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Foreword: To the layman reader.

Let us consider you receive, one by one, a sequence of observations Y (1), Y (2), Y (3), · · · ∈ Rd, where Y (1) is
the first observation you receive, Y (2) the second one, and so on and so forth. These observations may be of
different nature, think for instance of each Y (i) as coming from

• sensors of a robot, such as video, audio, touch, mention or battery sensors.

• time-geographic whether data such as temperature, wind, humidity, gathered from many different probes.

• user data such as in health-care (history of past diseases of a patient, genetic data, response to a specific
medicine), in web-advertisement (navigation history and clicked ads), or in job-care (CV of a person,
location, interest in a given job).

• node/edge observations from an electric, water, producer-consumer or ecological network.

"All models are wrong" After having received many data, it seems natural to start understanding this se-
quence, what are its regularities, and what could be the next observation. In full generality, there is however
no reason that the n ∈ N first observations are any informative about observation Y (n+1). For instance, let us
denote Y (n′)

1 ∈ R the first component of Y (n′) = (Y
(n′)

1 , . . . , Y
(n′)
d ) for each n′ ∈ N. Let us consider also that

there exists n0 ∈ N, n0 6 n such that

max
n′6n0

Y
(n′)

1 = max
n′6n

Y
(n′)

1 .

Now, even if, say, n0/n < 10−5, that is you haven’t seen the maximal value of the sequence change for a large
amount of time, nothing prevents the first component of the next observation Y (n+1)

1 to exceed this maximum.
Thus, from a worst case perspective, the task of trying to say anything more than Y (n+1) ∈ Rd is prone to
error. Note, even worse, that considering Y (n+1) ∈ Rd should be considered as an assumption, and for an
arbitrary sequence given to you, it could be that in fact Y (n+1) ∈ Cd (for instance). We thus have to consider
that whatever restricting assumption we put on the observed sequence, this assumption may be wrong and
contradicted by the next observation. Let us formalize a little bit this concept before continuing: We say an
assumption can be contradicted if it implies that the next observation Y (n+1) should belong to a specific set S,
in which case either Y (n+1) ∈ S or not. We further ask that this property can be decided. In the sequel, a set of
such assumptions that be contradicted will be called a model:

Definition 1 (Model) A model on the sequences of observations is a set of assumptions such that for each
n ∈ N, there exists a set Sn enforcing these assumptions such that (Y (1), . . . , Y (n)) ∈ Sn is decidable.

Scoring and adding stuff Although this notion of model looks fairly generic, in many situations however,
one may want to extend this notion beyond using a single (or countably many) set. For instance, one may want
to consider that both sets [0, 1] or [0, 2] are valid, but value more [0, 1] than the other for some reason. Hence if
we observe that Y (n+1)

1 = 0.7 ∈ [0, 1] we may give this property a score of 1 and if Y (n+1)
1 = 1.2 ∈ [0, 2]\ [0, 1]



we give this property a lower score, say of 0.4. This score means that we prefer having an observation in [0, 1]
over having an observation in [0, 2]. We may further weight differently each set [−a, a] for all a ∈ R, each with
a score wa ∈ [0, 1], or even give a different weight to each singleton set {y} for y ∈ R. More generally, for
some set Ω of possible observations, we consider subsets B ⊂ Ω and want to give them a score.

Let us introduce a mild assumption on this notion of score: Basically, we would like to be able to "add
stuff", in the sense that the score given to [0, 1] ∪ [2, 3] equals the score given to [0, 1] plus the score of [2, 3].
More generally, it is natural to ask that the score given to any countable union of disjoint sets is the sum of the
score of each set (countably additive), that is we want the score to be a measure, which we denote µ. In order
to define the score in a meaningful way, the traditional approach is to define it on a specific sub-collection of
subsets of Ω. We consider what is called a σ-algebra of Ω, that is a collection Σ of subsets of Ω containing
at least the empty subset, and such that all complement, countable intersection or countable unions of sets of
Σ still belong to Σ. This construction is natural in view of the countably additive property of the measure
µ : Σ→ R. The tuple (Ω,Σ, µ) is simply called a measure space.

Coming back to our observations, given a set of possible outcomes Ω for a sequence Y (1), Y (2), . . . of
arbitrary finite length, a measure µ and a set S ∈ Σ, the quantity µ(S) ∈ R tells us how much we value that our
observations fall into S. This leads to the following notion of measure model (we define likewise a measure
model for sequences of length n or even 1):

Definition 2 (Measure model) A measure model for sequences is a measure space (Ω,Σ, µ) where Ω is a set
of outcomes of sequences of observations. For any S ∈ Σ, we denote its measure by µ(S) or more explicitly

µ(Y (1), Y (2), · · · ∈ S) ∈ R .

Measures with richer properties It is convenient to consider cases when the observation space Ω is not
arbitrary, but has some richer structure. Hence we ask the measure to obey some additional properties:

• The first case is when Ω is equipped with a specific topology τ : We want to be able to talk about
neighborhoods of each points (topological space), such that each point has a compact neighbourhood
(locally compact) and different points have different neighbourhoods (separable aka Hausdorff). In this
case, we can define the smallest σ-algebra containing the open sets, called the Borel algebra, and it is
enough to define our scores on this Borel algebra. The score function µ then qualifies as a Borel measure.
For better compatibility with the considered topology, we may further want that µ(A) = sup{µ(K) :
compact K ⊂ a} (inner regular) and that every point y has a neighbourhood A of finite score µ(A)
(locally finite). Under these additional mild conditions, the score is now called a Radon measure.

• A second situation is when Ω is equipped with a metric `, and we further ask Ω to be complete (every
Cauchy sequence of Ω converges in Ω). Note that a metric naturally enables to define neighbourhoods and
thus an induced topology that we denote τ`. Such a space (Ω, `, τ`) when τ` satisfies the above properties,
is called a Polish space. A typical example of Polish space is R, with Euclidean metric d(x, y) = |x− y|
and associated topology. The Borel algebra is generated by the sets {(−∞, r) : r ∈ R}. A typical Radon
measure for the topology τd is the Lebesgue measure, usually denoted by λ.

Likewise, we may add further constraints to the measure µ. If µ(Ω) = 1, we call it a stochastic measure,
and if further µ(S) > 0 for each S ∈ Σ, we call it a probability measure. We naturally give specific names
to a measure model having specific properties: Hence a stochastic model is a measure model with a stochastic
measure, a probability model is a measure model with a probability measure. In the sequel, we will mostly
focus on models that combine all previous assumptions and are simply termed "Probabilistic":
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Definition 3 (Probabilistic model) A probabilistic model is a measure space (Ω,Σ, µ) where Ω, equipped
with metric ` and topology τ` is a Polish space, Σ is the Borel algebra induced by τ`, and µ is a Radon
probability measure.

A first probabilistic model Intuitively, while a model enables to decide whether a sequence of observations
belong or not to the model, a probabilistic model values certain parts of the space more than other parts in a
quantified way, and in a sense always considers a sequence of observations to be possibly outside of the model.
A typical example of probabilistic model for sequences of length 1 is built with Ω = R, using the Euclidean
metric d. Unfortunately (Ω,Σ, λ) is not a probabilistic model as the Lebesgue measure is not a probability
measure. We can use instead the Gaussian measure with mean m ∈ R and variance σ2 > 0 defined for each
Borel set S by

gm,σ2(S) =
1√

2πσ2

∫
S

exp(− 1

2σ2
|y −m|2)dλ(y) ,

where we introduce the integral, defined for a non-negative function f : Ω→ R+ as∫
S

f(y)dλ(y) = sup

{ K∑
k=1

akλ(Ak) : K ∈ N, ak ∈ R+ and ∀y ∈ S,
K∑
k=1

akI{y ∈ Ak} 6 f(y)

}
,

where I{y ∈ Ak} equals 1 if y ∈ Ak and 0 else. This quantity may be infinite, and extends to any signed
function f by

∫
S
f(y)dλ(y) =

∫
S

max(f(y), 0)dλ(y) −
∫
S

max(−f(y), 0)dλ(y) provided that both terms are
finite; we say in this case that f is measurable with respect to the measure λ. Now it can be checked that
gm,σ2(R) = 1. In order to complete this presentation, let us remark that by construction, the Gaussian measure
is in the form gm,σ2(S) =

∫
S
f(y)dλ(y) for all measurable set S, where we introduced the function f(y) =

exp(− 1
2σ2 |y −m|2)/

√
2πσ2. This function f is called the Radon-Nikodym derivative of gm,σ2 with respect to

λ and is denoted
dgm,σ2

dλ
. When the reference measure λ is specified without ambiguity, we may simply denote

it gm,σ2 , without confusion since the measure is gm,σ2 : 2Ω → [0, 1] while the derivative is gm:σ2 : Ω → R+.
Note for instance that gm,σ2({y}) = 0 6= gm,σ2(y).

The previous probabilistic model is defined for a single observation. However it easily extends to Ω =

R? def
=
⋃
n∈N Rn, that captures all real-valued sequences of finite length. The topology can be extended to

Cartesian products Rn = R × · · · × R with the product topology whose sets are called the cylinder sets. This
in turns generates the cylinder σ-algebra and Borel cylinder sets. Likewise, a product space Rn of probabilistic
models (R,Σi, µi)i6n naturally inherits a measure from the measures (µi)i6n by the product measure µ defined
on the Borel cylinder sets: Such a measure satisfies, for each n ∈ N and Borel sets S1, . . . ,Sn ⊂ R that

µ(Y (1), . . . , Y (n) ∈
n∏
i=1

Si) =
n∏
i=1

µi(Y
(i) ∈ Si) .

Note that here, each Y (i) is scored by the measure µ only according to µi, thus independently on the other
measures (µj)j 6=i. For this reason, we also say that this probabilistic model considers that the observations are
independent. Using our Gaussian model for observations of length 1 can be extended to a product measure
by considering the same Gaussian measure µi = σm,σ2 for each i. In this case, we further remark that all
measures are identical. Hence we say that this probabilistic model considers observations that are identically
and independently distributed, or for short i.i.d. The typical probabilistic models for i.i.d. data that we will
encounter include Bernoulli, Gaussian variables, and more generally exponential families (described later).
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We have seen how to build a measure on R? from measures on R. Conversely, any measure µ on R? can be
used to define measures on R, using the following product decomposition

µ(Y (1), . . . , Y (n) ∈
n∏
i=1

Si) =
n∏
i=1

µY (1),S1,...,Y (i−1),Si−1
(Y (i) ∈ Si),

where µY (1),S1,...,Y (i−1),Si−1
(Y (i) ∈ Si) =

µ(Y (1), . . . , Y (i) ∈
∏i

j=1 Sj)
µ(Y (1), . . . , Y (i−1) ∈

∏i−1
j=1 Sj)

.

Note that in this generic decomposition, the ith measure depends on all observations before i, but none after i.
An interesting case is when there exists some m ∈ N, such that for each i, the ith measure only depends on
the value of the last m observations before Y (i), namely of Y (max{i−m,1}), . . . , Y (i−1) (but not on i, for i > m).
Indeed in this case, µ is fully determined by m+ 1 measures on R (one for each i 6 m, and one for all i > m).
Such models are called Markov of order m. Further, we recover the i.i.d. probabilistic models for m = 0.

Random variables and processes We are now ready to introduce the concept of random variable, that will
be used extensively in all this manuscript. Given a probabilistic model (Ω,Σ, µ) and a measurable space (E, E)
(possibly equal to (Ω,Σ)), a random variable X is a function (sic!) X : Ω → E such that {w ∈ Ω : X(w) ∈
S} ∈ Σ holds for each measurable set S ∈ E (Σ-measurable function). If E = R, we naturally say the
random variable is real-valued, if E = Rd, we say it is vector valued, etc. A crucial object linked to the random
variable is its law: we introduce the notation Pµ(X ∈ S) = µ({w ∈ Ω : X(w) ∈ S}) and call µ the law
of the random variable and write X ∼ µ to say that X has law µ. Hence we see from this expression that
a random variable is completely determined by the probability measure. The notation is coherent with the
one introduced for models in the sense that in the trivial case when (E, E) = (Ω,Σ) and X(w) = w, then
Pµ(X ∈ S) = µ({w ∈ Ω : w ∈ S}) = µ(S). Finally, when X is real-valued, we define its expectation (or
mean) by Eµ(X) =

∫
R ydµ(y), whenever the identity function y → y is integrable with respect to its law µ.

The concept of random variable becomes more powerful when considering several random variables defined
on the same probability space. For instance, instead of considering the sequence of observations as being a
single random variable defined on a product space, an alternative view point is to consider each single Y (i) =
Xi(w) as being the value of a different random variable Xi taken at a same point w ∈ Ω. In that case, each
variable may have its own associated probability measure µi. Hence from this standpoint, we have a collection
(Xi)i∈N of random variables (equivalently, a collection of probability measures (µi)i∈N) indexed by the set of
integers. This leads to the more general notion of process, that is a collection of random variables indexed by
a set I, or a function X : I × Ω → E. The index set I does not have to be countable, in can be R, or even a
function space (function process). When I is totally ordered an interesting σ-algebra associated to the process
X can be defined for each i ∈ I: the smallest σ-algebra containing

{
X−1
j (A) : j ∈ I, j 6 i, A ∈ E

}
, which

we denote FX
i , or more explicitly F(X1, . . . , Xi) when I = N?. The collection FX = (FX

i )i∈I is a filtration
and is called the natural filtration associated to the process X.

In the rest of this document, we will encounter several of these processes that are of special interest in the
context of sequential learning. For instance Markov processes of finite order enable to model dynamics in the
observations, while function process indexed by a set of functions are particularly interesting to capture various
kind of structures in real-valued observations.

The concept of "Likelihood" We now have a first example of a probabilistic model on sequences of obser-
vations thanks to the Gaussian measure on R and its extension to a product measure on sequences. We can
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continue our tour and ask what to do with Y (1), . . . , Y (n): Since the measure provides a score for each set, it is
tempting to interpret the Radon-Nikodym derivative as a score given to each observation point (note however,
that this is not correct), and then to ask what is the score given to the sequence of observations that we actually
receive. Following this rationale, and the product measure property, people have thus introduced and studied
the following quantity (here specified to the Gaussian measure)

Lgm,σ2 (Y (1), . . . , Y (n)) =
n∏
i=1

dgm,σ2

dλ
(Y (i)) =

1

(2πσ2)n/2
exp

(
−

n∑
i=1

(Y (i) −m)2

2σ2

)
.

Let us remark that the closer the observations from point m, the larger this quantity. Such observations are
more valued by the model, or put differently, they are more likely under this model than observations that are
far from m. For this reason, the function L, that can be defined more generally for any given probabilistic
model, is called the likelihood function of the observations for the given probabilistic model.

At this point, given all the measures {gm,σ2 : m ∈ R}, it is equally tempting to ask which one maximizes
the likelihood of the observations, in other-words, to look for a solution to

sup
m∈R
Lgm,σ2 (Y (1), . . . , Y (n)) .

A solution, when it exists, is called the maximal likelihood estimate. An optimal value for our example using
Gaussian measures exists, is unique and is given explicitly by

m̂n = arg max
m∈R

exp

(
−

n∑
i=1

(Y (i) −m)2

2σ2

)
= arg min

m∈R

n∑
i=1

(Y (i) −m)2 =
1

n

n∑
i=1

Y (i) .

This can be considered as a first instance of a learning problem, that is an optimization task based on observa-
tions. Assuming the observations are i.i.d. from a gm0,σ2 model, with m0 ∈ R, it is natural to ask how far is
m̂n = m̂n(Y (1), . . . , Y (n)) from m0. A natural way to do so is to look at the mass given to the values of m̂n

that are far away from m0, say, for a given ε > 0,

Pgm0,σ
2

(
Y (1), . . . , Y (n) ∈ S(m0; ε)

)
where S(m0; ε) =

{
y1, . . . , yn :

∣∣m̂n(y1, . . . , yn)−m0

∣∣ > ε

}
,

which we simply denote Pgm0,σ
2

(∣∣m̂n(Y (1), . . . , Y (n))−m0

∣∣ > ε

)
. In the case of Gaussian i.i.d. models, we

will soon see we have an easy control on this concentration inequality. In the general case, the answer can be
delicate: the observations can be dependent, the probabilistic model may have complicated parameters, and the
maximal likelihood estimate may be tricky to compute (or do not exist); Also, we naturally want bounds that
are valid for each number of observations n. We will present in part I of this document powerful tools in order
to derive concentration inequalities.

Before moving on to the next step, let us point out that there are however a few known problems with the
maximal likelihood estimate in general, and we warn the reader that maximizing is not necessary the correct
way to make use of the likelihood function Skilling (2015). To get a hint why, let us point something a little
awkward: remark that the value of the maximum in the Gaussian model is now given by

Lgm̂n,σ2 (Y (1), . . . , Y (n)) = exp

(
− n

2

[ σ̂2
n

σ2
+ log(2πσ2)

])
where σ̂2

n =
1

n

n∑
i=1

(Y (i) −mn)2 .
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Written in this form, we can observe that the value converges to 0 exponentially fast in general, which seems
counterintuitive in view of the name "likelihood " given to this object. Indeed one may expect the likelihood of
the observations, if they are all close to m, to be always high. This counterintuitive behavior potentially comes
from over-interpreting the Radon-Nikodym derivative of the measure as a point-wise score in the first place,
and highlights that combining the likelihood with maximization is not a good notion of score in order to assess
how likely the observations are for the considered model. We will discuss this point and provide an alternative
way when given a collection of measures. On the other hand, we will see later that the likelihood is especially
appropriate in order to compare two models (rather than selecting one).

Parametric setup Now that we have discussed a first estimation task, it is convenient to introduce some
further terminology. A family of probability measuresM is said to be parametric if it is indexed by a subset
Θ of Rd for some finite d ∈ N, that is, such that each µ ∈ M can be described uniquely by a parameter
θ ∈ Θ. In this definition, the restriction is on the dimension of the parameters θ, that must be the same for
all measures. Hence the collection of Gaussian measures {gm,σ2 : m ∈ R} on R is an example of parametric
family of dimension 1 with parameter θ = m ∈ R. The family {gm,σ2 : m ∈ R, σ2 ∈ R+} has dimension
2. Now regarding our observations, we say we are in a parametric setup, or that the observation process is
parametric, when the laws (µi)i∈N of the random variables (Y (i))i∈N belong to the same family. Note that for
an i.i.d. process, all the laws are identical (µi = µ), hence it is parametric in case µ can be defined using a
finite dimensional parameter θ. When each law µi belongs to a different family with dimension di, such that
limi→∞ di =∞, we sometimes say we face a semi-parametric setup.

Identifiability When assuming a parametric process, with parameter set Θ, it is natural, given observations,
to try to identify for each i the parameter θi ∈ Θ ⊂ Rd corresponding to µi, that is we want to build an estimate
of θ̂i,j = θ̂i(Y

(1), . . . , Y (j−1)) ∈ Θ of θi from observations before time j. This task can be done using ideas
similar to the maximal likelihood estimate that we saw earlier, or other approaches. Before trying to estimate
anything, a crucial question is whether it is possible at all to estimate θi from observations. Indeed, there is no
reason a priori that there exists an estimation procedure such that ∀θi ∈ Θ, limj→∞ θ̂i,j = θi. Such situations
are unfortunately not uncommon: A typical example is when observation Y (i) corresponds to what is seen by
an agent at its current location si ∈ S moving in a two dimensional set S that is invariant by rotation by π/2.
That is, denoting the rotationR, in this situation µi = µsi and µsi = µR(si). In such a situation, if we try to infer
our position si from the observations only, we will at best be able to estimate that we are in the set {si, R(si)},
hence the location si is not an identifiable parameter. This simple example shows that when considering a
parameter set and an identification task one must always be cautious that the set consists only of identifiable
parameters (or be happy recovering only the set of parameters indistinguishable from the targeted one).

Cones and orderings To continue with warnings, we now want to shed light on an important, and often
overlooked notion. When looking for an estimate θ̂i of θi, we will naturally compare the two quantities in
order to assess how good is the estimate, and more importantly, we may want to understand how to move our
current estimate in the direction of θi. The natural way to do so is by considering an order relation 6 on Θ,
and it turns out the correct way to build such order relations is thanks to the notion of cones. A cone C in a
vector space X is a set that is stable by non-negative multiplication, namely {λx : x ∈ C, λ ∈ R+} ⊂ C. An
interesting property is that the relation defined by x 6C y if and only if y − x ∈ C is a partial order whenever
C is convex, pointed (0 ∈ C) and salient (∀x 6= 0, {x,−x} /∈ C). A typical way to build such a cone (hence a
partial order) from any point x ∈ X is by defining C?(x, p) = {y ∈ X : 〈y, x〉 > p‖y‖‖x‖}, where p ∈ [0, 1].
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It is pointed and convex by construction, and salient for any p > 0. The definition extends to any set S ⊂ X
by C?(S, p) =

⋂
x∈cS C

?(x, p), and C?(S, 0) is called the dual cone of S. Finally for any point x and cone C, it
is convenient to define Cx = x + C to be the affine cone rooted at x. Coming back to our unknown parameter
θi, we thus look at cones Cθi rooted at θi. Now we are ready to deliver our warning message.

When Θ ⊂ R, the notion of cones is often hidden since there are only two possible pointed salient convex
cones, namely R+ = {x ∈ R : 〈x, 1〉 > 0} (the positive cone, or dual cone of {1}) and R− = {x ∈
R : 〈x,−1〉 > 0} (the negative cone, or dual cone of {−1}). Note that if 6 denotes the usual ordering on
R, then 6R+ is 6 while 6R− is >. Yet, cones do appear in the control of the probability of error such as
Pgm0,σ

2

(∣∣m̂n−m0

∣∣ > ε
)

, where m̂n is an estimate of the parameter m0 ∈ R. Indeed we classically decompose
this quantity in two parts

(Positive cone) Pgm0,σ
2

(
m̂n −m0 > ε

)
= Pgm0,σ

2

(∣∣m̂n −m0

∣∣ > ε ∩ m̂n ∈ R+
m0

)
(Negative cone) Pgm0,σ

2

(
m0 − m̂n > ε

)
= Pgm0,σ

2

(∣∣m̂n −m0

∣∣ > ε ∩ m̂n ∈ R−m0

)
,

and often provide a separate controls for each partial order, before combining the two results (Note, interest-
ingly, that a similar decomposition on the positive and negative cones is used to define integration). When
moving to higher dimension d > 1, there are now infinitely many pointed salient convex cones, and handling
them properly requires some specific care. It thus natural that in many settings, going from dimension 1 to
higher dimensions is highly non-trivial and gives rise to long-lasting open questions. Fortunately, in such a
situation the notion of cone is often beneficial. We illustrate the power of cones by solving an example of such
intricate question in the multi-armed bandits setup in Maillard (2018) and another one for stochastic weighted
automata in Balle and Maillard (2017).

A few questions Up to now, we have considered that we receive a sequence of observations, and that we have
at hand a collection of probabilistic models to describe them. A few natural questions can be considered:

• What are the probabilistic models that provide the best fit to the data (model selection) ? Note that any
collection of measures can naturally be combined into a new one: indeed, we can give a score to each
model by defining a (probability) measure on the set of probabilistic models, which in turn induces a
measure on the observations. This is called "aggregation" and we can extend this question of model
selection to find the best aggregation of probabilistic models.

• Given the n first received observations, can we find a probabilistic model that gives maximal score to the
next observations (prediction)?

The seemingly simple tasks of model selection, model aggregation and prediction have been the object of an
intensive research agenda since the early ages of statistics, and will certainly require further decades or more
of investigation. One of the reasons is that the observations can be of different nature, they can be real values,
vectors, matrices, graphs, functions, etc. Further the probabilistic models defined on sequences of observations
may consider not only i.i.d. observations, but also independent or not independent observations, with various
notions of dependencies. Last, whatever processes (ρj)j6J are considered for a sequence of observations, it is
always possible to define a new process ρ that uses ρj1 for the first n1 ∈ N observations, ρj2 for the next n2 ∈ N
ones, and so on and so forth. Thus, the considered process changes every now and then, which introduces the
questions of detecting and identifying changes in the observations (change point).
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From passive to active observation Let us put these challenging questions aside for now and ask a simpler
question: what is the source of these observations? Answering this simple question leads to an interesting
point. Indeed, there are many different sources of observations out there and we are only observing some
observations from some specific sources. Hence it is natural to consider that these sources are chosen in some
way amongst all the possible ones. The choice of sources can be made independently on us and what we do
with the observations, but it could also be done depending on us, either by an other system (in which case we are
passive) or even by us (active learning) or by a combination of us and another system. This is a fundamental
shift of paradigm, as we now consider a possible interaction between the agent and the observations. This
opens a large research agenda that is one of the primary focus of this manuscript.

Indeed if we can choose at each step the source from which we want to receive the next observation(s),
it is natural to consider these decisions are taken in order to optimize some criterion. More importantly, in
case another system also chooses the sources, perhaps based on our choice, our decisions may now have a
consequence on the next observations we receive. That is, we may have to change from a probabilistic model to
another one according to the dynamical change of the sources. From this perspective, it is crucial to understand
how the sequence of decisions that we make affects our observations and the criterion we want to optimize.
This generic task is termed sequential decision making, or more precisely sequential decision making under
uncertainty to emphasize that we may only have probabilistic models of the observations and of way the sources
change (dynamics).

From this standpoint, we now have a sequence of decisions (actions) and observations

d(1), Y (1), d(2), Y (2), . . . ,

where Y (1) is the (first) observation after taking decision d(1), Y (2) is the observation after taking decision d(2),
etc. Here is a short illustrative list of problems of this kind:

• Clinical trials: A new disease appears. At each time step, we receive a patient suffering from it, and we
have a few possible drugs that can be tested from a finite set D. Upon applying drug d(i) ∈ D on patient
i, we quantify the success of the drug at curing patient i, thus creating the next observation Y (i). We
assume in first approximation that the success value is a random variable whose law depends only on the
considered drug. Our goal is to maximize the success score on all patients.

• Land probing: we want to estimate the level of nutrients, pesticides and micro-life activity of a land, by
probing (observing, measuring) at different locations. We thus decide at each time step where to probe
(d(i) ∈ R2), then acquire the corresponding observation Y (i) before proceeding to the choice of the next
location. Our goal is to get an accurate estimation of all levels, at a given precision error, with as few
probing points as possible (equivalently, as fast as possible).

• Planning on the highway: We drive an autonomous vehicle and our actions are the possible commands
on board. Y (0) is a vector that represents the scene around the autonomous vehicle (positions, speeds of
other vehicles, road information, etc.). We have a module that, given a scene description Y and an action
a at any time t, generates a possible scene description Y ′ at next time. We use it in order to generate
possible trajectories of observations and actions: starting from Y (0), choosing d(1) we simulate Y (1), we
choose d(2), etc. and decide when to stop a trajectory. We want to identify as fast as possible an action
d(1) that maximizes a criterion, such as enabling to reach a specific destination in a secured way. This
action (and only this one) will be executed in the real-world.

• Gardening: We consider growing one edible plant in a garden (e.g. strawberries). At each time step, we
choose between different possible actions d(t) ∈ {do nothing, watering, mulching, cutting, etc.} and our
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observation Y (t) consists of measurements about the plant (health status, stage of development, taste, etc)
and contextual information such as whether conditions. The plant grows and its health may change over
time, until we can harvest it. The goal is (for instance) to maximize the gustatory quality of the harvest.

It is worth noticing that for each decision step t, the decision d(t) is chosen based on past observations and
decisions, but (obviously) without having knowledge of the future. Hence the decision process is such that for
each t ∈ N?, d(t) is measurable with respect to the σ-algebra F(d(1), Y (1), . . . , d(t−1), Y (t−1)) associated to all
random variables indexed before d(t); we say it is adapted to the (filtration of the) observation-decision process.
We sometimes call the natural filtration of the observation-decision process (indexed by the set N? × {1, 2},
with lexicographic order) the filtration of the past. While the observation process, in full generality, has no
reason to be adapted to the observation-decision process, it is often convenient to assume it is. The following
notion of totally-adapted processes captures this (though we won’t use it much in the sequel):

Definition 4 (Totally-adapted processes) A finite collection of J processes Xj : I ×Ω→ Ej , j ∈ {1, . . . , J}
is totally-adapted if for each j ∈ {1, . . . , J}, Xj is adapted to the natural filtration of the compound process
X : IJ × Ω→

⋃
j Ej indexed by IJ = I × {1, . . . , J} with lexicographic order (i, j) 6IJ (i′, j′) if i 6I i′ or

i = i′ and j 6N j
′, in the sense that X(i)

j is measurable with respect to F((X
(i′)
j′ )(i′,j′)6IJ (i,j)) for all i, j.

We mostly focus on totally-adapted observation and decision processes only, hence restricting the observation
process. It is convenient to study even stronger restrictions: Assuming Y (t) is measurable with respect to
F(d(t)) for each t is the typical focus of active learning and multi-armed bandits, while assuming Y (t) is
measurable with respect to F(Y (t−m), d(t−m+1), . . . , Y (t−1), d(t)) for some integer m leads to the notion of
Markov decision process (MDP) of order m. The case m = 1 is the most standard case, and the focus of
extensive research.

Multi-armed bandits In order to prepare our first sequential learning task with active observation gathering,
let us consider a simple situation when each decision consists in picking one element a in a setA. The simplest
case when this leads to an active setup is by considering the next observation is directly generated by this choice
of action. Hence, let us consider that with each action a, there is a corresponding process Xa indexed by N. Let
us further consider the scenario when the random variables (Xa(n))n∈N are i.i.d. with common distribution νa,
and independent from (Xa′(n))a′ 6=a,n∈N (stochastic multi-armed bandit). Hence, the observations are Y (t) ∼
νat , where at is the decision taken from observations before time t. The collection of distributions ν = (νa)a∈A
is sometimes called a bandit configuration. Finally, in order to specify a learning problem, one must decide
what should be optimized. A multi-armed bandit problem considers again a direct approach: assuming that the
distributions (νa)a∈A are real-valued and unknown, the goal is simply to accumulate observations with highest
value, say in expectation, over some period of time T , that is to maximize E[

∑T
t=1 Yt]. This problem is perhaps

one of the most direct combination of optimization and estimation and for this reason is at the heart of most
sequential decision making problems.

In this specific formulation, we have the property that E[
∑T

t=1 Yt] = E[
∑T

t=1 µat ], where for each arm
a ∈ A, µa denotes the expectation of the distribution νa. Hence, an optimal strategy (knowing the distributions)
is to pull an arm with maximal mean at each step, that is some a? ∈ Argmaxa∈A µa. Hence, the expected error
we make by pulling action a instead of a? is ∆a = µ? − µa, where µ? is a short-hand notation for µa? . This
fundamental quantity is called the gap of arm a. Summing the expected errors on each chosen action enables to
quantify how suboptimal a strategy is. This is called the regret (of not knowing in advance an optimal strategy):
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Definition 5 (Expected regret) The quality of a decision making strategy is evaluated using the notion of
expected regret (or simply, regret) at round T > 1, defined as

RT
def
= E

[
Tµ? −

T∑
t=1

Yt

]
= E

[
Tµ? −

T∑
t=1

µat

]
=
∑
a∈A

∆a E
[
Na(T )

]
, with Na(T )

def
=

T∑
t=1

I{at=a} (1)

where we used the tower rule for the first equality. The expectation is with respect to the random draws of the
Yt according to the νat and to the possible auxiliary randomization introduced by the decision-making strategy.

The term multi-armed bandit problem was probably coined during the 60’s in reference to the casino slot
machines of the 19th century: A popular way to illustrate this problem is indeed by trying to maximize its
expected outcome when playing on casino slots machines, where each machine is also called a "one-armed
bandit". Due to this illustration, the general setup with many machines is called a "multi-armed" bandit prob-
lem. Now, the above formulation of this problem is due to Herbert Robbins – one of the most brilliant mind of
his time, see Robbins (1952) and takes its origin in earlier questions about optimal stopping policies for clinical
trials, see Thompson (1933, 1935), Wald (1945). We refer the interested reader to Robbins (2012) regarding the
legacy of the immense work of H. Robbins in mathematical statistics for the sequential design of experiments,
compiling his most outstanding research for his 70’s birthday. Since then, the field of multi-armed bandits has
grown large and bold.

The questions that one may naturally ask for this problem are: where is the difficulty? what is the best
performance that one can hope to reach? and is there a way to design an algorithm that is provably optimal (or
near optimal)? For now, we only provide a quick hint at the first question, as we investigate these questions in
greater details later in this manuscript.

A fundamental difficulty of multi-armed bandit problems is called the Exploration-Exploitation trade-off.
Namely, at each time step, the learning agent must decide what arm to pull, but the distributions of each arm,
and more importantly their means, are unknown to the learner. Hence they have to be estimated based on the
observations available until the current time. Now, in order to improve the quality of the mean estimate of arm
a, one should get more samples from distribution νa: This is called exploration. On the other hand, if we have
a lot of observations from all arms, then we may simply trust our empirical estimates and play an arm whose
empirical mean estimate has maximum value: This is called exploitation. An agent should then balance these
two objectives, making sure all arms are estimated with sufficient accuracy so that we can pull an optimal arm.
It turns out that solving this difficulty is a challenging research question.

One reason for the popularity of bandits is its versatility. Let us mention three complementary extensions
to the initial problem:

a) Continuous arms and optimization While in its basic formulation, the setA is a finite set of cardinality
A ∈ N, that is, we only have to choose between finitely many distributions, the setup extends to a full-
blown optimization problem when A ⊂ Rd. Indeed in that case, if we introduce the mean function
f : A → R, a 7→ µa, the goal is to maximize the function f by sequentially sampling the set A. If we
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knew the distributions (νa)a∈A, this would be just a (possibly complicated) optimization problem. But
here the distributions are unknown, and sampling at point a costs us ∆a, which adds a key difficulty to
the problem. One fruitful example if the setup of linear bandits where observations are Yat = 〈θ, at〉+ ξt,
with vector-valued actions at ∈ A ⊂ Rd, an unknown parameter θ ∈ Rd, and a random noise variable ξt
(on which we put some assumption, such as sub-Gaussianity).

b) Expected versus risk-averse criterion In real applications, some actions may have an important nega-
tive effect (e.g. when considering applications of bandits in clinical trials, a drug may endanger the life of
some patients). In this situation, minimizing the regret in expectation is not satisfactory. For instance, we
prefer a treatment that is safer and does not endanger patients even if less good on average than another
one that performs better on average but has a high chance of endangering life of some patients. The same
is true when considering actions on a garden, where we may avoid actions that pollute the groundwater,
or destroys the ground micro-life. The notion of risk can be captured by different approaches. We explore
a sound notion derived from statistical properties of random variables later in this manuscript.

c) Beyond i.i.d.: drift, changes, state machines Yet another natural extension is to relax the i.i.d. process
assumption, in which case an optimal policy may no longer reduce to choosing the same arm at each
step. For instance the reward process on one arm may change, either slowly (drift) or abruptly (change)
as a function of time, or a function of the number of pulls of this arm, or as a function of yet another
observable quantity. The example of Markov Decision Process detailed below corresponds to the latter
case, when the observed quantity is a specific quantity called a state.

Markov decision processes An MDP is specified by a tuple (S,A, I, R, P ) such that I ∈ P(S), P : S×A →
P(S) and R : S ×A×S → P(R), where P(X ) denotes the set of probability measures on a set X . S is called
the state space of the MDP, A is the action space and I is called the initial state distribution. The two most
important objects are the transition function P that assigns to each state-action pair a distribution of states, and
the reward function R that assigns a real-value to each state-action-state tuple. The process specifies S0 to be
a random-variable with law I , then for any decision A0, S1 has law P (S0, A0), and R1 has law R(S0, A0, S1).
More generally:

S0 ∼ I, ∀t ∈ N?, St ∼ P (St−1, At−1), Rt ∼ R(St−1, At−1, St),

where for each t ∈ N, At is adapted to F(S0, A0, S1, R1, A1, . . . , St−1, Rt−1, At−1, St). A typical example is
when At ∼ π(St), for a function π : S → P(A). Such functions are called (stochastic, stationary) policies.
Note, importantly, that we see here MDPs from the perspective of statistics, when the transition function and
reward functions are both unknown. This is in stark contrast with control theory that considers these functions
are perfectly known. Intuitively, the transition models the dynamics of the state process (how the state is
modified when choosing an action), while the reward function provides a notion of score to each transition
that is done. Note that by construction, St and Rt are measurable with respect to F(St−1, At−1). In an MDP,
the observations are the states and rewards Yt = (St, Rt). Hence we say that the states are observed. This
contrasts with the more general situation when we only observe a function of the state Yk = (f(St), Rt) but the
states are unobserved (think of the previous example of navigation in a maze where S denotes the location and
we only observe what can be seen from this location in the maze). When the state-space S is known, this is
called a partially observable Markov decision process (POMDP), while some methods such as Predictive State
Representations study the more general case when even S is unknown (and try to build a meaningful notion of
states from the observations). On the other hand, the case when S = {s} is a singleton captures the stochastic
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multi-armed bandits formulation, with νa = R(s, a, s) for each a ∈ A. Similar to the multi-armed bandit
setup, a natural goal is to sequentially chose the actions in order to maximize the cumulative sum of rewards
in expectation over (possibly unknown) T time steps. for instance, when restricting to stochastic stationary
policies, it is natural to introduce the quantity

V π
I,R,P,T = E

[ T∑
t=1

Rπ
t

]
where ∀t ∈ N?, S

π
t ∼ P (Sπt−1, A

π
t−1), Rπ

t ∼ R(Sπt−1, A
π
t−1, S

π
t ), Aπt ∼ π(Sπt ) ,

which is sometimes called the (T -step) value of a policy π. Unfortunately, unlike in the multi-armed bandit
setting, in full generality a stochastic stationary policy that maximizes this criterion has no reason to be optimal.

Indeed, maximizing E
[∑T

t=1Rt

]
over all actions generally corresponds to a policy πI,R,P,T : N× S → P(A)

that depends on the time horizon T , and that generates at step t an action At ∼ πI,R,P,T (t, St) depending on
both the current state and the current time step. This creates at least two fundamental difficulties. First, we
generally don’t want to specify the time horizon T of the problem, in the sense that we are looking for strategies
πI,R,P that would be simultaneously optimal for all horizon T . But such uniformly horizon-optimal policies
may not exist, even in very simple situations. Let us take for example the following example of an MDP with 2
actions A = {a, b} = { , }, deterministic transitions and rewards, with initial state being the black state, and
reward 1 (respectively 10) each time entering the green (respectively yellow) state.

In this simple example where everything is deterministic, the set of optimal sequences of actions can be made
explicit for all time horizon T , as we summarize in the following table. Yet no sequence (hence policy) can be
made optimal simultaneously for all time T (or even for all large enough T ).

T 1 2 3 4, . . . , 7 8 9 10, . . . , 13 14 15 . . .
? A a2 a3 bAT−1 a2b3AT−5 a3b3AT−6 bAT−1 a2b3AT−5 a3b3AT−6 . . .

VI,R,P,R 0 1 2 10 11 12 20 21 22 . . .
This is due to the fact that visiting the "small cycle" with rewards 1 costs 4 time steps only, which is less than
the time to complete the "large cycle" of 6 steps starting from the gold state. Indeed, increasing the length of
the small cycle from 4 to 6 by adding an intermediate gray state, ensures that bA? uniquely describes optimal
sequences simultaneously for all T but T = 3 (for which it is a3).

Hence one should either restrict the set of considered MDPs to make sure we don’t have such cycles, look
for near-optimal rather than optimal policies, or modify the performance criterion. For instance two main
classes of criterion, called discounted and average reward criterion, have been introduced that do not make
appear an explicit time horizon T ; Actually even for these two main classes, several notions of optimality can
be introduced, see Puterman (1994). We will focus in chapter 6 on the average-reward criterion. Now, a second
difficulty is that, even assuming there exists a uniformly horizon-optimal policy πI,R,P , learning in an MDP
when the reward and transitions are unknown comes with a price, and it seems challenging to compete with
a policy that depends on the current time t. These two difficulties have made people to consider restricted
scenarii when stationary policies are shown to be optimal.
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Rewards? In the two previous models (bandits and MDPs), we have encountered the notion of reward. Since
a decision problem involves decisions, it is natural to search for decisions that maximize some criterion. To this
end, people assume a score is given to each decision that is made. This score may be itself a random variable,
as it is the case for MDPs. From this standpoint, a natural question is how to maximize the cumulative sum
of rewards

∑T
k=1 Rk in an MDP, say for a given number of steps T , that is what choice of the actions (Ak)k∈N

maximizes this sum. People generally focus on maximizing the expected value of this sum, while some works
also consider other criterion, notably when dealing with a notion of risk. We will see some example in chapter 5.

Reinforcement learning considers the case when we get to observe this process but without knowing the
transition function P or reward function R (we may know that they belong to some set of transition and reward
functions). Hence the laws of the random variables are unknown to the agent. This is the main difference
with control theory in which P and R are perfectly known. Thus reinforcement learning is primarily interested
in maximizing the cumulative rewards while estimating the dynamics of a system, which yields an avenue of
research questions.

No-rewards? Reinforcement learning heavily relies on the rewards that are received. However, as for the
observation process, it is natural to ask where the reward process comes from. Classical reinforcement learning
considers the reward process is defined by Nature, independently on the agent. However, note that the function
R has no reason to behave nicely with respect to the transition function P . Hence maximizing the cumulative
rewards may turn to be especially hard in full generality. But what if we consider the rewards are no longer
defined by nature, but are defined actively (as we did for the observations)?

This leads to a second and fundamental shift of paradigm, that leads us from Reinforcement Learning
to Artificial Intelligence (AI). Indeed, while Reinforcement Learning assumes the reward is generated by an
external entity, Artificial Intelligence will typically build a reward function actively. Hence the general AI
problem is related to some high level questions, such as which objective to focus on, what objective function
and state space to specify, and when to stop solving an RL task and start another one. Further, as for POMDPs,
the observations may not be the states directly but only a function of the states. Hence reward construction is
part of AI, and one of the reasons that make AI such a challenging task is precisely this apparent absence of
objective function: without clearly defined objective function, there is just no learning task. Notions such as
intrinsic rewards have been introduced precisely in order to introduce some well-defined objective, but whether
this is enough to encompass all the questions behind the quest for AI is unclear. Note that even if removing the
rewards, the transitions are still unknown, and one should certainly focus on learning them.

In this manuscript, we will not discuss much this second paradigm shift that is still largely unexplored
from a theoretical standpoint and focus instead on the mathematical foundations behind the first paradigm shift
(when the agent influences the observation process). More precisely, we focus on the role of non-asymptotic
statistics in the design of (near-)optimal strategies for sequential decision making, across various setups.
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Where is this going?

The more applied you go, the stronger theory you need.

Before we dive into the mathematics of sequential learning, let us take a small step off and think about what
all this can be useful for, beyond mathematics. Indeed the good thing when our object of study is a sequence
of observations Y (1), Y (2), . . . that is actively sampled is that this can be connected to a tremendous number
of real-life situations. Hence, we can not only enjoy the beauty of the mathematics behind understanding a
generic sequence, but further have a direct impact on the physical world as well. Moreover, since considering a
specific application naturally brings novel challenges for the researcher, this often leads us to explore uncovered
questions of the mathematical world. On the other hand, since a well-targeted answer generally applies to
several real-world applications, this also means we should choose which application area to promote or explore.

Hence, as a researcher in the field of sequential learning, we should question the physical-world applications
of our research, and provide guidance towards the ones we value most (instead of following the current trend).
In this short section, we advocate for a thrilling application domain, that has been poorly explored by the
community compared to the mainstream applications to marketing and medical health.

TOWARDS ECO-SUSTAINABLE SEQUENTIAL DECISION MAKING

Sequential learning shares a long history with medical health, since the first models of sequential learning are
attributed to Thompson (1933) in the context of clinical trials. Hence, adaptive treatment strategies, dynamic
drug dosage, and personalized health care have benefited from tremendous efforts of many brilliant researchers
working on sequential learning for decades. We refer to the book Bartroff et al. (2012) that gives a detailed
overview of the many questions surrounding modern medical trials. A number of research groups are thus
actively, and successfully working on combining sequential learning and reinforcement learning techniques
with medical health.

The last two decades have seen the explosion of a novel type of application: that of optimization of ad-
placement strategies on web pages, as well as the more general task of recommender systems for the web-
industry (Netflix, Amazon, Facebook, Criteo, etc.). Here the basic task for a web-company is to select one or a
few items to present to a user, seen as a client, and the goal is to maximize the number of items sold (or clicked)
to a user. Hence the traditional representation of multi-armed bandits applications (that is a first approximation
of the decision making problem) has progressively shifted from

• Clinical trials: (Thompson, 1933)

:

where at each time step, a doctor faces a new patient, all having the same disease, and must choose one treatment
from a list of possible treatments (or different dosage of the same treatment) whose effect is unknown.

to • Ad-placement: (Nowadays...)



:

where at each time step, a new user comes to a web-page that has one (or many) slots for ads, and an algorithm
must choose which add to display to the user in each slot.

We want to take the opportunity to deviate from these two mainstream applications, and illustrate the
concepts of sequential learning on sustainable agriculture, ecological gardening and ecosystem preservation.
We think this is not only of much higher societal and ethical value than optimizing web-selling strategies but
also largely untouched compared to health care applications: Indeed while agriculture for instance is all about
sequential decision making under uncertainty, it has been largely overlooked by the main community publishing
at NIPS, ICML, COLT, JMLR, etc. This also means there is a tremendous potential for highly beneficial impact
on such applications. Interestingly, all the standard questions and variants of sequential learning (bandits,
MDPs, POMDPs, etc.) can be written in the context of health care, web-marketing, and sustainable farming.
Hence, we strongly encourage the young researchers to explore this third avenue of research, as we believe it
is especially exciting. Let us give a quick glance at a few potential applications.

Similarly too clinical trials or web-advertisement, multi-armed bandits can be considered in first approxi-
mation to address the following problems:

• Plant-health care:

:

where at each time step, we encounter a new plant having a disease, and we want to find which action is
best in a sense to cure it, such as watering, attracting a specific species, adding chemicals, doing nothing,
etc.

• Ground-health care:

:

where at each time step, we consider a piece of deteriorated land, and we want to decide what (combina-
tion of) actions to do such as encouraging micro-life activity, protecting the ground, planting plants that
stabilize the ground or that clean it from pollutants, amongst other things.

• Bio-diversity/Bio-equilibrium care:
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:

where at each time step, we study a destabilized ecosystem, and we need to choose amongst a lim-
ited number of actions to preserve it (promoting local species, creating awareness, fighting an invasive
species, testing a new design, etc.)

Now, as for clinical trials and web-marketing, a multi-armed bandit formulation is limited to somewhat
stringent assumptions, and a more realistic scenario is to consider more expressive setups, such as using con-
textual linear or combinatorial bandits, (partially observable) Markov decision processes and beyond. Indeed,
short-term optimal policies have no reason to be long-term optimal (think about maximizing food production
over a single year, versus other ten cumulative years). Further, it is natural to consider the distributions may be
subject to changes, for instance due to unstable whether conditions, an invasive species, an incoming pollution,
or any other not anticipated event. Also, as the plants adapt to their environment, the population evolves and
thus the dynamics of the system progressively shifts, generation after generation. Further, weather conditions
may also evolve so that actions that were efficient for a garden at some time may not be as efficient some years
later. This poses the question of recommendation in a shifting context scenario.

While in clinical trials the main objective is so save life of patients and in web-marketing to sell as much
as possible, potential goals (out of many) can be to maximize resilience of ecosystems, or maximize food
production with minimal input, energy or fertilizer. We list below a short list of questions for illustration:

• Which technique is best to avoid potatoes from getting this specific disease, depending on the ground
and whether conditions (contextual multi-armed bandit)?

• Which set of plants maximize butterfly biodiversity (combinatorial bandits)?

• Where to observe for best estimating the propagation of species outside their usual territory (active ban-
dit)?

• What sequences of plant culture (culture rotation) create best germination conditions for an eggplant
(goal-state MDP)?

• How to maximize health of the system while minimizing work-load/inputs? (multi-objective reinforce-
ment learning)?

• Which path to patrol on in order to maximize probability of observing diverse animals (exploration,
shortest path)?

We hope that this brief presentation of the sequential learning challenges of sustainable agriculture, eco-
logical gardening and ecosystem preservation pictures an exciting application domain for sequential decision
making under uncertainty, for which some existing learning strategies can already be applied immediately, and
many others need to be developed before the challenges of the field can be addressed in a satisfactory way.
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Part I

Mathematics of Statistical
Sequential Decision Making





In this part, our goal is, unlike what is typically done in research articles, to present the mathematical tools
first, and only then show in which context they are used. We believe that proceeding this way sheds better light
on the strength and generality of these tools, which is complementary with the more applied motivation that is
presented in the research articles. We now briefly detail the content of the different chapters.

Estimation error Given a sequence of n real-valued observations assumed to come from an i.i.d. process
ν, it is natural to form an empirical estimate µ̂n of the mean µ. We first recall how to control its error by
concentration of measure. One of the key tools for that is the control of the log-Laplace transform λ →
logEν exp(λX) of the random variable. We spend some time to detail some of the most useful properties of
this fundamental object in Chapter 1.

Random number of observations When considering an active setup, estimation becomes trickier. Indeed,
since our decisions at each time step are based on all past observations and influence the next observations,
we are no longer in the i.i.d. setup. Hence the strong properties provided by the log-Laplace control may
not apply a priori. For illustration, let us focus on the simplest setup when there is a finite set A of possible
decisions, where each a ∈ A is attached to one i.i.d. process with distribution νa and mean µa, so that a
decision consists in sampling one novel observation from the chosen action; This is typically the situation
in multi-armed bandits. At time t, let Nt(a) denote the total number of observations sampled from νa until
time t, so that

∑
a∈ANt(a) = t, and let us consider the empirical estimate µ̂Nt(a) of µa. This empirical

estimate looks similar to the standard i.i.d. setup. However, Nt(a) is not a deterministic quantity but a random
variable depending on all past data. Obtaining concentration inequalities in this setup is a priori difficult, but is
fortunately handled thanks to powerful techniques that we present in Chapter 2.

Uniform optimality In Chapter 3, we give greater focus to the set in which our i.i.d. processes belong to,
that is on D such that ν ∈ D. Without knowing ν, it is natural to ask whether the observations are generated
according to ν or a different ν ′ ∈ D. The key tool for this purpose is called a change of measure argument. We
detail this change of measure, and show it has fundamental implications in sequential decision making theory.
In particular, this enables to derive sharp lower bounds inequality on the achievable performance of virtually
any decision procedure aiming at being good uniformly over all ν ∈ D, where good depends on the problem.
We illustrate this on the multi-armed bandit problem, and recall how the change of measure naturally suggests
the construction of sampling strategies, for a given set D. An especially fruitful and challenging research
question is to provide sharp regret minimization guarantees for these lower-bound inspired strategies. While
in full generality a definitive answer is still not unknown, we provide key advances for the important class of
exponential families in the dedicated chapter 7.

Confidence sets, ellipsoids While the initial chapters focus mostly on real-valued random variables, in many
situations we face a more general parametric process. This happens for instance when observations sampled at
point x ∈ X follow a Gaussian distribution νx = N (f ?(x), σ2) for some unknown f ? ∈ F , and F is a function
space such as F = {fθ : X → R, : fθ(x) = 〈θ, ϕ(x)〉, θ ∈ Θ ⊂ Rd} or some feature function ϕ and parameter
set Θ. Here one would like to estimate the vector parameter θ? corresponding to the unknown function f ?. We
explain how to extend the previous results to the general setup of reproducing kernel Hilbert spaces (RKHS).
Another example is that of Markov models of order m on a finite set of symbols S for which we provide
some simple finite-time estimation results. Hence, Chapter 4 provides a short zoology of the construction of
confidence sets for common categories of processes.
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Risk and duality In the four first chapters, different families of processes are studied, with essentially the
same core idea: mean estimation. In Chapter 5, a different approach is considered. A first motivation is to
optimize a risk-averse criterion rather than the mean: for instance when choosing different treatments, some
may be successful on average, but have a higher risk of killing patients. A second motivation is also related to
risk: when we have a set of learners, each corresponding to a different family of processes, we may naturally
combine them (aggregate them) in order to build strategies that are near uniformly optimal over the union of
all these classes, in order to face a larger set of situations. It turns out, perhaps surprisingly, that the same
fundamental tool can be used for both approaches: (Bregman) duality. Hence chapter 5 shows some tools of
risk-aversion and aggregation that are based on the use of Bregman duality.

Markov decision processes In Chapter 6, we turn to the setup of Markov decision processes. We focus
here in presenting the contraction properties of the Bellman operator when considering an undiscounted re-
inforcement learning setup. This was known from Puterman (1994), but seems to be largely overlooked by
the modern reinforcement learning literature. We suggest that many difficulties appearing today in the analy-
sis of average-reward MDPs from an RL standpoint are due to a poor understanding of this quantity (and its
estimates).
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Part I Chapter 1. logE exp(λX)

Tail control of R-valued random variables

∃λ ∈ R+ : logE exp(λX) 6 ϕ(λ) =⇒ ∀t ∈ R, P(X > t) 6 exp(−λt+ ϕ(λ)) .

∀t ∈ R, P(X > t) 6 α(t) =⇒ ∀λ ∈ R+, logE exp(λX) 6 log

∫
R
α(u/λ)eudµ(u) .

The log-exp pair behaves nicely with respect to product measures and independent processes.

Duality formulas
(µ→ KL(µ, ν) and f → logEν exp(f(X)) are dual to each other.)

(Entropy formula) logEν [exp(f(X))] = sup
µ∈P(X )

〈µ, f〉 − KL(µ, ν)

(Variational formula) KL(µ, ν) = sup
f∈Cb(X )

〈µ, f〉 − logEν [exp(f(X))] ,

(Gibbs distribution)
dµ

dν
(x) =

exp(f(x))

Eν [exp(f(X))]
achieves maximum in Entropy formula .

This induces a natural duality between a loss function and a noise distribution: To any loss corresponds a
(dual) notion of noise, and vice-versa. E.g. σ-sub-Gaussian noise is dual to quadratic loss `(x, x′) = (x−x′)2

2σ2 .

Structural properties

− logE exp(−f) 6 Ef 6 logE exp f

∀x ∈ X , 0 6 f(x) =⇒ Ef 6 − logE exp(−f) +
1

2
Ef 2.

∀x ∈ X , |f(x)| 6 b =⇒ logE exp f − eb − 1− b
b2

Ef 2 6 Ef .

Exponential families

The log-partition function ψ(θ) = log
∫
X exp(〈θ, F (x)〉)dν0(x) of an exponential family with reference mea-

sure ν0 and feature function F : X → RK satisfies:

(Bregman divergence) KL(νθ, νθ′) = Bψ(θ, θ′) = ψ(θ′)− ψ(θ)− 〈θ′ − θ,∇ψ(θ)〉
(Bregman duality) Bψ(θ, θ′) = sup

η∈RK
〈η,∇ψ(θ)〉 − logEνθ′ exp(〈η, F (X)〉) .

(Maximum likelihood) sup
θ∈Θ

n∑
i=1

log
dνθ
dν0

(Xi) = nψ?
(

1

n

n∑
i=1

F (Xi)

)
.

Take-home message
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Chapter 1 1. Control of probability tails
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4 General exponential families, properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

In this chapter, we focus on arguingly one of the most powerful and oldest tool in statistics, namely the
log-Laplace transform, or cumulant generative function of a random variable. We provide below a short list of
powerful properties of this crucial quantity.

1 CONTROL OF PROBABILITY TAILS

Let us first start with a simple property of non-negative random variables.

Lemma 1.1 (Non-negative random variables) LetX be a R+-valued random variable with E(X) <∞.
Then

(Markov inequality) E(X) > εP(X > ε) for each ε ∈ R+,

(Fubini formula) E(X) =

∫
R+

P(X > x)dµ(x) where µ is the Lebesgue measure.

1.1 A first consequence
We can apply this result immediately to real-valued random variables by remarking that for any random variable
distributed according to ν (which we note X ∼ ν) and λ ∈ R, the random variable exp(λX) is non-negative.
Thus if we now define the domain of ν by Dν = {λ : E[exp(λX)] < ∞}, we deduce by application of
Markov’s inequality that for all t > 0,

∀λ ∈ R+
? ∩ Dν P(X > t) = P(exp(λX) > exp(λt))

6 exp(−λt)E[exp(λX)] . (1.1)
∀λ ∈ R−? ∩ Dν P(X 6 t) = P(exp(λX) > exp(λt))

6 exp(−λt)E[exp(λX)] . (1.2)

One first immediate result is the following:

O-A. Maillard page 7 HDR



Part I Chapter 1. logE exp(λX)

Lemma 1.2 (Chernoff’s rule) Let X ∼ ν be a real-valued random variable. Then

logE exp(X) 6 0 , implies ∀δ ∈ (0, 1], P
(
X > ln(1/δ)

)
6 δ .

The proof is immediate by considering t = ln(1/δ) and λ = 1 in (1.1). More generally, one can obtain a
control of the tail of a random variable X from a control of the log-Laplace. The following result shows that
conversely, a control of the tails of X induces a control of the log-Laplace:

Lemma 1.3 (Tails and log-Laplace) Let X be a R-valued random variable.

∃λ ∈ R+ : logE exp(λX) 6 ϕ(λ) =⇒ ∀t ∈ R, P(X > t) 6 exp(ϕ(λ)− λt) .

∀t ∈ R, P(X > t) 6 α(t) =⇒ ∀λ ∈ R+, logE exp(λX) 6 log

∫
R
α(u/λ)eudµ(u) .

Proof :

Indeed, for any λ > 0

P(X > t) = P(exp(λX) > exp(λt)) 6 E[exp(λX)] exp(−λt) ,

where we applied Markov inequality to the R+-valued random variable Z = exp(λX).
For the reverse inequality, we apply Fubini formula for Z, and conclude with a change of variable:

logE exp(λX) = log

∫
R+

P(exp(λX) > x)dµ(x) = log

∫
R+

P(X > log(x)/λ)dµ(x)

�

Why logarithm? In these derivations, the exp transform may seem arbitrary, and one could indeed use more
general transforms. Lemma 1.3 is stated using log and exp function, but there is nothing too specific about
using the function log here. Indeed, let (f, f) be any pair of functions such that f : R→ R+ is increasing with
f(R) = R+ and f ◦ f = f ◦ f is the identity mapping. Then

∃λ ∈ R+ : f(Ef(λX)) 6 ϕ(λ) =⇒ ∀t ∈ R, P(X > t) 6
f(ϕ(λ))

f(λt)
.

However, using the pair (log, exp) makes appear the quantity λt − ϕ(λ), which when optimized on λ corre-
sponds to the Legendre-Fenchel dual of ϕ, another powerful mathematical tool.

Another natural explanation is that logarithms are most appropriate to deal with product measures: Let us
say we have two measures p1, p2, and we form the product measure p = p1⊗p2. Since we are generally happier
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Chapter 1 1. Control of probability tails

with summing things, let us look for a function such that h(p1 ⊗ p2) = h(p1) + h(p2) (additivity). It turns out
that there are not too many choices. Indeed, let us first note that every (non zero) continuous morphism from
(R?

+,×) to (R,+) must be a logarithm function. The one that maps the neutral e× = 1 to the neutral e+ = 0,
is the classical logarithm log. Now we want to build a function acting on probability measures, not just R+

A natural way to do so is by combining measures p(S) ∈ R of Borel sets S. Hence given two Borel sets S1

and S2, and measures p1, p2, we may want a function such that f(p1(S1)p2(S2)) = f(p1(S1)) + f(p2(S2)).
While a logarithm function works, the remaining dependency on S1, S2 is not desirable. This can be done by
replacing evaluation at a Borel set by integration over the space. For illustration, let us consider p1 and p2

are probability measures on a discrete set X . Discrete integration (summing) on X reveals, using the fact that
p1(X ) = p2(X ) = 1, that∑

i,j∈X 2

p1(i)p2(j) log(p1(i)p2(j)) =
∑
i,j

p1(i)p2(j) log(p1(i)) +
∑
i,j

p1(i)p2(j) log(p2(j))

=
∑
i

p1(i) log(p1(i)) +
∑
j

p2(j) log(p2(j)).

Hence p →
∑

i p(i) log(p(i)) is a good candidate for h. Changing the sign then gives the entropy function
H(p) = −

∑
i pi log(pi) (any multiplicative factor works as well). It turns out that we do not require much

more to uniquely determine H . Indeed additivity for any p1, p2 plus assuming that when X is discrete, h(p) =∑
x∈X g(p(x)) for some measurable g null at 0 are enough to ensure unicity of H up to a constant factor, see

Daróczy (1971), Csiszár (2008).

1.2 Two complementary results
Now one can consider two complementary points of view: The first one is to fix the value of t in (1.1) and (1.2)
and minimize the probability level (the term on the right-hand side of the inequality). The second one is to fix
the value of the probability level, and optimize the value of t. This leads to the following lemmas.

Lemma 1.4 (Cramer-Chernoff) Let X ∼ ν be a real-valued random variable. Let us introduce the
log-Laplace transform and its Legendre transform:

∀λ ∈ R, ϕν(λ) = logE[exp(λX)],

∀t ∈ R, ϕ?ν(t) = sup
λ∈R

(
λt− ϕν(λ)

)
,

and let Dν = {λ ∈ R : ϕν(λ) <∞}.
If Dν ∩ R+

? 6= ∅, then E[X] <∞ and for all t > E[X]

logP(X > t) 6 −ϕ?ν(t) .

Likewise, if Dν ∩ R−? 6= ∅, E[X] > −∞ and for all t 6 E[X],

logP(X 6 t) 6 −ϕ?ν(t) .
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Remark 1.1 The log-Laplace transform ϕν is also known as the cumulant generative function.

Proof of Lemma 1.4:

First, note that {λ ∈ R : E[exp(λX)] <∞} coincides with {λ ∈ R : ϕν(λ) <∞}. Using equations
(1.1) and (1.2), it holds:

P(X > t) 6 inf
λ∈R+

? ∩Dν
exp(−λt+ logE[exp(λX)])

P(X 6 t) 6 inf
λ∈R−? ∩Dν

exp(−λt+ logE[exp(λX)])

The Legendre transform ϕ?ν of the log-Laplace function ϕν unifies these two cases. Indeed, a striking
property of ϕ?ν is that if λ ∈ Dν for some λ > 0, then E[X] <∞. This can be seen by Jensen’s inequality
applied to the function ln: Indeed it holds λE[X] = E[ln exp(λX)] 6 ϕν(λ). Further, for all t > E[X],
it holds

ϕ?ν(t) = sup
λ∈R+∩Dν

(
λt− ϕν(λ)

)
.

Note that this also applies if E[X] = −∞. Likewise, if λ ∈ Dν for some λ < 0 then E[X] > −∞ and
for all t 6 E[X], it holds

ϕ?ν(t) = sup
λ∈R−∩Dν

(
λt− ϕν(λ)

)
.

�

Alternatively, the second point of view is to fix the confidence level δ ∈ (0, 1], and then to solve the equation
exp(−λt)E[exp(λX)] = δ in t = t(δ). We then optimize over t. This leads to:

Lemma 1.5 (Alternative Cramer-Chernoff) Let X ∼ ν be a real-valued random variable and let Dν =
{λ ∈ R : logE exp(λX) <∞}. It holds,

P
[
X > inf

λ∈Dν∩R+
?

{1

λ
logE[exp(λX)] +

log(1/δ)

λ

}]
6 δ

P
[
X 6 sup

λ∈(−Dν)∩R+
?

{
− 1

λ
logE[exp(−λX)]− log(1/δ)

λ

}]
6 δ .

Proof of Lemma 1.5:

Solving exp(−λt)E[exp(λX)] = δ for δ ∈ (0, 1] and λ 6= 0, we obtain he following equivalence

−λt+ logE[exp(λX)] = log(δ)

λt = − log(δ) + logE[exp(λX)]

t =
1

λ
log(1/δ) +

1

λ
logE[exp(λX)] .
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Thus, we deduce from (1.1) and (1.2) that

∀λ > 0 P
[
X >

1

λ
log(1/δ) +

1

λ
logE[exp(λX)]

]
6 δ

∀λ > 0 P
[
X 6 −1

λ
log(1/δ)− 1

λ
logE[exp(−λX)]

]
6 δ .

�

The rescaled Laplace transform λ→ 1
λ

logE[exp(λX)] is sometimes called the entropic risk measure. Note
that Lemma 1.4 and 1.5 involve slightly different quantities, depending on whether we focus on the probability
level δ or the threshold on X .

1.3 Illustrative cases

An immediate corollary is the following:

Corollary 1.1 (Sub-Gaussian Concentration Inequality) Let {Xi}i6n be independent R-sub-Gaussian
random variables with mean µ, that is such that

∀λ ∈ R, logE exp
(
λ(Xi − µ)

)
6

1

2
λ2R2 .

Then,

∀δ ∈ (0, 1) P
[ n∑
i=1

(Xi − µ) >
√

2R2n log(1/δ)

]
6 δ

Remark 1.2 This corollary naturally applies to Gaussian random variables with variance σ2, in which case
R = σ. It also applies to bounded random variable. Indeed random variables {Xi}i6n bounded in [0, 1] are
1/2-sub-Gaussian. This can be understood intuitively by remarking that distributions with the highest variance
on [0, 1] are Bernoulli, and that the variance of a Bernoulli with parameter θ ∈ [0, 1] is θ(1 − θ) 6 1/4, thus
resulting in R2 = 1/4. This is proved more formally via Hoeffding’s lemma.

Proof of Corollary 1.1:
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Part I Chapter 1. logE exp(λX)

Indeed, it holds that

1

λ
logE

[
exp(λ

n∑
i=1

(Xi − µ))
]

=
1

λ
logE

[ n∏
i=1

exp(λ(Xi − µ))

]
(a)
=

1

λ
log

n∏
i=1

E
[

exp(λ(Xi − µ))
]

=
1

λ

n∑
i=1

logE
[

exp(λ(Xi − µ))
]

(b)

6
n

2
λR2 ,

where (a) is by independence, and (b) holds by using the sub-Gaussian assumption. We deduce by
Lemma 1.5 that

P
[ n∑
i=1

(Xi − µ) > inf
λ∈Dν∩R+

?

{
λR2n/2 +

log(1/δ)

λ

}]
(a)

6 P
[ n∑
i=1

(Xi − µ) > inf
λ∈Dν∩R+

?

{1

λ
logE

[
exp

(
λ

n∑
i=1

(Xi − µ)
)]

+
log(1/δ)

λ

}]
6 δ ,

where in (a), we used that x < y implies P(X > y) 6 P(X > x).
Now we note that Dν = R by the sub-Gaussian assumption, where ν is the distribution of

∑n
i=1 Xi.

We conclude by noticing that λδ =
√

2 log(1/δ)
R2n

achieves the minimum in

inf
λ∈R+

?

{
λR2n/2 +

log(1/δ)

λ

}
=

√
2R2n log(1/δ) .

�

Another interesting case is that of Bernoulli distributions. Let {Xi}i6n be independent Bernoulli variables
with mean p and ϕp denote the log-Laplace transform of X1. It can be checked that its Legendre-Fenchel dual
satisfies for each q ∈ [0, 1], ϕ?p(q) = kl(q, p) where kl(q, p) = q log(q/p) + (1 − q) log((1 − q)/(1 − p)).
Hence, we deduce that

∀ε > 0, P
[

1

n

n∑
i=1

(Xi − p) > ε

]
6 exp

(
− nkl(p+ ε, p)

)
.

The inverse map of ε 7→ kl(p + ε, p) is unfortunately not explicit, however it is not difficult to show by a
local version of Pinsker inequality that

kl(p+ ε, p) >
ε2

2

(1

q̃
+

1

1− q̃

)
where q̃ ∈ [p, p+ ε]

>
ε2

2

( 1

p+ ε
+

1

1− p

)
=

ε2

2p(1− p)
− o(ε2) as ε→ 0 .

We refer to Berend and Kontorovich (2013), Kearns and Saul (1998), or to the monograph Raginsky et al.
(2013), p. 25-26 for further details and existing approximations.
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2 LEGENDRE-FENCHEL DUAL OF THE LOG-LAPLACE

Lemma 1.4 provides a first example of control of the tail of a random variable using the Legendre-Fenchel dual
of its log-Laplace transform. It turns out the log-Laplace can also be interpreted as a form of Legendre-Fenchel
dual. In order to see this, let us first remark that so far, we have considered a R-valued random variable X .
However, what happens when X is X valued instead, where X can be in Rd, or on the other hand a discrete
set? In that case, we consider a bounded function λ : X → R and form the quantity logE exp(λ(X)). This
generalizes the previous case that is recovered when choosing a constant function.

Let µ and ν denote two measures on X , and for a function λ : X → R, let 〈µ, f〉 =
∫
f(x)dµ(x) be the

duality product. Using such notations, it is possible to show the following two striking results

(Entropy formula) logEν [exp(λ(X))] = sup
µ∈P(X )

〈µ, λ〉 − KL(µ, ν)

(Variational formula) KL(µ, ν) = sup
f∈Cb(X )

〈µ, f〉 − logEν [exp(f(X))] ,

where the first supremum is over the set of probability measures on X (denoted P(X )), and the second over
the set Cb(X ) of continuous and bounded functions on X . Hence, we see from the Entropy formula that the
log-Laplace transform (seen as a function of λ) is the Legendre-Fenchel dual of the function µ → KL(µ, ν),
and by the variational formula that the function µ → KL(µ, ν) is the Legendre-Fenchel dual of function λ →
logEν [exp(λ(X))]. It is thus no wonder that KL appears in so many results of statistics. Note also that the
supremum is reached for a distribution µ whose Radon-Nikodym derivative is given explicitly by

(Gibbs distribution)
dµ

dν
(x) =

exp(λ(x))

Eν [exp(λ(X))]
.

The Gibbs distribution appears naturally in the setting of aggregation of experts. In this case, X is typically
a finite set of experts, and λ(x) captures the opposite of the loss of expert x. Thus the distribution µ gives to
each expert a weight that is exponentially decreasing with its loss. When appropriately chosen, this enables to
build an aggregate expert that behaves nearly as good as the best (convex) combination of the experts’ decisions.
Before we present the core of aggregation strategies, let us first discuss the notion of loss in greater details.

3 LOSS AND NOISE

The control of the tails probability induced by the log-Laplace transform is especially interesting when applied
to the concept of noise and the construction of a loss.

Indeed, let us say that a value c ∈ R is perturbed by some random variable ξ with zero mean. You don’t
know c but you are asked to provide a proposed value c′. Then you observe c+ ξ. We may want to give a score
to a proposed value c′. In general this is captured by a notion of loss `(c + ξ, c′). Intuitively, we would like
this loss to be small when c′ = c. However, there are many possible notions of losses, and many possible laws
for ξ. Hence, there is no reason that the loss and law of ξ lead to a reasonable value for `(c + ξ, c). Can we
relate the law of ξ to the loss in order to ensure that P(`(c+ ξ, c) > t) is controlled for any t ∈ R+ and quickly
vanishes as t→∞?

The control of the log-Laplace provides an interesting answer to this question:
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Part I Chapter 1. logE exp(λX)

Lemma 1.6 (Loss-adapted noise) Let ` satisfy `(y, y′) = ψ(y − y′) where ψ is a convex, non-negative
function that null in 0. Let ψ? be the Legendre-Fenchel dual of ψ (that is ψ?(λ) = supy∈Y−Y〈λ, y〉−ψ(y)).
Then

∀λ ∈ R, lnE[exp(λξ)] 6 ψ?(λ) =⇒ ∀t ∈ R+,P(`(c+ ξ, c) > t) 6 2 exp(−t) ,

Proof :

Indeed, by convexity of ψ, it holds ψ?? = ψ. Now let ψ+ be the restriction of ψ to the positive cone
R+, and ψ− its restriction to the negative cone R−. From Lemma 1.4, we deduce that

P((c+ ξ)− c > ψ−1
+ (t)) exp(−ψ??(ψ−1

+ (t))) = exp(−t) .

The same bound holds for P((c+ ξ)− c 6 ψ−1
− (t)). Thus we conclude by combining the two results with

a simple union bounds. �

Definition 1.3 (Loss-adapted noise) The noise is adapted to the loss `(y, y′) = ψ(y − y′) if the cumulative
generative function of the noise is dominated by the Legendre-Fenchel dual of the potential function.

This result enables to understand easily, from a given loss function, what noises are adapted to it. A typical
example is the quadratic loss `(y, y′) = (y−y′)2

2R2 , for which ψ?(λ) = λ2R2

2
. Hence, any R-sub-Gaussian random

variable is adapted to this loss. Typical examples of potential functions are the following

(quadratic potential) ψ(y) =
1

2
y2

(tolerance potential) ψε(y) = χ(−ε,ε)(y)

(risk-averse potential) ψ[a,b],α,β(y) =
1

α
(a− y)α+ +

1

β
(y − b)β+ ,

where χ(−ε,ε)(y) = 0 if y ∈ (−ε, ε), and is else +∞, and where the risk-averse potential models asymmetric
sensitivity to upper and lower estimation. The choice of the potential function ψ is generally application-driven,
and often influences implicitly the type of allowed noise model; Definition 1.3 makes it explicit.

We have shown how the choice of a loss can induce a natural notion of noise by duality. Conversely, a noise
measure naturally induces a notion of loss: In order to show this, we proceed backward, starting from a class of
distributions in order to build a loss function. For an abstract space Y , there is no necessarily natural notion of
linearity giving a meaning to y− y′ or 〈λ, y〉. Think for instance of a discrete space Y = {1, . . . , S}. However,
one can still consider a class of distributions, and functions on Y . Thus, given a candidate distribution π for Yn,
we consider g(λ) = lnEπ expλ(Y ), for any function λ that is bounded, continuous. Interpreting g as the dual
ψ? of a convex loss, it is then natural to look at its dual g? in order to recover the definition of the loss. Note
that g? acts on measures ν. It comes

g?(ν) = sup
λ∈CB(Y)

(ν, λ)− g(λ) = sup
λ∈CB(Y)

Eν [λ(Y )]− lnEπ expλ(Y ) = KL(ν, π) ,
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Chapter 1 3. Loss and noise

where (·, ·) is the duality product, and CB(Y) are continuous bounded functions on Y . Thus, the loss induced
by π on probability measures coincides with the Kullback-Leibler divergence. In particular interpreting an
observation Yn as a Dirac distribution at point Yn, the loss becomes for this choice of ν, − ln(p(Yn)) where p
denotes the density of π with respect to the reference measure. This justifies the introduction of the following

Definition 1.6 (Self-information loss) The loss of a distribution π on Y with density p is given by

`I(π, y) = − ln p(y) .

Remark 1.3 The self-information loss is a popular and standard loss in the literature on sequential prediction.
Its expectation with respect to y coincides with the Kullback-Leibler of the distribution of y with π. The notion
of loss-adapted noise, although less frequent, also appears in certain works. We refer to (Merhav and Feder,
1998) for an extended study of universal sequential prediction and further details.

We conclude this section on losses with a useful property that directly connects a loss function to the
log-Laplace transform and that is especially useful when designing aggregation strategies.

Definition 1.9 (Mixable loss) The loss function ` is η-mixable for some η > 0, if

∀x = (xi)16i6M ∈XM∀v = (vi)16i6M ∈PM ,∃xv ∈ X∀y ∈ Y , ` (xv, y) 6 −1

η
ln

M∑
i=1

vi e
−η `(xi,y) (1.5)

The mapping x,v → xv is called the substitution function.

Remark 1.4 A important class of η-mixable losses is that of η-exp-concave losses, in the sense that the func-
tion exp(−η `(·, y)) is concave on X for every observation y ∈ Y , with substitution function xv =

∑M
i=1 vi xi.

One example in the case whenX is the set of probability measures over Y is the logarithmic or self-information
loss `(x, y) = − log x({y}) for which the inequality holds with η = 1, and is actually an equality. Another
example of special interest is the quadratic loss on a bounded interval: indeed, for X = Y = [a, b] ⊂ R,
`(x, y) = (x− y)2 is 1

2(b−a)2 -exp-concave, and 2
(b−a)2 -mixable.

In order to better understand this definition, let us recall the following structural properties.

Lemma 1.7 (Structural properties) For any function f , provided all the following terms are finite, it
holds

− logE exp(−f) 6 Ef 6 logE exp f

∀x ∈ X , 0 6 f(x) =⇒ Ef 6 − logE exp(−f) +
1

2
Ef 2.

∀x ∈ X , |f(x)| 6 b =⇒ logE exp f − eb − 1− b
b2

Ef 2 6 Ef .
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Part I Chapter 1. logE exp(λX)

Proof :

The first line is proved by Jensen’s inequality. The second and third line by a Taylor expansion. �

Hence, applying this to the function f(·) = η`(·, y) when ` is convex in its first argument, we obtain

`
( M∑
i=1

vi xi, y
)
6 Ev[`(X, y)] 6 −1

η
ln

M∑
i=1

vi e
−η `(xi,y) +

η

2
E[`(X, y)2] .

Note that η-exp-concavity removes the quadratic term on the right hand size of the inequality.

A simple aggregation strategy To provide an illustration of what can be achieved with such losses, we
introduce now the simple but fundamental exponential weights or Hedge algorithm (Vovk, 1998, Cesa-Bianchi
and Lugosi, 2006), designed to control, for a fixed set of expertsM = {1, . . . ,M}, the regret LT − Li,T =∑T

t=1 `t−
∑T

t=1 `i,t for each i ∈M, where `i,t = `(xi,t, yt) is the loss of expert i at time t, and `t = `(xt, yt) the
loss of the expert choosing xt at time t. This algorithm is our first example of an aggregation strategy. Strikingly,
this is also a way to build complex forecasting strategies. The algorithm depends on a prior distribution
π ∈ PM(= P(M)) on the experts and predicts as xt = xvt , where the weights vt ∈ PM are sequentially
updated in the following way: v1 = π and, after each round t > 1, vt+1 is set to the posterior distribution vmt
of vt given the losses (`i,t)16i6M , defined by

vmi,t =
vi,t e

−η `i,t∑M
j=1 vj,t e

−η `j,t
. (1.6)

The following result that can be found in Cesa-Bianchi and Lugosi (2006, Corollary 3.1) enables to analyze
a number of challenging situations, by reducing complex forecasting strategies to the aggregation of experts
under a suitable prior.

Proposition 1.1 (Regret of aggregation) Assume the loss function ` is η-mixable. Irrespective of the
values of the signal and the experts’ predictions, the exponential weights algorithm with prior π achieves

LT − Li,T 6
1

η
log

1

πi
(1.7)

for each i = 1, . . . ,M and T > 1. More generally, for each probability vector u ∈PM ,

LT −
M∑
i=1

ui Li,T 6
1

η
KL(u,π) . (1.8)

Choosing a uniform prior π = 1
M

1 yields an at most 1
η

logM regret with respect to the best expert.

Proof :

Since the loss function is η-mixable and xt = xvt , we have

e−η `(xt,yt) >
M∑
i=1

vi,t e
−η `(xi,t,yt), i.e. `t 6 −

1

η
log

(
M∑
i=1

vi,t e
−η `i,t

)
.
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This yields, introducing the posterior weights vmi,t defined by (1.6),

`t − `i,t 6 −
1

η
log

(
M∑
j=1

vj,t e
−η `j,t

)
− `i,t =

1

η
log

(
e−η `i,t∑M

j=1 vj,t e
−η `j,t

)
=

1

η
log

vmi,t
vi,t

.

Now recalling that the exponentially weighted average forecaster uses vt+1 = vmt , this writes: `t− `i,t 6
1
η

ln
vi,t+1

vi,t
which, summing over t = 1, . . . , T , yields LT − Li,T 6 1

η
ln

vi,T+1

vi,1
. Since vi,1 = πi and

vi,T+1 6 1, this proves (1.7); moreover, noting that ln
vi,T+1

vi,1
= ln ui

vi,1
− ln ui

vi,T+1
, this implies

M∑
i=1

ui (LT − Li,T ) 6
1

η

M∑
i=1

ui ln
vi,T+1

vi,1
=

1

η

(
KL(u,v1)− KL(u,vT+1)

)
,

which establishes (1.8) since v1 = π and KL(u,vT+1) > 0. �

Remark 1.5 We can recover the bound (1.7) from inequality (1.8) by considering u = δi. Conversely, inequal-
ity (1.7) implies, by convex combination,

LT −
M∑
i=1

ui Li,T 6
1

η

M∑
i=1

ui log
1

πi
;

inequality (1.8) improves on this bound, as it replaces the terms ln 1
πi

by ln ui
πi

. Following Koolen et al. (2012),
we make use of such refinement in Chapter 9.

4 GENERAL EXPONENTIAL FAMILIES, PROPERTIES

In this section, we study exponential families that are closely related to the log-Laplace object. For a setX ⊂ R,
we consider a multivariate function F : X → RK and denote Y = F (X ) ⊂ RK .

Definition 1.12 (Exponential families) The exponential family generated by the function F and the reference
measure ν0 on the set X is

E(F ; ν0) =
{
νθ ∈ P(X ) ; ∀x ∈ X νθ(dx) = exp

(
〈θ, F (x)〉 − ψ(θ)

)
ν0(dx), θ ∈ RK

}
,

where ψ(θ)
def
= log

∫
X

exp
(
〈θ, F (x)〉

)
ν0(dx) is the normalization function (aka log-partition function) of the

exponential family. The vector θ is called the vector of canonical parameters. The parameter set of the family
is the domain ΘD

def
=
{
θ ∈ RK ; ψ(θ) < ∞

}
, and the invertible parameter set of the family is ΘI

def
=
{
θ ∈

RK ; 0 < λMIN(∇2ψ(θ)) 6 λMAX(∇2ψ(θ)) < ∞
}
⊂ ΘD, where λMIN(M) and λMAX(M) denote the minimum

and maximum eigenvalues of a semi-definite positive matrix M .
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Remark 1.6 When X is compact, which is the usual assumption in multi-armed bandits (X = [0, 1]) and F is
continuous, then we automatically get ΘD = RK .

When ν0 is a probability measure, the log-partition of the family coincides with the log-Laplace transform
of the random variable F (X). In the sequel, we always assume that the family is regular, that is ΘD has non
empty interior. Another key assumption is that the parameter θ? of the optimal arm belongs to the interior of
ΘI and is away from its boundary, which essentially avoids degenerate distributions, as we illustrate below.

Examples Bernoulli distributions form an exponential family with K = 1, X = {0, 1}, F (x) = x,ψ(θ) =
log(1 + eθ). The Bernoulli distribution with mean µ has parameter θ = log(µ/(1−µ)). Note that ΘD = R and
that degenerate distributions with mean 0 or 1 correspond to parameters ±∞.

Gaussian distributions on X = R form an exponential family with K = 2, F (x) = (x, x2), and for each
θ = (θ1, θ2), ψ(θ) = − θ2

1

4θ2
+ 1

2
log
(
− π

θ2

)
. The Gaussian distributionN (µ, σ2) has parameter θ = ( µ

σ2 ,− 1
2σ2 ).

It is immediate to check that ΘD = R×R−? . Degenerate distributions with variance 0 correspond to a parameter
θ with both infinite components, while as θ approaches the boundary R×{0}, then the variance tends to infinity.
It is natural to consider only parameters that correspond to a not too large variance.

Bregman divergence induced by the exponential family An interesting property of exponential families is
the following straightforward rewriting of the Kullback-Leibler divergence:

∀θ, θ′ ∈ ΘD, KL(νθ, νθ′) = 〈θ − θ′,EX∼νθ(F (X))〉 − ψ(θ) + ψ(θ′) ,

In particular, the vector EX∼νθ(F (X)) is called the vector of dual (or expectation) parameters. It is equal to the
vector ∇ψ(θ). Now, it is interesting to note that KL(νθ, νθ′) = Bψ(θ, θ′), where Bψ is known as the Bregman
divergence with potential function ψ and is defined (see Bregman (1967) for further details) by

Bψ(θ, θ′)
def
= ψ(θ′)− ψ(θ)− 〈θ′ − θ,∇ψ(θ)〉 .

We continue by providing a powerful rewriting of the Bregman divergence.

Lemma 1.8 (Bregman duality) For all θ? ∈ ΘD and η ∈ RK such that θ? + η ∈ ΘD, let Φ(η) =
ψ(θ? + η)− ψ(θ?). Further, let us introduce the Fenchel-Legendre dual of Φ defined by

Φ?(y) = sup
η∈RK
〈η, y〉 − Φ(η) .

Then, it holds logEX∼νθ? exp

(
〈η, F (X)〉

)
= Φ(η) . Further, for all F such that F =∇ψ(θ)

holds for some θ∈ΘD, then the following equality holds true Φ?(F )=Bψ(θ, θ?).

Proof of Lemma 1.8:

The second equality holds by simple algebra. Now the first equality is immediate, since

logEθ? exp(〈η, F (X)〉) = log

∫
exp(〈η, F (x)〉+ 〈θ?, F (x)〉 − ψ(θ?))ν0(dy)

= ψ(η + θ?)− ψ(θ?) . �
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This result is especially useful in the analysis of boundary crossing probabilities for multi-armed bandits, as
we explain in chapter 7. The main reason is that the function Φ? is increasing on each affine dual cone centered
at∇ψ(θ?) (with respect to the cone ordering).

Likelihood and duality We finally mention a nice property of exponential families and its relation with
the likelihood of n observations. Indeed, the value of the maximum likelihood coincides with n times the
Legendre-Fenchel dual of the log-partition function, applied to the empirical mean of the feature function F :

sup
θ∈Θ

n∑
i=1

log νθ(Xi) = sup
θ∈Θ
〈θ,

n∑
i=1

F (Xi)〉 − nψ(θ) = n sup
θ∈Θ
〈θ, F̂n〉 − ψ(θ) = nψ?(F̂n) ,

where we introduced the empirical mean F̂n = 1
N

∑n
i=1 F (Xi).
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Standard concentration inequalities (Hoeffding, Bersntein, etc.) are valid for an integer number of observa-
tions t ∈ N: they do not apply when we have instead a random number of observations.
When the number of observations is a random variable τ , we can amend these results in two main ways:

Peeling Principle: localizing a random variable N by partitioning its domain in many sub-domains.
Result: Let Z = {Zi}∞i=1 be a process that is predictable, and let FZ denotes its natural filtration. Let ϕ be
an upper-envelope of the log-Laplace of the Zi, and let ψ−1

?,+ denote the positive invert map of its Legendre-
Fenchel dual.
Let Nn be a N-valued random variable that is FZ-measurable and a.s. bounded by n. Then

∀α ∈ (1, n], δ∈ (0, 1), P
[

1

Nn

Nn∑
i=1

Zi > ϕ−1
?,+

(
α

Nn

ln
(⌈ ln(n)

ln(α)

⌉
1

δ

))]
6 δ

Now, if N is a (possibly unbounded) N-valued random variable that is FZ-measurable,

∀α > 1, δ∈ (0, 1) P
[

1

N

N∑
i=1

Zi > ϕ−1
?,+

(
α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

])]
6 δ

Advantage: Generic method. Extends to concentration of multivariate random variables and beyond.
Drawback: Using a geometric grid is not necessarily optimal and lacks adaptivity.

Laplace Principle: Replace the optimization appearing in the dual of λ→ logE exp(λZ) by an integration.
Result: Assume ϕ(λ) = σ2λ2/2 is an envelop on the log-Laplace transform of Z. Let N be a (possibly
unbounded) random stopping time for the natural filtration FZ . Then

P
(

1

N

N∑
i=1

Zi > σ

√
2
(

1 +
1

N

) ln
(√

N + 1/δ
)

N

)
6 δ

Advantage: Follows the distribution tail, improves on peeling when it applies. Extends to concentration of
multivariate random variables and beyond.
Drawback: Restricted to specific distributions and explicit computations.

Application When applied to a bandit with [0, 1]-bounded observations, this yields one of the best bandit
strategies

(UCB-Laplace) At = arg max
a∈A

µ̂a,t +

√(
1 + 1

Nt(a)

)
ln
(
A
√
Nt(a) + 1/δ

)
2Nt(a)

.

Take-home message
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O-A. Maillard page 22 HDR



Chapter 2

In practice, it is often desirable to control not only a random variable such as an empirical mean at a single
time step n, but also at multiple time steps n = 1, . . . . The naive approach to do so is by controlling the
concentration at each different time step and then use a union-bound to deduce the final bound. However, this
is generally sub-optimal as the empirical mean at time n and at time n+1 are close to each other and correlated.
We study here two powerful methods that enable to improve on this naive strategy. Both methods heavily rely
on the notion of random stopping time.

In order to illustrate the power of the random stopping times, let us start by recalling two standard and
important inequalities:

Lemma 2.1 (Doob’s maximal inequality for non-negative sub-martingale) Let {Wt}t∈N be a non-
negative sub-martingale with respect to the filtration {Ft}t∈N, that is

∀t ∈ N, t′ > t E[Wt′|Ft] > Wt , and Wt > 0 .

Then, for all p > 1 and ε > 0, it holds for all T ∈ N

P
(

max
06t6T

Wt > ε

)
6

E[W p
T ]

εp
.

Proof :

Let us introduce the random variable τε = min{t ∈ [0, T ] : Wt > ε}. Using this variable, we get

εP
(

max
06t6T

Wt > ε
)

= E[εI{max
06t6T

Wt > ε}]

6 E[WτεI{max
06t6T

Wt > ε}]

6 E[Wτε ] .

Now, we observe that τε is a random stopping time bounded by T . Further, it holds

E[Wτε ] = E[lim inf
t→∞

Wmin(t,τε)]

6 lim inf
t→∞

E[Wmin(t,τε)] .

Using the sub-martingale property, we deduce that E[Wmin(t,τε)] 6 E[WT ]. Indeed, for τ̃ε = min(t, τε),

E[Wτ̃ε ] = E
[ t∑
s=0

WsI{τ̃ε = s}
]
6 E

[ t∑
s=0

E[Wt|Fs]I{τ̃ε = s}
]

= E
[ t∑
s=0

E[WtI{τ̃ε = s}|Fs]
]

= E[Wt

t∑
s=0

I{τ̃ε = s}] = E[Wt] .

Eventually, this shows that εP
(

max
06t6T

Wt > ε
)
6 E[WT ]. �
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Lemma 2.2 (Doob’s maximal inequality for non-negative super-martingale) Let {Wt}t∈N be a non-
negative super-martingale with respect to the filtration {Ft}t∈N, that is

∀t ∈ N, E[Wt+1|Ft] 6 Wt , and Wt > 0 .

Then, for all p > 1 and ε > 0, it holds for all T ∈ N

P
(

max
06t6T

Wt > ε

)
6

E[W p
0 ]

εp
.

Proof :

In order to prove this result, we use a slightly different decomposition:

E[Wτ̃ε ] = E
[
W0 +

τ̃ε−1∑
s=0

(Ws+1 −Ws)

]
= E

[
W0 +

t∑
s′=0

s′−1∑
s=0

(Ws+1 −Ws)I{τ̃ε = s′}
]

= E[W0] + E
[ t∑
s′=0

t−1∑
s=0

(Ws+1 −Ws)I{τ̃ε = s′, s′ > s}
]

= E[W0] + E
[ t−1∑
s=0

(Ws+1 −Ws)I{τ̃ε > s}
]

= E[W0] + E
[ t−1∑
s=0

E[Ws+1 −Ws|Fs](1− I{τ̃ε 6 s})
]

6 E[W0] .

The last equality holds by {τ̃ε 6 s} ⊂ Fs, and the last inequality by the super-martingale property. �

In particular, if E[W0] 6 1, then for all T ∈ N, P
(

max06t6T Wt > ε

)
6 ε−1.

As an example of fruitful application, we now provide the following uniform concentration inequality.

Lemma 2.3 (Asymptotic Maximal Hoeffding inequality) Assume that Xi has positive mean µ and that
Xi − µ is σ-sub-Gaussian. Then

∀ε > 0, lim
n→∞

P
(

maxs6n
∑s

i=1 Xi

n
6 (1 + ε)µ

)
= 1.

One may wonder why to derive an asymptotic result instead of a result holding for all time steps. This result
is useful in establishing regret lower-bounds for multi-armed bandits, see Chapter 3.
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Proof of Lemma 2.3:

For any x ∈ R and λ > 0, it holds

P
(

max
s6n

s∑
i=1

Zi > x

)
= P

(
max
s6n

exp(λ
s∑
i=1

Zi) > exp(λx)

)
= P

(
max
s6n

exp(λ
s∑
i=1

Zi −
λ2σ2

2
n) > exp(λx− λ2σ2

2
n)

)
6 P

(
max
s6n

exp
(
λ

s∑
i=1

Zi −
λ2σ2

2
s
)
> exp(λx− λ2σ2

2
n)

)
,

where we introduced the quantity

Ws = exp
(
λ

s∑
i=1

Zi −
λ2σ2

2
s
)

Note that Ws is non-negative super-martingale since E[Ws+1Fs] 6 WsE[λZs+1 −
λ2σ2

2
] 6 Ws . Thus,

we can apply Doob’s maximal inequality:

P
(

max
06t6n

Wt > ε

)
6

E[W0]

ε
.

In particular, it holds

P
(

max
s6n

s∑
i=1

Zi > x

)
6 E[W0]︸ ︷︷ ︸

1

exp(−λx+
λ2σ2

2
n) 6 exp(− x2

2nσ2
)

where we optimize in λ = x/nσ2.
We deduce that if µ > 0, then on an en event of probability higher than 1− δ,

maxs6n
∑s

i=1Xi

n
=

maxs6n
∑s

i=1(Xi − µ) + µs

n

6
maxs6n

∑s
i=1(Xi − µ) + µn

n

6 σ

√
2 log(1/δ)

n
+ µ

That is for any δ,

P
(

maxs6n
∑s

i=1 Xi

n
6 σ

√
2 log(1/δ)

n
+ µ

)
> 1− δ

In particular, choosing δn such that δn → 0 and log(1/δ)
n
→ 0 (for instance δn = 1/n), then we deduce that

1− δn → 1, and σ
√

2 log(1/δ)
n

+ µ→ µ. Since µ < (1 + ε)µ for any ε > 0, we get

∀ε > 0, lim
n→∞

P
(

maxs6n
∑s

i=1Xi

n
6 (1 + ε)µ

)
= 1.
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�

1 THE PEELING TECHNIQUE FOR RANDOM STOPPING TIMES

In this section, we provide a powerful result that is useful when dealing with generic real-valued distributions.
We say a process generating a sequence of random variables {Zi}∞i=1 is predictable if there exists a filtration
H = (Hn)n∈N ("filtration of the past") such that Zn isHn-measurable for all n. We say a random variable N is
a random stopping time forH if ∀m ∈ N, {N 6 m} isHm−1-measurable.

Lemma 2.4 (Concentration inequality for predictable processes) Let Z = {Zi}∞i=1 be a sequence of
random variables generated by a predictable process, and FZ be its natural filtration. Let ϕ : R → R+

be a convex upper-envelope of the cumulant generative function of the conditional distributions with
ϕ(0) = 0, and ϕ? its Legendre-Fenchel transform, that is:

∀λ ∈ D,∀i, lnE
[

exp
(
λZi

)∣∣∣Hi−1

]
6 ϕ(λ) ,

∀x ∈ R ϕ?(x) = sup
λ∈R

(
λx− ϕ(λ)

)
,

where D = {λ ∈ R : ∀i, lnE
[

exp
(
λZi

)∣∣∣Hi−1

]
<∞}. Assume that D contains an open neighborhood

of 0. Then, ∀c ∈ R+, there exists a unique xc such that for all i, xc > E
[
Zi

∣∣∣Hi−1

]
, and ϕ?(xc) = c, and a

unique x′c such that for all i, x′c < E
[
Zi

∣∣∣Hi−1

]
and ϕ?(x′c) = c. We define ϕ−1

?,+ : c 7→ xc, ϕ−1
?,− : c 7→ x′c.

Then ϕ−1
?,+ is not decreasing and ϕ−1

?,− is not increasing.
Let Nn be a N-valued random variable that is FZ-measurable and a.s. bounded by n. Then for all
α ∈ (1, n], and δ∈ (0, 1),

P
[

1

Nn

Nn∑
i=1

Zi > ϕ−1
?,+

(
α

Nn

ln
(⌈ ln(n)

ln(α)

⌉
1

δ

))]
6 δ

P
[

1

Nn

Nn∑
i=1

Zi 6 ϕ−1
?,−

(
α

Nn

ln
(⌈ ln(n)

ln(α)

⌉
1

δ

))]
6 δ

In particular, one can take α to be the minimal solution to ln(α)e1/ ln(α) = ln(n)/δ.
Now, if N is a (possibly unbounded) N-valued random variable that is FZ-measurable, it holds for all
deterministic α > 1 and δ∈ (0, 1),

P
[

1

N

N∑
i=1

Zi > ϕ−1
?,+

(
α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

])]
6 δ

P
[

1

N

N∑
i=1

Zi 6 ϕ−1
?,−

(
α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

])]
6 δ
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Remark 2.1 In the case of i.i.d. random variables following a Gaussian law N (0, σ2), then it holds

ϕ(λ) = λ2σ2

2
, ϕ?(x) = x2

2σ2 , ϕ−1
?,+(y) = σ

√
2y, ϕ−1

?,−(y) = −σ
√

2y .

Proof of Lemma 2.4:

First, one easily derives the following properties, from properties of the Legendre-Fenchel transform.

• ϕ?(0) = 0, ϕ?(x)
x→+∞→ ∞, ϕ? is convex, increasing on R+.

• ∀x such that ϕ?(x) <∞, there exists a unique λx ∈ Dν such that ϕ?(x) = λxx− ϕ(λx).

• ∀c ∈ R+, there exists a unique xc > E[Z] such that ϕ?(xc) = c. We write it ϕ−1
?,+(c). ϕ−1

?,+ is not
decreasing.

1. A peeling argument We start with a peeling argument. Let us choose some η > 0 and define
tk = (1 + η)k, for k = 0, . . . , K, with K = d ln(n)

ln(1+η)
e (thus n 6 tK).

Let εt ∈ R+ be a sequence that is non-increasing in t.

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6 P
( K⋃
k=1

{tk−1 < Nn 6 tk} ∩ {
Nn∑
i=1

Zi > NnεNn}
)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] :

t∑
i=1

Zi > tεt

)
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Let λk > 0, for k = 1, . . . , K.

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] :

t∑
i=1

Zi > tεt

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] : exp

(
λk

( t∑
i=1

Zi

))
> exp(λktεt)

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk] : exp

(
λk

( t∑
i=1

Zi

)
− tϕ(λk)

)
︸ ︷︷ ︸

Wk,t

> exp
(
t
(
λkεt − ϕ(λk)

))
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk] : Wk,t > exp

(
t
(
λkεtk − ϕ(λk)

))
.

Since εtk > 0, we can choose a λk > 0 such that ϕ?(εtk) = λkεtk − ϕ(λk).

2. Doob’s maximal inequality At this, point, we show that the sequence {Wk,t}t is a non-negative

super-martingale, where Wk,t = exp

(
λk
(∑t

i=1 Zi
)
− tϕ(λk)

)
. Indeed, note that:

E[Wk,t+1|Ft] = Wk,tE[exp
(
λkZt+1

)
|Ft] exp(−ϕ(λk))

6 Wk,t .

Thus, using that tk−1 > tk/(1 + η), we find

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)

6
K∑
k=1

P
(
∃t ∈ (tk−1, tk]Wk,t > exp

(
tϕ?(εtk)

))

6
K∑
k=1

P
(

max
t∈(tk−1,tk]

Wk,t > exp
(tkϕ?(εtk)

1 + η

))
(a)

6
K∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
,

where (a) holds by application of Doob’s maximal inequality for non-negative super-martingales, using
that maxt∈(tk−1,tk] Wk,t 6 maxt∈(0,tk] Wk,t and Wk,0 6 1.
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3. Parameter tuning for bounded Nn Now, let us choose εt such that tϕ?(εt) = c > 1 is a constant,
that is εt = ϕ−1

?,+(c/t) (non increasing with t). Thus, we get for all η ∈ (0, n− 1):

P
(

1

Nn

Nn∑
i=1

Zi > εNn

)
6

d ln(n)
ln(1+η)

e∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
6 d ln(n)

ln(1 + η)
e exp

(
− c

1 + η

)
,

which suggest to set c = (1 + η) ln
(
d ln(n)

ln(1+η)
e1
δ

)
. We thus obtain for all η ∈ [0, n− 1],

P
(

1

Nn

Nn∑
i=1

Zi > ϕ−1
?,+

[1 + η

Nn

ln
(⌈ ln(n)

ln(1 + η)

⌉
1

δ

)])
6 δ .

Then, it makes sense to find the minimum value of f : x → x ln( a
ln(x)

), for x > 1. An optimal point
x? > 1 satisfies

f ′(x) = ln
( a

ln(x)

)
+ x
−(1/x)/ ln2(x)

1/ ln(x)
= ln

( a

ln(x)

)
− 1

ln(x)
= 0 ,

that is x? satisfies a = ln(x?)e
1/ ln(x?). We may thus choose the (slightly suboptimal) minimal value x

that satisfies ln(x)e1/ ln(x) = ln(n)/δ.

4. Parameter tuning for unbounded N
We restart from

P
(

1

N

N∑
i=1

Zi > εN

)
6

K∑
k=1

exp
(
− tkϕ

?(εtk)

1 + η

)
,

where tk = (1 + η)k and K = d ln(n)
ln(1+η)

e, and choose a different tuning for εt in order to handle an infinite
sum (with K =∞). Let us choose εt that satisfies tϕ?(εt) = c(t), where c(t) is chosen such that

∞∑
k=1

exp

(
− c(tk)

1 + η

)
<∞ .

Choosing c(t) = (1+η) ln

(
ln(t)

δ ln(1+η)
[ ln(t)
ln(1+η)

+1]

)
, it comes c(tk) = (1+η) ln(k(k+1)δ) and thus

P
(

1

N

N∑
i=1

Zi > εN

)
6

∞∑
k=1

δ

k(k + 1)
= δ ,

With this choice, we thus deduce

P
(

1

N

N∑
i=1

Zi > ϕ−1
?,+

(
(1 + η)

N
ln
( ln(N) ln(N(1 + η))

δ ln2(1 + η)

))
6 δ .
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5. Reverse bounds. We now provide a similar result for the reverse bound. Let εt ∈ R be a sequence
that is non-decreasing with t, and λk > 0, for k = 1, . . . , K. Then

P
(

1

N

N∑
i=1

Zi 6 εN

)
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk] exp

(
− λk

( t∑
i=1

Zi

)
− tϕ(−λk)

)
> exp

(
t(−λkεt − ϕ(−λk))

))
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk],Wk,t > exp

(
t(−λkεtk − ϕ(−λk))

))

If εtk < E[Ztk ], we can choose λk = λεtk > 0 such that ϕ?(εtk) = −λkεtk − ϕ(−λk) > 0. Thus, using
that tk−1 > tk/(1 + η), it comes

P
(

1

N

N∑
i=1

Zi 6 εN

)
6

K∑
k=1

P
(
∃t ∈ (tk−1, tk],Wk,t > exp

(
tϕ?(εtk))

))

6
K∑
k=1

P
(

max
t∈(tk−1,tk]

Wk,t > exp
(tkϕ?(εtk)

1 + η

))

6
K∑
k=1

exp
(−tkϕ?(εtk)

1 + η

)
Now, let us choose εt < E[Zt] such that tϕ?(εt) = c > 1, that is εt = ϕ−1

?,−(c/t) (non decreasing with t).
For η = 1/(c− 1) and c = ln(e/δ), we obtain

P
(

1

N

N∑
i=1

Zi 6 ϕ−1
?,−(ln(e/δ)/N)

)
6 dln(n) ln(e/δ)eδ .

�

Application to the control of variance We conclude this section by applying Lemma 2.4 to the concentration
of the quadratic sum of a noise term ξi. We believe that this illustrates the power of this method. Assume that
the noise terms are second-order sub-Gaussian in the sense that

∀λ ∈ Dν , ∀i logE[exp(λξ2
i )|Hi−1] 6 ϕ(λ)

where ϕ(λ) = −1
2

log(1−2λR2) . Note that this is the cumulant generative function of the square of a centered
Gaussian. Then we can prove the following result:
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Lemma 2.5 (Birge-Massart concentration for predictable process) Assume that Nn is an FZ-
measurable N-valued random variable that satisfies Nn 6 n almost surely, then it holds for all
α > 1

P
[

1

Nn

Nn∑
i=1

ξ2
i > R2 + 2R2

√
2α

Nn

ln
(⌈ ln(n)

ln(α)

⌉
1

δ

)
+

2αR2

Nn

ln
(⌈ ln(n)

ln(α)

⌉
1

δ

)]
6 δ

P
[

1

Nn

Nn∑
i=1

ξ2
i 6 R2 − 2R2

√
α

Nn

ln
(⌈ ln(n)

ln(α)

⌉
1

δ

)]
6 δ

Further, for an FZ-measurable N-valued random variable N , then it holds for all α > 1,

P
[

1

N

N∑
i=1

ξ2
i > R2 + 2R2

√
2α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

]
+

2αR2

N
ln

[
ln(N) ln(αN)

δ ln2(α)

]]
6 δ

P
[

1

N

N∑
i=1

ξ2
i 6 R2 − 2R2

√
α

N
ln

[
ln(N) ln(αN)

δ ln2(α)

]]
6 δ

Proof of Lemma 2.5:

According to Lemma 2.4 applied to Zi = ξ2
i , all we have to do is to compute an upper bound on

the quantity ϕ−1
?,+(c), first for the value c = ln(e/δ)

Nn
, then for c = ln(e/δ)

N
(1 + 2

ln(1/δ)
ln
(
π ln(N) ln(1/δ)

61/2(1+ln(1/δ))

)
) 6

ln(e/δ)
N

(1 + cN/ ln(1/δ)). We proceed in the following way. First, the envelope function is given by

ϕ(λ) = −1

2
ln(1− 2λR2) 6

λR2

1− 2λR2
.

for λ ∈ (0, 1
2R2 ). Let x > R2. It holds that ϕ?(x) > supλ[λx − λR2

1−2λR2 ]. Solving this optimization by
differentiating over λ, the supremum is reached for λ = (1 − R√

x
) 1

2R2 ∈ (0, 1
2R2 ), with corresponding

value given by

ϕ̃?(x) = (1− R√
x

)
x

2R2
− (1− R√

x
)

√
x

2R

=
x

2R2
−
√
x

R
+

1

2
.

Now, for c > 0, it is easily checked that ϕ̃?(x) = c holds for xc = R2(1 +
√

2c)2. As a result, we deduce
that ϕ−1

?,+(c) 6 R2(1 +
√

2c)2 = R2 + 2R2c+ 2R2
√

2c.
Now, for the reverse inequality, we have to compute a lower bound on the quantity ϕ−1

?,−(c), first for

c = ln(e/δ)
Nn

, then for c = ln(e/δ)
N

(1 + 2
ln(1/δ)

ln
(
π ln(N) ln(1/δ)

61/2(1+ln(1/δ))

)
) 6 ln(e/δ)

N
(1 + cN/ ln(1/δ)). We proceed in
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the following way. First, the envelope function is given for λ > 0 by

ϕ(−λ) = −1

2
ln(1 + 2λR2) > − λR2

1 + λR2
.

Thus, for 0 < x < R2 it holds ϕ?(x) > supλ>0[−λx + λR2

1+λR2 ] = 1 + supλ>0[−λx − 1
1+λR2 ]. Solving

this optimization by differentiating over λ, the supremum is reached for λ = 1
R2 ( R√

x
− 1) > 0 with

corresponding value given by

ϕ̃?(x) = 1− x

R2

( R√
x
− 1
)
−
√
x

R

=
x

R2
− 2R

√
x

R
+ 1 .

Now, for c > 0, it is easily checked that ϕ̃?(x) = c holds for xc = R2(1 −
√
c)2, and xc < R2 if c < 1.

As a result, we deduce that if c ∈ (0, 1), then ϕ−1
?,−(c) > R2 − 2R2

√
c + R2c. On the other hand, for all

c > 0, choosing λ = 1
R2

√
c, and using the inequality 1

1+v
> 1− v for v > 0, then

ϕ?(x) > − x

R2

√
c+ 1− 1

1 +
√
c

=
√
c
(
− x

R2
+

1

1 +
√
c

)
> ϕ̃?(x)

def
=
√
c
(
− x

R2
+ 1−

√
c
)

Thus, ϕ̃?(x) = c for xc = R2 − 2R2
√
c < R2. As a result, we deduce that if c > 0, then ϕ−1

?,−(c) >
R2 − 2R2

√
c. �

2 UNIFORM BOUNDS AND THE LAPLACE METHOD

In this section, we present another very powerful tool, that is the Laplace method (method of mixtures for
sub-Gaussian random variables, see Peña et al. (2008)). We provide the illustrative following result here, for
real-valued random variables. The result however extends naturally to dimension d, and even, to some extent,
to infinite dimension, as we explain in chapter 4.

Lemma 2.6 (Time-uniform concentration inequalities) Let Y1, . . . Yt be a sequence of t i.i.d. real-
valued random variables bounded in [0, 1], with mean µ. Let µt = 1

t

∑t
s=1 Ys be the empirical mean

estimate. Then, for all δ ∈ (0, 1), it holds

P
(
∃t ∈ N, µt − µ >

√(
1 +

1

t

) ln
(√

t+ 1/δ
)

2t

)
6 δ

P
(
∃t ∈ N, µ− µt >

√(
1 +

1

t

) ln
(√

t+ 1/δ
)

2t

)
6 δ .
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Proof of Lemma 2.6:

In order to prove this result, we introduce for a fixed δ ∈ [0, 1] the random variable

τ = min

{
t ∈ N : µt − µ >

√(
1 +

1

t

) ln
(√

1 + t/δ
)

2t

}
.

This quantity is a random stopping time for the filtration F = (Ft)t, where Ft = σ(Y1, . . . , Yt), since
{τ 6 m} is Fm-measurable for all m. We want to show that P(τ <∞) 6 δ. To this end, for any λ, and
t, we introduce the following quantity

Mλ
t = exp

( t∑
s=1

(λ(Ys − µ)− λ2

8
)

)
.

By the i.i.d. bounded assumption, the random variables are 1/2-sub-Gaussian and it is immediate to
show that {Mλ

t }t∈N is a non-negative super-martingale that satisfies lnE[Mλ
t ] 6 0 for all t. It then

follows thatMλ
∞ = limt→∞M

λ
t is almost surely well-defined (this is a consequence of Doob’s upcrossing

lemma for super-martingales). Hence, Mλ
τ is well-defined as well. Further, let us introduce the stopped

version Qλ
t = Mλ

min{τ,t}. An application of Fatou’s lemma shows that E[Mλ
τ ] = E[lim inft→∞Q

λ
t ] 6

lim inft→∞ E[Qλ
t ] 6 1. Thus, E[Mλ

τ ] 6 1.
The next step is to introduce the auxiliary variable Λ = N (0, 4), independent of all other variables,

and study the quantity Mt = E[MΛ
t |F∞]. Note that the standard deviation of Λ is (1/2)−1 due to the

fact we consider 1/2-sub-Gaussian random variables. We immediately get E[Mτ ] = E[MΛ
τ |Λ]] 6 1. For

convenience, let St = t(µt − µ). By construction of Mt, we have

Mt =
1√
8π

∫
R

exp

(
λSt −

λ2t

8
− λ2

8

)
dλ

=
1√
8π

∫
R

exp

(
−
[
λ

√
t+ 1

8
−
√

2St√
t+ 1

]2

+
2S2

t

t+ 1

)
dλ

= exp

(
2S2

t

t+ 1

)
1√
8π

∫
R

exp
(
− λ2 t+ 1

8

)
dλ

= exp

(
2S2

t

t+ 1

)√
8π/(t+ 1)√

8π
.

Thus, we deduce that

St =

√
t+ 1

2
ln
(√

t+ 1Mt

)
.

We conclude by applying a simple Markov inequality:

P
(
τ(µτ − µ) >

√
τ + 1

2
ln
(√

τ + 1/δ
))

= P(Mτ > 1/δ) 6 E[Mτ ]δ .

�
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Proceeding with similar steps, more generally we obtain the following result for sums of sub-Gaussian
random variables.

Lemma 2.7 (Time-uniform sub-Gaussian concentration) Let Y1, . . . Yt be a sequence of t independent
real-valued random variables where for each s 6 t, Ys has mean µs and is σs-sub-Gaussian. Then for all
δ ∈ (0, 1), it holds

P
(
∃t ∈ N,

t∑
s=1

(Ys − µs) >

√√√√2
t∑

s=1

σ2
s

(
1 +

1

t

)
ln
(√

t+ 1/δ
))

6 δ

P
(
∃t ∈ N,

t∑
s=1

(µs − Ys) >

√√√√2
t∑

s=1

σ2
s

(
1 +

1

t

)
ln
(√

t+ 1/δ
))

6 δ .

An immediate application of this result is to derive a version of the Upper confidence Bound (UCB) algo-
rithm Auer et al. (2002) for multi-armed bandits, in the context of bounded (or sub-Gaussian) distributions. The
first appearance of the strategy involving the Laplace method is due to Abbasi-Yadkori et al. (2011), although
the bound that is reported in the pseudo-code of the algorithm contains a mistake (not present in their analysis).
The correct version of the strategy, is the following one,

(UCB-Laplace) At = arg max
a∈A

µ̂a,t +

√(
1 + 1

Nt(a)

)
ln
(
A
√
Nt(a) + 1/δ

)
2Nt(a)

,

where δ ∈ (0, 1) is the input confidence level of the algorithm, and where ties are solved by choosing uniformly
amongst the least pulled arms.

Extension to exponential families One may wonder whether the previous method applies more generally to
any exponential family, and not only to Gaussian (or sub-Gaussian) distributions. The following result provides
such a generalization, stated in a way similar to Lemma 2.4; However this requires some condition and terms
that may not be easy to make explicit beyond specific distributions.
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Lemma 2.8 (Laplace concentration for Exponential families) For a sample X1, . . . , Xn ∼ pθ gener-
ated from a parametric distribution in an (F, ψ, ν0)-exponential family (that is pθ(dx) = exp(〈θ, F (x)〉−
ψ(θ))ν0(dx)), let us define the variables Zi = F (Xi)−∇ψ(θ), for i = 1..n.
Let us introduce, for some constant c ∈ R+ and function f , the following function

Gc,f
n,θ : u 7→

∫
R exp(−(n+c)Bψ(θ+u, θ+u+λ)−f(λ))dλ∫

R exp(−cBψ(θ, θ + λ)− f(λ))dλ
.

Assume that for some choice of f, c, ∃Cc,f
n,θ > 0 such that infuG

c,f
n,θ(u) > 1

Cc,fn,θ
. Then, for any random

stopping time N , it holds

Ppθ

[
ϕ?θ

(
1

N + c

N∑
i=1

Zi

)
>

ln(Cc,f
N,θ/δ)

N + c

]
6 δ ,

where we introduced ϕ?θ(s) = maxλ〈λ, s〉 − Bψ(θ, θ + λ).

Note that in the Gaussian case (with known variance), Gc,f
n,θ is a constant function. Now, in the Bernoulli case

where pθ = B(µ), it can be checked that ϕ?θ

(
1

N+c

∑N
i=1 Zi

)
= kl

(
N
N+c

µ̂N+ c
c+N

µ, µ

)
' 1

(1+c/N)2kl(µ̂N , µ) .

Proof :

Let Sn =
∑n

i=1 Zi, and let us introduce the following quantity

Mλ
n = exp(〈λ, Sn〉 − nBψ(θ, θ + λ))

Since by construction logE exp(〈λ, Sn〉) = nBψ(θ, θ + λ), this is a martingale such that E[Mλ
n ] = 1.

Further, it is not difficult to show that for any random stopping time N , E[Mλ
N ] 6 1.

We apply the method of mixture by integrating over λ. To this end, let us define for some c ∈ R the
function g(λ) = cBψ(θ, θ + λ) + f(λ). We also introduce for convenience sn = Sn/(n + c). Then, it
holds

Mn =

∫
RM

λ
n exp(−g(λ))dλ∫

R exp(−g(λ))dλ
=

∫
R exp

(
(n+ c)(〈λ, sn〉 − Bψ(θ, θ + λ))− f(λ)

)
dλ∫

R exp(−g(λ))dλ

It is thus natural to introduce u?(sn, θ) = arg max
λ
〈λ, sn〉 − Bψ(θ, θ + λ).

Note that by construction u? = u?(sn, θ) satisfies sn−∇ψ(θ+ u?) +∇ψ(θ) = 0. Hence, we deduce
that

〈λ, sn〉 − Bψ(θ, θ + λ)− 〈u?, sn〉+ Bψ(θ, θ + u?)

= 〈λ− u?, sn〉+ ψ(θ + λ)− 〈λ,∇ψ(θ)〉 − ψ(θ + u?) + 〈u?,∇ψ(θ)〉
= 〈λ− u?, sn −∇ψ(θ)〉+ ψ(θ + λ)− ψ(θ + u?)

= 〈λ− u?, sn −∇ψ(θ)〉 − Bψ(θ + u?, θ + λ) + 〈λ− u?,∇ψ(θ + u?)〉
= −Bψ(θ + u?, θ + λ) .
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Thus, plugging-in this equality in the definition of Mn, we get for each c ∈ R and f ,

Mn = exp

(
(n+c)(〈u?, sn〉−Bψ(θ, θ+u?)

)∫
R exp(−(n+c)Bψ(θ+u?, θ+λ)−f(λ))dλ∫

R exp(−cBψ(θ, θ + λ)− f(λ))dλ
.

= exp

(
(n+c)(〈u?, sn〉−Bψ(θ, θ+u?)

)∫
R exp(−(n+c)Bψ(θ+u?, θ+u?+λ̃)−f(λ̃))dλ̃∫

R exp(−cBψ(θ, θ + λ)− f(λ))dλ

= exp((n+ c)ψ?θ(sn))Gc,f
n,θ(u

?)

where u? satisfies sn −∇ψ(θ+ u?) +∇ψ(θ) = 0. Now by assumption, there exists some Cc,f
n,θ > 0 such

that

Mn > M̃n = exp((n+ c)ψ?θ(sn))/Cc,f
n,θ .

Thus, we deduce that

P
(
ψ?θ(sn) >

ln(Cc,f
n,θ/δ)

n+ c

)
= P(M̃n > 1/δ) 6 P(Mn > 1/δ)

6 δE[Mn] 6 δ .

By properties of Mn, this holds also for any random stopping time N . �

3 NUMERICAL COMPARISON OF A FEW BOUNDS

In this section, we compare the behavior of the bounds obtained by the Laplace and Peeling method on the
illustrative example of sub-Gaussian random variables. Let µt = 1

t

∑t
t′=1 Yt′ denote the empirical mean with t

observations. We first recall the following uniform confidence bound that is obtained by an application of the
Laplace method (method of mixtures for sub-Gaussian variables) in the i.i.d σ2-sub-Gaussian case.

(Laplace method) P
(
∃t∈N, µt − E[µt] > σ

√
2(1 + 1

t
) ln
(√

t+ 1/δ
)

t

)
6 δ ,

Note that this holds simultaneously over all t. For comparison, the peeling method yields

(Peeling method) P
(
∃t∈N, µt−E[µt] > σ

√
2(1 + η)

t
ln

(
ln(t) ln(t(1+η))

δ ln2(1+η)

))
6 δ ,

where η > 0 is any fixed constant not depending on t. For reference, a simple union bound gives

(Union bound) P
(
∃t∈N, µt−E[µt] > σ

√
2 ln

(
t(t+ 1)/δ

)
t

)
6 δ ,

The bound obtain by a union bound is very crude, and even the a priori appealing ln ln(t) scaling of the bound
obtained by the peeling method is however not better than the one derived by the Laplace method, unless for
huge times t (t > 106, for δ = 0.05 and any η, see also Figure 3). This should not be surprising, since neither
methods make use of the fact that the variables are sub-Gaussian, contrary to the Laplace method. This is
illustrated in Figure 2.1, where we choose various values for η (even values η = η(t) depending on t, for which
the peeling bound is no longer valid a priori). We hope this illustrates how powerful the Laplace method can
be, and why it should be used instead of more naive approaches.
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102 104 106 108 1010
1.00

1.88

Union
Peeling 1
Peeling 0.01
Peeling 1/log(t)
Peeling 1/sqrt(t)
Peeling 1/t

Figure 2.1: Ratio of different time-uniform
concentration bounds over that of the Laplace
method, as a function of t, for a confidence level
δ = 0.01 and various choice of η = η(t). This
indicates that all other bounds are larger than
the Laplace bound by a multiplicative factor up
to 1.88 here, and none is smaller until at least
time t = 1010. Notice the logarithmic scale.
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(
dν
dν̃

(X)

)

Fundamental lemma

(Change of measure) ∀Ω,∀c ∈ R, Pν
(

Ω ∩
{

log

(
dν

dν̃
(X)

)
6 c
})
6 exp(c)Pν̃

(
Ω
)
.

(Fundamental lemma) Eν
[

log

(
dν

dν̃
(X)

)]
> sup

g:X→[0,1]

kl

(
Eν [g(X)],Eν̃ [g(X)]

)
.

Usage: derive performance lower bounds for sequential sampling strategies with ν the distribution of the
observations, ν̃ another distribution, and g specified by a "uniformly good" property requirement.
Example in multi-armed bandits: Let D = D1 ⊗ · · · ⊗ DA, where Da ⊂ P(X ) for each a ∈ A be any
(unstructured) set of configurations, let ν ∈ D. Then any uniformly-good strategy must pull arms such that

∀a ∈ A, µa(ν) < µ?(ν) =⇒ lim inf
T→∞

Eν [NT (a)]

log(T )
>

1

inf{KL(νa, ν ′a) : ν ′a ∈ Da, µa(ν ′) > µ?(ν)}
.

Usage: Lower bound inspired sampling strategies, e.g. KL-ucb.
Key step: Identify the set of maximally confusing distributions

D̃(ν) =

{
ν ′ ∈ D : A?(ν ′) ∩ A?(ν) = ∅,∀a ∈ A?(ν),KL(νa, ν

′
a) = 0

}
.

Uniformly-good price principle

"Uniform guarantee (over a set D) comes with a sampling price."

Optimistic principle (revisited)

"Pull the arm that enables to rule-out the seemingly best environment from the plausible ones."

Change point detection

(GLR stopping rule) min
{
t ∈ [1, n] : max

s∈[0,t)
GE1:s:t > c

}
where

GEt0:s:t = sup
θ1,θ2

s∑
t′=t0

log pθ1(Yt′) +
t∑

t′=s+1

log pθ2(Yt′)− sup
θ

t∑
t′=t0

log pθ(Yt′)

Tuning of threshold c: by concentration of measure.

Take-home message

Contents
1 Change of measure and lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2 Further lower-bounds and extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
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3 From lower bounds to sampling strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4 Change point detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Doubly time uniform concentration of scan-statistics . . . . . . . . . . . . . . . . . . . . 56

4.2 Non-asymptotic detection delay of sub-Gaussian GLR . . . . . . . . . . . . . . . . . . . 59

In this chapter we focus on the log likelihood ratio of two measures, and the key properties that result from
its control. This object is at the heart of the change of measure argument, which is a fundamental tool in order
to provide lower bound guarantees on a learning problem, and at least in a few cases, give hints at how to design
an optimal decision strategy.

We illustrate the strength of this tool below, by showing two proofs strategy for the lower bound in multi-
armed bandits. The first proof follows the original proof strategy from Lai and Robbins (1985b), and sees the
log likelihood ratio as a random variable that must be controlled by concentration of measure. The second
proof technique looks directly at the expectation of this quantity, thus making appear the Kullback-Leibler
divergence. Both paths are interesting: the first one can naturally yield a finite-time regret lower bound, while
the second one nicely extends to setups with a specific structure.

1 CHANGE OF MEASURE AND LOWER BOUNDS

In this section, we present what is called the change of measure argument together with some powerful results,
and apply them for illustration to the multi-armed bandit setup.

Change of measure In its most basic form, the change of measure argument simply relates the expectation
of a function under a distribution ν to its expectation under another one ν̃

Lemma 3.1 (Change of measure) For each measurable f with respect to ν and ν̃, it holds

Eν
[
f(X)

]
= Eν̃

[
dν

dν̃
(X)f(X)

]
.

In particular, for every measurable event Ω with respect to ν and ν̃,

∀c ∈ R, Pν(Ω ∩ Cc) 6 exp(c)Pν̃(Ω) where Cc =
{

log

(
dν

dν̃
(X)

)
6 c
}

Perhaps one of the most direct application of the change of measure is to consider two non-foreign distri-
butions ν, ν̃ ∈ P(X ) on a discrete set X . Then we have that

Eν
[
dν̃

dν
(X)

]
= Eν̃ [1] = 1, that is logEν exp

(
log(ν̃({X}))− log(ν({X}))

)
= 0 .

In particular, the log-Laplace of the log-likelihood ratio at value 1 is less than 0, so that we deduce by Markov’s
inequality that for all δ ∈ [0, 1] then

Pν
[
− log(ν̃({X})) 6 − log(ν({X}))− log(1/δ)

]
6 δ ,
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(
dν
dν̃

(X)

)
which is precisely the core inequality of compression theory (with K = log(1/δ) bits).

Lemma 3.1 can be applied to two finite collection of independent measures (bandit configurations) (νa)a∈A,
(ν̃a)a∈A on X . Indeed let us consider for instance a deterministic sequence (ai)i6n of index in A, and corre-
sponding random variable X = (Xi)i6n, where Xi ∼ νai . By forming the product measures ν = ⊗ni=1νai and
ν̃ = ⊗ni=1ν̃ai on X n, we obtain that the event Cc bounds the log-Likelihood ratio of the observations as follows.

Cc =
{ n∑

i=1

log

(
dνai
dν̃ai

(Xi)

)
6 c
}
.

A regret lower bound for the multi-armed bandit problem Combining this change of measure with con-
centration inequalities, Lai and Robbins (1985a) was able to provide one of the first regret lower bound on the
achievable regret in this setup. To this end, one should first specify the considered set of sampling strategies.

Definition 3.3 (Uniformly-good strategy for bandits) Let D be a set of bandit configurations on X ⊂ R. For
a configuration ν = (νa)a∈A ∈ D, we denote µa(ν) the mean of νa and µ?(ν) = maxa∈A µa(ν) its maximal
mean. A bandit strategy is uniformly-good on D if

∀ν ∈ D,∀a ∈ A : µa(ν) < µ?(ν) =⇒ E[Na(T )] = o(Tα) for all α ∈ (0, 1].

Intuitively, a uniformly-good strategy is just a strategy that "pulls sub-optimal arms not too often", when
facing any bandit configuration from a set D. Note that this is an asymptotic notion (for historical reasons).
Lemma 3.4 below shows a fundamental barrier to the regret achievable by any such strategy. Namely if one
wants to be uniformly good on D, the regret against any ν ∈ D must be lower-bounded, thus has to be high.
We provide it below for the special case of Bernoulli distributions, that is when νa is a Bernoulli distribution
B(θa), with mean parameter θa ∈ [0, 1]. Since the notion of uniformly good strategy is asymptotic, so is the
lower bound:

Lemma 3.2 (Regret lower bound for uniformly good strategies) Let B denotes the set of all possible
Bernoulli configurations, and ν ∈ B. Then any uniformly-good strategy on B must satisfy that

∀a ∈ A, µa(ν) < µ?(ν) =⇒ lim inf
T→∞

Eν [NT (a)]

log(T )
>

1

kl(µa(ν), µ?(ν))
.

where kl(µ, µ′) = KL(B(µ),B(µ′)). In particular, it must incur a regret

lim inf
T→∞

RT

log(T )
>
∑
a∈A

µ?(ν)− µa(ν)

kl(µa(ν), µ?(ν))
.

Proof of Lemma 3.2:

The first step is an application of Markov inequality.

∀c ∈ R+,
E[NT (a)]

log(T )
> cPθ(NT (a) > c log(T )) (Markov inequality),
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which motives to study the event Ω = {NT (a) < c log(T )}.
The second step is to introduce a bandit configuration ν̃ ∈ B with parameters θ̃ = (θ̃1, . . . , θ̃A), that

we specify as

{
θ̃a′ = θa′ if a′ 6= a

θ̃a = λ where λ > µ?
for some λ. We call it a maximally confusing instance for a.

Let us now introduce the event to control the log-Likelihood ratio. For any α ∈ (0, 1],

let E =

{ T∑
t=1

log

(
dνAt
dν̃At

(Xt)

)
6 (1− α) log(T )

}

=

{ T∑
t=1

I{At = a} log

(
dνa
dν̃a

(Xt)

)
6 (1− α) log(T )

}
where

dνa
dν̃a

(x) =
θxa(1−θa)1−x

λx(1−λ)1−x .

The third step is to control the probability of the event Ω ∩ E by
Pν(Ω ∩ E) 6 T 1−αPν̃(Ω) (Change of measure)

= T 1−αPν̃
(∑

a′ 6=aNT (a′) > T−c log(T )

) (∑
a′NT (a′)=T

)
6 T 1−α

∑
a′ 6=a Eν̃ [NT (a′)]

T−c log(T )
(Markov inequality)

= o(1) (Consistency for θ̃)

,

where the last line follows by the assumption that the considered strategy is uniformly-good on B and
thus in particular it pulls sub-optimal arms of ν̃ ∈ B not too often.

The fourth and last step is to control the remaining event Ω ∩ Ec. Let us introduce Xa,j = Xτa,j with
τa,j = min{t ∈ N : Na(t) = j}. Note that the random variables τa,j are predictable stopping times, since
{τa,j = t} is a measurable with respect to the filtration generated by A1, X1, . . . , At−1, Xt−1. Hence we
obtain

Pν(Ω ∩ Ec) 6 Pν
(
∃m<c log(T ) :

m∑
j=1

log

(
dνa
dν̃a

(Xa,j)

)
︸ ︷︷ ︸

Zj

>(1−α) log(T )

)
.

= Pν
(

maxm<c log(T )

∑m
j=1 Zj

c log(T )
>

1− α
ckl(θa, λ)

kl(θa, λ)︸ ︷︷ ︸
Eθ[Zj ]

)

Remarking that the Zj are i.i.d. bounded, with positive mean µ = kl(θa, λ) we can now apply the
Asymptotic maximal Hoeffding inequality (see Lemma 2.3, that we recall below):

∀η > 0, lim
n→∞

Pθ
(

maxm<n
∑m

j=1 Zj

n
> (1 + η)µ

)
= 0.

It remains to choose e.g. c =
1− 2α

kl(θa, λ)
to ensure that

1− α
ckl(θa, λ)

> 1 and conclude by letting α→ 0.
�

Let us note that there is nothing too specific about using a family of Bernoulli distributions. The lower
bound can actually be extended much beyond this case. Instead of following the same proof, let us show this
with an alternative proof technique, that replaces the use of concentration inequality of the log-Likelihood with
a control on its expectation. Both techniques yield interesting developments that we discuss later. Before we
present it, we introduce a stronger version of the change of measure inequality, whose original proof technique
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(
dν
dν̃

(X)

)
can be traced at least back to Wald (1945), that we state below in a generic form. This inequality yields a
variety of results in hypothesis testing, sequential decision making and beyond.

Lemma 3.3 (Fundamental change of measure inequality) Let (f, f) be any conjugate pair of functions
such that f : R → R+ is convex and increasing with f(R) = R+ and f ◦ f = f ◦ f = 1. Then, for any
measures ν, ν̃ that admit a Radon-Nikodym derivative dν/dν̃, it holds

Eν̃
[
f

(
dν

dν̃
(X)

)]
6 inf

g:X→[0,1]
Eν̃ [g(X)]f

(
Eν [g(X)]

Eν̃ [g(X)]

)
+ Eν̃ [1− g(X)]f

(
Eν [1− g(X)]

Eν̃ [1− g(X)]

)
.

In particular, for the conjugate pair (f, f) = (log, exp), we obtain the following form

KL(ν̃, ν) = Eν̃
[

log

(
dν̃

dν
(X)

)]
> sup

g:X→[0,1]

kl

(
Eν̃ [g(X)],Eν [g(X)]

)
.

where we introduced for convenience the function kl(x, y) = x log(x/y) + (1− x) log((1− x)/(1− y)).

Proof :

Let us consider a function g : X → [0, a]. Then it holds

Eν [g(X)] = Eν̃
[
dν

dν̃
(X)g(X)

]
= Eν̃

[
f(f(

dν

dν̃
(X)))

g(X)

Eν̃ [g(X)]

]
Eν̃ [g(X)]

> f

(
Eν̃
[
f(
dν

dν̃
(X))

g(X)

Eν̃ [g(X)]

])
Eν̃ [g(X)]

The second line holds thanks to f ◦ f = 1 and linearity of the expecation. The inequality follows
by Jensen’s inequality applied to the convex function f , using the fact that dq(x) = g(x)

Eν̃ [g(x)]
dν̃(x) is a

probability measure (because g(x) > 0 for all x ∈ X ). Hence, using the fact that f ◦ f = 1 and f is
increasing, we deduce that

Eν̃
[
f

(
dν

dν̃
(X)

)
g(X)

]
6 Eν̃ [g(X)]f

(
Eν [g(X)]

Eν̃ [g(X)]

)
.

Since g̃(x) = a− g(x) is also non-negative, the same bound applies replacing g with g̃. Thus, using the
key property that a = g(x) + g̃(x) for all x ∈ X , we deduce that

aEν̃
[
f

(
dν

dν̃
(X)

)]
6 Eν̃ [g(X)]f

(
Eν [g(X)]

Eν̃ [g(X)]

)
+ Eν̃ [g̃(X)]f

(
Eν [g̃(X)]

Eν̃ [g̃(X)]

)
.

Thus, we deduce that

Eν̃
[
f

(
dν

dν̃
(X)

)]
6 inf

{
1

a
inf

g:X→[0,a]
Eν̃ [g(X)]f

(
Eν [g(X)]

Eν̃ [g(X)]

)
+ Eν̃ [a− g(X)]f

(
Eν [a− g(X)]

Eν̃ [a− g(X)]

)
: a > 0

}
= inf

g:X→[0,1]
Eν̃ [g(X)]f

(
Eν [g(X)]

Eν̃ [g(X)]

)
+ Eν̃ [1− g(X)]f

(
Eν [1− g(X)]

Eν̃ [1− g(X)]

)
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Product measures As for Lemma 3.1, the previous result becomes especially interesting when considering
two finite collection of independent measures (νa)a∈A, (ν̃a)a∈A on X and a deterministic sequence (ai)i6n of
index in A. For instance if we form the product measures ν = ⊗ni=1νai and ν̃ = ⊗ni=1ν̃ai on X n, and consider
the random variable X = (Xi)i6n, we obtain, thanks to the properties of the logarithm and the independence
of the random variables,

Eν̃
[

log

(
dν̃

dν
(X)

)]
= Eν̃

[ n∑
i=1

log

(
dν̃ai
dνai

(Xi)

)]
= Eν̃

[∑
a∈A

n∑
i=1

log

(
dν̃a
dνa

(Xi)

)
I{ai = a}

]

=
∑
a∈A

n∑
i=1

I{ai = a}Eν̃a
[

log

(
dν̃a
dνa

(Xi)

)]
=
∑
a∈A

naKL(ν̃a, νa),

where we introduced the integers na =
∑n

i=1 I{ai = a}. Note that using another pair than (log, exp) would
yield much more complicated expression when dealing with product measures. Interestingly, this result can be
extended to the case when the sequence ai is not deterministic but adapted to the filtration of the observations.
In that case, the na become random variables Na, and we get instead

Eν̃
[

log

(
dν̃

dν
(X)

)]
= E

[∑
a∈A

NaKL(ν̃a, νa)

]
,

where the expectation is over the law of all random variables. For further details, we refer to the manuscript of
Emilie Kaufmann (see Kaufmann (2014)), who rediscovered this result independently. See also Garivier et al.
(2016) for an extensive use of this result.

Another regret lower bound for the multi-armed bandit problem We provide below a regret lower bound
for multi-armed bandits, whose proof follows the fundamental change of measure argument. We provide it in
a slightly more general setup than the Bernoulli case (yet still restricted to product set of distributions).

Lemma 3.4 (Regret lower bound for uniformly good strategies) Let D = D1 ⊗ · · · ⊗ DA, where Da ⊂
P(X ) for each a ∈ A be any (unstructured) set of configurations, and let ν ∈ D. Then any uniformly-
good strategy must pull arms such that

∀a ∈ A, µa(ν) < µ?(ν) =⇒ lim inf
T→∞

Eν [NT (a)]

log(T )
>

1

Ka(νa, µ?(ν))
.

where Ka(νa, µ?(ν)) = inf{KL(νa, ν
′
a) : ν ′a ∈ Da, µa(ν ′) > µ?(ν)}. In particular, it must incur a regret

lim inf
T→∞

RT

log(T )
>
∑
a∈A

µ?(ν)− µa(ν)

Ka(νa, µ?(ν))
.
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Proof of Lemma 3.4:

Let ν ∈ D denote the configuration from which observations are sampled. First, from the fundamental
lower bound using the (log, exp) pair and isolating the number of pull of an arm NT (a), it comes for all
sub-optimal a ∈ A (µa(ν) < µ?(ν)) that

Eν [NT (a)] > sup
ν′∈D,g:XT→[0,1]

kl(Eν [g(X)],Eν′ [g(X)])−
∑

a′∈A\{a} E[NT (a′)]KL(νa′ , ν
′
a′)

KL(νa, ν ′a)
.

Now, from the definition of uniformly-good strategy, is is natural to choose g(X1, . . . , XT ) = I{Ωα}
where Ωα = {NT (a) > Tα}. Indeed, for each a that is sub-optimal, one get by Markov inequality that
for each α ∈ (0, 1)

Eν [g(X)] = Pν(NT (a) > Tα) 6 Eν [NT (a)]T−α = o(1) .

Hence, we deduce that kl(Eν [g(X)],Eν′ [g(X)]) ' − log
(
Pν′(NT (a) 6 Tα)

)
. We now use the

structural property that for all T ,
∑

a∈ANT (a) = T together with a second application of Markov in-
equality to get

kl(Eν [g(X)],Eν′ [g(X)]) ' − log
(
Pν′(NT (a) 6 Tα)

)
> log

(
T − Tα

)
− log

(∑
a′ 6=a

Eν′ [NT (a′)]
)
.

Finally, it remains to choose ν ′. We choose ν ′ = να such that a is the unique optimal arm: ∀a′ 6=
a, µa′(ν

α) < µa(ν
α). This ensures that log

(∑
a′ 6=a Eνα [NT (a′)]

)
= o(log(T )), by uniform consistency.

We further choose να such that ναa′ = νa′ for all a′ 6= a, to ensure that KL(νa′ , ν
α
a′) = 0. Such a choice

exists since D is unstructured, in the sense that we can freely modify a distribution on one arm without
having to modify the distribution of any other arm to ensure we stay in the family. This is also valid for
any α. Note that due to these two conditions, we must have µa(να) > µ?(ν). This ensures that

lim inf
T→∞

Eν [NT (a)]

log(T )
> sup

{
1− α

KL(νa, ναa )
: α ∈ (0, 1], ναa ∈ Da, µ(ναa ) > µ?(ν)

}
.

We conclude by letting α→ 0. �

2 FURTHER LOWER-BOUNDS AND EXTENSIONS

In the previous section, we introduced two proof techniques for providing a regret lower bounds in multi-
armed bandit sampling strategies. It turns out that both techniques yield interesting extensions. We first present
a fully non-asymptotic lower bound on the regret, as a simple extension of Lemma 3.2. We then present two
extensions of the second proof technique involving the fundamental change of measure: A first one to obtain
regret bounds for a structured set of bandit configurations, a second one to obtain regret bounds in sequential
hypothesis testing.
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A non-asymptotic lower bound The direct proof of the lower bound from Lemma 3.2 that is based on
concentration inequalities is especially interesting: Indeed by replacing the maximal asymptotic concentration
inequality with a finite-time version, and making the notion of uniformly good strategy non-asymptotic, it gives
the possibility of deriving a non-asymptotic lower bound for the regret of strategies. More precisely, we get

Lemma 3.5 (Price for uniform optimality) Let B be the set of all Bernoulli bandit configurations. For
any constants C = (ca)a∈A and function f : N → R+, it is not possible for an algorithm to achieve
simultaneously ∀ν ∈ B,∀a ∈ A : µa(ν) < µ?(ν),∀T ∈ N Eθ[NT (a)] 6 caf(T ) and

Eθ[NT (a)] 6 sup
α,ε∈(0,1),λ>µ?

(1− ε)(1− α)

kl(µa, λ)
log(T )

[
1− δC,f,T (µ, α, ε, λ)

]
where

δC,f,T (µ, α, ε, λ) =

∑
a′ 6=a ca′T

1−αf(T )

T− (1−ε)(1−α) log(T )
kl(µ,λ)

+1∧

√
(1−ε)(1−α)

kl(µ, λ)
log(T )exp

(
− 2ε2kl(µ, λ)(1−α) log(T )

(1−ε)| log(µ(1−λ)
(1−µ)λ

)|2

)
.

We may call (C, f)-uniformly-good a pulling strategy that always satisfies the first of the two lines, in reference
to the corresponding asymptotic notion. Now denoting the bound in the second inequality Lc,f,T (µa(ν), µ?(ν)),
the result shows that either a pulling strategy is not (C, f)-uniformly-good (for at least one ν ∈ B), or it is but
the expected number of pulls of a suboptimal arm a must then be at least Lc,f,T (µa(ν), µ?(ν)). From this result,
it is natural to ask: What is a smallest set of values and function C, f such that

∀ν ∈ B,∀a ∈ A : µa(ν) < µ?(ν),∀T ∈ N Lc,f,T (µa(ν), µ?(ν)) 6 caf(T ) ?

The choice ca = 1
kl(µa,µ?)

with f(T ) = log(T ) is admissible, which enables to recover the asymptotic lower
bound from below, hence showing the behavior of the lower-bound given by the asymptotic result can be beaten
non-asymptotically. Whether we can get smaller values is currently an open question.

Proof of Lemma 3.5:

We first replace the Asymptotic maximal Hoeffding inequality with a non-asymptotic result. For
instance the Laplace concentration inequality specialized to σ-sub-Gaussian random variables Zj with
mean µ gives

Pν
(
∃m ∈ N,

m∑
j=1

Zj > mµ+ σ

√
2(m+ 1) log(

√
m+ 1/δ)

)
6 δ .

In our setup, the random variables are Zj = log( θa
λ

) if Xa,j = 1, and log(1−θa
1−λ ) if Xa,j = 0. Hence

Zj ∈ [A,B] where A = min(log( θa
λ

), log(1−θa
1−λ )) and B = max(log( θa

λ
), log(1−θa

1−λ )), thus we deduce
that σλ = (B − A)/2 = | log( θa(1−λ)

(1−θa)λ
)|/2 is a suitable value of σ (although in the case of Bernoulli

distributions, this approach is a little crude).
Then we solve the following constraints in δ, for each α, T

∀m < c log(T ), mµ+ σλ

√
2(m+ 1) log(

√
m+ 1/δ) 6 (1− α) log(T ) .
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This leads, since the most constraining value of m is for m = bc log(T )c to

δc,α = min

{
1,
√
bc log(T )c exp

(
− 1

2(bc log(T )c+ 1)

(
(1− α) log(T )− bc log(T )ckl(µa, λ)

σλ

)2

+

)}
Hence, reproducing the same steps as for the proof of Lemma 3.2, for all c, α such that 1 − α >

c log(T )kl(µa, λ) > bc log(T )ckl(µa, λ), it holds

Eθ[NT (a)]

log(T )
> c

[
1−e(1−α) log(T )

∑
a′ 6=a Eθ̃[NT (a′)]

T − c log(T )
− δc,α

]
> c

[
1−e(1−α) log(T )

∑
a′ 6=a Eθ̃[NT (a′)]

T − c log(T )
−1 ∧

√
c log(T )exp

(
− log(T )

2c

(
(1− α)−ckl(µa, λ)

σλ

)2)]
.

Choosing c = (1−ε)(1−α)
kl(µa,λ)

for some ε < 1 yields,

Eθ[NT (a)]

log(T )
> sup

α,ε∈(0,1),λ>µ?

(1− ε)(1− α)

kl(µa, λ)

[
1− e(1−α) log(T )

∑
a′ 6=a Eθ̃[NT (a′)]

T − (1−ε)(1−α) log(T )
kl(µa,λ)

−1 ∧

√
(1− ε)(1− α)

kl(µa, λ)
log(T )exp

(
− kl(µa, λ)ε2

2(1− ε)σ2
λ

(1− α) log(T )

)]
Now the second and third term converge to 0 as T goes to∞, for all α, ε ∈ (0, 1). We finally use the

non-asymptotic consistency property stating that Eν̃ [NT (a′)] 6 ca′f(T ) for each a′ 6= a, to conclude. �

Regret lower bounds forD-constrained configuration sets Following the same proof steps as for Lemma 3.4
(or Lemma 3.2) one can obtain the following much more general result:

Lemma 3.6 (D-constrained regret lower bound) Let D be any set of bandit configurations,and let ν ∈
D. Then any uniformly-good strategy on D must incur a regret

lim inf
T→∞

RT

log(T )
> inf

{∑
a∈A

ca(µ?(ν)− µa(ν)) : ∀a ∈ A, ca > 0, inf
ν′∈D̃(ν)

∑
a∈A

caKL(νa, ν
′
a) > 1

}
.

where we introduced the set of maximally confusing distributions

D̃(ν) =

{
ν ′ ∈ D : A?(ν ′) ∩ A?(ν) = ∅,∀a ∈ A?(ν),KL(νa, ν

′
a) = 0

}
.

This result can be seen as a specialization to the multi-armed bandit setup of an even more general result
obtained by Graves and Lai (1997) (extending the work of Agrawal et al. (1989)).
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Proof :

Using the fundamental change of measure argument and a similar construction than for the proof of
Lemma 3.4, we get that, for each sub-optimal arm a and any ν ′ ∈ D such that a is its unique optimal
arm, then asymptotically as T →∞,∑

a′∈A

E[NT (a′)]KL(νa′ , ν
′
a′) > log

(
T − Tα

)
− log

(∑
a′ 6=a

Eν′ [NT (a′)]
)
,

in the sense that lim infT
A

log(T )
> lim infT

B
log(T )

, with A and B being the two terms of the inequality.

Since by uniformly-good assumption, it must be that lim infT
log

(∑
a′ 6=a Eν′ [NT (a′)]

)
log(T )

= 0, we deduce that
for any ν ′ ∈ D that has no optimal arm in common with an optimal arm of ν, then

lim inf
T

∑
a′∈A

E[NT (a′)]

log(T )
KL(νa′ , ν

′
a′) =

∑
a′∈A

(
lim inf

T

E[NT (a′)]

log(T )

)
KL(νa′ , ν

′
a′) > 1 .

This holds in particular choosing ν ′ such that KL(νa′ , ν
′
a′) = 0 whenever a′ is optimal for ν. We conclude

by remarking that

lim inf
T→∞

RT

log(T )
=
∑
a∈A

(
lim inf
T→∞

E[NT (a)]

log(T )

)
(µ?(ν)− µa(ν)) .

�

When considering a generic set of bandit configurations D, another related that is useful to identify is the
number of times a sub-optimal arm needs to be pulled. A direct application of the fundamental change of
measure inequality together with simple reordering of the terms shows that

Eν [NT (a)] > sup
ν′∈D

supg:X→[0,1] kl

(
Eν̃ [g(X)],Eν [g(X)]

)
−
∑

a′∈A\{a} Eν [NT (a′)]KL(νa′ , ν
′
a′)

KL(νa, ν ′a)
.

When specified to the quest of uniformly-good strategies on D, this motivates the following definition

Definition 3.6 (Asymptotic price for uniformly-good strategies) For ν ∈ D and a /∈ A?(ν), we define the
asymptotic price to pay on arm a for being uniformly-good on D by

nT (a, ν,D) = sup
ν′∈D:a∈A?(ν)

log(T )−
∑

a′∈A\{a} Eν [NT (a′)]KL(νa′ , ν
′
a′)

KL(νa, ν ′a)
.

Indeed, the number of pulls of a by any uniformly-good strategies should satisfy Eν [NT (a)] > nT (a, ν,D)
asymptotically, when T →∞.
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Detection lower bounds for hypothesis testing We now present another simple application of the funda-
mental change of measure result to an hypothesis-testing problem. Let us say we are facing a configuration
of K distributions, and we have the possibility, at each time step to choose one of these distributions, and
receive one observation sampled from it. We consider two disjoint sets of configurations D0,D1 ⊂ P(X )K ,
and our goal is to decide, as fast as possible, to which set the distributions we sample belong, while ensuring
a low probability of error. Hence, a strategy will decide at each time step what distribution to sample, until
some (random) time when it stops and output its decision (the set belongs to D0, or to D1). To avoid "lucky"
sampling strategies, we restrict to the following strategies:

Definition 3.9 ((D0,D1)-uniformly-δ-correct detection strategy) A uniformly-δ-correct detection strategy to
separateD0 fromD1 (whereD0∩D1 = ∅) ensures that, if cτ denotes the classD0 orD1 chosen by the strategy
at its random stopping time τ , then

∀ν ∈ D0, P
(
cτ = D1

)
6 δ, ∀ν ∈ D1, P

(
cτ = D0

)
6 δ.

Applying the fundamental change of measure Lemma 3.3 is here direct, using g(X1, . . . , Xτ ) = I{Ω}

where Ω = {cτ = D1}, so that Pν′ [Ω] > 1−δ and Pν [Ω] 6 δ. In this case, we deduce that kl
(
Pν′ [Ω],Pν [Ω]

)
>

(1− δ) log 1−δ
δ

, and thus any (D0,D1)-uniformly-δ-correct detection strategy must satisfy

∑
a

Eν′ [Nτ (a)]KL(ν ′a, νa) > (1− δ) log
1− δ
δ

.

In particular, the random stopping time τ when the algorithm outputs a decision must satisfy

E[τ ] >
(1− δ) log

(
(1− δ)/δ

)
sup{

∑
awaKL(ν ′a, νa) :

∑
awa = 1, wa > 0}

.

Isolating Nτ (a) in the previous expression also gives a lower bound on the expected number of pulls E[Nτ (a)]
of ν ′a. Generalizing this simple idea from 2 to M decision sets yields the more general following result:

Definition 3.12 (Uniformly-good strategy for separation) Let D1, . . . ,DM ⊂ D be M sets of configurations
included in a reference set D ⊂ P(X )A. A separation strategy samples the arms, until some stopping time
τ decided by the strategy, where it outputs a scorea sτ : J0,MK → R such that sτ (m) is the score given by
the strategy to the hypothesis ν ∈ Dm for each m ∈ J1 : MK and sτ (0) is the score given to the hypothesis
ν /∈ ∪mDm. For convenience, let D0 = D \ {∪mDm}. A (δ,D)-uniformly good separation strategy, where
δ = (δm)m∈J0,MK ensures that when it stops,

∀m ∈ J0,MK,∀ν ∈ Dm, Pν
(
sτ (m) < max

m′
sτ (m

′)

)
6 δm .

aFor any two integers m < M ∈ Z, we denote Jm,MK = {m, . . . ,M} ⊂ Z.
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Lemma 3.7 (Detection lower bounds) Any (δ,D)-uniformly good separation strategy for (Dm)m∈J0,MK

must sample the arms in a way such that

∀m ∈ J0,MK,∀ν ∈ Dm, Eν [Nτ (a)] > κm,a(ν; δ) .

where we introduce the following term

κm,a(ν; δ) = max
m′∈J0,MK

sup
ν′∈Dm′\Dm

kl(δm, 1− δm′)−
∑

a′∈A\{a} E[Nτ (a
′)]KL(νa′ , ν

′
a′)

KL(νa, ν ′a)
.

In the case of unstructured configurations of arms such that ∀m,m′ ∈ J1,MK, Dm ⊂ ⊗a∈AP(X ) and
Dm ∩ Dm′ = ∅, we obtain the following simplifications for each m ∈ J1,MK,

κm,a(ν; δ) = max
m′∈J0,MK

kl(δm, 1− δm′)
KL(νa,Dm′)

, with KL(ν,D)
def
= inf{KL(ν, ν ′) : ν ′ ∈ D} .

The prof of this result is a direct application of the change of measure argument, together with the definition
of uniformly-good strategies to specify the functions g used in the argument.

3 FROM LOWER BOUNDS TO SAMPLING STRATEGIES

The previous paragraph illustrates that change of measure can yield powerful lower bounds in sequential de-
cision making. We now want to point that the result gives more than a lower bound: it actually suggests a
sampling strategy.

Empirical distributions Before proceeding, let us remind that that at time t, we only have access to an
empirical distribution ν̂a(t) of νa for each a ∈ A. We denote empirical distributions in two related ways,
depending on whether random averages indexed by the global time t or averages of given numbers t of pulls of
a given arms are considered. The first series of averages will be referred to by using a functional notation for the
indexation in the global time: ν̂a(t), while the second series will be indexed with the local times t in subscripts:
ν̂a,t. These two related indexations, functional for global times and random averages versus subscript indexes
for local times, will be (hopefully) consistent throughout the manuscript for all quantities at hand, not only
empirical averages.
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Definition 3.15 (Empirical distributions) For each m > 1, we denote by τa,m the round at which arm a was
pulled for the m–th time, that is

τa,m = min
{
t ∈ N : Na(t) = m

}
.

For each round t such that Na(t) > 1, we then define the following two empirical distributions

ν̂a(t) =
1

Na(t)

t∑
s=1

δYs I{as=a} and ν̂a,n =
1

n

n∑
m=1

δXa,m , where Xa,m
def
= Yτa,m .

where δx denotes the Dirac distribution on x ∈ R.

Lemma 3.8 (Empirical distributions) The random variables Xa,m = Yτa,m , where m = 1, 2, . . ., are in-
dependent and identically distributed according to νa. Moreover, we have the rewriting ν̂a(t) = ν̂a,Na(t) .

Proof of Lemma 3.8:

For means based on local times we consider the filtration (Ft), where for all t > 1, the σ–algebra
Ft is generated by a1, Y1, . . ., at, Yt. In particular, at+1 and all Na(t + 1) are Ft–measurable. Likewise,{
τa,m = t

}
is Ft−1–measurable. That is, each random variable τa,m is a (predictable) stopping time.

Hence, the result follows by a standard result in probability theory (see, e.g., Chow and Teicher 1988,
Section 5.3). �

In practice when D is a given set of bandit configurations, we consider an operator ΠD : P(X ) → D (in
spirit, a projection operator) that we apply to the empirical distribution ν̂(t). A typical example is that of a
parametric family of distributions, where ν̂(t) is mapped to a parametric distribution νθ̂(t) with parameter θ̂(t).

A lower-bound inspired strategy We are now ready to illustrate the construction of a strategy from lower
bounds on the hypothesis testing task.

Since our goal is to get a uniformly good strategy, it is natural to take a look at the probability of mistake
(for each class Dm), and more precisely the lowest probability of mistake compatible with the current observa-
tions. As long as the probability of mistake is too large compared to the threshold δ, then we should continue
sampling, otherwise we should stop. Hence the strategy presented in Algorithm 1 tries to minimize the proba-
bility of mistake as fast as possible, and is inspired from the previous lower bounds. More precisely, it computes
the minimal probability of error compatible with the constraint on the number of observations provided by the
lower bound, defined as δt,a,m for eachm and a. Note that for small values of δm, kl(δm, 1−δm′) ' log(1/δm′).
This means for instance that the value δt,a,m = 0 is achievable provided that

exp(−Nt(a)KL(ν̂m,a(t),Dm′)) 6 δm′ ,∀m′ ,

where ν̂m,a(t) = (ΠDm(ν̂(t)))a. We also note that we no longer need to pull an arm for hypothesis class m if
δt,a,m 6 δm. The algorithm then simply pulls an arm corresponding to the smallest δt,a,m that is larger than δm
among all a,m if such a pair exist. When no such pair exists, the algorithm can stop pulling new observations.
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Algorithm 1 KL-Separation((Dm)m,D, δ)
1: t = 0,Mt = J0,MK.
2: whileMt 6= ∅ do
3: t = t+ 1

4: Compute for each a ∈ A,m ∈ J0,MK: δt,a,m = inf

{
δ ∈ [0, 1] : Nt(a) 6 κm,a(ΠDm(ν̂(t)); δ)

}
.

5: Let Am,t = {a ∈ A : δt,a,m > δm} andMt = {m ∈ J0,MK : Am,t 6= ∅}
6: ifMt 6= ∅ then
7: Pull arm at ∈ A defined by

at = arg min
a∈Amt,t

δt,a,mt where mt = arg min
m∈Mt

min
a∈Am,t

δt,a,m

8: output st : m 7→ −KL(ν̂(t),Dm).

Remark 3.1 We provide this algorithm for illustration purpose. It is currently unknown whether this strategy
is provably optimal in some sense and what is a bound on its performance.

KL-ucb a lower-bound inspired strategy for multi-armed bandits Since situations when sampling can be
done at no cost are not very common, the setup of multi-armed bandit where each decision step may yield an
instantaneous loss and the goal is to minimize the cumulative error is often more appealing in practice than pure
hypothesis testing. We now provide the construction of the KL-ucb strategy for a set of bandit configurations
D, that can be traced at least back to Lai (1987).

The generic form of the algorithm is described as Algorithm 4, that relies a parameter that is non-decreasing
function f , typically chosen such that f(t) ≈ log(t).

At each round t > K + 1, an upper bound Ua(t) is associated with the expectation µa of the distribution νa
of each arm, then an arm at+1 with highest upper bound is played.

Algorithm 2 The KL-ucb algorithm for unstructured D.

Parameters: A set D of bandit configurations, a non-decreasing function f : N→ R
Initialization: Pull each arm of {1, . . . , K} once

for each round t+ 1, where t > K:
compute for each arm a the quantity

Ua(t) = sup

{
µa(ν) : ν ∈ D, ∀a′∈A\{a}, νa′ = ν̂D,a′(t) and Na(t) 6

f(t)

KL
(
ν̂D,a(t), νa

)}
where ν̂D,a(t) = (ΠD

(
ν̂(t)

)
)a

Pull an arm at+1 ∈ arg max
a∈A

Ua(t).

In the literature, another a variant of KL-ucb is introduced where the term f(t) is replaced with f(t/Na(t)).
We refer to this algorithm as KL-ucb+. While KL-ucb has been analyzed and shown to be provably
near-optimal for some specific sets D in Cappé et al. (2013) (dimension 1 exponential families), the variant

O-A. Maillard page 53 HDR



Part I Chapter 3. log

(
dν
dν̃

(X)

)
KL-ucb+ has not been analyzed. In chapter 7 corresponding to Maillard (2018) we provide the required tools
to obtain near-optimal regret bounds for both KL-ucb and KL-ucb+ in the context of general exponential
families of arbitrary finite dimension d.

The KL-ucb strategy is introduced in the case of an unstructured set of bandit configurationsD, in the sense
that a most confusing instance for an arm a and configuration ν can always be found without modifying the
distributions on the other arms. In view of the price to pay in the case of structured sets D (See definition 3.6),
it is natural to introduce an alternative version of KL-ucb, that uses the following modified index:

Ua(t) = sup

{
µa(ν) : ν ∈ D and Na(t) 6

f(t)−
∑

a′∈A\{a}Na′(t)KL
(
ν̂D,a′(t), νa′

)
KL
(
ν̂D,a(t), νa

) }
.

Whether this strategy is indeed provably optimal is however an open question. Other variants have been intro-
duced in Magureanu (2018), but there is currently no definitive answer.

The optimistic principle, revisited We now want to revisit a popular principle in multi-armed bandit theory
that we think is stated in a slightly misleading way. This popular principle is the "optimism in face of uncer-
tainty". The generic idea is as follows: let us say you want to optimize a criterion maxa ga(ν), over actions
a ∈ A, that depends on the distributions ν = (νa)a ∈ A that you do not known. Further, say that, based on your
hypothesis on the problem and the past observations up to time t„ you can build a high-probability confidence
set Dt,δ such that P(ν ∈ Dt,δ) > 1 − δ. Then, the optimistic principle tells you to sample, at time t + 1 you
should choose arm in

arg max
a∈A

max{ga(ν ′) : ν ′ ∈ Dt,δ} .

When the ga(ν) is the mean µa of νa, and we assumed bounded distributions, we recover using some simple
Hoeffding concentration inequality the basis for the popular UCB algorithm. This principle has been applied
and extended to other situations, generally with success. However, we want to point out that this principle
does not really comply with what suggests the lower bounds (Note also that the above rule is a little myopic).
Indeed, the lower bounds are based on the construction of a most confusing instance ν̃ that is statistically
indistinguishable from ν given the past observations. They also quantity the number of pulls of each arm, or
better the information that should be gathered for each distribution in order to rull-out a bad instance. It is
important since the only thing we know is that by pulling arm a, then we receive one new observations from νa.
Hence the lower bound construction thus suggests something a little different than the optimistic principle: It
suggests to pull an arm so that we can rull-out the environment that seems to give largest gain. If after receiving
the new observation, the environment is rulled-out, then we made indeed the right decision. Otherwise, this
means we may have indeed made the optimal decision. This gives rise to a slightly different principle:

"Pull the arm that enables to rull-out the seemingly best environment from the plausible ones."

This may look like a subtle modification of the principle. However, in typical situations when we have
a structured set of distributions, and for which sampling the distribution of an arm gives information about
another one, this may yield strategies that differ from the naive application of the optimistic principle.
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4 CHANGE POINT DETECTION

In this last section on the log-likelihood ratio, we now deviate from sequential sampling theory to consider
a change-point setup. Indeed, change of measure is intimately linked with change point detection, and we
want to provide below a quick overview of the basics of sequential change point detection, showing what can
be achieved when combining tools such as the Laplace method with change-of-measure. In a change point
detection problem, we receive a sequence of observations Y1, Y2, . . . one by one, assumed to be generated from
some process ρ ∈ D, where D is a known family of processes. However, from some unknown time τ on, the
observations Yτ+1, Yτ+2, . . . are generated from a different process ρ′ ∈ D. The task of change-point detection
is to detect the change, that is to raise an alarm at a time t > τ , as early as possible after time the change
occurred. We recall below the most emblematic change-point detection strategies.

CUSUM One of the most famous change-point detection algorithm is the CUSUM strategy from Page (1954)
that is based on likelihood ratio thresholding: Assuming that Y1, . . . , Yτ is i.i.d. from a distribution p0 and
Yτ+1, . . . , Yn is i.i.d. from the distribution p1, where both p0 and p1 are perfectly known and τ ∈ N is the
unknown change point, the original CUSUM change-point detection procedure takes a positive constant c ∈ R+

as input parameter and builds the following quantity:

(CUSUM) τ(c; p0, p1) = min
{
t ∈ [1, n] : max

s∈[0,t)
Ls:t > c

}
where Ls:t =

t∑
t′=s+1

log
p1(Yt′)

p0(Yt′)
. (3.1)

This quantity is a stopping time and enjoys nice theoretical properties: Let Eτ and Pτ denote the expectation
and probability with respect to the process that changes from p0 to p1 at change-point τ + 1. CUSUM min-
imizes the worst-case delay maxτ Eτ (τ̂ − τ |τ̂ > τ) amongst all algorithms outputting τ̂ for which E0(τ̂) =
E0(τ(c; p0, p1)), see e.g. Blazek et al. (2001). On the other hand, this procedure is restricted to the case
when p0 and p1 are known. The same criticism applies to the Shiryaev-Pollak stopping time min{t ∈ [1, n] :
log
∑t−1

s=0 exp(Ls:t)>c}.

GLR When p0, p1 are unknown, it is natural replace the log-likelihood ratios with a generalized likelihood
ratio (GLR). While initially introduced for the case when p0 is known and p1 is not, Lai and Xing (2010) extends
the GLR to the case when both distributions are unknown, assuming they come from the same canonical
exponential family. Namely, for the density model pθ(y) = exp(θ>y − ψ(θ)) with log-partition function ψ
defining the exponential family E = {pθ : ψ(θ) <∞} it writes

(GLR) τn(c; E) = min
{
t ∈ [1, n] : max

s∈[0,t)
GE1:s:t > c

}
where (3.2)

GEt0:s:t = sup
θ1,θ2

s∑
t′=t0

log pθ1(Yt′) +
t∑

t′=s+1

log pθ2(Yt′)− sup
θ

t∑
t′=t0

log pθ(Yt′)

= (s− t0 + 1)ψ?(µt0:s) + (t− s)ψ?(µs+1:t)− (t− t0 + 1)ψ?(µt0:t) ,
in which we introduced the empirical means and Fenchel-Legendre dual following notations

µt′:t =
1

t− t′ + 1

t∑
s=t′

Ys, ψ?(µ) = sup
θ
{θ>µ− ψ(θ)} .

Example 3.1 For the family N1 of standard univariate Gaussian distributions {N (θ, 1) : θ ∈ R}, the GLR
statistics simplifies to

GN1
t0:s:t = (s− t0 + 1)(t− s)(µt0,s − µs+1,t)

2/(t− t0 + 1) ,
thus leading to the stopping time

(N1-GLR) τn(c;N1) = min
{
t ∈ [1, n] : max

s∈[t0,t)

(s− t0 + 1)(t− s)
t− t0 + 1

(µt0,s − µs+1,t)
2 > c

}
. (3.3)
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Sequential setup The previous formulation is in the batch setup, however both CUSUM and GLR (and their
variants) can be phrased in the sequential setup as well (see Downey (2008)). In this case, at time t, upon
having observed Yt0+1, . . . , Yt, an alert is raised according to the boolean test

CUSUM(t0, t) = I{ max
s∈[t0,t)

Ls:t > c}, or to GLRE(t0, t) = I{ max
s∈[t0,t)

GEt0:s:t > c}

where c may depend on t. Note that the observations Yt′ for t′ ∈ [t+1, n] are not available at time t.

Delay and false alarms We measure the quality of a detection algorithm using the two following notions:
First the probability of false alarm, that is of detecting a change at some time t while there is no change: For
GLR this quantity is P∞(∃t ∈ N : maxs∈[t0,t)G

E
t0:s:t > c). Second the detection delay, that is the difference

between the first time step when an algorithm detects a change and τ + 1. For GLR, this is the random variable
τt(c, E)− τ − 1 for t > τ , that can be studied in expectation or high probability. A natural question is then how
to choose the threshold c.

While the classical literature only studies an asymptotic control of these and related quantities (e.g. ex-
pressed for the limiting case when the probability of false alarm tends to 0), we show we can be more precise,
by building sequential change-point detection procedures that are uniformly-good in the following sense:

Definition 3.18 (Uniformly-good change-point detection strategies) A change-point detection strategy is
called uniformly-good on a class of processes D if for each ν ∈ D generating the observations, for any
given δ ∈ [0, 1]
i) with probability higher than 1− δ, uniformly over all t ∈ [t0, τ ], no alarm is raised at time t and
ii) its detection delay is controlled with probability 1−δ and expressed in terms of the magnitude of the change.
We thus request non-asymptotic results that hold for each t, each δ and each τ .

We now consider a sequential change-point detection problem and generalize the GLR analysis from N1

to the class Dσ-sub of processes with σ-sub-Gaussian observation noise, that is we make the following mild
assumption on the sequence (Yt)t of real-valued observations

Assumption 3.1 (Sub-Gaussian observation noise) A sequence (Yt)t has σ-sub-Gaussian noise if

∀t,∀λ ∈ R, logE[λ(Yt − E[Yt])] 6
λ2σ2

2
.

We further restrict to the case of change in the mean only (change of variance could be considered as well) and
assume (piecewise) i.i.d. data.

We provide below a refined concentration inequality on the scan-statistics of the GLR test (Lemma 3.9,
Theorem 3.1) that improves on naive bounds derived from applications of Bonferroni inequality (aka union
bound) thanks to the Laplace method. This result is used to derive Theorem 3.2, showing that given a confidence

level δ ∈ (0, 1), the threshold c = (1+ 1
t−t0+1

)2 ln

[
2(t−t0)

√
t−t0+2

δ

]
enforces properties i) and ii), with an explicit

detection delay that improves over state-of-the-art analysis.

4.1 Doubly time uniform concentration of scan-statistics
In order to handle changes of the mean, it is natural to study the concentration of µ1:s − µs+1:t. A simple
way to achieve time-uniform confidence bounds for such quantities is to make use of uniform concentration
inequalities for µ1:s and µs+1:t separately, and combine them with a simple union bound. This leads to the
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bound bdisjoint
t0 (s, t, δ) given in the following Theorem 3.1. A better approach is to handle the concentration of

the terms in z1:s:t := µ1:s − µs+1:t jointly, since it is a sum of t independent random variables, s of which are
σ/s-sub-Gaussian, and the others are σ/(t − s)-sub-Gaussian. This however requires to extend the Laplace
method, which we do now:

Lemma 3.9 (Time-uniform joint concentration) Under Assumption 3.1, for each s ∈ N, δ ∈ [0, 1],

(Extended Laplace) P
(
∃t>s, z1:s:t−E[z1:s:t]>σ

√(1

s
+

1

t−s

)(
1+

1

t

)
2 ln

(√
t+1/δ

))
6δ . (3.4)

This result is non-trivial as the proof builds a quantity that is not a super-martingale, contrary to the proof of
the Laplace method. Note this result is uniform in t, for a sum of t independent but not i.i.d. variables.

Proof of Theorem ??:

To this end, we first note that (t − t′)(µ1:t′ − µt′+1:t − E[µ1:t′ − µt′+1:t]) =
∑t

s=1 Zs is the sum of t
independent random variable, t′ of which are σ(t − t′)/t′-sub-Gaussian, and t − t′ are σ-sub-Gaussian.
We denote Zs the sth term of the sum and introduce σs

def
= σ(t− t′)/t′ if s 6 t′, and σs = σ for s > t′.

We then form, for each λ, the following quantity

Mλ
t = exp

( t∑
s=1

λZs −
λ2σ2

s

2

)

= exp

(
(

t∑
s=1

λZs)−
t′∑
s=1

λ2σ2

2t′2
(t− t′)2 −

t∑
s=t′+1

λ2σ2

2

)

= exp

(
(

t∑
s=1

λZs)−
λ2σ2

2t′
(t− t′)2 − λ2σ2

2
(t− t′)

)

= exp

(
(

t∑
s=1

λZs)−
λ2σ2(t/t′ − 1)t

2

)
.

where we used in the last line that (t−t′)2

t′
+ (t − t′) = (t − t′)(t/t′) = (t/t′ − 1)t Note that Mλ

t is not a
super-martingale due to the fact that σs depends on t for s < t′. However, it satisfies for each λ and each
t > t′ lnE[Mλ

t ] 6 0. More importantly, it can be shown that

E[Mλ
t+1|Ft] 6 exp

[
λ(µ1:t′ − E[µ1:t′ ])−

λ2σ2

2t′

]
exp

(
− λ2σ2 (t− t′)

t′

)
︸ ︷︷ ︸

αt′,t

Mλ
t .

This positive factor αt′,t is Ft′ measurable and satisfies P
(
αt′,t > 1

)
6 exp

(
− λ2σ2 (t− t′)

t′

)
. Hence

E[Mλ
t+1|Ft] 6 Mλ

t holds on an Ft′-measurable event whose probability tends to 1 exponentially fast as
t → ∞. This ensures that, although Mλ

t is not a super-martingale, it behaves asymptotically as such
and that Mλ

∞ = limt→∞M
λ
t is still almost surely well-defined (following the same steps as for Doob’s
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upcrossing lemma, and using that supn

∑n
s=t′ E[(αt′,s − 1)+] is finite). This ensures that Mλ

τ is also well
defined, whether or nor τ is finite.

We now apply similar steps as for the proof of Theorem 8.1, but for a slightly different quantity.
Namely, we introduce the auxiliary variable Λt = N (0, v−2

t ), where vt = σ
√
t/t′ − 1 independent of all

other variables, and study the quantity Mt = E[MΛt
t |F∞]. We note that E[Mt] 6 1 for all t, since for

each t, E[Mλ
t ] 6 1 holds for all λ ∈ R. Further, let us introduce the stopped version Qt = Mmin{τ,t}.

An application of Fatou’s lemma shows that E[Mτ ] = E[lim inft→∞Qt] 6 lim inft→∞ E[Qt] 6 1. Thus,
E[Mτ ] 6 1.

For convenience, let St = (t− t′)(µ1:t′ − µt′+1:t−E[µ1:t′ − µt′+1:t]). By construction of Mt, we have

Mt =
1√

2πv−2
t

∫
R

exp

(
λSt −

λ2σ2(t/t′ − 1)t

2
− λ2v2

t

2

)
dλ

=
1√

2πv−2
t

∫
R

exp

(
−
[
λσ

√
(t/t′ − 1)(t+ 1)

2
− St

σ
√

2(t/t′ − 1)(t+ 1)

]2

+
S2
t

2σ2((t/t′ − 1)(t+ 1))

)
dλ

= exp

(
S2
t

2σ2((t/t′ − 1)(t+ 1))

)
1√

2πv−2
t

∫
R

exp
(
− λ2σ2 (t/t′ − 1)(t+ 1)

2

)
dλ

= exp

(
S2
t

2σ2((t/t′ − 1)(t+ 1))

)√
2πv−2

t /(t+ 1)√
2πv−2

t

.

Thus, we deduce that

St = σ

√
2((t/t′ − 1)(t+ 1)) ln

(√
t+ 1Mt

)
.

applying a simple Markov inequality, and reorganize the terms yields

P
(
∃t>t′, µ1:t′ − µt′+1:t−E[µ1:t′−µt′+1:t]) > σ

√
2

(t/t′ − 1)(t+ 1)

(t− t′)2
ln
(√
t+ 1/δ

))
6 δ

We conclude by applying a similar argument to control the reverse inequality, and by remarking that

(t/t′ − 1)(t+ 1)

(t− t′)2
=

t+ 1

t′(t− t′)
= (

1

t′
+

1

t− t′
)(1 +

1

t
) .

�

We obtain the following Theorem 3.1 upon using similar arguments and an additional union bound over s.
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Theorem 3.1 (Doubly-time-uniform concentration) Let Y1, . . . Yt be a sequence of t independent real-
valued random variables satisfying Assumption 3.1. Let µt1+1:t2 = 1

t2−t1

∑t2
s=t1+1 Ys be the empirical

mean estimate on the time interval [t1 + 1, t2]. Then, for each t0 ∈ N?, for all δ ∈ (0, 1),

P
(
∃t∈N?, s∈ [t0 : t),

∣∣µt0:s−µs+1:t−E[µt0:s−µs+1:t]
∣∣>bt0(s, t, δ)

)
6 δ where bt0 is either

bdisjoint
t0 (s, t, δ) =

√
2σ

[√
1+ 1

s−t0+1

s−t0+1
ln

[
4
√
s−t0+2

δ

]
+

√
1+ 1

t−s

t−s
ln

[
4(t−t0)

√
t−s+1

δ

]]
or

bjoint
t0 (s, t, δ) = σ

√( 1

s− t0 + 1
+

1

t− s

)(
1+

1

t− t0 + 1

)
2 ln

[
2(t− t0)

√
t− t0 + 2

δ

]
.

In the sequel, we choose bt0(s, t, δ) = bjoint
t0 (s, t, δ) as it is generally tighter than bdisjoint

t0 (s, t, δ).

4.2 Non-asymptotic detection delay of sub-Gaussian GLR
We now make use of the confidence bounds in order to tune the GLR change-point detection procedure in the
sub-Gaussian setting, that we define now. The next result bounds its detection delay.

GLRsub-σ(t0, t) = I{∃s∈ [t0 : t) :
∣∣∣µt0:s−µs+1:t

∣∣∣>bt0(s, t, δ)}

Theorem 3.2 (Detection delay) Let Yt0 , . . . Yτ be a sequence of τ i.i.d. real-valued random variables
with mean µ1. Let Yτ+1, . . . Yt be a sequence of t − τ i.i.d. real-valued random variables with mean µ2.
Consider the procedure GLRsub-σ started at time t0, run for each subsequent time using bjoint

t0 (s, t, δ). Then
the following holds under Assumption 3.1:
(i) With probability higher than 1− δ, no change point is detected on the whole time interval [t0, τ ].
(ii) If the change point that occurs at τ + 1 has magnitude ∆ = |µ2 − µ1|, it is detected with probability
higher than 1− δ, with a delay not exceeding d(t0, τ + 1,∆) (that is at time 6 τ + 1 + d(t0, τ + 1,∆)),
with

(Delay) d(t0, τ+1,∆) = min

{
d′∈N : d′>

8σ2(1+ 1
τ−t0+1

) ln
[2xd′

δ

](
∆2− 8σ2

τ−t0+1
ln
[2xd′

δ

])
+

−1

}
,

where we introduced the short-hand notation xd=(d+τ−t0+1)
√
d+τ−t0+3, and (x)+ =max{x, 0}.

(iii) if τ = τc is undetectable in the sense that no algorithm can detect the change before time τc+1 using
only data from time [τc−1 + 1, τc+1], where t0 − 1 = τc−1 < τc < τc+1, then the gap must be of magnitude
∆ 6 ∆(τc−1 + 1, τc + 1, τc+1) where

(Gap) ∆(t0, τ+1, t)=σ

√
(t− t0 + 2)

(t− τ)(τ − t0 + 1)
8 ln

[
2(t−t0)

√
t−t0+2

δ

]
.

Remark 3.2 (Scaling) It is intuitive that the detection delay d(t0, τ+1,∆) may not be bounded for change
points of too small magnitude. Actually taking t0 = 1 in Theorem 3.2 shows that when the number of observa-

tions τ before the change point and the magnitude of the change point ∆ satisfy ∆ < σ
√

8
τ

ln
(
2τ
√
τ+2/δ

)
=
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Õ( σ√

τ
), then no change is detected (the detection delay is infinite). Now for larger ∆, Theorem 3.2 shows that

the delay of the detection scales essentially as O( σ
2

∆2 ln(τ + σ
∆

)). This scaling is order-optimal, by comparison
with the asymptotic results for the parametric setup, see e.g. Theorem 3.1 in Lai and Xing (2010), after using a
Pinsker inequality to bound the Kullback-Leibler divergence. Recall that we ask a bounded time-uniform false
alarm probability.

Remark 3.3 (Other work) Up to our knowledge, it is surprisingly the first time such precise bounds on the
detection delay are obtained. This result is coherent with the analysis from (Garreau and Arlot, 2016, Theorem
3.1) in the slightly different batch setting with kernels. Now Theorem 3.2 improves the constants and log
scalings. This result contrasts with existing asymptotic results presented in the limit when δ goes to 0 see e.g.
Theorem 3.1 in Lai and Xing (2010).

Remark 3.4 (Extensions) If we further know that when there is a gap, this gap must be at least of magnitude
∆0, or that we do not care about detecting gaps of smaller magnitude, then we may add ∆0 to bt0 on the right
hand side of the test, and replace ∆ with ∆−∆0 in the definition of d.

Proof of Theorem 3.2:

i) False detection By definition of the detection procedure, a detection occurs a time t if ∃s∈ [t0 : t) such
that

|µt0:s−µs+1:t| > bt0(s, t, δ) .

In the first case (i), since there is no change point before τ , then for all s, t 6 τ , E[µt0:s − µs+1:t] = 0.
Now, we observe that, thanks to the uniform concentration inequality, it holds

P
(
∃t∈N?, s∈ [t0 : t),

∣∣∣µt0:s−µs+1:t−E[µt0:s−µs+1:t]
∣∣∣>bt0(s, t, δ)

)
6 δ .

We deduce that on an event of probability higher than 1− δ, no detection occurs for any t 6 τ .
ii) Detection delay We now turn to the second case (ii). In the sequel, we consider that t0 = 1. On the
same event, it holds for all t > τ and s < t,

µt0:s − µs+1:t > E[µt0:s − µs+1:t]− bt0(s, t, δ)

µs+1:t − µt0:s > E[µs+1:t − µt0:s]− bt0(s, t, δ) ,

which implies that

|µt0:s − µs+1:t| >
∣∣E[µt0:s − µs+1:t]

∣∣− bt0(s, t, δ) .

At this point, note that we have the relations

∀t′ > τ, µt0:t′ =
τ − t0 + 1

t′ − t0 + 1
µt0:τ +

t′ − τ
t′ − t0 + 1

µτ+1:t′

∀t′ < τ < t, µt′+1:t =
τ − t′

t− t′
µt′+1:τ +

t− τ
t− t′

µτ+1:t .
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Thus, taking the expectation on each side, this means that

E[µt0:t′ − µt′+1:t] =

{
t−τ
t−t′ (µ1 − µ2) if t′ 6 τ 6 t
τ−t0+1
t′−t0+1

(µ1 − µ2) if τ 6 t′ 6 t .

Using this expressions, we deduce that with probability higher than 1 − δ, a detection occurs at most at
the first time t > τ such that for some s < t,(t− τ

t− s
I{s 6 τ}+

τ−t0+1

s−t0+1
I{s > τ}

)
∆ > 2bt0(s, t, δ),

where bt0(s, t, δ) =σ

√( 1

s− t0 + 1
+

1

t− s

)(
1+

1

t− t0 + 1

)
2 ln

[
2(t− t0)

√
t− t0 + 2

δ

]
.

For s > τ , this corresponds to the condition

(τ−t0+1)∆ >

2σ

√
min

s∈[τ+1:t−1]

(
s− t0 + 1 +

(s− t0 + 1)2

t− s

)(
1+

1

t− t0 + 1

)
2 ln

[
2(t− t0)

√
t− t0 + 2

δ

]
which can be simplified into

(τ−t0+1)2∆2

(τ−t0+2)8σ2
>
(

1 +
τ − t0 + 2

t− τ − 1

)(
1+

1

t− t0 + 1

)
ln

[
2(t− t0)

√
t− t0 + 2

δ

]
Introducing the delay d = t− (τ + 1), it comes

(τ−t0+1)2∆2

(τ−t0+2)8σ2
>
(d+ τ − t0 + 3

d

)
ln

[
2(d+ τ − t0 + 1)

√
d+ τ − t0 + 3

δ

]
Thus, a detection occurs for the minimal delay d = t− (τ + 1) ∈ N (if any) that satisfies

d >

8σ2(1 + 2
τ−t0+1

) ln

[
2(d+τ−t0+1)

√
d+τ−t0+3

δ

]
(τ−t0+1)∆2

(τ−t0+2)
− 8σ2

τ−t0+1
ln

[
2(d+τ−t0+1)

√
d+τ−t0+3

δ

] . (3.5)

We now detail the case of s 6 τ that corresponds to the condition

(t− τ)2∆2 > 8σ2 min
s∈[t0:τ ]

(t− s) t− t0 + 2

s− t0 + 1
ln

[
2(t− t0)

√
t− t0 + 2

δ

]
.

which shows a detection occurs for the minimal t (if any) that satisfies

(t− τ)∆2

8σ2
>
t− t0 + 2

τ − t0 + 1
ln

[
2(t− t0)

√
t− t0 + 2

δ

]
.

Thus, the detection delay must satisfy in this case

(τ − t0 + 1)∆2

8σ2
>
(

1 +
τ − t0 + 2

d+ 1

)
ln

[
2(d+ τ − t0 + 1)

√
d+ τ − t0 + 3

δ

]
,
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(
dν
dν̃

(X)

)
That is

d >

8σ2(1 + 1
τ−t0+1

) ln

[
2(d+τ−t0+1)

√
d+τ−t0+3

δ

]
∆2 − 8σ2

τ−t0+1
ln

[
2(d+τ−t0+1)

√
d+τ−t0+3

δ

] − 1 . (3.6)

Combining inequalities (3.5) and (3.6), the detection delay d = t− (τ + 1), is not larger than

min

{
d′∈N : d′ satisfies (3.5) or (3.6)

}
6 min

{
d′∈N : d′>

8σ2(1+ 1
τ−t0+1

) ln
[2xd′

δ

]
∆2− 8σ2

τ−t0+1
ln
[2xd′

δ

] −1

}
.

where xd = (d+τ−t0+1)
√
d+τ−t0+3.

iii) Maximal no-detection gap It remains to handle the maximal not-detectable gap. Proceeding with
similar steps, we have obtained that with probability higher than 1− δ, if a change occurs at τ + 1, then
a detection occurs at most at the first time t > τ such that

either
∆2

8σ2
>

(τ−t0+2)

(τ−t0+1)2

t− t0 + 2

t− τ − 1
ln

[
2(t− t0)

√
t−t0 + 2

δ

]
or

∆2

8σ2
>

t− t0 + 2

(t− τ)(τ − t0 + 1)
ln

[
2(t−t0)

√
t− t0 + 2

δ

]
.

Looking at the minimum of the left-hand side quantities, we deduce that if a change occurring at τ+1
is not detectable, where τ = τc, then the change must be of magnitude ∆ 6 min{∆(τc−1+1, τc+1, t), t ∈
[τc + 1, τc+1]}, where we introduced the quantity

∆(t0, τ + 1, t) = σ

√
(t− t0 + 2)

(t− τ)(τ − t0 + 1)
8 ln

[
2(t−t0)

√
t−t0+2

δ

]
.

�
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CHAPTER 4

P(? /∈ Θ̂n,δ) 6 δ

Kernel regression in RKHS K

Predictable sequence (xt, yt)t with yt = f?(xt) + ξt, ξt is sub-Gaussian conditioned on past, f? ∈ F ⊂ K.

∀δ ∈ [0, 1] P
(
∃t ∈ N, f? /∈ Θ̂t,δ

)
6 δ where

Θ̂t,δ =

{
f ∈ F : ∀x ∈ X ,∀t′ 6 t, |f?(x)−fλ,t′(x)|6

√
kλ,t′(x, x)

[
‖f?‖K+

σ√
λ

√
2 ln(1/δ) + 2γt′(λ)

]}
,

where we introduced the quantities:

(Mean estimate) fλ,t(x) = kt(x)>(Kt + λIt)
−1Yt, kλ,t(x, x) = k(x, x)− kt(x)>(Kt + λIt)

−1kt(x)

(Information gain) γt(λ) =
1

2

t∑
t′=1

ln
(

1 +
1

λ
kλ,t′−1(xt′ , xt′)

)
.

and notations: kt(x) = (k(x, xt′))t′6t is a t× 1 (column) vector and Kt = (k(xs, xs′))s,s′6t.
Extension: Estimation of σ, see Maillard (2016).

Take-home message

Contents
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3 Forecasters of stationary processes over a finite alphabet . . . . . . . . . . . . . . . . . . . . 73

In this chapter, we focus on the construction of confidence sets, built from finitely many samples of a
distribution. The previous chapters have focused on estimating a real-valued quantity such as the mean of a
Bernoulli distribution. We consider in this chapter richer distributions, for instance when one unknown vector
(or matrix) parameter θ ∈ Θ specifies a process. We deal with the estimation of unknown parameters and build
a set Θ̂t,δ from the observations obtained until time t, such that θ ∈ Θ̂t,δ holds with probability higher than
1− δ. In other words, we want "the unknown" to belong to our empirical set of parameters.
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1 KERNEL REGRESSION AND THE LAPLACE METHOD

In this section we consider a large class of problems, that we refer as sequential regression, and applies to
situations when the observations are real-valued. At each time step t ∈ N, a learner picks a point xt ∈ X ⊂ Rd

and gets the observation
yt = f?(xt) + ξt ∈ R ,

where f? is an unknown function assumed to belong to some function space F , and ξt is a random noise. In
the following, we assume a sub-Gaussian streaming predictable model:

Assumption 4.1 (Predictability) The process generating the observations is predictable in the sense that there
is a filtrationH = (Ht)t∈N such that xt isHt−1-measurable and yt isHt-measurable. Such an example is given
byHt = σ(x1, . . . , xt+1, y1, . . . , yt).

Assumption 4.2 (Sub-Gaussian streaming model) In the sub-Gaussian streaming predictable model, for some
non-negative constant σ2, the following holds

∀t ∈ N,∀γ ∈ R, lnE
[

exp(γξt)
∣∣∣Ht−1

]
6
γ2σ2

2
.

Hence we consider a quadratic error loss function `(y, y′) = (y−y′)2

2σ2 , as it is adapted to the sub-Gaussian
assumption (see chapter 1). A typical first approach is to build at each time t an estimate of f? that minimizes
the quadratic error:

min
f∈F

t∑
t′=1

`(yt′ , f(xt′)) = min
f∈F

t∑
t′=1

(yt′ − f(xt′))
2

2σ2
.

However there is in general no unique solution to this minimization problem (think of a high-dimensional F),
and it is thus classical to resort to regularization. We consider the general setting of Reproducing Kernel Hilbert
Spaces (RKHS), as it captures many other settings (e.g. linear regression) as a special case, and we provide a
powerful result to handle estimation error for a standard regularized kernel least-squares estimate.

RKHS Let k : X × X → R be a kernel function (that is continuous, symmetric positive definite) on a
compact set X equipped with a positive finite Borel measure µ, and denote K the corresponding reproducing
kernel Hilbert Space: Indeed under these two conditions, there exists an at most countable sequence (σi, ψi)i∈N?
where σi > 0, limi→∞ σi = 0 and (ψi)i form an orthonormal basis of L2,µ(X ), such that

k(x, y) =
∞∑
j=1

σjψj(x)ψj(y
′) and K =

{
f ∈ L2,µ(X ) : ‖f‖K <∞

}
where ‖f‖2

K =
∞∑
j=1

〈f, ψj〉2L2,µ

σj
.

Introducing ϕi =
√
σiψi, we note that ‖ϕi‖L2

=
√
σi, ‖ϕi‖K = 1, and further that if f =

∑
i θiϕi, then

‖f‖2
K =

∑
i θ

2
i and ‖f‖2

L2
=
∑

i θ
2
i σi. In particular f belongs to the RKHS if and only if

∑
i θ

2
i < ∞.

For ϕ(x) = (ϕ1(x), . . . ) and θ = (θ1, . . . ), we denote θ>ϕ(x) for
∑

i∈N θiϕi(x), by analogy with the finite
dimensional case. Note that with such notations, k(x, y) = ϕ(x)>ϕ(y).

Remark 4.1 An example when X ⊂ Rd is the linear kernel k(x, x′) = x>x′ that corresponds to the finite-
dimensional space K = {fθ : fθ(x) = θ>x, θ ∈ Rd}. Now, in general, an RKHS may be infinite dimensional
(think of Sobolev or Besov spaces)
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Given a RKHS K, it is natural to consider the function space F = {f ∈ K : ‖f‖K 6 B} for some positive
constant B ∈ R+, and our goal is to estimate "the unknown", that is the function f?, assuming it belongs to F .
This can be done by building an appropriate estimate of f?, called a regularized least-squares kernel estimate,
and adapting the Laplace method of mixture to RKHS, as we explain now:

Theorem 4.1 (Streaming kernel least-squares) Assume we are in the sub-Gaussian streaming pre-
dictable model. For a fixed regularization parameter λ ∈ R+, let us define the posterior mean and
variances after observing Yt = (y1, . . . , yt)

> ∈ Rt×1 as{
fλ,t(x) = kt(x)>(Kt + λIt)

−1Yt

s2
λ,t(x) = σ2

λ
kλ,t(x, x) with kλ,t(x, x) = k(x, x)− kt(x)>(Kt + λIt)

−1kt(x) .

where kt(x) = (k(x, xt′))t′6t is a t× 1 (column) vector and Kt = (k(xs, xs′))s,s′6t. Then ∀δ∈ [0, 1], with
probability higher than 1−δ, it holds simultaneously over all x∈X and t>0,

|f?(x)−fλ,t(x)|6
√
kλ,t(x, x)

λ

[√
λ ‖f?‖K+σ

√
2 ln(1/δ) + 2γt(λ)

]
,

where the quantity γt(λ) = 1
2

∑t
t′=1ln

(
1+ 1

λ
kλ,t′−1(xt′ , xt′)

)
is the information gain.

Before proceeding with the proof, let us provide some remarks about this result.

Remark 4.2 This result should be considered as an extension of Abbasi-Yadkori et al. (2011, Theorem 2) from
finite-dimensional to possibly infinite dimensional function space. More specifically, when considering the
linear kernel, the result of Theorem 4.1 recovers exactly Theorem 2 from Abbasi-Yadkori et al. (2011). The
generalization is non trivial as the Laplace method must be amended in order to be applied beyond the linear
case.

Remark 4.3 This result holds uniformly over all x ∈ X and most importantly over all t > 0, thanks to a
random stopping time construction (related to the occurrence of bad events) and a self-normalized inequality
handling this stopping time. This is in contrast with results such as Wang and de Freitas (2014), that are only
stated separately for each t.

Information gain This quantity measures the information obtained about function f? by sampling at points
(x1, . . . , xt). It is defined (Cover and Thomas, 1991) as the mutual information between f? and the observations
(y1, . . . , yt):

I(y1, . . . , yt; f?) = H(y1, . . . , yt)−H(y1, . . . , yt|f?),

that is the difference between the marginal entropy and the conditional entropy of the distributions of observa-
tions. The information gain thus quantifies the reduction of uncertainty about f? following these observations.
For a multidimensional Gaussian, we have H(N (µ,Σ)) = 1

2
ln |2πeΣ|, such that for λ = σ2 (Srinivas et al.,

2010),

γt(σ
2) = I(y1, . . . , yt; f?) =

1

2
ln det(It + σ−2Kt),
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where Kt = (k(s, s′))s,s′6t. In the linear case when k(x, x′) = x>x′ for x ∈ Rd, the information gain typically
scales as γt(σ2) = O(d ln t) (Srinivas et al., 2010). The information gain can be shown to scale with the
effective dimensionality (Valko et al., 2013) instead of the dimension, where effective dimensions correspond
to the most informative ones. More effective dimensions require more observations for a good space coverage,
which increases the information gain. We extend the information gain to any regularization λ.

Definition 4.3 (Information gain with unknown variance) We define the information gain at time t for a reg-
ularization parameter λ to be

γt(λ) =
1

2

t∑
t′=1

ln
(

1 +
1

λ
kλ,t′−1(xt′ , xt′)

)
.

This generalization is natural in view of Theorem 4.1. The information gain is inversely proportional to the
regularization λ. By controlling the flexibility of the regression model, the regularization limits the impact of a
new observation on the resulting model, therefore limiting the information that can be gained out of it.

The following Martingale control is a key component of the analysis.

Lemma 4.1 (Hilbert Martingale Control) Assume that the noise sequence {ξt}∞t=0 is conditionally σ2-
sub-Gaussian

∀t ∈ N,∀γ ∈ R, lnE[exp(γξt)|Ht−1] 6
γ2σ2

2
.

Let τ be a stopping time with respect to the filtration {Ht}∞t=0 generated by the variables {xt, ξt}∞t=0. For
any q = (q1, q2, . . . ) such that q>ϕi(x) =

∑
i∈N qiϕ(x) <∞, and deterministic positive λ, let us denote

Mq
m,λ = exp

( m∑
t=1

q>ϕ(xt)√
λ

ξt −
σ2

2

m∑
t=1

(q>ϕ(xt))
2

λ

)
Then, for all such q the quantity Mq

τ,λ is well defined and satisfies

lnE[Mq
τ,λ] 6 0 .

Proof of Lemma 4.1:

The only difficulty in the proof is to handle the stopping time. Indeed, for all m ∈ N, thanks to the
conditional σ-sub-Gaussian property, it is immediate to show that {Mq

m,λ}∞m=0 is a non-negative super-
martingale and actually satisfies lnE[Mq

m,λ] 6 0.
By the convergence theorem for nonnegative super-martingales, Mq

∞ = limm→∞M
q
m,λ is almost

surely well-defined, and thus Mq
τ,λ is well-defined (whether τ < ∞ or not) as well. In order to show

that lnE[Mq
τ,λ] 6 0, we introduce a stopped version Qq

m = Mq
min{τ,m},λ of {Mq

m,λ}m. Now E[Mq
τ,λ] =

E[lim infm→∞Q
q
m] 6 lim infm→∞ E[Qq

m] 6 1 by Fatou’s lemma, which concludes the proof. We refer
to (Abbasi-Yadkori et al., 2011) for further details. �

O-A. Maillard page 66 HDR



Chapter 4 1. Kernel regression and the Laplace method

We are now ready to prove Theorem 4.1.

Proof of Theorem 4.1:

Decomposition step LetN be a random stopping time for the filtration generated by the observations.
We let ΦN = (ϕ(xt))t6N be an N ×∞ matrix and introduce the bi-infinite matrix VN = I + 1

λ
Φ>NΦN as

well as the noise vector EN = (ξ1, . . . , ξN). In order to control the term |f ?(x) − fk,N(x)|, we now use
the following easy-to-derive decomposition

|f ?(x)− fk,N(x)| 6 1√
λ
‖ϕ(x)‖V −1

N
[

wwww 1√
λ

Φ>NEN

wwww
V −1
N

+
√
λ ‖θ?‖V −1

N
] ,

which is valid provided that all terms involved are finite1: Indeed, using the feature map, it holds

fk,N(x) = kN(x)>(KN + λIN)−1YN

= ϕ(x)>Φ>N(ΦNΦ>N + λIN)−1YN

= ϕ(x)>Φ>N

(
IN
λ
− 1

λ
ΦN

(
λI+Φ>NΦN

)−1
Φ>N

)
YN

= ϕ(x)>(Φ>NΦN + λI)−1Φ>N(ΦNθ
? + EN)

where in the third line, we used the Shermann-Morrison formula. From this, simple algebra yields

fk,N(x)− f ?(x) =
1

λ
ϕ(x)>V −1

N

(
Φ>NEN − λθ?

)
.

We obtain the claim from a simple Holder inequality using the appropriate matrix norm.
Bounding each term (geometry) Now, we note that a simple application of the Shermann-Morrison

formula yields

1

λ
‖ϕ(x)‖2

V −1
N

=
σ2
k,N(x)

σ2
= kN(x, x) .

On the other hand since ‖θ?‖2 <∞ then
√
λ ‖θ?‖V −1

N
6
√
λ ‖θ?‖2 =

√
λ ‖f ?‖K .

Bounding the last term (concentration) In order to control the remaining term
www 1√

λ
Φ>NEN

www
V −1
N

,

we resort to the Laplace method. To this end, we introduce the quantity Mq
m,λ from Lemma 4.1, and

in order to integrate over q, we introduce Q ∼ N (0, I) to be an infinite standard Gaussian random
sequence which is independent of all other random variables. We denote Q>ϕ(x) =

∑
i∈NQiϕi(x).

This is justified since for all x, k(x, x) =
∑

i∈N ϕ
2
i (x) < ∞ and thus V(Q>ϕ(x)) < ∞. Hence, like

1The right way to do so is first to replace all infinite sequences
with their d first components, for each d ∈ N, then check the

validity of the bound for a each d, and finally that all the limiting
quantities make sense.
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for the Laplace method in dimension 1, we define Mm,λ = E[MQ
m,λ]. We still have the key property

E[MN,λ] = E[E[MQ
m,λ]|Q] 6 1.

Let VN = I + 1
λ
Φ>NΦN . Elementary algebra gives

det(VN) = det(VN−1 +
1

λ
ϕ(xt)ϕ(xt)

>) = det(VN−1)(1 +
1

λ
‖ϕ(xt)‖2

V −1
t−1

)

= det(V0)
N∏
t=1

(
1 +

1

λ
‖ϕ(xt)‖2

V −1
t−1

)
,

where we used the fact that the eigenvalues of a matrix of the form I + xx> are all ones except for the
eigenvalue 1 + ‖x‖2 corresponding to x. Then, note that det(V0) = 1 and thus

ln(det(VN)) =
N∑
t=1

ln
(
1 +

1

λ
‖ϕ(xt)‖2

V −1
t−1

)
=

1

2

N∑
t=1

ln

(
1 + kt−1(xt, xt)

)
.

In particular, ln(det(VN)) is finite. The only difficulty in the proof is now to handle the possibly infinite
dimension. To this end, it is enough to take a look at the approximations using the d first element of the
sequence for each d. We note Qd,MN,λ,ΦN,d and VN,d the restriction of the corresponding quantities to
the components {1, . . . , d}. Note that Qd is Gaussian N (0, Id). Following similar steps from Abbasi-
Yadkori et al. (2011), we obtain that

Mm,d,λ =
1

det(Vm,d)1/2
exp

(
1

2λ

wwΦ>m,dEm
ww2

V −1
m,d

)
.

Note also that E[MN,d,λ] 6 1 for all d ∈ N. Thus, by an application of Fatou’s lemma, it holds that

P
(

lim
d→∞

wwΦ>N,dEN
ww2

V −1
N,d

2 log
(

det(VN,d)1/2/δ
) > 1

)
6 E

[
lim
d→∞

δ exp

(
1

2λ

wwΦ>N,dEN
ww2

V −1
N,d

)
det(VN,d)1/2

]
6 δ lim

d→∞
E[MN,d,λ] 6 δ .

Finally, using the above application of Laplace method to the control of the self-normalized termwww 1√
λ
Φ>NEN

www
V −1
N

, and combining it with the previous remarks we obtain that

P
(
∃x ∈ X , |f ?(x)− fk,N(x)| > kN(x, x)1/2

[√
2σ2 ln

(
det(VN)1/2

δ

)
+
√
λ ‖f ?‖K

])
6 δ .

In order to get the result uniformly for all t, we simply pick the random stopping time N to be the
first time t such that the threshold is crossed:

N = min

{
t ∈ N : ∃x ∈ X , |f ?(x)− fk,t(x)| > kt(x, x)1/2

[√
2σ2 ln

(
det(Vt)1/2

δ

)
+
√
λ ‖f ?‖K

]}
.

�
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Extensions We have seen how to build a high-probability confidence estimate for the function f?. It is given
in the form of the set

Θ̂t,δ =

{
f ∈ F : ∀x ∈ X ,∀t′ 6 t, |f?(x)−fλ,t′(x)|6

√
kλ,t′(x, x)

λ

[√
λ ‖f?‖K+σ

√
2 ln(1/δ) + 2γt′(λ)

]}
,

and satisfies by construction that for all δ ∈ [0, 1], P
(
∃t ∈ N, f? /∈ Θ̂t,δ

)
6 δ.

As we see, this set depends on quantities such as the sub-Gaussian constant σ and the regularization param-
eter λ. We study in Durand et al. (2017) how to extend these results when σ is unknown and one wants to adapt
the parameter λ sequentially, that is, depending on past observations. We also derive complementary results in
Maillard (2016) for an ordinary least-squares estimates, and for variance estimation.

Some numerical illustration We conclude this section by providing an illustrative numerical experiment that
enables to visualize the empirical confidence intervals that is built from this analysis, and how fast it shrinks.
More precisely, we consider here a time series when xt = t for all t. We plot at each time t the confidence
interval built from all observations gathered before time t, and instantiated on the observation point xt = t.
Hence by doing so, we see a collection of confidence intervals that progressively shrinks as the number of
observations increases.

We consider for the purpose of illustration a low-dimension function space built from a combinations of a
few sinus functions (of the form fθ(t) = θ>ϕ(t), where ϕi(t) = sin(2it) for each i = 0, . . . , 3, however the
actual function space does not really matter).

In Figure 4.1, we consider the confidence intervals computed from Theorem 4.1, and study the influence
of the estimation of the noise parameter σ on the resulting bounds. We plot in Orange the confidence interval
when a bound on σ is given (Here σ = 3, and the actual noise level has been chosen uniformly in [0, 3]). We
plot in Red (respectively Yellow) the intervals using for σ the upper bound (respectively lower bound) provided
in Maillard (2016), when no bound on σ is known. Despite the fact the noise level is completely unknown, the
confidence interval shrinks reasonably fast. Both the yellow and green intervals correspond to other variants
that can be qualified as being "optimistic". Similar figures can be obtained when studying the estimation of σ
in the context of ordinary rather than regularized least-squares estimates.

2 MARKOV CONCENTRATION

In this section, we now turn to a second wide class of setups, when observations are no longer real-valued, but
instead belong to a discrete set Σ of symbols. In this context, the traditional approach is to consider processes
that are m-order Markov (where m is the size of the memory). Controlling estimation is not trivial in this setup
due to the dependencies induced by the memory. We show below a possible way to leverage this structure.

More precisely, we consider a Markov chain of orderm, such that the law of Y t only depends on themmost
recent observations before t, which we denote p(·|Y t−1, . . . , Y (max{t−m,1})). For a word w = w1 . . . w` ∈ Σt of
length t ∈ N, with symbols wi ∈ Σ we denote the probability of emission of w by

p(w) =
t∏

t′=m+1

p(Y (t′) = wt′ |wt′−1, . . . , wt′−m)
m∏
i=1

p(Y (i) = wi|wi−1, . . . , w1) .

For a set U ⊂ Σ?, where Σ? denotes the set of all finite words on Σ, we also denote p(Uw) =
∑

u∈U p(uw).
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Figure 4.1: Confidence intervals built for the regularized least-squares estimate with λ = 1 and various
methods to handle the noise. Orange: Bound built from Theorem 4.1 when σ is given to the learner. Red:
Upper-bound built without any knowledge of the noise (see Maillard (2016)). Green and Yellow: other "opti-
mistic" variants introduced in Maillard (2016).

2.1 Entry-wise concentration

In this section, we first consider the terms of the decomposition separately, starting from the simplest case
when m = 0. When dealing with probability distributions over a finite alphabet, the following adaptation of
the Laplace method is useful. We first provide below an easy extension of the Laplace method to the control
of a discrete distribution generating i.i.d. observations (m = 0), obtained by a combination with the method of
types (see e.g. Weissman et al. (2003) for the original bound without the Laplace method).

Corollary 4.1 (Weissman-Laplace concentration) For any random stopping time τ with respect to the
filtration of the past observations, and any discrete distribution p on S with support of size K 6 |S|,

P
(
‖pτ−p‖1 >

√
2(1+ 1

τ
) log

(√
τ+12K−2

δ

)
τ

)
6δ .

Proof of Corollary 4.1:
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For discrete measures, it holds P
(
‖pτ − p‖1 > ε

)
6
∑
B⊂S

P
(
pτ (B)− p(B) >

1

2
ε

)
. We then re-

mark that there are only 2K − 2 sets B (all the sets but the support of p and ∅) for which the contribution
to left hand side term is non 0. This is called the method of types. We conclude by applying the Laplace
method to the control of each random variable I{X ∈ B}, as it is in [0, 1]. �

This result naturally extends to Markov m models. Let w ∈ Σ? be a word of length ` > m. The previous
result then applies to the conditional distribution p(·|w) with support of size K(w) 6 |Σ| and its estimate
pt(·|w) based on Nt(w) observations at time t, leading to a time-uniform concentration

P
(
∃t ∈ N, ‖pt(·|w)−p(·|w)‖1 >

√
2(1+ 1

Nt(w)
) log

(√
Nt(w)+12K(w)−2

δ

)
Nt(w)

)
6δ .

Remark 4.4 The method of type is generally a bit crude, and one may prefer to substitute it by individual
Bernstein concentration bounds for each pt(s|w), seen as an average ofNt(w) i.i.d Bernoulli random variables.

2.2 Trajectory-wise concentration
In this section, we turn to a different control that targets p instead of p(·|w). In general, such a control requires
some mixing properties (which we revisit in chapter 8). However, a martingale difference approach can be
provided without resorting to any kind of mixing, as we explain now. The following result provides a simple
concentration inequality for the frequency estimate of a word w in a sequence of observations that is Markov
of order m.

Lemma 4.2 (Hoeffding concentration for Markov processes) Let x1, . . . , x` be a sequence of ` symbols
generated by a Markov chain of orderm, where ` is deterministic. Let w ∈ Σ? be a given word and define
the following Bernoulli random variables,

∀s ∈ [1, `− |w|+ 1], bs,w = I{xs . . . xs+|w|−1] = w} and ∀s > `− |w|+ 1, bs = 0 .

Let E<s denotes the conditional expectation on the variables x1, . . . , xs−1. Then for all δ ∈ [0, 1], it holds

P
[

1

t

t∑
s=1

(bs,w − E<s[bs,w]) >

√
(m+ |w|) ln((m+ |w|)/δ)

2t

]
6 δ .

Note that E<s[bs,w] = p(x1 . . . xs−1w) is the probability of observing w following the sequence of obser-
vations. When m = 0 and |w| = 1, we recover precisely the Hoeffding inequality for an i.i.d. sequence of
bounded random variables (here I{xs = w}). There is no difficulty in extending this result to other concentra-
tion bounds and peeling or Laplace techniques.

The previous result shows how cumulative errors of occurrence estimate can be controlled. However, it
gives no clue at the rate of estimation of p(w) for a given word w. This in general requires resorting to mixing
properties of the chain. We make use of a powerful result from Kontorovich and Weiss (2014) later in Chapter 8
and Balle and Maillard (2017), in order to address this problem, in the context of stochastic languages.
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Proof of Lemma 4.2:

We note that the random variables (bs)s are dependent. However, if the sequence of observations is
Markovm, then xs+|w|+m is independent from xs+|w|−1 conditionally on xs+|w|, . . . , xs+|w|+m−1, and thus
bs is independent from bs+|w|+m conditionally on the same sequence. Thus, if we let k = |w| + m, then
bjk+1 and b(j+1)k+1 are independent conditionally on xjk+1+|w|, . . . , x(j+1)k. Note also that by the Markov
assumption, b(j+1)k+1 does not depend on the observations before (j + 1)k − m = jk + 1 + |w|, thus
E[b(j+1)k+1|x(j+1)k−m, . . . x1] = E[b(j+1)k+1] = p(Σs−1w).

More generally, we consider the shifted decompositions Bk
j,i0

= bjk+1+i0 , j ∈ [0 : Jk,i0 − 1] for each
i0 ∈ [0, k− 1], where Jk,i0 = b(t− i0− 1)/kc+ 1. By construction, it holds (Jk,k−1− 1)k+ 1 + k− 1 =

b(t− k)/kck + k 6 t and
∑k−1

i0=0 Jk,i0 = t, as well as

t∑
s=1

bs =
k−1∑
i0=0

Jk,i0−1∑
j=0

Bk
j,i0

.

Also by construction, Bq
j+1,i0

is independent from Bq
j,i0

conditionally on the random variables on
which Bq

j,i0
depends, and thus forms a weakly dependent sequence of observations. Thus, we can apply

a concentration result.
Applying a standard concentration inequality k times, each with Jk,i0 summands we can recover a

concentration inequality for
∑t

s=1 bs. Since the concentration of a sum of ` Bernoulli random variables
to its means typically scales with O(

√
`), it is interesting to note that

1

t

k−1∑
i0=0

√
Jk,i0 6

√
k

t
. (4.1)

Indeed, by Jensen’s inequality, followed by the construction of the Jk,i0 , it comes

1

t

k−1∑
i0=0

√
Jk,i0 6

k

t

√√√√1

k

k−1∑
i0=0

Jk,i0 =
k

t

√
t

k

We will show that for each i0 ∈ [0, k − 1], for all δ ∈ [0, 1], then

P
[ Jk,i0−1∑

j=0

(Bk
j,i0
− E<jk+i0+1[Bk

j,i0
]) >

√
Jk,i0

2
ln(1/δ)

]
6 δ .

We then conclude by combining these k inequalities with a union bound and using (4.1).
To this end, we note that Bk

j,i0
∈ [0, 1]. In order to handle the dependency between the random

O-A. Maillard page 72 HDR



Chapter 4 3. Forecasters of stationary processes over a finite alphabet

variables, let Zj = Bk
j,i0
− E<jk+i0+1[Bk

j,i0
]. We remark that for all λ > 0,

E[exp(λZj+1 + λ

j∑
j′=1

Zj)|x1, . . . xjk+i0+|w|]

= E[exp(λZj+1)|x1, . . . xjk+i0+|w|] exp(λ

j∑
j′=1

Zj)

= E[exp(λZj+1)|x1, . . . x(j+1)k+i0−m] exp(λ

j∑
j′=1

Zj)

= E[E[exp(λZj+1)|x1, . . . , x(j+1)k+i0 ]|x1, . . . x(j+1)k+i0−m] exp(λ

j∑
j′=1

Zj)

= E[E<(j+1)k+i0+1[exp(λZj+1)]|x1, . . . x(j+1)k+i0−m] exp(λ

j∑
j′=1

Zj) ,

where the second equality is because {Zj′}j′6j are measurable function of x1, . . . xjk+i0+|w| and the third
and fourth ones by definition of k. Now, since Zj+1 is a shifted Bernoulli variable that is conditionally
centered (E<(j+1)k+i0+1[Zj+1] = 0), then E<(j+1)k+i0+1[exp(λZj+1)] is controlled by a standard argument
by λ2/8 (it is 1/2-sub-Gaussian). Hence, we conclude that

E[exp(λ
J∑
j=1

Zj)] 6 exp(λ2J/8) .

This in turn leads, by a classical Chernoff argument, to

P
[ Jk,i0−1∑

j=0

(Bk
j,i0
− E<jp+i0+1[Bk

j,i0
]) > ε

]
6 min

λ>0
exp(−λε+ λ2Jk,i0/8)

= exp(−2ε2/Jk,i0) .

�

3 FORECASTERS OF STATIONARY PROCESSES OVER A FINITE ALPHABET

Before concluding this chapter, we describe for completeness a strong family of forecasters for stationary
processes over a discrete set. Hence, in this section, we consider that the observation space Y is a finite
alphabet of size S. Although we do not provide confidence sets, we recall their fundamental cumulative regret
minimization guarantees.

Definition 4.6 (Stationary process) A stochastic process µ on Y? is stationary if for all i,m ∈ N and all
A ∈ Am, where Am is the σ-algebra on Ym, it holds µ(Yi, . . . , Yi+m ∈ A) = µ(Y1, . . . , Ym ∈ A).
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Definition 4.9 (Expert) An expert f is a sequence of functions ft : Y t−1 → P(Y), such that having seen the
observations yt−1 ∈ Y t−1, expert f outputs the probability vector ft(·|yt−1) ∈ P(Y). The probability assigned
to observation y ∈ Y is the value of the yth-component, that is ft(y|yt−1) ∈ [0, 1].

Definition 4.12 (Self-information loss) We measure the loss of a forecaster f sequentially predicting a se-
quence yn = (y1, . . . , yn) by the cumulative self-information loss of its prediction process:

L(f, yn) =
n∑
t=1

`(yt, ft(·|yt−1)) =
n∑
t=1

− ln(ft(yt|yt−1)) ,

where the self-information loss ` : Y × P(Y)→ R is defined by `(y, p) = − log(p(y)). Further, it holds

L(f, yn) = − ln(f(yn)) where f(yn) := f1(y1)
n∏
t=2

ft(yt|yt−1) .

Let us remark that for each n ∈ N, the Kullback-Leibler divergence between the learning process f and µ
on Yn can be interpreted as the expected regret of the forecaster f :

KLn(µ, f) := Eµ ln
µ(Y n)

f(Yn)
= Eµ[L(f, Y n)− L(µ, Y n)] .

This is also known as the expected redundancy of f .

Definition 4.15 (Consistent forecaster) We say that a forecaster f is consistent if lim
n→∞

1

n
KLn(ρ, µf ) = 0.

We are now ready to introduce popular forecasters for stationary processes. For convenience, for a sequence
of observations (y1, . . . , yn) ∈ Yn of length n, and t1 6 t2 6 n, we denote yt1..t2 ∈ Y t2−t1+1 the sequence
(yt1 , . . . , yt2). For two sequences u = u1..m ∈ Ym and v = v1..l ∈ Y l we denote their concatenation by
uv ∈ Ym+l, and by νu(v) the rate at which v occurs in u, that is

νu(v) :=
Nu(v)

m− l + 1
where Nu(v) =

m−l+1∑
i=1

I{ui..i+l−1 = v}.

For i.i.d. observations, the Krichevsky-Trofimov estimates aggregates all possible points in the simplex
q ∈ PS , seen as constant experts. For a sequence yn, the forecaster is obtained, by

kt0(yn) =

∫
PS

S∏
s=1

p(s)Nyn (s)ϕ(p)dp, where p = (p(1), . . . , p(S)) ∈ PS

for the prior ϕ(p) =
Γ(S/2)

Γ(1/2)

S∏
s=1

1√
p(s)

, where Γ denotes the Γ function .
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Luckily this complicated expression can be computed sequentially, by only requires maintaining S counters
in memory, kt0(Yt = y|yt−1) for each y ∈ Y . Further, the estimate can be extended to handle Markov
models of any order m ∈ N over Y , by considering the last m-observations as a side information, considering
one predictor for each of the Sm-many side information values. We recall now the standard definition of
Krichesky-Trofimov forecasters of all Markov models:

Definition 4.18 (Markov KT forecasters) We denote by kt0 the Krichesky-Trofimov estimate designed for
i.i.d. distributions over the finite set Y of size S. It predicts the following distribution at time t

∀y ∈ Y ,kt0(Yt = y|Y1..t−1) =
(t− 1)νY1..t−1(y) + 1/2

t− 1 + S/2
.

We denote by ktm the extension of kt0 to Markov distributions of order m on Y obtained by considering the
last m observations as being a side information, see e.g. (Cesa-Bianchi and Lugosi, 2006, chapter 9)

∀y ∈ Y , ktm(Yt = y|Y1..t−1) =

{
1
S
, if t− 1 6 m

(t−m−1)νY1..t−1
(Yt−m..t−1y)+1/2

(t−m−1)νY1..t−2
(Yt−m..t−1)+S/2

, if t− 1 > m.

We can further aggregate predictions of all Markov forecasters of all order simultaneously and thus compete
with the best Markov model (of any order), using an aggregation of this countable set of models. The idea is to
introduce a prior mass πm to the Markov model of order m. In that case, the resulting aggregate predictor kt∞
only looses over the best Markov (see Proposition 1.1) the amount

L(kt∞, y
n) 6 min

m∈N

(
L(ktm, y

n) + ln(1/πm)

)
.

Definition 4.21 (Universal KT forecaster) We denote by kt∞ the universal forecaster that aggregates the pre-
dictions of all the forecasters ktm,m ∈ N as described in Lysyak and Ryabko (2016) (see also Ryabko (1988)).
It is defined, for weights wm = ln(2)/ ln(m+ 1)− ln(2)/ ln(m+ 2), by

kt∞(Yt = y|Y1..t−1) =
∞∑
m=0

wm+1ktm(Yt = y|Y1..t−1) .

Note: Any weights such that
∑∞

m=0wm+1 = 1 are valid alternative weights.

We are now ready to restate some useful known properties of the ktm and kt∞ forecasters. The ktm
forecaster competes with the family Cm of all the constant forecasters defined for each of the Sm-many side
information values (see Cesa-Bianchi and Lugosi (2006)). For instance C0 = {f : ∀t, yt−1 ∈ Y t−1 f(·|yt−1) =
q for some q ∈ P(Y)}. Let N(v) be the number of occurrences of word v ∈ Ym in the side information
sequence. It is known Cesa-Bianchi and Lugosi (2006) that
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Lemma 4.3 (Performance of KT forecasters) The regret of the ktm predictor using side information
against the best Markov model of order m is controlled, for any sequence y(n) ∈ Yn by

L(ktm, y
n)− inf

f∈Cm
L(f, yn) 6

S−1

2

∑
v∈Ym

ln(N(v)) + Sm
(

ln
Γ(1/2)S

Γ(S/2)
+
S−1

2
ln(2)+o(1)

)
.

where
∑

v∈Ym ln(N(v)) 6 Sm ln(n) by Jensen’s inequality, and where Γ is the gamma function. Further,

L(kt∞, y
n) 6 min

m∈N

(
L(ktm, y

n)− ln(wm+1)

)
.

Corollary 4.2 (Consistent KT estimates) Let Y be a finite set with S symbols and ρ ∈ P(Y?) be a pro-
cess that is Markov of order m. Then, the ktm predictor satisfies for all n ∈ N,

1

n
KLn(ρ,ktm) 6

S − 1

2
Sm

ln(n)

n
+
Sm

n

(
ln

Γ(1/2)S

Γ(S/2)
+
S−1

2
ln(2)+o(1)

)
.

Further, let ρ be any stationary process such that for all n ∈ N, there exists a process ρn that is Markov of
order mn, such that ρ(Y n) = ρn(Y n), and such that Smn = o( n

ln(n)
) (this holds for any Markov process).

Then

1

n
KLn(ρ,kt∞)→ 0 .

Proof of corollary 4.2:

The first result for ktm is immediate by definition of the loss and Lemma 4.3. For the kt∞ predictor,
we first note that by definition, it holds

− ln(wm+1) = − ln(ln(2)/ ln(mn + 2)− ln(2)/ ln(mn + 3))

= ln

(
ln(mn + 2) ln(mn + 3)

ln(2) ln(mn+3
mn+2

)

)
.

Then, the kt∞ forecaster satisfies

KLn(ρ, r) = KLn(ρn, r) 6
S − 1

2
Smn ln(n) + Smn

(
ln

Γ(1/2)S

Γ(S/2)
+
S−1

2
ln(2)+o(1)

)
+ ln

(
ln(mn + 2) ln(mn + 3)

ln(2) ln(mn+3
mn+2

)

)
.

It is thus consistent when Smn = o( n
ln(n)

). �
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CHAPTER 5

sup
q
〈q, f〉 − Bψ(q, p)

Measure of risk-aversion and bandits

(Entropic risk measure) κ−λ,ν = inf
q∈P(R)

Eq(X) +
1

λ
KL(q, ν) .

(Risk-averse regret) RT (λ) =
∑
a∈A

(
κ−λ,νa? − κ−λ,νa

)
E
[
NT (a)

]
.

Strategy: Use the optimistic principle to derive a KL-ucb style strategy for risk-averse regret minimization.

Bregman duality aggregation of experts

(η, ψ)-mixable loss ` : X × Y → R+:

∀x ∈ XM ,p ∈ PM ,∃xx,p ∈ X ,∀y ∈ Y , `(xx,p, y) 6 inf
q∈PM

〈q, `(x·, y)〉+
1

η
Bψ(q,p) .

Strategy: Based on expert proposals xt ∈ XM , choose xt = xxt,pt where p1 = π, and after receiving

observation yt ∈ Y , pt+1 = arg min
q∈PM

〈q, `(xt,·, yt)〉+
1

η
Bψ(q,pt) . This achieves,

∀q ∈ PM ,
T∑
t=1

`(xt, yt)− 〈q,
T∑
t=1

`(xt,·, yt)〉 6
1

η

(
Bψ(q,π)− Bψ(q,pT+1)

)
.

Take-home message
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q
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In this chapter, we focus on Bregman duality, as a tool to deviate from the mean estimation goal considered
in the previous chapters. Indeed, we first show that Bregman duality naturally defines a notion of risk that
can be used for instance to build risk-averse strategies in multi-armed bandits. Then, we briefly recall how
Bregman duality naturally yields aggregation of expert techniques. This enables, given a set of learners, each
corresponding to a different family of processes, to build strategies that are near uniformly optimal over the
union of all these families. This is especially useful when we do not know in advance to which family the
observed signal corresponds.

1 RISK-AVERSION IN MULTI-ARMED BANDITS

Let us recall that for arbitrary random variable X admitting a finite cumulant generative function around 0,
then the two following properties hold (this is by a simple application of Markov’s inequality)

P
[
X > inf

{1

λ
logE exp(λX) +

log(1/δ)

λ
: λ > 0

}]
6 δ , (5.1)

P
[
X 6 sup

{
− 1

λ
logE exp(−λX)− log(1/δ)

λ
: λ > 0

}]
6 δ . (5.2)

Note that (5.1) measures the probability that X is big, while (5.2) measures the probability that X is small,
which is what we want to be protected against. Now, for the sake of clarity, it makes sense to introduce the
value of the cumulant generative function of the variable X at point λ, rescaled by λ, that we denote

κλ,ν
def
=

1

λ
logEν exp

(
λX
)
, (5.3)

and similarly we denote κ−λ,ν the value of κλ′,ν for λ′ = −λ. We already saw that this quantity is at the heart
of many key-results and tools of concentration of measure (e.g. the Cramer-Chernoff method, the Chernoff
transform, the log-Laplace transform). More importantly here, κ−λ,ν is a key quantity to control the probability
that X is small.

Example: To understand (5.1) and (5.2), let us consider tGaussian random variables {Zk}k=1,...,t i.i.d. from
a distribution ν with mean µ and variance σ2, then X =

∑t
k=1 Zk is Gaussian with mean µt and variance σ2t,

and simple computations show that κλ,ν = µt + λσ2t
2

, which yields, after optimizing the previous bounds in λ,

to the optimal value λ =
√

2 log(1/δ)
σ2t

and the familiar concentration bounds for Gaussian random variables

P
(

1

t

t∑
k=1

Zk−µ > σ
√

2 log(1/δ)

t

)
6 δ and P

(
µ− 1

t

t∑
k=1

Zk > σ

√
2 log(1/δ)

t

)
6 δ .

Let us comment on this example. First, the quantity κ−λ,ν = µt − λσ2t
2

(sometimes called the mean-
variance risk) takes the form of an operator that measures the mean of a random variable, penalized by some
higher moment (the variance in that case). This is actually a general property, since by the variational formula
for the Kullback-Leibler divergence, we have for a random variable X distributed according to ν ∈ P(R) that

κ−λ,ν = inf

{
Eν′(X) +

1

λ
KL(ν ′||ν) : ν ′ ∈ P(R)

}
6 Eν

[
X
]
. (5.4)
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where KL(ν ′||ν) denotes the Kullback-Leibler divergence between two distributions ν and ν ′. Using κ−λ,ν as
a measure of risk-aversion is natural for several reasons: Additionally to the formulation (5.4) and the control
(5.2) that are important for interpretability it is also a standard coherent risk-measure (see Rockafellar (2007)).
Also, due to its deep link for concentration of measure, it is especially natural for analysis. (We however do
not pretend this is the “best” choice of risk-measure.)

Mixability gaps Finally, for completeness, we also introduce the two fundamental quantities m+
λ,ν

[
X
]

and
m−λ,ν

[
X
]

that we call here the upper (and respectively lower) mixability gap and that are defined by

m+
λ,ν = κλ,ν − Eν

[
X
]

and m−λ,ν = Eν
[
X
]
− κ−λ,ν .

Note that the mixability gaps are always non-negative by Jensen’s inequality, and that an upper bound on
them immediately provides a high probability confidence interval. Indeed, with these notations, the previous
equations (5.1) and (5.2), can thus be rewritten more compactly as

P
[
X − Eν

[
X
]
> inf

λ>0

{
m+
λ,ν +

log(1/δ)

λ

}]
6 δ , (5.5)

P
[
Eν
[
X
]
−X > inf

λ>0

{
m−λ,ν +

log(1/δ)

λ

}]
6 δ . (5.6)

1.1 Regrets for Risk-averse Multi-armed Bandits
Optimal arm We now naturally define the optimal arm a? as the one maximizing the risk aversion at some
fixed level λ, that is we define

a? ∈ arg max
a=1,...,A

κ−λ,νa? .

Note again that in the case of Gaussian distributions with mean µa and variance σ2
a, we simply have

κ−λ,νa? = µa − λσ2
a

2
, and that in general we always have κ−λ,νa? 6 Eνa

[
X
]
. In the sequel, we assume for

simplicity that a? is unique.

Regret Now we define the empirical regret RT (λ) of the strategy A with respect to the strategy ? that
constantly pulls the same arm a? ∈ {1, . . . , A} by the difference between the cumulated reward received by
algorithm A and the cumulated reward that the strategy ? would have received during the same game, that is,
by introducing the fictitious plays {Xi,a?}NA

T,a?
<i6T ,

RT (λ)
def
=

T∑
i=1

Xi,a? −
A∑
a=1

NA
T,a∑
i=1

Xi,a =
T∑

i=NA
T,a?

+1

Xi,a? −
∑
a6=a?

NA
T,a∑
i=1

Xi,a . (5.7)

Note that we are not interested here in controlling the expected regret RT as it gives no information on the
risk of the strategy A and of pulling one arm. Indeed, we have the following standard decomposition

RT = TEνa?
[
X
]
− E

[ T∑
s=1

Ys

]
=
∑
a∈A

(
Eνa? [X]− Eνa [X]

)
E
[
NT,a

]
, (5.8)

while one would prefer to have a more informative measure, taking into account for instance the variance of
the arms or some control of the tails. For this purpose, another natural notion of regret is the risk-averse regret
RT (λ) defined by

RT (λ) =
∑
a∈A

(
κ−λ,νa? − κ−λ,νa

)
E
[
NT,a

]
. (5.9)

In the sequel, we control both (5.7) and (5.9) as they both offer interesting interpretations.
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Figure 5.1: Plot of arms’ densities and their mean: left) an environment where no arm has fat lower tail. right)
an environment where for some λ, the best arm (green) does not have best mean, and sub-optimal arms (red,
blue) have fat lower tails.

1.2 The Price for Risk-aversion
At a high-level, there is obviously a trade-off between trying to get maximal rewards and being risk-averse.
Being too cautious (such as, arguably, Exp3 see Auer et al. (2003)) avoids getting linear regret, but prevents
from getting high rewards as well. On the other hand, simply targeting the maximal mean (such as UCB see
Auer et al. (2002)) enables to get close to optimal rewards on average, but possibly very bad rewards in difficult
environments (e.g. when sub-optimal arms have fat lower tails). In connection to this remark, see also Audibert
et al. (2009) where it is shown that with relatively high probability, UCB may indeed incurs bad rewards.

A similar situation appears in the standard expected regret setting for the class of UCB-ρ algorithms as
shown by Salomon and Audibert (2012): for, ρ > ρ′, UCB-ρ can compete with a larger class of environments
than UCB-ρ′. However UCB-ρ′ will beat UCB-ρ on simpler environments.

Simple and complex environments The risk-averse regret (5.9) captures the sub-optimality of an algorithm
in terms of risk-aversion at some fixed level λ. As such, it is the direct equivalent of the expected regret in multi-
armed bandits, and we control this regret for our RA-UCB procedure in Theorem 1, Maillard (2013b). If such
control may seem satisfactory for many reasons, it also has some drawbacks. Namely, the level of risk-aversion
is not related in any way to the actual distribution of rewards, since it is some parameter chosen a priori by
the practitioner who wants to be protected against sampling possibly very low rewards. As a result, in easy
situations when the rewards distributions have very light tails, a high risk-averse algorithm will be too cautious,
and will get lower cumulative rewards than a less risk-averse algorithm, such as UCB. Similarly, if the actual
distributions have very fat lower tails, a low risk-averse algorithm may not be cautious enough and thus get bad
rewards compared to a more risk-averse algorithm, such as Exp3. See also figure 1.2.

Since such situations, that are of immediate practical interest, are not captured by the risk-averse regret (5.9)
defined for some level λ, this motivates the study of the empirical risk-aversion regret (5.7) as this one is able
to capture such behaviors (this is because it makes the empirical rewards coming from the actual distribution
appear explicitly).

Note that this also raises the question of automatically adapting the level of risk-aversion to some bandit
problem, or equivalently getting the best of all RA-UCB-λ algorithms (in terms of cumulated reward), which is
very hard, (or even impossible, see Salomon and Audibert (2012) for impossibility results regarding UCB-ρ in
the related problem of adaptivity in bandit problems). Since this involves orthogonal ideas that would worsen
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readability and interpretation, add a difficult layer of complexity, and is little justified in practice (where the
level of risk-aversion is often simply fixed), we do not study this question in the present work.

The difficult situation for risk-aversion appears when the sub-optimal arms produce rewards much lower
than their mean (heavy lower tail) while the best arm produces rewards much higher than its mean (heavy upper
tail): this creates maximal regret. We introduce in section 1.4 the RA-UCB algorithm that guarantees a low
regret in such difficult environments (contrary to e.g. UCB). We refer to Maillard (2013b) for the technical
proofs.

1.3 A Generic Decomposition of the Empirical Regret
We now introduce a generic decomposition of the regret, valid for any strategy A, that is the direct equivalent
of (5.9) for the empirical regret.

Theorem 5.1 (Risk-averse regret decomposition) Let us define, for some non-negative constants
{ua}a=1,...,A the event that sub-optimal arms are pulled too often

Ω
def
=

{
∃a 6= a? : NA

T,a > ua

}
,

and let us fix some value of λ such that κ−λ,νa exists for all a = 1, . . . , A. Then, for all δ ∈ (0, 1), with
probability higher than 1− δ − P(Ω), the regret of the strategy A is upper bounded by

RT (λ) 6
∑
a6=a?

ua

(
κ−λ,νa? − κ−λ,νa

)
+

(
m−λ,νa?

∑
a6=a?

ua +
(A− 1) log(2A/δ)

λ

)
+ inf

λ′>0

{
m+
λ′,νa?

∑
a6=a?

ua +
log(2A/δ)

λ′

}
. (5.10)

The first term of (5.10) makes appear a quantity very similar to that of the optimal regret bounds for the
expected regret in the stochastic setting, where the standard optimality gaps Eνa?

[
X
]
− Eνa

[
X
]

are replaced
by κ−λ,νa? − κ−λ,νa , as expected. Now the second and third terms involve the mixability gaps of the optimal
arm. The third term is intuitive: indeed, a regret minimizing algorithm will try to understand κ−λ,νa for each
arm, and prevent from large deviations below the mean (bad rewards). However, this does not prevent the
optimal arm to have large deviations above the mean (that is, unexpected good rewards), which is precisely
captured by the third term. Now the presence of the second term comes from another phenomenon: λ is a
parameter of the algorithm that tries to pull the arm with highest risk-aversion at level λ. As such, this goal
may be successful or not depending on intrinsic properties of the environment. We say that λ is well-adapted
to the environment if it is such that the second term in (5.10) is negligible before the first term.

So as to provide some intuition, let us now specialize Proposition 5.1 to the case of Example 1 for illustration
purpose. In this case, the mixability gaps of the optimal arm a? equal λ

2
σ2
a? and λ′

2
σ2
a? , so that if we introduce

for convenience the quantity u def
=
∑

a6=a? ua, one can rewrite (5.10) as

RT (λ) 6
∑
a6=a?

ua

(
κ−λ,νa? − κ−λ,νa

)
+

(
uλ

2
σ2
a? +

(A− 1) log(A/δ)

λ

)
+
√

2u log(A/δ)σa? . (5.11)

Thus λ is well-adapted to the environment for instance when λ = Ω(u−1/2). Since any reasonable algorithm
will pull sub-optimal arms only ua = O(log(T )) times with high probability, this indicates that a well-adapted
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level of risk aversion for a Gaussian game of length T is of order1 λ = Ω(log(T )−1/2). A similar reasoning
holds for the sub-Gaussian and thus the bounded case as well, since we only need an upper-bound on the
mixability gaps rather than an equality here. In the sequel, we consider such a case, disregarding the extremely
challenging question of defining and estimating a distribution-dependent optimally-adapted value of λ (it also
conveys difficult interpretation since the optimal arm depends on λ). Note finally that contrary to the empirical
regret, the risk-averse regret (5.9) is completely blind to such situations, as it basically corresponds to the first
term in (5.10).

1.4 The Risk-Averse Upper Confidence Bound algorithm
We introduce in this section a strategy A that we call the RA-UCB algorithm. From now on, we restrict to
the case when all distributions belong to P(RB), where RB = (−∞, B] for some known value of B. Thus,
let us introduce for all a ∈ A, the empirical distribution ν̂t(a) ∈ P(RB) associated to νa, built using the past
observations Y1, . . . , Yt; let δy ∈ P(RB) denotes the Dirac mass at point y. We define

ν̂t(a)
def
=

1

NA
t,a

t∑
s=1

δYsI{As = a} where NA
t,a

def
=

t∑
s=1

I{As = a} .

Further, for clarity purpose, we now use the notation ν̂n,a (with a in subscript) in order to denote the
empirical distribution built from the n first samples drawn from νa, while we reserve the functional notation
ν̂t(a) for the empirical distribution built from the samples received from arm a up to time t. Naturally, we have
that ν̂t(a) = ν̂NA

t (a),a. More generally, for some distribution ν, we also write ν̂n for its empirical distribution
built from n samples.

The RA-UCB algorithm is inspired from the strategies introduced by Lai and Robbins (1985a), Burnetas
and Katehakis (1996), Maillard et al. (2011), Garivier and Cappé (2011), Cappé et al. (2013) as it selects at
time t + 1 the arm At+1 = arg maxa∈A Ut(a), where Ut(a) is an upper confidence bound on the risk aversion
of arm a at level λ, defined by

Ut(a)
def
= sup

{
κ−λ,ν : ν ∈ P(RB), K(ν̂t(a), κ−λ,ν) 6

f(t)

Nt,a

}
, (5.12)

and where we introduced the following quantity

K(ν̂t(a), r)
def
= inf

{
KL(ν̂t(a), ν) : ν ∈ P(RB), κ−λ,ν > r

}
. (5.13)

Note that UCB-like algorithms are unnatural in this setting: they are based on empirical means only, while
we really need to control the tail distributions here. KL-based algorithm are more suitable, and produce much
stronger results. Note also that the parameter λ is here the same that defines the level of risk aversion used in
the definition of the regret. The algorithm requires another parameter, that is a non-decreasing function of the
time f . A typical choice is such that f(t) = O(log(t)).

A Useful Formulation with Dual Optimality Conditions The definition of the bound (5.12) may seem quite
abstract. In order to make it more computable and explicit, we now provide the following result, that is a dual
formulation of the optimization problem given by K(ν̂t(a), r) (see the proof in Maillard (2013a)).

1Such (weak) dependency with T is intuitive: if we only have
10 trials do to something, we would be much more risk-averse
(big λ) than with 1000 trials.
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Lemma 5.1 (Risk-averse dual formulation) Let ν̂n denotes an empirical distribution built with a finite
number n of atoms {xi}16i6n. Then the following dual formulation holds

K(ν̂n, r) = max

{
1

n

n∑
i=1

log

(
1− γ?

λ

(
1− e−λ(xi−r)

))
: 0 6 γ? 6

λ

1− e−λ(B−r)

}
.

This result shows that the optimization problem (5.12) can actually be solved numerically and is deeply
linked to the numerically efficient dual formulation considered for instance in Borwein and Lewis (1991),
Harari-Kermadec (2006), or re-derived more recently in Honda and Takemura (2010) for the related problem
of optimal regret bounds in the stochastic multi-armed bandit with expected regret criterion. For completeness,
it makes sense to introduce the following quantity for general distributions ν ∈ P(RB)

K̃(ν, r) = sup

{
E
[

log
(

1− γ?

λ

(
1− e−λ(X−r)))] : 0 6 γ? 6

λ

1− e−λ(B−r)

}
.

2 AGGREGATION OF EXPERTS: INSIGHTS FROM DUALITY.

We now turn to revisit aggregation of M experts, where experts can be built from different sources, such as
kernel estimates for regression, or KT estimates for prediction in Markov models, and provide a few additional
results over Chapter 1. Let us recall that a loss function ` : X × Y → R+ is η-mixable for some η > 0 if

∀x ∈ XM ,p ∈ PM ,∃xx,p ∈ X ,∀y ∈ Y , `(xx,p, y) 6 −1

η
logEm∼p exp(−η`(xm, y)) .

In particular an η-mixable loss satisfies

∀x ∈ XM ,p ∈ PM , ∃xx,p ∈ X ,∀y ∈ Y , `(xx,p, y) 6 inf
q∈PM

〈q, `(x·, y)〉+
1

η
KL(q,p) .

We say the loss is exactly η-mixable if the property holds with an equality. Written in this form, the connection
between the previous section becomes clearer.

We have seen that choosing xt = xxt,pt with p1 = π, then pt+1 = arg min
q∈PM

〈q, `(xt,·, yt)〉+
1

η
KL(q,pt) ,

updated using expert proposals xt and loss yt, leads to a cumulative loss controlled for each q ∈ PM by

T∑
t=1

`(xt, yt)− 〈q,
T∑
t=1

`(xt,·, yt)〉 6
1

η

(
KL(q,π)− KL(q,pT+1)

)
.

2.1 Bregman duality
This easy result can be extended beyond the use of Kullback-Leibler divergence, by considering instead a
generic Bregman divergence Bψ.

Definition 5.3 ((η, ψ)-mixable loss) We say the loss ` is (η, ψ)-mixable if

∀x ∈ XM ,p ∈ PM ,∃xx,p ∈ X ,∀y ∈ Y , `(xx,p, y) 6 inf
q∈PM

〈q, `(x·, y)〉+
1

η
Bψ(q,p) .
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Lemma 5.2 (Bregman duality aggregation) Let ` be an (η, ψ)-mixable loss and π be such that π(m) >
0 for all m. Assume ψ to ensure that ∀m, p(m) = 0 =⇒ (∇ψ(p))m = +∞. Let us consider the strategy

defined by xt = xxt,pt with p1 = π, then pt+1 = arg min
q∈PM

〈q, `(xt,·, yt)〉+
1

η
Bψ(q,pt) , updated

using expert proposals xt and loss yt. Then, the following holds for each q ∈ PM
T∑
t=1

`(xt, yt)− 〈q,
T∑
t=1

`(xt,·, yt)〉 6
1

η

(
Bψ(q,π)− Bψ(q,pT+1)

)
.

Proof :

Step 1 First, let us introduce Bψp : q → Bψ(q, p), so that

Bψp (q) = ψ(q)− ψ(p)− 〈∇ψ(p), q − p〉
∇Bψp (q) = ∇ψ(q)−∇ψ(p) .

Now, assuming that pt(m) > 0 for each m, an optimality condition for pt+1 is that for some constant C
independent on m, it holds

∀m ∈M, `(xt,m, yt) +
1

η
(∇Bψpt(pt+1))m = C that is `(xt,m, yt) =

1

η
〈∇ψ(pt)−∇ψ(pt+1), em〉+ C ,

where we introduced the hot vector em of m. The condition ∇ψ(p)m = +∞ whenever p(m) = 0 then
ensures pt+1(m) > 0 must hold for all m. Since p1(m) > 0 by assumption, this ensures that the previous
decomposition indeed holds for all t.

Step 2 Now, since on the other hand, it holds

`(xt, yt) 6 〈pt+1, `(xt,·, yt)〉+
1

η
Bψpt(pt+1)

=
1

η

[
〈pt+1,∇ψ(pt)−∇ψ(pt+1)〉+ Bψpt(pt+1)

]
+ C

=
1

η

[
ψ(pt+1)− 〈pt+1,∇ψ(pt+1)〉 − ψ(pt) + 〈∇ψ(pt),pt〉

]
+ C ,

we deduce that for each m, introducing the function ϕ(p) = ψ(p)− 〈p,∇ψ(p)〉, it holds

`(xt, yt)− `(xt,m, yt) 6
1

η

[
ϕ(pt+1)− ϕ(pt) + 〈∇ψ(pt+1)−∇ψ(pt), em〉

]
.

Step 3 Summing over t and considering some q ∈ PM , it finally holds
T∑
t=1

`(xt, yt)− 〈q, `(xt,·, yt)〉 6
1

η

[
ϕ(pT+1) + 〈∇ψ(pT+1), q〉 − ϕ(p1)− 〈∇ψ(p1), q〉

]
=

1

η

[
ψ(pT+1) + 〈∇ψ(pT+1), q − pt+1〉 − ψ(p1)− 〈∇ψ(p1), q − p1〉)

]
=

1

η

[
Bψ(q,p1)− Bψ(q,pT+1)

]
. �
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2.2 Aggregation of growing experts

While aggregation is generally applied to the situation when the number of experts M is fixed, in practice it is
natural to consider situations when M = Mt may change with t. A natural setup in which this happens is when
considering prediction of a signal whose underlying process does not correspond to a fixed process from a given
set, but instead changes with time. In that case, tracking the process can be handled by aggregating different
estimates of the process started at different time steps. We now propose to quickly revisit the aggregation
result in this case. For concreteness, we consider using the KL regularization instead of a general Bregman
divergence. We discuss further extensions in chapter 9.

Let τ = (τc)c∈N be a sequence partitioning N = ∪c∈NTc into disjoint intervals Tc = [τc + 1, τc+1], and let
CT = min{c : T ∈ Tc}, and assume without loss of generality that τCT+1 = T . LetMt be the set of experts
available at time t, of cardinality Mt, andM(c) =

⋂
t∈Tc

Mt \Mτc be the set of experts available at all times in

Tc but not before τc. LetM?(τ ) ⊂M? be the set of all sequences of experts (mt)t∈N that are constant on each
interval Tc with common value that belongs toM(c) for c ∈ N. We naturally call this a sequence of "fresh"
experts. For any U distributed onM?(τ ), let us define the regret after T steps by

RT (U) =
T∑
t=1

`(xt, yt)−
∑

m∈M?(τ )

U(m)
T∑
t=1

`(xt,mt , yt)

=

CT∑
c=1

∑
t∈Tc

∑
m∈M(c)

uc(m)(`(xt, yt)− `(xt,m, yt)) ,

where we introduced the marginal distribution uc of U on eachM(c), defined for any m(c) ∈M(c) by

uc(m(c)) =
∑

c′∈N\{c}

∑
m(c′)∈M(c′)

U(m(1), . . . ,m(2), . . . ) .

We finally introduce the following simple strategy, parameterized by a sequence of non negative input
weights (qt)t∈N, where qt ∈ R+:

Algorithm 3 Aggregation of fresh experts
1: for t = 1, . . . do
2: Define

∀m ∈Mt, wt(m) =

{
wt−1(m) exp(−η`(xt−1,m, yt−1)) if m ∈Mt−1

qt else .

3: Given xt, predict xt = xxt,pt where pt(m) =
wt(m)∑

m∈Mt
wt(m)

.
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Lemma 5.3 (Aggregation of fresh experts) The regret after T time steps of Algorithm 3 using input
weights (qt)t∈N against any U ∈ P(M?(τ )) satisfies

RT (U) 6
1

η

CT∑
c=1

[ ∑
m∈M(c)

uc(m) ln

(
pτc+1+1(m)

pτc+1(m)

)
+
∑
t∈Tc

ln

(
Wt+1

W t

)]
,

6
1

η

CT∑
c=1

[
KL(uc,pτc+1) +

∑
t∈Tc

ln

(
Wt+1

W t

)]
,

where Wt =
∑

m∈Mt
wt(m) and W t =

∑
m∈Mt

wt+1(m). In the special case when the loss is exactly
η-mixable, the inequality becomes an equality. Further it holds pτc+1(m) = qτc+1

Wt
for each m ∈M(c).

Since by constructionWt+1 = W t+|Mt+1\Mt|qt+1, this suggests to choose qt+1 proportional to W t

|Mt+1\Mt| .
With such a tuning, we immediately obtain the following result

Corollary 5.1 (Aggregation of fresh experts) Let (at)t∈N be a sequence of non-negative real values, and
define the input weights by

q1 = 1 and qt+1 =
W t

atm+,t+1

where m+,t+1 = |Mt+1\Mt| .

The regret after T time steps of Algorithm 3 using these input weights is bounded as

RT (U) 6
1

η

CT∑
c=1

[ ∑
m∈M(c)

uc(m) ln

(
uc(m)m+,τc+1(1 + aτc)

)
+
∑
t∈Tc

ln

(
1 +

I{m+,t+1 > 0}
at

)]
.

In particular, let M?
(c) = Argminm∈M(c)

∑
t∈Tc `(xt,m, yt) be the set of locally optimal experts on Tc.

Then, if m+,t = M > 0 for all t and |M?
(c)| = K for all c, performing growing aggregation using the

choice at = t ensures that for any m? ∈M?(τ ),

RT (m?) 6
1

η

[
CT ln

(
M

K

)
+

( CT∑
c=1

ln(1 + τc)

)
+ ln(T + 1)

]
.

Proof of Lemma 5.3:

Step 1. For convenience, let us denote `t = `(xt, yt) and `m,t = `(xt,m, yt). With these notations, let
us first remark that by the η-mixable property, it holds

`t 6 −
1

η
logEm∼pt exp(−η`m,t) .
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Thus, for all m ∈Mt, we get

`t − `m,t 6 −1

η
logEm∼pt exp(−η`m,t) +

1

η
log exp(−η`m,t)

= −1

η
log

∑
m∈Mt

wt(m)

Wt

exp(−η`m,t) +
1

η
log

wt(m)

Wt

exp(−η`m,t)−
1

η
log

(
wt(m)

Wt

)
=

1

η
log

(
wt(m) exp(−η`m,t)∑

m∈Mt
wt(m) exp(−η`m,t)

)
− 1

η
log

(
wt(m)

Wt

)
=

1

η
log

(
wt+1(m)

W t

)
− 1

η
log

(
wt(m)

Wt

)
.

where W t =
∑

m∈Mt
wt(m) exp(−`m,t). Let us remark that

Wt+1 = W t +m+,t+1qt+1 = W t

(
1 +

m+
+,t+1qt+1

W t

)
.

From the definition of pt, we deduce that

`t − `m,t 6
1

η

[
ln
(
pt+1(m)

)
− ln

(
pt(m)

)
+ ln

(Wt+1

W t

)]
Step 2. Now, by definition, the regret writes as

RT (U) =

CT∑
c=1

∑
t∈Tc

∑
m∈M(c)

uc(m)(`t − `m,t) .

where we used the marginal distribution uc. Note that by construction
∑

m∈M(c)
uc(m) = 1. Plugging-in

the result of step 1, we obtain

RT (U) 6
1

η

CT∑
c=1

[ ∑
m∈M(c)

uc(m)
∑
t∈Tc

ln

(
pt+1(m)

pt(m)

)
+

( ∑
m∈M(c)

uc(m)

)∑
t∈Tc

ln
(Wt+1

W t

)]

=
1

η

CT∑
c=1

[ ∑
m∈M(c)

uc(m) ln

(
pτc+1+1(m)

pτc+1(m)

)
+
∑
t∈Tc

ln
(Wt+1

W t

)]
, (5.14)

which concludes the first regret bound.
Step 3. Now, note that uc is a probability distributions with support inM(c), and that pτc+1,pτc+1+1

are probability distributions with support containingM(c). This enables to write∑
m∈M(c)

uc(m) ln

(
pτc+1+1(m)

pτc+1(m)

)
=

∑
m∈M(c)

uc(m) ln

(
uc(m)

pτc+1(m)

)
−

∑
m∈M(c)

uc(m) ln

(
uc(m)

pτc+1+1(m)

)
= KL(uc,pτc+1)− KL(uc,pτc+1+1) 6 KL(uc,pτc+1) .

Further, when m ∈ M(c), it satisfies that m ∈ Mt for each t ∈ Tc and m /∈ Mτc , which means that
pτc+1(m) = qτc+1

Wτc+1
. This concludes the proof. �

Remark 5.1 This result actually holds for any sequence and any segmentation. Thus the bounds are valid from
a minimax perspective, as is usual for aggregation results.
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2.3 An application to prediction of changing processes
In order to better understand how to use the growing aggregation procedure, let us consider an application to
the task of predicting a sequence of observations whose characteristics are "changing". What we mean here is
that we have access to a set of processesR (e.g. i.i.d. σ-sub-Gaussian, or Markov 1 Bernoulli), but the process
generating the observations does not belong to R. Instead, there is a sequence of times (τc)c∈N such that for
each c, all observations in [τc + 1, τc+1] are generated from a process inR, but different processes are used for
any two consecutive time segments. We call this anR-Piecewise process:

Definition 5.6 (R-Piecewise process) An R-piecewise process ρ on Y∞ is a couple (R, χρ), where R ⊂
P(Y∞) is called the set of root processes, and χρ ∈ P((R× N?)

∞) is a choice process. A sample Y1..∞ ∼ ρ
writes

Y1..∞ = Y 1
1..`1

Y 2
1..`2

. . . where Y c
1..`c = (Y c

1 , . . . , Y
c
`c) ∼ ρc ∈ R for each c and (ρ1, `1), (ρ2, `2), · · · ∼ χρ .

We assume this decomposition is minimal (hence ρc 6= ρc+1 for each c), denote the change times τc =
∑

c′<c `c′
and the corresponding time intervals Tc = [τc + 1, τc+1], for each c ∈ N.

We want to predict the observations when only the set R is known but the change times (τc)c∈N and root
processes (ρc)c∈N are unknown. In the general case when no two pieces are generated by the same root process
(∀c 6= c′, ρc 6= ρc′), one cannot hope to achieve better performance than training a learner specialized for R on
each separate time interval Tc. Hence, if fR denotes such a base learner, and fR,t(·|(yt′)t′∈[τc+1,t−1]) denotes its
prediction at time t having seen past observations inTc, then a natural strategy is to run a novel instance of fR
on each Tc. Denoting this forecaster f ?R, its cumulative loss writes

L(f ?R, y
T ) =

∑
c∈N

LTc(fR, (yt)t∈Tc) where LTc(fR, (yt)t∈Tc) =
∑
t∈Tc

L(yt, fR,t(·|(yt′)t′∈[τc+1,t−1])) .

Unfortunately, the change times are unknown, hence such a strategy is not applicable. Instead, we can apply
an aggregation of growing experts (Algorithm 3), where at each time step, we consider the set of experts
Mt = {f (t′)

R : t′ 6 t}, where f (t′)
R denotes the base learner that outputs fR,t(·|(yt′)t′∈[t′+1,t−1]) at each time

t > t′ (equivalently, the base learner fR that only receives observations after time t′). In this case,Mt increases
by one element at each time step, hence m+,t = 1 for all t, and we maintain a growing set of t experts at time t.

More generally, when one has access to a set B of base forecasters instead of a single expert fR (A typical
situation is when R =

⋃B
b=1Rb, and B = {fRb , b = 1, . . . , B}), we can define an oracle strategy B? that

chooses an optimal forecaster in Argminf∈B LTc(f, (yt)t∈Tc) in each piece. Its cumulative loss is L(B?, yT ) =∑
c∈N minf∈B LTc(f, (yt)t∈Tc). In that case, it is natural to apply Algorithm 3 with the set of experts Mt =

{f (t′) : t′ 6 t, f ∈ B}, hence in this case, m+,t = |B| = B for each t. We denote by Agg-B this strategy.
Applying Corollary 5.1, we obtain immediately a sharp bound on the loss of such a strategy:

Corollary 5.2 (R-piecewise process prediction loss) Let ρ be any R-piecewise process, and apply
Agg-B with a set of base forecasters B of sizeB. Using the same notations as for Corollary 5.1, consider
that |M?

(c)| = K for each c. Then the cumulative loss of Agg-B, assuming the loss is η-mixable, is

L(Agg-B, yT ) 6
1

η

[
CT ln(B/K) +

CT∑
c=1

ln(1 + τc) + ln(T + 1)

]
+

CT∑
c=1

min
b∈B

LTc(b, (yt)t∈Tc) .
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To give a visual illustration, Figure 5.2 depicts, for a small set base of forecasters B designed for regression
on low-degree polynomials (with adaptive variance estimation), and observations coming from a piecewise
low-degree polynomial with abrupt changes, the confidence intervals around the next observation built by
several strategies. As expected, the Bayes aggregation algorithm on B is naturally unable to handle the changes
of the signal, while Agg-B successfully adapts to the change of stationarity, and competes with the oracle.
The confidence intervals appear a little tighter because of the combination of many experts (the oracle only
considers a single best expert in each piece). Note that the confidence intervals computed by the method fail
at the abrupt change points and recover only one step later, contrary to the oracle (blue) that perfectly knows
when a change point will occur: indeed they do not try to predict when a change point will occur, nor to which
piece. Rather, they predict the most plausible confidence interval for the current piece.
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Figure 5.2: Predictive confidence intervals for the oracle B? (top-left), Bayes strategy (top-right), Agg-B
(bottom-left) and a variant that deletes inadequate experts (bottom-right). At each time t, the confidence interval
is built from all past data before time t. the observed signal is in black.
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CHAPTER 6

f = T [f ] and ‖.‖?

(Gain) gπ(s1) = lim
T→∞

1

T

T∑
t=1

(P t−1
π µπ)(s1) = (P πµπ)(s1) ,

(Bias) bπ =
∞∑
t=1

(P t−1
π − P π)µπ ,

Pseudo regret of near-gain optimal policies Let ? be gain-optimal and π be such that g? − gπ 6 ε. Then its
cumulative regret when run for T steps is controlled by

Rπ,T 6
T∑
t=1

(P t−1
? − P ?)µ? + (P T

π − I)b? + εT +
∑
s,a

E[Nπ
T (s, a)]ϕa(s)︸ ︷︷ ︸

Pseudo−regret

,

with gap function ϕa(s) = µ?(s) + (P?b?)(s)− µa(s) + (Pab?)(s).
Intrinsic contraction of Bellman operator For any policy π and function f , it holds

S(Pπf) 6
1

2
‖P (·|s, π(s))− P (·|s, π(s))‖1S(f) 6 (1− γπ)S(f)

where S(f) = maxs f(s)−mins f(s), s = arg maxs∈S(Pπf)(s), s = arg mins∈S(Pπf)(s) and

γπ = min
s1,s2

∑
s′∈S

min{P (s′|s1, π(s1)), P (s′|s2, π(s2))}

Norms should be used with care. Replacing a distribution-independent norm ‖ · ‖1 with a distribution-
dependent norm may yield significant improvement.

(ν − ν̃, bπ) 6 ‖ν − ν̃‖?,ν‖bπ − EPπbπ‖ν with ν = Pπ(·|s)

Take-home message
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Part I Chapter 6. f = T [f ] and ‖.‖?

In this chapter, we now turn to the setup of reinforcement learning in Markov Decision Processes (MDP).
We first revisit some key concepts in the setup of average-regret minimization, before questioning the use of
the span semi-norm and its corresponding ‖ · ‖1 dual norm for MDP learning.

1 MDPS AND AVERAGE REWARD CRITERION

We consider an MDP M with transition function P and reward function R. Let π : S → P(A) denote a
stochastic stationary policy. Let P (s′|s, π(s)) = EA∼π(s)[P (s′|s, A)]. Let Pπf denote the function such that
for all s ∈ S , (Pπf)(s) =

∑
s′∈S P (s′|s, π(s))f(s′). Likewise, let µπ(s) = EA∼π(s)[µ(s, A)] define the mean

reward after choosing action π(s) in step s, where µ(s, a) is the mean of distribution R(s, a).

Definition 6.3 (Expected cumulative reward) The expected cumulative reward of policy π when run for T
steps from initial state s1 is defined as

Rπ,T (s1) = E
[ T∑
t=1

r(st, at)

]
= µπ(s1) + (Pπµπ)(s1) + · · · =

T∑
t=1

(P t−1
π µπ)(s1) ,

where at ∼ π(st), st+1 ∼ P (·|st, at), and finally r(s, a) ∼ R(s, a) with mean µ(s, a).

Definition 6.6 (Average gain and bias of proper policies) A policy is proper if the limit P π =
limT→∞

1
T

∑T
t=1 P

t−1
π exists. We call in this case P π the average transition operator of policy π. The

average gain gπ and the bias function bπ are then defined by

gπ(s1) = lim
T→∞

1

T

T∑
t=1

(P t−1
π µπ)(s1) = (P πµπ)(s1) ,

bπ =
∞∑
t=1

(P t−1
π − P π)µπ .

Definition 6.9 (Optimal gain and policy) The optimal gain is defined by g?(s) = maxπ gπ(s) for each s ∈ S .
Any policy that achieves the optimal gain simultaneously for all s is called optimal, and will be denoted by ?
(whenever it exists).

We recall the following immediate lemma:

Lemma 6.1 (Key property)

P πPπ = PπP π = P πP π = P π .
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This enables to show several key relations:

Corollary 6.1 (Bias and Gain) The bias function satisfies the following relations

(Fundamental equality) bπ = [I − Pπ + Pπ]−1[I − P π]µπ

(Poisson equation) bπ + gπ = µπ + Pπbπ

Likewise, the average gain satisfies Pπgπ = gπ.

Proof :

For the first relation, we note that by direct application of Lemma 6.1,

(I − Pπ + P π)bπ =
∞∑
t=1

(I − Pπ)(P t−1
π − P π)µπ + P π(P t−1

π − P π)︸ ︷︷ ︸
0

µπ

=
∞∑
t=1

(I − Pπ)P t−1
π µπ − (I − Pπ)P π︸ ︷︷ ︸

0

µπ =
∞∑
t=1

(
P t−1
π − P t

π

)
µπ .

Thus, it remains to show that the latter sum equals I − P π. When Pπ is aperiodic, then the limit limt P
t
π

exists and is equal to P π. Thus, we easily get
∞∑
t=1

P t−1
π − P t

π = lim
T→∞

(I − P T
π ) = I − lim

T→∞
P T
π = I − P π .

The general case is more intricate. See Puterman (1994).
For the second relation, we note that

Pπbπ =
∞∑
t=1

(P t
π − P π)µπ =

∞∑
t=2

(P t−1
π − P π)µπ

= bπ − (I − P π)µπ = bπ − µπ + gπ .

�

Regret to pseudo-regret For any policy π, its cumulative regret Rπ,T =
∑T

t=1

(
P t−1
? µ? − P t−1

π µπ

)
with

respect to an optimal policy can be decomposed in order to make appear quantities similar to multi-armed
bandits. Let ϕa(s) = µ?(s) + (P?b?)(s)− µa(s)− (Pab?)(s) denote the sub-optimality gap of action a in state
s. The following regret decomposition result justifies to introduce the notion of pseudo-regret of a policy π,∑

s,aN
π
T (s, a)ϕa(s). See Puterman (1994) or Burnetas and Katehakis (1997) for similar results. For conve-

nience, the following result is stated in the case of communicating MDPs for which gπ is a constant function.
In this case we denote by gπ ∈ R this constant value.
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Lemma 6.2 (Pseudo-regret) Consider a communicating MDP. Let π be a policy such that such that
g? − gπ 6 ε. Then,

Rπ,T =
T∑
t=1

(P t−1
? − P ?)µ? + (P T

π − I)b? +
T∑
t=1

(1− P t−1
π )

(
g? − gπ

)
+
∑
s,a

E[Nπ
T (s, a)]ϕa(s)

6
T∑
t=1

(P t−1
? − P ?)µ? + (P T

π − I)b? + εT +
∑
s,a

E[Nπ
T (s, a)]ϕa(s) .

Further, as T →∞,
∑T

t=1(P t−1
? − P ?)µ? + (P T

π − I)b? → P πb
? is a finite constant.

Proof of Lemma 6.2:

The regret accumulated during T steps by policy π is given by

Rπ,T =
T∑
t=1

(
P t−1
? µ? − P t−1

π µπ

)
=

T∑
t=1

(P t−1
? − P ?)µ? + T (g? − gπ︸ ︷︷ ︸

6ε

) +
T∑
t=1

(
gπ − P t−1

π µπ

)
.

Then, we use the fact that gπ is a constant function, so that P t−1
π gπ = gπ. Thus, it comes

T∑
t=1

(
gπ − P t−1

π µπ

)
=

T∑
t=1

P t−1
π

(
gπ − µπ

)
=

T∑
t=1

P t−1
π (Pπ − I)bπ

=
T∑
t=1

P t−1
π

[
(Pπ − I)b? + (Pπ − I)(bπ − b?)

]
,

where in the first line we introduced the bias function bπ. Now, let us introduce the sub-optimality gap
function ϕπ(s) = µ?(s) + (P?b?)(s)− µπ(s)− (Pπb?)(s). Since µπ = gπ + (I − Pπ)bπ, it comes that

ϕπ = g? − gπ + (I − P?)b? + P?b? − (I − Pπ)bπ − Pπb?
= g? − gπ + (I − Pπ)(b? − bπ) .

Hence we deduce that

Rπ,T =
T∑
t=1

(P t−1
? − P ?)µ? + (P T

π − I)b? +
T∑
t=1

(1− P t−1
π )

(
g? − gπ

)
︸ ︷︷ ︸

6εT

+
T∑
t=1

P t−1
π ϕπ .

This result shows that in order to control the regret, it is enough to control the following term
T∑
t=1

P t−1
π ϕπ =

∑
s,a

E[NT (s, a)]ϕa(s) ,
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that we naturally call the pseudo-regret, by analogy with the bandit setting. Indeed, it comes

T∑
t=1

P t−1
π ϕπ =

T∑
t=1

Est−1 [ϕπ(st−1)]

=
∑
s,a

ϕa(s)
T∑
t=1

Est−1 [I{st−1 = s, π(s) = a}] =
∑
s,a

ϕa(s)E[Nπ
T (s, a)] ,

�

1.1 Value iteration and the span semi-norm
A natural strategy in order to find an optimal policy in a (perfectly known) MDP is the value iteration strategy,
defined as follows from P and µ:

Definition 6.12 (Value iteration) The value iteration procedure defines a sequence of functions (un)n∈N and
policies (πn)n∈N according to the following equations

∀n ∈ N

{
un+1(s) = maxa∈A µ(s, a) + (Paun)(s) , where u0 = 0

πn+1(s) = U
(

Argmaxa∈A µ(s, a) + (Paun)(s)
)

where U(B) denotes the uniform distribution over B

Corollary 6.2 (Value and gain) It holds that

∀n ∈ N, P πn+1 [un+1 − un] 6 gπn+1 6 g? 6 P ?[un+1 − un] .

Further, for any n such that S(un+1 − un) 6 ε, then

g? − gπn+1 6 ε, |un+1 − un − g?| 6 ε and |un+1 − un − gπn+1| 6 ε .

Proof :

Let us first note that since P ?P? = P ?, then for any function f we have g? = P ?[µ? + P?f − f ].
Applying this to the function un yields

g? = P ?[µ? + P?un − un]

6 P ?[µπn+1 + Pπn+1un − un]

= P ?(un+1 − un) ,

where in the second line we used the maximal property of πn+1. On the other hand, we use the equality

gπn+1 = P πn+1 [µπn+1 + Pπn+1un − un] = P πn+1(un+1 − un) ,
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together with the fact that by optimality of ?, g? > gπn+1

Indeed, it holds on the one hand

g? − gπn+1 6 P ?[un+1 − un]− P πn+1 [un+1 − un]

6 max
s∈S

(un+1 − un)(s)−min
s∈S

[un+1 − un] = S(un+1 − un) .

On the other hand, using similar steps,

0 6 P ?[un+1 − un]− g? 6 max
s∈S

[un+1 − un]− g?

6 max
s∈S

[un+1 − un]− P πn+1 [un+1 − un] 6 S(un+1 − un) .

Thus, for all s ∈ S , (un+1 − un)(s) − g? 6 ε. Likewise, we get the reverse inequality 0 6 g? −
mins∈S(un+1 − un)(s) 6 S(un+1 − un) 6 ε. The last bound is immediate from the relation gπn+1 =
P πn+1(un+1 − un). �

Corollary 6.3 (Value and bias) It holds for all n ∈ N,

|(I − Pπn+1)(un − bπn+1)| 6 S(un+1 − un)

Proof :

Indeed, we have by Corollary 6.2 |un+1−un−gπn+1| 6 S(un+1−un), which rewrites |(I−Pπn+1)un−
µπn+1 − gπn+1| 6 S(un+1 − un). We conclude by remarking that µπn+1 − gπn+1 = (I − Pπn+1)bπn+1 . �

It is interesting to take a look at the regret of running the policy πn+1 for T steps. We slightly revisit the
regret decomposition lemma below.

Proposition 6.1 (Regret of value iteration policy) Let ε be a non-negative constant and let n be such
that S(un+1 − un) 6 ε. Assume that for all policy π, P π is well defined. Then

Rπn+1,T (s1) = R?,T (s1)−Rπn+1,T (s1)

6
T∑
t=1

(P t−1
? − P ?)µ? + Tε+ (P T

πn+1
− I)bπn+1 .

The first term is MDP dependent and depends on the mixing time of the chain induced by the policy ?.
The remaining term satisfies

(P T
πn+1
− I)bπn+1 6

1

2
‖P T

πn+1
− I‖1S(bπn+1) 6 S(bπn+1) .
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Proof :

Rπn+1,T =
T∑
t=1

(
P t−1
? µ? − P t−1

πn+1
µπn+1

)
=

T∑
t=1

(P t−1
? − P ?)µ? + T (g? − gπn+1) +

T∑
t=1

(P πn+1 − P t−1
πn+1

)µπn+1 .

In order to take care of the last sum, let us note that µπn+1 = gπn+1 + (I −Pπn+1)bπn+1 . Thus, plugging-in
this equality in the regret expression, and using the fact that P πn+1gπn+1 = gπn+1 , it comes

(P πn+1 − P t−1
πn+1

)µπn+1 = (P πn+1 − P t−1
πn+1

)
(
gπn+1 + (I − Pπn+1)bπn+1

)
= (P πn+1 − P t−1

πn+1
)(I − Pπn+1)bπn+1

= (P t
πn+1
− P t−1

πn+1
)bπn+1 .

Combining this equality together with the relation g? − gπn+1 6 S(un+1 − un), we get

Rπn+1,T =
T∑
t=1

(P t−1
? − P ?)µ? + T (g? − gπn+1) +

T∑
t=1

(P t
πn+1
− P t−1

πn+1
)bπn+1

6
T∑
t=1

(P t−1
? − P ?)µ? + Tε+ (P T

πn+1
− I)bπn+1 .

�

A more precise look at contraction coefficients In order to better understand the fundamental reason why
value iteration makes sense, we study the contraction properties of the operator associated to the Poisson fixed-
point equation. Indeed, despite being in an average-reward setup, there is a contraction property, as explained
for instance in Puterman (1994).

Lemma 6.3 (Sandwich bounds)

∀k ∈ N, Pπk+2
(uk+1 − uk) > uk+2 − uk+1 > Pπk+1

(uk+1 − uk) .

Proof of Lemma 6.3:

The difference of values after one step is given by:

∀s ∈ S, uk+2(s)− uk+1(s) = µ(s, πk+2)− µ(s, πk+1) + (Pπk+2
uk+1)(s)− (Pπk+1

uk)(s)
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Using this equality, together with the maximal property of πk+2 and πk+1, we deduce the two following
inequalities

∀s ∈ S, uk+2(s)− uk+1(s) > µ(s, πk+1)− µ(s, πk+1)

+(Pπk+1
(uk+1 − uk))(s) = (Pπk+1

(uk+1 − uk))(s)
uk+2(s)− uk+1(s) 6 (Pπk+2

(uk+1 − uk))(s) .

That is, with function notations,

∀k ∈ N, Pπk+2
(uk+1 − uk) > uk+2 − uk+1 > Pπk+1

(uk+1 − uk) .

�

Likewise, the following generalization holds:

Lemma 6.4 (Multi-steps sandwich bounds) Let us introduce the notation P k′:k
? = Pπk ◦ · · · ◦Pπk′ for all

k′ < k. Then, it holds

∀k ∈ N,∀k′ < k P k′+2:k+1
? (uk′+1 − uk′) > uk+1 − uk > P k′+1:k

? (uk′+1 − u′k) .

We now make use of Lemma 6.4 in order to recall a fundamental contraction inequality (see Puterman
(1994)). Let us introduce for convenience the notation ∆k(s) = uk+1(s)−uk(s). Also, for a function f defined
on S, let us introduce the span defined by S(f) = maxs∈S f(s)−mins∈S f(s), which is a semi-norm.

Lemma 6.5 (Value contraction of the Span) Let ∆k(s) = uk+1(s) − uk(s) be the difference of value
functions between iterations k and k + 1. Then

S(∆k+1) 6
(

1−
∑
s′∈S

min{P (s′|s, πk+2(s)), P (s′|s, πk+1(s))}
)

︸ ︷︷ ︸
1
2
‖P (·|s,πk+2(s))−P (·|s,πk+1(s))‖1

S(∆k) 6
(
1− γ)S(∆k) ,

where we introduced s = arg maxs∈S(Pπk+2
∆k)(s), s = arg mins∈S(Pπk+1

∆k)(s) and finally

γ = min
s1,s2∈S

min
π,π′

∑
s′∈S

min{P (s′|s1, π(s1)), P (s′|s2, π
′(s2))} .

Proof :

By Lemma 6.3, it holds

S(∆k+1) 6 max
s∈S

(Pπk+2
∆k)(s)−min

s∈S
(Pπk+1

∆k)(s) .

O-A. Maillard page 98 HDR



Chapter 6 1. MDPs and average reward criterion

At this point it is convenient to introduce s = arg maxs∈S(Pπk+2
∆k)(s) and s = arg mins∈S(Pπk+1

∆k)(s).
Developing each operator term, and introducing the quantity γ(s′) = min{P (s′|s, πk+2(s)), P (s′|s, πk+1(s))},
it comes

S(∆k+1) 6
∑
s′∈S

(
P (s′|s, πk+2(s))− P (s′|s, πk+1(s))

)
∆k(s

′)

=
∑
s′∈S

(
P (s′|s, πk+2(s))− γ(s′)

)
︸ ︷︷ ︸

>0

∆k(s
′)−

∑
s′∈S

(
P (s′|s, πk+1(s))− γ(s′)

)
︸ ︷︷ ︸

>0

∆k(s
′)

6
∑
s′∈S

(
P (s′|s, πk+2(s))− γ(s′)

)
︸ ︷︷ ︸

>0

max
s∈S

∆k(s)−
∑
s′∈S

(
P (s′|s, πk+1(s))− γ(s′)

)
︸ ︷︷ ︸

>0

min
s∈S

∆k(s)

=
(

1−
∑
s′∈S

γ(s′)
)
S(∆k) .

Further, note that

∑
s′∈S

γ(s′) > min
π,π′

∑
s′∈S

min{P (s′|s, π(s)), P (s′|s, π′(s))}

> min
s1,s2∈S

min
π,π′

∑
s′∈S

min{P (s′|s1, π(s1)), P (s′|s2, π
′(s2))}

�

Likewise, this lemma generalizes to multi-steps. To this end, we introduce the matrix P k′:k
? (s′|s) such that

(P k′:k
? f)(s) =

∑
s′∈S P

k′:k
? (s′|s)f(s′), and for an arbitrary stationary policy π, we introduce P k

π its k-step
transition matrix.

Lemma 6.6 (Multi-steps value contraction of the Span)

∀k ∈ N,∀k′ < k, S(∆k) 6
(

1−
∑
s′∈S

min{P k′+2:k+1
? (s′|s), P k′+1:k

? (s′|s)}
)
S(∆k′) 6

(
1−γk′−k)S(∆k′) ,

where we introduced s = arg maxs∈S(P k′+2:k+1
? ∆k′)(s), s = arg mins∈S(P k′+1:k

? ∆k′)(s) and finally

γk′−k = min
s1,s2∈S

min
π,π′

∑
s′∈S

min{P k−k′
π (s′|s1), P k−k′

π (s′|s2)} .

Another closely related property is the following one:
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Lemma 6.7 (Policy contraction of the Span) For any policy π and function f , it holds

S(Pπf) 6
1

2
‖P (·|s, π(s))− P (·|s, π(s))‖1S(f) 6 (1− γπ)S(f) ,

where we introduced s = arg maxs∈S(Pπf)(s), s = arg mins∈S(Pπf)(s) and finally

γπ = min
s1,s2

∑
s′∈S

min{P (s′|s1, π(s1)), P (s′|s2, π(s2))} .

Likewise, S(P k
π f) 6

1

2
‖P k

π (·|s)− P k
π (·|s)‖1S(f) 6 (1− γπk )S(f) ,

where we introduced s = arg maxs∈S(P k
π f)(s), s = arg mins∈S(P k

π f)(s) and finally

γπk = min
s1,s2

∑
s′∈S

min{P k
π (s′|s1), P k

π (s′|s2)} .

2 REINFORCEMENT LEARNING IN THE AVERAGE-REWARD CRITERION

The previous section recalls some fundamental principles of MDP, mostly focusing on the span semi-norm and
contraction properties. When the transition and reward functions are unknown, learning in a single-stream of
interactions in order to minimize the regret is challenging. Similarly to the multi-armed bandit setup, lower-
bounds have been derived using a change of measure argument for specific sets of MDPs such as ergodic
MDPs, see Burnetas and Katehakis (1997) or Graves and Lai (1997). This is achieved first thanks to the form
of the pseudo-regret

∑
s,a E[NT (s, a)]ϕa(s) that resembles that of multi-armed bandit problems but with a

different gap function ϕa(s), second that in an ergodic MDP, lim infT→∞ E[NT (s)]/T > 0 for every strategy,
which enables to asymptotically replace the possibly complicated random variables NT (s) with a constant T .
However, informative lower bounds in full generality are still missing. Further, one could argue that the existing
lower bounds are weak in some sense.

Despite these holes in the RL literature, strategies have been derived to address regret minimization in
average-reward MDPs. One of the most promising one is the UCRL2 strategy introduced in Auer et al. (2009),
following intuitions from the multi-armed bandit literature. However, the initial version and analysis of the
strategy is a little crude. We provide in Maillard et al. (2014), and Talebi and Maillard (2018) a refinement of
one of the key steps of the proofs.

UCRL2 We now briefly present the UCRL2 algorithm from Auer et al. (2009). At a high level, UCRL2
follows the optimistic principle by trying to compute π+

t = arg max
π:S→A

max{gMπ :M∈Mt} where gMπ is the

average-gain for policy π in MDPM, and

Mt =

{
(S,A, p̃, ν̃) : ∀(s, a) ∈ S×A, |µNt(s,a)(s, a)− µ̃(·|s, a)| 6 b̃Ht (s, a,

δ

2SA
)

and ‖pNt(s,a)(·|s, a)− p̃(·|s, a)‖1 6 b̃Wt (s, a,
δ

2SA
)

}
.
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Here µn(s, a) denotes the empirical mean built using n i.i.d. rewards from ν(s, a), pn(·|s, a) is the empirical
distribution built using n i.i.d. observations from p(·|s, a), Nt(s, a) is the total number of observations of state
action pair (s, a) up to time t, and finally b̃Ht and b̃Wt are the two functions

b̃Ht (s, a, δ)=

√
3.5 log(t/δ)

Nt(s, a)∨1
, b̃Wt (s, a, δ)=

√
7S log(t/Sδ)

Nt(s, a)∨1
,

respectively based on a Hoeffding and Weissman inequality where ∨ denotes the max operator.
The computation of π+

t is achieved approximately by an Extended Value Iteration (EVI) algorithm that
builds a near-optimistic policy π+

t and MDPM+
t such that gM

+
t

π+
t

> maxπ,M∈Mt g
M
π − 1√

t
.

Finally, UCRL2 does not recompute π+
t at each time step. Instead, it proceeds in internal episodes k = 0, . . .

and computes π+
t only at the starting time tk of each episode, defined as t1 = 1 and for all k > 1,

tk = min
{
t>tk−1;∃s, a : ntk:t(s, a)>max{Ntk(s, a), 1}

}
,

where nt1:t2(s, a) denotes the number of observations of state-action pair (s, a) between time t1 and t2.

Remark 6.1 The bounds b̃H and b̃W were obtained from simple union bounds with a slightly loose analysis.
However, we know from the Laplace method that ∀(s, a) ∈ S × A and any [0, 1]-bounded distribution with
mean µ(s, a):

P
(
∃t ∈ N |µNt(s,a)(s, a)− µ(s, a)| > bHNt(s,a)(δ)

)
6 δ ,with bHn (δ)=

√
(1+ 1

n
) log(2

√
n+1/δ)

2n
.

Further, for any discrete distribution p(·|s, a) on S with support of size K 6 |S|

P
(
∃t∈N ‖pNt(s,a)(·|s, a)−p(·|s, a)‖1 > bWNt(s,a)(δ)

)
6δ ,with bWn (δ)=

√
2(1+ 1

n
) log

(√
n+12K−2

δ

)
n

.

This suggests to replace bHt (s, a, δ
2SA

) with bHNt(s,a)(
δ

2SA
), and bWt (s, a, δ

2SA
) with bWNt(s,a)(

δ
2SA

) in the definition
of Mt, to ensure that the true MDP belongs to Mt for all time steps with probability higher than 1− δ.

There is also no reason to use the ‖ · ‖1 distance to control the transition probabilities. Other norms, or
simply using individual Bernstein bounds for each element of the transition vector, or a KL contrast between
the distributions makes more sense. We have explored such questions in Maillard et al. (2014) and Talebi and
Maillard (2018).

2.1 A distribution-norm and its dual
In this section, we further question the use of the ‖ · ‖1 norm. In Machine Learning (ML), norms often play a
crucial role in obtaining performance bounds. One typical example is the following. Let X be a measurable
space equipped with an unknown probability measure ν ∈ M1(X ) with density p. Based on some procedure,
an algorithm produces a candidate measure ν̃ ∈ M1(X ) with density p̃. One is then interested in the loss with
respect to a continuous function f . It is natural to look at the mismatch between ν and ν̃ on f . That is

(ν − ν̃, f) =

∫
X
f(x)(ν − ν̃)(dx) =

∫
X
f(x)(p(x)− p̃(x))dx .

Such a situation appears in the context of Markov decision processes, due to the Bellman and Poisson
equations. Indeed,

bπ(s) + gπ(s) = µπ(s) +

∫
S
Pπ(s′|s)bπ(s′)ds′ .
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Hence, we are naturally led towards controlling terms such as (ν − ν̃, bπ), for ν = Pπ(·|s) and its estimate ν̃.
A typical bound on this quantity is obtained by applying a Hölder inequality to f and p − p̃, which gives

(ν − ν̃, f) 6 ‖p − p̃‖1‖f‖∞ . Assuming a bound is known for ‖f‖∞, this inequality can be controlled with a
bound on ‖p − p̃‖1. When X is finite and p̃ is the empirical distribution p̂n estimated from n i.i.d. samples of
p, results such as Weissman et al. (2003) can be applied to bound this term with high probability.

However, in this learning problem, what matters is not f but the way f behaves with respect to ν. Thus,
trying to capture the properties of f via the distribution-free ‖f‖∞ bound is not satisfactory. So we propose,
instead, a norm ‖ · ‖ν driven by ν. A well-behaving f will have a small norm ‖f‖ν , whereas a badly-behaving
f will have a large norm ‖f‖ν . Every distribution has a natural norm associated with it that measures the
quadratic variations of f with respect to ν. This quantity is at the heart of many key results in mathematical
statistics, and is formally defined by

‖f‖ν =

√∫
X

(
f(x)− Eνf

)2

ν(dx) . (6.1)

To get a norm, we restrict C(X ) to the space of continuous functions Eν = {f ∈ C(X ) : ‖f‖ν <∞, supp(ν) ⊂
supp(f),Eνf = 0} .We then define the corresponding dual space in a standard way by E?ν = {µ : ‖µ‖?,ν <∞}
where

‖µ‖?,ν = sup
f∈Eν

∫
x
f(x)µ(dx)

‖f‖ν
.

Interestingly, this optimization problem has a fully closed form expression. Also, note that for f ∈ Eν , using
the fact the ν(X ) = ν̃(X ) = 1 and that x→ f(x)− Eνf is a zero mean function, we immediately have

(ν − ν̃, f) = (ν − ν̃, f − Eνf)

6 ‖p− p̃‖?,ν‖f − Eνf‖ν . (6.2)

The key difference with the generic Hölder inequality is that ‖ · ‖ν is now capturing the behavior of f with
respect to ν, as opposed to ‖ · ‖∞. Conceptually, using a quadratic norm instead of an L1 norm, as we do here,
is analogous to moving from Hoeffding’s inequality to Bernstein’s inequality in the framework of concentration
inequalities.

We are interested in situations where ‖f‖ν is much smaller than ‖f‖∞. That is, f is well-behaving with
respect to ν. In such cases, we can get an improved bound ‖p − p̃‖?,ν‖f − Eνf‖ν instead of the best possible
generic bound infc∈R ‖p− p̃‖1‖f − c‖∞.

Simply controlling either ‖p − p̃‖?,ν (respectively ‖p − p̃‖1) or ‖f‖ν (respectively ‖f‖∞) is not enough.
What matters is the product of these quantities. For our choice of norm, we show that ‖p− p̃‖?,ν concentrates
at essentially the same speed as ‖p− p̃‖1, but ‖f‖∞ is typically much larger than ‖f‖ν for the typical functions
met in the analysis of MDPs. We do not claim that the norm defined in equation (6.1) is the best norm that
leads to a minimal ‖p− p̃‖?,ν‖f − Eνf‖ν , but we show that it is an interesting candidate.

We proceed in two steps. First, we design a concentration bound for ‖p − p̂n‖?,ν that is not much larger
than the Weissman et al. (2003) bound on ‖p− p̂n‖1. (Note that ‖p− p̂n‖?,ν must be larger than ‖p− p̂n‖1 as it
captures a refined property). Second, we consider RL in an MDP where p represents the transition kernel of a
station-action pair and f represents the value (bias) function of the MDP for a policy. The value function and
p are strongly linked by construction, and the distribution-norm helps us capture their interplay. We show in
Maillard et al. (2014) that common benchmark MDPs have optimal value functions with small ‖·‖ν norm. This
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naturally introduces a new way to capture the hardness of MDPs, besides the diameter (Jaksch et al., 2010) or
the span (Bartlett and Tewari, 2009). Our formal notion of MDP hardness is summarized in Definitions 6.15
and 6.18, for discounted and undiscounted MDPs, respectively:

Definition 6.15 (Hardness of discounted MDP) Let M = (S,A, r, p, γ) be a γ-discounted MDP, with reward
function r and transition kernel p. We denote V π the value function corresponding to a policy π (Puterman,
1994). We define the hardness of policy π in MDP M by

Cπ
M = max

s,a∈S×A
‖V π‖p(·|s,a) .

Definition 6.18 (Hardness of undiscounted MDP) Let M = (S,A, r, p) be an undiscounted MDP, with re-
ward function r and transition kernel p. We denote by hπ the bias function for policy π (Puterman, 1994,
Jaksch et al., 2010). We define the hardness of policy π in MDP M by the quantity

Cπ
M = max

s,a∈S×A
‖hπ‖p(·|s,a) .

In the discounted setting with bounded rewards in [0, 1], V π 6 1
1−γ and thus Cπ

M 6
1

1−γ as well. In the
undiscounted setting, then ‖hπ‖p(·|s,a) 6 S(hπ), and thus Cπ

M 6 S(hπ). We define the class of C-“hard” MDPs

by MC =

{
M : Cπ∗

M 6 C

}
. That is, the class of MDPs with optimal policy having a low hardness, or for

short, MDPs with low hardness.
Important note It may be tempting to think that, since the above definition captures a notion of variance,

an MDP that is very noisy will have a high hardness. However this reasoning is incorrect. The hardness
of an MDP is not the variance of a roll-out trajectory, but rather captures the variations of the value (or the
bias value) function with respect to the transition kernel. For example, consider a fully connected MDP with
transition kernel that transits to every state uniformly at random, but with a constant reward function. In this
trivial MDP, Cπ

M = 0 for all policies π, even though the MDP is extremely noisy because the value function
is constant. In general MDPs, the hardness depends on how varying the value function is at the possible next
states and on the distribution over next states. Note also that we use the term hardness rather than complexity
to avoid confusion with such concepts as Rademacher or VC complexity.

2.2 A transportation lemma for MDPs

In Filippi (2010), the authors have introduced another variant based on a KL contrast instead of a ‖ · ‖1 norm,
thus leading to an algorithm called KL-UCRL2. Unfortunately, the original analysis of KL-UCRL2was however
not showing any improvement over that of UCRL2. In Talebi and Maillard (2018), we revisit this analysis in
order to make appear more explicitly the benefit of using the KL divergence instead of the ‖ · ‖1 distance. The
fundamental result on which this improvement is based is a transportation lemma, that we recall now. We refer
to the full paper for more details and the results one can obtain for KL-UCRL2.

We now recall a powerful result, directly related to duality formulas for the KL divergence, known as the
transportation lemma. This gives an alternative to the bound (Q− P, f), for two probability measures Q,P .
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Lemma 6.8 (Transportation Lemma) For any function f , let us introduce ϕf : λ 7→
logEP exp(λ(f(X) − EP [f ])). Whenever ϕf is defined on some possibly unbounded interval 0 ∈ I ,
define its dual ϕ?,f (x) = supλ∈I λx− ϕf (λ). Then it holds

∀Q� P, EQ[f ]− EP [f ] 6 ϕ−1
+,f (KL(Q,P )) whereϕ−1

+,f (t) = inf{x > 0 : ϕ?,f (x) > t}
∀Q� P, EQ[f ]− EP [f ] > ϕ−1

−,f (KL(Q,P )) whereϕ−1
−,f (t) = sup{x 6 0 : ϕ?,f (x) > t} .

We apply it to f being the value function, P a local transition p(·|s, a) and Q a plausible candidate p̃(·|s, a).

Proof :

Let us recall the fundamental equality

∀λ ∈ R, logEP exp(λ(X − EP [X]) = sup
Q�P

[
λ
(
EQ[X]− EP [X]

)
− KL(Q,P )

]
.

In particular, we obtain on the one hand that

∀Q� P, EQ[f ]− EP [f ] 6 min
λ∈R+

ϕf (λ) + KL(Q,P )

λ
.

Since ϕf (0) = 0, then the right hand side quantity is non-negative. Let us call it u. Then, we note
that for any t such that u > t > 0, then by construction of u, it holds KL(Q,P ) > ϕ?,f (t). Thus,
{t > 0 : ϕf,?(t) > KL(Q,P )} = (u,∞) and thus u = ϕ−1

+,f (KL(Q,P )).
On the other hand, it holds

∀Q� P, EQ[f ]− EP [f ] > max
λ∈R−

ϕf (λ) + KL(Q,P )

λ
.

Since ϕ(0) = 0, then the right hand side quantity is non-positive. Let us call it v. Then, we note
that for any t such that v 6 t 6 0, then by construction of v, it holds KL(Q,P ) > ϕ?,f (t). Thus,
{t 6 0 : ϕ?,f (t) > KL(Q,P )} = (−∞, v) and thus v = ϕ−1

−,f (KL(Q,P )).
�

Corollary 6.4 (Transportation and KL) Assume that f is such that VP [f ] and S(f) = maxx f(x) −
minx f(x) are finite. Then it holds

∀Q� P, EQ[f ]− EP [f ] 6
√

2VP [f ]KL(Q,P ) +
2S(f)

3
KL(Q,P ) ,

∀Q� P, EP [f ]− EQ[f ] 6
√

2VP [f ]KL(Q,P ) .

In particular, this shows that it is enough to control the Kullback-Leibler divergence between a distribution
and its empirical counter part in order to derive immediately a concentration result for the empirical mean of
virtually any function (with finite variance and span).
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Proof :

Indeed, by a standard Bernstein argument, it holds

∀λ ∈ [0,
3

S(f)
), ϕf (λ) 6

VP [f ]

2

λ2

1− S(f)λ
3

,

∀x > 0, ϕ?,f (x) >
x2

2(VP [f ] + S(f)
3
x)
.

Then, a direct computation shows that

ϕ−1
+,f (t) 6

S(f)

3
t+

√
2tVP [f ] +

(S(f)

3
t
)2

,

ϕ−1
−,f (t) >

S(f)

3
t−
√

2tVP [f ] +
(S(f)

3
t
)2

.

Combining these two bounds, we obtain that

EQ[f ]− EP [f ] 6

√
2VP [f ]KL(Q,P ) +

(S(f)

3

)2

KL(Q,P )2 +
S(f)

3
KL(Q,P ) ,

EP [f ]− EQ[f ] 6

√
2VP [f ]KL(Q,P ) +

(S(f)

3

)2

KL(Q,P )2 − S(f)

3
KL(Q,P ) .

We conclude by using that
√
a+ b 6

√
a+
√
b for non-negative a, b. �

2.3 Structured MDPs
We close this chapter with an advocacy for studying a specific notion of structure in MDPs, that is especially
efficient at reducing the cost of learning as it appears in most typical MDPs. More precisely, structure is helpful
when observations gathered on a transition can be transfered to another one. We introduce the following notion
that enables to capture such a phenomenon in great generality.

Definition 6.21 (Similar state-action pairs) The pair (s′, a′) is ε-similar to the pair (s, a), for ε = (εp, εµ)∈
R2

+, if

‖p(σs,a(·)|s, a)− p(σs′,a′(·)|s′, a′)‖1 6 εp , (similar profile)
and |µ(s, a)− µ(s′, a′)| 6 εµ , (similar rewards)

where σs,a : {1, . . . , S} → S indexes a permutation of states such that p(σs,a(1)|s, a) > p(σs,a(2)|s, a) >
. . . > p(σs,a(S)|s, a). We call it a profile mapping (it may not be unique).

Remark 6.2 (0, 0)-similarity is an equivalence relation over S × A. It thus induces a canonical partition of
S ×A, which we denote by C.
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Grid-world Figure 6.1 Figure 6.2 Figure 6.3 Figure 6.4
SA 84 800 736 ∼ 104

|C| 6 6 7 7

We now show that in typical grid-world MDPs, the number of classes of state-action pairs using Def-
inition 6.21 stays small even for large SA. We consider to this end a grid-world MDP with four actions
a ∈ {u, d, l, r}. Playing action a = u moves the current state up with probability 0.8, does not change the
current state with probability 0.1, and moves left or right with same probability 0.05 (it never goes down).
When the resulting state is a wall, the distribution is modified: the probability mass is reported on the current
state. Other actions have similar effects. Finally, the goal-state with reward 1 is put in the bottom-right corner
of the MDP. The table summarizes the size of the state-action space as well as the number of classes.
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Figure 6.1: Left: Two-room grid-world (left) with walls in black, and goal state in yellow. Right: equivalence
classes for state-action pairs (one color per class).

Figure 6.2: Left: Four-room grid-world (left) with walls in black, and goal state in yellow. Right: equivalence
classes for state-action pairs (one color per class).
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Figure 6.3: Left: A more complex grid-world (left) with walls in black, and goal state in yellow. Right:
equivalence classes for state-action pairs (one color per class).

Figure 6.4: Left: A more complex grid-world (left) with walls in black, and goal state in yellow. Right:
equivalence classes for state-action pairs (one color per class).
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Other notions Other notions of similarity have been introduced in the RL literature. However, they do not
scale well compared to the concept we consider here (that is, they produce a number of classes that is large
when SA increases). For instance, in Ortner (2013), a partition S1, . . .Sn of the state space S is considered to
define an aggregated MDP, in case it satisfies

∀s, s′ ∈ Si, ∀a ∈ A, µ(s, a) = µ(s′, a) and ∀j,
∑
s′′∈Sj

p(s′′|s, a) =
∑
s′′∈Sj

p(s′′|s′, a) .

This readily prevents any two states s, s′ such that p(·|s, a) and p(·|s′, a) have disjoint support from being in
the same set Si. Thus, since in grid-world MDP where transitions are local, the number of pairs with disjoint
support is (about linearly) increasing with S, this implies a potentially large number of classes for grid-worlds
with many states. A similar criticism can be formulated for Anand et al. (2015), even though it considers sets
of state-action instead of states only, thus slightly reducing the total number of classes.

Usage Interestingly, the notion of similarity can be used directly to benefit a reinforcement learning strategy
such as UCRL2, by combining observations from similar state-actions pairs in order to produce more accurate
estimates. Indeed the typical scaling of the regret of UCRL2 with S,A, T and K (K bounding the size of the
support of transitions) is O(

√
SAKT ), up to logarithmic factors. This can be reduced to O(

√
CKT ) when

the structure is known (up to logarithmic factors). We have investigated such an approach in a recent work
that shows the regret can be greatly reduced when considering there is such a structure, and that, perhaps more
surprisingly, it is possible to design a strategy that approximately maintains such performances even without
the knowledge of the structure beforehand.
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This chapter corresponds to the article Maillard (2018).

1 MULTI-ARMED BANDIT SETUP AND NOTATIONS

Let us consider a stochastic multi-armed bandit problem (A, ν), where A is a finite set of cardinality A ∈ N
and ν = (νa)a∈A is a set of probability distribution over R indexed by A. The game is sequential and goes as
follows:

At each round t ∈ N, the player picks an arm at (based on her past observations) and receives a stochastic
payoff Yt drawn independently at random according to the distribution νat . She only observes the payoff Yt,
and her goal is to maximize her expected cumulated payoff,

∑
t=1 Yat , over a possibly unknown number of

steps.

Although the term multi-armed bandit problem was probably coined during the 60’s in reference to the
casino slot machines of the 19th century, the formulation of this problem is due to Herbert Robbins – one of
the most brilliant mind of his time, see Robbins (1952) and takes its origin in earlier questions about optimal
stopping policies for clinical trials, see Thompson (1933, 1935), Wald (1945). We refer the interested reader
to Robbins (2012) regarding the legacy of the immense work of H. Robbins in mathematical statistics for
the sequential design of experiments, compiling his most outstanding research for his 70’s birthday. Since
then, the field of multi-armed bandits has grown large and bold, and we humbly refer to the introduction of
Cappé et al. (2013) for key historical aspects about the development of the field. Most notably, they include
first the introduction of dynamic allocation indices (a.k.a. Gittins indices, Gittins (1979)) suggesting that an
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optimal strategy can be found in the form of an index strategy (that at each round selects an arm with highest
"index"); second, the seminal work of Lai and Robbins (1985a) that shows indexes can be chosen as "upper
confidence bounds" on the mean reward of each arm, and provided the first asymptotic lower-bound on the
achievable performance for specific distributions; third, the generalization of this lower bound in the 90’s to
generic distributions by Burnetas and Katehakis (1997) (see also the recent work from Garivier et al. (2016)) as
well as the asymptotic analysis by Agrawal (1995) of generic classes of upper-confidence-bound based index
policies and finally Auer et al. (2002) that popularized a simple sub-optimal index strategy termed UCB and
most importantly opened the quest for finite-time, as opposed to asymptotic, performance guarantees. For the
purpose of this chapter, we now remind the formal definitions and notations for the stochastic multi-armed
bandit problem, following Cappé et al. (2013).

Quality of a strategy For each arm a ∈ A, let µa be the expectation of the distribution νa, and let a? be any
optimal arm in the sense that

a? ∈ Argmax
a∈A

µa .

We write µ? as a short-hand notation for the largest expectation µa? and denote the gap of the expected payoff
µa of an arm a to µ? as ∆a = µ?−µa. In addition, we denote the number of times each arm a is pulled between
the rounds 1 and T by Na(T ),

Na(T )
def
=

T∑
t=1

I{at=a} .

Definition 7.3 (Expected regret) The quality of a strategy is evaluated using the notion of expected regret (or
simply, regret) at round T > 1, defined as

RT
def
= E

[
Tµ? −

T∑
t=1

Yt

]
= E

[
Tµ? −

T∑
t=1

µat

]
=
∑
a∈A

∆a E
[
Na(T )

]
, (7.3)

where we used the tower rule for the first equality. The expectation is with respect to the random draws of the Yt
according to the νat and to the possible auxiliary randomization introduced by the decision-making strategy.

2 BOUNDARY CROSSING PROBABILITIES FOR THE GENERIC KL-UCB STRATEGY.

The first appearance of the KL-ucb strategy can be traced at least to Lai (1987) although it was not given
an explicit name at that time. It seems the strategy was forgotten after the work of Auer et al. (2002) that
opened a decade of intensive research on finite-time analysis of bandit strategies and extensions to variants of
the problem (Audibert et al. (2009), Audibert and Bubeck (2010), see also Bubeck et al. (2012) for a survey
of relevant variants of bandit problems), until the work of Honda and Takemura (2010) shed a novel light on
the asymptotically optimal strategies. Thanks to their illuminating work, the first finite-time regret analysis of
KL-ucb was obtained by Maillard et al. (2011) for discrete distributions, soon extended to handle exponential
families of dimension 1 as well, in the unifying work of Cappé et al. (2013). However, as we will see in
this paper, we should all be much in debt of the outstanding work of T.L. Lai. regarding the analysis of this
index strategy, both asymptotically and in finite-time, as a second look at his papers shows how to bypass the
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limitations of the state-of-the-art regret bounds for the control of boundary crossing probabilities in this context
(see Theorem 3, Maillard (2018)). Actually, the first focus of the present chapter is not on stochastic bandits
but boundary crossing probabilities, and the bandit setting that we provide here should be considered only as
giving a solid motivation for the contribution of this paper.

Let us now introduce formally the KL-ucb strategy. We assume that the learner is given a family D ⊂
P(R) of probability distributions that satisfies νa ∈ D for each arm a ∈ A, where P(X ) denotes the set of
all probability distributions over the set X . For two distributions ν, ν ′ ∈ P(R), we denote by KL(ν, ν ′) their
Kullback-Leibler divergence and by E(ν) and E(ν ′) their respective expectations (this operator is denoted by
E while expectations of a function f with respect to underlying randomizations are referred to as E[f ], or
EX∼ν [f(X)] to make explicit the law of the random variable X).

The generic form of the algorithm of interest in this paper is described as Algorithm 4. It relies on two
parameters: an operator ΠD (in spirit, a projection operator) that associates with each empirical distribution
ν̂a(t) an element of the model D; and a non-decreasing function f , which is typically such that f(t) ≈ log(t).

At each round t > K + 1, a upper confidence bound Ua(t) is associated with the expectation µa of the
distribution νa of each arm; an arm at+1 with highest upper confidence bound is then played.

Algorithm 4 The KL-ucb algorithm (generic form).

Parameters: An operator ΠD : P(R)→ D; a non-decreasing function f : N→ R
Initialization: Pull each arm of {1, . . . , K} once

for each round t+ 1, where t > K, do
compute for each arm a the quantity

Ua(t) = sup

{
E(ν) : ν ∈ D and KL

(
ΠD
(
ν̂a(t)

)
, ν
)
6

f(t)

Na(t)

}
;

pick an arm at+1 ∈ arg max
a∈A

Ua(t).

In the literature, another variant of KL-ucb is introduced where the term f(t) is replaced with f(t/Na(t)).
We refer to this algorithm as KL-ucb+. While KL-ucb has been analyzed and shown to be provably near-
optimal, the variant KL-ucb+ has not been analyzed yet.

Alternative formulation of KL-ucb We wrote the KL-ucb algorithm so that the optimization problem
resulting from the computation of Ua(t) is easy to handle. Now, under some assumption, one can rewrite this
term, in an equivalent form more suited for the analysis. We refer to Cappé et al. (2013):

Assumption 7.1 There is a known interval I ⊂ R with boundary µ− 6 µ+, for which each model D = Da of
probability measures is included in P(I) and such that ∀ν ∈ Da,∀µ ∈ I \ {µ+},

inf
{
KL(ν, ν ′) : ν ′ ∈ Da s.t. E(ν ′) > µ

}
= min

{
KL(ν, ν ′) : ν ′ ∈ Da s.t. E(ν ′) > µ

}
.
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Lemma 7.1 (Rewriting) Under Assumption 7.1, the upper bound used by the KL-ucb algorithm satisfies
the following equality

Ua(t) = max

{
µ ∈ I \ {µ+} : Ka

(
Πa (ν̂a(t)) , µ

)
6

f(t)

Na(t)

}
where Ka(νa, µ?)

def
= inf

ν∈Da:E(ν)>µ?
KL(νa, ν) and Πa

def
= ΠDa .

Likewise, a similar result holds forKL-ucb+ but where f(t) is replaced with f(t/Na(t)).

Remark 7.1 For instance, this assumption is valid when Da = P([0, 1]) and I = [0, 1]. Indeed we can
replace the strict inequality with an inequality provided that µ < 1 by Honda and Takemura (2010), and
the infimum is reached by lower semi-continuity of the KL divergence and convexity and closure of the set
{ν ′ ∈ P([0, 1]) s.t. E(ν ′) > µ}.

Using boundary-crossing probabilities for regret analysis We continue this warming-up by restating a
convenient way to decompose the regret and make appear the boundary crossing probabilities that are at the
heart of this chapter. The following lemma is a direct adaptation from Cappé et al. (2013):

Lemma 7.2 (From Regret to Boundary Crossing Probabilities) Let ε ∈ R+ be a small constant such
that ε ∈ (0,min{µ? − µa , a ∈ A}). For µ, γ ∈ R, let us introduce the following set

Cµ,γ =
{
ν ′ ∈M1(R) : Ka(Πa(ν

′), µ) < γ
}
.

Then, the number of pulls of a sub-optimal arm a ∈ A by Algorithm KL-ucb satisfies

E
[
NT (a)

]
6 2 + inf

n06T

{
n0 +

T∑
n>n0+1

P
{
ν̂a,n ∈ Cµ?−ε,f(T )/n

}}

+
T−1∑
t=|A|

P
{
Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

? − ε
)
> f(t)

}
︸ ︷︷ ︸

Boundary Crossing Probability

.

Likewise, the number of pulls of a sub-optimal arm a ∈ A by Algorithm KL-ucb+ satisfies

E
[
NT (a)

]
6 2 + inf

n06T

{
n0 +

T∑
n>n0+1

P
{
ν̂a,n ∈ Cµ?−ε,f(T/n)/n

}}

+
T−1∑
t=|A|

P
{
Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

? − ε
)
> f(t/Na?(t))

}
︸ ︷︷ ︸

Boundary Crossing Probability

.
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Proof of Lemma 7.2:

The first part of this lemma for KL-ucb is proved in Cappé et al. (2013). The second part that is about
KL-ucb+can be proved straightforwardly following the very same lines. We thus only provide the main
steps here for clarity: We start by introducing a small ε > 0 that satisfies ε < min{µ? − µa , a ∈ A},
and then consider the following inclusion of events:

{
at+1 = a

}
⊆
{
µ? − ε < Ua(t) and at+1 = a

}
∪
{
µ? − ε > Ua?(t)

}
;

indeed, on the event
{
at+1 = a

}
∩
{
µ? − ε < Ua?(t)

}
, we have, µ? − ε < Ua?(t) 6 Ua(t) (where the

last inequality is by definition of the strategy). Moreover, let us note that{
µ?−ε < Ua(t)

}
⊆
{
∃ν ′∈D : E(ν ′) > µ?−ε and Na(t) Ka

(
Πa(ν̂a,Na(t)), µ

?−ε
)
6 f(t/Na(t))

}
,

and
{
µ?−ε > Ua?(t)

}
⊆
{
∃ν ′∈D : Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

?−ε
)
> f(t/Na?(t))

}
,

since Ka is a non-decreasing function in its second argument and Ka
(
ν, E(ν)

)
= 0 for all distributions

ν. Therefore, this simple remark leads us to the following decomposition

E
[
NT (a)

]
6 1 +

T−1∑
t=|A|

P
{
Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

? − ε
)
> f(t/Na?(t))

}

+
T−1∑
t=|A|

P
{
Na(t) Ka

(
Πa(ν̂a,Na(t)), µ

? − ε
)
6 f(t/Na(t)) and At+1 = a

}
.

The remaining steps of the proof of the result from Cappé et al. (2013), equation (10) can now be straight-
forwardly modified to work with f(t/Na(t)) instead of f(t), thus concluding this proof. �

Lemma 7.2 shows that two terms need to be controlled in order to derive regret bounds for the considered
strategy. The boundary crossing probability term is arguably the most difficult to handle and is the focus of the
next sections. The other term involves the probability that an empirical distribution belongs to a convex set,
which can be handled either directly as in Cappé et al. (2013) or by resorting to finite-time Sanov-type results
such as that of (Dinwoodie, 1992, Theorem 2.1 and comments on page 372), or its variant from (Maillard et al.,
2011, Lemma 1). For completeness, the exact result from Dinwoodie (1992) writes

Lemma 7.3 (Non-asymptotic Sanov’s lemma) Let C be an open convex subset of P(X ) such that
Λν(C) = infκ∈C KL(κ, ν) is finite. Then, for all t>1, Pν{ν̂t ∈ C} 6 exp

(
−tΛν(C)

)
where C is

the closure of C.
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Scope and focus of this work We focus on the setting of stochastic multi-armed bandits because this gives
a strong and natural motivation for studying boundary crossing probabilities. However, one should understand
that the primary goal of this work is to give credit to the work of T.L. Lai regarding the neat understanding
of boundary crossing probabilities and not necessarily to provide a regret bound for such bandit algorithms
as KL-ucb or KL-ucb+. Also, we believe that results on boundary crossing probabilities are useful beyond
the bandit problem in hypothesis testing. Thus, and in order to avoid obscuring the main result regarding
boundary crossing probabilities, we choose not to provide regret bounds here and to leave them as an exercise
for the interested reader; controlling the remaining term appearing in the decomposition of Lemma 7.2 is indeed
mostly technical and does not seem to require especially illuminating or fancy idea. We refer to Cappé et al.
(2013) for an example of bound in the case of exponential families of dimension 1.

High-level overview of the contribution We are now ready to explain the main results of this paper. For the
purpose of clarity, we provide them as an informal statement before proceeding with the technical material.

Our contribution is about the behavior the of the boundary crossing probability term for exponential families
of dimensionK when choosing the threshold function f(x) = log(x)+ξ log log(x). Our result reads as follows.
Theorem (Informal statement) Assuming that the observations are generated from a distribution that belongs
to an exponential family of dimension K that satisfies some mild conditions, then for any non-negative ε and
some class-dependent but fully explicit constants c, C (also depending on ε) it holds

P
{
Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

? − ε
)
> f(t)

}
6

C

t
log(t)K/2−ξe−c

√
f(t)

P
{
Na?(t) Ka?

(
Πa?(ν̂a?,Na? (t)), µ

? − ε
)
> f(t/Na?(t))

}
6

C

t
log(tc)K/2−ξ−1 ,

where the first inequality holds for all t and the second one for large enough t > tc where tc is class dependent
but explicit and "reasonably" small.

The rigorous statement is provided in Theorem 3 and Corollaries 1,2 in Maillard (2018). The main interest
of this result is that it shows how to tune ξ with respect to the dimension K of the family. Indeed, in order
to ensure that the probability term is summable in t, the bound suggests that ξ should be at least larger than
K/2− 1. The case of exponential families of dimension 1 (K = 1) is especially interesting, as it supports the
fact that both KL-ucb and KL-ucb+ can be tuned using ξ = 0 (and even negative ξ for KL-ucb). This was
observed in numerical experiments in Cappé et al. (2013) although not theoretically supported until now.

3 BOUNDARY CROSSING FOR K-DIMENSIONAL EXPONENTIAL FAMILIES

In this section, we now study the boundary crossing probability term appearing in Lemma 7.2 for a K-
dimensional exponential family E(F ; ν0). We first provide an overview of the existing results before detailing
our main contribution. As explained in the introduction, the key technical tools that enable to obtain the novel
results were already known three decades ago, and thus even though the novel result is impressive due to its
generality and tightness, it should be regarded as a modernized version of an existing, but almost forgotten
result, that enables to solve a few long-lasting open questions as a by-product.

3.1 Previous work on boundary-crossing probabilities
The existing results used in the bandit literature about boundary-crossing probabilities are restricted to a few
specific cases. For instance in Cappé et al. (2013), the authors provide the following control
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Theorem 7.1 (KL-ucb) In the case of canonical (that is F (x) = x) exponential families of dimension
K = 1, for a function f such that f(x) = log(x) + ξ log log(x), then it holds for all t > A

Pθ?
{t−A+1⋃

n=1

n Ka?
(
Πa?(ν̂a?,n), µ?

)
> f

(
t
)
∩ µa? > µ̂a?,n

}
6 edf(t) log(t)ee−f(t) .

Further, in the special case of distributions with finitely many K atoms, it holds for all t > A, ε > 0

Pθ?
{t−A+1⋃

n=1

nKa?
(
Πa?(ν̂a?,n), µ? − ε

)
> f

(
t
)}
6 e−f(t)

(
3e+ 2 + 4ε−2 + 8eε−4

)
.

In contrast in Lai (1988), the authors provide an asymptotic control in the more general case of exponential
families of dimension K with some basic regularity condition, as we explained earlier. We now restate this
beautiful result from Lai (1988) in a way that is suitable for a more direct comparison with other results. The
following holds:

Theorem 7.2 (Lai, 88) Let us consider an exponential family of dimension K. Define for γ > 0 the cone
Cγ(θ) = {θ′ ∈ RK : 〈θ′, θ〉 > γ|θ||θ′|}. Then, for a function f such that f(x) = α log(x) + ξ log log(x)
it holds for all θ† ∈ Θ such that |θ† − θ?|2 > δt, where δt → 0, tδt →∞ as t→∞,

Pθ?
{ t⋃
n=1

θ̂n ∈ Θρ ∩ nBψ(θ̂n, θ
†) > f

( t
n

)
∩ ∇ψ(θ̂n)−∇ψ(θ†) ∈ Cγ(θ† − θ?)

}
t→∞
= O

(
t−α|θ† − θ?|−2α log−ξ−α+K/2(t|θ† − θ?|2)

)
= O

(
e−f(t|θ†−θ?|2) log−α+K/2(t|θ† − θ?|2)

)
.

Discussion The quantity Bψ(θ̂n, θ
†) is the direct analog of Ka?

(
Πa?(ν̂a?,n), µ? − ε) in Theorem 7.1. Note

however that f(t/n) replaces the larger quantity f(t), which means that Theorem 7.2 controls a larger quantity
than Theorem 7.1, and is thus in this sense stronger. It also holds for general exponential families of dimension
K. Another important difference is the order of magnitude of the right hand side terms of both theorems.
Indeed, since edf(t) log(t)ee−f(t) = O( log2−ξ(t)+ξ log(t)1−ξ log log(t)

t
), Theorem 7.1 requires that ξ > 2 in order

that this term is o(1/t), and ξ > 0 for the second term of Theorem 7.1. In contrast, Theorem 7.2 shows that it
is enough to consider f(x) = log(x) + ξ log log(x) with ξ > K/2 − 1 to ensure a o(1/t) bound. For K = 1,
this means we can even use ξ > −1/2 and in particular ξ = 0, which corresponds to the value they recommend
in the experiments.

Thus, Theorem 7.2 improves in three ways over Theorem 7.1: it is an extension to dimensionK, it provides
a bound for f(t/n) (and thus for KL-ucb+) and not only f(t), and finally allows for smaller values of ξ. These
improvements are partly due to the fact Theorem 7.1 controls a concentration with respect to θ†, not θ?, which
takes advantage of the fact there is some gap when going from µ? to distributions with mean µ?− ε. The proof
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of Theorem 7.2 directly takes advantage of this, contrary to that of the first part of Theorem 7.1.
On the other hand, Theorem 7.2 is only asymptotic whereas Theorem 7.1 holds for finite t. Furthermore,

we notice two restrictions on the control event. First, it requires θ̂n ∈ Θρ, but we showed in the previous
section that this is a minor restriction. Second, there is the restriction to a cone Cγ(θ†− θ?) which simplifies the
analysis, but is a more dramatic restriction. This restriction cannot be removed trivially as it can be seen from
the complete statement of (Lai, 1988, Theorem 2) that the right hand-side blows up to∞ when γ → 0. As we
will see, it is possible to overcome this restriction by resorting to a smart covering of the space with cones, and
sum the resulting terms via a union bound over the covering. We quickly explain the way of proceeding in the
proof of Theorem 3 from Maillard (2018) in section 4.

Hint at proving the first part of Theorem 7.1 We believe it is interesting to give some hint about the proof
of the first part of Theorem 7.1, as it involves an elegant step, despite relying quite heavily on two specific
properties of the canonical exponential family of dimension 1. Indeed in the special case of the canonical one-
dimensional family (that is K = 1 and F1(x) = x ∈ R), F̂n = 1

n

∑n
i=1Xi coincides with the empirical mean

and it can be shown that Φ?(F ) is strictly decreasing on (−∞, µ?]. Thus for any F 6 µ?, it holds{
F̂n 6 µ? ∩ Φ?(F̂n) > Φ?(F )

}
⊂
{
F̂n 6 F

}
. (7.4)

Further, using the notations of Section 4, it also holds in that caseKa?
(
Πa?(ν̂a?,n), µ?

)
= Bψ(θ̂n, θ

?) = Φ?(F̂n),
where θ̂n = ψ̇−1(F̂n) is uniquely defined. A second non-trivial property that is shown in Cappé et al. (2013) is
that for all F 6 µ?, we can localize the supremum as

Φ?(F ) = sup

{
xF − Φ(x) : x < 0 and xF − Φ(x) > 0

}
. (7.5)

Armed with these two properties, the proof reduces almost trivially to the following elegant lemma:

Lemma 7.4 (Dimension 1) Consider a canonical one-dimensional family (that is K = 1 and F1(x) =
x ∈ R). Then, for all f such that f(t/n)/n is non-increasing in n,

Pθ?
{ ⋃
m6n<M

Bψ(θ̂n, θ
?) > f(t/n)/n ∩ F̂n 6 µ?

}
6 exp

(
− m

M
f(t/M)

)
.

The proof of this lemma is directly adapted from the proof of Theorem 7.1, and makes use the of Bregman
duality lemma 1.8. The first statement of Theorem 7.1 is obtained by a peeling argument, using m/M =
(f(t) − 1)/f(t). However this argument does not extend nicely to using f(t/n), which explains why there is
no statement regarding the threshold of KL-ucb+.

Proof of Lemma 7.4:

The proof goes as follows. First, we observe that:

Pθ?
{ ⋃
m6n<M

Bψ(θ̂n, θ
?) > f(t/n)/n ∩ F̂n 6 µ?

}
= Pθ?

{ ⋃
m6n<M

Φ?(F̂n) > f(t/n)/n ∩ F̂n 6 µ?
}

6 Pθ?
{ ⋃
m6n<M

Φ?(F̂n) > f(t/M)/M ∩ F̂n 6 µ?
}
.
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At this point note that if for all F = ∇ψ(θ) with mean µθ 6 µ?, it holds that Φ?(F ) < f(t/M)/M
then the probability of interest is 0 and we are done. In the other case, there exists an FM such that
Φ?(FM) = f(t/M)/M . We thus proceed with this case as follows

Pθ?
{ ⋃
m6n<M

Bψ(θ̂n, θ
?) > f(t/n)/n ∩ F̂n 6 µ?

}
6 Pθ?

{ ⋃
m6n<M

Φ?(F̂n) > Φ?(FM) ∩ F̂n 6 µ?
}

(a)

6 Pθ?
{ ⋃
m6n<M

F̂n 6 FM

}
(b)

6 Pθ?
{ ⋃
m6n<M

exp

(
λ

n∑
i=1

F (Xi)

)
> exp

(
nλFM

)}
6 Pθ?

{ ⋃
m6n<M

exp

( n∑
i=1

(
λF (Xi)− Φ(λ)

))
> exp

(
n[λFM − Φ(λ)]

)}
(c)

6 Pθ?
{

max
m6n<M

exp

( n∑
i=1

(
λF (Xi)− Φ(λ)

))
> exp

(
m[λFM − Φ(λ)]

)}
,

where (a) holds by (7.4), (b) holds for all λ < 0, and (c) for all λ < 0 such that λFM − Φ(λ) > 0.

Now, the process defined by Wλ,0 = 1 and Wλ,n = exp

(∑n
i=1

(
λF (Xi) − Φ(λ)

))
is a non-negative

super-martingale, since it holds

Eθ?
[

exp

( n∑
i=1

(
λF (Xi)− Φ(λ)

))∣∣∣∣Hn−1

]
= Wλ,n−1Eθ?

[
exp

(
λF (Xn)− Φ(λ)

)∣∣∣∣Hn−1

]
6 Wλ,n−1 exp

(
Φ(λ)− Φ(λ)

)
6 1 .

Thus, we deduce that for all λ < 0 such that λFM − Φ(λ) > 0

Pθ?
{ ⋃
m6n<M

Bψ(θ̂n, θ
?) > f(t/n)/n ∩ F̂n 6 µ?

}
6 exp

(
−m[λFM − Φ(λ)]

)
.

Since by (7.5) this is satisfied by the optimal λ for Φ?(FM), we thus deduce that

Pθ?
{ ⋃
m6n<M

Bψ(θ̂n, θ
?) > f(t/n)/n ∩ F̂n 6 µ?

}
6 exp

(
−mΦ?(FM)

)
= exp

(
− m

M
f(t/M)

)
.

�

This result has been extended to handle the boundary crossing probabilities simultaneously over all arms in
Magureanu et al. (2014), using the simple idea of "stochastic orderings" from Hoeffding (1963).
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4 MAIN ANALYSIS

We refer the interested reader to the journal article Maillard (2018) that explains these contributions in great
details, and only provide below the main ingredients of the proof.

At a high level, we closely follow the proof technique used in Lai (1988) for the proof of Theorem 7.2, in
order to prove the main result in (Maillard, 2018, Theorem 3). We precise further the constants, remove the
cone restriction on the parameter and modify the original proof to be fully non-asymptotic which, using the
technique of Lai (1988), forces us to make some parts of the proof a little more accurate.

Let us recall that we consider Θ and ρ such that θ? ∈ Θρ ⊂ Θ̊I . The proof is divided in four main steps that
we briefly present here for clarity:

In Section 4.1, we take care of the random number of pulls of the arm by a peeling argument. Simulta-
neously, we introduce a covering of the space with cones, which enables to later use arguments from proof of
Theorem 7.2.

In Section 4.2, we proceed with the first change of measure argument: taking advantage of the gap between
µ? and µ? − ε, we move from a concentration argument around θ? to one around a shifted point θ? −∆c.

In Section 4.3, we localize the empirical parameter θ̂n and make use of the second change of measure, this
time to a mixture of measures, following Lai (1988). Even though we follow the same high level idea, we
modified the original proof in order to better handle the cone covering, and also make all quantities explicit.

In Section 4.4, we apply a concentration of measure argument. This part requires a specific care since this
is the core of the finite-time result. An important complication comes from the "boundary" of the parameter
set, and was not explicitly controlled in the original proof from Lai (1988). A very careful analysis enables to
obtain the finite-time concentration result without further restriction.

We finally combine all these steps in Sections 4.5.

4.1 Peeling and cone covering

In this section, the intuition we follow is that we want to control the random number of pulls Na?(t) ∈ [1, t]
and, to this end, use a standard peeling argument, considering maximum concentration inequalities on time
intervals [bi, bi+1] for some b > 1. Likewise, since the term Ka?(Πa?(ν̂a?,n), µ? − ε) can be seen as an infimum
of some quantity over the set of parameters Θ, we use a covering of Θ in order to reduce the control of the
desired quantity to that of each cell of the cover. Formally, we show that
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Lemma 7.5 (Peeling and cone covering decomposition) For all β ∈ (0, 1), b > 1 and η ∈ [0, 1) it holds

Pθ?
{ ⋃

16n6t

θ̂n ∈ Θρ ∩ Ka?(Πa?(ν̂a?,n), µ? − ε) > f(t/n)/n
}

6
dlogb(βt+β)e−2∑

i=0

Cp,η,K∑
c=1

Pθ?
{ ⋃
bi6n<bi+1

Ec,p(n, t)
}

+

Cp,η,K∑
c=1

Pθ?
{ t⋃
n=bdlogb(βt+β)e−1

Ec,p(n, t)
}
,

where the event Ec,p(n, t) is defined by

Ec,p(n, t)
def
=

{
θ̂n ∈ Θρ ∩ F̂n ∈ Cp(θ?c ) ∩ Bψ(θ̂n, θ

?
c ) >

f(t/n)

n

}
. (7.6)

In this definition, (θ?c )c6Cp,η,K , constrained to satisfy θ?c /∈ B2(θ?, ηρε), parameterize a minimal covering
of ∇ψ(Θρ \ B2(θ?, ρε)) with cones Cp(θ?c ) := Cp(∇ψ(θ?c ); θ

? − θ?c ) (That is ∇ψ(Θρ \ B2(θ?, ρε)) ⊂
Cp,η,K⋃
c=1

Cp(θ?c )), where Cp(y; ∆) =

{
y′ ∈ RK : 〈y′ − y,∆〉 > p ‖y′ − y‖ ‖∆‖

}
. For all η < 1, Cp,η,K is of

order (1− p)−K and Cp,η,1 = 2, while Cp,η,K →∞ when η → 1.

4.2 Change of measure

In this section, we focus on one eventEc,p(n, t). The idea is to take advantage of the gap between µ? and µ?−ε,
that allows to shift from θ? to some of the θ?c from the cover. The key observation is to control the change of
measure from θ? to each θ?c . Note that θ?c ∈ (Θρ ∩ B2(θ?c , ρε)) \ B2(θ?c , ηρε) and that µθ?c > µ? − ε. We show
that

Lemma 7.6 (Change of measure) If n → nf(t/n) is non-decreasing, then for any increasing sequence
{ni}i>0 of non-negative integers it holds

Pθ?
{ni+1−1⋃

n=ni

Ec,p(n, t)
}
6 exp

(
− niα2 − χ

√
nif(t/ni)

)
Pθ?c
{ni+1−1⋃

n=ni

Ec,p(n, t)
}

where α = α(p, η, ε) = ηρε
√
vρ/2 and χ = pηρε

√
2v2

ρ/Vρ.
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4.3 Localized change of measure

In this section, we decompose further the event of interest in Pθ?c
{⋃

ni6n<ni+1
Ec,p(n, t)

}
in order to apply

some concentration of measure argument. In particular, since by construction

F̂n ∈ Cp(θ?c )⇔ 〈∆c,∇ψ(θ?c )− F̂n〉 > p ‖∆c‖
www∇ψ(θ?c )− F̂n

www ,

it is then natural to control
www∇ψ(θ?c )− F̂n

www. This is what we call localization. More precisely, we introduce
for any sequence {εt,i,c}t,i of positive values, the following decomposition

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t)
}
6 Pθ?c

{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ||∇ψ(θ?c )− F̂n|| < εt,i,c

}
+Pθ?c

{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩ ||∇ψ(θ?c )− F̂n|| > εt,i,c

}
. (7.7)

We handle the first term in (7.7) by another change of measure argument that we detail below, and the second
term thanks to a concentration of measure argument that we detail in section 4.4. We will show more precisely
that

Lemma 7.7 (Change of measure) For any sequence of positive values {εt,i,c}i>0, it holds

Pθ?c
{ ⋃
ni6n<ni+1

Ec,p(n, t) ∩
www∇ψ(θ̂n)−∇ψ(θ?c )

www < εt,i,c

}
6 αρ,p exp

(
− f

( t

ni+1−1

))
min

{
ρ2v2

ρ, ε̃
2
t,i,c,

(K + 2)v2
ρ

K(ni+1 − 1)Vρ

}−K/2
ε̃Kt,i,c .

where ε̃t,i,c = min{εt,i,c,Diam
(
∇ψ(Θρ) ∩ Cp(θ?c )

)
} and αρ,p = 2

ωp,K−2

ωp′,K−2

(
Vρ
v2
ρ

)K/2(
Vρ
vρ

)K
where p′ >

max{p, 2√
5
}, with ωp,K =

∫ 1

p

√
1− z2

K
dz for K > 0 and wp,−1 = 1.

4.4 Concentration of measure

In this section, we focus on the second term in (7.7), that is we want to control Pθ?c
{⋃

ni6n<ni+1
Ec,p(n, t) ∩

||∇ψ(θ?c ) − F̂n|| > εt,i,c

}
. In this term, εt,i,c should be considered as decreasing fast to 0 with i, and slowly

increasing with t. Note that by definition∇ψ(θ̂n) = F̂a?,n = 1
n

∑n
i=1 F (Xa?,i) ∈ RK is an empirical mean with

mean given by ∇ψ(θ?c ) ∈ RK and covariance matrix 1
n
∇2ψ(θ?c ). We thus resort to a concentration of measure

argument.
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Lemma 7.8 (Concentration of measure) Let εmax
c = Diam(∇ψ(Θρ∩Cc,p)) where we introduced the pro-

jected cone Cc,p = {θ∈Θ : 〈 ∆c

‖∆c‖ ,
∇ψ(θ?c )−∇ψ(θ)
||∇ψ(θ?c )−∇ψ(θ)||〉 > p}. Then, for all εt,i,c, it holds

Pθ?c
{ni+1−1⋃

n=ni

Ec,p(n, t) ∩ ||∇ψ(θ̂n)−∇ψ(θ?c )||>εt,i,c
}
6 exp

(
−

n2
i pε

2
t,i,c

2Vρ(ni+1−1)

)
I{εt,i,c6εc}.

4.5 Combining the different steps
In this part, we recap what we have shown so far. Combining the peeling, change of measure, localization and
concentration of measure steps of the four previous sections, we have shown that for all {εt,i,c}t,i, then

[1]
def
= Pθ?

{ ⋃
16n6t

θ̂n ∈ Θρ ∩ Ka?(Πa?(ν̂a?,n), µ? − ε) > f(t/n)/n
}

6
Cp,η,K∑
c=1

It−1∑
i=0

exp

(
− niα2 − χ

√
nif(t/ni)

)
︸ ︷︷ ︸

change of measure

[
exp

(
−

n2
i pε

2
t,i,c

2Vρ(ni+1−1)

)
I{εt,i,c 6 εc}︸ ︷︷ ︸

concentration

+αp,K exp
(
−f
( t

ni+1−1

))
min

{
ρ2v2

ρ, ε
2
t,i,c,

(K + 2)v2
ρ

K(ni+1−1)Vρ

}−K/2
εKt,i,c︸ ︷︷ ︸

localization + change of measure

]
,

where we recall that α = α(p, η, ε) = ηρε
√
vρ/2 and that the definition of ni is

ni =

{
bi if i < It

def
= dlogb(βt+ β)e

t+ 1 if i = It .

A simple rewriting leads to the form

[1] 6
Cp,η,K∑
c=1

It−1∑
i=0

exp

(
− niα2 − χ

√
nif(t/ni)

)[
αp,K exp

(
− f

( t

ni+1−1

))
×

max
{εt,i,c
ρvρ

, 1,

√
(ni+1−1)Vρ

1+2/K

εt,i,c
vρ

}K
+ exp

(
−

n2
i pε

2
t,i,c

2Vρ(ni+1−1)

)
I{εt,i,c 6 εc}

]
,

which suggests we use εt,i,c =
√

2Vρ(ni+1−1)f(t/(ni+1−1))

pn2
i

. Replacing this term in the above expression, we obtain

[1] 6
It−1∑
i=0

exp

(
− niα2 − χ

√
nif(t/ni)− f(t/(ni+1−1))

)
f(t/(ni+1−1))K/2 ×

Cp,η,K

(
αp,K max

{ 2Vρ
pρ2v2

ρb
i−1

, 1,
b2V 2

ρ

pv2
ρ(

1
2
+ 1
K

)

}K/2
+ 1
)
.
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At this point, using the somewhat crude lower bound bi > 1, it is convenient to introduce the constant

C(K, ρ, p, b, η) = Cp,η,K

(
αp,K max

{ 2bVρ
pρ2v2

ρ

, 1,
b2V 2

ρ

pv2
ρ(

1
2
+ 1
K

)

}K/2
+ 1
)
,

which leads to the final bound

Pθ?
{ ⋃

16n6t

θ̂n ∈ Θρ ∩ Ka?(Πa?(ν̂a?,n), µ? − ε) > f(t/n)/n
}

6 C(K, ρ, p, b, η)
It−1∑
i=0

exp

(
− niα2 − χ

√
nif(t/ni)− f(t/(ni+1−1))

)
f(t/(ni+1−1))K/2 .
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This chapter corresponds to the article Balle and Maillard (2017), written in collaboration with Borja Balle
(now at Amazon Research). We present below the main results only, and refer to the research article for further
details.

1 WEIGHTED AUTOMATA

Let Σ be a finite alphabet, Σ? denote the set of words of finite length on Σ, Σω the set of all infinite words on
Σ, and ε be the empty word. Given two sets of words U ,V ⊂ Σ? we write U · V to denote the set of words
{uv|u ∈ U , v ∈ V} obtained by concatenating all words in U with all words in V . Let P(Σω) be the set of
probability distributions over Σω. A member ρ ∈ P(Σω) is called a stochastic process and a random infinite
word ξ∼ρ is called a trajectory.

Definition 8.3 (Weighted Finite Automaton) A weighted finite automaton (WFA) with n states is a tuple A =
(α, β, {Aσ}σ∈Σ) where α, β ∈ Rn are vectors of initial and final weights, respectively, and Aσ ∈ Rn×n are
matrices of transition weights. A weighted automaton A computes a function fA : Σ? → R given by fA(w) =
α>Awβ where Aw = Aw1 · · ·Awt for w = w1 · · ·wt.

A WFA is minimal if there does not exist another WFA with less states computing the same function.
A WFA is irreducible if the labelled directed graph with n vertices obtained by adding a transition from

i to j with label σ whenever Aσ(i, j) 6= 0 is strongly connected. It can be shown that irreducibility implies
minimality, and that the set of irreducible WFAs is dense in the set of all WFA Balle et al. (2017).
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Definition 8.6 (Stochastic WFA) A WFA A = 〈α, β, {Aσ}〉 is stochastic (is a SWFA) if there exists a stochastic
process ρA such that for every w∈Σ?, fA(w) = P[ξ∈wΣω] where ξ∼ρA; that is, A provides a representation
for the probabilities of prefixes under the distribution of ρ. It is immediate to check that this implies that the
weights of A satisfy the properties:

(i) α>Axβ>0 for all x∈Σ?, and

(ii) α>Atβ=
∑
|w|=t α

>Awβ=1 for all t>0, where A=
∑

σ∈Σ Aσ.

Without loss of generality we assume that A is a minimal SWFA of dimension n, meaning that any SWFA
computing the same probability distribution than A must have dimension at least n. Importantly, the weights in
α, β, andAσ are not required to be non-negative in this definition. Nonetheless, it follows from these properties
that β is an eigenvector of A of eigenvalue 1.

Definition 8.9 (Probabilistic WFA) A probabilistic finite automaton (PFA) is a stochastic WFA A =
(α,1, {Aσ}) where the weights have a probabilistic interpretation. Namely, α is a probability distribution
over [n], Aσ(i, j) is the probability of emitting symbol σ and transitioning to state j starting from state i, and
1(i) = 1 for all i ∈ [n].

It is immediate to check that a PFA satisfying these conditions induces a stochastic process. However not all
stochastic WFA admit an equivalent PFA Jaeger (2000), Denis and Esposito (2008). If A is a PFA, then the
matrix A =

∑
σ∈Σ Aσ yields the Markov kernel A(i, j) = P[j | i] on the state space [n] after marginalizing

over the observations. It is easily checked that A is row-stochastic, and thus Aβ = β. Furthermore, for every
distribution α0 ∈ Rn over [n] we have α>0 A = α1 for some other probability distribution α1 over [n]. In the
case of PFA, irreducibility coincides with the usual concept of irreducibility of the Markov chain induced by
A.

Mixing and concentration Let ρ ∈ P(Σω) be a stochastic process and ξ = x1x2 · · · a random word drawn
from ρ. For 1 6 s < t 6 T and u ∈ Σs we let ρt:T (·|u) denote the distribution of xt · · ·xT conditioned on
x1 · · ·xs = u. With this notation we define the quantity

ηt(u, σ, σ
′) = ‖ρt:T (·|uσ)− ρt:T (·|uσ′)‖TV

for any u ∈ Σs−1, and σ, σ′ ∈ Σ. Then the η-mixing coefficients of ρ at horizon T are given by
ηs,t = sup

u∈Σs−1,σ,σ′∈Σ

ηt(u, σ, σ
′) .

Mixing coefficients are useful in establishing concentration properties of functions of dependent random vari-
ables. The Lipschitz constant of a function g : ΣT → R with respect to the Hamming distance is defined
as

‖g‖Lip = sup |g(w)− g(w′)| ,
where the supremum is taken over all pairs of words w,w′ ∈ ΣT differing in exactly one symbol. The fol-
lowing theorem proved in Chazottes et al. (2007), Kontorovich and Ramanan (2008) provides a concentration
inequality for Lipschitz functions of weakly dependent random variables.

Theorem 8.1 Let ρ ∈ P(Σω) and ξ = x1x2 · · · ∼ ρ. Suppose g : ΣT → R satisfies ‖g‖Lip 6 1 and let Z =

g(x1, . . . , xT ). Let ηρ = 1+max1<s<T

∑T
t=s+1 ηs,t, where ηs,t are the η-mixing coefficients of ρ at horizon

T . Then the following holds for any ε > 0:

Pξ [Z − EZ > εT ] 6 exp

(
−2ε2T

η2
ρ

)
,

with an identical bound for the other tail.
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Theorem 8.1 shows that the mixing coefficient ηρ is a key quantity in order to control the concentration
of a function of dependent variables. In fact, upper-bounding ηρ in terms of geometric ergodicity coefficients
of a latent variable stochastic process enables Kontorovich and Weiss (2014) to analyze the concentration of
functions of HMMs and Azizzadenesheli et al. (2016) to provide PAC guarantees for an RL algorithm for
POMDP based on spectral tensor decompositions. Our Lemma 8.1 uses a similar but more refined bounding
strategy that directly applies when the transition and observation processes are not conditionally independent.
Lemma 8.3 refines this strategy further to control ηρ for stochastic WFA (for which there may be no underlying
Markov stochastic process in general). To the best of our knowledge, this yields the first concentration results
for the challenging setting of stochastic WFA.

1.1 Geometry and mixing properties of PFA and SWFA
We recall below the traditional definition of mixing for PFA.

Lemma 8.1 (η-mixing for PFA) Let A be PFA and assume that it is (C, θ)-geometrically mixing in the
sense that for some constants C > 0, θ ∈ (0, 1) we have

∀t ∈ N, µA
t = sup

α,α′

‖αAt − α′At‖1

‖α− α′‖1

6 Cθt ,

where the supremum is over all probability vectors. Then we have ηρA 6 C/(θ(1− θ)).

Remark 8.1 A sufficient condition for the geometric control of µA
t is that A admits a spectral gap. In this case

θ can be chosen to be the modulus of the second eigenvalue |λ2(A)| < 1 of the transition kernel A.

This notion however does not apply nicely to SWFA. Before presenting the correct extension of the mixing
coefficients for SWFA, let us provide a short tour of the geometry of SWFA.

Cone norms of SWFA A minimal SWFA A is naturally associated with a proper (i.e. pointed, closed, and
solid) cone in K⊂Rn called the backward cone Jaeger (2000), and characterized by the following properties:
1) β∈K, 2) AσK⊆K for all σ∈Σ, and 3) α>v>0 for all v∈K. Condition 2) says that every transition matrix
Aσ leaves K invariant, and in particular the backward vector Awβ belongs to K for all w ∈ Σ?.

The vector of final weights β plays a singular role in the geometry of the state space of a SWFA. This follows
from facts about the theory of invariant cones Berman and Plemmons (1994) which provides a generalization
of the classical Perron–Frobenius theory of non-negative matrices to arbitrary matrices. We recall from Berman
and Plemmons (1994) that a norm on Rn can be associated with every vector in the interior of K. In particular,
we will take the norm associated with the final weights β ∈ K. This norm, denoted by ‖·‖β , is completely
determined by its unit ball Bβ = {v ∈ Rn : −β 6K v 6K β}, where u 6K v means v − u∈K. In particular,
‖v‖β = inf{r > 0 : v ∈ rBβ}. Induced and dual norms are derived from ‖·‖β as usual. When A is a PFA, one
can take K to be the cone of vectors in Rn with non-negative entries, in which case β = (1, . . . , 1) and ‖·‖β
reduces to ‖·‖∞ Berman and Plemmons (1994). The following result shows that ‖·‖β indeed provides the right
generalization to SWFA of the norm ‖·‖∞.

Lemma 8.2 (Cone-norm properties) For any w∈Σ?: (i)‖Awβ‖β61, and (ii)
wwα>Awwwβ,∗=α>Awβ.
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It is also natural to consider mixing coefficients for stochastic processes generated by SWFA in terms of
the dual β-norm. This provides a direct analog to Lemma 8.1 for PFA:

Lemma 8.3 (η-mixing for SWFA) Let A be SWFA and assume that it is (C, θ)-geometrically mixing in
the sense that for some C > 0, θ ∈ (0, 1),

µA
t = sup

α0,α1:α>0 β=α>1 β=1

wwα>0 At − α>1 Atwwβ,?

‖α0 − α1‖β,?
6 Cθt .

Then the η-mixing coefficient satisfies ηρA 6 C/(θ(1− θ)).

Remark 8.2 A sufficient condition for the geometric control of µA
t is that A admits a spectral gap. In this case

θ can be chosen to be the modulus of the second eigenvalue |λ2(A)|< 1 of A. Another sufficient condition is
that θ=γβ(A)<1, where

γβ(A) = sup

{
||Aν||β,?
||ν||β,?

: ν s.t. ||ν||β,? 6= 0, ν>β = 0

}
.

2 HANKEL MATRICES AND SPECTRAL LEARNING

The Hankel matrix of a function f : Σ?→R is the infinite matrix Hf ∈RΣ?×Σ? with entries Hf (u, v) = f(uv).
Given finite sets U ,V ⊂ Σ?, HU ,Vf ∈RU×V denotes the restriction of matrix Hf to prefixes in U and suffixes in
V .

Fliess’ Theorem Fliess (1974) states that a Hankel matrix Hf has finite rank n if and only if there exists
a WFA A with n states such that f = fA. This implies that a WFA A with n states is minimal if and only
if n = rank(HfA). The spectral learning algorithm for WFA Balle et al. (2014) provides a mechanism for
recovering such a WFA from a finite sub-block HU ,Vf of Hf such that: 1) ε∈U ∩V , 2) there exists a set U ′ such
that U = U ′∪

(⋃
σ∈Σ U ′σ

)
, 3) rank(Hf ) = rank(HU

′,V
f ). A pair (U ,V) that satisfies these conditions is called

a complete basis for f . If these conditions are satisfied, we say that the pair (U ,V) is a complete basis for f .
The pseudo-code of this algorithm is given below:

Algorithm 5 Spectral Learning for WFA
Input: number of states n, Hankel matrix HU ,V

1: Find U ′ such that U = U ′ ∪ (∪σ∈ΣU ′σ)
2: Let Hε = HU

′,V

3: Compute the rank n SVD Hε ≈ UDV >

4: Let hV = H{ε},V and take α = V >hV
5: Let hU ′ = HU

′,{ε} and take β = D−1U>hU ′
6: for σ ∈ Σ do
7: Let Hσ = HU

′σ,V and take Aσ = D−1U>HσV
8: A = (α, β, {Aσ})

The main strength of Algorithm 5 is its robustness to noise. Specifically, if only an approximation ĤU ,V

of the Hankel matrix is known, then the error between the target automaton A and the automaton Â learned
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from ĤU ,V can be controlled in terms of the error
wwwHU ,V − ĤU ,Vwww

2
; see Hsu et al. (2012) for a proof in the

HMM case and Balle (2013) for a proof in the general WFA case. These tedious but now standard arguments
readily reduce the problem of learning WFA via spectral learning to that of estimating the corresponding Hankel
matrix.

Classical applications of spectral learning assume one has access to i.i.d. samples from a stochastic process
ρ. In this setting one can obtain a sample S = (ξ(1), . . . , ξ(N)) containing N finite-length trajectories from ρ,
and use them to estimate a Hankel matrix ĤU ,VS as follows:

ĤU ,VS (u, v) =
1

N

N∑
i=1

I{ξ(i) ∈ uvΣω} .

If ρ = ρA for some stochastic WFA, then obviously ES[ĤU ,VS ] = HU ,VfA
and a large sample size N will provide

a good approximation ĤU ,VS of HU ,VfA
. Explicit concentration bounds for Hankel matrices bounding the errorwwwHU ,VfA

− ĤU ,VS

www
2

can be found in Denis et al. (2016).

In this chapter we consider the more challenging setup where we only have access to a sample S = {ξ} of
size N = 1 from ρ. In particular, we show it is possible to replace the empirical average above by a Césaro
average and still use the spectral learning algorithm to recover the transition matrices of a stochastic WFA.
To obtain a finite-sample analysis of this single-trajectory learning algorithm, we prove concentration results
for Césaro averages of Hankel matrices. Our analysis relies on concentration inequalities for functions of
dependent random variables, which depend on mixing properties of the underlying process.

2.1 Learning with Césaro Averages is Consistent
Let A = (α, β, {Aσ}) be a PFA computing a function fA : Σ?→ R and defining a stochastic process ρA ∈
P(Σω). For convenience we drop the subscript and just write f and ρ. Since we only have access to a single
trajectory ξ from ρ we cannot obtain an approximation of the Hankel matrix for f by averaging over multiple
i.i.d. trajectories. Instead, we compute Césaro averages over the trajectory ξ to obtain a Hankel matrix whose
expectation is related to A as follows.

For any t ∈ N let f̄t : Σ? → R be the function given by f̄t(w) = (1/t)
∑t−1

s=0 f(Σsw), where f(Σsw) =∑
u∈Σs f(uw). We shall sometimes write fs(w)=f(Σsw). Using the definition of the function computed by a

WFA it is easy to see that ∑
u∈Σs

f(uw) =
∑
u∈Σs

α>AuAwβ = α>AsAwβ ,

where A=
∑

σ Aσ is the Markov kernel on the state space of A. Thus, introducing ᾱ>t =(1/t)
∑t−1

s=0 α
>As, we

get f̄t(w) = ᾱ>t Awβ. Since α is a probability distribution, A is a Markov kernel, and probability distributions
are closed by convex combinations, then ᾱt is also a probability distribution over [n]. Thus, we have just proved
the following:

Lemma 8.4 (Cesaro consistency) The Césaro average of f over t steps, f̄t, is computed by the proba-
bilistic automaton Āt = (ᾱt, β, {Aσ}). In particular, A and Āt have the same number of states and the
same transition probability matrices. Furthermore, if A is irreducible then Āt is minimal.
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The irreducibility claim follows from Balle et al. (2017). For convenience, in the sequel we write H̄U ,Vt for
the (U ,V)-block of the Hankel matrix HfĀt

.

Remark 8.3 The irreducible condition simply ensures there is a unique stationary distribution, and that the
Hankel matrix of Āt has the same rank as the Hankel matrix of A (otherwise it could be smaller).

2.2 Spectral Learning Algorithm
Algorithm 6 describes the estimation of the empirical Hankel matrix ĤU ,Vt,ξ from the first t+L symbols of a
single trajectory using the corresponding Césaro averages. To avoid cumbersome notations, in the sequel we
may drop super and subscripts when not needed and write Ĥt or Ĥ when U , V , and ξ are clear from the context.
Note that by Lemma 8.4, the expectation E[Ĥ] over ξ∼ ρ is equal to the Hankel matrix H̄t of the function f̄t
computed by the PFA Āt.

Algorithm 6 Single Trajectory Spectral Learning (Generative Case)
Input: number of states n, length t, prefixes U ⊂ Σ?, suffixes V ⊂ Σ?

1: Let L = maxw∈U·V |w|
2: Sample trajectory ξ = x1x2 · · ·xt+L · · · ∼ ρ
3: for u ∈ U and v ∈ V do
4: Let Ĥ(u, v) = 1

t

∑t−1
s=0 I{xs+1:s+|uv| = uv}

5: Apply the spectral algorithm to Ĥ with rank n

2.3 Concentration Results
Now we proceed to analyze the error Ĥt−H̄t in the Hankel matrix estimation inside Algorithm 6. In particular,
we provide concentration bounds that depend on the length t, the mixing coefficient ηρ of the process ρ, and
the structure of the basis (U ,V). The main result of this section is the matrix concentration bound Theorem 8.3
where we control the spectral norm of the error matrix. For comparison we also provide a simpler entry-wise
bound and recall the equivalent matrix bound in the i.i.d. setting.

Before stating the main result of this section, we provide a concentration result for each individual entry of
the estimated Hankel matrix as a warm-up.

Theorem 8.2 (Single-trajectory, entry-wise) Let A be a (C, θ)-geometrically mixing PFA and ξ ∼ ρA a
trajectory of observations. Then for any u∈U , v∈V and δ∈(0, 1),

P

[
ĤU ,Vt,ξ (u, v)−H̄U ,Vt (u, v) >

|uv|C
θ(1− θ)

√(
1 +
|uv| − 1

t

) log(1/δ)

2t

]
6 δ ,

with an identical bound for the other tail.

A naive way to handle the concentration of the whole Hankel matrix is to control the Frobenius normwwwĤt−H̄t

www
F

by taking a union bound over all entries using Theorem 8.2. However, the resulting concentration

bound would scale as
√
|U||V|. To have better dependency with the dimension (the matrix has dimension |U|×
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|V|) can split the empirical Hankel matrix Ĥ into blocks containing strings of the same length (as suggested by
the dependence of the bound above on |uv|). We thus introduce the maximal length L = maxw∈U·V |w|, and the
set U` = {u ∈ U : |u| = `} for any ` ∈ N. We use these to define the quantity nU = |{` ∈ [0, L] : |U`| > 0}|,
and introduce likewise V`, nV with obvious definitions. With this notation we can now state the main result of
this section.

Theorem 8.3 (Single-trajectory, matrix-wise) Let A be as in Theorem 8.2. Let m =
∑

u∈U ,v∈V f̄t(uv) be
the probability mass and d = min{|U||V|, 2nUnV} be the effective dimension. Then, for all δ ∈ (0, 1) we
have

P

[wwwĤU ,Vt,ξ −H̄
U ,V
t

www
2
>

(
√
L+

√
2C

1− θ

)√
2m

t
+

2LC

θ(1−θ)

√(
1+

L−1

t

)d ln(1/δ)

2t

]
6 δ .

Remark 8.4 Note that quantity nUnV in d can be exponentially smaller than |U||V|. Indeed, for U = V =
Σ6L/2 we have |U||V| = Θ(|Σ|L) while nUnV = Θ(L2).

For comparison, we recall a state-of-the-art concentration bound for estimating the Hankel matrix of a
stochastic language1 from N i.i.d. trajectories.

Theorem 8.4 (Theorem 7 in Denis et al. (2014)) Let A be a stochastic WFA with stopping probabilities
and S = (ξ(1), . . . , ξ(N)) be an i.i.d. sample of size N from the distribution ρA ∈ P(Σ?). Let m =∑

u∈U ,v∈V fA(uv). Then, for all c > 0 we have

P

[wwwĤU ,VS −HU ,VfA

www
2
>

√
2cm

N
+

2c

3N

]
6

2c

ec − c− 1
.

2.4 Concentration of Hankel Matrices for SWFA
We are now ready to extend the proof of Theorem 8.3 to SWFA. Using that both PFA and SWFA define
probability distributions over prefixes, it follows that any argument in the proof that only appeals to the function
computed by the automaton can remain unchanged.

Recalling that Hölder’s inequality can be applied with any pair of dual norms, we start by replacing the
norms ‖·‖∞ and ‖·‖1 with the cone-norms ‖·‖β and ‖·‖β,? respectively. Next we use Lemma 8.2 to obtain, for
any w ∈ Σ?, the bound ‖Awβ‖β 6 1 and the equation

wwα>Awwwβ,∗ = α>Awβ which are direct analogs of the
results used for PFA. Then it only remains to relate the β-norm ofAs′−s−l−βα>s′−1 to the mixing coefficients µA

t :
we obtain

wwAs′−s−l − βα>s′−1

ww
β
6 2µA

s′−s−l. Thus we obtain for SWFA exactly the same concentration result
that we obtained for empirical Hankel matrices estimated from a single trajectory of observations generated by
a PFA.

1A stochastic language is a probability distribution over Σ?.
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Theorem 8.5 (Single-trajectory, SWFA) Let A be a (C, θ)-geometrically mixing SWFA with the defini-
tion in Lemma 8.3. Then the concentration bound in Theorem 8.3 also holds for trajectories ξ ∼ ρA.
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CHAPTER 9

Aggregation of growing experts
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This chapter corresponds to the article Mourtada and Maillard (2017), written following the supervision of
Jaouad Mourtada during his Master internship.

1 INTRODUCTION

Aggregation of experts is a well-established framework in machine learning (Cesa-Bianchi and Lugosi, 2006,
Vovk, 1998, Györfi et al., 1999, Haussler et al., 1998), that provides a sound strategy to combine the forecasts
of many different sources. This is classically considered in the sequential prediction setting, where at each time
step, a learner receives the predictions of experts, uses them to provide his own forecast, and then observes the
true value of the signal, which determines his loss and those of the experts. The goal is then to minimize the
regret of the learner, which is defined as the difference between his cumulated loss and that of the best expert
(or combination thereof), no matter what the experts’ predictions or the values of the signal are.

A standard assumption in the existing literature is that the set of experts is known before the beginning of
the game. In many situations, however, it is desirable to add more and more forecasters over time. For instance,
in a non-stationary setting one could add new experts trained on a fraction of the signal, possibly combined
with change point detection. Even in a stationary setting, a growing number of increasingly complex models
enables to account for increasingly subtle properties of the signal without having to include them from the
start, which can be needlessly costly computationally (as complex models, which take more time to fit, are
not helpful in the first rounds) or even intractable in the case of an infinite number of models with no closed
form expression. Additionally, in many realistic situations some completely novel experts may appear in an
unpredicted way (possibly due to innovation, the discovery of better algorithms or the availability of new data),
and one would want a way to safely incorporate them into the aggregation procedure.

In this chapter, we study how to amend aggregation of experts strategies in order to incorporate novel
experts that may be added on the fly at any time step. Importantly, since we do not know in advance when new
experts are made available, we put a strong emphasis on anytime strategies, that do not assume the time horizon
is finite and known. Likewise, our algorithms should be agnostic to the total number of experts available at a
given time. Three notions of regret of increasing complexity will be defined for growing expert sets, that extend
existing notions to a growing expert set. Besides comparing against the best expert, it is natural in a growing
experts setting to track the best expert; furthermore, when the number of experts grows large, it becomes
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profitable to track the best expert in a small pool of good experts. For each notion, we propose corresponding
algorithms with tight regret bounds. As is often the case in structured aggregation of experts, the key difficulty
is typically not to derive the regret bounds, but to obtain efficient algorithms. All our methods exhibit minimal
time and space requirements that are linear in the number of present experts.

2 PRELIMINARY: THE EXPONENTIAL WEIGHTS ALGORITHM

First, we introduce the simple but fundamental exponential weights or Hedge algorithm (Vovk, 1998, Cesa-
Bianchi and Lugosi, 2006), designed to control the regret LT − Li,T =

∑T
t=1 `t −

∑T
t=1 `i,t for a fixed set of

experts {1, . . . ,M}. The algorithm depends on a prior distribution π ∈PM on the experts and predicts as

xt =

∑M
i=1 wi,t xi,t∑M
i=1wi,t

with wi,t = πi e
−ηLi,t−1 . (9.1)

Equivalently, it forecasts xt =
∑M

i=1 vi,t xi,t, where the weights vt ∈ PM are sequentially updated in the
following way: v1 = π and, after each round t > 1, vt+1 is set to the posterior distribution vmt of vt given the
losses (`i,t)16i6M , defined by

vmi,t =
vi,t e

−η `i,t∑M
j=1 vj,t e

−η `j,t
. (9.2)

All subsequent regret bounds will rely on the following standard regret bound, by reducing complex forecasting
strategies to the aggregation of experts under a suitable prior.

Proposition 9.1 ( Cesa-Bianchi and Lugosi (2006, Corollary 3.1) ) Irrespective of the values of the sig-
nal and the experts’ predictions, the exponential weights algorithm (9.1) with prior π achieves

LT − Li,T 6
1

η
log

1

πi
(9.3)

for each i = 1, . . . ,M and T > 1. More generally, for each probability vector u ∈PM ,

LT −
M∑
i=1

ui Li,T 6
1

η
KL(u,π) . (9.4)

Choosing a uniform prior π = 1
M

1 yields an at most 1
η

logM regret with respect to the best expert.

Related work. This work builds on the setting of prediction with expert advice (Cesa-Bianchi and Lugosi,
2006, Vovk, 1998, Herbster and Warmuth, 1998) that originates from the work on universal prediction (Ryabko,
1984, 1988, Merhav and Feder, 1998, Györfi et al., 1999). We make use of the notion of specialists (Freund
et al., 1997, Chernov and Vovk, 2009) and its application to sleeping experts (Koolen et al., 2012), as well as
the corresponding standard extensions (Fixed Share, Mixing Past Posteriors) of basic strategies to the problem
of tracking the best expert (Herbster and Warmuth, 1998, Koolen and de Rooij, 2013, Bousquet and Warmuth,
2002); see also Willems (1996), Shamir and Merhav (1999) for related work in the context of lossless com-
pression. Note that, due to its versatility, aggregation of experts has been adapted successfully to a number of
applications (Monteleoni et al., 2011, McQuade and Monteleoni, 2012, Stoltz, 2010). It should be noted that
the literature on prediction with expert advice is split into two categories: the first one focuses on exp-concave
loss functions, whereas the second studies convex bounded losses. While our work belongs to the first category,
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it should be possible to transport our regret bounds to the convex bounded case by using time-varying learning
rates, as done e.g. by Hazan and Seshadhri (2009) and Gyorgy et al. (2012). In this case, the growing body
of work on the automatic tuning of the learning rate (de Rooij et al., 2014, Koolen et al., 2014) as well as
alternative aggregation schemes (Wintenberger, 2017, Koolen and van Erven, 2015, Luo and Schapire, 2015)
might open the path for even further improvements.

The use of a growing expert ensemble was already proposed by Györfi et al. (1999) in the context of sequen-
tially predicting an ergodic stationary time series, where new higher order Markov experts were introduced at
exponentially increasing times (and the weights were reset to uniform); since consistency was the core focus
of the paper, this simple “doubling trick” could be used, something we cannot afford when new experts arrive
more regularly. Closer to our approach, growing expert ensembles have been considered in contexts where
the underlying signal may be non-stationary, see e.g. Hazan and Seshadhri (2009), Shalizi et al. (2011). Of
special interest to our problem is Shalizi et al. (2011), which considers the particular case when one new expert
is introduced every τ time steps, and propose a variant of the Fixed Share (FS) algorithm analogous to our
GrowingMarkovHedge algorithm. However, their algorithms depend on parameters which have to be tuned
depending on the parameters of the comparison class, whereas our algorithms are parameter-free and do not
assume the prior knowledge of the comparison class. Moreover, we introduce several other algorithms tailored
to different notions of regret; in particular, we address the problem of comparing to sequences of experts that
alternate between a small number of experts, a refinement that is crucial when the total set of experts grows,
and has not been obtained previously in this context.

Another related setting is that of “branching experts” considered by Gofer et al. (2013), where each incum-
bent expert is split into several experts that may diverge later on. Their results include a regret bound in terms
of the number of leading experts (whose cumulated loss was minimal at some point). Our approach differs in
that it does not assume such a tree-like structure: a new entering forecaster is not assumed to be associated to
an incumbent expert. More importantly, while Gofer et al. (2013) compare to the leaders in terms of cumulated
loss (since the beginning of the game), our methods compete instead with sequences of experts that perform
well on some periods, but can predict arbitrarily bad on others; this is harder, since the loss of the optimal
sequence of experts can be significantly smaller than that of the best expert.

3 OVERVIEW OF THE RESULTS

Our work is framed in the classical setting of prediction with expert advice (Vovk, 1998, Cesa-Bianchi and
Lugosi, 2006), which we adapt to account for a growing number of experts. The problem is characterized by
its loss function ` : X × Y → R, where X is a convex prediction space, and Y is the signal space.

Let Mt be the total number of experts at time t, and mt = Mt −Mt−1 be the number of experts introduced
at time t. We index experts by their entry order, so that expert i is the ith introduced expert and denote
τi = min{t > 1 : i 6 Mt} its entry time (the time at which it is introduced). We say we are in the fixed expert
set case when Mt = M for every t > 1 and in the growing experts setting otherwise. At each step t > 1,
the experts i = 1, . . . ,Mt output their predictions xi,t ∈ X , which the learner uses to build xt ∈ X ; then,
the environment decides the value of the signal yt ∈ Y , which sets the losses `t = `(xt, yt) of the learner and
`i,t = `(xi,t, yt) of the experts.

Notations. Let PM be the probability simplex, i.e. the set of probability measures over the set of experts
{1, . . . ,M}. We denote by KL the Kullback-Leibler divergence, defined for u,v ∈ PM by KL(u,v) =∑M

i=1 ui ln
ui
vi
> 0.
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Loss function. Throughout this text, we make the following standard assumption1 on the loss function (Cesa-
Bianchi and Lugosi, 2006).
Assumption 9.1 The loss function ` is η-exp-concave for some η > 0, in the sense that exp(−η `(·, y)) is
concave on X for every observation y ∈ Y . This is equivalent to the inequality

`

(
M∑
i=1

vi xi, y

)
6 −1

η
ln

M∑
i=1

vi e
−η `(xi,y) (9.5)

for every y ∈ Y , x = (xi)16i6M ∈ XM and v = (vi)16i6M ∈PM .

Remark 9.1 An important example in the case when X is the set of probability measures over Y is the log-
arithmic or self-information loss `(x, y) = − log x({y}) for which the inequality holds with η = 1, and is
actually an equality. Another example of special interest is the quadratic loss on a bounded interval: indeed,
for X = Y = [a, b] ⊂ R, `(x, y) = (x− y)2 is 1

2(b−a)2 -exp-concave.

Several notions of regret can be considered in the growing expert setting. We review here three of them,
each corresponding to a specific comparison class; we show the kind of bounds that our algorithms achieve, to
illustrate the more general results stated in the subsequent sections.

Constant experts. Since the experts only output predictions after their entry time, it is natural to consider the
regret with respect to each expert i > 1 over its time of activity, namely the quantity

T∑
t=τi

(`t − `i,t) (9.6)

for every T > τi. Note that this is equivalent to controlling (9.6) for every T > 1 and i 6 MT . Algo-
rithm GrowingHedge is particularly relevant in this context; with the choice of (unnormalized) prior weights
πi = 1

τimτi
, it achieves the following regret bound: for every T > 1 and i 6MT ,

T∑
t=τi

(`t − `i,t) 6
1

η
logmτi +

1

η
log τi +

1

η
log(1 + log T ) . (9.7)

This bound has the merit of being simple, virtually independent of T and independent of the number of experts
(mt)t>τi added after i. Several other instantiations of the general regret bound of GrowingHedge are provided
in the article Mourtada and Maillard (2017).

Sequences of experts. Another way to study growing expert sets is to view them through the lens of se-
quences of experts. Given a sequence of experts iT = (i1, . . . , iT ), we measure the performance of a learning
algorithm against it in terms of the cumulative regret:

LT − LT (iT ) =
T∑
t=1

`t −
T∑
t=1

`it,t , (9.8)

In order to derive meaningful regret bounds, some constraints have to be imposed on the comparison sequence;
hence, we consider in the sequel different types of comparison classes that lead to different notions of regret,
from the least to the most challenging one:
(a) Sequences of fresh experts. These are admissible sequences of experts iT , in the sense that it 6 Mt

for 1 6 t 6 T (so that `it,t is always well-defined) that only switch to fresh (newly entered) experts, i.e. if

1This could be readily replaced (up to some cosmetic changes
in the statements and their proofs) by the more general η-
mixability condition (Vovk, 1998), that allows to use higher learn-

ing rates η for some loss functions (such as the square loss, but
not the logarithmic loss) by using more sophisticated combina-
tion functions.
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it 6= it−1, then Mt−1 + 1 6 it 6 Mt. More precisely, for each σ = (σ1, . . . , σk) with 1 < σ1 < · · · < σk 6 T ,
S (f)
T (σ) denotes the set of sequences of fresh experts whose only shifts occur at times σ1, . . . , σk. Both the

switch times σ and the number of shifts k are assumed to be unknown, although to obtain controlled regret one
typically needs k � T . Comparing to sequences of fresh experts is essentially equivalent to comparing against
constant experts; algorithms GrowingHedge and FreshMarkovHedge with πi = 1

mτi
achieve, for every T > 1,

k 6 T − 1 and σ = (σj)16j6k (details in Mourtada and Maillard (2017)):

LT − inf
iT∈S

(f)
T (σ)

LT (iT ) 6
1

η

{
logm1 +

k∑
j=1

(logmσj + log σj) + log T

}
. (9.9)

In particular, the regret with respect to any sequence of fresh experts with k shifts is bounded by 1
η

((k + 1) log max16t6T mt + (k + 1) log T ).
(b) Arbitrary admissible sequences of experts. Like before, these are admissible sequences of experts that are
piecewise constant with a typically small number of shifts k, except that shifts to incumbent (previously intro-
duced) experts it 6 Mt−1 are now authorized. Specifically, given σ0 = (σ0

1, . . . , σ
0
k0

) and σ1 = (σ1
1, . . . , σ

1
k1

),
we denote by S (a)

T (σ0;σ1) the class of admissible sequences whose switches to fresh (resp. incumbent) experts
occur only at times σ0

1 < · · · < σ0
k0

(resp. σ1
1 < · · · < σ1

k1
). By Theorem 9.1, algorithm GrowingMarkovHedge

with πi = 1
mτi

and αt = 1
t

satisfies, for every T > 1, k0, k1 with k0 + k1 6 T − 1 and σ0,σ1:

LT − inf
iT∈S

(a)
T (σ0;σ1)

LT (iT ) 6
1

η

{
logm1 +

k∑
j=1

(logmσj + log σj) +

k1∑
j=1

log σ1
j + 2 log T

}
(9.10)

where k = k0 +k1 and σ1 < · · · < σk denote all shifts (either in σ0 or in σ1). Note that the upper bound (9.10)
may be further relaxed as 1

η
((k + 1) log max16t6T mt + (k0 + 2k1 + 2) log T ).

(c) Sparse sequences of experts. These are admissible sequences iT of experts that are additionally sparse,
in the sense that they alternate between a small number n � MT of experts; again, n may be unknown in
advance. Denoting S (s)

T (σ, E) the class of sequences with shifts in σ and taking values in the subset of experts
E = {e1, . . . , en}, algorithm GrowingSleepingMarkovHedge with πi = 1

τimτi
and αt = βt = 1

t
achieves, for

every T > 1, E ⊂ {1, . . . ,MT} and σ,

LT − inf
iT∈S

(s)
T (σ,E)

LT (iT ) 6
1

η

n∑
p=1

(
ln τep + ln

mτep

n

)
+

1

η
n log(2T ) +

2

η

k∑
j=1

log σj. (9.11)

In particular, the regret with respect to every admissible sequence of T experts with at most k shifts and taking
at most n values is bounded by 1

η

(
n log

max16t6T mt
n

+ 2n log(
√

2T ) + 2k log T
)
.

The main results of this text are Theorem 9.1, a powerful parameter-free generalization of (Shalizi et al.,
2011, Theorem 2), and Theorem 9.2, which adapts results of Bousquet and Warmuth (2002), Koolen et al.
(2012) to sequentially incoming forecasters, and has no precedent in this context.

Markov prior. If iT = (i1, . . . , iT ) is a finite sequence of experts, its predictions up to time T are de-
rived from those of the base experts i ∈ {1, . . . ,M} in the following way: xt(iT ) = xit,t for 1 6 t 6 T .
Given a prior distribution π = (π(iT ))iT , we could in principle consider the exponentially weighted ag-
gregation of sequences under this prior; however, such an algorithm would be intractable even for mod-
erately low values of T , since it would require to store and update O(MT ) weights. Fortunately, when
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π(i1, . . . , iT ) = θ1(i1) θ2(i2 | i1) · · · θT (iT | iT−1) is a Markov probability distribution with initial measure θ1

and transition matrices θt, 2 6 t 6 T , the exponentially weighted aggregation under the prior π collapses to
the efficient algorithm MarkovHedge.

Algorithm 7 MarkovHedge — Aggregation of sequences of experts under a Markov prior
1: Parameters: Learning rate η > 0, initial weights θ1 = (θ1(i))16i6M , and transition probabilities θt =(

θt(i | j)
)

16i,j6M
for all t > 2.

2: Initialization: Set v1 = θ1.
3: for t = 1, 2, . . . do
4: Receive predictions xt ∈ XM from the experts, and predict xt = vt · xt.
5: Observe yt ∈ Y , then derive the losses `t = `(xt, yt) and `i,t = `(xi,t, yt) and the posteriors

vmi,t =
vi,t e

−η `i,t∑M
j=1 vj,t e

−η `j,t
. (9.12)

6: Update the weights by vt+1 = θt+1 v
m
t , i.e.

vi,t+1 =
M∑
j=1

θt+1(i | j) vmj,t . (9.13)

Remark 9.2 Algorithm MarkovHedge only requires to store and update O(M) weights. Due to the matrix
product (9.13), the update may take an O(M2) time; however, all the transition matrices we consider lead to a
simple update in O(M) time.

3.1 Regret against arbitrary sequences of experts
We now consider the more ambitious objective of comparing against arbitrary admissible sequences of ex-
perts. This can be done by using another choice of transition matrices, which puts all the weight to admissible
sequences of experts (and not just sequences of fresh experts).

Algorithm GrowingMarkovHedge instantiates MarkovHedge on the transition matrices

θ1(i) =
πi

ΠM1

1i6M1 ; θt+1(i | j) = αt+1
πi

ΠMt+1

+ (1− αt+1) θ
(f)
t+1(i | j) (9.14)

where θ(f)
t denotes the transition matrices of algorithm FreshMarkovHedge. As before, this leads to a well-

defined growing experts algorithm which predicts xt =
∑Mt

i=1 vi,t xi,t, where the weights (vi,t)16i6Mt are recur-
sively defined by vi,1 = πi

ΠM1
(1 6 i 6M1) and the update

vi,t+1 = (1− αt+1)
ΠMt

ΠMt+1

vmi,t + αt+1
πi

ΠMt+1

(1 6 i 6Mt) ; vi,t+1 =
πi

ΠMt+1

(Mt + 1 6 i 6Mt+1) , (9.15)

where again vmi,t =
vi,t e

−η `i,t∑Mt

j=1 vj,t e
−η `j,t

for 1 6 i 6Mt. In this case, (Mourtada and Maillard, 2017, Proposition 5)

(Markov Hedge) yields:
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Theorem 9.1 (Growing Markov Hedge regret) Algorithm GrowingMarkovHedge based on the weights
π and parameters (αt)t>2 achieves the following regret bound: for every T > 1, and every admissible
sequence of experts iT = (i1, . . . , iT ) with shifts at times σ = (σ1, . . . , σk),

LT − LT (iT ) 6
1

η

{
k∑
j=0

log
ΠMσj+1−1

πiσj
+

k1∑
j=1

log
1

ασ1
j

+
∑

26t6T : t6∈σ

log
1

1− αt

}
. (9.16)

where σ0 = (σ0
1, . . . , σ

0
k0

) (resp. σ1 = (σ1
1, . . . , σ

1
k1

)) denotes the shifts to fresh (resp. incumbent) experts,
with k = k0 + k1. Moreover, it has an O(Mt) time and space complexity at each step t > 1.

Remark 9.3 Note that by choosing αt = 1
t
, we have, since 1

1−1/t
= t

t−1
,

k1∑
j=1

log
1

ασ1
j

+
∑

26t6T : t6∈σ

log
1

1− αt
6

k1∑
j=1

log σ1
j +

T∑
t=2

log
t

t− 1
=

k1∑
j=1

log σ1
j + log T .

Additionally, by setting πi = 1 the bound (9.16) becomes 1
η
(
∑k

j=0 logMσj+1−1 +
∑k1

j=1 log σ1
j + log T ), which

is lower than 1
η
(k + 1) logMT + 1

η
(k1 + 1) log T . We can also recover the bound (9.10) by setting πi = 1

τimτi
,

since in this case we have ΠMσj+1−1 6 ΠMT
6
∑T

t=1
1
t
6 1 + log T .

Algorithm 8 SleepingMarkovHedge: sequences of sleeping experts under a Markov chain prior
1: Parameters: Learning rate η > 0, (normalized) prior π on the experts, initial wake/sleep probabilities
θi,1(a), transition probabilities θi,t =

(
θi,t(a | b)

)
a,b∈{0,1} for t > 2, 1 6 i 6M .

2: Initialization: Set v1(i, a) = πi θi,1(a) for i = 1, . . . ,M and a ∈ {0, 1}.
3: for t = 1, 2, . . . do
4: Receive predictions xt ∈ XM from the experts, and predict

xt =

∑M
i=1 vt(i, 1)xi,t∑M
i=1 vt(i, 1)

. (9.17)

5: Observe yt ∈ Y , then derive the losses `t(i, 0) = `t = `(xt, yt), `t(i, 1) = `i,t = `(xi,t, yt) and the
posteriors

vmt (i, a) =
vt(i, a) e−η `t(i,a)∑

i′,a′ vt(i
′, a′) e−η `t(i′,a′)

. (9.18)

6: Update the weights by vt+1(i, a) =
∑

b∈{0,1}

θi,t+1(a | b) vmt (i, b) . (9.19)

3.2 Sparse shifting regret for growing experts
We show here how to instantiate algorithm SleepingMarkovHedge in order to adapt it to the growing experts
setting. Again, we use a “muting trick” which attributes a zero weight to experts that have not entered.
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Let us consider prior weights π = (πi)i>1 on the experts, which may be unnormalized and chosen at
entry time. Let αt, βt ∈ (0, 1) for t > 2. We set θi,1(1) = 1

2
for i = 1, . . . ,M1 and 0 otherwise; moreover,

for every t > 1, we take θi,t+1(1 | ·) = 0 for i > Mt+1 (recall that θi,t+1 can be chosen at step t + 1),
θi,t+1(1 | ·) = 1

2
if Mt + 1 6 i 6 Mt+1, and for i 6 Mt: θi,t+1(0 | 1) = αt+1, θi,t+1(1 | 0) = βt+1. The

algorithm obtained with these choices, which we call GrowingSleepingMarkovHedge, is well-defined and
predicts xt = (

∑Mt

i=1 vt(i, 1)xi,t)/(
∑Mt

i=1 vt(i, 1)), where the weights (vt(i, a))16i6Mt, a∈{0,1} are defined by
v1(i, a) = 1

2
πi (1 6 i 6M1) and by the update

vt+1(i, a) =
∑

b∈{0,1}

θi,t+1(a | b) vmt (i, b) (1 6 i 6Mt) ; vt+1(i, a) =
1

2
πi (Mt + 1 6 i 6Mt+1) ,

with vmt (i, a) = vt(i, a) e−η `t(i,a)/
∑Mt

i=1

∑
a′∈{0,1} vt(i

′, a′) e−η `t(i
′,a′) for 1 6 i 6Mt.

Theorem 9.2 (Sparse shifting regret) Algorithm GrowingSleepingMarkovHedge guarantees the follow-
ing: for each T > 1 and any sequence iT of experts taking values in the pool {ep | 1 6 p 6 n}, denoting
ap,t = 1it=ep ,

LT − LT (iT ) 6
1

η

n∑
p=1

ln
ΠMT

/n

πep
+

1

η
n log 2 +

1

η

T∑
t=2

[
log

1

1− αt
+ (n− 1) log

1

1− βt

]

+
1

η

k∑
j=1

(
log

1

ασj
+ ln

1

βσj

)
, (9.20)

where σ = σ1 < · · · < σk denote the shifting times of iT . Moreover, the algorithm has an O(Mt) time
and space complexity at step t, for every t > 1.

In particular, Theorem 9.2 enables to recover the bound (9.11) for αt = βt = 1
t

and πi = 1
τimτi

.
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Chapter 9

In this part, we now highlight a few thoughts and promising research perspective regarding the many things
that remain to be understood in statistical sequential learning.

Confidence sets, Mismatch and Prediction

Let us come back to our observations Y1:n = Y (1), Y (2), . . . , Y (n), and consider that they have been generated
by a process ρ ∈ P(Y?), with Y ⊂ R. We may further assume that ρ belongs to some family Pm, and we have
seen in Chapter 4 for some specific families how to build confidence sets for ρ ∈ Pm that are time-uniform and
satisfy

∀δ ∈ [0, 1], Pρ
(
∃n ∈ N, ρ /∈ P̂m(Y (1), . . . , Y (n); δ)

)
6 δ .

It turns out that it is often possible, with the same tools, to derive a confidence set on the next observation
Y (n+1). This leads to the construction of two real-valued functions ym, ym such that for each ρ ∈ Pm, δ ∈ [0, 1],

Pρ
(
∃n ∈ N, Y (n+1) > ym(Y (1), . . . , Y (n); δ)

)
6 δ, Pρ

(
∃n ∈ N, Y (n+1) 6 y

m
(Y (1), . . . , Y (n); δ)

)
6 δ ,

where ym (resp. y
m

) is a decreasing (resp. increasing) function of δ, with limit +∞ (resp. −∞) as δ → 0.
Such confidence functions can be used in turn for some tasks such as mismatch detection as well as predictive
loss estimation. We detail below for illustration the notion of adequacy.

Definition 9.3 (Adequacy function) The adequacy function corresponding to the confidence functions ym, ym,
is defined for any sequence y1:n+1 = y(1), y(2) . . . by αm(y1:n+1) = minn′6n min{δm(y1:n′+1), δm(y1:n′+1)},
where

δm(y1:n+1) = inf{δ ∈ [0, 1] : y(n+1) > ym(y1:n, δ)} and δm(y1:n+1) = inf{δ ∈ [0, 1] : y(n+1) 6 ym(y1:n, δ)} .

This quantity is guaranteed not to be too small since it satisfies by construction (and a union bound)

∀ρ ∈ Pm, ∀δ ∈ [0, 1],∀n ∈ N, P
(
αm(Y (1), . . . , Y (n+1)) 6 δ

)
6 2δ .

Hence this is a natural candidate to provide a score of adequacy of the sequence of observations with respect
to a family of models. For illustration, we quickly compute this adequacy on two examples, first on Gaussian
distributions with yG, yG functions, then on bounded observations in (0, 1) with functions y(0,1), y(0,1)

.

Example 1: Iid Gaussian observations We first introduce the estimate µn = 1
n

∑n
i=1 Y

(i) and then

P
(
∃n ∈ N, Y (n+1) > µn + σ

√
2
(

1 +
1

n

)
log(2

√
n+ 1/δ)

(
1 +

1√
n

))
6 δ ,

P
(
∃n ∈ N, Y (n+1) < µn − σ

√
2
(

1 +
1

n

)
log(2

√
n+ 1/δ)

(
1 +

1√
n

))
6 δ .

Proof :
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Indeed, for all random stopping time τ , it holds on the one hand

P
(
µ− µτ > σ

√
2(1 + 1

τ
)

τ
log(
√
τ + 1/δ)

)
6 δ

and on the other hand

P
(
Y (1+τ) − µ > σ

√
2(1 +

1

τ
) log(

√
τ + 1/δ)

)
6 δ .

We then choose τ to be the first time such that both events hold, and use a union bound argument. �

We deduce that

δG(Y1:n+1) = min

{
2
√
n+ 1 exp

(
−

(
Y (n+1) − µn

)2

2σ2(1 + 1/n)(1 + 1/
√
n)2

)
I{Y (n+1) > µn}, 1

}
,

δG(Y1:n+1) = min

{
2
√
n+ 1 exp

(
−

(
Y (n+1) − µn

)2

2σ2(1 + 1/n)(1 + 1/
√
n)2

)
I{Y (n+1) 6 µn}, 1

}
.

The resulting adequacy function has a Gaussian shape. Similar computations can be extended to processes
following a kernel regression model, in which case the adequacy has a flattened Gaussian shape with a plateau
having value 1. This corresponds to the range of observations whose parameters are indistinguishable due to
the finiteness of the number of observations.

Example 2: Adversarial bounded observations Let us consider the following envelopes

P
(
∃n ∈ N, Y (n+1) > I{δ < 1}

)
6 δ , P

(
∃n ∈ N, Y (n+1) < I{δ = 1}

)
6 δ.

We deduce that α(0,1)(Y
(1), . . . , Y (n+1)) = I{∀n′ 6 n, Y (n′+1) ∈ (0, 1)}, hence the observations are always

perfectly adequate provided that they stay in (0, 1), which is intuitive for this setup.

Loss A second way to use the confidence bounds is to derive an estimation of the loss of a decision maker.
Indeed, for a decision Zn+1 = Z(Y (1), . . . , Y (n)), and a loss `(Y (n+1), Zn+1), Y (n+1) is generally unknown.
However, since the loss is non-negative, we have that

E[`(Y (n+1), Zn+1)|Y (1), . . . , Y (n)] =

∫
R+

P(`(Y (n+1), Zn+1) > x|Y (1), . . . , Y (n))dx .

This means that using the confidence functions in order to compute for each x ∈ R+ an upper bound on the
conditional probability P(`(Y (n+1), Zn+1) > x|Y (1), . . . , Y (n)) yields an upper bound on its expected loss.

We believe such usage of the confidence sets should be better explored, whether for prediction, model
selection, model aggregation or other machine learning tasks.
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Parameter estimation Yet another way to use the confidence bounds is to perform an "optimistic" parameter
tuning. For instance, let us consider the case of iid Gaussian observations but with unknown variance σ2. One
way is to build an estimate together with a confidence bound for σ2, and combining it with the confidence
bounds on the mean. Alternatively, using the confidence bounds, it is possible to define at time n the smallest
value of σ that is compatible with the confidence bounds. For instance, for a given δ ∈ (0, 1) and time t ∈ N,

σ2
t (δ) = max

n<t

(
(Y (n+1) − µn)2

(1 + 1/
√
n)2

2
(
1 +

1

n

)
log(2

√
n+ 1/2δ)

)
is a valid lower bound on σ2, since by construction P(∃t ∈ N, σ2

t (δ) > σ2) 6 δ, that is increasing with t. A
partially open question (see Leadbetter et al. (2012)) is to understand how much smaller than σ2 it can be, which
would allow to build a confidence bound on the variance and combine it with the mean confidence estimates
with known variance in order to produce bounds without this knowledge.

Doubly uniformly optimal strategies for multi-armed bandits
Despite many decades of research of the stochastic multi-armed bandit setup, a non trivial question remains
open. Indeed, for each given set of bandit configurations D, one is able to build a strategy inspired from
the lower bounds. In some cases we are able to prove optimality (such as for unstructured configurations
coming from an exponential family, see Maillard (2018), or some specific structures, see Magureanu (2018));
in general, a complete answer to this question is still open. However, even beyond this question, if we now
have different sets D1,D2, . . .DM and D =

⋃
mDm, a tricky question naturally appears: Is there a hope to

build a strategy that is (near) uniformly optimal simultaneously on all these sets (and not only on D)? Of
course in general being uniformly optimal on a specific Dm prevents us from being uniformly optimal on D
and vice-versa. Hence there is a price to pay, but when the price is small enough there is hope to build such
powerful strategies. Such questions open the quest for "doubly" uniformly-good strategies (the terminology
is used in reference to the "doubly" universal codes). A good candidate for a doubly uniformly-good strategy
over the sets of bandit configurations coming from exponential families of dimension 1 (Bernoulli, Exponential,
Poisson, standard Gaussians, etc.) seems to be the BESA algorithm that we introduced in Baransi et al. (2014).
Indeed, this strategy that is based on sub-sampling techniques (see Bardenet et al. (2015)) has been shown to
be uniformly competitive with each KL-ucb and Thompson sampling strategies designed for a specific family.
Even though we could provide a simple regret bound for this strategy, a full analysis showing it is indeed near
uniformly optimal jointly on all such families is still open.

Regret minimization in MDPs is far from being understood
Likewise, despite many decades or research in MDPs, it seems that very little is actually understood on the
fundamental learning challenges of MDPs. For instance, no existing informative lower bound currently seems
to capture the ’navigation’ challenge of an MDP in full generality, that is the price to pay when learning in a
single stream of interactions (hence we need to handle the cost of navigating to a desired state from the current
state); there exists lower bounds based on a change of measure (Burnetas and Katehakis (1997), Graves and
Lai (1997)), but they are unfortunately weak and restricted to specific MDPs such as ergodic MDPs (for which
navigation is not an issue, since all policies eventually visit all states infinitely often). Now, some specific MDP
construction have been provided for minimax regret bounds (Auer et al. (2009)), but these are unfortunately not
informative to build a strategy against a generic MDP. Further, recent analysis of average-reward minimization
strategies suffer from flaws (see Fruit et al. (2018)) that seem hard to correct and make us go back to studying
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the basic questions first. Hence, one can say a bit bluntly that today, nobody knows how to solve correctly even
a two-state MDP in the average-reward setup from a statistical standpoint (that is, not knowing the process
generating the observations). In all cases, this opens exciting research questions.

No-evidence learning, and novelty estimation
The concepts of states and transition make us go beyond the current research trend. In particular, while most
of the literature focuses on states that are reachable with high probability or visited often and estimation of
"likely" transitions, it seems interesting to take a look at what happens for the states that are especially difficult
to reach, not observed much as well as for the transitions that have near zero probability. Indeed, we sometimes
remark that human beings can perform complex tasks (e.g. walking) even in an environment that has never
been observed before simply because they assume most of the dynamics will remain the same. But we want to
point out that this is perhaps not as much the result of an assumption as of an estimation: for instance we may
have observed in the past that whenever there is a new environment, performing this action (walking) as in a
previously known environment matched our predictions very well. Hence and focusing on what happens when
visiting or discovering a state or transition for the first time gives information on estimating the dynamics of
the system when seeing a new task; that is the frequency of novelty. This shift of paradigm could be given a
name, such as "Machine Imagination". It consists in considering states that do not exist (say, by interpolating or
composing states from existing ones) setting goals to these states, and guessing the would-be dynamics, thanks
to a precise monitoring of transitions having zero empirical probability, observations with zero evidence, and
what happens when transiting to a new observation for the first time. What if I take this action in this state ?
what will be the output (given we have no evidence, or contradictory evidence) ? Answering such questions can
help an agent better understand how to handle a novel situation, and thus behave more autonomously, expanding
its own state space and dynamics beyond what has been observed, and setting its own reward functions. Note
also that the ability to consider situations that do not exist is often considered as one of the reason for the
emergence of consciousness.
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