
HAL Id: tel-02161866
https://hal.science/tel-02161866v1

Submitted on 21 Jun 2019 (v1), last revised 15 Oct 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving the simulation of IaaS Clouds
Luke Bertot

To cite this version:
Luke Bertot. Improving the simulation of IaaS Clouds. Distributed, Parallel, and Cluster Computing
[cs.DC]. Université de Strasbourg, 2019. English. �NNT : �. �tel-02161866v1�

https://hal.science/tel-02161866v1
https://hal.archives-ouvertes.fr

Université de Strasbourg

École doctorale Mathématiques, Sciences
de l’Information et de l’Ingénieur

Laboratoire ICube

THÈSE présenté par :

Luke Bertot
Soutenue le : 17 Juin 2019

pour obtenir le grade de : Docteur de l’université de Strasbourg
Discipline / Spécialité : Informatique

Improving the simulation
of IaaS Clouds.

Amélioration de simulation de cloud IaaS via l’emploi de méthodes stochastiques.

THÈSE dirigée par :
Stéphane GENAUD, professeur des universités, université de Strasbourg

Co-Encadrant :
Julien GOSSA, maitre de conférences, université de Strasbourg

Rapporteurs :
Laurent PHILIPPE, professeur des universités, université de Franche-Comté
Christophe CÉRIN, professeur des universités, université Paris XIII

Autres membres du jury :
Adrien LÈBRE, professeur, Institut Mines-Télécom Atlantique

Acknowledgments
Some experiments presented in this thesis were carried out using the Grid’5000 exper-

imental testbed, being developed under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities as well as other funding bodies
(see https://www.grid5000.fr).

Contents

Acknowledgements i

Contents iii

Introduction vii
Motivations . vii
Contribution . viii
Outline . viii

I Background 1

1 Context 3
1.1 Cloud Computing . 3
1.2 Scientific Computing . 4
1.3 Sample applications . 7

1.3.1 OMSSA . 7
1.3.2 Montage . 9

2 Operating Scientific workloads on IaaS Clouds 11
2.1 Cloud Scheduling . 11

2.1.1 Scaling . 11
2.1.2 Scheduling . 12
2.1.3 Cloud brokers . 12

2.2 Schlouder . 13
2.2.1 Schlouder operation . 13
2.2.2 Scheduling heuristics . 17

3 Simulation of IaaS Clouds 21
3.1 Simulation technologies . 21
3.2 Building a Simulator . 23

3.2.1 SimGrid . 23
3.2.2 SchIaaS . 26
3.2.3 SimSchlouder . 27

3.3 Evaluation of SimSchlouder . 29
3.3.1 Experiment rationale . 29
3.3.2 Simulation Tooling . 30

iii

iv CONTENTS

3.3.3 Analysis . 32
3.3.4 Results . 32

3.4 Take-away . 37

II Stochastic Simulations 39

4 Monte-Carlo Simulations 41
4.1 Motivation . 41

4.1.1 Sources of variability. 41
4.2 Stochastic simulations . 43

4.2.1 Resolution of stochastic DAGs . 43
4.2.2 Monte Carlo Simulations . 44
4.2.3 Benefits of the stochastic approach 45

4.3 Our proposed Monte Carlo Simulation . 46
4.3.1 Experimental setup . 47
4.3.2 Real executions . 47
4.3.3 Monte Carlo Simulation tooling . 50
4.3.4 Input modeling . 51
4.3.5 Results . 55

4.4 Take-away . 58

5 Defining Simulation Inputs 59
5.1 P: the perturbation level . 59
5.2 N: the number of iterations . 63

5.2.1 Internal convergence . 63
5.2.2 Inter-simulation convergence . 66

5.3 Input Distribution Choice . 70
5.4 Take-away . 72

6 The case of MapReduce 75
6.1 MapReduce and Hadoop . 75
6.2 MapReduce simulator MRSG . 77

6.2.1 Technical specificities . 77
6.2.2 Usage . 78

6.3 Experiment . 79
6.3.1 Real executions . 79
6.3.2 Simulation . 81
6.3.3 Discussion . 82

6.4 Take-away . 84

Conclusion 85

References 87

CONTENTS v

A Résumé en français 93
A.1 Motivations . 93
A.2 Contexte . 94

A.2.1 Cloud computing . 94
A.2.2 Calcul scientifique . 95

A.3 Calcul Scientifique dans le Cloud . 96
A.3.1 Un planificateur : Schlouder . 96
A.3.2 Un simulateur : SimSchlouder . 97

A.4 Contributions . 97
A.4.1 Simulation de Monte-Carlo . 97
A.4.2 Distribution d’entrée . 98
A.4.3 Validation expérimentale . 99

A.5 Paramétrisation . 99
A.6 Le cas Map-Reduce . 101
A.7 Conclusion . 101

B Publications 103

Introduction

Motivations

The recent evolution in virtualisation technologies in the early 2000s has brought about
new models for the exploitation of computing resources. These new models, often re-
grouped under the umbrella of cloud computing, along with the ever increasing ubiquity
of internet access have transformed the hosting and development landscape over the last
fifteen years.

Infrastructure as a Service (IaaS) cloud has revolutionized the hosting landscape, by
making it possible to provision resources of different sizes on the fly. For hosting providers
virtualisation-based provisioning allowed for more homogeneous data-centers and shorter
turnaround times on rentals. For users IaaS makes it possible to keep a smaller baseline
infrastructure, only raising capacity as necessary, while only paying their actual platform
usage.

This new economic model has been hugely successful in the context of service providers,
where services are meant to run perpetually and scaling is done to adjust to demand. In
the context of finite workloads such as those seen in scientific computing using IaaS clouds
poses additional challenges. One such challenge is the need for specialized setups, like in
the cases of workloads designed to run on HPC clusters and workloads designed for grids
and batch schedulers that are more easily executed on the cloud environments. However
such workloads often require external scheduling. Such a scheduler needs to be adapted
to the on-demand and the pay-as-you-go nature of IaaS clouds.

On institutional grids and clusters users are usually sheltered from the cost of comput-
ing resources. Access policies can range from being granted a fixed quota of resources to
completely open access. The hidden cost falls on the institution in the form of its invest-
ment in infrastructure and manpower. The pay-as-you-go nature of the cloud means that
to budget their experiment the user must be able to predict the quantity of computing
resources needed. Moreover if they failed to do so the cloud would allow them to continue
using resources while charging them potentially over the expected budget. This is only
made harder by the on-demand nature of the cloud which allows for different scheduling
approaches, some of which have non-trivial impact on workload execution time or cost.

Enabling scientists to use the IaaS cloud to execute scientific workloads will require:

A Cloud Scheduler capable of handling the workloads and managing the cloud re-

vii

viii INTRODUCTION

sources for the users. Such a tool must be able to schedule the workload to the
cloud as well as provisioning and releasing cloud resources. Doing so automatically
diminishes the risk of mismanagement resulting in higher costs.

A Prediction Tool capable of offering an estimate of the cost of executing a workload.
This tool must be able to take into account the different available scheduling strate-
gies to give the user the opportunity to choose the strategy meeting their needs.

Contribution

This work deals with the problem of building reliable prediction tools. We aim to build
such a tool using IaaS cloud simulators. As with other distributed systems, a number of
cloud simulation toolkits have been developed. Our team has long worked to evaluate the
effectiveness of such simulators as prediction tools. We performed comparisons of real ex-
ecutions in different clouds and their corresponding simulations to find which parameters
have the biggest impact on simulation precision.

This approach was successful in creating simulations that very closely reproduce their
corresponding runs. However the use of such simulations as a prediction tool is still
impeded by the inherent variability in the execution of applications on distributed systems
such as Infrastructure as a Service (IaaS) clouds. Executing the same workload multiple
times on the cloud will not always give the same execution length or cost. Accounting
for this variability is a difficult problem, that most simulators do not address. This lapse
not only reduces the user’s confidence in the simulation, but reduces the quality of the
information offered to the user.

Our thesis is that using stochastic simulation with a single parameter we can account
for the variability observed in the executions of scientific applications on the IaaS cloud.
In this work we propose a statistical approach to task scheduling on IaaS clouds. Our
simulator accounts for the variability of the underlying cloud through a single parameter
and presents the user with distributions of possible outcomes with a high level of confi-
dence. This method can easily be used to extend other simulators. We use this method
to predictively compare scheduling strategies when executing workloads on IaaS clouds,
to help the user choose the strategy that best satisfies their time and cost constraints.
We show that our simulator is capable of capturing 90% of real executions.

Outline

In Part I of this work we discuss the recent evolutions of IaaS cloud computing and the
different types of scientific workloads. In Section 1.3 we present a couple of scientific
workloads we used in our experiments. Chapter 2 presents Schlouder, a cloud broker
designed to execute batch jobs on IaaS clouds. In Chapter 3 we present SimSchlouder
a simulator built to help Schlouder users find which scheduling heuristic matches their
needs. We study SimSchlouder’s accuracy in Section 3.3.

ix

In Part II we propose using stochastic simulations as an improvement on our previous
deterministic simulation. Chapter 4 presents our attempt to build one such simulation
using the Monte Carlo methods. In Section 4.3 we propose one such simulation, a corre-
sponding input model and we evaluate it through an empirical experiment. In Chapter 5
we study more precisely the effect of the Monte Carlo simulation (MCS) variables on the
simulation’s precision. And in Chapter 6 we study a case in which our MCS failed to
produce satisfactory results and discuss the limits of this approach.

Part I

Background

1

Chapter 1

Context

1.1 Cloud Computing

In computing virtualisation refers to methods and technologies designed to deviate the
execution environment from the real environment in which the execution actually happens.
These techniques oppose the virtual environment thus created to the physical existing
resources. In this work we concern ourselves with cases where virtualisation is used to
split a large physical resource set in smaller virtual ones.

Although virtualisation has been historically associated with high computational over-
head, over the last decades the integration of hardware-assisted virtualisation in CPUs
has greatly reduced the impact of virtualisation and led to the emergence of new economic
and exploitation approaches of computer resources in the form of Cloud computing. In
the Cloud computing model, operators make a large pool of resources available on de-
mand to users, usually in a pay-as-you-go fashion. Most Cloud offers can be classified in
three broad categories. The Software as a Service (SaaS) offers provide a web-application,
or a light front-end to a server side application, to their users. The Platform as a Ser-
vice (PaaS) cloud is usually built around providing automatic deployment and hosting
to user code. Last, Infrastructure as a Service (IaaS), which this works focuses on, pro-
vides physical resources such as computing power or storage space to the users. IaaS
providers operate large datacenters, containing large servers and storage. The large Phys-
ical Machines (PMs) are split between the users by way of Virtual Machines (VMs). VMs
constrain the available resources to a subset of the resources present on the PM on which
the VM is hosted. A large choice of VM configurations, called flavors, allows the users
to build a cluster of the appropriate size for their needs. Within a VM the users have
full administrative access. Resources are paid by pre-established intervals, called billing
time unit (BTU), that range from the minute to the month, with most operators billing
hourly, and any started BTU being billed at full price.

Historically the service provided by IaaS clouds was the purview of hosting providers.
Much like IaaS cloud providers, hosting providers operate large datacenters and rent part
of their resources piecemeal to users. Both of them allow users to set-up their infrastruc-
ture without having to invest in the setting up of a datacenter or a server room, nor in

3

4 CHAPTER 1. CONTEXT

the additional personnel necessary to maintain and operate such infrastructures. High
uptime installations are expensive in infrastructure, with redundant power and cooling
systems, and in specialised personnel. This is especially problematic for users whose pri-
mary activity does not involve much computer infrastructure. Hosting providers could
mutualise such costs creating affordable access to high-availability server-grade hardware.
The main difference between the historical hosting solutions and IaaS cloud resides in the
granularity of the rental.

Virtualisation has allowed IaaS providers to become more effective hosting providers.
Since hosting services rented PMs, they had to possess every machine they rented out.
Because of this, hosting providers had to support a lot of heterogeneous hardware to
satisfy every users’ needs. Misestimated demands could lead to providers running out of
a certain machine type while another type of machine remained unused taking up rack
space. Setup times for new rentals could take up to a few days depending on machine
availability and rentals were operated on a monthly basis. Since VMs are an arbitrary
subset of PM resources, IaaS operators do not need to operate heterogeneous hardware
to satisfy user needs. On the contrary IaaS operators are encouraged to run large PMs
capable of handling any type VMs the operator provides. This setup maximises VM
availability and PM usage. Moreover, the time needed to set up a new VM is much
shorter than a PM, meaning as long as the datacenter is not at full capacity providing
a new VM is almost instantaneous. This is also what enables the finer grained rental
periods (BTUs).

The ability to provision resources on the fly has changed the hosting landscape. Users
are now able to face unexpected computational load by changing their infrastructure
instantly. Either by upgrading to a more powerful VM, referred to as vertical scaling, or
by adding more VMs to the infrastructure, called horizontal scaling. Depending on one’s
uses of the cloud, scaling can be used in different fashions. For some users, this can be
to try to achieve a high level of service availability, like with a website. Scaling is used
in this case to face fluctuation in demand. Whereas previous infrastructure had to be
sized to handle the highest expected traffic load, users can now size their infrastructure
on baseline traffic only bringing in additional resources during usage spikes. This greatly
reduces the cost of keeping the service online for the user. For users using resources for
computational purposes, scaling allows for a fine control of parallelization. This can be
used to achieve shorter makespans (i.e. the time between the submission of the first task
and the completion of the last one) at equal cost.

The advantages in infrastructure efficiency for the providers and usage flexibility for
users led to the quick expansion of IaaS clouds. Today most of the historical hosting
providers also provide virtualised hosting.

1.2 Scientific Computing

Computers’ ability to deal with large amounts of data and computation has opened a lot
of new possibilities in all fields of scientific research. Since most of these computations
need not be sequential, parallelization is often used to improve and speed up these scien-

1.2. SCIENTIFIC COMPUTING 5

project

overlap

diff

bgmodel

background

add

gather

h j k

Montage OMSSA

Figure 1.1: Two types of batch jobs. On the left a workflow (Montage [22]). On the right
a bag-of-tasks (OMSSA [21]).

tific workloads. Parallelization can be performed in different fashions depending on the
granularity of parallelization and the degree of control wanted.

At one end of the spectrum we find workloads designed for High Performance Comput-
ing (HPC). Composed of a single executable or a set of closely linked executables, an HPC
application divides the workload into a set of computing tasks. These tasks are assigned
to all available resources from the beginning to the end of the run. The tasks, that run in
parallel and cooperate (for instance through message passing) are generally instances of
a same program parameterized by the resource id the program runs on. HPC is usually
done on dedicated hardware, and using programming constructs or languages adapted for
parallel computing. Notable constructs and language used for HPC include MPI, often
used conjointly with OpenMP and GPGPUs where relevant, or PGAS languages (such
as X10 and Chapel). Such programs are often written with specific hardware in mind.
Because data is exchanged between different processes at runtime, HPC programs must
be executed on every node of the cluster synchronously. Although provisioning hardware
similar to an HPC cluster is possible in some IaaS clouds, performance remains noticeably
inferior to what can be obtained on a dedicated platform ([37, 42]).

On the other end of the spectrum we find batch jobs. These jobs are composed of
sequential tasks designed to be executed independently. We classify these workloads in
two categories depicted figure 1.1 :

• bag-of-task workloads have no dependencies between their tasks. The tasks can be
executed in any order and with any level of parallelism.

• workflows exhibit data dependencies between tasks. This means the output of a task

6 CHAPTER 1. CONTEXT

Map

Reduce

Figure 1.2: A typical Map Reduce workflow.

can be the input of another task. This constrains the execution order of tasks,
however batch jobs do not require tasks be executed simultaneously. Workflows can
be represented as directed acyclic graphs (DAGs) as in figure 1.1.

It is possible to find advanced workflow structures such as cases where some tasks
are only executed when their dependencies results meet certain criteria. However such
workflows are beyond the scope of this work. We will limit ourselves to cases where the
dependencies and tasks do not change during the workflow’s execution.

Batch jobs are designed to be executed on a large array of equipment, therefore code
specialisation is limited to multicore usage when applicable. Since batch jobs are some
set of separate programs, they need to be externally scheduled to be executed on the
available machines. Outside of the data-dependencies in workflow the scheduler is afforded
a lot of leeway in whether to parallelise the execution of a batch job or not. These
scheduling decisions also depend on the available hardware. Historically batch jobs have
been computed on resources belonging to universities or research institutions. Either using
idle workstations during the off-hours or by investing into dedicated clusters to treat the
jobs for the whole institution. Since the early 2000’s, to face the ever increasing computing
power needed, institutions have started mutualizing resources into shared infrastructures
termed grids, accessed through specialized schedulers. HPC clusters however are rarely
used to execute batch jobs since running non-specialised code is seen a wasteful usage
of this very expensive equipment. The use of the external scheduler coupled with tasks
capable of running on a wide array of hardware setups makes batch jobs a prime candidate
for using IaaS cloud.

HPC workloads and batch jobs are the two ends of a spectrum, and some solutions exist
in-between. One notable example of such a middle ground solution is found in Hadoop
Map-Reduce jobs. Hadoop Map-Reduce is specialised in a single type of of workflow
usually operating on a large input. As shown figure 1.2 a typical Map-Reduce job consists
in :

• a large number of Map tasks, independent from one another and each operating on
a different part of the input.

• a single Reduce tasks taking the Map’s output as input.

Some variations exist, such as using multiple Reduce tasks when dealing with ex-
tremely large datasets, or repeating the whole Map-Reduce process for iterative applica-

1.3. SAMPLE APPLICATIONS 7

tions, for instance frequently found in graph algorithms like Page Rank or shortest path
computations. Map-Reduce jobs share characteristics with HPC, such as using a single
binary running different functions on the various nodes. It also shares some of the batch
jobs characteristics, such as adaptability to heterogeneous hardware. Although map tasks
are completely independent, the Reduce tasks tries to collect results of finished maps on
the fly to reduce the transmission overhead between the last map task and the reduce task.
As with batch jobs, this kind of workload is prime for use of IaaS clouds. In fact some
IaaS operators such as Amazon Web Service already propose the rental of preconfigured
Hadoop clusters.

1.3 Sample applications

In the context of our work we conducted experiments that required running scientific
workloads. To do so we used two applications from different scientific fields with wildly
different execution profiles.

1.3.1 OMSSA

The first application we use comes from the field of proteomics. It is a data interpre-
tation software called Open Mass-Spectrometry Search Algorithm (OMSSA) [21]. The
proteomists and computer scientists of the Hubert Curien Pluridisciplinary Institute in
Strasbourg have interfaced OMSSA with a production pipeline called Mass Spectrometry
Data Analysis (MSDA), accessed through a web portal [12]. For its users, such a tool
automatizes the parallel execution of several OMSSA instances distributed over the EGI
grid in the Biomed virtual organization. This results in a higher analysis throughput and
allows for large scale high throughput proteomics projects. Our team later ported this
grid-based solution to an IaaS-cloud environment.

The tandem mass spectrometry analysis (also known as MS/MS analysis) consists in
the fragmentation of peptides generated by enzymatic digestion of complex mixtures of
proteins. Thousands of peptide fragmentation spectra are acquired and further interpreted
to identify the proteins present in the biological sample. Peak lists of all measured peptide
masses and their corresponding fragment ions are submitted to database search algorithms
such as OMSSA for their identification. Each spectrum is then searched against a database
of proteins. As each search is independent from the others, a natural parallelization
consists in making this application a bag-of-task (BoT). The MSDA web portal wraps the
different tasks in a workflow that manages data as well as parallel computations. It first
copies the appropriate databases to a storage server, then groups the spectra into files
to be sent to different computation sites. For each spectra file, a job running OMSSA is
created to perform the identification search. All jobs can be run independently on different
CPUs. The parallelization grain (i.e., the number of spectra distributed to each CPU)
per OMSSA execution is computed by MSDA as a function of the requested resolution
and the number of available CPUs.

To experiment with the execution of OMSSA, proteomists shared with our team four

8 CHAPTER 1. CONTEXT

Use-case Tasks Spectra Input (MB) Output (MB) Runtime (s)(measured)
(per task) mean sd mean sd mean sd

BRS 223 1250 2.6 0.4 3.4 1.6 603.1 54.9
(1.2) (0.8) (355.9) (182.1)

BRT 33 10000 16.6 2.4 12.4 1.7 125.9 16.6

HRS 65 1250 1.3 0.2 8.9 5.9 182.3 6.8
(0.4) (0.2) (104.3) (19.3)

HRT 34 10000 1.7 0.6 4.1 1.4 9.6 2.3

Table 1.1: Key characteristics of the OMSSA tasks in the different use-cases. Tasks with
a lower number of spectra than the indicated one have their input sizes and runtime
presented in parentheses.

datasets to use as input of OMSSA. These datasets are used to produce 4 OMSSA
use-cases based on input data and OMSSA configuration. As described in the previous
paragraph each set is composed of a number spectrometry results, each of which are,
for parallelization purposes, split into files containing a given number of spectra. The
main OMSSA use-case used in our work is called the BRS. BRS runs the most complete
peptide search possible on a low resolution set composed of 33 base spectrometer results.
These results are split using a granularity of 1250 spectra per file as recommended by the
proteomists. This split results in 6 to 8 files per spectrometer result leading to a total
workload of 223 tasks. The input size of tasks processing a full 1250 spectra averages
2.6MB with a standard deviation of 0.4MB, variations in file size comes from the format
used to store the results. For the files containing less than 1250 spectra the average size
1.2MB with a 0.8MB standard deviations. The output file size appears not to be correlated
to input size. The average output file size is 3.4MB and the standard deviation 1.6M.
The execution of the workload on our cloud platform gives us a feel for the distribution of
runtimes, with data transfers excluded. The average runtime for tasks possesing the full
1250 of spectra is 603.1s with a standard deviation of 54.9s. File with lower number of
spectra average 355.9s with a standard deviation of 182.1s. Taking the workload globally,
without any parallelization the complete execution of the 233 tasks would require an
average of 35 hours and 10 minutes, of which the communications needed to download
input files and upload output files represent less than 1%.

Table 1.1 present all the use-cases available to our team. Execution statistics were
collected during executions done on our local platform. The first columns up to Output
are constant from one execution to the other, whereas runtime will vary depending on
the platform and execution. For BRS and HRS which both use lower numbers of spectra
part tasks we measured input size and runtimes separately for tasks that don’t have a
full number of spectra to analyse. HRT and BRT have such a high number of spectra per
tasks that data are not split into multiple tasks.

1.3. SAMPLE APPLICATIONS 9

project

overlap

diff

bgmodel

background

add

gather

. . .

. . .

h
. . .

. . .

j
. . .

. . .

k

Figure 1.3: Directed Acyclic Graph of the Montage workflow

1.3.2 Montage

The second application comes from the field of astronomy. Montage [22] was developed
at the California Institute of Technology (CalTech) with funding from the NASA and the
National Science Foundation. Montage was designed from the ground up to be executed
on a wide range of infrastructures including grids. The California Institute of Technology
operates a web-portal allowing registered users to operate the workflow on a CalTech
operated grid.

The composition of image mosaics is essential to astronomers. Most astronomical
instruments have a limited field of view and a limited spectral range. This means that large
astronomical structures can not be observed in a single shot. Composing a final image
of a large astronomical structure will often require fusing images taken at different times,
from different places, with different instruments. Although temporality and position
are not huge factors in terms of the observed subject, astronomical structures do not
usually change overnight and Earth’s displacement is mostly negligible, aligning images
from such different places and times requires special tools. The Montage Image Mosaic
Toolkit (Montage) is one such tool. To generate such mosaics Montage performs two
main calculations, re-projection and background rectification. Re-projection computes for
each pixel of each input image pixels of the output image, while compensating for shape
and orientation of the inputs. Background rectification aims to remove discrepancies in
brightness and background, this helps compensating for differences in observation devices,
time of night and ground position. Montage is a workflow of specialized tasks presenting
strong data dependencies.

10 CHAPTER 1. CONTEXT

Task Count Input Size (MB) Output Size (MB) Runtime (s)
(per run) mean sd mean sd mean sd

project 108 14.6 0.8 68.8 10.0 9.1 1.7
overlap 3 0.1 0 0.2 0.00 2.5 0.7
diff 63 423.2 59.9 0.01 0.001 7.2 5.0

bgmodel 3 0.3 0.00 0.00 0 9.8 0.8
background 3 2476.1 9.9 2380.1 9.9 10.6 10.6

add 3 2476.1 9.9 1870.6 0.7 115.5 47.5
gather 1 4096 0 4.4 0 133.4 6.7

0: Zero, these inputs and outputs are always the exact same size.
0.00: Non-zero values inferior to the kB.

Table 1.2: Key characteristics of the Montage tasks in our usecase.

Our dataset for this workflow comes from the 2 Micron All-Sky Survey (2MASS)
performed by the University of Massachusetts between 1997 and 2001. This survey was
performed on 3 different wavelength bands with a resolution of 2 arc-second. Our workflow
only ran on a small sample taken from this extensive sky survey, showing the Pleiades star
cluster. The workflow used for our executions of Montage is presented figure 1.3. It can be
understood as 3 Montage sub-DAGs fused together at the last step of the workflow. Each
sub-DAG works on the images of a different wavelength band, h, j, and k. These bands
are well known for their low rate of absorption by atmospheric gasses and are centered
on 1.65µm, 1.25µm and 2.17µm respectively. Within the band graphs the project tasks
compute the re-projections based on headers contained within the header images. The
re-projected images are then sent to an overlap task which computes the overlapping
regions of the different re-projected images. These overlapping regions are distributed
to diff tasks charged with comparing the overlapping regions on the re-projected images
created by project tasks. The comparisons thus created are then used by a bgmodel task
to compute the necessary brightness and background corrections for every re-projected
image. These corrections are applied to every single re-projected image by the background
task. It should be noted that although it is not the case in our setup, the background
task can be parallelized in the same fashion as project and diff tasks. The add tasks
then splices the different re-projected images in a single mosaic image for the given band.
Finally the gather task fuses the mosaics produced for each of the bands.

Table 1.2 provides the distributions of input size, runtime, and output size for the
different tasks-types across all executions of Montage. It should be noted that overlap
and gather only use as inputs data generated within the workflow. This explains why we
found a 0 standard deviation for these input sizes. Conversely bgmodel and gather outputs
are also extremely constant. Overall Montage is much more communication intensive, with
data transfer times representing between 42% and 64% of task executions depending on
the platform parameters.

Chapter 2

Operating Scientific workloads on IaaS
Clouds

2.1 Cloud Scheduling

Our team has been working on the opportunities of using IaaS clouds to execute batch-
job like workloads. As defined earlier, clouds are essentially scalable infrastructures.
Therefore, executing a workload implies two actions: i) provision an appropriate number
of resources, and keeping this number adapted to the intensity of the workload, and ii) map
the computations to the resources in a timely manner. Although a small workload could
be planned and executed manually by a user, larger workloads will require automation
to be properly processed and monitored. Before describing our cloud scheduling system,
we quickly define the terms scaling and scheduling, which correspond to actions i) and ii)
respectively, as these terms are frequently encoutered in the literature related to clouds.

2.1.1 Scaling

Scaling is the act of provisioning enough resources for one’s workload. Commercial entities
and research institutions alike have had to deal with scaling since computers became an
essential tool for their activities. The difficulty is striking the balance between acquiring
enough resources to fulfill all of their needs without overspending resulting in resources
that would sit unused. Cloud computing has not fundamentally changed this core balance
at the heart of scaling, but it does offer the user the opportunity to change that balance
at any time, as long as they can afford it.

In the prominent field of cloud applications which is web-based applications, scaling
is generally the only action that matters. In this field indeed, requests that require
processing arrive continuously over time. Therefore, no scheduling of the processing can
be anticipated. Given that the requests are independent from one another, scaling is
mostly about guaranteeing enough resources are available at any moment to fulfill every
request sent to their web service. In such a context a scaling system will usually be
concerned with tracking metrics about the overall application load and pro-actively [13,

11

12 CHAPTER 2. OPERATING SCIENTIFIC WORKLOADS ON IAAS CLOUDS

55] or reactively [15] allow for the adding or removing of resources to the pool. These
forms of auto-scaling are available commercially through third party solutions such as
RightScale [41] or Scalr [43] or through the cloud operators themselves (e.g. [2]).

The context of finite workload scaling is more about balancing the total runtime of
the workload, called the makespan, against a second metric, often the cost or energy
requirements. Examples of simple scaling policies designed to minimize the makespan in
priority by greedily starting new resources can be found in [53] or [19], while an example
of scaling with power consumption minimization can be found in [18].

2.1.2 Scheduling

Scheduling is the act of assigning a task to an available computing resource. Schedulers are
at the core in batch-job systems where they were used to split a shared pool of resources
between the submitted jobs in a queue. Systems like Condor [51] allowed universities to
pool their computing resources into one system that would automatically distribute tasks
submitted for execution. Such systems were mainly concerned with the proper repartition
of resources and respecting the tasks’ constraints, such as dependencies between different
tasks. Such schedulers could be divided into two categories:

• Offline schedulers: which need to know all the jobs to perform and the available
resources ahead of time.

• Online schedulers: which accept new jobs on the fly.

In either case schedulers worked within given resources. They could not, as we can
in IaaS, provision new resources as needed. The rise of IaaS gave birth to a new class of
algorithms combining scaling and scheduling.

2.1.3 Cloud brokers

Cloud brokers are capable of performing both scaling and scheduling in tandem. In some
cases these designs were proposed as an extension to a grid scheduler, making it possible
to complement local resources by provisioning additional machines from the cloud ([33,
38]). Others fully relied on cloud resources.

PaaS brokers constrain users to their APIs and mask the underlying resources. JCloud-
Scale [28] proposed by Leitner et al. lets the user provide constraints to respect during
execution. mOSAIC [39] requires the users to provide the tasks’ needs and minimal
performance constraints. And Aneka [52] provides a deadline constraint strategy.

IaaS brokers on the other hand provide a more direct access to the underlying resources.
IdleCached [49] is a cloud broker that attempts to optimize the cost by scheduling tasks
on idle VMs by following an earliest deadline first policy. E-clouds [34] provides off-
line schedules of a pre-establish list of available applications. The home-grown project
Schlouder [35] lets the user select a provisioning and scheduling heuristic from a library
containing strategies optimizing for makespan or for cost.

2.2. SCHLOUDER 13

Schlouder
Client

Job
Description

Scheduling
Heuristic

User

Core

CloudKit

(5)Scheduler

Slurm

Schlouder Server

Cloud
Frontend

VM

VM

IaaS cloud

(6,8)

(7)

(1)

(2) (4,9)

config(10)config(3)

Figure 2.1: The Schlouder cloud brokering system.

2.2 Schlouder

Schlouder, the aforementioned cloud broker, has been developed in our team to schedule
batch jobs on IaaS clouds. Schlouder is designed to work with bag-of-tasks and workflows.
Schlouder was developed in Perl from 2011 to 2015 by Étienne Michon with contributions
from Léo Unbekandt and this author. A functional installation of Schlouder requires
a functional installation of Slurm, a job management program service, munge, the au-
thentication service used by Slurm, and a DNS service. Schlouder is made available for
usage under GPL licence on INRIA’s public forge [45]. This author contributed late
to Schlouder’s development helping to provide better logging capabilities and to debug
scheduling edge-cases.

2.2.1 Schlouder operation

Figure 2.1 offers an overview of Schlouder’s operation.

Client-Side operation. The user interacts with Schlouder through the Schlouder client,
shown on the left hand side of the figure. To start the execution of a new workload the
user provides:

1. Job description Provided as a lists of scripts. Each script is a single task. The task’s
name, expected runtime, and dependencies if any are provided through headers in
its script. The rest of the script is executed on the VM when the task is executed.

2. Scheduling Heuristic The user chooses from the heuristics installed on the server
which one to use to schedule their workload.

The Schlouder client configuration file (3) provides additional settings such as the pre-
ferred instance type and the cloud selection criterion, when applicable, as well as the
address and connection parameters to the Schlouder server.

14 CHAPTER 2. OPERATING SCIENTIFIC WORKLOADS ON IAAS CLOUDS

Workload execution. The client sends all this data to the Schlouder server (4). As
the server receives data from the client it immediately starts the process of executing the
user’s workload.

5. Scheduling is done using the heuristic chosen by the user. The scheduler schedules
tasks one at a time as soon as all dependencies are satisfied. Tasks are either
scheduled to existing VMs or to a VM to be provisioned.

6. Provisioning is done through the Cloud Kit module. The cloud kit is the inter-
face between Schlouder and the cloud by implementing the API calls necessary for
Schlouder’s operation. The cloud kits are API dependent, as such multiple clouds
using the same API do not require different cloud kits. The functions required by
Schlouder are:

• runInstance: provisions a new instance from the cloud.
• instanceIsRunning: determines whether a given instance has successfully

booted and reached the running status.
• getIPAddressFromId & getHostnameFromId: these functions are used when

pushing tasks to the VMs
• describeInstances: provides a list of all provisioned instances, their current

state and IP address when applicable.
• terminateInstance: terminates a specific instance.

Cloud specific configurations must be provided to the Schlouder server for every
cloud currently in use. These files contain the cloud kit to use, cloud connection
credentials to use, the VM image to use, a list of available instance types, cloud
usage quotas if applicable and a boot time prediction model.

7. Task execution Once a VM has been provisioned the tasks queued on it by the
scheduler are executed by the task manager, Slurm by default. Slurm copies the
task’s script to the VM and monitors the scripts execution. When a task finishes
Slurm retrieves the execution log before executing the next queued task.

8. Instance shutdown is done through cloud kit’s terminateInstance function. Shut-
downs are only performed when a VM is without any running or queued tasks and
it reaches the shutdown margin at the end of its BTU.

9. Client monitoring At anytime during or after the execution the user can use the
Schlouder client to monitor the advancement of the execution. The report sent by
the server contains the list of all active, shutdown, and planned VMs, and for each
of those the list of executed, running, and queued tasks.

Server Configuration. The server configuration(10) contains the necessary informa-
tion for Schlouder to operate, including:

• Application setup: Binding address and port, temporary directory, client usernames,
BTU length, and shutdown margin.

2.2. SCHLOUDER 15

events

time

State

metrics

provisioning
decision

Future

provisioning
request

Pending

VM
start

Booting Idle

jobs
assigned

Busy

shut-down
request

Shut-down Terminated

uptime

boot time jobs walltimes

Figure 2.2: VM lifecycle

• Cloud setup: List of available clouds and for each cloud :

– the API to use
– connection information
– boot time estimators
– usage quotas
– available instance types
– disk image to use

• Task manager setup: system to use and configuration file

• Scheduler setup: a list of available scheduling heuristics

Although they are part of the application and cloud setup respectively the BTU length
(length of the cloud’s billing cycle), the shutdown margin (overhead scheduled for shut-
down), cloud usage quotas, and the boot time estimators are also inputs of Schlouder’s
scheduler.

VM lifecycle management. From the moment the scheduler decides to provision a
new VM Schlouder’s node manager thread creates the internal representation necessary
to track its status. Figure 2.2 schematize this lifecycle, its key event and the metrics
reported by Schlouder.

1. Future As soon as Schlouder’s scheduler requires a new VM a new task queue is
created. The scheduler is made aware of this task queue and immediately able to
schedule more tasks to it. The start time/end times of the jobs in the queue are
computed on the basis of the boot time estimators and the tasks’ expected runtimes.
Internally the tasks is assigned to a VM with the Future state.

2. Pending is the state assigned to a VM for which a provisioning request has been
submitted to the cloud. As with the Future state, Pending VMs are simple tasks
queues existing mostly to allow the scheduler to continue normal operation. The
difference between Future and Pending exists for Schlouder to keep track of how
many provisioning requests need to be done and how many VMs are still expected
from the cloud.

16 CHAPTER 2. OPERATING SCIENTIFIC WORKLOADS ON IAAS CLOUDS

3. Booting As soon as a new VM resource appears on the cloud it is assigned to
the oldest Pending VM. The internal representation of the VM is completed
with available information from the cloud and its state is switched to Booting.
Schlouder will store the current time as the VM’s start date and the task queue is
recomputed using this date to allow for more precise scheduling. Two timers are
set, the shutdown timer roughly as long as BTU and the short startup monitoring
timer. The latter instructs Schlouder to check if the VM has been detected by Slurm.
Becoming visible in Slurm switches the VM to the Idle/Busy states depending on
context. The time elapsed in the Booting state is recorded as the boot time. The
tasks queue is updated with the measured boot time in place of the boot time
estimation.

4. Idle/Busy During normal operation the VMs will alternate between the Idle and
Busy state depending on whether they are running any tasks at a given time. Each
time a VM finished a given task the task queue is updated to adjust for any deviation
for the prediction. This allows the scheduler to always operate on the most precise
information available.

5. Shutdown The first shutdown timer of any given VM is setup to trigger one
shutdown margin (as indicated in the server configuration) before the end of the
BTU. Once the shutdown timer is triggered Schlouder checks whether the VM is
Idle and its tasks queue is empty in which case Schlouder will set the VM state
to Shutdown and send the corresponding request to the cloud. A VM in the
Shutdown state becomes unavailable to the scheduler. VMs which do not meet
the shutdown criterion see their shutdown timer extended for 1 BTU.

6. Terminated Schlouder monitors the status of VMs in the Shutdown state until
they are removed from the cloud resource list. When this happens the VM’s state
switches to Terminated and the current time is stored as the VM’s stop date. The
VM’s uptime is computed from the VM’s start date and stop date and added to
Schlouder’s output.

Task lifecycle management. Like with node management Schlouder also keeps a task
manager thread in charge of tracking the different tasks lifecycle and stores many metrics
for review and analysis. The lifecyle of a single task is presented figure 2.3.

1. Pending Tasks received from a client are added to the scheduling queue. The time
at which the server receives the tasks is called the submission_date. Newly received
tasks are attributed the Pending state.

2. Scheduled Once all the dependencies of the task reach the Complete state the
task can be scheduled. Once the scheduler assigns the tasks to a task queue the
task’s state is switched to Scheduled. The time at which the scheduling happens
is recorded as scheduling_date.

3. Submitted A task will remain in its Scheduled state until its turn to be executed
on its assigned node comes up. Once the task is handed over to Slurm for execution

2.2. SCHLOUDER 17

events

time

State

metrics

task
reception

Pending

node
assigned

Scheduled

task sent
to node

Submitted

task starts
on node

Inputting Running Outputting

task ends
on node

Finished Complete

submission_date

scheduling_date

start_date walltime

inputtime runtime outputtime

managementtime

Figure 2.3: Tasks lifecycle

the task is considered Submitted and the current time recorded as the task’s
start_date.

4. Once the task is under Slurm’s control Schlouder does very little to track its start
and its advancement. However for tasks following the intended format it is possible
to report to Schlouder an input_time, runtime, and output_time. These times are
retrieved from the task’s execution log and therefore not known by Schlouder. As
such the following states exist for research purposes and not as part of the Schlouder
internal representation.

• Inputting The task starts executing on the node, and downloads from storage
the inputs necessary for its execution.
• Running The task executes its main payload on the inputs.
• Outputting Results from the execution are uploaded to storage.
• Finished The task’s script has finished running on the node. But Schlouder

has yet to become aware.

5. Complete Schlouder becomes aware that the task has finished. The current time
is used in conjunction with the start_date to compute the jobs effective walltime.
The task state is set to Complete and the task queue to which it belonged is
updated to account for the effective walltime.

All the Schlouder metrics described in the previous paragraphs are defined in table 2.1.
Times and dates are provided in seconds and recent versions of Schlouder have a precision
of 1 nanosecond.

Although we just explained the general operation of Schlouder, the most important
component during the execution of a workflow is the scheduler. This is the component
responsible for the ordering the provisioning of new VMs and the placement of tasks.

2.2.2 Scheduling heuristics

Schlouder’s scheduler takes scheduling and provisioning decisions on a task by task basis,
scheduling every task with no pending dependencies. Scheduling decisions are informed

18 CHAPTER 2. OPERATING SCIENTIFIC WORKLOADS ON IAAS CLOUDS

Target Name Unit Source

VM

boot_time_prediction s computed from configuration.
boot_time s measured during Booting state.
start_date date logged at the start of Booting state.
stop_date_prediction date based on start_date, BTU length, and task

predicted/effective walltime.
stop_date date logged at the start of terminated state.

Task

submission_date date time at which Schlouder first receives a task.
scheduled_date date time at which the scheduler selects a VM for

the task.
start_date_prediction date time at which the scheduler expects the task

to start.
start_date date time at which a task is handed to Slurm for

execution.
walltime_prediction s provided by the user.
(effective) walltime s measured by Schlouder.
input_time s provided by the task, the time spent

downloading inputs.
input_size byte provided by the task, the size in bytes of dif-

ferent downloaded inputs.
runtime s provided by the task, the time spent in com-

putations.
output_time s provided by the task, the time spent upload-

ing results.
output_size byte provided by the task, the size in bytes of the

different uploaded outputs.
management_time s Computed by subtracting runtime, in-

put_time, and output_time from the
walltime. The management_time represents
unmeasurable delays such as the task’s
transfer time and the delay between the
tasks ending and Schlouder being aware of
the termination.

Table 2.1: Schlouder available metrics. All times and date measured in seconds with a
precision to the nanosecond.

2.2. SCHLOUDER 19

by the scheduled task’s expected runtime, the active VMs and their runtimes, eventual
future VMs and their expected boot-times, and the expected runtimes of jobs already
queued to active VMs.

Alogrithm 2.1 (see below) presents the generic algorithm used for scheduling in Schlouder.
This algorithm uses the following definitions:

• t the task to schedule.

• v an available VM

• V the set of all such VMs

• C the set of candidate VMs for scheduling

The scheduler first determines which available VMs can be used to run the task to
schedule. This is done using a heuristic-dependent eligibility test, eligible(). Then if no
VM matches the eligibility conditions a new VM is provisioned and the tasks are queued
to it. In cases where one or more VMs are deemed eligible a heuristic-dependent select()
function is used to select the VM on which to queue the tasks t.

Algorithm 2.1 Generic Schlouder scheduling algorithm
1: procedure Schedule(t) //a new task t is submitted
2: C ← ∅ //C is the set of candidate VMs (C ⊂ V)
3: for v ∈ V do
4: if eligible(v, t) then //Find eligible VMs
5: C ← C ∪ {v}
6: end if
7: end for
8: if C 6= ∅ then
9: v ← select(C) //Select VM amongst eligible
10: else
11: v ← deploy() //Create and run a new VM
12: V ← V ∪ {v}
13: end if
14: enqueue(v, t) //Map the job to the VM
15: end procedure

Schlouder is provided with a dozen strategies derived from this generic setup. 1VM4All
only ever provisions one VM and represents the worse case scenario in terms of makespan
while offering the lower cost of execution. At the opposite end of the spectrum 1VMper-
Task immediately schedules every single task on a new VM, therefor offering the shortest
possible makespan while being the most expensive heuristic. In this work we will observe
Schlouder executions using two heuristics, As Full As Possible (AFAP) and As Soon As
Possible (ASAP).

The AFAP strategy aims to minimize the cost of running a workload. As such it will
favor delaying tasks to execute them on already running VMs. However since running

20 CHAPTER 2. OPERATING SCIENTIFIC WORKLOADS ON IAAS CLOUDS

Time
0 15 30 45 60 75 90

t5 = 20min

Tasks t2 = 45min t4 = 15min

t1 = 15min t3 = 10m

AFAP
BTU 1t1 t2

BTU 2t3 t5 t4

ASAP
BTU 1t1 t3

BTU 2t2 t4

BTU 3t5

Figure 2.4: Chronograph of the two Schlouder strategies used in this work.

two VMs in parallel has the same cost as running a single VM for two BTUs, AFAP
will only consider eligible for scheduling VMs whose expected remaining time can fit the
full expected runtime for the task being scheduled. In cases where multiple VMs exists,
AFAP will select the best fit.

The ASAP strategy aims to minimize the makespan of a workload. As such it will favor
provisioning new VMs over delaying a task’s execution. Therefore it will only consider
eligible for scheduling VMs that are already idle at the time of scheduling and VMs that
are expected to become idle before an new one can be provisioned. If multiple such VMs
exists, ASAP will select best fit.

The expected remaining time of a VM, used in AFAP, is computed using the observed
runtime of already executed jobs and the user provided expected runtime of already
queued jobs. The expected boot time of a VM is predicted using the parameters provided
in the cloud configuration files. These parameters must be estimated, from experience by
the operator of the server, and take into account the number of VMs already booting.

Figure 2.4 presents a short example of ASAP and AFAP in a 5-task workload. Tasks
t1 to t2 are submitted at the start of the workload with tasks t3 and t4 being dependent
on t1 and t2 respectively. Task t5 is submitted separately 20 minutes after the other tasks.

Chapter 3

Simulation of IaaS Clouds

We now have a scheduling tool to execute our workload in the cloud. Experimentation
with scheduling shows that for users to choose the correct schedule to fulfill their con-
straints is a non-trivial problem. As such, a prediction tool is needed for the user to
project the cost and makespan of their workload. We intend to use simulation to provide
this prediction.

Simulation has always been a key component of the study of distributed systems. Sim-
ulations present three main advantages over experimentations on real platforms. Firstly
distributed systems present high installation and maintenance costs, which simulators do
not have. Secondly simulations can run experiments faster than real time, allowing to
perform lengthy experiments in reasonable times. Lastly, well designed simulations offer
an access to the minute-to-minute evolution of systems that are complicated to reproduce,
albeit not impossible. However these advantages come at the risk of having the simulation
not represent reality. As a gap between the simulation and the corresponding reality is
inevitable, if we intend to use simulation for prediction tools we need to establish the
deviation between our simulations and reality.

In this chapter we first explore the pervasive principles used in cloud simulation and
the available simulation tools. Then we will present the technical solution we used to
create a simulator for Schlouder. Finally we will present the evaluation we performed for
our simulator and discuss the results’ implications on the use of simulation as a prediction
tool.

3.1 Simulation technologies

Discrete event simulations. Most cloud simulators are based on discrete event sim-
ulation (DES). A discrete event simulation is a series of events changing the state of the
simulated system. For instance, events can be the start and end of computations or of
communications. The simulator will jump from one event to the next, updating the times
of upcoming events to reflect the state change in the simulation. A solver, at the core of
the DES, considers the system’s states generated by the platform and previous events to

21

22 CHAPTER 3. SIMULATION OF IAAS CLOUDS

compute the timing of future events. In most cases, simulators have a bottom-up approach:
the modeling concerns low-level components (machines, networks, storage devices), and
from their interactions emerge the high-level behaviours. Working on disjoint low-level
components makes it easier to tune the model’s precision to the wanted accuracy or speed
trade-off.

Running a bottom-up DES-based simulator requires at least a platform specification
and an application description. The platform specification describes both the physical
nature of the cloud, e.g. machines and networks, and the management rules, e.g. VM
placement and availability. Depending on the simulator, the platform specification can be
done through user code, as in CloudSim [10] for example, or through platform description
files, as is mostly the case in SimGrid [14]. The application description consists in a set
of computing and communicating jobs, often described as an amount of computation or
communication to perform. The simulator computes their duration based on the platform
specification and its CPU and network models. An alternative approach is to directly
input the job durations extrapolated from actual execution traces.

The available cloud DESs can be divided in two categories. In the first category are the
simulators dedicated to study the clouds from the provider point-of-view, whose purpose
is to help in evaluating the datacenter’s design decisions. Examples of such simulators are
MDCSim [30], which offers specific and precise models for low-level components including
the network (e.g. InfiniBand or Gigabit ethernet), operating system kernel, and disks. It
also offers a model for energy consumption. However, the cloud client activity that can
be modeled is restricted to web-servers, application-servers, or data-base applications.
GreenCloud [24] follows the same purpose with a strong focus on energy consumption of
the cloud’s network apparatus using a packet-level simulation for network communications
(NS2). In the second category are the simulators targeting the whole cloud ecosystem,
including client activity. In this category, CloudSim [10] (originally stemming from Grid-
Sim) is the most broadly used simulator in academic research. It offers simplified models
regarding network communications, CPU, or disks. However, it is easily extensible and
serves as the underlying simulation engine in a number of projects (e.g. ElasticSim).
Simgrid [14] is the other long-standing project, which when used in conjunction with the
SchIaaS cloud interface provides similar functionalities as CloudSim. Among the other re-
lated projects, are iCanCloud [36] proposed to address scalability issues encountered with
CloudSim (written in Java) for the simulation of large use-cases. Most recently, PICS [23]
has been proposed to specifically evaluate simulation of public clouds. The configuration
of the simulator uses only parameters that can be measured by the cloud client, namely
inbound and outbound network bandwidths, average CPU power, VM boot times, and
scale-in/scale-out policies. The data center is therefore seen as a black box, for which no
detailed description of the hardware setting is required. The validation study of PICS
under a variety of use cases has nonetheless shown accurate predictions.

Alternative approaches to simulations. Although the vast majority of cloud simula-
tors are based on bottom-up DESs other approaches are available for creating simulations.
One such approach is directed acyclic graph (DAG) computation. This kind of approach
is extensively used in project management where methods such as PERT (Program Eval-
uation and Review Technique) or Gantt graphs are commonly used to estimate project

3.2. BUILDING A SIMULATOR 23

length. This method works well with the simulation of the types of workflows studied
in this work, where tasks have clear ends and defined dependencies, but would not be
appropriate for generic cloud simulations. It should be noted that this kind of approach
does not preclude the use of a DES, but using PERT methodologies allows one to perform
the same simulation from a workflow perspective where the intricacies of the underlying
resources are not formalised. Still others build simulators using a top-down approach.
Using Trustworthy Simulation to Engineer Cloud Schedulers [40] describes the creation of
a simulation model based on perturbation theory. Starting with the most parsimonious
model possible, the authors of this work introduce a perturbation in the inputs to repre-
sent unmodeled behaviors. If the simulation is insufficiently accurate, terms are added to
the main model and the perturbation adjusted in consequence. It should be noted that in
this work the simulator using the thus obtained model keeps track of the simulation state
using a DES. The originality of this work compared to the ones described in the previous
paragraph lies in the use of a top-down model and the use of a perturbation term covering
unmodeled behavior.

3.2 Building a Simulator

We designed SimSchlouder as an aptly named simulator for Schlouder executions. Sim-
Schlouder is based on SimGrid and uses SchIaaS, a specifically built IaaS simulation
extension for SimGrid.

3.2.1 SimGrid

SimGrid [14] is a scientific instrument to study the behaviour of large-scale distributed
systems such as Grids, Clouds, HPC, and P2P systems. The SimGrid project was started
in 1999 and is still under active development [46].

SimGrid Engine. Simgrid itself is not a simulator but rather a framework and toolkit
with which to build DESs. SimGrid provides core functionalities needed for a simulator
and a number of user APIs with which to interact with the core functions. Figure 3.1
schematizes the internal structure of the SimGrid toolkit. The key components are:

• XBT contains all the base data-structures and memory handling functions. Written
in C this module helps guarantee the portability of SimGrid-based simulators.

• SURF is the solver at the core of the SimGrid simulations. Using the platform
representation this module computes the timing of events within the DES.

• SIMIX is a kernel handling the usercode and acts as an application description.
The processes handled by SIMIX are executed or suspended in accordance with the
timings and events computed by SURF.

• User APIs The remaining modules represent the APIs used by the user creating a
simulation based on SimGrid.

24 CHAPTER 3. SIMULATION OF IAAS CLOUDS

SimGrid

XBT
(grounding feature, data structures, portability)

SURF
(virtual platform simulator)

SIMIX
(usercode handling)

MSG
CSP API

SMPI
run MPI apps in
virtual platform SimDag

simulate DAGs
of parallel tasks

Figure 3.1: SimGrid Architecture

– MSG allows the user to represent the simulation content to be presented as
Communicating Sequential Processes (CSP). When using MSG the usercode
describes a sequence of communications and computations performed by the
simulated process.

– SMPI also simulates the application as a set of concurrent processes, but
the simulated processes are generated automatically from an existing C or
Fortran MPI enabled application. SMPI provides an additional runtime for
MPI-specific functionalities.

– SimDAG does not use concurrent processes as a representation of the simu-
lated workload but instead allows for an abstract representation as a directed
acyclic graph of communicating computational tasks.

Simulations using MSG. Our work relies on the MSG API. This API is available
in C, C++, Java, Ruby, and Lua. Writing a simulator with MSG requires the user to
provide:

• Simulator code as SimGrid is merely a framework. The user must write a code
to instantiate the SimGrid engine and configure it properly before starting the sim-
ulation itself.

• Platform file provides a description of the simulated environment within which the
simulation happens. It mainly consists in a description of available machines, called
hosts, and the networks to which they are connected. SimGrid’s platform syntax
offers a wide array of options such as cluster, CPU speed, CPU power consumption,
network bandwidth and latency. A number of parameters can be replaced by files

3.2. BUILDING A SIMULATOR 25

that allow the user to vary the parameters along the simulation, e.g. allowing for a
simulation where the bandwidth of a link changes over time.

• Usercode representing the actions undertaken by the simulated processes. This
code is compiled with the simulator code and will be executed during the simulation
at the will of the SIMIX kernel. The usercode uses specific MSG function calls
to indicate to the simulator that the simulated process is performing a specific
action such as communicating or computing a certain amount of data. Using code
to represent the simulated application allows the simulation to react to simulated
events in a way static representations can not. In our case usercode allows us to
implement task scheduling within the simulation.

• Deployment file indicates to SimGrid on which host of the simulated platform the
different simulated processes are executed. This is optional as pinning processes to
a host can also be done in the simulator code directly.

A well coded simulator first initialises the SimGrid engine with the MSG user API.
Second, the platform file is passed to the engine. Third, simulated processes are set up,
either through manual calls to MSG or by passing the deployment file. In this step SIMIX
acquires pointers to the usercode to execute during the simulation. Finally the MSG_run
function is called to start the simulation.

During the simulation code execution is controlled by the SIMIX kernel. While the
simulated processes are running the simulation’s clock is suspended. A simulated process
is suspended when it makes an MSG call and the event corresponding to that call is added
to the simulation’s timeline. Once all the processes are suspended SURF solves the timing
of all the events on the timeline. The simulation’s clock in then advanced to the next
event on the timeline and the process suspended by the corresponding call is awaken. The
simulator continues alternating between the execution of usercode and the computation
of the timeline until all usercode is terminated. At which point the simulation ends and
control is handed back to the simulator code.

IaaS cloud within SimGrid. SimGrid is a lower level toolkit to build simulations of
distributed systems. Its bottom-up design means SimGrid concerns itself with hosts, their
cores, their network interfaces, and the sharing of those resources between the processes
working on the hosts. Because of this SimGrid by itself offers very little in terms of tools
for cloud simulation. It does however offer one critical element, the ability to partition a
host’s resources into simulated VMs. From a functionality perspective the VM interfaces
available in MSG matches the functionality expected of an hypervisor kernel module.
That is the ability to create of VM based on a number of available physical resources,
the ability to start suspend or shutdown this simulated VM, and the ability to assign
simulated processes to the VM instead of the underlying host. SimGrid VMs are heavily
abstracted and do not have boot or shutdown times. In order to build our simulation
of Schlouder we needed to extend the base provided by SimGrid into a proper cloud
simulation.

26 CHAPTER 3. SIMULATION OF IAAS CLOUDS

MSG

SCHIaaS Core

Compute Engine

Scheduler
Storage Engine

Load Injector SimSchlouder User Made App

Tracing
M

odule

: Replaceable modular elements

Figure 3.2: SchIaaS Architecture

3.2.2 SchIaaS

We designed SchIaaS to provide a tool to build extendable IaaS simulations. SchIaaS is
written in Java and works with the Java MSG API. SchIaaS was designed and written
as part the ANR project SONGS (Simulation Of Next Generation Systems) of which
SimGrid was also part and is available at [44]. Like SimGrid, SchIaaS is designed as a
toolkit that is not a simulator by itself but an extension of the of the calls available in
MSG. SchIaaS is not however a patch to SimGrid, it rests on top of MSG and SchIaaS
call modify the simulation state by a series of coordinated calls to the MSG interface.

Structure. SchIaaS was designed to facilitate both simulations of IaaS clouds and simu-
lations of applications using IaaS clouds. Figure 3.2 presents an overview of the structure
of SchIaaS. Key elements are as follows:

• SchIaaS core contains the base code for initialisation and loading of modules.

• Compute Engine this component contains the code pertaining to VM lifecycle
management. Although a compute engine is provided with the base installation of
SchIaaS, this module can be replaced for experiments not compatible with the base
implementation.

– Scheduler this component determines on which hosts the VMs are placed
on. Because this component is often the subject of independent studies this
element can be swapped independently from the standard Compute engine.
The SchIaaS installation provides a couple of different schedulers.

• Storage engine this component provides a bucket storage element, with the ability
to put and get data from a storage service. This element is replaceable to allow for
experimentation with data management.

Additionally SchIaaS contains two optional modules:

3.2. BUILDING A SIMULATOR 27

• Tracing module designed to help users extract useful information from the simulated
environment.

• Load injector performs simulated VM startup and shutdown requests following user
provided pattern or traces. This module is useful for users trying to study behaviours
of the cloud itself rather than an application using the cloud.

The last usercode presented in Figure3.2 is our simulator SimSchlouder described here-
after.

Functionality. The functions provided by SchIaaS mirrors what is expected of a cloud
API. Where SimGrid provides very basic hypervisor level functionalities to control the
simulations of VMs, SchIaaS deals in cloud instances. Using SchIaaS the simulated pro-
cesses can query available images and instance types, and run, suspend, resume, or ter-
minate instances of the required type. Upon request, SchIaaS will provide the underlying
simulated VM to the usercode to allowfor the allocation of new simulated processes.
Additionally the storage interface allows the simulated processes to trigger uploads and
downloads from the dedicated storage nodes.

Usage. To use SchIaaS within a simulation the user must initialise the SchIaaS com-
ponent during startup after initialising MSG and loading the platforms. Initialisation is
configured by a cloud file. This file describes the simulated clouds. For each cloud the
file indicates the Storage and Compute engine, the scheduler, the compute nodes, and the
available flavors and disk images. During the simulation simulated processes can make
calls to SchIaaS engine functions. These functions are executed as usercode but them-
selves make calls to the appropriate MSG functions triggering the events corresponding
to the operations of the simulated IaaS cloud.

3.2.3 SimSchlouder

SimSchlouder is a simulation of Schlouder built on top of SimGrid and SchIaaS. It can be
found in the SchIaaS repository ([47]). SimSchlouder was first designed as a prediction
module for Schlouder, with the objective of offering to the users a preview of the makespan
and costs to expect depending on their chosen strategy. Although a prediction module
would have to strictly use the same inputs as Schlouder, we quickly extended SimSchlouder
to be a general purpose Schlouder simulator with multiple possible levels of inputs. This
evolution has helped us make SimSchlouder more accurate, as we will see in Section 3.3,
and on occasions has lead finding bugs in Schlouder itself.

Usage. SimSchlouder runs a simulation of a given platform with a specified cloud. The
simulation encompasses the target cloud with its physical components and the Schlouder
server with its physical host. The Schlouder-client and its communication with the
Schlouder-server are not part of the scope of the simulation. In a run of SimSchlouder

28 CHAPTER 3. SIMULATION OF IAAS CLOUDS

only one strategy may be used, however the simulation allows for jobs to arrive in sepa-
rate batches and at different times during the simulations. SimSchlouder’s invocation is
as follows:

$java simschlouder.SimSchlouder simschlouder.xml job.tasks strategy [flags]

• SimSchlouder.xml is the main configuration file. This file contains a mix of pa-
rameters necessary for a SimGrid/SchIaaS simulation and parameters found in
Schlouder’s configuration.

– the platform file to use for the simulation. (necessary for SimGrid);

– the cloud configuration file to use with SchIaaS;

– the simulated host on which the simulated Schlouder-server is executed (nec-
essary to setup the simulation);

– the clouds to use (as in Schlouder’s configuration);

– the BTU length for each cloud (as in Schlouder’s configuration);

– the boot time estimators to use (as in Schlouder’s configuration);

– the shutdown margin to use (as in Schlouder’s configuration);

– the image and instance type to use on each cloud (as in Schlouder’s configura-
tion).

• job.tasks contains the description of the tasks to execute. As in Schlouder this
list must include for each task a name, a predicted runtime, and data dependen-
cies. Since client-server communication falls outside of the simulation’s scope Sim-
Schlouder additionally requires that each task be assigned a submission date. More-
over any input necessary for the advanced simulation presented in the Capabilities
paragraph below will also be added to this file.

• strategy The heuristic to use for provisioning and scheduling within the simulation.
The strategies match the ones found in Schlouder, but differences in programming
language mean that strategies had to be reprogrammed in SimSchlouder.

• flags indicates which optional fields from the task file must be used during the
simulation.

Capabilities. The most basic use-case of SimSchlouder is the prediction module setup
limited to the inputs provided to Schlouder. This strongly reduces the simulation accuracy.
To tune the simulation, the simulator was extended to take into account additional timing
inputs, triggered by using the following flags:

• real_boottimes : SimSchlouder can receive real boot times as additional input. Real
boottimes create a delay in the start of the first task of their respective nodes.
This option mostly affects the simulated makespan, and possibly later scheduling
decisions. Without real_boottimes the simulation will make use of the estimators
provided in the configuration file.

3.3. EVALUATION OF SIMSCHLOUDER 29

• real_walltimes : In the basic use-case SimSchlouder considers the user to be correct
in his walltime predictions and uses them not only for the scheduling but also as
runtimes during the simulation. Of course, walltime predictions being exact is an
exceedingly rare case. Submitting real walltimes allows the user to create realistic
simulations where predictions do not match the effective walltimes.

• communications : For users interested in the impact of communications on their
workload, this setup allows them to specify a computation time and the input and
output data sizes instead of the task’s walltime. This kind of simulation can be
helpful if the user expects network contentions to be a big contributor to transfer
times.

• real_threads : Because of Schlouder’s threaded structure there remains some level of
unpredictability as to when some event happens. Chief amongst these is the timing
of scheduling. This option allows the user to specify for each task the schedul-
ing_date at which the scheduler will consider planning the tasks.

To measure the impact of these capabilities on simulation accuracy we build an auto-
mated validation system.

3.3 Evaluation of SimSchlouder

Over the development of Schlouder we accumulated 336 execution traces of Montage and
OMSSA in two cloud environments named openstack-icps and BonFIRE. We use these
traces as a reference point against which to test SimSchlouder.

3.3.1 Experiment rationale

This validation experiment’s primary goal is to check whether SimSchlouder operates
correctly to evaluate the gap between simulation and reality. Additionally we intend
to measure the influence of additional data, as introduced in the capabilities list in on
page 28, on the accuracy of the simulation.

This experiment, presented in figure 3.3, uses one-to-one simulations of real executions.
In a simulation batch, every real execution in our archive gets simulated once. Results
from the simulation are then compared to the real execution on which the simulation was
based.

This processed is repeated for each batch with different combinations of SimSchlouder
capabilities. This allows us to evaluate how the data provided by each capability impacts
the simulation accuracy. The simulations from the batch called best uses real_boottimes,
real_walltime, and real_threads. This removes any guesswork from the simulated
boottimes, walltime, and scheduling dates, and insures that the remaining errors can be
fully imparted to the simulator. Conversely, the blind batch only uses the predicted wall-
times provided by the user. This batch produces the prediction SimSchlouder would give

30 CHAPTER 3. SIMULATION OF IAAS CLOUDS

Schlouder
executions

SimSchlouder
simulations

1-to-1
comparison

user predicted
walltimes

task & platform
execution trace

Figure 3.3: Representation of the evaluation experiment. 1. Traces from a real execution
are injected in a SimSchlouder simulations. 2. The simulations results are compared to
the traces from the corresponding real execution.

before an execution. Additional batches providing only some of SimSchlouder capabilities
are used to study the impacts of real timing data on the simulation accuracy.

Through this experiment we intend to comprehensively measure the gap between sim-
ulations and reality and which parameters help simulation precision the most.

3.3.2 Simulation Tooling

This evaluation raised a technical difficulty as we needed to repeatedly run 274 simulations,
each based on a different execution trace. Since doing so manually would certainly lead
to omissions or mistakes, we designed a simulation manager capable of automating the
execution of a large number of simulations described in a short configuration file. This
tool called lab.py is a key component of this SimSchlouder’s evaluation and of the work
presented in part two of this thesis. The lab.py can also be found in the SchIaaS repository
at [44].

The lab.py is a python script used to control repeated executions of an application.
The script takes as input a configuration file. The configuration used in the evaluation
experiment is available as Configuration 3.1. The key elements of the configuration are:

• PRE_COMMAND_SETUP
A shell command to be executed before any simulation. The command presented
here calls a script that generates a list of simulation inputs in a file called
simulations.cfg.

• SIM_ARG position[:name] arg [args [...]]
The SIM_ARG indicates one or multiple arguments to pass to the simulator. Each
SIM_ARG call includes a position. The lab will execute as many simulations as
there are combinations of SIM_ARGs respecting the proper order of positions. The

3.3. EVALUATION OF SIMSCHLOUDER 31

Configuration 3.1 validation.cfg, the lab configuration file used for evaluation of
SimSchlouder.
SETUP_DIR ./setup/simschlouder
NEEDED ./xml/*
PRE_COMMAND_SETUP ./validation -pre.sh tasks /* > /tmp/simulations.cfg
POST_COMMAND_SETUP ./validation -post.sh > results/metrics.dat

SIM_ARG 1 simschlouder.SimSchlouder

INCLUDE /tmp/simulations.cfg

SIM_ARG 3:blind
SIM_ARG 3:best real_walltimes real_boottimes real_threads
SIM_ARG 3:no -walltimes real_boottimes real_threads
SIM_ARG 3:no -threads real_boottimes real_walltimes
SIM_ARG 3:no -boottimes real_walltimes real_threads

optional name is used to differentiate between simulations based on the arguments
used.

• INCLUDE
takes the content of a file and adds it to the current configuration. In the case
presented here simulations.cfg was generated by the pre-command and contains
a list of SIM_ARGs, with 2 as a positional argument, each corresponding to a real
execution trace in our archive. These SIM_ARGs indicate the SimSchlouder configu-
ration, the task file, and the strategy to use.

With this simple configuration file we use the validation-pre.sh to generate the
task files and SimSchlouder configuration for every single execution present in our archive.
Each of these simulations, listed in simulations.cfg, are then simulated 5 different times
corresponding to the 5 batch types described by the SIM_ARGs for position 3:

1. the blind batch uses none of SimSchlouder extended capabilities. These simulations
reproduce the results obtained by the prediction module of Schlouder.

2. the best batch uses the real_walltimes, real_boottimes, and real_threads flags.
These simulations show the best precision the simulation can achieve.

3. the no-walltimes batch uses the real_boottimes and real_threads flags. By com-
parison with the simulations from the best batch, these simulations measure the
impact of using real walltimes on the simulator’s accuracy.

4. the no-boottimes batch uses the real_walltimes and real_threads flags. These
simulations are used to measure the effectiveness of using real boottimes in our
simulations.

5. the no-threads batch uses the real_walltimes and real_boottimes flags. These
simulations measure the impact of real scheduling dates on the simulator’s accuracy.

32 CHAPTER 3. SIMULATION OF IAAS CLOUDS

Once all the simulations have been performed, the validation-post.sh setup as a post
command will aggregate the results and compute the resulting metrics.

A single call to lab.py with this configuration triggers the execution of 1370 sim-
ulations. All of the simulations are fully managed by lab.py. Should the simulations
happen on a multicore system, lab.py allows the user to specify the number of simulation
to execute in parallel to shorten the overall execution time.

3.3.3 Analysis

The validation-post.sh script automates a large part of the validation by extracting
the metrics from the simulation and real execution traces, and comparing them on a
one-to-one basis. The compared metrics are:

• makespan: the time elapsed between the submission of the first task and the end of
the last task. Represents the time elapsed from the user’s point of view.

• schederror : the number of tasks that are not assigned to the same node in the simu-
lation compared to the reality. Represents the accuracy of the scheduling decisions.

• uptime: the amount of resources rented in seconds of available VM time. This
metric is an analog to the cost of the execution.

• usage: the ratio of the sum of all task walltimes over uptime. Represents the
efficiency of the provisioning.

To normalise results across all applications, clouds, and strategies, we compute the
absolute error on every metric for every simulation:

m.ae =
|mS −mR|

mR

with m.ae the absolute error on the metric m, mS and mR the values of the metric in a
simulation, and its corresponding execution trace respectively.

3.3.4 Results

We now have all the information necessary to measure the precision of SimSchlouder, and
the impact of the available inputs on the results. Results are split by cloud of origin,
with our archive containing traces from executions on our local cloud (openstack-icps)
and execution on a European experimental BonFIRE cloud platform ([7]).

Figure 3.4 presents the repartition of absolute errors across all metrics and all simula-
tion types presented in Section 3.3. On boxplots the box spans from the first quartile to
the third quartile, with the median represented as a bar across the box. The whiskers will
extend to cover any outliers up to 1.5 times the inter-quartile range. Any outliers beyond
that are represented by individual points. Corresponding data is reported in Table 3.1.
The table provides the values of the first quartile, the median, and the third quartile for
the absolute error on every metric and all simulations types.

3.3. EVALUATION OF SIMSCHLOUDER 33

openstack−icps BonFIRE

m
akespan

schederror
uptim

e
usage

bli
nd

no
−w

all
tim

es

no
−b

oo
ttim

es

no
−t

hr
ea

ds
be

st
bli

nd

no
−w

all
tim

es

no
−b

oo
ttim

es

no
−t

hr
ea

ds
be

st

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

0

20

40

60

80

100

A
bs

ol
ut

e
er

ro
r(

%
)

Figure 3.4: Repartition of the absolute error for every application, every metric, and every
simulation setup. The boxes represent the first to third quartile range. The horizontal
crossbar inside the box represents the median. The whiskers represent values within 1.5
inter-quartile range of the box, with values further away being represented by points.
Due to space constraints, 13 outliers, out of 7320 values, presenting an absolute error over
100% have been excluded from the graph.

34 CHAPTER 3. SIMULATION OF IAAS CLOUDS

openstack-icps makespan.ae (%) schederror.ae (%) uptime.ae (%) usage.ae (%)

blind 2.69 5.42 21.15 0.00 4.61 31.39 0.03 0.25 3.06 2.45 6.88 25.82
no-walltimes 2.44 4.80 13.88 0.00 0.00 0.00 0.03 0.18 2.93 3.42 7.43 15.74
no-boottimes 0.21 0.33 2.01 0.00 0.00 0.00 0.02 0.03 0.18 0.08 0.12 0.23

no-threads 0.01 0.17 1.82 0.00 4.61 31.39 0.01 0.04 0.18 0.07 0.11 0.18
best 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.10 0.08 0.12 0.13

BonFIRE makespan.ae (%) schederror.ae (%) uptime.ae (%) usage.ae (%)

blind 15.04 33.89 46.91 6.06 52.94 82.63 0.14 8.13 36.06 11.05 26.60 42.56
no-walltimes 14.77 28.56 40.03 0.00 0.00 80.88 0.11 8.10 33.57 11.19 25.68 40.33
no-boottimes 3.79 7.49 15.29 0.00 0.00 79.76 0.07 0.14 7.71 4.66 5.01 6.17

no-threads 4.59 8.41 12.91 6.06 48.48 80.08 0.10 0.25 8.35 4.85 5.07 6.88
best 3.60 4.81 6.20 0.00 0.00 76.81 0.08 0.18 7.67 4.66 5.01 6.27

Table 3.1: Repartition of the absolute error on the makespan, scheduling errors, uptime,
and usage for all the simulations types presented in Section 3.3.2. Each column follows a
first quartile median third quartile format.
Reading example : On the openstack-icps platform the blind batch has a median absolute
error on makespan of 5.42%, 25% of simulations have an error ≤ 2 .69% and 75% of
simulations have an error ≤ 21 .15%.

The blind simulation batch. The first batch of simulations is performed without any
additional input. These simulations are the ones that would be obtained from running
SimSchlouder as part of Schlouder’s prediction module. The quality of these results de-
pend on the accuracy of the expected walltimes provided to Schlouder and SimSchlouder.
These expected walltimes are usually obtained through user experience. In our case, these
were obtained through performing manual executions of tasks on the openstack-icps plat-
form, early in the Schlouder development cycle. This explains why our results in this
batch are generally better on openstack-icps than on BonFIRE.

When simulating executions performed on openstack-icps 50% of our simulations end
up with deviations lower than 7% on all metrics. On BonFIRE only 6% of simulations
get this low an absolute error. The median absolute error on BonFIRE is systematically
larger than the third quartile on openstack-icps. With the notable exception of the uptime
on openstack-icsp, the third quartile error is over 20% and the worst simulations over 85%
absolute error.

The best simulation batch. These simulations are performed with all of SimSchlouder
additional capabilities. They represent the highest precision SimSchlouder can achieve.

We still observe higher precisions when working with openstack-icps than with Bon-
Fire. When looking at makespan, uptime, and usage, 98% of the simulations of executions
performed on openstack-icps present levels of absolute error below 10%. Whereas with
BonFIRE only 80% of simulations reach this level of accuracy.

The scheduling error metric presents both a higher number of simulations with levels
of error over 10% but also higher values of errors on these simulations. The higher values
are partially explained by the nature of the schederror metric. Scheduling decisions are

3.3. EVALUATION OF SIMSCHLOUDER 35

highly interdependent and a first scheduling error is likely to lead to several more as the
scheduler plans around the first misplaced task.

Studying the simulations with high level of scheduling errors teaches us two things:

• Some of these first scheduling errors are due to choices made between equivalent
placement solutions. In those cases slight differences in data structures, like list
orders, can throw the simulation the wrong way.

• In other cases slight variations in timing, could alter the apparent availability of
resources in the simulation.

Schlouder operates mostly on two threads, the node manager and the task manager,
and the timing of context switch between the two affects scheduling, tasks’ submissions
and measured walltimes. Our real_threads flag only enables the simulation of precise
scheduling dates. Information on the exact timing of other interruptions is not available.
This creates a discrepancy since in SimSchlouder both threads can run simultaneously
and instantly, as the simulation clock is suspended. This creates a situation where Sim-
Schlouder always knows the true state of the world whereas Schlouder would often account
for changes in a delayed fashion, leading to different scheduling decisions and therefore
higher schederror rates. The much lower error rate in other metrics is a strong indi-
cation that most simulation scheduling errors will result in the simulation of equivalent
scheduling solutions.

Providing real walltimes, real boottimes, and real thread an overall 90% of
simulation, got below 10% absolute error on the exact makespan and uptime (cost) of the
corresponding real execution. The three remaining scheduling batches study the impact
of each of these flags showing how well the simulation performs without them.

• real_walltimes Simulations from the no-walltimes batch present results closer
to the blind batch than the best one. Although providing the real boottimes and
scheduling dates does reduce third quartile absolute error on makespan, uptime, and
usage those gains do not significantly affect the first-quartile or median. Conversely,
simulations where real walltimes are used will present lower values across all three
quartiles. This makes it clear that correct walltimes are the biggest contributor to
accurate simulations in terms of makespan, uptime, and usage. Scheduling error
accuracy however does not appear to depend on the presence of real walltimes.

• real_boottimes The effect of real boottimes is best observed looking at the makespan
metrics. Results in other metrics will be consistent with the results obtained in the
best simulation due to the fact that these metrics are built in such a way that
they ignore boottimes. The impact of real boottimes is experienced mostly through
outliers. On both openstack-icps and BonFIRE boottimes have remained in most
cases stable and consistent with the boottime estimators provided. However in some
executions we observed widely inconsistent boottimes, with some BonFIRE execu-
tions presenting boottimes ranging from 5 minutes to 3 hours. The importance
of real boottimes for accurate simulation depends mostly on the variability of real
boottimes.

36 CHAPTER 3. SIMULATION OF IAAS CLOUDS

• real_threads The influence of injecting real scheduling dates through the use of
the real_threads is mostly seen on scheduling errors. The repartition of scheduling
errors in the no-threads batch is similar the one observed in the blind batch. Whereas
no-walltimes, no-boottimes, and best, where real scheduling dates are available all
share similar schederror repartitions. The real_threads metric also noticeably
influences the other metrics but not on a scale of real_walltimes.

In conclusion, these simulations were conducted all along SimSchlouder’s development
as a way to measure the simulator’s progress. Doing so helped both refine the simulator’s
precision and find bugs in Schlouder itself. This experiment shows that discrepancies
between our base simulation and the observed reality can be attributed to three major
sources:

• Discrepancies in the user estimated walltimes. The expected walltime pro-
vided to Schlouder and SimSchlouder for scheduling purposes will always deviate
from the effective runtime of the task. This forms the brunt of the simulation error.

• Discrepancies in the platform expected behavior. In cases where the plat-
form is stable in terms of boottimes the use of simple estimators should be enough
to maintain simulation accuracy. In normal circumstances the impact of boottimes
is limited by the fact that boottimes represent a significantly smaller portion of
an execution than walltimes. However once a platform exhibits erratic behaviour,
boottimes can start varying by orders of magnitude as we experienced with Bon-
FIRE.

• Discrepancies in the simulated behaviour. SimSchlouder is capable of some-
thing Schlouder is not: instantaneous computations. By virtue of being written
as SimGrid usercode, SimSchlouder executes itself as the simulation clock is sus-
pended. This makes any action performed by SimSchlouder instantaneous in the
world of the simulation. Schlouder however experiences small delays between events
happening and the time it registers them. These discrepancies affect directly how
SimSchlouder perceives the simulated state of the world. This leads to scheduling
errors which aggravates errors from other sources of discrepancies. Our experience
shows that even though scheduling dates certainly help in mitigating these kinds
of discrepancies, most of the simulation error left in our best case simulation were
caused by this divergence in the simulated behavior.

Our experiment shows that all these sources of discrepancies can be put in check using
the appropriate available data. This is good news for SimSchlouder, since it allows us
to prove its accuracy. It is however bad news for our plan of using SimSchlouder as a
prediction tool. The necessary data requires the real world execution of a workload to
happen before performing the simulation to provide data to the now pointless simulation.
Moreover such a simulation is only valid for a single real execution. Even with all this
additional data our simulation does not account for the fourth source of discrepancies:
the inter-execution variability.

3.4. TAKE-AWAY 37

3.4 Take-away

To help users select the best scheduling heuristic for their needs we developed Sim-
Schlouder, a simulation of Schlouder and the IaaS cloud it uses. SimSchlouder is based
on SimGrid and SchIaaS. To insure that SimSchlouder faithfully reproduces Schlouder’s
behavior we set up a validation experiment comparing real execution traces to simulations
reproducing those executions.

This experiment shows that accurate walltimes and boot times are key drivers of
overall simulation accuracy. However exact reproduction of real executions, such as perfect
reproductions of the schedule, requires precise simulation of the internal components of the
simulated system. These components, such as thread switching, can only be measured by
executing the workload. This hampers our attempts at using SimSchlouder as a prediction
tool.

Part II

Stochastic Simulations

39

Chapter 4

Monte-Carlo Simulations

4.1 Motivation

In real executions performed for the evaluations of our simulator (Section 3.3) we observed
a variability in task walltimes from one execution to the next. Using relative standard
deviation, the ratio of the arithmetic standard deviation over the arithmetic mean, we
were able to quantify this variability to be between 0.7% and 18%. When executions of a
same workload on a same platform yield different results every time, how do we go about
creating a prediction.

4.1.1 Sources of variability.

In scientific workloads. In instances where task inputs are strictly identical, such as
our repeated executions of identical workloads, variability can come from two sources.
First the tasks may use an element of randomness in their execution. The second source
is background noise caused by externalities to the code. Those externalities take the form
of interrupts, cache misses, page defaults, and I/O delays. This kind of variability is
due to processes competing for access to resources, this phenomenon is called resource
contention. Contention will depend on the number of processes needing a resource of a
given type and the number of corresponding resources. Even on large systems where a
single core can be dedicated to each process, other resources, such as L3 caches, are less
numerous and will have to be shared between cores and therefore processes. I/O resources
such as hard disk drives and network cards are not only resources with longer response
times but also tend to be bottlenecks where contention often occurs.

This difference in resource availability can lead different applications to exhibit dif-
ferent levels of variability. Early in our work we studied opportunities to benchmark
variability, however it soon became obvious that the differences in the resource usage
profiles of our two applications, OMSSA and Montage, alone would make this endeavor
complicated.

Contention has also been observed between the different tasks of a single workload.

41

42 CHAPTER 4. MONTE-CARLO SIMULATIONS

Executions performed with AFAP exhibit shorter task walltimes than those with ASAP.
This happens because in cases where the platform is not fully loaded ASAP will create
more parallel processes than AFAP, therefore creating higher resource contention. The
higher parallelism will allow ASAP to obtain shorter makespans in spite of the higher wall-
times, however we have observed cases in which AFAP had shorter makespans outright.
These kinds of observations motivate the need for prediction tools.

IaaS influences on variability. Virtualisation technologies have a performance over-
head. Using Linpack ([31]) to benchmark the CPU we measured a 29% decrease in
performance when performing the benchmark in a VM created using KVM-QEMU ([26])
instead of on the physical machine itself. As described in [20] this performance overhead
comes from the masking by KVM of the underlying physical topology. However this
performance reduction does not appear to come with higher variability. Our measures
over multiple executions of Linpack show no significant variation in the relative standard
deviation of the results obtained by the benchmark.

However if virtualisation does not appear to provoke higher variability, the economic
model of IaaS contributes to higher variability. IaaS operators have an economic interest
in mutualizing resources, therefore VMs are often grouped together on physical machines
leading to higher level of contentions. In 2016 Leitner and Cito completed a survey[27] of
different cloud platforms and cloud flavors. This survey gives a good view of the variability
experienced on the cloud and the parameters that affect this variability. The survey was
performed on three public cloud platforms, Amazon Web Services (AWS) EC2, Google
Cloud Engine (GCE), and the Microsoft Azure cloud (Azure). The parameters studied
include instance flavors, time of day, day of week, and application profile. In the survey
Leitner and Cito conclude that whereas time of day and day of week had very little
impact on performance and variability, the application resource usage profiles were very
impactful on the measured variability. In their measures of relative standard deviation,
Leitner and Cito found that CPU-bound applications had the most stable performance,
with a relative standard deviation of 3.2% on EC2 m1.small instances in the Europe
region, whereas applications generating high amounts of disk I/O presented the most
unstable performance, with a relative standard deviation of 88.5% for the same instance
type in the same region. In our own executions when comparing tasks’ walltimes between
comparable executions we observed an average relative standard deviation ranging from
0% to 30% averaging at 2.5% for OMSSA. For Montage tasks the average relative standard
deviation was higher at 11%.

For the purpose of predictive simulations this variability is a major problem. The
simulation performed in the previous chapter matched their real execution counterpart,
as was the point of the experiment, but in doing so they failed at representing other
executions of the same application with the same heuristic on the same cloud. In essence,
even if we are able to perfectly predict one execution, it would still fail more often than
it succeeds at predicting real executions simply from the fact that due to variability two
same executions are unlikely to yield the same results. One could defend the result of
such a simulation as “close enough” to the other executions. In practice however users are
unwilling to trust a simulation that is wrong most of the time for any kind of decision
making.

4.2. STOCHASTIC SIMULATIONS 43

4.2 Stochastic simulations

To account for this inter-execution variability we shifted our focus towards stochastic
simulations. In these simulations inputs are distributions of possibilities instead of pre-
determined values. Outputs also are distributions of possible results instead of single
computed values. In our case the inputs will remain the tasks’ individual walltimes, now
expressed as distributions that account for the variability found in an IaaS context. The
results would be distributions of makespan and costs. Although, distributions are more
complex than single numerical values, they are able to represent multiple executions in a
single simulation. Additionally, numerical tools from the field of statistics help quantify
how often a real execution is expected to fall within the simulation result through the use
of confidence intervals.

Our search on stochastic simulation lead us to two possible approaches. The first is
a numerical approach for the resolution of stochastic static DAGs. The second approach
uses Monte-Carlo methods based on the repetition of deterministic simulations.

4.2.1 Resolution of stochastic DAGs

Stochastic directed acyclic graphs (DAGs) is one way to represent scheduled workflows
in variable environments. When considering our workload from a scheduling perspective,
we can create a DAG where the vertices represent the tasks comprising the application,
and the edges represent the scheduling dependencies between those tasks. The data
dependencies can be omitted from the DAG provided the schedule already respects data
dependencies. In a stochastic DAG, each vertex is assigned a distribution of possible
runtimes. The simulation’s expected result is a distribution representing the possible
durations for the execution of the whole DAG, i.e. the makespan. Such a simulation
would be a departure from the bottom-up approach used in SimSchlouder. We would
consider our application only from the tasks’ schedule perspective and the underlying
infrastructure is not usually simulated. If we see the schedule generated by Schlouder
as a form of dependency between tasks, then every workload is a workflow that can be
represented as a DAG. The ability to abstract completely the underlying platform is useful
when working with commercial IaaS clouds where the specifications of the underlying
platform are usually unknown. This DAG based approach offers a good representation
of an offline schedule, where the scheduling happens statically before the start of the
execution. A number of works have studied the numerical resolution of such stochastic
DAGs, in particular on heterogeneous grids [29] and on PERT networks [32].

For computation purposes distributions of possible outcomes, whether walltimes or
makespans, are represented by random variables (RVs). An RV is defined by its probability
density function (PDF) and cumulative distribution function (CDF), where the CDF
is obtained by integration of the PDF. The numerical approach presented in [29, 32]
shows that when task runtimes are independent, the makespan of successive tasks is a
convolution product of the individual tasks’ PDFs, while the makespan of parallel tasks
joining is the product of the tasks’ respective CDFs. Using these two methods makes
it possible to fuse tasks within the stochastic DAG while computing the resulting task’s

44 CHAPTER 4. MONTE-CARLO SIMULATIONS

RV. Repeating the process as needed one can reduce the DAG to a single task whose RV
represents the makespan of the entire stochastic DAG. However this approach is both
computationally intensive and strongly reliant on the independence of the different task
RVs.

Different methods exist to remove one or the other of these constraints. Dodin [17]
proposes a method to reliably bound the results of stochastic series-parallel graphs and
provides a mechanism by which any arbitrary DAG can be approximated in a series-
parallel graph. This method is reliable even in cases where task walltime distributions are
not independent. Spelde [50] proposes approximation based on the central limit theorem,
in which task RVs are reduced to their mean and standard deviation. This approximation
allows for the computation of a makespan RV without using any convolution allowing for
a faster computation. However the independence of task RVs must still be respected with
this method. The approximations required in both of these methods limit their use to
bounding the DAG makespan distribution instead of computing it exactly.

All-in-all we found DAG-based numerical resolution poses two difficulties. First, it
is impossible for us to guarantee independence between tasks, since the performance of
the underlying VM can affect multiple tasks in a row. Outside of Dodin’s approximation
numerically solving a stochastic DAG with interdependent task distribution is deemed an
intractable problem. Second, all of these DAG-based approaches imply a fixed schedule.
Since the edges represent the scheduling dependencies and in our case Schlouder imple-
ments an online scheduling, the DAG might adopt a different structure depending on the
runtime of certain tasks. This vertex to edge dependency also precludes the use of the
aforementioned numerical resolution for our stochastic simulations.

In order to tackle these issues we consider in the following a different approach based
on Monte Carlo simulations (MCSs). Used in 1963 by van Slyke to solve stochastic PERT
graphs [48], Monte Carlo simulations were also used successfully to evaluate the robustness
of offline schedules [11] in 2010. In 2017 ElasticSim [9] extended CloudSim with an MCS
to integrate resource auto-scaling and stochastic task management. Similarly to our work,
ElasticSim computes a schedule whose objective is to minimize rental cost while meeting
deadline constraints. For several generated workflows, the study compares the simulation
results regarding rental cost and makespan, when varying the variability of task duration
and deadline with arbitrary values. By contrast, our work focuses on how the MCS
method, under some given variability assumptions, captures actual observations.

4.2.2 Monte Carlo Simulations

Monte Carlo methods are a class of algorithms that rely on random sampling to obtain a
result. Such methods can be used to solve numerical problems, like numerical integration,
or stochastic problems. Although some variations exist depending on the nature of the
problem, Monte Carlo methods usually work by drawing possible inputs from a given
distribution, performing a deterministic computation on the inputs, and aggregating the
results.

A simple example of such processes is the computation of the value of π via Monte

4.2. STOCHASTIC SIMULATIONS 45

Input :
Task RVs

{T1, . . . , Tn}

Realisations

{t1, . . . , tn}1

...

{t1, . . . , tn}500

Core Sim

Core Sim

...

Samples

m1

m500

...

Output :
Makespan RV

M

realisation
draw

distribution
aggregation

Figure 4.1: Overview of a 500-iteration Monte Carlo simulation.

Carlo integration. In this example a quarter circle of radius 1 is fitted in a square of size
one. Random points within the square are drawn using an uniform distribution. Next
each point’s distance to the origin is computed to determine whether they fall within
the circle boundary. Finally the results from every point are aggregated and the ratio of
points falling within the circle computed. Given enough points this ratio will converge
towards π

4
. This example presents two points of interest of Monte Carlo methods. First,

the input domain and the distribution must be properly defined. Second, Monte Carlo
methods converge towards the wanted result as more samples are drawn.

Monte Carlo simulations (MCSs) are a subset of Monte Carlo methods concerned with
the resolution of stochastic simulations. In Monte Carlo simulations the input domain is
the full set of RVs used in the stochastic simulation. A realization is obtained by drawing
a value from each of the RVs of the input domain. Each realization is a single point in a
multidimensional input space of possible task walltimes. Since realizations only contain
fixed numerical values they can then be simulated using a deterministic simulator, called
core simulator. In our case we will rely on SimSchlouder. The results of every deterministic
simulation provides a makespan and cost sample that can be aggregated to compute the
MCSs result. An overview of the MCS process is shown in Figure 4.1 .

Monte Carlo simulations are advantageous because they allow us to build our simu-
lations around deterministic simulators. Deterministic simulators are easier to build and
easier to test than stochastic ones. The MCSs core simulator also allows us to include vari-
ables that could not be easily accounted for in stochastic DAGs. By using SimSchlouder as
the core simulator of an MCS, all the online scheduling decisions that were not accounted
for by the numerical resolution of stochastic DAGs are now simply solved at simulation
time in a way that matches real executions.

4.2.3 Benefits of the stochastic approach

Using stochastic simulations is advantageous on three levels:

1. Integrating inherent variability. With task walltimes being replaced by a distri-
bution of possible walltimes the simulation now directly acknowledges the variability
observed in real life and accounts for these effects.

46 CHAPTER 4. MONTE-CARLO SIMULATIONS

Schlouder
executions

Monte Carlo
Simulations

user predicted
walltimes

generated
walltimes

task & platform
execution traces

walltime
distributions

makespan & cost
distributions

Figure 4.2: Representation of the MCS evaluation experiment. 1. Traces from real execu-
tions are used to produce walltime distributions. 2. The MCS’s resulting makespan and
cost distributions are compared to the real ones.

2. Reducing dependency on precise timings. We saw in Section 3.3 that the ac-
curacy of SimSchlouder was visibly affected by the availability of timing information
such as exact walltimes and scheduling dates. By providing walltime distributions
instead of values, we do not need precise walltimes and scheduling dates. This al-
leviates the need to execute workloads to be able to time them and reduces the
amount of information needed for precise simulations.

3. Increasing trustworthiness in simulation results. Stochastic simulations out-
put makespan and cost distributions. This provides the users more visibility on the
expected outcomes than a single deterministic simulation result.

Monte Carlo simulations allow us to easily build a stochastic simulator using Sim-
Schlouder, which we have independently validated.

4.3 Our proposed Monte Carlo Simulation

In this section we build an MCS based on SimSchlouder. Such an MCS requires walltime
distributions as inputs. As such we also propose an input model to provide such distribu-
tions. To find how our MCS and input model compare to reality we set up an evaluation
experiment. In this section we will first present our experiment. Next we describe our
reference real executions and our simulation setup. Then we will detail our input model
and lastly we will present our experiment’s results.

4.3. OUR PROPOSED MONTE CARLO SIMULATION 47

4.3.1 Experimental setup

We propose an experiment, represented in Figure 4.2, similar to the SimSchlouder vali-
dation experiment presented in Section 3.3.

The experiment takes an MCS and compares it to real executions. Since MCSs use
distributions as inputs and as output, they can only be compared to a body of real
executions instead of individual executions. Executions within a body are performed in
similar circumstances, that is executions of a given workload on a given platform using a
given scheduling heuristic. The validity of the MCS is tested by comparing the distribution
of these groups of similar real executions to the distribution outputted by the MCS.

Our MCS also requires walltime distributions as input. These are built based on the
walltimes observed in the real executions the MCS is trying to reproduce. Although the
availability of the real executions allows us to build arbitrarily precise input distributions,
our objective is still to experiment with the use of MCSs as a prediction tool. To reflect
this, we will limit the amount of information required to build our input distribution. The
chosen distributions, called input model, and the reasoning behind them are described in
Section 4.3.4.

By quantifying how well our MCS captures the distribution of real executions, we
evaluate the usability of MCS as a prediction tool under our self-imposed input model
constraints.

4.3.2 Real executions

The major difficulty posed by this experiment, for the real execution side of the experi-
ment, is the fragmentation of our trace log archive. As described in Section 3.3, we had 336
execution traces mostly issued from the development process of Schlouder. Although this
represents a significant number of traces by itself, the validation experiment we are build-
ing here requires groups of executions performed under similar circumstances. On this
point the traces collected previously proved inadequate. During development, Schlouder
and the IaaS platform on which the executions were performed were liable to change reg-
ularly and executions were pretty uniformly spread between applications and use-cases.
Therefore within the archive most groups of equivalent runs are rare, and seldom contain
more than 2 or 3 equivalent runs.

To provide a suitable reference for this validation we performed specific executions of
OMSSA. The reference executions were performed using OMSSA on the BRS use-case.
As detailed in Section 1.3.1 the BRS use-case of OMSSA contains 233 tasks and is overall
the biggest OMSSA use-case available to our team. This new set of executions contains
106 runs performed with the ASAP scheduling heuristic, and 100 runs with the AFAP
heuristic.

The executions were performed on our local cloud testbed. In these executions the
cloud was configured to use two compute nodes. Compute nodes are built with two
2.67 GHz Intel Xeon X5650 each with 6 hyper-threaded cores for a total of 24 cores per
node. Nodes are operated on Ubuntu 2014.04, and used the cloud system Openstack

48 CHAPTER 4. MONTE-CARLO SIMULATIONS

Frontend server Compute node 1

Compute node 2

Storage node

Server Room

100Mb/s

1Gb/s

Figure 4.3: Network infrastructure of the private cloud testbed used in real executions.
The Frontend server runs Openstack administrative functions and the Schlouder server.
The Compute nodes operate the VMs, and the Storage node stores the tasks’ inputs and
outputs.

2014.4 with KVM/QEMU as a hypervisor. During these executions the cloud was con-
figured to limit the number of simultaneous VMs to 10, limiting to some extent the level
of contention we will observe. However the network on which the compute nodes commu-
nicate is not isolated and is part of the University’s shared infrastructure. Moreover the
machine hosting the cloud front-end and the Schlouder server are on different networks
with limited bandwidth as shown in figure 4.3.

Figure 4.4 presents the distribution of makespans and costs for the real executions
described above. Since we don’t actually pay to use the testbed the cost is given as BTU
count, the number of open BTUs during the experiment, with a BTU length arbitrarily
set to 3600s (1 hour). In these real executions we observed:

• For ASAP: makespan ranges [12811s;13488s] (variation of ≈5%) with a constant
BTU count of 40

• For AFAP: makespan ranges [13564s;14172s] (variation of 4%) with a BTU count
ranging [33;36].

When looking at variability on the task level, using the same relative standard deviation
method as used in [27], we observed on average a 4% variability with the median task
variability being 2%. Overall only 10 tasks showed a relative sd exceeding 3%, all of those
seemed to be linked to a single execution1. Since this experiment is about measuring
the effectiveness of MCS in capturing execution in the face of variability, this execution
was not removed from the data set. This variability is within the range reported in the
survey [27] for platforms like Amazon’s EC2 or Google Cloud Engine.

1namely execution v4.montecarlo-brs-10.brs.afap.regular1gb.openstack-icps.v5.92

4.3. OUR PROPOSED MONTE CARLO SIMULATION 49

AFAP ASAP

13600 13800 14000 14200 12800 13000 13200 13400

0.000

0.001

0.002

0.003

makespan (s)

de
ns

ity

AFAP ASAP

34 36 38 40 34 36 38 40

0

25

50

75

100

BTU count

%
 r

un
s

Heuristic AFAP ASAP

Figure 4.4: Empirical observations for makespan and BTU count distributions.
Reading example: Using ASAP leads to makespans roughly ranging from 12800 s to 13600
s and BTU counts of 40.

50 CHAPTER 4. MONTE-CARLO SIMULATIONS

4.3.3 Monte Carlo Simulation tooling

We implement our Monte Carlo simulation using SimSchlouder as our core simulator. This
is convenient since we know from Section 3.3 that SimSchlouder is relatively precise and
capable of reproducing the scheduling produced by Schlouder. Instead of implementing
our MCS as a new application using the code from SimSchlouder, we decided to repurpose
the lab.py script presented in 3.3.

Configuration 4.1 montecarlo-cmp.cfg, the lab configuration file used to run a Monte
Carlo simulation using SimSchlouder as the core simulator.

SETUP_DIR ./setup/simschlouder
NEEDED xml/*
PRE_COMMAND_SETUP ./montecarlo -cmp -pre.sh reference.tasks > mcsim.cfg
POST_COMMAND_SETUP ./montecarlo -cmp -post.sh > montecarlo -cmp.metrics.dat

SIM_ARG 1 simschlouder.SimSchlouder
INCLUDE mcsim.cfg
SIM_ARG 3 real_walltimes

The configuration used to execute an MCS using lab.py is included as Configura-
tion 4.1. As with the SimSchlouder validation process a huge section of the configuration
is generated at runtime by the pre-command script and then included in the middle of
the SIM_ARGs.

The pre-command script is tasked with generating the realisations used in the MCS,
it works by taking a template task file as argument and a few parameters set in the script
itself to generate hundreds of different task files each of them with different task runtimes
drawn following the input model we will detail in section 4.3.4. Every time a new task
file is generated the pre-command script writes a corresponding SIM_ARG line to the
standard input which is then redirected to the included file. The generated SIM_ARG
lines indicate 2 as index number and provides to SimSchlouder the correct SimSchlouder
configuration file, the generated task file, and the correct scheduling heuristic for this task
file.

The generated task files contain task names, submission dates, and expected wall-
times copied from the template task file. These are the same values as those used during
the real executions, and are used across all realisations. Additionally the generated task
files contain real walltimes drawn by the pre-command script. These are drawn follow-
ing the input distributions and differentiate the different realisations from one another.
The real_walltimes flag insures SimSchlouder uses these drawn walltimes during the
simulation time.

Once every realisation has been simulated by SimSchlouder, the post-command script
is charged with the aggregation phase presented at the end of MCSs, as shown in figure 4.1.
Ideally this script should be able to take the outputs of all the SimSchlouder executions
performed during the MCS and compute distributions of possible makespans and costs
before outputting them in a legible format. However, we only automated the aggregation
of SimSchlouder results in a single file, the analysis of said results and the eventual fitting

4.3. OUR PROPOSED MONTE CARLO SIMULATION 51

F025731DA_5.mgf
AFAP

F025731DA_5.mgf
ASAP

F025719DA_8.mgf
AFAP

F025719DA_8.mgf
ASAP

F025715DA_1.mgf
AFAP

F025715DA_1.mgf
ASAP

580 600 620 640 660 680 700 720

4.00 4.25 4.50 4.75 5.00 4 5 6

440 450 460 470 490 500 510 520 530 540

0.00

0.02

0.04

0.06

0.0

0.3

0.6

0.9

0.00

0.01

0.02

0.03

0.00

0.02

0.04

0.06

0.0

0.3

0.6

0.9

0.00

0.01

0.02

0.03

walltime

de
ns

ity

Heuristic AFAP ASAP

Figure 4.5: Density distributions for representative tasks taken from our reference execu-
tions.

were performed with R after the execution of the MCS was finished.

4.3.4 Input modeling

Observed Distributions

Figure 4.5 presents the walltime density distributions for a few tasks in our reference
OMSSA run. These show the diversity of walltime distributions observed in real execu-
tions. Distributions appear to vary from task to task and depending on the scheduling
heuristic. This is what the input distributions should try to represent. Choosing distri-
butions to which to fit a given data set is a complicated matter.

• Task F025715DA_1.mgf(top row) displays a noticeable shift in walltimes depending
on the scheduling heuristics. The walltimes when using the AFAP range from 440s
to 470s whereas when using ASAP the walltimes range from 480s to 540s. When

52 CHAPTER 4. MONTE-CARLO SIMULATIONS

●

0 1 2 3 4 5

Cullen and Frey graph

square of skewness

ku
rt

os
is

11
10

9
8

7
6

5
4

3
2

1 ● Observation Theoretical distributions

normal
uniform
exponential
logistic

beta
lognormal
gamma

(Weibull is close to gamma and lognormal)

●

●●●
●●●

●● ●●●
●●●

●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ●●●

●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
● ●●●

●●●
●● ●●●

●●●●
● ●●●

●●●
●●●
● ●●●● ●●

490 500 510 520 530 540

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical and theoretical CDFs

data

C
D

F

norm

Figure 4.6: Cullen and Frey graph and empricical cumulative distribution function for
the observations of tasks F025715DA_1.mgf with ASAP scheduling.

trying to fit a distribution to F025715DA_1.mgf, we are tempted to consider the
distribution mostly normal.

• Task F025719DA_8.mgf(middle row) is noticeably shorter than the other two. This
is due to being a partial spectra task. This task also does not display a significant
shift based on the heuristic. For this task the AFAP distribution is bimodal and the
ASAP one unimodal but it shares the asymmetric tail observed in F025715DA_1.mgf.

• Task F025731DA_5.mgf(bottom row) also displays a shift in walltime values between
AFAP and ASAP. However unlike F025715DA_1.mgf this task’s walltime distribu-
tions appear to be bimodal. In ASAP we observe the same long tail of higher outliers
as before.

Looking more closely into the possible normality of the walltimes distribution of task
F025715DA_1.mgf we applied two statistical tools to the distribution obtained when using
the ASAP scheduling. These are shown in Figure 4.6:

• the Cullen and Frey graph which compares the arithmetic skewness and kurtosis of
the empirical data to those of well-known distributions. The blue dot represents the
skewness2/kurtosis position for the observed data. These types of graphs are meant
to help users find a distribution fitting their data.

• the empirical and theoretical CDF comparison graph for a normal distribution. This
graph plots on the same plane the empirical CDF of the observed walltimes and the
CDF of the closest normal fit. These types of graphs are usually used to evaluate
the quality of a fit after the fitting has been done.

4.3. OUR PROPOSED MONTE CARLO SIMULATION 53

These show that even task F025715DA_1.mgf when using ASAP scheduling does not
in fact match a normal distribution. All indicates that the 3 executions with walltimes
over 535s are too significant to be considered as simple outliers as we thought would be
possible.

This highlights the main difficulty of creating an input model. Fitting is a complicated
process for non-statisticians like us, and most of the distributions presented here do not
appear to match any theoretical distributions we are familiar with. Moreover the different
tasks of OMSSA run the exact same code, the only difference between tasks being the
input file, after which the task is named. Therefore the different distributions obtained
here are all the results of the same code. We are also working with hundreds of empirical
observations, which is much more than could be expected in a real life scenario. Making
precise distributions from these observations would put us in the same situation we had
with SimSchlouder, where precise simulation could only be achieved after real executions.
MCSs made in a prediction context will really be limited to simple input distributions.
This is what we intend to evaluate in this chapter.

Model choice

In batch scheduling users are often asked to provide an expected walltime for every task.
Asking the users to provide estimates is an integral part of Schlouder operation. In most
cases the users acquire these estimates either through advance knowledge of the work-
load’s inner workings, short scale executions on local consumer hardware, or experience
of previous executions of the workload. In any case users will intuit the value based on
a fairly low number of sample points. This strongly limits what users can be expected
to know. We contend that users possessing enough information to estimate an expected
walltime could also estimate a minimum or maximum expected runtime. We propose an
input model that makes use of this already available walltime and the presumptive spread
estimate.

This fairly limited level of information means that mapping the difference in distribu-
tions observed in Figure 4.5 is impossible. We intend to show that this limitation does
not preclude accurate MCSs. Our model takes the already provided expected walltimes
and places them at the center of a uniform distribution. We do not expect user to form an
opinion on the variability of each task individually, especially in cases like OMSSA where
every task runs the exact same code on different inputs. Because of this the width of the
uniform distributions will be fixed relatively to estimated runtime via a single parameter
used for the whole workload. This new parameter is given as a percentage of the expected
walltime and is call perturbation level (P). As such for a given task with an expected
walltime re the input distribution will be:

U(re × (1− P), re × (1 + P)) (4.1)

This approach involves only one parameter, the perturbation level, added to those already
necessary for Schlouder or SimSchlouder operation. It also separates to some extent infor-
mation about the workload from information about variability. In cases where the simula-
tion is provided by the platform/scheduler operator, they could provide the perturbation

54 CHAPTER 4. MONTE-CARLO SIMULATIONS

level based on their long term knowledge of the platform and its stability. Obviously such
a simplistic model does not capture all the complexities of a real execution. Limiting our-
selves to uniform distributions and binding all the distributions to a single perturbation
level are significant approximations and some information loss is expected. The results of
this experiment will allow us to determine if sufficient information remains to predict the
workflow behavior.

Experimental values

To validate this model we must perform our MCS with the best parameters in our in-
put model. We intend to limit errors due to misestimated walltimes or a misestimated
perturbation level. Doing so we will guarantee that any error remaining in the MCS’s
results are due to our chosen input model. This is akin to our best-case simulation in
SimSchlouder’s validation experiment where we provide exact walltimes, boottimes, and
thread times.

To provide the most accurate possible expected walltimes we opt to use the average
observed walltimes during the real executions. These expected walltimes will end up in
the center of the uniform distributions and therefore should become the mean observed
value in the simulations. If we denote r̄j the average walltime observed in real executions
of a task j, the walltime distribution’s RV Tj for the same task j is:

Tj = U [r̄j × (1− P), r̄j × (1 + P)] (4.2)

Providing an accurate perturbation level however is more complicated. In our model
P represents variability by establishing the limit for the worst deviations possible from
the expected walltimes. The only metric of variability we have used in this work until
now is the relative standard deviation used when discussing the findings in [27]. Metrics
based on standard deviation relate more closely to the normal distributions which have
asymptotic edges and are therefore not appropriate to use with the uniform distribution
which has finite bounds. We need to find a way to define P that fairly represents the
deviation for the means observed in our real executions, without giving undue weight to
extreme outliers. We choose to build P by measuring for every task the worst observed
deviation from the average walltime, and averaging these worst deviations across all n
tasks. With rnj the walltime observed for task j in the nth real execution of the workload,
P is set to:

P = mean
j

(
max
n

(|rnj − r̄j|
r̄j

))
(4.3)

In our real executions, the perturbation level given by this model is P ≈ 10% for
both heuristics. Using a similar metric Kim et al.([23]) also observed most deviations
to be within 10% of the average walltime when working on Amazon EC2 instances with
dedicated CPUs. This method choice to compute P is problematic because there is no
clear cut, good estimator like with the average walltime. This makes the choice of P a
potential source of error separate from the model itself. In the next section we will see

4.3. OUR PROPOSED MONTE CARLO SIMULATION 55

how this method of computing P yields perfectly acceptable results. The influence of P
on the accuracy on the simulations results will be discussed in Section 5.1.

4.3.5 Results

Observed results

We executed 500-iteration MCSs for both heuristics using the task model described in the
previous section. Additionally we also executed MCSs for the Montage workload based on
the most recent series of executions from our archived executions. The resulting makespan
and BTU count distributions are shown in Figure 4.7. The makespan density graphs
show the simulation result distributions as filled curves. The real observed executions,
as in Figure 4.4, are shown as non-filled curves. On the BTU count graphs, the left bar
represents the empirical data, and the right bar the results from the simulation.

Looking at the makespans we can see the distributions outputted by the MCS fall
globally within the same range as as the distributions of the real executions. However, the
simulated distributions do not share the same shape as their real life counterparts. This
is mostly visible when comparing the real distribution to the MCS’s one in the OMSSA
AFAP scenario. The real distribution presents a small plateau around 13800s which
is absent from the simulated distribution. This results in both distributions presenting
different modes, with the real distribution reaching its peak at a higher value than the
simulated distribution. Globally the makespan distribution appears more symmetrical
than its real counterpart. This is due to the approximations done in the input model. By
reducing every task to uniform distributions we effectively erased all the subtleties that
make the asymmetries present in real distribution possible.

The effect is much less striking when looking at the BTU count metric due to it being a
discrete variable. Once again we see in the case of OMSSA AFAP that the MCS obtained
the same values as those observed in real life, but the probability credited to each possible
outcome diverges from those observed in real life, with the simulations showing a lower
probability of costing 34 BTU than in real life.

Quantitative analysis

As discussed earlier the distributions outputted by the simulation are mostly symmetrical
and bell-curved shaped. We reduced input distributions to a simple uniform distribution,
which has a finite variance, and the distributions are independent, from a probability
point of view. And because the makespan is the sum of the walltimes of the tasks along
the critical path, we consider the Central Limit theorem applicable. This means that we
would expect the simulation results to tend toward a normal distribution.

Using statistical fitting we can estimate the values of µ and σ for the normal distri-
bution that match the simulation results the most closely. Those can be used to build
confidence intervals (CIs). Confidence intervals indicate a range of possible values a
random sample from a given distribution is expected to take. A CI has an associated

56 CHAPTER 4. MONTE-CARLO SIMULATIONS

AFAP ASAP

13500 13750 14000 14250 12700 12900 13100 13300 13500

0.000

0.001

0.002

0.003

0.004

makespan (s)

de
ns

ity

OMSSA

AFAP ASAP

33 34 35 36 37 38 39 40 33 34 35 36 37 38 39 40
0

25

50

75

100

BTU count

%
 ru

ns

AFAP ASAP

2800 2850 2900 1500 1600

0.000

0.005

0.010

0.015

0.020

makespan (s)

de
ns

ity

Montage

AFAP ASAP

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

BTU count

%
 ru

ns

Type/Heuristic real/AFAP real/ASAP sim/AFAP sim/ASAP

Figure 4.7: Makespan and BTU count distributions for MCS compared to reality for
P = 10%.
Reading example: Comparing the makespan distribution for OMSSA with AFAP to the real
one(top left), we can see the simulation underestimates the likelihood of executions taking
between 13500s and 13750s and between 14000s and 14200s. Looking at BTU counts
(second row), we can see the simulation underestimates the likelihood of an execution
taking only 33 BTUs.

4.3. OUR PROPOSED MONTE CARLO SIMULATION 57

AFAP ASAP

13700 13900 14100 12800 13000 13200 13400

0

25

50

75

100

makespan (s)

%
 e

xe
cu

tio
ns

Capture Interval Real executions Captured Not Captured

OMSSA

Figure 4.8: Demonstration of the capture rate on the OMSSA results for a 95 %CI.
Reading example: when using the ASAP heuristic, the 95% CI for the simulation results
distribution ranges [12797.1, 13216.97]. This range contains 96 of our real executions (in
blue) out of 106 total real executions (blue+yellow points) resulting in a 90.6% capture
rate.

confidence level that describes the ratio that a random sample from the distribution falls
within the interval.

For the normal distribution, the 95% CI, that is a CI with a confidence level of 95%,
is defined as [µ − 2σ, µ + 2σ]. This interval should contain 95.5% of the samples taken
from a normally distributed population using the same µ and σ. Additionally the 99.7%
CI ranges [µ− 3σ, µ+ 3σ]. As with most statistics these confidence intervals tend to only
be true with sufficiently high number of samples.

When fitting the results of our MCS to a normal distribution, we can produce the
corresponding CIs. In order to quantify how well the MCS models the observations, we
define a metric called capture rate (CR). Given n real execution observations and the
subset of the m observations whose makespan fall within a given CI, CR is defined as the
ratio m

n
. This process is illustrated in Figure 4.8. If the simulated distribution matched up

with the real distribution the empirical CR should tend towards the theoretical confidence
level of the CI being used as capture interval.

Table 4.1 presents the capture rates obtained by each interval computed after normal
fitting. Additionally we provide for each interval its size relative to the average makespan.

Regarding OMSSA, the MCS captures at least 90% of real observed makespans. The
divergence between the CR and the CI confidence level is due to multiple factors such
as : the fact that the empirical makespan distribution is not following a perfect normal

58 CHAPTER 4. MONTE-CARLO SIMULATIONS

Application Heuristic Makespan (Size of CI) BTU
CI 95% CI 99%

OMSSA ASAP 90% (3%) 98% (5%) 100%
AFAP 92% (4%) 100% (6%) 100%

Montage ASAP 100% (2%) 100% (4%) 100%
AFAP 100% (1%) 100% (2%) 100%

Table 4.1: Makespan and BTU capture rates depending on CI for P=10%.

distribution, the multiple approximations done in the input model, and the low number
of real executions from a statistical point of view. Using a 99% CI improves the capture
rate up to 98%, very close to the theoretical expectation. Regarding Montage the MCS
achieves a CR of 100% for both CIs.

As expected the capture rate falls short of the confidence level. This is not surprising
since even if the simulation approaches a normal distribution, we saw in figure 4.7 that
the real execution did not share such a distribution. Despite the approximation imposed
by limiting ourselves to a simple task model, our MCS still managed to capture 90%
of reality all the while producing makespan intervals of limited size, a 3% relative size
representing 7 minutes on a 3h 45m long makespan. We consider this result a satisfactory
trade-off between the simplicity of the input model and the accuracy with regards to the
theoretical CI. In the next chapter we will discuss the effect of the perturbation level on
the CR, the number of necessary simulations within the MCS, and other limits to the
approach we have encountered.

4.4 Take-away

To build and enhance our simulations so as to enable us to use them as a prediction
tool we shifted our focus toward stochastic simulations. By integrating variabilities for
which SimSchlouder could not account for, stochastic simulations allow us to provide more
precise predictions, without requiring as much information.

Monte Carlo simulations (MCSs) allow us to perform a stochastic simulation by repeat-
edly executing instances of SimSchlouder. This allows us to benefit from SimSchlouder’s
accurate reproduction of Schlouder’s heuristic while sidestepping the computational in-
tractability of the numerical resolution of stochastic dynamic schedules.

To keep with the prediction tool use-case we propose an input model which captures
the entirety of the systems variability in a single perturbation level P . This variable is
used to create uniform distributions around every task’s expected walltime.

Through experimentation we show that MCSs using this input model can accurately
represent 90% of real executions.

Chapter 5

Defining Simulation Inputs

In the previous chapter we establish our motivation for using stochastic simulations. We
chose to do so using Monte Carlo simulations, and establish a model for task walltimes,
and finally tested our stochastic simulations against real traces. In this chapter we study
different aspects to show possible improvements on the model and the method. First we
show the impact of the selection of the pertubation level P on the simulation results.
Then we will discuss how the number of realisations in the MCS affect the results and
their stability. Last we will discuss results obtained using a normal distribution instead
of a uniform one in the input model.

5.1 P: the perturbation level

In Section 4.3.4 we raised the possibility that our choice for the perturbation level value,
might be suboptimal for our stated objective of building the best simulation possible
with our chosen input model. A subsequent question is whether the perturbation level
can be used as a trade-off variable, between capture rate and output interval size. We
hypothesize that as the perturbation level gets higher, the output distribution becomes
wider, resulting in higher capture rates when building confidence intervals. This would
mean that, assuming the relation between capture rate (CR) and perturbation level could
be quantified, a user could adjust the simulations’ CR to fit their needs, at the cost of
larger intervals.

To test this hypothesis we performed Monte Carlo simulations with varying pertur-
bation levels. Using the method presented in Section 4.3.5 we build a capture interval
to evaluate each simulation’s capture rate. Figure 5.1 shows the evolution of the capture
rate as the perturbation gets higher for OMSSA. The behavior observed in the AFAP
simulations matches our prediction. As the perturbation level increases, so does the width
of the confidence intervals obtained by the MCS, resulting in higher capture rates. How-
ever, the behavior observed in MCS using the ASAP heuristic, diverges strongly from
our early expectations. Although capture rate initially increases, this does not persist for
higher values of P . At P = 40% the simulation’s capture rate falls below the capture rate
obtained at P = 10.

59

60 CHAPTER 5. DEFINING SIMULATION INPUTS

AFAP ASAP

10 20 30 40 50 10 20 30 40 50
40

60

80

100

Perturbation level (%)

S
im

ul
at

io
n

C
ap

tu
re

 R
at

e
(%

)

OMSSA

Figure 5.1: Capture rates obtained by simulations using different values of perturbation
levels.
Reading example: When simulating OMSSA with the ASAP scheduling heuristic and a
perturbation level of P = 30% the capture rate of the simulation is 95%.

Figure 5.2 presents the density distributions for real executions as well as the MCS
distributions obtained at P =10%, P = 20% and P =40%. These distributions are repre-
sented using violins plots where the width of the shape represents the probability density.
The point at the center of each shape provides the value of the mean observed makespan
whereas the bar crossing the shape indicates the position of the median makespan.

As we expected the simulations performed with higher perturbation levels do produce
wider distributions and therefore larger confidence intervals. However these simulations
generate distributions with higher means. In the case of OMSSA with the ASAP heuristic
this change in the obtained mean is significant compared to the growth of the distribution’s
width. This results in an offset capture interval with lower capture rates. The CR of the
simulation with P = 40% is of only 83% when the P = 10% simulation had a 90% CR.
OMSSA with ASAP is our only test case to present such a degradation of simulation
performance. With other test cases using P = 40% resulted in equal or higher CRs.
Both OMSSA’s nature as a bag-of-tasks and the ASAP heuristic contribute to the drift
phenomenon:

• OMSSA being a bag-of-tasks means that all scheduling happens at the start of the
execution. Indeed Schlouder’s online scheduling happens as soon as all task depen-
dencies are cleared, and bag-of-tasks do not have any task dependencies. Because of
this design Schlouder has no opportunity to correct scheduling once a task exceeds
its expected walltime.

• ASAP by scheduling new jobs to the less charged VMs will tend to produce schedules
where every VM is equally full. In such a context every task can affect the makespan
by exceeding its expected walltime. The slowest task is more likely to be in the
critical path by virtue of being the slowest task. When using AFAP the scheduling

5.1. P: THE PERTURBATION LEVEL 61

AFAP ASAP

Rea
l E

xe
cu

tio
ns

P=1
0%

P=2
0%

P=4
0%

Rea
l E

xe
cu

tio
ns

P=1
0%

P=2
0%

P=4
0%

12500

13000

13500

14000

14500

15000

13000

14000

15000

m
ak

es
pa

n

Figure 5.2: Makespan distribution obtained for OMSSA at different perturbation levels.
The width of each shape is the probability density. The point indicates the average value.
The bar represent the median observation.
Reading example: Looking at real executions performed in AFAP (leftmost column in the
left graph), we observe the density peak at a makespan of 14007.26s, the median makespan
is at 13973.76s, and the mean makespan value is 13938.37s.

62 CHAPTER 5. DEFINING SIMULATION INPUTS

will result in some VMs being more full than some others. As such only the tasks
on these VMs can impact the makespan, slow tasks on other VMs are unlikely to
result in longer makespans.

This shows the potential of Monte Carlo simulations for offline studies of application
behavior in the face of variability. By varying P we were able to expose ASAP’s weakness
in variable environments. Although our stated objective is to build a prediction tool,
MCSs are also an interesting scientific instrument to study the behavior of IaaS environ-
ments and the applications using such an environment. MCSs were already used in this
fashion by Canon and Jeannot in [11] to study the robustness of DAG scheduling on grids
presenting high variability.

Our experiment shows that the perturbation level should not be used as a trade-off
variable to augment the capture rate at the expense of CI compactness. Users willing to
trade off interval compactness for higher capture rates should use statistical methods to
build higher rate CIs, like the 99% normal distribution CI used in Section 4.3.5. This also
implies that choosing the correct value of P is critical for correct simulation.

Finding the best possible value of P increased the number of simulations for ASAP
in figure 5.1 using a binary search approach. We observe our highest CR (99.05%) for
the values of P of 17.5%, 20%, and 22.5%. A limiting factor in this approach is the
discretization of the CR due to the limited number of real executions against which the
CR is tested. Using P = 20% also results in a 99% CR for the MCS of OMSSA using the
AFAP heuristic, although this result is also true of P = 40% as mentioned previously.

Although this approach for finding a value of P seems promising it is not without
caveats:

• Firstly this approach relies on capture rate computation. Since the CR is computed
based on real executions this approach does not fit the prediction tool constraint we
have set for ourselves. However in environments where variability is mostly due to
resource contention, and in which cross-traffic is relatively stable, users repeatedly
using this platform might be able to collect enough real execution traces to perform
this kind of optimisation of the value of P .

• Secondly, P is being used in the context of the proposed input model. Our input
model uses P to size a uniform distribution around the task’s expected walltimes.
However we saw in Section 4.3.4 that most tasks do not conform to a uniform
distribution in reality.

• Thirdly, our confidence interval are only rated for 95%. The CRs tested here are
computed using the 95%CI obtained from the MCS’s result. In this context the
statistical significance of any CRs over 95% is limited. There is strong possibility
that any CR above the 95% threshold might vary randomly from MCS to MCS. If
we accept the CI’s nominal value strictly then our results indicate that any value
of P between 12.5% and 30% is acceptable, greatly limiting the usefulness of this
approach.

5.2. N: THE NUMBER OF ITERATIONS 63

• Lastly, MCSs are random processes. The random nature of the MCS means that
results can vary from one execution to another. This would lead to different versions
of Figure 5.1 and different values of P maximizing the CR. However we will see
in Section 5.2 that we can limit inter-MCS variability by using a higher number of
iterations.

Even accounting these reservations, this experiment shows that the approach used in
Section 4.3.4 produced sub-optimal results. And for users possessing the required amounts
data, and the time necessary for multiple rounds of simulations, this approach provides
an opportunity to refine the value of P used in their simulations.

5.2 N: the number of iterations

All the MCSs presented up to this point used 500 iterations (N = 500), meaning our MCSs
were comprised of 500 deterministic simulations based on inputs drawn randomly from
our input model. Such MCSs require on average 15 minutes of CPU time. Like most
statistical and stochastic processes, MCSs tend towards a result given a high enough
number of iterations. In this section we explore this phenomenon from two angles. First
by looking at how a single MCS tends towards its result depending on the number of
iterations. Second by looking at how the number of iterations affects the convergence of
multiple MCSs towards a similar result.

5.2.1 Internal convergence

We call internal convergence the evolution of a given MCS’s results as iterations are added
to its execution. To observe internal convergence we performed an MCS of OMSSA with
5000 iterations and collected the results of every individual deterministic simulation, called
output sample, within the MCS. Using these output sample we are capable of computing
the resulting output distribution for any number of iteration below 5000. This effectively
simulates what would the result have been if we had stopped the MCS at any arbitrary
number of iterations before 5000.

Figure 5.3 shows the evolution of the makespan distribution resulting from an MCS
as the number of iterations (N) increases. We can see that in the early stages of the MCS
the resulting distribution evolves rapidly:

• At N = 10 the distributions appear as high peaks. Values are highly concentrated,
but already somewhat asymmetrical with both heuristics displaying a bulge toward
higher makespan values.

• At N = 100, the distributions do not appear completely normal. The ASAP distri-
bution, in yellow, has a second peak at 13500s. The AFAP distribution, in orange,
is made asymmetrical by a plateau around 13850s.

64 CHAPTER 5. DEFINING SIMULATION INPUTS

0.000

0.002

0.004

0.006

13000 13500 14000 14500

makespan

de
ns

ity

N=10

0.000

0.002

0.004

0.006

13000 13500 14000 14500

makespan
de

ns
ity

N=100

0.000

0.002

0.004

0.006

13000 13500 14000 14500

makespan

de
ns

ity

N=250

0.000

0.002

0.004

0.006

13000 13500 14000 14500

makespan

de
ns

ity

N=500

0.000

0.002

0.004

0.006

13000 13500 14000 14500

makespan

de
ns

ity
N=5000

0.000

0.002

0.004

0.006

13000 13500 14000 14500

makespan

de
ns

ity

Real Distribution

Type/Heuristic real/afap real/asap sim/afap sim/asap

Figure 5.3: Output distributions of an MCS with P = 10% as the number of iterations
N varies.

• At N = 250, the plateau observed in AFAP is mostly gone, leaving only a slight
asymmetry in the distribution. In ASAP the second peak has started to fade as
the main peak gets wider. The samples responsible for the apparition of the second
peak at N = 100 are still part of the distribution, but of the 150 samples added
between N = 100 and N = 250 had too few makespans around 13500s. Therefore
the relative weight of these observations has steadily decreased, as shown by the
peak becoming smaller in the density graph.

• At N = 500, both distributions now look fairly normal.

The distributions are far less variable past this point. We can still see the shape of the
distribution evolve slightly between N = 500 and N = 5000 but the position of the peaks,
which represent µ, and the overall width of the distributions, linked to σ, does not appear
to change significantly. Therefore the MCS’s CIs and capture rates are not expected to
evolve much.

Figure 5.4 shows the evolution of the value of µ found by the MCS as the number of
iterations gets larger. The plots on left-hand side present the evolution of µ, the average
makespan obtained by the MCS’s fitting process, whereas the ones on the right-hand side
show the evolution of σ, the standard deviation obtained by the fitting process. All values
are provided as percentages of the values obtained when fitting is performed with all 5000
iterations. A horizontal guideline is placed at 100%. We can see the evolution profile
varies depending on the strategy used. As in our previous observations, we see results
vary rapidly at the start of the simulation when only a small number of iterations have

5.2. N: THE NUMBER OF ITERATIONS 65

99.00

99.25

99.50

99.75

100.00

100.25

0 1000 2000 3000 4000 5000

N

µ
(%

)
AFAP

60

70

80

90

100

110

0 1000 2000 3000 4000 5000

N

σ
(%

)

AFAP

99.00

99.25

99.50

99.75

100.00

100.25

0 1000 2000 3000 4000 5000

N

µ
(%

)

ASAP

60

70

80

90

100

110

0 1000 2000 3000 4000 5000

N

σ
(%

)

ASAP

Figure 5.4: Evolution of the estimated values of µ and σ as iterations are performed.
Values are given as a percentage of the final value reached when N = 5000
Reading example: In the AFAP MCS (first row), once we reach 100 iterations the value
of µ generated will always fall within 0.25% of the value found at 5000 iterations.

been performed. The variability slows down significantly as more iterations are added, and
the value tends towards the MCS final result. Comparing the results of fitting performed
at N = 500 and N = 5000 we found:

• For AFAP, the value of µ at 500 iterations is within 0.001% (≈ 8s) of the value found
using 5000 iterations. The value of σ at 500 iterations is within 0.25% (≈ 0.5s) of
the value obtained at 5000 iterations.

• For ASAP, the value of µ at 500 iterations is within 0.03% (≈ 5s) of the value found
using 5000 iterations. The value of σ at 500 iterations is within 1.6% (≈ 2s) of the
value obtained at 5000 iterations.

Even small numbers of iterations provide values of µ obtained within 1% of the one
obtained at 5000 iterations. Values of σ however are more volatile, falling as far as 70%
of the final value in the early iterations. Although this volatility diminishes past 1000
iterations, the obtained values of σ can be quite distant from the value found with 5000
iterations. This is notably the case with our MCS in AFAP. In this case the MCS only
achieved a value of σ consistently within 1% of the final value once 4000 iterations had
been passed.

66 CHAPTER 5. DEFINING SIMULATION INPUTS

ASAP
µ

ASAP
σ

AFAP
µ

AFAP
σ

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

50

100

150

200

250

50

100

150

13800

13900

14000

14100

12900

12950

13000

13050

13100

N

Figure 5.5: Values of µ and σ obtained by different MCS of OMSSA depending on the
number of iterations. The provided envelope is the empirical 3 standard deviations range
obtained from the plotted data points. All MCSs are of OMSSA with P = 10%
Reading example: Looking at the top left panel, when performing MCSs of 1400 iterations
using AFAP, µ ranges from 13939.06s to 13968.81s. This last value is an outlier that
falls outside the empirical envelope.

5.2.2 Inter-simulation convergence

Since MCSs are a random process, the results of an MCS can vary from one execution
to another. We call inter-simulation convergence the evolution of multiple MCS results
as iterations are added to each of them. To observe inter-simulation convergence we
performed an MCS of OMSSA with 15000 iterations. By sampling the large pool of
deterministic simulations by this MCS we are able to generate multiple different simulated
MCSs with any number of iterations bellow 15000. The number of drawn samples is the
number of iterations in our simulated MCS and re-sampling will generate a different
simulated MCS.

Using this method we generated 100 simulated MCSs of 10 iterations, 100 simulated
MCSs of 100 iterations, and 100 simulated MCSs for every 100 iterations until we reached
5000 iterations. For each of these simulated MCSs we fitted the resulting makespans on
a normal distribution and tracked the obtained values for µ and σ.

Figure 5.5 presents the obtained values depending on the number of iterations in a
given MCS. For each line of MCSs possessing the same number of iterations we measured
the mean resulting value and the standard deviation between MCSs. We used those
results to draw an envelope ranging 3 standard deviations around the mean. If the MCSs

5.2. N: THE NUMBER OF ITERATIONS 67

ASAP
µ

ASAP
σ

AFAP
µ

AFAP
σ

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

15

20

25

0

10

20

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

N

R
el

at
iv

e
S

ta
nd

ar
d

D
ev

ia
tio

n
(%

)

Standard Deviation Empirical Theoretical

Figure 5.6: Evolution relative to the number of iterations of the empirical standard devi-
ation, measured between MCSs, and the median theoretical standard deviation, obtained
by the fitting process. All MCSs are of OMSSA with P = 10%. Reading example: looking
at the relative standard error on σ when using AFAP, top right panel, we can see that the
standard deviation reaches 5% of the value for N around 200.

are normally distributed1 then 99% of MCSs are expected to fall within the envelope.

The results seen here match what we expect from studying the evolution of the internal
convergence of an MCS. The high volatility observed in the early iterations of an MCS
results in a high disparity of results between MCSs with low iteration counts. As the
number of iterations gets higher every MCS’s results stabilise toward a common value.
As with internal convergence, this inter-MCS convergence happens very quickly for low
iteration counts but becomes asymptotic as the number of iterations augments.

It is worth noting that users interested in the evolution of this inter-MCS convergence
do not need to perform thousands of MCSs as we did. The fitting process used at the end
of each MCS to estimate the values for µ and σ also produces a margin of error. This
margin of error is closely linked to the number of samples provided to the fitting process,
i.e. the number of iterations in the MCS. The margin of error is given in the form of a
standard deviation on the estimated values of µ and σ.

Figure 5.6 compares the evolution of the theoretical standard deviation on µ and σ,
obtained by the fitting process, to the empirical standard deviation measured by compar-
ing multiple MCSs. Although the empirical standard deviation is more noisy than the
theoretical one, both match quite closely. This makes standard deviation obtained by

1This is different from the result of an MCS being a normal distribution.

68 CHAPTER 5. DEFINING SIMULATION INPUTS

fitting interesting for building dynamic MCSs that add iterations until reaching a given
precision threshold. It can be computed on the fly by the fitting process of a single MCS
and does not require foreknowledge of the final results, like the internal convergence does.
The graphs show how these standard deviations on µ and σ evolve similar to the inverse
square root of the number of iterations. This evolution of the error profile is common in
Monte Carlo processes and matches all our previous observations. These graphs show that
by the 500th iteration the MCS is out of its quick evolution phase. Reducing by half the
standard deviation obtained at N = 500 requires an MCS with around 2000 iterations.

The asymptotic nature of the MCS(s) convergence towards the intractable theoretical
result of the stochastic simulation means adding iterations will always result in more
precise simulation results. However the increase in precision will become increasingly
marginal. The selection of the number of iterations N will likely be dependent on external
constraints, such as the context in which the simulation is executed and the capabilities
of the system running the MCS.

At N = 500 we found our simulations take 15 minutes of CPU time. However deter-
ministic simulations within an MCS are independent and can be executed concurrently.
By running 10 simulations in parallel and keeping intermediate files in RAM we managed
to bring the total MCS runtime to 2 minutes. This constrains cases in which it is advanta-
geous to use MCSs as prediction tools. Users will need to run one MCS per strategy they
want to test. Therefore the workload must be long enough that the time spent running
the MCSs remains negligible. Our MCS setup could be further improved by making task
file generation parallel to the executions of the first SimSchlouder instances, as well as
starting result aggregation in parallel to the simulations of the last realisations.

In the case of offline study, where MCSs are used as a tool to explore IaaS clouds or
the behavior of cloud applications, users should set up dynamic MCSs. A dynamic MCS
will perform additional iterations until it has reached a target precision level. It does
so by regularly fitting the iterations already performed to observe the evolution of the
standard deviations on the results. These dynamic MCSs can therefore adapt N to the
variability of the workload they are simulating. Figure 5.7 shows how P can affect the
convergence of the MCS. It shows that the standard deviation on µ will grow with higher
perturbation levels. Although with P = 50% the MCS still enters the asymptotic regime
before N = 500, it will do so with a higher standard error. This means that it will take
many more iterations for the MCS using P = 50% to reach the same level of error as an
MCS with P = 10%. The standard error on σ however appears to be solely dependent
on the number of iterations even at higher perturbation levels.

This effect is not limited to P . Any variable susceptible of changing the size of the
realm of realisations is liable to affect the rate of convergence of the MCS. In our case such
variables include the task’s expected walltimes, the number of tasks in the workloads, and
the dependencies between tasks. In physics it is common to find MCSs with thousands of
random variables requiring hundreds of thousands of iterations to reach the given precision
thresholds. Comparatively our simulations of 233 tasks with a 10% perturbation level are
quite simple.

In conclusion, although the number of iterations an MCS should perform is largely
dependent on the context of the simulation and the time afforded, we would recommend

5.2. N: THE NUMBER OF ITERATIONS 69

ASAP
µ

ASAP
σ

AFAP
µ

AFAP
σ

5001000 2000 3000 4000 5000 5001000 2000 3000 4000 5000

5001000 2000 3000 4000 5000 5001000 2000 3000 4000 5000
0

5

10

15

20

0

5

10

15

20

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

N

R
el

at
iv

e
S

ta
nd

ar
d

D
ev

ia
tio

n
(%

)

Perturbation Level (P) 10% 20% 30% 40% 50%

Figure 5.7: Evolution of the margin of error of the fitting process over the course of 5000
iterations at different perturbation levels.

70 CHAPTER 5. DEFINING SIMULATION INPUTS

tracking the fitting process’s standard deviation as a measure of the level of precision
reached.

5.3 Input Distribution Choice

We built our input model around uniform distributions (U). This choice was motivated
by the simplicity of usage in contexts in which little information would be available, such
as cases where the MCS would be used as a prediction tool.

However doing so impedes the MCS’s ability to produce outliers. With a uniform
distribution every generated task’s walltime is strictly contained within the given interval.
Switching to an infinite continuous distribution would allow the MCS to generate on
occasion task walltimes arbitrarily far from the expect runtimes providing outliers. The
most common such distribution is the normal distribution (N). Because of the central
limit theorem, phenomena that are the result of the sum of independent processes often
display normal distributions.

We know from our work in Section 4.3.4 that the task walltimes observed in our real
executions did not appear to conform to a normal distribution. However these observed
walltimes did not conform to a uniform distribution either and our MCS still managed a
90% capture rate. We view a normal distribution as a natural upgrade from our model.
Both distributions are symmetrical and parametrized by two variables. The first variable
represents the distribution expectancy and the second defines the width of the interval.

The only choice necessary when replacing a previous model with a uniform distribu-
tion is fixing the relation between the perturbation level P and the standard deviation
necessary for the normal distribution. In our established input model every generated
task walltime falls within P% of the expected value. If we want to produce an input
model in which only a few walltimes fall outside of this interval we could choose:

1. σ = P/3: in this configuration 99% of drawn walltimes would still fall within the
previously established interval. This model would only produce 1% of outliers com-
pared to the previously established model.

2. σ = P/2: in this configuration only 95% of drawn walltimes would fall within the
previously established range.

Figure 5.8 compares the makespan distribution of real executions with makespan dis-
tributions obtained by MCSs using three different input models. The first uses the uniform
distribution, it is the input model first presented in Section 4.3.4. The last two use normal
distributions with σ = P/2 and σ = P/3 respectively. All simulations were performed at
P = 10%.

Although switching to normal distributions did allow for the existence of walltimes
beyond the limits imposed with the uniform distribution, the makespan distributions
obtained do not reflect that fact. This is the consequence of distribution walltimes within
the space that were covered in the uniform input model.

5.3. INPUT DISTRIBUTION CHOICE 71

AFAP ASAP

Rea
l E

xe
cu

tio
ns

Unif
or

m
 D

ist
rib

ut
ion

Nor
m

al
Dist

rib
ut

ion
 (P

/2
)

Nor
m

al
Dist

rib
ut

ion
 (P

/3
)

Rea
l E

xe
cu

tio
ns

Unif
or

m
 D

ist
rib

ut
ion

Nor
m

al
Dist

rib
ut

ion
 (P

/2
)

Nor
m

al
Dist

rib
ut

ion
 (P

/3
)

12700

12900

13100

13300

13500

13500

14000

14500

15000

m
ak

es
pa

n

Figure 5.8: Makespan distributions of OMSSA for real executions and MCSs using the
uniform input model, normal input model with σ = P/2 and σ = P/3. All MCSs are
performed with P = 10%. The width of each shape is the probability density. The point
indicates the average value. The bar represents the median observation.

72 CHAPTER 5. DEFINING SIMULATION INPUTS

U(µ± P%) N (µ, P/2) N (µ, P/3)

CR (%) AFAP 92.9 91.8 70
ASAP 90.6 90.6 76.4

Table 5.1: capture rates obtained by the different input models experimented.

In the unifrom input model every possible walltime had an equal opportunity of being
drawn. With the normal input model walltimes closer to the expected walltime (µ) are
more likely to be drawn than others. This means that even though we can now draw
walltimes that are further from the expected walltimes, most of our drawn walltimes
will in fact be closer to the expected walltimes. This concentration of values around
the expected walltimes is responsible for the contraction for the makespan distributions
obtained by the MCS.

Table 5.1 presents the CRs obtained by the different input models. When using
σ = P/2 the normal distribution model almost matches the CR obtained by our uniform
distribution model, only capturing one less real execution in AFAP. As expected from
Figure 5.8 the normal distribution model using σ = P/3 produces too short of a confidence
interval leading low capture rates.

In this work we placed ourselves in the context of building prediction tools. Because
of this we chose our input model to be as generic as possible and to require as little
information as possible. There certainly exist values of σ for which a normal distribu-
tion input model performs better than our input model. But finding it would require
precise understanding of task behavior and amounts to specializing the input model to
a given workload. Since in our experience most tasks have a hard limit as to how fast
they can execute but no limit on how slowly they can execute users wanting to build
highly precise input models should look towards continuous distributions on semi-infinite
intervals. However these distributions will often be harder to parametrise, requiring from
users more advanced understanding of the distribution and more information about the
workload. This is hardly feasible when the MCS is used as a prediction tool, but a real
possibility for a user using the MCS in an offline study.

5.4 Take-away

In this chapter we experimented with the variables of our MCSs to see how they affect
the simulations’ results. In doing so we learned:

• The perturbation level (P). P should be set as close as possible to the simulated
environment’s variability. Higher CRs can not be achieved by indefinitely increasing
the value of P .

• The number of iterations (N). Our MCSs’ results displayed low variability
past 500 iterations. Although by nature MCSs converge asymptotically, cases like
OMSSA and Montage will stabilise within one thousand iterations. Users wanting

5.4. TAKE-AWAY 73

to estimate an MCS’s convergence should rely on the standard deviation provided
by the final fitting process.

• The input model distribution. Trying to switch to a normal distribution did not
yield any benefits. When using MCSs as a prediction tool the uniform distribution
is easier to understand and requires less information.

Chapter 6

The case of MapReduce

After successfully building our MCS for Schlouder, we wanted to take advantage of the
MCS’s natural extensibility and experiment simulations with different setups. This chap-
ter details our experiment with MCS using MapReduce (MR) workloads.

6.1 MapReduce and Hadoop

MapReduce. MapReduce [16] is a programming model, proposed by Google in 2004,
designed for the processing of big data sets in a parallel fashion. The general idea is to
apply a same user-provided map function to different parts of the data. All execution
instances of the map function being independent, they can be run in parallel. The map
functions each produce key-value pairs that are collected by the MapReduce framework.
The framework then unifies values that share a same key, and presents to a user-provided
reduce function all unified unique keys with the list of values associated to each of them.
The reduce function then processes the list of values to output a result associated to the
given key.

Hadoop. Hadoop [54, 1] is an open-source implementation written in Java of the
MapReduce programming model. It is composed of common libraries, a distributed file
system HDFS, and a MapReduce engine in charge of managing resources and scheduling
workloads.

The Hadoop Distributed File System (HDFS) is a distributed data store optimized
for MapReduce execution. HDFS is charged with splitting and distributing data across
the nodes of the Hadoop cluster. When inserted into HDFS, data is divided into multiple
blocks called splits, and these splits are replicated across disks in different racks of the
cluster for sake of reliability. Over the course of operations, an HDFS service continuously
checks that the filesystem has a given number of replicas for each block (the default is 3
copies). Administrators of the Hadoop cluster can customize this replication factor and
location information, such as the racks in which the nodes are located, to allow for more
resilient data distributions.

75

76 CHAPTER 6. THE CASE OF MAPREDUCE

Input

Splits

Map

Shuffle

Reduce

Output

Figure 6.1: Simplified representation of a MapReduce workflow.

Data placement is central to parallel processing in Hadoop. The job manager (YARN)
is in charge of the proper operation of the whole workload and also serves as the scheduler.
It schedules map and reduce tasks across the infrastructure by starting parallel executions
of map function instances for every split of data. For that purpose, the job manager
communicates with HDFS to place map tasks on nodes where their specific splits have
been distributed. Hence each computation works on local data as the splits are scattered
over the nodes’ local disks. In cases where this is not possible, the map task will be placed
on a node in the same rack as a node containing the split.

The job manager tracks the advancement of each task through a heartbeat mechanism.
The workload’s final results as well as logs from every task, including the job manager,
are usually committed to HDFS at the end of execution.

A typical MapReduce workflow, as shown in Figure 6.1, executes in the following way:

• The workflow’s input data is divided into multiple splits which are distributed be-
tween the different nodes of the MapReduce infrastructure, in a redundant fashion.

• Nodes apply a user-provided map function on each input split individually. Results
are associated to output keys and written to a temporary storage. A scheduler
insures that each node processes local splits in priority and that only one copy of
each redundant split is processed.

• During the shuffle, map results are redistributed and regrouped based on the output
keys produced by the map functions. For specific applications the shuffle can be
user-provided.

• Nodes apply the user-provided reduce function on each output key it is in charge of.

• Outputs from the different reduce operations are regrouped in the final output(s).

6.2. MAPREDUCE SIMULATOR MRSG 77

A Hadoop application might be composed of several iterations of this workflow, the
outputs of reduce becoming the inputs for the subsequent map functions. For example,
iterative graph algorithms, such as the Google’s PageRank algorithm [8], adopt this struc-
ture to iterate map and reduce phases until a convergence threshold has been reached.

6.2 MapReduce simulator MRSG

To build an MCS we need a deterministic simulator for MapReduce workloads. Building
a new simulator from the ground up was not an option considering the time commitment
required and we decided to use a pre-existing simulator.

We settled on MRSG (MapReduce over SimGrid) [25] a toolkit for building MapRe-
duce simulations with SimGrid. MRSG is designed to simulate Hadoop version 1. No-
tice that starting from Hadoop 2, the functionalities of resource management and job
scheduling and monitoring have been isolated into a separate service called YARN. Such
a change in the Hadoop implementation might modify the experimental results observed
with Hadoop 1.

We chose the MRSG simulator because working with a SimGrid-based simulation is
a known quantity and the validation of MRSG performed in [25] matches the one we did
for SimSchlouder. The MRSG authors report evaluation results carried out on different
cluster set ups from the Grid5000 testbed (described hereafter). The cluster set ups
used are typically 32 and 64 nodes with 2 cores per node. The evaluation involves three
applications shipped with the Hadoop distribution: Log Filter, Tera Sort, and Wordcount.
These benchmark applications were run 30 times on the real platform and compared to
the simulation. The evaluation of the simulator accuracy is a qualitative one, presented
as comparative graphs showing the number of active map and reduce tasks at each second
of the execution (presumably the number averaged over the 30 runs) on the one hand and
in the simulation on the other. The evaluation does not include comparisons regarding
the accuracy of execution time predictions.

6.2.1 Technical specificities

MRSG was designed to help users create simulations of MapReduce workflows. Using
SimGrid as the simulation core allows MRSG to efficiently execute large scale simulations.
Simulations produced by MRSG reproduce the behavior of the Hadoop implementation
of MapReduce. Like SchIaaS, MRSG makes use of the MSG interface of SimGrid to
instrument the simulation, but relies on a C API instead of the Java one.

MRSG simulations reproduce the heartbeat mechanism present in Hadoop, it is how-
ever unable to fully reproduce the fault recovery behaviors implemented in Hadoop. The
data distribution is abstracted through a matrix mapping splits to their respective nodes.
This allows MRSG to fully reproduce the data-locality based scheduling observed in
Hadoop, while keeping the data splitting out of the scope of the simulation. This matches
real world behavior where data is split when submitted to HDFS and not at the execution

78 CHAPTER 6. THE CASE OF MAPREDUCE

of the workload. Although MRSG provides the Hadoop data distribution algorithm, users
can provide an alternative algorithm for their simulations. Likewise MRSG implements
by default the Hadoop task scheduling but provides the option of using a user-defined
scheduler.

In lieu of the actual map and reduce functions users are asked to provide so called cost
functions. During the simulation these functions are called by the simulator to determine
the task size in MFlops. An additional function must be provided to indicate the amount
of intermediary data generated by each map task.

6.2.2 Usage

To build a simulator using MRSG users must provide:

• A task cost function. Taking into account the simulation phase (Map or Reduce), the
task id and the node id, this function provides the computational size (in MFlops)
of a given task.

• A map output function. Taking into account the originating map task and the re-
ceiving reduce task, this function provides the amount of intermediary data emitted
by the map tasks.

• (Optionally)A data distribution function. Fills the data distribution matrix based
on the number of splits, the number of nodes, and the number of redundant replicas
required.

• (Optionally)A scheduler function. Taking into account the simulation phase and
the node on which the task will be committed, this function selects the next task to
be executed.

• A SimGrid platform file. Used to instantiate the simulated environment.

• A SimGrid deployment file. Used to select the nodes that are part of the MapReduce
cluster.

• AMRSG configuration file. Contains all additional information necessary to conduct
the simulation. This includes the number and size of input splits, the number of
replicas required for data redundancy, the maximum number of simultaneous map
tasks, and the number of reduce tasks.

To properly execute a simulation the simulator must first initialise the MRSG library,
then set the user-defined functions for task costs, intermediary data size, and if required
user-defined function for data distribution and task scheduling. Finally the simulator
calls the MRSG_main and passes the platform, deployment, and configuration files. The
MRSG_main function will instantiate the simulated environment and run the simulation.

One important restriction of MRSG is its inability to simulate MR applications com-
posed of several map-reduce phases. We discovered this restriction during the course of

6.3. EXPERIMENT 79

our expriments and the MRSG authors confirmed that extending it to multiple MR phases
was not a trivial workaround. This limits the range of examples we can use, although
the experiment with a single-phase MR program presented in next section brings useful
insights to extrapolate the behavior of multiple-phase MR applications.

6.3 Experiment

Using Hadoop MapReduce and MRSG we intend to perform the same experiment as in
Section 4.3. To do so we must generate a body of real executions of a given workload,
then execute an MCS reproducing the same workload, and finally compare the distribution
obtained by the MCS to the one obtained by the real executions. In this section we will
first present the real executions and then the corresponding MCS. Finally, we discuss the
results of the comparison.

6.3.1 Real executions

Setup

The workload we choose to execute is TeraSort. TeraSort is a workload provided within
the Hadoop distribution, wildly used to benchmark MapReduce platforms.

TeraSort is a MapReduce workload designed to sort an array of 100-byte long rows.
Although TeraSort can be executed on any properly formatted input, Hadoop provides
TeraGen a MapReduce application designed to generate such an array directly in HDFS.
A third workload TeraValidate processes the TeraSort results to validate whether the re-
sults are properly sorted.

To execute these workloads we established MapReduce clusters on Grid’50001 [6].
Grid’5000 is a large scale testbed for experimental research in computer science devel-
oped under the INRIA ALADDIN development action with support from the CNRS,
RENATER, and several Universities as well as other funding bodies. Grid’5000 offers
the possibility to users to provision nodes from different clusters made available by the
different locations participating in the Grid. The executions used in this experiment were
performed on the graphene cluster found in the Grid’5000 Nancy location. The graphene
cluster was chosen because its technical description as a platform.xml has been used and
validated in other experimental work with SimGrid.

The graphene cluster is composed of 131 nodes. Each node contains a single Intel
Xeon X3440 2.53GHz quadri-core CPU. Nodes are connected through a 1Gb/s Ethernet
network and 20 Gb/s InfiniBand network. hadoop_g5k.py2, a script written by Miguel
Liroz, allowed us to easily deploy a Hadoop cluster on the provisioned nodes, automatically
configuring our HDFS with the topology of the cluster.

1https://www.grid5000.fr
2https://github.com/mliroz/hadoop_g5k

80 CHAPTER 6. THE CASE OF MAPREDUCE

0.000

0.002

0.004

0.006

500 600 700 800 900

makespan (s)

de
ns

ity

Figure 6.2: Makespan distribution obtained for our executions of TeraSort on the graphene
cluster.

Real observations

We executed 45 runs of TeraSort on 16 nodes provisioned from the graphene cluster.
The executions were performed in two sets, one of 15 executions and the other of 30
executions. Each set was executed on different days (respectively May 25, 2018 and June
13, 2018) on different nodes of the cluster. At the time of the experiment the cluster was
almost fully occupied. Within a set all executions of TeraSort are executed on the same
TeraGen generated array. The array produced contains one billion lines for a total size of
100Gbytes.

Figure 6.2 shows the distribution of makespans obtained during our execution of Tera-
Sort. We can see that most of our executions (82.2%) last less than 11 minutes (660s).
These makespans taken separately show a fairly normal distribution. The remaining 8
executions (17.8%) all present higher makespan values. This asymmetry is typical of the
variability of resource contention in distributed systems, there is a hard lower limit as
to how fast a workload can be executed, but when the platform is overloaded there is
no limit as to how long the workload execution can take. After having investigated the
tasks that have greater deviations from the mean, it appears that they are not correlated
to a specific split indicating this is not a bias of the Hadoop implementation. Further,
these outliers are not found in a particular run of the batch but appear in different runs.
Hence, this makespan distribution indicates that some executions were subjected to higher
cross-traffic than the others.

6.3. EXPERIMENT 81

6.3.2 Simulation

Setup

Since MRSG allows us to control the computational size of a task through a function
executed at runtime our setup does not require generating task size through a script be-
forehand. Instead the random number generation is handled inside the task cost function
at runtime. Doing so required us to touch the code of MRSG to prevent it from seeding
the random number generator with a constant. To guarantee MRSG simulations would
assign splits to nodes in a consistent fashion the developers had fixed the random number
generator seed. In our MCS consistent split distribution is neither necessary, nor wanted.

The simulator thus built, called rterasort, is the core of our new MCS. Since
rterasort does not require pre-generating task files, new iterations can simply be ob-
tained by executing rterasort. Because none of the additional features lab.py provides
are necessary for the simulation, it is instrumented by an ad-hoc shell script.

Input model

We build our input model using the same method as the one presented in Section 4.3.4.
We set our perturbation level by first comparing tasks working on the same input to
find the worst relative deviation from the mean and then averaging the worst deviations
across all tasks (Equation 4.3 page 54). On our first set of executions, the one with
of 15 executions, this method yields a perturbation level of 19.5%. On our second set,
containing 30 executions, this method yields a perturbation level of 18.1%. Our MCS will
use P = 20%.

To check our hypothesis that our execution set’s variability can be partially attributed
to platform charge, we ran a third set of executions in lighter conditions. Since graphene
has been taken out of production this new set has been executed on the chetemi cluster
in the Grid’5000 Lille location on May 7, 2019. From the monitoring tools of Grid5000
we established that the external charge, defined as the sum of CPU times used by other
users (using 4 nodes out of the 15) during our two-hour experiment, was 16% of the total
CPU time used. This set of executions resulted in a perturbation level of 10.1%.

For the expected time values the nature of using a cost function makes it complicated
to use a different value for every single map task. However looking at the execution
traces we can see that the map tasks can be separated in 3 groups depending on input
size. Therefore our cost function will use three different expected walltimes obtained
by averaging the observed walltimes in each of the three groups. For the purpose of
rterasort the cost function will convert the generated walltime into a computational
size by using the nodes’ simulated speeds.

82 CHAPTER 6. THE CASE OF MAPREDUCE

0.000

0.002

0.004

0.006

400 600 800 1000

makespan (s)

de
ns

ity

Real Executions Simulation (P=20%)

Figure 6.3: Makespan distirubtions obtained by our MCS and by our real executions.
Reading Example : The simulation fails to capture the two fastest real executions under
467s and the slowest executions over 670s.

Simulation results

Figure 6.3 shows the makespan distributions obtained by our MCS and by our real execu-
tions. The results are quite different from what we observed with our MCSs of Schlouder
in Section 4.3.5. The MCS results do not appear to be normal like the results of our
previous MCS.

For the capture rate, using the same normal fitting as in Section 4.3.5, the 95% CI
gives a capture rate of 86.7%. However the simulated distribution appears to be a uni-
form distribution, instead of a normal one, and the capture rate between the minimum
simulated walltime and the maximum simulated walltime is of 77.8%.

6.3.3 Discussion

The results obtained in this experiment highlight some of the limits of our MCS approach
and our input model.

First, our input model is built using uniform distributions centered around expected
runtimes. This assumes a symmetrical distribution, this worked well in cases where the
overall platform contention is stable. However in this case we observe intermittent ad-
ditional variability that our model does not capture correctly. Capturing this kind of
variability requires an input model based on asymmetrical distributions.

Second, we used in this experiment the exact same method as in Section 4.3.4 to
set the perturbation level. This method averages the normalized most extreme outliers
of each task group. Like with OMSSA we grouped tasks by inputs, instead of simply
grouping them based on the Map/Reduce dichotomy. Using the latter grouping method
produces a perturbation level of 115%. We saw in Section 5.1 that our method for setting

6.3. EXPERIMENT 83

Real Executions Simulations

makespan reduce makespan reduce

500

600

700

800

900

m
ak

es
pa

n
/ w

al
lti

m
e

Figure 6.4: Comparison of the makespans and reduce task walltime distributions observed
in real executions and in our MCS.

the perturbation level does not produce the best possible value of P , another limit seen
here is that our approach only works if the tasks are logically split into a high enough
number of groups. As the number of groups diminishes only the most extreme outliers
get averaged resulting in higher calculated perturbation level. In future work we will look
into better methods to estimate P . One such method being considered relies on random
sampling of observed walltimes.

Third, the results of the simulations obtained here do not appear to conform to a nor-
mal distribution. In our previous experiment we relied on the normal fit of the simulation
results to build the confidence intervals from which the capture rate was calculated. The
rational presented to justify this choice, beyond the appearance of the simulated distri-
bution, was based on the application of the central limit theorem which states that the
distribution of a random variable which is the result of the sum of multiple independent
random variables of finite variance will tend towards a normal distribution. In our case
we consider the overall simulated makespan as a random variable made from sum of the
random variables representing the task walltimes in the critical path. In OMSSA this
critical path is at least 55 tasks long. In MapReduce we experience two different effects:

1. Shallow critical path. MapReduce assigns tasks on cores rather than nodes or
VMs. This makes reaching high levels of parallelism easier. Moreover our 100Gbytes
array required only 150 map tasks split between 64 cores. This means our critical
path probably contained only 4 tasks. This limits the applicability of the central
limit theorem and risks resulting in non-normal distributions.

2. Dominant reduce task. In the Hadoop implementation of the MapReduce model,
the reduce task is started after 20% of map tasks have finished. Although the reduce
function can not be executed until all maps have finished, the intermediary results
from the finished maps can be downloaded while the remaining map tasks finish.
This shortens significantly the transfer window between the end of last map task

84 CHAPTER 6. THE CASE OF MAPREDUCE

and the start of the reduce task. Because of this the reduce task has a much higher
walltime than map tasks. In our executions we observed map walltimes ranging
from 2s to 12s whereas reduce walltimes ranged from 457s to 936s. The difference
in order of magnitude makes the variation produced by our MCS on map tasks
meaningless compared to the variation produced on the reduce task. In the case of
Terasort, we see on Figure 6.4 that, in the real execution and in simulations, the
makespan distributions are similar to the reduce distributions.

This is partly caused by our use of TeraSort as a workload. TeraSort uses only one map-
reduce phase, with an extremely short map task and a single reduce task. For many other
MR applications that involve multiple MR phases, the critical path contains the succession
of the reduce tasks, which are of similar size due to the iterative pattern. If the number
of iterations is sufficient, the application’s makespan is the sum of walltimes considered
random variables, and hence makespan values should follow a normal distribution.

This hyptothesis could not be tested in this work because MRSG cannot simulate
iterative workflows as noticed earlier (see page 78). Validating this idea in future work
will require finding or creating another MapReduce simulator. Our prospective new sim-
ulator should also allow us to separate the reduce walltime between the wait time entirely
dependent on map tasks’ walltimes and the active reduce computation times.

6.4 Take-away

By attempting to build an MCS of MapReduce using the same methods as the one used
for Schlouder, we highlighted some of our approach’s limits to MCSs.

• There is a limit to the variability our single parameter approach can model, espe-
cially concerning very unstable environments. Those require dedicated distributions
specifically designed to match the unstable and asymmetric nature of the environ-
ment.

• The characterization of a perturbation level to be used with a simple symetric
distribution is difficult since its computation is sensitive to the grouping of tasks.
Building very large groups results in the overweighing of observed extreme values. In
this MR test-case, considering all map tasks to belong to two groups only depending
on the split size resulted in a high perturbation level, which in turn yields a makespan
prediction interval that is too large to be relevant.

• To take advantage of the stochastic nature of our MCS the simulated workload must
be comprised of a sufficiently high number of tasks of the same order of magnitude
in size. If one task dominates the workload, we can not take advantage of the
compounding nature of the variability introduced by the MCS.

Conclusion

Over the last fifteen years, the increasing ubiquity of internet access and advances in
virtualisation technologies have lead to a Cloud computing boom. Infrastructure as a
Service (IaaS) clouds have profoundly changed the hosting landscape. The ability to
provision resources on the fly lets users scale their infrastructure precisely to their needs.
This in turn makes Platform as a Service (PaaS) and Software as a Service (SaaS) more
viable business models. Although Cloud computing has been hugely successful in the
web service area, it does not appear to have gained as much traction in the scientific
computing area.

There are many reasons not to execute scientific applications in cloud environments.
Some applications are designed to be executed on HPC clusters, high computing power
and low latency environments, with whom IaaS can not always compete. Others rely on
external schedulers for their execution, these are mostly found on institutional grids and
clusters. The pay-as-you-go model can also lead to budgetary uncertainty, making using
the cloud a higher risk.

Schlouder was designed to provide a grid-like scheduling on IaaS clouds. It combines
the familliar interface of a batch-job queuing system with the advantages provided by the
on-the-fly provisioning of IaaS. However the effectiveness of different scheduling strategies
proved to be extremely variable depending on the scientific application being scheduled.
This prompted the need for a prediction module capable of providing users with insights
about the different scheduling heuristics’ behaviors depending on the submitted applica-
tions.

Such a prediction tool requires being able to precisely simulate the execution of a work-
load by Schlouder. For this purpose we developed SimSchlouder based on the SimGrid
and SchIaaS toolkits. By comparing over 336 real execution traces to their respective
simulations, we were able to isolate the information necessary to establish precise sim-
ulations. The variability observed between identical executions makes it impossible to
simulate precisely a workload without first executing it to measure it precisely.

Our thesis is that by using stochastic simulations we can address the variability ob-
served in real executions and provide more pertinent simulations that require less inputs.
Using a simple input model we can represent the variability of a system and absorb part
of the imprecision of our expected walltimes. Monte Carlo simulations allow us to easily
build stochastic simulations out of our well-tested deterministic simulator SimSchlouder.

To put our thesis to the test we developed a pipeline to compare our MCSs with a

85

86 CONCLUSION

body of real executions. Concurrently we created our input model that relies on already
available expected walltimes and a single perturbation level that represents the variability
of the whole system. Our evaluation shows that our MCS captures upwards of 90% or
real executions.

We studied how different parameters effect the results of our MCS. Contrary to our
early hypothesis the perturbation level can not be used to trade higher capture rates
against larger confidence intervals. There is an optimal value for which the perturbation
level most closely represents the variability of the real system and the MCS obtains the
highest capture rate. We observed that the MCS converges in an asymptotic manner
toward its final result and that the number of iterations necessary to reach a given precision
threshold is dependent on the perturbation level. We experimented with using normal
distributions in our input model, highlighting the difficulties posed by using more complex
distributions.

Finally we tried to build an MCS of the MapReduce workload TeraSort. The difficul-
ties encountered in this experiment are indicative of areas where more research is needed.
Firstly, we observed that our approach can absorb input imprecision only when the sim-
ulated workload is composed of a large enough number of balanced tasks. Secondly, this
case study exhibits more irregular forms of variability and the next challenge will be to
create input models that are better at representing them. These advanced models would
require an offline analysis of real execution traces to set the right model parameters. The
challenge posed by such analysis is bridging the gap between the modeled distribution
and the real distribution as we observe it.

MCSs allow us to obtain more pertinent results with less information. In cases where
MCSs are used to inform operational decisions, such as the platform sizing or a scheduling
heuristic choice, a coarse bounding of the task performance is enough. However users are
still required to know enough about their applications and platform to parametrise the
input model.

This study of the MCSs’ usage, parameters, and limits lays the groundwork for more
widespread usage of stochastic simulation around IaaS clouds. Although we are proud of
the results we achieved in a prediction context, more interesting uses of MCSs lie outside
this limited scope. MCSs can be used study more precisely the interaction between
variability, scheduling, and workflows. This opens the door to the creation of scheduling
meta-strategies that can adapt their scheduling decisions to the experience variability and
the shape of the workflows. Or by using stochastic provisioning patterns, a cloud operator
could use MCSs to develop and validate a VM placement algorithm that maximises energy
efficiency without compromising on preexisting contractual obligations of responsiveness.
Monte Carlo simulations are a promising lead towards variability-aware systems for cloud
platforms.

References

[1] Apache Hadoop. url: https://hadoop.apache.org/.

[2] AWS Auto Scaling. url: https://aws.amazon.com/autoscaling/.

[3] Luke Bertot, Stéphane Genaud, and Julien Gossa. “An Overview of Cloud Simu-
lation Enhancement using the Monte-Carlo Method”. In: Proceedings of the 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing CC-
GRID. 2018.

[4] Luke Bertot, Stéphane Genaud, and Julien Gossa. “Improving Cloud Simulation
Using the Monte-Carlo Method.” In: Euro-Par 2018, LNCS 11014. 2018.

[5] Luke Bertot, Julien Gossa, and Stéphane Genaud. “Méthode pour l’étude expéri-
mentale par la simulation de clouds avec SCHIaaS.” In: Compas’17. 2017.

[6] Raphael Bolze et al. “Grid’5000: A Large Scale And Highly Reconfigurable Ex-
perimental Grid Testbed”. In: IJHPCA 20.4 (2006), pp. 481–494. doi: 10.1177/
1094342006070078. url: https://doi.org/10.1177/1094342006070078.

[7] BonFire. url: http://bonfire-project.eu/home.

[8] Sergey Brin and Lawrence Page. “The Anatomy of a Large-scale Hypertextual Web
Search Engine”. In: Comput. Netw. ISDN Syst. 30.1-7 (Apr. 1998), pp. 107–117.
issn: 0169-7552. doi: 10.1016/S0169-7552(98)00110-X. url: http://dx.doi.
org/10.1016/S0169-7552(98)00110-X.

[9] Zhicheng Cai, Qianmu Li, and Xiaoping Li. “ElasticSim: A Toolkit for Simulating
Workflows with Cloud Resource Runtime Auto-Scaling and Stochastic Task Execu-
tion Times”. In: J. Grid Comput. 15.2 (2017), pp. 257–272. doi: 10.1007/s10723-
016-9390-y. url: https://doi.org/10.1007/s10723-016-9390-y.

[10] Rodrigo N Calheiros et al. “CloudSim: a toolkit for modeling and simulation of
cloud computing environments and evaluation of resource provisioning algorithms”.
In: Software: Practice and experience 41.1 (2011), pp. 23–50.

[11] Louis-Claude Canon and Emmanuel Jeannot. “Evaluation and Optimization of the
Robustness of DAG Schedules in Heterogeneous Environments”. In: IEEE Trans.
Parallel Distrib. Syst. 21.4 (2010), pp. 532–546. doi: 10.1109/TPDS.2009.84. url:
http://dx.doi.org/10.1109/TPDS.2009.84.

[12] Christine Carapito et al. “MSDA, a proteomics software suite for in-depth M ass
S pectrometry D ata A nalysis using grid computing”. In: Proteomics 14.9 (2014),
pp. 1014–1019.

87

https://hadoop.apache.org/
https://aws.amazon.com/autoscaling/
http://dx.doi.org/10.1177/1094342006070078
http://dx.doi.org/10.1177/1094342006070078
https://doi.org/10.1177/1094342006070078
http://bonfire-project.eu/home
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1016/S0169-7552(98)00110-X
http://dx.doi.org/10.1007/s10723-016-9390-y
http://dx.doi.org/10.1007/s10723-016-9390-y
https://doi.org/10.1007/s10723-016-9390-y
http://dx.doi.org/10.1109/TPDS.2009.84
http://dx.doi.org/10.1109/TPDS.2009.84

88 REFERENCES

[13] Eddy Caron, Frederic Desprez, and Adrian Muresan. “Forecasting for Grid and
Cloud Computing On-Demand Resources Based on Pattern Matching”. In: Pro-
ceedings of the 2010 IEEE Second International Conference on Cloud Computing
Technology and Science. CLOUDCOM ’10. IEEE Computer Society, 2010, pp. 456–
463. isbn: 978-0-7695-4302-4. doi: 10.1109/CloudCom.2010.65.

[14] Henri Casanova et al. “Versatile, scalable, and accurate simulation of distributed
applications and platforms”. In: J. Parallel Distrib. Comput. 74.10 (2014), pp. 2899–
2917. doi: 10.1016/j.jpdc.2014.06.008. url: http://dx.doi.org/10.1016/j.
jpdc.2014.06.008.

[15] Trieu C Chieu et al. “Dynamic scaling of web applications in a virtualized cloud
computing environment”. In: 2009 IEEE International Conference on e-Business
Engineering. IEEE. 2009, pp. 281–286.

[16] Jeffrey Dean and Sanjay Ghemawat. “Mapreduce: Simplified data processing on
large clusters, 2004”. In: OSDI: Sixty Symposium on Operating System Design and
Implementation. 2004.

[17] Bajis Dodin. “Bounding the project completion time distribution in PERT net-
works”. In: Operations Research 33.4 (1985), pp. 862–881.

[18] Brian Dougherty, Jules White, and Douglas C. Schmidt. “Model-driven auto-scaling
of green cloud computing infrastructure”. In: Future Generation Computer Systems
28.2 (2012), pp. 371–378. issn: 0167-739X. doi: 10.1016/j.future.2011.05.009.

[19] Ta Nguyen Binh Duong, Xiaorong Li, and Rick Siow Mong Goh. “A Framework for
Dynamic Resource Provisioning and Adaptation in IaaS Clouds”. In: CloudCom’11.
2011, pp. 312–319.

[20] Wes Felter et al. “An updated performance comparison of virtual machines and
Linux containers”. In: 2015 IEEE International Symposium on Performance Anal-
ysis of Systems and Software, ISPASS 2015, Philadelphia, PA, USA, March 29-31,
2015. IEEE Computer Society, 2015, pp. 171–172. isbn: 978-1-4799-1957-4. doi:
10.1109/ISPASS.2015.7095802. url: https://doi.org/10.1109/ISPASS.2015.
7095802.

[21] L. Y. Geer et al. “Open mass spectrometry search algorithm”. In: J Proteome Res.
3.5 (Sept. 2004), pp. 958–964.

[22] Joseph C Jacob et al. “Montage: a grid portal and software toolkit for science-grade
astronomical image mosaicking”. In: International Journal of Computational Science
and Engineering 4.2 (2009), pp. 73–87.

[23] In Kee Kim, Wei Wang, and Marty Humphrey. “PICS: A Public IaaS Cloud Simu-
lator”. In: 8th IEEE International Conference on Cloud Computing, CLOUD 2015,
New York City, NY, USA, June 27 - July 2, 2015. Ed. by Calton Pu and Ajay Mo-
hindra. IEEE Computer Society, 2015, pp. 211–220. isbn: 978-1-4673-7287-9. doi:
10.1109/CLOUD.2015.37. url: https://doi.org/10.1109/CLOUD.2015.37.

[24] Dzmitry Kliazovich, Pascal Bouvry, and Samee Ullah Khan. “GreenCloud: a packet-
level simulator of energy-aware cloud computing data centers”. In: The Journal of
Supercomputing 62.3 (2012), pp. 1263–1283.

http://dx.doi.org/10.1109/CloudCom.2010.65
http://dx.doi.org/10.1016/j.jpdc.2014.06.008
http://dx.doi.org/10.1016/j.jpdc.2014.06.008
http://dx.doi.org/10.1016/j.jpdc.2014.06.008
http://dx.doi.org/10.1016/j.future.2011.05.009
http://dx.doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
https://doi.org/10.1109/ISPASS.2015.7095802
http://dx.doi.org/10.1109/CLOUD.2015.37
https://doi.org/10.1109/CLOUD.2015.37

REFERENCES 89

[25] Wagner Kolberg et al. “MRSG - A MapReduce Simulator over SimGrid”. In: Parallel
Computing 39.4-5 (Apr. 2013), pp. 233–244. doi: 10.1016/j.parco.2013.02.001.
url: https://hal.inria.fr/hal-00931855.

[26] KVM - Kernel Virtual Machine. url: https://www.linux-kvm.org/page/Main_
Page.

[27] Philipp Leitner and Jürgen Cito. “Patterns in the Chaos - A Study of Performance
Variation and Predictability in Public IaaS Clouds”. In: ACM Trans. Internet Techn.
16.3 (2016), 15:1–15:23. doi: 10.1145/2885497. url: http://doi.acm.org/10.
1145/2885497.

[28] Philipp Leitner et al. “CloudScale: a novel middleware for building transparently
scaling cloud applications”. In: Proceedings of the 27th Annual ACM Symposium on
Applied Computing. ACM. 2012, pp. 434–440.

[29] Yan Alexander Li and John K. Antonio. “Estimating the execution time distribution
for a task graph in a heterogeneous computing system”. In: 6th Heterogeneous Com-
puting Workshop, HCW 1997, Geneva, Switzerland, April 1, 1997. IEEE Computer
Society, 1997, pp. 172–184. isbn: 0-8186-7879-8. doi: 10.1109/HCW.1997.581419.
url: http://dx.doi.org/10.1109/HCW.1997.581419.

[30] Seung-Hwan Lim et al. “MDCSim: A multi-tier data center simulation, platform”.
In: Proceedings of the 2009 IEEE International Conference on Cluster Computing,
August 31 - September 4, 2009, New Orleans, Louisiana, USA. IEEE Computer
Society, 2009, pp. 1–9. isbn: 978-1-4244-5012-1. doi: 10 . 1109 / CLUSTR . 2009 .
5289159. url: https://doi.org/10.1109/CLUSTR.2009.5289159.

[31] LINPACK. url: https://www.netlib.org/linpack/.

[32] Arfst Ludwig, Rolf H. Möhring, and Frederik Stork. “A Computational Study on
Bounding the Makespan Distribution in Stochastic Project Networks”. In: Annals
OR 102.1-4 (2001), pp. 49–64. doi: 10.1023/A:1010945830113. url: http://dx.
doi.org/10.1023/A:1010945830113.

[33] Paul Marshall, Kate Keahey, and Timothy Freeman. “Elastic Site: Using Clouds to
Elastically Extend Site Resources”. In: CCGRID’10. 2010, pp. 43–52.

[34] David Mendez, Mario Villamiazr, and Harold Castro. “e-Clouds: Scientific Comput-
ing as a Service”. In: Complex, Intelligent, and Software Intensive Systems (CISIS),
2013 Seventh International Conference on. IEEE. 2013, pp. 481–486.

[35] Etienne Michon et al. “Schlouder: A broker for IaaS clouds”. In: Future Generation
Comp. Syst. 69 (2017), pp. 11–23. doi: 10.1016/j.future.2016.09.010. url:
http://dx.doi.org/10.1016/j.future.2016.09.010.

[36] Alberto Nuñez et al. “iCanCloud: A Flexible and Scalable Cloud Infrastructure
Simulator”. In: J. Grid Comput. 10.1 (2012), pp. 185–209. doi: 10.1007/s10723-
012-9208-5. url: https://doi.org/10.1007/s10723-012-9208-5.

http://dx.doi.org/10.1016/j.parco.2013.02.001
https://hal.inria.fr/hal-00931855
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
http://dx.doi.org/10.1145/2885497
http://doi.acm.org/10.1145/2885497
http://doi.acm.org/10.1145/2885497
http://dx.doi.org/10.1109/HCW.1997.581419
http://dx.doi.org/10.1109/HCW.1997.581419
http://dx.doi.org/10.1109/CLUSTR.2009.5289159
http://dx.doi.org/10.1109/CLUSTR.2009.5289159
https://doi.org/10.1109/CLUSTR.2009.5289159
https://www.netlib.org/linpack/
http://dx.doi.org/10.1023/A:1010945830113
http://dx.doi.org/10.1023/A:1010945830113
http://dx.doi.org/10.1023/A:1010945830113
http://dx.doi.org/10.1016/j.future.2016.09.010
http://dx.doi.org/10.1016/j.future.2016.09.010
http://dx.doi.org/10.1007/s10723-012-9208-5
http://dx.doi.org/10.1007/s10723-012-9208-5
https://doi.org/10.1007/s10723-012-9208-5

90 REFERENCES

[37] Simon Ostermann et al. “A Performance Analysis of EC2 Cloud Computing Services
for Scientific Computing”. In: Cloud Computing - First International Conference,
CloudComp 2009, Munich, Germany, October 19-21, 2009 Revised Selected Papers.
Vol. 34. Lecture Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. Springer, 2009, pp. 115–131. doi: 10.1007/978-
3-642-12636-9_9.

[38] Julien Perez et al. “Multi-objective reinforcement learning for responsive grids”. In:
Journal of Grid Computing 8.3 (2010), pp. 473–492. doi: 10.1007/s10723-010-
9161-0. url: http://hal.archives-ouvertes.fr/hal-00491560/en/.

[39] Dana Petcu et al. “Experiences in building a mOSAIC of clouds”. In: Journal of
Cloud Computing: Advances, Systems and Applications 2.1 (2013), p. 12.

[40] Alexander Pucher et al. “Using Trustworthy Simulation to Engineer Cloud Sched-
ulers”. In: 2015 IEEE International Conference on Cloud Engineering, IC2E 2015,
Tempe, AZ, USA, March 9-13, 2015. 2015, pp. 256–265. doi: 10.1109/IC2E.2015.
14. url: https://doi.org/10.1109/IC2E.2015.14.

[41] RightScale. url: http://www.rightscale.com.

[42] Iman Sadooghi et al. “Understanding the performance and potential of cloud com-
puting for scientific applications”. In: IEEE Transactions on Cloud Computing 5.2
(2017), pp. 358–371.

[43] Scalr - The Hybrid Cloud Management Platform. url: https://www.scalr.com.

[44] SCHIaaS: IaaS simulation upon SimGrid. url: http://schiaas.gforge.inria.
fr.

[45] Schlouder: IaaS cloud broker for public or private clouds. url: https://schlouder.
gforge.inria.fr.

[46] SimGrid: Versatile simulation of distributed systems. url: https://simgrid.org/.

[47] SimSchlouder: Schlouder simulation upon SCHIaaS. url: http://schiaas.gforge.
inria.fr/simschlouder.html.

[48] Richard M. van Slyke. “Monte Carlo Methods and the PERT Problem”. In: Oper-
ations Research 11.5 (1963), pp. 839–860. issn: 0030364X, 15265463. url: http:
//www.jstor.org/stable/167918.

[49] Hu Song, Jing Li, and Xinchun Liu. “IdleCached: An Idle Resource Cached Dynamic
Scheduling Algorithm in Cloud Computing”. In: 9th UIC and ATC. Sept. 2012,
pp. 912–917.

[50] Hans Gerd Spelde. “Stochastische Netzpläne und ihre Anwendung im Baubetrie”.
PhD thesis. Rheinisch-Westfälische Technische Hochschule Aachen, 1976.

[51] Douglas Thain, Todd Tannenbaum, and Miron Livny. “Distributed computing in
practice: the Condor experience”. In: Concurrency - Practice and Experience 17.2-4
(2005), pp. 323–356. doi: 10.1002/cpe.938. url: https://doi.org/10.1002/
cpe.938.

[52] Christian Vecchiola et al. “Deadline-driven provisioning of resources for scientific
applications in hybrid clouds with Aneka”. In: Future Gener. Comput. Syst. 28.1
(Jan. 2012), pp. 58–65. issn: 0167-739X. doi: 10.1016/j.future.2011.05.008.

http://dx.doi.org/10.1007/978-3-642-12636-9_9
http://dx.doi.org/10.1007/978-3-642-12636-9_9
http://dx.doi.org/10.1007/s10723-010-9161-0
http://dx.doi.org/10.1007/s10723-010-9161-0
http://hal.archives-ouvertes.fr/hal-00491560/en/
http://dx.doi.org/10.1109/IC2E.2015.14
http://dx.doi.org/10.1109/IC2E.2015.14
https://doi.org/10.1109/IC2E.2015.14
http://www.rightscale.com
https://www.scalr.com
http://schiaas.gforge.inria.fr
http://schiaas.gforge.inria.fr
https://schlouder.gforge.inria.fr
https://schlouder.gforge.inria.fr
https://simgrid.org/
http://schiaas.gforge.inria.fr/simschlouder.html
http://schiaas.gforge.inria.fr/simschlouder.html
http://www.jstor.org/stable/167918
http://www.jstor.org/stable/167918
http://dx.doi.org/10.1002/cpe.938
https://doi.org/10.1002/cpe.938
https://doi.org/10.1002/cpe.938
http://dx.doi.org/10.1016/j.future.2011.05.008

REFERENCES 91

[53] David Villegas et al. “An Analysis of Provisioning and Allocation Policies for Infrastructure-
as-a-Service Clouds”. In: CCGRID’12. 2012, pp. 612–619.

[54] Tom White. Hadoop: The Definitive Guide. 1st. O’Reilly Media, Inc., 2009. isbn:
0596521979, 9780596521974.

[55] Cheng-Zhong Xu, Jia Rao, and Xiangping Bu. “URL: A unified reinforcement learn-
ing approach for autonomic cloud management”. In: Journal of Parallel and Dis-
tributed Computing 72.2 (2012), pp. 95–105. issn: 0743-7315. doi: 10.1016/j.
jpdc.2011.10.003.

http://dx.doi.org/10.1016/j.jpdc.2011.10.003
http://dx.doi.org/10.1016/j.jpdc.2011.10.003

Annexe A

Amélioration de simulation de cloud
IaaS via l’emploi de méthodes
stochastiques.

A.1 Motivations

L’évolution rapide des technologies de virtualisation et des réseaux informatiques a fait
émerger ces deux dernières décennies de nouveaux modèles d’exploitation des ressources
informatiques. Ces nouveaux modèles qu’on regroupe sous le terme générique Cloud, ont
conduit à une transformation radicale de l’hébergement et du développement en informa-
tique.

L’un de ces modèles est l’Infrastructure as a Service (IaaS). Il rend possible le dimen-
sionnement dynamique de l’infrastructure, en permettant à l’utilisateur (qui devient un
client du fournisseur du service d’infrastructure) d’acquérir ou de relâcher des ressources
en fonction de l’évolution de ses besoins en calcul et stockage. L’acquisition des ressources
sous forme d’une location est généralement facturée proportionnellement au temps d’uti-
lisation. Ainsi l’utilisateur de ressources IaaS est incité à gérer finement la quantité de
ressources louées afin d’optimiser ses coûts de fonctionnement.

Si ce modèle est très populaire dans le contexte de l’hébergement web, son utilisation
dans le contexte du calcul scientifique recouvre des cas d’usage différenciés. Même si nous
excluons de notre discussion le domaine du calcul haute-performance qui fait l’hypothèse
d’exploiter des super-calculateurs, il reste un éventail large d’applications scientifiques
conçues pour être exécutées sur des systèmes distribués. Les applications de ce type ont
largement bénéficié du développement des grilles institutionnelles de calcul au début des
années 2000 et sont aujourd’hui des candidats pertinents pour être adaptés au cloud IaaS.

En passant des grilles de calcul au cloud IaaS, le paradigme économique concernant
l’exploitation des ressources change. Les coûts d’investissement et d’exploitation d’une
grille sont mutualisés, et ne sont généralement pas imputés directement aux utilisateurs
individuels. Le cloud, en revanche, généralise le payement à l’usage, facturé à chaque

93

94 ANNEXE A. RÉSUMÉ EN FRANÇAIS

utilisateur individuel. Ceci constitue une très forte incitation pour que les utilisateurs
prédisent précisément leurs besoins afin de budgéter leurs coûts. Cependant, prendre des
décisions concernant le provisionnement à la volée des ressources et l’ordonnancement des
calculs sur ces ressources est une tâche non-triviale, qui nécessite d’assister l’utilisateur
dans sa prise de décision.

Notre thèse est que l’utilisation des clouds IaaS pour le calcul scientifique nécessite :

• Un planificateur cloud capable de gérer les applications et les ressources cloud
pour l’utilisateur. Cet outil doit automatiser le provisionnement et la libération des
ressources, ainsi que l’exécution des applications de l’utilisateur.

• Un outil de prédiction capable de fournir une estimation du coût de l’exécu-
tion d’une application. Cet outil doit prendre en compte les différentes stratégies de
planification disponibles pour permettre à l’utilisateur de choisir la stratégie corres-
pondant le mieux à ses contraintes.

Cette thèse propose plus spécifiquement des méthodes pour la construction d’outils de
prédictions utilisant des simulateurs d’IaaS. Ce faisant, nous nous confrontons au problème
de la variabilité des environnements de type cloud.

A.2 Contexte

A.2.1 Cloud computing

Un fournisseur IaaS opère généralement un ou plusieurs data-centers. Les machines phy-
siques présentes dans le data-center sont partagées entre les clients sous forme de machines
virtuelles, VMs. Chaque VM est affectée de manière opaque pour le client, à une, ou à un
sous-ensemble de machines physiques. Différentes configurations permettent aux clients
de choisir des VMs correspondant à leurs besoins. Les clients reçoivent les droits complets
d’administration des VM louées. La location de VMs est facturée par intervalles atomiques
de temps, qu’on appellera BTU, pouvant aller de la minute au mois selon les fournisseurs.

Le succès de l’IaaS s’explique par deux avantages majeurs en comparaison des infra-
structures traditionnelles. D’une part, aucun investissement matériel n’est nécessaire de
la part du client, qui connait à l’avance le coût intégral d’exploitation des ressources.
D’autre part, la capacité de dimensionner à la volée la taille de l’infrastructure néces-
saire permet une meilleure consolidation des machines physiques, c’est-à-dire permet de
concentrer les calculs pour améliorer le taux d’utilisation des machines physiques. Ceci
impacte positivement les coûts d’exploitation et les délais de disponibilité des machines
pour les utilisateurs. La capacité à obtenir instantanément de nouvelles VMs permet à
son tour aux utilisateurs de planifier des infrastructures plus légères ne provisionnant des
ressources additionnelles que lorsque cela est nécessaire.

A.2. CONTEXTE 95

project

overlap

diff

bgmodel

background

add

gather

. . .

. . .

h
. . .

. . .

j
. . .

. . .

k

Figure A.1 – Flot d’exécution de Montage.

A.2.2 Calcul scientifique

La capacité des ordinateurs à gérer de grandes quantités de données a grandement étendu
le champs des possibles dans la recherche scientifique. On s’intéressera spécifiquement aux
applications destinées aux traitements par lots. Ces applications sont conçues comme un
ensemble de tâches à exécuter. Deux types d’applications nous intéressent.

• Les bag-of-task (BoT) qui ne présentent aucune dépendance entre les différentes
tâches. Un BoT peut être parallélisé à souhait.

• Les workflow qui présentent des dépendances de données entre les différentes
tâches. Ces dépendances contraignent l’ordre d’exécution de certaines tâches. Les
workflows peuvent être représentés sous forme de DAGs.

Ces applications, souvent conçues à l’origine pour être exécutées sur des grilles de calcul
hétérogènes, sont capables de tourner sur une large variété d’équipements. Le contrôle de
l’exécution de ces applications est généralement la responsabilité d’un programme planifi-
cateur externe à l’application. Hormis les dépendances présentes dans le cas d’un workflow,
le planificateur se voit accorder une grande latitude sur la disposition des tâches sur les
ressources disponibles. Ces types d’application de calcul scientifique sont des candidates
de choix pour l’exécution dans le cloud.

Au cours de nos travaux nous nous sommes intéressé à l’exécution de deux applications
de calcul scientifique qui servent de base à nos expériences. :

• OMSSA [21], un BoT utilisé en protéomique pour l’analyse des mesures d’un spec-
tromètre de masse.

• Montage [22], un workflow utilisé en astronomie pour composer des images du
ciel à partir de photographies prises à différents endroits et différents moments. Le
workflow de Montage est représenté Figure A.1.

96 ANNEXE A. RÉSUMÉ EN FRANÇAIS

Time
0 15 30 45 60 75 90

t5 = 20min

Tasks t2 = 45min t4 = 15min

t1 = 15min t3 = 10m

AFAP
BTU 1t1 t2

BTU 2t3 t5 t4

ASAP
BTU 1t1 t3

BTU 2t2 t4

BTU 3t5

Figure A.2 – Exemple de planifications générées par AFAP et ASAP.

A.3 Calcul Scientifique dans le Cloud

A.3.1 Un planificateur : Schlouder

Schlouder [35] est un planificateur conçu dans notre équipe pour exécuter des applications
de calcul scientifique de types BoT et workflow dans des clouds IaaS. En plus de gérer
l’exécution des applications, Schlouder s’occupe du provisionnement des VMs et de l’or-
donnancement des tâches sur les VMs provisionnées. Cette double gestion engendre un
niveau de complexité supplémentaire en comparaison des ordonnanceurs pour grille qui
calculent un ordonnancement pour un ensemble fixe de ressources. Schlouder propose des
heuristiques pour optimiser deux objectifs : le temps total d’exécution de l’application,
appelé makespan, et le coût d’exécution de l’application, lié aux décisions de provisionne-
ment.

Dans nos travaux nous nous intéressons à deux heuristiques, représentées Figure A.2 :

• AFAP, as full as possible, tente d’optimiser le coût en remplissant systématique-
ment les VMs déjà provisionnées, si la BTU en cours n’est pas pleine.

• ASAP, as soon as possible, tente d’optimiser le makespan en réservant systémati-
quement de nouvelles VMs lorsque la tâche ne peut pas être exécutée immédiate-
ment.

Les heuristiques ne donnent pas en général un ordonnancement optimal sur les deux
objectifs. Les formes des workflows ou des contraintes extérieures, tels que les quotas
d’utilisation, peuvent amener à produire des planifications dont l’objectif principal visé est
en dessous des espérances de l’utilisateur. Devant la difficulté à anticiper les circonstances
dans lesquelles une heuristique sera plus efficace qu’une autre, nous voulons proposer aux
utilisateurs un outil permettant de prédire le temps et coût d’une exécution.

A.4. CONTRIBUTIONS 97

A.3.2 Un simulateur : SimSchlouder

Nous avons conçu SimSchlouder, un simulateur basé sur l’outil de simulation SimGrid,
reproduisant le comportement d’une exécution de Schlouder. Nous pouvons ainsi proposer
à l’utilisateur une prédiction du déroulement de l’exécution de l’application en ayant choisi
l’une ou l’autre des heuristiques.

En comparant des exécutions réelles d’OMSSA et Montage faites avec Schlouder avec
des exécutions simulées dans SimSchlouder, nous avons pu valider la justesse de Sim-
Schlouder. Mais cette expérience a mis en lumière deux difficultés de l’utilisation de Sim-
Schlouder comme outil de prédiction plutôt que de simulation. Premièrement, la quantité
de données nécessaire pour obtenir une simulation précise est trop importante. Deuxiè-
mement la variabilité, inhérente aux plateformes partagées comme les clouds, fait que
plusieurs exécutions sur les mêmes données n’auront pas exactement le même compor-
tement. Cette variabilité n’est pas prise en compte par SimSchlouder qui produit des
simulations déterministes. Le résultat de la simulation est donc un résultat partiel de ce
qui pourra être observé en réalité.

Enrichir le niveau d’information donné en simulation, prenant en compte la variabilité,
nous conduit à créer un simulateur stochastique.

A.4 Contributions

Dans une simulation stochastique les entrées deviennent des variables aléatoires avec une
distribution associée de valeurs possibles. Dans notre cas le temps d’exécutions des tâches,
appelé walltime, est remplacé par un ensemble de wallitmes possibles. Le but de la simula-
tion stochastique est de produire les distributions des makespans et des coûts d’exécutions
possibles. Le passage à la simulation stochastique permet d’intégrer la variabilité observée
dans nos exécutions réelles dans les simulations tout en diminuant la quantité et la pré-
cision des données nécessaires au simulateur. La prise en compte de la variabilité absorbe
l’imprécision des données d’entrée.

A.4.1 Simulation de Monte-Carlo

La résolution de l’ordonnancement de DAG stochastiques via une méthode numérique
s’est avérée inadaptée en raison des décisions dynamiques de placement que peut prendre
Schlouder en cours d’exécution. Une alternative fréquemment choisie dans ce cas est le
recours à la méthode de Monte-Carlo.

La simulation de Monte-Carlo (MCS), présentée en Figure A.3, permet de trouver
les distributions de makespans et de coûts au travers de la répétition de simulations
de scénarios possibles. La MCS tire pour chacune des tâches de l’application simulée
un walltime en accord avec la distribution d’entrée. Cet ensemble de walltimes, appelé
réalisation, représente un scénario d’exécution possible. Une réalisation contenant des
walltimes fixés, elle peut donc être simulée avec SimSchlouder. Cette simulation nous

98 ANNEXE A. RÉSUMÉ EN FRANÇAIS

Input :
Task RVs

{T1, . . . , Tn}

Realisations

{t1, . . . , tn}1

...

{t1, . . . , tn}500

Core Sim

Core Sim

...

Samples

m1

m500

...

Output :
Makespan RV

M

realisation
draw

distribution
aggregation

Figure A.3 – Principe d’une simulation de Monte-Carlo

donne un échantillon de makespans et de coûts possibles. En simulant suffisamment de
réalisations différentes, nous obtenons suffisamment d’échantillons de makepans et de
coûts pour estimer leur distribution.

La simulation de Monte-Carlo est extrêmement avantageuse : elle ne présente pas les
contraintes mathématiques que possèdent les résolutions numériques, l’effet des heuris-
tiques de planification est pris en compte par l’utilisation de SimSchlouder, et l’utilisation
d’un simulateur déterministe au cœur de la MCS rend cette méthode facilement extensible
et permet la validation indépendante du simulateur déterministe.

A.4.2 Distribution d’entrée

Il reste à choisir les distributions de walltimes utilisées comme entrée de la simulation.
Notre objectif est de créer un outil de prédiction paramétrable de manière simple par
son utilisateur. Nous sommes donc contraints dans le choix d’une distribution, car nous
ne pouvons pas faire l’hypothèse que l’utilisateur possède un long historique d’exécutions
passées de son application.

Dans les planificateurs de grilles comme dans Schlouder, il est demandé à l’utilisateur
de fournir un temps d’exécution attendu pour chacune des tâches. Nous décidons de partir
de cette donnée et d’ajouter un paramètre appelé niveau de perturbation (P). Le niveau
de perturbation est identique pour toutes les tâches d’une simulation et représente la
variabilité de l’exécution.

Concrètement, chaque tâche se voit attribuer une distribution uniforme U centrée sur
le walltime attendu avec une largeur relative de 2P . Ainsi avec w̄j le walltime attendu
pour la tâche j, sa distribution Tj sera :

Tj = U(w̄j(1− P), w̄j(1 + P))

Pour l’utilisateur cela revient intuitivement à considérer que la durée d’une tâche sera
de w̄j ± P%. Ce modèle de distribution des walltimes est volontairement extrêmement
simple, et il nous faut tester si une MCS avec ce modèle en entrée reste suffisamment
précise pour nous fournir un encadrement juste des makespans et des coûts possibles de
la réalité.

A.5. PARAMÉTRISATION 99

Application Heuristique Makespan Coût
CI 95% CI 99%

OMSSA ASAP 90% 98% 100%
AFAP 92% 100% 100%

Montage ASAP 100% 100% 100%
AFAP 100% 100% 100%

Table A.1 – Taux d’encadrement du makespan et du coût obtenus en utilisant les inter-
valles de confiance (CI) à 95% et à 99% de la distribution normale.

A.4.3 Validation expérimentale

Pour valider notre MCS utilisant nos distributions d’entrée nous comparons les résultats
de notre MCS a un corpus d’exécutions réelles.

Pour isoler l’expérience des erreurs dans le choix des walltimes attendus, nous utilisons
la valeur moyenne des walltimes observés pour chaque tâche. Le niveau de perturbation est
lui aussi calculé à partir des observations réelles comme la moyenne des pires déviations
vis-à-vis des walltimes attendus.

Les résultats de la MCS (Figure A.4) sont comparés quantitativement à la réalité par
l’intermédiaire d’intervalles de confiance obtenus au travers de l’ajustement d’une distri-
bution théorique sur l’ensemble des valeurs de makespan obtenues par MCS. Nous consi-
dérons que cette distribution est normale car le théorème de la limite centrale s’applique :
le makespan est une somme de variables aléatoires (les walltimes), chaque variable aléa-
toire est indépendante, et nous avons suffisamment de tâches sur le chemin critique. Nous
examinons ensuite pour différents intervalles de confiance de cette distribution, quelle part
des observations réelles appartient à l’intervalle défini par l’intervalle de confiance choisi.
Nous montrons par nos expériences qu’une MCS utilisant nos distributions d’entrée nous
permet d’encadrer 90% des exécutions réelles. Les détails des résultats se trouvent dans
la Table A.1.

A.5 Paramétrisation

Ayant obtenu un taux d’encadrement de 90% avec une distribution d’entrée simple, nous
nous intéressons à l’effet sur la précision de la MCS du choix du niveau de perturbation
(P), du nombre de réalisations (N), et du choix de la distribution d’entrée.

Le niveau de perturbation. Notre première intuition est que le niveau de perturbation
(P) peut être augmenté pour produire des MCS ayant de meilleurs taux d’encadrement.
Nos expériences avec des simulations nous montrent que ce n’est pas le cas. Certaines
heuristiques de placement opèrent moins efficacement dans des environnements hautement
variables. Il est donc nécessaire pour produire le meilleur encadrement possible que P soit
le plus représentatif possible de la variabilité réelle de l’environnent simulé.

100 ANNEXE A. RÉSUMÉ EN FRANÇAIS

AFAP ASAP

13500 13750 14000 14250 12700 12900 13100 13300 13500

0.000

0.001

0.002

0.003

0.004

makespan (s)

de
ns

ity

OMSSA

AFAP ASAP

33 34 35 36 37 38 39 40 33 34 35 36 37 38 39 40
0

25

50

75

100

BTU count

%
 r

un
s

AFAP ASAP

2800 2850 2900 1500 1600

0.000

0.005

0.010

0.015

0.020

makespan (s)

de
ns

ity

Montage

AFAP ASAP

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0

25

50

75

100

BTU count

%
 r

un
s

Type/Heuristic real/AFAP real/ASAP sim/AFAP sim/ASAP

Figure A.4 – Comparaison des résultats de la MCS (en orange, jaune) avec les exécutions
réelles (en bleu, violet).

A.6. LE CAS MAP-REDUCE 101

Le nombre d’itérations. Les MCS sont des processus stochastiques. Il existe donc
une variabilité dans les résultats d’une MCS d’une exécution à l’autre. De plus, le résultat
évolue au fur est à mesure que des réalisations sont ajoutées à la MCS. La convergence
des MCS ce fait en 1/

√
N où N est le nombre de réalisations utilisées dans la MCS.

Pour des applications de la taille de OMSSA et Montage des résultats suffisants pour un
encadrement du makespan et coût peuvent être obtenus avec seulement 500 réalisations.

La distribution d’entrée. Nous expérimentons aussi avec différentes distributions
d’entrée. Ce changement n’a pas produit de meilleur taux d’encadrement ou une meilleure
représentativité des exécutions réelles. Néanmoins l’utilisation de distributions plus com-
plexes pourrait être avantageux dans les cas où l’utilisateur a accès aux données nécessaires
à la construction de distributions plus proches des distributions observées dans la réalité.

A.6 Le cas Map-Reduce

Nos tentatives de simulation de Monte-Carlo dans le contexte de l’application Map-Reduce
TeraSort démontrent certaines limites de notre approche :

• Notre distribution d’entrée utilisant un niveau de perturbation unique n’est pas
adaptée pour représenter la variabilité d’environnements surchargés.

• Pour être efficace la MCS requiert qu’un nombre suffisant de tâches de taille similaire
composent le chemin critique.

Dans notre simulation de TeraSort la tâche /reduce/ est beacoup plus longue que les
tâches /map/. De plus le niveau de parallélisme observé limite la profondeur du chemin
critique. Notre modèle MCS est donc inadapté à la simulation de cette application.

A.7 Conclusion

Les cloud présentent de nouvelles opportunités pour le calcul scientifique. Néanmoins,
la complexité des systèmes de planifications nécessaires rend difficile la sélections d’une
heuristique de planification pour l’utilisateur. Le développement des outils de prédiction
susceptibles d’aider les utilisateurs dans cette sélection sont quant à eux confrontés à la
quantité d’information nécessaire et à la variabilité observée sur les plateformes de cloud.

La thèse présentée ici est que les simulations stochastiques peuvent permettre, à partir
d’un paramètrage simple pour l’utilisateur, de produire des prédictions pertinentes. Pour
le démontrer nous avons développé une simulation de Monte-Carlo utilisant une distribu-
tion d’entrée simple. Cette simulation se montre capable d’encadrer 90% des exécutions
réelles. Nous complétons ces travaux avec une étude détaillée de l’influence de différents
paramètres de la simulation sur la précision des résultats.

102 ANNEXE A. RÉSUMÉ EN FRANÇAIS

Cette thèse présente une utilisation d’une simulation de Monte-Carlo dans un contexte
de cloud, l’influence des différents paramètres sur le résultat et présente les limites de cette
approche. Bien que nous soyons fier de ces résultats dans le contexte d’un outil de pré-
diction, nous voyons aussi les opportunités que les simulations stochastiques ouvrent en
dehors de ce cas d’utilisation. Les MCS pourraient permettre l’étude précise du comporte-
ment des heuristiques de planification dans des environnements variables. En utilisant une
simulation avec modèle de provisionnement stochastique, un opérateur de cloud pourrait
développer et tester un algorithme de placement de VM maximisant l’efficacité énergé-
tique tout en respectant ses obligations contractuelles de disponibilité. Les simulations
de Monte-Carlo ouvrent la possibilité de créer des systèmes de cloud conscients de la
variabilité de l’environnent dans lequel ils opèrent.

Appendix B

Publications

• Luke Bertot, Julien Gossa, and Stéphane Genaud. “Méthode pour l’étude expéri-
mentale par la simulation de clouds avec SCHIaaS.”. In: Compas’17. 2017

• Luke Bertot, Stéphane Genaud, and Julien Gossa. “An Overview of Cloud Simu-
lation Enhancement using the Monte-Carlo Method”. In: Proceedings of the 18th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing CC-
GRID. 2018

• Luke Bertot, Stéphane Genaud, and Julien Gossa. “Improving Cloud Simulation
Using the Monte-Carlo Method.” In: Euro-Par 2018, LNCS 11014. 2018

103

Luke Bertot
Improving the simulation of

IaaS Clouds

Résumé :

Les clouds sont devenus ces dernières années des plate-formes incontournables dans le
monde informatique, car ils permettent de provisionner des ressources à la demande et de
ne payer qu’à l’usage. Ceci ouvre la possibilité de concevoir de nouvelles stratégies pour
la planification et l’exécution des applications parallèles de type tâches indépendantes ou
workflow. Cependant, trouver une stratégie bien adaptée aux contraintes des utilisateurs,
que ce soit en termes de coûts et de temps d’exécution, est un problème difficile, pour
lequel des outils de prédictions sont nécessaires. Néanmoins, la variabilité inhérente de ces
plate-formes complexifient le développement d’un tel outil de prédiction.
Notre thèse est que la simulation stochastique est une approche pertinente pour obtenir
une prédiction s’accommodant de la variabilité, en produisant une distribution proba-
biliste des prédictions englobant les résultats réels observables. Pour le démontrer, nous
utilisons une méthode de Monte-Carlo permettant de créer des simulations stochastiques
par la répétitions de simulations déterministes. Nous montrons que cette méthode associée
à certaines distributions d’entrée permettent de modéliser la variabilité d’une plate-forme
à travers un unique paramètre. Pour évaluer la méthode proposée, nous comparons les
résultats de notre méthode probabiliste à des exécutions réelles d’applications scienti-
fiques. Nos expériences montrent que notre méthode permet de produire des prédictions
représentatives des exécutions réelles observées.
Mots-clés : cloud computing, simulation de Monte-Carlo, calcul scientifique.

Abstract

The ability to provision resources on the fly and their pay-as-you-go nature has made
cloud computing platforms a staple of modern computer infrastructure. Such platforms
allow for new scheduling strategies for the execution of computing workloads. Finding a
strategy that satisfies a user’s cost and time constraints is a difficult problem that requires
a prediction tool. However the inherent variability of these platforms makes building such
a tool a complex endeavor.
Our thesis is that, by producing probability distributions of possible outcomes, stochastic
simulation can be used to produce predictions that account for the variability. To demon-
strate this we used Monte Carlo methods to produce a stochastic simulation by repeatedly
running deterministic simulations. We show that this method used in conjunction with
specific input models can model the variability of a platform using a single parameter.
To validate our method we compare our results to real executions of scientific workloads.
Our experiments show that our method produces predictions capable of representing the
observed real executions.
Keywords: cloud computing, Monte Carlo simulations, scientific computing.

	Acknowledgements
	Contents
	Introduction
	Motivations
	Contribution
	Outline

	I Background
	Context
	Cloud Computing
	Scientific Computing
	Sample applications
	OMSSA
	Montage

	Operating Scientific workloads on IaaS Clouds
	Cloud Scheduling
	Scaling
	Scheduling
	Cloud brokers

	Schlouder
	Schlouder operation
	Scheduling heuristics

	Simulation of IaaS Clouds
	Simulation technologies
	Building a Simulator
	SimGrid
	SchIaaS
	SimSchlouder

	Evaluation of SimSchlouder
	Experiment rationale
	Simulation Tooling
	Analysis
	Results

	Take-away

	II Stochastic Simulations
	Monte-Carlo Simulations
	Motivation
	Sources of variability.

	Stochastic simulations
	Resolution of stochastic DAGs
	Monte Carlo Simulations
	Benefits of the stochastic approach

	Our proposed Monte Carlo Simulation
	Experimental setup
	Real executions
	Monte Carlo Simulation tooling
	Input modeling
	Results

	Take-away

	Defining Simulation Inputs
	P: the perturbation level
	N: the number of iterations
	Internal convergence
	Inter-simulation convergence

	Input Distribution Choice
	Take-away

	The case of MapReduce
	MapReduce and Hadoop
	MapReduce simulator MRSG
	Technical specificities
	Usage

	Experiment
	Real executions
	Simulation
	Discussion

	Take-away

	Conclusion
	References
	Résumé en français
	Motivations
	Contexte
	Cloud computing
	Calcul scientifique

	Calcul Scientifique dans le Cloud
	Un planificateur : Schlouder
	Un simulateur : SimSchlouder

	Contributions
	Simulation de Monte-Carlo
	Distribution d'entrée
	Validation expérimentale

	Paramétrisation
	Le cas Map-Reduce
	Conclusion

	Publications

