
HAL Id: tel-02145438
https://hal.science/tel-02145438v2

Submitted on 18 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reachability Analysis and Revision of Dynamics of
Biological Regulatory Networks

Xinwei Chai

To cite this version:
Xinwei Chai. Reachability Analysis and Revision of Dynamics of Biological Regulatory Networks.
Bioinformatics [q-bio.QM]. École centrale de Nantes, 2019. English. �NNT : 2019ECDN0014�. �tel-
02145438v2�

https://hal.science/tel-02145438v2
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’ÉCOLE CENTRALE DE NANTES
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique

Par

« Xinwei CHAI »
« Reachability Analysis and Revision of Dynamics of Biological Regulatory Networks »

«Analyse d’accessibilité et révision de la dynamique dans les réseaux de régulations biologiques»

Thèse présentée et soutenue à L’ÉCOLE CENTRALE DE NANTES, le 24 mai, 2019
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)

Rapporteurs avant soutenance :
Gilles Bernot Professeur des universités Université Côte d’Azur, Sophia Antipolis
Pascale Le Gall Professeur des universités CentraleSupélec, Gif sur Yvette

Composition du jury :

Président : Béatrice Duval Professeur des universités Université d’Angers
Examinateurs : Gilles Bernot Professeur des universités Université Côte d’Azur, Sophia Antipolis

Pascale Le Gall Professeur des universités CentraleSupélec, Gif sur Yvette
Morgan Magnin Professeur des universités École Centrale de Nantes
Loïc Paulevé Chargé de recherche Université de Bordeaux
Olivier Roux Professeur des universités École Centrale de Nantes

Dir de thèse : Olivier Roux Professeur des universités École Centrale de Nantes
Co-dir. de thèse : Morgan Magnin Professeur des universités École Centrale de Nantes

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my advisors Prof.
Olivier ROUX and Prof. Morgan MAGNIN for the continuous support of my Ph.D. study
for their patience, ideas and contribution of time. This kind support also came to my
personal life which helped me to regain motivation and carry on the research when I
encountered at the same time academy and mental difficulties. I especially appreciate
their tolerance allowing me to explore on my will even the outcome was not satisfying.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.
Gilles BERNOT, Prof. Pascal LE GALL, Prof Béatrice DUVAL and Dr. Loïc PAULEVÉ,
for their patient reading, insightful comments and encouragement, but also for the
questions which incented me to widen my research from various perspectives.

My sincere thanks also goes to my kind team members. Dr. Emna BEN ABDAL-
LAH, Dr. Maxime FOLSCHETTE, Samuel BUCHET and Dr. Loïc PAULEVÉ provided
me an opportunity to work with them even after their graduation. Without their precious
but abundant support, it would not be possible for me to conduct this research. I would
like to especially acknowledge Tony RIBEIRO Sensei for his kindness, enthusiasm,
intensity and genius ideas which redirected and accelerated my Ph.D. study.

I gratefully acknowledge the funding provided by China Scholarship Council (CSC)
that made my Ph.D. work possible.

My life in Nantes is enriched by my warm-hearted neighbors Geneviève ROCHE
and the family of MARCHAND. Also I thank my friends in École Centrale de Nantes for
all the fun we have had in the last four years.

Last but not the least, I would like to thank my family for all their love and encourage-
ment. For my parents who raised me with curiosity in science and supported me in all
my pursuits. For my uncle who talked with me intimately in my sadness and confusion.
For my girlfriend who accompanied me spiritually everyday across the ocean.

Thank you.

Xinwei Chai
École Centrale de Nantes

May 2019

Contents

1 Introduction 1

1.1 Context and Motivations . 1

1.1.1 Models in Computational Biology 2

1.1.2 Classification of Models 2

1.1.3 Model Checking . 3

1.1.4 Model Learning . 3

1.2 Problem Statement . 4

1.3 Contributions . 4

1.4 Organization of the Manuscript 5

2 State of the Art 7

2.1 Discrete Modeling Frameworks 9

2.1.1 Regulatory Network 9

2.1.2 Bayesian Network . 10

2.1.3 Boolean Network . 10

2.1.4 Normal Logic Program (NLP) 12

2.1.5 Process Hitting (PH) 13

2.1.6 Asynchronous Automata Network (AAN) 15

2.2 Semantics of Modelings . 15

2.2.1 Synchronicity . 15

2.2.2 Asynchronicity . 17

2.2.3 Generalized Semantics 18

2.3 Model Checking . 18

2.3.1 Exact Model Checkers 19

2.3.2 Static Analyzers . 19

2.3.3 Reachability Problem 20

2.4 Model Learning and Model Revision 21

2.4.1 Learning From Interpretation Transitions (LFIT) . . . 22

2.4.2 Cut set . 22

i

2.5 Résumé . 22

3 Refined Reachability Analysis via Heuristics 25

3.1 Background . 26

3.2 Asynchronous Binary Automata Network 27

3.2.1 Definitions . 27

3.2.2 Simplified Local Causality Graph (SLCG) 31

3.2.3 Conclusiveness . 33

3.3 Topological Preprocessing . 34

3.3.1 Detection and Removal of Cycles 34

3.3.2 Decomposition of SLCG 36

3.4 Reachability Analysis . 36

3.4.1 Reachability via Permutations (PermReach) 37

3.4.2 Reachability via ASP (ASPReach) 40

3.5 Extension to Multi-valued Models 46

3.6 Résumé . 49

4 Model Inference and Revision 51

4.1 Background . 52

4.2 Model Completion via Candidate Regulations 54

4.2.1 Problem Description 55

4.2.2 Cut set . 56

4.2.3 Completion Set . 59

4.2.4 Completion by Over-Approximation 59

4.2.5 Completion by Under-Approximation 61

4.3 Model Inference via Statistics 64

4.3.1 Preliminaries . 64

4.3.2 Partial Correlation . 66

4.3.3 Variable Reconstruction 70

4.3.4 Toy Example . 71

4.4 Model Revision via Reachability and Interpretation Transi-
tions (M2RIT) . 74

4.4.1 Learning From Interpretation Transitions (LFIT) . . . 75

4.4.2 Formalization . 75

4.4.3 Modeling and Learning of Asynchronous Dynamics . . 76

4.4.4 Revision . 79

4.4.5 Toy Example . 82

4.5 Résumé . 82

ii

5 Tests and Benchmarks 85
5.1 Comparison of Reachability Analyzers 86

5.1.1 Performance on Computing Power 86
5.1.2 Performance on Conclusiveness 87
5.1.3 Performance on Random Examples 88

5.2 Implementation of CRAC and M2RIT 90
5.2.1 CRAC . 90
5.2.2 M2RIT . 91

5.3 Résumé . 92

6 Conclusion and Outlooks 95
6.1 Contributions . 96
6.2 Future Work . 98

A Representation of Different Models 111
A.1 Transformation from BNs to ABANs 111

B Algorithms 113

C Theorems and Proofs 125

D Pure ASP reachability analyzer 129
D.1 Pure ASP Implementation . 129

iii

iv

List of Figures

2.1 Representations of Biological Topology 11

2.2 Process Hitting . 14

2.3 Update schemes . 16

2.4 Discretization . 17

2.5 Static analysis . 20

3.1 Example of ABAN . 29

3.2 Example of SLCG . 32

3.3 Limitation of SLCG 1 . 34

3.4 Limitation of SLCG 2 . 34

3.5 SLCG with cycles . 35

3.6 Removal of cycles . 36

3.7 Random choice on OR gates 37

3.8 Ordering in SLCG . 38

3.9 Counterexample of PermReach 39

3.10 Counterexample of ASPReach 45

3.11 Restricted AAN and extended SLCG 48

3.12 Counterexample of extended SLCG 48

4.1 Big picture of model inference 53

4.2 Example of cut set . 57

4.3 Completion set . 59

4.4 Completion by over-approximation 61

4.5 Completion by under-approximation 62

4.6 Operations on SLCG(1) . 63

4.7 Operations on SLCG(2) . 63

4.8 Operations on SLCG(3) . 64

4.9 Workflow of model inference via partial correlation 68

4.10 Variable reconstruction . 71

4.11 Result of toy example . 73

v

4.12 Toy example of M2RIT . 82

5.1 SLCG of λ-phage model . 87
5.2 Counterexample of PermReach 88
5.3 Runtime tests of reachability analyzers 90

vi

List of Tables

2.1 Transition interpretation table 16
2.2 Update schemes . 19

4.1 Example of cut set . 58
4.2 Example of completion set . 60
4.3 Time-series data . 72
4.4 Change rates derived from time-series data 72

5.1 Comparison of different analyzers 89

D.1 Performance of pure ASP method 129

vii

Abstract

Concurrent systems have been of interest for decades. With their simple
but expressive semantics, concurrent systems become a good choice to fit
the data and analyze the underlying mechanics. However, learning and ana-
lyzing such concurrent systems are computationally difficult. When dealing
with big data sets, the state-of-the-art techniques appear to be insufficient,
either in term of efficiency or in term of precision.

In this thesis, we propose a refined modeling framework ABAN (Asyn-
chronous Binary Automata Network) and develop reachability analysis tech-
niques based on ABAN: PermReach (Reachability via Permutation search)
and ASPReach (Reachability via Answer Set Programming). Then we pro-
pose two model learning/constructing methods: CRAC (Completion via
Reachability And Correlations) and M2RIT (Model Revision via Reacha-
bility and Interpretation Transitions) using respectively continuous and dis-
crete data to fit the model and using reachability properties to constrain the
output models.

Chapter 1 states briefly the background and the contribution of our
research.

Chapter 2 introduces the state of the art on modeling frameworks, model
checkers, different update schemes of modelings and model learning tech-
niques. Some of them are referenced in the following chapters.

Chapter 3 presents our modeling framework and its related reachability
analyzers based on static analysis. We focus on the inconclusive cases of
pure static analysis and extract the key components preventing from a direct
solution. We then apply heuristics on these components, solving them with a
limited search to reach a more conclusive result of the reachability problem.

Chapter 4 presents the methodology of model learning. Our model learn-
ers CRAC and M2RIT perform in fact model selection. They choose a model
from the candidates satisfying the provided reachability constraints. How-
ever the number of candidate models can be exponential, our model learners
can shrink the search space with constraints when generating the models.

Chapter 5 shows some comparative and exploratory tests and their re-
sults on the methods presented in Chapter 3 and Chapter 4. PermReach and
ASPReach are more efficient than traditional model checkers on the reach-
ability analysis and they perform a more conclusive analysis while holding
the running time in the same scale as pure static analyzers have.

Chapter 6 concludes the thesis and proposes some possible future work.

Résumé

Les systèmes concurrents présentent un intérêt depuis des décennies. Avec
leur sémantique simple mais expressive, les systèmes concurrents deviennent
un bon choix pour ajuster les données et analyser les mécanismes sous-
jacents. Cependant, l’apprentissage et l’analyse de tels systèmes concurrents
sont difficiles pour ce qui concerne les calculs. Lorsqu’il s’agit de grands
ensembles de données, les techniques les plus récentes semblent insuffisantes,
que ce soit en termes d’efficacité ou de précision.

Dans cette thèse, nous proposons un cadre de modélisation raffiné ABAN
(Asynchronous Binary Automata Network) et développons des techniques
d’analyse d’atteignabilité basées sur ABAN: PermReach (Reachability via
Permutation search) et ASPReach (Reachability via Answer Set Program-
ming). Nous proposons ensuite deux méthodes de construction et d’appren-
tissage des modèles: CRAC (Completion via Reachability And Correlations)
et M2RIT (Model Revision via Reachability and Interpretation Transitions)
en utilisant respectivement des données continues et discrètes pour s’ajuster
au modèle et des propriétés d’accessibilité afin de contraindre les modèles
résultants.

Le chapitre 1 décrit brièvement le contexte et la contribution de nos
recherches. Le chapitre 2 présente l’état de l’art des modélisations, des model
checkers, des différentes dynamiques associé aux modès et les techniques
d’apprentissage des modèles. Certains d’entre eux sont référencés dans les
chapitres suivants.

Le chapitre 3 présente notre cadre de modélisation et ses analyseurs
d’accessibilité associés, qui sont basés sur l’analyse statique. Nous nous
concentrons sur les cas non concluants d’analyse statique pure et extrayons
les composants clés empêchant une solution directe. Nous appliquons ensuite
des heuristiques sur ces composants, en les résolvant avec une recherche
limitée pour obtenir un résultat plus concluant du problème d’accessibilité.

Le chapitre 4 présente la méthodologie de l’apprentissage par modèle.
Nos systèmes de construction de modèles par apprentissage CRAC et M2RIT
effectuent en fait une sélection des modèles. Ils choisissent un modèle parmi
les candidats qui satisfont à toutes les contraintes d’accessibilité données.
Cependant, le nombre de modèles candidats pouvant être de très grande
taille, nos réviseurs de modèles peuvent réduire l’espace de recherche avec
des contraintes lors de la génération des modèles.

Le chapitre 5 présente quelques tests comparatifs et exploratoires et leurs
résultats sur les méthodes présentées aux chapitres 3 et 4. PermReach et
ASPReach sont plus efficaces que les vérificateurs de modèle traditionnels
pour l’analyse de l’accessibilité. Ils effectuent une analyse plus concluante
tout en maintenant la durée de fonctionnement à la même échelle que les
analyseurs statiques purs.

Le chapitre 6 conclut la thèse et propose des travaux futurs possibles.

List of symbols

∧ logic AND
∨ logic OR
⊕ logic XOR
|A| the cardinality of set A
[i, j] the interval comprising real numbers x satisfying i ≤ x ≤ j
[i; j] the interval comprising integers x satisfying i ≤ x ≤ j
Ckn the k-combination in the set of n elements, Ckn = n!

k!(n−k)!

ai automaton a is taking value i
x :: y event x happens just before y in the sequence
a.next the successor of a
a.pred the predecessor of a
A→ bj condition A allows automaton b to reach qualitative level j
N the set of all natural numbers
x̄ the mean of variable x

Chapter 1

Introduction

In the domain of systems biology, more big data are becoming available
with the development of biotechnology. However, extracting information
from such big data could be difficult due to its high computational com-
plexity and the potential fuzziness of biological systems. Modelings and
their related analytic techniques are drawing increasing attention. The
dilemma of efficiency and precision always persists.

This thesis is dedicated to attacking this dilemma by proposing our
modeling framework and its related dynamic properties analyzers as well
as model learning methods.

1.1 Context and Motivations

In the studies of concurrent systems, modeling is an inevitable topic. The
modeling frameworks discussed in this thesis are all designed for biological
use and some features are drawn from biology but they can be potentially
useful in other domains, e.g. robotics, human engineering.

Models are supposed to represent the operations of a real system and
help one to access, analyze and control the real system. It is a tool to help
people to understand the interaction of the components in real systems and
the integral behavior of the systems.

A good model is a model which:

• is consistent with the corresponding real system

The model reproduces certain important behaviors. In the ideal situ-
ation, the model bisimulates the real system.

1

• is observable

To allow one to verify the behaviors, the state (historical, current and
future) and the mechanics of the model have to be observable.

• allows one to access the I/O of the model

With full control of the I/O, we can carry some unfeasible tests in real
system as the mechanical of the model is known.

• has related analyzers of various properties

Some properties are not verifiable via finite enumeration.

• can be translated from/to other models

Normally, the above metrics are self-constrained: The finer the model is,
the bigger the computational complexity is (simulation, verification, etc.).
In this thesis, we focus on modelings, their related analyzers of system prop-
erties and model revision based on these properties.

1.1.1 Models in Computational Biology

Systems biologists are interested in highly abstracted models because they
need abstract representation and/or flexibility to make model compatible
with unknown biological knowledge.

Tractability with big data is also important. “Big” refers to two mean-
ings: one is that biological systems can be huge, with enormous number of
components and interactions in between; another is that the number and
the size of data sets can be huge.

To model the real system, we need components to represent genes, RNA
messengers, proteins, metabolites, etc. At this stage, we can carry out a first-
step abstraction. The synthesis of proteins is under the instruction of RNA
messengers which are synthesized according to genes. This linear process
allows to compress the three entities into one. Their inner behaviors (e.g.
protein phosphorylation, activation/inhibition of genes) are characterized
by the values of the associated entities.

1.1.2 Classification of Models

The values in models can be continuous or discrete which differentiate the
modeling frameworks.

Continuous values correspond directly to the measurement and can be
used in the models based on the family of Ordinary Differential Equation

2

(ODE), for example Stochastic Differential Equation (SDE), Delay Differ-
ential Equation (DDE).

Discrete values come from an approximation from sigmoid function to
step functions. Sigmoid function is a monotonic function and its change
rate is high around a certain point (Proof in Appendix C). Many biological
behaviors are similar with sigmoid functions: certain entity starts to influ-
ence the system if its value goes beyond a certain threshold. If the value is
far from the threshold, it is either insufficient (low level) or saturated (high
level) [42, 81]. This fact inspires scientists to study discrete models. One
can encode low level as 0 and high level as 1 or even add additional discrete
levels to represent more behaviors.

In the term of concurrency, synchronous models make components to
evolve at the same time while asynchronous ones allow at most one com-
ponent to evolve at one time. Due to the fuzziness of biological system,
asynchronous models are compatible with more configurations of system
parameters [6].

However, the compatibility of asynchronous models is also a shortcoming
as they explore more state space at each system transition compared with
synchronous ones. The exploration of state space leads to so-called state
space explosion problem. To deal with such problem, Paulevé et al. pro-
posed the Process Hitting framework and its related static model checker [61]
and Folschette et al. proposed Asynchronous Automata Network enriching
model semantics [29]. In this thesis, we mainly work on asynchronous
discrete models based on the models above.

1.1.3 Model Checking

If one has an existing model, he might want to know what kind of properties
this model satisfies, such as fixed points, safety, reachability.

As stated in the beginning of this chapter, verifying such properties in
a concurrent system is costly in computation (PSPACE-complete) [35]. We
have to make a compromise on either efficiency or precision: exact ana-
lyzers are precise but need to traverse big state space; abstract analyzers
solve a simplified version of the original problem so that the solution is not
equivalent to the one of the original problem.

1.1.4 Model Learning

Models are built by the biological knowledge, obtained either by certain
experiments, either by generalized conclusions from biologists.

3

Model learning turns the data coming from biological experiment into
model parameters, if the modeling framework is given. We will focus on the
LFIT-based method (Learning From Interpretation Transition) proposed by
Ribeiro et al. [66, 65, 67]. LFIT is a precise learning technique which takes
all the inputs into account.

However, model learning is not enough, as we are not sure the resulted
models are consistent with empirical conclusions.

1.2 Problem Statement

With the background of model checking and model learning, we can now
formulate the two main problems of this thesis:

• How to analyze efficiently (less runtime) and precisely (less false posi-
tive/negative rate) the reachability properties within an asynchronous
discrete model?

• How to build a model from time-series data such that the model sat-
isfies desired reachability properties?

1.3 Contributions

The main contributions corresponding to the problems are the followings:

• Development of efficient and precise heuristic reachability analyzers
based on static analysis [12]

• Design of model revisers: using a priori knowledge and reachability
properties to revise existing models

This thesis aims at solving the problems in the last sections by refining
existing modeling frameworks and learning approaches:

Reachability analyzers

To solve both the state space explosion problem and the unsatisfying
precision of pure static analysis, we developed two approaches based on
static analysis with different weights on efficiency and precision.

Model Revisers

As far as we know, model revision based on reachability properties has
never been considered in the literature. According to the problems of model
inference above, we designed two algorithms:

4

• an algorithm based on learning from raw time-series data

This algorithm uses correlation coefficients to infer the correlations
between the change rate of each variable and other variables in order to
suggest hypothetical regulations of the system. With the hypothetical
regulations and a priori biological knowledge, we can revise incomplete
models by adding transitions consistent with the real system.

• an algorithm based on learning from discretized time-series data

The learning approach we applied is the one using Inductive Logic
Programming [65]. This approach has more strict rule constraints,
the model is either consistent with the original time-series data or not.
We try to revise the model in order to make it consistent with a priori
biological knowledge and the rule constraints at the same time.

1.4 Organization of the Manuscript

Chapter 2 introduces the state of the art on several modeling frameworks,
model checkers, different update schemes of modelings and model learn-
ing/revision techniques. We are especially interested in Asynchronous Au-
tomata Network, reachability analysis and the learning from state transi-
tions.

Chapter 3 presents our modeling framework adapted from Automata
Network and its relating reachability analyzers based on static analysis. We
will focus on the inconclusive cases of pure static analysis and analyze the
key components preventing from a direct solution. We then apply some
different heuristics on the key components to solve them dynamically in
order to reach a conclusive result on the reachability problem.

Chapter 4 presents the methodology of model revision in this thesis
and our model revisers mentioned above. These model revisers perform
a model selection. They choose a model from the candidates satisfying all
the provided constraints. However the number of candidate models can be
huge, our model revisers can shrink the search space drastically to obtain a
result.

Chapter 5 shows some comparative and exploratory tests and their re-
sults on the approaches presented in Chapter 3 and Chapter 4.

Chapter 6 concludes the whole thesis.

5

6

Chapter 2

State of the Art

This chapter is dedicated to the introduction of the basic notions of this
thesis. Concretely speaking, we are going to present the state of the art
constituting of mainly three basic contents:

• Several modeling frameworks, some of which are the ancestors of
the new modelings to be used in this thesis and some of which will
be used in comparison

• The notion of model-checking and some existing model checkers

• Different update schemes of modeling frameworks

• Several model learning/inference techniques

These notions will be helpful for readers to understand our new model-
checkers and new model inference approaches.

In computational biology, there are plenty of modeling frameworks suit-
ing different needs. Models are a useful tool to represent the abstraction of
the real system, as the real system is usually mechanically complicated and
not completely known.

From the point of view of data type, models are classified into continuous
ones, discrete ones and their combination, hybrid models, where the last one
is not the focus of this thesis.

Continuous models are usually derived from real world data, as the data
(no matter time-series data or static data) are obtained by measurement
and can be used as input without preconditioning. Differential equations
models [33, 76, 80] are based on the hypothesis that in biological systems,

7

the change rate of variables is numerically related to the values of other
variables. Differential equations-based models deal with mainly the system
dynamics, e.g. biological regulations. Models based on Bayesian probability
and Markov chain [39, 45] study static topics, e.g. phylogenetics.

However, the following difficulties usually arise in the analysis of contin-
uous models:

• System mechanics is unclear

• System parameters need to be precise which is difficult for biological
system

• Solving differential equations numerically is expensive

Unlike straightforward continuous modelings, discrete modelings per-
form an abstraction of continuous dynamics and an over-approximation of
continuous constraints [6]. Discrete models can be also inferred from discrete
data by discretization [24].

On the aspect of dynamics, discrete models have the following update

pattern: discrete state1
conditions−−−−−−→ discrete state2, where the states corre-

spond to the intervals in the continuous models. States here can be quali-
tative levels or combinations of qualitative levels, compensating the impre-
cision or the incompleteness of the original system. Conditions here could
be either a necessary time delay or a state of the current system, etc.

As to the computation of various properties, discrete transition mod-
els generally cost less than continuous dynamical models. Among discrete
models, Boolean Networks [42], Thomas Models [79], Petri nets [63], Process
Hitting Framework [59] could more or less avoid these disadvantages when
facing the problems related to system evolution.

Hybrid (in the sense of discrete/continuous) models [83, 48, 75] usually
behave like continuous models, because in each discrete block, the sub-model
also need continuous parameters as continuous models need. Their compu-
tational complexities are of the same scale. We are not going to detail hybrid
models during this thesis.

Continuity characterizes the evolution pattern of each variable. However,
models contain multiple variables. From the point of view on concurrency,
models can be classified according to update schemes into mainly three gen-
res: synchronous models, asynchronous models and generalized models.

Synchronous update scheme designates that every component will transit
simultaneously to one of its possible future states regardless the time needed

8

for transition or other components. However in real world, constraints al-
ways exist. Biologically it is not probable that multiple components in one
system change their state simultaneously. This deficiency demands us to
consider more update schemes. Detailed discussion is in Section 2.2.

In this chapter, we will first discuss several discrete modeling frameworks
and updating schemes, comparing their differences and the possibility of
translating from each other. Some of these models will be used in the fol-
lowing chapters. Models need related analytic tools, we will then study some
model checkers especially those focusing on reachability properties as many
other complex properties can be formulated with the help of reachability.
At last we will be interested in the model learning and revising techniques
which are the key of constructing a model.

2.1 Discrete Modeling Frameworks

Original biological problems are usually difficult to be studied directly due
to the uncertainty and the big scale of biological systems. Modeling is a
process of abstracting the real system into a more concise and more easily
automatized system. To solve a certain problem, an appropriate modeling
framework is crucial because different models have different bias from re-
ality and have also different advantages in computation, e.g. fixed point,
reachability. Here we are going to introduce several most frequenly applied
modeling frameworks and analyze their advantages and disadvantages.

2.1.1 Regulatory Network

Regulatory Networks (RN) have characteristics of a static network, rep-
resenting the interactions between components [6]. With the analysis of
topological features, it can be applied in for example gene expression anal-
ysis [74].

Definition 2.1 (Regulatory network (RN)). A regulatory network is a la-
beled digraph G = (V,E) where

• each vertex v of V , called variable, is provided with a boundary bv ∈ N
less or equal to the out-degree of v in G.

• each arc u ∈ v of E is labelled with a couple (tuv, αuv) where tuv is
an integer between 1 and bv, called qualitative threshold and where
αuv ∈ {+,−} is the sign of the regulation.

9

An example is shown in Figure 2.1 A, consisting of three entities X,Y, Z
on page 11. Sharp arrows→ stand for promotion while blunt arrows a stand
for inhibition, e.g. X inhibits Z, Z promotes Y .

RN is a special instance among discrete modelings. It does not require
a threshold setting for each variable. As a result, RN is usually applied
to study static problems, e.g. model completion, finding fixed points [85].
Without quantitative representation, one can barely analyze the system dy-
namics because RN does not possess an update pattern which describes state
transitions.

2.1.2 Bayesian Network

Bayesian networks are a type of probabilistic graphical models. They rep-
resent joint probability distribution of a set of variables. More concretely, if
one obtains the value of certain variable, a Bayesian network can help him
analyze the values of its linked variables.

Bayesian networks are usually used for inferring causal dependencies
between genes in gene regulatory networks with the goal of estimating the
posterior probability of chosen features being inherent in the network, given
the data [30].

A Bayesian network is defined as (G, θ) where G is a directed acyclic
graph whose vertices connect the random variables of the network. θ is a
probability distribution associated to the vertices. These variables can be
continuous or discrete. Directed edges correspond to dependencies between
variables. θ describes a conditional distribution for each variable of the
network, given its “parents” as defined by the relations in G.

One disadvantage of Bayesian networks is that they can only represent
acyclic topology as they must be acyclic in order to guarantee that their
underlying probability distribution is normalized to 1. However feedback
loops appear very frequently in biology which narrow the application of
Bayesian networks.

2.1.3 Boolean Network

Boolean Networks (BN) are a traditional framework studied for decades [42].
They discretize every variable of the system into Boolean variables taking
values 0 or 1, presenting active/inactive, high/low concentration, etc. Tran-
sitions in BNs are defined by Boolean functions. Here we introduce the basic
definition of BN.

10

Definition 2.2 (Boolean Network (BN)). A Boolean Network G(V, F) con-
sists of a set of nodes V = {v1, · · · , vn} and a set of Boolean functions
F = {f1, · · · , fn} where function fi decides the value of node vi of the next
time point: vi(t+ 1) = fi(v1(t), · · · , vn(t)).

In some applications, the nodes are classified into incoming nodes, out-
going nodes and inner nodes to represent an input-output system [3].

Figure 2.1: Four ways of representing biological topology: A. regulatory
network, B. Boolean functions, C. transition interpretation table, D. State
transition graph

Figure 2.1 shows different representations of biological topology. RN (A)
shows only a qualitative inference graph. BN (B) is concise but does not
indicate directly the state change between moments t and t+ 1. Its update
scheme needs to be precised (in Section 2.2). Transition interpretation table
(C) and state transition graph (D) are straightforward but there are two
drawbacks:

• the state space increases exponentially with the number of variables
leading to the lack of memory

• they are not equivalent to Boolean functions

One set of transition interpretations or one state transition graph could
correspond to multiple set of Boolean functions.

In term of expressiveness, BNs can be translated to Normal Logic Pro-
grams (NLP) [41]. NLP provides a more dynamical representation and also

11

for applying SAT techniques in the computation of point attractors of both
synchronous and asynchronous semantics [25, 36].

2.1.4 Normal Logic Program (NLP)

Logic programming is a type of programming paradigm which is largely
based on formal logic. Any program written in a logic programming lan-
guage is a set of sentences in logical form, expressing facts and rules about
some problem domain. Major logic programming language families include
Prolog, Answer set programming (ASP, which we will detail in Section 3.4.2
of Chapter 3) and Datalog.

In all of these languages, the basic element is called an atom, representing
a variable with certain value. The set of atom is denoted B. Rules are written
in the form of clauses consisting of atoms (formula representation on the left
while code representation on the right):

H ← B1 ∧ . . . ∧Bn. or H :- B1, ... , Bn.

H,B1, . . . , Bn are atoms. The rule is read declaratively as logical impli-
cations:

H if B1 and . . . and Bn.

H is called the head of rule and B1,∧ . . .∧Bn is called the body of rule.
Facts are rules having no body, and are written in the simplified form:

H.

Using this notation, one can describe the transition of variable:

varval00 (t+ 1)← varval11 (t) ∧ . . . ∧ varvalnn (t).

which reads variable var0 will take value val0 at the next time point if
variable var1 takes value val1 and . . . and variable varn is taking value valn.
In this thesis we simplify the notation as

varval00 ← varval11 ∧ . . . ∧ varvalnn .

Remark 2.1. NLP appears to have almost the same formula as BN ac-
cording to Inoue et al. [41], the only difference is ← of NLP and = of BN.
However, logic OR is not allowed in NLP. The way to represent logic OR is
to use additional rules. For example, Boolean function Z = X ∨ Y can be

12

translated to the following rules: Z1 ← X1, Z1 ← Y 1 and Z0 ← X0 ∧ Y 0.
This translation may create non-equivalence and non-determinism.

Detailed applications are in Section 4.4.1 of Chapter 4.

2.1.5 Process Hitting (PH)

If one wants to describes the dynamics more finely with reasonable memory
use, Process Hitting (PH) framework is a good choice, which was introduced
by Paulevé et al. [59].

PH is inspired by π-calculus, which expresses the communication be-
tween canals. In PH, the corresponding meaning becomes the interaction
between different components. Process Hitting is an asynchronous automata
network, i.e. allowing at most one transition fired simultaneously. PH is
more expressive than Asynchronous Thomas’ model [79] or Asynchronous
BN [32]. Actions in Process Hitting are more capable of describing various
transitions than Boolean functions or attractors as it specifies the regulating
and regulated components and their quantitative levels. Also it expresses ex-
plicitly the cooperation between several components and stochastic features
using π-calculus which are not detailed in this thesis [58].

Moreover, in order to define efficient analysis techniques that avoid to
build the whole state space of the model causing state space explosion (in
Thomas’ model and Boolean network), various abstract structures have been
introduced, and one of them is graph of causality, which allows a reasoning
of the reachability of local states instead of traverse of global states.

It gathers a finite number of concurrent processes grouped into a finite
set of sorts. A process belongs to one and only one sort and is denoted as
ai where a is the sort and i the identifier of the process within the sort a.
At any time, only one process of each sort is present, forming a global state
of the PH.

Definition 2.3 (Process Hitting (PH)). A PH consists of a tuple (Σ, L,H):

• Σ = {a, b, ...} is the finite set of sorts

• L =
∏
a∈Σ La is the set of states with La = {a0, ..., ala} the finite and

countable set of states of sort a ∈ Σ and la a positive integer with:
a 6= b→ ∀(ai, bj) ∈ La × Lb, ai 6= bj

• H = {h = ai → bj � bk | (a, b) ∈ Σ2, (ai, bj , bk) ∈ La × Lb × Lb, bj 6=
bk, a = b → ai = bj} is the finite set of actions, which defines the
regulations and dynamics of the PH: ai, bj , bk are denoted hitter(h),
target(h) and bounce(h) respectively of the action h = ai → bj � bk.

13

Example 2.1. Figure 2.2 shows a PH PH = (Σ, L,H) constituting of four
sorts Σ = {a, b, c, d}, and the possible states of each sort are La = {a0, a1},
Lb = {b0, b1, b2}, Lc = {c0, c1}, Ld = {d0, d1, d2}. The initial state of PH is
α = 〈a1, b0, c0, d1〉. It has actions H = {a0 → c0 � c1, a1 → b1 � b0, c1 →
b0 � b1, b1 → a0 � a1, b0 → d0 � d1, d1 → b0 � b2, c1 → d1 � d0}. For
example a0 → c0 � c1 means if sort a is at level 0, it allows sort c to jump
from level 0 to level 1.

a

0

1

b

0

1

2

d

0

1

2

c

0 1

Figure 2.2: Gray circles represent the initial state of sorts. Full arrows
are regulations while the following dashed arrows are the actions under the
condition of the corresponding regulations.

Nevertheless, PH cannot encode equivalently the conjunctions in Boolean
functions like f(a) = b ∧ c.

To overcome this drawback, it is needed to introduce a cooperative sort
bc to represent the conjunction of b and c, with 8 actions b0 → bc10 � bc00,
b0 → bc11 � bc01, b1 → bc00 � bc10, b1 → bc01 � bc11, c0 → bc01 � bc00,
c0 → bc11 � bc10, c1 → bc00 � bc01, c0 → bc10 � bc11.

However, the size of this representation grows exponentially with the size
of the conjunction and the behavior of cooperative sorts are not equivalent
to that of BN. Also, this encoding introduces extra reactions, producing a
temporal shift between the presence of the reactants and the playability of
the reaction.

14

2.1.6 Asynchronous Automata Network (AAN)

Facing the drawback of PH, i.e. only cooperative sorts can encode reactions
with conjunctions in the hitters, Asynchronous Automata Network (AAN)
is introduced by Folschette et al. [29]. AAN allows one to naturally model
cooperations by defining several requisites for a transition. Moreover, such
automata networks are still compatible with the notion of priority, that can
also be used to model different reaction rates in the model. AAN (and, a
fortiori, their restriction, the PH framework) can be considered as a subset
of Communicating Finite State Machines or safe Petri Nets [60].

Basically the main difference between PH and AAN is state below. Sorts
in PH are called automata in AAN. Also, the definition of H becomes

• H = {A→ bj � bk | b ∈ Σ∧ (bj , bk) ∈ Lb ×Lb ∧ bj 6= bk ∧ ∀a ∈ Σ, |A∩
La| ≤ 1 ∧ A ∩ Lb = ∅} is the finite set of actions, which defines the
regulations and dynamics of the AAN: A, bj , bk are denoted hitter(h),
target(h) and bounce(h) respectively of the action h = A→ bj � bk.

where the action conditions are no longer limited to the state of only
one automaton. With the new definition of H, we can now define actions
needing multiple local states as condition.

In Chapter 3, we will make use of the definition of AAN by limiting
the variables from multi-value ones to Boolean ones in order to obtain some
interesting properties in the forthcoming reachability analysis.

2.2 Semantics of Modelings

For a given modeling framework, even if the components and transitions are
defined, the dynamics of the system is not unique. Different update schemes
lead to different dynamics. The main difference lies on the relations of the
number of transitions that can be fired and the number of transitions that
will be fired at given time point t [65, 14].

2.2.1 Synchronicity

Literally, synchronous update scheme implies that all fireable transitions are
fired simultaneously.

Example 2.2. Taking the transition interpretation table in Table 2.1 as
the given system dynamics, Figure 2.3 (a) shows the synchronous case.

15

t t+ 1

u v u v

0 0 2 0
1 0 2 1
2 0 2 1
0 1 0 0
1 1 0 1
2 1 2 1

Table 2.1: Exemplary transition interpretation table indicating the tendency
of system evolution from one state to another.

Synchronous update scheme seems to be deterministic. However, when
there are multiple fireable transitions available for one variable, there are
multiple possible future states which cannot be fired simultaneously.

Example 2.3. Given an NLP with rules var1
3 ← var1

1 and var2
3 ← var1

2 and
initial state 〈var1

1, var
1
2, var

0
3〉, these two rules are in conflict. Even though

the semantics is synchronous, a choice is need to be made between these
transitions to decide the next state of var3 is 1 or 2.

To avoid the conflicts in Example 2.3, one possible solution in Boolean
NLP is to clarify the state transition metrics: for one variable, if it can
change its value at the next time point, it cannot keep its current value the
NLP is Boolean, there is only one choice for it.

On the computational aspect, one of the benefits of the synchronous
model is tractability, while classical state space exploration algorithms fail
if there are multiple possible future states at each state transition.

u

v

0 1 2

0

1

(a) Synchronous semantics

u

v

0 1 2

0

1

(b) Asynchronous semantics

u

v

0 1 2

0

1

(c) Generalized semantics

Figure 2.3: State transition graphs of different updating schemes

16

2.2.2 Asynchronicity

For biological applications, asynchronous semantics is said to capture more
realistic behaviors: at a given time, a single gene can change its expres-
sion level. However, these rich behaviors result in a potential combinatorial
explosion of the number of reachable states.

Example 2.4. Let us take the same transition interpretation table as Ex-
ample 2.3, due to the limit of number of variables which can change their
values, the asynchronous case is shown in Figure 2.3 (b).

Given BN with n variables, from a certain state, for deterministic syn-
chronous semantic, there is only one path to be exploited. However, for
asynchronous semantic, there are at most n future states, after t step of
evolution, there are O(nt) possible branches in the arborescent searching
graph which leads to state space explosion problem.

Another problem of asynchronous update scheme is the compatibility
with time series data. One cannot guarantee when timeline is discretized
evenly whether data of adjacent time points have at most one state transi-
tion. Our solution is to discretize timeline according to the moments when
variables change their qualitative levels.

Example 2.5. In Figure 2.4, let us consider a dense enough time-series data
(quasi-continuous) with two variables x = cos(t) and y = sin(t). The thresh-
olds for both variables are set to 0.5. The left diagram shows equi-temporal
discretization of step size 0.5π, while the right diagram discrete time at the
moment when x and y reach the threshold, i.e. π/6, π/3, 5π/6, 5π/3. The
latter discretization has no conflict with asynchronous update scheme, as
there are at most one variable changing its value at each time point.

0 2 4 6

−1

−0.5

0

0.5

1 x = sin(t)

y = cos(t)

0 2 4 6

−1

−0.5

0

0.5

1 x = sin(t)

y = cos(t)

Figure 2.4: Adapted version of discretization to asynchronous systems

17

This PhD thesis focuses on the study of reachability of asynchronous
modeling frameworks. We will still introduce in the last part of this section,
a more global semantics.

2.2.3 Generalized Semantics

Generalized semantics is even more complex than asynchronous semantics.
At any given time, the system can change the values of any number of
variables. Given a BN and a current state, if there arem variables which may
change their value at the next time point, there will be 2m possibilities of the
next state. Generalized semantics contains synchronous and asynchronous
semantics.

Example 2.6. Let us take the same transition interpretation table as Ex-
ample 2.3, we can update any number of variables at each time point. The
generalized case is shown in Figure 2.3 (c).

To sum up, Table 2.2 shows the difference of those three update schemes.

For synchronous update scheme, m is the number of different variables
in all the heads of rule. The formal definition m is as follows: let R be the
set of rules and current state be S = 〈varval00 , · · · , varvalnn 〉. V = {head(r) |
∃r ∈ R, body(r) ⊆ S}, then m = |V |.

For synchronous cases we can consider the possible future states is of
O(1) as it is little probable that many rules are in conflict even though one
can create an extreme counterexample making the number of possible future
states reach its theoretical limit O(3m) if the number of total states of all
the variables is fixed (the proof is given in Appendix C). The possible future
states is polynomial for asynchronous cases. However generalized update
scheme has to consider the combinatorial results of the fireable transitions.

As to asynchronous case, there can be no fireable transitions where n = 0.
Hence, the number of transitions will be fired is min(1, n).

The benchmark part of [65] shows the complexity of generalized seman-
tics, where the model inference fails with 12 components in the model.

2.3 Model Checking

Model Checking is an automatic verification technique for large state transi-
tion systems and was independently developed by Clarke and Emerson [19]
and by Queille and Sifakis [64] in the early 1980s. It was originally de-
veloped for reasoning about finite-state concurrent systems. Typically, a

18

Synchronous Asynchronous Generalized
nb of fireable transitions n
nb of transitions will be fired m min(1, n) [0;m]
nb of possible future states at most O(3m) m [2m; 2n]

Table 2.2: Numbers of fireable transitions in different updating scheme,
where m stands for the number of different variables in all the heads of
fireable transitions.

model checker has three basic components: a modeling formalism adopted
to encode a state machine representing the system to be verified, a specifi-
cation language based on Temporal Logic, and a verification algorithm [20]
which employs an exhaustive searching of the entire state space to determine
whether the specification holds or not.

In this thesis we focus on reachability (EF in Temporal Logic) as most
temporal properties can be reduced to reachability problems due to the
expressiveness of hybrid modeling frameworks.

2.3.1 Exact Model Checkers

At first, Model Checking was done by the search in the state transition
graphs, which are encoded in adjacent lists [19]. This representation however
requires a memory growing exponentially with the number of components.
To avoid such explicit representation, state transition graphs were replaced
by Boolean formulas. OBDD-based (Ordinary Binary Decision Diagram)
Model Checkers were developed, having reached 10120 states, e.g. SMV [51],
NuSMV [16], and VIS [9]. However, the performance is still not enough to
analyze problems in systems biology due to their complexity (PSPACE-
complete) [35]. The tests are illustrated in Chapter 5.

2.3.2 Static Analyzers

Model Checkers are widely applied to hardware and software. Especially
when applied to software, algorithmic verification techniques have to deal
with infinite state space of software, requiring abstraction techniques to
make problems tractable. SPIN [38] and Goanna [27] are designed as source
code analyzers, by verifying a set of over-approximate conditions, they man-
aged to check the safety/liveness properties of a program or whether certain
program behaves as expected. However, the static code analyzers only de-
termine run-time properties of programs by examining the code structure,
which may produce false-positive and false-negative results [82].

19

Inspired by these ideas, Pint [55] takes the initiative to apply pure
static analysis, combine over-approximation and under-approximation [61]
to squeeze the state space in order to try to solve the original reachabil-
ity problem of a PH or an AAN (See Figure 2.5). Similarly, due to the
approximations, the result of Pint is not necessarily conclusive [29].

Under-approximation
Over-
approximation

Real dynamics

Figure 2.5: Schema of real dynamics and over-approximation and under-
approximation in Pint

2.3.3 Reachability Problem

In the domain of model checking, reachability has been of great interest
for over 30 years [18, 20]. Various modeling frameworks and semantics in
bioinformatics have been studied: Boolean network [3], Petri nets [50, 26],
timed-automata [21, 84]. These approaches rely on global search and thus
face state explosion problem as the state space grows exponentially with the
number of variables. In [62], it has been shown that the reachability prob-
lem of Petri net is exponential time-hard and exponential space-hard, and
this conclusion does not change even under some specific conditions [26].
For 1-safe Petri nets, the complexity of reachability analysis is generally
PSPACE-complete [15]. Li et al. [46, 47] investigated theoretically the sta-
bility, the controllability and the reachability of Switched Boolean Networks,
but their method remains computationally expensive; Saadatpour et al. [70]
researched only the reachability of fixed points.

To tackle the complexity issue, symbolic model checking [10] based on
OBDDs and SAT-solvers (satisfiability) [2] have been studied over years,
but still fail to analyze big biological systems with more than 1000 variables.

20

Bounded Model Checking (BMC) [17] is an efficient approach but generally
not complete as its searching depth is limited to a given integer k.

Model checking is not only related to the verification of models, it can be
of help to the learning of model and modification according to the unsatisfied
properties.

2.4 Model Learning and Model Revision

All the modeling frameworks and model-checkers mentioned above are not
effective unless they are fed with trustworthy system topology. Model learn-
ing is used to classify the original data into generalized topological knowledge
of the system where the original data come from raw data after being dis-
cretized, normalized, denoised etc. In this thesis we do not assess the quality
of raw data as it is related to the results of biological experiments.

Among the important contributions, Khalis et al. [43] have studied pa-
rameter learning in a given model topology. Rodrigues et al. [69] have stud-
ied active learning of relational action model whose dynamics is however
not compatible with BRNs. Bonneau et al. [7] have developed a learning
algorithm based on regression but with the limit on the size of clusters.
Opgen-Rhein et al. [54] have studied the learning using correlation coeffi-
cients, but their resulting regulatory networks are undirected. Ribeiro et
al. have designed LFIT-based (Learning From Interpretation Transitions)
learning methods [66, 65, 67] but these approaches cannot deal with noisy or
imprecise inputs as all the errors are taken into account during the learning
phase.

However, the sensitivity of LFIT can be of benefit in model revision.
The choices of revised models are often combinatorial w.r.t the satisfiabil-
ity of certain dynamic properties. If we consider another constraint that
the revised model has to reproduce exactly the input time-series data, the
number of consistent revised models will decrease. Here we introduce some
basic ideas of LFIT which will be of help in Chapter 4.

As for model revision, to our knowledge, model revision based on reach-
ability properties has never been considered in the literature. One possible
related work is cut set [57] to be introduced after LFIT. Cut set is used to
detect the atoms cutting critical paths from the initial state and the desired
states. By inhibiting these elements, we can ensure the unreachability of
the desired states. In practice, cut sets are useful for proposing potential
therapeutic targets that have been formally identified from the model for
preventing the activation of a particular molecule. However, cut sets are not

21

of direct help in model revision, as they inhibit certain atoms to be reached
rather than modifying the system topology.

2.4.1 Learning From Interpretation Transitions (LFIT)

Ribeiro et al. [66] have designed LFIT aiming at learning a logic program
P (definition in Section 2.1.4 on page 12) from a set of state transitions
E in the form S1 → S2 where S1, S2 are the states of the system. E can
be extracted from discretized time-series data. Here LFIT considers only
synchronous updating scheme, hence we name it as “synchronous LFIT”.

Basically, the mechanics of synchronous LFIT is as follows: it starts
from the most general logic program. It verifies whether every element in
E is consistent with P . Obtained inconsistencies are classified as conflicts.
Then LFIT tries to specialize the conflicting rules by adding atoms in their
body to make them harder to be matched. When there is no conflict, P can
reproduce perfectly all the state transitions in E.

Algorithm 2 in Appendix B describes the details of synchronous LFIT.
To prevent potential ambiguities, we denote assignment operation as :=
instead of ←.

2.4.2 Cut set

Paulevé et al. [57] have designed an algorithm for identifying sets of atoms
whose activity is necessary for the reachability of a given local state. If all the
atoms from such a set are disabled in the model, the concerned reachability
is impossible. Those sets are referred to as cut sets and are computed from
a particular abstract causality structure, so-called Local Causality Graph
(detailed in Section 3.2.2). Via such manipulation on atoms, one may control
certain dynamical properties of a BRN.

However, we are going to try to control the systems dynamics by revising
the transition rules of a model instead of inhibiting/imposing certain atoms.
This need urges us to make modifications on the elements to be inhibited.
The detail of cut sets is in Section 4.2.2.

2.5 Résumé

In this chapter, we presented mainly four main basic contents of the state
of the art:

• Modeling frameworks

22

• Update schemes of models

• Model checking and model checkers

• Model learning/inference techniques

Modeling frameworks allow one to encode real biological regulatory sys-
tems into computable models according to his need (completion, static anal-
ysis, dynamic analysis, simulation etc.). In the next chapter, we will focus
on a finer reachability analysis. To achieve this goal, we will propose a new
modeling framework ABAN based on existing ones presented in this chap-
ter. Also, to better position our new modeling framework and define its
dynamics, we introduced different update schemes of models. To validate
and evaluate our work (in Chapter 5), we introduced here several represen-
tative model checkers to be used for comparison. With the help of model
learning technique LFIT and our reachability analysis methods, we managed
to develop a model revision method based on desired reachability properties
which has never been consider before.

23

24

Chapter 3

Refined Reachability
Analysis via Heuristics

Several modeling frameworks and model checking techniques were intro-
duced in Chapter 2. We noticed that even though there exist already
exact model checkers and static analyzers for reachability problems, they
are not sufficient. Exact model checkers always face the state space explo-
sion problem when analyzing large models (with more than 50 variables);
Static analyzer PINT, designed for Process Hitting/Automata Network
is however, theoretically inconclusive, i.e. not able to provide a global
solution to arbitrary input. This chapter is going to deepen into the
reachability problem for Asynchronous Binary Automata Network via
the following steps:

• Why the inconclusiveness problem arises in static analysis methods

• What are the problematic topological structures in static analysis

• How to deal with such topological structures

As a result, we try to recover the consequence of the information lost
due to non-exhaustive search of static analysis and construct a more close
approximation of the real dynamics in order to gain a better conclusive-
ness.

The contribution of this chapter was published and presented at SASB
2018 in Freiburg, Germany [12].

In this chapter, we are going to formally define the main modeling

25

framework studied in this thesis, Asynchronous Binary Automata Network
(ABAN) and the related static analyzer we have specifically designed, Sim-
plified Local Causality Graph (SLCG). These two new definitions based on
the one of Automata Network in order to adapt to our new reachability
analyzers.

Also, to deal with the inconclusiveness problem persisting in previous
work [29], we propose at first doing some preprocessings by simplifying the
topology of the models in order to try to remove the parts leading to in-
conclusiveness. Then we will introduce two new analyzers (PermReach and
ASPReach) based on over-approximation. They perform different heuristics,
trying to avoid most of the inconclusiveness due to pure static analysis.

3.1 Background

Reachability problem on formal models is a critical challenge where both
validation problems (whether the model satisfies the a priori knowledge) and
prediction problems (properties to be discovered) meet. From a formal point
of view, numerous biological properties in computational models can be
transformed to reachability properties. For example, the reachability of state
0/1 of a variable could represent the activation/inhibition of certain gene or
synthesis of a protein, while initial state could represent initial observation in
an experiment. If the reachability of a certain state contradicts with a priori
knowledge, one can modify the model and/or design a new experiment to
verify whether there are erroneous information in the a priori knowledge or
imprecision in the former observations. Also, reachability analysis is of help
to medicine design: for example if one wants to prevent the carcinogenesis
of a cell (target state), one possible solution is to find the critical pathways
towards the target state and design a medicine to cut them in order to keep
the cell healthy.

To tackle the complexity issue, symbolic model checking [10] based on or-
dered binary decision diagrams (OBDDs) [34] and that based on SAT-solvers
(satisfiability) [2] have been studied over years, but still fail to analyze big
biological systems with more than 1000 variables. Bounded Model Check-
ing (BMC) [17] is a state-of-the-art approach, it is efficient but generally not
complete as its searching depth is limited to a given integer k. One has no
idea whether there exists a solution beyond step k or not.

Beside these approaches, abstraction is an efficient strategy to deal with
such models of big scale. It aims at approximating the model while keeping
the most important parts influencing the reachability. Abstract approaches

26

often have better time-memory performance but with a loss of information.
They solve usually a simplified version of the original model, i.e. the results
from these approaches are not necessarily compatible with all the properties
of the original model. While studying reachability problems, the system
dynamics is abstracted to static causalities between states and transitions.

However, like BMC, abstract approaches do not solve all the instances.
In fact, they solve a simplified version instead of the original reachability
problem. If the result of the simplified version is not sufficient to imply
the one of the original problem, abstract approaches fail (inconclusive). In
the following, we are going to formally define the reachability problem and
discuss what are the causes of the inconclusiveness and how to solve them.

3.2 Asynchronous Binary Automata Network

In [29], Paulevé et al. have worked on the modeling of concurrent systems by
Asynchronous Automata Network (AAN) and they invented Local causality
graph (LCG) [56, 29, 59] to analyze the reachability of AAN. This interpre-
tation drastically reduces the searching state-space thus avoids costly global
search [61]. However, this pure static analysis is not complete as there are
inconclusive cases which can not be decided reachable or not. LCG can only
conclude with the following two constraints:

• With no cycles (Section 3.3.1)

• With no AND gates (Section 3.2.3)

We are thus going to refine the reachability analysis to deal with more
instances. To attack the inconclusiveness problem, we have designed a new
discrete modeling framework for concurrent systems [11]: Asynchronous Bi-
nary Automata Network (ABAN). In ABAN, we adapted LCG to SLCG
(Simplified LCG) to address reachability problem. This approach refers
to a static abstraction of the reachability (with an over-approximation of
the real dynamics). In binary situation, the approximation of reachability
has some interesting properties simplifying the whole reachability analysis.
These properties do not hold in multi-valued models (See Section 3.2.2).

3.2.1 Definitions

Definition 3.1 (ABAN). An ABAN is a tuple A = (Σ, T), where:

27

• Σ = {a, b, . . .} is the finite set of automata with every automaton
having a Boolean state;

• The states of A can then be defined: LS =
⋃
a∈Σ

{a0, a1} is the set of all

local states, L = ×
a∈Σ′
{a0, a1} is the set of joint states where Σ′ ⊆ Σ.

Particularly, if Σ′ = Σ, L is the set of global states.

• T = {A→ bi | b ∈ Σ ∧ A ∈ L} is the set of transitions. For transition
tr = A → bi, A (called head, noted head(tr)) is the set of required
state(s), which allows to flip b1−i to bi (called body, noted body(tr)).
In other words, transition tr is said fireable iff A ⊆ s, where s is the
current global state.

Remark: In AAN and PH, their transitions (or called actions) are noted
A → bi � bj to express “automaton b changes its value from i to j under
condition A”. However, the states in ABAN are all binary, the transition can
only be realized from 0 to 1 or conversely. Thus we omit the state before
transition while avoiding ambiguity. It might also be noted the notation
A→ bi resembles the equivalent notation in Normal Logic Program (NLP):
bi ← A.

Also, the notions of different states are crucial in this thesis. A local
state represents the state of one automaton, e.g. a1 means automaton a
is at level 1. A joint state represents the state of a set of automata, e.g.
〈a1, b0〉 means automaton a is at level 1 and automaton b is at level 0. In
fact, when we take all the automata in the system as the set of automata,
the corresponding joint state becomes the state of the whole system, which
is the global state, e.g. given Σ = {a, b, c}, 〈a0, b1, c0〉 shows the state of
all the automata. To conclude, joint state is the most general case, when
|Σ′| = 1, it becomes a local state; when Σ′ = Σ, it becomes a global state.

Definition 3.2 (Dynamics). From current global state s, the global state
after firing transition tr = A→ bj is denoted s · tr = s\{bi}∪{bj}, bi ∈ s. If
there does not exist fireable transition, s remains unchanged. The state of
a certain automaton a is noted (s · tr)[a].

The definition of dynamics allows one to describe how the system state
interacts with the transitions. Moreover, to describe the evolution in an
ABAN, we use the notion of trajectory.

Definition 3.3 (Trajectory). Given an ABAN A = (Σ, T) and a global
initial state α ∈ L, a trajectory t from α is a sequence of transitions t = tr1 ::

28

· · · :: tri :: · · · :: trn with tri ∈ T and each tri is fireable in (α · tr1 · . . . · tri−1).
From α, the global state after firing all transitions of t is (α · tr1 · . . . · trn),
denoted α · t.

A trajectory describe the historical evolution of the system or one possi-
ble future evolution by recording the fired transitions. An alternative is to
record the state changes using state sequence:

Definition 3.4 (State sequence). Given an ABAN A = (Σ, T) and a global
initial state α ∈ L and trajectory t, the state sequence seq = s1 :: · · · ::
si :: · · · :: sn with si ∈ LS is formed by the updated local states during the
trajectory t.

Thanks to asynchronicity, at each time step ABAN changes the value of
at most one automaton. That is why we can distinguish the order of state
changes, thus form a state sequence.

Example 3.1 illustrates all the definitions above.

Example 3.1. Figure 3.1 shows an ABAN of 5 automata a, b, c, d, e, with
the set of transitions T = {{b1, c1} → a1, {e1} → a1, {d0} → b1, {d1} →
c1, {b1} → d1} and the initial state α = 〈a0, b0, c0, d0, e0〉. A possible tra-
jectory from α is t = {d0} → b1 :: {b1} → d1 :: {d1} → c1 :: {b1, c1} → a1.
After firing the transitions in trajectory t, the global state becomes Ω =
s · t = 〈a1, b1, c1, d1, e0〉, and the local state of a is (α · t)[a] = a1. The
corresponding state sequence is seq = b1 :: d1 :: c1 :: a1.

a

0

1

b

0

1

c

0

1

d

0

1

e

0

1

{b1, c1} {e1} {d0} {b1}{d1}

Figure 3.1: An example of ABAN

With the definition of trajectory and that of state sequence, we can
address reachability problem.

Definition 3.5 (Reachability problem). Given an ABAN, the joint reacha-
bility REACH(α,Ω) can be formalized as: joint state Ω is reachable iff there
exists a trajectory t s.t. α · t = Ω. Partial reachability reach(α, ω) is defined
analogously: local state ω = ai is reachable iff there exists a trajectory t s.t.
(α · t)[a] = ai. REACH(α,Ω) and reach(α, ω) take Boolean values True,
False or Inconclusive if it cannot be decided.

29

Example 3.2. Taking the same ABAN as in Example 3.1, target global
state Ω = 〈a1, b1, c1, d1, e0〉 or target local state ω = a1 are reachable from
the initial state α via trajectory t or state sequence s, i.e. reach(α, a1) =
True and REACH(α,Ω) = True.

One can define various dynamical properties by using reachability, e.g.
safety (there exists no trajectory from any initial state to an unwanted state),
robustness (there exist trajectories from any initial state to a wanted state).
Moreover, Proposition 3.1 explains the reachability of a joint state even a
global state can be transformed to that of a local state.

Proposition 3.1 (Transformation of reachability). Given an ABAN A =
(Σ, T) and a joint reachability problem REACH(α,Ω), there exists an
ABAN A′ = (Σ, T ′) with Σ′ = Σ∪{x} and T ′ = T∪{Ω → x1} s.t. the
local reachability problem in A′, reach(α′, x1) with α′ = α∪{x0} is equiva-
lent to REACH(α,Ω) in A.

Proof. If REACH(α,Ω) = True, there must exists a trajectory t satisfying
α · t = Ω. t is consistent with A′ with initial state α′ as A′ contains all the
elements in A and α ⊂ α′. After firing all the transitions in t, the global
state becomes Ω∪{x0}, transition Ω → x1 is fireable and x1 is reachable
from α′ via t′ = t :: Ω→ x1, thus reach(α′, x1) = True.

If REACH(α,Ω) = False, there does not exist a trajectory t satisfying
α · t = Ω. In A′, this conclusion remains true as the only added transition
Ω→ x1 is useless in the reachability of Ω. The only pathway towards x1 is
through Ω→ x1, as Ω is not reachable, x1 is not reachable, reach(α′, x1) =
False.

Similarly, we can prove the global reachability from local one.

One advantage of ABAN Many biological regulatory networks are en-
coded in Boolean style, e.g. in [3, 42], because BN is a simple formalism
but with strong applicability: discretization in BN is a way to handle the
imprecision of a priori knowledge on the model. However BN may be not
expressive enough. If one wants to model the dynamic behavior “a ← 1
at moment t + 1 if b = 1 at moment t”, the translation is a(t + 1) = b(t)
in BN. It means a always follows the evolution of b but with a redundant
behavior “a ← 0 when b = 0 at moment t” which is not defined in his
need. ABAN models this dynamics as {b1} → a1 without this redundancy.
Besides, BNs are transformable to ABANs, and this property makes our
approach applicable to a wider domain (Appendix A.1 Translation between
Models).

30

3.2.2 Simplified Local Causality Graph (SLCG)

Paulevé et al. [59] have invented Local Causality Graph (LCG) to ana-
lyze reachability problems statically. LCG abstracts the original prob-
lem through an over-approximation (necessary condition) and an under-
approximation (sufficient condition). It is a very efficient tool as there is no
global search and all the operations are bounded in polynomial complexity.
However LCG does not guarantee to obtain a result, i.e. some inconclusive
instances satisfy the necessary condition but fail sufficient conditions, thus
one has no clue about the reachability of these instances.

In this thesis, we make use of the LCG by removing objective nodes
needed only in multi-valued networks, naming it SLCG (Simplified LCG),
then we try to analyze it more deeply to solve inconclusive cases of bi-
nary valued systems. In fact, Didier et al. [23] have shown a technique to
transform multi-valued networks to Boolean networks, which broadened the
applicability to multi-valued networks.

SLCG is aimed at studying the reachability of a target state while given
an ABAN and a global initial state. SLCG is a goal-oriented method. It
starts with the target state ω, looks for transitions reaching the target state,
then replaces ω with the bodies of these transitions. If the current target
state is included in the initial state, we find the causal path from the initial
state towards ω, otherwise we continue the process, until we reach the initial
state or local states we have already traversed. This process terminates
because the local states are finite, of size O(n), where n is the number of
automata. In the worst case, SLCG contains all the local states of the
ABAN.

Definition 3.6 (Over-approximate SLCG). Given an ABAN A = (Σ, T),
a global initial state α and a target local state ω, SLCG l = (Vstate, Vsol, E)
is the smallest recursive structure with E ⊆ (Vstate × Vsol) ∪ (Vsol × Vstate)
which satisfies:

ω ∈ Vstate

ai ∈ Vstate ⇔ {(ai, A→ ai)} ⊆ E
A→ ai ∈ Vsol ⇔ {(A→ ai, X) | X = ∅ if ai ∈ α,

else ∀bj ∈ A, X = bj} ⊆ E

where Vstate ⊆ LS is a set of local states, Vsol ⊆ T is the set of solutions and
X is one of the required local states of A→ ai.

It is worth noticing that every state node in Vstate forms an OR gate as
a local state a is reachable if there exists one fireable transition with body

31

a. Similarly, every solution node in Vsol forms an AND gate as a transition
is fireable only if all the local states in its head are reachable.

Remark 3.1. Original LCGs consist of three kinds of nodes: state nodes
corresponding to the local states of automata (Vstate), objective nodes
corresponding to the state transition paths within one automata (Vobjective),
solution nodes corresponding to the transitions to be used for each state
transition path (Vsol). However, under the circumstance of ABAN, objective
nodes are no longer needed. Because for one state ai to be reached, the only
possible path is a1−i → ai (0 → 1 or 1 → 0). Unlike multi-valued case, for
example, if one wants to reach a1 from a0 (suppose possible states for a are
0,1,2), there are in fact infinite possible paths: 0 → 1, 0 → 2 → 1, 0 →
2 → 0 → 1, . . . This simplification in fact reduces the searching space and
reinforces the conclusiveness.

Example 3.3. Figure 3.2 shows the SLCG for analyzing reach(a1) in Ex-
ample 3.1. There are two pathways from a1 to α: a1 → ◦ → b1 → ◦ → d0

and a1 → ◦ → c1 → ◦ → d1 → ◦ → b1 → ◦ → d0.

a1e1 AND

OR
b1 d0 ∅

c1 d1

Figure 3.2: Visualization of SLCG, with the squares representing local states
and small circles representing solution nodes. ∅ signifies that there is no
need to link any transitions, i.e. the former state d0 is in the initial state.

Algorithm 4 in Appendix describes how to construct an SLCG from an
ABAN A = (Σ, T). Starting from a given target local state ω, one can find
all the transitions Ts ⊆ T reaching ω and add edges ω → Ts. Then we
find all the heads A of Ts and add edges Ts → A and replace Ls with A
(recursion). Finally, we update the structure until Ls ⊆ α or there is no
transition with body in Ls.

Intuitively, when the recursive construction is complete, SLCG is in fact
a digraph with state nodes Vstate and solution nodes Vsol. E consists of the
edges between local state nodes and solution nodes. To access certain local
states, at least one of its successor solutions (corresponding transitions from
solution nodes) needs to be fired; to make one solution node fireable, all of

32

its successor local states need to be satisfied. A recursive reasoning of reach-
ability tries to explore a pathway. It begins with a state node representing
target local state, goes through ai → solai → bj · · · and ends with the initial
state (possibly reachable) or a local state without successor solution node
(unreachable).

With SLCG, it is easy to verify whether their are potential pathways
from the target state ω to the initial state α as the causal relations with
form state→ transition and transion→ state are indicated on the graph.
If there does not exist such a pathway, one can ensure that ω is not reachable
from α.

Pseudo-reachability is a procedure computing the existence of such path-
way by confirming whether the transitions are enough (in causal sense) for ω
to be reachable without considering the system evolution. However, pseudo-
reachability is named “pseudo” because it is only an over-approximation of
the reachability, i.e. it verifies a necessary condition of the reachability.

Definition 3.7 (Pseudo-reachability). Given an SLCG l = (Vstate, Vsol, E)
with global initial state α, the pseudo-reachability of node v ∈ Vstate is
defined as

reach′(α, v) =


True if v ∈ α
False if v 6∈ α and 6 ∃(s, sol) ∈ E∨

(s,sol)∈E fireable(sol) otherwise

where fireable(sol) =
∧

(sol,s)∈E reach
′(α, s).

3.2.3 Conclusiveness

When pseudo-reachability suggests True, due to its non-equivalence with
reachability, we cannot assure the pathway from ω to α is dynamically real-
izable. We are going to show several counter-examples as follows:

Example 3.4. In Figure 3.3, reach′(α, c1) = reach′(α, a1)∧reach′(α, b1) =
reach′(α, a0)∧reach′(α, b0) = True. Both a1 and b1 are reachable, but they
can not be reached simultaneously. In such SLCG, there are two branches,
a1 → b0 and b1 → a0, the automata a and b involve themselves in different
branches, the reachability of a1 impedes the reachability of b1 and vice versa.

Also, the recursive reasoning does not terminate if there exists cycles in
SLCG. While computing the pseudo-reachability, self-dependent structure
reach′(α, ai) = . . . = reach′(α, ai) might appear and cannot be computed by
using Definition 3.7. In Figure 3.4, dealing with cycles becomes inevitable.

33

a

0

1

b

0

1

c

0

1

{a1, b1}{b0} {a0}
c1

a1 b0 ∅

b1 a0 ∅

AND

Figure 3.3: Σ = {a, b, c}, T = {{b0} → a1, {a0} → b1, {a1, b1} → c1}, ω =
c1

a

0

1

b

0

1

c

0

1

{a1, b1}{b0} {a0}∅ ∅ c1

a1 b0 ∅

b1 a0 ∅

AND

Figure 3.4: SLCG with cycles, Σ = {a, b, c}, T = {{b0} → a1, {a0} →
b1, {a1, b1} → c1,∅→ a0,∅→ b0}, ω = c1

3.3 Topological Preprocessing

We have shown some example of inconclusiveness due to cycles and AND
gates. In this section, we are going to analyze these two special structures
and offer two solutions to the inconclusiveness.

3.3.1 Detection and Removal of Cycles

Definition 3.8 (Cycle). In an SLCG, a cycle is formed by a sequence of
nodes linked as follows: ai → ◦ → · · · → ◦ → ai, where circles stand for
solution nodes.

To identify cycles, we search Strongly Connected Components (SCC) of
size greater than one instead of cycles, because there may be common nodes
and edges shared by multiple cycles. When removing cycles, modifying such
nodes or edges effects multiple cycles causes excessive task. In other words,
a SCC contains as many as possible nested cycles which strongly connect to
each other. Removing all the SCCs guarantees the nonexistence of cycles.
[77] shows that the detection of SCCs can be done in O(|V |+ |E|) time, with
|V | the number of the vertices and |E| the number of the edges. SLCG is
usually a sparse graph, as in biological systems, the automata mostly interact
with only a part of the system, hence the out-degree can be considered of

34

O(1) and the detection of SCCs1 can be done in O(|V |), i.e. linear time.

Theorem 3.1. Given a cycle x → ◦ → · · · → ◦ → x in an SLCG, if there
is at most one incoming edge to the cycle, the cycle can be removed.

Proof. If there is no incoming edge, the target state y must be in the cycle.
The edge y.pred→ ◦ → y can be removed, because the reachability of y.pred
requires y, but y is the target state, which is never reached before the other
local states in the SLCG are reached. Thus the transition corresponding to
this edge is never fired and the edge can be removed. Similarly, if there is an
outside incoming edge a→ ◦ → x, a must be the successor of target state y
or the target itself, x.pred→ ◦ → x can hence be removed.

x

y

z

a

w · · ·

Figure 3.5: SLCG l containing cycle x→ ◦ → y → ◦ → z → ◦ → x

Example 3.5. In Figure 3.5, the pseudo-reachability of a in SLCG l is

reach′(α, a) = reach′(α, x) = reach′(α, y) = reach′(α, z)

= reach′(α, x) ∨ reach′(α,w)

To reach x, we need to reach z, but z cannot depend on x as x is already to
be reached. Self-dependence appears: x is reachable if x is reachable. Thus
edge z → ◦ → x is deleted (dashed line).

Unfortunately, not all cycles are removable via Theorem 3.1.
When there are cycles that cannot be deleted according to Theorem 3.1,

we can apply Theorem 3.2. It is associated with the decomposition of SLCG
in the next section. The decomposition of SLCG replaces all the OR gates
with one of their branches, then the cycles are either broken, either has no
outgoing edge which leads to unreachability. Example 3.6 explains the issue.

Theorem 3.2. Given a cycle, if it contains no edge towards outside of the
cycle, all the local states in the cycle are unreachable.

1Implementation in Python3 by Mario Alviano at https://github.com/alviano/

python/blob/master/rewrite_aggregates/scc.py

35

https://github.com/alviano/python/blob/master/rewrite_aggregates/scc.py
https://github.com/alviano/python/blob/master/rewrite_aggregates/scc.py

Proof. Suppose an arbitrary cycle C = ai → · · · bj → · · · → ai, with →
an edge in the SLCG. Note that reach′(α, ai) =⇒ reach′(α, bj) =⇒
reach′(α, bj .next) =⇒ · · · =⇒ reach′(α, ai). According to the definition
of reach′, reach′(α, a) = True only if ∃ck ∈ C and ck ∈ α. If there exists
such ck, C should not exist as the reasoning stops at ck and does not form
a cycle, contradiction. reach′(α, ai) = reach′(α, bj) = · · · = False.

x

y

z

a

OR

Figure 3.6: x, y, z all have external links, thus none of the links can be
discarded.

Example 3.6. In Figure 3.6, cycle C = x → ◦ → y → ◦ → z → ◦ → x
possesses 3 incoming edges, which is unbreakable according to Theorem 3.1.
But with Theorem 3.2, if OR gates are removed, the cycle can be dealt
with. At node a, there is an OR gate with two branches (filled circles). No
matter which is branch chosen in the decomposition phase, there is no edge
towards cycle C. x, y, z are all unreachable, hence a is unreachable.

3.3.2 Decomposition of SLCG

For every OR gate, it has multiple successor transitions (solution nodes)
for reaching its corresponding local state. Fixing the transition choice of
all the OR gates is called an assignment. If one wants to discover all the
solutions, he needs to traverse all the assignments which are exponential. To
avoid combinatorial explosion, we use a simple heuristic: choose randomly
one assignment for each trial. Then, we can construct a new SLCG without
OR gate, every state node has exactly one successor solution node, see
Figure 3.7.

3.4 Reachability Analysis

After the preprocessings introduced in the previous section, we can get rid of
cycles and OR gates. The next step is to analyze an SLCG with only AND

36

ω

...
...

...
...

...
...

...
...

· · · · · ·

Figure 3.7: Random choice on OR gates. Descending from the target state,
when we encounter an OR gate, we choose randomly one of its branches.
Circles filled gray stand for one possible assignment.

gates. We need to find a trajectory reaching all the components of the AND
gates simultaneously. Usually one cannot achieve good conclusiveness and
low complexity at the same time, that is why we propose two solutions for
different needs of conclusiveness-complexity balance: Reachability via search
in permutations (PermReach) which is a partial search and Reachability via
Answer Set Programming (ASPReach) which is a exhaustive search.

3.4.1 Reachability via Permutations (PermReach)

Before running into the definitions, we compare Example 3.4 and Exam-
ple 3.7 with minor difference.

Example 3.7. Figure 3.8 shows the SLCG for the reachability of c1 in
ABAN with transitions T = {{a1, b1} → c1, {b0} → a1, {c0} → b1}. The
only difference with Example 3.4 is transition {c0} → b1. a1 and b1 are
reachable respectively but is not necessarily for the joint state s = {a1, b1}.
If we begin with the branch with a1, s is reachable with trajectory {b0} →
a1 :: {c0} → b1 :: {a1, b1} → c1. However, if we begin with the branch b1,
after firing {c0} → b1, b0 is no longer reachable, resulting the unreachability
of a1.

The head of a transition forms a joint state. If such joint state is reach-
able, the corresponding transition can be fired. However in the Example 3.7,

37

a

0

1

b

0

1

c

0

1

{a1, b1}{b0} {c0}
c1

a1 b0 ∅

b1 c0 ∅

AND

Figure 3.8: The ABAN and the SLCG of Example 3.7, α = 〈a0, b0, c0〉. The
only difference with Example 3.4 on page 33 is the transition {c0} → b1.

c1 can be reached only in certain orders. These orders cannot be retrieved
by SLCG, as SLCG works statically. The following contents are contributed
to retrieve an admissible order to reach a joint state.

The reachability of a joint state can be formulated as sequential reacha-
bility:

Definition 3.9 (Sequential reachability). Let s = {ls1, . . . , lsn} be a joint
state, p1, . . . , pn be a permutation of 1, . . . , n and seq = lsp1 :: . . . :: lspn be a
sequence. The sequential reachability of seq is defined as REACH(α, seq) =
reach(s1, lsp1) :: . . . :: reach(sn, lspn), where s1 = α and for i > 1, si =
si−1\{¬lspi−1}∪{lspi−1}. For a Boolean local state aj , we abuse the notation
by ¬aj = a1−j . REACH(α, seq) = True if from an initial state α, s is
reached by the ordered state changes in seq, otherwise REACH(α, seq) =
False.

In Example 3.7, REACH(α, a1 :: b1 :: c1) = True and REACH(α, b1 ::
a1 :: c1) = False.

As the firing order matters, we come to verify all the possible sequential
reachabilities of certain joint state to verify its reachability.

Proposition 3.2. Given joint state s = {ls1, . . . , lsn}, with all the local
states in s are reachable: reach(α, lsi) = True, ∀i ∈ [1;n]. The set of all the
permutations of s is denoted Perm(s) = {(ls1 :: ls2, :: . . . :: lsn), · · · , (lsn ::
lsn−1 :: . . . , :: ls1)}.

∨
j∈Perm(s)REACH(α, j) = True is a sufficient condi-

tion of REACH(α, s) = True.

Proof. If ∃permi ∈ Perm(s) s.t. REACH(α, permi) = True, s can be
reached according to the order in permi. To reach s, every local state in
the SLCG of s is mandatory to be reached. Because the definition of SLCG
suggests it is the smallest structure which contains all the needed local states
and transitions for the target state. As long as there is no OR gates, all
the transitions in the SLCG must be fired to reach the target state. As

38

Perm(s) covers all the possible orders, if there are any admissible ones,
they are verified.

In case where the successors of certain AND gate contain other AND
gates, we cannot directly obtain its reachability because the reachability of
the successor AND gates are unknown. We analyze first the simple AND
gates simp, i.e. the successors of simp do not contain any AND gates.
If all local states within simp are reachable via the search of permutations,
we can update the initial state by firing all the transitions and also update
the SLCG by deleting the successors of simp. Then, we restart this process
from new simple AND gates until we reach finally the target state. Detailed
algorithm is in Appendix Algorithm 7.

However the method of PermReach is not complete. If there are con-
straints in different branches, traversing all the permutations may be not
sufficient to find admissible trajectories towards the target state as in the
Example 3.8.

Example 3.8. In Figure 3.9, among the simple AND gates, if solc1 is
solved first, automaton d will be at the state d1, which disables the reacha-
bility of b1. The trajectory towards a1 may not be retrievable by PermReach
even if a1 is reachable.

a1

b1

d0 ∅

a0 ∅

c1 d1 c0 ∅

e0 ∅

Figure 3.9: A counterexample of PermReach with α = 〈a0, b0, c0, d0, e0〉.
reach(α, a1)=True but Inconclusive is given by PermReach.

We state here several algorithmic properties of PermReach.

Theorem 3.3 (Termination and correctness of PermReach). Let l =
(Vstate, Vsol, E) be an SLCG with initial state α and target local state ω and
k > 0 be an integer.

• The call PermReach(l, k) terminates.

• PermReach(l, k) = (False,∅) if @t a trajectory in l from α to ω.

39

The proof is given in Theorem C.3 in Appendix.

Theorem 3.4 (Complexity of PermReach). Let l = (Vstate, Vsol, E) be an
SLCG with initial state α and k > 0 be an integer. Let s = |Vsol| be the
number of target state of l. Let v = |Vstate| be the number of vertices of l.
Let e = |E| be the number of edges of l. The complexity of PermReach(l, k)
is O(v + s+ e+ (v + s)/2× v × e× s+ v2 × e+ v × e+ k × (v × e2 + v

2 !))
which is bounded by O(k × v

2 !).

The proof is given in Theorem C.4 in Appendix.

3.4.2 Reachability via ASP (ASPReach)

As we have seen in the last section, PermReach is more conclusive than pure
static analysis, but still fails in the cases where there are nested AND gates
and the order of these AND gates influence the reachability.

To deal with the inconclusiveness left by PermReach, we use an ASP-
based method (Answer Set Programming) [5] instead of the search in per-
mutation to analyze the preprocessed SLCG with only AND gates.

Also, Ben Abdallah et al. [1] have shown that pure ASP approach is
costly (See Section D.1 in Appendix) which suggests a hybrid solution.

ASP is a Prolog-like declarative programming paradigm. It uses the de-
scription and the constraints of the problem (called rule) instead of imper-
ative orders. ASP solvers tackle problems by generating all the possibilities
respecting the constraints. This search in all the possibilities allows us to
filter automatically all the admissible orders no matter the order-sensitive
cases exist in AND gates or inside AND gates.

Introduction to ASP

We use Clingo [31] which is a combination of grounder Gringo and solver
Clasp. Given an input program with first-order variables, a grounder com-
putes an equivalent ground (variable-free) program for an ASP program,
while a solver selects admissible solutions (answer sets) in the ground.

A rule is in the following form:

a0 ← a1, . . . , am, not am+1, . . . , not an.

where the element on the left of the arrow is called head and the ones on
the right called body. a0 is True if a1, . . . , am are True and am+1, . . . , an
are False. Some special rules are noteworthy. A rule where m = n = 0
(the body is empty) is called a fact and is useful to represent data because

40

the left-hand atom a0 is thus always True. It is often written without the
central arrow. On the other hand, a rule where n > 0 and a0 =⊥ (the
head is empty) is called a constraint. As ⊥ can never become True, if the
right-hand side of a constraint is True, this invalidates the whole solution.
Constraints are thus useful to filter out unwanted solutions. The symbol ⊥
is usually omitted in a constraint.

ASP Programs can yield no answer set, one answer set, or multiple
answer sets. For example, the following program produces two answer sets:
{b} and {c}.

b:- not c.

c:- not b.

Indeed, the absence of c makes b true, and conversely absence of b makes
c true. Cardinality constraints are another way to obtain multiple answer
sets. The most usual way of using a cardinality is in place of head :

l{q1, . . . , qk}u← a1, . . . , am, not am+1, . . . , not an.

Or corresponding ASP code with k = 2, m = 3 and n = 2:

l{q1, q2}u :- a1, a2, a3,..., not a4, not a5.

where k ≥ 0, l is an integer and u is an integer or ∞. Such cardinality
means that under the condition that the body is satisfied, the answer set X
must contain at least l and at most u atoms from the set {q1, . . . , qm}, or,
in other words: l ≤ |{q1, . . . , qm} ∩X| ≤ u.

Encoding of SLCG

Suppose all the OR gates are deleted via preprocessing, we begin encoding
the reachability problem in ASP. As SLCGs already contain all the local
states and the transitions to be used, there is no need to describe the ele-
ments in ABAN. Here is how we encode the SLCGs: they are regarded as
fact they were created (fixed) already without any variables.

Predicate init(a,i) shows the automaton a is at initial state i. Pred-
icate node(a,i,n) shows the node ai in the SLCG is numbered n, while
parent(n1,n2) expresses the node numbered n1 is the predecessor of the
node numbered n2. The SLCG in Figure 3.3 on page 34 is encoded as follows:

init(a,0). init(b,0). init(c,0).

41

node(a,1,1). node(b,1,2). node(c,1,3).

node(b,0,4). node(c,0,5).

parent(1,2). parent(1,3).

parent(2,5). parent(3,4).

After the facts, we want the nodes appear in an order by which we can fire
all the transitions sequentially to make the system evolve from the initial
state to the target state.

The rough idea is: If different states of one automaton a appear, e.g.
a0 and a1. One of them must be in the initial state (suppose a0). The
transitions with head a0 have to be fired before a0 flipping to a1, otherwise
there is no solution node in the SLCG which allows a1 return to a0. In other
words, the predecessor of a0 must appear before a1. Core rule describes
this constraint.

Predicate prior(N1,N2) means node N1 appears earlier than N2 in the
resulting state sequence. seq(O,a,i) shows that state node ai appears in
the O-th place in a trajectory. reachable/unreachable is the final result
of the program.

%Rule 1, a node appears always earlier than its predecessor

prior(N1,N2) :- parent(N2,N1).

%Rule 2, transitivity

prior(N1,N3) :- prior(N1,N2), prior(N2,N3).

%Rule 3, Core rule

prior(N1,N2) :- node(P1,S1,N1), node(P2,S2,N2), node(P2,S3,N3),

parent(N1,N3), init(P2,S3), S2!=S3, P1!=P2.

%target is unreachable if there is a conflict in order

unreachable :- prior(N1,N2), prior(N2,N1), N1<N2.

%One node appears once and at least once in a sequence

1{seq(1..O,P,S)}1 :- O=node(P1,S1,N1):node(P1,S1,N1),

node(P,S,N), not unreachable.

%Nodes in the sequence are consistent with the order

:- prior(N1,N2), node(P1,S1,N1), node(P2,S2,N2),

seq(O1,P1,S1), seq(O2,P2,S2), O1>O2.

%One place in the sequence cannot be taken by multiple nodes

:- seq(O1,P1,S1), seq(O2,P2,S2), P1!=P2, O1=O2.

:- seq(O1,P1,S1), seq(O2,P2,S2), S1!=S2, O1=O2.

%--------output formatting, displaying initial states first

:- seq(O1,P1,S1), seq(O2,P2,S2), init(P1,S1),

42

not init(P2,S2), O1>O2.

:- seq(O1,P1,S1), seq(O2,P2,S2), init(P1,S1), init(P2,S2),

P1<P2, O1>O2.

reachable :- not unreachable.

Notation: aB b means a appears before b.

Example 3.9. Let us simulate the analysis of the SLCG in Figure 3.3 using
ASP. Rule 1 gives b0 B a1, a1 B c1, a0 B b1, b1 B c1; Rule 2 gives a0 B c1

and b0 B c1; Rule 3 gives a1 B b1 and b1 B a1 which is impossible, therefore
there does not exist a state sequence to reach c1 from initial state. c1 is
unreachable.

If we find a state sequence consistent with all the order constraints, we
can obtain its corresponding trajectory, thus we are sure that the target
state is reachable.

Reachability Analyzer ASPReach

In this section, we integrate the ASP code into our analyzer ASPReach: an
algorithm for checking the reachability of a target local state ω from a global
initial state α (which can also be partial) in a given ABAN. However, ex-
haustive search leads to heavy computation and huge need of memory (tests
in Chapter 5 shows pure ASP method is time and memory-consuming).

The algorithm proposed below tries to overcome those shortcomings by
combining static analysis and stochastic search into the following hybrid
approach. First, we try to use only SLCG to solve the reachability problem,
SLCG illustrates the causality between necessary transitions to be fired to
reach the target state. If sole SLCG is not sufficient, we simplify the SLCG
using the preprocessings introduced in Section 3.3.1 and Section 3.3.2. The
tentative of removing cycles simplifies the SLCG and keep the reachability
unchanged. pseudo-reachability allows one to filter some unreachable cases
based on the topology of SLCG. After that, the heuristic part is the core of
our algorithm. Stochastic choices avoid combinatorial explosion on different
OR gates. The ASP part searches thoroughly the result but does not
traverse the whole state space (ASP solver starts from constraints, finds one
consistent order and terminate the search).

ASPReach:

• Input: An ABAN A, an initial state α, a target state ω and a max
number of iterations k

43

• Output: reach(ω) ∈ {False,True, Inconclusive}

1. Construct the SLCG l = SLCG(A, α, ω)

2. Try to remove all cycles and prune useless edges from l

3. Try to prove unreachability of ω in l using reach′(l, ω)

Return False if reach′(l, ω) = False

4. Try at most k times

• l′ ← l

• Simplify each OR gate such that l′ is an SLCG with only AND
gates

• If there remain cycles:

– Back to step (iv)

• Generate all trajectory that starts with α in l′ using ASP

– If a trajectory t ending with ω is found, return True

5. return Inconclusive

To be more precise, Algorithm 9 in Appendix provides the detailed pseu-
docode of the algorithm taking an SLCG l as input whose detailed construc-
tion is given in Algorithm 4. Lines 4-8 shows how to delete all the cycles
with at most one incoming edge. After removing cycles, the SLCG may con-
tain nodes without successor. Such nodes can be pruned since they do not
lead to initial state (Line 9-18). This preprocessing reduces the search space
of the stochastic search performed in step 4. Now l is pruned and might be
cycle-free. Static analysis of l can then be used as heuristics to check pseudo-
reachability (Definition 3.7) in order to detect some unreachability cases
(Lines 19-21) which may conclude before searching. SLCG shows the depen-
dencies between local states and transitions. A pathway in SLCG suggests
a possible trajectory of reaching the target state. If reach′(l, ω) = False,
we can ensure that ω is unreachable, as pseudo-reachability checks a neces-
sary condition of reachability. If reach′(l, ω) = True, static analysis is not
sufficient for reachability analysis.

When static analysis fails, a stochastic search is performed at most k
times (line 22-30) to find a state sequence from the initial state α to target
state ω. If there remain cycles with multiple incoming edges, according to
Theorem 3.2, ω is unreachable.

44

The value of k will be discussed later in Chapter 5. Keep in mind that
every state node is an OR gate, we have to choose one of its successor
solution nodes to access the state. Random choices are made to fix a value
for each OR gate of the SLCG allowing to perform a reachability check by
generating all possible variable assignment order using ASP.

a1

d1

e1d0

e0

∅

∅

ANDAND

OR
b1 c0 ∅

c1 b0 ∅

Figure 3.10: If an SLCG contains such structure, the result could be in-
conclusive. However the inconclusiveness requires a1 does not possess other
reachable branches.

Even though ASPReach is able to solve the inconclusive cases left by
PermReach, still, ASPReach is not complete.

Example 3.10. A counter-example is shown in Figure 3.10, ABAN with
transitions T = {{b1, c1} → a1, {d1, e1} → a1, {e0} → d1, {d0} → e1, {c0} →
b1, {b0} → c1} and initial state 〈a0, b0, c0, d0, e0〉. When there are multiple
branches of one OR gate leading to unreachability, the result can be in-
conclusive. Because in the assignment phase, no matter which branch we
choose at a1 (b1, c1 or d1, e1), we cannot find an admissible order as both side
are exactly the case of Example 3.4. At the end, the program will return
Inconclusive due to the limit of iteration k is reached.

There is a tricky way to deal with this issue when |OR gates| is not
big: we set a limit n, if |OR gates| < n, we shift the heuristics on the
assignment of OR gates to the enumeration of all possible assignments.
This “hack” can deal with the inconclusive cases with small size, including
the one in Example 3.10. In the benchmarks in Chapter 5, inconclusive
instances appear neither in biological examples nor in random generated
tests.

At last, we are going to show some algorithmic properties of ASPReach
which are important for a model checker. A model checker must terminate
for any input like the standard for any algorithm; also, its complexity is
crucial for its wider applicability and scalability.

Theorem 3.5 (Termination and correctness of ASPReach). Let l =
(Vstate, Vsol, E) be an SLCG with initial state α and target local state ω
and k > 0 be an integer.

45

• The call ASPReach(l, k) terminates.

• ASPReach(l, k) = (False,∅) if @t a trajectory in l from α to ω.

• ASPReach(l, k) = (True, t) only if ∃t a trajectory in l from α to ω.

The proof is given in Theorem C.5 in Appendix.

Theorem 3.6 (Complexity of ASPReach). Let l = (Vstate, Vsol, E) be
an SLCG with initial state α and k > 0 be an integer. Let s = |Vsol| be
the number of target state of l. Let v = |Vstate| be the number of vertices
of l. Let e = |E| be the number of edges of l. Assume that ASP solver
is equivalent to a pure enumerator. The complexity of ASPReach(l, k) is
O(v+ s+ e+ (v+ s)/2× v× e× s+ v2× e+ v× e+ k× (v× e2 + v

2 !)) which
is bounded by O(k × v

2 !).

The proof is given in Theorem C.6 in Appendix.

ASPReach has an factorial complexity due the exhaustive search of ad-
missible order by ASP solver. However ASP solver is a black-box system,
random tests in Chapter 5 shows even when the number of automata in-
creases to 1000, the runtime is still acceptable (several seconds).

3.5 Extension to Multi-valued Models

The use of either pseudo-reachability, PermReach or ASPReach can be ex-
tended to multi-valued models for wider applications.

To avoid the issues of inconclusiveness due to the notion of objective in
PH or AAN (Remark 3.1 on page 32), we restrict the semantics of AAN
(Section 2.1.6 on page 15). We allow only state changes of one step size
(|j − k| = 1 in the Definition of restricted AAN below) and presume that
there is no need to leave and return to certain local state in order to achieve
certain reachability. These modifications assure that there is only one path
going from the target local state and its corresponding initial state, e.g.
from state 1 to 3, the only path is 1→ 2→ 3.

Definition 3.10 (Restricted AAN). A restricted Asynchronous Automata
Network is a tuple A = (Σ, T), where:

• Σ = {a, b, . . .} is the finite set of automata with every automaton
having a discrete state. The max discrete level of a is denoted la and
this level is 1 by default (Boolean) and omitted in the notation;

46

• The states of A can then be defined: LS =
⋃
a∈Σ

{a0, . . . , ala} is the set

of all local states, L = ×
a∈Σ′
{a0, . . . , ala} is the set of joint states where

Σ′ ⊆ Σ. Particularly, if Σ′ = Σ, L is the set of global states.

• T = {A → bk | A ∈ L, b ∈ Σ, k ∈ [1; lb] ∧ if lb > 1, ∃bj ∈ A, j ∈
[1; lb], |j − k| = 1, else @bj ∈ A} is the finite set of transitions, which
defines the regulations and dynamics of the restricted AAN: A, bk are
denoted head(h), body(h) respectively of the transition tr = A→ bk.

By putting the affected state into the condition of transition, we can dis-
tinguish on which state the transition functions for multi-valued automata.
Affected states are regarded as equivalent conditions as other states in the
SLCG for restricted AAN. The only difference is that when encountered
a multi-valued automaton, SLCG seeks to find only the transitions in the
direction from the wanted state towards the initial state. This preference
avoids the appearance of cycles due to returning to a given local state.

Definition 3.11 (Extended over-approximate SLCG). Given an ABAN
A = (Σ, T), a global initial state α and a target local state ω, SLCG
l = (Vstate, Vsol, E) is the smallest recursive structure with E ⊆ (Vstate ×
Vsol) ∪ (Vsol × Vstate) which satisfies:

ω ∈ Vstate & ∃aj ∈ α
ai ∈ Vstate ⇔ {(ai, A→ ai) | if la > 1, ak ∈ A,

where k = i+ 1× sgn(i− j)} ⊆ E
A→ ai ∈ Vsol ⇔ {(A→ ai, X) | X = ∅ if i = j,

else ∀bm ∈ A, X = bm} ⊆ E

where Vstate ⊆ LS is a set of local states, Vsol ⊆ T is the set of solutions and
X is one of the required local states of A→ ai.

Example 3.11 shows that SLCG succeeds to find a trajectory jumping
multiple qualitative levels (a0 to a2).

Example 3.11. The left of Figure 3.11 shows a restricted AAN A = (Σ, T)
where Σ = {a, b, c} with la = 2, lc = 2 and T = {{a1, b1} → a2, {a0, c1} →
a1, {c2} → b1, {c1, b0} → c2}. The initial state is 〈a0, b0, c1〉. An extended
SLCG for computing the reachability of a2 is on the right.

PermReach or ASPReach can be applied to analyze the real reachability
of a2 (reachable via a0 → a1 → a2).

47

a

0

1

2

b

0

1

c

0

1

2

{a1, b1}

{c2}{a0, c1}

{c1, b0}

a2

b1 c2 b0

∅
a1

a0 ∅

c1 ∅

Figure 3.11: Restricted AAN and extended SLCG

However, this extension is limited enough because we do not consider
the possibility to leave and return to certain local state. In multi-valued
situation, certain local states with different direction to the target state need
to be reached to “unlock” the condition of certain transitions. Example 3.12
shows a counterexample suggesting under certain conditions, it is necessary
to leave and return to some local state (a2 is reached to “unlock” b1) and
SLCG does not cover all the needed transitions.

a

0

1

2

b

0

1

c

0

1

{a1, b1} {a2}

{a1, b0} {a2, c1}

a0

b1 a2 b0

∅
a1 ∅

c1 ∅

Figure 3.12: Restricted AAN and extended SLCG, dashed arrows represent
the transition actually used but it does not appear in the extended SLCG.

Example 3.12. The left of Figure 3.12 shows a restricted AAN A = (Σ, T)
where Σ = {a, b, c} with la = 2 and T = {{a1, b1} → a0, {a1, b0} →
a2, {a2, c1} → a1, {a2} → b1}. The initial state is 〈a1, b0, c1〉. An extended
SLCG for computing the reachability of a0 is on the right. As a2 appears in
the extended SLCG, it needs to be reached. However a1 is no longer reach-
able with the only help of the transitions in the extended SLCG. a0 is in fact
reachable via {a1, b0} → a2 :: {a2} → b1 :: {a2, c1} → a1 :: {a1, b1} → a0

and the state change of a is a1 → a2 → a1 → a0.

Even though this extension is not a complete method, it remains to be
a heuristics to discover certain trajectories if there exist such.

48

3.6 Résumé

In this chapter, we formally (re)defined the modeling framework used for
static analysis: Asynchronous Binary Automata Network and some termi-
nology. Then we dug into the details of static analysis, figured out why they
are not conclusive under certain conditions. To get rid of these constraints,
we carry first preprocessing (Section 3.3) to detect and try to delete cycles.
With the preprocessed ABAN, we introduced two reachability analyzers
based on SLCG: PermReach and ASPReach.

PermReach relies on a complete search on the permutations of AND
gates. However, permutations do not cover all the possible trajectories but
PermReach is very efficient.

ASPReach does a finer work than PermReach, searching all the possible
trajectories of a preprocessed ABAN (without cycles and OR gates).

An extension of the above reachability analysis to multi-valued models
(restricted AAN and extended SLCG) allows one to partly discover the
solutions but it appears to be also an interesting heuristics.

The experimental results are shown in Chapter 5 Tests and Benchmarks.
From the results of multiple tests, these two approaches can deal with more
problems than pure static analysis.

Like static analysis, those two analyzers are not fully conclusive. How-
ever, if one wants total conclusiveness, he will probably need a complete
search over state space like exact model checkers do, resulting in state space
explosion.

In the next chapter, we will introduce three model inference approaches
based on these reachability analyzers.

49

50

Chapter 4

Model Inference and
Revision

In the previous chapter, we introduced several approaches of refined
reachability analysis, which are more suitable for practical use (more
efficient and more conclusive). Nevertheless, these approaches can never
take effect no matter how powerful they are, if the original model does
not reflect the reality.

To model a biological computational system, one may consider two
possible aspects: a first-step model built by biologists (variables, some
confirmed transitions, some a priori properties etc.) and the observations
from experiments (time-series data, steady states, oscillations, etc.).

This chapter is dedicated to the introduction of three different ap-
proaches of model inference/revision:

• via reachability properties and candidate regulations

• via partial correlation (statistics)

• via reachability properties and time-series data

There lies very little nuance between model inference and model revi-
sion: these two operations begin with some a priori information and/or
observations, aiming at constructing a new model/modifying an existed
model. As a result, they take the information apart from the existing
transitions into account, using different tools to transform this infor-

51

mation into possible transitions in the model (also can modify or deny
existing transitions).

Following a 3-month research stay at Inoue Lab. at National Institute
of Informatics, preliminary ideas behind Section 4.4 were presented in the
“work in progress” track at ILP 2018 in Ferrara, Italy [13].

4.1 Background

Model inference/learning can be useful not only in biology [66] but also
in other domains with the need of abstraction, e.g. robotics [53], multi-
agent systems [28]. In the community of bioinformatics, DREAM chal-
lenge1 is a well-known organization calling for the participation of the whole
world on the newest bio-medical problems (called challenges). Among these
challenges, some of them are in the domain of inference and prediction:
DREAM22, DREAM43, DREAM84, DREAM115.

Like in biology, the modeling structures in robotics are usually complex
and with big scale, which is difficult in control, prediction and simulation.
Constructing an abstracted (often approximated) model is a compromising
way of dealing with the mechanical and computational complexity. However,
the abstracted models are theoretically non-equivalent to the original ones
because they contain different amount of information. Even though there
always remains a non-equivalence, we wish that the abstracted models are
in bisimulation with the original systems with respect to certain variables
and keep the same important properties as original systems.

As is mentioned in Section 1.3 of Chapter 1, as far as we know, there has
been no work combining model inference and model revision. Some related
works: Opgen-Rhein et al. [54] have studied the undirectional inference via
correlation, Rodrigues et al. [69] have studied the learning of action models
and Bonneau et al. [7] have studied the learning from continuous time-series
data.

Figure 4.1 shows the methodology of this chapter. There are two parallel
pathways:

• One starts with biological a priori knowledge. The knowledge comes

1http://dreamchallenges.org/about-dream
2https://www.synapse.org/#!Synapse:syn2825374/wiki/71143
3https://www.synapse.org/#!Synapse:syn2825304/wiki/71129
4https://www.synapse.org/#!Synapse:syn1720047/wiki/55342
5https://www.synapse.org/#!Synapse:syn6131484/wiki/402026

52

http://dreamchallenges.org/about-dream
https://www.synapse.org/#!Synapse:syn2825374/wiki/71143
https://www.synapse.org/#!Synapse:syn2825304/wiki/71129
https://www.synapse.org/#!Synapse:syn1720047/wiki/55342
https://www.synapse.org/#!Synapse:syn6131484/wiki/402026

from biological literature, certain empirical conclusion can be trans-
lated to temporal properties (especially reachability).

• The other one starts with partial observation. It is said partial because
the real system is not completely observable, only a part of parameters
can be taken as I/O. Learning approaches will build a model consistent
with partial observation but not necessarily consistent with the real
system. Model checkers can verify the temporal properties and we can
come up with some modifications to make the model consistent with
a priori knowledge.

Real system Temporal properties

Partial observation Learning methods

Reachability

Model

Biological a priori knowledge

Model Checking +

Figure 4.1: Big picture of model inference

We developed two learning approaches following the Big Picture in Fig-
ure 4.1.

• CRAC (Completion via Reachability And Correlations)

CRAC is decomposed into two steps:

1. Infer candidate regulations from continuous time-series data

2. Select transitions consistent with candidate regulations and add
them into/delete them from an existing incomplete model (can
be empty) to make it satisfy a priori reachability information

53

• M2RIT (Model Revision via Reachability and Interpretation Transi-
tions)

M2RIT is also run with two steps:

1. Learn a Normal Logic Program from discretized time-series data
by asynchronous version of LFIT (synchronous version in Sec-
tion 2.4.1)

2. Modify the obtained NLP as little as possible to make it con-
sistent with a priori reachability information while keeping the
consistency with the constraints of time-series data, i.e. the NLP
has to reproduce the time-series data

It is worth noticing that step 2 of CRAC could be an individual model
inference algorithm if the set of candidate regulations/transitions is given.
This step has the least complexity. Because the most naive method, i.e.
brute force search is to verify every combination of the candidates if it sat-
isfies the constraints. The models to be verified are of O(2n), where n is the
number of candidate transitions.

One may ask if we can run CRAC or M2RIT without being provided
with time-series data, i.e. run directly step 2 of either method. Deleting
can be done without additional data, as the number of transitions already
assuring certain reachability is very limited, which is shown in Section 2.4.2
or [57].

Nevertheless, adding transitions can be a more complex task. Suppose
we begin with no constraints on the model, to obtain a transition A → ai
with fixed ai, there are at most m − 1 possibilities for A having one local
state, C2

m−1 possibilities for A having 2 local states . . . wherem is the number
of model variables. This factorial number of possibilities for one transition
is not acceptable.

4.2 Model Completion via Candidate Regulations

We begin with the part which seems to have the smallest complexity. Brute
force search that we just presented is still meaningless in real application.
Roughly speaking, we prefer finding the transitions among the candidates
which meet the unsatisfied constraints and keep already satisfied constraints
unchanged.

54

4.2.1 Problem Description

Given an incomplete model, at first it does not satisfy wanted reachability
properties. With given set of candidade regulations, we can consider the
transitions inferred by these candidates are more likely to be the good ones
than the randomly generated ones. Then we select the transitions which are
prone to make certain unsatisfied reachability property satisfied and add
them into the set of model transitions.

Briefly speaking, completion problem is:
incomplete model + candidate regulations + constraints → new model
The resulted model is expected to contain all the elements in the incom-

plete model and be consistent with all the a priori information.

Definition 4.1 (Model completion in ABAN semantics). Given an incom-
plete ABAN A = (Σ, T) (where T can be empty), a complete model is an
ABAN A′ = (Σ, T ′) which satisfies T ′ ⊇ T , A′ consistent with the set of
reachability constraints C and the completion set CS = T ′ \ T is consistent
with the set of candidate regulations R, where

• R = {(body, head, sgn) | body ∈ Σ, head ∈ Σ, sgn ∈ {−,+}}

• C = {(α, ω, r) | α ∈ L, ω ∈ LS, r ∈ {True,False}}

R is the set of possible relations between variables, body may inhibit
(sgn = −) or promote (sgn = +) head. C is the set of reachability properties
to be satisfied, ω is (un)reachable from α. The definition of consistency is
straightforward, but its meaning changes for reachability constraints and
candidate regulations.

Definition 4.2 (Consistency).
• An ABAN A is said consistent with the set of reachability constraints
C iff ∀(α, ω, r) ∈ C s.t. reach(α, ω) = r

• A completion set CS is said consistent with the set of candidate reg-
ulations R if ∀{ai} → bj ∈ CS,∃(body, head, sgn) ∈ R s.t. body =
a, head = b and sgn = + if i = j, sgn = − if i 6= j.

However, completion operation is not able to remove or modify existing
trajectories towards the states to be reached as the transitions used in the
trajectories are still present. To obtain an ABAN meeting all the unreach-
able constraints in C, we have to apply cut sets.

Before our research began, Paulevé et al. [57] had worked on cut sets
for reachability in large scale automata networks, which can be a reverse

55

operation of completion sets. Cut set is used to inhibit certain local states
to make certain local states unreachable.

By combining completion and cut set, one can construct/revise a model
according to a priori information (candidate regulations) and constraints
(reachability). We introduce first the notion and the application of cut sets.

4.2.2 Cut set

Cut set operation works on the local states mandatory for reachability. It is
used to inhibit certain local states to make wanted local states unreachable.
However we cannot eliminates the states in a given network, what we can
manipulate here are the transitions. We present how cut set functions and
then adapt it to our requirements.

We first obtain the rank of a digraph SLCG (detailed in Appendix C.1)
which refers to the parental relations. Child nodes cannot have higher rank
than their parent nodes. Nodes in the same SCC (Strongly Connected Com-
ponents) have the same rank.

The computation of cut sets is recursive. We begin with the nodes of low
rank, computing the valuation of each node, called update (defined below).
The process stops when the valuation becomes saturated, i.e. the valuation
of every node does not change after update. Valuation shows the global
dependencies of reachability and saturated valuation is the cut set we want.

For different elements n in the SLCG,

• if n is a solution A → ai ∈ Vsol, it is sufficient to prevent the reacha-
bility of any local state in ai to cut n; therefore, the cut sets results
from the union of the cut sets of the successor of n (all local states).

• if n is a local state ai ∈ Vstate, it is sufficient to cut all its successors
(all solutions) to prevent the reachability of ai from α. In addition, if
ai = ω, {ai} is added to the set of its cut sets.

Definition 4.3 (Valuation). Given an SLCG l = (Vstate, Vsol, E), its valua-
tion V is a mapping from each node of Vstate ∪ Vsol to a set of sets of local
states. V0 refers to the initial valuation s.t ∀n ∈ Vstate ∩ Vsol,V0(n) = ∅.

Definition 4.4 (update).

update(V, n) =


ζN (

⋃
m∈n.nextV(m)) if n ∈ Sol

ζN (
∏
m∈n.nextV(m)) if n ∈ LS\{ω}

ζN ({{ω}} ∪
∏
m∈n.nextV(m)) if n = ω

(4.1)

56

where ζN ({e1, . . . , en}) = {ei | i ∈ [1;n] ∧ |ei| ≤ N ∧ @j ∈ [1;n], j 6= i, ej ⊂
ei}, ei being sets.

Algorithm 1 describes the whole process, where rk(n) refers to the rank of
n in the SLCG (See Definition C.1 in Appendix), characterizing the parent-
child relations between nodes where a node with lower rank cannot be the
parent of a node with higher rank.

We associate a first valuation with the nodes of low rank, check if it
changes the valuation of its parent node. If yes, we have to add the unsat-
urated node back to the set to be updated (M). The algorithm terminates
when valuation V becomes saturated, i.e. the valuation becomes the cut
set.

Algorithm 1 Cut set

Input: an SLCG l = (Vstate, Vsol, E)
Output: cut set V
Initialization: M← Vstate ∪ Vsol, V← V0 = ∅
while M 6= ∅ do

n← argminm∈M{rk(m)}
M ←M\{n}
V′ ← update(V, n)
if V′(n) 6= V(n) then
M←M∪ n.pred

V← V′
return V

We are going to run a tiny example on the mechanics of cut set.

a

0

1

b

0

1

c

0

1

d

0

1

{b1, c1} {a1}{b0} {d1} {b1}
a1

c1

b1

∅

∅

b0 d1

Figure 4.2: ABAN and SLCG for the reachability of a1

Example 4.1. Figure 4.2 shows an ABAN and its under approximate SLCG
of a1. The ABAN has transitions T = {{b1, c1} → a1, {a1} → c1, {b0} →
a1, {d1} → b0, {b1} → d1}, and initial state α = 〈a0, b1, c1, d0〉, the target
state is ω = a1.

57

Table 4.1 shows the steps to obtain a saturated valuation. The cut set
is {{a1}, {b1}, {b0, c1}, {c1, d1}}, meaning that by inhibiting any of {a1} or
{b1} or {b0, c1} or {c1, d1} leads to the unreachability of a1.

Node Rank V
∅ (of b1) 1 ∅

b1 2 {{b1}}
{b1} → d1 3 {{b1}}

d1 4 {{b1}, {d1}}
{d1} → b0 5 {{b1}, {d1}}

b0 6 {{b0}, {b1}, {d1}}
{b0} → a1 7 {{b0}, {b1}, {d1}}
∅ (of c1) 8 ∅

c1 9 {{c1}}
{b1, c1} → a1 9 {{b1}, {c1}}

a1 9 {{a1}, {b1}, {b0, c1}, {c1, d1}}
{a1} → c1 9 {{a1}, {b1}, {b0, c1}, {c1, d1}}

Table 4.1: Result of Algorithm 1 on the SLCG in Figure 4.2. In column of
V, it is sufficient to prevent the local states {{a1}, {b1}, {b0, c1}, {c1, d1}} in
order to inhibit the reachability of a1.

Cut set inhibits certain local states to prevent the reachability. However,
it mismatches the operations of revision in this thesis as revision aims at
adding/deleting transitions to change the dynamics properties.

Here, we introduce the cut set w.r.t transitions. We change the update
definition to updatetrans in order to capture the transitions needed for each
local state.

Definition 4.5 (updatetrans for transitions).

updatetrans(V, n) =

{
ζN ({{n}} ∪

⋃
m∈n.nextV(m)) if n ∈ Sol

ζN (
∏
m∈n.nextV(m)) if n ∈ LS

(4.2)

If we apply this updatetrans to the same example, Example 4.1 and its
cut set, resulted cut set w.r.t transitions is Vt = {{{b1, c1} → a1, {b0} →
a1}, {{b1, c1} → a1, {d1} → b0}, {{b1, c1} → a1, {b1} → d1}}. By deleting
any set of transitions in the cut set w.r.t transitions, we can ensure the
unreachability of a1 if a1 is not at initial state.

58

4.2.3 Completion Set

Likewise, for an SLCG with suggesting certain local state is unreachable,
we can use an analogous algorithm to compute completion sets satisfying
that if the elements one completion set are reachable, the target local state
becomes reachable.

Definition 4.6 (update′ for completion set).

update′(V, n) =


ζN (

∏
m∈n.nextV(m)) if n ∈ Sol

{∅} if
⋃
m∈n.nextV(m) = {∅}

ζN ({{n}} ∪
⋃
m∈n.nextV(m)) else

Using the same definition of valuation, update′ for completion set assigns
every node with a valuation V. When the valuations are saturated, they
stand for the completion sets of ω.

Example 4.2. Figure 4.3 shows an ABAN and its over approximate SLCG
of a1. The ABAN has transitions T = {{b1, c0} → a1, {c1, e1} → a1, {d1} →
c1} and initial state α = 〈a0, b0, c0, d0〉, ω = a1.

Table 4.2 shows the steps to complete the graph like the procedures in
cut set.

a

0

1

b

0

1

c

0

1

d

0

1

e

0

1

{b1, c0} {d1}{c1, e1}

a1

b1

c0 ∅

⊥

c1

e1

d1 ⊥

⊥

Figure 4.3: ABAN and SLCG for reachability of a1

4.2.4 Completion by Over-Approximation

As stated in the previous chapter, verifying exact reachability is a hard task.
Here we use two metrics, over-approximation and under-approximation to

59

Node Rank V
⊥ (of b1) 1 ∅

b1 2 {{b1}}
∅ (of c0) 3 {∅}

c1 4 {∅}
{b1, c0} → a1 5 {{b1}}
⊥ (of d1) 6 ∅

d1 7 {{d1}}
{d1} → c1 8 {{d1}}

c1 9 {{c1, d1}}
⊥ (of e1) 10 ∅

e1 11 {{e1}}
{c1, e1} → a1 12 {{c1, e1}, {d1, e1}}

a1 13 {{a1}, {b1}, {c1, e1}, {d1, e1}}

Table 4.2: Result of Algorithm 1 by replacing update with update′ on the
SLCG in Figure 4.3. In column V, it is sufficient to make one of the sets of
the local states {{a1}, {b1}, {c1, e1}, {d1, e1}} reachable in order to reach a1.

replace and approach the notion of reachability (as shown in Figure 2.5 on
page 20).

Over-approximation is the reasoning of pseudo-reachability in Defini-
tion 3.7 on page 33. It associates local states and transitions with the initial
state according to the causalities: if there exists a reverse pathway from the
target local state to the initial state, this target state can be reachable. Over-
approximation does not take into consideration the order of transitions to be
fired, which is the cause of inconclusiveness (literally it over-approximates
the reachability). Thus over-approximation is a necessary condition of the
reachability.

Figure 4.4 gives a first impression of this method. The visualization of
the set of candidate regulations R = {(a, b,+), (c, a,−)} is on the left. On
the right, the initial ABAN has only three Boolean variables Σ = {a, b, c}
and initial state 〈a0, b0, c0〉, with transitions T = {{a1} → b1}. b1 is not
reachable because of the unreachability of a1. As (c, a,−) ∈ R, consistent
transition {c0} → a1 is added then a1 becomes reachable which makes b1
also reachable. T ′ = {{a1} → b1, {c0} → a1}, CS = {{c0} → a1}.

Algorithm 10 in Appendix shows the detailed algorithm of the comple-
tion by over-approximation.

Likewise, we can define the completion by under-approximation.

60

c a b

c

0

1

a

0

1

b

0

1

Figure 4.4: Completion by over-approximation. Dashed arrows represent
added action.

4.2.5 Completion by Under-Approximation

Over-approximation is only a necessary condition of reachability. If one
wants the guarantee of the reachability even at the price of redundant tran-
sitions, he may consider the completion by under-approximation.

Under-approximation is a variation of SLCG reasoning. It associates
the local states and the transitions with the initial state and all the states
which may appear. This association covers more orders of occurrence than
over-approximation as it takes into account the mutual reachability between
local Boolean states if both appear in the SLCG. The proof was done by
Paulevé et al. [61]. Similar to over-approximation, in the SLCG of under-
approximation, if there is a pathway between target local state and the
initial state, this target state might be reachable.

However, all the orders of occurrence do not necessarily appear during
the simulation, which suggest that this approach “under-approximates” the
reachability.

Additionally, the computation of under-approximation is more compli-
cated than that of over-approximation, as the set of associated local states
grows during the computation. Former added local states need to be re-
garded as new “target states”. This process is called update. Update does
not stop until the set of associated local states becomes stable.

Definition 4.7 (Under-approximate SLCG). Given ABAN A = (Σ, T), a
global initial state α and a target local state ω, under-approximate SLCG
l = (Vstate, Vsol, E) is the smallest recursive structure with E ⊆ (Vstate ×
Vsol) ∪ (Vsol × Vstate) which satisfies:

ω ∈ Vstate

ai ∈ Vstate ⇔ {(ai, A→ ai)} ⊆ E
A→ ai ∈ Vsol ⇔ {(A→ ai, X) | X = ∅ if ai ∈ α ∧ a1−i 6∈ Vstate,

else ∀bj ∈ A, X = bj} ⊆ E

61

where Vstate ⊆ LS is a set of local states, Vsol ⊆ T is the set of solutions and
X is one of the required local states of A→ ai.

If we compare the definition of under-approximation with Definition 3.6
of over-approximation on page 31, the difference lies in the condition of
X. The reasoning of over-approximation stops when certain automaton a
reaches the initial state. However, to guarantee all the possible orders, we
exige ai and a1−i are reachable from each other if they are both present in
the under-approximate SLCG. The corresponding formula is X = ∅ if ai ∈
α ∧ a1−i 6∈ Vstate.

The visualization of under-approximate SLCGs has a slight difference
with the one of over-approximate SLCGs. a0 � a1 means a1 is to be reached
via a0. This notation seems redundant but it is useful when we need to
continue the reasoning even if we reach the initial state until the SLCG is
saturated. Local states in the initial state may have other successors besides
©. For example in Figure 4.7, d0 is in the initial state, but the reasoning
continues because d1 appears in another branch.

Example 4.3. Given ABAN A = (Σ, T) in Figure 4.5 with Σ = {a, b, c, d},
T = {{b1, c1} → a1, {b1} → d1, {d0} → b1}, the initial state 〈a0, b0, c0, d0〉.
With candidate regulations R = {(d, c,−), (c, d,−)}, Figure 4.6, Figure 4.7
and Figure 4.8 show the procedures of completion by under-approximation:
after two additions of actions and one update, the SLCG becomes stable and
a1 becomes reachable. T ′ = {{b1, c1} → a1, {b1} → d1, {d0} → b1, {d1} →
c1, {c1} → d0}, CS = {{d1} → c1, {c1} → d0}.

a

0

1

b

0

1

c

0

1

d

0

1

{b1, c1} {d0} {b1} {c1}{d1}

Figure 4.5: Example of completion by under-approximation. Dashed arrows
represent added transitions.

Figure 4.6 shows the under-approximate SLCG of the reachability a1.
c1 is unreachable then the joint state 〈b1, c1〉 is not reachable, a1 is not

reachable.
In Figure 4.7, according to candidate regulation (d, c,−) ∈ R, transition

{d1} → c1 is added. Thanks to the existence of {b1} → d1, d1 has successor
b1. However, the reachability of under-approximation requires all the possi-
ble occurrences are realizable, i.e. we need a transition with body d0 for d0

62

a0 �∗ a1a1

b1

c1

b0 �∗ b1

⊥

d0 d0 �∗ d0

Figure 4.6: Step 1, under-approximation SLCG of Figure 4.5 studying the
reachability of a1 (small circles stand for solutions and squares stand for
required local states).

and d1 can be reached from each other, because both d0 and d1 are present
in the SLCG.

a0 �∗ a1a1

b1

c1

b0 �∗ b1

c0 �∗ c1

d0

d1

d0 �∗ d0

d1 �∗ d0

d1 �∗ d1

d0 �∗ d1

⊥

Figure 4.7: Step 2 of completion by under-approximation (filled small circles
stand for new possible solutions after completion).

In Figure 4.8, the completed under-approximate SLCG shows a1 is now
reachable after adding {c1} → d0 according to (c, d,−) ∈ R as there is no
more ⊥ in the SLCG.

To sum up the whole process, we begin with an incomplete model and a
set of candidate regulations.

Algorithm 11 in Appendix shows the detailed procedures of completion
by under-approximation.

Remark 4.1. Neither completion by under-approximation nor completion
by over-approximation can output complex transitions (transitions with
multiple variables in the head). If one wants to assess if certain complex
transition can be added to the incomplete model, he can replace regulations
in the input with transitions, skip the step of checking the consistency, then
use directly the transition to complete the incomplete model.

63

a0 �∗ a1a1

b1

c1

b0 �∗ b1

c0 �∗ c1

d0

d1

d0 �∗ d0

d1 �∗ d0

d1 �∗ d1

d0 �∗ d1

Figure 4.8: Step 3 of completion by under-approximation (filled small circles
stand for new possible solutions after completion).

4.3 Model Inference via Statistics

As we already have the completion methods, to make CRAC applicable, we
need to obtain candidate regulations R. Here we introduce a method to
generate candidate regulations to be verified from time series data.

In the previous contents, only the systems consisting of transitions with
delay of 1 time unit are discussed (BN, ABAN, etc.), i.e. the influence done
by variables will take place at the next time point (immediately). However,
in biological context, some reactions have a long duration, and some even
need a whole observation period to take place. For this reason, we require
approaches to reveal transitions of different delays: for an observation of
period T , possible delays lie in [1;T − 1].

4.3.1 Preliminaries

In Definition 2.1 on page 9, the definition of regulatory network (RN) is
originally related to a set of approximated ordinary differential equations
(ODEs) [43] (continuous modeling):

dxv
dt

= kv − λvxv +
∑

u∈v.pred
xukuv (4.3)

where xv is the concentration of variable v, kv, λv ∈ R are self-regulation
kinetic parameters (containing protein degradation) and kuv ∈ R are kinetic
parameters of external regulations.

Here, considering the following reasons, we make several modifications
to the ODE.

64

1. The change rate done by external regulations is not always propor-
tional to the concentration of corresponding external variables. Con-
sider an elementary biochemical reaction mA +nB→ C, according to
the rate law, the synthesis rate of C is rC = k[A]m[B]n where k is a
fixed positive real number and m,n are the parameters characterizing
reaction order.

2. In the community of model inference, self-regulations are often consid-
ered difficult to be detected because nearly every transition could be
explained as the result of a self-regulation. For example, in the prob-
lem description of DREAM86, self-regulations are a priori ignored.

3. According to the differential equation, the influence takes effect im-
mediately without delay. However, considering the discretization on
time, we have to replace the differential mark d in 4.3 into difference
mark ∆ and set a delay δ which takes only natural numbers to simulate
state change.

To integrate these hypotheses, the equations are modified to:

∆xv(t)

∆t
=

∑
u∈v.pred

xnu(t− δ)kuv (4.4)

where δ ∈ N∗ is the delay of the regulation, n ∈ R+ is the order of
regulation (corresponding to the reaction order). Also, self-regulations are
not taken into account, i.e. kv and λv are set to 0.

The definition of RN (Definition 2.1) requires every regulation take effect
immediately. To cooperate with the new equations, it is adapted to the
version with delay.

Definition 4.8 (Regulatory network with delay). A regulatory network
with delay is a labeled directed graph G = (V,E) where

• each vertex v of V , called variable, is provided with a boundary bv ∈ N
less or equal to the out-degree of v in G.

• each arc u ∈ v of E is labelled with a triplet (tuv, αuv, δ) where tuv
is an integer between 1 and bv, called qualitative threshold, where
αuv ∈ {+,−} is the sign of the regulation and δ ∈ N+ is the delay of
the regulation.

With the new formalization, we can now address the inference problem.

6https://www.synapse.org/#!Synapse:syn1720047/wiki/55342

65

https://www.synapse.org/#!Synapse:syn1720047/wiki/55342

4.3.2 Partial Correlation

In huge biological networks, it is not possible to compute candidate regula-
tions by hand nor to traverse all the possible addable transitions, as stated
formerly, the verification of O(3|GlobalStates|) states is a huge task: if the
influenced variable is fixed, every other variable has 3 possible influence,
promotion, inhibition and no regulation.

To deal with the high complexity of the verification of O(3|GlobalStates|)
states, a priori knowledge is needed. Some unsatisfied states can be elimi-
nated without global verification. In order to take all the information into
account, statistical approaches come into sight. We use correlation coeffi-
cients to try to match the evolution of variables with Equation 4.4 on page
65. Correlation coefficients characterizes how linear or monotonous the re-
lations between variables are all along the sampling period. The possible
values of all the mentioned correlation coefficients lie in the interval [−1, 1].
The closer to 1 the absolute value of the coefficient is, the more correlated
the variables are. Particularly, 1 suggests total positive correlation and −1
suggests total negative correlation.

In Equation 4.4, for different n,

1. n = 1, the change rate of certain variable is the linear sum of other
variables. The linear correlation between the change rate of one vari-
able and the value of other variables is detectable via an approach
using Pearson correlation coefficients (PCC).

2. n 6= 1, the correlations between variables are no longer linear but still
monotonous. Analogously the monotonous correlation is detectable
by Spearman correlation coefficients (SCC), which is the application
of Pearson correlation coefficients on the rank of variables.

One additional profit of statistical approaches is that original time series
data are discretized before being used, which cause a loss of information.
This loss could lead to an imprecise model. However, some statistical ap-
proaches could use directly the continuous time series data as input which
avoid this drawback.

Definition 4.9 (Pearson correlation coefficient). Pearson correlation coef-
ficient (r) is the covariance of the two variables divided by the product of
their standard deviations. When applied to a sample (time series data), the
formula is converted to:

rx,y =
cov(x, y)

σxσy
=

∑N
i=1(xi − x̄)(yi − ȳ)√∑N

i=1(xi − x̄)2

√∑N
i=1(yi − ȳ)2

66

Where x, y are variables, cov(x, y) is the covariance of x and y, σx is the
standard deviation of x, N is the sample size and xi, yi are the i-th sample
points of x, y.

The definition of Spearman correlation coefficient is related to that of
Pearson correlation coefficient.

Definition 4.10 (Spearman correlation coefficient). Spearman correlation
coefficient (rs) is the Pearson correlation coefficient between the ranked
variables.

rsx,y = rrgx,rgy
=

cov(rgx, rgy)

σrgx
σrgy

Where rgx is the rank variable of x.

Example 4.4. Variable x = {3, 10, 1, 7, 6}, the rank variable of x is rgx =
{4, 1, 5, 2, 3}.

If two variables are highly correlated and form an independent system,
their correlation can be perfectly detected by PCC or SCC. However, vari-
ables are usually simultaneously influenced by more than one variables,
which is the biological reality. For example, for three variables a, b, c, if
a is activated by b and inhibited by c, the PCC or SCC of rda

dt
,b is biased by

c. To get rid of certain variables, one can apply partial Pearson correlation
coefficients [4] or partial Spearman correlation coefficients [8].

Partial correlation coefficients are denoted pr.

Definition 4.11 (Partial Pearson correlation coefficient (PPCC)). prxy·z is
the partial Pearson correlation coefficient of x and y ignoring the influence
by z.

prxy·z =
prxy·z\{z0} − prxz0·z\{z0}prz0y·z\{z0}√

1− pr2
xz0·z\{z0}

√
1− pr2

z0y·z\{z0}

Where x, y are variables, z is a set of variables, z0 is an arbitrary element
in z. Particularly, if z has only one element z0, the formula becomes

prx,y·{z0} =
rx,y − rx,z0rz0,y√

1− r2
x,z0

√
1− r2

z0,y

The partial Spearman correlation coefficient is defined likewise.

Definition 4.12 (Partial Spearman correlation coefficient (PSCC)). Partial
Spearman correlation coefficient is denoted prs

prsx,y·z = prrgx,rgy ·rgz

67

The possible value of all the mentioned correlation coefficients are in
the interval [−1, 1]. The closer to 1 the absolute value of the coefficient
is, the more correlated the variables are. Particularly, 1 suggests total
positive linear/monotonous correlation and −1 suggests total negative lin-
ear/monotonous correlation. e.g. if we find the PSCC of da

dt and b is −0.9

(high enough), we can add b
−−→ a to the set of candidate regulations.

Overall Process

With the former definitions, we propose a method applying partial correla-
tion to detect the relevance of each pair of variables.

Time-series
data

Data dis-
cretization

Variable re-
construction

Sorting Change rate

Data re-
grouping &
Spearman
coefficient

Partial coeffi-
cient

Regulations

x
+/−−−−→ y

Transitions
{xi} → yk

P
ea

rs
on

C
o
effi

ci
en

t

Figure 4.9: Workflow of the whole procedure of candidate regulations gen-
eration (dashed arrows stand for optional processes)

Figure 4.9 shows the procedure of regulation generation: before discretiz-
ing original data, Pearson or Spearman correlation coefficients [72, 37] are
computed for identifying the relevance between original data and change
rates of variables (in linear or monotonic way respectively). If coopera-
tion between variables exists, former coefficients need replacing by partial
ones [22] for more precise result. Resulting coefficients above the threshold
(One can set a threshold of correlation, e.g. 0.7) suggest there probably

68

exist regulations between variables.

Furthermore, to complete Biological Regulatory Networks in the form
of ABAN, more accurate regulations are inferred through variable recon-
struction, which splits a variable into several new variable according to its
qualitative levels. For example, variable a has two discrete levels a0 a1, then
the correlation coefficients as well as the partial coefficients are computed in
the domain of a0 and of a1 separately. As a result, the correlation between
a0 and other variables and that of a1 are computed, with which candidate
transitions are deduced.

As all the subroutines depicted in Figure 4.9 are defined, starting from
original data, regulations in form of René Thomas’ model [79] or ABAN are
resulted step by step. In the next section, the data processing in Figure 4.9
will be introduced with examples.

Data Regrouping

To gain a better understanding of correlations between observation data
and change rate, certain observed data of one variable are replaced by cor-
responding change rate. By calculating the correlation coefficients of such
matrix, regulation on this variable is characterized.

Definition 4.13 (Regrouping). Let A be a n×T matrix, representing time-
series data, where n is the number of variables and T is the period of the
time-series data. Aij is the i-th variable at time j. Let δ be the delay
we want to explore, there are in total n matrices of size n × (T − δ) after
regrouping. The k-th matrix A

′k is defined:

A
′k
ij =


Ai,j+δ −Aij

δ
if i = k

Aij else

We regroup the change rate of one variable and the values of the other
variables in order to infer the correlations between them.

Example 4.5. Let us take the time-series data of 4 variables a, b, c, d as an
example. Matrix A below records the state of the system of discrete time
point t = 0, 1, 2, 3, A′1 is the first regrouped matrix (k = 1) as the time-
series of a is placed on the first row. A′1 is used to compute the correlation
between the change rate of a and other variables of delay δ = 1.

a′(t) =
∆a(t)

∆t
=
a(t+ 1)− a(t)

(t+ 1)− t
= a(t+ 1)− a(t) (4.5)

69

A =


t 0 1 2 3

a a(0) a(1) a(2) a(3)
b b(0) b(1) b(2) b(3)
c c(0) c(1) c(2) c(3)
d d(0) d(1) d(2) d(3)

→ A′1 =


t 0 1 2

a′ a′(0) a′(1) a′(2)
b b(0) b(1) b(2)
c c(0) c(1) c(2)
d d(0) d(1) d(2)


In this way, regulations of b, c, d on a are then evaluated by PPCC or

PSCC (see Definition 4.11 and 4.12).

With the matrices A′k, we can compute the matrix containing the cor-
relation information of all the variable pairs.

Definition 4.14 (Correlation matrix). Let A′k be the regrouped matrices
of time-series data matrix A with k ∈ [1;n] and Σ be the set of all the
variables, the n× n correlation matrix is defined:

Rij = prij,Σ\{i,j}

where the original data for computing prij,Σ\{i,j} come from A′i. As we do
not study self-regulation in this thesis, we set prij,Σ\{i,j} = N/A. Also, pr
(PPCC) can be replaced by prs (PSCC). In the following, we abuse the
simplification of the notation prij,Σ\{i,j} by rij .

To expand the applicability, matrices A′k and R representing different
delays can be formed analogously by only changing the value of δ.

4.3.3 Variable Reconstruction

By following previous steps, candidate regulations in form (a, b,+/−) are
deduced, but the result is not in the precise form of ABAN. As is stated on
page 30, ABAN has a finer description. We need to study the regulations
in different qualitative levels of each variable. To obtain a result in ABAN
form, variable reconstruction is necessary.

Definition 4.15 (Variable Reconstruction). Let x(t) be a variable in time
series data with l levels from 0 to l − 1, the corresponding intervals are
[0, x0], [x0, x1], · · · , [xl−2, xl−1], with xi the thresholds. The reconstructed
variable of x are: x′i(t) = x(t) with their domain in {t|x(t) ∈ [xi−2, xi−1]}
and i ∈ [0; l − 1].

70

max

min

threshold

0

1

0 1 2 3 4 5 6 7 t

qualitative level of a a(t) = 0.8 sin t+ 1

Figure 4.10: Example of variable reconstruction

Example 4.6. In Figure 4.10, with the Boolean discretization on the thresh-
old, variable a(t) = 0.8 sin t + 1 (t ∈ [0; 7]) is split into 2 variables a′0(t) =
0.8 sin t+1 (t ∈ (π, 2π)) (dark gray) and a′1(t) = 0.8 sin t+1(t ∈ [0, π]∪[2π, 7])
(light gray) with different domains according to the qualitative threshold.

For the system with two Boolean variables a, b, the PCCC matrix is
created according to Definition 4.14:

R =

[
ra′a ra′b
rb′a rb′b

]
=

[
N/A ra′b
rb′a N/A

]
After variable reconstruction, a and b are split into four, a0, a1, b0, b1.

The corresponding PCCC matrix R′ is:

R′ =


ra′0a0 ra′0a1 ra′0b0 ra′0b1
ra′1a0 ra′1a1 ra′1b0 ra′1b1
rb′0a0 rb′0a1 rb′0b0 rb′0b1
rb′1a0 rb′1a1 rb′1b0 rb′1b1

 =


N/A N/A ra′0b0 ra′0b1
N/A N/A ra′1b0 ra′1b1
rb′0a0 rb′0a1 N/A N/A

rb′1a0 rb′1a1 N/A N/A


Here, even though the size of matrix has doubled (it can also be l

times large, depending on the number of discrete levels), as the domains
of a0, a1, b0, b1 are not continuous and the variables with same origins (like
a0 and a1) have no common domain, hence ra0a1 , ra1a0 , rb0b1 , rb1b0 are
meaningless. Also, even some variables of from different origins may have
no common domain, that will lead to raibj = 0, making resulted matrix more
sparse, which gives possibilities of optimization.

4.3.4 Toy Example

In order to better illustrate the whole process of generating candidate regu-
lations, a toy example of 4 variables a, b, c and d is given below. To prepare

71

the inputs for the model inference in Section 4.2.5 on page 61, we want to
output candidate regulations.

Input: time series data in Table 4.3, equi-temporal measurement of 8
time units.

Output: candidate regulations for model completion by over-/under-
approximation.

t 0 1 2 3 4 5 6 7 8

a 2.01 2.51 1.97 1.17 0.94 0.70 0.31 0.06 0.06
b 0.74 0.87 0.78 0.33 0.51 0.82 0.86 1.81 1.08
c 0.43 0.18 0.42 0.23 0.17 0.23 0.32 0.53 0.80
d 1.62 1.22 1.07 0.57 0.27 0.28 0.24 0.27 0.31

Table 4.3: Original time-series data generated by Gene Net Weaver [73]

Change rates are obtained in Table 4.4 by Equation 4.5.

t 0 1 2 3 4 5 6 7

a 0.5 −0.54 −0.8 −0.23 −0.24 −0.39 −0.25 0.0
b 0.13 −0.09 −0.45 0.18 0.31 0.04 0.95 −0.73
c -0.25 0.24 −0.19 −0.06 0.06 0.09 0.21 0.27
d -0.4 −0.15 −0.5 −0.3 0.01 −0.04 0.03 0.04

Table 4.4: Change rates derived from original data by x′[t] = x[t+ 1]− x[t]

After data regrouping, we obtain 4 matrices consisting of the change rate
of each variable respectively, four correlation matrices are then computed:


a′ b c d

a′ 1.0 0.09 −0.30 −0.09
b 0.09 1.0 −0.74 0.42
c −0.30 −0.74 1.0 −0.38
d −0.09 0.42 −0.38 1.0




a b′ c d

a 1.0 0.65 0.90 −0.98
b′ 0.65 1.0 0.75 −0.62
c 0.90 0.75 1.0 −0.89
d −0.98 −0.62 −0.88 1.0




a b c′ d

a 1.0 0.72 −0.56 −0.93
b 0.72 1.0 −0.71 −0.71
c′ −0.56 −0.71 1.0 0.70
d −0.93 −0.71 0.70 1.0




a b c d′

a 1.0 −0.68 0.78 0.89
b −0.68 1.0 −0.93 −0.88
c 0.78 −0.93 1.0 0.91
d′ 0.88 −0.88 0.91 1.0


r′ is formed by taking the i-th line from the i-th matrix, which suggests the

72

relevance between change rate of one variables and the others.

r′ =


a′ b′ c′ d′

a 1.0 0.09 −0.30 −0.09
b 0.65 1.0 0.75 −0.62
c −0.56 −0.71 1.0 0.70
d 0.88 −0.87 0.91 1.0


We can set an arbitrary threshold e.g. 0.6. All the coefficients with their
absolute value greater than 0.6 are listed below:

(b, a, 0.65), (b, c, 0.75), (b, d,−0.62), (c, b,−0.71)

(c, d, 0.70), (d, a, 0.89), (d, b,−0.87), (d, c, 0.91)

For example (d, b, 1,−0.87) tells that d
−−→ b is probably a good candidate

regulation as its absolute value of correlation coefficient is close enough to
1. Like this, a BRN model is formed, see Figure 4.11. According to the
configuration of ABAN (whether absence of regulation is regarded as counter
regulation), an ABAN is then deduced.

a b

cd

+1

+1

−1

−1

+1

+1
−1

+1

Figure 4.11: Resulted candidate regulations of the toy example

In fact, the choice of threshold of correlation coefficients has little influ-
ence if it is above 0.5: we can even lower the threshold if resulting regulations
do not satisfy desired properties. Because when coefficient r = 0.5, then the
95% prediction interval of y|x will be about 13% smaller than the 95% pre-
diction interval of y, i.e. y behaves more relevantly than individually [40].

It is worth noticing that this method does not take into account the in-
teractions between regulations, i.e. we do not distinguish between the con-
junctions and disjunctions. For candidate regulations (a, c,+) and (b, c,+),
the following set of transitions are both consistent {{a1, b1} → c1} and

73

{{a1} → c1, {b1} → c1}. In CRAC, we do not consider conjunctions for
candidate regulations.

Last but not least, the high-correlated variable pairs are not necessarily
the reality but can also be a coincidence, i.e. the inferred candidate regula-
tions/transitions can probably reproduce the system dynamics but cannot
guarantee the identity. In fact, there is no method that can guarantee it
reveals the reality, as what model inference does is to infer via the correla-
tions instead of causality. Causality, or the reason behind the observation is
very hard to retrieve.

4.4 Model Revision via Reachability and Interpre-
tation Transitions (M2RIT)

When modeling a real system, instead of causality, one usually requires to
assess the consistency between a given modeling network and the concrete
system by checking whether the observed configurations are indeed reachable
in the Boolean network. Whenever it is not the case, it typically means that
the designed Boolean functions do not model the given system correctly and
thus should be revised before further model analysis.

Inoue [41] has shown that Boolean networks can be represented by logic
programs. In this section, we provide an approach to revise a logic program
to fit temporal properties regarding reachability of partial states. Such logic
program can be learned from observations of state transition using LFIT
algorithm in [66], but the approach restricts the model to only synchronous
update scheme. One of the benefits of synchronous modeling is computa-
tional tractability, while classical state space exploration algorithms fail on
asynchronous ones.

Yet the synchronous modeling relies on quite heavy assumptions: all
genes can make a transition simultaneously and need an equivalent amount
of time to change their expression level. Even if this is not realistic from a
biological point of view, it is usually sufficient as the exact kinetics and order
of transformations are generally unknown. However, asynchronous seman-
tics helps one to capture more realistic behaviors [6]. At a given time point,
at most one single gene can change its expression level. Non-deterministic
behaviors are often observed in biological systems, e.g. cell differentiation.
From a given state, several possible behaviors can be expected as future
states. Asynchronous update scheme results in a potential combinatorial
explosion to the number of states.

Considering the ignorance of conjunctions by CRAC, we use a more

74

precise learning technique (LFIT) to obtain the model to be revised in
M2RIT [13]. The trade-off is that M2RIT cannot deal with noisy data
sets and there are more constraints in the revision phase because we have
to keep the consistency of the resulted network with the original time-series
data.

Here we follow the same methodology as shown in Figure 4.1 on page
53. First we obtain the model to be revised via learning method LFIT, then
we modify the learned transitions according to the SLCG but in a way that
maintaining the revised model can always reproduce the original time-series
data.

4.4.1 Learning From Interpretation Transitions (LFIT)

LFIT framework so far can only capture finite dynamical properties, i.e.
relation at T -1 or T -k and the system has to be synchronous determinis-
tic. In asynchronous systems, non-determinism can lead to loops for several
times before taking a path to a certain state. In this thesis, we adapt the
algorithms of [66, 49] to capture asynchronous dynamics and extend upon
this method to propose an approach allowing to fit a logic program to reach-
ability properties. By modifying rules of the program using logic general-
ization/specialization operations, we iteratively revise the program to fit a
set of reachability/unreachability constraints while keeping the observation
and the learned rules consistent.

4.4.2 Formalization

Boolean asynchronous systems can be non-deterministic, thus from the same
state a variable can take both value 0 or 1. To encode this dynamics, one
requires to have explicit rules for each value of a variable and the modeling
of [66] is not suitable. Mart́ınez et al. [49] have proposed a modeling of multi-
valued synchronous systems as annotated logic program. This modeling can
be applied to represent Boolean asynchronous systems and is recalled in the
following section. In order to represent multi-valued variables, all atoms
of a logic program are now restricted to the form varval. The intuition
behind this form is that var represents some variable of the system and val
represents the value of this variable. In annotated logics, the atom var is
said to be annotated by the constant val. Let us consider a multi-valued
logic program as a set of rules of the form

varval ← varval11 ∧ · · · ∧ varvalnn (4.6)

75

where varval and varvalii are atoms (n ≥ 1). For any rule R of the form (4.6),
left part of ← is called the head of R and is denoted as h(R), and the
conjunction to the right of ← is called the body of R. We represent the set
of literals in the body of R of the form (4.6) as b(R) = {varval11 , . . . , varvalnn }.
A rule R of the form (4.6) is interpreted as follows: the variable var takes
the value val in the next state if all variables vari have the value vali in
the current state. A state of a multi-valued program provides the value
of each variable of the system and a transitions is a pair of states. The
value of a variable in a state is called a local state. The set of all local
states is denoted LS. The subset of a state is called a partial state. A
rule R matches a state s when b(R) ⊆ s. A rule R subsumes a rule R′

when h(R) = h(R′), b(R) ⊆ b(R′). A Boolean Asynchronous system can
be represented by a multi-valued logic program. This section provides the
necessary additional formalization to interpret asynchronous dynamics by
such program and to learn from state transitions.

4.4.3 Modeling and Learning of Asynchronous Dynamics

Due to the non-deterministic nature of asynchronous systems and its re-
striction to at most one variable change per transition, the notions of con-
sistency, realization and successor have to be redefined as follows in order
to be adapted to further revision process.

Definition 4.16 (Consistency). Let R be a rule and E be a set of state
transition (I, J). R is consistent with E iff b(R) ⊆ I implies ∃(I, J) ∈
E, h(R) ∈ J . A logic program P is consistent with E if all rules of P are
consistent with E.

Former definition of consistency is Definition 4.2 on page 55. Here we
enlarge the domain to the consistency between logic programs and state
transitions (time-series data), i.e. all rules are applied in the state transi-
tions.

Definition 4.17 (Program realization). Let P be a logic program and E be
a set of state transitions. P realizes E if ∀(I, J) ∈ E,∃R, b(R) ⊆ I, (I \J) =
{h(R)}.

Similarly, program realization describes that all the state transitions can
be explained by the existing rules.

Definition 4.18 (Asynchronous successors). Let I be the current state of
an asynchronous system represented by a set of multi-valued rules S. Let

76

TP (I, S) = {h(R)|R ∈ S, b(R) ⊆ I}. The successors of I according to S is

T asP (I, S) = {I\{vval′}∪{vval}|vval′ ∈ I, vval ∈ TP (I, S)}∪{I|TP (I, S) = ∅}

Like the definition of ABAN dynamics (Definition 3.2 on page 28), here
asynchronous successors defines formally system dynamics of logic programs.

We now adapt the LFIT algorithm of [66] to the learning of asyn-
chronous systems. The idea of learning asynchronous and generalized se-
mantics using LFIT was published on [65]. Here we incorporate the learn-
ing of asynchronous dynamics with SLCG and its related model checkers
PermReach and ASPReach.

In synchronous case, the rules R learned by LFIT represent a necessity:
h(R) will be in the next state if R match the current state. In asynchronous
case, the rules represent a possibility: h(R) can be in next state if R match
the current state. This mechanics allows one to model non-determinism:
two rules R, R′ can have the same head variables but different values and
match the same state which occurs in these case: h(R) = varval, h(R′) =
varval

′
, val 6= val′ and varval

′′ ∈ b(R), varval
′′′ ∈ b(R′) =⇒ val′′ = val′′′.

In [49], multi-valued least specialization was used to learn multi-valued
synchronous systems dynamics. Like in previous versions of LFIT, asyn-
chronous LFIT takes a set of state transitions E as input and outputs a
logic program P that realizes E.

Starting from the most general rules, least specialization allows one to
learn the minimal rules of such system iteratively from its state transitions
(I, J) ∈ E. For every possible varval, varval 6∈ J the most specific rule
that is not consistent, with the transition, i.e. an anti-rule, was generated:
MSR := varval ← I. Here, for the asynchronous case, this anti-rule is
generated and the revision occurs only if @(I, J ′) ∈ E, varval′ ∈ J ′, i.e. it is
impossible to have a transition to varval from I. Each rule of the currently
learned program P that subsumes such an anti-rule is specialized using least
specialization. The resulting program P ′ realizes all previously treated state
transitions plus (I, J). By doing so iteratively for each transition, the al-
gorithm outputs a program P which models the dynamics of the system
observed in the state transitions E.

Asynchronous LFIT algorithm

• INPUT: B a set of annotated atoms and E a set of state transitions

• Initialize P := {varval ← ∅ | varval ∈ B}

• For each (I, J) ∈ E

77

– For each varval ∈ B
∗ If @(I, J ′) ∈ E, varval ∈ J ′

∗ MSR := varval ← I

∗ Extract each rule R of P that subsumes MSR: MR := {R ∈
P | h(R) = varval, b(R) ⊆ I}, P := P \MR

∗ For each R ∈MR

· Compute its least specialization P ′ = ls(R,MSR,B).

· Remove all the rules in P ′ subsumed by a rule in P .

· Remove all the rules in P subsumed by a rule in P ′.

· Add all remaining rules in P ′ to P .

• OUTPUT: P

Like in Definition 4.2, here we introduce the consistency between reach-
ability properties and logic programs.

Definition 4.19 (Consistent program). Let P be a logic program, Re (resp.
Un) be a set of reachability (resp. unreachability) properties, P is said to
be consistent with Re (resp. Un) iff ∀(α, ω) ∈ Re,∃ a trajectory t in P s.t.
α.t = ω and ∀(α, ω) ∈ Un, @ a trajectory t in P s.t. α.t = ω.

Specializing a rule is to add elements in the body of a rule, thus to make
the condition of a rule more difficult to be satisfied (in a more specialized
situation) as the condition of firing becomes more strict.

Definition 4.20 (Least specialization of a rule). Let R be a rule, a least spe-
cialization of R is a rule R′ ∈ ls(R) := {h(R) ← b(R)∪{varval}, @varval′ ∈
b(R)}. If b(R) contains already all the variables in the logic program P , the
only way to specialize R is to remove R from P as there is no more available
variables to be added in b(R).

Similarly, generalization of a rule is to remove certain elements in the
body of a rule, thus to make the condition of a rule easier to be satisfied.

Definition 4.21 (Least generalization of a rule). Let R be a rule, a least
generalization of R is a rule R′ ∈ lg(R) := {h(R)← b(R)\{x}, x ∈ b(R)}.

Definition 4.22 (Revisable). A logic program P is said revisable w.r.t. a
reachability (resp. unreachability) property if: ∃P ′ ∈ {(P \ RP)∪{R′ | R ∈
RP , R

′ ∈ ls(R) ∪ lg(R)}} | RP ⊆ P}. P is revisable w.r.t. a set of property
S: if their exists an ordering S′ of the elements of S such that each i-th
revision, 0 ≤ i ≤ |S′|, (P being the 0-th revision) is revisable w.r.t. the
(i+ 1)-th property.

78

From definition 4.22, it follows that the revision of logic program P w.r.t.
a set of reachability/unreachability properties S can be found (or proved to
be non-existent) by brute force enumeration of all possible ordering of S and
trying all possible iterative revisions of P . In the next section, we propose
an algorithm exploiting the SLCG structure to restrict the search to valid
ordering of the properties.

4.4.4 Revision

In this section, we are going to present our algorithm M2RIT (Model
Revision via Reachability and Interpretation Transitions) exploiting the
previous formalization to fit a logic program to reachability properties.
Given a set of state transitions E of an asynchronous system S, a logic
program P is learned via the adaptation of asynchronous LFIT of sec-
tion 4.4.3. When E is partial, the learned program P does not have the
exact dynamics of S. Given a set of reachability properties Re and a set
of unreachability properties Un of S, we propose an algorithm to revise P
so that P is consistent with S in the meaning of reachability. As discussed
previously, this can be done by complete brute force but here we propose a
first attempt to reduce the search space. Furthermore, our goal is to find
what could be considered a metric of minimal revision of P : a revision P ′

s.t. @P ′′, (P ′′ \ P ∩ P ′′) ⊆ (P ′ \ P ∩ P ′)
To make use of SLCG to study reachability properties, we need the

model noted in the form of ABAN. As the notation of transitions in ABAN
is {ai, bj} → ck, which can be perfectly translated to NLP ck ← ai, bj . This
property is valid only in binary situation.

Specialization and generalization algorithms aim at revising the rules
nearest to the target state in the SLCG. If it is not possible, they try to
revise the successor, if there is no possible solution, return ∅ to show the
input logic program is not revisable. Specialization operation is limited by
the observation. If P after specialization can not explain all the transitions,
the specialization is not admissible. If the direct revision on the unsatisfied
element fails, we replace the element with its successsors in the SLCG.

Well-formed detailed algorithms of specialization and generalization are
Algorithm 12 and Algorithm 13 in Appendix B.

Specialization algorithm:

• Input: a logic program P , an unsatisfied element reach(α, ω) =
False, a satisfied reachable set Re

• Output: modified logic program P or ∅ if not revisable

79

1. Rev ← {ω}

2. For each R s.t. h(R) = Rev, for each R′ ∈ ls(R) and P∪{R′}\{R} is
consistent with E

(This consistency can be verified by the condition @(I, J) ∈ E s.t.
@R′ ∈ P∪{R′′}\{R}, h(R′′) ∈ J, b(R′′) ⊆ I})

• If P ′ ← P\{R}∪{R′}, reach(α, ω) = False for P ′ and P ′ satisfies
Re, return P ′

3. Rev ← b(R) with h(R) = Rev and back to step 2

4. There is no revision for reach(α, ω) = False, return ∅

Generalization is similar to specialization but without the constraint of
the observation, as the observation is partial, P may describe some state
transitions never observed.

Generalization algorithm:

• Input: a logic program P , an unsatisfied element reach(α, ω) = True,
a satisfied unreachable set Un

• Output: modified logic program P or ∅ if not revisable

1. Rev ← {ω}

2. For each R s.t. h(R) = Rev, for each R′ ∈ lg(R)

• If P ′ ← P\{R}∪{R′}, reach(α, ω) = True for P ′and P ′ satisfies
Un, return P ′

3. Rev ← b(R) with h(R) = Rev and back to step 2

4. There is no revision for reach(α, ω) = True, return ∅

The main revision algorithm (see below) starts with constructing the
SLCGs to verify Re and Un so as to obtain the reachability/unreachability
properties to be satisfied. Then, for the unsatisfied properties, the program
P has to be revised. SLCG for one target state may contain the topology
of SLCGs for other target states, hence revision based on one SLCG can
influence other SLCGs. By starting with the SLCGs with least dependencies
on others, i.e. the ones containing the least other SLCGs (the ones with the
smallest cardinality of li), it increases the chance of partially satisfying other

80

unsatisfied properties (step 3 and 4). Then all possible revisions of P are
generated using least specialization or generalization according to li ∈ Re
or li ∈ Un (step 6 and 7). Each revision of P is checked against Re and Un
to verify that all properties satisfied by P are still satisfied. If new ones are
satisfied, L is updated accordingly (step 5). We update P until there is no
unsatisfied properties (step 8 and 9). Finally, if a revision of P consistent
with all given properties is found the algorithm terminates and outputs it.

Main revision algorithm:

• Input: a logic program P , a reachable set Re and an unreachable set
Un

• Output: revised logic program P or ∅ if not revisable

1. Construct the cycle-free SLCGs for the elements in Re and Un and
compute unsatisfied sets Re′ ⊆ Re and Un′ ⊆ Un which are to be
revised

2. If Re′ = ∅ and Un′ = ∅, return P

3. Let L = {li, . . .} with i ∈ Re′ ∪ Un′, li = {j, . . .}, with j = (α, ω),
ω ∈ SLCG(i) and j ∈ Re ∪ Un

4. Pick one of li ∈ L of the smallest cardinality: @l′i, |l′i| < |li|

5. If li ∩ (Re′ ∪ Un′) 6= ∅,

(a) Reconstruct the SLCG for i

(b) If li becomes consistent because of former revision, L ← L\{li}
and back to step 4

6. If i ∈ Un′, specialize P to make i unreachable, if not revisable, return
∅

7. Otherwise generalize P to make i reachable, if it is not revisable,
return ∅

8. L← L\{li}

9. If L 6= ∅ , back to step 1

10. Return P

81

4.4.5 Toy Example

After introducing the algorithms, we are going to show how they work in a
minimum toy example.

Example 4.7. Let us consider a logic program P with rules: a1 ← b1,
a1 ← d1 ∧ c0, b1 ← c0, c1 ← b0 and initial state: α = 〈a0, b0, c0, d0〉.
Reachability properties to be verified: Un = {(α, b1), (α, d1)} and Re =
{(α, a1)}. Figure 4.12 shows the SLCG of a1.

We compute first L revealing the inclusion relations between the SLCGs:
L = {{(α, a1), (α, b1), (α, d1)}, {(α, b1)}, {(α, d1)}}. The SLCG of b1 and
that of d1 are contained in the SLCG of a1. We begin with the SLCG
containing least others SLCG of b1 or d1. b1 ← c0 can be specialized to
b1 ← c0 ∧ a1 to make b1 unreachable. Here the a1 becomes unreachable due
to the unreachability of b1. Generalizing a1 ← d1∧c0 can solve this problem,
it can only be generalized to a1 ← c0 as d1 ∈ UK .

a1

d1

c0

×
∅

b1 c0 ∅

a1

Figure 4.12: Toy example of M2RIT, where dashed arrows are the revisions.

4.5 Résumé

In this chapter we presented two methods to infer/revise models based on
different a priori knowledge.

The first method CRAC (Completion via Reachability And Correla-
tions) consists of two parts. The first part allows one to construct a model
among a large number of candidate regulations while aiming at (un)reaching
certain states, but it is unable to obtain the candidates. To cover this dis-
advantage, the second part, statistic approach via correlation coefficients
provides us with candidate regulations to be verified by the first part. Cor-
relation coefficient uses all the continuous time-series data to suggest what
a complete model might be, thus can feed the first part with candidate
regulations.

Considering the disadvantages of the combination of CRAC, the sec-
ond method M2RIT (Model Revision via Reachability and Interpretation

82

Transitions) does not need candidate transitions and can adjust the result
by reachability constraints. It revises the logic program learned by LFIT
w.r.t. the knowledge on reachability properties. When talking about reach-
ability, we should fix at first update scheme of the dynamic system. We use
asynchronicity as the update scheme as it implies non-determinism which is
meaningful to the modeling of nuanced uncertain parts in biology. From the
point of view of revisability, asynchronicity gives the possibilities of modi-
fying the existing transitions. If the logic program is revisable, the revision
is consistent with both state transitions and reachability information. In-
tuitively speaking, a given set of time-series data is usually consistent with
less synchronous systems than asynchronous systems, thus it is more likely
to revise an asynchronous system to satisfy certain reachabilty constraints.

The drawback of M2RIT is that there is a loss of information due to
discretization (input time-series data must be discretized), while the CRAC
makes full use of the original continuous data. Moreover, M2RIT does not
guarantee the minimal revision of the logic program.

From the contents of this chapter, we propose several topics as possible
future work:

• Developing heuristics to improve the performance of the existing algo-
rithms

• Considering the metric for minimal revision and designing a related
algorithm

• Reachability in the meaning of continuous models

• Adapting more dynamical properties other than reachability

83

84

Chapter 5

Tests and Benchmarks

After the presentation of the main theoretical contents, we are going to
show in this chapter some results of the implementation:

• Comparison of PermReach, ASPReach which were introduced in
Chapter 3 with several state-of-the-art model checkers: exhaustive
reachability analyzers (Mole, NuSMV and ASP solver without op-
timization), Pint on their scalability (biggest tractable model size),
efficiency (runtime) and precision (global conclusiveness)

• As there is no model revision technique based on reachability in
the literature, we are going to show the performance of CRAC and
M2RIT in Chapter 4 on random examples of different sizes.

In Chapter 3, we have illustrated the concepts of the new modeling frame-
work ABAN and several related definitions which describe the reachability
problem under this framework. Afterwards, we have shown the theoretical
effectiveness and correctness of our reachability analyzers PermReach and
ASPReach. To ensure their capacity, we use small models to verify the cor-
rectness, i.e. PermReach and ASPReach obtain the same result as other
model checkers. Then we apply all the analyzers on a series of models with
increasing sizes to obtain the limit of the capacity of each analyzer. These
tests show our analyzers can be applied to models with more than 1000
automata while traditional ones fail at models with 50 automata.

As for CRAC and M2RIT, CRAC uses reachability properties and con-
tinuous time-series data while M2RIT uses reachability properties and dis-
cretized time-series data.

85

5.1 Comparison of Reachability Analyzers

In this section, we evaluate the reachability analyzers through tests on com-
puting power, conclusiveness and results on random examples. The com-
petitors are

• traditional model checkers Mole1 and NuSMV2, pure ASP solver [1]

• pure static analyzer Pint [56]

• our hybrid analyzers PermReach and ASPReach

All tests were run on an Intel Core i7-3770 CPU, 3.4GHz with 8GB RAM
computer.

5.1.1 Performance on Computing Power

To evaluate the scalability in in silico networks, we take T-cell Receptor
model (TCR) [71] and epidermal growth factor receptor model (EGFR) [72]
as examples, with the former one containing 95 automata and 206 transitions
and the latter one containing 104 automata and 389 transitions respectively.

These models are originally Boolean networks. According to the ap-
proach in Appendix A.1, BNs are transformed into ABANs. Here, we ran
the same test as in [29]. In the TCR model, we take 3 automata as in-
put (cd4 cd28 tcrlig), vary exhaustively their initial states combinations
(23) and finally take the reachability of states of 5 automata (sre ap1 nfkb

nfat sigmab) as output. Similarly we carried a bigger test on EGFR model
with 13 automata as input and 12 automata as output. We first tested the
performance of traditional model checkers and pure ASP approach which
have the biggest theoretical complexities. For traditional model checkers,
Mole turns out to be memory-out for 6 in 12 outputs, and all memory-out
for NuSMV in model EGFR.

Ben-Abdallah et al. [1] have implemented reachability analyzer using
pure ASP solver, showing it has a runtime of the same scale (See Ap-
pendix D). Thanks to the efficiency of Clingo3, pure ASP solver begins
to fail at 80 automata rather than 50 which is the limit of traditional model
checkers. But this computational capacity is still not enough as the number
of automata in systems biology is usually in the scale of 103 or bigger.

1http://www.lsv.fr/~schwoon/tools/mole
2http://nusmv.fbk.eu
3http://potassco.sourceforge.net/

86

http://www.lsv.fr/~schwoon/tools/mole
http://nusmv.fbk.eu
http://potassco.sourceforge.net/

Due to the big state space, traditional model checkers and pure ASP
method are not applicable but they can be used to validate non-exhaustive
approaches on small examples. The runtime results of Pint, PermReach
and ASPReach are listed in Table 5.1 on page 89. Pint runs faster than AS-
PReach in TCR test but slower in EGFR test because there are inconclusive
instances which cost more the runtime.

5.1.2 Performance on Conclusiveness

To validate our approaches, we carried tests on a small example, λ-phage
model [78] to compare with an alternative reachability analyzer Pint [61] im-
plementing solely an analysis using LCG [56, 29, 59]. λ-phage is originally
a multivalued model. We compressed its multivalued variables to transform
it into a Boolean model. In this model with 4 automata and 12 transitions
(without taking consideration of the self-regulations), PermReach and AS-
PReach show complete conclusiveness while Pint cannot (Figure 5.1). Pint
cannot decide whether cro1 is reachable or not, because it does not con-
sider the order in the state sequence even though there exists a solution of
length 3: cII0 :: cI0 :: cro0 corresponding to the trajectory {cI1} → cII0 ::
{cII0} → cI0 :: {cII0, cI0} → cro0.

cro1

cII0 cI1 ∅

cI0

Figure 5.1: An SLCG of λ-phage model, automaton cI appears in both
branches of the AND gate. Pint cannot decide the reachability of cro0.

When dealing with more complex topology of SLCGs in term of branches,
PermReach is not able to handle some of the special cases where multiple
states of one automaton appear in different branches (Figure 5.2). Theses
cases are solvable by ASPReach.

PermReach is not able to deal with the cases where multiple states of
one automaton appear in the branches of one AND gate (d0 and d1 in
this example). There exists a consistent state sequence: d1 :: b1 :: c1 :: a1

corresponding to the trajectory {c0} → d1 :: {d0, a0} → b1 :: {d1, e0} → c1 ::
{b1, c1} → a1 which could be found by ASPReach.

87

a1

b1

d0 ∅

a0 ∅

c1 d1 c0 ∅

e0 ∅

Figure 5.2: Counterexample of SLCG that cannot be solved by PermReach.
The former counterexample shows PermReach is not fully inconclusive.

The whole approach is implemented in Python34. The call of ASP in
Python is done by package pyasp5.

In the TCR tests, our approach gives exactly the same result as Pint
did. As for EGFR tests, ASPReach returned no inconclusive output.

As seen in Table 5.1 on page 89, our approach can be more conclusive
than Pint for ABANs. Model-checkers using global search are perfectly
conclusive for all tests (including λ-phage model) and memory-out on latter
two tests so they are not listed in the table. In the configuration of heuristics,
we set a threshold for OR gates. If there are less than 10 OR gates
after preprocessing, the computation will be shifted from heuristic to the
enumeration of all combinations of OR gates. This is the case for these
three benchmarks. The experiments show the ability of ASPReach is already
more conclusive than Pint in “simple” cases.

5.1.3 Performance on Random Examples

Besides the tests on the examples coming from the literature, we have also
carried tests on some randomly generated ABANs to check the generality
and the runtime performance of PermReach. The ABANs are generated as
follows:

Given the number of transitions, for every transition tr = A → ah to
be generated, its head ah is randomly chosen from LS, the first element of
the body A1 is randomly chosen from LS1 = LS\{ah, a1−h}. For i > 1, if
Ai−1 exists (suppose Ai−1 = bx), we generate Ai with an 80% probability,
choosing randomly from LSi = LSi−1\{bx, b1−x}.

One test is on the different numbers of automata with the same density

4Code and testing data available at https://github.com/XinweiChai/reach_and_

revision
5https://pypi.python.org/pypi/pyasp

88

https://github.com/XinweiChai/reach_and_revision
https://github.com/XinweiChai/reach_and_revision
https://pypi.python.org/pypi/pyasp

Model λ-phage
Inputs 4 Outputs 4

Total tests 24 × 4 = 64
Analyzer Pint PermReach ASPReach
Reachable 36(56%) 38(59%)

Unreachable 26(41%)
Inconclusive 2(3%) 0(0%)

Total time < 1s
Model TCR
Inputs 3 Outputs 5

Total tests 23 × 5 = 40
Analyzer Pint PermReach ASPReach
Reachable 16(40%)

Unreachable 24(60%)
Inconclusive 0(0%)

Total time 7s 0.85s 40s
Model EGFR
Inputs 13 Outputs 12

Total tests 213 × 12 = 98, 304
Analyzer Pint PermReach ASPReach
Reachable 64,282(65.4%) 74,268(75.5%)

Unreachable 24,036(24.5%)
Inconclusive 9,986(10.1%) 0(0%)

Total time 9h50min 15min31s 3h46min

Table 5.1: Results of the tests on small (λ-phage) and large (TCR, EGFR)
examples from literature. “Reachable”, “Inconclusive” and “Unreachable”
give respectively the number of different results of reachability, while “Total
time” depict the maximum time of the individual computations.

(average number of transitions per automaton) of ABAN. Fixing the density
to 3, we vary the number of automata from 10, 20, . . . , 100, 200, . . . , 1000. In
the instances with less than 300 automata, the runtime of each reachability
check is less than 0.1s. Figure 5.3(a) and Figure 5.3(b) show the average
runtime is less than 5 seconds even if there are 1000 automata. Moreover,
the longest runtime among the test sets is less than 20s. Because we stop
the computation if one reachability check takes more than 20s and we note
it as timeout. We find no timeout case.

Another test is on different densities with the same number of automata.
In Figure 5.3(b), we fixed |Σ| = 20 and vary the number of the transitions
per automaton (density) from 1 to 12. The runtime peak is at density 8.
A possible explanation is that even if the topology of the network is more

89

complex with the growth of density, more available transitions lead to more
pathways from the initial state to the target state, thus the heuristics may
end with less trials.

200 400 600 800 1,000

0

2

4

6

ABAN size

ru
n
ti

m
e

(s
)

PermReach
ASPReach

(a) Runtime with fixing the density to 3

0 2 4 6 8 10 12

0

0.5

1

1.5

2

ABAN density

ru
n
ti

m
e

(s
)

PermReach
ASPReach

(b) Runtime with fixing the number of au-
tomata to 20

Figure 5.3: Average Runtime tests of PermReach and ASPReach on random
generated ABANs

5.2 Implementation of CRAC and M2RIT

CRAC and M2RIT are algorithms for revising existing models using reach-
ability information and sets of revisable candidate transitions, with the for-
mer adding and removing transitions and the latter revising existing tran-
sitions.6. We suppose that the sets come from time-series data.

5.2.1 CRAC

CRAC is based on the hypothesis that time-series data is consistent with
differential equations. We test it by the following steps:

1. Generate random differential equations E

2. Generate time-series data tsd from E

3. Construct an ABAN A = (Σ, T) consistent with E, compute its reach-
ability information Re, Un using ASPReach

6Code and testing data available at https://github.com/XinweiChai/reach_and_

revision

90

https://github.com/XinweiChai/reach_and_revision
https://github.com/XinweiChai/reach_and_revision

4. Obtain a partial ABAN A′ = (Σ, T ′) with T ′ ⊂ T , compute its reach-
ability information Re′ and Un′ using ASPReach

5. Infer candidate regulations R from E

6. Construct an ABAN A′′ = (Σ, T ′) based on A′, Re, Un, Re′, Un′ and
R s.t. A′′ satisfies Re, Un using CRAC

In step 1, given the set of variables Σ, every differential equation asso-
ciated to xv ∈ Σ is ∆xv =

∑
u∈Σ′ xukuv. To generate such equation, we

generate first Σ′ ⊆ Σ\{v} randomly. The first element of Σ′ is randomly
chosen from Σ\{v}. For i > 1, if (i− 1)-th element of Σ′ exists, we generate
the i-th element with an 80% probability, choosing from Σ \ (Σ′∪{v}). For
parameter kuv, we choose a random number in [−1,−0.5] ∪ [0.5, 1].

In step 2, we generate a possible time-series. To make it consistent with
differential equations (simultaneous change), we choose the next state from
synchronous successors. Every state change can be regarded as a composi-
tion of several asynchronous state changes without considering the orders.
One of the drawbacks is that time is not taken into account.

We then hide randomly a part of transitions (20% of all the transitions)
to obtain T ′.

From the running result, we discovered that CRAC is not able to retrieve
all the transitions in T but can satisfy the reachability properties provided
by A. We noticed that the added transitions can be similar to the hidden
transitions but with different logic operators, e.g. {b1, c1} → a1 could be
replaced by {b1} → a1 and {c1} → a1.

The performance of CRAC also depends on the discretization which can
be a possible future topic of studies.

5.2.2 M2RIT

The test of M2RIT is analogous:

1. Generate random time-series data tsd

2. Obtain partial time-series data tsd′ ⊂ tsd

3. Infer ABAN A = (Σ, T) from tsd using asynchronous LFIT, compute
its reachability information Re and Un using ASPReach

4. Infer ABAN A′ = (Σ, T ′) from tsd′ using asynchronous LFIT, compute
its reachability information Re′ and Un′ using ASPReach

91

5. Construct an ABAN A′′ = (Σ, T ′) based on A′, Re, Un, Re′, Un′ s.t.
A′′ satisfies Re, Un using M2RIT

We generate a random ABAN like in Section 5.1. We then choose the
next state from asynchronous successors are generated by an equi-probable
next state. This operation allows us to obtain a time-series data matching
perfectly asynchronous update scheme as there is at most one state change
for all automata at each time point. Hence, such time-series data fit perfectly
asynchronous LFIT algorithm. However, they do not exist in real world as
we cannot limit the number of state changes at each observation.

A =


t 0 1 2 3

a 0 1 1 1
b 0 1 0 1
c 1 0 1 1
d 0 0 0 1

 A′ =


t 0 1 2 3

a 0 1 1 1
b 0 0 1 1
c 1 1 1 0
d 0 0 0 0


The left matrix A is an example of generalized time series data, where at each
time point multiple variables can change their values. The right matrix A′

is an example of “asynchronous” time-series data, where at each time point
at most one variable changes its value. From t = 0 to t = 1, A shows a
direct transition (0, 0, 1, 0) → (1, 1, 0, 0) where A′ interprets this transition
in details (from t = 0 to t = 3) under the hypothesis that two variables
cannot change their values exactly at the same time.

Both can be used as input for CRAC but only the latter one is proper
for M2RIT to fit asynchronous LFIT algorithm.

Like in the last section, we hide 20% of the transitions and offer a set of
reachability information.

From the running result, we discover that M2RIT is not able to retrieve
all the transitions in T but can construct a new ABAN A′′ which simulates
A in the meaning of reachability. This behavior resembles that of LFIT
algorithm, as it aims at obtaining a model that reproduces the time series
data without considering if the model is identical to the real one.

Limited by the computing capacity of ASPReach, CRAC and M2RIT
can deal with models with up to 1000 variables.

5.3 Résumé

In this chapter, we have shown the performance of the practical implemen-
tation of the algorithm introduced in this thesis. Different results approved

92

the properties of different methodologies shown in the previous chapters.
PermReach and ASPReach show that they are more conclusive than

Pint, the former work of our laboratory according to conclusiveness tests.
They are also more efficient than traditional reachability analyzers like Mole
and NuSMV according to computing power tests. Between PermReach and
of ASPReach, there is a trade-off between conclusiveness and efficiency:
PermReach is more efficient than ASPReach but with less conclusiveness.

The tests of CRAC and M2RIT show that they can be applied to re-
vise models with up to 1000 variables if proper and sufficient reachability
information is given. Unfortunately, there is no existing work that uses
reachability properties to revise models, we cannot run a competition be-
tween CRAC and M2RIT and the state-of-the-art methods.

93

94

Chapter 6

Conclusion and Outlooks

We will recap in this chapter what have been discussed during this thesis
and propose some possible future work. We answered the two questions
in Section 1.2, how to analyze the reachability efficiently and precisely
(Chapter 3) and how to build a model by given time series data and
reachability information (Chapter 4).

With the increasing amount of biological data, the needs of analyzing,
extracting knowledge and predicting system behaviors based on these data
is becoming crucial. Modeling is one of the ways to answer all these needs
by collecting, classifying, analyzing the common features of the data and
make reasonable prediction.

The application of modeling in biological engineering can be diverse.
By analyzing the mechanics of a cell or a bacterium, one may locate the
gene to be knocked-off or knocked-in in order to let the system perform
his desired system behaviors; by analyzing the interaction between human
body and medicine in molecular scale, one may ameliorate existing targeted
therapies or design new ones; in pharmaceutics, a thorough understanding
of bio-chemical reactions allows one to design new medicine or new synthesis
processes.

As also mentioned in the introduction chapter, robotic models are also
of importance. For a non black-box system, model checking is helpful to
controlling the system via setting specific initial states, ensuring system
safety and robustness.

In robotics, one prefers synchronous models as every move of a robot is
programmed, the system parameters are usually accessible. However model-
ings in systems biology are different. Since the inner mechanics of biological

95

systems are usually unknown, or partially known and biological systems have
intrinsic non-determinism (e.g. cell differentiation), these two facts suggest
us to consider a non-deterministic model. As discussed in Section 2.2, asyn-
chronicity can nearly impose non-determinism. Moreover, to avoid the so-
lution of differential equations and tolerate some noise, discretized models
are preferred. In all, asynchronous modelings are used in the most of this
thesis.

6.1 Contributions

Based on the background of systems biology, our goal is to enrich and correct
the existing models with additional knowledge. To do so, we have to first
develop efficient model checkers to verify whether the model is consistent
with qualitative properties such as reachability (Chapter 3).

In Section 2.3, we stated that exact model checkers provide conclusive
results of dynamic properties but the computational cost is unaffordable
while the computational cost of abstract model checkers are acceptable but
the results are not necessarily conclusive.

With the previous work on the Asynchronous Automata Network (AAN)
by Paulevé et al. [29], we squeeze the application domain of AAN and simpli-
fied its semantics, called ABAN (Asynchronous Binary Automata Network).
This semantic change is to give a possibility of making related reachability
analyzer more conclusive.

Our research focuses on a static analysis called over-approximation of
the system dynamics as this abstract method relies on only topological in-
formation of the model instead of simulation. We also proposed Simplified
Local Causality Graph (SLCG) to visualize the static analysis on ABANs.
The computation is efficient but still inconclusive.

However, the result can be used in the refined analysis if it is not conclu-
sive. During the theoretical analysis of the reason of inconclusiveness of the
over-approximation, we developed two model checkers to deal with the key
components impeding conclusiveness. They are based on heuristic methods
and pure static analysis:

• PermReach (Section 3.4.1)

which performs a limited search of permutations on conjunctive nodes
in the SLCG as the existence of conjunctive node is one of the fac-
tor of inconclusiveness. Since PermReach does not take the nodes
appearance orders into account, the analysis remains theoretically in-
conclusive.

96

• ASPReach (Section 3.4.2)

which performs a global search of possible nodes order in the SLCG
with the help of Answer Set Programming (ASP). ASPReach cov-
ers the weak-point of PermReach but is still inconclusive due to the
heuristic preprocessing which simplifies the problem but creates in-
equivalence.

PermReach and ASPReach perform normally on models with 1000 com-
ponents while traditional model checkers fail to compute and static analyzer
Pint also fails to give conclusive results on certain instances (Section 5.1).
Moreover, ASPReach is more conclusive than PermReach but need extra
runtime.

As a tentative, we tried to extend the application of PermReach and AS-
PReach to multi-valued models (restricted AAN). However, this extension
requires a presumption which is not realistic enough in biological systems
but remains to be an interesting heuristics when the requirement is to find
only one reachable trajectory instead of a global solution (Section 3.5).

Next, with the unsatisfied properties detected by our model checkers, we
need a way to correct the model in order to make the system consistent with
all the wanted properties (Chapter 4).

Finally, we provide with two model learning/revision techniques based on
reachability analysis, covering the incapability of taking background knowl-
edge into account.

• CRAC (Completion via Reachability And Correlations)

first applies ordinal differential equation model to generate regulation
candidates. Then it tries to satisfy all the reachability requirements by
adding/deleting transitions in the model according to the regulation
candidates.

• M2RIT (Model Revision via Reachability and Interpretation Transi-
tions)

is a strengthening to the capability of LFIT (Learning From Interpreta-
tion Transitions) framework to the learning of Boolean asynchronous
systems in the form of logic programs. Unlike CRAC, M2RIT uses
the reproducibility as a constraint. When changing the transitions in
the model, the model has to always be able to reproduce the original
time-series data.

As far as we know, the revision of dynamic model based on reachability
properties has never been considered in the literature. To our knowledge,

97

this field has been explored only by Yamamoto et al. [85], who have studied
the completion of static models limited by static data.

CRAC and M2RIT are able to deal with models of 1000 variables thanks
to the high performance of ASPReach. However they are not theoretical
conclusive as they are built on heuristics, possessing risks of failure.

Moreover, even though M2RIT can precisely reproduce all the provided
time-series data, it is sensitive to noise, inheriting the fragility of LFIT.

After all, to enhance learning methods, we need a lot of studies to prove
the causality instead of correlation/consistency by fitting the data.

To sum up the contents in this thesis, we have:

1. studied different modeling frameworks and semantics

2. investigated the weakness of existing model checkers and model learn-
ing methods

3. developed reachability analyzers PermReach and ASPReach

4. developed model revisors CRAC and M2RIT

6.2 Future Work

• From the analysis of the drawbacks of PermReach and ASPReach, we
assert that the way towards high efficiency and precision is probably
hybrid analysis where the needs of precision and effectiveness meet.

We propose to use more accurate heuristics (for example at the choice
on OR gates of an SLCG) instead of random choice so as to access
branches with higher possibility of reachability.

• We studied only Boolean-related models in order to use a stronger
conclusiveness of SLCG. It is however possible to generalize the study
to multi-valued systems.

Normal Logic Program (NLP) might be a proper modeling because it
ignores the state of departure while different pathways of a variable
might be a cause of inconclusiveness. For example, transition a1 →
b0 � b2 has multiple pathways for automaton b: b0 → b2, b0 → b3 → b2,
etc. When this transition is translated to b2 ← a1, it does not require
b0 as a state of departure which does not cause such problems.

98

• We are now considering the incorporation of parametrization space
abstraction, like the work of [44], to improve the performance of our
model checkers/revisors regarding versatility.

The study of parametrization space allows us to obtain different prop-
erties of a set of models rather than only squeezing consistent tran-
sitions only by reachability properties. Also, parametrization space
methods is still restrictive: they can explore the full dynamics up to
dozens of variables. New model checkers with versatility and less time
or memory cost may be interesting.

• M2RIT does not guarantee the minimal revision of the logic program.

Considering the metric for minimal revision and designing a related
algorithm will be interesting. The definition of “minimal” can be of
different means: allowing changing minimal number of transitions,
allowing modifying minimal number of elements of each transition or
allowing least inconsistency, etc. Also, when revising the models, there
might be some common parts in the SLCGs of inconsistent reachability
properties. Making use of these common parts might be useful to
reaching the goal of minimal revision.

99

100

Bibliography

[1] Emna Ben Abdallah, Maxime Folschette, Olivier Roux, and Morgan
Magnin. Exhaustive analysis of dynamical properties of biological
regulatory networks with answer set programming. In 2015 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM),
pages 281–285. IEEE, 2015.

[2] Parosh Aziz Abdulla, Per Bjesse, and Niklas Eén. Symbolic
reachability analysis based on SAT-solvers. In International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 411–425. Springer, 2000.

[3] Tatsuya Akutsu, Morihiro Hayashida, Wai-Ki Ching, and Michael K
Ng. Control of boolean networks: Hardness results and algorithms for
tree structured networks. Journal of theoretical biology,
244(4):670–679, 2007.

[4] Kunihiro Baba, Ritei Shibata, and Masaaki Sibuya. Partial correlation
and conditional correlation as measures of conditional independence.
Australian & New Zealand Journal of Statistics, 46(4):657–664, 2004.

[5] Chitta Baral. Knowledge representation, reasoning and declarative
problem solving. Cambridge university press, 2003.

[6] Gilles Bernot and Fariza Tahi. Behaviour preservation of a biological
regulatory network when embedded into a larger network.
Fundamenta Informaticae, 91(3-4):463–485, 2009.

[7] Richard Bonneau, David J Reiss, Paul Shannon, Marc Facciotti,
Leroy Hood, Nitin S Baliga, and Vesteinn Thorsson. The Inferelator:
an algorithm for learning parsimonious regulatory networks from
systems-biology data sets de novo. Genome biology, 7(5):R36, 2006.

101

[8] Connie M Borror. Practical nonparametric statistics. Journal of
Quality Technology, 33(2):260, 2001.

[9] Robert K Brayton, Gary D Hachtel, Alberto Sangiovanni-Vincentelli,
Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen Edwards,
Sunil Khatri, Yuji Kukimoto, Abelardo Pardo, et al. VIS: A system
for verification and synthesis. In International conference on computer
aided verification, pages 428–432. Springer, 1996.

[10] Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L
Dill, and Lain-Jinn Hwang. Symbolic model checking: 1020 states and
beyond. Information and computation, 98(2):142–170, 1992.

[11] Xinwei Chai, Morgan Magnin, and Olivier Roux. A heuristic for
reachability problem in asynchronous binary automata networks,
2018. arXiv:1804.07543v1.

[12] Xinwei Chai, Tony Ribeiro, Morgan Magnin, Olivier Roux, and
Katsumi Inoue. Static analysis and stochastic search for reachability
problem. In 9th Static Analysis in Systems Biology, affiliated with
Static Analysis Symposium, 2018. In press.

[13] Xinwei Chai, Tony Ribeiro, Morgan Magnin, Olivier Roux, and
Katsumi Inoue. Using reachability properties of logic program for
revising biological models. Work in Progress of International
Conference on Inductive Logic Programming, 2018.

[14] Thomas Chatain, Stefan Haar, and Löıc Paulevé. Boolean networks:
Beyond generalized asynchronicity. In International Workshop on
Cellular Automata and Discrete Complex Systems, pages 29–42.
Springer, 2018.

[15] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity results
for 1-safe nets. Theoretical Computer Science, 147(1-2):117–136, 1995.

[16] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco
Roveri. NuSMV: a new symbolic model checker. International Journal
on Software Tools for Technology Transfer, 2(4):410–425, 2000.

[17] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.
Bounded model checking using satisfiability solving. Formal methods
in system design, 19(1):7–34, 2001.

102

[18] Edmund M Clarke. The birth of model checking. In 25 Years of
Model Checking, pages 1–26. Springer, 2008.

[19] Edmund M Clarke and E Allen Emerson. Design and synthesis of
synchronization skeletons using branching time temporal logic. In
Workshop on Logic of Programs, pages 52–71. Springer, 1981.

[20] Edmund M Clarke and Qinsi Wang. 25 years of model checking. In
International Andrei Ershov Memorial Conference on Perspectives of
System Informatics, pages 26–40. Springer, 2014.

[21] Conrado Daws and Stavros Tripakis. Model checking of real-time
reachability properties using abstractions. Tools and Algorithms for
the Construction and Analysis of Systems, pages 313–329, 1998.

[22] Alberto De La Fuente, Nan Bing, Ina Hoeschele, and Pedro Mendes.
Discovery of meaningful associations in genomic data using partial
correlation coefficients. Bioinformatics, 20(18):3565–3574, 2004.

[23] Gilles Didier, Elisabeth Remy, and Claudine Chaouiya. Mapping
multivalued onto boolean dynamics. Journal of theoretical biology,
270(1):177–184, 2011.

[24] Elena Stanimirova Dimitrova. Polynomial models for systems biology:
Data discretization and term order effect on dynamics. PhD thesis,
Virginia Tech, 2006.

[25] Elena Dubrova and Maxim Teslenko. A SAT-based algorithm for
finding attractors in synchronous Boolean networks. IEEE/ACM
transactions on computational biology and bioinformatics,
8(5):1393–1399, 2011.

[26] Javier Esparza. Reachability in live and safe free-choice Petri nets is
NP-complete. Theoretical Computer Science, 198(1-2):211–224, 1998.

[27] Ansgar Fehnker, Ralf Huuck, Patrick Jayet, Michel Lussenburg, and
Felix Rauch. Goanna—a static model checker. In International
Workshop on Formal Methods for Industrial Critical Systems, pages
297–300. Springer, 2006.

[28] Jakob Foerster, Ioannis Alexandros Assael, Nando de Freitas, and
Shimon Whiteson. Learning to communicate with deep multi-agent
reinforcement learning. In Advances in Neural Information Processing
Systems, pages 2137–2145, 2016.

103

[29] Maxime Folschette, Löıc Paulevé, Morgan Magnin, and Olivier Roux.
Sufficient conditions for reachability in automata networks with
priorities. Theoretical Computer Science, 608:66–83, 2015.

[30] Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using
Bayesian networks to analyze expression data. Journal of
computational biology, 7(3-4):601–620, 2000.

[31] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max
Ostrowski, Torsten Schaub, and Philipp Wanko. Theory solving made
easy with clingo 5. In OASIcs-OpenAccess Series in Informatics,
volume 52. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[32] Leon Glass. Classification of biological networks by their qualitative
dynamics. Journal of Theoretical Biology, 54(1):85–107, 1975.

[33] Leon Glass and Stuart A Kauffman. The logical analysis of
continuous, non-linear biochemical control networks. Journal of
theoretical Biology, 39(1):103–129, 1973.

[34] RH Hardin, RP Kurshan, SK Shukla, and MY Vardi. A new heuristic
for bad cycle detection using BDDs. In International Conference on
Computer Aided Verification, pages 268–278. Springer, 1997.

[35] David Harel, Orna Kupferman, and Moshe Y Vardi. On the
complexity of verifying concurrent transition systems. Information
and Computation, 173(2):143–161, 2002.

[36] Inman Harvey and Terry Bossomaier. Time out of joint: Attractors in
asynchronous random Boolean networks. In Proceedings of the Fourth
European Conference on Artificial Life, pages 67–75. MIT Press,
Cambridge, 1997.

[37] Jan Hauke and Tomasz Kossowski. Comparison of values of Pearson’s
and Spearman’s correlation coefficients on the same sets of data.
Quaestiones geographicae, 30(2):87–93, 2011.

[38] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
software engineering, 23(5):279–295, 1997.

[39] John P Huelsenbeck and Fredrik Ronquist. MRBAYES: Bayesian
inference of phylogenetic trees. Bioinformatics, 17(8):754–755, 2001.

104

[40] Clark L Hull. The correlation coefficient and its prognostic
significance. The Journal of Educational Research, 15(5):327–338,
1927.

[41] Katsumi Inoue. Logic programming for boolean networks. In IJCAI
proceedings-international joint conference on artificial intelligence,
volume 22, page 924, 2011.

[42] Stuart Kauffman. Homeostasis and differentiation in random genetic
control networks. Nature, 224:177–178, 1969.

[43] Zohra Khalis, Jean-Paul Comet, Adrien Richard, and Gilles Bernot.
The SMBioNet method for discovering models of gene regulatory
networks. Genes, genomes and genomics, 3(1):15–22, 2009.

[44] Juraj Kolčák, David Šafránek, Stefan Haar, and Löıc Paulevé.
Parameter Space Abstraction and Unfolding Semantics of Discrete
Regulatory Networks. Theoretical Computer Science, 2018. In press.

[45] Bret Larget and Donald L Simon. Markov chain monte carlo
algorithms for the bayesian analysis of phylogenetic trees. Molecular
biology and evolution, 16(6):750–759, 1999.

[46] Haitao Li and Yuzhen Wang. On reachability and controllability of
switched boolean control networks. Automatica, 48(11):2917–2922,
2012.

[47] Haitao Li, Yuzhen Wang, and Zhenbin Liu. Stability analysis for
switched boolean networks under arbitrary switching signals. IEEE
Transactions on Automatic Control, 59(7):1978–1982, 2014.

[48] Patrick Lincoln and Ashish Tiwari. Symbolic systems biology: Hybrid
modeling and analysis of biological networks. In International
Workshop on Hybrid Systems: Computation and Control, pages
660–672. Springer, 2004.

[49] David Mart́ınez Mart́ınez, Tony Ribeiro, Katsumi Inoue, Guillem
Alenyà Ribas, and Carme Torras. Learning probabilistic action
models from interpretation transitions. In Proceedings of the
Technical Communications of the 31st International Conference on
Logic Programming (ICLP 2015), pages 1–14, 2015.

[50] Ernst W Mayr. An algorithm for the general Petri net reachability
problem. SIAM Journal on computing, 13(3):441–460, 1984.

105

[51] Kenneth L McMillan. Symbolic model checking. In Symbolic Model
Checking, pages 25–60. Springer, 1993.

[52] Peter Bro Miltersen, Jaikumar Radhakrishnan, and Ingo Wegener. On
converting CNF to DNF. Theoretical computer science,
347(1-2):325–335, 2005.

[53] Duy Nguyen-Tuong and Jan Peters. Model learning for robot control:
a survey. Cognitive processing, 12(4):319–340, 2011.

[54] Rainer Opgen-Rhein and Korbinian Strimmer. From correlation to
causation networks: a simple approximate learning algorithm and its
application to high-dimensional plant gene expression data. BMC
systems biology, 1(1):37, 2007.

[55] Löıc Paulevé. Pint: a static analyzer for transient dynamics of
qualitative networks with IPython interface. In CMSB 2017 - 15th
conference on Computational Methods for Systems Biology, volume
10545 of Lecture Notes in Computer Science, pages 309–316. Springer
International Publishing, 2017.

[56] Löıc Paulevé. Reduction of qualitative models of biological networks
for transient dynamics analysis. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, 15(4):1167–1179, 2018.

[57] Löıc Paulevé, Geoffroy Andrieux, and Heinz Koeppl.
Under-approximating cut sets for reachability in large scale automata
networks. In International Conference on Computer Aided
Verification, pages 69–84. Springer, 2013.

[58] Löıc Paulevé, Courtney Chancellor, Maxime Folschette, Morgan
Magnin, and Olivier Roux. Logical Modeling of Biological Systems,
chapter Analyzing Large Network Dynamics with Process Hitting,
pages 125 – 166. Wiley, 2014.

[59] Löıc Paulevé, Morgan Magnin, and Olivier Roux. Refining dynamics
of gene regulatory networks in a stochastic π-calculus framework. In
Transactions on computational systems biology xiii, pages 171–191.
Springer, 2011.

[60] Löıc Paulevé, Morgan Magnin, and Olivier Roux. From the Process
Hitting to Petri Nets and Back. Technical Report hal-00744807, ETH
Zürich, October 2012.

106

[61] Löıc Paulevé, Morgan Magnin, and Olivier Roux. Static analysis of
biological regulatory networks dynamics using abstract interpretation.
Mathematical Structures in Computer Science, 22(04):651–685, 2012.

[62] James L Peterson. Petri nets. ACM Computing Surveys (CSUR),
9(3):223–252, 1977.

[63] John W Pinney, David R Westhead, and Glenn A McConkey. Petri
net representations in systems biology. Biochemical Society
Transactions, 31(6):1513–1515, 2003.

[64] Jean-Pierre Queille and Joseph Sifakis. Specification and verification
of concurrent systems in CESAR. In International Symposium on
programming, pages 337–351. Springer, 1982.

[65] Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, and
Katsumi Inoue. Learning dynamics with synchronous, asynchronous
and general semantics. In the 28th International Conference on
Inductive Logic Programming, 2018.

[66] Tony Ribeiro and Katsumi Inoue. Learning prime implicant
conditions from interpretation transition. In Inductive Logic
Programming, pages 108–125. Springer, 2015.

[67] Tony Ribeiro, Sophie Tourret, Maxime Folschette, Morgan Magnin,
Domenico Borzacchiello, Francisco Chinesta, Olivier Roux, and
Katsumi Inoue. Inductive learning from state transitions over
continuous domains. In International Conference on Inductive Logic
Programming, pages 124–139. Springer, 2017.

[68] Alexandre Rocca, Nicolas Mobilia, Éric Fanchon, Tony Ribeiro,
Laurent Trilling, and Katsumi Inoue. ASP for construction and
validation of regulatory biological networks. Logical Modeling of
Biological Systems, pages 167–206, 2014.

[69] Christophe Rodrigues, Pierre Gérard, Céline Rouveirol, and Henry
Soldano. Active learning of relational action models. In International
Conference on Inductive Logic Programming, pages 302–316.
Springer, 2011.

[70] Assieh Saadatpour, István Albert, and Réka Albert. Attractor
analysis of asynchronous boolean models of signal transduction
networks. Journal of theoretical biology, 266(4):641–656, 2010.

107

[71] Julio Saez-Rodriguez, Luca Simeoni, Jonathan A Lindquist, Rebecca
Hemenway, Ursula Bommhardt, Boerge Arndt, Utz-Uwe Haus, Robert
Weismantel, Ernst D Gilles, Steffen Klamt, et al. A logical model
provides insights into T cell receptor signaling. PLoS computational
biology, 3(8):e163, 2007.

[72] Regina Samaga, Julio Saez-Rodriguez, Leonidas G Alexopoulos,
Peter K Sorger, and Steffen Klamt. The logic of EGFR/ErbB
signaling: theoretical properties and analysis of high-throughput data.
PLoS computational biology, 5(8):e1000438, 2009.

[73] Thomas Schaffter, Daniel Marbach, and Dario Floreano.
GeneNetWeaver: in silico benchmark generation and performance
profiling of network inference methods. Bioinformatics,
27(16):2263–2270, 2011.

[74] Kazuo Shinozaki, Kazuko Yamaguchi-Shinozaki, and Motoaki Seki.
Regulatory network of gene expression in the drought and cold stress
responses. Current opinion in plant biology, 6(5):410–417, 2003.

[75] Rajat Singhania, R Michael Sramkoski, James W Jacobberger, and
John J Tyson. A hybrid model of mammalian cell cycle regulation.
PLoS computational biology, 7(2):e1001077, 2011.

[76] El Houssine Snoussi. Qualitative dynamics of piecewise-linear
differential equations: a discrete mapping approach. Dynamics and
stability of Systems, 4(3-4):565–583, 1989.

[77] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM
journal on computing, 1(2):146–160, 1972.

[78] Denis Thieffry and René Thomas. Dynamical behaviour of biological
regulatory networks—ii. immunity control in bacteriophage lambda.
Bulletin of mathematical biology, 57(2):277–297, 1995.

[79] René Thomas. Logical analysis of systems comprising feedback loops.
Journal of Theoretical Biology, 73(4):631–656, 1978.

[80] René Thomas and Richard d’Ari. Biological feedback. CRC press,
1990.

[81] George Von Dassow, Eli Meir, Edwin M Munro, and Garrett M Odell.
The segment polarity network is a robust developmental module.
Nature, 406(6792):188, 2000.

108

[82] Kostyantyn Vorobyov and Padmanabhan Krishnan. Comparing model
checking and static program analysis: A case study in error detection
approaches. proceedings of 5th International Conference on Systems
Software Verification, Vancouver, Canada, pages 1–7, 2010.

[83] Qinsi Wang, Paolo Zuliani, Soonho Kong, Sicun Gao, and Edmund M
Clarke. SReach: A probabilistic bounded delta-reachability analyzer
for stochastic hybrid systems. In International Conference on
Computational Methods in Systems Biology, pages 15–27. Springer,
2015.

[84] Bożena Woźna, Andrzej Zbrzezny, and Wojciech Penczek. Checking
reachability properties for timed automata via SAT. Fundamenta
Informaticae, 55(2):223–241, 2003.

[85] Yoshitaka Yamamoto, Adrien Rougny, Hidetomo Nabeshima, Katsumi
Inoue, Hisao Moriya, Christine Froidevaux, and Koji Iwanuma.
Completing SBGN-AF networks by logic-based hypothesis finding. In
International Conference on Formal Methods in Macro-Biology, pages
165–179. Springer, 2014.

109

110

Appendix A

Representation of Different
Models

A.1 Transformation from BNs to ABANs

Given Boolean functions vi(t+ 1) = fi(Vi), with Vi the set of participating
variables among v1(t), · · · , vn(t). Boolean functions could be transformed
to equivalent CNF (conjunctive normal form) and DNF (disjunctive normal
form) if the length of Boolean functions is limited to O(1) [52] which is often
the case.

Proposition A.1 (Transformation from BN to ABAN). Given a BN GB =
(V, F), with its functions in CNF form vi(t+ 1) = A1 ∧ . . . Aj . . . ∧ An and
DNF form vi(t + 1) = A′1 ∨ . . . Ak . . . ∨ A′m, an equivalent ABAN A has
transitions Aj → vi1 and ¬Ak → vi0 where Aj are disjunctions and A′K are
conjunctions.

Example A.1. Let GB = (V, F) a BN with V = {a, b, c, d, e}, and has
only one Boolean function, F = {f(a) = (b ∨ c) ∧ (d ∨ e)}, we have f(a) =
(b ∧ d) ∨ (b ∧ e) ∨ (c ∧ d) ∨ (c ∧ e), and ¬f(a) = (¬b ∧ ¬c) ∨ (¬d ∧ ¬e). The
equivalent ABAN is then constructed: 5 automata Σ = {a, b, c, d, e}, with
transitions: T = {{b1, d1} → a1, {b1, e1} → a1, {c1, d1} → a1, {c1, e1} →
a1, {b0, c0} → a0, {d0, e0} → a0}.

111

112

Appendix B

Algorithms

Algorithm 2 Synchronous LFIT

Input: a set of annotated atoms B and a set of state transitions E
Output: an NLP P
Initialization: P := {varval ← ∅ | varval ∈ B}
while E 6= ∅ do

Pick (I, J) ∈ E,E := E\{(I, J)}
for A ∈ J do

// Create all the local state transitions
RIA := (A←

∧
Bi∈I

Bi ∧
∧

Cj∈(B\I)
¬Cj)

// Delete the rules in conflict
P := Specialize(P,RIA)

return P

113

Algorithm 3 Specialize in synchronous LFIT algorithm

Input: an NLP P and a rule R
Output: the maximal specialization of P that does not subsume R
Initialization: conflicts := ∅
// Search rules that need to be specialized
for RP ∈ P do

if b(RP) ⊆ b(R) then
conflicts := conflicts∪{RP }
P := P\{RP }

// Revise the rules by least specialization
for Rc ∈ conflicts do

for l ∈ b(R) do
if l 6∈ b(Rc) and ¬l 6∈ b(Rc) then

R′c := (h(Rc)← (b(Rc)∪{¬l}))
if P does not subsume Rc then

P := P\ all the rules subsumed by R′c
P := P∪{R′c}

return P

114

Algorithm 4 Construction of SLCG (over-approximation)

Input: an ABAN A = (Σ, T), an initial state α, a target state ω
Output: SLCG l = (Vstate, Vsol, E)
Initialization: Ls← {ω}, Vstate ← ∅, Vsol ← ∅, E ← ∅
while Ls 6= ∅ do

Ls = Ls \ Vstate

for ai ∈ Ls do
Ls← Ls\{ai}
if ai ∈ α then

E ← E∪{(ai,∅)}
else

// Choose the transitions reaching ai
for sol = A→ ai ∈ T do

Vsol ← Vsol∪{sol}
E ← E∪{(ai, sol)}
Vstate ← Vstate ∪A
for bj ∈ A do

E ← E∪{(sol, bj)}
Ls← Ls ∪A
Vstate ← Vstate ∪ Ls

Vsol ← Vsol∪{ai.next}
return (Vstate, Vsol, E)

115

Algorithm 5 Construction of SLCG (under-approximation)

Input: an ABAN A = (Σ, T), an initial state α, a target state ω
Output: SLCG l = (Vstate, Vsol, E)
Initialization: Ls← {ω}, Vstate ← ∅, Vsol ← ∅, E ← ∅, rev ← ∅
while Ls 6= ∅ do

Ls = Ls \ Vstate

for ai ∈ Ls do
Ls← Ls\{ai}
if ai ∈ α then

E ← E∪{(ai,∅)}
// Revise the reachability of initial state
rev ← rev∪{ai}

else
// Check if local initial state a1−i needs to be revised
if a1−i ∈ rev then

Ls← Ls∪{a1−i}
α← α\{a1−i}

// Choose the transitions reaching ai
for sol = A→ ai ∈ T do

Vsol ← Vsol∪{sol}
E ← E∪{(ai, sol)}
Vstate ← Vstate ∪A
for bj ∈ A do

E ← E∪{(sol, bj)}
Ls← Ls ∪A
Vstate ← Vstate ∪ Ls

Vsol ← Vsol∪{ai.next}
return (Vstate, Vsol, E)

116

Algorithm 6 Pseudo-reachability reach′

Input: an SLCG l = (Vstate, Vsol, E), an initial state α, a target state ω
Output: a Boolean reach′

procedure pseudoReach(s)
// If ω is in initial state, it is already reached
if ω ∈ α then

return True
// The reachability of s depends on its successor solution nodes
if 6 ∃(s, sol) ∈ E then

return False
for each (s, sol) ∈ E do

if fireable(sol) then
return True

return False
procedure fireable(sol)

for each (sol, s′) ∈ E do
if pseudoReach(s′) then

return False
return True

117

Algorithm 7 PermReach

Input: an SLCG l = (Vstate, Vsol, E), an initial state α, a target state ω,
an integer k
Output: reachability r(α, ω)
// 1) Try to break cycles
for each scc = (V ′state, V

′
sol) ∈ SCC(l) with V ′state ⊆ Vstate, V

′
sol ⊆ Vsol do

if scc has less than one incoming edge then
for each v ∈ V ′state do

if ∃(v, v′) ∈ E, v′ ∈ (Vsol \ V ′sol) then
E ← E\{(v, v′′)|v′′ ∈ V ′sol, (v, v

′′) ∈ E}
// 2) Remove useless nodes/edges
pruned = true
while pruned do

pruned = false
for v ∈ Vstate do

if 6 ∃(v, v′) ∈ E then
Vstate ← Vstate\{v}; E ← E\{(v′′, v) ∈ E}
E ← E\{(v′′, sol) ∈ E|sol ∈ {sol = (A→ a) ∈ Vsol|v ∈ A}}
Vsol ← Vsol\{sol = (A→ a) ∈ Vsol|v ∈ A}
pruned = true

// 3) Check pseudo-reachability
if PSEUDOREACH(l) = False then

return False

118

Algorithm 8 PermReach (continued)

// 4) main search loop
for each i in 1 . . . k do

l′ = (V ′state, V
′

sol, E
′)← (Vstate, Vsol, E)

for v ∈ V ′state do // Treat each OR gates
pick a random element (v, v′) ∈ E′
E′ ← E′\{(v, v′′) ∈ E′|v′′ 6= v′}

if l′ contains cycles then
continue

Obtain simple AND gates simp from l′

while simp 6= ∅ do
re← False
// check the reachability of simp, if true, update initial state
for i ∈ perm(simp) do

if REACH(i) = True then
re← True
break

if re = True then
update α by firing transitions in simp
V ′sol ← V ′sol \ simp

else
break

Obtain simple AND gates simp from l′

if re = True then
return True

return Inconclusive

119

Algorithm 9 ASPReach

Input: SLCG l = (Vstate, Vsol, E), an integer k
Output: reachability r and a trajectory t
Compute SCCs, classify them into SCC1(l) with at most 1 incoming edge
and SCC2(l) otherwise
// 1) Break all cycles and prune useless branches
for each (V ′state ⊆ Vstate, V

′
sol ⊆ Vsol) ∈ SCC1(l) do

for each v ∈ V ′state do
if ∃(v, v′) ∈ E, v′ ∈ (Vsol \ V ′sol) then

E ← E\{(v, v′′)|v′′ ∈ V ′sol, (v, v
′′) ∈ E}

// 2) remove useless nodes/edges
pruned = True
while pruned do

pruned = False
for v ∈ Vstate do

if 6 ∃(v, v′) ∈ E then
Vstate ← Vstate\{v}; E ← E\{(v′′, v) ∈ E}
E ← E\{(v′′, sol) ∈ E|sol ∈ {sol = (A→ a) ∈ Vsol|v ∈ A}}
Vsol ← Vsol\{sol = (A→ a) ∈ Vsol|v ∈ A}
pruned = True

// 3) Check pseudo-reachability
if pseudoReach(l) = False then

return (False,∅)

// 4) main search loop
for each i in 1 . . . k do

l′ = (V ′state, V
′

sol, E
′)← (Vstate, Vsol, E)

for v ∈ V ′state do // Treat each OR gates
pick a random element (v, v′) ∈ E′
E′ ← E′\{(v, v′′) ∈ E′|v′′ 6= v′} with @i ∈ SCC2(l) and i ∈ E′

(r, t)← ASPsolve(l′)
if r = True then

return (True, t)

return (Inconclusive,∅)

120

Algorithm 10 Completion by over-approximation

Input: an incomplete ABAN A = (Σ, T), a set of candidate regulations
R, targeted reachability (α, ω)
Output: Completed set CS
Initialization: rev ← {({ω}, {ω},∅)}, CS ← ∅
Construct SLCG l = SLCG(α, ω) = (Vstate, Vsol, E) by Algorithm 4
if reach(α, ω) then

return (True,∅)

while rev 6= ∅ do
// ls: traversed local states, fr: local states to be revised in the next

step, tr: transitions to be added
for i = (ls, fr, tr) ∈ rev do

rev ← rev\{i}
if fr = ∅ then

CS ← CS∪{ls}
continue

for j ∈ fr do
for k ∈ j.next do

if head(k) 6⊆ ls then
rev ← rev∪{(ls ∪ head(k), fr ∪ head(k)\{j}, tr)}

cand← ∅
for j = (b, h, sgn) ∈ R do

if ∃hx ∈ fr ∧ {bx⊕sgn} → hx /∈ T then
cand← cand∪{{bx⊕sgn} → hx}
rev ← rev∪{(ls∪{bx⊕sgn}, fr∪{bx⊕sgn}\{hx},

tr∪{{bx⊕sgn} → hx})}
if CS = ∅ then

return (False,∅)

return (True, CS)

121

Algorithm 11 Completion by under-approximation

Input: an incomplete ABAN A = (Σ, T), a set of candidate regulations
R, a targeted reachability (α, ω)
Output: Completed set CS
Initialization: rev ← {({ω}, {ω},∅)}, CS ← ∅, CSiter ← ∅
do

SLCG l = SLCG(α, ω) = (Vstate, Vsol, E) by Algorithm 5
while rev 6= ∅ do

for i = (ls, fr, tr) ∈ rev do
rev ← rev\{i}
if fr = ∅ then

CSiter ← CSiter∪{ls}
continue

for j ∈ fr do
for k ∈ j.next do

if head(k) 6⊆ ls then
rev ← rev∪{(ls ∪ head(k), fr ∪ head(k)\{j}, tr)}

cand← ∅
for j = (b, h, sgn) ∈ R do

if ∃hx ∈ fr ∧ {bx⊕sgn} → hx /∈ T then
cand← cand∪{{bx⊕sgn} → hx}
rev ← rev∪{(ls∪{bx⊕sgn}, fr∪{bx⊕sgn}\{hx},

tr∪{{bx⊕sgn} → hx})}
CS ← CS ∪ CSiter

while CSiter 6= ∅
return CS

122

Algorithm 12 Specialization

Input: a logic program P , a set of state transitions E, an unsatisfied
element (α, ω), a reachable set Re
Output: modified logic program P ′ or ∅ if not revisable
Initialization: Rev ← {ω}
do

RS ← ∅
for R ∈ P do

if h(R) ∈ Rev then
RS ← RS∪{R}

for R ∈ RS do
for R′ ∈ ls(R) do

P ′ ← P∪{R′}\{R}
if P ′ is consistent with E and P ′ satisfies Re then

if reach(α, ω) = False then
return P ′

for R ∈ RS do
Rev ← b(R)

while RS 6= ∅

123

Algorithm 13 Generalization

Input: a logic program P , a set of state transitions E, an unsatisfied
element (α, ω), an unreachable set Un
Output: modified logic program P ′ or ∅ if not revisable
Initialization: Rev ← {ω}
do

RS ← ∅
for R ∈ P do

if h(R) ∈ Rev then
RS ← RS∪{R}

for R ∈ RS do
for R′ ∈ lg(R) do

P ′ ← P∪{R′}\{R}
if P ′ satisfies Un then

if reach(α, ω) = True then
return P ′

for R ∈ RS do
Rev ← b(R)

while RS 6= ∅

124

Appendix C

Theorems and Proofs

Theorem C.1 (Change rate of sigmoid function). Sigmoid function S(x) =
1

1 + e−x
on R is monotonically increasing and its change rate is high around

x = 0.

Proof. The derivative of S(x) is S′(x) =
1

ex + e−x + 2
> 0, thus S(x) is

monotonically increasing.

The second derivative of S(x) is S′′(x) =
e−x − ex

(ex + e−x + 2)2
, S′′(x) = 0 iff

x = 0, thus the change rate of S(x) reaches its maximum at x = 0 and is
high around x = 0.

Theorem C.2 (Future states of synchronous semantics). There are at most
O(3m) possible future states for a system of synchronous update scheme if
the number of total states of all the variables is fixed, where m is the number
of different variables in all the heads of fireable transitions and x is the max
number of qualitative levels in the system.

Proof. For every variable, there are at most x future states and the sum
number of states of all variables is constant xm = C.

The amount of future states is f(x) = x
C
x , f ′(x) = C

x (1 − lnx), for
x > 0, f(x) takes its maximum at x = e. As x is integer, we take the
nearest value x = 3. Considering that C is also integer, the maximum of

f(x) is


3b

C
3
c if C ≡ 0 (mod 3)

3b
C
3
c−1 × 4 if C ≡ 1 (mod 3)

3b
C
3
c × 2 if C ≡ 2 (mod 3)

125

Theorem C.3 (Termination and correctness of PermReach). Let l =
(Vstate, Vsol, E) be an SLCG with initial state α and target local state ω and
k > 0 be an integer.

• The call PermReach(l, k) terminates.

• PermReach(l, k) = (False,∅) if @t a trajectory in l from α to ω.

Proof. 1. The algorithm starts by breaking the cycles in the SLCG and
according to Theorem 3.1 it terminates and does not affect the reach-
ability of α in l.

2. Then all the nodes of Vstate (resp. Vsol) with no (resp. missing) out-
going edges are removed. Such nodes cannot be part of a trajectory
leading to initial state α and thus this operation does not affect the
reachability of α in l. The internal for loop of this operation iterates
over Vstate which is finite. To continue looping, it requires one state
deletion thus this operation will terminate at least when Vstate becomes
∅.

3. PermReach(l, k) = False if @t a trajectory in l from α to v ∈ Vsol.

4. The call PermReach(l, k) terminates.

5. After this preprocessing, pseudo reachability is checked and accord-
ing to [61], it terminates and is correct. It is the only possibility for
PermReach to output False.

6. Stochastic search follows by randomly reducing each OR gate of l
to one of its edges to form l′. This operation is run a finite time k
and iterates over Vstate which is finite and thus it terminates. This
operation does not create new edges, i.e. E′ ⊆ E. PermReach(l′)
traverses the permutations of AND gates and generates trajectories
of l′ leading to α. The number of permutations is finite and thus
PermReach(l′) terminates.

Theorem C.4 (Complexity of PermReach). Let l = (Vstate, Vsol, E) be an
SLCG with initial state α and k > 0 be an integer. Let s = |Vsol| be the
number of target state of l. Let v = |Vstate| be the number of vertices of l.
Let e = |E| be the number of edges of l. The complexity of PermReach(l, k)
is O(v + s+ e+ (v + s)/2× v × e× s+ v2 × e+ v × e+ k × (v × e2 + v

2 !))
which is bounded by O(k × v

2 !).

126

Proof. 1. The computation of SCC(l) has a complexity of O(v + s+ e).
In the worst case, |SCC(l)| = (v + s)/2 and breaking one cycle of
SCC(l) is of O(v× e× s), thus the complexity of removing cycle is of
op1 = O(v + e+ s+ (v + s)/2× v × e× s).

2. To remove useless nodes, PermReach iterates over all local states
and checks if one local state has no successor in l which requires to
iterates over all edges. In the worst case, all the local states will
be removed one by one and thus the complexity of this operation is
op2 = O(v × (v + s)× e).

3. Computing pseudo reachability over l which has no loop corresponds
to performing a depth-first search on all the branches of a tree and
thus is bounded by op3 = O((v + s)× e).

4. The stochastic search iterates at most k times. Treating each OR
gate to form l′ has a cost of O(v×e×e). Permsolve(l′) generates the
permutations of each AND gate to assemble a trajectory can prove
reachability of ω in l′. In the worst case, l has only one AND gates
containing all the components of Vstate \α. The number of total order
is O(v2 !). Thus Permsolve(l′) is bounded by O(v2 !) and the whole
stochastic search by op4 = O(k × (v × e2 + v

2 !)).
Conclusion 1: The complexity of ASPReach(l, k) is O(op1+op2+op3+

op4) = O(v+e+s+(v+s)/2×v×e×s+v×(v+s)×e+v×e+k×(v×e2+ v
2 !)).

Conclusion: The complexity of ASPReach(l, k) is bounded by O(k ×
v
2 !).

Theorem C.5 (Termination and correctness of ASPReach). Let l =
(Vstate, Vsol, E) be an SLCG with initial state α and target local state ω
and k > 0 be an integer.

• The call ASPReach(l, k) terminates.

• ASPReach(l, k) = (False,∅) if @t a trajectory in l from α to ω.

• ASPReach(l, k) = (True, t) only if ∃t a trajectory in l from α to ω.

Proof. The correctness of preprocessing is analogous to Theorem C.3.
After the preprocessing, we obtain a sub SLCG l′ = (V ′state, V

′
sol, E

′).
ASPsolve(l′) generates all the possible trajectories of l′ leading to α. The
number of possible trajectory is finite and thus ASPsolve(l′) terminates.

When ASPsolve(l′) = (True, t), t is a trajectory of l proving reach-
ability of α in l and it is the only possibility for ASPReach to output

127

True. ASPReach(l, k) = (True, t) only if ∃t a trajectory in l from α
to v ∈ Vsol.

Theorem C.6 (Complexity of ASPReach). Let l = (Vstate, Vsol, E) be an
SLCG with initial state α and k > 0 be an integer. Let s = |Vsol| be the
number of target state of l. Let v = |Vstate| be the number of vertices of l.
Let e = |E| be the number of edges of l. The complexity of ASPReach(l, k)
is O(v + s+ e+ (v + s)/2× v × e× s+ v2 × e+ v × e+ k × (v × e2 + v

2 !))
which is bounded by O(k × v

2 !).

Proof. 1. The complexity of preprocessing is analogous to the one in The-
orem C.4,

op1 = O(v + e+ s+ (v + s)/2× v × e× s)
op2 = O(v × (v + s)× e)
op3 = O((v + s)× e)

2. The stochastic search iterates at most k times. Treating each OR
gate to form l′ has a cost of O(v × e × e). ASPsolve(l′) generates
the trajectories within the SLCG that can prove reachability of ω in
l′. Each trajectory is a sequence where each element of Vstate appears
exactly once. As ASP solver is a black-box system, we assume it solves
the problem by pure brute force search.

3. In the worst case, l′ = l and all the components of vs ∈ Vstate ∧ vs /∈ α
are placed in one AND gate. The number of total order is O(v2 !).
Thus ASPsolve(l′) is bounded by O(v2 !) and the whole stochastic
search by op4 = O(k × (v × e2 + v

2 !)).

4. Conclusion: The complexity of ASPReach(l, k) is O(op1+op2+op3+
op4) = O(v + e+ s+ (v + s)/2× v × e× s+ v × (v + s)× e+ v × e+
k × (v × e2 + v

2 !)) and ASPReach(l, k) is bounded by O(k × v
2 !).

Definition C.1 (Rank of digraphs). Given a digraph G = (V,E), ∀v ∈ V
is associated with a rank rk(v) ∈ N s.t. ∀v1, v2 ∈ V , if rk(v1) < rk(v2),
@(v1, v2) ∈ E, and if rk(v1) = rk(v2), there exist paths γ(v1, v2) and
γ(v2, v1).

Remark C.1. There does not necessarily exist a path starting from a node
with higher rank to another node with lower rank. The rank of digraphs
is a numbering that only offers possibilities of traversing the whole graph
without violating a unified direction.

128

Appendix D

Pure ASP reachability
analyzer

D.1 Pure ASP Implementation

Ben Abdallah et al. [1] have implemented reachability analysis using pure
ASP approach (brute force search) and have done the comparison between
the state-of-the-art methods of 2015.

Model-target #automata ASP-Th Pint libddd GINsim ASPi-PH

ERBB-whole 20 2.4s out 1m55s 2m32s 12s

ERBB-sub 20 2.6s 0.03s 1m55s - 5s

TCR-whole 40 - Inconc out out 4m28s

TCR-sub 40 - 0.02s out - 1m35s

Table D.1: Compared performances of Rocca et al. method [68] denoted by
ASP-Th, Pint, libddd, GINsim and our new iterative method ASP-PH

Table D.1 shows pure ASP style methods (ASP-Th and ASPi-PH) are
still costly compared to PermReach and ASPReach.

129

Titre: Analyse d’accessibilité et révision de la dynamique

dans les réseaux de régulations biologiques

Mots clés : bioinformatique, model checking, heuristique, révision de modèles

Resumé : Les systèmes concurrents sont un
bon choix pour ajuster les données et anal-
yser les mécanismes sous-jacents pour leur
sémantique simple mais expressive. Cepen-
dant, l’apprentissage et l’analyse de tels sys-
tèmes concurrents sont difficiles pour ce qui
concerne les calculs. Lorsqu’il s’agit de grands
ensembles de données, les techniques les
plus récentes semblent insuffisantes, que ce
soit en termes d’efficacité ou de précision.
Ici, nous proposons un cadre de modélisa-
tion raffiné ABAN (Asynchronous Binary Au-
tomata Network) et développons des outils

pour analyser l’atteignabilité : PermReach
(Reachability via Permutation search) et AS-
PReach (Reachability via Answer Set Pro-
gramming). Nous proposons ensuite deux
méthodes de construction et d’apprentissage
des modèles: CRAC (Completion via Reach-
ability And Correlations) et M2RIT (Model Re-
vision via Reachability and Interpretation Tran-
sitions) en utilisant des données continues et
discrètes pour s’ajuster au modèle et des pro-
priétés d’accessibilité afin de contraindre les
modèles en sortie.

Title: Reachability Analysis and Revision of Dynamics

of Biological Regulatory Networks

Keywords : bioinformatics, model checking, heuristics, model revision

Abstract : Concurrent systems become a
good choice to fit the data and analyze the un-
derlying mechanics for their simple but expres-
sive semantics. However, learning and ana-
lyzing such concurrent systems are computa-
tionally difficult. When dealing with big data
sets, the state-of-the-art techniques appear to
be insufficient, either in term of efficiency or in
term of precision. In this thesis, we propose
a refined modeling framework ABAN (Asyn-
chronous Binary Automata Network) and de-

velop reachability analysis techniques based
on ABAN: PermReach (Reachability via Per-
mutation search) and ASPReach (Reacha-
bility via Answer Set Programming). Then
we propose two model learning/constructing
methods: CRAC (Completion via Reachabil-
ity And Correlations) and M2RIT (Model Revi-
sion via Reachability and Interpretation Transi-
tions) using continuous and discrete data to fit
the model and using reachability properties to
constrain the output models.

	Introduction
	Context and Motivations
	Models in Computational Biology
	Classification of Models
	Model Checking
	Model Learning

	Problem Statement
	Contributions
	Organization of the Manuscript

	State of the Art
	Discrete Modeling Frameworks
	Regulatory Network
	Bayesian Network
	Boolean Network
	Normal Logic Program (NLP)
	Process Hitting (PH)
	Asynchronous Automata Network (AAN)

	Semantics of Modelings
	Synchronicity
	Asynchronicity
	Generalized Semantics

	Model Checking
	Exact Model Checkers
	Static Analyzers
	Reachability Problem

	Model Learning and Model Revision
	Learning From Interpretation Transitions (LFIT)
	Cut set

	Résumé

	Refined Reachability Analysis via Heuristics
	Background
	Asynchronous Binary Automata Network
	Definitions
	Simplified Local Causality Graph (SLCG)
	Conclusiveness

	Topological Preprocessing
	Detection and Removal of Cycles
	Decomposition of SLCG

	Reachability Analysis
	Reachability via Permutations (PermReach)
	Reachability via ASP (ASPReach)

	Extension to Multi-valued Models
	Résumé

	Model Inference and Revision
	Background
	Model Completion via Candidate Regulations
	Problem Description
	Cut set
	Completion Set
	Completion by Over-Approximation
	Completion by Under-Approximation

	Model Inference via Statistics
	Preliminaries
	Partial Correlation
	Variable Reconstruction
	Toy Example

	Model Revision via Reachability and Interpretation Transitions (M2RIT)
	Learning From Interpretation Transitions (LFIT)
	Formalization
	Modeling and Learning of Asynchronous Dynamics
	Revision
	Toy Example

	Résumé

	Tests and Benchmarks
	Comparison of Reachability Analyzers
	Performance on Computing Power
	Performance on Conclusiveness
	Performance on Random Examples

	Implementation of CRAC and M2RIT
	CRAC
	M2RIT

	Résumé

	Conclusion and Outlooks
	Contributions
	Future Work

	Representation of Different Models
	Transformation from BNs to ABANs

	Algorithms
	Theorems and Proofs
	Pure ASP reachability analyzer
	Pure ASP Implementation

