç xcov

nôpaxpcbv, KaGcbç Kai axiç ôiapaGpioeiç 7ion 7tapaxppp0pKav axa axpoacpaipiKà aépia Kai

axa aepoÀupaxa avàpeoa axa ôno ppiocpaipia. E7ti7i^ov, 87axeipeixai avaÇpxpop yia véa

pôpia pe xp XP1!01! pecroaxaGpiopévcov cpaopàxcov xon opyàvon CIRS anô xpv évap^p écoç Kai

xo xéÀ,oç xon îtpcbxon péponç xpç a7iooxo?ipç. To 5enxepo pépoç rcpaypaxenexai xpv emcpaveia

xon ôopncpôpon, eoxiàÇovxaç axiç >ipveç nôpoyovavGpàKcov Kai gxov 7iepi|3à>Aovxa xcopo, pe

xpv a^ioîioipop xcov eucôvcov RADAR a7iô xo Cassini. Àlvovxai TiXppocpopieç yia xp yecoA.oyia

Kai yia xov kôkAo xon peGavlon, 7ion a7ioxeÀ£{ onvôexiKÔ Kpüco pexa^n xpç axpôocpaipaç, xpç

87ucpàveiaç Kai xon eocoxepucon. E7uopç, ava^novxai oi jcapàpexpoi avaÇpxpapç îiepioxcov 7ton

prcoponv va cpiXo^evpoonv pio^oyiKà pôpia axonç ôopncpôponç xcov yiyàvxicov îiXavpxcbv xon

pXiaKon paç onoxppaxoç. Oi peAixeç anxéç onveiocpéponv oxpv 7üpo8xoipaoia pe>Aovxuccbv

a7rooxo^cùv gxov Tixava, gxov Kpôvo Kai oxo anaxppa xon Àla Kai 7ipox8lvovxai oxexiKà

7ieipàpaxa. Te^oç, Tiepiypàcpovxai 8K7iai5enxiKéç 7ixnxéç Kai eKXaücenxiKéç ecpappoyéç xpç

épenvaç.
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Chapter 1

Introduction

1.1 History ofTitan’s exploration

1.1.1 Titan before the space era

The story of Titan begins on the night of March 25, 1655, when the young Dutch astronomer

Christiaan Huygens (1629-1695), with his brother Constantijn, tumed their own designed and

constructed 4 m long telescope to Satum. As he described it in his report entitled "De Saturni

luna observatio nova", which was published a year later in the Hague, Huygens wanted to

understand the strange protrusions referred to as ansae or handles appearing at both sides of

the giant planet.

Huygens not only observed these odd extends of Satum but also by using his telescope

with a magnification of 50 he noticed the existence of a bright star - as he initially thought-

which he eventually realized that it was a satellite. Huygens gathered ail his observations in

Systema Saturnium which was published in 16591. Based on his observations, Huygens

calculated the orbital period of Titan at 15 days, 23 hours, 13 minutes not far from the modem

value of 15 days, 22 hours, 41 minutes and 24.35 seconds. Except for the discovery of Titan,

Huygens explained that Satum's strange extends were in fact its rings.

Huygens did not name Titan with its contemporary name but he called it Luna Saturni.

In 1847, Sir John Frederick William Herschel in his publication Results of Astronomical

Observations made at the Cape ofGood Hope proposed to give the names of legendary Titans

to Satum's satellites, inspired from the Greek Mythology. Following Herschel's suggestion,

the biggest moon of the Satumian System is now known as Titan.

Catalan astronomer José Comas Solà assumed the existence of a strongly absorbing

atmosphère surrounding Titan, when he claimed he observed limb darkening in his

observations in 1907 (Comas Solâ, 1908). Sir James Jeans included Titan (Jeans, 1925) in the

4th édition of his theoretical work of escaping atmospheric processes, perhaps being

influenced by Solà's observations but he did not refer Solà in his sources list (p. 348).

1 A digital online copy of Christiaan Huygens' book Systema Saturnium can be found in:
http://www.sil.si.edu/DigitalCollections/HST/Huygens/huygens-introduction.htm



Moreover, Solà claimed that he had observed limb darkening on Titan. However, it is

doubtful that Solà did actually observe the darkening edges on Titan taking into account his

scientific equipment and Titan's position during the observation (Lorenz, 1997).

Gérard Peter Kuiper, based on the University of Chicago, not only proved the

existence of Titan's atmosphère but also identified one of its constituents when he recorded in

1943-44 methane absorption bands at 6190 and 7250 A in Titan's spectrum (Kuiper, 1944).

This observation also revealed the uniqueness of Titan in the Satumian System, since no other

neighboring satellite has similar characteristics (Kuiper, 1952).

The dense cloud nature of Titan's atmosphère was finally confirmed in 1973 (Lewis &

Prinn, 1973; Pollack, 1973) and Sagan discusses already the significance of the greenhouse

effect on Titan (Sagan, 1973). Several years after Kuiper’s work, Lawrence Trafton (Trafton,

1974) from the University of Texas observed in Titan's spectrum the v3v3 band of methane,

while Lutz et al. (1976) concluded that methane was a minor constituent of Titan's

atmosphère.

The complexity of Titan's atmosphère was soon revealed, when the dissociation of

methane was studied at higher altitudes by merely the solar UV radiation, producing more

complex hydrocarbons. Gillett (Gillett, 1975) discovered other hydrocarbons in addition to

methane, such as ethane at 12.2 pm, monodeuterated methane at 9.39 pm, ethylene at 10.5 pm

and acetylene at 13.7 pm. Molecular hydrogen was added to Titan's gaseous inventory in

1975 (Trafton, 1975).

Two models had tried to explain these observations of Titan. One, advocated by

(Danielson et al., 1973; Caldwell, 1977), suggested a cold surface at 86 K and 20 mbars under

a methane-riched atmosphère where the aérosols capture the solar energy. The other model

(Lewis, 1971; Hunten, 1977), assumed an atmosphère of hydrogen, nitrogen and methane,

with a surface température close to 200 K and high pressure at 20 bars, hosting liquid

methane. According to the latter model, nitrogen is a product of ammonia dissociation and

contributes to a global greenhouse effect.

Although the pre-Voyager knowledge has advanced our view of Titan, the orange

satellite of Satum remained a mystery. The need for in situ exploration of the Satumian

System, the ringed planet, its rings and the satellites was obvious. Only by space missions

Titan's veil can be unveiled since its atmosphère is opaque for ground-based observers.

2



1.1.2 Space missions: Pioneer 11 and Voyagers 1 and 2

Titan’s uniqueness is évident at close scrutiny. It is the largest of the 62 known to date

Satumian natural satellites2 *, the second moon in size of the Solar System, after Jupiter’s

Ganymede and larger than the planet Mercury. Titan orbits around Satum within almost 16

days, performing a non-synchronous rotation of a 0.36 or 3.3x10‘4 faster than the

synchronous spin rate per year as inferred from RADAR measurements (Lorenz et al., 2008c;

Stiles et al., 2008; 2010). The biggest Satumian satellite is gravitationally locked in its orbit

around the gas giant. Along with Venus, Titan is the only slowly rotating body with a

substantial atmosphère in the Solar System.

Titan orbits around Satum within 16 Earth-days almost synchronously. Instead, due to

strong zonal winds (Bird et al., 2005; Lorenz et al., 2008c), its atmosphère is in a super

rotation State. Due to Titan’s distance from the Sun of about 9.5 astronomical units (AU), the

satellite receives slightly more than 1 % of the solar flux that the Earth registers at the top of

its atmosphère at 1 AU. Additionally, Titan revolves far enough from Satum, at about 20

Satumian radii, thus avoiding any critical interactions with its rings.

Pioneer 11 (Fig. 1.1) was the First space mission, which reached the Satumian System

on September lst, 1979. However, its closest approach to Titan was limited at the distance of

363,000 km, quite far to obtain any measurements or observations.

2 A list of the Satumian satellites with their facts can be found in:

http://nssdc.gsfc.nasa.gov/planetary/factsheet/satumiansatfact.html

3
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Figure 1.1- The Pioneer 11 structure (crédit: NASA).

Pioneer's follow-ups were the legendary Voyager 1 and 2 both launched in 1977 (Fig.

1.2). The Voyager twins were the first large scale missions to the outer planets of the Solar

System. Both spacecraft took advantage of the rare planetary alignment occurring every 176

years and reached the Satumian System only few years later. In fact, the Voyager 1

encountered Satum on November 12th, 1980, while Voyager 2 met the ringed planet on

August 25th, 1981. They both observed Titan, but Voyager 2 was too far away to be able to

make detailed measurements as Voyager 1. On November 12th, 1980, Voyager 1 flew by

Titan at a distance of 6969 km from the centre of the satellite.
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Narrow Angle Ultraviolet

(Spacecraft Shown Without

Thermal Blankets for Clarity)

Figure 1.2- The Voyager sketch with its main instumentation

(source: http://pds-rings.seti.org/voyager/spacecraft/sc_cartoon.gif).

The scientific importance of the Voyager missions’ measurements is enormous, as

they hâve visited ail the giant planets in the Solar System retuming to the Earth a wealth of

data and images, which hâve greatly enhanced our understanding of the Solar System. Apart

from the Voyagers no other human device has visited Uranus and Neptune or travelled so far

away from our planet. Both spacecraft are still in operation at the edge of the Solar System.

Nowadays, Voyager 1 and 2 crossed the termination shock of the Heliosphere in

December 2004 and in August 2007 respectively, where the velocities of the plasma

significantly decrease due to the interaction with the interstellar medium and they are now

exploring the Heliosheath. They will enter into the interstellar space possibly before 2020.

The spacecraft are still détectable through the Deep Space Network (DSN).
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1.1.3 The Voyagers encounters of Titan

Voyager 1 and 2 are identical twin spacecraft, the sophisticated instrumentation of which is

briefly listed below (Space Science Reviews, Spécial Voyager instrumentation issue, vol.

21(2): 75-232, 1977):

a) the Imaging Science System (ISS), the spacecraft's two-camera System

b) the Radio Science System (RSS), the télécommunications System of Voyagers used to

investigate physical data of planetary objects

c) the Infrared Interferometer Spectrometer (IRIS), dedicated to atmospheric

composition exploration

d) the Ultraviolet Spectrometer (UVS), used to investigate atmospheric properties

e) the Triaxial Fluxgate Magnetometer (MAG), which measured the magnetic fields,

the solar wind coupling of the planetary magnetospheres

f) the Plasma Spectrometer (PLS), which measured plasma ions and électrons from 5eV

to 6 keV

h) the Low Energy Charged Particle instrument (LECP), which investigated energetic

particles, their differential energy fluxes and angular distributions

i) the Cosmic Ray System (CRS), which studied the interstellar cosmic rays in the

interplanetary and trapped in the planetary energetic particle environment

g) the Planetary Radio Astronomy Investigation (PRA), which studied the radio

émissions from giant planets

k) the Photopolarimeter System (PPS), observed the surfaces of giants and Satum rings

l) the Plasma Wave System (PWS), which measured electron-density profiles and

electromagnetic waves.

From the above payload, the UVS, the MAG, the LECP, the CRS and the PWS are still in

operation after 35 years.

Voyager 1 encountered Titan from north to south, having an orbital angle at 8.7° in

respect to Titan's orbital plane with a relative speed of 17.3 km/s (Coustenis, 1989). Both

Voyagers flew by Titan close to its northem spring equinox at solar longitude Ls=9°. The

Voyagers' encounters of Titan gave a wealth of data for the nature of the biggest Kronian

satellite. Their observations confirmed the presence of Titan's optically thick scattering haze

and determined an optical depth larger than 5 with a peak haze brightness at 240 km above its

surface (Smith et al., 1981).
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The haze, which covered the Southern hemisphere, was significantly brighter

compared to the northem one. The northem polar régions in particular showed darker haze

colors, this was called the northem polar hood. This North-South asymmetry was explained

by variations in density, particle size and composition due to different solar heating. Indeed,

the northem hemisphere was 10 K colder than the southem one at the VI era (Flasar et al.,

1981).

The other feature that Voyager missions recorded was the detached haze layer which

was discovered at 100 km above the peak of the main haze (Smith et al., 1981; 1982). A

global distribution of the detached haze with a latitudinal variation southem of 45°N at

altitudes 300-350 km was reported from Voyager 2 recordings (Rages & Pollack, 1983).

Above 60 N, the detached haze merged with the main haze.

The Voyager 1 remote data determined the bulk composition and the vertical

température profile of Titan's atmosphère. Both Vl/RSS and Vl/IRIS estimated the mean

mass ratio to be within the range of 27.8 and 29.3 amu (Lindal et al., 1983; Lellouch et al.,

1989). In combination with the Vl/UVS observations (Broadfoot et al., 1981; Strobel &

Shemansky, 1982) and solar occultation data (Smith et al., 1982) it was then determined that

nitrogen is the dominant species in Titan's atmosphère, while methane is a minor constituent.

Additionally, only upper limits were estimated for argon (Strobel et al., 1993). VI data also

detected hydrogen but failed to detect ammonia (Hanel et al., 1981). As far as the methane

stratospheric abundance is concemed, Lellouch et al. (1989) gave a methane mixing ratio up

to 3.4% assuming that it is not supersaturated in the stratosphère.

During the radio occultation experiment, the satellite occulted the spacecraft. The

phase shift as well as the atténuation of the VI radio signal derived two vertical profiles

(Smith et al., 1982). The Vl/RSS also indicated the Earth-like thermal structure of the

atmosphère. It estimated the surface température at 94±0.7K at 1496 ±0.02 mbar and a radius

of 2575±0.5 km. The tropopause was located at 42 km (71.4±0.5K, 130 mbar) while the

stratopause at about 200 km (0.75 mbar) with a highest value at 170K. The exact altitude and

the température of the stratopause were not determined. Vl/UVS gave also constraints for the

upper atmosphère (186±20K at 1265 km) (Smith et al., 1982) and the interval was calculated

by interpolation techniques. However, recent reanalysis of Voyager data showed the location

of homopause higher than 1000 km (Vervack et al., 2004), while Smith et al. (1982) showed it

at 925 km.

Vl/IRIS spectra confirmed the existence of a rich organic environment in Titan's

atmosphère. Indeed, the émissions of acetylene (C2H2), ethane (C2H6), ethylene (C2H4),
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propane (C3H8), methylacetylene (CH3C2H), diacetylene (C4H2), hydrogen cyanide (HCN),

cyanoacetylene (HC3N), cyanogen (C2N2) and carbon dioxide (CO2) hâve been recorded by

IRIS in the stratospheric layers (Kunde et al., 1981; Maguire et al., 1981; Samuelson et al.,

1981; Samuelson, 1983; Coustenis et al., 1989a; 1989b).

The VI encounters probed Titan's atmosphère in several latitudes (70°N, 50°N, 30°N,

9°N, 8°N, 5°N, 7°S, 30°S and 53°S) and a latitudinal distribution of trace gases abundances

was constructed (Fig. 1.3) while the longitudinal variation was not significant (Coustenis &

Bezard, 1995). Except for CO2 and ethane, ail the trace constituents showed an enhancement

in the high northem latitudes.

Fig. 1.3: The latitudinal distribution of trace gaseous mixing ratios. The panel (a) shows the hydrocarbons and

C02, while the panel (b) shows the nitriles. The error bars depict the 3a uncertainities for HC3N and C2N2 at the

probed latitudes below 50°N (Coustenis & Bezard, 1995).

Moreover, IRIS limb data indicate that the mixing ratios of most of the species

increase with altitude above their condensation level (Coustenis et al., 1991). V2/IRIS

observations, which probed Titan few months later, derived the same results (Letoumeur &

Coustenis, 1993). The D/H ratio in Titan's atmosphère was determined to be 3-12 times higher

than the protosolar value (Kim & Caldwell, 1982; Coustenis et al., 1989b).
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1.1.4 Ground-based and space-borne Titan observations

A full Titan révolution of the Sun takes about 30 years and therefore long-term observations

are needed to hâve a complété picture of its temporal atmospheric évolution. Taking as the

initial point of our temporal studies the VI encounter in 1980, the mid-2009 stands as an

important time spot in Titan's atmospheric science.

Unfortunately, due to the hazy nature of its atmosphère, distant direct observations of

its lower atmosphère and of its surface are impeached. Methane bands strongly absorb the

outgoing radiation and it is impossible to see through them except only through narrow

methane spectral “windows” (régions of weak absorption) in the near infrared (NIR). These

Windows are centered at 0.83, 0.94, 1.07, 1.28, 1.58, 2.0, 2.9 and 5.0 pm and the observations

are limited.

Several ground-based and space-borne observations hâve been performed in the time

interval between the Voyager encounter of Titan (1980) and the arrivai of the Cassini-

Huygens mission (2004). The advent of adaptive optics and the space-borne télescopes

(Hubble Space Telescope -HST, Infrared Space Observatory -ISO) made the surface and the

lower atmosphère of Titan reachable from the Earth.

The adaptive optics technique retums a more accurate image of the object through the

atmosphère by correcting the aberrations of the light sources. Aberrations mainly originated

from atmospheric turbulence, thermal blooming and other non-atmospheric sources (Tyson,

2011). This technique allows resolving Titan’s disk and obtaining some spatial resolution on

the surface of Titan by using both spectroscopy and imaging. Distant observations of Titan

can be performed by radio télescopes as well. Developments in signal processing by using

heterodyne receivers amplify the echoes from Titan providing high resolution spectroscopy

(Coustenis & Taylor, 2008).

Finally, information about Titan’s atmosphère can be provided by stellar occultations

of Satum and Titan when they pass in front of a star. Six such events hâve been recorded so

far: one on 3 July 1989, one on 21 August 1995, two on December 2001 and two on 14

November 2003 (see Coustenis et al. (2009b) and references therein).

Both Earth- and space-based observations hâve revealed the heterogeneous nature of

the surface and showed that dark and bright régions, consisting of different ice, dominate it.

Such observations came from the HST in 1994 (Smith et al., 1996) and 1997-1998 (Meier et

al., 2000), the speckle interferometry from Keck Telescope within 1996-1998 (Gibbard et al.,

1999; Gibbard et al., 2004) and adaptive optics from Canada-France-Hawaii Telescope
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(CFHT) in 1998 (Coustenis et al., 2001), from Very Large Telescope in Chile (VLT) in 2002

(Gendron et al., 2004), from combination of CFHT and VLT data during 2001-2004

(Coustenis et al., 2005) and from W.M. Keck II telescope within 2001-2003 (Roe et al.,

2004a).

As far as the composition of the surface is concemed, observations from the Infrared

Telescope Facility (IRTF) on Mauna Kea, Hawaii, in 1989 showed that the surface consists of

dirty ice bedrock (Griffith et al., 1991) fiill of organics and tholins3, a laboratory analogue to

Titan's surface material (Sagan, 1974; Sagan & Khare, 1979; Sagan et al., 1984). A mixture of

water ice and tholins, which covered parts of the surface, was also discovered by albedo

observations taken by the CFHT from 1991 to 1996 (Negrao et al., 2006). Additionally,

observations from the VLT in 2000 also assumed also ammonia ice on Titan's surface

(Lellouch et al., 2003).

More recent observations in 2005 assumed the presence of methane ice mixed with

water and tholins ice by the use of the VLT measurements (Hirtzig et al., 2007; Negrao et al.,

2007), while VLT measurements in 2004 also gave firm limits of carbon dioxide ice (Hartung

et al., 2006). However, higher resolution observations needed to distinguish and identify

surface features.

Ground-based RADAR observations also contributed significantly to the study of the

surface of Titan. After the Voyager encounters, the existence of a global océan was suggested

to cover the surface (Flasar, 1983; Lunine et al., 1983). However, earth-based RADAR echoes

recorded at Very Large Array in New Mexico indicated that Titan's surface possesses a very

high RADAR cross section and latitudinal variation, which is inconsistent with the global

océan hypothesis (Muhleman et al., 1990). Lemmon et al. using data from Steward

Observatory and the Multiple Mirror Telescope in 1992 also showed the spatial heterogeneity

of Titan (Lemmon et al., 1993), while Cambell et al. noted RADAR observation areas of

specular reflections, similar to small lake-like features from Arecibo echoes in 2001 and 2002

(Campbell et al., 2003).

Carbon monoxide was detected in Titan’s atmosphère at 1.57 pm (Lutz et al., 1983),

while its existence was established by several measurements at 5 pm, determining that CO is

not uniformly mixed in the atmosphère (Coustenis et al., 2009b) (and references therein).

Using IRAM-30 data taken between April 1996 and December 1999, acetonitrile (CH3CN)

was firstly detected (Bezard et al., 1993; Marten et al., 2002). These measurements provided

3 Tholins are named after the greek word "0oA6ç" (=mud) by Cari Sagan.
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compositional studies of the atmosphère and the first vertical profiles of nitriles, which

increased with altitude in the stratosphère, outside the polar région. Moreover, these IRAM-30

recordings gave a strongly enhanced ratio of 15N/14N by a factor of 4 in HCN. The vertical

stratospheric HCN profile in Titan was reported from earlier IRAM-30 observations on

September 1986 and May 1987 (Tanguy et al., 1990) as well as in May 1995 (Hidayat et al.,

1997).

By using heterodyne spectroscopy at the NASA Infrared Telescope Facility (IRTF) in

August 1993, October 1995 and September 1996, the abundance of ethane was retrieved

(Kostiuk et al., 1997; Livengood et al., 2002).

The higher resolution of echelle technique applied in IRTF (TEXES) compared to

Voyager, allowed for the first time the séparation of propane V26 band at 748 cm'1 in

December 2002, which was blended with the acetylene P-wing in the Vl/IRIS spectra (Roe et

al., 2003). Observations taken during the 1999-2002 with W.M. Keck I telescope showed

seasonal variation of ethylene mixing ratio in the atmosphère at 8-13 pm (Roe et al., 2004b).

Keck II/NIRSPEC observations in November 2001 provided abundances for HCN, C2H2, CH4

and CH3D at 3 pm (Geballe et al., 2003; Kim et al., 2005). Ground based measurements were

available during the Huygens descent in January 2005 being obtained at National

Astronomical Observatory (NAO) providing ethane abundances (Livengood et al., 2006).

IRTF/IRHS data mentioned above, were used for detecting winds in Titan’s

atmosphère by studying ethane in two limb positions along with December 2003

measurements at NAO and January 2005 recordings at NAO/HIPWAC, noting an équatorial

wind (Kostiuk et al., 2005; Kostiuk et al., 2006; 2010). Similarly, European Southern

Observatory Very Large Telescope with UVES measured global circulation wind velocities at

various altitudes at the time of the Huygens landing in January 2005 (Luz et al., 2005).

ISO focused on Titan for 20 h in 1997. By viewing Titan only as a small disk, it

performed disk-averaged recordings. Having much higher resolution than the Vl/IRIS, it

reported the same organic inventory as IRIS did (Coustenis et al., 2003; Coustenis & Taylor,

2008). Additionally, ISO detected water vapor for the first time in the atmosphère (Coustenis

et al., 1998). It also detected benzene for the first time at 674 cm'1 (Coustenis et al., 2003),

whose presence on Titan was later confirmed in Cassini/CIRS observations.

The stellar occultation of Satum and Titan by the star 28 Sagitarii allowed retrieving

information about Titan’s stratosphère within a range of 250 to 500 km. During this event,

two haze layers were detected, having a reverse asymmetry comparing to the Voyager 1

observations (Sicardy et al., 1990).
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1.2 The Cassini-Huygens Mission

1.2.1 Mission development

The need for a space mission focused on the Satumian System, its rings, its satellites and its

magnetosphere, led scientists to propose the Cassini-Huygens mission, an ambitious program

of scientific in situ observations. Without doubt, the Cassini-Huygens mission is one of the

largest, heaviest and most complex interplanetary spacecraft ever built in a cooperative effort

between National Aeronautics and Space Administration (NASA), European Space Agency

(ESA) and the Agenzia Spaziale Italiana (ASI). The formai beginning of the Cassini mission

was with the mission proposai in 1982 to ESA and in 1983 to NASA. After its approval by

both space agencies, the mission was developed between 1987 and 1996 (Matson et al.,

2002). It launched in 1997 and arrived in the Satumian System in July 2004.

The mission concept consists of two spacecraft: the Cassini orbiter and the Huygens

probe, named after Giovanni Domenico Cassini (1625-1712) and Christiaan Huygens (1629-

1695) respectively, honoring them for their contribution in the early stages of astronomical

observation of the Satumian System.

1.2.2 The Cassini orbiter

The Cassini orbiter is 6.8 m high and 4 m at its widest in diameter. It functions as an artificial

satellite of Satum and was the carrier of the Huygens probe which was successfully delivered

to Titan. It also operated as the link between the Huygens capsule and the Earth during the

Huygens mission phase in 2005.

The orbiter’s scientific objectives are to deeply investigate Satum’s atmosphère, its

rings, its icy satellites, the radiation belts and its magnetosphere. Because of Satum’s distance

from the Sun, at circa 10 AU, Cassini cannot rely on solar panels as power sources and is

equipped with three Radioisotope Thermoelectric Generators (RTG), using the heat from the

natural decay of plutonium to generate direct current electricity powers.

Cassini is a State of the art spacecraft hosting on-board science instrumentation

capable of performing both remote and in situ observations (Fig. 1.4). The orbiter’s science

instruments are separated in two different platforms: the Remote Sensing Pallet and the Fields

and Particles Pallet.
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Figure 1.4: The Cassini spacecraft. The main parts of the instrumentation is shown as well as the Huygens probe

and its energy sources (Henry, 2002).

Orbiter in situ investieations

The Fields and Particles pallet (Fig. 1.5) supports the Cassini Plasma

Specîrometer (CAPS), the Ion and Neutral Mass Spectrometer (INMS) and the

Magnetosphere Imaging Instrument (MIMI) sensors Charge-Energy-Mass-Spectrometer

(CHEMS) and the Low Energy Measurements System (LEMMS). The Dual Technique

Magnetometer (MAG) is placed on the orbiter's boom 11 m antenna. The Radio and Plasma

Wave Spectrometer (RPWS) and the Cosmic Dust Analyzer (CDA) are located in the main

body of the orbiter as well as MIMI's Ion and Neutral Caméra (INCA).
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Figure 1.5: Cassini's Fields and Particles pallet where the instruments for in situ investigations are located

(Young et al., 2004).

1. The Cassini Plasma Spectrometer (CAPS) explores the nature of the Satumian plasma

within and near Satum's magnetic field. CAPS help us understand the complexity of

the Satumian magnetosphere and its interaction with its satellites, the rings and the

solar wind. It is consisted of Electron Spectrometer (ELS), the Ion Beam Spectrometer

(IBS) and the Ion Mass Spectrometer (IMS). The ELS measures électron velocity

distribution ranging from 0.6 eV to 28,250 eV, while the IBS records distributions of

ion velocities within the range of .1 eV to 49,800 eV. IMS measures the composition

of the hot, diffuse plasma from the Satumian magnetosphere and low concentration

ion species from 1 eV to 50,280 eV (Young et al., 2004).

2. The Ion and Neutral Mass Spectrometer (INMS) detects the neutral and charged

particles located near Titan, Satum and the other moons to leam more about their

extended atmosphères and ionosphères. Thus, the INMS focuses on the upper part of

Titan's atmosphère, between the altitudes of 900 and 1000 km, where the complex

photochemistry of nitrogen and methane begin to build more complex organic
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molécules, which descend towards its surface. Moreover, INMS also studies the

interaction of Titan's atmosphère with Satum's magnetospheric plasma. It consists of

two ion sources, one closed and one open. The former opérâtes with the non-reactive

neutrals, the nitrogen and methane, while the latter functions for reactive neutrals like

the atomic nitrogen and for positive ions with energies less than 100 eV. The

instrument is able to detect heavier hydrocarbon molécules such as benzene and

détermine their molecular mass (Waite et al., 2004).

3. The Magnetosphere Imaging Instrument (MIMI) images Satum's magnetosphere,

studies its dynamics and measures the interactions between the magnetosphere and the

solar wind and the magnetosphere with Satum's atmosphère, Titan and the other icy

moons. It perforais both in situ and remote measurements. It senses remotely the

magnetospheric ion plasma with energies greater than 7 keV through the détection of

energetic neutrals produced through charge-exchange interactions of energetic ions

with cold neutrals. It also measures in 3-dimensions the ion composition and charge

States for ion energies between 3 keV/e and 220 keV/e. MIMI consists of 3 sensors the

Ion and Neutral Caméra (INCA), the Charge-Energy-Mass-Spectrometer (CHEMS)

and the Low Energy Measuremens System (LEMMS) which detects energetic

électrons (>15 keV) and energetic ions with cold neutrals. During each Titan flyby,

INCA studies the interaction of Titan's exosphere with the Satumian magnetosphere

every 90 s (Krimigis et al., 2004).

4. The Dual Technique Magnetometer (MAG) studies Satum's internai magnetic field

and its interactions with the solar wind, the rings and the moons of Satura. MAG also

maps the magnetic State of Titan and its atmosphère as well as Satum's ring and dust

interactions with the electromagnetic environment. MAG investigates the structure of

the magnetotail and the dynamic processes therein. It consists of a fluxgate

magnetometer and a vector/scalar hélium magnetometer mounted both on the

spacecraft's boom (see Fig. 1.4). Hence, MAG senses small changes in fields spanning

four orders of magnitude with high sensitivity, recording the strength and direction of

the magnetic fields (Dougherty et al., 2004).

5. The Radio and Plasma Wave Spectrometer (RPWS) studies radio émissions plasma

waves, thermal plasma and dust. It consists of three orthogonal electric field antennas
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which focus on the détection of electric fields ranging from 1 Hz to 16 MHz, and three

orthogonal search coil magnetic antennas to detect magnetic fields in the range within

1 Hz to 12 MHz. A Langmuir probe is used for measuring the électron density and

température. The electric antennas, the search coils and the Langmuir probe are

mounted on the orbiter's main body. RPWS measures the électron density and

température in Titan's ionosphère and study the escape thermal plasma from Titan's

wake région (Gumett et al., 2004).

6. The Cosmic Dust Analyzer (CDA) measures the ice and dust grains in and near the

Satum System with masses ranging from 10'19 and 10"9 kg. CDA studies the physical

properties of the ice and dust grains and their Chemical composition, as well as their

interaction with the magnetosphere of Satum, its rings and satellites (Srama et al.,

2004).

Orbiter remote investigations:

Four instruments are mounted on the Cassini's Optical Remote Sensing Palette (RSP) (Fig.

1.6): the Composite Infrared Spectrometer (CIRS), the Imaging Science Subsystem (ISS), the

Ultraviolet Imaging Spectrograph (UVIS) and the Visual and Infrared Mapping Spectrometer

(VIMS).
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Figure 1.6: The Remote Sensing Palette on board Cassini (crédits: NASA).
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1. The Radio Science Subsystem (RSS) searches for gravitational waves in the Universe,

studies the atmosphère, rings and gravity fields of Satum and its moons by measuring

telltale changes in radio waves sent from the spacecraft. It consists of a Ka-

band traveling wave tube amplifier, a translator, an exciter, a S-band transmitter and

various microwave components. It détermines the température and composition

profiles within Satum's and Titan's atmosphères as well as the températures and

électron densities within Satum's and Titan's ionosphères (Kliore et al., 2004).

2. The Cassini RADAR (RADAR) mapper probes the surface of Titan using RADAR

imaging and measures its topography as well. The RADAR is a multimode Ku-band

instrument (13.8 GHz, X2.17 cm) having four operational modes: Synthetic Aperture

RADAR (SAR) imaging, altimetry, scatterometry and radiometry. The RADAR also

observes other targets in the Satumian System such as its icy moons and the giant

planet (Elachi et al., 2004).

3. The Visible and Infrared Mapping Spectrometer (VIMS) searches for the Chemical

compositions of the surfaces, atmosphères and rings of Satum and its moons by

measuring colors of visible light and infrared energy emitted or reflected within the

wavelength range 0.3 and 5.1 microns. Especially, VIMS probes the surface properties

of Titan and maps them in a global scale. VIMS measurements are crucial for

understanding Titan's geology and identifying any volcanic activity. It is consistent of

two imagers, one in the visual part, the VIMS-VIS, and the other in infrared part of the

spectmm, the VIMS-IR (Brown et al., 2004).

4. The Composite Infrared Spectrometer (CIRS) (Flasar et al., 2004) measures infrared

radiation emitted from the surfaces, atmosphères and rings of Satum and its moons to

study their température and compositions. A detailed description of the instrument and

its operational modes can be found in the following Chapter 2.

5. The Ultraviolet Imaging Spectrograph (UVIS) measures ultraviolet émission from

atmosphères and rings to study their structure, chemistry and composition. UVIS

détermines the constituents' abundances in Titan's atmosphère, the aérosols in order to

infer about the atmospheric circulation patterns. It also studies the UV émission from

the upper atmosphère of Titan and its relation to the Satumian magnetosphere as well.
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It hosts two moderate resolution telescope-spectrographs, providing images ranging

from 56 to 118 nm (EUV) and from 110 to 190 nm (FUV) respectively (Esposito et

al, 2004).

6. The Imaging Science Subsystem (ISS), a high-resolution two-dimensional optical

device, takes pictures in visible, near-ultraviolet and near-infrared light of the objects

within the Satumian System. It consists of two caméras, a narrow angle reflecting

telescope and a wide-angle refractor. Both caméras operate at a spectral range from

1100 to 200 nm. ISS is also the optical navigation guide of the Cassini spacecraft

(Porco et al, 2004).

1.2.3 The Huygens probe

The Huygens probe is the first man-made vehicle, which has performed a successfiil landing

in such a distant place from the Earth. After a couple initial orbits of Satum, the orbiter has

released the probe on a trajectory directed towards Titan. The Huygens mission can be

divided into 3 phases: the Entry, the Descent and the Landing phase. It landed in Titan's

équatorial région called Adiri at 10.3° S, 192.3°W. During its descent phase as well as after

touchdown, the capsule revealed a solid surface under the thick haze. The Huygens descent

lasted for 2 h 27 mins 50 s (Lebreton et al, 2009).

The orbiter then passed below the probe's horizon, breaking the established link

between Huygens and the Earth (Lebreton et al, 2005). However, the Very Long Baseline

Interferometry (VLBI) network, consisting of 17 large radio télescopes, recovered the

Huygens signal (Witasse et al, 2006) and thus Huygens continued to send back to Earth more

measurements. Eventually, before Huygens’ five batteries ran out of energy, it had already

submitted data of 2.5 h during its descent and 3 h and 14 min after its touchdown on the

ground (Lebreton et al, 2009).
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Figure 1.7: Huygens probe instrumentation, the upper and the bottom side of the vehicle

(http://nssdc.gsfc.nasa.gov/image/spacecraft/huygens_cutaway.jpg).

The Huygens payload consists of six scientific instruments placed as shown in Fig. 1.7. This

instrumentation has performed direct atmospheric and surface measurements of the

environment of Titan during the descent and after the touchdown. The data collected is not

only valuable for Titan's science, but also for reference for future missions. The six Huygens

instruments are briefly described below.
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1. The Gas Chromatograph and Mass Spectrometer (GCMS) measured the composition

of the atmosphère of Titan, isotopic ratios and trace species, from the parachute

release time to the surface. It consisted of ion sources, mass analyzer and ion

detectors. The GCMS sampling System also analyzed samples sampled by the Aérosol

Collector and Pyrolyzer (ACP) in an ACP-devoted feed tube. It has three parallel gas

chromatograph columns, a quadrupole mass filter and five électron impact sources

(Niemann et al., 2002). The mass spectrometer operated in the range of 2 to 141

Dalton. It began its operation after the protection shield release at the altitude of 160

km during the descent phase (Niemann et al., 2005).

2. The Aérosol Collector and Pyrolyzer (ACP) has sampled aérosols during the descent

in two stages: (a) from the top of the atmosphère to 40 km and from 23 km to 17 km

altitude. Except for the sampling System it hosts an oven where pyrolysis was

performed and a transfer System of the samples. Then, it prepared the material for

further analysis and it sent the samples to the GCMS for deriving their Chemical

composition (Israël et al., 2002; 2005).

3. The Descent Imager/Spectral Radiometer (DISR) is the optical remote sensing

instrument in the range of 0.3 to 1.7 microns (Tomasko et al., 2002). The DISR

acquired spectra and high-resolution images of Titan's atmosphère while also

measuring the solar radiation in the atmosphère. Except for the imagers, a visible

spectrometer, an IR spectrometer, a solar aureole caméra, violet photometers, and a

sun sensor are parts of the instrument. DISR also had a 20 W lamp (surface science

lamp), which switched on during the last stages of the probe's descent (at 700 m

altitude) in order to enlighten the surface beneath it. It also revealed traces of

hydrocarbon liquids on its surface through complex drainage Systems and sent back to

the Earth the first images of Titan's surface (Tomasko et al., 2005).

4. The Huygens Atmosphère Structure Instrument (HASI) consists of a 3-axis

accelerometer, a set of a coarse and a fine température sensors, a multi-pressure

sensor, a microphone and an electric field sensor array (Fulchignoni et al., 2002).

HASI studied the atmospheric structure of Titan, gave a detailed température vertical

profile and recorded the surface pressure and température (1,467 ± 1 mbar and

93.65 ±0.25 K, respectively). HASI température and pressure sensors probed the
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atmosphère directly for the first time from an altitude of 1400 km in altitude down to

the surface. Indeed, the P, T sensors were deployed after the shield release and

sampled the local atmosphère. These parameters help to calibrate measurements from

other instruments both on the probe and from the orbiter. The derived HASI

température vertical profile is used for instance as a reference when adopting inverse

methods to retrieve the température and abundance from CIRS data. Huygens studied

the winds and the turbulence of the atmosphère, as well as its conductivity and

searched for lightning (Fulchignoni et al., 2005).

5. The Doppler Wind Experiment (DWE) used one of the two redundant chains

(Transmitter A) of the probe-orbiter radio link and it is mainly based on both probe

and orbiter (Bird et al., 2002). The DWE data was transmitted to Cassini through

Channel A, which due to a command error, was lost. Fortunately, the Earth-based

large radio telescope network recorded the signal directly (Bird et al., 2005). DWE

determined the direction and the magnitude of Titan's zonal winds and confirmed the

super-rotation of Titan's atmosphère (Bird et al., 2005; Lebreton et al., 2009).

6. The Surface Science Package (SSP) is a nine sensors suite which determined the

properties of the lower atmosphère, the surface at the landing site and the subsurface.

The sensors are accelerometers, internai and external, penetrometers, sonar-

velocimeter and density, permittivity, refractive, thermal properties index sensors as

well as a tiltmeter (Zamecki et al., 2002). They showed a smooth surface but not fiat,

resembling wet clay, packed snow or sand (Zamecki et al., 2005).
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1.2.4 Mission OverView

The Cassini-Huygens mission, launched in October 1997 from Cape Canaveral, used the

gravity fields of the Earth, Venus, the Sun and Jupiter, to finally enter the Satumian System

seven years later on July 1, 2004. Cassini carried the Huygens probe released in December 25,

2004 from the mother spacecraft towards Titan. After a successful enter, descent and landing

(EDL) procedure, the probe touched down on the surface of Titan in January 14, 2005. The

major phases of this seven-year space joumey are depicted in Fig. 1.8.

Figure 1.8: The space joumey of the Cassini-Huygens mission. The spacecraft took advantage of the

gravitational fields of the Earth, Venus, Sun and Jupiter in order to reach the Satumian System. (NASA)

Since its arrivai at Satura, and after the Satura Orbit Insertion (SOI), Cassini perforais

continuous révolutions around the giant planet and frequently encounters its moons (flybys).

Table 1.1 below lists the phases of the Cassini/Huygens mission from its nominal stage to the

second extension (Nixon et al., 2010).
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Table 1.1- The Cassini/Huygens mission phases (Nixon et al., 2010).

Mission Phase Start Time End Time
Satum

Orbits

Titan

Flybys
Comments

Prime Mission

(PM)
1 July 2004 30 June 2008 75 45

Equinox Mission

(XM or EM)
1 July 2008

30 September
2010

63 26
Satumian northem spring

equinox in August 2009
Solstice Mission

(XXM or SM)
1 October 2010

16 September
2017

155 56
Satumian northem summer

solstice in May 2017
Total 293 127

1.3 The major achievements of the Cassini-Huygens mission about Titan

The Cassini-Huygens mission is a landmark in Planetary Exploration.

Technologically, the Cassini orbiter has executed more than one hundred close flyby

manoeuvers of planetary bodies, while orbiting Satum, more than the flybys, which hâve ever

been performed in the entire planetary program. The successful entry, descent and landing

(EDL) of the Huygens probe on the surface of Titan stands for another technologically

remarkable point.

Scientifically, the Cassini-Huygens mission has significantly advanced our knowledge

about Satum, its moons, its rings and its magnetosphere. Titan, one of the prime targets of the

mission, has been thoroughly studied remotely by the advanced Cassini orbiter's

instmmentation, during numerous flybys, and in situ by the Huygens probe.

The Cassini magnetometer measurements (Backes et al., 2005; Neubauer et al., 2006)

confirmed Voyager 1 observations (Ness et al., 1982) that Titan has no détectable large-scale

global magnetic field and showed that Titan is strongly influenced by the Satumian dynamic

magnetodisk (Arridge et al., 2008; Bertucci et al., 2008; Dandouras et al., 2009; Simon et al.,

2010). Indeed, Titan orbits at an average of 20.2 Rs (1 Rs = Satumian radius = 60,330 km),

while the Satumian magnétopause standoff distance follows a bimodal distribution with

means at 21 Rs and 27 Rs, mainly controlled by the solar wind (Achilleos et al., 2008). This

means that Titan is mostly located inside the Satumian magnetosphere, close to the Satumian

magnétopause. Only during the T32 and T42 Cassini flybys, Titan was spotted in the shocked

solar wind, inside the Kronian magnetosheath (Bertucci et al., 2008; Garnier et al., 2009;

Rymer et al., 2009; Wei et al., 2011). The Charge-Energy-Mass-Spectrometer

(CHEMS/MIMI) measurements showed that although Titan can be considered as a source of

the Satumian magnetospheric plasma, the relative low concentration of N-1” and N2+ in the

outer magnetosphere suggests low nitrogen escape ratio of Titan (Krimigis et al., 2005),
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contrary to previous believes (Eviatar & Podolak, 1983; Richardson, 1998).

Titan's atmosphère interacts directly with the corotating Satumian magnetoplasma,

generating a flow-induced magnetosphere. This interaction consists of coupling between

charged particles escaping Titan and the extemal plasma. Therefore, the plasma variations

with respect to the local time together with the changing solar wind conditions affect

significantly the local plasma environment (Wolf & Neubauer, 1982). Indeed, Cassini data

showed horizontal variations, observed in the upper atmosphère, originating from the

magnetic plasma variability, when Titan passes through different magnetospheric régions

(Bell et al., 2011; Westlake et al., 2011).

Cassini findings hâve put constraints on our understanding of Titan's atmospheric

escape mechanisms and upgraded our knowledge of its exosphere and its interaction with the

Satumian magnetosphere (Garnier et al., 2007; Dandouras et al., 2009). The exosphere is the

outermost région of a planetary atmosphère, where collisions between atmospheric particles

cease to be important and the particles can escape and drift into the space (Chamberlain,

1963).

Since Titan lacks a protective intrinsic magnetic field, energetic particles originating

from the Satumian magnetosphere directly bombard its upper neutral atmosphère, undergoing

charge-exchange collisions with cold neutral atoms and producing energetic neutral atoms

(ENAs). The Ion and Neutral Caméra (INCA) of the Cassini Magnetosphere Imaging

Instrument (MIMI) measured the ENAs flux and modeled Titan's exosphere following the

Chamberlain formalism in combination with Ion and Neutral Mass Spectrometer (INMS)

measurements (Garnier et al., 2007), confirming pre-Cassini prédictions (Dandouras & Amsif,

1999). The exospheric molécules included in this thermal model are CH4, N2, N, H2 and H,

while the exobase, the lower boundary above the thermosphère, is located at 1425 km with a

température of 149K (Waite et al., 2005; De La Haye et al., 2007). However, Titan's upper

atmosphère is not in thermal equilibrium and INMS data led to the model of a non-thermal

exosphere, using kappa distribution fonctions to fit the species distributions (De La Haye et

al., 2007). ENA images variability is either related to the magnetospheric variability or to

their distance from Titan. Strong asymmetries hâve been observed to the stable ENA halo

around Titan mainly caused by the finite gyroradii effects of the parent ions (Garnier et al.,

2010). INCA also detected Titan's exosphere outer extent at an altitude of 50,000 km (Brandt

et al., 2012) close to the Hill sphere radius, the limit of the gravitational influence.

Between the altitudes of 1500 km, close to the exobase, and 1000 km, ENAs can

suffer multiple collisions, but they can still be detected. Below 1000 km, ENAs can be
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considered as absorbed (Dandouras et al., 2009). At the same altitude, the keV to tens of keV

0+ ions and energetic H+ ions (E > 50 keV) from the Satumian magnetosphere can penetrate

across field lines and deposit their energy into Titan’s atmosphère (Cravens et al., 2008)

resulting in heating and escape of suprathermal nitrogen and methane atoms and molécules

from Titan’s upper atmosphère (Michael & Johnson, 2005).

The Cassini/INMS detected very heavy negatively charged particles (most likely

aérosols) above the homopause level (800-850 km) (Coates et al., 2007; Waite et al., 2007).

Hence, the process of aérosol formation appears to start at more than 1000 km above the

surface through complex ion and neutral Chemical reactions in the atmosphère. These

reactions are initiated by energetic photons and particles from the Satumian magnetosphere.

Extrapolation of Cassini INMS (with a mass limit up to 100 daltons) and Plasma

Spectrometer (CAPS) data, suggests that up to several thousands daltons, high-molecular-

weight species may exist in the ionosphère, including polymers of high molecular weight —

up to and certainly beyond — C7 hydrocarbons. These results show that ionospheric

chemistry plays an important rôle in the formation of complex hydrocarbons in Titan's

environment (Waite et al., 2007). Fig. 1.9 illustrâtes the pattern of tholin formation in the

upper atmosphère as resulted from INMS (Waite et al., 2006).
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Figure 1.9: Tholin production in Titan’s upper atmosphère according INMS findings (adapted from Waite et al.

2006).
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The INMS data analysis showed that Titan possesses the most compositionally

complex ionosphère in the Solar System. Modeling of INMS data (Vuitton et al., 2007)

detected polyynes (C4H2, C6H2, CgtU) and cyanopolyynes (HC3N, HC5N) with densities

higher than photochemical models' prédictions (Yung et al., 1984; Toublanc et al., 1995;

Wilson & Atreya, 2004). Moreover, the model also probably detected methylcyanopolyynes

(CH3C3N, CH3C5N) and methylpolyynes (CH3C4H, CH3C6H) for the first time on Titan.

Finally, the model indicates the existence of ammonia (NH3), methanimine (CH2NH), other

nitriles (C2H3CN, C2H5CN) and two unidentified N containing species (C5H5N, C6H7N).

INMS also detected the neutral mode of benzene (CôHô) in the ionosphère (Waite et al., 2007;

Vuitton et al., 2008). These hydrocarbons and nitrile species form a complex layering of

organic aérosols (tholins) that diffuse through the atmosphère and accumulate on the surface

(Coustenis et al., 2007; Tomasko et al., 2008b) (Fig 1.9).

Titan atmospheric région from 500 to 950 km was observed by the Cassini Ultraviolet

Imaging Spectrometer (UVIS), which monitored the occultation of two stars by Titan during

the second Titan flyby (Shemansky et al., 2005). A mesopause was inferred at 615 km with a

température minimum of 114 K. Methane, acetylene, ethylene, ethane, diacetylene, and

hydrogen cyanide were identified at altitude ranges from 450 to 1600 km. The higher order

hydrocarbons and hydrogen cyanide peak sharply in abundance and are undetectable below

altitudes ranging from 600 to 750 km, leaving methane as the only identifiable carbonaceous

molécule below 600 km in this experiment. Cassini instrumentation cannot probe at this

altitude and this région is called agnostosphere (Coustenis et al., 2010c) or ignorosphere

(Strobel et al., 2009).

The Cassini Composite Infrared Spectrometer (CIRS) instrument provides a complété

pole-to-pole global coverage of Titan's stratosphère since the beginning of the mission. It can

operate in nadir and limb viewing modes and provide the most spatially resolved maps of

constituent species to date. Nadir sequences provide global mapping of atmospheric

température and composition, while the limb ones provide information on the vertical

profiles. CIRS has detected organics, probing the atmosphère within the range of 150 and 450

km (Flasar et al., 2005; Coustenis et al., 2007; 2010a; Vinatier et al., 2007a; 2010b; Teanby et

al., 2008; 2009a) and confirmed the results of Vl/IRIS and ISO. CIRS has also confirmed the

benzene détection at 674 cm'1 (Coustenis et al. 2007) by ISO observations (Coustenis et al.

2003). The retrieved mixing ratios show no longitudinal variation. Températures are mostly

zonally symmetric with almost no variation with the longitude as well (Achterberg et al.,

2008).
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In general, ail the nitriles and several hydrocarbons such as C3H4, C4H2, CôHô and

C2H6 show enhanced concentrations at northem latitudes in spring, implying the existence of

a global-scale Handley cell. The trace gases abundance at 55°S has decreased during the

mission, which is consistent with upwelling in the South (Teanby et al., 2009b). Cassini/CIRS

also indicate that very strong zonal winds occur in the stratosphère of Titan in winter northem

latitudes, while in the summer the stratospheric winds are weaker (Achterberg et al., 2008),

supporting the presence of a North Polar vortex (Flasar et al. 2005). When the Cassini mission

has entered to its solstice phase (Table 1.1) Titan fulfïlled a complété révolution of the Sun

from the VI encounter (in mid-2010) and seasonal studies can be conducted (Teanby et al.,

2010).

The organics from Titan's atmosphère form the haze particles located at 80-100 km

and finally, they accumulate on the surface. Cassini ISS images and RADAR echoes hâve

recorded several earth-like features on Titan's surface such as mountains (Radebaugh et al.,

2007; Lopes et al., 2010), ridges (Soderblom et al., 2007b), faults (Radebaugh et al., 2011),

rectangular drainage patterns and cryovolcanic structures, which are controlled most likely, at

least partially, by tectonic activity (Burr et al., 2009). Additionally, stable liquid lakes were

spotted by both ISS and RADAR, located mainly at the polar régions (Fig. 1.10) (Mitri et al.,

2007; Stofan et al., 2007; Hayes et al., 2008) and recently at the équatorial latitudes (Griffith

et al., 2012).

Figure 1.10: Titan lakes as discoverer by the Cassini RADAR located in the North polar région taken during the

Tl 6 flyby of Titan on 22 July 2006. The smallest is at about 1 km wide, while the biggest are more than 30 km

wide (crédit: NASA).
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Seasonal changes hâve been recorded during the Cassini flybys when the shorelines of

the Southern large lake Ontario retreated during the Cassini mission time period (Turtle et al.,

2011). Titan’s organic inventory has been estimated to exceed the terrestrial one by a factor of

magnitude (Lorenz et al., 2008b).

Remote sensing data from Cassini indicate that Titan's interior is partially

differentiated. Indeed, the variations of its degree 2 coefficient gravitational potential

provided by the Cassini Radio Science Subsystem (RS S) support internai density variations

(Rappaport et al., 2008). Additionally, the Cassini Synthetic Aperture RADAR data suggest

non-synchronous spin rate (Lorenz et al., 2008c), and the Permittivity, Waves and Altimetry

(PWA) sensor on the Huygens Atmosphère Structure Instrument (HASI) with the Cassini

Radio and Plasma Wave Science (RPWS) recorded Schumann résonance (Beghin et al.,

2009b), giving evidence for internai océan.

organic-rich atmosphère
and surface

de-coupled outer shell
(water-iœ ! clathrate)

global subsurface océan

high-pressure ice VI shell

hydrous silicate core 4
-2000 km radius

Figure 1.11: Model of the interior of Titan (crédit NASA, http://scitechdaily.com/satums-largest-moon-titan-

seen-in-unprecedented-detail/).

Recent accélération measurements of the Cassini orbiter from during flybys from 2006 to

2011 show that Satum créâtes large solid tides to Titan at about 10 m in height. These

observations indicate the existence of internai océan of liquid water assuming a depth of 100

km beneath the surface. If the interior was not déformable (Fig. 1.11), such solid tides would

be only at 1 m in height (Iess et al., 2012).
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The Huygens probe was released from the Cassini orbiter on 25 December 2004. On

14 January 2005, the probe reached Titan's upper atmosphère and after a descent procedure,

which lasted for almost 2.5 hours, it landed. Cassini collected data from the Huygens probe

for lh and 12 min after the landing before disappearing below the horizon (Lebreton et al.,

2005). The probe was still in operation and its signal was monitored by a global network of 17

ground-based radio télescopes (Witasse et al., 2006). For more than three hours after the

touchdown, the probe operated normally, continuing its surface experiments (Lebreton et al.,

2009).

The orbiter and the probe had two radio link channels, A and B, the transmitters of

which were installed on board the probe, while the receivers on board the orbiter. Both

transmitters and receivers were equipped with a température controlled crystal oscillators

(TCXO) for providing sufficient frequency stability for telemetry. Channel A was additionally

equipped with ultra-stable oscillators (USO) necessary for the Doppler Wind Experiment

(DWE). The performance of USOs was satisfactory during the mission's joumey to the

Satumian System and it was then decided to be used instead of TCXOs. However, the

command to power the USO of Channel A on the receiver (aboard the orbiter) was omitted

and the receiver did not hâve a reference oscillator to lock on the signal of the probe. DWE

frequency measurements together with the non-redundant telemetry data from Channel A

were lost. The signal of Channel A from the probe's USO was received from 15 Earth-based

radio télescopes (Lebreton et al., 2005).

The Huygens/HASI provided a continuous density, température and pressure vertical

profile from the level of the exobase at 1380 km to the surface (Fulchignoni et al., 2005).

Probe's trajectory remained stable at the same latitude of 10.3°S during its descent and

therefore the derived profiles can be considered as représentatives of the vertical structure of

the atmosphère and as global average. From the entry level down to the heat shield release at

155 km, the probe measured the density indirectly from the accélération data and then, by

assuming hydrostatic equilibrium, the relative pressure (Harri et al., 2006). The corresponding

température is derived by assuming that the atmosphère is an idéal gas, which is valid above

40 km. Below the altitude of 155 km, HASI measured directly the pressure and the

température. The HASI profile is illustrated in Fig. 1.12 below.
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Figure 1.12: HASI température profile (solid line). The dashed line shows the engineering model (Yelle et al.,

1997). The mesopause is located at 490 km with a température of 152 K, the stratopause at 250 km (186 K) and

the tropopause at 44 km (70.43 K) (adapted from Fulchignioni et al., 2005).

Inversion layers, gravity waves, gravitational tides or large wind shear, which créâtes

Kelvin-Helmholtz instability, may hâve caused the recorded température variations in the

upper atmosphère (Fig. 1.12). In this région HASI provided températures higher compared to

the one of the engineering model. The température oscillations above the stratopause indicates

that the atmosphère is not dominated by radiative processes and is strongly influenced by the

wave activity (Fulchignoni et al., 2005). However, HASI and CIRS measurements do not

agréé with the altitude of the stratopause. CIRS data set it higher at 312 km (183 K) (Vinatier

et al., 2007b), while at this altitude HASI température is 185 K. Additionally, the calculation

of the infrared radiance of HASI is inconsistent in relation to the observed CIRS radiance at

methane 7.7 pm band (Lebreton et al., 2009). Finally, HASI measured the surface pressure

and température at 1,467 ± 1 mbar and 93.65 ± 0.25 K, respectively (Fulchignoni et al., 2005).

The HASI’s Permittivity Wave and Altimetry (PWA) sensors measured the electrical

properties of Titan’s atmosphère. PWA revealed a small conductivity and électron density

from 80 to 140 km and a high-density électron layer with a peak at 63 km (Grard et al., 2006;

Hamelin et al., 2007). As discussed above, the recorded Schumann résonance by PWA

supported the existence of internai liquid océan (Beghin et al., 2009b).

The Huygens/DWE was planned to measure the wind profile during the probe's

descent, but due to the problem with Channel A in the communication link between the probe

and the orbiter, DWE recordings were lost (Lebreton et al., 2005). However, the weak signal

of Huygens was monitored by several large radio télescopes, which measured the signal
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frequency during the whole descent and saved the experiment. The detected signal allowed an

estimate of its frequency and yielded data for the probe's motion during the descent phase

from the associated Doppler shift. With these measurements, the wind profile of Titan was

retrieved. For the lowest part of the atmosphère, from 5 km and down to the surface, the

winds are very weak with velocities less than 1 m/s. Above 10 km, winds are prograde

(eastward, westerly) and above 32 km super-rotation occurs with a velocity of 11.74 m/s.

From 60 to 100 km, the wind velocity reached almost zéro. DWE confirmed the super

rotation of Titan's atmosphère (Bird et al., 2005).

The Huygens/ACP provided the first in situ measurements of Titan's aérosols (Israël et

al., 2005). The collected samples show homogenous composition and the presence of N2,

CH4, NH3 and HCN after the pyrolysis procedure. It seems that the aérosols are made of

refractory organic nucléus, covered with condensed volatile compounds and they release NH3

and HCN during the pyrolysis. The latter assumption needs to be confirmed by laboratory

work. However, these preliminary findings support the tholin hypothesis (Sagan & Khare,

1979).

The Huygens/DISR took hundreds of images of the surface during the descent, which

hâve revealed a terrestrial-like surface, with drainage networks and rounded pebbles, made

probably by water ice. DISR also measured the haze density particles during the descent

phase and indicated a thin haze layer at 21 km. Additionally, DIRS recorded the continuous

réflectance spectra of the surface using a lamp for a few hundred meters before the

touchdown. Water ice was identified, but no tholins (Tomasko et al., 2005).

About the composition of the atmosphère, Huygens/GCMS data analysis provided a

mixing ratio of methane at 1.48%±0.09 and hydrogen at 1.010.16 x 10‘3 (Niemann et al.,

2010). The CIRS value of methane at 0.016±0.005 (Flasar et al., 2005) is consistent with the

GCMS one. GCMS measured a 40% increase of the methane concentration after the landing,

perhaps due to thermal conductivity (Lorenz et al., 2006a). GCMS also identified organics in

the surface such as ethane and cyanogen, carbon dioxide and benzene (Niemann et al., 2005).

The Huygens/SSP detected a relatively smooth, but not fiat surface (Zamecki et al.,

2005). According to SSP results, the fracture of the landing surface is like the terrestrial wet

sand, wet clay or packed snow.

What précédés is a short summary of a great wealth of data that the Cassini-Huygens

mission provided, considerably enhancing our knowledge of Titan. In the rest of the
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manuscript, I will corne back to some of these results in more detail as they are connected to

my research work.

Although Titan’s atmosphère is much colder than the Earth’s, it présents many direct

similarities with our planet at different levels that hâve been pointed out since the Voyager

days. Both atmosphères are dominated by the same main constituent, dinitrogen, albeit Titan’s

atmosphère extends much higher than the Earth’s. A similar vertical structure from the

troposphère to the ionosphère is also présent, as well as a surface pressure of just 40% larger

than on Earth (Fulchignoni et al, 2005). This is the only case of an extraterrestrial planetary

atmospheric pressure with several similarities to that of the early atmosphère of the Earth.

Furthermore, a very exciting and complex organic chemistry takes place in Titan’s

atmosphère. Table 1.2 summarizes the basic parameters for Titan.

Table 1.2- Titan basic parameters (Source: NASA, ESA4 (Zebker et al., 2009))

Titan (SVI)

Mass (102Okg) 1345.5 (1/45 that of Earth)
Radius (km) 2575

Mean density (kg/m3) 1880

Visual géométrie albedo 0.22

(103 km)
Semimajor axis

1221.83

(Satumian Radii) 20.273

Orbital Period (days) 15.945421

Spin rate (°/day) 22.58

Rotation Period (days) Synchronous rotation
Inclination (degrees) 0.33

Eccentricity 0.0292

Obliquity 0.3°

Distance from Sun (109km) 1,427 (9.54 AU)

Mean orbital velocity (km/s) 5.58

Rotational velocity at the equator (m/s) 11.7 - westwards

Escape velocity (km/s) 2.65

Gravity (m/s) 1.35

Without doubt, the Cassini/Huygens mission has revolutionized our perspective of the Satum

System and in particular of Titan, revealing a unique world with many similarities to our home

planet, while at the same time pointing to significant différences. The purpose of this Thesis is

to contribute to the study of Titan's environment by investigating its complex stratosphère and

searching for relations and exchanges between the atmosphère and the surface below. In

Chapter 2, I describe the CIRS instrument and its data, which I used for my research.

Additionally, I présent my contribution to the évaluation of CIRS database inferences and

4 http://nssdc.gsfc.nasa.gov/planetary/factsheet/satumiansatfact.html
http://www.esa.int/esaMI/Cassini-Huygens/SEMMF2HHZTD_0.html
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how the data processing was improved, when a new calibration algorithm was applied to

them. The fundamentals of the theory of radiative transfer and the atmospheric model of Titan

that I use for interpreting CIRS data are defined in Chapter 3. I also describe the upgrade of

the radiative transfer code I hâve performed by adapting recent spectroscopic datasets,

implementing new haze model and advancing some programmatic aspects from the previous

versions.

The results of my research are presented in Chapters 4 and 5. Chapter 4 describes the

méridional and temporal variations in the température and composition of Titan's stratosphère,

as retrieved by CIRS data. The abundances' variations of the major trace gases of Titan's

stratosphère are presented since the beginning of the mission up to early 2012, focusing on 5

latitudinal bins (50°N, 30°N, 0°, 30°S, 50°S). Constraints for photochemistry and dynamics

are also given. Additionally, I présent my contribution to water vapor retrievals from

CIRS/FP1 spectra and the comparison with other radiative transfer codes' outcomes.

Furthermore, I présent the obtained vertical distributions of benzene from the surface of Titan

to the upper atmosphère by applying the 1-D photochemical model of Lawas et al. (2008a;

2008b). By subtracting the observations and the model, I also show spectral régions of

unidentified émissions and propose new molécules for future work.

In Chapter 5, I study the connection between Titan's lakes and its atmosphère and the

lakes' contribution to Titan's methane cycle. I focus on Mayda Insula in Kraken Mare, the

biggest lake of Titan, and study its surroundings using geomorphological techniques. I also

describe the application of a new despeckle filtering technique for obtaining restored RADAR

images.

In Chapter 6, I discuss the Astrobiological potential of Titan and other icy moons of

the Solar System, since the recent results from the Cassini-Huygens missions show that the

habitability zone should be extended. However, although the Cassini data helps us change our

perspective of the Satumian System, several questions still remain unanswered and only a

new mission will certainly shed light on them. In Chapter 7,1 describe my contribution to the

design of experiments to be included in such missions. I propose two experiments to be

included as payload in future missions to icy moons and especially Titan. One is focused on

studying the interior of a lake on Titan by using micro-electro-mechanical devices (MEMS),

while the other studies a seismograph. Finally, Cassini-Huygens results hâve raised the public

interest for Satum and its moon. I report the outreach activities I hâve organized/participated

of bringing Cassini-Huygens mission’s accomplishments doser to the layman public in

Chapter 8.
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Chapter 2

Observations and CIRS data

2.1 The Cassini Composite Infrared Spectrometer (CIRS)

2.1.1 CIRS héritage and purpose

The Composite InfraRed Spectrometer (CIRS) (Flasar et al., 2004) on board the Cassini

orbiter is an improved version of Voyager Infrared Interferometric Spectrometer (IRIS)

(Hanel et al., 1980). CIRS high resolution (0.5 cm'1) measurements are ten times higher than

the IRIS ones, with an extended spectral range from 7 to 1000 pm (10-1400 cm'1). The IRIS

4.3 mrad field of view (FOV) has been decreased to 0.27 mrad for the 600 to 1400 cm'1

région (Kunde et al., 1996).

CIRS probes both Satum and Titan's atmosphères from deep in their troposphère to

high in their mesosphere. It mainly consists of two interferometers, which share the same

scanning mechanism, one in the far infrared and the other in the mid infrared. By taking

advantage of the dual interferometer concept, scientists achieve the maximum advantage of

optics and detectors. For this reason, Cassini's CIRS was called “Composite”.

CIRS sounds both in nadir and limb viewing mode. Due to its advanced spectral

resolution compared to IRIS, it is able to identify new trace constituées and its isotopologues,

the spectral signatures of which are very weak to be identified by previously used

instrumentation. The CIRS high spectral resolution permits also to separate some of the

spectral bands, which were blended in IRIS spectra, for species such as C3H4 and C4H2 at 630

cm'1.

CIRS is one of the four instruments mounted on the Cassini's Optical Remote Sensing

Palette (RSP, Fig. 1.6) along with the Imaging Science Subsystem (ISS), the Ultraviolet

Imaging Spectrograph (UVIS) and the Visual and Infrared Mapping Spectrometer (VIMS).
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2.1.2 Description of the CIRS Instrument

The Composite InfraRed Spectrometer (CIRS) is a Fourier Transform Spectrometer (FTS)

which senses the thermal radiation emitted from the objects in the Satumian System in the

thermal range of 55 to 200K and from 10 to 1400 cm'1 with an apodized spectral resolution

varying from 0.5 to 15.5 cm'1 (Flasar et al., 2004) (Fig 2.1). The conceptual layout of CIRS

(Fig. 2.2) consists of a telescope, the relay optics, two interferometers, a reference

interferometer, a Scan mechanism, the detectors, electronics assembly and a passive radiative

cooler. The instrument's spécifications are listed in Table 2.1 below.
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Figure 2.1: CIRS mechanical configuration. Ail the parts of the instrument are depicted. The scale is printed

below of the instrument in both inches and mm (Kunde et al., 1996).
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Figure 2.2: The conceptual layout of CIRS (Kunde et al., 1996). The single arrows show the light paths after

been collected from the telescope, while the double arrows demonstrate the movable parts of the interferometers.

Table 2. 1 - Instrument spécifications (Kunde et al., 1996; Flasar et al., 2004).

Mass 39.24 kg

Telescope’s primary mirror diameter 50.8 cm

Telescope’s secondary mirror diameter 7.6 cm

Focal Ratio F/6

Telescope dimensions 89 cm x 76 cm x 52 cm

Maximum Power 32.89 W

Average operational power 26.37 W

Maximum bit rate 6 kbit/s

Data telemetry rate (kbps) 2,4
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CIRS Focal Plane Locations

8 7 6 5 4 3 2 1

X (mrad)

Figure 2.3: CIRS fields of view with correct relative positions and sizes. FP1 is the far-IR focal plane, while FP3

and FP4 are the mid-IR focal planes (Flasar et al., 2004). The far-IR detector has larger FOV than the mid-IR

ones.

CIRS interferometers hâve one focal plane array (FPA), the Focal Plane 1 (FP1),

sensing the far-IR portion of the emitted radiation (16.7 to 1000 microns) and a pair of focal

plane arrays, the Focal Planes 3 and 4 (FP3, FP4), sensing the mid-IR (7.1 to 16.7 microns).

In the primary proposai two focal planes the FP1 from 10 to 300 cm'1 and the FP2 ranging

from 300 to 600 cm"1 covered the far-IR investigation. However, due to budget cuts, FP2 was

not mounted but merged into one focal plane the FP1.

The FP1 is a polarizing interferometer, having a pair of thermopile detectors with a

3.9-mrad field of view (FOV) per pixel (Fig 2.3). The mid-IR interferometer is a traditional

Michelson where the FP3 and FP4 hâve a photoconductive 10-element array of HgCdTe

detectors and a photovoltaic 10-element array of HgCdTe detectors, respectively. Each pixel

of the array has a 0.273-mrad FOV (Kunde et al., 1996). The Table 2.2 below lists the

spécifications of the focal planes.
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Table 2.2: Focal Planes spécifications (Kunde et al., 1996; Flasar et al., 2004).

Focal Plane FP1 FP3 FP4

Spectral Range (cm'1) 10-600 600-1100 1100-1400

Detectors
Thermopile Photoconductive (PC) Photovoltaic (PV)

(dual) (1x10 array) (1x10 array)

Pixel FOV (mrad) 4.3 0.27 0.27

Pixel AQ (cm2) 2.4 x 10'2 1.5 x 10-4 1.5 x 10'4

Peak D* (cm Hz1/2W'') 4 x 10'9 2x 10'10 7 x 10'11

Operational Température (K) 170 70, 75, 80, 85 70, 75, 80, 85

The CIRS telescope

CIRS telescope is of Cassegrain type, made from béryllium with a very low scattering

surface. This configuration combines two mirrors: a primary F/6 concave parabolic reflector

at 50.8 cm and a secondary convex hyperbolic one at 7.6 cm. The gold-enhanced surface of

the primary mirror provides low scattering. Both mirrors share one focus, while the other

focal point of the hyperbolic mirror is located where the image is to be observed. A

supporting tube, cylindrical in shape, extends from the primary mirror center to the secondary

mirror.

The primary dish reflects the incoming IR light beams towards its one focus, while the

secondary mirror converges these rays to the other focus. Then, the light beam falls on a field

splitting mirror, the Entrance Aperture Plate (EAP) (Kunde et al., 1996). The EAP divides the

incoming light and directs it to the two interferometers via collimators and folding mirrors

(see Fig. 2.2). Each collimator aligns the IR beam part to the fold mirror and then the light

passes through a beamsplitter and onto retroreflectors (Kunde et al., 1996; Flasar et al., 2004).

The beamsplitters split the wave front of the incident ray in two separate beams, while

the retroreflectors reflect the light back to its source with a minimum scattering. After being

split, the recombined output beams go to the focal planes and are focused on the relative

detectors. An electromechanical shutter is mounted in the mid-IR path, which can be used for

internai calibration issues as it can be commanded to stop the incident beam. A solar blocking

filter protects the FP1 thermopile detectors from any accidentai solar illumination, rejecting

rays shorter than 16.7 microns. The optimum operation température of the instrument is at

170 K except for the mid-IR detectors, the température of which is at around 80 K.

By applying the Fourier transform formalization at the interferogram we can

reconstruct the original spectrum. Larger sample numbers in the interferogram give higher

resolution of the final product. In contrast with the grating spectrometers, the FTS has no

loses of the incident light, which is called the multiplex advantage. To achieve higher
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resolution, the interferogram can be scanned more slowly and add a large number of

interferograms (Lewis, 2004).

The far-IR interferometer (FP1)

For the far-IR interferometer, a polarizing Martin-Puplett type (Martin & Puplett, 1970) is

mounted on CIRS in order to record the far-IR part of the incident light (Fig. 2.4). The linear

polatization design hosts wire-grid polarizers to separate and recombine the incoming signal

at FP1. CIRS wire-grid polarizers are nearly idéal for far-IR experiments. When the

electromagnetic radiation meets the grid, the oscillating field parallel to its wires produces a

wave originating from the électron movement along the wires, while the grid absorbs the rest

of the light. Then, the radiation proceeds to the beamsplitter polarizer, located 45° in respect

to the First polarizer, where it is split one more time into two orthogonal components. These

beams fall in two roof top mirrors rotated at 90° and retum back to the beamsplitter.

CIRS FOCAL PLANE 1 ÀSSEMBLY

Figure 2.4: Cassini/CIRS FP1 assembly (Kunde et al., 1996). The polarizing grid and the concentrators are

shown as well as the focus mirror.

The beamsplitter recombines these components which now hâve a phase différence of

90° and eventually send the recombined beam, which has now elliptical polarization, to the

focal plane. A polarizer/analyser (Fig. 2.4) is placed in the front of the focal plane's detectors

and it converts the polarization modulation into intensity modulation. The polarizer,
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beamsplitter and analyser grids consist of photolithographic copper wires having each a

diameter of 1 micron and a spacing of 2 microns, deposited on Mylar, a strong polyester film.

The modulated frequency is analogous to the wavenumber of the radiation, producing

the résultant intensity of the combined beams, a conventional interferogram. The

interferogram is a fonction of the path length différence between the two beams path which

when they differ by intégral number of wavelengths they interfère constructively. In any other

path différence, they interfère destructively and they do not appear in the observed

interferogram.

The polarizer/analyser splits the polarized beam into the transmitted component and

the reflected one and sends them to the thermopile pair detectors. A Compound Parabolic

Concentrator (CPC) is installed in the front of each thermopile detector (Fig. 2.4). Each

detector receives one of the split components and now the final signal is gained, with no

unmodulated intensity fluctuations and provided redundancy.

The mid-IR interferometer (FP3 and FP4)

The mid-IR interferometer is a conventional Michelson design (Michelson, 1881), having

KBr beamsplitter and cube-comer retroflectors. After the split of the incoming radiation into

two beams of almost equal intensity, one of them proceeds to the stationary mirror, while the

other directs to the moveable arm of the interferometer. After having been reflected and

transmitted once, the beams are recombined at the beamsplitter that is also a compensator and

travel to the detectors. The interferometers spécifications as well as the spécifications of the

focal planes are showed in Table 2.3 below.
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Table 2.3: Interferometers spécifications (Kunde et al., 1996; Flasar et al., 2004).

Spécifications Mid-IR Far-IR

Type Michelson Martin-Puplett

Spectral Range (cm'1) 10-600 600-1400

Spectral Resolution (cm'1) 0.5-20 0.5-20

Intégration time5 (s) 5-52 5-52

The reference interferometer

The reference interferometer is the hardware component of CIRS, which provides an accurate

calibration standard for the interferometer (Fig. 2.2). It is installed within the mid-IR

interferometer of the instrument, uses a solid State 785 nm diode laser at 170 K providing a

servo signal for velocity control. The laser is a source of monochromatic radiation and it is

température depended. For redundancy the instrument is equipped with two laser diodes,

selectable via command. The function of this interferometer is to generate a signal in order to

sample the outputs from ail the focal plane detectors of the instrument. Sampling of the

created interferograms occurs at zéro Crossing of equally spaced reference fringes. The same

signal is additionally used for handling the velocity of the scan mechanism.

The term zéro path distance or zéro path différence (ZPD) describes the relative

distance between the two moving mirrors of the instrument in order to hâve the two arms of

the interferometer at equal optical path length. When this distance is zéro, ail the light rays

interfère constructively, producing the white light spike in the interferogram. When the

interférence is constructive for every wavenumber at the ZPD, the interferogram has the

maximum relative intensity at one of the output ports and the minimum at the other. Thus the

ZPD should be placed at every interferogram in order to ease the co-adding of interferograms

and reduce the CIRS telemetry data rate. Such recording takes place due to a white light

interferogram originating from the Light Emitting Diode (LED) mounted on the reference

interferometer.

The scan mechanism

The scan mechanism is the same for the interferometers as well as for the reference

interferometer and Controls the sampling sequence and the moving mirrors' adjustment (Fig.

2.2). It follows the pattern of Voyager/IRIS and hosts the carriage device and the motor

5 When using the Hamming apodization function. Unapodized widths hâve the corresponding scan times at about
half as wide (Nixon et al., 2010).
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responsible for the moving interferometer mirrors (the moving roof top mirror of FP1, the

moving retroreflector for FP3, FP4 and the reference interferometer).

The CIRS detectors

During its flybys, the Cassini orbiter approaches Titan close enough at an altitude of no less

than 1000 km, so that the IR spectrometer can perform not only downward viewing, but also

limb profiling. This type of sounding needs a small field of view and for this reason high-

efficiency photo-electronic detectors hâve been applied to the instrument (Nixon, 1998). CIRS

detectors can be distinguished to a pair of thermopiles on the far-IR part of the instrument and

to mercury cadmium telluride (HgCdTe) photoconductive (PC) and photovoltaic (PV)

detectors on the mid-IR part. The thermopile detectors operate at 170K, which is the CIRS

functional température, while both the PC and PV operate at 80K. A passive radiative cooler

is mounted at this part of the instrument, which reduces the initial température to 80 K.

In general, thermopile detectors are passive uncooled devices, which require no

electrical bias. Such devices hâve negligible 1/f noise and they do not sense substrate

température variations (Foote et al., 1998). The thermal detectors of the far-IR sense the

power of absorbed radiation. They receive one of the two components of the elliptical

polarized beam from the polarizer/analyzer and improve the signal's gain by eliminating any

unmodulated intensity fluctuations, providing redundancy. Each thermopile detector converts

the incident infrared light into heat through an absorber, while a thermoelectric component

créâtes an output voltage proportional to its internai température gradient.

The FP3 and FP4 detectors respond to the number of photons, which arrive per unit

time. Both consist of HgCdTe linear arrays. A linear array of 1 x 10 photoconductive (PC)

components is mounted in FP3, while a linear array of 1 x 10 photovoltaic (PV) components

is mounted in FP4. Their back-to-back configuration is shown in Fig. 2.5. When photons hit

the photoconductors, they generate free charge carriers and the résistance of the material is

decreased. This results in a voltage change, which is the measured signal. On the other hand,

when photons hit the photovoltaic detectors, électrons and holes are generated forming an

electric field (Hanel et al., 2003). With this structure the instrument takes advantage of the

low power dissipation which is less than 0.5 mW per element and a limited array detectivity

by 1/f noise (Martineau et al., 1996).
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Figure 2.5: Configuration of photoconductive and photovoltaic arrays on FP3 and FP4 respectively (Martineau et

al., 1996).

2.1.3 CIRS scientiflc objectives

CIRS measures the infrared émission from atmosphères, rings and surfaces, which are mainly

used to map the température, the hazes and clouds and the Chemical structure of the probed

atmosphères and surfaces (Coustenis & Taylor, 2008). CIRS objectives are the following

(http://cirs.gsfc.nasa.gov/science.html):

For Titan:

• Thermal and compositional mapping of atmosphère

• Surface température mapping

For Satum:

• Thermal and compositional mapping of atmosphère

• Search for new molecular species

For Satum's Rings:

• Détermine the thermal structure

• Détermine the material composition and particle size

For Satum's Icy Satellites:

• Thermal and compositional mapping of surfaces

• Détermination of subsurface regolith structure
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The Cassini mission covers a large part of the Satumian year, which is circa 29.5

terrestrial ones. In mid-2010, a full Satumian year was completed since the Voyager 1

encounter. Moreover, ground and space borne observations hâve been published during the

interval between the two in situ missions. Hence, CIRS infrared spectra, recovered during the

Cassini mission period, détermine both the temporal and the spatial variations of the gas

composition of Titan's atmosphère in a global scale: its température and its opacity sources

such as the aérosol distribution, the haze and the clouds are investigated. In addition, CIRS

has gathered information throughout the last 8 years (2004 to 2012) and will hopefully

continue to operate until 2017 when its extended mission will end. Thus, a wealth of data is

available which hâve already changed our perspective of the atmospheric composition,

dynamics and évolution over time.

As discussed before, CIRS is a more advanced instrumentation comparing to its

ancestor, the Voyager 1/IRIS, which first sounded in situ the atmosphère of Titan. Not only

does CIRS exploit its higher spectral resolution, but it also maps an extended spectral régime,

larger than the one IRIS did in longer intégration times. In fact, CIRS affords a programmable

spectral resolution from 0.5 cm'1 to 20 cm'1 (Flasar et al., 2004). Its highly improved

operability gives the opportunity to search for minor atmospheric species as well as for new

isotopologues and calculate isotopic ratios. The déterminations of the Chemical composition

of the atmosphère and the température are therefore done with much higher accuracy.

CIRS data analysis gives the opportunity to advance current modeling in atmospheric

dynamics and general circulation and understand the complex photochemistry occurring on

Titan's upper atmosphère. Moreover, the great success of its operation sets the requirements

for future missions to the outer planets at high standards.

CIRS is not only dedicated to Titan's atmosphère but also to the other Satumian moons

and of course to the study of Satum, its rings, their thermal properties, composition and

surface. However, its achievements conceming these planetary bodies are beyond this study.

Without doubt, CIRS is one of the most important experiments of the Cassini-Huygens

mission.
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2.2 Types of CIRS observations

The Cassini orbiter executes flybys of Titan, while is touring Satum. Table 2.4 lists the

Cassini flybys completed up to date (July 2012). The Composite Infrared Spectrometer on

board Cassini opérâtes during the Titan flyby sequence beginning at about 40 hours before the

closest approach. Cassini approaches Titan with a velocity relative to the satellite ranging

from 5.5 to 6.1 km/s. Fig. 2.6 below demonstrates the observation sequence during each flyby

and the type of data, which CIRS can obtain moving towards the Closest Approach (C/A). Ail

the far infrared types of the CIRS observations are listed in Table 2.5, while the mid-IR

recording types are listed in Table 2.6.

TO was the First Cassini flyby of Titan, which was performed just after the Satum

Orbit Insertion (SOI) of the spacecraft. However, the distances were too high compared to the

observations which followed; hence, TO data is excluded from our studies. A CIRS

commanding error led to the corruption of most of the data obtained by TA flyby.
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Mid-IR Temp. map (composition—
(3cm'1> ! 0.5 cm-1)

-40h -24h -16h -8h

Mid-IR Nadir Integ
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Figure 2.6: CIRS Titan timeline during a flyby. The fields of view of the instrument are shown. With the circle

the FOV of FP1 is indicated and with the two parallel lines the linear arrays FOV of FP3 and FP4 are also

plotted.
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Table 2.4: Cassini Titan flybys. The date, the time from the closest approach, the Satumian time and the position

of Titan in the Satumian magnetosphere during each flyby are also listed. Ls is the corresponding solar longitude

of the flyby.

Year Flyby Date Closest Approach Ls

2004 T0 03 July 2004 293

TA 28 October 2004 15:20:33 297

TB 13 December 2004 11:38:13 299

2005 TC 13 January 2005 300

T3 15 February 2005 6:54:21 300

T4 01 April 2005 19:55:12 303

T5 16 April 2005 19:11:46 304

T6 22 August 2005 8:53:37 308

T7 07 September 2005 7:50:26 309

T8 28 October 2005 3:58:09 311

T9 26 December 2005 18:54:15 313

2006 T10 15 January 2006 11:41:27 314

Tl 1 27 February 2006 8:25:19 315

T12 19 March 2006 0:05:57 316

T13 30 April 2006 20:53:31 317

T14 20 May 2006 12:18:12 318

T15 02 July 2006 9:12:19 320

T16 22 July 2006 0:25:13 320

T17 07 September 2006 20:12:04 322

T18 23 September 2006 18:58:49 323

T19 09 October 2006 17:23:24 323

T20 25 October 2006 15:58:07 324

T21 12 December 2006 11:41:31 326

T22 28 December 2006 10:05:22 326

2007 T23 13 January 2007 8:34:00 327

T24 29 January 2007 7:15:55 327

T25 22 February 2007 3:10:59 328

T26 10 March 2007 1:47:22 329

T27 26 March 2007 0:21:52 329

T28 10 April 2007 22:58:00 330

T29 26 April 2007 21:32:52 331

T30 12 May 2007 20:08:14 331

T31 28 May 2007 18:51:27 332

T32 13 June 2007 17:47:57 332

T33 29 June 2007 16:59:46 333

T34 19 July 2007 0:39:58 334

T35 31 August 2007 6:34:25 335

T36 02 October 2007 4:49:50 336

T37 19 November 2007 0:52:51 338

T38 05 December 2007 0:07:37 338
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Year Flyby Date Closest Approach Ls

T39 20 December 2007 22:56:41 339

2008 T40 05 January 2008 21:26:24 340

T41 22 February 2008 17:39:08 341

T42 25 March 2008 14:36:12 342

T43 12 May 2008 10:09:59 344

T44 28 May 2008 8:33:21 345

T45 31 July 2008 2:13:11 347

T46 03 November 2008 17:35:23 350

T47 19 November 2008 15:56:28 351

T48 05 December 2008 14:25:45 351

T49 21 December 2008 12:59:52 352

2009 T50 07 February 2009 8:50:52 354

T51 27 March 2009 4:43:37 355

T52 04 April 2009 1:47:48 355

T53 20 April 2009 0:20:46 356

T54 05 May 2009 22:54:16 357

T55 21 May 2009 21:26:42 357

T56 06 June 2009 20:00:01 358

T57 22 June 2009 18:32:36 358

T58 08 July 2009 17:04:04 359

T59 24 July 2009 15:34:04 359

T60 09 August 2009 14:03:54 0

T61 25 August 2009 12:51:39 0

T62 12 October 2009 8:36:25 2

T63 12 December 2009 1:03:15 4

T64 28 December 2009 0:17:00 5

2010 T65 12 January 2010 23:10:37 5

T66 28 January 2010 22:28:50 6

T67 05 April 2010 15:50:39 8

T68 20 May 2010 3:24:21 9

T69 05 June 2010 2:26:28 10

T70 21 June 2010 1:27:18 10

T71 07 July 2010 0:22:45 11

T72 24 September 2010 18:38:41 14

T73 11 November 2010 13:37:02 15

2011 T74 18 February 2011 16:04:11 19

T75 19 April 2011 05:00:39 20

T76 8 May 2011 22:53:45 21

T77 20 June 2011 18:32:01 23

T78 12 September 2011 02:50:05 25

T79 13 December 2011 20:11:24 28

2012 T80 2 January 2012 15:13:38 29

T81 30 January 2012 13:39:48 30

T82 19 February 2012 08:43:17 31

T83 22 May 2012 01:10:11 33
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Year Flyby Date Closest Approach Ls

2012 T84 7 June 2012 00:07:21 34

T85 24 July 2012 20:03:08 36

T86 26 September 2012 14:35:39 38

Table 2.5: Far-IR CIRS observation sequences

Type Range (km) Objective Altitude (km) Mapping geometry

FIRLMBINT

Far-IR limb

composition

intégration

25,000 to 40,000 Atmospheric

(75-135 min of composition (CO,

C/A) H2O, new species)

centered at 125

km6

225 km

of limb

Composition of several

flybys

FIRLMBAER

Far-IR limb

aérosolscan

FIRLMBT

Far-IR limb

température

sounding

FIRNADMAP

Far-IR nadir

température maps

FIRNADCMP

Far-IR nadir

composition

intégration

<15,000

(45-75 min of

C/A)

<15,000

(10-45 min of

C/A)

60,000

(2:25-5 h of C/A)

160,000 to

270,000

(9-13 h of C/A)

Aérosols,

tropospheric
abundance, surface

température

T-profiles of lower

stratosphère

tropopause

8-100 mbar

T-profiles upper

troposphère

tropopause at 20-
100 cm'1

surface

températures

Atmospheric
composition

weak species new

species

40 km from limb

40 km from limb

disk

disk

15.5 cm'1

samples two latitudes

on the limb separated
5°

15.5 cm'1

samples 2 latitudes on
single limb separated

10°

15.5 cm'1

0.5 cm'1 émission

angle: 45-60° multiple

flybys one location

Table 2.6: Mid-IR CIRS observation sequences

Type Range (km) Objective Altitude (km) Mapping geometry

MIRLMBINT

mid-IR limb

composition
intégration

100,000 to

180,000

(5-9 h from C/A)

minor species

stratosphère

centered at 125 km

225 km

of limb

0.5 cm'1

MIRLMBMAP

mid-IR limb map

120,000

(6 h from C/A)

T-profile upper

stratosphère

mesosphere
v4 CH4

centered at 150 km

420 km

of limb

15.5 cm'1

vertical resolution

36 km

MIDIRTMAP

mid-IR nadir map

380,000

(13-22 h from

C/A)

T-profile upper

stratosphère nu4
ch4

disk

3.0 cm'1

6 slews cover the entire

visible hemisphere
COMPMAP-

TEMPMAP

Mid-IR nadir

composition

température

500,000 -

1,000,000

(> 24h from C/A)

Atmospheric

composition
meridian 0.5 cm'1

intégration

HIRES
(0-10 min from

C/A)
Surface mapping disk 15.5 cm'1

6 The detectors are positioned twice at each altitude, which correspond to the lower and middle stratosphère
respectively.
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Since Titan's atmosphère expériences température inversion, the derived thermal spectrum

consists of the émission part and the absorption part, which both dépend on the température

gradient of the probed atmospheric layers.

The FP3 pixel viewing modes are four: ODD, EVEN, CENTER and PAIRS. In the

ODD mode only the 1, 3, 5, 7, 9 detectors are active, while in the EVEN mode the detectors 2,

4, 6, 8, 10 are only active. In the CENTER mode the 3, 4, 5, 6, 7 detectors are active, while in

PAIRS mode the detectors 1&2, 3&4, 5&6, 7&8, 9&10 are combined and amplified.

As far as the FP4 pixel mode is concemed, we hâve the same modes: ODD, EVEN,

CENTER and PAIRS. The active detectors are as in the FP3 modes, except that the detectors

4, 5, 6, 7, 8 are used in CENTER mode, to spatially match the detectors of FP3, which are

numbered in reverse physical order. In the CO-ADD mode (COADD or NO-COADD) two

successive scans are added together in the on-board electronics (buffers), to reduce the data

rate by a factor of 2.

Normally, CIRS data is read out at a rate of 4 kbs and every 2 seconds 8 kbit datasets

are transferred via the Bus Interface Unit (BIU) to the spacecraft Command Data Subsystem

(CDS). CIRS has many ways of reducing the data rate, such as co-adding the spectra,

dropping FP3 or FP4 readout (reduces by 45%), dropping FP3 and FP4 readout (reduces by

91%), or going into housekeeping-only mode.

The instrument electronics compress the data packets and transmit them to Earth by

using the Deep Space Network (DSN). Then, the datasets are decompressed by software on

the ground and go into a processing pipeline, which organizes the science data into binary

tables creating the Vanilla database and interpolâtes housekeeping records. We will discuss

more about the data calibration in the following section. The Vanilla software is a simple

database query tool. However, the user can also access the binary data by using other

programming retrieval tools.
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2.3 Improving the CIRS data processing

2.3.1 Instrumental artifacts in CIRS data

The recordings of the Cassini Infrared Spectrometer onboard Cassini suffer from some quality

problems having to do with quality, calibration, noise, etc. CIRS FP1, FP3 and FP4

interferograms are subject to the presence of single frequency (sine wave) ripples with

varying period and amplitude and prominent sharp spikes or delta fonctions with periods of

0.125 s (8 Hz) and 2.0 s (0.5 Hz) respectively (Nixon et al., 2004). The source of the sine

wave ripples is still unknown (Carlson et al., 2011). On the other hand, the source of the noise

spikes is the electrical interférence from the CIRS electrical sub-systems and especially the

Bus Interface Unit (BIU) (Nixon et al., 2004). Figure 2.7 shows an example of such sine wave

features in both FP3 and FP4 CIRS spectra. An example of prominent spikes is shown in Fig.

2.8.

6

4

Fig. 2.7: FP3 averaged spectra as recorded from CIRS. The upper panel (a) shows the FP3 spectral average of

September 2010 at équatorial latitudes, while the lower panel shows the FP4 one. The sine wave ripples are

located below 600 cm'1 and above 1000 cm'1 at the FP3 sélection and below 1050 cm'1 at the FP4 sélection.
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Figure 2.8: Prominent spikes at FP3 averaged CIRS spectra at the January 2007 query at 50°N. The left panel (a)

zooms at the région of 580 to 660 cm'1 with a spike located at 574 cm'1, the center (b) focuses on the 700 to 800

cm'1 where the spike is at 764 cm'1 and the right panel (c) shows the 1000 - 1100 cm'1 and the spike at 1085 cm'1.

Each Cassini science instrument is connected to the Cassini's data bus through BIUs,

which allow for two-way communication between the instruments and spacecraft (Henry,

2002). However, a bug exists when there is a heavy communication traffic, which affects the

instruments' interférences. This bug has caused instrument resets and transmitted commands

not to be received by the instrument (Linick et al., 2006). The CIRS BIU is queried 8 times

per second by the Cassini Command Data Subsystem (CDS), on the spacecraft clock signal

puises and it produces a small spike. Data is transferred from CIRS to the CDS every 2

seconds, which causes a larger spike and this enhances its intensity (Nixon et al., 2004). The

resuit in the spectrum is a sériés of spikes spaced by 12 cm"1 corresponding to the harmonies

of 0.5 Hz. The 8 Hz spike at 191.38 cm"1 also appears in FP1 CIRS spectra as strong

harmonies at 16 Hz (382.76 cm’1) and 24 Hz (574.14 cm'1). Unavoidably, both spikes impact

atmospheric retrievals and can make interprétation problematic (Carlson et al., 2011).
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2.3.2 Regular wavenumber calibration of the CIRS instrument

In-flight calibration of the absolute radiance expressed by the spectral responsivity has

been performed on CIRS by using two separate techniques. The instrument is exposed to a

blackbody source of accurately known température (shutter-closed) and to the deep space,

which is assumed to be a perfect sink (Hanel et al., 2003; Flasar et al., 2004; Nixon et al.,

2004). The former calibration task results the local calibration database ("current" Pipeline),

while the latter the deep space calibration database (DS4000).

However, any new database édition may impact seriously the spectra. After having

tested each correction algorithm, a new database inference is released to the CIRS data users

with the new application. Hence, our purpose is not only to track any relative issues in the

queries we make for our spectral analysis, but also to test each CIRS database using our

radiative transfer code as well. In the next sections, I show the results of our testing

procedure, how the new database inferences advance our analysis and measure the impact of

the new release to radiative transfer calculation fits. I firstly retrieved spectra from

CIRSDATA database in Meudon (Observatoire de Paris). The available database inferences

are:

(a) v2.5 current pipeline with local calibration,

(b) v3.2 current pipeline with local calibration,

(c) DS4000 pipeline with deep-space calibration,

(d) Grand Average with unique average calibration over the mission.

The v3.2 current pipeline is the évolution of the v2.5 current pipeline, incorporating further

refmement in the calibration algorithm. A spectral query with négative radiances is one of the

occasional problems with the official CIRS current Pipeline. This problem has been

experienced around from the beginning of the mission. The CIRS calibration team is working

towards solving these issues and applies correction algorithms in both calibration sources in

order to reduce spikes' effects on CIRS interferograms as well as vanish the presence of

négative radiances.

The DS4000 is an independent database of CIRS data, which contains ail consistent

current pipeline data, but calibrated with using 4000 deep space spectra taken under the same

conditions as the data in as close proximity to the data as possible. The introduction of such a

data processing aims to résolve négative radiances and reduce the instrument's noise.
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The Grand Average version of CIRS data has been developed in order to vanish

négative radiances. This database is calibrated using a unique average for the entire mission.

In principle, the comparison to the local (current) database will provide a much better signal-

to-noise ratio and give good relative amplitude, but with baseline bias. The DS4000 provide

spectra with also better signal-to-noise ratio without bias.

Another issue that should be addressed is whether an eventual systematic drift of

calibrations as fonction of time exists, for example, if eventual detector dégradation with time

would resuit in a slow systematic drift of the radiation détection efficiency. After personal

communications with Dr. D. Jennings, Dr. C. Nixon and Dr. R. Carlson from

Goddard/NASA, such a case is not possible. No significant dégradation of the CIRS radiance

calibration has been observed over the mission of any of the 21 CIRS detectors.

As far as the detector's response is concemed, a local calibration in time takes place.

That means that the calibration team uses observations of space and 170 K shutter taken

around the same time as the science observations, to estimate the response. They continuously

update the calibration during the mission, so that if the detector response ever dégradés, it will

automatically be accounted for. For instance, if 1000 detector counts correspond to 1 mW of

radiance in 2007, but 900 counts correspond to 1 mW in 2012, their calibration will always

compute the right radiance level, by looking at the "known" targets (space and shutter).

2.3.3 Retrieval of CIRS spectra and averaging procedure

In order to evaluate the impact of each new CIRS database that became available after

corrections by the CIRS team at Goddard Space Flight Center on our atmospheric retrievals,

and at the same time validate the improvement in the new database as we were asked to do, I

hâve performed some tests using our radiative transfer code and running simulations using our

updated atmospheric model for a given sélection in the available developmental versions to

détermine the improvement and uncover any remaining calibration and/or other issues. I then

compared the results of this fit to the ones retrieved using the spectra selected from previous

official éditions.

Because the purpose of this study is to obtain high précision inferences of the Chemical

and thermal composition, we always query for spectral averages which include a large

number of spectra with given restricting parameters. We thus increase the signal-to-noise

ratio. We mainly focus on nadir spectral observations and therefore we restrict the émission
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angles to be less than 65°, in order to hâve reasonable airmasses in our calculations (airmass

is the inverse cosine of the émission angle). These queries restricted the spacecraft range from

100 to 400,000 km and accepted ail longitudes.

The radiative transfer code is applied to match the CIRS spectra. The fitting procedure

is a simulation of the observations and comparison with the selected real spectra. We search

for the best agreement between data and model through an itérative process. Then, we extract

the mixing ratios of the atmospheric compounds. The comparison of the fits retrieved from

each database shows if each new developmental database provides improved, worse or the

same data.

2.3.4 Evaluating new CIRS databases and improving the data processing

Hereafter, I show three different validation tasks, we were asked to perform in order to

evaluate the improvement in the CIRS data processing in each new database inference, and to

validate the new calibration database which would then be implemented on the public access

machines.

On 1 October 2010, we were asked from Ron Carlson, Research Associate Professor at

the Catholic University of America, to validate the spike suppression algorithm has been

developed with Ever Guandique, from ADNET Systems Inc. This multi-parameter CIRS spike

suppression algorithm is expected to reduce or vanish négative radiances from CIRS spectra,

(Carlson et al., 2011). This algorithm employs deep space and shutter-closed interferograms

for calibration averaged over several years. It matches the positions and intensities of the

spikes to the observed spikes in each interferogram and performs checks to optimize and

characterize the quality of the fitting process. The main idea is to calibrating the coadded

Titan interferograms with non-coadded ("noadd") deep space and shutter-closed

interferograms. The sine wave is modeled by a cubic polynomial exponentially damped

cosine function.

Before de-spiking, each interferogram is over-sampled by a factor of 8 and has 8 times

as many points as it had originally. Unfortunately, the continua are not always correct when

such large deep space and shutter-closed averages are used for calibration across ail three

CIRS reference laser modes (Ron Carlson, pers. comm.). A good example of these négative

56



radiances is the query of a FP3 large average from March 01, 2009 to November 30, 20097 at

high resolution (0.5 cm"1) within a latitudinal bin at 25°S (Fig. 2.32-in red). In this sélection,

the presence of négative radiances is obvious. The resulted averaged spectrum is hereafter

called Grand Average and is also shown in Fig. 2.9 (in blue).

The average spectrum of the current database version v2.5 has a continuum problem

from 570 to 700 cm'1 with négative radiance we want to correct. One of the sequences of this

query therein commanded co-added Titan interferograms to be recorded, along with a few

coadded deep space and shutter-closed interferograms for calibration (Ever Guandique, pers.

comm.). The négative radiances occur only for the co-added spectra in this sequence.

Figure 2.9: FP3 average spectrum from the current database v2.5 (in red) with calibration problems. It is for the

time period 01 March - 30 November 2009, while the latitude range is from 20°S to 30°S at high resolution (0.5

cm"1). The test-averaged spectrum (Grand Average) for the same conditions is plotted in blue (Ron Carlson, Ever

Guandique pers. comm.).

Quite a few of the customary no-add Titan interferograms were recorded at a higher

CIRS instrument température than the usual 76.3K, presumably because of the solar angle

during the observations. These higher température Titan interferograms hâve to be calibrated

separately using higher température deep-space and shutter-closed interferograms and then

added to the 76.3K Titan calibrated spectra using a weighted average. To achieve a good

signal-to-noise ratio for the higher température Titan spectrum, we may hâve to go backwards
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in time to earlier CIRS reference laser mode 1 time periods to average enough higher

température deep-space and shutter-closed interferograms. The algorithm used about 12,000

deep-space and 1,200 shutter-closed noadd 76.3K interferograms for each of the ten FP3

detectors (11 - 20) in order to obtain a superior signal-to-noise rate for the calibrated Titan

spectra. This calibration should yield the correct continuum. The resulted averaged spectrum

is shown in Fig. 2.10 (in red) below.

One problem is that the 8 Hz spikes are very prominent in the 25°S spectrum if we

use about 10,000 deep-space interferograms for each detector (11 - 20) averaged over the

November, 2008 - July, 2010 reference laser mode 1 time period for the calibration. One

suggestion is to use only about 4,000 deep-space interferograms averaged over a shorter time

period that overlaps with the Titan observation. Such choice will cause the 8 Hz spikes to

vanish, since the Titan and deep-space spikes should subtract out fairly well without any spike

suppression (Ron Carlson pers. comm.). The extract of this algorithm, the Grand Average,

(Fig. 2.10 red) is also compared to the DS4000 extract in Fig. 2.10 (in blue).

Titan: March 01 - November 30, 2009, FP3 Detectors 11-20

401 RTI, Latitude -30° to -20°, Laser Mode 1, NOADD + COADD
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Figure 2.10: The différence between DS4000 (blue) and Grand Average (red) queries is showed by the green

graph (Ron Carlson, Ever Guandique pers. comm).

On 6 October 2010, Marcia E. Segura, CIRS Operations Team leader in Goddard,

asked us to validate the DS4000 database using our radiative transfer code. DS4000 spectra
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hâve been treated as in the current pipeline, but calibrated with 4000 deep space spectra. In

this approach, typically issues such as négative radiances are resolved and the noise is

reduced. The current v2.5 (and lately v3.2) is the primary source for CIRS data users. The

version 3.1 incorporâtes further refinement in the calibration algorithm. For interferograms

collected using CIRS Flight Software Version 6, non-co-added data will hâve the 1/2 Hz noise

spikes suppressed, while no noise suppression will be done on co-added data.

The First effort towards a better calibration of CIRS data was the "custom calibration"

which was applied to support the Flight Software Version 6 (FSW6) by selecting 1,000 deep

space spectra. The spectra were selected in order to match the conditions of the data to be

calibrated and be recorded before the starting spacecraft event time (SCET). If such 1,000

spectra could not be found, then the sélection procedure moves to the 1,000 deep space

spectra, which match the data conditions after the ending SCET.

The Global calibration DS4000 takes into account 4,000 deep space spectra, which

match the conditions of the data to be calibrated. Contrary to the custom calibration, it uses

the 4,000 deep space spectra from the beginning of the mission and moving through the deep

space by always using the most recent 4,000, replacing the older blocks.

The task was to provide the results of a comparison between the current v2.5 version

of CIRSDATA and the DS4000 and check if this database resolved the négative radiances

without loosing any information. The 3.1 (and 3.2) version was not released in this date.

On 3 May 2012, Marcia E. Segura, asked for validating the new dataset, which was

generated with a similar algorithm than the one used to generate the DS4000 database, but

with a phase correction algorithm applied from Nicolas Gorius, science collaborator, member

of the CIRS science team. This new algorithm is expected either to correct most of the

négative radiance or too-positive radiance outriders or be identified easily but the user.

Outstanding outriders are being shifted back to level where they are expected to be.

My purpose is to provide to CIRS calibration team représentatives the requested

validation for each database release.

A) Grand Average versus DS4000

Using our line-by-line radiative transfer code I inferred a model simulation that I compared to

both sélections. When the best fits possible were found in the émission bands, I inferred the
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abundances of the major molécules. The fits are illustrated in Fig. 2.11 a, b and the mixing

ratios of the major species in Table 2.7 below. For ail these spectra we hâve used the same

température profile, which fits the v4 methane band in the associated FP4.

01 March - 30 November 2009 25°S FP3 FITS
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Figure 2.11 : (panel a) Average spectrum best fit of the Grand Average sélection file. The data are depicted in red

color, while the model is in blue. (panel b): Average Spectrum best fit of the DS4000 sélection file. The data are

also illustrated in red color, while the model is in blue.

The plots (Fig. 2.11 a, b) are very similar except for:

a) Grand Average fit: correct continuum level at 570 cm'1, but includes spikes

b) DS4000 fit: Continuum level has some problems before 600 cm"1 and it is lower than in the

Grand Average sélection, but most of the spikes are removed.

Table 2.7. The abundances of the major trace gases when fitting each sélection and their différence

Molécule Grand Average -fit DS4000 -fit Différence

C2H2 2.4x10"6 2.1xl0'6 +14%

HCN 5.6x10'8 4.7x10'8 +20%

C2H6 7.0x10-6 6.2x10-6 +13%

c3h4 4.8x10‘9 3.95x10'9 +20%

In general, the derived abundances for the major molécules in the FP3 range hâve a différence

on the order of 15-20%. The continuum is 1.5 to 2 times higher in Grand Average spectrum

between 600-890 cm'1. Since the CIRSDATA v2.5 pipeline contains large calibration

problems, the DS4000 is a large improvement with despiking. The Grand Average test

database is still significantly different ffom DS4000 and yields higher abundances.
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B) DS4000 versus v2.5

The characteristics of the sélections I hâve chosen to perform this task are listed in the Table

2.8 below. I compared two spectral sélections, one from the beginning of the mission and a

recent one. According to the sélections criteria the nadir-averaged spectra from both

December 2006 and January 2010 were queried at high resolution (0.5 cm'1) in FP3 and FP4.

The December 2006 query is the First CIRS dataset consisting of adéquate in number data at

the latitude of 50°N. It incorporâtes observations from both flybys T21 (12/12/2006) and T22

(28/12/2006). The January 2010 sélection, consisting of flybys T65 (12/01/2010) and T66

(28/01/2010), is the last query of satisfactory (in number) data of the year 2010 at the same

latitudinal zone.

Table 2.8: CIRSFRANCE nadir sélections used for the présent test. I hâve gathered data from the DS4000

database as well as the v2.5 database at high resolution (0.5 cm'1) at 50°N. Ls represents the corresponding solar

longitude of each query. The number of spectra, the émission angle of the averaged spectral sélection, the signal-

to-noise ratio as well as the airmass of the collection are also listed.

50°N DS4000 v2.5

CIRS Query Ls Numberoi spectra Emission angle S/N Airmass Numberol spectra Emission angle S/N Airmass S/NDiffei DS4000-
Dec-06 326° 866 31.3 46.1 1.170 866 31.3 52.5 1.170 13.88%

FP4

Jan-10 5° 234 53.1 27.5 1.666 234 53.1 27.6 1.666 0.36%

Dec-06 326° 1033 36 35.1 1.236 1033 36 32.4 1.236 -7.69%
FP3

Jan-10 5° 284 53.9 21.3 1.697 284 53.9 27.6 1.697 29.58%

The v2.5 current pipeline présents an improvement by a factor of 30% on the S/N ratio in the

FP3 query of January 2010. The DS4000 has higher S/N by a factor of 8% at the FP3

sélection on December 2006.

In order to depict the différences between the two database inferences conceming the

despiking resuit, I hâve overplotted the FP3 (Figs. 2.12, 2.13) and FP4 (Figs. 2.14, 2.15)

spectra from each database. Their différence within the spectral range in each query is drawn

in the lower panel of Figs. 2.12 -2.15 in black. DS4000 spectra FP4 on December 2006 (Fig.

2.14) hâve lower line radiances between 1020 and 1250 cm'1 than the v2.5 spectra. In the

January 2010 FP4 (Fig. 2.15) spectra there is no such différence. In both FP4 files, the v2.5

data présent ripples below 1050 cm'1 as it is shown in Figs. 2.14 and 2.15.
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DECEMBER 2006 FP3 at 0.5 cm'1 at 50° N
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Figure 2.12: December 2006-FP3 average spectrum from the current database v2.5 (in red) and from the DS4000

(in blue). Their différence is plotted below (in black). Spikes of the DS4000 pipeline exist at 764, 956, 1033 and

1121 cm'1 wavenumber.
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Figure 2.13: January 2010-FP3 average spectrum from the current database v2.5 (in red) and from the DS4000

(in blue). Their différence is plotted below (in black). Spikes of the DS4000 pipeline exist at 651, 764, 795, 842,

956 and 1033 cm'1 wavenumber.
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DECEMBER 2006 FP4 at 0.5 cm'1 at 50° N
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Figure 2.14: December 2006-FP4 average spectrum from the current database v2.5 (in red) and from the DS4000

(in blue). Their différence is plotted below (in black).
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Figure 2.15: January 2010-FP4 average spectrum from the current database v2.5 (in red) and from the DS4000

(in blue). Their différence is plotted below (in black).

Both DS4000 FP3 averaged spectra show spikes at 764, 956 and 1033 cm1. In December

2006 query one more spike has been recorded 1171 cm'1, while in the January 2010 query

spikes are also présent at 651, 795 and 842 cm'1. The différence in radiance of the major

spikes at 764 and 956 cm'1 between DS4000 and v2.5 is listed in the Table 2.9 below.
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Table 2.9: The major spikes in CIRS FP3 spectra. The percentage corresponds to the relative différence between

the DS4000 spectra and the v2.5 around the wavenumbers of 764 and 956 cm'1.

Major spikes in spectra

w/n (cm1) December 2006 January 2010

764 56% 42%

956 248% 68%

The spikes in DS4000 spectra are more prominent than in the v2.5. Especially, although

December's 2006 spectra of v2.5 lacks spike around 956 cm1, the DS4000 spectra présent a

very prominent one.

Using our line-by-line radiative transfer code I produced a model simulation that I

compared to both sélections and when the best fîts possible were found in the émission bands,

I inferred the abundances of the major molécules. The fits of the FP3 spectra are illustrated in

Figs. 2.16 and 2.17 ffom the v2.5 inference and in Figs. 2.18 and 2.19 firom the DS4000. The

retrieved mixing ratios of the major species ffom ail fits are given in Tables 2.10 and 2.11

below. For each spectral sélection I applied the same température profile with CH4 at 1.48%

(provided by R. Archterberg, at my request), which fits the V4 methane band in the associated

FP4 spectra.

Figure 2.16: Fit of the December 2006-FP3 average spectrum from the DS4000 database at 50°N and high

resolution (data in red, model in blue).
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X 10'
FIT DECEMBER 2006 v2.5 at 0.5 cm'1 al 50°N FP3

Figure 2.17: Fit of the December 2006-FP3 average spectrum irom the v2.5 database at 50°N and high resolution

(data in red, model in blue).

.-7 FIT JANUARY 2010 DS4000 at 0.5 cm"1 at 50°N FP3

Figure 2.18: Fit of the January 2010-FP3 average spectrum from the DS4000 database at 50°N and high

resolution (data in red, model in blue).
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FIT JANUARY 2010 v2.5 at 0.5 cm'1 at 50°N FP3

Figure 2.19: Fit of the January 2010-FP3 average spectrum from the v2.5 database at 50°N and high resolution

(data in red, model in blue).

For the December 2006 query, the abundance of acetylene - C2H2 - (Tables 2.10 and 2.11)

calculated from the v2.5 pipeline is significantly higher than the DS4000 one at about 26%

and the HCN at about 10%. The rest molécules hâve similar mixing ratios retrieved from both

database inferences, located within the error bars.

Table 2.10: The abundances of the major trace gases when fitting the January 2010 sélections and their

différence.

January 2010 abundances

Molécule v2.5 DS4000 Différence

c2h2 5.60x10-6 5.10 xlO-6 9.8%

HCN 8.00x10'7 7.90 xl0‘7 1.3%

C3H4 1.22x10'8 1.38x10'8 -11.6%

c4H2 5.50x10’9 5.20x10'9 5.8%

co2 1.55 xlO'8 1.39 xlO'8 11.5%

C2H6 1.22x10‘5 1.05x10’5 16.2%
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Table 2.11: The abundances of the major trace gases when fitting the December 2006 sélections and their

différence.

December 2006 abundances

Molécule v2.5 DS4000 Différence

c2h2 3.90x10'6 3.10 xlO"6 25.8%

HCN 4.70 xl0‘7 4.30x10'7 9.3%

c3h4 1.54x10'8 1.60x10"8 -3.8%

c4ii2 8.10 xlO"9 8.10 xl0‘9 0.0%

co2 1.60x10"8 1.70x10"8 -5.9%

c2h6 1.15x10"5 1.15 xlO'5 0.0%

We now focus on the continuum level in both pipelines. The continuum of December 2006

FP3 sélection (Fig. 2.20) is higher in the DS4000 data than in v2.5 on the order of 45%, 20%

and 13% within the spectral range of 575-590, 590-625 and 640-650 cm'1 respectively (Table

2.12). Instead, the continuum level in the January 2010 FP3 sélection (Fig. 2.21) shows no

significant différences between the two inferences.

Figure 2.20: Plot of the December 2006-FP3 average spectrum at 50°N and 401 rti. The continuum from 570 to

650 cm"1 of both versions of CIRSDATA is higher in DS4000 (v2.5 in red, DS4000 in blue).
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CONTINUUM JANUARY 2010 at 0.5 cm'1 at 50°N FP3

Wavenumber (cm-1)

Figure 2.21: Plot of the January 2010-FP3 average spectrum 50°N and 401 rti. The continuum from 570 to 650

cm"1 of both versions of CIRSDATA are equal (v2.5 in red, DS4000 in blue).

Table 2.12. The différences between the continuum level of both pipelines at the December's 2006 sélection

within the région around C3H4 and C4H2. DS4000 continuum is higher than the v2.5.

December 2006 -FP3 continuum level (cm1)
Différence between

DS4000 and v2.5

575 - 590 40-50%

590 - 625 20%

640 - 650 13%

The continuum level appears in the DS4000 database lower than for v2.5 and négative in

some cases. The FP4 spectra of the 2006 December sélection (Fig. 2.22) shows significant

différences between the two database inferences at about 50% from 1050 to 1120 and 1170 to

1200 (Table 2.13). Once again no significant différence is depicted in January 2010 FP4 data

(Fig. 2.23).
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Figure 2.22: Plot of the December 2006-FP4 average spectrum at 50°N and high resolution. The continuum from

1050 to 1200 cm'1 of both versions of CIRSDATA is higher in v2.5 (v2.5 in red, DS4000 in blue).

Figure 2.23: Plot of the January 2010-FP4 average spectram 55°N and 401 rti. The continuum from 1050 to

1200 cm'1 of both versions of CIRSDATA are equal (v2.5 in red, DS4000 in blue).
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Table 2.13. The différences between the continuum level of both pipelines at the FP4 December's 2006 sélection.

The v2.5 continuum is higher at about 50% than the DS4000 one.

December 2006 -FP4 continuum level (cm1)
higher values différence

between DS4000 and v2.5

1050- 1120 -60% to -50%

1170- 1200 -50%

C) v3.2 versus v2.5, DS4000 and DS4000 with phase correction

I hâve queried three sélections from CIRSFRANCE database in Meudon on spectra produced

during Titan flybys. I hâve asked for the same sélection at FP3 and FP4 focal planes (and FP1

for the first two queries) within three versions of CIRSDATA:

(a) the calib_v3.2, which refers to the current pipeline with local calibration which has

replaced the previous v2.5, hereafter v.3.2,

(b) the calib_v4.2, which is the DS4000 dataset, hereafter DS4000, and

(c) the calib_v4.3, which is also the DS4000 dataset but with the application of the new

phase algorithm by N. Gorius, hereafter DS4000-PhC.

The first sélection picked up spectra recorded by Cassini/CIRS on September 2010 (T72

flyby) focused on équatorial latitudes taken at high spectral resolution (0.5 cm'1). The second

sélection contains averaged spectra from the first Titan flyby on July 2004 (T0) in medium

resolution (2.5 cm'1) focused on mid Southern latitudes (50°S). It should be noted that the

choice of T0 data (July 2004) was due to the fact that only these spectra were uploaded at the

moment of the July 2004 query from the DS4000-PhC database. Although we do not take into

account the data from this flyby in our radiative transfer calculations, this comparison may be

helpful for the algorithm developers. The last sélection refers to January 2007 at 50°N at high

resolution from Cassini Titan T23 and T24 flybys.

I applied our radiative transfer code in order to fit C2H2, C2H6, HCN signatures at the

three spectral inferences. I use the corresponding température profile as retrieved by the V4

methane band at FP4 spectra (Achterberg et al., 2008; 2011) to then infer the major

molécules' abundances after a best-fit modeling procedure.

On September 24, 2010 the Cassini orbiter performed its 72th Titan flyby (T72). Table

2.14 below lists the characteristics of both FP3 and FP4 queries in each database. These

queries hâve focused on équatorial latitudes. No spectra were found for FP1 for this
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sélection’s parameters. The number of spectra as well as the émission angles are the same in

ail database éditions, while the Signal-to-Noise ratio values differ but not significantly.

Table 2.14: September 2010, equator, 0.5 cm1. Only slight différences in Signal-to-Noise ratios exists.

Focal Plane C1RSDATA version Number of spectra Emission angle Signal-to-Noise ratio

FP3 v3.2 1503 11.6 60.6

FP3 DS4000 1503 11.6 60.2

FP3 DS4000-PhC 1503 11.6 57.8

FP4 v3.2 1619 7.6 138.0

FP4 DS4000 1619 7.6 137.8

FP4 DS4000-PhC 1619 7.6 143.7

Figs. 2.24 and 2.25 below depict the comparison of these three database inferences. The upper

plots contain ail the database queries, while the lower panels of each figure show the

différence with the DS4000-PhC and the nominal DS4000. It should be noted that the

September 2010 sélection at equator from the DS4000-PhC database still suffers ffom ripples

on its edges in both FP3 and FP4. The négative différences in Fig. 2.24-lower panel- mean

that the nominal DS4000 data hâve higher values in radiance than the DS4000-PhC ones in

the FP3 spectral range. Instead, the différences plot in the lower panel of Fig. 2.25 shows that

in FP4 the DS4000-PhC spectra hâve radiances higher than the corresponding nominal

DS4000 ones. There is also a spike at 797 cm'1, which exists in ail database extracts.

x 10
-7

Fig. 12.24: FP3 averaged spectra from CIRSFRANCE. The upper panel shows the results of the database

inferences (local calibration in blue, DS4000 in green and the new DS4000-PhC algorithm in red). The lower

panel shows the différence between the two DS4000 versions (black). Ripples in the recorded radiation are

obvious in both spectral edges.
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Wavenumber (cm-1)

Fig. 2.25: FP4 averaged spectra from CIRSFRANCE. The upper panel shows the results of the database éditions

(local calibration in bleu, DS4000 in green and the new DS4000-PhC algorithm in red). The lower panel shows

the différence between the two DS4000 versions (black). The presence of ripples from 1020 to 1100 cm'1 is

shown.

I then solve the radiative transfer équation by using our radiative transfer code. In Figs. 2.26

and 2.27 below, I plot the best-fitting procedure results for each database version.
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Fig. 2.26: Fits of the C2H2 signature in each database extract. The niodel is depictcd in blue, while the data are in

red. The panels a, b, c show the fit plot versus data of current (v3.2), DS4000 and DS4000 phase corrected

database, while the panels d, e and f show the corresponding différences between model and data.

The P-wing of acetylene at 730 cm1, is better fitted when using the DS4000 databases

(différences’ plots -Fig. 2.22 d, e, f). The phase corrected DS4000 also better simulâtes the 13-
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C2H2 isotopologuc in the Q-branch. It should be noted however, that I hâve used constant-

with-height distributions when producing the model atmosphère. Vertical distributions will

give better fits of the Q-branch and minimize the différences.

O

5 x io~®

810 820 830 840 850

x 10~7

2 c DS4000-PhC ]

Wavenumber (cm-1)

Fig. 2.27: As in the previous case, fits of the C2H6 signature in each database extract are plotted in this figure.

The model is depicted in blue, while the data are in red. The panels a, b, c show the fit plot versus data of current

(v3.2), DS4000 and DS4000 phase corrected database, while the panels d, e and f show the corresponding

différences between model and data.

The différences of both DS4000 databases are smoother at ethane band at 822 cm'

compare to the v3.2 fit (Fig. 2.27 d, e, f). The derived mixing ratios as well as the previous

v2.5 édition mixing ratios are listed in Table 2.15 below. No différences hâve been found for

the abundances of the 3 major molécules of the FP3 spectral région.

Table 2.15: C2H2, C2Hé, HCN abundances as derived by applying our radiative transfer code in FP3 September

2010 averaged spectra at equator (0.5 cm1).

CIRSDATA C2H2 c2H6 HCN

v2.5 3.4x10'6 9.2x10'6 2. lxl O'7

v3.2 3.9x10'6 9.8xl0"6 2.1xl0‘7

DS4000 3.9x10'6 9.8x10^ 2.1xl0'7

DS4000-PhC 3.8x106 9.7x10'6 2.0x10'7

I concluded that the différence between the two DS4000 versions is less than 5% with

respect to the phase corrected one, having somewhat lower values (Table 2.15).
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The first Titan flyby (TO) by the Cassini orbiter occurred on July 3 2004 just after the Satum

Orbit Insertion of the spacecraft. Table 2.16 below lists the characteristics of this query in

each database. The geometry of these queries follows the restrictions we hâve adapted when

studying the previous sélection. FP1 spectra hâve been retrieved.

Table 2.16: July 2004, 50°S, 2.5 cm'1. The number of spectra for FP3 and FP4 between the local calibrated

database and the deep space calibrated differ significantly. Consequently, the other characteristics also differ.

FP1 spectra are the same.

Focal Plane CIRSDATA version Number of spectra Emission angle Signal-to-Noise ratio

FP3 v3.2 982 33.2 117.2

FP3 DS4000 97 26.7 34.5

FP3 DS4000-PhC 97 26.7 33.2

FP4 v3.2 929 37.1 267.3

FP4 DS4000 929 37.1 268.5

FP4 DS4000-PhC 929 37.1 267.7

FP1 v3.2 111 20.8 130.3

FP1 DS4000 111 20.8 130.3

FP1 DS4000-PhC 111 20.8 130.3

There is no différence in the FP1 spectra, as we can from the Table 2.15 and the Fig. 2.30.

Following the implémentation of the new phase algorithm in the DS4000 database, we fmd

that the number of spectra that are now retum from this query in FP3 is significantly reduced

by a factor of 10 and therefore we hâve lower Signal-to-Noise ratios in our spectral averages.

Figs. 2.28, 2.29 and 2.30 below depict the comparison between the two DS4000 versions in

each focal plane. I hâve not plotted the FP1 DS4000 différences because both spectral

averages were identical.
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x 10”7

Fig. 2.28: FP3 averaged spectra from CIRSFRANCE. The upper panel shows the results of the database éditions

(local calibration in blue, DS4000 in green and the new DS4000 with the phase correction algorithm in red). The

lower panel shows the différence between the two DS4000 versions (black).

The new algorithm produces higher radiances at 570 cm'1 compared to the nominal version,

and négative radiances at around 765 cm'1. Négative radiances are also found at around 960

i . i i i . i . i i i i i i i i i . i i

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Wavenumber (cm-1)

Fig. 2.29: FP4 averaged spectra from CIRSFRANCE. The upper panel shows the results of the database éditions

(local calibration in blue, DS4000 in green and the new DS4000 with the phase correction algorithm in red). The

lower panel shows the différence between the two DS4000 versions (black).
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Fig. 2.30: FP1 averaged spectra from CIRSFRANCE. The upper panel shows the results of the database éditions

(local calibration in bleu, DS4000 in green and the new DS4000 with the phase correction algorithm in red).

The T23 and T24 flybys of Titan took place in January 2007. Table 2.17 below lists

the characteristics of this query in each database. As previously, ail queries hâve been

restricted to émission angles less than 65°, focused on équatorial latitudes, the spacecraft

range was restricted frorn 100 to 400,000 km and ail longitudes were accepted. I now focus on

the northem latitudes at 50°N. The number of spectra as well as the émission angles are the

same in ail database éditions, while the Signal-to-Noise ratio values slightly differ.

Table 2.17: January 2007, 50°N, 0.5 cm'1. As far as the recorded number of spectra are concemed as well as the

émission angles, there are no différence. Any différences in the Signal-to-Noise ratios are insignificant.

Focal Plane CIRSDATA version Number of spectra Emission angle Signal-to-Noise ratio

FP3 v3.2 545 23.0 24.7

FP3 DS4000 545 23.0 24.2

FP3 DS4000-PhC 545 23.0 24.2

FP4 v3.2 356 3.9 30.3

FP4 DS4000 356 3.9 30.7

FP4 DS4000-PhC 356 3.9 30.7

The following Figs. 2.31 and 2.32 show the comparison of these three database inferences for

the January 2007 50°N query.
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Fig. 2.31 : Comparison between the current v3.2 database (blue) and the DS4000 one (red) FP4 averaged spectra

of January 2007 at 50°N from C1RSDATA. The deep space calibration éliminâtes the noise in the continuum.

The continuum of this sélection in its v3.2 version suffers front négative radiances below

1000 cm'1 (Fig. 2.31) while, in the DS4000 database inference these spectral features do not

exist.

Fig. 2.32: Plot of the FP3 averaged spectra of January 2007 at 50°N from CIRSDATA. (a) Comparison between

the previous édition v2.5 database (blue) and the current v3.2 database (red). Négative radiances and spike from

570 to 574 cm'1 as well as the spike at 1085 cm'1 hâve been vanished in the current édition, (b) Comparison

between the current v3.2 database (red), the nominal DS4000 database (green) and the DS4000-PhC database

(black).
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The spike at 573 cm'1 appears again in deep space calibration data. Négative radiance from

1000 to 1100 cm'1 still exists, but the problem with the bad pixel at 765 cm'1 has been fixed.

DS4000 and the DS4000-PhC are exactly the same and there is a question conceming the

extent of the phase correction algorithm application in the DS4000.1 ran our radiative transfer

code in order to fit the data of these three database inferences. The fits of ethane are plotted in

Fig. 2.33.
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Fig. 2.33: Fits of the C2FF signature in each database extract. The model is depicted in blue, while the data are in

red. The panels a, b, c show the fit plot versus data of current (v3.2), DS4000 and DS4000 phase corrected

database, while the panels d, e and f show the corresponding différences between model and data. As it is shown

in the différence plot, ethane is fitted better using the DS4000 spectral averages.
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Fig. 2.31: Fits of the continuum at FP3 spectra in each database extract. The model is depicted in blue, while the

data are in red. The panels a, b, c show the fit plot versus data of cunent (v3.2), DS4000 and DS4000 phase

corrected database, while the panels d, e and f show the corresponding différences between model and data. The

continuum is better calibrated with the DS4000 éditions.

The abundances from the best-fit process for the 5 major molécules of the FP3 spectral région

from the fit of the three inferences (DS4000-PhC, DS4000 and v3.2) are listed in the Table

2.18 below.

Table 2.18: The abundances of the major molécules as derived by applying our radiative transfer code in FP3

January 2007 averaged spectra at 50°N (0.5 cm’1).

CIRSDATA c2h2 c2h6 C3H4 c4h2 HCN

v2.5 2.5xl0'6 1.07x10'5 2.0x10’8 9.5x10‘9 5.8xl0‘7

v3.2 2.8xl0'6 1.13xl0’5 2.1xl0‘8 9.8xl0‘9 6-OxlO'7

DS4000 2.6x10'6 1.05x10’5 1.9x10'8 1.0x10'8 5.8x10'7

DS4000-PhC 2.8x10'6 1.05x10‘5 1.9x10'8 1.0x10'8 6.0x10'7

Ethane is better fitted with using the DS4000 inferences (Fig. 2.32). Ethane's abundance is

slightly higher at about 5% using v3.2 to our calculations than using the rest databases, but

located within the error bars. The rest molécules hâve similar mixing ratios using ail the

databases. The DS4000 database optimizes the continuum (Fig. 2.34). The différences

between v2.5 and DS4000 for this sélection are comparable to the January 2010 spectra

(Table 2.10).
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2.4 Conclusions

I hâve had the opportunity get access to the most recent CIRS databases, which are

significantly improved, with respect to what was before and validate them. I hâve usedfive

CIRSDATA éditions: the current pipeline v3.2 and the previous v2.5, which hâve been

locally calibrated, and the DS4000 and the phase corrected DS4000, with deep space

calibration. Additionally, I also validated the Grand Average database, which employs deep

space and shutter-closed interferogramsfor calibration averaged over severalyears.

To begin with the lutter, the Grand Average calibration shows a better continuum

level before 600 cm1, compared to the DS4000 and 1.5 to 2 times higher continuum

between 600-890 cm'1. It also diminishes the négative radiances, successfully. However, the

Grand Average still contains spikes. Instead, most of the spikes are removed in DS4000.

The derived abundances for the major molécules in the FP3 in Grand Average are higher

on the order of 15-20% compared to the DS4000. Eventually, the Grand Average test

database is still significantly differentfront DS4000 andyields higher abundances.

The DS4000 calibration of CIRSDATA is a large improvement with despiking.

Indeed, the DS4000 version diminishes in several cases the noise in the continuum around

570 and 1050 cm'1 and fixes the bad pixel problem at 765 cm'1. The abundances between

DS4000 and the v3.2 are the almost the same in recent queries and their continuum levels

hâve no différences. The retrieved abundances using DS4000 are more accurate compared

to the v3.2 ones. The model shows that the shift I had to apply to my radiative transfer code

calculations is smaller than the one in v3.2 and gives a better line shape.

However, when using old data queries, DS4000 lias higher abundances and higher

continuum level compared to the v3.2 (and the v2.5). The spike at 573 cm'1 appears again in

DS4000 calibration data, although it lias been vanished in current pipeline with local

calibration in some cases. Moreover, DS4000 still suffers from ripples.

The new DS4000-PhC version of CIRSDATA, with respect to DS4000, reduces the

négative radiances. In our radiative transfer simulations, the derived abundances hâve no

significant variation comparing to the nominal DS4000 édition. However, ripples exist in

several spectral sélections. There is a question if the new phase correction algorithm has

been applied to the entire DS4000 database, since the queries in some sélections from the

two DS4000 versions are identical.
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/ recommend the phase-corrected DS4000 database in future studies of Titan CIRS

data for ail users. If the newest database is not available, the DS4000 is still an

improvement with respect to the v3.2.
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Chapter 3

The Titan Atmospheric Model

This chapter introduces the fiindamentals of the radiative transfer theory and the tool I use to

model the stratosphère of Titan. It is a radiative transfer code that has been used in the past for

retrievals of the thermal and Chemical structure of Titan by the analysis of Voyager, ISO and

Cassini data. I describe here the code upgrade we made in order to analyze the recent Cassini

results using the latest laboratory spectroscopic line lists and advances in haze modeling. The

simulations produced by this code are compared with the actual CIRS data to dérivé the

abundances of the atmospheric constituents, which are given in the next chapter. I discuss

here the inferences of the température profiles we need to extract first and how they are used

to retrieve the atmospheric Chemical composition. Ail the assumptions will be also defined.

3.1 The structure of Titan’s atmosphère

Titan is the only planetary body of the Solar System, except for the Earth, that possesses a

thick, nitrogen-dominated atmosphère (which créâtes a pressure of about 1,5 bar at the

surface). On Titan, methane is the second most abundant atmospheric species with a mixing

ratio of 2.19 ±0.002 in the upper atmosphère (Waite et al., 2005), 1.6 ±0.5 in the stratosphère

(Flasar et al., 2005), 1.48 ±0.09% in the lower stratosphère (139.8 - 75.5 km) and 5.65±0.18

near the surface (6.7 km to surface) (Niemann et al., 2010). The interaction with the solar

influx, the combination and dissociation of these two mother constituents initiâtes complex

photochemical reactions in the upper atmosphère, which enrich the organic inventory of the

satellite. Some of these organics condense and form a thick haze layer of aérosols covering

the satellite globally or partially. The mixing ratios of these gases vary as a function of

altitude, latitude and longitude and also time, due to atmospheric circulation. Titan is a cold

environment, located at 10 AU and receiving 100 times less energy from the Sun, compared

to the Earth.

Titan’s température profile was first determined extensively by Lindal et al. (1983)

from egress and ingress radio-occultation observations by Voyager 1. Its température
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structure was shown to resemble the terrestrial one, divided into régions with a clearly defined

tropopause, stratopause and mesopause. As in the Earth, the température profile of Titan's

atmosphère shows inversions, caused by local heating. The mid-atmospheric heating source in

the Earth is the stratospheric ozone layer, while the haze layer in Titan plays such a rôle. Both

of these heat the local atmosphère by absorbing solar energy and give local température

maximum (Coustenis & Taylor, 2008).

The Huygens probe obtained, among other, Titan's vertical atmospheric thermal

structure during its descent in January 2005, before landing at 10.3°S and 192.3°W (Lebreton

et al., 2005). The Huygens Atmospheric Structure Instrument (Fulchignoni et al., 2002)

measured the décélération of the probe ffom 1400 to 155 km and determined the atmospheric

mass density. By assuming that the atmosphère is in hydrostatic equilibrium, the pressure

profile can be inferred. Then, by considering the atmosphère at these levels as a perfect gas

and assuming a value for the atmospheric mean molecular weight, the température as a

fonction of altitude is derived.

At the altitude of 155 km, Huygens released its protection shield and HASI measured

directly the atmospheric pressure and température by using its sensors from this level down to

the surface by better than 1 K accuracy (Fulchignoni et al., 2005). The density and

température profile derived from HASI is depicted in Figure 3.1 from the surface up to 1380

km.

HASI showed that Titan has a well-defined tropopause at about 44 km with 70.43 K.

The HASI température measurements for this région are in agreement (1-2 K) with the

Voyager measurements (Lindal et al., 1983). The stratopause is located at the altitude of 265

km with 188 K, 13 K warmer than the Voyager IRIS results. The mesopause has been

identified at 494 km with 153 K. In this région, the températures are 5-10 K higher than the

model prédictions (Yelle et al., 1997). For altitudes over 500 km and up to 1020 km, which is

the thermosphère, HASI shows températures variations of around 170 K (varying within ±10-

15 K), caused by inversion layers, dynamic phenomena like gravity waves and graviational

tides (Fulchignoni et al., 2005). In this part of the atmosphère, the HASI density

measurements are higher by a factor of 2 compared to the re-interpretation of Voyager solar

occultation measurements (Vervack et al., 2004).

Figure 3.1 also illustrâtes the engineering model based on Voyager data of Yelle et al.

(1997) as well as the measurements of the Voyager radio occultation experimented revisited

by Lellouch et al. (1989). No considérable différence exists from the surface up to an altitude
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of 200 km among these models. The HASI température profile from 200 km and upwards

shows occultations growing in amplitude.

Mass Density, p (kg rrf3), Pressure, p (mbar)

10‘12 10'11 10'10 10'9 10‘8 10'7 10'6 10-5 10"4 10'3 10'2 10‘1 10° 101 102 103

Figure 3. 1 - HASI density and température profile. The Yelle et al. (1997) (dashed line) and the Lellouch et al.

(1989) Voyager radio occultation data are also shown for comparison (adapted from Strobel (2010). CIRS

retrieved température profile from the T3 Cassini Titan flyby is plotted (red solid curve) (Flasar et al., 2005).

INMS density results are also shown (blue solid line)(Muller-Wodarg et al., 2008).

Titan's atmosphère is more extensive than the atmosphère of the Earth and its

exosphere begins much higher. Indeed, the homopause level is located at 1,195 ±65 km

according to Cassini/INMS mass spectrometer results from TA flyby (80-90 km on Earth),

while the exobase is found to be at 1429±5 km (Waite et al., 2005) (400-500 km on Earth).
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3.1.1 The Troposphère

The troposphère, the atmospheric part which lays above the surface, has a négative

température vertical gradient. HASI measured the surface température at 93.65 ±0.25 K

(Fulchignoni et al., 2005). Only 10% of the incoming solar radiation reaches Titan's surface.

The other solar photons are scattered by haze and cloud layers. Part of this scattered radiation

is reflected back to space, while some of it is absorbed by the aérosols and the atmospheric

gases (Coustenis & Taylor, 2008). The surface absorbs the incident radiation and heats the

lower atmosphère, producing atmospheric convection depending on the local température

gradient.

The infrared émission of the surface heats the lower tropospheric layers, which

become less dense than the colder layers above. The density différence produces vertical

movement of the atmospheric layers and the hotter layers rise, while the colder fall. The

convection does not occur when the température gradient is shallow and it is only possible

when the gradient value reaches the adiabatic lapse rate. For Titan, this rate is at 1.4 K/km.

Such convective instabilities occur in the lower part of optically thick atmosphères. In

the upper part of the atmosphère, the density becomes quite low due to radiative cooling

caused by infrared émission to the space and reduces the température. The température

gradient becomes sub-adiabatic and the convection stops. Titan's troposphère reaches a

minimum of 70.43 K at 44 km with a pressure of 115 ± 1 hPa (Fulchignoni et al., 2005). In this

level, a température inversion occurs and the stratosphère begins.
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3.1.2 The Stratosphère

The lower part of Titan's stratosphère is quasi-isothermal near the altitude of 50 km. No

absorption occurs in the lower stratosphère, above the tropopause, and the température lapse

rate is almost zéro, which indicates that the température is constant with height. In the mid

and upper Titan's stratosphère, similar to Earth's, the température increases with the altitude.

From 50 km to 300 km, the température increases due to the heating caused by the absorption

of UV and visible solar radiation.

In Titan's stratosphère, the température has a high static stability with a lapse rate at

about lK/km. The convection stops and the atmosphère is stratified in layers, which are

mixed. On Earth, the ozone layer is the main absorber and the heating source of the

stratosphère. On Titan, aérosols and methane are the main radiation absorbers. The aérosols,

the methane, the acetylene and the ethane re-emit isotropically in infrared wavelengths and

this mechanism cools the stratosphère, balancing the solar heating. The température reaches a

maximum value of 186 K at the altitude of 250 km, as derived from HASI measurements

(Fulchignoni et al., 2005), which defines the location of the stratopause.

Cassini/CIRS also retrieved the atmospheric température from remote sensing probing.

Its results are not consistent with HASI measurements about the location of the stratopause

which CIRS places at about 312 with 183 K (Flasar et al., 2005; Vinatier et al., 2007a). This

différence is illustrated in Figure 3.1. This discrepancy and how it affects radiation transfer

calculations is discussed in Section 3.2 below.

3.1.3 The Mesosphere

Above the stratopause, the température decreases again with the altitude and it reaches a

minimum of 152 K at 490 km, the mesopause (Fulchignoni et al., 2005). In this région, HASI

measured perturbations due to dynamic phenomena and inversion layers. Between the

tropopause and the mesopause, the atmosphère remains fairly well mixed by turbulence

produced by a variety of instabilities in wave motions and the mean flow (Coustenis &

Taylor, 2008).
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3.1.4 The Thermosphère

Above the mesopause, the atmospheric température rises up to the exobase due to the

absorption of solar EUV from nitrogen, methane and acetylene (Lellouch et al., 1990). In

these altitudes, the pressure values are a few microbars and gas densities are quite low. The

solar EUV photons as well as energetic particles from the Satumian magnetosphere, pass

through this layer, causing ionization, dissociation of the molécules and releasing kinetic

energy. Such mechanisms heat the gas and the température gradient increases rapidly with

height.

The thermosphère is the most extensive part of the atmosphère, in which the energy is

transported by thermal conduction. Diffusion is the dominant process and the atmosphère

starts to separate into its lighter and heavier components.

3.2 HASI and CIRS température profiles déterminations and discrepancies

Two separate instruments of the Cassini-Huygens mission hâve retrieved the vertical

température profiles of Titan’s stratosphère. CIRS on board the Cassini orbiter senses

remotely the emitted infrared radiation during Cassini Titan flyby. HASI on board the

Huygens probe measured in situ the température during its descent following the procedure

described previously. The HASI data correspond to the Huygens trajectory through the

atmosphère near the equator. Instead, CIRS profiles are retrieved remotely from recordings

that correspond to different latitudes.

CIRS températures profiles are retrieved from an inversion method, which is described

in Appendix A. In brief, the température profile is retrieved by using the methane V4 band at

1304 cm'1 as a thermometer in the stratosphère. Methane's mole fraction versus altitude is

well known from Huygens/GC-MS in situ measurements from the surface up to about 140 km

(Fig. 3.2) and we adopt it to retrieve the température (Niemann et al., 2010).
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Figure 3. 2 -Methane mole fraction as measured in situ by GC-MS during Huygens descent (adapted from

Niemann et al. 2010). With blue diamonds leak L1 data are depicted, while with red squares leak L2 data are

plotted.

By introducing the FP4 CIRS spectra into an inverse algorithm (Achterberg et al., 2008;

2011), we retrieve the température profile related to each CIRS sélection of interest. This

algorithm solves the radiative équation, which is an inverse ill-posed problem, by considering

a reference température profile for optimizing the results as the initial guess. Two are the

main profiles used as the original guess in the retrievals, the one derived from Huygens/HASI

(Fulchignoni et al., 2005) and the second retrieved from Cassini/CIRS T3 Titan flyby (Flasar

et al., 2005) (Fig. 3.1). The HASI profile is a resuit of in situ measurements during the

Huygens probe descent. From 1400 km down to 155 km, the température was retrieved

indirectly from the accélération measurements and by assuming hydrostatic equilibrium and

an idéal gas State for this atmospheric région.

Below 155 km and after the thermal shield release, HASI measured directly the

température and the pressure by using sensors exposed to the environment. CIRS T3 profile at

15°S was retrieved from a combination of CIRS nadir and limb-viewing spectra. Voyager

radio-occultation data (Lindal et al., 1983) as well as radiative mesospheric models (Yelle,

1991) were used as the initial guess in order to interpolate the values between nadir and limb

spectra (5-60 mbar) (Flasar et al., 2005). Since HASI data were obtained by in situ

measurements, its results should be considered as reliable for the équatorial latitudes.
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3.2.1 The stratopause température and level discrepancy between CIRS and HASI
observations

The CIRS température profile retrieval at 15°S from T3 flyby is close to the HASI landing

date and descent path but it does not agréé in the upper stratosphère with the HASI results

(Fig. 3.1). HASI shows a hotter stratosphère than CIRS, with the stratopause located at about

250 km at 186 K (Fig. 3.3). The CIRS profile locates the stratopause higher at 316 K with 183

K (Flasar et al., 2005).

The cause of this discrepancy remains unsolved. I spent, however, some time at the

beginning of my PhD interacting with both with the CIRS and the HASI team (Prof. M.

Fulchignoni and Dr. F. Ferri) and with the help of Dr. D. Strobel, trying to shed some light to

this problem. We also discussed the Huygens probe descent parameters with ESA

représentatives, among which J-P. Lebreton and P. Couzin from Thaïes Alenia Space, ESA's

prime contractor for building the Huygens probe.

The HASI température at this level being 185 K, leads to a computation of the inffared

radiance with the HASI derived atmosphère inconsistent with the observed CIRS radiance of

the 7.7 fim methane band (Lebreton et al., 2009; Strobel et al., 2009). The methane V4 band

probes the 150-350 km région, around the stratopause and the HASI profile is too warm.

HASI Température profile

Température [K]

Figure 3.3- Stratopause location: Comparison among HASI CIRS and IRAM (crédit F. Ferri).
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We also hâve ground-based observations in the submillimeter range, from the Institut de

Radio Astronomie Millimétrique (IRAM)/Plateau de Bures telescope that can help in this

problem. IRAM heterodyne measurements inferred a température profile sounding altitude

range from 80 to 800 km at very high spectral resolution. Carbon monoxide line wings probe

the Titan atmosphère from 80 to 180 km (Hidayat et al., 1998) and at these levels the HASI

profile is similar with the IRAM one, while the CIRS one is too cold (Fig. 3.4). Hydrogen

cyanide lines probe higher altitudes (300-500 km in the center and 100-200 km in the wings)

(Hidayat et al., 1997) and the HASI profile is too cold.

HASI Température profile vs spectral obs

HASI

— CIRS at Huygens site
CIRS baser) on HASI

+ groundbased obs

HCN. CO, HC3N, CH3CN rotational lines

heterodyne measurements

at very high spectral resolution

HCN at higher frequencies and nitrites
-> mesosphere

CO -> lower stratosphère below 300 km

10° “ 1
CO

I wings

102 - 50
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Température [K]
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A. Martan, A. Coustenis and CIRS team

IUGGXXIV 2-13 Juty 2007 Tilan's atmospheric structure from In situ F. Ferri & HASI team
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Figure 3. 4 - Comparison of HASI température profile and CIRS and ground based observations (crédit F. Ferri).

In conclusion, without having solved the problem, we can say that the HASI near-equator data

directly sounding the lower atmosphère are the more reliable, while at higher altitudes, where

HASI only indirectly infers the température, CIRS inferences may be the correct ones.
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3.2.2 Impact of the original assumption in the température calculations

In order to deal with the question of how the radiative transfer calculations are affected

by the choice of the initial profile in température retrievals, I hâve performed radiative

transfer calculations on the same CIRS data FP3 and FP4 queries. I hâve selected 4 queries

from CIRSDATA, two at équatorial latitudinal bins and two at 50°N. Since HASI data were

obtained at 10°S, the application of CIRS T3-based température profile at équatorial

sélections can give an estimation of the température profile influence to the resulted

abundances. On the other hand, I ran the same test in northem sélections where the

stratospheric températures are indeed lower compared to the équatorial ones. Table 3.1 below

lists the characteristics of the sélections used in these tests.

Table 3.1- List of CIRS queries used for estimation of the effect of different température profiles in radiative

transfer calculations. Ail sélections refer to high resolution spectra (0.5 cm'1).

Focal

Plane
Year Month Latitude

Total

number of

spectra

Signal-
to-noise

Airmass
Cassini

Flyby
ls n

FP3 2008 Feb-Mar-Jul 50°N 145 12.4 1.19 T41-T45 341-347

FP4 2008 Feb-Mar-Jul 50°N 166 12.8 1.14 T41-T45 341-347

FP3 2010 Jan 50°N 284 21.3 1.69 T65-T66 005-006

FP4 2010 Jan 50°N 234 27.6 1.66 T65-T66 005-006

FP3 2009 Mar-Jul 0° 86 18.3 1.75 T51-T59 355

FP4 2009 Mar-Jul 0° 84 39.2 1.71 T51-T59 355

FP3 2010 Sep 0° 1504 50 1.2 T72 014

FP4 2010 Sep 0° 1622 136.9 1.01 T72 014

The retrieved température profiles for each sélection, using both HASI and CIRS-T3 profiles

as the initial guess, are illustrated in Figure 3.3. (R. Achterberg has provided ail température

profiles by my request).
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Température (K)

Figure 3.5- Température profiles retrieved by assuming both HASI and CIRS-T3 profiles as the initial

guess. The lower panel (c, d) focuses on the 1-30 mbar région.

The HASI-based température profiles (Fig. 3.5 a, b) in the région of 1 to 10 mbar show slight

variations compared to the relative CIRS-based ones. Below 10 mbar (Fig. 3.5 c, d), the

HASI-based profiles are hotter than the CIRS ones by 5 K. Tables 3.2 and 3.3 below list the

retrieved abundances when using these profiles and their différence at 50°N and equator

respectively.
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Table 3.2- Retrieved abundances by using both CIRS- and HASI- based profiles for two queries at 50°N.

Molécule
FEB 2008

CIRS-based

FEB 2008

HASI-based

Différence

HASI vs

CIRS

JAN 2010

CIRS-based

JAN 2010

HASI-based

Différence

HASI vs

CIRS

C02 1.73xl0'8 1.80x10'8 4% 1.60x10'8 1.55x10'8 -3%

c2H2 4.70x10'6 5.60x10'6 19% 5.30xl0'6 6.30xl0'6 19%

c2h4 1.90x10'7 2.00xl0'7 5% 2.30xl0'7 2.30x10'7 0%

c2h6 1.20x10'5 1.27xl0'5 6% 1.3 5x10'5 1.35xl0'5 0%

C3H4 1.80x10'8 1.82x10'8 1% 1.18xl0'8 1.17x10'8 -1%

c4H2 9.50x10'9 9.50x10'9 0% 5.50xl0'9 5.40x10'9 -2%

HCN 9.50x10'7 1.20x10'6 26% 9.00xl0'7 1.50x10'6 17%

Table 3.3- Retrieved abundances by using both CIRS- and HASI- based profiles for two queries at equator.

Molécule

MAR-JUL

2009 CIRS-

based

MAR-JUL

2009 HASI-

based

Différence

HASI vs

CIRS

SEP 2010

CIRS-based

SEP 2010

HASI-based

Différence

HASI vs

CIRS

C02 1.41xl0’8 1.41xl0'8 0% 1.44xl0‘8 1.44x10'8 0%

c2h2 3.15x10’6 3.20x10'6 2% 3.90x10'6 4.00x10'6 3%

c2h4 1.30x10'7 1.20x10'7 -8% 1.40x10'7 1.30xl0‘7 -7%

c2h6 9.60x10'6 9.30xl0'6 -3% 9.80xl0'6 9.50x10'6 -3%

c3h4 6.30x10'9 6.20x10’9 -2% 8.30x10'9 8.20x10'9 -1%

c4h2 l.lOxlO'9 1.00x10'9 -9% 1.00x10’9 9.40xl0'10 -6%

HCN 1.80x10'7 1.55xl0'7 -14% 2.10x10'7 1.60x10’7 -24%

At mid-latitudes ail molecular abundances are within 10%, exceptfor HCN, witli the CIRS-

based profile generally giving higher abundances. This is expected, because the HASI

profile was inferred above the Huygens landing site, which was at 10°S. In the northern

latitudes, the divergence depending on the profile is more pronounced, with most of the

molecular abundances still within 10% whatever the température profile. Only the émission

bands of C2H2 and HCN are more affected by the température variation as expected, still

within the 20% level, since the HASI original assumption gives rise to higher abundances.
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3.3 The opacity sources on Titan

Voyager 1 observations showed that the main infrared opacity sources of the Titan’s

atmosphère are the main molécules’ absorption, N2, CH4 and H2. Usually symmetrical atoms

like N2 do not interact with the infrared radiation field due to the fact that they lack dipole

moment. However, at longer wavelengths collisions between these molécules produce a

temporal dipole moment and therefore opacity (Coustenis & Taylor, 2008). The trace gaseous

species also contribute to the infrared opacity of the atmosphère (Fig. 3.6).

Figure 3. 6 - A complété composite averaged CIRS spectrum of 2007 flybys (T23-T39) at high resolution (0.5

cm'1) at 50°N. The positions of the major molécules and trace gases are illustrated in the figure.

The continuum of the spectrum is influenced by two factors essentially: (a) the

température of the surface and the troposphère and (b) the haze opacity in the troposphère and

the stratosphère caused by the aérosols (Coustenis et al., 2007). The température is adjusted

from an initial guess profile and the surface température is considered to be at 93.7 K

according to Huygens/HASI in situ measurement after the probe’s touchdown (Fulchignoni et

al., 2005) at 10°S. CIRS brightness measurements at 19 pm showed that the surface

températures in North pôle is 3 K lower and at the South pôle 2 K lower, compared to the

équatorial one (Jennings et al., 2009).

The aérosols are the end product of the complex photochemistry that occurs on Titan's

upper atmosphère and they strongly affect the thermal balance of the entire satellite. They are

the main heating source of the stratosphère, since they absorb the 40-60% of the sunlight,

depending on the altitude, as measured by the Huygens/DISR (Tomasko et al., 2008a).

Vl/IRIS measurements provided the aérosol distribution between the tropopause at 40 km and
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the upper stratosphère at 300 km (Samuelson & Mayo, 1991). They showed that the

stratospheric opacities increase monotonically with the wavenumber from 250 to 600 cm'1.

According to experimental results, aérosols are dark in the visible and bright in the infrared

(Ramirez et al., 2002). DISR measured directly the haze particles' vertical distribution from

the altitude of 150 km down to the surface (Tomasko et al., 2005).

As Cassini approaches Titan during each flyby, its radial component of the velocity

is négative, it goes to zéro at closest approach, and then it becomes positive. For a nadir

viewing geometry this should, in theory, produce a Doppler shift on the observed CIRS

spectra. It is probably a very small effect, but the question is if we can give an évaluation of it.

After personal communication with Dr. C. Nixon from Goddard/NASA, we

evaluated the Doppler effect and came to the conclusion that is probably too small to

significantly affect CIRS results. A rough estimation of the size follows below. Cassini

approaches Titan at typically 20,000 km/h, or 5.5 km/s. The Doppler shift is defïned as:

AL Àv

~L=~
5.5

3jc105
2*1 0“5

Thus, the shift is about 2 parts in 100,000, applied to frequency/wavenumber. For example, at

1000 cm'1 the shift should be about 0.02 cm'1, but at 100 cm'1 would be 0.002 cm'1, while the

maximum would be about 0.03 cm'1 at 1500 cm'1. However, larger wavenumber shifts hâve

been noticed, likely due to other effects, they can be noticeable (~0.1 cm'1) and should be

corrected for empirically.
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3.4 Radiative Transfer on Titan

The theory of radiative transfer is a quantitative assessment of the relation between the

interactions of the matter with radiation (absorption, scattering and émission of radiant energy

on a microscopie scale) and the resulting radiation field (Hanel et al., 2003). Atmospheric

émission, which at planetary températures occurs mainly in the thermal-infrared part of the

spectrum, dépends on the composition and thermal structure of the atmosphère. Absorption

and scattering mainly occur at ultraviolet, visible and near-infrared wavelengths and dépend

on the prevailing molecular opacity and on aérosol and cloud properties.

3.4.1 The radiative transfer process

The émission of an infrared source is described both by Planck’s law and Kirchhoff s law.

The former gives the radiant energy emitted by a black body at the same température and

wavelength as the source, while the latter détermines that the absorption of a body equals to

its emissivity. The radiative transfer équation (RTE) describes how the optical properties of

the medium are related to the spectrum we measure.

When we hâve a beam which passes through a medium, a portion is absorbed by the

material due its physical properties and according to Kirchhoff s law the body should émit the

same amount of heat as if it was a black body in the same température described by Planck’s

law. In physical terms, while a radiation with the intensity I{(X) passes through a path within

a medium of a distance Ax, the medium absorbs a fraction of kAxI(/li) /and emits a fraction

of thermal radiation of KAxB/fi (Twomey, 2002) where ^ is the cosine of the émission angle

measured from the vertical, k is the absorption coefficient of the medium and B(v,T)

represents the Planck radiance (B(v,T) =
2hv: 1

2 „hvlkT
c e -1

) at the frequency v and the

température T. Hence, the fraction of the total intensity which propagates through the medium

can be written as:

A/<» = absorbed + 1emitted = Xl(fj) + ~KAxB
\l [l

or

kAx
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But since Àr = kAx , whereris the optical depth of the influenced layer, the above équation

takes the general form of the RTE:

dr

Then, one can write this differential équation such as:

= er/"(-/(rt + £)
dr

However, since —- — = exl,x - + I(fi)er/,x — the RTE can be written as:
dr dr (x

4^))_ iei,B
dr fj,

Then, by integrating both parts of the latter relation in respect to the optical depth, we dérivé:

\d(er/,iI(iu)) \ i
f_V yrlldT = fB-eT/tidr
o dr o P1

The intensity of the radiation is the initial I0 when r = 0 at the level of emergence and I=I(i0)

when r = z0 at the level of émission and by applying these boundary values in the above

intégral équation we dérivé (Hanel et al., 2003):

T°. dr

= le'’"1 + f (1)
o B

Equation (1) describes the intensity of a propagating radiation through layered gaseous media

such as planetary atmosphères. The first term of the second part of (1) corresponds to the

surface contribution, while the second term depicts the atmospheric contribution.

The emerging radiation from the surface I0 is the fraction of the Planck function

émission at the same température. According to the Beer-Lambert law, the transmittance of

the atmosphère Tr can replace the exponential expression in (1). Therefore, following the

above considération, the spectral radiance measured remotely by the CIRS instrument is

(Hanel et al., 2003):

= evB(v,T,)Tr<ji,v,z,) + / B(v,T(z)) dT^’v’z) dz (2)
, dz

where /i=cosine of the émission angle and v=frequency
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Here, the termev is the emissivity8 of the surface at the température Ta. The altitude z can be

derived by the équation z = -ln/?, where the atmospheric pressure is denoted by the

symbol p. With the index "s" the surface level values are indicated. The ztop refers to the

highest altitude from the surface where the atmospheric gases sense the recorded radiance.

The transmittance Tr can also be written in the following form:

Tr(n,v,z) = f <j>(yy)e-’lv'i)ll‘dv' (3)
<5v

The terni <p(v,v') is the instrument spectral response fonction9 extending over the

spectral interval <5v with central number v. By définition, the transmittance is the rate of the

radiation, which passes a gaseous sample versus the incident one. The exponential expression

in équation (3) cornes from the Beer-Lambert law where r is the optical depth.

On Titan, since the stratospheric haze absorbs most of the surface radiance, the first

term of the équation (2) can be neglected. This assumption simplifies the équation (2) in the

form (Hanel et al., 2003):

/(z,M) = JB<v,T(z))âTr(^V'Z> dz (4)
{ dz

It should be noted, however, that both scattering and surface reflection hâve been neglected in

(2) and (4). Indeed, in the thermal part of the spectrum, where absorption and émission by

atmospheric gases dominate and solar radiation is negligible, scattering processes can often be

neglected and the solution becomes considerably simpler (Hanel et al., 2003).

3.4.2 The solution of the radiative transfer équation

In physical terms, the intensity of the radiation î(p, v) of the équation (4) is known (the

recorded data), while what causes it (the quantity in the intégral) is unknown. Hence, the

solution of the équation (4) provides the transmission of the absorbing gasses of the

atmosphère related to the recorded radiation and, eventually, the composition of the probed

atmospheric région as well as the thermal structure.

The problem is how to retrieve the atmospheric parameters from a set of

measurements. The infrared data dépends on the spectral range, the spectral resolution, the

8 The emissivity is the ratio of the radiated energy by the surface to relative black body energy radiated (for the
black body £v=l)

9 The spectral response function détermines the ability of an instrument to record radiation in a spécifie
wavelength comparing to the one in another wavenumber where the response is unity. Practically, it évaluâtes
the operational spectral range.
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observational geometry and the signal-to-noise (S/N) ratio (Hanel et al., 2003). Several

models hâve been proposed to solve équation (4). These solutions can be divided into two

kinds:

a) To those which solve directly the équation (4) by producing a model which is then

compared to the data and

b) To those which solve indirectly the relation (4) by importing the recorded data to

an inversion algorithm.

The forward approach is the direct intégration over the frequencies of équation (4) and the use

of the fine parameters of the absorbing bands (Scott, 1974) to produce a synthetic model of

the atmosphère. By assuming the abundances of the contributing species and following an

itérative best-fit process, the model spectrum is fitted to the real data. Then, the atmospheric

composition can be retrieved.

The inversion approach is an alternative tool that allows for the calculation of the

values of atmospheric parameters from the recorded radiation intensities by solving the

inverse problem. Following a reversai sequence, we begin from the results of a physical

process and seek for the embedded parameters which hâve caused the recorded results

(Tarantola, 2005).

Most of the models proposed so far hâve been used for radiative transfer calculations

in the terrestrial atmosphère (Snell et al., 1995; Berk et al., 1998; Stamnes et al., 1998).

Apparently, they contain assumptions and parameters which satisfy the conditions on the

Earth but they need modifications before applied in other planetary atmosphères (Irwin et al.,

2008).

Cassini/CIRS as well as its predecessor Voyager 1/IRIS hâve probed the infrared part

of the spectrum of Titan’s atmosphère and sent back to the Earth their recordings. Here, I

describe the forward model I use to solve the radiative transfer équation (4) for interpreting

CIRS FP1 and FP3 spectra.

We fïrstly consider an atmosphère in hydrostatic equilibrium with a vertical

température structure and without any scattering effects. We model the atmosphère by

dividing it into 80 variable individual pressure levels. Each layer is determined by the

pressure values in its boundaries Pj.j and while the température in each one varies from

(Tmin)î and (Tmax)i. Considering a spectral région limited by frequencies va and vt, we apply a

fast line-by-line code introduced by Scott (1974) for ail the layers and for ail the températures

of each layer from (Tmin)j to (Tmax)i (Scott & Chedin, 1981). The températures are imported by
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the température profile retrieved from the FP4 CIRS recordings using a constrained inverse

algorithm (Achterberg et al., 2008; 2011).

For each individual layer we assume local thermodynamic equilibrium (LTE) which

means that the source fonction of each layer is given by the Planck fonction, stable in the

layer between its top (ztop) and bottom (zs), at the corresponding level température. According

to Houghton, the LTE condition does not exist at high altitudes due to the différence between

the Planck and the source fonctions in these layers (Houghton, 1986). Coustenis et al. (1989)

calculated this altitude at 8x1O'3 mbar or 550 km and set this value as the upper limit of the

solution of équation (4).

The radiative transfer code intégrâtes directly in frequency and uses the fine structure

parameters of the absorbing gases (Scott, 1974). These spectroscopic parameters incorporated

into the code hâve been provided from laboratory results through spectroscopic databases.

Since we hâve an atmosphère in non-isothermal State, the température contrast

between different pressure levels of the atmosphère causes spectral variation. Then, the

emerging radiation of équation (4) for each layer can be written as:

Ztop

I(z,n)= fB(z)W(z,fi)dz
*s

The fonction W (z,/u) is the weighting fonction of an opacity source. By définition, W(z,^) is

the partial dérivative of the transmittance in the direction of the (the cosine of the émission

ôT (u,v,z)
angle), that is W (z,[i) = —-———. Since the Planck fonction varies quite rapidly with the

dz

height, the peak of the contribution fonction C(z,/lï) :

C(z,/u) = B(z)W (z,v)

is more appropriate to describe the level of the maximum contribution of this source to the

emerging radiation (Hanel et al., 2003). Fig. 3.7 depicts en example of the contribution

fonctions of methane v4 band Q-branch at 1304.4 cm'1 and its R-branch at 1291.8 cm'1. The

contribution of the central methane band peaks at about 0.5 mbar (approximately 225 km).
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Figure 3. 7 - The contribution function related to the methane v4 band. The solid [red] line represents the

contribution function of the center of methane band, while the dashed line shows the contribution of the left

wing.

The monochromatic radiance is then calculated by incorporating the contribution functions of

the opacity sources to équation (4). The outcome of this procedure is a model spectrum which

is then convolved with the Fourier Transform of the Hamming function used for smoothing

the edges of the interferograms.

In our calculations we take into account the absorption of 39 molécules and their

isotopologues. For each species, we hâve used the most recent spectroscopic parameters as

they are published in online spectroscopic databases HITRAN (Rothman et al., 2009) and

GEISA10 (Jacquinet-Husson et al., 2011).

For deriving the abundances of Titan's trace stratospheric constituents we use

constant-with-height distributions as well as vertically-varying distribution profiles. In the

former case, the abundances are assumed to be constant-with-height above the condensation

level and set to follow the corresponding saturation law below (Coustenis et al., 2007). The 2-

D General Circulation Model (GCM) provides the latter profiles (Rannou et al., 2005).

However, the minor trace gases of the stratosphère hâve not strong enough spectral lines in

their émission bands to apply the relative vertical distribution profiles. The vertical mixing

ratios are applied only for acetylene, hydrogen cyanide and ethane, since they probe multiple

altitudes via optical thin and thick lines (Coustenis et al., 2010b).

10 HITRAN website: http://www.cfa.harvard.edu/hitran/
GEISA website: http://ether.ipsl.jussieu.fr/etherTypo/?id=950

102



The fît of the continuum of the recorded spectrum is acquired by using a simple two-

cloud System (Borysow & Tang, 1993; Coustenis & Bezard, 1995; Samuelson et al., 1997),

one in the troposphère from 20 to 40 km and the other in the stratosphère, beginning from the

height of 40 km and upward. The continuum is fitted by using the collision-induced

absorption (CIA) opacity of the combination of the main molécules of the atmosphère (N2-N2,

CH4-N2, H2-N2, CH4-CH4, CH4-H2, and H2-H2). The recently upgraded radiative transfer code

adapts Vinatier et al. (2012) vertical distribution of the aérosol extinction coefficient for

fitting the continuum at different latitudes, starting out with CIRS limb data and DISR

measurements at the équatorial latitudes (Vinatier et al., 2010a; Vinatier et al., 2012b). We

then adjust the haze opacity parameters in order to achieve the best fit of the continuum.

3.4.3 The Atmospheric Radiative Transfer code for Titan (ARTT)

The Atmospheric Radiative Transfer code for Titan (ARTT) is a forward model which solves

the radiative transfer équation (4) for the atmosphère of Titan. It is a fast line-by-line and

layer-by-layer method which sums ail the contributions of the absorbing gases in an

inhomogeneous atmosphère (Scott, 1974; Scott & Chedin, 1981).

The method incorporâtes both the atmospheric inhomogeneities and the instrument

function and it directly intégrâtes the radiance over a band of spécifie frequencies in order to

compute the radiance in a single layer. It is called line-by-line due to the calculation of each

spectral line of the atmospheric gases in the layers of interest. For this purpose, it adapts the

spectroscopic files of the molécules of interest as inputs in the code which are provided from

laboratory studies. It relies on (a) a précisé température profile and (b) on the correct

représentation of ail opacity sources (Coustenis et al., 1989a).

ARTT is based on the précisé knowledge of the thermal structure or of the opacity

sources of the atmosphère. Then, it produces a model spectrum which is compared to the real

data to infer one or the other of the parameters. An itérative process during which we adjust

the abundances of the molécules of interest, allows us to obtain best fîts of the data. We firstly

dérivé the transmittances monochromatically for the whole spectral région for a determined

set of atmospheric conditions and then we reconstruct them for any atmospheric conditions to

generate a mean weighted spectrum.

The scheme of the fitting procedure is the following. We firstly incorporate a précisé

model of thermal structure of the probed atmospheric région to the synthetic spectra.
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We then also assume either constant-with-height abundances or vertical distributions

of the absorbing gases. By an itérative best-fit process, we fit the synthetic spectra to the real

data at FP1 (10-600 cm"1) or at FP3 (600-1100cm'1).

ARTT takes the gravity and the radius of Titan as constant values considering the

satellite as a perfect sphere. Moreover, it takes into account the sécant of the observations,

which can be modified by the user. The other inputs of the software are the pressure levels

and the température vertical profile which can be adjusted to fit the spectra. The code then

simulâtes the vertical pressure and température distribution for a spécifie sélection. This is

necessary in order to model the Planck fonction for the recorded infrared radiation.

Afterwards, we induce the mixing ratios of the major molécules (nitrogen, methane, hydrogen

and argon) of the atmosphère.

The next step is to incorporate the spectroscopic parameters of the trace gases. ARTT

is a fast line-by-line code and therefore it reads ail the line lists from each file and calculâtes

the relative contribution. Each molecular mixing ratio can be constant-with-height or vary

vertically with height. Ail the available spectroscopic line lists hâve been incorporated in the

software during the installation procedure. Finally, the continuum is simulated through the

presence of a two-cloud model which reproduces the opacity in between lines, and is due to

the absorption from aérosols or particle condensâtes. The haze distribution we apply to the

data is adapted from Vinatier et al. (2012b) spectral discription near the equator that we adjust

to match our spectra at different latitudes.

After having extracted the model, the code compares it with the recorded spectra. This

comparison is the outcome of the whole procedure and leads to the détermination of the

thermal and Chemical structure of Titan. The comparison between the synthetic and the

observed spectra is dual. In general, we try to accomplish the best possible match of the Q-

branch (the center) of ail the molécules. That can be done visually through an itérative

process. However, for large and extended émission bands (as for CH4, C2H2 and C2H6 for

instance) we may want the best fit throughout the band. In that case, the best fit can be

deducted from the différence between the model and the data by minimizing the residuals.

When the différence is minimal, we assume a best fit. We hâve applied a spécifie code using

régression analysis to optimize these différences. The software upgrade has optimized the

computational time which is literally depended on the hardware. Generally, each radiative

transfer calculation takes 2-3 minutes.

When I started my PhD thesis in 2008, the version of the CIRS database also installed

in Meudon servers was at its v2.3 version with local calibration applies to the CIRS spectra up
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to T44 flyby (28/5/2008). Today, the available inventory of CIRS spectra has been expanded

to include the most recent Cassini Titan T86 flyby (26/9/2012). While waiting for the

validation of the most recent calibration, sevaral CIRS databases are currently available in

Meudon: the v3.2 with local calibration, the DS4000 with deep space calibration, the DS4000

with the application of phase correction algorithm and the Grand Average with deep space

calibration over several years.

The version of the radiative transfer software I received from my predecessors was the

ARTT 0.3.8 (Atmospheric Radiative Transfer for Titan, version 0.3.8), based on

spectroscopic parameters adopted from GEISA11 (97 and 2003 éditions), HITRAN12 (2004 and

2004 éditions) and line lists from individual researchers. The spectroscopic line parameters

contained in these databases change frequently to include necessary updates. One of my tasks

was to search for weak features in the CIRS spectra and to try to search for new molécules.

The lack of a perfect fit of the major molécules did not allow for such a fine spectroscopic

research in the régions around the major émission bands of C2H2, HCN and C2H6. Within the

past four years, I hâve searched regularly in the available databases in order to retrieve any

updates of the molécules included in the model and to improve the fits. However, the ARTT

0.3.8 version did not allow us to easily include such updates. Several years after the last

upgrade of the ARTT radiative transfer code we had to move to a newer version in order to:

a) Make the software more user-friendly and improve its flexibility

b) Include new aérosol description (Vinatier et al., 2012b) to fit the spectrum

continuum

c) Improve and update the spectroscopic parameters

1) New spectroscopic atlases hâve been released with more accurate

parameters and enhanced line lists following contemporary laboratory

work such as the HITRAN 2008 (Rothman et al., 2009) and the GEISA

2009 (Jacquinet-Husson et al., 2011).

2) Incorrect scale of propane V26 line strengths at 748 cm'1 included in GEISA

2003, the band of which should be multiplied by a factor of 0.420 (Nixon

et al., 2009).

3) Isotopologue investigation in Titan atmosphère requires new molécules to

be added to the code.

"Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic
Information (Jacquinet-Husson et al., 2005)
12 HIgh-resolution TRansmission molecular AbsorptioN database (Rothman et al., 2005)
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3.4.4 The improved ARTT software

The new software upgrade took place in LESIA (Laboratoire d'études spatiales et

d'instrumentation en astrophysique) at the Paris Observatory in Meudon, France and in the

Astrophysics Laboratory of the University of Athens, Greece. Stefanos Stamogiorgos,

software engineer, assisted in this procedure, focussing on the programmatic part of the

upgrade.

One of the aspects we had to tackle was the low flexibility of the code in

implementing new spectroscopic data and making any sort of changes in the input parameters.

First of ail, there was a lack of a readme file with guidelines on how to use the source files in

order to create the exécutable files, which we would use in order to create our graphs. In

addition, there was no manual on the actions, which had to be taken in order to find how to

enrich the molecular database of the program. By studying the workflow of the program and

by adding breakpoints into the source code of the program, we managed to identify the

actions needed in order to complété the upgrade. Moreover, the use of the program had to be

more user-friendly and for this reason we added output messages to the software and replaced

or removed any messages left of the debugging process.

The code also had to meet the demands of the increased number of data imported,

which increased the computational time. For this reason, we had to remove any delays on the

workflow by using less memory resources and by removing some redundant conditional

statements and itérative processes. So, the new version has better stability and an increased

performance compared to the previous version since the number of the calculated molécules

has almost been doubled but the calculations time has remained the same.

The new édition of the radiative transfer software is completely compatible with the

files used by the previous one and therefore the migration from the one version to the other is

bug-ffee.

3.4.5 Description of the new aérosol model

The ARTT code has also been upgraded in the sense of new aérosol distribution to fit

the continuum. As noted previously, the continuum was fitted by adapting a simple two-cloud

System, one in the troposphère and the other in the stratosphère (Borysow & Tang, 1993;

Coustenis & Bezard, 1995; Samuelson et al., 1997). As opacity sources were considered the
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collisions-induced absorption (CIA) between the major molécules (N2, CH4 and H2) and its

combinations. In the new ARTT model we hâve adapted the recent aérosol distribution

provided by Vinatier et al. (2012b), which put constrains at the refractive indices of Titan’s

aérosols in the mid infrared part of the spectrum.

Vinatier et al. (2012b) hâve combined CIRS remote limb observations at 15°S and

0.95 mbar (193 km) and Huygens/DISR in situ measurements at 10°S to model the extinction

cross-section in mid-infrared (600-1500 cm"1). The extinction cross-section is derived by the

ratio of the aérosol volume extinction coefficient to the aérosol number density. The former

was retrieved by the CIRS limb data (Vinatier et al., 2012b), while the latter by DISR

measurements. According to (Tomasko et al., 2008b) the aérosol number density of 5

particles per cm"3 at 80 km decreases exponentially with a scale height of 65 km from the

altitude of 80 km up to 150 km (Fig. 3.8).

Aérosol Number Density vs. Altitude

Figure 3. 8 - Aérosol number density versus the altitude by DISR measurements, adapted from Tomasko et al.

(2008b). The value of 5 particles per ce at 80 km is the maximum of the haze aérosol concentration. The

prédictions of a fractal algorithm, which was used to describe the haze particles, agréé with the measurements.

This means that above 80 km some hydrocarbons condense onto fractal aggregate particles, which may fill the

voids in particles and therefore cause higher single scattering albedos (Tomasko & West, 2009).



Vinatier et al. (2012b) assumed the same scale height for altitudes above 150 km. Although

no relative measurements exist for higher than 150 km, this assumption agréés with Vinatier

et al. (2010a) results. Anderson & Samuelson (2011) hâve derived the aérosol volume

extinction coefficient in far-infrared (70-600 cm'1) at 15°S. The calculated extinction cross-

section by Vinatier et al., combined with the latter results of is illustrated in Fig. 3.9. Both

parts of the complex refractive index are interlinked by a spécial form of Hilbert transforms,

which are termed Kramers-Kronig relation (KKR) (Lucarini, 2005). By applying the KKR,

through an itérative process, the real and the imaginary parts of the refractive index as a

function of the wavenumber is calculated numerically (color lines in Fig. 3.9).

Figure 3. 9 - Aérosol extinction cross-section in the range of 30 to 1500 cm-1 (adapted from Vinatier et al.

(2012)). The observed extinction cross-section (black) is plotted with 1-a error bars. The calculation was

performed by assuming a constant real part of the refractive index equal to 1.69, while the imaginary part of the

refractive index ni varying within the range of 0.01 and 0.2. The color lines are calculations assuming a fractal

cluster of 3000 monomers with individual radii of 0.05 pm and fractal dimension of 2 as predicted by (Cabane et

al., 1992) and observed by DISR (Tomasko et al., 2008b). The ni used for each model calculation is shown in

the legend. The imaginary part of the refractive index of Titan's aérosols varies between 0.018 and 0.2.

The extinction cross-section is the imaginary part of the complex refractive index. In an

opaque medium, the real part the complex refractive index of describes the refraction, while

its imaginary part the absorption loss. The results of Vinatier et al. (2012b) calculations of the

complex refractive index are plotted in Fig. 3.10. Within the région spectral région of 600 to

1500 cm'1, the imaginary part of the refractive index présents maxima at 630, 700, 750,
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900, 1300 and 1450 cm'1. These results differ from Khare et al. (1984), being less absorbent

than tholins in the thermal infrared (Fig 3.10). Similar results hâve been reported in the

literature (de Kok et al., 2007b; Rannou et al., 2010; Vinatier et al., 2010a; Anderson &

Samuelson, 2011).

Figure 3. 10 - The real (upper panel) and the imaginary (lower panel) parts of the refractive index of Titan's

aérosols (adapted from Vinatier et al. (2012b)). The indices as obtained of Khare et al. (1984) for tholins are

illustrated in blue.

By integrating the volume extinction coefficient over the altitude for two given

altitudes, we dérivé the optical depth of the haze aérosols. I hâve applied these values to our

radiative transfer code to fit the continuum. However, although this distribution can be

applied in ail latitudes, there are différences between the north to the south hemisphere and

these values should be adjusted in order to obtain the best fit. In Chapter 4, I show that this

description if adjusted in latitude can provide results as to the haze distribution on Titan’s

disk.

3.4.6 The updated spectroscopic parameterization

The spectroscopic parameters of the main molécules (CH4, CH3D, CO, CO2, HC3N, C2N2,

C2H2, C2H4, C4H2, C3H4, H20, C6H6, C2HD, HCN, HC15N, C2H6, C3H8 and CH3CN) and the
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isotopologues ( CH3D, CH4, C CH2) incorporated in our radiative transfer code hâve

been significantly modified in both GEISA and HITRAN databases, since the last release of

the code in 2006, including recent laboratory works. The line lists of these molécules hâve

more précisé spectral parameters. Therefore, ARTT had to be upgraded in order to include

these improved features in its inventory. The increased accuracy of the fondamental

parameters (line position, intensity and line shape) improves the retrieved fit between the

model and the real data. The wealth of CIRS data allows us to use large spectral averages,

with which the identification of minor isotopologues is easier. Ail these new identified

isotopologues (13C2H6, H13C14N, H13CCCN, 13C02, 13C180160) should be added as well as

candidate isotopologues (DCN, H16OD, H17OH, H17OD, H18OH and H18OD, HC13CCN,

HCC13CN, 12C180160, 12C170160, 13C170160, 12C180170 and 12C1802) in case of future

détection. Then, the radiative transfer calculations are more reliable, which is prerequisite for

remote sensing interprétation of CIRS spectra.

I hâve upgraded our Atmospheric Radiative Transfer for Titan (ARTT 1.0.0)

following the previously described requirements. First of ail, the main databases from which

we adopt the spectroscopic parameters are GEISA and HITRAN, two independent

spectroscopic databases available online13 for spectroscopic studies. Both atlases are widely

used and hâve a significant impact on radiative transfer studies and the interprétation of

spectra. Specifically, GEISA has a planetary applications héritage than in terrestrial sciences,

while on the contrary, HITRAN has an Earth sciences one. We hâve improved the following

spectroscopic parameters incorporated in the code by updating the existing ones:

a) Methane (CH4), (2Hi) methane (CH3D), carbon monoxide (CO), carbon dioxide

(C02), cyanoacetylene (HC3N), cyanogen (C2N2), acetylene (C2H2), ethylene

(C2H4), diacetylene (C4H2), water (H20), benzene (CôHô), monodeuterated

acetylene (C2HD) and the isotopologues 13CH3D, l3CH4 and ,3C12CH2 line lists are

provided by the latest GEISA 2009 release (Jacquinet-Husson et al., 2011), which

hâve replaced the relative old spectroscopic files. This édition of GEISA database

contains ail the line lists data, which were adapted from individual researches in

the previous ARTT 0.3.8 édition (see also Table 3.1).

b) Both line lists for hydrogen cyanide (HCN) and its 15-N isotopologue (HC15N)

were taken from HITRAN 2008 atlas (Rothman et al., 2009) and replaced the

previous versions.

13 GEISA website: http://ether.ipsl.jussieu.fr/etherTypo/?id=950, HITRAN website:
http://www.cfa.harvard.edu/hitran/
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c) The spectroscopic parameters of ethane (C2H6) were treated as follows: For the

spectroscopic range between 613-843 cm'1 the line lists from GEISA 2009 are

adopted, while at the région of 1350-1496 cm'1 the spectroscopic data of the code

is still incorporated by the Vander-Auwera et al. (2007) files. Although the GEISA

2009 contains the data of Vander-Auwera et al. work, it lacks the latter spectral

range.

d) For the methylacetylene (C3H4), the files from G. Graner (pers. comm.) were kept

due to conflicts of relative C3H4 GEISA 2009 data and the code. As noted in

GEISA 2009 paper, the same dataset of the v9 and vio bands at 331 and 639 cm'1

respectively, was provided by G. Graner to the new GEISA distribution (Jacquinet-

Husson et al., 2011). Therefore, the C3H4 spectroscopic parameters we use are

consistent with the latest GEISA update.

d) For the propane (C3H8) bands, the previous data was replaced by the new extract

from GEISA 2009 at 700-800 cm'1. Additional line lists at 1308-1582 cm'1 were

imported from the CIRS team website (http://blizzard.astro.comell.edu/drupal/)

line list which has been calculated by J.-M. Flaud (31 Oct. 2008) (Flaud et al.,

2010), since GEISA 2009 gives only the former data.

e) For the acetonitrile (CH3CN), GEISA 2009 provides data ranging from 890 to 1650

cm'1. These lines are imported in the code. However, for the région of 318 to 1135

cm'1 the PNNL data from the previous ARTT version was kept.

As a second step, we hâve added new isotopologues in the new release of ARTT. The

identification of isotopologues in Titan’s atmosphère is essential for radiative transfer studies.

Isotopologues are molecular entities which differ in their isotopic composition. The isotopic

compounds hâve at least one atom which consists of a different number of neutrons from the

one of the main molécule, it exhibits different vibration States and can therefore be observed

in infrared spectra. The knowledge of isotopic ratio sets constrains on the origin and évolution

of a planetary atmosphère, understands its dynamics and describes contemporary Chemical

and photochemical paths.

Moreover, contributions from isotopologues may influence the observed spectra and

could possibly explain any misfits between the data and the model (Coustenis et al., 2010b).

The minor isotopologues exhibit extremely low abundances in Titan’s atmosphère. The

identification of isotopologues in Titan’s infrared spectrum can be obtained only where the

adéquate spectroscopic data files are available. GEISA 2009 distribution has been updated to
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include such line lists. In HITRAN, the minor isotopologues are embedded with the main

molécule.

Eighteen new minor isotopologues hâve been added to the ARTT code, one for ethane

(13C2H6), two for hydrogen cyanide (DCN and H13C14N), three for cyanoacetylene

(HI3CCCN, HC13CCN and HCC13CN), five for water (HI6OD, H17OH, Hl7OD, H,8OH and

Hi8OD) and seven for carbon dioxide (l3C02, l2C180160, 12C170I60, 13C170I60, 13CI80I60,

l2C180l70 and l2C1802). The spectroscopic parameters of ail these molécules hâve been

adopted from GEISA 2009, except for HI3C14N and cyanoacetylene. The HI3CI4N line lists

hâve been adopted by HITRAN 2008, while cyanoacetylene minor isotopologues hâve been

picked up from the CIRS team website. In fact, they are Jolly et al. (2007) data, modified by

C. Nixon in GEISA format.

Some of these minor isotopologues hâve been detected in Titan’s atmosphère. The fïrst

identification of 13C-ethane (13C2H6) V12 band was derived from CIRS spectra (Nixon et al.,

2008a). H13C14N has been detected in Titan from ground -based observations of IRAM/JCMT

data in May-June 1995 (Hidayat et al., 1997) and from Submillimeter Array data in February

2004 (Gurwell, 2004). The same molécule has been inverted from CIRS limb data at 83°N

(Vinatier et al., 2007b).

The existence of three cyanoacetylene minor isotopologues has been studied by

Jennings et al. (2008) in CIRS spectra. The H13CCCN has identified for the first time at 658.7

cm'1 but it has been impossible to detect the other two, HC13CCN and HCC13CN at 663 cm'1

because they are blended with the stronger V5 band of the main isotopologues at 663.3 cm'1

(Jennings et al., 2008).

As far as the carbon dioxide minor isotopologues are concemed, Nixon et al. (2008b)

reported a 6.5o détection of 13CC>2 and a possible 3.5o détection of 13C180160 at 648.75 and

662.5 respectively using CIRS data. The détection of the latter is noted as possible due to

need for higher resolution spectroscopic data (Nixon et al., 2008b).

It should be noted that although the 13C-isotopologue of diacetylene has been detected

in Titan’s atmosphère at 627.9 cm'1 (Jolly et al., 2010), it has not been included in the current

ARTT upgrade. GEISA 2009 lacks the line lists of this isotopologues. From the new

molécules in ARTT, DCN, water minor isotopologues, 12C180160, 12C170160, 13C170160,

12C180170 and 12C18C>2have not been detected yet in Titan’s infrared spectrum. The Table 3.4

below lists these molécules and their sources.

In the following Figs. 3.11 - 3.20,1 hâve plotted the output of the modeled émission

features of ail the molécules included in the new upgraded radiative transfer software.
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Table 3.4- List of the spectroscopic parameters adopted for the ARTT upgrade. The source the line lists of each

molécule of the previous version is also shown.

Molécule ARTT 0.3.8 ARTT 1.0.0

ch4 GEISA 2003 GEISA 2009

ch3d GEISA 2003 GEISA 2009

CO GEISA 2003 GEISA 2009

C02 GEISA 2003 GEISA 2009

HCN
HITRAN 2004 and

HITRAN 2008
HITRAN 2008

hc3n Jolly et al. (2007) GEISA 2009

c2n2 GEISA 2003 GEISA 2009

c2h2 GEISA 2003 GEISA 2009

Vander Auwera et al. (2007)

c2h6 Vander Auwera et al. (2007)
at 1350-1496 cm-1

GEISA 2009

at 613-843 cm-1

Blassetal. (2001) and
c2h4 Rotger 2006 pers. comm. GEISA 2009

Rotger et al. (2008)
c3h4 G. Graner pers. comm. G. Graner pers. comm.

c3h8 GEISA 2003

GEISA 2009

at 700-800 cm-1

CIRS team site

at 1308-1582 cm-1

c4h2 Arié and Johns (1992) for nu8 and hot bands GEISA 2009

h2o GEISA 2003 GEISA 2009

c6h6 Dang-Nhu et al. (1989) GEISA 2009

c2hd Jolly et al. (2008) GEISA 2009

PNNL

ch3cn PNNL line lists
at 318-1135 cm-1

GEISA 2009

at 890-1650 cm-1

13ch3d Bezard et al. (2007) GEISA 2009

h12c15n HITRAN 2008 HITRAN 2008

13ch4 GEISA 2003 GEISA 2009

13c12ch2 GEISA 2003 GEISA 2009

h,3cccn NO CIRS team web site

hc13ccn NO CIRS team web site

hcc13cn NO CIRS team web site

13c16o2 NO GEISA 2009

12c18o16o NO GEISA 2009

d12cI4n NO GEISA 2009

h13c14n NO HITRAN 2008

12c13ch6 NO GEISA 2009

h16od NO GEISA 2009

hI7oh NO GEISA 2009

h17od NO GEISA 2009

h18oh NO GEISA 2009

h18od NO GEISA 2009

12c17o16o NO GEISA 2009

13cl7o16o NO GEISA 2009

13CI80160 NO GEISA 2009

c18o17o NO GEISA 2009

12c18o2 NO GEISA 2009
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Figure 3.11- Output of the model simulation of ail the major molécules of the FP3 part of CIRS spectrum.

Figure 3. 12 - Output of the model simulation of the FP3 but with zoom in the spectral région from 642 to 665.9

cm'1. The 13-C isotopologues of carbon dioxide are located in this spectral région as well as the ones of

cyanoacetylene. 13C180160 has émission band at 643 cm'1, 13C170160 at 646 cm'1, 13C1602 at 648 cm'1, 12C1802 at

657 cm'1, 12C180170 at 660 cm'1, 12C180160 at 662.5 cm'1 and 12C170160 at 664.9 cm'1. 12C180160, 12C170160,

13C170160, 12C180170 and 12C1802 hâve not been detected yet in Titan’s infrared spectrum. Only H13C12C2N has

been detected at 658 cm'1 (Jennings et al., 2008). The rest two are blended with the Q-branch of HC3N at 663

cm'1 and higher resolution than CIRS is needed to separate them. ARTT can identify them as we can see in Fig.

3.13, but only with using much higher resolution for its calculations.
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x 10*

Figure 3. 13 - The output of the model by taking into account only the two 13-C isotopologues of

cyanoacetylene, which are blended with HC3N at 663 cm'1. These calculations hâve been made by using a

resolution of 0.001 cm'1, two orders of magnitude higher than the CIRS one (0.5 cm'1). The signatures of these

isotopologues are indeed blended, but they can be identified by the other bands. The HC3N has not been plotted.

HCC13CN has émission bands at 650, 652.3, 661 cm'1 and 663.2, while HC13CCN has émission bands at 655,

663.2 and 670 cm'^Anderson & Samuelson, 2011).

x 10"8

Figure 3. 14 - The results of the model simulation within 664 and 720 cm'1, where the weak v4 band of C6H6

exists at 674 cm'1. In this région, there is also the signature of C2HD at 674 cm'1 and 13-C HCN isotopologues at
706 cm'1.
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Figure 3.15- The outcome of the model simulation at FP4, where methane v4 band dominâtes the spectra.

Figure 3. 16 - Model simulation at FP4 with methane v4 band discarded. The signature and the position of 13-C

isotopologues of molécules in Fig. 3.15 is obvious.
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Figure 3. 17 - Model simulation at FP1. Panel a shows the CO émission, while panel b shows the DCN model

signature. The latter has been not yet detected in CIRS data.

x 10”7

Wavenumber (cm 1)

Figure 3. 18 - The outcome of model simulation at FP1. Panel a shows the cyanogen émission, while panel b

shows acetonitrile model calculations. Acetonitrile has also émission band at the FP3 part of CIRS spectra (Fig.

3.19-b).
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Figure 3. 19 - Panel (a) illustrâtes the outcome of model simulation of 13-C isotopologues of ethane at FP3.

Panel (b) shows acetonitrile model calculations.

Figure 3. 20 - Water vapor isotopologues model calculations at FP1. Only the signature of the major

isotopologues has been identified in Titan’s atmosphère (panel a).
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3.4.7 Improved simulation of the observations

Tests on the main molécules

We hâve compared the output of our new upgraded radiative transfer code (ARTT 1.0.0) with

the previous version (ARTT 0.3.8) in order to quantify what has changed. For this purpose,

we hâve applied the spectral CIRS FP3 sélection of May 2010 at medium resolution at 50°N.

This sélection contains 160 spectra recorded from the T68 Cassini flyby. We had firstly

applied the relative température profile as retrieved from the corresponding FP4 data and

then, through an itérative process, we had been running the code until we reached the best fit.

This procedure had been done for both ARTT versions. Fig. 3.20 below illustrâtes outcome of

these simulations.

x 10~7

.£00 650 700 750 800 850 900 950 1000 1050 _ 1100
, , , , , , , . différence ARTT 1.0.0 - data

...... ,.,n. , «y • u ihii.M|_/i«« « r-

"1 600 650 700 750 800 850 900 950 1000 1050 1100
Wavenumber (cm'1)

Figure 3.21- Comparison of the outcome of the two models for the sarne CIRS sélection and comparison to the

data (panel a). In panel b, the différence between the two models is illustrated. In panel c, we depict the

différence between the model of ARTT 0.3.8 and the data. Similarly, the différence between the model of ARTT

1.0.0 and the data is showed in panel d.

From the différence plot (Fig. 3.21-b) we can see that the old version has higher émission

from 670 to 870 cm'1 (négative différences). On the other hand, from 940 to 1000 cm'1, the

old model has lower émission (positive différences). Indeed, from 770 to 680 cm'1 both

models seem identical, but from 660 to 700 cm'1 the old version has a slightly higher émission

as well as from 700 to 720 cm'1 and from 720 to 750 cm'1. The émission of the old model

becomes higher in the région of 740 to 800 cm'1 and continues similarly from 760 to 870cm'1.
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Eventually, from 880 to 1100 cm’1 both fits seem identical. Judging from the différences

between each model and the data, the new version fîts better the data at the range between 670

to 870 cm'1, while in the rest wavenumbers the resuit is the same. In this point, we hâve to

note that we hâve used the same continuum fit with the same adjustments. We will discuss the

reason of the différences between ARTT 1.0.0 and ARTT 0.3.8 below. The major molécules

in this spectral région (CIRS/FP3) are: HCN, C2H2, C3H8, C2H6, C2H4 and CO2. We examine

these molécules one by one. Table 3.5 summarizes the testresults of the two ARTT versions.

HCN:

Hydrogen cyanide is one of the dominant trace gaseous species in the spectral range of 650 to

780 cm'1. However, the line lists for this molécule are from the same database distribution

(HITRAN 2008. The following plot (Fig. 3.22) illustrâtes the HCN lines from the

spectroscopic files adapted in old and new ARTT versions at the spectroscopic range of

interest (CIRS/FP3). Although the files corne from the same database version (HITRAN

2008), they are not the same it is depicted in Fig. 3.23.

Wavenumber (cm 1)

Figure 3. 22 - HCN lines sériés comparison between the two files adapted in old and new radiative transfer code

within the range 640-800 cm"1. Although the line lists files corne from the same version of the HITRAN database

(2008) some lines hâve been discarded in the existing file. The HITRAN 2008 line lists used in 0.3.8 version is

shown in blue solid line, while the HITRAN 2008 file used in 1.0.0 version is shown in red solid line.
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Figure 3. 23 - The same comparison with Fig. 3.22, but focused on the HCN Q-branch.

The HCN file adapted in the old version (0.3.8) is different from the one used in the latest

version although they are both retrieved from H1TRAN 2008. The old file includes lines with

low intensity, which hâve been discarded from the latest version within the range from 711 to

715 cm'1. The ARTT 0.3.8 version HCN line lists are an old HITRAN 2008 édition, which

contained lines with the identified low intensity and, apparently, the HITRAN administrators

hâve upgraded the HCN file after 2010. This observation shows the significance of the new

upgrade.

C2H2:

The next plot (Fig. 3.24) shows the updates of C2H2 spectroscopic dataset in GEISA 2009.

ISpectroscopic data recently measured and added in GEISA-09

. ’v Work in progress for line intensifies measurements

Figure 3. 24 - GEISA 2009 upgrade for C2H2 (adopted from Fig. 8 of Jacquinet-Husson et al., 2011).

The C2H2 upgrade in GEISA 2009 contained new lines, but not in the région of FP3, therefore

both ARTT versions produce the same signature in FP3 spectral simulation. Indeed, the
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différence between the two models in Fig. 3.19 is close to zéro for acetylene. Any déviance

from the zéro level can be explained by the contribution of the HCN émission.

C3H8:

Both models hâve high négative différence within the région between 700 and 800 cm'1 (Fig.

3.21-b). In this région, except for the P-wing of acetylene, the contribution of V26 C3H8

émission band exists. The différences are indeed significant. Since the acetylene is the same

in both models, we hâve to focus on the propane spectroscopic files. This différence can be

explained by the fact that the GEISA 2009 lines contains the GEISA 2003 ones multiplied by

a factor of 0.420 (Jacquinet-Husson et al., 2011) because the 2003 line lists for propane V26

band are incorrectly scaled (Nixon et al., 2009). When comparing the abundances retrieved by

both code versions, the relation between the 0.3.8/1.0.0 is 0.420 as described above. The

adoption of the new spectroscopic file for propane in ARTT 1.0.0 fixes this malfunction.

C2H6:

Both models hâve notable négative différence within the région between 800 and 880 cm'1

(Fig. 3.20-b). The lines lists used in ARTT 1.0.0 hâve been separated into two files. One was

adopted from Vander-Auwera et al. (2007) at 1350-1496 cm'1 (FP4-region) and the other

from GEISA 2009 at 613-843 cm'1 (FP3-region). For the FP3 part, the différences are notable.

The same fit is achieved with a value 7.5% higher in 1.0.0 than in 0.3.8. The previous ARTT

version calculâtes the fits by adopting C2H6 lines from Vander-Auwera et al. (2007). This

différence can be explained by the fact that the GEISA 2009 lines intensities are lower by a

factor of 2.3% than the ones from Vander Auwera et al. (2007).
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C2H4:

The différences in the région of C2H4 (900-1000 cm'1) are indeed significant. Contrary to

previous results, the ARTT new édition generates simulations with higher émission than the

older version. The previous ARTT version used spectroscopic lines from Blass et al. (2001)

and Rotger (2006 pers. comm.-Rotger et al., 2008), while the latest ARTT version adopts the

GEISA 2009 line lists. Rotger et al. (2008) hâve published measurements on the vi0 band of

ethylene at 1442 cm'1. Blass et al. (2001) line lists are not mentioned in the GEISA 2009

paper (Jacquinet-Husson et al., 2011). The abundance for the fit of CIRS data using the new

GEISA 2009 line lists is 4% lower compared to the previous code édition.

C02:

The new GEISA 2009 database release includes line transitions of nine carbon dioxide

isotopologues: 12C1602 (the main), 13C1602, 16012C180, 16012C170, 16013C180, 16012C170,

18012C170, 12C1802 and 13C1802. The first four isotopologues existed in GEISA 2003

(Jacquinet-Husson et al., 2005), while the rest ones are new entries in the latest édition

(Jacquinet-Husson et al., 2011). Except for the main molécule, ail the isotopologues are new

entries also in the ARTT 1.0.0 code. It should be noted that we hâve excluded the 13C1802

since it has no transition lines in the spectral range of CIRS. The changes in line lists can be

summarized as the increase in the number of transitions since the GEISA 2009 version

contains:

a) lowered minimum intensities (up to 10'30 cm'7(molecule cm'2)) at 296K and

b) merged line-lists of CDSD-296 databank and JPL near infrared.

In CIRS FP3 spectra, the émission of carbon dioxide at 667 cm'1 has no significant différence

when using the previous and the new ARTT version (Fig. 3.21-b). However, when fitting the

same spectral sélection by using both codes, the différence in abundance is at about 2% higher

values for 1.0.0. This can be explained by the increase of the number of the transition lines of

C02 in the new GEISA édition (Fig. 3.25).

123



Figure 3. 25 - Focus on the Q-branch of C02 line lists comparison between GEISA 2003 line lists (blue solid

line) and GEISA 2009 (red solid line). Here, the significantly increased number of transition lines is depicted.

C4H2:

The following plot (Fig. 3.26) illustrâtes the spectroscopic lines from the files used in old and

new ARTT versions. The lines used in 0.3.8 version are from Arie & Johns (1992), while the

new ones are from Jolly et al. (2010) in GEISA 2009. However, the abundances for fîtting the

same sélection with the two code versions are the same.

15 610 615 620 625 630 635 640 645 650 655

Wavenumber (cm-1)

Figure 3. 26 - Line lists comparison between Arie & Johns (1992) (Elue solid line) and GEISA 2009 (red solid

line).
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Table 3.5- The major molécules within the spectroscopic région of comparison

Molécule 0.3.8 1.0.0 Comments

HCN HITRAN 2008

HITRAN 2008

(about 14% higher

abundances with the

new spectroscopic

files)

The spectroscopic files are the same but

the one in 0.3.8 has "almost zéro" fines.

These fines hâve been discarded from the

latest file in 1.0.0 version.

No upgrade has been imported from the

C2H2 GEISA 2003 GEISA 2009 2003 version to the latest 2009 at the FP3

spectral région. The émission is the same.

Change in the émission of v26 propane

band.

The GEISA 2009 fines file contains the

v26 CîHg GEISA 2003 GEISA 2009 GEISA 2003 ones multiplied by a factor

of 0.420.

The CIRS/team site has the same file with

GEISA 2009 file.

Différence in fits. The same fit is achieved

with a value 7.5% higher in 1.0.0 than in

0.3.8.

Devi et al. (2010) hâve found that ethane

c2H6
Vander Auwera et

al. (2007)

GEISA 2009

at 613-843 cm'1 and

Vander Auwera et

al. (2007) at 1350-
1496 cm'1

in V9 fine intensifies are 10-15% lower

than in Vander Auwera et al. (2007)

which mean that GEISA 2009 values are

10-15% higher.

GEISA 2009 fines intensifies are lower by

a factor of 2.3% than the ones from

Vander Auwera et al. (2007).

c2h4
Blass et al. (2001)

and Rotger 2006
GEISA 2009

4% lower abundance for fitting the

molécule comparing to the 0.3.8 one.

No significant change in the émission

co2 GEISA 2003 GEISA 2009
signature of the main isotopologue at 667

cm'1. The abundance of 1.0.0 fit is 2%

higher than in the previous version.

Arié and Johns GEISA 2009 adopts Jolly et al. (2010)

c4h2 ( 1992) for vg and GEISA 2009 fine lists. No change in fits' abundances

hot bands between the two versions.

The work described hereabove on the comparisons among the code versions, serves the

purpose of helping adjusting new inferences to past ones, without having to redo ail the
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calculations and also understanding any discrepancies found with previous results, while

identifying significant and real variations.

3.5 Conclusions

The new radiative transfer code upgrade functions in an enhanced and optimized way and

allows for an improved fit to the data, thanks to the updated haze and spectroscopic

parameters. Furthermore, the previous version generated the synthetic spectra by taking

into account 21 molécules. In the upgraded édition, ARTT can search for 18 additional

molécules and isotopologues providedfrom the latest available spectroscopic databases with

more précisé molecular parameters. The molecular inventory of the code has been almost

doubled. This allows us first of ail improve the fit with molécules such as those that hâve

been recently detected by Nixon et al., (2008a; 2008b) and Jennings et al. (2008). Secondly,

the research for the presence of more complex and new weak species, as will be discussed

in Chapter 4. Moreover, by using large spectral averages from CIRS data, the identification

ofmore minor isotopologues is easier.

Some problems ofthe previous version hâve been fixed, such as the propane V26 line

strengths wftich are corrected. Additionally, the continuum is better fitted due to the more

accurate aérosol distribution, which has been adopted. The computational time stays within

acceptable levels considering the amount of calculations, which the software performs

during each simulation.
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Chapter 4

Titan’s stratosphère by Cassini/CIRS

The Cassini-Huygens mission in the Kronian System has revealed a complex world in its

largest satellite, Titan. The stratospheric organic chemistry, resulting from several processes

like photodissociation and recombination starting with the mother molécules N2 and CH4,

comprises a large number of hydrocarbons and nitriles. In addition, a few oxygen compounds

were detected, possibly of extemal origin. The research so far has concluded that the relations

between Titan’s atmospheric veil with the surface, and probably the interior, are very close.

Hence, the study of the atmospheric composition, and especially its trace gaseous molécules

and their isotopologues, from the surface to the upper atmosphère, is crucial for obtaining a

complété picture of the moon.

After giving the basis for my research (processes, method), I présent the results of

yearly CIRS spectral averages analyses during the Cassini nominal mission, which were

published in Icarus (Coustenis et al., 2010b). This study provided us with the latitudinal

distribution of température and composition from South to the North in Titan's stratosphère

and allowed me to train in CIRS spectral processing and analysis.

In this Chapter, I also présent more time-resolved results of the Cassini/CIRS spectra

analysis which I hâve performed, in order to investigate the température structure and the

trace gaseous composition of Titan's stratosphère from the beginning of the mission up to

early 2012. This work has been recently published in the Astrophysical Journal (Bampasidis

et al., 2012a). I report in this Chapter the inferred variations in température and Chemical

composition in the stratosphère during the Cassini mission, which include Titan’s Northern

Spring Equinox (NSE) in mid-2009.

During these studies, I also worked on the mixing ratios of benzene and HC3N, weaker

molécules, hence more difficult to détermine and not yet published in their entirety. For

benzene, we hâve obtained vertical distributions from the surface of Titan to the upper

atmosphère by applying the 1-D photochemical model of Lavvas et al. (2008a;b). This work

was presented in Faraday Discussions 147: Chemistry of the Planets, which was held in Saint

Jacut de la Mer (France) from 14 to 16 June 2010 (Bampasidis et al., 2010b).
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Moreover, we hâve applied our own radaitive transfer code to analyze CIRS data in

the focal plane 1 (FP1) in order to search for water vapor, following a first détection by ISO

(Coustenis et al. 1998). Our own analysis verified the calculations performed with another

radiative transfer code used by our collaborators at the GSCF and in Oxford. The results of

this study hâve been recently published in Icarus (Cottini et al., 2012a).

Recently, we hâve also focused on changes observed in the émission bands of several

components at higher northem and southem latitudes than the ones we usually explore and the

évolution in time that we find indicate a seasonal cycle which affects some species (like

HC3N and the haze products) more than others. This work was recently accepted for

publication in the Astrophysical Journal Letters (Jennings et al., 2012, in press).

I complété this Chapter by describing some perspectives for the future where we look

at the possible détection of some weak species or new molécules in large averages and also in

the évolution with time of some of the most abundant species in Titan’s atmosphère since the

Voyager times.

4.1 Titan’s stratosphère before the Cassini-Huygens mission

Cassini entered into Satum insertion orbit (SOI) on 2 July 2004 and since then it observes

Titan closely through several programmed flybys. The Composite Infrared Spectrometer

(CIRS) (Flasar et al., 2004) opérâtes during most of them, delivering numerous infrared

spectra with spectral resolutions varying between 0.5 cm'1, 2.5 cm'1, and 15.5 cm'1. A detailed

description of the instrument was given in Chapter 2 along with a description of my personal

contribution to the improvement of the CIRS data processing. In order to analyze CIRS

spectra, we also had to upgrade the existing radiative transfer code to produce a new powerful

software version that incorporâtes ail the recent spectroscopic data (Rothman et al., 2009;

Jacquinet-Husson et al., 2011) and a new aérosol model (Flasar et al., 2004; Vinatier et al.,

2012b). The procedure and the results of this upgrade were described in Chapter 3. Before

now describing the data I hâve used in my work here, I will briefly discuss the pre-Cassini

knowledge of Titan's stratospheric thermal structure and composition as relevant to my

research.
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4.1.1 Voyager 1 & 2 encounters

Infrared spectroscopy has provided the characterization of Titan's température and Chemical

structure. The first in situ measurements in the thermal radiation of Titan were obtained

during the Voyager 1 encounter, in November 1980, right after Titan's northem spring

equinox. The Infrared Spectrometer Radiometer (IRIS) on board the spacecraft (Hanel et al.,

1980) performed disk-resolved observations of Titan's stratosphère at different latitudes and

longitudes with a spectral resolution of 4.3 cm'1 in the 200 and 1500 cm'1 région.

The results of the VI/IRIS spectral analysis provided the température of the

stratosphère as well as its composition. Molecular nitrogen was determined to be the

dominant species, followed by methane in a few percent mole fraction (Broadfoot et al., 1981;

Hanel et al., 1981; Tyler et al., 1981). Voyager also detected a rich inventory of trace gases in

the atmosphère consisting of hydrocarbons and nitriles. Indeed, acetylene, ethylene, ethane

and hydrogen cyanide were identified through their émission spectral signatures (Hanel et al.,

1981) . Moreover, methyl acetylene and propane were tentatively identified (Maguire et al.,

1981) and confirmed since then, while diacetylene, cyanoacetylene and cyanogen were also

found in the stratosphère (Kunde et al., 1981). The existence of mono-deuterated methane was

reported a little later (Kim & Caldwell, 1982), while the first oxygen-bearing compound

(CO2) was also identified in the Vl/IRIS spectra a year later (Samuelson et al., 1983).

Equatorial vertical atmospheric refractivity profiles were yield by Voyager 1 radio

occultation measurements (Radio Science System-RSS) from the surface up to 200 km. These

measurements were used to retrieve vertical thermal profiles (Lindal et al., 1983). These

température profiles depended on the atmospheric composition and a pure nitrogen

atmosphère was assumed at the time. Lellouch et al. (1989) reanalyzed the Vl/RSS

measurements and updated the thermal profiles by using a more précisé atmospheric

composition, including methane and various Argon molecular fractions.

A thorough analysis of IRIS spectra provided the vertical and spatial variations of the

température and composition from 53°S to 70°N in 1980. The température profiles used in

these studies were retrieved from the best fit of the v4 methane émission band at different

latitudes (Coustenis et al., 1989a; 1989b; 1991; Coustenis & Bezard, 1995). The warmest

région was found to be close to the equator (5-7°S). A température decrease of about 17 K at

0.4 mbar (225 km) was observed between the 5°S and 70°N, while a shorter decrease of about
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3 K was observed at the south hemisphere from 5°S to 53°S (Flasar & Conrath, 1990;

Coustenis & Bezard, 1995).

As far as the trace gaseous concentrations are concemed, no longitudinal variation has

been found by Vl/IRIS data in Titan's stratosphère between 4 and 9 mbar (Coustenis et al.,

1989a). HCN increased significantly from pôle to pôle, while carbon dioxide mole fraction

remained constant in respect to the latitude. The abundances of the other trace constituées

presented variations from the équatorial latitudes and northwards. Ethane, acetylene and

propane showed a moderate increase by a factor of two. Methyl acetylene, ethylene and

diacetylene showed significant enrichments at latitudes northem than 50°N. The other nitriles,

cyanogen and cyanoacetylene hâve no spectral signatures from 50°N and southwards (Fig 1.3

in Chapter 1). The results of this research are listed in Table 1 below.

Table 4. 1 - Trace gaseous abundances of Titan's stratosphère from Coustenis & Bezard (1995) retrieved from

Vl/IRIS spectra in 1980.

Molécule

1

(l»î. in •> <53*S)

>i

(32*SI

0

(7-Sl

A. B.C

I7°N)

D

<30*N)

E

<50"N)

F

(TO'NI

North/

souih

4E/1)

C,H, 2.5 £ 0.3 » 10* 3.0 ± 0.4 X 10'* 2.7 i O.î X I0'< 3.0 i 0.3 x 10'* 2.7 ± 0.5 X 10'* 5.3 £ 1.0 X 10'* 6J ± 2.1 X KH 2.2 ± 0.5

C;H, 1.5 ±0.5X10'’ 1.5 ± 0.3 x 10'7 I.J ± 0.3 X 10~’ 1.5 ± 0.4 x 10-' 1.5 ± 0.5 x HT’ 1.0 ± 0.3 X 10 '* 1.5 10.5 x |0~* 7 i 3

C,H, 1.15 ±0.1 x |0"3 1.35 ± 0.1 x IO"5 1.65 ±0.1 x |0-> 1.3 ±0.1 x 10'» 1.23 ± 0.1J x HT’ 1.85 ± 0-2 X I0'5 1.63 ± 0.3 x 10'5 l.S ± 0.2

C,H, 3.3 ± 0.7 X 10'’ 4 J ± 0.7 x ÎO'7 8.0 ± 0.6 x 10'* 5.0 ± 0.9 x 10'* 6.0 = 1.6 x 10'* 3.3 ± 0.2 x I0-’ 3.7 ± 0.3 X IO'* 9.5 ± 2

C,H, 6.0 = 1.5 X 10-’ 6.0 2 1.4 X 10*’ 9.0 ±1.6 x jer* 3-0 ± 1.7 X 10 1 7.0 ± 3.0 x IO'1 1.0 •i oJ y io 1.2 ± 0.3 x IO"* 1.7 1 0.7

C<Hj 1.0 1 0.3 X 10'* \.ï ±0.3X10'* 1.7 ±0.1 X 10'* 1.4 IM* HT* 1.2 £0.4 X 10'* l.S * 0.2 x 10'* 2.7 ± 0.4 X IO'* 15 3L 5

HCN 4.7 ± 0.5 X 10-' 7.0 = 0 i x 10'* 2.2 ± 0.2 x IO'7 1.7 ± 0.2 x 10"’ 2.4 ± 0.4 x 10*’ 1.1 s 0.2 x 10*‘ 1.5 ± 0.3 x 10'* 23 s 4

CjNt <I.S X 10"* <1.5 X 10"* <1 X 10'® <14 x 10-* <2 x 10'* ± 0.2 x 10”* 2.2 ±0.3 x 10'* >10

»1C,N <1.3 x ht* <1.3 « 10"* <1.5 x 10-“ <1.5 x 10** <2 x 10'* 2.5 ± 0.5 x 10'* 4.5 ± 0.9 x 10'* >17

CO, 1.3 ±0.2 x IC* l.S = 0.2 X 10'* 1.3 ±0.15X10'* 1.4 ±0.2 x 10'* l.l ± 0.25 X 10'* 1.3 ± 0.3 X 10'* 1.3 ± 0.55 x 10'* 1 ± 0.4

Uazc optical dcplh for <r > 600 cm'1*

0.83 * 0.06 0.93 = 0.06 1.34 ±0.13 1 00 1.00 ± 0.09 .11 ± 0 IO 2.83 ± 0 40 2.54 i 0.27

* Relative to the équatorial oplical depth, calculated at wavenumbers 650. 900, 1000. and 1100 cm~:.

A few months later, in August 1981, Voyager 2 flew by Titan, but at a distance 170

times greater. The analysis of V2/IRIS spectra probing the atmosphère in the altitude range of

80-130 km. V2 results confirm the ones from VI and the température structure which was

retrieved from V2/IRIS showed a decrease from equator to northem latitudes of about a 10 K.

No significant temporal variations were observed within this time interval of 9 months

between the two encounters. No significant latitudinal variations were recorded for acetylene,

ethane and propane within the error bars. Like in the Vl/IRIS spectra, HCN showed a

significant increase at higher northem latitudes (50°N) by a factor of 2. C4H2 and C3H4 also

presented the same enhancement. Only upper limits were derived for C2H4, HC3N, C2N2 and

CH3D. The results are listed in Table 4.2 below (Letoumeur & Coustenis, 1993).

130



Table 4. 2 - Trace gaseous abundances of Titan's stratosphère from Letoumer & Coustenis (1992), retrieved from

V2/IRIS spectra in 1981.

Sample A Sample B Sample C Sample D
Abundances ( — B + C + D) 50 N 28 N 6 N

Acctvlcnc (C\HT 2.6! j ,x 10" 2.6’! îx 10 " 2.6! J < x 10 •’ 2.7! J j x 10 "
Ethylène (C:Hj <1 x 10" — —

l.2+itxl0-5Elhunc i.4*;;ixio-? 1.92-ï.ÜkIO-5 i.4:SSxio-’
Methyl acctylcnc (C,H4) 6.0: Cx 10 v 1.2^ xIO" 6.0!;, x 10" 6.0’Cx 10-'*

Propane (C,H*) 5dx I0-’ 2.2+1** x 10" 5.0" x 10 "7 7,0’ t! x 10 '

Diacctvlcnc (C4H.) I.4tr*l0" 2.81v?x 10“** 1.4! Six 10 " 1.3! ?K x 10 "
Hydrogen cyanide (HCN) 2.8 + ! vx 10-7 6.0t^xl0 7 2.8! 14 x 10"7 2.2+ j ,x 10

Carbon dioxide (CO:) l.ltîlfxlO " i.r l",x 10 * 1.0'S 7 x 10 * 1.5! iî y 10 *
Cyanogcn (C>N;) <2 x 10" — — —

Cvano acctylcnc (HC,N) <3* 10" — — —

Monodeuteratcd mcthanc <2x10" — — —

(CH,D)

4.1.2 Infrared Space Observatory (ISO)

Almost two Titan seasons after the Voyager close fly-by, Titan's stratosphère was again

observed by the Infrared Space Observatory (ISO) in 1997, close to northem autumnal

equinox. The ISO spectrometers performed disk-averaged observations within the 7-30 pm

région with a grating spectral resolution (>106), an order of magnitude higher than

Voyager/IRIS.

The nominal thermal profile retrieved from ISO is warmer than any of the IRIS-

inferred thermal profiles at pressures lower than 1 mbar. The ISO higher resolution

measurements helped to separate the spectroscopic signatures of C4H2 and C3H4 (at around

630 cm'1) as well as of the HC3N and CO2 (contributing at around 660 cm'1), which were

blended in the IRIS data. The abundances of the trace constituents retrieved from ISO spectra

are listed in Table 4.3 below with the Voyager 1 équatorial abundances for comparison. The

latter are the outcome of a recalculation in 2003 of the VI values from Coustenis et al. (1995)

by using updated spectroscopic Unes for the contributing molécules. It should be noted that

the VI values are latitude-depended and the ISO results are disk-average abundances.

Additionally, the altitudes which are probed should be taken into considération as well as the

fact that ISO data incorporate also a limb contribution. The équatorial VI retrievals are

therefore the doser for an actual comparison with the ISO ones (Coustenis et al., 2003) as

indicated at the Table 4.3.
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Table 4. 3 - Trace gaseous abundances of Titan's stratosphère from Coustenis et al. (2003), retrieved from ISO

spectra taken in 1997. The Voyager équatorial values hâve been recalculated by adopting updated spectroscopic

parameters.

Molécule or

isotopic ratio

Abondance

Voyager equator ISO disk-average

CA 2.85*1, X 10~6 55 ± 05 x 10 6

CA 15t°0i X 10 "7 12 ± 03 X 10~7

CA x 10"s 2.0 ± 0.8 x 10~s

ca 6.51% x 10-9 12 ± 0.4 x 10~8

C3H4 (aliéné) <2.0 x 10 9

ÇA 7.0 ± 4.0 x 10-7 2.0 ± 1.0 x KT7

CA 15 ± 0.7 x HT9 2.0 ± 05 X 10“9

CA (benzene) 4.0 ± 3.0 x 10 10

HCN 1.9S1H x 10“7 3.0 ± 05 x nr7

CO, 145îgj| x 10"* 2.0 ±02x 10-8

H20 at 400 km 8 x 10“9

CHjD I.1Î& X 10* 6.7!f9 x 10 #
D/H 15tii x 10~4 8.7±fJ x 106
HCjN <1.0 x 10~9 5.0 ± 35 x 10-10

ca <1.0 x 10"9

The ethane mole fraction remained constant compared to the VI era as well as those of CO2,

C2H4, C3H8, C3H4 and C4H2 within the error bars. On the other hand, acetylene and HCN

exhibited an increase of 30% in the ISO spectra. Cyanoacetylene was observed in disk-

averaged spectra for the first time at 553 cm'1. One of the most important discoveries of the

ISO Short Wavelength Spectrometer (SWS) was the firm détection of two water vapor

signatures near 40 micron (Coustenis et al., 1998) and of benzene in Titan's atmosphère at 674

cm'1 with a maximum émission coming from atmospheric levels between 0.2 and 20 mbar

(Coustenis et al., 2003).

4.1.3 Ground-based observations

Ground-based observations of Titan offer significant information on the stratospheric

composition as well as on the vertical distribution of molecular abundances is several cases.

After CO2, the other oxygen-bearing species, carbon monoxide (CO), was discovered

on Titan by Lutz et al. (1983) with near infrared observations at the Mayall telescope of Kitt

Peak National Observatory (KPNO) - USA. Acetonitrile (CH3CN) was firstly detected by

Bezard et al. (Bezard et al., 1993) from spectra acquired at the Institut de Radioastronomie

Milimetrique - IRAM - (Spain) radiotélescope. Using the same facility, Marten et al. (2002)

provided the first vertical profiles of Titan's stratospheric nitriles (HCN, HC3N and CH3CN),

as also reported by Paubert et al. (1984). Moreover, the isotopic ratios of 12C/13C from HCN
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(Hidayat et al., 1997), l4N/15N from HCN (Marten et al., 2002) and l60/l80 (Gurwell, 2008)

were measured, but the latter hâve not been fully published yet. Millimeter observations at

IRAM also delivered the vertical profile of HCN (Paubert et al., 1987; Tanguy et al., 1990).

NASA Infrared Telescope Facility (IRTF) ethane measurements (Kostiuk et al., 1997;

2005; Livengood et al., 2002) at 12 pm (émission coming from 7 to 0.1 mbar) gave values

comparable to the Vl/IRIS results. The first spectrally-resolved détection of the propane

émission band on Titan's stratosphère was made at NASA/IRTF (Roe et al., 2003). A south

spring polar accumulation of ethylene was also shown just before solstice (Roe et al., 2004b)

at Keck Observatory spectra using the Long Wavelength Spectrometer (LWS). These spectra

were taken from the south polar région of Titan, which had not been observed by Voyager 1.

High-resolution spectroscopy at 3 pm provided measurements of HCN and C2H2 high in

Titan's stratosphère and mesosphere and CH3D in Titan’s troposphère (Geballe et al., 2003;

Kim et al., 2005). In the Table 4.4 below, I hâve gathered these and more the ground-based

observations of Titan's stratospheric trace gases published so far to the best of our knowledge.

Recently, the Heterodyne Instrument of the Far-Infrared (HIFI) on board ESA’s

Herschel Space Observatory (de Graauw et al., 2010; Pilbratt et al., 2010) reported the first

détection of hydrogen isocyanide (HNC) in Titan's atmosphère at 18.14 cm'1 (Moreno et al.,

2011), during observations of Titan on June 14 and December 31, 2010 and provided

abundances of several species (Courtin et al., 2011; Moreno et al., 2012).
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Table 4. 4 - Trace gaseous abundances of Titan's stratosphère from ground-based observations. To compare them with the Cassini data, we take into account only the

observations pertaining to Titan’s center and in the stratosphère, essentially at altitudes between 1 and 10 mbar (100-200 km roughly) depending on the molécule (see

contribution functions and text for more details).

Species
OBSERV.

DATE
Ls ABUNDANCE

ALTITUDE

(km)

LATITU

DE
INSTRUMENT REFERENCE

RESOLVING

POWER
„ -i
cm COMMENTS

10/1/1997 194 4.92±0.43 x 10'6 stratosphère
disk

average
ISO

Coustenis et al.

2003
1650-2000

> reanalysis of Coustenis et al. 2003
values

c2h2

7.00±4.50 x 10'6 300

3225

3472

DATA: reanalysis of Geballe et al.
2003 observations. The

21/11/2001 257 5.60±3.30 x 10'6 200
disk

average

KECK 11

NIRSPEC
Kim et al. 2005 2.5 x 104 tempareture profile used in this

work is consistent with Yelle

4.00±2.30 x 10*6 100
(1991) and Strobel et al. (1992),

but not with Lellouch et al. (1990)

c2h4

04/1974-

04/1975

282-

295
1.10±0.90 x 10'7 stratosphère

disk

average

Kitt Peak

National

Observatory

Gillett, 1975 &

Orton, 1992
2.0 x 10'2

The abundance has been adjusted

lowered by a factor of 35% (see
Coustenis et al. 2007; 2010) since

the original value was derived by

using old spectroscopic data

10/1/1997 194 8.48±1.00 x 10'8 stratosphère
disk

average
ISO

Coustenis et al.

2003
1650-2000

reanalysis of Coustenis et al. 2003
values

10/1/1997 194 1.67±0.42 x 10'9 stratosphère
disk

average
ISO

Coustenis et al.

2003
1650-2000

reanalysis of Coustenis et al. 2003
values

c4h2

21/11/2001 257 < 1.00 x 10'7 stratosphère
disk

average

KECK II

NIRSPEC
Kim et al. 2005 2.5 x 104

3225

3472

v4 band. Reanalysis of Geballe et

al. 2003 observations, T-profile:
consistent with Yelle 1991 and

Strobel et al. (1992) but not with

Lellouch et al. (1990). Below 1

mbar the VI /ISO profile adapted
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Species
OBSERV.

DATE
Ls ABUNDANCE

ALTITUDE

(km)

LATITU

DE
INSTRUMENT REFERENCE

RESOLVING

POWER
cm'1 COMMENTS

c2h6

04/1974-

04/1975

282-

295
1.00±0.30 x 10'5 stratosphère

disk

average

Kitt Peak

National

Observatory

Gillett, 1975 &

Orton, 1992
2.0 x 10‘2

The abundance has been adjusted

lowered by a factor of 35% (see

Coustenis et al. 2007, 2010) since

the original value was derived by
using old spectroscopic data

08/1993 153

1.96±2.42 x 10’5 stratosphère center

IRTF (IRHS)
Livengood et al.

2002
1.0 x 106

841-

851

v9 band. Position of Titan: Near

Saturn opposition. Ethane well-

mixed ail over the atmosphère5.80±3.30 x 10'6 stratosphère west

10/1995 179 9.40±9.40 x 10'6 120 -300
disk

average
IRTF (IRHS)

Kostiuk et al.

1997
1.0 x 106

841-

851

v9 band. Température profile: Yelle

et al. 1992 is a report which is

finally published in Yelle et al.
1997

10/1995 179

1.17±0.44 x 10'5 stratosphère east

IRTF (IRHS)
Livengood et al.

2002
1.0 x 106

841-

851

v9 band. Position of Titan: Near

Saturn opposition. Ethane well-

mixed ail over the atmosphère.

Update of Kostiuk et al. (1997)
1.36±0.71 x 10'5 stratosphère west

09/1996 190

1.60±0.77 x 10'5 stratosphère east

IRTF (IRHS)
Livengood et al.

2002
1.0 x 106

841-

851

v9 band. Position of Titan: Near

Saturn opposition. Ethane well-

mixed ail over the atmosphère5.20±5.90 x 10’6 stratosphère west

08/1993 -

09/1996

153 -

190
8.80±2.20 x 10’6 stratosphère

disk

average
IRTF (IRHS)

Livengood et al.
2002

1.0 x 106
841-

851

v9 band. Position of Titan: Near

Saturn opposition. Ethane well-

mixed ail over the atmosphère

10/1/1997 194 1.12±0.45 x 10‘5 stratosphère
disk

average
ISO

Coustenis et al.

2003
1650-2000

reanalysis of Coustenis et al.
2003 values

135



Species
OBSERV.

DATE
Ls ABUNDANCE

ALTITUDE

(km)

LATITU

DE
INSTRUMENT REFERENCE

RESOLVING

POWER
cm'1 COMMENTS

3.00±1.50 x 10'6 stratosphère
15N-40S

West

18/12/2003 286

9.00±5.00 x 10"6 stratosphère
5°N-50°S

East NAO Subaru 8.2- Kostiuk et al.
l-25x 106 851

Titan position: Summer solstice at

January 2003, high stratospheric

8.00±3.00 x 10’6 130 - 300

Simultané

ously
East &

West

m 2005 winds should rapidly mix C2H6

horizontally

c2h6

08/93 - 153 -
100-300

disk
IRTF (IRHS) -

Kostiuk et al.

Bands of other constituents with

weaker signatures may contribute
to the total measured radiance at

ethane's band. Thus, if those

molécules do not be distinguished

from the spectrum, the derived

values for C2H6 are higher than the

real ones and therefore the ground

based measurements expérience

12/2003 286
8.60±3.00 x 10'6

average
NAO Subaru 8.2-

m (HIPWAC)
2010

1.0 x 106 851 différences. CIRS (Coustenis et al.,

2010) and Kostiuk et al., 2010)

agréé in ethane abundance
although the former probes in

lower atmospheric altitudes

(Kostiuk et al., 2010). However,
C2H6 is well mixed in the

stratospheric layers almost

independed from the altitude (c.f.
Vinatier et al. 2010b).
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Species
OBSERV.

DATE
Ls ABUNDANCE

ALTITUDE

(km)

LATITU

DE
INSTRUMENT REFERENCE

RESOLVING

POWER
cm'1 COMMENTS

HCN

8/9/1986 -

6/5/1987

76-

84

7.50±0.80 x 10'8 100

disk

average
IRAM 30-m

Tanguy et al.
1990

2.95

Ripple effect in data. Best fit at
170 km, first détection of HCN in

September 1986 using IRAM
(Paubert et al. 1987)

3.30±0.90 x 10'7 170

6.20±2.10 x 10'7 200

5.20±6.60 x 10'6 300

22/5/1995 174

5.00±1.10 x 10'8 100

disk

average
IRAM 30-m

Hidayat et al.
1997

2.951.50±0.50 x 10'7 170

3.50±1.10 x 10'7 200

10/1/1997 194 2.42±0.40 x 10'7
stratosphère

disk

average
ISO

Coustenis et al.

2003
1850

reanalysis of Coustenis et al. 2003
values

07/1997

and

12/1999

200

and

232

4.00±2.00 x 10'8 100

disk

average
IRAM 30-m

Marten et al.

2002
2.95

S/N has improved by a factor of 6
from Hidayat et al. (1997). Dates

of observations: 04/1996, 07/1997,

12/1998 and 12/1999

2.10±0.80 x 10'7 170

4.50±1.50 x 10'7 200

5.20±1.60 x 10'7 250

5.80±2.00 x 10'7 300
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Species
OBSERV.

DATE
Ls ABUNDANCE

ALTITUDE

(km)

LATITU

DE
INSTRUMENT REFERENCE

RESOLVING

POWER
cm'1 COMMENTS

9.30±7.30 x 10‘6

ABUNDANCE: retrieved by

assuming a uniform ethane fraction

profile. GEISA2009 has replaced

the mentioned spectroscopic Unes
with recent of Vander Auwera et

al. 2007 as well as PNNL lines

c2h6 15/1/2005 300

8.20±2.10 x 10’6

250 -316
disk

center

NAO Subaru 8.2-

m (HIPWAC)

Livengood et al.
2006

1-25 x 106 851

ABUNDANCE: retrieved by

assuming gradient form of ethane

(uniform up to stratopause,
increase after). GEISA2009 has

replaced the mentioned

spectroscopic lines with recent of
Vander Auwera et al. 2007 as well

as PNNL lines

9.70±4.90 x 10'6

ABUNDANCE: retrieved by

assuming discontinuous form for

ethane (uniform about one scale

height above the stratopause,
uniform at an enhanced

concentration above that point).

GEISA2009 has replaced the

mentioned spectroscopic lines with
recent of Vander-Auwera et al.

(2007) as well as PNNL lines

10/1/1997 194 1.67±0.83 x 10"7 stratosphère
disk

average
ISO

Coustenis et al.

2003
1850

reanalysis of Coustenis et al. 2003
values

c3h8

14/12/2002 272 6.20±1.20 x 10'7 90-250
disk

average
TEXES/ IRTF Roe et al. 2003 1.0 x 105 748

v26 band of propane: first resolved

détection, latitude independent,
constant-to-height
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Species
OBSERV.

DATE
Ls ABUNDANCE

ALTITUDE

(km)

LATITU

DE
INSTRUMENT REFERENCE

RESOLVING

POWER
cm'1 COMMENTS

HCN

07/1997

and

12/1999

200

and

232

6.60±2.00 x 10'7 350

disk

average
IRAM 30-m

Marten et al.

2002
2.95

S/N has improved by a factor of 6

from Hidayat et al. (1997). Dates
of observations: 04/1996, 07/1997,

12/1998 and 12/1999

7.50±2.50 x 10‘7 400

8.00±2.50 x 10‘7 450

21/11/2001 257

1.00±0.20 x 10‘7 200

disk

average

KECK II

NIRSPEC
Kim et al. 2005 2.5 x 104

3225

3472

Re-analysis of Geballe et al. (2003)
measurements

4.10±2.00 x 10‘7 300

1.00±0.25 x 10'6 400

5.00±2.00 x 10'6 500

1/2/2004 288

3.00±1.00 x 10'7 83
disk

average
SMA Gurwell 2004 11.84.00±2.00 x 10’7 200

5.00±5.00 x 10‘6 300

22/6/2010

16/7/2010
011

5.90±0.90 x 10‘7 300
disk

average

Herschel Space

Observatory

Courtin et al.

2011
5.10±0.30 x 10‘7 250

4.80±0.40 x 10'7 200

C3H4 10/1/1997 194 1.19±0.40 x 10'8 stratosphère
disk

average
ISO

Coustenis et al.

2003
1650-2000

reanalysis of Coustenis et al. 2003
values

C02 10/1/1997 194 1.82±0.18 x 10'8 stratosphère
disk

average
ISO

Coustenis et al.

2003
1650-2000

reanalysis of Coustenis et al. 2003
values

HNC
14/6/2010

31/12/2010

010

017

2.60±0.80 x 10'8 500

disk

average

Herschel Space

Observatory

Moreno et al.

2011
18.1

4.50±1.20 x 10'9 400

1.10±0.30 x 10'9 300

4.00±1.00 x ÎO'10 200
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4.2 Titan’s active methane cycle

Methane is the second most abundant species, in Titan's thick, nitrogen-dominated

atmosphère [2.19 ±0.002% in the upper atmosphère (Waite et al., 2005), 1.6 ±0.5% in the

stratosphère (Flasar et al., 2005), 1.48 ±0.09% in the lower stratosphère and 5.65 ±0.18 near

the surface (Niemann et al., 2010)]. The existence of a large number of hydrocarbons and

nitriles in Titan's atmosphère, as were firstly shown in Voyager 1/IRIS observations (Hanel et

al., 1981; Coustenis et al., 1989a), originates through methane and nitrogen photolysis

essentially and recombination with nitrogen, as predicted by Strobel (1974).

Figure 4. 1 - The methane cycle on Titan (Atreya et al., 2006).

The products of the photochemistry, which occurs above the level of 700 km in the

atmosphère, are short-lived radicals of CHn (n=l,2,3). The self-reaction between CH3 radicals

forms ethane, which is the most abundant methane photolysis product. Ethane is a stable

molécule and hence a key molécule in the methane cycle from the time it is formed until it

précipitâtes on the surface (Choukroun & Sotin, 2012).

The products of methane photolysis are a high variety of complex hydrocarbons and

once methane is dissociated, the Chemical procedure is irréversible. These organics form the

haze layer, which obscures the lower atmosphère and the surface at visible wavelengths.

Substantial quantities of these aérosols accumulate on the surface.
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Part of the organic surface deposits form liquid lake-like features, discovered by

Cassini, which are extremely significant in photochemical modeling and habitability. When

aérosols reach the équatorial surface, the environment is dry enough for them to remain in

solid State and dunes are formed. However, the methane-based hydrologie cycle has not been

well constrained yet by the Cassini-Huygens mission.

Photochemical reactions and hydrogen escape dissociate methane in the upper

atmosphère (Strobel, 1974; Yung et al., 1984; Wilson & Atreya, 2004; Lawas et al., 2008b)

and if no source replenishes it, it will be totally depleted from the satellite within 10-100

million years (Strobel, 1974; Atreya et al., 2006). Like the hydrological cycle on the Earth,

this procedure is expected to be irréversible. The study of possible methane sources in Titan's

environment is crucial to understand the methane cycle. The sources that could replenish the

dissociated atmospheric methane in Titan's atmosphère are still unknown, but they are

possibly located on the surface and in the interior (see following Chapter). Atreya et al.

(2006) and other investigators hâve suggested methane outgassing from the interior and/or

hydrothermal sources to satisfy the mission methane.

In my PhD studies, I hâve looked at Titan’s environment from different points of

view, from the atmosphère to the surface conditions and even to some of the possibly

associated internai processes, as will be discussed in the next chapter. The methane cycle is

the leading theme among ail these processes and helps us understand the various physical and

geological processes, while by studying the processes themselves we better understand this

alcanological cycle, whose importance is major in the work presented here.
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4.3 Photochemistry

Gaseous species are idéal agents for tracing the photochemical and dynamical processes

occurring on Titan's atmosphère. The combination of Voyager, of other space-bome and of

Earth-based observations of Titan provides constraints to photochemical models.

4.3.1 Complex photochemistry in the upper atmosphère

The Chemical and physical pathways involved in the Chemical évolution of the atmosphère of

Titan hâve been described by several photochemical models (Yung et al., 1984; Toublanc et

al., 1995; Wilson & Atreya, 2004; Lawas et al., 2008a;2008b). These models estimate the

resulting vertical concentration profiles of the different molécules starting from dissociation

of N2 and CH4 and then fulfilling a volatile Chemical cycle. Solar EUV and UV photons are

the main sources of photo-dissociation (Agren et al., 2009; Galand et al., 2010). Other photo

dissociation sources are galactic cosmic rays and energetic particles from the Satumian

magnetosphere (Fig. 4.2) (Krasnopolsky, 2009).

Figure 4. 2 - Sources of ionization in Titan's atmosphère. The EUV solar flux has been calculated for a solar

zénith angle at 60°. Electrons T5 represent the nighttime électron distribution in Titan's ionosphère which was

observed by Cassini flyby T5 (Krasnopolsky, 2009).

The photochemical processes provide the pathways for the formation of ethane,

acetylene and hydrogen cyanide in the higher atmospheric levels. These molécules play a key

rôle: after their formation, they diffuse down to the lower atmosphère where they produce
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higher hydrocarbons and nitriles and perhaps aromatic compounds. Besides, methane

dissociation probably also occurs in the lower stratosphère through photocatalytic processes

involving acetylene and polyynes. Polyynes are the group of organics in which single and

triple bonds altemate. The simplest member of this group is acetylene.

Contrary to the very short lifetime of C2H2 on Earth (Rudolph et al., 1984), acetylene

expériences a seasonal variation during a Titan year (29.5 yrs) and reaches almost the

abundances recorded by Voyager 1 in 1980. The end products of the Chemical évolution of

methane in the atmosphère are complex refractory organic compounds and ethane. Figures 4.3

- 4.5 summarize the complex photochemical reactions occurring in Titan's upper atmosphère

according the Yung et al. (1984) and Wilson & Atreya (2004) models.
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Figure 4.3- Plot of the relation among observed molécules and parent molécules. Numbers refer to the Chemical

cycles described in Yung et al. (1984).

143



Figure 4. 4 - Plot of the hydrocarbon chemistry in Titan according to Wilson & Atreya (2004). The stable species

and the principal reactions are plotted in bold.

Figure 4. 5 - Plot of the nitrile chemistry in Titan according to Wilson & Atreya (2004). The stable species and

the principal reactions are plotted in bold. Boxes represent the ions.

As the haze particles fall through the atmosphère and grow, they become détectable

with imaging Systems such as the Cassini Imagine Science Subsystem (ISS) at about 500 km

altitude and are ubiquitous throughout the stratosphère (Porco et al., 2005). Since they are
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strong absorbers of solar UV and visible radiation, they heat the stratosphère and drive wind

Systems in the middle atmosphère, like the ozone layer in the Earth's middle atmosphère.

4.3.2 The photochemical model of Lavvas et al.

We hâve been extensively collaborating with Dr. Panayiotis Lavvas, currently Chargé de

Recherche at the French National Research Center. He had developed a 1-D coupled radiative

convective photochemical microphysical model to investigate the spatial and temporal

variability of Titan’s atmosphère and its photochemical haze (Lavvas et al., 2008a;2008b)

during his PhD (A. Coustenis, co-advisor) which he updated and upscaled in the past years.

The model consists of three parts: the radiative transfer calculations, the chemistry sub-model

and the microphysics sub-model (Fig. 4.6).

Figure 4. 6 - Flow chart of the model. The model opérâtes in a self-consistent manner (adapted by Lavvas et al.

2008a).

The model firstly incorporâtes detailed radiation transfer calculations which describe

the short and long wave fluxes. These calculations provide the vertical radiation field and the

thermal structure which are used for simulating photochemical processes in the atmosphère.
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The photolysis of Titan’s major compounds (N2, CH4) produces the haze particles in its

atmosphère. The Chemical sub-model solves the time-depended continuity équation for the

profiles of the contributing molécules' abundances. The haze pathways lead to haze monomer

production at each altitude.

The growth of the haze particles from an initial monomer is described by the

microphysical branch of the model. Haze particles are assumed to be spherical with no fractal

structure and the haze particle production rate is quite different from the Gaussian. The model

generates the vertical haze distribution from the vertical production rates. Then, the calculated

aérosol and gas opacities are included in the radiation transfer calculations in order to find

their influence in the température profile and géométrie albedo. The model thermal structure

dépends on the haze vertical distribution. This itérative process occurs until the equilibrium is

reached.

By applying this model to Titan’s atmospheric envelope we dérivé a better

understanding of the unknown connection mechanism between the production of neutral

gases and their transformation to haze particles. The model reproduces well the observations

(Lawas et al., 2008b) as we hâve also reported in Coustenis et al. (2010b).
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4.4 Composite Infrared Spectrometer (CIRS) data sélection

My work in studying Titan's stratosphère is twofold. I first studied the composition and

température as retrieved from CIRS spectra averaged yearly during the nominal mission

(2004-2008) and then looked at the évolution of the thermal structure and Chemical

composition from the beginning of the mission in 2004 up to early 2012 with more time-

resolved sélections. Large averages hâve been also used for the study of water vapor and the

weak species and of course to search for new molécules as I describe hereafter.

For ail selected CIRS datasets, I hâve restricted the émission angles to be less than

65°. I sum ail longitudes (because it was demonstrated that no longitudinal variations are

expected (Coustenis et al., 2007; Teanby et al., 2008) and retrieve spectra only for different

latitudinal bins.

As discussed in Coustenis et al. (2007), we need to correct the data for any latitude

smearing effect observed for high émission angles and/or data taken at latitudes higher than

50°N (Fig. 4.7). The sounded latitudes can be about 5° lower when the line-of-sight intercepts

the surface at 55°N or 55° S. Thus, the actual latitude of the stratospheric altitudes observed

being rather 50°N and 50°S, respectively. The latitudes listed in data Tables below (4.4-4.14)

are corrected for this effect.

latitude

Figure 4. 7 - Illustration of the Cassini changing viewing aspect for the same surface intersect latitude at 50°N.

The contribution functions peak at about 150 km (provided by Dr. N. Teanby). This plot shows that the actual

location at which CIRS data are acquired dépends highly on the émission angle of the observation. However, in

this work we hâve taken into account this so-called smearing effect (Coustenis et al. 2007) and corrected the line

of sight before the retrievals.
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4.4.1 CIRS data: yearly spectral averages from the Cassini-Huygens nominal mission

(2004-2008)

In our paper Coustenis et al. (2010b), we gathered nadir CIRS spectra from the first 44

Cassini flybys which hâve been performed within the first 4 years of the Cassini-Huygens

mission. It was the first time that Titan was explored continually and that study is

complementary to the previous one described in Coustenis et al. (2007). The spectra analyzed

in the 2007 study were obtained within the first two years of the mission (July 2004-January

2006, flybys TB-T10). A full description of the instrument and the processing and calibration

procedure can be found in Chapter 2 of this manuscript.

As in Coustenis et al. (2007), in the 2010 study we averaged CIRS FP3 and FP4

spectra from the CIRSDATA database in latitudinal bins of 10° ranging from 85°S to 80°N in

both mid and high resolutions (2.54 and 0.53 cm"1 respectively). We hâve excluded the T0

and TA flybys from our queries. Data from T0, the first Cassini flyby of Titan, was omitted

since they were obtained at distances too high to be compared to the observations which

followed. Most of the data obtained from TA flyby were corrupted due to a CIRS command

error. Tables 4.5 and 4.6 list the high and medium resolution spectra that I assembled and

used in Coustenis et al. (2010b - c.f. Table 1).
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Table 4. 5 - Characteristics of the CIRS nadir spectral sélections from Titan flybys TB-T44 at high resolution of

0.53 cm'1 (adapted from Table 1 of Coustenis et al., 2010b).

Mean

Latitude
Spectra

FP3

airmass S/N Spectra

FP4

airmass S/N ratio

70°N 1117 1.21 34.4 2011 1.32 102.6

60°N 2413 1.25 48.0 2147 1.25 91

50°N 2316 1.12 48.7 4302 1.09 117

42°N 5328 1.08 84.5 4098 1.12 133.7

33 °N 7002 1.12 116.8 8222 1.14 242.6

25°N 8607 1.09 140.3 7942 1.09 277.6

15°N 5249 1.07 114.9 9299 1.06 340.2

5°N 11981 1.03 173.8 10899 1.04 383.7

5°S 10873 1.04 161.7 10903 1.07 392.3

15°S 4144 1.15 92.6 3567 1.25 229.6

25°S 2446 1.13 62.9 3457 1.07 206.8

33°S 3574 1.13 85.0 2949 1.24 197.4

42°S 2190 1.24 65.7 3332 1.28 205.8

50°S 2154 1.15 60.7 1968 1.16 149.4

60°S 2081 1.28 60.8 1845 1.26 145.1

70°S 778 1.45 39.1 2543 1.41 173.0
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Table 4. 6 - Characteristics of the CIRS nadir spectral sélections from Titan flybys TB-T44 at high resolution at

2.54 cm'1 (adopted from Table 1 of Coustenis et al., 2010b).

Mean

Latitude
Spectra

FP3

airmass S/N Spectra

FP4

airmass S/N

70°N 528 1.27 59.2 530 1.24 135.7

60°N 1184 1.21 84.9 1617 1.03 201.2

50°N 6133 1.11 203.9 6471 1.12 382.9

42°N 8066 1.13 227.3 7170 1.15 480.5

33°N 8173 1.12 337.2 11154 1.13 721.7

25°N 12614 1.11 444.9 10317 1.13 861.1

15°N 13018 1.07 479.3 14509 1.08 1123.8

5°N 15639 1.09 534.8 15741 1.09 1231.8

5°S 19953 1.05 575.5 19726 1.04 1357.3

15°S 18953 1.05 524.3 19140 1.05 1338

25°S 7426 1.11 323 8266 1.10 861.2

33°S 6948 1.08 296.8 5791 1.12 706

42°S 5085 1.12 244.9 4722 1.12 613.1

50°S 2908 1.10 176.8 3035 1.12 475.4

60°S 1353 1.16 121.6 1270 1.16 313.3

70°S 1379 1.33 126.8 1421 1.28 330.2
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4.4.2 CIRS data: monthly averages from the beginning of the Cassini-Huygens mission

(July 2004) up to early 2012.

In the more recent study, in 2012, we looked at more time-resolved data now that a large

number of spectra hâve become available. We hâve thus used ail available and exploitable

data at high spectral resolution (0.5 cm'1) and I performed averages of the spectra acquired

during one or several flybys as necessary to attain a high signal-to-noise ratio for my

calculations. To do this, I hâve queried for spectra averaged over a given date (flyby, or over a

month) and attributable to a given latitudinal bin between (50°S and 50°N) containing a large

number of spectra in general, with some exceptions (Bampasidis et al., 2012a).

The TB-T9 flybys (December 2004-December 2005) at 50°N and 50°S contain

insufficient data in the right conditions (signal-to-noise, émission angle, distance, région, etc)

for our purposes and they are excluded. During the flybys that followed, CIRS acquired a

large number of spectra in FP3 and FP4 at high, medium and low spectral resolutions (0.53,

2.54 and 15 cm'1 respectively) in surface-intercepting (nadir) and horizontal viewing (limb)

geometry conditions. However, the spacecraft did not always track ail latitudes and in the

northem hemisphere data from only late 2007 to 2010 are available. Moreover, an instrument

anomaly followed by a reboot of CIRS took place in December 2006, depriving us of data

from that time.

Tables 4.7 and 4.9 contain nadir averages at high resolution (0.5 cm'1) for the northem

hemisphere (FP3 and FP4 spectra respectively), while Tables 4.8 and 4.10 contain the datasets

for the southem hemisphere (FP3 and FP4 spectra respectively). The sélections we made in

order to enhance the signal-to-noise ratio cover different latitudes on Titan. Each query was

restricted to émission angles lower than 65°. The average signal-to-noise ratio is given in the

Tables, as well as the corresponding Cassini Titan fly-by(s) and the relative solar longitude

(Ls). Foliowing the same sélection criteria I hâve also analyzed 6 datasets of medium

resolution spectra (2.54 cm'1) taken at FP3 and FP4 spectral ranges for January 2008 (flyby

T40), April 2009 (flybys T52-T53) and May 2010 (T68). Table 4.11 and 4.12 list these mid-

resolution data characteristics acquired at FP3 and FP4 respectively.
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Table 4. 7 - Titan flybys and FP3 data acquisition characteristics from March 2007 to September 2011 averaged

in northem latitudinal bins (adapted from Bampasidis et al. 2012a).

Year Month Latitude

Total

number of

spectra

Signal-

to-noise Airmass

Cassini

Flyby Ls (°)

2007 Mar 50°N 357 18.6 1.02 T26-T27 329

II Dec 50°N 335 19.9 1.25 T38-T39 338-339

2008 Feb-Mar-Jul 50°N 145 12.4 1.19 T41-T45 341-347

2009 Mar 50°N 517 25 1.35 T51 355

II

Apr-May 50°N 275 15.3 1.01 T52-T55 355-357

II Jun 50°N 476 25.6 1.88 T56-T57 358

2010 Jan 50°N 284 21.3 1.69 T65-T66 005-006

2006 Jul 30°N 551 34 1.17 T15-T17 320

2007 May 28°N 934 44.7 1.06 T30-T31 331-332

tl Dec 31°N 905 45.4 1.14 T38-T39 338-339

2008 Mar 30°N 992 42.3 1.01 T42 342

It Dec 36°N 262 20.5 1.03 T48-T49 351-352

2009 Dec 30°N 748 44.5 1.46 T63-T64 004-005

2010 Jun 35°N 599 37.4 1.24 T69-T70 010

2011 Sep 32°N 771 46.8 1.49 T78 025

2006 Jan 1°N 1291 56.2 1.01 T10 314

" Jul 1°N 2118 71.8 1.01 T15-T16 320

2007 Apr-May 1°N 189 23.9 1.21 T28-T29 330-331

II Jun 1°N 1497 62.5 1.06 T32-T33 332-333

II

Aug 1°N 152 19.3 1.01 T35 335

2008 Jan 1°N 589 39.4 1.07 T40 340

II

May 2°N 597 47 1.55 T43-T44 344-345

2009 Mar-Jul 1°N 86 18.3 1.75 T51-T59 355

II Oct 1°N 72 14.9 1.19 T62 002

II Dec 1°N 283 25.6 1.01 T63-T64 004

2010 Sep 3°N 1504 58.9 1.02 T72 014

2011 May 11°N 921 50 1.20 T76 021
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Table 4. 8 - Titan flybys and FP3 data acquisition characteristics from February 2006 to January 2012 averaged

in Southern latitudinal bins (adapted by Bampasidis et al. 2012a).

Year Month Latitude

Total number

of spectra

Signal-to-

noise Airmass Cassini Flyby ls n

2006 Mar 1°S 1515 61.3 1.04 T12 316

2007 Oct 1°S 93 17 1.28 T19-T20 323-324

H Jul rs 232 23.3 1.01 T34 334

»l Nov 1°S 813 44.5 1.01 T37 338

" Dec 3°S 276 25.3 1.01 T38-T39 338-339

2008 Feb rs 426 39.8 1.46 T41 341

2010 Apr-May 1°S 466 33.0 1.01 T67 008

II Jun 1°S 391 30.6 1.02 T69-T70 010

lt Jul rs 985 49.8 1.08 T71 011

2011 Dec 2°S 1047 52.1 1.19 T79 028

2006 Feb 30°S 666 37.7 1.88 TU 315

lt

May 30°S 536 35.3 1.33 T14 318

2008 Nov 38°S 1055 39.9 1.02 T46-T47 350-351

2009 Dec 24°S 961 40 1.08 T63-T64 004-005

2010 May 24°S 911 44.9 1.30 T68 009

2012 Jan 30°S 1980 56.1 1.49 T80-T81 029

2006 Oct 50°S 568 30.9 1.18 T19-T20 323

2007 Jan 50°S 925 37.0 1.04 T23-T24 327

"

Mar-May 50°S 341 28.2 1.64 T26-T31 329-332

" Jul-Aug 50°S 647 39.6 1.70 T34-T35 334

II Dec 50°S 467 31.7 1.53 T38-T39 338-339

2008 Jul 50°S 34 9.6 1.28 T41 341

2009 Mar 50°S 198 17.2 1.09 T51 355

II

May 50°S 1288 45.2 1.25 T54-T55 357

2010 Apr 50°S 124 16.0 1.69 T67 008
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Table 4. 9 - Titan flybys and FP4 data acquisition characteristics from March 2007 to September 2011 averaged

in northem latitudinal bins (adapted by Bampasidis et al. 2012a).

Year Month Latitude

Total number

of spectra

Signal-

to-noise Airmass

Cassini

Flyby Ls O

2007 Mar 50°N 1376 64.6 1.03 T26-T27 329

II Dec 50°N 342 34.4 1.26 T38-T39 338-339

2008 Feb-Mar-Jul 50°N 166 12.8 1.14 T41-T45 341-347

2009 Mar 50°N 417 30 1.28 T51 355

"

Apr-May 50°N 1481 49.9 1.01 T52-T55 355-357

It Jun 50°N 575 35.8 1.65 T56-T57 358

2010 Jan 50°N 234 27.6 1.67 T65-T66 005-006

2006 Jul 30°N 567 67.1 1.17 T15-T16 320

2007 May 30°N 1789 125 1.06 T30-T31 331-332

" Dec 30°N 657 81.8 1.18 T38-T39 338-339

2008 Mar 30°N 1013 86.5 1.02 T42 342

" Dec 35°N 394 74.1 1.03 T48-T49 351-352

2009 Dec 30°N 764 83.9 1.36 T63-T64 004-005

2010 Jun 36°N 503 69.6 1.25 T69-T70 010

2011 Sep 28°N 1107 106 1.39 T78 025

2006 Jan 2°N 869 107.3 1.01 T10 314

fl Jul 1°N 1840 152.0 1.01 T15-T16 320

2007 Apr-May 3°N 93 37.5 1.20 T28-T29 330-331

II Jul 1°N 198 51.9 1.02 T34 334

fl

Aug 1°N 146 45.5 1.02 T35 335

2008 Jan 1°N 449 80.3 1.09 T40 340

tl Feb 1°N 439 86.2 1.59 T41 341

II

May 3°N 64 32.9 1.70 T43-T44 344-345

2009 Dec 1°N 322 64.8 1.03 T63-T64 004

2010 Apr-May 1°N 233 54.1 1.01 T67 008

2011 May 7°N 765 99.8 1.18 T76 021
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Table 4. 10 - Titan flybys and FP4 data acquisition characteristics from February 2006 to January 2012 averaged

in Southern latitudinal bins (adapted by Bampasidis et al. 2012a).

Year Month Latitude

Total number

of spectra

Signal-

to-noise Airmass

Cassini

Flyby Ls O

2006 Mar 1°S 1515 142.1 1.09 T12 316

II Oct rs 96 39.4 1.26 T19-T20 323-324

2007 Jun 1°S 2545 195.1 1.09 T32-T33 332-333

II Nov 1°S 869 106.7 1.01 T37 338

II Dec rs 382 70.9 1.02 T38-T39 338-339

2009 Mar-Jul 1°S 84 39.2 1.71 T51-T59 355

II Oct 1°S 60 26.6 1.09 T62 002

2010 Jun rs 367 69.4 1.01 T69-T70 010

II Jul rs 913 110.8 1.13 T71 011

" Sep 3°S 1622 136.9 1.01 T72 014

2011 Dec 10°S 1866 157 1.24 T79 028

2006 Feb 30°S 666 96 1.21 Tl 1 315

II

May 30°S 551 85.5 1.26 T14 318

2008 Nov 31°S 1055 106.4 1.01 T46-T47 350-351

2009 Dec 28°S 980 103.4 1.12 T63-T64 004-005

2010 May 24°S 1028 114.3 1.21 T68 009

2012 Jan 30°S 2083 133.8 1.15 T80-T81 029

2006 Oct 50°S 546 78.8 1.16 T19-T20 323

2007 Jan 50°S 842 95.8 1.07 T23-T24 327

II

Mar-May 50°S 320 63.1 1.42 T26-T31 329

II

Jul-Aug 50°S 538 86.8 1.68 T34-T35 334

II Dec 50°S 456 77.5 1.59 T38-T39 338-339

2008 Jul 50°S 51 25.6 1.62 T41 341

2009 Mar 50°S 584 73.4 1.13 T51 355

II

May 50°S 892 91.0 1.33 T54-T55 357

2010 Apr 50°S 525 35.4 1.71 T67 008
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Table 4. 11 - Titan flybys and medium FP3 resolution data acquisition characteristics from January 2008 to June

2010 averaged in 50°N, 0° and 50°S at medium resolution (2.53 cm'1).

Year Month Latitude

Total number

of spectra

Signal-

to-noise Airmass

Cassini

Flyby Ls(°)

2008 Jan 50°N 459 60.2 1.26 T40 340

2009 Apr 50°N 1193 87.1 1.08 T52-T53 355-356

2010 May 50°N 160 46.7 1.84 T68 009

2010 May 0°N 396 87.5 1.12 T68 009

2010 May-Jun 50°S 484 77.1 1.74 T68-T70 009-010

Table 4. 12 - Titan flybys and medium FP4 resolution data acquisition characteristics from January 2008 to June

2010 averaged in 50°N, 0° and 50°S at medium resolution (2.53 cm"1).

Year Month Latitude

Total number

of spectra

Signal-

to-noise Airmass

Cassini

Flyby Ls(°)

2008 Jan 50°N 495 106.9 1.27 T40 340

2009 Apr 50°N 4447 227.0 1.01 T52-T53 355-356

2010 May 50°N 163 67.2 1.84 T68 009

2010 May 0°N 390 192.7 1.13 T68 009

2010 May-Jun 50°S 473 173.9 1.78 T68-T70 009-010

156



4.4.3 CIRS data: large averages for water vapor détection

In order to detect and retrieve the abundances for water vapor, I hâve used our radiative

transfer code (ARTT) to simulate large CIRS averages in the FP1. These calculations offer a

chance to compare the results of our radiative transfer code with the retrievals of the

NEMESIS code - Non-linear Optimal Estimator for Multivariate Spectral Analysis (Irwin et

al., 2008).

The water vapor détection in Titan's atmosphère can be achieved only through large

spectral averages, because, as demonstrated by the ISO first détection in 1997 data (Coustenis

et al., 1998) the émission signatures are rather weak. In our paper Cottini et al. (2012a), we

queried for 3 FP1 sélections within the season of Titan’s northem winter which is from

December 2004 up to December 2008. These FP1 datasets are listed in Table 4.13 below.

Table 4. 13 - Titan flybys and medium FP1 resolution data acquisition characteristics from December 2004 to

December 2008.

Total number Cassini

Latitude of spectra Airmass Flyby

80°S-45°S 1700 1.22 T40

45°S-10°S 3800 1.27 T52-T53

0-30°N 7000 1.21 T68
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4.5 The method for the analysis of the spectra

I hâve analyzed the Cassini/CIRS spectra using a method described in previous articles

(Coustenis et al. 2007; 2010). In brief, we model Titan’s thermal infrared spectrum using a

line-by-line monochromatic radiative transfer code upgraded ffom the one we used in

previous Titan atmospheric structure retrievals (ARTT, for Atmospheric Radiative Transfer

for Titan, c.f. Bampasidis et al. 2012 and references within).

I computed synthetic nadir spectra in each of the FP1 (10-600 cm'1), FP3 (600-1100

cm'1) and FP4 (1100-1400 cm'1) spectral ranges, which I then compare to the observations in

order to retrieve the vertical température profile (from the V4 methane band émission in the

FP4, at 7.7 micron) and the composition of Titan's atmosphère (ffom the gaseous molecular

signatures in FP1 and FP3). The dominant émission bands in the CIRS/FP4 spectra (1100-

1500 cm'1) are the methane V4 band at 1304 cm'1 and the CH3D V6 band at 1156 cm'1. Several

molécules hâve émission bands in this région, but their signature has not been verified yet,

like the propane band V24 at 1472 cm'1 (Nixon et al., 2009). The 13-C bearing isotope of

CH3D has also a weak émission at 1148 cm'1. Figure 4.8 below depicts the contribution

functions of these molécules at May 2009 CIRS sélection at 50°S and high resolution (0.5 cm'

Figure 4. 8 - The contribution functions of CH3D at 1156 cm'1 (black), CH4 - Q branch at 1304 cm'1 (red), CH4 -

R branch at 1212 cm'1 (blue) and CH4 - P branch at 1327 cm'1 (magenta). The corresponding sélection is the one

of May 2009 at 50°S in high resolution.

As shown in the contribution function of CH3D (Fig. 4.8), the atmospheric région which is

probed in this band at 50°S is between 0.03 and 10 mbar with a peak at 0.24 mbar. Similarly,
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the Q-branch of CH4 peaks at 0.29 mbar with a FWHM between 0.04 and 1 mbar. As far as

the methane wings are concemed, the R- and P-branches probe the atmosphère between 0.01-

7 mbar and 0.1 -5 mbar respectively.

The best fit for the sélection of May 2009 at 50°S in the FP4 région is illustrated in

Figure 4.9 below. The 3-o standard déviation due to noise alone in this région is about 2x10’10
2 1/1

Wcm'“sr' /cm' . When other sources of uncertainties (in the methane abundance, the thermal

structure, the calibration and the continuum fit) are included, the total error is about 2x10'9

Wcm^sr'Vcm'1. The misfit between the model and data from 1180 to 1250 cm'1 has not been

yet understood; perhaps is caused by uncertainties in methane line lists (Coustenis et al.,

2010b).
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Figure 4. 9 - (Upper) Fit of CII3D at 1156 cm"1 and CH4 at 1304 cm"1. (Lower) Différence between data and the

model. The sélection is the one of May 2009 at 50°S in high resolution (0.5 cm"1).

The way the radiative transfer calculations work is that either the opacity is known and

the thermal composition inferred or the température profile is injected in the code and the

mixing ratios inferred. To get the température profiles from the V4 methane band, we use the

CH4 vertical mixing ratio profile in the stratosphère as measured by the Huygens probe

(Niemann et al., 2010), which yields 1.48% above the cold trap, compatible with the CIRS

inferences from FP1 (Flasar et al., 2005). We also take 0.11% for H2 (Samuelson et al., 1983)

and 98.41% for N2. We then use the inversed température profiles to infer the abundances of

the emitting gases.

In the ARTT code, I hâve included more constituents relevant to Titan’s chemistry

following a procedure which is described in detail in Chapter 3. The contributing molécules to

the synthetic model spectra are therefore 26 in total, which is ail the so-far detected
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hydrocarbons, nitriles and oxygen compounds in addition to the main molécules N2, H2, CH4

and Argon.

Furthermore, the updated list of ARTT molécules includes the 13CH4, 13CH3D,

12C13CH2 and H15CN isotopologues that are essential in fitting the émission bands of methane,

acetylene and hydrogen cyanide respectively and allow us to infer the 12C/13C and 14N/15N

ratios. Finally, new oxygen and hydrocarbon isotopologues that were recently detected

(Jennings et al., 2008; Nixon et al., 2008a) are also incorporated.

As said in Chapter 3, the need for a massive upgrade was obvious since new

spectroscopic parameters for the molécules found in the FP3 and FP4 spectral ranges became

available from recent laboratory studies, as for instance in the case of ethane and propane

spectroscopic parameters, both of which were provided from the individual line lists of

Vander Auwera et al. (2007) and Flaud et al. (Flaud et al., 2010) respectively. These new line

lists are from the GEISA 2009 (Jacquinet-Husson et al., 2011) and the HITRAN 2008

(Rothman et al., 2009) databases, in which ail these updates hâve been included.

More in detail, the analysis we perform comprises the following steps: we begin by

inferring the température profiles by the inversion of the observed ru methane émission band

at 1305 cm'1 in CIRS/FP4 individually for each sélection (Tables 4.5-6, 4.9-10 and 4.12-14).

These thermal profiles are provided by R. Achterberg of the GSFC following the method

described extensively in Achterberg et al. (2008; 2011). Once the vertical thermal structure is

known, the contribution fonction of each molécule incorporated in the model can be

calculated (thus providing the altitude/pressure range from where the maximum of the

émission originates) and more importantly its abundance can be retrieved when the best fit is

achieved.

The a priori reference température profile for these calculations was the 15°S profile

from Flasar et al. (2005). As I hâve described in Chapter 3, Section 3.2,1 hâve also run tests

using the HASI measured température structure in the stratosphère and troposphère

(Fulchignoni et al., 2005). At the équatorial latitudes, the impact of these thermal profiles in

the abundances retrievals is at about 10% less for ail molecular abundances, except for HCN

(20%). This small impact is expected because the HASI profile was inferred above the

Huygens landing site (10°S). In the northem latitudes, the divergence is more pronounced

(within 20% of increase in abundance) for the molécules with the stronger émission bands

(C2H2, C2H6 and HCN). Most of the molecular abundances vary by less than 10% whatever

the initial température profile (see Tables 3.2 and 3.3).
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Then, I adapt each individual température profile to solve the radiative transfer

équation in the FP3 (and FP1 for the water vapor) part of the CIRS spectrum. Through an

itérative best-fit process, I dérivé the trace gases abundances of the various components in

each sélection of data (Tables 4.5-6,4.7-8, 4.11 and 4.13-14).

For ail of the molécules analyzed here in surface-intercepting (nadir) geometry

conditions, I use only constant-with-height abundance profiles above the condensation level

relevant to stratospheric levels of 0.1-20 mbar essentially (roughly 80-280 km). Only C2H2,

HCN and C2H6 can provide some vertical information and there I hâve tested vertical profiles

against the observations. The others do not hâve strong enough émission bands to provide the

retrieval of vertically-dependent information.

Moreover, in order to fit the continuum observed in the spectra, I hâve adapted the

haze description with wavenumber recently reported in Vinatier et al. (2012b) adjusted to

match the level of radiance observed between the molecular bands in each sélection. This

distribution provides the aérosol reffactive index from CIRS spectra in the far and mid-

infrared régions near 15°S and 20°S.
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4.6 Titan's stratospheric composition during the nominal Cassini-

Huygens mission

The study of CIRS data obtained during the Cassini-Huygens mission has significantly

advanced our perspective of Titan's atmospheric Chemical structure. In the paper of Coustenis

et al. (2007), the authors hâve analyzed the CIRS spectra retrieved ffom flybys TB to T10

(December 2004-January 2006) and reported méridional variations of trace gases. Figure 4.10

illustrâtes the results of this work.
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Figure 4. 10 - Latitudinal variations reported in Coustenis et al. 2007. The upper panel shows the molécules the

abundance of which increases with the latitude above 50°N, while the molécules of the lower panel remain

almost constant with latitude.

The abundances of C3H4, C4H2, HCN, CôHô and HC3N show significant enhancement above

50°N. The other molécules (CCF, C2H6, C2H2, C2H4 and C3H8) remain fairly stable with

latitude. C2H4 and C3H8 show a decrease in the abundance near the North pôle. Similar

observations hâve been reported ffom Voyager data (Coustenis & Bezard, 1995), but the
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enhancement was greater (Fig. 4.11).

Figure 4. 11 - Latitudinal distribution of major organic trace gases from Voyager (Coustenis & Bezard, 1995)

and Cassini (Coustenis et al., 2007), adapted from Coustenis et al. 2010b.

However, due to the Cassini position during the first 10 flyby of Titan, the most

northem latitude observed was the 60°N one. Since there is a significant enhancement of the

trace gases mixing ratios polewards to the north, further analysis of polar data is needed.

Thanks to the Cassini mission, a wealth of spectra became available in order to study Titan at

ail latitudes.

In the paper of Coustenis et al. (2010b), which I hâve co-authored, we hâve used large

spectral averages from flybys TB to T44 that cover the whole nominal mission of the Cassini

orbiter. These averages provide more detailed abundances retrievals as well as improved

méridional variations as described hereafter.
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4.6.1 Titan's stratospheric chemistry retrieval

In Coustenis et al. (2010b), we hâve divided Titan's globe into latitudinal bins of 10° from

90°S to 90°N with émission angles less than 50° and searched to détermine spatial variations

in température and composition from 2004 to 2008, more refined with respect to previous

studies. No longitudinal variations existing in the Chemical composition of the stratosphère

(Coustenis et al. 2007) and the longitudinal variations in température not being significant

(Achterberg et al., 2008), we summed up ail longitudes.

This work was a great introduction for me in CIRS data analysis by using ARTT

(Atmospheric Radiative Transfer code for Titan) and the ensuing interprétation. It was also

important that through that project I got familiar with the radiative transfer code modifications

and began to interact with the CIRS data acquisition and calibration team in Goddard.

The modeling procedure is described in Section 4.4 and the data used are listed in

Tables 4.5 and 4.6. Due to the détection of C2HD (Coustenis et al., 2008) and 13CH3D (Bezard

et al., 2007), these molécules hâve been included in the 2010 version of ARTT.

The vertical distributions of the molécules are assumed to be constant with altitude

with the exception of acetylene, for which we tried some vertical profiles. We hâve also used

distributions predicted from General Circulation Models (Rannou et al., 2005). Contrary to

the previously described analysis of the temporal and spatial variations of the Titan's

stratosphère, the GCM distributions for C2H2 work well (Coustenis et al. 2010b).
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Figure 4. 12 - Latitudinal variations reported in Coustenis et al. (2010b) with 3-a error bars. For latitudes lower

than 40°S, only upper limits are illustrated for bcnzene.

We confirm the méridional variations reported in Coustenis et al. (2007) with a

significant enhancement at northem latitudes with new smaller uncertainties. Figure 4.12

illustrâtes the latitudinal variations during Cassini prime mission.

Différences in the mixing ratios hâve been found for ethane and for other species

(C2H4 and C3H8) compared to the previous work (Coustenis et al. 2007). The decrease in the

abundance near the North pôle of C2H4 and C3H8 is not confirmed. Instead, the propane's

mixing ratio increases slightly, while the values for ethylene are higher.

Ethane, acetylene, propane and carbon dioxide show abundance increase from

South to North by a factor ranging from 1.5 to 2. The mixing ratios of benzene and
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cyanoacetylene increase even more significantly to the North by factors of 30 and 150

respectively. The other molécules hâve enriched values by factors within 3 and 8 (Coustenis

et al, 2010b). In the 2007 study, the enrichments found in the North were not at the levels

of the Voyager ones. The ones in the 2010 study are lower with respect to the ones observed

at the time ofthe Voyager encounter.

The results ofour work are compatible with the ones of Teanby et al. (Teanby et al.,

2009a) and with the isotopic ratio retrievals of Bezard et al. (2007), Nixon et al. (2008a;

2008b) and Vinatier et al. (2007b). Additionally, our findings are in good agreement with

photochemical models (Lavvas et al. 2008a; 2008b) and GCM models (Crespin et al., 2008).

The main reason of the observed enhancement from the Southern latitude to the

northern ones seems to be the stratosphère which is in the shadow of Titan 's pôle during

winter. During the polar night, the mesosphere is illuminated by the sunlight and

Saturnian magnetospheric energetic électrons. Thus, HCN and other nitriles are formed in

the upper atmospheric layers, they diffuse downwards and accumilate close to the polar

région (Yung, 1987; Coustenis étal., 1989a).
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4.7 Temporal and spatial variations during the Cassini-Huygens mission

Latitudinal variations in Titan’s stratospheric thermal and Chemical structure hâve been

previously reported from Cassini CIRS limb and nadir data analyses (Flasar et al., 2005;

Coustenis et al., 2007; 2008; 2010b; de Kok et al., 2007a; Teanby et al., 2007; 2008; 2009b;

Vinatier et al., 2007a; 2010b; Nixon et al., 2008b).

In this section, I investigate the possible thermal and Chemical évolution within 2006

and 2012, complementing and refining previous studies (Teanby et al. 2008; 2010;

Achterberg et al. 2011) by adding temporal resolution. I focus on Titan’s stratosphère and

lower mesosphere between -120 and 500 km in altitude and latitudes from 50°S to 50°N.

4.7.1 Thermal évolution of Titan’s stratosphère during the Cassini mission

The température profiles used in this study were retrieved by Dr. R. Achterberg by fitting of

the iu methane band at 1305 cm"1 for the 2006-2012 CIRS data acquisition period (see Fig.

4.9 above). These retrievals were obtained by a constrained algorithm which is an inverse

approach of the radiative transfer équation solution (Achterberg et al. 2008; 2011). A more

general view of solving inversely the radiative transfer équation is presented in Appendix B of

this manuscript.

The a priori reference profile was the one published in Flasar et al. (2005) and

retrieved from 15°S observations by use of CIRS nadir and limb data from the T3 Cassini

flyby. The gap in altitude between nadir and limb measurements in the stratosphère was

fulfilled by interpolation using as initial guess the updated Voyager radio occultation profile.

The characteristics of this profile are given in the online supplementary material of Flasar et

al. (2005) paper and in Chapter 3. The results are shown in Figure 4.13a-e below. The

précision of these température profiles dépends on the number of spectra and the calibration

accuracy. The random error imported in the measurements due to the instrumenté noise is at

about 0.1 K. Systematic errors corne from uncertainties in methane abundance and the

absorption coefficients (Coustenis et al., 2007). The température error bars are about 0.7 K at

1 mbar and about 5 K at 5 mbar (Achterberg et al., 2011).

Figure 4.13f shows the température profiles retrieved from limb data obtained by

Sandrine Vinatier. Figures 4.13a-e show the results on the température as a function of

latitude from nadir data inferences described in Table 4.7-4.10, using the altitude information
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contained in the Unes of the 114 methane band. Figure 4.13a,b (upper panel) shows the

température structure inferred at two latitudes (50°N and 30°N) at certain dates during the

Cassini mission.

In the northem hemisphere, the température decreases in the mesosphere, which is

more sensitive to the seasonal insolation variations. This decrease starts from the stratopause

level above 0.1 mbar, where the température significantly decreases from 2007 to 2010. Since

the beginning of the Cassini mission, the warm northem lower mesosphere has cooled by

about 14 K at 50°N (Figure 4.13a) and by about 8 K at 30°N (Figure 4.13b) at around 250 to

300 km in altitude, which was also suggested by Achterberg et al. (2011).

In the mid-stratosphere (around 200 km), the northem polar région initially began

cooling from 2007 up to 2009, while in 2010 a slight warming is observed again at both 50°N

and 30°N. Température decrease (by 8 K maximum) with time in the lower mesosphere is

also observed at the équatorial and southem latitudes. No significant changes are found in the

équatorial mid-stratospheric températures (Figure 4.13c).

Similarly, in the southem hemisphere (at 30°S and 50°S - Figure 4.13d,e respectively),

small température variations are observed that are always less than 10 K and more typically 2-

4 K between 0.5 and 10 mbar within the error bars. Mid-stratospheric measurements for

southem latitudes at 30°S (Figure 4.13d) show cooling between 2010 and early 2012 by 3 K,

while no significant variations occurred from 2006 to 2008. More importantly, the general

shape of the thermal structure is changing and we find a more isothermal profile at higher

latitudes losing the marked stratopause présent in earlier years.
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Température (K)

Figure 4. 13 - Retrieved thermal profiles from CIRS nadir data at (a) 50°N, (b) 30°N, (c) equator, (d) 30°S, (e)

30°S and (f) from limb data for the 2006-2010 limb data and from several dates. Panel f illustrâtes the

température profiles corresponding to June 2010 at 50°S (pink solid line), 1°N (red solid line), 51°N (violet solid

line) from CIRS limb observations acquired with a 15.5 cm'1 spectral resolution. They are compared with

thermal profiles of the 2006-2007 period (northem winter) at similar latitudes. For the nadir température profiles

the typical error bars uncertainty are about 0.7K at 1 mbar and about 5K at 5 mbar, while for limb retrievals is 1 -

2K. Dashed lines indicate the altitude levels above or below which, the température has higher uncertainties or is

not accurately constrained (Bampasidis et al. 2012a).
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The latter phenomenon is confirmée! from CIRS limb data analysis (Figure 4.13f). We

retrieved the température profiles at 50°S, 1°N and 51°N from CIRS limb observations

acquired in June 2010 with the FP4 at 15.5 cm'1 spectral resolution. The température

uncertainty is about 1 to 2 K. Figure 4.13f shows the température profiles retrieved from June

2010 compared with température profiles retrieved using CIRS limb spectra acquired in the

2006-2007 period with a 0.5 cm'1 spectral resolution (Vinatier et al. 2010b). In the lower

mesosphere, between 250-300 km, the température is lower by 10 K at 50°S and 3 K at 0°N

in 2010 than in the 2006-2007 period, while at 50°N the 2010 température is about 3 K higher

than the 2006 value.

In the stratosphère, below ~250 km, from 2006 to 2010, the température at 50°N

increased by about 10 K, shows no significant variation at the equator and has increased at

50°S more than 10 K. The différence between the 2007 and 2010 température profiles from

limb data furthermore indicates not only a significant cooling (by more than 20 K in the 300-

400 km range), but also a trend for the température to become more vertically uniform and the

pronounced mesosphere to be dampened, as we find from the nadir data.

These changes at northem latitudes suggest a weakening of the descending branch of

the middle atmosphère méridional circulation (Achterberg et al. 2011), which implies less

adiabatic heating and hence lower températures. Moreover, the changes in the circulation

affect the distribution of aérosols (Vinatier et al. 2012b), which in tum affect the thermal

structure.
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4.7.2 Chemical composition variation during the Cassini-Huygens mission

After fixing the température profile, I inject it in our radiative transfer code, in order to dérivé

the mixing ratios of the contributing molécules from their émission bands in the CIRS FP3

and FP4 spectra through an itérative procedure. When the best fit between the model

simulation and the observation is accomplished, I infer the corresponding abundances (see

also Bampasidis et al. 2012 and Coustenis et al. 2010b). For each sélection, I match the

continuum level between the émission signatures by adapting the new model of haze

distribution of Vinatier et al. (2012b).

The émission bands of Titan's hydrocarbon trace gases, nitriles and CO2 are contained

in the 600-1100 cm'1 région of the spectrum. These molécules (C2H2, C2H4, C2H6, C3H4,

C3H8, C4H2, HCN, CO2, HC3N) hâve been previously detected in Voyager/IRIS spectra,

ground based data and/or ISO/SWS recordings. The presence of ail of the above-mentioned

molécules has been verified in Cassini/CIRS FP3 spectra. The list of the molécules detected

in Titan's spectra, is presented in Table 4.14 below. Table 4.15 summarizes the candidate

molécules that are expected to be detected in CIRS FP3 and FP4 spectra and which are

discussed further in this Chapter 3, Section 3.4.6, when we describe our search for weak

molécules. Ail these molécules are included in the model.

Table 4. 14 - List of the currently detected molécules and isotopologues in Titan's atmosphère in the FP3 région.

molécule cm'1

c4h2 628

c3h4 633

13cl8o16o 643

13c16o2 648.5

h13cI2c2n 658.7

hc3n 663.2

co2 667.4

c6h6 674

c2hd 678

h13cn 706

hcI5n 711.5

HCN 712.7

13c12ch2 728.5

c2h2 729.5

c3h8 748

c2h6 822

c13c12h6 822

c2h4 949.5
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Table 4. 15 - Candidate molécules that are expected to be detected in CIRS FP3 and FP4 spectra

molécule cm'

DCN 554

13c17o16o 646

12c18o2 657

12c18o17o 660

l2c18o16c 662.5

hcc13cn 663.2

hc13ccn 663.2

12c17o16o 664.9

The continuous probing of Titan's stratosphère by CIRS provides information for the

évolution of the Chemical composition. Towards this end, I hâve calculated the abundances of

the trace gases from the beginning of the mission up to early 2012.

In order to define the stratospheric régions probed by the émission observed in the

different gaseous bands, we calculate the contribution functions C(z,n) by using the formula

(see Chapter 3, Section 3.4.2):

C(z,n) = B(z)W (z,n)

With W(z,n) we describe the weighting function and B(z) the Planck fonction. The

contribution fonctions of the molécules présent in the FP3 région are plotted in Figures 4.14-

4.18 below.
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Pressure(mbar)Pressure(mbar)
Figure 4. 14 - Contribution functions of most of the hydrocarbons, nitriles and carbon dioxide that hâve émission

bands in Titan's CIRS FP3 spectra at 50°N high-resolution data.
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Figure 4. 15 - Contribution function of most of the hydrocarbons, nitriles and carbon dioxide that hâve émission

bands in Titan's CIRS FP3 spectra at 30°N high-resolution data.
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Figure 4. 16 - Contribution fonction of most of the hydrocarbons, nitriles and carbon dioxide that hâve émission

bands in Titan's CIRS FP3 spectra at 0°N high-resolution data.
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Figure 4. 17 - Contribution functions of most of the hydrocarbons, nitriles and carbon dioxide that hâve émission

bands in Titan's CIRS FP3 spectra at 30°S high-resolution data.
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Figure 4. 18 - Contribution function of most of the hydrocarbons, nitriles and carbon dioxide that hâve émission

bands in Titan's CIRS FP3 spectra at 50°S high-resolution data.

The dominant bands in the FP3 région are those of acetylene, hydrogen cyanide and ethane at

729.5 and 712.5 and 822 cm'1 respectively. For achieving the best fit, after fitting the

continuum, we match these bands first for each sélection. The following Figures 4.19-4.21

show the resuit of the best-fit process for some of the aforementioned sélections throughout

the FP3 région.
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Figure 4. 19 - (Upper panel) The best fit achieved (in blue the model) between 600 and 1000 cm'1 for the

December 2007 Titan spectrum at 50°N (in red). (Lower panel) Plot of the différence between model and data.

The peaks at 765 and 955 cm'1 are caused by electrical artificial inferences - spikes (see Chapter 2).

Figure 4. 20 - (Upper panel) The best fit obtained (in blue the model) between 610 and 690 cm'1 for the March

2009 Titan's spectrum at 50°N (in red). (Lower panel) Plot of the différence between model and data. The C4H2,

C3H4, HC3N and C02 émission bands are at 628, 633, 663 and 667 cm'1 respectively.
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Figure 4. 21 - (Upper panel) The best fit found (in blue the model) between 690 and 750 cm"1 for the March 2009

Titan's spectrum at 50°N (in red). (Lower panel) Plot of the différence between model and data. The HCN and

C2H2 émission bands are at 713 and 730 cm'1 respectively. The isotopologues of H°CN, HC15N and 13C12CH2

are also fitted at 706, 712 and 729 cm'1 respectively.

Figure 4. 22 - (Upper panel) The best fit found between 750 and 1000 cm'1 for the December 2009 Titan's

spectrum at 30°15I (in red the data, in blue the model). (Lower panel) Plot of the différence between model and

data. The négative peaks at 765 and 955 cm'1 are caused by spikes in the spectrum. The 13-C isotopologue of

C2H6 (I3C12CH2) is included.

In Figures 4.24a-h, I show the Cassini/CIRS mixing ratio inferences which are found above

the condensation level with the associated error bars. Two are the main types of the

uncertainties: systematic errors in our model atmosphère and spectroscopic data and random

errors due to instrumental noise itself at the location of the émission peak, the uncertainty in

the placement of the continuum above which the émission rises and the uncertainty on the

thermal profile and its influence on the line formation région (Coustenis et al., 1995; 2010b).
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Other systematic errors are from calibration uncertainties, température profile inconsistencies

in the datasets and haze description uncertainties.

The Noise Equivalent Spectral Radiance (NESR) is the signal when the instrumental

signal-to-noise ratio (S/N) is unity (Hanel et al, 2003). NESR varies with the wavenumber as

it shown in Figure 4.23 below, which is provided by Dr. R. Carlson (GSFC and IACS).

CIRS Focal Plane 3: Single Scan NESRs (Apodized)
Detectors 1-10 Averages: Responses From 2000 Day 330

Figure 4. 23 - CIRS NESR as a fiinction of wavenumber (provided by Dr. R. Carlson, pers. communication).

The ratio of NESR to the square root of the total number of averaged spectra is the l-o

standard déviation. The estimation of uncertainties has included the température profile errors

as described above, calibration, and line positions.

Except for the early mission dates (within 2004-2005) and sometimes in the northem

sélections (e.g. February 2008), the noise level is low in our usually large averages. The errors

from the instrument noise are small in température retrievals, about 0.1 K (Achterberg et al.,

2008; Coustenis et al., 2010b). We only consider the relative uncertainties that mainly

originated in the uncertainties of methane abundance and température (ail within 15%) and

neglect the systematic errors which are the same for ail sélections.

Propane (C^Hg) and ethylene (C2FI4) show ratios that hâve error bars of about ±35%

and they are not as reliable as the other inferences for the temporal or spatial variations. These
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molécules are affected by abundance retrieval difficulties and some insuffîcient laboratory

spectroscopic data. The strong P-branch of the C2H2 band influences the retrieval of the C3H8

abundance from its émission at 748 cm'1. Around 765 and 950 cm'1, the spectrum suffers

from some electrical interférence artifacts ("spikes", see Chapter 2 for further information).

The retrieved abundances at Southern latitudes (50°S and 30°S), as well as near the

equator, remain rather constant-in-time during the Cassini mission within the error bars. C2H4

and C3H8 are identified as complicated molécules to process, in particular at the mid and

Southern latitudes. In general, for the other molécules, the équatorial data yield higher

abundances than the 30 or 50°S inferences by about 20%, almost at the same level for ail

molécules. The mixing ratios at 30°N are 20% higher than the équatorial values except for the

acetylene which is almost 10% higher.

When moving from the South to the North, I hâve found a definitive trend for

increased gaseous content in the stratosphère. Additionally, the enhanced abundances hâve

been observed in most cases at latitudes higher than 30°N during the duration of the northem

latitudes.

In the latitudinal bin of 50°N, ail abundances except for CO2, are thus significantly

enhanced with respect to 50°S and the equator. These results are consistent with our previous

work with this model (Coustenis et al. 2007; 2010b) and with Voyager 1 results (Coustenis et

al. 1991; Coustenis & Bézard 1995). The 50°N values are higher than the 30°N by 20% and

by 40% with respect to the equator.

These enhancements appear to be greatest for the shortest-lived Chemicals which are

explained by a combination of chemistry and dynamics. The vertical distributions are steepest

for the shortest-lifetime species in a purely Chemical model, while the presence of a

circulation cell in the real atmosphère, with subsidence in the polar régions (at the north pôle

during the period of the observations), causes the lower stratosphère to be greatly enriched in

these species at the winter pôle as compared to the equator. The study of the temporal

évolution of this enhancement in the higher northem régions within the Cassini mission

duration, as well as changes observed with time at southem polar régions are described in

more detail by Teanby et al. (2008; 2010 and 2012, in press) as well as in a work to which we

contributed and will be published by Vinatier et al (2012, in préparation).
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Figure 4. 24 - Time-latitude composition variations for the major trace gases of Titan's stratosphère: (a) C2H2, (b)

HCN, (c) C4H2, (d) C3H4, (e) C2H6, (f) C2H4, (g) C3H8 and (h) C02 with 3-c estimated error bars. The latitudes

mapped from 2006 to 2012 are: 50°S (violet), 30°S (light blue), equator (red), 30°N (green) and 50°N (blue).

Connected filled circles are high resolution observations (0.5 cm'1), while open circles are medium resolution

data (2.5 cm1) for 2008, 2009 and 2010 (which sometimes coincide with the higher resolution values). The 3-g

estimated error bars are indicated (Bampasidis et al., 2012a).

Titan experienced the northern spring equinox (NSE) on 15 August 2009. My

research covering the Cassini mission duration, allowed us to infer variations as a function

oflatitude and time. At 50°N, we hâvefound indication for an increase in abundancefrom

2006 to mid-2009 for almost ail molécules compared to the 2008 and 2010 values. The

exceptions are propane and carbon dioxide which do not seem to vary in time at any
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latitude (see g and h plots ofFig. 4.24). C^Hs seems to hâve increased abundances around

NSE, but the data analysis results for this molécule at lower latitudes is rather uncertain.

We hâve detected a maximum around the time of the Northern Spring Equinox in mixing

ratios with increases in abundances by about 30-40% for C3H4 and C2H6, 60-70% for C2H2

and C4H2 and about a factor of 2 for HCN and C2H4 (albeit with higher uncertainties)

relative to the adjacent time periods in 2008 and 2010. Ethane shows variations with time

only at this higher latitude.

The observed increase in abundance for some molécules is followed by a strong

decrease which reduces considerably the observed enhancement by 2010. It is a quick

decrease, within 1-2 terrestrial years and brings the abundances back to their levels prior to

the ascent.

There is only one CIRS FP3 sélection at high resolution available in nadir viewing

geometry after the NSE and one in lower resolution. The latter confirms this resuit, but further

vérification is required. Additionally, both high and low-resolution nadir data taken in the

2010-2012 period seem to support the observed increase as well as the follow-up decrease

(see open circles in Fig. 4.24).

We hâve also derived the 12C/13C ratio in CH4 and C2H2 to be 95 ±15. Similarly, the

14N/15N ratio in HCN has been inferred to be 50 ±10 for the latitudes analyzed in this section

as an average. The l2C/13C ratio is consistent with results reported by Vinatier et al. (2007b)

and Nixon et al. (Nixon et al., 2008a; 2008b) and with the terrestrial inorganic standard value

(88.9, Fegley 1995). The 14N/15N ratio is also consistent with the values given by Vinatier et

al. (2007b) and about 4.8 times lower than the terrestrial value (272, Fegley 1995).

Much stronger Chemical and température variations hâve been reported at higher

northem or Southern latitudes (poleward of 70°N or 70°S) within the recent years (Vinatier et

al., 2012b; Teanby et al., 2012, in press).

4.7.3 Comparison between nadir and limb data at the NSE

I hâve tried to verify the NSE enhancement by performing limb data analysis in

collaboration with Dr. S. Vinatier. However, there are no available high-resolutio limb spectra

of this period at 50°N, only in July 2009 we hâve spectra taken at 15 cm'1 resolution during

the T59 Cassini flyby. The comparison with this data delivered a discrepancy. No
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enhancement is observed in T59 limb spectra. We hâve checked if this discrepancy cornes

ffom the température profile used in both retrievals (nadir and limb).

The limb température profile is indeed hotter by about 10 K at 1 mbar compared to the

nadir one, while their différence is less significant in higher altitudes (Fig. 4.25). I hâve to

note here, that the limb température profiles hâve been retrieved ffom limb spectra from S.

Vinatier, while R. Achterberg provided the nadir température profiles. Since limb spectra do

not give information below 2 mbar, the initial guess used for retrieving both profiles does not

affect the results.

Figure 4. 25 - Comparison of the vertical température profiles betwcen limb and nadir sélections at northem

spring equinox. The nadir température profile has been retrieved by R. Achterberg by using 0.5 cm'1 spectra,

while the limb one has been retrieved by S. Vinatier by using 15 cm'1 spectra. The profiles présent a 10 K

différence at 1 mbar.

We hâve run some tests in order to understand the discrepancy in the thermal profiles.

The nadir température profile could not fit the limb FP4 data except for the altitude of 213 km

or 0.3 mbar (see Fig. 4.26).
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Figure 4. 26 - Fits of the limb data (in black) of the July 2009 sélection by using the température profile of June

2009 nadir query to model the observations (in red). Data and model fit only at 213 km or 0.3 mbar.The plot was

provided by S. Vinatier. Radiance is in xlO"7 Wcm^sr’Vcm'1, while the Wavenumber is in cm1.

Then, we tried to fit the nadir FP4 data of June 2009 by using the limb température

profile (Fig. 4.27). The température profile retrieved from the limb T59 sélection (July 2009)

did not fit well the wings of CH4 band at 1304 cm1. The température profile is hotter by 10 K

than the nadir température profile and a colder profile is needed for the probed altitudes.
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Figure 4. 27 - Fit of the v4 methane band at 1304 cm’1 by using ARTT and the limb température retrieval. This

température profile is too hot in the probed atmospheric level for fitting the nadir data, especially in the wings.

The contribution functions of the methane Q-branch and its wings when we used the limb

température profile are plotted below (Fig. 4.28). The contribution functions confirm that the

methane central branch as well as its wings peak at the pressure levels where nadir and limb

thermal profiles hâve a 10 K différence and are therefore not compatible.
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Figure 4. 28 - Contribution fonctions of V4 methane band at 1304 cm'1 and its wings derived from the limb

température profile. CH4(G) is the left wing, while CH4(D) is the right wing.

The contribution functions of methane Q-branch and its wings when we used the nadir

température profile are plotted below (Fig. 4.28).
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Figure 4. 29 - Contribution functions of v4 methane band at 1304 cm'1 and its wings derived from the nadir

température profile. CH4(G) is the left wing, while CH4(D) is the right wing.

From the contribution functions' plots above (Figs. 4.28-4.29), we confirm the différence

between the régions probed by the two thermal profiles. The left wing of methane peaks at

different altitudes. Moreover, there is a discrepancy in the retrieved abundances between limb

July 2009 sélection and nadir June 2009 sélection (Fig. 4.30). HCN and C2H6 hâve similar

limb values with the nadir ones in the probed pressure level at 0.1 mbar. We hâve a

discepancy for C2H2.

0.2

Contribution

187
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Figure 4. 30 - Variations in the vertical distributions of the main stratospheric molecular constituents on Titan

between 2006-2007 and 2010 from CIRS limb data. Retrieved mixing ratio profiles of C2H2 (left panel), C2H6

(right panel) and HCN (middle panel) in June 2010 (in green) are shown. They are compared with mixing ratio

profiles derived from CIRS limb data acquired in 2006 and 2007 (in red). The altitude scale corresponds to the

2010 observations. 1-s uncertainties on the vertical mixing ratio profiles are indicated. The July 2009 retrieval

(blue) présents comparable values for HCN and C2FI6 with nadir results. The only exception is acetylene. For the

interprétation of this discrepancy see text.

When we injected the limb température profile (adjusted to fit the nadir FP3 data) into

ARTT and used vertical distributions derived from general circulation models (GCM-Rannou

et al., 2005), for the major molécules C2H2, C2H6 and HCN, the model did not fit well the data

because the thermal profile is too hot. Figure 4.31 illustrâtes the outcome of this simulation.
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Figure 4. 31 - Fit of the nadir sélection of June 2009 at 50°N when the thermal profile retrieved from limb

measurement was adapted. Values predicted from General Circulation Models (Rannou et al. 2005) hâve been

used. The misfit due to the température profile is obvious.

We thcn made the same fit, but with using the nadir June 2009 température profile instead of

the limb one and the limb vertical distribution files for C2H2, HCN and C2H6 (see Fig. 4.32

below).

Figure 4. 32 - Fit of the nadir sélection of June 2009 at 50°N when the thermal profile retrieved from nadir

measurement was adapted. Vertical distributions provided from S. Vinatier hâve been used. Now the model

spectra fit well the data.

The HCN and C2H6 limb vertical distributions fit the nadir data. The C2H2 limb

vertical distribution is lower than the one we hâve calculated by using constant-to-height

mixing ratio and it needs adjustment. The retrieved value for C2H2 is 6.25x10'6. The vertical
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distributions from S. Vinatier fit better the spectra compared with the GCM files that hâve a

steeper slope.

In discussions that ensued, R. Achterberg pointed out that these observational

sélections are not comparable because they are not really looking at the same latitude as the

limb observations in the v4 methane band are also looking at about 10 degrees of arc or more

in front of the tangent points. Indeed, the 2009 sélection is at a fairly high émission angle.

Assuming that the latitudes used for averaging are the surface latitudes, the latitudes in the

upper stratosphère can be different by several degrees, and at 50°N, the latitudinal

température gradients are fairly large. Therefore we renounced in trying to fit the limb and the

nadir sélections taken at the same time but looking at different real estate and hâve focused on

the nadir spectra.

4.7.4 Interprétation of the results

In this section, I hâve retrieved the abundances of trace gaseous compounds in Titan’s

stratosphère from 50°S to 50°N (Fig. 4.24). CO2 présents no latitudinal variations

anywhere because of its long photochemical lifetime. For the other molécules, mid and

Southern latitudes show no significant temporal variations during the Cassini mission.

However, I confirm that a rapid change in the atmosphère took place at 50°N during the

Cassini mission (Teanby et al., 2010, Bampasidis et al., 2012a). A compositional

enhancement is reported with an indication for a maximum at the time of the Titan

northern spring equinox (NSE - August 2009), followed by a sharp decrease ofthe gaseous

Chemical content within the next terrestrial year that remains to be confirmed with further

data. These results are compatible with the findings of Teanby et al. (2010) in that Ifind

HCN and C2H2 to display a rapid increase in northern latitudes up to mid-2009, while the

abundances at équatorial and Southern latitudes remain stable.

Short-term variations observed during the Cassini mission can arise from changes

in the circulation around the equinox The collapse of the detached aérosol layer (West et

al., 2011) suggests that the dynamics during this period go through a rapid transition wltich

should also affect the gas distribution. The rapid decrease after NSE for wltich the most

straightforward explanation is that the vortex has shrunk somewhat, would be consistent

with the weakening thermal gradient and the profile becoming more constant with height,
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losing it warm mesosphere that wefind here. Also compatible is the weakening ofthe winds

as reported by Achterberg et al (2008; 2011) and Teanby et al. (Teanby et al., 2009b). The

finding also ties into the location of the maximum température gradient, which appears to

be moving northward over the winter/spring season (Teanby et al., 2010, see Fig. 3, T

panel). If 50°N is emerging from the vortex core, it would cause a large réduction in the

abundances, hence explaining our observations. Thus, réduction at 50°N could be due to a

weakening vortex with reduced latéral mixing across the vortex boundary (Teanby et al.,

2010).

Another cause could be the spatial (due to Titan’s inclination) variations in the

energy input to Titan ’s atmosphère as a driverfor changes in the advection patterns, which

in turn provide a stronger variability in the latitudinal abundances of photochemical

species. Cassini entered into Saturn Orbit Insertion (SOI) at Ls=293°. The NSE is at Ls=0°

and the average insolation at the top ofthe atmosphère has been increased (Fig. 4.33).

Daily average insolation (W/m2): x = 0

Figure 4. 33 - Daily averaged insolation as a function of time at the top of the atmosphère. Cassini entered

into SOI at Ls 293° (adaptedfrom Lora et al., 2011).
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Figure 4. 34 - The Solar Cycle from 1980 (Voyager encounter at the Saturnian System) up to date. Cassini

began touring the Saturnian System in mid-2004. This plot shows the Composite Mg II index which is

frequently used as a proxyfor spectral irradiance variability. It refers at 1 AU and it provides the solar activity

at EUV and UV As I hâve discussed with Prof Moussas and Dr. L. Didkovsky (Univ. of Southern

California/SSC) Mg II index represents the UV solar radiation (e.g. Viereck et al., 1999).

Changes in the solar output during the 11-year solar cycle (Fig. 4.34) can

potentially affect the Chemicalproduction rates in Titan ’s atmosphère. However, during the

Cassini mission, the Sun has presented an extended minimum with the first weak signs of

increased output observed towards the end of 2009. The Chemical lifetimes in Titan’s

stratosphère (at 200 km) range between ~1 year for C2H4 and C3H4, up to ~20 years for

HCN, which are longer than the time-scales ofsome of the rapid changes observed. Titus,

the temporal variability observed is more likely related to changes in the atmospheric

circulation patterns due to progression ofseasons (Bampasidis et al., 2012a).
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4.8 Water vapor in CIRS spectra

The first détection of water vapor in Titan’s atmosphère was made in disk-average

observations taken with the Short Wavelength Spectrometer of the Infrared Space

Observatory (ISO/SWS) yielding a mixing ratio of 4xlO'10 at about 180 km (Coustenis et al.,

1998). Due to their low signal-to-noise ratio, the first CIRS spectra could not provide the

détection of water vapor and only an upper limit of 9xlO"10 was inferred (de Kok et al.,

2007b). After the end of the Cassini prime mission, more spectra are available and the

signatures of the weak molécules can be detected in large spectral averages where the signal-

to-noise ratio is high. Figure 4.35 shows the contribution function of water vapor. The

contribution functions peak at 0.01 mbar (about 400 km), c.f. Coustenis et al. (1998).

Figure 4. 35 -Contribution functions of water vapor (dashed line) and the vertical profile used for simulating the

best-fit (adapted from Coustenis et al. 1998).

In the paper of Cottini et al. (2012a), which I hâve co-authored, we confirm the

détection of stratospheric water vapor on Titan using CIRS spectra. The analysis of these

observations was performed by using two independent radiative transfer codes: the NEMESIS

code used by the Oxford team and by GSFC colleagues - Non-linear Optimal Estimator for

Multivariate Spectral Analysis (Irwin et al., 2008) and our newly updated ARTT -

Atmospheric Radiative transfer for Titan (Coustenis et al., 2007; 2010b; Bampasidis et al.,

2012a). NEMESIS is a retrieval code that performs a combination of correlated-k forward
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model computation (Lacis & Oinas, 1991) and the retrieval scheme based on the method of

optimal estimation (Rodgers, 2000). I was asked by Dr. V. Cottini (GSFC/NASA) to work on

spécifie CIRS queries by using ARTT in order to validate the NEMESIS results.

4.8.1 CIRS/FP1 observations in search of water vapor

Water vapor has rotation lines in the FP1 région of CIRS. CIRS/FP1 is a detector with a

circular field of view and probes the far infrared région in the range of 10 to 600 cm'1. The

stronger water lines are located from 90 to 260 cm'1. The selected datasets were queried from

December 2004 up to December 2008. Three sélections cover Titan up to 30°N (80°S-45°S,

45°S-10°S, 0°-30°N) in nadir viewing mode (Table 4.13).

With Dr. A. Coustenis, we hâve gathered large nadir FP1 spectral averages within the

SCET14 limits, as required by V. Cottini and analyzed them following a study already started

about 2 years ago aiming to explore the FP1 région, but which was impeached by the

difficulty to model the aérosols which are very important in that région. By focusing on the

water lines and simulating summarily the continuum level, I hâve injected the température

profile retrieved by R. Achterberg from the corresponding FP4 spectrum taken at the same

time and at the same latitudes and conditions of geometry in order to fit the FP1 observations.

I hâve simulated the observations and when the best fit was achieved, I hâve inferred the

abundances. Also into account were taken the other molécules présent in the région, namely

C4H2, C2N2 and C3H4 and furthermore, we hâve extended the range of our calculations

300 (check) cm'1 région, while the Cottini et al. paper is constrained from 150 to 260

HCN,

to the

14 SCET: Spacecraft event time
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4.8.2 Confirmation of the water vapor détection by ISO with CIRS

Water has émission bands at the FP1 spectral range of CIRS at 150.5, 170.4, 177.56, 202.77,

208.50, 227.8, and 253.93 cm'1. The contribution functions of the water vapor lines are

plotted in Figure 4.36 below. Ail of them peak at about 50 km.

Figure 4. 36 - Contribution functions of water vapor. Ail the émission bands peak at about 50 km.

We First fit the continuum at the FP1 range thus providing an ab initio simulation of the

aérosol contribution in there (as indicated and more properly done by de Kok et al. 2007a)

which however serves our purpose sufficiently well since we focus on the lines. We then

make different tests using various values for the water abundance, starting with of lxlO'10. By

fitting the different lines, with particular accent to the line at 150 cm'1 which shows the

strongest émission, and then getting weighted averages of the inferred best-fit values, we

obtain a final best-estimated water vapor mixing ratio. Figure 4.37 below, shows the best-fits

of the sélection 0° - 30°N when using a constant-to-height mixing ratio for water vapor at

lxlO'10. The vertical black lines in the upper plot indicate the positions of water lines. The

model fits well the water lines. The peak of the data at 220 cm'1 is discussed in Section 4.10.
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Figure 4. 37 - (Up) Best-fit plot at the 0°-30°N latitudinal bin achieved for water vapor abundance of lxlO'10.

(Down) Plot of the différence between model and observations. The vertical black lines depict the positions of

water lines in the spectrum.

The same constant value fïts also the water lines for the 45°S-10°S sélection (Fig. 4.38),

except perhaps the 250 cm'1 line.

Figure 4. 38 - (Up) Best-fit plot at the 45°S-10°S latitudinal bin achieved for water vapor abundance of lxlO'10.

(Down) Plot of the différence between model and observations. The vertical black lines depict the positions of

water lines in the spectrum. Except for 250 cm'1, ail the water lines are fitted.

We then use a slightly higher value, at 2xlO'10, and the line at 250 cm'1 is fitted but the fit is

not well for the other lines (see Fig. 4.39).
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Figure 4. 39 - (Up) Best-fit plot at the 45°S-10°S latitudinal bin achieved for water vapor abundance of 2xlO~10.

(lower panel) Plot of the différence between model and observations. The vertical black lines depict the positions

of water lines in the spectrum. Only the line at 250 cm'1 is well fitted.

For the latitudinal bin of 80°S-45°S, the simulation resuit is the same. The water vapor

constant-with-height abundance of lxlO"10 fits ail the lines except for the one at 250 cm"1 (Fig.

4.40), while the value of 2xlO'10, fits better the 250 cm"1 line but not the others (Fig. 4.41).

Figure 4. 40 - (Up) Best-fit plot at the 80°S-45°S latitudinal bin achieved for water vapor abundance of lxlO'10.

(Down) Plot of the différence between model and observations. The vertical black lines depict the positions of

water lines in the spectrum. Except for 250 cm"1, ail the water lines are fitted.
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Figure 4. 41 - (Up) Best-fit plot at the 80°S-45°S latitudinal bin acbieved for water vapor abundance of 2xlO'10.

(Down) Plot of the différence between model and observations. The vertical black lines depict the positions of

water lines in the spectrum. Only the line at 250 cm'1 is well fitted.

We find that the 254 cm'1 water line is best fitted with 2±0.8xl0"10. For the other lines

the H2O abundance is rather l±0.4xl0'10. The Full Width at Half Maximum (FWHM) of the

contribution function for 254 cm'1 water line is slightly higher than for the others, so that

seems to then bring us into compatibility with ISO, where a higher value is observed at higher

altitudes for the 228 and 254 cm'1 lines (4±2)xlO'10. The ISO 4.0xl0'10 constant value profile

had a contribution function peaking at 180 km and not near 100 km (Coustenis et al., 1998).

The error bar we find is ±2x10'10, and this includes ail the uncertainties due to calibration,

methane mixing ratio, Satum background, etc. The water vapor value retrieved from Herschel

Space Observatory data is in good agreement with the ISO results (Moreno et al., 2012, in

press).

From the analysis of nadir spectra with the NEMESIS radiative transfer code, we hâve

derived a mixing ratio of (1.4±0.5)xl010 at 93+37-io km (Table 1 of Cottini et al., 2012). In the

same paper, using limb observations, we obtained mixing ratios of (1.3±0.4)xl0'10 at 115+47_22

km and (4.5 ± 1.5)xlO'10 at 230+45^0 km of altitude, confirming that the water abundance has

a positive vertical gradient as predicted by photochemical models (Cottini et al. 2012).

The important resuit from these simulations I hâve performed on the CIRS

available FP1 water lines is that the CIRS resuit is compatible with the valuefound by ISO

and that the photochemical models for water vapor should be revised. The ratio of

CO2/H2O on both Satum and Titan is unexpectedly large and Enceladus variable activity

has been suggested to be its source (Moreno et al., 2012, in press).
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4.9 Benzene vertical distribution profiles

In this section, I présent the results of analysis of the averaged Cassini/CIRS (Composite

Infrared Spectrometer) spectra at both medium (2.5 cm'1) and high (0.5 cm'1) resolutions

during the first six-and-a-half years of the mission focused on the benzene mixing ratio.

4.9.1 Benzene in Titan's environment

The presence of benzene (CôHô) in Titan's atmosphère is extremely interesting, as it is

the first and the simplest polycyclic aromatic hydrocarbon (PAH) detected. In particular,

following its first détection at 674 cm'1 based on ISO/SWS data (Coustenis et al., 2003),

benzene was also detected in the thermosphère (950-1150 km) by modeling Cassini/INMS

data (Waite et al., 2007) and firmly in the stratosphère (100-200 km) in ail latitudes (Flasar et

al., 2005; Coustenis et al., 2007; 2010b). Moreover, benzene has been tentatively identified on

Titan’s surface by Huygens/ CGMS measurements (Niemann et al., 2005).

The unsaturated molécule of benzene has a six-carbon ring with three double bonds

altemating with single ones. The length of its bonds are equal in ail carbon pairs with a value

of 139 pm, while the électron density in the regular hexagon of benzene is identical. It is well

represented as a résonance hybrid of two équivalent forms with six pi électrons, and thus its

conjugated molécule is more stable than typical alkenes. Comparing to the whole organic

inventory, aromatic substances perform different Chemical behavior (McMurry, 2008).

Benzene is a key compound for the synthesis of polycyclic aromatic hydrocarbons (PAHs)

and may play an important rôle in the formation of the hydrocarbon haze of Titan. The planar

molécule of benzene could help in understanding of the photochemical mechanisms occurred

in Titan. When two benzene rings fuse together the molécule of naphthalene is created.

Naphthalene has not yet been identified in Titan.

The presence of the cyclic conjugated molécule of benzene in Titan’s atmosphère

demonstrates multiple pathways to the possible synthesis of biological building blocks.

Additionally, the existence of the liquids on the surface of the satellite (Stofan et al., 2007) in

combination with the low température of 93 K (Fulchignoni et al., 2005) could host the proper

environment for this biosynthesis. Recent laboratory experiments hâve showed that aromatic

compounds could plausibly be produced on icy surfaces (Menor-Salvân et al., 2008).
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Considering ail the above described characteristics, the prebiotic potential of Titan is

significant and a large effort in astrobiological research has recently been focusing on Titan’s

environment (Raulin et al., 2008). The firm détection of hydrocarbons and especially

acetylene and benzene has really enhanced the inventory of photochemical organic products.

Moreover, the abundance of benzene in the thermosphère shows a value four times higher

than in the stratosphère, as it discover by the Cassini/INMS (Waite et al., 2007).

Combined with acetylene, benzene could produce polycyclic aromatic hydrocarbons

(PAHs) or/and simpler compounds, the polyphenyls. The polycyclic aromatic hydrocarbons

(PAHs) seem to be the most interesting product of the photochemical chain. However, since

Titan lacks oxygen and sufficient température as Early Earth had, probably different pathways

from Earth’s hâve been followed and polyphenyls may possibly be created (Delitsky &

McKay, 2010).

4.9.2 Modeling benzene's vertical distribution

In collaboration with Dr. P. Lawas, I hâve modeled the vertical distribution of CôHô in the

atmosphère of Titan, expending the work presented in Coustenis et al. (2010b) from a

latitudinal point of view.

The signature of benzene (CôHô) at 674 cm'1 is very weak in the CIRS spectra and only

by large averages and/or at medium resolution reliable abundances can be retrieved. For this

reason, I hâve gathered the same Cassini/CIRS averaged spectra from Tb to T44 flybys as

presented in (Coustenis et al., 2010b - Table 1). The new sélections hâve been improved by

the fact that new calibration inferences were incorporated in the CIRS database. These data

cover the beginning of the mission on July 2004, until the T44 flyby in late May 2008. In this

work, as no longitude variation has been observed in Titan’s atmosphère, we hâve scanned the

globe in latitude bins of about 10 , starting from the equator and ending at the pôles. We hâve

analyzed data of both medium and high spectral resolution (2.5 cm'1 and 0.5 cm'1

respectively).

We refer here only to nadir observations with émission angles restricted to less than

60°. The corresponding température profiles are retrieved by R. Achterberg following the

method described in Achterberg et al (2008; 2011). The results of this research were

presented at the Faraday Discussions 147: Chemistry of the Planets, which was held in Saint

Jacut de la Mer (France) from 14 to 16 June 2010.
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CIRS detected benzene above 40°S and its profile is significantly affected by the

downwelling part of the circulation at this région. Benzene has been detected in a large

abundance in Titan's upper atmosphère (Waite et al., 2005) and its formation has been

correlated with ion-neutral Chemical reactions taking place in the thermosphère (Vuitton et al.,

2008). The contribution of neutral chemistry in CôHô production is small and focused in the

stratosphère. Thus, both production mechanisms, ion and neutral, must be included in the

photochemical calculations. P. Lawas has updated the photochemical model with the

necessary ion reaction based on Vuitton et al. (2008) (see Figure 4.42).

Following our recent work in Coustenis et al. (2010b) on CIRS data analysis and

photochemical modeling, we hâve thus applied this advanced version of Lawas et al.

(2008a;b) 1-D model, which is described in section 4.3.2. This advanced model then includes

ion-chemistry at different latitudes of Titan’s globe.

Figure 4. 42 - Principal chemistry reaction sequence for benzene (adapted from Vuitton et al. 2008).

I hâve compared the model results provided by P. Lawas, with the abundances of

benzene I retrieved from both Cassini/CIRS and the ones found from Cassini/INMS data for

the stratosphère and thermosphère respectively. We hâve thus compared the benzene's

vertical distributions at different latitudes towards the end of the nominal Cassini mission

with the data and hence brought constraints to the photochemical model

The stratospheric CôFL mixing ratios from the CIRS data show a significant increase

towards Northern latitudes (c.f. Table 2 in Coustenis et al. 2010b) and here I présent its
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vertical profiles based on this photochemical model and focusing on these latitudes. (Fig. 4.43

a-j).
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Figure 4. 43 - (a-f) Vertical distribution of benzene's abundances retrieved by the advanced 1-D photochemical

model by Lavvas et al. (2008a;b) at the northem Titan's hemisphere. CIRS results are plotted with green boxes,

while INMS with blue ones (Bampasidis et al., 2010).
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From the model calculations, the benzene mole mixing ratio profiles exhibit an almost

constant-with-height value from 600 km up to 1000 km in the upper atmosphère. In the

stratosphère, CIRS measurements (green boxes) are well satisfied by the model except in the

higher Northern latitudes. However, the model overestimates the benzene abundance for

latitudes greater than 40° (Fig. 4.43a-f).

Figure 4. 44 - (a-d) Vertical distribution of benzene's abundances retrieved by the advanced 1-D photochemical

model by Lavvas et al. (2008a;b) at the équatorial and sourthem Titan's hemisphere. CIRS results are plotted

with green boxes (Bampasidis et al., 2010).

From the équatorial latitudes to the South pôle, the model of C^Hô mixing ratio reproduces

very well the CIRS inferences (Fig. 4.44 a-d). Furthermore, in Figs. 4.43a,c,d,e,f, the

INMS results for the benzene retrieved abundance at 1100 km (Waite et al., 2007; Vuitton
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et al., 2008; Cui et al, 2009) - in blue boxes - are also presented. The simulation also

satisfies the INMS value for the latitudes of 23°N and 33°N (Figs. 4.43ef). For higher

latitudes from 38°N to 53°N (Figs. 4.43a,c,d) the model underestimates the INMS value

which is suggestive ofthe contribution ofdynamical effects that are not taken into account

in the 1-D model. Overall, the model is quite consistent with the INMS data, although it

présents a small underestimation of the CfH(, INMS abundance at some northern latitudes.

The next step is to include in our analysis the INMS measurements for the whole latitude

range, and we hâve been in discussions over this with Prof. H. Waite, PI ofINMS.
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Figure 4. 45 - (a) Vertical distribution of benzene's density for latitudes, (b) Vertical distribution of benzene's

abundance for latitudes (Bampasidis et al., 2010).

Finally, Figures 4.45a,b show the latitudinal variations of the mixing ratios and the density of

benzene respectively.

Both the mixing ratio and the density profiles show a significant enhancement from

northern latitudes to Southern ones. Since the production of benzene is dépendent on the

number of the photons, this latitudinal change of vertical distribution can be easily

explained if we take into considération the fact that the photon flux is also enhanced

southwards ofthe latitudes as shown in Figs. 4.45a,b (Bampasidis et al., 2010).
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4.10 Winter condensâtes évolution between the North and South pôle on

Titan

By comparing large yearly averages of CIRS/FP3 at different time periods, I hâve discovered

a dramatic déplétion in the abundance of HC3N at 50°N in 2010 of more than 50% (see Fig.

4.46) compared to 2006-2009 values. This was indicative of changes in the North pôle

concentrations at recent times.

Figure 4. 46 - CIRS/FP3 annual data at 50°N. The déplétion of HC3N abundance is obvious in 2010 spectra.

In the paper of Jennings et al. (2012, in press), in which I participate, we associate the

émission at 220 cm1 seen for the first time to appear in Southern CIRS/FP1 spectra, with

stratosphcric condensâtes enhancement rising in the south. Since the South pôle of Titan

moves deep into the winter season, the lack of solar EUV and UV provide downwelling

accumulation of nitriles in the stratosphère and form condensâtes. However, the increase of

the 220 cm'1 émission was much faster compared to the decrease in the north. Additionally, in

the north, HC3N is présent in CIRS September 2011 spectra but not in June 2011 ones,

suggesting that the mixing ratio of the molécule initiated its enhancement a year before the

émission at 200 cm"1.

The decrease of cyanoacetylene in the northern spectra indicated that changes in

the condensâtes and gases are observed indicative of seasonal changes (Vinatier et al.,

2012a; 2010b; Jennings et al, 2012, in press). The change in season is also evidenced in
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the south by the appearance of the 200 cm1 émission band (Fig. 4.47) described by an

exponential law within a lifetime of4.4 years (Jennings et ai, 2012, in press).
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Figure 4. 47 - Haze observations in seasonal scale (adapted from Jennings et al. 2012, in press.).

The explanation is that during the Southern summer, the sunlight influences significantly

the trace gaseous composition in the stratosphère. Due to the low supply rate from the

upper atmospheric layers, the condensâtes precipitate on the surface. However, as Titan 's

Southern hemisphere moves into the winter, haze particles start to form and therefore the

relative émission increases in the spectra.
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4.11 Search for weaker molécules in CIRS spectra

Large CIRS nadir FP3 averages are necessitate to observing the signature of the weak trace

gases and the isotopologues in Titan’s atmosphère, since the use of such averages reduces the

signal-to-noise ratio. Fortunately, CIRS has provided a huge number of datasets, which can be

averaged in order to retrieve large averaged spectra. This work was presented at the EGU

General Assembly 2012 in Vienna (Bampasidis et al., 2012b).

I hâve queried the 2009 CIRS annual FP3 spectra and assembled them in an average

(Titan flybys T50 to T65) at 50°N, consisting of 1306 spectra at high resolution. Large

averages for searching for weaker molécules are summarized in Table 4.16 below.

Table 4. 16 - Large FP3 and FP4 averages over 2009 at high resolution at 50°N.

Total number Cassini

Focal Plane of spectra Airmass Flyby

FP3 1306 1.31 T50-T65

FP4 2499 1.08 T50-T65

I hâve applied the relative température profile derived from the FP4 spectral sélection in the

FP3 and then fitted the major molécules during a best-fit itérative process. The results of the

radiative transfer calculations are plotted in Figs. 4.48 and 4.49.
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Averaged spectra of flybys T50-T64 at 50“N

Figure 4. 48 - Comparison between CIRS nadir spectra and radiative transfer models. Hydrogen cyanide and the

signature of its isotopologues are also shown. For FI|JCN, only a 3-cr upper limit of 1.7x10"8 was derived. Top

(a): Averaged spectra of T50 to T64 flybys at high resolution (0.5 cm'1) (in blue) at 50°N, best-fit model with

main gases and isotopologues (in red) and best-fit model without H13CN isotopologue at 706 cm'1 (in green).

Bottom (b): Différence between model and data for both cases: with ail gases and isotopologues (in green) and

without H1 ’CN 706 cm'1 (in blue).

In Figure 4.48-a, I hâve plotted the model atmosphère with and without the H13CN

contribution. The residual between data and model in each fit is also depicted in Figure 4.48-

b. For H13CN at 706.2 cm1, only a 3-a upper limit of 1.7xl0'8 has been derived, which is

comparable with previous results in CIRS limb data (Vinatier et al., 2007b). I hâve also
• 12 13

derived the “C/ C ratio of this average at 64.7±14 which is consistent with the relative ratio

of 68 M6_i2 calculated in limb spectra at 83°N (Vinatier et al., 2007b), the estimation of 80.2±2

(Nixon et al., 2008b) and the Huygens GCMS in situ measurements (82.3±1) (Niemann et al.,

2005). This ratio is similar to the terrestrial one (at 89).
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Averaged spectra of flybys T50-T64 at 50°N

Figure 4. 49 - Comparison between CIRS nadir spectra and radiative transfer models. We hâve derived only a 3-

a upper limit of 8x10'10 for the isotopologue 13C180160 of carbon dioxide. Top (a): Averaged spectra of T50 to

T64 flybys at high resolution (0.5 cm'1) (in blue) at 50°N, best-fit model with main gases and isotopologues (in

red) and best-fit model without |JC1X0160 isotopologue at 662.5 cm'1 (in green). Bottom (b): Différence between

model and data for both cases: with ail gases and isotopologues (in green) and without 13C180160 at 662.5 cm"1

(in blue).

The same procedure has been conducted for ,3C,80160 at 662.5 cm'1 (Fig. 4.49). We

hâve derived only a 3-o upper limit of 8xlO'10 and the 160/180 ratio at 386±130 which is

comparable with previous estimations (Nixon et al., 2008b). However, this resuit is

significantly lower than the terrestrial ratio (circa 500) (Bampasidis et al., 2012b).

This test shows that our upgraded radiative code with the new molécules incorporated

can help detect the signatures of new isotopologues or even entirely new species by fitting

better the data where already identified molécules appear. We aim to apply this search for

new molécules in the future with large averages seeking to identify C2H5 or other such

predicted molécules, see Table 4.15.
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4.12 Future perspectives

Cassini will continue orbiting Satum up to the next summer solstice in 2017. Thus, a

considérable amount of CIRS spectra will be available for studying Titan's stratosphère. The

follow-up of this study is to investigate temporal variations on Titan due to seasonal and

dynamical effects. The reported peak and sharp decrease in the abundances at the northem

spring equinox at 50°N needs confirmation from northem CIRS spectra when are available.

Moreover, it will be very interesting to include in our photochemical analysis of benzene

vertical distribution Cassini/INMS measurements in a global sense.

Seven years after Cassini's arrivai to the Satumian System, the combination of

Voyager 1 Infrared Radiometer Spectrometer (IRIS) measurements from 1980, Cassini

Composite Infrared Spectrometer (CIRS) continuous recordings from 2004 to 2010 and the

intervening ground-based and space-bome observations with ISO provide almost a complété

picture of the stratospheric évolution within a Titanian year.

The VI measurements were taken at the same season compared to the one of

Cassini/CIRS in mid-2009. The next step is to compare the previous results in température

and composition variations from Voyager 1/IRIS and ISO with Cassini/CIRS ones. This can

be complemented with the ground-based observations I hâve assembled in Table 4.4. Thus,

we can describe the thermal and Chemical évolution of Titan's stratosphère within a Titan year

(29.5 years) and evaluate General Circulation Models prédictions.

The cause of these variations should be also investigated. A further discussion on the

influence of the solar cycle on Titan's stratospheric interannual variations in chemistry and

température should be conducted. In fine, this allows us to set constraints on seasonal,

photochemical and general circulation models for Titan and to better describe the physical

processes in this complex environment.
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Chapter 5

Numerical tools for analyzing the Titan
lakes environment

In the previous Chapter, I hâve studied Titan's atmosphère focusing on the temporal and

spatial variations of trace gases as derived from the Cassini Composite Infrared Spectrometer

(CIRS) data during the Cassini-Huygens mission, from 2004 up to early 2012. Cassini's

remote sensing measurements as well as Huygens' in situ observations hâve also revealed a

variety of features on Titan's surface uniquely similar to the terrestrial ones. Comparative

Planetology studies can provide essential information about the physical processes that form

or formed these surface features.

Although Titan's atmosphère is the basic subject of my research, this active geological

environment and the processes that occur or occurred on Titan's surface as well as the

exchanges with its atmosphère and interior are also among my scientific interests. This is due

to the fact that, besides my Physics background, I also possess a degree in Geology. The

subject of my thesis included the study of “Titan’s environment” and this of course bears

relevance to the interactions between the atmosphère and the surface or even the interior and

my contribution in that respect to Titan science is what is described in this chapter. I focused

mainly on the manifestations of the methane cycle in its connecting the atmosphère, the

surface and the interior.

To that effect, the Cassini/RADAR discovery of numerous liquid organic deposits -

lakes - on the surface of Titan bearing witness to the condensation of methane and its products

and their deposits on the surface. Without doubt, lakes are the idéal medium for linking the

surface processes, the atmosphère and the interior on Titan. By studying the lakes, we can

infer valuable information about the complex processes occurring within Titan's environment

and understand better the pattern of the methane cycle on a global scale.

My contribution and involvement in the surface studies, which I describe in this

Chapter, focus on lakes as a reference point and they concem either the study method tools or

the observation data processing. The outcome of these studies provides further understanding
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of the liquid extends contribution to the environment, their connection with the atmosphère

and their contribution to Titan's methane cycle.

The lakes may also offer the proper habitability conditions for hosting biological

building blocks on Titan, a possibility that motivated me to work on Titan's astrobiology, as it

is described in Chapter 6. Moreover, these surface studies, mainly performed in collaboration

with A. Coustenis, A. Solomonidou, E. Bratsolis and M. Hirtzig (but also with other

international colleagues such as Jean-Pierre Lebreton and Hunter Waite), inspired me to

propose the MEMS experiment for Titan, which is described in detail in Chapter 7.

Specifically, Titan's géologie environment is defined in Section 5.1 and the exchange

processes as well as the relationship between the major géologie forces are described in

Sections 5.2 and 5.3 respectively. In the Sections 5.4 and 5.5 that follow, I contribute to the

study of the morphotectonic expressions of the Kraken Mare lake surroundings using

géomorphologie numerical analysis tools. The Cassini RADAR image processing technique

using a probabilistic filtering in which I got involved is discussed in Sections 5.7 and 5.9

respectively.

5.1 Titan’s geological environment

Techniques and experiments adapted from Earth Science are also applied to distant

rocky planets or satellites and provide essential information about the surface processes in

other planetary environments. The Apollo Passive Seismic Experiment (PSE), a network of

seismic instruments consisted of four seismometers deployed by the astronauts on the lunar

surface between 1969 and 1972 provided the internai structure of the Moon (Dainty et al.,

1974; Nakamura et al., 1982; Bulow et al., 2005). The recently selected Discovery mission to

Mars, InSight (for Interior exploration using Seismic Investigations, Geodesy and Heat

Transport), planned for launch in 2016, will perform geophysical experiments on the Red

planet to détermine its interior structure and reveal its thermal history.

This also can apply to Titan. After the Voyagers encounters of Titan, the existence a

global deep was suggested (Flasar, 1983; Lunine et al., 1983). Both methane and ethane can

exist in ail three States (vapor, liquid and ice) in Titan's surface température and pressure

conditions (94 K and 1.5 bar, respectively c.f. Fulchignioni et al, 2005) and they can cause

précipitations perhaps responsible for some at least of the surface lakes. But, according to

Lorenz (1993), methane drops would evaporate before reaching the surface and the existence
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of pure methane surface deposit is then doubtful. According to Flasar (1983), the partial

pressure of methane would be lowered in a mixture of methane and its photochemical by-

products (ethane, propane). The Lunine et al. (1983) model suggested the presence of ethane

surface océan of 75% ethane, 20% CH4 and 5% nitrogen about 1 km deep. Stevenson (1992)

suggested that the hydrocarbon océan may be located under the surface of Titan, by assuming

a porous enough surface bedrock.

The global océan hypothesis was rejected by post-Voyager ground-based RADAR

echoes, which indicated that the surface of Titan is not homogeneous nor compatible with

global liquid coverage. The high reflectivity echoes recorded by Very Large Array (New

Mexico) radio-telescope suggested significant surface variability consisting of ’dirty’ ice

(Muhleman et al., 1990). Steward Observatory and the Multiple Mirror Telescope data also

showed a variation in Titan's albedo (Lemmon et al., 1993), while Arecibo echoes in 2001

and 2002 marked areas of specular reflections, similar to small lake-like features (Campbell et

al., 2003).

Moreover, Titan's atmosphère is transparent through methane Windows in the near

infrared (see § 1.1.4) and the Infrared Telescope Facility on Mauna Kea Earth-based

observations hâve confirmed RADAR measurements (e.g. Griffith et al., 1991, Griffith 1993).

This data hâve triggered updates to previous models about the presence of surface liquids and

according to Dermott & Sagan (1995), liquid hydrocarbons could be restricted in small

surface basins.

5.1.1 Cassini-Huygens surface observations

In January 2005, the Huygens probe performed the only in situ measurements to date

of Titan's surface during its descent and landing (Lebreton et al., 2005). It observed the

atmosphère and the surface during the descent from 170 km downwards with the Descent

Imager/Spectral Radiometer (DISR) (Tomasko et al., 2002) and measured its composition

above and on the landing site with the Gas Chromatograph and Mass Spectrometer (GC-MS)

(Niemann et al., 2002). The Huygens Atmosphère Structure Instrument (HASI) (Fulchignoni

et al., 2002) probed the atmospheric properties (T,p and density) during the descent from

1600 km downwards and determined the surface température and pressure, while the the

Surface Science Package (SSP) (Zamecki et al., 2002) investigated the local surface material.
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Huygens measurements revealed that Titan's surface is mostly dry currently near the

equator, but also compatible with the presence of wet ground close undemeath the surface as

indicated by the increase in methane gas following évaporation from the location where the

warm Huygens probe landed. The surface is also suggested to be covered by water and

hydrocarbon ice, silicate rocks and organics/tholins frozen material (Tomasko et al., 2005;

Zamecki et al, 2005; Lebreton et al., 2009).DISR images showed a well-developed surface

network of channels (Fig. 5.1) close to the probe's landing site (Tomasko et al., 2005). Except

for the Huygens observations of river-like features, Cassini/SAR has recorded a variety of

fluvial channels networks on Titan's surface (Lorenz et al., 2008a) but with much lower

spatial resolution. It has been suggested that the dry channels at the low latitudes are caused

by earlier précipitation during a different season (Turtle et al., 2011).

Figure 5. 1 - Titan's surface diversity, recorded from Huygens/DISR (Tomasko et al., 2005). The panoramic

view from 8 km shows that the surface is solid and inhomogeneous at the Huygens landing area (the circle in the

middle of the image).

Since its First flybys of Titan from 2004, the Cassini orbiter maps remotely Titan with

the Imaging Science Subsystem (ISS) (Porco et al., 2004), the RADAR (Elachi et al., 2004)

and the Visual and Infrared Mapping Spectrometer (VIMS) (Brown et al., 2004). The

Composite Infrared Spectrometer (CIRS) (Flasar et al., 2004) is also used to map the surface

températures. Figure 5.2 below shows the global map of Titan obtained by the RADAR

instrument.

214



Ail of these instruments hâve confirmée! the existence of a diverse solid surface with

an inhomogeneous and complex topography (Elachi et al., 2005; Porco et al., 2005; Elachi et

al., 2006). Titan's topography is relatively low and its lithosphère is too soft and flexible

and/or heavily eroded for high mountains to exist (Lorenz et al., 2011), as it was expected

(Perron & de Pater, 2004). However, the joint instrumental coverage of Titan's surface

delivers a long list of features, which resemble the terrestrial ones in smaller scale height.

Titan has mountains (e.g. Radebaugh et al., 2007, Lopes et al., 2010), and chains of

mountains known as ridges (e.g. Soderblom et al., 2007, Mitri et al., 2010), faults (e.g.

Radebaugh et al., 2011), canyons (Lorenz et al., 2008a), volcanic-like features (Bames et al.,

2006; Elachi et al., 2006; Stofan et al., 2006; Lopes et al., 2007), network river drainages

(Tomasko et al., 2005; Elachi et al., 2006; Stofan et al., 2006; Bames et al., 2007b; Lorenz et

al., 2008a), lakes (Mitri et al., 2007; Stofan et al., 2007), impact craters (Wood et al., 2010),

numerous longitudinal dunes (Elachi et al., 2006; Lorenz et al., 2006b; Radebaugh et al.,

2008) and tropical oases (Griffith et al., 2012).

Cassini/SAR has also made the first détection of large liquid deposits on Titan's

surface ffom data obtained during the Cassini Tl6 (July 2006) flyby at the northem polar

latitudes. The RADAR instmment observed more than 75 topographie dépréssions which

hâve very low RADAR reflectivity, circular or irregular shapes and filled with low dielectric

constant material (Stofan et al., 2007).

Titan has indeed a very complex surface formed by multivariable geological

processes. The very small number of impact craters, counted on the surface so far (Wood et

al., 2010), indicates that it is an active planetary body where strong exogenic forces occur and

contribute to the shape of its landform. The main source of these exogenic forces is Titan's

thick nitrogen dominated organic atmosphère, which provides the érosion agents. In the

relation between the atmosphère and the surface and how it affects the methane cycle, I

essentially focus on the création, évolution and contributions of the methane lakes and also

concem myself with the dunes, sometimes called "sand seas".
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Figure 5. 2 - Global map of Titan’s surface obtained from the beginning of the mission up to flyby T50

(February 2009). It shows lhe coverage derived from RADAR synthetic aperture (SAR) images overlaid onto the

ISS map, in a simple cylindrical projection centered at 0°N and 180°W. Full resolution SAR images are shown

in gray, lower resolution liigh altitude SAR (HiSAR) observations in blue, and the ISS base map in brown. Black

and dark blue correspond to -20 db, white to 5 db (Stephan et al., 2009).
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5.1.2 Surface material properties and Titan's substrate

To study the action of endogenetic and exogenetic forces on Titan's surface, we hâve

to focus on the material of the ground and the substrate. Conceming the latter, a number of

questions arise. We would like to find answers about its structure, its composition, whether it

is globally the same and if it présents similarities with the terrestrial surface.

The Huygens in situ surface measurements were constrained in the région of the

landing site (10.3° S, 192.3°W c.f. Lebreton et al., 2005). Huygens/SSP in situ data shows a

damp porous ground material consisting of loosely packed grains, resembling mud to medium

sand or clay consisting of water ice, clathrate and organics (Zamecki et al., 2005; Lorenz et

al., 2006a). The environmental conditions existing on the satellite indicate that Titan's crust

mainly consists of mixtures of water ice, organic ices, tholins and nitriles (e.g. Soderblom et

al., 2007) in température and pressure of about 90-94 K and 1,5 bar respectively (Fulchignoni

et al., 2005; Jennings et al., 2009; Cottini et al., 2012b).

The discovery of lakes on Titan's polar régions by both RADAR and ISS provides

information about the surface material and the interior and the surface-atmosphere-interior

exchange processes. Morphotectonic analyses on Earth hâve shown a relation between the

formation of lakes and the géologie interior forces in several cases. The question is if such a

mechanism is responsible for the formation of surface topographie dépréssions on Titan,

where the liquid deposited through the atmosphère is sequestrated creating lakes.

To address this issue, we hâve to compare the mechanic response of the terrestrial

silicate substrate to tectonic stresses with Titan's icy bedrock response. Analogous tectonic

behavior provides similar results on the surface. If the two planetary bedrocks are submitted

to comparable mechanical processes, similar interprétation techniques can be applied. The

study and the corrélation of landform, tectonism and erosional processes is in the scientific

field of Morphotectonics (e.g. Scheidegger, 2004).

In the paper of Solomonidou et al. (2012), we compare silicate and icy tectonism.

According to Collins et al. (2009) the icy crusts of the outer planets moons exhibit similar

brittle response to terrestrial silicate crust when stresses are applied. However, while water ice

and silicate rocks hâve similar ffictional strength on small planetary bodies with diameter less

than 100 km (Beeman et al., 1988), in larger bodies when plastic yielding becomes important,

the silicate rock is about 10 times stronger than the ice crust (Melosh & Nimmo, 2011). This
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means that silicate rocks can be deformed for a longer period of time and under higher

pressure of about one order of magnitude, without reaching the fracture point.

Therefore, we conclude that the tectonic behavior between silicate crust and the

planetary ice at 100 K is comparable. This fact encouraged me to help adapt tools from the

terrestrial geomorphology for studying Titan 's surface, an effort that I describe in the next

section.

5.2 Exchanges between atmosphère and surface in Titan’s environment

The environmental exchanges between the atmosphère and the surface form spécifie

types of surface features, which are either lakes (or seas, or rivers, or oases) that are mainly

located at the polar régions in the current season, or dunes, which are distributed at the

équatorial latitudes. As we hâve discussed in the previous Chapter, (Fig. 4.1) methane

possesses a key rôle by driving an active hydrologie cycle (Atreya et al., 2006). Thus, the link

between the atmosphère and the surface is the existence of lakes and dunes in addition to the

erosional processes that reshape the already existed structures and resurface the entire terrain.

Lakes are mainly located in the polar régions of the moon, where the environmental

conditions maintain the liquid State. On the contrary, the equator is dry enough to support the

dune fields. However, recent radiative transfer analyses of VIMS data by Griffith et al. (2012)

reported the existence of methane tropical liquids with a depth of 1 m within the latitudes

from 20°N to 20°S. They suggested that these deposits are supplied by subsurface sources

such as subterranean rivers. Therefore, the study of the surface liquids provides insights on

the methane cycle.
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5.2.1 Vast dune fields on Titan's surface

Cassini/RADAR images hâve shown many dune formations at équatorial latitudes mainly

from 0°N to 30°N and in some isolated régions up to 55°N (Radebaugh et al., 2008). Due to

their extent the équatorial dunes hâve been interpreted as sand seas (Lorenz et al., 2006b) and

they are mainly concentrated in zonal east-west direction. The presence of these vast dune

fields indicates the wind blow direction which is towards east, but they wrap around the

topographically high features they meet like mountains and craters (Radebaugh et al., 2008).

Dunes are 1-2 km wide and 1-4 km apart, having up to 150 km height and more than

100 km in length (Elachi et al., 2006). Except from the RADAR swaths, the presence of the

dunes has been confirmed by Cassini/ISS images (Porco et al., 2005) and the Cassini/VIMS

spectra (Soderblom et al., 2007b; Bames et al., 2008). These linear dunes differ in

composition from their surrounding material (Radebaugh et al., 2008) and are clearly the

resuit of the action of aeolian exogenic forces.

5.2.2 Liquid séquestration

The diversity of Titan's surface does not exclude the existence of surface liquid

hydrocarbons. Theoretical studies and observations indicate that the presence of stable liquid

phase on Titan's surface is plausible. The surface température ranges at about 90-94 K while

the pressure at about 1,5 bar (Fulchignoni et al., 2005; Jennings et al., 2009; Cottini et al.,

2012b) and compared to the triple points of main atmospheric constituents organic liquids can

exist on the surface. Indeed, the triple points of nitrogen, methane, ethane and propane are

63.148, 90.68, 90.348 and 85.47 respectively (Jacobsen et al., 1986; Younglove & Ely, 1987).

The channel networks at the équatorial latitudes that Huygens/DISR observed

resemble the common pattern of terrestrial river channels. Their presence indicates that liquid

provided by heavy précipitation can flow on Titan's surface although, no rain was observed

during the descent of Huygens (Tomasko et al., 2005).

Several channel networks deposit in large lakes. Hence, the channel liquid and the lake

liquid should hâve many similarities. The Chemical composition of Titan's lakes is considered

to be a mixture of ethane, methane, propane, higher order hydrocarbons and nitriles (Cordier

et al., 2009; 2012). Cassini/VIMS measurements of the Ontario Lacus during the December

2007 T38 flyby indicate that it is mainly consisted of liquid ethane (Brown et al., 2008), but
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without giving a mixing ratio. According to Hayes et al. (2008) the imaginary dielectric

properties of the liquid hydrocarbons of Ontario Lacus observed by Cassini are consistent

with the experimental values of liquid natural gas, but not similar to the tholin ones. By

analyzing the same VIMS spectra Moriconi et al. (2010) suggest that the région that

surrounds the lake feature is dominated by propane, butane and acetylene. The existence of

propane consistent with Cordier et al. (2009; 2012) model, while butane and acetylene can be

exposed as sédiments. It should be noted however, that Cordier et al. model does not take into

account the temporal variation of lakes’ Chemical composition.

The study of Titan's liquids, as well as their relation to their environment, provides

evidence about their formation, their évolution and their influence to the local area. However,

Titan's exogenic and endogenic forces act upon the liquid deposits and shape their

morphometry. By understanding the impact of Titan's géologie forces in the liquids of Titan,

we will be able to détermine links between these forces and the methane cycle. In the

following sections, I will describe the techniques adapted from terrestrial Geomorphology and

image processing that we hâve applied to Cassini data towards this direction.
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5.3 Lakes on Titan

Titan's lakes with a mean diameter greater than 200 km are listed in the Table 5.1 below.

Most of the other lakes are quite smaller with diameters less than 100 km. The northem great

lakes of Titan, Kraken Mare, Ligeia Mare (the main target of the discovery candidate TiME

mission) and Punga Mare, are large enough to be characterized as seas (according the IAU

Committee on Planetary Nomenclature) and are illustrated in the Figure 5.3. Ontario Lacus is

the largest lake located at the Southern hemisphere.

Titan's lakes hâve been divided into three classes according their RADAR retums: (a)

the dark - liquid filled lakes, (b) the granular - partially filled lakes and (c) the bright - empty

lakes (Stofan et al., 2007). The dark lakes completely absorb the incident RADAR beam.

SAR microwave radiation pénétrâtes the liquid layer and interacts with the lakebed in the

partially filled lakes. The granular lakes can be considered as the transition feature between

dark lakes and empty basins. Empty lakes look brighter in SAR images compared to their

exteriors and hâve a depth of 200-300 m (Hayes et al., 2008).

The area I hâve selected to study is the northem shoreline of Kraken Mare, where the

island Mayda Insula is located. I hâve decided to work on this image because of the presence

of this island. It présents an interesting landform inside the lake to study any morphometric

corrélations with the topography of the nearby shorelines.

Kraken Mare is the largest liquid surface basin of Titan. It covers an area of about

400,000 km2 (Turtle et al., 2009), bigger than the Caspian Sea on Earth. Kraken Mare has

been selected as a target of a future lake lander from the Titan-Satum System Mission

(TSSM) c.f. TSSM Final Report JPL D-48148 NASA Task Order NMO710851.
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Table 5. 1 -Lakes15 on Titan's surface with mean diameter greater than 200 km.

Diameter

Name Location

(km)

Kraken 68°N,
1,170

Mare 310°W

Ligeia 79°N,
500

Mare 248°W

Punga
85.1°,

339.7° 380
Mare

W

Jingpo 73 °N,
240

Lacus 336°W

Ontario 72°S,
235

Lacus 175°W

2io,r\

" i su5

Figure 5.3- Titan's North Pôle projection from Cassini/SAR, showing the extent of Titan's large north polar

lakes. Jingpo Mare is the large unlabeled long narrow feature eastwards of Kraken Mare (crédit: Turtle et al.,

2009).

15 http://planetarynames.wr.usgs.gov/
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5.4 Numerical analysis in Cassini/SAR images

5.4.1 The context

Due to gravity and morphology, the surface liquid moves downwards to lower places,

forming streams or rivers. On its way, the stream collects more liquid from the atmospheric

deposit (rain, condensation, etc) and from other streams joining in. Usually, the river

discharges its load into basins, which are lakes or seas. The main attribute of this work is to

quantify the hierarchy of stream segments in the observed drainage network according to the

ordering classification System proposed by Horton & Strahler (Horton, 1945; Strahler, 1952).

This classification provides information about the degree of the évolution of the drainage

network, describes the géologie history of the basin and eventually tells us the story of the

lakes.

In the drainage System, the channel segment, which begins from the head of the

stream, is assigned the value 1 and called first-order stream. When two first-order streams

corne together, they form a second-order stream, two second order streams form a third order

stream, and so on. Having measured the length of the stream segments and its basins, it is

possible to estimate the liquid budgets of this drainage and the hydrocarbon lake supply.

Several stream ordering Systems hâve been proposed so far in the literature (Shreve,

1966; Woldenberg, 1966; Scheidegger, 1968; Doomkamp & King, 1971), but Strahler and

Shreve methods are used widely today. In this latter method the order of channels increases

only when two streams of the same order join together, while in the Shreve (1966) model the

order number increases for ail links of the network.

The statistical analysis of the streams number and lengths reveals some interesting

aspects of the évolution of this spécifie area and studies the balance between the exogenic

erosional forces and the endogenic tectonic movements. In addition, the measurement of the

drainage density provides a useful numerical measure of the landscape dissection and runoff

potential. Here, I présent these considérations in association with the morphotectonics

influence on Titan's surface.
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5.4.2 Study of Mayda Insula in Kraken Mare vvith an eye to morphotectonics

During the near-polar Titan T25 flyby on February 22, 2007, the Cassini/SAR

instrument observed a big island or a peninsula in the northem shoreline of Kraken Mare, the

Mayda Insula (Fig 5.4). The same région was covered by the T28 flyby (Fig 5.5).

Figure 5.4- Part of the northem shoreline of Kraken Mare from Cassini/SAR taken during the T25 flyby.

Mayda Insula is in the center of the image (79° N and 310° W). North is to the left (Crédit: NASA/JPL-

Caltech/ASI: PIA09180).

224



Figure 5. 5 - Mayda Insula from the Cassini Titan flyby T28. This figure is part of the swath which began at

20°S and 37°W and continued in the north-northeast direction. T28 flyby overlaps T25 (Crédit: NASA/JPL-

Caltech/ASI: PIA09217).

The Cassini/SAR took this image during its T25 flyby of Titan on February 22, 2007. It is in

the synthetic aperture (SAR) mode at a nominal resolution of 128 pixels/degree, which is

approximately 351 m/pixel. The définition of an ellipsoid for Titan is a sphere with a radius of

2575 km. This image is in an oblique cylindrical projection. In this geometry, the pixel

spacing is exactly K =0.35111 km in the direction of top to bottom. The island is
180 * 128

about 90 km by 150 km across and it is centered at about 79°N and 310°W.

At the West-Southwest side next to the island, there is a surface of low radar

reflectivity. It is not as dark as the lake at the other side of the island and no significant

topography is observed on it. A similar plateau is also observed at the South coast of the

island, but not at the East. This area has an increased radar brightness compared to the lake.

The same features hâve been previously observed at the edges of the lakes in Northern Titan

and they might be due to a reflection from the lake bottom where it is sufficiently shallow so

that the bottom écho is not completely attenuated (Stofan et al., 2007). These features can be

indicators of ground élévation.

Moreover, the East and West coasts seem scarped, while canyons in an average length

of 20 km exist. Mountain ridges are extended to the coastline as well, while their slopes are

large and they may hâve a tectonic origin, as I hâve discussed above. Furthermore,
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remarkable topography with ridges has been developed in the Western part. The Northern

région seems to be smoother than the other régions.

The question is whether the local topographie features are somehow related and

whether there is any evidence of tectonic activity in this région. By studying the development

of the drainage System, I can get constraints on the influence of the antécédent geological

events and subséquent géologie changes.

For data acquisition, I cooperated with Dr. Randolph Kirk from the Astrogeology

Science Center of the US Geological Survey already since 2007.

5.4.3 Methodology and application

The stream order classification is a statistical relationship of the stream segments in drainage

basin (Scheidegger, 1968). In this work we use the Horton and Strahler’s ordering System

(Horton, 1945; Strahler, 1952) which is a classical approach. Horton's laws are certain

topological invariants that are needed to be satisfied, whereas these laws connect the numbers

and the lengths of streams of different orders in a drainage basin.

1. Law of Stream Numbers: The numbers of streams of different orders in a given

drainage basin tend closely to approximate an inverse géométrie sériés in which the

first term is unity and the ratio is the bifurcation ratio.

2. Law of Stream Lengths: The average lengths of streams of each of the different orders

in a drainage basin tend closely to approximate a direct géométrie sériés in which the

first term is the average length of streams of the first order.

After précipitation, surface liquids form at high latitudes shallow rills. The lowest order

streams, the rills, are the smallest outlying tributaries on the edges of the network, according

to the Horton and Strahler’s ordering scheme. At each unique point, where two tributary

streams join, a new stream originates. Whenever two tributaries of the same order meet, the

outgoing stream has one order number higher than that of its ancestors. If two tributaries of

different orders meet, the outgoing stream has the same order number with the higher ordered

tributary. Eventually, ail streams in the network combine to form the highest order (main)

stream. The number of streams of order u is Nu, while <LU> is the average length of streams
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of order u. Horton's Laws [4] State that the bifurcation ratio Rb and the length ratio Rl, given

by:

(Eq. 5.1)
^K+l

(Eq. 5.2)
<Lu>

are constant, or independent of u.

The Hortonian System ordering has a recursive nature since each arc's order dépends

on the order of its inflow tributaries and has been implemented in various Geographical

Information System (GIS) tools (Gleyzer et al., 2004). The algorithm behind these stream

ordering GIS procedures is not revealed. This is not a problem in terrestrial geomorphology,

since the plethora of observations in a région optimizes the GIS application. However, in the

case of Cassini/SAR images of Titan, the resolution does not allow recursive procedures and I

made the decision to do it manually. Therefore, I hâve decided to use Computer-aided design

software (CAD). The results of this procedure are illustrated in Figure 5.7 where the drainage

of Mayda Insula is classified according the Horton-Strahler’s System. The raw data are

Cassini/SAR raster image PIA09180 (Figs. 5.4 and 5.5).
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LEGEND

I 3rd order basins

3rd order Streams

•'xS"' 2nd order Streams

lst order Streams

Figure 5. 6 - Mayda Insula drainage basins and stream classification (Cassini/SAR image PIA09180-PIA09217).

The unnumbered lines in Figure 5.6 are the lst order streams whereas the 2nd order streams

are marked by the label “2” and 3rd order streams by the label “3”. The basins’ borders of the

3rd order streams are designed with thick dark lines and mentioned by roman numbers.

Since there is no topographie map with contour lines available, but only a SAR image,

I hâve designed the streamlines following the fluctuation of the color's intensity. Hence, it is

possible to find more streams, especially of the lst order group in an image taken in higher

resolution. The outlined drainage and its development can be used as a tool to study the

évolution of the local surface.

Scale

20km
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5.4.4 Numerical analysis of the drainage network

Table 5.2 below contains the results of the analysis of the 3rd stream order basins, according

the Horton-Strahler’s classification System. The Bifurcation Ratio Rb is also calculated

according the Equation 1. Usually, the bifurcation ratio Rb has a range of 3 to 5 for well-

drained networks, while values greater than 5 refer to deep and narrow basins.

Table 5.2- Number of Streams formed the 3rd order basins of the island and Bifurcation Ratio

3rd order

Basin

Stream Number Bifurcation

Ratio

Rb

T1

N,

2nd

n2

3rd

n3

TOTAL

SNU

I 12 4 1 17 3.00

II 13 6 1 20 2.17

III 8 2 1 11 4.00

IV 8 2 1 11 4.00

V 11 2 1 14 5.50

TOTAL 52 16 5 73

From the morphologie point of view, I hâve divided the island's 3rd order drainage

basins in two different régions. The criterion of this grouping is the degree of the 3rd order

channels' development. The first group contains the 3rd order basins labeled as IV, V, III and

the second one contains the basins labeled as II and I (Fig. 5.6). The longer the main branch

of a stream network is, the more evolved its respective basin will be. Better évolution of a

drainage basin means that the whole network has been operated for a long time without being

influenced from other géologie or atmospheric events. In the région of interest, the third order

basins I and II hâve their main stream well developed along to the basin's axis, compared to

the other three basins.

The total length of the streams in the 3rd order basins is listed in Table 5.3. Lu is the

length value for each branch of the drainage System. The lengths of the 3rd order branches of

basin I, III, IV and V are shorter by a factor of about 0.8, 5.8, 4.4 and 1.4 respectively,

compared to the longest 3rd order stream of basin IL
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Table 5.3- Lengths of the streams formed the 3rd order basins of the island.

3rd

order

Basin

Stream Length

lst Order 2nd Order 3rd Order TOTAL

SL, (m) EL2 (m) £L3 (m) ELU (m)

I 38,425.3 49,287.3 25,733.8 113,446.5

II 76,962.7 165,799.5 45,986.8 288,749.0

III 32,136.7 58,416.1 6,799.0 97,351.8

IV 17,857.3 49,628.5 8,456.5 75,942.3

V 48,650.1 36,025.7 18,827.3 103,503.1

TOTAL 214,032.2 359,157.2 105,803.4 678,992.8

Table 5.4 below, contains the number of the streams of each order of the rest of the island,

where only 2nd order streams hâve been developed. I divide these streams in two groups, the

Northern and the Southern, according the orientation of their flows. The last column of the

Table 5.4 contains the total number of the streams of the entire island. The last column of

Table 5.4 contains the percentage of these 2nd order streams compared to the total stream

number of the island. Figure 5.7 below shows the 2nd order basins of the Northern and

Southern région of island, which do not hâve 3rd order streams developed in.

20km 2nd order Streams

lst order Streams

Figure 5.7- 2nd order Northern and Southern basins classification according to their orientation.
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Table 5.4- Streams of the island, which they do not belong to a 3rd order basin.

Stream Order

North 2nd
order

Basins

South 2nd

order

Basins

Total Number

of the streams of the island

% of the

Total number of streams

1 37 37 126 59

2 9 12 37 57

3 0 0 5 -

Total 46 49 168 57

Consequently, according the drainage development, I divide Mayda Insula into two

morphotectonic régions:

1. The eastem part (basins I and II), where the drainage networks are well developed,

2. The western part (basins II, IV and V), where the drainage networks are in initial

stages of their évolution.

The average lengths of the Table 5.3 length values are calculated in the Table 5.5 below, in

order to find the length ratio Rl according the Equation 2. <LU> is the average length of

streams of order u in meters.

Table 5.5- Average length of the streams formed the 3rd order basins of Mayda Insula.

3rd order

Basin

Average Stream Length

1st Order

S<L]> (m)

2nd Order

£<L2> (m)

3rd Order

£<L3> (m)

I 3,202.1 12,321.8 25,733.8

II 5,920.2 27,633.3 45,986.8

III 4,017.1 29,208.0 6,799.0

IV 2,232.2 24,814.3 8,456.5

V 4,422.7 18,012.9 18,827.3

The stream length ratios Rl, the area A of each 3rd order basin and the Drainage Density D are

listed in Table 5.6. The drainage density is calculated by the équation:

D =
2*

(Eq. 5.3)
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Table 5.6- Stream Length Ratio Area and Drainage Density of the 3rd order basins of the island.

Stream

3rd

order

Basin

Stream length
Ratio

RL(2,1)Rl(3,2)

Area of

Basin

A (xlO3
km2)

Drainage
Density

D (km'1)

I 3.8 2.1 1.35 0.08

II 4.7 1.7 2.96 0.10

III 7.3 0.2 0.76 0.13

IV 11.1 0.3 0.72 0.11

V 4.1 1.0 1.05 0.10

TOTAL 6.84

From Table 5.6, the length ratio Rl between the 3rd and 2nd order of streams of basins I to V

ranges 0.2 to 2.1. When the ratio is greater than 2, then the 2nd order streams joint the 3rd

ones in acute angles, like most of the tributaries in an intense topography.

5.4.5 Interprétation of the results

The study of drainage basins morphometric parameters reveals much information

regarding the évolution and the dynanties ofthe "hydrological" processes on Titan surface,

despite the fact that the liquid material is not water but hydrocarbons. The corrélation

between the geomorphic features that are expressed by these parameters and the local

topography can provide a qualitative description ofthe région 's development

Stream order classification is a simple qualitative basis for understanding the

development degree of a spécifie area through time. Generally, a basin is better drained

when its stream order is higher. The 3rd order basins ofMayda Insula cover more than half

of the total area of the island. On the other half of the island, low order basins exist,

indicating a lower degree ofdevelopment. Additionally, the 3rd order basins I, III, IV and V

are located at the island's edges, wltile basin II, the best geomorphologically developed one,

is situated in the centre ofisland's Eastpart.

The 2"d order streams ofthe well-drained basin II are quite long and deployed at the

V4 ofthe surface ofthe island. The longest 2ud order stream ofthis basin seems to be shaped

like a meander, another clue of the well-developed stage of basin II. The 3rd order streams

ofbasins III and IV are not so much developed as their 2"d order stream ancestors.

The lst order streams fow parallel or are conséquent to the original slope of the

surface. These rills are steep-sided, hâve short lengths and are V-shaped. The number of
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these streams (52), as Table 5.2 shows, is greater than the total stream number of the 2

(16) and 3rd (5) order at the 3rd order basins I, III, IV, V. Because of the almost vertical

entrance ofmost of the tributaries into the main stream (Figs. 5.6-7), the drainage pattern

can be described as rectangular.

The drainage density D, listed in Table 5.6, extends to zéro, although there is a

considérable degree of basin development. This can be explained by the existence of

intermittent and ephemeral streams in the région as well as by the low image resolution.

Although the designed drainage in Figures 5.6-7 seems to be dry, it can still operate (or

operated in the past) and may evolve on the island’s surface.

The heterogeneity ofMayda Insula ’s surface may hâve been caused by two factors:

the atmospheric or the tectonic activity, operating separately or together. Tectonic activity

indications on Titan’s surface hâve been reported by Soderblom et al. (2007). In the case of

tectonic quiescence, either vertical or horizontal, the landscape will be erodedfollowing the

Davies érosion cycle (Davies, 1899).

The bifurcation ratio is a numerical expression of the development degree of a

basin. The bifurcation ratio for basin II is Rb=2.17, which means that the basin is well

drained. The bifurcation ratio of the other 3rd order basins is greater than that of basin II,

due to their lower drainage development. The ratio of basin V is greater than 5, which on

the Earth is an indicator ofa newly or an elevated surface.

The Horton law of stream lengths shows a géométrie relationship between the

average length of streams of a spécifie order and the corresponding order. The stream

length ratio Rl is the measure of this relationship. Wlten the ratio Rl is greater than 2, it

means that the 2nd order tributaries enter into the 3rd streams at acute angles, as most ofthe

streams on steeper slopes. The steeper the slope, the more acute the angle of the stream

entrance is (Horton, 1945), which is the case of Rl(2,1) (Table 5.6). Our morphometric

analysis shows the existence of steep slopes on the Western part of Mayda Insula. The

stream length ratio Rl(3,2) (see Table 5.6) ranges between 0.2 and 2.1 that means smoother

slopes than in the previous case. The magnitude of slope is one of the characteristics that

détermine the relief. Since the island basins hâve different slopes, they hâve experienced

different élévations. Summarizing the results of the drainage network analysis and taking

into account the stream length ratio Rl between 2nd order and lst order streams, we can

assume that the 2nd order basins I, III, VI and V are elevated after the drainage

development ofbasin II.
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5.5 Statistical analysis of Mayda Insula surface édifices

To hâve a deep insight of the topography of Mayda Island, I studied the close shoreline areas

as well. Three régions with significant topography hâve been distinguished in the Cassini’s

RADAR image, marked with A, B, C in Fig. 5.4.

5.5.1 Statistical analysis of the angular distribution of the mountain ridges

In the following Tables 5.7-9, the angles of the mountain ridges in degrees are listed, for the

three régions respectively, showing the orientation of their axis, according to the N-S

direction.

Table 5. 7 - Angles of mountain ridges according the N-S direction, Région A - Mayda Insula. The positive

angles are looking to the East and the négatives to the West.

Angles (deg) of the main Mountain Ridges of

Région A - Island

41.7 -5.6 6.6 -7.3 30.6 2.7 -47.8 71.4 19.4

39.5 -6.1 -12.2 -19.6 -10.0 42.9 -42.5 -2.2 22.8

41.4 20.5 -16.4 38.6 -30.1 39.0 39.9 -14.2 16.6

14.8 -8.7 26.4 27.3 -54.4 -0.5 59.4 -21.5 -25.9

-27.2 41.0 -11.7 46.3 52.1 -10.1 -0.1 34.8 21.1

12.1 -19.7 -19.1 -19.1 -30.9 -47.4 -18.7 -3.2 62.1

44.6 -6.5 15.9 -22.4 -23.9 -3.7
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Table 5. 8 - Angles of mountain ridges according the N-S direction, Région B - Western Mountains. The positive

angles are looking to the East and the négatives to the West.

Angles (deg) of the main Mountain Ridges of

Région B - Western Mountains
20.8 13.7 -20.6 -5.8 20.8 53.1 -47.5 31.6 -30.5

7.5 30.7 43.7 -27.1 8.1 -19.0 -34.8 -5.2 -8.7

65.3 32.8 53.3 -10.6 70.2 47.0 14.5 25.7 24.4

30.4 -45.0 -2.7 36.2 -54.7 -2.9 -24.0 51.3 28.7

-58.2 -37.9 -27.0 12.8 38.3 0.0 -22.1 25.0 20.8

43.9 72.2 35.8 32.6 5.3 -17.3 -2.3

Table 5. 9 - Angles of mountain ridges according the N-S direction, Région C - SW Mountains. The positive

angles are looking to the East and the négatives to the West.

Angles (deg) of the main Mountain

Ridges of
Région C- SW Mountains

-3.5 -39.9 30.3 16.7 0.0

16.1 8.3 47.1 12.8 16.7

51.4 54.1 13.8 0.0 22.1

40.9 -9.8 -57.1 11.0 -46.0

33.3

9.5

-39.9 44.1 35.3 -33.7

The angle distributions of the mountain ridges’ orientations are presented in Figs. 5.9-11. The

normal curve is also included.
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Histogram of Island - région A

Figure 5. 8 - Histogram of the Island-region A.

Histogram of Western Mountains - région B

Figure 5.9- Histogram of the Western Mountains-region B.
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Figure 5. 10 - Histogram of the SW Mountains-region C.

To plot the island's histogram of Figure 5.9,1 hâve taken into account 60 ridges. Similarly, 52

ridges hâve been plotted conceming the région western of the island (B) in Figure 5.10. For

the région that is close to the eastem part of the island (C), 26 ridges hâve been plotted. These

ridges hâve been recorded from Cassini/SAR during the T25 flyby and confirmed by the

overlay of T28 few months later. Apparently, their distributions are not unique in the area and

more ridges may exist, but in minor scale.

Analysis of the angular ridges* statistics:

Mayda Insula (A):

The angular distribution of the ridges (Fig. 5.9) shows two preferred directions: (a) 20° to 40°

eastwards and (b) 20° westwards.

West Région (B):

The angular distribution of the mountain ridges in Figure 5.10 demonstrates an orientation at

30° eastwards.

Southwest Région (C):

The angular distribution of the mountain ridges in Figure 5.11 shows an orientation of 20°

eastwards.
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The prominent mountain ridges orientations of the area of interest are two. The first

one is located in ail the three régions (A, B and C in Figure 5.4) at 20° to 30° eastwards. The

other one has been observed at the island at 20° westwards. The next interesting resuit of this

statistical analysis is that at région A an opposite orientation exists. There are almost 30% of

the ridges that are N-W oriented. Due to the low radar resolution, only a sample of the

mountain ridges is examined. A high-resolution image could provide the accurate orientation

of the ridges.

5.5.2 Corrélation between ridge distribution and drained basins of Mayda Insula

The drainage basins are defined by the landscape and each basin has the same orientation as

its main stream. Intense topography exists in the western part of Mayda Insula with a radial

development of the 3rd order basins (Fig 5.7). Particularly:

• 3rd order basins:

Basin I: The central stream (3rd order) of the basin is northwest oriented.

Basin II: As I hâve shown previously in the numerical analysis, basin II is the best-

evolved 3rd order basin in length and occupied area. The central stream of the basin as

well as the longer 2nd order channels are meander, are northeast oriented like the relevant

mountain ridges. The drainage follows the régional topography. By taking into account

that the northeast is dominant and that the basin II is well drained, I conclude that this

direction is the older orientation of the landscape in the Insula and the near-by

shoreline.

Basin III: The central 3rd order stream of basin III has south direction.

Basins IV and V: The 3ld order channels of basins IV and V présent western orientation.

• 2nd order basins:

As I hâve mentioned before, the west part of the Mayda Insula consists of many drainage

basins of 2nd order (Fig. 5.8). Next section is dedicated to these basins.
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5.5.3 Statistical analysis of the angular distribution of the island's 2nd order streams in

poor drained basins

As discussed above, the 2nd order streams are poorly drained in the Island of Mayda Insula

(Fig. 5.8). In the other part of the island, except for the 3rd order basins, the 2nd order streams

hâve been developed vertical to the coastline. The orientation of these streams is listed in

Table 9, according to the N-S direction. The angle distribution of Table 5.13 is designed in

Fig. 5.13, with the normal curve.

Table 5. 10 - 2nd Order Stream Angles Orientation according to N-S direction. The positive angles are looking

to the East and the négatives to the West.

2nd Order Stream Angles (deg) to N-S
direction

83.7 -67.1 -56.7 -72.5

55.7 67.9 -39.8 -72.5

22.9 -42.1 4.5 -88.2

27.3 -72.3 11.3 31.9

55.6 -59.6 61.0 -26.7

Histogram of 2nd Order Streams orientation

Figure 5. 11 - Histogram of 2nd order Streams orientation of Northern and Southern poorly drained basins.

There are two prominent orientations of the 2nd order channels in poorly drained basins. The

Northern streams are oriented at 80°W and the Southern streams at 60°E. Comparing the two
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histograms of the Mayda Insula (Figs. 5.10 and 5.13), the streams in poorly drained régions

seem to be related to the axis of the mountain ridges of the surface.

5.6 Cassini/RADAR image processing

Titan's lakes were First recorded by the Cassini Titan Radio Détection and ranging Mapper -

RADAR (Stofan et al., 2007). The RADAR instrument onboard the Cassini orbiter is

designed to map Titan's surface as well as other Satumian moons, its rings and Satum itself.

The main RADAR advantage is that the emitted microwave radiation pénétrâtes the thick

atmosphère almost unaffected. The idea is to combine RADAR recorded echoes with other

remote sensing observations, especially VIMS, in order to retrieve a full view of Titan's

surface.

5.6.1 RADAR instrument and its operational sequence

Cassini's RADAR instrument is a multimode sensor dedicated for surface

observations. It can operate at four modes: Synthetic-Aperture Radar (SAR) imager,

Altimeter, Scatterometer and Radiometer. It is expected to detect surfaces with backscatter

coefficient as low as -40dB. It is the offspring of a joint effort between NASA’s Jet

Propulsion Laboratory (JPL) and Agenzia Spaziale Italiana (ASI).

Cassini's RADAR is a Ku-band (13.8 GHz - À,=2.17 cm) single-polarization instrument

with a total mass of 43.3 kg. It uses the 4 m High Gain télécommunications Antenna (HGA)

of Cassini. It opérâtes in conjunction with the Cassini Ion and Neutral Mass Spectrometer

(INMS) due to the fact that both instruments hâve similar geometry requirements. When the

HGA is pointed to Earth for tracking, the RADAR is not operating. Five antenna microwave

beams, one at the time (B1 to B5 in Fig. 5.12) are used in order to obtain the maximum path

coverage. The RADAR transmits a set of puises for a given time period and when the first

écho burst retums the receiver is switched on. During each sequence the instrument collects 1

GB of data. These data are compressed to a spécifie format the Block Adaptive Quantizer

(BAQ) (Elachi et al., 2004).
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Figure 5. 12 - Cassini RADAR antenna beams. The top panel shows the nadir pointing for altimetry, while the

bottom panel shows the imaging side-pointing (Elachi et al., 2004).

SAR can probe the surface with two resolutions: the High SAR Resolution (HiSAR) at

350-720 m per pixel and the low SAR resolution. The linear polarized electric field vector of

the Cassini/RADAR is oriented to be approximately parallel to Titan's surface during SAR

operation (Hayes et al., 2011). RADAR opérâtes only during close flybys of Titan or other

planetary objects of interest. Figure 5.13 illustrâtes the observational sequence during nominal

Titan flybys, when the closest approach (C/A) is at an altitude of 1000 km or lower.
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Figure 5. 13 - The sequence of the radar operational stages during a Titan flyby with closest approach at an

altitude of 1000 km (Elachi et al., 2004).

The combination of the five individually illuminated sub-swaths dérivés the total

width of RADAR swath and ranges from 120 to 450 km at the spacecraft altitudes from 1000

to 4000 km. Each nominal Titan flyby produces a SAR swath 5000 km long, which is about

1.1% of the satellite's surface. When the flyby has C/A at higher than 4000 km, no SAR

images acquisition occurs (Elachi et al., 2004).

5.6.2 Speckle noise in Cassini/SAR images

RADAR observations are almost unaffected by the atmospheric conditions. The recorded

echoes can distinguish different types of surface régions through the measurement of their

emissivity or radar reflectivity. The instrument measures the normalized backscatter cross-

section of Titan's surface.

However, the backscatter recordings suffer from both speckle and instrument noise.

The speckle noise is a multiplicative granular noise that appears when the surface features are

rough compared to the illuminating cohérent radiation (Goodman, 1976). It is caused by the

constructive and destructive interférence of the RADAR retums, which are scattered by many

elementary reflectors (Lee et al., 1994; Patel et al., 2011). The speckle noise exists in ail types

of cohérent imaging Systems and it reduces the resolution of the image as well as the

detectability of the target (Goodman, 1976). Its presence in SAR images overlays real

structures and causes grey value variations even in homogenous image parts, making

automatic segmentation difficult.

When suppressing multiple views of the same surface element, the speckle noise

follows a Gaussian probability distribution (Chitroub et al., 2002). The multilook technique
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averages incoherently the independent neighboring pixels to estimate the characteristics of the

same ground area.

5.7 Filtering and segmentation of the Cassini/SAR images on Titan

The liquid of the Titan exhibits very low reflectivity and therefore the lakeshores can be

easily distinguished from the surroundings. Long-term observations of the lakeshores'

évolution may show temporal variations of the liquid volume and provide evidence about the

methane cycle. However, the automatic segmentation of the shores becomes problematic by

the existence of the RADAR speckle noise.

In order to reduce this speckle noise in Cassini/SAR images, we hâve applied a

despeckle filter that yields the SAR restored images. In the next two subsections, I describe

the application of the filtering procedure in SAR images as well as a segmentation method.

The filtering technique, based in probabilistic methods, is described in (Bratsolis & Sigelle,

2003) and the application we hâve performed in Cassini/SAR images in (Bratsolis et al.,

2012) which I hâve co-authored.

5.7.1 Total Sum Preserving Regularization (TSPR) filtering

The filter is based on a membrane model Markov random field approximation

optimized by a synchronous local itérative method, the outcome of which is a total sum

preserving regularization (TSPR) for the pixel values of the image. The image is considered

as a random element drawn from a pre-specified set of possible images. The problem is ill

posed, since we try to recover the real image from the recordings. An itérative algorithm is

then applied to optimize the image reconstruction.

To retrieve the maximum information of the TSPR filter application in a SAR image

we needed a 32-bit version of the image. Ail SAR data of the Cassini-Huygens mission are

available in NASA Planetary Data System (PDS) except for the most recent ones, which are

in raw format. NASA/PDS database contains a pair of Short Burst Data Record (SBDR) and

Long Burst Data Record (LBDR) files for each flyby. The only différence between the

datasets formats is whether or not two data fields are included: the sampled écho data and the

altimeter profile. The altimeter profile is an intermediate processing resuit between sampled
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écho data and a final altitude estimate. LBDRs include the écho data but not the altimeter

profile16.

Using the Integrated Software for Imagers and Spectrometers (ISIS)17 that US

Geological Survey has developed, Cassini/SAR images can be retrieved. The software

packages, the installation procedure and an assistance forum are available online as well. ISIS

inputs the JPL Cassini RADAR science data products and extracts 32-bit images which can be

processed by GIS software applications and other numerical computing software.

A 32-bit version of Cassini/SAR image PIA0863018 was provided by Dr. A. Hayes

(Fig. 5.14). We hâve chosen a SAR image with lakes for a test case, since the contrast

between the lakes and the surroundings is significant. This image was taken during the

Cassini Tl6 Titan flyby on July 21, 2006. It is centered near 80°N, 92°W and its dimensions

are 420 km horizontally and 150 km vertically. The dark patches are lakes, filled with

organics. This data is an 860x6200 array and is in a band sequential ISIS 3 format with an

oblique cylindrical projection. The image covers an area 750x3100 in pixel size and the pixel

scale is set to 175.558 meters per pixel. The actual SAR resolution is around 350 meters per

pixel and the image contains some interpolation.

Figure 5. 14 - The initial Cassini/SAR image PIA08630 (Crédit: NASA/JPL-CalTech/ASI).

The final form of despeckling (Fig. 5.15) gives a sum-preserving regularization for the pixel

values of the image. The TSPR method préserves the mean values of local homogeneous

régions and decreases the standard déviation up to six times.

16 http://starbrite.jpl.nasa.gov/pds/viewProfile.jsp?dsid=CO-V/E/J/S-RADAR-3-LBDR-V 1.0

17 http://isis.astrogeology.usgs.gov/

18 http://photojoumal.jpl.nasa.gov/catalog/pia08630
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Figure 5. 15 - The filtered Cassini/SAR image PIA08630 using Bratsolis et al. (2012) despeckle filter.

5.7.2 Supervised segmentation

The TSPR filter can be used as intermediate stage for the extraction of meaningful régions

that correspond to structural units in the scene or distinguish objects of interest. The speckle

noise has not been completely removed ffom the filtering and we apply an image

segmentation method in order to divide the image into spécifie régions where the pixels share

common properties.

The segmentation method classifies régions of an image following a spécifie criterion.

The supervised method of minimum Euclidean distance uses the mean values of each member

and calculâtes the Euclidean distance from each classified object to the nearest class

segmenting the image into different régions of interest or different labels.

In our case, we hâve selected three classes: the dark lakes (black), the granular lakes

(grey) and the background (light grey). For each value of normalized backscatter, we

subabstract the mean values that correspond to the région of interest. After using the

despeckling filter TSPR we apply the segmentation method. The resulted image is illustrated

in Figure 5.16 below.

Figure 5. 16 - The segmented image after filtering. Dark lake with low backscatter are illustrated with blue, the

granular lakes with green and the local background is colored red.
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The dark part of lakes are indicated in blue, in green it is the granular part of lakes and

in red the local background. The temporal variation of the dark spots can provide information

on the évolution of the lake System and consequently help us to better understand the methane

cycle on Titan (Atreya et al., 2006) and therefore the mechanisms linked with the lake surface

features, their origin and fate, through a global temporal and spatial coverage (Hayes et al.,

2011). The proposed filtering and segmentation method would be a helpfui tool in enhancing

the retum of the analysis of ail SAR data acquired on Titan and other objects as well as in the

exploitation of such data from future missions to Titan.

I apply the TSPR filter and supervising segmentation procedure on a different surface

feature where the contrast between the RADAR echoes is not obvious. I hâve selected the

SAR image of Sinlap crater (11.3°N, 16.0°W)- PIA 07368 (Fig. 5.17-left). This crater has a

diameter of about 60 km and the bright surrounding material indicates impact origin. The

central panel of Figure 5.17 shows the results of the despeckle filtering and the supervised

segmentation procedure for the Sinlap crater.

Figure 5. 17 - Application of the filtering and segmentation procedure to Sinlap crater: Initial image (left)

PLA07368 (Crédit: NASA/JPL-CalTech/ASI). Filtered image (center) and Segmented image (right).

The segmentation outcome of our filtering procedure in Sinlap crater (Fig. 5.17-left) shows

régions of different surface types according the backscatter recording after the speckle

removal.

5.7.3 Future perspectives

With the filtering and segmentation procedure described above, accurate isolation of

distinct surface features from their surroundings can be achieved. As we can see from Figures
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5.16 and 5.17-right, the shapes of the surface édifices can be determined and then classified.

The technique I described above removes the speckle noise from RADAR images and

provides the shapes of régions of interest. We can then optimize the results of the direct

comparison of Cassini/RADAR images with the images retrieved from ISS and VIMS of the

same area. Several similar efforts hâve been reported so far (Bames et al., 2007a; Soderblom

et al., 2007a; Le Mouelic et al., 2008; Tosi et al., 2010).

One of the most challenging projects I plan to be engaged in is to superimpose VIMS

images in which the atmospheric contribution is constrained by M. Hirtzig's radiative transfer

code over the despeckled and segmented RADAR images of the same région. We hâve

already been cooperating with Dr. R. Lopes to this direction.

In the paper of Solomonidou et al. (2010), which I hâve co-authored, we hâve worked

on the two recognized (at that time) cryovolcanic candidate areas, Tui Regio and Hotei Regio,

on which we applied the Principal Component Analysis tool. The paper was published in the

anniversary volume of the Hellenic Journal of Geosciences19 for the 40 years since the

foundation of Geology and Geoenvironment Department of the University of Athens. The

main goal was to identify régions of interest that présent brightness or color alterations using

VIMS data within the possible cryovolcanic areas that suggest déposition of material coming

from the interior and having a different Chemical composition than the surrounding surface.

Hence, a variety of materials within a certain geological terrain suggests either past or still

ongoing activity of different and distinct geological processes or the déposition of different

and distinct material from various sources.

The surface contributes significantly to Titan's methanological System (Hayes et al.,

2011) and its lakes are an intégral part of the methane cycle. By studying the filtered images

of the same régions of Titan, taken at different time periods, we can study the existence of

possible ephemeral or seasonal changes on the surface. These studies are also of interest to the

astrobiological research, which I discuss in Chapter 6, the design of future mission

instrumentation and the détermination of régions of interest for future landing sites, which I

describe in Chapter 7.

19 formely Annales Géologiques des Pays Hélléniques
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Chapter 6

Habitability of Titan and other icy moons

Despite great strides in biosciences, the roots, the sources and the initial conditions of life

emergence on Earth remain largely unknown. Due to the erosional and tectonic activity

occurring on Earth, the traces of the geological record hâve been inevitably erased.

Extraterrestrial environments can provide the necessary information for finding the missing

link, looking at the conditions for the emergence of life or at least for characterizing Earth as a

habitat.

Current missions and data analysis revealed that among the main candidates for

finding signs of past and/or current life within our Solar System, besides Mars, are the icy

moons of the giant planets Europa, Ganymede, Callisto, Titan and Enceladus. These planetary

bodies may host the proper conditions for the emergence or the maintenance of life, providing

the concentration of the necessary ingrédients and the proper Chemical inventory for

biochemical reactions.

Due to their high astrobiological significance, they hâve been selected as targets of

future exploration programs, ESA's Jupiter Icy Moons Explorer (JUICE) and and the NASA-

ESA joint study of the Titan-Satum System Mission. Indeed, one of the major objectives of

both missions is to explore the habitability potential of these icy moons. It was that

astrobiological significance that triggered my interest and formed my final decision to engage

with Titan studies.

For this reason, I hâve studied and compared Titan and Enceladus, in collaboration

with Dr. A. Coustenis, Prof. F. Raulin and A. Solomonidou considering the recent discoveries

of the Cassini-Huygens mission. This study entitled as "Life in the Satumian Neighborhood"

has been published as a chapter in Cellular Origin, Life in Extrême Habitats and Astrobiology

book sériés of Springer Editions, edited by Prof. J. Seckbach20 (Coustenis et al., 2012). In this

work, we look for similarities as well as différences among the aforementioned satellites,

20 http://www.springer.com/series/5775
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which may impact their habitability conditions. Our main purpose in this book chapter is to

underline the presence of liquid water considerably further from the Sun than previous models

of the Habitable Zone envisaged and to emphasize that both Titan and Enceladus host unique

conditions for the emergence of biological building blocks in their environment and to

recommend a future mission dedicated to these moons to perform astrobiological studies.

Comparative planetology among the icy moons of the outer planets allows us to better bring

forward common characteristics of the atmosphère and the surface that allow us to look into

the origin and évolution of these bodies. On this subject, we hâve written a paper which was

published in the Journal ofCosmology (Solomonidou et al., 2011).

Accordingly, in this chapter, I describe the habitability of the icy moons of our Solar

System more from the astronomical point of view and looking at them as potential habitats.

6.1 Introduction and context

The scientific field of Astrobiology (also bioastronomy or exobiology) investigates the origin

and the évolution of life on Earth in the past, présent and future. Extending to the terrestrial

analogues, Astrobiology explores the possibility of life forms existing in extraterrestrial

environments hosting suitable conditions for life emergence and/or sustainability.

Astrobiology adapts knowledge obtained from different scientific disciplines namely

astrophysics, geology, physics, chemistry, geochemistry, biology and more, in order to

understand the appropriate aspects conceming the création of our Solar System and the

initiation of life. It focuses on extraterrestrial environments, posing the unanswered question

on the origin of life on Earth and elsewhere and how humans can detect it (Des Marais et al.,

2002; Raulin, 2007).

Planetary habitability is the ability of a planetary environment to support and sustain

life forms. The habitability potential of a planet or a satellite dépends on a combination of

factors, which are considered to be essential for life appearance, évolution and maintenance.

Crucial factors are, among other, the orbital properties of the planetary body, its stability, its

bulk composition, the existence of an atmosphère and a surface, as well as the proper

Chemical ingrédients.

The région around a star or a planet that is favorable for life in any form is called

habitable zone (HZ) (Huang, 1959). Within the habitable zone a planetary environment can

hâve the required température, pressure and luminosity conditions to allow water to remain in
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a stable liquid State on its surface (Hart, 1979). In such a zone, living organisms may arise and

evolve.

Life emergence on Earth sets the habitability constraints. Terrestrial life is the final

product of a long complex Chemical évolution, requiring at least four raw ingrédients: (a) the

existence of liquid water, (b) a stable environment (c) carbonaceous matter as nutrients and

(d) energy. The fulfillment of these prerequisites over a long period of time can be considered

as an indicator of suitable environments for hosting the proper biological building blocks,

which may lead to the formation of primitive life structures (Kasting et al., 1993).

The basic définition of the habitable zone refers to the existence of liquid water on the

surface. In this framework, the boundaries of the habitable zone of the Solar System (Fig.

6.1), extend from 0.95 AU to 1.2 AU.

The inner boundary of the habitable zone is the spécifie distance from the star where

the surface liquid water of a planetary body has been vaporized due to runaway greenhouse

effect. In this case, water is vaporized rapidly and dissociated by solar UV radiation in the

upper atmosphère. Subsequently, hydrogen under high température conditions, escapes to

space, breaking the water cycle (Kasting, 1988). The outer limit of the habitable zone is the

spécifie distance from the star where the local atmospheric conditions hâve failed to produce a

satisfactory greenhouse effect that could keep the température at the planetary atmosphère

above the freezing point (Lammer et al., 2009). Altematively, it is the distance from the star

where CO2 begin to condense (Kasting et al., 1993), but CO2 ice clouds in the atmosphère still

allow for the surface température to be above the freezing point of water (Forget &

Pierrehumbert, 1997).

However, what makes a planetary body habitable is more complex than fulfilling the

distance limitation. Lammer et al., (2009) defines 4 classes of habitable planets. The first

Class I consists of Earth-type planets in which life can evolve following the terrestrial

analogue. These planets host the proper atmospheric conditions to maintain their surface

liquid water stable over a long period of time in geological tenus, in combination with active

plate tectonics.

Class II habitats are planets in which life may evolve like in Class I, but due to

different stellar and geophysical conditions, they hâve followed different evolutionary paths

(Taylor, 2011). Early Venus and early Mars belong to this class. According to Pioneer Venus

and Venus Express measurements, Venus (Kulikov et al., 2006; Svedhem et al., 2007) which

lies below the inner threshold of the habitable zone, at 0.72 AU, has kept its surface water

during its early stage, before experiencing a runaway greenhouse effect (Kasting, 1988;
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Cockell, 1999). Mars orbits at 1.52 AU and managed to stay warm between 3.5 and 4 billion

years ago to allow for the existence of liquid water on the surface (Craddock & Howard,

2002; Ehlmann et al., 2011) producing characteristic landforms such as océan shorelines,

fluvial channels and valleys (Carr & Head, 2003; McEwen et al., 2007).

Liquid water can also exist under the surface in several planetary bodies, below their

icy crust, as in the case of the icy satellites of the outer planets. According to Lammer et al.,

(2009), the planetary bodies where the internai océan interacts directly with silicates, like

Jupiter's Europa, belong to the Class III habitats. In this structure, the silicates provide various

Chemicals and energy through hydrothermal or volcanic activity.

The Class IV habitats are the planets or satellites which hâve huge water underground

deposits without interacting with silicate material. These subsurface océans of the icy

satellites of the gas giants may be in direct contact with heat sources below their icy crust or

encapsulated between two ice layers, or liquids above ice. This is the case of Jupiter's

Ganymede and Callisto and Satum's Titan. In this context, the détermination of the habitable

zone limits can be expanded. The question is if these underground water deposits can support

any life forms. Except for water liquid, life requires other essential éléments such as nitrogen

and phosphorus in addition to hydrogen and oxygen. If this situation maintains for long

timescales, the liquid underground water may become capable of sustaining life. Similar

conditions hâve been considered for the terrestrial case where a coupled sea/ice System could

provide the necessary conditions for life emergence on the primitive Earth (Trinks et al.,

2005). In the paper by Solomonidou et al. (2011), which I hâve co-authored, we review the

surface features of Ganymede, Europa, Titan and Enceladus, their internai structure and their

astrobiological potential.

The rôle of a planetary field is also crucial for habitability. A strong intrinsic magnetic

field protects the atmosphère from the direct interaction with the solar wind and thus, the

quick loss through sputtering process is avoided. Additionally, the magnetic field traps high-

energy particles into radiation belts, avoiding harmful radiation levels on the surface. The

magnétopause of a magnetized planetary body, like the Earth or the possibly early Mars and

early Venus, deflects the solar wind plasma globally except for the polar régions, where the

solar plasma reaches the ionosphère. In the case of an unmagnetized (or weakly magnetized)

body, like the Venus, Mars and Titan, the ionosphère shields the surface from the solar wind

flow (e.g. Lammer et al., 2009).
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Figure 6. 1 - The habitable zone in our galaxy. Habitability should not be restricted to the places where liquid

water may exist at the surface of moons and planets. A much larger domain exists beyond the snow-line, where

very large liquid réservoirs can exist below the icy crusts of the moons and planets, see also Lammer et al., 2009.

(image crédit: http://media.egu2012.eu/media/filer_public/2012/04/19/eguJuice_press.pdf).

Titan, Enceladus and Europa host the proper ingrédients for developing (today or in

the past) life-friendly conditions and, therefore, the interest for an astrobiological

investigation of these planetary objects is enormous. Since 2004, the discoveries of the

Cassini-Huygens mission in the Satumian System hâve revolutionized our considérations as

to whether these bodies could harbor life (now or in the future) or at least provide us with

valuable information on the origin and évolution of life on Earth.

6.2 Titan as a possible habitat

Titan is a good candidate for astrobiological studies as its environment exhibits many

similarities with the Earth’s. Current investigations hâve shown that Titan fulfïlls many of

life’s prerequisites for an organic portfolio due to its atmosphère. Both the remote

observations from the Cassini orbiter and the in situ measurements from the Huygens probe

hâve significantly advanced our perspective of Titan's System and its potential to harbor the

essential ingrédients for life.
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Figure 6. 2 - Schematic illustration of the connections between Titan’s interior, surface, atmosphère, and cosmic

environment. Images show lakes close to the north and south pôles, mid-latitude terrains with dunes, and fluvial

features carved in the ice crust. It is based on an original figure from Lunine (1993) with Cassini VIMS, Radar

and Huygens DISR images added (adapted from the TSSM Final Report).

Titan is indeed a very complex world much like Earth (Fig. 6.2). A thick nitrogen-

based atmosphère, four times denser than the terrestrial one, where a rich organic chemistry

occurs, shrouds its surface. Besides this rich organic budget, we also find a geologically

active surface including lake-like features filled with organic liquid (Stofan et al., 2007).

Additionally, past models and recent discoveries reveal that Titan probably contains a vast

subsurface liquid water océan (Lorenz et al., 2008c; Beghin et al., 2009a; Iess et al., 2012).

From the outer limits of its atmosphère, to deep in its interior, Titan is a living

planetary body with an evolving environment. Titan, along with cornets, is considered as a

planetary scale natural laboratory for prebiotic chemistry and a possible habitat for

extraterrestrial life (albeit probably different from the terrestrial one). Studying Titan could be

bénéficiai to our understanding of the origin of life on Earth. The low solar influx, the

composition of Titan's atmosphère and the possible presence of an internai water océan, give

us the opportunity to study the conditions prevailing on the primitive Earth.
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6.2.1 Titan's prebiotic atmospheric environment

Titan can be considered as a huge abiotic factory. The total organic abundance in the

atmosphère, the lakes and dunes exceeds the carbon inventory in the Earth’s globe (océan,

biosphère and fossil fuel réservoirs) by more than one order of magnitude (Lorenz et al,

2008b).

Its atmosphère consists mainly of nitrogen (98%) and methane at about 2.2% in the

upper layers (Waite et al., 2005), 1.4% in the stratosphère and 5% on the surface (Niemann et

al., 2010). Interactions among Satum's magnetosphere and Titan's ionosphère and

atmosphère, involving solar EUV and UV radiation, energetic ions and électrons, energetic

particles ffom the Satumian magnetosphere and galactic cosmic rays, photo-dissociate both

nitrogen and methane and trigger a complex photochemistry.

The Cassini Ion and Neutral Mass Spectrometer (INMS) is extensively studying in situ

Titan’s upper atmosphère during low altitude Cassini flybys. INMS showed the presence of

many organic species at détectable levels, at very high altitudes (1100 - 1300 km) establishing

that this active photochemistry produces complex organic species and nitriles. Extrapolation

among the INMS measurements (limited to mass up to 100 Daltons) and Cassini Cosmic

Plasma Spectrometer (CAPS) data strongly suggests that high molecular weight species (up to

several 1000 Daltons) may be présent in the ionosphère (Waite et al., 2007; Vuitton et al.,

2009). These observations open new avenues in our perception of the organic content and

chemistry occurring in Titan’s atmosphère. These detected compounds initiate the process of

haze formation starting at about 950 km (Waite et al., 2007) to finally condense out on the

surface after descending through the atmosphère.

Through photodissociation in this dynamic evolving environment, the second most

abundant atmospheric constituent, methane, is destroyed irreversibly producing a variety of

trace gases such as hydrocarbons (e.g. ethane, acetylene, and propane). Furthermore, CH4 in

combination with nitrogen, gives rise to nitriles like hydrogen cyanide, acetonitrile, and

cyanoacetylene. Many of these organic products hâve been detected in the stratosphère

(between 70 and 500 km in altitude) by the Cassini Composite Infrared Spectrometer - CIRS

(e.g. Flasar et al., 2005, Coustenis et al., 2007; 2010), which has confirmed the Voyager

1/IRIS observations (Hanel et al., 1981; Kunde et al., 1981; Maguire et al., 1981; Kim &

Caldwell, 1982; Samuelson et al., 1983; Coustenis et al., 1989a; 1995). These space

détections hâve complemented ground-based (e.g. Hidayat et al., 1997, Tanguy et al., 1990,

Kostiuk et al., 1997, Roe et al., 2004) and space-bom discoveries of water vapor (Coustenis et
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al., 1998) and acetonitrile (Bezard et al., 1993). The Chemical inventory in Titan’s atmosphère

further includes oxygen compounds like CO (Lutz et al., 1983) and CO2 (Samuelson et al.,

1983). Moreover, the presence of water vapor (Cottini et al., 2012a) and benzene (Coustenis

et al., 2007; 2010b) has been unambiguously confirmed by the CIRS instrument after the

initial ISO discoveries (Coustenis et al., 1998; 2003).

The CIRS instrument investigates Titan's atmosphère since 2004 and will continue to

do so up to 2017, when the Cassini Solstice mission ends. The atmospheric Chemical

composition provided by CIRS sets up constraints for astrobiological studies. Some of these

gases can be considered as key molécules in terrestrial prebiotic chemistry, such as hydrogen

cyanide (HCN), cyanoacetylene (HC3N) and cyanogen (C2N2). Moreover, HCN is considered

as a prebiotic molécule, a precursor of life (see Raulin et al., 2005 and references therein).

Determining the origin and évolution of these molécules on Titan could provide us dues on

how life began on Earth.

Ail of the organic compounds, detected in Titan's atmosphère, were also produced in

simulation prebiotic experiments. The first simulation of the reactions that took place in the

primitive terrestrial atmosphère was the Miller-Urey experiment (Miller, 1953; Miller &

Urey, 1959). Miller modeled the Early Earth atmosphère in a glass reactor with a mixture of

methane, ammonia, hydrogen and water vapor in the presence of liquid water at 1 bar,

following Urey's assumption. He applied electrical sparks to simulate lightning flashes which

might hâve occurred in the early troposphère. The outcome of this experiment was the

formation of key organic compounds like formaldéhyde and hydrogen cyanide which are

considered as precursors of biological amino acids. More complex experiments were

conducted later by Sagan & Khare (1971) using UV radiation as the energy source. Two types

of products were formed (see Raulin et al., 2005 and references therein): simple volatile

organic compounds (i.e. HCN, HC3N, HCHO) which can participate in prebiotic reactions

and macromolecular products, refractory organics, usually named "tholins" (Sagan & Khare,

1979). Tholins represent laboratory analogues of Titan’s aérosols and are useful to interpret

many observational data which require information on the aérosols. As experimental

analogues of Titan’s atmospheric particles, tholins also permit the study of the behavior of the

aérosols in Titan's conditions in the laboratory. These organics release biological amino acids

in an aqueous solution (Khare et al., 1986).

Titan lacks liquid water surface deposits and therefore is an idéal environment to study

the processes of Chemical évolution under anhydrous conditions (Raulin & Owen, 2002).
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Several laboratory experiments hâve shown the existence of hydrocarbon and nitriles

(Thompson et al., 1991; de Vanssay et al., 1995; Coll et al., 1998; 1999).

Schaefer and Fegley (2007) predict that Earth’s early atmosphère contained CH4, H2,

H20, N2, and NH3, similar to the components used in the Miller-Urey synthesis of

organic compounds, often related to Titan’s and Enceladus’ atmospheric inventory.

Furthermore, according to Trainer et al. (2006), the processes that formed the haze on Titan

and on early Earth hâve many similarities with what could hâve served as a primary source of

organic material to the surface.

The Huygens Aérosol Collector Pyrolyser (ACP) experiment provided the First direct

in situ Chemical analysis of Titan’s aérosols. The instrument collected haze particles in Titan’s

stratosphère and troposphère during the probe's descent phase, heated them at different

températures and sent the produced gases for analysis to Huygens Gas Chromatograph-Mass

Spectrometer (GC-MS). The results thus obtained indicated that the aérosols are made of a

refractory nucléus, composed of H, C and N atoms (Fig. 6.3), and producing NH3 and HCN

after pyrolysis at 600 °C (Israël et al., 2005).

Figure 6. 3 - Composition of Titan’s aérosols from the Huygens/ACP (Raulin, 2008a).

ACP results strongly support the tholin hypothesis (Nguyen et al. 2007 and references

therein). They also suggest that Titan’s aérosols may evolve if in contact with water ice on its

surface, and could produce a variety of organics of biological interest, such as amino acids
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(Neish et al., 2010; Ramirez et al., 2010). However, Huygens/GCMS did not detect a large

variety of organic compounds in the low atmosphère (Niemann et al., 2005). Moreover, we do

not know anything yet about the nature and quantity of the condensâtes, nor of the elemental

composition or the molecular structure of the reffactory part of the aérosols.

The Cassini-Huygens mission has revealed the details of the organic and methane

hydrologie cycles on Titan (Atreya et al., 2006; Raulin, 2008a; Lebreton et al., 2009).

Methane on Titan plays the part of water on Earth. It can exist in ail three forms : as a gas,

liquid and solid, since the mean surface température is almost 94 K (Fulchignoni et al., 2005),

approaching the triple point of methane.
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Figure 6. 4 - Illustration of methane sink in Titan (Atreya et al., 2006).

When methane condenses in the form of haze, it is done irreversibly (Fig. 6.4). Taking

into account the rate of methane photo-dissociation and the formation of organic products in

Titan's atmosphère, methane should therefore hâve disappeared after 10-100 million years

(Atreya et al., 2006). As a conséquence, we are either witnessing the extinction of methane or

- more likely - looking at a source, which replenishes the methane gaseous abundance in the

atmosphère.

Today, on Earth, methane is mainly a by-product of the metabolism of many living

organisms. A legitimate question may be if the same occurs on Titan. Huygens/GCMS in situ

measurements hâve shown that the carbon-13 isotopic ratio from methane is compatible rather

with inorganic values methane, and therefore Titan's methane is not considered of biogenic

origin (Niemann et al., 2005; 2010). Although the sinks of atmospheric methane on Titan are
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relatively well understood, the major sources of replenishment in the atmosphère are still very

model-dependent.

Comparatively to the Earth, Titan lacks both oxygen and hydrogen. However, with

several percent of methane in dinitrogen, the atmosphère of Titan is one of the most favorable

atmosphères for prebiotic synthesis. Analogies are obvious between the current organic

chemistry occurring on Titan and the prebiotic chemistry which was once active on the

primitive Earth, prior to the emergence of life (e.g. McKay & Smith, 2005). Although liquid

water extents are absent on Titan’s surface, both chemistries are similar.

A thick methane-induced organic haze was possibly formed on early Earth. Before the

rise of the atmospheric oxygen in the terrestrial atmosphère 2.5 Gyrs ago, it is considered

possible that the abundance of methane gas was 10 to 20 times higher than the today’s value

of l.ôxlO'6 (Pavlov et al., 2003). If the atmospheric CO2/CH4 ratio had become equal to 10 at

the mid-Achaean era, an organic haze could hâve formed on this early environment (Pavlov et

al., 2000; DeWitt et al., 2009). This hydrocarbon haze produced the anti-greenhouse effect

which reduced the température of the atmosphère (Kasting & Howard, 2006). Titan

expériences the same anti-greenhouse effect (McKay et al., 1999). The absence of vast

amounts of CO2 on Titan is one of the major différences between the two atmospheric

envelopes. On the other hand, hydrogen cyanide and other prebiotic molécules are among the

starting materials for biosynthesis. The existence of hydrocarbons, and in particular acetylene

and benzene, has really enlarged the borders of photochemical organic products to a degree

that is still unknown today on Titan.

Especially, the presence of benzene (CôHô) is extremely interesting, as it is the only

polycyclic aromatic hydrocarbon (PAHs) discovered on Titan today. PAHs could contribute

to the synthesis of biological building blocks in liquid deposits on Titan’s surface in low

température. Recent laboratory experiments confirmed that aromatic compounds could be

plausibly produced on icy surfaces (Menor-Salvân et al., 2008).

Benzene was first detected at 674 cm'1 in Infrared Space Observatory (ISO/SWS) data

(Coustenis et al., 2003) with a mixing ratio of 4x10'10. It was then also detected in the

thermosphère (950-1150 km) from the analysis of Cassini/INMS data (Waite et al., 2007) and

firmly in the stratosphère (100-200 km) at ail latitudes by Cassini/CIRS (Flasar et al., 2005;

Coustenis et al., 2007; 2010b). Moreover, It has been tentatively identified on Titan’s surface

by Huygens/CGMS (Niemann et al., 2005).

Titan lacks oxygen and sufficiently high températures compared to the primitive

Earth. The abundances of hydrocarbons are higher on Titan than those on Earth by a factor of
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about 102-104. Apparently, evolutionary pathways different from the ones operating on Earth

must hâve been followed on Titan and polyphenyls could possibly be created (Delitsky &

McKay, 2010).

6.2.2 Titan’s active terrestrial-like surface

Titan is an evolving planetary body with several terrestrial shaped surface features

distributed globally. The Cassini-Huygens mission has observed a small number of impact

craters (Wood et al., 2010), which implies an active surface environment that erased almost

ail traces of past activity and records. Indeed, as on Earth, sedimentological and

meteorological processes, mark the surface of Titan. Erosional processes hâve been reported

on Titan's surface (Jaumann et al., 2008; Lopes et al., 2010). Huygens/DISR recorded well

developed rivers, like dedritic networks, close to the probe's landing site at 10°S and 192°W

(Tomasko et al., 2005), see Fig. 6.5.

Figure 6. 5 - Channels on Titan's surface (black lines) from Huygens/DISR images during the probe's descent

(Tomasko et al. 2005).

Particles from the complex layering of organic aérosols in Titan's atmosphère fall

down and deposit on the surface. Cassini/RADAR observations link this aérosol rain to the

génération of extensive organic dunes, which shape an équatorial belt (Fig. 6.6).

260



Figure 6. 6 - Linear dunes on Titan from T8 flyby, Oct. 2005 at 8° S, 264° W (Radebaugh, 2009).

Titan's dunes are believed to be composed of ice and organics grains that possibly

dérivé from a combination of the surface ice and the organic aérosols dropped from the

atmosphère (Lorenz et al., 2006b; Radebaugh et al., 2008). Hence, the upper atmosphère is

linked intimately with the surface and the intervening atmosphère. Despite the low surface

température at about 94 K (Fulchignoni et al., 2005; Jennings et al., 2009), the organics that

accumulate on the surface can evolve once in contact with water ice and may form organic

molécules of astrobiological interest.

Cassini/RADAR unveiled large liquid deposits (Fig. 6.7) on Titan's surface distributed

at polar régions (Stofan et al., 2007; Hayes et al., 2008; 2010) and the equator (Griffith et al.,

2012).

-»5*; '"g»' \0* .0*1 ~-*iV
North Polar Région South Polar Région

Figure 6. 7 - Map of almost 655 lakes and sea features observed by the Cassini/Radar. These maps are in

azimuthal projection at the North Pôle of Titan. The projection A (left) shows the radar swath mosaic up to May

2007 flybys. The projection B represents the spatial distribution of mapping units. Lake Michigan is illustrated

for comparison (Hayes et al., 2008).
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With its lakes and seas, Titan is the only body in the Solar System hosting large liquid

bodies on its surface except for the Earth. These very dark radar spots were finally proved to

be filled with liquid, most probably with ethane rich mixtures (Brown et al., 2008). The

features range in size from less than 10 km2 to at least 100,000 km2.

The cosmic rays that reach Titan's surface hâve a quite low flux (Raulin et al., 1992),

which means that, in combination with the low température, the reaction rate in the upper

layers of the liquid remains very low. The surface liquid deposits can then offer the proper

stable environmental conditions for prebiotic chemistry which dépends on the long duration,

the ffeezing degree, the dissolved organics and the sedimentary déposition to the lakes'

bottom (Tokano, 2009). Pure methane lakes develop and freeze in short geological periods of

time, and, therefore, such lakes hâve no prebiotic significance. Instead, deep lakes (> few

hundred meters deep), consisting of a mixture of ethane, methane and nitrogen (Cordier et al.,

2009; 2012), can favor stable composition at the bottom with accumulation of acetylene, as

the latter sinks being denser than the liquid. The deeper layers do not show any significant

movement and create an isolated environment with the proper constituents for prebiotic

chemistry.

Cassini Imaging Science Subsystem (ISS) images hâve allowed for the compilation of

a nearly global surface map and the monitoring of both the surface and atmosphère for

activity. Repeated south-polar imaging by ISS revealed différences consistent with ponding of

hydrocarbon liquids on the surface due to précipitation from a large storm (Turtle et al.,

2011).

The large lakes or seas on Titan's surface are primary targets of future lake landers. I

hâve proposed a spécifie experiment to be incorporated as payload in a future lander mission.

The concept of this experiment is to use a sériés of micro-probes in order to sense the deep

isolated layers of the liquid deposit as well as its floor (Bampasidis et al., 2011b). The

experiment is fully described in the next Chapter.

6.2.3 Titan’s internai océan

The source of the methane replenishment may lie beneath the lakes in an underground

“aquifer” (or “methanofer”) System hinted at strongly by Cassini data. The existence of an

océan layer below the surface is crucial for defining the habitability potential of the moon.
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According to Lammer et al., 2009, due to this encapsulated water layer, Titan can be

considered as Class IV habitat.

Remote sensing data from the Cassini orbiter imply that Titan's interior is partially

differentiated. Indeed, Cassini Radio Science (RS S) data provided variations of its degree 2

coefficient gravitational potential, which supports internai density variations (Rappaport et al.,

2008).

The Cassini Synthetic-Aperture RADAR (SAR) images, acquired between the October

2004 and May 2007 flybys, revealed a 0.36° faster than synchronous rotation of the moon.

Lorenz et al. (2008c) then suggested that the crust is decoupled from the interior by a

subsurface water océan.

HASI-PWA measured the electrical conductivity of the atmosphère during the descent

of the Huygens Probe through Titan's atmosphère in January 2005. The sensor detected an

extremely low frequency (ELF) radio wave during the descent which was oscillating very

slowly for a radio wave (36 Hz) and increased slightly in frequency as the probe reached

lower altitudes (Hamelin et al., 2007). The ELF waves on the Earth are reflected by both the

surface of the Earth and its ionosphère. However, Titan's surface is a poor reflector because of

its low conductivity and so these waves penetrate the interior. The recorded wave could hâve

been reflected by the liquid-ice boundary of a subsurface océan of water and ammonia

predicted by theoretical models (Simoes et al., 2007). Beghin et al. (2009; 2012) interpreted

the ELF wave as a Schumann résonance between the ionosphère and a modestly conducting

océan at 30-50 km below the surface.

Cassini's accélération measurements during flybys from 2006 to 2011 discovered large

solid tides caused to Titan by Satum at about 10 m in height. If the interior is uniform, such

solid tides should be only at 1 m in height. Therefore, this fmding implies the existence of an

internai océan of liquid water, assuming a depth of 100 km beneath the surface (Iess et al.,

2012).

Titan internai structure models also support the presence of such an internai océan

(Grasset & Sotin, 1996; Grasset et al., 2000; Tobie et al., 2005; Mitri et al., 2008). Thermal

évolution models suggested that Titan may hâve an icy crust between 50 and 150 km thick,

lying over a liquid water océan, a couple of hundred kilometers deep, with some amount (a

few to 30%, but most likely -10%) of ammonia dissolved in it, acting as an antifreeze

material. This corresponds to a pH of around 11.5. The pressure reaches - 5 kbar at 200 km

depth, and it could include hot spots reaching -20°C.
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Tobie et al. (2005) suggested a layered interior structure, consisting of a rocky core

overlaid by high pressure ice, a liquid layer overlaid by low pressure ice and finally a solid icy

crust. Fortes (2000) claimed that undemeath Titan's icy crust, at 200 km, lies an ammonia-

water solution océan. Mitri et al. (2008) assumed pockets of methane clathrates trapped

within an ammonia-water océan.

The possible Titan's internai structure from the interior to the surface is as follows: (a)

a silicate core, (b) a high-pressure water ice layer, (c) an ammonia-rich océan and (d) an ice

layer covered by a crust of organics and ices (Tobie et al., 2005; Fortes et al., 2007; Fortes,

2012), see Figure 6.8. However, the exact inner structure of Titan can only be identified by

seismic experiments. For this reason I support the installation of a seismic network on Titan's

surface (Bampasidis et al., 2011a; 2012c).

Subsurface

Mostty Solid Surface Liquid Metbane

Figure 6. 8 - Model of the interior structure of Titan. The ammonia-water océan lies at about 250 km in depth,

below the crust and the methane clathrate hydrate ice layer (crédits: L. Spilker).

Such an internai liquid océan with the presence of methane clathrates could exsolute and

produce overpressure and subsequently the ammonia-water could erupt to the surface leading

to explosive cryovolcanic phenomena (Fortes et al., 2007).

Cryovolcanism is an activity that resembles terrestrial volcanic processes following a

similar mechanisms and patterns but in cold environmental conditions with different initial
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and depositional products. An ice volcano erupts liquids and gases from the interior of an ice

shell, when they are denser than the surrounding solid. The required heat for melting the

material cornes from tidal friction. On Titan, fluid water mobilized and made buoyant by

ammonia and/or methane and/or other materials, is ejected from the interior to the surface.

Cryovolcanism is a dynamic process that links the interior, the surface and the atmosphère,

while it is believed to be a significant source of the methane in the atmosphère on Titan

(Tobie et al., 2006).

Cassini data support the presence of cryovolcanism on Titan since traces of

cryomagma flows are believed to exist across parts of the surface (Sotin et al., 2005; Lopes et

al., 2007). Several régions hâve been proposed to change réflectance on Titan’s surface so far,

with the three more often cited: Tui Regio (20°S, 130°W), Hotei Regio (26°S, 78°W) and

Sotra Facula (12.5°S, 39.8°W) (Bames et al., 2006; Soderblom et al., 2007a; Nelson et al.,

2009a; 2009b). These features are wide crater-like with lobate flows originate from them

(Soderblom et al., 2009; Lopes et al., 2010).

The theory of methane clathrates trapped in an internai liquid océan enhances the

astrobiological interest. According to the "clathrate gun" hypothesis, potential movement and

rise of the température in an underground liquid deposit could trigger the sudden release of

methane from its clathrate buried in permafrost or seabeds (Kennett et al., 2003) or an océan

like on Titan's case. Further température enhancement leads to further methane clathrate

destabilization which could easily trigger cryovolcanic éruptions (Kennett et al., 2003). Such

process on Titan could increase the température values, creating an environment more

favorable for life to exist.

6.2.4 Is it possible to find life forms in Titan's environment?

Water is frozen solid on Titan's surface and much too cold to support terrestrial-type life. The

list of liquid candidates, présent on the surface, includes liquid methane and related molécules

like ethane. While liquid water is widely regarded as necessary for life, it is not a strict

requirement. The new hydrogen findings on Titan are consistent with conditions that could

produce an exotic, methane-based life form, but do not prove its existence.

McKay and Smith (2005) assumed the possibility for a different form of life to exist in

liquid hydrocarbons of Titan. Such a methanogenic life form could consume H2 instead of O2

that could be measured in the lower atmosphère. Towards that hypothesis, Strobel (2010) and
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Clark et al. (2010) focused on the complex Chemical activity on the surface of Titan, based on

Cassini data.

According to Strobel (2010), hydrogen flows down through Titan’s atmosphère and

then disappears on the surface, resembling the terrestrial oxygen consumption. On Titan, the

hydrogen as byproduct of UV dissociation in the upper atmosphère should be distributed

fairly evenly throughout the atmospheric layers. Strobel (2010) described a downward flow of

hydrogen molécules to the surface at a rate of about 10,000 trillion molécules per second,

similar to the escape rate. Hydrogen cannot be stored in an underground space on Titan. The

surface is too cold to drive Chemical processes with a catalyst to convert hydrogen molécules

and acetylene back to methane. Only an unknown minerai could provide the net energy

needed for such reactions, acting as the catalyst on Titan's surface. The McKay and Smith

(2005) assumption for methanogenic life, which consumes the hydrogen from the atmosphère,

can explain its disappearance.

Methane-based life forms hâve not been yet detected anywhere, though there are

liquid-water-based microbes on Earth that thrive on methane or produce it as a waste product.

At Titan’s low températures, a methane-based organism would hâve to use a substance that is

liquid as its medium for living processes, but not water itself.

The effectiveness of methane as a medium for life compared to water or ammonia is

under considération. Water enables easier transport of substances in a cell than methane does,

since it has higher solubility. On the contrary, methane's lesser Chemical reactivity favors the

easier formation of large structures corresponding to proteins (Benner et al., 2004). In

addition, the possible existence of cryovolcanic activity suggests higher températures within

the océan and the volcanic conduit where heat transfer between the interior and upper layers

would be critical in creating and sustaining any kind of subsurface oceanic life (Grasset et al.,

2000).

6.2.5 Concluding remarks for Titan’s astrobiological case

Taking into account ail the characteristics described above, the prebiotic potential of Titan

is significant. Titan seems to be an idéal planet-size laboratory for increasing our

knowledge of the évolution of the Earth ’s atmosphère. However, the full extent of current

géologie activity is still under investigation.
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As we hâve mentioned in the Book Chapter by Coustenis at al. (2012), Titan,

although it présents many similarities to the primitive Earth, should not be considered as a

frozen analogue. It is an evolving planetary body with an active complex chemistry

occurring from the upper atmosphère to its surface. One of the by-products of this

chemistry, the macromolecular material, is included in atmospheric refractory organics,

the Titan ’s tholins, which are eventually deposited on the solid surface (dunes) or in the

lakes. Both laboratory and theoretical works hâve provided an assumption of the

composition ofthese compounds.

Laboratory experiments show that the accumulation of these aérosols on the

surface, if they are in contact with liquid water, can release many compounds ofbiological

interest, such as amino acids (Khare et al., 1986). Similar processes could be particularly

favorable in areas of Titan ’s surface where cryovolcanism may occur.

Titan lakes fulfill the habitability criteria as far as the presence of carbonaceous

material and the stable environment. McKay & Smith (2005) suggested that methanogenic

life on Titan's surface liquids could dérivé the energy they need by consuming

hydrocarbons. The isolated environment of Titan's deep lakes can offer the proper

conditions to increase the concentration of high order organics in their deep layers and

their floor.

Therefore, a dedicatedfuture mission to Titan ’s lakes could, in principle, investigate

the presence of organic material as well as the thermodynamic conditions of their

environment Ifno vertical convection occurs within the deep layers of the lakes, the local

environment is favorable for maintaining the formation of biological building blocks and

their Chemical évolution. The experiment I hâve proposed, which incorporâtes Micro-

Electro-Mechanical Systems (MEMS) to be included as payload of a future Lake Lânder

probe, could measure the température, the pressure of the liquid and produce a 3D

topographie map of the bottom (Bampasidis et al., 2011b). Any température inversions

would indicate vertical movement of the liquid. This experiment is described in detail in the

following Chapter.

The existence of an internai water-ammonia océan is suggested both by modeling

and by Cassini-Huygens mission results. The question is whether there are exchanges

between this océan and the surface (and eventually atmosphère) System. Are the lakes such

a link? The possibility of life signs in the internai liquid water deposit cannot be excluded.

Models hâve also predicted that during the first tens millions of years after Titan’s

formation, its global océan was in direct contact with the atmosphère on one side and with
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the bedrock on the other. This structure may provide conditions favorable for an efficient

prebiotic chemistry towards the emergence of life. However, similar conditions are not

incompatible with life as we know it on Earth (Fortes, 2000; Raulin, 2008a; 2008b).

Astrobiological studies on Titan can also provide insights regarding the future of

life on Earth. On Titan a methane cycle occurs similar to the water cycle on Earth.

However, the source ofmethane atmospheric budget replenishment is still unknown. Titan

can help us understand the climate change in a planetary atmosphère when the main

compound of a global cycle is rapidly lost. As it is mentioned in the Nixon et al. white

paper21, which I co-authored, climate change studies on Earth showed an increase in the

mean surface température of the planet. Ifsuch an increase continues, the évaporation of

the water océan will also increase. Water vapor will reach the stratosphère where it will be

irreversibly photolyzed, as H2 escapes to space. CO2 levels will rise, and the Earth will heat

up and dry out (e.g. Li et al., 2009). Therefore, Titan studies can provide crucial

information about the atmospheric equilibrium on the Earth.

21 Submitted to National Research Council of US in response to the Planetary Science Decadal Survey Call in

2009.
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6.3 Enceladus, an active small satellite

Enceladus is the sixth satellite of Satum in size, quite small compared to Titan, with a mean

radius of 252 km (a tenth of Titan’s). The first images of the satellite were taken by the

Voyager space missions, which illustrated a highly reflective surface with few impact craters

implying for a young surface. VI also showed that the satellite is orbiting within the extended

Satum’s E-ring (Smith et al., 1981). Its mass is 1.08xl020 kg, while its mean density is 1,610

kg/m3 (Jacobson et al., 2006). It orbits Satum at 3.95 Rs (Satumian radii, Rs=60,330 km, e.g.

Postberg et al., 2008) between the moons Mimas and Tethys. Due to the small mass and the

weak gravitational field, the satellite has a negligible atmosphère (Parkinson et al., 2007).

The surface of Enceladus is fully covered by ice, having albedo values of about 1, the

highest in the Solar System (Fig. 6.9). Its mean surface température is about 75 K. The

surface features are mainly smooth and cratered terrains, rifts, ridges, grooves, escarpments

and extensive linear fractures in the South pôle. Cassini/VIMS indicates that the surface

consists of CO2 and organics (Brown et al., 2006).

Figure 6. 9 - Enceladus from Cassini/ISS. It is a mosaic of the moon’s leading (or western) hemisphere. The

Southern polar régions are geologically younger than the northem ones. This image was taken during the

November 21, 2009 flyby over Enceladus (crédits: PIA11684, NASA/JPL/Space Science Institute).
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The Cassini-Huygens mission has significantly improved our knowledge of Enceladus

during 19 close flybys so far. One of the most important discoveries of Cassini was the

existence of large plumes ejected from its south polar région as firstly discovered by its

Magnetometer (MAG) (Dougherty et al., 2006). This finding is relevant to astrobiology since

it implies a complex organic chemistry occurring in the interior of Enceladus along with the

appropriate thermal energy, in the presence of liquid water at short distances from the surface.

6.3.1 Enceladus plumes and habitability

By studying Enceladus, an example of active cryovolcanism in icy satellites, we can

understand the processes that shape the surfaces of other icy moons. These processes include

tidal heating, possible internai convection, cryovolcanism, and ice tectonics. Moreover, the

plume source région on Enceladus samples a warm, chemically rich environment that may

facilitate complex organic chemistry and biological processes.

Figure 6. 10 - The south pôle of Enceladus with the linear dépréssions "Tiger Stripes" indicated by the red circle

(captured by Cassini/ISS). The plumes are ejected from these fractures (crédits: PIA12566, NASA/JPL/Space

Science Institute, Porco et al. 2006).
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The geyser-like features on Enceladus are ejected from its south pôle from a sériés of

sub-parallel fractures named as “Tiger Stripes” (Fig. 6.10), spewing a sériés of jets more than

1000 km into space, see Figure 6.11 (Porco et al., 2006; Spencer et al, 2006). Their shape is

linear while their structure typically about 500 m in depth, 2 km in width and around 130 km

in length, flanked on both sides by prominent 100 m high ridges. Cassini/CIRS mapped

higher températures from these linear features compared to the surrounding area (Spencer et

al., 2006). The mass production rate of the plume gas has been estimated to be at about 150

kg/s from occultation data (Tian et al., 2007). If this value remains from the formation of the

satellite, it is sufficient to remove a significant fraction (~20%) of Enceladus’ mass (Kargel,

2006).

Figure 6. 11 - Enceladus’ plumes ejected from the south polar région by Cassini/ISS (Porco et al., 2006).

The Cassini Cosmic Dust Analyzer (CDA) showed that the plumes’ columns consist

of small ice grains with low concentration in sait far away from the satellite. Close to the

surface, large grains enriched with sodium and potassium dominate the plume’s column

(Postberg et al., 2011).

Cassini/INMS data identified H2O vapor as the prédominant component of Enceladus’

plumes, CO2 as the second most abundant, in addition to methane and trace quantities of

acetylene and propane and other organics. During the flyby of 9 October 2008, Cassini dived
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into the south polar plume at a distance of 339 km and INMS recorded the presence of

ammonia and other various organic compounds, deuterium and 40Ar, as well as complex

organics like benzene and other species such as methanol and formaldéhyde (Waite et al.,

2009).

The Cassini Ultraviolet Imaging Spectrograph (UVIS) observed an occultation of the

Sun by the plumes of Enceladus on 18 May 2010. Water vapor was confirmed as the

dominant component, while the upper limit for N2 was less than 0.5%. Combination of the

results of the three Cassini instruments (CDA, INMS and UVIS) supports the existence of an

internai liquid réservoir with gas escaping through the narrow channels in the Tiger Stripes

région (Hansen et al., 2011). Cassini/CAPS detected positive water group ions (Tokar et al.,

2009), water-cluster molecular ions (Coates et al., 2010) and charged nanometer-sized grains

(Jones et al., 2009; Hill et al., 2012) in the plumes of Enceladus. Moreover, Cassini /RPWS-

LP detected a cold dense plasma in the same material (Shafiq et al., 2011).

The Chemical composition of the plume and surface material of Enceladus suggests

the presence of a very hot interior, for such a frozen satellite, implying internai températures

on the order of 500-800 K. Such hot interior décomposés ammonia into N2 and drives

reactions with hydrocarbons (Matson et al., 2007).

Several models hâve been proposed so far regarding the geyser mechanism occurred

on Enceladus' surface, which can be divided into two categories. The first assumes that an

underground océan forms the plumes (Schmidt et al., 2008; Tobie et al., 2008; Postberg et al.,

2009; Behounkova et al., 2012; Matson et al., 2012), see Figure 6.12, while the second one

suggests that the ejected material originates from warmed, melted or crushed ice by tectonic

motions (Nimmo et al., 2007), see Figure 6.13. Most of the models suggest the existence of a

liquid water environment undemeath the Tiger Stripes.

Since Enceladus is not in hydrostatic equilibrium (Schubert et al., 2007; 2010) a

simple and very general stratigraphie interior is being suggested which consists of a 169 km

rocky core overlain by an icy 82 km mantle (Barr & McKinnon, 2007; Fortes et al., 2007;

Schubert et al., 2007).
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Figure 6. 12 - Schematic model of the interior mechanism occurring in Enceladus' south polar région: #1

indicates the internai water océan, #2 shows the fracture from where the water océan exsoluted gases rises

towards the surface. #3 indicates thermal anomalies where heat from the water is being conducted through ices

to the surface and radiated to space (#4). The label 5 marks the plume chamber which feeds the geysers. The

label 6 indicates the retum of the water back to the océan after the éjection of the volatiles (adapted from Matson

et al. 2012).
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Figure 6. 13 - Internai model of Enceladus based on tectonic meltwater. Tidal flexing causes heating along the

fractures (Nimmo et al., 2007).

Enceladus fulfills most of the habitability prerequisites. It could be hosting a large

water océan in its interior enriched with organic compounds and energy sources as well. The
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différence ffom the terrestrial-type large océans are the lack of sunlight, oxygen compounds

and the organics produced on a surface crust environment. Similar environments and

ecosystems exist and evolve on Earth as well, like the one located deep inside South Africa's

surface, where sulfur-reducing bacteria consume hydrogen and sulfate, produced by

radioactive decay (McKay et al., 2008; Muyzer & Stams, 2008).

Additionally, life forms existing in extreme terrestrial environments like the magmatic

volcanic rocks, which are produced through metasomatism. Metasomatism is the change of

the Chemical composition of rocks, when they interact with fluids. The metasomatosis of the

volcanic rocks under the presence of water produces methanogens of hydrogen on which the

primary productivity is based on. The question is if the methane detected by Cassini in the

plumes has a biological related origin (McKay et al., 2008).

6.3.2 Conclusions and questions about Enceladus’ astrobiological potential

Enceladus, Saturn ’s most active moon, is the place in the Solar System System where we

hâve observational evidence of a habitable environment already occurring in terms of

energy, organics, stable environment and liquid water. Despite its small size, the moon can

possess sufficient dynamical energy to drive a plume éjection 1000 km in space out of the

moon ’s south pôle and eventuallyfeed the outer E-ring ofSaturn (Postberg et al., 2009). In

a model by Cooper et al. (2009), the astrobiological parameters that support life on

Enceladus are evaluated as higher than for Europa due to a less extreme State ofoxidation

and greater residual abundance of organics. The quest of habitability on Enceladus

includes: the presence of liquid water (either in a subsurface océan, in the plume vent

régions, or elsewhere); the extension and long-term stability of the water liquid; the

interactions of the liquid réservoir and the surface; the degree of thickness and uniformity

of the ice crust; the available energy sources andfinally the presence ofany biomarkers or

biological building blocks.
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6.4 Jupiter’s satellites as astrobiological targets: Ganymede, Europa and
Callisto

Since we lack long-term remote and in situ observations of these icy moons, comparative

studies operate supplementary to our perspective of these worlds. In our paper, Solomonidou

et al. (2011), we study the surface aspects of Jupiter's Ganymede and Europa and Satum's

Titan and Enceladus and try to find which of their similarities are connected with

astrobiological implications. In this section, I hâve expanded the comparison among the

Satumian moons Titan and Enceladus and the Jovial Ganymede and Europa by considering

also Callisto.

6.4.1 Ganymede, the biggest satellite of the Solar System

Ganymede is the biggest satellite in our Solar System with a diameter of 5,272 km, a mass of

148.2 x 1021 kg and a density of 1940 kg/m3. It orbits Jupiter at 1.07 million km and its

surface has a mean température of about 110 K. It is the only moon that possesses a

magnetosphere (Kivelson et al., 2002), generated by currents flowing in a conducting liquid,

which indicates the existence of the deep océan. It is covered by a thin exosphere consisting

mainly of oxygen in the forms of O2, O and O3 (Noll et al., 1996; Calvin & Spencer, 1997;

Hall et al., 1998).

Most of Ganymede’s surface coverage displays dark régions which are filled with

impact craters (Prockter et al., 1998) and brighter régions covered by terrains curved by

tectonic ridges and grooves (Fig. 6.14) (Pappalardo et al., 1998a; Patterson et al., 2010).

Several non-water ice materials hâve been found in the surface of the satellite such as MgSÛ4

and possibly Na2SC>4 (McCord et al., 1998a; 2001).
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Figure 6. 14 - Natural color view of Ganymede from Galileo/SSI. The picture was taken during the first Galileo

encounter of the satellite. North is on the top of the image and the Sun illuminâtes the moon from the right. The

bright spots are young impact craters and their ejecta. The dark areas are geologically older, while the light areas

are younger, tectonically deformed régions. The brown/gray color is due to mixtures of rocky materials and ice

(crédit: NASA/JPL-PIA00716).

Galileo gravitational measurements showed that Ganymede is fully differentiated into

a core and a mantle (Anderson et al., 1996). It consists of an iron-rich sulfide core in liquid

State, a silicate-rich mantle covered by an icy crust up to 100 km (Fig. 6.15).

Figure 6. 15 - The interior structure of Ganymede (adapted by Nakamura & Ohtani, 2011).

A liquid océan possibly exists 200 km below the surface, between layers of ice (McCord et

al., 2001). Réflectance spectra from Galileo/NIMS discovered hydrated minerais on
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Ganymede's surface, similar to Europa's (McCord et al., 1998a), derived from the

encapsulated internai océan.

6.4.2 Europa as a habitat

Jupiter's Europa is the smallest of the four large Galilean satellites with diameter of 3,122 km,

a mass of 48 x 1021 kg and a density of 3,010 kg/m3 (Fig. 6.16). It orbits Jupiter at 671,000

km and its surface has a mean température of about 100 K.

Figure 6. 16 - The training hemisphere of Europa from the Galileo mission in natural color. Dark brown areas

represent rocky material from the interior. The fractures in the crust are also shown (crédits: Galileo/SSI-

PIA00502, NASA/JPL/DLR).

As shown by the Galileo mission, the lack of many impact craters on its surface

(Pappalardo et al., 1998b) indicates that it is relatively young and active,. It is mainly

composed of water ice (Dalton, 2010; Dalton et al., 2010) and the most typical surface

structures are linear chains, the lineae (e.g. Figueredo & Greeley (2004)). Réflectance spectra

from Galileo’s Near Infrared Mapping Spectrometer (NIMS) showed that the surface of
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Europa also contains hydrated sait minerais such as magnésium sulfates and sodium

carbonates (McCord et al., 1998b).

Hubble Space Telescope observations showed that Europa possesses a tenuous

exosphere mainly consisting of molecular oxygen (Hall et al., 1995) which has not biological

origin. However, it may interact with the possible internai liquid océan and thus it may hâve

biological significance.

The interior of Europa is differentiated as reported from Galileo gravitational data

(Anderson et al., 1997). It is primarily composed of silicate rock (Sohl et al., 2010) and an

iron-rich core (Anderson et al., 1998). Galileo’s magnetometer data showed that Europa has

an induced magnetic field, which suggests the presence of a subsurface conductive layer

(Kivelson et al., 2000). The layer is likely a salty liquid water océan decoupled from the icy

crust no more than 100 km thick (Fig. 6.17) (Schenk & McKinnon, 1989; Zimmer et al.,

2000; Schenk & Pappalardo, 2004). The big différence compared to Ganymede, the large

satellite, is that the liquid layer is almost certainly in direct contact with the silicates.

Rocky Interior \ Liquid Océan Under Ice
H2O Layer

Figure 6. 17 - (left) The layered interior of Europa and (right) a proposed model for its interior suggesting a thin

icy crust of 200 km (crédits: NASA/JPL/Galileo/SSI-PIA01669).

Jupiter probably generates large tidal waves on Europa, due to its small but non-zero

obliquity, which keep the océan warm (Tyler, 2008). The composition of this internai océan is

different from the terrestrial ones. The Earth’s océan major component is sodium chloride,

while Europa’s should hâve a highly conductive component such as magnésium sulfate

(McCord et al., 1998b; Fanale et al., 2001), or sulfuric acid hydrate (Carlson et al., 2005).
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Recent analyses of Galileo images suggest that ice-water dynamics are active. Surface

features may be formed from exchanges between the ice shell and shallow subsurface water

deposits. This mechanism provides transfer of energy and nutrients between the surface and

the interior, increasing the associated habitability potential (Schmidt et al., 2011).

6.4.3 Callisto, the heavily-cratered moon

Callisto is the third largest moon in the Solar System after Ganymede and Titan with a

diameter of 4821 km, while its mass is at 107.6 x 1021 kg and its density at 1830 kg/m3. Its

surface has a mean température of about 134 K (Fig. 6.18). Of the four Galilean moons,

Callisto orbits farthest from the giant planet at 1883 x 103 km (Anderson et al., 2001). Due to

its orbital distance, Callisto is less affected by the magnetosphere of Jupiter compared to the

other Galilean satellites (Cooper et al., 2001) and it has a tenuous carbon dioxide exosphere

(Carlson, 1999).

The surface of Callisto is heavily cratered which means that no surface processes

occur on it (Greeley et al., 2000).

Figure 6. 18 - The only complété global color image of Callisto obtained by the Galileo orbiter. Callisto is

uniformly cratered (the bright scars on the darker surface) (crédits: Galileo/SSI/PIA03456 NASA/JPL/DLR).
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Callisto is very similar to Ganymede, but it is only partially differentiated and does not hâve

an intrinsic field (Spohn & Schubert, 2003).

Figure 6. 19 - The interior of Callisto from Galileo data. An internai océan lies probably

beneath the 200 km icy crust (crédit: NASA/JPL/PIA01478).

The thickness of Callisto's icy lithosphère is between 80 and 150 km (6.19). It

possesses a deep water-ammonia océan similar to Ganymede with a thickness between 70-90

km beneath the crust indicated by Galileo magnetometer and gravity data (Khurana et al.,

1998; Zimmer et al., 2000; Spohn & Schubert, 2003; Kuskov & Kronrod, 2005). Beneath the

océan the interior is composed by rock and ice and the rock percentage increasing by the

depth without having a core (Nagel et al., 2004).

6.4.4 Habitability of Ganymede, Europa and Callisto

Surface properties of the satellites provide indications about their interior structure. Callisto

has a dark, geologically old, heavily cratered ice surface and from its rotational data that its

density is equally distributed (Anderson et al., 2001). The rotation measurements of the three

inner Galilean moons (Ganymede, Europa and Io) indicate differentiated interiors. Moreover,

Ganymede’s surface features indicate possible past tectonic processes. Europa probably

hosted more recent tectonic movements, with a thinner ice crust. The nearer a moon is to

Jupiter the hotter its interior. Callisto's internai structure may be the original structure of ail

the moons.

280



The gravitational pull of Jupiter induces stresses to its moons and as a resuit their

interiors are heated. Except for Callisto, the tidal heating melts the interior ice, allowing for

rock and iron to sink downwards and for water to lift to the surface. Ganymede has a thick ice

crust. Europa expériences stronger tidal heating and has a thinner crust. The geological and

structural data of Ganymede and Europa provide promising worlds for astrobiological studies.

Gravitational forces from Jupiter and other Galilean satellites cause tidal friction on

Europa and provide the proper energy for the internai océan to remain in liquid State. Large

amounts of energy at the bottom the océan could form hydrothermal vents like the ones seen

on Earth. Such vents can provide the proper température status and ingrédients to support life

forms. Greenberg (2010) suggested complex aérobic organisms could exist on Europa,

providing evidence of oxygen concentration within the océan greater than that of the Earth’s.

Since the salts' concentration is large, only extremophile organisms (like halophiles) could

survive (Cooper et al., 2001; Marion et al., 2003).

Ganymede is colder than Europa, which lowers possibly its habitability potential.

However, Ganymede possesses an intrinsic magnetic field which protects the satellite from

incident radiation and thus, provide the necessary tools to concentrate biological building

block ingrédients (Trinks et al., 2005). Its dark terrain is of astrobiological interest due to the

existence of organic materials (McCord et al., 1998a). Additionally, nutrient-rich material

provided from magmatic events could exist in the internai océan (Barr et al., 2001).

Europa does not hâve an intrinsic magnetic field, but its icy crust provides some

natural shielding to the sub-surface liquid océan, protecting it from direct exposure to the

intense radiation environment of Jupiter’s magnetosphere.

6.5 Conclusions

Earth has drastically evolved since its formation 4.5 billion years ago and most ofthe traces

of the initial environmental conditions hâve been erased. It is therefore difficult to retrace

the processes of the emergence of life on Earth around 4 billion years ago, or even of the

formation and évolution of its atmospheric organic content. Astrobiology could provide

crucial information from extraterrestrial locales with similarities to our planet’s early

stages.
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According to the Lammer et al. (2009) classification, Saturn 's Titan and Enceladus

and Jupiter's Ganymede, Europa and Callisto can be considered as habitats, since they

hâve encapsulated internai water deposit. The question is if these moons hâve

compositional, structural and other similarities among them or compared to the Earth with

astrobiological implications. In Coustenis et al. (2012) and in Solomonidou et al. (2011) we

try to provide answers. Titan's surface differs significantly from Enceladus and the other

Galilean moons due to the presence of the thick atmosphère. Erosional processes act and

shape the surface globally, resulting a fiat topography (Lorenz et al., 2011).

The surface of Titan and the other outer planets ’ satellites appears initially as an

unfavorable place for life, at least for terrestrial-type life. The absence of liquid water on

the surface makes them unlikely to support any terrestrial-type life. If liquid water exists

under the surface, it is not in direct contact with a silicate core (with the exception of

Europa), which is isolated from the subsurface océan by a layer of a high-pressure ice

phase.

However, exotic types of life could be found in the internai large réservoirs of the

outer planets. Ganymede, Callisto, Europa, Titan and Enceladus hâve encapsulated water

océans, which may maintain an exotic type of life, using liquid hydrocarbons as solvents

(McKay & Smith, 2005). According to Stoker et al. (1990), terrestrial bacteria can satisfy

their energy and carbon needs by consuming tholins, the laboratory analogue of Titan 's

aérosols.

On the other hand, living organisms hâve been found on Earth under extreme

environmental conditions in deep oceanic layers. Such environments, with low-temperature

and high-pressure conditions, are the cold seeps and the hydrothermal vents (e.g. Ritt et ai,

2010). Single-cell Archaea and Eubacteria microbes hâve been discovered to consume

methane and hydrogen sulfide from seep and hydrothermal vents. Additional laboratory

experiments and in situ studies of deep subglacial isolated lakes in Antarctica (Kapitsa et

al., 1996) would improve our understanding in this field, as the physical properties of deep

subglacial lakes resemble thosefound on outerplanets' moons (Bulat et al., 2009).

The satellites of the giant planets like Ganymede, Callisto, Europa, Titan or

Enceladus are possible habitable environments and astrobiological targets. According to

current models of internai structure, the existence of subsurface océans is expected for

most of the icy moons of the outer planets (e.g. Sohl et al., 2010, Schubert et al., 2010 and

references therein). The common properties that need to be satisfied on ail bodies in order

to sustain a liquid subsurface océan are (Solomonidou et al., 2011): (a) The heat
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production, which mainly originates front radiogenic heating or other triggering

mechanisms (e.g. McKinnon, 1999, Tobie et al, 2005 ); other heat sources are the

dissipation of tidal energy due to the orbital interaction between the satellites and their

planets, the exothermal geochemical production of heat like hydration and crystallization

ofsolids (e.g. Sohl et al., 2010, Hussmann et al., 2010); (b) The efficiency ofheat transfer,

which is based on thermal diffusion and thermal convection (e.g. Hussmann et al., 2010);

(c) The components that decrease the melting point of ice and support the océan ’s liquid

State (e.g. Sohl et al., 2010, Tobie et al., 2010); an antifreeze component like a solution of

water with ammonia should exist in the océan in order to remain in the liquid State; and (d)

The stability of the crust against convection (e.g. McKinnon, 1998 , Rainey & Stevenson,

2003).

The internai océan could provide the proper isolation to the satellites of the outer

planets to form possible habitable environments. The discovery of hydrocarbon lakes on

Titan's surface and the possible existence of subsurface liquid océans in Ganymede,

Callisto, Europa, Titan and Enceladus suggest reconsidering the habitable zone définition

and limits (Lammer et al., 2009).

However, life forms that do not influence the atmosphère of their host planet on a

global seule will not necessarily be remotely détectable. In the Solar System's

neighborhood, such potential habitats can only be investigated with space missions (see

Chapter 7). For the Jovian and Saturnian satellites the proposed future missions will

address the question of the hypothesized internai liquid water océan for their icy moons

(seefollowing Chapter).

Although it is a difficult challenge to search for life forms in the environments of

outer planets' moons, such studies willprofoundly improve our understanding ofthe origin

and the évolution oflife and the habitable environment on our own planet.
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Chapter 7

Future exploration of the satellites of the

outer planets

-MEMS devices for icy moons

The gas giants are massive planets, mainly composed of hydrogen and hélium, but with no

well-defmed planetary surface. Our Solar System has four gas giants: Jupiter, Satum, Uranus

and Neptune. They are also known as Outer Planets22 since they orbit beyond the asteroid

belt. Recently, many extrasolar gas giants hâve been detected, for which our Solar System

giant planets serve as archétypes.

Jupiter, followed by Satum are the largest planets of the Solar System. They both hâve

their own System of numerous natural satellites in multivariable sizes (more than 60 moons

each). Unique among these moons are Jupiter’s Ganymede, Callisto and Europa and Satum’s

Titan and Enceladus. Ail of them are active worlds likely to hâve a differentiated internai

structure with encapsulated océans. The scientific interest in these objects is considérable,

conceming their corrélation with the origin of the Solar System, the terrestrial-like processes

and features they exhibit, as well as their habitability potential.

The planetary environments of Jupiter and Satum hâve been studied by the missions

Pioneer 10 and 11, Voyager 1 and 2, Ulysses, Galileo, Cassini-Huygens and New Horizons

for Jupiter and Pioneer 11, Voyager 1 and 2 and Cassini-Huygens for Satum. The Galileo

mission to Jupiter and the Cassini-Huygens mission to Satum hâve significantly advanced our

knowledge about the biggest outer planets of the Solar System and their Systems. The Cassini-

Huygens mission, in particular, studies in depth Satum, its satellites and its rings and will

continue touring up to 2017.

However, numerous questions hâve been raised so far, which cannot be addressed by

these missions, mainly due either to the instrumentations’ limitations. Without doubt, both

Systems of Jupiter and Satum should be revisited by new missions.

22 Pluto orbits also outside the asteroid belt, but the International Astronomical Union (IAU) categorized it as a
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Titan and Europa were identified, among others, as main targets for future exploration

by NASA in their 2003 and 2011 Decadal Surveys. ESA has recently performed extended

studies for the outer planets satellites exploration (TandEM, TSSM, EJSM) and finally

selected JUICE, as the first large mission to be launched within the Cosmic Vision 2015-2025

Program. In this Chapter, I présent some of the studies for future missions in which I hâve had

the chance to somehow contribute or to participate and in particular some individual

experiments concepts for icy moons that I hâve explored and proposed.

7.1 Recent mission studies to Jupiter: From EJSM to JUICE

Jupiter is the biggest planet of our Solar System. It has a mass of 1,898.6x1024 kg and a radius

of 71,492 km at the equator. Its mean distance to the Sun is 778.57xl06 km and it complétés a

full révolution of the Sun every 11.86 years. Jupiter has the strongest magnetic field of the

Solar System (4.2 gauss on the surface at the equator, 14 gauss on the surface at the North

pôle and 11 gauss on the surface at its South pôle) and the biggest magnetosphere, which

extends up to 75 Jupiter radii.

Jupiter is considered as a gas giant along with Satum, Uranus and Neptune since it

mainly consists of a gaseous envelope, without a surface. Its atmosphère is hydrogen-

dominated (89.8%) with hélium (at about 10%), while the rest of the gases are methane,

ammonia, hydrogen deuteride, ethane and water vapor in traces.

It has 63 natural satellites and among them the four so-called “Galilean” (because they

were discovered by Galileo Galilei in 1610), Ganymede, Europa, Callisto and Io. Ganymede

is the biggest satellite of our Solar System. The Jovian System has been investigated by the

spacecraft Pioneer 10 (1973) and 11 (1974), Voyager 1 (1979) and 2 (1979), Ulysses (1992

and 2004), Cassini-Huygens (2000) and New Horizons (2007), during their flyby maneuvers.

The Galileo spacecraft entered into Jovian orbit in December 1995 and operated until

September 2003, when it fell onto the giant planet. Galileo also released a probe, which

entered the planet's atmosphère in December 1995 and collected measurements for 57.6 min

until the atmospheric pressure crushed it.
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A new NASA mission is on its way to the Jovian System: The Juno mission23, which

was launched in August 2011 and will enter into orbit insertion at 2016. The eight instruments

of Juno will study Jupiter’s gravitational and magnetic potential as well as its composition.

However, this mission lacks a lander vehicle for the in situ exploration of an icy moon.

7.1.1 The Europa Jupiter System Mission (EJSM)

EJSM (Europa Jupiter System Mission) was a joint NASA and ESA mission study, which

would focus on the exploration of Jupiter and its moons. It was a L-scale (large) mission

consisting of two orbiters, the Jupiter Ganymede Orbiter (JGO) and the Jupiter Europa Orbiter

(JEO). JGO would be developed by ESA and it was a continuation of the LAPLACE proposai

(Blanc et al., 2009), submitted in response to ESA’s Cosmic Vision 2015-2025 Call mission

{EJSM, NASA/ESA Final Report, 30 January 2009). It would focus mainly on Ganymede and

Callisto and the Jupiter System. JEO, on the other hand, would hâve been developed by

NASA and it would focus mainly on Europa and explore its habitability. Both orbiters'

payloads were designed to study the moons’ surfaces, interiors, their gravitational fields and

magnetospheres and their atmospheric environments. Table 7.1 below describes the main

payload proposed for this mission {EJSM, NASA/ESA Final Report, 30 January 2009).

23 http://juno.wisc.edu/juno-mission.html; http://missionjuno.swri.edu/
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Figure 7. 1 - NASA's Jupiter Europa Orbiter (crédit: NASA/EJSM Final Report)

Figure 7.2- ESA's Jupiter Ganymede Orbiter (crédit: ESA)
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Table 7. 1 EJSM payload (EJSM Final Report).

Orbiters

Instrumentation
JGO/JEO Laser Altimeter

JGO/JEO Radio Science

Science Payload

Main objectives

Surface topography - cohérence with gravity, tides

Interior State of moons, presence of a deep océan and other gravity
anomalies

T_,^.TT,_ t _ _ , Structure of the subsurface & identify warm ice and/or anomalies within the
JGO/JEO Ice Penetrating Radar .

JGO/JEO

JGO/JEO

JEO

Visible-IR

Spectrometer
Ultraviolet

Spectrometer
Ion and Neutral Mass

Spectrometer

JGO/JEO Thermal Instrument

JEO

JGO/JEO

JGO/JEO

Narrow Angle
Caméra

Wide and Medium

Angle Caméra

Magnetometer

JGO/JEO Plasma and Particles

JGO
Submillimeter Wave

Sounder

Composition of non-ice components on Ganymede & Callisto;

State & crystalinity of surface ices

Composition & dynamics of the atmosphères of Ganymede & Callisto

Composition of sputtered products from Europa

Map température anomalies and thermal inertia of surface materials on

Ganymede

Local-scale géologie processes on Europa, Ganymede & Callisto; Io volcano
monitoring; Jupiter cloud dynamics & structure
Global morphology of Ganymede; Global to régional scale morphology of
Callisto

Ganymede’s intrinsic magnetic field and its interaction with the Jovian field

Interaction between Ganymede & Callisto and the space environment to

constrain induction responses

Dynamics of Jupiter’s’ stratosphère; Vertical profiles of wind speed and

température

EJSM was in compétition with a mission concept for the exploration of the Kronian System

which focused on Titan (the Titan Satum System Mission or TSSM) for a slot among the L-

class Cosmic Vision Program missions. After the initial studies, the Europa Jupiter System

Mission (EJSM) mission was prioritized by NASA and ESA to be launched first in order to

explore the Jupiter System. The Titan Satum System Mission (TSSM) mission, which will be

described later in this Chapter, was to be developed and launched later for the Satumian

System. However, due to budget cuts, NASA could not support in the immédiate future the

development of such a large-scale mission as JEO and terminated that study. ESA has decided

to continue with the same objectives and some enhancement with respect to the JGO, but with

a unique spacecraft dedicated to study the icy moons of Jupiter : Ganymede, Callisto and

Europa. In this context, the ESA Jupiter Icy Moons Explorer mission (JUICE) was proposed

as a reformulation of JGO. The mission has won the compétition for the first L-class mission

of ESA’s Cosmic Vision 2015-2025 Program. It has been selected for the L1 slot of ESA's

Cosmic Vision science program on May 2, 2012. Two other proposais were competing:

ATHENA, a big X-Ray telescope and NGO, a concept of three satellites to detect gravity

waves. The complété instrument payloads, as well as, the instrument contractors hâve not yet
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been decided. A NASA contribution towards the payload is under considération. The

participation ofNASA will be limited to a few instruments perhaps and to co-investigators.

7.1.2 The Jupiter Icy Moons Explorer mission (JUICE)

Science goals

The Jupiter Icy Moons Explorer mission (JUICE) will visit the Jupiter System focusing on the

investigation of Ganymede mainly, but also Callisto and to a lesser extent of Europa as

potential habitats and on the exploration of Jupiter. JUICE will study the conditions that may

hâve led to the emergence of habitable environments among these icy satellites and their

internai océans. The mission will also focus on characterizing the diversity of processes in the

Jupiter System, including gravitational coupling between the Galilean satellites and their long

term tidal influence on the System as a whole (ESA/SPC(2012)12)24.

Mission profile

The mission25 will be launched in June 2022 on an Ariane 5 rocket carrier and will perform a

7.3-year cruise towards Jupiter, based on an Earth-Venus-Earth-Earth gravitational assist. The

Jupiter orbit insertion will occur in January 2030, and will be followed by a tour around the

Jupiter System. It will comprise a transfer to Callisto (11 months), a phase studying of Europa

(with 2 flybys) and Callisto (with 3 flybys) lasting one month. Then, a "Jupiter high-latitude

phase" will begin that includes 9 Callisto flybys (lasting 9 months) and the transfer to

Ganymede which will last 11 months. In September 2032 the spacecraft will insert into orbit

around Ganymede, starting with elliptical and high altitude circular orbits (for 5 months)

followed by a phase at a medium altitude (500 km) circular orbit (of 3 months) and by a final

24 http://planetary.s3.amazonaws.com/assets/resources/ESA/ESA-SPC_20120417_selection-L 1 -mission.pdf

http://sci.esa.int/juice

http://media.egu2012.eu/media/filer_public/2012/04/19/eguJuice_press.pdf

25 http://sci2.esa.int/cosmic-vision/JUICE_Yellow_Book_Issuel .pdf
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phase at a low altitude (200 km) circular orbit (for 1 month). The end of the nominal mission

is planned to be in June 2033.

Spacecraft description

The spacecraft is three-axis stabilized and powered by solar panels, providing around 650 W

at end of mission. Communication to Earth is provided by a fixed 3.2 m in diameter high-gain

antenna, in X and Ka bands, with a downlink capacity of at least 1.4 Gbit/day.

Communications
antenna: 3.5m

Wide Angle caméra

Hi-res caméra

Folded solar arrays:
total area of 72 sq m

Main manoeuvring
engine: 445N

Spacecraft body: 1.56m x 1.56m x 2.68m
Launch mass; 4.8 tonnes

Figure 7. 3 The JUICE spacecraft design (crédit: ESA)
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Figure 7.4- Design solutions for JUICE from three studies (crédit: ESA)

The spacecraft’s dry mass at launch will be approximately 1.8 tons. The proposai has

identified a model payload based on a suite of 11 instruments weighting about 104 kg (see

JUICE Yellow Book Issue l)26:

• Narrow angle caméra

• Wide angle caméra

• Visible and Infrared Hyperspectral Imaging Spectrometer

• Ultraviolet Imaging Spectrometer

• Submillimeter Wave Instrument

• Laser Altimeter

• Ice penetrating radar

• Magnetometer

• Particle Package

• Radio and Plasma Wave instrument

• Radio Science Instrument and Ultrastable Oscillator

26 http://sci.esa.int/science-e/www/object/index.cfm?fobjectid=49837
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JUICE will provide a thorough investigation of the Jovian System and especially on the

potential habitable worlds Ganymede, Callisto and Europa, since they satisfy the habitability

prerequisites: the existence of water, the energy supply, the proper chemistry and the stability

over time.

My PhD Thesis supervisor, Dr. A. Coustenis, was the European Science co-Lead of

the JUICE Science Study Team which defined ail the steps of the mission during its study by

ESA and NASA and then by ESA alone (JUICE) and in coopération with the Space Physics

Team of the University of Athens, we focused on a twofold contribution in the JUICE

mission: (a) instrument calibration and (b) outreach activities.

With Dr. Mathieu Hirtzig, we developed and are currently still exploiting a multi-

stream radiative transfer code (Hirtzig et al., 2011) with which we can process spectro-

imaging data. In particular, after correcting the atmospheric contribution in Cassini Visual and

Infrared Mapping Spectrometer (VIMS) observations (Brown et al., 2004), we can deduce

Titan’s surface spectrum, by inverting the I/F reflectivity. But this code can be further applied

to the inflight data of the foreseen JUICE/Visible infrared Hyperspectral Imaging

Spectrometer (VIRHIS) instrument included in the model payload of the JUICE mission by

the Science Définition Team during Earth and Venus flybys. The RT code can be further used

to yield spectral calibration constraints for the instrument.

In addition to the évident scientific interest of the outer planets community, a mission

to the Jovian System will certainly attract the interest of the layman (public). As a member of

the Space Physics Group of the University of Athens, I hâve a long-term expérience in

designing outreach events, exhibitions and activities (see Chapter 8) as well as in web page

design and administration. I am the web master of the Planetary and Solar System Sciences

Division of the European Geosciences Union (EGU/PS) site27, the official web site of Titan

and Satumian System Mission (TSSM)28 and I hâve created the TSSM main article in

Wikipedia29. Moreover, I hâve created the supporting site of the proposed Titan Aerial

Explorer (TAE)30, together with Stefanos Stamogiorgos, software engineer. The EGU/PS web

site was selected and presented by the EGU administrators as a prototype example of

development to other division web masters in the recent EGU General Assembly (Vienna,

27 http://www.egu.eu/inside-egu/divisions-and-present-officers/division-planetary-and-solar-system-

sciences/inside-ps/administration.html

28 http://www.lesia.obspm.fr/cosmicvision/tssm/tssm-public/

29 http://en.wikipedia.org/wiki/Titan_Satum_System_Mission

30 http://users.sch.gr/gbabasides/joomla/index.php
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2012). ESA plans to set up web sites focusing on the JUICE mission, which will be upgraded

as the mission progresses and I will contribute towards this effort. Ail of this I will further

develop in the next chapter. As regards the future missions, my contributions were in

particular centered around providing an atmosphere-surface interaction combined approach

for the possible instrumentation aboard the orbiters (through my expérience with

Cassini/CIRS and Cassini/VIMS, see Chapters 4 and 5) and the HASI instrument aboard

Huygens, but also through novel ideas that I will describe more in detail hereafter on future in

situ instrumentation in case of a balloon or a lake lander, in particular.

7.2 Mission studies to Saturn and Titan: KRONOS, TSSM and TAE

Satum is the second largest planet of the Solar System after Jupiter. Its radius is 60,330km,

while its mass is 568.46x1024 kg. It orbits around the Sun at about 10 AU and it takes almost

29.5 years for a full révolution. It has an intrinsic magnetic field at 0.2 gauss at the equator,

which is perfectly symmetric. This field créâtes the second largest magnetosphere in the Solar

System after Jupiter (Blanc et al., 2005; Belenkaya et al., 2006; Gombosi et al., 2009). As the

Cassini magnetometer discovered, the main source of neutrals in the Satumian magnetosphere

is Enceladus (Dougherty et al., 2006). Its magnétopause extends up to 20 Satumian radii at

the orbit of Titan.

The Satumian atmosphère is dominated by hydrogen at about 96%, while the rest 3%

is hélium. It expériences the most intense storms of the Solar System with its équatorial zonal

winds to présent a slowing from 450 m/s down to 250 m/s in respect to the Voyager era.

Satum has 62 natural satellites known today and a unique planetary ring System. Its

rings are mainly composed of ice particles, rocky débris and dust and they are separated into

nine continuous rings and three discontinuous arcs.

I got involved in future mission planning to the Satumian System in February 2007,

during my MSc studies. I hâve participated in the starting workshops for planning future

missions in response to ESA's Cosmic Vision 2015-2025 Call, conducted in Meudon-Paris

Observatory from 12 to 15 February 2007. There were two workshops in which Prof.

Xenophon Moussas (my PhD co-supervisor) and myself were invited to attend, representing

the Astrophysics laboratory of the University of Athens. The outcome of the work of the

Consortium formed at the time were two separate L-scale (large) mission proposais to Satum,
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the Kronos mission (Marty et al., 2009a;b), and to Titan and Enceladus, the TandEm mission

(Coustenis et al., 2009a). The TandEM concept was later merged with a NASA Flagship

mission (Titan Explorer, Leary et al. 2008) to form the TSSM concept.

I contributed to both proposais and was therefore included in associated publications

or communications. Hereafter, I describe first the mission concept for the study of Satum with

probes and then the TSSM mission, a very complété and challenging mission concept and

compare it to other smaller mission proposais for a balloon or a lake lander.

7.2.1 The KRONOS mission

The Kronos mission focused on studying Satum as a whole System, from its magnetosphere

and its atmospheric environment to its interior. The basic concept of this mission was to probe

globally the giant planet with two probes and remote sensing techniques through a carrier

which would also serve as relay and dérivé the Chemical and isotopic composition of the giant

planet. Kronos would be an equally ambitious mission compared to Cassini-Huygens with

instrumentation improved by several orders of magnitude in resolution and enhanced

capabilities. A. Coustenis was co-Lead of the proposai with Bernard Marty and Tristan

Guillot. The Kronos study is well-described in the papers of Marty et al. (2009a;b) published

in Experimental Astronomy Journal, which I co-authored.

The ESA contribution to the mission were the two probes, while NASA (via its New

Frontiers program) would provide the carrier which would also perform some remote

measurements and telecom. Kronos would analyze in depth the Chemical and isotopic

composition of the Satumian atmosphère. Such studies provide essential dues about the

formation and the évolution of Satum and the Solar System in general, since the giant planets

are made of protosolar nebula gases. The study of the meteorology and atmospheric dynamics

would be also a major goal of the mission in order to understand the évolution of its

atmosphère since the planet's formation. The Kronos orbiter and probes would measure the

température vertically and zonally, the winds, the cloud properties, the radiative balance and

the convection mechanisms.

The mission would measure the Satumian gravity with high accuracy in order to yield

constraints about its interior. Gravitational data would also détermine if the interior rotâtes as

a solid body or not. The knowledge of the composition and the conductivity of the interior
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would help understanding better the asymmetric magnetosphere of the planet. Kronos would

also observe directly the Satumian rings.

Data from the Kronos mission compared with the results from the Juno mission could

hâve provided the opportunity to leam about the dynamics and the évolution of our Solar

System's giants. Additionally, since advanced space télescopes like KEPLER31 are now able

to observe extrasolar planets, parallel studies could also give detailed information about the

physics, chemistry and thermodynamic State of other solar Systems.

The mission architecture

The Kronos mission proposai consisted of a spacecraft, which carried two atmospheric

probes launched into the atmosphère of the planet. Each probe was planned to make in situ

température measurements down to the pressure limit of 10 bars. The spacecraft design is

similar to the one from the Juno mission. Two other ring probes hâve also been proposed to

be included in order to study the rings and their particles within a distance of a few

kilometers, similar to that of the Galileo entry probe.

Figure 7. 5 - The cross section of the Galileo probe. The Galileo probe's héritage would be used as the basis of

the Kronos probes design (Galileo Probe Décélération Module Final Report, Doc No. 84SDS2020, General

Electric Re-entry Systems Operations, 1984; Project Galileo Mission and Spacecraft, 1983) (Marty et al.,

2009a).

The carrier would arrive to Satum after an interplanetary joumey by taking advantage

of Earth, Venus and Jupiter gravitational assists as Cassini did. The initial proposai mission
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suggested a launch at 2017 and the joumey to Satum would last about 11 years. ESA selected

to support the EJSM and TSSM proposais for the slot of a large-scale mission study to the

outer planets, discarding Kronos. However, the concept was recognized as very interesting,

and is carried forward today in studies performed essentially in the USA.

After the synthesis of the Kronos Consortium in Meudon in 2007,1 hâve performed a

study at the University of Athens focusing on the atmospheric entry probes' payload of the

Kronos mission. The probes would sound the atmospheric composition and dynamics from

the upper Satumian atmosphère downwards to the level of about 10 bar. I was interested to

get involved in the atmospheric structure experiment, which would measure the atmospheric

density, pressure and température during the probe's descent. The Kronos Atmospheric

Structure Instrument (ASI) on board the entry probes design would beneflt the Huygens

Atmospheric Structure Instrument (HASI) héritage (Fulchignoni et al., 2002).

I hâve investigated some of the possible modifications on the HASI instument to adapt

to the higher pressures of the deeper Satumian atmosphère and focused on the température

sensors which would perform direct measurements during the descent phase after the release

of the probe's shield. Each HASI température sensor was a dual element platinum résistance

thermometer (Fulchignoni et al., 2002) designed to meet the Cassini/Huygens mission

requirements.

However, the environmental conditions in Satum differ significantly from Titan's.

Indeed, the Galileo probe survived for about 58 minutes before melting from the high

atmospheric pressure of 20 bar and the température of about 150°C inside Jupiter's

atmosphère. Piezoresistive micro-machined température sensors can obtain direct

measurements32 in Satum's high pressure environment, using a Wheatstone bridge circuit

configuration.

My main concem was also to minimize the probe's payload weight and that research

led to the study of implementing Micro-Electro-Mechanical System (MEMS) technology in

future missions to outer planets. A further study of MEMS devices and their implémentation

as distinctive future experiments in icy moons are described later in this Chapter.

32 http://www.kistler.com/mediaaccess/000-614e-09.09.pdf
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7.2.2 The Titan and Enceladus Mission (TandEM)

My involvement in future mission planning to Titan and Enceladus began in early 2007 in

Meudon, when Prof. X. Moussas and I participated to the Workshop of the TandEM

Consortium conducted in Salle des Conférences du Château of the Paris-Meudon Observatory

(Atelier CIAS). This Workshop set up the baselines for the study of a future flagship mission

dedicated to these planetary objects. TandEM was a multi-national cooperative effort, in

which 155 expert scientists and engineers participated (Coustenis et al., 2009a). The Proposai

Lead was Athéna Coustenis.

The TandEM mission was planned to be launched around 2018 or later and wanted to

address several of the Cosmic Vision 2015-2025 call thèmes with the help of an orbiter, a

balloon, and several landers/penetrators to be delivered to the satellite around 2030. Its design

was based on the Cassini-Huygens architecture and it was expected to surpass the latter's

legacy by exploring Titan and Enceladus in full close-up and in situ coverage over long

periods of time, which is not currently possible.

The study's task assignments of the Astrophysics Laboratory of University of Athens

were the study of Titan surface, the mission architecture and the outreach campaign. During

my MSc dissertation, I studied the surface of the northem part of Titan and tried to identify

tectonic signs on the crust. However, we found that the resolution of the available

Cassini/Synthetic Aperture RADAR (SAR) images was not sufficient to produce topographie

and géologie maps. For this reason, I took advantage of the involvement of the University of

Athens in TandEM's Titan surface and mission architecture working groups to suggest

improved RADAR instrumentation characteristics for the mission. A high resolution RADAR

on an orbiter revolving around Titan for a long period of time would help in the study of

surface évolution and its interactions with the lower atmosphère. TandEM's RADAR was

expected to provide solutions to a sériés of under-study matters such as:

1. Détermination of the active (or not) local tectonic field

2. Détermination of the âge of Titan's surface

3. Chemical composition and source of liquid surface deposits

4. Depth measurement of lakes

5. Corrélation between the surface lithology and the surface features.

In order to understand the internai structure of Titan Dr. A. Coustenis and I worked

together on including seismic instrumentation in the TandEM strawman payload. I hâve
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studied the technical difflculties of robotic emplacement of this very sensitive sensor System

on Titan's surface and set the surface constrains for its installation. The idéal position of a

seismometer is the one which will guarantee the accurate recording of the ground vibration

above the instrument's threshold. Moreover, the instrument's legs should contact firmly with

the local surface at the landing site. The presence of dust and sand grains can influence

significantly the instrument's performance. The location should be on a fiat surface away from

dunes and drainage networks. This study led to the proposai of implementing seismometers in

future missions to icy moons, which is described later in the Chapter.

Prof. X. Moussas and I were the co-leaders of the TandEM Outreach working Group.

We hâve organized several outreach activities and participated or attended in many outreach

events globally. A detailed list and a description of our outreach projects and their évaluation

is in Chapter 8. In collaboration with A. Coustenis and X. Moussas I will continue to support

the outreach campaign of the Titan future mission.

TandEM mission concept

The mission concept of TandEM (Fig. 7.6) consisted of two moderate-size spacecraft the

Titan-Enceladus Orbiter with the Enceladus penetrators and the Carrier for the Titan in situ

investigation éléments which were the Titan Montgolfier-hot air balloon and the three

lander/mini-probes (Coustenis et al., 2009a).

After its arrivai, the orbiter would perform several flybys of Titan and Enceladus and

carry the Enceladus landers/penetrators. The carrier spacecraft wwoud release the Titan hot

air balloon and up to three entry probes. To facilitate the télécommunication with the in situ

vehicles, the carrier could be converted into an orbiter and perform science measurements like

occultations using the telecom link between the two orbiting spacecraft. The telecom relay

between the Titan in situ éléments and the Earth orbiter would be provided by the orbiter.
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Figure 7. 6 - TandEM mission concept (Coustenis et al., 2009a). Design by Dr. M. Hirtzig.

According to the initial mission scénario, the Titan-Enceladus orbiter would perform

12 Enceladus flybys as well as 2 Titan flybys and 3 or 4 more Titan flybys before entering

into Titan Orbit Insertion (TOI). Then, the orbiter would enter in Titan polar orbit, in order to

support the in situ mission éléments. For enchanced performance, the spacecraft would be

maneuvered to a polar orbit before the delivery of the balloon and the entry probes by the

carrier.

The Montgolfière consisted of a balloon and a gondola. The balloon would be filled by

Titan's gas, heated by the energy from the two Multi-Mission Radioisotope Thermoelectric

Generators (MMRTGs) which were located in the gondola with the scientific equipment.

Titan's dense nitrogen atmosphère with températures less than 100 K at the first 70 km above

the surface is favorable for a hot air balloon flight. The average operation altitude of the

Montgolfière is 10 km above the surface.

The Titan mini-probes design would follow mainly the Huygens probe expérience as

well as the GEP-ExoMars (Geophysics Package). The parachute System would hâve been

similar to the one used for the Huygens Entry Descent and Landing (EDL) sequence. These

probes would be powered by Radioisotope Thermoelectric Generators (RTGs). Figure 7.7

shows the design of a pénétration module.
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Détachable

Propulsion Stage

Figure 7. 7 - TandEM pénétration probe (Coustenis et al., 2009a).

These penetrators could be released by the Montgolfière or the carrier. They could

include seismometers as payload and thus construct a seismic network on the surface of Titan.

Two penetrators would be delivered to Enceladus surface from the Titan-Enceladus orbiter.

TandEM, along with the LAPLACE mission to Jupiter (Blanc et al, 2009) proposais

were the two finalists selected by ESA in October 2007 for further study in the framework of

the 2015-2025 Cosmic Vision Plan as L-class missions in collaboration with NASA. Both

studies were accepted as fully responsive to the Cosmic Vision Goals.

An international team of scientists and engineers with 16 US and 15 European

members, the Joint Science Définition Team (JSDT), was then formed in order to develop a

mission to Titan that would address the key questions left by the Cassini-Huygens mission.

The JSDT merged the NASA Titan Explorer study for a mission to Titan (Leary et al., 2008)
33

and the TandEM study into a single one named "Titan and Satum System Mission" (TSSM) .

The TSSM JSDT also examined the Decadal Survey of 2003 documents of the US National

Academy of Sciences, which regarded Titan and Europa as the highest priority targets for

future missions.

33http://www. lesia.obspm.fr/cosmicvision/tssm/tssm-public/
http://sci.esa.int/science-e/www/area/index.cfm?fareaid=106
http ://opfm .j pl .nasa.gov/titanri skreduction/
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7.2.3 The Titan-Saturn System Mission (TSSM)

Titan Satum System Mission (TSSM) is a Flagship (large) mission which was to be

developed jointly by NASA and ESA (TSSM Final Report JPL D-48148 NASA Task Order

NM0710851). TSSM could study for several years Titan’s atmospheric and surface

environment and explore extensively one of Titan’s lakes. TSSM is planned to be launched

after 2025 and after a 9-year interplanetary voyage it would reach the Satumian System. The

duration of the nominal mission will be four years.

I hâve been given the unique opportunity to participate in the design of a future

mission dedicated to Titan, the subject of my PhD Thesis. I got involved in the TSSM mission

study ffom its very beginning. During the 15-month préparation for the sélection procedure, I

supported Dr. A. Coustenis, one of my Thesis supervisors and European lead of the TSSM

Consortium, in administration issues. One of my administration duties was, and still is, the

web support of the mission. I am the web master of the TSSM official web site and I hâve

also created the TSSM main article in Wikipedia, the web sites of which are the following:

• http://www. lesia. obspm.fr/cosmicvision/tssm/tssm-public/

• http://en. wikipedia. org/wiki/Titan_Saturn_System_Mission

I hâve also, more essentially, been involved in the définition of Cassini-like

instruments on board TSSM, which would study the atmosphère and the surface like the

infrared spectrometer which would follow in the steps of the Voyager/IRIS and Cassini/CIRS

instruments (see Chapter 4), as well as the spectro-imager similar to VIMS with improved

capabilities from my expérience described in Chapter 5. The corresponding instruments on

TSSM would be TiRS and HiRIS (see description heareafter, in Table 7.2).

My other interest in future Titan exploration, more focused, is the lakes study. Cassini

has identified their existence, but crucial information about their nature, structure, origin and

évolution is not to be addressed by the current mission. Cassini monitors remotely the lakes

and only in situ exploration could calculate their liquid volume, identify their bottom

topography and their contribution to the active methane cycle. The TSSM concept also

includes a lake lander, which could provide the relevant information. For this purpose, I hâve

proposed the emplacement of micro-probes in the lake lander payload. The main idea is to use

Micro-Electro-Mechanical-Systems (MEMS) technology is to establish a network of micro

probes spread in the interior of a lake. These devices are lightweight, low cost and highly
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reliable. The concept and the constraints of MEMS experiment are described in detail in the

following section.

The TSSM concept

The current TSSM concept foresees a carrier to be launched on an Atlas V 551 who would

reach Satum by using an ion propulsion System, the Solar Electric Propulsion (SEP) to gain

thrust from ion beams as well as gravity assist trajectory, capable of accomplishing outer

planet missions. TSSM basic concept consists of three space vehicles (Fig. 7.8):

a) The orbiter, which will tour mainly around Titan for two years, after performing seven

close-up Enceladus’ flybys. On Enceladus, the orbiter will sample the plumes and

make subsurface measurements.

b) The hot air balloon (Montgolfière) will probe both Titan’s atmosphère and surface at a

latitudinal bin of circa 20° around the equator, being in low altitude orbit of 10 km for

at least six months.

c) The Lake Lânder will perform the first extraterrestrial océanographie experiment by

landing and floating on the largest of Titan’s lakes, the Kraken Mare.(however the

lake to be explored could be a different target depending on the mission arrivai time).

d) The TSSM orbiter after its arrivai to Satum will perform a 24-month System tour

including sixteen flybys of Titan and seven close flybys of Enceladus. Four of these

Enceladus flybys will be over the pôles at 100 km, one at 300 km and two at 1000 km.

During this tour, the orbiter will encounter several icy moons and it will observe

Satum. It will release the hot air balloon during its first flyby of Titan, while the lake

lander will be released at the second flyby.

e) After this phase, the orbiter will enter into highly elliptical orbit to conduct a two

month concurrent aerobraking and aerosampling phase in Titan's atmosphère, reaching

the altitude of 600 km. Then it will execute a final periapsis raise bum to achieve a

1500 km circular, 85° mapping orbit. The duration of this phase will be 20 months.

f) Finally, the orbiter will perform a maneuver, which will start the orbit decay assisted

by the influence of Satum’s perturbations and Titan's atmospheric drag. In this stage it

will observe the magnetospheric interaction between Satum and Titan.
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Figure 7. 8 - The TSSM basic concept: the orbiter, the balloon and the lake lander (TSSM Final Report. JPL D-

48148 NASA Task Order NM0710851).

The TSSM orbiter is a three-axis stabilized spacecraft. The basic éléments of the spacecraft as

well as the positions of the Montgolfère and lander on the mothership are illustrated in Figure

7.9, while its payload is listed in Table 7.2. The orbiter is also the carrier of the two other

vehicles of the mission.
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Figure 7. 9 - The TSSM orbiter (TSSM Final Report. JPL D-48148 NASA Task Order NM0710851).
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Table 1.2- The orbiter's payload (TSSM Final Report. JPL D-48148 NASA Task Order NM0710851)

Orbiter planning Payload Instrument Capabilities

HiRIS

High-Resolution Imager
and

Spectrometer (near IR)

1-6 pm global mapping at 50 m/pixel in three colors.

Adjustable spectral editing for surface/atmosphere studies.

TiPRA

Titan Penetrating Radar
and

Altimeter

>20 MHz global mapping of subsurface reflectors with
10 m altitude resolution in altimetry mode & >10 m depth

resolution. Lower data rate sounding mode with -100 m
depth resolution ~1 km x 10 km spatial resolution.

PM S
Polymer Mass

Spectrometer

TOF MS with M /AM -10,000 for masses up to 10,000 Da.

From 600 km to upper atmospheric in situ analysis of

gases and aérosol precursors.

SMS
Sub-Millimeter

Spectrometer

Heterodyne spectrometer with scanning mirror. Direct

winds from Doppler and température mapping from -200-
1000 km altitude; carbon dioxide and nitrile profiles.

TIRS

Thermal Infrared

Spectrometer

Passively cooled Fourier spectrometer, 7-333 pm.

Organic gas abundance, aérosol opacity and température

mapping 30-500 km.

Magnetometer

Energetic Particle

Spectrometer

Tri-axial fluxgate sensors. Noise level -1 lpTm,s. Interaction of field with

ionosphère: internai and induced field.

TOF Analyzer w/ss detectors to measure magnetospheric

particle fluxes, -10 keV to >MeV with 150° x 15° FOV.

MAPP

Langmuir Probe

Swept voltage/current probe. In situ électron density and

température, ion speed constraint, including during

aerosampling.

Plasma Spectrometer

Electrostatic analyzer with Linear electric field TOF MS.
Measures ion and électron fluxes at -5 eV to -5 keV.

M/AM-10.

RSA
Radio Science and

RSA Accelerometer

Ail components part of spacecraft telecom System. Lower
stratosphère and troposphère T profile. Gravity field.

The Montgolfière is a hot air balloon to be released by the orbiter during the first

flyby. It will be powered with 100 W by. Figure 7.10 shows the entry System of the balloon

capsule, while Figure 7.11 illustrâtes the position of the instrumentation in the gondola. From

the altitude of 40 km the balloon will start to be filled by air and 1.7 W from the a Multi-

Mission Radioisotope Thermoelectrical Generator (MMRTG) will warm the air for buoyancy

at about 10 km above the surface. The Montgolfère will then navigate with the winds at 1-2

m/s. The balloon's gondola will be equipped with scientifïc instrumentation in order to

perform atmospheric measurements, imaging, spectrometry, subsurface radar profiling, and

electric and magnetic field measurements (Table 7.3). The nominal mission of the

Montgolfère will last 6 months.
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Figure 7. 10 - The TSSM Montgolfière gondola and a view of the entry System aeroshell {TSSMFinal Report.

JPL D-48148 NASA Task Order NM0710851).
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Figure 7. 11 - Positions of the payload in the Montgolfière's gondola {TSSMFinal Report. JPL D-48148 NASA

Task Order NM0710851).
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Table 7. 3 - The Montgolfière payload (TSSM Final Report. JPL D-48148 NASA Task Order NM0710851).

Montgolfier planning Payload

BIS Balloon Imaging Spectrometer (1-5.6 pm)

VISTA-B Visual Imaging System for Titan Balloon

ASI/MET Atmospheric Structure Instrument/

Meteorological Package
TEEP-B Titan Electric Environment Package

TRS Titan Radar Sounder (>150 MHz)

TMCA Titan Montgolfier Chemical Analyzer

(1-600 Da Mass Spectrometer)
MAG Magnetometer

MRST Radio Science using spacecraft /
Montgolfier telecom System

The Lake Lânder will follow an entry, descent and landing (EDL) procedure like the Huygens

EDL, while the orbiter will be in continuous contact with it. The target location will be the

Northern largest lake of Titan, Kraken Mare. Figure 7.12 illustrâtes the aeroshell of the Lake

lander, while Figure 7.13 shows its payload.

Figure 7. 12 - The TSSM lake lander (TSSMFinal Report. JPL D-48148 NASA Task Order NM0710851).
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Transponder
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Electronics

IMU
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Pressure
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Accéléra
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Figure 7. 13 - The positions of the lake lander payload {TSSM Final Report. JPL D-48148 NASA Task Order

NMO710851).

The probe will be powered by batteries like Huygens and its nominal mission is

designed to last for 9 hours, 5 hours in the descent phase and 3-4 hours after the touchdown

on the lake's surface. The floating configuration of the lake Lander is depicted in Figure 7.14

and its instrumentation is listed in Table 7.4.

TEEP-L
Antenna

MAG
Sensor

Figure 7. 14 - The TSSM Lake Lander {TSSMFinal Report. JPL D-48148 NASA Task Order NM0710851).

The TSSM mission is planned to be supported by ground based radio télescopes (Coustenis et

al., 2009c), following the héritage of the Huygens data retrieval in 2005 (Witasse et al., 2006).
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Table 7. 4 - The Lake Lânder Payload (TSSM Final Report. JPL D-48148 NASA Task Order NMO710851).

Lake Lânder Planning Payload

TLCA Titan Lânder Chemical Analyzer (GCMS)
TiPI Titan Probe Imager + Lamp

ASI/MET- TEEP

Atmospheric Structure Instrument/
Meteorological Package + Titan

SPP

LRST

Electric Environment Package

Surface Properties Package + Acoustic

Sensor Package with Magnetometer
Radio Science using spacecraft/lander telecom System

The TSSM competitor for the final sélection as the next L-scale mission was the Europa

Jupiter System Mission (EJSM). In February 2009, a down-selection meeting was conducted

in Washington DC by the NASA and ESA management and the Europa Jupiter System

Mission was selected as the most technically feasible to pursue first. ESA's Solar System

Working Group recommended, and NASA agreed, that TSSM would be the EJSM follow up

mission within the next decade. However, as I hâve mentioned above, the EJSM project has

been terminated and ESA carries forward alone with JUICE mission to the Jupiter System.

The future exploration of the Satumian moons, and especially of Titan and Enceladus,

has been supported by several white papers which I hâve co-authored with the Titan Working

Group (TWG). These white papers were submitted in 2009 in response to National Research

Council (NRC) Planetary Science Decadal Survey 2013-202234.

In the Lunine et al. white paper, we highlighted the significance and the scientific

merit of a future mission to Titan. In the white paper of Spilker et al. we recommended the

continuation of Cassini mission operation by exceeding its fonction for 7 more years, the

Cassini Solstice Mission, which NASA accepted. In Nixon et al. article we recommended

Titan exploration to be as a high priority target, the continuation of fonding for large ground

and space based télescopes in order to perform long-term observations of Titan and to support

laboratory experiments that provide constraints in Titan science. Titan was identified in that

paper as the only crédible analogue to the Earth’s seasonal-dependent and climatic variations

and as such an important study object. Seasonal variations of Titan’s atmospheric chemistry

are an important part of my PhD studies (see Chapter 4). The laboratory support as well as the

launch of an orbiter to sample in situ Titan's upper atmosphère with high resolution

instrumentation was the subject of the Yelle's et al. white paper. In the Allen et al. white paper,

we recommended a mission concept similar to TSSM to be delivered at Titan, considering its

34 http://sites.nationalacademies.org/SSB/CurrentProjects/ssb_052412
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high astrobiological interest. In the Coustenis et al. white paper, we also recommended a

balloon mission to Titan as high priority for decadal science and to invest in reducing the risks

of such a flight. In the Atkinson et al. white paper, we recommended that probes be sent to

giant planets beyond Jupiter.

The NRC Committee recommended in March 2011 the continuation of the study of

TSSM and considering the mission's flexibility, NASA anticipâtes future studies to divide this

large flagship mission into separate flight opportunités in varying sizes (see NASA response

to Planetary Science Decadal Survey Report (9-22), 26/7/2011).

7.2.4 Titan Aerial Explorer (TAE)

Besides TSSM other concepts for future missions in medium scale sizes to Titan hâve been

proposed such as Aerial Vehicle for In-Situ and Airbome Titan Reconnaissance (AVIATR),

Titan Mare Explorer (TiME), Titan Lake Probe and Titan Aerial Explorer (TAE).

AVIATR (Figs. 7.15 - 7.16) is a proposai suggestive of alternative concept to the Titan

balloon mission. Since Titan expériences low gravity and a dense atmosphère, a nuclear

powered airplane could fly more than 20 times easier than on Earth. It could sample directly

the atmosphère and cover huge swaths of Titan’s landscape (Bames et al., 2012). Although

very interesting, this proposai did not get selected among the Discovery mission studies.

Figure 7. 15 - AVIATR air vehicle exterior blueprint (Bames et al., 2012).

310



Figure 7. 16 - View of the AVIATR vehicle interior from below. The locations of the scientific instrumentation

is showed (Bames et al., 2012).

TiME (Fig. 7.17) is a probe focusing on exploring Titan’s lakes and especially the

Ligeia mare. This lake lander could study the Chemical composition and the geological

characteristics of the hydrocarbon pools (Stofan et al., 2010a; b).

Figure 7. 17 - Artist's view of the TiME sailing Leigia Mare on Titan (Stofan et al., 2010a; b).

The TiME concept was studied until 2012 but was not downselected among the 3

Discovery mission proposais, so in August 2012, the study was terminated. InSight - Interior

exploration using Seismic Investigations, Geodesy and Heat Transport - a mission to Mars

was selected, InSight will study the interior of Mars by performing a seismic experiment and

probing the rate of the heat which escapes from the interior.
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Titan Lake Probe (Fig. 7.18) is a lake lander, similar to what we had proposed in

TSSM, which could be considered as part of a larger mission or as a stand-alone mission. The

main objective of this proposai is to investigate the lake deposit and the physical properties of

the liquids like the TiME concept (Waite et al., 2010).

Resurfacing
Submersible

Module

Submersible

internai view

MET mast is

always
windward

PortASRG

Landed configuration
prior to submersible
release

Submersible

release

Floater is self righting
from any orientation

Solid sampler
hyperextended for

“impact”

Figure 7. 18 - Titan Lake Probe (crédit: Waite et al. 2010, Decadal mission concept study)

Titan Aerial Explorer (TAE) was developed by Dr. J. Lunine and the TAE team in response to

ESA 2010 Cosmic Vision call for M-class (medium) missions (Hall et al., 2011). TAE was a

helium-filled high-pressure balloon, which was planned to fly in the lower atmosphère of

Titan at an altitude of 8 km from 3 to 6 months on Titan's équatorial latitudes. The data

transmission of about 1 Gbit (total) to Earth would be established directly, avoiding the

intervention of an orbiter. As a follow-up to the TSSM mission with similar concept and

objectives, my interest in TAE was obvious, as I will describe hereafter.

I hâve also created the web page of the mission proposai using flexible web tools in

order to achieve a quick impact to the scientific community and the public, which is:

http://users.sch.gr/gbabasides/joomla/index.php

The TAE concept

The Titan Aerial Explorer (TAE) mission is a super-pressure hélium balloon, 4.6 m in

diameter and spherical in shape. It combines the mobility and coverage of an orbiter with the
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capability for high resolution and in situ observations demonstrated by the Huygens lander.

The balloon would be powered by two Advanced Stirling Radioisotop Generators (ASRGs)

(Figure 7.19) but without propulsion (Hall et al, 2011).

Figure 7. 19 - The gondola of TAE (crédits: Hall et al., 2011)

The mission would launch within the 2020-2023 timeframe on a carrier spacecraft containing

the aérostat encased in a Huygens-like entry System. It would arrive at Titan after a 9-year

trajectory. When the carrier would encounter Titan, it would release the Descent Module onto

the pre-determined entry, descent and inflation trajectory. The entry probe would enter Titan’s

atmosphère at mid-latitude, deploy a parachute, release the aeroshell heat shield and

backshell, initiate balloon inflation, release the hélium tanks and establish neutral buoyancy at

~8 km altitude (Figure 7.20).

Although TAE aérostat and TSSM Montgolfière air platform hâve similar objectives

in Titan science, they présent différences in architecture. In Table 7.5 below, I summarize the

results of the comparison between TSSM Montgolfière and TAE. TSSM balloon is twice in

diameter compared to the TAE one and it will be filled by Titan gas, which means that there

is no need to carry spécial tanks, and therefore it has more space for scientific

instrumentation. Instead, TAE balloon is a high-pressure hélium filled balloon and has to

carry the gas from the Earth. This fact influences the amount of data which will be collected

and transmitted to Earth from both vehicles. The Montgolfière gondola will host 8 scientific

instruments which will provide data volume three orders of magnitude larger than TAE.
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Both vehicles will be powered by Radioisotop generators: TAE by ASRG and TSSM

Montgolfière by MMRTG. ASRGs are préférable power sources compared to MMRTGs,

since they combine reduced mass, increased power output and reduced cost. Nevertheless, the

Montgolfière architecture can easily adopt ASRG.

One more différence between the proposed balloon concepts is that the Montgolfière

will use the orbiter in order to transmit data to Earth, while TAE will establish a direct-to-

Earth link.

Table 7. 5 - Comparison between TSSM Montgolfière and TAE.

TSSM Montgolfière TAE balloon

Gas Titan gas Hélium

Diameter 10.5 m 4.6 m

Power
Multi-Mission Radioisotope Advanced Stirling Radioisotop

Thermoelectrical Generator (MMRTG) Generator (ASRGs)

Scheduled mission duration 6 months 3-6 months

Low altitude orbit 10km 8 km

Communication link Orbiter intervation Direct

No magnetometer

Payload see Table 7.3
Imaging spectrometer probes from

4.6 to 5.6 pm

(TSSM balloon: 1 - 5.6 pm)

Total data volume up to 1.3 Tb up to 1 Gb

By comparing the two, it is obvious that both the Montgolfière and TAE can provide

satisfactory proposais for future Titan exploration. However, the the former could be

considered as a more complété option since it carries more instruments onboard including

a magnetometer and its imaging spectrometer provides a wider range of wavenumber.

Furthermore, if the Montgolfière concept manages to adopt ASRGs instead ofMMRTG, it

will enhance its energy budget. Finally, the scientific value of the TSSM hot air balloon

can be increased by the possible emplacement ofa simple seismometer in its beat shield.
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Figure 7. 20 - The entry, descent and inflation sequence of TAE (crédits: Hall et al. 2011)

The threshold science mission was to fly over one Titan hemisphere and the goal is a

complété circumnavigation of Titan (assumed to require 6 months at 1 m/s net zonal

movement). Science data are sent back to earth via a direct-to-earth communication System

located on the aérostat.

TAE made the first sélection from 47 to 14 mission concepts, and was judged

excellent in science, but finally it was not selected. The major concem was about the

implémentation and especially the availability of ASRGs, provided from US.
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7.3 Micro-Electro-Mechanical-Systems (MEMS) for Titan Lakes

In order to overcome portability and consumption restrictions in any future outer planetary

missions' requirements, new alternative technologies should be considered. Towards this

direction, the adaption of Micro-Electro-Mechanical-Systems (MEMS) devices has been

proposed, as part of the science surface properties package of a future probe to Titan like the

TSSM Lake Lânder (Bampasidis et al., 2009; 201 lb).

In this section, I describe how I propose MEMS devices to operate as micro-

laboratories by including RF wavelength emitters and température and pressure sensors.

These micro-machines could obtain the 3D sounding of the liquid deposit, its Chemical

composition and detect the presence of any biomarkers in a broader area. The température and

pressure micro-sensors could provide the vertical pressure, température and density profile of

the liquid deposit (Bampasidis et al., 2011b). Obviously, the utilization of any innovative

instrumentation requires complété knowledge of the environmental issues and parameters

and, of course, deep understanding of their complexity.

The MEMS pattern, due to its very small shape and size without reducing their

operational performance, is the idéal payload for a future Lake Lânder probe in Titan and

outer planetary space missions in general. As this unique technology is new in the space field,

further analysis and testing nécessitâtes. MEMS implémentation in Titan’s exotic

environment is a great challenge for science, engineering and space physics.

As a MEMS device can be considered any small-size product within the range of a

micron to a centimètre which also combines mechanical, as well as, electrical structures.

Although H. C. Nathanson in late 1960s constructed the first MEMS device (Nathanson et al.,

1967), only after the 1980s minor integrated circuits were massively produced in microscopie

scale (Stark & Bernstein, 1999).

Due to their small size and shape (20 pm to 1 mm), MEMS hâve unique properties,

which increase the performance of every scientific experiment for a wide range of uses and

applications. MEMS can provide an excellent rate of the optimum shape to the rendering

performance relation. MEMS devices are able to easily locate impossibly approachable places

by traditional instrumentation. They can successfully substitute quite larger in size and shape

conventional devices, giving the user the opportunity to explore the structure of the nature in

minor scales. Therefore, because of the minimization of the cost in their manufacture and
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operation stages, MEMS instruments are préférable for scientific applications, improving the

quality and widening the range of the obtained data.

7.3.1 MEMS devices in the space scene

The advantage of implementing MEMS techniques in Aerospace and Space Systems become

obvious when the reduced requirements in size, mass, power issues of many Aerospace/Space

applications are taken into account (Janson et al., 1999). Minimizing the electronic

instrumentation assembly is a promising approach when it employs MEMS. The MEMS

revolutionizing technology includes ail the properties of the larger devices, which are

replaced in an inexpensive way. Therefore, the presence of MEMS in space Systems offers

important fmancial advantages to space agencies by severely shrinking the cost of any

mission. Indeed, MEMS are reducing the weight of future spacecraft without diminishing the

scientific performance of the instrument.

Among many other applications, MEMS devices hâve already been used in the

adaptive optics imaging technology in some major télescopes (Krishnamoorthy & Bifano,

1995; Roggemann et al., 1999; Dayton et al., 2002; Zhou & Bifano, 2006). Moreover, the Jet

Propulsion Laboratory (JPL) has already developed a new MEMS déformable mirror (DM)

System for NASA’s adaptive space-based télescopes and in particular for Terrestrial Planet

Finding (TPF) mission (Stewart et al., 2006).

Likewise, several proposais hâve recently been reported for future space missions and

télescopes, exploiting the new leading edge MEMS technology. Especially, MEMS

techniques hâve been incorporated as detectors, spectrophotometer and an infrared caméra of

the new proposed telescope called MTEL (MEMS Telescope for Extrême Lightning) in order

to observe the extreme lightning occurring in the upper atmosphère (Nam et al., 2008).

MEMS devices seem also appropriate for observing fast moving objects and transient events

by the proposed space-based telescope called Obscura (Park et al., 2008). MEMS hâve also

been implemented in Space Infrared telescope for Cosmology and Astrophysics (SPICA), the

Japanese coronagraph which is planned to be launched in 2017 (Swinyard et al., 2009).

Although the use of MEMS in space applications is in fairly early stage, they will certainly

optimize the scientific value of any mission.
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7.3.2 Scientific Goals and Objectives

I proposed the implémentation of MEMS technology as part of the payload of a future

lake lander in Titan. I hâve presented this proposai at several meetings and hâve had the

opportunity to discuss it with international experts like Dr. Hunter Waite who was interested

for a submarine in a Titan lake and Dr. Jean-Pierre Lebreton Huygens Project

Scientist/Mission manager.

A MEMS experiment would expand the scientific potential of a future in situ space

mission to Titan, as these devices can provide miscellaneous measurements, ail included in a

single capsule. These micro-machines will be able to:

1. Construct a topographie map of the lake floor

2. Probe the température and the pressure of the liquid layers

3. Contribute to comparative Planetology

4. Investigate the presence of any biomarkers in a broader area

My study includes several micro probes in the concept of the mission, in order to

establish a broad network in the lake, when these devices are released from the lander during

its descent. The MEMS network can provide a three dimensional sounding of the lake's

bottom topography. This unique map will be constructed by the RE signais transmitted from

each device and received by the sensor on-board the Lake Lander. The floor of the lake hosts

dues about the processes, which created and shaped the lake and any signs of exchange

material with the interior.

As far as the structure of the lakes on Titan is concemed, the contribution of this

experiment will be important as well. Firstly, the depth of the lake will be identified, enabling

researchers to test their models. Nowadays, only assumptions hâve been used to détermine the

lake depth either by studying the surrounding topography of the lake in accordance with

terrestrial models, or correlating the lake size to the depth of the Earth’s 20 largest lakes

(Hayes et al., 2008; Lorenz et al., 2008b; Paillou et al., 2008; Griffith et al., 2012). When the

volume of the liquid inventory is calculated, it can be considered in the schéma of the

methane cycle occurring on Titan (Atreya et al., 2006). The existence of hydrothermal vents

on the lake floor could also provide information on the methane cycle of Titan and its hidden

source, which replenishes the atmospheric abundance.

318



MEMS data can also provide information about the interaction of Titan’s liquefiers

with the lower atmosphère. Particularly, a methane dominated lake affects seriously the local

atmospheric status due to the cooling effect of the methane évaporation. This cooling, causes

a réduction of the lake surface température and as a resuit an atmospheric downward heat

current balances the whole pattern and saturation with methane of the local air mass (Mitri et

al., 2007). On the other hand, a lake abundant in ethane is independent of evaporative cooling

and it could contribute to the atmospheric convection by remaining in liquid State during the

winter like their large terrestrial analogues (Brown et al., 2009).

Measuring the local température and pressure profile with the MEMS sensors,

scientists will be able to evaluate such current models and détermine the local atmospheric

heat flux. The incognizance of both composition and structure of Titan’s lakes increase the

significance of such an in situ experiment. The température and pressure sounding of the

liquid deposit with MEMS experiment will provide the vertical distribution of thermodynamic

variables (pressure, température, density) beneath the lake surface. This set will supplément

HASI vertical distribution profiles (Fulchignoni et al., 2005; Harri et al., 2006) and improve

the study of Titan as a System.

MEMS experiment will be the first extraterrestrial océanographie experiment. New

opportunities will be opened for comparative Planetology between Earth and Titan especially

looking in terrestrial seas and lakes and their équivalents on Titan.

One of the perspectives of the MEMS experiment would be to investigate the

existence of biomarkers located inside Titan’s lakes. Molecular biological markers, or

biomarkers, are organic structures, sedimentary grown, which contain important information

about the precursors of origin of life (Peters et al., 2005). Due to the geologically fresh

surface of Titan, with few impact craters (Wood et al., 2010), most of the dues of the moon's

past hâve been erased. However, in isolated environments, like a deep lake, past geological

traces can be detected, remaining there under the protection of the liquid.

Similar organic products, like the terrestrial Stromatolites, which emerged one or two

billion years ago in Earth (Grotzinger & Knoll, 2003), might be well-preserved at the bottom

of a deep lake in Titan, encapsulating evidence from past geological environments (Fig. 7.21).

These patterns could be easily identified during the topographie sounding of the floor of the

hydrocarbon lake with the MEMS experiment. Therefore, this innovative micro-system could

become a significant tool to astrobiological research as well.
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Figure 7. 21 - Terrestrial Stromatolites (http://www-eaps.mit.edu/geobiology/biomarkers/whatis.html photo:

R.V. Bume).

Except for Titan, the proposed instrumentation can be incorporated in the payload of any

future space mission to other planetary bodies which consist of liquid layers like Europa and

even to Enceladus. To sum up, as Titan resembles Earth more than any other planetary body

in the Solar System, any results from Titan can be used for studying the terrestrial

environments and help scientists to test and evaluate their models for Earth.

7.3.3 The MEMS payload

MEMS devices feature low power consumption, high-modulation depth, high emissivity and

a long lifetime. In general MEMS devices combine:

1) Very small size (20 pm to 1 mm)

2) Fast pulsing (thanks to low mass of the emitter)

3) Limitation of low output power (450 mW)

4) Réduction of the thermal mass of the System

5) Enhancement of the modulated performance

6) Extremely low cost
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Design considérations

The microcapsules will be released from the lake lander during the last stage of the Entry,

Descent and Landing (EDL) procedure as well as after the touchdown. Each capsule will

include a MEMS Unit (MEMS-U). The MEMS-U consists of one température and one

pressure sensor for direct measurements and the RF signal transmitter. A similar design is

depicted in Figure 7.22. The RF receiver unit would be on board the lake lander probe

(Bampasidis et al., 201 lb). The fimctional specificity of the température and pressure sensors

is that they should interact with the environment being outside of the MEMS capsule.

Figure 7. 22 - Deposited filament MEMS emitter (source: Brian Elias, Photonics Spectra (Elias, 2008))

The capsule will encounter harsh and unknown environmental conditions which may

affect the performance of the experiment. In order to implement such a payload, several issues

should be addressed which are mainly the absorption of the RF signais by the medium and the

operation in low températures range. Therefore, the physical properties of the liquid should be

discussed.

The question is if the transmitted RF will be attenuated from the medium before

reaching the receiver. If the liquid material behaves as a partial conductor (when consisting of

ionic contaminants for instance), it will prevent RF propagation in long distances. Such liquid

conductors set the independent operation of these RF emitters inside the liquid under
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discussion. Media with high permittivity and permeability cause a strong atténuation of the

RF signal power. One scénario to avoid the atténuation is to connect the devices by a wire to

the mother ship. This pattern can also support the microprobes with energy originated by the

carrier.

The only information about the composition of the Titan lakes is provided by the

remote measurements from Cassini. However, the exact blend of the lakes is still unknown.

As I hâve described in Chapter 5, the main constituent is expected to be ethane, but more

hydrocarbons could be mixed in lesser quantities as well. Modeling results about the

composition of Titan's lakes show that the major lake liquid constituents are hydrocarbons,

mainly ethane, methane and nitrogen (Table 7.6) (Cordier et al., 2009; 2012).

Table 7. 6 - Main constituents of lakes on Titan and the hydrogen bonding strength of each one.

Main Solvent

m.r. pôles

(90 K)
(Cordier et al., 2009; 2012)

H-bond

c2h6 7.64x10'' poor

n2 4.90xl0'3 no

ch4 9.69xl0'2 poor

c3h8

Main Solutés

7.42x10'2 poor

HCN 2.09x10'2 strong

C4H10 1.21xl0'2 poor

c2h2 1.15xl0'2 poor

CH3CN 9.89xl0'4 poor

Hence, we should consider the conductivity of such solvent, which is crucial for the proposed

experiment. Nitrogen is a non-electrical conductive and it is used as a réfrigérant in

superconductive applications. Alkanes do not conduct electricity and do not get polarized by

an electric field, since they are covalent compounds and do not contain freely moving ions.

Aliphatic hydrocarbons hâve non-polar liquids and weak hydrogen bonding liquids. These

liquids are non-polar which means that they allow for the propagation of RF waves

throughout the medium.

An electrical conductive mixture can be produced if the hydrogen and nitrogen are

connected by hydrogen bonding. To participate in hydrogen bonding, the nitrogen should be

polar and charged, which is not the case for free nitrogen. Hence, no hydrogen bond exists.

The possibility that the HCN solves in a minor percentage in the liquid ethane and nitrogen

does not lead to hydrogen bonding too. Additionally, nitrogen's solution with HCN does not

produce free charges.
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In conclusion, according to the models that calculate the composition of Titan’s

lakes, the RF signais emittedfrom the MEMS-U will be properly propagated in the liquid.

The mean surface température in Titan’s environment at the equator is approximately

94 K, as it has been determined by the Huygens probe (Fulchignoni et al., 2005) and 2 or 3 K

lower in the polar régions as measured remotely by CIRS (Jennings et al., 2009). MEMS

devices, will be released by the Lake Lânder at low height and either they will flow on the

liquid's surface or dive in the liquid. They hâve to be qualified for such low températures.

From experimental expérience using MEMS devices at low températures, the micro-

devices are already adaptable in cryogénie conditions. In the SPICA coronagraph (Swinyard

et al., 2009) the micro-scale machines are designed to operate in cryogénie conditions, while

the whole telescope will be cooled down to 4.5 K (Enya et al., 2009).

Any température measurement is correlated on the variance of an attribute of the

exposed material with any ambient température change. MEMS resonator-based oscillators

hâve been proposed to be used as Complementary metal-oxide semiconductor (CMOS)

température sensor with a resolution of 0.008 K (Jha et al., 2007). The MEMS pressure

sensing technique is based on the Silicon piezoresistive effect, where any pressure change will

cause deflection and internai stain change, which will resuit an output voltage variation (Lin

& Yun, 1998; Li et al., 2010). Usually, a Wheatstone bridge circuit delivers such voltage

measurements, in order to correlate them with the applied pressure.

RF MEMS Switches are currently under development at the NASA Goddard Space

Flight Center35 (Fig. 7.23).

35 http://eed.gsfc.nasa.gov/562/mems accelerometer. htm
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Figure 7. 23 - A pattern of the MEMS 5-inces package (source: NASA, Nano ChemSensor Unit (NCSU)

Experiment http://128.102.216.35/factsheets/view.php7icHl 18)

7.3.4 Description of the experiment

The MEMS experiment will be developed in two phases. Phase One is the deployment of the

MEMS micro-shells network (Fig. 7.24). Phase two starts when the devices begin to émit

(Fig. 7.25). The deployment will take place during the descent phase of the EDL procedure of

the probe. Few meters before the touchdown, the probe will release the MEMS shells to the

atmosphère which will begin simultaneously to operate as micro-laboratories. This procedure

will be continued after the landing, when the probe releases more MEMS directly to the

liquid. Some of these devices will float on the surface of the liquid and other will dive without

stopping transmitting.

Schematically, this deployment will provide a broad network of floating and

submarine RF sources, while the signal receiver will be aboard the Lake Lânder. In a sense,

this ambitious experiment can easily accomplish both the 3D sounding of the lake as well as

its thermal profile.
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Figure 7. 24 - Phase One of the MEMS experiment during the EDL procedure.

Subséquent to Phase One, these devices will float or dive into the liquid hydrocarbons and

continuously transmit data to the Lânder depending on the duration of their power supplies.

Phase B: Operation

Figure 7. 25 - Phase Two of the MEMS experiment.

The MEMS experiment will vertically measure the température and the pressure of the liquid

deposit. Moreover, the recorded reflections of the RF signal emitted by MEMS-U will

construct the topographical map of the bottom of the lake.
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Although it is désirable to hâve many devices in order to establish a network, the

major issue of portability cornes up. However, MEMS devices suit perfectly this kind of

requirements because of their small shape, size and weight.

7.4 Seismometers on icy moons

The icy moons of the Outer Solar System possess evidence about the origin and évolution of

their Systems and the Solar System in general. In terms of surface morphology, internai

structure as well as their environmental uniqueness, Satum’s moons Titan and Enceladus and

Jupiter’s Ganymede and Europa are the best représentatives to that perspective. In this

section, I would like to propose a seismic experiment for the icy moons as a payload of future

missions’ landers. I also suggested pre-target areas with internai dynamic potential and

multivariable surface expressions. Through these experiments, it will be possible to identify

active régions along the satellites, which will provide important information regarding the

fluid transfer processes towards the surface, as well as, determining the presence of a

subsurface liquid deposit (Bampasidis et al., 201 la).

7.4.1 Scientific Goals and Objectives

The scientific goals of the future seismic experiment are:

1. Unveil the internai structure of the moon

2. Detect tectonic activity

3. Confirm or not the existence of internai océan

The icy satellites of the outer planets can significantly contribute to the study of geological

processes across the Solar System. Comparative Planetology can enlighten fondamental

mysteries conceming the origin and the évolution of Earth and the Solar System in general

and predict future geological events. However, the internai geological structure of each planet

or moon can only be determined by in situ measurements.

The local or global tectonic field, meteoroid impacts and the moon’s tidal

deformations induced by Jupiter or Satum’s gravity field, as well as température and pressure
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fluctuations, may originate ground vibrations within the icy moons. These ground vibrations

provide information about the nature of the subsurface material, its fracture and its Chemical

composition. The Cassini-Huygens mission héritage encourages scientists to discuss about

launching future missions towards the outer planets’ satellites. In this section, I examine the

possibility of installing seismic equipment on icy satellites of the outer planets, setting the

minimum technical requirements and describing scientific achievements and possible

problems. Data obtained by a seismic experiment, in combination with the analysis results

from remote observations, will provide us with details about the interiors of the moons and

their connection with the observed surface features (Bampasidis et al., 201 la).

7.4.2 The payload of the experiment

A seismograph is the basic instrument for measuring the ground vibration. It mainly consists

of the seismometer and the unit that records the signal. The seismometer consists of three

sensors placed in the same sealed case. Each sensor is a pendulum that when it is triggered by

the ground movement, it moves from its equilibrium position. This movement is the record of

the instrument. The sensors can measure any ground motion within a frequency range usually

of 0.001 Hz to 100 Hz, at the north/south, east/west and vertical component in orthogonal

System.

Both low and high frequencies can be recorded by broadband seismometers used on

Earth. Newer seismographs measure ground movements smaller than 1 nm. There are several

kinds of such instruments available, depending on the surface’s location. With the usage of

seismic instruments, we will extend our knowledge of planets’ interior at the Solar System.

Additionally, both these space and terrestrial observations will help us understand better the

origin and trace the evolutionary path of our own planet.

Table 7.7 below lists the main seismic instrument’s requirements considering the

spécifications of the shortest modem seismic instruments which operate in extreme conditions

on Earth like the deep océan floor (Romanowicz et al., 2006). Similar sensors can be easily

found in the global market.
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Table 7.7- The requirements of the seismic instrument

Seismic Sensors

Power
Mass

Velocity Operational
Bandwidth température

0.32 W
0.200g

each

0.001-

100Hz
below 100 K

Future mission’s instruments on the icy satellites’ surface of the outer planets will meet

abnormal physical conditions during the entry descent and after landing of their carrier. To

achieve the seismograph’s accuracy in a spécifie location the environmental factors (mainly

température and pressure) should be considered. The ground vibration is the input signal to

the System. If the ground vibrâtes within a range of 0.001 Hz to 100 Hz, the motion signal

will be recorded by each one of the three sensors. The sensor System contains a transducer,

the device that converts the mechanical motion into electrical signal. A piezoelectric

accelerometer can be used as a transducer to sense any weak or strong ground motion in a low

frequency range (up to 100 Hz) without using extra power to operate (Garcia et al., 1999).

Once the sensor records a motion, a signal will be sent at the Main Processor Unit

(MPU) of the System. The MPU is responsible for the operation, the administration and the

maintenance of the instrument and contains the core of the application software. After

receiving and recording the signal from the MPU, it will be transferred to the next component

of the instrument, the Multiplexer (MUX) by using a line interface circuit, which provides the

connectivity between MPU and MUX. MUX data files will be compressed, converted to the

right format and prepared for transmission.

Figure 7. 26 - Functional procedure of the seismic instrument.
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Because of the continuous fonction of the seismometer, a service for bulky data is needed.

The transmission frame protocols will be defined similar to the protocols of the lander’s

instrumentation. Figure 7.26 shows the basic fonctional procedure of a seismic instrument to

be operated on icy moons according to the requirements mentioned above. The configuration

of the System is illustrated in a simplified plot. Ail the components inside the dashed line in

Figure 7.26 are parts of the same physical equipment, the seismograph.

The experimental constraints and conditions of the implémentation of seismic

instrumentation on the surface of icy moons and the possibly emerged problems and

difficulties are listed in Table 7.8 below.

Table 7. 8 - Engineering constraints and conditions for a future space seismic experiment on icy moons

Constraints and Possible Problems and Difficulties

Conditions Science Engineering Précautions

Fluctuations in

température

Surface characteristics

Dense atmosphère

Stability of the

apparatus

Maintenance

Data transmission

Exact recordings

Ground/wind noise

Power

Accuracy affected

Sensors’ deformation

Chemical Corrosion

First time in space

exploration

No recordings

Radio frequency

signais

3D plotting

Low Signal to Noise

ratio

Continuous operation

Malfunction of the

sensors

Loose the equilibrium

position

Insufficient solar power

to recharge batteries

Orientation lost

Impossible to repair

A permanent link

needed

Different devices

Stable structure

Batteries

Spécial thermal shield

Spécial installation

and stabilization

needed

Shield case

Robotic installation of

the seismometer

Autonomous System

Orbiter and large

ground

radiotélescopes

Seismic network

needed

A shallow hole

needed for installation

Radioisotope

thermoelectric

Generator (RTG)
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MEMS technology can be implemented in future seismic experiments on icy moons

(Bampasidis et al., 2012b). A MEMS device is in experimental State in the Arizona State

University, which is in collaboration with the MET Tech (USA) and the Moscow Institute of

Physics and Technology (Russia).

Table 7.9 lists the characteristics of the Arizona State University MEMS device. The

sensing element is manufactured with silicon-based microfabrication. It has been integrated

with molecular electronic transducer technology (MET), c.f. Hongyu Yu (pers. comm.) and

Knapmeyer et al. (2012). It performs high sock tolérance and therefore seems idéal when the

geophysical network scénario development will be adopted.

Table 1.9 - The Arizona State University MEMS device spécifications (Hongyu Yu, pers. comm)

Spécification Value

Sensor Type Molecular Electronic Transducers

Proof Mass None

Size [mm] 40 x 40 x 40

Power Consumption [W] 0.3

Total Mass [g] 50 (sensing part)

Channels 3

Useful Freq. Range 0.01-50[Hz]

Self Noise (current version) 2 x 10'6 m/S2/Hz0'5 @ 2.5 Hz

Self Noise (expected in 1 year) 1 x 10‘9 m/S2/Hz0 5 @ 1 Hz

Shock Potentially up to 20,000[g]

Installation Any angle

7.4.3 The concept of the experiment

Seismic waves refract when they pass ffom the fringes of layers with different densities or

changes in température, since the local seismic velocities are different. These boundaries are

tracers of changes in rock types of the interior (Fig. 7.27). The waves can be detected through

a network of sensors providing constraints for the modeling of the internai structure. Seismic
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waves from distant events travel deeper into the interior of a planetary body than waves from

nearby events. Hence, measuring events at various distances by seismometers can provide the

variance with depth of seismic velocities within icy moons.

0

180

Figure 7. 27 - Seismic waves propagation through the Earth. The Earth is a differentiate medium. The two types

of body waves, initiated by earthquakes or by explosions, travel through the interior and provide crucial

information about the internai structure. The primary waves (P) compress the material and can travel either

through solid or fluid media. On the other hand, the secondary waves (S) shear the medium and can only travel

trough solids. Hence, the recordings of P and S waves on the surface can give us dues about the nature of the

interior of a planetary body (crédit: JL Ahem, 2009).

A seismic network has been proposed (see Fig. 7.28) to be part of the geophysical

payload of forthcoming missions (Lorenz et al., 2009; Lange et al., 2011). A seismic network

can consist of an array of sensors based on the promising MEMS technology as well as

several piezoelectric transducers and new developments based on laser-interferometric

sensing or convection in electrolytic liquids.
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Figure 7. 28 - Titan network mission scénario. Detailed long-term surface studies require data collection though

out a geophysical network (Lange et al., 2011). Seismic equipment can be included as payload of such a mission.

As in other planetary bodies except for the Earth (Moon, Mars, Venus) Satum’s icy moons seem idéal targets for

seismic experiments since they possibly possess active interior.

surface B D,E

Figure 7. 29 - Geophones on the terrestrial surface. This figure illustrâtes the operation of a geophone network

above a syncline structure (Stein & Wysession, 2003). A network of geophones can receive signais of seismic

waves and thus records not only the ground movement but also the interior structure.

This network, which resembles a geophone array (Fig. 7.29) widely used on the Earth, can

detect ground motions caused by natural (passive experiment) or controlled sources (active

experiment). Space seismic exploration is high priority in NASA programs. Insight mission to
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Mars newly selected by NASA as the next Discovery mission will consist of sophisticated

geophysical instrumentation which will sound Mars deep interior.

Possible locations for ground-based experiments

The idéal location for the location of seismic equipment will hâve to ensure that its recordings

will represent accurately and separately every ground vibration. For this purpose, the seismic

instruments on Earth should be placed in a hole of approximately 0.5 m depth. Thus, less

ground noise will be recorded. Noise on an icy surface can be originated by the atmosphère

due to its seasonal and diumal effects as reviewed in Hirtzig et al. (2009) for Titan’s case.

Noise can be produced also from the local wind and meteor impacts.

In the case of Titan, its dense atmosphère protects the surface ffom meteoroid impacts

and few craters hâve been observed so far (Elachi et al., 2005; Wood et al., 2010). Therefore,

the seismometers will record merely interior events. On the other hand, the same

instrumentation will also measure vibrations caused by impacts on Enceladus, Ganymede and

Europa.

The proper contact between the feet of the seismograph and the local surface at the

landing area stands for another issue to be confronted. Any particles and dust can easily

perturb the seismic sensors during their fonction and cause random errors at the sensor’s

record. This type of surface features has been already found on Titan. The Huygens probe

landed on a relatively soft solid surface analogous to wet clay, lightly packed snow and wet or

dry sand (Zamecki et al., 2005). Moreover, the Descent Imager and Spectral Radiometer’s

(DISR) surface images showed rounded stones approximately 15 cm in diameter to lie on top

of a finer-grained surface in variable spatial distribution (Tomasko et al., 2005). If the icy

pebbles lying over the instrument’s feet move or/and melt, the equilibrium position of the

seismic equipment will be disturbed and the sensors will misplace their initial orientation. The

measurements should be corrected if such a micro-movement of the probe is noticed.
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7.5 Conclusions

Since 2004, the Cassini-Huygens mission has made exciting discoveries at the Saturnian

System and especially at its satellites, Titan and Enceladus. Titan may be représentative of

many planetary bodies and consequently, the understanding of its internai geology will

enlighten the inner structure ofan entire class ofplanets and moons (Coustenis & Taylor,

2008). Similarly, Enceladus, despite its small size, it is extremely interesting due its huge

geysers, which mainly feed the E-ring of Saturn. These plumes show that the moon is

geologically active, hosting a possible internai water océan which is the source of its vents

(Dougherty et al., 2006; Collins & Goodman, 2007).

Likewise, the Galilean satellites of Jupiter présent many similarities with rocky

planetary bodies in terms of their surface features and atmospheric environments. Europa

hosts a relatively stable environment, an internai océan and in combination with its young

surface, the moon houses a great astrobiological potential (Kargel et al., 2000). On the

other hand, Ganymede seems to be a partially geologically active satellite with an intrinsic

magneticfield (Pappalardo et al., 1998a; Patterson et al., 2010).

Future missions at icy moons of the outer planets will be a great opportunity to

study them comparatively and give proofs ofactive planetary Systems. Jupiter’s Ganymede,

Callisto and Europa will be the main targets ofa future ESA mission at the outer planets to

study the emergence ofhabitable worlds and the Jovian System as a whole. The Jupiter Icy

moons Explorer (JUICE) mission will study in depth the icy satellites of Jupiter. It will

focus on detailed investigations on Ganymede, Europa and Callisto in order to understand

their surface geology, detect the presence ofa liquid océan in their interior and study their

habitability potential.

Saturn’s Titan and Enceladus could be also studied in the future to improve our

understanding of their atmospheric circulation, the surface geological processes and

tectonics and their internai océans, among other. The icy moons of the gas giants can also

provide hints regarding the emergence oflife and the climate ofthe Earth.

To study Titan as a System, the Titan Saturn System Mission (TSSM) or smaller

more focused concepts hâve been proposed based on interdisciplinary scientific interest in

order to understand the nature of the geological playground, surface formation and its

interaction with the atmosphère, meteorology and aeronomy. They could détermine the

present-day structure and levels of activity of Titan and Enceladus. Such a mission could
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also identify beat sources, internai réservoirs of volatiles (in particular methane and

ammonia) and eruptive processes and astrobiological processes which possibly occur in its

organic environment The mission would also investigate the relation and the interaction

between Titan and Saturn and between Enceladus and Saturn.

The utilization ofMicro-Electro-Mechanical Systems (MEMS) technology will give

to the future missions the opportunity to improve the exploration. By exploiting their small

shape, these prospective devices can reach distant areas where traditional instrumentation

is unable to visit. MEMS are some of the most innovative technologies available today. The

challenges inhérent in using MEMS applications in exotic space environments will surely

advance the current technological innovations. Irrespective of that, the impact of this kind

ofexperiment in space science will be enormous, even when operating at rudimentary level.

Although several technically originated issues arisefrom MEMS implémentation due to the

lack of long time utilization in space missions, they can be compounded by the fact of the

réduction of piece-part instrumentation. MEMS can operate in extremely unfavorable

conditions by overcoming any technological limitations, thus establishing a benchmark for

future experiments.

The MEMS experiment I propose for the lake lander will monitor extensively the

ground beneath the liquid and quantitatively define precisely its Chemical composition. As a

conséquence, a MEMS experiment in Titan’s lakes will appreciably enlighten our view of

the largest Saturnian moon, unraveling a crucial link for understanding atmospheric

dynamics and geological processes on it. This conceptualproject, after surviving a rigorous

testing procedure, can be part ofany planetary mission establishing a path forforthcoming

surveys.

The seismic experiment which I also would like to propose can identify the existence

ofliquid internai deposits, with a great astrobiological potential. Isolated environments that

consist of water and organics, components that hâve already been identified on most icy

satellites, providing idéal conditions for the survival of biological building blocks. Since

only the seismic instrumentation can map the subsurface layers, détermine their

composition and structure and measure their thickness, I would suggest mounting it in a

future mission as part ofa landingprobe payload.

I believe that these sophisticated experiments should be part of the framework of a

future mission on icy moons. As micro-devices are in compliance with the enhanced

technological capabilities and meet the NASA and ESA régulations, they seem to be the key
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for solving the issues of investigation of the remotest régions of Titan, Enceladus,

Ganymede and Europa.
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Chapter 8

Titan and the Cassini-Huygens mission as
educational resources

Growing and living in a technology-dominated world, it is indispensable for people to become

confident in their ability to understand Mathematics and Science (Fumer & Ramirez, 1999).

Alternative educational resources, different from traditional tools and techniques, can be used

as supplementary material in order to attract them to these disciplines. Astronomy and Space

Science are excellent fields to use for this purpose. However, the public is occasionally

discouraged to get involved in Astronomy by the complexity of modem technology. Despite

the intense interest in astronomical phenomena and the contemporary facilities like Internet or

a great amount of exceptional publications and TV broadcasts, most people hâve not got

familiar with astronomical phenomena yet. The rôle of Space Scientists is vital in reducing

the distance between Astronomy and the public. The Committee on the Planetary Science

Decadal Survey Steering group of the National Research Council of USA strongly

recommended and NASA administration agreed to spend at least 1% of the cost of each space
TA

mission for éducation and public outreach activities .

In this Chapter, I describe the incorporation of Titan and the Cassini-Huygens mission

as resources in formai and informal/outreach educational activities. I also présent the results

of a project conducted in a secondary éducation group of pupils in Greece, using Astronomy

and especially the Cassini-Huygens mission as a tool for attracting them to science tasks,

testing and enhancing their knowledge, abilities and perspective.

The outcome of the outreach activities hâve been presented in the European Planetary

Science Congress (EPSC) in 2006 in Berlin, Germany (Moussas et al., 2006), in the EPSC in

2009 in Potsdam, Germany (Coustenis et al., 2009d; Moussas & Bampasidis, 2009), in the

International Astronomical Union Symposium (IAU) in Paris, France in 2009 (Moussas et al.,

2011b), in the EPSC in Rome, Italy in 2010 (Bampasidis et al., 2010b) and in the European
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Geophysical Union (EGU) General Assembly in 2010 (Moussas et al., 2010b) and 2012

(Moussas et al., 2012; Solomonidou et al., 2012), both in Vienna, Austria.

8.1 Introduction

It has been reported that the majority of students of ail levels are usually unable to change

their previous beliefs and intuitions about physical phenomena, even though they hâve

attended adéquate science courses offered by their national curricula (Swann, 1951; Halloun

& Hestenes, 1985; Barrington & Hendricks, 1988; Halloun, 1997). Many students continue to

use the so called quasi-Aristotelian theory for analyzing nature, being led by their everyday

expérience, notwithstanding the proved scientific explanations (DiSessa, 1981; White, 1983).

Additionally, pupils often do not succeed in solving mathematical problems, because they do

not understand the framework of a problem and therefore cannot demonstrate a correct

solution (Frykholm & Glasson, 2005).

A more effective way of describing Physics is required in order to overcome people’s

previous beliefs (White, 1983). Educators hâve to inspire pupils in demanding modem

leaming environments and give them the opportunity to engage in productive discussions

pertaining to challenges of Science and Technology. Motivating pupils to use contemporary

scientific and technological achievements could accomplish significant improvement of

teaching effectiveness. The teacher should go beyond the traditional way of teaching and

focus on a more student-oriented approach (Heacox, 2002). Obviously, a strong motivator is

needed, which can make the children visualize Science and understand the scientific

phenomena as well as the embedded mathematics.

The past academie year (2011-12), I had the opportunity to teach Science lessons in a

State school of Athens, Greece. My students had not attended Science lessons before and it

was a great opportunity for me to incorporate the Cassini-Huygens advents in the secondary

éducation school curriculum. I tried to test whether such a topic could enhance the

effectiveness of my teaching and eventually evaluate the results in order to check the degree

to which I succeeded the target.

Astronomical issues can be used as an essential pedagogical tool towards this goal. The

Astronomy field has already been successfully selected for conceptual change in Science

(Vosniadou, 1991).
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8.2 The educational value of Titan and the Cassini-Huygens mission

I hâve been studying the Cassini-Huygens discoveries since 2006. My participation and

contribution to the Kronos, TandEM and later TSSM and TAE mission studies gave me the

opportunity to interact with many scientists worldwide, experts in Planetary Science. The

number of these exchanges increased during my PhD Thesis studies and had significantly

benefited me and advanced my knowledge in Titan science as well in Physics and

Mathematics. In the meantime, I hâve been thinking of the possible benefit for the broader

public from similar interactions.

The Astrophysics Laboratory's Space Group of the University of Athens, and especially

my Thesis supervisors Prof. X. Moussas and P. Preka-Papadema hâve a long-term expérience

in educational and outreach activities. Together with my supervisors, we considered the

possibility of implementing the Cassini-Huygens mission concept, which is the most

successfiil human exploration project, to attract students and the general public in the

disciplines of Science and Mathematics (Moussas et al., 2006). An idéal educational and

outreach resource for our purposes should be intriguing and both Titan and the Cassini-

Huygens mission are indeed attractive objects.

From the ancient years, people hâve been always intrigued to seek for terrestrial-like

analogues and habitable worlds throughout the Solar System and beyond. As I hâve described

in the previous Chapters, Titan satisfies these prerequisites since its environment présents

many similarities to the terrestrial one and it is also one of the prime targets for astrobiology

research.

Since 2004, Titan is under deep investigation by the Cassini-Huygens mission, which

will last until 2017. The mission's discoveries are often in the headlines worldwide. This

material is easily accessible through the World Wide Web, so students, teachers and the

layman public can obtain a wealth of information about the Satumian System.

The Cassini-Huygens mission is a state-of-the-art resuit of efforts in Science and

Engineering and its findings hâve advanced significantly our knowledge of the Satumian

System. It is a perfect example of the contemporary technology achievements of the

application of Science in real life situations. The mission is in the forefront of NASA outreach

activities. NASA has already scheduled the lOth édition of "Cassini Scientist for a day", a

global annual contest37, which gives the opportunity for students of ail grades (7-18 years old)

http://satum.jpl.nasa.gov/education/scientistforadaylOthedition/
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to interact with the Cassini material and the local Cassini experts. My involvement in this

event will be described later in this Chapter.

Titan and the Cassini-Huygens mission are exceptional tools for astronomical

educational and outreach activities since they combine most of the prerequisites of idéal

educational resources: intriguing concept, accessibility, interactivity, illustrative knowledge

transitivity, applicability to real life situations and graduai approach to knowledge. Finally, it

is worth noting that the interdisciplinary character of the Cassini-Huygens mission is an

additional positive element for Science éducation and outreach.

8.3 Titan and the Cassini-Huygens mission in informal/outreach activities

The starry sky has always seemed mysterious and familiar at the same time to humans from

the ancient era to modem times. Today, from ground and space télescopes, a wealth of data

revolutionizes our knowledge for our living planet and the entire Universe in a way never

imagined before. This digital évolution, currently available worldwide, allows the humanity to

benefit from ail the space applications. The introduction of young people and the general

public into the space field seems essential for not only cultivating astronomical culture and

skills, but also for becoming more familiar with scientific work.

In collaboration with the Space Group of the University of Athens, I hâve organized,

participated or attended numerous outreach activities focalized on the general audience in

order to conceptualize astronomical phenomena and especially Satum and Titan to enhance

people’s knowledge and perceptions. These public events encourage and help young people to

love Astronomy and the Solar System, to understand why we need to study Titan and the

Satumian System and to develop their critical thinking, self-expression and Creative talents.

An overview of these events is listed in Table 8.1 below.

Engaging Cassini-Huygens and Titan in outreach activities has proved very efficient.

The concept is to use ail the available material to show to the layman public that the human

progress is strongly related with the advents in Science, Mathematics and Technology.

Beyond its tremendous importance for both Science and Technology, the Cassini-Huygens

mission can be successfully employed as an attractor of the general public to Science,

Mathematics, Engineering and Technology during outdoor and indoor events.
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For this purpose, we perform a Virtual time travel from the roots of the Astronomy to

the contemporary space era. Two are the major milestones of this joumey: the Antikythera

Mechanism, which is the most sophisticated astronomical device survived from the Antiquity

and the Cassini-Huygens mission (Moussas & Bampasidis, 2009; Moussas, 2010a; 2011a;

2012). Through an introductory lecture, the public becomes capable to visualize the concept

of the spacecraft, its operation and usage and leam the high engineering capabilities of it.

People can easily visualize the celestial movements of the Solar System and comprehend the

fundamental principles that govem the Universe.

I hâve strongly supported this spécifie outreach field because of my broad knowledge

of Titan science and the Cassini-Huygens mission as well as my personal interest in both of

them. Usually in the framework of each event, I perform also a sériés of simple science

experiments, which are the offspring of the collaboration among the Space Group, the British

Council in Athens and the Science Communication Unit of the University of West England in

Bristol38.

Prof. X. Moussas and I were the co-leaders of the TandEM Outreach working Group.

Distinctive activities/events hâve been designed for this study. Our plans of outreach activities

included interactive web pages, images and video related to the mission (from its

developmental stage until the nominal operation at Titan and Enceladus). We will exploit the

wide spread of social media especially to interact with the young people. Conventional

activities hâve been also considered such as newsletter release, TV broadeasts, spécifie

publications, lectures, CD/DVD release, card games, collaboration with communities.

The planned outreach activities will be divided into three phases: (a) before the launch

of the mission, (b) during the cruise to the Satumian System and (c) during the nominal

mission. As for the first phase, the purpose of the outreach is to keep the layman public

interest alive. Towards this goal, the discoveries of Cassini-Huygens mission, which is

planned to operate up to 2017, will be used. During the spacecraft cruise to the Satum

System, the outreach activities and events will exploit the first inflight data of the mission

from its flyby maneuvers and the Juno results from Jupiter.

Going beyond the level of démonstration, with the contribution of local scientifïc and

amateur astronomers who are considered to be effective Astronomical and Science

ambassadors (Berendsen, 2005; Gibbs & Berendsen, 2006), people are actively engaged by

38http://wwwl.uwe.ac.uk/research/sciencecommunicationunit/projecthighlights/uwesciencecommunicators.aspx
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performing observations and simulation experiments focusing on the giant planetary Systems

of our space neighbourhood.

Through these events, people are empowered to conceptualize various astronomical

assets by making their own observations and leam the usage of scientific instrumentation, like

the telescope and the coronagraph. By these means, Science and Astronomy approach the

public and equip young people with critical thinking skills (Coustenis et al., 2009d;

Bampasidis et al., 2010b). In particular, children can expérience astronomical observations by

watching the Sun during the daylight whereas during night, they watch the Moon, the planets,

the stars and the constellations.

In addition, children are strongly encouraged to design posters and perform oral

présentations in subjects related to Physics and Astronomy. In the meantime, scientists can

easily emphasize the importance of funding Science as an investment for society and as a key

factor for improving the quality of human life.

Through these activities, pupils enjoy exploring the fundamentals of Science and

Technology, which might hâve a positive long-term impact on their careers and lives (Fumer

& Ramirez, 1999). The general public has the opportunity to meet experts in space science,

scientists, astronomers and engineers and inquire them about astronomical assets conceming

the space research, the Earth and the évolution of the Solar System and Cosmology.

At these events, visitors get an up-close view of scale models of spacecraft constmcted

for young children and are informed about space agencies’ missions and their future projects

for the exploration of the Universe. Through these events and exhibitions we aim to empower

social interactions, encourage the school community to get involved into Space Science and

Astronomy and discuss the merits of major global issues like global warming and pollution.

The majority of these outreach events hâve been presented in numerous conférences

worldwide. Table 8.1 below lists the outreach activities I hâve been engaged. The feedback

from the people attended these activities and especially the children encourage me to adapt

similar techniques to formai éducation practices, in which I am engaged since 2001. Due to

their interdisciplinary value, Titan and the Cassini-Huygens mission can be easily

incorporated into the national science curriculum material.
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Table 8. 1 - List of outreach events

Event Location Date

Number of

visitors

EUROPE

Observation of the Venus transit

Univ. of Athens
Athens, Greece 6/6/2012 100

Exhibition

Antikythera Mechanism

University of Evora

Exhibition and Lecture

Evora,

Portugal
19-23/09/2011 1000

Antikythera Mechanism and the Sun

Stadium of Peace and Friendship

Athens,

Greece
02-05/09/2011 3000

2nd Festival for the child

Lectures and Observation

of the starry sky

Salamis island

Salamis,

Greece
09/07/2011 300

Exhibition and Lecture

Antikythera Mechanism and Heretria and

Astrophysics for pupils Gianitsa 26-28/06/2011 150

Hellenic Physical Society Greece

Summer School

Exhibition and Lecture

Antikythera Mechanism

Hellenic Foundation for Culture

Science and Technology of the Ancient

Athens,

Greece

08/06/2011-

30/09/2011
2200

World

Exhibition and Lecture

Antikythera Mechanism

Papastrateion Centre

Agrinio,

Greece
16/05/2011 800

Exhibition and Lecture

Antikythera Mechanism

European University Cyprus

Nicosia and

Limassol

Cyprus

27/04/2011-

14/05/2011
800

Cyprus Science Festival

Exhibition and Lecture

Antikythera Mechanism and

Astrophysics for pupils

Naousa,

Greece
11-13/03/2011 200

Hellenic Physical Society

Exhibition and Lecture Portaria,

Antikythera Mechanism and Thessalia, 11-13/02/2011 200

Astrophysics for pupils Greece
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Event Location Date

Number of

visitors

Hellenic Physical Society

Observation of the Sun

Yard of the National and Kapodistrian

University of Athens

Athens,

Greece
09/02/2011 80

for school pupils

Exhibition and Lecture,

Antikythera Mechanism

Lemnos,

Greece
28/01/2011 58

Exhibition and Lecture

Antikythera Mechanism

Municipality of Myrina

Lemnos,

Greece
27/01/2011 65

Partial Solar Eclipse,

Propylaea

Acropolis

Athens,

Greece
4/1/2011 200

Lecture,

Antikythera Mechanism

Rhodes,

Greece
2010 120

Astronomical Institute SAS

(AISAS)

Exhibition of the Antikythera

Mechanism

Tatranska

Lomnica,

Slovakia

01/10-07/11/2009 351

Observation of the Sun

University of Athens,

International Year of Astronomy 2009

Athens,

Greece
3&5«&11/2009 200

100 hours of Astronomy

Exhibition

34th Convention of Polish Astronomical

Society,

Institute of Physics of the Jagielonian
Krakow,

Poland
15/9-30/10/2009 350

University

Exhibition of the Antikythera

Mechanism

Exhibition

Festival International des Sciences

Les Rencontres de la Terre

Athens,

Greece
12-15/10/2009 2200

3rd Scientific Symposium:

“Science and Art”

Hellenic Physical Society and

Athens,

Greece
09-11/10/2009 300

Harokopion University

7th General Conférence of the Balkan Alexandroupolis, 09-13/9/2009 300
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Event Location Date

Number of

visitors

Physical Union Greece

6lh Hellenic Conférence on Amateur

Astronomy

Alexandroupolis,

Greece

25-27/9/2009 400

Exhibition and Lecture

Partnership Opportunity for Leaming:

Astronomy Resources for Inspiring

Seniors - Aurora Polaris

Olsztyn,

Poland
06/5-20/9/2009 10,000

Grundtvig Leaming Partnership

Olsztyn Planétarium

Observation of the Sun and Lectures

University of Athens, AURORA Polaris,

Eudemos Amateur

observatory, Union of secondary

Rhodes,

Greece

15/5/2009 350

éducation teachers of Dodecanese

Exhibition

The 13th Science Picnic of Polish Radio

and the Copemicus Science Centre - The

largest outdoor event in Europe

Warsaw,

Poland
30/5/2009 4000

promoting Science

Exhibition and Lecture

Muséum Gustavianum

Uppsala University

Uppsala,

Sweden
31/1-26/4/2009 10,000

Exhibition and Lecture

Conférence and Cultural Center of the

University of Patras

Patras,

Greece

05-08/4/2009 2000

Observation of the Sun and

Lecture:

The Sun, our nearest Star

Athens,

Greece

05/4/2009 150

University of Athens

Exhibition and Lecture

Culture Center City of Rethymnon

Rethymnon,

Greece
27-30/3/2009 300

Observation of the Sun

Primary school of Nea Chili,

Amateur Astronomie Club of Thrace

Alexandroupolis,

Greece

27/3/2009 200

Astronomy Week

Amateur Astronomie Club of Thrace

Orestiada,

Greece
23-27/3/2009 150

The beauty of Astronomy, Astrophysics, Kranidi, Argolida,
3/2009 700

the leading edge of research Greece
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Event Location Date

Number of

visitors

Communication with the ISS

lst Lyceum of Alexandroupolis -
Alexandroupolis,

Greece
11/2/2009 530

Amateur Astronomie Club of Thrace

Exhibition and Lecture UNESCO

Inauguration of the International

Astronomy Year, IAU Symposium 260

Headquarters,

Paris,
15-23/1/2009 1000

and Art Exhibition France

Exhibition and Lecture

Ionie Centre

Athens,

Greece

22/10-14/12/2008 7000

Exhibition

Zappeion Megaron, Athens, 11/2007 and
4500

Research and Technology Show Greece 11/2008

2007 and 2008

Exhibition

HELEXPO/Annual International

Commercial Exhibition of Greece

Thessalonica,

Greece
9/2008 4000

Lecture,

Intermediate school of Kassos,

The Antikythera Mechanism,

Kassos,

Greece

30/7/2008 60

The senior Calculator

Observation of the Sun

10lh Primary School of Alexandroupolis
Alexandroupolis,

Greece
21/5/2008 110

Amateur Astronomie Club of Thrace

Observation of the Sun

5th High School of Alexandroupolis
Alexandroupolis,

Greece
15/5/2008 200

Amateur Astronomie Club of Thrace

Exhibition and Lecture

City of Chios

Chios,

Greece
09/2/2008 200

Municipal Theatre of Alexandroupolis Alexandroupolis,
05/5/2007 180

Amateur Astronomie Club of Thrace Greece

Lecture,

The Sun and us

Rhodes,

Greece
2007 60

Lecture,

The Sun and us

Kassos,

Greece
2007 45

Total Solar Eclipse
Castellorizo,

Greece
29/3/2006 300

Total Solar Eclipse

Amateur Astronomie Club of Thrace

Alexandroupolis,

Greece
29/3/2006 370
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Event Location Date

Number of

visitors

Total Solar Eclipse

Amateur Astronomie Club of Thrace
Orestiada, Greece 29/3/2006 500

Lecture,

The Sun

Rhodes,

Greece

28/3/2006 70

Lecture,

Antikythera Mechanism

Kassos,

Greece
2006 90

Lecture,

The Sun

Rhodes,

Greece
2005 90

Observation,

Venus Transit

Rhodes,

Greece

08/6/2004 1100

AFRICA

Exhibition and Lecture

Planétarium Science Center Bibliotheca
Alexandria,

Egypt
1-30/11/2008 2000

Alexandrina Alexploratorium

Exhibition

Centre de Recherche en Astronomie

Astrophysique et Géophysique

(CRAAG)

Algiers

Observatory,

Algeria

2/11/2008 50

Permanent

Abet Greek School in Cairo
Cairo,

Egypt

exhibition

inaugurated on
300

29/11/2008

Exhibition

7em Salon d'Astronomie

Constantine,

Algeria
30/10-1/11/2008 6000

USA

Exhibition

Antikythera Mechanism

NASA/Kennedy Space Center

Cape Canaveral,

USA 03/08/2011 3000

Launch of JUNO

Exhibition

Gods, Myths and Mortals: Discover

Ancient Greece

Children’s Muséum of Manhattan

New York,

USA
From 2007 to 2010

more than

500,000

National Touring Exhibition
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Discussion

Since the beginning of civilizations Planetary Sciences hâve played a crucial rôle in the

development of human thought. Without doubt, the recent advents in computer hardware,

télécommunications and the Internet hâve definitely facilitated the impact of Space Sciences

among young people. Besides, as children expérience a continuously evolving technological

society, the need for new and challenging educational devices seems obvious.

The astronomical knowledge has significantly increased with time and people hâve

become familiar with scientific facts. Since serving the social benefit is the major

commitment of Astronomy, it seems crucial in the contemporary harsh environment to

approach the layman public (Clough, 2011). People’s perspective of Science and Astronomy

in particular is a significant concem of modem scientific communities (Wallace et al., 2012).

By general consensus, conventional methods for making science accessible to the public hâve

failed. However, due to the large impact of pseudoscience on people of different social and

cultural backgrounds, it is impérative to teach real science to the public in order to clarify any

misconceptions.

Astronomers and scientists hâve to produce innovative methods to attract people and

bring Astronomy at the forehead of éducation. This can only be achieved by following

successful pedagogical principles and tools, aiming to make Science accessible and promote

lifelong Science leaming (Linn et al., 2003). An example of this kind is the use of films

(Efthimiou & Llewellyn, 2006), or user-friendly computer software (Fumer & Ramirez, 1999;

Keating et al., 2002), visual représentations (Gazit et al., 2005) or the wealth of the Internet

(Cohen, 1999). The outreach activities focus on both children and the general public. The real

focus, however, should be on the development of Creative and critical thinking throughout the

society.

Conceming the educational process, the interaction of the scientific community with

school educators improves their teaching skills and effectiveness by including astronomical

assets to the design of their lesson plans. In the contemporary school environment, Astronomy

is indeed an efficient tool which allows the educators to self evaluate their work on Science

lessons and intrigue their students in a leamer-friendly environment.

Pupils understand the existence of multiple pathways towards knowledge, develop the

ability to express ideas about Physics and Astronomy and eventually think outside the box.

Adequately trained teachers readily act as local science distributors to their pupils and
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community. Moreover, more students hâve decided to follow a scientific career, being

inspired by the interdisciplinary value of astronomical issues.

Advances of Science hâve always proved to be bénéficiai to the humanity and people's

quality of life. The outreach projects try to strengthen public interest in Astronomy, by

providing alternative paths of leaming and expanding their expectations. The participation of

people in the events we hâve organized or participated is increasing, showing their interest in

Space Research matters (Fig. 8.2).
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Figure 8. 1 - Annual report of activities listed in Table 8.1 and the number of participants

Both seniors and youngsters can now understand the physical phenomena, adapt

indisputably a new way of thinking and leave behind their previous beliefs and intuitions.

Through Science, people move beyond the barriers imposed by pseudoscience and start

negotiating with their issues using a thoroughly scientific way. Teachers can enrich their

inventory with the proper tools to effectively empower their pupils with ail the necessary

science and mathematical skills. Indeed, Astronomy and Astrophysics stand as excellent

attractors of pupils to Science and Technology.
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8.4 Titan and Cassini-Huygens mission in formai éducation

Astronomy can be used in formai éducation, not only as an independent discipline but

also as an attractor to Science and Mathematics and as an évaluation tool for testing pupils’

knowledge and perspective about fondamental Science. In order to attract young students

from ail levels (7-18 years old) A. Solomonidou, Prof. X. Moussas and I became the

coordinators of the very successful NASA student contest the "Cassini Scientist for a day"

(Solomonidou et al., 2012) the concept of which is described in the next section. This

international contest is focusing on the Cassini mission for the last 10 years with Satum’s

Titan always being in the center of attention.

Towards this goal I hâve performed a twofold project. One group of my students

participated in the NASA's student contest. Foliowing the two-year successful contest, in May

2012, I conducted a small-scale student research program in a group of Greek students of

secondary éducation in a State school. These students hâve also participated in the NASA

contest.

The goal of this research was dual. I first applied this project to the pupils in order to

introduce them to Science issues, which they would face in the next grade. In my point of

view, creating positive perspective to Science before pupils begin their science lessons is

crucial and Titan and Cassini-Huygens mission provide the essential tools to achieve it.

The second goal of this research was to produce a negotiated interaction between the

students and an exchange of information. Through this procedure I was able to evaluate the

contribution of each pupil in his/her group and, eventually, self-evaluate my project and the

impact of Titan and the Cassini-Huygens to the students. In the forthcoming academie year,

this small-scale study will be distributed among the teachers throughout Greece.
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8.4.1 NASA - Cassini Outreach school contest: Scientist for a day

NASA holds a very active, productive and student oriented Outreach Group. For the

last 10 years the members of this Group focus in maintaining in high levels the interest of

teachers and students towards the joint NASA-ESA successful mission Cassini-Huygens with

the school essay contest "Cassini Scientist for a day". This mission has attracted global

attention and the Outreach Group focus in the international participation in every contest or

event regarding Cassini.

The "Cassini Scientist for a Day" contest is a chance for students of ail grades (7-18

years old) to describe where they think the caméras on Cassini should be pointed during

upcoming observations scheduled for every year’s fall. A science team of expertise designs

the scientific plan for each year by setting three possible targets within the Satumian System,

including Satum itself. Each of the three targets has a scientific importance that justifies a

possible future observation by Cassini. The task is to choose a target focused on the best

science retum and explain the reason, in an essay of about 500 words. They also hâve the

option to do team work through groups of maximum three students. For the years 2010 and

2011 (2012 contest is currently under planning), the Space Physics Group of the University of

Athens in association with extemal colleagues has been selected as the coordinator of NASA

for the international compétition in Greece. This kind of school compétition in Greece is

particularly important since students rarely hâve the opportunity to expérience and participate

actively in similar tasks. Under the guidance of the Cassini Outreach team, A. Solomonidou,

Prof. X. Moussas and I hâve informed, explained and spread the rules of the compétition at

primary, secondary and high schools ail over Greece. We kept open communication with

students, teachers and parents for questions and guidance. For the 2010 contest, the target

number one was a close-up view of the moon Rhea, number two was a video of Titan, Tethys

and Enceladus dancing under Satum's rings and target three captured a day on Satum. The

main preference of about 60% was target number two. For the 2011 contest, the target number

one was Hyperion, number two Rhea & Titan and number three Satum. Again most

arguments were in favor of target number two (67%), showing a preference trend on Titan.

The participation in the contest for 2010 (first time in Greece) was unexpectedly high

and thoroughly satisfied at about 150 original essays, while for 2011 the participation

increased up to 75%. The winners awarded through a ceremony, which was held in the old

amphithéâtre of the University of Athens, which was fully packed (Fig. 8.1).
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Figure 8. 2 - The winner's ceremony of the NASA contest 'Cassini Scientist for a day' in Greece, May 2012

A big number of the participants of the 2010 contest are either participating in the new

contest of 2011-2012 or -since some of them hâve graduated- are still in touch with the

members of our group for study guidance. The 2011 contest’s increased number of

participation indicated the progress of this compétition and its future involvements in school

interests. This year (2011 édition) we organized a similar ceremony, with lectures on the topic

by specialists as well as some lectures by the pupil and an extra event at the Island of Salamis.
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8.4.2 Evaluation project

Student profile

In order to evaluate the impact of the contest in my students I hâve decided to perform a

group activity research in the classroom. Ail leamers who participated in this research were

studying at the First Grade of the 20th High School of Athens, Greece within the academie

year 2011-2012 and ail of them hâve previously participated in the NASA contest. Classes

were mixed and a total of 35 students were involved in this study, 21 boys and 14 girls. Their

average âge was 12 years old and they only had attended introductory Science lessons during

their studies in the Elementary level. However, except for Geography and Biology, Science is

not included in this Class Curriculum.

8.4.3 The method

I adapted cooperative group-based activities by using worksheets for three 45-minute teaching

hours. Cooper & Mueck (1990) described this type of educational practice as a structured,

systematic instructional strategy in which small groups work together towards a common

goal. Although students in Greece are not used to working in groups (Alexopoulou & Driver,

1996), this particular State school has been selected from the Ministry administration as a

pilot-school to adapt such educational practices. Hence, the target group is quite familiar with

group-based work.

The pre-task activity consisted of an introductory lecture, which explained the tasks

and linked the fortheoming activity to the Cassini contest. This lecture lasted for about ten

minutes. After having attended the pre-task activity, the students were asked to form self-

selected groups of 3 to 5 members. They formed 8 groups, 4 of them consisting of 5 students,

3 groups of 4 students and one group of 3 students (Table 8.2).

Table 8. 2 - Group formation

Members in Groups 5 4 3

Number of Groups 4 4 1
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Each student had his own worksheet in which he was asked to write down the response of the

whole group to the activity’s tasks. On the other hand, only one sheet with planetary facts was

given to the group as supporting material. By this approach, ail students were forced to

participate by filling their worksheets and interact with their team members using the

common material. The worksheet was divided into 3 individual activities. A short description

of the worksheet is given in the Table 8.3 below.

Table 8.3- Main points of the tasks’ worksheet

Activity Tasks

a) Classify the planets given their density and their distance from the Sun

1 b) Mention the position of the Earth

c) Retrieve information about Titan and Satum from the web

a) Produce a scaled solar System

b) Find the larger satellites of the Solar System
2

c) Retrieve information for Titan and the Cassini-Huygens mission

d) Describe briefly what Cassini orbiter does

a) Mention your favorite planet to visit

b) List scientific disciplines necessary for space missions

c) List 3 favorite objects to bring onboard in case of sélection as astronaut

d) Mention a song which fits a future space mission

Acting as a facilitator, I had a minor intervention, mainly observing and monitoring students’

work rather than participating as a group member, so as not to influence the final outcome.

Before starting the activity 3, I performed a short démonstration of two experiments,

similar to the ones I performed in informai outreach activities. In particular, a simulation of a

rocket launch and one of zéro atmosphère pressure were demonstrated by using every day

materials. An empty film canister played the rôle of the rocket body. When I lit half of a

commercial fizzing antacid tablet and few drops of water, their Chemical reaction produced

carbon dioxide, which in tum gave the canister the proper impulse to launch for a few meters.

Then, I put in a kitchen vacuum packer an inflated balloon or preferably marshmallows and

then I pumped the air out from the container. The latter experiment demonstrates what

happens to the astronauts in space. More details about both experiments can be easily queried

in the internet. This type of experiments can be easily performed by the students as well,

showing them the strong connection between Science and real life situations.
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The task cycle closed by asking the students to answer an on-line questionnaire related

to the whole project. Most of the questions follow the 5-point Likert scale (Likert, 1932), and

evaluate the group activity by testing their satisfaction. The questionnaire can be accessed in

the following website:

http://users.sch.gr/gbabasides/joomla/index.php?option=com_ckforms&view=ckforms&id=2

8.4.4 Problems related to group-based activities

Working with groups has a bénéficiai impact in leaming process especially in Science

disciplines as well as to the development of the communicative skills of the student (Heller et

al., 1992). In this group-based project, I hâve faced the common difficulties mentioned in

literature: the free-ride effect and how to evaluate each group member individually.

People participating in groups lower their sense of individual responsibility

(Armstrong, 2012) and usually the free-rider effect takes place when skilled members do most

of the work (Kerr & Bruun, 1983; Karau & Williams, 1993).

The outcome of the group work in formai éducation can be easily evaluated whether it

meets the initial goals or not. However, it is difficult to estimate the degree of participation of

each individual member of the group in the final resuit. The same issue has been reported in

other disciplines such as English as a foreign language (Foster, 1998), in which group-based

activities are a widespread practice. For a successful outcome, students should be convinced

for the bénéficiai purpose of the task and be serious and committed. Additionally, each group

member must hâve a spécifie rôle in the task (Ellis, 2003).
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8.4.5 Data analysis

The activity was performed as planned within the time limit of three 45-minute teaching

hours. Ail the students participated, submitted the worksheets and filled in the online

questionnaire. Ail the answer sheets were presented in a whole-class context.

The favorite planet for a future travel was Mars which gained 23% of the students,

while the Satumian System was less favorite (20%). Students explained that they selected

Mars due to its proximity to the Earth, the results of current water research and the possibility

of life existence on it. On the other hand their favorite object was the personal computer at

30%, followed by the mobile phone at 25%. It is worth noting that none of them questioned

the possibility of a mobile phone functioning in space. These choices show the degree to

which the everyday use of technology influences contemporary teenagers. Finally, although

they are technologically influenced, 30% of them did not like the web search activities.

As far as the outcome of the online questionnaires is concemed, Table 8.4 below lists

the results. This questionnaire illustrâtes the satisfaction of the students after finishing the

group task. I hâve decided to give a more general census questionnaire in order to avoid

répétitions ffom the contest.
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Table 8. 4 - Results of the online questionnaire

Question Very well Well Moderate Little Dislike

General Satisfaction 49 42 9 0 0

The concept 40 39 21 0 0

Exploit Previous knowledge

of Science
30 17 20 16 17

Instructions 37 49 14 0 0

Interesting task 46 48 6 0 0

Experiments helpful 57 17 14 9 3

Teacher as a facilitator 94 3 0 3 0

Ability to solve similar

problems in the future
11 54 26 9 0

Satisfaction of their

participation in the NASA 92 8 0 0 0

contest

Attend Astronomy lessons in

the future
42 32 19 4 3

Astronomy issues in Science

disciplines
44 32 14 5 5

Group coopération 43 26 14 14 3

Ail the group member help

understanding
32 20 31 6 11

No help from rest the

members
38 14 11 17 20

Most of the students were satisfied (91%) from the activity and the concept (79%), while the

majority of them (96%) found the subject interesting. Almost half of the students (47%) used

successfully the knowledge obtained from their elementary studies, which means that they

believe they hâve a good basis for the forthcoming class. Sixty-five per cent of the students

feel more confident to solve similar problems in the future. About 65% of the pupils would

like to attend lessons devoted to Astronomy and prefer more astronomie subjects in Science

lessons. The students’ favorite activity was the design of a scaled solar System by a

percentage of 31 followed by the experiment démonstration at 20%. Ail the students were

satisfied by their participation in the NASA contest.

About the feedback for the teacher, the vast majority (94%) appreciated his facilitating

rôle to the activity. Additionally, most of the students understood the task instructions (86%),

which means that they are well structured and related to their âge and educational level.
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Almost three quarters of the participants enjoyed the experimental démonstration, which

helped them understand the concept of activity 3. Conceming the performance of group work,

half of the students cooperated effectively and interacted with the rest team members.

8.5 Conclusions

As described above, the interdisciplinary value of Titan and the Cassini-Huygens mission is

apparent and the public interest worldwide is enormous. This can be used as a magnificent

educational instrument, not only to model physical phenomena, but also to become

involved in the whole curriculum of the learning procedure. Titan and the Cassini-

Huygens mission can motivate children and the general public to understand modeling,

identify the scientific way of thinking and initiate or encourage their interest to scientific

disciplines. The interaction of the public with the Cassini-Huygens concept emphasizes the

technological applications and their large impact to our lives. Without doubt, Cassini-

Huygens seriously and generously contributes effectively in promoting Science and

Technology to the broaderpublic.

The proposed group work based activity follows the concept of the formative

assessment (Ainsworth & Viegut, 2006) in which the teacher applies procedures during the

learning process to improve his students’ performance. This activity focuses on a

qualitative feedbackfrom the student. The high percentages ofsatisfaction, in combination

with their will to implement more astronomie aspects in the Science lessons, encourages me

to work towards this direction.

Although the involved students were familiar with working in small groups, only

50% of them felt that they had cooperated properly. This is explained by the fact that the

groups were self-formed. Since thefree-rider effect had appeared, it would hâve worked out

more efficiently if I had organized the groups according to their level in order to form

groups ofequalpower (Davies, 2009).

This activity has significantly enhanced the students’ self-confidence and their

ability to solve scientific problems in the future. With such activities, students hâve

developed problem solving and their presentational and communicational skills. Moreover,

this kind ofgroup work activities introduces students in the Science discipline.
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Conclusions

During my Thesis study, I hâve investigated different aspects of Titan's environment,

focusing mainly on its middle atmosphère but with some non-negligible contribution to its

surface science as well. The Thesis manuscript can be divided into two major parts, one

conceming the techniques of analyzing Cassini/CIRS data and the other purely scientific. The

outcome of the scientific research is then used as a basis for presenting Titan's habitability

potential and experiments' design for future missions.

During my research, while covering the Cassini mission, I hâve managed to infer

variations as a fonction of latitude and time. I hâve confîrmed that a rapid change in the

atmosphère took place at 50°N (Bampasidis et al., 2012a). I was led to this conclusion after

finding an indication for a compositional enhancement from 2006 to mid-2009 during Titan's

northem spring equinox (NSE) on 15 August 2009 for almost ail molécules compared to the

2008 and 2010 values. These results are compatible with the fmdings of Teanby et al. (2010).

An additional, new contribution from our work was that the observed increase is followed by

a strong decrease of the gaseous Chemical content within the next terrestrial year that remains

to be confîrmed with forther data but which has strong implications on the seasonal variations

and the behavior of the northem vortex.

To perform this analysis, I hâve made use of data obtained from Cassini/CIRS on

which I hâve applied the radiative transfer code (Atmospheric Radiative Transfer for Titan -

ARTT) I hâve upgraded. ARTT fonctions in an enhanced and optimized way, providing an

improved fit to the data, thanks to the updated haze and spectroscopic parameters. Thus,

ARTT can search for 18 additional molécules and isotopologues compared to the previous

version, includes recently detected molécules (Nixon et al. 2008a; 2008b, Jennings et al.

2008) and allows for forther research conceming the presence of more complex and new

weak species or the identification of more minor isotopologues.

Moreover, I was involved in the évaluation of CIRS data inferences (current pipeline,

DS4000 and Grand Average) by testing the outcome of new calibration algorithms applied by

the CIRS calibration Team in Goddard. I concluded that a new release of DS4000 database,

the Phase-Corrected, should be exploited in future studies using CIRS data for ail users. If the

latter database is not available, the DS4000 still constitutes an improvement with respect to

the current pipeline (v3.2).
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As far as the surface is concemed, I hâve searched for links of the atmosphère with the

surface and the interior, since my Thesis subject was on the environment of Titan. Titan's

surface liquids (lakes and their surroundings) can provide one such linking point. The surface

liquids reveal information conceming the évolution and the dynamics of the "hydrological"

processes on Titan surface. The corrélation between the geomorphic features that are

expressed by the Hortonian morphometric parameters, on which I hâve worked, and the local

topography can provide a qualitative description of the region's development. The analysis of

the Mayda Insula drainage shows the existence of steep slopes on its Western part. Since the

island basins hâve various slopes, I assumed that they hâve experienced various élévations.

Moreover, I hâve contributed to the research of possible morphotectonic expressions

on Titan through a comparative study between Cassini observations and terrestrial tectonic

Systems. From the above, we managed to make suggestions about possible formation

mechanisms of the observed features (Solomonidou et al., 2012). Furthermore, in Bratsolis et

al. (2012), I got involved in the application of a despeckle filtering technique for obtaining

restored Cassini/SAR images. This tool is based on probabilistic methods and in combination

with a segmentation technique, makes possible the extraction of régions of interest from the

local background.

The analysis of atmospheric and surface Titan data has also enhanced our

understanding of the habitability potential of the satellite as it gives better access to the

properties involved in the environment and the stability of the System for supporting the

emergence of biological building blocks. The experiment I hâve proposed, to be included as

payload of a future Lake Lânder probe incorporating Micro-Electro-Mechanical Systems

(MEMS), could measure the thermodynamic parameters of the liquid and produce a 3D

topographie map of the lake's bottom (Bampasidis et al., 2011b). I hâve also proposed a

seismic experiment which will be able to identify the existence of liquid internai deposits,

with a great astrobiological potential (Bampasidis et al., 2011a).

Finally, the interdisciplinary value of Titan and the frequent, amazing discoveries in

the Satumian System by the Cassini-Huygens mission can be used as a magnificent

educational instrument. I hâve adapted the achievements of the Cassini-Huygens mission on

Titan to motivate children and the general public to get involved in scientific disciplines

related to Astronomy.

360



Appendices

361



362



Appendix A

The inversion approach of the Radiative

Transfer Equation solution

The inversion approach

The inversion approach is a method which allows the calculation of the values of atmospheric

parameters from the recorded infrared intensities. In brief, we describe the whole System

following a reversai sequence, beginning from the results of a physical process and seeking

for the embedded parameters which cause the recorded results (Tarantola, 2005). At first, we

should seek for the température structure of the atmosphère. Titan’s atmospheric température

is considered as a fonction of the vertical distance from the satellite’s center and the planet-

graphical coordinates.

The équation (4) follows the generic form of the homogeneous Fredholm intégral

équation ofthefirst kind in one - linear - dimension which can be formally illustrated as:

g(y) = JK(y,x)f(x)dx (5)
a

The fonction g(y) corresponds to the recorded radiance in our case and can be considered as

a known terni as well as the continuous Kernel fonction K(y,x) which is the partial dérivative

of the transmittance in respect to the altitude. On the other hand, the /(x) fonction illustrâtes

the Planck fonction, the source of the émission.

The term inverse problem is common in Astronomy and in other experimental

branches of Science and Engineering such as image and signal processing, geophysics, remote

sensing etc, when researchers try to détermine the parameters of a physical System by using

the interaction data of its sample and the radiation emitted by a known source (e.g. Rawlinson

et al., 2010; Bertero and Boccacci, 1998). The Kernel fonction K(y,x) in (5) is at least known

in principle while g(y) is only known in a determined set of points y,, where i=l,...,m is a

finite set of quantities with a certain accuracy (Hansen, 1992).
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A.l The quest for the proper solution

In order to understand whether we can proceed to a direct calculation of the above équation,

we should firstly formulate the mathematical framework of these problems. To begin with,

the class X of fonctions f(x) is considered as Hilbert space. Both the set of the linear

fonctionals and the set of the values of these fonctionals are also defined in

the class X, such as:

Fm(f)-gm,n=l N.

Since X is a Hilbert space, the fonctionals should be continuous and they should be the scalar

inner product of the fonction/and the fonction (pn E X such as (Bertero et al., 1985):

UA)x =gn,n=l,...,N.

The solution of such an intégral in order to uncover the sought fonction /(x) can be

accomplished by using numerical methods.

When one solves the linear Fredholm intégral équation of the First kind, one should

take into account that this form is an ill-posed problem. As firstly defined by Hadamard

(1923) any modeling of physical phenomena should satisfy the next three attributes:

a) the existence of a solution,

b) the uniqueness of the solution, and

c) the stability of the solution (continuous dependence) on the observed data.

When ail these conditions are satisfied, these problems are called well-posed. On the other

hand, when part of the boundary data is not available due to the insufficient number of

measurements or heterogeneities and singularises, the problem becomes ill-posed (Xin et al.,

2010). In these kinds of problems the solution is extremely sensitive to arbitrarily small

oscillations of the System and hence, the data is not really a solution in a physical sense.

Indeed, the solution amplifies the noise producing a large and wildly oscillating fonction

which eventually covers the physical solution. As a conséquence, a unique existing solution is

entirely corrupted by a small error in data, which apparently refers to a loss of information.

The whole issue is linked with the compactness of the operator associated with the

Kernel fonction which cannot hâve a continuous inverse (Kress, 1999). In our case of Titan’s

inffared radiation, the high frequency components in the fonction /(x) are smoothed out by

the intégration with Kernel K(y,x) in équation (4). Inversely, the calculation of the f(x)
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fonction fforn g(_y) will amplify the high frequency in g(y) (Hansen, 1992; Bertero &

Boccacci, 1998).

Therefore, an approximate, but stable and reliable, and eventually meaningfol solution

should be quested by applying additional parameters to the problem which describes the

expected physical properties of the System. We should also seek to filter out the high

frequency components of the data in order to avoid instabilities on the solution.

To do so, the intensity recording of the instrument 7(^u,v) or the g(>>) fonction should

hâve a linear relation with B(z,T) or f(x) fonction which will be correct only when:

a) g(y) fonction is related to /(x) by form (5)

b) The recordings on the detectors should hâve the same or a constant ratio to the yn value of

g(y) fonction. Then, the équation (5) can be written as:

8n(y) = fp(y„ -y) fK{y,x)f{x)dx dy n = \,...,N (6)

where P{yn -y) = ô(y-yn).

In this point of our discussion, it should be mentioned that the latter (6) équation ignores the

noise contribution to the measurements. Eventually, each value of g(y) fonction of the

instrument’s recordings is a linear fonctional of the f(x) fonction. In other words, g(y)

numbers are the norm [/(*)] from the vector space Â"(j;,x)to its field of scalars. Therefore,

the équation (4) can be solved by numerical analytical methods.

A.2 Linearization

The radiance and the transmission fonction Tr(fj,,v,z) are known values by the CIRS

recordings and spectroscopic databases respectively. The Planck fonction B(v,T(z)) remains

the unknown parameter. Therefore, the équation (4) should be solved to dérivé the 5(v,T(z))

values. The solution of the radiative transfer équation (4) can be approached as follows

(Vinatier, 2007):

N

K, = yiB(.vl,T(zi))ATrU)
j-1

K, =y,B[v„T°(z]) + AT^TJj)
j-1
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for N layers and ATj = T(z^- and by applying the Taylor sériés for the B function we

dérivé:

n r

A,-2
>1L

B(vl,r(zJ)) + -ép-ATJ
al

ATrU)

/„-/v5«4WW

but since AI = Iv - I°Vl

and if we define K„ as:

1

BB(yt9T)a/.y

w r)/
A/= V—^AT

ATjATr(j)

j-1

^ A/,. dB{vi9T(Zj)) krrf
= —L - i—AT(vi,z i)

ij AT, dT, r 1

we can hâve the linear form:

AI = KAT (7)

A.3 The Ky matrix

To begin with, we assume that the température is a depended quantity by the altitude rt and

the latitude . Thus, we can define the array of n-element vectors:

-T,

where i = and j = l,...,q, which means that we divide the atmospheric région in N

layers.

Moreover, since the measurements are remotely recorded, errors due to orbiter’s

position in respect to the planetary body should be also considered. Furthermore, the

atmospheric pressure is either not accurately known on a constant gravitational potential

surface or outside the sounding région. Therefore, we introduce a single shift §) in ail tangent

heights at a given tangent point latitude(ç?,),, when 1=1,...,p. CIRS spectral radiance

recordings dépend on frequency v, altitude rt and latitude cpt (Achterberg et al., 2008). Then,

we defïne the m-element vector:
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where k = 1 .

h = \y^„(p,\

Secondly, the quantities to be retrieved are incorporated to a single column vector x

the éléments of which are the arrays of température Tj, the neperian logarithm of the

(dr \
dérivative of the transmittance in respect to the altitude ln —- =bf and the tangent point

\ dr ),j

shifts §.

Tt

Tq

b,

JC =

\

ê

l*,J

This is the vertical température and aérosol profile of Titan’s atmosphère for both limb and

nadir measurements. The column vector x is a [(2nq+l) x 1] vector.

On the other hand, we define a forward spectral radiance model vector h{x) with m-

elements such as the measurements Ik. Then, by calculating the partial dérivatives of the

model h in respect to the n-elements vectors Tj and bj we dérivé:

J dTj J dbj

Lj and are (m x n) Jacobian matrices. Additionally, the partial dérivatives of the model

radiances h in respect to the p-elements shifts at each tangent point latitude are:

u, =

dh

Ail these Jacobian matrices (Lyand M.) and the vector W/Construct the (m x (2nq+p)) array

K:

K — jjLj,.. , M|,..., iM),...,Up J
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Having a reference set of atmospheric parameters and in our case the température T°{zj)

derived by the a combination of CIRS limb and nadir data and Voyager 1 radio occultation

results (Flasar et al., 2005) or by the Huygens Atmospheric Structure Instrument (HASI)

(Fulchignoni et al., 2005), we can consider a forward model h(x) and by expanding it by

applying the First order of Taylor sériés we dérivé:

h(x) = h(x°) + K(T - T°)

h(x)-h{x°) = KAT

Ah(x) = KAT

where /z(x)are the measurements and /z(x°)is the model using the reference values T°{zj)

and which is the same expression as (7).

A.4 Numerical Solution

Ifwe followed the classical least squares approach, since the problem has become at the linear

form of (7):

AI = KAT

we would minimize the residual:

|A7 - ATAZ’|2

AI and AT are the perturbation quantities with respect to a reference température T°(z) , the

radiance /0(v,) is calculated using the reference value of T°(z). The matrix Kÿis the

functional dérivative at vt with respect to T at level z.

ar-ry-ry

A/W(v,)-r(v,)

The solution should confront the same problems with the original équation. The

regularization technique is usually applied in solving inversion problems and Tikhonov’s

approach in Hilbert spaces is one of the most famous (Tikhonov & Arsenin, 1977) by

introducing the parameter y as a constraint which détermines the relative weight which is

applied. The regularization can be applied in both the intégral and linear System derived from

integral's discritization since the effect on the smooth solution is the same (Hansen, 1992).

Let’s expand the perturbation in température AT in a set of basis vectors such as

(Conrath et al., 1998; Hanel et al., 2003):
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AT = Fa

where by F is the matrix the columns of which are the basis vectors and a is the vector of the

expansion coefficients.

Hence, we minimize the fonction:

||A/-AÀ7f + ||}of

which means that according to Tikhonov’s approach we can minimize the following penalty

fonction39 in respect to a :

Q = (AI- KFaf E~x (AI - KFa) + yara

With E we represent the measurement error covariance matrix. The first term illustrâtes the

usual penalty fonction of the least square fittings, while the second one is a measure of the

departure of the solution from the reference profile. Since we want to minimize the previous

fonction Q in respect to a, we should apply the following matrix identity:

3^ + bfc(px ++ E)rCÏA + + b)rCD
dx

Then, the partial dérivative oïQ 'm respect tocrbecomes:

— = (AI- KFaf (E~l J (-KF) + (AI- KFaf (e~1 f-KF) + 2yar

and ffom the définition of the covariance matrix (^-1) = E~\ the dérivative takes the form:

^2 = 2(AI - KFaf (E-lf-KF) + 2yaT

By setting — = 0, we quest for the minimization:
da

(AI - KFaf E~lKF = yaT

Now, by applying the identity (ABCf = CTBTAT and by replacing the KF = G we dérivé:

39 By the superscript T we define the transpose matrix.
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(aIT -arGT)E-lG = Yar
AITE~lG - aTGrE~lG = yaT

MTE~lG = aT (yl + GtE-lG)

AIT = aT(yI + GTE-'G\E-lGy
UT =aT(yI + GTE-ïG)G-lE

Mt = ar{yG~'E + Gr£"1GG“1E)

AIT =aT(yG~lE + GT)

where I is the unit matrix, and by transposing the last expression we hâve:

(a -[ar(yG l£ + Gr)J
which leads to:

AI = (yG-'E + GTja

AI = ((yG-'E'f + G^!
a/=(/e(g'')t + g\

(/E(G-'J + GJ
Now its time to seek for an expression containing the température différence Arhence we

multiply with the F matrix and replace again the G = KF :

F^Ep'j + g)al = Fa

((££)"'J +Kf) AI = Fa

f{yE((KFf J' + KFl) AI = Fa

AT = f[{yE + (KFjKFj ^KF'f )'j AI
Therefore, the minimization of Ogives the following expression:

AT - FFTKT\yE + KFFTKT J1 AI (8)
which can be written as:

AT = SKt [yE + KSKt J1AI (9)
where S = FFT, a two-point corrélation matrix of the basis vector F (e.g. Conrath et al, 1998).
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V = SKt[yE + KSKt~\1
we dérivé:

AT = VA1 (10)

We then separate the stratosphère into N levels, which in Titan’s case are 200

(Achterberg et al., 2008). Now, we are able to apply a constrained inversion algorithm, by

assuming local thermodynamic equilibrium (LTE).

Once a System is supposed to be in LTE, although the intensive parameters of the

System still change within space and time in each of the 200 levels, they vary slowly enough

to support the thermodynamic equilibrium assumption. Then, its thermodynamic condition is

determined only by its température which describes both the distribution of the velocity of the

contained particles and the radiance of the radiation as a function of frequency. Thus, the

radiation field within each atmospheric layer approaches the black body émission.

Hence, the recorded energy can be approximated as a function of the thermal radiation

and the vertical distribution of the absorber. The total contribution of the outgoing infrared

radiation of the atmosphère consists of the partial contribution of each atmospheric level. The

région of the maximum contribution is located where the optical depth equals unity.

Due to the nonlinearity of the problem an itérative process of (10) is necessary. Only

the corrélation matrix S = FFT of the basis vector is présent in the final expression and the

basis vector. The error covariance matrix due for the température retrieval due to the

instrument's noise propagation is (Hanel et al., 2003):

R = VEVt

If we assume that the existing random measurement errors at two random points in the

spectrum are uncorrelated, the diagonal éléments of the (mxm) matrix R equal the square of

the Noise Equivalent Spectral Radiance (NESR) of each measurement associated with the

CIRS instrument (Achterberg et al., 2008). In fact, NESR is the signal of the instrument when

the signal-to-noise ratio equals unity (Hanel et al., 2003). The rms error estimate for the i-th

level is:

«r, =(2vîE/
j

For the CIRS averaged spectra, the effective NESR is derived by the:

NESRji)

Vn
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where N is the number of spectra. The error estimate aT refers only to the précision or

reproductivity of the retrievals in the presence of random measurement error (Conrath et al.,

1998).

The functional dérivatives or the contribution fonctions or kernels are determined from

the équation mentioned in §4.4.2, the Ktj = B(z)W(z,/*)•

However, if we assume that the température dependence of the Planck fonction is

strong compared to that of the transmittance the Kÿ can be written as (Hanel et al., 2003):

K cB[vj,7’(Z;)] ST
“ cT, âZj

The vertical profiles of the température retrieval correspond to a spécifie spectral

query in FP1, FP3 and FP4 part of the recorded spectrum. We directly apply this profile to fit

the V4 methane band in the FP4 data and then we apply it to the other two focal planes, as it is

described previously in the direct solution of the radiative transfer équation.
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Appendix B

Atmospheric Radiative Transfer code for
Titan (ARTT)

Installation and upgrade manual

B.l History of the ARTT development

The core of ARTT is based in the radiative transfer software, first induced by Scott in

1974 (Scott, 1974). The program has been firstly applied in 1977 in the Laboratoire de

Météorologie Dynamique (LMD) studies (Scott & Chedin, 1981) and several upgrades hâve

been done up to date.

The first large upgrade was taken place in 1986 by Bruno Bezard, who modified the

code initially for applying it in the Satumian atmosphère and then for the Titan's case. This

release of the code calculated the transmittance and the atmospheric radiance of Titan’s

atmospheric constituées based on spectroscopic parameters adapted from the GEISA 1977

database (Gestion et Etude des Informations Spectroscopiques Atmosphériques: Management

and Study of Spectroscopic Information,(Chedin et al., 1982).

From 1986 to 2005, several modifications hâve been imported into the code, mainly

adapting the new GEISA release updates (Husson et al., 1992; 1994). In 2006, two separate

upgrades hâve been performed. GEISA 97 spectroscopic parameters (Jacquinet-Husson et al.,

1998; 1999) were adapted in mid-2006, while at the end of the year the new spectroscopic

files from the GEISA 2003 version (Jacquinet-Husson et al., 2005) replaced the old ones,

except for the HCN, HC3N, C2H4, C3H4 and C4H2. For the HCN the GEISA 97 lists were kept

(Jacquinet-Husson et al., 1999). On the other hand, new spectroscopic files from Jolly et al.

for the V5 stretching band at 663.2 cm'1 of HC3N replaced the previous ones (Jolly et al.,

2007). C2H4 lines were initially taken from Blass et al. (Blass et al., 2001) and M. Rotger

2006 (pers. comm.) (Rotger et al., 2008). The latter data were added later in the upgraded

version of GEISA 2003 atlas (Jacquinet-Husson et al., 2008). The vg band data of C3H4 was

replaced from the files provided by G. Graner (pers. comm.). Only C4H2 vg and vg+ V9-V9 hot
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bands were replaced by Arie and Johns results (Arie & Johns, 1992), while the rest replaced

by the GEISA 2003 ones .

The 2006 version of the code could perform calculations for 14 individual molécules:

methane (CH4), (2Hi) methane (CH3D), carbon monoxide (CO), carbon dioxide (CO2),

hydrogen cyanide (HCN), cyanoacetylene (HC3N), cyanogen (C2N2), methylacetylene (C3H4),

acetylene (C2H2), ethane (C2H6), ethylene (C2H4), propane (C3H8), diacetylene (C4H2) and

water (H2O).

With the 2006 upgrade, the user became capable of choosing between constant-to-

height abundances and vertical distribution mixing ratios for the model calculations.

Additionally, in this release, the software simulation is divided into 3 separated spectral

régions, following CIRS data focal planes, FP1, FP3 and FP4 data in order to save valuable

computational time. Moreover, two more molécules were added to the source code of ARTT:

a) Benzene (CôHô) from Dang-Nhu et al. lists (Dang-Nhu et al., 1989) was added to

the code, followed its détection in Titan’s atmosphère (Coustenis et al., 2003).

b) Monodeuterated acetylene C2HD V4 band at 451-581 cm'1 and V5 at 600-761 cm'1

also was added from LISA (Laboratoire Interuniversitaire des Systèmes

Atmosphériques) spectroscopic database (http://www.lisa.univ-parisl2.fr/).

Acetylene-dl was firstly detected on Titan in 2008 (Coustenis et al., 2008).

The latest upgrade before our effort was the 2007 one. In this upgrade, two more molécules

were added:

a) Acetonitrile (CH3CN) vg, 2vg, V4, V7 bands were added to the code from Pacific

Northwest National Lab - PNNL data

(https://secure2.pnl.gov/nsd/nsd.nsf/Welcome)

b) The 13CH3D isotopologue of monodeuterated methane was added at 1148 cm'1

following its détection (Bezard et al., 2007).

Hydrogen cyanide (HCN) spectroscopic Unes fforn GEISA 97 (Jacquinet-Husson et al., 1999)

were replaced from HITRAN 2004 (HIgh-resolution TRansmission molecular AbsorptioN

database) (Rothman et al., 2005) and later by HITRAN 2008 files (Rothman et al., 2009).

C2H6 bands were replaced by the ones provided from Vander Auwera et al. (2007). Following

its détection (Coustenis et al., 2008), C2HD V4 and V5 bands were updated provided by the

work of Jolly et al. (Jolly et al., 2008). Moreover, three molécules are separated from their

isotopologues: HC14N and HC15N adapted from HITRAN 2004, 12CH4 and 13CH4, 12C2H2 and
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13C12CH2 adapted from GEISA 2003. Eventually, this version takes into account for

calculations 21 molécules and is named as ARTT 0.3.8.

B.2 ARTT Installation

In order to install the Atmospheric Radiative Transfer code for Titan (ARTT) the following

software is prerequisite:

• Fortran compiler

• Gnuplot

• the make command

• an archive manager

As far as the hardware is concemed, the workstation should hâve:

• at least 2GB ram capacity

• Linux or Macintosh OS distribution

The source distribution of ARTT (ARTT-src-*.*.*-yyyy-mm-dd.tar.gz) contains ail

the source files for the installation of the program. In the name of the file we can find its

version in the part of the name seen as **’ and the date that its development ended in the

‘yyyy-mm-dd’ part of the name. The current version is 1.0.0. The source folder contains the

following folders:

• ARTT-work-*.*.*: This folder contains some sample files to be used for the

modeling of the spectrum after the installation.

• cirs: This folder contains Cassini CIRS datasets

• db: Here we can find ail the spectroscopic data files which are used for the

calculation of the model.

• distrib: This folder contains the vertical profiles as derived by General Circulation

Models (GCM).

• profils: This folder contains the thermal profiles.

• src: This folder contains the source files needed for the installation of ARTT.
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The folder “ARTT-src-*.*.*-yyyy-mm-dd” contains some files too with data needed

for the installation. The most important files from these is a file called “config.txt” which

contains the installation path and the compiler options and a makefile with the installation

procedure. If we execute the command “make” in the folder containing the source files then

we can see the options for the installation of ARTT.

After installing ARTT a folder called “bin” is created, in the installation folder, which

contains the exécutable files. Another folder called data is created in the path specified within

the file “config.txt”. This folder contains the following sub-folders:

• ARTT-work-*.*.*: If we execute the “make” command in this folder then a list

with ail the available actions is seen. In order to generate a model of Titan’s

atmosphère a template file is needed with the name “Name_of_the_model.mod”

• bandes-*.*.*: This folder contains the files “c3h8.dat” and “continuum.dat”

• cirs: In this folder we can find the data ffom CIRS used for the création of the plot

based on space data. This is a copy of the cirs folder of the source distribution.

• distrib: This folder contains the vertical distributions of the molécules. It is a copy

of the initial distrib folder.

• profiles: This folder contains the thermal profiles. It is a copy of the initial profiles

folder

• raies-*.*.*: This folder contains in binary format the data which were read during

the installation procedure from the db file.

B.3 ARTT Upgrade procedure

To add a new molécule in our model, we should proceed through the following procedure.

The sources databases for the spectroscopic files we search are the following:

Gestion et Etude des Informations Spectroscopiques Atmosphériques (GEISA) (Jacquinet-

Husson et al., 2011) website: http://ether.ipsl.jussieu.fr/etherTypo/?id=950

High-resolution transmission (HITRAN) (Rothman et al., 2009) website:

http://www.cfa.harvard.edu/HITRAN/HITRAN2008/
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CIRS Team Website: http://blizzard.astro.comell.edu/drupal/

Adopt GEISA linelists

The spectroscopic files, adopted from GEISA database are accessible in GEISA

website. The steps are the following order:

We hit the Geisa-2009 link, then the Interactive access link and fmally the Database

Extract. The latter opens a webpage, which is divided with three different boxes. In the first

box we select the molécules or the isotopologues we would like to download, in the second

box we define the spectral range we are interested in and in the last box we check the columns

we want. The following procedure should be done for every different molécule or isotope

separately.

Each GEISA entry has its own id number instead of their name and therefore we

should find the correct code from the GEISA list. This list is also posted in GEISA web site.

As far as the spectral range is concemed, it is not necessary to download different files

for every spectral région (FP1, FP3, FP4). ARTT has the ability to read from the same file

using the right parameters, besides the spectral range.

From the available parameters for of GEISA line lists, we select the A, B, C, D, F, G,

I, parameters to be included in the download:

A: Wavenumber of the line

B: Intensity of the line at 296K

C: Air broadening pressure half-width

D: Energy of the lower transition level

F: Température dependence coefficient n of the air broadening half-width

G: Identification code for isotope as in GEISA

I: Identification code for molécule as in GEISA

Adopt HITRAN linelists

The procedure needed to get a molécule or an isotope from the HITRAN database is

somewhat different from GEISA. HITRAN is also a web accessible database and it offers a
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program called javaHAWKS. After downloading and installing javaHAWKS locally we

proceed to the "HITRAN2008/By-Molecule/Uncompressed-files" folder. Every file in this

folder corresponds to a spécifie molécule. In order to track down this molécule we must

advice the corresponding HITRAN database table. After downloading the data file we open

the JavaHAWKS program and complété the following steps:

Click on "Select" tab

- In the field "HITRAN filename" enter the name of the data file

- Give a name in the output file

- Edit the sélection parameters and hit the "Run select" button

Now the requested file is created locally and it contains the data specified in the "Sélection

Parameters" area.

The last step remaining is to complété the transformation of HITRAN data to ARTT

format. The problem that we meet after downloading the data from HITRAN is that the

wavenumber values should be in the first column and the molécule and isotope id numbers

should be in the last 2 columns. The following program written in Fortran makes this

conversion easy:

program read_spectro

C ***** Program for the formatting of the spectrum files *****

implicit none

£ ******1(1*** Constants **********

integer mtotre

parameter(mtotre= 100000)

C ********** Local variables **********

character*80 fichin,fichout

integer infre,isupre,npl,np2

integer i,ntotre

double précision freql,freq2

integer idcor

double précision wn,ss,ffr,alfar
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if(iargc().eq.2) then

call getarg(l,fichin)

call getarg(2,fichout)

else

write(*,*) 'Which file would you like to transform ?'

read(*,*) fichin

write(*,*) 'Which is the name of the output file you want ?'

read(*,*) fichout

endif

open(unit=l 0,file=fichin,form='formatted',status- old')

open(unit=l 1 ,file=fichout,form='formatted',status-replace'

rewind 10

rewind 11

idcor^O

do

read( 10,1002,err= 100,end=300) i,wn,ss,ffr,alfar,freq 1

1002 format(i3,fl2.6,e 10.4,10x,f5.4,5x,fl 0.4,f4.2)

write( 11,1003)wn,ss,ffr,alfar,freq 1 ,i,idcor

1003 format(fl 2.6,1 x,e 10.4,f5.4,fl 0.4,36x,f4.2,2x,i3,1 x,i 1 )

enddo

300 write(*,*) 'File formatted succesfully'

close(10)

close(l1)

stop

100 write(*,*)'Reading error'

stop 1

200 write(*,*) 'Writing error'

stop 2

end

This program is executed in a terminal by command "gfortran -o read_hitran

read_hitran.f" where read_hitran is the name of the exécutable file which will be created,

while and read_hitran.f is the name of the source file containing the code above. Then we

should execute the command "./read_hitran". The output of this program is the HITRAN file
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in the correct ARTT format. Important note: during the execution of the read_hitran program

we will be asked to enter the name of the output file, we must not enter the same name as the

input file.

Add a new molécule in ARTT

After retrieving the desired spectroscopic files from the online databases, the incorporation

procedure is the following:

1) We create a copy of the installation folder of a previous installation and we will make

ail the subséquent changes in this folder. It is essential to keep a backup of the

previous installation folder in case of a data loss.

2) We add the data file from GEISA or HITRAN in the folder /db and we edit it in order

to change the number corresponding to the molecule's database id (it is the number in

the final column in most cases). We replace this number with a molécule id, which

doesn't exist in our code. In order to fmd ail the existing molécule numbers it is better

to search in the spectroFP 1-2-3.don files first. Altematively, we can edit the spectro.f

file but it is a bit more risky. If we update a molécule, which already exists in our

database, we don’t hâve to change the molecule’s id, since the new file will replace

the old one.

3) The following procedure must be done for the files spectroFP 1.don spectroFP2.don

spectroFP3.don:

• We open the file spectroFP*.don and we augment the number before the following

text “nombre d'associations fichier-molecule” by one.

• We add a new line with the idgeisa we added before. The wninf and wnsup

columns must hâve values that cover the desired spectrum.

• In the fichier column we put a number which must be unique and less than 65 (this

number will be used later for the identification of the data file). It is crucial that the

name of every molécule or isotope will be only 6 characters long.

4) Then we open the /src directory and edit the files "trans_rad.fi, "linelists.fi and

"distrib.fi.

5) In the file trans_rad.f in the line 22 we change the value of the variable named mcorps

in the new number of molécules in our radiative transfer code. In the file distrib.f we
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must change the format identifier 627 to ensure that ail the new molécules will be

printed.

6) In the file linelists.f we hâve to be very careful. We add a couple of lines like the

following :

fichier(56)-db/geisa_C3H8.dat'

forma(56)='(fl2.6,lx,dl 1.4,f6.4,fl0.4,36x,f4.2,i3,i3)'

7) These lines describe the file we hâve added in the /db folder. The number inside the

parenthesis is the unique identifier of the file under the fichier column in the

spectroFP*.don files. In the first line we add the exact path to the new file and in the

second line we edit the format in Fortran language. The argument fl2.6 means that we

hâve a number with twelve digits, six of which are the décimal fraction. The argument

36x means that we hâve 36 blank spaces. The argument dl 1.4 means that we hâve a

number in exponential form with four décimal digits.

8) In the file compounds.inc we must augment the nbcomp parameter to the number of

molécules that our radiative transfer database contains. It is always the same number

we add in the file trans_rad.fi Then we must add the right number in the end of every

set of variables. When we add an isotope of an already existing molécule ail the values

we must add except the molecular weight are the same as the ones of the original

molécule. It is crucial that the name of the molécule will be only 6 characters long.

After the installation the number of molécules in the line 21 in the .mod files should be edited.

Note: This manual is based in Stefanos Stamogiorgos Bachelor dissertation.
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Appendix Cl

Thermal and Chemical structure variations

in Titan's stratosphère during the Cassini

mission

Journal Article published in The Astrophysical Journal, 760, 144.
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ABSTRACT

We hâve developed a line-by-line Atmospheric Radiative Transfer for Titan code that. includes the most recent
laboratory spectroscopic data and haze descriptions relative to Titan s stratosphère. We use this code to model
Cassini Composite Infrared Spectrometer data taken during the nuinerous Titan flybys froni 2006 to 2012 at
surface-intercepting geometry in the 600-1500 cm”"1 range for latitudes from 50"S to 50°N. We report variations
in température and Chemical composition in the stratosphère during the Cassini mission, before and after the
Northern Spring Equinox (NSE). We find indication for a weakening of the température gradient with warming of
the stratosphère and cooling of the lower mesosphere. In addition, we infer précisé concentrations for the trace gases
and tlieir main isotopologues and find that the Chemical composition in Titan’s stratosphère varies significantly
with latitude during the 6 years investigated here, with increased mixing ratios toward the northern latitudes. In
particular, we monitor and quantify the amplitude of a maximum enhancement of several gases observed at northern
latitudes up to 50°N around mid-2009, at the finie of the NSE. We find that this rise is followed by a rapid decrease
in Chemical inventory in 2010 probably due to a weakening north polar vortex with reduced latéral mixing across
tlie vortex boundary.

Key words: infrared: planetary Systems - planets and satellites: atmosphères - planets and satellites:
composition - planets and satellites: individual (Titan) - radiation mechanisms: thermal - radiative transfer

Online-only material: color figures

1. CONTEXT AND OBSERVATIONS

Latitudinal variations in Titan’s stratospheric thermal and
Chemical structure hâve been reported in the past from Cassini
data acquired by the Composite Infrared Spectrometer (CIRS)
(Flasar et al. 2005; Teanby et al. 2006; Coustenis et al. 2007,
2008, 2010; de Kok et al. 2007; Teanby et al. 2007, 2008,
2009a; Vinatier et al. 2007, 2010; Nixon et al. 2008a; Achterberg
et al. 2008, 2011). Here, we explore the thermal and Chemical
évolution discemible within the timeffame from 2006 to 2012,

thus complementing and refining previous reports from earlier
stages of the mission. We study Titan’s neutral atmosphère
between ~120 and 300 km in altitude (the stratosphère and
lower mesosphere) and latitudes from 50°S to 50°N.

CIRS is a FourierTransform Spectrometer, aboard the Cassini
orbiter, consisting of Lwo interferometers probing the far-
infrared (10-600 cm-1) and mid-infrared (600-1500 cm”"1)
ranges with an apodized spectral resolution varying from 15.5 to
0.5 cm-1. CIRS scansTitan’s atmosphère throughthree separate
focal planes that share the same telescope: FP1 (10-600 cm-1),
FP3 (600-1100 cm"1), and FP4 (1100-1500 cm-1) (Flasar et al.
2004). We focus here mainly on FP3 and FP4 high-resolution
observations (0.5 cm-1) but also some medium resolution ones
(2.5 cm"1).

Prior to 2006 (flybys T0-T9) insufficient data at the right
conditions for our purposes (signal-to-noise, émission angle,

distance, région, etc.) were acquired. During the flybys that
followed, CIRS obtained a large number of spectra in FP3
and FP4 at high, medium, and low spectral resolutions (0.53,
2.54, and 15 cm-1), respectively, in surface-intercepting (nadir)
and horizontal viewing (limb) geometry conditions, albeit not
always covering ail latitudes, so that in the northern hemisphere
we hâve data only from late 2007 to 2010. An instrument
anomaly followed by a reboot of CIRS took place in December
2006, thus depriving us of data from that time. We otherwise
use ail available and exploitable data at high spectral resolution
(0.5 cm-1) and perform averages of the spectra acquired during
one or several flybys as necessary to attain a high signal-to-noise
ratio for our calculations.

Tables 1 and 2 list the CIRS FP3 nadir northern and Southern

averages, respectively, at high resolution (0.5 cm'"”1), while
Tables 3 and 4 list the associated FP4 averages. The average
signal-to-noise ratio is shown as well as the corresponding
Cassini Titan flyby(s) and the relative solar longitude (Ls). The
sélections we made in order to enhance the signal-to-noise ratio
cover different latitudes on Titan (we sum ail longitudes because
no longitudinal variations were found in our studies; Coustenis
et al. 2007, 2010). The averaged spectra created from the high-
resolution nadir data in the several latitudinal bins (between

50°S and 50°N) contain a large number of spectra in general,
with some exceptions (as indicated in Tables 1-4). As discussed
in Coustenis et al. (2007), we hâve taken care to correct the

1
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Table 1

Titan Flybys and FP3 Data Acquisition Characterixtics frora 2007 Marc]) to 2011 Septeinber Averaged in Northern Latitudinal Bins

Ycar Month Latitude Total Nuraber of Spectra Sig nal-to-noise Airraass Cassini Flyby Ls(°)

2007 Mar 50°N 357 18.6 1.02 T26-T27 329
“ Dec 50“N 335 19.9 1.25 T38-T39 338-339

2008 Feb-Mar-Jul S0°N 145 12.4 1.19 T41-T45 341-347

2009 Mar 50“N 517 25 1.35 T51 355

Apr-May 50°N 275 15.3 1.01 T52-T55 355-357

Jun 50°N 476 25.6 1.88 T56-T57 358

2010 J an 50*N 284 21.3 1.69 T65-T66 005-006

2006 Jul 30°N 551 34 1.17 T15-T17 320

2007 May 28°N 934 44.7 1.06 T30-T31 331-332

Dec 31°N 905 45.4 1.14 T38-T39 338-339

2008 Mar 30°N 992 42.3 1.01 T42 342

Dec 36°N 262 20.5 1.03 T48-T49 351-352

2009 Dec 30°N 748 44.5 1.46 T63-T64 004-005

2010 Jun 35°N 599 37.4 1.24 T69-T70 010

2011 Sep 32°N 771 46.8 1.49 T7S 025

2006 Jan 1<>N 1291 56.2 1.01 T10 314

Jul FN 2118 71.8 1.01 T15-T16 320

2007 Apr-May 1°N 189 23.9 1.21 '128-129 330-331

Jun 1#N 1497 62.5 1.06 T32-T33 332-333

Aug 1°N 152 19.3 1.01 T35 335

2008 Jan 1°N 589 39.4 1.07 T40 340

May 2°N 597 47 1.55 T43-T44 344-345

2009 Mar-Jul 1°N 86 18.3 1.75 T51-T59 355

Oct FN 72 14.9 1.19 T62 002

Dec FN 283 25.6 1.01 T63-T64 004

2010 Sep 3»N 1504 58.9 1.02 122 014

2011 May 11°N 921 50 1.20 T76 021

Table 2

Titan Flybys and FP3 Data Acquisition Cliaracteristks from 2006 February to 2012 Januaty Averaged in Soulhem latitudinal Bins

Year Month Latitude Total Numbcr of Spectra Signal-to-noise Aimiass Cassini Flyby Ls(°)

2006 Mar FS 1515 61.3 1.04 Tl 2 316

2007 Oct 1°S 93 17 128 T19-T20 323-324

Jul FS 232 23.3 1.01 T34 334
44 Nov FS 813 44.5 1.01 T37 338

Dec 3°S 276 25.3 1.01 T38-T39 338-339

2008 Feb FS 426 39.8 1.46 T41 341

2010 Apr-May FS 466 33.0 1.01 T67 008

Jun FS 391 30.6 1.02 T69-T70 010

Jul FS 985 49.8 1.08 T71 011

2011 Dec 2°S 1047 52.1 1.19 T79 028

2006 Feb 30'-S 666 37.7 1.88 Tll 315

May SO^S 536 35.3 1.33 T14 318

2008 Nov 38° S 1055 39.9 1.02 T46-T47 350-351

2009 Dec 24'S 961 40 1.08 T63-T64 004-005

2010 May 24°S 911 44.9 1.30 T68 009

2012 Jan 30°S 1980 56.1 1.49 T80-T81 029

2006 Oct 50°S 568 30.9 1.18 T19-T20 323

2007 Jan 50°S 925 37.0 1.04 T23-T24 327
“

Mar-May so^s 341 282 1.64 T26-T31 329-332
“

Jul-Aug 50°S 647 39.6 1.70 T34-T35 334
“ Dec 50° S 467 31.7 1.53 T38-T39 333-339

2008 Jul 50°S 34 9.6 128 T41 311

2009 Mar 50°S 198 172 1.09 T51 355
“

May 50°S 1288 452 125 T54-T55 357

2010 Apr 50° S 124 16.0 1.69 T67 008

data for any latitude smearing effect observed for high émission
angles and/or data taken at latitudes higher than 50°N. So that
the latitudes sounded can be about 5° lower when the line of

sight intercepts the surface at 55°N or 55°S, the actual latitude
at the vertical of the stratospheric altitudes being observed is

then rather 50°N and 50°S, respectively. The latitudes listed in
the tables are corrected for this effect.

We hâve applied a radiative transfer code to analyze the CIRS
data spanning the 2006-2012 ti mel ine, during whichthe Cassini
mission performed 71 Titan flybys (Tables 1-4). Besides the

2
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Table 3

Titan Flybys and FP4 Data Acquisition Characteristics from 2007 Match to 2011 September Aventged in Northern Latitudinal Bins

Year Month Latitude Total Number of Spectra Signal-to-noise Aimiass Cassini Flyby Ls(°)

2007 Mar 50°N 1376 64.6 1.03 T26-T27 329

Dec 50"N 342 34.4 1.26 T38-T39 338-339

2008 Feb-Mar-Jul 50°N 166 12.8 1.14 T41-T45 341-347

2009 Mar 50°N 417 30 1.28 T51 355

Apr-Mav 50°N 1481 49.9 1.01 T52-T55 355-357

Jun 50°N 575 35.8 1.65 T56-T57 358

2010 Jan 50°N 234 27.6 1.67 T65-T66 005-006

2006 Jul 30°N 567 67.1 1.17 T15-T16 320

2007 May 30°N 1789 125 1.06 T30--T31 331-332

Dec 30°N 657 81.8 1.18 T3S-T39 338-339

2008 Mar 30°N 1013 865 1.02 T42 342

Dec 35°N 394 74.1 1.03 T48-T49 351-352

2009 Dec 30°N 764 83.9 1.36 T63-T64 004-005

2010 Jun 36°N 503 69.6 1.25 T69-T70 010

2011 Sep 28°N 1107 106 1.39 T78 025

2006 Jan 2°N 869 1073 1.01 T10 314

Jul 1°N 1840 152.0 1.01 T15-T16 320

2007 Apr-May 3°N 93 375 1.20 T28-T29 330-331

Jul 1°N 198 51.9 1.02 T34 334

Aug 1°N 146 45.5 1.02 T35 335

2008 Jan TN 449 80.3 1.09 T40 340

Feb 1°N 439 862 1.59 T4I 341

May 3°N 64 32.9 1.70 T43-T44 344-345

2009 Dec 1°N 322 64.8 1.03 T63-T64 004

2010 Apr-May 1°N 233 54.1 1.01 T67 008

2011 May 7°N 765 99.8 1.18 T76 021

Table 4

Titan Flybys and FP4 Data Acquisition Characteristics from 2006 Februaiy to 2012 January Averaged in Southern Latitudinal Bins

Year Month Latitude Tbtal Number of Spectra Signal to-noise Airmass Cassini Flyby U o

2006 Mar 1°S 1515 142.1 1.09 T12 316

Oct 1°S 96 39.4 1.26 T19-T20 323-324

2007 Jun rs 2545 195.1 1.09 T32-T33 332-333

Nov 1°S 869 106.7 1.01 ’07 338

Dec rs 382 70.9 1.02 T38-T39 338-339

2009 Mar-Jul 1°S 84 39.2 1.71 T51-T59 355

Oct rs 60 26.6 1.09 T62 002

2010 Jun rs 367 69.4 1.01 T69-T70 010

Jul rs 913 110.8 1.13 T71 011

Sep 3°S 1622 136.9 1.01 T72 014

2011 Dec 10*S 1866 157 124 T79 028

2006 Feb 30° S 666 96 121 Tl 1 315

May 30°S 551 85.5 126 T14 318

2008 Nov 31‘S 1055 106.4 1.01 T46-T47 350-351

2009 Dec 28°S 980 103.4 1.12 T63-T64 004-005

2010 May 24^8 1028 114.3 121 T68 009

2012 Jan 30° S 2083 133.8 1.15 T80-T81 029

2006 Oct 50"S 546 78.8 1.16 T19-T20 323

2007 Jan 50°S 842 95.8 1.07 723-124 327

Mar-May 50"S 320 63.1 1.42 T26-T31 329

Jul-Aug 50° S 538 86.8 1.68 T34-T35 334

Dec 50° S 456 77.5 1.59 T38-T39 338-339

2008 Jul 50° S 51 25.6 1.62 T41 341

2009 Mar 50" S 584 73.4 1.13 751 355

“

May 50° S 892 91.0 133 T54-T55 357

2010 Apr 50° S 525 35.4 1.71 T67 008

high resolution spectra, we also hâve analyzed six data sets
at medium resolution (2.54 cm'1) taken in FP3 and FP4 in
January 2008 (flyby T40), April 2009 (flybys T52-T53). and
May 2010 (flyby T68). They contain459,1193, and 160 spectra

each in FP3 and a similar or higher number in the FP4. Each
sélection at high or medium spectral resolution was restricted to
émission angles lower tlian 65° for optimum radiative transfer
treatment.
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Figure 1. Example of fit of the FPÎ (a) and FP4 (b) spectrum of Titan taken by Cassini CIRS in June2009 al flybys T56-T57 al 50°N, containing 476 spectra for FP3
and 575 spectra for FP4.

(A color version of this figure is available in the online journal.!

2. DATA ANALYSIS

The Cassini/CIRS spectra are analyzed using a method ex-
tensively described in previous articles (Coustenis et al. 2007,
2010). Inbrief, we model Titans thermal infrared spectrum by
use of a line-by-line monochromatic radiative transfer code up-
dated from the one we used in previous Titan atmospheric struc
ture retrievals (Coustenis et al. 2010, and référencés therein). In

this new release (ARTT, for Atmospheric Radiative Transfer for
Titan), we hâve included more constituents relevant to Titan's

chemistry (26 species in total, ail the so-far detected hydrocar-
bons, nitriles, and oxygen compounds in addition to the main
molécules Na. H2, CH4 and argon). Our list. of molécules in-
cludes in particular tlie i3CH4,13CH3D, 12C13CH2, and H15CN
isotopologues which are essential in fitting the émission bands
of methane, acetylene, and hydrogen cyanide and allow us to
infer the 12C/I3C and 14N/15N ratios. Furthermore, new oxygen
and hydrocarbon isotopologues as detected by Jennings et al.
(2008) and Nixon et al. (2008b) are included. Spectroscopic
parameters for the molécules found in the FP3 and FP4 spectral
ranges are from GEIS A 2009 (Jacquinet-ITusson et al. 2011) and
H1TRAN 2008 (Rothman et al. 2009) databases, with several

updates, as for instance in the case of ethane and propane, both
of which are simulated from the individual line lists of Valider

Auwera et al. (2007) and Flaud et al. (2010), respectively.
We first retrieve température profiles by the inversion of the

observed v4 metliane émission band at 1305 cm-1 in CIRS
FP4 following the method described in Achterberg et al. (2008,
2011). We use the CH4 vertical mixing ratio profile in the
stratosphère as measured by the Huygens probe (Niemann
et al. 2010) and compatible with the CIRS inferences from FPI
(Flasar et al. 2005), which yields 1.48% above the cold trap.

The initial guess température profile for these calculations
was the 15°S profile from Flasar et al. (2005), in a process
described in detail in Achterberg et al. (2008). We also made
tests using the HASI measured température structure in the
stratosphère and troposphère (Fulchignoni et al. 2005), as
discussed in the next section. We then use the température

profiles to solve the radiative transfer équation in the FP3 part
of the spectrum for the mixing ratios of the various coinponents
seen in émission at different epochs and latitudes (Tables 1
and 2).

For ail the molécules analyzed here in “nadir" geoinetry con
ditions, we adopt constant-with-height profiles above the con
densation level relevant to stratospheric levels of 0.1-20 mbar
essentially (roughly 80-280 km). As explained in detail
in Section 4.4 of Coustenis et al (2010), the use of constant,
vertical profiles does not allow for a good fit of the whole C2H2
émission band centered at 729 cm-1. We therefore first dérivé

the C2H2 abundance tliat fits the Q-branch and then adjust tire
fit in the wings of the band to infer the other mixing ratios of
the weaker species in the 620-780 cm-1 région. In order to
model the continuum observed in the spectra, we hâve used the
haze dependence as reported in Vinatier et al. (2012a) giving
the aérosol refractive index from CIRS spectra in the far- and
mid-infrared régions near 15ÙS and 20°S, adjusted to match the
level of radiance observed in between the molecular bands in

our sélections.

3. TEMPERATURE EVOLUTION OF TITAN’S

STRATOSPHERE DURING THE CASSINI MISSION

Figure 1 shows an example of fits obtained in tire FP3
(600-1000 cm-1) région and in the FP4 (1100-1500 cm-1)
région. The latter is used for ail spectral sélections to dérivé the
corresponding température profile.

Figures 2(a)-(d) show the results of the température as a
function of latitude, using the altitude information contained
in the resolved Unes of the t>4 methane band. Figures 2(a)
and (b) (upper panel) show the température structure inferred
at two latitudes (50CN and 30°N) at certain dates during the
Cassini mission. The température profiles discussed hereafter
were calculated using as an initial guess the one from Flasar
étal. (2005).

But we hâve also run tests using thermal profiles retrieved
from the same CIRS FP4 sélections but by adopting into the

4
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Figure 2. Retrieved thermal profiles from CIR S nadir data at (a) 50°N, (b) 30°N, (c) equator, and (d) 30° S. The typical error bar unceitainty is about 0.7 K at 1 mbar
and al most 4 K at 5 mbar. Dashcd line» indicate the altitude levels above which the température lias Inglier unccitainties.

(A color version of this figure is available in the online journal.)

constrained inversion algoritlim (Achterberg et al. 2008) as
the a priori reference profile the HASI température structure
(Fulchignoni et al. 2005). We lind that at the équatorial latitudes
ail molecular abundances are affected by 10% or less, except.
for HCN (20%). 'l'Iris small impact is expected because the
HASI profile was inferred above the Huygens landing site,
which was at 10°S. In the northem latitudes, the divergence
is more pronounced (as much as 20% of decrease in abundance)
for some molécules (the ones with the stronger émission
bands: C2H2 and HCN), however, even at 50°N, ail the other

molecular abundances vary by less than 10% whatever the initial
température profile.

In the northem hemisphere, we find a decrease in température
in the mesosphere (more sensitive to the seasonal insolation
variations), starting from the stratopause above 0.1 mbar, where

the température significantly decreases from the earlier to tire
later mission dates. The warm north polar lower mesosphere
lias cooled (as also suggested previously by Achterberg et al.
2011) and now we find the decrease to be about 12 K at 50°N
(Figure 2(a)) and about 7 K at 30CN (Figure 2(b)) at around
250-300 km in altitude, since the beginning of the Cassini
mission. In the mid-stratosphere below 200 km, the northem
polar région initially began cooling from 2007 up to 2009, while
in 2010 a slight warming is observed again at both 50°N and
30°N.

The cooling with time in the lower mesosphere (by 8 K
maximum) is also witnessed at the équatorial and Southern
latitudes. On the contrary, in the stratosphère (lower atmospheric
levels), no significant changes are found in the équatorial
températures (Figure 2(c)) and this holds for latitudes down to

5
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Figure 3. Time-latitude composition variations for the major trace gases of Tïtan's stratosphère: (a) C2H2, (b) HCN, (c) C4H2, (d) C3H4. (e) C2H6, (f) C2H4,
(g) CjHg and (h) COa. The latitudes investigated from 2006 to 2012 are: 50°S (violet), 30°S (light blue), equator (red), 30°N (gteen), and 50°N (blue). Connected
filled circles are high résolution observations (0.5 cm-’), while open circles are medium résolution data (2.5cm”1) for 2008, 2009, and 2010 (and sometimes coincide
witlt tire tiigtrer resolution values). Tire 3a eslirnated error bars are indicated (sec tire text).

(A color version of this figure is available in the online journal.)

30°S. More to the south (50°S, Figure 2(d)), some température
variations are observed in the stratosphère, typically 2-4 K.
between 1 and 10 mbar, but this is within error bars. More

importantly, the general shape of tlie thermal structure is
changing and we find the température gradient to be weakening,
resulting in a more isothermal profile at liigher latitudes witli a
loss of tlie marked stratopause présent in earlicr years.

These changes at northem latitudes suggest a weakening of
the descending branch of the middle atmosphère méridional
circulation (Achterberg et al. 2011 ), which implies less adiabatic
heating and hence lower températures. Moreover, the changes in
the circulation affect the distribution of aérosols (Vinatier et al.

2012a), wliich in turn affect the thermal structure.

4. CHEMICAL COMPOSITION CHANGES

OVERTHE CASS1NIMISSION

With the thermal profiles described above injected in our
radiative transfer code, we derived the abundances of the

molécules from the best fits obtained of their émission bands

in tlie Titan CI RS FP3 spectra (Figure l(b)). We show the
Cassini/CIRS rnixing ratio inferences for Titan’s gases as
found above the condensation level in Figures 3(a)-(h) with
the associated errors.

Since the model parameters for ail these calculations are the
same (in terms of calibration, metliane profile, haze description
model, etc.), we only consider tlie relative uncertainties, due to
noise (rather small in our usually large averages, except for the
early mission dates and sometimes in the north), the température
profiles and any remaining uncertainties regarding some of the
spectroscopic data (ail within 15%). Exceptions are CjHs and
C2H4, which are affected by abundance retrieval difficulties
and some insufficient laboratory spectroscopic data. In the case
of C3H$, at 748 cm”1, a major hindrance is tlie rnixing with
the C2H2 lines while tlie spectrum of C2H4, around 950 cm”1,
suffers from some electrical interférence artifacts (“spikes”) and
also interférence from QsH» contribution and other émission

6
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bands. As a conséquence, these two molécules show ratios that
hâve error bars on the order of ±30% and are not as reliable as

the other inferences for tlie temporal or spatial variations.
At Southern latitudes (50°S and 30°S, Figure 3) as well

as near the equator, we find the abundances of the gaseous
species to remain rather constant during the Cassini mission
within the error bars. In general (with the exception of C2H4
and C3H8, identified as complicated molécules to process, in
particular at the mid and soutliern latitudes), the équatorial
data yield abundances higher by about 20% than the 30 or
5Û°S inferences (which are almost at the same level for ail

molécules). The mixing ratios at 30°N are in general higher
than the équatorial values by lü%-20%. We found a definitive
trend for increased gaseous content in the stratosphère when
moving from the south to the north, and, in addition, significantly
enhanced abundances during the whole mission duration at
northern latitudes, observed in most cases at latitudes higher
than 30°N.

At 50°N, ail abundances except for CGj are thus enhanced
with respect to 55° S and the equator, consistent with our
previous work with this model (Coustenis et al. 2007, 2010)
and with Voyager 1 results (Coustenis et al. 1991; Coustenis
& Bézard 1995), almost at the same season as in mid-2010
(A. Coustenis et al., in préparation). In average, and at the
maximum, the 50°N values are higher than the 30°N by 20%
and by 40% with respect to the equator. These enhancements
appear to be greatest for the shortest-lived Chemicals. This
is explained by a combination of chemistry and dynamics:
the vertical distributions are steepest for the shortest-lifetime
species in a purely Chemical model, while the presence of a
circulation cell in the atmosphère, with subsidence in the polar
régions (at the north pôle during the period of the observations),
causes the lower stratosphère to be greatly enriched in these
species at the winter pôle compared to the equator. The study
of the temporal évolution of this enhancement in the higher
northern régions within the Cassini mission duration, as well
as changes observed with time at southem polar régions, is
described by Teanby et al. (2008, 2010, 2012).

Furthermore, at 50°N, we find an indication for an increase
in abundance from 2006 to mid-2009 for almost ail molécules

(the exceptions are propane and carbon dioxide which do not
seem to vary in time at any latitude, lower double panel of
Figure 3). We detect a maximum around the time of the NSE
(Northern Spring Equinox, 2009 August 15) in mixing ratios
with increases in abundances by about 30%-40% for C3II4 and
GjHé, 50%-70% for C2H2 and C4H2 and about a factor of 2
or more for HCN and C2H4 (albeit with higher uncertainties for
tire latter) relative to the adjacent time periods in 2008 and 2010.
Ethane shows variations with time only at this higher latitude.
We note that C3H8 seeras to hâve increased abundances around

NSE, but the data analysis results for this molécule at lower
latitudes are radier uncertain. The results on the increase and

the reported values near April 2009 presented for C2H2 (7 x
10~6) and HCN (2 x 10~6) in Üiese figures (just before die
maximum in lune 2009) are in excellent agreement wiüi Üie
findings of Teanby et al. (2010), as shown in their Figure 4,
panels (c) and (d). Although there is a liint in their Figure 4,
Teanby et al. do not yet see the increase in abundance that we
report here for GtH2 but we are still compatible wiüiin error
bars at values near 2 x 10~8 in 2009.

The observed increase in abundance for sorne molécules is

followed by a strong decrease which reduces ccnsiderably the
observed enhancement by 2010. This decrease settles in quickly,

within 1-2 terrestrial years and brings Üie abundances back
to their levels prior to the ascenL Admittedly we hâve so far
only 011e high-resolution nadir sélection after die NSE and one
in lower resolution confirming this resuit, so that the finding
probably requires further vérification. However, boüi liigh- and
low-resolution nadir data taken in the 2010-2012 period seem
to support the increase and follow-up decrease.

We inferred the l2C/13C ratio in CH4 and QH2 to be 95±15
and the 14N/15N ratio in HCN to be 50±10 for the latitudes
on which we investigâte here as an average. The 12C/13C ratio
is consistent with results reported by Vinatier et al. (2007) and
Nixon et al. (2008a, 2008b) and with the terrestrial inorganic
standard value (88.9; Fegley 1995). The 14N/1SN ratio is also
consistent with the values given by Vinatier et al. (2007) and
about 4.8 times lower than the terrestrial value (272; Fegley
1995).

Since the C2H2 émission band at 729 cm"1 contains infor
mation at several altitudes through the central and wing fines,
we hâve also tested a vertical profile predicted for Ls = 358°
by the GCM models (Rannou et al. 2005), which does not match
the shape of the C2H2 band, but is not too off with respect to the
actual values.

At higher northern or southem latitudes, poleward of 70°N,
the situationhas dramatically changed in recentyears with much
stronger Chemical and température variations (Vinatier et al.
2012b; Teanby et al. 2012) but at the latitudes considered here,
we do not observe them which gives us hints as to the location
and the extent of the winter polar vortex.

5. DISCUSSION OF THE RESULTS AND

POSSIBLE INTERPRETAI’IONS

In this work, we estimate the abundances of the trace gases in
Titan’s stratosphère from 50°S to 50°N. We find no significant
temporal variations at mid- and southem latitudes during the
Cassini mission. We monitor and quantify tire compositional
enhancement at 50°N, and find indication for a maximum at

the time of the Titan northern spring equinox (NSE, mid-2009),
followed by a sharp decrease of the gaseous Chemical content
within the next Earth year or so. Our results are compatible with
tire findings of Teanby et al. (2010) in tirât we find HCN and
C2H2 to display a rapid increase in northern latitudes up to mid-
2009 while the abundances at équatorial and southem latitudes
remain stable. C02 présents no latitudinal variations anywhere
because of its long photochemical lifetime.

The peak in abundance is observed around the northern
spring equinox, during which we know a rapid change in the
atmosphère took place. Indeed, short-term var iations observed
during the Cassini mission can arise from changes in the
circulation around the time of the equinox. The collapse of
the detached aérosol layer (West et al. 2011) suggests that the
dynamics during this period go through a rapid transition which
should also affect the gas distribution. The rapid decrease after
mid-2009, for which the most straightforward expia nation is that
the vortex lias shrunk somewhat. would be consistent with the

weakening thermal gradient we find here and tirât of the winds
also reported by Achterberg et al. (2008, 2011) and Teanby étal.
(2009b). The finding also ties into the location of tire maximum
température gradient, which appears to be moving northward
over the winter/spring season (Teanby et al. 2010; Figure 3,
T panel). If 50°N is emerging from the vortex core, it would
cause a large réduction in the abundances, hence explaining our
observations. Thus, decreasing abundances at 50°N could be
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due to a weakening vortex with reduced latéral mixing across
the vortex boundary (Teanby et al. 2010).

Another cause could be the spatial variations in the energy
input to Titan’s atmosphère (due to Titan’s inclination) as a
driver for changes in the advection patterns, which in tum
provide a stronger variability in the latitudinal abundances of
photochemical species. Changes in the solar output during the
11 year cycle can potentially affect the Chemical production
rates in Titan’s atmosphère. On the other hand, for the time
period of the Cassini mission, the Sun has been remarkably
stable going through an extended minimum with the first weak
signs of increased output observed toward the end of 2009. The
Chemical lifetimes in Titan’s stratosphère (at 200 km) range
between ~1 year for C2H4 and C3H4 up to ~20 years for
HCN, which are longer than the timescales of some of the
rapid changes observed. Thus, the temporal variability observed
during the Cassini mission is more likely related to changes
in the atmospheric circulation patterns due to progression of
seasons.

We thank Nicolas Gorius, Marcia Segura, and Florence Henry
for help with the data acquisition and processing during this
project. We also acknowledge support from the CNES Cassini
program.
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This paper reports on the results from an extensive study of ail nadir looking spectra acquired by Cas-
sini/CIRS dttring the 44 flybys performed in the course of the nominal mission (2004-2008). With

respect to the previous study (Coustenis, A., and 24 colleagues |2007]. Icarus t89, 35-62, on flybys

TB-T10) we présent here a signifîcantly richer dataset with, in particular, more data at high northern
and Southern latitudes so that the abundances inferred here at these régions are more reliable. Our

enhanced hlgh-resolution dataset allows us to infer more precisely the Chemical composition of Titan
ail over the disk. We also include improved spectroscopic data for some molécules and updated tem

pérature profiles. The latitudinal distributions of ali of the gaseous species are inferred. We furthermore
test vertical distributions essentially for acetylene (C2H2) from CIRS limb-inferred data and from current

General Circulation Models for Titan and compare our results on ail the gaseous abundances with pré

dictions from 1-D photochemical-radiative models to check the reliability of the Chemical reactions and

pathways.
© 2009 Elsevier Inc. Ail rights reserved.

1. Introduction

Our understanding of Tîtan's atmospheric Chemical composi

tion has recently been enhanced by the data returned by the Gis-

sini instruments. We analyze here a full set of spectra recorded
by the Composite Infrared Spectrometer (CIRS) aboard the Cassini

spacecraft taken during the. 44 Titan flybys spanning the 4 years of
nominal mission. Previous composition studies of subsets of this
dataset were publishcd by Flasar et al. (2005), Teanby et al.
(2006, 2007, 2008a,b, 2009), Coustenis et al. (2007, 2008), Vinatier
et al. (2007, 2009), Nixon et al. (2008a,b, 2009), and Jennings et al.
(2008) among others.

In a previous paper (Coustenis et al., 2007) we analyzed and dis-
cussed a set of nadir CIRS data from the first year of Cassini obser-

* Corresponding auchor. Fax: *33 1 45 07 74 26.

E-mail address: athena.coustenis®obspm.fr (A Coustenis).

0019- 1035/S - see front matter © 2009 Elsevier Inc. Ail rights reserved.
doi : 10.1016/j.icarus.2009.11.027

vations (Tours TB-T10). The abundances of ail known gaseous
constituées were retrieved at different locations of Titan's disk.

Besides these well-known trace species, a firm détection of ben-

zene (C6He). first reported in ISO data (Coustenis et al., 2003),
was provided by CIRS at 674 cm-1. We use this band here to study
its latitudinal variations. The détection of G,MD was also obtained

from the analysis of the extra émission observed at 678 cm-1 (Cou
stenis et al., 2003, 2008). The D/H ratio on Titan was determined
from the CFI3D band at 8.6 pm and found to be 1.17^® x 10~4
(Coustenis et al., 2007). Bézard et al. (2007) furthermore reported
the détection of ,3CH3D at 1148 cnf ' and determined a D/H ratio
of 1,3 2/^;]3 x 10~4. Nixon et al. (2008a,b) and Jennings et al. (2008)
used CIRS data to retrieve information on the l2C/,3C and other iso-
topic ratios in Titan. Finally, there is ongoing work on the analysis
of CIRS limb data to infer information on the vertical profiles of

several gaseous constituents of Titan's stratosphère at nine lati
tudes between 56“S and 80°N (Vinatier et al., 2007, 2009; Teanby
et al., 2007, 2008a,b).
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The results published in Coustenis et al. (2007) and Teanby
et al. (2008a) indicated that no longitudinal variations existed
for any of the gases. On the other hand, the retrievals of the
méridional variations of the trace constituées showed an

enhancement for some of them towards the North pôle. However,
due to the geometry of the observations from 2004 to 2006, the

most northern latitude exploited was limited to about 60°N. Mol
écules showing a significant enhancement at northern latitudes
are the nitriles (HC3N, HCN) and the complex hydrocarbons
(C4H2, C3H4). The results were tied to prédictions by dynamical-
photochemical models (Hourdin et al., 2004; lawas et al.,
2008a,b; Crespin et al., 2008).

With respect to the results published in Coustenis et al. (2007),
we improve here on the analysis by exploiting a far larger number

of spectra with a signifïcantly higher number taken at the higher
resolution of 0.53 cm-1. The more complété coverage of Titan's
disk, combined with the larger number of spectra at high resolu
tion available, allows for the inference of more précisé abundances

for the trace gases and for a more adéquate définition of méridional
variations, in particular in the northern régions, which were not
fully observed previously.

2. Nadir observations in the FP3 and FP4 GRS ranges

For a full description of the CIRS spectroscopic observations and
the instrument capabilities we refer the reader to Flasar et al.
(2004) and for the general procedure applied to the data in our

studies, see Coustenis et al. (2007).
The GRS nadir spectra characterize various régions on Titan

from roughly 85°S to 80eN with a variety of émission angles.
We hâve studied the émission observed in the CIRS FP3 and FP4

detector arrays (covering roughly the 600-1500 cm"1 spectral
range) with apodized FWHM (full width to half maximum) reso
lutions of 2.54 or 0.53 cm"'. The more recent Cassini/CIRS obser
vations (T10-T44, until May 2008) hâve allowed for a more
complété coverage of the higher northern latitudes on Titan,
where previously only a few spectra were available (Teanby
et al., 2006; Coustenis et al., 2007). We include here a large num
ber of both mid- and high-resolution CIRS spectra at ail latitudes
from 90°N to 90°S at émission angles smaller than 50° and we

perform averages in order to focus on a given latitudinal range
and also in order to enhance the S/N ratio (see Table 1). The air-
mass numbers and the S/N ratios given in Table 1 represent aver
ages of the mean values in each spectral average. As said in the
previous section, the lack of longitudinal variations in gas abun-
dance that we hâve demonstrated in Coustenis et al. (2007) justi

fies the latitudinal binning, while longitudinal variations in
température (Achterberg et al., 2008b) are small enough to be ig-

nored for our purposes.
The composite spectral averages thus produced in the 600-

1500 cm"1 range covered by the FP3 and FP4 detectors (Fig. 1)
show several signatures of previously identified molécules: hydro
carbons (CH„, CH3D, C2H2, C2H„, C2Hs, C3H4, C3H8, C.,H2i C*Hfi), ni
triles (HCN. HC3N) and C02. We hâve included ail of these
species in our model, but we hâve not included ail the isotopes
of C, N and O discovered today for lack of complété spectroscopic
data. In addition, C2HD, as observed at 678 cm-1 (Coustenis et al.,
2008) is incorporated in our model but the associated abundance
and its relative variations were extensively discussed in the earlier

paper.

Small offsets in the wavenumber of the spectra were corrected

by cross-correlation with a synthetic spectrum. These instrumental
offsets were generally small compared to the resolution and were
at most ±0.1 cm”1. However, these small adjustments reduced the
misfit between model and data by up to 25%.

Table 1

Characteristics of the spectral sélections from Titan flybys TB-T44 used in this study
for medium spectral resolution of 2.5 cm 1 and high spectral resolution, 0.5 cm '.
The latitudes in the first column refer to atmospheric levels at around 5 mbar and

take into account the latitude smearing effect (see text). The latitude coverage for

each sélection isactually around the mean value (for example 5”S means spectra from

10"S to theequator). We sum ail spectra from ail longitudes in columns 2 and 5. The
émission angles are restricted to 50” everywhere and the retrieved average airmass is
given in columns 3 and 6. The S/N indicated in columns 4 and 7 is the average signal-
to-noise ratio for ail spectra combined. It varies with wavelength across the spectrum
depending on the CIKS data NESR (noise équivalent spectral radiance).

Mean

latitude

FP3 FP4

Spectra Airmass S/N
ratio

Spectra Airmass S/N
ratio

TB-T44 high -resolution nadir spectral sélections
7ON 1117 1.21 34.4 2011 1.32 102.6

60N 2413 1.25 48.0 2147 1.25 91

50N 2316 1.12 48.7 4302 1.09 117

42N 5328 1.08 84.5 4098 1.12 133.7

33N 7002 1.12 116.8 8222 1.14 242.6

25N 8607 1.09 140.3 7942 1.09 277.6

15N 5249 1.07 1149 9299 1.06 340.2

5N 11.981 1.03 173.8 10.899 1.04 383.7

5S 10.873 1.04 161.7 10,903 1.07 392.3

15S 4144 1.15 92.6 3567 1.25 229.6

25S 2446 1.13 62.9 3457 1.07 206.8

33S 3574 1.13 85.0 2949 1.24 197.4

42S 2190 1.24 65.7 3332 1.28 205.8

50S 2154 1.15 60.7 1968 1.16 149.4

60S 2081 1.28 60.8 1845 1.26 145.1

70S 778 1.45 39.1 2543 1.41 173.0

7B-T44 medium-resolution nadir spectral sélections
7ON 528 1.27 59.2 530 1.24 135.7

60N 1184 1.21 84J) 1617 1.03 201.2

5 0N 6133 1.11 203.9 6471 1.12 382.9

42N 8066 1.13 227.3 7170 1.15 480.5

33N 8173 1.12 337.2 11,154 1.13 721.7

25N 12.614 1.11 4449 10317 1.13 861.1

15N 13.018 1.07 479.3 14509 1.08 1123.8

5N 15.639 1.09 5348 15,741 1.09 1231.8

5S 19,953 1.05 575.5 19,726 1.04 1357.3

15S 18,953 1.05 524.3 19,140 1.05 1338

25S 7426 1.11 323 8266 1.10 861.2

33S 6948 1.08 296.8 5791 1.12 706

42S 5085 1.12 2449 4722 1.12 613.1

50S 2908 1.10 176.8 3035 1.12 475.4

60S 1353 1.16 121.6 1270 1.16 313.3

70S 1379 1.33 126.8 1421 1.28 330.2

Our analysis here is based essentially on the high-resolution

data acquired by CIRS, with the medium-resolution spectra used
as a check for consistency.

3. Modeling

Our method in deriving abundances of the trace constituents on
Titan has been largely described in previous articles (see Coustenis
et. al., 2007a and references therein). In brief, we use a line-by-line
radiative transfer code to simulate the Titan spectrum and through

itérative processes we dérivé the abundances of the various con
stituents observed in Titan's atmosphère. We begin with tempéra

ture profiles obtained by inversion of the émission observed in the
V4 methane band at 1305 cm"1, assuming 1.4% of CH4 in the strato
sphère as measured by tlie Huygens probe and compatible with the
CIRS inferences from FP1 (Flasar et al., 2005; Niemann et al., 2005).

We use these profiles to then solve the radiative transfer équation

in the FP3 part of the spectrum for the mixing ratios of the various
components.

Our model includes collision-induced absorption and a two-

cloud System to represent the haze opacity (see Coustenis
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Fig. 1. Spectral averages performed over TB-T44 Titan fiybys as described in Table 1 for different latitudes binned in 10°: (a) at medium resolution (2.5 cm '); (b) at high
résolution (0.5 cm 1 ).

et al. (2007) for more details). With respect to that previous
study, although we still essentially use the new GEISA 2008

darabase (Jacquinet-llusson et al, 2008), we hâve added here
some improvements in the spectroscopic treatment of some
molécules:

(a) Following irs détection (Coustenis et al., 2008) we hâve
added C2HD in our model.

(b) We hâve included new spectroscopic parameters for C21I6
(Vander Auwera et al., 2007) which are now in the new

GEISA database and allow for a much better représentation
of its émission features throughout the spectrum.

(c) We hâve added the new isotopic Unes for HCN from the
HrrRAN database (Rothman et al., 2009).

(d) We hâve alsoused new HC3N spectroscopic parameters which
corne from the recent laboratory work ofJolly et al. (2007).
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Even though ail the neutral species are contained in our model,
we lack spectroscopic data and hâve not included several of the
isotopic species that hâve been detected to date on Titan, nor ail
the propane bands (Nixon et al., 2009).

For ail the molécules analyzed here, with the exception of C2H2,
C2H6 and HCN, we adopt only constant-with-height profiles above
the condensation level, because there are not enough strong Unes
in their émission bands to allow for the retrieval of alritude-depen-
dent information. Only C2H2 - with a resolved band at 730 cm"1
that probes multiple altitudes via strong and weak (optically thick
and thin) Unes, aliows for an unambiguous discrimination between
different vertical distributions. However, the C2H6 and HCN verti
cal distributions extracted from GCM models or from limb calcula

tions and tested here also produce a slight improvement of the

spectral fit with respect to the constant-with-height profiles, as
will be discussed hereafter.

4. Analysis of the data

We use the information contained in the v4 methane band at

1305 cm"1 to retrieve température profiles, which are then in-
jected in the radiative transfer équation for the other molécules
to solve for the gaseous opacifies. By comparison with the observa
tions a best fit is obtained through an itérative process. For each

sélection (see Table 1) the continuum level between émission sig
natures is matched by varying the haze/cloud opacity. With the
exception of C2H2, and in some cases - but not systematically -
of HCN and C2H6, the vertical distributions of the trace constituents
were assumed to be constant-with-height above the condensation

level and set to follow their saturation vapor pressure curve below.

4. î. The FP4 région

Température profiles were retrieved from zonally-averaged
spectra over ail of the température maps up through T40, for a
methane abundance of 1.4%. The spectra were averaged in 10° lat
itude bins, based on the latitude of surface intercept, with the

émission angle restricted to <50“. For the procedure of this retrie
val of Titan's stratospheric températures by CIRS see Achterberg
et al. (2008a). The analyzed nadir mapping data presented in that
paper sampled latitudes between 90°S and 60°N, providing tem
pératures for pressure levels roughly in the 0.2-5-mbar range (in
some cases, the contribution functions can reach 10 mbar). The lat

itude range for the température profiles has been extended in this
work to 90°N and they are inferred using the Huygens Atmospheric
Structure (HAS1) profile (Fulchignoni et al., 2005) as the initial
guess, so that below the altitudes where CIRS can retrieve tempér
ature information, the profiles are set to the HASI data. Some of the
température profiles retrieved from the inversion of the émission
observed in the methane v4 band at 1305 cm"1 are shown in Fig. 2.

Using these température profiles, we then performed radiative
transfer simulations of Titan's spectrum starting with the FP4
(1100-1500 cm"1) spectral région where the émission from 1200
to 1400 cm"1 is mainly due to methane opacity. However, CH3D,
C3H8, C2H6 and other molécules contribute at shorter and longer
wavelengths. CH3D has a strong émission band at 1156 cm”1, diag
nostic of régions around 0.3 mbar, Fig. .3. The fit in this band gives
us access to the D/H ratio in Titan, as discussed extensively in

Coustenis et al. (2007, 2008).
The best fits at 15°S in the FP4 région are shown in Fig. 4

with residuals for other latitudes. The v4 CH4 band yields

information at different altitude levels as testified by the contribu

tion functions of the Q-branch and its wings (Fig. 3). The 3 - o
standard déviation due to noise atone in the FP4 région is about
2 k 10"10W cm"2 sr’/cm"1. When other error sources are in-

Temperoture(K)

Fig. 2. Température profiles at different latitudes for medium résolution. From 70”S
to about 30"N, the profiles are very similar and close in shape. In the troposphère,
the profiles are set to match the HASI température data, while the HASI profile is
also used as an initial guess in the stratosphère for our température retrievals.

Fig. 3. Contribution functions of methane at the center and wings and of CHjD,
calculated at high resolution for équatorial latitudes and, in addition, at 70°N, for
methane.

cluded (CFU abundance, lack of précisé spectroscopic parameters
for the CFU and CH3D bands, thermal structure uncertainties, cali

bration issues, continuum level, etc., as described in Section 4.6)

the total uncertainty is on the order of 2 x 10"9Wcm"2sr"‘/
cm"1. Some of the remaining misfits in this région can be explained
by the presence of molecular bands or isotopes not included in our
model.

Thus, the misfit of the spectrum between 1370 and 1500 cm"1
could be due to an uncertain représentation of the C2H6 bands,
the Vg at 1376 and the v8 and 1468 cm"1, as well as to the several
predicted propane bands (v18 at 1378, v7 at 1464 and V24 at 1472
are expected), and spectral aliasing beyond 1430 cm"1 due to
numerical filtering in the instrument (see Nixon et al., 2009). Also
note the weak émission of 13CH3D at 1148 cm"1. The cause for the
returning discrepancy between the model and the observed radi
ance between 1180 and 1250 cm"1 has not been dearly identified,
but can be due to uncertainties in the CH4 spectroscopic data.

4.2. Trace gas abundances from the FP3 région

The 600-1000 cm”1 spectral région in Titan's spectrum contains
the signature of many hydrocarbons, two nitriles and an oxygen
compound (CjH,, C2HD, C2H4. C2HB, C3H4, C3H8, C4H2, C6H6. HCN,
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Fig. 4. The best fit to the FP4 région induding the CH, band at 1305 cm 1 and thc Cl li ü band at 1156 cm V The methane abundance in the stratosphère is laken to be 1.4%.
Upper panel: medium resolution; lower panel: high résolution. When ail error sources are inctuded for this région, the total ur.certainty is on the order of
2 x 10 ’Wcni 2sr '/cm '. See texc for more details.

HC3N and CO2). Ail of these molécules are included in our mode).

Using our radiative transfer code, we perform simulations of the
600-1000 cm"' région and compare them to the spectral averages
described in Table 1 for ail the different latitudina) bins. The con

tribution functions of a sélection of molécules for two latitudes

(5°S and 50°N) are shown in Fig. 5.
Fig. 6 shows examples of fits in the FP3 medium and high-res-

olution data as a whole for five different latitudes. The fits are gen-
erally quite good, within the 3 - a standard déviation error, except
for a few localized areas which can be associated in tlieir majority

either to insufficient spectroscopic data (in particular for C3H8 or

isotopes, at frequencies identified hereafter) or to noise interfér
ence features in the Titan spectrum.

4.3. The 600-700 cm-1 région: C4lh, C2IU. HQN, C02, Celle

The 600-700 cm-1 région ofTitan's spectrum recorded by the
FF3 of GRS is very rich in spectral signatures. Several molécules
hâve their stratospheric contributions through émission bands

with their centers or wings located here. From the molécules
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Fig. S. Contribution functions of some molécules at different latitudes for high résolution: (a and b) are at 5”Sand (cand d) areat 50“N. For latitudes near theequatoror the
South, the contribution functions are similar to the ones shown here for 5”S.

already known to exist on Titan, C4H* C3H4, HC3N, C02 and C6H6
hâve their band centers at 628,633,663,667 and 674 cm-1 respec-
tively. Ail of these molécules hâve been included in our gaseous
mode! (Coustenis et al., 2007). In addition, C2HD was identified
at 678 cm'1 and included in this model (Coustenis et al., 2008).
Furthermore, the left wing of the C2H2 band, centered at
728 cm-1, significantly contributes here, as does, to a lesser
amount the R-branch of the HCN band (centered at 713 cm-1). In
order to simulate this région, we first obtain the best possible fit
for the C2H2 and HCN bands (as explained in the following section).

Fig. 7 shows the fits and the residuals in this région (610-
690 cm"1). The 3 - a standard déviation due to noise alone in
the FP3 région for spectra taken at mid-latitudes is about
1.2 x 10‘10Wcm‘3sr1/cnr' for the high-resolution data (negli-
gible with respect to other sources of errors). This is also the case
for the medium resolution data. When other error sources are in

cluded (see Section 4.6) the uncertainty Ievel (at 3-cr) on the émis
sion observed increases and is given on the figure. Sonie of the
remaining misfits in this région can be explained by the presence
of molecular bands or isotopes not included in our model, such
as the isotopes of C02, which hâve been identified at 648.5 and
662.5 cm-1 (Nixon et al., 2008b), as well as those of HC3N at
658.7 and 663.0 cm-1 (Jennings et al., 2008).

4.4. C,H2 and HCN

We hâve tried to simulate as well as possible the émission ob
served in the whole C2H2 band between 680 and 760 cm-1. We

hâve used both constant-with-height mixing ratios and vertical

distributions inferred from the study of CIRS limb data or provided
by the General Circulation Model (hereafter GCM) for Titan of Ran-

nou et al. (2005).
Note that there are several systematic instrumental interfér

ence features in the FP3 spectrum thaï hâve been identified. One
such noise feature is near the center of the C2H2 Q-branch, at

729.25 cm-1, and could be the cause of the imperfect fit. Also, an-
other strong interférence affects the spectrum near 765 cm-1. If
any event the simulations obtained when using the constant verti

cal profiles (Fig. 8) do not allow for a good fit of the whole C2H2
band (Fig. 9a-c). When the center of the band, at 729 cm-1, is fit-
ted, the simulated émission in the wings is in excess of the obser

vations, especially in the left wing (R-branch). From the
contribution functions of C21I2 shown in Fig. 8, it is clear that these

régions probe different atmospheric levels and hence require a ver
tical distribution with a slope which gives lower abundances at
lower altitudes, like the ones inferred from limb CIRS data and

from the GCM simulations. For the purposes of our fit then when

using constant profiles, and in order to dérivé the abundances of

the weaker-band species (like HC3N, C02, C2HD and C6Hc) embed-
ded in that part of the spectrum, we need to reduce the C2H2 abun-
dance until we fit the left wing. The correspondingC2H2 abundance
is significantly different from the one that fits the center of the Q-

branch (by up to 80Ï).
Therefore, after having obtained the best possible fits with the

constant-with-height profiles for ail latitudes, we then turned to
testing vertical distributions for acetylene, HCN and C2H6. We ob-
tained vertical distributions for these three constiruents from the

GCM calculations (Crespin et al., 2008) for Ls = 300. In addition,
for C2H2 we tested the vertical profiles produced by CIRS limb

inferences (Vinatier et al., 2007).
Fig. 8 then also shows the C2H2 GCM vertical distributions

tested in this work for latitudes of 50°S, 15“S and 50°N. The distri

butions for the mid and Southern latitudes are similar in shape and
in mixing ratio (Fig. 8) in the 0.5-20 mbar range probed by the
C2H2 band center and wings as shown by the contribution func
tions (Fig. 8). On the contrary, the 50°N GCM-inferred distribution

is quite different, both in shape and in abundance.
The GCM distributions that we tested worked well in satisfying

both the Q-branch and the wings of the acetylene band for C2H2
abundance values close to the ones inferred by fitting the Q-branch
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Fig. 6. Best global fits to the FP3 région at medium (a) and high (b) résolutions, using everywhere constant-with-height molecular profiles.

with constant-with-height profiles at inid-latitudes. They also
work well for the shape reproduction at higher northern and
Southern latitudes, but they need in eacli case to be adjusted by
significant multiplying factors (about 0.3 for the North and 0.5

for the South). This means that these distributions need to be sig-

nificantly reduced in abundance to match the data at high northern

and Southern latitudes. But in general, their use allows for a better
fit to the data than with constant-with-height profiles. This is the

case also for the vertical profiles inferred ffom CIRS limb data
(Vinatier et al., 2007), so that the vertical distributions always pro

vide a better fit to the whole acetylene band simultaneously. The

abundances retrieved for the minor species embedded within the
C2Hj. wings (and in particular HCN and C3H8) are the same, since
we always first adjust the C2H2 mixing ratio to match the observed
émission in the left and right wings of the acetylene band before
further exploring the abundances of other species.

The vertical profiles used for HCN hâve allowed for a slightly
improved fit to the band at 713 cm'1. We can thus say that the na
dir data hold proof that a vertical distribution with a marked slope
(as inferred in the models and by the CIRS limb data analysis
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(Teanby et al., 2008a,b; Vinatier et al., 2007, 2009)) is required. But
no further information can be inferred as a function of altitude

from the nadir spectra.

4.5. The ethane and ethylene abundances

Ethane and ethylene dominate the émission observed in the
750-1000 cm"1 spectral région, with band centers at 821 and
949 cm"' for the v9 and v7 bands respectively (Fig. 10). The ethyl

ene retrieval is difficult due to the strong interférence from a noise
feature at 956 cm-1.

New spectroscopic data was made available for C2H6 from Van-
der Auwera et al. (2007),which greatly improves the fit in the C2H6
band ar 821 cm”' and allows us to include the v6 and v8 bands in
the 1350-1500 cm"1 région. The région also contains weak pro
pane bands at 869 and 922 cm-1 (Nixon et al., 2009). Also a possi
ble gradient in the haze simulation could be affecting the
continuum.
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Contribution functions ot 50°N Contribution functions at 50°S

Fig. 8. Upper panel: vertical distributions for C3H2 testcd here: the GCM model (Crespin et al, 2008) and che limb-inferred profiles (Vinatier et al., 2007) are shown, along
with the constant-with-height best-fit distributions. In order to fit the center and the wings o! the 729 cm 1 band in the high-resolution data at 50“N, 15°S and 50°S the
vertical distributions need to be adjusted by certain multiplying factors. Also shown (lower panel) are the contribution functions as calculated with the GCM profiles for 50°N
and 5CriS; the latrer is also représentative of équatorial and mid-latitudes.

The new fit obtained in the ethane band now yields much smal-

ler abondances (by 45-60%) with respect to what was previonsly
found (Coustenis et aL, 2007) due to the higher band strength
(by 1.44 with respect to the previous GEISA version). When a ver
tical distribution is used, we get a slightly better match to the data,
but within uncertainties, we cannot distinguish between the con

stant-with-height and the vertical profiles.

4.6. The uncertainties

The uncertainties on the abundances inferred here are calcu

lated as explained in Coustenis et al. (2007), Section 4.1. We take
into account

« the instrument noise on the location of the émission peak (neg-

ligible with respect to other sources of error given the large
number of spectra we generally sum up in a sample, with the
exception of higher northern latitudes for medium resolution),

• the uncertainty on the position of the continuum level above
which the émission rises. and

the uncertainty on the température profile and its impact on the

line formation région.

In addition, systematic errors due to the uncertainty on the CH.,

abundance, on the spectroscopic data, calibration problems and

inconsistencies in the samples or the datasets used, were also ta-

ken into account when the absolute error bars are given.

The précision on the température profile inferences described in
Section 4.1 is discussed in Achterberg et al. (2008a) and in Couste

nis et al. (2007). The uncertainty from the instrument noise is small

(0.1 K or so) so the main errors are systematic, mainly originating
in the uncertainty of the CR, abundance: about 1 K around 1 mbar,

increasing to ~4 K about 5 mbar and from the sensitivity to the ini

tial guess (~2 K or so).

Due to the large number of spectra considered here, as well as

to the improved spectroscopic parameters for C2H6. CjH,. HC:jN
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Fig. 10. Fit» the 750-1000cm ' région with theémissions mainly of ethane and ethylene, with constant in altitude profiles, for high-resolution spectra and at different
latitudes. The fit » the ethane band with new spectroscopic parameters has significantly improved the fit » the émission in the band, but there is still room for improvement
in the 800-840 cm 1 région, although a vertical distribution for C2Hs slightly improves the fit. The fit to the ethylene band is also shown. There is a strong bad pixel feature
interfering near 957 cm \ 3 - a error bars are indicated.

and some isotopes, we hâve been able to considerably reduce the

error bars on our inferences with respect to previous papers.

5. Méridional variations of the trace gaseous constituents

We hâve inferred the méridional variations for the different

constituents présent in the CIRS spectra from 600 to 1500 cm-1.
They are shown in Fig. lia and b, along with the 3 - a error bars
including ali uncertainties. For some latitudes, the mixing ratios in
ferred from high-resolution data, are given in Table 2. Benzene and

HC3N are difficult to detect at low Southern latitudes. However,

while the HC3N émission is clearly observed, even at low latitudes,

C6H6 éludés firm détection. Thus, for latitudes <40°S in Fig. 11 b, the
values for C6H6 are upper limits.

As in Coustenis et al. (2007), we find thar the observed enrich-
ment reported here for some species at high northern latitudes is

less at this epoch (mid-winter at the northern pôle) than at the
time of the Voyager encounter just after spring equinox (Coustenis
and Bézard, 1995). The gases showing a strong enhancement in the
North are the complex hydrocarbons (C3H4, C4H2, and C6H6) and

the nitriles (HCN and HC3N). For most of these gases, the increase
strongly manifests itself starting at around 40"N, with the excep

tion of HCN which exhibits a regular increase from South to North.
Other constituents with a smaller increase in abundance (also from
about 40°N and northwards) are: C2H2, C2HD (whose détection and

abundance results are given in Coustenis et al. (2008)) and C2H4.
Propane (C3HS) is now found to be constant or slightly increasing

in the North (contrary to inferences from the limited North-pole
dataset we had used in Coustenis et al. (2007)), while C2Hb and
C02 remain constant (Fig. lia). When relative errors are consid-

ered (toosmall to appear in Fig. lia and b), there is a possible indi
cation for a notch (small unexpected decrease) near 50°N in the
abundances of C2H2 and HCN and near 50°S for C2FL, and C3H8.

For the 50°N possible minimum in the abundance of the aforeinen-
tioned species, Vinatier et al. (2009) report such an occurrence at

0.01 mbar (around 350 km) for C2H2 and HCN in results they prés

ent from CIRS limb data analysis. Teanby et al. (2008a,b) also in
ferred such abundance minima which they interpret as a

combined elfect of poleward advection of air from Southern lati
tudes, a mixing barrier at around GO^N and eddy transport towards
the equator in the lower stratosphère. Our results here are in

agreement with these inferences, although the altitudes of the limb
data are not the same as the ones probed by the nadir data ana-

lyzed here. Furthermore, the abundance minimum in our case can-

not be confïrmed given the error bars and there is nowhere an

indication of anything similar for 50CS.

6. Interprétation of the results and discussion

Our findings on the trace gas abundances (Fig. Tl and Table 2)
reported here mostly support the results in the previous paper

(Coustenis et aL, 2007) with the advantage that our new uncertain

ties are smaller and we hâve secured more reliable spectroscopic

data for some molécules (HCN, HC3N, C2H6), as well as information

on new species (C2HD, see Coustenis et al., 2008). This allows us to

improve, in particular, the inferences at high North and South lati
tudes. Indeed, différences in Titan’s composition between this pa

per (Table 2) and the previous one pertain mainly to the ethane
abundance and to mixing ratios found at higher latitudes for some

species (such as C2H4 and C3H8 for instance, compare Fig. 11 a and b

here with Fig. 16a and b in Coustenis et al. (2007)). Thus, while this
new study confirms - with more précision - the abundances and
the latitudinal trend attributed to C2H6, C2H2, C02, C3H4, C4H2 and

some of the weaker components (HC3N and C6H<j), the decrease in

abundance near the North pôle for C3H8 and C2FL) is invalidated

here. Indeed, with the larger number of spectra available at north
ern latitudes in this study we find propane to slightly increase and

ethylene to be significantly more abundant. The différences in re
sults between this work and the 2007 cannot be attributed to tem

poral variations but rather to: (a) the lack of a sufficient number of
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Fig. 1t. (a and b) Méridional variations of trace gascs on Titan. Error bars represent

3 - <r standard déviations including ail error sources (relative error bars, without

systematic crrors) are too small to appear on this figure for most molécules. Only
upper limite were inferred for QHs at latitude <40"S

spectra available in 2007 for high latitudes and (b) the new spectro-
scopic parameters available (mainly for ethane).

In summary, we find the main trace gases (C3H5, C2H2 and C3Ha)

and C02 to increase from South to North by factors between 1.5

and 2. CgHg and HC3N are found to exhibit dramatic increases to

the North by factors of about 30 and 150 respectively. AU other
gases show enhancement by factors between 3 and 8 (see
Fig. 11). Flourdin et al. (2004) hâve shown that the méridional cir
culation on Titan, dominated by global Hadley cells, can be respon-
sible for the accumulation of Chemical species and aérosols at high

northern latitudes and hâve also predicted the magnitude of the

enrichirent in stratospheric constituents to be related to their con
densation altitudes (the méridional advection increases the con
centrations in the air rising from the troposphère, where most of

the species condense). In a recent paper, Teanby et al. (2009) bave

shown that these enhancements occur in inverse proportion to the

photocbemical lifetime of the species, so that the enhancement is

greatest for the shortest-lived Chemicals. This is explained by a
combination of chemistry and dynamics: the vertical gradients

are steepest for the shortest-lifetime species in a purely Chemical
model: however the presence of a circulation cell in the real atmo
sphère with downwelling in the polar régions (North pôle at prés
ent epoch) causes the lower stratosphère to be greatly enriched in

these species compared to the equator. Our restilts compare well,
within error bars, with the findings of Teanby et al. (2009) as con-

cerns méridional variations of the species reported in their paper

and ail trends are confirmed, although somewhat higher abun-

dances are found in general in the Oxford retrievals for the com-

plex hydrocarbons and the nitriles.
We also compared the findings in this paper with gas abun-

dances in Titan’s stratosphère reported in other papers by the CIRS

team members. We are in good agreement with isotopic ratios and
values reported by Bézard et al. (2007) and Nixon et al. (2008a,b).
We hâve tested the vertical distributions for C2H2, C2116 and I1CN as

recovered from limb data analyses by Vinatier et al. (2007, 2009)
and we find them to be compatible with our nadir data for nine dif
ferent latitudes between 50°S and 80^. The abundances inferred

from the limb data for other molécules as well are plotted in
Figs. 12a and 12b. These values are compatible with ours at mid
and low latitudes and slighrly higher towards the North (as was
also found in Coustenis et al. (2007)).

Hereafter, we compare our results with theoretical work and
current models for Titan’s atmosphère. Attempts to model the sea-

sonally varying distribution of organic compounds in the middle

atmosphère hâve used 2-D simulations with parameterizations of
eddy and wave momentum flux convergences.

The Titan model proposed by Lawas et al. (2008a,b) is a 1-D

simulation coupling between photochemistry, radiation transfer
and aérosol microphysics. The production of ail main neutral gas

species is followed from the initial phorolysis of N2 and CFLi, while
the production of aérosols is described through spécifie Chemical

Table 2

Mixing ratios for the Titan trace gaseous constituents in the stratosphère for a selected set of latitudes from nadir high-resolution data using constant-with-height distributions.

Molécule Mixing ratios

70°S 50°S 33*S 15*S 5*N 33"N 50°N 70*'N

Mixing ratios of trace gnses in Titan's stratosphère
CjHj 2.45E-06 235E-06 3.05E-06 2.97E-06 3.25E-06 330E-06 3.10E-06 5.10E-06

c2hd 1.10E-09 7.00E-10 1.40E-09 7.50E-10 7.40E-10 1.00E-09 1.25E-09 2.00E-09

c2h„ 1.38 E-07 1.05E-07 1.40E-07 1.20E-07 1.35E-07 1.16E-07 2.05E-07 5.50E-07

CaH6 6.07E-06 6.50E-06 6.65E-06 730E-06 8.00E-06 8.80E-06 8.50E-06 1.15E-05

c3h4 3.98E-09 4.00E-09 4.20E-09 4.80E-09 5.90E-09 7.10E-09 1.23E-08 2.40E-08

c3h. 4.45E-07 3.50E-07 5.20E-07 4.50E-07 5.00E-07 6.00E-07 6.30E-07 6.95E-07

C„Ha 7.80E-10 9.00E-10 1.04E-09 1.12E-09 1.32E-09 1.77E-09 5.60E-09 2.30E-08

CsH* <1.00E-10 <1.00E-10 1.20E-10 2.20E-10 3.00E-10 1.90E-10 6.00E-10 420E-09

HCN 2.95 E-08 3.60E-08 3.85E-08 6.70E-08 1.13E-07 2.25E-07 3.62E-07 9.70E-07

HC3N 3.10E-10 4.20E-10 2.90E-10 2.80E-10 5.00E-10 4.50E-10 5.10E-09 4.50E-08

COj 9.90E-09 1.10E-08 1.08E-08 1.10E-08 1.11E-08 1.15E-08 1.25E-08 1.40E-08
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Fig. 12a. Comparison of the results from this work at 33”N for major hydrocarbons (points in green boxes) with the vertical profiles inferred from lirabdata (bluelines. 15’S,

Vinatier et al., 2007; red fines, 30°N, Vinatier étal, 2009) and the model simulations (black curves). The points at 1100 km in altitude are theINMS results (Waiie et al., 2007;
Vuitton et aL, 2008; Cui et al., 2009). In the green boxes, the horizontal dimension is the uncertainty on the mixing ratio, while the vertical side gives the extent of the
contribution function at FWHM. The model correctiy reproduces the results from nadir and limb C1RS data for these molécules within error bars. See text and Vinatier et al.
(2009) for more details.

Mixing Ratio

Fig. 12b. Same as Fig. 12a but for lesser hydrocarbons. The model gives a good représentation of the CJRS findings from nadir data within uncertainties and tends to agréé
with limb-inferred vertical profiles.
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pathways that are based on the simulated gas components. The
contribution of both gases and aérosols are included in the simula

tion of the radiation transfer and vertical température profile pro-
viding in this way a self-consistent approach. Furthermore the

model included heterogeneous chemistry processes on the surface
of tlie produced aérosols, while the contribution of atmospheric
mixing in the calcuiated vertical profiles is taken into account
through an eddy mixing profile, retrieved based on the observed

vertical mixing ratio profiles of argon and ethane. The model re-
sults are représentative of 33°N latitude atmospheric conditions
hence the comparisons are performed with our inferences near
that latitude. Our purpose is to check the reactions and Chemical
pathways included in current photochemical models for Titan
and to infer some insights on what Works and what does not in
our current understanding of Titan’s chemistry.

Figs. 12a-12c shows the comparisons among various inferences

ofTitan’s atmospheric composition and the model, ail at équatorial
or mid-latitudes, based on data taken at high resolution with CIRS.
One set of these retrievals is our own work at 33°N, the others are

the vertical profiles by Vinatier et al. (2007) at 15°S and at 30°N

(Vinatier et al., 2009). In addition, the retrieved abundances in
the thermosphère by 1NMS (Waite et al., 2005; Vuitton et al.,

2007, 2008; Cui et al., 2009) are compared. Finally, water vapor

was detected by ISO (Coustenis et al., 1998) and the abundance re

trieved is given in Fig. 12c. Water vapor was also detected by CIRS

and preliminary investigations show that the ISO abundance fits
the data (Nixon et al., 2006).

There is a general good agreement between tlie observations
and the model although there are spécifie cases for which the

agreement is less good. Tlie main hydrocarbon and nitrile species
are well described by the model with the stratospheric abundances

being in good agreement with our retrieved ones, except for the
cases of C2H4 and HC3N. For the former the simulated profile de-

creases further than the stratospheric value towards the surface,
although the observations suggest a reversai in the mixing ratio

profile, while for latter the simulated abundance is larger than
the observed one at the spécifie latitude. These apparent discrep-
ancies could be a manifestation of advection processes not cap-
tured by the 1-1) character of the simulation. Another hint

suggesting the presence of other processes taking place in the

atmosphère is the case of C3H8 for which although the strato

spheric abundance is in agreement with the CIRS nadir-retrieved

value, the vertical profile from the limb observations suggests a
different behavior than the simulated one. Furthermore, the HCN

and C2H2 profiles at 3CTN appear to decrease above 250 km relative
to the équatorial profile that présent a more monotonie altitude

behavior, thus suggesting the contribution of advection phenom-
ena. It is important also to note that the current model includes
only the neutral chemistry contribution in the abundances of the

simulated species. Although this is a good approach for most of
the observed species, the contribution of ion-neutral chemistry

reaction can become significantly important for some cases such
as that of benzene (see Vuitton et al., 2009). Nonetheless, most of
the CIRS-inferences reported here and from the limb data are well
simulated by this 1-D mode, which proves to be a good tool to sim-
ulate vertical mid-latitude distributions of Titan's trace constitu-

ents, including the INMS results, while pointing to some issues
with the currently adopted Chemical pathways for Titan's atmo

sphère and the contribution of dynamical effects.

The results presented in this work were also compared with

prédictions by recent 2-D dynamical models such as the General

Circulation Model (GCM) developed for Titan at the 1PSL (Crespin
et al., 2008 and references within). These models (Lebonnois

et al., 2001, 2003; Hourdin et al., 2004; Crespin et al., 2008) used
a sériés of 2-D models based 011 tlie Hourdin et al. (1995) GCM,
with photochemical coupling, and radiative transfer calculations
that included the opacities of the organic compounds and hazes.
These models managed to reproduce much of the observed spatial

distributions seen by Voyager IRIS and Cassini/CIRS. They suggest
that the méridional distributions were dépendent on both the

Fig. 12c. Sa me as Fig. 12a but for nitrites and oxygen compounds within the CIRS range. With the exception of a marginal fit for HCjN, the model nicely reproduces the CIRS
findings and the ISO-retrieved water vapor value. With respect to other vertical distributions retrieved from CIRS limb data, the model overestimates the HCjN abundance.
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méridional circulations and the mixing by barotropic eddies. These
seasonal models predict that the circulation in the middle atmo
sphère is dominated by a pole-to-pole cell with ascent over the
summer pôle, followed by a circulation reversai during a short per-
iod after the equinox, with a brief transition period in which the
ascending branch is at low latitudes and the circulation is more
hemispherically symmetric. According to these models, and as de-
scribed in Flasar et al. (2005), the subsidence over the winter pôle
accounts for the enhancement in the concentrations of the organic

compounds that are observed (see also Teanby et al., 2008b, 2009).
We also find here a generally good agreement with the équato

rial and the northern (winter) pôle distributions. In particular, the
observed enrichment reported here at high northern latitudes,
slightly stronger aller spring equinox (Voyager) than for mid-win-
ter (Cassini) is found in the GCM. The vertical distribution pre-

dicted for C3H2 by the GCM for mid-latitudes is also compatible

with our observations with minimal adjustment. Note, however,

that at higher northern and Southern latitudes, the GCM acetylene
profiles require a strong reducing adjustment factor while also ver
tical profiles inferred by limb CIRS data are not reproduced by the
GCM (Crespin et aL, 2008). An additional disagreement can be
found in the model prédictions for the southem hemisphere (cur-
rently summer pôle), where the model produces a secondary cell in

the low stratosphère, which maintains an enrichment over this
pôle and a depleted région at 30°S, both of which features are
not observed (see Fig. 10 of Crespin et al. (2008)). However, spatial

mapping provided by CIRS, both in the nadir- and limb-viewing
modes, shows a structure that is quite complex, particularly near
the North (winter) polar vortex, that the 2-D models cannot ade-

quately explain. Teanby et al. (2008b) reported that the isoclines
of several compounds, including HCN, HC3N, C3H4, and C.,H2 hâve
an altitude-latitude structure that is tilted in the middle atmo

sphère, and these compounds exhibit a déplétion zone near the
vortex in the mesosphere. Clearly, the 2-D parameterizations need
to include additional transport processes to account for behavior
like this. Understanding the seasonal change of the polar vortex—

its buildup in the late fait and early winter, its mature phase into
early spring, and its subséquent break-up—and the attendant
changes in the organic concentrations will be key in elucidating
these processes.

In spite of this important breakthrough in modeling Titan's cir

culation (Achterberg et al., 2008b), 3-D models may be required
before the complexity of Titan's atmospheric composition and
dynamics can be satisfactorily reproduced in a modeL
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Here we report the measurement of water vapor in Titan’s stratosphère using the Cassini Composite
Infrared Spectrometer (CIRS, Flasar, F.M. et al. 12001 ). Space Sci. Rev. 115, 169-297). CIRS senses water
émissions in the far infrared spectral région near 50 pm, which we hâve modeled using two independent
radiative transfer codes (NEMESIS (Irwin, P.G.J. et al. |2008]. J. Quant. Spectrosc. Radiat. Trans. 109,1136 -

1150) and ART (Coustenis. A. et al. [2007]. Icarus 189,35-62; Coustenis, A. et al. [2010]. Icarus 207,461-
476). From the analysis of nadir spectra we hâve derived a mixing ratio of 0.14 ± 0.05 ppb at an altitude of
97 km, which corresponds to an integrated (from 0 to 600 km) surface normalized column abundance of
3.7 ± 1.3 x 1014 molecules/cm2. In the latitude range 80"S to 30“N we see no evidence for latitudinal vari
ations in these abundances within the error bars. Using limb observations, we obtained mixing ratios of

0.13 ±0.04 ppb at an altitude of 115 km and 0.45 ±0.15 ppb at an altitude of 230 km, confirming that the
water abundance has a positive vertical gradient as predicted by photochemical models (e.g. Lara, LM,
Lellouch, F, Lopez-Moreno, J.J, Rodrigo, R. 11996]. J. Geophys. Res. 101(23), 261; Wilson, E.H., Atreya,
S.K. [2004], J. Geophys. Res. 109, E6; Hôrst, S.M., Vuitton, V, Yelle, R.V. [2008], J. Geophys. Res., 113,
E10). We hâve also fitted our data using scaling factors of -0.1-0.6 to these photochemical model pro

files, indicating that the models over-predict the water abundance in Titan's lower stratosphère.
& 2012 Elsevier Inc. Ail rights reserved.

1. Introduction

Water is présent in its various forms in many régions of the So-
lar System, from the atmosphères of the inner planets and shadows
of lunar craters, to the mandes of icy satellites and beyond to the

Kuiper Belt Objects (KBOs) and Oort Cloud Cornets. Liquid water
is also an essential ingrédient for life on Earth and a potential due
in the search for life or habitability conditions in the rocks of Mars,

the internai océan of Europa or Titan, and the volcanic vents of Enc-
eladus. On Titan, Saturn's largest satellite that hosts a dense nitro-
gen-dominated atmosphère, water is a trace species in the

atmosphère. However, water plays a signifiant rôle since it is
one of the sources of oxygen for the observed active photochemis-

* Correspondingauthor. Address: NASA/GSFC, Code 693, Bldg. 34. Rm. S121,8800
Creenbelt Rd.. Creenbelt, MD 20771, USA

Email address. valcri a. cottir.iSnasa.gov (V. Cottini).

0019-1035/S - see front matter ffl 2012 Elsevier Inc Ail rights reserved.
http://dx.doi.Org/I0.1016/j.icarus.2012.06.014

try on Titan (e.g. Lara et al., 1996; Wilson and Atreya, 2004; Hôrst
et al., 2008).

Titan's known oxygen compounds to date are carbon monoxide
(CO, ~47 ppm), carbon dioxide (C02, ~15 ppb) and water vapor
(H20), where the abundance? are quoted for the low-Iatitude
stratosphère (de Kok et al, 2007a). C02 was first detected by Voy

ager 1 (Samuelson et al, 1983), while CO was first seen by ground-
based observations in the near-IR (Lutz et al, 1983). Subséquent
observations in the sub-millimeter led to controversy as to

whether CO was wcll-mixed or not (Uidayat et al, 1998; Gurwell,

2004). CO émission fines were later observed by the Cassini Com
posite Infrared Spectrometer (CIRS), thus improving the previous
abundance estimate (de Kok et al, 2007a; Teanby et al, 2009).
Water was first detected in Titan's atmosphère by the Infrared
Space Observatory (ISO) in 1997 (Coustenis et al, 1998). Two fines
near 40-pm observed by the Short Wavelength Spectrometer
(SWS) were modeled using a uniform mixing ratio above the con
densation level and a value of 0.4 ppb was detected. An early
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attempt to measure H20 with Cassini CIRS was unsuccessful due to
poor signal-to-noise (S/N) ratios in early versions of the calibration
pipeline spectra and a limited number of available spectra. There
fore, only an upper limit of 0.9 ppb could be retrieved (de Kok et al.,
2007a). Since then, water émission in the CIRS data has been defi-

nitely observed, albeit without deriving any further information on
its abondance and distribution (Bjoraker et al., 2008). The Cassini

Ion and Neutral Mass Spectrometer (INMS) detected H20 in the

upper atmosphère - between 950 and 1200 km - with a mixing ra
tio in the range of ~(0.4-3.4) x 10"5 (Cui et al., 2009).

While the presence of these oxygen compounds is now well-
established, some details about their origin remain to be deter-

mined. Early photochemical models assumed that CO originated
froin episodic outgassing from Titan’s interior along with nitrogen
(N2) or ammonia (NH3) and methane (CH.,), whereas water molé
cules entered the top of the atmosphère and were photochemically
dissociated to produce hydroxyl radicals (OH) (Wong et al., 2002;

Wilson and Atreya, 2004). The combination of OH and CO led to

the production of C02. However, Hôrst et al. (2008) hâve recently
challenged this model, arguing instead that both CO and C02 are
the resuit of upper-atmospheric chemistry that occurs between
in-falling oxygen species reacting with carbon produced by CH*
photodissociation. In this hypothesis, water enters Titan's atmo
sphère either in the form of H20 or OH (since the latter is quickly
converted to H20 within the atmosphère) together with oxygen (0

and O*). These forms of oxygen are thought to be deposited on Ti
tan at two different altitudes. O* ions hâve been observed flowing
into Titan's atmosphère (Hartle et al.. 2006a,b) and they are

thought to be deposited in the upper atmosphère around
1100 km (Hôrst et al., 2008) where their interaction with methyl
(CH3) radicals leads to the formation of CO. Water is instead depos
ited at 750 km due to micrometeoritic ablation (English et al.,

1996) where it is photolyzed to OH. The latter finally combines
with CO to form C02 and possibly other complex species.

Satum's rings and the icy satellites that surround the giant plan-

ets, and also interplanetary dust, are probable sources of the water
(oxygen) in Titan’s atmosphère and recent results from INMS

indicate that the plumes of Enceladus are the dominant source
(e.g. Dougherty et al., 2006). Observations and models of the neutral
H20, OH, and O toms formed from the Enceladus plume show that
material from Enceladus extends well beyond Titan’s orbit (Melin

et al., 2009; Cassidy andjohnson, 2010; Eleshman et al., 2012). Based
on Herschel measurements of the Enceladus torus combined with

modeling of the fate of the species within the torus, Hartogh et al.

(2011) showed that tire flux of O/O* into Titan is consistent with
an Enceladus source for the oxygen seen in Titan CO, except for the
fact that Enceladus does not seem to provide enough OH/H20.

In this paper, we analyze the spectra acquired by CIRS in the far
infrared spectral région in order to retrieve the water vapor vertical
or spatial distribution in Titan’s atmosphère. CIRS has been acquir-
ing spectra ofTitan since the beginning of the Cassini prime mission
(July 2004). After 2 years of the extended mission (XM), which in-
cluded the 2009 equinox, in July 2010 Cassini entered in the Solstice
Mission (SM), which is scheduled to last until 2017. Since an upper

limit for H20 was reported by de Kok et al. (2007a) tliere has been a

considérable increase of the number of data collected by CIRS and

significant improvements to their calibratioa The increased signal
to noise (S/N) ratio not only permits a definitive détection of H20

from the analysis ofCIRS far infrared spectra, but it allows us to con-
strain its vertical and latitudinal profile.

2. Selected dataset

CIRS (Flasar et al., 2004) is comprised of three Focal Planes
observingin the spectral range 10-1400 cm"' with spectral resolu

tions from 0.5 to 15.5 cm"1. Focal Plane 1 detector (FP1) is charac-
terized by a circular field of view (EOW) of 3.9 mrad. It records data
in the far infrared spectral range (10-600 cm"') with a spectral
resolution of 0.5 cm"1, allowing us to observe the water vapor sig
nature, and by modeling, to retrieve its abundance. Water présents
its rotational fines in the CIRS FP1 spectral région up to 400 cm"1,
with the strongest and most visible fines in the range positioned
between 90 and 260 cm"1. We focus hère on the range from 150
to 260 cm”1 for the water détection, as this is the range of maxi
mum responsivity of FP1. At lower wavenumbers the on-board
electronics of CIRS create a moving interférence spike that can af
fect the spectrum up to 150 cm"1. Therefore, we exclude wave
numbers shorter of 150 cm"1. We use data from two different

types of observations to obtain independent measurements: the
far infrared on-disk intégrations (FIRNADCMP) and the far infrared
limb intégrations (FIRLMBINT). Water is a trace species with rela-
tively weak fines and therefore it cannot be observed in an individ-
ual spectrum. An average of a few thousand spectra of on-disk
observations and a few hundred spectra of limb observations is
necessary to achieve sufficient signal-to-noise (Fig. 1).

Limb observations hâve the FP1 Focal Plane centered around

two different altitudes - hereafter limb 1 and 2 - and are therefore

used to constrain the water vapor abundance in the stratosphère

around 115 and 230 km respectively, well above the 45 km tropo-
pause. Since the contribution functions of water for on-disk obser

vations peak around 97 km (Fig. 2), the retrieved water vapor
abundance derived from these measurements can be compared
with the lowest altitude targeted by our limb intégrations around
115 km.

For the water détection and retrieval of quantitative informa

tion together with possible latitudinal variations, multiple Titan
flybys must be utilized to enhance the signal. To date, 35 limb inté

grations of approximately 1 h in duration (~60 high-resolution
spectra) hâve been obtained covering latitudes from 87°S to
8(hN. The nadir intégrations are more ntimerous (about 92 suc-

cessfully executed, of typical duration 5 h, --300 spectra) as they
occur in a less contested observing time further from the Titan
closest-approach period. They also hâve a more or less complété
spatial coverage of Titan's latitudes and longitudes with an average

footprint size of ~15° great circle arc
We focus on one season of on-disk observations acquired from

December 2004 to December 2008 (northern winter on Titan) in
order to reach a compromise between obtaining a large number

of spectra and a sufficiently homogeneous dataset. Inside this time
period for on-disk observations acquired from a maximum dis
tance of 300,000 km and with a maximum émission angle of 60°,
we selected latitudinal bins (80-45°S, 45-10°S, and 0-30°N) cen
tered around three latitudes for which observation-derived tem

pérature profiles were available (see model description in Section
3 and Fig. 3). The number of spectra averaged in these latitudinal
bins were approximately 1700, 3800 and 7000 respectively and
their average émission angles were 35°, 38° and 34°.

CIRS limb spectra are acquired in much smaller numbers, there
fore to reach a sufficient signal-to-noise ratio we consider only one
average of about 320 spectra acquired from December 2004 and
September 2009, encompassing the entire Southern hémisphère
and mid-Iatitudes within the range 90°S to 20°N. During this time

period and at these latitudes data can be considered quite homoge

neous as shown in Teanby et al. (2010), therefore we model this

average using a température profile retrieved for 15°S. We exclude
from this analysis the higher northern latitudes where the strato-

spheric température profile changes significantly. We hâve also se
lected data acquired by the spacecraft at a range less than
45,000 km in order to limit the size of the projected detector foot
print on the limb to less than 150 km.
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Fig. 1. (a) In black, the average of Cl RS far-IR on-disk observations is plotted (~7000 spectra acquired from December 2004 to December 2008 in the latitudinal range of 0-
0"N), limb observations centercd around 115 and 230 km (respectively ~320 and ~280 spectra acquired from December 2004 to September 2009 in the latitudinal range of
90-20”S) and their fit (in green, blue, red respectively) assuming a constant water mole fraction above the condensation altitude. In (b) the retrieval spectral range is shown
with the main water lines indicated by vertical dotted Unes. (For interprétation of the references to cobrin this figure legend. the reader is referred to the web version of this
article.)

Normalisée! Water Contribution Fonction

0.0 0.2 0.4 0.6 0.8 1.0

Temperoture (K)

Fig. 2. Contribution functions of the different atmospheric layers to the water vapor line émission computed for four wave numbers. The solid line shows a température

profite for 15°N.

3. Data analysis and model

In the selected part of the FP1 spectral range, Titan's spectrum is
formed by (i) the contribution of thermal émission of the surface

and atmospheric layers, (ii) the seven pairs (Anderson and Samuel-
son, 2011) of collision induced absorption (CIA) opacities between
the main atmospheric molécules - N2, CH4 and H2 - due to Titan's

dense lower atmosphère, (iii) the photochemical aérosol plus
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Fig. 3. Atmospheric vertical temperacure-pressure profiles retrieved from CIRS data for three latitudes (58'S, 15“S, I5”N) from Ar.derson and Samuelson (2011) from the

surface to 33 * 10 7 bar. corresponde? to an altitude range of 0-600 km. A priori constant with altitude water vapor profiles are also shown for the three températures
profiles. The constant mixing ratio profile along the atmosphère (o priori assumed to be 0.1 ppb) is decreased to follow the saturation vapor pressure curve in the lower
stratosphère below the condensation altitude (’cond. ait.' in the figure), where the relative humidity reaches 1OOS. Using the saturation vapor pressure équation of water over

iceof Murphy and Koop (2005) and assuming the température profiles retrieved at 58-S, 15°S, 15"N we find a condensation altitude of about 104,97 and 93 km respectively.

stratospheric condensâtes, and (iv) the ro-vibrational émission
lines of atmospheric species seen by CIRS at the latitudes consid-
ered in our study: CH4, CO, H20, G,H2.

These quantities were used as input to the NEMESIS retrieval

code (Irwin et al., 2008) to perform a combination of forward mod-

el computation and retrieval scheme based on the method of opti
mal estimation (Rodgers, 2000). The computation of the forward
model spectrum used the correlated-k approach of Lacis and Oinas
(1991) and included a Hamming apodization of Full Width at Half
Maximum (FWHM) of 0.5 cm-1 to reproduce the instrumental line
shape. The retrieval scheme was used to optimize the fits and
détermine the model free parameters including the water vapor
abundance. This method was successfully applied to model the
FP1 spectrum in Cottini et al. (2012) to reriieve surface tempéra
ture. We solve the radiative transfer équation for 147 spherical

atmospheric layers, using as a source function the thermal émis
sion of the surface, for which a unit surface emissivity is assumed,

and that of the atmospheric layers. The retrieval algorithm then
iteratively computes a synthetic spectrum, compares it to the data

and after applying a cost function, détermines the best estimate for
the physical parameters in the model - the stratospheric aérosol

profile and any necessary adjustments to the température profile
and the mole fraction of included atmospheric gases. The cost func

tion indudes two components: one that measures the quality of
the fit to the spectra (similar to a x2 test) and another that mea
sures the déviation of the retrieved parameters from a set of a pri
ori quantities.

The continuum due to the CIA was calculated according to Bory-
sow and Frommhold (1986a,b,c, 1987), Borysow (1991), and Bory-
sow and Tang (1993). For the N2-CH4 pair, we used CIA coefficient
values increased by 50% as required to fit the continuum of the

Cassini Descent Imager Spectral Radiometer (DISR) data (Tomasko
et al., 2008) and the CIRS spectra (de Kok et al., 2010).

We hâve modeled the haze emission/absorption using the
extinction cross sections of the hazes included in de Kok et al.

(2007b). Since scattering is negligible at these wavelengths for par-
tides smaller than few microns, we hâve omitted it from our

computations.

We hâve adopted the atmospheric vertical temperature-pres-

sure profiles retrieved from CIRS data for three latitudes (58°S,
15°S, 15°N) from Anderson and Samuelson (2011) from the surface
to 3.3 x 10“7 bar, corresponding to an altitude range of 0-600 km

(Fig. 3). Spectroscopic information for the gas rotational lines in the

far-infrared range was extracted from the H1TRAN 2004 database

(Rothman et al., 2005). For CH, we hâve adopted the revised mole
fraction of 1.48% in the stratosphère (Niemann et al., 2010) ac-

quired by the Gas Chromatograph Mass Spectrometer (GCMS) on
the Iluygens probe during in its descent to Titan's surface. In the
stratosphère for H2 we assumed a uniform volume mixing ratio
of 0.1% (Courtin et al., 2008). The geometry of the observations

was also included in the computations.

An accurate model of the instrumental FOV is required to suc
cessfully reproduce CIRS spectra and measure water abundance.
The FP1 FOV is circular and has a sensitivity with a quasi-exponen-
tial decrease from the center to the edge and a FWHM of 2.4 mrad.
For on-disk spectra the homogeneity of the field of view usually

permits simple modeling with a single ray calculated for the detec-
tor center. For limb spectra, we bave to take into account the rapid
decrease in atmospheric density with height and the variations of

température and gas volume mixing ratio profile with altitude. In
such cases, the FOV is not assumed to be uniform and a multiple

ray model is required to fit the data We modeled the FOV using
the minimum number of rays for which the synthetic spectrum

and the water retrieval computation results became stable; this
corresponds to nine rays with a step in altitude of 25 km. We also
recomputed some of the results using 39 rays (step of 5 km) in or-
der to show a smoother limb contribution function. The spectral

radiance measured by the FP1 detector is modeled by a convolu-

tion of the emerging radiance at each point in the FOV (as de-

scribed in Nixon et al. (2009) and in Teanby and Irwin (2007)),
weighted by a response function for CIRS FP1 detector. This beam
profile was determined for CIRS FP1 (Flasar et al., 2004) using Jupi
ter as a point source. As 95% of the integrated response is contained
in a radius of 1.95 mrad from the FOV center. the detector observes

a maximum altitude range of about 70 km.

Independent line-by-line calculations to simulate the same on-

disk FP1 sélections were also made using the Atmospheric Radia
tive Transfer (ART) code that has recently been applied to CIRS data
in Coustenis et al. (2010,2007). The code uses the most recent aér

osol extinction dependence inferred from Vinatier et al (2012) and
température profiles derived by fitting the v4 methane band at
1304cm"' in FP4 averages taken at similar conditions as the FP1
spectra. The spectroscopic parameters for ali the observed molé

cules and isotopes are from GEISA 2009 (Jacquinet-Husson et al.,
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2011) and HITRAN 2008 (Rothman et al., 2009). The results from
these two different codes are very similar and their différence is
smaller than the error bars on the data.

In Fig. la the on-disk and two limb observation averages are
shown together with their fits. Fig. 1 b shows only the spectral
range used for the water line analysis.

4. Results

We hâve retrieved the water vapor abundance from both on-

disk and limb data assuming different vertical profiles. These were

a constant water mixing ratio profile and three vertically increas-
ing profiles from recent photochemical models: (a) Hôrst et al.
(2008), (b) Wilson and Atreya (2004) and (c) Lara et al. (1996).
The latter profile was adopted in Coustenis et al. ( 1998) for the first
water détection on Titan by ISO. The constant mixing ratio profile
(a priori assumed to be 0.1 ppb) was decreased to follow the satu
ration vapor pressure curve in the lower stratosphère below the
altitude where the relative humidity reaches 100% (see Fig. 3).

Using the saturation vapor pressure équation of water over ice of
Murphy and Koop (2005) and assuming the température profile re
trieved at 15“N we find a condensation altitude of 93 km. For tem

pérature profiles retrieved at 15°S and 58°S we find respectively
condensation altitudes of 97 km and 104 km. We hâve also com-

puted the contribution functions - normalized inversion kernels
- showing the sensitivity of each atmospheric layer to a variation
of the HiO mixing ratio. These contribution functions were com-

puted for each profile and for ail of the most intense water fines
in order to provide an altitude range ofvalidity of the retrieved val

ues (Figs. 2 and 4). Fig. 2 shows the contribution functions for on-
disk observations computed at four different wave numbers: at
254cnr' (one of the two fines used for the ISO water retrieval)
the upper shoulder of the contribution function is wider and sensi
tive to higher altitudes compared to the other wave numbers used
for the water retrieval in this work. In our case the fit of the

254 cm-1 line improves when using a profile increasing with alti
tude rather than a constant profile. In Fig. 4 we show only the con
tribution functions computed at wavenumber 202.75 cm-1, where

the most intense water fine in the GRS spectrum occurs (discount-

ing the fine at 150.5 cm-1 that is unusable due to an instrumental
interférence).

For water retrievals obtained using a scaled constant water

profile we show the retrieved mixing ratio values at the altitude
where the water contribution function peaks for the assumed

profile (Table 1). For the vertical error we use the Fuit Width Half
Maximum (FWHM) of the contribution function for the corre-

sponding water profile. We also retrieve a scaling factor to the
water profile from each of the photochemical models considered
in this work (Table 1).

4.1. On-disk water retrieval

To measure the water abundance from the on-disk average (0-

30‘N) data we first use a constant water profile. We retrieve a vol
ume mixing ratio of 0.14 ± 0.05 ppb at 97 km (FWHM 93-130 km).
This value corresponds to a surface-normalized H20 total column
density of 3.7 ± 1.3 x 101'1 molecules/cm2.

The largest source of error for the on-disk observations is due to
the fact that the maximum of the contribution function occurs in

the région where the water abundance is rapidly changing due to
condensation. Other sources of error include small variations of

the température profile in the stratosphère, random noise from

the detectors, and a small dependence in altitude sensitivity with
wavenumber.

We also fit the water fines for the three other water vertical dis

tribution profiles (Lara et al., 1996; Wilson and Atreya. 2004: Hôrst
et al., 2008) and obtained the necessary scale factors to fit the data,

which are shown in Table 1. These values, ranging between 0.11
and 0.63 times the considered profiles, show the retrieved water

mole fraction to be less than predicted from these previous models.
We hâve analyzed two additional latitudinal bins from 45CS to

10°S and from 80°S to 45‘S, centered on the latitudes correspond-

ing to the température profiles previously retrieved from CIRS at
15°S and 58gS respectively (Anderson and Samuelson, 2011). See
Fig. 3. The observed water mixing ratio indicates the absence of
any significant latitudinal variations within the error bars in these

Fig. 4. Contribution functions of water vapor line émission and température profile for 15”N. In (a-d) we show the contribution functions computed at 202.75 cm 1 for
different water profile models: (a) a constant water vertical profile; (b) profile from model D in HSrstetal. (2008); (c) profile from Wilson and Atreya (2004) and (d) profile
from Lara et aL (1996X
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Table 1

Water vapor abundance results.

Water vapor rcttieved mole fractions On-disk average (0-30°)N Limb retrieval 1 Limb retrieval 2

Constant VMR profile

Scaling factor to H20 profile from Hôrst (model D)

Scaling factor to H20 profile from Wilson-Atreya

Scaling factor to 1I20 profile from Lara

(0.14*0.05) ppb ar97+f km
0.18 *0.05 at 118+ï” km
0.14*0.05 at]18+;)km
0.48*0.07 at 115+§g km

(0.13 * 0.04) ppb at 115*$ km
0.14* 0.05 at 129+}) km

0.13 * 0.05 at 129+}} km
0.63 * 0.07 at 133+27 km

(0.45 * 0.15) ppb at 230+}) km
0.23 * 0.07 at 232+g km
0.18*0.08 at 222+“ km

0.45 * 0.08 at 247+fJ0 km

Hs0 Mixing rctio

Fig. S. Water vapor mole fraction retrieved from CIRS on disk and two limb

observations assuming a water profile constant with altitude over the condensation

level. Water profiles from three photochemistry models are also shown for

comparison. The Hôrst et al. (2008) water vapor profile was derived assuming
two different eddy diffusion coefficients - 100 cm1 s 'and 400 cm2 s '(the second
being the one recommended in their model; dotted curve plus solid curve). Also the
profiles in Wilson and Atreya (2004; dashed curve) and in Lara et al. (1996; dot-

dash curve).

latitude ranges. It should be stressed that in this work we did not

analyze the water stratospheric content at high northem latitudes
that were experiencing winter during this time period. To model

spectra at these latitudes for a large average is particularly com-
plex since the stratospheric température was changing quickly

with latitude. In addition the température profiles for high north
em latitudes are not yet available for the lower stratospheric ré
gion sensed by the CIRS water fines.

The results obtained simultaneously for on-disk data using the

independenr line-by-line ART code simulations of the same FP1
sélections confirm the retrieved water vapor value reported above
within the error bars.

4.2. Limb water retrieval

The measurement of water vapor obtained by modeling the

limb 1 spectrum under the assumption of a constant mixing ratio
profile is equal to 0.13 ±0.04 ppb. According to the position of
the peak of the corresponding contribution function, the radiance
mostly originates from a région centered at 115 km (FWHM 95-
165 km). Modeling the limb 2 spectrum we retrieved a water mix
ing ratio using a constant water profile of 0.45 ± 0.15 ppb at an alti
tude of 230 km (FWHM 190-275 km). These values indicate an
increase of the water mole fraction with altitude in the strato

sphère from 115 km to 230 km of about three times.
The scaling factors to the model water profiles obtained from

the two types of limb retrievals are shown in Table 1 and again

illustrate the smaller amount of stratospheric water vapor detected
by CIRS with respect to the ones predicted by the models consid-
ered in this study.

5. Conclusions

In this work we modeled CIRS data using a constant-with-
height water vapor profile and assigned the retrieved mixing ratio
to the altitude where the contribution function peaks.

By combining on-disk and limb observations we are able to con-
strain the vertical profile of water in the stratosphère from 12 mbar
to 10-3 mbar. corresponding to altitudes between 93 and 280 km
(considering the widths of the contribution fonctions).

In Fig. 5 we compare our water vapor retrieved values with the

models of (Lara et al., 1996; Wilson and Atreya, 2004; Hôrst et al.,

2008).

The measurement of the stratospheric vertical profile of water

adds useful constraints to the photochemical models of Titan's
atmosphère. Qualitatively, the increase of the water mixing ratio

with altitude is in agreement with an extemal source of oxygen
and a lower altitude sink due to condensation. However, quantita-
tively, our retrieved abundance seems to be less (from ~0.1 to
~0.6) than predicted from the models considered in this work

(see Table 1). We also observe that since the scaling factors to
the photochemical models (a)-(c) in Table 1 are slightly different

for the two limb altitudes, it implies that these models might hâve
a slope for H20 not quite consistent with CIRS data. However, due

to the rapid variation of the water vapor mole fraction with alti
tude in the atmospheric région where water freezes, and where
CIRS is actually observing (on-disk and limb 1 spectra), we should

be cautious in assigning a slope to the water profile.
Coustenis et al. (1998) fitted the ISO data with a scaling factor to

the Lara et al. (1996) water profile of 0.4^. We fitted the CIRS
data assuming the same profile multiplied by a scaling factor of
0.48 + 0.07 (corresponding to a water column density of
3.8 ± 1.0 x 10'4 molécules cm-2). This resuit agréés with the scal
ing factor from the ISO analysis although this agreement may be
fortuitous because most of the ISO émission originates from above

300 km, with the contribution functions peaking around 400 km
(Fig. 3 of Coustenis et al. (1998)). Since the beam size of ISO was
much larger than Titan there is a strong émission from the limb

occurring at high altitudes where 0.4 times the Lara et al. (1996)
profile is used. Due to its higher spatial resolution, the contribution
functions for the CIRS nadir sélection using the Lara et al. (1996)
profile cover the range 95-145 km (at half maximum).

ISO also retrieved a water vapor abundance of 0.4 ppb assuming
a constant mole fraction above the condensation level (Coustenis

et al„ 1998); we assign the same relative error bars as those de

rived by ISO for the scaled Lira et al. (1996) profile: +0.3 and
-0.2. From CIRS on-disk observations we retrieved a volume mix

ing ratio of 0.14 ± 0.05 ppb around 97 km for latitudes 0-30°N. Our
retrieval is only marginally consistent with the ISO détermination

of 0.4t[!2 ppb above the water vapor condensation altitude. How
ever it is necessary to make the assumption that the ISO results
pertain to the same condensation altitude that we retrieve because
unfortunately it is not reported in the ISO paper.

We now discuss how our retrieved water abundances compare
with current models of oxygen photochemistry on Titan. The re

trieved scaling factors are ail less than one, implying that there
are still uncertainties in our understanding of oxygen processes
on Titan.

In photochemical models of Titan prior to 2000 (e.g. Lara et al.,
1996), in orderto allow atmospheric production of CO, it was pos-

tulated that CO could be produced through a Chemical réaction be
tween OH (available from H20 influx into the upper atmosphère)
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and CH3. However, it was emphasized by Wong et al. (2002) that
this reaction does not produce CO as previously assumed but in-
stead it produces H20 (Pereira et al., 1997).

Hence an influx of H20 or OH does not produce any significant
abundance of CO and therefore C02 can be produced by an H20 in
flux only with CO already présent (OH + CO -» C02 + H). For this
reason these models were unable to reproduce the observed CO
abundance and were substituted by other tnodels that suggest

the existence of primordial CO in the atmosphère (Wilson and
Atreya, 2004), or instead CO produced in the atmosphère using
an extemal influx of O* rather than H20 or OH (Hôrst et al., 2008).

In the pre-Cassini model of Wilson and Atreya (2004) water is

photolyzed to OH, which combines with CO to form C02 and other

complex species. In this model, CO is assumed to be primordial on
Titan and the water abundance profi le dérivés from the amount nec-

essary to form the observed C02. This assumption was challenged by
the Hôrst et al. (2008) model, in which oxygen species are assumed
to arrive from outside the Moon and form carbon monoxide as well

as carbon dioxide in the atmosphère. The values of the input fltixes
of O and OH were adjusted to reproduce the observed abutidances of
CO and C02. In the Hôrst et al. (2008) model water profiles were
produced for six different values (from K0 = 100 cm2 s”1 to
K0 = 1000 cm2 s-') oftheeddy coefficient in the lower atmosphère,
since the stratospheric abondances of photochemically produced
species are highly dépendent on this parameter. As shown in

Fig. 5, the water abundance retrieved in our study is best fit by the
water profile with the lowest eddy diffusion coefficient value con-
sidered in their model (Ko =100 cm2 s-1). This is lower than the va
lue (Ko = 400 cm2 s"1) they identified as best reproducing CIRS
observations of hydrocarbon species and adopted in this work for
comparison with our retrievals. However our results show that even
the Hôrst model with K0 = 100 cm2 s-1 still has excessive water at
the altitudes of our measurements.

Therefore, our work clearly points towards further refinement of
oxygen chemistry in photochemical models of Titan’s atmosphère.
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Cassini synthetic aperture radar (SAR) images of Titan, the largest satellite of Saturn, reveal surface
features with shapes ranging from quasi-circular to more complex ones, interpreted as liquid

hydrocarbon deposits assembled in the form of lakes or seas. One of the major problems hampering
the dérivation of meaningful texture information from SAR imagery is thespeckle noise, it overlays real
structures and causes gray value variations even in homogeneous parts of the image. We propose a

filtering technique which can be applied to obtain restored SAR images. Our technique is based on
probabilistic methods and regards an image as a random élément drawn from a prespecified set of
possible images. The despeckle filter can be used as an intermediate step for the extraction of régions
of interest, corresponding to structured units in a given area or distinct objects of interest, such as
lake-like features on Titaa This tool can therefore be used, among other, to study seasonal surficial

changes of Titan’s polar régions. In this study we also présent a segmentation technique that allows us
to separate the lakes from the local background.

«i 2011 Published by Elsevier Ltd.

î. Introduction

Cassini-lluygens, cite extreinely successful NASA/ESA joint mis
sion to the Saturnian System, has already accomplished six years of
extended investigatioa Titan being one of the most intriguing
objects in the Solar System, hosting an Earth-like environment, is
one of the main targets of this mission. Titan's landscape has been
observed by multiple flybys that examine the surface expressions

through Cassini’s infrared and radar instrumentation.
Cassini's RADAR instrument opérâtes in the Ku-band (13.78 GHz,

A = 2.17 cm), at both high and low resolution, viewingTitan's surface
in four modes: imaging, altimetry, scatterometry and radioinetry

(Elachi et al, 2004).
The SAR mode is used at altitudes lower than 4000 km.

resulting in spatial resolution ranging from about 350 m to more
than 1 km. Images are acquired either left or right of nadir using
1-5 looks while a swath, 120-450 km in width, is created from

five antenna beams. SAR coverage is dépendent on spacecraft
range and orbital geometry (Elachi et al., 2004) and radar back-
scatter variations in SAR images can be interpreted in terms of
variations of surface geometry (incidence angle, azimuth angle,

* Corresponding author. Tel.: +30 2105813069.
E-mail address: ebrars0>phys.uoa.gr (E. Bratsolis).

0032-0633/$ -see Iront matter * 2011 Published by Elsevier Ltd.

doi: 10.1016/j.pss.2011.04.003

and the polarization vector), near-surface roughness, or near-
surface dielectric properties.

The images obtained using SAR revealed that Titan hosts a
very complex surface formed with features such as lakes, moun-
tains, fluvial river networks, possible volcanic-like features and

dunes Qaumann et al., 2008; Lopes et al., 2010 and references
therein) which resemble Earth-like geomorphological structures
(Coustenis and Hirtzig, 2009). However, both the material and the
environmental conditions shaping their respective surfaces are
considerably different. Despite these différences, the exogenic
mechanisms forming the surficial expressions may be similar.

Indeed, one dominating terrestrial surface-affecting procedure is
the water cycle while on Titan an active methane cycle is at play

(Atreya et al., 2006). The impact of the endogenic processes in the
surface construction on Titan is still under investigation through

geophysical interior models (e.g. Tobie et al., 2005). Radar images
provided evidence of drainage and branching channel networks
with subdivided channels (Perron et al., 2006: Soderblom et al.,

2007; Lorenz et al., 2003; Burr et al., 2009), as well as distinct
fluvial erosional patterns (Jaumann et al., 2008) that indicate
dynamic and evolved surface, processes. Additionally, SAR ima

gery observed lake-like features in several swaths (Stofan et al„
2007; Turlle et al., 2009; Hayes et al., 2010; Wye et al., 2010).

Other features, identified by radar, are the potentially volcanic in
origin structures (Elachi et al.. 2005; Lopes et al., 2007a; Soderblom
et aL, 2009; NeLson et al., 2009; Wall et al., 2009), the impact cratcrs
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(Wood et aL, 2010), the mountain chains (e.g. Radebaugh et al., 2007)
and the linear dunes (Elachi et al., 2006; Radebaugh et al., 2008)

2. Lacustine features of Titan's surface

The thermodynamical conditions dominating Titan as well as
its Chemical profile allow the hydrocarbon liquid phase to exist on
its surface (Kouvaris and Flasar, 1991; Thompson et al., 1992;
Atreya et al„ 2006). Indeed, the température of its icy surface has

been measured in situ (10.34°S, 192.34'W) (Tomasko et al., 2005)
by Huygens at 93.7 K (Fulchignoni et al., 2005), while the Cassini
composite infrared spectrometer (CIRS) found by remote observa
tions an average température of 92 K between 2004 and 2008
(Jennings et al„ 2009)

Cassini RADAR instrumentation confirmed the presence of lake-
like features on the surface of Titan. Several models hâve suggested
organic précipitation on Titan (Toon et al.. 1988; Lorenz, 1993;
Graves et al., 2008) either violently through torrential storms (Hueso

and Sanchez-Lavega, 2006) or smoothly through drizzle at the lower
atmosphère (Tokano et aL, 2006) and rainfalls originated from

occasional short-Iived clouds (Griffith et al, 2000, 2005; Lorenz
et al., 2005), such phenomena hâve not been recorded yeL

The first recording of organic liquid pools was accomplished
during the Tl 6 flyby at the northern polar locations, where more
than 75 lake candidate features were identifïed (Sotin, 2007;

Stofan et al., 2007). In 2008, the Cassini/RADAR swaths counted in
both north and south polar régions, above 50“N and 50CS,

respectively, more than 655 lake-like features (Hayes et al.,
2008). SAR imaging shows lake-like features separated into three
classes; dark lakes, granular lakes, and bright lakes (Hayes et al.,
2008). Dark lakes are interpreted as liquid filled, while bright
lakes are interpreted as empty basins and granular lakes are
inferred as transitional between dark and bright lake features.
From a geomorphological aspect the lakes on Titan span over the

range of observed morphologies on Earth (Stofan et al., 2007;
Mitri et aL, 2007; Hayes et al„ 2008). They are rimmed features,
from circular to irregular and some with distinct edges, steep
margins and smooth surfaces (Stofan et al., 2007) and they show

very low microwave backscatter. Some of them are surrounded by

a drainage network of dark channels, which may supply them
with liquid (Stofan et al„ 2007), while some are not.

It is suggested that this liquid is a methane/ethane mixture,

with smaller concentrations of nitrogen and higher order hydro-
carbons/nitriles (Lunine et al., 1983; Mitri et al., 2007; Brown
et al., 2008; Raulin, 2008).

The lakes' radiometric brightnesses which appear to be warmer

than the surrounding région (Janssen et aL, 2009) are consistent
with the high emissivity expected for a smooth surface with the real
part of the low dielectric constant between 1.7 and 1.9 of liquid
ethane-methane solutions (Lopes et al., 2007b) with most possible

value the 1.9. However, the imaginary part is still under investigation
(Notamicola et al., 2009)

This study provides a qualitative method of récognition of

lake-like features from Cassini SAR images. Tire intended goal is to

label régions in an image into three classes (dark lakes, granular
lakes and the local background). First, a filtering technique is
applied to obtain the restored image. Then, a method of super-
vised segmentation is used. The segmentation method based on
the minimum Euclidean distance is used here.

3. Filtering

Strip mapping SAR consists of a large antenna which is
synthesized from many small antennas and rentains fixed with

respect to the radar platform, so that the large antenna illumi
nâtes a strip of the ground. This technique is used to improve the
azimuthal resolution. As the platform moves, a sequence of

closely spaced puises is emitted and the returned waveforins
are recorded. An image is computed after the cohérent sum of
reflected monochromatic microwaves. The image is distorted by a

strong granulation, called speckle. Speckle noise exists in ail types
of cohérent imaging Systems and its presence reduces the
resolution of the image and the detectability of the target Speckle
noise is not only signal dépendent but is also spatially correlated

and reduces the effectiveness of image réduction. The Cassini

RADAR measures the normalized backscatter cross-section (<xo) of
Titan’s surface (Ulaby et al., 1982). The SAR textures are generally
affected by multiplicative speckle noise. In order to reduce the
speckle noise, the multilook technique, based on incoherently
averaging the independent neighboring pixels, is used to estimate
the characteristics of the same ground area.

The statistical characteristics of multilook data départ con-

siderably from those of single-look data. Multilook data tend to
inix some physical and statistical properties of the terrain. The
terrain appears more homogeneous and the multilook averaging
will tend to be close to the Gaussian statistics (Chitroub et al.,

2002).

Speckle noise overlays real structures and causes gray value
variations even in homogeneous parts of the image and also
makes automatic segmentation of such images difficulL We

propose here a filtering technique that can be applied to obtain
the SAR restored images. After filtering the structured parts of the

image can be much better separated. The total sum preserving

regularization (TSPR) fïlter, is based on a membrane model

Markov random fïeld approximation optimized by a synchronous
local itérative method (Bratsolis and Sigelle, 2003). The final form
of despeckling gives a sum-preserving regularization for the pixel
values of the image.

Image formation is the process of computing (or refining) an

image both from raw sensor data that is related to that image and

from prior information about that image. Information about the
image is contained in the raw sensor data, and the task of image
formation is to extract this information so as to compute

the image.

Image space is the set F of model images that represent the true,
underlying physical distributions that are measured by the sensors.

Working in a probabilistic imaging problem, an a priori

knowledge about an image is most naturally incorporated
through the use of a prior probability distribution (or prior) P(J)
on the image space. Our objective here is to reconstruct the
original (or true) image from its degraded version.

A random field is an appropriate model for image values.

Random variables characterized by conditional priors that
account for local interactions are often used as natural and

convenient priors in imaging problems. These priors are placed

directly on the image space. However, the fundamental prob
ability distribution on the field is the joint probability distribution

P(f), and this is difficult or impossible to specify directly. One

needs to verify that the chosen spécification of conditional
distributions is sufficient and consistent in the sense that a

unique joint probability distribution corresponds to this set of
conditional probability distributions.

Assume that an image is formed on a finite rectangular lattice
when the sensors of this lattice select one scene from .F. Let us

note the finite lattice of sites asS= (s}s ^ with ScZ2. Each site
se S has a set of neighbors r noted J\fs. If s=(ij) four-connectivity
is assumed in the following : ,VS ={(f—lj);(i+l j);(ij-l);(ij+l».

A random process {/s|seS} with fs random variables following

the joint probability function P(f) is a "random field". In the

spécial case where P(fs\[fr^s}) = P(fi\{fr}r,M,) the random field is
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ta lied a "Markov random field" (MRF). By che Hammersley-
ClifFord theorem MRFs and Gibbs random fields on a finite lattice

are équivalent under the positivity condition (Besag, 1974).
Let g be the degraded observed image and / the restored image.

The general problem is now to estimate/from a set of input data g.
The Bayes theorem allows us to obtain the a posteriori

probability for the field / given the data g:

P(g\T)P(f)

P(.g)
(1)

where P(f) is the a priori probability for the field /, P(g]f) is the
conditional probability for the data g given / and l\g) is the
probability of g, wliich is independent of/.

Considering a multilook image, we assume for the conditional

probability P(g\f) a Caussian distribution (Cliitroub et al., 2002)
and we hâve

P(g\f) =

exp-
fé-fc)2

là1

C,
(2)

where c is the standard déviation of the Caussian distribution and

C, a normalization constant.

The probability P[f) is given by

exp- 0E(/s-/r)2
Cr.s>

(3)

where /? is a smoothness factor, C2 a normalization constant, and
the sum runs on ail pairs of neighboring sites. From (1) we obtain

P(f\g)= ^exp-U(f) (4)

where Z, also called the a posteriori partition function, is a
normalization constant and U{f} is the total a posteriori potential
function. which is written as

m = +/>£<&(5)
s (r^)

The related local conditional potential functions are given by

v,(f) = -ÿ+ P £ (fi -A)2 C6)
reV,

The a posteriori usual maximum (MAP) estimate is assigned to
the value / which maximizes (4), i.e. which minimizes the a

posteriori energy U(f) (Bratsolis and Sigelle, 2003). We accept as a
fast method of optimization a synchronous minimization of the
local potential energies which we named synchronous local
itérative method.

Our final TSPR filter is an itérative filter which uses the

équation given by

= Vnkl (?)

where * is the 2-D convolution operation. Titus, at each step the

current pixel value will dépend in a regularizing manner on its
neighboring ones, according to the magnitude of parameter X. lt is

also obvious that positivity is preserved when OsA^l.Kisa
normalized matrix given by

' 0 0.25

0.25 0

0 0.25

0 ‘

0.25

0

According to the notation of our method, it is évident that <r0 = gs
and <(To> = <&> = </s>-The TSPR method préserves the mean
values of local hoinogeneous régions and decreases the standard

déviation up to six times (Bratsolis and Sigelle, 2003).

4. The segmentation method

The purpose of segmentation is to divide the image into

spécifie régions that correspond to structural units in the scene
or distinguish objects of interest. These régions are characterized
by spatially connected, non-overlapping sets of pixels sharing
common properties.

In general, image segmentation is a classification problem. A
classification problem can be formalized as a pair (0,0), where O
dénotés a set of objects and C a collection of disjoint subsets

Ci Ci that partitions O. The problem is to détermine the subset

CjCC to which a given object oeO belongs. The supervised
method of minimum Euclidean distance uses the mean values

(or vectors) of each mernber and calculâtes the Euclidean distance
from each dassified object to the nearest class segmenting

the image into different régions of interest or different labels
(Richards, 1999). In our case we choose chree régions of interest:
dark lakes (black label), granular lakes (dark gray label) and local

background (light gray label). The TSPR filter can be used as an
intermediate step before the extraction of the régions of interest.

As Euclidean distance Itéré, we define the distance

de = (8)

where /q with i = l 3 présents the mean values (<oo>)
corresponding to three sampled régions of interest. The algorithm
is applied for every site s and for every value fs of the restored
(filtered) image. The value fi, which minimize the distance de
gives the characteristic label (black, dark gray or light gray) to the

segmented image of Ftg. 4, where fi, corresponds to -20.27 db,
fi2 to -18.64 db and fi3 to -13.78 db.

We begin our analysis with the Cassini SAR image (PIA08630,
NASA/JPL) acquired during the T16 flyby on July 22, 2006, at high
latitudes near the north pôle. This image is centered near 80"N,

92°W. Our image has dimensions 750 x 3100 in pixel size and the
pixel scale is set to 175.558 m per pixel ( ~256‘), but the actual
SAR resolution is around 350 m per pixel and the image has been
subjected to some interpolation. Cassini SAR images across this
région contain numerous very dark splotches with sharp-edged
boundaries, which may be filled with hydrocarbon liquid.

After using the despeckling filter TSPR we apply the segmentation

method. Figs. 1 and 2 illustrate the initial image derived form the
Cassini SAR while Fig. 3 is the filtering resuit of the previous image.

The despeckling TSPR filter is used to smooth out the multiplicative

Fig. t. Initial image of lakes (P1A08630, NASA/JPL) after subtraction of négative <r0.
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Fig. 2. Initial image of lakes (P1A08630, NASA/JPL) after subtraction of négative an and subtraction of values greater than <<r5 > +3 srdfoo).

Fig 4. Image ratio between the initial (Fig. 2) and the despeckled (Fig. 3) image.

Table 1

Characteristics of the sampled régions of interest.

Régions of interest Before filtering

<flo> ± std((T0) (db)
After filtering

<<Jo > ± sfci(oo) (db)

Région 1 (black) -20.27 ±0.44 -20.26 ±0.13

Région 2 (dark gray) -18.64 ±2.03 -18.53 ±0.69

Région 3 (light gray) -13.78 ±357 -13.19 ±1.32

noise of SAR images without missing important textural details from
the régions of interest. Consequently, Fig. 3 seems smoother than

Hg. 2. Hg. 4 depicts the ratio between the initial and the despeckle

image. In this figure the lakes' interior is presented smoother than
the surrounding area. This can be explained as the dark lakes are not

really speckled régions. From the initial data (and <To in non-
dimensional values) the samples of the région 2 (granular lake)

and the région 3 (local background) we take a value for the ratio

std{o0)l (aQ > equal to 0.4 and for the région 1 (dark lakes) equal to
0.05 which means that the région 1 is flatter than we were waiting.

The characteristics of the sampled régions of interest are listed
in Table 1.

We can see the segmentation results in Hg. 5, where the black
area corresponds to the dark lakes, the dark gray to the granular
lakes and the light gray to the local background.

5. Discussion

Titan is indeed an active planetary body and both endogenic

and exogenic processes hâve most possibly left their marks on the
surface. Hence, one should focus on the surface geomorphology in
order to identify any local tectonic field and estimate the

importance as well as influence of each forming mechanism.
The TSPR filter, in combination with the minimum Euclidean

distance method of supervised segmentation, can be used to

extract régions of interest on the surface of Titan, such as lakes
or seas using Cassini SAR images. Such despeckle filter can be
applied in studying other surface features on Titan like the
drainage networks, the équatorial dunes and the impact craters,
where different textures appear.

Our approach allows to isolate each distinct surface feature
from its surroundings and to study their distribution through out
the surface. Then, in combination with radiative transfer model-

ing using Cassini Visual and infrared mapping spectrometer
(V1MS) data, we can infer about the relation between surface

composition and morphotectonic structures. When we détermine
in a more accurate way the shapes of several surface structures,
we will be able to study their global distribution and perfonn

effectively classifications.

Since the Cassini mission extended its operational duration, new

swaths, overlapping the liquid areas, hâve shown that the lakes hâve
been evolving during the past years. Recent studies, focused on lake
Ontario, the largest lake of the Southern hemisphere, showed a
significant recession of its shoreline (Turtle et al., 2009; Hayes et al.,
2010; Wall et al., 2010) and support the hypothesis that these liquid
deposits are not stable structures but evolve with time by expanding
in winter and shrinking in the summer (Sotin, 2007). Applying the
segmentation method on the same area at various periods of time,
we can identify possible enhancements or réductions of the liquid

coverage of the région. In particular, the temporal variation of the

dark spots can provide information on the évolution of the lake
System and consequently help us to better understand the methane
cycle on Titan and therefore the mechanisms linked with the lake

surface features, their origin and fate, through a global temporal and
spatial coverage.

The passage from qualitative to quantitative results, requires

to apply the aforementioned method in the same régions of
interest with the same obsetvational characteristics at different

time periods in order to measure the surface each time.
Using this temporal dataset will help us evaluate the volume

variation through time and estimate the hydrocarbon loss rate,
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Fig. 5. Segmented image aller filtering.

a critical parameter for the global methane cycle (Atreya et al.,

2006}.
Cassini evolves in the Satumian System since 2004 and will

continue returning data until at least 2017 in the extended

mission. Althougli Cassini SAR recordings hâve unveiled new
characteristics of Titan’s surface, more advanced instrumentation

witli higher resolution is necessary to give a full picture of this
complex environment.

A new long-term mission to Titan which will perform efficient
in situ experiments in order to study widely the nature and the
dynamics of its environment would be required.

Several proposais hâve been studied to this end. Recently, the
2008 study of a flagship mission, Titan Saturn System Mission
(TSSM), focused on Titan and Enceladus exploration (Reh et al.,
2008; Coustenis et al., 2009). TSSM consists of an orbiter, a lake

lander and a balloon (montgolfière) and aims to a complété

investigation scrutinizing thoroughly the. whole satellite front
the exosphere to its interior. The montgolfière would contain
advanced instnimentation such as the Titan radar sounder

( > 150 MHz), which could perform a detailed surface investiga
tion. In addition to topography, the radars on botli the orbiter and
the montgolfière would provide extended information regarding
the lakes coverage. The proposed filtering and segmentation
rnethod in this paper would be a helpful tool in enhancing

the return of the analysis of ail SAR data acquired on Titan and
other objects as well as in the exploitation of future missions
to Titan.
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Appendix D2

Morphotectonic features on Titan and their
possible origin
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Spectro-iniaging and radar measurements by the Cassini-Htiygeas mission suggest that some of the

Satumian satellites may be geologically active and could support tectonic processes. In partimlar Titan.

Satum's largest moon, possesses a complex and dynamic geology as witnessed by its varied surface

morphology resulting from aeolian, fluvial, and possibly tectonic and endogenous cryovolcanic processes.
The Synthetic Aperture Radar (SAR) iastnimcnt on board Cassini spacecrafl, indicates the possibility for

morphotectonic features on Titan’s surface such as mountains, ridges, faults and canyons. The mechanisms

that formed these morpholcctonic structures are still undear since ensuing processes, such as érosion may
hâve modified or partially obscured them. Due to the limitations of Cassini Huygens in the acquisition of

in situ measurements or samples relevant to geotectonics processes and the lack of high spatial resolution
imaging, we do not hâve précisé enough data of the morphology and topography of Titan. However we

suggest that contractional tectonism followed by atmospheric modifications has resulted in the observed

morphotectonic features. To test the possibility of morphotectonics on Titan, we provide in this work a
comparative study between Cassini observations of the satellite versas terrestrial tectonic Systems and infer

suggestions for possible formation mechanisms.
© 2012 Elsevier Ltd. Ail rights reserved.

1. Introduction

Tectonic or structural geology is tlie fïeld of geological research
that focuses on the study of features observed on the crust of the

Eartli and that of other pianets investigating the processes, forces
and movements that resulted in thetn. Tectonism encotnpasses
geological events not caused by exogenous processes such as
érosion and meteoritic impacts. Tectonism being compressional or
extensional is related with important endogenous processes such as
terrestrial volcanism and most probably with extraterrestrial cryo

volcanism. Morphotectonics correlate landscape morphology to
tectonism (Rosenau and Oncken, 2009; Scheidegger, 2004; Lidmar-
Bergstrôm, 1996) by studying landform évolution and dégradation,

since tectonic features are subsequently subjected to exogenous
processes. Major morphotectonic features on Earth are represented
by mountains, ridges, faults and escarpments, as well as by
signifïcant types of linear features such as rifts, grabens and other
linear terrestrial terrains that are subjected to érosion subsequently
to deformational events (e.g., Scheidegger, 2004). However. geology
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on Earth is dominated by active plate tectonics where rigid litho-
spheric plates float and move on a plastic asthenosphere.

Although the other planetary bodies in our Solar System
possess different surface and internai conditions, bodies like
Titan, Europa and Enceladus may possess a Iiquid water layer

underneath their icy crust. If confïrmed, then similarly to rocky

plate tectonics on Earth, rigid ice plates may rupture and collide,
floating over such a Iiquid substrate layer, resulting in surficial
features, which may be reminiscent of terrestrial édifices. It is

therefore possible that other pianets and moons in the Solar
System harbor "tectonic activity" in varying degrees and even
exhibit morphotectonic features on their surfaces, which are
subsequently modified by exogenous processes.

Venus appears to hâve no plate tectonics due to a high surface
température and a higher density of its lithosphère compared to

that of the mantle, which prevents a subduction régime, despite
the fact that the mantle is convecting (Niinmo and McKenzie,
1998). However, the planet shows deformation and morphotec
tonic features such as faults, mountain crests and rifts, which

probably originated from lithospheric movements in association
with volcanism (Jull and Arkani-Hamed, 1995; Nimmo and
McKenzie, 1998). In the case of Mars, two major régions are
known to display morphotectonic features; the Tharsis volcanic
plateau, which was possibly formed after crustal deformation in
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association with active diapirism from the mantle (Mège and
Masson, 1996) and the Elysium région, which was a result of

volcanic activity (Hall et al., 1986). lo, Jupiter's moon, présents
morphotectonic features with no apparent association to plate
tectonic activity. The mountains of lo are formed by stresses at

the bottom of the lithospheric layer and subséquent uplift
through thrust faulting System (Schenk and Bulmer, 1998).

A good candidate for the study of morphotectonic features in
the Solar System appears to be Titan. With a diameter of 5150 km
(1/3 that of the Earth), Titan is the largest satellite of the

Saturnian System and the second in the Solar System, after

Ganymede the moon of Jupiter. The température and pressure
conditions at the surface near the equator are 93.65 ± 0.25 K and
1.467 +1 hPa, as measured by the Huygens probe Atmospheric
Structure Instrument (HASI) (Fulchignoni et al., 2005). Titan is
recognized as a world bearing several resemblances to our own
planet, with respect to its atmosphère and to its surface morphol-
ogy. Titan's dense atmosphère consists mainly of nitrogen

(~97%), methane (1.4%) and hydrogen ( --0.2%) with traces of
hydrocarbons, nitriles, oxygen compounds and argon (see
table 6.4 in Coustenis and Taylor, 2008). This complex atmo

sphère renders the surface difficult to access and analyze, apart
from within a few methane spectral Windows in the near-infrared
where the methane absorption is weak (Griffith et al., 1991).
Thirty-two years after the Voyager encounter in 1980, Cassini is
today able to probe Titan’s surface with a spatial resolution
reaching a few hundred meters per pixel (RADAR), while the
Huygens probe achieved the first in situ measurements in 2005

(for instruments and resolutions see Section 2). Even though

Titan’s surface morphology resembles that of the Earth, it is made
of materials and subjected to surface conditions very distinct
from the terrestrial ones. Indeed, morphotectonic features such as

mountains (e.g. Radebaugh et al., 2007; Lopes et al., 2010), ridges

(Soderblom et al., 2007b; Mitri et al., 2010), faults (e.g.,
Radebaugh et al., 2011), rectangular drainage patterns and cryo-
volcanic structures are most likely controlled, at least in part, by
tectonism (Burr et al, 2009).

Atmospheric processes, like cloud formation and précipitation
create extensive fluvial features on the surface, as observed by
Huygens near its landing site and constitute the visible part of an
active methane cycle (Atreya et al., 2006; Coustenis and Taylor,
2008; Lorenz and Mitron, 2008; Raulin, 2008; Brown et al., 2009;

Coustenis and llirtzig, 2009; Lebreton et al., 2009). The préserva

tion limit of 100 Myr for this atmospheric methane requires a
réservoir that would replenish occasionally the atmosphère
(Lunine and Atreya, 2008). One of the most prédominant théories
suggests that methane sources exist in Titan's interior (e.g., Tobie
et al., 2006; Fortes et al., 2007). Since volcanism is a major process
associated with the terrestrial carbon release (Bolin, 1981),

cryovolcanism may play a similar rôle in the methane supply
(Sotin et al., 2005), as well as significantly influence Titan's
surface morphology.

Geophysical models suggest that Titan's partially differen-

tiated interior consists of a silicate core (~1800km thick), a

high-pressure ice mantle (~400km), a liquid layer of aqueous
ammonium sulfate (50-150 km thick), and an external icy shell

100-170 km thick that possibly contains clathrate hydrates
(Tobie et al., 2005; Fortes et al., 2007; Grindrod et al., 2008).

Castillo-Rogez and Lunine (2010) suggested possible déhydration

of the core's hydrated silicates, which impacts the geophysical
structure of the satellite as well as the possible intentai océan.

Regarding the icy shell, the methane stored as clathrate hydrates
within the ice shell is a plausible methane réservoir that can
replenish the atmosphère via cryovolcanism (Sotin et aL, 2005).
Indeed, surface discontinuités such as faults and fractures, which

are probably the resuit of tectonic and volcanic-like processes,

could provide the pathways of internai methane release to the
atmosphère. The morphotectonic structures on Titan’s surface

provide good evidence of such a mechanism, in the same way as,

over extensive zones of geological weaknesses, magma and
volatiles are released on the Earth's surface.

In the last eight years, despile continuous observations by

Cassini and the development of models and interprétations based
on them, we still lack long-term in situ measurements and
geophysical data of Titan's interior, in order to be in a position
to accurately evaluate its endogenetic potential and how it affects

morphotectonic features. However, in this work we attempt to
use similarities between the surficial morphotectonic features on
Titan and on Earth as the key for deciphering Titan's endogenetic
processes, in spite of the fact that our understanding of Earth's

endogenetic processes is rather recent (Wilson, 1973).

2. Titan surface observations

From the interprétation of Voyager 1 recordings, a global
océan of dissolved ethane and nitrogen, several kilometers deep,
was first assumed to cover the entire surface of Titan (Flasar.

1983; Lunine et al., 1983). However, ground- and space-based
observations refuted this assumption by unveiling, within the
methane "Windows" of weaker methane absorption (centered at

0.94, 1.08, 1.28, 1.59, 2.03, 2.8 and 5 pm), a solid surface with

heterogeneous bright and dark features (Muhleman et al., 1990;
Griffith, 1993; Smith et al., 1996; Gibbard et al., 1999; Meier et al.,

2000; Coustenis et al., 2001). The Cassini orbiter arrived at the

Saturnian System in 2004 equipped with two spectro-imagers
capable to probe down to the surface via several of the near-
infrared Windows: the Visual and Infrared Mapping Spectrometer
(V1MS—with a typical resolution of 10-20 kin/pixel) and the

Intaging Science Subsystem (ISS—with a typical résolution of
1 km/pixel). In the scope of this paper we also make use of the

RADAR data from Cassini with a spatial resolution from 300 m to
1.5 km/pixel. In addition, Huygens probe measurements

and observations by the Descent Imager Spectral Radionieter
(D1SR—Tomasko et aL, 2005), the Surface Science Package
(SSP—Zarnecki et al., 2005), and the Cas Chromatograph Mass

Spectrometer (CCMS—Niemann et al., 2005, 2010) provided
additional information of Titan's geology. The actual landing site

on the Saturnian satellite appears to be a relatively soft surface
similar to tar or dry sand, tinted by methane ready to evaporate
and providing ample evidence for fluvial and aeolian processes.

2.7. Surface expressions

2.1.1. Geological features formed by non-tecronic processes
Endogenous, as well as exogenous dynarrüc processes hâve

created diverse terrains with extensive ridges and grooves, impact
units, icy flows, caldera-like structures, layered plains and stable
liquid lakes (Mitri et al., 2007; Stofan et al., 2007). In addition,
Cassini's radar has partially revealed the topography of Titan’s
surface, indicating several types of surficial expressions, which
are non-tectonic. Features like dunes, lakes and drainage network
are attributed solely to fluvial, aeolian and impact processes
(Fig. 1). Thus, their formation is the resuit of exogenous processes
with no influence of internai activity.

2.7.2. Morphotectonic features

Cassini's remote instrumentation and the Huygens lander
brought evidence of many features on Titan’s surface, which were

probably formed by extension or compression of parts of the
planetary solid crust due to endogenetic geological and geophy

sical processes (Radebaugh et al., 2007; Soderblom et al., 2007b;
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Surface features on Titan (a) Hydrocarbon tiquid lakes at the North pôle (Cassini Radar Mapper, JPL, ESA, NASA), (b) Complex network of narrow drainage channels
formed by fluvial processes near the Huygens probe landing site (NASA/JPL). (c) Sand dunes formed by aeolian processes (NASA), (d) Afecan (26’N, 20CPW) impact crater,
discovered in 2008 (NASA/JPL).

Lopes et al., 2010). Furthermore, these features can be modified
under the influence of exogenetic processes: the résultant nior-
photectonic structures are mainly mountains, ridges, faults, and
structures of probable cryovolcanic origin as we will argue further
down. Titan, despite its small size, displays surface features that
resetnble the structure of terrestrial volcanic fields albeit they are

much more extensive. For example, Hotei Regio (see Section 4.2)
covers an area of 140,000 km2, which is an order of magnitude
larger than Harrat Khaybar (14,000 km2) in Saudi Arabia, which
represents one of the most extensive volcanic fields on Earth
(Camp et al., 1991).

2.2. Silicate and icy tectonism

A surface feature largely owes its shape to the material composing

the planetary body's crust and to the forces tirât formed it. The
response of the trustai material to the applied stresses, defines to a
large extent the main topographie terrain of an area, along with the
atmospheric conditions. Even thougli geological features such as
mountains, faults and rifts on Titan présent similar Visual character-
istics, the type of material that builds the features plays an important
rôle. Indeed, the properties of the source material such as viscosity,
elastirity and density in addition to the geological forces control the

structural characteristics of the feature such as height, expansion and

gradient slope.
On Titan, the surface should probabty be composed mainly of

mixtures of water and other ices, organics-tholins, nitriles (e.g
Soclerblom et al„ 2007a), while, most likely, its interior is composed

of rock and high-pressure ice (Tobie et al, 2005). Since the well-
known tectonic features of Earth are dosely linked to silicate geology,
we must first assess the similarities and différences between water

ices and silicates, so that our comparative study can be based on

reasonable assumpdons. The icy crust of the outer System satellites

possibly reacts in a brittle fashion to the application of stresses,
similaiiy to the Earth's rocky upper crust (Collins et al., 2009). Both on
Titan and Earth this reaction changes in proportion with dejxh.
However, while water ice and silicate rock exhibit similar frictional

strength (Beeman et al., 1988), wlien ductile yielding becomes
important, ice is about ten times weaker than silicate rock (Melosh
and Ninuno, 2011). The major différences and similarities between
water ice and silicates are noted in Collins et al. (2009) and
summarized in Table 1.

Table 1 shows that silicate materials, when compared to water ice,

exhibit higher viscosity, Young modulus i.e. the ratio of linear stress to
linear strain and melting température, but display lower density. As a
resuit, the homologous température, on which rheology dépends, is

reached at greater depths in silicate environments while silicate
magma éruptions are statistically more possible to occur than
emptions of ice (Collins et al., 2009). Nevertheless, both icy and
silicate Systems seem to follow some similar general deformation
principles and mimic each other’s behavior. Also, since ice topography
could viscously relax over géologie time (e.g Dombard and
McKinnon, 2006) and elastic, brittle and ductile deformation could
occur in the icy crust, tectonic-like movements, resembling the

silicate plate behavior, are plausible.

3. Morphotectonic observations of mountains

3.1. Mountains and ridges

RADAR, VIMS as well as D1SR data hâve provided some details of
the characteristics of Titan's mountains and ridges. The term moun

tain describes large uplifted localized landforms while the term
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Table 1

Comparison between silicate and ice properties.

Properties Waterice Silicate Slmllarlty

Homologous température 0.4 0.4 Yes

Melbng températures 273.15 K 950-1500 K No

Density Low (in solid State) High No

Young Modulus -lOCPa -lOOGPa No

Low stress and strain Elastic deformation Elastic deformation Yes

High strain. low température Brittle deformation Brittle deformation Yes

Low strain, high température Ductile deformation Ductile deformation Yes

Table 2a

Major mountain and ridge features on Titan.

Location Orientation Heights Characterizatlon Flyby/Tlme Instrument (reference)

10"N, 15‘W 380-570 m Blocks of mountains T3/february 2005 RADAR (Radebaugh et aL, 2007)
15-N. 45®W

20«N. 87'W E-W -300 m Ridges T3/February 2005 RADAR (Williams et al.. 2011)
40*S, 340°W

5*S. 12.5#S 63®W, 67®W E-W - 860-2000m

Hills

Curvilinear mountains/Ridges
T7/September 2005
T8/October 2005

RADAR (Lunine et aL. 2008)

RADAR (Radebaugh et al., 2007; Mitri et al.,

10®S. 210°W —400 m Mountainous région T9/December 2005

2010; Lopes et al.. 2010)

VIMS/RADAR (Barnes et aL. 2007)

10.4’S, 192.4'W W-E 100-150m Ridges

T13/April 2006
Huygens/January 2005 DLSR (Tomasko et al., 2005; Soderblom et aL, 2007b)

30«S, 315<W NW-SE —1500 m Mountain ranges T20/Clctober 2006 VIMS (Sotin et ai., 2007)
52’N, 347°W E-W -1400 m Mountain block T30/May 2007 RADAR (Stiles et al.. 2000; Mitri et al.. 2010)
30®S, 107°W S-W --800 m Mountains T43/May 2008 RADAR (Mitri etaL, 2010)
2-S. 127°W E-W 1930 m Ridges T43/May 2008 RADAR (Mitri et ai., 2010)

Table 2b

Proposed mechanisms for the formation of mountains and ridges of Titan.

Proposed mechanlsm Description Observations Tenrestrial analog

Lithospheric shortening

(Mltri et al., 2010)

Tectonic stresses of the ice

Shell (Mitri and

Showman, 2008)

Crustal compression/

upthrust blocks
(Radebaugh et aL.
2007 scénario 1)

Crustal stresses/upwelling

of material (Sotin et al.,
2007)

Crustal extension (Tobie

et al., 2006; Radebaugh

et al.. 2007 scénario 2)
Blocks of impact ejecta

(Radebaugh et aL,

2007 scénario 3)
Dissection and érosion

(Radebaugh et aL,
2007 scénario 4; Lunine

et al.. 2008)

Folding of the upper crust due to past high heat flux from the

interior and high température gradients in the ice Shell

Transitions of the ice shell over a liquid subsurface oceaa
from a conductive State to a convective State, causes tectonic

stresses and movements that influence the surface

Localized compression due to thickening of the crust linked

with the cooling ofTitan at areas where fault structures exist

Curvilinear

mountains/

Ridges
T8, T30, T43

Model

Génération of extensive stresses that penetrate the icy shell

and create pathways for the internai material

Recent crustal thickening due to localized extension

Déposition of ejecta blocks around craters in a radial manner

Erosion and incision of terrains that form régional uplifted
structures

Linear

mountains

T8.T3 (15*N.
45°W)

High-

standing
mountain

ranges

T20

Blocks and

grabens
T8

Blocks of

mountains

T3

Mountainous

région
T13

Folded mountains: Rocky Mountains, North America

Rocky Mountains. North America

Eroded mountains: Acadian Mountains, USA

Mountain-building due to Sevicr/Laramide Orogeny

Tectonic and magmatic aspects on geological terrains:

Mid Atlantic Ridge. Atlantic Océan

Ahaggar Mountains. North-central Sahara Desert

Mountains due to extension: Basin and Range Province

(Harcuvar Mountains, Cila Mountains, Maricopa

Mountains) (Radebaugh et al., 2007)
Ejecta patterns: Meteor crater, Arizona

Erosional geomorphological structures: Colorado Plateau,

USA (Lorenz and Lunine, 2005; Radebaugh et al.. 2007). It

is dissected by a number of long north-south trending
normal faults while deep entrenchment of streams and

differential érosion hâve formed high standing crustal
blocks

mountain ridges (in this paper we will refer to mountain ridges as

ridges), cliains of elevated (uplifted) ground that extend for some
distance The major mountains and ridges on Titan are listed along
with their location and observational characteristics in Table 2a.

Table 2a points at two intriguing aspects: mountain-like
édifices exist at almost ail latitudes on Titan; however, they are

concentrated in the équatorial région at latitudes between 30"S

and 30"N (topes et al., 2010). Their height is significantly lower
than that of the terrestrial mountains ranging from 100 to 2000 m
(Barnes et al., 2007; Radebaugh et al., 2007; Soderblom et at,

2007b; Sotin et at, 2007; Mitri et at, 2010). This inay be partly
due to erosional processes, as it is suggested by the blanket-like
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Fig. 2. Major mountainous régions on Titan, (a) Mountain extends for almost 240 km (NASA/JPL). (b) Long bright ridges with multiple mountain peaks were observed in T8
on October 28, 2005 (linear mountains extend from 13-5“S to 198-225"W) (e.g„ Radebaugh et al., 2007; topes et al, 2010), and extend over 480 km (NASA/JPL) (c) Three
radar bright parallel ridges (2’S, 127JW) within the mountainous area of Xanadu from T43 of May 12. 2008, the length of the image is almost 400 km (e.g,. Mitri et aL,

2010) (NASA/JPL/Space Science Institute).

materials that surround these structures (Radebaugh et al., 2007).
Alternative hypothèses include the construction of Titan's moun
tains with materials with properties preventing height growth
(Radebaugh et al., 2008) and the effects of high température
gradients on the ice shell which, according to the calculations of

Mitri et al. (2010), resuit in mountains from 100 to 2700 m high.

Similarly to Earth where terrain topography is defined by the
interaction of tectonism and érosion (Montgomery and Brandon,

2002), we suggest here that there is a strong connection between
slope morphology and erosional rates on Titan due to its extreme
conditions of hydrocarbon rainfall and/or winds.

Fig. 2 présents three portions of the T8 and T43 RADAR swaths

that provide the most reliable evidence so far for the existence of
mountains and ridges on Titan.

3.2. Related mechanisms and terrestrial analogs

The mechanisms for mountain formation on Titan are sum-

marized in Table 2b and include pure extension (Tobie et al.,

2006; Sotin et al., 2007; Radebaugh et al., 2007—scénario 2), pure
compression (Radebaugh et al., 2007—scénario 1; Mitri et al.,
2010) and transitions between compressional and extensional

stresses (Mitri and Showman, 2008). Extensional deformation is
observed on ali icy moons, but if orogenesis on Titan can be

attributed to compressional forces this will render Titan unique.
Orogenesis in the terrestrial analog is predominantly a com

pressional event due to the coming together of the lithospheric
plates floating on the plastic asthenosphere. The phenomenon is
attributed to global convection initiated from the liquid external

core and might not be random but with peaks related to the orbit
of our Solar System around the galactic center. Terrestrial orogen
esis results in forms and tectonic structures such as folds and

thrust faults. Such compressional structures are represented by

the mountain chains of the Rocky Mountains, the Andes and the

Himalayas. Fig. 3 shows the Rocky Mountains, an almost 5000 km
long mountain chain, extending from Canada to the western

United States. This région was formed by subduction of the Pacific

plate beneath the North American plate (Bird, 1998), when two
tectonic plates of different densities sank one beneath the other

inducing internai compressive forces within the plates. Mitri et al.
(2010) argued for Titan that ice floes of altered densities, moving

on a liquid layer. could reproduce structures and simulate
phenomena similar to subduction. If this hypothesis is confirmed
in the near future by geophysical measurements and modeling,
and under the assumption that ice floes would react exactly like
silicate plates to the stresses simulating subduction, something

not impossible as shown in Table 1. then we may infer that what
we see on Titan is an Earth-like mountainous terrain with peaks

and extensive ranges.

Formation of mountains due to extension on Earth is repre
sented by the classical example of the Basin and Range area and
other examples listed in Table 2b. The geomorphology of Basin

and Range (Hawkesworth et al., 1995) consists of separate and

semi-parallel mountain ranges as seen in Fig. 4. The formation of
the area is attributed to crustal extension and associated devel

opment of large faults along which mountains were elevated and

valleys hâve subinerged. These endogenous tectonic processes

resulted in a geological terrain characterized by morphotectonic

Please cite this article as: Solomonidou, A., et al., Morphotectonic features on Titan and their possible origin. Planetary and Space

Science (2012), http://dx.doi.Org/10.1016/j.pss.2012.05.003

435



6 A Solomonidou et aL/ Planetary and Space Science l fm) m

Fig. 3. Rocky Mountains, USA (a) in LandsatTM scene with DEM data (Crédit: Fédération American Scientists FAS). (b)3-D perspective view by combining two spacebome

radar images (PIA01840 NASA/JPL).

Fig. 4. (left) Fault-block mountains on Titan (portion of Fig. 2b)(PlAQ3566 NASA/JPL) formcd possibly through crustal extension (Radebaugh et al., 2007). (right) Relief map

of the Basin and Range province in west-central Nevada (USGS) displaying the parallel ranges and valleys created by crustal thinning and fracturing by extensive stresses.

features sucli as linear mountain ranges and valleys. Fluvial,
aeolian and otlier exogenous processes subsequently modified
these features.

However, convective stresses on silicate bodies tend to be larger

and tlieir rheological length scales are typically greater (Table 1).

In Titan therefore it is essential to note that local/regional ratlier
than global stress mechanisms are commonly suggested in the
models for mountain building. Régional or local stress mechanisms

invoked in these models include (a) convection, which dépends in
the ice shell thickness, (b) local gravity, and (c) ice viscosity, which
dépends on the température and mostly on the grain-size (Barr and
Pappalardo, 2005; Collins et aL, 2009). Indeed, on large icy satellites,

layers of high- and low-pressure ice may convect separately
(McKinnon, 1998).

Among the local stress mechanisms presented above, one can
include latéral pressure gradients that may hâve as a conséquence
the latéral flow of floating ice shells on their low viscosity base.
Rigid ice floes rupturing and colliding are reminiscent of plate
tectonics albeit in a randont fashion. This could lead to the

création of blocks of high-standing topography that would sub

sequently be subjected to erosional processes. Such elevated
morphotectonic features on Titan, as mountains, ridges, hills
and ranges, indicate a formation preference around the équatorial
zone of the ntoon (Barnes et al., 2007; Radebaugh et al., 2007;

Mitri et al., 2010).

4. Morphotectonics of faults and transverse processes

In this section, we describe Titan's morphotectonic features as
a combination of a formation process and one or more

superimposed "transverse processes" that occurred at the same
time or subsequently, modifying the initial shape of the feature.

4.1. Tectonic contrat on Titan's linear features: Faults, fractures,
canyons and drainage networks

In geology, a failli is a rupture that séparâtes a rock unit into two

parts, moving one relatively to another, in a microscale or a whole
field in a macroscale. A variety of geological processes are associated

with faults and therefore their analysis is very important For
instance, geologists consider the direct relation of earthquakes with

faults, or the pénétration of igneous rocks on Earth’s crust along

faults, or also the interaction of faults in the development of

sedimentary basins. On the other hand, canyons are another ty|>e
of cmstal scars, formed on Earth by the accelerated érosion by rivers

entrenched aller tectonic activity and trying to reach base-line
élévation (Schumm et al., 2002). On Titan the observed faults,

fractures, canyons and ground linéaments are most likely the results

of crustal movements due to tectonic and/or volcanic processes as
well as structures associated with fluvial networks controlled by

tectonism (Table 3). An investigation of canyon fonnation can
augment our understanding of Titan's geology. A study in 2009 by
Burr et aL (2009) provided evidence on the influence of subsurface
tectonic activity on drainage patterns as observed by SAR data.
Based on that, we can infer that these fluvial networks are

morphotectonic features since there are indications that both

tectonic and fluvial processes operate for their formation. Titan
studies based on observations and mapping, hâve suggested the

presence of fault formations. Table 3 suinmarizes tlieir major

observations by Cassini.
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As expected from the study of other icy satellites, the majority
of formation mechanisms suggest extensional style tectonism. In
the. areas where fluvial networks seem to be controlled by

tectonic patterns, tire surface material seems to hâve the proper
elasticity to create linear fractures. At the Huygens landing site, as
proposed by Soderblom et aL (2007b), the linear structures can
function as the idéal path for the hydrocarbon liquids to escape
towards the surface. Furthennore, the observed radial fault

System around the possible calderas of Hotei Regio (Soderblom
et al., 2009), argue in favor of cryovolcanism since the identifica
tion of radial faults around caldera formations also on Earth, are

indicators of ground élévation due to volcanic activity.

Fig. 5 displays a complex feature on Titan (71'S, 240°W),
which — even if it is not confirmed by radar data Processing

yet — it appears to be a canyon-like morphotectonic feature since
it consists of a sinuous dark, rather narrow feature with tributary-

like off shoots and it is limited on ail sides by high albedo i.e.
elevated terrains (e.g. Radebaugh et aL, 2007). The morphology of

the bright and the dark shape of this région resembles the
terrestTial analog, which is the Grand Canyon in the United States.
This terrestrial feature is adjacent to the Basin and Range Province
that was mentioned earlier. The formation of the Grand Canyon
on Earth is the end resuit of the extensional tectonics that formed

the Basin and Range Province and of continuous rifting and
érosion (Sears, 1990).

From Table 3 we can distinguish a tendency for preferential
formation of these features between 10°S and 26°S, that is, within

the zone where mountains are formed. Such observations imply

crustal movements are more frequent within this zone than

around the pôles, including compressional and extensional stres

ses. However, Titan's liinited-coverage observations (less than

50% of the surface), with instruments incapable of precisely

uiweiling its geology, make this aspect a subject for future
exploration.

4.2. Cryovolcanism and association with morphotectonics

Plate tectonics and volcanism are strongly associated on Earth
(McDonald, 1982) and this can also be the case on Titan in the

presence of tectonic features overlying a liquid water océan.
These can function as leading 'pathways' for the ammonia-

water cryomagma to reach the surface and for the release of

methane. Liquid pockets with inethane clathrates and with a high
ammonia mass concentration in a water solution can dissociate in

the ice Shell and eventually exsolve on the surface and in the
atmosphère (Tobie et al., 2006; Mitri et al., 2008). Hence,
cryovolcanism can also act as the dynamic force that deforms
tectonic features. Cryovolcanism is believed to represent an

important geological process in the history of several icy Satur-
nian satellites and other icy satellites, such as Triton (Kargel,

1994; Fagents, 2003; Lopes et al,, 2007a). Caidos (2001) stated
that tectonic extension could trigger cryovolcanic éruptions by
reducing the minimum normal stress in an aquifer to a value

Table 3

Major fault, fracture and canyon formations on Titan.

Location Chara cterlza tlon Proposed mechanism FJyby/Tlme Instrument

(reference)

15*S, 155"W Conjugate-like faults i. Large scale tectonic modification of bedrock material.

ii. Fluvial sapping of bedrock that enlarges tectonic zones of weakness.

TO/July 2004
TA/October
2004

TB/December
2004

ISS (Porco et al.,

2005)

10-S, 145*W

(TN. 18(TW

Joints and/or faults Control by a subsurface tectonic structural fabric due to orbital processes (diurnal

tides, non-synchronous rotation: tensional stresses)

T13/April 2006

T44/May 2008

RADAR (Burr

et al.. 2009)
10°S. 192“W Linear fault patterns/

canyon-like formations
Preexisting faults reaclivated from cryovolcanism and ftlled with deposited
material and formed canyon-like Systems

Huygens DISR/
january 2005

DISR (Soderblom

et aL. 2007b)

i5*s, ioo°w Lithospheric fault-blocks Extensional crustal stresses Model (Radebaugh
et al.. 20in

26®S, 78 ’W Radial fault System i. Hot plume uplift and crust elevation-fault formation due to extension
stresses.

T47/November
2008

VIMS (Soderblom

et aL. 2009)

ii. Large ancient impact crater.

Fig. 5. (left) Radar image showing canyon-like Systems on Titan (71*S, 240°W) (P1A12036 NASA/JPL). (right) Massive canyon formation on Earth. Grand Canyon, USA (USGS).
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below the pore pressure. On Titan, a few topographie features are
candidates for large volcanic édifices (Table 4).

The mechanism of cryovolcanism resembles terrestrial type
volcanism, however the cryomagma dilTers from the terrestrial

magma in composition, texture and température. Indeed, the

cryomagma i.e. aqueous solutions of ammonia, methane, salts,

etc., can be found at températures well below the freezing point
of pure water and degassing replaces the traditional silicate
volcanism. Cryovolcanic structures are openings, or ruptures, on
a pianetary surface or crust, allowing for various internai products

like water, other Chemical components, gases and cryoclastic ash
to escape from the planet's interior (Fortes et al., 2007).

On Titan, internai heating due to radiogenic decay and tidal
forces along with pressure fluctuations may trigger cryomagma
éruptions. The cryolava déposition would then happen at tem

pératures much lower than the terrestrial ones (Davies et al.,

2010). In general, the températures of most terrestrial magma
types range from 1150 to 1470 K while a plausible range of the
Titan cryomagma températures is between 177 and 239 K (Mitri

et al., 2008). Besides prédictions front theoretical modeling we
also hâve surface features indicating possible cryovolcanism on
Titan. Indeed, lobate and fan shaped features seen in radar images
hâve been interpreted as cryovolcanic in origin, as for instance,
the lobate circular structure of Ganesa Macula (5CPN, 87“W)
(Lopes et al., 2007a). The structure contains bright rounded

features, interpreted as cryovolcanic flows, while the curved or
linear shapes are linéaments that could be caused by élévation of

the crust due to cryovolcanic activity (Lopes et al., 2007a). Other
such features like Tui Regio, Hotei Regio and Sotra Facula are

more extensively discussed hereafter. The identification of cryo
volcanic structures is rendered difficult mainly for two reasons:

firstly, the masking of cryovolcanic features by the interaction
with major exogenetic processes, e.g. by fluvial or aeolian depos-

its (Lopes et al., 2010). As an example of the latter case, Lopes
et al. (2010) report in the Winia Fluctus (dS^N, 30°W) a dune field,
which has partially covered a cryovolcanic édifice. Secondly, the
Cassini instrumentation with relevance to cryovolcanic investiga

tions (SAR and VIMS) is not adéquate on terms of spatial and
spectral resolution (Elachi et al., 2004; Brown et al., 2004).

However, we hâve currently some cryovolcanic candidate

features. The most probable ones are three areas located close

to the equator. Tui Regio, as well as Hotei Regio, lie within the

bright région of Xanadu (100°N, 15“S), a large, reflective équator
ial area. Tui Regio présents relatively high 5-p.m reflectivity and
its size is 1500 km long and 150 km wide (McCord et al., 2006). lt
is a massive flow-like terrain, which resembles flow fields in

volcanic areas on Earth. In 2006, Barnes et al. (2006) noted tliat
there are two bright and long areas within Tui Regio that are fïlled

with a material darker than the surrounding terrain, forining a

trench. These areas, located within the northwestem portion of
Tui Regio’s flow and including the trending dark linear marks

(Fig. 6), may hâve a régional tectonic origin (Barnes et al., 2006).
Additionally, the latter authors pointed out a linear dark feature

with similar spectral behavior which surrounds the Southern
bright région, suggesting chat it might also be formed by régional
tectonics. A recent and very reliable candidate for cryovolcanic
activity is Sotra Facula; an area 235 km in diameter including a
1 km high mountainous peak next to a 1.5 km wide crater-like

feature from which lobate flows seem to originale (Kirk et al..
2010; Lopes et al., 2010). Indeed, this area displays varying
topography with adjacent uplifts and pit features suggesting
probable tectonic control. Hotei Regio is also another candidate

for the presence of tectonic features within a probable cryovol

canic région (Wall et al., 2009). Hotei Regio extends over 700 km

and includes a 1 km wide topographie dépression, characterized
as a basin fïlled with flow-like features, a ridge-like mountainous
terrain that surrounds the basin, dendritic channels, two caldera-

like structures, dark blue patches (as seen in VIMS infrared
images; a color that suggests enrichment in water ice), and
possible alluvial deposits (Soderblom et al., 2009). Hotei Arcus,
a bright arc in the Southern margin of Hotei Regio, may represent
a heavily eroded crater (Barnes et al., 2005). This assumption

reinforces the hypothesis of interplay among the different types
of processes. Soderblom et al. (2009) correlated VIMS and RADAR
images in order to unveil the geological history of this area. Their
interprétation suggests that a wide range of processes occurred —

or are still occurring — in this varied terrain, including tectonism.
Furthermore, they suggested that impact-induced faults created

Table 4

Candidates of major cryovolcanic features on Titan and their association with volcanotectonic processes.

Location Name Description Possible tectonic features

20"S. 13CPW

26°S, 78*W

15-S. 42°W

Tui Regio

Hotei Regio
Sotra Facula

Flow-like région
Volcanic-like terrain

Volcanic-like terrain

Trending dark linear marks on VIMS data (Barnes et al., 2006)

Circular tectonic features (Soderblom et al., 2009)
Topographie élévation, mountain-like structures (unidentified) (Lopes et al.. 2007b)

Fl*. 6. Area on Tui Regio (left) with possible tectonic inlluence; two dark patches on Hotei Regio (middle) assumed to be volcanic caldera ridges (NASA/JPL/University of
Arizona); Harrat Khaybar (right), massive volcanic terrain in western Saudi Arabia on Earth; the dashed Unes indicate the linear trend of the volcanic vents suggesting
tectonic control (NASA).
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zones of weakness on which volcanism and tectonism occurred.

The two dark morphotectonic features (Fig. 6) nortli of Hotei

Regio, are interpreted as cryovolcanic calderas by Soderblom et al.

(2009).

A terrestrial région that appears to resemble the évolution of

Hotei Regio is Harrat Khaybar, located in north of Médina in Saudi
Arabia. It is a 14,000 km2 volcanic field that was fornted by
éruptions along a 100 km N-S linear vent System. The area
contains multiple volcanic rock types, lava flows, and volcanic
structures such as calderas and dômes (e,g., Baker et al., 1973).

The internai mechanism that most likely formed the terrain is a
mantle plume causing diffused lithospheric extension (Chang and

Van der Lee, 2011). The association of the volcanic centers that lie
over a linear zone of weakness with the Red Sea transforin fault

i.e. conservative plate boundary—where plates slide past each
other along transfomi faults, characterizes them as geological

structures that are presently active (Rehman, 2010). This suggests
that local movements of parts of the crust, probably affect areas of

great extent like Hotei Regio and Harrat Khaybar, even if they are
not located precisely in the cerner of the active area. In the case of
Harrat Khaybar, the adjacent Red Sea fault continues to propa-
gate: its rifting causes seafloor spreading, triggering the volcanic
centers of the région (Camp et al., 1991). Such a process illustrâtes
the relation between the terrestrial volcanic terrains and tecton

ism, a relation that seems possible for Titan’s case as well.

Tui Regio, Hotei Regio and Sotra Facula are ail located in the
15°S-30°S latitudinal zone which is close to the Southern margin
of Xanadu (Soderblom et al., 2009), implying that the région

might be an extensive zone of crustal weakness. The existence of

possible volcanic and tectonic features within a spécifie area seem
to be manifestations of the most active région of Titan like the

boundaries of tectonic plates on Earth. Although still under
investigation in Titan’s case, the definite identification and under-

standing of morphotectonic features in these régions is crucial in
order to détermine the presence and origin of zones of crustal

weakness, which will in turn impose additional constraints on
cryovolcanism on Titan, lndeed, on Earth, as well as on other

pianetary bodies, the interplay of volcanism and tectonism causes
the formation of extensive and distinct geological terrains.

The moons ofJupiter, Europa and Canymede, possibly also display

similarities with the morphotectonics of Earth (volcanism-tectonism)
and of the Saturnian icy satellites (cxyovolcanism-tectonism) Fig. 7a
shows Europa’s ridges, junctions and dômes, as seen by the Galileo

instrument Solid State Imager (SSI) which are typical geological
expressions on this moon. The ridges are most likely formed by

cryovolcanic processes probably causing déposition of subsurface

materials over surface units, accompanied by tectonic movements,

that formed the linéaments (Figueredo and Greeley, 2004) This
extensionai volcano-tectonic mechanism is similar to the terrestrial

mid-oceanic rifting (Prockter et al., 2002). On Ganymede, volcanic
processes may hâve occurred in the past, but current evidence
suggests the presence of tectonic processes (e.g, Head et al., 2002).
The linked tectonic-cryovolcanic hypothesis suggests graben rupture

(depressed block of ice bordered by parallel faults) due to lithospheric

extension and cryovolcanic déposition caused by flooding of
the internai material (cryovolcanic resurfacing) (e.g., Schenk and

McKinnon, 1985; Murchie et al., 1986). Also fault blocks operating

as zones ofweakness can act as pathways for the bright material onto

the surface while the caistal movements could produce the bright

ridges (e.g, Head et al., 1997, 2002) (Fig. 7b).

Ganymede, and partially Europa, are the targets of a future
mission proposai to thejovian System, which will, among others,
could explore the icy moons' interior heat potential, as well as,

the surface motion and morphology, with improved and
enhanced instrumentation in order to better understand their

surface composition, internai structure, dynamics and the mor

photectonics. Further investigation and comparison of the mor
photectonic features of many of the icy satellites will shed light

on the potential different internai mechanisms that operate in the
Solar System.

5. Discussion

The morphotectonic structures presented here are related to the
most elevated, as well as the most fractured features observed on

Titan. Major mountainous régions are concentrated in mid-latitudes
between 30°S and 3CFN and probable cryovolcanic areas are located

within the same zone (20"S-30CS) Linear features are displayed ako
within the same région (10'S-26°S). Fig. 8 represents a location map
of the major morphotectonic features presented in this study.

We hâve argtied here that ail these features are related to
surface stress (ïelds. In analogy with terrestrial morphotectonic

structures, the shape, size and morphology of Titan's observed
mountains, ridges, hills and linear features such as faults, major
fractures and canyons probably originale through some form

Fig. 7. (a) Europa s major geo-structures that may hâve formed due to volcanic and tectonic processes acting together (NASA/JPL-Caltech). (b) Ganymede’s grooved and

tectonic terrain (NASA/JPL/Brown University).
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compressional and extensional tectonic activity. Titan's rigid crust
and the probable existence of a subsurface océan create an

analogy with terrestrial, at least surficial, plate tectonics.
If in future missions a number of Titan’s surface features are

definitely identified as a resuit of compressional processes, as it
has been proposed here, and despite the fact tliat large stresses
are required to form compressional features (Pappalardo and
Davis, 2007), then this will render Titan unique among the rest
of icy satellites where extensional features are dominant

(Jaumann et al., 2009) and will ratify the thesis of Mitri et al.

(2010) that some of Titan's mountains represent folds and/or
thrusts.

On the other hand, in regard to the extensional features on

Titan as compared to their terrestrial analogs one may question if
there are some essential différences in the development and
propagation of fractures in the icy crusts vis-à-vis the silicate
crusts.

However, before addressing these questions, one should initi-
ally examine which factors control tectonism on a planetary
body; essential stress mechanisms that can be either global,
régional and local. Global stress mechanisms include tides, non-

synchronous planetary rotation, polar wander, despinning, orbital
recession and radiogenic decay. One major stress mechanism is
provided by convection. Another array of mechanisms is due to
volume changes up to the large density contrast between ice-l

and water and is applicable to icy satellites (Collins et al., 2009).
Finally, “impacts" represent another local stress mechanism. To

global, régional or local stresses, Solar System bodies and parti-
cularly their crusts may react in a brittle, ductile or more rarely
elastic fashion, producing corresponding landforms. In this
respect it is essential to compare and contrast the mechanical
properties of icy and silicate crusts, as well as, the order in which
stress mechanisms occur, to lind corrélations between the mor-

photectonic features on Earth and those on Titan (Radebaugh
et al., 2007; Collins et al., 2009).

Thus, a question arises: is there some essential différence in
the development and propagation of faults in the icy crust with
respect to a silicate cnist? As indicated in Table 1, ice and silicates

mainly share a similar crystal structure, differ in melting tem
pérature but when ice involves water and methane, an additional

similarity with the silicates is found in the three physical States of
the material (solid, liquid, gas).

Earth and Titan share ail the global stress mechanisms and

sources of internai heat such as radiogenic decay, heating by
applied tidal forces and primordial heat.

However the analogy probably stops here since Earth has
preserved a capital of its primordial heat. The outer core of the

Earth with a thickness of 2890-5150 km has a température range
of 4400-6100 °C, similar to the photosphère of the Sun. Further-

more the total heat flux from Earth’s interior ranges from 0.08 to
0.4 W m~2 (Pollack et al., 1993; Davies and Davies, 2010). Due to
the State (liquid) and composition (Fe-Ni) of Earth’s outer core,
thermal tvnaways occur at the core-mantle interface and resur
face as hot spots, causing local mantle convection and induce

plate motion which implies the breaking of continents (Africa) or
supercontinents (Pangea).

Hot spot volcanism is found in the middle of lithospheric
plates and on the margins of extensional plates. Volcanism also
occurs in compressional plate margins followed by orogenesis
(mountain building). Titan's primordial heat flux front the satel-
lite’s interior is of the order of 0.02-0.06 W m”2 and Mitri et al.

(2010) proposed that it can similarly resuit in crustal fold
processes and mountain building.

On Titan, stress mechanisms even if global, as in the case of
tides, can hâve very local effects: for instance Saturnian tidal

forces resuit in a concentration of morphotectonic structures
mainly around Titan's equator. It is not a random event that ail
the three candidates for cryovolcanic areas are concentrated in

Titan's équatorial zone. Actually, it will be surprising if future
detailed observations réfuté the case for cryovolcanism on Titan

in this area, given positive indications from current studies (Lopes
et al., 2010; Solomonidou et al., in préparation). Morphotectonic
features resulting from tidal-induced convection hâve different

âges, as can be shown from superposition and cross-cutting
relationships. Mountains are old (20-100 million years—Rade

baugh et al., 2007) and probable cryovolcanic areas are yotinger
(less than 10,000 years for Hotei Regio—Soderblom et al., 2009).
This is to be expected since tidal-induced convection will cause
ice élévations with subséquent breaking of the surface ice and
formation of fractures (extension). The ice floats may collide

Fl*. 8. Location map or the major morphotectonic features on Titan (background map crédit: NASA/JPL)i In green: mountains, ridges and hills; in blue: linear features,
faults, fractures, canyons; in red: probable cryovolcanic régions. (For interprétation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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against each otlier (compression) forming mountain- or ridge-like
features. Subséquent extension of the so-formed fractures will

provide the pathways for cryovolcanism, which will be the
younger event.

Primordial heat, as well as, heat produced by radiogenic decay and

heat induced by tidal forces can be dissipated both by conduction
and/or convection. It has been shown that transitions from a
conductive to a convective State for an ice shell, overlying a pure

liquid océan (Tobie et aL, 2005), can hâve major effects on surface
morphoteetonics (Mitri and Showman, 2008). The same authors hâve
shown that thermal convection can occur under a range of conditions

in the ice-I shells of Titan and two possible scénarios can follow. A
thin ice with a low viscosity base (1) and a thick ice with a high

viscosity base (11). Ihus, Mitri and Showman (2008) proposed oscilla
tions in the thermal State of the ice-I shell of the Satumian satellites,

which may cause repeated épisodes of extensional and compressional
tectonLsm. Similarly on Earth, a current widely accepted internai

évolution model suggests that expansion and contraction processes
are due to internai thermal runaway cycles and can be important in

controlling geotectonic mechanisms (Kice and Fairbridge, 1975;
Fowler, 1986; Baumgardner, 1994, 2003; Benn et al., 2006).

Thermal stresses are responsible for updoming, weakening and
subséquent fracturing of the crust of a planetary body. On Earth,

such a paradigm is provided by the continent of Africa where hot
spot activity has resulted in updoming, fracturing and volcanism

(East African Rift, Ahaggar Mountains, Table 2a). On Titan, zones
of tectonic weakness hâve probably formed in an analogous

manner i.e. as a conséquence of thermal stresses and weakening
of the crust with concomitant formation of open fissures, which

act as pathways for the éjection of material from the interior
(cryovolcanism) as it has already been proposed for Enceladus
and Europa (Manga and Wang, 2007).

Localized compression and crustal thickening can also lead to

mountain building on Titan. Linear mountains in T3 and T8 swath,
seen in radar data, probably hâve formed this way (Fig. 3a and b;
Table 2b). A terrestrial analog can be provided by the Laramide
Orogeny. The Laramide event that affected Western-North Amer

ica during Late Cretaceous and Early Paleogene time, involved
compressive forces, conductive heating and crustal thickening
that eventually led to mountain building (orogeny) (Dickinson
and Snyder, 1978). A similar exampie is provided by the Acadian
Orogeny during rniddle Paleozoic, which has affected the Eastem-
North America as the resuit of collision of Baltica plate with the
Laurentia.

The proposed formation mechanism for Titan's mountains,
mainly the ones observed during T8, T30 and T43 fiybys

(Fig. 2c), concerns folding of the upper crust due to high heat
flows from the interior and high température gradients in the past
(Table 2b). A terrestrial analog, the Rocky Mountains chain in
Western-North America (Fig 3), was formed over an area where
high values of mantle heat fiow occur (Bird, 1998).

For the high-standing ranges of the T20 radar swath a forma
tion mechanism has been proposed by Sotin et al. (2007) invol-
ving the génération of stresses by tectonic extension that
penetrate the icy shell and create pathways for the internai
material. This finds a terrestrial analog in the formation of the

Mid Atlantic Ridge in Atlantic Océan where divergent tectonic

plates are associated with magma upwelling due to partial
melting of the upper mantle in the interior.

Other surface features on Titan that seem to be the resuit of

intense forces of tectonic extension are the probable blocks and

grabens seen in T8 radar swath (Tobie et al., 2006; Radebaugh et al.,
2007). On Earth, the Basin and Range Province in USA (Fig 4;
Table 2b) is such a large terrain subjected to forces of tectonic
extension As it can be seen from Fig. 4 a striking structural

similarity exists in the morphology of the T8 mountain range on

Titan and the Basin and Range Province on Earth. Alternative

proposed mechanisms for mountain formation on Titan do not
involve crustal movements: Radebaugh et al. (2007) argue that
blocks of mountains viewed in T3 swath could hâve been formed by

impact ejecta. Such deposits resemble those of Meteor Crater in
Arizona, USA where blocks of ejecta deposited 1200 m away from
the rim create hilly features (Ramsey, 2002). Furthermore, two

terrestrial analogs presented and described in this study that seem
to hâve a major resemblance with canyon-like and cryovolcanic
features seen on Titan, are the Grand Canyon (Fig 5) and the Flarrat

Khaybar (Fig 6). Both terrestrial terrains consist of a number of
geological features that hâve been subject to multiple processes.
Titan's surface seems to be as complex as the Earth's and may be the
end resuit of the action of multiple processes as well.

The fact that the mountains and ridges seem to be concen-

trated around Titan's équatorial band is a very strong argument
for tidal forces shaping these morphoteetonics features. However,

Lopes et al. (2010) showed that mountains exist at other latitudes,
a possible sign for a global source of stress as well. It is plausible
that radiogenic decay would heat uniformly the entire satellite,
similarly to what occurs on Earth (Dickin, 1995), and lead to

morphotectonic structures evenly distributed ali over the body's
crust. We argue, nevertheless, that mountain ranges are more

extensive at the equator of the satellite as a resuit of tidal forces
since the very geometry of tides causes local stresses larger at the

equator than anywhere else, inducing convection and therefore
enhancing mountain formation. This mountain formation can be
contrasted with that on Earth where mountains occur globally

along collisional plate boundaries. Furthermore, as noted here-
above, radiogenic heat production on small bodies like Titan or
even Mars has significantly decreased over a long period of time
(e.g., Schubert et al., 1986; Grasset and Sotin, 1996: Grott and
Breuer, 2008). It should be noted here that Saturn’s tides are still

heating up Enceladus’ interior (Uurford et al., 2007).
The existence of tectonism on Titan can provide significant

insights on the internai stmeture of the Saturnian satellite. In
reference to the terrestrial paradigm, where rigid lithospheric plates

‘float on a weaker asthenosphere, it could provide indirect evidence
for the existence of a subsurface océan on Titan. The importance of

deciphering morphotectonic features on Titan that can be linked to
tectonism has also conséquences in elucidating the methane cycle on
Titan in analogy with the link between terrestrial tectonics and the
global terrestrial carbon cycle (Bolin, 1981; Ruddiman, 1997). More

specifically, Titan's tectonic activity can probably be directly related to
the replenishment of the atmosphère in methane (Sotin et aln 2005;
Atreya et aL, 2006; Tobie et aL, 2006; Coustenis and Taylor, 2008;
Lunine and Atreya, 2008; Mitri et al., 2008).

Finally, the origin of some morphological features can be
attributed to exogenous processes such as meteorite impacts

(Moore and Pappalardo, 201 1), aeolian processes (Slofan et al.,
2006; Radebaugh et al., 2009) and Jluvial érosion (Forco et al.,
2005; Tomasko et al., 2005), especially monsoonal rainfall causing

flooding mainly in the équatorial région (Tokano, 2011).
The Cassini-Huygens mission has significantly improved our

understanding of Titan and the coupling of its atmosphère
and surface. Since 2004 and for another five years, Titan is

investigated by Cassini's fiybys. However, only limiied surface

coverage will be achieved at high spatial resolution. Therefore, the
composition and évolution of its diverse surface features will still
demand extensive future investigation.
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ABSTRACT: Since 2004, investigations, measurements and data analysis by the Cassini-Huygens mission showedthat Titan, Satum’s largest satel

lite, présents complex. dynamic and Earth-like geology. Fndogenous, as well, as exogenous dynantie processes, hâve created diverse terrains with
extensive ridges and grooves, impact units, caldera like structures, layered plains and liquid hydrocarbon lakes. Observations by the Cassini Visual

Infrared Spectrometer instrument (VIMS) hâve indicated possible cryovolcanic terrains in the areas called Tui Regio (20<>S, 130°W) and Ilotei Regio
(26°S,78*W). In addition, Cassini’s investigation over anotliericy moon of Satura,Enceladus, identitied its cryovolcanic activity and partially re

vealed ils unique topography indicating several types of surface expressions. We présent a comparative study of volcanic analogues front Earth and
Enceladus 1hat detive insight on the otigin of some of these featuies. In tltis w’ork, we focus on the analysis of VIMS data using the Principal Corn
portent Analysis technique in order to identify régions of altered Chemical composition on Titan. The analysis of VIMS data suggests thaï possible
cryovolcanic activity formed both the Tui Regio and the Hotei Regio.

Key-words: Planetary geology, icy satellites. Titan, Enceladus. cryovolcanism, spectroscopy.

IIEPIAilVH: MctxçoxçôviEç éçeuveç, gixQqoEiç xm avaXuaeig ôeôopévcov a.tô xqv cuiocrToXq Cassini Huygens a.-to to 2004, éôeiçctv ôxt
oTtTdvng.o iJjr^aXtiTgQOçôoQtîrjrOQOÇTOU Kpovou, miqouoid'Cfi JisçCnXoxq,bvvaqixq xaimqiôpoui pr.xq Fq YïcoXoyta.Evôoyevefç.oaa
xai e|coyeveiç ôuvcquxéç ôuçyaofeç, tfcnsv ôqptovpyfiaei jroixtXa yecoXoyixd ireôtci pe exTerapéve; çdy.eç xai a{iXaxeç, xqaxqQEç itoô
rpqtrnjoqg, fiopf.' xaXôéçaç, JttfiiàÔEÇ pr OTptopfrruKTt] xaOréç xaiXtpvsç uÔQoyovavBgàxatv. naqaTqçqcraiç ami to Cassini Visual Infrared
Mapping Spectrometer (VIMS) ôçyavo, é'/ovv ôeiçgi mOavéç xçuoqtJtawTeictxéç exxàaer; tm; itgqioyf; Tui Regio (200 N, 130 ° A) xai Hotei
Regio (26°N, 7S°A). EranXêcrv, q éçEuva xou Cassini crxov jcaywpévo ôoçurjxipo xoo Kçôvtni,EyxfXaôo, ejupxpuuao!' xqv xçuoqqxnoxgi-
axq xou ôqaoniçiôxqxa xat ctmtxàXut|jE pEçixréç xq uovaôixq xou xo.xoyqaqita, mxçovatctÇovxaç mxxiXouç xC'.xou; emqtavtiaxcbv ep
rjjavCcistuv. FlaçouatàÇoup* pia ouyxçixixq prXéxq, Ôeixvovxaç qrjtataxeiaxà avAXoya xqç Tqç xxtt xou EyxéXaôau, îtov naqéxouv
.xXqQoqiopirç; yia xi) ôqpiouçyto. xâroxtov oxqpctxtopxbv. 2e auxq xq peXéxt]. emxevTpKivôpa.oTe oxqv avâXuaq ôeôopévcov VIMS, yqqai
pojtouhvxaç xq piOoôo AvtiXvoqç Kûpunv 2uvu.rxto<.Ttitv ae jrepioxéç p* ôiatjtoQETixq xqpixf) ofcoxaoq. Oi avaXhaetç xotv VIMS fisdopévmv
xtov jtpoavarttepOévxtov exrdaeotv ôefxvouv ôxi xoao q n*pioyf| Tui Regio 6ao xai q jœqur/q Hotei Regio mûavâ oxquaxtaxqxav asm xçuoq-
(jxMOYKiaxq ÔQatfTqçtÔTqxa.
Aéçeiç-xXerôià: llXavrptixr) FrwXoyla, ilaympévoi ôoovipÔQOi, Ttxàvaç, EyxêXaôoç, y.ovoij4>aion:iÔTijza. çaapazooxostia.

INTRODUCTION

Icy moons are small celestial bodies whose surfaces are par
tially, if not principally, covered by ice, inostly water ice
(Johnson, 2004). Tlte most remarkable icy moons arouttd the

giant planets are Jupiter‘s Ganymede, Neptune’s Triton,
Uranus’s Miranda and Satum’s Titan and Enceladus in a va-

riety of sizes, composition and températures. It was thought
that due to the abundance of water ice, the large distance front

the Sun, the absence of internai energy sources and of an at
mosphère in most cases, the geology of these bodies would

he simple, or rather simpler thaii the geology of Earth; how-

ever, subséquent images hâve shown complex surfaces with

several notable morphological formations. Furthermore, the

composition, as well as, the structure of tlte surfaces of the

icy moons dépends on geological and geophysical factors
(Johnson, 2004).

Titan is tlte second largest inoon in the Solar System after

Jupiter’s Ganymede, with a radius of 2,575 km (Lîndal et

al., 1983) and spherical geometry. Titan has a unique atmos
phère, in that it is dense and consists mainly of N2 (98.4%),
as on Earth. CH4 (1.4%), H2 (0.1%) and traces of argon,

ethane, acetylene, propane and more complex hydrocarbons

and nitriles, as well as condensâtes and organic aérosols
(Coustenis & Taylor, 2008) constitute the rest of tlte at

mosphère. The identification of such atmospheric compo-

* Aæeikdvtot| ttûv Ta&avcùv evepytbv yefcjXoyiKtîjv îtepiox&v arouç ÊopiHpôpouç ïov Kpôvcru Tuâva koa EyvÉÀaôo: Mc>.éxr| yia tt^v KpuüT]tpaicrtEiôii|xa pu ir|

XP^ctîi wiCpuÔptûv tpaoparoccbv 6e6opÉvci>v
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nents endorse théories suggesting that even though Titan is

far oui of the habitable zone, it is one of the most likely
worlds in our solar systein of astrobiological interest
(Raulin, 2008). Except for the new atmospheric discoverles

such as the organic chemistry in the ionosphère, new com-
ponents in tire neutral atmosphère and the properties of the

troposphère, Cassini-Huygens’ most surprising discovery
was Titan’s complex and Earth-likc geology (Cûustenxs &
Taylor, 2008). As far as the surface is concerned, one of the

moon’sexceptional characteristics is the existence of surface

liquid bodies that resemble tcrrestrial lakes (Stofan et al.,

2007). Otlier surface formations, were captured both by the
Cassini orbiter’s remore settsing instrumentation such as tire
Syntlretic Aperture Radar (SAR) (Elachi et al., 2005); the

Visual and Infrared Mapping Spectrometer (V1MS) (Brown
et al., 2004) and the Imaging Science System (ISS) (Porco

et al., 200*1; McCord et al., 2006), as well as by the Huy-
gens probe’s in situ instruments i.e.: the Surface Science

Package (SSP) (Zarnecki et al., 2005), the Descent Imager
and Spectral Radionretcr (D1SR) (Tomasko et al., 2005) and

the Gas Chromatograph Mass Spectrometer (GCMS)
(Fulchignoni et al., 2005). The surface discoveries include

extensive mountains, ridges, dendritic networks, dunes,

lakes, channels, canyons and riverbeds. Of even higlrer im
portance is the possible existence of active zones on the satel

lite due to past or recent cryovolcanic and tectonic activity
(e.g. Soderblom et al., 2007; Lorenz et al., 2008;
Solomonidou et al., 2010). Caldera-like édifices character-

ized by radial faults, features resembling lava flows and other

possible volcanic structures and deposits, witlrin large areas
of volcanic-like terrains, in addition to spectral data indica

tions, suggest that Titan is a world tirât once suffered cryo
volcanic activity which could possibly still be active. The
suggestion of an active cryovolcanic interior that supplies the
atmosphère with nrethane is compatible withthe current level

of methane in Titan’s atmosphère. Accordingto calculations,
the lifetinre of atmospheric methane is limited to 10-100
Myrs (Wilson et al., 2004). If we assume tirât methane in

the atmosphère should be replenished, tlren Titan needs a

réservoir that would supply the atmosphère with enough
methane to maintain the atmospheric abundance. The re-
quirement of sufficient supplies of methane in combination

with the volcanic-like expressions did trigger the theory of
active cryovolcanism on Titan (Tobie et al., 2006).

Other than Titan, the Cassini mission unveiled another

unique world among Saturn’s icy nroons. Enceladus is a sig-
nificantly smaller satellite than Titan (500 km in dianreter), it
présents however, extremely interesting surface features in-
cluding cratered as well as smooth terrains, extensive linear

cracks, scarps, troughs, belts of grooves in addition to the

spectacular phenomenon of volcanic geysers that Cassini in

strumentation captured in 2005 in the south pôle (Porco et
al., 2006). High-resolution data frora Cassini inagnetometer
(MAG) (Doügherty et al., 2006), ISS (Porco et al., 2006)

and the Ultraviolet Imaging Spectrograph (UVIS) (Hansen et

al., 2006), reported cry ovolcanic activity in the form of jets

in the Southern Polar région, at the geological surface ex

pressions called “Tiger stripes’'. Tire accumulation of multi
ple jets resulted in the formation of a massive fountain tirât
reached over 435 km in height (Porco et al,, 2006).

Our work provides; i/ an OverView of the geology ofTitan
and Enceladus, ii/ terrestrial analogues and iii/ the results of
our data analysis regarding Titan ’s potentially active régions.

This study implicates the presence of cryovolcanism on
Titan’s surface.

GEOLOGY AND CRYOVOLCANISM ON TITAN &

ENCELADUS

Cryovolcanism

Cryovolcanism Ls considered to be one of the principal geo
logical processes that hâve shaped several of the icy nroons'
surfaces. This activity can be described as ice-rich volcan-

ism, while the cryovolcanic ejecta are refereed to as cry-
omagma. The ctyonragma appears in tire form of icy cold
liquid and, in sonre cases, as partially crystallised slurty
(Kargue, 1994). The possibility of volcanic resurfacing on
icy nroons was first noted by Lewis ( 1971,1972) and sulrse-
quently addressed by Consolmagno & Ijîwis (1978), but it

was not until after the Voyager flybys of Jupiter and Saturn
tirât evidence for past and présent tectonic and volcanic ac

tivity on inoons such as Europa, Ganymede, and Enceladus
was brought to light. In our Solar System the only observed

recent éruptions are limited toEartlr and three otlrer locations:

1) lo, moon of Jupiter; 2) Triton, moon of Neptune; and, 3)
Enceladus, moon of Saturn. Titan is also major candidate for
past and/or présent cryovolcanic activity awaiting for a de
finitive evidence.

Subséquent to the Cassini-Huygens finditigs, the term
'cryovolcanism’ has been associated with Titan more than

any other Satumian moon (Soderblom et al., 2009). Even

though, for the case ofEnceladus the ciyovolcanic origin of
the plume is now confirmed (Porco et al., 2006), the cryo
volcanic activity on Titan présents a controversial scientific

issue witlrin the scientific community. However, sonie facts
are in favor of such processes like the theory of cryonragma
being relevant to the formation of prebiotic compounds (e.g.
Fortes, 2000).

The composition of the material called cryomagma on
Titan’s surface is still unknown, due to the lack of in situ

measurements and in depth investigations, whichmay reveal
its properties. Cryovolcanic features on Titan’s surface are

believed to be a significant source of tire methane présent in
the atmosphère (Lorenz & Moton, 2008). Considering this,
a model has been suggested regarding the évolution ofTitan,

indicating that the methane supply may be trapped in a
methane-rich ice and episodically released by cryovolcanic
phenomena (Tobie et al., 2006). However, tire definite an-

swer of the composition of Titan’s cryomagma is still a sub-
ject of research.

According to Tobie et al. (2006) the methane could hâve
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originated through three distinct épisodes: the fîrst following
the silicate cote formation, accretion and différentiation pe-

riod; a second épisode upproximately 2000 million years ago
wlien convection contmenced in tlie silicate core; and finally,

a geologically recent period, circa 500 million years ago,
where subséquent cooling and erystallization of the outer
layer occurred. Fortes et al. (2007) suggested that ammo
nium sulphate is the possible origin of cryovolcanism. Titan's

interior is broadly described by these authors, from tlie core
to the crust, in distinct layers: a serpentinite core, a high-pres-

sure ice VI mantle, where ice VI has a differentiated crys

talline structure ordering and density than typical water ice,

a liquid layer of aqueous ammonium sulphate and an exter-

nally heterogeneous shell of methane clathrate with low-pres-
sure ice Ih (similarly as ice VI) and solid ammonium sulphate

(Fortes et al., 2007).

The geological map below (Fig. 1) has been derived from
albedo and texture variations and indicates that the circular

feature shows signs of several sériés of flows, as shown by
the black lines (Sotin et al., 2005). Tlie black circle indicates

a caldera, similar to vents that appear above réservoirs of
molten material associated with volcanoes on Earth. The

colours of the map are représentative of the brightness of the
features where yellow-green to light brown are the bright

patches; blue are the dark patches, red the mottled material
and finally tlie yellow area marks the location of the volcano
(Sotin et al., 2005).

Enceladus

Cassini’s observations on Enceladus did reveal distinct geo

logical features. The surface of Enceladus is covered by
smooth and cratered terrains, ridges, grooves, escarpments

and extensive linear fractures (Johnson, 2004). The most in-

teresting and youthful terrain seen on this moon called “Tiger

Stripes” and présents a very complex structure and évolu
tion. The Tiger Stripes (Fig. 2) are tectonic structures con-

sisting of four sub-parallel, linear dépréssions located in the

south polar région (Porco et al., 2006). In 2005 Cassini’s in
strumentation and especially the ISS experiment provided

evidence of active cryovolcanism (Fig. 3), emanating from a
sériés of jets located within the Tiger Stripes (Porco et al.,
2006).

The jets of water ice front the fractures of Tiger Stripes

produce a plume of gas and particles like NHt, Na, K salts
(Waite et al., 2009). These tectonic fractures, discharge ma

terial by endogenic dynamic and most probably hydrothermal

activity. The source of the jets is a controversial issue as ex
tensive internai stratification as well as dynamic modeling, is

required for the source to be identifîed. The recent discovcry
of salts in Saturn’s E-ring composition, which is fed front

Enceladus’ plumes (Postberg et al.. 2009), suggests that the
source of jets is possibly a “chamber” of liquid water that

lies undemeath the ice shell (Tobie et al.. 2008). Altema-

tively, the material could dérivé front originally wann ice that

is heated and explodes by the dissociation of clathrate hy-

Fig. 1. Geological map ofTitan possible volcano (Sotin étal., 2005).

Fig. 2. Tiger Stripes on Enceladus (NASA).

Fig. 3. Enceladus’ Plume front Cassini/ISS (Porcoétal., 2006).
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drates (Kieffer et al., 2006). The clathrate hydrates are crys
talline water-based ices where the host ntolecule is water and

the trapped-guest ntolecule is typically a gas. The VIMS in
strument detected simple organic conipounds in the Tiger

Stripes. Sucli Chemical composition which consists of liquid
water, ammonia, carbon dioxide,Na and K saJts, benzene and

other hydrocarbons (Waite étal., 2009), has not been found

in any other région on Enceladus (Brown et al., 2006). The

presence of liquid water might also make it possible for Ence

ladus to support life (Lammer et al., 2009).

Recent data front Cassini reported pockeLs of heat that

appear along a fracture named Baghdad Sulcus (Fig. 15),one

of the Tiger Stripes that erupt with jets of water vapor and
ice particles (Hurford et al, 2009). Tlie température along

Baghdad Sulcus exceeds 180 Kelvin (Waite et al., 2009). As

is the case for Titan's Hotei Regio, Tiger Stripes on Ence
ladus and in particular Baghdad Sulcus represent tectonic
zones of weakness from which the internai materials find

their way to the surface. The idea of a subsurface sea be-

contes ail the more contpelling since Enceladus’ south polar
région (Tiger Stripes area) is actually a half-kilometer deep

basin distinguishing from the surrounding expressions

(Collins & Goodman, 2007). Such figure, like the deep
basin in Tiger stripes, resembles Titan’s Hotei Regio which is

a basin lying one kilometer deeper titan the surrounding area
(SODERBLOM et al., 2009). This basin could be the surface ex

pression of a subsurface sea (Collins & Goodman, 2007).

Titan

Titan’s geology has been extensively studied using Cassini

image data. In this researeh, we invesrigate and process data

acquired from VIMS in order to identify areas of cryovol-
canic déposition.

The most intriguing problem in regard to the decoding of

Titan’s surface is the atmospheric veil that covers the surface.

This veil prevents any direct observation from Earth and

space-based télescopes. However, VIMS on board Cassini

has the ability to acquire partial surface images, taken within
the so-called ‘‘methane Windows” centered at 0.93, 1.08,

1.27, 1.59, 2.03, 2.8 and 5 pm, where the ntetltane atmos
pheric absorption is weak (McCord et al., 2008; Coustenis

Fig. 4. (a) Ridges and movmtains on Titan’s surface. The radar bright featurcs arc part of the undiffcrcntiatcd plains (Lopes et al., 2010). The proposcd
processes that formed this terrain hâve possibly tcetonic origin. (b) Dendritic networks as seen with SAR and morphological map (LORENZ et al., 2008).
The System is locatcd at the western end ofXanadu close to our area of interest, Tui Regio. (c) Sand dunes around the Belot sand sea on Titan. The dunes

are formed due to Aeolian prouesses. The bright figures are topographie obstacles that advance the formation of the dunes (RaüEBaUOH et al., 2009).
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et al., 2005). In general. Titan's surface appears to hâve

smooth and rough areas of various altitudes which include

extensive mountains and ridges (Fig. 4a) (Lofes et al., 2010),

longitudinal dunes (Fig. 4c) (Radebaugh et al., 2009), den-

dritic networks (Fig. 4b) (Lorenz et al., 2008), liquid lakes

(Fig. 6) (Stofan et al., 2007) and impact craters that are in-
termittently filled by attnospheric précipitations (Elachi et

al., 2005). Radebaugh et al. (2008) suggests that mounrains

on Titan range front 200 m to 2000 m in height (Fig. 4a). Ero-
sional processes that operate at the area where mountains lie,

are probably the reason of the significatif short height of the

mountains. However, there is also the assumption that the

mountains are built by material with properties that prevent

the altitudinal growth (Radebaugh étal., 2008). Radebaugh

et al. (2007) mentioned tliat the notably SAR bright features

on Titan's surface niost probably correspond to mountains
and tectonic ridges which represent mountain chains (Fig.

4a). In particular, the tectonic ridges could hâve suffered at-

mospheric précipitation (i.e. hydrocarbon rain) acquiring a
rough and fractured surface (Soderbi.om et al., 2007). Rivers
are coramon on Titan, while in some cases a few craters are

traversed by them (Wood et al., 2009). The observation of
river Systems with dendritic patterns (Fig. 4b) (Lorenz et al.,
2008), in addition to the observation of storm clouds (Porco

et al., 2005), suggest that rainfall may be a continuing ero-
sional force erasing impact craters. Other surficial structures

observed on Titan are impact craters. Of particular impor

tance is the small number of impact craters which has been

observed by the Cassini/Radar which suggests that the sur

face of Titan is relatively young (i.e. Wall et al., 2009).

The considération of Titan's young surficial âge indicates

the possible existence of

active régions among the

satellite. Contrary to im

pact craters, surficial struc
tures that are seen

commonly on Titan are the
dunes (Fig. 4c). The dunes

are general ly smooth sur

faces that diverge around

topographie obstacles re-

sembling terrestrial dunes
(Radebaugh et al., 2009).

Moderately variable winds
that either follow one mean

direction or alternate be-

tween two different direc

tions hâve formed the

observed longitudinal dunes
(Lorenz et al., 2006).

Our knowledge regard-

ing Titan's surface deposits
is limited to the data ac-

quired from Huygens' land-

ing site. The Huygens

captured image was tliat of a dark plain covered in pebbles
mainly composed of water ice (Fig. 5) (Tomasko et al.,

2005). The size of pebbles is estimated to be roughly 10-15

cm. There is evidence of érosion at the base of the icy rocks,

indicating possible fluvial activity (Tomasko et al., 2005).
The surface is darker than originally expected, consisting of

a mixture of water and hydrocarbon ice. It is believed that

Fig. 5. Titan’s surface from the

Huygens probe (Tomasko et cil.,
2005).

Radar

dark

channels

leading
into two

lakes

Partly

filled

dépréssion

Dépréssion

with

backscatter

similar to

the terrain

Fig. 6. Lakes on Titan's surface as recorded during the Cassini’s Tl6 flyby on July 22,2006 (Stofan et al., 2007a).
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the visible ground “powder” in the image is possibly précip
itation from the hydrocarbon haze above (Tomasko et al.,
2005).

One of tlie moon’s exceptional characteristics is the exis

tence of large liquid bodies described as lakes of surface liq
uida (Fig. 6) (Stofan et al., 2007). These feutures resemble

terrestrial lakes consitute a unique characteristic displayed

by the icy moons. Based on data provided by the
Cassini/Radar, the presence of hydrocarbon lakes on Titan’s

surface is now well established (Fig. 6) (Lofes et al., 2007a).

Candidates of cryovolcanic areas on Titan

Our study involves l\vo major areas on Titan that are the most

significant, as well as, interesting cryovolcanic candidates.

These areas are Tui Regio and Hotei Regio (Fig. 7) lying

Fig. 7. The location of Tui Regio and Hotei Regio on Titan's globe

(Barnes et al., 2006).

Distinct areas on Tui Regio

Wavelength (nm)

Plot 1. Spectral plot of five distinct areas at the seven almospheric spec
tral Windows.

within the bright région ofXanadu (100°N, 15°S).Tui Regio

is centered at 130°VV. 20°S and présents relatively high 5 pin
reflectivity. Its size is 1,500 km long and 150 km wide. This

bright area lias been identified as a surface feature and not as

the image capture of fog, due to the area's spectral behavior

at 2.7 mm (McCord et al., 2006). Tui Regio is a massive
flow-like terrain, which resembles flow field volcanic areas

on Earth. Another area whose spectrum matches that of Tui

Regio is Xanadu’s Hotei Regio. Hotei Regio is centered at

78°W, 26°S and comprises a 700 km wide field that is prob-
ably volcanic in origin. VIMS images confirm the interpré

tation that the area is a low basin surrounded by higher
terrains with possible calderas, fault structures and extensive

cryovolcanic flows (Soderblom et al., 2009).

Method and Data analysis

Both Tui Regio and Hotei Regio are suggested to be geolog-
ically young due to the fact that both présent anomalously

bright and spectrally distinct areas that hâve not changed
from seasonal précipitation (Barnes et al., 2006).

In order to investigate geologically tire régions of interest,

it is essential to study their Chemical composition that lead to
the aforementioned brightness as well as their rnorphology
in order to dérivé the geological factors that led to their for
mation.

We hâve processed spectral images acquired from VIMS,

for both areas in the seven narrow spectral Windows centered
at 0.93, 1.08, 1.27, 1.59, 2.03, 2.8 and 5 pm for which ab-
sorption by atmospheric methane is minimal.

The main goal is to identify the composition as well as

the alterations of the components that compose the possible

cryovolcanic structures. We hâve used the principal compo

nents (PCs) of the Principal Component Analysis (PCA)
method. The PCA method involves a mathematical proce

dure that transforms a number of possibly correlated vari
ables into a smaller number of uncorrelated ones called

principal components (Jollifff., 2002). The PCA is well

adapted to our study. as our primary concem is to détermine
the minimum number of factors that will account for the

maximum variance of the data we use in this particular mul-
tivariate analysis. The main goal of PCA is to reduce the di-

mensionality of a data set consisting of a large number of

interrelated variables, while retaining as much as possible of

the variation présent in the data set. This is achieved by trans-
forming, the principal components (PCs) into a new set of
variables, which are uncorrelated, and which are ordered so

that the first few retain most of the variation présent in ail of
the original variables (Joluffe, 2002).

PCA images for both Tui Regio and Hotei Regio allowed

us to isolate areas with distinct and diverse false coloring,
which imply areas of distinct and diverse spectral and Chem

ical composition (Fig, 9; 11). Such Chemical diversity sug-
gests that endogenic and/or exogenic geodynamic processes
hâve forrned these régions.
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Fig. 8. Reprojection of Tui Regio: (a) Gray scale 2.03 pm, (b) RGB false colors R: 5 pm, G: 2 gni, B: 1.08 pm, (c) PCA R: l1' , G: 21"1, B: 3ri

components, (d) PCA R: 3rt, G: 2”1, B: 1* components.

RESULTS

Tui Regio

We hâve isolated five distinct areas (Fig. 9) within Tui Regio.

The Principal Component Analysis projections (Fig. 8c, d)
showed areas of different colors and brightness suggesting

diversity in surface composition. The PCA method is com

patible to gray scale (a) and RGB (b) projections of Tui

Regio. The visually brighter areas represent the highest I/F
values and the darker areas the lowest, where I stands for the

intensity of reflected light measured by the
instrument and F the plane-parallel flux of sunlight incident

on the satellite normalized for Titan (Thekaekara, 1973;

Barnes et al., 2007; Brown et al.. 2004).

The plot (Plot 1) of “Bright cryolava field’" terrain is dif

ferent from the other plots, presenting higher I/F values. This

suggests that, additionally, tliis area is extremely brighter than
the resr of the région. The wavelengths at which this area

présents obvious alterations are the 2 pm, 2.8 pm and 5 pm.

Hotei Regio

We hâve also isolated five distinct areas within Hotei Regio’s

probable volcanic fietd (Fig. 11 ). The PCA projections (Fig.

10c, d) are presented in false colors areas of different spec-

ROI: Régions Of Interest

Gray scale HHE59HHmm
Dark area Green area Cyan

Bright "cryolava "Lava field" (Dark Green

field" area pink)

Semi-Bright area

;

"Lava field

edges" (light pink)

Yellow

» Semi-Dark area Bright Blue area Red

Gray area "Deposlts" (pink-

yellow mixture)

Blue

Fig. 9. Isolated areas wilh the use of visual colour alterations, which suggest areas of spectral différence.

Fig. 10. Rcprojcction of Hotei Regio: (a) Gray scale 2.03 pm, (b) RGB false colors R: 5 pm, G: 2 pm, B: 1.08 pm, (c) PCA R: 1* , G: 2”1, B: 3”1

components, (d) PCA R: 2:i, G: 2*1, B: 1“ components.
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Gray scale ROI Color

Semi-Dark area Bright blue

Green

’Dark spots" Yellow

Dark Red

"Yellow-Green

spots"

"Lava flows"

Ught Green Area CyanDark Area

ROI: Régions Of Interest

Fig. 11. Isolaled areas with the use of visual color alterations, which suggest areas of spectral différence.

tra and brightness, suggesting alterations in surface compo
sition. Thus, the area suggested to be cryovolcanic is distin-

guished from the surroundings. The only compatible figures

with the surrounding area are the caldera-like structures

(pointed by green lines, [b]), which probably reveal the pri
mai surficial ntaterial, before resuifacing (i.e the surrounding
area). The PCA images are compatible to gray scale (a) and

RGB (b) projections of Hotei Regio.

Hotei Regio’s spectral graph (Plot 2) indicates that the
“Bright Cryovolcanic area” présents the highest I/F values

and remains brighter than the other areas at ail wavelengths.
In addition, the “Dark area” remains darker with low values

of I/F at ail wavelengths. Surprisingly, the spectra from
caldera-like structures présent medium I/F values, lying al-
most in the average between the brighter (“volcanic area”)
and the darker (“primai surface”) at most wavelengths. This
is compatible with terrestrial caldera structures that consist

partially of primary surficial components on which the vol-
cano is being built, as well as new material coming from the
interior.

Distinct areas on Hotei Regio

Wavttonfih (p/n)

Plot 2. Spectral plot of fïve distinct areas at the seven atmosphcric spec
tral Windows.

DISCUSSION

Whilst it offers a particularly interesting opportun ity for re-
search, the existence of pastor current cryovolcanic activity

on Titan's surface, especially in areas with high réflectance,

as observed by Cassini's V1MS instrument, is currently a
highly controversial subject. This study has focused on évi
dence derived from Tui Regio and Hotei Regio, in order to

analyze and interpret the data gathered from the VIMS in
strument. The spectrographic attalysis of VIMS data shows

that the visually bright flow-like figure, seen in Tui Regio,
has the highest I/F value from its surroundings, especially in
the 2.03 pm, 2.8 pm and 5 pm spectral Windows (Plot 1),
suggests compositional variability in the material between

the dark and the bright spots. Furthermore, the dark area prés
ents the lowest I/F values at ail wavelengths of the seven

spectral Windows. This suggests that the flow field has pos-
sibly been deposited over the initial (dark) material after sin

gle or multiple diachronie éruptions. If Tui Regio is a massive
cryolava flow field, then it resembles the terrestrial Carrizozo

flow field in New Mexico. Hotei Regio’s field displays a low
basin with flow-like features lying in the basin interior and at

the margins. The flow field has higher I/F values at ail wave
lengths than the semi-dark and dark areas that either surround

the field or lie within it (Plot 2). The dark areas présent sig-
nificantly lower I/F values. Even though the caldera-like
structures are seeing as dark as the surrounding areas at

VIMS images, they demonstrate medium I/F values suggest
ing altered Chemical composition. The medium I/F values
compared with the other areas, suggest that the calderas con

sist of the initial substrate (dark) material and the cryomag-
matic (bright) new material. Such a combination could resuit

in the formation of rough surfaces with high textural vari
ability. The VIMS analysis for the caldera-like structure of

Hotei Regio reinforces the theory that assumes the volcanic
origin of the area’s pattern. In addition, the area resembles

the terrestrial volcanic terrain, Harrat Khaybar as well Ence-

ladus’ volcanic-tectonic zone of weakness, Tiger Stripes.
Further investigation and comparison of similar features

from the three bodies, Titan-Enceladus-Earth, could provide
information regarding their formation and future develop
ment. Titan, as described in detail hereabove, is perhaps one
of the most intriguing objects in our Solar System. The com
bination of Titan’s nitrogen atmosphère and the geologically
complex and dynamic surface possesses the satellite as an
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Fig. 12. (left) Longitudinal Sand dunes in SaudiArabia (NASA), (right) Longitudinal équatorial dunes on Titan (Radebaugh et al., 2009).

Earth-like body (Coustenis & Taylor, 2008). In addition,
many atmospheric aspects such as the cHmate and the mete-

orology, as Titan displays a ‘methanologic al’ weather cycle of
clouds, rainfall and évaporation that parailels the Tiydroiog-
ical’ cycle of the Earth, as well as, its complex morphology,
make Titan an extremely important astrobiological place.
Specifîcally, cryovolcarrisniha s important a strobiological im
plications, as it provides a mechanism to expose Titan's or-
ganics to liquid water, transfôrming hydrocarbûns and nitriles
into more evolved and exidized prebiotic species (Neish et
al., 2006). Also it has been suggested that life could exist in
the lakes of liquid methane on Titan (McKay & Smith,
2005). The existence of liquid bodies identified as lakes ex-

posed on the surface (Stofan et al., 2007), the équatorial
dunes (Fig. 4c), dendritic flows, potential tectûnics and vol-
canism, enhance Titan’s resemblancetoour ownplanet. Prior
to this discovery, such combination of surface features and

dense nitrogen atmosphère had only been identifîed on Earth.
Ail the aforementioned aspects, which mainly are the ni-

trogenic atmosphère, the liquid lakes, as well as the Earth-
like geological structures, suggest that Titan resembles Earth

more than any other body in the Solar System; despite the
httge différence s in température and other environmental con

ditions . Thus, an holistic understanding ofTitan’s System will
help us better under stand Earth‘s évolution starting with its
primordial phase sinceearly Earth probably looked much like
Titan looks today (Owen, 2005). In general, the activity of
cryovolcanism might operate in analogy to terrestrial hydrû-
volcanic éruptions (Solcmonidou et al., 2010). Fig. 13

Fig 13. (left) Supervolcano on Earth. Lake Toba (USGS). (right) Pos-
àble supervolcano on Titan. Forboth figures, the central paît o fcaldtras
b indicated by the white airows (Lofes et al, 2007b).

shows the supervolcano of Lake Toba in North Sumatra, In-

donesia, which is 100 km long and 30 km wide, in compari-
son with the possible supervolcanic structure called Ganesa
Macula (50°N, 87°W) (Lopes et al., 2007b). The Volcanic

Explosivity Index (VEI) for Lake Toba, which provides a rel
ative measure of the explosiveness of volcanic éruptions
(scale 0-8), was set to be 8 values and the total amount of

erupted material volume of 2,800 km3. Taking into considér
ation the amount of the erupted material, the size of the vol
canic structure and the hazards that could affect the satellite,

we can assume that supervolcanoes could be hosted in Titan’s

geological history. The candidate cryovolcanic figures
Ganesa Macula, Thi Regio and Hotei Regio could resemble
the supervolcanic structures seen on Earth.

In this study, we focus on the volcanological structures
like the ones seen in TUi Regio and Hotei Regio that resem
ble terrestrial volcanic terrains and characteristic s. Toi Regio
is a massive (1,500 km)

flow fïeld-like figure

that could possibly hâve
formed after accumula

tion of cryolava flows
erupted at different

times, following the
area’s topography. On
Earth, a massive édifice

resembling T\ri Regio,
emerges in the Tblarosa
Basin in south-central

New Mexico, USA.

Carrizozo flow field

(Fig. 14) is 75 km long
and covers 328 km2. The

volume of eruptive ma
terial was 4.3 km3

(Bleacher étal., 2008).

The field was probably

formed from periodic
déposition of eruptive

material spewingfrom a
source located 27 m

Fig. 14. (up) Carrizozo flow field,New

Mexico, USA (USGS). (down) One of

the largest candidate cryovolcanic
flows on Titan, TUi Regio

455



Anaina Solomonidau, Geoi^ios Bampasidis, Kunstantinos Kyr'takopotikts, Emmanuel Bratsolis, Mathieu ilirtzig, Athéna Cousienù & Xenophon Moussas

Fig. 15. (up left) Hairat Khaybar volcanic terrains, Nortli of Médina,

Saudi Arabia (NASA), (up ri ght) Possible cryovolcanic terrain on Titan,

Hotci Regio (Soderblom et al.. 2009). (down) Baglidad Sulcus, vol-

camc fracture on the south pôle of Enceladus, Tiger Stripes (NASA).
Pockets of beat liave been appeared along the fracture. The whitc ar-

rows indicate structures of tuffs. dômes and calderas forHarratKhay-
bar and possible doine and caldera formations for Hotei Regio.

Additionally. the red arrows indicate lava flows and possible cryovol-
came flows witliin the volcanic terrain. The ycllow dashed lines indicate

areas that are possibly tectonic zones of weakness from which internai

matenal may pass through.

high named Littlc Black Peak. The peak consists of three
nested ciader cônes and a solidified lava pond. Tiic Titanian
analogue (Fig. 14) is the possible cryovolcanic flow, Tui
Regio; one of the largest seen on Titan. It présents similar
shape as Carrizozo flow fleld (Fig. 14).

As indicated above, Hotei Regio is probably a massive
cryovolcanic terrain that consists of caldera-like figures and

depositional areas fillcd with lava flows. One terre striai ter

rain that rcscmbles Hotei Regio is the Harrat Khaybar vol
canic field (Fig. 15), which is located at Nortli of Médina in
Saudi Arabia. The western half of the Arabian Peninsula con-

tains extensive lava fields known as haraat (Pint, 2006). One

such fleld is the 14,000 km2 volcanic field that was forrned by
éruptions along a 100 km N-S vent System over the past 5
million years. The area contains a wide range of volcanic

rock types, spectacular landforms and several générations of
dark fluid basait lava flows (Pint , 2006). Jabal Abyad, in the
center of the image, was forrned from more viscous, silica-

rich lava classified as a rhyolite. While the 322 m high Jabal
al Qidr exhibits stratovolcano, Jabal Abyad is a lava dôme. To
the west. (image top center) is the impressive Jabal Bayda.
This symmetric structure is a tuff cône, forrned by éruption
of lava in the présence of water. The combination produces
wet, sticky pyroclastic deposits that can build a steep cône
structure, particularly if the deposits consolidate quickly
(Pint, 2006). In Fig. 15, we présent a comparison between
Earth’s, Titan ’s and Enceladus’ possible volcanic terrains and

tectonic zones of weakness that consist the passage for in
ternai matcrial to deposit on the surfaces.
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1. Introduction and Context

Charles Darwin’s vision, in 1859, of the origin and évolution of life on Earth,
paved the way for future biological searches and studies on our planet and on

other planetary bodies. The DNA decoding by James Watson and Francis Crick
(1953) confirmed both the complexity and the symmetry of living particles.
Following their strides, astrobiology, the study of evidence for life outside the
Earth, is not only the research of the origin, distribution, and évolution of life in
the whole universe but also that of structures and processes related to life and its
destiny (Raulin, 2007). In general, astrobiology brings together different scientific

disciplines such as astrophysics, geology, chemistry, geochemistry, biology, and
more in order to shed light on the many aspects regarding the création of our
solar System aa well as the initiation of life. Starting with the terrestrial paradigm,

astrobiology focuses on extraterrestrial environments, posing the unansvvered ques
tion on the origins of life on Earth and elsewhere, while investigating the more easily
accessible organic compounds—and in particular the prebiotic chemistry—on
other celestial bodies.

It is generally admitted today that life arose on Earth as the dérivative of a

long Chemical évolution, implying three major raw ingrédients: liquid wat.er,
carbonaceous matter, and energy, working together over time. Since life primitive
structures should be able to emerge, evolve, and develop in suitable environments,

the quest for possible habitats outside our planet is focused on places where these
ingrédients are or hâve been présent.

With the discovery of planets beyond our solar System and the search for

current living organisms or for favorable conditions for past and future life in
exotic places such as Mars, Europa, Titan, and Enceladus, the notion of habita-
bility takes a new dimension. In this chapter, we focus on habitability issues and
possible living forms around Saturn. Saturn has 62 known naturaJ satellites to this

date, and the discoveries from the Cassini-Huygens mission, which started in 2004,
hâve revolutionized our perception about vvhether these bodies could harbor life
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Figure 1. Map of the habitable zone's (HZ) limita Earthisin the middle ofthe HZ for thesolar System
while Mars and Venus lie in its boundaries. The planetary bodies <?, b, c, and dare exoplanets. Gliese
581 is reddwarf star 20.3 light years from Earth (NASA).

(dow or in the future) or at least provide us with valuable information on the
origin and évolution of life in the solar System. In the latter case, at least two of
the Kronian satellites* Titan and Enoeladus, can certainly offer a lot.

Discovered in 1655 by the Dutch astronomer Christiaan Huygens, Titan is
the largest satellite of Satum, bigger than planet Mercury, at 5,152 km in diameter.
Titan rotâtes around the Sun within 29.5 years following Satum on its trek. As a

resuit, Titan expériences seasons, each of which lasts about 7.5 terrestrial years.
Moreover, Titan orbits around Satum within 16 Earth-days almost synchro-
nously; thus, its solid surface rotâtes very slowly. Instead, due to strong zonal
winds (Birdet al., 2005; Lorenz et al., 2008b), its atmosphère is in super-rotation.
Due to Titan’s distance from the Sun of about 9.5 astronomical units (AU), the
satellite receives slightly more than 1% of the solar flux that the Earth registers at
the top of its atmosphère at 1 AU (Fig. 1). In addition, Titan revolves far enough
from the giant planet (about 20 Satumian radii), to avoid any critical interactions
with the rings or the magnetosphere. Although sometimesTitan moves close enough
to Satura to allow its atmosphère to interact with the energetic particles of the
magnetosphere of Satura. Together with the solar photons, these interactions
play a key rôle in Titan’s Chemical évolution. Indeed, Titan possesses an extensive

atmosphère made mostly of N2 with a column density ten times that of Earth’s
(Fig. 2). Furthermore, Titan’s astrobiolcgical potential isenhanoedby the presence
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Figure 1. (lefi) Titan’s thick, orange, and smoggy atmosphère (NASA); (right) Earth’s atmosphère as
seen from space (NASA); the cloudy nature of both atmospheric envelopes and also commonalities.
Both Titan and Earth expérience a greenhouse effect and complex photochemical reactions in their
upper atmospheric layers,

of a rich organic cheniistry which is produced in its atmosphère, thanks to the

presenoe of its second most abundant gas, methane (about 1.4% in the strato
sphère and 5% on the ground), and on the surface from the interactions among
the various constituents.

Thus, Titan’s unique and dense atmosphère harbors a whole host of organic
trace gases: hydrocarbous andnitriles (e.g., Coustenis et al., 2007, 2010b). Its sur
face présents many morphological similaritieswith the Earth’s, which surprisingly
show similar structural diversity, but the raw materials are different from those on

our own planet. With an environment very rich in organics, Titan, along with
comets, is thus often considered as one of the best targets to search for prebiotic

chemistry at a full planetary scale and a possible habitat for extraterrestrial life in
ail probability different from the terrestrial one. More importantly, our under-

standing of the origin of life on Earth could greatly benefit from studying Titan,
where the low solar influx, the composition of the atmosphère, and the possible
presenoe of an internai water océan give us the opportunity to study the conditions
prevailing on the primitive Earth.

After more than 8 years of close observations by remote sensing and in situ
instruments on board the Cassini-Huygens mission, Titan is revealed as an
evolving planet, geologically active, not only from erosional processes in the face
of the lack of impact craters (Lopes et al., 2010) but also because of its possible
cryovolcanism (Tobie et al., 2005; Barnes et al., 2006; Nelson et al., 2009a, b;

Soderblom et al., 2009) andmorphotectonism (Solomonidou et al., 2012), aeolian
and fluvial érosion (Fulchignoni et al., 2005; Israël et al., 2005; Niemann et al., 2005;
Owen, 2005; Tomasko et al., 2005; Zaraecki et al., 2005; Jaumann et al., 2008;
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Lorenz and Mitton, 2008; Raulin. 2008: Lebreton et al., 2009), clouds and pré
cipitations, and a methane cycle very similar to the water cycle on Earth (Bird
et al., 2005; Atreya et al., 2006; Coustenis and Taylor, 2008; Brown et al., 2009a;
Coustenis and Hirtzig, 2009). The organic chemistry products are found on Titan
ail the way from the upper atmosphère to the surface and possibly in the interior,
indicating close exchanges between the different éléments and planetary layers
(interior-surface-atmosphere).

Enceladus, first observed by Sir Frederick William Herschel in 1789, is
another intriguing moon of Saturn. Although it is quite small compared to Titan,
with a mean radius of 252 km, the large plumes ejected from its south-polar région,
as first discovered by the Cassini-Huygens mission magnetometer (Dougherty
et al., 2006), make it very important for astrobiology. These geyser-like features
mainly consist of water vapor and ice and include organic compounds (Dougherty
et al., 2009; Waite et al., 2009). This strongly suggests the potential presence of
a complex organic chemistry ongoing in the interior and the presence of liquid
water, providing grounds for the search of a liquid océan at short distances under
the surface.

Enceladus is an unambiguous example of a cryovolcanically active icy satellite
identified in the outer solar System and can be used to understand active processes
that. are thought. to hâve once played and/or are still possibly playing (e.g., Titan’s
case) a rôle in shaping the surfaces of other icy moons. These processes include
tidal heating, possible internai convection, cryovolcanism, and ice tectonics,
which ail can be studied as they currently happen on Enceladus. Moreover, the
plume source région on Enceladus samples a warm, chemically rich, environment
that may facilitate complex organic chemistry and biological processes.

What is the level of complexity reached by the organic chemistry in Titan
and Enceladus? What is the corrélation between the interior, the surface, and the

atmosphère, especially regarding the biological aspects? What are the habitability
potentialities in the Kronian environment, in particular for Titan? Such are the
questions that further exploration of Titan and Enceladus should answer in the

coming years (Brown et al., 2009b). After ail, Darwin’s evolutionary ideas could
also be successfully applied sensu lato in the Saturnian neighborhood.

2. Habitability Issues for Outer Planetary Satellites

Liquid water is established as the necessary solvent in which life emerges and evolves.
Water, as an abundant compound in our galaxy, can be found in various places,
from cold dense molecular clouds to hot stellar atmosphères (e.g., Cernicharo and
Crovisier, 2005; Hanslmeier, 2010). The thermodynamic behavior of water, which
enables it to remain liquid in a large range of températures and pressures and to
be a strong polar-nonpolar solvent, makcs it essential for maintaining stable
biomolecular and cellular structures (Des Marais et al., 2002).

A large number of organisms are capable of living in water. However, in a
deposit of pure water, life will probably never spontanéously originate and evolve,
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since while there are many organisms living in water, none we know of is capable

of living on water alone, because life requires other essential éléments such as

nitrogen and phosphorus in addition to hydrogen and oxygen. Moreover, no

known organism is made entirely of water. “Just water5' is therefore not an auspi-
cious place for the emergence and évolution of life.

The concept of the habitable zone (Fig. 1) is, of course, based on our under-

standing of life on Earth and is related to the presence of liquid water on a body’s
surface. But the requirements for extraterrestrial life do not hâve to be the same,

suggesting that life could exist outside the habitable zone (Cohen and Stewart,

2002), in particular if liquid water exists underneath the surface. Furthermore, the

changes that occurred on Earth’s primordial atmosphère under the influence of early
primitive plant life (Wolstencroft and Raven, 2002) require that diachronie alter
nation be taken into account regarding the habitability opportunities of a planetary
body. In addition, internai processes such as volcanic activity, hydrothermal move-
ments, and radioactive decay that possibly occur within satellites located outside the

habitable zone could affect the radiation and thermal level of the body and thus
change significantly the environmental conditions favoring life (Horneck, 2008).

Of the large satellites of the gas giants, there are those that may house
underground water deposits in direct contact with heat. sources below their icy
crust and those expected to hâve either liquid water layers encapsulated between

two ice layers or liquids above ice. In the study for the emergence of life éléments

on such satellites, the timescale is of essence. If it is long enough, the liquid water
underground océan may host. life. Thus, the icy satellites of the outer planets of
the solar System, as well as the recently discovered exoplanets, host unique condi

tions which may inhibit the emergence of life precursors in isolating environ-
ments that can prevent the concentration of the ingrédients necessary for life or
the proper Chemical inventory for the relevant biochemical reactions. Conversely,

according to Trinks et al. (2005), a coupled sea/ice System could in theory provide

the necessary conditions for life emergence in the primitive Earth. Additional
laboratory experiments and in situ studies of deep subglacial isolated lakes in

Antarctica (Kapitsa et al., 1996) would improve our understanding in t.his field,
as the physical properties of deep subglacial lakes resemble those found on both
Jupiter’s moon Europa and Saturn’s moon Enceladus (Bulat et al., 2009).

As a conséquence, the satellites of the giant planets like Europa, Enceladus,
Ganymede and Titan are possible habitable environments and valid targets in the

research for life with space missions and/or télescopés. However, life structures

that do not influence the atmosphère of their host planet on a global scale will
not be remotely détectable. In the solar system’s neighborhood, such potential

habitats can only be investigated with appropriate designed space missions, as in

the case of Europa, where the Europa Jupiter Space Mission (Clark et al., 2009)
will attempt to look for the hypothesized internai liquid water océan. In the case

of the Saturnian satellites (see hereafter), proposed future missions shall also
address this question.
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3. Titan: Organic Factory and Habitat

Retracing the processes, which allowed for the emergence of life on Earth around
4 billion years ago, is a difficult challenge. Our planet has drastically evolved since
that time, and most of the traces of what were the initial environmental conditions

hâve been erased as a conséquence of plate tectonics and érosion. It is thus crucial
for astrobiologists to find extraterrestrial locales with similarities to our planet’s
early stages. This will provide a way to study in the présent time some of the pro
cesses, which occurred on the primitive Earth, when prebiotic chemistry was in its
young stages (Fig. 3). For instance, a subsurface océan in the interior of the satel

lite of a gas giant (as on Europe, Enceladus, Titan, etc.) may be habitable for some
kind of life form—even though not necessarily an Earth analogue-but also infor
mation on the terrestrial-like atmospheric and surface conditions on any planetary
body can provide valuable information.

Titan is a good candidate in this instance as its atmosphère exhibits more
similarities with the Earth’s today—and even more so in the past than any other
solar System body (e.g., Coustenis and Taylor, 2008). Recent Cassini-Huygens
findings hâve revolutionized our understanding of Titan’s System and its potential
for harboring the “ingrédients” necessary for life (Coustenis and Taylor, 2008;

Figure 3. A scheme of possible théories on the origin of terrestrial and extraterrestrial life. The

chemistry of the raw materials as well as energy sources plays key rôles to each evolutionary path
(From Davis and McKay (1996) and McKay et al. (2008)).
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Figure 4. Atmospheric structure comparison of Earth and Titan. Both atmosphères are nitrogen-
dominated, but on Titan, methane plays the rôle of water on Earth. Both atmosphères hâve an impor
tant haze content, and condensation processes are expected similarly on both bodies (Owcn, 2005).

Lorenz and Mitton, 2008). Recent discoveries reveal that beyond its rich organic
budget, and sufficient energy sources to drive Chemical évolution, Titan also

probably contains a vast subsurface océan (Lorenz et al., 2008b).
Titan is indeed a very complex world much as our own planet. It is the only

one other than Earth, that possesses a thick nitrogen-based atmosphère, four
times denser than on our own atmosphère, with a rich organic chemistry (Fig. 4).
It also has a geologically complex and active surface including lake-like features
filled with organic liquid (e.g., Stofan et al., 2007). The physical processes within
this world invite further close-up investigation that will provide a better under-
standing of the terrestrial processes as well.

Current investigations hâve shown that Titan fulfills many of life’s pre-
requisites for a carbonaoeous portfolio. Due to its nitrogen atmosphère, which is
not in Chemical equilibrium but like a Chemical factory initiâtes the formation of
complex positive and négative ions in the high thermosphère as a conséquence
of induoed magnetospheric-ionospheric-atmospheric interactions involving
EUV, UV radiation, energetic ions, and électrons (as recently demonstrated by
the Cassini Ion andNeutral Mass Spectrometer, INMS). In this dynamic evolving
environment, the second most abundant atmospheric constituent, methane, is
dissociated irreversibly to produoe a variety of trace gases such as hydrocarbons
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(e.g., ethane, acetylene, and propane) and in combination with the nitrogen,
nitriles (e.g., hydrogen, cyanide, acetonitrile, cyanoacetylene), which are detected
in the stratosphère (betvveen 70 and 500 km in altitude) by the Composite Infrared
Spectrometer (CIRS) onboard Cassini (e.g., Coustenis et al., 2007, 2010b).
Literally, some of these gases would be considered as signs of life if they were on
our planet (HCN is considered a prebiotic molécule, a precursor of life). Hence,

finding how they form on Titan could give us dues on how life began on Earth.
The Cassini-Huygens mission lias revealed the essential details of the organic

and methane hydrologie cycles that we see today on Titan (Raulin et al., 2008;

Brown et al., 2009b; Lebreton et al., 2009). Methane on Titan seems to play the rôle
of waler on Earth, with a similar complex cycle as shown in Fig. 5 (Atreya et al.,
2006). On Titan, where methane is photodissociated and forms ethane and other

organic products in the atmosphère, it should hâve disappeared after 10-100 million
years, with around 34 Myrs as a nominal period (Atreya et al., 2006).

The intriguing question then is of how methane gets replenished in the

atmosphère. On Earth today, it is life itself that refreshes the methane supply since
methane is a by-product of the metabolism of many organisms. Hence, could this
mean there is life on Titan? However, the Huygens Gas Chromatograph Mass
Spectrometer (GCMS) data hâve shown that methane is not of biogenic origin,
because the isotopic ratios are compatible with inorganic values (Niemann et al.,
2005, 2010). Thus, the sinks of atmospheric methane on Titan are relatively well
understood, but the major sources of replenishment are still very model dépend
ent, as will be discussed later.

3.1. THE ATMOSPHERIC ORGANIC-RICH EN VIRONMENT OF TITAN

Although Titan’s atmosphère is much colder than Earth’s, it présents many direct
similarities with our planet (Fig. 4), at different levels which hâve been pointed out
since Voyager days. To begin with, both are made of the same main constituent,

dinitrogen. A similar vertical structure from the troposphère to the ionosphère is
also présent, as well as a surface pressure of 40% larger than that of the Earth’s

(Fulchignoni et al., 2005). This is the only case of an extraterrestrial planetary
atmospheric pressure so similar to that of Earth. Furthermore, a very exciting and
complex organic chemistry takes place in Titan’s atmosphère.

The direct analysis of the ionosphère by the Cassini Ion and Neutral Mass
Spectrometer (INMS) instrument during the low-altitude Cassini flybys of Titan
shows the presence of many organic species at détectable levels, at very high alti
tudes (1,100-1,300 km). Extrapolation of the INMS measurements (limited to

mass up to 100 Da) and of Cassini Plasma Spectrometer (CAPS) data strongly
suggests that high molecular weight species (up to several 1,000 Da) may be
présent in the ionosphère (Waite et al., 2007). These observations open a fully new
vision of the organic processes occurring in Titan’s atmosphère, with a strong
implication of the ionospheric chemistry in the formation of complex organic
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CIRS instrument detects the neutral chemistry in the stratosphère (Flasar et al., 2005).

compounds in Titan’s environment (Fig. 6), which was not envisaged before.
These compounds are détectable in solar and stellar UV occultations and initiate

the process of haze formation starting at about 950 km (Waite et al., 2007) to
finally condense out.

In the neutral atmosphère of Titan (between roughly 100 and 500 km), as
we mentioned above, CH4 chemistry is coupled with N, chemistry producing the
formation of many organics in gas and particulate phase: hydrocarbons, nitriles,
and complex refractory organics. Several photochemical models describing
the Chemical and physical pathways involved in the Chemical évolution of the

atmosphère of Titan hâve been published for the last20 years (Yung et al., 1984;
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Toublanc et al., 1995; Wilson and Atreya, 2004; Lawas et al., 2008). These papers
estimate the resulting vertical concentration profiles of the different molécules.
Based on these models, the cycling of volatile Chemicals starts with the dissocia

tion of N2 and CH4 through électron, photon, and cosmic rays impacts in Titan’s
atmosphère. The primary processes allow for the formation of acetylene (C,H2)
and hydrogen cyanide (HCN) in the high atmosphère. These molécules play a key
rôle in the general Chemical sclieme: once they are formed, they diffuse down to the
lower levels where they allow the formation of higher hydrocarbons and nitriles
and perhaps aromatic compounds. Additionally, methane dissociation probably
also occurs in the low stratosphère through photocatalytic processes involving
acetylene and polyynes. The end products of the Chemical évolution of methane in
the atmosphère are complex refractory organic compounds and ethane.

As these aérosols and haze particles fall through the atmosphère and
grow, they become détectable with imaging Systems su ch as the Cassini Imaging
Science Subsystem (ISS) at about 500 km altitude and are ubiquitous throughout
the stratosphère (Porco et al., 2005). They are strong absorbers of solar UV and
visible radiation and play a fundamental rôle in heating Titan’s stratosphère and
driving wind Systems in the middle atmosphère, much as ozone does in the Earth’s
middle atmosphère.

Experiments that simulate the reactions taking place in Titan’s atmosphère
(such as the Miller-Urey experiment) produce refractory organics, usually named
tholins (Sagan and Khare, 1979) (“tholins” are solid products in the laboratory
mimicking complex refractory organics: Nguyen et al. (2007); and references
therein). Tholins represent laboratory analogues of Titan’s aérosols and are use-
ful to interpret many obsejvational data which require information on the aéro
sols. As being experimental analogues of Titan’s atmospheric particles, tholins
also allow the study of the aérosols behavior in Titan’s conditions with the tools

available in the laboratory. Several organic compounds hâve already been detected
in Titan’s upper and lower atmosphère (Waite et al., 2007; Coustenis et al., 2010b).
The list includes hydrocarbons (both with saturated and unsaturated chains) and

nitrogen-containing organic compounds, exelusively nitriles, as expected from
laboratory simulation experiments (Fig. 6). Moreover, since the Cassini arrivai in
the Saturnian system in 2004, the presence of water vapor and benzene has been
unambiguously confirmed by the CIRS instrument.

3.2. TITAN’S PREBIOTIC RELEVANCE

Several of the organic processes that are occurring today on Titan form some of the
organic compounds which are considered as key molécules in terrestrial prebiotic

chemistry, such as hydrogen cyanide (HCN), cyanoacetylene (HC3N), and cyanogen
(C2N2). In fact, with several percent of methane in dinitrogen, the atmosphère of
Titan is one of the most favorable atmosphères for prebiotic synthesis, although
it almost lacks both oxygen and hydrogen. Concerning the hydrocarbon trace
budget, photochemical models imply that light hydrocarbons are destroyed mostly
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Figure7. Composition ofTitan’s
aérosols.

condensed

organics

by réactions with OH' and Cl“ radicals. Contrary to the very short lifetime of

C2H2 on Earth (Rndolph et al., 1984), aœtylene on Titan shovvs a seasonal variation
during a Titan year (29.5 terrestrial years) and reaches almost the abundances
recorded by Voyager 1 in 1980 (Coustenis et al., 2010a).

The Aérosol Collector Pyrolyser (ACP) experiment on Huygens provided
the first direct in situ Chemical analysis of Titan’s aérosols. It collected lraze

particles from the stratosphère and the troposphère, heated them at different

températures, and sent the produced gases for analysis to the GCMS instrument.

The obtained results indicated that the aérosols are ma de of a refractory nucléus,

composed of H, C, and N atoms (Fig. 7) and producing NH3 and HCN after
pyrolysis at 600°C (Israël et al., 2005). This strongly supports the tholin hypoth-
esis. It also strongly suggests that Titan’s aérosols may evolve once in contact with

water ice on the surface and may produce a variety of organics of biological inter

est, such as amino acids (Neish et al., 2010; Ramirez et al., 2010).
Analogies are thus obvious between the organic cliemistry activity currently

occurring on Titan and the prebiotic chemistry which was once active on the

primitive Earth, prior to the emergenoe of life (e.g., McKay and Smith, 2005).
Indeed, in spite of the absence of permanent bodies of liquid water on Titan’s

surface, both chemistries are similar. As noted earlier, many resemblances can
also be made between the rôle of methane on Titan and that of water on the

Earth, with a complex cycle that has yet to be fully understood. Indeed, on Titan,

methane can exist as a gas, liquid, and solid, since the mean surface température

is almost 94 K (Fulchignoni et al., 2005), approaching the triple point of
methane.

The atmosphère we enjoy today on Earth is probably radically different from

the primitive one dating back to 4.6 billion years ago when our planet was nothing

more than a molten bail of rock surrounded by an atmosphère of hydrogen and
hélium. In the absence of a magnetic field at those early stages, the intense solar
wind from the young Sun blew this early atmosphère away. Then, as Earth cooled

enough to form a solid crust, it was covered with active volcanoes, ejecting
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water vapor, carbon dioxide, and ammonia to form an early toxic atmosphère.

Eventually, light from the Sun broke down the ammonia molécules exsolved by
the volcanoes, releasing nitrogen into the atmosphère. Over billions of years, the

quantity of nitrogen built. up to the levels we see today. Although life formed just a
few hundred million years later, it was not until the évolution of bacteria, 3.3 billion
years ago, that the early Earth atmosphère changed into the one we know today.
During the period from 2.7 to 2.2 billion years ago, these early bacteria—known
as cyanobacteria—used energy from the Sun for photosynthesis and released
oxygen as a by-product. They also trapped carbon dioxide in organic molécules.
In just a few hundred million years, these bacteria completely changed the Earth’s
atmosphère composition, bringing us to the current mixture of 21% oxygen and 78%

nitrogen. Schaefer and Fegley (2007) predict that Earth’s early atmosphère contained

CH,, H2, H20, N2, and NH3, similar to the components used in the Miller-Urey
synthesis of organic compounds, often related to Titan’s and Enceladus’s atmos-
pheric inventory. Furthermore, Trainer et al. (2006) looked at the processes that
formed haze on Titan and on early Earth and found many similarities for what.
could hâve served as a primary source of organic material to the surface.

Before the rise of the atmospheric oxygen in the terrestrial atmosphère
2.5 Gy ago, it considered possible that the abundance of methane gas was 10-20
times higher than the today’s value of 1.6 * 10“6 (Pavlov et al., 2003). Hence, if

the atmospheric C02/CH4 ratio had become equal to 10 at the mid-Achaean era,
an organic haze could hâve formed on this early environment (Pavlov et al.,
2000; DeWitt et al., 2009). This hydrocarbon haze produced the anti-greenhouse
effect which reduced the température of the atmosphère (Kasting and Howard.
2006). Titan also hosts a thick methane-induced organic haze, similar to the one
predicted for the early Earth and, consequently, expériences the same anti-
greenhouse effect (McKay et al., 1999). The absence of vast amounts of CO, on

Titan is one of the major différences between the two atmospheric envelopes.
On the other hand, hydrogen cyanide and other prebiotic molécules are among
the starting materials for biosynthesis. The existence of hydrocarbons, and in

partieular acetylene and benzene, has really enlarged the borders of photo-
chemical organic products.

Especially, the presence of benzene (C6H6) seems extremely interesting, as it
is the only polycyclic aromatic hydrocarbon (PAHs) discovered on Titan today.
The presence of PAHs on Titan’s atmosphère is very important as they could
contribute to the synthesis of biological building blocks. Moreover, the combi
nation of the liquid deposits on the surface of Titan and the low température
could host the proper environment for this biosynthesis. Recent laboratory
experiments showed that aromatic compounds could be plausibly produced on
icy surfaces (Menor-Salvân et al., 2008). Benzene was first detected at 674 cm"1

based on Infrared Space Observatory (ISO/SWS) data (Coustenis et al., 2003)
with the mixing ratio of 4 x 10"10 and was then also detected in the thermosphère
(950-1,150 km) from the analysis of Cassini/INMS data (Waite et al., 2007)
and firmly in the stratosphère (100-200 km) at ail latitudes by Cassini/CIRS
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measurements (Flasar et al., 2005; Coustenis et al., 2007, 2010b). Moreover,

benzene has been tentatively identified on Titan’s surface by Huygens/CGMS
measurements (Niemann et al., 2005).

As Titan lacks oxygen and sufficiently high températures, as did primitive
Earth, different evolutionary pathways from Earth must hâve been followed on
Titan, and polyphenyls may possibly be created (Delitsky and McKay, 2010).

The abundances of hydrocarbons are higher on Titan tlian those on Earth by a
factor of about 10M04. Moreover, the temporal variations of the hydrocarbon
traces on Titan expérience a full cycle during the Titan year (Coustenis et al., 2010a)
and are probably inftuenced by local or régional sources and sinks. Photochemieal

models are trying to reproduce these phenomena. Taking into account ail the
above-described characteristics, the prebiotic potential of Titan is enormous, and

a huge effort in astrobiological studies is focused on its environment. Eventually,
Titan still seems to be the idéal planet-size laboratory for increasing our knowledge
of the évolution of the Earth’s atmosphère.

3.3. ORGANIC CHEMISTRY AND MORPIIOLOGY OF TITAN’S

ACTIVE SURFACE

The Cassini-Huygens mission has significantly enhanced our understanding of
Titan as the largest abiotic organic factory in the solar System. The abundance
of methane and its organic products in the atmosphère, seas, and dunes exceeds
the carbon inventory in the Earth’s océan, biosphère, and fossil fuel réservoirs
by more than an order of magnitude (Lorenz et al., 2008a). As discovered by
the Cassini/INMS, in the high atmosphère, heavy ions are formed (Waite

et al., 2007).

Measurements throughout the atmosphère, both remote and in situ, hâve

indicated the presence of numerous hydrocarbon and nitrile gases, as well as a
complex layering of organic aérosols that persists ail the way down to the surface

of the moon (Tomasko et al., 2005; Coustenis et al., 2007; de Kok et al., 2007).
Radar observations suggest that the ultimate fate of this aérosol “rain” is the

génération of expansive organic dunes that produce an équatorial belt around the
surface. Condensation of these species on aérosol particles is a probable explana-
tion for these atmospheric characteristics. These particles, for which no direct

data on their Chemical composition were previously available, were analyzed by
the Aérosol Collector and Pyrolyser instrument aboard Huvgens probe. ACP
results show that the aérosol particles are made of refractory organics which

release HCN and NH3 during pyrolysis.
This supports the tholin hypothesis (as described in section 3.1). From

these new in situ measurements, it seems very likely that the aérosol particles
are made of a refractory organic nucléus, covered with condensed volatile

compounds (Israël et. al., 2005). However, Huygens/GCMS did not detect. a large
variety of organic compounds in the low atmosphère (Niemann et al., 2005).
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Figure 8. Linear dunes on Titan (Radebaugh et al., 2010). Titan's dunes are believed to be composed

of ice and organics grains that possibly dérivé from a combination of the surface icc and the organic
Chemicals that fall through in Titan’s atmosphère.

Moreover, the nature and abundances of the condensâtes hâve not been meas-

ured. Even more importantly for astrobiology, neither the elemental composition

nor the molecular structure of the refractory part of the aérosols has been
determined.

Eventually, these complex organic molécules are deposited on Titan’s surface

in large quantities, where data from Cassini’s instruments hint at their existence.

Hence, the upper thermosphère is linked intimately with the surface and the inter-

vening atmosphère. In spite of the low surface température, the organics reaching

the surface are probably evolving once in contact with water ice and may form

organic molécules of biological interest.

Radar observations suggest that the ultimate fate of this aérosol “rain” is the

génération of expansive organic dunes that produce an équatorial belt around the

surface. Indeed, the surface of Titan shows also the presenoe of sedimentological

and meteorological processes, as we see on Earth: There are many large dune

areas (Lorenz et al., 2006; Radebaugh et al., 2008, 2010) (Fig. 8) where the ter-
restrial silica sand is probably replaced, once more, by water ice particles, mixed

with the organic material of the aérosols.
Cassini’s radar instrument finally unveiled what appears to be a land of lakes

in Titan’s northern polar régions (see Fig. 9) (Stofan et al., 2007). Cassini/ISS
images also show a kidney-shaped dark feature about 200 km in lengtli, named

Ontario Lacus, that is outside the area of radar coverage and has receutly been

confinned by the Cassini Visual and Infrared Mapping Spectrometer (VIMS)
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Figure 9. Lakes discovered in Titan’s north-polar région by the Synthetic Aperture Radar (SAR) on
board Cassini-Huygens mission (NASA/JPL). The dark patches are believed to be filled with hydro
carbon liquid.

not only to be a lake but also to be composed of ethane liquid (Brown et al.,
2008). In the absence of a massive surface océan but with analogues to ail other
terrestrial hydrological phenomena présent, Titan’s methane cycle is very exotic.

The liquid bodies are one of the main astrobiological aspects of Titan.
Cassini’s caméras (ISS) hâve allowed scientists to compile a nearly global surface
map and tomonitor the surface and atmosphère for activity. Intriguingly, repeated
south-polar imaging by ISS revealed différences consistent with ponding of
hydrocarbon liquids on the surface due to précipitation from a large storm.
More recent ISS images of high northem latitudes illustrate the full extents

(>500,000 km2) of hydrocarbon seas, also observed by Cassini’s radar. These
observations demonstrate dynamic processes at work on Titan and indicate that

the pôles harbor liquid-hydrocarbon réservoirs, the extents of which differ from

pôle to pôle and which may be coupled to seasonally varying circulation (Turtle
et al., 2009).

The lakes and seas observed on Titan in the polar régions (Mitri et al., 2007;
Stofan et al., 2007) make Titan the only body in the solar System having large
liquid bodies on its surface. These very dark features at the high northem latitudes

of Titan were finally shown to be liquid-filled (most probably with ethane-rich
mixtures (Brown et al., 2008)) basins—classifying them as lakes.

The features range in size from less than 10 km2 to at least 100,000 km2.

They are limited to the région poleward of 55°N. Currently, Cassini’s instruments
hâve identified and mapped almost 655 geological structures referred as lakes

and/or basins (Fig. 10) (Hayes et al., 2008). Titan is thus the only planetary body,
other than the Earth, with long-standing bodies of liquid on its surface (although
direct observational evidence of the longevity of Titan’s surface liquids remains
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Figure 10- Map of almost 655 lak.es and sea features by the Cassini radar System in azimuthal projection
at the north pôle of Titan. Map A (left) shows the radar swath mosaic up to May 2007 flybys. Map B
{rtght) represents the spatial distribution of mapping units. Lake Michigan is illustrated for scalc
purposes (Hayes et al., 2008).

to be obtaiiied). Ail of this suggests that Titan maybe even more similar to
primitive Earth than we thought. However, the degree of complexity which can

be reached from such an organic chemistry in absence of permanent liquid water
bodies on Titan’s surface is still unknown, although it could be quite high.

McKay and Smith (2005) noted the astrobiological importance of these
geological features that are filled with liquid hydrocarbons, since there is a pos-
sibility for a different form of life to exist in such environments. It has been

hypothesized that such a methanogenic life form consumes H2 instead of 02 that
could be measured in the lower atmosphère. Two papers, by Strobel (2010) and
Clark et al. (2010), based on data from the Cassini orbiter focus on the complex
Chemical activity on the surface of Titan. Strobel (2010) shows that hydrogen
flows down through Titan’s atmosphère and then somehow disappears on the

surface. One of the most interesting phenomena occurring on Titan is that impor
tant quantities of atmospheric hydrogen précipitâtes and disappears when reach

the surface. Such process resembles the oxygen consumption as oocurring on
Earth although in Titan’s case, the element is hydrogen (Strobel, 2010).

Even though this is not supportive to the Titan’s terrestrial-type life theory,

it represents a hypothetical second form of life independent from water-based life
we know on Earth. Strobel (2010) describes densities of hydrogen in different
parts of the atmosphère and the surface. Previous models had predicted that
hydrogen molécules, a by-product of ultraviolet sunlight breaking apart acetylene
and methane molécules in the upper atmosphère, should be distributed fairly
evenly throughout the atmospheric layers. The authors found a disparity in the
hydrogen densities that lead to a flow down to the surface; at a rate of about

10,000 trillion hydrogen molécules per second. This is about the same rate at
which the molécules escape out of the upper atmosphère. Strobel (2010) States
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that it is not likely for hydrogen to be stored in a cave or underground space on
Titan. Titan’s surface is also so cold that a Chemical process that involved a
catalyst would be needed to convert hydrogen molécules and acetylene back to
methane, even though overall there would be a net release of energy. The energy
barrier could be overcome if there were an unknown minerai acting as the catalyst
on Titan’s surface.

Another possible indicator for life on Titan is the lack of acetylene on the
surface since there is no clear evidence of this compound in the received data to
date, while it is expected to hâve been deposited through the atmosphère. It has
been suggested that this could be due to the fact that sonie form of life on the

surface is using acetylene as an energy source (Clark et al., 2010). This theory is
largely debated and controversial among the scientific community, especially due
to suggestions of nonbiological origin of this phenomenon; however, it has the
merit to propose new interesting astrobiological théories. In detail, Clark et al.
(2010) map hydrocarbons on the surface from Cassini/VIMS data and find a lack

of acetylene. McKay and Smith (2005) had identihed acetylene as the best. energy
source for methane-based life on Titan. While nonbiological chemistry offers
one possible explanation, these authors believe these Chemical signatures bolster
the argument for a primitive, exotic form of life or precursor to life on Titan’s
surface. According to one theory put forth by astrobiologists, the signatures fulfill
two important conditions necessary for a hypothesized “methane-based life”,

which would consume not only methane but also hydrogen. However, one other
possibility is that sunlight or cosmic rays are transforming the acetylene in icy
aérosols in the atmosphère into more complex molécules that would fall to the
ground with no acetylene signature.

To date, methane-based life forms are only hypothetical. Scientists hâve not
yet detected this form of life anywhere, though there are liquid-water-based
microbes on Earth that thrive on methane or produce it as a waste product. At
Titan’s low températures, a methane-based organism would hâve to use a sub
stance that is liquid as its medium for living processes, but not water itself. Water

is frozen solid on Titan’s surface and much too cold to support life as we know it.
The list. of liquid candidates includes liquid methane and related molécules like
ethane. While liquid water is widely regarded as necessary for life, there has been
extensive spéculation published in the scientific lit.erature that this is not a strict
requirement. The new hydrogen findings are consistent with conditions that could

produce an exotic, methane-based life form, but do not prove its existence.

3.4. INTERIOR MODELS FOR TITAN AND ITS POSSIBLE

SUBSURFACE OCEAN

Regarding Titan’s interior structure, since the only in situ data from its surface
are the Huygens probe recordings, only modeling assumptions can be presented.
Structural models for planetary interiors suggest that Titan, like Europa, Ganymede,
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Figure 11. Illustration of Titan’s internai structure with a liquid océan between two subsurface ice
layers (From Tobie et al., 2005). Cassini-Huygcns rccorded cxtremcly low-frequency radio waves
which supports the existence of this liquid subsurface layer (NASA/LPGN).

and Callisto, lias maintained internai liquid water réservoirs, probably mixed with
sorae ammonia and more speculatively sulfur and possibly entrained methane
clathrates (Fig. 11).

Another possible location to look for life ou Titan would be in an undersur-

face liquid water océan. The presence of such an internai océan is supported by
Titan internai structure raodels (Tobie et al., 2005; Mitri et al., 2008), radar and

gravityCassinimeasurements(Lorenzetal., 2008b), and the HuygensAtmospheric
Structure Instrument (HASI) experiment. Beghin et al. (2009) thus interpreted
the extremely low-frequency electric signal recorded by HASI as a Schumann
résonance between the ionosphère and a modestly conducting océan (siuce the ice
is not conductive) roughly 30-50 km below the surface. Thermal évolution mod-

els suggest that Titan may hâve an ice crust between 50 and 150 km thick, lying
atop a liquid water océan a couple of 100 km deep, with some amount (a few to
30%, most likely -10%) of ammonia dissolved in it, acting as an antifreeze mate-
rial (Lorenz et al., 2008b). This correspond to a pH arouud 11.5. The pressure
reaches~5 kbars at 200 km depth, and it could include hot spots reacliing -20 °C.
Such conditions are not incompatible with life as we know it on Earth (Fortes,
2000; Raulin, 2008; Raulin et al., 2009).

Tobie et al. (2005) suggested a layered interior structure of Titan, consisting
of a rocky core overlaid by high-pressure ice, a liquid layer overlaid by low pres
sure ice, and finally a solid icy crust (Fig. 11). An earlier model by Fortes (2000)
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noted that underneath Titan’s icy crust, at a depth of approximately 200 km, there
lies an ammonia-water solution océan in which life could survive. Another,

more recent model by Mitri et al. (2008) suggests pockets of methane clathrates

trapped within an ammonia-water océan which could exsolute and produce over-

pressure and consequently the ammonia-water can erupt to the surface leading
to cryovolcanic phenomena.

With regard to Titan’s morphology and internai dynamic geology, it lias
been suggested that there may be active cryovolcanoes on Titan (Sotin et al.,

2005; Lopes et al, 2007) since traces of former flows hâve been found across
parts of the surface. A wide variety of Cassini data support the presence of cryo-
volcanism on Titan. Indeed, at least two régions hâve been observed to change
réflectance on Titan’s surface (Tui Regio 20°S, 130°W; Hotei Regio 26°S, 78°W)

(Barnes et al., 2006; Nelson et al., 2009a, b), and one of them (Hotei Regio) in
addition to a recent discovery (Sotra Facula 15°S, 42°W) in radar images exhibit
lobate “flow” forms (Soderblom et al., 2009; Lopes et al., 2010), consistent with

the morphology of volcanic terrain, support.ing the hypothesis of cryovolcanic
éruptions (Sotin et al., 2005).

However, on Titan, fluid water mobilized and made buoyant by ammonia

and other materials could replace terrestrial melted silicates. Cryovolcanism
suggests a dynamic process than involves the interior, the surface, and the atmos
phère as well. It is a multi-complex activity that resembles terrestrial volcanic pro

cesses as it follows a similar pattern although in extremely altered conditions and
different initial and depositional products. Cryovolcanism on Titan is believed
to be a significant source of the methane in the atmosphère (Tobie et al., 2006).

An underground liquid océan, several hundred kilomet.ers deep at. the surface of
Titan, is suggested to be the source of cryomagma, hence outgassing methane
into the atmosphère and thus replenishing the destroyed amounts.

There are indeed studies suggesting the presence of an internai ammonia-
water océan (Grasset and Sotin, 1996; Grasset, et al., 2000; Tobie et al., 2005;

Mitri et al., 2007) while another study has modeled and suggested an océan filled

with methane clathrate pockets that lead to explosive cryovolcanism (Fortes
et al., 2007).

The theory of trapped methane clathrates in the potential liquid océan is

of a major astrobiological interest.. The presence of methane clathrates in an

aqueous environment is attached to the “clathrate gun” hypothesis. This hypo

thesis suggests that potential movement and rise of the température in an
underground liquid réservoir could trigger the sudden release of methane from
methane clathrate compounds buried in permafrost. or seabeds (Kennett et al.,

2003) or an océan like on Titan’s case. The initiation of such process leads to
further température rise and further methane clathrate destabilization that could

easily cause and trigger cryovolcanic éruptions (Kennett et al., 2003). For Titan,

a dynamic process like the one suggested by the clathrate gun hypothesis could
result. to increase of température values, creating an environment more favorable
for life to exist.
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With respect to the astrobiological interest., there is a controversy about the

effectiveness of methane as a medium for life compared to water or ammonia.
Water has higher solubility than methane, enabling easier transport of substances

in acell, while methane’s lesser Chemical reactivity allows for the easier formation
of large structures corresponding to proteins (Benner et al., 2004). In addition,
the cryovolcanic activity suggests higher températures within the océan and the

volcanic conduit where heat transfer between the interior and upper layers would
be critical in sustaining any subsurface oceanic life (Grasset et al., 2000).

Thus, the possibility of life in this océan cannot be excluded. Moreover,

models also predict Lhat during the first tens millions of years after Titan’s forma

tion, the océan was in direct contact with the atmosphère on one side and with
the bedrock on the side. This could hâve provided conditions very favorable for

an efficient prebiotic chemistry toward the emergence of life, with the possible
involvement of hydrothermal vents. Thus, the internai océan of Titan not only is
habitable but could be inhabited.

Hence, in spite of the low température. Titan is not a congealed Earth:
The Chemical System is not frozen. Titan is an evolving planetary body and so is
its chemistry. Once deposited on Titan’s surface, the aérosols and their complex

organic content may follow a Chemical évolution of astrobiological interest.
Laboratory experiments show that, once in contact with liquid water, Titan
tholins can release many compounds of biological interest, such as amino acids

(Khare et al., 1986). Such processes could be particularly favorable in zones of

Titan’s surface where cryovolcanism may occur. The N,-CH4 by-products in
Titan’s atmosphère eventually end up as sédiments on the surface, where tliey
accumulate presently at a rate of roughly 0.5 km in 4.5 Gyr.

Long-term Chemical évolution is impossible to study in the laboratory: In situ
measurements of Titan’s surface thus offer a unique opportunity to study bv a

ground-truth approach some of the many processes which could be involved in
prebiotic chemistry, including isotopic and enantiomeric fractionation (Nguyen
étal., 2007).

There are suggestions that Titan is presently geologically active on the sur
face (Nelson et al., 2006, 2009a, b) and in its interior. If Titan is currently active,
then these results raise the following questions: What is the full extent of current

géologie activity? What are the ongoing processes? Are Titan’s Chemical processes
today supporting a prebiotic chemistry similar to that under which life evolved on
Earth?

Although the Chemical reactions that lead to life on Earth take place in
liquid water, the reactions themselves are almost entirely between organics.
The study of organic chemistry is therefore an important, and arguably richer,
adjunct t.0 the pursuit of liquid water in the solar System. Titan’s organic inven-
tory is impressive, and carbon-bearing compounds are widespread across the
surface in the form of lakes, seas, dunes, and, probably, sedimentary deltas at the
mout.hs of channels.
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4. Enceladus: Liquid Water Far Away from the Sun

Discovered by William Herschel in 1789, Enceladus is arguably a place in the
solar System where a demonstrably habitable environment already occurs and
evaluating its astrobiological potential should be an overarching goal of Enceladus
research. Although Enceladus is a relative small planetary body (500 km in
diameter), significant Chemical processes could produce primitive life structures.
Obviously, oxidation/reduction reactions necessitate supporting redox-based life

(Gaidos et al., 1999). Fe- and Ni-bearing dust particles can operate as reducing
agents on Enceladus, which exist. since planetary formation from the ancient
solar nebula.

As concerns oxidant. agents on Enceladus, Gaidos et al. (1999) also noted
their production through E-ring particles, charged from the Saturnian magne-
tospheric environment. Then, some suitable geological process is needed to mix
the reducing and oxidizing compounds. In a model by Cooper et al. (2009), the
astrobiological parameters that support life on Enceladus are evaluated as higher
than for Europa due to a less extreme State of oxidation and greater residual
abundance of organics.

Indeed, Enceladus, Saturn’s most. active moon as observed from Cassini,

présents a mystery in the studies of planetary science and, more specifically, in
geophysics. The enigma evolves around how a small moon can possess suffîcient
dynamical energy to drive a geyser plume rising 600 miles in space out. of the
moon’s south pôle, eventually feeding its material to the outer E-ring of Saturn
(Postberg et al., 2009). The heat source for Enceladus is still an open question, as
is the possibility for life to exist. on this small satellite if an underground liquid
water océan or liquid water subsurface pockets exist to explain the plumes
(Kieffer and Jakosky, 2008).

The geyser plumes arise from the warm surface surrounding and including
four parallel faults located at the moon’s south pôle, the “Tiger Stripes” fractures
(Porco et al., 2006; Spencer et al., 2006), spewing a sériés of jets more than
600 km high (Fig. 12). The mass production rate of the plume gas has been
estimated to be ~150 kg/s from occultation data (Tian et al., 2007). This value is
surprisingly high, suffîcient to remove a significant fraction (~20%) of Enceladus’s
mass over the âge of the solar System (Kargel, 2006).

Data obtained by the VIMS instrument on board Cassini indicate C02 and
organics as possible components (Brown et. al., 2006). Data processing showed
components that Cassini’s INMS identified H20 as the prédominant component,
C02 as the second most abundant, methane, and trace quantifies of acetylene and
propane (Waite et al., 2009). During the 9th of October 2008 flyby, Cassini dived
into the south-polar plume, and INMS reported the presence of ammonia and
other various organic compounds like deuterium and 40Ar, as well as complex
organics like benzene and other probable species such as methanol and formaldé
hyde (Waite et al., 2009). The Chemical composition of the plume and surface
material of Enceladus suggests the presence of a heat source in its interior, hot
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Figure 12. Enceladus’s plumes ejected from the south-polar région captured by Cassini/ISS (Porco
et al., 2006).

enough to décomposé ammonia into N2 and to drive reactions with hydrocarbons,
implying internai températures on the order of 500-800 K (Matson et al., 2007).

There is a plethora of competing théories regarding the triggering and exso
lution of geysers from the Tiger Stripes. The main controversy lies on as to whether
the plumes are formed by a massive underground océan (Tobie et al., 2008;
Postberg et al., 2009) (Fig. 13a) or if the material generates from ice warmed,
melted, or crushed by tectonic-like motions (Nimmo et al., 2007) (Fig. 13b).

Given the aforementioned observations and analysis, it is now known that

Enoeladus contains enough heat to drive complex and dynamic géologie activity.
Interprétation of Cassini data with a view to explain the major internai réservoir
that triggers and feeds this dynamic prooess points to a possible underground liquid
océan beneath the icy crust Since the prerequisites for life to emeige are the
simultaneous existence of energy, organic compounds, and liquid water that hâve
been found on Enoeladus, it seems that it possesses ail the neoessary components
to support life.

In general, as described above, the south-polar région of Enceladus présents
extremely high températures while the exsoluted vapor has also been shown

to contain simple organic compounds. Most théories regarding the origin of this
active région suggest that it is very likely for a liquid water environment to exist
beneath the Tiger Stripes. This hypothesis enables the parallelism between potential
biological ecosystems on Enceladus and the already existing on Earth (Fig. 14).
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Tectonic

Meltwater

Low-salinity
meltwater

Figure 13. ([lefl) Modeling of a possible internai océan on Enceladus filled with water and Chemical

compounds. This model tries to explain the significant abundance of sodium salts of Saturn's

E-ring, probably originating in Enceladus plumes (Postberg et al., 2006). (right) Internai model of
Enceladus based on tectonic meltwater. Heating along fractures is caused by tidal tlexing (Nimmo
et al., 2007).

Figure 14. Indications for biological and nonbiological processes in relation to molecular parameter
(left) terrestrial abiogenic production of hydrocarbons from McCollom and Simoneit (1999) and ils
biogenic pendant from Devai and Dclaunc (1996). (right) Organic distribution for abiotic. biological,
and possible alien life on Enceladus (Both figures from McKay et al., 2008).
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The standards for life that Enceladus’ possible océan does not. fall into are the

sunlight, the oxygen compounds, and the organics produced on a surficial-crust
environment. Environments and ecosystems that do not meet the aforementioned
prerequisites exist and evolve on Earth as vvell. Such an environment is located

deep inside South Africa’s surface, where sulfur-reducing bacteria consume
hydrogen and sulfate, produced by radioactive decay (McKay et al., 2008; Muyzer
and Stams, 2008). In addition, other analogous to Enceladus ecosystems are
found within the magmatic volcanic rocks, which are produced through the activ-
ity of metasomatism. The metasomatosis of the volcanic rocks under the reaction

of water produces methanogens of hydrogen on which the primary productivity
is based on (McKay et al., 2008). Cassini’s data showed that methane is présent
in the plumes. The terrestrial comparison regarding the ecosystems suggests that
plume’s methane may be biological in origin (McKay et al., 2008).

Spécifie questions relevant to the goal of understanding habitability on
Enceladus include: Is liquid water présent on Enceladus, either in a subsurface

océan, in the plume vent régions, or elsewhere? How extensive and long lived is
the water, if présent, and what is its chemistry? How does the liquid réservoir
communicate with the surface? How thick is the ice crust and how uniform is that

thickness? What energy sources are available for life? Is life présent there now?
VIMS observations of several other satellites of Satura, in the near-infrared

région, show that their surface is covered by dark materials. This is particularly
the case with Dione but also with Phoebe, Iapetus, Hyperion, Epimetheus and
even with the F-ring (Clark et al., 2009). This dark material could be made of

cyanide compounds and could be of cometary origin (Clark et al., 2009).
Spectral signatures of hydrocarbons hâve also been found from VIMS data

on Iapetus and Phoebe suggesting the presence of organic compounds such as
PAH’s, kerogen-, or coal-like structure compounds (Cruishank et al., 2008).

Some of these satellites may also hâve internai liquid water pockets and thus
may présent the requisite essential for the emergence and development of life:
liquid water and organic compounds. The solstice mission may be able to discover

such properties and thus extend drastically the list of planetary bodies of impor
tant astrobiological interest in the Saturnian system.

5. Discussion: What Can Titan and Enceladus Tell Us About Life?

The complex mechauisms that hâve led to the emergence and development of
life on Earth are still under investigation. Despite the great strides on biological
sciences, the roots, the sources, and the initial conditions of life still remain

unknown. Some answers can be found in extraterrestrial environments, hopefully in
our solar system neighborhood or in exoplanets orbiting Sun-type stars. Without

doubt, every planetary body, with a possible astrobiological potential. is a target for
further investigations. Currently, after years of explorations, extended missions,
and data analysis, it. appears that among the main candidates for finding signs of
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past or current life witliin our solar System are Mars, Enceladus, Europa. and
Titan (not in any particular order of priority or importance).

In this context, Titan and Enceladus, both orbiting Saturn, seem idéal

locations for further investigation. As said before, their astrobiological impor
tance is obvious, because they propose uniquefy ail the necessary ingrédients for
life emerging and évolution. Not surprisingly, scientists expect that their study
will provide some important insights on the origin of life.

The surface of Titan appears, like the surface of Mars or Europa, as an
unlikely location for extant life, at least for terrestrial-type life. Even though Titan
présents terrestrial-type geology with complex structures formed mostly from
dynamic processes, the absence of water on the surface makes it unlikely to
support terrestrial-type life. Liquid water, if it exists, is not presently in contact

with a silicate core, which is isolated from the subsurface océan by a layer of a
high-pressure ice phase (Tobie et al., 2005). However, Fortes (2000) noted that
Titan’s internai water océan might support terrestrial-type life that had been
introduced t.here previously or formed when liquid water was in contact with
silicates early in Titan’s history. According to McKay and Smith (2(305), photo-
chemically derived sources of free energy on Titan’s surface could maintain an

exotic type of life, using liquid hydrocarbons as solvents. Similarly, Stoker et al.
(1990) stressed that terrestrial bacteria can in fact satisfy their energy' and carbon
needs by “eating” tholin. In this sense, a methane-rich atmosphère may act as a
“poor planet’s photosynthesis,” providing a means to capture the free energy from
ultraviolet light and make it available for metabolic reactions.

Consequently, it cannot be excluded that life may hâve emerged on or in
Titan. In spite of the extreme conditions in this environment, life may hâve
been able to adapt and to persist. Even though the possible current conditions
(pH, température, pressure, sait concentrations) are not incompatible with life, as
we know it on Earth (Tortes, 2000), the détection of a potential biological activit.y
in the putative liquid mantle seems very challenging. Furthermore, as mentioned
above, another possible location to look for life on Titan would be in a possible

subsurface liquid water océan, and thus, it seems astrobiologically essential to
confirm its presence.

Marine geologists and Marine biologists are nowadays close to confirm after

many years of research and analysis that in the lower part of Earth’s océan, below
the thermocline, where the environmental conditions are extremely different than
on the surface, life exists. In deep oceanic layers that suffer from low température
and high pressure, tliere are two extreme environments where life is abundant.

Such environments are the cold seeps (vents) (e.g., Ritt et al., 2010) and the hydro
thermal vents. Cold seeps are areas resembling brine pools, from which méthane
and hydrogen sulfide and other hydrocarbon-rich fiuid seepage are released into
the océan. In such conditions, types of life exist, feeding on single-cell Archaea
and Eubacteria microbes that consume the methane and hydrogen sulfide from
the seep. The environmental and living conditions described above resemble that
of Titan’s hy'pothesized internai liquid océan. Similarly, the température is low,
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the pressure is high, and possible bydrovolcanic events exist, releasing inethane
and sulfides in the liquid océan. Thus, there are many aspects of Titan that might
argue for the presence of sonie sort of very basic life on Titan.

6. Future Exploration of the Kronian Satellites

Could Titan be providing us with hints as to the future of our own planet? Indeed,
in addition to the past, Titan appears to be an analogue, albeit with different
working materials, of the future State of the Earth when surface conditions pre-
clude stable equatorial/midlatitude océans. If we are to focus on the Earth and its
climate, as well as on its organic chemistry, we need in the future to concentrate on
another object in the solar System that sustains an active hydrologie cycle with
surface liquids, meteorology, and climate change. The Cassini-Huygens mission
has firmly established that Titan is such a body, in vvhich the active working fluid

of the hydrologie cycle is methane. The cycle is active but different from the Earth
because Titan lacks a surface methane océan. It possesses, however, methane lakes
and seas, fluvial érosion, rounded pebbles, and liquid methane in the soil at the

Huygens site.
With Titan, we are observing an active hydrologie cycle subjected to seasonal,

annual, and longer term changes, as on the Earth. Moreover, the future increase

in the solar luminosity make it almost inévitable that eventually water on the
Earth will no longer be trapped in our océan and troposphère but will escape
rapidly in a process we see today for methane on Titan. The late stages of this

évolution—an Earth with liquid water in the polar régions, in the crust, but no
longer in an océan—may be echoed by the configuration we see today in Titan’s
methane hydrologie cycle.

Our understanding of the future of living beings on Earth (and hence the
habitability in many ways of our planet) may then hâve something to gain from a
thorough exploration of Titan’s current state.

Enceladus, on the other hand, may hold the key to understanding an impor
tant source of energy, plate tectonics, and volcanism. Indeed, many tectonic
features on Enceladus may be analogous to features observed on other icy satellites
such as Europa, Ganymede, and perhaps Titan. Thus, the study of the tectonics
of Enceladus, which is currently active, can be used as a natural laboratory to

investigate the response to stresses of the other surfaces of the outer solar System.

Moreover, Enceladus possesses a warm, chemically rich, environment that may
facilitate complex organic chemistry and biological processes.

The Cassini-Huygens mission has enormously advanced our knowledge of

the Saturnian System and the satellites within. As far as Titan and Enceladus are
concerned, the wealth of data retrieved by the Cassini-Huygens mission will

definitely be the reference point for future planetary investigation. However, the
key contribution to planetary science of Cassini may be the questions raised
rather than those answered. Some drawbacks of the mission, such as insufficient
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Figure 15. The TSSM basic concept. The orbiter (left), the balloon (center), and the lake lander (rigfit)
(Reh et al., 2008).

global coverage which has inhibited a full mapping of the atraospheric structure,
composition, and temporal variations as well as the surface features of Titan and

Enceladus, point to the need for further studies. Similarly, the part of the Titan’s
atmosphère between 400 and 950 km will remain unexplored (Coustenis et al.,
2009). In addition, we will lack in situ measurements since the Cassini orbiter can

only perfonn flybys of Titan and Enceladus, and the single vertical profile of the
atmosphère taken by Huygens probe is limited to its landing site.

It is clear that Titan’s organic chemistry and the possible subsurface océan
(among other) remain to be investigated. In particular, joint measurements of
large-scale and mesoscale topography and gravitational field anomalies on
Titan from an orbiter and from an aerial platform would impose important
constraints on the thickness of the “lithosphère”, the presence of mass anomalies
at depth, and any latéral variation of the ice mantle thickness. As discussed above,
it is astrobiologically crucial to confirm the presenœ of such an internai océan,
even though the water layer may not be in contact with the silicate core, like

on Europa.

Lessons from Huygens will be used in the future to go back to Titan and
explore in details its surface, in many locations. The intriguing discoveries of
geological activity, excess warmth, and outgassing ou Enceladus (due perhaps to
the éjection of water and organics from subsurface pockets bathed in heat or by
some other meclianism) mandate a follow-up investigation of that tiny Satumian
world that can only be achieved with high-resolution remote observations and

detailed in situ investigations of the near-surface south-polar environment.
Among other options, a flagship (large) mission, TSSM (for Titan/Saturn

System Mission), was proposed (Reh et al., 2008; Coustenis et al., 2009), jointly
studied by NASA and ESA. TSSM could explore extensively one of the Titan’s
lakes and study for several months Titan’s atmospheric and surface environment
(Fig. 15).
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This concept would also investigate the astrobiological perspective of Titan

and Enceladus. In particular, since hydrocarbon lakes on Titan’s surface may
harbor evidence for présent or past life, the proposed lake lander would play a

crucial rôle. Similarly, the balloon platform would be responsible for understanding
how volatile-rich worlds evolve and how organic chemistry and planetary évolu

tion internet on large spatial and temporal scales.

The primary science goals of TSSM are to understand Titan’s and Enceladus’
atmosphères, surfaces, and interiors; to détermine the pre- and proto-biotic
chemistry that may be occurring on both objects; and to dérivé constraints on the

satellites’ origin and évolution, both individually and in the context of the com-
plex Saturnian System as a whole. Many internai processes play crucial rôles in the
évolution of Titan and Enceladus. The formation and replenishing of Titan’s

atmosphère and the jet activity at Enceladus’ south pôle are intimately linked to
the satellite’s interior structure and dynamics. Open issues are listed below:

1. To détermine their present-day structure and levels of activity
2. To détermine whether the satellites underwent significant tidal deformation

and whether they possess intrinsic or induced magnetic fields and significant
seismicity

3. To identify beat sources, internai réservoirs of volatiles (in particular met.hane

and ammonia), and eruptive processes
4. To detect plausible evidence for life by analysis of hydrocarbons in the plume

during close encount.ers

A mission like TSSM would answer important astrobiological questions with

précisé measurements as follows:

1. What degree of complexity is reached by Titan’s organic chemistry in the dif
ferent parts of the geological System?

2. Is Titan a habitable world? Does it hâve an undersurface liquid water océan or

episodical liquid water bodies on the surface?
3. Is there currently, has there been or will there be biological activity on Titan?

To answer these questions and complément the Cassini-Huygens exploration of
Titan, a dedicated orbiter and in situ éléments would help by providing data and

analyses directly in the atmosphère, on the surface, and the interior of Titan. The
exchanges among the different media and the external processes that affect Titan

on time lapses of days, years, or seasons beg for further investigation, even beyond
the solstice Cassini mission which will be operating until 2017. Besides TSSM,
other concepts for future missions to return to Titan hâve been proposed

Such as a simple orbiter to perform close-up investigations of the surface

and the atmosphère of Titan (JET, C. Sotin, PI). Further more, several in situ
éléments hâve been proposed like:

The Aerial Vehicle for In-Situ and Airborne Titan Reconnaissance

( AVIATR), an alternative proposai to a Titan balloon mission. Since Titan
expériences low gravity and a dense atmosphère, such a nuclear-powered airplane
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could fly more than 20 times easier than on Earth. It could saniple directly the
atmosphère and cover huge swaths of Titan’s landscape (Barnes et al., 2010;
McKay et al., 2010).

Titan Mare Explorer (TiME) is a proposed probe focusing on exploring
Titan’s lakelike features. This lake lander could study the Chemical composition
and the geological characteristics of the hydrocarbon pools (Lorenz et al., 2009;
Stofan et al., 2009).

Similarly, Titan lake probe is a lake lander which could be considered as

part of the TSSM mission or as a stand-alone mission. The main objective of
this proposai is to investigate the lake deposit and the physical properties of the
liquids like the TiME concept (Waite et al., 2010).

Future exploration of the Saturnian neighborhood shall no doubt bring
forth extremely important insights on our quest for the possibility of life and
habitable sites elsewhere.
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Abstract

The icy satellites around Jupiter and Satum hâve been revealed as recently or presently active bodies of high
interest for geology and astrobiology. Several of them show promising conditions for internai structures
involving liquid water océans. The surface features observed on Jupiter’s Europa and Ganymede as well as

Satum’s Titan and Enceladus moons display interesting evidence and multicomplex geological figures, which

resemble terrestrial geo-terrains in terms of structure and possibly followed similar formation mechanisms. Ail
aforementioned satellites consist of differentiated interiors that are stratified into a high-density rocky core, a

mantle and an icy crust. The confirmation of the presence of a liquid water océan within these satellites would
hâve important implications on the existence of solid bodies with internai liquid water in the outer Solar System
well beyond the “habitable zone”, with important astrobiological conséquences. Indeed, an underground liquid

océan could provide a possible habitat by resembling terrestrial life-hosting environments like the deep océans
and the hydrothermal active vents. In this study we review the surficial aspects of Europa, Ganymede, Titan, and
Enceladus and connect them to possible models of interior structure, with emphasis on the astrobiological
implications.
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1. Introduction

Europa, Ganymede, Titan, Enceladus

Icy satellites of the gaseous giants, Jupiter and Satum, at orbits beyond the ice-line, constitute extremely

interesting planetary bodies due to - among other - their unique geological (Prockter et al. 2010) and surface

composition characteristics (Dalton, 2010; Dalton et al. 2010; Fortes & Choukroun, 2010), the possible internai
water océan undemeath their icy crust and the habitability potential (Schubert et al. 2010; Tobie et al. 2010;

Hussmann et al 2010; Sohl et al. 2010). Two of the largest Jovian satellites, Ganymede and Europa, as well as
Satum’s Enceladus and Titan, show not only surface features similar to the terrestrial planets and especially the
Earth, but also internai heating and occasionally volcanism. Hereafter we summarize some of the characteristics
of these moons.

In the neighborhood of Jupiter, two moons are good candidates for the internai liquid water océan and together

form today the main targets of the Europa Jupiter System Mission (EJSM), a concept studied by ESA and NASA
for a launch in 2020.

Europa hosts one of the smoothest surface topographies in the Solar System, composed essentially of water ice
and other (Dalton, 2010; Dalton et al. 2010), and displays structures like linear chains (lineae) (e.g. Figueredo &
Greeley, 2004), which most likely are crack developments caused primarily by diumal stresses (Prockter et al.

2010) and display the main characteristics of ridges. Other structures are dômes (pits that are surface

dépréssions), dark spots and very few craters (Pappalardo et al. 1998a) as the Galileo mission showed. Internai

stratigraphie modeling suggests that the satellite is primarily composed of silicate rock (olivine-dominated
mineralogy) (e.g. Schubert et al. 2004; Sohl et al. 2010) and most probably an iron-rich core (Anderson et al.

1998). It is also suggested that the icy crust is decoupled from the moon’s deeper interior due to the presence of a

subsurface liquid océan (e.g. Schenk &Mckinnon, 1989; Zimmer et al. 2000; Schenk et al. 2004). The cracks,

faults and lineae observed on the surface, hâve most probably been formed by endogenic processes that lead to
tectonic movements and imply the presence of a subsurface océan that interact with the crust. Also, Europa
suffers heavily bombardment by charged particles from the Jovian magnetosphere that lead to surface material
décomposition and form the tenuous atmosphère composed mainly of oxygen (Shematovich & Johnson, 2001;
Coustenis et al. 2010).

On the other hand, Ganymede, the largest satellite of the Solar System, is the only known moon to possess a

magnetosphere (Kivelson et al. 2002). Most of Ganymede’s surface coverage displays dark and brighter régions.
The former are filled with impact craters while the latter are covered by terrains curved by tectonic ridges and
grooves (e.g. Pappalardo et al. 2004; Patterson et al. 2010). Its internai structure possibly consists of a relatively
small iron-rich core, overlain by silicate rocky material, which is covered by an icy crust. It is believed that a

liquid océan exists within the mantle almost 200 km deep (e.g. McCord et al. 2001). The satellite possesses a
thin oxygen atmosphère (Hall et al. 1998; Coustenis et al. 2010 and référencés therein).

The aforementioned information for Europa and Ganymede has been provided mostly from ground-based but
also from in situ missions such as Pioneer 10 and 11, Voyager and more recently and efficiently Galileo. Taking
into account the geological and structural éléments of both satellites, they readily become promising worlds of
astrobiological potential. The fortheoming Europa Jupiter System Mission (EJSM) which is composed of two

orbiters, one dedicated to Europa and one to Ganymede, will provide detailed investigation of these satellites
(e.g. Blanc et al. 2009).

Orbiting at circa 10 AU, the Kronian satellites Titan and Enceladus, stand as intriguing objects as the Jovian
satellites. The Cassini-Huygens mission has unveiled the multivariable Earth-like geology of Titan since its
arrivai in 2004. Furthermore, Titan is the only one planetary object except the Earth that possesses a unique
nitrogen and full of organics atmosphère (e.g. Coustenis & Taylor, 2008). Recently, a subsurface liquid océan
was suggested at Titan based on thermal and orbital calculations (e.g. Tobie et al. 2005) spin rate measurements
and SAR reflectivity observations (Lorenz et al. 2008; Stiles et al. 2010; Hussmann et al. 2010). The surface

investigation brought to light many geological expressions such as extensive mountains, ridges, dendritic
networks, dunes, lakes, channels, canyons and riverbeds (Lopes et al. 2010). Furthermore, there is the possible
existence of active zones on the satellite due to past or recent cryovolcanic and tectonic activity (e.g. Soderblom
et al. 2007; Lorenz et al. 2008; Nelson et al. 2009a; 2009b).
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Another Satumian satellite, Enceladus, has been shown by Cassini to be one of the most active objects in the

Solar System despite its minor size. Indeed, jets from its Southern polar région consisted mainly of water ice
particles that reach over 435 km in height, enrich the E-ring of Satum (Dougherty et al. 2006; Porco et al. 2006;

Waite et al. 2006). The source of such activity could be a large internai liquid deposit, most likely an

underground liquid océan (e.g. Porco, 2008; Collins et al. 2007; Postberg et al. 2009). The surface expressions

observed on Enceladus include craters and smooth terrains that consist of extensive linear cracks, scarps, troughs

and belts of grooves.

Due to their complex surfaces and intriguing interiors, both Satumian satellites, require new long-term missions
with advanced instrumentation and possibly in situ éléments. Such a concept was proposed within the Titan

Satum System Mission (TSSM), studied by ESA and NASA and could be launched after EJSM, around 2025.
The mission consists in an orbiter, a Titan montgolfière hot air balloon and a Titan lake lander for simultaneous

in situ and remote exploration of Titan and Enceladus.

A number of évidences, either surficial expressions or geophysical factors, endorse the existence of internai
océans beneath the four aforementioned satellites. The considération of the possible implications from geological

features on the surface and their possible relation to the interior is presented in the review hereafter.

2. Geology: Surface features and their implications

The diversity ofgeologicalfeatures on Europa and Ganymede

Without doubt, the surface expressions observed on a planetary body are the signatures of both extemal and

internai processes as occurred with time. Hence, although the environmental conditions and the working material

are different from the terrestrial case, in the presence of similarities in the surface features observed, the héritage

of Earth science can be used as a tool for their study on other bodies.

Europa and Ganymede présent a major diversity in terms of appearance and surface geological structures and

therefore in terms of the surface-shaping forces. Europa seems to be subject to active tectonism and

cryovolcanism since it displays a young, smooth and active surface. On the contrary, Ganymede is heavily
cratered on most of its surface and internai processes like cryovolcanism seem to hâve played only a minor rôle
in the surface modification since there is little indication of resurfacing. In general, érosion as well as mass

movement and landform dégradation seem to play an important rôle in resurfacing as it reduces the topographie

relief by moving surface materials to a lower gravitational potential (Moore et al. 2010).

The most distinct and characteristic morphotectonic features on Europa are the lineations that intersect the entire

upper part of the satellite’s crust (Fig. 1). These formations are probably the major resurfacing mechanism since

their genesis is based on the intersection of any two parts of the surface by bedding or/and cleavage. Figure 2

displays a scheme of intersect lineae formation as seen on the Earth (Park, 1997). The tectonic activity that
forms these édifices along with the heating from the subsurface diapirs (mobile material that was forced into
more brittle surrounding rocks and follows an upward direction) composes the dominant dynamic potential of
the satellite.

Fig. 1. Variety of interesting géologie features on Europa (NASA).
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Fig. 2. Schematic formation of intersect lineation (Park, 1997).

Geissler et al. (1998) proposed four different classes of linéaments that vary with âge and wipe out Europa’s
géologie history through time. Their size ranges from 1 to 20 km and they are separated into (a) incipient-simple
colorless cracks, (b) ridges that are wider than the cracks, (c) multiple ridged triple bands and (d) ancient bands
(Fig. 3). A distinct intersecting 1,500 km feature, Agenor Linea, is a candidate active région as found in
photometric observations (Hoppa et al. 1998; Geissler et al. 1998).

Fig. 3. Four classes of linéaments on Europa (Geissler et al. 1998).

Other geological expressions seen on Europa by Galileo are features that are called ‘lenticulae’ and ‘chaos’. In
terrestrial geology, a lenticulae feature is a depositional body that is thick in the middle and thin at the edges,
resembling a convex lens in cross-section. Both features hâve probably formed by rising diapirs that produced

partial melt. On Europa, the lenticulae are ovoidal features ranging from 5 to 20 km in diameter (Pappalardo et
al. 1998) while the chaos structures, like Conamara Chaos (8°N, 274°W), are larger features presenting blocky
material (Carr et al. 1998; Spaun et al. 1998; Sotin et al. 2002). Another hypothesis for the genesis of lenticulae

features suggests a corrélation between them and the chaos formations. This hypothesis by Greenberg (2008)
assumes that the lenticulae are chaos formations in smaller dimension that low-resolution Galileo imaging

interpreted wrongfully as distinct structures.
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Fig. 4. (left) Lenticulae on Europa (reddish semi-circular spots in the middle of the image, (right) Conamara
Chaos, area covered with big blocks of crust that are mixed and moved suggesting they floated on a liquid layer
(Galilleo Project/NASA). The area of chaos terrain shows plate-like features (marked with A) with ridges and
valleys, and régions lower than the plates (marked with B). Also, plate displacement is obvious with surface
expressions like faults or ridges deviating from their linear structure (marked with C).

In contrast to Europa’s flattened topography and homogeneous surface, Ganymede possesses two distinct types
of terrain. The dominant terrain comprises the brighter régions marked with geological expressions such as

extensive ridges, grooves and faults while its âge considers as the youngest in comparison with the rest of the
surface (Pappalardo et al. 1998) (Fig. 5).

Fig. 5. Bright terrain’s major geological features in Ganymede. (a) Uruk Sulcus région is filled with ridges (red
dashed line), grooves, craters (white arrows) and generally displays a smooth area, (b) Nippur Sulcus région

display an extensive crater overlying ridges and troughs. (c) Sippar Sulcus région contains a large curvilinear
scarp or cliff or possibly a caldera. If this structure is identified as caldera then it is the basic evidence for a
surficial édifice of active past or présent cryovolcanism on Ganymede (NASA/JPL/Brown University).

The other geological terrain-type is the dark terrain (Prockter et al. 1998) (Fig. 6), which is the oldest one in
terms of âge, heavily cratered with astrobiological interest due to the existence of organic materials (McCord et
al. 1998). Considering the fact that the satellite is heavily cratered and the dark terrain comprises one of the

oldest terrains of the Galilean satellites (Zahnle et al. 1998), this surface is an indicator of the system’s cratering

history (Pappalardo et al. 1998).
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Fig. 6. Dark terrain’s major geological features on Ganymede. (a) Ancient impact craters visible at the middle
left. (b) Grooves - northwest to southeast sets of fractures that possibly traverse a chain of craters. (c) Tectonics
in the dark terrain: sets of ridges and grooves and fault blocks traverse the extensive crater located at the lower
left part of the image and deforms it. (d) Sériés of scarps eut through the heavily cratered and old dark terrain
(NASA/JPL/Brown University).

The régions that are particularly interesting in terms of geology are the transitional régions (Fig. 7). Such régions
correspond to surface areas that constitute a transition from the dark terrain to the bright grooved terrain of
Ganymede. Even though cratering is présent on both types of terrain, the dark ones seem heavily and more
extensively bombarded (Showman & Malhotra, 1999) suggesting that they represent the oldest preserved (non-
resurfaced) surfaces on Ganymede. Pappalardo et al. (2004) suggested that the modification of the dark terrain’s
material due to tectonic and cryovolcanic resurfacing formed the primary bright terrain.

Fig. 7. Transitional région on Ganymede (dark terrain to bright terrain) separated by the red dashed line
(NASA/JPL).

Another significant région on Ganymede is the Galileo Regio (Fig. 8), which has likely been formed during an
active geologically period (Casacchia, 1984). The Galileo Regio is a heavily cratered area but not an impact
crater. It seems to hâve been shaped under the influence of tectonic processes and young and bright material that

arose from the interior (Harland, 2000).
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Fig. 8. Galileo Regio on Ganymede. Image taken by Voyager (NASA).

Both moons, Europa and Ganymede illustrate their own fascinating surface geology. Many factors contribute to
their formation with the most influencing ones being the internai dynamics like tides, volcanism and tectonics as
well as extemal factors like impact cratering.

Active worlds: Titan and Enceladus and their habitability

Even though Titan and Enceladus’ surface expressions are very different in terms of composition, materials and
size, they highly resemble the Earth’s geomorphology. Titan’s surface consists of structures like mountains,
ridges, faults and canyons (Fig. 9), formed most probably by tectonic processes, as discovered by the Cassini-
Huygens mission (Brown et al. 2009; Lopes et al. 2010; Mitri et al. 2010). Titan, other than its atmospheric
uniqueness, is also the only among outer planet satellites where aeolian and fluvial processes operate to erode,
transport, and deposit material (Moore et al. 2010).

Fig. 9. Tectonic structures on Titan, (a) parallel mountains (NASA), (b) long, dark ridges spaced around one to
two kilometers apart (NASA), (c) rectangular river network that possibly lie over faults that control the direction
that methane can flow across the surface (NASA/JPL/Devon Burr), (d) canyon Systems along with bedrocks,

channels and high cliffs (NASA/JPL).

The phenomenon that most probably formed terrestrial-like volcanic structures like calderas, flows and dômes

on Titan, is cryovolcanism. Currently, there are three possible cryovolcanic régions. These are Tui Regio (20°S,

130°W), Hotei Regio (26°S, 78°W) and Sotra Facula (15°S, 40°W). The latter is considered as the most
promising one with obvious surface expressions of peaks, flows and one caldera structure (Fig. 10).
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Fig. 10. Sotra Facula, a possible cryovolcano on Titan. The peaks are more than 1 km high and the craters-

caldera almost 1.5 km deep. Furthermore, flow features about 100 meters thick are obvious following a radial
pattern around the craters (NASA/JPL-Caltech/USGS/University of Arizona).

Furthermore, aeolian and fluvial processes acting on Titan’s surface create édifices such as lakes, seas, riverbeds,

sand dunes, shorelines, and dendritic drainage networks (Fig. 11). Extemal impact phenomena like impact
craters are rarely observed on the surface due to the resurface activity.

Fig.
sand

11. Fluvial and aeolian features on Titan, (a) ‘Connected’ lakes (NASA/JPL), (b) riverbeds (NASA), (c)

dunes (NASA/JPL), (d) dendritic drainage networks (NASA/JPL).

Similarly to Titan, Enceladus présents major tectonic features and active cryovolcanism. The most fascinating
phenomenon occurs on Enceladus currently due to its tremendous internai dynamic convective forces that cause
Geyser-like fountains at its Southern pôle that could reach more than 400-km in height (Porco et al. 2005). The
rest of Enceladus’ surface is covered by smooth and cratered terrains, rifts, ridges, grooves, escarpments and
extensive linear fractures (Johnson, 2004). The geology of this tectonized moon is a field of active scientific

research awaiting for new observations. Up to date, the observations and analysis showed two types of tectonic

terrains. The north pôle consists of heavily cratered landforms while the central région and Southern pôle of
tectonic molded terrain with cryovolcanic features.
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Fig. 12. Pôles of Enceladus. (left) Heavily cratered terrain of the north pôle, (right) Tectonized terrain (ridges,

grooves, rifts) with fissures that emanate cryovolcanic material (NASA/JPL).

3. Interior models and liquid water subsurface océans in giant pianets’ satellites

Our current knowledge of the icy moons’ internai stratification and their composition is being built on a
combination of spacecrafts data, laboratory experiments, and theoretical geophysical modeling. Resembling
Earth’s moon in terms of structure, icy moons consist of a core, a mantle, and a crust, with the specificity of the
existence of a liquid océan lying within the icy mantle (Fig. 13).

Fig. 13. From left to right: Europa, Ganymede, Titan and Enceladus’ internai stratigraphie models (NASA/JPL).

According to current models of internai structure, the existence of subsurface océans is expected for most of the

icy moons of the Outer pianets (e.g. Sohl et al. 2010; Schubert et al. 2010 and references therein). Even if an

océan is not currently hidden within the interior, it is suggested that a liquid layer was présent in the past but
cooled to ice over time. An example of such case is Neptune’s moon Triton.

Evidence for hydrated sulfate salts on the surfaces of Europa and Ganymede from spectroscopic data support the
possible existence of subsurface océans (McCord et al. 1998; 2001; Cassidy et al. 2010; Fortes et al. 2010 and
references therein) suggesting the déposition of minerais following internai hydrothermal events. In addition,

Galileo’s magnetometer (e.g. Khurana et al. 1998; Kivelson et al. 2002), detected induced magnetic fields at

Europa and Ganymede that imply the presence of an electrically conductive subsurface layer (e.g. Sohl et al.
2010). Furthermore, the détection of a low viscosity layer undemeath the icy crust again endorses the presence
of a subsurface liquid océan inducing recent geological activity (Stem & McKinnon, 1999; Ruiz & Fairen,
1999).

The common properties that need to be satisfied on ail bodies in order to sustain a liquid subsurface océan are:

(a) Heat production which mainly originates from radiogenic heating or other triggering mechanisms (e.g.
McKinnon, 1999; Tobie et al. 2005). In the absence of an internai liquid layer, the tidal deformation of the ice
shell remains very small as there is no découplé of the core and the mantle, thus the resulting stress and

conséquent heating is negligible (Moore & Schubert, 2000). Other possible heat sources are the dissipation of
tidal energy due to orbital interaction between the satellites and their pianets, or the exothermal geochemical
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production of heat like hydration and crystallization of solids (e.g. Sohl et al. 2010; Hussmann et al. 2010).

(b) Efficiency of heat transfer, which is based on thermal diffusion and thermal convection (e.g. Hussmann et al.
2010).

(c) Components capable of decreasing the melting point of ice and supporting the ocean’s liquid State (e.g. Sohl
et al. 2010; Tobie et al. 2010). The composition of such océans should offer an antifreeze constituent like a

solution of water with ammonia, so that it remains in liquid State. The aqueous évolution of a possible internai
océan dépends on the several Chemical interactions between liquid water and rocks, on the hydrodynamic
processes within the océan (degassing), on the freezing of the expected plumes as well as on the presence of
secondary organic and inorganic species (Sohl et al. 2010).

(d) Stability of the crust against convection, keeping the océan subsurficial as well as preventing stagnant lid
convection (e.g. McKinnon, 1998; Rainey & Stevenson, 2003).

The Voyager and Galileo missions data suggest that the internai stratification of Europa consists of an iron core
(300 to 800 km) covered by a rocky mantle probably 100 km thick that it is overlain by a liquid water océan less
than ten kilometers thick. The océan is covered by a surficial icy layer possibly 15 km thick (Fig. 13). The
Galileo magnetometer’s measurements that showed the crust had shifted by almost 80°, also indicated that the
mantle is not attached to the crust, thus reinforcing the theory of an internai océan (Kivelson et al. 2000;
Greenberg, 2005). Nevertheless, the most convincing evidence for the liquid water océan is the existence of the
controversial ‘chaos terrain’ (Fig. 4) that possibly formed by melt-through from below (O’brien et al. 2002). The
controversy debates on the mechanisms that formed the terrain, whether through induced impacts or
cryovolcanic processes, as well as on the thickness and State of the ice shell. On one hand, one model (Fig. 14a)
suggests that the océan is a warm convective ice layer located several kilometers below the icy crust and on the
other hand the other model (Fig. 14b) suggests a liquid océan hidden more than 100 km below the crust.

Rocky Interior \ Liquid Océan Under Ice
H20 Layer

Fig. 14. Stratigraphie models of Europa’s interior. Warm convective ice below the ice crust (a); Liquid océan
under the ice coverage (b) (NASA/JPL).
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The radioactive decay cannot provide the amount of heat required to modify entirely the satellite surface, as
observed on Europa. In this case, the surface température is limited to 110K at the equator and 50K at the pôles;
such cold températures make the ice locally as hard as terrestrial igneous granité (McFadden et al. 2007). On the

other hand, hydrothermal activity has the potential to reshape the surface crust. Recent studies suggested that the
influence of Jupiter on Europa due to its small but non-zero obliquity probably generates large tidal waves that

keep the océan warm (Tyler, 2008).

If the heat propagation and the buoyant oceanic currents are not intense then the ice shell will be thick and a
warm ice layer will be formed at the bottom of the shell (Fig. 15b). During the hydrothermal processes this

warmer ice will rise and slide like the terrestrial glaciers. Such movements can cause surface modification and

produce structures like the ‘chaos terrain’. Other features supporting the existence of a thick ice layer are the

large impact craters surrounded by concentric rings filled with ice. Geophysical models, associating the mere
presence of these structures to the amount of heat generated by the tides, suggest an icy crust 10-30 km thick
with a warm ice layer at the bottom and a liquid océan probably 100 km thick (Schenk et al. 2004). Additionally,
a scénario that consists of a thick icy crust of almost 15 km suggests a stratigraphie model with a 100 km deep

océan, which may be extremely deep, aboutlO times deeper than the deepest point of Earth’s océans, the
Challenger Deep on the Mariana Trench, which is 11 km below sea level and the lowest élévation of the surface

of the Earth's crust. The potential océan of Europa would contain an amount of water twice the entire terrestrial

surface hydrological System.

Altematively to the previous model, if the heat flow and the plumes are intense then the ice shell is expected to
be thin (Fig. 15a). The fragmentation of such a thin crust is most probably expressed with tectonic-like

formations like the Conamara région. The debate regarding the thickness of Europa’s crust gave birth to an
alternative hypothesis regarding the thin ice model, which suggests a thin upper crust layer, almost 200-m thick,

that behaves elastically and is in contact with the surface through zones of weakness like multiple linear ridges

(Billings & Kattenhom, 2005).

Fig. 15. Two models for the icy crust thickness. The thin ice model ~200m (a) the thick ice model ~15 km (b)

(NASA/JPL).

Europa’s case supports the existence of a stagnant lid undemeath its crust (Fig. 16) (Showman & Han, 2004).
The stagnant lid is a relatively cold and stiff conductive layer covering the warmer convective icy interior

(Schubert et al. 2004). Since the expected activity within Europa’s interior is upwelling thermal diapirism, the
stagnant lid can prevent cold near-surface icy material from sinking towards the océan.

y m
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Température

Fig. 16. Simulation of convection within Europa’s ice shell (Showman and Han, 2004).
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Compared to the Earth’s océans, the composition of Europa’s hidden océan should be significantly different. The
Earth’s océan major component is sodium chloride while Europa’s should be magnésium sulfate as indicated by
Galileo data (e.g. Fanale et al. 2001). Indeed, Europa’s weak magnetic moment is induced by the varying part of
the Jovian magnetosphere (Schilling et al. 2007) and requires a highly conductive subsurface océan. Such
conductive materials candidates are the magnésium sulfate (e.g. McCord et al. 1998) or sulfuric acid hydrate

(Carlson et al. 2005).

Similarly, Ganymede consists of a four-layer interior, based on measurements regarding its gravity field, mass,
density and size. Geophysical models suggest two kinds of internai stratigraphy, one of an undifferentiated
mixture of rock and ice and one of a differentiated body consisting of a rocky core, an extended icy mantle and
an icy crust. We think the latter model is the most plausible as it is compatible with the gravity field
measurements made by Galileo (e.g. Sohl et al. 2002). Such intrinsic magnetic field supports the existence of an
iron-rich core (Hauk et al. 2006). The thickness of the layers in the interior dépends on both the fraction of
olivine and pyroxene and the amount of sulfur in the core (e.g. Sohl et al. 2002) (Fig. 17). Thus, the 2,634-km-
radius Ganymede consists of an 800 km iron sulfide core, an almost 900-km thick outer ice mantle and a silicate-
rich mantle 700 km thick (e.g. Kuskov et al. 2005).

Fig. 17. Ice and minerai deposits on Ganymede. Surface features from Voyager in visible light (left); Minerais in
red and ice grains in blue in infrared light from Galileo (NIMS, Galileo Mission, JPL, NASA).

Although the mechanisms that formed Ganymede’s complex surface are still unidentified, multiple scénarios
hâve been proposed. Most of the scénarios agréé on a general mechanism that uses tectonism as the main chisel
that formed and shaped the existing structures, especially the grooved terrain (Sohl et al. 2002). On the other
hand, and in contrast with the other three aforementioned satellites, cryovolcanism does not seem to participate

actively in the geodynamic processes. The radiogenic heating from within the satellite as well as tidal heating
from past events are considered as the main forces that generate the stresses that lead to tectonic movements and
eventually to tectonic structures.

Contrary to Ganymede, probably Titan but especially Enceladus provide evidence of past and current
cryovolcanism that shapes their surfaces. The mechanisms that formed Titan’s surface by endogenic factors are
still unknown, although the central idea is focused on cryovolcanism and morphotectonism, with the latter being
the short- and long-term surficial expressions of any tectonic activity originated from endogenic processes
(Solomonidou et al. 2010). However, it is possible that Titan underwent a period of tectonism resembling those

on Europa's and Ganymede's.

According to geophysical models, Titan’s differentiated interior consists of a serpentinite core (-1,800 km), a

high-pressure ice mantle (-400 km), a liquid layer of aqueous ammonium sulphate (50 to 150 km wide), and an

extemally heterogeneous icy few kilometers wide (Tobie et al. 2005; Fortes et al. 2007).

The subsurface instability due to the interactions within an interior liquid océan causes the modification of
extended features on Titan’s surface, whether they dérivé from cryovolcanic or morphotectonic dynamic
processes. Currently, ail the geophysical models that try to explain the geodynamics of Titan support the
existence of an oceanic layer that découplés the mantle from the icy crust. Additionally, the identification of a
small but significant asynchronicity in Titan’s rotation from Cassini SAR data favors the aforementioned
decoupling (Lorenz et al. 2008). Internai geodynamic activity can transport effusively the explosive material
from the oceanic layer to the surface and form the cryovolcanic structures like the lobate flows in Sotra Facula.
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Tobie et al. (2006) suggested a cryovolcanic model for Titan’s case to solve the mystery of Titan’s methane
replenishment since it is should vanish in 100 Ma. These authors suggested that episodic methane outgassing

events occurred through three distinct épisodes covering a chronological period from 2000 Ma ago until 500 Ma

ago (Fig. 18). The internai océan provides the ‘magma’ chamber by means of material, while convective
processes are the triggering mechanisms that initiate the dynamic activity. A convective model of a stagnant lid
is capable to explain such activities (Solomatov 1995) as explained for Europa’s case earlier. However, the ice

shell for Titan’s case is expected to be thicker. In opposition, several studies suggest that Titan is not currently
convective (Mitri et al. 2010; Nimmo and Bills, 2010).

The uniqueness of Titan’s tectonism - even though not yet confirmed - lies in that the tectonic processes are
contractional rather than extensional, setting Titan out as the only planetary body in the Solar System other than
the Earth, where contractional deformation occurs.

Mitri et al. (2010) proposed an internai thermal model, focused on the changes in volume of a potential
underground océan caused by heat flux variations during freezing or melting. The authors suggest that the
continuing cooling of the moon can develop global volume contraction, as described by Tobie et al. (2005;
2006).

Cassini’s data proved that, despite its small size (about 505 km in diameter), Enceladus is an active planetary
body that spews material through hydrothermal vents resembling terrestrial geysers. This moon is not in

hydrostatic equilibrium (Schubert et al. 2007; Schubert et al. 2010), thus a simple and very general stratigraphie

interior is being suggested: it consists of a 169 km rocky core overlain by an icy 82 km mantle (Barr and

McKinnon, 2007; Fortes, 2007; Schubert et al. 2007). The subsurface océan is lying between the two layers, and

supplies the fountains observed at the south polar région through cracks called ‘Tiger Stripes’ (e.g. Porco, 2008;
Postberg et al. 2009). The moon’s tidal dissipation is proposed as the triggering mechanism as well as the cause
of the dynamic phenomena like tectonics (convection-conduction, expansion contraction) and cryovolcanism

(e.g. Mitri and Showman, 2008; Mitri et al. 2010) that formed the surface expressions described in the previous
section.

4. Discussion: Internai activity and surface modification

The possible existence of subsurface liquid océans undemeath the crusts of the icy moons of Jupiter (Europa and

Ganymede) and Satum (Titan and Enceladus), places them in a potential group of planetary bodies where life
could emerge and evolve. Other than data processing that provide evidence and information about the internai
liquid layers, the surfïcial expressions that are related to the hydrothermal and dynamic processes occurring
within these layers are the surface evidence that could lead to their identification. Specifically, the cryovolcanic

and morphotectonic structures seen on the aforementioned satellites are the surface expressions of the internai

activity while they are formed by modification of the crustal layer and déposition of material coming from the
subsurface océan. Therefore, investigating these surface exposures and associating them to terrestrial features
where water is involved could shed some light on the investigation of internai liquid water océans in the icy
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moons. Trying to model the triggers of internai active phenomena, basic geophysical models usually propose
liquid water réservoirs while the geodynamic models point at both radioactive decay and tidal stresses, caused by
the giant planets Jupiter and Satum. We shall herein try and reconcile both views.

The major and most significant structures on Europa’s surface are the bunch lineae (e.g. Prockter et al. 2010)
(Fig. 3). Data analysis showed that the geometry and the spectral properties vary depending on âge, which
indicates an evolutionary sequence (Geissler et al. 1998; Dalton, 2010). This means that persistent and drastic
processes occur in order to form these features. Such processes seem to be different types of cryovolcanism in
which multiple éruptions of ice (warmer than crustal ice) emerge through ‘tectonic’ crustal weaknesses
(Figueredo & Greeley, 2004). This tectonic formation resembles the terrestrial mid-ocean ridges (MOR), which
are the extensive opening seafloor terrains, and considered to be a global rather than a local phenomenon. MOR
are dynamic and volcanically active structures that constantly provide and deposit new material from the mantle
to create new oceanic crust. As seen in Figure 4, the red streaks, as well as the red spots called lenticulae, are
most possibly evidence of upwelling warmer material emerging from the liquid layer while colder ice near the

surface sinks downwards. After spectroscopic analysis, the red streaks are thought to be rich in magnésium
sulfate, another hint in favor of their internai origin (McCord et al. 1998; Dalton et al. 2010). Furthermore, the
linéament formations like the dark and red streaks présent the basic resurfacing System that dominate on
Europa’s surface. Their formation is an indicator for current geological activity. Additionally, the thermal
diapirism that most likely formed these structures, as well as the red spots, would imply that convective
upwelling thermal plumes originate in the lower boundary of the convective System and gets in contact with the
cold stagnant lid with the icy plumes (Showman & Han, 2004). Such température ranges indicate possible
habitability at the upper part of the ice shell. Consequently, Europa’s surface morphology is directly connected
to the internai dynamic processes and provides evidence of a subsurface interactive océan.

Unlike Europa’s conflicting oceanic hydrothermal System that originates in a rocky sea layer, Ganymede’s océan
lays between two icy layers that découplé it from the mantle. Barr et al. (2001; 2004) suggested that large
magmatic events due to convective plumes could occur at Ganymede’s rock - ice boundary. The surface
expressions that are most possibly connected to tectonism are the deep fault structures like the horst-and-graben
(resembling terrestrial continental rifts) as well as many cracks that are observed in Ganymede’s bright terrain
(Showman & Malhotra, 1999). Tidal heating events, either past or current, could cause dynamic forces that
modify the icy lithosphère. The main mechanism that deforms tectonically the lithosphère is most likely warm
liquid plumes that rise from the upper mantle to the surface, following a pattern similar to the plume-lithosphere
interactions at the Hawaiian Swell which cause thinning and instabilities at the crust layer (Moore et al. 1998).
Even though the plume theory indicates cryovolcanic processes, little evidence of such activity has been detected
on Ganymede. Notably, the extreme morphological différence between the bright and the dark terrain as
described in a previous section suggests a massive geological event or set of events that caused such large-scale
geo-terrain alteration. Hence, it is possible that the extensive tectonic forces that fractured the dark terrain

partially affected the bright terrain as well. Such tectonic weaknesses could display pathways to small
cryovolcanic events that lead to resurface processes. However, tilt-block faulting and shears (Head et al. 2002)

are some of the structures that appear bright within the dark terrain suggesting that tectonic cracks functioned as
path for warm internai oceanic material to pass through like what occurred in the bright terrain. In terms of
tectonics, and similarly to the other icy moons, there is no evidence of compressional deformation (Showman et

al. 1997). Since the deformational pattern is extensional, the question is whether it is a global or a local
phenomenon. Collins et al. (1998) studied observations of grooved terrains of spécifie stratigraphie âges that
hâve consistent directions over hundreds of kilometers, something that indicates global stressing phenomena. On
Earth stressing phenomena could occur where severe forces cause convective currents in the océan. In a similar

way, the plume convection within Ganymede’s oceanic layer could create enough turbulence and temperature-
pressure instabilities to cause global stressing phenomena with an impact on tectonism. Nevertheless, Ganymede
présents styles of tectonism different from Europa’s.

Following a pattern similar to the one mentioned for Ganymede, Enceladus’ internai tidal stresses and

radioenergetic decay produce warm pockets of material, the plumes, that subsequently form the geyser
formations at the south polar région. The major and most valuable evidence of Enceladus’ cryovolcanic activity,
supporting as well the océan existence, is this geyser formation or geyser accumulation that form a fountain of
more than 400 km, as observed by Cassini. The jets initiate from four sub-parallel linear dépréssions, which are
tectonic in origin. Other surface expressions are scarps, ridges, and shields (Collins et al. 2009). On the other
hand, Titan’s surface structures related to its dynamic interior that also support the existence of a subsurface
océan are the three cryovolcanic candidate régions Tui Regio, Hotei Regio and Sotra Facula and many
morphotectonic structures like mountains, ridges and canyons (e.g. Solomonidou et al. 2010 and references
therein). Generally, in the case of both moons it is thought that their ice shells transit from a conductive to a
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convective State; since they probably overlay a pure liquid océan (Tobie et al. 2005) this can hâve major effects
on surface morphotectonics (Mitri and Showman, 2008). Indeed, thermodynamic oscillations within the ice
shells may trigger repeated extensional and compressional events. In the presence of a subsurface océan

undemeath Titan and as a conséquence of local stress mechanisms, parts of the icy crust could behave like rigid
ice floes due to latéral pressure gradients. If such floating occurs, many morphotectonic features like faults and
canyons can relate their formation to this event. Furthermore, radial contraction of the internai high-pressure ice
polymorphs could possibly amend the radial expansion caused during the cooling stage of the moon (Mitri and
Showman, 2008), in which the existence of a liquid layer plays a significant rôle. As a resuit, the overall global
contraction could form mountainous chains (Radebaugh et al. 2007).

These four satellites are dynamic planetary bodies and the internai océan most likely plays an important rôle on

the formation and modification of their surfaces. The properties on which the presence of an internai océan
dépends were mentioned earlier (section 3). Another issue that should be taken under considération is the set of

properties that détermine the possible exchange of material between the subsurface and the surface. These are

the mechanical properties of the lithosphère as proposed by Tobie et al. (2010).

The formation of the surface signature of any upwelling activity dépends on:

(a) the Chemical interaction between the material in motion and the local environment, which travels through the
conduit path from the source to the surface.
(b) the magnitude of the forces that triggers this motion.

(c) the complexity of the structure of the conduit path which could be an extensive tectonic zone of weakness.
From such a structure, multiple cryovolcanic éruptions could emanate.
(d) the influence of the atmosphère on the surface as described in Tobie et al. (2010).

Titan and Enceladus display cryovolcanic expressions in spécifie régions. On Titan these zones appear on a

latitudinal ring around 20°S - 30°S, while on Enceladus they lay at the southem pôle. On the contrary, Europa
and Ganymede do not host evidence of such large and localized structures. Considering these surface
expressions, as well as the morphotectonic structures described earlier, we infer that different endogenic
conditions occurred. Firstly, the upwelling material within Europa and Ganymede could spread throughout the
lithosphère, while in Titan and Enceladus it would pass through more localize exsolution paths. On Titan and

especially on Enceladus the cryovolcanic expressions illustrate instant energy relief of the hydrodynamic

activity, while Europa and Ganymede could expérience continuous relaxation. This can possibly explain the

fractal development of lineae structures on Europa. Moreover, the gravitational field, as well as other heat and
transfer mechanisms, play in each satellite a major rôle in the distribution of the upwelling material and the
formation of the surface structures. In order to evaluate the above implications it is essential to record the spatial

and temporal variations of the structures observed.

5. Habitability issues for outer planet satellites

The existence of an internai liquid océan undemeath the icy crusts of the giant planet satellites could serve as a
potential abode for life. The location of the océan close to the surface provides food for thought on habitability
zones, and conditions for life in general, in the Solar System.

Indeed, the discovery of hydrocarbon surficial lakes on Titan and the possible existence of subsurface liquid
océans in Europa, Ganymede, Titan, and Enceladus reveal alternative concepts to the classical définition of the
habitable zone, and suggest the need for reconsidering its limits (Lammer et al. 2009). Currently, more and more
studies regarding the planetary habitability propose the icy moons with subsurface océans as potential worlds for
initiating and/or sustaining some sort of life forms (Fortes, 2000; Raulin, 2008; Raulin et al. 2010; Coustenis et
al. 2011 and référencés therein). Figure 19 présents the possible locations of the liquid layers within the icy

satellites of Jupiter as well as their habitability potential.
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Fig. 19. Possible schematic location of océans in the icy moons of Jupiter as a function of depth. Europa
probably agréés with internai structures 3 (thick upper icy layer <10 km and a thick océan) or 4 (very thin upper
icy layer 3-4 km). Ganymede is doser to 1 (completely frozen) or 2 (three-layered structures impeding any
contact between the liquid layer and the silicate floor) (Lammer et al. 2009). The color scales on the right side
indicate the physical and Chemical constraints on which habitability dépends on.

For Europa, the assumed internai processes that trigger the geodynamic phenomena are the tidal stresses, which
produce considerably less energy than radioenergetic decay. Europa is being compressed and stretched when
affected by the gravitational forces of Jupiter and the other Galilean satellites and thus, the resulting tidal friction
provides enough energy, as well as température, for an extensive océan to exist undemeath the crust. The
provision of large amounts of energy at the bottom layer of an océan can conceivably form hydrothermal vents
like the ones seen on Earth. Notably, life could emerge around hydrothermal vents, which are important
geological forms in terms of life propagation. Greenberg (2010) suggests that even ecology including complex

organisms could exist on Europa. The author provided evidence of oxygen concentration within the océan
greater than that of the Earth’s, which is suggested as an indicator for aérobic organisms. Nevertheless in the
case where the concentration of salts is large, only extremophile organisms (like halophiles) could survive

(Cooper et al. 2001; Marion et al. 2003).

Ganymede lays between structures 1 and 2 in the scheme shown on Fig. 19 indicating that it is much colder than
Europa, a factor that lowers its habitability potential. On the other hand, reinforcing Ganymede’s possibility for
life to exist, Barr et al. (2001) imply that magmatic events could form pockets of liquid, which would then ascent
buoyantly carrying nutrients to the internai océan. Based on their calculations, a water plume could reach
Ganymede’s océan and carry nutrient-rich material with an éruption time of 3 hours to 16 days. Additionally,

Ganymede’s System could provide the necessary tools to concentrate biological building block ingrédients
(Trinks et al. 2005) especially since it possesses a magnetic field that is able to protect life from harmful
radiation and lies in a relatively quiet radio zone.
On Titan, terrestrial bacteria can absorb their energy and carbon needs from the tholins that exist in its thick

atmosphère (Stoker et al. 1990). Furthermore, photochemically derived sources of free energy on the surface
could maintain an exotic type of life, using liquid hydrocarbons as solvents (McKay & Smith, 2005). Other than

the atmospheric properties that are favorable to life, the possible existence of an underground océan might
support terrestrial-type life that had been introduced previously or formed when liquid water was in contact with

silicates early in Titan’s history (Fortes, 2000). Furthermore, the possible amount of ammonia dissolved within
the océan is suggested to be ~10% (Lorenz et al. 2008), something that corresponds to a pH of 11.5, while at a
depth of 200 km the pressure reaches ~ 5 kbars and hot plumes within the potential océan could be generated
(Coustenis et al. 2011 and references therein). The aforementioned conditions are not unfavorable to the

emergence and maintenance of life (e.g. Fortes, 2000; Raulin, 2008).

Enceladus’ extremely high températures at the south polar région are probably generated by the hydrodynamic

processes that form the fountain, as previously described, and thus enhance the potential for habitability. The
most convincing theory, after Cassini data analysis, suggests that a liquid océan exists beneath the Tiger Stripes.
There are standards for life that Enceladus' possible océan is not consistent with: the sunlight, the oxygen

compounds, and the organics produced on a surficial-crust environment. However, terrestrial régions like the
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deep océans that do no satisfy the aforementioned prerequisites for life, still function as active ecosystems
(McKay et al., 2008; Muyzer and Stams, 2008). There, sulfur-reducing bacteria consume hydrogen and sulfate,
produced by radioactive decay. Notably, the comparison with the terrestrial ecosystems suggests that plume's
methane may be biological in origin (McKay et al., 2008). Hence, Enceladus displays an internai warm and
chemically rich océan that may facilitate complex organic chemistry and biological processes (Coustenis et al.

2011).

In conclusion, the confirmation of the existence of a subsurface liquid océan undemeath the crust of the icy

moons of Jupiter and Satum will revolutionise our perspective regarding the habitability potentials of such
planetary bodies. Indeed, liquid water may exist well outside the traditional habitability zone, which is merely
based on the presence of liquid water on the surface. For planetary habitability, the principal criteria are the
presence of liquid water anywhere on the body, as well as the existence of environments able to assembly
complex organic molécules and provide energy sources: this can well be undemeath the surface in some cases, if
stability conditions are met. The four satellites described in this study seem to ftilfill some or ail of the above
requirements. However, it is of high priority to revisit these bodies with new missions and advanced
instrumentation (such as gravitational and magnetic field sounding Systems and in situ element detectors) in
order to obtain altimetry and in situ monitoring of tidally-induced surface distortion data (Sohl et al. 2010) that
could unveil in detail the internai stratigraphy of the moons and the specificity of the subsurface océans. Future

large missions, or smaller dedicated ones, to the Galilean and Khronian Systems would allow us to better
understand the mechanics behind the astrobiological potential of worlds with subsurface océans, and shed some
light on the emergence of life on our own planet.
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Abstract Kronos is a mission aimed to measure in situ the Chemical and isolopic

compositions of the Satumian atmosphère with two probes and also by remote
sensing, in order to understand tlie origin, fonnation, and évolution of giant planets

in general, including extrasolar planets. Tlie abundances of noble gases, hydrogen,
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carbon, nitrogen, oxygen, sulfur and their compounds, as well as of the D/H,
4He/3He, 22Ne/21Ne/20Ne, 36Ar/38Ar, 13C/12C, 15N/14N, l80/(170)/160,
13c,Xe/134Xe/l32Xe/l30Xe/129Xe isotopic ratios will be measured by mass
spectrometry on two probes entering tire atmosphère of Satum at two different
locations near mid-latitudes, down to a pressure of 10 Bar. The global composition

of Satum will be investigated through these measurements, together with microwave

radiometry détermination of H20 and NH? and their 3D variations. The dynamics of
Satum’s atmosphère will be investigated ffom: (1) measurements of pressure,

température, vertical distribution of clouds and wind speed along the probes’ descent
trajectories, and (2) détermination of deep winds, differential rotation and convection
with combined probe, gravity and radiometric measurements. Besides these primary

goals, Kronos will also measure the intensifies and cliaracteristics of Satum’s
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magnetic fïeld inside the D ring as well as Saturn’s gravitational field, in order to

constrain the abundance of heavy éléments in Satum’s interior and in its central core.

Depending on the preferred architecture (flyby versus orbiter), Kionos will be in a

position to measure the properties of Satum’s innermost magnetosphere and to

investigate tire ring structure in order to understand how these tiny stmctures could

hâve formed and survived up to the présent times.
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1 Introduction

Giant planets are mostly made of (lie gas that was présent in the protosolar disk

before the terrestrial planets aecreted (Fig. 1). Their comparative study is thus

essential to understand planet formation in general and the origin of the Solar

System. Satum in particular appears to be a natural target for near-future exploration,

after the fine characterization of Jupiter by Galileo and Juno and before future

ambitious missions to Uranus and Neptune. Satum, the ring planet, is mysterious in

many aspects, and plays a key rôle to undcrstanding planet formation, the évolution

of solar and extrasolar giant planets, planetary meteorology, magnetospheric

interactions, dynamo génération and the physics of planetary rings.

Satum, like Jupiter, lias an atmosphère that appears to be enriched in éléments

other than hydrogen and hélium with respect to the solar composition. This

enrichment may be the resuit of planetary precursors formed at low températures, or

of a progressive enrichment of the protosolar disk, with profound conséquences for

understanding the formation of the Solar System. The different formation scénarios

that resuit can be disentangled by a study of the atmospheric composition of Satum

in noble gases and major volatile (H, C, N, S, O) elemental and isotopic

compositions, which requires in situ measurements Table 1.
Noble gases are particularly relevant in this study, because: (1) they are

chemically ineit and their abundances ai-e determined by physical processes such

as phase partitioning, and (2) their isotopic compositions présent large-scale

inliomogeneities between the original protosolar nebula composition and sub-

reservoirs of the solar System that make theni isotopic tracers as well. hideed,

analyses of meteorites point to the existence of a primordial réservoir of volatiles
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1 Introduction

Giant planets are mostly raade of the gas thaï was présent in the protosolar disk

before the terrestrial planets aecreted (Fig. 1). Their comparative study is thus
essential to understand planet formation in general and the origin of the Solar

System. Satuni in particular appears to be a natural target for near-future exploration,

after the fine characterization of Jupiter by Galileo and Juno and before future

ambitious missions to Uranus and Neptune. Satum, the ring planet, is mysterious in
many aspects, and plays a key rôle to understanding planet formation, the évolution

of solar and extrasolar giant planets, planetary meteorology, magnetospheric
interactions, dynamo génération and tlie physics of planetary rings.

Satum, like Jupiter, lias an atmosphère that appears to be enriched in éléments

other than hydrogen and hélium witli respect to the solar composition. This
enrichment may be the resuit of planetary precursors formed at low températures, or

of a progressive enricliment of the protosolar disk, with profound conséquences for

understanding the formation of the Solar System. The different formation scénarios

that resuit can be disentangled by a study of the atmospheric composition of Satum

in noble gases and major volatile (H, C, N, S, O) elemental and isotopic

compositions, which requires in situ measurements Table 1.

Noble gases are particularly relevant in this study, because: (1) they are

chemically inert and their abundances are detennined by physical processes such

as phase partitioning, and (2) their isotopic compositions présent large-scale

inhomogeneities between the original protosolar nebula composition and sub-

reservoirs of the solar System that make them isotopic tracers as well. hideed,

analyses of meteorites point to the existence of a primordial réservoir of volatiles
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Fig- 1 Interiors of Jupiter and
Satum highlighting the impor
tance of hydrogen and hélium
for the structure of these two

planets (yellow indicates that
hydrogen is in molecular form,
red that it is metallic, and the
central dense cote is shown in

blué)

with an isotopic composition different ffom that of the Sun. The discovery of this

réservoir through its isotopic signature in Satum’s atmosphère would hâve a direct

impact on the primordial history of the Solar System and on the study of meteorites
and cornets. Generally, the elemental and isotopic déterminations of Satum’s

atmospheric composition would permit to explore sources of matter and processes

of formation for the giant planets.

Table 1 Composition measurements in Satum’s deep atmosphère and their conséquences

Species Conséquence

He

Ne

CH4

nh3 nr,sh

H2S NH4SH

h2o

Ar, Kr, Xe

CO, PH3, AsH3, GeH4

D/H

12

20Ne/z2Ne

3£As/3tAi Kr, Xe isotopes

Détermine extent of hélium sédimentation in Satum’s interior.

Crucial for accurate understanding of the thermal évolutions
of Satum and Jupiter

Test prédiction of Ne capture in He droplets. Refine H He
phase séparation diagram

Fine dét ermination crucial to understand the formation of the planet
Key to décidé between models of planetesimal delivery and planet
formation. Important for Satum’s meteorology

Key for planetesimal delivety, with possibility that the abundance
is linked to that of rocks deep inside. Important for Satum’s meteorology

(by radiometry); Key to understand the planet’s structure, formation,
and meteorology

Key to décidé between models of planetesimal delivery and planet
formation. Link with the compositions of the Sun and protosolax disk

Disequilibrium species are important to understand convection in Satum’s
deep atmosphère.. Help to further test planetesimal delivery models

Test models that predict it should be similar to Jupiter and to the
protosolar value

Test models that predict value similar to Eaxth
Important to understand whether N was delivered as N2 or as NH3.
Test models of planetesimals delivery

Origin of gas, Test évaporation processes in the early solar System

Origin ofgas, Test évaporation processes of these gases in planetesimals
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Another means to better understand the formation of the Solar System is through

a detennination of the planet’s core mass and global composition: we do not yet

know whether Satum possesses more or less heavy éléments than Jupiter, and we do

not know which planet has tire largest core. This impacts directly on the foimation

models of these planets and of the Solia System as a whole.

Satum is also fascinating for its intriguing meteorology. Contrary to Jupiter,

whose rotation axis is almost perpendicular to its orbit, Satum has an inclination of

20° (similar to that of the Earth), plus rings which lead to marked seasonal
variations. Perhaps as a resuit of this, Satum undergoes the most intense stomis of

the Solar System, with planet-wide events that can last for months. Its zonal wind

pattern is similar to Jupiter, but appears to vaiy significantly, as shown by the

mysterious slowing of Satum’s équatorial jet from 450 m/s in the Voyager era, down
to 250 m/s at tire arrivai of the Cassini spacecraft. Two key éléments are missing to

model the causes of these variations: Satum’s deep water abundance as a powerful

source of convective potential energy, and Satum’s deep rotation field.

Another surprising fmding of the Cassini-Huygens mission has been the fact that

Satum’s magnetic field is considerably modificd by the rings, with two conséquences:

(1) our inability to measure the deep rotation rate in the magnetic dynamo région; (2)

the impossibility to measure the planet’s true magnetic field, but instead, a filtered,

perfectly asymmetric field. A measurement of tlie planetary magnetic field insidc tlie

D ring would provide the data necessary to understand the planet’s magnetic field

génération and to analyze gravity data using proper constraints on the rotation rate.

Tlie next section discusses the primaiy scientific goals that are driving the

mission, namely the study of tlie origin of the Solar System and tlie study of

planetary atmosphères, as well as the secondary goals which require a feasibility

assessment, and fmally the physics of magnetic fields and of planetary rings.

2 Science objectives

2.1 Planet formation and the origin of the solar System

Satum and Jupiter formed 4.55 Ga ago, from the same disk of gas and solids that

formed the Sun and eventually tlie entire Solar System (e.g., [1]). A significant

fraction of their mass is composed of hydrogen and hélium, the two lightest and

most abundant éléments in the Universe. Disks with hydrogen and hélium are almost

ubiquitous when stars appear, but these disks fade away rapidly, on timescales of

only a few million years (e.g., [2]). This implies tliat Jupiter and Satum had to foim

rapidly in order to capture their hydrogen and hélium envelopes, more rapidly than e.

g. terrestrial planets which took tens of millions of years to attain their présent

masses, and retained only negligible amounts of tlie primordial gases as part of their

final composition. Thus by studying these giant planets, we hâve access to

information on the composition and early évolution of the protosolar disk that led

to the birth of tlie entire Solar System.

In spite of tlie récognition of tlie importance of sucli knowledge, data on the

composition and structure of tlie giant planets, which hold more than 95% of tlie

mass of the Solar System, excluding tlie Sun, remains scarce. The masses of

£) Springer
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the central cores of Jupiter (0 to 15 M© where M© is the mass of the Earth) and of
Satum (8 to 26 M©), as well as the total masses of heavy éléments (10 to 40 M©, and

20 to 30 M©, respectively) are poorly constrained [3]. Along the same lines, the
abundance of oxygen, the third most abundant element in the Universe after H and

He and a key element for planetary formation, is unknown in the well-mixed

atmosphères of both Jupiter and Satum [4]. Jupiter’s composition was measured in

situ by the Galileo probe in 1995 down to a pressure level of 22 Bar [5]. On Jupiter,
the abundances of 8 major éléments hâve been measured, while in contrast, on

Satum we only hâve reliable data for C, He, and model-dependant results on N

and S (Fig. 2). The Galileo measurements at Jupiter include a highly précisé
détermination of the planet’s hélium abundance, crucial for calculations of the

structure and évolution of the planet.

Several key species (carbon, nitrogen, sulfur, argon, krypton and xénon), were
found to be enriched in Jupiter’s atmosphère compared to the solar composition
mixture, which directly impacts théories on the formation of the Solar System.
Figure 2 shows that planet formation models that attempt to reproduce the
abundances measured in Jupiter yield very different results for Satum, with key

éléments being oxygen (in tire fomi of water) and the noble gases. Specifically a
model based on direct adsorption on low-température planetesimals yields a high,
uniform enrichment of ail species other than H, He and Ne [5]. A model in which
gases are trapped into crystalline ice as clathrates yields a very non-uniform

enrichment of these species (e.g. [7, 8]). If the noble gases were not delivered

10.0

1.0

I 0.1
O

O

O 10.0
ca

1.0

0.1

Fig. 2 Elemental abondances measured in the tropospheres of Jupiter (top) and Satum (bottom) in units of
their abundances in the protosolar nebula (from [6]). The elemental abundances for Jupiter are derived
from the in situ measurements of tire Galileo probe. The abundances for Satum are spectroseopic
déterminations from Cassini for He/H and C/H, and model-dependant gmund based measurements for N/
H and S/K. Note that the retrieval of the hélium abundance is indirect and uncertain, so that very précisé
He/H measurement is needed. Kronos \vill allow distinguishing between different formation scénarios
whose prédictions are shown as green, blue and pink cimes, respectively (see text)
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directly with the solids but as gas in a protosolar disk enriched in heavy éléments by

photoevaporation, one then expects enricliments in noble gases Üiat are decoupled
from other speeies and comparable to thosc found on Jupiter [3, 9]. The processes

tliat formed the giant planets hâve implications for the other planets as well.

Kronos can tlrerefore directly test scénarios of the formation of the solar System.

In paiticular, Jupiter ’s nitrogen is highly depleted in 15N by up to 40% compared to
“planetary” N found in terrestrial planets and mefeorites [10]. Togetlrer with
measurements of lunar soils irradiated by the solar wind [11], this has led to tlie
concept of an originally l:,N-depleted protosolar nebula gas, in which variable
extents of 15N-rich solid material were injected so as to yield the large range of N
isotopic variations found among the solar System objects. Thus tire l5N/14N ratio of
the giant planetary atmosphères is expected to vary depending on the mixing ratio of

solid and gaseous components tirât contributed to tlreir formation, and a comparison

betvveen Jupiter and Satum will yield information on the nature and strengtlr of the
contributing cosmochemical sources.

Noble gases are also excellent tracers for the origiri and the évolution of major
solar System réservoirs. Measurements of noble gas (Kr and Xe) isotopic ratios will

also be of considérable importance for (1) assessing potential genetic relationship
between solar System réservoirs and giant planet annospheres, and (2) investigating
possible atmospheric processes tirât might hâve ifactionated atmospheric éléments.

For instance, cometary graiirs retumed by the Stardust mission host a Ne component
with air isotopic composition reminiscent of organic matter trapped in primitive
meteorites rather tlran tirât of the solar nebula [12]. The measurement of the noble

gas composition of tire Satum atmosphère is thereforc requested to investigate tire

origin of Satum atmospheric gases.

Other key measurements include the spéciation and stable isotopic compositions

of liglrt éléments (H, C, N, S) as well as trace gas speeies abuirdances (notably AsH3,
PH3, GeH4, CO). Last but not least, the very précisé measurement of the hélium and

néon abundances will be the key to air understanding of the formation of hélium

droplets iir tire planct’s interior and thus the évolution of Satunr aird Jupiter (e.g., [13]).
Kronos will also allow us to obtain a measurement of Satum’s gravit y fteld to be

performed with unprecedented accuracy. Even from a single flyby of the carrier

spacecraft, the close polar orbit and the use of boür X and Ka bands guarantees

improvements of several orders of magnitude compared to the measurements by
Cassini-Huygens (Fig. 3). These accurate measurements will yield stringent
constraints on the planetary interior structure. Air important source of uncertainty
for models is the unknown interior rotation of tire planet. The détermination of high
order harmonies of the gravity fteld will allow a détermination of whether Satum’s

interior rotâtes as a solid body or not [14]. Additional constraints from the magnetic
fteld measurements, radiometric measurements and similar observations at Jupiter
with .Tuno will help précisé the State of rotation of Satum’s interior. With further

constraints on the hélium and oxygen abundance measurements aird on the basis of

présent models of Satum’s internai structure, we expert to detennine the mass of the

central core to within 10-20% accuracy, and to evaluate whether or not a layer of
hélium surrounds its core.

A combitred analysis of in situ and remote Kronos measurements of Satum’s

composition, global water abundance, high accuracy gravity and magnetic ftelds will
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provide us with a detailed view of the planet’s structure (Fig. 3). The comparison
with similar measurements at Jupiter will yield a unique set of data that will permit

us a global understanding of the évolution of the giant planets and their fondation

within the solar System. Within the next 20 years, we expect thousands of extrasolar

planets to be characterized, but with only limited information (e.g. mean density,

major atmospheric gases). The parallel study of Satum and Jupiter enabled by

Kronos is fundamental to understand giant planets both from a global statistical

perspective, and in fine detail.

2.2 Meteorology and atmospheric dynamics

The dynamics and circulation of gaseous giant. planetary atmosphères are important
physical attributes for many disciplines, not only for planetary meteorology. Heat

transport within the atmosphère and exchanges with the deep interior are crucial

factors, affecting the long tenu évolution of the planet. Chemical transport/mixing

within the atmosphère and interior are also of great importance to understand how

the composition and structure of a giant planet has evolved since its formation. In
addition, an understanding of the circulation, origin and maintenance of the jets,

instabilities, waves and vortices in the atmosphères of ail of the outer planets is of

great interest for comparative planetary meteorology and oceanography. The belt-

zone structure of zonal jets in the atmosphères of Jupiter and Satum is especially

relevant at tire présent time, in tire light of the emerging discovery of apparently

dynamically similar zonal structures in tire Earth’s océans (e.g. [15] and new

measurements of eddy momentum transports on Satum firom Cassini [Del Genio,
2007 #1686].

Up to the présent time, cloud motion tracking from the Voyager 1 and 2 spaceeraft

in 1981, ground-based and Hubble Space Telescope since 1991 and the Cassini

Orbiter since 2004, has been one of the main methods used to infer aspects of the

general circulation of the planet (Fig. 4) [18 22]. A major and persistent problem is

that the rotation period taken as a reference frame for the atmospheric motions is not

Fixed from radio-rotation measurements, and ranges between 10 hr 39 min 24 s and

10 hr 46 min [18, 23 25]. Recent measurements of Satum’s gravity field even
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Fig- 4 Mean vertical distribu
tion of cloud layers on Satum,
deduced from a simple thermo-
chemical model [4, 16, 17]

Satum with 1x. 5x, 10x solar O, N, S, Ar

suggest an interior rotation period as short as 10 hours 32 min [26]. As with Jupiter,
Satum’s cloud-level meteorology may extend much deeper into its convective

interior than the shallow ‘weather layer’ within which the observed patterns of wind

and clouds may be observed from space. Observational constraints on such (deep)
atmospheric dynamics are very difficult to obtain, not least because of some
fundamental ‘degeneracies’ in the near-surfàce signatures of deep and shallow
circulations i.e. very different processes (deep or shallow) may produce surface
signatures that are more or less indistinguishable. A major objective of Kxonos is

therefore to obtain measurements (especially of Satum’s detailed gravity field; see

Fig. 3) that can résolve some of these ambiguities and ascertain which aspects of
Satum’s meteorology and circulation are deep-seated and which are shallow.

Images in the visual range by spacecraft hâve captured a plethora of

meteorological phenomena immersed within the altemating pattern of zonal jets

(Fig. 5), including: (1) cyclonic and anticyclonic eddies with closed circulations and
sizes ranging from ~1,000 5,000 km [27, 28]. Particularly interesting is tLie strong

cyclonic vortex found around the Southern Pôle [18], (2) Convective storms are
relatively common at mid-latitudes [29, 30] and probably fuelled by “moist”
ammonia and water vapour latent heat release [31]. A major event are the “Great

White Spots” (GWS) that occur sporadically in Satum (mainly at équatorial
latitudes) attaining a size of 20,000 km before they spread zonally [32]. (3) Waves of
different types hâve been detected at cloud level and in température maps. Most

significant are those seen at cloud level on Satum, as for example Üie mid-latitude
northem “ribbon” that moves with a speed of 145 ms-1 [33] (Sromovsky et al.
1983), and the “hexagon” that surrounds the northem pôle at 78° Nortli [34] that

appears to remain roughly stationary with respect to the planet rotation, at least as

measured by the Voyager spacecraft.
This variety of meteorological phenomena aie observed at clouds and hazes

vertically distributed above the ammonia condensation level. The properties of the
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Hg. 5 General circulation of Satum and relevant atmospheric features on its atmosphère. Wînds at cloud
level, relative to the interior reference frame measured by Voyager, traced by the Voyagers (grey lùié) and
Cassini data of the Southemmost latitudes (blue) and équatorial région in different filters (red and violet).
Relevant meteorological structures appear on the insets4, a North polar hexagon in visible (Voyager 1) and
infrared light (Cassini); b The Ribbon; c Satum Great White Spot in the Equatorial Région in 1990 and tlie
State of the equator as seen by Cassini in the methane absorption band and continuum filters; d The South
Polar jet and the inner polar vortex; e Convective storms seen by Cassini; f Anticyclones from Voyager 1.
The location of most convective storms appear marked with green dashed boxes

clouds and their temporal changes hâve been studied mostrecently by [35] and [36].
Related features are also seen at other levels from observations and retrievals of

température and composition at infrared wavelengths [27]. The zonal jets are seen to
extend into the stratosphère though decay with height [37]. Some eddy features are
also évident at higher levels though some features such as Satum’s north polar

hexagon seem to be confined to beneath the tropopause.
As with Jupiter, Satum’s cloud-level meteorology may extend much deeper into

its convective interior than tlie shallow ‘weather layer’ within which the observed

patterns of wind and clouds may be observed from space. Observational constraints

on such (deep) atmospheric dynamics are very difficult to obtain, not least because
of some fondamental ‘degeneracies’ in tlie near-surfoce signatures of deep and

shallow circulations i.e. very different processes (deep or shallow) may produce
surface signatures that are more or less indistinguishable. A major objective of
Kronos is therefore to obtain measurements that can résolve some of these

ambiguities and ascertain which aspects of Satum’s meteorology and circulation

are deep-seated and which are shallow.
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As a fïrst step, Kronos will obtain the first detailed in situ measurements of the

vertical structure of Satum’s atmospheric température, winds, radiative balance and

cloud structure, to depdis of up to 10 bar wliere duvet solar heating is essentially

negligible. The factors determining the atmospheric thermal and density structure in

the outer planets dépend on a complex mix of radiative heating and cooling,

turbulent convection (both ‘moist’ and ‘dry’) and larger scale circulation Systems.

The distribution of radiati ve heating in the upper troposphère is affected strongly by
the presence of clouds and hazes, whose distribution is itself detennined by tlie

ambient circulation, and the concentration of various volatiles. Figure 5 shows a

much simplified ‘typical’ vertical distribution of clouds, modeled by assuming a

particular composition at depth and adiabatic uplift until different components

become saturated and begin to condense. Such a distribution may reflect a global

mean picture, but observations indieate considérable local variability.
Seasonal effects are also much stronger on Satum than on Jupiter, and hâve a

major impact on thermal structure in the stratosphère and upper troposphère. While

Kronos will not monitor such effects directly, they will influence the State of tlie
atmosphère at the time of its encounter with Satum, and will provide information by
comparison with earlier missions (such as Cassini). The natui'c and distribution of

convection in Satum’s atmosphère is a major objective of tlie Kronos mission. It is
now widely thought that convection, modified by the latent heat effects of water

condensation and conséquent changes in molecular weight, is a critical component

of tlie tropospheric circulation of both the gas giant planets [38].

Moist convection is highly intermittent and leads to massive storm cells

--1000 km wide which carry water and otlier material vertically over -3 scale

heights (~75 km) into tlie upper troposphère. In ways that are still not fully
understood, moist convection works rather differently from terrestrial storms, due to

tlie very low mean molecular weight of the atmosphère. As on Jupiter [39], lightning

may also accompany vigorous convection at times, Üiougli détection at Satum in

association with particular convective events has been more elusive [30].

The horizontal distribution of convection is also highly variable. Figure 6 shows a
Cassini V1MS image of Saturn at 5 pm which reflects the distribution of clouds and

convection ai 2-4 bar. This indicates that convection (both dry and moist) is
organized by the winds in the deep troposphère into zonal bands on a finer scale than

at the top of the troposphère. This drastic change, évident in the meteorology

between tlie visible face of Satum and its expression at just 5 bar, is indicative of the
changes in the driving forces as one delves deeper into Satum. We expect that by
directly sampling the internai structure down to 10 bai-, below most of the direct

radiative heating/cooling of the atmosphère, we wi ll hâve a more direct picture of the

processes controlling the dynamics in Satum’s atmosphère driven from deep inside
tlie planet radier than from solar input/radiative cooling.

The primary goals of the meteorology and atmospheric dynamics investigation on

Kronos will be to détermine the nature of die deep circulation, differential rotation

and convection in Satum’s atmosphère by combining observations from die Kronos

probes widi remote sensing measurements from the carrier spacecraft. For the

probes, this will require in situ détermination of vertical profiles of température,

horizontal winds and cloud properties (aérosol particle densities, size distributions

and composition, including possible chromophores) throughout the troposphère to a
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Fîg. 6 Cassini VTMS image of
Salum al a wavelength of 5 pm
[40, 41], showing cloud feattires
and zonally banded structures al
around 2 4 Bar, Here, the

thermal image has been photo-
metrically inverted to show
high-opacity clouds as white and
clearings in tlie deep cloud
structure as black. This image
mosaic reveals tliat, at depth,
Sattim is an active, dynamic
planet Bulky clouds near the
equator are likely convective in
nature. At depth in mid and higli
latitudes Satum exhibits a dense

structure of altemating bands
of clouds and clearings

pressure of up to 10 bar, at two dynamically distinct locations on Satum. The profile
of the water abundance will also be measured in order to constrain its rôle in moist

convection processes. For the camer, üiese goals will require measurements of

température, deep cloud distributions, ammonia and water abundance distributions
and deep winds, using a combination of near infrared and microwave radiometry,
and gravity field measurements ffom a close periapsis pass.

2.3 Magnetic dynamo, magnetosphere and radiation environment

Like Jupiter, Satum has a largely rotation-dominated planetary magnetosphere. But
like Earth, solar wind convection and radial transport play major rôles [42],
Understanding Satum 's magnetosphere (Fig. 7) will provide the “missing link”
between the Jovian magnetosphere (then explored in-depth by Juno) and the Earth’s
magnetosphere (explored by many satellites).

The Kronos mission has the potential to résolve major open issues about Satum’s

magnetic field, magnetic dynamo and internai rotation, its polar magnetosphere and

radiation environment, and their couplings with the planet itself. Beyond

planetology, redistribution of angular momentum via magnetic fields in astrophysical
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Fig- 7 Satum ’s magnetospheric régions and processes. Bottom inset new radiation belt observed in ENA,
top inset électron beams observed by Cassini and mapped to the aurora along field lines; auroral image by
HST; orange cône sketches auroral (SKR) radio émissions

plasmas is a central question. Satum’s unique characteristics (nentrai gas-dominated,

dust-rich magnetosphere) make it an idéal model better than Jupiter for
astrophysical situations such as the early phases of proto-star formation.

While ail other magnetized planets in the Solar System hâve magnetic dipole axes
tilted at an angle of 10° or more with respect to their rotation axes, Satum’s global

magnetic field is almost perfectly axisymetric (angle of dipole tilt <0.7°) [43],
although a high-latitude ‘anomaly’ has been tentatively deduced ffom Satum

Kilometric Radiation (SKR) measurements [44]. Classical fluid dynamo theory [45]

does not allow to maintain a field with perfect rotational symmetry, but new models

do allow for the dipole tilt to be as small as 0.5°. Satum’s dynamo is thought to be
produced by liquid ‘metallic’ hydrogen in its outer core, combined with stnong

convective motions and the rapid rotation of the planet itself (e.g. [46]). Accurate
global field mapping is thus a key to both the composition and conductivity of
Satum’s interior.

The Cassini spacecraft has already provided magnetometer measurements over

several tens of close passes within 5RS (average = 3.4RS) ffom Satum’s centre
(Rss - Satum radius = 60,330 km). In addition the spacecraft made a closest
approach at 1.33 Rs at the Satum orbit insertion (SOI). Fluxgate magnetometer
measurements near SOI suggested a possibly less symmetrical internai field within
the radius of Satum’s D ring (1.11 Rs), as compared to the field model built ffom the

more-distant periapses. Analysis is on-going, however further multiple passes and
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high-resolution scalar magnetometry at these very small distances—which are

beyond the scope of Cassini’s trajectory—are required to improve our knowledge of
higher-order components or ‘mullipolcs’ of Satum's field.

Another unique aspect of Satum’s magnetospheric field is related to the drifting
rotational signatures of the azimuthal field and SKR. A mission such as Kronos,

especially with an orbiter element, is expected to provide additional close-range
(<1.3 Rs) magnetic data for Satum, of great value for addressing the origin and
nature of its ‘rotational anomaly’, and characterize the internai (Enceladus ?) [47] or
extemal (solar vvind ?) [25] control of the period variability, in order to déterminé
Satum’s tme internai rotation rate.

At Jupiter, the most dramatic signature of the planet-magnetosphere coupling and

dynamics is the aurora (best observed in tlie UV), including the near polar signatures
of the satellites-magnetosphere interaction. Ihis coupling involves electric currents
flowing along field lines, energetic particle accélération, and associated plasma
waves and radio waves. The latter permit remote sensing of the coupling variability
as well as insights to tlie microphysics of the émission (électron distribution function

tapped). Juno will significantly advance our understanding of Jupiter’s polar
magnetosphere via its polar orbit with low altitude perijove, allowing in situ
measurements of fields, plasmas, currents, particles, at the key région where tlie

magnetospheric activity is focused along converging magnetic field lines. Similar

measurements should be performed at Satum (top right inset of Fig. 7) to better
understand the magnetosphere-planet coupling.

Finally, Kronos should provide new insights to the inner radiation belt discovered

by Cassini inside the D ring [48],

2.4 Ring science

Whereas observed since tlie seventeenth century, Satum’s rings aie still one of tlie

mostpuzzling structures in our Solar System. To constrain the origin of the rings and
their évolution, in situ observations aie needed, foliowing Cassini’s success. In
addition, Satum’s rings are tlie closest example of an astrophysical disk, one of the
most fondamental structures in the Universe. The outer edge of the rings System (the
A-F région) is located on tlie Roche limit itself, allowing for substantial accretion
processes. The outer régions of the rings therefore share common properties with a
protoplanetary disk.

The origin of Satum’s rings is still not understood. They were possibly fonned by
fragmentation of cornets destroyed by tides after a too close passage [49] or by tlie
destruction of an ancient satellite [50]. Our limited knowledge of the physical
properties of the ring particles prevents us irom discriminating these different
scénarios. A key information would be the précisé size distribution of ring particles
down below the 10 cm scale. Direct observation of ring particles would al low us to

achieve a major ring science objective: tlie physics of accretion (similar to planet
formation). Despite tlie strong tidal field of Satum, limited accretion is tlieoretically
possible (e.g., [51]). Recent works show tliat moonlets and ringlets may be the two
sides of a same object [51], Cassini lias recently provided new indirect proofs of tins
[52]). Direct observation of these aggregates would be valuable and would unveil a

new elass of Solar System objects: temporary moons. Thus, an exotic accretion
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physics could take place, resulting in the formation of temporary structures that need
to be characterized in detail.

3 Mission profile

3.1 General mission architecture

The nominal mission includes two atmospheric probes dclivercd by a single carrier

spacecraft. The primaiy' science objectives of both éléments is the formation of
Satum and the origin of its atmosphère. The probes enable in situ measurements of

Satum’s atmosphère to be performed down to a pressure of 10 Bar. The carrier

spacecraft is strongly inherited from Juno and enables a more global investigation of
Satum’s atmospheric H20 and NH3, gravity and internai magnetic field, rings, and

the imier magnetosphere.

3.2 Launcher requirements

Since Kronos was proposed as part of an international collaboration betvveen ESA

and NASA, the launch would hâve been possible with either a NASA or a European

launch vehicle. Since the total mass of a flyby-based architecture with the two

probes is estimated at less than 3000 kg, the projectcd launch vehicle for the mission
could be an Atlas V-551.

3.3 Trajectory

Interpianetary trajeetories to Samm could be supported with Chemical and/or solar

electric propulsion (SEP) Systems, combined with gravity assist at Earth and Venus,

and for the relay trajectory architecture also at Jupiter. These trajeetories resuit in

flight times from -6.3 years to ~17 years, although flight times over 12 years were

found not désirable. Inteiplanetary and flyby/orbiter trajectoiy options are different

for suppoiting relay or DTE architectures.

3.4 Direct to Earth communication

3.4.1 Flyby DTE trajectory

Using a direct-to-Earth (DTE) communication strategy découplés the probes from

the carrier (after release) and thus allows for the most efficient, lowest cost and

lowest risk mission architecture possible. Tins, of course, limits the data retum from

the probe mission, however, oui- preliminary analysis shows that the DTE capability

meets the requirements for the Kronos mission. The probes are delivered on a Type

II trajectory to Satum to allow for probe entry at or near the sub-Earth point.

Preliminary results suggest a longer flight time associated with DTE due to limits on

the Jupiter gravity assist and to the probe entry geomctry requirements. Preliminary

launch characteristics for DTE and relay cases are shown in Tables 2 and 3.
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Table 2 Preliminary launch

characteristics for DTE option

(shortest cruise for DTE)

EWES case for DTE trajectory

Launch vehicle Atlas V-551

Departure condition Fmf=4.1 fcm/s

Launch C3 C3=17 km2/s2

Launch mass 4,665 kg
Gravitv assists Earth-Venus-Venus-Earth

Arrivai velocity Vü,r=5.8 km/s

Cruise time 11 years
Satum arrivai mass 3,345 kg

Mass post-SOI 2,721 kg

Sub-Earth point -30° offset

3.4.2 DTE architecture

A relay architecture potentially provides the longest visibility between the probe and
the carrier. This requires the relay spacecraft to be in a low inclination or équatorial
orbit at a radial distance > 5 Rs. Zenith atténuation of radio signal is a fonction of

probe depth, measured by atmospheric pressure. During tlie probe descent, the

transmission of data must be perfonned in real time, with the data upload ending as

the probe reaches its deepest point in Satum’s atmosphère. The preliminary DTE
architecture includes a 200 MHz UHF link from the probes for direct-to-Earth

communication to Earth, and an X-band link front tire carrier for orbiter or flyby

science and telemetry through tlie DSN. Data rate from the probe is the function of

the antenna size, transmitter power, séparation distance, and atmospheric conditions.
Data compression potentially can increase the efficiency and tlius the scientific

retuni. Technology development in the areas of antenna design, telecom power, and
frequency scanning and locking can vastly improve the expected performance.

Preliminary analysis indicates that a data rate of ~60 bps from each probe is

achievable without major new technology. This translates to a total data volume of

Table 3 Preliminary launch

characteristics for relay options Launch characteristics

2015 EEJS Relay Trajectory
Launch vehicle Atlas V-551

Departure date 12/7/2015

Departure condition Fin{=5.2 km/s
Launch C3 C3=29.5 km2/s2

Gravity assists Earth-Earth-Jupiter
DSM 685 m/s

Arrivai date 3/30/2022

Arrivai velocity vm£=9.4 km/s
Omise time 6.3 years
Dry mass

Référencé 2017 EEJS Relay Trajectory
3,073 kg

Launch year January 2017
C3 C3=2S km2/s2

DSM 840 m/s

Arrivai velocity v1d{=5.8 km/s
Cruise time 7 vears

Dry mass 2,935 kg
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-0.44 Mb from the two probes. DTE potential at low frequencies (200-400 MHz)

will be significantly (by an order of magnitude) improved with the next génération

radio télescopes LOFAR (Low Frequency Array) and SKA (Square Kilométré

Array.

Data link types on the relay architecture include: X-band telecom link for tlie

carrier to the DSN; and 400 MHz UHF between the probes and relay spacecraft.

Assuming a 400 K Satum hot-body température noise at 400 MHz UHF frequency,

and a corresponding 1.5 dB atmospheric atténuation at 10 Bar, the probes could
support a data rate between of 512 bps, giving a total data volume of ~2 Mb from

each probe.
On the carrier, the X-Band System uses ~35 W power and a 3 meter high gain

antenna (HGA). Medium gain antenna and low gain antennas are likely necessary

for maintaining links during cruise and safing scénarios. On the probes, the UHF

LGA will work with an Electra transmitter at 20 W RF output. This requires an

upgrade to tlie Elecfra transmitter, which currently opérâtes at 12 W. Both ends of

the radio link between the probes and the relay spacecraft must contain Ultra Stable
Oscillators (USO) needed for radio interferometric (VLB!) and Doppler measure-

ments (Doppler Wind Experiment -DWE- and Planetaiy Radio Interferometer and
Doppler Experiment -PRIDE).

3.4.3 Ring science architecture

For the ring science purposes, we suggest an additional dedicated probe: Lora

(Landers on Rings Array). Lora would not be a large probe, but rather a collection (2

to 3) of very small and simple probes, like “MicroProbes”, containing only one

efficient caméra. The fleet of 2 to 3 identical probes would be dropped by Kronos

during the flyby, and the probes would go directly into the rings at different

locations, allowing to obtain high resolution images. One of the probes should target

tlie ring plane, through a gap near a dense ring (B ring), in order to get information

on tlie vertical structure of tlie ring.

3.5 Carrier

The spacecraft design is directly inherited from Juno replacing Juno’s radiation

vault mass with the probes. Juno is designed as an outer planet orbiter and already

includes many of the components necessary to implement the mission. Low

Intensity Low Température (LILT) solar panels from Juno and Bepi Colombo

missions are baselined for Kronos, but require further tests for Satum environment.

The carrier is designed to deliver the probes to Satum and to perform remote
sensing measurement during its flyby. An orbiter configuration would include

additional propellant tanks, and a modified power System to account for the higher

power demands.

Stmcturally, tlie carrier consists of: (a) a spacecraft bus; (b) a propulsion System,

including propellant tanks; (c) a power System, consisting of LILT solar arrays and
batteries; (d) subsystems, including thermal management, CDH, GN&C, AC S,

telecom; (e) and science instruments, including the MWR antennas. For tlie

propulsion System both Chemical and SEP were considered.
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3.5.1 Carrier pawer System trades

At Satum, the solai' flux is about 15 W/m2, or ~1% of that at Earfh. Low Intcnsity
Low Température (LILT) solar eells, developed by ESA for Rosefta, were tested up
to -70 W/m2, while Juno’s solar panels are designed to operate at Jupiter where the
solar flux is -55 W/m2. New, high efflciency LILT cells could achieve a power
output per unit area of 4 to 5 W/m2, assuming a conversion efflciency of 30%. At
this level of performance, according to a CNES study, a Juno-size solar panel could

generate -200 We, wiüi the power System weighing -300 kg (including batteries and

conditioning System). Performance could be also increased with the development of
concentrators.

Studies performed at both CNES and NASA [53, 54] demonstrated tliat short-

lived missions could operate at Satum using photovoltaic power génération. A flyby

mission is expected to use batteries on both the probes and on the carrier spacecraft,

and employ solar- panels for backup only, in case not ail data is transferred back to

Eartli in a single 8 hours telecom pass. For an orbiter mission the power requirement

is expected to be continuous: near the periapsis the spacecraft vvould perform its

science measurements, while during craise to and from apoapsis it would perfonn
data transfer to Earfh, liousekeeping, and recliarge its batteries. This would hâve a

significant impact of power System sizing. While solar power genenttion is expected

to be the baseline configuration for the flyby architecture, future mission studies

should also address the use of RPSs on an orbiter, in order to assess its impact on
mission cost and architecture.

3.5.2 Satum probes

Satum’s atmospheric circulation rcsults in a distinct distribution of latitude bands

and zones as seen most recently in the Cassini VIMS spectral data. Thus the Kronos

mission should allow for the launch of two probes in different régions. The

preliminaty design calls for targeting one of the probes inside and one outside of

tlie ±13° latitude band. Silice the scale-height of Satum is about twice tliat of Jupiter, it

is not feasible for the probes to retum data from the 50 to 100 Bar pressure levels—

which would be required to measure the water abundance in situ—because of

significant microwave absorption. Consequently, the probes will only be required to
measure atmospheric composition and dynamics to about 10 Bar, while water and

ammonia abundance will be measured using passive microwave radiometry from the

carrier (like Juno) to 50-100 Bai-.

The Satum probes will use significant héritage from the Galileo probe (Fig. 8),

including the thermal protection system (TPS), aeroshell design, and subsystems.
Except for the TPS, héritage from tire Huygens Titan probe will also prove
extremely bénéficiai. Thanks to combined Huygens and Exomars, Europe has tlie

technological background to provide for the Descent Modules of the two Kronos

atmospheric probes. Tlie gas giant-specific shield/aeroshell will be provided by

NASA: its strong Galileo héritage will enable to get well-mastered interface
spécifications between the aeroshell and the descent module, and a controlled

development. No development risk on US side is expected to be transferred to

Europe's contribution, even via interface requirements.
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Fig. 8 Heritage Galileo descent module and probe (Galileo Probe Décélération Module Final Report, Doc
No. 84SDS2020, General Electric Re-entry Systems Operations, 1984; AIAA, “Project Galileo Mission
and Spacecraft Design”, Proc. 21st Aerospace Science Meeting, Reno, NV, Januaiy 10 13, 1983; Proc.
AJAA’83, 21st Aerospace Science Meeting, Jan. 10 13, 1983, Reno, NV)

The probes are considered autonomous objects, consisting of a set of science
instruments, and snbsystems. Each probe is housed inside a protective aeroshell. Its
total mass of~330 kg consists of a 222 kg décélération module, and 117 kg descent

module. The descent module houses the science instruments and subsystems, while

the décélération module includes the aeroshell, TPS, parachutes and séparation
hardware.

4 Instruments

4.1 Elemental and isotopic measurements of Satum’s atmosphère

Satum Probe measurements will be selected to meet the measurement requirements

that address (1) théories of planetary origin and (2) fundamental knowledge of
Satum’s atmospheric structure and meteorological processes. The instrument
complément will include a mass spectrometer for Chemical and isotopic composition
détermination, an atmospheric structure experiment, a Doppler Wind Experiment for

retrieval of a vertical profile of zonal winds, and a nephelometer to détermine the
structure of the atmosphère to at least 10 Bar and to obtain the radiative balance at
this depth. The instruments baselined for the Kronos Probe investigation hâve a solid
héritage ffom previous probe missions such as Galileo [55] (Fig. 9) and Cassini/
Huygens [56].

4.2 Composition and isotopes

Light éléments to be measured with an atmospheric probe mass spectrometer include
H, C, N, S, P, Ge, As, and the noble gases He, Ne, Ar, Kr, and Xe. These
measurements together with a détermination of D/H, 13C/12C, 15N/14N, 3He/4He,
2ûNe/22Ne, 3gAr/36Ar, 36Ar/'4ûAr, and the isotopic composition of Kr and Xe will
provide a complété comparison with the Galileo Probe measurements at Jupiter and
reveal key différences or similarities between these giant planets. However, we know
that such a probe will not altow us to measure the deep, well-mixed abundance of
oxygen, because of water condensation and meteorological processes. As the
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Iïg. 9 The configuration of the
Galileo Probe Mass Spectrome-

ter (GPMS) that entered (lie
Jupiter atmosphère on December
7, 3 995 is shown. The Satura
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abimdance of oxygen in water is a key factor in the déduction of the composition

and hence origin of giant planets, we propose to integrate on tlie orbital or flyby

spacecraft a microwave sounder devoted to the remote sensing of water in the deep

atmosphère of Satum. Sucli an instrument is presently being developed for the Juno

mission, to retrieve the O/H ratio in tire deep troposphère of Jupiter.
Our présent knowledge of the Chemical and isotopic composition of the Jupiter

and Satum atmospheric Chemical and isotopic composition is given in Table 4

together with the required précision of a Satum Probe Gas Analysis System (GAS).

The précisions listed represent a substantial improvement ffom the Galileo GPMS

measurements. This performance will not only establish a full comparison with the

Jupiter values, but will provide a robust data set for comparison with other planetary

values. For example, différences in Xe isotopic fractionation between solar and

meteoritic and between solar and terrestrial of <1% and <3% respectively per Dalton

are resolvable with this précision. The static mass spectrometer design described

Table 4 SPMS measurement requirements

Eléments Jupiter/Sun Satum/

Sun

KRONOS

(%)
Isotopes Jupiter Satum Kronos

(%)

He/H 0.S1±0.02 ~0.2 +3 D/H 2.6±0.7xl0“5 2.25±0.35x 10~5 <10

Ne/H 0.05 9± 0.004 ? <5 3He/4He l.bôiO.OSxlO-4 ? <0.5

Ar/H 5.34± 1.07 ? <s 13C/UC 0.0108±0.00005 0.011 <1

Kr/H 2.03±0.38 ? <25 15n/14n 2.3±0.3* 10-3 ? <5

Xe/H 2.11±0.40 ? <25 Xe <10% typical ? <0.5

C/H 3.82± 0.66 ? <10

N/H 4.90Ü.87 2 4 ? <25

S/H 2.8S±0.69 9 <10

Estimated Kronos précision might be higher or lower depending on abundances and measurement time
during the descent spent on the species of interest. Tlîis will be explored in greater detail during the phase
A study
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below enables these précisions. The Jovian elemental ratios of C/H, N/H, S/H, and

D/H in this table were measured in the molecular species CH4, NH3, H2S, and H2

respectively. The GPMS made continuons direct measurements of gases ingested

into the vacuum of the instrument in the 2-150 Dalton mass range during the descent

except for short periods of time when processed gases were introduced into the mass

spectrometer.

4.2.1 GAS spécifications

The proposed Satum Probe Gas Analysis System lias a high héritage in both
successfiil atmospheric probe composition/isotope investigations conducted at

Jupiter [4, 55, 57] and Satum’s moon Titan [58], Eléments of the GAS designed

to improve the précision of the measurements are adapted front in situ calibration,

static mass spectrometry, gas séparation, Chemical processing tecltniques and

advanced pumping Systems developed for the Rosetta mass spectrometer Ptolemy

[59] and presently under development for the 2009 Mars Science Laboratory [60].

The mass spectrometer is a quadrupole mass spectrometer similar to more than a

dozen tliat hâve been developed at the NASA Goddard Space Flight Center and

successfully operated in the upper atmosphère of the Earth and Venus.

4.2.2 Noble gas enrichment and static mass spectrometry'

The combination of a noble gas enrichment System, a gas scrubber that can remove

ail chemically active gases, a Chemical getter pump in the MS analyzer région, and a

high conductance valve between the MS and the WRP will enable static MS

operations for higher précision noble gas measurements than were possible at Jupiter

with the GPMS. The static measurements intenupt direct sampling of the

atmosphère for a portion of the descent, bat are necessary to obtain tire desired

précision. The noble gas enrichment System was proven on the Galileo Probe MS

and consists of Chemical getters and traps tirât can enricli the trace noble gases Kr

and Xe. The Galileo Probe noble gas enricliment System was able to provide

measurements to the sub ppb levels for isotopes of Jovian Xe.

4.2.3 Nitrogen combustion for !>N/I4N isotope measurement

The l5N/14N ration on Jupiter was obtained from the NH3++ signal at 8.5 and 9
Dalton for the two nitrogen isotopes. Due to the difficulty of removal of spectral

interférences in this approach we provide an NH3 oxidation reactor on GAS to

produce N2 so that this measurement can be carried out with higher précision. This

element of GAS could be developed using techniques similar to those developed for
Rosetta and Beagle 2, and expertise and techniques developed for the analysis of
solar wind nitrogen implanted in the GENES1S targets.

4.3 Meteorology and atmospheric dynamics

In situ measurements that address the meteorology and atmospheric dynamics goals
of the Kronos mission include density, pressure and température sounding to
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characterize the atmospheric structure tutti instruments to measure the radiative
balance, cloud structure, and zonal winds also down to a pressure of 10 Bar.

4.4 Measurements achieved vvith a Saturn probe nephelometer

The composition and précisé location of cloud layers in Satum are largely unknown.

They may be composed of ammonia, ammonium hydrosulfide, or simply water.
Because of this relative paucity of information on Satum’s clouds, the demands vve

place on a cloud particle sensor (nephelometer) are significant.
For Kronos, we hâve baselined a new instrument which would measure not only

the amplitude phase fonction of the light scattered by the clouds iront a laser source

on the probe, but also Ütc polarization ratio phase fonction as well. It does this at two
wavelengths, separated by about an octave in wavelength near 1 pm. The phase
fonctions are sampled at six discrète angles, chosen to maximize their leverage in
distinguisliing betvveen different size, shape and aérosols compositions. These

measurements at an optical depth unity as long as ~10 km permit to détermine the
aérosol number density, their particle size, an indication of the particle shape, and

the paiticle’s index of réfraction at the two wavelength, which may be used to
infer the molecular constituency of the aérosols.

4.5 Atmospheric structure instrument

The Kronos Atmospheric Structure Instrument (AS1) consists of three primary
sensor packages: (1) a three axial accelcrometer (ASI-ACC), (2) a pressure profile
instrument (ASI-PPI), (3) température sensors (ASI-TEM). Tire proposed instrument

will benefit from a strong héritage of the Huygens AS! experiment of the Cassini/
Huygens mission [61]. The key in situ measurements will be atmospheric density,
pressure and température profile by measuring décélération of the entry veliicle and
performing direct température and pressure measurements during the descent phase.
The ASI-ACC will start to operate since the beginning of the entry phase, sensing

tlie atmospheric drag experienced by the entry veliicle. Direct pressure and
température measurements will be performed by the sensors having access to the
atmospheric flow from the earliest portion of the descent until the end of the probe

mission at approximately 10 Bar.

4.6 Measurements witli a Doppler wind experiment

The primary goal of the Kronos Doppler Wind Experiment (DWE) is to measure a

vertical profile of the zonal (east west) winds along the probe descent path [62]. A
secondary goal of the DWE is to detect, characterize, and quantify microstructure in

the probe descent dynamics, including probe spin, swing, aerodynaniic buffeting and

atmospheric turbulence, and to detect régions of wind shear and atmospheric wave

phenomena. The Kronos Doppler Wind Experiment (DWE) can be designed to work
with a probe DTE architecture or a probe-to-relay architecture. Both options include
USO requirements and differ only in the angle of entry and DTE geometry

requirements (sce Mission Design). For rclay, the System comprises a probe and a
carrier ultrastable oscillator (USO) as part of the probe/carrier communication
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package. ïnvolveraent of several observing télescopes in interferometric mode

(PRIDE) will significantly improve the accuracy and robustness of the measure-
ments. Tlic proposed experiment benefits fiom the strong héritage of both tlie
Galileo and Huygens doppler wind experiments [63].

4.7 Instruments on the carrier spacecraft

Further définition of the carrier spacecraft will take place during the Kronos Phase A
study. This may be a flyby spacecraft or a Satum orbiter. Définition of the orbital
instruments will also take place during this period. A key objective of the payload on

the carrier spacecraft will be to secure deep, global abundances of H20 and NH3 and

their distributions over al latitudes using microwave radiometry. The technology to

implement these measurements is mature through the radiometers developed for the
Juno mission. The mission objectives for the orbiter/flyby spacecraft are inherited
ftom the Juno mission and include;

• Measurements ofthe global oxygen (water) and nitrogen (ammonia) abundances.

• Measurements of Satum’s internai mass distribution (core mass) via gravity
science

• Measurements of Satum’s internai rotation and convection (whether Satum

rotâtes as a solid body) via gravity science (détermination of high order

gravitational moments; see)

• Measurements of Satum’s internai magnetic field sufficient to investigate the
source location of the field.

• Measurements of the propeities of Satum’s innennost magnetosphere (inner
radiation belt, possible ring-associated cuixents, UV/IR/radio auroras, magnetic

anomalies)

• Measurements of tlie deep atmospheric structure and dynamics via microwave

sounding

4.7.1 Multi-frequency microwave radiometry

The design of tlie microwave radiometers will follow closely tlie Juno design,

with tlie exceptions that tlie measurement at Satum is considerably less driving.

Without the strong synchrotron émission from Jupiter, the measurement noise will be
less andthus tlie instrument design less complicated (beam pattern, etc.). Fuithermore,
the sélection of wavelengths (ffequencies) will be tuned to the Saturn atmosphère. As

with Juno, it is expected that the radiometers will be a set (approximately 6) of

frequencies ranging from 1 cm to 100 cm. Having tlie full latitude coverage is essential
for understanding the rôles of ammonia and water in Jovian meteorology and for

placing the probe measurements in context.

4.7.2 Xj'Ka band up/downlink System for gravity science

Most of the unceitainty in our knowledge of Satum’s core stems from unceitainties

in the équation of State and tlie gravity zonal harmonies J4 and J6 and to limited

knowledge of how Satum’s deep interior rotâtes. Current unceitainties are 1% in J4
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and 30% in J6. Kronos improves the knowledge of J4 and J6 by over 3 orders of

magnitude (J4 -10 ppm accuracy, J6 -100 ppm accuracy). This removes the
uncertainty regarding interior rotation and estimâtes the abundance of water,
reducing the core mass uncertainty and total mass of heavy éléments to a few Earth
masses.

Using an existing Linear Ion Trap (LITS) as frequency reference (or an improved

follow on) a DSN ground station (DSS25) transmits X and Ka-band radio signais to
the spacecraft, then receives tire transponded signais and veiy' accurately measures
tlieir frequencies. Simultaneously, water vapor radiometers (WVR) at tire DSN
station measure Earth-atmospheric briglrtness températures in the direction of tire

antenna beam, tlrereby determining the zénith signal delay caused by the wet

component of tire troposphère, and ultinrately tire tropospheric confection (refraction)
to the raw Doppler data. The same set of on-board instrumentation on the camer

spacecraft will enable nrulti-disciplitrary VLBI tracking experiments witlr ultra-
precise characteiization of the State vector of the spacecraft, reaching tens of meters
in the latéral direction.

4.7.3 Vector magnetometer

The instrument must be of sufficient sensitivity to measure perturbations caused by

field aligned ciments. The successful operation of the Cassini fluxgate magnetom-
eter at Saturn nrakes it a natural cairdidate for inlieritance for the design of the

Kronos magnetonreters. The new génération of digital fluxgate sensors hâve masses

of the order -200 g, and therefore nrake very little demand on overall payload mass.

For a Cassini-like configuration, eacli sensor would be capable of measuring fields

up to -44.000 nT, well below the atmospheric depths at which the Kronos probes

would be expected to operate.

4.7.4 Plasmas sensor

The instrument must quickly measure électron and ion energy angular distributions

(100 eV-20 keV) fronr an effectively non-rotating platform.

4.7.5 Energetic particle sensor

Tlris instrument must operate at tire higher energies (20 keV—several MeV) while

the plasma sensor fonctions at lower energies. Altliough a 1 MeV upper limit is

sufficient to address magnetosphere-ionosphere coupling issues, Irigher energies (up

to 30-50 MeV) are needed to study the radiation belts. In situ study of the new
radiation belt seen by Cassini-MIMI inside the D-ring, would require a small ride-

along particle detector on the probe itself. Such a sensor was carried by Galileo

probe.

4.7.6 Plasma and radio wave receivers

Cassini and Sterco spacecraft carry radio and plasma waves spectro-polarimeters

which can be programmed to operate according to very diverse setups (spectral and
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temporal résolutions, snapshots or surveys, wavefoim capture, polarization mea-
surement, etc.). In addition, they hâve goniometric capabilities, i.e. they enable the
instantaneous détermination of the direction of the brightest point source at each

measurement, and thus the possibility to synthesize images of the radio-sources. The
next génération of these radio spectro-goniopolarimeters has been miniaturized and

could be implemented for resources of ~1 kg and ~1 Wusing development héritage
ffom e.g. BepiColombo/MMO.

4.8 The Lora (Landers On Rings Array) MicroProbes

Ail the ring science objectives can be met by two to three very simple probes

(MicroProbes), whose sole payload would be a high-resolution caméra, dropped in
different locations of the rings (A, B, C by order of priority). The only limit to the

resolution is the time for data transfer before impacting into the rings. A Ritchey
Chrétien reflector, with lm focal length and diffraction limited at 5 * 10“6 rad (> a
15 cm diameter) would be suited. As the probes get doser to the ring, the resolution
increases and allows to achieve the ring science objectives.

A low inclination impact angle is preferred (-1°), its feasibility depending on the
arrivai trajectory of the Kronos spacecraft. A high resolution imager for ring science
that gives the required <1 10 m résolution images requires narrow angle caméras on

the Lora probes that will be evaluated in the Kronos Phase A study. An example of
synthetic images of A ring wakes at different résolution is shown in Fig. 10.

Assuming a resolution of 6*10~b radians/pixel (like the Cassini ISS-NAC), the
minimal distance of approach to achieve a given resolution is given in Table 5.

The maximum scientifîc retum is expected when the distance to the rings is
<100 km. However, once the Lora probes are below 8,000 km, they could achieve a
better resolution than the best Cassini images.

In order to stabilize and orient the spacecraft to allow a good pointing, a set of
reactions wheels and gyros onboard are necessary. The small inertia of the probes

may allow easy re-orientation during the descent.

4.8.1 Timeline for the Lora probe

In the current State of the design of the Kronos mission, the exact trajectory of the

Lora probe has not been precisely determined. We assume below that the Lora Probe
would be launched on an hyperbolic trajectory, with a ~1° inclination above the ring

Fig. 10 Synthetic images of A
ring wakes at 60 m resolution
(left) and 60 resolution (nght)
(H. Salo)
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Table 5 Ring science operations

Altitude above rings (km) Résolution (m/pixel) Science objective

2,000 10 MLcrostructure/aggregates
200 1 Ring tliickness

20 0.1 Particle size distribution

plane, with nodes located around 1(L km from Satum’s center. The velocity in the
Satum’s inertial haine would be about ~ 27 km/s. With tliis approach geometry, tlie

resulting timcline for the Lora probe is presentcd in Table 6.

During ils descent to the ring plane, the Lora probe would transmit the eollected

data as soon as they are eollected (in the spirit of what was done for the Huygens

descent on Titan), because of the possible destruction of the probe during its Crossing
of the ring plane. If the Lora probe survives the ring-plane Crossing, then new data

could be eollected and transmitted again to tire Kronos spaeeeraft.

Since the Lora probe is meant to be a “microprobe” (i.e. with a single instrument

and a simple communication System) its communication package would be designer!

primarily for communicating with the Kronos spaeeeraft only, which would record
and transmit üie data to Earth.

4.9 Satum atmosphère wind diagnostics by means of radio measurements

of the probe motion (PRIDE)

This experiment does not require spécial on-board instrumentation and can be

conducted with radio signais in both communication scénarios, DTE and probe-to-

carrier relay. In particular, it will provide additional input into measurements of tlie

wind profile not requiring an a priori assumption on a one-dimensional mode) of tlie
wind.

DTE could be used for additional measurements by determining an additional

component of tlie probe’s State vector. Indeed there is no need to limit tlie

experiment to zonal component measurements since a méridional component could
be measured as well. Even 3D diagnostics of the motion are not out of the question,

i.e. the descent velocity can be included in the set of measured values front the

experiment. To what extent the measured motion of tlie probe represents the wind

dépends on spécifies of the atmosphère fliglit. A combination of Doppler and
interferometric measurements can provide unambiguous détermination of the

descent trajectory—coordinates and tlieir (at least first) dérivatives.

Table 6 Timeline for tlie Lora probe

Tune before impact

(or ring-plane Crossing)

Altitude above

rings (km)

Resolution

(m/pixel)

Science Objective

— 1 h 9 min 21 s 2,000 10 Microstrjcfare/aggregates
-6 min 56 s 200 1 Ring tliickness
-41 s 20 0.1 Particle size distribution
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5 Conclusions and summary

Multiple probes to the giant planets are critical for collecting tlie data rcquired for

understanding the formation of our solar System, and by extension, of extrasolar

Systems. Indeed, our giant planets can be studied in much finer detail than any

exoplanet ever will, and they hâve preserved Chemical and isotopic relies of early

solar System réservoirs. In exploring the composition of Satum vvith Kronos, we

shall go back to the times when a tiny fraction of a molecular cloud collapsed to give

birth to a spécial stellar System: the Sun and its planets. Tlie probes will allow an in-

deptli exploration of Satum and its comparison with results obtained by the Galileo

mission at Jupiter. This comparison between the two most massive planets of tlie

Solar System is a prerequisite to a detailed understanding of the origins of the Solar

System. Kronos shall also investigate Satum’s complex atmospheric dynamics,

which is a fantastic laboratory for this field of research. It. will measure the planet’s

magnetic field very close to the planet’s atmosphère and thus unfîltered by the rings,

with direct conséquences for understanding tlie planet’s dynamo and deep rotation.

Kronos also provides a possibility to study Satum’s rings in fine details. Altogether,

tlirough innovative approaches this international mission allows a combination of

essential measurements that concem tlie ringed planet but impact many disciplines

and the understanding of our origins.
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Abstract—The Syntlicttc Apcrture Radar (SAR) instrumentation

on board the Cassini orbiter has identified large hydrocarbon
liquid deposits on the surface of Titan [e.g, 1], dlstributed inainly
around Ils northern polar régions. Recent studies [2] suggest tlial
the rlms of these structures display seasonal changes, where the
lakes appear to be shrinking. However, tlie précisé depth,
évolution and composition of these lake-like features are stlll

unknown. The pliysical and ciiemical cliaracteristics of tlie Titan
lakes wlll be one of the major objectives of a future space mission

to Titan [e.g. 3, 4). Wc propose hcre the application of Micro-
F.lectro-MechanicaI Systems (MEMS) as part of a science surface
properties package aboard a future Lakc Lânder. MEMS devices
offer a iow cost and reduced size of instrumentation in order to

accomplish the 3-D sounding of the liquid deposit and detect the
presence of any biomarkers in a broader area.

Keywords: MEMS; Future mission; Titan.

I. Introduction

The Cassini-Huygens mission has been investigaling the
Saturnian System since J'uly 2004 when it performed the Satum
Orbit Insertion (SOI). Titan, the largest satellite of Satum, is
one of the major targets of the mission mainly due to its dense
atmosphère. Indeed, the Cassini-Huygens mission has revealed
the complex organic nitrogen-dominated atmosphère of Titan,
rich in methane (1.48% [5]) and the diversity of its
multivariable surface [e.g. 6],

The température on Titan’s surface has been measured in
situ at almost 94 K [7], which is close to the triple point of
methane, meaning that methane on the satellite can exist as
liquid, gas and ice [8], Literally, Titan hosts a complex and
active organic global chemistry where methane plays a critical
rôle in a cycle resembling the terrestrial hydrological one [9].

The presence of large hydrocarbon liquid deposits on
Titan's surface was assumed before the Cassini-Huygens
mission, considering the thermodynamics which dominate the
satellite globally [e.g. 10, 11]. Although the existence of a
planetary-scale océan has been rejected, the Cassini orbiter has
unveiled concentrations of large organic pools close to both
pôles [1, 12, 13]. However, the Cassini RADAR beams are not
able to penetrate through the liquid surfaces hindering
sounding their interior. Therefore such features can be
described only by modeling [e.g. 14]. However, it is crucial to
understand how these hydrocarbon liquids contribute in the

Mathieu Hirtzig, Athéna Coustenis
LESIA

Observatoire de Paris-Meudon

Meudon, France

active methane cycle. According to the contemporary photo
dissociation rate of methane, it should be vanished within a

period of 10-100 Myrs [9], since currently no methane source
has been identified to replenish it. Towards this direction, as
well as the necessity of the thorough investigation of these
features, a lake touchdown by a probe has been proposed,
carried by a future mission [3],

The usage of Micro-Electro-Mcchanical-Systems (MEMS)
devices as infrared emitters has been recently proposed [15], as
part of the science surface properties package of a future probe
to Titan like the TSSM Lake Lânder or the Titan Lake Explorer
[3, 4], In this paper we suggest MEMS devices to operate as
micro-laboratories by including also radio frequency RF
wavelength emitters and température and pressure sensors.
Thus, these micro-machines could obtain the 3D sounding of
the liquid deposit, its Chemical composition and detect the
presence of any biological building blocks within the liquid.
Likewise, the température and pressure micro-sensors could
provide the vertical pressure, température and density profile of
the liquid deposit

The MEMS pattern, owing to their very small shape and
size without reducing their operational performance, seems
idéal payload for a lake lander probe on Titan as well as outer
planetary space missions in general. MEMS implémentation in
Titan’s exotic environment is a great challenge for science,
engineering and space physics.

In section II we présent the advantages of MEMS devices,
while in section III we report MEMS already used in space
applications. The experiment concept and the MEMS
technology embedded is described in Section IV and Section V
contains the concluding remarks.

II. Micro-Electro-Mechanical-Systems (MEMS)
Devices

Any small-size product within the range of a micron to a
ccntimeter, which also combines mechanical and electrical
structures, can be identified as a MEMS device. Although the
first device was constructed by H. C. Nathanson in late 1960s
[16], the industrial techniques were unable to produce such
minor mtegrated circuits and only after the 1980s did start the
massive production in microscopie scale [17],
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Due to their small size (20 jim to 1 mm) and shape, MEMS
présent properties that increase the performance of every
scientific experiment for a wide range of uses and applications.
In general, they provide an excellent rate of the optimum shape
to the rendering performance relation. Micro-devices can now
be included in evety part of any experiment and also visit
impossibly approachable places by traditional instrumentation.
They can successfblly replace quite larger devices giving the
user the oppoitunity to explore the micro-structure of the
nature. Therefore, due to the minimization of the cost both in

their manufacture and operation, MEMS instruments aie
préférable for scientific use by improving the quality and the
amount of the obtained data range.

III. MEMS Devices In Space Sceme

The benefit of implementing MEMS techniques in
Aerospace and Space Systems is obvious especially due to the
reduced requirements in size. mass, povver issues of many
Aerospace/Space applications [18]. In order to overcome
portability and consumptiori limitations in any future outer
planetary missions, new alteiTiative technologies hâve to be
implemented. The minimization of the embedded electronic
instrumentation is a promising approach when it employs
MEMS Systems. Therefore. the presence of MEMS in space
Systems otïers important monetary advantages to space
agencies by severely shi inking tire cost of any mission, while
they are reducing the weight of future spacecrafts.

Among many other applications, MEMS devices hâve
already been used on the adaptive optics iinaging tcclinology in
major télescopes [19-22], Moreover. JPL has already'
developed a new MEMS déformable iniiror (DM) sy'stem for
NASA’s adaptive space-based télescopes and in particular for
Terrestrial Planet Finding (TPF) mission [23]. Likewise,
several proposais hâve recently been submitted for futui e space
missions and télescopes, exploiting the new leading edge of
MEMS technology. Especially, MEMS techniques hâve been
incorporated as detectors, a spectrophotometer and an IR
caméra of the new proposed telescope called MTEL (MEMS
Telescope for Extrême Lightning) in order to observe the
extreme lightning occurring in tiie upper atmosphère [24].
MEMS devices seem also appropriate for obseiving fast
moving objects and transient events by the proposed space-
based telescope called Obscura [25], Moreover, MEMS hâve
also been implemented in Space Infrared telescope for
Cosmology and Astrophysics (SPICA), the Japanese
coronagraph which is planned for a launch in 2017 [26].

Without doubt, although the use of MEMS in space
applications is in fairly early stage, they will certainly optimize
the scientific potential of any future mission.

IV. Experiment Description

MEMS as components of the science surface properties
package of a future Lake Lânder probe to Titan aie being
discussed hereafter. We propose MEMS machines to operate as
(a) infrared emitters inside tiie liquid and (b) micro-laboratories
by including also radio frequency' RF wavelength emitters as
well as température and pressure sensors.

During the last stages of the descent of a probe in Titan’s
atmosphère and a few meters before landing on a liquid

surface, the probe will releasethe MEMS devices (Fig. 1). This
procedure will be continued aller the landing, when the probe
will release more MEMS directly into the liquid. From this
point, they commence their operation by transmitting instantly
as IR and RF emitters. Some of these devices will float on the

surface of the liquid and other will dive without stopping
transmitting depending on their weight and exterior design.
Schematically, the proposed experiment will be consistent of
two phases:

A. Phase One: The Deployment

Few meters before the touchdown of the vehicle, MEMS

capsules will be released into the atmosphère and begin
simultaneously to operate as micro-laboratories. Another group
of MEMS can be also released aller the landing of the lake
vehicle inside the liquid environment (Fig. 1).

Figure 1. The deployment of the MEMS netwerk during the entry
descent and landing (EDL) procedure of the Lake Lânder.

B. Phase Two: The Operation

Subsequently to Phase One, these devices will flow or dive
into the liquid hydrocarbons and continuously transmit data to
the Lânder depending on the duration of their power supplies
(Fig. 2).

Phase B: Operation

Figure 2: The operation of the MEMS network afterthe touchdown of
the probe on the hydrocarbon liquid surface

This deployment will provide a broad network of surface
and submarine IR and RF sources, while the signal receiver
sensor will be aboard the Lake Lânder. The MEMS micro-
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probes will follow the swarm pattern [27] in which each
apparatus single operation is a component of a large group of
similar devices. Apparently, their combination will enhance the
results.

C. MEMS components

As mentioncd before, each MEMS device will include a
combination of scientific instruments in micro scale. In

particular, one pair of infrared (IR) and radio frequency (RF)
emitters and two sensors for measuring the température and the
pressure will be enclosed in each micro-shell. Additionally,
MEMS technology can be part of the IR spectrometer's
equipment aboard the Lakc Lânder.

1) Infrared Sources
Apart ffom traditional IR sources, micro-machined infrared

emitters hâve been constructed, comprised of a photonic crystal
modified micro-hotplate that emits thermally stimulated
infrared radiation in a narrow band. As far as the perfonnance
of the device is concerner!, it exhibits efficiencies in excess of
10 % greaterthan compétitive technologies. These applications
are like the deposited filament emitter, with the avantage of
minimization of the filament which reduces the thermal mass

of the System and enhances the modulated performance [28],

2) Micro-mirror
MEMS technology can be implemented at the IR

spectrometer's architecture of a classical Michelson
interferometer, being a transducer of the IR sensor. MEMS
translational mirrors, covering an area of l.lxl.5 mm2 hâve
been already tested giving reliable measurements at high
scanning speed -in milliseconds- which enhances signal-to-
noise ratio, suspended on a two long bending springs pattern
[29]. A recent approach is the pantograph, which even though
it exhibits less stability, it covers a surface mirror of 7 mm2
providing a spectral resolution of 20 cm'1 [30]. The IR source
can be based on Silicon structure, a pattern which is already in
long-term use for detecting gas in oil platfonns without a
failure recording [31], In Titan's case, the target gases are
mainly hydrocarbons, nitriles and carbon dioxide.

The surface température in Titan’s environment is
approximately 94 K, as it has been determined by the Huygens
probe [7]. MEMS devices, released by the Lake Lânder at low
height and inside the liquid, hâve to be subjective to such low
températures. In fact, micro-devices are already adaptable in
cryogénie conditions. In the SPICA coronagraph [26] the
included micro-scale machines are designed to operate in
cryogénie conditions, while the whole telescope will be cooled
down to 4.5 K [32], This cryogénie environment can cause
serious damage to the mirrors such as deformation and flaking.
To achieve robust function in this harsh température conditions
these micro-mirTors can be based on a silicon-on-insulator

wafer, while their back surface can be made of polycrystalline
Silicon [33],

3) RF transmitter
The exact composition of the lake as well as its physical

parameters are still unknown. If the liquid malerial behaves as
a partial conductor (when consisting of i.e. ionic
contaminants), it will preventRF propagation in long distances.
Such liquid conductors set the independent operation of these

RF emitters inside the liquid under discussion, since their high
permittivity and permeability cause strong atténuation of the
signal power. For this reason the capsules which will be
designed to dive in the lake can be connected by a wire with
the mother ship as it shown in Figs 1, 2. This pattern can also
support the micro probes with energy originated by the carrier.
An overview of RF MEMS transmit/receive switches can be

found in [34, 35]

4) Température andpressure sensors
The température and pressure sensors hâve the functional

différence that they should interact with the environment
surrounding the MEMS capsule.

Any température measurement is correlated on the variance
of an attribute of the exposed material with any ambient
température change. MEMS resonator-based oscillators hâve
been proposed to be used as Complementary metal-oxide-
semiconductor (CMOS) température sensor with a resolution
of 0.008°C [36],

The MEMS pressure sensing technique is based on the
Silicon piezoresistive effect, where any pressure change will
cause deflection and internai stain change, which will resuit
output voltage variation [e.g. 37, 38], Usually, a Wheatstone
bridge circuit delivers such voltage measurements, in order to
correlate them with the applied pressure.

V. CONCLUSION

The MEMS experiment will vertically measure the
température and the pressure of the liquid deposit of an
hydrocarbon lake on Titan's surface during a future mission,
while at the same time it will operate as an internai source of
infrared wavelengths giving the opportunity to the Lake Lânder
to analyze the composition of the lake by receiving its IR
signais. Moreover, the recorded reflections of the RF signal
emitted by MEMS will construct the topographical map of the
bottom of the lake.

Although it is intentional to hâve many devices in order to
construct a network, the major issue of portability cornes up.
How'ever, micro-electro-mechanical devices suit perfectly in
this kind of requirements because of their small shape, size and
weight. Obviously, the utilization of any innovative
instrumentation requires complété knowledge of the
environmentai issues and parameters and of course the deep
understanding of their complexity.

In the contemporary market, MEMS can be easily found
combining low cost and high reliability. These devices feature
low power consumption, high-modulation depth, high
emissivity and a long lifetime.

In a sense, this ambitious experiment can easily accomplis!)
both the 3D sounding of the lake as well as its Chemical
composition.

MEMS devices combine:

1) Very small size (20 pm to 1 mm)

2) Fast pulsing (thanks to low mass of the em itter)

3) Limitation of low output power (450m\V)
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4) Réduction of the thermal mass of the System

5) Enhancement of the modulated performance

6) Extremely low cost.
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Abstract— The Icy inoons of the Outer Solar System are

extremely lnteresting planetary bodies since they possess
evidence about the origin and évolution of their Systems and tlic
Solar System in général. In ternis of surface inorphology, Internai
structure as well as their environmcntal uniqueness, Saturn’s

moons Titan and Enceladus and Jupiter’s Europa and Io are the
best représentatives In thaï perspective. In tliis study, we propose
a seismic experimcnt for the icy moons as a payioad of future
missions’ landers. This suite of instruments comprises a gas

monltoring sensor (micro Gas-Chromatograph) which will
operatc along with tlie seismic sensor. Data froin the micro Gas-
Chromatograph will give us the opportunily to correlate each
tlme tlic rccordcd seismic data of the current gas-relief activity.

We also suggest possible target areas with internai dynamic
potentiai and multivarlable surface expressions. Ilence, it will bc
possible to idciitlty active régions on tlic satellites, which will
provide important information regarding the fluid transfer
processcs towards tlic surface as well as the présence of a
subsurface liquid deposit.

Keywords: Seismometer; Future mission; Icy moons; Titan;
Enceladus; Europa; Io.

I. Introduction

Since 2004, the Cassini-Huygens mission has made
exciting discoveries in the Satumian System and especially
with regard to its satellites Titan, the largest one, as well as the
enigmatic Enceladus. Not only hâve their observations
furthered our understanding of the complexity of these harsh
environments, but many questions about their surface and
interior hâve also been raised e.g. [1,2].

Titan, the second largest moon of the Solar System may be
représentative of many planetary bodies and consequently, lire
understanding of its internai geology may allow scientists to
enlighten the inner structure of an entire class of planets and
moons [3], Similarly, Enceladus, although it has minor
dimensions (radius of 252 km), it is extremely interesting due
its huge geysers which mainly feed the E-ring of Satum. These
plumes show that the moon is geologically active hosting a
possible internai water océan, the source of its vents [4, 5].

Likewise, the Galilean satellites of Jupiter présent many
similarities with rocky planetary bodies in tenus of their
surface features and atmospheric environments. Europa, the
smallest of the Galilean satellites, hosts a relatively stable

Mathieu Hirtzig, Athéna Coustenis
LESIA
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environment, a putative internai océan in combination with a
young evolving surface, and therefore the moonhouses a great
astrobiological potentiai [6]. On the other hand Io seems to be
the most geologically active planetary moon through the solar
System considering its huge volcanic activity occurring at the
time of observation [7],

Without doubt, the icy satellites orbiting outer planets can
significantly contribute to the study of geological processes
across the solar System. Comparative Planetology can enlighten
fundamental mysteries conceming the origin and the évolution
of Earth and the solar system in general and predict future
geological events. However, the internai geological structure of
each planet or moon can only be detemuned by in situ
measurements.

The local or global tectonic field, meteoroid impacts and
moon’s tidal deformations induced by .Tupiter/Satumian’s
gravity field as well as température and pressure fluctuations
may cause ground vibrations within the icy moons. Such
ground vibrations provide information about the nature of the
subsurface material, its fracture and its Chemical composition.

Therefore, the Cassini-Huygens mission héritage
encourages scientists to discuss about launching future
missions towards the outer planets' satellites. For that reason,
two large L-Class missions set these moons as primary targets:
Europa Jupiter System Mission (EJSM) [8] will investigate the
subsurface, surfaces and atmosphères of Jupiter’s satellites,
while the Titan Satum System Mission (TSSM) [9] will
advance our current knowledge regarding the Satumian icy
moons. For further information the reader is referred to visit the

NASA's website of the Outer Planet Flagship Mission
(http://opfm.jpl.nasa.gov).

This paper examines the possibility of installing seismic
experiments on icy satellites of the outer planets, setting the
minimum technical requirements and describing scientific
achievements and possible problems. The sections II and III
contain a brief description of such space seismic equipment
and the micro Gas Chromatograph (pGC) for gas sampling
respectively, while in section IV the risks of such an instrument
are discussed. Finally, the major goals of the proposed
experiment are depicted in section V.

Data obtained by a seismic experiment, in combination
with the analysis results of the pGC will provide us with details
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about the interiors of the moons and tlieir connection with the
observcd surface featurcs.

II. Description Of The Seismic Instrument

The seismograpli is the basic instrument for measuring any
ground vibration. It mainly contai 11s the seismometer and the
unit which records tlie signal. The seismometer consists of
three sensors placed in the same sealed case. Each sensor can
be described as a pendulum tliat moves from its equilibrium
position triggered by the ground movement. 'Ilie sensors can
measure any ground motion within a frequcncy range of 0.001
Hz to 100 Hz usually, at the north/south, east/west and vertical
component in orthogonal System.

Botli low and high frequencies can be recorded by
broadband seismometers on Earth. Newer seismographs
measure ground movements smaller than 1 nm. There are
several kinds of these instruments depending from the surface’s
location.

By using seismic instruments we extend our knowledge of
planets’ interior at the Solar System. Additionally, both these
space and telluric observations vvill help us understand better
the origin and the evolutionaiy path of our own planet.

.-4. Instrument ’s spécifications - technical requirements
The Table I below indieates the main seismic instruments

requirements considering the spécifications of the shortest
modem seismic instruments which operate in extreme
conditions on Earth like the deep océan floor [10]. Similar
sensors can be easily found in the global market.

TABLE I. Seismic Instruments Spécifications

Power

Seismic Sensors

Mass
Veloclty

Bandwldtli

Opcratlonal
température

0.32 W 0.200g each O.OOl-lOOHz below 100K.

Future mission’s instruments on the icy satellites’ surface
of the outer planets will operate in abnormal physical
conditions during the entry descent and after landing of their
carrier. To achicve the seismograph’s accuracy in such a
location the envirotimental factors (mainly température and
pressure) should be considered.

B. System Hardware Architecture

The ground vibration is the input signal to the System. If the
ground vibrâtes within a range of0.001 Hz to 100 Hz, it will be
recorded by each one of the three sensors. Tlie sensor System
contains a transducer, the device that couverts the mechanical
motion into electrical signal. A piezoelectric accelerometer can
be used as a transducer to sense any vveak or strong ground
motion in a low frequcncy range (up to 100 Hz) without using
extra power to operate [11],

Once the sensor records a motion, a signal vvill be sent al
the Main Processor Unit (MPU) of the System. The MPU is
responsible for the operation, the administration and the
maintenance of the instrument and contains the core of the

application software. After receiving and recording the signal
from the MPU, it will be transferred at the next component of
the instrument, the Multiplexer (MUX) by using a line
interface circuit, which provides the connectivity between
MPU and MUX.

At the MUX, data files will be comprcssed, converted to
the right format and prepared for transmission. Because of the
continuous function of the seismograpli, a service for bulky
data needed. Tlie transmission frame protocols will be defined
similar to the protocols ofthe lander’s instrumentation.

Fig. 1 shows the basic functional procedure of a seismic
instrument on icy moons according to tlie requirements
mentioned above. The configuration of tlie System is illustrated
in a simplified plot. Ail the components inside tlie dashed line
in Fig. 1 are parts of tlie same physical equipment. tlie
seismograph.

Figure 1. Functional procedure of the seismic instrument

III. Description Of The micro Gas Chromatograph

The purpose of the micro Gas Chromatograph (uGC) is to
provide accuratc information about the composition of the local
gaseous environment. A successfiil relative experiment with
the Gas Chromatograph Mass Spectrometer (GC-MS), was
performed by the Huygens probe during its descent phase [12].
This instrument on Huygens only made measurements during
the descent from 170 km to the surface and it provided us with
valuable data in harsh environmental conditions. We propose
the micro-GC as a payload of the lander to operate during the
descent phase of the probe like in the Huygens case as well as
after the touchdown. During terrestrial earthquakes close to
volcanoes, amounts of gas are released, triggered by the ground
vibration. In some cases this relief is used for earthquake
prédiction. Such instrumentation can be extremely useful 011
tlie surface of icy moons’ locations where gas relief lias been
identified, like the tiger stripes of the Enceladus’ South Pôle.

Tlie iiGC tube/coluirm mounted on the probe hosting tlie
seismograph will be triggered when any vibration will be
recorded by the seismic sensors. A présentation of a low power
uGC colunni can be found in [13]. The instrument will also
take samples of the local atmospheric envelope in several
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spécifie times which will enable us to détermine any temporal
variations in Chemical composition due to any recorded
vibration as well as during in the descent phase of the lander.
Such measurements can be extremely useful in the case of
Enceladus if the probe landcd close to the tiger stripes, the
great linear surface fractures from where its plumes spread out

In fig. 2 the procedure of the operation of the pGC is
depicted.

Figure 2. Operstional flow diagram of the micro Gas
Chromatograph

Briefly, the instrument will collect the sample from the
local gas and collected material will be droved into the pre
concentrator device where the concentration will be incrcased.

Then, the sample will be heated in order to release the gas and
it will be passed through the tube. This is the séparation phase,
critical to the analysis procedure where each component of the
sampled gas needs its spécifie tinie to traverse the tube.
Eventually, the identification stage follows this séparation. The
design of the signal condition circuit which converts the
content of the separated gas to electric signal can follow the
standards of [14]. The pGC will perform batch sampling like
the Huygens/GC-MS did during Huygens Descent phase [15].
Hydrogen will be selected as the carrier gas like in the
Huygens/GC-MS case [12].

By correlating the seismic soundings with the gas
composition, we can infer about the significance of the internai
gases and the mechanism beyond their relief. These
measurements can help us solve the puzzle of icy moons
inleriors.

IV. Problems And Risks Of A Future Seismic

Experiment On Outer Solar System

Terms and Conditions of the implémentation of seismic
instrumentation on icy moons and the possibly emerged
problems and difficulties are listed in the Table II below.

TABLE II. SCIENTIFIC AND TECHNICAL PROBLEMS AND DlFFICULUES

Terms and

Conditions

Possible Problems and Dimcultles

Sctencr Engineering Précautions

Fluctuations

in température
Accuracy
affected

Malfunction of

the sensors

Spécial thermal
shield

Surface

charactcristics

Sensors'

deformation

Loose the

equilibrium
position

Spécial
installation and

stabilization

needed

Dense

atmosphère

Chemical

Corrosion

Insufficicnt

solar power to
recharge
batteries

Shield case

Terins and

Conditions

Possible Problems and Dimcultles

Science Engineering Précautions

Stability ofthe
apparatus

First time in

spacc

exploration

Orientation lost

Robotic

installation of the

seismometer

Maintenance
No

recordings

Impossible lo
repair

Autonomous

System

Data

transmission

Radio

frequency
signais

A permanent
link needed

Orbitcr and large
ground
radiotélescopes

Exact

recordings
3D plotting

Different

devices

Seismic netwoik

needed

Ground/wind

noise

Low Signal
to Noise

ratio

Stable structure

A shallow hole

needed for

installation

Power
Continuous

operation
Batteries

Radioisotope
thermoelectric

Generator (RTG)

Since we lack any knowledge of seismic events on icy
moons, data from a seismic instrument and global radar
mapping for long periods of time will be of extreme
importance. Obviously, due to power limitations, any
instrument on these surfaces will operate continuously from the
touchdown until its battery discharging. Therefore, a more
durable energy source is necessary. A radioisotope
thermoelectric generator (RTG) is to be considered

An appropriate location for the placement of a seismic
equipment will ensure that its recordings will represent
accurately and separately every ground vibration. For this
purpose, on Earth the seismic instruments should be placed in a
hole of approximately 0.5 m depth. Thus, less ground noise
will be recorded. Noise on an icy surface can be originated by
the atmosphère due to its seasonal and diumal effects as
described in [16] for the Titan case. Noise can be produced also
from the local wind and meteor impacts.

In the case of Titan, its dense atmosphère protects the
surface from meteoroid impacts - few craters hâve been
observed [17] - therefore, the seismometers will record merely
interior events. On the other hand the same instrumentation on

Enceladus, Io and Europa will also measure vibrations caused
by extemal sources.

The proper contact between the feet of the seismograph and
the local surface at the landing area stands for another issue to
be conffonted. Any particles and dust can easily perturb the
seismic sensors during their function and cause random errors
at the sensor’s record. This type of surface features has already
found on Titan. The Huygens probe landed on a relatively soft
solid surface whose properties consisting of analogous to wet
clay, lightly packed snow and wet or dry sand [18]. Moreover,
the Descent Imager and Spectral Radiometer’s (DISR) surface
images showed rounded stones approximately 15 cm in
diameter to lie on top of a finer-grained surface in variable
spatial distribution [19]. If the icy pebbles lying over the
instruments feet move or/and melt, the equilibrium position of
the seismic equipment will disturbed and the sensors will lose
their orientation. The measurements should be corrected if such

a micro-movement of the probe is noticed.

Expérience gained from the Apollo Passive Seismic
Experiment (PSE) on the Moon will be extremely useful for
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such an ambitious effort. PSE was the first extraterrestrial

network of seismic instruments and it consisted of four

seismometers deployed by the astronauts on the lunar surface
between 1969 and 1972 while Earth-based stations received

data for eight years. The Apollo seismometers recorded 12,558
events and these seismic data hâve been recently reanalyzed
[20]. A seismic experiment has also been perfonned on Mars
as part of the Viking mission payload [21]. The Viking
seismograph performed a long-term operation and measured
ground vibrations without any significant seismic signais. The
primary source of the recorded noise was the local wind. The
dimensions of the equipment were 12x15x12 cm, weighted 2.2
kg and needed 3.5 W to operatc.

V. Major Scientific Goals-Discussion

Icy moons of the outer planets seem to be or hâve been
active like our own planet, as far as their atmospheric
circulation, surface geological processes and tectonics are
concemed. Each moon has its own atmospheric and geological
record and thercfore it should be treated separately. The
internai structure of these satellites may be involved in some
surface processes. Hence, since only the seismic
instrumentation can map the subsurface layers, detennine their
composition and structure and measure their thickness, we will
consider mounting it in a future mission as part of a landing
probe payload.

Seismic waves from distant events travel deeper into the
interior of a planetary body than waves from nearby events.
Hence, measuring events at various distances by seismometers
can provide the variance with depth of seismic velocities within
icy moons.

Future missions to the outer planets icy moons will be a
great opportunity for comparative planetology providing proofs
of active planetary Systems. A seismic experiment can identify
the existence of liquid internai deposits, with a great
astrobiological potential. Such isolated environments that
consist of water and organics, components that hâve already
been identified on rnost icy satellites, provide idéal conditions
for the survival of biological building blocks. Table III lists the
main benefits and advances in short ternis of mounting seismic
equipment in the surface of icy mooas.

TABLE III. The Benefits Of Future Seismic Instrumentation

Features
Benefits of space seismic experiments

Icy moons Engineering

Completed
scientific

experiment
Régional scale geology

New science- Planetary
Seisntology

Small size Idéal as a payload for a
space mission lander

Low power
consomption

Continuons

operation

Improve modeling for
the threc-dimensional

internai structure

Service for bulky data
needed

Evolution of

seismic

Earthquake prédiction

Tidal effects caused by

No spécial software
needs to be developed

Features
Benefits of space seismic experiments

Icy moons Engineering

instruments and

applications
Jupiter/Saturn
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