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Chapter 1
Introduction

1.1. General presentation

This manuscript is a summary of my research activity, with an emphasis on the last ten years. My
mathematical interests lie mainly in algebra, with a particular focus on the following subjects:

(i) Combinatorial algebra, and more precisely all the mathematical descriptions of what is an
algebraic structure, such as operads of all kinds, props and variations, or Lawvere theories.
Here, my main motivation lies in the utopia of a universal algebraic object subsuming
all these concepts, yet keeping an easy access to the combinatorics, but also including
higher-dimensional algebraic structures, and formalisms from proof theory or theoretical
computer science, like the sequent calculus, rewriting systems, or the λ-calculus.

(ii) Homotopical algebra, and model structures in particular, as a unified point of view on
the concept of topology-inspired equivalence between mathematical objects, including
homological algebra as a special case. In this vast domain, I am particularly interested
in cofibrant approximations, as an abstract description of the concept of resolution, with
the underlying idea that cofibrant approximations in well-chosen model categories should
provide good candidates to formalise mathematical structures in logical languages such as
type theory.

(iii) Higher-dimensional algebra, whose central objective is the description and classification
of all the species of higher categories, strict or weak, globular or cubical, invertible or not,
with or without an algebraic structure. I would also include concepts from homological
algebra, like chain complexes and differential graded algebras and categories, and from
homotopical algebra, like cellular complexes. Here, coherence problems, for all sorts of
relaxed categorical objects ranging from pseudofunctors to weak higher groupoids, have a
special appeal to me.

(iv) Effective algebra, also known as computer algebra or symbolic computation, concerned with
the formalisation of algebraic structures and the mechanisation of algebraic computation.
Here, I have particularly worked on presentations by generators and relations of monoids,
categories and higher categories, with a specific interest into rewriting theory, both to
understand the algebraic structure underlying the rewriting mechanism, and to develop
rewriting methods for various applications: computation of normal forms and linear
bases, decision of the word problem, computation of resolutions and of homotopical and
homological invariants, resolution of coherence problems.
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Among these algebraic subjects, the major part of my work has been devoted to the interactions
between rewriting theory and higher categories, with a shift of focus roughly ten years ago.

During the first period, ranging from 2000 to 2007 and covering my PhD thesis and postdoc
years, I was interested into understanding rewriting theory from an algebraic point of view. This
led me to the development of a general rewriting theory in higher-dimensional categories, based
on Burroni’s structure of polygraph. I have explored translations of various types of rewriting-like
systems into polygraphs, and the respective computational properties of the two formalisms, for
word and term rewriting systems, Petri nets, and deep-inference proofs of propositional logic
and linear logic. Using algebraic derivations, I have developed a method to prove termination
of polygraphs; this was later, with Guillaume Bonfante, specialised to the complexity analysis
of a subclass of polygraphs corresponding to first-order functional programs, leading to a new
characterisation of the FP complexity class. All these results are, in essence, natural extensions of
my PhD thesis, and, for that reason, in this manuscript, I chose to focus on later work; however,
all the concepts of polygraphic rewriting, being essential in what followed, are still presented here,
in a version that has progressively been modernised all along the years.

The second period opens in 2008, when Philippe Malbos and I started to explore a higher-
dimensional formulation of Squier’s work on homological and homotopical invariants of rewriting.
This led us into the development of rewriting methods for the computation of various constructions
in homotopical algebra: syzygies and coherence bases, homological and homotopical invariants,
resolutions by higher categories. Our different articles weremotivated by various applications, such
as the refinement of Squier’s algebraic invariants of rewriting, constructive proofs of coherence
theorems in categorical algebra, the computation of polygraphic resolutions of monoids, the study
of homotopical properties of Artin monoids (with Stéphane Gaussent), the implementation of
resulting algorithms (with Samuel Mimram), or the characterisation of the Koszulness property
for associative algebras (with Eric Hoffbeck). In the last years, following the study of Artin
monoids, in joint works with Patrick Dehornoy and Matthieu Picantin, I have started to explore
the interactions between rewriting and Garside theory, motivated by possible enhancements that
the latter can bring to the former.

The next two sections of this introduction propose a brief survey on the rewriting theory from
an algebraic point of view, and on Squier’s work on homological and homotopical invariants of
rewriting. We end the chapter with a summary of this work.

1.2. Rewriting theory in algebra

1.2.1. The word problem. The word problem for finitely presented monoids originates in 1914,
when Thue asked in [199] if, given a finite presentation X = (X1, X2) of a monoid by generators
and relations, there exists an algorithm to decide whether or not any two given elements u
and v of the free monoid X∗1 over X1 are equal up to the relations of X2. In 1947, Post [179]
and Markov [157] simultaneously and independently answered by the negative. Their proof is
based on an encoding of a Turing machine as a presentation of a monoid, in such a way that the
decidability of the word problem in this presentation implies the one of another, undecidable
problem: namely, if the machine will ever write a given symbol or not. Still in 1947, Markov
gave a more concrete counterexample: a monoid presented by 13 generators and 33 relations,
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with an undecidable word problem [158]. In 1956 and 1958, Tseitin proposed smaller examples
of monoids with undecidable word problems, both admitting rather simple presentations with five
generators and seven relations [202, 203, 204].

1.2.2. Rewriting theory. On the positive side, one way to solve the word problem is to exhibit
a finite presentation X = (X1, X2) ofM, made of a generating set X1 and a set X2 of directed
relations with a good computational property: convergence. The use of directed relations is the
central concept of rewriting theory, where one studies presentations whose relations are not seen
as equalities between the words in X∗1, such as u = v, but, instead, as rewriting rules that can only
be applied in one direction, like u⇒ v, thus simulating a nonreversible computational process
reducing the word u into the word v. A presentation X is called convergent if it has the two
properties of

(i) termination, i.e. all the computations end eventually, and
(ii) confluence, i.e. different computations on the same input eventually lead to the same result.

A finite and convergent presentation X of a monoid M gives a solution to the word problem
forM, called the normal-form procedure and defined as follows. Given an element u of the free
monoid X∗1, convergence ensures that all the applications of (directed) relations to u, in every
possible manner, will eventually produce a unique result: an element û of X∗1 where no relation
applies anymore. The word û is called the normal form of u, and the map u 7→ û induces a
(set-theoretic) section of the canonical projection X∗1 � M: by construction, two elements u
and v of X∗1 represent the same element ofM if, and only if, their normal forms û and v̂ are equal
in the free monoid X∗1. Finiteness ensures that one can determine whether an element u of X∗1
is a normal form or not, by examining each relation to check if it applies to u or not. Note that
finiteness is just a sufficient condition here, since other methods may exist to check whether or
not u is a normal form.

In 1943, Newman gave a general setting, abstract rewriting, to describe the properties of
termination and confluence, and to show the first fundamental result of rewriting: Newman’s
lemma [169] asserts that, under the termination hypothesis, confluence can be reduced to a
local form, that only checks if one-step rewritings acting on the same element eventually lead to
the same result. Since then, rewriting theory has been mainly and independently developed in
effective algebra and theoretical computer science, resulting in numerous variants corresponding to
different syntaxes of the elements being transformed, such as word or string rewriting systems [32]
for monoids, or term rewriting systems [10, 125, 198] for equational theories and Lawvere
theories [140]. Other computational systems are also based on rewriting-like mechanisms, like
Gröbner bases in effective algebra [42], or the λ-calculus [54] and Petri nets [168] in theoretical
computer science.

1.2.3. Polygraphs. More recently, higher-dimensional rewriting has unified several paradigms of
rewriting. This theory is based on presentations by generators and relations of higher categories,
independently introduced by Burroni and Street under the respective names of polygraphs in [43]
and computads in [195, 196]. Burroni’s terminology is more widely used in the French community,
partly due to our closeness to him, and partly due to aesthetic considerations. Polygraphs are a
higher-categorical analogue of CW complexes: they are formed by cells of all dimensions, and
each cell has the shape of a globe, whose boundary lives in the free higher category over the
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cells of lower dimension. For example, the presentation of the monoid A = 〈a |aa = a〉+ is a
2-polygraph with one 0-cell, one 1-cell a, and one 2-cell aa ⇒ a. Similarly, the presentation
of the associative theory is a 3-polygraph with one 0-cell, one 1-cell, one 2-cell standing for the
product, and pictured by in the formalism of string diagrams, and one 3-cell

V

expressing the associativity of the product. Another example is the categorical presentation of the
groups of permutations: it has one 2-cell , standing for the generating transposition (1 2), and
the following two 3-cells, respectively expressing that is an involution and that it satisfies the
Yang-Baxter relation:

V and V .

The fundamental virtue of polygraphs is that they encapsulate, in the same globular object, the
terms, the computations on the terms, and the homotopical properties of the computations. Thus,
polygraphs are perfectly adequate to study higher-dimensional algebraic structures, either from a
combinatorial and computational point of view [43, 133, 135, 88, 90, 89, 92, 91, 136, 93, 30, 31,
164], or for homological or homotopical reasons [160, 161, 137, 138, 9]. Moreover, polygraphs
provide a natural setting to relate these two different faces of higher algebras, and, in particular,
to formulate Squier theory, based on the discovery of deep relations between the homological
and homotopical properties of algebraic objects, on the one hand, and the combinatorial and
computational properties of their presentations, on the other hand.

1.3. An overview of Squier theory

1.3.1. Jantzen’s question, and Kapur-Narendran’s example. The normal-form procedure
proves that, if a monoid admits a finite convergent presentation, then it has a decidable word
problem. The converse implication was still an open problem in the middle of the eighties, leading
Jantzen to ask if every finitely presented monoid with a decidable word problem admits a finite
convergent presentation [115, 116]. The answer was expected to be negative, but the proof was
revealed to be even harder than expected by the following observation. In [122], Kapur and
Narendran consider Artin’s presentation of the monoid B+

3 of positive braids on three strands:

(s, t | sts⇒ tst) .

Since B+
3 has a finite presentation with homogeneous relations, it has a solvable word problem:

the equivalence class of a given word u on s and t can be totally explored to check if another
word v belongs to it or not. Kapur and Narendran proved that B+

3 admits no finite convergent
presentation on the two generators s and t. However, they also proved that B+

3 admits a finite
convergent presentation, if one adjoins to s and t an extra, redundant generator a standing for the
product st: (

s, t, a

∣∣∣∣ ta α
=⇒ as, st

β
=⇒ a, sas

γ
=⇒ aa, saa

δ
=⇒ aat

)
. (1.1)
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Hence, the existence of a finite convergent presentation depends on the chosen generators. It
follows that, to give the awaited negative answer to Jantzen’s question, one would have to exhibit a
monoid with a decidable word problem but with no finite convergent presentation for any possible
set of generators: new methods had to be introduced to tackle the problem.

1.3.2. From computational to homological properties. And, indeed, Craig Squier answered
the question by linking the existence of a finite convergent presentation for a given monoidM to
a homological invariant ofM: a monoidM is left-FP3 if there exists an exact sequence

0 Zoo P0oo P1oo P2oo P3oo

of projective and finitely generated ZM-modules, where Z denotes the trivial ZM-module. From
a presentation X ofM, one can build an exact sequence of free ZM-modules

0 Zoo ZMε
oo ZM[X1]

d1
oo ZM[X2],

d2
oo (1.2)

where ZM[Xk] is the free ZM-module over Xk. So, if the kernel of d2 is finitely generated,
thenM is left-FP3. Moreover, by classical arguments of homological algebra, the fact that the
kernel of d2 is finitely generated or not does not depend on the choice of a finite presentation
ofM.

In [192], Squier proves that, if X is convergent, its critical branchings form a generating set
of the kernel of d2, where a critical branching of X is a minimal overlapping application of two
relations on the same element of X∗1. For example, the relations α : ta ⇒ as and β : st ⇒ a

of (1.1) generate a critical branching (βa, sα) on sta:

aa

sta

βa (<

sα "6 sas

The convergence of (1.1) ensures that every critical branching (f, g) is confluent, which means
that it can be completed by rewriting sequences f ′ and g ′ leading to the same result, as in

v f ′

�(
u

f (<

g "6

u ′

w g ′

9M (1.3)

For example, the presentation (1.1) of B+
3 has four critical branchings, and all of them are

confluent:

aa

sta

βa (<

sα "6 sas

γ

K_ aat

sast

γt (<

saβ
"6 saa

δ

K_ aaas

sasas

γas +?

saγ �3

aata

aaα_s

saaa δa

8L

aaaa aaast
aaaβey

sasaa

γaa *>

saδ
 4
saaat

δat
%9 aatat

aaαt

EY
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Squier proved that the set X3 of critical branchings of a convergent presentation X extends the
exact sequence (1.2) by one step:

0 Zoo ZMε
oo ZM[X1]

d1
oo ZM[X2]

d2
oo ZM[X3],

d3
oo (1.4)

where the boundary map d3 is defined on the generic branching (1.3) by

d3(f, g) = [f] − [g] + [f ′] − [g ′],

Since the set of critical branchings of a finite convergent presentation is itself finite, we obtain
that, if a monoid admits a finite convergent presentation, then it is left-FP3 [192, Theorem 4.1].
Finally, Squier considers a family (Sk)k>2 of monoids, such that each Sk is finitely generated
and has a decidable word problem, but, if k > 2, then Sk is not left-FP3 and, as a consequence, it
does not admit a finite convergent presentation (for any possible set of generators).

1.3.3. From computational to homotopical properties. Later, Squier gave another proof of
the same result, based on a homotopical refinement of the property left-FP3. Given a monoidM
with a presentation X, Squier considers in his posthumous article [193] the complex of the
presentation X: this is a cellular complex with one 0-cell for each element of X∗1, and whose
1-cells correspond to one-step rewritings. Then, he extends this 1-dimensional complex with
2-cells filling all the squares formed by independent applications of relations, such as the following
one, provided there exist 1-cells between u1 and v1, and between u2 and v2:

wv1w
′u2w

′′

wu1w
′u2w

′′ wv1w
′v2w

′′

wu1w
′v2w

′′

Squier defines a homotopy basis of X as a generating set of the fundamental group of the resulting
two-dimensional complex, and proves that, if X and Y are two finite presentations of the same
monoid, then X admits a finite homotopy basis if, and only if, Y does [193, Theorem 4.3]. Next,
Squier defines the following homotopical invariant for monoids: one says that a monoid is of finite
derivation type if it admits a finite presentation with a finite homotopy basis. He then proves that,
if X is a convergent presentation of a monoid, and if Y is a set of 2-cells filling the diagram (1.3)
for each critical branchings of X, then Y is a homotopy basis of X [193, Theorem 5.2]. As a
consequence, if a monoid admits a finite convergent presentation, then it is of finite derivation
type [193, Theorem 5.3]. It was later proved that, if a monoid is of finite derivation type, then it is
left-FP3 [57, 181, 133].

Squier uses these results to give another proof that there exist finitely generated monoids, with
a decidable word problem, but that do not admit a finite convergent presentation. Moreover, he
shows that left-FP3 is not sufficient for a finitely presented monoid with a decidable word problem
to admit a finite convergent presentation. Indeed, the monoid S1 of [192], given by the finite
presentation (a, b, t, x, y |ab⇒ 1, xa⇒ atx, xt⇒ tx, xb⇒ bx, xy⇒ 1), has a decidable
word problem, it is left-FP3, yet it is not of finite derivation type, and, as a consequence, it does
not admit a finite convergent presentation.
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1.4. Organisation and notation

1.4.1. Organisation. Chapter 2 gives the general definitions, notations and constructions used
throughout this document: higher categories, polygraphs and their rewriting properties. The
material is collected from all my articles, with a presentation that has evolved all along the years.
Here, I tried to present the concepts and constructions in the most recent form. In particular,
higher categories are defined in their internal version, useful to adapt them from monoids to other
algebraic structures as in [95]. The rewriting terminology comes from the same article. The
method to prove termination originates in [88, 90, 89], and is formulated in the language of [96].
This last article is also the source of the classification of critical branchings in dimension three.

Chapter 3 summarises the results of [96], [97] and [98], written with PhilippeMalbos. The first
article was devoted to a generalisation of Squier’s homotopical theorem to higher categories, with
a special interest for strict monoidal categories; the theorem was expressed as a rewriting-based
construction of a coherent presentation, i.e. a presentation by generators, relations, and relations
among relations. The second article first adapted to higher categories the notion of identity among
relations, known for presentations of groups as a way to express the syzygies formed by the
relations, and then used Squier’s theorem to compute generators of the identities among relations.
The third article used higher categories to give simple formulations of some categorical coherence
problems, and applied Squier’s theorem to obtain new proofs of the coherence theorems for
monoidal, symmetric monoidal and braided monoidal categories.

Chapter 4 recalls the results of [99], written with Philippe Malbos. The main objective of
this article was to extend to higher-dimensions Squier’s homotopical theorem for monoids and
categories, obtaining the construction of a polygraphic resolution from a convergent presentation:
polygraphic resolutions are resolutions by higher categories, extending coherent presentations
in all dimensions. Moreover, we used polygraphic resolutions to define various homotopical
invariants, and, through an abelianisation process, homological invariants as well, generalising
Squier’s finite homotopy type and left-FP3 conditions. Here, the construction of the polygraphic
resolution is presented with slightly less restrictive hypotheses than in the original article, and
with a corrected proof, the original one containing an error in the definition of some coherence
cells in dimension 4 and above.

Chapter 5 presents the article [78], written with Stéphane Gaussent and Philippe Malbos. Our
objective was to understand two results about different homotopical aspects of Artin monoids,
from the point of view of Squier theory. The first one, by Tits, concerns the fundamental group of a
complex associated to the classical presentation of Artin monoids. The second result, by Deligne,
is a characterisation of the weak actions of spherical Artin monoids on categories, in terms of
another presentation of Artin monoids whose generators are the elements of the corresponding
Coxeter group. The main result we obtained was an enhanced version of the construction given
by Squier’s theorem, generating a rather compact coherent presentation from a non-necessarily
terminating presentation. Applied to Artin monoids, this construction gave two different coherent
presentations, which, in turn, induced improvements of Tits’ and Deligne’s results.

Chapter 6 summarises the results of [63], written with Patrick Dehornoy. This article
introduced an axiomatic setting, quadratic normalisations, to encompass two methods to compute
normal forms in monoids: on the one hand, convergent quadratic polygraphs (such as the
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convergent Garside presentation of Artin monoids, or the column presentations of plactic and
Chinese monoids), and, on the other hand, the normalisation process induced by a Garside
family. Quadratic normalisations are classified according to their class (m,n), determined by the
maximal length of reductions on length-three words: m when starting from the left, and n from
the right. We particularly explored the quadratic normalisations of class (4, 3), proving that they
induce convergent quadratic presentations of monoids, that they generalise the Garside case, and
we gave a characterisation of the Garside normalisations among them.

Chapter 7 presents the results of [95], written with Eric Hoffbeck and Philippe Malbos. Our
objective was to transpose Squier theory to associative algebras, in order to give a rewriting
account of the known computational methods using Gröbner bases to compute normal forms,
bases, and resolutions of associative algebras. For that, we developed a rewriting theory for
associative algebras, based on an analogue of polygraphs for higher associative algebras, i.e. higher
categories internal to the category of associative algebras. This rewriting theory resulted into a
new concept of convergent presentations for algebras, that strictly generalise noncommutative
Gröbner bases and Poincaré-Birkhoff-Witt bases, and into Squier-like constructions of coherent
presentations and of polygraphic resolutions of associative algebras, leading to new sufficient or
necessary conditions for an algebra to be Koszul.

Finally, Chapter 8 contains research perspectives, beyond the results presented in this
manuscript, ranging from almost completed work to long-term ideas, in four directions: the
general theory of higher categories and polygraphs, to extend the range of application of rewriting
methods to new algebraic structures; the study of the interactions between Garside theory and
rewriting, both to improve rewriting itself, and Squier theory as a consequence; the computation
and study of polygraphic resolutions of Artin monoids and groups, with a view towards the
K(π, 1)-conjecture; and the development of new algebraic invariants of computation, related to
the word problem or to complexity theory.

1.4.2. Notation. In all the document, we denote by N the set N of natural numbers extended
with a maximal element∞. IfM is a monoid, we writeM+ for the semigroup obtained fromM
by removing the unit. If X is a set, then X∗ denotes the the free monoid over X. So, for example,
N+ is the set of nonzero natural numbers, N∗ the free monoid over N, and (N+)

∗ the free monoid
over nonzero natural numbers. Specific notation is also introduced in the last chapters.
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Chapter 2
Higher categories and polygraphs

2.1. Introduction

2.1.1. Context. The structure of higher category is implicitly already present in classical,
1-dimensional categories: setting aside size considerations, categories, functors and natural
transformations form a 2-category, where categories are 0-dimensional objects, or 0-cells, functors
are 1-cells, with one way to compose them, and natural transformations are 2-cells, being com-
posable along two possible dimensions [154]. In turn, 2-categories, 2-functors, (pseudo)natural
transformations and modifications between them yield a 3-category, while 3-categories with their
morphisms of all dimensions (3-functors, natural transformations, modifications, and perturba-
tions) form a 4-category, and so on. At infinity, one obtains the (large)∞-category of all (small)∞-categories. More precisely, these are the strict, globular∞-categories, in that all the laws
satisfied by compositions are strict equalities, and all n-cells, for n > 1, have one (n− 1)-cell as
source, and one (n− 1)-cell as target, with the shape of a globe.

This precise type of higher categories is now rather well-understood, and the category∞Cat

they form has a nice model structure [138]. Over the years, many other types of higher categories
have also been studied, coming initially from algebraic topology and mathematical physics, and,
more recently, from proof theory [111, 182]. Without trying to be exhaustive, either in the types
of higher categories or in the now vast bibliography on the subject, higher categories can have
different shapes of cells, such as cubical or opetopic cells [38, 16]; the cells can be invertible or
not [154, 18]; the compositions can satisfy relations that are hold strictly, or only up to coherent
higher cells [23, 83, 118, 156]; the cells can admit an extra algebraic structure, such as an
associative product or a Lie bracket, and the laws of this structure can themselves hold strictly or
only up to coherent higher cells [124]. Comparisons and equivalences have been established, for
example between various definitions of globular higher categories [53], or between globular and
cubical higher groupoids and categories [39, 38, 2].

Polygraphs, also known as computads, were introduced independently by Street [195, 196, 197]
and Burroni [43] as a combinatorial algebra point of view on (strict, globular) higher categories:
polygraphs are to higher categories what generating families, presentations by generators and
relations, and resolutions are to monoids and groups. More precisely, polygraphs are a common
algebraic description of sets of generating cells for free higher categories, and of presentations by
generators and relations for higher categories that are free up to codimension 1. Later on, Métayer
has developed a rich notion of polygraphic resolution for higher categories [160], and proved that
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polygraphs are cofibrant for an adequate family of cofibrations [161]. These first homotopical
observations integrated later into a model structure on∞Cat [138]. A general description for
polygraphs/computads for various types of higher categories was given by Batanin in [17].

The higher-categorical interpretation of rewriting originates in Burroni’s original article [43],
where he gave a polygraphic description of Lawvere theories [140] as specific 2-categories, and
presentations of Lawvere theories as specific 3-polygraphs. Since polygraphs have globular
cells, with a source and a target, they can be seen naturally as directed presentations of higher
categories, and Lafont started to explore their rewriting properties from this observation [133,
135]. In my PhD thesis and subsequent articles, I gave a general setting for higher-dimensional
rewriting, showing how to translate other types of rewriting-like mechanisms in this language:
word and term rewriting systems, directed presentations of pros, props and Lawvere theories,
Petri nets, and propositional logic and linear logic in their deep inference formulation [88, 89,
92, 91]. Specific tools have been developed to study the rewriting properties of polygraphs,
especially in dimension 3: for example, algebraic derivations to prove termination [90, 89],
leading with Bonfante to the study of the implicit complexity of polygraphs and to polygraphic
characterisations of some complexity classes [30, 31]; or completion procedures to compute
convergent presentations of pros [164, 165].

2.1.2. Summary. In §2.2, we give a definition of higher categories internal to a category C with
good properties (having pullbacks, in particular), as in [95]. This relies on the notion of globular
object in C, defined as a graded object with source s, target t and identity maps i that satisfy the
so-called globular relations: ss = st, ts = tt and si = ti = id. The general underlying idea is
that an n-category is an n-globular set equipped with n compatible structures of monoids, one for
each possible dimension of composition. An important concept is the one of n-sphere in a higher
category, defined as a pair of n-cells that are parallel, i.e. that share the same source and the same
target. We are also interested in the following variant: (n, p)-categories are n-categories whose
k-cells are invertible for every k > p.

Then, §2.3 focuses on the case of n-categories in the category Set of sets, or just n-categories
for short. The central concept of this section is that of extension of an n-category C, which
is a distinguished set of n-spheres of C. An extension X of C can be seen as a set of formal
(n+ 1)-cells, filling all the n-spheres of X: taking all formal compositions of these (n+ 1)-cells
yields an (n+ 1)-category, denoted by C[X]; an analogue construction, where one also considers
formal inverses of cells of X gives an (n+ 1, p)-category C(X) from an (n, p)-category C. An
extension X of C can also be seen as a set of relations between parallel n-cells: collapsing
them yields a quotient n-category, written C/X. From [96], we also define the contexts of an
n-category C, as n-cells with one formal indeterminate, and natural systems on C as the functors
from the category Ct(C) of contexts of C into a semiadditive category, such as the one of abelian
groups. The category of contexts of C has been introduced by Quillen under the name category of
factorisations of C in [183], and it has been used by Leech to introduce cohomological properties
of congruences on monoids in [141], and by Baues and Wirsching for the cohomology of small
categories in [20]. Here, natural systems are used as a notion of homological coefficients for
higher categories, generalising left/right/bimodules of categories.

Next, §2.4 recalls the definition of polygraphs from [43, 160], which are a higher categorical
analogue of CW complexes: a polygraph X is a sequence (X0 | · · · |Xn | · · ·) where X0 is a set,
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and each Xn+1 is an extension of the free n-category X∗n generated by the n-cells. The main
difference with globular sets is that the source and target of a generating (n + 1)-cell are not
necessarily generating n-cells, but can be any composite. We also give a variant of polygraphs for
(n, p)-categories, as introduced in [99]: these (n, p)-polygraphs are defined similarly, except
that, above dimension p, one considers extensions of the free (n, p)-category X>n generated by
the n-cells. Polygraphs provide a notion of presentation for higher categories that are free up to
codimension 1, together with generalised versions in higher dimensions: in particular, if C is an
n-category that is free up to codimension 1, a coherent presentation of C is an (n+2, n)-polygraph
formed by a presentation X of C together with an acyclic extension of X>.

Then, §2.5 recalls the essential aspects of the rewriting theory of n-polygraphs, as developed
progressively in [88, 89, 96]. The elementary concept is that of rewriting step, which is an n-cell
that contains only one n-dimensional generator, seen as a transformation of its source into its
target. Termination is then classically defined as the fact that no infinite sequence of composable
rewriting steps exist, and confluence as the fact that any two finite sequence of rewriting steps
with the same source can be completed into sequences with the same target. An n-polygraph is
then called convergent if it is both terminating and confluent. The two fundamental results of
rewriting theory hold in the case of polygraphs:

Theorem 2.5.4. Fix n > 0, and let X be an n-polygraph.
(i) (Newman’s lemma) If X terminates, then X is confluent if, and only if, it is locally confluent.
(ii) (The critical branchings theorem) X is locally confluent if, and only if, it is critically

confluent.

The proofs are postponed until Chapter 3, wheremore general versions are given: Propositions 3.2.2
and 3.2.3.

Finally, §2.6 summarises results from [96] on the rewriting properties of 2-polygraphs and
3-polygraphs. In dimension 2, we recall a basic link between the decidability of the word
problems for monoids and categories, and the existence of a finite convergent presentation, and
we cite simple facts about termination and confluence of 2-polygraphs. For dimension 3, we give
the method to prove termination of 3-polygraphs by using derivations of 2-categories, initially
introduced in [88, 89], in the formulation of [96]. We conclude with the analysis of the specific
critical branchings that one encounters in dimension 3, recalling their classification from [96] and
the results we obtained there.

2.2. Internal higher categories

Fix n ∈ N, and let C be a fixed category. The definitions of n-globular objects of C and
n-categories of C can be given in a more abstract setting, but we assume here that C is concrete
over sets, and that the corresponding forgetful functor admits a left adjoint.

2.2.1. Graded objects and morphisms. An n-graded object of C is a sequence X = (Xk)k of
objects of C, indexed by all natural numbers k 6 n. If X and Y are n-graded objects of C, and p
an integer, a graded morphism of degree p from X to Y is a sequence

f =
(
Xk → Yk+p

)
k
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of morphisms of C, indexed by all natural numbers k 6 n such that 0 6 k + p 6 n. The
n-graded objects and graded morphisms of degree 0 of C form a category, which has limits and
colimits, computed pointwise, if C has.

2.2.2. Internal globular objects. An n-globular object of C is an n-graded object X of C
equipped with graded morphisms

X
s−→ X, X

t−→ X and X
i−→ X,

of respective degrees −1, −1 and 1, called the source map, the target map and the identity map
of X, that satisfy the following equalities, collectively referred to as the globular relations of X:

ss = st, ts = tt and si = ti = idX .

With the identity map and the last two relations removed, one gets an n-semiglobular object
of C, or n-graph of C. Usually, “globular objects” correspond to our semiglobular objects, while
“reflexive globular objects” stand for our “globular objects”; the present terminology is chosen
here for its coherence with (semi)simplicial and (semi)cubical objects.

Given two n-globular objects X and Y of C, a globular morphism from X to Y is a graded
morphism f : X→ Y of degree 0 that commutes with the source, target and identity maps. We
denote by nGlob(C) the category of n-globular objects and globular morphisms of C, and by
nGph(C) the category of n-graphs and their morphisms.

2.2.3. Sources, targets, spheres and compositions. Let X be an n-globular object of C, and
fix a natural number k 6 n. An element x of Xk is called a k-cell of X, and, if k > 1, the
(k−1)-cells s(x) and t(x) are called the source of x and the target of x. We write z : x→ y if z is
a k-cell of X of source x and target y, and z : x⇒ y, z : xV y, z : x �? y if k = 2, 3, 4. When
no confusion occurs, we write i(x), 1x or just x instead of any iterate image ip(x) of x through i.
Two k-cells x and y of X are called parallel if either k = 0, or s(x) = s(y) and t(x) = t(y). A
k-sphere of X is a pair α = (x, y) of parallel k-cells of X, with x being called the source of α
and y the target of α. The boundary of a k-cell x is the (k− 1)-sphere ∂(x) = (s(x), t(x)).

Writing (Xk) for the n-globular object of C that is constantly equal to Xk, the k-source map
of X and the k-target map of X are the graded morphisms sk, tk : X→ (Xk) of degree 0, given,
on a p-cell x of X, by

sk(x) =

{
sp−k(x) if p > k,
ik−p(x) if p 6 k,

and tk(x) =

{
tp−k(x) if p > k,
ik−p(x) if p 6 k.

The globular relations generalise, for j < k, to sjsk = sjtk = sj and tjsk = tjtk = tj for j < k.
We denote by X ?k X the pullback

X ?k X //

��

X

sk
��

X
tk
// (Xk)

in the category of n-graded objects of C. Explicitly, the p-cells of X ?k X are the pairs (x, y) of
p-cells of X such that tk(x) = sk(y) holds, such a pair being called k-composable. By definition
of sk and tk, if p 6 k, then the p-cells of X ?k X are the (x, x), for every p-cell x of X.
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2.2.4. Internal higher categories. An n-category of C is an n-globular object C of C equipped,
for every natural number k < n, with a graded morphism

C ?k C
ck−→ C

of degree 0, called the k-composition of C, whose value at (a, b) is denoted by a ?k b, and such
that the following relations are satisfied, for all 0 6 k < p:

(i) (compatibility with the source and target maps) for every p-cell (a, b) of C ?k C,

s(a ?k b) =

{
s(a) if k = p− 1,
s(a) ?k s(b) otherwise,

t(a ?k b) =

{
t(b) if k = p− 1,
t(a) ?k t(b) otherwise,

(ii) (compatibility with the identity map) for every p-cell (a, b) of C ?k C,

1a?kb = 1a ?k 1b,

(iii) (associativity) for all p-cells a, b and c of C such that (a, b) and (b, c) are p-cells of C?k C,

(a ?k b) ?k c = a ?k (b ?k c),

(iv) (neutrality) for every p-cell a of C,

sk(a) ?k a = a = a ?k tk(a),

(v) (exchange) for every j < k, and all p-cells (a, a ′) and (b, b ′) of C ?k C such that (a, b)
and (a ′, b ′) are p-cells of C ?j C,

(a ?k a
′) ?j (b ?k b

′) = (a ?j b) ?k (a
′ ?j b

′).

Note that the compatibility of the compositions with the source and target maps ensures that the
associativity axiom makes sense: if (a, b) and (b, c) are p-cells of C ?k C, then so do (a ?k b, c)
and (a, b ?k c). The compatibility of compositions with identities implies that we can still write a
for 1a with no ambiguity. We use the convention that the composition ?j binds more tightly
than ?k for j < k, so a ?j b ?k c means (a ?j b) ?k c.

Given n-categories C and D of C, an n-functor of C from C to D is a globular morphism F
from C to D that commutes with all k-compositions. We denote by nCat(C) the category of
n-categories and n-functors of C.

2.2.5. Internal (n, p)-categories. In an n-category C of C, for n > 1, an n-cell a is called
invertible if there exists an n-cell a− in C, of source t(a) and target s(a), such that the relations

a ?n−1 a
− = s(a) and a− ?n−1 a = t(a)

are satisfied. For p 6 n in N, an (n, p)-category of C is an n-category of C in which all
k-cells are invertible for k > p. In particular, (n,n)-categories are just n-categories, and we say
n-groupoids for (n, 0)-categories. We denote by (n, p)Cat(C) and nGpd(C) the corresponding
categories.
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2.3. Higher categories

2.3.1. Notation. When C is the category of sets, we speak of n-graded sets, n-globular sets,
n-categories, etc. and denote by nGlob, nCat, etc. the corresponding categories. All these
categories are known to be complete and cocomplete. For 0 6 p < n 6∞, the two adjunctions

pCat

In

''

⊥ nCat

Up

gg

Tp
''

⊥ (n, p)Cat
ff

are formed by: the truncation functor Up, that forgets the cells above dimension p; the inclusion
functor In, that sees a p-category as an n-category with only identity cells above dimension p;
the enveloping (n, p)-category functor Tp, adding formal inverses for all cells above dimension p;
the functor that forgets inverses. Through the inclusion functor, a p-category C is implicitly
seen as an n-category, also denoted by C. If C is an n-category, we abusively write Cp for its
underlying p-category Up(C). Finally, we write C> for Tp(C) when there is no ambiguity on p.

2.3.2. Standard cells and spheres. Fix a natural number n. The standard n-cell is the
n-category En with two k-cells e−k and e+k for every k < n, and one n-cell en, plus all
corresponding identities; the source and target maps of En are given by sk(e) = e−k and
tk(e) = e

+
k for every cell e of En. With identities removed, the first three standard cells E0, E1

and E2 are

e0 e−0
e1
// e+0 e−0

e−1

""

e+1

<<
e2
��

e+0

The standard n-sphere is the n-category Sn = U(En+1). By extension, we define the standard
(−1)-sphere as S−1 = ∅.

Let C be an n-category, for n ∈ N, and k 6 n be a natural number. By definition of Ek
and Sk, the k-cells and the k-spheres of C are in bijective correspondence with the n-functors
Ek → C and Sk → C, respectively. In what follows, we use these two points of view on cells and
spheres of C indistinctly.

2.3.3. Extensions. Fix a natural number n, and an n-category C. An extension of C is a
pair (X,ϕ) made of a set X and an n-functor

X× Sn
ϕ−→ C.

By definition, the image of ϕ is a set of n-spheres of C, indexed by X. We usually identify
each element x of X with the corresponding n-sphere ϕ(x, (e−n−1, e

+
n−1)) of C, and leave the

notationϕ implicit, just saying that X is an extension of C. An n-category C admits two canonical
extensions: the empty one, and the extension nSph(C) formed by all the n-spheres of C.
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Let X be an extension of C. We denote by ≈X the smallest equivalence relation on parallel
n-cells of X that is compatible with compositions, and contains all the n-spheres (s(x), t(x))
for x in X. We say that X is acyclic if a ≈X b holds for every n-sphere (a, b) of C.

We denote by nCat+ the category of pairs (C, X) made of an n-category and an extension X
of C, obtained as the pullback of the forgetful functor nCat → nGph and the truncation functor
(n+ 1)Gph → nGph:

nCat+ //

��

(n+ 1)Gph

��

nCat // nGph.

For p 6 n, we denote by (n, p)Cat+ the subcategory of nCat+ formed by (n, p)-categories with
an extension.

2.3.4. Adjoining and collapsing cells. Fix a natural number n, an n-category C, and an
extension X of C. We define C[X] and C/X as the (n+ 1)-category and the n-category given by
the following pushouts in (n+ 1)Cat and nCat:

X× Sn //

��

C

��

X× En+1 // C[X]

and

X× Sn //

��

C

��

X× En // C/X.

These two constructions extend to functorsnCat+ → (n+1)Cat andnCat+ → nCat, respectively.
Concretely, C[X] is obtained from C by adjoining the composites of formal (n+ 1)-cells, one for
each n-sphere of X, while the n-category C/X is obtained by collapsing all the n-spheres of X.
We denote by πX : C� C/X the canonical projection. In practice, we use the same notation for
an n-sphere of X and the corresponding (n+ 1)-cell of C[X]. We write ‖a‖X for the number of
occurrences of cells of X in an n-cell a of C[X], and CellX(a) for the set of cells of X that appear
in a.

By construction, for every n-sphere (a, b) of C, the following assertions are equivalent:
(i) a ≈X b,
(ii) πX(a) = πX(b),
(iii) there exists a zigzag of (n+ 1)-cells from a to b in C[X],
(iv) there exists an (n+ 1)-cell from a to b in C(X).

For p 6 n, and C an (n, p)-category, we define the (n+ 1, p)-category C(X) is the same way
as C[X], but taking the pushout in (n+1, p)Cat. The construction also applies to an n-category C,
in the case p = n, yielding an (n+ 1, n)-category C(X). Concretely, C(X) is obtained from C by
formally adjoining the composites of the n-spheres of X and their inverses. The notations ‖a‖X
and CellX(a) are extended to C(X) by considering the minimal number and minimal set of cells
of X that appear in a.

2.3.5. Contexts and whiskers. Let n be a natural number, and C be an n-category. The
construction C[X] is extended in a straightforward way to a set of k-spheres of C for any k 6 n,
and so is the notation ‖a‖X.
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A context of C is a pair (x,C), written C[x], made of an (n− 1)-sphere x of C and an n-cell C
of C[x] such that ‖C‖x = 1. By construction of C[x], for every context C[x] of C, the n-cell C
admits a decomposition

C = an ?n−1 · · · ?1 a1 ?0 x ?0 b1 ?1 · · · ?n−1 bn,

where ak and bk are k-cells of C, for every k in {1, . . . , n}. If there exists such a decomposition
where both an and bn are identities, then C[x] is called a whisker of C.

If C[x] is a context of C, and a is an n-cell of C[X] such that ∂a = x, for X an extension of C,
we define the n-cell C[a] of C[X] as C where the n-cell x has been replaced by a. In particular,
if D[y] is a context of C such that ∂D = x, the n-cell C[D] contains exactly one occurrence of y,
so that (y,C[D]) is a context of C, denoted by C[D[y]]).

The contexts of C form a category, denoted by Ct(C), whose objects are the n-cells of C, and
whose morphisms from a to b are the contextsC[∂a] of C such thatC[a] = b holds. Composition
is given by D[y] ◦ C[x] = D[C[x]] and the identity of a is the empty context [∂a] = (∂a, ∂a).

2.3.6. Natural systems and derivations. Let n be a natural number, and C be an n-category.
A natural system on C is a functor from the category of contexts Ct(C) of C to the categoryAb

of abelian groups. Hence, a natural system N is specified by an abelian group Na, for every
n-cell a of C, and a morphism NC[x] : Na → NC[a] of groups, for every context C[x] of C
and every n-cell a such that ∂(a) = x. When no confusion may occur, if C[x] : a → b is a
morphism of Ct(C), and g is an element of Na, we denote by C[g] the element NC[x](g) of Nb.
The category of natural systems over C is denoted by Nat(C).

Let N be a natural system on C. A derivation of C into N is a map sending every n-cell a
of C to an element d(a) of Na such that the following relation holds, for every k-composable
pair (a, b) of n-cells of C:

d(a ?k b) = a ?k d(b) + d(a) ?k b.

A direct consequence of this relation is that derivations map identities to 0.
Natural systems on C and the associated derivations can also be defined with values in any

semiadditive categoryA instead ofAb, and in particular in the category Com of commutative
monoids. In that case, we talk about natural systems on C with values inA.

2.3.7. Examples. For example, the trivial natural system on C, denoted by Z, maps every n-cell
of C to Z and every context of C to the identity of Z. If X is an extension of C, the map ‖·‖X,
counting the number of occurrences of n-cells of X in the n-cells of C[X], is a derivation of C
into Z, mapping every n-cell of C to 0 and every n-cell of X to 1. The trivial natural system on C
with values in Com is defined similarly, with N replacing Z.

Let V a concrete category, usually the category Set of sets or the category Ord of ordered
sets. We view V as a 2-category with one 0-cell and cartesian product as 0-composition. Fix an
internal commutative monoidM in V, a 2-category C and 2-functors F : C→ V andG : Cco → V,
where Cco is C with the 1-source and 1-target maps exchanged. The following assignments yield a
natural system N(F,G,M) over C with values in Com:

(i) Every 2-cell f : a⇒ b is mapped to the setN(F,G,M)f of morphisms from F(a)×G(b)
toM in V, equipped with the pointwise structure of commutative monoid induced by the
one ofM.
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(ii) For every 1-sphere (a, b) and 1-cell c of C, the values of N(F,G,M) on the contexts
(a, b) ?0 c and c ?0 (a, b) are given, on ϕ : F(a)×G(b)→M in V, by

F(a)× F(c)×G(b)×G(c) ϕ ?0 c−→ M

(ξ, ξ ′, η, η ′) 7−→ ϕ(ξ, η),

F(c)× F(a)×G(c)×G(b) c ?0 ϕ−→ M

(ξ ′, ξ, η ′, η) 7−→ ϕ(ξ, η).

(iii) For every 1-sphere (a, b) and 2-cells f : a ′ → a and g : b → b ′ of C, the values
ofN(F,G,M) on the contexts f?1(a, b) and (a, b)?1g are given, onϕ : F(a)×G(b)→M

in V, by

F(a ′)×G(b) f ?1 ϕ−→ M

(ξ, η) 7−→ ϕ
(
F(f)(ξ), η

)
,

F(a)×G(b ′) ϕ ?1 g−→ M

(ξ, η) 7−→ ϕ
(
ξ,G(g)(η)

)
.

If F or G is trivial, i.e. maps all the cells of C to the terminal object ∗ of V, one denotes the
corresponding natural system byN(∗, G,M) orN(F, ∗,M). In particular,N(∗, ∗,N) is the trivial
natural system on C with values in Com.

2.4. Polygraphs

2.4.1. Polygraphs. We define the category nPol of n-polygraphs and the free n-category
functor nPol → nCat by induction on n > 0. For n = 0, put 0Pol = Set, and set the free
0-category functor to the identity of Set, which is well typed because 0Cat = Set. Now, fix n > 1,
and assume that the category (n− 1)Pol and the functor (n− 1)Pol → (n− 1)Cat have been
defined. The category nPol is defined as the pullback

nPol //

��

(n− 1)Cat+

��

(n− 1)Pol // (n− 1)Cat

(2.1)

and the free n-category functor, as the composite

nPol −→ (n− 1)Cat+ −→ nCat.

If X is an n-polygraph, we denote by X∗ the free n-category over X. Expanding the definition,
an n-polygraph is a family X = (X0, . . . , Xn), written (X0 | · · · |Xn), made of a set X0 and, for
every 0 6 k < n, an extension Xk+1 of the free k-category over the k-polygraph (X0, . . . , Xk).
The free n-category over X is X∗ = X0[X1] · · · [Xn].
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The category ∞Pol of ∞-polygraphs is obtained as the limit of the vertical functors
(n+1)Pol → nPol of (2.1), and the free∞-category functor comes from the universal property
of∞Cat as a limit of the functors (n + 1)Cat → nCat. Thus, an∞-polygraph is a sequence
X = (X0 | · · · |Xn | · · ·) such that (X0 | · · · |Xn) is an n-polygraph for every n > 0.

Fix n ∈ N, let X be an n-polygraph, and let k 6 n be a natural number. The elements of Xk
are called the k-cells of X. We commit the abuse to also denote by Xk the underlying k-polygraph
of X. We say that X is of finite type if it has finitely many k-cells for every k > 0. For an n-cell a
of X∗, we put ‖a‖ = ‖a‖Xn , calling it the size of a, and Cell(a) = CellXn(a).

2.4.2. Polygraphs for (n, p)-categories. Wedefine the category (n, p)Pol of (n, p)-polygraphs,
together with the free (n, p)-category functor (n, p)Pol → (n, p)Cat, for all natural numbers
n > p, by induction on n − p. For n = p, put (n,n)Pol = nPol, and set the free (n,n)-
category functor to the free n-category functor, which is well typed because (n,n)Cat = nCat.
Now, fix n > p, and assume that the category (n− 1, p)Pol and the functor (n− 1, p)Pol →
(n− 1, p)Cat have been defined. The category (n, p)Pol is defined as the pullback

(n, p)Pol //

��

(n− 1, p)Cat+

��

(n− 1, p)Pol // (n− 1, p)Cat

and the free (n, p)-category functor, as the composite

(n, p)Pol −→ (n− 1, p)Cat+ −→ (n, p)Cat.

If X is an (n, p)-polygraph, we denote by X> the free (n, p)-category over X. Thus, an
(n, p)-polygraph is a family X = (X0 | · · · |Xn) such that (X0 | · · · |Xp) is a p-polygraph, and
each Xk, for k > p, is an extension of the free (k−1, p)-category over (X0 | · · · |Xk−1). The free
(n, p)-category overX isX> = X0[X1] · · · [Xp](Xp+1) · · · (Xn). Note that (n,n−1)-polygraphs
and n-polygraphs have the same definition, giving a meaning to X> for an n-polygraph X.

Finally, we define the category (∞, p)Pol of (∞, p)-polygraphs as the limit of the functors
(n+ 1, p)Pol → (n, p)Pol. We use the same vocabulary as in the case of∞-polygraphs.

2.4.3. Notation. To help to differentiate the various types of cells that appear in (free) higher
categories, we use the following convention as much as possible.

If C is a generic higher category, we write a, b, c and f, g, h for its cells, the latter being of
higher dimension with respect to the former. If X is a generic polygraph, we use x, y, z for its
cells.

When focusing on the lowest dimensions, such as when considering a free (∞, 1)-categoryX>,
we use x, y, z for the 1-cells of X, and u, v, w for the 1-cells of X>; for n > 1, we write α,
β, γ for the n-cells of X, and a, b, c for the n-cells of X>. Moreover, in that case, we drop
the notation ?0 for the 0-composition of cells in X>, so that uv stands for the 0-composite of
1-cells u and v of X>.

2.4.4. Polygraphic presentations. Fix n ∈ N, and let C be an n-category. We say that C is
free if there exists an n-polygraph X such that C ' X∗; in that case, the cells of X are called the
generating cells of C. For k < n, we say that C is k-free if its underlying k-category Ck is free.
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Let p < n, and X be an (n, p)-polygraph. The p-category presented by X is the quotient
p-category

X = X∗p/Xp+1.

We denote by a the image of a p-cell a of X∗p in X through the canonical projection. If f is a k-cell
of X>, for k > p, we also denote by f the common image in X of the p-cells sp(f) and tp(f)
through the canonical projection. Two n-polygraphs, seen as (n,n− 1)-polygraphs, are called
Tietze-equivalent if the (n− 1)-categories they present are isomorphic.

Assume that n is finite, and let C be an n-category. A presentation of C is an (n + 1)-
polygraph X such that C ' X; in that case, we say that C is presented by X. If C admits a
finite presentation, then it is finitely presented. This definition is restrictive: for n > 1, only
the (n − 1)-free n-categories can have a presentation. A coherent presentation of C is an
(n+ 2, n)-polygraph X whose presented n-category is isomorphic to C, and such that Xn+2 is
acyclic.

2.4.5. Example (The standard presentation). Let n be a natural number, and C be an (n− 1)-
freen-category. The standard presentation of C is the (n+1)-polygraph Std(C)with the following
cells:

(i) up to dimension n− 1, one cell for each generating cell of C,
(ii) one n-cell â for every n-cell a of C, with the same source and target,
(iii) one (n+ 1)-cell γk(a, b) : â ?k b̂→ â ?k b for every k-composable pair (a, b) of n-cells

of C, and one (n+ 1)-cell ι(a) : 1a → 1̂a for every (n− 1)-cell a of C, with the following
sources and targets:

tk(a) = sk(b)
b̂

��
γka,b��

sk(a)

â
55

â ?k b

11 tk(b)

a

1a

  

1̂a

>>
a.ιa��

2.5. Rewriting properties of polygraphs

We fix a natural number n > 0 and an n-polygraph X for the whole section.

2.5.1. Rewriting steps and normal forms. A rewriting step of X is an n-cell of size 1 in the
free n-category X∗. A rewriting sequence of X is a finite or infinite sequence

a1
f1
// a2

f2
// (· · · )

fn−1
// an

fn
// (· · · )

of composable rewriting steps of X. Note that every n-cell of X∗ decomposes into a finite
rewriting sequence of X, and this decomposition is unique up to the exchange relations. If a and b
are (n− 1)-cells of X∗, we say that a rewrites into b if there exists a finite rewriting sequence
of X with source a and target b.
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Let a be an (n− 1)-cell of X∗. We say that a is reduced if there exists no rewriting step of
source a in X. A normal form of a is a reduced (n− 1)-cell b of X∗ such that a rewrites into b.
We say that X is normalising if every n-cell of X∗ admits at least one normal form.

2.5.2. Termination. Let a be an (n − 1)-cell of X∗. We say that X terminates at a if X has
no infinite rewriting sequence of source a. By definition, if X terminates at a, then a admits a
normal form. We say that X terminates (or is terminating) if it does at every (n− 1)-cell of X∗.
Thus, if X terminates, it is normalising. Moreover, if X terminates, then putting a <X b for
all (n− 1)-cells a and b of X∗ such that a rewrites into b defines a well-founded order on the
(n− 1)-cells of X∗. In that case, induction on <X is called noetherian induction.

A termination order on X is a wellfounded order relation 6 on parallel (n− 1)-cells of X∗
such that the following properties are satisfied:

(i) the compositions of (n− 1)-cells of X∗ are strictly monotone in both arguments,
(ii) for every n-cell x of X, the strict inequality s(x) > t(x) holds.

As a direct consequence of the definition, if X admits a termination order, then X terminates. The
converse is also true, because, if X terminates, then <X is a termination order.

2.5.3. Branchings and confluence. A branching of X is a non-ordered pair (f, g) of n-cells
of X∗ with same source, as in

b a
f
oo

g
// c ;

in that case, a is called the source of (f, g), and we say that (f, g) is local if f and g are rewriting
steps of X. A local branching of X is called trivial if it has one of the following two shapes

a ′ a
f
oo

f
// a ′ or a ′ ?k b a ?k b

f ?k b
oo

a ?k g
// a ?k b

′,

where f : a → a ′ and g : b → b ′ are rewriting steps. Local branchings are compared by
inclusion, i.e. by the order 4 generated by the relations

(f, g) 4 (C[f], C[g])

for every possible whisker C[x] of X∗. A non-trivial local branching of X that is minimal for the
order 4 is called critical. By induction on the size of the source of a local branching, we deduce
that, for every non-trivial local branching (h, k) of X, there exist a unique critical branching (f, g)
of X and a unique whisker C[x] of X∗ such that (h, k) = (C[f], C[g]).

A branching (f, g) of X is confluent if there exist n-cells f ′ and g ′ in X∗ with the following
shape

b f ′

��

a

f 33

g ,,

a ′.

c g ′

CC

Note that trivial local branchings are always confluent. If a is an (n− 1)-cell of X, we say that X
is confluent (resp. locally confluent, resp. critically confluent) at a if every branching (resp. local
branching, resp. critical branching) of source a is confluent. We say that X is confluent (resp.
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locally confluent, resp. critically confluent) if it is at every (n− 1)-cell of X∗. If X is confluent
then every (n− 1)-cell of X∗ admits at most one normal form.

2.5.4. Theorem. Fix n > 0, and let X be an n-polygraph.
(i) (Newman’s lemma [169]) If X terminates, then X is confluent if, and only if, it is locally

confluent.
(ii) (The critical branchings theorem [170, 126, 112]) X is locally confluent if, and only if, it is

critically confluent.

Proof. Apply Propositions 3.2.2 and 3.2.3 with Y = nSph(X>).

2.5.5. Convergence. We say that X is convergent if it is both terminating and confluent. In
that case, every (n − 1)-cell a of X∗ has a unique normal form, denoted by â, and we have
a = b in X if, and only if, â = b̂ holds in X∗. Thus, the normal form defines a section of the
canonical projection X∗n−1 � X, mapping an (n− 1)-cell a of X to the unique normal form of
its representative (n− 1)-cells in X∗, also denoted by â.

As a consequence, if ann-category C admits a convergent presentationX, then C is isomorphic
to the n-category formed by all the reduced n-cells of X, with k-composition of a and b given by
â ?k b.

2.5.6. Knuth-Bendix completion. Let X be a terminating n-polygraph, equipped with a termi-
nation order 6. A Knuth-Bendix completion of X (with respect to 6) is an n-polygraph Y, with
the same cells as X up to dimension n− 1, and with a filtration Yn = ∪p>0Ypn of its set of n-cells,
such that the following properties is satisfied:

(i) Y0n = Xn,
(ii) for every critical branching

b a
f
oo

g
// c

of Ypn, there exist normal forms b ′ of b and c ′ of c in Ypn such that either
− b ′ = c ′,
− b ′ > c ′ and Yp+1n contains an n-cell y : b ′ → c ′,
− b ′ < c ′ and Yp+1n contains an n-cell y : c ′ → b ′.

By definition, a Knuth-Bendix completion of X is convergent, and Tietze-equivalent to X.
Moreover, it induces a construction, the Knuth-Bendix completion procedure [126], that starts
withX and progressively examines all the critical branchings, adding newn-cells when obstructions
to critical confluence are found.

2.5.7. Métivier-Squier reduction. An n-polygraph X is reduced if, for every n-cell x of X,
then s(x) is a normal form of X \ {x}, and t(x) is a normal form of X. Given a convergent
n-polygraph X, the Métivier-Squier reduction of X is the n-polygraph obtained by the procedure
that successively performs the following operations:

(i) replace every generating n-cell x : a→ b by x̂ : a→ b̂,
(ii) remove duplicate n-cells, if any,
(iii) remove every n-cell whose source contains the source of another n-cell.

This process, due to Métiver for term rewriting [162] and Squier for string rewriting [192,
Theorem 2.4], produces a reduced convergent n-polygraph that is Tietze-equivalent to X.
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2.6. Rewriting in low dimensions

2.6.1. Generating polygraphs and the word problem for categories. Let C be a category. A
1-polygraph X generates C if there exists a functor π : X∗ � C that is the identity on 0-cells and
surjective on 1-cells. We usually consider that the projection π : X∗ � C is implicitly specified for
a given generating 1-polygraph X of C and, if u is a 1-cell of X∗, we just write u instead of π(u).
Every category admits itself as a generating polygraph. We say that C is finitely generated if it
admits a finite generating 1-polygraph (in particular, the category must have finitely many 0-cells).

The word problem for C is the problem of finding a generating 1-polygraph X for C together
with an algorithm that decides, for any two 1-cells u and v of X∗, whether or not u = v holds
in C, i.e. whether or not the 1-cells u and v represent the same 1-cell of C. The word problem is
undecidable in general for a given category C, even if it is finitely generated.

2.6.2. Proposition. If a category admits a finite convergent presentation, then its word problem
is decidable.

Proof. Fix C a category and X a convergent presentation of C. For all 1-cells u and v in X∗, we
have u = v if, and only if, û = v̂. Moreover, if X is finite, then one can effectively decide if a
1-cell of X∗ is reduced or not, thus one can effectively compute the normal form of every 1-cell
of X∗.

2.6.3. Termination and confluence in dimension 2. Assume that X is a 2-polygraph. A useful
example of potential termination order is the left degree-wise lexicographic order (or deglex for
short) generated by a given order 6 on the 1-cells of X. It is defined by

u < v if ‖u‖ < ‖v‖,
uxv < uyw if ‖v‖ = ‖w‖ and x < y in X.

The deglex order is total if, and only if, the original order on X is total.
By case analysis on the source of critical branchings of X, we can conclude that they must

have one of the following two shapes

u
//   

v //
FF w

//

α
EY

β ��

u
//

��
v //

BB
w
//

α
EY

β��

where α and β are 2-cells of X. In particular, if X is finite, then it has finitely many critical
branchings. If X is reduced, then the first case cannot occur since, otherwise, the source of α
would be reducible by β. Moreover, u, v and w are reduced non-identities 1-cells. Indeed, they
are reduced since, otherwise, at least one of the sources of α and of β would be reducible by
another 2-cell. If v was an identity, then the branching would be trivial. And, if u (resp. w) was
an identity, then the source of β (resp. α) would be reducible by α (resp. β).
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2.6.4. Termination by derivations in dimension 3. A general method to prove termination of
a 3-polygraph X is to exhibit a derivation d of X∗2 into a natural system on X∗2 with values in Com
of the form N(F,G,M), with V = Ord, as described in 2.3.7, and to check that some sufficient
conditions are met.

Let X be a 3-polygraph. Consider:
(i) Two 2-functors F : X∗2 → Ord and G : (X∗2)

co → Ord, such that the ordered sets F(x)
and G(x) are non empty for every 1-cell x of X.

(ii) A commutative monoidM inOrd, whose addition is strictly monotone in both arguments,
and whose order is wellfounded.

(iii) A derivation d : X∗2 → N(F,G,M).
If, for every 3-cell α : fV g of X, the three inequalities

F(f) > F(g), G(f) > G(g), d(f) > d(g)

are satisfied, then X terminates [96, Theorem 4.2.1].

2.6.5. Confluence in dimension 3. This case is more difficult than in dimension 2, as initially
noted in [135], mainly because a finite 3-polygraph may have an infinite number of critical
branchings. However, an analysis of the possible shapes of these critical branching yields a
sufficient condition for confluence that considers only a finite subset of them.

Assume that X is a 3-polygraph. By examination of the different possibilities, the critical
branchings of X are classified as follows [96, §5.1.1]:

(i) Inclusion critical branchings (not possible if X is reduced), with the following source, if f
is the source of a 3-cell of X, and g ?1 ufv ?1 h is the source of another one:

g

u f v

h

(ii) Regular critical branchings, with the following source, if g ?1 uf and fv ?1 h, or g ?1 fv
and uf ?1 h are the sources 3-cells of X:

g

u f v

h

or
g

u f v

h

(iii) Instances of left-indexed critical branchings, with the following source, if g?1uf and vf?1h
are the sources of 3-cells of X, and k : wu⇒ xv is a 2-cell of X∗:

w g

u

k f
v

x h
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(iv) Instances of right-indexed critical branchings, with the following source, if g ?1 fu
and fv ?1 h are the sources of 3-cells of X, and k : uw⇒ vx is a 2-cell of X∗:

g w

u

f k
v

h x

(v) Instances of multi-indexed critical branchings, in all the other cases.
In the left-indexed or right-indexed case, the critical branching can be written (C[k], D[k]) for
contexts C[x] and D[x] of X∗. The family (C[k], D[k])k, where k ranges over the 2-cells with
appropriate boundary, and such that (C[k], D[k]) is critical, is called a right-indexed critical
branching. Each (C[k], D[k]) is an instance of the corresponding left-indexed or right-indexed
critical branching, and this instance is reduced if k is reduced.

We say that X is non-indexed if it has inclusion or regular critical branchings only, left-indexed
(resp. right-indexed) if it has inclusion, regular or left-indexed (resp. right-indexed) critical
branchings only, and finitely indexed if each of its indexed critical branchings has a finite number
of reduced instances.

Then we have the following results, used in §3.3.2 on a right-indexed 3-polygraph that presents
the strict monoidal category of permutations:

(i) If X has a finite number of 3-cells, then it has a finite number of inclusion and regular
critical branchings [96, Proposition 5.1.3].

(ii) If X is terminating and left-indexed (resp. right-indexed), then X is confluent if, and only
if, all its inclusion and regular critical branchings, and all the reduced instances of its
left-indexed (resp. right-indexed) critical branchings are confluent [96, Proposition 5.3.1].

2.6.6. Example. Let A be the two-element monoid {1, a}, with a2 = a, seen as a 1-category
with one 0-cell. The monoid A is presented by

As2 = (a0 |a1 : a0 → a0 |a2 : a1a1 ⇒ a1) .

This 2-polygraph terminates, because ‖s(a2)‖ = 2 > 1 = ‖t(a2)‖, and it has one critical
branching, which is confluent:

a1a1 a2
�)

a1a1a1

a2a1 )=

a1a2 !5

a1

a1a1 a2

3G

Thus As2 is a convergent presentation of A.
Now, adjoin to As2 a 3-cell, respectively given in classical notation and in string diagrams

(with a2 = ) by

a2a1 ?1 a2
a3
%9 a1a2 ?1 a2 %9 .
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The resulting 3-polygraph As3 is a convergent presentation of the theory of semigroups As, in
the sense that the category of 2-functors from As to any monoidal category C is the same as
the category of semigroups in C. To prove that As3 terminates, consider the natural system
N(F, ∗,N) with values in Com and the derivation d given by

F( ) = N \ {0} , F( )(i, j) = i+ j, d( )(i, j) = i.

To conclude, we check the required inequalities:

F
( )

(i, j, k) = i+ j+ k = F
( )

(i, j, k)

d
( )

(i, j, k) = 2i+ j > i+ j = d
( )

(i, j, k).

Finally, As3 has one critical branching, and it is confluent, generating a 3-sphere with the shape
of Stasheff’s polytope K4 [194]:

%9

�&

0D

!5

.B

(2.2)
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Chapter 3
Squier’s theorem for higher categories

3.1. Introduction

3.1.1. Context. In the posthumous article [193], Squier proved two results (Theorems 5.2 and 5.3)
which, rephrased in the language of higher categories and polygraphs from Chapter 2, respectively
state: if a 2-polygraphX is a convergent presentation of a monoidM, then the confluence diagrams
of the critical branchings of X form an acyclic extension of X>; as a consequence, ifM admits a
finite convergent presentation, thenM is of finite derivation type. Since then, Squier’s results
and their proofs have been reworked several times, for example in [133, Theorem 2], or in [100,
Theorems 4.3.2 and 4.3.3]. Over the time, the focus has shifted from Squier’s Theorem 5.3, about
the finiteness condition, to Theorem 5.2, giving an almost-constructive method to compute an
acyclic extension. A more recent proof of Theorem 5.2 can be found in §4 of [95]; it is formulated
in the case of associative algebras, but the arguments adapt to the case of monoids, and more
generally to the case of n-categories thanks to the higher categorical setting of Chapter 2.

This chapter presents a higher-dimensional extension of Squier’s results, from monoids, seen
as 1-categories, to higher categories. This was motivated by concrete examples of strict monoidal
categories, seen as 2-categories: Mac Lane’s pros and props [153], Lawvere’s theories [140]
and algebraic operads [81, 144, 146], which are modern abstract descriptions of algebraic
structures. Polygraphic presentations of such 2-categories were first studied by Burroni in
his article introducing polygraphs [43], and their rewriting properties were first investigated
by Lafont in [134, 135], followed by [88, 89]. For example, the structure of semigroup is
encoded by the pro As just encountered in Example 2.6.6, and presented by the (convergent)
3-polygraph As3. Now, consider the (4, 2)-polygraph As4 obtained from As3 by adjunction of
the 3-sphere (2.2), denoted by and corresponding to the unique critical branching of As3:
the (3, 2)-category AsCat it presents is the theory of “associative categories”, in the sense that
3-functors from AsCat to Cat, seen as a 3-category with one 0-cell and cartesian product as
0-composition, are the categories with a product that is associative up to a coherent natural
isomorphism. Similarly to Mac Lane’s coherence theorem for monoidal categories [152], a
coherence theorem for associative categories would state that, in an associative category, all the
diagrams formed by occurrences of the product and the associativity isomorphism commute;
and a sufficient condition for this statement to be true would be for the 4-cell to form an
acyclic extension of the free (3, 2)-category As>3 , so that AsCat would contain trivial 3-spheres
only. Similar observations can be made to relate acyclic extensions of some (3, 2)-categories to
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the coherence theorems for monoidal categories and symmetric monoidal categories [152]; or to
relate partially acyclic extensions to the coherence theorem for braided monoidal categories, in
which only some diagrams formed by the structural data commute [119].

Acyclic extensions are a homotopical formulation of the notion of syzygies between n-cells in
higher categories. For example, in the case of presentations of groups, syzygies can be expressed
as identities among relations. This notion originates in the work of Peiffer and Reidemeister
in combinatorial group theory [175, 184], and is based on the crossed modules introduced by
Whitehead in algebraic topology for the classification of homotopy 2-types [207, 208]. Crossed
modules have also been defined for other algebraic structures than groups, such as commutative
algebras [178], Lie algebras [123] or categories [177]. Then Baues has introduced track categories,
now known as (2, 1)-categories, as a model of homotopy 2-types [19, 18, 21], together with linear
track extensions as a generalisations of crossed modules [22]. There exist several interpretations
of identities among relations for presentations of groups: as homological 2-syzygies [40], as
homotopical 2-syzygies [145] or as Igusa’s pictures [145, 120]. One can also interpret identities
among relations as the critical pairs of a group presentation by a convergent word rewriting
system [58]; this point of view yields an algorithm based on Knuth-Bendix’s completion procedure
that computes a family of generators of the module of identities among relations [109].

3.1.2. Summary. First, §3.2 is devoted to the proof of the generalisation of Squier’s theorem
to higher categories. The proof given here is a modernised version of the one of §4.3 in [96].
It is adapted from the proof of Squier’s theorem for associative algebras in [95], see Chapter 7,
and based on the notion of Y-confluence: given an n-polygraph X and an extension Y of X∗,
we say that a branching of X is Y-confluent if it is confluent, and the corresponding confluence
diagram can be filled with an (n + 1)-cell of X∗(Y). So Y-confluence generalises confluence,
in that confluence is the same as nSph(X>)-confluence, and both Newman’s lemma and the
critical branchings theorem can be extended accordingly. These two new results constitute the
first two steps of the proof of Squier’s theorem, the third and last one stating that Y-convergence
implies acyclicity. To formulate the main result, we define a Squier completion of a convergent
n-polygraph X as an (n+ 1, n)-polygraph (X |Y) such that X is Y-convergent, and we obtain

Theorem 3.2.6. Let X be a convergent presentation of an n-category C. Then every Squier
completion of X is a coherent presentation of C.

Then, §3.3 presents examples of applications of Squier’s theorem, in dimension 2 and 3: a
specific monoid, the monoidal category of permutations (using the study of critical branchings of
3-polygraphs of Chapter 2), and the standard coherent presentation of a category.

In §3.4, we give the definition of the finite derivation type homotopical property for higher
categories, extending the case of monoids. We prove a technical result, Theorem 3.4.3, giving a
way to transfer an acyclic extension from an n-polygraph X to an n-polygraph Y that presents the
same (n− 1)-category as X. From Theorem 3.4.3, we deduce that if two n-polygraphs present
the same (n− 1)-category, then both admit a finite acyclic extension, or neither does. The main
result is

Theorem 3.4.6. (i) For every n > 0, every finite convergent n-polygraph with a finite set
of critical branchings if of finite derivation type. In particular, finite and convergent 2-
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polygraphs, and finite, convergent and finitely indexed 3-polygraphs are of finite derivation
type.

(ii) For every natural number n > 3, there exists a finite and convergent n-polygraph that is
not of finite derivation type.

Squier’s theorem implies the first assertion. For the second point, we exhibited a counterexample,
namely the 3-polygraph with one 0-cell, one 1-cell, three 2-cells , and , and four 3-cells

V V V V .

This 3-polygraph is finite and convergent, but all its acyclic extensions are infinite, due to an
infinite number of reduced instances of indexed critical branchings:

α
�-

β

1E

α
�-

β

1E

α
�-

β

1E · · ·

As a consequence, the 2-category presented by this 3-polygraph is not of finite derivation type.
Next, §3.5 summarises applications of Squier’s theorem to categorical coherence problems,

described in [98]. We first introduce a higher version of Mac Lane’s pros [153], and are mostly
interested into (3, 2)-pros, which are (3, 2)-categories whose underlying category is the monoid N
of natural numbers. Algebras over a (3, 2)-pro P are defined as 3-functors from P into Cat, seen
as a 3-category with only one 0-cell and cartesian product as 0-composition. In particular, there
exists a (3, 2)-pro As whose algebras are the monoidal categories, and similarly for symmetric
monoidal categories and braided monoidal categories. A P-diagram in a P-algebraA is the image
of a 3-sphere of P throughA. With this terminology, Mac Lane’s coherence theorem for monoidal
categories can be stated as: in all monoidal categories, all As-diagrams commute. The main
result states that Squier’s theorem gives a method to prove such a categorical coherence result:

Theorem 3.5.3. Let X be a coherent presentation of a 2-pro, and let X be the (3, 2)-pro presented
by X. Then all X-diagrams commute in every X-algebra.

We then prove that the usual definition of monoidal categories corresponds to a coherent
presentation of the 2-pro of monoids, recovering Mac Lane’s coherence result by a simple analysis
of the critical branchings formed by associativity and the left and right neutrality laws, and then a
reduction of the computed acyclic extension. In [98, §§3-4], this method is improved to obtain
also the coherence theorems for symmetric and braided monoidal categories. It seems that Huet
was the first to note the link between rewriting methods and coherence results for monoidal
categories: in essence, §4 of [113] contains all the ideas explained here in §3.2 around the notion
of coherent confluence and its relation to the coherence of categorical structures. Lucas further
improved Theorem 3.5.3 to obtain a coherence theorem for pseudonatural transformations, whose
structure is presented by a 3-polygraph that is not convergent [147].

Finally, §3.6 relates two different notions of syzygies for n-polygraphs: the homotopical ones,
generated by an acyclic extension, and identities among relations. The latter are defined in [97]
for an n-polygraph X as the elements of a certain natural system Π(X) over the (n− 1)-category
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presented by X. More precisely, Π(X) is proved to be a quotient of the free natural system over
the set of closed n-cells of X> (i.e. the n-cells f such that s(f) = t(f)) by relations that force
some compositions to be commutative. The main result of the section, Theorem 3.6.6, gives
a way to compute generators of Π(X) from an acyclic extension of an abelianised version X>ab
of X>, and conversely.

3.2. Coherent presentations from convergent presentations

3.2.1. Coherent confluence and convergence. Let X be an n-polygraph, and let Y be an
extension of the (n,n − 1)-category X>. A branching (f, g) of X is Y-confluent if there exist
n-cells f ′ and g ′ in X∗ and an (n+ 1)-cell F in X>(Y) as in

b f ′

��

F��a

f 33

g ,,

a ′

c g ′

CC

The definitions of (local, critical) confluence and convergence are adapted to obtain (local, critical)
Y-confluence and Y-convergence. The latter generalise the former, recovered for Y = nSph(X>).

3.2.2. Proposition (The coherent Newman’s lemma). Let X be a terminating n-polygraph,
and Y be an extension of X>. Then X is locally Y-confluent if, and only if, it is Y-confluent.

Proof. Assume that X is locally Y-confluent. Let us prove that X is Y-confluent at every (n− 1)-
cell a of X∗ by noetherian induction on a. If a is reduced, then (1a, 1a) is the only branching of
source a of X, and it is Y-confluent. Now, let a be a nonreduced (n− 1)-cell of X∗ such that X is
Y-confluent at every 0-cell b ≺ a, and let (f, g) be a branching of X of source a. If one of f or g
is an identity, then (f, g) is Y-confluent. Otherwise, we construct

b1

f2
++

f ′1 $$
F
��

G��

b f ′2

��

a

f1
55

g1 ++

a ′1 h //

H
��

b ′

k





c1

g ′1
99

g2 ,, c

g ′1

33 a ′

Since f and g are not identities, they admit decompositions f = f1 ?n−1 f2 and g = g1 ?n−1 g2,
where f1 and g1 are rewriting steps of X, and f2 and g2 are n-cells of X∗. We apply the local
Y-confluence hypothesis on (f1, g1) to obtain f ′1, g ′1 and F, and then the induction hypothesis
twice, first to (f2, f ′1) to obtain f ′2, h and G, and then to (g ′1 ?n−1 h, g2) to get k, g ′1 and H.
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3.2.3. Proposition (The coherent critical branchings theorem). Assume that X is an n-
polygraph, and that Y is an extension of X>. Then X is critically Y-confluent if, and only
if, it is locally Y-confluent.

Proof. First, we note that, in an n-polygraph, every trivial branching is ∅-confluent. Now, assume
thatX is critically Y-confluent, and prove that every non-trivial branching (f, g) is Y-confluent. Let
(h, k) be the critical branching of X and C[x] the whisker of X∗ such that (f, g) = (C[h], C[k]).
By hypothesis, (h, k) is Y-confluent: we apply C[x] to the resulting n-cells of X∗ and (n+1)-cell
of X>(Y) to get the result.

3.2.4. Proposition. Let X be an n-polygraph, and Y be an extension of X>. If X is Y-convergent,
then Y is acyclic.

Proof. Since X is Y-convergent, it is convergent, so every (n− 1)-cell a of X∗ admits a unique
normal form â, and X∗ contains an n-cell ηa : a→ â.

Now, let f : a → b be an n-cell of X∗. By hypothesis, the branching (f ?n−1 ηb, ηa) is
Y-confluent, so that, since â and b̂ are reduced (n− 1)-cells of X∗ that are necessarily equal, we
get an (n+ 1)-cell

b ηb

��ηf��a

f 22

ηa

33 â

in X>(Y). Put ηf− = f− ?n−1 η
−
f to obtain an n-cell of X>(Y) with the following shape:

a ηa
��ηf−��b

f− 22

ηb

33 â

Next, let f : a→ b be an n-cell of X>. Write

f = g1 ?n−1 h
−
1 ?n−1 · · · ?n−1 gp ?n−1 h

−
p ,

with each gi and hi in X∗, and define ηf as the following composite n-cell of X>(Y), with source
f ?n−1 ηb and target ηa:

a
g1

//

ηa
��

b1
h−1

//

ηb1
��

ηg1
~~

a2 //

ηa2
��

ηh−
1

~~

· · · // ap
gp

//

ηap
��

bp
h−p

//

ηbp
��

ηgp
~~

b

ηb
��

ηh−
p

~~

â â â · · · â â â
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Finally, for all parallel 1-cells f, g : a→ b of X>, the composite (n+ 1)-cell

b 1b

$$

ηb
$$

ηf��
a

f
33

ηa //

g ++

â η−b
//

=

=

b

b

ηb

::

1b

::

η−g��

of X>(Y) has source f and target g, thus concluding the proof that Y is acyclic.

3.2.5. Squier completion. Let X be a convergent n-polygraph. A Squier completion of X is an
(n+ 1, n− 1)-polygraph Y, such that Yn = X, and Yn+1 contains an (n+ 1)-cell

b f ′

��

A��a

f 33

g ,,

a ′

c g ′

CC

for every critical branching (f, g) of X, with f ′ and g ′ in X∗. Squier completions are not unique
in general: the (n + 1)-cell A could be directed in the reverse way, and the n-cells f ′ and g ′
chosen differently.

Composing Propositions 3.2.2, 3.2.3 and 3.2.4 gives the generalisation of Squier’s result [193,
Theorem 5.2], from convergent 2-polygraphs to convergent n-polygraphs:

3.2.6. Theorem (Squier’s theorem). Let X be a convergent presentation of an n-category C.
Then every Squier completion of X is a coherent presentation of C.

3.3. Examples of applications

3.3.1. Coherent presentations of monoids. Consider the monoid M presented by the 2-
polygraph

X =
(
x, y

∣∣∣ xyx α
=⇒ yy

)
.

Termination of X is proved with the deglex order generated by x < y. The 2-polygraph X has one,
non confluent critical branching (αyx, xyα). A Knuth-Bendix completion Y of X is obtained by
adjunction of the dotted 2-cell β in the leftmost diagram, which in turn generates a new, confluent,
critical branching, on the right-hand side:

yyyx

β

��

xyxyx

αyx *>

xyα  4

A
��

xyyy

xyyyyx
xyβ

�(
B
��

yyyxyx

βyx +?

yyyα �3

xyxyyy

αyyyk�
yyyyy
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By Squier’s theorem, the (3, 1)-polygraph Z = (x, y |α,β |A,B) is a coherent presentation ofM.
Chapter 5 presents a reduction method to contract Z while preserving acyclicity: first, B can be
shown to be superfluous, in the sense that {A} is also an acyclic extension of Y>, and then β
and A can be removed together to obtain that (X | ∅) is a coherent presentation ofM.

3.3.2. Coherent presentations of monoidal categories. Following the classification of critical
branchings of 3-polygraphs given in §2.6.5, we obtain a smaller notion of Squier completion,
improving Squier’s theorem [96, Proposition 5.3.3]: assume that X is a convergent left-indexed
(resp. right-indexed) 3-polygraph, and Y is an extension of X> that contains one 4-cell

b F ′

�'
ω��a

F )=

G "6

a ′

c G ′

9M

for every pair (F,G) of 3-cells of X∗ that is an inclusion or regular critical branching, or a reduced
instance of a left-indexed (resp. right-indexed) critical branching, with F ′ and G ′ in X∗; then Y is
acyclic.

Consider, for example, the strict monoidal category S of permutations, seen as a 2-category
with one 0-cell, the natural numbers as 1-cells, and one 2-cell τ : n⇒ n for each permuation τ
of {1, . . . , n}. The 2-category S is presented by the 3-polygraph S, given in string diagrams as

S =

(
∗

∣∣∣∣ ∣∣∣∣ ∣∣∣∣ V , V

)
.

Termination of S is obtained by considering the natural system N(F, ∗,N) on S∗2 with values
in Com, and the derivation d of S∗2 into N(F, ∗,N) given by

F ( ) = N, F ( ) (i, j) = (j+ 1, i), d ( ) (i, j) = i.

The 3-polygraph S is right-indexed, with three regular critical branchings and one right-indexed
critical branching, whose sources are

k

where k ranges over an infinite set of 2-cells. However, after classification of the normal forms
of S, we obtain that the right-indexed branching has two reduced instances: for k = and
k = , see [96, §5.4]. The three regular critical branchings and the two reduced instances of
the right-indexed critical branching are confluent, so S is convergent and we obtain a coherent
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presentation of S by filling the following five 3-spheres:

α

�'

α

7K

β

�(

β .B

α �2 αl�

α ,@

β �0

α^r

β

6J

α
%9

α

� 

β 2F

β �,

α
%9

α

>R

β
%9

β
%9

β

�&

β 2F

β �,

β

%9
β

%9
β

8L

3.3.3. The standard coherent presentation. Fix a category C. The standard coherent presen-
tation of C is the (3, 1)-polygraph Std+(C) obtained by extension of the standard presentation of
Example 2.4.5, with 3-cells

âbĉ γab,c
�*

âb̂ĉ

γa,bĉ *>

âγb,c
 4

âbc

âb̂c γa,bc

7Kαa,b,c
��

1̂xâ
γ1x,a

�"
â

ιxâ
.B

â

λa
��

â1̂y
γa,1y

�#
â

âιy
/C

â

ρa
��

where αa,b,c is indexed by the composable 1-cells a, b and c of C, and λa and ρa, by the
1-cells a : x→ y of C. The (3, 1)-polygraph Std+(C) is, indeed, a coherent presentation of C. It
is not a Squier completion of Std(C), because the latter is not terminating: for every 0-cell x of C,
the 2-cell ιx creates an infinite rewriting sequence 1x → 1̂x → 1̂x1̂x · · · . However, reversing all
the 2-cells ιx of Std(C) yields a convergent presentation of C, and we obtain a Squier completion
by adjoining all the 3-cells αa,b,c, and two families of 3-cells

1̂xâ

γ1x,a

�*

ι−x â

5Iλ ′a�� â â1̂y

γa,1y

�*

âι−y

4Hρ ′a�� ẑ
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indexed by the 1-cells a : x→ y of C. We deduce the result by reversing again the direction of
the 2-cells ι−x , and, then, by replacing λ ′a and ρ ′a by λa = ιxâ ?1 λ

′
a and ρa = âιy ?1 ρ

′
a.

3.4. Higher categories of finite derivation type

3.4.1. Finite derivation type. We say that an n-polygraph X is of finite derivation type if it is
finite and if X> admits a finite acyclic extension. An n-category C is of finite derivation type if it
admits a finite coherent presentation.

Let us prove that finite derivation type is an invariant of finitely presented n-categories: all or
none of the finite presentations of the same n-category are of finite derivation type. The main
argument is Theorem 3.4.3 that describes how to transfer acyclic extensions from one n-polygraph
to another one, for which we first require:

3.4.2. Lemma. Let C be an (n − 1)-free n-category, and let X and Y be presentations of C.
There exist (n+ 1)-functors

F : X> → Y> and G : Y> → X>

and, for all n-cells a of X> and b of Y>, there exist (n+ 1)-cells

σa : GF(a)→ a and τb : FG(b)→ b

in X> and Y>, respectively, such that the following conditions are satisfied:
(i) the (n+ 1)-functors F and G induce the identity through the canonical projections onto C:

X>
πX
// //

F
��

=

C

idC
��

Y> πY
// // C

X>
πX
// //

=

C

Y> πY
// //

G

OO

C

idC
OO

(ii) the (n+ 1)-cells σa and τb are functorial in a and b:

σ1a = 11a , τ1b = 11b , σa?ka ′ = σa ?k σa ′ and τb?kb ′ = τb ?k τb ′ .

Proof. First, define F, the case ofG being symmetric. On a k-cell x of X, for k < n, put F(x) = x.
Now, if x : a → b is an n-cell of X, we choose, in an arbitrary way, a representative n-cell
F(x) : a → b of πX(x) in Y>, so that πY(F(x)) = πX(x) holds. Then, we extend F to every
n-cell of X> by functoriality. Let x : a→ b be an (n+ 1)-cell of X. Since X is a presentation
of C, we have πX(a) = πX(b), so that πY(F(a)) = πY(F(b)) holds. Using the fact that Y is a
presentation of C, we can choose an (n+ 1)-cell F(x) : F(a)→ F(b) in Y> and, then, extend F
to every (n+ 1)-cell of X> by functoriality.

Now, define σ, the case of τ being symmetric. Let x be an n-cell of X. By construction of F
and G, we have πX(GF(x)) = πYF(x) = πX(x). Since X is a presentation of C, we can choose
an (n+1)-cell σx : GF(x)→ x in X>, and, then, extend σ to every n-cell of X> as required.
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3.4.3. Theorem (Transfer of acyclic extensions). Let C be an (n − 1)-free n-category, let X
and Y be presentations of C, and let F, G and τ be chosen as in Lemma 3.4.2. If Z is an acyclic
extension of X>, then F(Z) t τY is an acyclic extension of Y>, where:

(i) the extension F(Z) contains one (n+ 2)-cell F(z) : F(a)→ F(a ′) for every (n+ 2)-cell
z : a→ a ′ of Z,

(ii) the extension τY contains one (n+ 2)-cell

FG(b ′) τb ′

��

τy
��

FG(b)

FG(y) 55

τb ,,

b ′

b y

@@

for every (n+ 1)-cell y : b→ b ′ of Y.

Proof. First, let us extend τ to every (n+ 1)-cell g : b→ b ′ of Y>, to obtain an (n+ 2)-cell

τg : FG(g) ?n τb ′ → τb ?n g

of Y>(τY). For that, we set τ1b = 1τb and τg?kg ′ = τg ?k τ ′g, for k < n. Then, for g : b→ b ′

and g ′ : b ′ → b ′′, we put

τb?nb ′ =

FG(b ′′) τb ′′

!!

τg ′

��

FG(b ′)

FG(g ′) 55

τb ′
&&τg

��

b ′′

FG(b)

FG(g) 55

τb --

b ′ g ′

??

b g

>>

Finally, for every g : b→ b ′, we set

τg− =

b g

!!

τ−g
��

FG(b ′)
FG(g)−

// FG(b)

τb 22

FG(g) ))

b ′
g−

// b

FG(b ′)
τb ′

@@

There remains to check that τg is well defined, i.e. that it is compatible with the relations on
(n+ 1)-cells in an (n+ 2, n)-category.

Second, consider an (n + 1)-sphere (g, g ′) : b → b ′ of Y>. Because Z is an acyclic
extension of X>, there exists an (n + 2)-cell A : G(g) → G(g ′) in X>(Z), yielding an
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(n+ 2)-cell F(A) : FG(g)→ FG(g ′) in Y>(F(Z)). As a consequence, the composite

Ã =

b g

��

τ−g
��

FG(b)

τb
00

FG(g)
&&

FG(g ′)

99
F(A)��

τb ..

FG(b ′) τb ′ //

τg ′
��

b ′

b b ′

MM

is a well-defined (n+ 2)-cell of Y>(F(Z) t τY), and τ−b ?n Ã has (g, g ′) as boundary.

3.4.4. Corollary. Let X and Y be Tietze-equivalent finite n-polygraphs, for n > 0. Then X>
admits a finite acyclic extension if, and only if, Y> does.

3.4.5. Remark. The finiteness condition is necessary in Corollary 3.4.4. For example, let X be
the 2-polygraph with one 0-cell, three 1-cells a, b and c, and two 2-cells

ab
α
=⇒ ba and ac

β
=⇒ a.

The polygraph X terminates (use the deglex order generated by a > b), and has no critical
branching: Squier’s theorem says that (X | ∅) is a finite coherent presentation of the monoid X
presented by X.

Now, consider the infinite 2-polygraph Y with the same cells as X up to dimension 1, and

ba
α ′
=⇒ ab and

(
abnc

βn
=⇒ abn

)
n>0

.

The 2-polygraph Y is Tietze-equivalent to X, because β0 = β and, for each n > 0, the 3-cell βn
relates 1-cells that are equal in X: abnc = bnac = bna = abn. Termination of Y can be
obtained with the deglex order generated by b > a, and Y has one critical branching, confluent,
for each n > 0:

abn+1c βn+1
�,

An��babnc

α ′ +?

βn
 4

abn+1

babn α ′

4H

Squier’s theorem implies that Z = {An |n ∈ N} is an infinite acyclic extension of Y>. If Y>
admitted a finite acyclic extension, then there would exist a finite subset Z0 of Z that would be
acyclic [96, Proposition 3.2.3]. One checks that this is impossible, either by using a derivation, as
in Example 4.3.10 of [96], or by observing that Y has no critical triple branching (see Chapter 4).

3.4.6. Theorem. (i) For every n > 0, every finite convergent n-polygraph with a finite set
of critical branchings is of finite derivation type. In particular, finite and convergent 2-
polygraphs, and finite, convergent and finitely indexed 3-polygraphs are of finite derivation
type.
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(ii) For every natural number n > 3, there exists a finite and convergent n-polygraph that is
not of finite derivation type.

Proof. The first assertion is a direct consequence of Squier’s theorem: if X is a finite convergent
2-polygraph, then its set of critical branchings is finite; the case of 3-polygraphs comes from the
improved version of Squier’s theorem [96, Proposition 5.3.3], see §3.3.2.

For the second assertion, we consider the 3-polygraph X with one 0-cell, one 1-cell, three
2-cells , and , and four 3-cells

V V V V .

In §5.5 of [96], it is proved that X is finite and convergent, but not finitely indexed, and that X>
does not admit a finite acyclic extension, because each one must contain the 4-cells

α
�-

β

1E

α
�-

β

1E

α
�-

β

1E · · ·

To obtain the result in dimension n > 4, we lift the 3-polygraph X by adding two cells in each
dimension up to n− 4.

3.4.7. Squier’s counterexample. In [192], Squier introduced a family (Sk)k>1 of monoids,
where Sk is generated by a, b, t, x1, . . . , xk, y1, . . . , yk, submitted to the relations

atnb = 1, xia = atxi, xit = txi, xib = bxi, xiyi = 1.

He proved, in [192] for k > 2, and in [193] for k = 1, that the finitely presented monoid Sk has a
decidable word problem, but admits no finite convergent presentation. The proof of [192] uses
homological arguments (see Chapter 4), while the proof of [193] relies on the property of finite
derivation type. The same methods apply to the simpler example

LP =
〈
a, b, c, d, d ′

∣∣ab = a, da = ac, d ′a = ac
〉+

given later in [139], with the same conclusions. The proof, translated in polygraphic terms
in [100, §6.2], forM = Sk orM = LP, is composed of the following steps. First, use Knuth-
Bendix’s completion procedure on the finite presentation X ofM to obtain an infinite convergent
presentation Y ofM. Then, apply Squier’s theorem to obtain an infinite acyclic extension of Y>,
and Theorem 3.4.3 to transfer it back to X>. Next, prove that the infinite acyclic extension so
obtained cannot be reduced to a finite one (for example, using an invariant such as a derivation), to
conclude that X is not of finite derivation type. Finally, use Corollary 3.4.4 to conclude thatM is
not of finite derivation type, and, as a consequence of Theorem 3.4.6, admits no finite convergent
presentation.
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3.5. Coherent presentations and categorical coherence problems

3.5.1. Higher pros and their algebras. For 0 < p 6 n 6 ∞, an (n, p)-pro is an (n, p)-
category P whose underlying 1-category is the monoid N of natural numbers with addition. In
particular, (2, 2)-pros, or 2-pros for short, coincide with Mac Lane’s pros, see [153].

Fix a (3, 2)-pro P. A P-algebra is a 3-functor from P to Cat, seen as 3-category with one
0-cell, categories as 1-cells, functors as 2-cells, natural transformations as 3-cells, and cartesian
product as 0-composition. The P-algebras and natural transformations between them form a
category, denoted byAlg(P).

3.5.2. Coherence problems for algebras over a (3, 2)-pro. Let P be a (3, 2)-pro and let A be
a P-algebra. A P-diagram in A is the image A(A,B) of a 3-sphere (A,B) of P. A P-diagram
A(A,B) in A commutes if the relation A(A) = A(B) is satisfied in Cat. Typical coherence
theorems state that all, for everyP-algebraA, allP-diagrams (or a determined class ofP-diagrams)
commute. Thus, the following result immediate:

3.5.3. Theorem. LetX be a coherent presentation of a 2-pro, and letX be the (3, 2)-pro presented
by X. Then all X-diagrams commute in every X-algebra.

3.5.4. Example. As in Example 2.6.6, consider the 2-pro As of semigroups, presented by the
3-polygraph As2 with one 2-cell and one 3-cell

%9 .

As already seen, As is convergent, with exactly one critical branching, yielding by Squier’s
theorem an acyclic extension of As> with one 4-cell , filling Mac Lane’s pentagon. The
resulting (4, 2)-polygraph being a presentation of the (3, 2)-pro

AsCat = ( | )>
/

of associative categories (i.e. categories with a product that is associative up to a coherent natural
isomorphism), we obtain that every AsCat-diagram commutes in every associative category.

3.5.5. Coherence for monoidal categories. A monoidal category is a category C, equipped
with two functors ⊗ : C× C→ C and e : ∗ → C, and three natural isomorphisms

αx,y,z : (x⊗ y)⊗ z → x⊗ (y⊗ z) , λx : e⊗ x → x, ρx : x⊗ e → x,

such that the following two diagrams commute in C:

(x⊗ (y⊗ z))⊗ t α // x⊗ ((y⊗ z)⊗ t)
α

��

((x⊗ y)⊗ z)⊗ t

α
99

α **

x⊗ (y⊗ (z⊗ t))

(x⊗ y)⊗ (z⊗ t)
α

99

x⊗ (e⊗ y)
λ

��

(x⊗ e)⊗ y

α
::

ρ
22 x⊗ y
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Informally, Mac Lane’s coherence theorem for monoidal categories says that, in every monoidal
category, all the diagrams whose arrows are built from ⊗, e, α, λ and ρ commute.

Let MonCat be the (3, 2)-pro presented by the (4, 2)-polygraph MonCat with two 2-cells , ,
three 3-cells

%9 %9 %9

and two 4-cells:

%9

�&

0D

!5

.B
�� ��

1E

)=
��

It is straightforward to check that the categoriesAlg(MonCat) of MonCat-algebras andMonCat

of monoidal categories are isomorphic. So, Mac Lane’s coherence theorem says that, in every
monoidal category, every MonCat-diagram commutes. This result is a direct consequence of:

3.5.6. Proposition. The (4, 2)-polygraphMonCat is a coherent presentation of the 2-pro Mon
of monoids.

Proof. Denote by Mon the 3-polygraph underlying MonCat. The 2-pro Mon it presents is, indeed,
the theory of monoids, in the sense that the 2-functors from Mon into any monoidal category C

are exactly the monoids in C. To prove that Mon terminates, we consider the natural system
N(F, ∗,N) on Mon∗ with values in Com, and the derivation d of Mon∗ into N(F, ∗,N) defined as
in Example 2.6.6 on the 2-cell , extended with F( ) = 1 and d( ) = 0. The 3-polygraph Mon
has five critical branchings. All of them are confluent, yielding, by Theorem 3.2.6, an acyclic
extension of Mon> with five 4-cells: the two 4-cells of MonCat, plus

� 

0D

)=
ω1�� � 

0D

)=
ω2��

�&
8Lω3��

To prove that MonCat is a coherent presentation of Mon, there remain to show that, for each
4-cell ωi, we have s(ωi) = t(ωi) in MonCat. For example, for ω1, we define the 4-cell ζ of
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MonCat> by

%9

��
=

�$��

)=

%9

#7

%9

=

ey =
5I 1E

ζ

where we abusively denote 3-cells by the generating 3-cell of Mon they contain. As a consequence
of this construction, we have s(ζ) = t(ζ) in MonCat. Then, we build the following diagram,
relating the boundary ofω1 (the inner triangle) to that of ζ (the outer triangle), thus proving that
s(ω1) = t(ω1) also holds:

}�

��

�#

s� �,
ey.B ]q

ey

= =

=

See Proposition 2.3.3 in [98] for the cases ofω2 andω3.

3.5.7. Remark. The definition of monoidal category we have given is minimal, in the sense
that both 4-cells of MonCat are required to get Mac Lane’s coherence theorem. Indeed, assume
that is sufficient. Let d1 be the derivation of Mon> into the trivial module given by
d1( ) = 1 and d1( ) = d1( ) = 0. Then d1(s( )) = d1(t( )) = 0. As a
consequence, for every 4-cell Ω in Mon>( ), we have d1(s(Ω)) = d1(t(Ω)). Thus,
if { } was an acyclic extension of Mon>, we would have d1(A) = d1(B) for every
3-sphere (A,B) of Mon>. But d1(s( )) = 1 and d1(t( )) = 0. Now, assume that
is sufficient. Define the derivation d2 of Mon> into the trivial module by d2( ) = 1,
d2( ) = −1, and d2( ) = 0. We have d2(s( )) = d2(t( )) = 0, but d2(s( )) = 3 and
d2(t( )) = 2.

3.6. Coherent presentations and identities among relations

3.6.1. Abelian higher categories. In an n-category, a k-cell a is called closed if its source
and target coincide, and, if k > 2 and t(a) is an invertible (k − 1)-cell, we define the closed
(k− 1)-cell ∂̃(a) by ∂̃(a) = s(a) ?n−1 t(a)−
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Fix an (n+ 1, n)-category C. If a is an n-cell of C, we denote by AutCa the group of closed
(n+ 1)-cells of C of source a. We say that C is abelian if, for every n-cell a of C, the group AutCa
is abelian. The abelianised of C the abelian (n+ 1, n)-category, denoted by Cab, and defined as
the quotient of C by the (n+ 1)-spheres (f ?n g, g ?n f), where f and g are closed (n+ 1)-cells
of C with the same source.

If C is abelian, the mapping a 7→ AutCa extends to a natural system AutC on the n-category Cn,
mapping a context C[x] of Cn to the morphism of groups y 7→ C[y]. This natural system satisfies
the following properties:

3.6.2. Lemma ([97, Lemma 2.1.3]). Let C be an (n+ 1, n)-category. For every (n+ 1)-cell
g : b→ a, the application (·)g : AutCa → AutCb mapping f : a→ a to

fg = g− ?n−1 f ?n−1 g

is an isomorphism of groups. Moreover, if C is abelian and g, h : b→ a are n-cells of C, then
the isomorphisms (·)g and (·)h coincide.

3.6.3. Identities among relations for polygraphs. Let X be an n-polygraph, for n > 1. Denote
by Π(X) the natural system on the (n− 1)-category X presented by X given, on an (n− 1)-cell a
of X and up to isomorphism, by

Π(X)a ' AutX
>
ab
â
, (3.1)

where â is any representative of a in X∗n−1. The elements of the natural system Π(X) are called
the identities among relations of X.

Lemma 3.6.2 implies that the definition makes sense. Theorem 2.2.3 of [97] proves that Π(X)
is, up to isomorphism, the only natural system on X that satisfies (3.1), and that each Π(X)a
admits the following presentation by generators and relations:

(i) one generator bfc for every closed n-cell f of X> such that s(f) = a;
(ii) the relations are

bf ?n−1 gc =

{
bfc+ bgc if f and g are closed,
bg ?n−1 fc if s(f) = t(g) and t(f) = s(g).

Moreover, with this presentation, the isomorphism (3.1) is given by bfc 7→ fg, where g : â→ s(f)
is arbitrarily chosen in X>.

Lemma 3.4.2 and Theorem 3.4.3 are transposed to identities among relations in §2.3 of [97],
giving

3.6.4. Proposition. Assume that X and Y are Tietze-equivalent n-polygraphs, for n > 1.
(i) There exist n-functors F : X>ab → Y>ab and G : Y>ab → X>ab such that πYF = πX

and πXG = πY , and, for all (n − 1)-cells a of X>ab and b of Y>ab, there exist n-cells
σa : GF(a)→ a and τb : FG(b)→ b in X>ab and Y

>
ab that are functorial in a and b.

(ii) Assume that F, G and τ satisfy the previous conditions, and that B is a generating set
for Π(X). Then bF(B)c t bτYc is a generating set of Π(Y), where bF(B)c contains one
element bF(β)c for every β ∈ B, and bτYc contains one element

bτyc =
⌊
y ?n−1 τb ?n−1 FG(y)

− ?n−1 τ
−
b ′
⌋
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for every n-cell y : b→ b ′ of Y.
(iii) If X and Y are finite, thenΠ(X) is finitely generated if, and only if, Π(Y) is finitely generated.

Theorem 2.4.1 of [97] and Proposition 5.7.2 of [99] establish a correspondence between
acyclic extensions of X>ab and generators of Π(X). Their proofs are based on the following
technical result:

3.6.5. Lemma ([97, Lemma 1.3.6]). Let C be an (n + 1, n)-category, and X be an extension
of C. The following assertions are equivalent:

(i) X is acyclic.
(ii) Every closed (n+ 1)-cell f of C admits a decomposition

f = (C1[∂̃(x1)
ε1 ])g1 ?n · · · ?n (Cp[∂̃(xp)

εp ])gp

with xi ∈ X, εi ∈ {−,+}, Ci a whisker of C, and gi an (n+ 1)-cell of C.

3.6.6. Theorem. Assume that X is an n-polygraph.
(i) If Y is an acyclic extension of X>ab, then Π(X) is generated by the set⌊

∂̃(Y)
⌋
=
{⌊
∂̃(y)

⌋ ∣∣∣y ∈ Y}
(ii) If B is a generating set of Π(X), then{

β→ 1s(β)
∣∣ bβc ∈ B}

is an acyclic extension of X>ab.

3.6.7. Example. Consider the 2-polygraph As = (a0, a1, a2) of Example 2.6.6, and the acyclic
extension of As> with one 3-cell, written in classical notation and in string diagrams, respectively,

a2a1 ?1 a2
a3
%9 a1a2 ?1 a2 %9

The abelian (2, 1)-category As>ab is a quotient of As>, and thus {a3} is also an acyclic extension
of the former. Thus, by Theorem 3.6.6, the natural system Π(X) is generated by one element:⌊
s(a3) ?1 t(a3)

−
⌋
=
⌊
(a2a1 ?1 a2) ?1 (a

−
2 ?1 a1a

−
2 )
⌋
=
⌊
a2a1 ?1 a1a

−
2

⌋
=
⌊
a2a

−
2

⌋
.

In string diagrams, writing for −, this generator is

⌊
s( ) ?1 t( )−

⌋
=

⌊ ⌋
= b c

3.6.8. Abelian finite derivation type. Fix n > 1, and an n-polygraph X. We say that X is
of abelian finite derivation type, FDTab for short, if it is finite and if the abelian (n,n − 1)-
category X>ab admits a finite acyclic extension. By Theorem 3.6.6, if X is finite, then X is FDTab
if, and only if, Π(X) is finitely generated. Since the later is invariant by Tietze-equivalence for
finite n-polygraph by Proposition 3.6.4, the condition FDTab is an invariant for finitely presented
n-categories, and a necessary condition for being of finite derivation type. We conjecture that the
converse implication is false.
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Chapter 4
Squier’s polygraphic resolution for categories

4.1. Introduction

4.1.1. Context. In [192] and, then, in [193], Squier has related the existence of a finite convergent
presentation for a given monoid M to a homological finiteness condition, left-FP3, and to a
homotopical finiteness condition, finite derivation type, thereafter called FDT3 for short. By
his results, Squier has opened two different directions, one homological and one homotopical,
to explore in the quest for a complete characterisation of the existence of finite convergent
presentations of monoids. The corresponding invariants are related: FDT3 implies left-FP3,
as proved by several authors [57, 181, 133]. The converse implication is false in general, as
already noted by Squier in [193], yet it is true in the special case of groups [58], the latter result
being based on the Brown-Huebschmann isomorphism between homotopical and homological
syzygies [40]. However, the invariants left-FP3 and FDT3 are not complete characterisations
of the property to admit a finite convergent presentation: they are necessary, but not sufficient
conditions, as already proved by Squier in [193]. Following this observation, various refinements
of both invariants have been explored.

In the homological direction, thanks to the notion of abelian resolution, one defines the more
restrictive conditions left-FPn, for every n in N: a monoidM has homological type left-FPn
if there exists a resolution of length n of the trivial left M-module by finitely generated and
projective leftM-modules. In [127], a notion of n-fold critical branching is used to complete the
exact sequence used by Squier for the condition left-FP3 into a resolution, obtaining the following
implication: if a monoid admits a finite convergent presentation, then it is of homological type
left-FPn, for every n in N, the converse implication still being false in general, even for n =∞.
Similar results are also known for associative algebras [6], and for groups [55, 37, 87]. One
can obtain other implications with the properties right-FP∞ and bi-FP∞, defined in terms of
resolutions by right modules and bimodules, respectively.

In the homotopical direction, the condition FDT3 has been refined into FDT4 in [159], a
property that can be rephrased as the existence of a finite presentation with a finite acyclic extension,
itself satisfying a homotopical finiteness property. The condition FDT4 is also necessary for a
monoid to admit a finite convergent presentation and it is sufficient, but not necessary, for the
conditions left/right/bi-FP4. While the homological property FP3 could be generalised in all
dimensions using abelian resolutions, the property FDT3 was not pushed further than FDT4,
possibly due to the lack of an appropriate notion of homotopical resolution.
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In Chapter 3, we have formulated the condition FDT3 as the existence of a finite coherent
presentation, i.e. a 3-polygraph with a specific acyclicity condition. Coherent presentations have
been generalised in all dimensions by Métayer in [160], leading to the concept of polygraphic
resolutions of∞-categories. In the special case of categories, the definition boils down to: an∞-polygraph X is a polygraphic resolution of a category C if C is isomorphic to the category
X∗1/X2 presented by X, and if, for every n > 2, the extension Xn+1 of X∗n is acyclic. Métayer has
then proved that polygraphs are exactly the cofibrant objects in∞Cat, for an adequate definition
of cofibration [161], and, with Lafont and Worytkiewicz, that this homotopical point of view fits
in a model structure on∞-categories [138]: in this model structure, polygraphic resolutions are
cofibrant approximations. Moreover, this model structure can be transferred easily to∞-groupoids
and, more generally, to (∞, p)-categories [9].
4.1.2. Summary. In §4.2, we define the (∞, 1)-categorical version of the polygraphic resolutions
of ∞Cat, and give a way to prove that a given (∞, 1)-polygraph is a polygraphic resolution
of a category. The latter is based on the polygraphic analogue of a contracting homotopy for
a chain complex: this is a specific way to assign in a coherent way, to every n-cell x of an
(∞, 1)-polygraph X, an (n + 1)-cell σx : x → x̂, where x̂ is a kind of normal form for x. The
description given in this chapter is a modernised version of the original one of [99, §3], introduced
later in [95, §5] for polygraphic resolutions of associative algebras, and based on the treatment of
Ara and Maltsiniotis in [8]. Contractions give a constructive way to characterise the acyclicity of
an (∞, 1)-polygraph:
Theorem 4.2.6. Let X be an (∞, 1)-polygraph. The canonical projection X> → X is a weak
equivalence in (∞, 1)Cat if, and only if, X admits a right ι-contraction for every unital section ι.

Then, Squier’s theorem for monoids is extended, in §4.3, to provide a construction of
a polygraphic resolution Sq(X), called Squier’s polygraphic resolution, from a convergent
presentation X. If X is a reduced convergent 2-polygraph, the cells of Sq(X) correspond to
the critical n-branchings of X, which are a generalised version of critical branchings where n
generating 1-cells overlap. We obtain

Theorem 4.3.3. Assume thatX is a convergent presentation of a category C. There exists a unique
structure of (∞, 1)-polygraph on Sq(X), and unique unital section ι and right ι-contraction σ
of Sq(X), that satisfy ιu = û for every 1-cell u of X∗, and, for every n-cell u1| · · · |un of Sq(X),
with n > 1, and every reduced 1-cell un+1 of X∗,

σ(u1|···|un)un+1 =

{
u1| · · · |un+1 if u1| · · · |un+1 ∈ Sqn+1(X),
1(u1|···|un)un+1 if unun+1 is reduced.

As a consequence, with this structure of (∞, 1)-polygraph, Sq(X) is a polygraphic resolution of C.
Note that the original construction of [99, §4.5] only applied to reduced convergent presentations,
and that the cells of the generalised version given here have a definition that is the same as the one
used by Kobayashi in [127] to build abelian resolutions from convergent presentations. Moreover,
the proof given here corrects an error in the one of Theorem 4.5.3 of [99]: the (n + 1)-cell
built at the end of §4.5.2 did not have the proper boundary to define a contraction. The notion
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of contraction and the construction of Squier’s polygraphic resolution have, since then, been
transposed to cubical (∞, p)-categories and their associated polygraphs by Lucas in [150, 149,
148]: the definitions and constructions are much clearer in this setting, due to the natural cubical
shapes of the cells associated to the n-branchings, and to cubical symmetries generated by natural
operations on the n-branchings.

Next, §4.4 starts with the construction, for a category C and an (∞, 1)-polygraph X that
presents C, of an augmented chain complex FC[X] of free natural systems over C: this complex
is formed of the free natural systems FC[Xn] over each set Xn of n-cells of X, and its boundary
map is given by the source and target maps: δ[x] = [s(x)] − [t(x)], where [·] is a derivation with
respect to the 0-composition, and maps every other composition to the sum. This complex is
inspired by constructions of Reidemeister [184], Fox [75] and Squier [192], and the Fox Jacobian
used by Squier is the boundary map δ2 of FC[X]. We obtain

Theorem 4.4.3. If X is a polygraphic resolution of a category C, then FC[X] is a free resolution
of the constant natural system Z on C.

The key argument of the proof is that, if X is a polygraphic resolution, then, by Theorem 4.2.6,
it admits a contraction that, in turn, induces a contracting homotopy for FC[X]. Note that the
construction of FC[X] adapts in a straightforward way to left/right/bimodules over C, with similar
conclusions. In analogy with the case of groups, we define the homological n-syzygies of X as
the kernel of the boundary map δn, and we establish

Theorem 4.4.6. For every 2-polygraph X, the natural systems of homological 2-syzygies and of
identities among relations of X are isomorphic.

This isomorphism was inspired by Loday’s result on the correspondence between four different
definitions of syzygies for presentations of groups: homotopical 2-syzygies, Igusa’s pictures,
identities among relations, and homological 2-syzygies [145].

In §4.5, we use polygraphic resolutions to generalise Squier’s and Pride’s homotopical
finiteness conditions FDT3 and FDT4 to all dimensions: a category is FDTn if it admits
a polygraphic resolution that contains finitely many cells in every dimension up to n. So,
Theorem 4.3.3 immediately implies that a category with a finite convergent presentation is FDTn
for every n in N, because a finite convergent 2-polygraph has finitely many critical n-branchings.
We also introduce a new homological finiteness condition, FPn, based on the existence of a
resolution of length n by finitely generated natural systems, which is a refinement of the analogous
conditions defined in terms of left/right/bimodules. The known relations between all these
finiteness conditions are summarised in the following two results:

Theorem 4.5.6. Let C be a category. For every n ∈ N, if C is FDTn, then it is FPn. In particular,
if C admits a convergent presentation, then it is FP∞.
Theorem 4.5.7. Let C be a category, and X be a finite presentation of C. The following assertions
are equivalent: C is FP3, C is FDTab, h2(X) is finitely generated, and Π(X) is finitely generated.

Finally, Section 4.6 applies the constructions defined so far on several examples, in particular:
any category C with its reduced standard presentation, yielding the reduced standard polygraphic
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resolution of C which, after abelianisation, boils down to the classical bar resolution of C; the
monoid A = {1, a} with product a2 = a, admitting a polygraphic resolution made of the Stasheff
polytopes; the category of monotone surjections on finite sets.

4.2. Polygraphic resolutions and contractions

4.2.1. Polygraphic resolutions in (∞, 1)Cat. In an∞-category C, theω-equivalence relation,
denoted by ∼ω, is defined by coinduction on the dimension: two n-cells a and b of C are
ω-equivalent if there exist (n+ 1)-cells f : a→ b and g : b→ a such that f ?n g ∼ω 1a and
g ?n f ∼ω 1b. In the canonical (or folk) model structure on∞Cat, defined in [138], the weak
equivalences are the∞-functors F : C→ D satisfying

(i) for every 0-cell x of D, there exists a 0-cell x̂ of C such that F(x̂) ∼ω x,
(ii) for every n-sphere (a, b) of C, and every (n+ 1)-cell f : F(a)→ F(b) in D, there exists

an (n+ 1)-cell f̂ : a→ b in C such that F(f̂) ∼ω f.
The cofibrations of∞Cat are the retracts of transfinite compositions of pushouts of the canonical
inclusions Sn−1� En, and the cofibrant objects of∞Cat are exactly the∞-polygraphs [161].

The canonical model structure of∞Cat transfers to (∞, 1)Cat through the adjunction formed
by the enveloping (∞, 1)-category functor and the forgetful functor. The proof is given in [9]
for ∞-groupoids, but works equally well for (∞, p)-categories, for every p > 0, yielding in
particular a model structure on (∞, 1)Cat. By construction, the weak equivalences in (∞, 1)Cat
are the images through the forgetful functor of the weak equivalences in∞Cat, i.e. the∞-functors
between (∞, 1)-categories that are weak equivalences in∞Cat. The cofibrations in (∞, 1)Cat
are the retracts of transfinite compositions of pushouts of the inclusions (Sn−1)> � (En)>.
Thus, the free (∞, 1)-category X> over an (∞, p)-polygraph is a cofibrant object in (∞, 1)Cat,
see [99, Proposition 2.2.4].

Let C be a category. A polygraphic resolution of C (in (∞, 1)Cat) is an (∞, 1)-polygraph X
such that X> is a cofibrant approximation of C in (∞, 1)Cat. Expanding the definition, X is a
polygraphic resolution of C if, and only if, it presents C and, for every n > 2, the extension Xn+1
of X>n is acyclic.

4.2.2. Homotopies. Let C and D be ∞-categories, and F,G : C → D be ∞-functors. A
homotopy from F to G is a graded map

C
η−→ D

of degree 1 that satisfies, writing ηa for η(a),
(i) for every 0-cell a of C,

s(ηa) = F(a) and t(ηa) = G(a),

(ii) for every n > 1, and every n-cell a of C,

s(ηa) = F(a) ?0 ηt0(a) ?1 · · · ?n−1 ηtn−1(a),

t(ηa) = ηsn−1(a) ?n−1 · · · ?1 ηs0(a) ?0 G(a),
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(iii) for all n > k > 0, and every k-composable pair (a, b) of n-cells of C,

ηa?kb = F(sk+1(a)) ?0 ηt0(b) ?1 · · · ?k−1 ηtk−1(b) ?k ηb
?k+1 ηa ?k ηsk−1(a) ?k−1 · · · ?1 ηs0(a) ?0 G(tk+1(b)),

(iv) for every n > 0, and every n-cell a of C,

η1a = 1ηa .

Several results must be established to ensure that this definition makes sense, and in particular
that all the involved compositions are well defined, see [8, §B.8].

4.2.3. Unital sections. Let X be an (∞, 1)-polygraph. For c a 1-cell of the quotient category X,
we denote by X>c the corresponding fibre of the canonical projection π : X> � X. By definition,
X>c is an∞-groupoid, whose 0-cells are the representatives of c in X>. To avoid confusion, we
keep the dimensions of the (∞, 1)-category X> when talking about the cells and compositions
of X>c .

A unital section of X is a family (
∗ ι−→ X>c

)
c∈X1

of ∞-functors, indexed by the 1-cells c of X, that satisfy ι1x = 11x for every 0-cell x of X.
Concretely, ι assigns to every 1-cell c of X a representative 1-cell ιc in X>, in such a way that
identities are mapped to identities. A unital section of X is almost a functorial section of the
canonical projection π : X> → X, but undefined in dimension 0 and with no specific compatibility
with the 0-composition.

Fix a unital section ι of X. If a is an n-cell of X>, we write â for ιπ(a) when no confusion
occurs (note that â is an identity if n > 2). A 1-cell u of X> is ι-reduced if u = û holds. A
non-ι-reduced 1-cell u of X> is ι-essential if u = xv, with x a 0-cell of X and v an ι-reduced
1-cell of X>.

4.2.4. Contractions. Let X be an (∞, 1)-polygraph, and ι be a unital section of X. An ι-
contraction of X is a family  X>c

idX>c
++

π **

X>c

∗ ι

GGσ��


x∈X>c

of homotopies, indexed by the 1-cells c of X, that satisfies σa = 1a for every n-cell a of X>,
with n > 1, such that a belongs to the image of ι or of σ. Thus, an ι-contraction is almost a
homotopy from idX> to ιπ, but, like ιπ, undefined on 0-cells and with no specific compatibility
with the 0-composition.

Fix an ι-contraction σ of X. The definition of σ implies, for every n > 1, every n-cell a
of X>, and every 1 6 k < n,

sk(σa) = a ?1 σt1(a) ?2 · · · ?k σtk(a) and tk(σa) =

{
â if k = 1,
σsk(a) otherwise.
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We say that σ is right if, for every n > 1 and all n-cells f and g of X> of respective 1-sources a
and b, it satisfies

σfg = aσg ?1 σfb̂. (4.1)

The notion of left ι-contraction is defined symmetrically, and the following definitions and results
admit a corresponding symmetric version.

For n > 1, an n-cell a of X> is σ-reduced if it is an identity or in the image of σ. If σ is a
right ι-contraction of X, and n > 1, a non-σ-reduced n-cell a of X> is σ-essential if there exist
an n-cell α of X and an ι-reduced 1-cell u of X> such that a = αu.

4.2.5. Lemma ([99, Corollary 3.3.5]). Let X be an∞-polygraph, and ι be a unital section of X.
A right ι-contraction σ of X is uniquely and entirely determined by its values on the ι-essential
1-cells and, for every n > 1, on the σ-essential n-cells of X>.

Proof. If σ is a right ι-contraction, then its values are prescribed on every cell of X> that is not
ι-essential or σ-essential. Now, the values of σ on ι-essential and σ-essential cells of X> can
be chosen freely (with correct source and target), provided that these values make σ compatible
with all the defining relations of the structure of (∞, 1)-category, and in particular with exchange
relations between the 0-composition and the other compositions. It turns out that (4.1) imposes
compatibility with these exchange relations.

4.2.6. Theorem. Let X be an (∞, 1)-polygraph. The canonical projection X> → X is a weak
equivalence in (∞, 1)Cat if, and only if, X admits a right ι-contraction for every unital section ι.

Proof. Assume that X is a polygraphic resolution of X. Let us define a right ι-contraction σ of X
thanks to Lemma 4.2.5. If xu is an ι-essential 1-cell of X>, then xu and x̂u have the same image
in X, so that, by definition of X, there exists a 1-cell σxu : xu → x̂u in X>. Assume that σ is
defined on the n-cells of X>, for n > 1, and let αu be a σ-essential (n + 1)-cell of X>. The
n-cells s(σαu) and t(σαu) are parallel, so, by hypothesis, there exists an (n+ 1)-cell σαu with
these source and target in X>.

Conversely, let σ be an ι-contraction of X, and a and b be parallel n-cells of X>, for n > 1.
We have t(σa) = σs(a) = σs(b) = t(σb) by hypothesis, so that the (n + 1)-cell σa ?n σ

−
b is

well defined, with source s(σa) and target s(σb). The fact that tk(a) = tk(b) holds for every
0 6 k < n implies that

(σa ?n σb)
− ?n−1 σ

−
tn−1(a)

?n−2 · · · ?0 σ−t0(a)

is a well-defined (n + 1)-cell of X>, with source a and target b, thus proving that Xn+1 is
acyclic.

4.3. Polygraphic resolutions from convergent presentations

4.3.1. The cells of Squier’s polygraphic resolution. Assume that X is a 2-polygraph. De-
fine Sq(X) as the graded set whose 0-cells and 1-cells are the ones of X, and whose n-cells,
for n > 2, are the families (u1, . . . , un), written u1| · · · |un, of non-identity reduced 1-cells
of X∗ that satisfy
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(i) u1 is a 1-cell of X,
(ii) for every 1 6 i < n, the 1-cell uiui+1 is not reduced,
(iii) for every 1 6 i < n, every proper left-factor of uiui+1 is reduced.

4.3.2. Interpretation in the reduced case. Assume thatX is a reduced 2-polygraph. Thenu1|u2
is a 2-cell of Sq(X) if, and only if, u1 belongs to X and u1u2 is the source of a 2-cell of X.

From the analysis conducted in §2.6.3, the critical branchings of X are of the form

u1
//   

v2
// w2 // DD

u3
//

α
EY

β��

where α and β are 2-cells of X, and u1v2, w2 and u3 are reduced non-identity 1-cells of X,
with u1 in X. Putting u2 = v2w2 induces a bijection between the 3-cells u1|u2|u3 of Sq(X)
and the critical branchings of X whose source is u1u2u3.

For n > 3, define the critical n-branchings of X as the non-ordered families (a1, . . . , an)
of rewriting steps of X with the same source, overlapping in a nontrivial and minimal way.
Conducting a similar analysis as in §2.6.3 shows that the critical 3-branchings of X fall in one of
the two cases

u1
//   

v2
// w2 // BBx2 //

��
u3 // u4

//

α
EY

β��

γ
EY

or u1
//

��

v2
// w2 // BB

v3
// w3 //

��

u4
//

α
EY

β��

γ
EY

where α, β and γ are 2-cells of X, and u1v2, w2, u3 and u4 (in the left-hand situation) or u1v2,
w2, v3w3 and u4 (in the right-hand situation) are reduced non-identity 1-cells of X∗, with u1
in X. Putting u2 = v2w2x2, in the left-hand case, or u2 = v2w2 and u3 = v3w3, in the
right-hand case, induces a bijection between the 4-cells u1|u2|u3|u4 of Sq(X) and the critical
3-branchings of X.

This observation generalises to establish a bijection between the (n+ 1)-cells of Sq(X) and
the critical n-branchings of X.

4.3.3. Theorem (Squier’s polygraphic resolution). Assume that X is a convergent presentation
of a category C. There exists a unique structure of (∞, 1)-polygraph on Sq(X), and unique unital
section ι and right ι-contraction σ of Sq(X), that satisfy ιu = û for every 1-cell u of X∗, and, for
every n-cell u1| · · · |un of Sq(X), with n > 1, and every reduced 1-cell un+1 of X∗,

σ(u1|···|un)un+1 =

{
u1| · · · |un+1 if u1| · · · |un+1 ∈ Sqn+1(X),
1(u1|···|un)un+1 if unun+1 is reduced.

(4.2)

As a consequence, with this structure of (∞, 1)-polygraph, Sq(X) is a polygraphic resolution of C.
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Proof. If (4.2) is satisfied, then the source and target maps of Sq(X) are imposed by the first case,
and the definition of an ι-contraction. Indeed, writing u = u1| · · · |un−1, we must have

s(u1| · · · |un) = s(σuun) = uun ?1 σt1(u)un ?2 · · · ?n−1 σtn−1(u)un

and t(u1| · · · |un) = t(σuun) =

{
û1u2 if n = 2,
σs(u)un otherwise.

Then one proves, using the definition of the source and target of an ι-contraction, that these source
and target maps satisfy the globular relations. Next, according to Lemma 4.2.5, it is necessary
and sufficient to define σ on the ι-essential and σ-essential cells of Sq(X)>.

The ι-essential 1-cells are the u1u2, where u1 is a 1-cell of X, u2 is a reduced 1-cell of X∗,
and u1u2 is not reduced. If u1|u2 is a 2-cell of Sq(X), then (4.2) imposes σu1u2 = u1|u2.
Otherwise, there exists a proper factorisation u2 = v2w2 such that u1|v2 is a 2-cell of Sq(X),
and (4.2) reads σ(u1|v2)w2 = 1(u1|v2)w2 . This last equality imposes that the source and target of
σ(u1|v2)w2 must be equal, giving the value of σ on u1u2:

σu1u2 = t(σ(u1|v2)w2) = s(σ(u1|v2)w2) = (u1|v2)w2 ?1 σû1v2w2 .

Now, fix n > 2. The σ-essential n-cells of Sq(X)> are the uun+1, where u = u1| · · · |un
is an n-cell of Sq(X), and un+1 is a reduced 1-cell of X∗. We distinguish three cases. First, if
u|un+1 is an (n+ 1)-cell of Sq(X), then (4.2) imposes σuun+1 = u|un+1. Second, if unun+1
is reduced, then (4.2) gives σuun+1 = 1uun+1 . Otherwise, there exists a proper factorisation
un+1 = vn+1wn+1 such that u|vn+1 is an (n + 1)-cell of Sq(X). In that case, (4.2) implies
that the source and the target of σ(u|vn+1)wn+1 are equal. On the one hand, we have

s(σ(u|vn+1)wn+1) = (u|vn+1)wn+1 ?1 σt1(u|vn+1)wn+1 ?2 · · · ?n σtn(u|vn+1)wn+1 .

And, on the other hand, we obtain

t(σ(u|vn+1)wn+1) = σs(u|vn+1)wn+1 = σs(σuvn+1)wn+1

= σuun+1?1σt1(u)vn+1wn+1?2···?nσtn(u)vn+1
wn+1 .

Using the compatibility of σ with the compositions ?1, . . . , ?n, we develop the latter expression,
by induction on n, to obtain a composite (n+ 1)-cell containing σuun+1 , σσtn(u)vn+1

wn+1 , and
lower dimensional invertible cells. Thus, we obtain a relation between two composite (n+1)-cells
that defines σuun+1 in terms of the other involved cells.

Finally, we apply Theorem 4.2.6 to conclude that Sq(X) is a polygraphic resolution of C.

4.3.4. Interpretation in the reduced case. Assume that X is a reduced convergent 2-polygraph,
and let us examine the first dimensions of Sq(X). The 2-cells x|u of Sq(X), for x a 1-cell of X
and u a reduced 1-cell of X∗ such that xu is not reduced, have the shape

xu
x|u
=⇒ x̂u.
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The ι-contraction σ is given, on a 1-cell xu of X∗, with x ∈ X1 and u reduced, by

σxu =


x|u if x|u ∈ Sq2(X),
1xu if xu is reduced,
(x|v)w ?1 σx̂vw if u = vw with x|v ∈ Sq2(X).

On more general 1-cells, σ is defined by the fact that it is a right ι-contraction:

σuv = uσv ?1 σuv̂.

By construction, the 3-cells of Sq(X) have the shape

x̂uv σx̂uv
�+

xuv

(x|u)v )=

σxuv

*> x̂uv
x|u|v��

The ι-contractionσ is defined, on the 2-cells (x|u)v by (4.2). The simple cases areσ(x|u)v = x|u|v,
if the latter belongs to Sq(X), and σ(x|u)v = 1(x|u)v if uv is reduced. The more complicated
case is the definition of σ(x|u)vw when x|u|v belongs to Sq(X). In this situation, the relation
σ(x|u|v)w = 1(x|u|v)w implies s(σ(x|u|v)w) = t(σ(x|u|v)w), which develops into

x̂uvw

σx̂uvw "6

(x|u|v)w
��

x̂uvw

σx̂uvw

��
σσxuvw ��

xuvw

(x|u)vw

@T

σxuvw

0D

σxuvw
(< x̂uvw

=

x̂uvw

σx̂uvw "6

σx̂uvw

�.
σ(x|u)vw��

x̂uvw

σx̂uvw

��

σσx̂uvw
��

xuvw

(x|u)vw

@T

σxuvw
(< x̂uvw

Finally, the 4-cells of Sq(X) have the same shape as this last defining equation, but in the case
where vw is not reduced and with all proper left-factors reduced:

x̂uvw

σx̂uvw "6

(x|u|v)w
��

x̂uvw

σx̂uvw

��
σσxuvw ��

xuvw

(x|u)vw

@T

σxuvw

0D

σxuvw
(< x̂uvw

x|u|v|w
�?

x̂uvw

σx̂uvw "6

σx̂uvw

�.
σ(x|u)vw��

x̂uvw

σx̂uvw

��

σσx̂uvw
��

xuvw

(x|u)vw

@T

σxuvw
(< x̂uvw

4.4. Abelianisation of polygraphic resolutions

4.4.1. Free natural systems. Let C be a category and X be a family of 1-cells of C. We denote
by FC[X] the free natural system on C generated by X, given by

FC[X] =
⊕
x∈X

Ct(C)(x,−).
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Fix an (∞, 1)-polygraph X presenting C. We consider:
(i) The free natural system FC[X0] generated by the 1-cells 1x, for x ∈ X0. If a is a 1-cell of C,

then FC[X0]a is the free abelian group generated by the pairs (b, c) of 1-cells of C such that
t(b) = s(c) = x and bc = a.

(ii) For every natural number n > 1, the free natural system FC[Xn] is generated by one copy
of the 1-cell x of C for each n-cell x of X. If a is a 1-cell of C, then FC[Xn]a is the free
abelian group generated by the triples (b, x, c), denoted by b[x]c, made of an n-cell x of X,
and 1-cells b and c of C, such that the composite bxc exists in C and is equal to a.

The mapping of every 1-cell x of X to the element [x] of FC[X1]x is extended into a derivation
of X∗1 into FC[X1] by putting

[1u] = 0 and [uv] = [u]v+ u[v].

Here, the natural system FC[X1] on C is seen as a natural system on X∗1 by composition with
the canonical projection X∗1 � X. Then, for n > 1, the mapping of every n-cell x of X to
the element [x] of FC[Xn]x is extended to associate to every n-cell a of X> the element [a] of
FC[Xn]a, defined by induction on the size of a as follows:

[1a] = 0 [a−] = −[a] [a ?k b] =

{
[a]b+ a[b] if k = 0,
[a] + [b] otherwise.

4.4.2. Abelianisation of (∞, 1)-polygraphs. LetX be an (∞, 1)-polygraph. Wedenote by FX[X]
the complex

0 Zoo FX[X0]
ε
oo · · ·

δ1
oo FX[Xn−1]

oo FX[Xn]
δn
oo · · ·oo

of natural systems on X, whose boundary maps are defined as follows. The augmentation
morphism ε is defined, on every pair (a, b) of composable 1-cells of X, by

ε(a, b) = 1.

For n > 1, the morphism δn of natural systems on X is given, on the generator [x] corresponding
to an n-cell x of X, by:

δn[x] =

{
(x, 1) − (1, x) if n = 1,
[s(x)] − [t(x)] otherwise.

By induction on the size of cells of X>, we prove, for every n-cell a in X>, with n > 1, that

δn[a] =

{
(a, 1) − (1, a) if n = 1,
[s(a)] − [t(a)] otherwise.

As a consequence, we have εδ1 = 0 and δnδn+1 = 0, for every n > 1, proving that FX[X] is
indeed a chain complex.

4.4.3. Theorem. If X is a polygraphic resolution of a category C, then FC[X] is a free resolution
of the constant natural system Z on C.
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Proof. Let ι be a unital section of X. We write â for the image of a 1-cell a of C through ι. By
Theorem 4.2.6, X admits a right ι-contraction σ. We denote by σn, for every integer n > −1, the
following families of morphisms of groups, indexed by a 1-cell a of C:

Z
σ−1−→ FC[X0]a

1 7−→ (a, 1)

FC[X0]a
σ0−→ FC[X1]a

(b, c) 7−→ b[ĉ]
FC[Xn]a

σn−→ FC[Xn+1]a
b[x]c 7−→ b[σxĉ]

First, by induction on the size of the n-cells of X>, using the properties of a right ι-contraction,
we prove that

σn(b[a]c) = b[σaĉ]

holds for every n > 1, every n-cell a of X>, and all 1-cells b and c of C such that bac exists.
Then, it is straightforward to check that (σn)n>1 is a contracting homotopy for FC[X].

4.4.4. Homological syzygies. Fix an (∞, 1)-polygraph X. For every n > 1, the kernel of the
differential δn is denoted by hn(X), and its elements are called the homological n-syzygies of X.
As a consequence of Theorems 4.3.3 and 4.4.3, we obtain

4.4.5. Proposition. Let C be a category, and X be a convergent presentation of C. Then, for
every n > 2, the natural system hn(X) of homological n-syzygies of X is generated by the
elements

δn[u1| · · · |un] = [u1| · · · |un−1]un + [σt(u1|···|un−1)un ] − [σs(u1|···|un−1)un ],

where u1| · · · |un ranges over the n-cells of Sq(X), and σ is the right ι-contraction associated
to Sq(X).

Homological syzygies generalise identities among relations in all dimensions, in the following
sense:

4.4.6. Theorem. For every 2-polygraph X, the natural systems of homological 2-syzygies and of
identities among relations of X are isomorphic.

Proof. First, we prove that, for every closed 2-cell f of X>, we have [f] = 0 in FX[X2] if, and
only if, bfc = 0 holds in Π(X), see [99, Lemma 5.6.3]. Next, we check that, for every element a
in h2(X), there exists a closed 2-cell ã in X> such that a = [ã] holds, see [99, Lemma 5.6.4].
Finally, we put

Φ
(
bfc
)
= [f] and Ψ(a) = bãc ,

and we check that Φ : Π(X) → h2(X) and Ψ : h2(X)→ Π(X) are well-defined morphisms of
natural systems over X, that are inverse of one another, see [99, Theorem 5.6.5].

4.5. Homotopical and homological finiteness conditions

4.5.1. Higher finite derivation type. Let C be a category. For n ∈ N, with n 6= 0, we say that C
is of finite n-derivation type (or that C is FDTn for short) if it admits a polygraphic resolution X
such that Xp is finite for every natural number p 6 n. In particular, C is FDT1 if it is finitely
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generated, FDT2 if it is finitely presented, and FDT3 if it is of finite derivation type. By definition,
for every natural number n, FDT∞ implies FDTn, and FDTn+1 implies FDTn.

As an immediate consequence of Theorem 4.3.3, we obtain

4.5.2. Corollary. A category with a finite convergent presentation is FDT∞.
4.5.3. Modules of finite homological type. Fix a category C. A C-module is a functor from C to
the categoryAb of abelian groups [166]. For n ∈ N, a C-moduleM is of homological type FPn,
if it admits a partial resolution of length n by finitely generated projective C-modules

0 Moo P0oo · · ·oo Pn−1oo Pnoo · · ·oo

By general homological arguments, we obtain the following characterisation of the property FPn:

4.5.4. Lemma. Let C be a category,M be a C-module, and fix n ∈ N. The following assertions
are equivalent:

(i) M is of homological type FPn,
(ii) M admits a partial resolution of length n by finitely generated free C-modules,
(iii) M is finitely generated and, for every natural number k < n and every projective, finitely

generated partial resolution ofM of length k

0 Moo P0oo · · ·oo Pk−1oo Pk,
dk
oo

the C-module kerdk is finitely generated.

4.5.5. Categories of finite homological type. The property for a categoryC to be of homological
type FPn is defined according to a category of modules over one of the categories in the following
diagram

Co ,, q1

##

Ct(C) ∂
// // Co × C

p1 22 22

p2 -- --

C>

C 11 q2

<<

where ∂ is the boundary map, p1 and p2 are the projections of the cartesian product, C> is the
enveloping groupoid of C, and q1 and q2 are the canonical inclusion morphisms. A category C is
of homological type

(i) FPn if the constant natural system Z is of type FPn,
(ii) bi-FPn if the Co × C-module ZC is of type FPn,
(iii) left-FPn if the constant C-module Z is of type FPn,
(iv) right-FPn if the constant Co-module Z is of type FPn,
(v) top-FPn if the constant C>-module Z is of type FPn.
Using the fact that the property FPn is preserved by left Kan extensions [99, Lemma 5.1.4],

these finiteness homological properties of categories are related by the following implications [99,
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Proposition 5.2.4]:

right-FPn
�-

FPn %9 bi-FPn

*>

 4

top-FPn.

left-FPn

1E

If C is a groupoid, all of these implications are equivalences [99, Proposition 5.2.6], but it
is not the case in general. Indeed, Cohen constructed in [55] a right-FP∞ monoid which is not
left-FP1: thus, top-FPn, left-FPn and right-FPn are not equivalent in general. Moreover, monoids
with a finite convergent presentation are left-FP∞ and right-FP∞, see [6, 192, 127], but there exists
a finitely presented monoid that is left-FP∞ and right-FP∞, but does not satisfy the homological
finiteness condition FHT introduced by Pride and Wang [128]; since the properties FHT and
bi-FP3 are equivalent [129], it follows that left-FPn and right-FPn do not imply bi-FPn in general.
We conjecture that bi-FPn does not imply FPn either.

As a consequence of Theorems 4.3.3 and 4.4.3, we obtain the following implication. It
generalises [57, Theorem 3.2] and [133, Theorem 3], see also [181], stating that, if a monoid is
of finite derivation type, then it is FP3. It also generalises Squier’s homological theorem [192,
Theorem 4.1], that says that a monoid admitting a finite convergent presentation is FP3.

4.5.6. Theorem. Let C be a category. For every n ∈ N, if C is FDTn, then it is FPn. In
particular, if C admits a finite convergent presentation, then it is FP∞.

Finally, Theorems 3.6.6 and 4.4.6, and Lemma 4.5.4 give the following equivalences:

4.5.7. Theorem. Let C be a category, and X be a finite presentation of C. The following
assertions are equivalent:

(i) C is FP3.
(ii) C is FDTab.
(iii) h2(X) is finitely generated.
(iv) Π(X) is finitely generated.

4.6. Examples of polygraphic and free resolutions

4.6.1. Example. Consider the monoidM presented by the 2-polygraph

X =
(
a, b, t

∣∣∣atnb αn=⇒ 1 , n ∈ N
)
.

Being finitely generated,M is FP1, but it is not FP2. Indeed, first, observe that X is reduced and
convergent, with no critical branching. As a consequence, Theorem 4.3.3 implies that X, seen as
an (∞, 1)-polygraph, is a polygraphic resolution ofM. Next, use Theorem 4.4.3 to obtain the
free resolution FM[X]

0 Zoo FM[∗]ε
oo FM[X1]

δ1
oo FM[X2]

δ2
oo 0oo

Hence ker δ2 = 0, so that ker δ1 ' FM[X2]. So ker δ1 is not finitely generated, and Lemma 4.5.4
concludes thatM is not FP2.
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4.6.2. The reduced standard polygraphic resolution. Let C be a category. To simplify the
example, assume that, if a composite 1-cell xy of C is an identity, then so are x and y. The
reduced standard presentation of C is the 2-polygraph Std2(C) with the same 0-cells as C, one
1-cell â for each non-identity 1-cell a of C, and one 2-cell a|b : âb̂⇒ âb for each pair (a, b) of
composable non-identity 1-cells in C. Without the simplifying hypothesis on C, the target of a|b
is replaced by 1x if ab = 1x.

The 2-polygraph Std2(C) is reduced and convergent, and applying Theorem 4.3.3 extends it
into a polygraphic resolution of C, denoted by Std(C) and called the reduced standard polygraphic
resolution of C. For n > 2, the n-cells of Std(C) are the a1| · · · |an, such that each ai is a
non-identity 1-cell of C and each (ai, ai+1) is composable.

The source and target of the 3-cells of Std(C) are given by

âbĉ ab|c

�*

âb̂ĉ

(a|b)ĉ *>

â(b|c)  4

âbc

âb̂c a|bc

8La|b|c��

and the ones of its 4-cells, with the arrows of 3-cells removed, by

âbĉd̂
(ab|c)d̂

%9

(a|b|c)d̂

âbcd̂
abc|d


!

âb̂ĉd̂

(a|b)ĉd̂
,@

â(b|c)d̂ %9

âb̂(c|d) �2

âb̂cd̂

(a|bc)d̂

4H

â(bc|d)
�*

a|bc|d âbcd

âb̂ĉd
â(b|cd)

%9

â(b|c|d)

âb̂cd
a|bcd

>R

a|b|c|d
��

âbĉd̂
(ab|c)d̂

%9

âb(c|d)
�*

âbcd̂
abc|d

�"

âb̂ĉd̂

(a|b)ĉd̂
,@

âb̂(c|d) �2

= âbĉd ab|cd %9

ab|c|d

a|b|cd

âbcd.

âb̂ĉd

(a|b)ĉd

4H

â(b|cd)
%9 âb̂cd

a|bcd

>R
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For n-cells, n > 2, we prove, by induction on n, that the source and target of n-cells are
composites of the (n− 1)-cells

di(a1| · · · |an) =


â1(a2| · · · |an) if i = 0,
a1| · · · |aiai+1| · · · |an if 1 6 i 6 n− 1,
(a1| · · · |an−1)ân if i = n.

with k-cells, for 1 < k < n− 1. More precisely, the source of a1| · · · |an contains one copy of
each di(a1| · · · |an) for n− i even, and its target, one copy of each di(a1| · · · |an) for n− i odd.

Theorem 4.4.3 applied to Std(C) gives a free resolution

0 Zoo FC[C0]
ε
oo · · ·oo FC[Stdn−1(C)]oo FC[Stdn(C)]

δn
oo · · ·oo

with differential

δn[a1| · · · |an] =
n∑
i=0

(−1)n−i[di(a1| · · · |an)].

Note that, by construction, [d0(a1| · · · |an)] = [â1(a2| · · · |an)] = a1[a2| · · · |an] and, symmet-
rically, [dn(a1| · · · |an)] = [a1| · · · |an−1]an.

4.6.3. The associative polygraphic resolution. Consider the monoid A from Example 2.6.6,
with one non-trivial element a and product a2 = a, presented by

As2 = (a0 |a1 : a0 → a0 |a2 : a1a1 ⇒ a1) .

This 2-polygraph is reduced and convergent, with one critical n-branching for every n > 2. Thus,
the reduced standard polygraphic resolution As∞ = Sq(As2) of A, given by Theorem 4.3.3, has
one n-cell an for each n > 0, corresponding to the product a| · · · |a of n copies of a. Hence A
is FDT∞. The 3-cell a3 of As∞, as already seen in Example 2.6.6, is, given in classical notation
and in string diagrams respectively,

a2a1 ?1 a2
a3
%9 a1a2 ?1 a2 %9 .

The 4-cell a4 of As∞ is

%9


!

-A

%9

�1

5I

�) %9

=Q
�?

%9

�) 
!

-A

�1

= %95I

%9

=Q

63



which, contracting by one dimension, can also be pictured as Mac Lane’s pentagon, or Stasheff’s
polytope K4:

%9

�&

0D

!5

.B
��

Finally, the 5-cell a5 of As∞ has the shape of Stasheff’s polytope K5, its source being

�0

%9 %9

=

��

/C /C

%9 %9

��

=

��

EY /C

%9 %9 %9

and its target being given by a symmetric composite 4-cell, see [99, §6.1]. Theorem 4.4.3, applied
to As∞, yields a resolution
0 Zoo FA[∗]

ε
oo FA[ ]

δ1
oo FA[ ]

δ2
oo FA[ ]

δ3
oo FA[ ]

δ4
oo · · ·oo

of Z by free natural systems on A. Hence, A is FP∞. Computing this differential on each n-cell
of As∞ gives generators of the natural systems of homological n-syzygies of As∞. For example,
h2(As) is generated by

δ3[ ] =
[ ]

−
[ ]

=
[ ]

a− a
[ ]

,

while h3(As) is generated by

δ4[ ] =
[ ]

+
[ ]

+
[ ]

−
[ ]

−
[ ]
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= a [ ] − [ ] + [ ]a.

Similarly, h4(As) is generated by δ5[a5], which is equal, by definition, to[ ]
+
[ ]

+
[ ]

−
[ ]

−
[ ]

−
[ ]

,

and reduces to
δ5[a5] = [ ]a− a [ ] .

4.6.4. The category Epi. We denote by Epi the subcategory of the simplicial category whose
objects are the natural numbers and whose morphisms fromm to n are the monotone surjections
from {0, . . . ,m} to {0, . . . , n}. This category, studied in [143] where it is written ∆epi, admits
a presentation by the 2-polygraph X with the natural numbers as 0-cells, with one 1-cell
xni : n+ 1→ n for all natural numbers 1 6 i 6 n, and one 2-cell

n+ 1 xnj

!!
xni,j
��

n+ 2

xn+1i 33

xn+1j+1

++

n

n+ 1 xni

==

for all natural numbers 0 6 i 6 j 6 n+ 1. The 1-cell xni represents the map

xni (j) =

{
j if j 6 i,
j− 1 if j > i.

Thereafter, we drop the exponents of the 1-cells and 2-cells of X, simply writing xi and xi,j.
The 2-polygraph X is convergent. Indeed, for termination, given a 1-cell u = xi1 . . . xik

of X∗, we define the natural number ν(u) as the number of pairs (ip, iq) such that ip 6 iq, with
1 6 p < q 6 k. In particular, we have ν(xixj) = 1 and ν(xj+1xi) = 0 when i 6 j, giving
ν(s(xi,j)) > ν(t(xi,j)). Moreover, we have ν(wuw ′) > ν(wvw ′) when ν(u) > ν(v) holds.
Thus, for every non-identity 2-cell a : u⇒ v of X∗, the strict inequality ν(u) > ν(v) is satisfied,
giving termination. Moreover, the 2-polygraph X has one critical branching (xi,jxk, xixj,k) for
all possible 0 6 i 6 j 6 k 6 n+ 2, which is confluent.

Theorem 4.3.3, applied to X, gives a polygraphic resolution Sq(X) of Epi, whose 3-cells are
given, in classical notation and in string diagrams (with xi = i and xi,j = i,j) respectively, by

xj+1xixk
xj+1xi,k %9 xj+1xk+1xi

xj+1,k+1xi


!
xixjxk

xi,jxk
.B

xixj,k �2

xk+2xj+1xi

xixk+1xj xi,k+1xj
%9 xk+2xixj

xk+2xi,j

<P
xi,j,k
�� i,j,k

i,j,k
%9

i,j,k
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The (∞, 1)-polygraph Sq(X) has one 4-cell xi,j,k,l for all possible 0 6 i 6 j 6 k 6 l 6 n+ 3,
given in string diagrams and omitting the subscripts, by

%9 %9

��

�$

*>

 4 %9 %9

:N

Then, Theorem 4.4.3 gives, in particular, generators for the natural systems of homological
n-syzygies of X. For example, h2(X) is generated by the elements

δ3
[

i,j,k

]
=

[
i,j,k

]
−

[
i,j,k

]
=


(
[ i,j]xk − xk+2[ i,j]

)
+

(
xj+1[ i,k] − [ i,k+1]xj

)
+

(
[ j+1,k+1]xi − xi[ j,k]

)
.
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Chapter 5
Coherent presentations of Artin monoids

In this chapter, we use the following notation: if X is a (3, 1)-polygraph, we denote by X̃ the
(2, 1)-category presented by X, i.e. the quotient X>2 /X3, while X still denotes the 1-category
presented by X, i.e. the quotient X∗1/X2. If S is a set, and s and t are elements of S, we denote by
〈st〉n the element of S∗ defined by 〈st〉0 = 1 and 〈st〉n+1 = s 〈ts〉n.

5.1. Introduction

5.1.1. Context. A Coxeter group is a groupW that admits a presentation by a finite set S of
generators, submitted to the relations s2 = 1 for every s in S, and at most one braid relation

〈st〉mst = 〈ts〉mst

for each non-ordered pair (s, t) of distinct elements of S, withmst ∈ N \ {0, 1}. A given Coxeter
group may admit several generating sets that fit the given scheme, but, here, we always assume
that such a set S has been fixed. Forgetting about the involutive character of the generators and
keeping only the braid relations, one gets Artin’s presentation of the Artin monoid B+(W). For
example, ifW is the group S4 of permutations of {1, 2, 3, 4}, then S consists of the elementary
transpositions r = (1 2), s = (2 3) and t = (3 4), and the associated Artin monoid is the
monoid B+

4 of positive braids on four strands, with generators r, s and t satisfying the relations
rsr = srs, rt = tr and sts = tst. The aim of [78] was to push further Artin’s presentation
and study the relations between the braid relations to obtain a coherent presentation of the Artin
monoid B+(W) for every Coxeter groupW.

In the case of the braid monoid B+
4 on four strands, Deligne notes in §1.3 of [67] that Artin’s

presentation can be extended into a coherent presentation by taking one 3-cell whose boundary
consists of the graph of reduced expressions of the element of maximal length of S4. Such a
graph can be considered for any element w ofW: the vertices are the reduced expressions of w,
and two such expressions are linked by an edge if one is obtained from the other by the application
of a braid relation. Tits proved that the fundamental group of the graph of reduced expressions
of w is generated by two types of loops in the graph, the most interesting ones being associated
to finite parabolic subgroups of rank 3 ofW, see [201, Proposition 4] or [186, Theorem 2.17].
Actually, for the purpose of finding a coherent presentation of B+(W), the generators of the first
type are degenerate, and part of the generators of the second type are superfluous.
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The main motivation of Deligne in [67] was to study a weak form of action of Artin monoids
on categories. Given a monoidM and a category C, a strict action ofM of C would be specified
by an endofunctor F(x) of C for every element ofM, such that the relations F(x)F(y) = F(xy)
and F(1) = 1C hold. To define a weak action ofM on C, in Deligne’s sense, one would replace
these last equalities by natural isomorphisms, that themselves satisfy coherence relations. In the
case whereM is an Artin monoid B+(W), Deligne proved that this definition of action of B+(W)
can be reformulated in a more compact way, using only an endofunctor F(w) for each w ofW
and not of B+(W), see [67, Theorem 1.5]. The description of this alternative definition is based
on an alternative presentation of Artin monoids, that we call Garside’s presentation here, because
it originates in Garside’s study of the normal forms of braids in [77].

5.1.2. Summary. The relationship between coherent presentations and Deligne’s weak actions is
explained in §5.2, using the homotopical setting of the canonical model structure on 2-categories
given by Lack in [131, 132]. First, we establish the following equivalence between coherent
presentations of categories and some of their cofibrant approximations:

Theorem 5.2.3. Let C be a category, and X be a (3, 1)-polygraph that presents C. Then X is a
coherent presentation of C if, and only if, the (2, 1)-category X̃ presented by X is a cofibrant
approximation of C.

Then, we study the category 2Catps(C,D) of pseudofunctors from a 2-category C into a 2-
category D: pseudofunctors are a weakened version of 2-functors, that generalise actions of
monoids on categories, in the sense that a weak action ofM on a category is a pseudofunctor
fromM into Cat. In representation theory, pseudofunctors have been studied under the name of
2-representations by Elgueta for 2-groups in [69], and Ganter and Kapranov in [76] for groups,
while Rouquier considered in [187] the more general case of 2-representations of bicategories;
in these examples, D is usually the 2-category of 2-vector spaces, either from Kapranov and
Voevodsky [121] or from Baez and Crans [15], or of 2-Hilbert spaces [14], while Deligne takes
the 2-category of categories in [67]. The main result of the section establishes that, for every
coherent presentation X of a category C, the pseudofunctors from C to D are the same as the
2-functors from the (2, 1)-category X̃ presented by X into D:

Theorem 5.2.8. Let C be a category, and X be a (3, 1)-polygraph that presents C. Then X is
a coherent presentation of C if, and only if, for every 2-category D, there is an equivalence of
categories 2Catps(C,D) ≈ 2Cat(X̃,D) that is natural in D.

As a consequence, Deligne’s Theorem 1.5 of [67] is another way of saying that a specific
(3, 1)-polygraph, denoted by Gar3(W) in what follows, is a coherent presentation of B+(W) for
every finite Coxeter groupW.

Next, §5.3 explores a theoretical setting for transformations of (3, 1)-polygraphs that do
not change their homotopy type: two (3, 1)-polygraphs are called Tietze-equivalent if they
present isomorphic categories and equivalent (2, 1)-categories, so that, in particular, two coherent
presentations of the same category are Tietze-equivalent. We generalise to (3, 1)-polygraphs the
elementary operations called Tietze transformations, after the ones originally defined by Tietze for
presentations of groups [200, 151]: in our case, they correspond to the simultaneous adjunction or
elimination of an n-cell and of an (n+ 1)-cell, such as a redundant generator and a relation that
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defines it in terms of the other generators. The main property of Tietze transformations is given by

Theorem 5.3.3. Two (3, 1)-polygraphs X and Y are Tietze-equivalent if, and only if, there exists
a Tietze transformation between them.

As a consequence, if X is a coherent presentation of a category C, and Y obtained from X by a
sequence of Tietze transformations, then Y is also a coherent presentation of C.

Tietze transformations are used in §5.4 to develop a procedure called homotopical completion-
reduction, whose aim is to compute a small coherent presentation from a terminating presentation.
First, homotopical completion is a composition of Knuth-Bendix’s completion and of Squier’s
completion, that extends a terminating presentation into a coherent presentation by application of
a sequence of Tietze transformations; in fact, both completions can be interleaved to optimise
computation [78, §2.2.4]. Then, homotopical reduction is based on the notion of collapsible part
of a (3, 1)-polygraph X, named in analogy with Brown’s work [37]: this is a subset of the cells
of X that can be collapsed in such a way that the result is Tietze-equivalent to X. We obtain

Theorem 5.4.4. Assume that X is a terminating presentation of a category C. Then, every
homotopical completion-reduction of X is a coherent presentation of C.

In concrete examples, when X is obtained by homotopical completion, the study of the critical
3-branchings of X usually produces a collapsible part that allows to eliminate 3-cells while
preserving Tietze equivalence. Apart from the applications to Artin monoids, developed in [78]
and presented in this chapter, the homotopical completion-reduction procedure has been applied
to other examples, such as Artin monoids with other generating sets, or the plactic and Chinese
monoids with various generating sets, in [101] and [104].

The homotopical completion-reduction procedure is used in §5.5 to obtain a coherent
presentation of the Artin monoid B+(W) for every Coxeter groupW. The starting presentation is
called Garside’s presentation of B+(W), as given in [67, §1.4.5] in the spherical case, i.e. whenW
is finite, and in [163, Proposition 1.1] in general. Its generators are the elements ofW+ =W \ {1},
and it has one 2-cell αu,v : u|v⇒ uv for all u and v inW+ such that l(uv) = l(u) + l(v) holds,
where the notation ·|· stands for the product in the free monoid overW+, and l(u) is the length
of u inW. Garside’s presentation is terminating but not confluent, and homotopical completion
yields a coherent presentation of B+(W); the construction relies on specific arithmetic properties
of Artin monoids, first observed by Garside for braid monoids in [77], generalised by Brieskorn
and Saito in [36] and Deligne in [66], and summarised in [80]. Among the cells of this first
coherent presentation of B+(W), we identify a collapsible part and obtain, after homotopical
reduction, Garside’s coherent presentation of B+(W):

Theorem 5.5.5. LetW be a Coxeter group. Denote by Gar3(W), the (3, 1)-polygraph obtained
from Garside’s presentation of B+(W) by adjunction of one 3-cell

uv|w αuv,w

�%
Au,v,w��u|v|w

αu,v|w +?

u|αv,w
�3

uvw

u|vw
αu,vw

8L
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for all u, v and w ofW+ such that l(uvw) = l(u) + l(v) + l(w). Then Gar3(W) is a coherent
presentation of B+(W).

Wenote that Gar3(W) is the same coherent presentation that corresponds to Deligne’s Theorem 1.5
of [67], through the equivalence of Theorem 5.2.8. This implies that Deligne’s result, only proved
forW finite, is in fact true in general. In §3.3 of [78], Deligne’s result is also extended in another
direction, from spherical Artin monoids to the more general Garside monoids, introduced by
Dehornoy and Paris to axiomatise the arithmetic properties of the formers [65, 59]. We conjecture
that these two disjoint extensions of Theorem 5.5.5 can be unified again, in the even more general
setting of monoids with a Garside family [60].

Finally, in §5.6, we homotopically reduce Garside’s coherent presentation Gar3(W) into
the smaller coherent presentation Art3(W) associated with Artin’s presentation of the monoid
B+(W). After a new collapsing, assuming that the set S of generators ofW is totally ordered, the
set of 3-cells of Gar3(W) boils down to one 3-cell Zr,s,t for all elements t > s > r of S such
that the subgroup ofW they span is finite:

Theorem 5.6.4. Fix a Coxeter groupW, with a totally ordered set of generators S. The Artin
monoid B+(W) admits, as a coherent presentation, the (3, 1)-polygraphArt3(W)made of Artin’s
presentation Art2(W), extended with one 3-cell Zr,s,t for all elements t > s > r of S such that
the subgroupW{r,s,t} is finite, and whose shape depends only on the Coxeter type ofW{r,s,t}.

The precise shapes of these 3-cells, called the Tits-Zamolodchikov 3-cells in [78], are given at
the end of the section: the classification of finite Coxeter groups of rank 3 implies that there
are exactly five cases, corresponding to specific lengths of the braid relations. Theorem 5.6.4
improves Tits’ Proposition 4 of [201], reducing the set of generators of the fundamental group
of the graph of reduced expressions of w inW to the cells Zr,s,t. Moreover, as a byproduct, to
determine the action of an Artin monoid on a category, it suffices to attach to any generating
1-cell s ∈ S an endofunctor T(s) and to any generating 2-cell a natural isomorphism, such that
these satisfy coherence relations given by the Tits-Zamolodchikov 3-cells.

5.2. Homotopical properties of coherent presentations

5.2.1. Pseudofunctors. Given 2-categories C and D, a pseudofunctor from C to D is a suitably
weakened notion of 2-functor F : C→ D, with a strict compatibility with the composition ?1, but
only a weakened compatibility with the composition ?0. This compatibility is expressed by

(i) an invertible 2-cell Fa,b : F(a)F(b) ⇒ F(ab) of D, natural in a and b, for every
0-composable pair (a, b) of 1-cells of C,

(ii) an invertible 2-cell Fx : 1F(x) ⇒ F(1x) of D, for every 0-cell x of C,
that satisfy classical monoidal coherence relations. The latter imply that, for every sequence
(a1, . . . , an) of 0-composable 1-cells in C, there exists a unique invertible 2-cell

Fa1,...,an : F(a1) · · · F(an) ⇒ F(a1 · · ·an)

in D, built from the coherence isomorphisms of F. A 2-functor is just a pseudofunctor whose
coherence 2-cells are identities. Morphisms of pseudofunctors from C to D are pseudonatural
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transformations, giving rise to a category 2Catps(C,D). Its full subcategory whose objects are
the strict 2-functors is written 2Cat(C,D).

5.2.2. The canonical model structure on 2Cat. We recall elements of the model structure for
2-categories established in [131, 132]. Let C and D be 2-categories. A 2-functor F : C→ D is a
weak equivalence if it satisfies the following two conditions:

(i) every 0-cell y of D is equivalent to some 0-cell F(x), for x in C;
(ii) for all 0-cells x and x ′ in C, the induced functor F : C(x, x ′) → D(F(x), F(x ′)) is an

equivalence of categories.
Thus, F : C→ D is a weak equivalence if, and only if, there exists a pseudofunctor G : D→ C

that is a quasi-inverse for F, i.e. such that GF ' 1C and FG ' 1D. In particular, an equivalence
of 2-categories is a weak equivalence. We say that C is cofibrant if it is 1-free (its underlying
1-category is free), and that D is a cofibrant approximation of C if D is cofibrant and if there
exists a weak equivalence D→ C.

Coherent presentations of categories are closely related to their cofibrant approximations
in 2Cat:

5.2.3. Theorem ([78, Theorem 1.3.1]). Let C be a category, and X be a (3, 1)-polygraph that
presents C. The following assertions are equivalent:

(i) X is a coherent presentation of C.
(ii) X̃ is a cofibrant approximation of C.

5.2.4. The standard cofibrant approximation. For any 2-category C, we denote by Ĉ the
cofibrant 2-category with the same 0-cells as C and the following higher cells:

(i) the 1-cells of Ĉ are freely generated by the ones of C, with a in C written â when seen as a
generator of Ĉ;

(ii) the 2-cells from â1 · · · âm to b̂1 · · · b̂n in Ĉ are the 2-cells from a1 · · ·am to b1 · · ·bn
in C, with the same compositions as in C.

The canonical projection Ĉ� C is the identity on 0-cells and maps each generating 1-cell â to a,
and each 2-cell to itself: this is a weak equivalence, whose quasi-inverse lifts a 2-cell f : a⇒ b to
its distinguished representative f̂ : â⇒ b̂. Hence, the 2-category Ĉ is a cofibrant approximation
of C, called the standard cofibrant approximation of C.

When C is a category, the 2-category Ĉ is the 2-category presented by the standard coherent
presentation of C given in §3.3.3. Moreover, a 2-functor from Ĉ to a 2-category D is the same as
a pseudofunctor from C to D, yielding an isomorphism 2Catps(C,D) ' 2Cat(Ĉ,D).

5.2.5. Proposition. Let C be a cofibrant 2-category. For every 2-category D, the canonical
inclusion 2Cat(C,D)→ 2Catps(C,D) is an equivalence of categories that is natural in D.

Proof. A quasi-inverse of the canonical inclusion is given by the strictification functor ·̂ :
2Catps(C,D) → 2Cat(C,D) whose construction is summarised as follows. We refer to [78,
§5.2] for the details.

We fix a pseudofunctor F : C→ D, and define a 2-functor F̂ : C→ D. On 0-cells, F̂ takes the
same values as F. Since C is cofibrant, its underlying 1-category is free: on generating 1-cells,
F̂ is equal to F and, then, it is extended by functoriality on every 1-cell. From the monoidal
coherence relations satisfied by F, there is a unique invertible 2-cell Fa : F̂(a) ⇒ F(a), built
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from the coherence 2-cells of F, for every 1-cell a of C. If f : a ⇒ b is a 2-cell of C, we put
F̂(f) = Fa ?1 F(b) ?1 F

−
b .

Let F,G : C→ D be pseudofunctors, and α : F⇒ G be a pseudonatural transformation. Let
us define a pseudonatural transformation α̂ : F̂⇒ Ĝ. For a 0-cell x of C, we take α̂x = αx. If
a : x→ y is a 1-cell of C, we define α̂a as the following invertible 2-cell of D:

α̂a =

F(y)
αy

��

F(x)

F̂(a)
,,

F(a)

CC

Fa

αx ''

G(y)

G(x)

G(a)
77

Ĝ(a)

OO

G−
a

αa

To conclude the proof, it is sufficient to check that, for every pseudofunctor F : C→ D, there
exists a pseudonatural isomorphism ϕF : F̂ ⇒ F that is itself natural in F. We define ϕF as
follows:

(i) If x is a 0-cell of C, then F̂(x) = F(x) and we take (ϕF)x = 1x.
(ii) If a : x→ y is a 1-cell of C, then we put (ϕF)a = Fa.

These data satisfy the required coherence properties, and the naturality condition follows from the
definition of α̂.

5.2.6. Lemma. Let C and D be 2-categories. The following assertions are equivalent:
(i) The 2-categories C and D are pseudoequivalent, i.e. there exist pseudofunctors F : C→ D

and G : D→ C, and pseudonatural isomorphisms GF ' 1C and FG ' 1D.
(ii) For every 2-category E, there exists an equivalence of categories

2Catps(C,E) ≈ 2Catps(D,E)

that is natural in E.

Proof. Assume that C and D are pseudoequivalent. As a consequence, for all pseudofunctors
H : C → E and K : D → E, we have HGF ' H and KFG ' K. Thus the functors 2Catps(F,E)
and 2Catps(G,E), respectively mapping pseudofunctors K : D→ E to KF and H : C→ E to HG,
form the required equivalence of categories.

Conversely, assume that, for every 2-category E, we have an equivalence of categories
2Catps(C,E) ≈ 2Catps(D,E) natural in E. This equivalence consists of two functors

ΦE : 2Catps(C,E)→ 2Catps(D,E) and ΨE : 2Catps(D,E)→ 2Catps(C,E),

and, for all pseudofunctors H : C→ E and K : D→ E, two pseudonatural isomorphisms

ΨEΦE(H) ' H and ΦEΨE(K) ' K,
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such that, for all 2-categories E and E ′ and every pseudofunctor H : E→ E ′:

2Catps(C,E)
ΦE

//

2Catps(C, H)
��

=

2Catps(D,E)

2Catps(D, H)
��

ΨE
//

=

2Catps(C,E)

2Catps(C, H)
��

2Catps(C,E
′)

ΦE ′
// 2Catps(D,E

′)
ΨE ′

// 2Catps(C,E
′).

Define the pseudofunctors F : C → D and G : D → C by F = ΨD(1D) and G = ΦC(1C). The
naturality condition on Φ, for E = C, E ′ = D and H = F, implies F ◦ΦC(K) = ΦD(F ◦ K) for
every pseudofunctor K : C→ C. Thus, in the special case K = 1C, we get

FG = ΦD(F) = ΦD ◦ ΨD(1D) ' 1D.

In a symmetric way, the naturality condition on Ψ gives GF ' 1C.

Proposition 5.2.5 and Lemma 5.2.6 imply

5.2.7. Proposition. Let C and D be 2-categories, with D cofibrant. The following assertions
are equivalent:

(i) The 2-category D is a cofibrant approximation of C.
(ii) For every 2-category E, there exists an equivalence of categories

2Catps(C,E) ≈ 2Cat(D,E)

that is natural in E.

Finally, Theorem 5.2.3 and Proposition 5.2.7 give

5.2.8. Theorem. Let C be a category, and X be a (3, 1)-polygraph that presents C. The following
assertions are equivalent:

(i) X is a coherent presentation of C.
(ii) For every 2-category D, there is an equivalence of categories

2Catps(C,D) ≈ 2Cat(X̃,D)

that is natural in D.

5.3. Tietze equivalence and Tietze transformations

5.3.1. Tietze equivalence of (3, 1)-polygraphs. Two (3, 1)-polygraphs X and Y are Tietze-
equivalent if

(i) the 1-categories X and Y they present are isomorphic,
(ii) the (2, 1)-categories X̃ and Ỹ they present are equivalent.

As a consequence, two Tietze-equivalent (3, 1)-polygraphs have the same 0-cells, up to a bijection,
and two coherent presentations of the same category are Tietze-equivalent.
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5.3.2. Tietze transformations. Let X be a (3, 1)-polygraph. A 2-cell (resp. 3-cell, resp. 3-
sphere) x of X is collapsible if

(i) the target of x is a 1-cell (resp. 2-cell, resp. 3-cell) of X,
(ii) the source of x satisfies Cell(s(x)) ⊆ X \ {t(x)}.

An elementary Tietze transformation of X is any of the following six operations:
(i) Coherent adjunction or elimination of a 1-cell x and a collapsible 2-cell α : u⇒ x:

• u
// •

ιu
//

πα
oo •

u
##

x

;;α�� •

(ii) Coherent adjunction or elimination of a 2-cell α and a collapsible 3-cell A : fV α of X:

•
��

CCf
��

•
ιf
//

πA
oo •

��

CCf
��

α
��

A
%9 •

(iii) Coherent adjunction or elimination of a 3-cell γ:

•
��

CC�� ��

A
%9 •

ιA
//

π(A,γ)
oo •

��

CC�� ��

A
%9

γ
%9 •

A set Y of 2-cells (resp. 3-cells, resp. 3-spheres) of X is collapsible if, for every x of Y,
(i) the target of x is a 1-cell (resp. 2-cell, resp. 3-cell) of X,
(ii) the source of x satisfies Cell(s(x)) ⊆ X \ t(Y).

The elementary Tietze transformations are generalised in a straightforward way to coherent
adjunctions of eliminations of collapsible sets of cells or spheres. If X and Y are (3, 1)-polygraphs,
a Tietze transformation fromX to Y is a composite of generalised elementary Tietze transformations.

5.3.3. Theorem. Two (3, 1)-polygraphs X and Y are Tietze-equivalent if, and only if, there exists
a Tietze transformation between them.

Proof. To prove that a Tietze transformation implies Tietze-equivalence, it is sufficient to check
the result for each one of the six types of generalised elementary Tietze transformations on a fixed
(3, 1)-polygraph X. By definition, the 3-functors π ◦ ι are all equal to the identity of X>, and
the 3-functors ι ◦ π induce isomorphisms on the presented categories, and equivalences on the
presented 2-categories.

Conversely, assume that X and Y are (3, 1)-polygraphs, and that F : X̃→ Ỹ is an equivalence.
Choose a weak inverse G : Ỹ → X̃ for F, and pseudonatural isomorphisms σ : GF ⇒ 1

X̃
and

τ : FG ⇒ 1
Ỹ
, in such a way that the quadruple (F,G, σ, τ) is an adjoint equivalence, which
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is always feasible [154, Chap. IV, § 4, Theorem 1], and means that the relations Fσ = τF and
Gτ = σG hold. These data lift to obtain 3-functors F̂ : X> → Y> and Ĝ : Y> → X>, 3-cells

GF(u ′) σ̂u ′

�*
σ̂α��GF(u)

ĜF̂(α) +?

σ̂u
#7

u ′

u α

4H

FG(v ′) τ̂v ′

�)
τ̂β��FG(v)

F̂Ĝ(β) ,@

τ̂v
#7

v ′

v β

Ui

of X> and Y>, for every 2-cell α : u⇒ u ′ of X and every 2-cell β : v⇒ v ′ of Y, and 3-cells

FGF(x)

F̂(σ̂x)

�,

τ̂F(x)

2F
F(x)λx�� GFG(y)

Ĝ(τ̂y)

�-

σ̂G(y)

2F
G(y)ρy��

of Y> and X>, for every 1-cell x of X and every 1-cell y of Y. Then, we build a (3, 1)-polygraph Z
that contains both X and Y, together with coherence cells that correspond to the Tietze equivalence.
The (3, 1)-polygraph Z has the same 0-cells as X (and as Y) and it contains the 1-cells, 2-cells
and 3-cells of X and Y, plus the following cells, indexed by cells of X and Y, and extended by
functoriality to all cells of X> and Y>:

(i) Two 2-cells ϕx : F(x)⇒ x and ψy : G(y)⇒ y, for all 1-cells x of X and y of Y.
(ii) Two 3-cells ϕα and ψβ, for all 2-cells α : u⇒ u ′ of X and β : v⇒ v ′ of Y,

F(u)

F̂(α)
"6
F(u ′)

ϕu ′

�#
u

ϕ−
u

.B

α
';

ϕα��
u ′

G(v)

Ĝ(β)
"6
G(v ′) ψv ′

�#
v

ψ−
v .B

β

';

ψβ��
v ′.

(iii) Two 3-cells ξx and ηy, for all 1-cells x of X and y of Y,

GF(x) σ̂x

�&ξx��
F(x)

ψ−
F(x) ,@

ϕx

)= x

FG(y) τ̂y

�&ηy��
G(y)

ϕ−
G(y) ,@

ψy

(< y.

Finally, we construct a Tietze transformation T from X to Z, step-by-step (see [78, Theorem 2.1.3]
for the details): adjunction of the cells y of Y, with all the cells ψy; adjunction of the coherence
cells ϕx for X, with all the cells ξx; adjunction of the remaining coherence cells ηy for Y.
By symmetry, we exchange the roles of X and Y, replace coherent adjunctions with coherent
eliminations, and reverse the order of the operations to obtain a Tietze transformation U from Z
to Y, and consider the composite UT to get the result.
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5.3.4. Corollary. Assume that C is a category, and that X and Y are (3, 1)-polygraphs. If X is a
coherent presentation of C, and if there exists a Tietze transformation from X to Y, then Y is a
coherent presentation of C.

Proof. If X is a coherent presentation of C, then the (2, 1)-category X̃ is a cofibrant approximation
of C by Theorem 5.2.3. Moreover, if there exists a Tietze transformation from X to Y, then X
and Y are Tietze-equivalent by Theorem 5.3.3, so that the (2, 1)-categories X̃ and Ỹ are equivalent.
As a consequence, Ỹ is also a cofibrant approximation of C and, by Theorem 5.2.3, Y is a coherent
presentation of C.

5.3.5. Higher Nielsen transformations. We introduce higher-dimensional analogues of Nielsen
transformations to perform replacements of cells in (3, 1)-polygraphs. The elementary Nielsen
transformations on a (3, 1)-polygraph X are the following operations:

(i) The replacement of a 2-cell or a 3-cell by a formal inverse.
(ii) The replacement of a 3-cell γ : fV g by a 3-cell γ̃ : h ?1 f ?1 kV h ?1 g ?1 k, where h

and k are 2-cells of X>.
As for elementary Tietze transformations, elementary Nielsen transformations can also be
performed on sets of cells. A Nielsen transformation is a composition of (generalised) elementary
Nielsen transformations. Nielsen transformations are Tietze transformations: indeed, for example,
the second one is the composition of the following elementary Tietze transformations, namely the
coherent adjunction ιh?1γ?1k of a 3-cell γ̃, followed by the coherent elimination π(h−?1γ̃?1k−,γ)

of γ.
In what follows, we perform coherent eliminations of cells that are collapsible only up to a

Nielsen transformation. If x is equal, up to a Nielsen transformation, to a collapsible cell (or
sphere) x̃, we abusively denote by πx the corresponding coherent elimination, with a precision
about the eliminated cell t(x̃) when it is not clear from the context.

5.4. Homotopical completion and homotopical reduction

5.4.1. Homotopical completion. Let X be a terminating 2-polygraph, equipped with a total
termination order 6. A homotopical completion of X is a (3, 1)-polygraph that is a Squier
completion of X and whose underlying 2-polygraph is a Knuth-Bendix completion of X with
respect to 6. Note that, instead of computing a Knuth-Bendix completion and, then, a Squier
completion, both constructions can be performed simultaneously by adding the coherence 3-cells
during the examination of the critical branchings.

5.4.2. Example. From [122], we consider the following presentation of the braid monoid B+
3 :

X =

(
s, t, a

∣∣∣∣ ta α
=⇒ as , st

β
=⇒ a

)
This presentation is obtained from Artin’s presentation (s, t | tst⇒ sts) by coherent adjunction
of the Coxeter element st and the 2-cell β. The deglex order generated by t > s > a proves the
termination of X. The following (3, 1)-polygraph is a homotopical completion of X:(

s, t, a

∣∣∣∣ ta α
=⇒ as , st

β
=⇒ a , sas

γ
=⇒ aa , saa

δ
=⇒ aat

∣∣∣∣A,B,C,D)
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where A, B, C and D are the following 3-cells:

aa

sta

βa *>

sα  4
sas

γ

J^

A��

aat

sast

γt *>

saβ  4
saa

δ

J^

B��

aaas

C��sasas

γas ,@

saγ �2

aata

aaα^r

saaa δa

9M

aaaa

D��

aaast
aaaβey

sasaa

γaa +?

saδ
�2
saaat

δat
%9 aatat

aaαt

EY

5.4.3. Homotopical reduction. Let X be a (3, 1)-polygraph. A collapsible part of X is a
triple Y = (Y2, Y3, Y4) made of a family Y2 of 2-cells of X, a family Y3 of 3-cells of X, and a
family Y4 of 3-spheres of X>, such that the following conditions are satisfied:

(i) each Yk is collapsible,
(ii) no y of Yk appears as the target of an element of Yk+1,
(iii) there exists wellfounded order relations on the 1-cells, 2-cells and 3-cells of X such that, for

every y in every Yk, the target of y is strictly greater than every element of Cell(s(y)).
In that case, the recursive assignment

πY(x) =


πY(s(y)) if x = t(y) for y in Y,
1πY(s(x)) if x is in Y,
x otherwise

defines, by wellfounded induction, a 3-functor πY : X> → X>/Y. The homotopical reduction
ofX with respect to Y is the (3, 1)-polygraph denoted byX/Y and obtained fromX by removing the
cells of Y and their targets, and by replacing the source and target maps of X by their compositions
with πY . As a consequence, X/Y is Tietze-equivalent to X, and the free (3, 1)-category (X/Y)>
is isomorphic to X>/Y. In practice, we consider triples Y = (Y2, Y3, Y4) that are only collapsible
up to a Nielsen transformation.

Assume that X is a terminating 2-polygraph, with a fixed termination order 6. A homotopical
completion-reduction of X is a (3, 1)-polygraph obtained by a homotopical reduction with respect
to a collapsible part, applied to a homotopical completion of X. Theorems 3.2.6 and 5.3.3 imply

5.4.4. Theorem. Assume that X is a terminating presentation of a category C. Then, every
homotopical completion-reduction of X is a coherent presentation of C.

5.4.5. Example. In Example 5.4.2, we have obtained a coherent presentation Y of B+
3 by

homotopical completion. We consider the collapsible part Z of Y consisting of the two 3-spheres

aata
aaα %9

Ba��

aaas

sasta

γta &:

saβa %9

sasα $8

saaa

δa

L`

saA��

sasas

saγ

L`

ω1
�?

aata
aaα

�'
sasta

γta *>

sasα �3

= aaas

C��sasas

γas
/C

saγ �3

aata

aaα_s

saaa δa

7K
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aaast
aaaβ %9

Ct ��

aaaa

sasast

γast &:

saγt %9

sasaβ $8

saaat
δat

%9

saB��

aatat

aaαt

\p

sasaa

saδ

L`

ω2
�?

aaast aaaβ

�(
sasast

γast +?

sasaβ  4

= aaaa

D��

aaast
aaaβey

sasaa
γaa

.B

saδ �3
saaat

δat
%9 aatat

aaαt

EY

together with the 3-cellsA and B, coherently adjoined with the 2-cells γ and δ during homotopical
completion, and the 2-cell β : st⇒ a that defines the redundant generator a. We have thatω1,
ω2, A, B and β are collapsible (up to a Nielsen transformation), with respective targets C, D, γ,
δ and a. We conclude that Z is collapsible with the wellfounded orders

D > C > B > A, δ > γ > β > α, a > t > s.

Thus the homotopical reduction Y/Z is the (3, 1)-polygraph (s, t | tst⇒ sts | ∅) which, by
Theorem 5.4.4, is a coherent presentation of B+

3 .

5.5. Garside’s coherent presentation of Artin monoids

5.5.1. Recollections on Coxeter groups. Assume that W is a Coxeter group. For u ∈ W, a
reduced expression of u is a representative of minimal length of u in S∗, and the length of u is
denoted by l(u) and defined as the length of any of its reduced expressions. The Coxeter groupW
is finite if, and only if, it admits an element of maximal length [36, Theorem 5.6]; in that case,
this element is unique and denoted by w0(S). For I ⊆ S, the subgroup ofW spanned by I is also
a Coxeter group, denoted byWI.

For all u and v inW, we have l(uv) 6 l(u) + l(v) and we use distinct graphical notations
depending on whether the equality holds or not:

u v ⇔ l(uv) = l(u) + l(v) and u v
× ⇔ l(uv) < l(u) + l(v).

We generalise the notation for a greater number of elements ofW. For example, in the case of
three elements u, v and w ofW, we write u v w if both equalities l(uv) = l(u) + l(v) and
l(vw) = l(v) + l(w) hold. This situation splits in the following two mutually exclusive subcases:

u v w ⇔
(
u v w and l(uvw) = l(u) + l(v) + l(w)

)
,

u v w
×

⇔
(
u v w and l(uvw) < l(u) + l(v) + l(w)

)
.

5.5.2. Artin monoids. Fix a Coxeter groupW. The Artin monoid associated toW is the monoid
denoted by B+(W), with the same presentation asW except for the relations s2 = 1. If u and v
are elements of B+(W), we say that u is a divisor of v, or that v is a multiple of u, if there exists
an element u ′ in B+(W) such that uu ′ = v. In that case, the element u ′ is unique and called the
complement of u in v [36, Proposition 2.3]; moreover, if v is inW, seen as an element of B+(W)
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by the canonical embedding (given by Matsumoto’s theorem, see [80, Theorem 1.2.2]), then we
also have u and u ′ inW and u u ′ . If two elements u and v of B+(W) have a common multiple,
then they have a least common multiple, lcm for short [36, Proposition 4.1].

The Artin monoid B+(W) admits, as an alternative presentation, the 2-polygraph Gar2(W),
called Garside’s presentation of B+(W), whose 1-cells are the elements ofW+ =W \ {1}, and
with one 2-cell αu,v : u|v⇒ uv whenever u v holds. Here, we write uv for the product inW
and u|v for the product in the free monoid overW.

5.5.3. Proposition. For every Coxeter group W, the monoid B+(W) admits, as a coherent
presentation, the (3, 1)-polygraph with one 0-cell, one 1-cell for every element ofW+, the 2-cells

u|v
αu,v

%9 uv and u|vw
βu,v,w

%9 uv|w,

respectively for all u, v ofW+ with u v, and all u, v,w ofW+ with u v w
×

, and the following
nine families of 3-cells, indexed by all the possible elements ofW+:

uv|w αuv,w

�%
Au,v,w��u|v|w

αu,v|w +?

u|αv,w
�3

uvw

u|vw
αu,vw

8L
u|v|w

αu,v|w
�3

u|αv,w �0

uv|w

u|vw
βu,v,w

:N
Bu,v,w
��

uv|wx βuv,w,x
�)

Cu,v,w,x��u|v|wx

αu,v|wx +?

u|βv,w,x
�2

uvw|x

u|vw|x αu,vw|x

Ui

u|v|wx

αu,v|wx

!5

u|βv,w,x �.

uv|wx

u|vw|x
βu,v,w|x

%9 uv|w|x
uv|αw,x

;O
Du,v,w,x��

uv|w|x uv|αw,x
�)

Eu,v,w,x��u|vw|x

βu,v,w|x +?

u|αvw,x
�3

uv|wx

u|vwx βu,v,wx

Ui

uv|w|xy uv|αw,xy

�1
u|vw|xy

βu,v,w|xy (<

u|βvw,x,y
�0

uv|wxy

u|vwx|y
βu,v,wx|y

%9 uv|wx|y uv|αwx,y

6J
Fu,v,w,x,y��

uv|w|xy uv|βw,x,y
�+

Gu,v,w,x,y��u|vw|xy

βu,v,w|xy +?

u|βvw,x,y
�3

uv|wx|y

u|vwx|y βu,v,wx|y

3G

uv|xy
βuv,x,y

�#
u|vxy

βu,v,xy
0D

βu,vx,y

+?
uvx|y

Hu,v,x,y
��

uv1|w1 = uv1|x1y βuv1,x1,y
�*

Iu,v1,w1,v2,w2��
u|v1w1

=
u|v2w2

βu,v1,w1 -A

βu,v2,w2
�1

uv1x1|y
=

uv2x2|y

uv2|w2 = uv2|x2y βuv2,x2,y

4H
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Proof. Let 6 denote the strict order on the elements of the free monoidW∗ that first compares
their length as elements of W∗, and then the length of their components as elements of W,
starting from the right. For example, u1|u2 < v1|v2|v3 (first condition) and uv|w < u|vw if
u v w (second condition). This is a termination order on Gar2(W): for every 2-cell αu,v of
Gar2(W), we have u|v > uv. Hence the 2-polygraph Gar2(W) terminates. Then, we check that
the (3, 1)-polygraph of Proposition 5.5.3 is a homotopical completion of Gar2(W) with respect
to 6. The 2-polygraph Gar2(W) has exactly one critical branching for all u, v and w of W+

such that u v w:

uv|w u|v|w
αu,v|wey

u|αv,w%9 u|vw

Then there are two possibilities: if u v w , the branching is confluent (generating the 3-
cellAu,v,w), and, if u v w

×
, the branching is made confluent by adjunction of the 2-cell βu,v,w

(generating the 3-cell Bu,v,w). The family β of 2-cells creates new critical branchings, each one
being confluent, generating all the other 3-cells C, . . . , I, see [78, Proposition 3.2.1].

5.5.4. Garside’s coherent presentation. LetW be a Coxeter group. We callGarside’s coherent
presentation of B+(W), and denote by Gar3(W), the (3, 1)-polygraph obtained from Gar2(W)
by adjunction of one 3-cell

uv|w αuv,w

�%
Au,v,w��u|v|w

αu,v|w +?

u|αv,w
�3

uvw

u|vw
αu,vw

8L

for all u, v and w ofW+ such that u v w .

5.5.5. Theorem. For every Coxeter groupW, the Artin monoid B+(W) admits Gar3(W) as a
coherent presentation.

Proof. We use homotopical reduction on the (3, 1)-polygraph of Proposition 5.5.3 with the
following collapsible part: seven families of 3-spheres generated by the triple critical branchings,
with targets the 3-cells C, . . . , I, and the family B of 3-cells, with target the 2-cells β, see [78,
§3.2.2]. The result is Gar3(W), and we invoke Theorem 5.4.4 to conclude.

Theorems 5.2.8 and 5.5.5 imply

5.5.6. Corollary ([67, Theorem 1.5]). LetW be a Coxeter group. Then, for every 2-category C,
the categories 2Catps(B+(W),C) and 2Cat(G̃ar3(W),C) are equivalent, and this equivalence is
natural in C.

5.6. Artin’s coherent presentation of Artin monoids

5.6.1. Artin’s coherent presentation. Fix a Coxeter groupW, with a totally ordered set S of
generators. We call Artin’s presentation of B+(W) the 2-polygraph Art2(W) with one 0-cell,
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the elements of S as 1-cells, and one 2-cell γs,t : 〈ts〉mst ⇒ 〈st〉mst for each braid relation and
for t > s.

5.6.2. Classification of the cells of Garside’s coherent presentation. Ifu is an element ofW+,
the smallest divisor of u is denoted by du and defined as the smallest element of S that is a divisor
of u (inW). Let (u1, . . . , un) be a family of elements ofW+ such that

l(u1 · · ·un) = l(u1) + · · ·+ l(un).

For every k ∈ {1, . . . , n}, we write sk = du1···uk . We have s1 > s2 > · · · > sn since each sk
divides u1 · · ·ul for l > k. Moreover, the elements s1,. . . , sk have u1 · · ·uk as common
multiple, so that their lcm w0(s1, . . . , sk) exists and divides u1 · · ·uk, and each subgroup
W{s1,...,sk} is finite.

We say that (u1, . . . , un) is essential if the following conditions are satisfied:
(i) u1 ∈ S,
(ii) uk+1 is the complement of w0(s1, . . . , sk) in w0(s1, . . . , sk+1) for every k < n.

In that case, u1 = s1 and we have s1 > · · · > sn, since each uk is different from 1. Thus,
(u1, . . . , un) is uniquely determined by the elements s1, . . . , sn of S such that s1 > · · · > sn.

Assume that (u1, . . . , un) is not essential, and set k as the minimal element of {1, . . . , n}
such that (u1, . . . , uk) is not essential. If k > 2, there are two possibilities, depending if
w0(s1, . . . , sk−1) = w0(s1, . . . , sk) or not, which is equivalent to the equality sk−1 = sk since
s1 > · · · > sk−1 > sk. If sk−1 = sk, we say that (u1, . . . , un) is collapsible. If sk−1 > sk,
then we have uk = vw with v and w inW+ such that v w and (u1, . . . , uk−1, v) is essential:
we say that (u1, . . . , un) is redundant. We also say that (u1, . . . , un) is redundant if k = 1, in
which case u1 = s1w with w inW+.

By definition, the family (u1, . . . , un) is either essential, collapsible or redundant, giving a
three-block partition of the cells of Gar3(W) and 3-spheres of Gar3(W)>.

5.6.3. From Garside’s to Artin’s coherent presentation. We define X as the collection of all
the 2-cells and 3-cells of Gar3(W) and the 3-spheres of Gar3(W)> whose indexing family is
collapsible. This is a collapsible part of Gar3(W), see the details in [78, §4.2]. For example, the
3-cells of X are the

su|v αsu,v

�#
As,u,v��s|u|v

αs,u|v ,@

s|αu,v
�2

suv

s|uv
αs,uv

:N

with either (a) s = dsu or (b) s > dsu = dsuv and su = w0(s, dsu). Those 3-cells are
collapsible up to a Nielsen transformation, with target the 2-cells: (a) αsu,v or (b) αs,uv. By
hypothesis, the corresponding indexing pair (su, v) or (s, uv) is redundant, so that none of those
2-cells is in X. Finally, we use a wellfounded order on 2-cells that compares, alternatively, the
lengths of indices and their smallest divisor in S, to check that each redundant 2-cell is strictly
greater than the other 2-cells appearing in the source and target of As,u,v.

As a consequence, the homotopical reduction of Gar3(W) with respect to X eliminates all the
cells, except for the ones whose indexing family is essential, and the remaining cells have their
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source and target modified by application of the projection πX. Thus, the 1-cells of Gar3(W)/X
are the elements of S. The essential 2-cells of Gar3(W)/X are the αs,u such that s > dsu and
su = w0(s, dsu): there is one such 2-cell for all t > s in s such that W{s,t} is finite, with
source 〈ts〉mst and target 〈st〉mst . Thus, the 2-polygraph underlying Gar3(W)/X is isomorphic
to Artin’s presentation Art2(W) of B+(W). Finally, the essential 3-cells are the As,u,v such
that s > dsu > dsuv, su = w0(s, dsu) and suv = w0(s, dsu, dsuv). Hence, there is one such
3-cell for all t > s > r in S such thatW{r,s,t} is finite. According to the classification of finite
Coxeter groups [33, Chap. VI, §4, Theorem 1], there are five types of finite Coxeter groups of
rank 3:

r s t

A1 ×A1 ×A1

r s tp

I2(p)×A1 36p<∞
r s t

A3

r s t4

B3

r s t5

H3

For each case, the inductive definition of the projection πX is used to compute the shape of each
3-cell Zr,s,t = πX(As,u,v), for each one of the five cases. In practice, we have written a small
Python library for these computations [94], based on the PyCox library [79]. The results are given
in the following theorem, and can also be found in string diagrams in [70, Definition 4.3].

5.6.4. Theorem. Fix a Coxeter groupW, with a totally ordered set of generators S. The Artin
monoid B+(W) admits, as a coherent presentation, the (3, 1)-polygraphArt3(W)made of Artin’s
presentation Art2(W), extended with one 3-cell Zr,s,t for all elements t > s > r of S such that
the subgroupW{r,s,t} is finite, and whose shape depends only on the Coxeter type ofW{r,s,t}:

str
sγrt%9 srt γrst

�"
tsr

γstr
,@

tγrs �2

rst

trs
γrts
%9 rts

rγst

<PZr,s,t(A
3
1)

st〈rs〉p−1
sγrt〈rs〉p−2%9 (··· ) %9
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From Theorem 5.6.4, we deduce

5.6.5. Corollary ([201, Proposition 4], [186, Theorem 2.17]). Fix a Coxeter group W, with
generating set S. The monoid B+(W) admits, as a coherent presentation, Artin’s presentation
extended with all the 3-spheres of Art2(W)> whose 1-source is a reduced expression of WI,
where I ranges among the three-element subsets of S such thatWI is finite.

Theorems 5.2.8 and 5.6.4 imply the following generalisation of [67, §1.3]:

5.6.6. Corollary. LetW be a Coxeter groupW. Then, for every 2-category C, the categories
2Catps(B

+(W),C) and 2Cat(Ãrt3,C) are equivalent, and this equivalence is natural in C.
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Chapter 6
Quadratic normalisations for monoids

In this chapter, given a set S and a natural number p, we identify Sp with the length-p elements
of the free monoid S∗. If ϕ : Sp → Sp is a map, for n > p and 1 6 i 6 n− p+ 1, we denote
by ϕi : Sn → Sn the map that applies ϕ to the entries in positions i . . . i + p − 1, and, for
i1, . . . , in > 1, we write ϕi1···in for the composite ϕin · · ·ϕi1 . If ϕ : S∗ → S∗ is a graded map,
we writeϕ for its restriction to S2, andϕ(p) for its restriction to Sp. Finally, form > 0, we write
12[m] and 21[m] for the alternating elements 121... and 212... of {1, 2}∗ of lengthm.

6.1. Introduction

6.1.1. Context. A normal form for a monoidM, with a specified generating subfamily S, is a
map that assigns to each element ofM a distinguished representative element of S∗. Our aim
in [63] was to investigate a certain type of such normal forms and, more precisely, the associated
normalisation processes, that is, the syntactic transformations that lead from an arbitrary element
of S∗ to a normal one. There, we restricted to geodesic normal forms, which select representatives
of minimal length, and investigated the quadratic case, that is, when some locality conditions are
satisfied: that an element of S∗ is normal if, and only if, each of its length-two factors are normal,
and that one can always transform an element of S∗ into a normal one by a finite sequence of
steps, each of which normalising a length-two factor.

This general framework includes two well-known classes of normalisation processes: those
associated with Garside families as investigated in [62] and [60], building on the seminal example
of the greedy normal form in Artin monoids [1, 185, 71], and those associated with quadratic
2-polygraphs as investigated for instance in [78] for Artin monoids and in [29, 44] for plactic
monoids. So the present development can be seen as an effort to unify various approaches and
understand their common features. This programme is made natural by the observation that, in
spite of their unrelated definitions, the normalisation processes arising in the above mentioned
situations share common mechanisms: for instance, in each case, an element of S3 can be
normalised in three steps, successively normalising the length-two factors in position 2-3, then in
position 1-2, and in position 2-3 again.

Krammer’s ideas had a seminal influence in our approach, in particular for the connection
between normalisation and the monoid underlying normalisations of class (4, 3), which he
investigated in [130]. A similar connection was independently discovered by Hess and Ozornova
in [107, 172, 108], partly building on unpublished work by Rodenhausen. The approach presented
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in this chapter is close to theirs in the case of graded monoids. In this case, beyond minor
terminology discrepancies, the factorability structures of [108] correspond to what we call
normalisations of class (4, 3). But, in the general case, the two viewpoints are not directly
comparable because of divergent treatment of units and invertible elements: in both settings
a “dummy” element is used, but with different assumptions, resulting in different notions
of complexity and different conclusions. It seems that every factorability structure yields a
normalisation of class (4, 5), but understanding which normalisations of class (4, 5) arise in this
way remains open.

6.1.2. Summary. The central technical notion is that of a normalisation, introduced in §6.2,
which is a pair (S,N) made of a set S and an idempotent length-preserving map N from the free
monoid S∗ to itself: the intuition is that N(w) is the result of normalising w, that is, N(w) is the
distinguished element in the equivalence class of w. The normalisation automatically determines
the associated monoid via the defining relations w = N(w), and we take it as our basic object of
investigation. We call quadratic a normalisation (S,N) such that an elementw of S∗ isN-normal
(meaning N(w) = w) if, and only if, each length-two factor of w is N-normal, and such that one
can go from w to N(w) by applying a finite sequence of shifted copies of the restriction N of N
to S2.

We then introduce, in §6.3, for every quadratic normalisation, a class, which is a pair of natural
numbers describing the complexity of normalisation on S3: by definition, if w belongs to S3,
then N(w) is equal to N21[m](w) or N12[m](w), meaning a length-m sequence of alternate
applications of N in positions 1-2 and 2-3, and we say that the class is (m,n) if one always
reaches the normal form after at mostm steps when starting from the left, and n steps from the
right. We observe that the class, if not infinite, has the form (m,n) with |m− n| 6 1, and that a
quadratic normalisation of class (m,n) is of class (m ′, n ′) for all m ′ > m and n ′ > n. We
give a number of examples witnessing possible behaviours for the class and its analogue for the
normalisation of longer elements of S∗ in §3.3 of [63]. However, most of our general results
involve quadratic normalisations of class (4, 3) or (3, 4).

The first main result, recalled in §6.4, is an axiomatisation of normalisations of class (4, 3) in
terms of the restriction of the normalisation map to S2:

Theorem 6.4.7. If (S,N) is a quadratic normalisation of class (4, 3), then the restrictionN ofN
to S2 is idempotent and satisfiesN212 = N2121 = N1212. Conversely, if ϕ is an idempotent map
on S2 that satisfies ϕ212 = ϕ2121 = ϕ1212, there exists a quadratic normalisation (S,N) of
class (4, 3) satisfying ϕ = N.

The direct implication extends to quadratic normalisations of classes higher than (4, 3), but the
converse direction does not: a map on S2 normalising elements of S3 needs not normalise elements
of Sp for p > 3. The proof of Theorem 6.4.7 involves the monoidMp studied in [130] and [108],
which is an asymmetric version of Artin monoids where the braid relation s2s1s2 = s1s2s1 is
replaced with s2s1s2 = s1s2s1s2 = s2s1s2s1. Let us mention that [108, Theorem 3.4] is an
analogue of Theorem 6.4.7 for factorability structures.

The second main result, in §6.5, involves termination. Every quadratic normalisation (S,N)
gives rise to a quadratic 2-polygraph, namely the one with 2-cells w ⇒ N(w) for every non-
N-normal element w of S2. By construction, this 2-polygraph is confluent and normalising,
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meaning that, starting from any element of S∗, there exists a finite sequence of rewriting steps
leading to a uniqueN-normal element of S∗, but its convergence, meaning also that any sequence
of rewriting steps is finite, is a different question. We prove

Theorem 6.5.3. If (S,N) is a quadratic normalisation of class (3, 4) or (4, 3), then the associated
2-polygraph is convergent, with every sequence of rewriting steps starting from an element of Sp
having length at most 2p − p− 1.

The result can be compared with Proposition 6.5.1, stating that, in the class (3, 3), every sequence
of rewriting steps starting from an element of Sp has length at most p(p− 1)/2, and it is optimal,
in the sense that there exists a quadratic normalisation of class (4, 4)whose associated 2-polygraph
is not convergent. The proof of Theorem 6.5.3 is delicate and relies on a diagrammatic tool
called the domino rule. Theorem 6.5.3 exhibits a strong difference between the factorability
structures of [108] and normalisations of class (4, 3), since the former can induce nonterminating
2-polygraphs, as witnessed by the counterexample of [108, Appendix, Proposition 7]. However,
there is a connection between Theorem 6.5.3 and [108, Theorem 7.3], which states termination in
the case of a factorability structure that obeys the domino rule, hence, as a normalisation, is of
class (4, 3). The arguments are different, and it is not clear how restrictive it is for a normalisation
of class (4, 3) to be associated with a factorability structure.

As mentioned above, Garside normalisation [60] integrates into quadratic normalisations,
more precisely normalisations of class (3, 3) in the case of a bounded Garside family, and of
class (4, 3) in the general case. It is natural to ask for a characterisation of Garside systems inside
the family of all normalisations of class (4, 3). This is the last one of our main results, proved
in §6.6:

Theorem 6.6.3. Call a normalisation (S,N) left-weighted if, for all s and t in S, the element s
left-divides the first entry of N(st) in the associated monoid. Then, for every normalisation
(S,N) such that the associated monoidM is left-cancellative and contains no nontrivial invertible
element, the family S is a Garside family inM and (S,N) is the derived normalisation if, and
only if, (S,N) is of class (4, 3) and left-weighted.

The proof relies on nontrivial properties of Garside families and, again, on the domino rule
available in class (4, 3). A consequence of Theorems 6.5.3 and 6.6.3 is that the 2-polygraph derived
from a Garside family is always convergent, which generalises the case of Artin monoids with the
elements of the corresponding Coxeter group as generators [78, Theorem 3.1.3, Proposition 3.2.1].

Note that almost all observations in this chapter extend from the context of monoids to that of
categories, seen as monoids with a partially defined product.

6.2. Quadratic normalisations

6.2.1. Normalisations. A normalisation is a pair (S,N), where S is a set and N : S∗ → S∗ is a
map satisfying, for all u, v and w in S∗,

(i) ‖N(u)‖ = ‖u‖,
(ii) ‖u‖ = 1 ⇒ N(u) = u,
(iii) N(uN(v)w) = N(uvw).
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Note that the last condition implies thatN is idempotent. An element u of S∗ satisfyingN(u) = u
is called N-normal. IfM is a monoid, we say that (S,N) is a normalisation forM if

M ' 〈S | (N(u) = u)u∈S∗〉+ .

Assume thatM is a monoid, S is a generating subset ofM, and π : S∗ �M is the canonical
projection. If N : S∗ → S∗ is a length-preserving map, then (S,N) is a normalisation forM if,
and only if, for all u, v ∈ S∗, the following conditions hold [63, Lemma 2.4]:

π(N(u)) = π(u) and π(u) = π(v) ⇒ N(u) = N(v).

Moreover, normalisations (S,N) are is bijections with sections ι : M � S∗ of π satisfying
‖ι(u)‖ 6 ‖u‖ through the formulas [63, Proposition 2.6]

N(u) = ιπ(u), and ι(x) = N(u), where u ∈ S∗ is any representative of x ∈M.

6.2.2. Normalisations for non-graded monoids. The definition of normalisation implies that,
if (S,N) is a normalisation for a monoidM, thenM is graded. To extend the notion to non-graded
monoids, we say that, if (S,N) is a normalisation, an element e of S is N-neutral if

N(ue) = N(eu) = N(u)e

hold for every u in S∗. IfM is a monoid, we say that (S,N) is a normalisation mod e forM if e
is an N-neutral element of S and

M ' 〈S | (N(u) = u)u∈S∗ , e = 1〉+ .

Normalisations mod e are further developed in [63, §2.2], and they are adapted to present
filtered monoids. There, it is proved that normalisations mod e for a filtered monoid M
correspond to normalisations for the graded monoid M × N, through the correspondence
Ñ(u) = N(u)e‖u‖−‖N(u)‖. So, there is no loss of generality for considering only the graded
case in this presentation.

6.2.3. Quadratic normalisations. A normalisation (S,N) is called quadratic if the following
conditions hold for every u ∈ S∗:

(i) u is N-normal if, and only if, every length-two factor of u is,
(ii) there exist natural numbers n and i1, . . . , in > 1 such that N(u) = Ni1···in(u).
If (S,N) is a quadratic normalisation for a monoidM, then the definition implies that N is

idempotent and
M '

〈
S
∣∣ (N(st) = st)s,t∈S

〉+
.

6.2.4. Example. Assume that S is a totally ordered set. For u in S∗, define N(u) to be the
element of S∗ obtained by permuting letters in u that is minimal for the lexicographic order.
Then (S,N) is a quadratic normalisation for the free commutative monoid over S. Indeed, u ∈ S∗
is N-normal if, and only if, all its length-two factors are of the form st with s 6 t, so (i) is
satisfied. Moreover, (ii) holds, since every u ∈ S∗ can be transformed into N(u) by switching
adjacent letters that are not in the correct order.
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6.2.5. Quadratic normalisations and polygraphs. A 2-polygraph is called quadratic if the
sources and targets of its 2-cells are of length 2. Quadratic normalisations are related to normalising
and confluent presentations of monoids by the following constructions, that are inverses of one
another [63, Proposition 3.7]:

(i) If (S,N) is a quadratic normalisation for a monoidM, then (S |XN) is a quadratic, reduced,
normalising and confluent presentation ofM, where XN contains a 2-cell

st⇒ N(st)

for all s and t in S such that st is not N-normal.
(ii) If (S |X) is a quadratic, reduced, normalising and confluent presentation of a monoidM,

we obtain a quadratic normalisation (S,NX) forM by putting

NX(u) = û.

Note that the 2-polygraph associated to a quadratic normalisation does not always terminate, as
shown in §6.5.

6.3. Classes of quadratic normalisations

6.3.1. The left-class and right-class. Let (S,N) be a quadratic normalisation. For n a natural
number, we say that (S,N) is of left-class n (resp. right-class n) if N(u) = N12[n](u) (resp.
N(u) = N21[n](u)) holds for every u in S3. For natural numbersm and n, we say that (S,N) is
of class (m,n) if it is of left-classm and right-class n.

The minimal left-class of (S,N) is the smallest natural number n such that (S,N) is of
left-class n, if such an n exists, and∞ otherwise. The minimal right-class of (S,N) is defined
symmetrically, and the minimal class of (S,N) is the pair formed by its minimal left-class and
right-class.

6.3.2. Example. Let (S,N) be the lexicographic normalisation of Example 6.2.4, with |S| > 2.
For all r, s, t ∈ S,N121(rst) andN212(rst) areN-normal, so (S,N) is of class (3, 3). Moreover,
for s < t, we find N12(tts) = tst and N21(tss) = sts, so (3, 3) is the minimal class of (S,N).

6.3.3. Lemma. Assume that (S,N) is a quadratic normalisation.
(i) If u ∈ S∗ is of length 3, then N(u) = N12[n](u) implies N(u) = N12[n+1](u).
(ii) If (S,N) is of left-class n, then it is of left-classm for everym > n, and of right-classm

for everym > n.
(iii) The minimal class of (S,N) is either of the form (m,n) with |m− n| 6 1, or (∞,∞).

Proof. (i) Because (S,N) is quadratic, every length-two factor of N(u) is N-normal, so
N1N(u) = N2N(u) = N(u). So, N(u) = N12[n](u) implies N12[n+1](u) = N12[n](u).

(ii) Assume that (S,N) is of left-class n. Then the previous point implies that N(u) is equal
to N12[n+1](u) for every u ∈ S3, so (S,N) is of left-class n+ 1 as well and, from there, it is of
left-classm for everym > n. For u in S3, the definition of normalisation and the assumption
give N(u) = N12[n](N2(u)) = N21[n+1](u). Hence (S,N) is of right-class n+ 1 and, from
there, of right-classm for everym > n.
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(iii) If the minimal left-class of (S,N) is a finite number n, then the previous point implies
that (S,N) is of right-class n+ 1. Hence the minimal right-class p of (S,N) satisfies p 6 n+ 1
and, for symmetric reasons, we have n 6 p+ 1.

6.3.4. Proposition. Let (S,N) be a quadratic normalisation. Then (S,N) is
(i) of left-class n if, and only if,

N12[n] = N12[n+1] = N21[n+1], (6.1)

(ii) of right-class n if, and only if,

N21[n] = N21[n+1] = N12[n+1], (6.2)

(iii) of class (n,n) if, and only if,
N12[n] = N21[n]. (6.3)

Proof. (i) If (S,N) is of left-class n, then, for every u ∈ S3, Lemma 6.3.3 gives

N(u) = N12[n](u) = N12[n+1](u) = N21[n+1](u).

Conversely, assume (6.1). For u ∈ S3, if n is odd, the idempotence of N and (6.1) imply

N1N12[n](u) = N1N1N12[n−1](u) = N1N12[n−1](u) = N12[n](u),

N2N12[n](u) = N12[n+1](u) = N12[n](u).

So N12[n](u) is N-normal for every u ∈ S3, which means that (S,N) is of left-class n. The
proof is symmetric for n even.

(ii) The proof is obtained from the one of (i) by symmetry.
(iii) If (S,N) is of class (n,n), then (6.1) and (6.2) hold and imply (6.3). Conversely,

assume (6.3) and let u ∈ S3. Apply (6.3) to u, N1(u) and N2(u), and use the idempotence
of N1 and N2 to obtain

N12[n](u) = N21[n](u),

N12[n](u) = N12[n]N1(u) = N21[n]N1(u) = N12[n+1](u),

N21[n+1](u) = N12[n]N2(u) = N21[n]N2(u) = N21[n](u).

So (6.1) and (6.2) are satisfied.
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6.3.5. Higher classes. Forp > 3, we say that a quadratic normalisation (S,N) is of left-p-classn
(resp. right-p-class n) if, for every u ∈ Sp,

N(u) = N
(p−1)
12[n] (u) (resp. N(u) = N

(p−1)
21[n] (u)).

We say that (S,N) is of p-class (m,n) if it is of left-p-class m and right-p-class n. Proposi-
tion 6.3.4 has a variant for the p-class, with a similar proof [63, Proposition 3.20].

6.3.6. Example. Consider the lexicographic normalisation (S,N) of Example 6.2.4. We saw
in Example 6.3.2 that, for |S| > 2, the minimal (3-)class is (3, 3). For every p > 4 and for
everyu ∈ Sp, the elementsN[p−1]

212 (u) andN[p−1]
121 (u) of S∗ are well-ordered for the lexicographic

order, hence N-normal. Thus (S,N) is of p-class (3, 3).

6.4. Quadratic normalisations of class (4, 3)

6.4.1. The domino rule. Assume that S is a set and Φ : S2 → S2 is an idempotent map.
For s, t ∈ S, if Φ(st) = st, we draw a small arc such as

s
//

t
//

and if s ′, t ′ ∈ S satisfy s ′t ′ = Φ(st), we draw a square such as

s ′
//

s
��

t ′
��

t
//

We say that Φ satisfies the domino rule if, in every situation

s ′1
//

t0
��

s ′2
//

t1
��

t2
��

s1
//

s2
//

(6.4)

the three plain arcs imply the dotted one.

6.4.2. Proposition. A quadratic normalisation (S,N) is of class (4, 3) if, and only if,N satisfies
the domino rule.

Proof. Assume that (S,N) is of right-class 3, and consider the situation (6.4). By definition of
the right-class, and because s1s2 is N-normal,

N(t0s1s2) = N212(t0s1s2) = N12(t0s1s2) = N2(s
′
1t1s2) = s

′
1s
′
2t2.

So s ′1s ′2t2 is N-normal, which implies that s ′1s ′2 is N-normal since (S,N) is quadratic.
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Conversely, assume that N satisfies the domino rule. Fix t0r1r2 ∈ S3, and put

s1s2 = N(r1r2), s ′1t1 = N(t0s1), s ′2t2 = N(t1s2).

Then s ′2t2 is N-normal by construction, and s ′1s ′2 is N-normal by the domino rule, so s ′1s ′2t2 is
N-normal because (S,N) is quadratic. So N(u) = N212(u) holds for every u ∈ S3, and (S,N)
is of class (4, 3).

6.4.3. Notation. We denote by ≡ the congruence on (N+)
∗, the free monoid over nonzero

natural numbers, generated by the relations

nn ≡ n,
n(n+ 1)n(n+ 1) ≡ (n+ 1)n(n+ 1)n ≡ (n+ 1)n(n+ 1),

mn ≡ nm if |m− n| > 2.

Note that N∗+/ ≡ is a variant with infinitely many generators of the monoid Mn of [130].
Let sh : N∗+ → N∗+ be the morphism of monoids induced by n 7→ n + 1. For n > 1, put
γn = 12 · · ·n and γon = n · · · 21, and then define the element δn of N∗+ by induction on n:

δ1 = ε and δn+1 = sh(δn)γn.

So, the first values of δn are δ2 = 212, δ3 = 323123, and so on. The element δn satisfies, for
every 1 6 k < n, the relation [63, Lemmas 4.11 and 4.12]

δnk ≡ δn ≡ kδn. (6.5)

6.4.4. Proposition. Assume that (S,N) is a quadratic normalisation of class (4, 3). Then, for
every s ∈ S and every N-normal u ∈ Sn, we have

N(tu) = Nγn(tu). (6.6)

As a consequence, for every n > 1 and every u ∈ Sn,

N(u) = Nδn(u). (6.7)

Proof. The following diagram summarises the proof of the first assertion:

s ′1
//

t0
��

s ′2
//

t1
��

t2
��

s ′n
//

tn−1
��

tn
��

s1
//

s2
//

sn
//

Put t = t0 and u = s1 · · · sn. For every 1 6 k 6 n, define N(tn−1sn) = s ′ntn. By
hypothesis on u and construction, all the plain arcs are valid and Nγn(tu) = s ′1 · · · s ′ntn. So, as
a consequence of the domino rule, all the dotted arcs are also valid, and (6.6) follows. Then (6.7)
is deduced by induction on n.
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Before proving the converse direction of Theorem 6.4.7, we state the following consequence
of Proposition 6.4.4:

6.4.5. Corollary. If (S,N) is a quadratic normalisation of class (4, 3), then (S,N) is of p-
class (4, 3) for every p > 3.

Proof. Assume p > 3, and let u belong to Sp. By (6.7) and by definition of δp, we have

N(u) = Nδp(u) = Np−1Nγp−2Nsh(δp−1)(u)

First, we note thatNsh(δp−1)(u) = N
(p−1)
2 (u). Now, writeu = sv andN(v) = wt, with s, t ∈ S,

v ∈ Sp−1 and w ∈ Sp−2. Since wt is N-normal by construction, (6.6) gives

N(sw) = Nγp−2(sw) and N(swt) = Np−1(N(sw)t).

Since N(sw) is N-normal, we must have N(p−1)
1 (sw) = N(sw). Moreover, by definition

of (S,N),
N

(p−1)
2 (N(sw)t) = N

(p−1)
2 Np−1(N(sw)t) = N(swt).

So, we have

N
(p−1)
212 (u) = N

(p−1)
12 (swt) = N

(p−1)
2 (N(sw)t) = N(swt) = N(sN(v)) = N(u).

We conclude that (S,N) is of right-p-class 3, hence of p-class (4, 3).

6.4.6. Proposition. Let S be a set, and Φ : S2 → S2 be an idempotent map satisfying

Φ212 = Φ2121 = Φ1212. (6.8)

Then, putting Φ∗(s) = s for s ∈ S and Φ∗(u) = Φδn(u) for u ∈ Sn defines a quadratic
normalisation (S,Φ∗) of class (4, 3) such that Φ = Φ∗.

Proof. Assume thatΦ is idempotent and satisfies (6.8). We first observe thatu ≡ v impliesΦu =
Φv for all u, v ∈ N∗+. Indeed, Φnn = ΦnΦn = Φn because Φ is idempotent. The relations

Φn(n+1)n(n+1) = Φ(n+1)n(n+1)n = Φ(n+1)n(n+1)

follow from (6.8). Finally, Φm and Φn commute if |m− n| > 2 because they act on different
factors.

Now, let us prove that (S,Φ∗) is a normalisation. We have ‖Φ∗(u)‖ = ‖u‖, and Φ∗(s) = s
for s ∈ S by definition of Φ∗. Fix u ∈ Sm, v ∈ Sn and w ∈ Sp. By definition ofΦ∗,

Φ∗(uΦ∗(v)w) = Φδm+n+p(uΦδn(v)w) = Φshp(δn)δm+n+p
(uvw).

Since shp(δn) is a product of elements of {p+ 1, · · · , p+ n}, we deduce from (6.5) that
shp(δn)δm+n+p = δm+n+p. As a consequence,

Φ∗(uΦ∗(v)w) = Φδm+n+p(uvw) = Φ
∗(uvw).
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Let us check that (S,Φ∗) is quadratic. The second condition follows from the definition
of Φ∗ as Φ∗(u) = Φδn(u) for u ∈ Sn. Fix u ∈ Sn. If u is Φ∗-normal, then, using (6.5), we
obtain, for every 1 6 k < n,

Φk(u) = ΦkΦδn(u) = Φδnk(u) = Φδn(u) = u,

so every length-two factor ofu isN-normal. Conversely, ifΦk(u) = u holds for every 1 6 k < n,
then, decomposing Φδn into a composite of maps Φk gives Φ∗(u) = u.

Finally, since Φ∗ = Φ, the quadratic normalisation (S,Φ∗) satisfies (6.2), so that it is of
right-class 3 by Proposition 6.3.4, and thus of class (4, 3).

Propositions 6.4.4 and 6.4.6 give the two directions of

6.4.7. Theorem. If (S,N) is a quadratic normalisation of class (4, 3), then the restriction N
ofN to S2 is idempotent and satisfiesN212 = N2121 = N1212. Conversely, ifϕ is an idempotent
map on S2 that satisfies ϕ212 = ϕ2121 = ϕ1212, there exists a quadratic normalisation (S,N)
of class (4, 3) satisfying ϕ = N.

6.5. Class and termination

6.5.1. Proposition. If (S,N) is a quadratic normalisation of class (3, 3) for a monoid M,
then the associated 2-polygraph (S |XN) is a convergent presentation of M. Moreover, for
every u ∈ S∗ \ {1}, every 2-cell a of source u in (S |XN)∗ satisfies

‖a‖ 6
‖u‖ (‖u‖− 1)

2
.

Proof. By construction, the rewriting steps of (S |XN) are the 2-cells

u⇒ Nk(u)

for u ∈ Sn and 1 6 k < n such that Nk(u) 6= u. By Proposition 6.3.4, (S,N) satisfies (6.3), so
the 2-cells of (S |XN) are of the form

u⇒ Nw(u),

forw an element of the quotient B+
n of the braid monoid B+

n by the relations kk = k. Since B+
n is

finite, we have that (S |XN) terminates. Moreover, the length of every element of B+
n is bounded

by n(n− 1)/2.

6.5.2. Example (The plactic monoid). If X is a totally ordered finite set, the plactic monoid
over X is the monoid PX generated by X and subject to the relations

xzy = zxy, for x 6 y < z,
yxz = yzx, for x < y 6 z.

Define a column of PX as a strictly decreasing product of elements of X. A pair (c, c ′) of columns
of PX is called normal if ‖c‖ > ‖c ′‖ holds and, for every 1 6 k 6 ‖c ′‖, the kth element of c is
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bounded above by the one of c ′. A tableau of PX is a product c1 · · · cn of columns of PX such
that (ci, ci+1) is normal for every 1 6 i < n.

We refer to [44] for a recent reference on the following facts. The monoid PX admits its set S
of columns as a generating set, and every fibre of S∗ � PX contains a unique tableau of minimal
length. More precisely, PX is isomorphic to its set of tableaux, equipped with a product given by
Schensted’s insertion algorithm.

We consider the normalisation (S,N)whereNmaps a product of columns to the corresponding
tableau. Since N can be computed locally by the insertion algorithm, progressively replacing
each product of two columns cc ′ by the corresponding tableau N(cc ′), and by definition of
tableaux, (S,N) is quadratic. From [29, §§4.2–4.4], we deduce that, if |X| > 2, then (S,N) is of
class (3, 3). By Proposition 6.5.1, we recover [44, Theorem 3.4] that states that the 2-polygraph
associated to (S,N) is a convergent presentation of PX.

A similar argument leads to an infinite convergent quadratic presentation of PX in terms of
rows, which are nondecreasing products of elements of X. The proof that the class is (3, 3) is
given in [29, §§3.2–3.4].

We refer to [63, Proposition 5.4] for the technical proof of the following result, that relies
on a direct analysis of all the possible transformations induced by a quadratic normalisation of
class (4, 3). The proof of Proposition 6.5.1 cannot be adapted directly since Krammer’s monoid,
which would replace B+

n here, is infinite [130].

6.5.3. Theorem. If (S,N) is a quadratic normalisation of class (4, 3), then the associated
2-polygraph (S |XN) is convergent. More precisely, every rewriting sequence from an element
of Sp has length at most 2p − p− 1.

Proof. Let F(p) ∈ N denote the maximal length of composable sequences of rewriting steps
of (S |XN) with source in Sp. We prove the inequality F(p) 6 2p− p− 1 by induction on p > 2.
For p = 2, we have F(p) 6 1 by idempotence of N. Assume p > 3 and consider a sequence
(uk)06k6n of elements of Sp such that there exists a rewriting step from uk to uk+1. We
define Ŝ = S t S, where S contains one element s for each s ∈ S. In diagrams, we draw s ∈ S
horizontally, and s vertically. Let π : Ŝ∗ � S∗ be the projection that identifies s and s.

From (uk)k, we construct, by induction on k, a sequence (ûk)k of elements of Ŝp such that
(i) π(ûk) = uk,
(ii) if st or st is a length-two factor of ûk, then st is N-normal.

We start by û0 = s1 · · · sp−1sp if u0 = s1 · · · sp, which satisfies (i) and (ii). Now, assume
that ûk−1 is defined, for k > 1, and satisfies (i) and (ii). By hypothesis, there exists an i ∈
{1, . . . , p− 1} such that uk = Ni(uk−1). Let s and t be the letters of uk−1 in positions i
and i + 1, and put s ′t ′ = N(st). The length-two factor of ûk−1 at position i is either st, st,
st or st. Since st is not N-normal by assumption, (ii) prevents st and st. In the case st, we
define ûk from ûk−1 by replacing, at position i, the factor st by s ′t ′ if i < p − 1, or by s ′t ′

if i = p− 1. Diagrammatically, this means the following replacement in ûk−1:

s
��

t
//

7−→
s ′
//

t ′
��

or s ′
//
t ′
//

95



In the case st, we define ûk from ûk−1 by replacing, at position i, the factor st with s ′t ′:

s
��

t
��

7−→
s ′
��

t ′
��

In both cases, by construction, ûk satisfies (i), and (ii) is satisfied at every position, except possibly
at position i − 1, if the corresponding letter is some r ∈ S, i.e. the length-two factor of ûk−1
starting at position i − 1 is rs. By construction of the sequence û0, . . . , ûk−1, this factor rs
must come from an earlier replacement of some r0s0, i.e. rs = N(r0s0). So, because (S,N)
is of class (4, 3), the domino rules applies, concluding that rs ′ is N-normal, so that (ii) is also
satisfied at position i− 1:

r
//

r0
��

s ′
//

s
��

t ′
��

s0
//

t
//

To conclude the proof, we count the number of transformations st 7→ s ′t ′ (or st 7→ s ′t ′)
and st 7→ s ′t ′ in the sequence (ûk)k: there are at most p(p− 1)/2 transformations of the first
type, and F(2) + · · · + F(p − 1) transformations of the second type, see [63, Proposition 5.4]
for the complete classification. Then, using the induction hypothesis F(q) 6 2q − q − 1 for
every 2 6 q < p, we obtain the required bound.

6.5.4. Corollary. Let (S |X) be a reduced quadratic 2-polygraph. Define Φ : S2 → S2 by
Φ(u) = v if X contains a 2-cell u⇒ v, andΦ(u) = u otherwise. Suppose that, for all r, s, t ∈ S,
with rs not reduced, we have

(i) if st is reduced, thenΦ12(rst) is reduced,
(ii) if st is not reduced, then Φ1212(rst) = Φ212(rst).

Then (S |X) is convergent.

6.5.5. Proposition. There exists a quadratic normalisation of class (4, 4) whose associated
2-polygraph does not terminate.

Proof. The 2-polygraph

X =
(
x, y, y ′, y ′′, z, z ′, z ′′, t

∣∣ xy⇒ xy ′, yz ′ ⇒ y ′′z ′′, y ′z⇒ y ′′z ′′, y ′z ′ ⇒ yz, zt⇒ z ′t
)

is quadratic and reduced, but does not terminate, because of the following non-trivial closed 2-cell
of X∗:

xyzt⇒ xy ′zt⇒ xy ′z ′t⇒ xyzt.

We refer to [63, Proposition 5.7] for a proof that X is normalising and confluent, and that its
associated quadratic normalisation is of minimal class (4, 4).
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6.5.6. Example (The Chinese monoid). For a totally ordered finite set X, the Chinese monoid
over X is the monoid CX generated by X and submitted to the relations

zyx = zxy = yzx

for all x 6 y 6 z in X [46].
Assume that X has three elements and denote by S the set obtained from X by adjoining the

three 1-cells yx for x < y, and yy if y is the middle element of X (neither the minimal one nor
the maximal one). We denote by | the product in S∗ to distinguish it from the product of CX. The
following twelve 2-cells are derivable from the defining relations of CX:

(i) the nine 2-cells y|x⇒ yx, y|yx⇒ yx|y, and yx|x⇒ x|yx, for x < y in X,
(ii) the two 2-cells y|zx⇒ zx|y and z|yx⇒ zx|y, for x < y < z in X,
(iii) the 2-cell y|y⇒ yy, if y is the middle element of X.

The 2-polygraph so obtained terminates (using the weighted right-lexicographic order
generated by x < yx for x 6 y and zx < y for x < y) and, after application of Knuth-Bendix
completion, it yields a reduced convergent quadratic presentation of CX. The corresponding
normalisation is of minimal class (4, 4), the worst case being reached on z|yy|y if y is the middle
element and z > y holds.

Similar convergent quadratic presentations also exist when X has four or five elements, to be
compared with the nonquadratic ones of [45, Theorem 3.3]. The class is (5, 4) in both cases.

6.6. Garside normalisations

6.6.1. Garside families. Assume that M is a monoid. We denote by 4 the left-divisibility
relation ofM, defined for all x, y ∈M by x 4 y if xx ′ = y for some x ′ ∈M. Fix S ⊆M. A
pair (s, t) of elements of S is called normal if it satisfies, for all r ∈ S and x ∈M,

r 4 xst ⇒ r 4 xs.

An element u of S∗ is called normal if, writing u = s1 · · · sn with each sk in S, every
pair (sk, sk+1) is normal.

Assume thatM has no nontrivial invertible element, and S contains 1. We say that S is a
Garside family if every element x ofM has a normal representative in S∗. This definition is
a restricted case of the general definition of a Garside family developed in [60]. IfM is also
left-cancellative, then Propositions III.1.25 and III.1.30 of [60] imply that, if S ⊆M is a Garside
family, then every element ofM admits a unique normal representative of minimal length in S∗.
We denote by NS : S∗ → S∗ the corresponding map.

6.6.2. Left-weighted normalisations. Assume that (S,N) is a (quadratic) normalisation for a
monoidM. We say that (S,N) is left-weighted if, for all s, t, s ′, t ′ ∈ S, the equality s ′t ′ = N(st)
implies s 4 s ′ inM.

6.6.3. Theorem. Let M be a left-cancellative monoid, with no nontrivial invertible element,
and (S,N) be a quadratic normalisation forM. The following assertions are equivalent:

(i) S is a Garside family, and N = NS.
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(ii) (S,N) is of class (4, 3) and left-weighted.

Proof. Assume that S is a Garside family and N = NS. The pair (S,NS) is a normalisation by
definition ofNS. Moreover, u ∈ S∗ isNS-normal if, and only if, every length-two subfactor of u
is NS-normal. We prove the second axiom of a quadratic normalisation together with the fact
that (S,NS) is of class (4, 3) by checking that NS satisfies the domino rule. Consider a situation
as in (6.4), and fix s ∈ S and x ∈ X such that s 4 xs ′1s ′2:

s
//

x
�� ��
s ′1

//

t0
��

s ′2
//

t1
��

t2
��

s1
//

s2
//

We have s 4 xs ′1s ′2t2 = xt0s1s2. Because s1s2 is normal, we have s 4 xt0s1 = xs ′1t1. The
latter being also normal, we deduce s 4 xs ′1, so s ′1s ′2 is normal. Finally, fix s, t, s ′, t ′ ∈ S such
that s ′t ′ = N(st). By hypothesis, the relation st = s ′t ′ holds inM, so s 4 s ′t ′. Since s ′t ′ is
normal, we deduce s 4 s ′, so (S,N) is left-weighted.

Conversely, assume that (S,N) is of class (4, 3) and left-weighted. To prove that S is a
Garside family, we use Proposition IV.2.7 of [60]: if S contains 1 and is closed under right-divisor,
then S is a Garside family if, and only if, every x ∈M \ {1} admits a maximal left-divisor in S.
We have 1 ∈ S by hypothesis, so let us check that S is closed under right-divisor. Fix s ∈ S and x,
y inM such that s = xy holds inM, and prove that y ∈ S. If y = 1, or if x = 1 and thus y = s,
then y ∈ S. Assume x, y 6= 1, choose representatives u and v of x and y in S∗, and put

N(u) = s0m · · · s01 and N(v) = t01 · · · t0n.

We define the elements sip, for 1 6 p 6 m and 1 6 i < m + n − 1, and tjq, for 1 6 q 6 n
and 1 6 j 6 m, by induction thanks to the formulas

tpqs
q
p = N(sq−1p tp−1q ) for 1 6 p 6 m and 1 6 q 6 n,

sn+q−1p sn+pq = N(sn+p−1q sn+q−2p ) for 1 6 p < q 6 m.

For p ∈ {1, . . . ,m} the following figure illustrates a part of these definitions:

t
p
1

//

s0p
��

s1p
��

tpn
//

sn−1p

��

s
n+p
1

//

snp
��

sn+1p

��

s
n+p
p−1

//

sn+p−1p

��

sn+pp
//

sn+pp

��

t
p−1
1

//

tp−1n

//

s
n+p−1
1

//

s
n+p−1
p−1

//

1

OO

Since (S,N) is of class (4, 3), it satisfies the domino rule, and so the upper row of this figure is
N-normal, provided the bottom row is. We conclude that

N(uv) = tm1 · · · tmn sm+n−1
1 · · · sm+n−1

m .
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But, by hypothesis, we have N(uv) = N(s) = s, so

tm1 = s and tm2 = · · · = tmn = sm+n−1
1 = · · · = sm+n−1

m = 1.

We deduce that, for all 1 6 p < q 6 m, N(sn+p−1q s
n+q−2
p ) = 1. ButM has no nontrivial

invertible element, so sqp = 1 for all 1 6 p 6 m and n 6 q < m + n. Similarly, we have
N(sq−1p t

p−1
q ) = 1 for all 1 6 p 6 m and 1 < q 6 n, from which we obtain, in particular,

t02 = · · · = t0n = 1. We conclude y = t1, so that y ∈ S.
Now, fix x ∈M \ {1}, choose a representative u in S∗ and putN(u) = s1 · · · sn with each si

in S. By construction, s1 is a left-divisor of x inM. Assume that t ∈ S is a left-divisor ofM,
writing x = ty. If y = 1, then x = t so s1 = t. Otherwise, choose a representative v of y and put
N(v) = t1 · · · tp. Write t ′1t ′ = N(tt1). Because (S,N) is of class (4, 3), and N(u) and N(v)
are N-normal, then t ′1 is the first letter of both N(u) and N(v). So, we deduce, on the one hand,
that t ′1 = s1, and, on the other hand, that t left-divides t ′1 since (S,N) is left-weighted, which
concludes the proof that S is a Garside family.

There remains to prove NS = N. Since the two normalisations (S,N) and (S,NS) are
quadratic of class (4, 3), it is sufficient to prove that N(st) = NS(st) holds for all s, t ∈ S.
Fix s, t ∈ S and put s ′t ′ = N(st), so that s ′ is the maximal left-divisor of st inM, and s ′t ′ = st
holds in M. Hence, if r ∈ S is a left-divisor of s ′t ′ in M, then r is a left-divisor of s ′. By
Corollary IV.1.31 of [60], this implies that N(st) is normal, i.e. N(st) = NS(st).

We end the chapter with consequences of the results given so far, giving a general setting for
monoids to admit presentations such as those considered in §5.5 for Artin monoids and Garside
monoids. We begin with the fact that a Garside family always induce a convergent presentation
such as the one in the proof of Proposition 5.5.3:

6.6.4. Corollary. LetM be a left-cancellative monoid with no nontrivial invertible elements,
and S ⊆M be a Garside family. ThenM admits, as a convergent presentation, the 2-polygraph
with one 1-cell for each nontrivial element of S, and one 2-cell

st⇒ NS(st)

for all nontrivial elements s and t of S such that st is not NS-normal. In particular, every Artin
monoid admits a finite convergent presentation.

Proof. The first part of the result is a direct consequence of Theorems 6.5.3 and 6.6.3. The second
part comes from Theorem 1.1 of [61].

We refer to [63, Proposition 6.15] for the following generalisation that every Artin monoid
and every Garside monoid admits a Garside-like presentation:

6.6.5. Proposition. LetM be a left-cancellative monoid, and (S,N) is a left-weighted quadratic
normalisation of class (4, 3) for M. Then M admits, as a presentation, the 2-polygraph
Gar2(S,N) with one 1-cell for each nontrivial element of S, and one 2-cell

s|t⇒ st,

for all nontrivial elements s and t in S whose product st inM lies in S, where s|t denotes the
product in S∗.
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6.6.6. Example. If W is a Coxeter group, then the associated Artin monoid B+(W) has no
nontrivial invertible element, andW injects in B+(W). The image ofW in B+(W) is a Garside
family, so Corollary 6.6.4 generalises the fact that the Garside generators of B+(W) induce a
convergent presentation, as proved in Proposition 5.5.3. Moreover, ifW is finite, then this Garside
family is minimal. So, ifW = S3, the Artin monoid B+(S3) = B

+
3 admits S3 as a finite Garside

family, and the corresponding quadratic normalisation is of minimal class (3, 3).
WhenW is infinite, there exists a finite subset ofW that is a Garside family [61]. Consider,

for example, the Artin monoid associated to the infinite Coxeter groupW = Ã2:

B+(Ã2) ' 〈a, b, c |aba = bab, bcb = cbc, cac = aca〉+ .

This Artin monoid admits a minimal 16-element Garside family S, which are the vertices of the
following diagram where arrows stand for right-divisibility:

caba ba

��

ca

��

baca

aba

ee

a

jj 44

aca

99

ab

OO

1

OO

zz $$

ac

OO

b

ZZ

��

c

EE

��

cb

))

bc

uu
bcb

��

abcb

The normalisation corresponding to this Garside family is of minimal class (4, 3). Indeed, it is
not of left-class 3 because NS121(a|ab|ac) = aba|b|c but b|c is not normal. The convergent
presentation of B+(Ã2) of Corollary 6.6.4 has 15 generators and 87 relations.
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Chapter 7
Squier theory for associative algebras

We fix a field K for the whole chapter. We denote by Vect the category of vector spaces over K,
and byAlg the one of unital and associative algebras over K. When no confusion may arise, we
just say associative algebras, or simply algebras, for the objects ofAlg.

7.1. Introduction

7.1.1. Context. During the twentieth century, rewriting-like methods have been developed in
linear algebra, although with a different vocabulary, and in a somewhat restricted setting. The
corresponding concepts have been introduced in particular to compute normal forms for different
types of algebras presented by generators and relations, with applications to the decision of the
ideal membership problem, and to the construction of bases, such as Poincaré-Birkhoff-Witt bases.
For example, Shirshov introduced in [190] an algorithm to compute a linear basis of a Lie algebra
presented through generators and relations. He used the notion of composition of elements in a
free Lie algebra to describe the critical branchings. He gave an algorithm to compute bases in
free algebras having the confluence property, and he proved the composition lemma, which is the
analogue of Newman’s lemma for Lie algebras. As an application, he deduced a constructive
proof of the Poincaré-Birkhoff-Witt theorem.

Rewriting methods to compute with ideals of commutative polynomial rings were also
introduced by Buchberger with Gröbner basis theory [42, 41]. Gröbner bases are sets of relations
that satisfy the confluence property, plus a constrained form of termination, corresponding to a
compatibility with a monomial order, i.e. a wellfounded total order on the monomials. Buchberger
described critical branchings with the notion of S-polynomial, and gave an algorithm for the
computation of Gröbner bases, using a linear counterpart to Newman’s lemma, and which is
the analogue of Knuth-Bendix’s completion procedure for commutative algebras. In the same
period, ideas in the spirit of Gröbner bases appear in several other works: by Hironaka and
Grauert with standard bases for power series rings [110, 84], or for applications of Newman’s
lemma for universal algebras by Cohn [56]. The domain took foundation in several works
on algorithmic methods in elimination theory by Macaulay with H-bases [155], by Janet with
involutive bases [114], or Gunther with notions similar to Gröbner bases [102]. Bokut and
Bergman have independently extended Gröbner bases to associative algebras, obtaining the
analogue of Newman’s lemma for free associative algebras, called respectively the composition
lemma and the diamond lemma [28, 27]. Buchberger’s algorithm has then been extended to this
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setting [167, 206]. Subsequently, rewriting methods were developed for a wide range of algebraic
structures, such as Weyl algebras [188] or operads [68]. See [167, 205, 35] for a comprehensive
treatment on noncommutative Gröbner bases.

At the end of the eighties, through Anick’s and Green’s works, noncommutative Gröbner bases
have found new applications, in the shape of constructive methods to compute free resolutions of
associative algebras [5, 6, 7, 85]. Their constructions provide small explicit resolutions to compute
homological invariants of algebras presented by generators and a Gröbner basis: homology
groups, Hilbert series, and Poincaré series. Anick’s resolution consists in a complex generated by
Anick’s chains, i.e. certain iterated overlaps of the leading terms of the relations as in the later
Kobayahi’s resolution for monoids, and its differential is obtained by deforming the differential of
a complex for an associated monomial algebra. This construction has many applications, such as
an algorithm for the computation of Hilbert series [205]. The chains and the differential of the
resolution are constructed recursively, making its implementation possible [12], but the differential
is complicated to make explicit in general. Sköldberg introduced in [191] a homotopical method
based on discrete Morse theory to derive Anick’s resolution from the bar resolution.

Anick’s resolution found applications in the study of Koszul algebras: a connected graded
algebraA is Koszul if the Tor groups TorAk,(i)(K,K) vanish for i 6= k, where k is the homological
degree, and i comes from the grading of the algebra. For intuition, in a quadratic algebra A, the
groups TorAk,(i)(K,K) always vanish for i < k: the Koszul property corresponds to the case
where the Tor is concentrated on the diagonal [26]. Koszul algebras were introduced by Priddy,
and he proved that quadratic algebras having a Poincaré-Birkhoff-Witt basis are Koszul [180].
Thus, if A admits a quadratic Gröbner basis, then it is Koszul: indeed, the hypothesis implies
the existence of a Poincaré-Birkhoff-Witt basis [85], another proof coming from the fact that
Anick’s resolution is concentrated in the diagonal [6, 86]. Backelin gave a characterisation of
the Koszul property for quadratic algebras in terms of lattices [11, 13], and this condition was
later interpreted by Berger’s X-confluence [24]. The quadratic Gröbner basis method to prove
Koszulness has been extended to the case of operads by Dotsenko and Khoroshkin in [68], and
Koszulness was generalised by Berger in [25] to the case of N-homogeneous algebras.

For his results, Berger has introduced a notion of reduction operators, which is an alternative
point of view on rewriting, based on linear operators mapping basis elements to their normal
form, with similarities to the quadratic normalisations for monoids of Chapter 6. Building on
Berger’s work, Chenavier has recently developed an original theory of rewriting in associative
algebras, alternative to Gröbner bases and to the one presented here, with applications in
homological algebra [49]. In particular, he gave an algebraic account of completion in terms of
the lattice structure of reduction operators [51] and an interpretation of Faugère’s F4 completion
algorithm [72] in this setting [50]; he refined Berger’s results on the Koszul complex of N-
homogeneous algebras [48]; and he obtained a Squier-like result to construct homological syzygies
of associative algebras presented by reduction operators [52].

7.1.2. Summary. To adapt the theory and methods developed so far to associative algebras, §7.2
explains how to introduce an analogue of higher categories that provide a homotopical setting
for polygraphic resolutions of associative algebras. The structure of ∞-categories works for
monoids because the latter can be seen as categories with one 0-cell. However,∞-categories
do not really fit for other algebraic structures, that can have several associative products (e.g.
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boolean algebras), or operations that satisfy other compatibility laws than associativity (e.g. Lie
algebras). To solve this, observe that∞-categories with one 0-cell are the same as∞-categories
internal to the category Mon of monoids, shifting all cells by one dimension and replacing
the 0-composition by the monoidal product. Now, the theoretical setting adapts to any other
algebraic structure, by replacingMon with the adequate category: here, we consider∞-categories
internal toAlg, called∞-algebras, and the underlying structure of∞-vector space, which is an∞-category internal to Vect; note that our 1-vector spaces are the 2-vector spaces of [15]. The
structures of ∞-vector space and ∞-algebras are rather rich, and in particular contain much
redundancy. Indeed, an∞-vector space is the same as an∞-groupoid internal to Vect, and as an∞-globular vector space. This generalises Proposition 2.5 of [124], and is intuitively similar to
Bourn’s equivalence between chain complexes in an abelian categoryA and internal∞-categories
in A [34, Theorem 3.2]. Here, the main arguments are that the compositions of an∞-vector
space necessarily satisfy the relation a ?i b = a− ti(a) +b whenever a and b are i-composable,
and every cell a of strictly positive dimension has an inverse, given by a− = s(a) − a+ t(a).
For∞-algebras, the situation is summarised by

Theorem 7.2.4. An ∞-algebra is the same as an ∞-groupoid internal to Alg, and as a pair
(A,M) formed by an associative algebraA and a globularA-bimoduleM such thatM0 = A and
that satisfies the extra conditionas0(b)+t0(a)b−t0(a)s0(b) = s0(a)b+at0(b)−s0(a)t0(b).

For intuition, the extra condition corresponds to the compatibility of the algebra product with
the 0-composition, the latter being rewritten using a ?0 b = a− t0(a) + b. The second part of
Theorem 7.2.4 says that the structure of∞-algebra boils down to a simpler one, useful to describe
free∞-algebras and, as a consequence, the corresponding notion of polygraph, following the
same pattern as for∞-categories. Polygraphs for associative algebras are a special case of the
general construction of polygraphs, or computads, for finitary monads on globular sets (here, the
monad of∞-algebras) given in [17, Definition 2.1]. We now say n-polygraph for this notion of
polygraph for associative algebras, and set-theoretic n-polygraph for the one considered so far.

Then, §7.3 develops a rewriting theory for associative algebras, the main difficulty coming
from the first part of Theorem 7.2.4: in contrast with the case of monoids, there is no difference
between a 1-category internal to Alg and a 1-groupoid internal to Alg, making impossible to
consider the 1-cells of the former as rewriting sequences among the 1-cells of the latter, seen as
equivalences. To circumvent this obstruction, we isolate, among the 1-cells, a set of positive ones
that will play the same role as a free 1-category with respect to the corresponding free 1-groupoid:
first, the set of positive 1-cells is big enough for every 1-cell to factor into a composite of positive
1-cells and their opposites; second, the set of positive 1-cells is small enough for preventing a
nontrivial 1-cell and its inverse to be positive at the same time, so that termination is possible.
From this notion of positive 1-cells, we define branchings and confluence as in the set-theoretic
case, but termination is handled differently. For a set-theoretic 2-polygraph X, termination is
defined as any one of the equivalent properties: there exist no infinite sequence of composable
rewriting steps, or there exists a wellfounded order relation on X∗1 that is compatible with the
product and such that s(α) > t(α) holds for each 2-cell α of X. For a 1-polygraph X, the second
property implies the first one, but we conjecture that the converse implication does not hold, and
we define termination as the second, stronger property. We obtain
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Theorem 7.3.6. Let A be an algebra and X be a convergent presentation of A. Then the
set Redm(X) of reduced monomials of K〈X〉 is a linear basis of A. As a consequence, the vector
space Red(X) of reduced 0-cells of K〈X〉, equipped with the product defined by a · b = âb, is an
algebra that is isomorphic to A.

The convergent presentations so-defined are strict generalisations of noncommutative Gröbner
bases, and, in the case of homogeneous algebras, of Poincaré-Birkhoff-Witt bases, as explained
in §7.4. Indeed, noncommutative Gröbner bases correspond to a subclass of convergent
presentations of associative algebras: those whose 1-cells are well-oriented with respect to a
monomial order. More precisely, from a Gröbner basis G for an ideal I of a free algebra K〈X〉,
with respect to a monomial order 4, one can derive a convergent presentation of the quotient
algebra K〈X〉/I, whose 1-cells correspond to the replacement of the leading monomials of the
elements of G by their remainders. Moreover, the inclusion of Gröbner bases into convergent
presentations is strict, as testified by the 1-polygraph

(
x, y, z

∣∣ xyz→ x3 + y3 + z3
)
studied

in Example 7.4.7. This 1-polygraph is convergent, but the orientation of its only 1-cell is not
compatible with any possible monomial order, for which one of the three monomials x3, y3 or z3
is necessarily bigger than xyz. The same strict inclusion holds for Poincaré-Birkhoff-Witt bases
in the case of homogeneous N-algebras (generalising Priddy’s PBW bases for quadratic algebras
with the deglex order [180, Section 5.1]): they correspond to the convergent N-homogeneous
presentations of associative algebras whose 1-cells terminate with respect to a monomial order.

In §7.5, we adapt Squier’s theorem to associative algebras, with a similar proof strategy
as in the set-theoretic case. However, there is a difference in the equivalence between local
Y-confluence and critical Y-confluence: indeed, here, this equivalence requires the termination
hypothesis, and a more complicated proof. This comes from the fact that, in general, the trivial
branchings are not ∅-confluent without termination, as shown by the two counterexamples of
Remark 4.2.4 in [95]. Nevertheless, we still obtain Squier’s theorem for algebras:

Theorem 7.5.3. Let X be a convergent presentation of an associative algebra, and Y be an
extension of K〈X〉. If X is Y-convergent, then Y is acyclic. In particular, if Y contains a 2-cell

b h
��

F��a

f 00

g ..

d

c k

@@

for every critical branching (f, g) of X, with h and k positive 1-cells of K〈X〉, then Y is acyclic.

Finally, §7.6 summarises the extension of Squier theorem to construct polygraphic resolutions
of associative algebras from convergent presentations, and applications in homological algebra.
We start by a study of the standard polygraphic resolution Std(B) of an augmented associative
algebra A with a fixed linear basis B. The explicit definition of this polygraph is still unknown
in the set-theoretic case, but is possible here thanks to the linear structure of∞-algebras. The
complete proof that Std(B) is a polygraphic resolution ofA can be found in §6.1 of [95], and relies
on the construction of a contraction, a notion developed in §5.2 of the same article in analogy
with the set-theoretic case. Next, to compute Squier’s polygraphic resolution of an augmented
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algebra, we apply, on the standard polygraphic resolution, a collapsing mechanism that is similar
to the one described by Brown in [37], and which is a polygraphic version of algebraic Morse
theory for chain complexes [191]. This method is based on the notion of collapsing scheme of a
polygraph X, which is a graded partial map ϕ : X→ X that creates a correspondence between
n-cells and (n+ 1)-cells of X that can be collapsed together without changing the homotopical
properties of X. If A is an augmented algebra with a convergent presentation X, we collapse
the standard polygraphic resolution of A, equipped with the linear basis Redm(X) of reduced
monomials. For that, we identity a notion of critical cell in Std(Redm(X)), that, similarly to
Anick’s chains, correspond to some critical n-branchings, forming a graded subset Sq(X) of
Std(Redm(X)). The remaining cells are called subcritical or supercritical, depending on whether
an induced n-branching is trivial or not, and we establish a bijective correspondence ϕ between
the two families. The result is

Theorem 7.6.4. Let A be an augmented algebra and X be a convergent presentation of A.
Then ϕ is a collapsing scheme of Std(Redm(X)) onto Sq(X), and, as a consequence, Sq(X) is a
polygraphic resolution of A.

As in the set-theoretic case, an abelianisation process turns any polygraphic resolution into a
resolution by free bimodules, yielding in particular new sufficient or necessary conditions for
homogeneous algebras to be Koszul. Finally, the constructions of this section are applied on two
examples, the symmetric and the exterior algebras.

7.2. Higher associative algebras and their polygraphs

7.2.1. Higher vector spaces. Fix n ∈ N. Taking C = Vect in §2.2.2 and §2.2.4 gives the
categories nGlob(Vect) of n-globular vector spaces and globular linear maps, and nCat(Vect),
denoted by nVect, of n-vector spaces and linear n-functors. If V is an n-globular vector space,
then, in the pullback V ?k V , we have λ(a, a ′) + µ(b, b ′) = (λa+ µb, λa ′ + µb ′). Hence, if V
is an n-vector space, the linearity of the k-composition reads, in the same context,

(λa+ µb) ?k (λa
′ + µb ′) = λ(a ?k a

′) + µ(b ?k b
′).

7.2.2. Proposition. Fix n ∈ N. The forgetful functors nGpd(Vect)→ nVect → nGlob(Vect) are
isomorphisms. In particular :

(i) An n-globular vector space V can be uniquely extended into an n-vector space, by putting,
for all natural numbers 0 6 i < k and i-composable pair (a, b) of k-cells of V ,

a ?i b = a− ti(a) + b. (7.1)

(ii) If V is an n-vector space, then, for every k > 1, every k-cell a of V is invertible, with
inverse given by a− = s(a) − a+ t(a).

Proof. If V is an n-vector space, for (a, b) a k-cell of V ?i V , the linearity of ?i gives (7.1):

a ?i b = (a− si(b) + si(b)) ?i (ti(a) − ti(a) + b)

= (a ?i ti(a)) − (si(b) ?i ti(a)) + (si(b) ?i b) = a− ti(a) + b.
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Moreover, ifW is an n-globular vector space, then every n-globular linear map F : V →W is
automatically a linear n-functor between the induced n-vector spaces:

F(a ?i b) = F(a− ti(a) + b) = F(a) − ti(F(a)) + F(b) = F(a) ?i F(b).

The rest of the proof is a consequence of these facts, see [95, Proposition 1.2.3].

7.2.3. Higher associative algebras. Fix n ∈ N. Taking C = Alg in §2.2.2 and §2.2.4 gives the
categories nGlob(Alg) of n-globular algebras, and nCat(Alg), denoted by nAlg, of n-algebras.

For an n-globular algebra A, the product of (a, a ′) and (b, b ′) in A ?k A is given by
(a, a ′)(b, b ′) = (ab, a ′b ′). This implies that, if A is an n-algebra, the fact that the k-
composition is a morphism of algebras is equivalent to

ab ?k a
′b ′ = (a ?k a

′)(b ?k b
′). (7.2)

If A is an algebra, and Bimod(A) is the category of A-bimodules, an n-globular A-bimodule
is an object of nGlob(Bimod(A)). The category nGlob(Bimod) of n-globular bimodules is the
one whose objects are pairs (A,M) formed by an algebra A and an n-globular A-bimoduleM,
and whose morphisms from (A,M) to (B,N) are pairs (f, g) made of a morphism f : A→ B of
algebras and a morphism g :M→ N of bimodules, i.e. g(ama ′) = f(a)g(m)f(a ′) holds for
all a, a ′ ∈ A andm ∈M.

7.2.4. Theorem. Fix n ∈ N. The following categories are isomorphic:
(i) The category nAlg of n-algebras.
(ii) The category nGpd(Alg) of internal n-groupoids inAlg.
(iii) The full subcategory of nGlob(Alg) whose objects are the n-globular algebras A that

satisfy, for all k-cells a and b of A, with k > 1, the relations

ab = as0(b) + t0(a)b− t0(a)s0(b) = s0(a)b+ at0(b) − s0(a)t0(b). (7.3)

(iv) The full subcategory of nGlob(Bimod) whose objects are the pairs (A,M) such thatM0

is equal to A, with its canonical A-bimodule structure, and that satisfy, for all k-cells a
and b ofM, with k > 1, the relation

as0(b) + t0(a)b− t0(a)s0(b) = s0(a)b+ at0(b) − s0(a)t0(b). (7.4)

Proof. The first observation is that, if A is an n-algebra, a and b are k-cells of A, for k > 1,
then (7.2) and (7.1) imply

ab = (a ?0 t0(a))(s0(b) ?0 b) = as0(b) ?0 t0(a)b = as0(b) − t0(a)s0(b) + t0(a)b,

and, symmetrically,

ab = (s0(a) ?0 a)(b ?0 t0(b)) = s0(a)b ?0 at0(b) = s0(a)b− s0(a)t0(b) + at0(b),

so that (7.3) is satisfied. The second observation is that, in an n-globular algebra A that satis-
fies (7.3), the 0-composition defined by (7.1) automatically satisfies (7.2). Indeed, consider (a, a ′)
and (b, b ′) of dimension at least 1 in A ?k A, and put x = t0(a) and y = t0(b). By (7.1),

(a?0a
′)(b?0b

′) = (a−x+a ′)(b−y+b ′) = ab+ab ′+a ′b+a ′b ′−ay−a ′y−xb−xb ′+xy.
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Then, using (7.3) on ab ′ and a ′b gives ab ′ = ay+ xb ′− xy and a ′b = a ′y+ xb− xy, so that

(a ?0 a
′)(b ?0 b

′) = ab− xy+ a ′b ′ = ab ?0 a
′b ′.

We refer to [95, Theorem 1.3.3] for the rest of the proof.

7.2.5. Extensions of higher algebras. Fix a natural number n, and let A be an n-algebra. An
extension of A is a set X equipped with maps s, t : X → An such that, for every x in X, the
pair (s(x), t(x)) is an n-sphere of A. If X is an extension of A, we write ≈X the congruence
relation on the parallel n-cells of A generated by s(x) ≈X t(x) for every x ∈ X, and we call X
acyclic if, for every n-sphere (a, b) ofA, we have a ≡X b. Every n-algebraA has two canonical
extensions: the empty one, and nSph(A), containing all the n-spheres of A.

For n > 0, the category nAlg+ of extended n-algebras is defined like nCat+ in §2.3.3,
replacing nCat by nAlg. Theorem 7.2.4 gives a simple construction for the free n-algebra functor
(n − 1)Alg+ → nAlg, mapping an extended (n − 1)-algebra (A,X) to an n-algebra A[X].
First, consider the (n− 1)-globular bimodule associated to A, and extend it into an n-globular
bimoduleA[X] as follows. Then-cells ofA[X] are the elements of the sum of the freeA0-bimodule
over X and of a copy of An−1 (

A0 ⊗KX⊗A0
)
⊕An−1,

quotiented by (7.4); the copy of An−1 is used to define the identity map An−1 → A[X]n. Thus,
the n-cells of A[X] are the linear combinations of elements axb, for a and b in A0 and x in X,
and of an (n− 1)-cell c of A, considered up to (7.4), with source, target and identity maps given
by

s(axb) = as(x)b, s(c) = c, t(axb) = at(x)b, t(c) = c, i(c) = c.

Now, define a product on cells of dimension above 0 as prescribed by (7.3), to equip A[X] with a
structure of n-globular algebra. Finally, define the compositions by (7.1) to obtain the n-algebra
structure of A[X].

The quotient of A by X is the n-algebra denoted by A/X, and obtained by quotient of the
n-cells of A by the congruence ≈X.

7.2.6. Polygraphs for associative algebras. For n a natural number, the category nPol(Alg) of
n-polygraphs for associative algebras, simply called n-polygraphs in this chapter, and the free n-
algebra functor fromnPol(Alg) tonAlg, are defined by induction onn as in §2.4.1. We start with
0Pol(Alg) = Set, and, for n > 1, we define nPol(Alg) using a pullback similar to (2.1), where
(n− 1)Alg and (n− 1)Alg+ replace (n− 1)Cat and (n− 1)Cat+. The category∞Pol(Alg)
of∞-polygraphs, and the corresponding free∞-algebra functor, mapping X to K〈X〉, are then
obtained as limits. Thus, by construction, an∞-polygraph X is a sequence (X0 | · · · |Xn | · · ·)
made of a set X0 and, for every n > 0, an extension of the free n-algebra K〈X0〉[X1] · · · [Xn].

Fix n ∈ N, and let X be an n-polygraph. The algebra presented by X is the quotient algebra
X = K〈X0〉/X1. When the context is clear, we denote by a the image of a 0-cell a of K〈X〉
through the canonical projection. A monomial of K〈X〉 is an element of X∗0. The monomials
of K〈X〉 form a linear basis of the free algebra K〈X0〉, and, if a is a 0-cell of K〈X〉, we define
the support of a as the set Supp(a) of monomials that appear in its decomposition in this basis.
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If n > 1, an 1 6 k 6 n is a natural number, a k-monomial of K〈X〉 is a k-cell of K〈X〉 with
shape uαv, where α is a k-cell of X, and u and v are monomials of K〈X〉. By construction
of K〈X〉, every k-cell a of K〈X〉 is a linear combination

a =

p∑
i=1

λiai + c (7.5)

of pairwise distinct k-monomials a1, . . . , ap and of an identity k-cell c of K〈X〉, and this
decomposition is unique up to the relation (7.4). If a is a k-cell of K〈X〉, the size of a is
the minimum number of k-monomials of K〈X〉 required to write a as in (7.5), and we denote
by Cell(a) the set of k-cells of X that appear in the corresponding k-monomials.

Let A be an algebra. A presentation of A is a 1-polygraph X such that A is isomorphic to X.
A coherent presentation of A is a 2-polygraph X such that A is isomorphic to X and X2 is acyclic.
And a polygraphic resolution ofA is an∞-polygraph X such thatA is isomorphic to X and Xn+1
is acyclic for every n > 1.

7.3. Convergent presentations of associative algebras

7.3.1. Rewriting steps and normal forms. Let X be a 1-polygraph. We say that X is left-
monomial if, for every 1-cell α of X, the source of α is a monomial of K〈X〉 that does not belong
to Supp(t(α)). In that case, the source of every 1-monomial of K〈X〉 is a monomial of K〈X〉.

Assume that X is left-monomial. A rewriting step of X is a 1-cell λf+ 1a of size 1 of the free
1-algebra K〈X〉 that satisfies the condition

Supp(λs(f) + a) = {s(f)} t Supp(a),

i.e. such that λ 6= 0 and s(f) /∈ Supp(a). A 1-cell of K〈X〉 is called positive if it is a 0-composite
f1 ?0 · · · ?0 fp of rewriting steps of K〈X〉.

A 0-cell a of K〈X〉 is called reduced if K〈X〉 contains no rewriting step of source a, and a
normal form of a is a reduced 0-cell b of K〈X〉 such that there exists a positive 1-cell a → b

inK〈X〉. The reduced 0-cells ofK〈X〉 form a linear subspace ofK〈X0〉 that is denoted by Red(X).
Because X is left-monomial, the set of reduced monomials of K〈X〉, denoted by Redm(X), forms
a basis of Red(X). If a is a 0-cell of K〈X〉, a normal form of a is a reduced 0-cell b of K〈X〉 such
that there exists a positive 1-cell a→ b in K〈X〉.

7.3.2. Lemma. Let X be a left-monomial 1-polygraph. Every 1-cell f of size 1 of K〈X〉 can be
decomposed into f = g ?0 h−, where g and h are identities or rewriting steps of X.

Proof. Write f = λf ′ + b, where f ′ : u→ a is a 1-monomial of K〈X〉. Let µ be the coefficient
of u in b, so that b = µu+ c with c such that u /∈ Supp(c). Put

g = (λ+ µ)f ′ + 1c and h = λa+ µf ′ + 1c.

The linearity of ?0 gives f = g ?0 h−. Since u does not belong to Supp(a) or Supp(c), each of
the 1-cells g and h is either an identity (if λ+µ = 0 for g, if µ = 0 for h) or a rewriting step.
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7.3.3. Termination. Assume that X is a set and that ` is a binary relation on the free monoid X∗.
We say that ` is stable by product if u ` u ′ implies vuw ` vu ′w for all u, u ′, v and w in X∗.
If Y is a left-monomial extension of K〈X〉, we say that ` is compatible with Y if u ` v holds for
every 1-cell y : u→ a of Y and every monomial v ∈ Supp(a). The relation ` is extended to the
0-cells of the free algebra K〈X〉 by putting a ` b if the following hold:

(i) Supp(a) \ Supp(b) 6= ∅,
(ii) for every v in Supp(b) \ Supp(a), there exists u in Supp(a) \ Supp(b), such that u ` v.

As a consequence, if u is a monomial and a is a 0-cell of K〈X〉, then u ` a holds if, and only if,
u ` v holds for every v ∈ Supp(a). The relation ` on the 0-cells of K〈X〉 corresponds to the
restriction to finite subsets of X∗ of the so-called multiset relation generated by `. See [10, §2.5]
for the general definition, and a proof that ` is wellfounded on 0-cells if, and only if, it is so on
monomials.

Let X be a left-monomial 1-polygraph. Define <X as the smallest reflexive-transitive binary
relation on X∗0 that is stable by product and compatible with X1. When the context is clear, we
simply write < for <X. We say that X terminates if the relation <X is wellfounded, i.e. if <X is a
wellfounded order, called the rewrite order of X.

7.3.4. Branchings and confluence. Assume that X is a left-monomial 1-polygraph. Branchings
and local branchings are defined as in §2.5.3. For a branching (f, g) of X of source a, put

λu(f, g)v+ b = (λufv+ b, λugv+ b).

A local branching is trivial if it is of one of the following three shapes:
(i) λ(f, f) + b, for a 1-monomial f : u → a of K〈X〉, a nonzero scalar λ, and a 0-cell b

of K〈X〉, with u /∈ Supp(b).
(ii) (λf+ µv+ c, λu+ µg+ c), for 1-monomials f : u→ a and g : v→ b of K〈X〉, nonzero

scalars λ and µ, and a 0-cell c of K〈X〉, with u 6= v and u, v /∈ Supp(c).
(iii) λ(fv, ug) + c, for 1-monomials f : u→ a and g : v→ b of K〈X〉, a nonzero scalar λ, and

a 0-cell c of K〈X〉, with uv /∈ Supp(c).
After examination, nontrivial local branchings are of the form λ(f, g) + c, for 1-monomials
f : u→ a and g : u→ b of K〈X〉 such that (f, g) is nontrivial with monomial source u, for λ
a nonzero scalar, and c a 0-cell of K〈X〉, with u /∈ Supp(c). Such a nontrivial local branching
is critical if λ = 1 and c = 0, and if it cannot be factored (f, g) = u(f ′, g ′)v in a nontrivial
way. Note that every nontrivial local branching has a unique decomposition λu(f0, g0)v + c,
with (f0, g0) critical.

Confluence, local confluence and critical confluence are then defined as in §2.5.3.

7.3.5. Convergence. Let X be a left-monomial 1-polygraph. We say that X is convergent if it is
both terminating and confluent. In that case, every 0-cell a of K〈X〉 has a unique normal form,
denoted by â, such that a = b holds in X if, and only if, â = b̂ holds in K〈X〉. Hence, if X is a
convergent presentation of an algebra A, the assignment of each element a of A to the normal
form of any representative of a in K〈X〉, written â by extension, defines a section A� K〈X〉 of
the canonical projection, where A is seen as a 1-algebra with identity 1-cells only. The section is
linear (the normal form of λa+ µb is λâ+ µb̂), it preserves the unit (termination implies 1̂ = 1),
but âb 6= âb̂ in general. The completion procedure, developed by Buchberger for commutative
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algebras [42] and by Knuth and Bendix for term rewriting systems [126], adapts to terminating
left-monomial 1-polygraphs in a straightforward way.

7.3.6. Theorem. Let A be an algebra and X be a convergent presentation of A. Then the
set Redm(X) of reduced monomials of K〈X〉 is a linear basis of A. As a consequence, the vector
space Red(X), equipped with the product defined by a · b = âb, is an algebra isomorphic to A.

7.3.7. Example. Let A be the algebra presented by the 1-polygraph X =
〈
x, y

∣∣α : xy→ x2
〉
,

which terminates, because xy > x2 holds for the deglex order generated by y > x. This
presentation is also confluent, because it has no critical branching (see Theorem 7.5.2). Hence,
the set Redm(X) =

{
yixj

∣∣ i, j ∈ N
}
is a linear basis of the algebra A. Moreover, the product

defined by

yixj · ykxl =

{
yixj+k+l if j > k
yi−j+kx2j+l if j 6 k

turns Red(X) into an algebra that is isomorphic to A.

7.4. Comparison with Gröbner bases and Poincaré-Birkhoff-Witt bases

In this section, if X is a 1-polygraph, we denote by I(X) the ideal of K〈X0〉 generated by the
boundaries ∂(a) = s(a) − t(a) of the 1-cells of X, so that X ' K〈X0〉/I(X).

7.4.1. Lemma. Let X be a 1-polygraph. For all 0-cells a and b ofK〈X〉, the 0-cell a−b belongs
to the ideal I(X) if, and only if, there exists a 1-cell f : a→ b in K〈X〉. As a consequence, I(X)
exactly contains the 0-cells a of K〈X〉 such that a = 0 holds in X.

Proof. Assume a− b ∈ I(X), i.e. a− b =
∑
16i6p λiui∂(αi)vi. Then

f =

p∑
i=1

λiuiαivi +
(
a−

p∑
i=1

λiuis(αi)vi
)
.

defines a 1-cell f : a → b of K〈X〉. Conversely, let f : a → b be a 1-cell of K〈X〉. Write
f = f1 ?0 · · · ?0 fp, with fi = λiuiαivi + hi for every 1 6 i 6 p. Since t(fi) = s(fi+1), we
have a − b = ∂(f1) + · · · + ∂(fp). Moreover, ∂(fi) = λiui∂(αi)vi implies that each ∂(fi)
belongs to I(X), and thus so does a− b. Finally, if one applies the equivalence to the case b = 0,
since 0 = 0 holds in X, we get that a is in I(X) if, and only if, we have a = 0 in X.

7.4.2. Proposition. Let X be a terminating left-monomial 1-polygraph. Then, as a vector space,
K〈X0〉 admits the decomposition

K〈X0〉 = Red(X) + I(X), (7.6)

and the following assertions are equivalent:
(i) X is confluent.
(ii) Every 0-cell of I(X) admits 0 as a normal form.
(iii) As a vector space, K〈X0〉 admits the direct decomposition K〈X0〉 = Red(X)⊕ I(X).
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Proof. Since X terminates, every 0-cell a of K〈X〉 admits at least a normal form b, i.e. a reduced
0-cell b such that there exists a positive 1-cell f : a → b in K〈X〉. We obtain (7.6) by writing
a = b+ (a− b), and by observing that b belongs to Red(X), by hypothesis, and that a− b is
in I(X), by Lemma 7.4.1.

(i) ⇒ (ii). By Lemma 7.4.1, if a is in I(X), then there exists a 1-cell f : a → 0 in K〈X〉.
Since X is confluent, a and 0 have the same normal form, if any. And, since 0 is reduced, 0 is a
normal form of a.

(ii)⇒ (iii). Using (7.6), it is sufficient to prove that Red(X) ∩ I(X) is reduced to 0. On the
one hand, if a is in Red(X), then a is reduced and, thus, admits itself as only normal form. On
the other hand, if a is in I(X), then a admits 0 as a normal form by hypothesis.

(iii) ⇒ (i). Consider a branching (f, g) of X, with f : a → b and g : a → c. Since X
terminates, each of b and c admits at least one normal form, say b ′ and c ′ respectively. Hence,
there exist positive 1-cells h : b→ b ′ and k : c→ c ′ in K〈X〉. Note that the difference b ′ − c ′
is also reduced. Moreover, the 1-cell (f ?0 h)− ?0 (g ?0 k) has b ′ as source and c ′ as target. This
implies, by Lemma 7.4.1, that b ′ − c ′ also belongs to I(X). The hypothesis gives b ′ − c ′ = 0, so
that (f, g) is confluent.

7.4.3. Monomial orders and Gröbner bases. Let X be a set. A wellfounded total order on X∗,
whose strict part is stable by product, is called a monomial order onK〈X〉. If X is a left-monomial
1-polygraph, and 4 is a monomial order on K〈X0〉 that is compatible with X1, then X terminates:
the order < is wellfounded, and a �X b implies a � b for all 0-cells a and b. However, the
converse implication does not hold, as illustrated by Example 7.4.7.

Let X be a set and4 be a monomial order on the free algebraK〈X〉. If a is a nonzero element
of K〈X〉, the leading monomial of a is the maximum element lm(a) of Supp(a) for 4 (or 0
if Supp(a) is empty), the leading coefficient of a is the coefficient lc(a) of lm(a) in a, and the
leading term of a is the element lt(a) = lc(a) lm(a) of K〈X〉. Let I be an ideal of K〈X〉. A
Gröbner basis for (I,4) is a subset G of I such that the ideals of K〈X〉 generated by lm(I) and
by lm(G) coincide.

7.4.4. Proposition. If X is a convergent left-monomial 1-polygraph, and 4 is a monomial order
on K〈X0〉 that is compatible with X1, then ∂(X1) is a Gröbner basis for (I(X),4).

Conversely, letX be a set, let4 be amonomial order onK〈X〉, let I be an ideal ofK〈X〉 andG be
a subset of I. Define G] as the 1-polygraph with 0-cells X and one 1-cell lm(a)→ lm(a)− 1

lc(a)a

for each a in G. If G is a Gröbner basis for (I,4), then G] is a convergent left-monomial
presentation of K〈X〉/I, such that I(G]) = I, and 4 is compatible with G]

1.

Proof. If X is convergent, then ∂(α) is in I(X) for every 1-cell α of X. Since 4 is compatible
with X1, we have lm(∂(α)) = s(α) for every 1-cell α of X. Now, if a is in I(X), it is a linear
combination a =

∑
i λiui∂(αi)vi, where αi is a 1-cell of X, and ui and vi are monomials

of K〈X〉. This implies lm(a) = uis(αi)vi = ui lm(∂(αi))vi for some i. Thus ∂(X1) is a
Gröbner basis for (I(X),4).

Conversely, assume that G is a Gröbner basis for (I,4). By definition, 4 is compatible
with G]

1, hence G
]
1 terminates, and I(G]) = I holds, so that G] ' K〈X〉/I. Moreover, the reduced

monomials of K〈G]〉 are the monomials of K〈X〉 that cannot be decomposed as u lm(a)v with a
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in G, and u and vmonomials ofK〈X〉. Thus, if a reduced 0-cell a ofK〈G]〉 is in I, then lm(a) = 0,
because G is a Gröbner basis of (I,4). As a consequence of Proposition 7.4.2, we get that G] is
confluent.

7.4.5. Poincaré-Birkhoff-Witt bases. Let A be an N-homogeneous algebra, for N > 2, let X
be a generating set of A, concentrated in degree 1, and let 4 be a monomial order on K〈X〉. A
Poincaré-Birkhoff-Witt (PBW) basis for (A,X,4) is a subset B of X∗ such that:

(i) B is a linear basis of A, with [u]B denoting the decomposition of u ∈ X∗ in the basis B,
(ii) for all u and v in B, we have uv < [uv]B,
(iii) an element u of X∗ belongs to B if, and only if, for every decomposition u = vu ′w of u

in X∗ such that u ′ has degree N, then u ′ is in B.

7.4.6. Proposition. If X is a convergent left-monomial N-homogeneous presentation of an
algebraA, and4 is a monomial order onK〈X0〉 that is compatible with X1, then the set Redm(X)
of reduced monomials of K〈X〉 is a PBW basis for (A,X0,4).

Conversely, let A be an N-homogeneous algebra, let X be a generating set of A that is
concentrated in degree 1, let 4 a monomial order on K〈X〉, and B be a PBW basis of (A,X,4).
Define B] as the 1-polygraph with 0-cells X and with one 1-cell uv → [uv]B for all u and v
in B such that uv has degree N and uv 6= [uv]B. Then B] is a convergent left-monomial
N-homogeneous presentation of A, such that Redm(B]) = B, and 4 is compatible with B]

1.

Proof. If X is a convergent left-monomial presentation of A, Theorem 7.3.6 implies that the
set Redm(X) of reduced monomials of K〈X〉 is a linear basis of A. The fact that 4 is compatible
with X1 implies uv < [uv]B, and the third axiom of the definition of a PBW basis comes from
the definition of a reduced monomial for an N-homogeneous left-monomial 1-polygraph.

Conversely, assume thatB is a PBW basis for (A,X,4). By definition,B] isN-homogeneous
and left-monomial, the third axiom of the definition of a PBW basis implies Redm(B]) = B, and
the second axiom gives termination of B]. By Proposition 7.4.2, it is sufficient to prove that
Red(B]) ∩ I(B]) = 0 to get confluence: on the one hand, a reduced 0-cell a of Red(B]) is a
linear combination of 0-cells of B, so that a is its only normal form; and, on the other hand, if a
belongs to I(B]), then a admits 0 as a normal form by Lemma 7.4.1. Finally, B] is isomorphic to
Red(B]), i.e. to KB, hence to A, by Theorem 7.3.6 and because B is a linear basis of A.

7.4.7. Example. Convergent presentations of associative algebras are strict generalisations of
Gröbner bases and PBW bases, because rewrite orders generated by terminating polygraphs
strictly contain monomial orders that are compatible with 1-cells. For example, let us prove
that the 1-polygraph X =

(
x, y, z

∣∣ xyz→ x3 + y3 + z3
)
terminates. For every monomial u

of K〈X〉, denote by A(u) the number of factors xyz that occur in u, by B(u) the number of y
that u contains, and putΦ(u) = 3A(u)+B(u). It is sufficient to check thatΦ(uxyzv) is strictly
greater than each ofΦ(ux3v), Φ(uy3v) and Φ(uz3v), for all monomials u and v of K〈X〉:

Φ(uxyzv) = Φ(u) +Φ(v) + 4, Φ(ux3v) =

{
Φ(u) +Φ(v) + 3 if v = yzv ′,
Φ(u) +Φ(v) otherwise,

Φ(uy3v) = Φ(u) +Φ(v) + 3, Φ(uz3v) =

{
Φ(u) +Φ(v) + 3 if u = u ′xy,

Φ(u) +Φ(v) otherwise.
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However, no monomial order on K〈X0〉 is compatible with X1, because, for such an order �, one
of the monomials x3, y3, z3 is always greater than xyz. Indeed, since � is total, one of x, y or z
is greater than the other two. If it is x, the case of z being symmetric, x � y implies x2 � yx
and x � z implies yx � yz, so that x2 � yz, hence x3 � xyz. Now, if y � x and y � z, we
get y2 � xy, thus y2z � xyz and y3 � y2z.

7.5. Coherent presentations of associative algebras

If X is a left-monomial 1-polygraph, and Y is an extension of K〈X〉, we define the notions of
(local, critical) Y-confluence and Y-convergence for X as in §3.2.1.

7.5.1. Lemma. Let X be a left-monomial 1-polygraph, and Y be an extension of K〈X〉, such
that X is Y-confluent at every 0-cell b ≺ a for some fixed 0-cell a of K〈X〉. Let f be a 1-cell
of K〈X〉 that admits a decomposition

a0
f1−→ a1

f2−→ · · ·
fp−→ ap

into 1-cells of size 1 such that ai ≺ a holds for every 0 < i < p. Then there exist positive
1-cells g and h in K〈X〉 and a 2-cell F in K〈X〉[Y] as in

ap h
��F��

a0

f 33

g
22 a ′.

Proof. Proceed by induction on p > 0. If p = 0, then f = 1a0 , so taking g = h = 1a0
and F = 1f proves the result. Otherwise, let us construct

ap h2
��F��

a1

f2 ?0 · · · ?0 fp 33

g2 //

h1
%%=

b2 k2
��G��

a0

f1 33

g1

33 b1
k1

33 a ′

First, apply Lemma 7.3.2 to the 1-cell f1 of size 1 to get g1 and h1 such that f1 = g1 ?0 h
−
1 .

Then, apply the induction hypothesis to obtain g2, h2 and F. Finally, apply the Y-confluence
hypothesis to (h1, g2) to produce k1, k2 and G.

7.5.2. Theorem. Let X be a terminating left-monomial 1-polygraph, and Y be an extension
of K〈X〉. If X is critically Y-confluent then it is Y-confluent.

Proof. We proceed by noetherian induction on the source of the branchings to prove that Y-critical
confluence implies Y-local confluence, which in turn implies Y-confluence. The proof of the
second implication is the same as for Proposition 3.2.2. The proof of the first implication is based
on a case analysis on the type of local branching, as in Proposition 3.2.3, but the argument differs
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in that it also requires the termination hypothesis, see [95, Remark 4.2.4]. Here, we describe the
case of a nontrivial local branching, and refer to [95, Theorem 4.2.1] for the trivial case, whose
study follows a similar pattern. For an overlapping branching (λf+ c, λg+ c), let us construct

λa+ c

f ′1
,,

λf ′ + c
""

F��

a ′
f ′2

��

I��λu+ c

λf+ c 66

λg+ c ((

λe+ c

h

??

k
��

G��

H��

d

λb+ c

λg ′ + c

<<

g ′1

22 b ′
g ′2

CC

Consider the unique decomposition (f, g) = v(f0, g0)w, with (f0, g0) critical. Since (f0, g0) is
Y-confluent by hypothesis, we obtain

a0
f ′0
��

F0��u0

f0 33

g0
++

e0

b0 g ′0

FF

Define the positive 1-cells f ′ = vf ′0w and g ′ = vg ′0w, and the 2-cell F = vF0w. The dotted
1-cells are not positive in general, for example if Supp(c) intersects Supp(a) or Supp(b). However,
the 1-cell f ′ is positive, so that it is a 0-composite f ′ = l1 ?0 · · · ?0 lp of rewriting steps. As
a consequence, we have the chain of inequalities u � s(l1) � · · · � s(lp) � e. Since we
have λ 6= 0 and u /∈ Supp(c) by hypothesis, the inequality λu+ c � λs(li) + c holds for every i,
so that the λf ′ + c = (λl1 + c) ?1 · · · ?1 (λlp + c) satisfies the hypotheses of Lemma 7.5.1. This
gives f ′1, h and G. We proceed similarly with the 1-cell λg ′ + c to obtain g ′1, k and H. Finally,
we apply the induction hypothesis on (h, k), since λu+ c � λe+ c, to get f ′2, g ′2 and I.

7.5.3. Theorem (Squier’s theorem for algebras). Let X be a convergent left-monomial 1-
polygraph, and Y be an extension of K〈X〉. If X is Y-convergent, then Y is acyclic. In particular,
if Y contains a 2-cell

b h
��

F��a

f 00

g ..

d

c k

@@

for every critical branching (f, g) of X, with h and k positive 1-cells of K〈X〉, then Y is acyclic.

Proof. The proof of the first assertion is almost identical to the one of Proposition 3.2.4. The
only difference is that, here, we have to invoke Lemma 7.3.2, to factorise a 1-cell f of K〈X〉 into a
composite f = g1 ?0 h−1 ?0 · · · ?0 gp ?0 h

−
p where each gi and hi is positive.

114



7.5.4. Example. From [176, §4.3], we consider the algebra

A =
〈
x, y, z

∣∣ x2 + yz = 0, x2 + λzy = 0
〉
,

where λ 6= 0, 1 is a fixed scalar. The algebra A admits the presentation X = (x, y, z |α,β),
with α : yz→ −x2 and β : zy→ −µx2, and where µ = λ−1. The deglex order generated by
z > y > x satisfies yz > x2 and zy > x2, proving that X terminates. However, X is not confluent.
Indeed, it has two critical branchings

−x2y yzy
αy
oo

yβ
// −µyx2 and −µx2z zyz

βz
oo

zα
// −zx2

and neither of them is confluent, because the monomials x2y, yx2, x2z and zx2 are reduced. The
adjunction of γ : yx2 → λx2y and δ : zx2 → δµx2z gives a left-monomial 1-polygraph Y that
also presents A, and that also terminates, because of yx2 > x2y and zx2 > x2z. Moreover, each
one of the four critical branchings of Y is confluent:

−x2y

F��yzy

αy 44

yβ
))
−µyx2

−µγ

TT
−µx2z

G��zyz

βz 55

zα ** −zx2

−δ

TT

−x4

H��yzx2

αx2 66

yδ &&

x2yz

x2αhh

µyx2z
µγz

DD

−µx4

I��zyx2

βx2 88

zγ %%

x2zy

x2βff

λzx2y λδy

DD

Theorem 7.5.3 says that 〈Y | F,G,H, I〉 is a coherent presentation of A. Following the same steps
as in Example 5.4.5, this coherent presentation can be reduced to (X | ∅) by eliminating H and I
after examination of the critical 3-branchings of Y, and, then, eliminating F with γ and G with δ.

7.6. Polygraphic resolutions and Koszulness

7.6.1. Collapsing schemes. Let X be an ∞-polygraph, and Y be a graded subset of X. A
collapsing scheme of X onto Y is an injective graded partial map ϕ : X→ X of degree 1 such that:

(i) as a graded set, X admits the three-block partition X = im(ϕ) t Y t dom(ϕ),
(ii) for every x in dom(ϕ), the boundary ofϕx satisfies ∂(ϕx) = λx+a, where λ is a nonzero

scalar, and a is an n-cell of K〈X〉 such that x does not belong to the set Cell(a) of n-cells
of X that appear in a,

(iii) putting x Qϕ y, for all x in dom(ϕ) and y in Cell(∂(ϕx)), defines a wellfounded order on
the cells of X.

Ifϕ is a collapsing scheme ofX onto Y, and x ∈ dom(ϕ),with ∂(ϕx) = λx+a, we put x̃ = −1λa.
We refer to [95, §5.3] for the proof of the following result, and to Examples 7.6.8 and 7.6.9

for illustrations:

7.6.2. Theorem. Let X be an∞-polygraph, Y be a graded subset of X, and ϕ be a collapsing
scheme of X onto Y. Setting, for every n > 1 and every n-cell x of Y,

s(x) = π(s(x)) and t(x) = π(t(x)),
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and, for every n > 0 and every n-cell x of X,

π(x) =


x if x ∈ Y,
π(x̃) if x ∈ dom(ϕ),
1s(x) if x ∈ im(ϕ),

(7.7)

defines, by mutual induction, a structure of∞-polygraph on Y and a morphism π : K〈X〉 → K〈Y〉
of∞-algebras. Moreover, if X is a polygraphic resolution of an algebra A, then so is Y.

7.6.3. The standard polygraphic resolution. Let A = K ⊕ A+ be an augmented algebra.
For n > 1, define the vector space

A(n) =
⊕
16k6n

i1+···+ik=n

A⊗i1+1+ ⊗ · · · ⊗A⊗ik+1+ .

Vertical bars are used to denote the innermost products of copies of A+, so that A(n) is made
of the linear combinations of elements a10| · · · |a1i1 ⊗ · · · ⊗ a

k
0 | · · · |akik with n vertical bars. For

1 6 i 6 n, let d−i (resp. d+i ) be the linear map from A(n) to A(n−1) that replaces the ith
vertical bar, counting from the left, with a tensor (resp. the product of A+). For example, we have
d−2 (a ⊗ b|c ⊗ d|e) = a ⊗ b|c ⊗ d ⊗ e and d+1 (a ⊗ b|c ⊗ d|e) = a ⊗ bc ⊗ d|e. Define d(j)i
as d−i if j is odd, and as d+i if j is even.

Assume that B is a linear basis of A that contains 1, and put B+ = B \ {1}. Then, setting
Std(B)n = Bn+1+ and, for every u in Bn+1+ ,

s(u) =
∑
16k6n

16i1<···<ik6n

(−1)k+1d
(n+1−i1)
i1

· · ·d(n+1−ik)ik
(u),

t(u) =
∑
16k6n

16i1<···<ik6n

(−1)k+1d
(n−i1)
i1

· · ·d(n−ik)ik
(u),

defines a polygraphic resolution of A, called the standard polygraphic resolution of A. The
complete proof, see [95, Theorem 6.1.2], relies on the construction of the linear analogue of the
contractions of §4.2.4, see [95, §5.2], given by σu0|···|un⊗un+1 = u0| · · · |un+1.

Assume that X is a convergent presentation of A. By Theorem 7.3.6, the set Redm(X)
of reduced monomials of K〈X〉 is a linear basis of A, so we obtain a polygraphic resolution
Std(Redm(X)). An n-cell u0| · · · |un of Std(Redm(X)) is called critical if

(i) u0 is a 1-cell of X,
(ii) for every 1 6 i 6 n, the 1-cell ui−1ui is not reduced,
(iii) for every 1 6 i 6 n, every proper left-factor of uiui+1 is reduced.
Let u = u0| · · · |un be an n-cell of Std(Redm(X)) that is not critical, and let i be the minimal
element of {0, . . . , n} such that u0| · · · |ui is not critical. We say that u is

(i) i-subcritical if i > 1 and ui−1ui is reduced,
(ii) i-supercritical if i = 0 (and, thus, ‖u0‖ > 1), or i > 1 and ui−1ui has a nonreduced

proper left-factor.
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If u is i-supercritical, then, ui−1 being reduced, there exists a proper factorisation ui = viwi
such that ui−1vi it the shortest nonreduced left-factor of ui−1ui, and we put δ(u) = (vi, wi).

7.6.4. Theorem (Squier’s polygraphic resolution). Let A be an augmented algebra and X be
a reduced convergent left-monomial presentation of A. Define Sq(X) to be the graded subset of
Std(Redm(X)) consisting of its critical cells, and ϕ : Sq(X)→ Sq(X) as the graded partial map
of degree 1 given by

ϕ(u0| · · · |un) = u0| · · · |ui−1|vi|wi|ui+1| · · · |un
for every i-supercritical n-cell u0| · · · |un with δ(u0| · · · |un) = (vi, wi). Thenϕ is a collapsing
scheme of Std(Redm(X)) onto Sq(X). As a consequence, Sq(X), equipped with the structure of∞-polygraph induced by ϕ, is a polygraphic resolution of A.

Proof. First, ϕ induces a bijection between the i-supercritical n-cells and the (i+ 1)-subcritical
(n+1)-cells of Std(Redm(X)), with inverse given byψ(u0| · · · |un+1) = u0| · · · |uiui+1| · · · |un.
Second, we have Std(Redm(X)) = im(ϕ)tSq(X)tdom(ϕ) because Sq(X), dom(ϕ) and im(ϕ)
respectively consist of the critical, supercritical and subcritical cells of Std(Redm(X)). Third,
let u = u0| · · · |un be an i-subcritical n-cell of Std(Redm(X)), so that u = ϕ(d+i+1(u)). The
(n− 1)-cells that appear in ∂(u) are u0| · · · |un−1, u1| · · · |un and each d+j (u), for 1 6 j 6 n,
see [95, Corollary 6.1.3]. Since d+i+1(u) is distinct from each other (n−1)-cell of Std(Redm(X))
that appears in ∂(u), we deduce that ∂(u) has the required form.

Finally, we check that the relation Qϕ induced by ϕ is wellfounded, by proving that it is
included into the wellfounded order Q defined by u0| · · · |un B v0| · · · |vn if either

(i) v0 · · · vn is a proper submonomial of u0 · · ·un, or
(ii) u0 · · ·un �X a, with a an n-cell of K〈Std(Redm(X))〉 such that v0| · · · |vn belongs

to Supp(a), or
(iii) u0 · · ·un = v0 · · · vn, and there exists i in {0, . . . , n} such thatu0 = v0, . . . ,ui−1 = vi−1,

and l(ui) > l(vi).
Fix an i-subcritical n-cell u = u0| · · · |un of Std(Redm(X)). Let us prove that d+i+1(u) Q y

holds for every (n − 1)-cell y of Std(Redm(X)) that appears in the support of u0| · · · |un−1,
u1| · · · |un and of each d+j (u), for 1 6 j 6 n and j 6= i + 1. In the first two cases, (i) applies.
Otherwise, y = u0| · · · |uj−1|v|uj+2| · · · |un for v ∈ Supp(ûiui+1). If ujuj+1 is not reduced,
then u0 · · ·uj−1vuj+2 · · ·un is not a proper submonomial of u0 · · ·un because X terminates,
so (ii) applies. If ujuj+1 is reduced, then (i) and (ii) fail, but (iii) applies, because u0| · · · |ui−1
critical implies that ukuk+1 is nonreduced for each k < i, so that j > i+ 1 holds.

We obtain the analogue of Theorem 4.4.3 for associative algebras, referring to [95, Theo-
rem 7.1.3] for a complete proof:

7.6.5. Theorem. Let X be an∞-polygraph that presents an algebra A. Then the sequence

A
µ←− A⊗Ao δ0←− A⊗KX0 ⊗A

δ1←− · · · δk←− A⊗KXk ⊗A
δk+1←− · · · (7.8)

with µ(a⊗ b) = ab, δ0[x] = 1⊗ x− x⊗ 1, and, for k > 0, δk[α] = [sk−1(α)] − [tk−1(α)], is
a chain complex in Bimod(A). Moreover, if X is a polygraphic resolution of A, then (7.8) is a
resolution of A by free A-bimodules.
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7.6.6. Koszul algebras. All the notions studied so far can be generalised to the case of graded
algebras by replacing the categoriesVect andAlg by their graded versionsVectgr andAlggr. Given a
fixed mapω : N+ → N+, we say that a graded∞-polygraph X isω-concentrated if each graded
set Xn, for n > 0, is concentrated in degreeω(n+ 1). FixN > 2, and define `N : N+ → N+ by
`N(2p) = Np and `N(2p+ 1) = Np+ 1. AnN-homogeneous algebra A is said to be Koszul if
there exists a resolutionM∗ � A of A by projective graded A-bimodules such that eachMn is
generated byM(`N(n))

n .
From Theorem 7.6.5, we deduce the following conditions for an algebra to be Koszul or not:

7.6.7. Proposition. Fix N > 2, and let A be an N-homogeneous algebra.
(i) If A admits an `N-concentrated polygraphic resolution, then A is Koszul.
(ii) If A admits a quadratic convergent presentation, then A is Koszul.
(iii) IfA admits a polygraphic presentation X such that, for some n > 1, Xn is `N-concentrated

but X(i)
n has strictly more elements than X(i)

n+1 for some i > `N(n + 1), then A is not
Koszul.

7.6.8. Example. Consider the symmetric algebra on a totally ordered set X, presented by

Sym(x, y, z) =
(
X
∣∣∣ (y|x : yx→ xy

)
x<y∈X

)
.

The 1-polygraph Sym(X) is left-monomial and convergent, so that Theorem 7.6.4 applies to it:
we obtain a polygraphic resolution Sq(Sym(X)) with one n-cell xn| · · · |x0 for each sequence
xn > · · · > x0 in X. The boundary of these cells are obtained by collapsing the standard
polygraphic resolution, through the collapsing scheme ϕ of Theorem 7.6.4. In the case of a 3-cell
z|y|x, the cells required to understand the computation are drawn on the following figure:

y⊗ z⊗ x

y|z⊗ x

��

y⊗ z|x

##

y⊗ x⊗ z

y⊗ x|z
||

y|x⊗ z

��

y⊗ xz

y|xz

��

y|x|z

yz⊗ x

yz|x ''

y|z|x

xy⊗ z
xy|z

ww

z⊗ y⊗ x

z|y⊗ x 44

z⊗ y|x **

z|y|x xyz x|y|z x⊗ y⊗ z
x|y⊗ z

jj

x⊗ y|z
tt

z⊗ xy

z|xy
77

z|x|y

x⊗ yz
x|yz

gg

xz⊗ y

xz|y

OO

x|z|y

z⊗ x⊗ y

z⊗ x|y

KK

z|x⊗ y
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x⊗ z⊗ y
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The identifications induced by ϕ are given by the dotted arrows, and the cells that belong to
Sq(Sym(x, y, z)) are boxed. Let us explain how these boxed cells and their boundary are obtained.

In the figure, all the cells belong to the standard polygraphic resolution. The six 2-cells of the
figure correspond to all the permutations of the generators x, y and z. But, among these 2-cells,
only one is critical, z|y|x, all the other ones being subcritical: for example, y|z|x is subcritical
because y|z is reduced. Now, in the standard polygraphic, the source of z|y|x is

z|y⊗ x ?0 yz|x.

The 1-cell z|y is critical, but yz|x is supercritical, because yz has length 2. So, to obtain the
source of z|y|x in Sq(Sym(X)), we have to apply to it the functor induced by the collapsing
scheme ϕ, replacing yz|x by the rest of the boundary of y|z|x, which is

(y|z)− ⊗ x ?0 y⊗ z|x ?0 y|xz.

Among the 1-cells involved in this last composition, only z|x is critical: y|z is subcritical, and
thus will be collapsed to an identity, while y|xz is supercritical, and thus must also be iteratively
replaced. The process continues until there remains only critical cells, which is guaranteed by the
fact that ϕ is a collapsing scheme.

Finally, applying Proposition 7.6.7 to the polygraphic resolution so obtained, we recover the
Koszulness of the symmetric algebra. In fact, a detailed study shows that the complex given by
Theorem 7.6.5 applied to Sq(Sym(x, y, z)) is, up to the sign of the differential, the usual Koszul
complex of the symmetric algebra, see [95, Examples 6.3.2 and 7.1.4].

7.6.9. Example. Consider the exterior algebra on a totally ordered set X, presented by

Ext(X) =
(
X
∣∣∣ (y|x : yx→ xy

)
x<y∈X,

(
x|x : xx→ 0

)
x∈X

)
.

This 1-polygraph is left-monomial and convergent, and Theorem 7.6.4 gives a polygraphic
resolution of the exterior algebra with one n-cell xn| · · · |x0 for each sequence xn > · · · > x0
in X. For example, the boundary of a 3-cell y|y|x, for x < y, is given by the following collapsing:

−x⊗ y⊗ x
−x|y⊗ x

||

−x⊗ y|x

""
−x|y|x−xy⊗ x

−xy|x
''

y|x|x

x⊗ xy
x|xy

ww
x|x|y

y⊗ x⊗ x

y|x⊗ x 55

y⊗ x|x

22 0 x⊗ x⊗ y

x⊗ x|yii

x|x⊗ y

ll

��

��

OO

��
bb

��

}}

��

As a consequence of Proposition 7.6.7, we recover the Koszulness of the exterior algebra.
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Chapter 8
Perspectives

8.1. Higher categories and polygraphs

The first research direction concerns the theoretical setting of Squier theory: higher categories,
polygraphs, and rewriting theory. Here, the goal is to look for more general definitions of
higher categories that encompass the maximum of variants (shapes of cells, strictness, with
inverses or not, with an underlying algebraic structure or not, the latter being strict or not), with a
corresponding notion of polygraphs and theory of rewriting.

8.1.1. Higher categories in categories of monoids. With Marcelo Fiore, we currently explore
a new point of view on higher categories. Our starting observation is that spans internal to
monoids in a monoidal category are equipped with two products, span composition, and another
one induced by the monoid product, and these two products satisfy an interchange law. Thus,
these spans form a duoidal category, as defined in [3] under the name of 2-monoidal category:
a category equipped with two compatible monoidal structures. In particular, 2-categories are
duoids in a duoidal category of 2-globular objects, iterated spans form an n-oidal category,
and internal n-categories are n-oids in an n-oidal category of n-globular objects. This leads
to a new definition of internal n-categories, itself inducing a definition of polygraph for such
higher categories. This point of view applies to monoids, monoidal categories, and associative
algebras, but also to operads, Lawvere theories, and higher-order theories like the λ-calculus,
when formulated in the spirit of [73]. Thus, we can study polygraphic resolutions of symmetric
operads and algebras over them, as started in collaboration with Emily Burgunder, Bérénice
Delcroix-Oger and Joan Millès, or of objects like the λ-calculus, which is a common project with
Marcelo Fiore and Damiano Mazza to bring a new light on standardisation theory [82]. Another
requirement to develop a general Squier theory is to find a model structure on the resulting
higher categories; a preliminary exploration with Dimitri Ara has shown that the canonical model
structure on higher categories (internal to sets) should transpose to higher categories internal to
categories of algebras over a projective sketch, in the same way as it was transposed to higher
groupoids in [9].

8.1.2. Weakening higher categories. All the higher categories considered in this document are
strict: the relations satisfied by the composition hold strictly, and so do the ones of the ambient
algebraic structure (monoid or algebra). The motivation for considering weakened versions is that
they should produce cofibrant approximations that would be excellent candidates for formalisations
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of algebraic objects, for example as higher inductive types in type theory. Weakening all the
relations at the same time is too ambitious, but it seems possible in a progressive manner. First,
relaxing the ambient algebraic structure relies both on a better combinatorial understanding of
the globular Gray tensor product of higher categories (work in progress with François Métayer),
and on a computation of all the coherences of the algebraic structure, such as all associahedra
for associative structures. Next, before totally relaxing the axioms of higher categories, one
should consider semistrict versions, as Simon Forest has started to explore in his PhD thesis [74].
A complete weakening may require a totally different point of view, such as the one provided
by homotopy type theory: in his PhD thesis, Antoine Allioux explores ways to formalise weak
monoids in homotopy type theory, a first step in that direction.

8.1.3. Controlling the shapes of cells. Following observations by Maxime Lucas, I want to
explore a different description of globular, simplicial and cubical objets in a category that is based
on the symmetry groups of the cells of various dimensions, rather than on the explicit data of
their face maps. In such a formulation, the globular n-cells would correspond to the Coxeter
type An1 , the simplicial ones to An, and the cubical ones to Bn. This should permit to control
the shapes of cells by a parameter (the Coxeter types in all dimensions) and to adopt a generic,
shape-independent point of view on higher categories. This would lead to new notions of higher
categories, with simplicial cells, for example, and an equivalence such as the one between globular
and cubical higher categories [2] would follow from a connexion between the corresponding
Coxeter types.

8.1.4. A more abstract algebraic rewriting theory. In the case of associative algebras, the
isomorphism between∞-categories and∞-groupoids internal toAlg shows that major obstruc-
tions may arise when trying to develop a rewriting theory for a given algebraic structure. For
associative algebras, we could circumvent this issue by introducing an adapted notion of rewriting
step, but this does not seem to be the same for groups, or for algebras over a symmetric operad.
Another point of view, still inspired by the case of algebras, would be to place ourselves directly
in an∞-groupoid X> internal to a concrete category C, and trying to identity a set-theoretic
subcategory of the 1-groupoid underlying X> that will play the role of the positive 1-cells: for
example, the positiveness could depend on a global order that, contrarily to the case of Gröbner
bases or Poincaré-Birkhoff-Witt bases, needs not be total.

8.2. Garside methods in rewriting and in Squier theory

The constructions presented in this document rely on convergent presentations. However,
experience shows that finite convergent presentations are difficult to find for many interesting
examples, and concrete computations of polygraphic resolutions are generally hard. Here, the
general objective is to integrate methods from Garside theory to help on these two points.

8.2.1. Polygraphic resolutions from Garside families. In an almost completed work with
Matthieu Picantin, we use Garside families to compute more explicit polygraphic resolutions of
monoids than the ones given by a generic convergent presentation. However, we use a different
notion of polygraph: differential graded polygraphs, which generate quasifree differential graded
algebras (dg-algebras for short) [117, 142]. This allows us to focus on the computation of the
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cells of the resolution, rather than on the bureaucracy involved by their globular description.
As a result, given a monoidM with a Garside family X, we obtain a dg-polygraphic resolution
of the algebra KM, with a simple description of the generating cells and of their boundary.
Moreover, if M is atomic, we can contract the dg-polygraphic resolution into a smaller one.
After abelianisation of these two resolutions, we obtain generalisations of the second and third
resolutions of [64]. The next step will be to translate these constructions into polygraphic
resolutions in∞Gpd(Mon), which will generalise the results of [78] in all dimensions, and to any
monoid with a Garside family or any atomic monoid. This will require a better understanding of
the shapes of n-cells generated by quadratic normalisations of class (4, 3), that we call n-silexes,
starting with an heptagon in dimension 2, and a silex-looking polytope in dimension 3.

8.2.2. The KGB completion procedure. As proved by Kapur and Narendran in [122], the
existence of a finite convergent presentation of a monoidM depends on the generators: applying
Knuth-Bendix completion procedure to Artin’s presentation of B+

3 will never terminate, because
it only adds relations and never changes the generators. As far as I know, only three proposals
have been made to enhance completion procedures with such an ability. First, for term rewriting
systems, Knuth and Bendix in [126] examine the variables that appear in the two normal forms
of a nonconfluent critical branching; if they are not the same, they introduce a new generating
symbol that only depends on the common variables. Second, Pedersen’s morphocompletion
was introduced in [174]: it tries to apply standard completion for a number of runs and, if
confluence is not reached, backtracks and adds new generators to close the existing nonconfluent
critical branchings. Third, with Philippe Malbos and Samuel Mimram, we observed in [101]
that the generators of Garside’s presentations for Artin monoids and of the column presentations
of plactic and Chinese monoids generate all the quasicenters of all the parabolic submonoids,
and we proposed to enhance completion by computing these. Still with Matthieu Picantin, we
currently explore a fourth enhanced completion procedure, called KGB for “Knuth-Bendix with
Garside inside”. It originates in the result of [63] asserting that every finite Garside family gives
rise to a finite convergent presentation. Moreover, provided some mild hypotheses are satisfied,
Garside families can be defined as generating families that are closed under simple operations
such as common multiple and complement. The idea of the KGB procedure is to interleave the
computations of a Garside family and of a convergent presentations, and practical experiments
already validate the procedure on low-rank graded examples such as Artin monoids.

8.2.3. Generalising Garside theory. Garside theory is a theory of normal forms in monoids,
and also generalises in a straightforward way to categories [60]. But it seems that Garside theory
could also be developed, in an abstract setting, for monoids in a monoidal category with some extra
properties, such as being concrete. Doing so would give a totally new way to compute normal
forms, and thus resolutions, for several monoidal structures such as pros, operads or Lawvere
theories. The main question is not whether it is possible, but whether there is evidence that such
objects could admit nontrivial Garside families. The first example that I wish to investigate, with
Julien Ross, comes from the search for normal forms of quantum circuits with specific sets of
gates: Clifford in [189] and CNOT+T in [4]. In both cases, the computation of normal forms
rely on the adjunction of extra redundant generators, sharing common properties with Garside
families, such as forming a closed family with respect to complement and common multiple.
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8.2.4. Convergence revisited. As already mentioned, reaching convergence is hard for many
interesting examples outside the world of monoids. The main issue is termination, which is a
strong requirement, and serves in Squier theory for inductions on the length of the sequences of
rewriting steps: weaker requirements could still allow this, like, for example, asking noetherianity
of left or right-divisibility in the category U(X∗) obtained by identifying all parallel 1-cells of X∗.
At the same time, concrete examples usually satisfy a stronger property than confluence: two
1-cells with the same source have a minimal way, or at least a locally minimal way, to be completed
into a 1-sphere. Said differently, in the category U(X∗), two 1-cells with the same source have at
least a minimal common multiple. This stronger hypothesis would remove the need to consider
negative cells when building an acyclic extension from critical branchings. So, using concepts
central to Garside theory, like divisibility or minimal common multiples, to relax termination
while strengthening confluence, seems to better fit concrete examples, and should produce an
alternative notion of convergence that is more adapted to compute polygraphic resolutions.

8.3. Polygraphic resolutions of Artin monoids and groups

In [78], we have shown how to obtain the first dimensions of polygraphic resolutions of Artin
monoids. Moreover, further exploration seems to indicate that the corresponding complete
polygraphic resolutions have the same cells as well-known CW complexes associated to Artin
monoids and related to the K(π, 1)-conjecture, see e.g. [47]: the standard polygraphic resolution
of B+(W) and its geometric realisation; Garside’s polygraphic resolution and Deligne’s complex;
the unfolding [137] of Artin polygraphic resolution and the universal covering of Salvetti’s
complex. Hence, we think that the K(π, 1)-conjecture is equivalent to the fact that any of the
standard, Garside’s or Artin’s polygraphic resolution is also one for the Artin group B(W).

8.3.1. Concrete computations of polygraphic resolutions. As already noted, the construction
of the polygraphic resolution in [99] is not explicit enough to apply the contraction method of [78]
in higher dimensions. This is the main motivation behind my recent interest into Garside theory.
Also, the standard resolution could be defined explicitly in [95] in the case of associative algebras,
thanks to the underlying linear structure, but formulas still have to be given in the set-theoretic
case. Our planned exploration of the Gray tensor product of globular higher categories, with
François Métayer, will provide a way to compute this standard polygraphic resolution. Then, a
set-theoretic collapsing scheme should yield Garside’s and Artin’s polygraphic resolutions.

8.3.2. Geometric realisation of polygraphs. It is well-known that strict higher categories do
not model all homotopy types. Therefore, it is not possible to define a geometric realisation functor
so that a strict higher category has exactly the same homotopical properties as its realisation.
However, in a recent work on Simpson’s conjecture [106], Simon Henry has introduced a notion
of regular polygraphs, that are sufficiently well-formed to admit a geometric realisation. Note that
these regular polygraphs are almost the same as the ones defined independently and at the same
time by Amar Hadzihasanovic [103]. With Simon Henry, we conjecture that the three polygraphs
that interest us in the case of Artin monoids are regular in his sense, and thus admit geometric
realisations with the same homotopical properties: we plan to investigate this further, and to relate
the resulting spaces to the corresponding known CW complexes.
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8.3.3. Polygraphic resolutions of groups. The concept of polygraphic resolution can be adapted
to groups in a straightforward way: given a group G, a polygraphic resolution of G is a cofibrant
approximation ofG in the category of∞-groupoids. Now, ifM is a monoid andX is a polygraphic
resolution ofM, one can see X as an (∞, 0)-polygraph and wonder if it is also a polygraphic
resolution of the enveloping group G(M) ofM: this has no reason to be true in general, because
the introduction of inverses may create spheres in the free ∞-groupoid over X that were not
present in the free (∞, 1)-category over X. However, if all the previous steps are valid, then the
K(π, 1)-conjecture says precisely that this is the case forM = B+(W). We know that every Artin
monoid injects in the corresponding Artin group [173], but the axiomatics of model categories do
not permit to exploit that fact directly: an investigation of other respective properties of Artin
monoids and groups, and of derived objects such as Artin dual monoids, is necessary to hope for
further progress here.

8.4. Algebraic invariants of computation

Starting in 2008, my activity has shifted to the use of rewriting methods in effective algebra.
However, I was interested before in the use of algebraic methods in theoretical computer science,
and some research directions that I still would like to explore some day belong to that family.

8.4.1. Beyond finite convergent presentations. Squier has proved in 1987 that, if the existence
of a finite convergent presentation for a monoid implies the decidability of its word problem, the
converse is not true. Then, in 1998, Otto, Katsura and Kobayashi showed an equivalence [171]: a
finitely generated monoid has a decidable word problem if, and only if, it admits a left-recursive
convergent presentation; here, left-recursive means that the set of sources of the relations form a
recursive language. Moreover, they showed that replacing left-recursive by a more strict condition,
such as left-regular, breaks the equivalence again. This suggests several research directions:
homological and homotopical invariants adapted to left-C convergent presentations, where C
is a class of formal languages; a similar result for Lawvere theories, term rewriting systems
and formal languages on trees; the exploration of left-regular convergent presentations, a good
compromise between finite and left-recursive ones containing all known counterexamples of
monoids with a decidable word problem but no finite convergent presentation: Kapur-Narendran,
Squier, Lafont-Prouté.

8.4.2. Cohomology and complexity. To conclude with a science-fiction research direction, the
termination-by-derivation method of [88, 89] has been later adapted into a tool for complexity
analysis [30, 31]. This led to a characterisation of the complexity class FP in polygraphic terms: a
function f is in FP if, and only if, there exists a polygraphic program X computing f and admitting
a derivation d into a certain module P over X∗. But, for a given algebraic object A, the first group
H1(A,M) of the usual associated cohomology theory classifies the derivations of A intoM.
This suggests an interesting possible application of cohomological methods in complexity theory.
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