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Université de Tunis

Institut Supérieur de Gestion

THESE DE DOCTORAT

en vue de l’obtention du titre de docteur en

INFORMATIQUE DE GESTION

MODELLING INTERACTIONS BETWEEN NODES IN A
CREDIBILIST SOCIAL NETWORK

BEN DHAOU SALMA

Soutenue le 22 MAI 2019, devant le jury composé de:
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Abstract

The detection of communities in social networks has become a very impor-
tant task. Indeed, as its role consists in partitioning the nodes of a network
into subgroups having properties in common, this makes it possible to analyse
the behaviour of the entities of the network and to predict the evolution of the
latter in time.

In social networks, information about nodes, links, and messages may be
imperfect. From there, the analysis of such a type of network necessitates the
use of a theory of uncertainty. In this thesis, we propose three contributions
applied in the framework of the theory of belief functions:

First, we were interested in showing the advantage of using evidential at-
tributes in social networks. Indeed, we compared the results of the classification
of nodes with uncertain attributes (numerical, probabilistic, evidential) gener-
ated according to the structure of the network. To do this, we considered two
scenarios: attributes generated randomly and others sorted. We also performed
the tests in the case of data that was noisy. In order to measure the quality of
clustering results, we used normalised mutual information (NMI).

The second contribution consists on the correction of noisy information in
social networks. To do this, we proposed a model based on the comparison of
the calculated distances between the triplets of the network and the coherent
triplets defined initially. A triplet is composed of two nodes connected to each
other by a link. In order to test the proposed approach, we first tested three
cases: only the nodes are noisy, only the links are noisy and finally the nodes
and the links are noisy simultaneously. Then we tested the method by varying
several network parameters. In order to measure the quality of the obtained
results, we calculated the accuracy.

The third contribution is to detect which links are spammed in a social
network. A link is considered spammed if its initial class changes according
to the types of messages transiting on it. To do this, we used the theory of
belief functions to combine the information of links and messages. In order
to test our approach, we considered two cases: only the messages are noisy
and the messages as well as the links are noisy simultaneously. The quality
of the classification results was measured using accuracy, precision and recall
measurements.

Keywords Social Networks Analysis, Community Detection, Spammed Link
Detection, Theory of Belief Functions



Résumé

La détection de communautés dans les réseaux sociaux est devenue une tâche
très importante. En effet, comme son rôle consiste à partitionner les nœuds d’un
réseau en sous groupes ayant des propriétés en commun, ceci permet d’analyser
le comportement des entités du réseau et de prédire l’évolution de ce dernier
dans le temps.

Dans les réseaux sociaux, les informations portant sur les nœuds, liens et
messages peuvent être imparfaites. A partir de là, l’analyse d’un tel type de
réseaux nécessiste l’utilisation d’une théorie de l’incertain. Dans cette thèse,
nous proposons trois contributions appliquées dans le cadre de la théorie des
fonctions de croyance.

Tout d’abord, nous nous sommes intéressés à montrer l’avantage de l’utilisation
des attributs évidentiels dans les réseaux sociaux. En effet, nous avons com-
paré les résultats de la classification des nœuds ayant des attributs incertains
(numériques, probabilistes, évidentiels) générés en fonction de la structure du
réseau. Pour ce faire, nous avons considéré deux scénarios : attributs générés
aléatoirement et d’autres triés. Nous avons également effectué les tests dans le
cas des données qui ont été bruitées. Afin de mesurer la qualité des résultats de
la classification, nous avons utilisé l’information mutuelle normalisée.

La deuxième contribution consiste en la correction des informations bruitées
dans les réseaux sociaux. Pour ce faire, nous avons proposé un modèle qui se
fonde sur la comparaison des distances calculées entre les triplets du réseau et
les triplets cohérents définis initialement. On appelle un triplet deux nœuds
reliés entre eux par un lien. Afin de tester l’approche proposée, nous avons
testé dans un premier temps trois cas : les nœuds uniquement sont bruités,
les liens uniquement sont bruités et enfin les nœuds et les liens sont bruités
simultanment. Ensuite, nous avons testé la méthode en faisant varier plusieurs
paramètres du réseau. Dans le but de mesurer la qualité des résultats obtenus,
nous avons calculé l’exactitude.

La troisième contribution consiste à détecter quels sont les liens spammés
dans un réseau social. Un lien est considéré comme spammé si sa classe initiale
se modifie en fonction des types de messages transitant dessus. Pour ce faire,
nous avons utilisé la théorie des fonctions de croyance pour combiner les infor-
mations des liens et des messages. Dans le but de tester notre approche, nous
avons considéré deux cas : les messages sont bruités uniquement et les messages
ainsi que les liens sont bruités simultanément. La qualité des résultats de la
classification a été mesurée en utilisant les mesures de l’exactitude, la précision
et le rappel.

Mots Clés Analyse des Réseaux Sociaux, Détection de Communautés,
Détection de Liens Spammés, Théorie des Fonctions de Croyance
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Abbreviations and Notations

In the following, a list as exhaustive as possible of abbreviations and notations
used in this thesis:

Belief Functions and Probabilities

• ΩN: is the frame of discernment of the nodes.

• ΩL: is the frame of discernment of the links.

• ΩM: is the frame of discernment of the messages.

• ΩL ×ΩM: is the Cartesian product of ΩL and ΩM.

• ΩN ×ΩL: is the Cartesian product of ΩN and ΩL.

• ↑: is the vacuous extension.

• BetP: is the pignistic probability.

• mΩN
k1

: is the mass function of the node Vk1 .

• mΩN
k2

: is the mass function of the node Vk2 .

• mΩL
k12

: is the mass function of the link Vk12 .

• mΩN
Ci

: is the categorical mass function associated to the nodes belonging to
the community Ci.

xiii



xiv LIST OF ALGORITHMS

• mΩL
ICi
,mΩL

BC: are the categorical mass functions associated respectively to the
links belonging to Ci and the links connecting two communities.

• mΩN
k1d

: is the mass function of the node Vk1 obtained from the calculation of
the distance of Jousselme.

• mΩN
k2d

: is the mass function of the node Vk2 obtained from the calculation of
the distance of Jousselme.

• mΩL
k12d

: is the mass function of the link Lk12 obtained from the calculation of
the distance of Jousselme.

• PΩN
Ci

: is a probability on a certain event of the nodes belonging to Ci.

• PΩL
ICi
, PΩL

BC: are the probabilities on a certain events associated respectively to
the links belonging to Ci and the links connecting two communities.

• PΩN
k1

: is the probability of the node Vk1 .

• PΩN
k2

: is the probability of the node Vk2 .

• PΩL
k12

: is the probability of the link Lk12 .

• PΩN
k1d

: is the probability of the node Vk1 obtained from the calculation of the
Euclidean distance.

• PΩN
k2d

: is the probability of the node Vk2 obtained from the calculation of the
Euclidean distance.

• PΩL
k12d

: is the probability of the link Lk12 obtained from the calculation of the
Euclidean distance.

Social Network

• G = {Vb, Eb}: is the evidential graph. Vb denotes the set of nodes and Eb

denotes the set of edges.

• k: is a triplet of the graph.

• Vk1: is the first node of the triplet k.

• Vk2: is the second node of the triplet k.
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• Lk12: is the link connecting Vk1 and Vk2 .

• Ci: is the community i with i = 1, ...,N

• L: is the number of links.

• N: is the number of the communities.

• M: is the number of the triplets in the network.

Distances

• dE: is the Euclidean distance.

• dJ: is the Jousselme distance.

Other Notations

• dk: is the average distance

• t: is an iteration



Introduction

Nowadays, the use of computer technology and Internet has become essential. In-
deed, the exploitation of the internet is multiplying thanks to the messages, phone
calls with or without video as well as exchanges in social networks.

This technical breakthrough allowed the development of social networks that
today bring together a large community on a platform that shares everything they
like or not and what they do in real time. It allows to share video, photos, texts,
smiley to know the mood of the person. Social networks even include companies
that want to get in touch with their target, media that share their articles, reports,
and so on.

As a result, social networks became an important part of our daily lives. There-
fore, it is interesting to study and analyse the types of relationships that exist in
these networks in order to understand user behaviour and study the evolution of
networks over time. To do so, the study of the community structure as well as the
nodes and links attributes represent main characteristics that must be taken into
account to analyse these networks. In fact, this will allow to infer the importance
of an actor in the network (influential node) in addition of the detection of hidden
and spammed links.

The social networks analysis finds its theoretical origins in the work of mathe-
maticians on graphs (Erdos & Rényi, 1960), but the first significant developments
have emerged in the social sciences (Travers & Milgram, 1967; Wasserman &
Faust, 1994).

In social network analysis (Wasserman & Faust, 1994; Prell, 2012), the ob-
served attributes of social actors are understood in terms of patterns or structures

1



2 Introduction

of ties among the units. These ties may be any existing relationship between units;
for example friendship, material transactions, etc.

Currently, if we observe any social network, we will soon realize that the
entities composing this network are grouped, for example, according to a center
of interest, a category of age, a preference, etc.

In his work, Santo Fortunato (Fortunato, 2010) explained that communities,
also called clusters or modules, represent groups of vertices which probably share
common properties and/or play similar roles within the graph. He argues also that
the word community itself refers to a social context. In fact, people naturally tend
to form groups, within their work environment, family or friends.

The role of community detection task is to highlight these groups that have
formed implicitly and have shared same interests. For example, it allows:

• to identify a group of friends in a social network,

• to identify a set of web pages dealing with the same theme,

• to identify a set of genes dedicated to the same function in the context of
biological networks.

• ...

In a social network, we can deal with missing or modified information. In
addition, the information exchanged can be often imperfect, due to the heteroge-
neous nature of the sources. In fact, information can be imprecise, uncertain or
ambiguous:

An imprecise information is insufficient to answer questions of interest in a
given situation. For example: Paul is between 20 and 25 years old.

An uncertain information is relative to the truth or the falsity of a proposition.
For example: I believe Paul is 22 years old.

An ambiguous information can be noisy and interpreted in different ways. For
example: Paul is young.

Several theories dealing with uncertainty exist in the literature such as the the-
ories of probabilities, of possibilities and of belief functions. Historically, the
formalism of probability theory is the most commonly used. Nevertheless, it does
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not allow the modelling of ignorance. Indeed, in the absence of information, we
associate the same probability with each event. In addition, due to the additiv-
ity axiom, the probability of an event implies a value on the probability of its
complementary.

The limitations of this formalism was a motivation for the development of new
theories of uncertainty such as the theory of possibilities and the theory of belief
functions which impose no relation between an event and its complementary and
it allow to easily model ignorance.

The theory of possibilities introduced by Zadeh (Zadeh, 1999) presents an
alternative framework for representing uncertain information. This theory makes
it possible to distinguish between plausible states and implausible ones. It uses
fuzzy sets of mutually exclusive values.

To sum up, the theory of belief functions can be considered more general
than that of probabilities or possibilities since we find these as particular cases.
Indeed, if the mass is attributed to singletons only, the mass is called Bayesian
mass function. In the case of attribution of the mass to nested focal elements, the
mass is called consonant mass function.

Therefore, it would be interesting to model social network taking into conside-
ration the fact that the information of the nodes, links and messages transiting on
the social network can be imperfect.

In the same context, many studies focus on modeling the uncertain social net-
work. In fact, they represent an uncertain network by weighting the nodes or links
with values in [0, 1] to model uncertainties. Hence, it will be easier to monitor the
behaviour of the social network (Adar & Re, 2007).

In this thesis, we use the theory of belief functions (Dempster, 1967; Shafer,
1976) because it offers a mathematical framework for modelling uncertain and
imprecise information. It has been employed in different fields, such as data clas-
sification (Denœux, 2008; Z.-G. Liu et al., 2015) and social network analysis (Wei
et al., 2013).

Furthermore, the theory of belief functions provides a flexible way of com-
bining information collected from different sources. In the majority of cases, this
combination is followed by decision-making. It also allows conflict management.

In what follows, we will explain the aim of this thesis and will present the
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outline of this work.

Aim and Scope

This thesis focuses on the problem of modelling interactions between nodes in a
credibilist social network with special attention dedicated for community detec-
tion. The main research questions that have been addressed are as follows:

Advantage of using evidential attributes in social networks In the first con-
tribution, we only consider attributes on the nodes and we aimed to answer the
following questions:

First, how can we detect communities with uncertain attributes?

Second, to what extent the uncertain attributes make it possible to find the
communities after adding noisy data?

In order to solve this problematic, we compared the clustering results of dif-
ferent type of uncertain attributes generated on the nodes based on the structure of
the network. We consider two scenarios: random and sorted matrix of attributes.

Correction of noisy information in social networks using the belief function
theory In the second contribution, the attributes on both nodes and links were
considered. We were interested in solving the following issues:

How to classify nodes and links in their initial clusters in the presence of noisy
data?

How to guarantee the coherence of the information of the network in the pres-
ence of noisy data?

Hence, to remedy to this problem, we propose an algorithm which allows the
correction of the noisy information in the network based on the calculation of the
distances between the triplets (a triplet contains 2 nodes and the link connecting
them) composing the network and the coherent triplets defined initially based on
the structure of the network.
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Detection of spammed links in social networks using the belief function the-
ory In the third contribution, we consider attributes on nodes, links and mes-
sages. We focused on finding a solution to the following problematic:

How, from the information on the nodes, links and messages, can we detect
spammed links in social network?

In order to answer this question, we propose a method that aims to detect
spammed links and take into account the imperfection of the information in the
network. To do this, we assume that the class of a link can be changed depending
on the type of messages that pass over it.

Thesis Outline

This thesis is organized as follows:

In Chapter 1, we will introduce some preliminary concepts related to social
networks such as the definition of this latter in addition of its mathematical repre-
sentation and its analysis. Then, we will detail some basic concepts of the theory
of belief functions used in this thesis. After that, we will present some related
works to the problem of classification in social network. Finally, we will intro-
duce the used networks in the different processes of the experiments in this thesis.

In Chapter 2, we will detail our first contribution (Ben Dhaou et al., 2017)
which consists of showing the advantage of using evidential attributes in social
networks. Indeed, we will discuss how it allows to obtain better clustering results
compared to other uncertain attributes.

In Chapter 3, we will present our second contribution (Ben Dhaou et al., 2018)
which consists on the classification based on the structure of the network as well
as on the attributes of both nodes and links. Indeed, we will detail the proposed
algorithm which aims to correct the noisy information based on the calculation
of the distances between the triplets of the network and the coherent ones defined
initially.

In Chapter 4, we will explain how from the information on the nodes, links and
messages, we are able to detect spammed links in social networks in the frame-
work of belief functions. To do so, we will combine the mass functions of the
links and messages at each iteration and then make a decision on the final class of
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the link. Thus, we will determine if the link is spammed or not (Ben Dhaou et al.,
2019).

Besides to theses chapters, we add the following appendices:

• Appendix A presents the LFR parameters used to generate the different net-
works.

• Appendix B introduces additional experiments of the first contribution.



Chapter 1
Social Networks

Nowadays, social networks represent a part of our everyday life. Indeed, they
proposed new media to stimulate, accelerate and multiply the social interactions
between individuals or groups. Not only in everyday life but also in a work-place,
politics or in a media world, social networks have revolutionised relationships and
linkages between the various components of society.

Social network analysis refers to relational theories that formalise social in-
teractions in terms of nodes and links. The used concepts are from graph the-
ory. Nodes are the social actors that interact with each other. However, they can
also represent institutions. The links, as for them, are the relations between these
nodes. There may be several types of links between nodes. In its simplest form,
a social network is modelled to form an analysable structure where effective links
between the nodes are studied.

In social networks, imperfect data can be observed. Indeed, these information
can be imprecise, uncertain, ambiguous or even missing. In order to deal with
this kind of situation, it has become necessary to use a theory that models and
manages the imperfection of information such as the theory of belief functions. In
fact, it offers a strong mathematical framework for modelling and managing the
uncertainty in addition of a flexible way of combining information provided by
different sources.

In this chapter, we start by defining and presenting the notion of social net-
work as well as its representation and analysis in section 1.1. Next, we present
some basic concepts of the theory of belief functions in section 1.2. Then, we

7



8 Chapter 1 : Social Networks

present the related works of the literature to this thesis in section 1.3 such as some
community detections methods, some homophilic behaviour approach, link pre-
diction researches and spammers detection methods. After that, we present the
used social networks in this thesis in section 1.4.

1.1 Social Networks Representation and Analysis

In this section, we first define social network. Then, we present the way to rep-
resent it mathematically. Thereafter, we introduce the concept of social network
analysis.

1.1.1 Social Network

A social network (Easley & Kleinberg, 2010) is a social structure made up of
individuals (or organizations) called “nodes”, which are tied (connected) by one
or more specific types of interdependency, such as friendship, kinship, common
interest, financial exchange, dislike, or relationships of beliefs, knowledge or pres-
tige.

In this context, 3 categories of social networks have been defined as follows
(Easley & Kleinberg, 2010):

The Web Social Networks allow to establish explicitly relations between users.
Relationships in some of these websites are bilateral. This is for example the
case of Facebook. In the case of Twitter or Youtube, the social relationship is
established from unilateral way by the “follow” (following the publications from
someone). Two individuals are neighbours in the associated graph if a relationship
exists between the both.

Communication Networks are formed by transmissions of information between
individuals. We find the same distinction between unilaterality (as for e-mails and
SMS) and bilaterality (calls telephone and video-conferences). Two individuals
are neighbours in the associated graph if they communicated using this network.
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Figure 1.1: An Attributed Graph.

Collaborative Networks correspond to individuals who have worked together
on a subject. For example, there are networks actors who have filmed together or
scientists who have co-written articles. Relations in this type of network are bila-
teral. Two individuals are neighbours in the associated graph if they collaborated.

In what follows, we present how a social network is represented mathemati-
cally in addition of the definition of an attributed graph.

Social Network Representation A social graph is a representation of the inter-
connections among people, groups and organizations in a social network. A social
graph helps to map the overall structure and interrelation of social network mem-
bers. Mathematically, a social network is represented by a graph G(V, E) where V
is the set of nodes which represents persons, institutions, and so on and E is the
set of edges which represents the type of relationships between the nodes (Mika,
2004).

Attributed Graphs According to (Seong et al., 1993), an attributed graph
Ga = (Va, Ea) can be defined as a set of attributed vertices
Va = {v1, . . . , vp, . . . , vq, . . . , vn} and a set of attributed edges Ea = {. . . , epq, . . .}.
The edge epq connects vertices vp and vq with an attributed relation.

Figure 1.1 represents an example of an attributed graph. The nodes have as
attributes the name and the age of the person. As for the link, it has as attribute
the type of the relationship between nodes.

1.1.2 Social Network Analysis

Social network analysis (Wasserman & Faust, 1994; Prell, 2012) has emerged as
a key technique in modern sociology. It has also gained a significant following in
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anthropology, biology, communication studies, economics, geography, informa-
tion science, organizational studies, social psychology, sociolinguistics, and has
become a popular topic of speculation and study.

In social network analysis (Wasserman & Faust, 1994; Prell, 2012) the ob-
served attributes of social actors are understood in terms of patterns or structures
of ties among the units. These ties may be any existing relationship between units;
for example friendship, material transactions, etc.

Communities

Many networks of interest in the sciences, including social networks, computer
networks, and metabolic and regulatory networks, are found to divide naturally
into communities or modules for example, according to a center of interest, a
category of age, a preference, etc.

Several researches gave different definitions of the term community. In the
following, we present some of them.

In his work, Santo Fortunato (Fortunato, 2010) explained that communities
represent groups of nodes which probably share common properties. He explains
also that people naturally tend to form groups, within their work environment,
family or friends.

Another definition is introduced in (Wasserman & Faust, 1994) as a set of
nodes in which each of its subsets has more ties to its components within the set
than outside.

(Radicchi et al., 2004) proposed the strong and weak definitions in order to
relax the constraints of the LS-set. In a strong community, each node has more
connections within the community than with the rest of the network. For the case
of a weak community, the sum of all degrees within the community is larger than
the sum of all degrees toward the rest of the network.

(Hu et al., 2008) define a community as a set of nodes and each node’s degree
inside the community should be larger than or at least equal to its degree link to
any other community.

To sum up, a community represents a group of actors that share the same
properties or interest and are more connected with entities inside the community
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than the rest of the network.

Social Networks Properties

A social network has the following properties:

Local Preferential Attachment: This property (Leskovec et al., 2008) states
that a node is more likely to create connections with vertices having a high degree
and which are close.

Small World: It indicates that, going from neighbour to neighbour, it is possi-
ble to reach any another point of the graph in a small number of edges in average,
even if the graph in question has a lot of nodes. It has been shown that real net-
works exhibit abundant short paths, notably the well-known “six-degrees of sepa-
ration”. Indeed, Milgram suggests that two people, randomly selected from Amer-
ican citizens, are connected on average by a chain of six relationships (Travers &
Milgram, 1967; Amaral et al., 2000).

Community Structure: It appears when nodes can be grouped in a way such
that vertices in a group are more connected to nodes in the same group compared
to other vertices (Fortunato, 2010).

Community Homogeneity: This property takes place when the nodes inside a
community are more similar according to their attribute values compared to nodes
in a different community (Marsden, 1988).

An important sociological property in social networks is homophily
(McPherson et al., 2001): Individuals know people who are similar to them. The
structural consequence is that we observe many triangles, that is to say triplets of
individuals forming 3-cliques. Indeed, if two individuals a and b know each other,
and that c knows a but not b, c has the will and the opportunity to form a link with
b:

• If a and b are similar, and a and c are similar, it is likely that c be similar to
b.

• Because of the relationship of c with a, c has the opportunity to form a link
with b.

This property also explains the appearance of highly connected sub-graphs in so-
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cial networks.

Social graphs are scale-free (Barabási & Albert, 1999). We say that graph is
scale-free if the degree distribution follows a Pareto law (called also power law),
where the degree of a node is the number of nodes to which it is connected (γ is a
positive number):

P(degree = k) ≈ k−γ (1.1)

Some Metrics used in Social Network Analysis

Centrality This measure gives a rough indication of the social power of a node
based on how well they “connect” the network. “Betweenness”,“Closeness”, and
“Degree” are all measures of centrality that will be presented afterwards.

Degree The degree of a node v is denoted deg(v) and represents the count of the
number of ties to other nodes in the network.

Betweenness The concept of betweenness centrality was introduced by (Freeman,
1978). It exhibits the extent to which a node lies between other nodes in the net-
work. This measure takes into account the connectivity of the node’s neighbours,
giving a higher value for nodes which bridge clusters. The betweenness centrality
of node v is given by the expression:

g(v) =
∑
s,v,t

σst(v)
σst

(1.2)

Where σst is the total number of shortest paths from node s to node t and σst(v) is
the number of those paths that pass through v.

Closeness The closeness centrality was introduced by (Bavelas, 1950). It rep-
resents the degree an individual is near all other individuals in a network (directly
or indirectly). It reflects the ability to access information through the “grapevine”
of network members. Thus, closeness is the inverse of the sum of the shortest
distances between each individual and every other person in the network. The
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shortest path may also be known as the “geodesic distance”. The closeness cen-
trality is given by the following formula:

C(x) =
1∑

y∈V

d(y, x)
(1.3)

Where d(y, x) is the geodesic distance between vertices x and y.

For large graphs, the closeness is given by:

C(x) =
N∑

y

d(y, x)
(1.4)

Where N is the number of nodes in the graph.

Clustering coefficient The clustering is a process that partitions a data set into
homogeneous subclasses (clusters) so that the data in each subset share common
characteristics.

Introduced in (Holland & Leinhardt, 1971; Watts & Strogatz, 1998), the clus-
tering coefficient measures how close the neighbourhood of a vertex is. A higher
clustering coefficient indicates a greater ‘cliquishness’. We find two versions of
the clustering coefficient measure: the global and the local.

The local clustering coefficient Ci for a vertex vi is given by the proportion
of links between the vertices within its neighbourhood divided by the number of
links that could possibly exist between them.

The global clustering coefficient is given by the following equation:

C =
Number o f closed triplets

Number o f all triplets (open and closed)
(1.5)

The number of closed triplets has also been referred to as 3× triangles in the
literature (Holland & Leinhardt, 1971; Watts & Strogatz, 1998).

1.2 Uncertainty in Social Network

In this section, some basic concepts of the theory of belief functions are presented
as well as some related works to the uncertainty in social networks.
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1.2.1 Basics of the Theory of Belief Functions

Nowadays, several information from different sources are transiting on social net-
works. Most of the time, this information may be imperfect, imprecise, uncertain,
vague or even incomplete. In order to manage the imperfections of the informa-
tion, we choose to use the theory of belief functions. In fact, it can be considered
more general than the theories of probabilities or possibilities since we find these
as particular cases.

In this thesis, we choose to use the theory of belief functions because it is a
powerful tool for representing imperfect information. In addition, it allows the
combination of the information collected from different sources.

In what follows, we present some basic concepts of this theory.

The theory of belief functions (Dempster, 1967; Shafer, 1976) is a mathema-
tical theory that extends probability theory by giving up the additivity constraint
as well as the equal probability in the case of ignorance. Therefore, in probabil-
ity theory equal probabilities do not distinguish equally probable events from the
case of ignorance. In the theory of belief functions, cases of uncertainty, incom-
pleteness and ignorance are modelled and distinguished. In this theory, justified
degrees of support are assessed according to an evidential corpus. Evidential cor-
pus is the set of all evidential pieces of evidence held by a source that justifies
degrees of support awarded to some subsets.

Let Ω = {ω1, ω2, ..., ωn} be a finite and exhaustive set whose elements are mu-
tually exclusive. The set Ω is called a frame of discernment, universe of discourse
or domain of reference.

Let 2Ω be a set of all subsets of Ω. It is made of hypotheses and unions of
hypotheses from Ω. This set 2Ω is called power set and defined as follows:

2Ω = {A : A ⊆ Ω} (1.6)

The mass function is a mapping from 2Ω to [0, 1] that allocates a degree of
justified support over [0, 1] to some subsets A of 2Ω. The mass function is defined
as follows:

mΩ : 2Ω → [0, 1] (1.7)∑
A⊆Ω

mΩ(A) = 1 (1.8)
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Every A ∈ 2Ω such that mΩ(A) > 1 is called a focal element.

There are other functions related to mass functions which model differently
the same piece of evidence and aim to simplify computations.

Credibility (or Belief) function

A credibility function, noted belΩ is the minimal degree of belief justified by avai-
lable information. The credibility of a subset, belΩ(A), is the total belief on A. In
order to compute the total belief on A, the masses of proper subsets B of A, mΩ(B),
must be summed to mΩ(A). Therefore, belΩ(A) is obtained by summing masses of
subsets of A. The credibility function is given by:

belΩ : 2Ω → [0, 1] (1.9)

belΩ(A) =
∑

B⊆A,B,∅

mΩ(B) (1.10)

It should be noted that the mass function that produces a given credibility func-
tion is unique and thus can be recovered from the credibility function as follows:

mΩ(A) =
∑
∅,B⊆A

(−1)|A|−|B|belΩ(B) ∀A ⊂ Ω, A , ∅

mΩ(∅) = 1 − belΩ(Ω)
(1.11)

A is the complement of A in Ω. As the empty set is included in both A and A, it is
discarded from the sum.

Plausibility function

The plausibility function, noted plΩ, is the maximum amount of potential support
that could be given to a subset A. It is measured by summing masses of proposi-
tions compatible with A. The plausibility function is defined as follows:

plΩ : 2Ω → [0, 1] (1.12)

plΩ(A) =
∑

A∩B,∅,B⊆Ω

mΩ(B) (1.13)



16 Chapter 1 : Social Networks

Functions Bel and Pl are linked by the following relation:

plΩ(A) = 1 − belΩ(A) (1.14)

The mass function that produces a given plausibility function is unique and thus
can be recovered using the following equations:

mΩ(A) =
∑
A⊆B

(−1)|B|−|A|+1 plΩ(A)

mΩ(∅) = 1 − plΩ(Ω)
(1.15)

It should be noted that under the closed world assumption, mΩ(∅) = 0 and
belΩ(Ω) = plΩ(Ω) = 1. However, with the open world assumption, the mass
function mΩ(∅) can be viewed as missing mass or a not committed mass equal to
1 − plΩ(Ω).

Some particular mass functions are introduced in the following:

Categorical mass functions

A categorical mass function is a normalized mass function which has a unique
focal element A∗. This mass function is noted mΩ

A∗ and defined as follows:

mΩ
A∗(A) =

{
1 if A = A∗ ⊂ Ω

0 ∀A ⊆ Ω and A , A∗
(1.16)

Vacuous mass functions

A vacuous mass function is a particular categorical mass function focused on Ω. It
means that a vacuous mass function is normalized and has a unique focal element
which is Ω. This type of mass function is defined as follows:

mΩ
Ω(A) =

{
1 if A = Ω

0 otherwise
(1.17)

Vacuous mass function emphasizes the case of total ignorance.



Section 1.2 – Uncertainty in Social Network 17

Dogmatic mass functions

A dogmatic mass function is a mass function where Ω is not a focal element. A
dogmatic mass function is defined as follows:

mΩ(Ω) = 0 (1.18)

Bayesian mass functions

A Bayesian mass function is a mass function which all focal elements are elemen-
tary hypotheses. It is defined as follows:{

mΩ(A) ∈ [0, 1] if |A| = 1
mΩ(A) = 0 otherwise

(1.19)

As all focal elements are single points, this mass function is a probability distri-
bution.

Consonant mass functions

A consonant mass function is a mass function which focal elements are nested
(A1 ⊂ A2 ⊂ ... ⊂ Ω).

Certain mass functions

A certain mass function is a categorical mass function such that the only focal
element is an elementary hypothesis. This mass function emphasizes the case
of total certainty as the source supports only one hypothesis with certainty. It is
defined as follows:

mΩ(A) =

{
1 if A = ω ∈ Ω

0 ∀A ⊆ Ω and A , ω
(1.20)

Simple support functions

A simple support function is a mass function which has only one focal element
other than the frame of discernment Ω. This unique focal element is called the
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focus of the simple support function. A simple support function is defined in
(Shafer, 1976; Smets, 1995) as follows:

mΩ(B) =


ω if B = Ω

1 − ω if B = A for some A ⊂ Ω

0 otherwise
(1.21)

where A is the focus of the simple support function and ω ∈ [0, 1].

A simple support function is also noted Aω where ω is the degree of support of
the frame of discernment Ω and the complement of ω to 1 is the degree of support
of the focus A.

The simple support function is used to represent uncertainty, imprecision and
ignorance.

Example

Suppose the frame of discernment of the nodes ΩN = {C1,C2,C3} and assume
a support mass function mΩN defined on ΩN: mΩN (C1 ∪C3) = 0.7, mΩN (ΩN) = 0.3
This function models both the uncertainty (0.7) and the imprecision on C1 ∪C3.

Consistent mass functions

A consistent mass function is a function which all focal elements have a non empty
intersection. For such mass functions, at least one focal element is common to all
the focal ones.

Pignistic Transformation

In the credal level, degrees of belief are assessed and mass functions can be com-
bined. In the pignistic level, decisions are made according to criteria. It consists
on choosing the most probable hypothesis from Ω. Based on the method proposed
by Smets (Smets, 2005), each mass of belief m(A) is equally distributed among
the elements of A. This leads to the concept of pignistic probability, BetP, defined
by:

BetPΩ
m(ωi) =

∑
ωi∈A,A⊆Ω

mΩ(A)
|A|(1 − mΩ(∅))

(1.22)

Decision is made according to the maximum of pignistic probabilities.
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Product Space

In some applications, pieces of evidence may be defined on different frames of
discernment. To assess flexibly justified degrees of support in different frames,
some tools provide the redefinition of these pieces under a common space. Sup-
pose that we have two different frames of discernment Ω = {ω1, ω2, ..., ωn1} and
Θ = {θ1, θ2, ..., θn2}. The frame of discernment Ω×Θ is composed of the Cartesian
product of Ω and Θ, Ω × Θ is defined as follows:

Ω × Θ = {(ω1, θ1), (ω2, θ2), ..., (ω1,Θ), ..., (Ω,Θ)} (1.23)

Example

Let ΩN the frame of discernment of the nodes and ΩL the frame of discernment
of the links in a given social network:

• ΩN = {C1,C2,C3}. The attributes Ci represent to which community the nodes
belong.

• ΩL = {IC1, IC2, IC3}. The attributes ICi represent to which community the
links belong

The product frame is as follows:
ΩN×ΩL = {(C1, IC1), (C1, IC2), (C1, IC3), (C2, IC1), (C2, IC2), (C2, IC3), (C3, IC1),
(C3, IC2), (C3, IC3)}

Multivalued Mapping

To focus on the type of relationship between two different frames of discernment
Ω and Θ, we may use the multivalued mapping introduced by Hyun Lee (H. Lee,
2011):

mΘ
Γ (B j) =

∑
Γ(ei)=B j

mΩ(ei) (1.24)

with ei ⊆ Ω and B j ⊆ Θ. Therefore the function Γ is defined as follows:

Γ : Ω→ 2Θ (1.25)
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Vacuous Extension

The vacuous extension (Smets, 1993) is a tool to extend a mass function defined
on a frame of discernment Ω (or Θ) to the product frame Ω × Θ. The vacuous
extension, noted ↑, consists on a transfer of basic belief masses of each focal
element B to its cylindrical extension (B × Θ is the cylindrical extension of B) as
follows:

mΩ↑Ω×Θ(A) =

{
mΩ(B) if A = B × Θ, B ⊆ Ω

0 otherwise
(1.26)

The vacuous extension is a particular case of the multivalued mapping opera-
tion.

Example Suppose that we have the following mass functions:

mΩN (C1) = 0.5 and mΩN (ΩN) = 0.5

To extend mΩN from ΩN to ΩN × ΩL, the mass of each focal element is trans-
ferred to its cylindrical extension. Thus, we obtain:

• mΩN↑ΩN×ΩL(C1,ΩL) = 0.5

• and mΩN↑ΩN×ΩL(ΩN ,ΩL) = 0.5

Distance of Jousselme

The distance of Jousselme (Jousselme et al., 2001) represents the degree of simi-
larity between bodies of evidence. It is defined by:

d j(mΩ
1 ,m

Ω
2 ) =

√
1
2

(mΩ
1 − mΩ

2 )T Jac(mΩ
1 − mΩ

2 ) (1.27)

where the elements Jac(A, B) of Jaccards weighting matrix Jac are defined as:

Jac(A, B) =


1 if A = B = ∅

|A ∩ B|
|A ∪ B|

, otherwise
(1.28)

Combining efficiently several mass functions coming from distinct sources repre-
sents a major information fusion problem in the theory of belief functions. Many
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rules have been proposed in (Dempster, 1967; Yager, 1987; Dubois & Prade,
1988; Smets, 1990; Denceux, 2006; Martin & Osswald, 2007)

In the following, we recall some popular combination rules.

Conjunctive combination rule

Proposed by Smets (Smets, 1990), the conjunctive combination rule allows to
associate a positive mass to the empty set. It is interpreted as the non exhaustivity
of the frame of discernment. The conjunctive combination rule for two mass
functions mΩ

1 and mΩ
2 is defined as follows:

mΩ
1 ∩O 2(A) =

∑
B∩C=A

mΩ
1 (B) × mΩ

2 (C) (1.29)

Dempster combination rule

The Dempster combination rule (Dempster, 1967) is a normalized conjunctive
rule. Given for two mass functions mΩ

1 and mΩ
2 for all X ∈ 2Ω, X , ∅, it is defined

by:

mΩ
⊕ (X) =

1
1 − k

∑
A∩B=X

mΩ
1 (A).mΩ

2 (B) (1.30)

where k =
∑

A∩B=∅

mΩ
1 (A).mΩ

2 (B) is the global conflict of the combination. This rule

is adapted when the combined mass functions are cognitively independent.

The cautious combination rule

The cautious combination rule (Denceux, 2006) of two mass functions mΩ
1 and mΩ

2

issued from dependent sources is defined as follows:

mΩ
1 ∧OmΩ

2 = ∩OA⊂Ω Aw1(A)∧w2(A) (1.31)

Where Aw1(A) and Aw2(A) are simple support functions focused on A with weights
w1 and w2. ∧ represents the min operator of simple support functions weights.
When the min operator ∧ is replaced by the max operator ∨, the bold combination
rule is obtained.
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Both cautious rules are used to combine mass functions issued from dependent
sources. In addition, they are commutative, associative and idempotent.

Mean combination rule

The mean combination rule, mΩ
Mean, of two mass functions mΩ

1 and mΩ
2 is the av-

erage of these ones. Therefore, for each focal element A of n mass functions, the
combined one is given by:

mΩ
Mean(A) =

1
n

n∑
i=1

mΩ
i (A) (1.32)

This rule can be used in the case of dependent mass functions.

PCR6 combination rule

The PCR6 combination rule proposed by (Martin & Osswald, 2007) is dedicated
to combine two or many mass functions. For two mass functions, the PCR6 is
defined by:

mPCR6(A) = m1 ∩O 2(A) +
∑

B∈2Ω,A∩B=∅

(
m1(A)2m2(B)

m1(A) + m2(B)
+

m2(A)2m1(B)
m2(A) + m1(B)

)
(1.33)

When it comes to the combination of M mass functions provided by M inde-
pendent and distinct sources, the authors proposed a generalised combination rule
in (Martin & Osswald, 2006).

1.2.2 Related Works to the Uncertainty in Social Networks

Several researches were focused on managing the imperfections of the informa-
tion in a social network in order to remedy problems such as detection of spam-
mers, link prediction,etc.

To do so, many authors opted to combine the theory of graphs with the the-
ories dealing with uncertainty like probability (Khan et al., 2014; Parchas et al.,
2014), possibility or theory of belief functions (Ben Dhaou et al., 2014) in order
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to provide a general framework for an intuitive and clear graphical representation
of real-world problems.

Indeed, in their work, (Khan et al., 2014) studied reliability search on uncertain
graphs (also called probabilistic graphs). The authors proposed a novel index RQ-
tree which is based on hierarchical clustering of the nodes in the graph, and further
optimized using a balanced-minimum-cut criterion.

As for (Parchas et al., 2014), they proposed algorithms for creating deter-
ministic representative instances of uncertain graphs that maintain the underlying
graph properties. Specifically, the algorithms aim to preserve the expected vertex
degrees because they capture well the graph topology.

In the same context, we introduced in (Ben Dhaou et al., 2014) a belief social
network. The purpose of this work is to model a social network as being a network
of fusion of information and determine the true nature of the received message in
a well-defined node.

A belief social network is represented by associating a mass function to each
node and link. Formally, an evidential graph G = {Vb, Eb} is composed of a set of
nodes Vb and a set of edges Eb. A mass mΩN

Vi
defined on the frame of discernment

ΩN of the nodes is associated to every node Vb
i of Vb. Moreover, a mass mΩL

Vi j

defined on the frame of discernment ΩL of the edges is attributed to every edge
(Vb

i ,V
b
j ) of Eb. Then, a mass function is associated to each message transiting in

the network .

In order to determine the true nature of the message in a defined node, the
information of the node and link are combined to obtain a belief of the network.
After that, an operation to transfer the information of the network defined on the
product space ΩN × ΩL to the frame of discernment of the messages ΩM is used.
Next, the obtained mass function of the message based on the information of the
network is combined with the initial one. Finally, the decision on the nature of the
resulting message is taken by using the pignistic probability.

We presented in this section some basic concepts of the theory of belief func-
tions as well as related works to the uncertainty in social networks. In this thesis,
we use the simple support function for the generation of the attributes of the nodes,
links and messages. The distance of Jousselme is used to compute the degree
of similarities between the mass functions. In order to combine the information
from different frames of discernment, we use the notion of the product space, the
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vacuous extension and the multi-valued mapping operation. Then, to combine
information obtained from different independent sources, we use the Dempster
combination rule. In the case of dependent sources, we use the Mean combination
rule. Finally, to make decision, we use the pignistic probability.

The belief social network introduced by (Ben Dhaou et al., 2014) will be used
as a representation of social networks with evidential attributes in all the proposed
contributions.

We present in the next section some related works to the community detection
in social networks.

1.3 Clustering in Social Networks

Clustering is the assignment of a set of observations to subsets called clusters
so that the observations in the same cluster share similarities. Clustering is an
unsupervised learning method and a common technique of statistical data analysis
used in many fields such as community detection in social networks. Indeed, in
social networks, we aim to find groups of individuals with dense links internally
and sparse links externally.

In this section we present related works to the community detection task. We
start by presenting some community detection methods taking into account the
graph structure only and some other taking into consideration the attributes in ad-
dition of the graph structure. Then, we present few approaches dealing with the
homophilic behaviour in social networks. After that, we recall the principle of
the K-Medoids algorithm. Next, we introduce some researches that have focused
on the link prediction problems. Thereafter, we present some recent works deal-
ing with the spammers detection problem. Finally, we recall the principle of the
Walktrap approach.

1.3.1 Some Community Detection Methods with only Graphs
Structures

Many researches aim to find communities based on the network structure. In
the following, we introduce some of them. In the literature, there are several
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studies such as the hierarchical clustering (Scott, 2017) which is a method based
on the development of a measure of similarity between pairs of vertices using
the network structure. The disadvantage of this technique consists on ignoring the
number of communities that should be used to get the best division of the network.

The second type of methods is the algorithms based on edge removal. Two
techniques are presented:

The algorithm of Girvan and Newman (Girvan & Newman, 2002) which is
a divisive method, in which edges are progressively removed from a network.
In addition, the edges to be removed are chosen by computing the betweenness
scores. The final step consists on recomputing the betweenness scores follow-
ing the removal of each edge. The betweenness of an edge is defined to be the
number of geodesic paths between node pairs that run along the edge in question,
summed over all node pairs. The proposed approach involves simply calculating
the betweenness of all edges in the network, removing the one with highest be-
tweenness and repeating this process until no edges remain. In the case where two
or more edges tie for highest betweenness, one can either choose one at random
to remove, or simultaneously remove all of them. This algorithm does not provide
any guide to how many communities a network should split into. In addition, it
is also slow. In order to address the first issue, the authors propose in (Newman
& Girvan, 2004) that the generated divisions should be evaluated using a measure
they call modularity, which is a numerical index of how good a particular division
is. In (Newman, 2004), the author proposed a new algorithm for extracting com-
munity structure based on the notion of modularity which allows to address the
second issue. Indeed, the new algorithm is much faster than the previous ones.

The algorithm of (Radicchi et al., 2004) is also based on iterative removal of
edges. The authors show the way to implement in practice in the existing algo-
rithms the quantitative definitions of community. In addition, they propose a local
algorithm to detect communities which is performing better than the existing algo-
rithms with respect to computational cost and keeping the same level of reliability.
In this work, the authors introduce a general criterion for deciding which of the
sub-graphs singled out by the detection algorithms are actual communities. In
addition, they present an alternative algorithm based on the computation of local
quantities. It gives results similar to the Girvan and Newman approach in con-
trolled cases. However, it is much better from the point of view of computational
speed.
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All the methods cited above focused only on the structure of the network and
do not take into account the nodes attributes. In fact, often, nodes have features
associated with them.

1.3.2 Some Community Detection Methods with Graphs Struc-
ture and Attributes

We present in the following some community detection methods based on graph
structure and attributes.

The presented model in (Y. Zhou et al., 2009) uses both structure and at-
tributes. First, the authors performed a unified neighbourhood random walk dis-
tance measure which allows to measure the closeness of vertex on an attribute
augmented graph. Then, the authors use a K-Medoids clustering method to parti-
tion the network into k clusters. The authors propose an unified distance measure
in order to combine structural and attribute similarities. Second, they provide a
theoretical analysis to quantify the contribution of attribute similarity to the uni-
fied random walk distances to measure node closeness. Third, the authors propose
a weight self-adjustment method in order to learn the degree of contributions of
different attributes in random walk distances. In addition, they prove that the edge
weights are adjusted towards the direction of clustering convergence. Finally, the
authors test their approach in real large graphs. The experiments show that the
proposed method is able to partition the graph into high-quality clusters with co-
hesive structures and homogeneous attributes values. The clustering algorithm
converges very quickly.

A second method presented in (Leskovec & Mcauley, 2012) consists on a
model dedicated to detect circles that combines network structure and user pro-
file. The circle represent a group of persons connected to each user. On Facebook,
it is called ”list” of friends and ”circles” on Google+. The authors learn for each
circle, its members and the circle-specific user profile similarity metric. From the
modelling of node membership to multiple circles, the method proposed by the
authors is able to detect overlapping as well as hierarchically nested circles. In
their work, the authors model circle affiliation as latent variables and similarity
between alters as a function of common profile information. The proposed ap-
proach is unsupervised and aims to learn which dimensions of profile similarity
lead to densely linked circles. In addition, the method is able to predict hard as-
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signment of a node to multiple circles and to learn the dimensions of similarity
along which links emerge.

A third method presented in (Trabelsi et al., 2016) consists on dealing with the
uncertainty that occurs in the attribute values within the belief functions frame-
work in the case of clustering. The authors develop another version of decision
trees using the theory of belief functions and are interested in the case where the
uncertainty occurs in both construction and classification phases. In their paper,
the authors present a new decision tree composed of two procedures. The first
one consists on the construction of the tree from containing uncertain attributes.
The second one consists on the classification of new instances described by un-
certain attribute values. In this work, the time complexity still a critical problem,
especially for large or even medium sized databases.

The works cited above (Y. Zhou et al., 2009; Leskovec & Mcauley, 2012)
use only a probabilistic attributes as well as the structure of the graph to do the
clustering. In our previous work (Ben Dhaou et al., 2017), we show that the
use of evidential attributes gives better results than the probabilistic ones in the
clustering.

The works presented in (Y. Zhou et al., 2009; Leskovec & Mcauley, 2012;
Trabelsi et al., 2016) are interesting, but they do not assume that network infor-
mation can be noisy or perturbed. In addition, they do not consider the use of node
and link attributes simultaneously to do the clustering.

1.3.3 Homophilic Behaviours in Social Networks

In (K. Zhou, Martin, Pan, & Liu, 2018), the authors present a new method using
the theory of belief functions that aims to detect communities on graphs after the
stabilisation of the label propagation process. In fact, SELP (Semi-supervised
clustering approach based on an Evidential Label Propagation strategy) permits
to propagate the labels from the labelled nodes to the unlabelled ones based on
a propagation rule. The proposed algorithm computes the dissimilarities between
nodes based on the graph structure. The main advantage of the proposed algorithm
is that it can effectively use limited supervised information to guide the process of
the detection.

Another interesting work presented in (Guimerà & Sales-Pardo, 2009) aims to
identify missing and spurious interactions (links connecting nodes) and to recon-
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struct network whose properties are closer to the ’true’ underlying network. To
do so, the authors focus on the family of stochastic block models. The proposed
method can also guide new discoveries. In fact, if a given interaction between 2
nodes exists but with a very low reliability for the interaction, that means that the
function of the interaction is very specific.

The method proposed in (Vuokko & Terzi, 2010) aims to address the prob-
lem of reconstructing the original network and set of features given their ran-
domized counterparts. The technique of data randomization consists of removing
some of the original edges of the network in addition of new ones. Furthermore,
the features can be also randomized. In this work, the authors assume that data-
randomization method does not completely destroy the original dataset. For the
case of features, every node is associated with k binary features. If the node has
that feature, it will take 1 otherwise it will take 0.

All the works presented are interesting. However, we can not do a comparison
at the experimental level since we do not consider the resolution of the same prob-
lem which is the correction of noisy information in social network. Indeed, the
first work consider a network with few nodes having labels and aim to propagate
them to the unlabelled ones. In this thesis, all nodes and links have a prior labels.
In the second research (Guimerà & Sales-Pardo, 2009), the authors are interested
in predicting links based on observations. In this work, the initial structure of the
network is not modified. Regarding the third work (Vuokko & Terzi, 2010), the
authors remove links from the graph and add new ones whereas in our case, the
structure of the graph is not amended.

1.3.4 K-Medoids algorithm

The K-medoids algorithm (Arora et al., 2016) is a partitional clustering algorithm:
It breaks the dataset up into groups. The K-medoids algorithm minimizes the sum
of dissimilarities between points labelled to be in a cluster and a point designated
as the centre of that cluster. Unlike the K-means algorithm, K-medoids algorithm
chooses data-points as centres called medoids.

A medoid algorithm of a finite dataset is a data point from this set, whose
average dissimilarity to all the data points is minimal.

K-medoids is a partitioning technique of clustering that clusters the dataset of
n objects into k clusters with k known a priori. Among the strengths of K-medoids,
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we mention the fact that it is more robust to noise and outliers comparing to K-
means. Indeed, it minimizes the sum of general pairwise dissimilarities.

The basic idea of the K-medoids algorithm is to first compute the K represen-
tative objects which are called as medoids. After finding the set of medoids, each
object of the data set is assigned to the nearest medoid: object i is put into cluster
Ki, when medoid mKi is nearer than any other medoid mw.

Among the K-medoids methods proposed in the literature, we mention the
method “PAM: Partitioning around Medoids”, the method “CLARA: Clustering
LARge Applications” introduced by (Kaufman & Rousseeuw, 2009), the method
“CLARANS: Clustering Large Applications based upon RANdomized Search”
(Ng & Han, 2002) and the method “ECMdd: Evidential C-Medoids” proposed by
(K. Zhou et al., 2016).

Given the advantages of this algorithm, we use it in our first contribution to
the partitioning of the nodes of the different used networks.

1.3.5 Link Prediction Problem in Social Networks

Several works have focused on the problem of prediction of links in social net-
works. Indeed, social networks are highly dynamic objects; they grow and change
quickly over time through the addition of new edges, signifying the appearance
of new interactions in the underlying social structure. Therefore, the link predic-
tion problem becomes an important task which aims for predicting the likelihood
of a future association between two nodes, knowing that there is no association
between the nodes in the current state of the graph.

The authors in (Al Hasan & Zaki, 2011) present a survey of some representa-
tive links prediction methods by categorising them by the type of the models: the
traditional models which extract a set of features to train a binary classification
mode. The second type of methods is the probabilistic approaches which model
the joint-probability among the entities in a network by Bayesian graphical mo-
dels. Finally, the linear algebraic approach which computes the similarity between
the nodes in a network by rank-reduced similarity matrices.

Other authors have been interested in the problem of predicting links by con-
sidering it in an uncertain context such as the presented work in (Mallek et al.,
2015). Indeed, the authors examined the link prediction problem by adopting the
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theory of belief functions. In their work, they proposed a new graph-based model
for social networks that encapsulates the uncertainties in the links structures. In
addition, they used the assets of the theory of belief functions for combining pieces
of evidence induced from different sources and decision making in order to pro-
pose a novel approach for predicting future links through information fusion of
the neighbouring nodes.

Another interesting research proposed by (Moradabadi & Meybodi, 2017)
deals with the problem of links prediction in the case of fuzzy social networks
based on distributed learning automata (FLP-DLA). Indeed, the authors started
by modelling the social network as a fuzzy social network, where each link has
a fuzzy strength. The fuzzy strength is defined using the date of link occurrence
and the number of collaborations in the corresponding link, since it is assumed
that very old links are not important in the prediction task. After that, the fuzzy
links are used by distribution learning automata to find the strength of a path for
any link that must be predicted. DLA tries to find the path strength using a rein-
forcement mechanism and graph navigation.

All these works are interesting. However, the cited researches focus only on
how to add links to the network when an entity disappears.

1.3.6 Detection of Spammers in Social Networks

Social networks are extremely popular among Internet users. Indeed, users spend
a significant amount of time storing and sharing personal information. Unfortu-
nately, this kind of information attracts the interest of cybercriminals. These latter
might use it in order to identify theft or to drive target spam campaigns. In addi-
tion, spammers can exploit the relationships between users with the intention of
luring victims to malicious websites. According to (Washha et al., 2016), a spam-
mer is a goal-oriented person who aims to achieve unethical goals. A spammer
proceeds by exploiting trending topics to lunch its spammy content. In this con-
text, several researches have focused on the analysis and detection of spammers
in social networks.

In order to remedy this problem, the authors of (K. Lee et al., 2010) proposed
a honeypot-based approach for uncovering social spammers in on-line social net-
works. The purpose of their method is to automatically harvest spam profiles from
social networking communities avoiding the drawbacks of burdensome human in-
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spection. In addition, the authors aim for developing robust statistical user models
to distinguish between social spammers and legitimate users.

In (Stringhini et al., 2010), the authors analyse to which extent spam has en-
tered social networks. Indeed, they analyse how spammers who target social net-
working sites operate. To do so, the authors created a set of honeynet accounts
on 3 major social networks and logged all the activity observed by these profiles.
Then, they investigate how spammers are using social networks and examine the
effectiveness of the counter-measures implemented by the major social network
portals to prevent spamming on their platforms. Based on this information, the
authors identify characteristics that allow them to detect spammers in a social
networks.

In (Z. Yang et al., 2014) the authors used ground-truth data about the behaviour
of Sybils in the wild in order to create a measurement-based, real-time Sybil de-
tector. In addition, they characterised the Sybil graph topology on a major on-line
social network. The authors analysed also the behaviour of Sybil clickstream on
Renren. Indeed, their data captures the exact session-level sequences of actions
that Sybils use to send spam and generate friend requests.

The authors of (Zheng et al., 2015) adopt the spammers features to detect
spammers and test the result over Sina Weibo. In addition, they study a set of
most important features related to message content and user behaviour in order to
apply them on the SVM (Support Vector Machine) based classification algorithm
for spammer detection.

Although the proposed approach could achieve precise classification result, it
takes over an hour in a process for model training. Furthermore, in the era of big
data with huge data volume and convenient access, feature extraction mechanism
in the proposed model might be low adaptive and take a lot of time.

Another interesting work proposed in (Roul et al., 2016) consists of detecting
spam web pages by using either content or link-based techniques or combination
of both. In the content-based approach, the authors used term density and Part
of Speech (POS) ratio test in order to detect the spam pages. In the link-based
method, they used collaborative detection using personalised page ranking to de-
tect spam pages. As future works, the authors intend to extend their model by
finding topical spam patterns to understand different tricks played by spammer in
different web pages. In addition, in order to reduce the running time of the algo-
rithm, they intend to work in a distributed environment using map-reduce such as
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Hadoop.

The authors in (Martinez-Romo & Araujo, 2013) introduced a method based
on the detection of spam tweets in isolation and without previous information of
the user and the application of a statistical analysis of language to detect spam
in trending topics. The authors present an approach to detect spam tweets in real
time using language as the primary tool.

Although the work presented is interesting, the analysed dataset is limited and
may still contain some bias. In addition, the number of spam tweets is a lower
bound of the real number. As a future work, the authors intend to select the most
appropriate features for use in a detection system in real time.

In (Washha et al., 2016), the authors present an approach for detecting spam-
mers on Twitter. In their work, they try first to find to what extent it is possible to
increase the robustness of user’s and content features used in the literature. Then,
the authors were interested to sort out if there is an accessible and unmodifiable
property overtime such that it can be leveraged for advancing the available fea-
tures as well as designing new features.

To sum up, some works in the literature focused on the prediction of the
class label of tweet such as in (Martinez-Romo & Araujo, 2013). Other re-
searches (Washha et al., 2016; Zheng et al., 2015) were interested on analysing the
user’s profile to predict whether the user is a spammer or not. Thus, the possibility
that the link can be spammed is not taken into consideration.

1.3.7 Walktrap Approach

In (Pons & Latapy, 2005), the authors introduced a measure of similarities be-
tween vertices based on random walks. These latter tend to get trapped into
densely connected sub-graphs corresponding to communities. Based on some
properties of random walks in graphs, the authors presented a distance of the
structural similarity between nodes and between communities.

In their work, (Pons & Latapy, 2005) proposed first a distance r between nodes
that capture the community structure of the graph. It is defined by:

ri j(t) =

√√
n∑

k=1

(Pt
ik − Pt

jk)
2

d(k)
= ‖D−

1
2 Pt

i − D−
1
2 Pt

j‖ (1.34)



Section 1.3 – Clustering in Social Networks 33

where i and j two nodes of the graph, ‖.‖ is the Euclidean norm of Rn, Pt
i., Pt

j. are
2 probability distributions, D is the diagonal matrix of the degrees and d(k) is the
degree of the node k.

• If two nodes i and j are in the same community, the probability Pt
i j will be

hight. However, it does not necessarily imply that i and j are in the same
community.

• The probability Pt
i j is influenced by the degree d( j). This is due to the fact

that the walker has higher probability to go to nodes having high degree.

• Two nodes of same community tend to “see” all the other nodes in the same
way. Therefore, if i and j are in the same community, we will probably have
∀k, Pt

ik ' Pt
jk

Then, they introduced a second distance between two communities C1 and C2

which is given by the following equation:

rC1C2(t) =

√√
n∑

k=1

(Pt
C1k − Pt

C2k)
2

d(k)
= ‖D−

1
2 Pt

C1
− D−

1
2 Pt

C2
‖ (1.35)

This method is used in the next chapter in order to compare the obtained results
given by our first contribution with those given by the Walktrap approach.

1.3.8 Clustering Results Evaluation Metrics

In what follows, we present some metrics used to evaluate the clustering results
such as the normalized mutual information, the variation of information, the rand
index and the adjusted rand index.

Let X be a finite set with cardinality |X| = n and C and C′ two clustering
algorithms of X.

NMI: Normalized Mutual Information The Normalized Mutual Information
(Knops et al., 2006) measures the similarity between the planted partitions (ground
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truth) and the clustering results given by the algorithms. It measures the propor-
tion of the nodes that have been grouped correctly and represents the consistency
between the found community structure and the presumed one. The NMI is de-
fined between 0 (completely different clusterings) and 1 (identical clusterings).

The NMI is given by:

NMI(A, B) =
H(A) +H(B)
H(A, B)

(1.36)

withH the entropy given by:

H(A) = −
∑
a∈A

PA(a) log PA(a) (1.37)

H(A, B) = −
∑

a∈A,b∈B

PA,B(a, b) log PA,B(a, b) (1.38)

Where A and B are two discrete random variables. The NMI effectively measures
the amount of statistical information shared by the random variables represent-
ing the cluster assignments and the user-labelled class assignments of the data
instances.

VI: Variation of Information The variation of Information between two clus-
tering algorithms introduced by Meilă (Meilă, 2003) is a measure based on the
entropy. It is defined by:

VI(C,C′) = H(C) +H(C′) − 2I(C,C′) (1.39)

= [H(C − I(C,C′)] + [H(C′) − I(C,C′)] (1.40)

with VI(C,C′) represents the amount of information about C that we loose
and the second term of the equation corresponds to the amount of information
about C′ that we still have to gain.

The variation of information is not bounded by a constant value. However
there is an upper bound equal to 2logK with K is the number of clusters. Thus, the
more the result is similar to the benchmark, the smaller the value ofVI is. If the
value ofVI is equal to 0, it means that we have identical clustering algorithms.
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Rand Index (Rand, 1971) Instead of counting single elements, the Rand index
counts correctly classified pairs of elements. It is defined by:

R(C,C′) =
2(n11 + n00)

n(n − 1)
(1.41)

Where:

• n11 = { pairs that are in the same cluster under C and C′ }

• n00 = { pairs that are in different clusters under C and C′ }

• n is the cardinality of the set X.

The Rand index R ranges from 0 (no pair classified in the same way under
both clustering algorithms) to 1 (identical clustering). It should be noted that the
value of R depends on both, the number of clusters and the number of elements.

Adjusted Rand Index (Hubert & Arabie, 1985) proposed an adjustment of the
Rand Index which assumes a generalized hyper-geometric distribution as null hy-
pothesis. In fact, the two clustering are drawn randomly with a fixed number of
clusters and a fixed number of elements in each cluster. Thus, the adjusted Rand
index represents the normalized difference of the Rand index and its expected
value under the null hypothesis. It is given by the following equation:

Rad j(C,C′) =

k∑
i=1

l∑
j=1

(
mi j

2

)
− t3

1
2 (t1 + t2) − t3

(1.42)

where

t1 =

k∑
i=1

(
|Ci|

2

)
(1.43)

t2 =

l∑
j=1

|C′j|2

 (1.44)

t3 =
2t1t2

n(n − 1)
(1.45)

with Ci, C′j are 2 clusters, mi j is the contingency table of the pair C, C′ and n is
the cardinality of the set X.
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It should be noted that the adjusted Rand index can yield negative values if the
index is less than the expected index.

In what follows, we present the networks used in this thesis to evaluate and
validate the different proposed approaches based on previous measures.

1.4 Used Network

In this section, we present the used social networks in the experiments of the pro-
posed contributions. In this thesis we used real networks such as the karate club,
the dolphins and the books about US politics networks in addition of generated
LFR networks. In what follows, the characteristics of each real network such as
the number of nodes, links and communities are detailed. As for the generated
LFR networks, the list of used parameters is explained.

1.4.1 Karate Club Network

The Zachary Karate Club presented in Figure 1.2 is a well-known social network
of an university karate club studied by Zachary (Zachary, 1977). The study was
carried out over a period of three years from 1970 to 1972.

In this network, we find:

• 34 nodes that represent the members of Karate Club.

• 78 pairwise links between members who are interacted outside the club.

During the study a conflict arose between the administrator “John A” and in-
structor “Mr. Hi”, which led to the split of the club into two. Half of the members
formed a new club around Mr. Hi, members from the other part found a new
instructor or gave up karate.

1.4.2 Dolphins Network

The Dolphins, animals social network presented in Figure 1.3 was introduced by
(Lusseau, 2003).
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Figure 1.2: The Karate Club Network.

It is composed of 62 bottle-nose dolphins living in Doubtful Sound, New
Zealand and social ties established by direct observations over a period of sev-
eral years. This network is composed of 2 communities and contains 159 edges
that indicates a frequent association. The dolphins were observed between 1994
and 2001.

During the course of the study, the dolphins group split into two smaller sub-
groups following the departure of a key member of the population.

1.4.3 Books about US Politics Network

The network of books 1 presented in Figure 1.4 is composed of 3 communities,
105 nodes and 441 edges that represent books dealing with US politics sold by
the on-line bookseller Amazon.com. The edges represent frequent co-purchasing
of books by the same buyers.

The books are grouped according to their political spectrum whether they are
conservative (represented by red), neural (green) or liberal (blue) based on synop-
sis and reviews about the books.

1The Karate Club, Dolphins and Books about US Politics data sets can be found in
http://networkdata.ics.uci.edu/index.php
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Figure 1.3: Dolphins Network.

1.4.4 LFR Networks

The LFR benchmark 2 (Lancichinetti et al., 2008) is an algorithm that generates
artificial networks that simulate real-world networks. The generated network has a
prior known communities and it is used to compare different community detection
methods. In what follows, we remind the meaning of each parameter of LFR:

• N represents the number of nodes,

2The LFR benchmark can be found in https://figshare.com/articles/Lancichinetti-Fortunato-
Radicchi-LFR-benchmark/1149962
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Figure 1.4: Books about US Politics Network.

• k the average degree,

• maxk the maximum degree,

• mu the mixing parameter,

• t1 the minus exponent for the degree sequence,

• t2 the minus exponent for the community size distribution,

• minC the minimum for the community size,

• maxC the maximum for the community size,

• on the number of overlapping nodes,

• om the number of memberships of the overlapping nodes

• and C the average clustering coefficient.

The LFR benchmark generates networks with power law degree in addition of
power law distributed community sizes, and the network size is not constrained.

We present in Appendix A the LFR parameters of the generated networks used
in this thesis.

1.5 Conclusion

In this chapter we first introduced the concept of social network as well as its
mathematical representation and its analysis. Indeed, we presented the notion of
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communities in addition of the social networks properties and some used metrics.

Then, some related works that use uncertainty in this kind of networks were
presented. In this thesis, we choose to use the theory of belief functions because
it represents a strong tool to deal with imperfect information, to model ignorance
and to combine information provided by different sources. Some basic concepts
of this theory were presented in this chapter.

After that, different related works to the community detection problems in so-
cial networks were introduced. All the cited researches are interesting. However,
some works focused only on the structure of the network and neglect the attributes
associated to the actors in the social network. Other works take into account both
the network structure and the nodes properties but neglect the attributes associated
to the links or neglect the fact that the information can be imperfect. Regarding
researches that focused on the resolution of the link prediction problem, they are
only interested on how to add links to the network when an entity disappears. As
for the spammers detection problems, the current works focused on the prediction
of the class label of tweets or on analysing the user’s profile to predict whether
the user is a spammer or not. They do not take into consideration that the link can
be spammed. Thereafter, we presented the Walktrap algorithm that will be used
in the next chapter in order to compare the obtained classification results of our
proposed approach with those of the Walktrap method. Then, some community
structure comparison metrics that allow to determine the quality of a classification
results were presented.

Finally, we presented the used networks in this thesis as well as their charac-
teristics. These networks allow to evaluate and validate the effectiveness of the
proposed approaches.

In the next chapter we present our first contribution which consists on showing
the advantage of using evidential attributes in social networks. This method is
based on both structure of the network and the attributes associated to the nodes.

To do so, in what follows the obtained NMI results of the clustering of the
nodes with different uncertain attributes: numerical, probabilistic and evidential
ones are compared.



Chapter 2
The Advantage of Evidential
Attributes in Social Networks

2.1 Introduction

Currently, the community detection task becomes important since it allows us to
classify the nodes according to their structural position and/or their attributes. In-
deed, the clusters obtained by the community detection algorithm contain similar
objects.

In this chapter, we present our approach (Ben Dhaou et al., 2017) which con-
sists of detecting communities in the social network using the K-Medoids algo-
rithm. Based on the structure of the network, uncertain attributes are associated to
each node. Three types of attributes were used: numerical, probabilistic and evi-
dential. We use the K-Medoids algorithm because of its robustness in the presence
of noise and its effectiveness in the case of small data.

The proposed approach is tested on a real data set and some generated LFR
networks. The comparison of the clustering quality was evaluated using the Nor-
malized Mutual Information (NMI). In addition, we use other metrics such as the
Variation of Information (VI), the Rand index and the adjusted Rand index to com-
pare the obtained clustering results with the ground-truth of each network. The
quality of clustering obtained when using a method that only takes into account
the structure of the network (walktrap) is also evaluated.

41
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Figure 2.1: Graph with Evidential Attributes on Nodes.

Figure 2.2: Graph with Probabilistic Attributes on Nodes.

This chapter is organized as follows. First, the proposed approach is intro-
duced in section 2.2. Then, the process of experiments and the obtained results
are presented in section 2.3. After that, the clustering results comparison with
various metrics are shown in section 2.4. Next, in section 2.5 the obtained results
in the case of the simple support functions are presented. Section 2.6 details the
obtained results given by the Walktrap approach. Finally, section 2.7 concludes
the chapter.

2.2 Clustering based on Nodes Attributes

In this contribution, we are interested in the structure of the network as well as
the attributes associated with the nodes. Figures 2.1 and 2.2 show respectively a
graph with nodes having evidential attributes and a second one with nodes having
probabilistic attributes.

In the algorithm 2.1, we propose a method of generating numerical, probabilis-
tic and evidential attributes in order to find communities and show how different
attributes make it possible to place each node in its true community.

In the first step, we give a numerical attribute to each node (a single value
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x ∈ [0, 1]) which indicates the membership of that node to the community accord-
ing to the number of communities. We consider the node’s class Ci among the set
of N possible classes according to the value of x:

x ∈
[
i − 1

N
,

i
N

]
.

Two scenarios were considered:

First scenario: We randomly generate the values of the attributes for each
node Vki ∈ Ci of the graph. We consider three kind of attributes: numerical,
probabilistic and evidential.

• Numerical attribute: We generate a value x in
[

i−1
N ,

i
N

]
for Vki .

• Probabilistic attribute: We generate a value x in
[

i−1
N ,

i
N

]
corresponding to the

probability p(Vki ∈ Ci). For the n − 1 other probabilities, we generate N − 1
values in [0, 1 − x] that we associate randomly to the other classes. In order
to normalize the probability we divide by the sum of the generated values.
This process generates n values xi.

• Evidential attribute: First, we generate a value x in
[

i−1
N ,

i
N

]
corresponding

to the mass function m(Ci). Then the mass of the 2N−1 other focal elements
containing Ci are generated in [0, 1− x] and randomly associated to the focal
elements. At last, we normalize the mass function as in the probabilistic
case. This process generates 1 + 2N−1 values xi.

Second scenario: In order to avoid the arbitrary level of value on the real
class, we affect the highest value to the real class.

• Numerical attribute: In that case, we have only one value, so this second
scenario cannot concern the numerical attributes.

• Probabilistic attribute: The maximum of the n values xi is searched, and the
values are swapped.

• Evidential attribute: The maximum of the 1 + 2N−1 values xi is searched, and
the values are swapped.
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After the generation of the attributes of each node, the community detection
is made by the K-Medoids algorithm which is robust in the presence of noise.
Moreover, this algorithm is interesting and effective in the case of small data. In
the case of evidential attributes, we use the distance of Jousselme (Jousselme et
al., 2001) between the attributes.

After that, we compare the obtained clusters with the real clusters. In order
to measure the clustering quality in each cluster, we use the Normalized Mutual
Information (NMI), a measure that allows a compromise between the number of
clusters and their quality (Knops et al., 2006).

In a second step, in order to evaluate the robustness of the proposed approach,
we select randomly few nodes of the graph and modify their classes. Then, we
compute again the NMI and compute the Interval of Confidence.

Algorithm 2.1 shows the outline of the process followed for evidential at-
tributes before adding the noisy attributes in both first and second scenarios. Al-
gorithm 2.2 presents the process used with the evidential attributes after adding
the noisy nodes in both scenarios.

Algorithm 2.1 Generation of Evidential Attributes
Require: G: Network,

n: Number of vertices,
K: Number of clusters,
Ci: Elements of each cluster i

Ensure: nmiAttr: Similarities between evidential attributes, IC: Interval of Con-
fidence
// First Scenario: Random Generation
for all Vki ∈ Ci do

EvidentialLabels(Ci)
// a function that generates randomly mass functions according to some con-
ditions for each node belonging to Ci.
//Second Scenario
Sort(EvidentialLabels)
// Put the highest generated value on the attribute “Ci” according to which
community, the node belongs and the rest on the subsets containing “Ci”.

end for
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Algorithm 2.2 Adding Noisy Attributes
Require: G: Network,

n: Number of vertices,
K: Number of clusters,
Ci: Elements of each cluster i
Vki: Labelled vertices

Ensure: nmiAttr: Similarities between evidential attributes, IC: Interval of Con-
fidence
// Adding Noisy Attributes in both scenarios.
Select randomly n nodes of the network and modify their attributes in order to
modify their classes.

2.3 Experimentations

In this section we perform some experiments on real networks from the UCI data
sets, such as the Karate Club network, the Dolphins network and the Books about
US Politics network in addition of few LFR Networks.

Process of Experimentations

The purpose of these experiments is to compare the obtained clustering results
with the different uncertain attributes before and after adding noisy attributes. In
these experiments, the attributes are first generated based on the structure of each
network:

Numerical Attributes: For this type of attribute, a single value is generated.

1. Karate Club: This network has 2 communities, so a single value of attribute
is given to each node belonging to C1 in the interval [0, 0.5] and a value in
[0.5, 1] if the node belongs to C2.

2. Dolphins Network: This network has also 2 communities. The same inter-
vals as those of the Karate Club are chosen: if the node belongs to C1, we
generate an attribute in [0, 0.5] and in [0.5, 1] if the node belongs to C2.

3. Books about US Politics Network: This network has 3 communities: For the
node belonging to C1, an attribute in [0, 0.33] is given. Each node belonging
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to C2 has an attribute in [0.33, 0.66]. Finally, for the nodes of C3, they have
an attribute in [0.66, 1].

4. LFR Networks: All the generated networks have 3 communities. The same
intervals as those of the Books about US Politics Network are used: if the
node belongs to C1, we associate an attribute in [0, 0.33]. For each node
belonging to C2, an attribute in [0.33, 0.66] is given. At last, an attribute in
[0.66, 1] is assigned to the nodes belonging to C3.

Probabilistic Attributes: For this type of attributes, 2 or 3 values are generated
depending on the type of network.

1. Karate Club: For the nodes belonging to C1, they have a first value picked
randomly in the interval [0, 0.5] and the second value is deduced from that
(1 − x). For the elements of C2, the first values of attributes were picked
randomly from the interval [0.5, 1] and the second ones are deduced from
that (1 − x).

2. Dolphins Network: Same thing as for the karate club, the nodes of C1 have a
first value of attribute in [0, 0.5] and the second value is deduced from that.
The nodes of C2 have a first value in [0.5, 1] and the second one is deduced
from the first one.

3. Books about US Politics Network: For the nodes of C1, their first value of
attributes is picked in the interval [0, 0.33], the second and third values are
generated randomly from [0, (1 − x)]. After that, we normalize by divid-
ing the second and the third probabilities by the sum of the first, second
and third probabilities. For the nodes of C2 and C3 the same process is fol-
lowed, except that the first values of the attributes are picked from the interval
[0.33, 0.66] in the case of the elements belonging to C2 and from the interval
[0.66, 1] for the nodes of C3.

4. LFR Networks: For all the generated networks, the first value of the at-
tributes of the nodes belonging to C1 is picked in the interval [0, 0.33] and
for the rest of the values, they are generated randomly from [0, (1 − x)]. We
normalize by dividing the second and third probabilities by the sum of the
first, second and third probabilities. Regarding the nodes belonging to C2,
the same process is followed but instead of picking the first value in [0, 0.33],
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we use the interval [0.33, 0.66]. Finally, for the nodes of C3, the first value is
picked in [0.66, 1].

Evidential Attributes: For this type of attributes 2 and 4 values are generated,
depending on the type of network.

1. Karate Club: This network has 2 communities so, ΩN = {C1,C2} and
2ΩN = {∅,C1,C2,C1 ∪ C2}. We choose to put 2 values on C1 and ΩN for
the nodes belonging to C1. For the rest of hypothesis, we put 0. For the value
of C1, it was picked in the interval [0, 0.5] and the second value on ΩN was
deduced from the first value. We remind that the sum should be equal to 1.
For the nodes of C2, 2 values are affected to C2 and ΩN . The first value of C2

is picked in [0.5, 1] and the second one is deduced of the first value.

2. Dolphins Network: The same process used for the Karate Club is applied.

3. Books about US Politics: this network has 3 communities so, the frame of
discernment ΩN = {C1,C2,C3} and the power set 2ΩN = {∅,C1,C2,C1 ∪

C2,C3,C1 ∪ C3,C2 ∪ C3,C1 ∪ C2 ∪ C3}. Four values are affected to C1,
C1 ∪ C2, C1 ∪ C3 and ΩN when the nodes belong to C1. For the rest of the
hypothesis, the value 0 is assigned. The value of C1 is picked from [0, 0.33]
and the rest of the values are deduced from the first one. The same principle
as deducing the rest of probabilities presented previously is used, except that
3 other probabilities are generated instead of 2. For the second community,
the same process is applied, except that we put values on C2 and the subsets
containing C2. The value of C2 is picked in the interval [0.33, 0.66] and the
rest of the values were deduced as explained before. For the third commu-
nity, the values are generated on C3, and each subset containing C3. The
value of C3 is picked in [0.66, 1] and the rest of the values are deduced as
explained before.

4. LFR Networks: As all generated networks are composed of 3 communities,
same process used for the Books about US Politics Network is applied.

Once the attributes generated, the K-medoids algorithm is used to cluster the
nodes according to their attributes. After that, the NMI method is used to compare
the detected clusters with the real clusters of each network. Then, we compute the
confidence interval. These experimentations are repeated 100 times.
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NMI-Average Interval of Confidence
Numerical 0.776 [0.596, 0.955]

Probabilistic 0.778 [0.59, 0.967]
Evidential 1 [1, 1]

Table 2.1: NMI Averages et Intervals of Confidence- Case of Karate Club: First
Scenario.

In a second time, the generated matrices are sorted by putting the highest
values on C1 and C2 in the case of the Karate Club and Dolphins network and
on C1, C2 and C3 in the case of the Books about US Politics network and the
LFR networks. After that, the nodes are clustered again according to their new
attributes and the NMI averages are computed.

The second part of the experimentations consists on adding some noisy at-
tributes by modifying the attributes of some nodes of C1, C2 and C3. For each
noisy attribute, its value is chosen outside the interval set for its class. Then, the
nodes are clustered according to their attributes and the NMI average as well as
the intervals of confidence are computed. This experimentation is performed for
the random and the sorted matrix of attributes. It should be noted that the sorted
attributes matrices are used in the case of the probabilistic and the evidential gen-
eration only. In the results below, we present the average of NMI computed for
100 executions of the algorithms and the intervals of confidence for the numerical,
probabilistic and evidential attributes.

2.3.1 Results Before Adding the Noise

Karate Club Network

First Scenario In this section, we show the results of the NMI computation of
the random generated attributes. The results of the average values of NMI for 100
runs of random attributes generation are presented below.

Table 2.1 shows that the evidential generated attributes give better results than the
probabilistic and the numerical ones. In fact, a value of the NMI average equal
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NMI-Average Interval of Confidence
Probabilistic 0.7843 [0.602, 0.966]
Evidential 1 [1, 1]

Table 2.2: NMI Averages et Intervals of Confidence- Case of Karate Club: Second
Scenario.

NMI-Average Interval of Confidence
Numerical 0.782 [0.587, 0.976]

Probabilistic 0.765 [0.554, 0.976]
Evidential 1 [1, 1]

Table 2.3: NMI Averages et Intervals of Confidence- Case of Dolphins Network:
First Scenario.

to 1 is obtained which means that the K-medoids is able to classify the nodes ac-
cording to their evidential attributes in the right cluster even when the generation
is random.

Second Scenario The generation of the attributes is executed several time and
the matrix of attributes is sorted (We put the highest value on the attribute C1 or
C2 depending on the belonging of the node to C1 or C2). The obtained results of
the average values of NMI for 100 executions are shown below.

The results presented in Table 2.2 show that the evidential version gives an av-
erage NMI value equal to 1, which means that each node was detected in the right
cluster. It is noticed that after sorting the probabilistic attributes, the K-medoids
was not able to affect all the nodes in their right cluster.

Dolphins Network

First Scenario The average values of NMI for 100 runs of random generated
attributes in the Dolphins network are presented in Table 2.3.
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NMI-Average Interval of Confidence
Probabilistic 0.79 [0.597, 0.983]
Evidential 1 [1, 1]

Table 2.4: NMI Averages et Intervals of Confidence- Case of Dolphins Network:
Second Scenario.

NMI-Average Interval of Confidence
Numerical 0.699 [0.551, 0.848]

Probabilistic 0.758 [0.668, 0.848]
Evidential 1 [1, 1]

Table 2.5: NMI Averages et Intervals of Confidence- Books about US Politics
Network: First Scenario.

The obtained average NMI in the case of evidential attributes is the highest value
comparing to the probabilistic and the numerical ones. Same thing, the K-medoids
is able to classify the nodes in their right cluster based on their evidential at-
tributes.

Second Scenario The matrix of the previous generated attributes is sorted and
the average values of NMI are computed for 100 executions.

The results presented in Table 2.4 show that the evidential version gives an aver-
age NMI value equal to 1 comparing to the probabilistic and numerical versions. It
is also noticed that the K-medoids was not able to classify the nodes in their right
clusters based on their probabilistic attributes. In fact, only 79% of nodes were
classified correctly compared to 100% corrects nodes having evidential attributes.

Books about US Politics Network

First Scenario In this part, the obtained results of the NMI average values are
shown in the case of 100 runs of random generated attributes.
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NMI-Average Interval of Confidence
Probabilistic 0.895 [0.828, 0.962]
Evidential 1 [1, 1]

Table 2.6: NMI Averages et Intervals of Confidence- Books about US Politics
Network: Second Scenario.

The results in Table 2.5 show that the clustering based on the generated evi-
dential attributes gives better results than the probabilistic and the numerical ones.
In fact, the evidential NMI average is equal to one which means that all the nodes
were classified in their right cluster.

Second Scenario The generation of the attributes is performed several times
and the matrix of attributes is sorted (the highest value is assigned to the attribute
C1, C2 or C3 depending of the belonging of the node to the first, second or third
community). The results of the average values of NMI for 100 are presented be-
low.

The obtained results in Table 2.6 show that the evidential version gives an av-
erage NMI value equal to 1 comparing to the probabilistic one which means that
all the nodes were classified in their right clusters.

LFR Network: 300 Nodes + 3 Communities

First Scenario In this section, we show the results of the NMI computation of
the clustering results of the random generated attributes. Table 2.7 presents the
obtained average values of NMI for 100 runs of random attributes generation in
the case of an LFR network composed of 300 nodes and 3 communities.

The results show that the evidential generated attributes give better results than
the probabilistic and the numerical ones. In fact, we obtained a value of the NMI
average equal to 1 which means that the K-medoids succeeded to classify all the
nodes, according to their evidential attributes, in their right cluster.
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NMI-Average Interval of Confidence
Numerical 0.659 [0.615, 0.703]

Probabilistic 0.676 [0.627, 0.725]
Evidential 1 [1, 1]

Table 2.7: NMI Averages et Intervals of Confidence- LFR 300 Nodes: First Sce-
nario.

NMI-Average Interval of Confidence
Probabilistic 0.856 [0.833, 0.879]
Evidential 1 [1, 1]

Table 2.8: NMI Averages et Intervals of Confidence- LFR 300 Nodes: Second
Scenario.

Second Scenario The generation of the attributes is executed several time and
we sorted the matrix of attributes. The obtained results of the average values of
NMI for 100 executions are presented below.

The results of Table 2.8 show that the evidential version gives an average NMI
value equal to 1, which means that each node was affected to the right cluster. It
is noticed that after sorting the probabilistic attributes, the K-medoids was able to
affect only 85% of the nodes in their right clusters.

It has been noticed that either in the case of the first scenario or the second
one, the NMI values obtained with evidential attributes are always equal to 1. This
can be explained by the fact that a mass function is assigned to each hypothesis
containing the class to which the node belongs. The performed experiments on
other different LFR networks are presented in Appendix B .

2.3.2 Results After Adding the Noise

In this section, the obtained results after adding some noisy attributes are pre-
sented. To do so, 1 to 9 nodes of the real data networks are randomly chosen on
which some noise is added. Regarding the LFR generated networks, the noise is
added according to the networks sizes. For the LFR network composed of:
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Figure 2.3: Noisy Karate: First Scenario.

• 50 nodes, we added from 5 to 25 noisy nodes.

• 99 nodes, we added from 5 to 25 noisy nodes.

• 200 nodes, we added from 10 to 50 noisy nodes.

• 300 nodes, we added from 20 to 60 noisy nodes.

Hence, the attributes values are modified and the NMI average values are com-
puted each time. This experimentation is repeated 100 times for each number of
modified nodes, for cross-validation.

First Scenario At first, the first scenario is considered and the results obtained
on Karate Club dataset are presented in figure 2.3, on Dolphins dataset in fig-
ure 2.4, on Books about US Politics dataset in figure 2.5 and on LFR Network
composed of 50, 99, 200 and 300 nodes respectively in figures 2.6, 2.7, 2.8 and
2.9.

From the different curves of the real data, it is deduced that the evidential
attributes allow the K-medoids to cluster the nodes in their right clusters better
than the numerical and the probabilistic attributes. In fact, it is noticed that with
the evidential attributes, almost all the nodes are classified in their right clusters
even when the number of the noisy nodes is equal to 9. In addition, the intervals
of confidence show that the evidential attributes are better than the probabilistic
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Figure 2.4: Noisy Dolphins: First Scenario.

Figure 2.5: Noisy Books: First Scenario.

and numerical ones. For example, for 3 noisy nodes, the interval of confidence
in the case of the karate club network is equal to: [0.329, 0.531] for the numeri-
cal version, [0.309, 0.63] for the probabilistic version and [1, 1] for the evidential
version.

In the case of the Dolphins network, the interval of confidence is equal to:
[0.258, 0.389] for the numerical version, [0.301, 0.541] for the probabilistic ver-
sion and [0.864, 0.935] for the evidential version.

Moreover, in the case of the Books about US Politics network, the interval of
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Figure 2.6: Noisy LFR 50N: First Scenario.

Figure 2.7: Noisy LFR 99N: First Scenario.

confidence is equal to: [0.554, 0.762] for the numerical version, [0.649, 0.795] for
the probabilistic version and [1, 1] for the evidential version.

Figure 2.6 shows the NMI average values given by the numerical, probabilistic
and evidential attributes. It is noticed that the K-Medoids gives better clustering
results when the evidential attributes are used. The noise was varied from 5 to
25 noisy nodes. Regarding the confidence intervals, they confirm the obtained
results. Indeed, if the case of 15 noisy nodes is considered, we have [0.269, 0.374]
in the case of the numerical attributes, [0.363, 0.424] for the probabilistic ones and



56 Chapter 2 : The Advantage of Evidential Attributes in Social Networks

Figure 2.8: Noisy LFR 200N: First Scenario.

Figure 2.9: Noisy LFR 300N: First Scenario.

[0.889, 1] in the case of evidential attributes.

Figure 2.7 represents also the NMI values obtained from numerical, proba-
bilistic and evidential attributes. It is remarked that the clustering based on the
evidential ones gives better results. The noise is varied from 5 to 25 noisy nodes.
The intervals of confidence confirm the previous results. Indeed, if the case of
25 nodes is considered, we have [0.364, 0.459] in the case of numerical attributes,
[0.471, 0.668] for the probabilistic ones and [0.865, 0.923] for the evidential at-
tributes.
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Figure 2.10: Noisy karate: Second Scenario.

From the curve of the LFR Network composed of 200 nodes, it is noticed
that the evidential attributes allow the K-medoids to affect the nodes to their right
clusters. The noise is varied from 10 to 50 noisy nodes. When the intervals of
confidence are considered in the case of 30 noisy nodes, we have [0.35, 0.46] for
the numerical attributes [0.502, 0.565] in the case of the probabilistic attributes
and [0.929, 0.945] for the evidential ones.

Figure 2.9 shows the NMI values obtained from numerical, probabilistic and
evidential attributes. The noise is varied from 20 to 60 noisy nodes. The curve
shows that a better clustering results is obtained with evidential attributes. Re-
garding the intervals of confidence, we have [0.406, 0.441] in the case of numeri-
cal attributes, [0.519, 0.57] in the case of probabilistic ones and [0.925, 0.949] in
the case of evidential attributes when the case of 40 noisy nodes is considered.

Second Scenario Now, the second scenario is considered and the results ob-
tained on Karate Club dataset are presented in figure 2.10, on Dolphins dataset
in figure 2.11, on Books about US Politics dataset in figure 2.12 and on LFR
Network respectively in figure 2.13 for the LFR network composed of 50 nodes,
figure 2.14 for the LFR composed of 99 nodes, figure 2.15 for the LFR composed
of 200 nodes and finally figure 2.16 for the LFR composed of 300 nodes.

The results show that the clustering based on the evidential attributes gives
better results than the probabilistic attributes. Indeed, the nodes with the evidential
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Figure 2.11: Noisy Dolphins: Second Scenario.

Figure 2.12: Noisy Books: Second Scenario.

attributes are almost all classified in their right clusters. In addition, the intervals
of confidence show that the evidential attributes are better than the probabilistic
ones. For example, for 3 noisy nodes, the interval of confidence in the case of the
karate club network is equal to: [0.718, 0.856] for the probabilistic version and
[1, 1] for the evidential version.

In the case of the Dolphins network, the interval of confidence is equal to:
[0.794, 0.843] for the probabilistic version and [1, 1] for the evidential version.

In the case of the Books about US Politics network, the interval of confidence
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Figure 2.13: Noisy LFR 50N: Second Scenario.

Figure 2.14: Noisy LFR 99N: Second Scenario.

is equal to: [0.836, 0.933] for the probabilistic version and [1, 1] for the evidential
version.

Figure 2.13 shows the obtained NMI averages with the numerical, probabilis-
tic and evidential attributes. The noise was varied from 5 to 25 noisy nodes.
It is also noticed that the intervals of confidence confirm that we obtain better
clustering results with the evidential attributes. If the case of 15 noisy nodes is
considered, we have [0.517, 0.633] in the case of probabilistic attributes and [1, 1]
with the evidential ones. Therefore, all the nodes with evidential attributes were
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Figure 2.15: Noisy LFR 200N: Second Scenario.

Figure 2.16: Noisy LFR 300N: Second Scenario.

all classified in their right clusters.

Regarding the LFR Network composed of 99 nodes, the curves show that the
clustering with the evidential attributes gives better results than the other type
of attributes. The noise is varied from 5 to 25 noisy nodes. The intervals of
confidence show that the evidential attributes are better than the probabilistic ones.
Indeed, in the case of the probabilistic attributes, we have [0.61, 0.665] while we
have [0.925, 0.953] for the evidential ones in the case of 25 noisy nodes.

The curve of the LFR Network composed of 200 nodes shows that the eviden-
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tial attributes allow the K-medoids to place the nodes in their right clusters. The
noise is varied from 10 to 50 noisy nodes. When the intervals of confidence are
considered in the case of 30 noisy nodes, we have [0.664, 0.736] in the case of the
probabilistic attributes and [0.93, 0.966] for the evidential ones.

The curve of the LFR Network composed of 300 nodes shows that better clus-
tering results are obtained with evidential attributes. The noise was varied from 20
to 60 noisy nodes. Regarding the intervals of confidence, we obtain [0.791, 0.827]
in the case of probabilistic attributes and [0.952, 0.978] in the case of evidential
attributes when we add 40 noisy nodes.

Whether the obtained results with real networks or generated ones after adding
noise, the clustering with the evidential attributes gives the best NMI results. This
is because the theory of belief functions manages better than other frameworks
the ignorance and uncertainty.

In order to confirm the effectiveness and the advantage of using the evidential
attributes in the clustering, the quality of the clustering is tested with other various
metrics in the next section.

2.4 Clustering Results Comparison with various Met-
rics

We present in this section a comparison of the clustering results with various met-
rics in the case of adding 6 noisy nodes in Dolphins Network and 15 nodes in LFR
Network. The presented results are the average of 100 runs.

We remind in following the meaning of the used metrics:

• NMI (Knops et al., 2006): It is a good measure for determining the quality of
clustering. The NMI has a value between 0 and 1 with 0 indicates that there
is no mutual information and 1 indicates that it’s a perfect correlation.

• VI (Meilă, 2003): The variation of information measures the amount of in-
formation lost and gained in changing from clustering C to clustering C′. It
measures rather difference than similarity, its values are not between 0 and
1. Indeed, it is something between 0 and 2logK, with K is the number of
clusters.
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Attributes NMI-Average VI-Average Rand-Average Adjusted Rand-Average
Numerical 0.284 0.948 0.637 0.275

Probabilistic 0.349 0.863 0.668 0.336
Evidential 0.826 0.217 0.942 0.884

Table 2.9: Community Structures Comparison using various Metrics: Case of
Dolphins Network-First Scenario

• Rand Index (Rand, 1971) : It is a measure of the similarity between 2 data
clusterings. The Rand Index has a value between 0 and 1, with 0 indicat-
ing that the two data clusterings do not agree on any pair of points and 1
indicating that the data clusterings are exactly the same.

• Adjusted Rand Index (Hubert & Arabie, 1985): It rescales the index taking
into account that random chance will cause some objects to occupy the same
clusters. The Adjusted Rand Index can yield negative values if the index is
less than the expected index.

2.4.1 Dolphins Network

The quality of clustering with the different uncertain attributes is tested in the case
of real network “Dolphins” in both first and second scenarios.

First Scenario Table 2.9 shows that the highest clustering quality is obtained
when the evidential attributes are used.

Second Scenario In the second scenario, we compare the obtained results with
the K-medoids in the case of probabilistic and evidential attributes. It is noticed
that all the metrics in table 2.10 confirm that all the nodes were affected to their
right clusters.
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Attributes NMI-Average VI-Average Rand-Average Adjusted Rand-Average
Probabilistic 0.813 0.233 0.936 0.871
Evidential 1 0 1 1

Table 2.10: Community Structures Comparison using various Metrics: Case of
Dolphins Network-Second Scenario

Attributes NMI-Average VI-Average Rand-Average Adjusted Rand-Average
Numerical 0.322 1.46 0.671 0.259

Probabilistic 0.393 1.31 0.726 0.383
Evidential 0.977 0.05 0.989 0.976

Table 2.11: Community Structures Comparison using various Metrics: Case of
LFR 50N-First Scenario

2.4.2 LFR Network

After making tests in the case of a real network, the obtained results in the case of
a generated network are presented in the following.

First Scenario In this part, we compare the quality of the obtained clustering
results in the case of random generation of the numerical, probabilistic and eviden-
tial attributes with various metrics. Table 2.11 shows that all the metrics confirm
that the clustering with the evidential attributes is better than the numerical and
probabilistic ones.

Second Scenario In table 2.12, we can notice that when the highest generated
values are affected to the communities depending on the belonging of the nodes,
the K-medoids succeeds to cluster all the nodes having evidential attributes.

In order to test the proposed approach on larger networks with more commu-
nities, we use simple support functions during generation. The obtained results
are presented in what follows.
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Attributes NMI-Average VI-Average Rand-Average Adjusted Rand-Average
Probabilistic 0.575 0.932 0.827 0.603
Evidential 1 0 1 1

Table 2.12: Community Structures Comparison using various Metrics: Case of
LFR 50N-Second Scenario

Figure 2.17: Noisy LFR 4 Communities: Second Scenario.

2.5 Simple Support Functions Results

In this section, we present the obtained NMI results in the case of generating
simple support functions associated to the nodes based on the structure of the
network. A simple support function is a mass function composed of two focal
elements, one can be everywhere and the second one should be on ΩN . In our
case, the first generated focal element is on the class Ci to which the node belongs
and it takes the highest generated value.

The evidential and probabilistic attributes are compared after adding noise on
3 LFR networks composed of 200 nodes each and have respectively 4, 5 and 6
communities. The noise consists on generating randomly a simple support func-
tions and randomly a vector of probabilities. In Figures 2.17, 2.18 and 2.19, the
noise is added to 25, 50, 75 and 100 nodes.

The curves in Figures 2.17, 2.18 and 2.19 show that the more the noise in-
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Figure 2.18: Noisy LFR 5 Communities: Second Scenario.

Figure 2.19: Noisy LFR 6 Communities: Second Scenario.

creases, the more the values of the NMI decrease. However, it can be noticed that
the nodes with the evidential attributes are better classified than those with the
probabilistic ones. This is because the theory of belief functions offers a strong
mathematical tool for the management of ignorance and uncertainty whereas in
the case of probability theory, ignorance is handled by equi-probabilities.

In order to compare the effectiveness of the proposed algorithm, the obtained
results are compared with those given by Walktrap approach which only takes into
consideration the structure of the network.
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Networks NMI-Walktrap
Karate Club 0.695

Dolphins Network 0.106
Books about US Politics 0.529

LFR 50N 0.223
LFR 99N 0.032
LFR 200N 0.052
LFR 300N 0.049

Table 2.13: NMI Results given by the Walktrap Method.

2.6 Results given by the Walktrap Approach

The Walktrap approach (Pons & Latapy, 2005), presented in the first chapter, uses
a distance measure based on random walks and applies a hierarchical agglomera-
tive clustering algorithm. A random walker is an agent moving from one node to
another following the network edges. At each time step, the next node is selected
by randomly picking a neighbour of the current node. The idea behind this algo-
rithm is that random walks tend to get trapped into a community. If two nodes i
and j are in the same community, the probability to get to a third node k located
in the same community through a random walk should not be very different for i
and j . The distance is constructed by summing these differences over all nodes,
with a correction for degree.

Table 2.13 shows the results of the obtained NMI after comparing the clus-
tering results given by the walktrap method with the actual clusters. It is noticed
that the method is not good when we apply it with the networks generated by LFR
as well as with the Dolphins network. With regard to the rest of the networks,
we find that this method correctly detects only 52% of the nodes of the network
Books about US Politics and 69% of the nodes of the network Karate Club.

It can be concluded that considering both structure of the network and at-
tributes of the nodes leads to obtain better NMI results than considering only the
network structure.



Section 2.7 – Conclusion 67

2.7 Conclusion

In this chapter, different type of attributes (numerical, probabilistic and evidential)
were generated and compared in order to determine which one permit to obtain
better clustering results.

To do so, two types of experiments are performed: First, clustering the nodes
using their attributes generated according to the structure of the networks. In this
part, two scenarios were observed: the first one consists on generating randomly
the attributes and then performing the K-medoids algorithms to cluster the ver-
tices. The second one consists on putting the highest generated values on the
attributes corresponding to the class of each node.

The second type of experiments consists on adding and varying noise to the
network and then performing the clustering. Two scenarios were also tested: in
the first one, we took the previous random generation and selected some nodes
in order to modify their classes. The second scenario consists on considering the
case where the highest values were affected to the corresponding classes of the
nodes then adding some noisy vertices.

The algorithms were applied on real data set such as the Karate Club Network,
the Dolphins network and the Books about US Politics. In addition, the proposed
approach was tested on some generated LFR networks.

The obtained results show that in all the scenarios, better clustering quality is
obtained with the evidential attributes. This is due to the fact that the theory of
belief functions manages better the uncertainty, ignorance and imprecision than
the other uncertain theories.

In this chapter it has been shown that, by using the network structure and
assigning evidential attributes to the nodes, we have obtained the best clustering
results compared to probabilistic and numerical attributes.

In the following chapter, uncertain networks whose nodes and links have at-
tributes that have been associated based on the structure of the network in order to
correct the noise added to the information of the nodes and links composing the
network are considered.



Chapter 3
An Evidential Method for
Correcting Noisy Information

3.1 Introduction

In this chapter, a method (Ben Dhaou et al., 2018) which allows the classification
based on the structure of the network as well as on the attributes of the nodes and
the links is introduced. The purpose of the proposed method is to correct noisy
information in the network and to ensure a coherent network even in the presence
of a large amount of noisy information.

In order to evaluate the robustness of the proposed approach, some noise is
added by modifying the initial attributes of the nodes as well as the links. The
algorithm is tested in 3 scenarios: first, only the vertices attributes are modified,
then, we modify the links attributes and finally, the nodes and links attributes are
simultaneously modified.

The proposed approach is tested on real data set: the Karate club network and
generated LFR networks. The obtained results are compared with those of the
probabilistic version of the algorithm.

This chapter is structured as follows. Section 3.2 details the steps of the pro-
posed algorithm. In section 3.3, the process of experiments and all the obtained
results are presented. Finally, section 3.4 concludes the chapter.

68
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3.2 Noisy Information Correction based on Nodes
and Links Attributes

In this section, the proposed approach is introduced. First, the important notions
used in this contribution are presented. Then, the formalization of our method is
explained and finally, the main steps of the proposed algorithm are explained.

3.2.1 Noise and Consistency

In the networks, noisy or imperfect information can transit. Therefore, if we limit
ourselves to the network structure as well as the nodes and links attributes in
the classification, the error rate may increase and the network information may
become inconsistent.

To solve this problem, we propose a method that allows the classification of
nodes in the case of a noisy network, based on the community structure as well as
the nodes and links attributes.

In the case of a significant noise introduced, the algorithm corrects inconsistent
information. Thus, even if the initial network is not found, a new coherent network
is obtained. In this context, two notions used in this work are presented:

Noise A noisy element (i.e. a node or a link) is an element whose attribute has
been modified.

Consistency A network is composed of a set of nodes belonging to communi-
ties Ci and linked together by links. Two nodes connected by a link represent a
triplet. Depending on the community structure of the network, a node belongs
to a single community Ci while the link may be of different types. If it is inside
the community Ci, then it is of the type ICi. However, if it connects two nodes
belonging to two different communities, then it is of type BC.

We use only one type of link representing the link between two communities
(BC) in order to minimize the possible hypotheses, since the more the number of
communities increases, the more the types of links connecting two communities
increase too.



70 Chapter 3 : An Evidential Method for Correcting Noisy Information

Figure 3.1: Triplet k.

In what follows, we present the general idea of the proposed method.

3.2.2 Formalization

In this work, a coherent triplet is considered, according to (Ben Dhaou et al.,
2014), as a triplet (Vk1 , Lk12 ,Vk2) that satisfies one of the following possibilities:

• Vk1 ∈ Ci, Vk2 ∈ Ci, Lk12 ∈ ICi with i = 1, . . .N

• Vk1 ∈ Ci, Vk2 ∈ C j, Lk12 ∈ BC with (i , j), and i, j = 1, . . .N

Figure 3.1 shows the notations for a given triplet k. It consists of two nodes
(starting node, arrival node and link that connects them) having each one a mass
function which shows the belonging possibilities of a node to a community Ci.
Nodes are connected through a link, that also has a mass function which indicates
the possibilities of its label (A link can be of the type ICi if it is inside the com-
munity or BC if it connects two nodes belonging to two different communities).

Thus, the triplet is defined as follow:

• Vk1 modelised with a mass function mΩN
k1

• Vk2 modelised with a mass function mΩN
k2

• Lk12 modelised with a mass function mΩL
k12

We remind that a categorical mass function is a mass function with an unique
focal element such that mΩ(A) = 1. The representatives below represent the com-
munity centres. The distances between the mass functions of the nodes and links
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and categorical mass functions of the representatives are calculated in order to be
able to place these elements in a group.

• For the nodes: the categorical mass functions are defined by mΩN
ω (ω) = 1

with ω ∈ ΩN , i.e. mΩN
Ci

(Ci) = 1, with i = 1, . . . ,N.

• For the links: the categorical mass functions are defined by mΩL
ω (ω) = 1 with

ω ∈ ΩL, i.e. mΩL
BC(BC) = 1 or mΩL

ICi
(ICi) = 1 , with i = 1, . . . ,N.

The aim of the proposed approach is to correct the noise added to a network
by considering each triplet independently of the others. To do this, our algorithm
proceeds by calculating the distances between the mass functions of each element
of the triplet and the mass functions of the representatives of the communities.
Then, it calculates the average distances of the 3 elements of the triplet and com-
pares them with the average distances of the coherent triplets defined initially. The
algorithm then keeps the minimum average distance which gives us an idea about
the type of the triplet.

The value of this minimum average distance is considered as a mass function
from the current information of the network and is combined thereafter with the
initial mass functions. Subsequently, for each node with several links, we combine
with the mean rule all the mass functions that are related to it. Finally, we use the
pignistic probability to make a decision about the membership of a node to a
community and a link to a given type.

The main steps of the proposed approach are detailed in what follows.

3.2.3 Main Steps of the Algorithm

The proposed approach is applied in 4 steps detailed below. We present in the
following the equations used in one iteration t of the algorithm.

Step 1:
For each element of a triplet k, the distances between the latter and the corre-
sponding categorical mass functions are calculated.

In the theory of belief functions, a distance can be used to describe the dif-
ference between two distinct sources of information. The distance of Jousselme
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which takes into account the quantification of the similarity between the focal
elements using Jaccard similarity coefficients is used.

By calculating the distance between the mass function of a node or a link
and the corresponding categorical mass functions that are “ideals”, we have an
idea about its belonging to a community or a kind of link. In fact, we keep the
minimum distance and the decision corresponds to the categorical mass functions
having the lowest distance with the mass function of the nodes or of the links.
Hence, for each triplet (Vk1 , Lk12 ,Vk2), with k = 1, . . . ,M, M the number of triplets
(or links) we calculate at iteration t:

Ck1 = arg min
ω∈ΩN

dJ(mΩN
k1
,mΩN

ω ) (3.1)

Ck2 = arg min
ω∈ΩN

dJ(mΩN
k2
,mΩN

ω ) (3.2)

Lk12 is determined according to the coherent triplets by:

Lk12 =

 ICk1 if Ck1 = Ck2

BC if Ck1 , Ck2

(3.3)

Table 3.1 shows the coherent values of a triplet for the case of a network
containing 3 communities. This process of decision is given by (Essaid et al.,
2014).

Step 2:

For each triplet k, at the iteration t we calculate the average distance dk ob-
tained from each possible combination presented previously.

Hence, dk represents a minimal distance between the triplet k and the most
possible categorical triplet. This average distance makes it possible to calculate
the dissimilarity between any triplet and another coherent one defined initially. It
is defined by:

dk =
dJ(mΩN

k1
,mΩN

Ck1
) + dJ(mΩL

k12
,mΩL

Lk12
) + dJ(mΩN

k2
,mΩN

Ck2
)

3
(3.4)

Step 3: Knowledge Review
In this step, we use the obtained value of the average distance dk to define a mass
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function, that will be combined with the initial mass functions of the nodes and
links composing each triplet. Therefore, the average distance dk value is assigned
to the focal elements that represent the types of the two nodes and the link com-
posing the triplet k and the rest is assigned to the ignorance. Hence, we have: mΩN

k1d
(Ck1) = 1 − dk

mΩN
k1d

(ΩN) = dk
(3.5)

 mΩL
k12d

(Lk12) = 1 − dk

mΩL
k12d

(ΩL) = dk
(3.6)

 mΩN
k2d

(Ck2) = 1 − dk

mΩN
k2d

(ΩN) = dk
(3.7)

Once the minimum average distance has been found, we know to which coherent
triplet initially defined, the current triplet k is the closest. Therefore, the nature of
each of its elements is known. Hence, we know if the link which connects the two
nodes is of type ICi or BC.

The minimum average distance dk is an information provided by a network
whose initial mass functions can be noisy. Therefore, this should be taken into
account when reviewing knowledge.

Calculation of final Mass Functions
In this step, we update at the iteration t + 1 the mass functions obtained from
the previous step with the initial mass functions given at the iteration t by the
following equations:

mt+1,ΩN
k1

= mt,ΩN
k1
⊕ mt,ΩN

k1d
(3.8)

mt+1,ΩL
k12

= mt,ΩL
k12 ⊕ mt,ΩL

k12d
(3.9)

mt+1,ΩN
k2

= mt,ΩN
k2
⊕ mt,ΩN

k2d
(3.10)

mt,ΩN
k1d

, mt,ΩL
k12d

, mt,ΩN
k2d

are given respectively by equations (3.5), (3.6) and (3.7).

The combination of the mass functions derived from the minimal average dis-
tance calculation and the initial generation by the Dempster rule provides a final
idea of nodes and links belonging to their clusters. The Dempster rule affects the
generated conflict to the focal elements and therefore there is no mass associated
with the empty set.
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Step 4:
As each triplet is treated independently of the others, it is possible to have cases
where several links start from the same node and thus the same node can have
several mass functions. In order to determine an unique mass function for each
node (e.g. Vk1), we combine by the mean rule (given by equation (1.32)), all the
mass functions obtained for the given node Vk1 in step 3 (equation (3.9)). The
choice of the mean is due to the fact that mass functions are dependent. Hence,
for a given node Vk1 , with Mk1 links, we modify the mass functions by:

mΩN
k1

=
1
|T |

∑
{k:Vk1∈T }

mΩN
k (3.11)

where T = {(Vk′1
, Lk12 ,Vk2)} represents the triplets that contain the node Vk1 and

mΩN
k is given by the equation (3.8).

Finally, the BetP given by equation (1.22) is used to make decision about the
belonging of the triplet (Vk1 , Lk12 ,Vk2). We have at the iteration t + 1, in the order
of the triplet:

Ck1 = arg max
X∈ΩN

∑
Y∈2ΩN ,Y,∅

| X ∩ Y |
| Y |

mΩN
k1

(Y) (3.12)

Lk12 = arg max
X∈ΩL

∑
Y∈2ΩL ,Y,∅

| X ∩ Y |
| Y |

mΩL
k12

(Y) (3.13)

Ck2 = arg max
X∈ΩN

∑
Y∈2ΩN ,Y,∅

| X ∩ Y |
| Y |

mΩN
k2

(Y) (3.14)

Algorithm 3.1 shows the outline of the process followed for correcting noise
in social network using evidential attributes.

The use of the Dempster combination rule makes it possible to reinforce from
one iteration to another the mass values of the elements on which the sources
agree. Indeed, if we have a mass coming from each source on the same focal
element, the combination rule of Dempster allows to increase the belief on the
latter. From the fact that the Dempster combination rule has property of rein-
forcing the belief on the focal elements with which most of the sources agree,
there is no change in the decision. Hence, it can be confirmed that the proposed
method is still converging to a single element by the decision process given by
equations (3.12), (3.13) and (3.14).



Section 3.2 – Noisy Information Correction based on Nodes and Links Attributes75

Algorithm 3.1 An Evidential Approach for Correcting Noise
Require: Graph G(V, E), The set of labelled nodes, the set of labelled links
Ensure: The corrected graph

t = 0
repeat

1. for each element of a triplet k, compute the distance of Jousselme between
the mass function of the element and the corresponding categorical mass
functions using Eqs (3.1), (3.2), (3.3)
2. for each triplet k, compute the minimum average distance dk by using Eq
(3.4)
3. Define mass functions from the computed dk using the Eqs (3.5), (3.6),
(3.7)
4. Update the mass functions using the Eqs (3.8),(3.9), (3.10),
5. Combine the mass functions for the same node in order to have a unique
mass function by using the Eq (3.11)
6. Make decision about the belonging of each element of the triplet k using
Eqs (3.12), (3.13), (3.14)
7. t = t + 1

until The results of Eqs (3.12), (3.13) and (3.14) are stable.
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3.3 Experiments

3.3.1 Process of Experiments

Experiments start with the generation of mass functions on the nodes and links
according to the structure of the network. Indeed, for each node belonging to Ci,
two focal elements are generated: one on Ci and the second one on ΩN and the
highest generated value is assigned to Ci. The same process is applied for the
links: depending on the type of the link, two focal elements are generated.

In a second step, the network is noised according to three scenarios:

• Noisy Nodes Only: In this case, a certain number of nodes of the initial
network are selected randomly and their mass functions are modified by ran-
domly generating two focal elements (ignorance and another element except
the empty set).

• Noisy Links Only: In this case, a certain number of links of the initial net-
work are selected randomly and their mass functions are modified by ran-
domly generating two focal elements (ignorance and another element except
the empty set).

• Noisy Nodes and Noisy Links: In the latter case, some nodes and links of
the networks are selected randomly. Then, their mass functions are modified.

After that, for each triplet, the distances between the attributes of the link as well
as the two nodes and the attributes of the representatives are calculated. As differ-
ent networks with N communities are considered, the coherent triplets are defined
on the basis of the community structure of the networks. That is to say, a node
can belong to only one community Ci. From this hypothesis, the links that we can
have are of type ICi if they are inside the community Ci, if not the links are of
type BC (if the nodes belong to two different communities).

Then, we calculated the average of the distances of the elements composing
the triplet based on the possibilities defined initially. Table 3.1 presents the possi-
ble triplets for the case of a network of 3 communities.

Thereafter, the kept minimum average distance is combined with the initial
mass functions by the Dempster rule. Here, the initial mass functions represent
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Vk1 Vk2 Lk12

C1 C1 IC1

C1 C2 BC
C1 C3 BC
C2 C2 IC2

C2 C1 BC
C2 C3 BC
C3 C3 IC3

C3 C1 BC
C3 C2 BC

Table 3.1: Coherent Triplets For 3 Communities.

the mass functions before the calculation of our model is applied. For each node
Vki belonging to several triplets, all the mass functions obtained at the end of the
calculation of the Dempster combination are combined by the mean rule.

The proposed algorithm is iterative since, for several cases of noisy nodes
and/or noisy links, the corrections are made only after a certain number of itera-
tions.

The mass functions obtained at the end of each iteration represent the input of
the next iteration. For each iteration, we calculated the confusion matrix. The con-
fusion matrix is a technique for summarizing the performance of a classification
algorithm.

In order to know the accuracy value at each iteration for each case to be tested,
we compared the result of the pignistic probability applied at the end of each
iteration with the initial information of the network before introducing the noise.
The accuracy represents the ratio of correct predictions to total predictions made.

In order to show the efficiency of our method, we compare the obtained results
with those of the baseline. All experiments were repeated 10 times for cross
validation. All figures represent the average of the accuracy calculated for 10
runs. In addition, the evidential approach and the probabilistic one are tested
under the same conditions: The same elements randomly selected and noisy in
the evidential case are noisy during the probabilistic approach test.

In the tables presented in the following, we present the accuracy averages as
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well as the confidence intervals obtained from the evidential approach and the
baseline for each type of experiment.

3.3.2 Possible Corrections

In the presence of noise, the algorithm corrects the information of the network as
a function of the noisy elements and the coherent triplets initially defined. In this
section, we present the possible corrections for the case of a network containing 3
communities:

One noisy node and the link and the other node are corrects Initially the
triplet: Vk1 ∈ C1, Lk12 ∈ IC1, Vk2 ∈ C1 is considered. Suppose that one of the
nodes is modified and belongs now to C2 or C3. The algorithm will detect that
according to the information given by the link and the other node, the modified
one should be corrected. Therefore, the noisy node will be affected to C1. It is
the same if we have a triplet Vk1 ∈ C2, Vk2 ∈ C2, Lk12 ∈ IC2 or a triplet Vk1 ∈ C3,
Vk2 ∈ C3, Lk12 ∈ IC3. The noisy node will be reassigned to its initial community.

Two noisy nodes and the link is correct In that case, the algorithm will change
the nature of the link to obtain a coherent triplet. If the modified nodes belongs
to the same community, the algorithm will change the link in such a way that it
will be internal to the same community. If the modified nodes belongs to differ-
ent communities, the algorithm will change the nature of the link to “Between
Clusters” (BC).

One noisy node, one noisy link and one correct node Suppose that initially
we had, Vk1 ∈ C1, Lk12 ∈ IC1 and Vk2 ∈ C1. Vk1 was modified to belong to C2

or C3, Lk12 ∈ BC and Vk2 ∈ C1. In that case, the algorithm will not change the
information of the triplet because it’s coherent. However, if we have for example
Vk1 ∈ C2 or C3, Lk12 ∈ IC2 or IC3 and Vk2 ∈ C1, the algorithm will change the
link to BC and if one of the nodes (or both) are connected to other nodes, so the
algorithm will have another information and can change one of the node based on
that.
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Two noisy nodes and noisy link In that case, the algorithm will compute the
minimal distance between the current triplet and the coherent ones defined initially
and then modify the information of the current triplet.

3.3.3 Convergence

The previous presented algorithm is iterative which allows to obtain better results
of the accuracy from one iteration to another. The stop criterion used is the stabi-
lization of the value of the accuracy.

In these experiments the algorithm is performed for only 5 iterations since
beyond this number, the variation of the accuracy becomes negligible.

In order to show the convergence of our evidential approach, an LFR network
composed of 99 nodes, 191 links and 3 communities is considered. The noise is
added to 30 nodes and 50 links and the behaviour of the proposed algorithm is
evaluated.

Figure 3.2 shows the evolution of the accuracy from an iteration to another.
The case of 30 noisy nodes and 50 noisy links is tested (Evidential Attributes).
It can be noticed that from an iteration to another, the accuracy value increases
which means that the algorithm succeeds in correcting the noise.

3.3.4 Baseline

In order to show the efficiency of the proposed method, we have performed an
algorithm that uses the same principle in probabilistic version. A method of lit-
erature wasn’t used since, to our knowledge, there is no work that has considered
the resolution of the same problem. Figure 3.3 presents a probabilistic triplet. For
each node and the link connecting them a vector of probabilities is associated.

Step 1: Generation of Probabilities

In this step, N values in [0, 1] for each node and N+1 probabilities for each link
are generated then we normalize. N + 1 probabilities are generated as we have ICi

links within communities and BC links that connect communities to each other.
Then, the maximum generated probability is associated with the class to which
the node/link belongs. The vector of probabilities is defined as follow:
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Figure 3.2: LFR: corrected nodes and links: case of 30 noisy nodes and 50 noisy
links.

Figure 3.3: Probabilistic Triplet.

• (p(C1), p(C2), ..., p(CN)) for each node.

• (p(IC1), p(IC2), p(IC3), ..., p(ICN), p(BC)) for each link.

Step 2: Calculation of Distances

In this step, the Euclidean distances between the attributes of each node/link
composing a triplet with those of the representatives of each group are calculated:

• For the nodes: The probabilities on certain events are defined by pΩN
ω (ω) = 1

with ω ∈ ΩN i.e. pΩN
Ci

(Ci) = 1, with i = {1, ...,N}.

• For the links: The probabilities on certain events are defined by pΩL
ω (ω) = 1

with ω ∈ ΩL i.e. pΩL
BC(BC) = 1 or pΩL

ICi
(ICi) = 1 , with i = {1, ...,N}.
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Depending of the number of communities composing the network, every rep-
resentative has 1 on the attribute of its class and 0 on the others. For example, if
we consider a representative of C1 and we have 3 communities in the network, its
probabilities vector is R1 = (1, 0, 0).

Hence, we have:

Ck1 = arg min
ω∈ΩN

dE(pΩN
k1
, pΩN

ω ) (3.15)

Ck2 = arg min
ω∈ΩN

dE(pΩN
k2
, pΩN

ω ) (3.16)

Lk12 is determined according to the coherent triplets by:

Lk12 =

 ICk1 if Ck1 = Ck2

BC if Ck1 , Ck2

(3.17)

Step 3: Calculation of Average Distances

In this step, the minimal average distance of each triplet k is calculated as
follow:

dk =
dE(pΩN

k1 , pΩN
Ck1

) + dE(pΩL
k12
, pΩL

Lk12
) + dE(pΩN

k2
, pΩN

Ck2
)

3
(3.18)

Step 4: Assignment of probabilities from distances

In this step, the probabilities resulting from the computation of the distances
between triplets are assigned. The values of the minimal average distance dk are
used.

Hence, we have: pΩN
k1d

(Ck1) = 1 − dk

pΩN
k1d

(Ck1) = dk
(3.19)

 pΩL
k12d

(Lk12) = 1 − dk

pΩL
k12d

(Lk12) = dk
(3.20)

 pΩN
k2d

(Ck2) = 1 − dk

pΩN
k2d

(Ct
k2

) = dk

(3.21)
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where Ck1 , Lk12 ,Ck2 represent respectively the elements contrary to Ck1 , Lk12 ,Ck2 .

Step 5: Calculation of the average between the new probabilities and the
initial ones

In order to have a single probability distribution for each node/link, the average
between the probabilities generated in the first instance and those resulting from
the calculation of the distances is calculated.

pt+1,ΩN
k1

=
pt,ΩN

k1
+ pt,ΩN

k1d

2
(3.22)

pt+1,ΩL
k12

=
pt,ΩL

k12
+ pt,ΩL

k12d

2
(3.23)

pt+1,ΩN
k2

=
pt,ΩN

k2
+ pt,ΩN

k2d

2
(3.24)

where pt,ΩN
k1d

, pt,ΩL
k12d

, pt,ΩN
k2d

are given respectively by equations (3.19), (3.20) and
(3.21).

In order to determine a unique probabilities vector for each node (e.g. Vk1), all
the probabilities obtained for the given node Vk1 are combined by the mean rule
(given by equation (1.32)). Hence, we have:

pΩN
k1 =

1
|T |

∑
{k:Vk1∈T }

pΩN
k (3.25)

where T = {(Vk′1
, Lk12 ,Vk2)} and pΩN

k is given by the equation (3.22).

Step 6: Making Decision

In this step, the membership of each node/link is decided. To do this, we
decide the singleton having the maximum of probability.

Algorithm 3.2 shows the outline of the process followed for correcting noise
in social network using probabilistic attributes.

In order to test the effectiveness of the baseline, the noise is added as it was
done with the evidential approach. To do this, the noise is added to the same nodes
and links selected randomly when the evidential approach is tested.
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Algorithm 3.2 A Probabilistic Approach for Correcting Noise
Require: Graph G(V, E), The set of labelled nodes, the set of labelled links
Ensure: The corrected graph.

t = 0
repeat

1. for each element of a triplet k, compute the Euclidean distance between the
element and the corresponding categorical representative using Eqs (3.15),
(3.16), (3.17)
2. for each triplet k, compute the minimum average distance dk by using Eq
(3.18)
3. Define probabilities from the computed dk using the Eqs (3.19), (3.20),
(3.21)
4. Update the probabilities using the Eqs (3.22),(3.23), (3.24),
5. Combine the probabilities for the same node in order to have a unique
vector of probabilities by using the Eq (3.25)
6. Make decision about the belonging of each element of the triplet k
7. t = t + 1

until Number of iterations equal to 5.

3.3.5 Improvement Rate

Tables 3.2, 3.3, 3.4, 3.5 show the rate of improvement of the evidential approach
compared to the baseline at the fifth iteration. The variation of noise in the LFR
network composed of 99 nodes, 191 links and 3 communities is considered.

The rate of improvement is calculated by making the difference between the
average values of the accuracy obtained with the evidential approach at the fifth
iteration with that given by the baseline.

Noise Rate of improvement
30 Nodes 60%
60 Nodes 53%
90 Nodes 42%
99 Nodes 38%

Table 3.2: Improvement Rate: Case of Noisy Nodes Only.
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Noise Rate of improvement
50 Links 41%
100 Links 36.7%
191 Links 36%

Table 3.3: Improvement Rate: Case of Noisy Links Only.

Noise Rate of improvement
30 Nodes + 50 Links 45%

60 Nodes + 100 Links 32%
90 Nodes + 191 Links 11%
99 Nodes + 191 Links 7%

Table 3.4: Improvement Rate for Nodes: Case of Noisy Nodes and Noisy Links.

Noise Rate of improvement
30 Nodes + 50 Links 50%

60 Nodes + 100 Links 27%
90Nodes + 191 Links 6%
99 Nodes + 191 Links 4%

Table 3.5: Improvement Rate for Links: Case of Noisy Nodes and Noisy Links.
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Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob
10 Nodes 0.9265 [0.911, 0.941] 0.51471 [0.443, 0.585]
20 Nodes 0.86469 [0.807, 0.922] 0.50589 [0.422, 0.588]
30 Nodes 0.7647 [0.683, 0.845] 0.45882 [0.328, 0.589]
34 Nodes 0.7558 [0.634, 0.876] 0.4076 [0.313, 0.565]

Table 3.6: Accuracy Average and Interval of Confidence: Case of Noisy Nodes
Only in the Karate Club.

3.3.6 Experiments on Real Data: Karate Club

As the karate club network has 2 communities, the frames of discernment of the
nodes and links are defined by:

• ΩN = {C1,C2}

• ΩL = {IC1, IC2, BC}

In this part, the results obtained in the case of noisy nodes only, noisy links
only and noisy nodes and links at the same time are shown.

Noisy Nodes Only

In figure 3.4 we present the accuracy average values at the fifth iteration when we
vary the number of noisy nodes.

It is noticed that the more the number of noisy nodes increases, the more the
accuracy average value decreases for both evidential and probabilistic methods.

However, it is remarked that we obtain a better accuracy average results with
the theory of belief functions comparing to the probability theory. This can be
explained by the fact that the theory of belief functions manages ignorance as
well as conflict.

Table 3.6 presents the accuracy averages and the confidence intervals obtained
from the evidential approach and the baseline for each level of noise added to the
nodes only in the case of the Karate Club.
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Figure 3.4: Karate Club: comparison of probabilistic and evidential accuracy:
case of noisy nodes.

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob
20 Links 0.94225 [0.923, 0.960] 0.66665 [0.629, 0.703]
40 Links 0.88975 [0.854, 0.924] 0.63333 [0.569, 0.696]
60 Links 0.80771 [0.762, 0.852] 0.60128 [0.564, 0.637]
78 Links 0.76538 [0.704, 0.826] 0.56922 [0.529, 0.608]

Table 3.7: Accuracy Average and Interval of Confidence: Case of Noisy Links
Only in the Karate Club.

Noisy Links Only

Figure 3.5 shows the accuracy average results at the fifth iteration after noising
20, 40, 60 and 78 links of the network.

According to the curve, the average accuracy value given by the evidential
approach is better than that given by the baseline in each level of noise.

Table 3.7 presents the obtained accuracy averages and the confidence intervals
given by the evidential method and the probabilistic approach when the number
of noisy links only is varied in the case of the Karate Club.
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Figure 3.5: Karate Club: comparison of probabilistic and evidential accuracy:
case of noisy links.

Noisy Nodes and Noisy Links

In this third case, we proceed by noising the nodes and the links at the same
time. Figure 3.6 shows the obtained results of accuracy average after noising the
attributes at the fifth iteration. The abscissa represents respectively the level of
noise 10 nodes and 20 links, 20 nodes and 40 links, 30 nodes and 60 links and
finally, 34 nodes and 78 links.

It is noticed that the accuracy average values decreases as the noise level in-
creases for both evidential and probabilistic approaches. However, the proposed
method gives better results than the baseline.

Table 3.8 shows the obtained accuracy averages and the confidence intervals
given by the evidential method and the probabilistic approach in the case of noisy
nodes and noisy links in the case of the Karate Club.

3.3.7 Experiments on LFR

In the second part of the experiments, different networks generated with LFR
benchmark are used. The parameters used to generate our networks are presented
in Appendix A.
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Figure 3.6: Karate Club: comparison of probabilistic and evidential accuracy:
case of noisy nodes and links.

Several performed experimentations are repeated 10 times and the obtained
averages of the accuracy are presented. All the figures present the results given by
the evidential approach and the baseline.

First, the noise is added to the nodes, links and both of them in the case of the
LFR network composed of 99 nodes, 191 links and 3 communities.

For the rest of the experiments, each time one of the parameters of the LFR
network is varied such as the number of communities, the size of the network as
well as the mixing parameter µ and their impact on the noise correction rate is
observed. For each of these experiments we noise 60% of the nodes and 50% of
the links.

The first set of experiments consists of varying the noise in an LFR network
composed of 99 nodes, 191 links and 3 communities. We proceed by noising the
nodes at first, then the links and finally we simultaneously noise both.

The frames of discernment of the nodes and links for this network are defined
as follows:

• ΩN = {C1,C2,C3}

• ΩL = {IC1, IC2, IC3, BC} with ICi represents the links inside the community
Ci and BC represents the links between 3 communities.
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Case of Nodes
Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

10 Nodes+ 20 Links 0.90004 [0.871, 0.928] 0.63972 [0.581, 0.697]
20 Nodes+ 40 Links 0.758228 [0.689, 0.827] 0.52949 [0.467, 0.591]
30 Nodes+ 60 Links 0.6353 [0.559, 0.711] 0.50833 [0.439, 0.578]
34 Nodes+ 78 Links 0.56882 [0.449, 0.667] 0.50589 [0.395, 0.616]

Case of Links
Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

10 Nodes+ 20 Links 0.81026 [0.738, 0.882] 0.53234 [0.394, 0.669]
20 Nodes+ 40 Links 0.61922 [0.534, 0.703] 0.50883 [0.445, 0.598]
30 Nodes+ 60 Links 0.56882 [0.483, 0.638] 0.41538 [0.329, 0.5011]
34 Nodes+ 78 Links 0.465614 [0.383, 0.528] 0.40641 [0.359, 0.453]

Table 3.8: Accuracy Average and Interval of Confidence: Case of Noisy Nodes
and Links in the Karate Club.

Noisy Nodes Only

In this first case of experiments, the noise is added to a number of nodes randomly
selected of the network. The noise consists on modifying the mass functions of the
selected nodes by randomly generating two focal elements (ignorance and another
element except the empty set). Then, the obtained results are compared with those
given by the baseline. Figure 3.7 shows the obtained results of the accuracy for
every variation of the noise. The number of noisy nodes is varied from 30 to 99.

It is noticed that the more the number of noisy nodes increases the more the
accuracy average decreases. The evidential model gives better results than the
baseline. This is because the theory of belief functions offers a very effective way
to handle ignorance and conflict.

Table 3.9 shows the obtained accuracy averages and the confidence intervals
given by the evidential method and the probabilistic approach in the case of noisy
nodes only in the case of LFR network.
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Figure 3.7: LFR: comparison of probabilistic and evidential accuracy: case of
noisy nodes.

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob
30 Nodes 0.92526 [0.894, 0.955] 0.32522 [0.267, 0.383]
60 Nodes 0.82729 [0.781, 0.873] 0.29391 [0.266, 0.321]
90 Nodes 0.70205 [0.622, 0.781] 0.2727 [0.258, 0.298]
99 Nodes 0.65054 [0.610, 0.690] 0.26866 [0.244, 0.292]

Table 3.9: Accuracy Average and Interval of Confidence: Case of Noisy Nodes
Only in LFR.

Noisy Links Only

The second part of the experiments consists in keeping the initial generation of
the mass functions of the nodes and adding noise only to the mass functions of the
links.

Figure 3.8 shows the obtained results of the accuracy average due to the varia-
tion in the number of noisy links. In this figure, we compute the accuracy average
for 50, 100 and 191 noisy links. The proposed approach gives better results than
the probabilistic one. These results can be explained by the fact that the evidential
approach better manages ignorance than the probabilistic approach.
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Figure 3.8: LFR: comparison of probabilistic and evidential accuracy: case of
noisy links.

Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob
50 Links 0.94239 [0.930, 0.953] 0.52252 [0.474, 0.570]

100 Links 0.87539 [0.862, 0.887] 0.50786 [0.458, 0.557]
191 Links 0.77119 [0.739, 0.803] 0.40988 [0.352, 0.467]

Table 3.10: Accuracy Average and Interval of Confidence: Case of Noisy Links
Only in LFR.

Table 3.10 presents the accuracy averages and the confidence intervals ob-
tained from the evidential approach and the baseline in the case of noisy links
only in the case of LFR network.

Noisy Nodes and Noisy Links

In this third part of the experiments, the nodes and links are noised simultaneously.

The aim of simultaneously noising the nodes and the links is to make the
network totally incoherent and to evaluate the ability of the algorithms to correct
the noise and to find a network comparable to the initial one.

The number of noisy nodes is varied by 30 at each step and then all the nodes
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Figure 3.9: LFR: comparison of probabilistic and evidential accuracy: case of
noisy nodes and links.

of the network are noised. As for the links, we vary the noisy links by 50, then the
noise is added on all the links of the network.

These values are chosen in order to have a better view on the impact of the
noise introduced on the network information.

The obtained results are compared with those of the baseline.

Figure 3.9 shows the results of the accuracy average for every level of noise
used in these experiments. The obtained results are compared with those of the
baseline after noising 30 nodes and 50 links, 60 nodes and 100 links, 90 nodes
and 191 links and finally, 99 nodes and 191 links.

From this figure, it is noticed that the accuracy average results are better with
the evidential attributes. It is remarked also that when it is very noisy, it becomes
impossible to obtain good results.

It should be noted that in the case of adding a maximum noise, the value of the
accuracy average is stable from the beginning. This is due to the fact that when
we noise the data, the mass functions are generated randomly and therefore there
are two possibilities:

• Either the new mass function makes sure to change the class of the node/link.

• Either the element always retains its initial membership but with a different
mass function.
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Case of Nodes
Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

30 Nodes+ 50 Links 0.9091 [0.882, 0.936] 0.45125 [0.390, 0.511]
60 Nodes+ 100 Links 0.71417 [0.664, 0.763] 0.3901 [0.311, 0.412]
90 Nodes+ 191 Links 0.40602 [0.367, 0.444] 0.29088 [0.245, 0.325]
99 Nodes+ 191 Links 0.34643 [0.293, 0.399] 0.27016 [0.227, 0.312]

Case of Links
Noise Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

30 Nodes+ 50 Links 0.84188 [0.810, 0.872] 0.3333 [0.266, 0.399]
60 Nodes+ 100 Links 0.59634 [0.558, 0.633] 0.3232 [0.262, 0.383]
90 Nodes+ 191 Links 0.3434 [0.313, 0.398] 0.27436 [0.247, 0.305]
99 Nodes+ 191 Links 0.2929 [0.258, 0.312] 0.24987 [0.228, 0.275]

Table 3.11: Accuracy Average and Interval of Confidence: Case of Noisy Nodes
and Noisy Links in LFR.

Hence, we always have elements that are correct even when it’s the case of
maximal noise. These correct attributes help in the finding of other correct triplets.

Table 3.11 presents a comparison between the accuracy averages and the con-
fidence intervals given by the evidential approach and the baseline in the case of
noisy nodes and noisy links in the case of LFR network.

In what follows, we add noise to 60% of nodes and 50% of links by varying
each time a parameter of the LFR algorithm. The idea is to see the impact of each
parameter on the correction rate of noisy information for the same level of noise.
To do this, we first vary the N which represents the number of nodes composing
the network. Then we vary the number of communities and finally, we vary the
mixing parameter.

3.3.8 LFR: Variation of the Communuities Number

In this part of experiments, we vary the number of communities. We generate 4
LFR networks:

• a network with 200 nodes, 402 links and 3 communities.



94 Chapter 3 : An Evidential Method for Correcting Noisy Information

Figure 3.10: LFR: comparison of probabilistic and evidential accuracy: case of
noisy nodes and links.

• a network with 200 nodes, 472 links and 4 communities.

• a network with 200 nodes, 477 links and 5 communities.

• a network with 200 nodes, 501 links and 6 communities.

In this experimentation, we modified at the same time 60% of the nodes and 50%
of the links.

Figure 3.10 shows the obtained results of the accuracy average for each net-
work. We can remark that for all the networks, the evidential model gives better
results on links and nodes accuracy average than the baseline. We notice also that
there is not really a big difference in the values of the accuracy average when we
vary the number of communities. We can, therefore, conclude that the proposed
approach is stable.

Table 3.12 presents a comparison between the accuracy averages and the con-
fidence intervals given by the evidential approach and the probabilistic one when
we vary the number of communities in the case of LFR networks.

3.3.9 LFR: Variation of the Network Size

In this section, we present the obtained results of the accuracy following the vari-
ation of the network size. We consider 5 networks whose number of nodes was
varied and containing 3 communities:
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Case of Nodes
Nb-Communities Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

C3 0.73 [0.689, 0.774] 0.39 [0.321, 0.402]
C4 0.625 [0.602, 0.645] 0.32 [0.281, 0.345]
C5 0.65 [0.63, 0.679] 0.41 [0.385, 0.445]
C6 0.6 [0.598, 0.621] 0.38 [0.365, 0.4]

Case of Links
Nb-Communities Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

C3 0.61 [0.563, 0.669] 0.30 [0.298, 0.325]
C4 0.553 [0.524, 0.573] 0.2247 [0.201, 0.251]
C5 0.6065 [0.575, 0.613] 0.3939 [0.371, 0.405]
C6 0.53 [0.508, 0.554] 0.33 [0.295, 0.353]

Table 3.12: Accuracy Average and Interval of Confidence: Case of Noisy Nodes
and Noisy Links-Communities Variation.

• a network with 50 nodes and 115 links.

• a network with 99 nodes and 191 links.

• a network with 200 nodes and 402 links.

• a network with 300 nodes and 721 links.

• a network with 400 nodes and 932 links.

Figure 3.11 presents the obtained accuracy average results after adding 60% of
noisy nodes and 50% of noisy links. It shows that the evidential approach was able
to correct more information than the baseline whatever the network considered.
Moreover, Figure 3.11 shows that the evidential method is stable since the values
of the precision calculated for each network are close to each other.

Table 3.13 shows the obtained accuracy averages and the confidence intervals
given by the evidential approach and the probabilistic one when we vary the size
of the network in the case of LFR.
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Figure 3.11: LFR: comparison of probabilistic and evidential accuracy: case of
variation of the size of the network.

3.3.10 LFR: Variation of the Mixing Parameter

In this section, we present the obtained results of the accuracy average following
the variation of the mixing parameter µ. We consider 5 networks whose mixing
parameter was varied and containing 3 communities:

• a network with 200 nodes, 484 links and µ = 0.1.

• a network with 200 nodes, and 402 links and µ = 0.3.

• a network with 200 nodes, and 467 links and µ = 0.5.

• a network with 200 nodes, and 488 links and µ = 0.7.

• a network with 200 nodes, and 502 links and µ = 0.9.

60% of the nodes and 50% of the links were noised. Figure 3.12 shows the
results obtained by the evidential method and the baseline after varying the mixing
parameter.

We find that the accuracy average of the nodes is greater than the accuracy
average of the links when µ < 0.5, while the latter becomes greater than the
accuracy average of the nodes when µ > 0.5. This change is explained by the fact
that the more the mixing parameter approaches 1, the more we get a network with
more links between clusters than within the community.
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Case of Nodes
Nb-Nodes Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

50 0.77 [0.705, 0.798] 0.44 [0.365, 0.463]
99 0.71417 [0.664, 0.763] 0.3901 [0.311, 0.412]

200 0.73 [0.698, 0.773] 0.39 [0.321, 0.402]
300 0.69 [0.602, 0.725] 0.38 [0.309, 0.395]
400 0.68 [0.598, 0.699] 0.37 [0.312, 0.385]

Case of Links
Nb-Nodes Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

50 0.65 [0.585, 0.705] 0.37 [0.303, 0.398]
99 0.59634 [0.558, 0.633] 0.3232 [0.315, 0.3434]

200 0.61 [0.563, 0.669] 0.30 [0.298, 0.325]
300 0.58 [0.538, 0.621] 0.29 [0.205, 0.382]
400 0.57 [0.545, 0.611] 0.27 [0.203, 0.351]

Table 3.13: Accuracy Average and Interval of Confidence: Case of Noisy Nodes
and Noisy Links-Network Size Variation.

Case of Nodes
µ Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

0.1 0.732 [0.689, 0.774] 0.42346 [0.394, 0.452]
0.3 0.73 [0.687, 0.773] 0.39 [0.321, 0.402]
0.5 0.6625 [0.626, 0.698] 0.325 [0.291, 0.358]
0.7 0.645 [0.604, 0.685] 0.19939 [0.181, 0.217]
0.9 0.6315 [0.602, 0.658] 0.16455 [0.143, 0.185]

Case of Links
µ Evid-Accu-Av IC-Evid Prob-Accu-Av IC-Prob

0.1 0.60426 [0.564, 0.644] 0.3255 [0.273, 0.377]
0.3 0.61 [0.563, 0.669] 0.30 [0.298, 0.325]
0.5 0.67687 [0.626, 0.698] 0.25868 [0.239, 0.277]
0.7 0.711 [0.690, 0.732] 0.3425 [0.320, 0.364]
0.9 0.75238 [0.741, 0.763] 0.3545 [0.3283, 0.380]

Table 3.14: Accuracy Average and Interval of Confidence: Case of Noisy Nodes
and Noisy Links-Mixing Parameter Variation.
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Figure 3.12: LFR: comparison of probabilistic and evidential accuracy: case of
variation of the mixing parameter.

C3 C4 C5 C6
Probabilistic Execution Time 5.45 8.1 8.95 9.45
Evidential Execution Time 119.05 652.4 3864.15 19225.4

Table 3.15: Comparison of probabilistic and evidential execution time

We present in table 3.14 the obtained accuracy averages and the confidence in-
tervals given by the evidential approach and the baseline when we vary the mixing
parameter in the case of LFR.

3.3.11 Comparison of the Execution Time

In this section, the execution time put by the model’s evidential version as well
as the probabilistic one are compared. The execution time at the fifth iteration
is presented. The evolution of the execution time in the case of LFR networks
with 6, 5, 4 and 3 communities is observed. The execution time is expressed in
seconds.

Table 3.15 shows that the evidential method takes more time compared to
the baseline. It is also noticed that as the number of communities increases, the
execution time increases too. It is true that the evidential algorithm takes more
time to give the results than the probabilistic one. However, we obtain better
accuracy results with the proposed approach.
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In terms of improving execution time when increasing the number of network
communities, the combination rule proposed by (K. Zhou, Martin, & Pan, 2018)
can be used. Indeed, it can be used to combine mass functions from a large number
of sources. The Conjunctive combination Rule for a Large Number of Sources
(LNS-CR) has a reasonable complexity while keeping property of reinforcing the
belief on the focal elements with which most of the sources agree. Furthermore,
the reliability of the sources is more relaxed, as it does not require all the sources
are reliable, but only at least half of them are reliable.

3.4 Conclusion

In this chapter, we presented a method which allows to classify the nodes in their
initial clusters even when there is a significant noise added to the network. In the
case of a large noise, the algorithm guarantees the information coherence of any
network even when it is a network whose nodes and links attributes have been
strongly modified.

The proposed approach is tested on real data: the Karate Club network. Then,
the noise is varied on a LFR network composed of 3 communities and the obtained
results during the noising of the nodes, links and both are presented. Finally, the
behaviour of the proposed method is studied according to the variation of the
number of communities, the size of the network as well as the mixing parameter.
All the obtained results were compared with those of the baseline.

Experiments have shown that the more noisy is the network, the more difficult
it is to find the initial network. However, a coherent network is obtained. In
addition, the proposed approach is stable when the number of communities and
the size of the network are varied and gives better results in all studied cases than
the baseline.

In the next chapter, an approach which aims to detect the spammed links based
on the informations given by the nodes and links attributes in addition of the at-
tributes associated with the messages passing through the network is introduced.



Chapter 4
A Belief Approach for Detecting
Spammed Links

4.1 Introduction

Nowadays, people are interconnected whether professionally or personally using
different social networks. However, we sometimes receive messages or adver-
tisements that are not correlated to the nature of the relation established between
the persons. Therefore, it became important to be able to sort out our relation-
ships. Thus, based on the type of links that connect us, we can decide if this last
is spammed and should be deleted.

In a social network, the link prediction problem aims to identify future rela-
tionships between nodes. Several link prediction techniques exist in the literature
(Wang et al., 2015). They can be categorized as follows: methods that use infor-
mation of nodes, methods that use topology and methods that use social theory.

The techniques using the information of the nodes are based in the idea that
the more similar the pair is, the more likelihood a link between them.

Regarding the techniques using the topology, they are used when we do not
have node or edge attributes. Indeed, they are based on the graph structural fea-
tures.

For the case of the techniques using social theory, they use additional social

100
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interaction information such as community, triadic closure, strong and weak ties,
homophily, and structural balance.

Another interesting problem appears in social networks which is the spam-
mers detection problem. We find several approaches dedicated to solve this issue
(Washha, 2018). They can be categorized as follows: Honeypot Approaches and
machine learning approaches.

The Honeypot approaches require an intervention from the administrators of
the systems. It is about an information system resource that can monitor social
spammers behaviour through logging their information such as the information of
accounts and any available content.

Regarding the machine learning methods, there are three levels of spam detec-
tion models:

Tweet-Level Detection which aims to predict the class label of tweet whether
it is a spam or non-spam.

Account-Level Detection which focuses on deeply analysing the user’s profile
in order to predict the user of the account whether spammer or not.

Campaign-Level Detection which is interested in the examination of a group
of accounts to judge whether it is a spam campaign or not.

Although all the cited methods are interesting, they focused only on how to add
links to the network when an entity disappears in the case of the link prediction
problem and on detecting spam and spammers without taking into consideration
that the link can be spammed in the case of spammer detection problem.

In order to remedy this problem, we introduce in this chapter our third con-
tribution (Ben Dhaou et al., 2019) which consists on detecting spammed links in
social networks. Indeed, the proposed method consists on modelling the belief
that a link is perceived as spammed by taking into account the prior information
of the nodes, the links and the messages that pass through them.

To evaluate the proposed approach, the noise is added first to the messages,
then to both links and messages in order to distinguish the spammed links in the
network. Second, few spammed links of the network are selected and the proposed
model is observed in order to determine if it manages to detect them.

This chapter is structured as follows. In section 4.2, the proposed method is in-
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troduced. Then, we present in section 4.3 the obtained results. Finally, section 4.4
concludes the chapter.

4.2 Spammed Links Detection based on Nodes, Links
and Messages Attributes

In social networks, several types of messages are exchanged among which, we
find advertising messages, or other that we do not want to receive. In order to sort
out our contacts in social networks, it became important to know which links are
spammed.

In this work, a spammed link is considered as any link whose class has been
modified because of the messages that pass through it in all the iterations. In one
iteration, the mass function of the link is updated and it will be the input of the
next iteration.

In order to model our idea, a belief graph G = {Vb; Eb} is used, with: Vb a set
of nodes and Eb a set of edges.

In this paper, three frames of discernment are considered for nodes, links and
messages:

• ΩN = {ωn1 , . . . , ωnN } for the set of nodes.

• ΩL = {ωl1 , . . . , ωlL} for the set of links.

• ΩM = {ωm1 , . . . , ωmM } for the set of messages.

Figure 4.1 presents the considered evidential graph in this work: A mass func-
tion is associated to each node, the link connecting them as well as the message
transiting on it. In addition, a network with N communities is considered. Each
community has a definite type that has been defined according to the type of links
that make it up.

Figure 4.2 presents the proposed approach to detect spammed links. In order
to integrate the belief on the links and on the messages, we first make a vacuous
extension on ΩL × ΩM for each mass of the message of Mb and for each mass of
the edge of Eb. Therefore, we obtain on each message Mb

i a mass: mΩL×ΩM
i and on

each edge Ei j = (Vb
i ,V

b
j ) between the nodes Vb

i and Vb
j a mass: mΩL×ΩM

i j .
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Figure 4.1: An Evidential Graph.

Figure 4.2: Process of the belief approach

Then, the extended mass functions are combined using the combination rule
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of Dempster:

mΩL×ΩM = mΩL↑ΩL×ΩM
Ei j

⊕ mΩM↑ΩL×ΩM
Mi

(4.1)

The multi-valued operation is used to transfer the combined mass functions on
ΩL ×ΩM to ΩL. In fact, a multi-valued mapping Γ describes a mapping function:

Γ : ΩL ×ΩM → ΩL (4.2)

These equations can be calculated by using the formula:

Γ : mΩL
Γ

(B j) =
∑

Γ(ei)=B j

mΩL×ΩM (ei) (4.3)

with ei ∈ ΩL ×ΩM and B j ⊆ ΩL.

Thereafter, the pignistic probability is used in order to make a decision on
the obtained type of links. This operation is used to make a comparison with the
initial classes of links.

Since the proposed algorithm is iterative, we decide that a link is spammed
and must be removed if its class changes at all iterations.

In this work, we have not developed a strategy for dealing with outliers. This
will be the subject of future work. Indeed, for links that appear in some itera-
tions but not all, we can set a threshold that represents the number of appearance
of a spammed link and if it is greater than the threshold then this link could be
considered as spammed.

4.3 Experimentations

In this section, we present the results obtained after applying the proposed algo-
rithm. In this work, 3 LFR networks composed of 99 nodes with 468 links, 200
nodes with 818 links and 300 nodes with 1227 links are used. All the networks
have 3 communities. In addition, 3 frames of discernment are considered:

• ΩN = {C1,C2,C3} for the nodes.

• ΩL = {Friendly, Family, Pro f essional} for the links.

• ΩM = {PNC, PC, INC, IC} for the messages,
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Γ Friendly Family Professional
PNC × ×

PC × ×

INC ×

IC ×

Table 4.1: Definition of function Γ given the correspondences between ΩL × ΩM

and ΩL

with PNC for PNC for Personal Not Commercial, PC for Personal Commercial,
INC for Impersonal Not Commercial and IC for Impersonal Commercial.

In this experiment, few LFR networks with three communities are considered.
We assume that the first community is of type “friendly”, the second of type “fam-
ily” and the third is of type “professional”. The type of community is defined from
the types of links that make up the majority.

We start by generating the mass functions on nodes and links according to the
structure of the network.

• For each node of the network, two focal elements are generated, one on the
type of the node and the second on ΩN by placing the largest value on the
node type.

• For network links, two focal elements are also generated, one on the type of
link and the second on ΩL by assigning the largest value to the link type.

Then, the mass functions on the messages are generated depending on the
link type. For each message which transits on the network, 2 focal elements are
generated, one on the corresponding type of the message and the second on ΩM.

Unlike the nodes and links of the network, we generate new mass functions on
the messages at each iteration.

We use the passage function Γ defined in table 4.1 to transfer the mass func-
tions from ΩL ×ΩM to ΩL.

In order to validate the proposed approach, two types of experiments are per-
formed:
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• The first type: adding noise on the messages only, then adding noise on the
messages in addition of the links.

• The second: pre-selection of a number of spammed links and see if the pro-
posed approach detects them.

In this work, we consider a noisy element (i.e. a link or a message) as an
element whose mass function or probability has been modified and generated ran-
domly. For the first part of the experiment, the noise is varied as follows:

• Case of noisy messages only: 20%, 40%, 50% and 70% of messages from
each community were noisy.

• Case of noisy messages and noisy links

– 20% of messages from each community were noisy and 20% of network
links were noisy.

– 40% of messages from each community were noisy 40% of network
links were noisy.

– 50% of messages from each community were noisy 50% of network
links were noisy.

– 70% of messages from each community were noisy 70% of network
links were noisy.

4.3.1 Baseline

In order to show the efficiency of the proposed method, an algorithm that uses the
same principle was performed in a probabilistic version.

Figure 4.3 shows the considered probabilistic graph: a vector of probabilities
is assigned to each node, the link connecting them as well as the message transit-
ing on it.

The probabilistic method consists of projecting the probabilities of links and
messages on the Cartesian frame. Then, they are combined using the average.
This will make it possible to know the type of the link according to the messages
which transit on it.

Figure 4.4 presents the process steps explained before.
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Figure 4.3: A Probabilistic Graph.

Figure 4.4: Process of the probabilistic approach

Extension of probabilities in the Cartesian product

Let the frames of links and messages in a general case:
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• ΩL = {ωl1 , ωl2 , ..., ωlL}

• ΩM = {ωm1 , ωm2 , ..., ωmM }

The Cartesian frame is given by:
ΩL ×ΩM = {(ωl1 , ωm1), (ωl1 , ωm2), ..., (ωlL , ωmM )}
Let 2 vectors of probabilities:
PL = (Pωl1

, Pωl2
, ..., PωlL

) and PM = (Pωm1
, Pωm2

, ..., PωmM
).

Given that the frames of the links and messages are independent, we need
to project both probability vectors on the Cartesian frame ΩL × ΩM in order to
combine them.

The fact that the theory of probabilities cannot model ignorance forces us to
use an equi-probability when moving from one frame of discernment of links or
messages to the Cartesian frame.

Hence for a given probability PL = (ωli , i = 1, ..., L), we consider the equi-
probability on ΩM to model the ignorance. The result is affected to each pair of
Cartesian frame containing ωli . For example:

PΩL×ΩM
L (ωl1 , ωm1) =

Pωl1
|ΩM |

, . . . , PΩL×ΩM (ωl1 , ωmM ) =
Pωl1
|ΩM |

,

PΩL×ΩM
L (ωl2 , ωm1) =

Pωl2
|ΩM |

, . . . , PΩL×ΩM (ωl2 , ωmM ) =
Pωl2
|ΩM |

,

. . .

By the same process, in order to consider the probability
PM = (ωm j , j = 1, ...,M) in the Cartesian space ΩL × ΩM, we consider the equi-
probability on ΩL to model the ignorance. For example:

PΩL×ΩM
M (ωl1 , ωm1) =

Pωm1
|ΩL |

, . . . , PΩ1×ΩM (ωlL , ωm1) =
Pωm1
|ΩL |

,

PΩL×ΩM
M (ωl1 , ωm2) =

Pωm2
|ΩL |

, . . . , PΩ2×ΩM (ωlL , ωm2) =
Pωm2
|ΩL |

,

. . .

Calculation of the average of the probabilities

Once the probabilities of the links and messages are projected on the Cartesian
frame, we proceed then to the combination of both vectors of probabilities using
the average.
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In this work, we chose to use the average because it has a compromise be-
haviour. Indeed, if the data contain estimation errors, the calculation of the aver-
age makes it possible to reduce this rate of error. For example:

PΩL×ΩM
L (ωl1 ,ωm1 )+PΩL×ΩM

M (ωl1 ,ωm1 )
2 ,

PΩL×ΩM
L (ωl2 ,ωm2 )+PΩL×ΩM

M (ωl2 ,ωm2 )
2 ,

. . .

Projection of obtained averages on the frame of links

In order to return to the frame of the links, we proceed by summing the aver-
age probabilities of the hypotheses that are related to each type of link (ωli , ωm j),
i = 1, . . . , L; j = 1, . . . ,M.

Decision making

From each probability vector relative to each link, we determine the current type
of the given link max(ωli), i = 1, ..., L. Hence, we compare the obtained type with
the initial one and decide if the link is spammed or not.

4.3.2 Case of noisy messages only

In this section, we present the results obtained after adding 20%, 40%, 50% and
70% of noisy messages in each community. The histograms given on Figures 4.5,
4.6, 4.7 and 4.8 show respectively the number of spammed links that appeared
after 5, 10, 15 and 20 iterations.

It is noticed that the more the percentage of the noisy messages increases the
more the number of spammed links increases likewise. It is also remarked that in
the case of the baseline a larger number of links would be removed compared to
the belief approach. This could cause disconnection of the network.
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Figure 4.5: Spammed links after 5 iterations: case of noisy messages only.

Figure 4.6: Spammed Links after 10 iterations: case of noisy messages only.

4.3.3 Case of noisy messages and noisy links

In this section, we present the results after adding 20%, 40%, 50% and 70% of the
noisy messages in each community in addition of 20%, 40%, 50% and 70% of the
noisy links picked randomly from each network.

The histograms given in Figures 4.9, 4.10, 4.11 and 4.12 show respectively
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Figure 4.7: Spammed links after 15 iterations: case of noisy messages only.

Figure 4.8: Spammed links after 20 iterations: case of noisy messages only.

the number of spammed links that appeared after 5, 10, 15 and 20 iterations while
varying noise.

We note that the baseline begets the removal of a large number of network
links. As a result, the network is no longer connected. For example, in the case
of 70% noisy messages and 70% noisy links, it detects 213 links which represents
about 45.5% of the total links of the network composed of 99 nodes. The proposed
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Figure 4.9: Spammed links after 5 iterations: case of noisy messages and links.

Figure 4.10: Spammed links after 10 iterations: case of noisy messages and links.

approach provides better results than the baseline due to the fact that the theory of
belief functions manages better ignorance and conflict.

4.3.4 Detection of Spammed Links

In this section, we present the obtained accuracy results after 10 iterations.
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Figure 4.11: Spammed links after 15 iterations: case of noisy messages and links.

Figure 4.12: Spammed links after 20 iterations: case of noisy messages and links.

The goal of this experiment is to test if our model manages to detect the known
spammed links. The generated mass functions on the messages are not compatible
with the spammed links classes. We consider a LFR network composed of 99
nodes and 10 spammed links.

The obtained results given by the proposed approach, the baseline and the k-nn
algorithm are compared.
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Figure 4.13: Accuracy Results: Case of PNCUPC.

The k-nearest neighbour (k-nn) (Altman, 1992) is a supervised learning method.
Its principle is as follows: An object is classified by a majority vote of its neigh-
bours, with the object being assigned to the class most common among its k near-
est neighbours.

It should be noted that in Figures 4.13, 4.14 and 4.15, the accuracy values
given by the k-nn oscillate between 0.6 and 0.69. This is because the k-nn re-
quires learning data in contrary to the proposed approach and the baseline. In the
following, the results of 3 cases are presented:

Generation of 10 messages of type PNCUPC The spammed links are of type
“professional”. Hence, 10 incompatible messages of type “PNC U PC” are gen-
erated. The curves in figure 4.13 show that for both evidential and probabilistic
approaches, only few spammed links were detected at the first iteration. How-
ever, the evidential accuracy is higher than the probabilistic one. For the case of
the k-nn algorithm, we notice that it has better accuracy results at the first itera-
tions. Nevertheless, at the tenth iteration, it is noticed that the evidential accuracy
becomes equal to 79%. So, we can conclude that our model is able to detect
correctly more spammed links than the baseline and the k-nn algorithm.

Generation of 10 messages of type PNC, PC and PNCUPC We generate:
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Figure 4.14: Accuracy Results: Case of PNC, PC, and PNCUPC.

• 3 messages of type PNC,

• 3 messages of type PC

• and 4 messages of type PNCUPC.

In Figure 4.14 we can note a clear improvement of detection of spammed links
at the tenth iteration. Indeed, the evidential accuracy results given by the proposed
approach is equal to 85%.

Generation of 10 messages of type PNCUPC and random We generate:

• 6 random messages

• 4 messages of type PNCUPC.

We specify that in the case of random message, the focal element can be every-
where except on the empty set in the case of the proposed model.

Figure 4.15 shows that even when we have a portion of random messages
generated on spammed links, our model always gives the best results of accuracy
at the tenth iteration and even before. These results can be explained by the fact
that the theory of belief functions offers a strong tool to handle the imperfection
of the information.
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Figure 4.15: Accuracy Results: Case of random and PNCUPC messages.

Evaluation of the algorithm in terms of precision and recall

In this section, we present the obtained precision and recall results of the proposed
approach, the baseline and the k-nn algorithm.

The effectiveness of an information retrieval technique is measured using two
separate measurements: the precision and recall. Precision is the fraction of rele-
vant instances among the retrieved instances while recall is the fraction of relevant
instances that have been retrieved over the total amount of relevant instances.

In what follows, we present the obtained average precision and average recall
for probabilistic and evidential approaches in addition of the k-nn algorithm in the
case of an LFR network composed of 200 and 400 nodes.

Case of LFR network 200 Nodes We start by spamming 60 links of network
as follows:

• 20 links of type “professional”

• 20 links of type “friendly”

• 20 links of type “family”.
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For each type of links, 20 incompatible message were generated:

• For the case of the “professional” link, we generate messages of type “PNC”,
“PC” and “PNC U PC”.

• For the case of the “friendly” and “family” links, we generate messages of
type “IC”, “INC” and “IC U INC”.

The curves in Figure 4.16 show a comparison of the obtained results in terms
of precision and recall measures in the case of the proposed approach, the baseline
and the k-nn. We represent the obtained values at the first and tenth iteration.

The first point of each curve represents the result obtained at the first iteration
and the second point represents the result obtained at the tenth iteration.

We note that the results given by the k-nn at the first and tenth iterations are
close. This is due to the fact that this algorithm requires learning data unlike the
evidential and probabilistic methods. Therefore, the methods do not compare the
same thing.

We notice also that the proposed algorithm gives better results than the base-
line and the k-nn algorithm. To sum up, there is a learning difference between
the proposed approach, the baseline and the k-nn algorithm. Indeed, the proposed
algorithms have no prior knowledge and they are used to understand and explore
the data. However, the k-nn algorithm is based on training set and used to classify
future data.

Case of LFR network 400 nodes This experiment was performed on an LFR
network composed of 400 nodes, 1864 links and 3 communities. In addition,
600 links were spammed. The obtained results at the first and tenth iteration are
presented.

Figure 4.17 shows that the proposed approach gives better results in terms of
precision and recall compared to the baseline and the k-nn algorithm. We remind
that the closeness of the results given by the k-nn at the first and tenth is due to the
fact that this algorithm requires learning data unlike the evidential and probabilis-
tic methods.
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Figure 4.16: Precision and Recall Results at first and tenth iterations.

Figure 4.17: Comparison of the precision/recall results at the first and the tenth
iteration.

4.4 Conclusion

Throughout this chapter, the third contribution which consists on detecting spammed
links using the information of the nodes, links and messages was explained.
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In order to test the proposed approach, two types of experimentations were
performed:

First, the noise is added on the messages only, and then we added noise on
both messages and links.

Second, we selected spammed links and observed if the proposed model man-
ages to detect them.

The noise was varied on 4 LFR networks composed of 3 communities and
having different sizes. The obtained results were compared with those given by
the probabilistic approach and the k-nn algorithm.

Experiments have shown that, as expected, the number of spammed links in-
creases with the noise level. Indeed, the higher the noise rate increases, the more
the attributes become inconsistent with the network structure as well as the type
of links. In addition, the results showed that the belief approach is better than the
probabilistic one since the latter delete almost half of the network links.

Furthermore, the accuracy, precision and recall results prove that our model
is able to detect the majority of spammed links and gives better results than the
considered baseline and the k-nn algorithm.



Conclusion and Future Works

Conclusion

A social network refers to a set of individuals who are related and interact by
exchanging content. A social network can be represented by a graph G(V, E)
where V represents the set of vertices (persons, institutions, etc) and E the set of
edges (relationships).

The entities of a social network can be of different types: web pages, members
of a social site, bank accounts, proteins, etc. As for the links, they can represent
varied interactions between these entities: friendship links on Facebook, follower
on Twitter, hyper-links on the web, etc.

In a social network we can find many communities. We recall that the com-
munity represents a group of people who have special ties because they have par-
ticular affinities, or have similar characteristics, or share interests, etc.

From a point of view of graph theory, a community is considered as a sub-
graph composing of a set of nodes that are strongly linked to each other, and
loosely related to the nodes located outside the community.

The role of community detection is to highlight those groups that have formed
implicitly. We find many interest of the community detection task such that iden-
tifying profile types, carrying out targeted actions, better adjusting the recommen-
dations, identifying influential actors, etc.

In the field of social network analysis, we manipulate information that is often
imperfect. For a long time, it was considered that the probabilistic framework
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was the only framework adapted to the representation and the manipulation of
imperfect data. However, other theories of imprecise and uncertain management
such as theories of possibilities and belief functions have emerged in order to
reduce the imperfection of an information.

Keeping all this in mind, we focused on this thesis on community detection
in an uncertain framework. We chose to use theory of belief functions for the
advantages it offers such as modelling and management of imprecision and uncer-
tainty. In addition, it offers a very good mathematical tools for the fusion of data
provided by several sources.

In what follows, we summarise the contributions presented throughout this
report.

In this thesis, we were first interested in studying the advantage of using ev-
idential attributes in the detection of communities in social networks. Indeed,
we have compared the clustering results of three types of uncertain attributes:
numerical, probabilistic and evidential. We considered 2 scenarios in the experi-
ments: the clustering of random generated data and the clustering of sorted one.
In addition, we tested the proposed algorithm in the case of the presence of noisy
information. The results of the Normalized Mutual Information (NMI) show that
nodes with evidential attributes are better classified than nodes with numerical or
probabilistic attributes.

After that, we proposed a method which allows the classification based on
the structure of the network as well as on the attributes of the nodes and links.
Indeed, the aim of this algorithm is to correct the noise added to the information
of the network. In order to validate our proposed approach, we considered 3 cases:
the nodes only are noisy, the links only are noisy and finally, both nodes and links
are noisy. We also tested our algorithm by varying the different LFR parameters
such as the size of network, the number of communities and the mixing parameter
µ. We compared our results with those given by the baseline. It has been shown
that the proposed method gives the best results. This can be explained by the fact
that the theory of belief functions manages ignorance as well as conflict.

The third contribution consists of detecting spammed links in social networks.
Indeed, using the information of the nodes, links and messages, we model the
belief that a link is perceived as spammed or not. In order to evaluate the proposed
contribution, we performed 2 sets of experiments: first, we added noise to the
messages only and then to both links and messages. We compared the obtained
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results with those of the baseline and the k-nn algorithm. The proposed algorithm
gives the best detection results. This is because the theory of belief functions is a
strong tool for managing uncertainty, ignorance, imprecision as well as conflict.

To sum up, our work on modelling interactions between nodes in a credibilist
social network aims to detect communities in the presence of imperfect informa-
tion based on both structure of the network and attributes associated to the entities
composing this latter using the theory of belief functions. We deal with imper-
fect information because in social networks, the information related to the nodes,
links and messages can be often imprecise, uncertain or ambiguous due to the
heterogeneous nature of sources.

Future Works

In this section, we try to develop some possible future works based on the current
work that we have already done in this thesis. We are mostly interested in several
directions as below.

First, we intend to correct noisy informations in the case of overlapping com-
munities. The idea is to calculate the distances between the triplets of the network
and the coherent ones. However, the initial generated mass functions on the nodes
will have two focal elements: one on the union of the communities to which the
nodes belong and the second one on ΩN . As for the categorical mass functions
of the coherent triplets, they will have a unique focal element on the union of the
communities to which the nodes belong according to the structure of the network.

Second, the improvement of the running time of the algorithm proposed in
the second contribution will be considered. Indeed, we intend to reduce its run-
ning time. In fact, there are several strategies that can reduce complexity such as
representing only the focal elements or grouping them together if their values are
negligible (Martin, 2009).

Third, for the case of dealing with outliers in the spammed links detection, we
aim to fix a threshold that represents the minimum number of occurrences for a
link to be considered spammed. We remind that an outlier is a link that its initial
class can be modified but not in all iterations.

Scaling Up is a problem that will also be considered. In fact, we intend to test
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our proposed contributions on real and large social networks such as Facebook,
LinkedIn and Twitter. However, when considering scalability, it should be kept in
mind that the algorithms become NP-complete.

Among the problems related to community detection, the most general and
difficult problem remains the detection of all relevant groups in a large real net-
work i.e the detection of overlapping communities. Indeed, although solutions to
this problem have been proposed (Xie et al., 2013) such as clique percolation, line
graph and link partitioning, local expansion and optimization, fuzzy detection as
well as agent based and dynamical algorithms, no solution is unanimous and is
not entirely satisfactory. Therefore, we intend to develop a method based on the
structure of the network as well as the nodes and links attributes in order to detect
overlapping communities.

The use of deep learning for the detection of communities represents a very
interesting perspective to discover. In fact, several works of the literature such
as (L. Yang et al., 2016) were focused on identifying community structure using
deep learning. As a future work, we intend to combine the deep learning with
the theory of belief functions in order to produce effective community detection
models.

Another interesting perspective is to test the proposed methods in this thesis on
biological networks. Indeed, instead of considering the vertices as a social entities,
they will be associated to biological entities such as proteins, genes, metabolites,
etc. As for the links, instead of representing friendship, familial or professional
relationship, they will represent transformation of molecules into other molecules
such as chemical reactions, expression of a gene or formation of a complex, etc.
Among the things studied in biological networks, there is the prediction of adverse
effects of drugs (M. Liu et al., 2012). From there, the third approach proposed in
this thesis could be used to detect these undesirable effects instead of detecting
spammed links.



Appendix A
LFR Parameters

In this work, we used the LFR parameters presented in table A.1 for the generation
of our networks. In the follwoing, we remind the meaning of each parameter:

• N represents the number of nodes,

• k the average degree,

• maxk the maximum degree,

• mu the mixing parameter,

• t1 the minus exponent for the degree sequence,

• t2 the minus exponent for the community size distribution,

• minC the minimum for the community size,

• maxC the maximum for the community size,

• on the number of overlapping nodes,

• om the number of memberships of the overlapping nodes

• and C the average clustering coefficient.
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N k maxk mu t1 t2 minC maxC on om C
99 5 10 0.3 2 1 33 33 0 0 0.55
200 5 10 0.3 2 1 66 67 0 0 0.55
200 5 10 0.3 2 1 50 50 0 0 0.55
200 5 10 0.3 2 1 40 40 0 0 0.55
200 5 10 0.3 2 1 33 33 0 0 0.55
300 5 10 0.3 2 1 100 100 0 0 0.55
400 5 10 0.3 2 1 132 135 0 0 0.55
50 5 10 0.3 2 1 15 17 0 0 0.55
200 5 10 0.1 2 1 66 67 0 0 0.55
200 5 10 0.5 2 1 66 67 0 0 0.55
200 5 10 0.7 2 1 66 67 0 0 0.55
200 5 10 0.9 2 1 66 67 0 0 0.55

Table A.1: Parameters of LFR



Appendix B
Results Before Adding Noise

In this Appendix, we show the obtained results of the experiments performed on
3 other LFR networks.

B.1 LFR Network: 50 Nodes +3 Communities

First Scenario We present below the average values of NMI for 100 runs of
random generated attributes in the LFR network composed of 50 nodes and 3
communities.

We notice that the average evidential NMI is the highest value comparing to the

NMI-Average Interval of Confidence
Numerical 0.748 [0.606, 0.89]

Probabilistic 0.707 [0.644, 0.853]
Evidential 1 [1, 1]

Table B.1: NMI Averages et Intervals of Confidence- Case LFR 50 Nodes: First
Scenario.
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NMI-Average Interval of Confidence
Probabilistic 0.839 [0.795, 0.882]
Evidential 1 [1, 1]

Table B.2: NMI Averages et Intervals of Confidence- Case LFR 50 Nodes: Second
Scenario.

probabilistic and the numerical ones. The algorithm K-medoids is able to affect
all the nodes in their right cluster based on their evidential attributes.

Second Scenario We proceed to sort the matrix of generated attributes by putting
the highest generated value on C1, C2 or C3, depending on the belonging of the
node. Then, we compute the average values of NMI for 100 executions.

We notice that the clustering with evidential attributes gives an average NMI value
equal to 1 comparing to the probabilistic ones. We also notice that the K-medoids
was not able to classify all the nodes in their right clusters based on their proba-
bilistic attributes.

B.2 LFR Network: 99 Nodes + 3 Communities

First Scenario In this section, we show the results of the NMI computation of
the random generated attributes. We present below the results of the average val-
ues of NMI for 100 runs of random attributes generation in the case of an LFR
network composed of 99 nodes and 3 communities.

The results show that the evidential generated attributes give better results than
the probabilistic and the numerical ones. In fact, we obtained a value of the NMI
average equal to 1 which means that the clustering algorithm K-medoids is able
to classify the nodes according to their evidential attributes in the right cluster.
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NMI-Average Interval of Confidence
Numerical 0.671 [0.596, 0.745]

Probabilistic 0.686 [0.550, 0.821]
Evidential 1 [1, 1]

Table B.3: NMI Averages et Intervals of Confidence- LFR 99 Nodes: First Sce-
nario.

NMI-Average Interval of Confidence
Probabilistic 0.860 [0.821, 0.9]
Evidential 1 [1, 1]

Table B.4: NMI Averages et Intervals of Confidence- LFR 99 Nodes: Second
Scenario.

Second Scenario We executed the generation of the attributes several time and
we sorted the matrix of attributes. We obtain the results of the average values of
NMI for 100 executions below:

The results show that the evidential version gives an average NMI value equal
to 1, which means that each node was detected in the right cluster. We notice that
after sorting the probabilistic attributes, the K-medoids was able to affect only
86% of the nodes in their right clusters.

B.3 LFR Network: 200 Nodes + 3 Communities

First Scenario In this part, we present the obtained results of the NMI average
values in the case of an LFR network composed of 200 nodes and 3 communities
for 100 runs of random generated attributes.
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NMI-Average Interval of Confidence
Numerical 0.700 [0.665, 0.735]

Probabilistic 0.776 [0.737, 0.815]
Evidential 1 [1, 1]

Table B.5: NMI Averages et Intervals of Confidence- LFR 200 Nodes: First Sce-
nario.

NMI-Average Interval of Confidence
Probabilistic 0.839 [0.809, 0.87]
Evidential 1 [1, 1]

Table B.6: NMI Averages et Intervals of Confidence- LFR 200 Nodes: Second
Scenario.

The results show that the clustering based on the generated evidential attributes
gives better results than the probabilistic and the numerical ones. In fact, all the
nodes were affected to their correct clusters and this is confirmed by the value of
the NMI average which is equal to 1.

Second Scenario We performed the generation of the attributes 100 times and
we sorted the matrix of attributes (We put the highest value on the attribute C1,
C2 or C3 depending of the belonging of the node to C1, C2 or C3). We obtain the
results of the average values of NMI for 100 below:

The results show that the evidential version gives an average NMI value equal
to 1 comparing to the probabilistic one which means that all the nodes were clas-
sified in their right clusters.
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