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R É S U M É

Ce document présente les principales activités de recherche que j’ai menées depuis l’obtention de mon
doctorat en novembre 2008. Mon travail de recherche porte sur la coordination, la planification et la
prise de décision distribuée dans les systèmes multiagents. Je m’intéresse plus particulièrement aux
interactions entre agents leur permettant de planifier et d’exécuter des actions de manière coordonnée
dans des environnements partiellement observables et incertains.

Le chapitre 1 introduit le domaine des systèmes multiagents et présente les problématiques liées à
la coordination dans des environnements partiellement observables et incertains.

Le chapitre 2 porte sur la prise de décision distribuée dans le cadre de l’allocation de ressources.
En partant d’une distribution initiale d’un ensemble de ressources entre des agents, le travail présenté
dans ce chapitre vise à étudier et mettre en œuvre des procédures basées sur des échanges locaux
de ressources permettant aux agents d’améliorer leur satisfaction. Je m’intéresse tout d’abord au
cas des “house-markets” dans lesquels chaque agent possède une seule ressource. Bien que les procé-
dures distribuées puissent engendrer des pertes d’efficacité importantes par rapport aux procédures
centralisées, je montre que les procédures d’échanges bilatéraux possèdent des propriétés intéressantes
en termes de qualité des solutions. Je m’intéresse ensuite à des cadres plus complexes où les agents
peuvent posséder plusieurs ressources et doivent décider quel agent rencontrer et quelles ressources
échanger, en n’ayant qu’une connaissance partielle des ressources possédées par les autres. J’étudie
plus particulièrement l’équité des solutions calculées en se basant sur la notion “d’absence d’envie”.
Enfin, j’aborde les problèmes d’allocation équitable lorsque les relations entre agents sont définies par
un graphe social et que chaque agent n’est en contact qu’avec un sous-ensemble d’agents.

Le chapitre 3 traite de la planification multiagent dans des environnements partiellement observ-
ables et incertains. Je m’intéresse plus particlièrement aux Processus Décisionnels de Markov Dé-
centralisés (Dec-MDPs et Dec-POMDPs) qui offrent un modèle mathématique adapté à la prise de
décision distribuée sous incertitude. Toutefois, ces modèles souffrent de certaines limitations telles
qu’une représentation du temps et des actions restreinte. Ils font de plus l’hypothèse que les données
du problème sont stationnaires (elles ne changent pas au cours du temps). Enfin, il a été démontré
que résoudre de manière optimale des Dec-MDPs et des Dec-POMDPs constitue un problème très
difficile (NEXP-Complet), ce qui limite leur applicabilité à des problèmes réels. Les travaux présentés
dans ce chapitre visent tout d’abord à améliorer la modélisation du temps et des actions dans les
Dec-POMDPs. Je m’intéresse d’autre part à la mise en place d’approches de résolution efficaces per-
mettant de traiter des problèmes de grandes tailles. Les approches que j’ai développées se basent sur la
recherche d’une solution approchée et l’exploitation de la structure du problème afin d’en décomposer
la résolution. Enfin, je m’intéresse à la modélisation et à la résolution de problèmes de décision dans
des environnements non-stationnaires.

Le chapitre 4 aborde l’argumentation stratégique, c’est-à-dire la planification de stratégies en
théorie de l’argumentation. La théorie de la décision permet d’améliorer les comportements des
agents dans des systèmes argumentatifs, où agents humains et logiciels débattent entre eux. Par
ailleurs, l’argumentation offre des outils permettant de résoudre des problèmes de décision distribuée
en aidant à régler des situations de non-coordination entre agents. Dans ce chapitre, je mets en
évidence l’apport des modèles markoviens dans deux types de problèmes : les débats stochastiques
et les problèmes de médiation face à des agents dont les comportements sont non-stationnaires. Je
montre ainsi comment des problèmes de planification de stratégies argumentatives ou de médiation
peuvent être représentés et résolus par les modèles développés dans le chapitre précédent.
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1
I N T RO D U C T I O N

The purpose of Artificial Intelligence (AI) is to set up autonomous systems endowed with smart
cognitive functions enabling them to perform complex tasks while interacting with their environment
and with other entities (software systems or humans). As evidenced by different recent reports (Stone
et al., 2016; INRIA, 2016; Artificielle, 2017), Artificial Intelligence now becomes a reality in everyday
life. Autonomous vehicles, smart buildings and cities, service robots and many other applications may
now be used by an increasing audience.

Multiagent Systems (MAS) fit naturally in the development of AI systems. A multiagent system
is composed by a set of autonomous entities (software or human entities) acting and interacting in a
same environment in order to achieve their objectives (Russell and Norvig, 2003; Weiss, 1999). A large
range of AI applications are inherently composed of a set of autonomous and interacting agents. We
can cite for instance autonomous vehicles traveling in a city, rescue rovers operating in a disaster area
to find and rescue some victims, mobile robots patrolling sensitive area or assisting people in public
area, wireless sensor networks in smart cities...

In order to exhibit smart behaviors, an agent must be able to make autonomous decisions based on
her knowledge about the environment and the other agents. In fact, an agent continuously executes
an observation-action cycle (see Figure 1) where she observes her environment and then decides which
action to execute. The execution of the action modifies the environment and the agent obtains new
observations leading to another decision about the next action to execute and so on. All the information
contained in the environment that is relevant to the decision-making process of the agent constitutes
the state of the environment1. As an agent obtains new observations of the environment, she maintains
an internal state that contains all the knowledge of the agent about the system. This knowledge may
consist in built-in knowledge, observations of the system, information received by communication or
evidences deduced from knowledge reasoning. The current internal state is then used by the agent to
make decisions.

AgentEnvironment

Action

Observations

Figure 1: Observation - action cycle of an agent

Since all the agents act in the same environment, each agent must account for the possible interac-
tions with the others when taking decisions. An interaction situation occurs when several agents are
brought into a dynamic relationship through their individual actions. Interactions can be classified
according to the compatibility of the agents’ goals, the available resources and the skills of the agents
(Ferber, 1999). In a cooperative setting where the agents have compatible goals, interactions can
enhance the capacities of the agents by enabling new tasks that could not be executed by a single
agent. Interactions may also consist in direct communication between the agents to exchange some

1This state could also be referred to as the state of the world or the state of the system. From the point of view of an
agent, the other agents will be considered as being part of the environment. The relevant information about the other
agents will thus be endowed in the state of the environment.
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2 introduction

knowledge, resources or tasks. When resources are limited or the agents have conflicting goals, inter-
actions may have however negative effects. For instance, the actions of an agent may consume some
limited resources and thus prevent another agent from executing her own actions. Some actions may
also invalidate some conditions required for the execution of other agents’ actions. For instance, a
mobile robot moving in a corridor may block the paths of other robots. To develop efficient behaviors,
the agents have to foresee the actions of the other agents and take coordinated decisions.

The field of MAS covers a broad range of applications where the agents may have various capabilities
and the environment may have different characteristics. Each MAS can be characterized by various
properties raising different issues and influencing the way the MAS will be designed. Among the most
significant features of MAS, the issues raised in this document as well as our contributions are more
specifically concerned with the following characteristics:

• Discrete vs. Continuous environment: if the number of states of the environment and the number
of actions that can be executed are finite, the environment is said to be discrete. Otherwise, the
environment is continuous.

• Dynamics environment: a static environment does not evolve over time except through the ef-
fects of the actions performed by the agents (Woolridge, 2001; Vlassis, 2007). In a dynamic
environment some changes occurring in the environment are out of control of the agents. Much
work dealing with single-agent decision-making has been interested in static environments. How-
ever in MAS, due to the presence of multiple agents, the environment appears as dynamic from
the point of view of an agent. In fact, the environment is not only modified by the action of the
agent herself but the environment is also modified by the actions of the other agents.

• Deterministic or Stochastic environment: an environment is said to be deterministic if the
outcome of an action cannot be predicted with certainty. In a stochastic environment, an action
may lead to different outcomes. As pointed out by Woolridge (2001), stochasticity is closely
related to the dynamicity of the environment. In a dynamic environment, many events may
interfere with the actions of an agent, leading to different possible action outcomes. Depending
of the degree of observability, it may also be difficult for the agent to distinguish some states
with different characteristics influencing differently the outcome of an action. The sources and
models of uncertainty will be detailed further below.

• Degree of observability: if an agent has access to all the information contained in the environment
and relevant to her decision, the environment is said to be fully observable. Otherwise, the
environment is partially observable.

• Ability to communicate: as an agent acts in the environment, she may be able to communicate
with the other agents by sending messages. This kind of communication is referred to as di-
rect communication. Due to physical constraints (distance between the agents, topology of the
environment, communication technology used), limited resources (bandwidth, energy) or secu-
rity reasons (for instance, an adversary listening to the messages), an agent may not be able
to communicate at all time with the other agents to exchange some knowledge, coordinate or
negotiate.

• Cooperative or Self-interested agents: agents may be self-interested or cooperative. A cooperative
agent is interested in maximizing the performance of the group whereas a self-interested agent
has her own preferences on the state of the system and will try to attempt the state she likes
the most.
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These characteristics of MAS are not exhaustive, we only reviewed the main features studied in
this document. For a more complete characterization of MAS, we refer the reader to (Sycara, 1998;
Ferber, 1999; Weiss, 1999; Woolridge, 2001; Vlassis, 2007; Russell and Norvig, 2003; Shoham and
Leyton-Brown, 2008; Vidal, 2009; Bordini et al., 2014).

1.1 Illustrative example

For illustrative purpose, we consider a multi-robot rescue scenario such as the ones investigated in the
Robocup Rescue2 (Kitano and Tadokoro, 2001; Skinner and Ramchurn, 2010; Annibal B. M. da Silva,
2000). A set of rescue agents (robots) has to operate in a city after an earthquake occurs. Roads are
blocked by rubble, some buildings are burning and injured civilians must be rescued and driven in
safe places. Different types of agents are involved to manage the crisis situation:

• Police forces: they are responsible for removing blockades from the roads.

• Ambulance teams: they are responsible for rescuing humans and taking them to a safe place (a
refuge for instance).

• Fire brigades: they are responsible for extinguishing fires.

The environment is inherently dynamic since fires evolve inside the buildings and can spread from
one building to another. Moreover, the health of humans may decrease over time. Each agent has
limited perception of the environment and only observes things in her (limited) line of sight. Thus,
agents cannot determine the exact state of the whole environment. For instance, they cannot localize
all injured civilians or determine the state of all buildings. Moreover, changes of the environment are
uncertain because it is not possible to foresee accurately how the fires would evolve and how the health
of each civilian may deteriorate.

Agents can exchange messages using radio communication or direct communication but direct
communication has a limited range and messages are only received by the agents within a radius from
the sender. Radio communication reaches all the agents but is limited in the number of messages and
bandwidth. Moreover, it is not reliable and may fail.

The objective of the agents is to rescue as much civilians as possible and prevent from damage
as much property as possible. Therefore, agents need to work together. Indeed, police forces must
remove blockades so that ambulance teams and fire brigades can access some sites. Fire brigades must
have extinguished fire in a building before an ambulance team can rescue civilians in this building.
Coordination is crucial issue for developing effective behaviors. Nonetheless, agents must act in real-
time and have limited processing time to make decisions.

Robot rescue scenarios highlight a large set of issues studied in multiagent systems. Among them,
we will particularly focus on the following topics that will be discussed with more details in the
document:

• MultiAgent Resource Allocation (MARA): MARA consists in assigning resources to agents. In
the Robocup rescue context, resources are in fact tasks to allocate among rescue entities. De-
pending of her capabilities and state (location, remaining power...), an agent will have different
preferences among the tasks. In a rescue context, the allocation cannot be computed by a cen-
tral entity because of partial observability and limited communication. When agents meet, they
may exchange tasks to execute, in order to obtain more preferred tasks that would lead to more
efficient behaviors.

2 http://roborescue.sourceforge.net/web/

http://roborescue.sourceforge.net/web/
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• Distributed cooperative sequential decision making: Each task requires the agents to execute, in a
coordinated way, a sequence of individual and joint actions. For instance, rescuing some civilians
in the city hall requires that an ambulance unit drives to the city hall, then enters the building,
removes debris, evacuates civilians and finally drives them to a safe place. The decisions of
the agents must fulfill dependency constraints between these tasks. Agents thus have to make
individual but coordinated decisions based on their partial observations of the system.

• Multiagent Planning under uncertainty: In order to improve their performances, agents must
anticipate the effects of their actions and future decisions. Planning methods have thus to be
developed. For instance, moving to the city hall requires path planning. Moreover, since the
environment is uncertain, agents must consider the possibility that some moves fail because of
unforeseen actions or events. For instance, ambulance units may not succeed to reach their
target because of unforeseen blockades or fires. Due to agent interactions, each individual plan
is highly dependent of the plans of the other agents. This is why specific methods are needed to
solve planning problems in multiagent settings. Moreover, plans must fulfill resource, space and
temporal constraints. For instance, fire brigades have limited water capacities and water tanks
can only be refilled at dedicated places.

• Information sharing: Rescue entities can exchange some information by sending messages. Since
communication is constrained, each agent must carefully assess which information must be com-
municated and when. The environment being dynamic and uncertain, agents may have inconsis-
tent or conflicting knowledge. For instance, one agent may believe that some civilians to rescue
in the city hall must be given the priority whereas another one may believe that the priority
should be given to extinguishing the fire in the old library. In this case, agents will have to
exchange information and eventually to debate about their representation of the environment or
about the appropriate decisions to take.

The robot rescue domain is used here to illustrate the discussion but our work is not restricted
to a single application domain and considers more general problems among which resource allocation,
multiagent planning or abstract argumentation. Our work has also been motivated by applications
dealing with cooperative multi-robot exploration and multiagent patrolling.

In this document we will focus more specifically on issues arising from partial observability and
uncertainty in distributed decision-making.

1.2 Partial observability

In realistic settings, agents are often unable to observe the whole state of the environment. Indeed,
agents have limited sensors that cannot give a full and accurate picture of the environment state at
any time. The sensors of the agents may have limited range of perception and the environment may be
too large regarding the perception range. Sensors may also return inaccurate measurements resulting
in noisy perceptions. Indeed, even the most sophisticated robots have noisy and inaccurate sensors:
pictures captured by the camera are influenced by the luminosity of the scene, data from infrared
sensors depends of the light reflection from the surface...

Several degrees of observability are commonly studied in the literature to characterize the observ-
ability of the environment (Goldman and Zilberstein, 2004; Becker et al., 2004; Pynadath and Tambe,
2011):

• Non-observable: none of the agents observes any useful information about the environment.
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• Partially-observable: the agents only observe part of the useful information about the environ-
ment.

• Fully-observable: the useful information is observed by the agents who can determine exactly
the state of the environment.

In a multiagent context, the notion of observability of the environment state can be refined by
distinguishing individual observability from joint obsevability. Individual observability denotes the
observability of an agent alone. Joint observability is the union of the observations of the agents. It
corresponds to the observability of the whole set of agents if they could gather all their observations.
This is also referred to as collective observability.

It has to be noticed that joint observability is relevant when the agents can communicate and
communication is free, instantaneous and reliable. In such settings, there is no loss nor distortion of
the messages and the agents are able to communicate at all time without cost. The agents must also
be willing to disclose their knowledge or some private information to the other agents.

The degrees of observability may concern individual observability as well as joint observability. For
instance, in jointly fully observable environments, the agents are able to deduce exactly the state of
the environment if they exchange all their observations. In a jointly partially observable environment,
some relevant information of the environment is not observable by any agent: even gathering all their
observations does not allow the agents to deduce the state of the environment.

It is well known that partial observability mainly impacts the complexity of making optimal deci-
sions. Even in the single agent case, it has been proved that optimal decision-making under partial
observability is a hard problem (Papadimitriou and Tsitsiklis, 1987).

In multiagent systems, the problem is even more difficult because of interactions between agents.
Since agents are spread among the environment and have limited range of perception, each agent
obtains different observations of the system. Unless the agents communicate all their observations
at all time, an agent cannot determine exactly the set of observations made by the other agents at
each decision step. Since strategies of action depend of these observations, the actions of the other
agents are difficult to determine. It is thus a difficult problem for an agent to predict the actions of
the other agents and possible interactions. Making coordinated decisions is then challenging. The
degree of observability of the agents mainly influences the computational complexity of the multiagent
decision-making problem. Intuitively, in a MAS, the most complex settings are those where the system
state is jointly partially observable.

1.3 Uncertainty

Decision making under uncertainty has been studied for a while in AI and economics. It has recently
been extended to distributed systems where each agent has to make decisions, in an autonomous way,
from incomplete information. In most domains, agents have indeed to account for uncertainty about
the environment. In fact, most of the time, the agents do not have enough information to get full
knowledge about the current state of the environment and to predict exactly how the system will
evolve (Parsons and Wooldridge, 2002).

Partial observability caused uncertainty on action outcomes since the agents are, most of the time,
unable to exactly determine the state of the environment and the internal states of the other agents,
i.e. the knowledge of the other agents, their preferences and their strategies. Uncertainty arising from
partial observability is referred to as state uncertainty (Kochenderfer et al., 2015).

In addition, uncertainty may arise from imperfect modeling of the environment dynamics. Indeed,
the environment may be too complex or unpredictable to determine in a deterministic way the issues
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of an action. This type of uncertainty is referred to as outcome uncertainty. It has to be distinguished
from model uncertainty as defined by Kochenderfer et al. (2015) where the dynamics and the rewards
are not known and should be learned.

Different models have been proposed to represent uncertainty (Pearl, 1988). The most widely
accepted and used framework is based on probabilities but other representations can be considered
such as Dempster-Shafer belief functions, possibility measures or ranking functions (Halpern, 2003).
In this document, we will focus on probabilities since they provide a powerful framework to reason
about possible states of the world. Probabilities can be used to formalize outcome uncertainty by
assigning a probability distribution to each couple state / action. Given a couple (s, a), a probability
is assigned to each possible outcome of action a when it is executed from s. The probabilities of all
possible outcomes for a couple (s, a) have to sum to 1.

Under partial observability, probabilities also provide a convenient way to represent and update
the uncertainty about the state of the system. As an agent executes actions in the environment and
gets new observations, she obtains new evidences about the possible states of the system and about
the likelihood of each state. A belief of an agent can be represented as a probability distribution over
the states of the system. The value associated to a state s represents the agent’s assessment of the
likelihood that the state s is the current state of the system.

1.4 Distributed decision-making under uncertainty and partial
observability

In this document, we consider rational agents, i.e. agents that select, at any given time, the
action maximizing their performance measure (Russell and Norvig, 2003; Kochenderfer et al., 2015).
This implies that the agents are able to evaluate each available action and chooses the best one.The
performance measure has to be designed regarding the objectives of the agents and the characteristics
of the system.

In Economics, the utility theory proposes to represent the preferences of the agents in a numerical
way (Neumann and Morgenstern, 1953; Fishburn, 1970). A utility function maps each possible state
to a real number describing the satisfaction of the agent for this state. A rational agent would thus
take, at any time, the action maximizing her utility.

In a MAS, several agents have to make decisions at the same time and the decisions of an agent
i are influenced by the decisions of the other agents j 6= i. The decisions of the other agents j 6= i

are in turn influenced by the decision of i. Thus, each agent must reason about the other agents in
order to anticipate their actions and to choose the best coordinated action to execute. Nonetheless,
predicting the actions of the other agents is not that simple. Because of partial observability and
uncertainty, it is a difficult problem to determine exactly the state of the environment and the internal
states of the other agents. First, each agent is often uncertain or even unaware of the sequences of
observations by the others. Second, each agent may not know the preferences of the other agents. In
a cooperative setting, the agents share the same objectives. The preferences of the agents are thus
common knowledge since the agents try to maximize a common performance measure. On the other
hand, in the case of self-interested agents, each agent has her own preferences on the states. For
privacy reasons, these preferences may not be known to the other agents. In such settings, it is even
more difficult for an agent i to determine the actions of an agent j 6= i since i is unable to predict the
choices of j 6= i even if her state is known.

One way to address coordination issues is to allow a central entity to plan the actions of the agents.
Given a probabilistic model of outcome uncertainty, this central entity should be able to compute
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coordinated strategies for the agents. Then, each agent would receive her individual strategy from the
central coordinator and would be able to make autonomous decisions following this strategy (Ferber,
1999). Such approaches are usually used in multiagent resource allocation problems or multiagent
decision making under uncertainty. Nonetheless, the computational complexity faced by the central
coordinator remains high and computing optimal strategies is often untractable. In addition, the
use of a central entity may not be possible or desirable. First, self-interested agents may doubt of
the neutrality of the coordinator. Indeed, the coordinator could favor some agents. Second, such an
approach requires many messages to be exchanged between the coordinator and the agents. Such
communication may not be possible because of time and resource constraints or limitations of the
communication infrastructure. Moreover, such approaches create a bottleneck in the system and a
weak point. A failure of the coordinator would prevent all the agents to execute their actions. Finally,
such systems are less flexible to system variations or unforeseen events. If some agents need to update
their plans, the coordinator must be called upon.

An alternative approach is to provide the agents with sophisticated decision processes allowing
them to take coordinated decisions in an autonomous and distributed way. This is the common
approach developed in multiagent systems. In this document, we will more specifically focus on issues
related to partial observability and uncertainty in distributed decision-making. In this context, we
will study the extent to which agents can coordinate with other agents and make effective decisions
based on partial observations of an uncertain environment.

We will investigate more specifically issues dealing with:

• Formalizing the decision-making problem: in order to solve real-world problems, decision-making
frameworks must be able to deal with large and complex systems. The components of the decision
problem must be adequately modeled. As mentioned previously, we will focus on probabilistic
representations of the uncertainty on action outcomes. However, we will discuss appropriate rep-
resentations of states, actions, observability and preferences. We will also study how constraints
on action execution such as space, time and resource constraints, can be represented. Finally,
we will focus on the scalability of the models, i.e. on the ability of the models to deal with large
sets of agents, actions, states and observations.

• Representing and inferring knowledge from observations: different approaches can be envisioned
to model the knowledge acquired by an agent along her observations of the environment. A
possible approach consists in storing the whole history of observations. Nonetheless, such a
representation quickly becomes untractable in real-world contexts. One major issue is thus to
design compact models of knowledge that adequately summarize the information obtained by
the agent. When a probabilistic representation of the uncertainty is available, belief states may
be used to summarize the knowledge of an agent about the state of the environment3. Ideally,
a compact representation should provide sufficient and complete information to make optimal
solutions. However, the compactness of the model may comes at the price of a loss of optimality.

Once the model of knowledge defined, efficient mechanisms to update the representation have to
be developed. Updating the information about the environment may not be straightforward. In
dynamic environments, evidences obtained from past observations may become inaccurate due
to the evolution of the state of the environment. Given a new observation, an agent may be able
to infer that a piece of her current knowledge is now incorrect without further details about the
correct value of the information. For instance, a rescue-robot may observe that four civilians
must be rescued in a building and then observes an ambulance unit leaving the building with
an unobserved number of persons. The rescue robot should update the number of civilians to

3As we will explained later, this is the case of belief states in POMDP settings (see Chapter 3)
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rescue in that building but she does not how. There are probably less than four civilians to
rescue but we do not know exactly how many persons still remain.

• Making efficient decisions under uncertainty: we will also focus on algorithms and protocols
allowing an agent to make coordinated and effective decisions based on her knowledge about the
system. We will first consider myopic decision-making for distributed resource allocation. We
will then turn to planning over finite horizon in uncertain and partially observable environments.
Distributed decision making under uncertainty and partially observability is a hard problem
(Bernstein et al., 2002b). Efficient algorithms exploiting the characteristics of the problems
and/or searching for approximate solutions have thus to be developed. Various requirements
may arise from the characteristics of the problems such as the need to compute strategies on-line
(i.e. during action execution), to handle non-stationary environments (i.e. environments with
evolving dynamics), to learn environment characteristics... Although these issues have already
been the subject of much research work, we will investigate new directions and domains which
have been the subject of little interest until now.

• Exchanging knowledge about the system: when the agents can communicate, they may share some
information in order to increase their knowledge about the system. Although communication
could drastically improve coordination and performances of decision-making, it often comes at
a cost. The agents must therefore carefully decide when to communicate, to whom and which
information should be sent. There is thus a need to evaluate the relevance of communicated
information (in terms of the induced gain in performance for the agents, for instance) compared
to the communication cost incurred.

• Reaching consensus: in uncertain and partially observable environments, agents may acquire
different views of the system that may not be coherent (Bourgne et al., 2009). In a dynamic
environment, agents may observe different values for a same information at different time steps.
Moreover, agents may have obtained different pieces of knowledge. In such situations, abstract
argumentation is a natural framework for the agents to debate about their knowledge and try
to reach a consensus about the state of the environment or the strategy to undertake. When
communication is limited, the number of time steps of the debate may not be sufficient for
the agents to exchange all their knowledge. The agents have thus to strategically select the
information (in this case the arguments) to exchange.

1.5 Overview of the document

Chapter 1 focuses on distributed multiagent resource allocation, i.e. resource allocation problems
without any central coordinator. This widespread problem in multiagent systems has been mainly
addressed from a centralized point of view. On the opposite, we will assume that each agent is
initially endowed with a set of indivisible resources and the agents try to perform local swaps of
resources in order to improve their satisfaction. Since agents have partial observability of the system,
they are uncertain about the resources held by the other agents and their willingness to make some
exchanges. The aim of this chapter is to study the consequences of distributing the allocation process.
In particular, we will study the efficiency of the allocation outcomes. Different performance criteria
will be investigated such as the utilitarian social welfare, the egalitarian social welfare or the envy-
freeness. We will also investigate new notions of envy taking into account the partial observability of
the agents. Finally, a special attention will be paid to computational complexity issues.

Chapter 2 is devoted to planning issues for distributed decision-making under uncertainty and
partial observability. Decentralized Markov Decision Processes under Partial Observability (Dec-
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POMDPs) provide a powerful mathematical model to formalize and solve such multiagent decision
problems. However, they propose limited models of time and actions and they suffer from high
complexity. In this chapter, we will address some of these limitations and we will propose models
formalizing time, space and resource constraints. Because of the high complexity of planning under
uncertainty and partial observability, we will investigate different techniques to handle the complexity
of decision making such as searching for an approximate solution or exploiting the structure of the
problem. Finally, we will consider non-stationary environments and study how observations can be
exploited to take appropriate and effective decisions in such settings.

Chapter 3 focuses on abstract argumentation as a way for the agents to exchange information and
to reach a consensus. In distributed systems, agents should be able to debate about their knowledge
that may consist of local observations or private information. Such debates should result in better
coordination between the agents. This entails that the agents make decisions on the arguments to put
forward in the debate. Given a probabilistic model of the debating partners, the problem can be viewed
as a sequential decision problem under uncertainty and partial observability. We will describe suited
models to formalize these problems and we will study methods to efficiently compute argumentation
strategies.

Each chapter starts with a brief recall of the relevant background required to understand the notions
and issues addressed in the chapter. For more details, the reader may refer to the various pointers
given in background sections. Each chapter ends with a discussion about the research directions
opened in the chapter.
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2
D I S T R I B U T E D R E S O U RC E A L L O C AT I O N

Allocating some resources among a set of agents is crucial issue in many multiagent systems. In-
deed, a wide range of application domains gives raise to MultiAgent Resource Allocation (MARA)
problems. These include multi-robot task allocation (MRTA) in robotics scenarios such as rescue
missions (Lerman et al., 2006; Scerri et al., 2005; Ferreira et al., 2010), allocation of schools, courses
or rooms to students (Budish, 2011; Abraham et al., 2007b; Othman et al., 2010), division of goods in
inheritance or divorce settlement (Brams and Taylor, 1996), management of computational resources
in grid-computing (Galstyan et al., 2005), scheduling of manufacturing tasks (Sousa et al., 2000)...
This topic has received a lot of attention from both Economics and Computer Science communities.
The later is particularly interested in the computational aspects of MARA (Chevaleyre et al., 2006;
Bouveret and Lang, 2008). The objective is to develop efficient allocation protocols. A particular
interest is given to the study of the computational complexity. On the one hand, it is necessary to
evaluate the computational resources required to represent and solve MARA problems. On the other
hand, protocols and algorithms must be defined in order to efficiently compute an allocation. In fact,
the designer often seeks for guarantees on the properties of the outcomes such as Pareto-efficiency or
fairness while limiting the computational complexity of the protocol.

Solving MARA problems can be envisioned from a centralized or a distributed perspective. Central-
ized approaches rely on the existence of a central coordinator responsible for organizing the allocation
of resources between the agents. In distributed approaches, agents autonomously negotiate over the
resources and locally agree on deals. The outcome of the resource allocation problem then emerges
from the sequence of local deals. Multiagent resource allocation has been mainly investigated from a
centralized point of view. An important interest has been put on the design of centralized allocation
procedures and on the study of the computational complexity (Shapley and Scarf, 1974; Beviá, 1998;
Bansal and Sviridenko, 2006; Bouveret and Lang, 2008; de Keijzer et al., 2009; Asadpour and Saberi,
2010; Lesca and Perny, 2010; Dickerson et al., 2014; Bouveret and Lemaître, 2014; Aziz et al., 2016a;
Bouveret and Lemaître, 2016). These procedures have the advantage of providing optimality guar-
antees or at least bounds on the quality of the solution. However, there are a number of arguments
in favor of distributed approaches. First, the system may be inherently distributed and the use of a
central coordinator may not be possible or desirable. A global coordinator must indeed be able to
communicate with all the other agents, which is not always possible because of limitations in the com-
munication infrastructure. In addition, the use of a central coordinator induces a weak point in the
system: the coordinator causes a bottleneck whose default leads to the failure of the whole allocation
process. Centralized approaches further requires that all agents communicate to the coordinator their
preferences and their bundles of resources. This has a significant communication cost and may not
be desirable for privacy reasons. Although its is typically more difficult to provide guarantees on the
outcomes of distributed approaches, they exhibit a greater robustness and allow the agent to make
autonomous decisions regarding the deals while having incomplete knowledge about the system.

Among the few existing approaches to distributed resource allocation, we can cite the approach
of Netzer et al. (2016) based on distributed constraint optimization for minimizing the envy in the
system. Another line of research initiated by Sandholm (1998) consists in departing from an initial
allocation and allowing the agents to negotiate in order to improve their welfare (Endriss et al., 2003,
2006; Chevaleyre et al., 2007a, 2017). The agents then autonomously agree on local deals in order
to improve their own utilities. Our work follows this line of research. Each agent is assumed to be
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initially endowed with a set of indivisible resources and agents autonomously negotiate rational swaps
of resources.

In this chapter, we consider rational and self-interested agents. Each agent thus takes her decisions
in order to maximize her own satisfaction given her preferences about the states of the system. Here,
the state of the system consists in the allocation of resources among the agents. The satisfaction value
is referred to as the welfare of the agent (Moulin, 2003). Although the agents aim at maximizing some
individual utility measures, the outcome of the allocation must also be assessed from a global point
of view also called “social” point of view (Chevaleyre et al., 2017). We investigate various collective
utility functions that aggregate individual utilities into a collective measurement. Notably, we will
be interested in fairness measurements. Indeed, following some microeconomic principles and social
choice theory (Sen, 1970; Rawls, 1971; Moulin, 1988), we assume that all agents should be considered
as equal and should receive equal treatments.

Building on existing negotiation approaches, we study how distribution influences the efficiency
of the allocation process and the desirable properties of the outcomes. When considering distributed
resource allocation, agents naturally have partial observability of the system. They may obtain addi-
tional information as they encounter other agents but the individual knowledge of each agent often
remains imperfect. We show that partial observability of the system leads to defining new measures of
envy. Finally, we explore how the agents can improve their decisions with smart use of the observations
about the system.

2.1 Research context

The work presented in this chapter arises from several collaborations. I started working on multiagent
resource allocation with Sylvia Estivie and Nicolas Maudet. This work has been continued with Nicolas
Maudet. In this context, we co-supervised master internships and the PhD of Anastasia Damamme.
Complexity issues discussed in the chapter and the work dealing with social networks result from
collaborations with colleagues from the LAMSADE (Université Paris-Dauphine): Yann Chevaleyre,
Laurent Gourvès, Julien Lesca and Anaëlle Wilczynski. Finally, the work related to the relationships
between our framework and picking sequences has been done in collaboration with Sylvain Bouveret
and Michel Lemaître.

2.2 Background on resource allocation

2.2.1 Resource allocation of indivisible goods

Resource allocation problems can deal with either divisible or indivisible resources. A divisible re-
sources can be divided into pieces allocated to different agents while an indivisible resource cannot.
The problem of allocating divisible resources to agents is usually referred to as the cake cutting prob-
lem (Steinhaus, 1948; Brams and Taylor, 1996; Procaccia, 2009; Chen et al., 2013; Kurokawa et al.,
2013).

In this document, we are interested in distributed decision making and negotiation between the
agents. The objective is for the agents to negotiate exchanges of resources in order to improve their
satisfaction. We will thus concentrate on indivisible resources and investigate how the agents can
improve their satisfaction by exchanging resources.

Definition 1. MultiAgent Resource Allocation Problem - MARA
An instance of a MultiAgent Resource Allocation (MARA) problem is defined as a tuple 〈N ,R,P〉

where:
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• N = {1, · · · ,n} is a set of agents,

• R = {r1 · · · , rm} is a set of resources (or items),

• P is a profile of preferences representing the interest of each agent i ∈ N towards the resources.

An allocation A is mapping of the resources in R among the agents in N . Ai stands for the set of
items held by agent i. We assume that a resource cannot be shared by several agents (Ai ∩Aj = ∅,
∀i ∈ N , j ∈ N such that i 6= j). Moreover, each resource is allocated to a least one agent (∪i∈NAi =
R). An allocation is thus a partitioning of R among N .

When |N | = |R| (i.e. n = m) and each agent receives exactly one resource, the allocation problem
corresponds to a matching or house-allocation problem (Shapley and Scarf, 1974; Roth and Sotomayor,
1992; Abraham et al., 2005).

2.2.2 Preference representation and domain restriction

There are different ways to represent the preferences each agent has over resources:

• ordinal preferences: the preferences of each agent i consist of a binary relation �i over the
bundles of resources. L1 �i L2 means that agent i prefers the bundle L1 to the bundle L2. This
relation is transitive and reflexive. The resulting ordering of all possible bundles by agent i may
be partial or complete. The preference profile P of the agents is then defined as {�1, · · · ,�n}.

• cardinal preferences: the preferences of each agent i are modeled using a utility function ui :
2R → R mapping each possible bundle of resources to a real value. The preference profile P of
the agents is then defined as {u1, · · · ,un}.

A simple way to translate a linear order over the bundles into cardinal preferences is to use Borda
scores (Baumeister et al., 2014). A utility is thus assigned to each bundle based on its position in
the preference ordering. Let |L| be the number of possible bundles. The scores are integer values
ranging in [1, |L|]. The most preferred bundle of resources obtains the highest score (|L|), and the
worst bundle of resources is valued to 1.

Preference representation languages

Since the number of possible bundles is exponential in the number of resources, it is often unrealistic
to enumerate the values of each bundle or to give a full ordering of the bundles. A wide range of
researches have focused on providing compact preference representation languages. The idea is to
provide a language to represent the preferences over the bundles of items in a reasonable size (Brandt
et al., 2016). This topic is not restricted to the resource allocation domain and, more broadly, deals
with representing preferences over a combinatorial set of alternatives. Among the most widespread
languages, we can mention bidding languages initially developed for combinatorial auctions, graphical
models, logic-based languages and additive utility functions. For a more detailed discussion on these
languages, we refer the interested reader to Chapter 12 of (Brandt et al., 2016).

In this document, as soon as we consider cardinal utilities, we will focus on additive preferences
(Lipton et al., 2004; Procaccia and Wang, 2014; Dickerson et al., 2014; Caragiannis et al., 2016; Bou-
veret and Lemaître, 2016). Additive functions provide a compact and commonly used representation
that can be easily elicited to formalize the agent’s preferences over bundles of resources. The utility
of an agent i for an allocation Ai is then defined as the sum of the utilities over the resources forming
Ai:

ui(Ai) =
∑
ri∈Ai

ui(ri)
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Figure 2: Single-peaked preferences
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Figure 3: Non single-peaked preferences

Here, we assume that there is no externalities i.e. the utility of an agent does not depend on the
distribution of the remaining resources on the other agents. We can thus alleviate the notation ui(Ai)
using ui(A) without misunderstanding.

It has to be noticed that additive functions do not allow for representing synergies between the
resources such as super-modularity and sub-modularity. k-additive functions extends additive utility
functions to formalize such synergies between set of resources of size at most k (Grabisch, 1997;
Chevaleyre et al., 2008). As the value of k increases the value function becomes more and more
expressive but less and less concise (as proved by Chevaleyre et al. (2008), any utility function can be
represented as a k-additive function with k = |R|).

Domain restriction

In some domains, assumptions about the agents’ preferences can be identified, thus restricting the
set of possible preference orderings. The most studied domain restriction is probably single-peaked
preferences. Single-peaked preferences were initially described in social choice for studying voting rules
(Black, 1948; Arrow, 1951). This restriction deals with ordinal preferences on single resources. Let
B = r1 B r2 B · · ·B rm be an axis over the resources i.e. a linear order. Let top(i) denote the most
preferred resource of agent i. In single-peaked domains, the preferences of an agent i are related to
the relative positions of the resources to top(i) on the axis B.

Definition 2. Single-peaked preferences (Escoffier et al., 2008; Endriss, 2017)
The preferences �i of an agent i are said to be single-peaked with respect to B if ∀rj , rk ∈ R such

that rj is closer to top(i) than rk in B, we have ri �i rj. More formally, �i is said to be single-peaked
with respect to B if ∀rj , rk ∈ R such that top(i)B rj B rk or rk B rj B top(i) we have rj �i rk .

Definition 3. Single-peaked preference profiles
A preference profile P = {�1, · · · ,�n} is said to be single-peaked if all the agents share a common

axis B on resources such that each agent’s preferences are single-peaked with respect to B.

This restriction arises naturally in various preference domains where some characteristics of the
resources inherently define a common axis: political ideologies for candidates to an election (Bruner
and Lackner, 2015), distances to downtown for hotels in a city, storage capacities for hard-disks, sizes
for clothes...

Figures 2 and 3 illustrate two preference orders for tee-shirt sizes. The preferences described in
Figure 2 are single-peaked with size M being the peak. The preferences described in Figure 3 are not
single-peaked since the peak is size M but size XL is preferred to size L.
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Culture and preference generation

In order to perform some experimental evaluations of resource allocation protocols, it is required to
consider various preference profiles for the agents. These preferences can be extracted from real data
or be automatically generated.

preflib Several tools have been developed over the last decade to facilitate experiments in com-
putational social choice. Notably, the PrefLib library provides a large number of preference data-sets
extracted from real data (Mattei and Walsh, 2013). PrefLib gathers election, matching and rating
data. Matching data provide problems where the agents have preferences over some items (and vice-
versa). The objectives is to pair agents to items. Preferences from the rating data-set and the election
data-set contains various forms of ranking. In our context, we are more specifically interested in
profiles providing a complete order over the items.

culture and random generation When profiles have to be automatically generated, pref-
erences are randomly drawn from a particular distribution. This probability distribution is usually
referred to as the culture (Mattei, 2011).

If we consider ordinal preferences, a linear order of the resources has to be drawn. The less restric-
tive and simplest culture is the impartial culture. It was initially introduced in social choice theory
to characterize the preferences of voters among candidates (Black et al., 1958; Gehrlein and Fishburn,
1976). Under the impartial culture, the uniform probability distribution is used: all preference orders
are equally likely and are chosen independently. Under the single-peakedness assumption, different
methods can be envisioned to generate single-peaked preferences. Conitzer (2009) proposed to first
randomly draw the position of the resources on the axis, all alternatives being equally likely. Then,
for each agent, a peak is randomly chosen with equal probability. The second-highest ranked resource
is chosen with equal probability from the two adjacent alternatives, and so on until a full order is ob-
tained. Given an axis, Walsh (2015) proposed a recursive procedure building single-peaked preferences
from the end (i.e. the worst resource of the agent) to the top resource.

In order to generate cardinal preferences, we need to assign a utility value to each bundle of
resources. If we consider additive value functions, this process consists in the assignment of a utility
value to each resource. Given an interval [min,max] defining acceptable utility values of a resource,
Dickerson et al. (2014) described two ways of generating a profile of preferences P:

• Uniform distribution: for each agent, the utility value of a resource is drawn in the interval
[min,max] from a uniform distribution. Preferences under the impartial culture are thus ob-
tained.

• Correlated distribution: for each resource ri, an intrinsic value µi is drawn in the interval
[min,max] from a uniform distribution. For each agent, the utility value of ri is then drawn
from the truncated normal distribution with µi being the mean of the distribution. The variance
σ of the distribution is defined as an input of the method. This method allows for representing
dependencies between the preferences of the agents for a same resource. In the extreme case, if
σ = 0, all the agents have the same utility µi for a same resource ri.

2.2.3 Negotiation of rational deals

Given an instance of a MARA problem, the objective is to find an allocation A that satisfies some
desired properties or maximizes a performance criterion. As mentioned previously, we are interested
in distributed procedures to allocate the resources among the agents. In such settings, each agent is
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assumed to be initially endowed with a set of resources. The agents then negotiate some deals in order
to improve their welfare.

Definition 4. Deal
A deal is defined as a pair δ = (A,A′) where A and A′ are some allocations of resources such as

A 6= A′.

In the following, N δ denotes the agents involved in the deal δ.

types of deals Different types of deals have been investigated in the literature (Sandholm,
1998). Endriss et al. (2006) proposed to characterize the set of deals that are allowed to the agents by
both structural and rationality constraints.

Structural constraints define the number of agents and the number of resources involved in the deal.
A type of deal can thus be characterized by a pair (na, nr) where na denotes the number of agents
involved in the deal and nr is the maximum number of resources exchanged in a deal by each of the
na agents. Note that it is often assumed that all the agents exchange the same number of resources
so, nr is the exact number of resources exchanged by each agent.

The most studied types of deals are:

• 1-deals or (1, 1)-deals where a single resource is passed from one agent to another,

• swap deals or (2, 1)-deals where two agents exchange one of their resources,

• bilateral deals or (2, ∗)-deals where two agents exchange a subset of their resources, the number
of resources exchanged being unfixed1,

• k-deals or (k, 1)-deals where k agents are involved in the deal and each agent exchanges only one
resource.

Bilateral and swap deals are easy to implement since they involve only two agents and thus do
not require the coordination of many agents. Moreover, they often fit with constraints of real-world
environments where agents cannot negotiate with all the other agents at all time because of space
constraints (exchanging physical resources requires the agents to be close to each other) or limited
communication range (agents have to be close enough to each other in order to communicate and to
negotiate some deals).

When more than two agents are involved in a deal, it may be desirable to be able to decompose the
deal into a sequence of bilateral deals. The agents involved in the deal are then ordered such as the first
agent of the sequence gives her item to the second one, the second one gives her item to the third one,
and so on until the last agent gives her item to the first one. Such deals are called cycle-deals. Each
step of a cycle-deal requires the presence and the coordination of only two agents. These exchanges
are thus easier to implement. The relevance of such exchanges can be exemplified by barter-exchange
markets or by kidney exchanges where patients can obtain compatible donors by exchanging their own
wiling but incompatible living donors with other patients (Abraham et al., 2007a).

In this context, a k-cycle-deal refers to a cycle-deal involving k agents where each agent of the
cycle exchanges a resource with the next agent in the sequence. k-cycle-deals can be generalized to
(k, l) cycle-deals where each agent exchange at most l resources. A long cycle may be undesirable in
practice since it significantly increases the likelihood of failure of the whole deal. The length of the
cycle is thus often bounded by a small integer value.

1Swap-deals are thus a restriction of bilateral deals.
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monetary side payments The transfer of a resource from one agent to another can be balanced
by another resource and/or a monetary side payment. Such monetary transfers can compensate
disadvantageous deals. MARA problems with monetary payments have been studied under cardinal
preferences (Sandholm, 1998; Endriss et al., 2003; Estivie et al., 2006; Chevaleyre et al., 2007a, 2017).
However, such monetary transfers may be impossible or not desirable. For instance, they may be
forbidden by the law as in the case of kidney exchanges (Abraham et al., 2007a). Moreover, as pointed
out by Endriss et al. (2003), this framework assumes that each agent has an unlimited amount of money
allowing her to pay for any deal.

In the following of the document, we will not allow for monetary compensation. The welfare of
an agent will thus only rely on the utility of her resources. In such contexts, when an agent gives a
resource, she must receives another resource to compensate the loss of utility.

rational deals In order a (self-interested) agent to decide if a deal is acceptable or not, the first
requirement is the deal to be individually rational i.e. the agent is better off if the deal is performed.
Notions related to rationality can be defined under both cardinal and ordinal preference relations. In
this document, we will focus on cardinal settings and we will omit definitions under ordinal preference
relations.

Definition 5. Strictly Improving Deals
A deal δ(A,A′) is said to be strictly improving for an agent i iff ui(A) < ui(A′).

This definition can be relaxed to consider “neutral” deals i.e. deals that do not change the utility
of the agent.

Definition 6. Weakly Improving Deals
A deal δ(A,A′) is said to be weakly improving for an agent i iff ui(A) ≤ ui(A′).

The definition of a rational deal follows directly from previous definitions.

Definition 7. Individual Rational Deals
A deal δ(A,A′) is said to be individually rational (IR) for an agent i iff the deal is strictly improving.

Individual rationality is a self-interested concept and does not account for the impact of the deal
among the other agents. Given an allocation A, several individual rational deals may be possible from
the point of view of an agent i (even if we limit the types of deals allowed). The agent will thus have
to make a choice between the different possible individual rational deals. One requirement is the deal
to be rational for all the agents involved in the deal otherwise the other agents will refuse to make the
exchange. For a deal to be accepted by all the agents involved, it must be cooperatively rational.

Definition 8. Cooperative Rational Deals
A deal δ(A,A′) is said to be cooperatively rational (CR) iff it is weakly improving for all the agents

and strictly improving for at least one agent.
More formally, a deal δ(A,A′) is said to be cooperatively rational iff ∀i ∈ N δ, ui(A) ≤ ui(A′) and

∃j ∈ N δ such that uj(A) < uj(A′).

It has to be noticed that the definition of rationality is myopic since the agents only consider the
immediate effects of the deal on their utilities and do not take into account the effects of the deal on
future opportunities. The agents thus do not plan ahead the deals they will accept in future steps.

Moreover, individual and cooperative rationality are self-interested notions where the agents try
to maximize their own individual utility. When an agent proposes or accepts a deal, she does not take
into account the consequences of the deal on the agents not involved in the deal. Some deals may
prevent the other agents from exchanging their resources and may lead to sacrify some of the agents.
In order to evaluate MARA procedures, it is thus important to consider the well-being of the society
of agents i.e. to study the quality of the final allocation (outcome) from a global point of view.
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2.3 Well-being of the society

The social welfare formalizes the well-being of a society given the individual preferences of its members.
Social welfare comes from Welfare Economics and Social Choice (Sen, 1970; Moulin, 1988; Arrow et al.,
2002). Different measures of social welfare can be envisioned according to the principles of the society
under consideration (Endriss and Maudet, 2004). Two different perspectives can be considered to
assess the well-being of a society regarding an allocation of resources: the efficiency perspective
is interested in maximizing a global utility function, while the fairness perspective is governed by
egalitarian principles.

Under cardinal preferences, a common way to define social welfare consists in defining a collective
utility function that aggregates the individual utilities of the agents.

2.3.1 Efficiency of the allocation

Following the utilitarian theory2, an efficient allocation is an allocation maximizing the sum of the
utility. The welfare of a society is thus measured by the sum of the individual utilities.

Definition 9. Utilitarian Social Welfare
The utilitarian social welfare swu(A) of an allocation A is defined as:

swu(A) =
∑
i∈N

ui(A)

Utilitarian social welfare is sensitive to scale differences in utilities and assumes that the individual
preferences of the agents are defined on the same scale. Such metrics are said to be scale dependent.

Under additive utility functions, optimizing the utilitarian social welfare in a centralized way is
quite easy and consists in assigning each resource to the agent that values it the most. However, it may
lead to very unbalanced allocations where a subset of the agents get all the resources and the others
get no resource. Capacity constraints can then be envisioned to fix the number of resources per agent.
When the number of resources equals the number of agents and each agent must receive a resource,
one can simply translate the problem to a (weighted) matching problem in a bipartite graph. Agents
are only matched to objects they prefer to their current assignment, with weights corresponding to
their utility for each resource. This can be solved by standard techniques in O(n3). When each agent
must be assigned exactly k resources, the problem can also be reduced to a matching problem by
duplicating each agent into k agents with the same preferences. In the general case (no restriction on
the additivity of the utility functions), optimizing the utilitarian social welfare in a centralized way is
NP-complete (Dunne et al., 2005; Chevaleyre et al., 2008).

It is important to note that, in decentralized systems, the optimal allocation may not be reachable
by a sequence of cooperative bilateral rational deals: every sequence of deals allowing to obtain the
optimal solution may incur a loss in utility for at least one agent.

Example 1. Reachability of the allocation maximizing social welfare
Let’s consider an instance involving 4 agents and 4 resources (one resource per agent). Boxes

identify the resource held by each agent.

r1 r2 r3 r4
agent 1 6 3 2 1
agent 2 1 4 3 2
agent 3 2 1 4 3
agent 4 4 2 1 3

2Earliest principles of utilitarianism were developed by Jeremy Bentham (1748–1832).
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The underlined allocation maximizes the utilitarian social welfare. However, it is not reachable
from the current (boxed) allocation by a series of rational deals. In fact, agent 4 should give r1 to
agent 1 which is not individually rational from her point of view for any resource she would receive
(recall that monetary side payments are not allowed).

2.3.2 Pareto-optimality

When the optimal solution regarding the utilitarian social welfare cannot be reached, a weaker require-
ment consists in searching for a solution where no agent can improve her allocation without incurring
a loss on at least another agent. This notion corresponds to Pareto-optimality (Moulin, 1988; Arrow
et al., 2002).

An allocation is said to be Pareto optimal if and only if there is no other allocation A′ that is not
worse for all the agents and is strictly better for at least one agent.

Definition 10. Pareto-optimality
An allocation A is said to be Pareto optimal iff there is no other allocation A′ such that:

∀i ∈ N ,ui(A′) ≥ ui(A) and
∃j ∈ N ,ui(A′) > ui(A))

Endriss et al. (2003) proved that any sequence of cooperative rational deals will eventually result
in a Pareto optimal allocation of resources. This result supposes that there is no restriction on
the types of deals that can be implemented by the agents. In fact, they also proved that all possible
cooperatively rational deals must be allowed in order to be able to guarantee a Pareto-optimal outcome
of a negotiation.

The main disadvantage of this criterion is that it is not very selective. Indeed, the number of
Pareto-optimal solutions can be large and there may be significant disparities between the agents
according to the envisioned Pareto-optimal solution. Under additive preferences, testing whether an
allocation is Pareto-optimal is CoNP-complete (de Keijzer et al., 2009). Moreover, Aziz et al. (2016a)
proved that in the presence of an initial endowment, finding an individually rational and Pareto
optimal improvement is NP-hard.

2.3.3 Egalitarian Social Welfare

Egalitarian theories state that all people should be treated as equal. The issue of redistributing
resources in a society has been widely studied in egalitarianism. The egalitarian social welfare function
(also called Rawlsian welfare function) stems from the theory of justice proposed by Rawls (1971).
Rawls defined the equality principle to characterize fairness. This equality principle states that every
member of the society should be given the same utility. However, there may not exist feasible solution
satisfying this principle. Rawls thus also introduced the difference principle that aims at reducing the
inequalities. This principle states that the welfare of a society should be measured by the welfare of
the worst-off member of the society. The egalitarian social welfare of an allocation A is thus defined
as the minimum of the utility of the agents.

Definition 11. Egalitarian Social Welfare
The egalitarian social welfare swe(A) of an allocation A is defined as:

swe(A) = min
i∈N

ui(A)
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Following Rawls’ theories, an egalitarian allocation should maximize the egalitarian social welfare.
In computational social choice, this solution is usually referred to as a maximin share. Like the
utilitarian social welfare, this measure is scale dependent and requires all the agents to use the same
utility scale. Furthermore, the egalitarian social welfare does not allow for deciding among several
allocations where the worst-off agent has the same utility. In order to discriminate allocations leading
to the same egalitarian social welfare, the leximin ordering can be used (Moulin, 1988).

2.3.4 Nash social welfare

Under positive utility functions, the Nash collective utility function (Nash, 1950) provides a good
trade off between the utilitarian and the egalitarian social welfare. The Nash social welfare is defined
as the product of the individual utilities of the agents.

Definition 12. Nash Social Welfare
The Nash Social Welfare swn(A) of an allocation A is defined as:

swn(A) =
∏
i∈N

ui(A)

The Nash Social Welfare is appealing since it takes into account the average utility of the agents
and also favors balanced utility distributions i.e. equality among the agents.

2.3.5 Envy-freeness

When the agents can compare their shares, it is relevant to consider other notions of fairness such as
the absence of envy (Foley, 1967; Feldman and Kirman, 1974). An agent i would envy another agent
j if she prefers the share of j to her own share. More formally,

Definition 13. Envy
An agent i envies an agent j iff

ui(Aj) > ui(Ai)

An agent is said to be envious if she envies at least one other agent. This criterion is scale
independent. Note that an agent does not need to know the others agents’ utility functions in order to
determine whether she is envious or not but she has to know the allocation A i.e. how the resources are
allocated among the other agents. A completely fair allocation would thus be an envy-free allocation
i.e. an allocation where no agent is envious. However, as soon as it is required to allocate all the
resources of the system (completeness requirement), an envy-free allocation may not exist.

Example 2. Absence of envy-free allocation
Let’s consider a simple instance involving 2 agents and 2 resources where both agents have the

same preferences

r1 r2
agent 1 7 2
agent 2 7 2

Under completeness requirement there is no possible envy-free allocation: one of the agent will always
envies the other one (the one that holds r1).

The only way to avoid envy is to not allocate any resource to any agent but this is quite inefficient.
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Lipton et al. (2004) proved that deciding whether an envy-free allocation exists under additive
preferences is NP-complete. It is important to note that an envy-free allocation may be Pareto-
dominated. The reverse is also true: a Pareto optimal allocation may not be envy-free. Given a
MARA instance, deciding whether there exists an allocation that is both envy-free and Pareto-optimal,
is
∑p

2-complete (de Keijzer et al., 2009).
An alternative objective consists in minimizing the envy. Different metrics have been investigated

to measure the degree of envy of a society (Lipton et al., 2004; Chevaleyre et al., 2007a; Caragiannis
et al., 2009; Cavallo, 2012; Nguyen and Rothe, 2014). Chevaleyre et al. (2007a) define the degree of
envy at three different levels:

• the Bilateral envy measures the envy of an agent i towards another agent j:

eij = max(ui(Aj)− ui(Ai), 0)

It is also possible to consider a boolean measure saying whether i is envious or not of j.

• the Individual envy measures the envy of an agent i towards all the other agents. It aggregates
the bilateral envy of i among all the other agents. Different operators can be used such as the
sum or the max:

emaxi = max
j∈N

(eij) or esumi =
∑
j∈N

(eij)

It is also possible to count the number of agents that i envies.

• the global envy of the society aggregates the individual envies of the agents in the society. A wide
variety of operators can be considered. The most used ones are the max operator that focuses
on the most envious agent of the society or the sum operator that considers the average envy
among the society:.

emax = max
i∈N

(ei) or esum =
∑
i∈N

(ei)

where ei corresponds to an individual envy measures (the measure being the same for all the
agents). Note that this measure is scale dependent.

2.3.6 Proportionality

A less demanding fairness criterion is proportionality. It was first introduced in cake-cutting problems
(Steinhaus, 1948). The allocation received by an agent i is said to be proportional if the utility of
the agent is greater or at least equal to the utility it would receive from a virtual perfectly equitable
allocation.

Definition 14. Proportionality
An allocation A is proportional iff ∀i ∈ N :

ui(A) ≥
ui(R)
n

This measure can be computed in a distributed way and does not require the agent to know the
bundles of the other agents. Nevertheless, a proportional allocation is not guarantee to exist. In
Example 2, ui(R) = 9 for both agents and there is no complete allocation giving at least 4.5 to each
agent. Moreover, deciding whether a MARA instance admits a proportional allocation is NP-complete
(Bouveret and Lemaître, 2014).
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2.4 Distribution and related issues

negotiation protocols For the agents to be able to autonomously agree on local swap deals,
there is a need for negotiation protocols defining how the agents interact to exchange resources. More
specifically, a protocol describes the behaviors and the communication messages allowing each agent
to come into contact with the other agents, to exchange information, to agree on deals and finally to
perform the deals. Although the agents are assumed to perform cooperative rational deals, we can
question whether the agents would reach a stable state and what would be the quality of this outcome
whether in terms of efficiency or fairness.

Indeed, when designing a protocol for distributed resource allocation, a major requirement is to
provide termination guarantees. In fact, it must be ensured that the agents will eventually converge
to stable state where no more exchange is possible and where the agents can safely quit the allocation
process.

Another requirement is the protocol to be efficient. The efficiency of the protocol concerns its
computational and communication complexity but it has also to take into account the quality of the
final allocations obtained using the protocol. Indeed, guarantees on the quality of the outcome are
usually desired. One possible requirement is to guarantee convergence towards a Pareto-optimal
solution. Efficiency or fairness of the outcome may also be required. Although, distributed protocols
usually do not give optimality guarantee, some bounds on the gap between the worst-case outcome
and the optimal one can be defined (Koutsoupias and Papadimitriou, 1999).

asynchronism and concurrency Although they consider distributed allocation mecha-
nisms, most existing frameworks make the implicit assumption of synchronization i.e. only one deal is
performed at a time in the system. In fact, in a distributed system, each agent has her own execution
thread and the agents act in an asynchronous manner. The protocol must therefore handle concurrent
encounters and offers, communication delay, etc. Similar issues have been investigated in extensions of
the Contract Net Protocol to account for contingency contracts (Sandholm and Lesser, 2001; Aknine
et al., 2004). The protocols that we will describe in the following will take into account concurrency
issues.

partial observability and dynamicity Since the agents exchange resources upon en-
counters, the allocation of resources evolves along the time. In a distributed allocation process, it is
natural to assume that each agent has limited visibility of the system and only observes part of the
whole allocation. Indeed, the agents can be physically distant and have limited perception capabilities.
Furthermore, broadcasting the preferences of the agents and their individual allocations may not be
desirable for privacy reasons or because of the high communication cost. In this document, we make
minimal assumptions about the degree of observability of the agents. We consider that each agent
only observes the resources held by another agent upon encounters. Preferences are assumed to be
private and thus non-observable information.

Partial observability has been little studied in distributed resource allocation. In fact, common
measurements of efficiency and fairness requires full and perfect knowledge of the allocation. The only
notable exception is proportionality that is defined in terms of an agent’s own value for her bundle.
In the following, we will investigate how each agent can assess the fairness of an allocation based on
an incomplete and may be incorrect view of the system.
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2.5 Distributed house-allocation

We start our discussion about distributed resource allocation by addressing one-sided matching prob-
lems also known as house allocation problems, or house markets. In this context, each agent is assumed
to initially (and all over the process) hold exactly one resource. A deal corresponds in the swap of a
single resource against another single resource.

2.5.1 Properties of the procedures

The Top Trading Cycle (TTC) is a recognized procedure for solving house allocation problems when
each agent starts with an initial endowment (Shapley and Scarf, 1974). TTC returns a unique solution
belonging to the core. In other words, in the final allocation, no coalition of agents can make all of
its members better off by exchanging the items they initially own in a different way. Moreover, the
procedure is Pareto-efficient, individually rational, and strategy proof (no agent has an incentive to
misrepresent her preferences). TTC is the only mechanism presenting all these guarantees (Ma, 1994).
However, TTC is a centralized procedure that is not well suited in our context. Furthermore, the cycle-
deals that must be performed to reach the final allocation may involve a large number of agents (in
the worst case, all the agents). Such long cycles may not be desirable as they require the coordination
of many agents which may be problematic. Although TTC is not well suited to distributed contexts,
it provides appealing guarantees that would be desirable in a distributed processes. In this section,
we investigate desired properties of distributed procedures.

Convergence guarantees

In a distributed context, we can question the guarantees provided by the protocols regarding the
outcomes of the procedures.

In fact, convergence guarantees can be stated regardless of the number of resources per agent and
of the number of agents involved in a deal.

Proposition 1. If the number of deals is finite and each deal is cooperatively rational, the system will
eventually reach a stable state where no more deal is possible.

The proof of this proposition strictly follows the proofs of convergence provided in (Sandholm,
1998; Endriss et al., 2006).

The definition of stability can be refined to take into account restrictions on the types of deals
allowed to the agents. Let first denote by Ck the class of cycle-deals involving at most k agents.

Definition 15. An allocation is k-stable when no Ck rational deals are possible.

Proposition 1 still holds when we restrict the class of possible deals to Ck in house-allocation
problems. However, some outcomes may not be reachable anymore since they require the agents to
perform deals that cannot be reduced to k-cycle-deals.

Efficiency and Fairness of the outcome

Once convergence of the distributed allocation protocol is guaranteed, it is relevant to study the
efficiency and the fairness of this stable outcome.

We will be interested in the following problems:

• Can we guarantee Pareto-optimality of the outcome?
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• Is the outcome efficient regarding utilitarian social welfare?

• What is the cost of distributing the allocation process?

• Is the outcome fair regarding egalitarian social welfare?

It is important to note that envy-freeness is of little interest in house allocation settings. In fact,
an agent necessarily envies another agent as soon as she does not get her top object. More specifically,
an agent envies all the agents holding a resource preferred to the resource she currently holds.

In this document, we will more specifically focus on the simplest version of cycle-deals: bilateral
deals i.e. deals involving exactly two agents (also denoted as C2). Besides being simple and not
requiring the coordination of a large number of agents, we will show that this class of exchanges can
achieve good performance.

2.5.2 Dynamics of bilateral deals

We start by investigating the dynamics based on rational bilateral swaps of resources. The agents thus
make local bilateral exchanges until they reach a stable allocation. When several deals are possible,
one of them is randomly chosen. Unlike centralized procedures (as TTC), the allocation process may
lead to different outcomes, depending on the sequences of encounters among the agents. In fact, our
theoretical results are independent of the decision rule used to select a possible deal. Nonetheless, we
will have to implement a precise decision rule for experimental purpose.

2.5.3 Pareto-optimality

We first investigate the efficiency of an allocation in terms of Pareto-optimality. It is possible to test
Pareto-optimality using TTC. Since TTC returns a Pareto-optimal solution and respects individual
rationality, one can run TTC from an allocation A and compare it with the allocation A′ returned by
TTC. If A 6= A′ then, A is not Pareto-optimal.

A Pareto-optimal solution can be thought as an allocation where no more cooperative rational deal
is possible. A Pareto-optimal allocation is thus k-stable. In house-allocation settings, the reverse is
also true iff k = |N |.

Proposition 2. Any sequence of k-deals reaches a Pareto-optimal allocation.

It has to be noticed that this proposition only applies in house-allocation problems. We will discuss
its generalization later in this chapter.

Restricting the size of the cycles leads to less possible exchanges. If k < |N |, it is thus obvious
that a k-stable allocation may not be Pareto-optimal. More specifically, this observation applies to
bilateral-deals (k = 2) if the system involves more than 2 agents.

Example 3. Reachability of a Pareto-optimal allocation
Let’s consider an instance involving 4 agents and 4 resources. Boxes identify the resource held by

each agent.

r1 r2 r3 r4
agent 1 4 3 2 1
agent 2 1 4 3 2
agent 3 2 1 4 3
agent 4 3 2 1 4
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The allocation where each agent obtains her top-resource (underlined allocation) maximizes the
utilitarian social welfare and is Pareto-efficient. Moreover, the boxed allocation is not Pareto-efficient
since it is Pareto-dominated by the underlined allocation. However, the underlined allocation is not
reachable (from the boxed allocation) by a series of bilateral rational deals. Indeed, the agent 1 would
only accept a deal where she obtains r1 but the agent 4 holding r1 would only accept a deal where she
obtains r4. The exchange is thus not possible. The underlined allocation can be reached by a cycle deal
involving all the agents where each agent gives her resources to the next one in the sequence of agents
(1, 2, 3, 4).

Nonetheless, this negative results may be alleviated if we restrict the preference domain. In
(Damamme et al., 2015), we proved that a positive result can be obtained if the preferences are
single-peaked.

Proposition 3. In a single-peaked domain, any sequence of bilateral deals reaches a Pareto-optimal
allocation.

Although distributed procedures are not guarantee to converge to a Pareto-optimal allocation, a
natural question is to estimate the proportion of 2-stable allocation which are Pareto-optimal. In
(Damamme et al., 2015), we showed that under impartial culture, with n = 10, there is about 75%
chance to reach a Pareto-optimal allocation, while with n = 14 there is still 50% chance to reach
a Pareto-optimal allocation. From n = 30, it becomes almost impossible. For comparison, we also
tested the Pareto-optimality on real world instances of PrefLib and we obtained better results. This
seems to suggest that correlation between preferences is favorable to convergence to Pareto-optimal
allocations.

2.5.4 Utilitarian social welfare

Although the probability of reaching a pareto-optimal allocation using swap-deals is quite low, we
can question the effectiveness of the allocations and their fairness. We first focus on the worst-case
study and then study average performance experimentally. Note that, often, this will involve to
interpret cardinally the ordinal preferential information provided by agents. We shall simply use the
rank as a measure of satisfaction, and thus assign —using a Borda count— some utility to ranks, i.e.
ui(A(i)) = n when ai gets her preferred object, n− 1 when she gets her next preferred object, and so
on.

Worst-case analysis

In order to conduct a worst-case analysis of distributed procedures, we used two measures that are
the price of anarchy and the price of short cycles.

price of anarchy The price of Anarchy (PoA) is a performance metric that measures the cost
of letting selfish agents negotiate the exchanges instead of invoking a central entity that computes an
optimal allocation (Koutsoupias and Papadimitriou, 1999). The price of Anarchy is thus the ratio
between the optimal solution and the worst reachable k-stable allocation. PoA is usually defined
regarding social welfare.

Definition 16. Price of Anarchy
Let I the set of all MARA-instances and let k be the maximal authorized size of a cycle. The Price

of Anarchy is defined as follows:

PoA = maxI∈I
maxA∈Iswu(A)

minA∈Ck(I)swu(A)
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where Ck(I) is the set of k-stable allocations reachable from the initial allocation in the instance I.

It can first be demonstrated that the individual rationality constraint alone induces a high PoA.

Lemma 1. Any procedure respecting individual rationality have PoA ≥ 2.

We give the proofs of this lemma and of the following proposition in (Damamme et al., 2015).
Moreover, for all procedures based on k-cycle-deals, the PoA is exactly 2.

Proposition 4. All Ck procedures have PoA = 2.

These results show that no procedure guaranteeing IR can provide better guarantees, and the size
of the cycles does not change the worst-case efficiency of the final allocation.

It is important to note that this is a worst-case cost. In fact, it can be demonstrated that this cost
is only observed in a special case where all the agents initially hold their middle ranking resource and
they have circular preferences. In this case, the social welfare is n(n+1)

2 .

Definition 17. Circular preferences and middle-ranking allocation
A profile of preferences is circular iff:

∀i ∈ N , rj ∈ R,∀k ∈ {1, . . . ,n} : ui(rj) = (ui+k(rj) + k) mod n

If n is odd, the allocation where each agent has her n+1
2

th resource is called the middle-ranking allo-
cation. It has to be noticed that this allocation is k-stable.

Example 4. Circular preferences and middle-ranking allocation
Let consider the following instance with 5 agents. The preference profile is circular and the white

box allocation is the middle-ranking allocation.

agent 1 : r1 � r2 � r3 � r4 � r5
agent 2 : r2 � r3 � r4 � r5 � r1
agent 3 : r3 � r4 � r5 � r1 � r2
agent 4 : r4 � r5 � r1 � r2 � r3
agent 5 : r5 � r1 � r2 � r3 � r4

If the initial allocation is randomly chosen, the probability to obtain the middle-ranking allocation
is 1

n! . The likelihood to observe the PoA is thus quite low. Nonetheless, other stable allocations may
have a social welfare close to n(n+1)

2 .

price of short cycles Another natural question that arises is to evaluate the maximum cost
of restricting the length of the cycles. We thus introduced a new notion, the “Price of Short Cycles”
(PoSC), that measures the gap between the best allocation which may be reached with short cycles
(of length k) and the worst allocation which may be reached with cycles of arbitrary length.

Definition 18. Price of short cycles
Let I the set of all MARA-instances and let k be the maximal authorized size of a cycle. The Price

of Short Cycles is defined as:

PoSC = maxI∈I
minA∈Cn(I)swu(A)

maxA∈Ck(I)swu(A)

where Ck(I) is the set of k-stable allocations reachable from the initial allocation in the instance
I.
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In (Damamme et al., 2015), we proved that the bilateral procedure (C2) has PoSC = 2 but this
proposition can be generalized to all Ck procedures with k < n (see (Damamme, 2016)).

Proposition 5. All Ck procedures with k < n have PoSC = 2.

Again, this worst case arises if the initial allocation is the middle-ranking allocation. As mentioned
in the PoA study, this case has low likelihood to arise.

Average-case analysis

We run some experiments to study utilitarian welfare in the average case. We compared the social
welfare obtained by the centralized procedure TTC, the optimal value which can be obtained (centrally)
respecting the rationality constraint, the distributed procedure based on bilateral exchanges (C2) and
the distributed procedure allowing quite larger cycles (C3). Figures 4 and 5 present average utilitarian
social welfare obtained for different sizes of instances under Impartial Culture and Single Peaked
preferences respectively. The values obtained by each procedure are depicted as a percentage of the
theoretical maximal utilitarian welfare. For each instance size, a run is an instance (including an
initial allocation) on which we apply the different methods mentioned, i.e. for C2 deals are performed
until a stable allocation is reached. Average values are computed over 2000 runs.

Figure 4: Mean value of swu
under impartial culture

Figure 5: Mean value of swu
under single-peaked preferences

It can first be observed that the outcomes provide fairly high values of social welfare (above 90%
of the theoretically max value). Under impartial culture, it can also be noticed that C3 provides no
improvement over C2 for small size instances, and then from n = 10 this improvement is rather small:
an almost constant 1%. Under single-peaked preferences, we obtained similar results.

The results under single-peaked preferences also show that the social welfare values are on average
higher (above 95%) than under impartial culture. These experiments also support the very good
behaviour of C2 under single-peaked preferences relatively to other procedures: for instance, we see
that it slightly outperforms TTC (as mentioned before, both procedures are guaranteed to return
Pareto-optimal allocations under this culture).

2.5.5 Egalitarian social welfare

Previous worst-case and average results studied the efficiency of the allocation. We can also investigate
the fairness of the procedures and consider the egalitarian social welfare of the outcomes.
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Worst-case analysis

The price of anarchy and the price of short cycles can be revised to study worst-case egalitarian social
welfare. To avoid confusion, they will be denoted respectively PoAeg and PoSCeg.

In house allocation settings, there is no guarantee on the gap that can exist between the optimal
and the worst egalitarian welfare. In fact, there exists some instances where the initial allocation A is
such that swe(A) = 1 and no cycle-deals are possible whereas the allocation where all the agents get
their top item is possible.

Example 5. Consider the following instance and allocation:

agent 1 : r1 � rn � . . .

agent 2 : r2 � r1 � . . .

agent 3 : r3 � r2 � . . .

agent 4 : r4 � r3 � . . .
...
agent n-1 : rn−1 � rn−2 � . . .

agent n : rn � . . . � . . . � rn−1 � rn−2

Take the initial allocation as the “white box” allocation A: it is 2-stable with swe(A) = 2, while the
“yellow box” allocation A′ is the only Pareto-optimal allocation, with swe(A′) = n. It can be checked
that a Cn reallocation of resources could lead from A to A′.

We thus obtain the following results:

Proposition 6. All individually rational procedure have PoAeg = Θ(n).

Proposition 7. All Ck procedure with k < n have PoSCeg = Θ(n).

The proofs of these propositions are detailed in (Damamme et al., 2015; Damamme, 2016).

Average-case analysis

We run experiments like the ones described in the previous section but we studied the loss in egalitarian
social welfare. Figures 6 and 7 present average egalitarian social welfare obtained for different sizes of
instances under Impartial Culture and Single Peaked preferences respectively.

Figure 6: Mean value of swe
under impartial culture

Figure 7: Mean value of swe
under single-peaked preferences

It is important to observe that C2 gives very good results especially under impartial culture. In
fact, distributed procedures allow the agents to perform several exchanges. Agents with low-ranked



2.6 fairness in dynamic and partially observable systems 29

resources have thus more opportunity to exchange their resource. On average, the poorest agent will
receive a resource ranked in the top-third of her preferences.

On the other hand, TTC gives poor performance. This is not surprising since the procedure
implements the “best” cycles (i.e. maximizing the utility of the agents) and then discards the resources:
this reduces a lot the range of possible cycles for other agents. Some agents may thus keep low-ranked
(or even their initial) resources, leading to low individual utility.

Under single-peaked preferences, lower values are obtained and tend towards 50% on large instances.
In fact, the likelihood that the agents have correlated preferences is more important. It is thus more
difficult to reach an allocation where all the agents have highly valued resources.

2.5.6 Discussion

In this section, we investigated bilateral deals for distributed resource allocation in house market
settings, under a very simple dynamics that allows the agents to improve their satisfaction without
requiring complex coordination. We provide several new insights to assess the power of this approach in
such settings. Pareto optimality is thus guaranteed under single-peaked preferences. Although worst-
case solutions obtained using bilateral deals can have poor utilitarian welfare, it has been proved that
no other individually rational mechanism (even those involving more than 2 agents) can ever provide
better guarantee about the worst case social welfare. While the “price of short cycles” may be high
in principle, our experimental findings show that in the average case, performances are fairly good in
terms of social welfare.

Instead of allowing the agents autonomously negotiate bilateral deals, one could imagine that a
centralized authority plan ahead a sequence of bilateral deals and the agents then apply exchange strate-
gies in a distributed way. This is a common approach in multiagent planning. However, in (Damamme
et al., 2015), we showed that this is not a realistic solution since we proved NP-completeness of deciding
whether an allocation maximizing utilitarian or egalitarian welfare is reachable.

2.6 Fairness in dynamic and partially observable systems

We now investigate the more general setting where each agent holds k resources (with k ≥ 1). As
before, the agents autonomously negotiate rational deals and modify their allocation by exchanging
resources. A deal consists in a cooperatively rational bilateral swap where one resource is exchanged
against another resource. Agents are assumed to have additive preferences over the resources.

In the following, we will assume that each agent initially holds (and throughout the process) k
resources. This restriction is commonly made as soon as fairness is under consideration (Brams et al.,
2014; Aziz et al., 2016b; Segal-Halevi et al., 2017). It can be readily explained by the fact that
assigning the same number of items to each agent is often regarded as a basic fairness feature. It is
also a requirement in various domains such as course allocation. However, our approach is not limited
to such settings. In fact, it generalizes easily as soon as each agent holds a finite and a priori known
number of resources.

As discussed in Section 2.4, we consider distributed allocation protocols where each agent has
limited visibility of the other agents. Starting from a situation where each agent has a set of items,
and completely ignores how the rest of the resources are allocated, pairwise encounters occur as the
result of the agents’ decisions. As they do so, agents both observe the bundle currently held by the
other agent, and try to agree on rational deals (swaps). Hence, agents have a partial and uncertain
view of the entire allocation, that they maintain throughout the process, and which allows them to
have different estimates of their envy.
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The notion of fairness under incomplete information has been little studied so far. Bouveret et al.
(2010) studied the complexity of fairly dividing a set of indivisible items under ordinal preferences
when knowledge about the preferences of the agents is incomplete.

Recently, Chen and Shah (2017) introduced the notion of Bayesian envy where envy is considered
in expectation over the possible allocations. In fact, each agent has no observation about the other
agent’s bundles but instead she has a prior distribution over the valuations of the other agents. A
posterior probability on the allocations is thus estimated from this prior.

Aziz et al. (2018) studied the notion of epistemic envy where an agent is only aware of the set
of resources allocated to her. An allocation is said to be epistemic envy free if, for each agent i, the
items that are not allocated to her can be distributed among the other agents so that agent i is not
envious of anyone. Epistemic envy-freeness does not exploit any observations about the other agents
and corresponds to an optimistic estimate of the envy.

Departing from our study on distributed house allocation, we investigate how previous results
can be extended to the partially observable context where each agent holds k resources. Whereas we
previously did not make any hypothesis on the dynamics of the system, we now investigate how partial
observability can be handled in the protocol. We will also study the impact of incomplete knowledge
on the evaluation of the allocations. This raises the following issues:

• It is easy to see that the proof of convergence stated in Proposition 1 remains true in this context.
Nonetheless, since the agents have partial observability of the system, distributed termination
detection is an important issue. An efficient distributed procedure has to be designed in order
the agents to be able to detect convergence to a stable state in a distributed way.

• Regarding the efficiency of the allocation, we can generalize previous (negative) optimality re-
sults. We already know that convergence to an allocation maximizing the utilitarian social
welfare is not guaranteed. Without any restriction on the preference domain, a distributed
protocol based on bilateral swap deals is not even guaranteed to reach a Pareto-optimal alloca-
tion. It can nevertheless be asked whether some domain restrictions would allow for providing
optimality guarantees.

• In order to asses fairness of the allocation, we will use the notions of proportionality and envy.
Indeed, in a context where each agent holds several resources, these notions are now fully sig-
nificant. However, because of the partial observability and of the dynamicity of the system, the
agents may have incomplete and incorrect knowledge about the global allocation. The envy ac-
tually experienced by an agent may thus be different from the envy computed by an omniscient
agent knowing exactly the whole allocation. We will see that the usual notion of envy has thus to
be adapted to distributed contexts. We will investigate new definitions of the envy in order each
agent to asses the fairness of an allocation using her history of observations about the system.

• Finally, we will question whether the agents can take advantage of their observations about the
system to guide their decisions and to improve the efficiency of the distributed protocol.

2.6.1 Envy-freeness under incomplete knowledge

We start by investigating knowledge incompleteness and incorrectness arising from partial observability.
We then extend the notion of envy to this setting.

Since agents become aware of their respective bundles when they meet, each agent can maintain a
set of observations describing her knowledge of the whole allocation of resources. Each time an agent
encounters another agents, this set is updated given the new observations. However, agents have no
way of knowing how the allocation evolves besides these encounters. Indeed, an agent is not aware of
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the exchanges made by the other agents. In order to deal with this lack of observation, we shall use
the following principle:

Unless proven otherwise, agents assume resources are still held where they were last ob-
served.

Let us denote by Oji the up-to-date set of resources that i assigns to agent j.
The update process is simple and captured by two rules:

1. upon encountering an agent j, an agent i observes the k items {r1, . . . rk} that agent j currently
holds, and thus updates Oji ← {r1, . . . rk}

2. if an item rl is observed by i upon encountering j while it was supposed to be held by j′ (rl ∈ Oj
′

i ),
then the observation set of this agent is updated: Oj

′

i ← Oj
′

i \ {rl}

Now denote Oi ∪j∈N Oji the set of resources i assigns to someone and Oi = R \ Oi be the set
of items that agent i does not know where to allocate. This set Oi must not be confused with the
set of items that agent i has never observed. Indeed, by virtue of (1), Oi does not necessarily grow
monotonically.

Knowledge incompleteness and incorrectness

Since an agent has no way of knowing how the allocation evolves besides her own observations, her
view may not only be incomplete, but also incorrect. More precisely, for an agent i, we define:

• knowledge incompleteness, as the ratio of the number of items that agent’s i view does not
allocate to some agents:

Kincomp(i) = 1− (|Oi|/(m− k))

• knowledge incorrectness, as the ratio of the number of items that agent’s i view allocates incor-
rectly, over the number of items allocated:

Kincorr(i) = 1− |{o ∈ Oji ∩Aj |j ∈ N}|/| ∪j∈N O
j
i |

where, implicitly, Aj stands for the bundle held by agent j in the actual allocation.

Note in particular that the incorrectness is a ratio over the set of items that agent i assigns to someone.
Thus, it is possible for an agent to have perfectly correct but incomplete view.

Example 6. We picture a scenario involving four agents, and three time-steps (t < t′ < t′′). We take
the point of view of agent 1. Edges represent encounters between the agents at each time-step.

1

{r1, r2}

2

{r3, r4}
O2

1 : {r3, r4}

3

{r5, r6}
O3

1 : {?, ?}

4

{r7, r8}
O4

1 : {?, ?}

1

{r1, r2}

2

{r5, r4}
O2

1 : {r3, r4}

3

{r3, r6}
O3

1 : {?, ?}

4

{r7, r8}
O4

1 : {?, ?}

1

{r1, r2}

2

{r5, r4}
O2

1 : {?, r4}

3

{r3, r6}
O3

1 : {r3, r6}

4

{r7, r8}
O4

1 : {?, ?}

t t′ t′′
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At time t, agent 1 updates her observation set for agent 2. At time t′, an encounter takes place
between agent 2 and agent 3, but agent 1 is not aware of this. At this stage, Kincomp(1) = 4/6, and
Kinccorr(1) = 1/2, since out of the two items that agent 1 can assign to someone in her observation
set, only one is correct. Finally, at time t′′, agent 1 encounters agent 3 and updates her observation
sets for agent 3, but also for agent 2. At this stage, Kincomp(1) = 3/6, and Kincorr(1) = 0.

Evidence-Based envy

Extending the basic notion of envy introduced in (Lipton et al., 2004), we defined the Evidence-Based
Envy (EBE) which stands for an estimate of the degree of envy relatively to a given set of observations.

Definition 19. Evidence-Based Envy
Given the set of observations Oi and an allocation Ai of items, the Evidence-Based Envy experi-

enced by an agent i towards j is defined as:

eij = max(0,ui(Oji )− ui(Ai))

A system is evidence-based envy-free (EBEF) when no agent is envious, based on her observations
only.

Because of the possible incorrectness of knowledge, it is easy to see that “actual” envy-freeness
(as would be evaluated by an omniscient agent observing the true and complete allocation) does not
imply evidence-based envy, nor vice-versa.

Example 7. For a simple example, take three agents, and six resources {r1, r2, r3, r4, r5, r6}, with
u1(r1) = u1(r6) = 0,u1(r2) = u1(r3) = 1,u1(r4) = u1(r5) = 2. Suppose agent 1 holds {r2, r3},
and thus enjoys a utility of 2. Suppose O2

1 = {r1, r4} and O3
1 = {r5, r6} while A2 = {r1, r6} and

A3 = {r4, r5}. This situation can be illustrated as:

1

A1 : {r2, r3}

2

A2 : {r1, r6}
O2

1 : {r1, r4}

3

A3 : {r4, r5}
O3

1 : {r5, r6}

The agent is not EBEF but it would actually be EF for an omniscient agent. By swapping bundles
of observations and actual allocations, we get the opposite. Note that this example does not involve
any incomplete knowledge.

As agents may have incomplete knowledge, it is natural to consider different ways to complete the
observations an agent may have regarding another agent in order to estimate the envy. In (Beynier
et al., 2018b), we investigated different methods to estimate the utility of the other agents’ bundles
based on the utility of non-allocated resources. Let Oi↑[q] (resp. Oi↓[q]) be the top-q (resp. last-q)
elements of Oi, that is, the items not allocated with the q highest (resp. lowest) utility for agent i.

We then defined the following notions of envy:

• optimistic envy of agent j, obtained by completing the missing items by the least valuable:

eOPTij = max(0,ui(Oji ∪Oi↓[k− |O
j
i |])− ui(A))

• pessimistic envy of agent j, obtained by completing the missing items by the most valuable:

ePESij = max(0,ui(Oji ∪Oi↑[k− |O
j
i |])− ui(A))
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• average envy of agent j, obtained by completing the missing items by the average value of the
set Oi:

eAVij = max(0, (ui(Oji ) + (k− |Oji |) · avg(Oi))− ui(A))

Clearly, for any j, it is the case that eOPTij ≤ eAVij ≤ ePESij , and all notions coincide with classical
envy when the observation set of an agent is complete and correct.

Note also that, for an agent i, this induces a partition of the other agents into: (i) agents that he
envies (under optimistic envy), (ii) agents that he does not envy (even under pessimistic envy), and
(iii) agents he may envy (i.e agents not belonging to either (i) or (ii)).

It is worth noticing that, in the absence of a cardinality constraint these notions are of very
limited interested. Indeed, pessimistic envy would mean being envious of j assuming j would get all
the remaining resources.

2.6.2 Negotiation protocol

The dynamics of our system is basically the same as the one used in house-allocation. Nonetheless, as
each agent has several resources, a new decision level is introduced: besides choosing which agent to
contact, the agent has also to decide for the exchange to propose to the other agent.

The dynamics is guided by the agents themselves, and is best described at two levels: (1) at the
global level, agents decide to contact another agent ; and (2) at the local level –once a bilateral contact
has been established– the agents try to exchange resources.

global level: Assuming that each of the n agents holds k resources, an agent has to choose
another agent to contact among n− 1 agents and she has k2 potential swap deals to consider per agent.
The numbers of encounters and proposals before convergence may thus be large. Since, each agent
has no knowledge about the preferences of the others and has partial knowledge on resource owners,
she has not enough information to decide for the most promising agent to encounter nor for the most
valuable exchange to propose. However, each agent can try to make the best use of her observations
about the system.

We developed several informed-heuristics allowing an agent i to decide for the next agent to
encounter. These heuristics exploit, in various ways, information about the time-stamp of the ob-
servations and the utility of the targeted resources. Time-stamps are used to estimate the degree of
certainty of the agent’s knowledge. Intuitively, oldest information should be less reliable than latest
observations.

Heuristics range from random choices to more and more informed choices:
• Random heuristic: select one of the other agents using a uniform distribution.
• Deterministic Time based heuristic: the agent seen for the longest time is selected. In fact,

this decision heuristics consists in randomly ordering the other agents and then following this order.
• Probabilistic Time based heuristic: select one of the other agents using a probability dis-

tribution based on the time-stamp of the last encounter with each other agent. The probability for
agent i to select agent j is then defined as:

pi(aj) =
ageij∑

k∈A,k 6=i ageik

where ageij is the age of the last encounter between agents i and j and is deduced from the
time-stamp of the observations of i related to j.
• Probabilistic Age and Utility based heuristic: select one of the other agents using a scoring

function. Each agent i maintains a matrix Mi of probabilities with m columns and n lines. Mi[l][k] is
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a value in [0, 1] formalizing the likelihood that resource rk is currently held by agent l from the point
of view of agent i. Each time an agent i encounters another agent j, the matrices Mi and Mj of both
agents are updated. Agent i (resp. j) updates the line related to agent j (resp. i) with values in
{0, 1}. For each resource rk held by agent j (resp. i), Mi[j][k] = 1 (resp. Mj [i][k] = 1). Otherwise,
Mi[j][k] = 0 (resp. Mj [i][k] = 0). The other lines of the matrix are updated using a discount factor
γ and the following equation:

Mi[l][k] = γ ∗Mi[l][k] + (1− γ) ∗ 1
n− 2

where 1
n−2 is the probability that agent l holds resource rk assuming that the n− 2 other agents

(different from i and j) have uniform likeliness to hold the resource. In fact, the process consists, for
unobserved resources, to uniformly redistribute a part (tuned by γ) of the probabilities to all agents
not involved in the current encounter. As time passes, probabilities related to unseen resources will
tend to a uniform probability distribution.

In order to decide which agent to contact, agent i then computes a score for each other agent j
using the matrix Mi, his utility function ui and his interest information set:

scorei(j) =
∑

rk∈R|interesti(rk)=AT
Mi[j][k] · ui(rk)

The agent with the highest score is chosen at the end.
It has to be noticed that all time-based heuristics require that each agent has been encountered

at least once. At first, the random heuristic can be used to schedule the first encounter between each
pair of agents.

local level: When two agents encounter each other, they start negotiating some deals using a
turn-based protocol. At her turn, an agent makes a proposal based on her preferences. A proposal is
accepted by the other agent as soon as it is rational from her point of view. If both agents agree on a
deal, the exchange is performed. An encounter is a success if at least one swap deal took place during
the interaction, otherwise it is called a failure.

2.6.3 Distributed convergence detection

In order to improve their utility and decrease their envy, the agents try to agree on bilateral swap deals
as long as some deals are still possible. Since each agent has limited observability of the system and
does not know the preferences of the other agents, detecting the end of the exchanges in a distributed
way is not easy. Moreover, each agent may not have full knowledge about the current owner of each
resource. Agents are thus unable to individually infer the global allocation and detect whether some
exchanges are still possible or not. We proposed a distributed approach allowing each agent to detect
the end of the exchanges and providing guarantees on termination.

Interest information set

Each agent i maintains an interest information set about the resources of the system. In this set, each
resource rk is labeled by a level of interest. In this set, each resource rk is labeled as:

• unattractive (UN), meaning that resource rk is not of interest for the agent, i.e. the value of
rk is less than the value of the worst resource currently held by the agent. Formally rk is not
interesting for the agent iff i.e. ∀rl ∈ Ai, ui(rl) > ui(rk).

For the other (attractive) resources, two further labels are used:
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• to-try (TT) , meaning that the agent may try to obtain rk;

• wait-for-new-resources (WR), meaning that the agent has already tried to obtain rk, and that
the exchange failed. The agent must thus acquire new resources in order to propose (potentially)
better exchanges to the agent holding rk.

The interest information set of each agent is then initialized and updated using the following
procedure:

• Initially, each agent distinguishes attractive resources to try -TT - from uninteresting resources
-UN -

• Each time an agent i encounters another agent j, both agents update their interest information
set.

– If the encounter between agents i and j has lead to an exchange, the agents re-initialize
their interest information set.

– If the agent i (respectively j) realizes that he cannot obtain attractive resources held by
agent j (resp. i). Labels on these resources are then turned to WR.

If the encounter between agents i and j has lead to an exchange, some resources may now not
be of interest for the agents (because the value of the worst resource held by the agent has changed).
Moreover, the agents may now re-try to get some resources previously labeled as WR. Labels of
interest are then re-initialized using the initialization procedure.

Example 8. Consider again the scenario depicted in Example 6 where the preferences of agents 1 and
2 are given by:

r1 r2 r3 r4 r5 r6 r7 r8
agent 1 5 5 8 3 4 1 7 7
agent 2 6 6 3 5 1 4 6 6

Initially, agent 1 holds {r1, r2} and agent 2 holds {r3, r4}. The interest information set of each
agent is initialized as:

r1 r2 r3 r4 r5 r6 r7 r8
agent 1 − − TT UN UN UN TT TT

agent 2 TT TT − − UN TT TT TT

Note that resources held by an agent are not labeled.
At time t, agent 1 encounters agent 2 and they exchange r1 and r3. The agents update their

information set. Resources r3 and r6 become uninteresting for agent 2 since their utilities are less
than the utility of the worst resource held by the agent (i.e. r4). Later, agent 2 proposes to agent 1 to
exchange r4 against r2 but agent 1 refuses since the exchange is not rational from her point of view.
Agent 2 then updates the resources of interest with the label IT (here resource r2).

r1 r2 r3 r4 r5 r6 r7 r8
agent 1 TT − − UN UN UN TT TT

agent 2 − WR UN − UN UN TT TT
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Soundness of the protocol

Thanks to their interest information sets and a limited amount of communication, agents are then able
to efficiently detect termination in a distributed way. Our approach guarantees that termination is
detected only when no more exchange is indeed possible (convergence is indeed reached). In fact, once
an agent has no more resources labeled as TT (to-try), she has tried to obtain all resources preferred
to the ones she currently holds. Some resources can still be of interest for the agent but she knows
that she must wait to try again to obtain one of them. Actually, the agent has to wait for the other
agents to be interested in her resources.

Each agent thus alternates between two execution modes: the active mode where the agent contacts
some other agents and try to exchange resources and the standby mode where the agent waits for some
contact requests. Initially, each agent starts in the active mode.When an agent has no more resource
labeled as TT , she moves to the standby mode where she only waits for contact requests from the
other agents. If another agent contacts her and an exchange is performed, the agent re-initialize her
information set. If at least one resource is labeled as TT , the agent comes out of the standby mode.
In order to allow each agent to individually detect convergence, each agent has to inform the other
agents when she enters and exits the standby mode.

Proposition 8. When all agents are in the standby mode, there is no more possible rational exchange
of resources between the agents.

The proof of this proposition is detailed in (Beynier et al., 2018b).
It has to be noticed that the reverse is not true. Indeed, while there is no more possible exchange

(i.e. convergence is reached), some resources may still be labeled as TT . Although some agents have
incomplete or incorrect knowledge, this does not prevent termination detection since the procedure
only relies on interest information sets and does not account for knowledge on resource location.

Because fairness notions based on observations depend on individual knowledge, it is relevant to
estimate knowledge incorrectness and incompleteness once termination is detected.

Proposition 9. Upon termination, in a system of n agents holding k resources, the total amount of
incorrectness is at most kn(n− 2), and the bound is tight.

In fact, we experimentally showed that this upper bound is too generous and the agents often have
very low incorrectness ratio upon convergence.

2.6.4 Efficiency of the outcomes

In house allocation settings, we showed that Pareto-optimality is guaranteed under single-peaked
preferences (see Section 2.5.3). A natural question is whether such guarantee can still be provided
when the agents hold several resources. In fact, the answer is no. It can be shown that even with two
resources some allocations may be 2-stable but not Pareto-efficient.

Example 9. Non-Pareto efficiency
We give a counter-example. Let consider the following instance involving 3 agents and 2 resources

per agent. It can be checked that preferences are single-peaked.

r1 r2 r3 r4 r5 r6
agent 1 1 2 3 4 5 6
agent 2 1 3 4 5 6 2
agent 3 1 2 4 5 6 3
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The white-box allocation is 2-stable but it is not Pareto-optimal since it is Pareto-dominated by the
allocation where agent 1 holds {r1, r6}, agent 2 holds {r2, r5} and agent 3 holds {r3, r4}. Indeed, we
have:

u1(r1, r6) = 7 ≥ u1(r1, r2) = 3
u2(r2, r5) = 9 ≥ u2(r3, r4) = 9
u3(r3, r4) = 9 ≥ u3(r5, r6) = 9

sequenceability Nonetheless, the solutions obtained using swap deals can be related to the
notion of sequenceability. This later notion relies on a particular allocation protocol: sequences of
sincere choices (also known as picking sequences). This very simple protocol works as follows. A central
authority chooses a sequence of agents before the protocol starts, having as many agents as the number
of objects (some agents may appear several times in the sequence). Then, each agent appearing in the
sequence is asked to choose in turn one object among those that remain. For instance, according to
the sequence 〈1, 2, 2, 1〉, agent 1 is going to choose first, then agent 2 will pick two consecutive objects,
and agent 1 will take the last object. This protocol, actually used in a lot of everyday situations,
has been studied for the first time by Kohler and Chandrasekaran (1971). Later, Brams and Taylor
(2000) have studied a particular version of this protocol, namely alternating sequences, in which the
sequence of agents is restricted to a balanced (〈1, 2, 2, 1...〉) or strict (〈1, 2, 1, 2...〉) alternation of agents.
Bouveret and Lang (2011) have further formalized this protocol.

Definition 20. Let I = 〈N ,R,P〉 be an MARA instance with additive preferences. A sequence of
sincere choices (or simply sequence when the context is clear) is a vector of Nm. We will denote by
S(I) the set of possible sequences for the instance I.

A sequence −→σ is said to generate allocation A iff A can be obtained as a possible result of a non-
deterministic algorithm on input I and −→σ which simply makes agents chose one of their top object at
their turn in the sequence.

Definition 21. An allocation A is said to be sequenceable if there exists a sequence −→σ that generates
A, and non-sequenceable otherwise. For a given instance I, we will denote by s(I) the binary relation
defined by (−→σ ,A) ∈ s(I) if and only if A can be generated by −→σ .

Bouveret and Lemaître (2016) and Aziz et al. (2016b) proved that every Pareto-optimal alloca-
tion is sequenceable. Moreover, Bouveret and Lemaître (2016) proved that there exists, for a given
instance, three classes of allocations: (1) non-sequenceable (therefore non Pareto-optimal) allocations,
(2) sequenceable but non Pareto-optimal allocations, and (3) Pareto-optimal (hence sequenceable)
allocations. These three classes define a “scale of efficiency” that can be used to characterize the
allocations. What is interesting and new here is the intermediate level.

Pareto-optimality can be thought as a reallocation of objects among agents using improving deals
(Sandholm, 1998). In distributed settings, Trading cycles or cycle deals constitute a sub-class of deals
(see Section 2.2.3), which is classical and used, e.g., by Varian (1974, page 79) and Lipton et al. (2004,
Lemma 2.2) in the context of envy-freeness. Trying to link efficiency concepts with various notions of
deals is thus a natural idea.

Intuitively, if it is possible to improve an allocation by applying an improving cycle deal, then
it means that this allocation is inefficient. Reallocating the items according to the deal will make
everyone better-off. It is thus natural to derive a concept of efficiency from this notion of cycle-deal.

Definition 22. An allocation is said to be >-(N ,M)-Cycle Optimal (resp. ≥-(N ,M)-Cycle Optimal)
if it does not admit any strictly (resp. weakly) improving (k,M)-cycle deal for any k ≤ N .

We begin with easy observations. First, ≥-cycle optimality implies >-cycle optimality, and these
two notions become equivalent when the preferences are strict on shares. Moreover, restricting the size
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of the cycles and the size of the bundles exchange yield less possible deals and hence lead to weaker
optimality notions. Note that for N ′ ≤ N and M ′ ≤ M >-(N ,M)-cycle-optimality and ≥-(N ′,M ′)-
cycle-optimality are incomparable. These observations show that cycle-deal optimality notions form
a (non-linear) hierarchy of efficiency concepts of diverse strengths. The natural question is whether
they can be related to sequenceability and Pareto-optimality. Obviously, Pareto-optimality implies
both >-cycle-optimality and ≥-cycle-optimality. An adaptation of the Proposition of Bouveret and
Lemaître (2016) and Aziz et al. (2016b) leads to the following stronger result:

Proposition 10. An allocation A is sequenceable if and only if it is >-n-cycle optimal (with n = |N |).

Interestingly, when preferences are single-peaked, the hierarchy of N -cycle optimality collapses at
the second level:

Proposition 11. If all the preferences are single-peaked (and additive), then an allocation A is ≥-n-
cycle optimal iff it is swap-optimal.

Together with Proposition 10, Proposition 11 gives another interpretation of sequenceability in
this domain:

Corollary 1. If all the preferences are single-peaked (and additive), then an allocation A is sequence-
able if and only if it is swap-optimal.

The proofs of these propositions and of this corollary are detailed in (Beynier et al., 2018).

2.6.5 Fairness of the outcomes

Several experiments have been developed to study the dynamics and the fairness of the distributed
resource allocation protocol. Experiments first showed that our distributed protocol leads to low
degrees of envy. We observed that agents get less envious as the numbers of agents and resources
increases. In fact, the more agents there are in the system, the more opportunities there are for
each agent to exchange her resources. Each agent has a greater likelihood to find another agent with
whom she can make an exchange and obtain more preferred resources. We also observed that even for
small numbers of agents, the ratio of proportional outcomes is quite high. The same trends can be
observed while increasing the number of resources per agent, which is expected (Dickerson et al., 2014).
Beyond 9 resources per agent, almost all outcomes are proportional. Recall that proportionality is
less demanding than envy-freeness (Bouveret and Lemaître, 2016).

Even if agents have partial observation of the system, they obtain, at the end, high knowledge
completeness and correctness ratios. We then experimented the influence of the informed heuristics
on the fairness of the outcomes by looking at the final envy (computed by an omniscient agent) and the
Evidence-Based Envy. We observed that the heuristics have little influence on the final envy. Indeed,
since the agents keep meeting each other and exchanging resources until no more deal is possible, we
obtain in average nearly equivalent allocations. However, heuristics influence the length of the process
before convergence. We observed that time-based heuristics lead to smaller numbers of encounters and
proposals since they provide more efficient contact decisions. The agents are more likely to contact
some agents that are willing to exchange valuable resources. These heuristics allow the agents to
converge more quickly without loss in fairness.

2.6.6 Discussion

In this section, we extended our work on house-allocation to the more general context where each agent
holds several resources. Although the procedure based on bilateral deals is guaranteed to converge,
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we showed that no guarantees on the optimality of the outcomes can be provided even in restricted
domains of preferences. In fact, these negative results arise from the limitations of bilateral exchanges.
Indeed, k−deals may not always be decomposed as a series of rational bilateral deals. This is the price
to pay for the simplicity of our protocol which avoids to search over an exponential number of deals
at the local level, and an exponential number of groups of agents at the global level.

We also studied issues dealing with partial observability. In particular, we introduced new notions
of envy-freeness accounting for incomplete and incorrect knowledge. These measures allow the agents
to asses locally the fairness of an allocation and give good estimates of the actual envy.

Finally, we provided a fully distributed protocol allowing to guarantee termination despite imper-
fect knowledge of the agents. We investigated experimentally the performance of this system, testing
in particular several heuristics governing agents’ decision-making both at the agent’s selection and
bilateral negotiation stage. Surprisingly, heuristics have little effect on the fairness of the outcomes.
In fact, the dynamics of the system does not limit the number of resource exchanges and allows the
agents to reach (at the end) equivalent solutions. Nonetheless, heuristics influence the numbers of
encounters and exchanges performed before convergence. They are thus especially useful under time
constraints or limitations on the number of exchanges. In such contexts, it has to be noticed that our
distributed process has anytime properties.

2.7 Networked exchanges

Until now, it has been supposed that each agent can interact with any other agent. However, it is
quite natural to consider that each agent can perceive only a subset of the agents and can only trade
with these agents. Such acquaintances can be modeled by a social network.

This later notion was first introduced in social sciences. Indeed, the analysis of social networks
and their impact on the behaviors of the individuals is a prominent topic of research especially in
sociology and economics (Burt, 1982; Jackson, 2008; David and Jon, 2010). Among other issues, one
topic of interest in these domains is how the structure of the network influence the exchanges between
rational agents.

A social network is modeled as an undirected graph G = (N ,E) where the nodes represent the
agents and two agents i and j are directly connected in the graph if they can interact. It has to
be noticed that the network is not necessarily limited to the representation of social or economical
relationships but can also reflect other kinds of constraints on interactions such as spatial constraints
(proximity constraints for instance).

In multiagent resource allocation, the edges of the graph may have different degrees of expres-
siveness. The network first models the limited visibility of the agents. Two agents are thus directly
connected if they can observe each other set of resources. In cake-cutting settings, Abebe et al. (2017)
and Bei et al. (2017) investigated fairness issues in MARA problems where an agent can only compare
her share with the ones of her neighbors in the social network. In the context of fair allocation of
indivisible resources, Aziz et al. (2018) extends the standard notion of envy-freeness to take the limited
visibility of the agents on a social graph.

In distributed contexts, the network also structures the exchanges between the agents. Chevaleyre
et al. (2007c) introduced the notion of negotiation topology which is equivalent to a social network.
The graph formalizes visibility relations between the agents but also represents the possible trading
interactions. A deal is possible if it only involves agents belonging to a same clique in the graph.

As social networks limit potential interactions, we can question how these restrictions affect the
allocation process. One the one hand, each agent has less possible interactions to consider with the
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other agents and the decision should be easier. On the other hand, the paths taken by the resources
among the agents are much less numerous and the risk that a resource remains blocked at a given agent
is more important. Reaching an efficient or fair allocation thus often requires a careful scheduling of
the exchanges. In general, it is more difficult to reach an efficient state in a social network (Chevaleyre
et al., 2007c).

As it can be observed in the following example, the network topology plays a crucial role on the
complexity of the allocation process and on the efficiency and the fairness of the outcomes.

Example 10. Reaching a Pareto-efficienct allocation on a star
Let us consider a social network involving 4 agents where each agent is connected to only one

central agent. This kind of topology is referred to as a “star”.

1

�1: r4 � r3 � r2 � r1

2

�2: r1 � r2 � r3 � r4

3

�3: r2 � r1 � r3 � r4

4

�4: r3 � r1 � r4 � r2

Each agent may obtain her top resources if the exchanges follow a specific schedule: agent 2 must
first exchange r2 with the center of the star (agent 1), then agent 3 must swap her resource r3 with r2
held by agent 1 and finally agent 4 must swap r4 with r3 now held by agent 1.

If 1 first exchanges the resource r1 with agent 3 or agent 4, the outcome would not be Pareto-
efficient.

2.7.1 Efficiency on social networks

Gourvès et al. (2017) analyzed the computational complexity of decision problems related to bilateral
swap-deals along a social network. They consider the same context as the one we investigated in
Section 2.5 but they enrich the problem description with an undirected graph formalizing possible
interactions among the agents. They consider several restrictions on the network topology such as the
line or the star.

Besides providing complexity results in the general case, they also study how the topology influ-
ences the complexity of (i) deciding whether an object or an allocation is reachable, (ii) finding a
reachable Pareto-efficient allocation. Notably, they proved that deciding if an allocation is reachable
is NP-complete and computing a sequence of swaps to reach a Pareto-efficient allocation is NP-hard.
Nonetheless, polynomial time algorithms can return a Pareto-efficient allocation for two specific topolo-
gies: the star and the path. Moreover, when the graph is a tree, the reachable assignment problem
can be solved in polynomial time.

2.7.2 Fairness on social networks

As mentioned before, proportionality can be computed in a distributed way and does not require full
knowledge of the whole allocation. In fact, an agent is able to decide if she gets a proportional share
as soon as she is aware of her own share, of the number of agents in the system and of the set of
resources R in the system. Nonetheless, in a social network, an agent may only be interested in the
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shares of her neighbors. Abebe et al. (2017) thus introduced the notion of local proportionality where
each agent compares the value of her share with the average value of her neighbors.

Envy-freeness on graphs

The envy is very sensitive to the information available to agents. The notion of envy can also naturally
be extended to account for the topology of the social graph. Intuitively, an allocation will be locally
envy-free if none of the agents envy her neighbors. This notion has also been referred to as graph-envy-
freeness (Chevaleyre et al., 2017). In the case of a complete network, local-envy-freeness is equivalent
to the notion of envy we have previously introduced.

In house allocation problems, an allocation is envy-free in a complete graph if and only if each
agent gets her top object and this is obviously also a Pareto-optimal allocation in that case (recall
our previous discussion on envy in the context of house-allocation). However, when an agent is only
connected to a subset of the other agents, the envy becomes a much more interesting notion. Indeed,
an agent may not need to get her top-resource to be envy-free. The locations of the resources on the
graph as well as the connections between the agents are then crucial issues in order to compute a
locally envy-free allocation.

Example 11. Envy-free allocation on a line
To see how the network can make a difference, consider consider the following scenario.

1

�1: r1 � r2 � r3

2

�2: r2 � r1 � r3

3

�1: r1 � r3 � r2

If the agents could observe all the other agents, none of the allocations is envy-free.
If each agent only observes the bundles of her neighbors, the white-box allocation is locally-envy-

free. Note that a local envy-free allocation is not necessarily Pareto-optimal (take the same allocation,
but the ranking of agent 1 to be �1: r3 � r1 � r2) but giving her top item to each agent if possible will
always be an envy-free Pareto-optimal allocation in any network.

It is important to note that unlike evidence-based envy, local envy assumes full and correct knowl-
edge of the resources held by the neighbors but the agents have no knowledge on their non-neighbors.

Complexity results

In (Beynier et al., 2018a), we investigated the problem of deciding if a central planner, who has a
complete knowledge of the social network and the agents’ rankings of the objects, can allocate the
objects such that no agent will envy a neighbor3. In house-allocation problem, we identified intractable
and tractable cases of this decision problem with respect to the number of neighbors of each agent,
that is the degree of the nodes in the graph representing the social network.

It has been proved that deciding whether a locally envy-free allocation exists is NP-complete
on a line, or on a circle, and more generally on graphs of maximum degree k for k ≥ 1 constant.
Nonetheless, if the social graph is dense enough, then deciding whether a locally envy-free allocation
exists is solvable in polynomial time. In fact, whether a locally envy-free allocation exists in graphs
of minimum degree n− 2 is solvable in polynomial time.

Another relevant parameter is the size of a vertex cover. A subset of agents N ′ forms a vertex
cover of the social network if every agent is either in N ′, or at least one of her neighbors is in N ′. We
provided an algorithm which shows that deciding local envy-freeness is in XP (parameterized by the

3 It has to be noticed that Bredereck et al. (2018) studied, at the same time, closely related complexity issues on directed
social graphs.
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size of a vertex cover) and a proof of W[1]-hardness. This means that this problem is unlikely to be
fixed-parameter tractable with the vertex cover size as parameter.

We also considered optimization problems with two different perspectives. The first one consists in
maximizing the number of locally envy-free agents, and the other one consists in maximizing the degree
of non-envy of the society. Some approximation algorithms have been provided for both approaches.
For maximizing the number of locally envy-free agents, our algorithm gives an |I|n approximation with
|I| the size of an independent set in the social network. For maximizing the degree of non-envy, a
derandomization technique based on the minimization of a conditional expectation, has been proposed.
This algorithm is a polynomial-time 5

6 − o(1) approximation algorithm.

Finally, some experiments were drawn to test the likelihood to find a locally envy-free allocation
as the degree of the graph augments. This likelihood clearly decreases (in the extreme case of a
complete graph, recall that all agents must have a different preferred item). Under impartial culture,
experiments showed that this decrease is sharp and from a degree equal to half of the agents, it
actually becomes highly unlikely to find a locally envy-free allocation. On the other hand, for graphs
of small degrees, it is often the case that a locally envy-free allocation can be found, and, as expected,
it becomes even more so as the number of agents and items increases.

2.7.3 Discusssion

From Example 11 it may be objected that agent 3 may still be envious of agent 1, because she knows
that this agent must have received the item agent 2 didn’t get, i.e. r1. In (Beynier et al., 2018a) and
(Beynier et al., 2018b), we provided several counter-arguments for that. First, as a technical response,
note that in general agents would not know exactly who gets the items they do not see. Envy is
intuitively a notion which needs to be “targeted” to someone. Being envious “of someone” without
further precision may seem at odd with the very notion of envy. The second reason is that it is actually
difficult, for an agent, to decide whether she is envious of someone. Thus, although agents may know
that they must be envious of some agents, they cannot identify which one, which makes a significant
difference in the case of envy. Our second point is more fundamental and concerns the model and the
motivation of the work. In fact, another interpretation of the meaning of links in the graph is that
they may represent envy the central authority is concerned with. In other words, although there may
theoretically be envy among all agents, the central authority may have reasons to only focus on some
of these envy links. For instance, you may wish to avoid envy among members of the same team in
your organization, because they actually work together on a daily basis (in that case links may capture
team relationships).

Aziz et al. (2018) take a different point of view and extended the notion of epistemic-envy to graph-
envy-freeness. An agent is graph-epistemic-envy-free (G-EEF) if she does not envy her neighbors in
the current allocation and there exists an allocation of the unseen items among unobserved agents
such that the agent does not envy none of them. In this framework, the graph restricts the visibility
of the agents but the envy is not limited to the neighbors and may concern unobserved agents.

2.8 Perspectives

The work developed in this chapter has been mainly conducted over the last 5 years. This is still an
ongoing work with various perspectives.
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fairness in social graphs The first immediate perspective of this work is to carry on our
work on fair allocation in social networks and to extend our contributions on distributed procedures to
this context. It would be interesting to investigate the fairness of the allocations obtained by allowing
the agents to negotiate bilateral deals with their neighbors. Although, it can be expected that the
Price of Anarchy would be high, we can hope that good results could be obtained on average. Further
experiments need to be developed to support the power of swap deals in social networks.

If the observations about the other agents are costly (if the agents obtain observations from com-
munication for instance) or are subjected to time or spatial constraints, an agent may not be able to
observe the items of her neighbors at all time. It would thus be interesting to merge both notions of
local-envy and evidence-based envy in order to introduce local-evidence-based envy. In fact, our no-
tion of evidence-based envy can be viewed as an envy measurement in an underlying dynamic graphs
where an edge between two agents is added to the graph once the agents has established a contact and
this edge is removed at the end of the encounter. Nonetheless, in a social network, an agent may not
observe all the other agents. In this context, our distributed procedure to detect termination needs
to be adapted since an agent may not observe all the resources she would like to obtain. In fact, the
agent may be unable to remove all to-try labels and to move into the standby mode.

Until now, we considered that the agents observe little information about the other agents. One
can imagine that the agents would be able to obtain more knowledge about the other agents (or part
of them). For instance, in a social network, an agent could be able to observe the preferences of her
neighbors and/or the resources of the agents in a range of k edges. It would then be interesting to
investigate how the value of k influences the complexity and the likelihood to find a fair allocation.

Finally, if no fair allocation can be found in a social graph, we can question which modifications
of the graph would allow for finding an envy-free solution. The first approach consists in removing
some of the connections between the agents. The problem can thus be defined as the minimization of
the number of edges to remove in order an envy-free allocation to exist. Another approach consists in
switching the positions of the agents in the graph. The problem could be defined as the minimization
of the number of swaps (of agents) in order to allow for an envy-free allocation.

other fairness notions In this chapter, we mainly focused on envy-free allocations. But as
we have seen, the existence of an envy-free allocation cannot be guaranteed and even when an envy-free
allocation exists, computing such an allocation can be computationally hard. Other fairness notions
have been proposed such as max-min fair-share, min-max fair share, proportionality, competitive
equilibrium from equal incomes. Bouveret and Lemaître (2016) proposed a hierarchy to characterize
the level of fairness of these notions. On the other hand, several works proposed some approximations
of the envy-freeness notion such as envy-freeness up to one good (Lipton et al., 2004), envy-freeness
up to any good or pairwise max-min fair share (Caragiannis et al., 2016). Recently, Amanatidis et al.
(2018) studied the relations between some fairness notions and their relaxations.

In our context, it would be interesting to consider these different fairness notions and relaxations,
and to study whether some guarantees could be provided regarding the outcomes of our allocation
protocols. Furthermore, to our knowledge, these notions have never been investigated in the context
of social networks. This open up promising perspectives to relax the notion of local envy-freeness.

preference models In this chapter, the preferences of the agents were represented by additive
functions. Another line of research is to consider more general preference functions allowing for
synergies between the resources.

k-additive functions are useful to represent problems where positive or negative synergies between
the resources are limited to bundles of at most k elements (Chevaleyre et al., 2007b). An important is-
sue is to determine whether our theoretical results still hold under k-additive functions. It is expected
that convergence to Pareto-optimal or fair allocation cannot be guaranteed under k-additive prefer-
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ences. Nonetheless, we can question if some domain restrictions or some types of deals could provide
efficiency and/or fairness guarantees. One promising type of deals to consider are cycle-deals. It has
to be noticed that, in a distributed allocation context, Chevaleyre et al. (2017) provided convergence
guarantees toward an efficient envy-free allocation when functions are super-modular and monetary
side payments are allowed. To our knowledge, similar results without monetary side payments have
never been described.

distributed decision making Until now, the decisions of the agents have been only based
on direct observations. It would be relevant to allow the agents to infer new knowledge from these
observations. This coincides with our comment made earlier in Section 2.7.3. From the location of
observed resources, an agent can indeed infer (even uncertain) knowledge on the location of unobserved
resources. Some knowledge on the preferences of the other agents could also be deduced from the
success or the failure of the exchanges. This additional knowledge could be then exploited to refine
the decisions of the agents.

A related direction is to allow the agents to plan ahead the swaps of resources. So far, we have
considered myopic agents performing rational deals that immediately improve their utility. Although
we showed that the computational complexity of searching for a Pareto-optimal or a fair allocation
is high in the general case, we could consider an intermediate approach where the agents plan ahead
over h decision steps and select the best plan over this planning horizon. The agents would be able
to accept non-rational deals to make better deals in the future.

In (Beynier and Estivie, 2013), we started investigating a multiagent planning approach to com-
pute such policies using Decentralized Markov Decision Processes (see Section 3.2.2). One of the
main difficulty is to model the possible outcomes of the encounters. Markovian models postulate the
existence of a probabilistic representation of the uncertainty on action outcomes. In MARA problems,
such probabilistic representations are not always available to each agent. As we will discuss in the
next chapter, another difficulty is the high computational complexity of planning algorithms.

procedural fairness In our work, the notion of fairness have been investigated from the
point of view of the final allocation. A complementary approach is to assess the fairness of the
allocation procedure. As argued in Experimental Economics, people are not only concerned with the
final allocation but also take into account their perception of the allocation process. In Economics, the
fairness of the allocation process is referred to as procedural justice and differs from distributive justice
which deals with the fairness of the outcome (Thibaut et al., 1974). Experiments from economics
suggest that empowering the agents in an allocation procedure leads to higher fairness perception. In
fact, allocation processes giving more voice to the agents are perceived as more fair (Shor, 2009).

One interesting issue is to develop some experiments to evaluate the fairness perception of dis-
tributed procedures based on bilateral swaps compared to other procedures such as picking sequences
or serial dictatorship (Kohler and Chandrasekaran, 1971; Bouveret and Lang, 2011). It is expected
that such experiments would strengthen even more the relevance of this distributed protocol.
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M U LT I AG E N T P L A N N I N G U N D E R
U N C E RTA I N T Y

In the previous chapter, we envisioned rationality from a myopic point of view. In fact, an action (in
this case, a deal) was considered as being rational for an agent if and only if it immediately increases
her utility. Nonetheless, when an agent has to make a sequence of decisions, it is important to look
ahead to the consequences of the agent’s current decision on future states and executable actions.
Hence, an action can provide no immediate gain (or even incurs a cost) but could allow the agent
to reach, at a later stage, more valuable states or to execute more valuable actions. In sequential
decision making, the rationality criterion should take into account short-term and long-term impacts
of decisions, whenever possible.

Nonetheless, anticipating the effects of an action is not that simple. Indeed, as explained in the
Introduction of the document, agents acting in real-world environments often have partial observability
of the system and may not have enough information to determine exactly the effects of the actions.
Moreover, the dynamics of the environment is often uncertain and a single action may have different
issues. When uncertainty can be modeled by probability distributions1 (Neumann and Morgenstern,
1953; Bernoulli, 1954). This principle says that a rational agent should choose the action that yields
the maximum expected utility. In fact, in such settings, the utility of a state is defined as the expected
utility over the sequences of states that might follow. This sequence of states depends on the actions
executed by the agent, i.e. the policy π of the agent. The utility of a state is thus defined as the
expected sum of discounted rewards under policy π (Russell and Norvig, 2003; Bellman, 2003). The
utility of state s under π is defined as the expected discounted sum of rewards of the next states when
executing the policy π from state s:

Uπ(s) = E

[ ∞∑
t=0

γtR(st)|π, s0 = s

]
(1)

where R(st) denotes the immediate gain of the agent for being in s at t, γ is a discount factor
(γ ∈ [0, 1[) weighting short-term and long-term rewards.

In multiagent settings, each agent is assumed to take her own decisions autonomously. An individual
strategy πi has thus to be defined for each agent i. Because of interactions, the optimal strategies
of the agents cannot be computed independently (using a set of individual and independent planning
algorithms for instance). In fact, the stochastic changes in the states of the system, and hence the
expected utility of each agent, rely on the joint action, i.e. on the actions taken by all the agents.

In order to optimize her performance, each agent has thus to coordinate her actions with the ones
of the other agents. Nonetheless, because of partial observability, each agent is not fully aware of
the states of the other agents and may have limited information about the state of the environment.
Combined with the uncertainty on action outcomes, this led each agent to be uncertain about the
state of the other agents and about the actions taken by the others.

1 In distributed MARA, building such a probabilistic model of uncertainty requires each agent to know, at least, the
preferences of the other agents. In the previous chapter, preference functions were assumed to be private information.
That’s why we did not consider that each agent has a probabilistic model of the uncertainty.

45
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In this chapter, we investigate sequential multiagent decision-making under uncertainty where a
set of agents have to decide, in a distributed way, how to act given partial observations about the
system. We focus on cooperative systems where the agents aim at maximizing a shared objective
function. Multiagent planning consists in computing a plan (or strategy) for each agent such as each
agent can take, at each decision step and given her sequence of local observations, the individual action
optimizing the expected utility of the system.

Such multiagent planning problems can be represented by Decentralized Partially Observable
Markov Decision Processes (DEC-POMDPs). This model extends POMDPs to multiagent settings
where control is decentralized. The DEC-POMDP framework is very general and covers a broad
spectrum of optimal distributed control problems. Notably, DEC-POMDPs allow for formalizing co-
ordination problems among teams of mobile robots for exploring unknown environments (Bernstein
et al., 2001; Beynier and Mouaddib, 2011a; Matignon et al., 2012a; Amato et al., 2016) or for pa-
trolling among sensitive areas (Beynier, 2016). Among the wide range of applications covered by
DEC-POMDPs, we can also cite sensor network management (Nair et al., 2005), load balancing in
server networks (Beynier and Mouaddib, 2009) or distributed control on multi-access broadcast chan-
nels (Ooi and Wornell, 1996).

Nonetheless, despite the genericity of the model, applying DEC-POMDPs to real-world problems
remains difficult in practice. Several reasons can explain the gap between DEC-POMDPs and real-
world applications. First, solving a DEC-POMDP has a high computational complexity. Although
significant advances have been made recently to improve the efficiency of solving methods, the scala-
bility of DEC-POMDPs is still limited, making the framework difficult to be used to solve real-world
problems. Moreover, most existing solving algorithms consists in centrally computing a joint policy be-
fore the execution (off-line centralized planning). As we will discuss later, such a planning entity may
not be available in practice. Finally, time and action representations are very general and the standard
DEC-POMDP model does not allow for formalizing constraints on action execution. If the optimal
solution is computed without handling the constraints of the problem, the performances obtained in
practice may be significantly lower than those provided theoretically.

The work presented in this chapter aims at improving the applicability of the DEC-POMDP frame-
work. We first study issues dealing with modeling different kinds of constraints in DEC-POMDPs
such as temporal and resource constraints or dependencies between actions. We then propose ap-
proximate approaches for solving DEC-POMDPs that take into account constraints on actions. Our
approach consists in exploiting the structure of the interactions in order to scale up and to be able
to consider sizes of problems such as those encountered in real-world applications. In particular, we
focus on distributed planning methods and pay particular attention to the efficiency and scalability
of our algorithms. Finally, we study non-stationary settings where the dynamics of the system change
over time and the agents need to detect these changes to adapt their strategies accordingly.

The contributions presented in this chapter have been motivated by real-world applications. Several
issues stem from multi-robot planning problems and has led to some implementations on real mobile
robots.

3.1 Research context

The work presented in this chapter has been initiated during my PhD supervised by Abdel-Illah
Mouaddib at the GREYC lab in the University of Caen - Normandie. I have then pursued this
work over the last decade. The work on DEC-POMDP models and algorithms have initially been
motivated by multirobot exploration scenarios and implemented on real-robots at the GREYC. Part
of the work on Dec-MDP and MDP decomposition have been developed during the PhD co-supervision
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of Guillaume Lozenguez (co-supervision with Abdel-Illah Mouaddib fom the GREYC, Lounis Adouane
and Philippe Martinet from the LASMEA in Clermont-Ferrand). The results obtained during this
PhD were implemented on Pioneer robots and deployed on the PAVIN platform in Clermont-Ferrand.
Finally, the work on non-standard Markovian models (especially on non-stationary environment) has
been developed in collaboration with Paul Weng and our PhD student Emmanuel Hadoux.

3.2 Background on Markov Decision Processes

In this section, we review the various Markov decision models and introduce solving methods to plan
the decisions of the agents. We end this section with a discussion about the current limitations of
these models.

Markov Decision Processes (MDPs) and Partially Observable Markov Decision Processes (POMDPs)
are standard formal frameworks for modeling and solving single-agent sequential decision problems un-
der uncertainty. The Decentralized Partially Observable Markov Decision Processes (DEC-POMDPs)
extend these models to cooperative multiagent sequential decision making. These models make the
Markov assumption that is, the probability distribution over the next states depends only upon the
current state of the system and the action taken. Moreover, transition and reward functions are
assumed to be stationary, i.e. they do not change over time.

3.2.1 Single-agent decision making

Markov Decision Processes extend Markov chains to decision-making problems where the current state
of the system is exactly observed (Puterman, 1994). At each time-step, an agent chooses an action to
execute that influences transition probabilities over the next states.

Definition 23. Markov Decision Processes
A Markov Decision Process is defined as a tuple 〈S,A,T ,R〉 with:

• S, a finite set of states,

• A, a finite set of actions,

• T : S ×A → Pr(S), a transition function over the states,

• R : S ×A → R, a reward function.

The transition function formalizes the probabilistic outcomes of the actions. T (s′|a, s) is the prob-
ability of reaching state s′ from state s after performing action a.

The reward function specifies the objectives of the agent. R(s, a) is the reward obtained by the
agent when action a is performed from state s.

A solution for an MDP is a policy π, i.e. a sequence (δ0, δ1, . . . , δt, . . .) of decision rules where
δt : S → A dictates to the agent which action to take for each state at time-step t. The horizon of
the decision problem defines the number of steps during which the agent has to take decisions. The
horizon can be finite or infinite.

A policy π can be valued at time-step t by the following equation that computes the expected
discounted total reward from state s:

V δt(s) = R(s, δt(s)) + γ
∑
s′∈S

T (s′|s, δt(s))× V δt+1(s′) (2)
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The value V δt(s) is defined as the immediate reward obtained by the agent (R(s, δt(s))) plus the
weighted sum of the values of the next states s′ when the policy π = (δ0, δ1, . . . , δt, . . .) is applied. V
is referred to as the value function of π and Equation 2 is the Bellman equation (Bellman, 1957).

Optimally solving an MDP consists in identifying a policy π∗ that maximizes the expected dis-
counted sum of rewards:

π∗(s) = arg max
a

R(s, a) + γ
∑
s′∈S

T (s′|s, a)× V π∗(s′)

 (3)

Interestingly, it has been proved that the optimal policy of an MDP is stationary, i.e. for each
time-step t, δt = δ0. An optimal policy is thus a decision rule mapping each state s to an action a.
The most widespread algorithms for optimally solving MDPs are the Value Iteration (Bellman, 1957)
and the Policy Iteration (Howard, 1970) algorithms.

Decision Making under partial observability

Unfortunately, in many sequential decision problems, the agent is not able to have full knowledge about
the state of the system at each decision step. Instead, after each action, the agent receives partial
information (observations) about this state and must take decisions on the basis of these observations.
The Partially Observable Markov Decision Process (POMDP) model (Puterman, 1994) extends MDPs
to partially observable settings.

Definition 24. Partially Observable Markov Decision Processes
A Partially Observable Markov Decision Process is defined as a tuple 〈S,A,T ,R,O, Ω〉 with:

• S,A,T ,R as defined for MDPs,

• O, a finite set of observations,

• Ω : S ×A → Pr(O), an observation function.

Since the agent cannot observe the state of the system, she has to choose for her next action de-
pending on the sequence of observations o1:t = (o1, o2, · · · , ot) made so far (where ot is the observation
made at time-step t). However, it is not necessary to keep track of this history at each decision step.
The agent can instead compute a probability distribution over states P (st|s0, . . . , st−1) called belief
state that defines the likelihood that the system is in state s at t (Åström, 1965). It has been proved
that maintaining this distribution is sufficient and complete information to make optimal decisions. A
policy is thus a mapping from belief states to actions. A POMDP can be thought as an MDP where
the states are in fact belief states. Nonetheless, it has to be noticed that the state space of such a
belief-MDP is continuous.

Fortunately, in the finite-horizon case, the value function of a POMDP is piecewise-linear-convex
(PWLC) on the space of belief states. Optimal algorithms have thus been proposed to solve POMDPs
such as Witness (Kaelbling et al., 1998) and Incremental Pruning (Cassandra et al., 1997). Neverthe-
less, these algorithms fail to scale to large problems. In fact, finding optimal policies for finite-horizon
POMDPs has been proved to be PSPACE-complete (Papadimitriou and Tsitsiklis, 1987). In the
infinite-horizon case, Madani et al. (2003) proved the undecidability of POMDPs.

Research works have therefore focused on the development of approximate algorithms such as
Heuristic Search Value Iteration (HSVI) (Smith and Simmons, 2004), SARSOP (Kurniawati et al.,
2008) or Point-Based Value Iteration (Pineau et al., 2003).

The Partially Observable Monte-Carlo Planning (POMCP) algorithm (Silver and Veness, 2010)
is currently one of the most efficient online algorithms to approximately solve large-sized POMDPs.
To choose an action at a given time-step, POMCP runs an effective version of Monte-Carlo Tree
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Search (MCTS), called UCT (Upper Confidence Bounds (UCB) applied to Trees) from the current
belief state. This Monte Carlo search uses a black-box simulator of the environment thus avoiding
to explicitly represent probability distributions. The simulator runs a fixed number of simulations
in order to evaluate the actions before performing in the real environment the best one found in the
search tree. Moreover, POMCP uses a particle filter in order to approximate belief states. POMCP is
guaranteed to converge towards the optimal solution as the number of simulations performed by the
simulator increases.

3.2.2 Multiagent decision making

Although POMDPs and MDPs provide powerful frameworks for decision-theoretic planning under
uncertainty, they consider single agent decision problems. The Dec-POMDP2 framework extends
POMDPs and MDPs to multiagent cooperative settings where the agents aim at maximizing a common
performance criterion3. In a Dec-POMDP, each agent receives an individual observation and makes
her decision solely based on her local information about the system (this corresponds to the right part
of Figure 8). In particular, each agent only observes her own actions and does not observe the actions
of the other agents. At each decision step, the transition to the next state and the reward depend on
the joint action taken by all the agents. Since agents are assumed to be cooperative, the immediate
reward for executing a joint action a from a state s is awarded to the team.

Definition 25. DECentralized Partially Observable Markov Decision Processes
A DECentralized Partially Observable Markov Decision Process (Dec-POMDP) (Bernstein et al.,

2002a) is defined as a tuple 〈N ,S,A,T ,O, Ω,R, b0〉 where:

• N = {1, ...,n} is a finite set of n agents,

• S is the finite set of world states s,

• A = {A1 × · · · ×An} is the finite set of possible joint actions a = {a1, ..., an} such as Ai is the
action set of agent i and ai ∈ Ai,

• T is the transition function giving the probability T (s′|s, a) that the system moves to state s′
while executing the joint action a from state s,

• O = {O1 × · · · ×On} is the set of joint observations o = {o1, ..., on} where oi is the individual
observation of agent i,

• Ω is the observation function giving the probability Ω(o|s, a) of observing o when executing the
joint action a from state s,

• R(s, a) is the reward obtained when executing the joint action a from state s,

• b0 is the initial probability distribution over the set of states at t = 0.

As for POMDPs and MDPs, a planning horizon h defines the number of decision steps t ∈
{0, 1, · · · ,h − 1} until the problem terminates. In this document, we focus on finite-horizon Dec-
POMDPs.

2The interested reader can refer to (Amato et al., 2013), (Oliehoek and Amato, 2016) and Chapter 7 of (Kochenderfer
et al., 2015) for a detailed overview of researches related to this framework.

3 In this chapter, we will focus on cooperative agents. Partially Observable Stochastic Games (POSG) generalize Dec-
POMDP to settings where each agent receives an individual rewards (Hansen et al., 2004). This framework is not
addressed in this document.
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Optimally solving a Dec-POMDP consists in finding a joint policy π = {π1, ...,πn} that maximizes
the common performance measure of the agents. In finite horizon problems, the undiscounted expected
sum of rewards is commonly used to define the performance measure to optimize. πi is the individual
cooperative policy of agent i and maps each possible history of observations of the agent i to an
individual action ai. In fact in the multiagent setting it is not sufficient for an agent to maintain a
belief over the states, as it is done in POMDPs. Indeed, each agent is only aware of her own actions
and observations. Hence, an agent does not have access to the actions and the observations of the
other agents. In order to predict the actions of the other agents, a belief for an agent i should specify
probabilities over histories / policies / types / beliefs of the other agents j 6= i (Oliehoek and Amato,
2016).

Centralized off-line planning Distributed execution of the policies

agent 1

agent 2

π1

π2

o1

a1

o2

a2

s→ s′, r

Figure 8: Centralized policy computation and distributed control in Dec-POMDPs

Planning for a Dec-POMDP over a finite horizon h involves searching for an optimal policy over
the set of joint policies of length h. For each decision step t ∈ [0,h− 1], the individual policy of an
agent i maps each possible observation history of length t to an action4. A deterministic individual
policy can be represented as a decision tree. Figure 9 illustrates an individual policy for h = 3 as a
tree. Each node corresponds to an action and each edge is labeled by a possible individual observation.
At t = 0, the agent takes action a1. If she observes o1, the agent then takes at t = 1 action a1. If
she observes o2, the agent then takes at t = 1 action a2. A joint policy for n agents is thus a set of n
policy trees. It has to be noticed that the number of joint policies grows doubly exponentially with the
horizon h. Moreover, evaluating a joint policy takes exponential time in both the number of agents
and the horizon h. It is thus not surprising that optimally solving a finite-horizon Dec-POMDP is
NEXP-Complete (Bernstein et al., 2002a).

It is important to note that most existing algorithms for solving Dec-POMDPs compute a joint
policy in a centralized way. Planning is performed before the execution (also called the “off-line”
phase) by a central entity. Policies are then distributed among the agents and executed individually

4Note that we restrict our discussion to deterministic policy since it has been proved that every Dec-POMDP has at least
one pure optimal policy (Bernstein et al., 2002a).
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Figure 9: An individual policy tree for h = 3

by each agent. This approach is illustrated on Figure 8. The term DECentralized thus only refers to
the control and most solving approaches consist in centralized planning for decentralized control.

Exact algorithms

Several exact algorithms have been proposed to optimally solve finite-horizon Dec-POMDPs. Three
kinds of approaches can be identified: dynamic programming algorithms, heuristic search algorithms
and approaches that convert the Dec-POMDP into a single-agent POMDP.

The dynamic programming algorithm for Dec-POMDP proposed by Hansen et al. (2004) iteratively
generates the policies from the bottom-up. The policy of an agent i from decision step t is represented
as a tree of depth h− t. For each decision step t (from the last one to the first one), the algorithm
proceeds into two stages. It first constructs the possible sub-tree policies at t by adding an action at
the root of the sub-tree policies computed for the decision step t+ 1. The algorithm then eliminates
dominated strategies among the set of sub-tree policies that have just been generated. Although
dynamic programming computes an optimal policy for finite-horizon Dec-POMDPs, the elimination
of dominated strategies is often not sufficient to maintain tractable sets of policies and the algorithm
fails to scale well.

The optimal policy can also be computed in a top-down fashion using heuristic search algorithms.
The Multiagent A* (MAA*) iteratively builds a search-tree where each node of depth t corresponds to
a partial joint-policy for the first t decision steps (Szer et al., 2012). At each iteration, the algorithm
selects a node to expand using a heuristic function and adds to the search tree all possible children
of this node i.e. all policies extending the partial joint policy of the selected node to one further step.
The MAA* algorithm returns an optimal solution but it may require to develop a very large number
of nodes. In the worst case, the algorithm constructs the complete search tree and enumerates all
possible joint policies.

Building on the fact that the optimal policy is computed by a central planner which is aware of the
possible states and joint histories, Dibangoye et al. (2016) proposed to recast the Dec-POMDP prob-
lem as a continuous-state MDP with a piece-wise linear and convex optimal value function. Efficient
POMDP and continuous-state MDP methods can then be used to solve this new formulation. Experi-
ments show that this approach allows for considering significantly longer planning horizons than other
exact approaches. For instance, the multiagent tiger problem (Nair et al., 2003) is currently solved
up to horizon 10 whereas other approaches do not scale up to horizon 5. The recycling robot problem
(Amato et al., 2007) is solved up to horizon 100 whereas other approaches do not scale up to horizon
5. This framework is currently the most efficient approach for optimally solving Dec-POMDPs.



52 multiagent planning under uncertainty

Tractable sub-classes of Dec-POMDPs

Given the computational complexity of Dec-POMDPs, it is natural to wonder if one could identify
some properties of the problems that would reduce the complexity of computing an optimal solution.

full joint observability In analogy to the relationship between POMDPs and MDPs, Dec-
POMDPs can be restricted to settings where the agents jointly fully observe the state of the system,
i.e. where the aggregation of the agents’ local observations allows for deducing the exact state of the
system.

Definition 26. DECentralized Markov Decision Processes
A Decentralized Markov Decision Process (Dec-MDP) is a Dec-POMDP where the state of the

system is jointly fully observable.
More formally, the state of the system is jointly observable if the following condition holds:

If Ω(o = 〈o1, · · · , on〉|s, a) > 0 then Pr(s|〈o1, · · · , on〉) = 1

It has to be noticed that each agent does not individually observe the state of the system and
receives partial observations. As the agents do not share their observations about the system during the
execution, they cannot deduce exactly the state of the system at each time-step. A Dec-MDP is thus
defined (like Dec-POMDPs) as a tuple 〈N ,S,A,T ,O, Ω,R〉 (components related to the observations
cannot be omitted but the initial distribution on the states is known). The complexity of Dec-MDPs
remains the same as the one of Dec-POMDPs (NEXP-complete (Bernstein et al., 2002a)).

independent transitions and observations In various real-world applications, some
independence between the agents. Although the agents aim at maximizing a common performance
measure, they may have independent individual states, the outcomes of their actions may not interact
or their observations may not depend on each other. Different levels of independence have been
investigated and it has been shown that some properties reduce the complexity of the multiagent
sequential decision problem (Goldman and Zilberstein, 2004).

Let first define Factored Dec-MDPs as introduced in (Oliehoek et al., 2008).

Definition 27. Factored Dec-MDP A factored Dec-MDP is a Dec-MDP where the state space can
be decomposed into n+ 1 distinct components such as S = S0× S1× · · · × Sn where Si (with i > 0) is
the state space of agent i and S0 is the set of properties of the environment that is not affected by the
actions of the agents. A state s is an assignment of factors such as s = (s0, s1 · · · , sn) with si ∈ Si.

A factored Dec-MDP is said to be transition independent if the probability that an agent i
moves from a state si to a state s′i only depends on the action taken by the agent i. More formally:

Definition 28. Transition-independent Dec-MDP
A factored Dec-MDP is said to be transition independent if the transition function can be decom-

posed as a product of probabilities such as:

T (s′|s, a) =
n∏
i=1

Ti(s
′
i|si, ai)

This property holds when the agents’ actions do not interact and the outcomes of each individual
action are thus independent of the actions taken by the other agents.

Similarly, it is possible to consider independence of observations.
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Definition 29. Observation-independent Dec-MDP
A factored Dec-MDP is said to be observation independent if the observation function can be

decomposed as a product of probabilities such as:

O(o|s, a) =
n∏
i=1

Oi(oi|si, ai)

This property holds when the observations of an agent i only rely on the action ai taken by agent
i and on the resulting local state si. These independence properties commonly hold when the agents
have limited sensors and perform independent and distant tasks in the environment.

If a Dec-MDP has independent observations and transitions, then the Dec-MDP is locally fully
observable. It has been proved that a Dec-MDP with independent transitions and observations is
NP-complete (Goldman and Zilberstein, 2004). An optimal algorithm, the Coverage Set Algorithm
(CSA), has been developed to solve such Dec-MDPs (Becker et al., 2004).

local interactions In the general Dec-POMDP framework, each agent may interact with any
other agent. Inspired by distributed sensor applications, Nair et al. (2005) proposed the Networked
Distributed POMDP (ND-POMDP) framework to account for locality of interactions. The interactions
are represented as a graph or an hypergraph where each agent i is represented as a vertice and only
interacts with her neighbors in the graph. ND-PODMPs form in fact a sub-class of Dec-POMDPs
with transition and observation independence but without the assumption on joint full observability.
The reward function is decomposed into a sum of rewards over the sets of neighboring agents. ND-
POMDPs have the same worst case complexity as Dec-POMDPs but exploiting the structure of the
reward function leads, in practice, to more efficient algorithms.

Approximate algorithms

Since the scalability of exact algorithms remains quite limited, one can sacrify the optimality require-
ment and focus on finding a good approximate solution.

The main drawback of dynamic programming for Dec-POMDPs is memory requirement. In order
to limit the necessary amount of space, alternatives to the exact dynamic programming (DP) algo-
rithm have been proposed. Seuken and Zilberstein (2007) proposed the Memory Bounded Dynamic
Programming (MBDP) that combines the bottom-up dynamic programming approach with top-down
heuristics to prune the policy trees computed by DP. At each iteration step of the DP algorithm,
heuristics are used to sample the most likely belief states at this step and select the best policy trees
for these belief states. A parameter fixes the maximum number of policy trees that can be selected
at each step of the algorithm. Different approaches have been proposed to improve memory bounded
dynamic programming by tuning observation representations or replacing the full backup performed
at each step of the policy computation (see (Amato et al., 2013) for more details).

Nair et al. (2003) proposed the Joint Equilibrium Based Search for Policies (JESP) algorithm, to
solve transition and observation independent Dec-MDPs. JESP algorithm relies on an alternative
improvement of individual policies: at each iteration, all the individual policies but one are fixed and
a best response to these fixed policies is computed by the remaining agent. It is proved that JESP
algorithm will eventually converge to a Nash equilibrium. Several improvements over JESP have been
proposed to improve policy computation (Nair et al., 2003, 2005; Varakantham et al., 2007).

Mutiagent learning methods

The exact and approximate methods presented so far assume that the dynamics of the problem is
known. In particular, the uncertainty about the system and the agents’ objectives can be represented
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by the functions T , O and R. In complex and/or (partially) unknown environments, defining these
functions comprehensively can be difficult and even impossible. As soon as a simulator of the environ-
ment is available or the agents can train sampled policies in the environment, reinforcement learning
methods can be investigated to solve Dec-POMDPs. One of the key challenges of these methods
consists in providing compact representations of the policies learned (or compact representations of
the value functions learned). Wu et al. (2013) developed a model-free learning approach based on
Expected Maximization to solve infinite-horizon Dec-POMDPs. The approach iteratively improves
Finite State Controllers (FSCs) by first drawing trajectories to estimate the probability on future
states and rewards, and then improving FSCs so as to maximize the reward likelihood. Although EM
methods scale well to large number of agents, they are very sensitive to initial conditions and may
converge to poor local optima.

Very recently, a growing amount of work has been interested in developing Deep Reinforcement
Learning methods to solve Dec-POMDPs (Foerster et al., 2016, 2017; Gupta et al., 2017; Omidshafiei
et al., 2017). These approaches combine Reinforcement Learning and Deep Q-Networks. Experimental
results showed that these approaches are able to handle large state and action spaces. Nonetheless, it
is important to note that most deep RL approaches perform centralized off-line planning and require
a large amount of data to be available (Amato, 2018).

One of the only distributed learning approach has been proposed by Peshkin et al. (2000) and
consists of a gradient descent method for computing policies represented as finite state factored-
controllers in Partially Observable Stochastic Games.

3.2.3 Dec-POMDP limitations

Despite the genericity and the amount of work dedicated to Dec-POMDPs, applying this model to
solve real-world problems remains challenging. Difficulties mainly concern the expressiveness of the
model on the one hand and the applicability of the algorithms to real settings on the other hand.

expressiveness of the model Standard multiagent Markov models assume that all the
actions have the same durations and the agents are thus fully synchronized. Indeed, at each time-step,
all the agents are supposed to take a new decision. Nonetheless, the actions of the agents are often
much more complex: they may last over several time-steps and their duration is usually stochastic.
Hence, at each timestep, some of the agents take new decisions while the others keep on executing
their current actions for an uncertain amount of time.

Different kinds of constraints may be related to the execution of the actions and all actions may
not be executable at each time-step. In fact, the agents may have to respect constraints on the action
execution such as temporal, resource or precedence constraints. Hence, an action may have to start
before a given time-step and to finish before a given deadline. Moreover, some actions may have
to be executed before others can start. Such constraints are not taken into account in the original
Dec-POMDP model.

Finally, Markovian models run under the assumption that the environment is stationary, i.e. the
transition and the reward functions do not evolve over time. In many real-world applications, this
assumption does not hold and the sources of non-stationarity are diverse. For instance, the environment
may change due to external events such as weather variations or because of human activities. In
multiagent systems, from the point of view of an agent, a change of behavior of another agent (e.g.,
due to learning for instance) may affect the stationarity of the environment. Several issues then arise
from the non-stationarity of the environment among which we can mention topics dealing with the
representation of non-stationary environments, the detection of changes in the environment dynamics
and the policy computation.
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applicability of solving methods The computational complexity of optimally solving a
Dec-POMDP furthermore limits the applicability of the model. Although improving the scalability of
Dec-POMDPs has been a very active topics in the research community, optimally solving large size
of problems such as the one encountered in real-world problems remains an open issue. In particular,
the number of agents is a limiting factor. Existing optimal approaches are usually unable to solve
problems involving more than two agents whereas real applications can count tens of agents.

Moreover, most existing algorithms consist in centralized off-line planning. Centralized approaches
make coordination between individual policies easier but they may not be desirable or applicable in
real-world problems. First, even solving small problems requires a huge amount of memory and quickly
becomes untractable for a central planing entity. Distributed planning methods can then be preferred
in order to divide the problem resolution among several entities. Second, when the environment is
highly dynamic or unknown (even partially), the agents may have to adapt their strategies on-line to
unforeseen situations and distributed on-line planning would thus be recommended.

3.2.4 Bridging the gap between real-world and Dec-POMDPs

In order to exemplify the limitations of Dec-POMDP models, we end this section by describing real-
world problems of decentralized control in uncertain and partially observable environments. More
specifically, we consider multi-robot exploring scenarios that have been investigated in our research
work.

Cooperatively exploring an environment with a fleet of robots is a persistent topic in mobile
robotics (Burgard et al., 2005). This problem is encountered in various applications like planetary
rovers (Bernstein et al., 2001), robot rescue (Akin et al., 2013), warehousing (Amato et al., 2015),
surveillance (Kochenderfer et al., 2015), etc. The goal of the robots is to cover an unknown environment
and/or to perform a set of tasks among the environment. In this context, the use of several cooperative
robots improves the capabilities, the reliability and the efficiency of the system.

cooperative exploration of distant planets In (Beynier and Mouaddib, 2011b), we
considered planetary rovers scenarios where a team of heterogeneous rovers aims at performing a set
of exploring tasks (scientific measurements) on a distant planet. Since the environment is unknown,
rovers must deal with uncertainty regarding the duration of actions and the consumption of resources.
Once a day, a mission of a hundred tasks is sent from the Earth to the robots using a satellite. Due
to orbital rotation of the satellite, the agents can communicate with the spatial centre on Earth only
during a specific temporal window. For the rest of the day, the rovers must complete their tasks in
autonomous way. In addition, because of bandwidth limitations and of distance between the robots
and obstacles, the robots are often unable to communicate directly. Rovers are equipped with different
tools and measuring devices so they have to coordinate to perform exploring tasks. Obviously, tasks
may have different lengths and the length of a task may vary depending on execution conditions. To
guarantee valuable task outcomes, temporal and precedence constraints on task execution have also
to be respected. For example, on distant planets, pictures must be taken at sunset or sunrise because
of lighting constraints.

cooperative exploration among a set of points of interest In (Lozenguez et al.,
2012, 2016), we considered multi-rover exploration scenarios where a fleet of rovers has to visit a set of
key-positions (also called “points of interest”) identified by an UAV in an outdoor environment5. Such
planning problems can be met in search and rescue applications (see Introduction of the document)

5This work has been developed as part of the ANR project R-Discover.
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Figure 10: Exploration scenario in-
volving 4 points of interest (a, b, c
and d) Figure 11: Road-Map of the exploration scenario at left

where an UAV (Unmanned Aerial Vehicle) can obtain an overview of the environment and send an
abstract road-map to the robots. Figure 10 exemplifies such a scenario.

A Probabilistic Road-Map (Kavraki et al., 1996) is defined as a graph 〈W ,P 〉 whereW is the set of
way-points (nodes) and P is the set of possible paths in the environment (edges). The set of way-points
W is composed of the points of interest I to visit in addition to the environment way-points (points
around the known obstacles). Figure 11 describes the Road-Map of the scenario depicted in Figure
10. To each path p ∈ P is associated a cost and a probability distribution formalizing the stochastic
outcomes of moving through the path. Each time a rover successfully visits a point of interest, she
obtains a reward related to this key position.

Because of imperfect actuators and of limited and noisy sensing capabilities, exploring robots act
in uncertain and partially observable environments. In particular, moving from a way-point to another
and visiting a point of interest takes an uncertain amount of time. Moreover, because of bandwidth
limitations and limited range of communication, the robots cannot communicate unless they are close
to each other. Hence, effective distributed control methods must be developed to allow each robot to
make cooperative decisions based on local knowledge and observations about the environment and the
other robots.

Such decentralized robotic decision problems naturally fall into the scope of Dec-POMDPs (Bern-
stein et al., 2001; Matignon et al., 2012a; Amato et al., 2015, 2016). However, this general framework
does not handle various characteristics of multi-robot exploration problems such as asynchronous ac-
tion execution and constraints on actions. In (Beynier and Mouaddib, 2011b), we identified three
kinds of constraints that are frequently encountered in multi-robot exploration scenarios and that are
not considered in the original Dec-POMDP framework: temporal constraints, precedence constraints
and resource constraints. Temporal constraints limit time intervals where a task can be executed.
Precedence constraints define dependencies between the tasks and result in dependencies between the
agents. Finally, each agent is initially endowed with a limited amount of resources that are consumed
upon task execution. Executing a task requires power, storage (storing pictures or measurements)
or bandwidth (data communication). Resource constraints must therefore be respected in order to
successfully complete a task.

3.3 Constrained Dec-POMDPs for multi-task planning

The above multi-robot exploration scenarios can be envisioned as multi-task planning problems with
constraints where a set of agents N has to execute a set of tasks T respecting different kinds of
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constraints. A task may consist in exploring a point of interest, moving between two way-points,
making measurements on a site, taking photography, etc.

Based on the study of the application domains described above, we proposed the following charac-
terization of a task:

Definition 30. A task τi ∈ T is characterized by:

• a probability distribution over the finite set of possible durations of the task,

• a probability distribution over the finite set of possible resource consumptions of the task,

• a temporal window TCτi = [ESTτi ,LETτi ] during which the task must be executed. ESTτi
stands for the Earliest possible Start Time of the task and LETτi is the Latest possible End Time
of the task,

• a set of predecessor tasks Predτi that must be finished before τi can start,

• a location in the environment (Cartesian coordinates or a way-point in a toplogical map) de-
scribing spatial constraints related to the execution of the task. Since the number of possible
locations can be infinite, we assume that the environment can be discretized into a finite number
of possible locations. For instance, in a multi-rover scenario, the set of way-points identified in
the road-map corresponds to the possible locations of the agents6,

• a reward rτi related to the importance of the task for the agents.

When an agent tries to execute a task τi at t, the execution of the task succeeds if all the constraints
related to the task are respected. The agent then obtains the reward associated with the task and
can turn to the execution of another task. When the constraints related to a task τi are violated, the
agent fails to execute τi. We distinguish partial failures where the agent can retry to execute the task
later, from permanent failures where the task cannot be executed anymore.

3.3.1 Constraint modeling

In order to solve multi-task planning problems with constraints and to compute valuable joint policies,
we introduce Constrained Dec-POMDPs where the components of the model are defined so as to
formalize constraints on action execution and to handle asynchronous execution of actions. Like
standard Dec-POMDPs, a Constrained Dec-POMDP is defined as a tuple 〈N ,S,A,T , O, Ω,R, b0〉
with the following specific features:

state set S : A state of the system contains all the information that may influence the decision
of the agents. In multi-task execution problems, a state gives the set of already completed tasks.
Because of resource constraints, the level of available resources of each agent must also be specified.
In order to fulfill spatial constraints, the location of each agent has to be registered. Since a task can
last over several time-steps and task durations are stochastic, a state must indicate, for each agent i,
whether i has just completed a task and if not, the start-time of the ongoing task must be stipulated.
In fact, the time already passed to execute a task influences the probability to complete the task at
the next time-step, i.e. it influences transition probabilities over states at the next time-step. Hence,
by specifying the start-times of the tasks, the model complies with the Markov assumption. Finally,
since probabilities on action outcomes rely on the current time t (because of temporal constraints),
the value of t is added to the state description in order the transition function to be stationary.

6The control of moves between two way-points is delegated to a reactive module of lower level in the robot architecture.
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One can notice that the description of the states can be reduced when some kinds of constraints
do not have to be considered. For instance, if a problem does not involve resource constraints, levels
of resources can be omitted from the state description.

action set A: At each time step t, some agents must take a decision about the execution of a
new task while the others keep on executing their current task. Making a decision about a new task
consists in deciding which task to execute next and when. Indeed, because of precedence constraints,
an agent may prefer to wait before starting to execute a task in order to increase the likelihood that
the predecessors of the selected task have been executed. An action thus consists in “Executing task
τi at time t ′” such that t ′ ≥ t (denoted by E (τi , t ′ )). Obviously, the envisioned start-time t ′ must
comply with the earliest possible start-time and the latest possible end-time of the task. In order to
fulfill the requirements of Dec-POMDP models where each agent takes a decision at each time-step,
we also introduce a nop action which is used for the agents who do not take new decisions, i.e. who
are still executing a task.

transition function T : The transition function of the constrained Dec-POMDP has to take
into account constraints on action execution. If precedence or location constraints are not respected
when an agent starts executing a task τi, the execution of the task immediately fails. When prece-
dence and location constraints are fulfilled (i.e. when the execution of the tasks successfully starts),
the probabilistic outcomes of the action can be deduced from probability distributions on resource
consumption and task duration. Indeed, these distributions allow for computing the probabilities on
the end-times of the task and the probability that the agent does not lack of resources during the
execution of the task.

observation set O and function Ω : The observation set and observation function are
similar to the ones proposed in the original Dec-POMDP model. In our context, we assume that each
agent only observes her own actions and is only aware of the outcomes of her tasks. An observation
for an agent thus consists in observing whether her current task has been successfully completed or
not.

In our definition of a constrained Dec-POMDP, each agent is assumed to know her location, the set
of tasks she has completed, their related start-times and end-times and her available level of resources.
The state of the system can be deduced by combining the agents’ partial views of the system. The
problem is thus jointly fully observable and falls into the class of the Dec-MDPs.

reward function R: Each time a task is successfully executed, the agents receive the reward
related to the task.

3.3.2 Complexity of Constrained Dec-MDPs

Although we consider jointly-fully observable problems, our constrained Dec-MDPs are not transition-
independent nor observation-independent. Indeed, due to precedence constraints between the agents,
the probability an agent succeeds to execute a task τi depends on the end-times of the predecessors
tasks of τi. Since these predecessors may be executed by the other agents, transition probabilities
of an agent rely on the other agents’ actions and states. Moreover, the probability to observe the
successful execution of an action depends of the other agents’ actions. Our constrained Dec-MDPs
thus inherit the high complexity of standard Dec-MDPs.

Proposition 12. Optimally solving a Constrained Dec-MDP is NEXP-complete.
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Since the set of tasks to execute is finite and each task has to be executed only once, the planning
horizon of a Constrained Dec-MDP can be upper bounded by the highest Latest End Time of the
task7. It is known that the number of possible joint policies related to a Dec-MDP over a finite horizon
h is:

O
(
|A+|

n(|O+|h−1
|O+|−1

)
where |O+| and |A+| respectively denote the largest individual observation set and the largest

individual action set (Oliehoek, 2012). Moreover, the cost of evaluating such a joint policy is O(|S| ×
|O+|nh).

The size of the problems considered in multi-task decision problems are usually large. In fact, we
aim at considering problems involving at least ten agents and a hundred of tasks. Since the set of
completed tasks and temporal information are modeled in the states and are locally observable, large
state and observation spaces are obtained. Moreover, the number of individual actions is O(|T | ×
|ST+|) where |ST+| is the largest number of possible start-times for a task (at worst |ST+| = h).
Although we considered finite planning horizon problems, the size of the horizon and the size of the
Constrained Dec-MDPs make the problem untractable for optimal algorithms and most approximate
approaches.

3.4 Constrained Dec-MDPs decomposition

Inspired by the success of decomposition techniques to improve the scalability of single-agent MDPs
(Dean and Lin, 1995; Boutilier et al., 1999), we investigated how the structure of constrained Dec-
MDPs can be exploited so that policies can be efficiently computed. The idea is to split the initial
multiagent decision problem into loosely-coupled pieces that could be solved independently, at least
to some extent.

In the following, we will depart from the hypothesis that tasks are allocated among the agents.
In fact, in many application domains such as multi-rover exploration scenarios, the agents often have
different capabilities. Combined with temporal, resource and spatial constraints, it is often possible
to allocate the tasks among the agents before planning their execution (Hanna and Mouaddib, 2002;
Abdallah and Lesser, 2005; Gerkey and Matarić, 2002; Esben et al., 2002). Given an allocation of
the tasks among the agents, the problem is then to plan the start-times of the tasks such that the
agents maximize their performance while respecting precedence, temporal and resource constraints.
In (Lozenguez et al., 2013), we proposed a distributed approach to automatically allocate the tasks
among a fleet of robots. This protocol consists of a series of simultaneous auctions where the agents
evaluate their preferences among the tasks and exchange the tasks.

3.4.1 Decomposition as a set of individual MDPs

In (Beynier and Mouaddib, 2011b), we proposed splitting the initial multi-task and multi-agent plan-
ning problem formalized as a constrained Dec-MDP into a set of MDPs {m1,m2, · · · ,mn} where the
MDP mi formalizes the decision problem of the agent i. The main difficulty of such a decomposi-
tion arises from the definition of individual transition functions because of dependencies between the
agents. The probability that an agent succeeds to execute a task τi depends on the end-times of the
predecessors of τi. Since these predecessor tasks may be executed by the other agents, the transition
probabilities of agent i from a state si rely on the other agents’ actions and states, in particular on the

7Note that a tighter bound can be defined by propagating temporal constraints through the graph of tasks where each
node corresponds to a task and edges represent precedence constraints between the tasks.
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other agents’ strategies. If these strategies are unknown, the transition function of the Constrained
Dec-MDP cannot be directly decomposed as a set of independent individual transition functions.

Decomposing a constrained Dec-MDP consists in defining, for each agent i, an MDP mi =

〈Si,Ai,Ti,Ri〉 with the following components:

• Set of states Si: The states s of the constrained Dec-MDP are decomposed into a set of states
{s1, · · · , si, · · · , sn} where si contains all the information that is relevant to the decisions of
the agent i. In our context, this information consists in the location of the agent i, the set of
tasks completed by agent i, the current time-step t, the resources available to agent i, and the
end-time of the last task executed by i. A state si also records partial failures of the tasks. In
fact, this information gives insights about the other agents: if a task τi partially fails, the agent
can deduce that at least one of the predecessors of τi has not been completed yet.

• Set of actions Ai: The set of actions Ai of agent i contains all the actions related to the
execution of the tasks allocated to agent i plus the nop action.

• Transition function Ti: The individual transition function Ti of an agent i gives the probability
that the agent moves from one state to another when she executes an individual action (Ti :
Si × Si ×Ai). Because of precedence constraints, these probabilities rely on the other agents’
strategies. If the agent i knows the individual policies of the agents j 6= i, she can deduce
probabilities on the end-times of the tasks executed by the other agents. Probabilities on the
outcomes of the tasks allocated to agent i can then be estimated. We proposed to decompose
the constrained Dec-MDP assuming a fixed set of policies for the agents allowing each agent i
to estimate her transition probabilities. As we will explain below, this set of policies will be
iteratively improved while solving the set of individual MDPs.

• Reward function Ri: The individual reward function Ri rewards the agent i each time she
successfully completes a task.

Note that each MDPmi formalizes temporal, precedence and resource constraints on task execution.
The model also handles uncertainty on the duration for each task.

By decomposing a constrained Dec-MDP into a set of individual MDPs, we should break the high
dimensionality of the multiagent decision problem into a set of smaller problems that could be solved
in a distributed way. Instead of solving a Dec-MDP whose complexity is NEXP-complete, we aim
at solving a set of MDPs. Nonetheless, solving these individual MDPs is not that simple. Because
of dependencies between the agents, the individual MDPs cannot be solved independently. Indeed,
the transition function of each individual MDP is defined assuming that the other agents follow some
fixed policies. If these policies change (because the agents compute new strategies for their own MDP),
individual transition functions must be updated.

3.4.2 Distributed policy computation through Opportunity Cost

We proposed a distributed solving approach allowing each agent to compute her own policy given the
individual MDP formalizing her decision problem. This approximate approach consists in a series of
simultaneous iterative improvements of individual policies.

From an individual point of view, each agent has to decide for the start-times of her allocated
tasks. In order to respect precedence constraints, an agent may decide to delay, as far as possible,
the execution of her tasks. Nonetheless, this may prevent the other agents from respecting temporal



3.4 constrained dec-mdps decomposition 61

constraints dealing with their own tasks. For purpose of coordinating the agents, we thus introduced
the notion of Opportunity Cost (OC) to allow each agent to measure the effect of her decisions on the
other agents.

Coordination based on opportunity cost

Opportunity cost is borrowed from economics where it refers to hidden indirect costs associated with
a decision (Wieser, 1889). In our work, we used opportunity cost to measure the effect of an agent’s
decision on the other agents. When an agent i decides when to start the execution of a task τi, her
decision influences all the successor tasks of τi. In order to obtain coordinated behaviors, i must
therefore consider the influence of her actions on the execution of these tasks. In fact, i must consider
the consequences of her decisions on the other agents’ expected value (the agents which execute the
successors of τi). In our approach, we defined the notion of expected opportunity cost to consider the
expected loss in value provoked by the decision of an agent about a task τi on the agents j executing
successor tasks of τi. The opportunity cost induced on an agent j when delaying by ∆t the execution
of her task τj measures the difference between the expect utility of j when she starts the execution of
τj as soon as possible and the expected utility of j when the execution of τj is delayed by ∆t.

We then modified the Bellman equation (Equation 4) to allow each agent i to select the best
action to execute in a state si. The choice of the best action to execute from si results from a trade-off
between the agent’s expected utility and the expected opportunity cost provoked on the other agents:

πi(si) = argmaxE(τi+1,st),st≥t

( Expected Utility︷ ︸︸ ︷
V (E(τi+1, st), si)−

Expected Opportunity Cost︷ ︸︸ ︷
EOC(τi+1, sti+1)

)
(4)

In order for each agent i to estimate the expected opportunity cost on the other agents, the agents
have to communicate opportunity cost values along policy computation. In fact, as an agent computes
her individual policy, she estimates her loss in expected utility induced by the other agents when they
delay the execution of her allocated tasks. Loss values, i.e opportunity cost values, are then sent to the
other agents j 6= i that in turn use this information to update their policies and send new opportunity
cost values. We refer the interested reader to (Beynier and Mouaddib, 2011b) for more explanation
about opportunity cost definition and computation.

Distributed policy computation

In order to implement policy coordination based on expected opportunity cost, we proposed a dis-
tributed algorithm that iteratively improves the initial joint policy used to decompose the constrained
Dec-MDP in order to compute an approximate solution to the multi-task planing problem. At each
iteration k, the transition function of each agent is updated based on the joint policy computed during
the previous iteration k − 1. Each agent has therefore to be aware of all policy updates made by
the other agents and these updates are broadcasted at the end of each iteration. The policy of each
agent is then improved using a value iteration algorithm based on Equation 4. Hence, when an agent
plans the actions related to the execution of a task τi, she coordinates her strategy by measuring the
opportunity cost incurred by her decisions on the other agents.

Two versions of the algorithm have been proposed: a synchronized one where the actions related
to only one task is revised at the same time and a parallel algorithm where the agents can revise
the execution of different tasks at the same time. Policy improvements are iterated unless no more
improvement is made by any agent. We proved the convergence of the synchronized version of our
algorithm to a Bayesian Nash equilibrium whereas the desynchronized version is not theoretically
guarantee to converge because of possible unaccurate estimates of opportunity cost. Experimentally,
we did not find cases where the desynchronized version of our algorithm does not converge though.
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Our approach is closely related to other co-alternative approaches such as Subjective MDPs devel-
oped by (Chadès et al., 2002) or the Joint Equilibrium based Search for Policies (JESP) (Nair et al.,
2003). Although these methods could be executed in a distributed way, they have been developed
from the point of view of a centralized planning and do not pay attention to limiting communication
complexity. Hence, our distributed algorithm requires less communication. Indeed, these approaches
revise the policy of only one agent at each iteration thus leading to more frequent policy communi-
cation. Moreover, these approaches do not handle constraints on action execution nor time extended
actions.

Complexity analysis proved that our approach is polynomial time in the number of states and
actions. Although we were not able to provide theoretical guarantees regarding the performance of the
solutions in the general setting, we pointed out some relaxations of the constraints guarantying optimal
policy computation (Beynier and Mouaddib, 2011b). Experimental results showed that our algorithms
were able to efficiently coordinate multiagent systems with tens of agents executing hundreds of tasks.
Our approach thus fulfills our initial ambitions since it can deal with large missions and compute good
quality solutions respecting several kinds of constraints.

3.5 Hierarchical decomposition among space

In (Lozenguez et al., 2011, 2012), we considered a special case of the multi-task planning problem
that we previously defined. This setting has been motivated by multi-robot scenarios developed in the
ANR project R-Discover where we aimed at developing a fleet of mobile robots to visit a set of points
of interest identified by an UAV flying over the area. The set of point of interest was assumed to be
frequently updated and the robots had to responsively adapt their strategies to these changes. Hence,
the robots were required to be able to compute their strategy in a distributed way while executing their
mission. Computation time was particularly sensitive because we wanted the robots to be responsive
to the UAV updates. In this setting, visiting a point of interest can be achieved by a single robot and
we assumed that the visit of each point of interest is not influenced by the visit of the other sites.

Here, there is no precedence constraints between the tasks. Consequently, the multi-task decision
problem can be modeled as a constrained Dec-MDP with independent observation, transition and
reward functions. Such a Dec-MDP can be decomposed as a set of n individual and independent
MDPs {m1, · · · ,mn} and the complexity of computing an optimal solution for each MDP turns to be
P-complete. Unfortunately, in our context, the number of states of each individual MDP mi prevents
on-line solving as soon as the problem involves too much points of interest and way-points. Indeed,
the state space of an individual MDP increases exponentially with the number of points of interest
allocated to the agent. More precisely, the state space size is |W | · 2|I| where |W | is the number of
way-points in the road-map and |I| is the number points of interest allocated to the robot.

We then proposed to exploit the road-map topology to decompose the individual MDP of an
agent into a set of smaller and loosely-coupled sub-MDPs. Our approach consists in partitioning the
individual MDP mi of agent i (built for the whole set of points of interests allocated to the agent i)
into a set of MDPs {m1

i ,m2
i , · · · ,mp

i }. The idea is to aggregate strongly connected states together in
a sub-MDP mj

i and to solve the sub-MDPs in a distributed way.

3.5.1 Decomposition based on topological maps

Generally, decomposing an MDP consists in building a partition of the state set as balanced as possible
while minimizing connections between the sub-MDPs; that means minimizing the cuts on the transition
set. In fact, minimizing the cuts allows for reducing coordination complexity between the sub-MDPs.



3.5 hierarchical decomposition among space 63

Such an approach is particularly efficient in problems with spatial constraints. Indeed, one can exploit
the topological aspects of the environment to decompose the initial problem.

We defined a greedy decomposition algorithm that efficiently builds a partition of the road-map
into a set of regions {ρ1, · · · , ρp}. The regions constitute a partition of the way-points identified in the
road-map. The algorithm builds the regions one by one. For a given region, the most appropriate way-
points to add to the region are iteratively selected: each way-point (not already selected) is assigned
a score based on a ratio between (i) the number of transitions between this way-point and other way-
points inside the region (ii) the number of transition between this way-point and other way-points
outside the region. The way-point with the highest score is selected and added to the region. In order
to get balanced regions, this ratio is weighted by the difference between the ideal size of the region
and its actual size.

Once the partition of the road-map defined, a sub-MDP mj
i is built for each region ρj . The state

space and the action space of a sub-MDP are restricted to the way-points W ρj and to the points of
interest Iρj belonging to the region ρj . The state space of a sub-MDP is thus reduced to |W ρj | · 2|I

ρj |.

3.5.2 Hierarchical solving

Once the sub-MDPs defined, it would be expected to solve these local decision problems in a distributed
way using standard MDPs algorithms. Nonetheless, as the agent may move from one region to another,
some states of a region ρj may have successor states belonging to another region ρk. Following Bellman
equation, the value of a state in a sub-MDP mj

i related to an agent i and a region ρj may thus depend
on states belonging to another sub-MDP mk

i related to a neighboring region ρk. When solving the
sub-MDP mj

i , the values of the states belonging to the other sub-MDPs mk
i (k 6= j) have to be taken

into account.
In order to coordinate the exploration strategy of an agent among the regions, we envisioned a

hierarchical approach. More specifically, we defined a high-level MDP mHL
i formalizing the exploration

problem of a robot i over the regions.

High-Level MDP

The high-level MDP mHL
i is defined as a tuple 〈SHLi ,AHLi ,THLi ,RHLi 〉 with SHLi a set of macro-states

and AHLi a set of macro-actions over the regions. A macro-action consists in exploring the current
region ρji (explore(ρji )) or moving from a region ρji to another region ρki (move(ρji , ρki )). A macro-
state is defined as the current region of the robot and the set of already visited regions. A specific
state called blocked is added to represent situations where an unknown obstacle prevents the robot
from reaching a way-point and the exploration of a region fails. Part (a) of Figure 12 illustrates the
decomposition of a road-map into 3 regions; i.e into 3 sub-MDPs. Part (b) of Figure 12 illustrates the
transitions between the macro-states of the high-level MDP coordinating the exploration among the
3 regions.

The transition function of the high-level MDP gives the probability to move from a macro-state
sHLi to another macro-state s′HLi when executing a macro-action aHLi . Transitions and rewards for
moving from a state to another in the high-level MDP depend on the initial state, the dynamics of the
system in the current region and the strategy applied in the region. This strategy is influenced by the
value of the input states of the neighbor regions. Optimally evaluating transitions and rewards would
require to consider, for each region, the optimal local policy related to every possible set of values
of these input states. In a resource-constrained setting where the robots have limited computational
resources, optimal computation of transition and reward functions is not realistic.

We thus proposed to approximate these functions from the dynamics of the environment inside the
regions. Hence, the probabilities related to a macro-action move(ρi, ρj) are estimated by averaging
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Figure 12: Partition of a road-map into 3 regions (a) and the related high-level MDP (b). A state 213

means that the robot is in the region 2 and the regions 1 and 3 are explored

the probabilities related to a move action between two way-points wi and wj such that wi and wj are
frontier way-points between ρi and ρj . Conversely, the probabilities related to an action explore(ρi)
are estimated by averaging the probabilities related to actions where the robot remains in the region
ρi. In order to estimate rewards related to a region, an average reward is computed for each action
of a region and then weighted by an estimate average number of actions performed in the region. We
refer the interested reader to (Lozenguez, 2012) for more details about these approximation methods.

Lazy policy computation

In order to further limit computational resources, we also proposed a “lazy evaluation” approach
regarding policy computation. This approach consists in delaying policy computation of each sub-
MDP as much as possible. At first, the algorithm only computes the policy of the high-level MDP
based on the approximate transition and reward functions. Then, each sub-MDP is solved only when
the robot enters the associated region. Hence, the policy of the high-level MDP guides the exploration
among the regions and local policies are computed only when it is necessary. This approach allows
for limiting computation overhead. Moreover, in our application context where the UAV can send
periodically updated road-maps to the ground robots, our approach fits initial requirements by limiting
policy computation time and updates.

Experimental results

We developed some experiments to study the efficiency of the hierarchical approach on multi-rover
exploration scenarios. Experiments were first implemented in simulated environments. The approach
has then been successfully deployed on Pioneer robots operating on the PAVIN outdoor platform in
Clermont-Ferrand (Figure 13).
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Figure 13: (a) a pioneer robot, (b) the experimental area and (c) the Google aerial view.

We first studied the quality of the partition into regions built by the greedy decomposition algo-
rithm. In highly structured environments (where obstacles or walls separate the different parts of the
environment), we obtained effective partitions. Nonetheless, in free from obstacles environments, we
observed some overlaps between the regions.

We then studied the efficiency of the policies computed by our hierarchical approach combined
with greedy partitioning of the road-map. In fact, we applied the greedy partitioning algorithm and
we recorded the sum of the expected gains of the policies computed by the high-level MDPs (one
high-level MDP per agent). We then compared the performance of our hierarchical decomposition
approach with the optimal sum of expected gains obtained from an optimal allocation and an optimal
solving of the individual MDPs. In this case, we considered all possible allocations of points of interest
among the agents. For each possible allocation, we computed the optimal expected gain of each agent
and we selected the allocation yielding to the maximum sum of expected gains. As a worst case
baseline, we also registered the worst sum of expected gains (referred to as the worst allocation). For
each experiment, the sum of expected gains have been normalized. Hence, a score of 1 corresponds to
the optimal whereas a score of 0 corresponds to the expected gain of the worst allocation.

Figure 14 presents the distribution of the scores obtained by the hierarchical approach combined
with greedy decomposition, for different sizes of problems. We were not able to optimally solve
problems involving more than 12 points of interest because of the complexity of finding an optimal
allocation of the points of interest among the robots. For each size of problem, we randomly generated
200 multi-robot exploration problems. The average score obtained by the hierarchical approach is
around 0.77 for problems involving 6 to 12 points of interest. It is an encouraging average considering
that the computation is instantaneous. Although the optimal expected gain is rarely obtained (with
8 points of interest, the hierarchical approach yielded to the maximum expected gain for only 7% of
the scenarios), solutions are often close to the optimal (with 8 points of interest, 52% of the solutions
yield to scores between 0.8 and 0.9). Furthermore, our average scores are negatively affected by a few
numbers of poor quality instances induced by unsuitable partitions. We noticed that the scores and
the number of poor quality instances are inversely proportional to the number of points of interest.

Finally, we studied the scalability and the running time of our approach. Indeed, one of our main
concern was to design an efficient on-line approach that could deal with large number of points of
interest. We considered problems involving up to 120 points of interest and 3 robots. For problems
involving up to 100 points of interest, the hierarchical approach was able to partition the set of
tasks, allocate the tasks and compute the high-level strategy in less than one second8. For problems
involving 120 points of interest, the approach took less than 5 seconds. These results comply with our

8Experiments were performed on a computer equipped with Intel Core2 Quad CPU Q9650 at 3.00GHz



66 multiagent planning under uncertainty

Figure 14: Distribution of the scores obtained for randomly generated sets of points of interest

initial requirements related to on-line planning of exploration missions. Experiments showed that the
approach allows the robots to deal with tens of tasks during the mission, by controlling the number
of tasks in each region and the number of regions.

3.5.3 Discussion

In the previous sections, we introduced the constrained Dec-MDP model that extends the original
Dec-POMDPs framework to formalize different types of constraints usually encountered in real-world
domains. This model also allows for formalizing temporally extended actions and thus handles prob-
lems where the decisions of the agents may not be synchronized. Although constraints allow for
reducing the set of possible actions at each time-step, the state description must be augmented with
information related to constraint satisfaction. The formalization of real-world problems thus results
in large state and action spaces. In general, solving a constrained Dec-MDP is as difficult as solving
a standard Dec-MDP.

In order to efficiently solve constrained Dec-MDPs, we investigate decomposition methods which
constitute an attractive approach to cope with the high dimensionality of decision problems. The
main idea is to divide the initial problem into a set of loosely-coupled sub-problems. We first con-
sidered decomposing the problem among the agents. We also exploited the spatial configuration of
the environment to decompose the decision problem of an agent. It is important to note that the
computational overhead incurred by the decomposition of the problem must be compensated by the
savings obtained during policy computation (Boutilier et al., 1999). When identifying the different
sub-problems is not straightforward, efficient decomposition methods have to be developed. For effec-
tive decomposition, we proposed a greedy algorithm that aims at minimizing dependencies between
the sub-problems while balancing the size of the sub-problems.

In the best case, the problem decomposition results in a set of independent problems, that can be
solved separately. It is the case, for instance, when decomposing transition, observation and reward
independent Dec-POMDPs. Nonetheless, most of the time, the value of a sub-problem depends on the
other sub-problems (or at least on a subset of these sub-problems). In this context, we investigated
different distributed methods to coordinate the policies of the sub-problems: opportunity cost commu-
nication, iterative policy improvement, hierarchical computation of the global policy. Our approaches
have been successfully used to solve large size problems while respecting different kinds of constraints
on action execution. It may nevertheless be regretted that these approaches do not provide guarantees
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on the quality of the solution. Although, experimental results show that high quality strategies are
often computed, we could not estimate the distance to the optimal solution.

Several works investigated settings where the interactions of the agents are limited and proposed
distributed algorithms where each agent separately computes her strategy (Nair et al., 2005; Oliehoek
et al., 2008; Witwicki and Durfee, 2010). Closely related to our work, these algorithms exploit the
fact that a Dec-POMDP can be decomposed as set of loosely-coupled POMDPs. Witwicki and Durfee
(2010) proposed a joint planning method based on abstraction of policies. Abstraction of actions are
quite similar to the tasks we considered though, constraints on action execution are not explicitly
formalized in this framework. Oliehoek et al. (2008) considered settings where the neighborhood of an
agent can change at each time step, i.e. an agent can interact with different sets of agents at each time-
step. Dependencies between the agents are formalized by influence variables in the POMDP states.
Their optimal solving approach builds the solution by searching through the space of influences. For
each influence, optimal individual policies are computed for each neighboring agent. Although this
approach provided encouraging results, it is expected that it would poorly scale as soon as the agents
get more tightly connected.

Hierarchical approaches applied to Dec-POMDP problems have received little attention so far.
Oliehoek and Visser (2006) described a hierarchical model based on Dec-POMDPs in order to formalize
rescue missions. Nonetheless, solutions for solving this model have not been studied. Amato et al.
(2014) introduced macro-actions to formalize high-level actions which may require different amounts
of time to execute. A macro-action is formalized using the option framework developed in the single-
agent context. Coordination between the agents is limited to a high-level and only handles interactions
between macro-actions. The authors proposed to extend standard Dec-POMDP algorithms to plan
the execution of macro-actions instead of considering primitive actions. Although this framework
is able to consider larger environments and longer horizon than standard Dec-POMDP approaches,
scaling to large set of agents remain challenging.

3.6 Non-stationary frameworks

Markovian models run under the assumption that the environment is stationary, i.e. the transition
function and the reward function do not evolve over time. Unfortunately, the stationary hypothesis
does not hold in many real-world problems because uncontrolled or unforeseen events may change
the environment dynamics. For instance, weather conditions may change action outcomes of outdoor
robots. Mobile robots in smart cities may have to face with different driving contexts along the day
according to traffic conditions. In network routing problems, the topology of the network may change
over time and link costs may evolve because of congestion phenomenons. Moreover, in multiagent
systems, the environment may appear as non-stationary from the point of view of an agent if the
behaviors of the other agents change over time. In particular, it may be the case in adversarial
domains and in multiagent learning settings.

In this section, we first focus on single-agent decision problems in non-stationary environments.
More specifically, we are interested in settings where the non-stationary environment can be viewed
as a set of stationary contexts. We introduce a new model for formalizing such decision problems and
propose methods for computing near-optimal strategies. We also propose a learning approach to handle
settings where the set of contexts is not known a priori. Finally, we turn to multiagent sequential
decision making problems where the non-stationarity arises from evolving adversarial behaviors. This
latter work has been motivated by multiagent patrolling problems where a team of defenders aims at
detecting illegal actions performed by adversaries.
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Figure 15: HM-MDP representation with 2 modes and 4 states

3.6.1 Single-agent sequential decision problems

In non-stationary environments, the decision-maker has to adapt online her strategy to the changes in
the environment dynamics. When the dynamics remain stationary over several time-steps and then
abruptly change, the non-stationary dynamics can be viewed as a set of stationary contexts between
which the environment can switch (Choi et al., 2000).

Hidden-Mode Markov Decision Processes

In the context of non-stationary MDPs, Choi et al. (2001) proposed the Hidden-Mode Markov Decision
Process (HM-MDP) model to formalize this subclass of non-stationary problems. The non-stationarity
is limited to a number of stationary settings, called modes or contexts. Each mode represents a possible
stationary environment, formalized as an MDP. Transitions between modes represent environmental
changes.

Definition 31. Hidden-Mode Markov Decision Processes
An Hidden-Mode Markov Decision Process (HM-MDP) is defined by a tuple 〈M ,C〉 with:

• M = {m1, . . . ,mp}, a finite set of modes where mi = 〈S,A,Ti,Ri〉, i.e. an MDP,

• C : M → Pr(M), a transition function over modes.

Note that S and A are shared by all mi’s and that an HM-MDP with p = 1 is a standard MDP.
In HM-MDPs, the only observable information is the current state s ∈ S. The current mode mi ∈M
is not observable. As for the probabilistic functions, one can imagine that the set of the states and
the set of actions could evolve as well. In such a case, it is sufficient to define the global set of states
as the union of the set of states of each mode. It is identical for the set of actions.

Figure 15 illustrates an HM-MDP with 2 modes and 4 states per mode.

Hidden Semi-Markov Mode MDP

The HM-MDP framework is not always the most suitable model for representing sequential decision-
making in non-stationary environments as it assumes that the environment may change at every
time-step. We argue that this assumption is not always realistic. Indeed, in driving problems for
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instance, traffic conditions do not change at each time-step. A traffic jam, for instance, lasts over
several time-steps. In adversarial problems, the adversaries often keep the same strategy over several
time-steps. When this assumption does not hold, the usual modeling trick is to set a low probability
of transition between modes. However, from a theoretical viewpoint, this is more than questionable
when mode transitions are not geometrically distributed.

In (Hadoux et al., 2014b), we proposed a natural extension of HM-MDPs, called Hidden Semi-
Markov-Mode Markov Decision Processes (HS3MDPs), where the non-stationary environment evolves
according to a semi-Markov chain. In HS3MDPs, when the environment stochastically changes to a
new mode, it stays in that mode during a stochastically drawn duration.

Definition 32. Hidden Semi-Markov-Mode MDP
An Hidden Semi-Markov-Mode MDP (HS3MDP) is defined by a tuple 〈M ,C,H〉 where:

• M and C are defined as for HM-MDPs,

• H : M ×M → Pr(N) is a mode duration function.

The transition function C(mi,mj) represents the probability of moving to new mode mj from
current mode mi knowing that the duration in mi (i.e. the number of remaining time-steps to stay in
mi) is null. H(mi,mj ,h) gives the probability of staying h time-steps in the new mode mj when the
current mode is mi. The mode and the duration are both not observable. Note that, it is not always
relevant for the duration function H to take into account the previous mode. For this purpose, the
duration function may be specified as H(mj ,h).

At each time-step, after a state transition in current mode mi, the next mode mj and its duration
h′ are determined as follows:

if h > 0 mj = mi,
h′ = h− 1,

if h = 0 mj ∼ C(mi, ·),
h′ = k− 1 where k ∼ H(mi,mj , ·)

(5)

where h is the duration of current mode mi. If h is positive, the environment dynamics do not change.
But, if h is null, the environment moves to a new mode according to the transition function C and
the number of steps to stay in this new mode is drawn following the conditional probability H.

Like HM-MDPs, HS3MDPs form a sub-class of POMDPs. An HS3MDP can thus be reformulated
as a POMDP and solved using standard POMDP algorithms. Moreover, we proved that HM-MDPs
and HS3MDPs are equivalent (Hadoux et al., 2014b). In fact, a problem represented as an HS3MDP
can also be exactly represented as an HM-MDP by augmenting the modes. Nonetheless, representing
HS3MDPs in such a way feels unnatural and leads to a higher number of modes, which would have a
negative impact on the solving time.

Planning with non-stationary models

As for POMDPs, solving a problem modeled as an HS3MDP is a difficult task to address.

Proposition 13. Optimally solving an HS3MDP is a PSPACE-complete problem.

Proof. In their work, Chadès et al. (2012) proposed the hidden-model MDP model or hmMDP (note
the lower case) and proved that finding an optimal policy in an hmMDP is a PSPACE-complete
problem. Independently discovered, hmMDPs turn out to be a subclass of HM-MDPs where there
the mode, once selected, cannot be changed. As finding an optimal policy for a POMDP is also a
PSPACE-complete problem (Papadimitriou and Tsitsiklis, 1987), both HM-MDPs and HS3MDPs are
PSPACE-complete to solve.
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In order to be able to tackle large instances of problems, we therefore focused on an approximate
solving algorithm and we considered the POMCP algorithm9 (see Section 3.2.1). A first naive approach
is to apply POMCP to directly solve the POMDP derived from an HS3MDP. In that case, a particle in
POMCP represents a mode m, a state s and a duration h of the HS3MDP. We proposed two possible
improvements to this naive approach. Notice that, as a subclass of HS3MDPs, these solving methods
can also be applied to HM-MDPs.

pomcp variants to exploit the structure In large instances, POMCP can suffer from
a lack of particles to approximate the belief state, especially if the number of states in the POMDP
and/or the horizon are large. To tackle this issue, a particle reinvigoration technique is usually used
but it is often insufficient. If POMCP then runs out of particles, it samples the action set according
to a uniform distribution, which obviously leads to suboptimal decisions.

We proposed a first adaptation of POMCP that exploits the structure of HS3MDPs to delay the
lack of particles. In fact, in the derived POMDP, as the agent observes a part of the state, a particle
needs only to represent non-observable information, that is the mode m and the duration h. This
adaptation allows us to initially distribute the same amount of particles over a set whose cardinality
is much smaller.

Nonetheless, the above adaptation of POMCP still suffers from lack of particles when solving
large-sized problems. We thus proposed a second adaptation where we replaced the particle set used
in POMCP by an exact representation of the belief state. This representation consists in a probability
distribution µ over M ×N (modes and duration in the current mode). Particles are then drawn from
this probability distribution which is updated after each new observation.

The spatial complexity of this second adaptation of POMCP does not depend on the number of
simulations. Indeed, µ is a probability distribution overM ×N. Assuming a finite maximum duration
hmax, which is often the case in practice, there always exists a number of simulations S for which the
size of the particle set is greater than the length of the probability distribution. In such a case, our
second adaptation will be more interesting to consider. The time complexity of updating the exact
representation is O(|M | × hmax). It has to be compared to the particle invigoration of the original
POMCP combined with the first adaption which is O(S) with S being the number of simulations.

experimental results We ran experiments on four non-stationary problems: the traffic light
problem, the sailboat problem, the elevator problem and randomly generated environments10. The first
three environments are problems from the literature (Choi et al., 2001). We solved an extended version
of each problem modeled as an HS3MDP11. We compared the performance obtained by the original
POMCP and by our adaptations of POMCP: the Structure Adapted (SA) and Structure Adapted
combined with the Exact Representation (SAER) of belief states. We also compared the performances
with the optimal policy when it could be computed, using Cassandra’s POMDP toolbox12 and MO-IP
(Araya-López et al., 2010a). Finally, we used MO-SARSOP (Ong et al., 2010) with one hour of policy
computation time when the model could be generated for offline computing.

Experimental results show that (for a given number of simulations) our adapted version leads to
at least as good performances as the original POMCP. Indeed, on small problems (like the traffic

9 Interestingly, HM-MDPs and HS3MDPs are particular instances of Mixed-Observable MDPs (MOMDPs) (Ong et al.,
2010; Araya-López et al., 2010a), a subclass of POMDPs. Indeed, with the state being observable and the mode (as
well as the duration for HS3MDPs) being not, both models can be translated into an equivalent MOMDP. Therefore,
MOMDPs algorithms could be used for solving HS3MDPs. However, we chose to base our solving method on POMCP,
because it tends to be more efficient than specialized algorithms on MO-MDPs and more generally on factored POMDPs,
even when POMCP is run using non-factored representations (Silver and Veness, 2010).

10 We refer the interested reader to (Hadoux, 2015) for more details about the experiments.
11 Recall that those adapted versions of the problems cannot be represented as efficiently with HM-MDPs.
12 http://www.pomdp.org/code/index.html

http://www.pomdp.org/code/index.html
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Simulations Original SA SAER Optimal

1 -3,42 0.0% 0.0% 38.5%
2 -2,86 3.0% 4.0% 26.5%
4 -2,80 8.1% 8.8% 25.0%
8 -2,68 6.0% 9.4% 21.7%
16 -2,60 8.0% 8.0% 19.2%
32 -2,45 5.3% 6.9% 14.3%
64 -2,47 10.0% 9.1% 14.9%
128 -2,34 4.3% 3.4% 10.4%
256 -2,41 8.5% 10.5% 12.7%
512 -2,32 5.6% 4.7% 9.3%
1024 -2,31 5.1% 7.0% 9.3%
2048 -2,38 9.0% 10.5% 11.8%

Table 1: Results for the traffic light problem

Simulations Original SA SAER

1 0.39 0.1% 8.9%
2 0.39 21.0% 57.5%
4 0.40 9.9% 149.0%
8 0.41 24.0% 224.6%
16 0.43 33.0% 261.3%
32 0.48 58.2% 275.8%
64 0.60 76.2% 248.7%
128 0.83 75.4% 184.5%
256 1.16 64.1% 115.9%
512 1.61 41.5% 61.5%
1024 2.05 2.2% 28.8%

Table 2: Results for random environments with
ns = 50, na = 5 and nm = 10

light problem), both adaptations of POMCP are roughly similar. In fact, the size of the problem is
quite small so, the original POMCP and the structured adapted POMCP do not run out of particles.
Moreover, there are enough particles to draw a high quality estimation of the belief state. However, our
adaptations of POMCP outperform the original version since exploiting the structure of the HS3MDP
leads to more accurate belief states.

Table 1 describes the results obtained for the traffic light problem (8 states, 2 actions and 2 modes),
using different algorithms: original POMCP, Structure Adapted (SA), Structure Adapted combined
with Exact Representation of belief states (SAER), Finite Grid, MO-IP and MO-SARSOP. The last
three algorithms yield the same results, which are presented in column “Optimal” to give an idea of
the optimal value. We give the raw results for the original POMCP and percentages for the others.
Reported percentages correspond to the percentages of improvement brought by our modified versions
over the original POMCP. For each number of simulations we averaged the cumulative discounted
rewards over 1000 runs.

The performances of the original POMCP almost strictly increase with the number of simulations
used in the algorithm. They therefore get closer to the optimal value, which translates into decreasing
percentages in Column “Optimal” of Table 1. Experimental results show that our modified versions of
POMCP perform better than the original one (positive percentages for columns “SA” and “SAER”).
They also get closer to the optimal. For instance, with 512 simulations, 4.7% of improvement for
SAER compared to 9.3% for Column “Optimal” means that the performances of SAER are half-way
between those of the original POMCP and the optimal value. Note that a decreasing percentage does
not mean a raw decrease in the performances. It means that the increase of the performances of the
original POMCP is higher than those of the other algorithms. Nonetheless, the percentages being
positive, the latter still perform better.

On larger problems, our methods significantly outperform the original POMCP method. Table
2 depicts the performance of our algorithms on randomly generated problems involving 50 states, 5
actions and 10 modes. In fact, the exact representation of belief states always outperforms POMCP
versions based on particles filter on sufficiently large environments. Indeed, these methods quickly run
out of particles to accurately represent the belief state.

The computation time of our adaptations are promising for application to large-sized real-life
problems. For instance, in the random environment with 20 modes, one run of 1024 simulations took
1.15 seconds13 for solving the HS3MDP with structured adapted POMCP and 1.48 seconds for solving
the HS3MDP with POMCP and exact representation of the belief state.

13 Results obtained on a computer equipped with an Intel XeonX5690 4.47 Ghz core and 16G of RAM.



72 multiagent planning under uncertainty

Learning the model

Mode-based non-stationary environments have already been actively investigated in the Reinforcement
Learning (RL) setting (Choi et al., 2001; Doya et al., 2002; da Silva et al., 2006). Choi et al. learned the
HM-MDP in a RL setting using the Baum-Welch algorithm (2000). The drawback of this approach
is the assumption of an a priori known number of modes. Doya et al. (2002) applied ideas from
adaptive control (Narendra et al., 1995) to RL, which consists in learning multiple models, computing
a “responsibility signal” to evaluate the goodness of each model and averaging the models using this
signal. Here, again, the number of models is a priori fixed and known.

da Silva et al. (2006) developed the Reinforcement Learning with Context Detection algorithm
(RLCD) to simultaneously learn and act in a non-stationary environment. At each time-step, a
quality score of each already learned model (i.e. mode) is calculated, depending on the last seen
transition and reward. The model maximizing the measure is chosen as the next current model and is
updated. However, when no model has a quality above a minimum threshold, a new model is added
to the list of known models, uniformly initialized and selected as the next current model. With this
method, RLCD is able to tackle problems without the prior knowledge of the number of models to
learn. Unfortunately, RLCD requires a set of parameters to be tuned accordingly to the problem.
Moreover, this quality measure seems to be ad-hoc and also depends on a hand-tuned threshold.

In (Hadoux et al., 2014a), we proposed a new approach to learn the models allowing us to solve
the sequential decision-making problem under non-stationary environments. Our main idea is to
adapt tools developed in statistics and more precisely in sequential analysis (Ghosh and Sen, 1991)
for detecting an environmental change (Basseville and Nikiforov, 1993). In doing so, our approach is
more theoretically founded and necessitates less parameters. Parameters are thus easier to interpret
and easier to set a priori for solving new problems.

Let mi = (S,A,Ti,Ri) and mj = (S,A,Tj ,Rj) be two modes or MDPs that are both assumed to
be known. We consider that the environment is currently represented by mi and at some unknown
timestep, the environment changes from mode mi to mode mj . The problem we want to tackle here
is that of detecting as soon as possible this environmental change. To that aim, a natural idea is to
use statistical hypothesis tests for such detections, i.e. given an observed history, a null hypothesis
“the current mode is mi” is tested against an alternative hypothesis “the current mode is mj”. When
performing such tests, one wants to minimize the probabilities of two contradictory errors:

• type I error: reject the null hypothesis when it is true,

• type II error: accept the null hypothesis when it is false.

In online settings, sequential statistical tests are preferred: they perform repeated tests as observations
become available and permit detection with smaller size samples in expectation (Wald, 1945) compared
to standard statistical tests. Viewing detection as statistical tests highlights the contradiction between
fast detection (type I error) and false detection (type II error).

A simple approach to implement those sequential statistical tests for change point detection is to re-
course to cumulative sums (CUSUM) (Basseville and Nikiforov, 1993). In our setting, CUSUM can be
specified as follows for detecting a change in the transition distributions. Let (s0, a1, s1, a2, s2, . . . , st−1, at, st, . . .)
denotes the observed history and define V T

0 = 0. At each timestep t ≥ 1, compute:

V T
t = max(0,V T

t−1 + ln(Tj(st, at, st+1)

Ti(st, at, st+1)
)) (6)

and compare V T
t to a threshold cT > 0. If V T

t ≥ cT , then a change in the transition function is
detected. The intuitive idea of CUSUM is quite simple: If mj is more likely than mi to have generated
the recent history, then decide that the environment has changed.
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To detect a change in the reward function, the same procedure as for the transitions can then be
applied. Let (r1, r2, . . . , rt, . . .) be the sequence of obtained rewards and V R

0 = 0. At each timestep
t ≥ 1, compute:

V R
t = max(0,V R

t−1 + ln(Rj(st, at, rt)
Ri(st, at, rt)

)) (7)

If V R
t is greater than a threshold cR > 0, then a change of the reward function is detected.

The two previous sums can be combined by computing at each timestep t ≥ 1:

V TR
t = max(0,V TR

t−1 + ln(Tj(st, at, st+1)Rj(st, at, rt)
Ti(st, at, st+1)Ri(st, at, rt)

)) (8)

with V TR
0 = 0. Sum V TR

t is to be compared with a threshold c > 0 to detect a change of mode.
Computing V T

t and V R
t separately can be advantageous in some situations as this makes it pos-

sible to detect a change in the transition function or in the reward function alone. Indeed, in some
domains, the non-stationarity is only limited to one of the two functions and/or they can evolve in
an asynchronous way. The advantage of using V TR

t is that it may allow for faster detection of the
environmental change because of the combined effects of the simultaneous change of the transition
function and the reward function.

In (Hadoux et al., 2014a), we proposed an adaptation of RLCD, replacing the quality measure by
the one presented in Equation 8. While results show that our modification of the RLCD algorithm is
more efficient than the original RLCD, it also requires less parameters which are more understandable.
Therefore, our method can be used in a wider field of problems where the parameters of the original
method may prevent us from tuning them efficiently.

However, our method is not complete enough to learn HS3MDPs. RLCD and our extension
are reactive algorithms, meaning that they adapt when detecting a change in the dynamics of the
environment but they fail to anticipate changes. Indeed, waiting for the detection introduces a lag in
the learning of the different modes. Moreover, approaches based on modes are especially well suited
when the environment remains stationary over a long period and then abruptly changes to a very
different context. In highly flickering environments, where the mode changes at each decision step, we
cannot apply those methods. In fact, in this particular case, the methods will learn a mean model
over all modes of the environment.

3.6.2 Non-stationary multi-agent decision problems

The work presented in the previous section addressed problems involving a single decision maker.
We now turn to multiagent non-stationary decision problems and investigate how our approach can
be extended to such contexts. In particular, we study how non-stationarity can be handled in the
Dec-POMDP framework.

In multiagent settings, the non-stationarity may not only come from the dynamics of the environ-
ment but may also arise from the behaviors of the other agents. Each agent anticipates the joint action
based on her knowledge about the other agents’ strategies. If an agent i deviates from her behaviors
and the others agents j 6= i are not aware of it, action outcomes will differ from the expected outcomes
based on the (incorrect) knowledge about i. The environment will thus appear as non-stationary from
the point of view of the agents j 6= i.

In this section, we take the point of view of a team of cooperative agents facing some adversaries.
The adversaries’ behaviors influence the action outcomes and the rewards of our team of cooperative
agents. We consider contexts where the adversaries can adapt and change their behavior online thus
leading to non-stationary transition functions from the point of view of our team of cooperative agents.
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Multiagent patrolling

Multiagent patrolling is the problem faced by a set of agents that have to periodically visit a set of
targets T = {τ1, · · · , τm}. In adversarial domains, the agents have to prevent some threats or illegal
actions performed by some adversaries on these targets. Obviously, the number of defending resources
is not enough to cover all targets at all time. Defenders have thus to coordinate their actions in order
to detect as much adversary actions as possible.

A large amount of recent work has been dedicated to Security Games where a defender has to
deploy a set of resources to prevent an attack on a subset of the targets (Jain et al., 2012; Nguyen
et al., 2016; Sinha et al., 2018). A solution for a Security Game is a mixed strategy for the defender, i.e.
a probabilistic distribution over all pure strategies where a pure strategy is an allocation of defending
resources among targets. Security Games have been successfully deployed in real-world settings and
are currently used to conduct surveillance at the Los Angeles International Airport (Jain et al., 2010)
or in Boston harbor (Shieh et al., 2012). Nonetheless, the original model of Security Games makes
strong assumptions on the domain. Indeed, the game is assumed to be played only once, i.e. the
opponent is assumed to play a one-shot attack. This assumption is well suited when preventing a
terrorist attack but it does not hold when the defenders and the adversaries frequently interact.

Some works consider the problem of several defenders that have to face multiple adversaries per-
forming frequently and repeatedly illegal actions (Agmon et al., 2008; Zhang et al., 2015; Fang et al.,
2015, 2016). The decision problem is formalized as a repeated game where the strategy at stage t con-
sists in a probabilistic assignment of defending resources to targets. These works have been applied to
domains such as preventing crime in urban areas (Zhang et al., 2015), avoiding intrusions on frontiers
(Agmon et al., 2008), or detecting illegal fishing or poaching (Fang et al., 2015).

Nonetheless, multiagent patrolling is often much more than a repeated assignment of defending
resources to targets. The spatial dimension of the environment to patrol has to be considered and
raises constraints limiting the actions of the defenders at each time step. In fact, most of the time,
a defender cannot be reassigned on every target given her current position. Moreover, targets are
usually loosely connected and moving from one target to another takes time.

Because uncertainty is unavoidable when acting in real-world security domains (Nguyen et al.,
2016), there is also a need to handle non-deterministic action outcomes. In patrolling scenarios, moves
between different targets to patrol are inevitably stochastic and take an uncertain amount of time.
Moreover, the agents (the defenders and the adversaries) usually have partial observability of the
environment. This also raises uncertainty on action outcomes. Furthermore, uncertainty may arise
from partial knowledge about the adversaries. In fact, standard security games usually assume full
observability and full rationality of the adversary. In such settings, defenders are able to anticipate a
best-response from the adversaries. Obviously, this may not be the case and thus makes the defender
uncertain about the response of the adversary even under full observability. Most existing approaches
only handle a specific type of uncertainty: uncertainty on adversary’s payoffs, uncertainty on defender’s
strategy or uncertainty on the rationality of the adversary. Nguyen et al. (2014a) proposed a unified
framework handling the different forms of uncertainty. Again, this approach computes a one-shot
assignment of defending resources. (Nguyen et al., 2013; Kar et al., 2015; Zhang et al., 2015) have
been interested in modeling and learning adversary bounded rational behaviors. These approaches aim
at computing the probability that the adversaries attack a target τi at time t. Closely related to our
work, Kar et al. (2015) consider adaptive adversaries. Nonetheless, this later approach assumes that
the defenders have full observability of all successful attacks and know the payoffs of the adversaries.
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Effective coordination of the defenders in uncertain environments has been little investigated so far.
In the context of a one-shot attack, Shieh et al. (2016) have shown that defender effective teamwork
significantly improves security. In order to enable effective cooperation between several patrollers,
Shieh et al. combine security games and Dec-MDPs. Nonetheless, the approach considers a single
fully rational adversary which is assumed to perform a prior extensive surveillance phase and to attack
the target with the lowest coverage. In fact, the issue of effective cooperation between patrolling
resources acting in uncertain and partially observable environments over several decision-steps, is still
challenging.

When the model of the adversaries is known, the defenders can anticipate the response of the
adversary and thus deduce the outcomes of patrolling actions. If the action outcomes are probabilisti-
cally known, the multiagent cooperative patrolling problems can then be represented as a constrained
Dec-POMDP as introduced in the previous sections. Nonetheless, because of limited observability
and bounded rationality, we argue that it is not realistic to assume that the patrollers are able to
build a full model of the adversaries (and thus to include it in their model of the environment). In
fact, patrolling agents cannot observe all the actions of the adversaries over the whole environment.
Patrollers then make decisions based on limited knowledge about the adversaries’ behaviors. More-
over, adversaries may have bounded rationality and not always commit to an optimal policy. They
can also keep on adapting their strategy online from their past observations about the patrollers. In
such settings, assuming a strong rational adversary and anticipating a stationary best response of the
adversaries is no more optimal for the patrollers. The defenders have therefore to handle partially
observable and non-stationary adversary strategies.

Hidden Modes Dec-POMDPs

Following our previous works on Hidden-Mode Markovian models, a multiagent non-stationary decision
problem can be envisioned as a series of stationary decision problems. In adversarial domain, a mode
corresponds in fact to a stationary adversary behavior and the system will move to another mode as
the adversaries change their strategy. It has to be noticed that such an approach is well suited when
the adversaries keep the same strategy over a long enough period. One of the advantage of mode-based
approaches is that the strategies computed for a context can be reused if the adversaries return to a
previous context (da Silva et al., 2006; Hernandez-Leal et al., 2017).

HM-MDPs (and similarly HS3MDPs) can be extended to define Hidden-Mode Decentralized Par-
tially Observable Markov Decision Processes (HM-Dec-POMDPs).

Definition 33. Hidden-Mode Decentralized Partially Observable Markov Decision Pro-
cesses

An HM-Dec-POMDP is defined by a tuple 〈M ,C〉 as follows:

• M = {m1, . . . ,mp}, a finite set of modes where mi = 〈N ,S,A,Ti,O, Ω,Ri〉, i.e. a Dec-POMDP,

• C : M → Pr(M), a transition function over modes.

As previously discussed in single-agent contexts, formalizing the problem as an HM-Dec-POMDP
requires to a priori know the set of possible modes and the probabilistic transition function C. In
patrolling domain, it means that the defenders have to know (before the execution) how the opponent
will behave and how the behavior of the adversaries could evolve over time. Obviously, this assumption
about the adversaries rarely holds.
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Online learning of the current context

When the set of adversary behaviors is not a priori known, the agents may try to learn the current
context online from partial observations about the adversaries. Several questions have thus to be
considered among which: How to exploit local observations and deduce the current context? How to
exploit new observations as the agents act in a specific context? How to detect changes of contexts
and restart from a new context?

In (Beynier, 2016, 2017), we investigated settings where the defenders have limited observability
of the adversaries and do not know the payoffs of the adversaries. Based on their local observations
(detected actions of the adversaries), the agents try to build a probabilistic model of the adversaries.
In fact, for each target τi, we proposed to maintain a probability PIτi(t) that the adversaries would
initiate an illegal action on target τi at time t. These probabilities allow for deducing transition
probabilities inside the current mode. Unfortunately, the defenders have not enough information to
build an accurate model of the adversaries and thus have accurate knowledge of these probabilities.
Probabilities PIτi are thus estimated from the history of observations made by the patrollers.

Nonetheless, as the strategies of the adversaries may change over time, old observations may
become obsolete. We thus restrict the size of the history that we consider, to the κ latest observations.
Intuitively, latest observations are more likely to reflect the actual behaviors of the adversaries. Let
NIti(t− κ, t) be the number of detected adversaries on target τi (defined for all τi in κ) between t− κ
and t. We define the following estimate:

PIτi(t) =
NIτi(t− κ, t)∑

τk∈N NIτk(t− κ, t) (9)

Based on the current estimates of PI values, transition probabilities related to the current mode (i.e.
Dec-POMDP) can then be deduced (see (Beynier, 2016, 2017) for more details about the computation
of transition probabilities).

As the patrollers get more and more observations, they update probabilities values consequently.
As the agents refine these probabilities, they should also update the transition function of the current
Dec-POMDP. Since updating the Dec-POMDP model and the patrolling strategies at each time-step
would be too costly (in terms of time and computational resources), we introduced a context horizon
h that fixes the period of validity of the current context. The Dec-POMDP model is then updated
every h steps based on the probabilities PI computed from the observations made by the patrolling
agents over the last κ steps.

However, adversaries may change their strategy over these h time-steps and the strategies are likely
to become inefficient until the next Dec-POMDP update. In order to avoid a loss of performance,
patrollers should be able to detect such changes and adapt their strategies consequently.

Online detection of context changes

In (Beynier, 2016, 2017), we proposed a mathematical method allowing the agents to detect adversary
policy changes. Our method consists in monitoring the variations in the number of detected adversaries.
In fact, empirical studies showed that the number of detected illegal actions significantly decreases
when adversaries change their strategy. We thus aim at efficiently detecting such decreases to update
the context as soon as possible. Our method relies on monitoring the variations of a finite moving
average over the number of detected adversaries. The variations of this moving average are compared
to a threshold value. If a variation exceeds the threshold, it is assumed that the adversaries have
changed their strategy. As soon as an adversarial policy change is detected, the current context is
updated based on the latest observations made by the agents. This method is quite similar to the
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CUSUM method described in Section 3.6.1. Nonetheless, in the patrolling domain, our approach does
not require to compute the transition functions at each time step.

Note that the threshold of the procedure is a parameter of the method and has to be tuned
considering the Dec-POMDP formalization of the problem. Low thresholds provide sensitive detection
but could lead to “false” detection of strategy changes. On the other hand, high thresholds might
miss some strategy changes.

Multiagent planning with non-stationary models

Given a mode, solving the corresponding Dec-POMDP returns a joint policy π = {π1, ...,πn} max-
imizing the global expected reward of the agents. Existing algorithms to solve Dec-POMDPs (see
Section 3.2.2) could be used to solve the Dec-POMDP related to a mode. However, in our settings,
existing algorithms suffer from several limitations. In non-stationary environments, it is necessary to
update online the strategies to the changes of dynamics. In fact, each time a new mode is considered,
a new joint policy must be computed. If a centralized algorithm is used, a central entity would have
to collect all the observations made by the patrolling agents to deduce the new mode, to update the
Dec-POMDP model and to compute a new strategy. This strategy will then be communicated to the
patrolling agents. Such an approach obviously creates a bottleneck in the system and would result
in high communication cost. Furthermore, most Dec-POMDP algorithms would take too much time
to solve the current Dec-POMDP and would not be suited to our context where the strategies of the
agents have to be updated online frequently. More specifically, existing algorithms usually compute
the joint policy from scratch. They have not been designed to update joint strategies during the
execution. They cannot re-use previously computed strategies to speed up the computation of a new
joint strategy.

We developed a distributed evolutionary algorithm to compute online the individual strategies of
each stationary Dec-POMDP. It has to be noticed that other works have also considered solving
Dec-POMDPs using evolutionary methods (Mazurowski and Zurada, 2007; Eker and Akın, 2013) and
showed significant improvement in the size of the horizon that can be handled. We adapted the (1+1)
evolutionary algorithm (Droste et al., 2002) to optimize the patrolling strategy over horizon h. The
evolutionary algorithm selects an initial solution (called champion) and then iterates to improve the
champion until a computation deadline is reached. At each iteration, a mutation operator is applied
to the current champion thus obtaining a challenger. This new solution is evaluated and becomes the
new champion if its value is higher than the one of the current champion. The process is iterated until
the deadline of the algorithm is reached or no more improvement of the current champion is possible.

Similarly to the work presented in Section 3.3, the Dec-POMDP formalizing patrolling context
must handle temporal and spatial constraints on actions. The population of individuals thus consists
in the set of joint policies that comply with these constraints.

For each new mode, the initial solution of the evolutionary algorithm is built from a probability
distribution over the nodes reflecting the likelihood of an illegal action on each site deduced from
observations. In fact, the higher the probability of an illegal action on a target τk, the higher the
probability of selecting τk. Probabilities are also weighted by the visit frequency of the target in the
previous mode. The mutation of the current champion strengthens the weakest targets: the targets
with the lowest probabilities of threats are replaced by the targets with the highest probabilities of
threats.

Our evolutionary algorithm has the advantage of being anytime. Moreover, thanks to its low
complexity, it scales well to large numbers of agents and long planning horizon h. However, no
guarantee on the quality of the solution could be given. In fact, the algorithm does not provide any
bound regarding the distance to the optimal solution and can be trapped in local optima. It has to
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be pointed out that our approach allows patrolling agents to adapt their strategies online every h

steps. From the point of view of the attackers, even if they had full observability of the patrollers, the
patrolling strategy will then not seem deterministic all along the execution.

Experiments with non-stationary adversarial strategies

We performed some experiments14 on randomly generated patrolling missions to evaluate the per-
formances of the defenders facing non-stationary adversaries. We first studied the detection ratio
(percentage of illegal actions that are detected) along the patrolling mission. We compared the re-
sults obtained by our evolutionary algorithm with the optimal solution computed using the MADP
toolbox15. We observed that our evolutionary algorithm leads to high detection ratios (Figure 16).
Moreover, the detection ratio is decreased by only 3% over the optimal solution for 5 targets and by
6% for 7 targets. It has to be noticed that even the optimal approach does not provide full detection
of illegal actions since agents cannot cover all targets at all time.

We experimented our approach on several sizes of graphs considering a fixed number of 4 agents.
The larger the number of targets, the lower the detection ratio. In fact, as the number of targets
increases, it becomes more and more difficult for the 4 agents to cover all the targets and to reach high
detection ratios. In order to guarantee good performances of patrolling agents, a minimum number
of agents is required. This number is closely related to the number of targets to patrol and to move
durations. As shown in Figure 17 for a scenario with 16 targets, a detection ratio of 100% is almost
reached with 12 agents and considering 6 agents leads to a detection ratio greater than 90%. More
generally, our approach provides good detection ratios for m� n.

We then studied the scalability of our approach. Although we were not able to optimally solve
problems larger than 2 agents and 7 targets, our evolutionary algorithm successfully solved problems
up to 50 targets and 7 agents (with a deadline of 10 seconds). Larger problems can even be solved by
enlarging the deadline of the evolutionary algorithm.

Figure 16: Detection ratios of the executed strate-
gies Figure 17: Influence of the number of agents

We also studied how the detection ratio evolves over time during the execution (Figure 18). We
observed that the detection ratio remains stable over the execution except when the adversaries change
their strategy (this change occurs at 270 on Figure 18). Nonetheless, the change of strategy is quickly
detected by our approach and the agents immediately adapt their strategy. The detection ratio thus
quickly returns to its previous level.

Finally, we varied the number of times the adversaries change their strategy and we studied the
impact on the detection ratio (Figure 19). The less the adversaries change their strategies, the higher
the detection ratio. In fact, when the adversaries often change their strategy it becomes more and

14 Experiments were performed on a computer equipped with an Intel(R) Core(TM)2 Duo processor, 2000 MHz, 8Gb.
15 http://www.fransoliehoek.net/index.php?fuseaction=software.madp

http://www.fransoliehoek.net/index.php?fuseaction=software.madp
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more difficult to deduce the current context. In highly dynamic problems, the percentage of detected
illegal actions falls below 60%.

Figure 18: Detection ratio over time Figure 19: Influence of the number of strategy
changes

3.6.3 Discussion

Our approach proposes to exploit the observations of the defenders in order to learn a model of the
adversaries and then to compute cooperative strategies based on the learned model. We consider
defenders with limited observability about the system. In particular, our model does not make the
assumption of full-rationality from the defenders and does not require the defenders to know the reward
function of the adversaries. We defined a simple model of the adversaries where the probabilities of
attacks among the targets are derived from the limited knowledge that the defenders can obtain about
the system. This model benefits from little assumption about the degree of observability of the system
by the defenders and by the adversaries as well.

Recently, approaches dealing with adversary bounded rational behaviors have focused on Subjective
Utility Quantual Response (SUQR) models (Nguyen et al., 2013; Kar et al., 2015). These works are
derived from the theory of Subjective Utility introduced in behavioral economics (Fischhoff et al.,
1983) and define the subjective utility of the adversary as a linear combination of values (rewards and
penalties) and probabilities. The subjective utility is then introduced in a Quantal Response (QR)
model to predict a probability distribution of the adversary strategy. QR models suppose that the
greater the expected value of a target, the more likely the adversary will attack that target (Nguyen
et al., 2013). However, these models require to know the payoffs of the adversary and to be able to
tune the parameters of the subjective utility functions. Finally, the high computational complexity of
these models prevent from scaling up to large set of targets.

An alternative approach consists in addressing adversary bounded rationality using robust opti-
mization (Pita et al., 2012; Haskell et al., 2014). These approaches have been developed to solve
problems were the adversary can attack only one target. Instead of building a model of the adversary,
the solution is computed so as to mitigate the defender’s maximum utility assuming an adversarial
optimal strategy on the one hand; and the expected utility of the defender when the adversary deviates
from her rational behavior on the other hand. This approach bounds the loss induced by a potential
deviation of the adversary.

3.7 Perspectives

Over the last decade, Dec-POMDPs have become a well-recognized model to deal with cooperative
decentralized control problem. Our work raises various open issues that we would like to investigate
in the future.
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diversification of constraints and applications Up to now, we have been more
specifically interested in application domains related to multi-robot cooperative exploration. Our
model and algorithms are not restricted to such contexts and we plan to investigate other applications
such as distributed sensor networks, server networks, smart cities or smart homes.

The set of constraints that we studied is not exhaustive and our model could be enriched with other
kinds of constraints. For instance, it would be possible to extend temporal constraints to a set of convex
time intervals. Diversification of constraints can also be guided by the set of relations introduced in
TAEMS formalism (Decker and Lesser, 1993). Hence, we could relax precedence constraints to define
facilitation relations such as “the execution of task τi facilitates the execution of the task τj”.

We also plan to work on the generalization of the hierarchical approach to a wider set of domains.
Although, hierarchical decomposition of Dec-POMDPs has been little investigated, we believe that it
is a promising avenue to deal with large set of states and actions.

approximate approaches with quality bounds Our work has mainly focused on de-
signing distributed solving methods that could efficiently compute high quality solution. We thus
developed several approaches that fulfill our initial requirements. Under some restricted assumptions,
we were able to guarantee the optimality of the solution. However, in the general case, we could not
provide theoretical guarantees on the quality of the solutions. Rabinovich et al. (2002; 2003) proved
that deciding whether there exists an ε-approximate joint policy for a Dec-POMDP is NEXP-hard
and finding an ε-approximate solution remains as hard as optimally solving a Dec-POMDP. Instead
of proving quality guarantee on the solution, a less demanding approach consists in estimating the
quality of the approximate solution. There is then a need to estimate upper bounds on the value
of the optimal solution. Oliehoek et al. (2015) proposed some techniques to provide upper bounds
on the performance of factored Dec-POMDPs. The idea is to decompose the problem into a set of
sub-problems and to make optimistic assumptions about how one sub-problem is influenced by the
other sub-problems. We would like to investigate whether these methods could be used in our setting
to estimate the distance of ours solutions to the optimal.

distributed online learning Although recent advances in learning methods to solve Dec-
POMDPs allow for handling larger state and action spaces, challenges remain to be met. The first
issue we would like to consider deals with handling constraints about task execution when learning
policies. Excepting the work of Liu et al. (2016), learning approaches have been designed to solve
generic Dec-POMDPs. Therefore, there is no guarantee that existing approaches would be able to
deal with temporally extended actions and constraints such as temporal, precedence spatial or resource
constraints. It would thus be necessary to investigate deeper whether existing learning approaches
would be suited to solve Constrained Dec-MDPs. It is likely that more effective learning methods
could be developed by adequately handling constraints on actions.

Another perspective is to exploit the structure of the problems in order to enhance the efficiency
of learning approaches. Building on our previous works on Dec-POMDP decomposition, the idea is
to develop learning approaches that could learn the policy of each sub-problem in a distributed way.
In hierarchical models, we would like to investigate how learning algorithms could be used at the
different levels of the model to efficiently compute coordinated strategies among the sub-problems and
the different levels of the hierarchy.

In our work, we specially focused on distributed solving methods that could be used online by
the agents while most other solving approaches use to compute policies off-line in a centralized way.
Similarly, most existing learning approaches for Dec-POMDPs consist in centralized off-line learning
for distributed control. We would like to pursue our research direction by developing distributed online
learning methods. To our knowledge, the only notable approach adopting such a perspective is the
deep decentralized Multi-Task Multi-Agent learning approach proposed by Omidshafiei et al. (2017).
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online distributed learning is challenging in the Dec-POMDP domain and raises well-known issues
pointed out by (Claus and Boutilier, 1998; Matignon et al., 2012b) in multiagent reinforcement learn-
ing. Indeed, distributed online learning involves cooperative independent learners acting in stochastic
and partially observable environments. As the agents simultaneously learn their strategy and have
partially observability of the system, they are not aware of the policy changes of the other agents. The
environment thus becomes non-stationary from the point of view of each agent.

utility elicitation When the reward function of a decision problem is unknown or partially
specified, utility elicitation can be envisioned in order to incrementally acquire more knowledge about
the reward functions from queries to an expert (Chajewska et al., 2000; Pigozzi et al., 2016). Indeed,
designing a complete and precise reward function is challenging as it is prohibitively expensive in many
cases and potentially error-prone. When a partially specified reward function can still be modeled,
one can take advantage of questioning a human expert during the course of interaction in order to
acquire relevant utility information.

Let consider for instance multi-agent exploration problems (multi-robot exploration or multiagent
patrolling). The vast majority of the approaches assume that the agents have prior full knowledge on
the rewards of the planning problem, i.e. the value of each target is assumed to be exactly known.
Nonetheless, in unknown environments or adversarial domains, the designer of the system may not
have enough knowledge about the utility of each target. In adversarial domain, the agents may be
uncertain about the payoffs of the adversaries (Nguyen et al., 2014b). Interactive elicitation protocols
could therefore be investigated in order to assess, from expert knowledge, the relative importance of
the different locations or to give insights about possible adversarial actions. Note that the objective
is not to obtain a precise specification of the utilities but to allow the agents to make good decisions
even with partial utility information.

When the agents have partial prior knowledge on the payoffs of the problem, utility elicitation can
be used to refine this information. In the multi-robot exploration problem that we previously consid-
ered, such prior utility information may be acquired by the UAV flying over the area to explore. In
security domains, utility information may be extracted from previously observed adversarial behaviors
such as poaching or illegal fishing traces. One popular approach is to adopt a Bayesian representation
of the uncertainty over the possible utility functions. The distribution is updated using the Bayes
rule according to the feedback received from the expert (Viappiani and Boutilier, 2010). The reward
elicitation could then be modeled as a planning problem where we aim at optimizing sequentially the
next question to ask by measuring the expected value of information, i.e. the long-term effect of the
new information. Another approach consists in using minimax regret to decide for the next question
to ask and the next action to undertake (Boutilier et al., 2006).

We plan to investigate interactive elicitation protocols in order to assess, from expert knowledge,
the relative importance of different tasks, different locations or to give insights about possible illegal
actions in patrolling domains. Answers to elicitation queries will then be used to optimize multia-
gent cooperative strategies. Since computing optimal strategies under uncertainty on utilities is a
hard problem, we expect that interactions with the expert could allow to restrict the set of strate-
gies to consider and limit computational efforts. We would like to address the issues related to the
non-stationarity of the preferences and interleave elicitation and optimization to update multiagent
strategies over time.

opponent modeling Our work on multiagent patrolling with adversaries led us to consider
opponent modeling and learning of the opponent model. Opponent modeling has been widely studied
in game-theory but also in learning and planning (Hernandez-Leal et al., 2017). In our context, we
considered the problem of modeling partially observable (and non-stationary) opponents while acting
in stochastic environments. We proposed a probabilistic model of the opponents defined as a set of
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intrusion probabilities. In addition to being compact, this model can be efficiently updated based on
the observations of the defenders about detected illegal actions of the opponents.

We plan to investigate other models of the opponent and to study whether more efficient patrolling
strategies could be computed using these new models. Indeed, opponent modeling raises the question
of selecting the most appropriated model. A wide range of models can be considered such as Bayesian
models, decision trees, Markov Decision Processes (Hernandez-Leal et al., 2013), logic-based model,
neural networks (He et al., 2016), etc. The relevance of a model is influenced by the amount of data
that is available to build the model and by the decision-theoretic approach that will exploit the model.

It important to keep in mind that the objective is to exploit the model of the opponent in order
to plan more efficient actions for a team of cooperative agents. Hence, the model of the opponent
must be easily embedded in the model of the multiagent planning problem. Probabilistic and MDP-
based models of the adversary are thus particularly well suited when the planning problem is modeled
as a Dec-POMDP. However, combining logic-based and Markov models could also be envisioned as
proposed by Saffidine et al. (2018) who combined epistemic logic and Dec-POMDPs.

In our work, we assumed that the defenders only observe detected illegal actions. The agents thus
had little information to exploit and were not able to build a sophisticated model of the opponents.
A similar problem has been encountered in distributed resource allocation (see Chapter 2) where
we assumed that an agent only observes the resources held by another agent upon encounters. As
the agents did not know the other agents’ preferences, they were not able to model their possible
behaviors. One way to overcome this lack of information would be to relax assumptions about the
observability of the other agents and of the opponents. More sophisticated opponent models could
then be designed. Nonetheless, a wider observability range may not be possible in real-world domains.
Another direction is to introduce tactical actions allowing the agents to seek for relevant information
about the opponent. These actions would be included in the set of possible actions and would be part
of the agent’s strategies. The agents would have to choose between executing information seeking
actions for improving opponent modeling or executing rewarding actions with a possibly unaccurate
model.
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S T R AT E G I C A RG U M E N TAT I O N

When agents have different views of the system, they may engage in a conversation and exchange
arguments in order to share some information, persuade each other, deliberate or negotiate (Wal-
ton and Krabbe, 1995). Argumentation theory is an interdisciplinary field studying how conclusions
can be reached through logical reasoning (van Eemeren et al., 1996). In multiagent systems, argu-
mentation theory provides tools for designing and analyzing interaction protocols to resolve conflicts
between agents that arise from inconsistent knowledge or objectives (Maudet et al., 2007). Multiagent
argumentation is mainly concerned with structuring interactions between the agents, i.e. designing
interaction protocols that fulfill established principles. Multiagent argumentation also provides tools
to analyze and evaluate the arguments of the conversation and come up with a conclusion.

In this chapter we consider a general setting where the agents are engaged in a dialogue where
they try to persuade the others to modify their beliefs. The negotiation dialogue can be viewed as an
argumentation game where, at her turn, an agent puts a new argument in the debate or attacks an
existing argument. Dialectics have been investigated in formal argumentation, but mostly as a mean
to provide a proof-theoretical counterpart to argumentation semantics (Modgil and Caminada, 2009),
leaving no room for proper strategies. Hence, agents typically fail to have winning strategies, to act
fully rationally, to act strategically (such as sometimes hiding arguments that they know to be true),
etc.

However, in multiagent systems, an autonomous rational agent is expected to exploit her knowledge
about the argumentation problem in order to decide, at her turn, what is the best argument to
put forward in the course of the dialogue in order to influence the outcome of the debate. Such
argumentation dialogues can be viewed as argumentation games (Thimm, 2014) where self-interested
agents strategically select their arguments in order to reach a desirable state of the dialogue according
to their individual preferences. It has to be noticed that strategic argumentation is even more crucial
when the horizon of the dialogue is limited. Indeed, if the agents may not have enough time to
proceed all arguments, they have to select the most relevant arguments to put in the dialogue before
the deadline.

As described in the classification proposed by Thimm and Garcia (2010), a key element to consider
in strategic argumentation is the awareness of agents. Two extremes of the spectrum are when
agents are fully ignorant, i.e. they just know their own arguments; or omniscient, i.e. they know the
arguments (and strategies) that the opponents have at their disposal. In the former case the agent
will typically have to rely on heuristic approaches (e.g. (Kontarinis et al., 2014)). While this may
be efficient in practice, it is usually very difficult to offer any guarantee on the outcome. In the case
of omniscient agents, one can use game-theoretic approaches, like backward induction. However, the
strong required assumptions are often problematic. In fact, the degree of awareness corresponds to
the level of knowledge studied in the previous chapters. An omniscient agent is assumed to have full
observability of the system which is not realistic in many situations.

Following our work on planning under partial observability, we consider a more realistic interme-
diate level of awareness where each agent has partial knowledge of the other agents’ possible moves.
In fact, each agent may have partial knowledge about the arguments and the attacks that could be
played by the opponents. While an agent may have full knowledge of the arguments of the domain,
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she may not know whose arguments are actually endorsed by the other agents. The agent is thus
uncertain about the moves that the opponent could play.

In this chapter, we show that strategic argumentation is tightly related to the planning issues that
we previously studied in the context of sequential decision making under uncertainty.

We first investigate the problem, for an agent, of optimizing a sequence of moves to be put forward
in a debate. We show that the planning problem of a strategic argumentative agent can be formalized
as a Mixed Observability Markov Decision Problem (MOMDP). Since argumentation problems are
highly structured, we design optimization techniques to reduce the size of the problems and improve
the efficiency of strategy computation.

We then turn to the problem of strategic mediation in argumentation debates where conflicting
agents that may be organized as teams exchange arguments to persuade each other. Assuming that
the argumentation strategies of the debating agents are stochastically known, we proposed to formalize
and solve the planning problem of the mediator as an HS3MDP.

4.1 Research context

The work presented in this chapter has been initiated in 2014 during the co-supervision (with Nicolas
Maudet and Paul Weng) of the PhD of Emmanuel Hadoux who has then joined UCL as a post-doc.
This work has continued until now and has led to collaborations with UCL and more specifically with
Emmanuel Hadoux and Anthony Hunter.

4.2 Formal argumentation

We begin with an introduction of the necessary background about computational models in argumen-
tation. In particular, we introduce abstract argumentation frameworks as defined by Dung (1995) and
we define the grounded semantics that will be used in the rest of the chapter.

Definition 34. Argumentation framework
An argumentation framework AF is a pair (A, E) where:

• A is a finite set of arguments,

• E is a binary relation between the arguments called attack relation, such that (a, b) ∈ E if a ∈ A,
b ∈ A and a attacks b.

An argument can represent any piece of information such as a belief, a statement, an action... In
fact, Dung’s framework does not pay attention to the internal structure of the arguments but focuses
on the attack relationship between the arguments.

An argumentation framework can be represented by a directed graph where each edge represents
an argument and directed arcs represent the attacks among arguments.

Example 12. Let us consider the argumentation framework AF = (A, E) defined as:

• A = {a, b, c, d}

• E = {(b, a), (c, b), (c, d)}

This argumentation framework can be represented by the following graph:
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a c

b d

Given an argumentation framework, a rational agent would decide which arguments are acceptable.
Dung formalized the notion of conflict-freeness, acceptability and admissibility.

Definition 35. Conflict-freeness
A set of arguments B ⊆ A is conflict-free if ∀a ∈ B, ∀b ∈ B, (a, b) /∈ E and (b, a) /∈ E.
This means that there are no attacks between arguments belonging to B.

Example 13. Example 12 continued
In Example 12, the conflict-free sets are: ∅, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}.

Definition 36. Acceptability
An argument a ∈ A is acceptable with respect to a set B ⊆ A iff ∀b ∈ A such that (b, a) ∈ E ,∃c ∈ B

such that (c, b) ∈ E.
In other words, B defends argument a from every possible attacks.

Example 14. Example 12 continued
In Example 12, arguments a and c are acceptable. with respect to A.

Definition 37. Admissibility
A set of arguments B ⊆ A is admissible if it is conflict-free and all of its arguments are acceptable

with respect to B.
In other words, a set of arguments B is admissible if it is conflict-free and it defends itself against

any possible attack in A

Example 15. Example 12 continued
In Example 12, the admissible sets are {c} and {a, c}.

An argumentation semantic defines the method ruling the argument evaluation process. Two main
categories of semantics are identified: extension-based semantics and labeling-based semantics1.

extension-based semantics An extension-based semantic specifies the rules to derive ex-
tensions, i.e. to decide which subsets of arguments that should be regarded as acceptable. Dung
(1995) introduced four semantics (complete, grounded, stable and preferred semantics) refining the
admissibility principle by requiring other properties to hold.

Definition 38. Complete semantics
A set B ⊆ A is a complete extension of an argumentation framework AF = (A, E) if B is

admissible and all acceptable arguments of A with respect to B belong to B.
In other words, all arguments defended by B are also in B.

Example 16. Example 12 continued
In Example 12, the only complete extension is {a, c}.

It has to be noticed that the complete semantics may return several extensions. The grounded
semantics refines the notion of complete extension in order to return an unique set of arguments.

Definition 39. Grounded semantics
A set B ⊆ A is a grounded extension of an argumentation framework AF = (A, E) if it is the

minimal (with respect to set inclusion) complete extension of AF .
1We refer the interested reader to (Rahwan and Simari, 2009) for more details about semantics and more specifically to
Chapter 2 of this book.
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Example 17. Example 12 continued
The grounded extension is {a, c}.

A grounded extension contains all the arguments of an argumentation framework that are non-
attacked and all arguments that are directly or indirectly defended by non-attacked arguments. The
unicity of the grounded extension makes the grounded semantics a widely used approach to determine
which arguments are accepted and which are not. Moreover, the grounded extension B can be easily
computed incrementally by initializing B with the set of unattacked arguments. The extension is then
increased iteratively. At each iteration, the set of arguments attacked by one of the argument already
present in B are removed and the new unattacked arguments are added to B.

labelling-based semantics Labelling-based semantics aim at characterizing each argument
of an argumentation framework AF with a label taken from a predefined set. A common set of labels
is {in, out,undec} to distinguish between in (respectively out) arguments for which all defenders are
defended (respectively attacked) and undec arguments where only part of the defenders are defended
or attacked (Caminada, 2006). More formally, a label l is a value from {in, out, undec} associated to
an argument a such that:

• L(a) = in iff ∀b ∈ A such that (b, a) ∈ E ,L(b) = out,

• L(a) = out iff ∃b ∈ A such that (b, a) ∈ E and L(b) = in,

• L(a) = undec iff L(a) 6= in and L(a) 6= out.

4.2.1 Argumentation games and opponent modeling

In order for a strategic agent to optimize her sequence of moves to be put forward in a dialogue, she
must be able to anticipate how her opponent will react. Opponent modeling is thus a crucial issue
to develop efficient argumentation strategies. An increasing interest has recently been dedicated in
building and exploiting models of the opponent to enhance argumentation strategies.

A first possible approach is to consider that the agents are fully rational and informed. More
specifically, the strategic agent is assumed to have full knowledge about the opponent strategy. A
game theoretical approach can then be used where the strategic agent computes a best-response
strategy (Oren and Norman, 2010; Black and Atkinson, 2011). However, empirical studies of human
argumentative behaviors have shown that people does not act as a fully rational decision-maker and
often do not play optimally (Rosenfeld and Kraus, 2014). In order to compute argumentative strategies,
it is thus crucial to take into account the bounded rationality of the opponent. Moreover, discussion
partners are usually not fully informed about the strategy of the others. In fact, agents do not endorse
equally the arguments of the argumentative framework and each agent has individual private beliefs in
the arguments of the dialogue. Because of partial observability over the beliefs of the others, an agent
may be unable to anticipate the strategy of her opponent and to deduce an optimal best-response.

Black et al. (2017) proposed a robust approach that aims at finding a strategy for a persuader that
guarantees a certain probability of success no matter which arguments the opponent asserts.

When it is not possible to assume full knowledge of all agents’ strategies or when they act non-
deterministically, one can use probabilities to reflect the likelihood that an agent plays a given argument
or attack.

Rienstra et al. (2013) extended the recursive opponent model initially proposed in (Oren and
Norman, 2010) by capturing uncertainty in the opponent model as a belief state that enumerates all
possible utility functions of the opponent. Similarly to what is done in game-theory, the opponent is
assumed to play a best-response strategy.
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In (Hadjinikolis et al., 2013), the opponent modeling is updated through the information exchanged
during the dialogue. Given an history of dialogues, a relationship graph formalizing support between
the opponent arguments, is built. As the opponent puts new arguments in the dialogue, the opponent
model is updated and augmented based on the relationship graph. The opponent model associates
a confidence value to the arguments of the framework. This value formalizes the probability that a
given argument is part of the beliefs of an agent.

In this chapter, we take a similar approach to model the knowledge about the opponent. Following
the work of Hunter (2014), we adopt a probabilistic modeling of the opponent strategies. The behavior
of the opponent is modeled by a set of rules mapping possible moves of the opponent to a probability
distribution.

4.2.2 Probabilistic argumentation

The Argumentation problem with Probabilistic Strategies (APS) framework has been proposed to model
argumentation problems using probabilistic executable logic (Hunter, 2014). Generalizing it to any
number of agents, an APS is characterized by a tuple 〈N ,A, E , (Si)i∈D, (gi)i∈D, (Ri)i∈D, P 〉 with:

• N , a set of agents;

• A, a set of arguments;

• E , a set of attacks e(x, y), meaning that argument x attacks argument y;

• Si, a set of all possible private states of agent i;

• gi, the argumentative goal of agent i;

• Ri, a set of rules (defined below) specifying the possible moves of agent i;

• P, a set of all possible public states.

The set of arguments A and the set of attacks E are assumed to be known by all agents. However,
this does not mean that agents endorse equally all arguments. The private state accounts for this, by
representing as a conjunction of predicates hi(x) (or their negation) the fact that agent i endorses (i.e.
is willing to use in the debate) argument x. In the public state a conjunction of predicates a(x) and
e(x, y) (or their negation) captures the fact that some arguments and attacks have been made public.
Predicate a(x) means that argument x is put forward in the public state.

In a debate, agents have argumentative goals that characterize their desired argumentation out-
comes. Such goals typically refer to the evaluation of the current state of the debate thanks to argu-
mentation theory, allowing in particular to assess which arguments are acceptable or not. In order to
model realistic argumentation games, the goal of an agent is assumed to be private information and
cannot be observed by the other agents. To characterize the possible desired argumentation outcomes,
each agent i has a goal state gi which is a conjunction of g(x) or g(¬x) where each x is an argument
and g(x) (respectively g(¬x)) means that x is (respectively is not) accepted in the public state. In
our work, we shall always refer to the grounded semantics as defined by Dung (1995). We say that an
argumentative goal is fully satisfied when all the predicates of the goal are true, and partially satisfied
when only some of the predicates are. Although the agents are considered as selfish, individual goals
might not be antagonistic. Indeed, in some cases, the public state may satisfy both goals. In those
situations, both agents are then considered as winners.
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In an APS, the agents’ behaviors are governed by probabilistic rules. A rule r ∈ Ri is of the form
r : prem ⇒ Pr(Actsi) where premise prem is a conjunction of predicates a(·),hi(·) and e(·, ·) (or their
negations) applied to one or more arguments. Pr(Actsi) = [p1/α1, p2/α2, . . . , pk/αk] is a probability
distribution over a set Actsi of possible acts. An act α ∈ Actsi is a set of modifications on predicates
of the public space and private state of agent i: �(p) (resp. �(p)) stands for adding (respectively
removing) p to the public space, where p is either a(x) or e(x, y). �(p) stands for removing p from the
public space. ⊕(p) corresponds to adding predicate p to the private state of agent i. 	(p) corresponds
to removing predicate p from the private state of agent i. A rule can only be fired by an agent i if
its premise is fulfilled. Premises formalize the conditions (i.e. arguments and/or attacks) that must
hold in order to play a rule. Rules are assumed to be coherent and thus two rules cannot have the
same premises with different conclusions (different acts or different probabilities on acts). Note that
following the assumption of the original APS framework, at most one rule has its premises satisfied
at any step (Hunter, 2014).

We denote as rij the j-th rule of agent i and rij,k the k-th act of rule rij , i.e. rij,k = αk if rij :
premj ⇒ [p1/α1, p2/α2, . . . , pn/αn].

Example 18. Consider a concrete dialogical argumentation problem involving 2 agents (agent 1 and
agent 2). A famous debate in the gamer community is whether e-sport is a sport or not. The arguments
are as follows:

(a) e-sport is a sport,

(b) e-sport requires focusing and generates tiredness,

(c) not all sports are physical,

(d) sports not referenced by International Olympic Committee (IOC) exist,

(e) chess is a sport,

(f ) e-sport is not a physical activity,

(g) e-sport is not referenced by IOC,

(h) working requires focusing and generates tiredness but is not a sport.

Assume that agent 1 wants to persuade that e-sport is a sport.
This example can be formalized by an APS, from the viewpoint of agent 1, as follows:

• A = {a, b, c, d, e, f, g, h}

• E = { e(f, a) , e(g, a) , e(b, f) , e(c, f) , e(h, b) , e(g, c) ,
e(d, g) , e(e, g)}

• g1 = g (a)

Assume that the following rules formalize the agents’ behaviors:

• R1 = {h1 (a) ⇒ [1.0/ � a(a)] ,
h1 (b) ∧ a(f) ∧ h1 (c) ∧ e(b, f) ∧ e(c, f) ⇒
[0.5/ � a(b) ∧ �e(b, f) ∨ 0.5/ � a(c) ∧ �e(c, f)] ,

h1 (d) ∧ a(g) ∧ h1 (e) ∧ e(d, g) ∧ e(e, g) ⇒
[0.8/ � a(e) ∧ �e(e, g) ∨ 0.2/ � a(d) ∧ �e(d, g)]}
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• R2 = {h2 (h) ∧ a(b) ∧ e(h, b) ⇒ [1.0/ � a(h) ∧ �e(h, b)] ,
h2 (g) ∧ a(c) ∧ e(g, c) ⇒ [1.0/ � a(g) ∧ �e(g, c)] ,

a(a) ∧ h2 (f) ∧ h2 (g) ∧ e(f, a) ⇒
[0.8/ � a(f) ∧ �e(f, a) ∨ 0.2/ � a(g) ∧ �e(g, a)]}

g2 is unknown to agent 1.
There are 3 |A| = 6561 possible goal states. The sizes of the state spaces are: |S1 | = |S2 | =

256, |P | = 65536.
The initial state (s1 , p, s2 ) ∈ S1 × P × S2 of this problem is assumed to be: ({h1 (a, b, c, d, e)},

{}, {h2 (f, g, h)}).

From Example 18, we can build the graph of arguments and attacks of Figure 20. Bold face
arguments are used by agent 1 while the others are used by the opponent.

a

g f

c bde

h

Figure 20: Graph of arguments of Example 18

While the APS framework is descriptive, it does not tackle the issue of optimizing the sequence of
moves of the agents. All the possible sequences of states can be represented as a Probabilistic Finite
State Machine (PFSM) (Hunter, 2014). For instance, starting from the initial state given in Example
18, the sequence of rules (r1

1,1, r2
3,2, r1

3,1), alternatively for agent 1 and agent 2, leads the environment
to the state {a(a) , a(g) , e(g, a) , a(e) , e(e, g)}. This is a winning state for agent 1 as a(a) is true,
is attacked but also defended. a(a) is therefore accepted.

In order to compute an optimal policy for agent 1, one can use dynamic programming methods
on the PFSM in order to backtrack the policy from the winning state, but this requires to know the
internal state of the opponent. Indeed, in order to know which rules the opponent may fire, we need
to either know the internal state or build a PFSM for each possible internal state.

4.3 Strategic behavior in argumentative debates

We now investigate the problem, for an agent, of optimizing a sequence of moves to be put forward
in a debate, against an opponent assumed to behave stochastically, and equipped with an unknown
initial belief state (Hadoux et al., 2015). In the following, the strategic agent that we consider will
be arbitrarily assumed to be agent 1. For clarity reason, we will limit our discussion to dialogues
where two agents exchanges some arguments. The opponent of our strategic agent is thus referred to
as agent 2. Nonetheless, our work can be extended to settings where our strategic agent faces several
opponents.

At each decision-step, the agent 1 has thus to decide which alternative of a rule to apply based on
probabilistic knowledge about the argumentative behavior of her opponent. We first showed that one
can take advantage of the fact that arguments are exchanged through a public space, making Mixed
Observable Markov Decision Processes (MOMDPs) a suitable model to compute the strategy of a
debating agent. Next, we exploited the fact that the domain of argumentation is highly structured:
different schemes can be designed to minimize the obtained model, while preserving the optimality of
the policy.
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4.3.1 Sequential decision problem under uncertainty

In various sequential decision-making problems, some components of the state are fully observable
while the rest of the state is partially observable. Mixed Observability Markov Decision Processes
(Ong et al., 2010) have been proposed to account for such problems. MOMDPs form a sub-class of
the POMDPs (see Section 3.2.1). MOMDPs exploit the mixed-observability property thus leading to
a higher computational efficiency.

An MOMDP is characterized by a tuple 〈Sv , Sh , A, Ov , Oh , T , Ω , R〉 with:

• Sv the observable part of the state,

• Sh the hidden part of the state,

• A the set of actions,

• Ov and Oh, the sets of observations on the visible and hidden parts of the state respectively,

• T : Sv × Sh × A → Pr(Sv × Sh ) the transition function,

• Ω : Sv × Sh × A → Pr(Ov × Oh ) the observation function,

• R : Sv × Sh × A → R, the reward function.

Recall that our strategic agent observes the state of the debate but does not know the internal
state of her opponent. The assumption on the knowledge of the agent complies with the definition of
states and observations in MOMDPs. Indeed, the states of a MOMDP contain a directly observable
part and a partially observable part. The directly observable part is the public state of the problem
and the private part of agent 1. On the other hand, the non-observable part is the combination of the
private states of all the other agents (in our case the private state of agent 2). This makes MOMDPs
more suitable than other Markov models to represent such decision problems.

In order to optimize the argumentation strategy of agent 1, we transform the APS into an MOMDP
defined as follows:

• Sv = S1 × P ,

• Sh = S2,

• A = {prem(r) ⇒ α |r ∈ R1 and α ∈ Acts(r)}. This set is obtained by decomposing each act
α with a positive probability of each probabilistic rule r in R1.

• Ω(〈sv , sh 〉, a, 〈s ′v 〉) = 1 if sv = s ′v , otherwise 0,

• T , Ov , Oh and R are defined as below.

When generalizing this transformation to more than two agents, the only modified part above is
Sh, being the Cartesian product of the private states of the agents except agent 1.
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action set A The possible (deterministic) actions of agent 1 are defined by splitting each act of
the rules of agent 1 defined in the general APS, into separate actions. For instance, the fist rule of
agent 1 in Example 18:

h1 (b) ∧ a(f) ∧ h1 (c) ∧ e(b, f) ∧ e(c, f) ⇒
[0.5/ � a(b) ∧ �e(b, f) ∨ 0.5/ � a(c) ∧ �e(c, f)]

This rule is split into two actions:

r1′
2 : h1 (b) ∧ a(f) ∧ h1 (c) ∧ e(b, f) ∧ e(c, f) ⇒ �a(b) ∧ �e(b, f)

r1′′
2 : h1 (b) ∧ a(f) ∧ h1 (c) ∧ e(b, f) ∧ e(c, f) ⇒ �a(c) ∧ �e(c, f)

transition function T From a state s, the agent 1 will first play an action and the other
agent will then reply with another action leading to a state s ′. Since we focus on optimizing the
decision of agent 1, we aim at computing the probability that the public state of the debate moves
from s to s ′ when the agent 1 takes a given action. To specify the transition function T on states, we
first need to introduce the notions of compatible rules and application set.

Definition 40. Compatible rule. A rule is compatible with a state s if it can be fired in state s.
We denote Cs (Ri ) the set of rules of Ri compatible with state s.

Definition 41. Application set. The application set Fr (α , s) is the set of predicates resulting
from the application of act α of a rule r on s. If r cannot be fired in s or if act α does not modify
s, Fr (α , s) = s.

Example 19. Example 18 continued. Let s = {a(b) , h2 (h) , h2 (g)}, therefore, Cs (R2 ) = {r2
1}

with r2
1 being the first rule of R2.

Let α1 and α2 be respectively the acts of r2
1 and r2

2 drawn to be executed (with r2
1 and r2

2 ∈ R2).
The application sets are defined such that Fr2

1
(α1 , s) = {a(b), a(h), e(h,b), h2 (h), h2 (g)} as

r2
1 ∈ Cs (R2 ) and Fr2

2
(α2 , s) = s as r2

2 /∈ Cs (R2 ).

From a state s, agent 1 will select one of her compatible deterministic actions. In fact, the
stochasticity in the transitions between two states s and s ′ arise from the probabilistic knowledge
about the actions played by the other agent. Indeed, the probabilistic transition function models the
uncertainty about the opponent’s actions, i.e. the actions of agent 2.

Let r : p ⇒ α be a rule/action in A, with α the only act. The state s ′ = Fr (α , s) is the
application set resulting from the application of α on state s. The rule r ′ ∈ Cs′ (R2 ) is a rule of
agent 2 compatible with s ′ such that r ′ : p ′ ⇒ [p1 /α1, . . . , pn/αn ] and Fr ′ (α , s ′ ) = s ′′i . Assuming
that r ′ is the only rule of agent 2 compatible with state s ′, the function T can then be defined as
T (s, r , s ′′i ) = pi. With more rules compatible with s ′ involving several acts leading to the same s ′′i ,
it is necessary to sum the probability of each act multiplied to a uniform probability across all fireable
rules.

observation sets Ov and Oh In the MOMDP, there is no observation on the hidden part of
the state that is not already in the visible part. What is left is never observable. Therefore, Ov = Sv
and Oh = ∅.

reward function R The reward function is defined as follows: each action that does not reach
a goal state needs to return a strictly negative reward (i.e. a positive cost). If the goal is reached, the
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reward needs to be positive. That way, the policy favors shorter argument sequences reaching the goal.
However, the notion of goal can be extended to account for partially reached goals. For instance, if
the goal of the agent is to have g (a) and g (b) but, only g (a) is reached, a part of the reward could
be obtained. More generally, the reward can be modulated depending on the value of the accepted
arguments in the goal provided the semantics used indeed allows such gradual valuation. For instance,
using the General gradual valuation (Cayrol and Lagasquie-Schiex, 2005), the reward function can be
defined as the sum of the current valuation of each argument composing the goal. Besides considering
attack and support relations, the valuation of the arguments can also involve positive and negative
votes on the arguments (Evripidou and Toni, 2012).

Example 20. Example 18 continued. After conversion, Example 18 yields an MOMDP whose
sets have the following sizes:

• |Sv | = 256 ∗ 65536 = 16 777 216 = |Ov |,

• |Sh | = 256,

• |A| = 5.

Note that in the corresponding POMDP, the size of the set of states would be |S | = |Sv | × |Sh | =
4 294 967 296. Of course, such a large number of states is very limiting for POMDP solving methods.

4.3.2 Model optimization

In order to improve the scalability of argumentation problems that can be formalized and solved,
we proposed several optimization schemes reducing the size of the generated MOMDP. A subtlety
occurs because these optimizations may depend upon each other, and it may be useful to apply them
several times. We say that we reach a minimal model when no further reduction of the model is
possible by application of these techniques. Now this raises an obvious question: as optimizations
may influence each other, we may well reach different minimal models, depending on the sequence of
application chosen. In (Hadoux et al., 2015), we provided several guarantees in this respect: (i) we
show uniqueness of the minimal model under the iterated application of three schemes, (ii) we show
that for the last scheme, uniqueness of the model requires some mild conditions to hold.

[irr.] pruning irrelevant arguments. The first optimization consists in removing the
arguments of each agent that are neither modified and never used as premises (“Irrelevant arguments”).
This optimization is applied separately on the public and private states. An argument can thus be
irrelevant in the description of the private state but can be relevant in the public state. We refer to
an internal (respectively public) argument to denote the argument in the private (respectively public)
state.

Example 21. In Example 18, we can, for instance, remove the internal argument f from the private
state of agent 1. Applying this optimization on the example removes respectively 3 and 5 arguments
from the private state of agent 1 and 2.

Note that, if part of the goal turns out to be an irrelevant argument, this optimization could modify
the goal. But this is a degenerate case: when the irrelevant argument is not compatible with the goal
state, the outcome of the debate is known a priori (the agent loses the debate anyway), thus we do
not consider these cases. Otherwise, the argument is removed from the goal state.
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[enth.] inferring attacks The second optimization considers the set of attacks 2. Let y be
a public argument (a(y)), if e(x, y) exists and �e(x, y)⇒ �a(x) (i.e. each time e(x, y) is added, a(x)
also is), as the set of attacks is fully observable, we can infer attacks from the sequence of arguments
put forward in the public space and thus remove the attacks from the rules and the states. In fact
e(x, y) is no longer used and the semantic of �a(x) becomes “add argument a and attack y if it is
present”.

Example 22. In Example 18, this optimization removes the 8 attacks.

[irr(s0).] pruning arguments wrt. initial state. For this optimization, we exploit
the knowledge about the initial state s0. As a result, this optimization requires to regenerate the
MOMDP if the initial state changes. This optimization consists of two steps:

1. for each predicate p ∈ s0 that is not later modified

(a) update the set of rules by removing all the rules that are not compatible with p,

(b) remove p from the premises of the remaining rules.

2. remove all rules of the opponent that can never be fired after any action of agent 1.

This procedure can be formalized as follows:

1. ∀i, ∀p ∈ s0 s.t. ∃r ∈ Ri s.t. p ∈ prem(r) and @r ′ ∈ Ri s.t. p ∈ acts(r ′ ):

(a) Ri ← {r ∈ Ri |¬p 6∈ prem(r)}

(b) ∀r ∈ Ri , prem(r) ← prem(r)\p

2. Let S ′ be the set of states resulting from the execution of an action of agent 1, i.e. states s ′ =
Fr (α , s), ∀s ∈ S1 × P × S2, ∀r ∈ Cs (R1 ), ∀α ∈ acts(r). ∀r ′ ∈ R2 if r ′ /∈ Cs′ (R2 ) ∀s ′ ∈
S ′ then, R2 ← R2 \ {r ′}

Note that this optimization is an extension of the optimization on irrelevant arguments. Indeed, after
being replaced by their initial value in premises, the arguments become unused and are thus removed.

Example 23. In Example 18, this optimization removes the 5 internal arguments of agent 1.

Note that this optimization cannot be performed for the opponent side since her initial internal
state is unknown.

The optimization procedures presented above deeply modify the representation of the problem. We
need to ensure that the problem solved before the application of those procedures is the same after
the application. In other words, the optimal policy computed after reduction of the problem needs
to be applicable in the original problem as well as to remain optimal. The proofs of the following
propositions are detailed in (Hadoux et al., 2015).

Proposition 14. (a) Applying Irr., Enth., and Irr(s0). does not affect the optimal policy and (b)
the optimized model is unique, minimal for those three optimization schemes and independent of the
order in which they are applied (as long as they are applied until reaching a stable model).

Optimizations can be pushed further by using the graph of attacks.
2Enth. is the abbreviation of Enthymeme expressing the fact that some premises are omitted because they are obvious.
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[dom.] pruning dominated arguments. We start by defining the notion of dominance
for an argument. Note that unattacked arguments are leaves of the graph.

Definition 42. Dominance. If an argument is attacked by some unattacked argument, it is domi-
nated.

Hence, dominated arguments cannot belong to an optimal strategy. As we want the minimal
sequence of arguments, the optimization scheme consists in pruning dominated arguments of agent 1.
Recall that no assumption is made on agent 2, in particular we do not assume that she plays rationally
and tries to avoid dominated arguments.

Example 24. In our example, we can see that argument b is dominated by argument h.

This optimization scheme assumes that agent 2 will necessarily fire a rule consisting in adding an
argument defeating the dominated argument.

Note that this is irrespective of the opponent being an optimal player or not. However, this does
not hold if:

1. the opponent does not know all her rules,

2. the debate length is limited (in which case it may make sense to put forward an argument even
though it is easily defeated because the attacking argument may lie outside of the debate),

3. the opponent cannot play all her arguments.

Proposition 15. If (a) the opponent knows all her rules, (b) can play all her arguments and (c) the
debate length is infinite then, applying Dom. does not affect the optimal policy.

Nonetheless, applying Irr. or Irr(s0). may modify the graph of attacks: some unattacked argu-
ments of the opponent can be removed and dominated arguments may appear to be non-dominated.
In Example 18, if the opponent cannot play argument h, b is no longer dominated and must not be
pruned.

We can now define the notion of true dominance with respect to the optimization procedures.

Definition 43. True dominance. An argument is truly dominated is it remains dominated after
the application of Irr. and/or Irr(s0).

Proposition 16. If all dominated arguments are truly dominated, the optimized model is unique,
minimal and independent of the order in which the optimization schemes are applied (as long as they
are applied until reaching a stable model).

Otherwise, Irr. and Irr(s0). must be applied before Dom. in order to keep only truly dominated
arguments.

4.3.3 Experiments

Even if the transformation of an argumentation problem to an MOMDP exploits observable informa-
tion to reduce the high dimensionality of the problem, it can still lead to a huge state space. It may
thus be impossible to use exact solving methods. We ran experiments to test the scalability of our
approach and optimization methods. Since the exact algorithm MO-IP (Araya-López et al., 2010b)
was unable to compute a solution in a reasonable amount of time (a few tens of hours), we used
MO-SARSOP (Ong et al., 2010), with the implementation of the APPL library (NUS, 2014).

After solving the MOMDP built from Example 18, we obtained the following policy graph for
agent 1:
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Figure 21: Policy graph for Example 18

The observations of agent 1 are:
o1 = {a(a)}, o2 = {a(a) , a(f)}, o3 = {a(a) , a(c) , a(f)}, o4 = {a(a) , a(c) , a(f) , a(g)}
o5 = {a(a) , a(c) , a(e) , a(f) , a(g)}, o6 = {a(a) , a(g)}, o7 = {a(a) , a(e) , a(f) , a(g)},
o8 = {a(a) , a(e) , a(g)}

To follow this policy, start on the first node, apply the rule and move in the graph depending on
the observation received. From the point of view of agent 1, accepting states (double circled) are final
states of the debate. The agent has no more actions to execute unless the other agent adds or removes
a predicate that changes the state. Note that the second node of the top row is an accepting state
from which the agent can transition. Indeed, receiving observation o3 can have two meanings: either
the opponent has not played a(g) yet or she will never be able to. From that, the decision-maker can
consider waiting for the opponent to play or not. Of course, this policy takes into account the ability
for the opponent to apply a rule she has already applied before.

We investigated another example (Example 25) where some predicates can be removed from the
state. The purpose of this example is to show that the solving algorithm gives an optimal policy, even
if a cycle can be created by the agents when adding and removing arguments.

Example 25. This example contains three arguments a, b, c and a special argument s meaning agent
1 surrenders and thus loses the debate immediately. Rules are:

• R1 = {h1 (a) ∧ a(b) ⇒ [1.0/ � a(a) ∧ �e(a, b) ∧ �e(b, a)]
a(c) ⇒ [1.0/ � a(s)]}

• R2 = {h2 (b) ∧ h2 (c) ⇒ [0.9/ � e(b, a) ∧ �e(a, b) ,
0.1/ � a(c) ∧ �e(c, a)]}

The initial state is ({h1 (a)}, {a(b)}, {h2 (b) , h2 (c)}), g1 = g (a).

Figure 22 shows the optimal policy graph for Example 25.
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Figure 22: Policy graph for Example 25
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The observations of agent 1 are as follows:
o1 = {a(a) , e(b, a)}, o2 = {a(a) , e(a, b) , a(c) , e(c, a)}
o3 = {a(a) , e(a, b) , a(c) , e(c, a) , a(s)}, o4 = {a(a) , e(a, b)}

Finally, we investigated the influence of each optimization on the computation time3. Table 3
reports computation times required to solve the problems while applying different sets of optimizations
before solving the problem with MO-SARSOP. We considered Example 18, Example 25 and a slightly
modified version (in order to fit it in our framework ) of Dvorak (Dv.) problem taken from DBAI
group (2013). A dash in the table means that the computation of the optimal policy took more than
30 min. and 0 means that the time is less than 0.01 secs.

None Irr. Enth. Dom. Irr(s0). All
Ex 18 — — — — — 0.56
Ex 25 3.3 0.3 0.3 0.4 0 0
Dv. — — — — — 32
6 1313 22 43 7 2.4 0.9
7 — 180 392 16 20 6.7
8 — — — — 319 45
9 — — — — — —

Table 3: Computation time (in seconds)

We can see that for Example 18 only the fully optimized problem can be solved in a reasonable
amount of time. In order to study how the method scales, we also generated instances built on
bipartite argumentative graphs (but not necessarily trees) with an increasing number of arguments
evenly split among the two agents. In Table 3, line n (where n = 6, . . . , 9) shows the time needed to
solve problems with n arguments.

Our experiments show the effectiveness of these optimization schemes, which make several examples
solvable in practice. Nonetheless the optimal resolution remains extremely costly, and the algorithms
considered in the experiments seem very unlikely to handle instances involving more than a dozen of
arguments. In order to improve the efficiency of solving methods, we could use the POMCP algorithm
presented in Section 3.6.1. Indeed, without using this algorithm, the optimization procedures help to
tackle problems of higher dimension but POMCP is not as limited as the other algorithms by the size
of the problems. Hence, in this context, using the procedures would allow POMCP to reach a better
quality solution.

4.4 Debate mediation

Argumentation debates involve different conflicting agents, or teams of agents, exchanging arguments
to persuade each other. Although such debates may take place without a mediator, in some situations
(e.g., large number of agents), it is necessary to call on a mediator to preside the debate. When a
mediator is introduced, she acts as a referee among debating parties (single agents or teams). Her role
is essentially to allocate turn-taking, but she could also decide on issues being discussed, that is, set
the agenda of the discussion.

The problem of mediation has recently emerged as an important challenge for formal argumentation.
Quoting Janier and Reed (2017): “the development of argumentation theories linked to computational
applications opens promising new horizons since computational tools could support mediators, making
sessions quicker and more efficient”. In (Prakken, 2008) a persuasion dialogue game for two players is

3The experiments have been performed on a machine equipped with an Intel XeonX5690 4.47 Ghz core and 16G of RAM.
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extended to consider a neutral adjudicator. In (Janier et al., 2016), a dialectical system designed for
mediation is proposed. Such dialogue games look in details at the types of moves that can be played,
and prescribe what agents can play, but not how the mediator should play.

In our setting, we suppose that agents are split into several teams, exchanging arguments to
persuade each other. The role of the mediator is to decide which agent of which team will speak next.
To solve this decision problem, our mediator exploits her knowledge about the debating agents and
more specifically about their argumentative strategies. A first issue is the amount of information that
the mediator has at her disposal. While it is conceivable that the mediator knows which team each
agent belongs to, it is difficult to assume that she could assign a deterministic strategy to each agent,
or that agents play optimally. Instead, agents will be viewed as reasoning with probabilistic strategies
as investigated in the previous section of this chapter. This represents both the fact that an agent can
act non-deterministically and that the mediator does not know perfectly the strategy of each agent.
However, assuming that those strategies are stationary may also be too strong.

4.4.1 Dynamic Mediation Problems

Inspired by the APS formalization introduced in the previous section, we proposed the Dynamic Me-
diation Problem (DMP) framework to consider a strategic mediator managing turn-taking between de-
bating agents with non-stationary strategies (Hadoux et al., 2018a). Although our framework extends
APS, it tackles different issues: an APS formalizes the decision problem of a strategic debating agent
without mediation whereas a DMP considers the decision problem of a mediator facing non-stationary
debating agents. Our objective is to allow an active mediator to decide for the best turn-taking
sequence by adapting to the changes of argumentative behaviors.

A DMP is defined by a tuple 〈N , T , A, E , P, (Mi)i∈N , ((Rµi )µ∈Mi)i∈N , (Bi)i∈N , (gj)j=0...|T |,
(Fi)i∈N 〉 with:

• N , a set of agents,

• T = {T1, . . . , T|T |}, a set of teams (i.e. subset of agents) where T forms a partition of N ,

• A, E and P as in APS,

• Mi = {µ1
i · · ·µli}, the set of argumentative behaviors for agent i,

• Rµ
j
i
i , the set of rules of agent i in the argumentative behavior µji ∈Mi,

• Bi :Mi×Mi → [0, 1] models the probability of agent i to change from one behavior to another,

• gj , the goal of team Tj and g0, the mediator’s goal,

• Fi : Mi ×Mi ×N → [0, 1] models the probability of agent i to move from one behavior to
another after a given number of steps in the first behavior.

Debating agents are split into several teams so that all members of a same team share the same
common argumentative goal. A goal (for a team or for the mediator) consists in having some arguments
present or absent from the grounded extension of the arguments played in the common public debate
space.

We use the labeling {in, out,undec} to characterize which arguments are in and which arguments
are out at the end of the debate. More specifically, this labeling allows us to determine which agent
is the winner of the debate and whether the goals of the mediator are fulfilled or not.
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We consider a general context where the mediator does not observe the private states of the
debating agents. Although private states of the debating agents are not explicitly represented in a
DMP, probabilities on acts in the rules indirectly formalize how private knowledge influences the moves
of the debating agents.

We exemplify our application context and framework with the following example:

Example 26. A government is discussing a bill to legalize communication surveillance. Two teams
debate at the legislative assembly: the pro- and the anti-bill. The modeling contains 9 arguments (4
pros and 5 cons):

(a) anonymization software should not be seen as suspicious,
(b) innocents have nothing to hide,
(c) whistleblowers are not protected,
(d) sensitive jobs are protected (journalists/lawyers),
(e) no judge is required to monitor a user,
(f) the system is controlled by an independent committee,
(g) the government can possibly abuse control,
(h) the bill should allow any form of control to be bypassed in case of “absolute emergency”,
(i) no possible control on the hidden algorithm.

Figure 23 describes the attack graph between arguments.
Assume that g1={in(c),in(i)}, g2={in(d),in(h)}.
Under the grounded semantics, a, c, h, and f are acceptable, thus g2 is not fully satisfied.

a c e g i

b d f h

Figure 23: Graph of arguments and attacks

For the sake of clarity, we only give below examples of rules in one of the modes for two agents i
and j from two opposite teams: i (resp. j) belongs to team T1 (resp. T2). For conciseness, we remove
the attacks from the rules, though they are still used to determine which arguments are attacked or
defended.

Ri : {∅ ⇒ [0.7/� a(a) ∨ 0.3/� a(e)]
a(b)⇒ [0.55/� a(g) ∨ 0.45/� a(c)],
a(d)⇒ [0.5/� a(i) ∨ 0.5/� a(c)],
a(f)⇒ [0.9/� a(c) ∨ 0.1/� a(i)],
a(e) ∧ a(f)⇒ [1.0/� a(i)]}

Rj : {∅ ⇒ [0.6/� a(d) ∨ 0.4/� a(h)],
a(a)⇒ [0.7/� a(d) ∨ 0.3/� a(b)],
a(e)⇒ [0.8/� a(f) ∨ 0.2/� a(f)],
a(g)⇒ [0.5/� a(f) ∨ 0.5/� a(b)],
a(i)⇒ [1.0/� a(h)]}

Argumentative modes

Each possible stationary strategy µji of an agent i is referred to as an argumentative behavior. Tran-
sitions between behaviors formalize the non-stationarity of the agents’ argumentative behaviors (each
time an agent changes her strategy, she will move to another argumentative behavior). Of course, the
agents’ current behavior cannot be directly observed by the mediator.

In order to define the possible argumentative behaviors, we proposed to exploit the typology
of constructive versus destructive behavior, due to Moore (1993) and consider two argumentative
behavior for each agent. This constitutes a basic case that has the advantage of being grounded in
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argumentation theory, and which can be easily extended with mixtures of these extreme behaviors. In
the constructive behavior, the agent favor acts that build her goals, while in the destructive behavior
she seeks to destroy the arguments that are potential goals of the other team. As the debate progresses,
the agent may become less constructive towards her goal and more destructive towards the goal of the
adversary. For instance, an agent can feel to be rushed if the time has almost run out, she can also
feel angry or bored if the debate lasts for too long and thus becomes more aggressive. Probabilities
over acts in the rules thus vary from one mode to another in order to reflect these changes in the
argumentative behavior.

Example 27. Example 26 continued. Consider the following modes, capturing different attitudes
for an agent of team T2 when argument a holds on the public state (either to put forward argument d,
which is one of the goal of team T2, or instead attack argument a by playing argument b).

constructive: a(a)⇒ [0.7/� a(d) ∨ 0.3/� a(b)]
destructive: a(a)⇒ [0.2/� a(d) ∨ 0.8/� a(b)]
mean: a(a)⇒ [0.45/� a(d) ∨ 0.55/� a(b)]

The mediation problem

A DMP models a multi-team debate mediated by a strategic agent. A sequence of speak-turns is a
sequence of agents organized by the mediator. Note that a sequence of acts σ is the sequence of acts
effectively performed by the agents involved in a speak-turns sequence.

Example 28. Example 26 continued. Let agents 1, 2 and 3 be in team T1 and agents 4 to 7
be in team T2. We assume that agents in a same team have the same rules. The sequence of speak-
turns (1, 4, 1, 5) starting from state s = ∅ can yield the sequence of acts (r1

1,1, r4
2,1, r1

3,1, r5
5,1) with rki,j

the j-th act of rule i of agent k. After the application of this sequence of acts, the public state is
s′ = a(a) ∧ a(d) ∧ a(h) ∧ a(i).

The objectives of the mediator can be of different nature and will be captured through an appro-
priate setting of the reward function of the decision problem. These objectives are usually defined
so as to ensure that the debate will follow some desired rules. Mediating debates is a longstanding
issue in democracies. As early as 1876, Henry Martin Robert designed a set of rules, Robert’s Rule of
Order (Robert, 2011), which prescribe how assembly discussions should be conducted. For instance,
a general guideline of the rules is that “no member can speak twice on the same issue until everyone
else wishing to speak has spoken once”. But it also goes in much deeper details regarding the agenda
of a meeting, the amendments and the motions, the votes, and how the “floor” (the right to speak)
can be allocated in assembly discussions. Prakken and Gordon formalized (some of) those rules and
argue that they may be used in electronic debates, showing by example how this could be done in the
ZENO’s discussion forum (Prakken and Gordon, 1999).

We distinguish different types of objectives that the mediator should pursue, and classify these
principles as belonging either to the efficiency or the fairness of the debate.

debate efficiency. An important feature to define the debate efficiency is the goal of the
debate. Strict neutrality would imply that the mediator holds an empty goal. However, it is legitimate
for the mediator to have an impartial goal which is slightly different from an empty goal. By impartial
we mean that the mediator does not favor any team a priori. This could typically correspond to the
goal of the interaction itself, which depends on the type of interaction considered (Walton and Krabbe,
1995; Prakken, 2006). Indeed, the main objective of the mediator is to lead the debate to its expected
outcome. This is expressed by a goal (g0) that the mediator pursues.
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Example 29. Example 26 continued. Suppose the mediator has identified the pro- and anti- bill
teams. A possible impartial goal could be that both teams manage to reach a consensus at least on
argument g, i.e. g0 = {in(g)}. Another type of impartial goal would be g0 = {in(c) ∨ in(h)}. These
goals are impartial in the sense that this is a disjunction which does not discriminate between goals of
team T1 and goals of team T2.

• Impact on audience (Imp)— At each turn, the debate yields a public state where the goal of the
mediator can be evaluated. Sometimes it makes sense to do so at each step of the debate, for instance,
for debates broadcasted on radio, where an audience might be convinced depending on how long they
were exposed to convincing arguments. Sometimes only the state at the end of the debate is relevant,
as in a trial, where only the ultimate state is considered by the judges.
• Progress of the debate (Prog)— Making regular progress in the debate should be favored, i.e.

circular arguments (Mackenzie, 1979) or empty moves should be discouraged, and the mediator is
legitimate to intervene to avoid this.
• Length of the debate (Len)— Short debates are preferred.

debate fairness. The following properties are crucial to ensure that the debate is conducted
in a way that is fair to all the participating agents.
• Alternation between teams (Alt)— This is one of the main guidelines of Robert’s Rules of Order

(Robert, 2011), and it has a very intuitive appeal. Janier et al. (2016) also note that fairness is achieved
in their system by balancing the agents’ positions. We reformulate this rule in the context of several
teams: “the turn should not be given to the same team again, as long as all the other teams did not
have the opportunity to speak”.
• Fair opportunity to respond (Resp)— Priority should be given to agents who have (supposedly)

a move directly connected to the most recent argument made in the debate. This captures a notion of
relevance, but not as stringent as the one used in (Prakken, 1998; Bonzon and Maudet, 2011), which
enforces that the status of the issue of the dialogue is directly impacted by the move.
• Full participation (Part)— As long as agents have something relevant to say, they must in

principle be allowed to do so. Robert’s Rules of Order prescribe that: “under no circumstances should
“undue strictness” be allowed to intimidate members or limit full participation”. This means that no
team should have the power to decide upon the termination of the debate on their own, and that the
mediator should pay attention to leave it open as long as required.

Clearly, all of these principles may not be satisfied simultaneously: they are even sometimes con-
tradictory. In the next section, we are going to see how all these principles can be captured through
some appropriate setting of states, goals and reward functions.

4.4.2 Dealing with Non-stationary Behaviors.

Since the moves of the debating agents are uncertain, the decision problem of the mediator can be
viewed as a sequential decision-making problem under uncertainty. The objective of the mediator is
then to maximize a value function ensuring that the computed policy, i.e. the sequence of speak-
turns, yields the highest expected discounted sum of rewards. An additional difficulty comes from
the non-stationarity of the decision problem. The following two observations suggest that HS3MDPs
can handle DMP problems: (1) there is a fixed and known number of possible environment dynamics,
which corresponds to all combinations of the debating agents’ behaviors; (2) an environment dynamics
mode prevails for several time steps since agents engage in a consistent behavior and keep the same
behavior over several time steps.

Formally, the decision problem of the mediator in a DMP can be modeled as an HS3MDP (see
Section 3.6.1) with the following components:
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• M =
∏
i∈DMi the set of all possible combinations (µ1, · · · ,µ|D|) of argumentative behaviors

such as µi is a behavior of agent i in the DMP. The elements of M are numbered and denoted
mk. Each mode mk corresponds to an MDP 〈S,A,Tk,Rk〉 with:

– S = P ×{1, . . . , |T |}, all possible combinations of public states, plus the team of the agent
who has just spoken,

– A = N , as an action consists of allowing one agent to speak, i.e. to fire one rule,
– Tk and Rk (for each mode mk ∈M), as specified below.

• C : M×M → [0, 1] the transition function over modes induced by Bi of the DMP, assuming
independence between the changes of the agents’ behavior.

• H : M×M×N → [0, 1] the mode duration function derived from Fi of the DMP with the
independence assumption. There is a (HS3MDP) mode change if the duration of at least one
agent’s behavior is equal to zero.

Capturing Efficiency and Fairness Principles.

The reward function Rk formalizes the objectives of the mediator and has to be defined in compliance
with the semantics of the problem. The different objectives of the mediator can generally be captured
with a specifically designed reward function, and simultaneous objectives can be handled by combining
(e.g., additively) several reward signals. We are now going to see how the principles of mediation
presented above can be captured. As we shall see, some of them would require to augment the state
space.

For efficiency:

• Progress of the debate (Prog) is captured by assigning negative rewards to vacuous acts, i.e.
acts that do not change the state of the debate. A less obvious situation is to avoid circular
arguments. Such moves can be penalized with a negative reward, but one would need to augment
the state space to represent the history of the moves.

• For the impact on audience(Imp), recall that the mediator may have some impartial goals (e.g.,
consensus) specific to the debate. This is simply handled by giving a positive reward when (parts
of) those goals hold. We distinguish final vs. step-wise reward depending on whether the reward
is given in the final step, or at each decision step. In the step-wise case, the reward for a fulfilled
goal is given at each step where the goal holds. In the final approach, a reward is only given at
the end of the debate if the goal of the mediator holds.

• Regarding the length of the debate (Len), it suffices to penalize every time-step with a small
negative reward value, or alternatively to use an adequate discount factor (the smaller the factor,
the shorter the sequences of moves).

For fairness:

• To favor alternation (Alt) between two teams, a negative reward can be given to the mediator
if she lets the same team speak twice consecutively (by choosing this alternation penalty high
enough, strict alternation can be enforced). When considering more than two teams, the state
has to be augmented with the history of the |N − 1| last teams’ turns.

• Regarding fair opportunity to respond (Resp), the mediator may be rewarded if a move is
relevant, i.e. related to the last (or some recent) moves. In this case, the state space would need
to be augmented to keep track of a few last moves.
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• Finally, full participation (Part) is guaranteed in our model since the debate only ends when
each team has triggered the skip act.

To summarize, the designer only has to specify goal and relevance rewards, along with progress,
length and alternation penalties to model the mediator of her choice. As already mentioned, while some
objectives are synergistic (e.g., progress of the debate and full participation), others are contradictory
(e.g., length of the debate and full participation). In the latter case, different rewards may cancel
out. While modeling a DMP, the relative importance of the objectives needs to be tuned by setting
appropriately the values of the different reward signals.

4.4.3 Mode detection and strategy computation

To account for the high dimensionality of the HS3MDP obtained by converting a DMP, we used our
adaptation of POMCP developed to solve HS3MDPs (see Section 3.6.1).

We ran experiments to test the relevance of formalizing the possible behaviors of the agents in
the decision process. We compared the performance of the mediator while making decisions using an
HS3MDP policy against a policy issued from a mean model over all behaviors. Indeed, exploiting a
mean model is a common method (see, e.g., Doya et al. (2002); da Silva et al. (2006)) that approximates
the non-stationarity to solve the problem while allowing for the use of standard algorithms. It can
perform well if the additional information brought by the non-stationary model is not significant
enough. In the experiments, given an instance of debate mediation, the mean model is defined by
averaging over the behaviors, rule by rule, the probability distributions over possible acts. We obtain
a “mean” MDP with stationary state transition and reward functions (see Example 27). The HS3MDP
and the “mean” MDP are then solved using POMCP. We report the performances of both approaches.

Each part of Table 4 corresponds to debates involving respectively 3 agents in one team vs. 4 in the
other, 12 vs. 12, 25 vs. 25 and finally 50 vs. 50. For each team size, we generate 100 instances of the
problem described in Example 26 with different probabilities on acts in the rules. The problems were
defined randomly for each agent with respect to the behaviors, i.e. in the constructive behavior, the
probability of the act moving the debate towards the goal is higher than the probability of trying to
defeat the opponent. The mediator’s goal is randomized for each instance. We recorded the mediator’s
performance (i.e. discounted sum of rewards) for each instance and average over the 100 instances.
We also increased the numbers of simulations done by POMCP while averaging over 1000 runs with
the given number of simulations. The number of simulations is the number of Monte-Carlo executions
done in the simulator before executing in the real environment the best action found. It starts with
eight simulations and doubles the number of simulations until it takes more than one hour for 1000
runs (for at least one of the 100 averaging instances). Recall that POMCP is theoretically guaranteed
to tend towards the optimal solution when increasing the number of simulations (Silver and Veness,
2010). Note that, in a real context, the decision-maker chooses a number of simulations suitable to
the application and running-time requirements.

In these experiments, we used a goal reward of 10 for each part of the goal accepted, -100 for
the alternation penalty and a discount factor of 0.9 accounting for both the length and the progress
penalties. Note that the fact that the final reward is positive or negative has no specific meaning.
Reported performances correspond to the results obtained by the mediator using step-wise and final
reward functions. The left value of each column is obtained using the “mean” model and the right
value is obtained using the HS3MDP model. Bold face values mean that the relative improvement
is at least 1% and that the difference is statistically significant. Both values are in bold face in the
opposite case. For all sizes of instances, with a sufficient number of simulations, one can see that
HS3MDP always outperforms the “mean” model for both reward functions. However, as the size of
the instances increases, more simulations are needed to outperform the “mean” model. In fact, without
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Teams # Sim. Step-wise Final

3-4

8 -93.66 / -86.28 -116.97 / -108.90
16 -52.26 / -39.40 -79.27 / -64.99
32 -10.29 / -4.99 -35.49 / -30.40
64 3.12 / 4.46 -21.27 / -19.73
128 4.57 / 5.73 -19.89 / -18.82
256 4.36 / 5.97 -19.90 / -18.51

12-12
64 -8.70 / -5.82 -36.20 / -32.87
128 16.15 / 16.75 -9.81 / -9.46
256 20.58 / 20.87 -4.94 / -4.97

25-25 128 -5.08 / -3.56 -31.93 / -30.68
256 -15.59 / 16.74 -10.56 / -10.28

50-50 256 -1.50 / -0.31 -27.84 / -27.32

Table 4: Performances for Teams 3-4, 12-12, 25-25 and 50-50

# Sim. Step-wise

8 -73.71/-64.58
16 -29.62/-16.91
32 13.94/16.41

Table 5: Performances for
Teams 3-4 with disjunctive
goals

enough simulations, the additional information brought by the HS3MDP model is not used and leads
to wrong choices of actions when the model believes to be in a wrong mode. Nonetheless, it has to
be noticed that, even for large-sized instances, the number of simulations required to outperform the
“mean” model remains small. Furthermore, HS3MDPs can lead to significant improvements since the
relative improvements are up to 79%. Apart from the results for Teams 12-12 and Teams 50-50 at 256
simulations for the “final” reward function, all results are statistically significant with p < 0.05 and
most of them with p < 0.001 under a Student t-test.

discussion As a general model with minimal assumptions, DMPs can represent various mediation
problems. Although we consider an active mediator, she does not take actions to directly modify the
state of the debate. Yet, the mediator may be able to put forward arguments in the public space in
order to make the debate evolve and escape from a dead end (e.g., (Chalamish and Kraus, 2012; Janier
and Reed, 2017)). In our framework, handling such mediators is straightforward: a fictitious team
of only one agent, embodying the mediator, is added to the DMP. The rules of the fictitious player
consists in the possible arguments the mediator may want to play. Putting forward an argument for
the mediator consists in fact in letting this fictitious player speak. Finally, dialogue games that include
a mediator (Janier et al., 2016; Prakken, 2008) suggest that other types of argumentative moves are
useful (questioning, asking for resolution, etc.).

4.5 Perspectives

Strategic argumentation has been only recently investigated in formal argumentation. The work
presented in this chapter raises many issues that have been little studied in the domain.

learning of the opponent model In the previous sections, we assumed that the behavior
of the opponent is probabilistically known. Specifically, we considered that, given a certain state of
the debate, it is known probabilistically how the opponent may react. These probabilities may have
been obtained by expert knowledge, or by observation of previous interactions with the same agent
(or at least, type of agent), e.g., a vendor may be able to predict from past interactions the possible
counter-arguments that could be put forward by a skeptical consumer. In (Franz et al., 2017), we
focused on persuasion dialogue and we started investigating how the model of the opponent could be
learnt from the interactions along the dialogue.
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A persuasion dialogue involves a persuader trying to convince a persuadee (also called opponent)
to believe in a combination of arguments. For instance, a doctor may try to convince a patient to stop
smoking or to start eating healthier food. A persuasion dialogue is then a sequence of moves where
the persuader and the persuadee alternatively take turn to put forward an argument or an attack in
the dialogue. The number of steps of the dialogue is assumed to be limited to an horizon h. Hence, it
gives more chance for the persuadee to keep engaged in the debate until the end.

Hadoux and Hunter (2017) investigated strategic argumentation in persuasion dialogues but they
assumed that the opponent follows a specific decision rule that translates her predisposition towards
the goal of the dialogue or the overall subject, and this decision rule is never updated. If the decision
rule assumed to be used by the opponent does not correspond to the rule actually played, this may
lead to bad performance for the persuader. In order to improve the performance of the persuader, we
plan to develop frameworks where the persuader maintains a belief model of the opponent and could
update this model during the dialogue.

The first key challenge to address is to identify relevant models of the opponent. While our works
considered that the opponent behaviors is modeled by a set of probabilistic rules, other models could
be more efficient. Rosenfeld and Kraus (2016) proposed to predict the opponent’s model formalized as
a Weighted Bipolar Argumentation Framework (WBAF). Nonetheless, WBAF includes an argument
belief function and an interaction belief function that both return continuous values. The number of
possible models of the opponent to consider is therefore infinite. An important issue is thus to specify
adequate models summarizing the relevant information about the opponent and that can be efficiently
exploited by the persuader to make decisions.

A second important issue will be to design efficient methods that compute an argumentation
strategy allowing the persuader to learn the opponent model and that exploit this knowledge to optimize
her goal as well. In the work presented in this chapter, we exploited a known model of the opponent
to optimize an argumentative goal. Given an initial model of the opponent, we would like to let the
persuader update this model as the dialogues goes on, i.e. as she obtains new observations from the
opponent. The updated opponent model would then be exploited by the persuader in the next steps
to make more efficient decisions.

Besides making decisions to reach her goal by updating and exploiting the model of the opponent,
the persuader could also make decisions in the hope of improving her opponent model. Indeed, some
moves in the dialogue may reveal more relevant information about the opponent behavior than others.
It would then be interesting to allow the persuader to use some arguments in order to confirm whether
her current model is valid or not and to refine the model. Nonetheless, such actions may incur a cost
for the persuader. For instance, if the persuader selects the argument yielding to the highest expected
information gain, she may open the door to counter-arguments that would decrease the overall value
of the dialogue even if the opponent model is improved. For instance, the counter-argument may
prevent the persuader from reaching the persuasion goal. On the other hand, if the opponent model is
inaccurate, the persuader may take non-relevant decisions that hurt the overall value of the dialogue.
The decision process has thus to take into account the long-term effects of persuader’s actions and the
opponent responses.

This decision problem could be formalized and solved as a POMDP where the state of the decision-
problem would combine the model of the opponent and the state of the dialogue (Rosenfeld and Kraus,
2016). The persuader would only observe the state of the debate but observations about the moves
of the opponent could provide some information about the model of the opponent. Belief states
would then formalize the probability distribution over the possible opponent models. However, such a
POMDP formalization requires to have prior probabilistic knowledge about the possible moves of the
opponent, i.e. to a priori be able to fully define the observation function. In order to alleviate this
assumption, we intend to investigate machine learning methods.
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Moreover, a special attention has to be paid to the size of the POMDP formalization. This issue
is closely related to opponent modeling since the number of possible opponent models would influence
the state space size of the model. Abstract models of the opponent could also be investigated in order
to merge similar models of the opponent. In order to solve large instances, we also plan to consider
exploiting the structure of the argumentation framework.

experimentation with people Until now, we investigated debating systems where the goal
of the agents is to reach a desired outcome of the dialogue. The performances of our argumentation
strategies have then been tested using virtual agents, by looking at the final state of the dialogue.
However, when considering persuasion systems, it is important to evaluate whether the persuader
managed to change the attitude of the persuadee. For instance, if the objective of the persuader (e.g.
a doctor) is to make her patient eat healthier food, it is required to test whether the patient is indeed
more willing to change her feeding habits.

Such an evaluation requires to conduct experiments with human subjects and comparative studies.
Recently, some works presented some experiments on strategic persuasion involving human subjects
(Rosenfeld and Kraus, 2016; Hadoux et al., 2018b; Polberg and Hunter, 2018). Undoubtedly, we will
have to develop such experiments to test the strategic persuasion models that we envisioned above.
Such experiments will contribute to bridge the gap between abstract argumentation and mixed systems
involving human and virtual agents that interact by exchanging arguments.

impact of the arguments on the opponent strategy Although we investigated
settings where the argumentative behaviors of the agents may evolve over time, these changes are
assumed to be independent of the arguments put in the dialogue. However, some arguments may have
an impact on the interlocutors and may change their private states and behaviors.

Such changes can be related to an emotional reaction from the discussion partner (Hadoux et al.,
2018b). It would be interesting to investigate how these emotional effects could be handled and
anticipated in argumentation strategies. One avenue to consider would be to relate the arguments to
some identified topics or emotions that could influence the behavior of the opponent. The opponent
model should then include some information about the topics that are willing to impact the opponent
and how the emotions evoked by the arguments could change her behavior. Hadoux et al. (2018b)
investigated the emotions invoked by the words used in persuasion dialogues. The strategy of the
persuader is based on a multi-criteria decision process taking into account the belief in arguments
and the emotional response evoked. In this work, the persuadee is assumed not to play strategically
nor stochastically and instead always select the argument according to her believes regarding the
emotional effect evoked by the persuader. Under probabilistic modeling of the opponent, it would
be interesting to investigate settings where the arguments put forward in the dialogue change the
distribution probability of the rules during the dialogue.

strategic opponent Finally, we did not consider that the opponent plays strategically, i.e.
adapts her strategy from the observations made along the dialogue. While it is a reasonable assump-
tions when the discussion partners are not competitive, this may not be the case in debates where the
agents have conflicting goals. In fact, the opponent may also model her interlocutor and strategically
adapt her decisions from the information obtained along the dialogue. Game theory and computational
theory of mind offer interesting prospects to optimize decisions in such contexts.
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5
C O N C L U S I O N

The work presented in this document considered issues dealing with multiagent distributed planning
and decision-making under uncertainty and partial observability.

In the first chapter, we studied the multiagent resource allocation problem from a distributed point
of view. This work highlighted the relevance of bilateral deals in order to solve resource allocation
problems in a distributed way. In this context, uncertainty on the system state arises from the limited
observability of the agents about the current allocation. Moreover, when individual preferences are
private information, each agent is uncertain about the acceptation of her proposals. We investigated
fairness issues in distributed settings where each agent has partial and dynamic observations of the
whole allocation. In particular, our work introduced new notions of envy-freeness accounting for
incomplete and incorrect knowledge when only the number of resources held is assumed to be known
initially. We also developed a distributed protocol and informed heuristics allowing the agents to
exploit their knowledge about the system in order to decide for the next agent to contact.

In the second chapter, we considered multiagent planning for distributed control in uncertain
and partial observable environments. We were more specifically interested in Markovian decision
processes. We proposed to enrich the Dec-POMDP model to formalize multitask planning problems
with constraints. Because of the high complexity of multiagent planning under uncertainty and partial
observability, we investigated approximate solving approaches. While most existing approaches consist
in centralized planning for distributed control, we paid particular attention to distributed planning
algorithms allowing each agent to compute her strategy. We proposed different approaches based on
agent and spatial decomposition to split the initial multiagent planning problem. We also described
different methods to coordinate the resulting sub-problems. We introduced the notion of opportunity
cost values. We also proposed to define a high-level MDP dedicated to coordination among sub-
problems. In the last part of the chapter, we looked at non-stationary environments and investigated
issues dealing with the detection of context changes. While our previous contributions make the
assumption of a known probabilistic model of the uncertainty, we considered learning of the new
dynamics of the environment. In adversarial domains, this is highly related to learning the model of
the adversary.

In the third chapter, we were interested in the contribution of decision theory and planning to
abstract argumentation. We highlighted the relevance of Markov models in two types of problems:
optimizing the sequence of arguments of an agent in a debate and strategically organizing speak-
turns allocated by a mediator in non-stationary mediation problems. In this work, we assumed that
the uncertainty about the discussion partners can be modeled as a set of probabilistic rules. We
showed that these planning problems can be formalized as an HS3MDP. Because of the high number
of arguments and agents that may be involved in a debate, the size of the models quickly become too
large. We thus proposed optimization procedures to reduce the size of the problems without impacting
the optimality of the solutions.

The conclusion and the perspectives of this work have been highlighted at the end of each chapter.
We end this final conclusion with general remarks about the issues discussed all along the document.

As soon as an agent does not have full observability of an uncertain environment, she has to make
efficient decisions from her sequence of partial observations about the system. Designing a compact
and sufficient representation of this sequence is not an easy task. When the uncertainty on the action

107



108 conclusion

outcomes and on the observations is known and can be represented by probabilistic functions (as
in POMDPs), the sequence of observations can be summarized as a belief state. Nonetheless, in
multiagent systems, even a statistic on the possible states of the system is not sufficient to make
optimal decisions. In fact, if an agent is not aware of the observations made by the other agents and
of their policies, she is uncertain about the actions taken by the other agents. When the agents are
cooperative and share a common reward function (as assumed in Dec-POMDPs), the recourse to a
central planner is helpful since it allows for computing a distribution over the state and agent histories
while computing joint strategies of control. However, when planning is distributed (as we considered
in Chapter 3) or when the agents do not know the other agents’ preferences (as it is the case in
Chapter 2), anticipating the actions of the others is even more challenging. We described different
contributions in order to provide practical solutions to these problems. In MARA context, for instance,
we maintained knowledge on the global allocation based on local observations of the bundles and gave
heuristics to estimate the uncertainty. In Chapter 3, we developed a distributed planning method
where the agents can communicate some opportunity cost values to coordinate their strategies. This
work provides approximate solutions since decisions do not rely on exact information about the other
agents’ strategies. Now, a major step forward would be to design solutions with upper bounds on the
performances.

In adversarial settings (as studied in Chapters 3 and 4), it is also desirable to anticipate the actions
of the adversaries. To do so, we envisioned learning a model of the adversary. Nonetheless, this requires
the agent to collect enough observations about the adversary in order to build an accurate and correct
model. Because of partial observability, the agent may miss some actions of the adversary and may
not be able to build such a model. Under highly limited observability, it is likely that other kinds of
approaches, such as robust planning, would perform better. Knowing the degree of observability of
the agents, a relevant question is to decide whether it is worthwhile to try to learn a model of the
adversary.
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