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6 CHAPITRE 1. INTRODUCTION

1.1 Sur l'organisation du mémoire

Je présente dans ce mémoire une sélection de mes travaux depuis ma prise de
poste au CNRS. Il est composé de trois parties qui suivent, globalement, un
ordre chronologique. Les deux premières parties portent sur la combinatoire
des mots, respectivement sur la conjecture de Dejean et sur l'évitabilité des
répétitions abéliennes. Toutes les questions abordées sont dans la continuation
des travaux de Thue, c'est-à-dire sur l'évitabilité de répétitions dans les mots. La
troisième partie expose deux résultats combinatoires que l'on peut rapprocher
à des problèmes de mots en dimension deux.

Les chapitres 5 et 6 sont des chapitres de synthèse et écrits pour l'occasion.
Les chapitres 3 et 10 correspondent à des manuscrits encore non publiés, et les
chapitres restants correspondent à des articles publiés.

La première partie est dédiée à la conjecture de Dejean, ainsi qu'à di�érentes
généralisations. Cette partie s'appuie sur les articles publiés [28, 2, 15], ainsi que
sur des résultats encore non publiés, comme en particulier le manuscrit [32].

Cette conjecture, énoncée en 1972 par Françoise Dejean [64], a connu beau-
coup d'intérêt en combinatoire des mots, jusqu'à sa démonstration complète en
2009, grâce au travail de plusieurs auteurs. Pour chaque taille d'alphabet, Dejean
a conjecturé son seuil de répétition, qui est la plus petite puissance fractionnaire
qu'un mot in�ni sur cet alphabet ne peut pas éviter.

Je présente la méthode de ma preuve des derniers cas (chapitre 2), qui est
ensuite utilisée pour prouver la conjecture d'Ochem, qui est une généralisation
stricte de la conjecture de Dejean (chapitre 3). Cette preuve de la conjecture
d'Ochem est également la seconde preuve connue pour la conjecture de Dejean
sur les grands alphabets, la première étant due à Carpi [49]. Les chapitres 2 et
3 présentent donc notamment une preuve complète de la conjecture de Dejean
pour toutes les tailles d'alphabets. Le chapitre 4 est dédié au seuil de répétition
�ni, c'est-à-dire à un renforcement de la conjecture où l'on veut limiter le nombre
de répétitions dont l'exposant est exactement le seuil de répétition limite. Les
chapitres 2, 3 et 4 correspondent respectivement aux articles [28], [32] et [2]. Le
chapitre 5, concluant cette partie, est une synthèse d'autres questions liées aux
mots de Dejean et au seuil de répétition, notamment sur le seuil de répétition
généralisé et le taux de croissance des mots de Dejean. J'y expose en particulier
des résultats que j'ai obtenus avec Roman Kolpakov [15].

L'idée clef du chapitre 2, qui sera réutilisée dans les chapitres 3 et 4, a
été de reprendre le travail de Moulin Ollagnier (qui avait lui-même formalisé
le travail de Pansiot), et de l'adapter à des mots morphiques plutôt qu'à des
mots purement morphiques. On se retrouve ainsi avec plus de degrés de libertés,
qu'il faut savoir gérer plus �nement lors des recherches informatisées, mais qui
permettent d'avoir des constructions plus petites, et facilement atteignables par
nos moyens de calculs. Puis, dans le chapitre 3, l'étude des similarités dans les
constructions trouvées par la machine a permis de déduire des mots morphiques
fonctionnant pour toutes les tailles d'alphabets.

La deuxième partie du mémoire est dédiée à l'évitabilité des répétitions
abéliennes, ainsi que leurs généralisations. Cette partie est basée sur les articles
[23, 24, 25, 31].

L'étude de l'évitabilité des répétitions abéliennes débute en 1957 avec des
questions d'Erd®s, où il demandait s'il est possible d'éviter les carrés abéliens



1.2. SUR L'AIDE DE L'ORDINATEUR 7

avec un alphabet de 4 lettres. Dekking a montré en 1979 qu'il était possible
d'éviter les puissances 4èmes abéliennes sur 2 lettres, et les cubes abéliens sur 3
lettres. La réponse positive à la question d'Erd®s, donnée �nalement par Kerä-
nen en 1992, a nécessité l'utilisation de l'ordinateur a�n de trouver une construc-
tion.

Le chapitre 6 rappelle les résultats de Dekking et de Keränen, puis pré-
sente des généralisations de ces questions : l'évitabilité des grandes répétitions
abéliennes, au travers des questions de Mäkelä, et l'évitabilité des répétitions
additives, par des questions de Justin, Pirillo et Varricchio. Avec Matthieu Ro-
senfeld, nous avons obtenu de nouveaux résultats sur les questions de Mäkelä,
et sur l'évitabilité des carrés additifs sur Z2 [24, 25]. Ce chapitre présente ces
résultats, sans donner les preuves, qui pourront être trouvées dans le mémoire
de thèse de Matthieu Rosenfeld [135].

Récemment, Karhumäki et al. [88, 98, 97] ont introduit une généralisation
de l'équivalence abélienne, appelée équivalence k-abélienne, qui fait un pont
entre l'équivalence abélienne et les répétitions usuelles. Puis Rigo et Salimov
[131] ont introduit une autre généralisation, incomparable avec l'équivalence k-
abélienne, appelée équivalence k-binomiale. Les questions d'évitabilité se sont
naturellement posées pour ces nouvelles notions. Le chapitre 7, basé sur l'article
[23], présente un algorithme permettant de décider, sous certaines conditions,
si un morphisme évite les puissances k-abéliennes, puis expose une construction
de mots in�nis binaires (resp. ternaires) interdisant des cubes 2-abéliens (resp.
carrés 3-abéliens). Du fait que la méthode utilisée est très similaire, ce chapitre
présente également des constructions de mots sans cubes additifs sur des alpha-
bets de taille 3. Le chapitre 8, reprenant l'article [31], expose quant à lui des
constructions de mots évitant des carrés et cubes 2-binomiaux. Ces résultats
sont, dans tous les cas, optimaux.

Finalement, la troisième partie du manuscrit porte sur deux problèmes com-
binatoires en dimension deux, et sont signi�catifs de l'orientation qu'ont pris
mes travaux de recherche ces dernières années. Dans le chapitre 9, on démontre
une conjecture de Chang de 1992, stipulant la taille minimum d'un ensemble
dominant d'une grille (article [10]). En�n dans le chapitre 10, on présente un
jeu de 11 tuiles de Wang apériodique, et on montre qu'il s'agit du plus petit
possible (article [11]).

Certains travaux que j'ai menés entre ma thèse et mon habilitation ne sont
pas représentés dans ces trois parties. En combinatoire des mots, on peut citer
les travaux liés à la densité minimum d'occurrences carrés dans un mot binaire,
et dont je vais reparler dans la suite de cette introduction [16, 19]. J'ai égale-
ment eu des résultats sur l'existence de mots self-su�es sans carrés [18], ou sur
la taille des classes de mots équivalents k-abéliennement [14]. En théorie des
graphes, j'ai publié plusieurs articles, souvent liés à des décompositions et dans
la continuation de mes travaux de thèse [12, 6, 9, 13, 1, 27, 8]. S'ajoutent à cela
de nouvelles bornes sur d'éventuels nombres parfaits impairs [21, 22, 20]. Une
liste de mes publications se trouve à la �n du manuscrit.

1.2 Sur l'aide de l'ordinateur

Le �l conducteur de ma recherche est la démonstration de théorèmes en com-
binatoire à l'aide de l'ordinateur, et beaucoup de ces résultats n'auraient été
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trouvés si la recherche informatique n'avait pas été correctement maîtrisée. Cer-
taines constructions de mots ont été trouvées après plusieurs jours ou semaines
d'exploration, généralement sur des systèmes parallèles. L'exploration de tous
les jeux de 11 tuiles de Wang (chapitre 10) a pris environ un an sur une centaine
de c÷urs. Un bon choix de langage, l'optimisation du code et sa parallélisation
était donc souvent des facteurs prédominants pour l'obtention du résultat (tous
les programmes qui ont générés des résultats de ce mémoire ont été codés en
C++). Je présente ci-après di�érentes méthodes que j'ai utilisées pour obte-
nir mes résultats, en particulier en combinatoire des mots. Certaines méthodes
n'apparaissent pas clairement dans mes articles, ou dans les chapitres qui vont
suivre, car les théorèmes proviennent souvent d'une construction, alors qu'une
di�culté souvent cachée, et qu'il n'est pas nécessaire de présenter pour prouver
le théorème, est de trouver cette construction. Ce petit inventaire permettra
aussi, je l'espère, de voir les liens et similitudes entre les di�érentes méthodes.

Résultats positifs. Les résultats positifs, c'est-à-dire la démonstration de
l'existence d'objets combinatoires possédant certaines propriétés, sont généra-
lement obtenus de manière constructive. Dans le cas des problèmes de com-
binatoire des mots, ces constructions sont souvent des mots morphiques (au-
trement dit, des points �xes de morphismes, ou des images de points �xes de
morphismes). Il faut, dans ce cas, di�érencier deux étapes pour l'obtention du
résultat. La première étape est généralement de chercher une construction can-
didate via une exploration par une méthode d'essais et erreurs, souvent agré-
mentée d'heuristiques. Une fois un candidat trouvé, c'est-à-dire un morphisme
dont le point �xe respecte la propriété sur un long pré�xe, la deuxième étape
est de prouver que ce point �xe, in�ni, ne contient e�ectivement aucun facteur
interdit. Cette deuxième étape doit généralement aussi être faite par ordinateur,
cette fois-ci par un algorithme de décision pour tester la propriété.

Ces deux étapes peuvent être de di�culté variable. Par exemple, dans le cas
de mots évitant les puissances abéliennes et k-abéliennes (chapitres 6 et 7), les
candidats sont généralement di�ciles à trouver, alors que les algorithmes de dé-
cision sont plutôt bien connus et compris. Citons que le morphisme de Keränen,
répondant à la question d'Erd®s, est de taille 85, et est le plus petit possible
parmi la classe des morphismes cycliques. C'est aussi pour cette raison que les
questions ouvertes de Mäkelä, qui demandent d'éviter les longues puissances
abéliennes, posent essentiellement un problème d'ordre calculatoire. D'un autre
côté, pour les puissances k-binomiales (chapitre 8), il est facile de trouver des
mots morphiques candidats, mais aucun algorithme de décision, ou méthode
générique, n'est connu. Ceci explique pourquoi, contrairement à la plupart des
autres résultats du manuscrit, les preuves du chapitre 8 sont spéci�ques, et non
automatisables.

Les recherches des candidats doivent souvent être agrémentées d'heuris-
tiques, qui dépendent, évidemment, fortement du problème. Il y a néanmoins
quelques techniques qui se sont montrées fructueuses à plusieurs reprises.

Si on cherche un mot in�ni évitant un ou des motifs, on peut commencer
à chercher un long mot véri�ant la propriété, par le biais d'une recherche ex-
haustive et un retour sur trace (backtrack). Parfois, ce long mot a déjà, ou
quasiment, la forme d'un mot morphique. Dans ce cas, une simple analyse du
mot nous donnera un morphisme candidat, qu'on pourra ensuite valider, soit à
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la main, soit par un algorithme de décision pour le problème. Entre autres, c'est
cette méthode qui nous a permis de trouver un mot morphique binaire ayant
une densité de carrés de 103

187 [16], qu'on a montré par la suite comme étant le mi-
nimum possible [19]. C'est également par cette méthode qu'on a trouvé certains
des morphismes du chapitre 4.

S'il ne ressort aucune construction morphique lors de l'analyse d'un long mot
dans le langage, l'étape suivante est d'explorer une large classe de morphismes,
et de tester si les points �xes ont la propriété voulue. Malheureusement, cette
recherche devient rapidement intraitable, même avec la puissance de calcul dis-
ponible actuellement. Si aucun morphisme simple ne donne de résultat, on doit
réduire l'espace de recherche à des classes de morphismes qu'on suppose être
prometteuses. Une possibilité est de limiter l'ensemble des images possibles à
des facteurs apparaissant souvent dans les longs mots trouvés aléatoirement avec
la propriété (ces mots aléatoires peuvent être trouvés en modi�ant la recherche
exhaustive par retour sur trace, en �xant un ordre arbitraire sur les lettres de
l'alphabet à chaque étape d'extension). On peut également limiter l'ensemble
des images à des mots possédant de longs pré�xes communs. Ces techniques ont
par exemple été fructueuses lors de la recherche du nombre minimum de carrés
k-abéliens inévitables dans un mot binaire (théorème 7.5).

Si l'on cherche des morphismes où une ou des lettres peuvent avoir plusieurs
images possibles (ce que certains auteurs appellent des substitutions), cela per-
met en outre de montrer que le langage possède un nombre exponentiel de mots,
et d'avoir une borne inférieure sur le taux de croissance du langage (c'est-à-dire
lim supn→∞

n
√
f(n) où f(n) est le nombre de mots de taille n dans le langage).

On peut voir un exemple de cette technique dans la section 7.3.2, où je donne
une borne inférieure sur le taux de croissance des mots sans cubes additifs sur 3
lettres. Malheureusement, ces bornes sont généralement assez éloignées des taux
de croissance réels des langages.

Il existe également des preuves non constructives d'existence de mots in�-
nis, en utilisant notamment le lemme local de Lovász ou la compression d'en-
tropie. Des méthodes utilisant des séries entières permettent également, non-
constructivement, de donner des bornes inférieures sur des taux de croissance.
Les résultats du théorème 5.6 illustrent une autre méthode non constructive,
due à Kolpakov, qu'on a appliquée aux mots de Dejean. Grossièrement, l'idée
de cette méthode est de calculer le nombre des mots du langage L+ interdisant
les répétitions de taille au plusm. Ce taux de croissance peut être calculé exacte-
ment, comme expliqué ci-après, en utilisant un graphe de Rauzy. Puis on trouve
une borne supérieure sur le nombre de mots du langage L−, possédant unique-
ment des répétitions de taille strictement supérieure à m. Ce second nombre
étant rapidement négligeable comparativement au premier, on arrive à trouver
une borne inférieure pour le nombre de mots dans le langage L = L+ \ L−. On
peut noter que la méthode de Kolpakov peut, parfois, donner de bien meilleurs
résultats que la méthode des substitutions, et se rapprocher étroitement du taux
de croissance du langage, si ce taux de croissance n'est pas trop proche de 1.

Résultats négatifs. Les résultats négatifs, c'est-à-dire de non-existence de
mots in�nis avec une certaine propriété P, sont généralement prouvés grâce à
une recherche exhaustive et un retour sur trace. On sait que si L est l'ensemble
des mots �nis avec la propriété héréditaire P, alors l'ensemble L des mots in�nis
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avec la propriété P est non vide si et seulement si L est in�ni. Il su�t donc de
parcourir exhaustivement tous les mots de L, et de véri�er que ce langage est
�ni pour montrer qu'aucun mot in�ni possède la propriété P. Un exemple dans
le manuscrit est le théorème 6.11.

Là encore, des techniques permettent de diminuer considérablement l'espace
de recherche. Une première idée est de chercher uniquement à construire un
mot minimal via l'ordre lexicographique de L. Ainsi, dans l'exploration des
mots de L, on coupera la branche courante de l'exploration dès qu'un su�xe
propre du mot est plus petit que le pré�xe de même taille. De plus, si les lettres
de l'alphabet jouent un rôle symétrique, on peut également couper la branche
quand un su�xe est plus petit que l'image du pré�xe par une permutation des
lettres de l'alphabet.

Une autre approche, complémentaire, est d'interdire en plus dans le langage
les mots v tels qu'il n'existe pas de u, u′ ∈ Σk avec uvu′ ∈ L pour un certain k,
qu'on essayera de prendre le plus grand possible. Cela revient à supprimer des
sommets dans le graphe de Rauzy associé au langage L. Cette étape peut être
répétée tant que des sommets du graphe sont supprimés.

Ces méthodes de recherche exhaustive peuvent aussi être utilisées pour prou-
ver des bornes sur les densités de lettres ou d'occurrences. Mais en général, on
obtiendra de meilleurs résultats avec la technique présentée dans la suite, via
les matrices de transfert sur les graphes de Rauzy non uniformes.

Matrices de transfert. En�n, je peux citer dans mes travaux l'utilisation
récurrente de méthodes de matrices de transfert, ou des méthodes apparentées.
En combinatoire des mots, les méthodes de matrice de transfert permettent
d'obtenir di�érents types des bornes. Calculer le rayon spectral de la matrice
d'adjacence du graphe de Rauzy est un moyen classique d'avoir une borne supé-
rieure sur le taux de croissance d'un langage factoriel. C'est en particulier avec
cette méthode que les bornes supérieures du théorème 5.6 ont été obtenues.

Dans l'algèbre tropicale (min,+), l'équivalent du rayon spectral est le cycle
mean maximum. L'utilisation des matrices de transfert dans l'algèbre tropicale,
moins courante, permet d'obtenir des bornes sur les occurrences de facteurs, ou
les densités de lettres dans les mots in�nis. Cette méthode peut être utilisée
pour démontrer la partie négative du théorème 5.1, alors que la partie positive
est démontrée par construction. C'est également cette méthode qui a permis
de prouver que la densité minimum de carrés dans un mot binaire est 103

187 , en
l'utilisant sur la matrice d'adjacence d'un graphe de Rauzy non uniforme [19].
On peut noter que contrairement à la recherche exhaustive présentée précédem-
ment, cette méthode de matrice de transfert dans l'algèbre tropicale permet,
parfois, d'obtenir des bornes exactes, autrement dit des bornes atteintes par les
constructions. Le chapitre 9 montre une autre utilisation de matrices de trans-
fert dans l'algèbre tropicale, qui a permis de trouver la taille d'un ensemble
dominant minimum dans une grille.

1.3 Sur l'orientation de mes recherches

En combinatoire des mots. Parmi les questions sur lesquelles j'ai travaillé
en combinatoire des mots, et qui sont restées ouvertes, certaines me captivent
particulièrement.



1.3. SUR L'ORIENTATION DE MES RECHERCHES 11

Les premières sont celles liées aux questions de Mäkelä, c'est-à-dire limiter
le nombre de répétitions abéliennes inévitables. Malgré nos progrès récents, il
semble qu'il reste du chemin à parcourir avant de pouvoir y répondre exac-
tement. Nous avons un schéma de preuve qui pourrait être utilisé, mais des
constructions candidates semblent loin d'accès avec nos moyens de calculs. Il
faudrait donc trouver des nouvelles méthodes et heuristiques spéci�ques au pro-
blème. De plus, il n'existe pas, actuellement, de construction simple pour obtenir
un mot sans carrés abéliens sur 4 lettres. À ma connaissance, les seules pro-
viennent de Keränen, et de variations dues à Carpi. Nos nouvelles méthodes de
preuves permettraient théoriquement d'en trouver d'autres, basées sur des mots
morphiques, mais il faudra là encore réussir à dompter l'explosion combinatoire.

D'autres questions sont liées aux méthodes non-constructives, à leurs généra-
lisations et uniformisations. Un cas d'école est la question du Thue list coloring,
dont la réponse peut sembler triviale, mais qui résiste toujours. Il s'agit de savoir
si parmi toute séquence in�nie d'ensembles de taille 3, c'est-à-dire un mot in�ni
L sur l'alphabet

(N
3

)
, on peut toujours extraire un mot w tel que w[i] ∈ L[i]

pour tout i, et tel que w ne possède pas de carré. Une solution constructive
peut di�cilement être envisagée, du fait même de la formulation du problème.
Il semble que le cas le plus contraignant est de choisir des listes identiques, mais
on sait dans ce cas que la réponse est vraie, par le résultat de Thue. En utili-
sant la compression d'entropie, on peut montrer que la réponse est vraie si les
listes sont de taille 4, mais la taille 3 semble hors de porté par cette méthode.
Un problème est que la compression d'entropie ne considère pas les di�érentes
possibilités d'intersections entre les listes consécutives. À l'opposé, la méthode
de Kolpakov est très e�cace car elle considère toutes les possibilités de facteurs
de petite taille qui peuvent apparaître. Ainsi, cette méthode nécessite beaucoup
de calculs, et ne peut pas être utilisée directement sur le problème des listes du
fait du nombre démesuré de cas à considérer. Un challenge serait de dévelop-
per une méthode non-constructive adaptable, en essayant de combiner ces deux
méthodes.

En�n, je ne pourrais terminer cette liste sans parler du fort attrait que j'ai
pour les conjectures liées au mot d'Oldenburger, usuellement connu sous le nom
de séquence de Kolakoski. J'ai produit de nouvelles bornes sur les densités, de
nouvelles conjectures et relations avec des codes bi�xes de mots lisses, dont
certaines peuvent être trouvées en ligne [26].

Sur les pavages et les problèmes en deux dimensions. J'ai commencé
à m'intéresser à des questions de pavages lors de mon a�ectation au laboratoire
J.-V. Poncelet à Moscou avec Thomas Fernique [4]. Plusieurs travaux ont suivi,
dont certains se sont montrés fructueux, comme l'obtention du jeu de 11 tuiles
de Wang apériodique, et plus récemment la recherche exhaustive de tous les
pentagones qui pavent le plan.

En 1996, Kari a proposé un nouveau type de construction de jeux de tuiles
de Wang apériodiques. Jusque-là, les jeux de tuiles apériodiques connus étaient
construits sur des principes de substitutions. Dans la construction de Kari, le jeu
est séparé en deux ensembles A et B, codant respectivement une multiplication
(des densités sur les lignes) par des rationnels α et β. La superposition des dif-
férentes couches de A et B forment un mot Sturmien, impliquant l'apériodicité.

Un des espoirs de notre recherche exhaustive était de trouver de nouveaux
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types de constructions. Premièrement, on conjecture qu'il existe une preuve
directe de l'apériodicité de notre jeu de 11 tuiles, la preuve actuelle étant assez
technique. En e�et, il semble que le jeu (après une transformation) peut être
séparé en deux ensembles A et B, codant chacun une addition, pour les densités
sur les lignes admissibles dans un pavage in�ni, de ϕ − 1 et ϕ − 2, où ϕ est le
nombre d'or. Ceci prouverait directement que les superpositions des di�érentes
couches de A et B forment le mot de Fibonacci, qui est apériodique.

Néanmoins, notre jeu de 11 tuiles est assez proche d'un jeu de tuile substi-
tutif. Il serait intéressant de continuer nos recherches, prioritairement sur les
jeux de 12 tuiles, pour essayer de trouver des jeux de tuiles apériodiques qui ne
suivent pas les constructions classiques (c'est-à-dire ni substitutifs, ni du type
de Kari).

Je m'intéresse également au problème de la détermination du taux de crois-
sance (ou de l'entropie) de certains sous-shift de type �ni (SFT) en deux dimen-
sions. En une dimension, cela revient à calculer le taux de croissance de langages
avec un nombre �ni de facteurs interdits, qui est un problème classique ; comme
discuté précédemment, le rayon spectral du graphe de Rauzy nous donne la
réponse.

Mon intérêt pour ce problème est venu de deux questions a priori éloignées.
La première est l'étude du nombre de mots de Dejean sur k lettres, quand k
tend vers l'in�ni. Ce problème mène naturellement à des calculs d'entropies de
SFT en deux dimensions. Ce sujet sera évoqué en section 5.3.

La deuxième question provient de l'énumération d'ensembles de sommets
possédant une certaine propriété sur les graphes (il s'agit d'une branche de re-
cherche en théorie et algorithmique des graphes). Beaucoup de résultats sont
des bornes supérieures ou inférieures sur certaines classes de graphes, mais peu
de bornes exactes sont connues, ou alors sur des classes de graphes très spé-
ci�ques ayant souvent une décomposition en structure arborescente (treewidth
ou clique-width bornées). Les grilles ne possèdent pas de telles décompositions
arborescentes, et obtenir des valeurs exactes sur cette classe est donc souvent
un problème ardu.

La question m'a été posée sur le nombre d'ensembles dominants dans une
grille, alors qu'on venait de résoudre la question sur le taille du plus petit en-
semble dominant. Asymptotiquement, cette question peut également se traduire
par le taux de croissance d'un SFT en deux dimensions. Une question a priori
plus simple, mais de la même catégorie, est de trouver le taux de croissance du
nombre d'ensembles indépendants dans une grille. Ce taux de croissance peut
être vu comme un problème d'entropie dans un SFT en deux dimensions, qui
est connu comme le SFT de Fibonacci.

Il s'agit d'un problème qui se retrouve dans d'autres domaines, notamment
en mécanique statistique : il y est connu comme l'entropie du modèle hard square.
Peu de résultats de détermination d'entropies de SFT non triviaux en deux
dimensions sont connus, et la plupart des résultats proviennent de ce domaine
de la physique. L'un des plus fameux résultats dans ce domaine est celui de
Baxter, qui détermine l'entropie du modèle hard hexagon, qui correspond aux
ensembles indépendants dans une grille triangulaire. Un de mes objectifs est de
reproduire et de généraliser ces résultats de mécanique statistique.
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Retour aux graphes. Mes travaux sur les graphes, que j'ai commencé dans
le cadre de ma thèse, et qui portent majoritairement sur les décompositions de
graphes (comme des généralisations de la décomposition modulaire et la clique-
width) n'ont pas ou peu utilisé l'aide de l'ordinateur.

En tant qu'outil pour aider à prouver des théorèmes, l'ordinateur est gé-
néralement moins utilisé dans le domaine de la théorie des graphes que dans
les domaines de la combinatoire des mots et des pavages. Ceci est peut-être dû
aux faits d'avoir plus de di�cultés pour manipuler les graphes dans les langages
de programmation, et d'avoir souvent une explosion combinatoire plus di�cile à
gérer. Il semble aussi que les chercheurs en théorie des graphes sont, en moyenne,
plus réticents sur la validité des preuves faites à l'aide de l'ordinateur.

Paradoxalement, un des premiers exemples d'une grosse conjecture prouvée
avec l'aide de l'ordinateur est celle du théorème des 4 couleurs, par Appel et
Haken en 1977, disant que tout graphe planaire est 4-colorable.

Cette preuve, et beaucoup de preuves de théorèmes semblables sur les graphes
planaires, est en deux parties : la première, la phase de réductions, montre qu'un
contre exemple minimal interdit certaines con�gurations, et la seconde, le dé-
chargement, montre qu'un graphe planaire interdisant toutes ces con�gurations
ne peut pas exister, par une contradiction en partant de la formule d'Euler. La
preuve d'Appel et Haken n'a pas été acceptée par tout le monde, du fait d'une
part, de l'utilisation de l'ordinateur pour les réductions, et d'autre part, car
le déchargement était une étude de cas faite à la main, où di�érentes erreurs
mineures ont été trouvées. Robertson, Sanders, Seymour et Thomas, donnèrent
en 1997 une preuve alternative, qui fut ensuite formellement véri�ée en Coq par
Gonthier en 2004. Dans cette nouvelle preuve, les deux parties étaient prouvées
à l'aide de l'ordinateur.

Beaucoup de théorèmes sur les graphes planaires sont prouvés en utilisant
cette même méthode de déchargement. Même si la véri�cation peut être faite à
l'aide de l'ordinateur, cette méthode demande à ce qu'on fournisse une liste de
règles de déchargement. Pour le théorème des 4 couleurs, la preuve de 1997 a
nécessité une liste de 32 règles de déchargement, trouvées à la main par essais
et erreurs. On retrouve une scission semblable à celle discutée au début de la
section 1.2 : l'ordinateur peut valider un candidat, ici une liste de règles, mais
il faut déjà pouvoir trouver ce candidat. Mais cette recherche de liste candidate
n'a jamais été automatisé.

Je m'intéresse depuis quelques années à des méthodes entièrement automa-
tiques a�n de prouver qu'un graphe planaire ne peut pas éviter un ensemble de
con�gurations interdites, sans forcément passer par une phase de déchargement.

Un exemple d'un problème qui pourrait être résolu à l'aide d'un nouvel outil
de ce style provient à nouveau d'une question d'Erd®s : quel est le plus petit k tel
que tout graphe planaire sans cycles de taille 4 à k est 3-colorable ? La conjecture
de Steinberg, récemment réfutée, proposait k = 5 [57]. D'un autre côté, on sait
que k ≤ 7 [44]. On peut aussi imaginer un démonstrateur automatique qui
permettrait de prouver des théorèmes du style suivant : pour quelles familles de
graphes H, tout graphe planaire ne possédant pas de sous-graphe isomorphe à
un graphe dans H est-il 3-colorable ?
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This �rst chapter presents the proof of the last cases of Dejean's conjecture
[28]. The method used is a generalization of the method of Moulin Ollagnier,
and will be used in the next two chapters to show Ochem's conjecture, and to
prove the result of the �nite repetition threshold over large alphabets.

2.1 Introduction

We use the notation and terminology from Lothaire [111]. We denote by B
the set {0, 1}, and by Σk the set {1, . . . , k} (where k ≥ 2). Let Σ∗ be the set
of �nite words over the alphabet Σ, and let Σ+ = Σ∗ \ {ε} (where ε is the
empty word). Let Σω be the set of in�nite words over Σ. We denote by w[i]
the i-th letter of word w, and we denote by w[i : j] (where i ≤ j) the word
w[i]w[i + 1] . . . w[j]. Let Sk be the group of permutations of Σk, and Idk ∈ Sk
be the identity permutation.

A square (resp. a cube) in a word is a non-empty factor of the form uu (resp.
uuu), and an overlap is a factor of the form xuxux, where x is a letter and u a
(possibly empty) word.

Thue showed that one can avoid squares on ternary words, and overlaps on
binary words [143, 142]. (For a translation, see [42].)

Let νTM : {0, 1}∗ → {0, 1}∗ be the morphism such that νTM (0) = 01 and
νTM (1) = 10. The �xed point of νTM with �rst letter 0 is known as the Thue-
Morse word (or Prouhet-Thue-Morse word)

wTM = 0110100110010110 . . .

Thue showed that this word avoids overlaps. In consequence, the Thue-Morse
word avoids cubes.

Let νTTM : 0 → 012, 1 → 02, 2 → 1. The �xed point of νTTM is known as
the ternary Thue-Morse word, or the Hall word :

wTTM = 012021012102012021020121 . . .

Since τ ◦ νTTM = νTM ◦ τ , with τ : 0 → 011, 1 → 01, 2 → 0, wTTM is also the
pre-image of wTM by τ . One can easily show that if w has a square uu, then
τ(w) has an overlap τ(u)τ(u)0. Thus, since wTM is overlap-free, then wTTM is
square-free.

Thue's work gave a complete picture of the avoidability of integral powers in
words. Then some authors studied the avoidability of fractional powers, that we
call repetitions in the following, and gave rise to a conjecture by Dejean which
states the repetition threshold for every alphabet size [64].

A repetition in a word w is a pair of words (p, q) such that pq is a factor of
w, p is non-empty, and q is a pre�x of pq. The excess of a repetition (p, q) is
|q|, and its exponent is |pq||p| . Squares are thus repetitions of exponent 2.

A word is said x-free (resp. x+-free) if it does not contain a repetition of
exponent y with y ≥ x (resp. y > x). For an integer k ≥ 2, the repetition
threshold for k letters, denoted by RT(k), is the in�mum over the set of x such
that there exists an in�nite x-free word over a k-letter alphabet, or equivalently
the smallest x such that there exists an in�nite x+-free word over a k-letter
alphabet.
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Since Thue-Morse word avoids overlaps, i.e. is 2+-free, and than squares are
not avoidable over binary words, one have RT(2) = 2. Dejean [64] conjectured
that for every k ≥ 2, RT(k) = rk, where:

rk =


2 if k = 2
7
4 if k = 3
7
5 if k = 4
k
k−1 otherwise.

Dejean's conjecture has successively been proved thanks to the work of sev-
eral authors. The case k = 3 was solved by Dejean herself [64]. The case k = 4
was solved by Pansiot, introducing the Pansiot's coding [125]. Moulin Ollagnier
generalized the idea of Pansiot, and showed the conjecture for 5 ≤ k ≤ 11 [118].
Mohammad-Noori and Currie showed the cases 12 ≤ k ≤ 14 using Moulin Ol-
lagnier idea on Sturmian words [117]. Carpi showed all the cases over large
alphabets k ≥ 33 [49]. Currie and Rampersad improved Carpi's method for
k ≥ 30 [62] and then k ≥ 27 [63]. The last cases was independently solved by
Rao [28] and Currie and Rampersad [61]. We present in this chapter the proof
of Rao which covers the cases 9 ≤ k ≤ 38. This method will be used in the next
chapter to cover all cases of the stronger conjecture of Ochem.

Dejean showed that RT(k) ≥ rk for every k ≥ 2. This result is immediate
for every k ≥ 5, since RT(k) < rk would imply that w[i + k] = w[i], and the
contradiction that the word is periodic. For k = 3 and k = 4, this can be
done by an exhaustive search: there are �nitely many 7

4 -free ternary words, and
�nitely many 7

5 -free words on 4 letters. In order to prove the conjecture for a
�xed k, it is thus su�cient to construct an in�nite r+

k -free word over a k-letter
alphabet.

Dejean showed that a �xed point of the following morphism is 7
4

+
-free, prov-

ing that RT(3) = 7
4 [64].

hD :


a→ abcacbcabcbacbcacba

b→ bcabacabcacbacabacb

c→ cabcbabcabacbabcbac.

More generally, this morphism is 7
4

+
-free, that is for every 7

4

+
-free word w,

hD(w) is also 7
4

+
-free. But the method of �xed points has limitations. For

example, Brandenburg showed that there is no r+
k -free morphism over k letters,

when k ≥ 4 [45].

2.2 Pansiot's code and kernel repetitions

Pansiot [125] noticed that if a word on the alphabet Σk is k−1
k−2 -free, then it can

be encoded by a binary word. Let k ≥ 3 and let w be a (possibly in�nite)
k−1
k−2 -free word over the alphabet Σk, of length at least k− 1. Then every factor
of length k − 1 consists of k − 1 di�erent letters. The Pansiot code of w is the
binary word Pk(w) such that for all i ∈ {1, . . . , |w| − k+ 1} (for all i ≥ 1 if w is
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in�nite):

Pk(w)[i] =

{
0 if w[i+ k − 1] = w[i]

1 if w[i+ k − 1] 6∈ {w[i], . . . , w[i+ k − 2]}.

Note that w is uniquely de�ned by Pk(w) and w[1 : k − 1]. One can de�ne an
inverse operation: for a (possibly in�nite) binary word w, Mk(w) is the word
on the alphabet Σk such that for all i ∈ {1, . . . , |w| + k − 1} (for all i ≥ 1 if w
is in�nite):

Mk(w)[i] =


i if i < k,

Mk(w)[i− k + 1] if i ≥ k and w[i− k + 1] = 0,

α otherwise,

where {α} = Σk \ {Mk(w)[i − k + 1], . . . ,Mk(w)[i − 1]}. Note that if w[i] = i
for all i < k, then Mk(Pk(w)) = w.

Let hP be the following morphism:

hP :

{
0→ 101101

1→ 10.

Pansiot showed that M4(h∞P (1)) is 7
5

+
-free, proving Dejean's conjecture for 4

letter alphabets [125].

Moulin Ollagnier showed that Pansiot's coding can also be viewed by the
way of an action on the symmetric group Sk [118]. Let Ψ be the morphism
between the free monoid B∗ and Sk such that Ψ(0) = σ0 and Ψ(1) = σ1, where:

σ0 =
[

1 2 ··· k−2 k−1 k
2 3 ··· k−1 1 k

]
and σ1 =

[
1 2 ··· k−2 k−1 k
2 3 ··· k−1 k 1

]
.

One can easily show that for all i ≥ 0 and 1 ≤ j ≤ k−1, Mk(w)[i+j] = Ψ(w[1 :
i])(j).

Suppose that an in�nite word w validates Dejean's conjecture for k letters
with k ≥ 3. We can suppose without loss of generality that w[i] = i for all i < k,
and that w can be encoded by its Pansiot's code, since rk <

k−1
k−2 . Thus Dejean's

conjecture is true for a k ≥ 3 if and only if there exists an in�nite binary word
w such that Mk(w) is r+

k -free.
Let w be a (possibly in�nite) word on the alphabet Σ. A Φ-kernel repetition

in w (where Φ : Σ∗ → Sk is a morphism) is a pair (p, q) such that (p, q) is a
repetition in w and Φ(p) = Idk.

We �x a k ≥ 3. We say that a repetition is forbidden if |pq||p| > rk. A
repetition is a short repetition if |q| < k − 1, otherwise it is called a kernel
repetition. Note that if (p, q) is a forbidden short repetition, then |p| < k−2

rk −1 .
Moulin Ollagnier [118] showed that:

Proposition 2.1 ([118]). Let k ≥ 3 and w be a binary word. Then Mk(w) has
a kernel repetition (p, q) if and only if w has a Ψ-kernel repetition (p′, q′) with
|p′| = |p| and p′q′ = Pk(pq). (Note that |q′| = |q| − k + 1.)
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Moulin Ollagnier gave necessary and decidable conditions for a morphism h
to have �xed points without forbidden Ψ-kernel repetition, and gave morphisms
for 3 ≤ k ≤ 11 which validate Dejean's conjecture. His ideas have then been
adapted to morphic Sturmian words by Mohammad-Noori and Currie [117],
proving conjecture for 7 ≤ k ≤ 14. We extend here Moulin Ollagnier's ideas to
morphic words, and in particular words which are the image by a morphism of
the Thue-Morse word.

2.3 Preliminary results

We �rst introduce some notations and prove technical results, which are simple
adaptations of Moulin Ollagnier's ideas. Throughout this section, f : {x, y}∗ →
{z, t}∗ denotes a morphism (possibly with {x, y} = {z, t}), such that:

(LL) the last letters of f(x) and f(y) di�er, and

(PC) {f(x), f(y)} is a pre�x-code, i.e. f(x) is not a pre�x of f(y), and f(y) is
not a pre�x of f(x).

Let L be the largest common pre�x of f(x) and f(y), and let ` = |L|.

De�nition 2.2 (Interpretation, Markable). Let w be an in�nite word on the
alphabet {x, y}. Let v be a non-empty factor of f(w). An (f, w)-interpretation
of v is a triplet (b, u, e) such that:

• u is a non-empty factor of w,

• the beginning b is a non-empty su�x of f(u[1]),

• the end e is a non-empty pre�x of f(u[|u|]),

• e′vb′ = f(u), where e′b = f(u[1]) and eb′ = f(u[|u|]).

A word u is (f, w)-markable if all its (f, w)-interpretations have the same be-
ginning.

Proposition 2.3. Let v be a factor of f(w) and v′ be a factor of v. If v′ is
(f, w)-markable, then v is (f, w)-markable.

Proof. It su�ces to show that if v[1 : |v| − 1] or v[2 : |v|] is (f, w)-markable,
then v is (f, w)-markable. Obviously, if v[1 : |v| − 1] is (f, w)-markable, then v
is (f, w)-markable.

Suppose that v[2 : |v|] is (f, w)-markable, and let b be the unique beginning
of all its (f, w)-interpretations. Let γ ∈ {x, y} such that b is a su�x of f(γ).
By de�nition, γ exists, and by condition (LL), γ is unique. Let e′ be such
that e′b = f(γ). If e′ is non-empty, then v[1] = e′[|e′|], and v[1]b is the only
possible beginning of an (f, w)-interpretation of v. Otherwise, the only possible
beginning of an (f, w)-interpretation of v is v[1].

Proposition 2.4. Let v be an (f, w)-markable factor of f(w). Then v has
at most two (f, w)-interpretations. Moreover if v has two di�erent (f, w)-
interpretations (b, u1, e1) and (b, u2, e2), then e1 = e2, e1 is a pre�x of L,
|u1| = |u2| and u1 and u2 only di�er by their last letter.
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Proof. Suppose that v has two di�erent (f, w)-interpretations (b, u1, e1) and
(b, u2, e2). By condition (LL), there is a unique α ∈ {x, y} such that b is a
su�x of f(α). Thus u1[1] = u2[1] = α. Let e′ be such that e′b = f(α). Since
{f(x), f(y)} is a pre�x-code (condition (PC)), there is a unique u′ such that
f(u′) is a pre�x of e′v and such that for every β ∈ {x, y}, f(u′β) is not a
pre�x of e′v. Obviously, u′ is a pre�x of u1 and u2. Now let e′′ be such that
f(u′)e′′ = e′v.

If e′′ is empty, then u1 = u2 = u′ and e1 = e2 = f(u′[|u′|]), contradiction.
Thus e1 = e2 = e′′ and u1 6= u2. Moreover, since e′v is a pre�x of f(u1) and
f(u2), u1 and u2 have length |u′| + 1, thus e′′ is a pre�x of both f(x) and
f(y), and e′′ is a pre�x of L. This implies also that there is no other (f, w)-
interpretation of v, since every (f, w)-interpretation is of the form (b, u′γ, e′′)
with γ ∈ {x, y}.

A repetition (p, q) of w extends a repetition (p′, q′) if |p| = |p′| and p′q′ is a
proper factor of pq. A repetition (p, q) in w is maximal if there is no repetition
(p′, q′) in w such that (p′, q′) extends (p, q). Note that if (p′, q′) extends (p, q),
then (p, q) is a Φ-kernel repetition if and only if (p′, q′) is a Φ-kernel repetition
(where Φ : Σ → Sk is a morphism), since that in this case p and p′ are two
conjugate words, and thus Φ(p) = Idk if and only if Φ(p′) = Idk.

Lemma 2.5. Let Φ : {z, t}∗ → Sk and Φ′ : {x, y}∗ → Sk be two morphisms
such that:

(CO) there is σ ∈ Sk such that for every α ∈ {x, y}, Φ(f(α)) = σ · Φ′(α) · σ−1.

Let (p, q) be a Φ-kernel repetition in f(w) such that q is (f, w)-markable. Then
w has a Φ′-kernel repetition (p′, q′) with |p| = |f(p′)| and |q| ≤ |f(q′)|+ `.

Proof.

Claim 2.6. Suppose that (p, q) is not maximal, and suppose that there is no
maximal Φ-kernel repetition extending (p, q). Then for every integer n, there is
a Φ′-kernel repetition (p′, q′) of w such that |p| = |f(p′)| and the exponent of
(p′, q′) is at least n.

Proof. There is an in�nite sequence ((p, q) = (p0, q0), (p1, q1), . . .) of repetitions
of f(w) such that (pi+1, qi+1) extends (pi, qi) for every i ≥ 0. Clearly, for every
n ≥ 1, there is an in ∈ N such that pn is a factor of pinqin , and a fortiori of
f(w).

Since q is (f, w)-markable, there is a n0 > 0 such that pn0 is (f, w)-markable.
Note that for every conjugate word p̃ of p, p̃n0+1 is an (f, w)-markable factor of
f(w), and for every n > 0, (p̃, p̃n) is a Φ-kernel repetition of f(w).

Let p̃ be a conjugate word of p such that every (f, w)-interpretation of p̃n0+1

has a beginning b ∈ {f(x), f(y)}. Let (b, u, e) be an (f, w)-interpretation of
p̃n0+2, and let p′ be the pre�x of u such that f(p′) = p̃. Such a pre�x exists,
since p̃n0+1 is (f, w)-markable and has b = f(u[1]) as beginning.

By condition (CO), Φ′(p′) = Φ(p̃) = Φ(p) = Idk. Thus for every n > 0,
(p′, p′n) is a Φ′-kernel repetition of w, and |f(p′)| = |p̃| = |p|.

By Claim 2.6, if (p, q) is not maximal and there is no maximal Φ-kernel
repetition extending (p, q), then w has a Φ′-kernel repetition (p′, q′) with |p| =
|f(p′)| and |q| ≤ |f(q′)|+ `.
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Thus we can now suppose without loss of generality that (p, q) is maxi-
mal (otherwise, replace (p, q) by a maximal repetition which extends (p, q)).
Let (b, u, e) be an (f, w)-interpretation of q. By Proposition 2.4, all (f, w)-
interpretations of q has beginning b and end e. By Proposition 2.3, pq is mark-
able. Since q is a pre�x and a su�x of pq, the beginning (resp. end) of an
(f, w)-interpretation of pq is b (resp. e). Let (b, v, e) be a (f, w)-interpretation
of pq. By maximality of (p, q), b = f(v[1]).

If q has only one (f, w)-interpretation, then u is a pre�x and a su�x of v,
and by maximality of (p, q), e = f(v[|v|]). Let p′ be such that p′u = v, and
let q′ = u. Clearly f(q′) = q, f(p′q′) = pq and f(p′) = p. By condition (CO),
Φ′(p′) = Φ(p) = Idk, thus (p′, q′) is a Φ′-kernel repetition. (Note that in this
case, ` = 0 by maximality of (p, q).)

Otherwise, by Proposition 2.4, let (b, u1, e) and (b, u2, e) be the only two
possible (f, w)-interpretations of q, and let u′ = u1[1 : |u1| − 1]. Then u′ is a
pre�x and a su�x of v[1 : |v| − 1]. Let p′ be such that p′u′ = v[1 : |v| − 1].
Clearly f(p′) = p, and by Proposition 2.4, |e| ≤ `, thus |q| ≤ |f(q′)| + `, with
q′ = u′. By condition (CO), Φ′(p′) = Φ(p) = Idk, thus (p′, q′) is a Φ′-kernel
repetition.

2.4 Images of the Thue-Morse word

We recall that νTM denotes the Thue-Morse morphism, and that wTM is the
�xed point of νTM starting by 0.

Let h be a morphism from {a, b}∗ into {0, 1}∗. Let σa = Ψ(h(a)) and
σb = Ψ(h(b)) (we recall that Ψ is the morphism from the free monoid {0, 1}∗
into Sk such that Ψ(0) = σ0 and Ψ(1) = σ1). We suppose that h respects the
following preliminary conditions:

(A) h is uniform (i.e. |h(a)| = |h(b)|),

(B) the last letters of h(a) and h(b) di�er,

(C) {h(a), h(b)} is comma-free, that is for every (x, y, z) ∈ {a, b}3, there is no
w,w′ ∈ {0, 1}+ such that h(yz) = w · h(x) · w′, and

(D) there is σ ∈ Sk such that σaσb = σ · σa · σ−1 and σbσa = σ · σb · σ−1.

Note that νTM and h respect conditions (LL) and (PC) of Section 2.3. By
Proposition 2.1, Mk(h(wTM )) has no forbidden repetition if and only if:

(S) Mk(h(wTM )) has no forbidden short repetition, and

(K) for every Ψ-kernel repetition (p, q) in h(wTM ), we have |pq|+k−1
|p| ≤ rk.

Let L be the largest common pre�x of h(a) and h(b), let ` = |L| and let
s = |h(a)| = |h(b)|. Let Ψ′ be the morphism from the free monoid {a, b}∗ to Sk
such that Ψ′(a) = σa and Ψ′(b) = σb.

Lemma 2.7. Let u be a factor of h(wTM ) with |u| ≥ 2s−1. Then u is (h,wTM )-
markable.

Proof. Obviously h(a) and h(b) are (h,wTM )-markable since {h(a), h(b)} is
comma-free. Thus Lemma 2.7 follows from Proposition 2.3 and from the fact
that if |u| ≥ 2s− 1, then u contains either h(a) or h(b) as factor.
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As corollary of Lemma 2.7 and Lemma 2.5 with f = h, {x, y} = {a, b},
{z, t} = {0, 1}, Φ = Ψ and Φ′ = Ψ′, we obtain (condition (CO) is trivially
ful�lled with σ = Idk) :

Corollary 2.8. Let (p, q) be a Ψ-kernel repetition in h(wTM ) such that |q| ≥
2s−1. Then there is a Ψ′-kernel repetition (p′, q′) in wTM such that |p| = |h(p′)|
and |q| ≤ |h(q′)|+ `.

Obviously, if (p′, q′) is a Ψ′-kernel repetition in wTM , then h(wTM ) has a
Ψ-kernel repetition (p, q) with p = h(p′) and q = h(q′)L. Thus Mk(h(wTM ))
has no forbidden kernel repetition if and only if:

(SK) for every Ψ-kernel repetition (p, q) in h(wTM ) with |q| < 2s− 1, we have
|pq|+k−1
|p| ≤ rk, and

(LK) for every Ψ′-kernel repetition (p′, q′) in wTM , we have s|p′q′|+`+k−1
s|p′| ≤ rk.

Lemma 2.9. Let w be a factor of wTM of length at least 4. Then w is
(νTM , wTM )-markable.

Proof. This follows from the fact that wTM avoids aaa, bbb, ababa and babab,
and thus aa, bb, abab and baba have unique (νTM , wTM )-interpretations and are
(νTM , wTM )-markable.

As corollary of Lemma 2.9 and Lemma 2.5 with f = νTM , {x, y} = {z, t} =
{a, b}, Φ = Φ′ = Ψ′, we obtain (condition (CO) is ful�lled by condition (D)):

Corollary 2.10. Let (p′, q′) be a Ψ′-kernel repetition in wTM with |q′| ≥ 4.
Then there is a Ψ′-kernel repetition (p′′, q′′) in wTM with |p′| = 2 · |p′′| and
|q′| ≤ 2 · |q′′|.

Note that in this case, s|p′′q′′|+`+k−1
s|p′′| ≥ s|p′q′|+`+k−1

s|p′| . Thus by Corol-
lary 2.10, condition (LK) is equivalent to:

(LK') for every Ψ′-kernel repetition (p′′, q′′) in wTM with |q′′| ≤ 3, we have
s|p′′q′′|+`+k−1

s|p′′| ≤ rk.

2.5 Decidability and results

Let k ≥ 3, let h : {a, b}∗ → Σ∗k be a morphism which respects conditions (A-D),
and let Ψ′ : {a, b}∗ → Sk be the morphism such that Ψ′(a) = σa = Ψ(h(a)) and
Ψ′(b) = σb = Ψ(h(b)). If Ψ′ respects condition (LK'), then by Corollary 2.10,

wTM has no Ψ′-kernel repetition (p′, q′) with s|p′q′|+`+k−1
s|p′| > rk, where s =

|h(a)| = |h(b)| and ` is the size of the largest common pre�x of h(a) and h(b).
Moreover, if h respects (SK), then by Corollary 2.8, h(wTM ) has no Ψ-kernel
repetition (p, q) with |pq|+k−1

|p| > rk, that is by Proposition 2.1,Mk(h(wTM )) has
no forbidden kernel repetition. Finally if h also respects (S), then Mk(h(wTM ))
has no forbidden repetition. To summarize, if h and Ψ′ respect conditions (A-
D), (S), (SK) and (LK'), then Mk(h(wTM )) validates Dejean's conjecture for k
letters.
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Obviously, conditions (A-D) are decidable. Condition (S) is decidable since
short forbidden repetitions have length less than rk ×(k−2)

rk −1 . It is su�cient to

check every factor of size at most rk ×(k−2)
rk −1 in Mk(h(wTM )). Similarly, if (p, q)

is a Ψ-kernel repetition of h(wTM ) with |q| ≤ 2s − 2 and |pq|+k−1
|p| > rk, then

|pq| < rk ×(2s−2)+k−1
rk −1 . Condition (SK) is thus decidable. Finally, if (p′, q′)

is a Ψ′-kernel repetition of wTM with s|p′q′|+`+k−1
s|p′| > rk and |q′| ≤ 3, then

|p′| < k−1+`+3s
s×(rk −1) . Thus condition (LK') is decidable.

For every k ∈ {4, 8, . . . , 38}, we found a morphism which respects conditions
(A-D), (S), (SK) and (LK'). This proves that Dejean's conjecture holds for
8 ≤ k ≤ 38. Following, we give an example for k = 18. Morphisms h+

k and
h−k , for k ∈ {9, . . . 38}, prove Dejean's conjecture as well Ochem's conjecture on
k letters, as we will see in the next chapter. We will also see that the method
of this chapter can also gives Pansiot code of Dejean words starting from other
morphisms that νTM .

For every k ∈ {2, 3, 5, 6, 7} and for every σa, σb ∈ Sk such that σa · σb =
σ ·σa ·σ−1 and σb ·σa = σ ·σb ·σ−1 for a σ ∈ Sk, the word wTM has a Ψ′-kernel
repetition (p, q) with |pq|

|p| ≥ rk, thus the technique presented in Section 2.4
(image of the Thue-Morse word) is not applicable in these cases. Nevertheless,
we will show in Section 3.4 that other morphic words will work.

Example: k = 18. Let h18 be the morphism such that:

h18 :

{
a→ 10101101010110101101010110110101011010110

b→ 10101011010110101101011010110101011010101.

Then s = |h18(a)| = |h18(b)| = 41, L = 10101, ` = 5, and we have:{
σa = Ψ(h18(a)) = [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

7 9 6 8 10 11 14 12 16 13 15 2 17 4 18 1 3 5 ]

σb = Ψ(h18(b)) = [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
6 9 7 8 10 11 14 12 16 13 15 2 17 4 18 3 1 5 ] .

Obviously, h18 respects (A) and (B). Moreover, it is not hard to show that
h18 respects condition (C). Finally, h18 respects (D) with:

σ = [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 4 3 10 6 14 11 17 12 15 8 7 5 18 2 9 13 16 ] .

Now if (p, q) is a forbidden short repetition inM18(h18(wTM )) (i.e. |q| ≤ 16),
then |pq| < 288. If (p, q) is a Ψ-kernel repetition in h18(wTM ) with |q| < 2×41−1

and |pq|+k−1
|p| > 18

17 , then |pq| < 1729, and thus M18(h18(wTM )) has a forbidden
repetition of length less than 1746. Thus to check conditions (S) and (SK), it is
su�cient to check whether M18(h18(ν8

TM (a))) contains no forbidden repetition,
since ν8

TM (a) contains all factors of wTM of length at most 65. Finally, if

(p′, q′) is a Ψ′-kernel repetition in wTM with |q′| ≤ 3 and s|p′q′|+`+k−1
s|p′| ≤ 18

17 ,
then |p′| ≤ 60. To check (LK'), it is thus su�cient to check every Ψ′-kernel
repetition in ν8

TM (a).
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Morphisms for k ∈ {4, 8}

h4:


a→ 1011010101101101011011010101101101010110

1101010110101011011010110110101011011010

b→ 1011010101101101011011010101101010110110

1010110110101011011010110110101011010101

h8:

{
a→ 101101101101010101011010101101

b→ 101101010101011011011011011010

Morphisms h+
k for 9 ≤ k ≤ 38

h+
9 :

{
a→ 1010110110110101101101101010110110101010

b→ 1011011010101010101011011010110110110101

h+
10:

{
a→ 101010101101010110101101101101101101101010101101010110

b→ 101011010101010101101101101101101101101101101101101101

h+
11:

{
a→ 101010101101101011010101101011011010101010101010101010101101

b→ 101010101101101011010101101010110110101011011010101010101010

h+
12:

{
a→ 1011011011010110101010101101011011010101101010101010110

b→ 1010101011010110110110101011010101010101101010110110101

h+
13:


a→ 101101010110101011011010101011011010

101101010110101011010101101011010101

b→ 101101010101101101010101101011010110

101101010110101011011010101011011010

h+
14:

{
a→ 10110101101011011010110110101101101010110110101011011011010110101

b→ 10110110101101011011010101101101011011010110110101101011011011010

h+
15:


a→ 101010101101011010101011011010101011010101

1010101010110110101010110101

b→ 101010110101101010101101010110101010110110

1010101101011010101011011010

h+
16:

{
a→ 101101010110101101010110101101101101101011010101101010110101

b→ 101101010101101101010110110101101101101010110101101010110110

h+
17:

{
a→ 1010110110101101101101010110101010101101011011011011010110101010

b→ 1011010101101101101011011010101010110101101010101011010101101101

h+
18:

{
a→ 10101101101101101101010101011010101010101010101011010110110110110110

b→ 10101101101101101101010101010110101010101010110101010110110110101101

h+
19:

{
a→ 101011010110101101101101010110101010101011011010101101

b→ 101011011010101101101101010110101101101101011010101010

h+
20:


a→ 10110110110101101101011011010110110110

10110110101010101011011010101101010110

b→ 10110110110101101011011011010110110101

10110110101010101101011010101101010101

h+
21:

{
a→ 101101010110110101101010101101010101010110101101010101010110

b→ 101101010110110101011010101101010101011010101101010101010101

h+
22:

{
a→ 101101101010110110101101101101011010110101101010101101011010110

b→ 101101101010110110110101101101011010110110101010101101011010101

h+
23:

{
a→ 101101101101010101010110101101010110110101011010101101010101010110

b→ 101101101101010101011010101101010110110101101010101101010101010101

h+
24:

{
a→ 1010110101101101011010110101011011011011010110

b→ 1010110101101101011011010101011011011011010101

h+
25:

{
a→ 101011010110110101010101101101011010110101010110

b→ 101011010110110101010110101101011010110101010101

h+
26:

{
a→ 10101101101011011010101011011010110101101101010110

b→ 10101101101011011010101101011010110101101101010101

h+
27:

{
a→ 1010110101101011010101010110110101011010110101010110

b→ 1010110101101011010101011010110101011010110101010101
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h+
28:

{
a→ 101011010101101010101010101101101010101101010101010110

b→ 101011010101101010101010110101101010101101010101010101

h+
29:

{
a→ 10101010110101010101010101011010101010110101010101010110

b→ 10101010110101010101010101101010101010110101010101010101

h+
30:

{
a→ 1010101011011011011010101010110110110110101010110101010110

b→ 1010101011011011011010101011010110110110101010110101010101

h+
31:

{
a→ 101010101101010101010101010101101101101101010101010110110110

b→ 101010101101010101010101010110101101101101010101010110110101

h+
32:

{
a→ 10110101011010110101101010101011011010101011010110110101010110

b→ 10110101011010110101101010101101011010101011010110110101010101

h+
33:

{
a→ 1010110101101101010101010101010110110101101011010101010101010110

b→ 1010110101101101010101010101011010110101101011010101010101010101

h+
34:

{
a→ 101011010110101010101010101010101101101011010101010101010101010110

b→ 101011010110101010101010101010110101101011010101010101010101010101

h+
35:

{
a→ 10101101101101010101010101010101011011010110110101010101010101010110

b→ 10101101101101010101010101010101101011010110110101010101010101010101

h+
36:


a→ 10101101010110101010101010101010101

10110101010110101010101010101010110

b→ 10101101010110101010101010101010110

10110101010110101010101010101010101

h+
37:


a→ 101011010101010101010101010101010101

101010110101010101010101010101010110

b→ 101011010101010101010101010101010110

101010110101010101010101010101010101

h+
38:


a→ 1010101011010101101101010110101010101

1011011011010101010101010110101010110

b→ 1010101011010101101101010110101010110

1011011011010101010101010110101010101

Morphisms h−k for 9 ≤ k ≤ 38

h−9 :

{
a→ 1010110110101101101010110101101010110101

b→ 1010110101101010110110101101011011010110

h−10:

{
a→ 10110101101101011010101010110110110101101010

b→ 10110101010101011010101010110110110110101101

h−11:

{
a→ 101011010101101011010110101011010110101010110101

b→ 101010110101101010110101101011010110101010110110

h−12:

{
a→ 10101010101011011011010101101010101101010101011011011010110110101

b→ 10101010101101010101010101101010110110110110101101011010110110110

h−13:

{
a→ 10110110110110101101101010110101011010110101101010110110

b→ 10110110110110101010101010110110101010110110110110110101

h−14:

{
a→ 101010101101101101010101010101101101101101101101101101101010

b→ 101010101101101101101101101101101010101010110101101101010101

h−15:

{
a→ 1011010110101010101101010110110110101101011011011010110110101010

b→ 1010110110101010101101010110110110101101101010101010110101101101

h−16:

{
a→ 10110101101010110101101010110101011010110101011011010101011011010101

b→ 10110101011010101101101101010101101010101011011010110101101011010110

h−17:


a→ 101011011010110101101011011010110110

101101011010110110101011011010110101

b→ 101101011010110101101011011010110101

101011011010110101101101011010110110

h−18:


a→ 10101101010101101011011010101010110110

10110101010101101101011010101010110101

b→ 10110101010101101101010110101010110101

10101101010101101101011010101010110110
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h−19:

{
a→ 101011011010110101101011010101101011010110101101101010110110

b→ 101101010110110101101011010101101011011010101101101011010101

h−20:

{
a→ 101011010110110110101101101011011011010110101011010101101010101

b→ 101101010110110110101101101011011011010101101011010101101010110

h−21:

{
a→ 101010101010110101011010110110101010110101011011011010101011010110

b→ 101101101010110101011010110110101010110101101010101010101101010101

h−22:

{
a→ 101010101011010101101011010110110110101011011010101010101011011010101

b→ 101010101011010101101101010110110110101011010110101010101011011010110

h−23:

{
a→ 101010101101011011010101101101101011010101010110

b→ 101010101101011011010110101101101011010101010101

h−24:

{
a→ 10101101011010101101101011011010110101011010110110

b→ 10101101011010110101101101011010110101010110110101

h−25:

{
a→ 1010101011011010110101010110110110101010101101010110

b→ 1010101011011010110101011010110110101010101101010101

h−26:

{
a→ 101010101010101010101010101101101101011011010101010110

b→ 101010101010101010101010110101101101011011010101010101

h−27:

{
a→ 10110101011010101101010101101011010110101010101101010101

b→ 10110101101010101101010101011011010101101010101101010110

h−28:

{
a→ 1010110110110110101010101010110110101101101101010101010110

b→ 1010110110110110101010101011010110101101101101010101010101

h−29:

{
a→ 101011010110110101010101010101101010110110110101010101010110

b→ 101011010110110101010101010110101010110110110101010101010101

h−30:

{
a→ 10101101011010110101101010101011010101101011010110101101010110

b→ 10101101011010110101101010101101010101101011010110101101010101

h−31:

{
a→ 1010110101010101010101010101010110110101010101010101010101010110

b→ 1010110101010101010101010101011010110101010101010101010101010101

h−32:

{
a→ 101101101011010110101010101010101101101011010110101101010101010110

b→ 101101101011010110101010101010110101101011010110101101010101010101

h−33:

{
a→ 10101010110110110101010101010101011011011011010101010101010101010110

b→ 10101010110110110101010101010101101011011011010101010101010101010101

h−34:


a→ 10101101011010110110101010101010101

10101011010110110110101010101010110

b→ 10101101011010110110101010101010110

10101011010110110110101010101010101

h−35:


a→ 101010101101011010110110110101010101

101101101011010110101010110101010110

b→ 101010101101011010110110110101010110

101101101011010110101010110101010101

h−36:


a→ 1011011010110110101010101010101010101

1011010110110110101010101010101010110

b→ 1011011010110110101010101010101010110

1011010110110110101010101010101010101

h−37:


a→ 10110110101011010101010101010101010101

10110101101011010101010101010101010110

b→ 10110110101011010101010101010101010110

10110101101011010101010101010101010101

h−38:


a→ 101010101010101101010101010101011010101

101010101010101011010101010101011010110

b→ 101010101010101101010101010101011010110

101010101010101011010101010101011010101
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Since Dejean's conjecture is now proved, one can look at reinforcements
of the question. This second chapter is dedicated to the proof of Ochem's
conjecture, which adds an additional frequency constraint on a letter.

We use the method presented in the previous chapter. However, we cannot
directly use the decision algorithm presented in Section 2.5, since the alphabet
size is not �xed. The main part of this chapter is thus a proof that the presented
constructions do not produce small repetitions (with respect to the alphabet
size).

In all cases, our construction for the Pansiot code is a morphic word. More-
over, for alphabets with at least 9 letters, this morphic word is of the form
h(wTM ), where wTM is the Thue-Morse word, and h is a uniform morphism.

In addition to the proof of Ochem's conjecture, this result is the second
known proof to Dejean's conjecture over large alphabet (the �rst one is from
Carpi [49]).

This chapter is based on paper [32] (joint work with Elise Vaslet).

3.1 Preliminaries

Ochem introduced a stronger version of the conjecture involving letter frequen-
cies. The frequency of a letter x in an in�nite word w is limn→∞

|w[1:n]|x
n , if the

limit exists.

Conjecture 3.1 (Ochem's conjecture, [122]).

1. For every k ≥ 5, there exists an in�nite
(

k
k−1

+
)
-free word over a k-letter

alphabet with letter frequency 1
k+1 .

2. For every k ≥ 6, there exists an in�nite
(

k
k−1

+
)
-free word over a k-letter

alphabet with letter frequency 1
k−1 .

One can easily see that the frequencies of Ochem's conjecture are the best
we can do. For other small alphabet sizes, the minimal and maximal frequencies
are not known (see Section 5.1).

As we will see, the cases 9 ≤ k ≤ 38 are proved by construction given
in Chapter 2. We present in Section 3.2 a construction of words which prove
Ochem's conjecture for every k ≥ 24. As for Chapter 2, the Pansiot code of
these words are image by a morphism of the Thue-Morse word. The Section 3.3
is devoted to the proof of result of Section 3.2 when k ≥ 32. The cases when
k < 9 are treated by speci�c constructions in Section 3.4. Thus, all cases of
Ochem's conjecture are proved by results of the previous and this chapter.

We use the notations de�ned in Chapter 2. Nevertheless, in all this chapter,
in order to simplify the following notations, the indices starts at 0.

Two words u, v ∈ Σ∗ are isomorphic if |u| = |v| and there is a permutation
σ : Σ→ Σ such that u[i] = σ(v[i]) for every i ∈ {0, |u| − 1}.

An occurrence of a factor u in w is an integer i ∈ N such that w[i : i+|u|−1] =
u. The distance between two occurrences i and j is |i − j|. For example, the
distance between the two occurrences of a in aba is 2.
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Letter frequencies and Pansiot code. In all of the following, k denotes the
size of the alphabet. We reuse the notations Pk(w), Mk(w) de�ned in Section
2.2.

Remark 3.2. If the Pansiot code of a Dejean word w has a 0 at every position
i (mod k − 1) for an i ∈ {0, . . . k − 1}, then w has the same letter at position i
(mod k − 1), thus w has a letter with frequency 1

k−1 . Similarly if the Pansiot
code of w has a 0 at every position i (mod k + 1) for an i ∈ {0, . . . k + 1}, then
w has a letter with frequency 1

k+1 .

By Remark 3.2, morphisms h+
k and h−k in Section 2.5 prove Ochem's conjec-

ture for k ∈ {9, . . . 38}. The underlined 0 are those at position i (mod k − 1)
(resp. i (mod k + 1)).

We now introduce some notations in order to simplify forthcoming proofs.

Odd double crossed cycles. In this section, we �x a k ∈ N.
The invariants of a permutation σ ∈ Sk are the i ∈ {0, . . . , k − 1} such that

σ(i) = i. The set of invariants of σ is denoted I(σ).

De�nition 3.3 (Odd double crossed cycle). A pair (σa, σb) ∈ S2
k is a double

crossed cycle if there is a 3 ≤ K ≤ k
2 and two sequences (a0, . . . aK−1) and

(b0, . . . , bK−1) of pairwise disjoint elements of Σk such that

σa = (a0, a1, a2, . . . , aK−1)(b0, b1, b2, . . . , bK−1)

and
σb = (b0, a1, a2, . . . , aK−1)(a0, b1, b2, . . . , bK−1).

Moreover, (σa, σb) is an odd double crossed cycle (ODCC) if K is odd. The size
of the double crossed cycle is K.

Lemma 3.4. If (σa, σb) is an ODCC, then there is a σ ∈ Sk such that

σa = σσaσbσ
−1

and

σb = σσbσaσ
−1.

Proof. Clearly, if (σ1, σ2) ∈ S2
k and (σ3, σ4) ∈ S2

k are two ODCC with the
same size, then it exists a σ ∈ Sk such that σ1 = σσ3σ

−1 and σ2 = σσ4σ
−1.

So it su�ces to show that (σaσb, σbσa) is an ODCC of size K. Let σa =
(a0, a1, . . . , aK−1)(b0, b1, . . . bK−1) and σb = (b0, a1, . . . , aK−1)(a0, b1, . . . bK−1).
Then

σbσa = (a0, a2, a4 . . . aK−1, b1, b3 . . . bK−2)(b0, b2, . . . bK−1, a1, a3, . . . aK−2),

and

σaσb = (b0, a2, a4 . . . aK−1, b1, b3 . . . bK−2)(a0, b2, . . . bK−1, a1, a3, . . . aK−2).

Thus (σaσb, σbσa) is an ODCC of size K.
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Let (σa, σb) be an ODCC. The invariants of the ODCC are the invariants
of σa and σb, and are denoted I when (σa, σb) is clear in the context. For
every i ∈ {0, . . . ,K − 1}, the couple i (or the couple number i) is (ai, bi), using
notations of De�nition 3.3.

Let ϕ′ : B∗ → Sk be the morphism such that ϕ′(0) = σa, and ϕ′(1) = σb.
The couple i is good in a binary word w if σ(ai) ∈ {a0, . . . , aK−1}, where
σ = ϕ′(w). Every couple is good in the empty word, and in 0l for every l.
Every couple is good, except 0 and K − 1 in 1. Note that σ = Idk if and only
if |w| is a multiple of K, and every couple is good in w.

On can easily compute good couples in w. Every 0 in w does not change
the set of good couples, when every 1 changes the state of exactly two couples.
Formally, we have:

Proposition 3.5. Let w be a binary word of size multiple of K. The couple i
is good in w if and only if the set {0 ≤ x < |w| : w[x] = 1 and x ∈ {i − 1, i}
mod K} has even cardinality.

The derivative word of the binary word w, denoted w′, is the binary word
of size |w| − 1 such that for every i ∈ {0, . . . , |w′| − 1}, w′[i] = w[i] +w[i+1] (in
GF(2)).

Proposition 3.6. Let w be a binary word of size multiple of K. For i 6= 0, the
couple i is good in w if and only if the set {0 ≤ x < |w| − 1 : w′[x] = 1 and x ≡
i− 1 mod K} has even cardinality.

3.2 Main theorem and plan of the proof

Let k ≥ 24 be an integer. Let m ∈ {0, 1, . . . , 7} be such that k ≡ m mod 8.
Let us de�ne the uniform morphism h+

k : {a, b}∗ → {0, 1}∗ and h−k : {a, b}∗ →
{0, 1}∗ as follows

h+
k :

{
0 7→ ιm(10)c

+

101κm(10)c
+

110

1 7→ ιm(10)c
+

110κm(10)c
+

101,

h−k :

{
0 7→ ιm−2(10)c

−
101κm−2(10)c

−
110

1 7→ ιm−2(10)c
−

110κm−2(10)c
−

101,

where ιm and κm are �nite words over alphabet {0, 1} de�ned in the Table 3.1
(the indices are taken modulo 8), c+ = 1

4 (2k − 4 − |ιm| − |κm|), and c− =
1
4 (2k − 8− |ιm−2| − |κm−2|).

Theorem 3.7. For any integer k ≥ 24, the morphism h+
k (resp. h−k ) is such

that the in�nite word w+
k = Mk(h+

k (wTM )) (resp. w−k = Mk(h−k (wTM ))) over
Σk is RT (k)+-free and have a letter of frequency 1

k+1 (resp. 1
k−1).

By Remark 3.2, we know that Mk(h+
k (wTM )) has a letter of frequency 1

k+1 ,
since h+

k (0)[1] = h+
k (1)[1] = h+

k (0)[1 + k + 1] = h+
k (1)[1 + k + 1] = 0, and

|h+
k (0)| = |h+

k (1)| = k + 1. Similarly, we know that Mk(h−k (wTM )) has a letter
of frequency 1

k−1 . Thus, to prove Theorem 3.7, we only have to prove that
Mk(h+

k (wTM )) and Mk(h−k (wTM )) are Dejean words. This fact is proved by
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m ιm κm
0 101101010110101101 101011011010110101
1 101101010110101 101011011010110
2 1011010101101101 1010110110101101
3 1011010101101 1010110110101
4 1011010101 1010110110
5 10110101101 10101101101
6 10110101 10101101
7 10110 10101

Table 3.1 � Construction for the in�nite case.

computer for every 24 ≤ k ≤ 31, using the method presented in Chapter 2. We
present in the following a proof for every k ≥ 32.

To prove that w (where w is either Mk(h−k (wTM )) or Mk(h+
k (wTM )) for

a k ≥ 32) is RT (k)+-free, we will use a method similar to Pansiot's one, by
considering di�erent type of repetitions and dealing with each type separately.
We give here the structure of the proof, which will be completed in next section.

• We show that w has no forbidden short repetition of excess less than 6,
using characterizations of Carpi, Shur and Gorbunova.

• If w has a forbidden repetition of excess at least 5, then the period is
a multiple of s·K (Section 3.3.1), where K is the size of the ODCC
(ϕ(h+

k (0)), ϕ(h+
k (1))) or (ϕ(h−k (0)), ϕ(h−k (1))).

• w has no forbidden repetition of period s·K (Section 3.3.1).

• A forbidden repetition of period at least 2·s·K is a kernel repetition. Us-
ing properties of the derivative of the Thue-Morse word, we show that a
forbidden kernel repetition has period at least 18·s·K (Section 3.3.2).

• If w has a forbidden kernel repetition of period |p| ≥ 18·s·K, then w has a
forbidden repetition of period |p|/2 (Section 3.3.3). This part follows the
proof in Chapter 2.

3.3 Proof for large alphabets

We �x k ≥ 32 and ∆ ∈ {−1, 1}. Let ιa = ιm(10)c101, ιa = ιm(10)c110,
κa = κm(10)c101 and κa = κm(10)c110, where c = 1

4 (2(k+∆)−6−|ιm|− |κm|)
and k + (∆ − 1) ≡ m mod 8. Let λa = ιaκb and λb = ιbκa. Let h : B∗ → Σ∗k
be the morphism such that h(0) = λa and h(1) = λb. Let s = |h(0)| = |h(1)| =
2(k+ ∆). The largest common pre�x L of h(0) and h(1) has size ` = s

2 − 2, and
their last letter di�er.

Note that h = h+
k if ∆ = 1 and h = h−k if ∆ = −1. We prove that

Mk(h(wTM )) is a Dejean word,
Let σa = ϕ(h(0)), σb = ϕ(h(1)) and ϕ′ : B∗ → Sk be the morphism such that

ϕ′(0) = σa, and ϕ′(1) = σb. The permutations σa and σb are given in Table 3.2
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for every k modulo 8 and ∆. Each permutations can be easily computed by
hand using the de�nition of ϕ, or by a computer program. We see directly:

Fact 3.8. (σa, σb) is an ODCC of size at least
⌈
k
4

⌉
.

From now on, K denotes the size of the ODCC (σa, σb), I its invariants, and
ai and bi (0 ≤ i < K) denote elements of cycles of (σa, σb) as in De�nition 3.3.
Table 3.2 also present the size of the ODCC and its invariants.

3.3.1 Avoiding short repetitions

In this section, we suppose that w′ = h(u) for an in�nite binary word u, and
that w = Mk(w′). Moreover, we suppose that u is recurrent.

Lemma 3.9. w has no forbidden repetition of excess at most 5.

Proof. We use characterization of stabilizing words of Carpi, Shur and Gor-
bunova [49, 140]. Since w′ is (00, 111)-free, w has no forbidden repetition of
excess 1 and 2. w′ does not contains a factor of the form uBk−4u, for a u ∈ B4.
Thus by Carpi's characterization of 3-stabilizing words, w has no forbidden rep-
etition of excess 3 [49]. Finally, Shur and Gorbunova showed that a word on
alphabet k ≥ 8 which has no forbidden repetitions of excess 1, 2 and 3 has no
forbidden repetition of excess 4 and 5 [140].

Let ua = (Mk(h(0)))[0 : s− 1] and ub = (Mk(h(1)))[0 : s− 1]. Let E = {i ∈
{0, . . . , s−1} : ua[i] = ub[i]}. One can show on Table 3.2 that {0, . . . , k−5} ⊆ E .
The word w is a concatenation of words isomorphic to ua and ub. For every n,
w[n·s : n·s+k−2] is uniquely determined by ϕ(h(u[0 : n−1])) = ϕ′(u[0 : n−1]).
More precisely:

Proposition 3.10. For every n ≥ 0 and i ∈ {0, . . . , k−2}, w[n·s+i] = ϕ′(u[0 :
n− 1])[i].

For every i ∈ I and n ≥ 0, we have w[i + n·s] = i (note that k − 1 6∈ I).
Since s = 2k + 2 or s = 2k − 2, there is an other occurrence of i exactly in
mid-position, and we have w[i + n·s + s

2 ] = i. Thus every letter at position
I = I + s

2 ·N is independent of u.
Let J = (E \ I) + s·N, and let γ : J → {0, . . .K − 1} such that w[j] ∈

{aγ(j), bγ(j)}. Note that γ is well de�ned, and is independent of u, by the
properties of ODCC. By de�nition of ϕ′, one has the following.

Proposition 3.11. γ(x+ s) = 1 + γ(x) (modulo K).

Looking at the permutations in Table 3.2, we see:

Fact 3.12. For every x ∈ N, {x, . . . , x+ 4}∩ I 6= ∅ and {x, . . . , x+ 4}∩J 6= ∅.

Suppose that w has a forbidden repetition. Let l be the least integer such
that w has a forbidden repetition of period l. Let (p, e) be an forbidden repe-
tition of period l, and let t be an integer such that w[t : ∞] has pe as pre�x.
Suppose w.l.o.g than t ≥ s·K (since u is recurrent, if w has a forbidden repeti-
tion of period l, it has in�nitely many forbidden repetitions of period l).

Lemma 3.13. Let i ∈ I and j ∈ {0, . . . k − 1} \ I.



3.3. PROOF FOR LARGE ALPHABETS 35

Case k ≡ 0 mod 8, ∆ = 1:
σa = (k−2 1 3 6 7 11 12 16 19 ..(4).. k−9 k−5)

(k−1 2 4 8 9 13 14 17 21 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 7 11 12 16 19 ..(4).. k−9 k−5)

(k−2 2 4 8 9 13 14 17 21 ..(4).. k−7 k−3)
I = {0, 5, 10, 15, 18, ..(2).., k−6, k−4} K = k+12

4

ua = a b c

1

d e

2

f g h i

3

j

4

k l mn

5

o

6

pq r

7

s t uv

8

. . . q r s t

-2

uvwx

-1

y z

0

b
1

a c
1
e d

2

g f i

3

h j

4

l kn

5

mo

6

qp r

7

t s v

8

ux
9

. . . q t
-2
s vux

-1

wy b z

0

c

1

ub = a b c

1

d e

2

f g h i

3

j

4

k l mn

5

o

6

pq r

7

s t uv

8

. . . q r s t

-2

uvwx

-1

y z

0

b
1

a c
1
e d

2

g f i

3

h j

4

l kn

5

mo

6

qp r

7

t s v

8

ux
9

. . . q t
-2
s vux

-1

wz y

0

b c

1

Case k ≡ 1 mod 8, ∆ = 1:
σa = (k−2 1 3 6 7 11 12 16 ..(4).. k−9 k−5)

(k−1 2 4 8 9 13 14 18 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 7 11 12 16 ..(4).. k−9 k−5)

(k−2 2 4 8 9 13 14 18 ..(4).. k−7 k−3)
I = {0, 5, 10, 15, ..(2).., k−6, k−4} K = k+11

4

ua = a b c

1

d e

2

f g h i

3

j

4

k l mn

5

o

6

pq r s

7

. . . q r s t

-2

uvwx

-1

y z

0

b
1

a c
1
e d

2

g f i

3

h j

4

l kn

5

mo

6

qp s

7

r u
8

. . . q t
-2
s vux

-1

wy b z

0

c

1

ub = a b c

1

d e

2

f g h i

3

j

4

k l mn

5

o

6

pq r s

7

. . . q r s t

-2

uvwx

-1

y z

0

b
1

a c
1
e d

2

g f i

3

h j

4

l kn

5

mo

6

qp s

7

r u
8

. . . q t
-2
s vux

-1

wz y

0

b c

1

Case k ≡ 2 mod 8, ∆ = 1:
σa = (k−2 1 3 6 7 11 14 17 ..(4).. k−9 k−5)

(k−1 2 4 8 9 12 15 19 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 7 11 14 17 ..(4).. k−9 k−5)

(k−2 2 4 8 9 12 15 19 ..(4).. k−7 k−3)
I = {0, 5, 10, 13, 16, ..(2).., k−6, k−4} K = k+10

4

ua = a b c

1

d e

2

f g h i

3

j

4

k l m

5

n o p

6

q r s t

7

. . . q r s t

-2

uvwx

-1

y z

0

b
1

a c
1
e d

2

g f i

3

h j

4

l km

5

onp

6

r q t

7

s v
8

. . . q t
-2
s vux

-1

wy b z

0

c

1

ub = a b c

1

d e

2

f g h i

3

j

4

k l m

5

n o p

6

q r s t

7

. . . q r s t

-2

uvwx

-1

y z

0

b
1

a c
1
e d

2

g f i

3

h j

4

l km

5

onp

6

r q t

7

s v
8

. . . q t
-2
s vux

-1

wz y

0

b c

1
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Case k ≡ 3 mod 8, ∆ = 1:
σa = (k−2 1 3 6 7 11 14 ..(4).. k−9 k−5)

(k−1 2 4 8 9 12 16 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 7 11 14 ..(4).. k−9 k−5)

(k−2 2 4 8 9 12 16 ..(4).. k−7 k−3)
I = {0, 5, 10, 13, ..(2).., k−6, k−4} K = k+9

4

ua = ab c
1
d e
2
f gh i
3

j
4
k lm
5
nopq

6
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f i
3

h j
4

l km
5

onq
6

p s
7
. . . q t

-2
s vux

-1
wyb z

0
c
1

ub = ab c
1
d e
2
f gh i
3

j
4
k lm
5
nopq

6
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f i
3

h j
4

l km
5

onq
6

p s
7
. . . q t

-2
s vux

-1
wz y

0
b c
1

Case k ≡ 4 mod 8, ∆ = 1:
σa = (k−2 1 3 6 7 11 ..(4).. k−9 k−5)

(k−1 2 4 8 9 13 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 7 11 ..(4).. k−9 k−5)

(k−2 2 4 8 9 13 ..(4).. k−7 k−3)
I = {0, 5, 10, ..(2).., k−6, k−4} K = k+8

4

ua = ab c
1
d e
2
f gh i
3

j
4
k lmn

5
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f i
3

h j
4

l kn
5
mp
6
. . . q t

-2
s vux

-1
wyb z

0
c
1

ub = ab c
1
d e
2
f gh i
3

j
4
k lmn

5
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f i
3

h j
4

l kn
5
mp
6
. . . q t

-2
s vux

-1
wz y

0
b c
1

Case k ≡ 5 mod 8, ∆ = 1:
σa = (k−2 1 3 6 9 12 ..(4).. k−9 k−5)

(k−1 2 4 7 10 14 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 9 12 ..(4).. k−9 k−5)

(k−2 2 4 7 10 14 ..(4).. k−7 k−3)
I = {0, 5, 8, 11, ..(2).., k−6, k−4} K = k+7

4

ua = ab c
1
d e
2
f gh
3
i j k
4
lmno

5
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f h
3

j i k
4

m l o
5

nq
6
. . . q t

-2
s vux

-1
wyb z

0
c
1

ub = ab c
1
d e
2
f gh
3
i j k
4
lmno

5
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f h
3

j i k
4

m l o
5

nq
6
. . . q t

-2
s vux

-1
wz y

0
b c
1
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Case k ≡ 6 mod 8, ∆ = 1:
σa = (k−2 1 3 6 9 ..(4).. k−9 k−5)

(k−1 2 4 7 11 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 9 ..(4).. k−9 k−5)

(k−2 2 4 7 11 ..(4).. k−7 k−3)
I = {0, 5, 8, ..(2).., k−6, k−4} K = k+6

4

ua = ab c
1
d e
2
f gh
3
i j k l

4
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f h
3

j i l
4

kn
5
. . . q t

-2
s vux

-1
wyb z

0
c
1

ub = ab c
1
d e
2
f gh
3
i j k l

4
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f h
3

j i l
4

kn
5
. . . q t

-2
s vux

-1
wz y

0
b c
1

Case k ≡ 7 mod 8, ∆ = 1:
σa = (k−2 1 3 6 ..(4).. k−9 k−5)

(k−1 2 4 8 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 ..(4).. k−9 k−5)

(k−2 2 4 8 ..(4).. k−7 k−3)
I = {0, 5, ..(2).., k−6, k−4} K = k+5

4

ua = ab c
1
d e
2
f gh i

3
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f i
3

hk
4
. . . q t

-2
s vux

-1
wyb z

0
c
1

ub = ab c
1
d e
2
f gh i

3
. . . q r s t

-2
uvwx

-1
y z
0
b
1

a c
1
e d
2
g f i
3

hk
4
. . . q t

-2
s vux

-1
wz y

0
b c
1
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Case k ≡ 0 mod 8, ∆ = −1:
σa = (k−3 k−4 ..(−4).. 24 20 16 13 10 8 5 4 0)

(k−2 k−6 ..(−4).. 22 18 15 12 9 7 3 2 k−1)
σb = (k−2 k−4 ..(−4).. 24 20 16 13 10 8 5 4 0)

(k−3 k−6 ..(−4).. 22 18 15 12 9 7 3 2 k−1)
I = {1, 6, 11, 14, 17, 19, ..(2).., k−5} K = k+12

4

ua = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmn
-6
opq
-7
r s t u

-8
vw
-9
x . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

mon
-6

p r q
-7

t svu
-8

x . . . q t s
2

vuw
1
y
0

ub = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmn
-6
opq
-7
r s t u

-8
vw
-9
x . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

mon
-6

p r q
-7

t svu
-8

x . . . q t s
2

vux
0
w

1

Case k ≡ 1 mod 8, ∆ = −1:
σa = (k−3 k−4 ..(−4).. 21 17 13 10 8 5 4 0)

(k−2 k−6 ..(−4).. 19 15 12 9 7 3 2 k−1)
σb = (k−2 k−4 ..(−4).. 21 17 13 10 8 5 4 0)

(k−3 k−6 ..(−4).. 19 15 12 9 7 3 2 k−1)
I = {1, 6, 11, 14, 16, ..(2).., k−5} K = k+11

4

ua = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmn
-6
opq r

-7
s t
-8
u . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

mon
-6

qp s r
-7

u . . . q t s
2

vuw
1
y
0

ub = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmn
-6
opq r

-7
s t
-8
u . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

mon
-6

qp s r
-7

u . . . q t s
2

vux
0
w

1

Case k ≡ 2 mod 8, ∆ = −1:
σa = (k−3 k−4 ..(−4).. 18 14 10 8 5 4 0)

(k−2 k−6 ..(−4).. 16 12 9 7 3 2 k−1)
σb = (k−2 k−4 ..(−4).. 18 14 10 8 5 4 0)

(k−3 k−6 ..(−4).. 16 12 9 7 3 2 k−1)
I = {1, 6, 11, 13, ..(2).., k−5} K = k+10

4

ua = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmno
-6

pq
-7
r . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

nmpo
-6

r . . . q t s
2

vuw
1
y
0

ub = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmno
-6

pq
-7
r . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

nmpo
-6

r . . . q t s
2

vux
0
w

1
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Case k ≡ 3 mod 8, ∆ = −1:
σa = (k−3 k−4 ..(−4).. 19 15 11 8 5 4 0)

(k−2 k−6 ..(−4).. 17 13 10 7 3 2 k−1)
σb = (k−2 k−4 ..(−4).. 19 15 11 8 5 4 0)

(k−3 k−6 ..(−4).. 17 13 10 7 3 2 k−1)
I = {1, 6, 9, 12, 14, ..(2).., k−5} K = k+9

4

ua = a
-1
b c d e
-2

f
-3
gh i
-4

j k l
-5
mnop

-6
q r
-7
s . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

h j i
-4

kml
-5

onqp
-6

s . . . q t s
2

vuw
1
y
0

ub = a
-1
b c d e
-2

f
-3
gh i
-4

j k l
-5
mnop

-6
q r
-7
s . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

h j i
-4

kml
-5

onqp
-6

s . . . q t s
2

vux
0
w

1

Case k ≡ 4 mod 8, ∆ = −1:
σa = (k−3 k−4 ..(−4).. 16 12 8 5 4 0)

(k−2 k−6 ..(−4).. 14 10 7 3 2 k−1)
σb = (k−2 k−4 ..(−4).. 16 12 8 5 4 0)

(k−3 k−6 ..(−4).. 14 10 7 3 2 k−1)
I = {1, 6, 9, 11, ..(2).., k−5} K = k+8

4

ua = a
-1
b c d e
-2

f
-3
gh i
-4

j k lm
-5

no
-6
p . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

h j i
-4

l knm
-5

p . . . q t s
2

vuw
1
y
0

ub = a
-1
b c d e
-2

f
-3
gh i
-4

j k lm
-5

no
-6
p . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

h j i
-4

l knm
-5

p . . . q t s
2

vux
0
w

1

Case k ≡ 5 mod 8, ∆ = −1:
σa = (k−3 k−4 ..(−4).. 9 5 4 0)

(k−2 k−6 ..(−4).. 7 3 2 k−1)
σb = (k−2 k−4 ..(−4).. 9 5 4 0)

(k−3 k−6 ..(−4).. 7 3 2 k−1)
I = {1, 6, ..(2).., k−5} K = k+7

4

ua = a
-1
b c d e
-2

f
-3
gh i j

-4
k . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4
k . . . q t s

2
vuw
1
y
0

ub = a
-1
b c d e
-2

f
-3
gh i j

-4
k . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4
k . . . q t s

2
vux

0
w

1
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Case k ≡ 6 mod 8, ∆ = −1:
σa = (k−3 k−4 ..(−4).. 26 22 18 15 13 10 8 5 4 0)

(k−2 k−6 ..(−4).. 24 20 17 14 12 9 7 3 2 k−1)
σb = (k−2 k−4 ..(−4).. 26 22 18 15 13 10 8 5 4 0)

(k−3 k−6 ..(−4).. 24 20 17 14 12 9 7 3 2 k−1)
I = {1, 6, 11, 16, 19, 21, ..(2).., k−5} K = k+14

4

ua = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmn
-6

op
-7
q r s
-8
t uvw

-9
xy
-10
z . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

nm
-6

oqp
-7

r t s
-8

vuxw
-9

z . . . q t s
2

vuw
1
y
0

ub = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmn
-6

op
-7
q r s
-8
t uvw

-9
xy
-10
z . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

nm
-6

oqp
-7

r t s
-8

vuxw
-9

z . . . q t s
2

vux
0
w

1

Case k ≡ 7 mod 8, ∆ = −1:
σa = (k−2 1 3 6 ..(4).. k−9 k−5)

(k−1 2 4 8 ..(4).. k−7 k−3)
σb = (k−1 1 3 6 ..(4).. k−9 k−5)

(k−2 2 4 8 ..(4).. k−7 k−3)
I = {1, 6, 11, 16, 18, ..(2).., k−5} K = k+13

4

ua = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmn
-6

op
-7
q r s t

-8
uv
-9
w . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

nm
-6

oqp
-7

s ru t
-8

w . . . q t s
2

vuw
1
y
0

ub = a
-1
b c d e
-2

f
-3
gh i
-4

j k
-5

lmn
-6

op
-7
q r s t

-8
uv
-9
w . . . s

2
t uvw

1
xy
0

zba
-1

c e
-2

dg f
-3

i h
-4

j l k
-5

nm
-6

oqp
-7

s ru t
-8

w . . . q t s
2

vux
0
w

1

Table 3.2 � σa, σb, I, ua and ub. �x ..(y).. z� means every integer between x
and z, with a step of y. In ua and ub, letters a, b, c, . . . represent letters 0, 1, 2 . . .
in Σk, letters z, y, x, . . . represent letters k−1, k−2, k−3, . . . and letters in bold
are letters in I. The over-brackets give the ODCC couples, with their number
(modulo K).
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• The distance in w of two consecutive occurrences of i is s
2 ∈ {k−1, k+1}.

• The distance in w of two consecutive occurrences of j is k− 1, k or k+ 1.

• The distance in w between two occurrences of ij is at least (k+1)(k−1)
2 .

• The distance in w between two occurrences of ji is at least (k+1)(k−1)
2 .

Proof. The distance between two consecutive occurrences of the same letter is
k − 1, k or k + 1, by de�nition of Mk. Moreover, the distance between two
consecutive occurrences of i is s

2 by the previous remark on I. Now suppose
∆ = 1 (the case ∆ = −1 is similar). Suppose that ij appears in w at position
x, and let y > x be the next occurrence of ij in w. The next occurrence of j
cannot be at position x+ k+ 2 otherwise w would have an forbidden repetition
of excess 2. So the next occurrence of j is at position x+k. The gap between the
q-th next occurrence of i after x and the q-th occurrence of j after x+ 1 cannot
decrease, since the is are spaced by k+ 1. Suppose that there are n occurrences
of i between x and y (including positions x and y) and m occurrences of j
between x + 1 and y + 1. One has m > n. Then y − x = (k + 1)(n − 1) and
y − x ≥ (k − 1)·(m − 1) ≥ (k − 1)n. So n ≥ k+1

2 , and y − x ≥ (k+1)(k−1)
2 .

The distance in w between two occurrences of ji is also at least (k+1)(k−1)
2 , by

symmetry.

Lemma 3.14. l is a multiple of s2 .

Proof. Since |e| ≥ 5, by Fact 3.12, e contains a i ∈ I, which are spaced by s
2 .

Lemma 3.15. |e| ≥ k+1
2 .

Proof. Since |e| ≥ 5, by Fact 3.12, e contains a factor ij or ji for a i ∈ I and
j ∈ {0, . . . k − 1} \ I. By Lemma 3.13, |p| ≥ (k−1)(k+1)

2 . Thus |e| > k+1
2 .

Fact 3.16. For every x, y ∈ J ∩ {0, s2 − 1} such that x 6= y and γ(x) = γ(y),
we have γ(x+ s

2 ) 6= γ(y + s
2 ).

Lemma 3.17. l is a multiple of s.

Proof. We know that l is a multiple of s
2 . Suppose that it is not a multiple of

s. Since |e| > k+1
2 ≥ 16, there are x, y ∈ {t, . . . t + |e| − 1} such that x, y ∈ J ,

y− x ∈ {1, 2}, γ(x) = γ(y) and
⌊
x
s

⌋
=
⌊
y
s

⌋
. Thus, we have a contradiction with

Fact 3.16.

Lemma 3.18. l is a multiple of s·K.

Proof. Suppose that l = n·s. Again, e contains an occurrence x ∈ J of a
j 6∈ I. We have γ(x) ≡ γ(x + s·n) mod K. Thus by Proposition 3.11, n ≡ 0
mod K.

Lemma 3.19. If u is (000, 111)-free, then |p| > s·K.

Proof. Suppose that |p| = s·K. Since |e| ≥ k
2 , e contains two occurrences x

and y such that x, y ∈ J ,
⌊
x
s

⌋
=
⌊
y
s

⌋
, and γ(y) ≡ γ(x) + 1 mod K. Let

v = u
[⌊
x
s

⌋
−K :

⌊
x
s

⌋
− 1
]
. Couples i and i + 1 are good on the same time on

v, which is impossible by Proposition 3.6 since u is (000, 111)-free.
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3.3.2 Avoiding short kernel repetition

From now on, w′ = h(wTM ) and w = Mk(w′). If w has a forbidden repetition,
then by results in the previous section, its period is a multiple of s·K and is at
least 2·s·K. In this case, its excess is at least 4·K ≥ k, since s

2 ≥ k − 1 and
K ≥ k

4 . Thus this repetitions is a kernel repetition, and w′ has a forbidden ϕ-
kernel repetition. Let l be the least integer such thatw′ has a ϕ-kernel repetition
(p′, e′) of period l and with |e

′|+k−1
l > 1

k−1 . Let t be the least integer such that
w′[t : ∞] has p′e′ as pre�x. We suppose w.l.o.g. that the excess is maximal,
that is (p′,w′[t : t + |e′|]) is not a repetition. Note that, by construction of h
and by minimality of t, t is a multiple of s2 .

We now denote by w′TM the in�nite binary word de�ned as the �xed point
of the following morphism :

µ :

{
0 7→ 1010

1 7→ 1011.

This word is the derivative word of wTM , and it can also be constructed as a
Toeplitz word for the pattern 101•, that is w′TM = limn→∞ Tk with T0 = •ω,
and Ti+1 = F (Ti), where F (w) is the word obtained from (101•)ω by replacing
the sequence of all occurrences of • by w [36].

For n ≥ 1 and δ ≥ 1, let χ(n,δ) be the in�nite word such that for every x ∈ N
(the sum is over GF(2)) :

χ(n,δ)[x] =

n−1∑
i=0

w′TM [x+ i·δ]

Let f0(n) be the least r such that for every odd δ, χ(n,δ) is 0r-free, and let
f1(n) be the least r such that for every odd δ, χ(n,δ) is 1r-free. The following
comes from easy observations.

Proposition 3.20. Let δ be odd and x > 0. Then

• f0(1) = 2 and f1(1) = 4,

• f0(2) ≤ 3,

• f0(3) ≤ 8 and f1(3) ≤ 4,

• f0(4x) ≤ 4f0(x) and f1(4x) ≤ 4f1(x),

• f0(4x+ 1) ≤ 4f0(x),

• f0(4x+ 2) ≤ 4f1(x+ 1) and f0(4x+ 2) ≤ 4f1(x),

• f0(4x+ 3) ≤ 4f0(x).

Proof. Since w′TM is (00, 1111)-free and contains 0 and 111, and χ(2,δ) ∈ (11BB)ω,
we have f0(1) = 2, f1(1) = 4 and f0(2) ≤ 3.

Suppose now that δ ≡ 1 mod 4. The case δ ≡ 3 mod 4 is proved similarly.
We use the Toeplitz de�nition of w′TM . Let w(n,d)[i] = χ(n,δ)[4i + d] for every
d ∈ {0, 1, 2, 3}, i ≥ 0 and n > 0. We have w(3,3) = w(4,3) = w′TM , and 08 cannot
appear in χ(3,δ) (resp. 116 cannot appear in χ(4,δ)) because w′TM is 02-free (resp
14-free). Moreover w(3,0) = 0ω, so χ(3,δ) is 14-free. Similarly, other results follow
from facts that:
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• w(4n,1) = w(4n+1,1) = χ(n,δ)[δ + 1 :∞].

• w(4n+2,0) = χ(n,δ).

• w(4n,2) = χ(n,δ)[
δ+1

2 :∞].

• w(4n+2,0) = χ(n,δ).

By previous observations, we have:

Proposition 3.21. For every x ∈ {1, . . . 17}, f0(x) ≤ 32.

One can note than more generally, we have max(f0(x), f1(x)) ≤ 4x for every
x ≥ 1. By Proposition 3.21, we have:

Proposition 3.22. For every n ≤ 17 and every odd δ ≥ 33, χ(n,δ) has no factor

0δ−1.

The least integer r such that χ(n,δ) is 0r-free, for a �xed n and δ, can be found
by a computer : µi(1) contains every factor of w′TM of size at most 4(i−1) + 1,
so every factor of size n of w′TM appear in its pre�x of size 4n. Thus the pre�x
of χ(n,δ) of size 4(l + (n− 1)δ) contains every pre�x of χ(n,δ) of size at most l.
Computer checks show that:

Proposition 3.23.

(i) For every n ≤ 17 and every odd 11 ≤ δ ≤ 31, if χ(n,δ) has a factor 0δ−1,
then (n, δ) ∈ {15, 17} × {11, 15, 17}.

(ii) wTM has no factor w of the size 11·n such that ϕ′(w) = Idk, for n ∈
{15, 17}.

(iii) The maximal excess of a ϕ′-kernel repetition of period n·K in wTM , for
n ≤ 17 and 11 ≤ K, is one.

Lemma 3.24. If K ≥ 11, then l ≥ 18·s·K.

Proof. Suppose that K ≥ 11 and l = n·s·K with n ≤ 17.
Case 1: s divides t. Since s·K divides l, wTM has a ϕ′-kernel repetition

(p′′, e′′) with p′ = h(p′′) and |e′′| ≥
⌊
|e′|
s

⌋
. By Proposition 3.6 χ(n,K) contains

the factor 0K−1. By Proposition 3.23 (i), K ∈ {11, 15, 17}, and by (ii), K ∈
{15, 17}. On the other hand, we have |e′| ≥ 3, and we get the contradiction
with (iii).

Case 2: s does not divide t. Then t ≡ s
2 mod s. Note that in this

case n ∈ {2, 3}, otherwise the excess of (p′, e′) would be more than s
2 , and t

would not be minimal. We have p′ = κah(w)ιb or p′ = κbh(w)ιa, where w has
size K − 1. We suppose p′ = κah(w)ιb (the other case is similar). Then w is
followed by b in wTM . Let p1 = h(w)ιbκa and p2 = h(w)ιbκb = h(wb). Then
ϕ(p1) = Idk and ϕ′(wb) = ϕ(p2) = ϕ(p1)ϕ(10)−1ϕ(01) = (k−3 k−1 k−2).
Thus for every i ∈ {0, . . . k−4}, ϕ′(wb)[i] = i. χ(n,K) has a factor 0K−1, which
is impossible by Proposition 3.23 (i).
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3.3.3 Avoiding long kernel repetitions

We know by the previous lemmas that l ≥ 18·s·K, and thus |e′| ≥ 8(k+1) ≥ 4s.
Since l and t are multiples of s, and by maximality of e′, wTM has a ϕ′-kernel

repetition (p1, e1) such that p′ = h(p1) and e′ = h(e1)L. Thus:

|e1|·s+ `+ k − 1

|p1|·s
=
|e′|+ k − 1

l
>

1

k − 1

Note that |e1| ≥ 4. The de�nition of markable words are those of Chapter 2. By
Corollary 2.10, and since every factor of wTM of size at least 4 is (νTM , wTM )-
markable, h(wTM ) has a ϕ′-kernel repetition (p2, e2) with p1 = νTM (p2) and
e1 = νTM (e2). Thus w has a repetition of exponent E, with :

E =
|e2|·s+ `+ k − 1

|p2|·s
>
|e1|·s+ `+ k − 1

|p1|·s
>

1

k − 1

which is a forbidden repetition of period l
2 . We have a contradiction.

3.4 Alphabets with less than 9 letters

Ochem's conjecture is already proved for several cases. Chalopin and Ochem
proved the �rst case of the conjecture for 5 letters, and the second case for 6
letters [51]. The cases 9 ≤ k ≤ 38 are proved in Chapter 2. Theorem 3.7 prove
it for k ≥ 24. We give here constructions for the last cases.

All the words follow the same construction. Their Pansiot code is the mor-
phic word h(g∞(a)), where h and g are given in the following table (∆ = 1 for
�rst case of the conjecture, and ∆ = −1 for the second case).

k ∆ g h xh xg

5 1 a→ abaababaabababaabaab a→ 101101 13 40
aabababaababaabaabab

b→ abaabaabaababaababaa b→ 101010
baabaabababaababaaba

6 −1 a→ aaab a→ 1010110110 39 5
b→ bbba b→ 1011010101

6 1 a→ abaabb a→ 101010110101010110101 46 12
b→ abbaba b→ 101010110101101010110

7 −1 a→ ababa a→ 101010101101101010101010 24 7
b→ bbabb b→ 101010101101101101101101

7 1 a→ aaab a→ 1011010110110110 63 5
b→ bbba b→ 1011011010110101

8 −1 a→ abbba a→ 101010101101010110101 30 5
b→ baaab b→ 101010110101101010110

8 1 a→ aab a→ 101101101101010110101010101 27 7
b→ baa b→ 101101101101101010101011010

Table 3.3 � Construction for cases k ≤ 8.

The proof also follows ideas of Chapter 2. Let w′ = g∞(a) and w = h(w′)
for one case in Table 3.3. By Remark 3.2, Mk(w) has at least one letter of
frequency 1

k+∆ . We show that Mk(w) is a Dejean word. Let s = |h(a)| = |h(b)|
and s′ = |g(a)| = |g(b)|. Let ` (resp. `′) be the size of the largest common pre�x
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of h(a) and h(b) (resp. g(a) and g(b)). Let σa = ϕ(h(a)) and σb = ϕ(h(b)). Let
ϕ′ : {a, b}∗ → Sk be the morphism such that ϕ′(a) = σa and ϕ′(b) = σ(b). One
can easily check by computer that:

Fact 3.25. There is a σ ∈ Sk such that for every x ∈ {a, b}, ϕ′(g(x)) =
σ · ϕ′(x) · σ−1.

Let xh and xh de�ned in Table 3.3. One can check by computer that:

Fact 3.26.

• Every factor w of w such that |w| ≥ xh is (h,w′)-markable.

• Every factor w of w′ such that |w′| ≥ xg is (g,w′)-markable.

A Ψ-kernel repetition (p, e) is weak if |e|+
6
5

|p| ≥
1

k−1 . The following corollary
follow from Lemma 2.5, Fact 3.25 and Fact 3.26.

Corollary 3.27.

• If w has a ϕ-kernel-repetition (p, e) with |e| ≥ xh, then w′ has a ϕ′-kernel-
repetition (p′, e′) with s · |e′|+ ` ≥ |e| and s · |p′| = |p|.

• If w′ has a ϕ′-kernel-repetition (p, e) with |e| ≥ xg, then w′ has a ϕ′-
kernel-repetition (p′, e′) with s′ · |e′|+ `′ ≥ |e| and s′ · |p′| = |p|.

Therefore if Mk(w) has a forbidden kernel repetition of excess at least k −
1 + xh, then w′ has a ϕ′-kernel repetition (p′, e′) such that

s · |e′|+ k − 1 + `

s · |p′|
>

1

k − 1
.

Note that (p′, e′) is a weak repetition since k−1+`
s ≤ 6

5 . Similarly, if w′ has a
weak ϕ′-kernel repetition (p′, e′) of excess at least xg, then w′ has a ϕ′-kernel
repetition (p′′, e′′) such that

s′ · |e′′|+ `′ + 6
5

s′ · |p′′|
>

1

k − 1
.

Then (p′′, e′′) is also a weak repetition since `′+ 6
5

s′ ≤
6
5 . The fact that Mk(w) is

a Dejean word follow from the computer checked facts that:

• Mk(w) has no forbidden repetition of excess at most k − 1 + xh.

• w′ has no weak repetition of excess at most xg.
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We investigate the �nite repetition threshold for k-letter alphabets, k ≥ 4,
that is the smallest number r for which there exists an in�nite r+-free word
containing a �nite number of r-powers. We show that there exists an in�nite
Dejean word on a 4-letter alphabet (i.e. a word without factors of exponent
more than 7

5 ) containing only two 7
5 -powers. For a 5-letter alphabet, we show

that there exists an in�nite Dejean word containing only 60 5
4 -powers, and we

conjecture that this number can be lowered to 45. Finally, we show that the
�nite repetition threshold for k letters is equal to the repetition threshold for k
letters, for every k ≥ 6.

This chapter is based on paper [2] (joint work with Golnaz Badkobeh and
Maxime Crochemore).

4.1 Introduction

Following the study of in�nite words avoiding repetitions in relation to Dejean's
statement on the repetition threshold of alphabets [64] we show that it is possible
to impose more constraints on words. We are interested in in�nite words whose
maximal exponent of its �nite factors does not exceed Dejean's threshold and
that contain a �nite number of factors having the maximal exponent. This
introduces the notion of �nite repetition threshold (see [38, 39]). Imposing
this constraint is not possible on the binary alphabet whose �nite repetition
threshold is 7

3 while the repetition threshold is 2 (see [138, 132]), but can be
satis�ed for the ternary alphabet [39]. We show here that the result also holds
for larger alphabets. This con�rms the intuition given by the growth rates of
words having the smallest exponent according to their alphabet size (see [99,
140]).

Associated with the �nite repetition threshold is the smallest number of
factors of highest exponent that an in�nite word can accommodate (see [77,
37]). We show here that there exists an in�nite word on a 4-letter alphabet
containing only two 7

5 -powers and no factor of exponent more than 7
5 . The only

known proofs of the 7
5 repetition threshold for 4 letters are due to Pansiot [125]

and Rao [28]; both of their words contain 24 7
5 -powers. On 5 letters, the proof

of the 5
4 threshold by Moulin-Ollagnier [118] provides a word with 360 5

4 -powers
of periods 4, 12 and 44. We show that this number can be reduced to 60 and
conjecture that it can be lowered to 45, the smallest possible number.

Both results also provide in fact new proofs of the repetition thresholds
for the corresponding alphabet sizes 4 and 5. The question on the smallest
number of factors of highest exponent in a Dejean word remains open for larger
alphabets.

4.2 Preliminaries

The �nite repetition threshold for k letters is the smallest number FRT(k) for
which there exists an in�nite FRT(k)+-free word containing a �nite number of
RT(k)-powers (that is, it has a �nite number of limit repetitions).

It is known that any in�nite 7
3 -free in�nite binary word contains an arbi-

trary number of squares [138, 132]. However, there exists an in�nite binary
word whose maximal exponent does not exceed 7

3 and all of its squares have
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period length at most 7. In [38], the associated minimal number of squares
that an in�nite binary word can accommodate is given as follows: there exists
an in�nite binary word containing only 12 squares whose maximal exponent is
7
3 . The proof is based on a HD0L-system exploiting two special non-uniform
morphisms, the �rst one on 6-letter alphabet and the second from 6 letters to
binary. Furthermore, a simple construction of all binary words with only 11
squares whose maximal exponent is 7

3 showed that this set is �nite and that its
longest element has length 116, which shows the minimality of 12.

This idea was extended and further studied in [39] on ternary words. The
result is as follows: there exists an in�nite ternary Dejean word containing only
two 7

4 -powers. The proof is based on a 160-uniform morphism which translates
any in�nite Dejean word on 4 letters to an in�nite Dejean word on 3 letters
containing only two 7

4 -powers.

Throughout this chapter, in order to prove the existence of an in�nite word
complying with some properties, the following method is used. The main tech-
nique is to design two or more morphisms generating an appropriate in�nite
binary word and then translate that by the inverse of the Pansiot coding. One
of the experimental techniques that we used consists of the following steps. We
generate a long enough word satisfying the pre-de�ned constraints using a back-
tracking strategy, and we translate this word to a binary word by applying the
Pansiot coding. Then, we search for its most repetitive motifs, and using selec-
tive elements of the set of motifs, we try to decode the word to �nd its pre-image
according to the morphism de�ned by the motifs. If necessary, we iterate the
previous step with the new word (pre-image of the �rst word). Backtracking is
a general algorithm for �nding all (or some) solutions to some computational
problem; it incrementally builds candidates to the solutions, and abandons each
partial candidate as soon as it determines it cannot possibly be completed to a
valid solution.

4.3 Finite repetition threshold for 4-letter alpha-
bets

Since the repetition threshold for a 4-letter alphabet is 7
5 , it su�ces to show that

there exists a 7
5

+
-free in�nite word on Σ4 with �nitely many limit repetitions

(that is 7
5 -powers). There are two proofs of Dejean's conjecture for 4-letter

alphabets, by Pansiot [125] and Rao [28]. In both cases the number of limit
repetitions contained in the in�nite words is 24. This proves that the �nite
repetition threshold for 4 letters is 7

5 . In this section, we prove the following:

Theorem 4.1. The �nite repetition threshold for 4-letter alphabets is 7
5 and the

minimal number of 7
5 -powers is 2.

A computer check shows that a word on a 4-letter alphabet for which the
maximal exponent of factors is 7

5 and that contains at most one limit repetition
has maximal length 230. Then, to prove Theorem 4.1, we give a morphic word
which is the Pansiot code of a Dejean word on 4 letters with only two limit
repetitions. The correctness proof follows the plan and notations introduced
in [28]. However, since the morphism ϕ′ will be simpler here, we can make the
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proof self-contained. Informally, the idea is to prove that if the morphic word
has a forbidden repetition with a long enough period, then it has a smaller
forbidden repetition. Thus it remains to prove that the morphic word has no
forbidden repetition with a period bounded by a constant, which can be done
by a �nite case analysis. Let:

f :


a → abc

b → cda

c → adc

d → cba

g :


a → aacbbaaccbaabcabc

b → aacbacbaabbcaabbc

c → cbaaccbbaccabcabc

d → aacbaccaabbcaabbc

h :



a→ 101101010110110101101101010110101011011010101101101010110101

011011010101101101010110101011011010101

b→ 101101010110110101101101010110110101011010101101101010110110

101011010101101101010110110101011010101

c→ 101101010110110101101101010110110101011011010101101010110110

101011011010101101010110110101011011010.

The rest of this section is devoted to the proof of the following theorem.

Theorem 4.2. w0 = M4(h(g(f∞(a)))) is 7
5

+
-free and it contains only two 7

5 -
powers: (3421432412, 3421) and (1423412432, 1423).

Remark 4.3. A computer check shows that the Pansiot code of every long
enough 7

5

+
-free word on 4-letter alphabet with at most two limit repetitions

contains h(x) as factor, for an x ∈ {a, b, c}. Moreover, every Pansiot code
of a Dejean word with at most two limit repetitions starting with h(x) (for
x ∈ {a, b, c}) must be followed by h(y), for a y ∈ {a, b, c}. Thus the morphism
h in our construction is unavoidable, i.e. for every Dejean word w which proves
Theorem 4.1, P4(w) must be the image by h of a ternary word (modulo the shift
operation).

The following properties derive from simple observations:

• f is 3-uniform, g is 17-uniform and h is 99-uniform. Thus h ◦ g is 1683-
uniform. (A morphism f : Σ∗ → Σ′

∗ is l-uniform, l ∈ N, if for every
x ∈ Σ, |f(x)| = l.)

• f , g, h and h ◦ g are comma-free. (A morphism f : Σ∗ → Σ′
∗ is comma-

free if whenever f(xy) = uf(z)v, then either u = ε or v = ε, for every
x, y, z ∈ Σ and u, v ∈ Σ′

∗.)

• The longest common pre�x in {h ◦ g(a), h ◦ g(b), h ◦ g(c), h ◦ g(d)} has size
635 and the longest common su�x has size 990.

• For every x ∈ {a, b, c}, ϕ(h(x)) = (13).
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The last fact can be veri�ed by a computer check (or by a tedious hand check).
The notion of Ψ-kernel repetition is central in [118, 28]. However, the proof
can be simpli�ed here since ϕ(h(x)) = (13) for every x ∈ {a, b, c} (which is
not true for cases in [28]). Since g and h are uniform and of odd-size, for
every x ∈ {a, b, c, d}, ϕ(h(g(x))) = (13) and ϕ(h(g(f(x)))) = (13). Let ϕ′ :
{0, 1, 2, 3}∗ → S4 such that ϕ′(u) = (13)|u|. Thus (p, q) is a ϕ′-kernel repetition
if (p, q) is a repetition, and |p| is even. The following lemma gives a relation
between ϕ-kernel repetitions in w1 = h(g(f∞(a))) and ϕ′-kernel repetitions in
w2 = f∞(a).

Lemma 4.4. Let (p1, e1) be a ϕ-kernel-repetition of w1. If |e1| ≥ 3365, then w2

has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥
⌈
|e1|−1625

1683

⌉
and |p1| = 1683 · |p2|.

Proof. Suppose w.l.o.g. that (p1, e1) is a maximal repetition, i.e. there is no
repetition (p′1, e

′
1) in w1 such that |p′1| = |p1| and p1e1 is a proper factor of p′1e

′
1.

If |e1| ≥ 3365 = 2 · 1683 − 1, then h ◦ g(a), h ◦ g(b) or h ◦ g(c) appears as a
factor in e1. Since h ◦ g is comma-free and 1683-uniform, |p1| is a multiple of
1683. Let n ∈ N such that |p1| = n · 1683. Then there is a factor u = a1 . . . al
in w2 such that h ◦ g(u) = vp1e1v

′, v is a proper pre�x of h ◦ g(a1) and v′ is
a proper su�x of h ◦ g(al). Since (p1, e1) is a repetition of period n · 1683, for
every n + 1 < i < l, ai = ai−n. Thus (p2, e2) = (a2 . . . an+1, an+2 . . . al−1) is
a repetition in w2 of period n. Moreover, ϕ′(p2) = ϕ(h ◦ g(p2)) = Id4 since
ϕ(p1) = Idk, and p1 is conjugate to h ◦ g(p2). (We recall that two words w and
w′ are conjugated if there are u and v such that w = uv and w′ = vu.) Since
p1e1 is maximal on the left, |v| ≥ 693, and since p1e1 is maximal on the right,
|v′| ≥ 1048. Thus |e1| − 1625 ≤ 1683 · |e2|, and w2 has a ϕ′-kernel repetition

(p2, e2) with |e2| ≥
⌈
|e1|−1625

1683

⌉
and |p1| = 1683 · |p2|.

The proof of the following Lemma is similar, and is omitted.

Lemma 4.5. If (p2, e2) is a ϕ′-kernel repetition of w2 = f∞(a) with |e2| ≥ 5,

then w2 has a ϕ′-kernel-repetition (p′2, e
′
2) with |e′2| ≥

⌈
|e2|−2

3

⌉
and |p2| = 3 · |p′2|.

Lemma 4.6. Suppose that w2 has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥ 5

and |e2|+1
|p2| ≥

2
5 . Then there exists a ϕ′-kernel-repetition (p′2, e

′
2) with |p2| = 3·|p′2|

and
|e′2|+1
|p′2|

≥ 2
5 .

Proof. By Lemma 4.5,

2

5
≤ |e2|+ 1

|p2|
≤ 3 · |e′2|+ 3

3 · |p′2|
=
|e′2|+ 1

|p′2|
.

The following fact can be veri�ed by a computer check:

Fact 4.7. There is no ϕ′-kernel-repetition (p2, e2) with 2 ≤ |e2| < 5 and |e2|+1
|p2| ≥

2
5 in w2.

Thus by Lemma 4.6:
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Corollary 4.8. There is no ϕ′-kernel-repetition (p2, e2) with 2 ≤ |e2| and
|e2|+1
|p2| ≥

2
5 in w2.

Lemma 4.9. w1 has no ϕ-kernel-repetition (p1, e1) with |e1| ≥ 3 · 1683 and
|e1|+3
|p1| ≥

2
5 .

Proof. Suppose that w1 has a ϕ-kernel-repetition (p1, e1) with |e1| ≥ 3·1683 and
|e1|+3
|p1| ≥

2
5 . By Lemma 4.4, w2 has a ϕ′-kernel repetition (p2, e2) with |e2| ≥ 2

and
2

5
≤ |e1|+ 3

|p1|
≤ 1683 · |e2|+ 1625 + 3

1683 · |p2|
<
|e2|+ 1

|p2|
.

By Corollary 4.8, w2 has no such ϕ′-kernel repetition. Contradiction.

By Lemma 4.9, if w1 has a ϕ-kernel repetition (p1, e1) with |p1e1|+3
|p1| ≥ 7

5 ,

then |p1| ≤ 5
2 (|e1| + 3) < 5·(3·1683+3)

2 , that is |p1| < 12630. By Proposition 2.1
Lemma lm:mo, and since w1 is the Pansiot code of w0, w0 has no repetition
(p, e) with |p| ≥ 12633 and |pe||p| ≥

7
5 . To complete the proof of Theorem 4.2, it

su�ces to show that for every repetition (p, e) in w0 with |p| < 12633, either
|pe|
|p| < 7

5 , or
|pe|
|p| = 7

5 and (p, e) ∈ {(3421432412, 3421), (1423412432, 1423)}.
This fact has been veri�ed by a computer check.

4.4 Finite repetition threshold for 5-letter alpha-
bets

This section is devoted to the study of the minimal number of limit repetitions
over all Dejean words on a 5-letter alphabet. Moulin-Ollagnier gave a proof of
Dejean's conjecture for k = 5 (see [118]). Let:

m :

{
0 → 010101101101010110110

1 → 101010101101101101101.

Then M5(m∞(0)) is 5
4

+
-free. We claim without proof that it contains 360 limit

repetitions, of which a third have period 4, a third period 12 and the remaining
have period 44. This proves that the �nite repetition threshold for 5-letter
alphabets is 5

4 . We show, with an explicit construction, that the number of limit
repetitions can be lowered to 60, and we conjecture that the minimal number
is 45. Most of the intermediate proofs are similar to those in Section 4.3, and
are omitted. Let:

f :

{
a → aaabbababbaaabbaabb

b → aabbbaababaabbbaabb

g :

{
a → aaaababbbbababaaaababbb

b → bbbbabaaaabababbbbabaaa

h :


a→ 110110101010110110101010110110101011011010101101101101010110

11011011010101011011010101101101010110110110101010110

b→ 110110101011011010101101101010101101101101101010110110110101

01101101010110110101010110110101010110110110101010110.
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Let w2 = f∞(a), w1 = h(g(w2)) and w0 = M5(w1).

Theorem 4.10. w0 is a Dejean word on 5 letters, and it contains only 60 limit
repetitions, all of which have period 4.

The following properties will help with the proof of Theorem 4.10:

• f is 19-uniform, g is 29-uniform and h is 113-uniform. Thus h ◦ g is
3277-uniform.

• f , g, h and h ◦ g are comma-free.

• The longest common pre�x in {h◦g(a), h◦g(b)} has size 11 and the longest
common su�x has size 24.

• For every x ∈ {a, b}, ϕ(h(x)) = (12)(354), thus for every x ∈ {a, b},
ϕ(h(g(x)) = (12)(345) and ϕ(h(g(f(x))) = (12)(345).

Let ϕ′ : {0, 1, 2, 3, 4}∗ → S5 such that ϕ′(u) = [(12)(345)]|u|. Thus (p, q) is a
ϕ′-kernel repetition if and only if (p, q) is a repetition, and |p| is divisible by 6.

Lemma 4.11. Let (p1, e1) be a ϕ-kernel-repetition of w1 = h(g(f∞(a))). If
|e1| ≥ 6553, then w2 = f∞(a) has a ϕ′-kernel-repetition (p2, e2) with |e2| ≥⌈
|e1|−35

3277

⌉
and |p1| = 3277 · |p2|.

Lemma 4.12. If |e2| ≥ 37, then w2 = f∞(a) has a ϕ′-kernel-repetition (p′2, e
′
2)

with |e′2| ≥
⌈
|e2|−8

19

⌉
and |p2| = 19 · |p′2|.

Here, we adapt the same approach as in Section 4.3 (Lemma 4.6 and Fact
4.7) with the appropriate changes based on the size of the morphism f and the
exponent 5

4 . The next corollary follows:

Corollary 4.13. There is no ϕ′-kernel-repetition (p2, e2) with 6 ≤ |e2| and
|e2|+1
|p2| ≥

1
4 in w2.

Lemma 4.14. w1 has no ϕ-kernel-repetition (p1, e1) with |e1| ≥ 6 · 3277 and
|e1|+4
|p1| ≥

1
4 .

The proof of Lemma 4.14 is similar to the proof of Lemma 4.9, and is a direct
consequence of Lemma 4.11 and 4.12. By Lemma 4.14, if w1 has a ϕ-kernel
repetition (p1, e1) with |p1e1|+4

|p1| ≥ 5
4 , then |p1| ≤ 4

1 (|e1|+ 4) < 4 · (6 · 3277 + 4),
that is |p1| < 78664. By Proposition 2.1 Lemma lm:mo, and since w1 is the
Pansiot code of w0, w0 has no repetition (p, e) with |p| ≥ 78664 and |pe||p| ≥

5
4 .

A computer check showed that among every repetition (p, e) in w0 of period at
most 78664, none has an exponent greater than 5

4 . This proves that FRT(5) = 5
4 .

This check also reveals that there are only 60 limit repetitions (p, e) in w0, and
for every limit repetition, |e| = 1. This concludes the proof of Theorem 4.10.

To conclude this section, we give lower bounds on the number of limit repe-
titions for a Dejean word on 5 letters. The following facts have been veri�ed by
a computer check. A standard (and easily parallelizable) backtrack algorithm
written in C++ took approximately 3 days (resp. 120 days) of single-core time
on a 2.1GHz CPU to verify fact (a) (resp. fact (b)).
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Fact 4.15.

(a) A 5
4

+
-free word on a 5-letter alphabet that contains at most 44 limit

repetitions has size at most 4648.

(b) A 5
4

+
-free word on a 5-letter alphabet that contains at most 45 limit

repetitions, and such that every limit repetition has period 4, has size at
most 7331.

Thus the minimal number of limit repetitions over all Dejean words on 5
letters is between 45 and 60. Based on computer experiments, we conjecture
the following.

Conjecture 4.16.

• There exists an in�nite Dejean word on a 5-letter alphabet with only 45
limit repetitions.

• There exists an in�nite Dejean word on a 5-letter alphabet with only 46
limit repetitions, and such that every limit repetition has period 4.

4.5 Finite repetition threshold for k-letter alpha-

bets, k ≥ 6

Looking at the existing proofs for Dejean's conjecture shows in fact FRT(k) =
RT(k) for k ≥ 6, that is, known constructions of Dejean words have �nitely
many limit repetitions.

Lemma 4.17. For every 5 ≤ k ≤ 11, FRT(k) = RT(k).

Proof. Moulin-Ollagnier gave uniform morphisms hk, for 5 ≤ k ≤ 11, such that
Mk(h∞k (1)) is a Dejean word on a k-letter alphabet [118]. We show that these
Dejean words have �nitely many limit repetitions. We �x a 5 ≤ k ≤ 11, and
let h = hk. Let u = |h(0)| = |h(1)|, and let L be the longest common pre�x of
h(0) and h(1). Note that the last letters of h(0) and h(1) di�er. Suppose that
Mk(h∞(1)) has in�nitely many limit repetitions. Let L be the set of ϕ-kernel
repetitions (p, e) in h∞(1) with |e|+k−1

|p| = 1
k−1 , that is ϕ-kernel repetitions

which correspond to a limit repetition. Since Mk(h∞(1)) has in�nitely many
limit repetitions, L is also in�nite. By [118, Corollary 3.20], there is a repetition
(p, e) ∈ L and a n > 0 such that (hn(p), µn(e)) ∈ L, where µ(w) = h(w)L.
Then:

|e|+ k − 1

|p|
=
un · |e|+ |L| ·

∑n−1
i=0 u

i + k − 1

un · |p|
which is satis�ed when:

(u− 1) · (k − 1) = |L|.

We have a contradiction, since |L| ≤ u− 1 and k ≥ 5.

For k ≥ 12 we use the following lemma.

Lemma 4.18. Let k ≥ 5. Let wTM be the Prouhet-Thue-Morse word, that is
wTM = ν∞TM (0) where νTM : 0 → 01, 1 → 10. Let w1 = h(wTM ) be a binary
word such that:
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1. w0 = Mk(w1) is a Dejean word on a k-letter alphabet.

2. h : {0, 1}∗ → {0, 1}∗ is n-uniform,

3. there exists σ ∈ Sk such that ϕ′(0)ϕ′(1) = σϕ′(0)σ−1 and ϕ′(1)ϕ′(0) =
σϕ′(1)σ−1, where ϕ′ : {0, 1}∗ → Sk is the morphism such that ϕ′(0) =
ϕ(h(0)) and ϕ′(1) = ϕ(h(1)).

Then w0 has �nitely many limit repetitions.

Proof. Note that w1 cannot contain arbitrarily large powers, otherwise w0 would
also contain arbitrarily large powers. We have h(0) 6= h(1), since the Pansiot
code of a Dejean word is not periodic. Thus we can suppose w.l.o.g. that the
last letters of h(0) and h(1) di�er, otherwise we replace h(0) (resp. h(1)) by
uh(0)u−1 (resp. uh(1)u−1), where u is the largest common su�x of h(0) and
h(1). Moreover we can suppose w.l.o.g. that the last letter of h(x) is x for
x ∈ {0, 1}, otherwise we exchange h(0) and h(1) (note the factor set of wTM is
closed under the complementation). Let L be the largest common pre�x of h(0)
and h(1), and let ` be the size of L.

Claim 4.19. There is a B ∈ N such that for every ϕ-kernel repetition (p, e) in
w1 with |e| ≥ B, |p| is a multiple of n.

Proof. Let v, where v is a binary word, be the image of v by the morphism
0 → 1, 1 → 0. Let M = {1 ≤ i ≤ n : h(0)[i] = h(1)[i]}, N = {1 ≤ i ≤ n :
h(0)[i] = 0 and h(1)[i] = 1} and N ′ = {1 ≤ i ≤ n : h(0)[i] = 1 and h(1)[i] = 0}.
Note that {M,N,N ′} is a partition of {1, . . . , n}, and since the last letter of
h(x) is x, we have n ∈ N . Suppose that the claim is false. Then there are
arbitrarily large factors u and u′ of wTM , with |u| = |u′| + 1 ≥ 4, such that
vh(u′) is a pre�x of h(u), where v is a non-empty proper su�x of h(0) or h(1).
Since wTM is cube-free, u′, u[1 : |u| − 1] and u[2 : |u|] contain 0 and 1 as
factors. Thus for every i ∈ M , i + |v| ∈ M (mod n), that is M + |v| = M
(mod n). Since n ∈ N , we have |v| 6∈ M . Since the last letter of h(x) is x (for
x ∈ {0, 1}), u′ is either a su�x of u or of u, depending on whether |v| ∈ N
or |v| ∈ N ′. If u′ is a su�x of u, then h(u′)[i] = h(u′)[i + n − |v|] for every
1 ≤ i ≤ n · |u′| − n+ |v|, that is h(u′) is a repetition of period n− |v|. Suppose
now that u′ is a su�x of u. Let 1 ≤ i ≤ n · |u′| − 2(n− |v|). If i ∈M (mod n),
h(u′)[i] = h(u′)[i+ n− |v|] = h(u′)[i + 2(n − |v|)], since {i, i + n − |v|]} ⊆ M
(mod n). Otherwise h(u′)[i] = h(u′)[i+ n− |v|] = h(u′)[i + 2(n − |v|)], since
{i, i + n − |v|]} ⊆ {1 . . . n} \M (mod n). Thus h(u′) is a repetition of period
2(n − |v|). In all cases, h(u′) is a repetition of period at most 2n. Hence w1

contains arbitrarily large powers, and we have a contradiction.

Suppose that w0 has in�nitely many limit repetitions. Then w1 has in�nitely
many ϕ-kernel repetitions (p, e) with |e|+k−1

|p| = 1
k−1 . By Claim 4.19, if e is long

enough then |p| is a multiple of n, and wTM has a repetition (p′, e′) such that
n·|p′| = |p|, p is conjugated to h(p′) and |e| = n·|e′|+`. Since (p, e) is a ϕ-kernel
repetition, ϕ(p) = Idk and ϕ(h(p′)) = Idk. By condition (3), ϕ′(p′) = Idk, and
(p′, e′) is a ϕ′-kernel repetition of wTM .

Thus the word wTM has in�nitely many ϕ′-kernel repetitions (p′, e′) with
n·|e′|+`+k−1

n·|p′| = 1
k−1 . Let (p′, e′) be a ϕ′-kernel repetition in wTM with |e′| ≥ 4
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and n·|e′|+`+k−1
n·|p′| = 1

k−1 . By [28, Corollary 9], wTM has a ϕ′-kernel repe-
tition (p′′, e′′) with |p′| = 2 · |p′′| and |e′| ≤ 2 · |e′′|. Thus w1 has a ϕ-
kernel repetition (h(p′′), h(e′′)L), and w0 has a kernel repetition of exponent
n·|e′′|+`+k−1

n·|p′′| > n·|e′|+`+k−1
n·|p′| = 1

k−1 . We have a contradiction with the fact that
w0 is a Dejean word.

We apply the previous lemma on constructions for 8 ≤ k ≤ 38 (Chapter 2),
or k ≥ 24 (Chapter 3) to show that FRT(k) = RT(k) for every k ≥ 8.

We conclude with the following open questions.

Conjecture 4.20. For every k ≥ 5, there is a in�nite Dejean word on k letters
such that the only allowed limit repetitions have period k − 1.

Let LR(k), for k ≥ 3, be the minimal number of limit repetitions over all
Dejean words on k letters. Similarly let LR′(k), for k ≥ 5, be the minimal
number of limit repetitions over all Dejean words on k letters such that every
limit repetition has period k − 1. By the results of the present article, LR(k)
is de�ned for every k ≥ 3, and LR′(k) is de�ned if Conjecture 4.20 is true. We
know that LR(3) = 2 [39], LR(4) = 2, 45 ≤ LR(5) ≤ 60 and 46 ≤ LR′(5) ≤ 60.
It may be di�cult to �nd the exact value of LR(k) or LR′(k) for any k ≥ 5, but
we can ask the following question.

Question 4.21. Find a lower or an upper bound for LR(k) or LR′(k), k ≥ 5.

Conjecture 4.20 implies that LR(k) ≤ LR′(k) ≤ k!. On the other hand, limit
repetitions cannot be avoided when k ≥ 5 since every 0 in the Pansiot code leads
to an occurrence of a limit repetition of period k−1. Thus 0 < LR(k) ≤ LR′(k).
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This last chapter closes the �rst part dedicated to Dejean's conjecture. We
present results and open questions about other generalizations of the problem.

5.1 Dejean words and letter frequency

Several authors studied the minimal (resp. maximal) frequency of a letter in a
power-free language.

Let ρ(x) (resp. ρ+(x)) be the minimal frequency of a letter in a x-free
(resp. x+-free) word. The function ρ is introduced by Kolpakov, Kucherov
and Tarannikov in [130], and studied in [122, 19]. The values of ρ(x) are
nearly known (see [19]). For example, one has ρ(2+) = ρ(7/3) = 1/2, and
ρ(7/3+) = 327/703 = 0.4651493598 . . .. A related question is to �nd the possi-
ble frequencies of a letter in a square-free ternary word.

Theorem 5.1. [106, 122]

• The minimal density of a letter in an in�nite ternary square-free word is
883
3215 = 0.27465007 . . ..

• The maximal density of a letter in an in�nite ternary square-free word is
255
653 = 0.39050535 . . ..

Ochem's conjecture rises the question of minimal and maximal frequencies
of a letter in Dejean words. The proof of this conjecture (Chapter 3) gives the
answer for alphabets of size at least 5 for minimum frequency and size 6 for
maximum frequency. But the question is still open for alphabets of size 3, 4 and
5.

Question 5.2. What is the minimal (resp. maximal) frequency of a letter in a
Dejean word on k letters, for k ∈ {3, 4} (resp. k ∈ {3, 4, 5}) ?

Ochem showed that the maximum frequency of a letter in a Dejean word on
5 letters is less than 103

440 = 0.23409090 . . . [122].

5.2 Generalized repetition threshold

The generalized repetition threshold has been introduced by Ilie, Ochem and
Shallit in [90].

A word is (α, `)-free (resp. (α+, `)-free) if it does not contain any repetition of
period at least ` and exponent at least α (resp. greater than α). The generalized
repetition threshold RT(k, `) is the smallest real α such that there exists an
in�nite (α+, `)-free word on k-letters. The case ` = 1 corresponds to Dejean's
repetition threshold.

The general behaviour of RT(k, `) is known when ` tends to in�nity [75],
but the exact values are still unknown or conjectured, except for few cases. One
has RT(2, 2) = 2 (since one cannot avoid squares of period at least 2 on binary
words), RT(2, 3) = 8

5 , RT(2, 4) = 3
2 , RT(2, 5) = 7

5 , RT(2, 6) = 4
3 , RT(3, 2) = 3

2
and RT(3, 3) = 4

3 [90]. Moreover, computations support the following intriguing
conjecture.

Conjecture 5.3 ([90]). For ` ≥ 2, RT(3, `) = 1 + 1
` and RT(4, `) = 1 + 1

`+2 .
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The following unpublished theorem gives a partial answer to the previous
conjecture (joint work with Roman Kolpakov).

Theorem 5.4. For all ` ≥ 11, RT(3, `) ≥ 1 + 1
` .

Proof. Suppose that RT(3, `) < 1 + 1
` for a ` > 0. Then for every n > 0 and

0 < m ≤ `, one can �nd n ternary words u1, u2, . . . , un of size m with the
following property: for every e > 0 and 1 ≤ i < j ≤ n and 1 ≤ x, y ≤ m+ 1− e
such that ui[x : x+ e− 1] = uj [y : y + e− 1], one has:

• e < j − i+ 1 if x < y

• e < j − i if either x = y or x > y and i+ 1 < j.

To show this, it su�ce to take u1 = w[1 : m], u2 = [1 + ` : m + `], ..., un =
w[1 + (n − 1)` : m + (n − 1)`], where w is an in�nite (1 + 1/`, `)-free ternary
word.

A backtracking algorithm shows that such u1, u2, . . . , un do not exist for
n = 10 and m = 11. Thus RT(3, `) ≥ 1 + 1

` .

It may be proved that RT(4, `) ≥ 1 + 1
`+2 using a generalization of the

previous technique, with an additional connectivity constraint on the Rauzy
graph. Upper bounds of Conjecture 5.3 may be proved constructively. Thus, it
is reasonable to think that Conjecture 5.3 can be solved.

5.3 Growth rate of Dejean words

The growth rate of a language L on an alphabet A is lim supn→∞ |L ∩ An|
1
n .

Some authors prefer the terminology of entropy, which is, in the case of languages
on words, the logarithm of the growth rate. The growth rate of overlaps-free
binary words is 1, since there are only polynomially many such words and the
growth rate of cube-free binary words is between 1.45697 and 1.4576 [108, 69].
The growth rate of ternary square-free words is between 1.30173 and 1.30179
[108, 121].

We known that there are exponentially many Dejean words on k letters, for
k ∈ {3, 4} [120], k ∈ {5, . . . , 10} [99], and every odd k ∈ {7, . . . , 101} [144].

Conjecture 5.5. There are exponentially many Dejean words on k letters, for
every k ≥ 3.

More speci�cally, let gk be the growth rate of Dejean words on a k-letter
alphabet. One has bounds for gk for some small k.

Theorem 5.6 ([120, 15]).

• 1.245 ≤ g3

• 1 < g4

• 1.153811 ≤ g5 ≤ 1.157895

• 1.223437 ≤ g6 ≤ 1.224695

• 1.236409 ≤ g7 ≤ 1.236899
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• 1.234725 ≤ g8 ≤ 1.234843

• 1.246659 ≤ g9 ≤ 1.246678

• 1.239287 ≤ g10 ≤ 1.239308

For k = 2, RT(k) = 2, and we are in the case of overlap-free binary words. As
we already know, the growth rate is 1. More generally, there are polynomially
many 7

3 -free binary words (their growth rate is then 1), and there are exponen-

tially many 7
3

+
-free binary words [99]. The growth rate of 7

3

+
-free binary words

is estimated at 1.2206448 . . . [139].

Moreover, computations strongly suggest that:

Conjecture 5.7 ([140]). limk→∞ gk = 1.242 . . ..

Let g = lim supk→∞ gk. If one wants to compute an upper bound on g,
one can focus on Pansiot code of Dejean words. Let w be the Pansiot code of
Dejean word. As explained in Lemma 3.9, w forbids 00, 111 and u{0, 1}k−4u for
every u ∈ {0, 1}4. Thus, the growth rate g′k of the language Lk of binary words
avoiding 00, 111 and

{
u{0, 1}k−4u : u ∈ {0, 1}4

}
is a upper bound for gk, and

g ≤ g′ where g′ = lim supk→∞ g′k. One can easily show that limk→∞ g′k exists,
and is the growth rate of two-dimensional binary words avoiding 00, 111 and
a b c d
a b c d for every a, b, c, d ∈ {0, 1}.

Unfortunately, computing such growth rates on two-dimensional words is a
di�cult problem. One famous example is the computation of the growth rate ϕ2

of the Fibonacci subshift on Z2, that is two-dimensional binary words avoiding
11 and 1

1 . The Fibonacci subshift on Z is well-known, and its growth rate is the
golden mean. Computing the exact value of ϕ2 is a long-standing open question
(even if we have a good approximation: ϕ2 = 1.503048 . . .) as well as in graph
theory (the Fibonacci subshift corresponds then to stable sets in the grid) and
in physics (the hard square model).
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In 1957 and 1961, Erd®s asked two questions about the avoidability of
squares in words, in the continuation of the works of Thue [71, 72]. Firstly,
he asked if one can avoid arbitrarily long squares in binary words. Secondly, he
asked if one can avoid abelian squares over a �nite alphabet.

The subject of this second part is the avoidability of abelian repetitions and
its generalizations.

6.1 Avoidability of abelian powers

Two words u, v ∈ A∗ are abelian equivalent, denoted u ≡a v, if for every a ∈ A,
|u|a = |v|a, where |u|a is the number of occurrences of the letter a in the word
u. A word u is an abelian-n-th-power, where n ≥ 2, if u = u1u2 . . . un such that
ui ≡a ui+1 for every i ∈ {1, . . . , n− 1}. An abelian square (resp. abelian cube)
is an abelian-2nd-power (resp. abelian-3rd-power). It is not di�cult to see that
every ternary word of size at least 8 has an abelian square.

Erd®s [71, 72] raised the question whether abelian squares can be avoided
in an in�nite word on an alphabet of size 4. Evdokimov [73] showed that one
can avoid them on an alphabet of size 25, which was later lowered to 5 by
Pleasants [127]. Finally, Keränen [103] answered positively to Erd®s's question
in 1992, with the following construction, found with the help of a computer.

Theorem 6.1 (Keränen [103]). Fixed points of the following 85-uniform mor-
phism are abelian-square-free:

σK :


a→abcacdcbcdcadcdbdabacabadbabcbdbcbacbcdcacbabdabacadcbcdcacdbcbacbcdcacdcbdcdadbdcbca

b→bcdbdadcdadbadacabcbdbcbacbcdcacdcbdcdadbdcbcabcbdbadcdadbdacdcbdcdadbdadcadabacadcdb

c→cdacabadabacbabdbcdcacdcbdcdadbdadcadabacadcdbcdcacbadabacabdadcadabacabadbabcbdbadac

d→dabdbcbabcbdcbcacdadbdadcadabacabadbabcbdbadacdadbdcbabcbdbcabadbabcbdbcbacbcdcacbabd

Moreover, Carpi showed that the number of abelian-square-free-words over
4 letters is exponential [48]. The best known lower bound on the growth rate,
due to Keränen, is 1.02306 [105].

Besides that, Dekking answered to the question of the avoidability of abelian-
n-th-powers, for n ≥ 3.

Theorem 6.2 (Dekking [65]). Fixed points of the following morphism are
abelian-cube-free:

σD3 :

 a→ aabc

b→ bbc

c→ acc.

Theorem 6.3 (Dekking [65]). The �xed point of the following morphism is
abelian-4th-power free:

σD2 :

{
a→ abb

b→ aaab.

Moreover, the growth rate of abelian-cube-free words over 3 letters is at
least 31/19 = 1.059526 . . . (see Section 7.3.2), and the growth rate of abelian-
4th-power free binary words is at least 21/16 = 1.044273 . . . [60].
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6.2 Decision algorithms

Dekking [65], and then Carpi [46] gave su�cient conditions for a morphism h to
be abelian-n-th-power-free, that is for every word w, h(w) is abelian-n-th-power-
free if and only if w is abelian-n-th-power-free. If h is abelian-n-th-power-free
then the �xed points of h are abelian-n-th-power-free, but the converse does not
always hold. For example, σ4 : 0 → 03, 1 → 43, 3 → 1, 4 → 01 is not abelian-
cube-free (since, for example, σ4(1004) = 43030301 contains the cube 303030),
but the �xed point of σ4 is cube-free (see Section 6.4).

The eigenvalues of a morphism h : Σ∗ → Σ∗ are the eigenvalues of the matrix
Mh, such that for x, y ∈ Σ, Mh[x, y] = |h(x)|y. Currie and Rampersad [59] gave
an algorithm which decides, for a �xed integer n, if a �xed point of a morphism
with no eigenvalue of absolute value at most 1 is abelian-n-th-power-free.

In order to attack the problems from Mäkelä (Section 6.3), we needed specif-
ically to be able to decide on morphisms with some eigenvalues of absolute value
less than 1. Using ideas of both [59] and [50], we showed the following.

Theorem 6.4 ([25]). For any primitive morphism h with no eigenvalue of
absolute value 1 it is possible to decide if the �xed points of h are abelian-k-th-
power-free.

Let σ6 be the following morphism.

σ6 :

 a→ ace, b→ adf
c→ bdf, d→ bdc
e→ afe, f → bce.

Using decision algorithm from [25], we can show the following.

Theorem 6.5. σω6 (a) is abelian-square-free.

In addition to being abelian-square-free, σω6 (a) has an important property.
The eigenvalues of σ6 are 0 (with algebraic multiplicity 3), −

√
3,
√

3 and 3. Since
σ6 has only 3 eigenvalues (including multiplicities) of absolute value greater than
1, the Parikh vectors of the factors of σω6 (a) are close to a subspace of R6 of
dimension 3. This property is important to show Theorem 6.12 (one can avoid
long abelian squares on a ternary alphabet), and Theorem 6.16 (one can avoid
additive squares on Z2).

6.3 Avoidability of long abelian squares and ques-

tions of Mäkelä

Erd®s also asked if it is possible to avoid arbitrarily long ordinary squares on
binary words [71, 72]. Erd®s thought that the answer was negative. Entringer,
Jackson and Schatz showed the opposite: it is possible to construct an in�nite
binary word without squares of size 6 and more [70]. This result has been
improved by Fraenkel and Simpson: it is possible to construct an in�nite binary
word with only 3 squares: 00, 11 and 1010, and this is the best we can do [77].
Perhaps the simplest construction of such a word is given by Badkobeh and
Crochemore:
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Theorem 6.6 ([38]). Let η : 0 → 01001110001101, 1 → 0011, 2 → 000111.
Then η(wTTM ) contains only 3 squares: 00, 11, and 1010.

In the same spirit Mäkelä asked the following two questions about the avoid-
ability of long abelian cubes (resp. squares) on a binary (resp. ternary) alpha-
bet:

Problem 6.7 (Mäkelä (see [104])). Can you avoid abelian-cubes of the form
uvw where |u| ≥ 2, over two letters ? - You can do this at least for words of
length 250.

Problem 6.8 (Mäkelä (see [104])). Can you avoid abelian squares of the form
uv where |u| ≥ 2 over three letters ? - Computer experiments show that you
can avoid these patterns at least in words of length 450.

We reformulated the questions of Mäkelä, and asked [24]:

Problem 6.9. Is there a p ∈ N such that one can avoid abelian squares of
period at least p over three letters? If yes what is the smallest such p?

Problem 6.10. Is there a p ∈ N such that one can avoid abelian cubes of
period at least p over two letters? If yes what is the smallest such p?

We showed that the answer to Question 6.7 is negative:

Theorem 6.11 ([24]). There is no in�nite word over a binary alphabet avoiding
abelian cubes of period at least 2.

This negative result is shown using an exhaustive search: one can show that
there is an in�nite word with the property if and only if there are in�nitely
many Lyndon words with the property, which is false.

On the other hand, we showed that a weakening version of the second ques-
tion has a positive answer. Let σ3 be the following morphism.

σ3 :



a→ bbbaabaaac

b→ bccacccbcc

c→ ccccbbbcbc

d→ ccccccccaa

e→ bbbbbcabaa

f → aaaaaaabaa.

Theorem 6.12 ([25]). σ3(σω6 (a)) does not contain any square of period more
than 5.

Thus we know that 2 ≤ p ≤ 6 in Problem 6.8, and p ≥ 3 in Problem 6.7.
Theorem 6.12 is shown using a decision algorithm which is a simple extension
of the algorithm of Theorem 6.4.

The technique we use in [25] to prove Theorem 6.12 may be used to prove
Question 6.8 or to give a bound on p in Problem 6.10. The di�culty is to handle
the combinatorial explosion when we search for a morphism (as σ3 in Theorem
6.12).
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6.4 Additive powers

Mäkelä's problems turned out to be close to problems asked by Justin, Pirillo
and Varricchio. Let k ≥ 2 be an integer and (G,+) a group. An additive k-
th power is a non-empty word w1 . . . wk over A ⊆ G such that all for every
i ∈ {2, . . . , k}, |wi| = |w1| and

∑
wi =

∑
w1 (where

∑
v =

∑|v|
i=1 v[i]). A group

(G,+) is k-uniformly repetitive if every in�nite word over a �nite subset of G
contains an additive k-th power as a factor.

Problem 6.13 ([94, 126]). Can we avoid two consecutive blocks of the same
size and the same sum over a �nite subset of Z ? In other words, is Z non
uniformly 2-repetitive ?

The answer of Problem 6.13 is likely negative, but two weakening of this
problem are true.

Theorem 6.14 (Cassaigne et al., 2014 [50]). The �xed point of σ4 is additive-
cube free, with:

σ4 :


0→ 03
1→ 43
3→ 1
4→ 01

This implies that Z is not uniformly 3-repetitive.

We will see in Section 7.3 several ternary alphabets on which one can avoid
additive cubes. It seems that it is easy to avoid additive cubes on the alphabet
{0, i, j}, with 0 < i < j, j ≥ 6 and i co-prime with j, and this is proved for every
6 ≤ j ≤ 9. Moreover, additives cubes are avoidable over {0, 1, 5} (see Section
7.3.2). In [25, 135], one show that one can avoid additive cubes on {0, 1, 2, 4},
{0, 2, 3, 5} and {0, 2, 3, 6}. This leaves open the following question, for which it
seems di�cult to �nd a construction.

Question 6.15. Is there in�nite additive-cube-free words on the following al-
phabets : {0, 1, 2, 3}, {0, 1, 4} and {0, 2, 5} ?

Let Φ the morphism such that:

Φ :

 a→ (0, 0) b→ (1, 1)
c→ (2, 1) d→ (0, 1)
e→ (2, 0) f → (1, 0).

Theorem 6.16 ([25]). Φ(σω6 (a)) does not contain two consecutive blocks of the
same size and the same sum. In other words, Z2 is not uniformly 2-repetitive.

A simple extension of algorithm of Theorem 6.4 is able to prove Theorem 6.14
and Theorem 6.16, and it is not a coincidence that σ6 is the base of constructions
of Theorem 6.12 and Theorem 6.16.

Again, it would be interesting to �nd smaller alphabets Σ ⊆ N2 on which
one can avoid additive squares. Surely, a method similar to the one presented
in Section 7.3 would give a positive answer for some alphabets of size 5. Never-
theless, it would be di�cult to �nd alphabets of size 4, since this result would
imply a new construction of a square-free word on 4 letters.
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6.5 Parameterized generalizations

Recently, two parameterized variations of the abelian equivalence have been
introduced: the k-abelian equivalence, introduced by Karhumäki et al. [88, 98,
97], and the k-binomial equivalence, introduced by Rigo and Salimov [133].
These two notions bring a gap between the abelian equivalence (which is the
1-abelian equivalence and the 1-binomial equivalence) and the usual equality
between words (which can be viewed as the ∞-abelian equivalence, or the ∞-
binomial equivalence). Moreover, these two notions are not comparable, except
for k = 1.

The next two chapters are devoted to the avoidability of powers with re-
spect to the k-abelian-equivalence (Chapter 7) and the k-binomial-equivalence
(Chapter 8).
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Carpi gave a set of conditions which imply that a morphism h is abelian-
power-free, that is h(w) is abelian-n-th-power-free if and only if w is abelian-n-
th-power-free [46]. Moreover, this set is conjectured to be a characterization of
abelian-power-free morphisms. In this chapter, we adapt this set of conditions
to k-abelian-repetitions: we give su�cient conditions for a morphism h to be k-
abelian-n-th-power-free, that is, for every abelian-n-th-power-free word w, h(w)
is k-abelian-n-th-power-free. In a very similar way, we give su�cient conditions
for a morphism h to be additive-n-th-power-free, that is, for every additive-n-
th-power-free word w, h(w) is also additive-n-th-power-free.

Using these results, we prove that 2-abelian-cubes are avoidable over a bi-
nary alphabet and that 3-abelian-squares are avoidable over a ternary alphabet,
answering positively to two questions of Karhumäki et al.. We also show the
existence of in�nite additive-cube-free words on several ternary alphabets.

Additionally, all our constructions show that the number of such words grows
exponentially. As a corollary, we get a new lower bound of 31/19 = 1.059526 . . .
for the growth rate of abelian-cube-free words.

This chapter is based on the paper [23].

7.1 Introduction

We are here interested in two variations of the problem of abelian power avoid-
ability. The �rst one is the k-abelian-equivalence introduced by Karhumäki et
al. [88, 98, 97]. Let k ≥ 1. Two words u and v (u, v ∈ A∗) are k-abelian-
equivalents, denoted u ≡a,k v, if for every w ∈ A∗ with |w| ≤ k, |u|w = |v|w. A
word u is a k-abelian-n-th-power, n ≥ 2, if u = u1u2 . . . un such that ui ≡a,k ui+1

for every i ∈ {1, . . . , n − 1}. A k-abelian-square (resp. k-abelian-cube) is a k-
abelian-2nd-power (resp. k-abelian-3rd-power). This notion is between the
abelian equivalence (which is the 1-abelian-equivalence) and the usual equality
between words (which can be viewed as the∞-abelian-equivalence). Since cubes
are avoidable in the binary alphabet (e.g. in the Prouhet-Thue-Morse word),
but are not avoidable in the abelian sense, it is natural to ask for the smallest
k for which k-abelian-cubes are avoidable on a binary alphabet. In [88] authors
showed that k ≤ 8, and in [116] that k ≤ 5. Finally, in [115], Merca³ and Saarela
showed that k ≤ 3. The same question can be asked for k-abelian-squares on a
ternary alphabet: 2-abelian-squares cannot be avoided [89], but Huova showed
that 64-abelian-squares can be avoided [87].

In Section 7.2, we give su�cient conditions for a morphism h : A∗ → B∗

to be k-abelian-n-th-power-free (for a �xed n ≥ 2 and k ≥ 1), that is for every
abelian-n-th-power-free word w ∈ A∗, h(w) is k-abelian-n-th-power-free. Then
we give morphisms which respect the conditions, in order to construct 2-abelian-
cube-free binary words and 3-abelian-square-free ternary words. This gives the
answer to the two previous questions, and prove on the same time that the
number of such words grows exponentially, as abelian-square-free on four letters
[48], and abelian-cube-free ternary words ([34], see also Section 7.3).

The second notion is the additive-cube-avoidability. A word w ∈ N∗ is
an additive cube if w = pqr, where p, q and r are non-empty-word such that
|p| = |q| = |r| and

∑
(p) =

∑
(q) =

∑
(r). A word is additive-cube-free if it has

no factor which is an additive cube. Clearly, such words are also abelian-cube-
free. Recently Cassaigne et al. [50] showed that one can construct an in�nite
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additive-cube-free word on the alphabet {0, 1, 3, 4}. The question if there exists
an in�nite additive-square-free word on a �nite alphabet is still open.

In Section 7.3 we give su�cient conditions for a substitution h : A∗ → 2B
∗
,

A,B ⊆ N, to be additive-cube-free. We present substitutions from the alphabet
{0, 1, 3, 4} to several ternary alphabets which respects these conditions. More-
over, the presented constructions show directly that the number of additive-
cube-free words on these ternary alphabets grows exponentially. The lower
bound of 31/19 = 1.059526 . . . that we obtain for the growth rate for the alpha-
bet {0, 1, 8} is also a new lower bound for the number of abelian-cube-free words
on a ternary alphabet.

7.2 k-abelian-n-th-power-free morphisms

7.2.1 Preliminaries

Let |u|w denote the number of occurrences of the factor w in u. The Parikh
vector of a word u ∈ A∗, where A = {a1, . . . , ak}, is Ψ(u) = (|u|a1 , . . . , |u|ak).
For a set S ⊆ A∗, ΨS(u) is the vector indexed by S such that ΨS(u)[w] = |u|w
for every w ∈ S. When the alphabet is clear in the context, we let Ψk(u) be
ΨAk(u), for k ≥ 1.

Let Pref(u) be the set of pre�xes of u, and Suf(u) be its set of su�xes. For
k ≥ 0, let prefk(u) (resp. sufk(u)) be the pre�x (resp. su�x) of u of size k.

There are several equivalent de�nitions for k-abelian-equivalence (see [97]).
Two words u and v of size at most k − 1 are k-abelian-equivalent if and only if
they are equal. Otherwise, the following conditions are equivalent:

• u and v are k-abelian-equivalent (i.e. u ≡a,k v).

• For every w ∈ A∗ with |w| ≤ k, |u|w = |v|w.

• For every w ∈ Ak, |u|w = |v|w, prefk−1(u) = prefk−1(v) and sufk−1(u) =
sufk−1(v).

• For every w ∈ Ak, |u|w = |v|w, and prefk−1(u) = prefk−1(v).

Given k ≥ 1 and n ≥ 2, a (possibly in�nite) word w is k-abelian-n-th-power-
free if no non-empty factor in w is a k-abelian-n-th-power. A word is k-abelian-
square-free (resp. k-abelian-cube-free) if it is k-abelian-2nd-power-free (resp.
k-abelian-3rd-power-free).

A morphism h : A∗ → B∗ is k-abelian-n-th-power-free if for every abelian-n-
th-power-free word u ∈ A∗, h(u) is k-abelian-n-th-power-free. Note that u has
to be abelian-n-th-power-free, not only k-abelian-n-th-power-free; we explain
in Section 7.2.4 why we use this weaker notion. A morphism h : A∗ → B∗ is
k-abelian-square-free (resp. k-abelian-cube-free) if it is k-abelian-2nd-power-free
(resp. k-abelian-3rd-power-free).

7.2.2 Testing k-abelian-n-th-power-freeness

In [46], Carpi gave a set of conditions which assure that a given morphism
is abelian-n-th-power-free. We give in the following theorem a set of similar
conditions which assure that a given morphism is k-abelian-n-th-power-free.
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Theorem 7.1. We �x k ≥ 1 and n ≥ 2, and two alphabets A and B. Let
h : A∗ → B∗ be a morphism. Suppose that:

(i) For every abelian-n-th-power-free word w ∈ A∗ with |w| ≤ 2 or |h(w[2 :
|w| − 1])| ≤ (k − 2)n− 2, h(w) is k-abelian-n-th-power-free.

(ii) There are p, s ∈ Bk−1 such that for every a ∈ A, p = prefk−1(h(a)p) and
s = sufk−1(sh(a)).

(iii) The matrix N indexed by Bk ×A, with N [w, x] = |h(x)p|w, has rank |A|.

(iv) Let S ⊆ Bk, with |S| = |A|, such that the matrix M indexed by S × A,
with M [w, x] = |h(x)p|w, is invertible. Let

ΨS(v, u) = ΨS(vp) + ΨS(su)−ΨS(sp)

and Ψk(v, u) = ΨBk(v, u). For every ai ∈ A and ui, vi ∈ A∗ with uivi =
h(ai); 0 ≤ i ≤ n; such that:

(P) |{prefk−1(vip) : 0 ≤ i < n}| = 1,

(I) M−1(ΨS(vi−1, ui)−ΨS(vi, ui+1)) is an integer vector, for every 1 ≤
i < n,

(C) Ψk(vi−1, ui)−Ψk(vi, ui+1) ∈ im(N) for every 1 ≤ i < n,

there is a (α0, . . . , αn) ∈ {0, 1}n+1 such that for every 1 ≤ i < n :

M−1ΨS(vi−1, ui)− (1− αi−1)Ψ(ai−1)− αiΨ(ai)

= M−1ΨS(vi, ui+1)− (1− αi)Ψ(ai)− αi+1Ψ(ai+1). (7.1)

Then h is k-abelian-n-th-power-free.

Proof. Suppose that h(w) has a k-abelian-n-th-power q1 . . . qn. Let q0 and qn+1

be such that h(w) = q0q1 . . . qnqn+1. By condition (i), if |qi| < k − 1, then w
has an abelian-n-th-power. So we have |qi| ≥ k − 1.

There are, for every 0 ≤ i ≤ n, ai ∈ A, ui ∈ Pref(h(ai)) and ri ∈ A∗ such
that, for every 0 ≤ i ≤ n, r0 . . . riai ∈ Pref(w) and q0 . . . qi = h(r0 . . . ri)ui.
Note that, for a 1 ≤ i ≤ n, ri can be empty, but ai is always the �rst letter of
ri+1ai+1. Let vi be such that uivi = h(ai) for every 0 ≤ i ≤ n. By condition
(i), one can suppose w.l.o.g. that |r1 . . . rnan| ≥ 3.

By condition (ii), for every 1 ≤ i ≤ n, prefk−1(qi) = prefk−1(vi−1p). Since
q1 . . . qn is a k-abelian-n-th-power, we have condition (P).

Claim 7.2. Let r ∈ A∗ and u, v ∈ B∗. Then:

• NΨ(r) = Ψk(h(r)p) = Ψk(sh(r)) = Ψk(sh(r)p)−Ψk(sp),

• Ψk(vh(r)p) = Ψk(vp) +NΨ(r),

• Ψk(sh(r)u) = Ψk(su) +NΨ(r).

Proof. If prefk−1(u) = p, then Ψk(vu) = Ψk(vp) + Ψk(u). Similarly, if
sufk−1(v) = s, then Ψk(vu) = Ψk(v) + Ψk(su). All the equality follow from
the previous facts, and the de�nition of N .
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Claim 7.3. For every 1 ≤ i ≤ n:

Ψk(qi) = N(Ψ(ri)−Ψ(ai−1)) + Ψk(vi−1, ui). (7.2)

Proof. By double counting, we have :

Ψk(qi) + Ψk(sh(riai)p) = Ψk(sh(ri)ui) + Ψk(vi−1h(a−1
i−1riai)p).

By Claim 7.2:

Ψk(qi) +NΨ(riai) + Ψk(sp) =

Ψk(sui) +NΨ(ri) + Ψk(vi−1p) +NΨ(a−1
i−1riai).

Thus: Ψk(qi) = Ψk(vi−1, ui) +N(Ψ(ri)−Ψ(ai−1)).

Since Ψk(qi) = Ψk(qi+1) for every 1 ≤ i < n, we have the condition (C).
Now we have directly ΨS(qi) = M(Ψ(ri) − Ψ(ai−1)) + ΨS(vi−1, ui). Since
ΨS(qi) = ΨS(qi+1):

M−1(ΨS(vi−1, ui)−ΨS(vi, ui+1)) = Ψ(ri+1)−Ψ(ai)−Ψ(ri) + Ψ(ai−1).

The right part is an integer vector, so we have condition (I). Thus, by condition
(iv), there is (α0, . . . , αn) ∈ {0, 1}n+1 such that (7.1) is ful�lled.

Equation (7.1) together with equations (7.2) give:

−Ψ(ri) + Ψ(ai−1)− (1− αi−1)Ψ(ai−1)− αiΨ(ai)

= −Ψ(ri+1) + Ψ(ai)− (1− αi)Ψ(ai)− αi+1Ψ(ai+1)

that is:

Ψ(ri)− αi−1Ψ(ai−1) + αiΨ(ai) = Ψ(ri+1)− αiΨ(ai) + αi+1Ψ(ai+1). (7.3)

In equation (7.3), either the left of the right part is a non-negative vector. Since
equation (7.3) is ful�lled for every 1 ≤ i < n, Ψ(ri) − αi−1Ψ(ai−1) + αiΨ(ai)

is a non negative vector for every 1 ≤ i ≤ n. Let r′i = a
−αi−1

i−1 ria
αi
i ; 1 ≤ i ≤ n.

Since ai is the �rst letter of riai+1, and Ψ(r′i) = Ψ(ri)−αi−1Ψ(ai−1) +αiΨ(ai)
is a non-negative vector, r′i is well de�ned in B∗. In one hand r′1 . . . r

′
n is a

factor of w, and is non empty since |r′1 . . . r′n| ≥ |r1 . . . rnan| − 2. On the other
hand Ψ(r′i) = Ψ(r′i+1) (by equation 7.3), for every 1 ≤ i < n. Thus w has an
abelian-n-th-power r′1 . . . r

′
n.

We introduce ΨS(v, u) in order to handle pairs (v, u) such that |vu| < k− 1
(otherwise we have Ψk(v, u) = Ψk(vu)). Theorem 7.1 gives a set of su�cient
conditions, but are still far from a characterization, as Carpi partially done for
abelian-n-th-power-free morphisms [46]. The key point is the condition (ii). One
mention that we can save up the su�x condition in (ii) by carefully handing the
cases where ui or vi has size less than k. However we still need either the pre�x
(or the su�x) condition in order to properly de�ne N .
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7.2.3 2-abelian-cube-free and 3-abelian-square-free mor-
phisms

Morphisms h2 and h′2 respect the conditions of Theorem 7.1 for k = 2 and
n = 3, i.e. are 2-abelian-cube-free, while morphisms h3 and h′3 respect the
conditions for k = 3 and n = 2, i.e. are 3-abelian-square-free. The checks were
done by computer, and took few seconds. Thus the in�nite word h2(u) (resp.
h′2(u)) where u is an in�nite abelian-cube-free word (for example a �xed point
of Dekking's morphism µ : 0 → 0012, 1 → 112, 2 → 022 [65]) is a 2-abelian-
cube-free binary word. Similarly, h3(v) (resp. h′3(v)), where v is an in�nite
abelian-square-free word on an alphabet of size 4 (for example, a �xed point
of Keränen's morphism g85 [103]), is an in�nite 3-abelian-square-free ternary
word.

Over all the 2-abelian-cube-free morphisms we found, h2 is the smallest
uniform morphism, while h′2 is the one which minimize |h(012)|. If we are only
interested in 2-abelian-cube-free in�nite word, one can �nd simpler construction.
The morphism hd ◦µ is 2-abelian-cube-free so hd(µ∞(0)) is 2-abelian-cube-free.

We also claim that h′d(µ
∞(0)) is 2-abelian-cube-free. One can modify the

decision procedure of Theorem 7.1 to compute the set of �patterns� that u has to
avoid to ensure that h(u) is k-abelian-n-th-power-free. This notion of patterns
was used by Carpi [48, 47] to prove that a substitution is abelian-square free, or
by Keränen [104] to prove that a �xed point of g98 is abelian-square free, even
though g98 is not abelian-square free. This was also used, under the name of
template, by Aberkane et al. [34] to show the exponential growth rate of abelian-
cube-free ternary words, and by Currie and Rampersad [59] for an algorithm
which decide if a �xed point of a morphism is abelian-n-th-power-free. More
recently, Merca³ and Saarela [116, 115] used this kind of patterns to show that
a morphic word is k-abelian-cube-free.

Doing this, we are able to show that h′d ◦ µ3(u) is 2-abelian-cube free if
and only if u forbids factors of the form F = {pqr, 1p0q0r2 : Ψ(p) = Ψ(q) =
Ψ(r)} ∪ {0p1q0r2, 1p1q0r2 : Ψ(p1) = Ψ(q0) = Ψ(r0)}. Moreover, µ(u) forbids
factors of the form F if and only if u forbids factors of the form F (in others
words, µ is �F -free�). Thus h′d(µ

∞(0)) is 2-abelian-cube-free, but for every
n ≥ 0, h′d ◦µn is not 2-abelian-cube-free (e.g. for every n ≥ 0, h′d(µ

n(1002)) has
a 2-abelian-cube).

7.2.4 Final remarks and questions

We �nally shortly explain why we use this weak notion of k-abelian-n-th-power-
freeness for morphisms. On one hand, k-abelian-squares cannot be avoided by
a pure morphic word on a ternary alphabet [114]. So there is no morphism
h : {0, 1, 2} → {0, 1, 2} such that for every k-abelian-square-free word u, h(u)
is k-abelian-square-free, except trivial ones. One the other hand, suppose that
there is a morphism h : A∗ → B∗, with |A| > |B|, such that for every 2-abelian-
cube-free word u ∈ A∗, h(u) is 2-abelian-cube-free. Without lost of generality,
there is {a, b} ⊆ A, such that the �rst letter of h(a) and h(b) is the same. Then
babbababb is 2-abelian-cube-free, but h(bab) ≡a,2 h(abb) thus h(babbababb) is
an 2-abelian-cube. We have a contradiction, so such a morphism cannot exist.
Nevertheless we cannot conclude directly when |A| = |B| and the �rst and last
letters of the images di�er. More speci�cally, the following question is still open.
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2-abelian-cube-free morphisms:

h2 :


0→ 00100101001011001001010010011001001100101101011

1→ 00100110010011001101100110110010011001101101011

2→ 00110110101101001011010110100101001001101101011

h′2 :


0→ 00100101001100100101001001100100110011011

1→ 010110110011011001100100110011011

2→ 0101101001010010110011011

3-abelian-square-free morphisms:

h3 :


0→ 0102012021012010201210212

1→ 0102101201021201210120212

2→ 0102101210212021020120212

3→ 0121020120210201210120212

h′3 :


0→ 01201020120212012101201021

1→ 01202120121021201021

2→ 0120210201021

3→ 0121020121

Morphisms such that h(µ∞(0)) is 2-abelian-cube-free:

hd :


0→ 001001100110110011001001100100101

1→ 001011010110100101001001100100101

2→ 001011010110110011001001101011011

h′d :


0→ 0101101001011

1→ 010110110011011001100100110011011

2→ 00100101001001100100110011011

Table 7.1 � Morphisms for k-abelian-n-th-power-free words.
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Question 7.4. It there a pure morphic binary word which avoids 2-abelian-
cubes ?

Following Erd®s's and Mäkelä's questions, one can also ask for which k ≥ 2
long k-abelian squares are avoidable over a binary alphabet. We showed that
the answer is yes for every k ≥ 2 [24, 25]. More speci�cally, let g(k) be the least
integer such that there exists an in�nite binary word with only g(k) distinct
k-abelian squares. We showed the following.

Theorem 7.5. [24, 25] Then g(1) =∞, 5 ≤ g(2) ≤ 734, g(4) = g(3) = 4, and
g(k) = 3 for every k ≥ 5.

The determination of the exact value g(2) is still open, and may have the
same order of di�culty as Problem 6.9 and Problem 6.10.

7.3 Ternary words avoiding additive cubes

7.3.1 Testing additive-n-th-power-freeness

Let Σ be the morphism from the free monoid on the alphabet N and the additive
group (Z,+) such that Σ(x) = x for every x ∈ N. A word w ∈ N∗ is an additive-
n-th-power, with n ≥ 2, if w = p1 . . . pn, such that for every 1 ≤ i < n,
|pi| = |pi+1| and Σ(pi) = Σ(pi+1). A word is an additive-cube (resp. additive-
square) if it is an additive-3rd-power (additive-2nd-power). A (possibly in�nite)
word w is additive-n-th-power-free if no non-empty factor of w is an additive-n-
th-power. Clearly, such words are also abelian-n-th-power-free. In [50], authors
prove that the �xed point of the morphism σ4 : 0 → 03, 1 → 43, 3 → 1, 4 → 01
is additive-cube-free.

A substitution is a morphism s : A∗ → 2B
∗
between the free monoid A∗

and the power monoid of B∗, that is the monoid of subsets of B∗, with the
operation U · V = {uv : (u, v) ∈ U × V }. A morphism h : A∗ → B∗ can be
viewed as a substitution s : A∗ → 2B

∗
such that s(w) = {h(w)}. A substitution

s : A∗ → 2B
∗
, where A,B ⊆ N, is additive-n-th-power-free if for every additive-

n-th-power-free word u ∈ A∗, every v ∈ s(u) is additive-n-th-power-free.
We give su�cient conditions for a substitution to be additive-n-th-power-free

in the following theorem.

Theorem 7.6. We �x n ≥ 2 and A,B ⊆ N. Let s : A∗ → 2B
∗
be a substitution.

Suppose that:

(i) For every additive-n-th-power-free word w′ ∈ A∗ with |w| ≤ 2, every w ∈
s(w′) is additive-n-th-power-free.

(ii) There is (l, γ, β) ∈ N× Z× Z, with β 6= 0, such that for every a ∈ A and
w ∈ s(a), we have |w| = l and Σ(w) = γ + aβ.

(iii) For every ai ∈ A, wi ∈ s(ai), and ui, vi ∈ A∗ with uivi = wi; 0 ≤ i ≤ n;
such that for every 1 ≤ i < n:

(L) |vi−1ui| ≡ |viui+1| (mod l),

(M) Σ(vi−1ui) ≡ Σ(viui+1) + xiγ (mod β),



7.3. TERNARY WORDS AVOIDING ADDITIVE CUBES 77

s015 :


0→ {005015100100115010115, 005015100100115100115}
1→ {005015100100105055115, 050015100100105055115}
3→ {005015101155155055115, 050015101155155055115}
4→ {005015155055155055115, 050015155055155055115}

s016 :


0→ {00101160101006001016, 00101160101006001106}
1→ {00166060101006001016, 00166060101006001106}
3→ {00166166110160661106, 00166166110166061106}
4→ {00166166066160661106, 00166166066166061106}

s017 :


0→ {00170010011711001071, 00170010011711001701}
1→ {00170017707001001071, 00170017707001001701}
3→ {00170017711017177077, 01070017711017177077}
4→ {00170017707077177077, 01070017707077177077}

s027 :


0→ {0020720220220722007, 0020720220227022007}
1→ {7220720220220722007, 7220720220227022007}
3→ {7077200770720722007, 7077200770727022007}
4→ {7077272770720722007, 7077272770727022007}

s037 :


0→ {00300307303037707307, 00300307303037700737, 00300307303037707037}
1→ {00300300707737700737, 00300300707737707037, 00300300707737707307}
3→ {00337730337737700737, 00337730337737707037, 00337730337737707307}
4→ {00337737707737700737, 00337737707737707307, 00337737707737707037}

s018 :


0→ {0081001008011811011, 0081010080011811011, 0081001080011811011}
1→ {0081001008011818008, 0081010080011818008, 0081001080011818008}
3→ {0081018818808811811, 0081108818808811811, 0081810818808811811}
4→ {0081018818808808188, 0081108818808808188, 0081188018808808188}

s038 :


0→ {003800303830033833003, 003800308330033833003}
1→ {003800303830080038388, 003800308330080083838}
3→ {003808833833038838838, 003808838330338838838}
4→ {003808838388088388388, 083008838388088388388}

s019 :


0→ {0090110191001009, 0090110911001009}
1→ {0090119110110199, 0900119110110199}
3→ {0090190090099199, 0900190090099199}
4→ {0090119199099199, 0900119199099199}

s029 :


0→ {00290020020090022029, 00290020020090020229}
1→ {00290099220090022029, 00290099220090020229}
3→ {00220292299099299099, 22920220099099299099}
4→ {22920992299099299099, 22990292299099299099}

s049 :


0→ {00400400900499009, 00400400900949009}
1→ {00400449440099409, 00400449440499009}
3→ {00409909909499409, 00409909949099409}
4→ {44944909949499009, 44944909949909409}

Table 7.2 � Additive-cube-free substitutions.
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(where xi = (|vi−1ui| − |viui+1|)/l for every 1 ≤ i < n)
there is (α0, . . . , αn) ∈ {0, 1}n+1 such that for every 1 ≤ i < n:

(a) αi − αi−1 = xi + αi+1 − αi,
(b) Σ(vi−1ui) + β[(αi−1 − 1)ai−1 − αiai]

= Σ(viui+1) + γxi + β[(αi − 1)ai − αi+1ai+1].

Then s is additive-n-th-power-free.

Proof. Suppose that w ∈ s(w′) has an additive-n-th-power q1 . . . qn. Let q0 and
qn+1 be such that w = q0q1 . . . qnqn+1.

For every 0 ≤ i ≤ n, there is ai ∈ A, wi ∈ s(ai), ui ∈ Pref(wi), and ri ∈ A∗
such that r0 . . . riai ∈ Pref(w′) and q0 . . . qi ∈ s(r0 . . . ri) · {ui}. Let vi be such
that uivi = wi for every 0 ≤ i ≤ n. By condition (i), one can suppose w.l.o.g.
that |r1 . . . rnan| ≥ 3.

By condition (ii), for every p ∈ s(p′), we have Σ(p) = γ|p′|+ βΣ(p′).
For every 1 ≤ i ≤ n, we have ui−1qi ∈ s(ri) · {ui}. Thus, by condition (ii),

and by the fact that ui−1vi−1 = wi−1 we have:

|qi| = |vi−1ui|+ l(|ri| − 1) (7.4)

and
Σ(qi) = γ(|ri| − 1) + β(Σ(ri)− ai−1) + Σ(vi−1ui). (7.5)

By equation (7.4) and by the fact that for every 1 ≤ i < n, |qi| = |qi−1|, we
have the condition (L), and:

|ri+1| − |ri| = (|vi−1ui| − |viui+1|)/l = xi.

Since for every 1 ≤ i < n, Σ(qi) = Σ(qi−1), we have:

γ(|ri| − 1) + β(Σ(ri)− ai−1) + Σ(vi−1ui)

= γ(|ri+1| − 1) + β(Σ(ri+1)− ai) + Σ(viui+1). (7.6)

Thus

Σ(vi−1ui) = Σ(viui+1) + γxi + β(Σ(ri+1)− ai − Σ(ri) + ai−1),

and equation (M) is ful�lled.
So, by condition (iii), there is (α0, . . . , αn) ∈ {0, 1}n+1 such that (a) and (b)

are ful�lled.
By equation (a), we have, for every 1 ≤ i < n;

|ri|+ αi − αi−1 = |ri−1|+ αi+1 − αi (7.7)

If ri is empty, ai = ai+1 otherwise the �rst letter of ri is ai. In equation (7.7),
the right side or the left side must be non-negative. Thus for every 1 ≤ i ≤ n,
|ri|+ αi − αi−1 ≥ 0, and r′i = a

−αi−1

i−1 ria
αi
i ; 1 ≤ i ≤ n; is well de�ned. We have

|r′i| = |ri|+ αi − αi−1 and Σ(r′i) = Σ(ri) + αiai − αi−1ai−1. By equation (7.7),
for every 1 ≤ i < n, |r′i| = |r′i+1|. Moreover r′1 . . . r

′
n is a factor of w′, and is non

empty since |r′1 . . . r′n| ≥ |r1 . . . rnan| − 2.
When we subtract (b) to (7.6), we get βΣ(r′i) = βΣ(r′i+1). Thus Σ(r′i) =

Σ(r′i+1) for every 1 ≤ i < n, and w′ has an additive-n-th-power r′1 . . . r
′
n.
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s014 :


0→ {004114104011011004011}
1→ {004114104011011014144}
2→ {004114104010044044144}
3→ {004114104044144044144}

s025 :


0→ {02200520220250552}
1→ {02252520220250552}
2→ {02255055200550552}
3→ {02255055252550552}

Table 7.3 � Additive-cube-free substitutions from {0, 1, 2, 3}∗.

Theorem 7.6 can be used to �nd additive-square-free, additive-cube-free and
additive-4th-power-free substitutions. However, we have few hopes to �nd an
additive-square-free substitution, while additive-4th-powers are equivalent to
abelian-4th-powers on binary words.

7.3.2 Additive-cube-free substitutions

We have checked by computer that every substitution in Table 7.2 respects the
conditions of Theorem 7.6. Since there is an in�nite additive-cube-free word on
the alphabet {0, 1, 3, 4}, one can construct in�nite additive-cube-free words on
the alphabets {0, 1, 5}, {0, 1, 6}, {0, 1, 7}, {0, 2, 7}, {0, 3, 7}, {0, 1, 8}, {0, 3, 8},
{0, 1, 9}, {0, 2, 9} and {0, 4, 9}. In our substitutions, each letter has at least two
images. This clearly show that number of additive-cube-free words on these
alphabets grows exponentially. For the alphabet {0, 1, 8}, we got 3 images of
size 19 for each letter, giving the lower bound of 31/19 = 1.059526 . . . for the
growth rate. This bound is also a new lower bound for the growth rate of
abelian-cube-free words on ternary alphabet. (The previous known bound was
21/24 = 1.029302 . . . in [34].)

We conjecture that for every alphabet A = {0, i, j} such that i and j are co-
prime and j ≥ 6, there exist an in�nite additive-cube-free word on the alphabet
A. The cases {0, 1, 2}, {0, 1, 3}, {0, 1, 4} and {0, 2, 5} are left open. Further-
more, it seems di�cult to construct a very long word on the alphabet {0, 1, 2, 3}
avoiding additive cubes (the longest we got has size ∼ 1.4× 105).

Question 7.7. Is there in�nite additive-cube-free words on the following al-
phabets : {0, 1, 2, 3}, {0, 1, 4} and {0, 2, 5} ?

The substitutions in Table 7.3 also respect the conditions of Theorem 7.6,
thus the existence of an in�nite additive-cube-free word on {0, 1, 2, 3} will imply
the existence of in�nite additive-cube-free words on {0, 1, 4} and {0, 2, 5}.
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In this chapter, we are dealing with another generalization of square-freeness
and cube-freeness. We consider the k-binomial equivalence, which is an other
re�nement of the abelian equivalence. We prove that 2-binomial squares (resp.
cubes) are avoidable over a 3-letter (resp. 2-letter) alphabet. The sizes of the
alphabets are optimal. This chapter is based on the paper [31] (joint work with
Michel Rigo and Pavel Salimov).

8.1 Introduction

The k-binomial equivalence relation is de�ned thanks to the binomial coe�cient(
u
v

)
of two words u and v which is the number of times v occurs as a subsequence

of u (meaning as a �scattered� subword). For more on these binomial coe�cients,
see for instance [111, Chap. 6]. Based on this classical notion, the m-binomial
equivalence of two words has been recently introduced [133].

De�nition 8.1. Let m ∈ N ∪ {+∞} and u, v be two words over the alphabet
A. We let A≤m denote the set of words of length at most m over A. We say
that u and v are m-binomially equivalent if(

u

x

)
=

(
v

x

)
, ∀x ∈ A≤m.

We simply write u ∼m v if u and v are m-binomially equivalent. The word u is
obtained as a permutation of the letters in v if and only if u ∼1 v. In that case,
we say that u and v are abelian equivalent and we write instead u ∼ab v. Note
that if u ∼k+1 v, then u ∼k v, for all k ≥ 1.

Example. The four words 0101110, 0110101, 1001101 and 1010011 are 2-
binomially equivalent. Let u be any of these four words. We have(

u

0

)
= 3,

(
u

1

)
= 4,

(
u

00

)
= 3,

(
u

01

)
= 7,

(
u

10

)
= 5,

(
u

11

)
= 6.

For instance, the word 0001111 is abelian equivalent to 0101110 but these two
words are not 2-binomially equivalent. Let a be a letter. It is clear that

(
u
aa

)
and

(
u
a

)
carry the same information, i.e.,

(
u
aa

)
=
(|u|a

2

)
where |u|a is the number

of occurrences of a in u.

A 2-binomial square (resp. 2-binomial cube) is a non-empty word of the form
xy where x ∼2 y (resp. x ∼2 y ∼2 z). Squares are avoidable over a 3-letter
alphabet and abelian squares are avoidable over a 4-letter alphabet. Since 2-
binomial equivalence lies between abelian equivalence and equality, the question
is to determine whether or not 2-binomial squares are avoidable over a 3-letter
alphabet. We answer positively to this question in Section 8.2. The �xed point
of the morphism g : 0 7→ 012, 1 7→ 02, 2 7→ 1 avoids 2-binomial squares.

In a similar way, cubes are avoidable over a 2-letter alphabet and abelian
squares are avoidable over a 3-letter alphabet. The question is to determine
whether or not 2-binomial cubes are avoidable over a 2-letter alphabet. We
also answer positively to this question in Section 8.3. The �xed point of the
morphism h : 0 7→ 001, 1 7→ 011 avoids 2-binomial cubes.

The number of occurrences of a letter a in a word u will be denoted either
by
(
u
a

)
or |u|a. Let A = {0, 1, . . . , k} be an alphabet. The Parikh map is an
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application Ψ : A∗ → Nk+1 such that Ψ(u) = (|u|0, . . . , |u|k)T . Note that we
will deal with column vectors (when multiplying a square matrix with a column
vector on its right). In particular, two words are abelian equivalent if and only
if they have the same Parikh vector. The mirror of the word u = u1u2 · · ·uk is
denoted by ũ = uk · · ·u2u1.

8.2 Avoiding 2-binomial squares over 3 letters

Let A = {0, 1, 2} be a 3-letter alphabet. Let g : A∗ → A∗ be the morphism
de�ned by

g :

 0 7→ 012
1 7→ 02
2 7→ 1

and thus, g2 :

 0 7→ 012021
1 7→ 0121
2 7→ 02.

It is prolongable on 0: g(0) has 0 as a pre�x. Hence the limit x = limn→+∞ gn(0)
is a well-de�ned in�nite word

x = gω(0) = 012021012102012021020121 · · ·

which is a �xed point of g. Since the original work of Thue, this word x is
well-known to avoid (usual) squares. It is sometimes referred to as the ternary
Thue�Morse word. We will make use of the fact that X = {012, 02, 1} is a
pre�x-code and thus an ω-code: Any �nite word in X∗ (resp. in�nite word in
Xω) has a unique factorization as a product of elements in X. Let us make an
obvious but useful observation.

Observation 8.2. The factorization of x in terms of the elements in X permits
to write x as

x = 0α1 2α2 0α3 2α4 0α5 2α6 0 · · ·

where, for all i ≥ 1, αi ∈ {ε, 1}. That is, the image of x by the morphism
e : 0 7→ 0, 1 7→ ε, 2 7→ 2 (which erases all the 1's) is e(x) = (02)ω.

The next property is well known. For example, it comes from the fact that
the image of the ternary Thue�Morse word by the morphism 0 7→ 011, 1 7→
01, 2 7→ 0 is the Thue�Morse word. However, for the sake of completeness, we
give a direct proof here.

Lemma 8.3. A word u is a factor occurring in x if and only if ũ is a factor
occurring in x.

Proof. We de�ne the morphism g̃ : A∗ → A∗ by considering the mirror images
of the images of the letters by g,

g̃ :

 0 7→ 210
1 7→ 20
2 7→ 1

and thus, g̃2 :

 0 7→ 120210
1 7→ 1210
2 7→ 20.

Note that g̃ is not prolongable on any letter. But the morphism g̃2 is prolongable
on the letter 1. We consider the in�nite word

y = (g̃2)ω(1) = 1210201210120210201202101210 · · · .
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If v ∈ A∗ is a non-empty word ending with a ∈ A, i.e., v = ua for some word
u ∈ A∗, we denote by va−1 the word obtained by removing the su�x a from v.
So va−1 = u.

For every words r and s we have r = g2(s) ⇔ r̃ = g̃2(s̃). Obviously, u is a
factor occurring in x if and only if ũ is a factor occurring in y.

On the other hand, g̃2 is a cyclic shift of g2, since g2(a) = 0g̃2(a)0−1 for
every a ∈ {0, 1, 2}. Thus u is a factor occurring in x if and only if u is a factor
occurring in y. To summarize, u is a factor occurring in x if and only if u is a
factor occurring in y, and u is a factor occurring in y if and only if ũ is a factor
occurring in x. This concludes the proof.

We will be dealing with 2-binomial squares so, in particular, with abelian
squares. The next lemma permit to �desubstitute�, meaning that we are looking
for the inverse image of a factor under the considered morphism.

Lemma 8.4. Let u, v ∈ A∗ be two abelian equivalent non-empty words such
that uv is a factor occurring in x. There exists u′, v′ ∈ A∗ such that u′v′ is a
factor of x, and either:

1. u = g(u′) and v = g(v′);

2. or, ũ = g(v′) and ṽ = g(u′).

Proof. We will make an extensive use of Observation 8.2. Note that u and v
must contain at least one 0 or one 2. Obviously e(uv) is an abelian square of
(02)ω, thus either e(u) = e(v) = (02)i or e(u) = e(v) = (20)i for an i > 0.

If e(u) = e(v) = (02)i, then we have u = a 0 · · · 2 b and v = c 0 · · · 2 d with
a, bc, d ∈ {ε, 1}. In this case, we deduce that u and v belongs to X∗. Otherwise
stated, since uv is a factor of x, there exists a factor u′v′ in x such that g(u′) = u
and g(v′) = v.

Otherwise we have e(u) = e(v) = (20)i. Thanks to Lemma 8.3, ṽũ is a factor
occurring in x, and e(ũ) = e(ṽ) = (02)i. Thus we are reduced to the previous
case, and there is a factor u′, v′ in x such that g(u′) = ṽ and g(v′) = ũ.

Let u be a word. We set

λu :=

(
u

01

)
−
(
u

12

)
.

When we use the desubstitution provided by the previous lemma, the shorter
factors u′ and v′ derived from u and v keep properties from their ancestors.

Lemma 8.5. Let u, v ∈ A∗ be two abelian equivalent non-empty words such
that uv is a factor occurring in x. Let u′, v′ be given by Lemma 8.4. If λu = λv,
then u′ and v′ are abelian equivalent and λu′ = λv′ .

Proof. If we are in the second situation described by Lemma 8.4, then ṽũ is also
a factor occurring in x. Obviously ṽ and ũ are also abelian equivalent, λṽ = λũ
and the case is reduced to the �rst situation.

Assume now w.l.o.g. that we are in the �rst situation, that is u = g(u′) and
v = g(v′). First observe that we have, for all a, b ∈ A, a 6= b,(

u′

ab

)
=

(
|u′|a + |u′|b

2

)
−
(
|u′|a

2

)
−
(
|u′|b

2

)
−
(
u′

ba

)
. (8.1)
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Since u = g(u′), we derive that(
u

01

)
= |u′|0+

(
u′

00

)
+

(
u′

02

)
+

(
u′

12

)
+

(
|u′|0 + |u′|1

2

)
−
(
|u′|0

2

)
−
(
|u′|1

2

)
−
(
u′

01

)
,

(
u

12

)
= |u′|0 +

(
u′

00

)
+

(
u′

01

)
+

(
|u′|1 + |u′|2

2

)
−
(
|u′|1

2

)
−
(
|u′|2

2

)
−
(
u′

12

)
+

(
|u′|0 + |u′|2

2

)
−
(
|u′|0

2

)
−
(
|u′|2

2

)
−
(
u′

02

)
.

Hence

λu =2

[(
u′

02

)
−
(
u′

01

)
+

(
u′

12

)
−
(
|u′|2

2

)]
+

(
|u′|0 + |u′|1

2

)
−
(
|u′|1 + |u′|2

2

)
−
(
|u′|0 + |u′|2

2

)
.

Similar relations holds for v.
Since u′ and v′ occur in x, from Observation 8.2, we get

||u′|0 − |u′|2| ≤ 1 and ||v′|0 − |v′|2| ≤ 1. (8.2)

Since u ∼ab v, we have |u|1 = |v|1. Hence, from the de�nition of g, |u′|0 + |u′|2 =
|v′|0 + |v′|2. In the same way, |u|2 = |v|2 implies that |u′|0 + |u′|1 = |v′|0 + |v′|1
or equivalently, |u′|1 − |v′|1 = |v′|0 − |u′|0. From the above relation and (8.2),
we get

||v′|0 − |u′|0 + |u′|2 − |v′|2| ≤ 2 and |u′|2 − |v′|2 = |v′|0 − |u′|0.

Hence the di�erence of the following two Parikh vectors can only take three
values

Ψ(u′)−Ψ(v′) ∈


0

0
0

 ,

 1
−1
−1

 ,

−1
1
1

 .

To prove that u′ and v′ are abelian equivalent, we will rule out the last two
possibilities.

By assumption, λu = λv. So this relation also holds modulo 2. Hence(
|u′|0 + |u′|1

2

)
−
(
|u′|1 + |u′|2

2

)
−
(
|u′|0 + |u′|2

2

)
≡

(
|v′|0 + |v′|1

2

)
−
(
|v′|1 + |v′|2

2

)
−
(
|v′|0 + |v′|2

2

)
(mod 2).

Assume that we have

Ψ(u′)−Ψ(v′) =

 1
−1
−1

 , i.e.,
|u′|0 + |u′|1 = |v′|0 + |v′|1,
|u′|0 + |u′|2 = |v′|0 + |v′|2,
|u′|1 + |u′|2 = |v′|1 + |v′|2 − 2.

This leads to a contradiction because then(
|u′|1 + |u′|2

2

)
6≡
(
|v′|1 + |v′|2

2

)
(mod 2).
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Indeed, it is easily seen that
(

4n
2

)
≡ 0 (mod 2),

(
4n+1

2

)
≡ 0 (mod 2),

(
4n+2

2

)
≡ 1

(mod 2) and
(

4n+3
2

)
≡ 1 (mod 2).

The case Ψ(u′)−Ψ(v′) =
(−1

1
1

)
is handled similarly. So we can assume now

that Ψ(u′) = Ψ(v′), that is u′ ∼ab v
′. It remains to prove that λu′ = λv′ . By

assumption λu = λv, and from the above formula describing λu (resp. λv) we
get (

u′

02

)
−
(
u′

01

)
+

(
u′

12

)
=

(
v′

02

)
−
(
v′

01

)
+

(
v′

12

)
.

To conclude that λu′ = λv′ , we should simply show that
(
u′

02

)
=
(
v′

02

)
. But u′v′

is a factor occurring in x (from Observation 8.2, when discarding the 1's with
just alternate 0's and 2's) and u′ ∼ab v

′. This concludes the proof.

Theorem 8.6. The word x = gω(0) = 012021012102012021020121 · · · avoids
2-binomial squares.

Proof. Assume to the contrary that x contains a 2-binomial square uv where u
and v are 2-binomially equivalent. In particular, u and v are abelian equivalent
and moreover λu = λv. We can therefore apply iteratively Lemma 8.4 and the
above lemma to words of decreasing lengths and get �nally a repetition aa with
a ∈ A in x. But x does not contain any such factor.

Remark 8.7. The �xed point of g is 2-binomial-square free, but g is not 2-
binomial-square-free, that is the image of a 2-binomial-square-free word may
contain a 2-binomial-square (e.g., g(010) = 01202012 contains the square 2020).

8.3 Avoiding 2-binomial cubes over 2 letters

Consider the morphism h : 0 7→ 001 and h : 1 7→ 011. In this section, we show
that h is 2-binomial-cube-free, that is for every 2-binomial-cube free binary word
w, h(w) is 2-binomial-cube-free. As a direct corollary, we get that the �xed point
of h,

z = hω(0) = 001001011001001011001011011 · · ·
avoids 2-binomial cubes.

Let u be a word over {0, 1}. The extended Parikh vector of u is

Ψ2(u) =

(
|u|0, |u|1,

(
u

00

)
,

(
u

01

)
,

(
u

10

)
,

(
u

11

))T
.

Observe that two words u and v are 2-binomially equivalent if and only if
Ψ2(u) = Ψ2(v).

Consider the matrix Mh given by

Mh =


2 1 0 0 0 0
1 2 0 0 0 0
1 0 4 2 2 1
2 2 2 4 1 2
0 0 2 1 4 2
0 1 1 2 2 4

 .

One can check that Mh is invertible. We will make use of the following obser-
vations:
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Proposition 8.8. For every u ∈ {0, 1}∗,

Ψ2(h(u)) = MhΨ2(u).

Proposition 8.9. Let u = 1x and u′ = x1 be two words over {0, 1}. We have
|u|0 = |u′|0, |u|1 = |u′|1,(

u

00

)
=

(
u′

00

)
,

(
u

11

)
=

(
u′

11

)
,

(
u′

01

)
=

(
u

01

)
+ |u|0,

(
u′

10

)
=

(
u

10

)
− |u|0.

In particular, if 1x ∼2 1y, then x1 ∼2 y1. Similar relations hold for 0x and x0.
In particular, if x0 ∼2 y0, then 0x ∼2 0y.

Let x, y ∈ {0, 1}. We set δx,y = 1, if x = y; and δx,y = 0, otherwise.

Lemma 8.10. Let p′, q′ and r′ be binary words, and let a, b ∈ {0, 1}. Let
p = h(p′) 0, q = a 1h(q′) 0 b and r = 1h(r′). Then either p 6∼2 q or p 6∼2 r.

Proof. Assume, for the sake of contradiction, that p ∼2 q ∼2 r. Then |p′| =
|q′| + 1 = |r′| = n. The following relations can mostly be derived from the
coe�cients of Mh (we also have to take into account the extra su�x 0 of p,
respectively the extra pre�x 1 in r):(

p

01

)
= 2

(
p′

0

)
+ 2

(
p′

1

)
+ 2

(
p′

00

)
+ 4

(
p′

01

)
+

(
p′

10

)
+ 2

(
p′

11

)
,(

p

10

)
=

(
p′

0

)
+ 2

(
p′

1

)
+ 2

(
p′

00

)
+

(
p′

01

)
+ 4

(
p′

10

)
+ 2

(
p′

11

)
,

⇒
(
p

01

)
−
(
p

10

)
=

(
p′

0

)
+ 3

(
p′

01

)
− 3

(
p′

10

)
;(

r

01

)
= 2

(
r′

0

)
+ 2

(
r′

1

)
+ 2

(
r′

00

)
+ 4

(
r′

01

)
+

(
r′

10

)
+ 2

(
r′

11

)
,(

r

10

)
= 2

(
r′

0

)
+

(
r′

1

)
+ 2

(
r′

00

)
+

(
r′

01

)
+ 4

(
r′

10

)
+ 2

(
r′

11

)
,

⇒
(
r

01

)
−
(
r

10

)
=

(
r′

1

)
+ 3

(
r′

01

)
− 3

(
r′

10

)
.

We also get the following relations:(
q

01

)
= 2

(
q′

0

)
+ 2

(
q′

1

)
+ 2

(
q′

00

)
+ 4

(
q′

01

)
+

(
q′

10

)
+ 2

(
q′

11

)
+δa,0

[
1 +

(
q′

0

)
+ 2

(
q′

1

)
+ δb,1

]
+ δb,1

[
1 + 2

(
q′

0

)
+

(
q′

1

)]
,

(
q

10

)
= 3

(
q′

0

)
+ 3

(
q′

1

)
+ 2

(
q′

00

)
+

(
q′

01

)
+ 4

(
q′

10

)
+ 2

(
q′

11

)
+ 1

+δa,1

[
1 + δb,0 + 2

(
q′

0

)
+

(
q′

1

)]
+ δb,0

[
1 +

(
q′

0

)
+ 2

(
q′

1

)]
= (6− 2δa,0 − δb,1)

(
q′

0

)
+ (6− δa,0 − 2δb,1)

(
q′

1

)
+ 4− 2δa,0 − 2δb,1

+δa,0δb,1 + 2

(
q′

00

)
+

(
q′

01

)
+ 4

(
q′

10

)
+ 2

(
q′

11

)
.
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Where for the last equality, we have used the fact that δa,1 = 1 − δa,0 and
δb,0 = 1− δb,1. Finally, we obtain(
q

01

)
−

(
q

10

)
= (−4+3δa,0+3δb,1)

[(
q′

0

)
+

(
q′

1

)]
+3

(
q′

01

)
−3

(
q′

10

)
−4+3δa,0+3δb,1.

Since p ∼2 q ∼2 r, we have
(
p
10

)
−
(
p
01

)
=
(
q
10

)
−
(
q
01

)
=
(
r
10

)
−
(
r
01

)
. In

particular, these equalities modulo 3 give(
p′

0

)
≡
(
r′

1

)
≡ 2

[(
q′

0

)
+

(
q′

1

)
+ 1

]
≡ 2n (mod 3). (8.3)

Now, we take into account the fact that p and r are abelian equivalent to get a
contradiction. Since p = h(p′) 0 and r = 1h(r′), we get(

|p|0
|p|1

)
=

(
2 1
1 2

)(
|p′|0
|p′|1

)
+

(
1
0

)
,

(
|r|0
|r|1

)
=

(
2 1
1 2

)(
|r′|0
|r′|1

)
+

(
0
1

)
.

Hence, we obtain(
|p|0 − |r|0
|p|1 − |r|1

)
=

(
0
0

)
=

(
2 1
1 2

)(
|p′|0 − |r′|0
|p′|1 − |r′|1

)
+

(
1
−1

)
.

We derive that |p′|0−|r′|0 = −1 and |p′|1−|r′|1 = 1. Recalling that |p′|0+|p′|1 =
n. If we subtract the last two equalities, we get |p′|0 + |r′|1 = n−1. From (8.3),
we know that |p′|0 ≡ |r′|1 (mod 3). Hence 2|p′|0 ≡ n− 1 (mod 3) and thus

|p′|0 ≡ 2n− 2 (mod 3).

This contradicts the fact again given by (8.3) that |p′|0 ≡ 2n (mod 3).

Similarly, one get the following lemma.

Lemma 8.11. Let p′, q′ and r′ be binary words, and let a, b ∈ {0, 1}. Let
p = h(p′) 0 a, q = 1h(q′) 0 and r = b 1h(r′). Then either p 6∼2 q or p 6∼2 r.

Proof. Assume, for the sake of contradiction, that p ∼2 q ∼2 r. Then |p′| =
|q′| = |r′| = n. Taking into account the special form of p and q, we get(
p

01

)
= 2

(
p′

0

)
+2

(
p′

1

)
+2

(
p′

00

)
+4

(
p′

01

)
+

(
p′

10

)
+2

(
p′

11

)
+δa,1

(
1+2

(
p′

0

)
+

(
p′

1

))
,

(
p

10

)
=

(
p′

0

)
+ 2

(
p′

1

)
+ 2

(
p′

00

)
+

(
p′

01

)
+ 4

(
p′

10

)
+ 2

(
p′

11

)
+ δa,0

((
p′

0

)
+ 2

(
p′

1

))
,(

q

01

)
= 2

(
q′

0

)
+ 2

(
q′

1

)
+ 2

(
q′

00

)
+ 4

(
q′

01

)
+

(
q′

10

)
+ 2

(
q′

11

)
,(

q

10

)
= 3

(
q′

0

)
+ 3

(
q′

1

)
+ 2

(
q′

00

)
+

(
q′

01

)
+ 4

(
q′

10

)
+ 2

(
q′

11

)
+ 1.

Hence, we get(
p

01

)
−
(
p

10

)
= −2

(
p′

1

)
+ 3

(
p′

01

)
− 3

(
p′

10

)
+ δa,1

(
1 + 3

(
p′

0

)
+ 3

(
p′

1

))
,
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q

01

)
−
(
q

10

)
= −

(
q′

0

)
−
(
q′

1

)
+ 3

(
q′

01

)
− 3

(
q′

10

)
− 1.

Since, p ∼2 q, the last two relations evaluated modulo 3 give

|p′|1 + δa,1 ≡ 2n+ 2 (mod 3). (8.4)

Similarly, the form of r gives the following relations(
r

01

)
= 2

(
r′

0

)
+2

(
r′

1

)
+2

(
r′

00

)
+4

(
r′

01

)
+

(
r′

10

)
+2

(
r′

11

)
+δb,0

(
1+

(
r′

0

)
+2

(
r′

1

))
,

(
r

10

)
= 2

(
r′

0

)
+

(
r′

1

)
+ 2

(
r′

00

)
+

(
r′

01

)
+ 4

(
r′

10

)
+ 2

(
r′

11

)
+ δb,1

(
2

(
r′

0

)
+

(
r′

1

))
,

(
r

01

)
−

(
r

10

)
= −2

(
r′

0

)
+ 3

(
r′

01

)
− 3

(
r′

10

)
+ δb,0

(
1 + 3

(
r′

0

)
+ 3

(
r′

1

))
Since, p ∼2 r, the last two relations evaluated modulo 3 give

|p′|1 + δa,1 ≡ |r′|0 + δb,0 (mod 3). (8.5)

Now, we take into account the fact that p, q and r are abelian equivalent to get
a contradiction. The following two vectors are equal:(
|p|0
|p|1

)
=

(
2 1
1 2

)(
|p′|0
|p′|1

)
+

(
1 + δa,0
δa,1

)
,

(
|r|0
|r|1

)
=

(
2 1
1 2

)(
|r′|0
|r′|1

)
+

(
δb,0

1 + δb,1

)
.

We derive easily that

|p′|1 − |r′|1 = 1 + δa,0 − δb,0.

On the one hand, using the latter relation and (8.5)

|r′|1 + 1 + δa,0 − δb,0 + δa,1 = |p′|1 + δa,1 ≡ |r′|0 + δb,0 (mod 3)

Replacing |r′|0 by n−|r′|1, we get 2|r′|1 +2 ≡ n+2δb,0 (mod 3), or equivalently

|r′|1 + 1 ≡ 2n+ δb,0 (mod 3).

On the other hand, using (8.4),

|r′|1 + 1 + δa,0 − δb,0 + δa,1 = |p′|1 + δa,1 ≡ 2n+ 2 (mod 3)

and thus,
|r′|1 ≡ 2n+ δb,0 (mod 3).

We get a contradiction, 2n + δb,0 should congruent to both |r′|1 and |r′|1 + 1
modulo 3.

We are ready to prove the main theorem of this section.

Theorem 8.12. Let h : 0 7→ 001, 1 7→ 011. For every 2-binomial-cube-free word
w ∈ {0, 1}∗, h(w) is 2-binomial-cube-free.
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Proof. Let w be a 2-binomial-cube-free binary word. Assume that h(w) =
z0 . . . z3|w|−1 contains a 2-binomial cube pqr occurring in position i, i.e., p ∼2

q ∼2 r and w = w′ p q r w′′, where |w′| = i. We consider three cases depending
on the size of p modulo 3.

As a �rst case, assume that |p| = 3n. We consider three sub-cases depending
on the position i modulo 3.

1.a) Assume that i ≡ 2 (mod 3). Then p, q, r have 1 as a pre�x and the letter
following r in h(w) is the symbol zi+9n = 1. Hence, the word 1−1pqr1 occurs
in h(w) in position i + 1 and it is again a 2-binomial cube. Indeed, thanks to
Proposition 8.9, we have 1−1p1 ∼2 1−1q1 ∼2 1−1r1. This case is thus reduced
to the case where i ≡ 0 (mod 3).

1.b) Assume that i ≡ 1 (mod 3). Then p, q, r have 0 as a su�x and the
letter preceding p in h(w) is the symbol zi−1 = 0. Hence, the word 0pqr0−1

occurs in h(w) in position i − 1 and it is also a 2-binomial cube. Thanks to
Proposition 8.9, we have 0p0−1 ∼2 0q0−1 ∼2 0r0−1. Again this case is reduced
to the case where i ≡ 0 (mod 3).

1.c) Assume that i ≡ 0 (mod 3). In this case, we can desubstitute: there
exist three words p′, q′, r′ of length n such that h(p′) = p, h(q′) = q, h(r′) = r
and p′q′r′ is a factor occurring in w. We have Ψ2(p) = Ψ2(q) = Ψ2(r). By
Proposition 8.8, and since Mh is invertible, we have Ψ2(p′) = Ψ2(q′) = Ψ2(r′),
meaning that w contains a 2-binomial cube p′q′r′.

As a second case, assume that |p| = 3n + 1. In this case, one of p, q and r
occur in position 0 modulo 3, one in position 1 modulo 3, and one in position 2
modulo 3. Suppose w.l.o.g. that p occur in position 0 modulo 3, and q in position
1 modulo 3. Then there are three factors p′, q′ and r′ in w, and a, b ∈ {0, 1}
such that p = h(p′) 0, q = a 1h(q′) 0 b and r = 1h(r′). By Lemma 8.10, this is
impossible.

For the �nal case, assume that |p| = 3n + 2. In this case again, one of p,
q and r occur in position 0 modulo 3, one in position 1 modulo 3, and one in
position 2 modulo 3. Suppose w.l.o.g. that p occur in position 0 modulo 3,
and q in position 1 modulo 3. Then there are three factors p′, q′ and r′ in w,
and a, b ∈ {0, 1} such that p = h(p′) 0 a, q = 1h(q′) 0 and r = b 1h(r′). By
Lemma 8.11, this is impossible.

Corollary 8.13. The in�nite word z = 001001011 · · · �xed point of h : 0 7→
001, 1 7→ 011 avoids 2-binomial cubes.
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This chapter presents a joint work with Daniel Gonçalves, Alexandre Pinlou
and Stéphan Thomassé, published in SIAM Journal on Discrete Mathematics
[10]. We conclude the calculation of the domination number of all n ×m grid
graphs. Indeed, we prove Chang's conjecture saying that for every 16 ≤ n ≤ m,

γ(Gn,m) =
⌊

(n+2)(m+2)
5

⌋
− 4.

9.1 Introduction

A dominating set in a graph G is a subset of vertices S such that every vertex
in V (G) \S is a neighbour of some vertex of S. The domination number of G is
the minimum size of a dominating set of G. We denote it by γ(G). This chapter
is devoted to the calculation of the domination number of complete grids.

The notation [i] denotes the set {1, 2, . . . , i}. If w is a word on the alphabet
A, w[i] is the i-th letter of w, and for every a in A, |w|a denotes the number
of occurrences of a in w (i.e. |{i ∈ {1, . . . , |w|} : w[i] = a}|). For a vertex
v, N [v] denotes the closed neighbourhood of v (i.e. the set of neighbours of
v and v itself). For a subset of vertices S of a vertex set V of a graph, we
denote by N [S] =

⋃
v∈S N [v]. Note that D is a dominating set of G if and only

if N [D] = V (G). Let Gn,m be the n × m complete grid, i.e. the vertex set
of Gn,m is Vn,m := [n] × [m], and two vertices (i, j) and (k, l) are adjacent if
|k− i|+ |l− j| = 1. The couple (1, 1) denotes the bottom-left vertex of the grid
and the couple (i, j) denotes the vertex of the i-th column and the j-th row. We
will always assume in this chapter that n ≤ m. Let us illustrate our purpose by
an example of a dominating set of the complete grid G24,24 on Figure 9.1.

The �rst results on the domination number of grids were obtained about
30 years ago with the exact values of γ(G2,n), γ(G3,n), and γ(G4,n) found by
Jacobson and Kinch [91] in 1983. In 1993, Chang and Clark [52] found those
of γ(G5,n) and γ(G6,n). These results were obtained analytically. Chang [53]
devoted his PhD thesis to study the domination number of grids; he conjectured
that this invariant behaves well provided that n is large enough. Speci�cally,
Chang conjectured the following:

Conjecture 9.1 ([53]). For every 16 ≤ n ≤ m,

γ(Gn,m) =

⌊
(n+ 2)(m+ 2)

5

⌋
− 4.

Observe that for instance, this formula would give 131 for the domination
number of the grid in Figure 9.1. To motivate his bound, Chang proposed some
constructions of dominating sets achieving the upper bound:

Lemma 9.2 ([53]). For every 8 ≤ n ≤ m,

γ(Gn,m) ≤
⌊

(n+ 2)(m+ 2)

5

⌋
− 4

Later, some algorithms based on dynamic programming were designed to
compute a lower bound of γ(Gn,m). There were numerous intermediate results
found for γ(Gn,m) for small values of n and m (see [54, 83, 141] for details).
In 1995, Hare, Hedetniemi and Hare [83] gave a polynomial time algorithm to
compute γ(Gn,m) when n is �xed. Nevertheless, this algorithm is not usable in
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practice when n hangs over 20. Fisher [76] developed the idea of searching for
periodicity in the dynamic programming algorithms and using this technique,
he found the exact values of γ(Gn,m) for all n ≤ 21. We recall these values for
the sake of completeness.

Theorem 9.3 ([76]). For all n ≤ m and n ≤ 21, we have:

γ(Gn,m) =



dm3 e if n = 1

dm+1
2 e if n = 2

d 3m+1
4 e if n = 3

m+ 1 if n = 4 and m = 5, 6, 9

m if n = 4 and m 6= 5, 6, 9

d 6m+4
5 e − 1 if n = 5 and m = 7

d 6m+4
5 e if n = 5 and m 6= 7

d 10m+6
7 e − 1 if n = 6 and m ≡7 1

d 10m+6
7 e if n = 6 and m 6≡7 1

d 5m+1
3 e if n = 7

d 15m+7
8 e if n = 8

d 23m+10
11 e if n = 9

d 30m+15
13 e − 1 if n = 10 and m ≡13 10 or m = 13, 16

d 30m+15
13 e if n = 10 and m 6≡13 10 and m 6= 13, 16

d 38m+22
15 e − 1 if n = 11 and m = 11, 18, 20, 22, 33

d 38m+22
15 e if n = 11 and m 6= 11, 18, 20, 22, 33

d 80m+38
29 e if n = 12

d 98m+54
33 e − 1 if n = 13 and m ≡33 13, 16, 18, 19

d 98m+54
33 e if n = 13 and m 6≡33 13, 16, 18, 19

d 35m+20
11 e − 1 if n = 14 and m ≡22 7

d 35m+20
11 e if n = 14 and m 6≡22 7

d 44m+28
13 e − 1 if n = 15 and m ≡26 5

d 44m+28
13 e if n = 15 and m 6≡26 5

b (n+2)(m+2)
5 c − 4 if n ≥ 16

Note that these values are obtained by speci�c formulas for every 1 ≤ n ≤ 15
and by the formula of Conjecture 9.1 for every 16 ≤ n ≤ 21. This proves Chang's
conjecture for all values 16 ≤ n ≤ 21.

In 2004, Conjecture 9.1 has been con�rmed up to an additive constant:

Theorem 9.4 (Guichard [82]). For every 16 ≤ n ≤ m,

γ(Gn,m) ≥
⌊

(n+ 2)(m+ 2)

5

⌋
− 9.

In this chapter, we prove Chang's conjecture, hence �nishing the computa-
tion of γ(Gn,m). We adapt Guichard's ideas to improve the additive constant
from −9 to −4 when 24 ≤ n ≤ m. Cases n = 22 and n = 23 can be proved in a
couple of hours using Fisher's method (described in [76]) on a modern computer.
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Figure 9.1 � Example of a set of size 131 dominating the grid G24,24

They can be also proved by a slight improvement of the technique presented in
the next section.

9.2 Values of γ(Gn,m) when 24 ≤ n ≤ m

Our method follows the idea of Guichard [82]. A slight improvement is enough
to give the exact bound.

A vertex of the grid Gn,m dominates at most 5 vertices (its four neighbours
and itself). It is then clear that γ(Gn,m) ≥ n×m

5 . The previous inequality
would become an equality if there would be a dominating set D such that every
vertex of Gn,m is dominated only once, and all vertices of D are of degree 4 (i.e.
dominates exactly 5 vertices); in this case, we would have 5× |D| − n×m = 0.
This is clearly impossible (e.g. to dominate the corners of the grid, we need
vertices of degree at most 3). Therefore, our goal is to �nd a dominating set D
of Gn,m such that the di�erence 5× |D| − n×m is the smallest.

Let S be a subset of V (Gn,m). The loss of S is `(S) = 5× |S| − |N [S]|.

Proposition 9.5. The following properties of the loss function are straightfor-
ward:

(i) For every S, `(S) ≥ 0 (positivity),

(ii) If S1 ∩ S2 = ∅, then `(S1 ∪ S2) = `(S1) + `(S2) + |N [S1] ∩N [S2]|,

(iii) If S′ ⊆ S, then `(S′) ≤ `(S) (increasing function),

(iv) If S1 ∩ S2 = ∅, then `(S1 ∪ S2) ≥ `(S1) + `(S2) (super-additivity).

Let us denote by `n,m the minimum of `(D) when D is a dominating set of
Gn,m.

Lemma 9.6. γ(Gn,m) =
⌈
n×m+`n,m

5

⌉



9.2. VALUES OF γ(GN,M ) WHEN 24 ≤ N ≤M 97

Figure 9.2 � The graph G30,40. The set I(B30,40) is the set of vertices �lled in
black. The set B30,40 is the set of vertices �lled in black or in gray.

Proof. If D is a dominating set of Gn,m, then `(D) = 5 × |D| − |N [D]| =
5 × |D| − n ×m. Hence, by minimality of `n,m and γ(Gn,m), we have `n,m =
5× γ(Gn,m)− n×m.

Our aim is to get a lower bound for `n,m. As the reader can observe in
Figure 9.1, the loss is concentrated on the border of the grid. We now analyse
more carefully the loss generated by the border of thickness 10.

We de�ne the border Bn,m ⊆ Vn,m of Gn,m as the set of vertices (i, j) where
i ≤ 10, or j ≤ 10, or i > n−10, or j > m−10 to which we add the four vertices
(11, 11), (11,m − 10), (n − 10, 11), (n − 10,m − 10). Given a subset S ⊆ V , let
I(S) be the internal vertices of S, i.e. I(S) = {v ∈ S : N [v] ⊆ S}. These sets
are illustrated in Figure 9.2. We will compute bn,m = minD `(D), where D is a
subset of Bn,m and dominates I(Bn,m), i.e. D ⊆ Bn,m and I(Bn,m) ⊆ N [D].
Observe that this lower bound bn,m is a lower bound of `n,m. Indeed, for every
dominating set D of Gn,m, the set D′ := D ∩ Bn,m dominates I(Bn,m), hence
bn,m ≤ `(D′) ≤ `(D). In the remainder, we will compute bn,m and we will show
that bn,m = `n,m.
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Figure 9.3 � The set P19 (black and gray), the set of input vertices (gray circles)
and the set of output vertices (gray squares).

In the following, we split the border Bn,m in four parts: Om−12, Pn−12,
Qm−12 and Rn−12, which are de�ned just below.

For p ≥ 12, let Pp ⊂ Bn,m de�ned as follows : Pp = ([10] × {12}) ∪ ([11] ×
{11}) ∪ ([p] × [10]). We de�ne the input vertices of Pp as [10] × {12} and
the output vertices of Pp as {p} × [10]. The set Pp, illustrated for p = 19 in
Figure 9.3, corresponds to the set of black and gray vertices. The input vertices
are the gray circles, and the output vertices are the gray squares. Recall that in
our drawing conventions, the vertex (1, 1) is the bottom-left vertex and hence
the vertex (i, j) is in the ith column from the left and in the jth row from the
bottom.

For n,m ∈ N∗, let fn,m : [n] × [m] → [m] × [n] be the bijection such that
fn,m(i, j) = (j, n − i + 1). It is clear that the set Bn,m is the disjoint union of
the following four sets depicted in Figure 9.4: Pn−12, Qm−12 = fn,m(Pm−12),
Rn−12 = fm,n◦fn,m(Pn−12) and Om−12 = f−1

n,m(Pm−12). Similarly to Pn−12, the
sets Om−12, Qn−12 and Rm−12 have input and output vertices. For instance,
the output vertices of Qm−12 correspond in Figure 9.3 to the white squares.
Every set playing a symmetric role, we now focus on Pn−12.

Given a subset S of Vn,m, let the labelling φS : Vn,m → {0, 1, 2} be such that

φS(i, j) =

 0 if (i, j) ∈ S
1 if (i, j) ∈ N [S] \ S
2 otherwise

Note that φS is such that any two adjacent vertices in Gn,m cannot be
labelled 0 and 2.

Given p ≥ 12 and a set S ⊆ Pp, the input word (resp. output word) of S for
Pp, denoted by win(S) (resp. woutp (S)), is the ten letters word on the alphabet
{0, 1, 2} obtained by reading φS on the input vertices (resp. output vertices)
of Pp. More precisely, its ith letter is φS(i, 12) (resp. φS(p, i)). Similarly, Op,
Qp and Rp have also input and output words. For example, the output word of
S ⊆ Op for Op is woutp (fn,m(S)).

According to the de�nition of φ, the input and output words belong to the
set W of ten letters words on {0, 1, 2} which avoid 02 and 20. The number of
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Figure 9.4 � The sets Om−12, Pn−12, Qm−12 and Rn−12.
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k-digits trinary numbers without 02 or 20 is given by the following formula [76]:

(1 +
√

2)k+1 + (1−
√

2)k+1

2
(9.1)

The size of W is therefore |W| = 8119.
Given two words w,w′ ∈ W, we de�ne Dw,w′p as the family of subsets D of

Pp such that:

• D dominates I(Pp),

• w is the input word win(D),

• w′ is the output word woutp (D).

A relevant information for our calculation will be to know, for two given
words w,w′ ∈ W, the minimum loss over all losses `(D) where D ∈ Dw,w′p . For
this purpose, we introduce the 8119 × 8119 square matrix Cp. For w,w′ ∈ W,
let Cp[w,w′] = min

D∈Dw,w′
p

`(D) where the minimum of the empty set is +∞.

Let w,w′ ∈ W be two given words. Due to the symmetry of P12 with
respect to the �rst diagonal (bottom-left to top-right) of the grid, if a vertex set

D belongs to Dw,w
′

12 , then D′ = {(j, i)|(i, j) ∈ D} belongs to Dw
′,w

12 . Moreover,
it is clear that, always due to the symmetry, `(D) = `(D′). Therefore, we
have C12[w,w′] = C12[w′, w] and thus C12 is a symmetric matrix. Despite the
size of C12 and the size of P12 (141 vertices), it is possible to compute C12

in less than one hour by computer. Indeed, we choose a sequence of subsets
X0 = ∅, X1, . . . , X141 = P12 such that for every i ∈ {1, . . . , 141}, Xi ⊆ Xi+1

and Xi+1 \ Xi = {xi+1}. Moreover, we choose the sequence such that for
every i, Xi \ I(Xi) is at most 21. This can be done for example by taking
xi+1 = min{(x, y) : (x, y) ∈ P12 \Xi}, where the order is the lexical order. For
i ∈ {0, . . . , 141}, we compute for every labeling f ∈ Fi, where Fi is the set of
functions (Xi \ I(Xi)) → {0, 1, 2}, the minimal loss li,f of a set S ⊆ Xi which
dominates I(Xi) and such that φS(v) = f(v) for every v ∈ Xi \ I(Xi). Note
that not every labeling is possible since two adjacent vertices cannot be labeled 0
and 2. The number of possible labellings can be computed using formula (9.1),
and since |Xi \ I(Xi)| can be covered by a path of at most 23 vertices, this
gives, in the worst case, that this number is less than 109 and can be then
processed by a computer. We compute inductively the sequence (li,f )f∈Fi from
the sequence (li−1,f )f∈Fi−1

by dynamical programming, and C is easily deduced
from (l141,f )f∈F141

.

In the following, our aim is to glue Pn−12, Qm−12, Rn−12, and Om−12 to-
gether. For two consecutive parts of the border, say Pn−12 and Qm−12, the
output word of Qm−12 should be compatible with the input word of Pn−12.
Two words w,w′ of W are compatible if the sum of their corresponding letters
is at most 2, i.e. w[i] +w′[i] ≤ 2 for all i ∈ [9]. Note that w[10] +w′[10] should
be greater than 2 since the corresponding vertices can be dominated by some
vertices of Vn,m \Bn,m.

Given two words w,w′ ∈ W, let `(w,w′) = |{i ∈ [10] : w[i] 6= 2 and w′[i] =
0}|+ |{i ∈ [10] : w′[i] 6= 2 and w[i] = 0}|.
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Lemma 9.7. Let D be a dominating set of Gn,m and let us denote DP =
D ∩ Pn−12 and DQ = D ∩ Qm−12. Then `(D ∩ (Pn−12 ∪ Qm−12)) = `(DP ) +
`(DQ) + `(w,w′), where w = win(DP ) and w′ = woutq (f−1

n,m(DQ)). Moreover, w
and w′ are compatible.

Proof. By Proposition 9.5(ii), `(D ∩ (Pn−12 ∪ Qm−12)) = `(DP ) + `(DQ) +
|N [DP ] ∩ N [DQ]|. It su�ce then to note that `(w,w′) = |N [DP ] ∩ N [DQ]| to
get `(D ∩ (Pn−12 ∪Qm−12)) = `(DP ) + `(DQ) + `(w,w′).

In what remains, we prove that w and w′ are compatible. If those two words
were not compatible, there would exist an index i ∈ [9] such that

woutm−12(f−1
n,m(DQ))[i] + win(DP )[i] > 2.

Thus at least one of these two letters should be a 2, and the other one should
not be 0.

Suppose that woutm−12(f−1
n,m(DQ))[i] = 2 and note that this means that the

vertex (i, 13) is not dominated by a vertex in DQ. Since D is a dominating set
of Gn,m, every output vertex of Qm−12 except (10, 13) (and every input vertex
of Pn−12 except (10, 12)) is dominated by a vertex of DQ or by a vertex of DP .
Thus (i, 13) should be dominated by its unique neighbour in Pn−12, (i, 12). This
would imply that (i, 12) ∈ D contradicting the fact that win(DP )[i] 6= 0.

Similarly, if win(DP )[i] = 2, the vertex (i, 12) is not dominated by a vertex
in DP , thus (i, 12) must be dominated by the vertex (i, 13) ∈ D, contradicting
the fact that woutm−12(f−1

n,m(DQ))[i] 6= 0.

Lemma 9.7 is designed for the two consecutive parts Pn−12 and Qm−12 of the
border of Gn,m. Its easy to see that this extends to any pair of consecutive parts
of the border, i.e. Qm−12 and Rn−12, Rn−12 and Om−12, Om−12 and Pn−12.

We de�ne the matrix 8119× 8119 square matrix L which contains, for every
pair of words w,w′ ∈ W, the value `(w,w′):

L[w,w′] =

{
+∞ if w and w′ are not compatible,

`(w,w′) otherwise.

Note that L is symmetric since `(w,w′) = `(w′, w).
Let ⊗ be the matrix multiplication in (min,+) algebra, i.e. C = A ⊗ B is

the matrix where for all i, j, C[i, j] = mink A[i, k] +B[k, j].
Let Mp = L⊗ Cp for p ≥ 12.
By construction, Mn−12[w,w′] corresponds to the minimum possible loss

`(D ∩ Pn−12) of a dominating set D ⊆ Vn,m that dominates I(Pn−12) and such
that w is the output word of Qm−12 and w′ is the output word of Pn−12.

Lemma 9.8. For all 24 ≤ n ≤ m, we have

bn,m ≥ min
w1∈W
w2∈W
w3∈W
w4∈W

Mn−12[w1, w2]+Mm−12[w2, w3]+Mn−12[w3, w4]+Mm−12[w4, w1].

Proof. Consider a setD ⊆ Bn,m which dominates I(Bn,m) and achieving `(D) =
bn,m. Let DP = D ∩ Pn−12, DQ = D ∩ Qm−12, DR = D ∩ Rn−12 and DO =
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D ∩ Om−12. Let wP (wQ, wR and wO, respectively) be the input word of
Pn−12 (Qm−12, Rn−12 and Om−12), and w′P (w′Q, w

′
R and w′O) be the output

word of Pn−12 (Qm−12, Rn−12 and Om−12). By de�nition of Cp, the loss of
DP is at least Cn−12[wP , w

′
P ]. Similarly, we have `(DQ) ≥ Cm−12[wQ, w

′
Q],

`(DR) ≥ Cn−12[wR, w
′
R] and `(DO) ≥ Cm−12[wO, w

′
O]. By the de�nition of the

loss:

`(D) = bn,m

= 5× |D| − |N [D]|
= `(DO) + `(DP ) + `(DQ) + `(DR)

+ L[w′O, wP ] + L[w′P , wQ] + L[w′Q, wR] + L[w′R, wO]

by Lemma 9.7 and since N [DP ] ∩N [DR] = N [DQ] ∩N [DO] = ∅
≥ Cm−12[wO, w

′
O] + Cn−12[wP , w

′
P ] + Cm−12[wQ, w

′
Q] + Cn−12[wR, w

′
R]

+ L[w′O, wP ] + L[w′P , wQ] + L[w′Q, wR] + L[w′R, wO]

≥Mm−12[wO, wP ] +Mn−12[wP , wQ] +Mm−12[wQ, wR] +Mn−12[wR, wO]

since w′O and wP (resp. w′P and wQ, w
′
Q and wR, w

′
R and wO)

are compatibles.

According to Lemma 9.8, to bound bn,m it would be thus interesting to know
Mp for p > 12. It is why we introduce the following 8119× 8119 square matrix,
T .

Lemma 9.9. There exists a matrix T such that Cp+1 = Cp ⊗ T for all p ≥ 12.
This matrix is de�ned as follows:

T [w,w′] =



+∞ if ∃i ∈ [10] s.t. w[i] = 0 and w′[i] = 2

+∞ if ∃i ∈ [9] s.t. w[i] = 2 and w′[i] 6= 0

+∞ if ∃i ∈ {2, . . . , 9} s.t. w′[i] = 1, w[i] 6= 0,

w′[i− 1] 6= 0 and w′[i+ 1] 6= 0

+∞ if w′[1] = 1, w[1] 6= 0 and w′[2] 6= 0

+∞ if w′[10] = 1, w[10] 6= 0 and w′[9] 6= 0

3× |w′|0 − |w|2 − |w′|1 + |w|0 − 1 if w′[10] = 0

3× |w′|0 − |w|2 − |w′|1 + |w|0 otherwise.

Proof. Consider a set S′ ⊆ Pp+1 dominating I(Pp+1) and let S = S′ ∩ Pp. Let
w = woutp (S) and w′ = woutp+1(S′). Let ∆(S, S′) = `(S′)− `(S). By de�nition of
the loss, ∆(S, S′) = 5×|S′\S|−|N [S′]\N [S]|. Let us compute ∆(S, S′) in term of
the number of occurrences of 0's, 1's and 2's in the words w and w′. The set S′\S
corresponds to the vertices {(p+ 1, i) | i ∈ [10], w′[i] = 0}. The set N [S′] \N [S]
corresponds to the vertices dominated by S′ but not dominated by S; these
vertices clearly belong to the columns p, p + 1 and p + 2. Since S′ dominates
I(Pp+1), those in the column p are the vertices {(p, i) | i ∈ [10], w[i] = 2}. Those
in the column p+ 1 are the vertices {(p+ 1, i) | i ∈ [10], w′[i] 6= 2, w[i] 6= 0} and
possibly the vertex (p + 1, 11) when w′[10] = 0. Finally, those in the column
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p+ 2 are the vertices {(p+ 2, i) | i ∈ [10], w′[i] = 0}. We then get:

∆(S, S′) =

{
3× |w′|0 − |w|2 − |w′|1 + |w|0 − 1 if w′[10] = 0

3× |w′|0 − |w|2 − |w′|1 + |w|0 otherwise

where |w|n denotes the number of occurrences of the letter n in the word w.
Thus ∆(S, S′) only depends on the output words of S and S′, and we can

denote this value by ∆(w,w′). Note however that there exist pairs of words
(w,w′) that could not be the output words of S and S′; there are three cases:

Case 1. w[i] = 0 and w′[i] = 2 since the vertex (p + 1, i) would be dominated
by (p, i) contradicting its label 2;

Case 2. w[i] = 2 and w′[i] 6= 0 for i ∈ [9] since (p, i) would not be dominated
contradict the fact that S′ dominates I(Pp+1);

Case 3. w′[i] = 1 and w′[i− 1] 6= 0, w′[i+ 1] 6= 0, w[i] 6= 0 since (p+ 1, i) would
be dominated according to its label but none of its neighbors belong to
S′.

For these forbidden cases, we set ∆(w,w′) = +∞.
By de�nition, Cp+1[wi, w

′] is the minimum loss `(S′) of a set S′ ⊆ Pp+1 that
dominates I(Pp+1), with wi as input word and w′ as output word. It is clear
that S = S′∩Pp dominates I(Pp) and has wi as input word. Let w be its output
word and note that Cp+1[wi, w

′] = `(S′) = `(S) + ∆(wi, w
′). The minimality of

`(S′) implies the minimality of `(S) over the sets X ∈ Dwi,w
′

p . Indeed, any set

X ∈ Dwi,w
′

p could be turned in a set of X ′ ∈ Dwi,w
′

p+1 by adding vertices of the
p+ 1th column accordingly to w′. Thus

Cp+1[wi, w
′] = Cp[wi, w] + ∆(w,w′)

which implies that

Cp+1[wi, w
′] ≥ min

w
Cp[wi, w] + ∆(w,w′).

On the other hand, for every word wo ∈ W such that Cp[wi, wo] 6= +∞ and
∆(wo, w

′) 6= +∞, there is a set S ∈ Dwi,wo
p , with `(S) = Cp[wi, wo], that can

be turned in a set S′ ∈ Dwi,w
′

p+1 with `(S′) = Cp[wi, wo] + ∆(wo, w
′). Thus

Cp+1[wi, w
′] ≤ min

wo

Cp[wi, wo] + ∆(wo, w
′).

This concludes the proof of the lemma.

By the de�nition of Mp, we have also Mp+1 = Mp ⊗ T . Note that T is a
sparse matrix: about 95.5% of its 81192 entries are +∞. Thus the multiplication
by T in the (min,+) algebra can be done in a reasonable amount of time by a
trivial algorithm.

Fact 9.10. The computations give us that M126 = M125 + 1. Thus, since
(A + c) ⊗ B = (A ⊗ B) + c for any matrices A, B and any integer c, we have
that M125+k = M125 + k for every k ∈ N.
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Let us de�neM ′p = mink∈N(Mp+k−k). Then, for all q ≥ p,Mq ≥M ′p+(q−p).
By Fact 9.10, M ′p = mink∈{0,...125−p}(Mp+k − k)

Fact 9.11. By computingM ′12, andA
′ = M ′12⊗M ′12, we obtain that minw1,w3

(A′+
A′T )[w1, w3] = 76 (where AT is the transpose of A).

This implies that

min
w1,w3

(min
w2

M ′12[w1, w2]+M ′12[w2, w3]) + (min
w4

M ′12[w3, w4]+M ′12[w4, w1]) = 76

min
w1,w2,w3,w4

M ′12[w1, w2] +M ′12[w2, w3] +M ′12[w3, w4] +M ′12[w4, w1] = 76.

Theorem 9.12. If 24 ≤ n ≤ m, then

γ(Gn,m) =

⌊
(n+ 2)(m+ 2)

5

⌋
− 4.

Proof. By Chang's construction [56], γ(Gn,m) ≤
⌊

(n+2)(m+2)
5

⌋
− 4. Let us now

compute a lower bound for the loss of a dominating set of Gn,m.

`n,m ≥ bn,m

≥ min
w1,w2,w3,w4

Mn−12[w1, w2] +Mm−12[w2, w3]

+Mn−12[w3, w4] +Mm−12[w4, w1]

by Lemma 9.8

≥ min
w1,w2,w3,w4

M ′12[w1, w2] + (n− 12− 12)

+M ′12[w2, w3] + (m− 12− 12) +M ′12[w3, w4]

+ (n− 12− 12) +M ′12[w4, w1] + (m− 12− 12)

≥ 2× (n+m− 48)

+ min
w1,w2,w3,w4

M ′12[w1, w2] +M ′12[w2, w3] +M ′12[w3, w4] +M ′12[w4, w1]

≥ 2× (n+m− 48) + 76

≥ 2× (n+m)− 20.

Thus by Lemma 9.6, we have:

γ(Gn,m) ≥
⌈
n×m+ 2× (n+m)− 20

5

⌉
≥

⌈
(n+ 2)(m+ 2)− 4

5

⌉
− 4

≥
⌊

(n+ 2)(m+ 2)

5

⌋
− 4.
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This chapter presents a joint work with Emmanuel Jeandel [11]. A new
aperiodic tile set containing 11 Wang tiles on 4 colors is presented. This tile set
is minimal in the sense that no Wang set with less than 11 tiles is aperiodic,
and no Wang set with less than 4 colors is aperiodic.

Introduction. Wang tiles are square tiles with colored edges. A tiling of the
plane by Wang tiles consists in putting a Wang tile in each cell of the grid Z so
that contiguous edges share the same color. The formalism of Wang tiles was
introduced by Wang [147] to study decision procedures for a speci�c fragment
of logic (see section 10.1.1 for details).

Wang asked the question of the existence of an aperiodic tile set: A set of
Wang tiles which tiles the plane but cannot do so periodically. His student
Berger quickly gave an example of such a tile set, with a tremendous number
of tiles. The number of tiles needed for an aperiodic tileset was reduced during
the years, �rst by Berger himself, then by others, to obtain in 1996 the previous
record of an aperiodic set of 13 Wang tiles. (see section 10.1.2 for an overview
of previous aperiodic sets of Wang tiles).

While reducing the number of tiles may seem like a tedious exercise in itself,
the articles also introduced di�erent techniques to build aperiodic tilesets, and
di�erent techniques to prove aperiodicity.

A few lower bounds exist on the number of Wang tiles needed to obtain an
aperiodic tile set, the only reference [81] citing the impossibility to have one
with 4 tiles or less. On the other hand, recent results show that an aperiodic
set of Wang tiles need to have at least 4 di�erent colors [55].

In this article, we �ll all the gaps: We prove that there are no aperiodic tile
set with less than 11 Wang tiles, and that there is an aperiodic tile set with 11
Wang tiles and 4 colors.

The discovery of this tile set, and the proof that there is no aperiodic tile set
with a smaller number of tiles was done by a computer search: We generated in
particular all possible candidates with 10 tiles or less, and prove they were not
aperiodic. Surprisingly it was somewhat easy to do so for all of them except one.
The situation is di�erent for 11 tiles: While we have found an aperiodic tileset,
we also have a short list of tile set for which we do not know anything. The
description of this computer search is described in section 10.3 of the paper, and
can possibly be skipped by a reader only interested in the tile set itself. This
section also contains a result of independent interest: the tile set from Culik
with one tile omitted does not tile the plane.

The tile set itself is presented in section 10.4, and the remaining sections
prove that it is indeed an aperiodic tileset.

10.1 Aperiodic sets of Wang tiles

Here is a brief summary of the known aperiodic sets of Wang tiles. Explanations
about some of them may be found in [81]. We stay clear in this history about
aperiodic sets of geometric �gures, and focus only on Wang tiles.
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10.1.1 Wang tiles and the ∀∃∀ problem
Wang tiles were introduced by Wang [147] in 1961 to study the decidability of
the ∀∃∀ fragment of �rst order logic. Wang showed in this article how to build,
starting from a ∀∃∀ formula φ, a set of tiles τ and a subset τ ′ ⊆ τ so that there
exists a tiling by τ of the upper quadrant with tiles in the �rst row in τ ′ i� φ
is satis�able. If this particular tiling problem was decidable, this would imply
that the satis�ability of ∀∃∀ formulas was decidable.

Wang asked more generally in this article whether the more general tiling
problem (with no particular tiles in the �rst row) is decidable and gave the
fundamental conjecture: Every tileset either admits a periodic tiling or does not
tile.

Regardless of the status of this particular conjecture, Kahr, Moore and Wang
[95] proved the next year that the ∀∃∀ problem is indeed undecidable by reducing
to another tiling problem: now we �x a subset τ ′ of tiles so that every tile on the
diagonal of the �rst quadrant is in τ ′. This proof was later simpli�ed by Hermes
[84, 85]. From the point of view of �rst order logic, the problem is thus solved.
Formally speaking, the tiling problem with a constraint diagonal is reduced to a
formula of the form ∀x∃y∀zφ(x, y, z) where φ contains a binary predicate P and
some occurences of the subformula P (x, x) (to code the diagonal constraint). If
we look at ∀∃∀ formulas that do not contain the subformula P (x, x) and P (z, z),
the decidability of this particular fragment remained open.

A few years later, Berger proved however [40] that the domino problem is
undecidable, and that an aperiodic tileset existed. This implies in particular
that the particular fragment of ∀x∃y∀z where the only occurences of the binary
predicates P are of the form P (x, z), P (y, z), P (z, y), P (z, x) was undecidable.

A few other subcases of ∀∃∀ were done over the years. In 1975, Aanderaa
and Lewis [33] proved the undecidability of the fragment of ∀∃∀ where the
binary predicates P can only appear in the form P (x, z) and P (z, y). It has
in particular the following consequence: The domino problem for deterministic
tilesets is undecidable

10.1.2 Aperiodic tilesets

The �rst example of a set of Wang tiles was provided by Berger in 1964. The set
contained in the 1966 AMS publication [41] contains 20426 tiles, but Berger's
original PhD Thesis [40] also contains a simpli�ed version with 104 tiles. This
tileset is of a substitutive nature. Knuth [107] gave another simpli�ed version
of Berger's original proof with 92 tiles.

Lauchli obtained in 1966 an aperiodic set of 40 Wang tiles, published in 1975
in a paper of Wang [146].

Robinson found in 1967 an aperiodic set of 52 tiles. It was mentioned in a
Notices of the AMS summary, but the only place this set can be found is in
an article of Poizat [128]. His most well known tileset is however a 1969 tileset
(published in 1971) [134] of 56 tiles. The paper hints at a set of 35 Wang tiles.

Robinson managed to lower the number of tiles again to 32 using a idea
due to Roger Penrose. The same idea is used by Grunbaum and Shephard to
obtain an aperiodic set of 24 tiles [81]. Robinson obtained in 1977 a set of 24
tiles from a tiling method by Ammann. The record for a long time was held by
Ammann, who obtained in 1978 a set of 16 Wang tiles. Details on these tilesets
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are provided when available in [81]
In 1975, Aanderaa and Lewis [33] build the �rst aperiodic deterministic

tileset. No details about the tileset are provided but it is possible to extract one
from the exposition by Lewis [110]. This construction was somehow forgotten
in the literature and the �rst aperiodic deterministic tileset is usually attributed
to Kari in 1992 [101].

In 1989, Mozes showed a general method that can be used to translate
any substitution tiling into a set of Wang tiles [119], which will be of course
aperiodic. There are multiple generalizations of this result (depending of the
exact de�nition of �substitution tiling�), of which we cite only a few [80, 74, 79].
For a speci�c example, Socolar build such a representation [137] of the chair
tiling, which in our vocabulary can be done using 64 tiles.

The story stopped until 1996 when Kari invented a new method to build
aperiodic tileset and obtained an aperiodic set of 14 tiles [100]. This was reduced
to 13 tiles by Culik [58] using the same method. There was suspicion one of the
13 tiles was unnecessary, and Kari and Culik hinted to a method to show it in
a unpublished manuscript. However this is not true: the method developed in
this article will show this is not the case.

In 1999, Kari and Papasoglu [102] presented the �rst 4-way deterministic
aperiodic set. The construction was later adapted by Lukkarilla to provided a
proof of undecidability of the 4-way domino problem [113].

The construction of Robinson was later analyzed [136, 35, 93, 78] and simpli-
�ed. Durand, Levin and Shen presented in 2004 [66] a way to simplify exposition
of proofs of aperiodicity of such tilesets. Ollinger used this method in 2008 to
obtain an aperiodic tileset with 104 tiles [123], with striking resemblance to the
original set of 104 tiles by Berger. Other simpli�cations of Robinson construc-
tions where given by Levin in 2005 [109] and Poupet in 2010 [129] using ideas
similar to Robinson.

In 2008, Durand, Romashchenko and Shen provided a new construction
based on the classical �xed point construction from computability theory [68,
67].

10.2 Preliminaries

10.2.1 Wang tiles

A Wang tile is a unit square with colored edges. Formally, let H,V be two �nite
sets (the horizontal and vertical colors, respectively). A wang tile t is an element
of H2×V 2. We write t = (tw, te, ts, tn) for a Wang tile, and use interchangeably
the notations tw (resp. te, ts, tn) or w(t) (resp. e(t), s(t), n(t)) to indicate the
color on one of the edges.

A Wang set is a set of Wang tiles, formally viewed as a tuple (H,V, T ),
where T ⊆ H2 × V 2 is the set of tiles. Fig. 10.1 presents a well known example
of a Wang set. A Wang set is said to be empty if T = ∅.

Let T = (H,V, T ) be a Wang set. Let X ⊆ Z2. A tiling of X by T is an
assignation of tiles from T to X so that contiguous edges have the same color,
that is it is a function f : X → T such that e(f(x, y)) = w(f(x + 1, y)) and
n(f(x, y)) = s(f(x, y + 1)) for every (x, y) ∈ Z2 when the function is de�ned.
We are especially interested in the tilings of Z2 by a Wang set T . When we say
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a tiling of the plane by T , or simply a tiling by T , we mean a tiling of Z2 by T .
A tiling f is periodic if there is a (u, v) ∈ Z2 \ (0, 0) such that f(x, y) =

f(x+ u, y + v) for every (x, y) ∈ Z2. A tiling is aperiodic if it is not periodic.
A Wang set tiles X (resp. tiles the plane) if there exists a tiling of X (resp.

the plane) by T . A Wang set is �nite if there is no tiling of the plane by T . A
Wang set is periodic if there is a tiling t by T which is periodic. A Wang set is
aperiodic if it tiles the plane, and every tiling by T is not periodic.

We quote here a few well known folklore results:

Lemma 10.1. If T is periodic, then there is a tiling t by T with two linearly in-
dependent translation vectors (in particular a tiling t with vertical and horizontal
translation vectors).

Lemma 10.2. If for every k ∈ N, there exists a tiling of [0, . . . , k] × [0, . . . , k]
by T , then T tiles the plane.

10.2.2 Transducers

One of the most trivial but crucial observation we will use in this article is that
Wang sets (H,V, T ) may be viewed as �nite state transducers, where each tran-
sition reads and writes one letter, and without initial nor �nal states: H is the
set of states, V is the input and output alphabet, and T is the set of transi-
tions. Fig. 10.1 presents in particular the popular set of Wang tiles introduced
by Culik from both point of views.
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Figure 10.1 � The aperiodic set of 13 tiles obtained by Culik from an idea of
Kari: the transducer view and the tiles view.

In this formalism, tilings correspond exactly to (biin�nite) runs of the trans-
ducer. If w and w′ are biin�nite words over the alphabet V , we will write
wT w′ if w′ is the image of w by the transducer. The transducer is usually
nondeterministic so that this is indeed a (partial) relation and not a function.

The composition of Wang sets, seen as transducers, is straightforward: Let
T = (H,V, T ) and T ′ = (H,V ′, T ′) be two Wang sets. Then T ◦T ′ is the Wang
set (H ×H ′, V, T ′′), where

T ′′ = {((w,w′), (e, e′), s, n′) : (w, e, s, n) ∈ T, (w′, e′, s′, n′) ∈ T ′ and n = s′}.
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Let T k, k ∈ N∗ be T if k = 1, T k−1 ◦ T otherwise.
A reformulation of the original question is as follows:

Lemma 10.3. A Wang set T is �nite if there is no in�nite run of the transducer
T : There is no biin�nite sequence (wk)k∈N so that wkT wk+1 for all k.

A Wang set T is periodic i� there exists a word w and a positive integer k
so that wT kw.

We will also use the following operations on tile sets (or transducers):

rotation Let T tr be (V,H, T ′) where T ′ = {(s, n, e, w) : (w, e, s, n) ∈ T}. This
operation corresponds to a rotation of the tileset by 90 degrees.

simpli�cation Let s(T ) be the operation that deletes from T any tile that
cannot be used in a tiling of a (biin�nite) line row by T . This corresponds
from the point of view of transducers to eliminating sources and sinks from
T . In particular s(T ) is empty i� there is no words w,w′ s.t. wT w′.

union T ∪ T ′ is the disjoint union of transducers T and T ′: We �rst rename
the states of both transducers so that they are all di�erent, and then we
take the union of the transitions of both transducers. Thus w(T ∪ T ′)w′
i� wT w′ or wT ′w′.

Equivalence of Wang sets. Once Wang sets are seen as transducers, it is
easy to see that the problems under consideration do not depend actually on T ,
but only on the relation induced by T : We say that two Wang sets T = (H,V, T )
and T ′ = (H ′, V, T ′) are equivalent if they are equivalent as relations, that is,
for every pair of bi-in�nite words (w,w′) over V , wT w′ ⇔ wT ′w′.

In the course of the proofs and the algorithms, it will be interesting to switch
between equivalent Wang sets (transducers), in particular by trying to simplify
as much as possible the sets: we can for example apply the operator s(T ) to
trim the colors/states (and thus the tiles/transitions) that cannot appear in a
in�nite row (e.g. sources/terminals of the transducer seen as a graph), or reduce
the size of the transducer by coalescing �equivalent� states.

There are a few algorithms to simplify Wang sets. First, as our transducers
are nothing but (nondeterministic) �nite automata over the alphabet V × V , it
is tempting to try to minimise them. However state (or transition) minimisa-
tion of nondeterministic automata is PSPACE-complete ; The other strategy of
building the minimal determinic automaton is also not e�cient in practice. The
algorithm we used is based on the notion of strong bisimulation equivalence of la-
beled transitions sytems [96, 124, 145, 112]. It allows us to �nd e�ciently states
that are equivalent (in some sense) and thus can be collapsed together. It can
be thought of as the non-deterministic equivalent of the classical minimization
algorithm for deterministic automata from Hopcroft [86].

10.3 There is no aperiodic Wang sets with 10 tiles

or less

In this section, we give a brief overview of the techniques involved in the com-
puter assisted proof that there are not aperiodic Wang set with 10 tiles or less.
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The general method of the algorithm is obvious: generate all Wang sets with
10 tiles or less, and test whether there are aperiodic. There are two di�culties
here: �rst, there are a large number of Wang sets with 10 tiles: For maximum
e�ciency, we have to generate as few of them as possible, that is discard as
soon as possible Wang sets that are provably not aperiodic. Then we have to
test the remaining sets for aperiodicity. Aperiodicity is of course an undecidable
problem: our algorithm will not succeed on all Wang sets, and the remaining
ones will have to be examined by hand.

10.3.1 Generating all Wang sets with 10 tiles or less

According to the general principle above, we actually do not have to generate all
Wang sets: we can refrain from generating sets that we know are not aperiodic.

Let T be a Wang set. We say that T is minimally aperiodic if T is aperiodic
and no proper subset of T is aperiodic (that is no proper subset of T tiles
the plane). We will introduce criteria proving that some Wang sets are not
minimally aperiodic, and thus that we do not need to test them.

The key idea is to look at the graph G underlying the transducer. Note that
this is actually a multigraph: there might be multiple edges(transitions) joining
two given vertices (states), and there might also be self-loops.

This approach was also introduced in [92], and the following lemma is more
or less implicit in this article:

Lemma 10.4. Let T be a Wang set, and G the corresponding graph.

• Suppose there exist two vertices/states/colors u, v ∈ G so that there is an
edge (hence a tile/transition) from u to v and no path from v to u. Then
T is not minimal aperiodic.

• Suppose G contains a strongly connected component which is reduced to a
cycle. Then T is not minimal aperiodic.

• If the di�erence between the number of edges and the number of vertices
in G is less than 2, then T is not minimal aperiodic.

Proof. In terms of tiles, the �rst case corresponds to a tile t that can appear
at most one in each row. If T tiles the plane, T tiles arbitrarily large regions
without using the tile t. By compactness, T \ {t} tiles the plane.

For the second case, suppose such a component exists. This means there
exist some tiles S ⊆ T so that every time one of the tiles in S appear, then
the whole row is periodic (of period the size of the cycle). If T is aperiodic, we
cannot have a tiling where tiles of S appear in two di�erent rows, as we could
deduce from it a periodic tiling. As a consequence, tiles from S appear in at
most one row, and using the same compactness argument as before we deduce
that T \ S tiles the plane.

The proof of the third case can be found in [92].

This lemma gives a bird's eye-view of the program: For a given n ≤ 10,
generate all (multi)graphs G with n edges and at most n− 2 vertices satisfying
the hypotheses of the lemma, then test all Wang sets for which the underlying
graph in G. In terms of Wang tiles, a graph correspond to a speci�c assignation
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of colors to the east/west side: for this particular assignation, we test all possible
assignations of colors to the north/south side.

The exact approach used in the software follows this principle, trying as
much as possible not to generate isomorphic tilesets.

10.3.2 Testing Wang sets for aperiodicity

We explained in the previous section how we generated Wang sets to test. We
now explain how we tested them for aperiodicity.

Easy cases

Recall that a Wang set is not aperiodic if

• Either there exists k so that s(T k) is empty: there is no word w,w′ so
that wT kw′

• or there exists k so that T k is periodic: there exists a word w so that
wT kw

The general algorithm to test for aperiodicity is therefore clear: for each k,
generate T k, and test if one of the two situations happen. If it does, the set is
not aperiodic. Otherwise, we go to the next k. The algorithm stops when the
computer program runs out of memory. In that case, the algorithm was not able
to decide if the Wang set was aperiodic (it is after all an undecidable problem),
and we have to examine carefully this Wang set.

This approach works quite well in practice: when launched on a computer
with a reasonable amount of memory, it eliminates a very large number of
tilesets. Of course, the key idea is to simplify as much as possible T k before
computing T k+1. Note that this should be done as fast as possible, as this will
be done for all Wang sets. It turns out that the easy simpli�cation that consists
in deleting at each step tiles that cannot appear in a tiling of a row (i.e. vertices
that are sources/terminals) is already su�cient.

It is important to note that this approach relying on transducers (test
whether the Wang set tiles k consecutive rows, and if it does so periodically)
turned out in practice to be much more e�cient than the naive approach using
tilings of squares (test whether the Wang set tiles a square of size k, and if it
does so periodically).

Harder cases

Once this has been done, a small number of Wang sets remain (at most 200), for
which the program was not able to prove that they tile the plane periodically
or that they do not tile the plane.

The �rst step for these sets was to use the same idea as before, but with a
larger memory, and additional optimizations, which involved simplifying T k as
much as possible before examining it. Two additional simpli�cations were used:
First, we may delete from T k tiles(transitions) that connect di�erent strongly
connected components: using the same argument as in Lemma 10.4, it is easy to
see that deleting these tiles do not change the aperiodic status of T k. Second,
we have applied bisimulation techniques to reduce as much as possible the size
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Figure 10.2 � A set of 10 tiles that tries very hard, but fails to tile the plane. It
tiles however a square of size 212× 212

of the transducer T k. We want to stress that this technique proved to be crucial:
the gain obtained by bisimulation is tremendous.

The hardest case

Using these ameliorations on the ∼ 200 remaining Wang sets was successful: all
of them were quickly proven to be not aperiodic. Well not entirely! One small
set of indomitable tiles still held out against the program.

This particular set of tiles is presented in Fig. 10.2. It turned out that this
particular Wang set is a special case of a general construction introduced by
Kari [100] of aperiodic Wang sets, except a few tiles are missing. At this point,
the situation could have become desperate: It is not known if tilings obtained
by the method of Kari but missing a few tiles may tile the plane. In fact, it was
open whether it was possible to delete a tile from the 13 tileset from Culik [58]
to obtain a set that still tiles the plane1 (and it was conjectured by both Kari
and Culik that it was indeed possible).

However we were able to prove that this tileset does not in fact tile the plane.
Wang sets belonging to the family identi�ed by Kari all work in the same way:
The in�nite words that appear on each row can be thought of as reals, by taking
the average of all numbers (between 0 and 3 in our example) that appear on the
row. Then what the tileset is doing is applying a given piecewise a�ne map to
the real number. In the case of our set of 10 tiles, the map f is as follows:

• If 1/2 ≤ x ≤ 3/2, then f(x) = 2x

• If 3/2 ≤ x ≤ 3, then f(x) = x/3

1You will �nd many experts on tilings that recollect this story wrongly and think that the
(13) Wang set by Culik is the (14) Wang set from Kari with one tile removed. It is not the
case. What happened is that there is one tile from the (13) Wang set by Culik that seemed
likely to be unnecessary.
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As can be seen from the �rst transducer, there cannot be two consecutive
0 in x, this guarantees that x ≥ 1/2 hence x 6= 0, and in particular that this
tileset has no periodic tiling.

If we used the general method by Kari to code this particular tileset, the
transducer that divides by 3 would have 8 tiles. However, our particular set of
10 tiles does so with only 4 tiles. There is a way to explain how the division by 3
works. First, let's see it like a multiplication by 3 by reversing the process. Recall
that the Beatty expansion of a real x is given by βn(x) = d(n+ 1)xe − dnxe.
Then it can be proven:

Fact 10.5. Let 0 < x ≤ 1 and de�ne bn(x) = 2βn(2x)−βn(x). Then the second
transducer transforms (βn)n∈N into (bn)n∈N.

Hence, the second transducer multiplies by 3 by doing 2×2×x−x somehow.
It can be seen as a composition of a transducer that transforms (βn)n∈N into
(βn, bn)n∈N (this can be done with only two states, using the method by Kari)
and a transducer mapping each symbol (x, y) into 2y − x, which can be done
using only one state (this is just a relabelling).

There is indeed no reason that doing the transformation this way would work
(in particular the equations given by Kari cannot be applied to this particular
transducer and prove that there is indeed a tiling), and indeed it doesn't: we
were able to prove that this particular Wang set does not, in fact, tile the plane.

Once this tileset was identi�ed as belonging to the family of Kari tilesets, it
is indeed easy to see that, should it tile the plane, it tiles a half plane starting
from a word consisting only of 3.

We then started from a transducer T ′ that outputs a con�guration with
only the symbol 3, and build recursively tk = T ′T k. It turns out that t31 (once
reduced) is empty, which means that we cannot tile 31 consecutive rows starting
from a word consisting only of 3.

Theorem 10.6. There is no aperiodic Wang set with 10 tiles or less.

Before removing unused transitions, t31 contains a path of 212 symbols 3.
This means in particular that there exists a tiling of a rectangle of size 212× 31
where the top and the bottom side are equal, thus a tiling of a in�nite vertical
strip of width 212 by this tiling, and thus a tiling of a square of size 212× 212.

We want again to stress how much the simpli�cation of the transducers by
bisimulation was crucial. Our �rst proof that this tileset does not tile the plane
did not use this and 3 months were needed to prove the result, generating sets
of the order of 232 (4 billion) tiles. Using bisimulation for the simpli�cation of
transducers, the result can be proven in 2 minutes, with the largest Wang set
having 226 (50 million) tiles.

The fact everything fall apart for k = 31 can be explained. If we identify
([0.5, 3]0.5∼3,×) with the unit circle ([0, 1]0∼1,+), what f is doing is now just an
addition (modulo 1) of log 2

log 2+log 3 . Now 31 log 2
log 2+log 3 = 11.992 is near an integer,

which means that T 31 is �almost� the identity map. During the 30 �rst steps,
our map T is able to deceive us and pretend it would tile the plane by using
the degrees of freedom we have in the coding of the reals. For k = 31, this is
not possible anymore.

It turns out that the exact same method can be used for the set of 12 tiles
obtained starting from the set by Culik, and removing one tile. It corresponds
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to the same rotation, and we observe indeed the same behaviour: starting from
a con�guration of all 2, it is not possible to tile 31 consecutive rows:

Theorem 10.7. The set of 13 tiles by Culik is minimal aperiodic: if any tile
is removed from this set, it does not tile the plane anymore.

Note that the situation is still not well understood and we can consider
ourselves lucky to obtain the result: First, we have to execute the transducers
in the good direction: T ′T −31 is nonempty. Furthermore, the next step when
T k returns near an integer is for k = 106, and no computer, using our technique,
has enough memory to hope computing T 106.

Conjecture 10.8. Every aperiodic tileset obtained by the method of Kari is
minimal aperiodic.

10.4 An aperiodic Wang set of 11 tiles - Proof

Sketch

Using the same method presented in the last section, we were able to enumerate
and test sets of 11 tiles, and found a few potential candidates. Of these few
candidates, two of them were extremely promising and we will indeed prove
that they are aperiodic sets.
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Figure 10.3 � Wang set T .

These sets of tiles are presented in Figure 10.3 and 10.4. Both sets are very
similar: the second one is obtained from the �rst one by collapsing the colors 4
and 0.

We focus now on the �rst set.
T is the union of two Wang sets, T0 and T1, of respectively 9 and 2 tiles.

For w ∈ {0, 1}∗ \ {ε}, let Tw = Tw[1] ◦ Tw[2] ◦ . . . Tw[|w|].
It can be seen by a easy computer check that every tiling by T can be

decomposed into a tiling by transducers T1T0T0T0T0 and T1T0T0T0.
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Figure 10.4 � Wang set T ′.

Simpli�cations of these two transducers, called Ta and Tb will be obtained
in section 10.5.1 and are depicted in Fig. 10.5.

We then study the transducer TD formed by the two transducers Ta and Tb
and prove that there exists a tiling by TD, and that any tiling by TD is aperiodic.
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Figure 10.5 � TD, the union of Ta (top) and Tb (bottom).

We will prove that the tileset is aperiodic by proving that any tiling is sub-
stitutive.

Let u−2 = ε,u−1 = a, u0 = b, un+2 = unun−1un.
Let g(n), n ∈ N be (n+ 1)-th Fibonacci number, that is g(0) = 1, g(1) = 2
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and g(n+ 2) = g(n) + g(n+ 1) for every n ∈ N. Remark that un is of size g(n).

Tn for n odd:

1g(n+2)−3|0g(n+2)−3

1g(n+1)+3 |(110)0g(n+1)

1g(n+3)+3 |0g(n+2)(111)0g(n+1)

1g(n+1)(000)1g(n+2)|0g(n+3)+3

1g(n+1)(100) |0g(n+1)+3

1g(n+3)(100)1g(n+1)|0g(n+1)(110)0g(n+3)

Tn for n even:

0g(n+2)−3|1g(n+2)−3

0g(n+1)+3 |(100)1g(n+1)

0g(n+3)+3 |1g(n+2)(000)1g(n+1)

0g(n+1)(111)0g(n+2)|1g(n+3)+3

0g(n+1)(110) |1g(n+1)+3

0g(n+3)(110)0g(n+1)|1g(n+1)(100)1g(n+3)

Figure 10.6 � The family of transducers Tn

Then we will prove that, for all n, any tiling by TD is a tiling by Tun , Tun+1 , Tun+2 .
(This is obvious by de�nition for n = −2,−1). For this, we now introduce a
family of transducers, presented in Fig 10.6, and we will prove

• We prove (section 10.5.2) that every tiling by TD = Ta ∪Tb can be seen as
a tiling by Tu0

∪ Tu1
∪ Tu2

= Tb ∪ Taa ∪ Tbab.

• We prove (section 10.5.2) that Tu0
, Tu1

and Tu2
, when occuring in a

tiling of the entire plane, can be simpli�ed to obtain the three transducers
T0, T1, T2.

• We prove (section 10.6) that Tn+3 = Tn+1 ◦ Tn ◦ Tn+1 for all n, which
proves that Tun

can be simpli�ed to obtain Tn
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Figure 10.7 � TA, the union of s(T10000) (left) and s(T1000) (right).

• We then prove (section 10.7) that any tiling by Tun , Tun+1 and Tun+2 can
be rewritten as a tiling by Tun+1 , Tun+2 , Tun+3 , by replacing any block
Tun+1

Tun
Tun+1

by Tun+3
(the di�culty is to prove that by doing this,

there is no remaining occurence of Tun
).

• This proves in particular that every tiling is aperiodic.

• From the description of Tn, it is clear that the transducer Tn (hence Tun)
is nonempty. This implies that there exists a tiling of one row by Tun

,
hence a tiling of g(n) consecutive rows by Ta and Tb, hence there exists a
tiling of a plane.

Finally, we explain in section 10.7 how the same proof gives us also the aperi-
odicity of the set T ′.

10.5 From T to TD then to T0, T1, T2

10.5.1 From T to TD
Recall that our Wang set T can be seen as the union of two Wang sets, T0 and
T1, of respectively 9 and 2 tiles.

For w ∈ {0, 1}∗ \ {ε}, let Tw = Tw[1] ◦ Tw[2] ◦ . . . Tw[|w|]. The following facts
can be easily checked by computer or by hand:

Fact 10.9. The transducers s(T11), s(T101), s(T1001) and s(T00000) are empty.

Thus, if t is a tiling by T , then there exists a bi-in�nite binary word w ∈
{1000, 10000}Z such that t(x, y) ∈ T (Tw[y]) for every x, y ∈ Z. Let TA =
s(T1000 ∪ T10000) (see Figure 10.7). There is a bijection between the tilings
by T and the tilings by TA, and T is aperiodic if and only if TA is aperiodic.

We see that the transducer TA never reads 2, 3 nor 4. Thus the transitions
that write 2, 3 or 4 are never used in a tiling by T . Let TB (see Figure 10.8) be
the transducer TA after removing these unused transitions, and deleting states
that cannot appear in a tiling of a row (i.e. sources and sinks). Then t is a
tiling by TA if and only if t is a tiling by TB , and TB is aperiodic if and only if
TA is.

Now we simplify a bit the transducer TB using bisimulation. The states
23300 and 23310 have the same incoming transitions, hence can be coalesced
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Figure 10.8 � TB corresponds to TA when unused transitions are deleted.
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Figure 10.9 � TC is the simpli�cation of TB by bisimulation.
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Figure 10.10 � TD is the simpli�cation of TC using the fact that the successions
of symbols 101 and 010 cannot appear. The transducers to the left and to the
right are called respectively Ta and Tb.
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into one state The same goes for states 21300 and 21310, and for states 2300 and
2310. Once we coalesce all those states, we obtain the Wang set TC depicted in
Figure 10.9.
TB and TC are equivalent. Thus TB is aperiodic if and only if TC is aperiodic.

Proposition 10.10. Let (wi)i∈Z be a bi-in�nite sequence of bi-in�nite binary
words such that wiTCwi+1 for every i ∈ Z. Then for every i ∈ Z, wi is
(010, 101)-free.

Proof. We consider the tiling in the other direction, and look at the transducer
(T tr
C )3. This transducer has 8 states (that corresponds respectively to 000, 001,

. . . 111) and a quick computer check shows that in this transducer the states
010 and 101 are respectively a source and a sink. As a consequence, these two
states cannot appear in a tiling of the plane by (T tr

C )3, hence 101 and 010 cannot
appear in any line of a tiling by TC .

In a tiling by TC , the transition from Q to O is never followed by a transition
from O to P, otherwise it writes a 101. Similarly, a transition from M to K is
never preceded by a transition from L to M, otherwise it reads a 010. Thus
there is a bijection between tilings by TC and tilings by TD (Figure 10.10).

10.5.2 From TD to T0, T1, T2

Let Ta and Tb be the two connected component of TD. For a word w ∈ {a, b}∗,
let Tw = Tw[1] ◦ Tw[2] ◦ . . . Tw[|w|]. The following fact can be easily checked by
computer or by hand:

Fact 10.11. The transducers s(Tbb), s(Taaa) and s(Tbabab) are empty.

It is a classical exercise to show that this implies that if t is a tiling by TC
then there exists a bi-in�nite binary word w ∈ {b, aa, bab}Z such that t(x, y) ∈
T (Tw[y]) for every y ∈ Z. That is, t is image of a tiling by Tb ∪ Taa ∪ Tbab.

We will now simplify the three transducers.

Case of Tb. In Tb, every path eventually go to the state �N�. Thus Tb is
equivalent to the following transducer (written in a compact form):

N

00000 |10011
00000000 |11100011
00111000 |11111111
00110 |11111
0000011000|1110011111
0010 |1011
001000 |111011
0000010 |1110011
0011000 |1011111

In the previous transducer, the last 4 transitions are never used in a tiling of
the plane, since they read 010 or write 101. So we can simplify the transducer
into:
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ba

ch

cj

dc

eb

gb

111|000

111|000

11|1111|00

1|0
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0001|0000
00|00

Figure 10.11 � s(Taa)
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000000011|001111111

0000|1100

00000|11111

0|1

0|0

0|1

000000|111111

0|0

0000|1111

1100|1111

Figure 10.12 � s(Tbab)

N

00000 |10011
00000000 |11100011
00111000 |11111111
00110 |11111
0000011000|1110011111

This transducer is equivalent to T0, that we recall here for comparison:

ε|ε

05 |(100)12

05+3 |13(000)12

02(111)03|15+3

02(110) |12+3

05(110)02|12(100)15

Case of Taa. The transducer s(Taa) is depicted in Figure 10.11 in a compact
form. In this transducer, every path eventually go to the state �eb�. Then s(Taa)
is equivalent to the following transducer (written in a compact form):

eb

11111111 |11000000
1111111111111 |0000011100000
1110001111111 |0000000000000
11110011 |00000000
1111111110011111|0001100000000000
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This transducer is clearly equivalent to T1, that we recall for convenience:

15−3|05−3

13+3 |(110)03

18+3 |05(111)03

13(000)15|08+3)

13(100) |03+3

18(100)13|03(110)08

Case of Tbab. The transducer s(Tbab) is depicted in Figure 10.12.

In this transducer, every path eventually go to the state �NeR�. Then s(Tbab)
is equivalent to the following transducer (wrote in a compact form):

NeR

0000000000000 |1111110011111
000000000000000000000 |111111111111100011111
000000000011100000000 |111111111111111111111
0000000000110 |1111111111111
00000000000000000011000000|11111111111001111111111111

This transducer is clearly equivalent to T2, that we recall for the reader
convenience:

08−3|18−3

05+3 |(100)15

013+3 |18(000)15

05(111)08 |113+3

05(110) |15+3

013(110)05|15(100)113

10.6 From Tn, Tn+1, Tn+2 to Tn+1, Tn+2, Tn+3

For the reader convenience, we recall the de�nition of the family of transducers,
and we introduce notations for the transitions Tn for n even:
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0 5

α : 0g(n+2)−3|1g(n+2)−3

β : 0g(n+1)+3 |(100)1g(n+1)

γ : 0g(n+3)+3 |1g(n+2)(000)1g(n+1)

δ : 0g(n+1)(111)0g(n+2)|1g(n+3)+3

ε : 0g(n+1)(110) |1g(n+1)+3

γ : 0g(n+3)(110)0g(n+1)|1g(n+1)(100)1g(n+3)

Tn+1 for n even:

0 5

A : 1g(n+3)−3|0g(n+3)−3

B : 1g(n+2)+3 |(110)0g(n+2)

C : 1g(n+4)+3 |0g(n+3)(111)0g(n+2)

D : 1g(n+2)(000)1g(n+3)|0g(n+4)+3

E : 1g(n+2)(100) |0g(n+2)+3

O : 1g(n+4)(100)1g(n+2)|0g(n+2)(110)0g(n+4)

Before going into the proof, we �rst give some remarks.

• Tn for n even and n odd are essentially similar. This means it is su�cient
to prove that Tn+3 = Tn+1 ◦Tn ◦Tn+1 for n even, and the result for n odd
follows.

• Apply the following transformation to Tn: Change input and output, and
reverse the edges: reverse the direction and mirror (reverse) the words,
and exchange the symbols 0 and 1. Then we obtain Tn again (for n even,
with β playing the role of ε, δ the role of γ, and α and ω their own role).
This internal symmetry will be used a lot in the proofs.

• All transitions are symmetric and easy to understand, except the self-
symmetric tiles ω and O. These transitions actually cannot occur in the
tiling of the plane, but a transition of shape ω or O large enough can
appear in a �nite strip large enough. It means it is not possible to do
the proof without speaking about these transitions, even if they cannot
appear in a tiling of the plane.

We now proceed to prove the result. As said before, we now suppose that n
is even, and we will look at the sequence of transducers Tn+1 ◦ Tn ◦ Tn+1.
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The following table represent the possible distance between two consecutive
markers (i.e. 000 and 100) as inputs of Tn+1.

First Marker Second Marker Distance
(000) from D (000) from D g(n+5)



+ag(n+4)+bg(n+5)
a, b ∈ N

(000) from D (100) from E g(n+5)
(000) from D (100) from O g(n+5)+g(n+3)
(100) from E (000) from D g(n+4)
(100) from E (100) from E g(n+4)
(100) from E (100) from O g(n+5)
(100) from O (000) from D g(n+4)+g(n+2)
(100) from O (100) from E g(n+4)+g(n+2)
(100) from O (100) from O 2g(n+4)

To prove the main result, we will prove that the transitions in the transducer
Tn (when surrounded by transducers Tn+1) must be done in a certain order.

In the following, we deliberately omit the transition α: When we say that γβ
cannot appear, we mean that it is impossible to see successively the transitions
γ, then α, then β in a run of the transducer Tn (when surrounded by transducers
Tn+1).

Lemma 10.12. The following words cannot appear:

• γω,γγ,γβ, βω, ββ, βεβ, γεβ, βδεβ, γδεβ

• ωδ, δδ, εδ, ωε, εε, εβε, εβδ, εβγε, εβγδ

Proof. All the following successions of transitions are impossible due to the
input constraints on Tn+1 :

Case Why it is impossible
γω (000) and (100) separated by g(n+ 1) + g(n+ 3)
γγ (000) and (000) separated by g(n+ 4)
γβ (000) and (100) separated by g(n+ 3)
βω (100) and (100) separated by g(n+ 1) + g(n+ 3)
ββ (100) and (100) separated by g(n+ 3)
βεβ (100) and (100) separated by 2g(n+ 3)
γεβ (000) and (100) separated by 2g(n+ 3)
βδεβ (100) and (100) separated by 2g(n+ 4) + g(n+ 1)
γδεβ (000) and (100) separated by 2g(n+ 4) + g(n+ 1)

All others cases follow by symmetry.

Lemma 10.13. ω cannot appear.

Proof. Case disjunction on what appears before:
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Case Why it is impossible
βω see above
γω see above
βδω (100) and (100) separated by

g(n+ 4) + g(n+ 3) + g(n+ 1)
γδω (000) and (100) separated by

g(n+ 4) + g(n+ 3) + g(n+ 1)
βεω (100) and (100) separated by

g(n+ 4) + 2g(n+ 1)
γεω (000) and (100) separated by

g(n+ 4) + 2g(n+ 1)
βδεω (100), (100) separated by

g(n+ 5) + g(n+ 3) + g(n+ 1) = 2g(n+ 4) + 2g(n+ 1)
γδεω (000), (100) separated by

g(n+ 5) + g(n+ 3) + g(n+ 1) = 2g(n+ 4) + 2g(n+ 1)

Lemma 10.14. O cannot appear.

Proof. Suppose that O appear in the top transducer (i.e. the transducers with
input Tn). This means the (100) marker is generated, the only possibility being
by β.

We prove there is no possibility to �nd transitions after this β.
Case Why it is impossible starting from O
βγ (100) and (000) separated by g(n+ 4)
βδβ (100) and (100) separated by g(n+ 4) + g(n+ 3)
βδγ (100) and (000) separated by g(n+ 4) + g(n+ 1) + g(n+ 3)
βδεβ (100) and (100) separated by 2g(n+ 4) + g(n+ 1)
βδεγ (100) and (000) separated by 2g(n+ 4) + g(n+ 3)
βεγ (100) and (000) separated by g(n+ 5)

By symmetry, O cannot appear in the bottom transducer.

Now that O has disappeared, the possible distances between the markers are
greatly simpli�ed

First Marker Second Marker Distance
(000) (000) g(n+ 5)

+ag(n+ 4) + bg(n+ 5)
a, b ∈ N

(000) (100) g(n+ 5)
(100) (000) g(n+ 4)
(100) (100) g(n+ 4)

Lemma 10.15. The following words do not appear: βε, εβ βδβ, δγδ, as well
as εγε and γδγ

Proof. βε should be followed by γ which leads to (100) and (000) separated by
g(n+ 5).

εβ should be preceded by a δ, which cannot be preceded by anything.
Case Why it is impossible
βδβ (100), (100) separated by g(n+ 4) + g(n+ 3)
γδγ (000), (000) separated by g(n+ 5) + g(n+ 2)

The last two follow by symmetry.



126 CHAPTER 10. AN APERIODIC SET OF 11 WANG TILES

Lemma 10.16. Every in�nite path on the transducer Tn can be written as paths
on the following graph:

γδ

β, ε, βδγε, βγε, βδε

Proof. Clear: all other words are forbidden by the previous lemmas

Recall that in this picture, words α have been forgotten. We now rewrite it
adding the transitions α.

γαδ

αβα, αεα, αβαδαγαεα, αβαγαεα, αβαδαεα

All transitions in the picture will be called meta-transitions.
We now have a more accurate description of the behaviour of the transducer

Tn when surrounded by transducers Tn+1. This will be su�cient to prove the
results. We will see indeed that each of the six meta-transitions depicted can
be completed in only one way by transitions of Tn+1. This will give us six tiles,
which (almost) correspond to the transitions of Tn+3.

We will use drawings to prove the result. Let �rst draw all tiles: The pictures
will be self-explanatory.

First, the transitions of Tn, seen as tiles:

α β γ

δ

ε

Then the transitions of Tn+1:

A B

C D

E
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We now �rst look at γδ. By necessity, the following transitions of Tn+1

should surround it:

γ α δ

A C

D A

Note that the three transducers are aligned (up to a a shift of ±3) when γαδ
is present. As all other meta-transitions are enclosed by the meta-transition
γαδ, This means that in an execution of Tn+1 ◦ Tn ◦ Tn+1, every other meta-
transition should be surrounded above and below by transitions of Tn+1 that
almost align with it. Moreover the transitions of Tn+1 below should begin by A
and the transitions of Tn+1 above should end with A. It turns out that there is
only one way to do this for any of the meta-transitions.

This gives for ε and β:

α ε α

A B

B A

α β α

A E

E A

This gives for βγε and βδε:

α β α δ α ε α

A C A B

E A C A

α β α γ α ε α

A D A B

E A D A

And the piece de resistance βδγε:

α β α δ α γ α ε α

A C A E A B

E A B A D A

We now look at the transducer T ′ we obtain with the preceding six pieces.
Remark that T ′ = Tn ◦ Tn+1 ◦ Tn ◦ σ3 where σ is the shift:
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1g(n+5)|0g(n+5)

1g(n+4) |(110)0g(n+4)−3

1g(n+4)−3(100) |0g(n+4)

1g(n+6) |0g(n+5)(111)0g(n+4)−3

1g(n+4)−3(111)1g(n+5)|0g(n+6)

1g(n+6)−3(100)1g(n+4)|0g(n+4)(110)0g(n+6)−3

It is easy to see that T ′ is exactly Tn+3 up to a shift of 3.

Theorem 10.17. Tn+3 = Tn ◦ Tn+1 ◦ Tn.

10.7 End of the proof

10.7.1 Aperiodicity of T
Theorem 10.18. Every in�nite composition of the tranducers Tn, Tn+1, Tn+2

can be rewritten as a composition of transducers Tn+1, Tn+2, Tn+3 by replacing
every block Tn+1 ◦ Tn ◦ Tn+1 by Tn+3. In particular, every tiling by T0, T1 and
T2 is aperiodic.

Proof. It is easy to see, given the inputs of Tn, Tn+1 and Tn+2, that every Tn
should be bordered by the transducers Tn+1.

It therefore remains to show that Tn+1 ◦Tn ◦Tn+1 ◦Tn ◦Tn+1 cannot appear.
By the previous section, Tn, when bordered by Tn+1 on both sides, can

be rewritten as concatenations of blocks of the following �ve types: βγδ, εγδ,
βδγεγδ, βγεγδ and βδεγδ.

However, as Tn+1 ◦ Tn ◦ Tn+1 ◦ Tn ◦ Tn+1 = Tn+3 ◦ Tn ◦ Tn+1, the block εγδ
(and any block containing it) cannot appear in the execution of the transducer
Tnis impossible, as Tn+3 does not produce any input that where 100 and 000
are that close. So the only block that remain possibly is βγδ. But Tn+3 does
not produce any input where 000 and 000 are at distance g(n+ 6).

Corollary 10.19. The Wang set corresponding to the transducer T0 ∪ T1 ∪ T2

is aperiodic

Corollary 10.20. The Wang set TD = Ta ∪ Tb is aperiodic. Furthermore, the
set of words u ∈ {a, b}? s.t. the sequence of transducers Tu appear in a tiling of
the plane is exactly the set of factors of the Fibonacci word ( i.e. the �xed point
of the morphism a → ab, b → a), i.e. the set of factors of sturmian words of
slope 1/φ, for φ the golden mean.

The set of biin�nite words u ∈ {a, b}Z s.t Tu represents a valid tiling of the
plane are exactly the sturmian words of slope 1/φ.

See [43] for some references on sturmian words.



10.7. END OF THE PROOF 129

Proof. The sequence of words un we de�ned is the sequence of singular factors
of the Fibonacci word (see for example [148]). Thus, on tilings by Ta ∪ Tb,
the vertical sequence on {a, b} have the same set of factors that the Fibonacci
word.

Corollary 10.21. The Wang set T is aperiodic. Furthermore, the set of words
u ∈ {0, 1}? s.t. the sequence of transducers Tu appear in a tiling of the plane is
exactly the set of factors of sturmian words of slope φ/(5φ−1), for φ the golden
mean.

The set of biin�nite words u ∈ {0, 1}Z s.t Tu represents a valid tiling of the
plane are exactly the sturmian words of slope φ/(5φ− 1).

Proof. Let ψ be the morphism a 7→ 10000, b 7→ 1000. The set of all words
u ∈ {0, 1}Z that can appear in a tiling of the whole plane are exactly the image
by ψ of the sturmian words over the alphabet {a, b} of slope 1/φ.

It is well known that the image of a sturmian word by ψ is again a sturmian
word, see [43, Corollary 2.2.19], where ψ = G̃3D (with {a, b} instead of {0, 1}
as input alphabet). The derivation of the slope is routine.

10.7.2 Aperiodicity of T ′

Recall that T ′ is the Wang set from Figure 10.4. This Wang set is obtained
from T , by merging two vertical colors: 0 and 4 in T become 0 in T ′. Thus
every tiling of T can be turned into a tiling of T ′, and T ′ tiles the plane. We
will show in the sequel that every tiling of T ′ can be turned into a tiling of T ,
and thus every tiling of T ′ is aperiodic.
T ′ is the union of two Wang sets T ′0 and T ′1 of respectively 9 and 2 tiles.

The following facts can be easily checked by computer. For w ∈ {0, 1}∗ \ {ε},
let T ′w = T ′w[1] ◦ T

′
w[2] ◦ . . . T

′
w[|w|].

Fact 10.22. The transducers s(T ′111), s(T ′101), s(T ′1001), s(T ′1000001), s(T ′10000001),
s(T ′100000001), s(T ′000000000), s(T ′000011), s(T ′110000) and s(T ′1100011) are empty.

Thus, if t is a tiling by T ′ then there exists a bi-in�nite binary word w ∈
{1000, 10000, 100011000, 100000000}Z such that t(x, y) ∈ T (T ′w[y]) for every
x, y ∈ Z.

Let T ′A = s(T ′1000 ∪ T ′10000 ∪ T ′100000000 ∪ T ′100011000). As before, T ′A has un-
used transitions (those which writes 2 or 3). Once deleted, with states that
cannot appear in a tiling of a row, we obtain T ′B . T ′B has 4 connected compo-
nents: two were already present in T : Ta and Tb, the third one Tc is a subset of
T ′100000000, and the last one Td is a subset of T ′100011000.

Proposition 10.23. T ′11 is isomorphic to a subset of T ′01, and T ′100000 is iso-
morphic to a subset of T ′100001.

Proof. T ′11 is the transducer with one state, which reads 1 and writes 2. T ′01 has
also a loop that reads 1 and writes 2: the transition (02, 02, 1, 2). T ′100000 and
T ′100001 are depicted in Figure 10.13 (in a compact form). T ′100000 is isomorphic
to the subset of T ′100001 drawn in bold.

Corollary 10.24. Tc and Td are both isomorphic to a subset of Ta ◦ Tb.
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Figure 10.13 � T ′100001 (left) and T ′100000 (right).

A tiling of T ′B can thus be turned into a tiling of TB , by substituting every
tile from Tc (resp. Td) by two tiles, one from Ta and one from Tb.

Theorem 10.25. The Wang set T ′ is aperiodic.

Proof. The Wang set T ′ is aperiodic if and only if T ′B is aperiodic. Suppose
that T ′B is not aperiodic. We know that T ′, and thus T ′B tile the plane. Take
a periodic tiling by T ′B . This tiling can be turned into a tiling of TB by the
Corollary 10.24. Thus TB has a periodic tiling, contradiction.

10.7.3 Concluding remarks

• The reader may regret that our substitutive system starts from Tb ∪Taa ∪
Tbab and not from Ta∪Tb∪Taa, or even from Ta∪Tb. We do not know if this
is possible. Our de�nition of Tn certainly does not work for n = −1, and
the natural generalization of it is not equivalent to Ta. This is somewhat
obvious, as Tn (for n ≥ 0) cannot be composed with itself, whereas Ta
should be composed with itself to obtain Taa.

• Ta and Tb both have the properties that they are time symmetric: If
we reverse the directions of all edges, exchange inputs and outputs, and
exchange 0 and 1, we obtain an equivalent transducer (it is obvious for Tb
and become obvious for Ta if we write it in a compact form without the
states h and g). This property was used to simplify the proof that the
sequence (Tn) is a recursive sequence, but we do not know whether it can
be used to simplify the whole proof.

• While we gave a sequence of transducers Tn, it is of course possible to give
another sequence of transducers, say Un, which are equivalent to Tn, and
thus with the same properties. Our sequence Tn has nice properties, in
particular the symmetry explained above and its short number of transi-
tions, but has the drawback that the substitution once seen geometrically
has small bumps due to the fact that the tiles are aligned only up to ±3.
It is possible to �nd a sequence Un for which this does not appear, by
splitting some transitions of Tn into transitions of size g(k) and transi-
tions of size exactly 3. However this makes the proof that the sequence is
recursive harder. We think our sequence Tn reaches a nice compromise.
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• We do now know if it is possible to obtain the result directly on the original
tileset T rather than TD. A di�culty is that T is not purely substitutive
(due for example to the fact that no sturmian word of slope φ/(5φ− 1) is
purely morphic): What we could obtain at best is that tilings by T are
images by some map φ of some substitutive tilings (which is more or less
what we obtain in our proof).

• We have now obtained a large number of Wang sets with 11 tiles which
are candidates for aperiodicity. The reader might ask why we choose to
investigate this particular one. The reason is that, for this particular
tileset T , it is very easy for a computer to produce the transducer for T k
even for large values of k (k = 1000). For comparison, for almost all other
tilesets, we were not able to reach even k = 30. This suggested this tileset
had some particular structure. We will not give here a full bestiary of all
our candidates, but we will say that a large number of them are tileset
corresponding to the method of Kari, with one tile or more omitted. With
the method we described previously we were able to prove that some of
them do not tile the plane, but the method did not work on all of them. We
have found for now only three tilesets which were likely to be substitutive
or nearly substitutive, of which two are presented in this article.

• Experimental results tend to support the following conjecture

Conjecture 10.26. Let f(n) be the smallest k s.t. every Wang set of
size n that does not tile the plane does not tile a square of size k. Let
g(n) be the smallest k s.t. every Wang set of size n that tiles the plane
periodically does so with a period p ≤ k.
Then g(n) ≤ f(n) for all n.
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Figure 10.14 � Representation of the meta-tile γ (resp. C if n is odd) of Tn as
tiles of T0 ] T1 ] T2 for n = 0, 1, 2, 3, 4, 5, 6, 7.
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Figure 10.15 � A fragment of a tiling by the transducers T0, T1, T2.
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Figure 10.16 � A fragment of a tiling by T ′, with
(0,1,2,3)=(white,red,blue,green).
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