This manuscript is a summary of my research activity, with an emphasis on the last ten years. My mathematical interests lie mainly in algebra, with a particular focus on the following subjects:

(i) Combinatorial algebra, and more precisely all the mathematical descriptions of what is an algebraic structure, such as operads of all kinds, props and variations, or Lawvere theories.

Here, my main motivation lies in the utopia of a universal algebraic object subsuming all these concepts, yet keeping an easy access to the combinatorics, but also including higher-dimensional algebraic structures, and formalisms from proof theory or theoretical computer science, like the sequent calculus, rewriting systems, or the λ-calculus. (ii) Homotopical algebra, and model structures in particular, as a unified point of view on the concept of topology-inspired equivalence between mathematical objects, including homological algebra as a special case. In this vast domain, I am particularly interested in cofibrant approximations, as an abstract description of the concept of resolution, with the underlying idea that cofibrant approximations in well-chosen model categories should provide good candidates to formalise mathematical structures in logical languages such as type theory. (iii) Higher-dimensional algebra, whose central objective is the description and classification of all the species of higher categories, strict or weak, globular or cubical, invertible or not, with or without an algebraic structure. I would also include concepts from homological algebra, like chain complexes and differential graded algebras and categories, and from homotopical algebra, like cellular complexes. Here, coherence problems, for all sorts of relaxed categorical objects ranging from pseudofunctors to weak higher groupoids, have a special appeal to me. (iv) Effective algebra, also known as computer algebra or symbolic computation, concerned with the formalisation of algebraic structures and the mechanisation of algebraic computation.

Here, I have particularly worked on presentations by generators and relations of monoids, categories and higher categories, with a specific interest into rewriting theory, both to understand the algebraic structure underlying the rewriting mechanism, and to develop rewriting methods for various applications: computation of normal forms and linear bases, decision of the word problem, computation of resolutions and of homotopical and homological invariants, resolution of coherence problems.
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1.4.1. Organisation. Chapter 2 gives the general definitions, notations and constructions used throughout this document: higher categories, polygraphs and their rewriting properties. The material is collected from all my articles, with a presentation that has evolved all along the years.

. This last article is also the source of the classification of critical branchings in dimension three.

Chapter 3 summarises the results of [96], [97] and [98], written with Philippe Malbos. The first article was devoted to a generalisation of Squier's homotopical theorem to higher categories, with a special interest for strict monoidal categories; the theorem was expressed as a rewriting-based construction of a coherent presentation, i.e. a presentation by generators, relations, and relations among relations. The second article first adapted to higher categories the notion of identity among relations, known for presentations of groups as a way to express the syzygies formed by the relations, and then used Squier's theorem to compute generators of the identities among relations. The third article used higher categories to give simple formulations of some categorical coherence problems, and applied Squier's theorem to obtain new proofs of the coherence theorems for monoidal, symmetric monoidal and braided monoidal categories.

Chapter 4 recalls the results of [99], written with Philippe Malbos. The main objective of this article was to extend to higher-dimensions Squier's homotopical theorem for monoids and categories, obtaining the construction of a polygraphic resolution from a convergent presentation: polygraphic resolutions are resolutions by higher categories, extending coherent presentations in all dimensions. Moreover, we used polygraphic resolutions to define various homotopical invariants, and, through an abelianisation process, homological invariants as well, generalising Squier's finite homotopy type and left-FP 3 conditions. Here, the construction of the polygraphic resolution is presented with slightly less restrictive hypotheses than in the original article, and with a corrected proof, the original one containing an error in the definition of some coherence cells in dimension 4 and above.

Chapter 5 presents the article [78], written with Stéphane Gaussent and Philippe Malbos. Our objective was to understand two results about different homotopical aspects of Artin monoids, from the point of view of Squier theory. The first one, by Tits, concerns the fundamental group of a complex associated to the classical presentation of Artin monoids. The second result, by Deligne, is a characterisation of the weak actions of spherical Artin monoids on categories, in terms of another presentation of Artin monoids whose generators are the elements of the corresponding Coxeter group. The main result we obtained was an enhanced version of the construction given by Squier's theorem, generating a rather compact coherent presentation from a non-necessarily terminating presentation. Applied to Artin monoids, this construction gave two different coherent presentations, which, in turn, induced improvements of Tits' and Deligne's results.

Chapter 6 summarises the results of [63], written with Patrick Dehornoy. This article introduced an axiomatic setting, quadratic normalisations, to encompass two methods to compute normal forms in monoids: on the one hand, convergent quadratic polygraphs (such as the

Among these algebraic subjects, the major part of my work has been devoted to the interactions between rewriting theory and higher categories, with a shift of focus roughly ten years ago.

During the first period, ranging from 2000 to 2007 and covering my PhD thesis and postdoc years, I was interested into understanding rewriting theory from an algebraic point of view. This led me to the development of a general rewriting theory in higher-dimensional categories, based on Burroni's structure of polygraph. I have explored translations of various types of rewriting-like systems into polygraphs, and the respective computational properties of the two formalisms, for word and term rewriting systems, Petri nets, and deep-inference proofs of propositional logic and linear logic. Using algebraic derivations, I have developed a method to prove termination of polygraphs; this was later, with Guillaume Bonfante, specialised to the complexity analysis of a subclass of polygraphs corresponding to first-order functional programs, leading to a new characterisation of the FP complexity class. All these results are, in essence, natural extensions of my PhD thesis, and, for that reason, in this manuscript, I chose to focus on later work; however, all the concepts of polygraphic rewriting, being essential in what followed, are still presented here, in a version that has progressively been modernised all along the years.

The second period opens in 2008, when Philippe Malbos and I started to explore a higherdimensional formulation of Squier's work on homological and homotopical invariants of rewriting. This led us into the development of rewriting methods for the computation of various constructions in homotopical algebra: syzygies and coherence bases, homological and homotopical invariants, resolutions by higher categories. Our different articles were motivated by various applications, such as the refinement of Squier's algebraic invariants of rewriting, constructive proofs of coherence theorems in categorical algebra, the computation of polygraphic resolutions of monoids, the study of homotopical properties of Artin monoids (with Stéphane Gaussent), the implementation of resulting algorithms (with Samuel Mimram), or the characterisation of the Koszulness property for associative algebras (with Eric Hoffbeck). In the last years, following the study of Artin monoids, in joint works with Patrick Dehornoy and Matthieu Picantin, I have started to explore the interactions between rewriting and Garside theory, motivated by possible enhancements that the latter can bring to the former.

The next two sections of this introduction propose a brief survey on the rewriting theory from an algebraic point of view, and on Squier's work on homological and homotopical invariants of rewriting. We end the chapter with a summary of this work.
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The word problem.

The word problem for finitely presented monoids originates in 1914, when Thue asked in [START_REF] Thue | Probleme über Veränderungen von Zeichenreihen nach gegebenen Regeln[END_REF] if, given a finite presentation X = (X 1 , X 2 ) of a monoid by generators and relations, there exists an algorithm to decide whether or not any two given elements u and v of the free monoid X * 1 over X 1 are equal up to the relations of X 2 . In 1947, Post [START_REF] Post | Recursive unsolvability of a problem of Thue[END_REF] and Markov [START_REF] Markov | On the impossibility of certain algorithms in the theory of associative systems[END_REF] simultaneously and independently answered by the negative. Their proof is based on an encoding of a Turing machine as a presentation of a monoid, in such a way that the decidability of the word problem in this presentation implies the one of another, undecidable problem: namely, if the machine will ever write a given symbol or not. Still in 1947, Markov gave a more concrete counterexample: a monoid presented by 13 generators and 33 relations, with an undecidable word problem [START_REF] Markov | On the impossibility of certain algorithms in the theory of associative systems II[END_REF]. In 1956 and 1958, Tseitin proposed smaller examples of monoids with undecidable word problems, both admitting rather simple presentations with five generators and seven relations [START_REF] Grigorii | Associative calculus with insoluble equivalence problem[END_REF][START_REF] Grigorii | An associative calculus with an insoluble problem of equivalence[END_REF][START_REF] Grigorii | An associative calculus with an unsolvable problem of equivalence[END_REF].

1.2.2. Rewriting theory. On the positive side, one way to solve the word problem is to exhibit a finite presentation X = (X 1 , X 2 ) of M, made of a generating set X 1 and a set X 2 of directed relations with a good computational property: convergence. The use of directed relations is the central concept of rewriting theory, where one studies presentations whose relations are not seen as equalities between the words in X * 1 , such as u = v, but, instead, as rewriting rules that can only be applied in one direction, like u ⇒ v, thus simulating a nonreversible computational process reducing the word u into the word v. A presentation X is called convergent if it has the two properties of (i) termination, i.e. all the computations end eventually, and (ii) confluence, i.e. different computations on the same input eventually lead to the same result. A finite and convergent presentation X of a monoid M gives a solution to the word problem for M, called the normal-form procedure and defined as follows. Given an element u of the free monoid X * 1 , convergence ensures that all the applications of (directed) relations to u, in every possible manner, will eventually produce a unique result: an element u of X * 1 where no relation applies anymore. The word u is called the normal form of u, and the map u → u induces a (set-theoretic) section of the canonical projection X * 1 M: by construction, two elements u and v of X * 1 represent the same element of M if, and only if, their normal forms u and v are equal in the free monoid X * 1 . Finiteness ensures that one can determine whether an element u of X * 1 is a normal form or not, by examining each relation to check if it applies to u or not. Note that finiteness is just a sufficient condition here, since other methods may exist to check whether or not u is a normal form.

In 1943, Newman gave a general setting, abstract rewriting, to describe the properties of termination and confluence, and to show the first fundamental result of rewriting: Newman's lemma [START_REF] Maxwell | On theories with a combinatorial definition of "equivalence[END_REF] asserts that, under the termination hypothesis, confluence can be reduced to a local form, that only checks if one-step rewritings acting on the same element eventually lead to the same result. Since then, rewriting theory has been mainly and independently developed in effective algebra and theoretical computer science, resulting in numerous variants corresponding to different syntaxes of the elements being transformed, such as word or string rewriting systems [START_REF] Vernon | String-rewriting systems[END_REF] for monoids, or term rewriting systems [START_REF] Baader | Term rewriting and all that[END_REF][START_REF] Willem | Term rewriting systems[END_REF][START_REF]Term rewriting systems[END_REF] for equational theories and Lawvere theories [START_REF] William | Functorial semantics of algebraic theories[END_REF]. Other computational systems are also based on rewriting-like mechanisms, like Gröbner bases in effective algebra [START_REF] Buchberger | An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[END_REF], or the λ-calculus [START_REF] Church | The Calculi of Lambda-Conversion[END_REF] and Petri nets [START_REF] Murata | Petri nets: Properties, analysis and applications[END_REF] in theoretical computer science.

Polygraphs.

More recently, higher-dimensional rewriting has unified several paradigms of rewriting. This theory is based on presentations by generators and relations of higher categories, independently introduced by Burroni and Street under the respective names of polygraphs in [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF] and computads in [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Street | The algebra of oriented simplexes[END_REF]. Burroni's terminology is more widely used in the French community, partly due to our closeness to him, and partly due to aesthetic considerations. Polygraphs are a higher-categorical analogue of CW complexes: they are formed by cells of all dimensions, and each cell has the shape of a globe, whose boundary lives in the free higher category over the cells of lower dimension. For example, the presentation of the monoid A = a | aa = a + is a 2-polygraph with one 0-cell, one 1-cell a, and one 2-cell aa ⇒ a. Similarly, the presentation of the associative theory is a 3-polygraph with one 0-cell, one 1-cell, one 2-cell standing for the product, and pictured by in the formalism of string diagrams, and one 3-cell expressing the associativity of the product. Another example is the categorical presentation of the groups of permutations: it has one 2-cell , standing for the generating transposition (1 2), and the following two 3-cells, respectively expressing that is an involution and that it satisfies the Yang-Baxter relation:

and .

The fundamental virtue of polygraphs is that they encapsulate, in the same globular object, the terms, the computations on the terms, and the homotopical properties of the computations. Thus, polygraphs are perfectly adequate to study higher-dimensional algebraic structures, either from a combinatorial and computational point of view [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF][START_REF] Lafont | A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier)[END_REF][START_REF] Lafont | Towards an algebraic theory of boolean circuits[END_REF][START_REF] Guiraud | Présentations d'opérades et systèmes de réécriture[END_REF][START_REF] Guiraud | Termination orders for 3-polygraphs[END_REF][START_REF] Guiraud | Termination orders for 3-dimensional rewriting[END_REF][START_REF] Guiraud | Two polygraphic presentations of Petri nets[END_REF][START_REF] Guiraud | The three dimensions of proofs[END_REF][START_REF] Lafont | Algebra and geometry of rewriting[END_REF][START_REF] Guiraud | Polygraphs for termination of left-linear term rewriting systems[END_REF][START_REF] Bonfante | Intensional properties of polygraphs[END_REF][START_REF] Bonfante | Polygraphic programs and polynomial-time functions[END_REF][START_REF] Mimram | Computing Critical Pairs in 2-Dimensional Rewriting Systems[END_REF], or for homological or homotopical reasons [START_REF] Métayer | Resolutions by polygraphs[END_REF][START_REF] Métayer | Cofibrant Objects among Higher-Dimensional Categories[END_REF][START_REF] Lafont | Polygraphic resolutions and homology of monoids[END_REF][START_REF] Lafont | A folk model structure on omega-cat[END_REF][START_REF] Ara | The Brown-Golasiński model structure on strict ∞-groupoids revisited[END_REF]. Moreover, polygraphs provide a natural setting to relate these two different faces of higher algebras, and, in particular, to formulate Squier theory, based on the discovery of deep relations between the homological and homotopical properties of algebraic objects, on the one hand, and the combinatorial and computational properties of their presentations, on the other hand.
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1.3.1. Jantzen's question, and Kapur-Narendran's example. The normal-form procedure proves that, if a monoid admits a finite convergent presentation, then it has a decidable word problem. The converse implication was still an open problem in the middle of the eighties, leading Jantzen to ask if every finitely presented monoid with a decidable word problem admits a finite convergent presentation [START_REF] Jantzen | Semi Thue systems and generalized Church-Rosser properties[END_REF][START_REF] Jantzen | A note on a special one-rule semi-Thue system[END_REF]. The answer was expected to be negative, but the proof was revealed to be even harder than expected by the following observation. In [START_REF] Kapur | A finite Thue system with decidable word problem and without equivalent finite canonical system[END_REF], Kapur and Narendran consider Artin's presentation of the monoid B + 3 of positive braids on three strands:

(s, t | sts ⇒ tst) .

Since B + 3 has a finite presentation with homogeneous relations, it has a solvable word problem: the equivalence class of a given word u on s and t can be totally explored to check if another word v belongs to it or not. Kapur and Narendran proved that B + 3 admits no finite convergent presentation on the two generators s and t. However, they also proved that B + 3 admits a finite convergent presentation, if one adjoins to s and t an extra, redundant generator a standing for the product st: s, t, a ta α =⇒ as, st β =⇒ a, sas γ =⇒ aa, saa δ =⇒ aat .

(1.1)

Hence, the existence of a finite convergent presentation depends on the chosen generators. It follows that, to give the awaited negative answer to Jantzen's question, one would have to exhibit a monoid with a decidable word problem but with no finite convergent presentation for any possible set of generators: new methods had to be introduced to tackle the problem.

1.3.2. From computational to homological properties. And, indeed, Craig Squier answered the question by linking the existence of a finite convergent presentation for a given monoid M to a homological invariant of M: a monoid M is left-FP 3 if there exists an exact sequence

0 Z o o P 0 o o P 1 o o P 2 o o P 3 o o
of projective and finitely generated ZM-modules, where Z denotes the trivial ZM-module. From a presentation X of M, one can build an exact sequence of free ZM-modules

0 Z o o ZM ε o o ZM[X 1 ] d 1 o o ZM[X 2 ], d 2 o o (1.2)
where ZM[X k ] is the free ZM-module over X k . So, if the kernel of d 2 is finitely generated, then M is left-FP 3 . Moreover, by classical arguments of homological algebra, the fact that the kernel of d 2 is finitely generated or not does not depend on the choice of a finite presentation of M.

In [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF], Squier proves that, if X is convergent, its critical branchings form a generating set of the kernel of d 2 , where a critical branching of X is a minimal overlapping application of two relations on the same element of X * 1 . For example, the relations α : ta ⇒ as and β : st ⇒ a of (1.1) generate a critical branching (βa, sα) on sta: aa sta βa @ sα 4 T sas

The convergence of (1.1) ensures that every critical branching (f, g) is confluent, which means that it can be completed by rewriting sequences f and g leading to the same result, as in

v f @ u f @ g 4 T u w g W w (1.3)
For example, the presentation (1.1) of B + 3 has four critical branchings, and all of them are confluent: Squier proved that the set X 3 of critical branchings of a convergent presentation X extends the exact sequence (1.2) by one step:

0 Z o o ZM ε o o ZM[X 1 ] d 1 o o ZM[X 2 ] d 2 o o ZM[X 3 ], d 3 o o (1.4)
where the boundary map d 3 is defined on the generic branching (1.3) by

d 3 (f, g) = [f] -[g] + [f ] -[g ],
Since the set of critical branchings of a finite convergent presentation is itself finite, we obtain that, if a monoid admits a finite convergent presentation, then it is left-FP 3 [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF]Theorem 4.1].

Finally, Squier considers a family (S k ) k 2 of monoids, such that each S k is finitely generated and has a decidable word problem, but, if k 2, then S k is not left-FP 3 and, as a consequence, it does not admit a finite convergent presentation (for any possible set of generators).

1.3.3. From computational to homotopical properties. Later, Squier gave another proof of the same result, based on a homotopical refinement of the property left-FP 3 . Given a monoid M with a presentation X, Squier considers in his posthumous article [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] the complex of the presentation X: this is a cellular complex with one 0-cell for each element of X * 1 , and whose 1-cells correspond to one-step rewritings. Then, he extends this 1-dimensional complex with 2-cells filling all the squares formed by independent applications of relations, such as the following one, provided there exist 1-cells between u 1 and v 1 , and between u 2 and v 2 :

wv 1 w u 2 w wu 1 w u 2 w wv 1 w v 2 w wu 1 w v 2 w
Squier defines a homotopy basis of X as a generating set of the fundamental group of the resulting two-dimensional complex, and proves that, if X and Y are two finite presentations of the same monoid, then X admits a finite homotopy basis if, and only if, Y does [START_REF] Squier | A finiteness condition for rewriting systems[END_REF]Theorem 4.3]. Next, Squier defines the following homotopical invariant for monoids: one says that a monoid is of finite derivation type if it admits a finite presentation with a finite homotopy basis. He then proves that, if X is a convergent presentation of a monoid, and if Y is a set of 2-cells filling the diagram (1.3) for each critical branchings of X, then Y is a homotopy basis of X [START_REF] Squier | A finiteness condition for rewriting systems[END_REF]Theorem 5.2]. As a consequence, if a monoid admits a finite convergent presentation, then it is of finite derivation type [START_REF] Squier | A finiteness condition for rewriting systems[END_REF]Theorem 5.3]. It was later proved that, if a monoid is of finite derivation type, then it is left-FP 3 [START_REF] Cremanns | Finite derivation type implies the homological finiteness condition FP 3[END_REF][START_REF] Stephen | Low-dimensional homotopy theory for monoids[END_REF][START_REF] Lafont | A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier)[END_REF]. Squier uses these results to give another proof that there exist finitely generated monoids, with a decidable word problem, but that do not admit a finite convergent presentation. Moreover, he shows that left-FP 3 is not sufficient for a finitely presented monoid with a decidable word problem to admit a finite convergent presentation. Indeed, the monoid S 1 of [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF], given by the finite presentation (a, b, t, x, y | ab ⇒ 1, xa ⇒ atx, xt ⇒ tx, xb ⇒ bx, xy ⇒ 1), has a decidable word problem, it is left-FP 3 , yet it is not of finite derivation type, and, as a consequence, it does not admit a finite convergent presentation. convergent Garside presentation of Artin monoids, or the column presentations of plactic and Chinese monoids), and, on the other hand, the normalisation process induced by a Garside family. Quadratic normalisations are classified according to their class (m, n), determined by the maximal length of reductions on length-three words: m when starting from the left, and n from the right. We particularly explored the quadratic normalisations of class [START_REF] Amy | A finite presentation of CNOT-dihedral operators[END_REF][START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF], proving that they induce convergent quadratic presentations of monoids, that they generalise the Garside case, and we gave a characterisation of the Garside normalisations among them.

Chapter 7 presents the results of [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], written with Eric Hoffbeck and Philippe Malbos. Our objective was to transpose Squier theory to associative algebras, in order to give a rewriting account of the known computational methods using Gröbner bases to compute normal forms, bases, and resolutions of associative algebras. For that, we developed a rewriting theory for associative algebras, based on an analogue of polygraphs for higher associative algebras, i.e. higher categories internal to the category of associative algebras. This rewriting theory resulted into a new concept of convergent presentations for algebras, that strictly generalise noncommutative Gröbner bases and Poincaré-Birkhoff-Witt bases, and into Squier-like constructions of coherent presentations and of polygraphic resolutions of associative algebras, leading to new sufficient or necessary conditions for an algebra to be Koszul.

Finally, Chapter 8 contains research perspectives, beyond the results presented in this manuscript, ranging from almost completed work to long-term ideas, in four directions: the general theory of higher categories and polygraphs, to extend the range of application of rewriting methods to new algebraic structures; the study of the interactions between Garside theory and rewriting, both to improve rewriting itself, and Squier theory as a consequence; the computation and study of polygraphic resolutions of Artin monoids and groups, with a view towards the K(π, 1)-conjecture; and the development of new algebraic invariants of computation, related to the word problem or to complexity theory.

Notation.

In all the document, we denote by N the set N of natural numbers extended with a maximal element ∞. If M is a monoid, we write M + for the semigroup obtained from M by removing the unit. If X is a set, then X * denotes the the free monoid over X. So, for example, N + is the set of nonzero natural numbers, N * the free monoid over N, and (N + ) * the free monoid over nonzero natural numbers. Specific notation is also introduced in the last chapters. C 2 H 2.1. I 2.1.1. Context. The structure of higher category is implicitly already present in classical, 1-dimensional categories: setting aside size considerations, categories, functors and natural transformations form a 2-category, where categories are 0-dimensional objects, or 0-cells, functors are 1-cells, with one way to compose them, and natural transformations are 2-cells, being composable along two possible dimensions [START_REF] Mac | Categories for the working mathematician[END_REF]. In turn, 2-categories, 2-functors, (pseudo)natural transformations and modifications between them yield a 3-category, while 3-categories with their morphisms of all dimensions (3-functors, natural transformations, modifications, and perturbations) form a 4-category, and so on. At infinity, one obtains the (large) ∞-category of all (small) ∞-categories. More precisely, these are the strict, globular ∞-categories, in that all the laws satisfied by compositions are strict equalities, and all n-cells, for n 1, have one (n -1)-cell as source, and one (n -1)-cell as target, with the shape of a globe.

This precise type of higher categories is now rather well-understood, and the category ∞Cat they form has a nice model structure [START_REF] Lafont | A folk model structure on omega-cat[END_REF]. Over the years, many other types of higher categories have also been studied, coming initially from algebraic topology and mathematical physics, and, more recently, from proof theory [START_REF] Hofmann | The groupoid interpretation of type theory, Twenty-five years of constructive type theory[END_REF][START_REF]The Univalent Foundations Program, Homotopy type theory-univalent foundations of mathematics[END_REF]. Without trying to be exhaustive, either in the types of higher categories or in the now vast bibliography on the subject, higher categories can have different shapes of cells, such as cubical or opetopic cells [START_REF] Brown | The equivalence of ∞-groupoids and crossed complexes[END_REF][START_REF] Baez | Higher-dimensional algebra. III. n-categories and the algebra of opetopes[END_REF]; the cells can be invertible or not [START_REF] Mac | Categories for the working mathematician[END_REF][START_REF] Hans | Combinatorial homotopy and 4-dimensional complexes[END_REF]; the compositions can satisfy relations that are hold strictly, or only up to coherent higher cells [START_REF] Bénabou | Introduction to bicategories[END_REF][START_REF] Robert Gordon | Coherence for tricategories[END_REF][START_REF] Joyal | Quasi-categories and Kan complexes[END_REF][START_REF] Maltsiniotis | Grothendieck ∞-groupoids, and still another definition of ∞categories[END_REF]; the cells can admit an extra algebraic structure, such as an associative product or a Lie bracket, and the laws of this structure can themselves hold strictly or only up to coherent higher cells [START_REF] Khudaverdyan | Higher categorified algebras versus bounded homotopy algebras[END_REF]. Comparisons and equivalences have been established, for example between various definitions of globular higher categories [START_REF] Cheng | Higher-dimensional categories: an illustrated guide book[END_REF], or between globular and cubical higher groupoids and categories [START_REF] Brown | The equivalence of ω-groupoids and cubical T -complexes[END_REF][START_REF] Brown | The equivalence of ∞-groupoids and crossed complexes[END_REF][START_REF] Ali Al-Agl | Multiple categories: the equivalence of a globular and a cubical approach[END_REF].

Polygraphs, also known as computads, were introduced independently by Street [START_REF] Street | Limits indexed by category-valued 2-functors[END_REF][START_REF] Street | The algebra of oriented simplexes[END_REF][START_REF] Street | Higher categories, strings, cubes and simplex equations[END_REF] and Burroni [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF] as a combinatorial algebra point of view on (strict, globular) higher categories: polygraphs are to higher categories what generating families, presentations by generators and relations, and resolutions are to monoids and groups. More precisely, polygraphs are a common algebraic description of sets of generating cells for free higher categories, and of presentations by generators and relations for higher categories that are free up to codimension 1. Later on, Métayer has developed a rich notion of polygraphic resolution for higher categories [START_REF] Métayer | Resolutions by polygraphs[END_REF], and proved that polygraphs are cofibrant for an adequate family of cofibrations [START_REF] Métayer | Cofibrant Objects among Higher-Dimensional Categories[END_REF]. These first homotopical observations integrated later into a model structure on ∞Cat [START_REF] Lafont | A folk model structure on omega-cat[END_REF]. A general description for polygraphs/computads for various types of higher categories was given by Batanin in [START_REF] Michael | Computads for finitary monads on globular sets, Higher category theory[END_REF].

The higher-categorical interpretation of rewriting originates in Burroni's original article [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF], where he gave a polygraphic description of Lawvere theories [START_REF] William | Functorial semantics of algebraic theories[END_REF] as specific 2-categories, and presentations of Lawvere theories as specific 3-polygraphs. Since polygraphs have globular cells, with a source and a target, they can be seen naturally as directed presentations of higher categories, and Lafont started to explore their rewriting properties from this observation [START_REF] Lafont | A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier)[END_REF][START_REF] Lafont | Towards an algebraic theory of boolean circuits[END_REF]. In my PhD thesis and subsequent articles, I gave a general setting for higher-dimensional rewriting, showing how to translate other types of rewriting-like mechanisms in this language: word and term rewriting systems, directed presentations of pros, props and Lawvere theories, Petri nets, and propositional logic and linear logic in their deep inference formulation [START_REF] Guiraud | Présentations d'opérades et systèmes de réécriture[END_REF][START_REF] Guiraud | Termination orders for 3-dimensional rewriting[END_REF][START_REF] Guiraud | Two polygraphic presentations of Petri nets[END_REF][START_REF] Guiraud | The three dimensions of proofs[END_REF]. Specific tools have been developed to study the rewriting properties of polygraphs, especially in dimension 3: for example, algebraic derivations to prove termination [START_REF] Guiraud | Termination orders for 3-polygraphs[END_REF][START_REF] Guiraud | Termination orders for 3-dimensional rewriting[END_REF], leading with Bonfante to the study of the implicit complexity of polygraphs and to polygraphic characterisations of some complexity classes [START_REF] Bonfante | Intensional properties of polygraphs[END_REF][START_REF] Bonfante | Polygraphic programs and polynomial-time functions[END_REF]; or completion procedures to compute convergent presentations of pros [START_REF] Mimram | Computing Critical Pairs in 2-Dimensional Rewriting Systems[END_REF][START_REF] Mimram | Towards 3-dimensional rewriting theory[END_REF].

2.1.2. Summary. In §2.2, we give a definition of higher categories internal to a category C with good properties (having pullbacks, in particular), as in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. This relies on the notion of globular object in C, defined as a graded object with source s, target t and identity maps i that satisfy the so-called globular relations: ss = st, ts = tt and si = ti = id. The general underlying idea is that an n-category is an n-globular set equipped with n compatible structures of monoids, one for each possible dimension of composition. An important concept is the one of n-sphere in a higher category, defined as a pair of n-cells that are parallel, i.e. that share the same source and the same target. We are also interested in the following variant: (n, p)-categories are n-categories whose k-cells are invertible for every k > p.

Then, §2.3 focuses on the case of n-categories in the category Set of sets, or just n-categories

for short. The central concept of this section is that of extension of an n-category C, which is a distinguished set of n-spheres of C. An extension X of C can be seen as a set of formal (n + 1)-cells, filling all the n-spheres of X: taking all formal compositions of these (n + 1)-cells yields an (n + 1)-category, denoted by C[X]; an analogue construction, where one also considers formal inverses of cells of X gives an (n + 1, p)-category C(X) from an (n, p)-category C. An extension X of C can also be seen as a set of relations between parallel n-cells: collapsing them yields a quotient n-category, written C/X. From [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], we also define the contexts of an n-category C, as n-cells with one formal indeterminate, and natural systems on C as the functors from the category Ct(C) of contexts of C into a semiadditive category, such as the one of abelian groups. The category of contexts of C has been introduced by Quillen under the name category of factorisations of C in [START_REF] Quillen | Higher algebraic K-theory. I[END_REF], and it has been used by Leech to introduce cohomological properties of congruences on monoids in [START_REF] Leech | Cohomology theory for monoid congruences[END_REF], and by Baues and Wirsching for the cohomology of small categories in [START_REF] Hans | Cohomology of small categories[END_REF]. Here, natural systems are used as a notion of homological coefficients for higher categories, generalising left/right/bimodules of categories. Next, §2.4 recalls the definition of polygraphs from [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF][START_REF] Métayer | Resolutions by polygraphs[END_REF], which are a higher categorical analogue of CW complexes: a polygraph X is a sequence

(X 0 | • • • | X n | • • •) where X 0 is a set,
and each X n+1 is an extension of the free n-category X * n generated by the n-cells. The main difference with globular sets is that the source and target of a generating (n + 1)-cell are not necessarily generating n-cells, but can be any composite. We also give a variant of polygraphs for (n, p)-categories, as introduced in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]: these (n, p)-polygraphs are defined similarly, except that, above dimension p, one considers extensions of the free (n, p)-category X n generated by the n-cells. Polygraphs provide a notion of presentation for higher categories that are free up to codimension 1, together with generalised versions in higher dimensions: in particular, if C is an n-category that is free up to codimension 1, a coherent presentation of C is an (n+2, n)-polygraph formed by a presentation X of C together with an acyclic extension of X .

Then, §2.5 recalls the essential aspects of the rewriting theory of n-polygraphs, as developed progressively in [START_REF] Guiraud | Présentations d'opérades et systèmes de réécriture[END_REF][START_REF] Guiraud | Termination orders for 3-dimensional rewriting[END_REF][START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. The elementary concept is that of rewriting step, which is an n-cell that contains only one n-dimensional generator, seen as a transformation of its source into its target. Termination is then classically defined as the fact that no infinite sequence of composable rewriting steps exist, and confluence as the fact that any two finite sequence of rewriting steps with the same source can be completed into sequences with the same target. An n-polygraph is then called convergent if it is both terminating and confluent. The two fundamental results of rewriting theory hold in the case of polygraphs: Theorem 2.5.4. Fix n > 0, and let X be an n-polygraph.

(i) (Newman's lemma) If X terminates, then X is confluent if, and only if, it is locally confluent.

(ii) (The critical branchings theorem) X is locally confluent if, and only if, it is critically confluent.

The proofs are postponed until Chapter 3, where more general versions are given: Propositions 3.2.2 and 3.2.3. Finally, §2.6 summarises results from [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] on the rewriting properties of 2-polygraphs and 3-polygraphs. In dimension 2, we recall a basic link between the decidability of the word problems for monoids and categories, and the existence of a finite convergent presentation, and we cite simple facts about termination and confluence of 2-polygraphs. For dimension 3, we give the method to prove termination of 3-polygraphs by using derivations of 2-categories, initially introduced in [START_REF] Guiraud | Présentations d'opérades et systèmes de réécriture[END_REF][START_REF] Guiraud | Termination orders for 3-dimensional rewriting[END_REF], in the formulation of [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. We conclude with the analysis of the specific critical branchings that one encounters in dimension 3, recalling their classification from [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF] and the results we obtained there.

I

Fix n ∈ N, and let C be a fixed category. The definitions of n-globular objects of C and n-categories of C can be given in a more abstract setting, but we assume here that C is concrete over sets, and that the corresponding forgetful functor admits a left adjoint.

Graded objects and morphisms.

An n-graded object of C is a sequence X = (X k ) k of objects of C, indexed by all natural numbers k n. If X and Y are n-graded objects of C, and p an integer, a graded morphism of degree p from X to Y is a sequence

f = X k → Y k+p k
of morphisms of C, indexed by all natural numbers k n such that 0 k + p n. The n-graded objects and graded morphisms of degree 0 of C form a category, which has limits and colimits, computed pointwise, if C has.

Internal globular objects.

An n-globular object of C is an n-graded object X of C equipped with graded morphisms

X s -→ X, X t -→ X and X i -→ X,
of respective degrees -1, -1 and 1, called the source map, the target map and the identity map of X, that satisfy the following equalities, collectively referred to as the globular relations of X:

ss = st, ts = tt and si = ti = id X .
With the identity map and the last two relations removed, one gets an n-semiglobular object of C, or n-graph of C. Usually, "globular objects" correspond to our semiglobular objects, while "reflexive globular objects" stand for our "globular objects"; the present terminology is chosen here for its coherence with (semi)simplicial and (semi)cubical objects. Given two n-globular objects X and Y of C, a globular morphism from X to Y is a graded morphism f : X → Y of degree 0 that commutes with the source, target and identity maps. We denote by nGlob(C) the category of n-globular objects and globular morphisms of C, and by nGph(C) the category of n-graphs and their morphisms.

Sources, targets, spheres and compositions.

Let X be an n-globular object of C, and fix a natural number k n. An element x of X k is called a k-cell of X, and, if k 1, the (k -1)-cells s(x) and t(x) are called the source of x and the target of x. We write z : x → y if z is a k-cell of X of source x and target y, and z : x ⇒ y, z : x y, z : x 1 c y if k = 2, 3, 4. When no confusion occurs, we write i(x), 1 x or just x instead of any iterate image i p (x) of x through i. Two k-cells x and y of X are called parallel if either k = 0, or s(x) = s(y) and t(x) = t(y). A k-sphere of X is a pair α = (x, y) of parallel k-cells of X, with x being called the source of α and y the target of α. The boundary of a k-cell x is the (k -1)-sphere ∂(x) = (s(x), t(x)).

Writing (X k ) for the n-globular object of C that is constantly equal to X k , the k-source map of X and the k-target map of X are the graded morphisms s k , t k : X → (X k ) of degree 0, given, on a p-cell x of X, by

s k (x) = s p-k (x) if p k, i k-p (x) if p k, and t k (x) = t p-k (x) if p k, i k-p (x) if p k.
The globular relations generalise, for j < k, to s j s k = s j t k = s j and t j s k = t j t k = t j for j < k. We denote by X k X the pullback

X k X G G X s k X t k G G (X k )
in the category of n-graded objects of C. Explicitly, the p-cells of X k X are the pairs (x, y) of p-cells of X such that t k (x) = s k (y) holds, such a pair being called k-composable. By definition of s k and t k , if p k, then the p-cells of X k X are the (x, x), for every p-cell x of X.

Internal higher categories.

An n-category of C is an n-globular object C of C equipped, for every natural number k < n, with a graded morphism

C k C c k -→ C
of degree 0, called the k-composition of C, whose value at (a, b) is denoted by a k b, and such that the following relations are satisfied, for all 0 k < p: (i) (compatibility with the source and target maps) Note that the compatibility of the compositions with the source and target maps ensures that the associativity axiom makes sense: if (a, b) and (b, c) are p-cells of C k C, then so do (a k b, c) and (a, b k c). The compatibility of compositions with identities implies that we can still write a for 1 a with no ambiguity. We use the convention that the composition j binds more tightly than k for j < k, so a j b k c means (a j b) k c.

for every p-cell (a, b) of C k C, s(a k b) = s(a) if k = p -1, s(a) k s(b) otherwise, t(a k b) = t(b) if k = p -1, t(a) k t(b) otherwise, (ii) (compatibility with the identity map) for every p-cell (a, b) of C k C, 1 a k b = 1 a k 1 b , (iii) 
Given n-categories C and D of C, an n-functor of C from C to D is a globular morphism F from C to D that commutes with all k-compositions. We denote by nCat(C) the category of n-categories and n-functors of C. In particular, (n, n)-categories are just n-categories, and we say n-groupoids for (n, 0)-categories. We denote by (n, p)Cat(C) and nGpd(C) the corresponding categories.
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2.3.1. Notation. When C is the category of sets, we speak of n-graded sets, n-globular sets, n-categories, etc. and denote by nGlob, nCat, etc. the corresponding categories. All these categories are known to be complete and cocomplete. For 0 p < n ∞, the two adjunctions pCat

I n 9 9 ⊥ nCat U p g g T p 9 9 ⊥ (n, p)Cat f f
are formed by: the truncation functor U p , that forgets the cells above dimension p; the inclusion functor I n , that sees a p-category as an n-category with only identity cells above dimension p; the enveloping (n, p)-category functor T p , adding formal inverses for all cells above dimension p; the functor that forgets inverses. Through the inclusion functor, a p-category C is implicitly seen as an n-category, also denoted by C. If C is an n-category, we abusively write C p for its underlying p-category U p (C). Finally, we write C for T p (C) when there is no ambiguity on p. The standard n-sphere is the n-category S n = U(E n+1 ). By extension, we define the standard (-1)-sphere as S -1 = ∅.

Standard cells and spheres.

Let C be an n-category, for n ∈ N, and k n be a natural number. By definition of E k and S k , the k-cells and the k-spheres of C are in bijective correspondence with the n-functors E k → C and S k → C, respectively. In what follows, we use these two points of view on cells and spheres of C indistinctly.

Extensions.

Fix a natural number n, and an n-category C. An extension of C is a pair (X, ϕ) made of a set X and an n-functor

X × S n ϕ -→ C.
By definition, the image of ϕ is a set of n-spheres of C, indexed by X. We usually identify each element x of X with the corresponding n-sphere ϕ(x, (e - n-1 , e + n-1 )) of C, and leave the notation ϕ implicit, just saying that X is an extension of C. An n-category C admits two canonical extensions: the empty one, and the extension n Sph(C) formed by all the n-spheres of C.

Let X be an extension of C. We denote by ≈ X the smallest equivalence relation on parallel n-cells of X that is compatible with compositions, and contains all the n-spheres (s(x), t(x)) for x in X. We say that X is acyclic if a ≈ X b holds for every n-sphere (a, b) of C.

We denote by nCat + the category of pairs (C, X) made of an n-category and an extension X of C, obtained as the pullback of the forgetful functor nCat → nGph and the truncation functor

(n + 1)Gph → nGph: nCat + G G (n + 1)Gph nCat G G nGph.
For p n, we denote by (n, p)Cat + the subcategory of nCat + formed by (n, p)-categories with an extension.

Adjoining and collapsing cells.

Fix a natural number n, an n-category C, and an extension X of C. We define C[X] and C/X as the (n + 1)-category and the n-category given by the following pushouts in (n + 1)Cat and nCat:

X × S n G G C X × E n+1 G G C[X]
and

X × S n G G C X × E n G G C/X.
These two constructions extend to functors nCat + → (n+1)Cat and nCat + → nCat, respectively. Concretely, C[X] is obtained from C by adjoining the composites of formal (n + 1)-cells, one for each n-sphere of X, while the n-category C/X is obtained by collapsing all the n-spheres of X.

We denote by π X : C C/X the canonical projection. In practice, we use the same notation for an n-sphere of X and the corresponding (n + 1)-cell of C[X]. We write a X for the number of occurrences of cells of X in an n-cell a of C[X], and Cell X (a) for the set of cells of X that appear in a.

By construction, for every n-sphere (a, b) of C, the following assertions are equivalent: (i) a ≈ X b, (ii) π X (a) = π X (b), (iii) there exists a zigzag of (n + 1)-cells from a to b in C[X], (iv) there exists an (n + 1)-cell from a to b in C(X).

For p n, and C an (n, p)-category, we define the (n + 1, p)-category C(X) is the same way as C[X], but taking the pushout in (n + 1, p)Cat. The construction also applies to an n-category C, in the case p = n, yielding an (n + 1, n)-category C(X). Concretely, C(X) is obtained from C by formally adjoining the composites of the n-spheres of X and their inverses. The notations a X and Cell X (a) are extended to C(X) by considering the minimal number and minimal set of cells of X that appear in a.

Contexts and whiskers.

Let n be a natural number, and C be an n-category. The construction C[X] is extended in a straightforward way to a set of k-spheres of C for any k n, and so is the notation a X .

A context of C is a pair (x, C), written C[x], made of an (n -1)-sphere x of C and an n-cell C The contexts of C form a category, denoted by Ct(C), whose objects are the n-cells of C, and whose morphisms from a to b are the contexts

of C[x] such that C x = 1. By construction of C[x], for every context C[x] of C, the n-cell C admits a decomposition C = a n n-1 • • • 1 a 1 0 x 0 b 1 1 • • • n-1 b n ,
C[∂a] of C such that C[a] = b holds. Composition is given by D[y] • C[x] = D[C[x]
] and the identity of a is the empty context [∂a] = (∂a, ∂a).

Natural systems and derivations.

Let n be a natural number, and C be an n-category.

A natural system on C is a functor from the category of contexts Ct(C) of C to the category Ab of abelian groups. Hence, a natural system N is specified by an abelian group N a , for every n-cell a of C, and a morphism

N C[x] : N a → N C[a] of groups, for every context C[x] of C and every n-cell a such that ∂(a) = x. When no confusion may occur, if C[x] : a → b is a morphism of Ct(C), and g is an element of N a , we denote by C[g] the element N C[x] (g) of N b .
The category of natural systems over C is denoted by Nat(C).

Let N be a natural system on C. A derivation of C into N is a map sending every n-cell a of C to an element d(a) of N a such that the following relation holds, for every k-composable pair (a, b) of n-cells of C:

d(a k b) = a k d(b) + d(a) k b.
A direct consequence of this relation is that derivations map identities to 0.

Natural systems on C and the associated derivations can also be defined with values in any semiadditive category A instead of Ab, and in particular in the category Com of commutative monoids. In that case, we talk about natural systems on C with values in A.

Examples.

For example, the trivial natural system on C, denoted by Z, maps every n-cell of C to Z and every context of C to the identity of Z. If X is an extension of C, the map • X , counting the number of occurrences of n-cells of X in the n-cells of C[X], is a derivation of C into Z, mapping every n-cell of C to 0 and every n-cell of X to 1. The trivial natural system on C with values in Com is defined similarly, with N replacing Z.

Let V a concrete category, usually the category Set of sets or the category Ord of ordered sets. We view V as a 2-category with one 0-cell and cartesian product as 0-composition. Fix an internal commutative monoid M in V, a 2-category C and 2-functors F : C → V and G :

C co → V,
where C co is C with the 1-source and 1-target maps exchanged. The following assignments yield a natural system N(F, G, M) over C with values in Com:

(i) Every 2-cell f : a ⇒ b is mapped to the set N(F, G, M) f of morphisms from F(a) × G(b)
to M in V, equipped with the pointwise structure of commutative monoid induced by the one of M. 

F(a) × G(b) → M in V, by F(a) × F(c) × G(b) × G(c) ϕ 0 c -→ M (ξ, ξ , η, η ) -→ ϕ(ξ, η), F(c) × F(a) × G(c) × G(b) c 0 ϕ -→ M (ξ , ξ, η , η) -→ ϕ(ξ, η).
F(a ) × G(b) f 1 ϕ -→ M (ξ, η) -→ ϕ F(f)(ξ), η , F(a) × G(b ) ϕ 1 g -→ M (ξ, η) -→ ϕ ξ, G(g)(η) .
If F or G is trivial, i.e. maps all the cells of C to the terminal object * of V, one denotes the corresponding natural system by N( * , G, M) or N(F, * , M). In particular, N( * , * , N) is the trivial natural system on C with values in Com.
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Polygraphs.

We define the category nPol of n-polygraphs and the free n-category functor nPol → nCat by induction on n 0. For n = 0, put 0Pol = Set, and set the free 0-category functor to the identity of Set, which is well typed because 0Cat = Set. Now, fix n 1, and assume that the category (n -1)Pol and the functor (n -1)Pol → (n -1)Cat have been defined. The category nPol is defined as the pullback

nPol G G (n -1)Cat + (n -1)Pol G G (n -1)Cat (2.1)
and the free n-category functor, as the composite

nPol -→ (n -1)Cat + -→ nCat.
If X is an n-polygraph, we denote by X * the free n-category over X. Expanding the definition, an n-polygraph is a family X = (X 0 , . . . , X n ), written

(X 0 | • • • | X n ), made
of a set X 0 and, for every 0 k < n, an extension X k+1 of the free k-category over the k-polygraph (X 0 , . . . , X k ). The free n-category over X is

X * = X 0 [X 1 ] • • • [X n ].
The category ∞Pol of ∞-polygraphs is obtained as the limit of the vertical functors (n + 1)Pol → nPol of (2.1), and the free ∞-category functor comes from the universal property of ∞Cat as a limit of the functors (n + 1)Cat → nCat. Thus, an ∞-polygraph is a sequence

X = (X 0 | • • • | X n | • • •) such that (X 0 | • • • | X n ) is an n-polygraph for every n 0.
Fix n ∈ N, let X be an n-polygraph, and let k n be a natural number. The elements of X k are called the k-cells of X. We commit the abuse to also denote by X k the underlying k-polygraph of X. We say that X is of finite type if it has finitely many k-cells for every k 0. For an n-cell a of X * , we put a = a X n , calling it the size of a, and Cell(a) = Cell X n (a).

2.4.2.

Polygraphs for (n, p)-categories. We define the category (n, p)Pol of (n, p)-polygraphs, together with the free (n, p)-category functor (n, p)Pol → (n, p)Cat, for all natural numbers n p, by induction on n -p. For n = p, put (n, n)Pol = nPol, and set the free (n, n)category functor to the free n-category functor, which is well typed because (n, n)Cat = nCat. Now, fix n > p, and assume that the category (n -1, p)Pol and the functor (n -1, p)Pol → (n -1, p)Cat have been defined. The category (n, p)Pol is defined as the pullback

(n, p)Pol G G (n -1, p)Cat + (n -1, p)Pol G G (n -1, p)Cat
and the free (n, p)-category functor, as the composite

(n, p)Pol -→ (n -1, p)Cat + -→ (n, p)Cat.
If X is an (n, p)-polygraph, we denote by X the free (n, p)-category over X. Thus, an

(n, p)-polygraph is a family X = (X 0 | • • • | X n ) such that (X 0 | • • • | X p ) is a p-polygraph
, and each X k , for k > p, is an extension of the free (k -1, p)-category over

(X 0 | • • • | X k-1 ). The free (n, p)-category over X is X = X 0 [X 1 ] • • • [X p ](X p+1 ) • • • (X n ).
Note that (n, n-1)-polygraphs and n-polygraphs have the same definition, giving a meaning to X for an n-polygraph X.

Finally, we define the category (∞, p)Pol of (∞, p)-polygraphs as the limit of the functors (n + 1, p)Pol → (n, p)Pol. We use the same vocabulary as in the case of ∞-polygraphs.

Notation.

To help to differentiate the various types of cells that appear in (free) higher categories, we use the following convention as much as possible.

If C is a generic higher category, we write a, b, c and f, g, h for its cells, the latter being of higher dimension with respect to the former. If X is a generic polygraph, we use x, y, z for its cells.

When focusing on the lowest dimensions, such as when considering a free (∞, 1)-category X , we use x, y, z for the 1-cells of X, and u, v, w for the 1-cells of X ; for n > 1, we write α, β, γ for the n-cells of X, and a, b, c for the n-cells of X . Moreover, in that case, we drop the notation 0 for the 0-composition of cells in X , so that uv stands for the 0-composite of 1-cells u and v of X .

Polygraphic presentations.

Fix n ∈ N, and let C be an n-category. We say that C is free if there exists an n-polygraph X such that C X * ; in that case, the cells of X are called the generating cells of C. For k < n, we say that C is k-free if its underlying k-category C k is free. Let p < n, and X be an (n, p)-polygraph. The p-category presented by X is the quotient p-category X = X * p /X p+1 .

We denote by a the image of a p-cell a of X * p in X through the canonical projection. If f is a k-cell of X , for k > p, we also denote by f the common image in X of the p-cells s p (f) and t p (f) through the canonical projection. Two n-polygraphs, seen as (n, n -1)-polygraphs, are called Tietze-equivalent if the (n -1)-categories they present are isomorphic.

Assume that n is finite, and let C be an n-category. A presentation of C is an (n + 1)polygraph X such that C X; in that case, we say that C is presented by X. If C admits a finite presentation, then it is finitely presented. This definition is restrictive: for n 1, only the (n -1)-free n-categories can have a presentation. A coherent presentation of C is an (n + 2, n)-polygraph X whose presented n-category is isomorphic to C, and such that X n+2 is acyclic.

Example (The standard presentation).

Let n be a natural number, and C be an (n -1)free n-category. The standard presentation of C is the (n+1)-polygraph Std(C) with the following cells:

(i) up to dimension n -1, one cell for each generating cell of C, (ii) one n-cell a for every n-cell a of C, with the same source and target, (iii) one

(n + 1)-cell γ k (a, b) : a k b → a k b for every k-composable pair (a, b) of n-cells
of C, and one (n + 1)-cell ι(a) : 1 a → 1 a for every (n -1)-cell a of C, with the following sources and targets:

t k (a) = s k (b) b % % γ k a,b Õ % s k (a) a S S a k b I I t k (b) a 1 a 2 2 
1 a b b a. ι a Õ % 2.5. R
We fix a natural number n > 0 and an n-polygraph X for the whole section.

Rewriting steps and normal forms.

A rewriting step of X is an n-cell of size 1 in the free n-category X * . A rewriting sequence of X is a finite or infinite sequence

a 1 f 1 G G a 2 f 2 G G (• • • ) f n-1 G G a n f n G G (• • • )
of composable rewriting steps of X. Note that every n-cell of X * decomposes into a finite rewriting sequence of X, and this decomposition is unique up to the exchange relations. If a and b are (n -1)-cells of X * , we say that a rewrites into b if there exists a finite rewriting sequence of X with source a and target b.

Let a be an (n -1)-cell of X * . We say that a is reduced if there exists no rewriting step of source a in X. A normal form of a is a reduced (n -1)-cell b of X * such that a rewrites into b. We say that X is normalising if every n-cell of X * admits at least one normal form.

Termination.

Let a be an (n -1)-cell of X * . We say that X terminates at a if X has no infinite rewriting sequence of source a. By definition, if X terminates at a, then a admits a normal form. We say that X terminates (or is terminating) if it does at every (n -1)-cell of X * . Thus, if X terminates, it is normalising. Moreover, if X terminates, then putting a X b for all (n -1)-cells a and b of X * such that a rewrites into b defines a well-founded order on the (n -1)-cells of X * . In that case, induction on X is called noetherian induction.

A termination order on X is a wellfounded order relation on parallel (n -1)-cells of X * such that the following properties are satisfied:

(i) the compositions of (n -1)-cells of X * are strictly monotone in both arguments, (ii) for every n-cell x of X, the strict inequality s(x) > t(x) holds. As a direct consequence of the definition, if X admits a termination order, then X terminates. The converse is also true, because, if X terminates, then X is a termination order.

Branchings and confluence.

A branching of X is a non-ordered pair (f, g) of n-cells of X * with same source, as in

b a f o o g G G c ;
in that case, a is called the source of (f, g), and we say that (f, g) is local if f and g are rewriting steps of X. A local branching of X is called trivial if it has one of the following two shapes

a a f o o f G G a or a k b a k b f k b o o a k g G G a k b ,
where f : a → a and g : b → b are rewriting steps. Local branchings are compared by inclusion, i.e. by the order generated by the relations

(f, g) (C[f], C[g])
for every possible whisker C[x] of X * . A non-trivial local branching of X that is minimal for the order is called critical. By induction on the size of the source of a local branching, we deduce that, for every non-trivial local branching (h, k) of X, there exist a unique critical branching (f, g) of X and a unique whisker C

[x] of X * such that (h, k) = (C[f], C[g]).
A branching (f, g) of X is confluent if there exist n-cells f and g in X * with the following shape

b f ) ) a f Q Q g D D a . c g g g
Note that trivial local branchings are always confluent. If a is an (n -1)-cell of X, we say that X is confluent (resp. locally confluent, resp. critically confluent) at a if every branching (resp. local branching, resp. critical branching) of source a is confluent. We say that X is confluent (resp.

locally confluent, resp. critically confluent) if it is at every (n -1)-cell of X * . If X is confluent then every (n -1)-cell of X * admits at most one normal form.

2.5.4. Theorem. Fix n > 0, and let X be an n-polygraph.

(i) (Newman's lemma [START_REF] Maxwell | On theories with a combinatorial definition of "equivalence[END_REF]) If X terminates, then X is confluent if, and only if, it is locally confluent. (ii) (The critical branchings theorem [START_REF] Nivat | Congruences parfaites et quasi-parfaites[END_REF][START_REF] Knuth | Simple word problems in universal algebras, Computational Problems in Abstract Algebra[END_REF][START_REF] Huet | Confluent reductions: abstract properties and applications to term rewriting systems[END_REF]) X is locally confluent if, and only if, it is critically confluent.

Proof. Apply Propositions 3.2.2 and 3.2.3 with Y = n Sph(X ).

2.5.5. Convergence. We say that X is convergent if it is both terminating and confluent. In that case, every (n -1)-cell a of X * has a unique normal form, denoted by a, and we have a = b in X if, and only if, a = b holds in X * . Thus, the normal form defines a section of the canonical projection X * n-1

X, mapping an (n -1)-cell a of X to the unique normal form of its representative (n -1)-cells in X * , also denoted by a.

As a consequence, if an n-category C admits a convergent presentation X, then C is isomorphic to the n-category formed by all the reduced n-cells of X, with k-composition of a and b given by a k b.

Knuth-Bendix completion.

Let X be a terminating n-polygraph, equipped with a termination order . A Knuth-Bendix completion of X (with respect to ) is an n-polygraph Y, with the same cells as X up to dimension n -1, and with a filtration Y n = ∪ p 0 Y p n of its set of n-cells, such that the following properties is satisfied: By definition, a Knuth-Bendix completion of X is convergent, and Tietze-equivalent to X. Moreover, it induces a construction, the Knuth-Bendix completion procedure [START_REF] Knuth | Simple word problems in universal algebras, Computational Problems in Abstract Algebra[END_REF], that starts with X and progressively examines all the critical branchings, adding new n-cells when obstructions to critical confluence are found.

(i) Y 0 n = X n , ( 

Métivier-Squier reduction.

An n-polygraph X is reduced if, for every n-cell x of X, then s(x) is a normal form of X \ {x}, and t(x) is a normal form of X. Given a convergent n-polygraph X, the Métivier-Squier reduction of X is the n-polygraph obtained by the procedure that successively performs the following operations:

(i) replace every generating n-cell x : a → b by x : a → b, (ii) remove duplicate n-cells, if any, (iii) remove every n-cell whose source contains the source of another n-cell. This process, due to Métiver for term rewriting [START_REF] Métivier | About the Rewriting Systems Produced by the Knuth-Bendix Completion Algorithm[END_REF] and Squier for string rewriting [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF]Theorem 2.4], produces a reduced convergent n-polygraph that is Tietze-equivalent to X.

2.6. R 2.6.1. Generating polygraphs and the word problem for categories. Let C be a category. A 1-polygraph X generates C if there exists a functor π : X * C that is the identity on 0-cells and surjective on 1-cells. We usually consider that the projection π : X * C is implicitly specified for a given generating 1-polygraph X of C and, if u is a 1-cell of X * , we just write u instead of π(u). Every category admits itself as a generating polygraph. We say that C is finitely generated if it admits a finite generating 1-polygraph (in particular, the category must have finitely many 0-cells).

The word problem for C is the problem of finding a generating 1-polygraph X for C together with an algorithm that decides, for any two 1-cells u and v of X * , whether or not u = v holds in C, i.e. whether or not the 1-cells u and v represent the same 1-cell of C. The word problem is undecidable in general for a given category C, even if it is finitely generated.

Proposition. If a category admits a finite convergent presentation, then its word problem is decidable.

Proof. Fix C a category and X a convergent presentation of C. For all 1-cells u and v in X * , we have u = v if, and only if, u = v. Moreover, if X is finite, then one can effectively decide if a 1-cell of X * is reduced or not, thus one can effectively compute the normal form of every 1-cell of X * .

Termination and confluence in dimension 2.

Assume that X is a 2-polygraph. A useful example of potential termination order is the left degree-wise lexicographic order (or deglex for short) generated by a given order on the 1-cells of X. It is defined by

u < v if u < v , uxv < uyw if v = w and x < y in X.
The deglex order is total if, and only if, the original order on X is total. By case analysis on the source of critical branchings of X, we can conclude that they must have one of the following two shapes

u G G 2 2 v G G p p w G G α i β Õ % u G G ( ( v G G f f w G G α i β Õ %
where α and β are 2-cells of X. In particular, if X is finite, then it has finitely many critical branchings. If X is reduced, then the first case cannot occur since, otherwise, the source of α would be reducible by β. Moreover, u, v and w are reduced non-identities 1-cells. Indeed, they are reduced since, otherwise, at least one of the sources of α and of β would be reducible by another 2-cell. If v was an identity, then the branching would be trivial. And, if u (resp. w) was an identity, then the source of β (resp. α) would be reducible by α (resp. β).

Termination by derivations in dimension 3.

A general method to prove termination of a 3-polygraph X is to exhibit a derivation d of X * 2 into a natural system on X * 2 with values in Com of the form N(F, G, M), with V = Ord, as described in 2.3.7, and to check that some sufficient conditions are met.

Let X be a 3-polygraph. Consider: (i) Two 2-functors F : X * 2 → Ord and G : (X * 2 ) co → Ord, such that the ordered sets F(x)

and G(x) are non empty for every 1-cell x of X. (ii) A commutative monoid M in Ord, whose addition is strictly monotone in both arguments, and whose order is wellfounded. (iii) A derivation d : X * 2 → N(F, G, M). If, for every 3-cell α : f g of X, the three inequalities

F(f) F(g), G(f) G(g), d(f) > d(g)
are satisfied, then X terminates [96, Theorem 4.2.1].

2.6.5. Confluence in dimension 3. This case is more difficult than in dimension 2, as initially noted in [START_REF] Lafont | Towards an algebraic theory of boolean circuits[END_REF], mainly because a finite 3-polygraph may have an infinite number of critical branchings. However, an analysis of the possible shapes of these critical branching yields a sufficient condition for confluence that considers only a finite subset of them. Assume that X is a 3-polygraph. By examination of the different possibilities, the critical branchings of X are classified as follows [96, §5.1.1]:

(i) Inclusion critical branchings (not possible if X is reduced), with the following source, if f is the source of a 3-cell of X, and g 1 ufv 1 h is the source of another one:

g u f v h
(ii) Regular critical branchings, with the following source, if g 1 uf and fv 1 h, or g 1 fv and uf 1 h are the sources 3-cells of X:

g u f v h or g u f v h (iii)
Instances of left-indexed critical branchings, with the following source, if g 1 uf and vf 1 h are the sources of 3-cells of X, and k : wu ⇒ xv is a 2-cell of X * :

w g u k f v x h
(iv) Instances of right-indexed critical branchings, with the following source, if g 1 fu and fv 1 h are the sources of 3-cells of X, and k : uw ⇒ vx is a 2-cell of X * :

g w u f k v h x
(v) Instances of multi-indexed critical branchings, in all the other cases. In the left-indexed or right-indexed case, the critical branching can be written

(C[k], D[k]) for contexts C[x] and D[x] of X * . The family (C[k], D[k]) k ,
where k ranges over the 2-cells with appropriate boundary, and such that

(C[k], D[k]) is critical, is called a right-indexed critical branching. Each (C[k], D[k]
) is an instance of the corresponding left-indexed or right-indexed critical branching, and this instance is reduced if k is reduced.

We say that X is non-indexed if it has inclusion or regular critical branchings only, left-indexed (resp. right-indexed) if it has inclusion, regular or left-indexed (resp. right-indexed) critical branchings only, and finitely indexed if each of its indexed critical branchings has a finite number of reduced instances.

Then we have the following results, used in §3.3.2 on a right-indexed 3-polygraph that presents the strict monoidal category of permutations:

(i) If X has a finite number of 3-cells, then it has a finite number of inclusion and regular critical branchings [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]Proposition 5.1.3]. (ii) If X is terminating and left-indexed (resp. right-indexed), then X is confluent if, and only if, all its inclusion and regular critical branchings, and all the reduced instances of its left-indexed (resp. right-indexed) critical branchings are confluent [96, Proposition 5.3.1].

Example.

Let A be the two-element monoid {1, a}, with a 2 = a, seen as a 1-category with one 0-cell. The monoid A is presented by

As 2 = (a 0 | a 1 : a 0 → a 0 | a 2 : a 1 a 1 ⇒ a 1 ) .
This 2-polygraph terminates, because s(a 2 ) = 2 > 1 = t(a 2 ) , and it has one critical branching, which is confluent:

a 1 a 1 a 2 ! A a 1 a 1 a 1 a 2 a 1 A a a 1 a 2 3 S a 1 a 1 a 1 a 2 Q q
Thus As 2 is a convergent presentation of A. Now, adjoin to As 2 a 3-cell, respectively given in classical notation and in string diagrams (with a 2 = ) by

a 2 a 1 1 a 2 a 3 7 W a 1 a 2 1 a 2 7 W
.

The resulting 3-polygraph As 3 is a convergent presentation of the theory of semigroups As, in the sense that the category of 2-functors from As to any monoidal category C is the same as the category of semigroups in C. To prove that As 3 terminates, consider the natural system N(F, * , N) with values in Com and the derivation d given by

F( ) = N \ {0} , F( )(i, j) = i + j, d( )(i, j) = i.
To conclude, we check the required inequalities:

F (i, j, k) = i + j + k = F (i, j, k) d (i, j, k) = 2i + j > i + j = d (i, j, k).
Finally, As 3 has one critical branching, and it is confluent, generating a 3-sphere with the shape of Stasheff's polytope K 4 [START_REF] Dillon | Homotopy associativity of H-spaces. I, II[END_REF]: A more recent proof of Theorem 5.2 can be found in §4 of [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]; it is formulated in the case of associative algebras, but the arguments adapt to the case of monoids, and more generally to the case of n-categories thanks to the higher categorical setting of Chapter 2. This chapter presents a higher-dimensional extension of Squier's results, from monoids, seen as 1-categories, to higher categories. This was motivated by concrete examples of strict monoidal categories, seen as 2-categories: Mac Lane's pros and props [START_REF] Mac | Categorical algebra[END_REF], Lawvere's theories [START_REF] William | Functorial semantics of algebraic theories[END_REF] and algebraic operads [START_REF] Ginzburg | Koszul duality for operads[END_REF][START_REF] Loday | La renaissance des opérades[END_REF][START_REF] Loday | Algebraic Operads[END_REF], which are modern abstract descriptions of algebraic structures. Polygraphic presentations of such 2-categories were first studied by Burroni in his article introducing polygraphs [START_REF] Burroni | Higher-dimensional word problems with applications to equational logic[END_REF], and their rewriting properties were first investigated by Lafont in [START_REF] Lafont | Equational reasoning for 2-dimensional diagrams[END_REF][START_REF] Lafont | Towards an algebraic theory of boolean circuits[END_REF], followed by [START_REF] Guiraud | Présentations d'opérades et systèmes de réécriture[END_REF][START_REF] Guiraud | Termination orders for 3-dimensional rewriting[END_REF]. For example, the structure of semigroup is encoded by the pro As just encountered in Example 2.6.6, and presented by the (convergent) 3-polygraph As 3 . Now, consider the (4, 2)-polygraph As 4 obtained from As 3 by adjunction of the 3-sphere (2.2), denoted by and corresponding to the unique critical branching of As 3 : the (3, 2)-category AsCat it presents is the theory of "associative categories", in the sense that 3-functors from AsCat to Cat, seen as a 3-category with one 0-cell and cartesian product as 0-composition, are the categories with a product that is associative up to a coherent natural isomorphism. Similarly to Mac Lane's coherence theorem for monoidal categories [START_REF] Mac | Natural associativity and commutativity[END_REF], a coherence theorem for associative categories would state that, in an associative category, all the diagrams formed by occurrences of the product and the associativity isomorphism commute; and a sufficient condition for this statement to be true would be for the 4-cell to form an acyclic extension of the free (3, 2)-category As 3 , so that AsCat would contain trivial 3-spheres only. Similar observations can be made to relate acyclic extensions of some (3, 2)-categories to the coherence theorems for monoidal categories and symmetric monoidal categories [START_REF] Mac | Natural associativity and commutativity[END_REF]; or to relate partially acyclic extensions to the coherence theorem for braided monoidal categories, in which only some diagrams formed by the structural data commute [START_REF] Joyal | Braided tensor categories[END_REF].

7 W 8 H h 3 S F f (2.2) C 3 S '
Acyclic extensions are a homotopical formulation of the notion of syzygies between n-cells in higher categories. For example, in the case of presentations of groups, syzygies can be expressed as identities among relations. This notion originates in the work of Peiffer and Reidemeister in combinatorial group theory [START_REF] Peiffer | Über Identitäten zwischen Relationen[END_REF][START_REF] Reidemeister | Über Identitäten von Relationen[END_REF], and is based on the crossed modules introduced by Whitehead in algebraic topology for the classification of homotopy 2-types [START_REF] Whitehead | Combinatorial homotopy I[END_REF][START_REF] Whitehead | Combinatorial homotopy II[END_REF]. Crossed modules have also been defined for other algebraic structures than groups, such as commutative algebras [START_REF] Porter | Some categorical results in the theory of crossed modules in commutative algebras[END_REF], Lie algebras [START_REF] Kassel | Extensions centrales d'algèbres de Lie[END_REF] or categories [START_REF] Porter | Crossed modules in Cat and a Brown-Spencer theorem for 2-categories[END_REF]. Then Baues has introduced track categories, now known as (2, 1)-categories, as a model of homotopy 2-types [START_REF] Hans | The cohomology of homotopy categories and the general linear group[END_REF][START_REF] Hans | Combinatorial homotopy and 4-dimensional complexes[END_REF][START_REF] Baues | Classification of abelian track categories[END_REF], together with linear track extensions as a generalisations of crossed modules [START_REF] Baues | Track extensions of categories and cohomology[END_REF]. There exist several interpretations of identities among relations for presentations of groups: as homological 2-syzygies [START_REF] Brown | Identities among relations, Low-dimensional topology[END_REF], as homotopical 2-syzygies [START_REF] Loday | Homotopical syzygies, Une dégustation topologique [Topological morsels[END_REF] or as Igusa's pictures [START_REF] Loday | Homotopical syzygies, Une dégustation topologique [Topological morsels[END_REF][START_REF] Kapranov | Hidden Stasheff polytopes in algebraic Ktheory and in the space of Morse functions[END_REF]. One can also interpret identities among relations as the critical pairs of a group presentation by a convergent word rewriting system [START_REF] Cremanns | For groups the property of having finite derivation type is equivalent to the homological finiteness condition FP 3[END_REF]; this point of view yields an algorithm based on Knuth-Bendix's completion procedure that computes a family of generators of the module of identities among relations [START_REF] Heyworth | Logged rewriting and identities among relators[END_REF].

3.1.2. Summary. First, §3.2 is devoted to the proof of the generalisation of Squier's theorem to higher categories. The proof given here is a modernised version of the one of §4.3 in [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]. It is adapted from the proof of Squier's theorem for associative algebras in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], see Chapter 7, and based on the notion of Y-confluence: given an n-polygraph X and an extension Y of X * , we say that a branching of X is Y-confluent if it is confluent, and the corresponding confluence diagram can be filled with an (n + 1)-cell of X * (Y). So Y-confluence generalises confluence, in that confluence is the same as n Sph(X )-confluence, and both Newman's lemma and the critical branchings theorem can be extended accordingly. These two new results constitute the first two steps of the proof of Squier's theorem, the third and last one stating that Y-convergence implies acyclicity. To formulate the main result, we define a Squier completion of a convergent n-polygraph X as an (n + 1, n)-polygraph (X | Y) such that X is Y-convergent, and we obtain Theorem 3.2.6. Let X be a convergent presentation of an n-category C. Then every Squier completion of X is a coherent presentation of C.

Then, §3.3 presents examples of applications of Squier's theorem, in dimension 2 and 3: a specific monoid, the monoidal category of permutations (using the study of critical branchings of 3-polygraphs of Chapter 2), and the standard coherent presentation of a category.

In §3.4, we give the definition of the finite derivation type homotopical property for higher categories, extending the case of monoids. We prove a technical result, Theorem 3.4.3, giving a way to transfer an acyclic extension from an n-polygraph X to an n-polygraph Y that presents the same (n -1)-category as X. From Theorem 3.4.3, we deduce that if two n-polygraphs present the same (n -1)-category, then both admit a finite acyclic extension, or neither does. The main result is Theorem 3.4.6.

(i) For every n > 0, every finite convergent n-polygraph with a finite set of critical branchings if of finite derivation type. In particular, finite and convergent 2-polygraphs, and finite, convergent and finitely indexed 3-polygraphs are of finite derivation type.

(ii) For every natural number n 3, there exists a finite and convergent n-polygraph that is not of finite derivation type.

Squier's theorem implies the first assertion. For the second point, we exhibited a counterexample, namely the 3-polygraph with one 0-cell, one 1-cell, three 2-cells , and , and four 3-cells .

This 3-polygraph is finite and convergent, but all its acyclic extensions are infinite, due to an infinite number of reduced instances of indexed critical branchings:

α % E β I i α % E β I i α % E β I i • • •
As a consequence, the 2-category presented by this 3-polygraph is not of finite derivation type. Next, §3.5 summarises applications of Squier's theorem to categorical coherence problems, described in [START_REF] Guiraud | Coherence in Monoidal Track Categories[END_REF]. We first introduce a higher version of Mac Lane's pros [START_REF] Mac | Categorical algebra[END_REF], and are mostly interested into (3, 2)-pros, which are (3, 2)-categories whose underlying category is the monoid N of natural numbers. Algebras over a (3, 2)-pro P are defined as 3-functors from P into Cat, seen as a 3-category with only one 0-cell and cartesian product as 0-composition. In particular, there exists a (3, 2)-pro As whose algebras are the monoidal categories, and similarly for symmetric monoidal categories and braided monoidal categories. A P-diagram in a P-algebra A is the image of a 3-sphere of P through A. With this terminology, Mac Lane's coherence theorem for monoidal categories can be stated as: in all monoidal categories, all As-diagrams commute. The main result states that Squier's theorem gives a method to prove such a categorical coherence result: Theorem 3.5.3. Let X be a coherent presentation of a 2-pro, and let X be the (3, 2)-pro presented by X. Then all X-diagrams commute in every X-algebra.

We then prove that the usual definition of monoidal categories corresponds to a coherent presentation of the 2-pro of monoids, recovering Mac Lane's coherence result by a simple analysis of the critical branchings formed by associativity and the left and right neutrality laws, and then a reduction of the computed acyclic extension. In [98, § §3-4], this method is improved to obtain also the coherence theorems for symmetric and braided monoidal categories. It seems that Huet was the first to note the link between rewriting methods and coherence results for monoidal categories: in essence, §4 of [START_REF] Huet | Initiation à la théorie des catégories, Notes du cours du DEA « Fonctionnalité[END_REF] contains all the ideas explained here in §3.2 around the notion of coherent confluence and its relation to the coherence of categorical structures. Lucas further improved Theorem 3.5.3 to obtain a coherence theorem for pseudonatural transformations, whose structure is presented by a 3-polygraph that is not convergent [START_REF] Lucas | A coherence theorem for pseudonatural transformations[END_REF].

Finally, §3.6 relates two different notions of syzygies for n-polygraphs: the homotopical ones, generated by an acyclic extension, and identities among relations. The latter are defined in [START_REF] Guiraud | Identities among relations for higher-dimensional rewriting systems[END_REF] for an n-polygraph X as the elements of a certain natural system Π(X) over the (n -1)-category presented by X. More precisely, Π(X) is proved to be a quotient of the free natural system over the set of closed n-cells of X (i.e. the n-cells f such that s(f) = t(f)) by relations that force some compositions to be commutative. The main result of the section, Theorem 3.6.6, gives a way to compute generators of Π(X) from an acyclic extension of an abelianised version X ab of X , and conversely.

C

Coherent confluence and convergence.

Let X be an n-polygraph, and let Y be an extension of the (n, n -1)-category X . A branching (f, g) of X is Y-confluent if there exist n-cells f and g in X * and an

(n + 1)-cell F in X (Y) as in b f ) ) F a f Q Q g D D a c g g g
The definitions of (local, critical) confluence and convergence are adapted to obtain (local, critical) Y-confluence and Y-convergence. The latter generalise the former, recovered for Y = n Sph(X ).

Proposition (The coherent Newman's lemma).

Let X be a terminating n-polygraph, and Y be an extension of X . Then X is locally Y-confluent if, and only if, it is Y-confluent.

Proof. Assume that X is locally Y-confluent. Let us prove that X is Y-confluent at every (n -1)cell a of X * by noetherian induction on a. If a is reduced, then (1 a , 1 a ) is the only branching of source a of X, and it is Y-confluent. Now, let a be a nonreduced (n -1)-cell of X * such that X is Y-confluent at every 0-cell b ≺ a, and let (f, g) be a branching of X of source a.

If one of f or g is an identity, then (f, g) is Y-confluent. Otherwise, we construct b 1 f 2 C C f 1 6 6 F G b f 2 ' ' a f 1 S S g 1 C C a 1 h G G H b k c 1 g 1 W W g 2 D D c g 1 Q Q a
Since f and g are not identities, they admit decompositions f = f 1 n-1 f 2 and g = g 1 n-1 g 2 , where f 1 and g 1 are rewriting steps of X, and f 2 and g 2 are n-cells of X * . We apply the local Y-confluence hypothesis on (f 1 , g 1 ) to obtain f 1 , g 1 and F, and then the induction hypothesis twice, first to (f 2 , f 1 ) to obtain f 2 , h and G, and then to (g 1 n-1 h, g 2 ) to get k, g 1 and H.

Proposition (The coherent critical branchings theorem).

Assume that X is an npolygraph, and that Y is an extension of X . Then X is critically Y-confluent if, and only if, it is locally Y-confluent.

Proof. First, we note that, in an n-polygraph, every trivial branching is ∅-confluent. Now, assume that X is critically Y-confluent, and prove that every non-trivial branching

(f, g) is Y-confluent. Let (h, k) be the critical branching of X and C[x] the whisker of X * such that (f, g) = (C[h], C[k]). By hypothesis, (h, k) is Y-confluent: we apply C[x]
to the resulting n-cells of X * and (n + 1)-cell of X (Y) to get the result.

Proposition.

Let X be an n-polygraph, and Y be an extension of

X . If X is Y-convergent, then Y is acyclic.
Proof. Since X is Y-convergent, it is convergent, so every (n -1)-cell a of X * admits a unique normal form a, and X * contains an n-cell η a : a → a. Now, let f : a → b be an n-cell of X * . By hypothesis, the branching (f n-1 η b , η a ) is Y-confluent, so that, since a and b are reduced (n -1)-cells of X * that are necessarily equal, we get an

(n + 1)-cell b η b ( ( η f a f P P η a Q Q a in X (Y). Put η f -= f - n-1 η - f to obtain an n-cell of X (Y)
with the following shape:

a η a ( ( η f - b f -P P η b Q Q a Next, let f : a → b be an n-cell of X . Write f = g 1 n-1 h - 1 n-1 • • • n-1 g p n-1 h - p ,
with each g i and h i in X * , and define η f as the following composite n-cell of X (Y), with source f n-1 η b and target η a :

a g 1 G G η a b 1 h - 1 G G η b 1 η g 1 ~a2 G G η a 2 η h - 1 ~• • • G G a p g p G G η a p b p h - p G G η b p η g p ~bη b η h - p ~ a a a • • • a a a
Finally, for all parallel 1-cells f, g : a → b of X , the composite

(n + 1)-cell b 1 b 6 6 η b 6 6 η f a f Q Q η a G G g C C a η - b G G = = b b η b X X 1 b X X η - g of X (Y)
has source f and target g, thus concluding the proof that Y is acyclic.

Squier completion.

Let X be a convergent n-polygraph. A Squier completion of X is an

(n + 1, n -1)-polygraph Y, such that Y n = X, and Y n+1 contains an (n + 1)-cell b f ) ) A a f Q Q g D D a c g g g
for every critical branching (f, g) of X, with f and g in X * . Squier completions are not unique in general: the (n + 1)-cell A could be directed in the reverse way, and the n-cells f and g chosen differently.

Composing Propositions 3.2.2, 3.2.3 and 3.2.4 gives the generalisation of Squier's result [START_REF] Squier | A finiteness condition for rewriting systems[END_REF]Theorem 5.2], from convergent 2-polygraphs to convergent n-polygraphs:

Theorem (Squier's theorem). Let X be a convergent presentation of an n-category C.

Then every Squier completion of X is a coherent presentation of C.

E

Coherent presentations of monoids.

Consider the monoid M presented by the 2-

polygraph X = x, y xyx α =⇒ yy .
Termination of X is proved with the deglex order generated by x < y. The 2-polygraph X has one, non confluent critical branching (αyx, xyα). A Knuth-Bendix completion Y of X is obtained by adjunction of the dotted 2-cell β in the leftmost diagram, which in turn generates a new, confluent, critical branching, on the right-hand side:

yyyx β Ð xyxyx αyx B b xyα 2 R A Õ % xyyy xyyyyx xyβ @ B Õ % yyyxyx βyx C c yyyα 1 Q xyxyyy αyyy k yyyyy By Squier's theorem, the (3, 1)-polygraph Z = (x, y | α, β | A, B) is a coherent presentation of M.
Chapter 5 presents a reduction method to contract Z while preserving acyclicity: first, B can be shown to be superfluous, in the sense that {A} is also an acyclic extension of Y , and then β and A can be removed together to obtain that (X | ∅) is a coherent presentation of M.

Coherent presentations of monoidal categories.

Following the classification of critical branchings of 3-polygraphs given in §2.6.5, we obtain a smaller notion of Squier completion, improving Squier's theorem [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]Proposition 5.3.3]: assume that X is a convergent left-indexed (resp. right-indexed) 3-polygraph, and Y is an extension of X that contains one 4-cell b F

9 ω 1 a F A a G 4 T a c G W w
for every pair (F, G) of 3-cells of X * that is an inclusion or regular critical branching, or a reduced instance of a left-indexed (resp. right-indexed) critical branching, with F and G in X * ; then Y is acyclic.

Consider, for example, the strict monoidal category S of permutations, seen as a 2-category with one 0-cell, the natural numbers as 1-cells, and one 2-cell τ : n ⇒ n for each permuation τ of {1, . . . , n}. The 2-category S is presented by the 3-polygraph S, given in string diagrams as

S = * , .
Termination of S is obtained by considering the natural system N(F, * , N) on S * 2 with values in Com, and the derivation d of S * 2 into N(F, * , N) given by

F ( ) = N, F ( ) (i, j) = (j + 1, i), d ( ) (i, j) = i.
The 3-polygraph S is right-indexed, with three regular critical branchings and one right-indexed critical branching, whose sources are

k
where k ranges over an infinite set of 2-cells. However, after classification of the normal forms of S, we obtain that the right-indexed branching has two reduced instances: for k = and k = , see [96, §5.4]. The three regular critical branchings and the two reduced instances of the right-indexed critical branching are confluent, so S is convergent and we obtain a coherent presentation of S by filling the following five 3-spheres: 

α 9 α U u β @ β F f α 0 P α l Ð α D d β ( H α r β T t α 7 W α 2 β P p β $ D α 7 W α b β 7 W β 7 W β 8 β P p β $ D β 7 W β 7 W β V v 3 
aγ b,c 2 R abc a bc γ a,bc U u α a,b,c Õ % 1 x a γ 1 x ,a 4 a ι x a F f a λ a Õ % a 1 y γ a,1 y 5 a aι y G g a ρ a Õ %
where α a,b,c is indexed by the composable 1-cells a, b and c of C, and λ a and ρ a , by the

1-cells a : x → y of C. The (3, 1)-polygraph Std + (C) is, indeed, a coherent presentation of C. It is not a Squier completion of Std(C)
, because the latter is not terminating: for every 0-cell x of C, the 2-cell ι x creates an infinite rewriting sequence

1 x → 1 x → 1 x 1 x • • • .
However, reversing all the 2-cells ι x of Std(C) yields a convergent presentation of C, and we obtain a Squier completion by adjoining all the 3-cells α a,b,c , and two families of 3-cells

1 x a γ 1 x ,a " B ι - x a S s λ a Õ % a a 1 y γ a,1 y " B aι - y R r ρ a Õ % z
indexed by the 1-cells a : x → y of C. We deduce the result by reversing again the direction of the 2-cells ι - x , and, then, by replacing λ a and ρ a by λ a = ι x a 1 λ a and ρ a = aι y 1 ρ a .

H

3.4.1. Finite derivation type. We say that an n-polygraph X is of finite derivation type if it is finite and if X admits a finite acyclic extension. An n-category C is of finite derivation type if it admits a finite coherent presentation.

Let us prove that finite derivation type is an invariant of finitely presented n-categories: all or none of the finite presentations of the same n-category are of finite derivation type. The main argument is Theorem 3.4.3 that describes how to transfer acyclic extensions from one n-polygraph to another one, for which we first require: in X and Y , respectively, such that the following conditions are satisfied: (i) the (n + 1)-functors F and G induce the identity through the canonical projections onto C:

X π X G G G G F = C id C Y π Y G G G G C X π X G G G G = C Y π Y G G G G G y y C id C y y
(ii) the (n + 1)-cells σ a and τ b are functorial in a and b:

σ 1 a = 1 1 a , τ 1 b = 1 1 b , σ a k a = σ a k σ a and τ b k b = τ b k τ b . Proof. First, define F, the case of G being symmetric. On a k-cell x of X, for k < n, put F(x) = x. Now, if x : a → b is an n-cell of X, we choose, in an arbitrary way, a representative n-cell F(x) : a → b of π X (x) in Y , so that π Y (F(x)) = π X (x) holds. Then, we extend F to every n-cell of X by functoriality. Let x : a → b be an (n + 1)-cell of X. Since X is a presentation of C, we have π X (a) = π X (b), so that π Y (F(a)) = π Y (F(b)) holds.
Using the fact that Y is a presentation of C, we can choose an (n + 1)-cell F(x) : F(a) → F(b) in Y and, then, extend F to every (n + 1)-cell of X by functoriality. Now, define σ, the case of τ being symmetric. Let x be an n-cell of X. By construction of F and G, we have π X (GF(x)) = π Y F(x) = π X (x). Since X is a presentation of C, we can choose an (n + 1)-cell σ x : GF(x) → x in X , and, then, extend σ to every n-cell of X as required.

Theorem (Transfer of acyclic extensions).

Let C be an (n -1)-free n-category, let X and Y be presentations of C, and let F, G and τ be chosen as in Lemma 3.4.2. If Z is an acyclic extension of X , then F(Z) τ Y is an acyclic extension of Y , where:

(i) the extension F(Z) contains one (n + 2)-cell F(z) : F(a) → F(a ) for every (n + 2)-cell z : a → a of Z, (ii) the extension τ Y contains one (n + 2)-cell FG(b ) τ b 1 1 τ y FG(b) FG(y) S S τ b D D b b y d d for every (n + 1)-cell y : b → b of Y.
Proof. First, let us extend τ to every

(n + 1)-cell g : b → b of Y , to obtain an (n + 2)-cell τ g : FG(g) n τ b → τ b n g of Y (τ Y ). For that, we set τ 1 b = 1 τ b and τ g k g = τ g k τ g , for k < n. Then, for g : b → b and g : b → b , we put τ b n b = FG(b ) τ b 3 3 τ g FG(b ) FG(g ) S S τ b 8 8 τ g b FG(b) FG(g) S S τ b E E b g c c b g b b
Finally, for every g : b → b , we set

τ g -= b g 3 3 τ - g FG(b ) FG(g) - G G FG(b) τ b P P FG(g) A A b g - G G b FG(b ) τ b d d
There remains to check that τ g is well defined, i.e. that it is compatible with the relations on 

(n + 1)-cells in an (n + 2, n)-category. Second, consider an (n + 1)-sphere (g, g ) : b → b of Y . Because Z is an acyclic extension of X , there exists an (n + 2)-cell A : G(g) → G(g ) in X (Z), yielding an (n + 2)-cell F(A) : FG(g) → FG(g ) in Y (F(Z)). As a consequence, the composite A = b g τ - g FG(b) τ b H H FG(g) 8 8 
FG(g ) W W F(A) τ b F F FG(b ) τ b G G τ g b b b w w is a well-defined (n + 2)-cell of Y (F(Z) τ Y ),
ab n+1 c β n+1 $ D A n Õ % bab n c α C c β n 2 R ab n+1 bab n α R r Squier's theorem implies that Z = {A n | n ∈ N} is an infinite acyclic extension of Y .
If Y admitted a finite acyclic extension, then there would exist a finite subset Z 0 of Z that would be acyclic [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF]Proposition 3.2.3]. One checks that this is impossible, either by using a derivation, as in Example 4.3.10 of [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], or by observing that Y has no critical triple branching (see Chapter 4).

Theorem. (i)

For every n > 0, every finite convergent n-polygraph with a finite set of critical branchings is of finite derivation type. In particular, finite and convergent 2polygraphs, and finite, convergent and finitely indexed 3-polygraphs are of finite derivation type.

(ii) For every natural number n 3, there exists a finite and convergent n-polygraph that is not of finite derivation type.

Proof. The first assertion is a direct consequence of Squier's theorem: if X is a finite convergent 2-polygraph, then its set of critical branchings is finite; the case of 3-polygraphs comes from the improved version of Squier's theorem [96, Proposition 5.3.3], see §3.3.2.

For the second assertion, we consider the 3-polygraph X with one 0-cell, one 1-cell, three 2-cells , and , and four 3-cells .

In §5.5 of [START_REF] Guiraud | Higher-dimensional categories with finite derivation type[END_REF], it is proved that X is finite and convergent, but not finitely indexed, and that X does not admit a finite acyclic extension, because each one must contain the 4-cells α

% E β I i α % E β I i α % E β I i • • •
To obtain the result in dimension n 4, we lift the 3-polygraph X by adding two cells in each dimension up to n -4.

Squier's counterexample.

In [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF], Squier introduced a family (S k ) k 1 of monoids, where S k is generated by a, b, t, x 1 , . . . , x k , y 1 , . . . , y k , submitted to the relations

at n b = 1, x i a = atx i , x i t = tx i , x i b = bx i , x i y i = 1.
He proved, in [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF] for k 2, and in [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] for k = 1, that the finitely presented monoid S k has a decidable word problem, but admits no finite convergent presentation. The proof of [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF] uses homological arguments (see Chapter 4), while the proof of [START_REF] Squier | A finiteness condition for rewriting systems[END_REF] relies on the property of finite derivation type. The same methods apply to the simpler example

LP = a, b, c, d, d ab = a, da = ac, d a = ac +
given later in [START_REF] Lafont | Church-Rosser property and homology of monoids[END_REF], with the same conclusions. The proof, translated in polygraphic terms in [100, §6.2], for M = S k or M = LP, is composed of the following steps. First, use Knuth-Bendix's completion procedure on the finite presentation X of M to obtain an infinite convergent presentation Y of M. Then, apply Squier's theorem to obtain an infinite acyclic extension of Y , and Theorem 3.4.3 to transfer it back to X . Next, prove that the infinite acyclic extension so obtained cannot be reduced to a finite one (for example, using an invariant such as a derivation), to conclude that X is not of finite derivation type. Finally, use Corollary 3.4.4 to conclude that M is not of finite derivation type, and, as a consequence of Theorem 3.4.6, admits no finite convergent presentation.

C

3.5.1. Higher pros and their algebras. For 0 < p n ∞, an (n, p)-pro is an (n, p)category P whose underlying 1-category is the monoid N of natural numbers with addition. In particular, (2, 2)-pros, or 2-pros for short, coincide with Mac Lane's pros, see [START_REF] Mac | Categorical algebra[END_REF].

Fix a (3, 2)-pro P. A P-algebra is a 3-functor from P to Cat, seen as 3-category with one 0-cell, categories as 1-cells, functors as 2-cells, natural transformations as 3-cells, and cartesian product as 0-composition. The P-algebras and natural transformations between them form a category, denoted by Alg(P).

Coherence problems for algebras over a (3,

2)-pro. Let P be a (3, 2)-pro and let A be a P-algebra.

A P-diagram in A is the image A(A, B) of a 3-sphere (A, B) of P. A P-diagram A(A, B) in A commutes if the relation A(A) = A(B) is satisfied in Cat. Typical coherence
theorems state that all, for every P-algebra A, all P-diagrams (or a determined class of P-diagrams) commute. Thus, the following result immediate:

3.5.3. Theorem. Let X be a coherent presentation of a 2-pro, and let X be the (3, 2)-pro presented by X. Then all X-diagrams commute in every X-algebra. of associative categories (i.e. categories with a product that is associative up to a coherent natural isomorphism), we obtain that every AsCat-diagram commutes in every associative category.

Coherence for monoidal categories.

A monoidal category is a category C, equipped with two functors ⊗ : C × C → C and e : * → C, and three natural isomorphisms

α x,y,z : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z) , λ x : e ⊗ x → x, ρ x : x ⊗ e → x,
such that the following two diagrams commute in C:

(x ⊗ (y ⊗ z)) ⊗ t α G G x ⊗ ((y ⊗ z) ⊗ t) α & & ((x ⊗ y) ⊗ z) ⊗ t α W W α B B x ⊗ (y ⊗ (z ⊗ t)) (x ⊗ y) ⊗ (z ⊗ t) α W W x ⊗ (e ⊗ y) λ $ $ (x ⊗ e) ⊗ y α X X ρ P P x ⊗ y
Informally, Mac Lane's coherence theorem for monoidal categories says that, in every monoidal category, all the diagrams whose arrows are built from ⊗, e, α, λ and ρ commute.

Let MonCat be the (3, 2)-pro presented by the (4, 2)-polygraph MonCat with two 2-cells , , three 3-cells

7 W 7 W 7 W
and two 4-cells:

7 W 8 H h 3 S F f 1 1 I i A a 1
It is straightforward to check that the categories Alg(MonCat) of MonCat-algebras and MonCat of monoidal categories are isomorphic. So, Mac Lane's coherence theorem says that, in every monoidal category, every MonCat-diagram commutes. This result is a direct consequence of: 

H h A a ω 1 1 2 H h A a ω 2 1 8 V v ω 3 1
To prove that MonCat is a coherent presentation of Mon, there remain to show that, for each 4-cell ω i , we have s(ω i ) = t(ω i ) in MonCat. 

( ) = 1, d 2 ( ) = -1, and d 2 ( ) = 0. We have d 2 (s( )) = d 2 (t( )) = 0, but d 2 (s( )) = 3 and d 2 (t( )) = 2.
3.6. C 3.6.1. Abelian higher categories. In an n-category, a k-cell a is called closed if its source and target coincide, and, if k 2 and t(a) is an invertible (k -1)-cell, we define the closed

(k -1)-cell ∂(a) by ∂(a) = s(a) n-1 t(a) - Fix an (n + 1, n)-category C.
If a is an n-cell of C, we denote by Aut C a the group of closed (n + 1)-cells of C of source a. We say that C is abelian if, for every n-cell a of C, the group Aut C a is abelian. The abelianised of C the abelian (n + 1, n)-category, denoted by C ab , and defined as the quotient of C by the (n + 1)-spheres (f n g, g n f), where f and g are closed (n + 1)-cells of C with the same source.

If C is abelian, the mapping a → Aut C a extends to a natural system Aut C on the n-category C n , mapping a context C[x] of C n to the morphism of groups y → C[y]. This natural system satisfies the following properties:

3.6.2. Lemma ([97, Lemma 2.1.3]). Let C be an (n + 1, n)-category. For every (n + 1)-cell g : b → a, the application (•) g : Aut C a → Aut C b mapping f : a → a to f g = g - n-1 f n-1 g
is an isomorphism of groups. Moreover, if C is abelian and g, h : b → a are n-cells of C, then the isomorphisms (•) g and (•) h coincide.

Identities among relations for polygraphs.

Let X be an n-polygraph, for n 1. Denote by Π(X) the natural system on the (n -1)-category X presented by X given, on an (n -1)-cell a of X and up to isomorphism, by

Π(X) a Aut X ab a , (3.1) 
where a is any representative of a in X * n-1 . The elements of the natural system Π(X) are called the identities among relations of X.

Lemma 3.6.2 implies that the definition makes sense. Theorem 2.2.3 of [START_REF] Guiraud | Identities among relations for higher-dimensional rewriting systems[END_REF] proves that Π(X) is, up to isomorphism, the only natural system on X that satisfies (3.1), and that each Π(X) a admits the following presentation by generators and relations:

(i) one generator f for every closed n-cell f of X such that s(f) = a;

(ii) the relations are

f n-1 g = f + g if f and g are closed, g n-1 f if s(f) = t(g) and t(f) = s(g).
Moreover, with this presentation, the isomorphism (3.1) is given by f → f g , where g : a → s(f) is arbitrarily chosen in X . (i) X is acyclic. 

(ii) Every closed (n + 1)-cell f of C admits a decomposition f = (C 1 [ ∂(x 1 ) ε 1 ]) g 1 n • • • n (C p [ ∂(x p ) ε p ]) g p with x i ∈ X, ε i ∈ {-, +}, C i a
∂(Y) = ∂(y) y ∈ Y (ii) If B is a generating set of Π(X), then β → 1 s(β) β ∈ B
is an acyclic extension of X ab .

3.6.7. Example. Consider the 2-polygraph As = (a 0 , a 1 , a 2 ) of Example 2.6.6, and the acyclic extension of As with one 3-cell, written in classical notation and in string diagrams, respectively,

a 2 a 1 1 a 2 a 3 7 W a 1 a 2 1 a 2 7 W
The abelian (2, 1)-category As ab is a quotient of As , and thus {a 3 } is also an acyclic extension of the former. Thus, by Theorem 3.6.6, the natural system Π(X) is generated by one element:

s(a 3 ) 1 t(a 3 ) -= (a 2 a 1 1 a 2 ) 1 (a - 2 1 a 1 a - 2 ) = a 2 a 1 1 a 1 a - 2 = a 2 a - 2 .
In string diagrams, writing for -, this generator is s(

) 1 t( ) -= =
3.6.8. Abelian finite derivation type. Fix n 1, and an n-polygraph X. We say that X is of abelian finite derivation type, FDT ab for short, if it is finite and if the abelian (n, n -1)category X ab admits a finite acyclic extension. By Theorem 3.6.6, if X is finite, then X is FDT ab if, and only if, Π(X) is finitely generated. Since the later is invariant by Tietze-equivalence for finite n-polygraph by Proposition 3.6.4, the condition FDT ab is an invariant for finitely presented n-categories, and a necessary condition for being of finite derivation type. We conjecture that the converse implication is false. In [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF] and, then, in [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], Squier has related the existence of a finite convergent presentation for a given monoid M to a homological finiteness condition, left-FP 3 , and to a homotopical finiteness condition, finite derivation type, thereafter called FDT 3 for short. By his results, Squier has opened two different directions, one homological and one homotopical, to explore in the quest for a complete characterisation of the existence of finite convergent presentations of monoids. The corresponding invariants are related: FDT 3 implies left-FP 3 , as proved by several authors [START_REF] Cremanns | Finite derivation type implies the homological finiteness condition FP 3[END_REF][START_REF] Stephen | Low-dimensional homotopy theory for monoids[END_REF][START_REF] Lafont | A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier)[END_REF]. The converse implication is false in general, as already noted by Squier in [START_REF] Squier | A finiteness condition for rewriting systems[END_REF], yet it is true in the special case of groups [START_REF] Cremanns | For groups the property of having finite derivation type is equivalent to the homological finiteness condition FP 3[END_REF], the latter result being based on the Brown-Huebschmann isomorphism between homotopical and homological syzygies [START_REF] Brown | Identities among relations, Low-dimensional topology[END_REF]. However, the invariants left-FP 3 and FDT 3 are not complete characterisations of the property to admit a finite convergent presentation: they are necessary, but not sufficient conditions, as already proved by Squier in [START_REF] Squier | A finiteness condition for rewriting systems[END_REF]. Following this observation, various refinements of both invariants have been explored. In the homological direction, thanks to the notion of abelian resolution, one defines the more restrictive conditions left-FP n , for every n in N: a monoid M has homological type left-FP n if there exists a resolution of length n of the trivial left M-module by finitely generated and projective left M-modules. In [START_REF] Kobayashi | Complete rewriting systems and homology of monoid algebras[END_REF], a notion of n-fold critical branching is used to complete the exact sequence used by Squier for the condition left-FP 3 into a resolution, obtaining the following implication: if a monoid admits a finite convergent presentation, then it is of homological type left-FP n , for every n in N, the converse implication still being false in general, even for n = ∞. Similar results are also known for associative algebras [START_REF] Anick | On the Homology of Associative Algebras[END_REF], and for groups [START_REF] Daniel | A monoid which is right FP ∞ but not left FP 1[END_REF][START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF][START_REF] John | Rewriting systems and homology of groups, Groups-Canberra[END_REF]. One can obtain other implications with the properties right-FP ∞ and bi-FP ∞ , defined in terms of resolutions by right modules and bimodules, respectively.

In the homotopical direction, the condition FDT 3 has been refined into FDT 4 in [START_REF] Mcglashan | Pride, Finiteness conditions for rewriting systems[END_REF], a property that can be rephrased as the existence of a finite presentation with a finite acyclic extension, itself satisfying a homotopical finiteness property. The condition FDT 4 is also necessary for a monoid to admit a finite convergent presentation and it is sufficient, but not necessary, for the conditions left/right/bi-FP 4 . While the homological property FP 3 could be generalised in all dimensions using abelian resolutions, the property FDT 3 was not pushed further than FDT 4 , possibly due to the lack of an appropriate notion of homotopical resolution.

In Chapter 3, we have formulated the condition FDT 3 as the existence of a finite coherent presentation, i.e. a 3-polygraph with a specific acyclicity condition. Coherent presentations have been generalised in all dimensions by Métayer in [START_REF] Métayer | Resolutions by polygraphs[END_REF], leading to the concept of polygraphic resolutions of ∞-categories. In the special case of categories, the definition boils down to: an ∞-polygraph X is a polygraphic resolution of a category C if C is isomorphic to the category X * 1 /X 2 presented by X, and if, for every n 2, the extension X n+1 of X * n is acyclic. Métayer has then proved that polygraphs are exactly the cofibrant objects in ∞Cat, for an adequate definition of cofibration [START_REF] Métayer | Cofibrant Objects among Higher-Dimensional Categories[END_REF], and, with Lafont and Worytkiewicz, that this homotopical point of view fits in a model structure on ∞-categories [START_REF] Lafont | A folk model structure on omega-cat[END_REF]: in this model structure, polygraphic resolutions are cofibrant approximations. Moreover, this model structure can be transferred easily to ∞-groupoids and, more generally, to (∞, p)-categories [START_REF] Ara | The Brown-Golasiński model structure on strict ∞-groupoids revisited[END_REF]. 4.1.2. Summary. In §4.2, we define the (∞, 1)-categorical version of the polygraphic resolutions of ∞Cat, and give a way to prove that a given (∞, 1)-polygraph is a polygraphic resolution of a category. The latter is based on the polygraphic analogue of a contracting homotopy for a chain complex: this is a specific way to assign in a coherent way, to every n-cell x of an (∞, 1)-polygraph X, an (n + 1)-cell σ x : x → x, where x is a kind of normal form for x. The description given in this chapter is a modernised version of the original one of [99, §3], introduced later in [95, §5] for polygraphic resolutions of associative algebras, and based on the treatment of Ara and Maltsiniotis in [START_REF] Ara | Le type d'homotopie de la ∞-catégorie associée à un complexe simplicial[END_REF]. Contractions give a constructive way to characterise the acyclicity of an (∞, 1)-polygraph: Theorem 4.2.6. Let X be an (∞, 1)-polygraph. The canonical projection X → X is a weak equivalence in (∞, 1)Cat if, and only if, X admits a right ι-contraction for every unital section ι.

Then, Squier's theorem for monoids is extended, in §4.3, to provide a construction of a polygraphic resolution Sq(X), called Squier's polygraphic resolution, from a convergent presentation X. If X is a reduced convergent 2-polygraph, the cells of Sq(X) correspond to the critical n-branchings of X, which are a generalised version of critical branchings where n generating 1-cells overlap. We obtain Theorem 4.3.3. Assume that X is a convergent presentation of a category C. There exists a unique structure of (∞, 1)-polygraph on Sq(X), and unique unital section ι and right ι-contraction σ of Sq(X), that satisfy ι u = u for every 1-cell u of X * , and, for every

n-cell u 1 | • • • |u n of Sq(X), with n 1, and every reduced 1-cell u n+1 of X * , σ (u 1 |•••|u n )u n+1 = u 1 | • • • |u n+1 if u 1 | • • • |u n+1 ∈ Sq n+1 (X), 1 (u 1 |•••|u n )u n+1 if u n u n+1 is reduced.
As a consequence, with this structure of (∞, 1)-polygraph, Sq(X) is a polygraphic resolution of C.

Note that the original construction of [99, §4.5] only applied to reduced convergent presentations, and that the cells of the generalised version given here have a definition that is the same as the one used by Kobayashi in [START_REF] Kobayashi | Complete rewriting systems and homology of monoid algebras[END_REF] to build abelian resolutions from convergent presentations. Moreover, the proof given here corrects an error in the one of Theorem 4.5.3 of [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]: the (n + 1)-cell built at the end of §4.5.2 did not have the proper boundary to define a contraction. The notion of contraction and the construction of Squier's polygraphic resolution have, since then, been transposed to cubical (∞, p)-categories and their associated polygraphs by Lucas in [START_REF] Lucas | Cubical categories for homotopy and rewriting[END_REF][START_REF] Lucas | Cubical (ω, p)-categories[END_REF][START_REF] Lucas | A cubical Squier's theorem[END_REF]: the definitions and constructions are much clearer in this setting, due to the natural cubical shapes of the cells associated to the n-branchings, and to cubical symmetries generated by natural operations on the n-branchings.

Next, §4.4 starts with the construction, for a category C and an (∞, 1)-polygraph X that presents C, of an augmented chain complex F C [X] of free natural systems over C: this complex is formed of the free natural systems F C [X n ] over each set X n of n-cells of X, and its boundary map is given by the source and target maps:

δ[x] = [s(x)] -[t(x)],
where [•] is a derivation with respect to the 0-composition, and maps every other composition to the sum. This complex is inspired by constructions of Reidemeister [START_REF] Reidemeister | Über Identitäten von Relationen[END_REF], Fox [START_REF] Fox | Free differential calculus. I. Derivation in the free group ring[END_REF] and Squier [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF], and the Fox Jacobian used by Squier is the boundary map

δ 2 of F C [X]. We obtain Theorem 4.4.3. If X is a polygraphic resolution of a category C, then F C [X] is a free resolution of the constant natural system Z on C.
The key argument of the proof is that, if X is a polygraphic resolution, then, by Theorem 4.2.6, it admits a contraction that, in turn, induces a contracting homotopy for F C [X]. Note that the construction of F C [X] adapts in a straightforward way to left/right/bimodules over C, with similar conclusions. In analogy with the case of groups, we define the homological n-syzygies of X as the kernel of the boundary map δ n , and we establish Theorem 4.4.6. For every 2-polygraph X, the natural systems of homological 2-syzygies and of identities among relations of X are isomorphic.

This isomorphism was inspired by Loday's result on the correspondence between four different definitions of syzygies for presentations of groups: homotopical 2-syzygies, Igusa's pictures, identities among relations, and homological 2-syzygies [START_REF] Loday | Homotopical syzygies, Une dégustation topologique [Topological morsels[END_REF].

In §4.5, we use polygraphic resolutions to generalise Squier's and Pride's homotopical finiteness conditions FDT 3 and FDT 4 to all dimensions: a category is FDT n if it admits a polygraphic resolution that contains finitely many cells in every dimension up to n. So, Theorem 4.3.3 immediately implies that a category with a finite convergent presentation is FDT n for every n in N, because a finite convergent 2-polygraph has finitely many critical n-branchings. We also introduce a new homological finiteness condition, FP n , based on the existence of a resolution of length n by finitely generated natural systems, which is a refinement of the analogous conditions defined in terms of left/right/bimodules. The known relations between all these finiteness conditions are summarised in the following two results:

Theorem 4.5.6. Let C be a category. For every n ∈ N, if C is FDT n , then it is FP n . In particular, if C admits a convergent presentation, then it is FP ∞ .
Theorem 4.5.7. Let C be a category, and X be a finite presentation of C. The following assertions are equivalent: C is FP 3 , C is FDT ab , h 2 (X) is finitely generated, and Π(X) is finitely generated.

Finally, Section 4.6 applies the constructions defined so far on several examples, in particular: any category C with its reduced standard presentation, yielding the reduced standard polygraphic resolution of C which, after abelianisation, boils down to the classical bar resolution of C; the monoid A = {1, a} with product a 2 = a, admitting a polygraphic resolution made of the Stasheff polytopes; the category of monotone surjections on finite sets. E n , and the cofibrant objects of ∞Cat are exactly the ∞-polygraphs [START_REF] Métayer | Cofibrant Objects among Higher-Dimensional Categories[END_REF]. The canonical model structure of ∞Cat transfers to (∞, 1)Cat through the adjunction formed by the enveloping (∞, 1)-category functor and the forgetful functor. The proof is given in [START_REF] Ara | The Brown-Golasiński model structure on strict ∞-groupoids revisited[END_REF] for ∞-groupoids, but works equally well for (∞, p)-categories, for every p 0, yielding in particular a model structure on (∞, 1)Cat. By construction, the weak equivalences in (∞, 1)Cat are the images through the forgetful functor of the weak equivalences in ∞Cat, i.e. the ∞-functors between (∞, 1)-categories that are weak equivalences in ∞Cat. The cofibrations in (∞, 1)Cat are the retracts of transfinite compositions of pushouts of the inclusions (S n-1 ) (E n ) . Thus, the free (∞, 1)-category X over an (∞, p)-polygraph is a cofibrant object in (∞, 1)Cat, see [99, Proposition 2.2.4].

Let C be a category. A polygraphic resolution of C (in (∞, 1)Cat) is an (∞, 1)-polygraph X such that X is a cofibrant approximation of C in (∞, 1)Cat. Expanding the definition, X is a polygraphic resolution of C if, and only if, it presents C and, for every n 2, the extension X n+1 of X n is acyclic. 

s(η a ) = F(a) 0 η t 0 (a) 1 • • • n-1 η t n-1 (a) , t(η a ) = η s n-1 (a) n-1 • • • 1 η s 0 (a) 0 G(a),
(iii) for all n > k 0, and every k-composable pair (a, b) of n-cells of C,

η a k b = F(s k+1 (a)) 0 η t 0 (b) 1 • • • k-1 η t k-1 (b) k η b k+1 η a k η s k-1 (a) k-1 • • • 1 η s 0 (a) 0 G(t k+1 (b)),
(iv) for every n 0, and every n-cell a of C,

η 1 a = 1 η a .
Several results must be established to ensure that this definition makes sense, and in particular that all the involved compositions are well defined, see [8, §B.8].

Unital sections.

Let X be an (∞, 1)-polygraph. For c a 1-cell of the quotient category X, we denote by X c the corresponding fibre of the canonical projection π : X X. By definition, X c is an ∞-groupoid, whose 0-cells are the representatives of c in X . To avoid confusion, we keep the dimensions of the (∞, 1)-category X when talking about the cells and compositions of X c .

A unital section of X is a family * ι -→ X c c∈X 1 of ∞-functors, indexed by the 1-cells c of X, that satisfy ι 1 x = 1 1 x for every 0-cell x of X.

Concretely, ι assigns to every 1-cell c of X a representative 1-cell ι c in X , in such a way that identities are mapped to identities. A unital section of X is almost a functorial section of the canonical projection π : X → X, but undefined in dimension 0 and with no specific compatibility with the 0-composition. Fix a unital section ι of X. If a is an n-cell of X , we write a for ιπ(a) when no confusion occurs (note that a is an identity if n 2). A 1-cell u of X is ι-reduced if u = u holds. A non-ι-reduced 1-cell u of X is ι-essential if u = xv, with x a 0-cell of X and v an ι-reduced 1-cell of X .

Contractions.

Let X be an (∞, 1)-polygraph, and ι be a unital section of X. An ιcontraction of X is a family

    X c id X c C C π B B X c * ι q q σ Õ %     x∈X c
of homotopies, indexed by the 1-cells c of X, that satisfies σ a = 1 a for every n-cell a of X , with n 1, such that a belongs to the image of ι or of σ. Thus, an ι-contraction is almost a homotopy from id X to ιπ, but, like ιπ, undefined on 0-cells and with no specific compatibility with the 0-composition.

Fix an ι-contraction σ of X. The definition of σ implies, for every n 1, every n-cell a of X , and every

1 k < n, s k (σ a ) = a 1 σ t 1 (a) 2 • • • k σ t k (a) and t k (σ a ) = a if k = 1, σ s k (a) otherwise.
We say that σ is right if, for every n 1 and all n-cells f and g of X of respective 1-sources a and b, it satisfies

σ fg = aσ g 1 σ f b . (4.1)
The notion of left ι-contraction is defined symmetrically, and the following definitions and results admit a corresponding symmetric version.

For n 1, an n-cell a of X is σ-reduced if it is an identity or in the image of σ. If σ is a right ι-contraction of X, and n 1, a non-σ-reduced n-cell a of X is σ-essential if there exist an n-cell α of X and an ι-reduced 1-cell u of X such that a = αu.

Lemma ([99, Corollary 3.3.5]

). Let X be an ∞-polygraph, and ι be a unital section of X. A right ι-contraction σ of X is uniquely and entirely determined by its values on the ι-essential 1-cells and, for every n 1, on the σ-essential n-cells of X .

Proof. If σ is a right ι-contraction, then its values are prescribed on every cell of X that is not ι-essential or σ-essential. Now, the values of σ on ι-essential and σ-essential cells of X can be chosen freely (with correct source and target), provided that these values make σ compatible with all the defining relations of the structure of (∞, 1)-category, and in particular with exchange relations between the 0-composition and the other compositions. It turns out that (4.1) imposes compatibility with these exchange relations. 4.2.6. Theorem. Let X be an (∞, 1)-polygraph. The canonical projection X → X is a weak equivalence in (∞, 1)Cat if, and only if, X admits a right ι-contraction for every unital section ι.

Proof. Assume that X is a polygraphic resolution of X. Let us define a right ι-contraction σ of X thanks to Lemma 4.2.5. If xu is an ι-essential 1-cell of X , then xu and xu have the same image in X, so that, by definition of X, there exists a 1-cell σ xu : xu → xu in X . Assume that σ is defined on the n-cells of X , for n 1, and let αu be a σ-essential (n + 1)-cell of X . The n-cells s(σ αu ) and t(σ αu ) are parallel, so, by hypothesis, there exists an (n + 1)-cell σ αu with these source and target in X .

Conversely, let σ be an ι-contraction of X, and a and b be parallel n-cells of X , for n 1. We have t(σ a ) = σ s(a) = σ s(b) = t(σ b ) by hypothesis, so that the (n + 1)-cell σ a n σ - b is well defined, with source s(σ a ) and target s(σ b ). The fact that t k (a) = t k (b) holds for every 0 k < n implies that

(σ a n σ b ) - n-1 σ - t n-1 (a) n-2 • • • 0 σ - t 0 (a)
is a well-defined (n + 1)-cell of X , with source a and target b, thus proving that X n+1 is acyclic.

P

The cells of Squier's polygraphic resolution.

Assume that X is a 2-polygraph. Define Sq(X) as the graded set whose 0-cells and 1-cells are the ones of X, and whose n-cells, for n 2, are the families (u 1 , . . . , u n ), written

u 1 | • • • |u n , of non-identity reduced 1-cells of X * that satisfy (i) u 1 is a 1-cell of X, (ii 
) for every 1 i < n, the 1-cell u i u i+1 is not reduced, (iii) for every 1 i < n, every proper left-factor of u i u i+1 is reduced.

4.3.2.

Interpretation in the reduced case. Assume that X is a reduced 2-polygraph. Then u 1 |u 2 is a 2-cell of Sq(X) if, and only if, u 1 belongs to X and u 1 u 2 is the source of a 2-cell of X.

From the analysis conducted in §2.6.3, the critical branchings of X are of the form

u 1 G G 2 2 v 2 G G w 2 G G h h u 3 G G α i β Õ %
where α and β are 2-cells of X, and u 1 v 2 , w 2 and u 3 are reduced non-identity 1-cells of X, with u 1 in X. Putting u 2 = v 2 w 2 induces a bijection between the 3-cells u 1 |u 2 |u 3 of Sq(X) and the critical branchings of X whose source is u 1 u 2 u 3 .

For n 3, define the critical n-branchings of X as the non-ordered families (a 1 , . . . , a n ) of rewriting steps of X with the same source, overlapping in a nontrivial and minimal way. Conducting a similar analysis as in §2.6.3 shows that the critical 3-branchings of X fall in one of the two cases

u 1 G G 2 2 v 2 G G w 2 G G f f x 2 G G ( ( u 3 G G u 4 G G α i β Õ % γ i or u 1 G G ( ( v 2 G G w 2 G G f f v 3 G G w 3 G G $ $ u 4 G G α i β Õ % γ i
where α, β and γ are 2-cells of X, and u 1 v 2 , w 2 , u 3 and u 4 (in the left-hand situation) or u 1 v 2 , w 2 , v 3 w 3 and u 4 (in the right-hand situation) are reduced non-identity 1-cells of X * , with u 1 in X. Putting u 2 = v 2 w 2 x 2 , in the left-hand case, or u 2 = v 2 w 2 and u 3 = v 3 w 3 , in the right-hand case, induces a bijection between the 4-cells u 1 |u 2 |u 3 |u 4 of Sq(X) and the critical 3-branchings of X. This observation generalises to establish a bijection between the (n + 1)-cells of Sq(X) and the critical n-branchings of X.

Theorem (Squier's polygraphic resolution). Assume that X is a convergent presentation of a category C.

There exists a unique structure of (∞, 1)-polygraph on Sq(X), and unique unital section ι and right ι-contraction σ of Sq(X), that satisfy ι u = u for every 1-cell u of X * , and, for every n-cell u 1 | • • • |u n of Sq(X), with n 1, and every reduced 1-cell u n+1 of X * ,

σ (u 1 |•••|u n )u n+1 = u 1 | • • • |u n+1 if u 1 | • • • |u n+1 ∈ Sq n+1 (X), 1 (u 1 |•••|u n )u n+1 if u n u n+1 is reduced. (4.2)
As a consequence, with this structure of (∞, 1)-polygraph, Sq(X) is a polygraphic resolution of C.

Proof. If (4.2) is satisfied, then the source and target maps of Sq(X) are imposed by the first case, and the definition of an ι-contraction. Indeed, writing

u = u 1 | • • • |u n-1 , we must have s(u 1 | • • • |u n ) = s(σ uu n ) = uu n 1 σ t 1 (u)u n 2 • • • n-1 σ t n-1 (u)u n and t(u 1 | • • • |u n ) = t(σ uu n ) = u 1 u 2 if n = 2, σ s(u)u n otherwise.
Then one proves, using the definition of the source and target of an ι-contraction, that these source and target maps satisfy the globular relations. Next, according to Lemma 4.2.5, it is necessary and sufficient to define σ on the ι-essential and σ-essential cells of Sq(X) .

The ι-essential 1-cells are the u 1 u 2 , where

u 1 is a 1-cell of X, u 2 is a reduced 1-cell of X * , and u 1 u 2 is not reduced. If u 1 |u 2 is a 2-cell of Sq(X), then (4.2) imposes σ u 1 u 2 = u 1 |u 2 .
Otherwise, there exists a proper factorisation u 2 = v 2 w 2 such that u 1 |v 2 is a 2-cell of Sq(X), and (4.2) reads σ (u 1 |v 2 )w 2 = 1 (u 1 |v 2 )w 2 . This last equality imposes that the source and target of σ (u 1 |v 2 )w 2 must be equal, giving the value of σ on u 1 u 2 :

σ u 1 u 2 = t(σ (u 1 |v 2 )w 2 ) = s(σ (u 1 |v 2 )w 2 ) = (u 1 |v 2 )w 2 1 σ u 1 v 2 w 2 . Now, fix n 2. The σ-essential n-cells of Sq(X) are the uu n+1 , where u = u 1 | • • • |u n is an n-cell of Sq(X)
, and u n+1 is a reduced 1-cell of X * . We distinguish three cases. First, if u|u n+1 is an (n + 1)-cell of Sq(X), then (4.2) imposes σ uu n+1 = u|u n+1 . Second, if u n u n+1 is reduced, then (4.2) gives σ uu n+1 = 1 uu n+1 . Otherwise, there exists a proper factorisation u n+1 = v n+1 w n+1 such that u|v n+1 is an (n + 1)-cell of Sq(X). In that case, (4.2) implies that the source and the target of σ (u|v n+1 )w n+1 are equal. On the one hand, we have

s(σ (u|v n+1 )w n+1 ) = (u|v n+1 )w n+1 1 σ t 1 (u|v n+1 )w n+1 2 • • • n σ t n (u|v n+1 )w n+1 .
And, on the other hand, we obtain

t(σ (u|v n+1 )w n+1 ) = σ s(u|v n+1 )w n+1 = σ s(σ uv n+1 )w n+1 = σ uu n+1 1 σ t 1 (u)v n+1 w n+1 2 ••• n σ tn(u)v n+1 w n+1 .
Using the compatibility of σ with the compositions 1 , . . . , n , we develop the latter expression, by induction on n, to obtain a composite (n + 1)-cell containing σ uu n+1 , σ σ tn(u)v n+1 w n+1 , and lower dimensional invertible cells. Thus, we obtain a relation between two composite (n + 1)-cells that defines σ uu n+1 in terms of the other involved cells.

Finally, we apply Theorem 4.2.6 to conclude that Sq(X) is a polygraphic resolution of C.

Interpretation in the reduced case.

Assume that X is a reduced convergent 2-polygraph, and let us examine the first dimensions of Sq(X). The 2-cells x|u of Sq(X), for x a 1-cell of X and u a reduced 1-cell of X * such that xu is not reduced, have the shape

xu x|u =⇒ xu.
The ι-contraction σ is given, on a 1-cell xu of X * , with x ∈ X 1 and u reduced, by

σ xu =      x|u if x|u ∈ Sq 2 (X), 1 xu if xu is reduced, (x|v)w 1 σ xvw if u = vw with x|v ∈ Sq 2 (X).
On more general 1-cells, σ is defined by the fact that it is a right ι-contraction:

σ uv = uσ v 1 σ u v .
By construction, the 3-cells of Sq(X) have the shape

xuv σ xuv # C xuv (x|u)v A a σ xuv B b xuv x|u|v Õ %
The ι-contraction σ is defined, on the 2-cells (x|u)v by (4.2). The simple cases are σ (x|u)v = x|u|v, if the latter belongs to Sq(X), and σ (x|u)v = 1 (x|u)v if uv is reduced. The more complicated case is the definition of σ (x|u)vw when x|u|v belongs to Sq(X). In this situation, the relation

σ (x|u|v)w = 1 (x|u|v)w implies s(σ (x|u|v)w ) = t(σ (x|u|v)w ), which develops into xuvw σ xuv w 4 T (x|u|v)w Õ % xuvw σ xuvw Ñ ! σ σ xuv w Õ % xuvw (x|u)vw d σ xuv w H h σ xuvw @ ` xuvw = xuvw σ xuv w 4 T σ xuvw & F σ (x|u)vw Õ % xuvw σ xuvw Ñ ! σ σ xuv w Õ % xuvw (x|u)vw d σ xuvw @ ` xuvw
Finally, the 4-cells of Sq(X) have the same shape as this last defining equation, but in the case where vw is not reduced and with all proper left-factors reduced:

xuvw σ xuv w 4 T (x|u|v)w Õ % xuvw σ xuvw Ñ ! σ σ xuv w Õ % xuvw (x|u)vw d σ xuv w H h σ xuvw @ ` xuvw x|u|v|w 1 c xuvw σ xuv w 4 T σ xuvw & F σ (x|u)vw Õ % xuvw σ xuvw Ñ ! σ σ xuv w Õ % xuvw (x|u)vw d σ xuvw @ ` xuvw 4.4. A 4.4.
1. Free natural systems. Let C be a category and X be a family of 1-cells of C. We denote by F C [X] the free natural system on C generated by X, given by

F C [X] = x∈X Ct(C)(x, -).
Fix an (∞, 1)-polygraph X presenting C. We consider:

(i) The free natural system F C [X 0 ] generated by the 1-cells 1 

x , for x ∈ X 0 . If a is a 1-cell of C, then F C [X 0 ] a is
-cell x of X to the element [x] of F C [X 1 ] x is extended into a derivation of X * 1 into F C [X 1 ] by putting [1 u ] = 0 and [uv] = [u]v + u[v].
Here, the natural system F C [X 1 ] on C is seen as a natural system on X * 1 by composition with the canonical projection X * 1 X. Then, for n > 1, the mapping of every n-cell x of X to the element

[x] of F C [X n ] x is extended to associate to every n-cell a of X the element [a] of F C [X n ] a ,
defined by induction on the size of a as follows:

[1 a ] = 0 [a -] = -[a] [a k b] = [a]b + a[b] if k = 0, [a] + [b] otherwise.
4.4.2. Abelianisation of (∞, 1)-polygraphs. Let X be an (∞, 1)-polygraph. We denote by

F X [X] the complex 0 Z o o F X [X 0 ] ε o o • • • δ 1 o o F X [X n-1 ] o o F X [X n ] δ n o o • • • o o
of natural systems on X, whose boundary maps are defined as follows. The augmentation morphism ε is defined, on every pair (a, b) of composable 1-cells of X, by

ε(a, b) = 1.
For n 1, the morphism δ n of natural systems on X is given, on the generator [x] corresponding to an n-cell x of X, by:

δ n [x] = (x, 1) -(1, x) if n = 1, [s(x)] -[t(x)] otherwise.
By induction on the size of cells of X , we prove, for every n-cell a in X , with n 1, that

δ n [a] = (a, 1) -(1, a) if n = 1, [s(a)] -[t(a)] otherwise.
As a consequence, we have εδ 1 = 0 and δ n δ n+1 = 0, for every n 1, proving that F X [X] is indeed a chain complex.

Theorem.

If X is a polygraphic resolution of a category C, then F C [X] is a free resolution of the constant natural system Z on C.

Proof. Let ι be a unital section of X. We write a for the image of a 1-cell a of C through ι. By Theorem 4.2.6, X admits a right ι-contraction σ. We denote by σ n , for every integer n -1, the following families of morphisms of groups, indexed by a 1-cell a of C:

Z σ -1 -→ F C [X 0 ] a 1 -→ (a, 1) F C [X 0 ] a σ 0 -→ F C [X 1 ] a (b, c) -→ b[ c] F C [X n ] a σ n -→ F C [X n+1 ] a b[x]c -→ b[σ x c ]
First, by induction on the size of the n-cells of X , using the properties of a right ι-contraction, we prove that

σ n (b[a]c) = b[σ a c ]
holds for every n 1, every n-cell a of X , and all 1-cells b and c of C such that bac exists. Then, it is straightforward to check that (σ n ) n 1 is a contracting homotopy for F C [X].

Homological syzygies.

Fix an (∞, 1)-polygraph X. For every n 1, the kernel of the differential δ n is denoted by h n (X), and its elements are called the homological n-syzygies of X.

As a consequence of Theorems 4.3.3 and 4.4.3, we obtain 4.4.5. Proposition. Let C be a category, and X be a convergent presentation of C. Then, for every n 2, the natural system h n (X) of homological n-syzygies of X is generated by the elements

δ n [u 1 | • • • |u n ] = [u 1 | • • • |u n-1 ]u n + [σ t(u 1 |•••|u n-1 )u n ] -[σ s(u 1 |•••|u n-1 )u n ],
where u 1 | • • • |u n ranges over the n-cells of Sq(X), and σ is the right ι-contraction associated to Sq(X).

Homological syzygies generalise identities among relations in all dimensions, in the following sense: 4.4.6. Theorem. For every 2-polygraph X, the natural systems of homological 2-syzygies and of identities among relations of X are isomorphic.

Proof. First, we prove that, for every closed 2-cell f of X , we have [f] = 0 in F X [X 2 ] if, and only if, f = 0 holds in Π(X), see [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]Lemma 5.6.3]. Next, we check that, for every element a in h 2 (X), there exists a closed 2-cell a in X such that a = [ a] holds, see [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF]Lemma 5.6.4]. Finally, we put

Φ f = [f] and Ψ(a) = a ,
and we check that Φ : Π(X) → h 2 (X) and Ψ : h 2 (X) → Π(X) are well-defined morphisms of natural systems over X, that are inverse of one another, see [ 

0 M o o P 0 o o • • • o o P n-1 o o P n o o • • • o o
By general homological arguments, we obtain the following characterisation of the property FP n : 4.5.4. Lemma. Let C be a category, M be a C-module, and fix n ∈ N. The following assertions are equivalent:

(i) M is of homological type FP n , (ii) M admits a partial resolution of length n by finitely generated free C-modules, (iii) M is finitely generated and, for every natural number k < n and every projective, finitely generated partial resolution of M of length k

0 M o o P 0 o o • • • o o P k-1 o o P k , d k o o
the C-module ker d k is finitely generated.

Categories of finite homological type.

The property for a category C to be of homological type FP n is defined according to a category of modules over one of the categories in the following diagram

C o D D q 1 5 5 Ct(C) ∂ G G G G C o × C p 1 P P P P p 2 E E E E C C I I q 2
ẁhere ∂ is the boundary map, p 1 and p 2 are the projections of the cartesian product, C is the enveloping groupoid of C, and q 1 and q 2 are the canonical inclusion morphisms. A category C is of homological type

(i) FP n if the constant natural system Z is of type FP n , (ii) bi-FP n if the C o × C-module ZC is of type FP n , (iii) left-FP n if the constant C-module Z is of type FP n , (iv) right-FP n if the constant C o -module Z is of type FP n , (v) top-FP n if the constant C -module Z is of type FP n .
Using the fact that the property FP n is preserved by left Kan extensions [99, Lemma 5.1.4], these finiteness homological properties of categories are related by the following implications [99, Proposition 5.2.4]:

right-FP n % E FP n 7 W bi-FP n B b 2 R top-FP n . left-FP n I i
If C is a groupoid, all of these implications are equivalences [99, Proposition 5.2.6], but it is not the case in general. Indeed, Cohen constructed in [START_REF] Daniel | A monoid which is right FP ∞ but not left FP 1[END_REF] a right-FP ∞ monoid which is not left-FP 1 : thus, top-FP n , left-FP n and right-FP n are not equivalent in general. Moreover, monoids with a finite convergent presentation are left-FP ∞ and right-FP ∞ , see [START_REF] Anick | On the Homology of Associative Algebras[END_REF][START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF][START_REF] Kobayashi | Complete rewriting systems and homology of monoid algebras[END_REF], but there exists a finitely presented monoid that is left-FP ∞ and right-FP ∞ , but does not satisfy the homological finiteness condition FHT introduced by Pride and Wang [START_REF] Kobayashi | On homotopical and homological finiteness conditions for finitely presented monoids[END_REF]; since the properties FHT and bi-FP 3 are equivalent [START_REF] Kobayashi | For finitely presented monoids the homological finiteness conditions FHT and bi-FP 3 coincide[END_REF], it follows that left-FP n and right-FP n do not imply bi-FP n in general. We conjecture that bi-FP n does not imply FP n either.

As a consequence of Theorems 4.3.3 and 4.4.3, we obtain the following implication. It generalises [57, Theorem 3.2] and [133, Theorem 3], see also [START_REF] Stephen | Low-dimensional homotopy theory for monoids[END_REF], stating that, if a monoid is of finite derivation type, then it is FP 3 . It also generalises Squier's homological theorem [START_REF] Craig | Word problems and a homological finiteness condition for monoids[END_REF]Theorem 4.1], that says that a monoid admitting a finite convergent presentation is FP 3 .

Theorem. Let C be a category. For every

n ∈ N, if C is FDT n , then it is FP n . In particular, if C admits a finite convergent presentation, then it is FP ∞ .
Finally, Theorems 3.6.6 and 4.4.6, and Lemma 4.5.4 give the following equivalences: 4.5.7. Theorem. Let C be a category, and X be a finite presentation of C. The following assertions are equivalent: 

(i) C is FP 3 . (ii) C is FDT ab . (iii) h 2 (X) is finitely generated. (iv) Π(X)
0 Z o o F M [ * ] ε o o F M [X 1 ] δ 1 o o F M [X 2 ] δ 2 o o 0 o o Hence ker δ 2 = 0, so that ker δ 1 F M [X 2 ].
So ker δ 1 is not finitely generated, and Lemma 4.5.4 concludes that M is not FP 2 . For n-cells, n 2, we prove, by induction on n, that the source and target of n-cells are composites of the (n -1)-cells

d i (a 1 | • • • |a n ) =      a 1 (a 2 | • • • |a n ) if i = 0, a 1 | • • • |a i a i+1 | • • • |a n if 1 i n -1, (a 1 | • • • |a n-1 ) a n if i = n.
with k-cells, for 1 < k < n -1. More precisely, the source of

a 1 | • • • |a n contains one copy of each d i (a 1 | • • • |a n )
for n -i even, and its target, one copy of each

d i (a 1 | • • • |a n ) for n -i odd.
Theorem 4.4.3 applied to Std(C) gives a free resolution

0 Z o o F C [C 0 ] ε o o • • • o o F C [Std n-1 (C)] o o F C [Std n (C)] δ n o o • • • o o with differential δ n [a 1 | • • • |a n ] = n i=0 (-1) n-i [d i (a 1 | • • • |a n )]. Note that, by construction, [d 0 (a 1 | • • • |a n )] = [ a 1 (a 2 | • • • |a n )] = a 1 [a 2 | • • • |a n ] and, symmet- rically, [d n (a 1 | • • • |a n )] = [a 1 | • • • |a n-1 ]a n .

The associative polygraphic resolution.

Consider the monoid A from Example 2.6.6, with one non-trivial element a and product a 2 = a, presented by

As 2 = (a 0 | a 1 : a 0 → a 0 | a 2 : a 1 a 1 ⇒ a 1 ) .
This 2-polygraph is reduced and convergent, with one critical n-branching for every n 2. Thus, the reduced standard polygraphic resolution As ∞ = Sq(As 2 ) of A, given by Theorem 4.3.3, has one n-cell a n for each n 0, corresponding to the product a| • • • |a of n copies of a. Hence A is FDT ∞ . The 3-cell a 3 of As ∞ , as already seen in Example 2.6.6, is, given in classical notation and in string diagrams respectively,

a 2 a 1 1 a 2 a 3 7 W a 1 a 2 1 a 2 7 W . The 4-cell a 4 of As ∞ is 7 W 3 E e 7 W ) I S s ! A 7 W a 1 c 7 W ! A 3 E e ) I = 7 W S s 7 W a
which, contracting by one dimension, can also be pictured as Mac Lane's pentagon, or Stasheff's polytope K 4 :

7 W 8 H h 3 S F f 1
Finally, the 5-cell a 5 of As ∞ has the shape of Stasheff's polytope K 5 , its source being

( H 7 W 7 W = Õ % G g G g 7 W 7 W Õ % = Õ % i G g 7 W 7 W 7 W
and its target being given by a symmetric composite 4-cell, see [99, §6.1]. Theorem 4.4.3, applied to As ∞ , yields a resolution

0 Z o o F A [ * ] ε o o F A [ ] δ 1 o o F A [ ] δ 2 o o F A [ ] δ 3 o o F A [ ] δ 4 o o • • • o o
of Z by free natural systems on A. Hence, A is FP ∞ . Computing this differential on each n-cell of As ∞ gives generators of the natural systems of homological n-syzygies of As ∞ . For example, h 2 (As) is generated by

δ 3 [ ] = - = a -a ,
while h 3 (As) is generated by

δ 4 [ ] = + + - - = a [ ] -[ ] + [ ] a.
Similarly, h 4 (As) is generated by δ 5 [a 5 ], which is equal, by definition, to

+ + - - - ,
and reduces to

δ 5 [a 5 ] = [ ] a -a [ ] . 
4.6.4. The category Epi. We denote by Epi the subcategory of the simplicial category whose objects are the natural numbers and whose morphisms from m to n are the monotone surjections from {0, . . . , m} to {0, . . . , n}. This category, studied in [START_REF] Livernet | An interpretation of E n -homology as functor homology[END_REF] where it is written ∆ epi , admits a presentation by the 2-polygraph X with the natural numbers as 0-cells, with one 1-cell x n i : n + 1 → n for all natural numbers 1 i n, and one 2-cell

n + 1 x n j 3 3 x n i,j Õ % n + 2 x n+1 i Q Q x n+1 j+1 C C n n + 1 x n i a a
for all natural numbers 0 i j n + 1. The 1-cell x n i represents the map

x n i (j) = j if j i, j -1 if j > i.
Thereafter, we drop the exponents of the 1-cells and 2-cells of X, simply writing x i and x i,j .

The 2-polygraph X is convergent. Indeed, for termination, given a 1-cell u = x i 1 . . . x i k of X * , we define the natural number ν(u) as the number of pairs (i p , i q ) such that i p i q , with 1 p < q k. In particular, we have ν(x i x j ) = 1 and ν(x j+1 x i ) = 0 when i j, giving ν(s(x i,j )) > ν(t(x i,j )). Moreover, we have ν(wuw ) > ν(wvw ) when ν(u) > ν(v) holds. Thus, for every non-identity 2-cell a : u ⇒ v of X * , the strict inequality ν(u) > ν(v) is satisfied, giving termination. Moreover, the 2-polygraph X has one critical branching (x i,j x k , x i x j,k ) for all possible 0 i j k n + 2, which is confluent.

Theorem 4.3.3, applied to X, gives a polygraphic resolution Sq(X) of Epi, whose 3-cells are given, in classical notation and in string diagrams (with x i = i and x i,j = i,j ) respectively, by

x j+1 x i x k x j+1 x i,k 7 W x j+1 x k+1 x i x j+1,k+1 x i 3 x i x j x k x i,j x k F f x i x j,k 0 P x k+2 x j+1 x i x i x k+1 x j x i,k+1 x j 7 W x k+2 x i x j x k+2 x i,j x i,j,k Õ % i,j,k i,j,k 7 W i,j,k
The (∞, 1)-polygraph Sq(X) has one 4-cell x i,j,k,l for all possible 0 i j k l n + 3, given in string diagrams and omitting the subscripts, by

7 W 7 W 1 6 B b 2 R 7 W 7 W X x
Then, Theorem 4.4.3 gives, in particular, generators for the natural systems of homological n-syzygies of X. For example, h 2 (X) is generated by the elements

δ 3 i,j,k = i,j,k - i,j,k =        [ i,j ]x k -x k+2 [ i,j ] + x j+1 [ i,k ] -[ i,k+1 ]x j + [ j+1,k+1 ]x i -x i [ j,k ] . C 5 C A
In this chapter, we use the following notation: if X is a (3, 1)-polygraph, we denote by X the (2, 1)-category presented by X, i.e. the quotient X 2 /X 3 , while X still denotes the 1-category presented by X, i.e. the quotient X * 1 /X 2 . If S is a set, and s and t are elements of S, we denote by st n the element of S * defined by st 0 = 1 and st n+1 = s ts n .

I

Context.

A Coxeter group is a group W that admits a presentation by a finite set S of generators, submitted to the relations s 2 = 1 for every s in S, and at most one braid relation st m st = ts m st for each non-ordered pair (s, t) of distinct elements of S, with m st ∈ N \ {0, 1}. A given Coxeter group may admit several generating sets that fit the given scheme, but, here, we always assume that such a set S has been fixed. Forgetting about the involutive character of the generators and keeping only the braid relations, one gets Artin's presentation of the Artin monoid B + (W). For example, if W is the group S 4 of permutations of {1, 2, 3, 4}, then S consists of the elementary transpositions r = (1 2), s = (2 3) and t = (3 4), and the associated Artin monoid is the monoid B + 4 of positive braids on four strands, with generators r, s and t satisfying the relations rsr = srs, rt = tr and sts = tst. The aim of [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] was to push further Artin's presentation and study the relations between the braid relations to obtain a coherent presentation of the Artin monoid B + (W) for every Coxeter group W.

In the case of the braid monoid B + 4 on four strands, Deligne notes in §1.3 of [67] that Artin's presentation can be extended into a coherent presentation by taking one 3-cell whose boundary consists of the graph of reduced expressions of the element of maximal length of S 4 . Such a graph can be considered for any element w of W: the vertices are the reduced expressions of w, and two such expressions are linked by an edge if one is obtained from the other by the application of a braid relation. Tits proved that the fundamental group of the graph of reduced expressions of w is generated by two types of loops in the graph, the most interesting ones being associated to finite parabolic subgroups of rank 3 of W, see [START_REF] Tits | A local approach to buildings, The geometric vein[END_REF]Proposition 4] or [START_REF] Ronan | Lectures on buildings[END_REF]Theorem 2.17]. Actually, for the purpose of finding a coherent presentation of B + (W), the generators of the first type are degenerate, and part of the generators of the second type are superfluous.

The main motivation of Deligne in [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF] was to study a weak form of action of Artin monoids on categories. Given a monoid M and a category C, a strict action of M of C would be specified by an endofunctor F(x) of C for every element of M, such that the relations F(x)F(y) = F(xy) and F(1) = 1 C hold. To define a weak action of M on C, in Deligne's sense, one would replace these last equalities by natural isomorphisms, that themselves satisfy coherence relations. In the case where M is an Artin monoid B + (W), Deligne proved that this definition of action of B + (W) can be reformulated in a more compact way, using only an endofunctor F(w) for each w of W and not of B + (W), see [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF]Theorem 1.5]. The description of this alternative definition is based on an alternative presentation of Artin monoids, that we call Garside's presentation here, because it originates in Garside's study of the normal forms of braids in [START_REF] Garside | The braid group and other groups[END_REF].

Summary.

The relationship between coherent presentations and Deligne's weak actions is explained in §5.2, using the homotopical setting of the canonical model structure on 2-categories given by Lack in [START_REF] Lack | A Quillen model structure for 2-categories[END_REF][START_REF] Lack | A Quillen model structure for bicategories[END_REF]. First, we establish the following equivalence between coherent presentations of categories and some of their cofibrant approximations: Theorem 5.2.3. Let C be a category, and X be a (3, 1)-polygraph that presents C. Then X is a coherent presentation of C if, and only if, the (2, 1)-category X presented by X is a cofibrant approximation of C.

Then, we study the category 2Cat ps (C, D) of pseudofunctors from a 2-category C into a 2category D: pseudofunctors are a weakened version of 2-functors, that generalise actions of monoids on categories, in the sense that a weak action of M on a category is a pseudofunctor from M into Cat. In representation theory, pseudofunctors have been studied under the name of 2-representations by Elgueta for 2-groups in [START_REF] Elgueta | Representation theory of 2-groups on Kapranov and Voevodsky's 2-vector spaces[END_REF], and Ganter and Kapranov in [START_REF] Ganter | Representation and character theory in 2-categories[END_REF] for groups, while Rouquier considered in [START_REF] Rouquier | 2-Kac-Moody algebras[END_REF] the more general case of 2-representations of bicategories; in these examples, D is usually the 2-category of 2-vector spaces, either from Kapranov and Voevodsky [START_REF] Kapranov | 2-categories and Zamolodchikov tetrahedra equations, Algebraic groups and their generalizations: quantum and infinite-dimensional methods[END_REF] or from Baez and Crans [START_REF] Baez | Higher-dimensional algebra. VI. Lie 2-algebras[END_REF], or of 2-Hilbert spaces [START_REF] Baez | Higher-dimensional algebra. II. 2-Hilbert spaces[END_REF], while Deligne takes the 2-category of categories in [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF]. The main result of the section establishes that, for every coherent presentation X of a category C, the pseudofunctors from C to D are the same as the 2-functors from the (2, 1)-category X presented by X into D: Theorem 5.2.8. Let C be a category, and X be a (3, 1)-polygraph that presents C. Then X is a coherent presentation of C if, and only if, for every 2-category D, there is an equivalence of categories 2Cat ps (C, D) ≈ 2Cat( X, D) that is natural in D.

As a consequence, Deligne's Theorem 1.5 of [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF] is another way of saying that a specific (3, 1)-polygraph, denoted by Gar 3 (W) in what follows, is a coherent presentation of B + (W) for every finite Coxeter group W.

Next, §5.3 explores a theoretical setting for transformations of (3, 1)-polygraphs that do not change their homotopy type: two (3, 1)-polygraphs are called Tietze-equivalent if they present isomorphic categories and equivalent (2, 1)-categories, so that, in particular, two coherent presentations of the same category are Tietze-equivalent. We generalise to (3, 1)-polygraphs the elementary operations called Tietze transformations, after the ones originally defined by Tietze for presentations of groups [START_REF] Tietze | Über die topologischen Invarianten mehrdimensionaler Mannigfaltigkeiten[END_REF][START_REF] Lyndon | Combinatorial group theory, Classics in Mathematics[END_REF]: in our case, they correspond to the simultaneous adjunction or elimination of an n-cell and of an (n + 1)-cell, such as a redundant generator and a relation that defines it in terms of the other generators. The main property of Tietze transformations is given by Theorem 5.3.3. Two (3, 1)-polygraphs X and Y are Tietze-equivalent if, and only if, there exists a Tietze transformation between them.

As a consequence, if X is a coherent presentation of a category C, and Y obtained from X by a sequence of Tietze transformations, then Y is also a coherent presentation of C.

Tietze transformations are used in §5.4 to develop a procedure called homotopical completionreduction, whose aim is to compute a small coherent presentation from a terminating presentation. First, homotopical completion is a composition of Knuth-Bendix's completion and of Squier's completion, that extends a terminating presentation into a coherent presentation by application of a sequence of Tietze transformations; in fact, both completions can be interleaved to optimise computation [78, §2.2.4]. Then, homotopical reduction is based on the notion of collapsible part of a (3, 1)-polygraph X, named in analogy with Brown's work [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF]: this is a subset of the cells of X that can be collapsed in such a way that the result is Tietze-equivalent to X. We obtain Theorem 5.4.4. Assume that X is a terminating presentation of a category C. Then, every homotopical completion-reduction of X is a coherent presentation of C.

In concrete examples, when X is obtained by homotopical completion, the study of the critical 3-branchings of X usually produces a collapsible part that allows to eliminate 3-cells while preserving Tietze equivalence. Apart from the applications to Artin monoids, developed in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] and presented in this chapter, the homotopical completion-reduction procedure has been applied to other examples, such as Artin monoids with other generating sets, or the plactic and Chinese monoids with various generating sets, in [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF] and [START_REF] Hage | Knuth's coherent presentations of plactic monoids of type A[END_REF].

The homotopical completion-reduction procedure is used in §5.5 to obtain a coherent presentation of the Artin monoid B + (W) for every Coxeter group W. The starting presentation is called Garside's presentation of B + (W), as given in [67, §1.4.5] in the spherical case, i.e. when W is finite, and in [163, Proposition 1.1] in general. Its generators are the elements of W + = W \ {1}, and it has one 2-cell α u,v : u|v ⇒ uv for all u and v in W + such that l(uv) = l(u) + l(v) holds, where the notation •|• stands for the product in the free monoid over W + , and l(u) is the length of u in W. Garside's presentation is terminating but not confluent, and homotopical completion yields a coherent presentation of B + (W); the construction relies on specific arithmetic properties of Artin monoids, first observed by Garside for braid monoids in [START_REF] Garside | The braid group and other groups[END_REF], generalised by Brieskorn and Saito in [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] and Deligne in [START_REF] Deligne | Les immeubles des groupes de tresses généralisés[END_REF], and summarised in [START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF]. Among the cells of this first coherent presentation of B + (W), we identify a collapsible part and obtain, after homotopical reduction, Garside's coherent presentation of B + (W): 

A u,v,w Õ % u|v|w α u,v |w C c u|α v,w 1 Q uvw u|vw α u,vw V v
for all u, v and w of W + such that l(uvw) = l(u) + l(v) + l(w). Then Gar 3 (W) is a coherent presentation of B + (W).

We note that Gar 3 (W) is the same coherent presentation that corresponds to Deligne's Theorem 1.5 of [START_REF] Deligne | Action du groupe des tresses sur une catégorie[END_REF], through the equivalence of Theorem 5.2.8. This implies that Deligne's result, only proved for W finite, is in fact true in general. In §3.3 of [78], Deligne's result is also extended in another direction, from spherical Artin monoids to the more general Garside monoids, introduced by Dehornoy and Paris to axiomatise the arithmetic properties of the formers [START_REF] Dehornoy | Gaussian groups and Garside groups, two generalisations of Artin groups[END_REF][START_REF] Dehornoy | Groupes de Garside[END_REF]. We conjecture that these two disjoint extensions of Theorem 5.5.5 can be unified again, in the even more general setting of monoids with a Garside family [START_REF] Dehornoy | Foundations of Garside theory[END_REF]. Finally, in §5.6, we homotopically reduce Garside's coherent presentation Gar 3 (W) into the smaller coherent presentation Art 3 (W) associated with Artin's presentation of the monoid B + (W). After a new collapsing, assuming that the set S of generators of W is totally ordered, the set of 3-cells of Gar 3 (W) boils down to one 3-cell Z r,s,t for all elements t > s > r of S such that the subgroup of W they span is finite: Theorem 5.6.4. Fix a Coxeter group W, with a totally ordered set of generators S. The Artin monoid B + (W) admits, as a coherent presentation, the (3, 1)-polygraph Art 3 (W) made of Artin's presentation Art 2 (W), extended with one 3-cell Z r,s,t for all elements t > s > r of S such that the subgroup W {r,s,t} is finite, and whose shape depends only on the Coxeter type of W {r,s,t} .

The precise shapes of these 3-cells, called the Tits-Zamolodchikov 3-cells in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], are given at the end of the section: the classification of finite Coxeter groups of rank 3 implies that there are exactly five cases, corresponding to specific lengths of the braid relations. Theorem 5.6.4 improves Tits' Proposition 4 of [START_REF] Tits | A local approach to buildings, The geometric vein[END_REF], reducing the set of generators of the fundamental group of the graph of reduced expressions of w in W to the cells Z r,s,t . Moreover, as a byproduct, to determine the action of an Artin monoid on a category, it suffices to attach to any generating 1-cell s ∈ S an endofunctor T (s) and to any generating 2-cell a natural isomorphism, such that these satisfy coherence relations given by the Tits-Zamolodchikov 3-cells. 

H

-composable pair (a, b) of 1-cells of C, (ii) an invertible 2-cell F x : 1 F(x) ⇒ F(1 x ) of D,
for every 0-cell x of C, that satisfy classical monoidal coherence relations. The latter imply that, for every sequence (a 1 , . . . , a n ) of 0-composable 1-cells in C, there exists a unique invertible 2-cell F a 1 ,...,a n :

F(a 1 ) • • • F(a n ) ⇒ F(a 1 • • • a n )
in D, built from the coherence isomorphisms of F. A 2-functor is just a pseudofunctor whose coherence 2-cells are identities. Morphisms of pseudofunctors from C to D are pseudonatural transformations, giving rise to a category 2Cat ps (C, D). Its full subcategory whose objects are the strict 2-functors is written 2Cat(C, D).

5.2.2.

The canonical model structure on 2Cat. We recall elements of the model structure for 2-categories established in [START_REF] Lack | A Quillen model structure for 2-categories[END_REF][START_REF] Lack | A Quillen model structure for bicategories[END_REF]. Let C and D be 2-categories. A 2-functor F : C → D is a weak equivalence if it satisfies the following two conditions:

(i) every 0-cell y of D is equivalent to some 0-cell F(x), for x in C;

(ii) for all 0-cells x and x in C, the induced functor F : C(x, x ) → D(F(x), F(x )) is an equivalence of categories. Thus, F : C → D is a weak equivalence if, and only if, there exists a pseudofunctor G : D → C that is a quasi-inverse for F, i.e. such that GF 1 C and FG 1 D . In particular, an equivalence of 2-categories is a weak equivalence. We say that C is cofibrant if it is 1-free (its underlying 1-category is free), and that D is a cofibrant approximation of C if D is cofibrant and if there exists a weak equivalence D → C.

Coherent presentations of categories are closely related to their cofibrant approximations in 2Cat:

Theorem ([78, Theorem 1.3.1]).

Let C be a category, and X be a (3, 1)-polygraph that presents C. The following assertions are equivalent:

(i) X is a coherent presentation of C. (ii) X is a cofibrant approximation of C.

The standard cofibrant approximation.

For any 2-category C, we denote by C the cofibrant 2-category with the same 0-cells as C and the following higher cells: (i) the 1-cells of C are freely generated by the ones of C, with a in C written a when seen as a generator of C;

(ii) the 2-cells from a 1 • • • a m to b 1 • • • b n in C are the 2-cells from a 1 • • • a m to b 1 • • • b n
in C, with the same compositions as in C.

The canonical projection C

C is the identity on 0-cells and maps each generating 1-cell a to a, and each 2-cell to itself: this is a weak equivalence, whose quasi-inverse lifts a 2-cell f : a ⇒ b to its distinguished representative f : a ⇒ b. Hence, the 2-category C is a cofibrant approximation of C, called the standard cofibrant approximation of C.

When C is a category, the 2-category C is the 2-category presented by the standard coherent presentation of C given in §3.3.3. Moreover, a 2-functor from C to a 2-category D is the same as a pseudofunctor from C to D, yielding an isomorphism 2Cat ps (C, D) 2Cat( C, D).

Proposition. Let C be a cofibrant 2-category. For every 2-category D, the canonical inclusion 2Cat(C, D) → 2Cat ps (C, D) is an equivalence of categories that is natural in D.

Proof. A quasi-inverse of the canonical inclusion is given by the strictification functor • : 2Cat ps (C, D) → 2Cat(C, D) whose construction is summarised as follows. We refer to [78, §5.2] for the details. We fix a pseudofunctor F : C → D, and define a 2-functor F : C → D. On 0-cells, F takes the same values as F. Since C is cofibrant, its underlying 1-category is free: on generating 1-cells, F is equal to F and, then, it is extended by functoriality on every 1-cell. From the monoidal coherence relations satisfied by F, there is a unique invertible 2-cell F a : F(a) ⇒ F(a), built from the coherence 2-cells of F, for every 1-cell a of C.

If f : a ⇒ b is a 2-cell of C, we put F(f) = F a 1 F(b) 1 F - b .
Let F, G : C → D be pseudofunctors, and α : F ⇒ G be a pseudonatural transformation. Let us define a pseudonatural transformation α : F ⇒ G. For a 0-cell x of C, we take α x = α x . If a : x → y is a 1-cell of C, we define α a as the following invertible 2-cell of D:

α a = F(y) α y ( ( F(x) F(a) D D F(a) g g F a α x 9 9 
G(y) G(x) G(a) U U G(a) y y G - a α a
To conclude the proof, it is sufficient to check that, for every pseudofunctor F : C → D, there exists a pseudonatural isomorphism ϕ F : F ⇒ F that is itself natural in F. We define ϕ F as follows:

(i) If x is a 0-cell of C, then F(x) = F(x) and we take (ϕ F ) x = 1 x .

(ii) If a : x → y is a 1-cell of C, then we put (ϕ F ) a = F a . These data satisfy the required coherence properties, and the naturality condition follows from the definition of α. Conversely, assume that, for every 2-category E, we have an equivalence of categories 2Cat ps (C, E) ≈ 2Cat ps (D, E) natural in E. This equivalence consists of two functors

Φ E : 2Cat ps (C, E) → 2Cat ps (D, E)
and

Ψ E : 2Cat ps (D, E) → 2Cat ps (C, E),
and, for all pseudofunctors H : C → E and K : D → E, two pseudonatural isomorphisms

Ψ E Φ E (H) H and Φ E Ψ E (K) K,
such that, for all 2-categories E and E and every pseudofunctor H : E → E :

2Cat ps (C, E) Φ E G G 2Cat ps (C, H) = 2Cat ps (D, E) 2Cat ps (D, H) Ψ E G G = 2Cat ps (C, E) 2Cat ps (C, H) 2Cat ps (C, E ) Φ E G G 2Cat ps (D, E ) Ψ E G G 2Cat ps (C, E ).
Define the pseudofunctors

F : C → D and G : D → C by F = Ψ D (1 D ) and G = Φ C (1 C ). The naturality condition on Φ, for E = C, E = D and H = F, implies F • Φ C (K) = Φ D (F • K) for every pseudofunctor K : C → C.
Thus, in the special case K = 1 C , we get

FG = Φ D (F) = Φ D • Ψ D (1 D ) 1 D .
In a symmetric way, the naturality condition on Ψ gives GF 1 C . 

2Cat ps (C, D) ≈ 2Cat( X, D)
that is natural in D.

T T

5.3.1. Tietze equivalence of (3, 1)-polygraphs. Two (3, 1)-polygraphs X and Y are Tietzeequivalent if (i) the 1-categories X and Y they present are isomorphic, (ii) the (2, 1)-categories X and Y they present are equivalent. As a consequence, two Tietze-equivalent (3, 1)-polygraphs have the same 0-cells, up to a bijection, and two coherent presentations of the same category are Tietze-equivalent.

Tietze transformations. Let

X be a (3, 1)-polygraph. A 2-cell (resp. 3-cell, resp. 3- sphere) x of X is collapsible if (i) the target of x is a 1-cell (resp. 2-cell, resp. 3-cell) of X, ( 
ii) the source of x satisfies Cell(s(x)) ⊆ X \ {t(x)}. An elementary Tietze transformation of X is any of the following six operations:

(i) Coherent adjunction or elimination of a 1-cell x and a collapsible 2-cell α : u ⇒ x:

• u G G • ι u G G π α o o • u 5 5 x Y Y α Õ % • (ii)
Coherent adjunction or elimination of a 2-cell α and a collapsible 3-cell A : f α of X:

• ' ' g g f Õ % • ι f G G π A o o • ' ' g g f Õ % α Õ % A 7 W • (iii)
Coherent adjunction or elimination of a 3-cell γ:

• ' ' g g Õ % Õ % A 7 W • ι A G G π (A,γ) o o • ' ' g g Õ % Õ % A 7 W γ 7 W • A set Y of 2-cells (resp. 3-cells, resp. 3-spheres) of X is collapsible if, for every x of Y, (i) the target of x is a 1-cell (resp. 2-cell, resp. 3-cell) of X, (ii) the source of x satisfies Cell(s(x)) ⊆ X \ t(Y).
The elementary Tietze transformations are generalised in a straightforward way to coherent adjunctions of eliminations of collapsible sets of cells or spheres. If X and Y are (3, 1)-polygraphs, a Tietze transformation from X to Y is a composite of generalised elementary Tietze transformations.

Theorem. Two (3, 1)-polygraphs X and Y are Tietze-equivalent if, and only if, there exists a Tietze transformation between them.

Proof. To prove that a Tietze transformation implies Tietze-equivalence, it is sufficient to check the result for each one of the six types of generalised elementary Tietze transformations on a fixed (3, 1)-polygraph X. By definition, the 3-functors π • ι are all equal to the identity of X , and the 3-functors ι • π induce isomorphisms on the presented categories, and equivalences on the presented 2-categories.

Conversely, assume that X and Y are (3, 1)-polygraphs, and that F : X → Y is an equivalence. Choose a weak inverse G : Y → X for F, and pseudonatural isomorphisms σ : GF ⇒ 1 X and τ : FG ⇒ 1 Y , in such a way that the quadruple (F, G, σ, τ) is an adjoint equivalence, which is always feasible [154, Chap. IV, § 4, Theorem 1], and means that the relations Fσ = τF and Gτ = σG hold. These data lift to obtain 3-functors F :

X → Y and G : Y → X , 3-cells GF(u ) σ u " B σ α Õ % GF(u) G F(α) C c σ u 5 U u u α R r FG(v ) τ v ! A τ β Õ % FG(v) F G(β) D d τ v 5 U v v β
i of X and Y , for every 2-cell α : u ⇒ u of X and every 2-cell β : v ⇒ v of Y, and 3-cells

FGF(x) F( σ x ) $ D τ F(x) P p F(x) λ x Õ % GFG(y) G( τ y ) % E σ G(y) P p G(y) ρ y Õ %
of Y and X , for every 1-cell x of X and every 1-cell y of Y. Then, we build a (3, 1)-polygraph Z that contains both X and Y, together with coherence cells that correspond to the Tietze equivalence. The (3, 1)-polygraph Z has the same 0-cells as X (and as Y) and it contains the 1-cells, 2-cells and 3-cells of X and Y, plus the following cells, indexed by cells of X and Y, and extended by functoriality to all cells of X and Y :

(i) Two 2-cells ϕ x : F(x) ⇒ x and ψ y : G(y) ⇒ y, for all 1-cells x of X and y of Y.

(ii) Two 3-cells ϕ α and ψ β , for all 2-cells α : u ⇒ u of X and

β : v ⇒ v of Y, F(u) F(α) 4 T F(u ) ϕ u 5 u ϕ - u F f α 9 Y ϕ α Õ % u G(v) G(β) 4 T G(v ) ψ v 5 v ψ - v F f β 9 Y ψ β Õ % v .
(iii) Two 3-cells ξ x and η y , for all 1-cells x of X and y of Y,

GF(x) σ x 8 ξ x Õ % F(x) ψ - F(x) D d ϕ x A a x FG(y) τ y 8 η y Õ % G(y) ϕ - G(y) D d ψ y @ `y.
Finally, we construct a Tietze transformation T from X to Z, step-by-step (see [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF]Theorem 2.1.3] for the details): adjunction of the cells y of Y, with all the cells ψ y ; adjunction of the coherence cells ϕ x for X, with all the cells ξ x ; adjunction of the remaining coherence cells η y for Y.

By symmetry, we exchange the roles of X and Y, replace coherent adjunctions with coherent eliminations, and reverse the order of the operations to obtain a Tietze transformation U from Z to Y, and consider the composite UT to get the result. (ii) The replacement of a 3-cell γ : f g by a 3-cell γ :

h 1 f 1 k h 1 g 1 k,
where h and k are 2-cells of X . As for elementary Tietze transformations, elementary Nielsen transformations can also be performed on sets of cells. A Nielsen transformation is a composition of (generalised) elementary Nielsen transformations. Nielsen transformations are Tietze transformations: indeed, for example, the second one is the composition of the following elementary Tietze transformations, namely the coherent adjunction ι h 1 γ 1 k of a 3-cell γ, followed by the coherent elimination

π (h -1 γ 1 k -,γ) of γ.
In what follows, we perform coherent eliminations of cells that are collapsible only up to a Nielsen transformation. If x is equal, up to a Nielsen transformation, to a collapsible cell (or sphere) x, we abusively denote by π x the corresponding coherent elimination, with a precision about the eliminated cell t( x) when it is not clear from the context.

H

Homotopical completion.

Let X be a terminating 2-polygraph, equipped with a total termination order . A homotopical completion of X is a (3, 1)-polygraph that is a Squier completion of X and whose underlying 2-polygraph is a Knuth-Bendix completion of X with respect to . Note that, instead of computing a Knuth-Bendix completion and, then, a Squier completion, both constructions can be performed simultaneously by adding the coherence 3-cells during the examination of the critical branchings.

Example.

From [START_REF] Kapur | A finite Thue system with decidable word problem and without equivalent finite canonical system[END_REF], we consider the following presentation of the braid monoid B + 3 : 

X = s, t,
(i) each Y k is collapsible, (ii)
no y of Y k appears as the target of an element of Y k+1 , (iii) there exists wellfounded order relations on the 1-cells, 2-cells and 3-cells of X such that, for every y in every Y k , the target of y is strictly greater than every element of Cell(s(y)). In that case, the recursive assignment We conclude that Z is collapsible with the wellfounded orders

π Y (x) =      π Y (s(y)) if x = t(y) for y in Y, 1 π Y (s(x)) if x is in Y, x otherwise 
D > C > B > A, δ > γ > β > α, a > t > s.
Thus the homotopical reduction Y/Z is the (3, 1)-polygraph (s, t | tst ⇒ sts | ∅) which, by Theorem 5.4.4, is a coherent presentation of B + 3 .

G ' A

Recollections on Coxeter groups.

Assume that W is a Coxeter group. For u ∈ W, a reduced expression of u is a representative of minimal length of u in S * , and the length of u is denoted by l(u) and defined as the length of any of its reduced expressions. The Coxeter group W is finite if, and only if, it admits an element of maximal length [START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF]Theorem 5.6]; in that case, this element is unique and denoted by w 0 (S). For I ⊆ S, the subgroup of W spanned by I is also a Coxeter group, denoted by W I . For all u and v in W, we have l(uv) l(u) + l(v) and we use distinct graphical notations depending on whether the equality holds or not:

u v ⇔ l(uv) = l(u) + l(v) and u v × ⇔ l(uv) < l(u) + l(v).
We generalise the notation for a greater number of elements of W. For example, in the case of three elements u, v and w of W, we write u v w if both equalities l(uv) = l(u) + l(v) and l(vw) = l(v) + l(w) hold. This situation splits in the following two mutually exclusive subcases: The Artin monoid B + (W) admits, as an alternative presentation, the 2-polygraph Gar 2 (W), called Garside's presentation of B + (W), whose 1-cells are the elements of W + = W \ {1}, and with one 2-cell α u,v : u|v ⇒ uv whenever u v holds. Here, we write uv for the product in W and u|v for the product in the free monoid over W.

u v w ⇔ u v w and l(uvw) = l(u) + l(v) + l(w) , u v w × ⇔ u v w and l(uvw) < l(u) + l(v) + l(w) . 5 

Proposition.

For every Coxeter group W, the monoid B + (W) admits, as a coherent presentation, the (3, 1)-polygraph with one 0-cell, one 1-cell for every element of W + , the 2-cells u|v α u,v 7 W uv and u|vw

β u,v,w 7 W uv|w,
respectively for all u, v of W + with u v, and all u, v, w of W + with u v w × , and the following nine families of 3-cells, indexed by all the possible elements of W + : 

uv|w α uv,w 7 A u,v,w Õ % u|v|w α u,v |w C c u|α v,w 1 Q uvw u|vw α u,vw V v u|v|w α u,v |w 1 Q u|α v,w ( H uv|w u|vw β u,v,w X x B u,v,w Õ % uv|wx β uv,w,x ! A C u,v,w,x Õ % u|v|wx α u,v |wx C c u|β v,w,x 0 P uvw|x u|vw|x α u,vw |x i u|v|wx α u,v |wx 3 S u|β v,w,x & F uv|wx u|vw|x β u,v,w |x 7 W uv|w|x uv|α w,x Y y D u,v,w,x Õ % uv|w|x uv|α w,x ! A E u,v,w,x Õ % u|vw|x β u,v,w |x C c u|α vw,x 1 Q uv|wx u|vwx β u,v
Õ % uv 1 |w 1 = uv 1 |x 1 y β uv 1 ,x 1 ,y " B I u,v 1 ,w 1 ,v 2 ,w 2 Õ % u|v 1 w 1 = u|v 2 w 2 β u,v 1 ,w 1 E e β u,v 2 ,w 2 ) I uv 1 x 1 |y = uv 2 x 2 |y uv 2 |w 2 = uv 2 |x 2 y β uv 2 ,x 2 ,y R r
Proof. Let denote the strict order on the elements of the free monoid W * that first compares their length as elements of W * , and then the length of their components as elements of W, starting from the right. For example, u 1 |u 2 < v 1 |v 2 |v 3 (first condition) and uv|w < u|vw if u v w (second condition). This is a termination order on Gar 2 (W): for every 2-cell α u,v of Gar 2 (W), we have u|v > uv. Hence the 2-polygraph Gar 2 (W) terminates. Then, we check that the (3, 1)-polygraph of Proposition 5.5.3 is a homotopical completion of Gar 2 (W) with respect to . The 2-polygraph Gar 2 (W) has exactly one critical branching for all u, v and w of W + such that u v w: 

A ' A

5.6.1. Artin's coherent presentation. Fix a Coxeter group W, with a totally ordered set S of generators. We call Artin's presentation of B + (W) the 2-polygraph Art 2 (W) with one 0-cell, the elements of S as 1-cells, and one 2-cell γ s,t : ts m st ⇒ st m st for each braid relation and for t > s.

Classification of the cells of Garside's coherent presentation.

If u is an element of W + , the smallest divisor of u is denoted by d u and defined as the smallest element of S that is a divisor of u (in W). Let (u 1 , . . . , u n ) be a family of elements of W + such that

l(u 1 • • • u n ) = l(u 1 ) + • • • + l(u n ).
For every k ∈ {1, . . . , n}, we write

s k = d u 1 •••u k . We have s 1 s 2 • • • s n since each s k divides u 1 • • • u l for l k.
Moreover, the elements s 1 ,. . . , s k have u 1 • • • u k as common multiple, so that their lcm w 0 (s 1 , . . . , s k ) exists and divides u 1 • • • u k , and each subgroup W {s 1 ,...,s k } is finite.

We say that (u 1 , . . . , u n ) is essential if the following conditions are satisfied: (i) u 1 ∈ S, (ii) u k+1 is the complement of w 0 (s 1 , . . . , s k ) in w 0 (s 1 , . . . , s k+1 ) for every k < n. In that case, u 1 = s 1 and we have

s 1 > • • • > s n , since each u k is different from 1. Thus, (u 1 , . . . , u n ) is uniquely determined by the elements s 1 , . . . , s n of S such that s 1 > • • • > s n .
Assume that (u 1 , . . . , u n ) is not essential, and set k as the minimal element of {1, . . . , n} such that (u 1 , . . . , u k ) is not essential. If k 2, there are two possibilities, depending if w 0 (s 1 , . . . , s k-1 ) = w 0 (s 1 , . . . , s k ) or not, which is equivalent to the equality

s k-1 = s k since s 1 > • • • > s k-1 s k . If s k-1 = s k , we say that (u 1 , . . . , u n ) is collapsible. If s k-1 > s k ,
then we have u k = vw with v and w in W + such that v w and (u 1 , . . . , u k-1 , v) is essential: we say that (u 1 , . . . , u n ) is redundant. We also say that (u 1 , . . . , u n ) is redundant if k = 1, in which case u 1 = s 1 w with w in W + .

By definition, the family (u 1 , . . . , u n ) is either essential, collapsible or redundant, giving a three-block partition of the cells of Gar 3 (W) and 3-spheres of Gar 3 (W) .

From Garside's to Artin's coherent presentation.

We define X as the collection of all the 2-cells and 3-cells of Gar 3 (W) and the 3-spheres of Gar 3 (W) whose indexing family is collapsible. This is a collapsible part of Gar . By hypothesis, the corresponding indexing pair (su, v) or (s, uv) is redundant, so that none of those 2-cells is in X. Finally, we use a wellfounded order on 2-cells that compares, alternatively, the lengths of indices and their smallest divisor in S, to check that each redundant 2-cell is strictly greater than the other 2-cells appearing in the source and target of A s,u,v . As a consequence, the homotopical reduction of Gar 3 (W) with respect to X eliminates all the cells, except for the ones whose indexing family is essential, and the remaining cells have their source and target modified by application of the projection π X . Thus, the 1-cells of Gar 3 (W)/X are the elements of S. The essential 2-cells of Gar 3 (W)/X are the α s,u such that s > d su and su = w 0 (s, d su ): there is one such 2-cell for all t > s in s such that W {s,t} is finite, with source ts m st and target st m st . Thus, the 2-polygraph underlying Gar 3 (W)/X is isomorphic to Artin's presentation Art 2 (W) of B + (W). Finally, the essential 3-cells are the A s,u,v such that s > d su > d suv , su = w 0 (s, d su ) and suv = w 0 (s, d su , d suv ). Hence, there is one such 3-cell for all t > s > r in S such that W {r,s,t} is finite. According to the classification of finite Coxeter groups [33, Chap. VI, §4, Theorem 1], there are five types of finite Coxeter groups of rank 3:

r s t A 1 × A 1 × A 1 r s t p I 2 (p) × A 1 3 p<∞ r s t A 3 r s t 4 B 3 r s t 5 H 3
For each case, the inductive definition of the projection π X is used to compute the shape of each 3-cell Z r,s,t = π X (A s,u,v ), for each one of the five cases. In practice, we have written a small Python library for these computations [START_REF] Guiraud | A library for the computation of coherent presentations of Artin monoids[END_REF], based on the PyCox library [START_REF] Geck | PyCox: computing with (finite) Coxeter groups and Iwahori-Hecke algebras[END_REF]. The results are given in the following theorem, and can also be found in string diagrams in [70, Definition In this chapter, given a set S and a natural number p, we identify S p with the length-p elements of the free monoid S * . If ϕ : S p → S p is a map, for n p and 1 i n -p + 1, we denote by ϕ i : S n → S n the map that applies ϕ to the entries in positions i . . . i + p -1, and, for i 1 , . . . , i n 1, we write

ϕ i 1 •••i n for the composite ϕ i n • • • ϕ i 1 . If ϕ : S * → S * is a graded map,
we write ϕ for its restriction to S 2 , and ϕ (p) for its restriction to S p . Finally, for m 0, we write 12[m] and 21[m] for the alternating elements 121... and 212... of {1, 2} * of length m.

6.1. I

Context.

A normal form for a monoid M, with a specified generating subfamily S, is a map that assigns to each element of M a distinguished representative element of S * . Our aim in [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF] was to investigate a certain type of such normal forms and, more precisely, the associated normalisation processes, that is, the syntactic transformations that lead from an arbitrary element of S * to a normal one. There, we restricted to geodesic normal forms, which select representatives of minimal length, and investigated the quadratic case, that is, when some locality conditions are satisfied: that an element of S * is normal if, and only if, each of its length-two factors are normal, and that one can always transform an element of S * into a normal one by a finite sequence of steps, each of which normalising a length-two factor. This general framework includes two well-known classes of normalisation processes: those associated with Garside families as investigated in [START_REF] Dehornoy | Algorithms for Garside calculus[END_REF] and [START_REF] Dehornoy | Foundations of Garside theory[END_REF], building on the seminal example of the greedy normal form in Artin monoids [START_REF] Sergey | Fragments of the word ∆ in the braid group[END_REF][START_REF] Elsayed | Algorithms for positive braids[END_REF][START_REF] David | Word processing in groups[END_REF], and those associated with quadratic 2-polygraphs as investigated for instance in [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] for Artin monoids and in [START_REF] Bokut | New approaches to plactic monoid via Gröbner-Shirshov bases[END_REF][START_REF] Cain | Finite Gröbner-Shirshov bases for plactic algebras and biautomatic structures for plactic monoids[END_REF] for plactic monoids. So the present development can be seen as an effort to unify various approaches and understand their common features. This programme is made natural by the observation that, in spite of their unrelated definitions, the normalisation processes arising in the above mentioned situations share common mechanisms: for instance, in each case, an element of S 3 can be normalised in three steps, successively normalising the length-two factors in position 2-3, then in position 1-2, and in position 2-3 again.

Krammer's ideas had a seminal influence in our approach, in particular for the connection between normalisation and the monoid underlying normalisations of class (4, 3), which he investigated in [START_REF] Krammer | An asymmetric generalisation of Artin monoids[END_REF]. A similar connection was independently discovered by Hess and Ozornova in [START_REF] Hess | Factorable monoids: resolutions and homology via discrete Morse theory[END_REF][START_REF] Ozornova | Factorability, discrete Morse theory, and a reformulation of K(π, 1)conjecture[END_REF][START_REF] Hess | Factorability, string rewriting and discrete Morse theory[END_REF], partly building on unpublished work by Rodenhausen. The approach presented in this chapter is close to theirs in the case of graded monoids. In this case, beyond minor terminology discrepancies, the factorability structures of [START_REF] Hess | Factorability, string rewriting and discrete Morse theory[END_REF] correspond to what we call normalisations of class (4, 3). But, in the general case, the two viewpoints are not directly comparable because of divergent treatment of units and invertible elements: in both settings a "dummy" element is used, but with different assumptions, resulting in different notions of complexity and different conclusions. It seems that every factorability structure yields a normalisation of class (4, 5), but understanding which normalisations of class (4, 5) arise in this way remains open.

Summary.

The central technical notion is that of a normalisation, introduced in §6.2, which is a pair (S, N) made of a set S and an idempotent length-preserving map N from the free monoid S * to itself: the intuition is that N(w) is the result of normalising w, that is, N(w) is the distinguished element in the equivalence class of w. The normalisation automatically determines the associated monoid via the defining relations w = N(w), and we take it as our basic object of investigation. We call quadratic a normalisation (S, N) such that an element w of S * is N-normal (meaning N(w) = w) if, and only if, each length-two factor of w is N-normal, and such that one can go from w to N(w) by applying a finite sequence of shifted copies of the restriction N of N to S 2 .

We then introduce, in §6.3, for every quadratic normalisation, a class, which is a pair of natural numbers describing the complexity of normalisation on S 3 : by definition, if w belongs to S 3 , then N(w) is equal to N 21[m] (w) or N 12[m] (w), meaning a length-m sequence of alternate applications of N in positions 1-2 and 2-3, and we say that the class is (m, n) if one always reaches the normal form after at most m steps when starting from the left, and n steps from the right. We observe that the class, if not infinite, has the form (m, n) with |m -n| 1, and that a quadratic normalisation of class (m, n) is of class (m , n ) for all m m and n n. We give a number of examples witnessing possible behaviours for the class and its analogue for the normalisation of longer elements of S * in §3.3 of [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF]. However, most of our general results involve quadratic normalisations of class (4, 3) or [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF][START_REF] Amy | A finite presentation of CNOT-dihedral operators[END_REF].

The first main result, recalled in §6.4, is an axiomatisation of normalisations of class (4, 3) in terms of the restriction of the normalisation map to S 2 : Theorem 6.4.7. If (S, N) is a quadratic normalisation of class (4, 3), then the restriction N of N to S 2 is idempotent and satisfies N 212 = N 2121 = N 1212 . Conversely, if ϕ is an idempotent map on S 2 that satisfies ϕ 212 = ϕ 2121 = ϕ 1212 , there exists a quadratic normalisation (S, N) of class (4, 3) satisfying ϕ = N.

The direct implication extends to quadratic normalisations of classes higher than (4, 3), but the converse direction does not: a map on S 2 normalising elements of S 3 needs not normalise elements of S p for p > 3. The proof of Theorem 6.4.7 involves the monoid M p studied in [START_REF] Krammer | An asymmetric generalisation of Artin monoids[END_REF] and [START_REF] Hess | Factorability, string rewriting and discrete Morse theory[END_REF], which is an asymmetric version of Artin monoids where the braid relation [START_REF] Hess | Factorability, string rewriting and discrete Morse theory[END_REF]Theorem 3.4] is an analogue of Theorem 6.4.7 for factorability structures.

s 2 s 1 s 2 = s 1 s 2 s 1 is replaced with s 2 s 1 s 2 = s 1 s 2 s 1 s 2 = s 2 s 1 s 2 s 1 . Let us mention that
The second main result, in §6.5, involves termination. Every quadratic normalisation (S, N) gives rise to a quadratic 2-polygraph, namely the one with 2-cells w ⇒ N(w) for every non-N-normal element w of S 2 . By construction, this 2-polygraph is confluent and normalising, meaning that, starting from any element of S * , there exists a finite sequence of rewriting steps leading to a unique N-normal element of S * , but its convergence, meaning also that any sequence of rewriting steps is finite, is a different question. We prove Theorem 6.5.3. If (S, N) is a quadratic normalisation of class [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF][START_REF] Amy | A finite presentation of CNOT-dihedral operators[END_REF] or (4, 3), then the associated 2-polygraph is convergent, with every sequence of rewriting steps starting from an element of S p having length at most 2 p -p -1.

The result can be compared with Proposition 6.5.1, stating that, in the class (3, 3), every sequence of rewriting steps starting from an element of S p has length at most p(p -1)/2, and it is optimal, in the sense that there exists a quadratic normalisation of class (4, 4) whose associated 2-polygraph is not convergent. The proof of Theorem 6.5.3 is delicate and relies on a diagrammatic tool called the domino rule. Theorem 6.5.3 exhibits a strong difference between the factorability structures of [START_REF] Hess | Factorability, string rewriting and discrete Morse theory[END_REF] and normalisations of class (4, 3), since the former can induce nonterminating 2-polygraphs, as witnessed by the counterexample of [108, Appendix, Proposition 7]. However, there is a connection between Theorem 6.5.3 and [108, Theorem 7.3], which states termination in the case of a factorability structure that obeys the domino rule, hence, as a normalisation, is of class (4, 3). The arguments are different, and it is not clear how restrictive it is for a normalisation of class (4, 3) to be associated with a factorability structure.

As mentioned above, Garside normalisation [START_REF] Dehornoy | Foundations of Garside theory[END_REF] integrates into quadratic normalisations, more precisely normalisations of class [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF][START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF] in the case of a bounded Garside family, and of class (4, 3) in the general case. It is natural to ask for a characterisation of Garside systems inside the family of all normalisations of class (4, 3). This is the last one of our main results, proved in §6.6: Theorem 6.6.3. Call a normalisation (S, N) left-weighted if, for all s and t in S, the element s left-divides the first entry of N(st) in the associated monoid. Then, for every normalisation (S, N) such that the associated monoid M is left-cancellative and contains no nontrivial invertible element, the family S is a Garside family in M and (S, N) is the derived normalisation if, and only if, (S, N) is of class (4, 3) and left-weighted.

The proof relies on nontrivial properties of Garside families and, again, on the domino rule available in class (4, 3). A consequence of Theorems 6.5.3 and 6.6.3 is that the 2-polygraph derived from a Garside family is always convergent, which generalises the case of Artin monoids with the elements of the corresponding Coxeter group as generators [78, Theorem 3.1.3, Proposition 3.2.1].

Note that almost all observations in this chapter extend from the context of monoids to that of categories, seen as monoids with a partially defined product.

Q

Normalisations.

A normalisation is a pair (S, N), where S is a set and N : S * → S * is a map satisfying, for all u, v and w in S * , (i) Assume that S is a set and Φ : S 2 → S 2 is an idempotent map. For s, t ∈ S, if Φ(st) = st, we draw a small arc such as

N(u) = u , (ii) u = 1 ⇒ N(u) = u, (iii) N(uN(v)w) = N(uvw).
s G G t G G
and if s , t ∈ S satisfy s t = Φ(st), we draw a square such as

s G G s t t G G
We say that Φ satisfies the domino rule if, in every situation

s 1 G G t 0 s 2 G G t 1 t 2 s 1 G G s 2 G G (6.4) 
the three plain arcs imply the dotted one.

Proposition.

A quadratic normalisation (S, N) is of class (4, 3) if, and only if, N satisfies the domino rule.

Proof. Assume that (S, N) is of right-class 3, and consider the situation (6.4). By definition of the right-class, and because s 1 s 2 is N-normal,

N(t 0 s 1 s 2 ) = N 212 (t 0 s 1 s 2 ) = N 12 (t 0 s 1 s 2 ) = N 2 (s 1 t 1 s 2 ) = s 1 s 2 t 2 . So s 1 s 2 t 2 is N-normal, which implies that s 1 s 2 is N-normal since (S, N) is quadratic.
Conversely, assume that N satisfies the domino rule. Fix t 0 r 1 r 2 ∈ S 3 , and put

s 1 s 2 = N(r 1 r 2 ), s 1 t 1 = N(t 0 s 1 ), s 2 t 2 = N(t 1 s 2 ).
Then s 2 t 2 is N-normal by construction, and s 1 s 2 is N-normal by the domino rule, so s 1 s 2 t 2 is N-normal because (S, N) is quadratic. So N(u) = N 212 (u) holds for every u ∈ S 3 , and (S, N) is of class (4, 3).

Notation.

We denote by ≡ the congruence on (N + ) * , the free monoid over nonzero natural numbers, generated by the relations

nn ≡ n, n(n + 1)n(n + 1) ≡ (n + 1)n(n + 1)n ≡ (n + 1)n(n + 1), mn ≡ nm if |m -n| 2.
Note that N * + / ≡ is a variant with infinitely many generators of the monoid M n of [START_REF] Krammer | An asymmetric generalisation of Artin monoids[END_REF]. Let sh : N * + → N * + be the morphism of monoids induced by n → n + 1. For n 1, put

γ n = 12 • • • n and γ o n = n • • • 21,
and then define the element δ n of N * + by induction on n:

δ 1 = ε and δ n+1 = sh(δ n )γ n .
So, the first values of δ n are δ 2 = 212, δ 3 = 323123, and so on. The element δ n satisfies, for every 1 k < n, the relation [63, Lemmas 4.11 and 4.12]

δ n k ≡ δ n ≡ kδ n . (6.5) 
6.4.4. Proposition. Assume that (S, N) is a quadratic normalisation of class [START_REF] Amy | A finite presentation of CNOT-dihedral operators[END_REF][START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF]. Then, for every s ∈ S and every N-normal u ∈ S n , we have

N(tu) = N γ n (tu). (6.6) 
As a consequence, for every n 1 and every u ∈ S n ,

N(u) = N δ n (u). (6.7) 
Proof. The following diagram summarises the proof of the first assertion:

s 1 G G t 0 s 2 G G t 1 t 2 s n G G t n-1 t n s 1 G G s 2 G G s n G G Put t = t 0 and u = s 1 • • • s n . For every 1 k n, define N(t n-1 s n ) = s n t n .
By hypothesis on u and construction, all the plain arcs are valid and N γ n (tu) = s 1 • • • s n t n . So, as a consequence of the domino rule, all the dotted arcs are also valid, and (6.6) follows. Then (6.7) is deduced by induction on n.

Before proving the converse direction of Theorem 6.4.7, we state the following consequence of Proposition 6.4.4: 6.4.5. Corollary. If (S, N) is a quadratic normalisation of class (4, 3), then (S, N) is of pclass (4, 3) for every p 3.

Proof. Assume p 3, and let u belong to S p . By (6.7) and by definition of δ p , we have

N(u) = N δ p (u) = N p-1 N γ p-2 N sh(δ p-1 ) (u)
First, we note that N sh(δ p-1 ) (u) = N (p-1) 2 (u). Now, write u = sv and N(v) = wt, with s, t ∈ S, v ∈ S p-1 and w ∈ S p-2 . Since wt is N-normal by construction, (6.6) gives

N(sw) = N γ p-2 (sw)
and

N(swt) = N p-1 (N(sw)t).
Since N(sw) is N-normal, we must have

N (p-1) 1 
(sw) = N(sw). Moreover, by definition of (S, N), N

(p-1) 2 (N(sw)t) = N (p-1) 2 N p-1 (N(sw)t) = N(swt).
So, we have

N (p-1) 212 (u) = N (p-1) 12 
(swt) = N (p-1) 2 (N(sw)t) = N(swt) = N(sN(v)) = N(u).
We conclude that (S, N) is of right-p-class 3, hence of p-class (4, 3).

6.4.6. Proposition. Let S be a set, and Φ : S 2 → S 2 be an idempotent map satisfying

Φ 212 = Φ 2121 = Φ 1212 . (6.8) 
Then, putting Φ * (s) = s for s ∈ S and Φ * (u) = Φ δ n (u) for u ∈ S n defines a quadratic normalisation (S, Φ * ) of class (4, 3) such that Φ = Φ * .

Proof. Assume that Φ is idempotent and satisfies (6.8). We first observe that u ≡ v implies

Φ u = Φ v for all u, v ∈ N * + . Indeed, Φ nn = Φ n Φ n = Φ n because Φ is idempotent. The relations Φ n(n+1)n(n+1) = Φ (n+1)n(n+1)n = Φ (n+1)n(n+1)
follow from (6.8). Finally, Φ m and Φ n commute if |m -n| 2 because they act on different factors. Now, let us prove that (S, Φ * ) is a normalisation. We have Φ * (u) = u , and

Φ * (s) = s for s ∈ S by definition of Φ * . Fix u ∈ S m , v ∈ S n and w ∈ S p . By definition of Φ * , Φ * (uΦ * (v)w) = Φ δ m+n+p (uΦ δ n (v)w) = Φ sh p (δ n )δ m+n+p (uvw).
Since sh p (δ n ) is a product of elements of {p + 1, • • • , p + n}, we deduce from (6.5) that sh p (δ n )δ m+n+p = δ m+n+p . As a consequence,

Φ * (uΦ * (v)w) = Φ δ m+n+p (uvw) = Φ * (uvw).
Let us check that (S, Φ * ) is quadratic. The second condition follows from the definition of Φ * as Φ * (u) = Φ δ n (u) for u ∈ S n . Fix u ∈ S n . If u is Φ * -normal, then, using (6.5), we obtain, for every

1 k < n, Φ k (u) = Φ k Φ δ n (u) = Φ δ n k (u) = Φ δ n (u) = u, so every length-two factor of u is N-normal. Conversely, if Φ k (u) = u holds for every 1 k < n, then, decomposing Φ δ n into a composite of maps Φ k gives Φ * (u) = u.
Finally, since Φ * = Φ, the quadratic normalisation (S, Φ * ) satisfies (6.2), so that it is of right-class 3 by Proposition 6.3.4, and thus of class (4, 3). 

-polygraph (S | X N ) is a convergent presentation of M. Moreover, for every u ∈ S * \ {1}, every 2-cell a of source u in (S | X N ) * satisfies a u ( u -1) 2 .
Proof. By construction, the rewriting steps of (S | X N ) are the 2-cells

u ⇒ N k (u)
for u ∈ S n and 1 k < n such that N k (u) = u. By Proposition 6.3.4, (S, N) satisfies (6.3), so the 2-cells of (S | X N ) are of the form

u ⇒ N w (u),
for w an element of the quotient B + n of the braid monoid B + n by the relations kk = k. Since B + n is finite, we have that (S | X N ) terminates. Moreover, the length of every element of B + n is bounded by n(n -1)/2.

Example (The plactic monoid).

If X is a totally ordered finite set, the plactic monoid over X is the monoid P X generated by X and subject to the relations xzy = zxy, for x y < z, yxz = yzx, for x < y z.

Define a column of P X as a strictly decreasing product of elements of X. A pair (c, c ) of columns of P X is called normal if c c holds and, for every 1 k c , the k th element of c is bounded above by the one of c . A tableau of P X is a product c 1 • • • c n of columns of P X such that (c i , c i+1 ) is normal for every 1 i < n. We refer to [START_REF] Cain | Finite Gröbner-Shirshov bases for plactic algebras and biautomatic structures for plactic monoids[END_REF] for a recent reference on the following facts. The monoid P X admits its set S of columns as a generating set, and every fibre of S * P X contains a unique tableau of minimal length. More precisely, P X is isomorphic to its set of tableaux, equipped with a product given by Schensted's insertion algorithm.

We consider the normalisation (S, N) where N maps a product of columns to the corresponding tableau. Since N can be computed locally by the insertion algorithm, progressively replacing each product of two columns cc by the corresponding tableau N(cc ), and by definition of tableaux, (S, N) is quadratic. From [29, § §4.2-4.4], we deduce that, if |X| 2, then (S, N) is of class [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF][START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF]. By Proposition 6.5.1, we recover [START_REF] Cain | Finite Gröbner-Shirshov bases for plactic algebras and biautomatic structures for plactic monoids[END_REF]Theorem 3.4] that states that the 2-polygraph associated to (S, N) is a convergent presentation of P X .

A similar argument leads to an infinite convergent quadratic presentation of P X in terms of rows, which are nondecreasing products of elements of X. The proof that the class is (3, 3) is given in [29, § §3.2-3.4].

We refer to [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF]Proposition 5.4] for the technical proof of the following result, that relies on a direct analysis of all the possible transformations induced by a quadratic normalisation of class [START_REF] Amy | A finite presentation of CNOT-dihedral operators[END_REF][START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF]. The proof of Proposition 6.5.1 cannot be adapted directly since Krammer's monoid, which would replace B + n here, is infinite [START_REF] Krammer | An asymmetric generalisation of Artin monoids[END_REF]. 6.5.3. Theorem. If (S, N) is a quadratic normalisation of class [START_REF] Amy | A finite presentation of CNOT-dihedral operators[END_REF][START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF], then the associated 2-polygraph (S | X N ) is convergent. More precisely, every rewriting sequence from an element of S p has length at most 2 p -p -1.

Proof. Let F(p) ∈ N denote the maximal length of composable sequences of rewriting steps of (S | X N ) with source in S p . We prove the inequality F(p) 2 p -p -1 by induction on p 2. For p = 2, we have F(p) 1 by idempotence of N. Assume p 3 and consider a sequence (u k ) 0 k n of elements of S p such that there exists a rewriting step from u k to u k+1 . We define S = S S, where S contains one element s for each s ∈ S. In diagrams, we draw s ∈ S horizontally, and s vertically. Let π : S * S * be the projection that identifies s and s. From (u k ) k , we construct, by induction on k, a sequence ( u k ) k of elements of S p such that (i) π( u k ) = u k , (ii) if st or st is a length-two factor of u k , then st is N-normal. We start by

u 0 = s 1 • • • s p-1 s p if u 0 = s 1 • • • s p ,
which satisfies (i) and (ii). Now, assume that u k-1 is defined, for k 1, and satisfies (i) and (ii). By hypothesis, there exists an i ∈ {1, . . . , p -1} such that u k = N i (u k-1 ). Let s and t be the letters of u k-1 in positions i and i + 1, and put s t = N(st). The length-two factor of u k-1 at position i is either st, st, st or st. Since st is not N-normal by assumption, (ii) prevents st and st. In the case st, we define u k from u k-1 by replacing, at position i, the factor st by s t if i < p -1, or by s t if i = p -1. Diagrammatically, this means the following replacement in u k-1 :

s t G G -→ s G G t or s G G t G G 95 
In the case st, we define u k from u k-1 by replacing, at position i, the factor st with s t :

s t -→ s t
In both cases, by construction, u k satisfies (i), and (ii) is satisfied at every position, except possibly at position i -1, if the corresponding letter is some r ∈ S, i.e. the length-two factor of u k-1 starting at position i -1 is rs. By construction of the sequence u 0 , . . . , u k-1 , this factor rs must come from an earlier replacement of some r 0 s 0 , i.e. rs = N(r 0 s 0 ). So, because (S, N) is of class (4, 3), the domino rules applies, concluding that rs is N-normal, so that (ii) is also satisfied at position i -1:

r G G r 0 s G G s t s 0 G G t G G
To conclude the proof, we count the number of transformations st → s t (or st → s t ) and st → s t in the sequence ( u k ) k : there are at most p(p -1)/2 transformations of the first type, and F(2) + • • • + F(p -1) transformations of the second type, see [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF]Proposition 5.4] for the complete classification. Then, using the induction hypothesis F(q) 2 q -q -1 for every 2 q < p, we obtain the required bound. We refer to [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF]Proposition 5.7] for a proof that X is normalising and confluent, and that its associated quadratic normalisation is of minimal class (4, 4).

Example (The Chinese monoid).

For a totally ordered finite set X, the Chinese monoid over X is the monoid C X generated by X and submitted to the relations zyx = zxy = yzx for all x y z in X [START_REF] Cassaigne | The Chinese monoid[END_REF]. Assume that X has three elements and denote by S the set obtained from X by adjoining the three 1-cells yx for x < y, and yy if y is the middle element of X (neither the minimal one nor the maximal one). We denote by | the product in S * to distinguish it from the product of C X . The following twelve 2-cells are derivable from the defining relations of C X :

(i) the nine 2-cells y|x ⇒ yx, y|yx ⇒ yx|y, and yx|x ⇒ x|yx, for x < y in X, (ii) the two 2-cells y|zx ⇒ zx|y and z|yx ⇒ zx|y, for x < y < z in X, (iii) the 2-cell y|y ⇒ yy, if y is the middle element of X.

The 2-polygraph so obtained terminates (using the weighted right-lexicographic order generated by x < yx for x y and zx < y for x < y) and, after application of Knuth-Bendix completion, it yields a reduced convergent quadratic presentation of C X . The corresponding normalisation is of minimal class (4, 4), the worst case being reached on z|yy|y if y is the middle element and z > y holds.

Similar convergent quadratic presentations also exist when X has four or five elements, to be compared with the nonquadratic ones of [START_REF] Cain | Rewriting systems and biautomatic structures for Chinese, hypoplactic, and Sylvester monoids[END_REF]Theorem 3.3]. The class is (5, 4) in both cases.

6.6. G 6.6.1. Garside families. Assume that M is a monoid. We denote by the left-divisibility relation of M, defined for all x, y ∈ M by x y if xx = y for some x ∈ M. Fix S ⊆ M. A pair (s, t) of elements of S is called normal if it satisfies, for all r ∈ S and x ∈ M, r xst ⇒ r xs.

An element u of S * is called normal if, writing u = s 1 • • • s n with each s k in S, every pair (s k , s k+1 ) is normal.

Assume that M has no nontrivial invertible element, and S contains 1. We say that S is a Garside family if every element x of M has a normal representative in S * . This definition is a restricted case of the general definition of a Garside family developed in [START_REF] Dehornoy | Foundations of Garside theory[END_REF]. If M is also left-cancellative, then Propositions III.1.25 and III.1.30 of [START_REF] Dehornoy | Foundations of Garside theory[END_REF] imply that, if S ⊆ M is a Garside family, then every element of M admits a unique normal representative of minimal length in S * . We denote by N S : S * → S * the corresponding map. 6.6.2. Left-weighted normalisations. Assume that (S, N) is a (quadratic) normalisation for a monoid M. We say that (S, N) is left-weighted if, for all s, t, s , t ∈ S, the equality s t = N(st) implies s s in M. 6.6.3. Theorem. Let M be a left-cancellative monoid, with no nontrivial invertible element, and (S, N) be a quadratic normalisation for M. The following assertions are equivalent:

(i) S is a Garside family, and N = N S .

(ii) (S, N) is of class (4, 3) and left-weighted.

Proof. Assume that S is a Garside family and N = N S . The pair (S, N S ) is a normalisation by definition of N S . Moreover, u ∈ S * is N S -normal if, and only if, every length-two subfactor of u is N S -normal. We prove the second axiom of a quadratic normalisation together with the fact that (S, N S ) is of class (4, 3) by checking that N S satisfies the domino rule. Consider a situation as in (6.4), and fix s ∈ S and x ∈ X such that s xs 1 s 2 :

s G G x s 1 G G t 0 s 2 G G t 1 t 2 s 1 G G s 2 G G
We have s xs Conversely, assume that (S, N) is of class (4, 3) and left-weighted. To prove that S is a Garside family, we use Proposition IV.2.7 of [START_REF] Dehornoy | Foundations of Garside theory[END_REF]: if S contains 1 and is closed under right-divisor, then S is a Garside family if, and only if, every x ∈ M \ {1} admits a maximal left-divisor in S.

We have 1 ∈ S by hypothesis, so let us check that S is closed under right-divisor. Fix s ∈ S and x, y in M such that s = xy holds in M, and prove that y ∈ S. If y = 1, or if x = 1 and thus y = s, then y ∈ S. Assume x, y = 1, choose representatives u and v of x and y in S * , and put

N(u) = s 0 m • • • s 0 1 and N(v) = t 0 1 • • • t 0 n .
We define the elements s i p , for 1 p m and 1 i < m + n -1, and t j q , for 1 q n and 1 j m, by induction thanks to the formulas t p q s q p = N(s q-1 p t p-1 q ) for 1 p m and 1 q n, s n+q-1 p s n+p q = N(s n+p-1 q s n+q-2 p ) for 1 p < q m.

For p ∈ {1, . . . , m} the following figure illustrates a part of these definitions:

t p 1 G G s 0 p s 1 p t p n G G s n-1 p s n+p 1 G G s n p s n+1 p s n+p p-1 G G s n+p-1 p s n+p p G G s n+p p t p-1 1 G G t p-1 n G G s n+p-1 1 G G s n+p-1 p-1 G G 1 y y
Since (S, N) is of class (4, 3), it satisfies the domino rule, and so the upper row of this figure is N-normal, provided the bottom row is. We conclude that [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF][START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF].

N(uv) = t m 1 • • • t m n s m+n-
When W is infinite, there exists a finite subset of W that is a Garside family [START_REF] Dehornoy | Garside families in Artin-Tits monoids and low elements in Coxeter groups[END_REF]. Consider, for example, the Artin monoid associated to the infinite Coxeter group W = A 2 : The normalisation corresponding to this Garside family is of minimal class (4, 3). Indeed, it is not of left-class 3 because N S 121 (a|ab|ac) = aba|b|c but b|c is not normal. The convergent presentation of B + ( A 2 ) of Corollary 6.6.4 has 15 generators and 87 relations.

B + ( A 2 ) a,

C 7 S

We fix a field K for the whole chapter. We denote by Vect the category of vector spaces over K, and by Alg the one of unital and associative algebras over K. When no confusion may arise, we just say associative algebras, or simply algebras, for the objects of Alg.

I

7.1.1. Context. During the twentieth century, rewriting-like methods have been developed in linear algebra, although with a different vocabulary, and in a somewhat restricted setting. The corresponding concepts have been introduced in particular to compute normal forms for different types of algebras presented by generators and relations, with applications to the decision of the ideal membership problem, and to the construction of bases, such as Poincaré-Birkhoff-Witt bases. For example, Shirshov introduced in [START_REF] Illarionovich | Some algorithmic problems for Lie algebras[END_REF] an algorithm to compute a linear basis of a Lie algebra presented through generators and relations. He used the notion of composition of elements in a free Lie algebra to describe the critical branchings. He gave an algorithm to compute bases in free algebras having the confluence property, and he proved the composition lemma, which is the analogue of Newman's lemma for Lie algebras. As an application, he deduced a constructive proof of the Poincaré-Birkhoff-Witt theorem.

Rewriting methods to compute with ideals of commutative polynomial rings were also introduced by Buchberger with Gröbner basis theory [START_REF] Buchberger | An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[END_REF][START_REF] Buchberger | History and basic features of the critical-pair/completion procedure[END_REF]. Gröbner bases are sets of relations that satisfy the confluence property, plus a constrained form of termination, corresponding to a compatibility with a monomial order, i.e. a wellfounded total order on the monomials. Buchberger described critical branchings with the notion of S-polynomial, and gave an algorithm for the computation of Gröbner bases, using a linear counterpart to Newman's lemma, and which is the analogue of Knuth-Bendix's completion procedure for commutative algebras. In the same period, ideas in the spirit of Gröbner bases appear in several other works: by Hironaka and Grauert with standard bases for power series rings [START_REF] Hironaka | Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II[END_REF][START_REF] Grauert | Über die Deformation isolierter Singularitäten analytischer Mengen[END_REF], or for applications of Newman's lemma for universal algebras by Cohn [START_REF] Paul | Universal algebra[END_REF]. The domain took foundation in several works on algorithmic methods in elimination theory by Macaulay with H-bases [START_REF] Macaulay | The algebraic theory of modular systems[END_REF], by Janet with involutive bases [START_REF] Janet | Sur les systèmes d'équations aux dérivées partielles, French[END_REF], or Gunther with notions similar to Gröbner bases [START_REF] Günther | Sur les modules des formes algébriques[END_REF]. Bokut and Bergman have independently extended Gröbner bases to associative algebras, obtaining the analogue of Newman's lemma for free associative algebras, called respectively the composition lemma and the diamond lemma [START_REF] Bokut | Imbeddings into simple associative algebras[END_REF][START_REF] Bergman | The diamond lemma for ring theory[END_REF]. Buchberger's algorithm has then been extended to this setting [START_REF] Mora | An introduction to commutative and noncommutative Gröbner bases[END_REF][START_REF] Victor | Introduction to noncommutative Gröbner bases theory, Gröbner bases and applications[END_REF]. Subsequently, rewriting methods were developed for a wide range of algebraic structures, such as Weyl algebras [START_REF] Saito | Gröbner deformations of hypergeometric differential equations[END_REF] or operads [START_REF] Dotsenko | Gröbner bases for operads[END_REF]. See [START_REF] Mora | An introduction to commutative and noncommutative Gröbner bases[END_REF][START_REF] Victor | Combinatorial and asymptotic methods in algebra[END_REF][START_REF] Bremner | Algebraic Operads: An Algorithmic Companion[END_REF] for a comprehensive treatment on noncommutative Gröbner bases.

At the end of the eighties, through Anick's and Green's works, noncommutative Gröbner bases have found new applications, in the shape of constructive methods to compute free resolutions of associative algebras [START_REF] Anick | On monomial algebras of finite global dimension[END_REF][START_REF] Anick | On the Homology of Associative Algebras[END_REF][START_REF] Anick | On the homology of quotients of path algebras[END_REF][START_REF] Edward | Noncommutative Gröbner bases, and projective resolutions, Computational methods for representations of groups and algebras[END_REF]. Their constructions provide small explicit resolutions to compute homological invariants of algebras presented by generators and a Gröbner basis: homology groups, Hilbert series, and Poincaré series. Anick's resolution consists in a complex generated by Anick's chains, i.e. certain iterated overlaps of the leading terms of the relations as in the later Kobayahi's resolution for monoids, and its differential is obtained by deforming the differential of a complex for an associated monomial algebra. This construction has many applications, such as an algorithm for the computation of Hilbert series [START_REF] Victor | Combinatorial and asymptotic methods in algebra[END_REF]. The chains and the differential of the resolution are constructed recursively, making its implementation possible [START_REF] Backelin | The computer algebra package Bergman: current state, Commutative algebra, singularities and computer algebra[END_REF], but the differential is complicated to make explicit in general. Sköldberg introduced in [START_REF] Sköldberg | Morse theory from an algebraic viewpoint[END_REF] a homotopical method based on discrete Morse theory to derive Anick's resolution from the bar resolution.

Anick's resolution found applications in the study of Koszul algebras: a connected graded algebra A is Koszul if the Tor groups Tor A k,(i) (K, K) vanish for i = k, where k is the homological degree, and i comes from the grading of the algebra. For intuition, in a quadratic algebra A, the groups Tor A k,(i) (K, K) always vanish for i < k: the Koszul property corresponds to the case where the Tor is concentrated on the diagonal [START_REF] Berger | Koszul and Gorenstein properties for homogeneous algebras[END_REF]. Koszul algebras were introduced by Priddy, and he proved that quadratic algebras having a Poincaré-Birkhoff-Witt basis are Koszul [START_REF] Stewart | Koszul resolutions[END_REF]. Thus, if A admits a quadratic Gröbner basis, then it is Koszul: indeed, the hypothesis implies the existence of a Poincaré-Birkhoff-Witt basis [START_REF] Edward | Noncommutative Gröbner bases, and projective resolutions, Computational methods for representations of groups and algebras[END_REF], another proof coming from the fact that Anick's resolution is concentrated in the diagonal [START_REF] Anick | On the Homology of Associative Algebras[END_REF][START_REF] Green | Projective resolutions of straightening closed algebras generated by minors[END_REF]. Backelin gave a characterisation of the Koszul property for quadratic algebras in terms of lattices [START_REF] Backelin | A distributiveness property of augmented algebras, and some related homological results[END_REF][START_REF] Backelin | Koszul algebras, Veronese subrings and rings with linear resolutions[END_REF], and this condition was later interpreted by Berger's X-confluence [START_REF] Berger | [END_REF]. The quadratic Gröbner basis method to prove Koszulness has been extended to the case of operads by Dotsenko and Khoroshkin in [START_REF] Dotsenko | Gröbner bases for operads[END_REF], and Koszulness was generalised by Berger in [START_REF] Berger | Koszulity for nonquadratic algebras[END_REF] to the case of N-homogeneous algebras.

For his results, Berger has introduced a notion of reduction operators, which is an alternative point of view on rewriting, based on linear operators mapping basis elements to their normal form, with similarities to the quadratic normalisations for monoids of Chapter 6. Building on Berger's work, Chenavier has recently developed an original theory of rewriting in associative algebras, alternative to Gröbner bases and to the one presented here, with applications in homological algebra [START_REF] Chenavier | The lattice of reduction operators: applications to noncommutative Gröbner bases and homological algebra[END_REF]. In particular, he gave an algebraic account of completion in terms of the lattice structure of reduction operators [START_REF] Chenavier | Reduction operators and completion of rewriting systems[END_REF] and an interpretation of Faugère's F4 completion algorithm [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F 4 )[END_REF] in this setting [START_REF] Chenavier | A Lattice Formulation of the F4 Completion Procedure[END_REF]; he refined Berger's results on the Koszul complex of Nhomogeneous algebras [START_REF] Chenavier | Confluence algebras and acyclicity of the Koszul complex[END_REF]; and he obtained a Squier-like result to construct homological syzygies of associative algebras presented by reduction operators [START_REF] Chenavier | Syzygies among reduction operators[END_REF].

Summary.

To adapt the theory and methods developed so far to associative algebras, §7.2 explains how to introduce an analogue of higher categories that provide a homotopical setting for polygraphic resolutions of associative algebras. The structure of ∞-categories works for monoids because the latter can be seen as categories with one 0-cell. However, ∞-categories do not really fit for other algebraic structures, that can have several associative products (e.g. boolean algebras), or operations that satisfy other compatibility laws than associativity (e.g. Lie algebras). To solve this, observe that ∞-categories with one 0-cell are the same as ∞-categories internal to the category Mon of monoids, shifting all cells by one dimension and replacing the 0-composition by the monoidal product. Now, the theoretical setting adapts to any other algebraic structure, by replacing Mon with the adequate category: here, we consider ∞-categories internal to Alg, called ∞-algebras, and the underlying structure of ∞-vector space, which is an ∞-category internal to Vect; note that our 1-vector spaces are the 2-vector spaces of [START_REF] Baez | Higher-dimensional algebra. VI. Lie 2-algebras[END_REF]. The structures of ∞-vector space and ∞-algebras are rather rich, and in particular contain much redundancy. Indeed, an ∞-vector space is the same as an ∞-groupoid internal to Vect, and as an ∞-globular vector space. This generalises Proposition 2.5 of [START_REF] Khudaverdyan | Higher categorified algebras versus bounded homotopy algebras[END_REF], and is intuitively similar to Bourn's equivalence between chain complexes in an abelian category A and internal ∞-categories in A [34, Theorem 3.2]. Here, the main arguments are that the compositions of an ∞-vector space necessarily satisfy the relation a i b = a -t i (a) + b whenever a and b are i-composable, and every cell a of strictly positive dimension has an inverse, given by a -= s(a) -a + t(a). For ∞-algebras, the situation is summarised by Theorem 7.2.4. An ∞-algebra is the same as an ∞-groupoid internal to Alg, and as a pair For intuition, the extra condition corresponds to the compatibility of the algebra product with the 0-composition, the latter being rewritten using a 0 b = a -t 0 (a) + b. The second part of Theorem 7.2.4 says that the structure of ∞-algebra boils down to a simpler one, useful to describe free ∞-algebras and, as a consequence, the corresponding notion of polygraph, following the same pattern as for ∞-categories. Polygraphs for associative algebras are a special case of the general construction of polygraphs, or computads, for finitary monads on globular sets (here, the monad of ∞-algebras) given in [START_REF] Michael | Computads for finitary monads on globular sets, Higher category theory[END_REF]Definition 2.1]. We now say n-polygraph for this notion of polygraph for associative algebras, and set-theoretic n-polygraph for the one considered so far. Then, §7.3 develops a rewriting theory for associative algebras, the main difficulty coming from the first part of Theorem 7.2.4: in contrast with the case of monoids, there is no difference between a 1-category internal to Alg and a 1-groupoid internal to Alg, making impossible to consider the 1-cells of the former as rewriting sequences among the 1-cells of the latter, seen as equivalences. To circumvent this obstruction, we isolate, among the 1-cells, a set of positive ones that will play the same role as a free 1-category with respect to the corresponding free 1-groupoid: first, the set of positive 1-cells is big enough for every 1-cell to factor into a composite of positive 1-cells and their opposites; second, the set of positive 1-cells is small enough for preventing a nontrivial 1-cell and its inverse to be positive at the same time, so that termination is possible. From this notion of positive 1-cells, we define branchings and confluence as in the set-theoretic case, but termination is handled differently. For a set-theoretic 2-polygraph X, termination is defined as any one of the equivalent properties: there exist no infinite sequence of composable rewriting steps, or there exists a wellfounded order relation on X * 1 that is compatible with the product and such that s(α) > t(α) holds for each 2-cell α of X. For a 1-polygraph X, the second property implies the first one, but we conjecture that the converse implication does not hold, and we define termination as the second, stronger property. We obtain Theorem 7.3.6. Let A be an algebra and X be a convergent presentation of A. Then the set Red m (X) of reduced monomials of K X is a linear basis of A. As a consequence, the vector space Red(X) of reduced 0-cells of K X , equipped with the product defined by a • b = ab, is an algebra that is isomorphic to A.

The convergent presentations so-defined are strict generalisations of noncommutative Gröbner bases, and, in the case of homogeneous algebras, of Poincaré-Birkhoff-Witt bases, as explained in §7.4. Indeed, noncommutative Gröbner bases correspond to a subclass of convergent presentations of associative algebras: those whose 1-cells are well-oriented with respect to a monomial order. More precisely, from a Gröbner basis G for an ideal I of a free algebra K X , with respect to a monomial order , one can derive a convergent presentation of the quotient algebra K X /I, whose 1-cells correspond to the replacement of the leading monomials of the elements of G by their remainders. Moreover, the inclusion of Gröbner bases into convergent presentations is strict, as testified by the 1-polygraph x, y, z xyz → x 3 + y 3 + z 3 studied in Example 7.4.7. This 1-polygraph is convergent, but the orientation of its only 1-cell is not compatible with any possible monomial order, for which one of the three monomials x 3 , y 3 or z 3 is necessarily bigger than xyz. The same strict inclusion holds for Poincaré-Birkhoff-Witt bases in the case of homogeneous N-algebras (generalising Priddy's PBW bases for quadratic algebras with the deglex order [180, Section 5.1]): they correspond to the convergent N-homogeneous presentations of associative algebras whose 1-cells terminate with respect to a monomial order.

In §7.5, we adapt Squier's theorem to associative algebras, with a similar proof strategy as in the set-theoretic case. However, there is a difference in the equivalence between local Y-confluence and critical Y-confluence: indeed, here, this equivalence requires the termination hypothesis, and a more complicated proof. This comes from the fact that, in general, the trivial branchings are not ∅-confluent without termination, as shown by the two counterexamples of Remark 4.2.4 in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]. Nevertheless, we still obtain Squier's theorem for algebras: Theorem 7.5.3. Let X be a convergent presentation of an associative algebra, and Y be an extension of

K X . If X is Y-convergent, then Y is acyclic. In particular, if Y contains a 2-cell b h 1 1 F Õ % a f H H g F F d c k d d
for every critical branching (f, g) of X, with h and k positive 1-cells of K X , then Y is acyclic.

Finally, §7.6 summarises the extension of Squier theorem to construct polygraphic resolutions of associative algebras from convergent presentations, and applications in homological algebra. We start by a study of the standard polygraphic resolution Std(B) of an augmented associative algebra A with a fixed linear basis B. The explicit definition of this polygraph is still unknown in the set-theoretic case, but is possible here thanks to the linear structure of ∞-algebras. The complete proof that Std(B) is a polygraphic resolution of A can be found in §6.1 of [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF], and relies on the construction of a contraction, a notion developed in §5.2 of the same article in analogy with the set-theoretic case. Next, to compute Squier's polygraphic resolution of an augmented algebra, we apply, on the standard polygraphic resolution, a collapsing mechanism that is similar to the one described by Brown in [START_REF] Brown | The geometry of rewriting systems: a proof of the Anick-Groves-Squier theorem[END_REF], and which is a polygraphic version of algebraic Morse theory for chain complexes [START_REF] Sköldberg | Morse theory from an algebraic viewpoint[END_REF]. This method is based on the notion of collapsing scheme of a polygraph X, which is a graded partial map ϕ : X → X that creates a correspondence between n-cells and (n + 1)-cells of X that can be collapsed together without changing the homotopical properties of X. If A is an augmented algebra with a convergent presentation X, we collapse the standard polygraphic resolution of A, equipped with the linear basis Red m (X) of reduced monomials. For that, we identity a notion of critical cell in Std(Red m (X)), that, similarly to Anick's chains, correspond to some critical n-branchings, forming a graded subset Sq(X) of Std(Red m (X)). The remaining cells are called subcritical or supercritical, depending on whether an induced n-branching is trivial or not, and we establish a bijective correspondence ϕ between the two families. The result is Theorem 7.6.4. Let A be an augmented algebra and X be a convergent presentation of A. Then ϕ is a collapsing scheme of Std(Red m (X)) onto Sq(X), and, as a consequence, Sq(X) is a polygraphic resolution of A.

As in the set-theoretic case, an abelianisation process turns any polygraphic resolution into a resolution by free bimodules, yielding in particular new sufficient or necessary conditions for homogeneous algebras to be Koszul. Finally, the constructions of this section are applied on two examples, the symmetric and the exterior algebras.

H

7.2.1. Higher vector spaces. Fix n ∈ N. Taking C = Vect in §2.2.2 and §2.2.4 gives the categories nGlob(Vect) of n-globular vector spaces and globular linear maps, and nCat(Vect), denoted by nVect, of n-vector spaces and linear n-functors. If V is an n-globular vector space, then, in the pullback V k V, we have λ(a, a ) + µ(b, b ) = (λa + µb, λa + µb ). Hence, if V is an n-vector space, the linearity of the k-composition reads, in the same context,

(λa + µb) k (λa + µb ) = λ(a k a ) + µ(b k b ).

Proposition.

Fix n ∈ N. The forgetful functors nGpd(Vect) → nVect → nGlob(Vect) are isomorphisms. In particular :

(i) An n-globular vector space V can be uniquely extended into an n-vector space, by putting, for all natural numbers 0 i < k and i-composable pair (a, b) of k-cells of V,

a i b = a -t i (a) + b. (7.1) 
(ii) If V is an n-vector space, then, for every k 1, every k-cell a of V is invertible, with inverse given by a -= s(a) -a + t(a).

Proof. If V is an n-vector space, for (a, b) a k-cell of V i V, the linearity of i gives (7.1):

a i b = (a -s i (b) + s i (b)) i (t i (a) -t i (a) + b) = (a i t i (a)) -(s i (b) i t i (a)) + (s i (b) i b) = a -t i (a) + b.
Moreover, if W is an n-globular vector space, then every n-globular linear map F : V → W is automatically a linear n-functor between the induced n-vector spaces:

F(a i b) = F(a -t i (a) + b) = F(a) -t i (F(a)) + F(b) = F(a) i F(b).
The rest of the proof is a consequence of these facts, see [ For an n-globular algebra A, the product of (a, a ) and (b, b ) in A k A is given by (a, a )(b, b ) = (ab, a b ). This implies that, if A is an n-algebra, the fact that the kcomposition is a morphism of algebras is equivalent to If n 1, an 1 k n is a natural number, a k-monomial of K X is a k-cell of K X with shape uαv, where α is a k-cell of X, and u and v are monomials of K X . By construction of K X , every k-cell a of K X is a linear combination

ab k a b = (a k a )(b k b ). ( 7 
a = p i=1 λ i a i + c (7.5)
of pairwise distinct k-monomials a 1 , . . . , a p and of an identity k-cell c of K X , and this decomposition is unique up to the relation (7.4). If a is a k-cell of K X , the size of a is the minimum number of k-monomials of K X required to write a as in (7.5), and we denote by Cell(a) the set of k-cells of X that appear in the corresponding k-monomials.

Let A be an algebra. A presentation of A is a 1-polygraph X such that A is isomorphic to X. A coherent presentation of A is a 2-polygraph X such that A is isomorphic to X and X 2 is acyclic. And a polygraphic resolution of A is an ∞-polygraph X such that A is isomorphic to X and X n+1 is acyclic for every n 1.

C

7.3.1. Rewriting steps and normal forms. Let X be a 1-polygraph. We say that X is leftmonomial if, for every 1-cell α of X, the source of α is a monomial of K X that does not belong to Supp(t(α)). In that case, the source of every 1-monomial of K X is a monomial of K X .

Assume that X is left-monomial. A rewriting step of X is a 1-cell λf + 1 a of size 1 of the free 1-algebra K X that satisfies the condition Supp(λs(f) + a) = {s(f)} Supp(a), i.e. such that λ = 0 and s

(f) / ∈ Supp(a). A 1-cell of K X is called positive if it is a 0-composite f 1 0 • • • 0 f p of rewriting steps of K X .
A 0-cell a of K X is called reduced if K X contains no rewriting step of source a, and a normal form of a is a reduced 0-cell b of K X such that there exists a positive 1-cell a → b in K X . The reduced 0-cells of K X form a linear subspace of K X 0 that is denoted by Red(X). Because X is left-monomial, the set of reduced monomials of K X , denoted by Red m (X), forms a basis of Red(X). If a is a 0-cell of K X , a normal form of a is a reduced 0-cell b of K X such that there exists a positive 1-cell a → b in K X .

Lemma.

Let X be a left-monomial 1-polygraph. Every 1-cell f of size 1 of K X can be decomposed into f = g 0 h -, where g and h are identities or rewriting steps of X.

Proof. Write f = λf + b, where f : u → a is a 1-monomial of K X . Let µ be the coefficient of u in b, so that b = µu + c with c such that u / ∈ Supp(c). Put g = (λ + µ)f + 1 c and h = λa + µf + 1 c .
The linearity of 0 gives f = g 0 h -. Since u does not belong to Supp(a) or Supp(c), each of the 1-cells g and h is either an identity (if λ + µ = 0 for g, if µ = 0 for h) or a rewriting step.

algebras [START_REF] Buchberger | An algorithm for finding the basis elements of the residue class ring of a zero dimensional polynomial ideal[END_REF] and by Knuth and Bendix for term rewriting systems [START_REF] Knuth | Simple word problems in universal algebras, Computational Problems in Abstract Algebra[END_REF], adapts to terminating left-monomial 1-polygraphs in a straightforward way.

7.3.6. Theorem. Let A be an algebra and X be a convergent presentation of A. Then the set Red m (X) of reduced monomials of K X is a linear basis of A. As a consequence, the vector space Red(X), equipped with the product defined by a • b = ab, is an algebra isomorphic to A.

Example.

Let A be the algebra presented by the 1-polygraph X = x, y α : xy → x 2 , which terminates, because xy > x 2 holds for the deglex order generated by y > x. This presentation is also confluent, because it has no critical branching (see Theorem 7.5.2). Hence, the set Red m (X) = y i x j i, j ∈ N is a linear basis of the algebra A. Moreover, the product defined by

y i x j • y k x l = y i x j+k+l if j k y i-j+k x 2j+l if j k
turns Red(X) into an algebra that is isomorphic to A.

C G P -B -W

In this section, if X is a 1-polygraph, we denote by I(X) the ideal of K X 0 generated by the boundaries ∂(a) = s(a) -t(a) of the 1-cells of X, so that X K X 0 /I(X).

7.4.1. Lemma. Let X be a 1-polygraph. For all 0-cells a and b of K X , the 0-cell a -b belongs to the ideal I(X) if, and only if, there exists a 1-cell f : a → b in K X . As a consequence, I(X) exactly contains the 0-cells a of K X such that a = 0 holds in X.

Proof. Assume a -b ∈ I(X), i.e. a -b = 1 i p λ i u i ∂(α i )v i . Then f = p i=1 λ i u i α i v i + a - p i=1 λ i u i s(α i )v i . defines a 1-cell f : a → b of K X . Conversely, let f : a → b be a 1-cell of K X . Write f = f 1 0 • • • 0 f p , with f i = λ i u i α i v i + h i for every 1 i p. Since t(f i ) = s(f i+1 ), we have a -b = ∂(f 1 ) + • • • + ∂(f p ). Moreover, ∂(f i ) = λ i u i ∂(α i )v i implies that each ∂(f i )
belongs to I(X), and thus so does a -b. Finally, if one applies the equivalence to the case b = 0, since 0 = 0 holds in X, we get that a is in I(X) if, and only if, we have a = 0 in X.

Proposition.

Let X be a terminating left-monomial 1-polygraph. Then, as a vector space, K X 0 admits the decomposition

K X 0 = Red(X) + I(X), (7.6) 
and the following assertions are equivalent: (i) X is confluent.

(ii) Every 0-cell of I(X) admits 0 as a normal form.

(iii) As a vector space, K X 0 admits the direct decomposition K X 0 = Red(X) ⊕ I(X).

in G, and u and v monomials of K X . Thus, if a reduced 0-cell a of K G is in I, then lm(a) = 0, because G is a Gröbner basis of (I, ). As a consequence of Proposition 7.4.2, we get that G is confluent.

7.4.5. Poincaré-Birkhoff-Witt bases. Let A be an N-homogeneous algebra, for N 2, let X be a generating set of A, concentrated in degree 1, and let be a monomial order on K X . A Poincaré-Birkhoff-Witt (PBW) basis for (A, X, ) is a subset B of X * such that: (i) B is a linear basis of A, with [u] B denoting the decomposition of u ∈ X * in the basis B, (ii) for all u and v in B, we have uv [uv] B , (iii) an element u of X * belongs to B if, and only if, for every decomposition u = vu w of u in X * such that u has degree N, then u is in B.

7.4.6. Proposition. If X is a convergent left-monomial N-homogeneous presentation of an algebra A, and is a monomial order on K X 0 that is compatible with X 1 , then the set Red m (X) of reduced monomials of K X is a PBW basis for (A, X 0 , ). Conversely, let A be an N-homogeneous algebra, let X be a generating set of A that is concentrated in degree 1, let a monomial order on K X , and B be a PBW basis of (A, X, ). Define B as the 1-polygraph with 0-cells X and with one 1-cell uv → [uv] B for all u and v in B such that uv has degree N and uv = [uv] B . Then B is a convergent left-monomial N-homogeneous presentation of A, such that Red m (B ) = B, and is compatible with B 1 .

Proof. If X is a convergent left-monomial presentation of A, Theorem 7.3.6 implies that the set Red m (X) of reduced monomials of K X is a linear basis of A. The fact that is compatible with X 1 implies uv [uv] B , and the third axiom of the definition of a PBW basis comes from the definition of a reduced monomial for an N-homogeneous left-monomial 1-polygraph.

Conversely, assume that B is a PBW basis for (A, X, ). By definition, B is N-homogeneous and left-monomial, the third axiom of the definition of a PBW basis implies Red m (B ) = B, and the second axiom gives termination of B . By Proposition 7.4.2, it is sufficient to prove that Red(B ) ∩ I(B ) = 0 to get confluence: on the one hand, a reduced 0-cell a of Red(B ) is a linear combination of 0-cells of B, so that a is its only normal form; and, on the other hand, if a belongs to I(B ), then a admits 0 as a normal form by Lemma 7.4.1. Finally, B is isomorphic to Red(B ), i.e. to KB, hence to A, by Theorem 7.3.6 and because B is a linear basis of A.

7.4.7.

Example. Convergent presentations of associative algebras are strict generalisations of Gröbner bases and PBW bases, because rewrite orders generated by terminating polygraphs strictly contain monomial orders that are compatible with 1-cells. For example, let us prove that the 1-polygraph X = x, y, z xyz → x 3 + y 3 + z 3 terminates. For every monomial u of K X , denote by A(u) the number of factors xyz that occur in u, by B(u) the number of y that u contains, and put Φ(u) = 3A(u) + B(u). It is sufficient to check that Φ(uxyzv) is strictly greater than each of Φ(ux 3 v), Φ(uy 3 v) and Φ(uz 3 v), for all monomials u and v of K X :

Φ(uxyzv) = Φ(u) + Φ(v) + 4, Φ(ux 3 v) = Φ(u) + Φ(v) + 3 if v = yzv , Φ(u) + Φ(v) otherwise, Φ(uy 3 v) = Φ(u) + Φ(v) + 3, Φ(uz 3 v) = Φ(u) + Φ(v) + 3 if u = u xy, Φ(u) + Φ(v) otherwise.
However, no monomial order on K X 0 is compatible with X 1 , because, for such an order , one of the monomials x 3 , y 3 , z 3 is always greater than xyz. Indeed, since is total, one of x, y or z is greater than the other two. If it is x, the case of z being symmetric, x y implies x 2 yx and x z implies yx yz, so that x 2 yz, hence x 3 xyz. Now, if y x and y z, we get y 2 xy, thus y 2 z xyz and y 3 y 2 z.

C

If X is a left-monomial 1-polygraph, and Y is an extension of K X , we define the notions of (local, critical) Y-confluence and Y-convergence for X as in §3.2.1.

Lemma.

Let X be a left-monomial 1-polygraph, and Y be an extension of K X , such that X is Y-confluent at every 0-cell b ≺ a for some fixed 0-cell a of K X . Let f be a 1-cell of K X that admits a decomposition

a 0 f 1 -→ a 1 f 2 -→ • • • f p -→ a p
into 1-cells of size 1 such that a i ≺ a holds for every 0 < i < p. Then there exist positive 1-cells g and h in K X and a

2-cell F in K X [Y] as in a p h 1 1 F Õ % a 0 f Q Q g P P a .
Proof. Proceed by induction on p 0. If p = 0, then f = 1 a 0 , so taking g = h = 1 a 0 and F = 1 f proves the result. Otherwise, let us construct

a p h 2 0 0 F Õ % a 1 f 2 0 • • • 0 f p Q Q g 2 G G h 1 7 7 = b 2 k 2 0 0 G Õ % a 0 f 1 Q Q g 1 Q Q b 1 k 1 Q Q a
First, apply Lemma 7.3.2 to the 1-cell f 1 of size 1 to get g 1 and h 1 such that f 1 = g 1 0 h - 1 . Then, apply the induction hypothesis to obtain g 2 , h 2 and F. Finally, apply the Y-confluence hypothesis to (h 1 , g 2 ) to produce k 1 , k 2 and G.

Theorem. Let X be a terminating left-monomial 1-polygraph, and Y be an extension

of K X . If X is critically Y-confluent then it is Y-confluent.
Proof. We proceed by noetherian induction on the source of the branchings to prove that Y-critical confluence implies Y-local confluence, which in turn implies Y-confluence. The proof of the second implication is the same as for Proposition 3.2.2. The proof of the first implication is based on a case analysis on the type of local branching, as in Proposition 3.2.3, but the argument differs in that it also requires the termination hypothesis, see [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Remark 4.2.4]. Here, we describe the case of a nontrivial local branching, and refer to [95, Theorem 4.2.1] for the trivial case, whose study follows a similar pattern. For an overlapping branching (λf + c, λg + c), let us construct

λa + c f 1 D D λf + c 4 4 F Õ % a f 2 ' ' I Õ % λu + c λf + c T T λg + c @ @ λe + c h c c k 1 1 G Õ % H Õ % d λb + c λg + c `g 1 P P b g 2 g g
Consider the unique decomposition (f, g) = v(f 0 , g 0 )w, with (f 0 , g 0 ) critical. Since (f 0 , g 0 ) is Y-confluent by hypothesis, we obtain

a 0 f 0 % % F 0 Õ % u 0 f 0 Q Q g 0 C C e 0 b 0 g 0 p p
Define the positive 1-cells f = vf 0 w and g = vg 0 w, and the 2-cell F = vF 0 w. The dotted 1-cells are not positive in general, for example if Supp(c) intersects Supp(a) or Supp(b). However, the 1-cell f is positive, so that it is a 0-composite f = l 1 0 • • • 0 l p of rewriting steps. As a consequence, we have the chain of inequalities u s(l 1 ) • • • s(l p ) e. Since we have λ = 0 and u / ∈ Supp(c) by hypothesis, the inequality λu + c λs(l i ) + c holds for every i, so that the λf + c = (λl 1 + c) 1 • • • 1 (λl p + c) satisfies the hypotheses of Lemma 7.5.1. This gives f 1 , h and G. We proceed similarly with the 1-cell λg + c to obtain g 1 , k and H. Finally, we apply the induction hypothesis on (h, k), since λu + c λe + c, to get f 2 , g 2 and I.

Theorem (Squier's theorem for algebras). Let X be a convergent left-monomial 1polygraph, and Y be an extension of

K X . If X is Y-convergent, then Y is acyclic. In particular, if Y contains a 2-cell b h 1 1 F Õ % a f H H g F F d c k d d
for every critical branching (f, g) of X, with h and k positive 1-cells of K X , then Y is acyclic.

Proof. The proof of the first assertion is almost identical to the one of Proposition 3.2.4. The only difference is that, here, we have to invoke Lemma 7.3.2, to factorise a 1-cell f of K X into a composite f = g 1 0 h - 1 0 • • • 0 g p 0 h - p where each g i and h i is positive. where λ = 0, 1 is a fixed scalar. The algebra A admits the presentation X = (x, y, z | α, β), with α : yz → -x 2 and β : zy → -µx 2 , and where µ = λ -1 . The deglex order generated by z > y > x satisfies yz > x 2 and zy > x 2 , proving that X terminates. However, X is not confluent. Indeed, it has two critical branchings

-x 2 y yzy αy o o yβ G G -µyx 2 and -µx 2 z zyz βz o o zα G G -zx 2
and neither of them is confluent, because the monomials x 2 y, yx 2 , x 2 z and zx 2 are reduced. The adjunction of γ : yx 2 → λx 2 y and δ : zx 2 → δµx 2 z gives a left-monomial 1-polygraph Y that also presents A, and that also terminates, because of yx 2 > x 2 y and zx 2 > x 2 z. Moreover, each one of the four critical branchings of Y is confluent: 7.6. P K 7.6.1. Collapsing schemes. Let X be an ∞-polygraph, and Y be a graded subset of X. A collapsing scheme of X onto Y is an injective graded partial map ϕ : X → X of degree 1 such that: (i) as a graded set, X admits the three-block partition X = im(ϕ) Y dom(ϕ), (ii) for every x in dom(ϕ), the boundary of ϕ x satisfies ∂(ϕ x ) = λx + a, where λ is a nonzero scalar, and a is an n-cell of K X such that x does not belong to the set Cell(a) of n-cells of X that appear in a, (iii) putting x ϕ y, for all x in dom(ϕ) and y in Cell(∂(ϕ x )), defines a wellfounded order on the cells of X. If ϕ is a collapsing scheme of X onto Y, and x ∈ dom(ϕ),with ∂(ϕ x ) = λx + a, we put x = -1 λ a. We refer to [95, §5.3] for the proof of the following result, and to Examples 7.6.8 and 7.6.9 for illustrations: 7.6.2. Theorem. Let X be an ∞-polygraph, Y be a graded subset of X, and ϕ be a collapsing scheme of X onto Y. Setting, for every n 1 and every n-cell x of Y, s(x) = π(s(x)) and t(x) = π(t(x)), 7.6.6. Koszul algebras. All the notions studied so far can be generalised to the case of graded algebras by replacing the categories Vect and Alg by their graded versions Vect gr and Alg gr . Given a fixed map ω : N + → N + , we say that a graded ∞-polygraph X is ω-concentrated if each graded set X n , for n 0, is concentrated in degree ω(n + 1). Fix N 2, and define N : N + → N + by N (2p) = Np and N (2p + 1) = Np + 1. An N-homogeneous algebra A is said to be Koszul if there exists a resolution M * A of A by projective graded A-bimodules such that each M n is generated by M ( N (n)) n . From Theorem 7.6.5, we deduce the following conditions for an algebra to be Koszul or not: 7.6.7. Proposition. Fix N 2, and let A be an N-homogeneous algebra.
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(i) If A admits an N -concentrated polygraphic resolution, then A is Koszul.

(ii) If A admits a quadratic convergent presentation, then A is Koszul.

(iii) If A admits a polygraphic presentation X such that, for some n 1, X n is N -concentrated but

X (i)
n has strictly more elements than X (i)

n+1 for some i > N (n + 1), then A is not Koszul. 

G G Ñ Ñ c c ~c c | | 1 1 q q 1 1 y y c c G G 1 1 b b
The identifications induced by ϕ are given by the dotted arrows, and the cells that belong to Sq(Sym(x, y, z)) are boxed. Let us explain how these boxed cells and their boundary are obtained.

In the figure, all the cells belong to the standard polygraphic resolution. The six 2-cells of the figure correspond to all the permutations of the generators x, y and z. But, among these 2-cells, only one is critical, z|y|x, all the other ones being subcritical: for example, y|z|x is subcritical because y|z is reduced. Now, in the standard polygraphic, the source of z|y|x is z|y ⊗ x 0 yz|x.

The 1-cell z|y is critical, but yz|x is supercritical, because yz has length 2. So, to obtain the source of z|y|x in Sq(Sym(X)), we have to apply to it the functor induced by the collapsing scheme ϕ, replacing yz|x by the rest of the boundary of y|z|x, which is

(y|z) -⊗ x 0 y ⊗ z|x 0 y|xz.
Among the 1-cells involved in this last composition, only z|x is critical: y|z is subcritical, and thus will be collapsed to an identity, while y|xz is supercritical, and thus must also be iteratively replaced. The process continues until there remains only critical cells, which is guaranteed by the fact that ϕ is a collapsing scheme.

Finally, applying Proposition 7.6.7 to the polygraphic resolution so obtained, we recover the Koszulness of the symmetric algebra. In fact, a detailed study shows that the complex given by Theorem 7.6.5 applied to Sq(Sym(x, y, z)) is, up to the sign of the differential, the usual Koszul complex of the symmetric algebra, see [ This 1-polygraph is left-monomial and convergent, and Theorem 7.6.4 gives a polygraphic resolution of the exterior algebra with one n-cell x n | • • • |x 0 for each sequence x n • • • x 0 in X. For example, the boundary of a 3-cell y|y|x, for x < y, is given by the following collapsing: The first research direction concerns the theoretical setting of Squier theory: higher categories, polygraphs, and rewriting theory. Here, the goal is to look for more general definitions of higher categories that encompass the maximum of variants (shapes of cells, strictness, with inverses or not, with an underlying algebraic structure or not, the latter being strict or not), with a corresponding notion of polygraphs and theory of rewriting.

-x ⊗ y ⊗ x -x|y ⊗ x | | -x ⊗ y|x

Higher categories in categories of monoids.

With Marcelo Fiore, we currently explore a new point of view on higher categories. Our starting observation is that spans internal to monoids in a monoidal category are equipped with two products, span composition, and another one induced by the monoid product, and these two products satisfy an interchange law. Thus, these spans form a duoidal category, as defined in [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF] under the name of 2-monoidal category: a category equipped with two compatible monoidal structures. In particular, 2-categories are duoids in a duoidal category of 2-globular objects, iterated spans form an n-oidal category, and internal n-categories are n-oids in an n-oidal category of n-globular objects. This leads to a new definition of internal n-categories, itself inducing a definition of polygraph for such higher categories. This point of view applies to monoids, monoidal categories, and associative algebras, but also to operads, Lawvere theories, and higher-order theories like the λ-calculus, when formulated in the spirit of [START_REF] Fiore | Abstract syntax and variable binding[END_REF]. Thus, we can study polygraphic resolutions of symmetric operads and algebras over them, as started in collaboration with Emily Burgunder, Bérénice Delcroix-Oger and Joan Millès, or of objects like the λ-calculus, which is a common project with Marcelo Fiore and Damiano Mazza to bring a new light on standardisation theory [START_REF] Gonthier | An abstract standardisation theorem[END_REF]. Another requirement to develop a general Squier theory is to find a model structure on the resulting higher categories; a preliminary exploration with Dimitri Ara has shown that the canonical model structure on higher categories (internal to sets) should transpose to higher categories internal to categories of algebras over a projective sketch, in the same way as it was transposed to higher groupoids in [START_REF] Ara | The Brown-Golasiński model structure on strict ∞-groupoids revisited[END_REF]. 8.1.2. Weakening higher categories. All the higher categories considered in this document are strict: the relations satisfied by the composition hold strictly, and so do the ones of the ambient algebraic structure (monoid or algebra). The motivation for considering weakened versions is that they should produce cofibrant approximations that would be excellent candidates for formalisations of algebraic objects, for example as higher inductive types in type theory. Weakening all the relations at the same time is too ambitious, but it seems possible in a progressive manner. First, relaxing the ambient algebraic structure relies both on a better combinatorial understanding of the globular Gray tensor product of higher categories (work in progress with François Métayer), and on a computation of all the coherences of the algebraic structure, such as all associahedra for associative structures. Next, before totally relaxing the axioms of higher categories, one should consider semistrict versions, as Simon Forest has started to explore in his PhD thesis [START_REF] Forest | Coherence of Gray Categories via Rewriting[END_REF]. A complete weakening may require a totally different point of view, such as the one provided by homotopy type theory: in his PhD thesis, Antoine Allioux explores ways to formalise weak monoids in homotopy type theory, a first step in that direction.

Controlling the shapes of cells.

Following observations by Maxime Lucas, I want to explore a different description of globular, simplicial and cubical objets in a category that is based on the symmetry groups of the cells of various dimensions, rather than on the explicit data of their face maps. In such a formulation, the globular n-cells would correspond to the Coxeter type A n 1 , the simplicial ones to A n , and the cubical ones to B n . This should permit to control the shapes of cells by a parameter (the Coxeter types in all dimensions) and to adopt a generic, shape-independent point of view on higher categories. This would lead to new notions of higher categories, with simplicial cells, for example, and an equivalence such as the one between globular and cubical higher categories [START_REF] Ali Al-Agl | Multiple categories: the equivalence of a globular and a cubical approach[END_REF] would follow from a connexion between the corresponding Coxeter types.

8.1.4.

A more abstract algebraic rewriting theory. In the case of associative algebras, the isomorphism between ∞-categories and ∞-groupoids internal to Alg shows that major obstructions may arise when trying to develop a rewriting theory for a given algebraic structure. For associative algebras, we could circumvent this issue by introducing an adapted notion of rewriting step, but this does not seem to be the same for groups, or for algebras over a symmetric operad. Another point of view, still inspired by the case of algebras, would be to place ourselves directly in an ∞-groupoid X internal to a concrete category C, and trying to identity a set-theoretic subcategory of the 1-groupoid underlying X that will play the role of the positive 1-cells: for example, the positiveness could depend on a global order that, contrarily to the case of Gröbner bases or Poincaré-Birkhoff-Witt bases, needs not be total.

G S

The constructions presented in this document rely on convergent presentations. However, experience shows that finite convergent presentations are difficult to find for many interesting examples, and concrete computations of polygraphic resolutions are generally hard. Here, the general objective is to integrate methods from Garside theory to help on these two points.

Polygraphic resolutions from Garside families. In an almost completed work with

Matthieu Picantin, we use Garside families to compute more explicit polygraphic resolutions of monoids than the ones given by a generic convergent presentation. However, we use a different notion of polygraph: differential graded polygraphs, which generate quasifree differential graded algebras (dg-algebras for short) [START_REF] Jardine | A closed model structure for differential graded algebras[END_REF][START_REF] Livernet | Homotopie rationnelle des algèbres sur une opérade[END_REF]. This allows us to focus on the computation of the cells of the resolution, rather than on the bureaucracy involved by their globular description. As a result, given a monoid M with a Garside family X, we obtain a dg-polygraphic resolution of the algebra KM, with a simple description of the generating cells and of their boundary. Moreover, if M is atomic, we can contract the dg-polygraphic resolution into a smaller one. After abelianisation of these two resolutions, we obtain generalisations of the second and third resolutions of [START_REF] Dehornoy | Homology of Gaussian groups[END_REF]. The next step will be to translate these constructions into polygraphic resolutions in ∞Gpd(Mon), which will generalise the results of [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] in all dimensions, and to any monoid with a Garside family or any atomic monoid. This will require a better understanding of the shapes of n-cells generated by quadratic normalisations of class (4, 3), that we call n-silexes, starting with an heptagon in dimension 2, and a silex-looking polytope in dimension 3.

8.2.2.

The KGB completion procedure. As proved by Kapur and Narendran in [START_REF] Kapur | A finite Thue system with decidable word problem and without equivalent finite canonical system[END_REF], the existence of a finite convergent presentation of a monoid M depends on the generators: applying Knuth-Bendix completion procedure to Artin's presentation of B + 3 will never terminate, because it only adds relations and never changes the generators. As far as I know, only three proposals have been made to enhance completion procedures with such an ability. First, for term rewriting systems, Knuth and Bendix in [START_REF] Knuth | Simple word problems in universal algebras, Computational Problems in Abstract Algebra[END_REF] examine the variables that appear in the two normal forms of a nonconfluent critical branching; if they are not the same, they introduce a new generating symbol that only depends on the common variables. Second, Pedersen's morphocompletion was introduced in [START_REF] Pedersen | Morphocompletion for one-relation monoids[END_REF]: it tries to apply standard completion for a number of runs and, if confluence is not reached, backtracks and adds new generators to close the existing nonconfluent critical branchings. Third, with Philippe Malbos and Samuel Mimram, we observed in [START_REF] Guiraud | A homotopical completion procedure with applications to coherence of monoids[END_REF] that the generators of Garside's presentations for Artin monoids and of the column presentations of plactic and Chinese monoids generate all the quasicenters of all the parabolic submonoids, and we proposed to enhance completion by computing these. Still with Matthieu Picantin, we currently explore a fourth enhanced completion procedure, called KGB for "Knuth-Bendix with Garside inside". It originates in the result of [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF] asserting that every finite Garside family gives rise to a finite convergent presentation. Moreover, provided some mild hypotheses are satisfied, Garside families can be defined as generating families that are closed under simple operations such as common multiple and complement. The idea of the KGB procedure is to interleave the computations of a Garside family and of a convergent presentations, and practical experiments already validate the procedure on low-rank graded examples such as Artin monoids.

Generalising Garside theory.

Garside theory is a theory of normal forms in monoids, and also generalises in a straightforward way to categories [START_REF] Dehornoy | Foundations of Garside theory[END_REF]. But it seems that Garside theory could also be developed, in an abstract setting, for monoids in a monoidal category with some extra properties, such as being concrete. Doing so would give a totally new way to compute normal forms, and thus resolutions, for several monoidal structures such as pros, operads or Lawvere theories. The main question is not whether it is possible, but whether there is evidence that such objects could admit nontrivial Garside families. The first example that I wish to investigate, with Julien Ross, comes from the search for normal forms of quantum circuits with specific sets of gates: Clifford in [START_REF] Selinger | Generators and relations for n-qubit Clifford operators[END_REF] and CNOT+T in [START_REF] Amy | A finite presentation of CNOT-dihedral operators[END_REF]. In both cases, the computation of normal forms rely on the adjunction of extra redundant generators, sharing common properties with Garside families, such as forming a closed family with respect to complement and common multiple.

Convergence revisited.

As already mentioned, reaching convergence is hard for many interesting examples outside the world of monoids. The main issue is termination, which is a strong requirement, and serves in Squier theory for inductions on the length of the sequences of rewriting steps: weaker requirements could still allow this, like, for example, asking noetherianity of left or right-divisibility in the category U(X * ) obtained by identifying all parallel 1-cells of X * . At the same time, concrete examples usually satisfy a stronger property than confluence: two 1-cells with the same source have a minimal way, or at least a locally minimal way, to be completed into a 1-sphere. Said differently, in the category U(X * ), two 1-cells with the same source have at least a minimal common multiple. This stronger hypothesis would remove the need to consider negative cells when building an acyclic extension from critical branchings. So, using concepts central to Garside theory, like divisibility or minimal common multiples, to relax termination while strengthening confluence, seems to better fit concrete examples, and should produce an alternative notion of convergence that is more adapted to compute polygraphic resolutions.

P A

In [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF], we have shown how to obtain the first dimensions of polygraphic resolutions of Artin monoids. Moreover, further exploration seems to indicate that the corresponding complete polygraphic resolutions have the same cells as well-known CW complexes associated to Artin monoids and related to the K(π, 1)-conjecture, see e.g. [START_REF] Charney | Finite K(π, 1)s for Artin groups[END_REF]: the standard polygraphic resolution of B + (W) and its geometric realisation; Garside's polygraphic resolution and Deligne's complex; the unfolding [START_REF] Lafont | Polygraphic resolutions and homology of monoids[END_REF] of Artin polygraphic resolution and the universal covering of Salvetti's complex. Hence, we think that the K(π, 1)-conjecture is equivalent to the fact that any of the standard, Garside's or Artin's polygraphic resolution is also one for the Artin group B(W).

Concrete computations of polygraphic resolutions.

As already noted, the construction of the polygraphic resolution in [START_REF] Guiraud | Higher-dimensional normalisation strategies for acyclicity[END_REF] is not explicit enough to apply the contraction method of [START_REF] Gaussent | Coherent presentations of Artin monoids[END_REF] in higher dimensions. This is the main motivation behind my recent interest into Garside theory. Also, the standard resolution could be defined explicitly in [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF] in the case of associative algebras, thanks to the underlying linear structure, but formulas still have to be given in the set-theoretic case. Our planned exploration of the Gray tensor product of globular higher categories, with François Métayer, will provide a way to compute this standard polygraphic resolution. Then, a set-theoretic collapsing scheme should yield Garside's and Artin's polygraphic resolutions.

Geometric realisation of polygraphs.

It is well-known that strict higher categories do not model all homotopy types. Therefore, it is not possible to define a geometric realisation functor so that a strict higher category has exactly the same homotopical properties as its realisation. However, in a recent work on Simpson's conjecture [START_REF] Henry | Regular polygraphs and the Simpson conjecture[END_REF], Simon Henry has introduced a notion of regular polygraphs, that are sufficiently well-formed to admit a geometric realisation. Note that these regular polygraphs are almost the same as the ones defined independently and at the same time by Amar Hadzihasanovic [START_REF] Hadzihasanovic | A combinatorial-topological shape category for polygraphs[END_REF]. With Simon Henry, we conjecture that the three polygraphs that interest us in the case of Artin monoids are regular in his sense, and thus admit geometric realisations with the same homotopical properties: we plan to investigate this further, and to relate the resulting spaces to the corresponding known CW complexes.

Polygraphic resolutions of groups.

The concept of polygraphic resolution can be adapted to groups in a straightforward way: given a group G, a polygraphic resolution of G is a cofibrant approximation of G in the category of ∞-groupoids. Now, if M is a monoid and X is a polygraphic resolution of M, one can see X as an (∞, 0)-polygraph and wonder if it is also a polygraphic resolution of the enveloping group G(M) of M: this has no reason to be true in general, because the introduction of inverses may create spheres in the free ∞-groupoid over X that were not present in the free (∞, 1)-category over X. However, if all the previous steps are valid, then the K(π, 1)-conjecture says precisely that this is the case for M = B + (W). We know that every Artin monoid injects in the corresponding Artin group [START_REF] Paris | Artin monoids inject in their groups[END_REF], but the axiomatics of model categories do not permit to exploit that fact directly: an investigation of other respective properties of Artin monoids and groups, and of derived objects such as Artin dual monoids, is necessary to hope for further progress here.

A

Starting in 2008, my activity has shifted to the use of rewriting methods in effective algebra. However, I was interested before in the use of algebraic methods in theoretical computer science, and some research directions that I still would like to explore some day belong to that family.

8.4.1.

Beyond finite convergent presentations. Squier has proved in 1987 that, if the existence of a finite convergent presentation for a monoid implies the decidability of its word problem, the converse is not true. Then, in 1998, Otto, Katsura and Kobayashi showed an equivalence [START_REF] Otto | Infinite convergent string-rewriting systems and cross-sections for finitely presented monoids[END_REF]: a finitely generated monoid has a decidable word problem if, and only if, it admits a left-recursive convergent presentation; here, left-recursive means that the set of sources of the relations form a recursive language. Moreover, they showed that replacing left-recursive by a more strict condition, such as left-regular, breaks the equivalence again. This suggests several research directions: homological and homotopical invariants adapted to left-C convergent presentations, where C is a class of formal languages; a similar result for Lawvere theories, term rewriting systems and formal languages on trees; the exploration of left-regular convergent presentations, a good compromise between finite and left-recursive ones containing all known counterexamples of monoids with a decidable word problem but no finite convergent presentation: Kapur-Narendran, Squier, Lafont-Prouté.

Cohomology and complexity.

To conclude with a science-fiction research direction, the termination-by-derivation method of [START_REF] Guiraud | Présentations d'opérades et systèmes de réécriture[END_REF][START_REF] Guiraud | Termination orders for 3-dimensional rewriting[END_REF] has been later adapted into a tool for complexity analysis [START_REF] Bonfante | Intensional properties of polygraphs[END_REF][START_REF] Bonfante | Polygraphic programs and polynomial-time functions[END_REF]. This led to a characterisation of the complexity class FP in polygraphic terms: a function f is in FP if, and only if, there exists a polygraphic program X computing f and admitting a derivation d into a certain module P over X * . But, for a given algebraic object A, the first group H 1 (A, M) of the usual associated cohomology theory classifies the derivations of A into M. This suggests an interesting possible application of cohomological methods in complexity theory.

  (associativity) for all p-cells a, b and c of C such that (a, b) and (b, c) are p-cells of C k C, (a k b) k c = a k (b k c), (iv) (neutrality) for every p-cell a of C, s k (a) k a = a = a k t k (a), (v) (exchange) for every j < k, and all p-cells (a, a ) and (b, b ) of C k C such that (a, b) and (a , b ) are p-cells of C j C, (a k a ) j (b k b ) = (a j b) k (a j b ).
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 25 Internal (n, p)-categories. In an n-category C of C, for n 1, an n-cell a is called invertible if there exists an n-cell a -in C, of source t(a) and target s(a), such that the relations a n-1 a -= s(a) and a - n-1 a = t(a) are satisfied. For p n in N, an (n, p)-category of C is an n-category of C in which all k-cells are invertible for k > p.

  Fix a natural number n. The standard n-cell is the n-category E n with two k-cells e - k and e + k for every k < n, and one n-cell e n , plus all corresponding identities; the source and target maps of E n are given by s k (e) = e - k and t k (e) = e + k for every cell e of E n . With identities removed, the first three standard cells E 0 , E 1 and E

  where a k and b k are k-cells of C, for every k in {1, . . . , n}. If there exists such a decomposition where both a n and b n are identities, then C[x] is called a whisker of C. If C[x] is a context of C, and a is an n-cell of C[X] such that ∂a = x, for X an extension of C, we define the n-cell C[a] of C[X] as C where the n-cell x has been replaced by a. In particular, if D[y] is a context of C such that ∂D = x, the n-cell C[D] contains exactly one occurrence of y, so that (y, C[D]) is a context of C, denoted by C[D[y]]).

( ii )

 ii For every 1-sphere (a, b) and 1-cell c of C, the values of N(F, G, M) on the contexts (a, b) 0 c and c 0 (a, b) are given, on ϕ :

( iii )

 iii For every 1-sphere (a, b) and 2-cells f : a → a and g : b → b of C, the values of N(F, G, M) on the contexts f 1 (a, b) and (a, b) 1 g are given, on ϕ : F(a)×G(b) → M in V, by

  ii) for every critical branching b a f o o g G G c of Y p n , there exist normal forms b of b and c of c in Y p n such that either -b = c , -b > c and Y p+1 n contains an n-cell y : b → c , -b < c and Y p+1 n contains an n-cell y : c → b .

. 3 . 3 .

 33 The standard coherent presentation. Fix a category C. The standard coherent presentation of C is the (3, 1)-polygraph Std + (C) obtained by extension of the standard presentation of Example 2.4.5, with 3-cells ab c γ ab,c " B a b c γ a,b c B b
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 42 Lemma. Let C be an (n -1)-free n-category, and let X and Y be presentations of C. There exist (n + 1)-functors F : X → Y and G : Y → X and, for all n-cells a of X and b of Y , there exist (n + 1)-cells σ a : GF(a) → a and τ b : FG(b) → b

=⇒ ab and ab n c β n =⇒ ab n n 0 .

 0 and τ - b n A has (g, g ) as boundary. 3.4.4. Corollary. Let X and Y be Tietze-equivalent finite n-polygraphs, for n > 0. Then X admits a finite acyclic extension if, and only if, Y does. 3.4.5. Remark. The finiteness condition is necessary in Corollary 3.4.4. For example, let X be the 2-polygraph with one 0-cell, three 1-cells a, b and c, and two 2-cells ab α =⇒ ba and ac β =⇒ a. The polygraph X terminates (use the deglex order generated by a > b), and has no critical branching: Squier's theorem says that (X | ∅) is a finite coherent presentation of the monoid X presented by X. Now, consider the infinite 2-polygraph Y with the same cells as X up to dimension 1, and ba α The 2-polygraph Y is Tietze-equivalent to X, because β 0 = β and, for each n > 0, the 3-cell β n relates 1-cells that are equal in X: ab n c = b n ac = b n a = ab n . Termination of Y can be obtained with the deglex order generated by b > a, and Y has one critical branching, confluent, for each n 0:

3. 5 . 4 ..

 54 Example. As in Example 2.6.6, consider the 2-pro As of semigroups, presented by the 3-polygraph As 2 with one 2-cell and one 3-cell 7 W As already seen, As is convergent, with exactly one critical branching, yielding by Squier's theorem an acyclic extension of As with one 4-cell , filling Mac Lane's pentagon. The resulting (4, 2)-polygraph being a presentation of the (3, 2)-pro AsCat = ( | )
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 56 Proposition. The (4, 2)-polygraph MonCat is a coherent presentation of the 2-pro Mon of monoids. Proof. Denote by Mon the 3-polygraph underlying MonCat. The 2-pro Mon it presents is, indeed, the theory of monoids, in the sense that the 2-functors from Mon into any monoidal category C are exactly the monoids in C. To prove that Mon terminates, we consider the natural system N(F, * , N) on Mon * with values in Com, and the derivation d of Mon * into N(F, * , N) defined as in Example 2.6.6 on the 2-cell , extended with F( ) = 1 and d( ) = 0. The 3-polygraph Mon has five critical branchings. All of them are confluent, yielding, by Theorem 3.2.6, an acyclic extension of Mon with five 4-cells: the two 4-cells of MonCat, plus

2

 2 

=

  For example, for ω 1 , we define the 4-cell ζ of 44 denote 3-cells by the generating 3-cell of Mon they contain. As a consequence of this construction, we have s(ζ) = t(ζ) in MonCat. Then, we build the following diagram, relating the boundary of ω 1 (the inner triangle) to that of ζ (the outer triangle), thus proving that s(ω 1 ) = t(ω 1 ) also holds: See Proposition 2.3.3 in[START_REF] Guiraud | Coherence in Monoidal Track Categories[END_REF] for the cases of ω 2 and ω 3 . 3.5.7. Remark. The definition of monoidal category we have given is minimal, in the sense that both 4-cells of MonCat are required to get Mac Lane's coherence theorem. Indeed, assume that is sufficient. Let d 1 be the derivation of Mon into the trivial module given by d 1 ( ) = 1 and d 1 ( ) = d 1 ( ) = 0. Then d 1 (s( )) = d 1 (t( )) = 0. As a consequence, for every 4-cell Ω in Mon ( ), we have d 1 (s(Ω)) = d 1 (t(Ω)). Thus, if { } was an acyclic extension of Mon , we would have d 1 (A) = d 1 (B) for every 3-sphere (A, B) of Mon . But d 1 (s( )) = 1 and d 1 (t( )) = 0. Now, assume that is sufficient. Define the derivation d 2 of Mon into the trivial module by d 2

  Lemma 3.4.2 and Theorem 3.4.3 are transposed to identities among relations in §2.3 of [97], giving 3.6.4. Proposition. Assume that X and Y are Tietze-equivalent n-polygraphs, for n 1. (i) There exist n-functors F : X ab → Y ab and G : Y ab → X ab such that π Y F = π X and π X G = π Y , and, for all (n -1)-cells a of X ab and b of Y ab , there exist n-cells σ a : GF(a) → a and τ b : FG(b) → b in X ab and Y ab that are functorial in a and b. (ii) Assume that F, G and τ satisfy the previous conditions, and that B is a generating set for Π(X). Then F(B) τ Y is a generating set of Π(Y), where F(B) contains one element F(β) for every β ∈ B, and τ Y contains one element τ y = y n-1 τ b n-1 FG(y) - n-1 τ - b for every n-cell y : b → b of Y. (iii) If X and Y are finite, then Π(X) is finitely generated if, and only if, Π(Y) is finitely generated. Theorem 2.4.1 of [97] and Proposition 5.7.2 of [99] establish a correspondence between acyclic extensions of X ab and generators of Π(X). Their proofs are based on the following technical result: 3.6.5. Lemma ([97, Lemma 1.3.6]). Let C be an (n + 1, n)-category, and X be an extension of C. The following assertions are equivalent:

1 .

 1 Polygraphic resolutions in (∞, 1)Cat. In an ∞-category C, the ω-equivalence relation, denoted by ∼ ω , is defined by coinduction on the dimension: two n-cells a and b of C are ω-equivalent if there exist (n + 1)-cells f : a → b and g : b → a such that f n g ∼ ω 1 a and g n f ∼ ω 1 b . In the canonical (or folk) model structure on ∞Cat, defined in [138], the weak equivalences are the ∞-functors F : C → D satisfying (i) for every 0-cell x of D, there exists a 0-cell x of C such that F( x) ∼ ω x, (ii) for every n-sphere (a, b) of C, and every (n + 1)-cell f : F(a) → F(b) in D, there exists an (n + 1)-cell f : a → b in C such that F( f) ∼ ω f. The cofibrations of ∞Cat are the retracts of transfinite compositions of pushouts of the canonical inclusions S n-1

4. 2 . 2 .

 22 Homotopies. Let C and D be ∞-categories, and F, G : C → D be ∞-functors. A homotopy from F to G is a graded map C η -→ D of degree 1 that satisfies, writing η a for η(a), (i) for every 0-cell a of C, s(η a ) = F(a) and t(η a ) = G(a), (ii) for every n 1, and every n-cell a of C,

  the free abelian group generated by the pairs (b, c) of 1-cells of C such that t(b) = s(c) = x and bc = a. (ii) For every natural number n 1, the free natural system F C [X n ] is generated by one copy of the 1-cell x of C for each n-cell x of X. If a is a 1-cell of C, then F C [X n ] a is the free abelian group generated by the triples (b, x, c), denoted by b[x]c, made of an n-cell x of X, and 1-cells b and c of C, such that the composite bxc exists in C and is equal to a. The mapping of every 1

4. 6 . 2 .

 62 The reduced standard polygraphic resolution. Let C be a category. To simplify the example, assume that, if a composite 1-cell xy of C is an identity, then so are x and y. The reduced standard presentation of C is the 2-polygraph Std 2 (C) with the same 0-cells as C, one 1-cell a for each non-identity 1-cell a of C, and one 2-cell a|b : a b ⇒ ab for each pair (a, b) of composable non-identity 1-cells in C. Without the simplifying hypothesis on C, the target of a|b is replaced by 1 x if ab = 1 x . The 2-polygraph Std 2 (C) is reduced and convergent, and applying Theorem 4.3.3 extends it into a polygraphic resolution of C, denoted by Std(C) and called the reduced standard polygraphic resolution of C. For n 2, the n-cells of Std(C) are the a 1 | • • • |a n , such that each a i is a non-identity 1-cell of C and each (a i , a i+1 ) is composable. The source and target of the 3-cells of Std(C) are given by ab c ab|c " B a b c (a|b) c B b a(b|c) 2 R of its 4-cells, with the arrows of 3-cells removed, by

Theorem 5 . 5 . 5 .

 555 Let W be a Coxeter group. Denote by Gar 3 (W), the (3, 1)-polygraph obtained from Garside's presentation of B + (W) by adjunction of one 3-cell uv|w α uv,w 7

5. 2 . 1 .

 21 Pseudofunctors. Given 2-categories C and D, a pseudofunctor from C to D is a suitably weakened notion of 2-functor F : C → D, with a strict compatibility with the composition 1 , but only a weakened compatibility with the composition 0 . This compatibility is expressed by (i) an invertible 2-cell F a,b : F(a)F(b) ⇒ F(ab) of D, natural in a and b, for every 0

5. 2 . 6 .

 26 Lemma. Let C and D be 2-categories. The following assertions are equivalent: (i) The 2-categories C and D are pseudoequivalent, i.e. there exist pseudofunctors F : C → D and G : D → C, and pseudonatural isomorphisms GF 1 C and FG 1 D . (ii) For every 2-category E, there exists an equivalence of categories 2Cat ps (C, E) ≈ 2Cat ps (D, E) that is natural in E. Proof. Assume that C and D are pseudoequivalent. As a consequence, for all pseudofunctors H : C → E and K : D → E, we have HGF H and KFG K. Thus the functors 2Cat ps (F, E) and 2Cat ps (G, E), respectively mapping pseudofunctors K : D → E to KF and H : C → E to HG, form the required equivalence of categories.

5. 3 . 5 .

 35 Higher Nielsen transformations. We introduce higher-dimensional analogues of Nielsen transformations to perform replacements of cells in (3, 1)-polygraphs. The elementary Nielsen transformations on a (3, 1)-polygraph X are the following operations:(i) The replacement of a 2-cell or a 3-cell by a formal inverse.

5 . 4 . 3 .

 543 where A, B, C and D are the following 3-cells: Homotopical reduction. Let X be a(3, 1)-polygraph. A collapsible part of X is a triple Y = (Y 2 , Y 3 , Y 4 ) made of a family Y 2 of 2-cells of X, a family Y 3 of 3-cells of X,and a family Y 4 of 3-spheres of X , such that the following conditions are satisfied:

5 . 4 . 5 .

 545 defines, by wellfounded induction, a 3-functor π Y : X → X /Y. The homotopical reduction of X with respect to Y is the (3, 1)-polygraph denoted by X/Y and obtained from X by removing the cells of Y and their targets, and by replacing the source and target maps of X by their compositions with π Y . As a consequence, X/Y is Tietze-equivalent to X, and the free (3, 1)-category (X/Y) is isomorphic to X /Y. In practice, we consider triples Y = (Y 2 , Y 3 , Y 4 ) that are only collapsible up to a Nielsen transformation.Assume that X is a terminating 2-polygraph, with a fixed termination order . A homotopical completion-reduction of X is a (3, 1)-polygraph obtained by a homotopical reduction with respect to a collapsible part, applied to a homotopical completion of X. Theorems 3.2.6 and 5.3.3 imply 5.4.4. Theorem. Assume that X is a terminating presentation of a category C. Then, every homotopical completion-reduction of X is a coherent presentation of C. Example. In Example 5.4.2, we have obtained a coherent presentation Y of B + 3 by homotopical completion. We consider the collapsible part Z of Y consisting of the two 33-cells A and B, coherently adjoined with the 2-cells γ and δ during homotopical completion, and the 2-cell β : st ⇒ a that defines the redundant generator a. We have that ω 1 , ω 2 , A, B and β are collapsible (up to a Nielsen transformation), with respective targets C, D, γ, δ and a.

7 A 5 . 5 . 5 . 5 . 5 . 6 .

 7555556 v,w 7 W u|vw Then there are two possibilities: if u v w , the branching is confluent (generating the 3cell A u,v,w ), and, if u v w × , the branching is made confluent by adjunction of the 2-cell β u,v,w (generating the 3-cell B u,v,w ). The family β of 2-cells creates new critical branchings, each one being confluent, generating all the other 3-cells C, . . . , I, see [78, Proposition 3.2.1]. 5.5.4. Garside's coherent presentation. Let W be a Coxeter group. We call Garside's coherent presentation of B + (W), and denote by Gar 3 (W), the (3, 1)-polygraph obtained from Gar 2 (W) by adjunction of one 3-cell uv|w α uv,w all u, v and w of W + such that u v w. Theorem. For every Coxeter group W, the Artin monoid B + (W) admits Gar 3 (W) as a coherent presentation. Proof. We use homotopical reduction on the (3, 1)-polygraph of Proposition 5.5.3 with the following collapsible part: seven families of 3-spheres generated by the triple critical branchings, with targets the 3-cells C, . . . , I, and the family B of 3-cells, with target the 2-cells β, see [78, §3.2.2]. The result is Gar 3 (W), and we invoke Theorem 5.4.4 to conclude. Theorems 5.2.8 and 5.5.5 imply Corollary ([67, Theorem 1.5]). Let W be a Coxeter group. Then, for every 2-category C, the categories 2Cat ps (B + (W), C) and 2Cat( Gar 3 (W), C) are equivalent, and this equivalence is natural in C.

5 A

 5 3 (W), see the details in [78, §4.2]. For example, the 3-cells of X are the su|v α su,v a) s = d su or (b) s > d su = d suv and su = w 0 (s, d su ). Those 3-cells are collapsible up to a Nielsen transformation, with target the 2-cells: (a) α su,v or (b) α s,uv
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 35636 Higher classes. For p 3, we say that a quadratic normalisation (S, N) is of left-p-class n (resp. right-p-class n) if, for every u ∈ S p ,N(u) = N (p-1) 12[n] (u) (resp. N(u) = N (p-1) 21[n] (u)).We say that (S, N)is of p-class (m, n) if it is of left-p-class m and right-p-class n. Proposition 6.3.4 has a variant for the p-class, with a similar proof [63, Proposition 3.20]. Example. Consider the lexicographic normalisation (S, N) of Example 6.2.4. We saw in Example 6.3.2 that, for |S| 2, the minimal (3-)class is (3, 3). For every p 4 and for every u ∈ S p , the elements N [p-1] 212 (u) and N [p-1] 121 (u) of S * are well-ordered for the lexicographic order, hence N-normal. Thus (S, N) is of p-class (3, 3).

1 .

 1 The domino rule.

Propositions 6 . 1 .

 61 4.4 and 6.4.6 give the two directions of 6.4.7. Theorem. If (S, N) is a quadratic normalisation of class (4, 3), then the restriction N of N to S 2 is idempotent and satisfies N 212 = N 2121 = N 1212 . Conversely, if ϕ is an idempotent map on S 2 that satisfies ϕ 212 = ϕ 2121 = ϕ 1212 , there exists a quadratic normalisation (S, N) of class (4, 3) satisfying ϕ = N. Proposition. If (S, N) is a quadratic normalisation of class (3, 3) for a monoid M, then the associated 2

6. 5 . 4 .

 54 Corollary. Let (S | X) be a reduced quadratic 2-polygraph. Define Φ : S 2 → S 2 by Φ(u) = v if X contains a 2-cell u ⇒ v, and Φ(u) = u otherwise. Suppose that, for all r, s, t ∈ S, with rs not reduced, we have(i) if st is reduced, then Φ 12 (rst) is reduced, (ii) if st is not reduced, then Φ 1212 (rst) = Φ 212 (rst). Then (S | X) is convergent.6.5.5. Proposition. There exists a quadratic normalisation of class (4, 4) whose associated 2-polygraph does not terminate. Proof. The 2-polygraph X = x, y, y , y , z, z , z , t xy ⇒ xy , yz ⇒ y z , y z ⇒ y z , y z ⇒ yz, zt ⇒ z t is quadratic and reduced, but does not terminate, because of the following non-trivial closed 2-cell of X * : xyzt ⇒ xy zt ⇒ xy z t ⇒ xyzt.

  b, c | aba = bab, bcb = cbc, cac = aca + . This Artin monoid admits a minimal 16-element Garside family S, which are the vertices of the following diagram where arrows stand for right-divisibility:

(

  A, M) formed by an associative algebra A and a globular A-bimodule M such that M 0 = A and that satisfies the extra condition as 0 (b)+t 0 (a)b-t 0 (a)s 0 (b) = s 0 (a)b+at 0 (b)-s 0 (a)t 0 (b).

. 2 ) 7 . 2 . 4 .

 2724 If A is an algebra, and Bimod(A) is the category of A-bimodules, an n-globular A-bimodule is an object of nGlob(Bimod(A)). The category nGlob(Bimod) of n-globular bimodules is the one whose objects are pairs (A, M) formed by an algebra A and an n-globular A-bimodule M, and whose morphisms from (A, M) to (B, N) are pairs (f, g) made of a morphism f : A → B of algebras and a morphism g : M → N of bimodules, i.e. g(ama ) = f(a)g(m)f(a ) holds for all a, a ∈ A and m ∈ M. Theorem. Fix n ∈ N. The following categories are isomorphic:(i) The category nAlg of n-algebras.(ii) The category nGpd(Alg) of internal n-groupoids in Alg. (iii) The full subcategory of nGlob(Alg) whose objects are the n-globular algebras A that satisfy, for all k-cells a and b of A, with k 1, the relations ab = as 0 (b) + t 0 (a)b -t 0 (a)s 0 (b) = s 0 (a)b + at 0 (b) -s 0 (a)t 0 (b). (7.3) (iv) The full subcategory of nGlob(Bimod) whose objects are the pairs (A, M) such that M 0 is equal to A, with its canonical A-bimodule structure, and that satisfy, for all k-cells a and b of M, with k 1, the relation as 0 (b) + t 0 (a)b -t 0 (a)s 0 (b) = s 0 (a)b + at 0 (b) -s 0 (a)t 0 (b). (7.4) Proof. The first observation is that, if A is an n-algebra, a and b are k-cells of A, for k 1, then (7.2) and (7.1) imply ab = (a 0 t 0 (a))(s 0 (b) 0 b) = as 0 (b) 0 t 0 (a)b = as 0 (b) -t 0 (a)s 0 (b) + t 0 (a)b, and, symmetrically, ab = (s 0 (a) 0 a)(b 0 t 0 (b)) = s 0 (a)b 0 at 0 (b) = s 0 (a)b -s 0 (a)t 0 (b) + at 0 (b), so that (7.3) is satisfied. The second observation is that, in an n-globular algebra A that satisfies (7.3), the 0-composition defined by (7.1) automatically satisfies (7.2). Indeed, consider (a, a ) and (b, b ) of dimension at least 1 in A k A, and put x = t 0 (a) and y = t 0 (b). By (7.1), (a 0 a )(b 0 b ) = (a-x+a )(b-y+b ) = ab+ab +a b+a b -ay-a y-xb-xb +xy.

7. 5 . 4 .

 54 Example. From [176, §4.3], we consider the algebra A = x, y, z x 2 + yz = 0, x 2 + λzy = 0 ,

  Theorem 7.5.3 says that Y | F, G, H, I is a coherent presentation of A. Following the same steps as in Example 5.4.5, this coherent presentation can be reduced to (X | ∅) by eliminating H and I after examination of the critical 3-branchings of Y, and, then, eliminating F with γ and G with δ.

7. 6 . 8 .

 68 Example. Consider the symmetric algebra on a totally ordered set X, presented by Sym(x, y, z) = X y|x : yx → xy x<y∈X .The 1-polygraph Sym(X) is left-monomial and convergent, so that Theorem 7.6.4 applies to it: we obtain a polygraphic resolution Sq(Sym(X)) with one n-cellx n | • • • |x 0 for each sequence x n > • • • > x 0 in X.The boundary of these cells are obtained by collapsing the standard polygraphic resolution, through the collapsing scheme ϕ of Theorem 7.6.4. In the case of a 3-cell z|y|x, the cells required to understand the computation are drawn on the following figure:

95 , 7 . 6 . 9 .

 95769 Examples 6.3.2 and 7.1.4]. Example. Consider the exterior algebra on a totally ordered set X, presented by Ext(X) = X y|x : yx → xy x<y∈X , x|x : xx → 0 x∈X .

  As a consequence of Proposition 7.6.7, we recover the Koszulness of the exterior algebra.

  Let C be a category. For n ∈ N, with n = 0, we say that C is of finite n-derivation type (or that C is FDT n for short) if it admits a polygraphic resolution X such that X p is finite for every natural number p n. In particular, C is FDT 1 if it is finitely generated, FDT 2 if it is finitely presented, and FDT 3 if it is of finite derivation type. By definition, for every natural number n, FDT ∞ implies FDT n , and FDT n+1 implies FDT n . As an immediate consequence of Theorem 4.3.3, we obtain 4.5.2. Corollary. A category with a finite convergent presentation is FDT ∞ . Fix a category C. A C-module is a functor from C to the category Ab of abelian groups [166]. For n ∈ N, a C-module M is of homological type FP n , if it admits a partial resolution of length n by finitely generated projective C-modules

	99, Theorem 5.6.5].
	4.5. H
	4.5.1. Higher finite derivation type.

4.5.3. Modules of finite homological type.

  Being finitely generated, M is FP 1 , but it is not FP 2 . Indeed, first, observe that X is reduced and convergent, with no critical branching. As a consequence, Theorem 4.3.3 implies that X, seen as an (∞, 1)-polygraph, is a polygraphic resolution of M. Next, use Theorem 4.4.3 to obtain the free resolution F M [X]

is finitely generated. 4.6. E 4.6.1. Example. Consider the monoid M presented by the 2-polygraph X = a, b, t at n b α n =⇒ 1 , n ∈ N .

  Assume that C is a category, and that X and Y are (3, 1)-polygraphs. If X is a coherent presentation of C, and if there exists a Tietze transformation from X to Y, then Y is a coherent presentation of C.Proof. If X is a coherent presentation of C, then the (2, 1)-category X is a cofibrant approximation of C by Theorem 5.2.3. Moreover, if there exists a Tietze transformation from X to Y, then X and Y are Tietze-equivalent by Theorem 5.3.3, so that the (2, 1)-categories X and Y are equivalent. As a consequence, Y is also a cofibrant approximation of C and, by Theorem 5.2.3, Y is a coherent presentation of C.

5.3.4. Corollary.

  Fix a Coxeter group W. The Artin monoid associated to W is the monoid denoted by B + (W), with the same presentation as W except for the relations s 2 = 1. If u and v are elements of B + (W), we say that u is a divisor of v, or that v is a multiple of u, if there exists an element u in B by the canonical embedding (given by Matsumoto's theorem, see[START_REF] Geck | Characters of finite Coxeter groups and Iwahori-Hecke algebras[END_REF] Theorem 1.2.2]), then we also have u and u in W and u u . If two elements u and v of B + (W) have a common multiple, then they have a least common multiple, lcm for short[START_REF] Brieskorn | Artin-Gruppen und Coxeter-Gruppen[END_REF] Proposition 4.1].

.5.2. Artin monoids. + (W) such that uu = v. In that case, the element u is unique and called the complement of u in v [36, Proposition 2.3]; moreover, if v is in W, seen as an element of B + (W)

Corollary ([201, Proposition 4], [186, Theorem 2.17]).

  Fix a Coxeter group W, with generating set S. The monoid B + (W) admits, as a coherent presentation, Artin's presentation extended with all the 3-spheres of Art 2 (W) whose 1-source is a reduced expression of W I , where I ranges among the three-element subsets of S such that W I is finite. Let W be a Coxeter group W. Then, for every 2-category C, the categories 2Cat ps (B + (W), C) and 2Cat( Art 3 , C) are equivalent, and this equivalence is natural in C. Q
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. 5.6.4. Theorem. Fix a Coxeter group W, with a totally ordered set of generators S. The Artin monoid B + (W) admits, as a coherent presentation, the (3, 1)-polygraph Art 3 (W) made of Artin's presentation Art 2 (W), extended with one 3-cell Z r,s,t for all elements t > s > r of S such that the subgroup W {r,s,t} is finite, and whose shape depends only on the Coxeter type of W {r,s,t} :

  1 s 2 t 2 = xt 0 s 1 s 2 . Because s 1 s 2 is normal, we have s xt 0 s 1 = xs 1 t 1 . The latter being also normal, we deduce s xs 1 , so s 1 s 2 is normal. Finally, fix s, t, s , t ∈ S such that s t = N(st). By hypothesis, the relation st = s t holds in M, so s s t . Since s t is normal, we deduce s s , so (S, N) is left-weighted.

  If W is a Coxeter group, then the associated Artin monoid B + (W) has no nontrivial invertible element, and W injects in B + (W). The image of W in B + (W) is a Garside family, so Corollary 6.6.4 generalises the fact that the Garside generators of B + (W) induce a convergent presentation, as proved in Proposition 5.5.3. Moreover, if W is finite, then this Garside family is minimal. So, if W = S 3 , the Artin monoid B + (S 3 ) = B + 3 admits S 3 as a finite Garside family, and the corresponding quadratic normalisation is of minimal class

	6.6.6. Example.	
	• • • s m+n-1 m	.

  95, Proposition 1.2.3]. Fix n ∈ N. Taking C = Alg in §2.2.2 and §2.2.4 gives the categories nGlob(Alg) of n-globular algebras, and nCat(Alg), denoted by nAlg, of n-algebras.

	7.2.3. Higher associative algebras.

Note that the last condition implies that N is idempotent. An element u of S * satisfying N(u) = u is called N-normal. If M is a monoid, we say that (S, N) is a normalisation for M if

Assume that M is a monoid, S is a generating subset of M, and π : S * M is the canonical projection. If N : S * → S * is a length-preserving map, then (S, N) is a normalisation for M if, and only if, for all u, v ∈ S * , the following conditions hold [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF]Lemma 2.4]:

Moreover, normalisations (S, N) are is bijections with sections ι : M S * of π satisfying ι(u) u through the formulas [63, Proposition 2.6] N(u) = ιπ(u), and ι(x) = N(u), where u ∈ S * is any representative of x ∈ M.

Normalisations for non-graded monoids.

The definition of normalisation implies that, if (S, N) is a normalisation for a monoid M, then M is graded. To extend the notion to non-graded monoids, we say that, if (S, N) is a normalisation, an element e of S is N-neutral if

hold for every u in S * . If M is a monoid, we say that (S, N) is a normalisation mod e for M if e is an N-neutral element of S and M S | (N(u) = u) u∈S * , e = 1 + .

Normalisations mod e are further developed in [63, §2.2], and they are adapted to present filtered monoids. There, it is proved that normalisations mod e for a filtered monoid M correspond to normalisations for the graded monoid M × N, through the correspondence N(u) = N(u)e u -N(u) . So, there is no loss of generality for considering only the graded case in this presentation.

Quadratic normalisations.

A normalisation (S, N) is called quadratic if the following conditions hold for every u ∈ S * : (i) u is N-normal if, and only if, every length-two factor of u is, (ii) there exist natural numbers n and i 1 , . . . , i n 1 such that N(u)

If (S, N) is a quadratic normalisation for a monoid M, then the definition implies that N is idempotent and M S (N(st) = st) s,t∈S + .

Example.

Assume that S is a totally ordered set. For u in S * , define N(u) to be the element of S * obtained by permuting letters in u that is minimal for the lexicographic order. Then (S, N) is a quadratic normalisation for the free commutative monoid over S. Indeed, u ∈ S * is N-normal if, and only if, all its length-two factors are of the form st with s t, so (i) is satisfied. Moreover, (ii) holds, since every u ∈ S * can be transformed into N(u) by switching adjacent letters that are not in the correct order.

Quadratic normalisations and polygraphs.

A 2-polygraph is called quadratic if the sources and targets of its 2-cells are of length 2. Quadratic normalisations are related to normalising and confluent presentations of monoids by the following constructions, that are inverses of one another [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF]Proposition 3.7]:

(i) If (S, N) is a quadratic normalisation for a monoid M, then (S | X N ) is a quadratic, reduced, normalising and confluent presentation of M, where

for all s and t in S such that st is not N-normal. (ii) If (S | X) is a quadratic, reduced, normalising and confluent presentation of a monoid M, we obtain a quadratic normalisation (S, N X ) for M by putting

Note that the 2-polygraph associated to a quadratic normalisation does not always terminate, as shown in §6.5. For all r, s, t ∈ S, N 121 (rst) and N 212 (rst) are N-normal, so (S, N) is of class [START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF][START_REF] Aguiar | Monoidal functors, species and Hopf algebras[END_REF]. Moreover, for s < t, we find N 12 (tts) = tst and N 21 (tss) = sts, so (3, 3) is the minimal class of (S, N). 
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(ii) Assume that (S, N) is of left-class n. Then the previous point implies that N(u) is equal to N 12[n+1] (u) for every u ∈ S 3 , so (S, N) is of left-class n + 1 as well and, from there, it is of left-class m for every m n. For u in S 3 , the definition of normalisation and the assumption give (iii) If the minimal left-class of (S, N) is a finite number n, then the previous point implies that (S, N) is of right-class n + 1. Hence the minimal right-class p of (S, N) satisfies p n + 1 and, for symmetric reasons, we have n p + 1. 

(ii) of right-class n if, and only if,

(iii) of class (n, n) if, and only if,

Proof. (i) If (S, N) is of left-class n, then, for every u ∈ S 3 , Lemma 6.3.3 gives

Conversely, assume (6.1). For u ∈ S 3 , if n is odd, the idempotence of N and (6.1) imply

So N 12[n] (u) is N-normal for every u ∈ S 3 , which means that (S, N) is of left-class n. The proof is symmetric for n even.

(ii) The proof is obtained from the one of (i) by symmetry.

(iii) If (S, N) is of class (n, n), then (6.1) and (6.2) hold and imply (6.3). Conversely, assume (6.3) and let u ∈ S 3 . Apply (6.3) to u, N 1 (u) and N 2 (u), and use the idempotence of N 1 and N 2 to obtain

So (6.1) and (6.2) are satisfied.

But, by hypothesis, we have N(uv) = N(s) = s, so

We deduce that, for all 1 p < q m, N(s n+p-1 q s n+q-2 p ) = 1. But M has no nontrivial invertible element, so s q p = 1 for all 1 p m and n q < m + n. Similarly, we have N(s q-1 p t p-1 q ) = 1 for all 1 p m and 1 < q n, from which we obtain, in particular,

3), and N(u) and N(v) are N-normal, then t 1 is the first letter of both N(u) and N(v). So, we deduce, on the one hand, that t 1 = s 1 , and, on the other hand, that t left-divides t 1 since (S, N) is left-weighted, which concludes the proof that S is a Garside family.

There remains to prove N S = N. Since the two normalisations (S, N) and (S, N S ) are quadratic of class (4, 3), it is sufficient to prove that N(st) = N S (st) holds for all s, t ∈ S. Fix s, t ∈ S and put s t = N(st), so that s is the maximal left-divisor of st in M, and s t = st holds in M. Hence, if r ∈ S is a left-divisor of s t in M, then r is a left-divisor of s . By Corollary IV.1.31 of [START_REF] Dehornoy | Foundations of Garside theory[END_REF], this implies that N(st) is normal, i.e. N(st) = N S (st).

We end the chapter with consequences of the results given so far, giving a general setting for monoids to admit presentations such as those considered in §5.5 for Artin monoids and Garside monoids. We begin with the fact that a Garside family always induce a convergent presentation such as the one in the proof of Proposition 5.5.3: 6.6.4. Corollary. Let M be a left-cancellative monoid with no nontrivial invertible elements, and S ⊆ M be a Garside family. Then M admits, as a convergent presentation, the 2-polygraph with one 1-cell for each nontrivial element of S, and one 2-cell st ⇒ N S (st) for all nontrivial elements s and t of S such that st is not N S -normal. In particular, every Artin monoid admits a finite convergent presentation.

Proof. The first part of the result is a direct consequence of Theorems 6.5.3 and 6.6.3. The second part comes from Theorem 1.1 of [START_REF] Dehornoy | Garside families in Artin-Tits monoids and low elements in Coxeter groups[END_REF].

We refer to [START_REF] Dehornoy | Quadratic normalisation in monoids[END_REF]Proposition 6.15] for the following generalisation that every Artin monoid and every Garside monoid admits a Garside-like presentation: We refer to [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Theorem 1.3.3] for the rest of the proof. 7.2.5. Extensions of higher algebras. Fix a natural number n, and let A be an n-algebra. An extension of A is a set X equipped with maps s, t : X → A n such that, for every x in X, the pair (s(x), t(x)) is an n-sphere of A. If X is an extension of A, we write ≈ X the congruence relation on the parallel n-cells of A generated by s(x) ≈ X t(x) for every x ∈ X, and we call X acyclic if, for every n-sphere (a, b) of A, we have a ≡ X b. Every n-algebra A has two canonical extensions: the empty one, and n Sph(A), containing all the n-spheres of A.

For n 0, the category nAlg + of extended n-algebras is defined like nCat + in §2.3.3, replacing nCat by nAlg. Theorem 7.2.4 gives a simple construction for the free n-algebra functor (n -1)Alg + → nAlg, mapping an extended (n -1)-algebra (A, X) to an n-algebra A[X]. First, consider the (n -1)-globular bimodule associated to A, and extend it into an n-globular bimodule A[X] as follows. The n-cells of A[X] are the elements of the sum of the free A 0 -bimodule over X and of a copy of A n-1

quotiented by (7.4); the copy of A n-1 is used to define the identity map A n-1 → A[X] n . Thus, the n-cells of A[X] are the linear combinations of elements axb, for a and b in A 0 and x in X, and of an (n -1)-cell c of A, considered up to (7.4), with source, target and identity maps given by s(axb) = as(x)b, s(c) = c, t(axb) = at(x)b, t(c) = c, i(c) = c.

Now, define a product on cells of dimension above 0 as prescribed by (7.3), to equip A[X] with a structure of n-globular algebra. Finally, define the compositions by (7.1) to obtain the n-algebra

The quotient of A by X is the n-algebra denoted by A/X, and obtained by quotient of the n-cells of A by the congruence ≈ X .

Polygraphs for associative algebras.

For n a natural number, the category nPol(Alg) of n-polygraphs for associative algebras, simply called n-polygraphs in this chapter, and the free nalgebra functor from nPol(Alg) to nAlg, are defined by induction on n as in §2.4.1. We start with 0Pol(Alg) = Set, and, for n 1, we define nPol(Alg) using a pullback similar to (2.1), where (n -1)Alg and (n -1)Alg + replace (n -1)Cat and (n -1)Cat + . The category ∞Pol(Alg) of ∞-polygraphs, and the corresponding free ∞-algebra functor, mapping X to K X , are then obtained as limits. Thus, by construction, an ∞-polygraph X is a sequence

made of a set X 0 and, for every n 0, an extension of the free n-algebra

Fix n ∈ N, and let X be an n-polygraph. The algebra presented by X is the quotient algebra X = K X 0 /X 1 . When the context is clear, we denote by a the image of a 0-cell a of K X through the canonical projection. A monomial of K X is an element of X * 0 . The monomials of K X form a linear basis of the free algebra K X 0 , and, if a is a 0-cell of K X , we define the support of a as the set Supp(a) of monomials that appear in its decomposition in this basis.

Termination.

Assume that X is a set and that is a binary relation on the free monoid X * . We say that is stable by product if u u implies vuw vu w for all u, u , v and w in X * . If Y is a left-monomial extension of K X , we say that is compatible with Y if u v holds for every 1-cell y : u → a of Y and every monomial v ∈ Supp(a). The relation is extended to the 0-cells of the free algebra K X by putting a b if the following hold:

(i) Supp(a) \ Supp(b) = ∅, (ii) for every v in Supp(b) \ Supp(a), there exists u in Supp(a) \ Supp(b), such that u v. As a consequence, if u is a monomial and a is a 0-cell of K X , then u a holds if, and only if, u v holds for every v ∈ Supp(a). The relation on the 0-cells of K X corresponds to the restriction to finite subsets of X * of the so-called multiset relation generated by . See [10, §2.5] for the general definition, and a proof that is wellfounded on 0-cells if, and only if, it is so on monomials.

Let X be a left-monomial 1-polygraph. Define X as the smallest reflexive-transitive binary relation on X * 0 that is stable by product and compatible with X 1 . When the context is clear, we simply write for X . We say that X terminates if the relation X is wellfounded, i.e. if X is a wellfounded order, called the rewrite order of X.

Branchings and confluence.

Assume that X is a left-monomial 1-polygraph. Branchings and local branchings are defined as in §2.5.3. For a branching (f, g) of X of source a, put

A local branching is trivial if it is of one of the following three shapes:

(i) λ(f, f) + b, for a 1-monomial f : u → a of K X , a nonzero scalar λ, and a 0-cell b of K X , with u / ∈ Supp(b). (ii) (λf + µv + c, λu + µg + c), for 1-monomials f : u → a and g : v → b of K X , nonzero scalars λ and µ, and a 0-cell c of K X , with u = v and u, v / ∈ Supp(c). (iii) λ(fv, ug) + c, for 1-monomials f : u → a and g : v → b of K X , a nonzero scalar λ, and a 0-cell c of K X , with uv / ∈ Supp(c). After examination, nontrivial local branchings are of the form λ(f, g) + c, for 1-monomials f : u → a and g : u → b of K X such that (f, g) is nontrivial with monomial source u, for λ a nonzero scalar, and c a 0-cell of K X , with u / ∈ Supp(c). Such a nontrivial local branching is critical if λ = 1 and c = 0, and if it cannot be factored (f, g) = u(f , g )v in a nontrivial way. Note that every nontrivial local branching has a unique decomposition λu(f 0 , g 0 )v + c, with (f 0 , g 0 ) critical.

Confluence, local confluence and critical confluence are then defined as in §2.5.3.

Convergence.

Let X be a left-monomial 1-polygraph. We say that X is convergent if it is both terminating and confluent. In that case, every 0-cell a of K X has a unique normal form, denoted by a, such that a = b holds in X if, and only if, a = b holds in K X . Hence, if X is a convergent presentation of an algebra A, the assignment of each element a of A to the normal form of any representative of a in K X , written a by extension, defines a section A K X of the canonical projection, where A is seen as a 1-algebra with identity 1-cells only. The section is linear (the normal form of λa + µb is λ a + µ b), it preserves the unit (termination implies 1 = 1), but ab = a b in general. The completion procedure, developed by Buchberger for commutative Proof. Since X terminates, every 0-cell a of K X admits at least a normal form b, i.e. a reduced 0-cell b such that there exists a positive 1-cell f : a → b in K X . We obtain (7.6) by writing a = b + (a -b), and by observing that b belongs to Red(X), by hypothesis, and that a -b is in I(X), by Lemma 7.4.1.

(i) ⇒ (ii). By Lemma 7.4.1, if a is in I(X), then there exists a 1-cell f : a → 0 in K X . Since X is confluent, a and 0 have the same normal form, if any. And, since 0 is reduced, 0 is a normal form of a.

(ii) ⇒ (iii). Using (7.6), it is sufficient to prove that Red(X) ∩ I(X) is reduced to 0. On the one hand, if a is in Red(X), then a is reduced and, thus, admits itself as only normal form. On the other hand, if a is in I(X), then a admits 0 as a normal form by hypothesis.

(iii) ⇒ (i). Consider a branching (f, g) of X, with f : a → b and g : a → c. Since X terminates, each of b and c admits at least one normal form, say b and c respectively. Hence, there exist positive 1-cells h : b → b and k : c → c in K X . Note that the difference b -c is also reduced. Moreover, the 1-cell (f 0 h) - 0 (g 0 k) has b as source and c as target. This implies, by Lemma 7.4.1, that b -c also belongs to I(X). The hypothesis gives b -c = 0, so that (f, g) is confluent.

Monomial orders and Gröbner bases.

Let X be a set. A wellfounded total order on X * , whose strict part is stable by product, is called a monomial order on K X . If X is a left-monomial 1-polygraph, and is a monomial order on K X 0 that is compatible with X 1 , then X terminates: the order is wellfounded, and a X b implies a b for all 0-cells a and b. However, the converse implication does not hold, as illustrated by Example 7.4.7.

Let X be a set and be a monomial order on the free algebra K X . If a is a nonzero element of K X , the leading monomial of a is the maximum element lm(a) of Supp(a) for (or 0 if Supp(a) is empty), the leading coefficient of a is the coefficient lc(a) of lm(a) in a, and the leading term of a is the element lt(a) = lc(a) lm(a) of K X . Let I be an ideal of K X . A Gröbner basis for (I, ) is a subset G of I such that the ideals of K X generated by lm(I) and by lm(G) coincide.

Proposition.

If X is a convergent left-monomial 1-polygraph, and is a monomial order on K X 0 that is compatible with X 1 , then ∂(X 1 ) is a Gröbner basis for (I(X), ).

Conversely, let X be a set, let be a monomial order on K X , let I be an ideal of K X and G be a subset of I. Define G as the 1-polygraph with 0-cells X and one

where α i is a 1-cell of X, and u i and v i are monomials of K X . This implies lm(a) = u i s(α i )v i = u i lm(∂(α i ))v i for some i. Thus ∂(X 1 ) is a Gröbner basis for (I(X), ).

Conversely, assume that G is a Gröbner basis for (I, ). By definition, is compatible with G 1 , hence G 1 terminates, and I(G ) = I holds, so that G K X /I. Moreover, the reduced monomials of K G are the monomials of K X that cannot be decomposed as u lm(a)v with a and, for every n 0 and every n-cell x of X,

defines, by mutual induction, a structure of ∞-polygraph on Y and a morphism π : K X → K Y of ∞-algebras. Moreover, if X is a polygraphic resolution of an algebra A, then so is Y. 7.6.3. The standard polygraphic resolution. Let A = K ⊕ A + be an augmented algebra.

For n 1, define the vector space

Vertical bars are used to denote the innermost products of copies of A + , so that A (n) is made of the linear combinations of elements

) be the linear map from A (n) to A (n-1) that replaces the i th vertical bar, counting from the left, with a tensor (resp. the product of A + ). For example, we have

as d - i if j is odd, and as d + i if j is even. Assume that B is a linear basis of A that contains 1, and put B + = B \ {1}. Then, setting Std(B) n = B n+1 + and, for every

defines a polygraphic resolution of A, called the standard polygraphic resolution of A. The complete proof, see [START_REF] Guiraud | Convergent presentations and polygraphic resolutions of associative algebras[END_REF]Theorem 6.1.2], relies on the construction of the linear analogue of the contractions of §4.2.4, see [95, §5.2], given by σ

Assume that X is a convergent presentation of A. By Theorem 7.3.6, the set Red m (X) of reduced monomials of K X is a linear basis of A, so we obtain a polygraphic resolution Std

) for every 1 i n, the 1-cell u i-1 u i is not reduced, (iii) for every 1 i n, every proper left-factor of u i u i+1 is reduced. Let u = u 0 | • • • |u n be an n-cell of Std(Red m (X)) that is not critical, and let i be the minimal element of {0, . . . , n} such that u 0 | • • • |u i is not critical. We say that u is (i) i-subcritical if i 1 and u i-1 u i is reduced, (ii) i-supercritical if i = 0 (and, thus, u 0 > 1), or i 1 and u i-1 u i has a nonreduced proper left-factor.

If u is i-supercritical, then, u i-1 being reduced, there exists a proper factorisation u i = v i w i such that u i-1 v i it the shortest nonreduced left-factor of u i-1 u i , and we put δ(u) = (v i , w i ).

7.6.4. Theorem (Squier's polygraphic resolution). Let A be an augmented algebra and X be a reduced convergent left-monomial presentation of A. Define Sq(X) to be the graded subset of Std(Red m (X)) consisting of its critical cells, and ϕ : Sq(X) → Sq(X) as the graded partial map of degree 1 given by

Then ϕ is a collapsing scheme of Std(Red m (X)) onto Sq(X). As a consequence, Sq(X), equipped with the structure of ∞-polygraph induced by ϕ, is a polygraphic resolution of A.

Proof. First, ϕ induces a bijection between the i-supercritical n-cells and the (i + 1)-subcritical (n+1)-cells of Std(Red m (X)), with inverse given by ψ(u Finally, we check that the relation ϕ induced by ϕ is wellfounded, by proving that it is included into the wellfounded order defined by ). If u j u j+1 is not reduced, then u 0 • • • u j-1 vu j+2 • • • u n is not a proper submonomial of u 0 • • • u n because X terminates, so (ii) applies. If u j u j+1 is reduced, then (i) and (ii) fail, but (iii) applies, because u 0 | • • • |u i-1 critical implies that u k u k+1 is nonreduced for each k < i, so that j > i + 1 holds.

We obtain the analogue of Theorem 4.4.3 for associative algebras, referring to [95, Theorem 7.1.3] for a complete proof: 7.6.5. Theorem. Let X be an ∞-polygraph that presents an algebra A. Then the sequence

with µ(a ⊗ b) = ab, δ 0 [x] = 1 ⊗ x -x ⊗ 1, and, for k 0, δ k [α] = [s k-1 (α)] -[t k-1 (α)], is a chain complex in Bimod(A). Moreover, if X is a polygraphic resolution of A, then (7.8) is a resolution of A by free A-bimodules.