
HAL Id: tel-02141632
https://hal.science/tel-02141632v1

Submitted on 28 May 2019 (v1), last revised 23 Sep 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Performance Level-set based Topological Data
Analysis

Charles Gueunet

To cite this version:
Charles Gueunet. High Performance Level-set based Topological Data Analysis. Image Processing
[eess.IV]. Sorbonne Université, 2019. English. �NNT : �. �tel-02141632v1�

https://hal.science/tel-02141632v1
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE
SORBONNE UNIVERSITÉ

Spécialité
Informatique

Présentée par
Charles GUEUNET

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITÉ

Calcul Haute Performance

pour l’Analyse Topologique de Données

par Ensembles de Niveaux

Soutenue publiquement le 15 février 2019

Devant le jury composé de :

M. Christoph Garth University of Kaiserslautern Rapporteur

M. Bruno Raffin INRIA Grenoble Rapporteur

Mme. Raphaëlle Chaine Université de Lyon Examinatrice

M. Raymond Namyst Université de Bordeaux Examinateur

M. Pierre Sens Sorbonne Université Examinateur

M. Pierre Fortin Sorbonne Université Co-encadrant

M. Julien Jomier Kitware Co-encadrant

M. Julien Tierny CNRS, Sorbonne Université Directeur de thèse

Author’s publications

Main Publications

International Journals

• Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,

“Task-based Augmented Contour Trees with Fibonacci Heaps”

IEEE Transactions on Parallel and Distributed Systems, accepted

for publication

International Conferences

• Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,

“Task-based Augmented Merge Trees with Fibonacci Heaps”

IEEE Large Data Analysis and Visualization 2017, pp. 6–15

• Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,

“Contour Forests: Fast Multi-threaded Augmented Contour Trees”

IEEE Large Data Analysis and Visualization 2016, pp. 85–92

Abstract-Only National Conferences

• Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,

“Arbres de jointure augmentés par tâches avec les tas de Fibonacci”

Journées Visu 2018

• Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,

“Calcul parallèle de l’arbre de contour augmenté via une forêt d’arbres”

Journées Visu 2017

iii

Other Publications

International Journals

• Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles

Gueunet, Michael Michaux

“The Topology Toolkit”

IEEE Transactions on Visualization and Computer Graphics 2018

• Jonas Lukasczyk, Garrett Aldrich, Michael Steptoe, Guillaume

Favelier, Charles Gueunet, Julien Tierny, Ross Maciejewski, Bernd

Hamann, Heike Leitte

“Viscous fingering: A topological visual analytic approach”

Applied Mechanics and Materials 2017, pp. 9–19

Misc.

• Guillaume Favelier, Charles Gueunet, Julien Tierny

“Visualizing Ensembles of Viscous Fingers”

IEEE Visualization Contest 2016 [Honorable mention]

• Guillaume Favelier, Charles Gueunet, Attila Gyulassy, Julien

Jomier, Joshua Levine, Jonas Lukasczyk, Daisuke Sakurai, Maxime

Soler, Julien Tierny, Will Usher, Qi Wu

“Topological Data Analysis Made Easy with the Topology ToolKit”

IEEE VIS Tutorials 2018

iv

Software

• Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,

“Task-based Augmented Contour Trees with Fibonacci Heaps”

IEEE Transactions on Parallel and Distributed Systems

https://github.com/CharlesGueunet/Codemit/blob/master/FTC.tgz

• Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,

“Task-based Augmented Merge Trees with Fibonacci Heaps”

IEEE Large Data Analysis and Visualization 2017

https://github.com/CharlesGueunet/Codemit/blob/master/FTM.zip

• Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,

“Contour Forests: Fast Multi-threaded Augmented Contour Trees”

IEEE Large Data Analysis and Visualization 2016

https://github.com/CharlesGueunet/Codemit/blob/master/ContourForests.zip

• Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles

Gueunet, Michael Michaux

“The Topology Toolkit”

IEEE Transactions on Visualization and Computer Graphics

https://github.com/topology-tool-kit/ttk

v

https://github.com/CharlesGueunet/Codemit/blob/master/FTC.tgz
https://github.com/CharlesGueunet/Codemit/blob/master/FTM.zip
https://github.com/CharlesGueunet/Codemit/blob/master/ContourForests.zip
https://github.com/topology-tool-kit/ttk

Contents

Contents vii

1 Introduction 1

1.1 Context and motivations 1

1.2 Motivation and structure of the thesis 4

I Foundations 7

2 Background 9

2.1 Data set . 11

2.1.1 Triangulation . 11

2.1.2 Manifoldness . 14

2.1.3 Connectivity . 15

2.1.4 Neighborhood . 16

2.2 Scalars . 17

2.2.1 Critical points . 18

2.3 Topological abstractions 20

2.3.1 Reeb graph . 20

2.3.2 Contour tree . 21

2.3.3 Merge tree . 22

2.4 Data structures . 24

2.4.1 Graph and Tree . 24

2.4.2 Connectivity problems 25

2.4.3 Ordered traversal . 27

2.5 Parallel computing . 28

2.5.1 Multi-core parallelism 28

2.5.2 Many-core parallelism 33

2.5.3 Multi-node parallelism 34

3 State of the art 37

3.1 Merge Trees . 39

3.1.1 Sequential reference algorithms 39

vii

3.1.2 Parallel algorithms . 42

3.2 Contour Trees . 46

3.2.1 Sequential reference algorithm 46

3.2.2 Parallel algorithms . 47

3.3 Reeb Graphs . 48

3.3.1 Cut-based approaches 49

3.3.2 Dynamic connectivity 50

4 Positioning 55

II Contributions 59

5 Input sensitive Contour Trees using Contour Forests 61

5.1 Overview . 63

5.2 Scalar value based decomposition for parallel

contour tree computations 64

5.2.1 Domain partitioning . 64

5.2.2 Local computations . 66

5.2.3 Contour forest stitching 67

5.3 Experimental results . 68

5.3.1 Detailed performance results 70

5.3.2 Limitations . 71

5.4 Conclusion . 73

6 Output Sensitive Task-based Merge Trees with

Fibonacci Heaps 75

6.1 Overview . 78

6.2 Local propagations for merge tree computations 79

6.2.1 Leaf search . 79

6.2.2 Leaf growth . 79

6.2.3 Saddle stopping condition 81

6.2.4 Saddle growth . 82

6.2.5 Trunk growth . 84

6.2.6 Segmentation . 85

6.3 Task-based parallel merge trees 85

6.3.1 Taskification . 86

6.3.2 Synchronization . 87

6.3.3 Parallel trunk growth 88

6.4 Results . 89

viii

6.4.1 Performance analysis . 90

6.4.2 Limitations . 95

6.5 Conclusion . 97

7 Output Sensitive Task-based Contour Trees with

Fibonacci Heaps 99

7.1 Overview . 101

7.2 Task-based contour tree computations 102

7.2.1 Leaf search . 102

7.2.2 Task overlapping for merge tree computation 102

7.2.3 Merge tree post-processing 103

7.2.4 Parallel combination . 104

7.3 Results . 106

7.3.1 Performance analysis . 107

7.3.2 Limitations . 112

7.4 Conclusion . 114

8 Task-based Augmented Reeb Graphs with Dynamic ST-
Trees 115

8.1 Overview . 118

8.2 Local propagations for Reeb graph computations . . . 119

8.2.1 Leaf search . 119

8.2.2 Local growth . 119

8.2.3 Critical vertex detection 120

8.2.4 Saddle vertex handling 120

8.2.5 Laziness mechanism for preimage graph 121

8.3 Task-based parallel Reeb graphs 122

8.3.1 Leaf search . 122

8.3.2 Local growth . 122

8.3.3 Saddle vertex handling 123

8.4 Parallel dual sweep . 124

8.4.1 Leaf search . 124

8.4.2 Local growth . 124

8.4.3 Saddle vertex handling 125

8.4.4 Post-processing for merged arcs 126

8.5 Results . 126

8.5.1 Performance analysis . 127

8.5.2 Comparisons . 128

8.5.3 Limitations . 131

ix

8.6 Conclusion . 131

III Exploitation 133

9 Applications 135

9.1 Persistence . 137

9.2 Merge Trees . 138

9.3 Contour Trees . 140

9.4 Reeb Graphs . 140

9.5 Real-case analysis . 142

9.5.1 IEEE Scientific Visualization Contest 2016 142

9.5.2 Input data sets . 142

9.5.3 Analysis . 144

9.6 Conclusion . 151

10 Conclusion 153

Bibliography 157

x

1Introduction

0 and 1 are the only informations a computer can manipulate. These

0 and 1 are named bits and can be structured in order to represent

characters, which put together form a text like the one you are reading.

These characters or the final text are different levels of abstraction of the

underlying bits. Other frequently used abstractions in computer science

include pictures, musics, videos, . . . or simulation/acquisition results in

the case of scientific data sets. In the following, we describe such data sets

and detail how modern computers are able to store and process more 0

and 1 than ever, as well as the consequences and new problems this raises,

especially in the context of data analysis.

1.1 Context and motivations

In this manuscript, we focus on data sets containing information related

to two or three dimensional phenomena. These data sets are from two

main origins: they can either be acquired, which means they come from

measurement of a real world phenomenon, or simulated when they are

resulting from a simulation ran on a (super) computer.

Data acquisition

Data acquisition occurs when measurements of real world phenomena are

transformed into numeric values that, in our case, can be manipulated

by computers (0 and 1 as previously seen). Phenomena that are

to be measured can be as varied as sensors allow. Some examples

include: meteorology, medical scans (cf. Figure 1.1) or ground-penetrating

radargrams. Acquired data sets usually suffer from noise due to

measurement errors.

Through years, measurement techniques and probe accuracy have

improved, leading to an increase in the size and details of acquired data

sets.

1

2 Chapter 1. Introduction

Figure 1.1 – (0): A Computerized Tomography (CT) scan used in medical imaging to

obtain a tomographic 3D image of a specific area, from Wikimedia (by NithinRao).

(1): Result of a CT scan on a human foot. This data set has a resolution of 2563 samples.

Actual scan results are closer to 20483 or even 40963 samples.

Data simulation

As physical and chemical models are presently able to accurately reflect a

significant number of real world phenomena, it may be easier to simulate a

phenomenon than to reproduce it through experimentation. Additionally,

there are situations where experimentation is not possible. It can be

for ethical reasons, in the case of virus spreading or nuclear testing for

example. Simulations are also used in order to reduce the number of tests

in real conditions when these are expensive, like in the case of rocket

launches or crash-tests for cars. Finally, simulations are also used to

explore phenomenon that can not be directly reproduced like in the case

of the cosmological simulation (see Figure 1.2(1)).

The size of these simulations is driven by the performance of the

computer on which these are run (from a workstation to a supercomputer

like the one shown in Figure 1.2(0)). Furthermore, the compute power is

growing through time. A good example of this continuous expansion is

the well known Moore’s law about the exponential growth of the number

of transistors in processors, which has been observed to double every two

years. Along with the ever larger use of ever more powerful HPC facilities,

this has lead to amounts of data that cannot be interpreted by humans.

1.1. Context and motivations 3

Figure 1.2 – (0): The Oak Ridge Leadership Computing Facility supercomputer with a

computational power of 200 petaflops.

(1): A cosmological simulation from when the universe was only one billion years old,

from Wikimedia (by Vis-sns).

Data analysis

Whether they are acquired or simulated, these data sets must be analyzed.

Data analysis is the process of representing, manipulating and exploring

data in order to extract relevant information. As we consider two and

tree dimensional phenomena, we can rely on scientific visualization, a

branch of computer science aimed to help the exploration of such data

sets through the use of graphical representations. As data sets get bigger

and more complex, it becomes challenging for scientists to glean insight

from their data. In the same way the 0 and 1 are not convenient for human

beings but a text is, we can create new abstractions that help the analysis

of complex data sets: this is the role of topology-based visualization

methods. Informally, topology is the study of geometrical properties

of spaces, unaltered by continuous deformations such as stretching or

bending. In practice, it can be used to create abstractions that serve as

maps of the original data set. Data analysis using topological abstractions

is part of topological data analysis, often abbreviated TDA. Thanks to its

robustness and its ability to extract features of interest at multiple scales

of importance, TDA gained in importance over the last few years and

was successfully applied to a variety of applications (combustion [15],

chemistry [13, 39], astrophysics [68, 71, 78], material science [31, 41, 51],

fluid dynamics [19, 42, 46, 69, 77, 85], medical imaging [12, 18], etc). In

Figure 1.3 we present several data analysis examples, where topological

tools are used to extract and evaluate areas of interests on various data

sets. Each time, data sets are colored according to segmentations induced

4 Chapter 1. Introduction

Figure 1.3 – Four data analysis results on simulated and acquired data sets. In these

examples, data exploration is guided by topological tools allowing to extract, count and

evaluate the robustness of features on each data set.

by contour based abstractions, which will be formally defined in the

remainder of this manuscript.

Limitations

The increase in size of current data sets represents a challenge for

interactivity in the context of topological data analysis. To make matters

worse, traditional algorithms used to compute topological abstractions

are often sequential and thus do not fully exploit the compute power of

modern architectures. These algorithms rely on a global view of the data

which makes their parallelization challenging.

1.2 Motivation and structure of the thesis

For ten years, the compute power has grown through parallelism and

has significantly increased the size of data sets, without impacting the

execution times of topological data analysis algorithms. Indeed, most

topological abstractions are still computed using intrinsically sequential

algorithms and existing parallel approaches offer limited speedups.

Therefore, efficiently parallelizing them would be desirable to exploit at

best modern architectures, improving interactivity on workstations and

efficiency on supercomputers.

The main topic of this thesis is the design of efficient parallel algorithms

1.2. Motivation and structure of the thesis 5

for topological data analysis, focusing on level set based abstractions:

merge trees, contour trees and Reeb graphs.

The first part of this manuscript (chapters 2 to 4) is dedicated to

prerequisites. All the required definitions are first given in chapter 2.

Traditional algorithms used to compute level set based abstractions are

presented in chapter 3 and existing parallel approaches are also discussed.

In chapter 4, we describe in details the scientific positioning of this thesis:

we list the topological abstractions on which we focus, and we justify our

choices regarding HPC architectures and algorithms. We also present

an overview of our contributions. Afterward, the second part of the

manuscript (chapter 5 to 8) details our contributions. First, we present

in chapter 5 an approach that efficiently computes contour trees in parallel

on shared memory workstations. This algorithm uses thread-based

parallelism and relies on a static decomposition of the input mesh by scalar

values. Then, an approach using independent local propagations and

task-based parallelism to compute merge trees is presented in chapter 6

and refined in chapter 7 to deal with contour trees. Additionally, a task-

based algorithm also relying on independent propagations to compute

Reeb graphs is detailed in chapter 8. The last part of this manuscript

(chapter 9 and 10) is used to emphasize how this work can be exploited

through applications and examples in chapter 9. Finally, a conclusion on

this thesis is given in chapter 10 and perspectives of this work are also

presented.

Part I

Foundations

7

2Background

Contents

2.1 Data set . 11

2.1.1 Triangulation . 11

2.1.2 Manifoldness . 14

2.1.3 Connectivity . 15

2.1.4 Neighborhood . 16

2.2 Scalars . 17

2.2.1 Critical points . 18

2.3 Topological abstractions . 20

2.3.1 Reeb graph . 20

2.3.2 Contour tree . 21

2.3.3 Merge tree . 22

2.4 Data structures . 24

2.4.1 Graph and Tree . 24

2.4.2 Connectivity problems . 25

2.4.3 Ordered traversal . 27

2.5 Parallel computing . 28

2.5.1 Multi-core parallelism . 28

2.5.2 Many-core parallelism . 33

2.5.3 Multi-node parallelism . 34

This chapter introduces all theoretical notions required for the

understanding of this manuscript, as well as parallel computing.

9

2.1. Data set 11

2.1 Data set

In scientific visualization, input data sets are usually geometrical objects

(meshes) on which are defined scalar, vector or tensor fields. In the context

of this manuscript, we consider manifold triangulations and univariate

scalar fields. In the following, we formalize these terms and describe some

topological notions required in the remainder of this document.

2.1.1 Triangulation

Computer science is fundamentally a discrete world and so geometrical

objects are usually manipulated using meshes. A mesh is a set of polytopes

used to represent a surface or a volume, like a CFD simulation model, a

mechanical piece, a video game character or any other 2D/3D discrete

shape.

The surface or volume on which the analyzed phenomena take place

is named the domain. To introduce the notion of domain, we start by

defining topological spaces.

Definition 1 (Topological space) A topological space is an ordered pair (X, τ), where X is a set

and τ is a collection of subsets of X having the following properties:

• ∅ and X belong to τ

• Any union of members of τ belongs to τ

• Any finite intersection of members of τ belongs to τ

In order to locate in this space, we use the notion of point.

Definition 2 (Point) A point in the Euclidean space Rd of dimension d > 0, is a set of d

coordinates.

In the domain, a point is a position in space (not to be confused with

a vertex, which is an object of dimension zero as we will see later). In a

triangulation with a dimension up to three, the type of cells that can be

used are restricted to: vertices, edges, triangles and tetrahedra (only for

dimension three). These cells are simplices. To define a simplex, we need

the notion of convexity.

Definition 3 (Convex set) A set S of an Euclidean space Rd of dimension d is convex if for any

two points x, y in S and all t ∈ [0, 1] the point (1− t)x + ty also belongs to S .

Intuitively, a set S is convex if all for all pairs of points x, y ∈ S all

points on the segment (x, y) are also in S (cf. Figure 2.1 (0)).

12 Chapter 2. Background

Definition 4 (Convex hull) The convex hull of a set of points P in an Euclidean space Rd is the

unique minimal convex set containing all points of P .

Figure 2.1 (1) shows the minimal convex set of three linearly

independent points (yellow). This form a convex hull, in this case a

triangle.

Figure 2.1 – Example of the convex hull of three yellow points: In (0) the highlighted area

is a convex set containing the three yellow points. It is convex since all pairs of points

inside it can be joined by a segment entirely inside the set, an example is shown using the

two shaded points. In (1) the highlighted area is the minimal convex set containing the

three yellow points: the convex hull.

Definition 5 (Simplex) A n-simplex is the convex hull of n + 1 points linearly independent in an

Euclidean space Rd, with 0 ≤ n ≤ d.

In Figure 2.2, simplices up to dimension 3 are illustrated. As we have

seen previously, the 0-simplex is a vertex. Additionally, the 1-simplex is an

edge, the 2-simplex a triangle and the 3-simplex is a tetrahedron.

Definition 6 (Face) A face is a simplex containing a sub set of the vertices of another simplex

called co-face.

For example, a tetrahedron has four distinct triangles as face, but also

six edges and four vertices. These simplices are the elementary bricks

used to represent the geometry of our data sets. Glued together, they form

a simplicial complex.

Definition 7 (Simplicial complex) A simplicial complex K is a finite collection of simplices σi

2.1. Data set 13

Figure 2.2 – Illustration of simplices up to dimension three:

dimension 0: a vertex containing the red point;

dimension 1: an edge containing the two green points;

dimension 2: a triangle containing the three yellow points;

dimension 3: a tetrahedron containing the four blue points.

such that every face of a simplex of K is also in K, and any two simplices intersect

in a common face or not at all. The dimension of the simplicial complex is the

highest dimension among its simplices.

A simplicial complex of dimension k is noted k-simplicial complex. For

example, a 2-simplicial complex may contain vertices, edges and triangles,

but not any higher dimensional simplices.

Figure 2.3 – The set of vertices (0), edges (1), triangles (2) and tetrahedra (3) composing

the simplicial complex (4).

In Figure 2.3 all simplices contained in the 3-dimensional simplicial

complex (4) composed of a single tetrahedron are represented. If we

consider vertices, edges and triangles only, omitting the tetrahedron, we

obtain a 2-simplicial complex (a surface) in a 3-dimensional domain.

In the context of topological data analysis, a triangulation is a simplicial

complex and every mesh in dimension two or three can be easily converted

into a triangulation by subdividing its cells into simplices. We will see in

the next subsection that the notion of simplicial complex is still too generic

for our use cases and requires the definition of the notion of manifoldness.

14 Chapter 2. Background

2.1.2 Manifoldness

Figure 2.4 – Three different 3-simplicial complexes, each cell having a different color:

(0): two tetrahedra;

(1): a mingled tetrahedron is added to (0), the mesh is not manifold anymore;

(2): subdividing simplices allows to obtain a new manifold triangulation

The notion of simplicial complex alone allows cells to cross each other.

Figure 2.4 shows a triangulation having mingled tetrahedra (1). In this

case it is possible to subdivide simplices in order to obtain a new mesh

without overlapping, having the same shape than the previous one as

presented in (2). The term “manifold”, described next, requires the notion

of homeomorphism.

Definition 8 (Homeomorphisms) Two topological spaces A and B are said to be homeomorphic

if and only if there exists a continuous bijection f : A→ B such that the inverse

function f−1 : B→ A is also continuous.

Roughly speaking, a homeomorphism is a continuous stretching and

bending of a topological space into a new shape. For example, a triangle

and a square are homoemorphic to each other, while a sphere and a

torus are not. But this description can be misleading as some continuous

deformations are not homeomorphisms such as the deformation of a

line into a point. Moreover some homeomorphisms cannot be achieved

using only continuous deformations, for example a knot and a circle are

homeomorphic but the knot needs to be cut and stitched back to be turned

into a circle.

Definition 9 (Manifold) A topological space X of dimension d is manifold if every point p ∈ X

has an open neighborhood homeomorphic to an open neighborhood of Rd. More

precisely, in dimension d a manifold is referred to as a d-manifold.

Intuitively, a manifold space locally resembles a Euclidean space near

2.1. Data set 15

each point. In Figure 2.4 (1), some points are both in the brown and white

tetrahedron, therefore this mesh is not manifold (for this overlap region,

there is no bijection from the complex to R3). In (2), mingled tetrahedra

have been subdivided so there is no more overlapping. Another classical

example of a non manifold mesh would be two tetrahedra touching only

on a single vertex. At this particular vertex the neighborhood is not

homeomorphic to a 3-ball and the mesh is not manifold.

2.1.3 Connectivity

Some of the algorithms presented later require the input mesh to be simply

connected. This notion is introduced constructively.

Definition 10 (Connected space) A topological space X is said to be connected if for every pair of

points in X there is a path in X between them.

Definition 11 (Connected component) A connected component is the maximal subset of a

topological space which is connected.

Definition 12 (Simply connected) A topological space X is simply connected if it is connected and

for any pair of points in X, any path can be continuously deformed into another.

Figure 2.5 – Let Ki be the simplicial complex corresponding to the number (i).

K0 is not connected as we can find two points (A and B) with no path in K0 to join them.

K1 is a connected simplicial complex: there is a path in K1 between every pair of points.

K2 is a connected simplicial complex: but contrary to K1 it is not a simply connected one

as we can find two paths that cannot be continuously transformed one into each other.

In Figure 2.5, examples of topological spaces illustrating these various

connectivities are presented. The first one (0) is composed of two distinct

triangles. Each of these triangles is a connected component and this space

is not simply connected. The second one (1) is connected as there is a

path between every pair of points on the space. As every path between

these points can be continuously deformed into another, this second space

is simply connected. On the contrary, the third example (2) shows a hole

16 Chapter 2. Background

which prevents paths to be deformed into some others without stitching.

It is not a simply connected topological space, just a connected topological

space.

2.1.4 Neighborhood

All domains we consider being simplicial complexes, the notion of

neighborhood for a simplex is consistent. For example a vertex is always in

the neighborhood of all its neighbors. Several topological notions related

to neighborhood are used in this manuscript and we give here their formal

definitions.

Definition 13 (Closure) The closure of a collection of simplices σ of a simplicial complex K
denoted Cl(σ) is the minimal sub-simplicial complex of K that contains each face

of σ.

Definition 14 (Star) The star of a collection of simplices σ of a simplicial complex K denoted

St(σ) is the set of simplices of K having a simplex of σ as a face.

Definition 15 (Link) The link of a collection of simplices σ of a simplicial complex K denoted

Lk(σ) is the closure of the star (the closed star) of σ minus the star of σ:

Lk(σ) = Cl(St(σ))− St(σ).

The link can also be expressed as the set of faces of the simplices in the

star of σ that are disjoint from σ.

Figure 2.6 – Three collections of simplices σ (in blue) in a simplicial complex K with

their corresponding closure, star and link (in red).

In Figure 2.6 the notions of closure, star and link are illustrated. On

the left, σ0 is composed of an edge and a triangle, so the closure Cl(σ0)

is composed of the triangle along with its three edges and three vertices,

and the lone edge and its two vertices. The result is a valid simplicial

complex. In the middle, σ1 is a single vertex. Its star in red is composed

by this vertex along with adjacent edges and triangles. This is not a valid

simplicial complex as some edges on the triangles are missing. Finally, on

2.2. Scalars 17

the right σ2 is also a vertex. Its link is composed of the simplices which

are in the closed star of σ2 but not directly attached to the vertex σ2.

2.2 Scalars

Data sets in scientific visualization usually contain scalar, vector or tensor

fields. In the context of this manuscript, only univariate scalar values,

elements of R, are considered. These scalars generally correspond to

simulation or acquisition results, can it be a temperature, a density, a

pressure or any other physical measure. These values are defined on

every vertex of the data set and for the remainder of this manuscript, we

consider that each vertex has a distinct scalar value. In practice, this is not

a limiting constraint as we can use the simulation of simplicity [30] in order

to obtain a consistent disambiguation in an existing data set. These scalar

values can be extended to the whole mesh using a linear interpolation with

barycentric coordinates.

Figure 2.7 – This data set is a

brake disk with the scalar field

corresponding to the temperature

(blue low, yellow high). Below the

blue line the scalar field associated

to vertices of the mesh is shown.

Then, between the two lines an

interpolation extend these scalar

values to edges. Finally, above

the red line scalar values are

interpolated to the whole mesh.

Scalar values being extended to the whole mesh allows to define the

pre-image of a scalar value: the level set.

Definition 16 (Level set) On a simplicial complex K, the level set f−1(i) of an isovalue i ∈ R

relatively to a scalar field f : K → R is the pre-image of i onto K through

f : f−1(i) = {p ∈ K| f (p) = i}.

On a d-manifold, a level set is a (d − 1)-manifold. A notion heavily

used in the remainder of this manuscript is the concept of contour.

Definition 17 (Contour) On a simplicial complex K, let f−1(i) be the level set of an isovalue i

relatively to a scalar field f : K → R. A connected component of f−1(i) is called

a contour.

18 Chapter 2. Background

As a connected component of level set, a contour can also be

represented with a simplicial complex. In the following, we denote

f−1(f (p))p the contour containing the point p.

Instead of taking the pre-image of a single scalar, we can also consider the

pre-image of all scalars above or below a certain isovalue.

Definition 18 (Sub-level set) On a simplicial complex K, the sub-level set f−1
− (i) of an isovalue

i ∈ R relatively to a scalar field f : K → R is the set of points having a scalar

value lower than i through f : f−1
− (i) = {p ∈ K| f (p) ≤ i}.

The sur-level set is defined symmetrically as the set of points that have

a scalar value above or equal to certain isovalue. This scalar field can be

used to refine notions previously seen.

Definition 19 (Lower star) The lower star St−(σ0) of a vertex σ0 is the set of simplices in the star

of σ0 : St(σ0) having all their vertices in f−1
−
(

f (σ0)
)
.

And symmetrically, the upper star is the set of simplices in St(σ0) that

are in the sur-level set of the scalar value associated with σ0.

Definition 20 (Lower link) The lower link Lk−(σ0) of a vertex σ0 is the set of simplices in the

link of σ0 : Lk(σ0) having all their vertices in the sub level set of the isovalue

associated with σ0.

And the upper link is defined similarly using the sur-level set and is

noted Lk+(σ0). The union of the lower and upper star is not necessarily

equal to the complete star as some simplices may be crossing the scalar

value of the related vertex. The same remark can be done for the link.

2.2.1 Critical points

The scalar field of a simplicial complex is a piecewise linear function (when

a linear interpolation is used). As such, it admits critical points. These

points are located on vertices and can only be of two kinds: extrema and

saddles.

Definition 21 (Extremum) On a simplicial complex K with a scalar field f : K → R, a vertex v

is a maximum (respectively a minimum) of f iff Lk+(v)
(
respectively Lk−(v)

)
is

empty.

Definition 22 (Saddle) On a simplicial complex K with a scalar field f : K → R, a vertex v is a

saddle of f iff Lk−(v) or Lk+(v) have more than one connected components.

A point which is not a critical point is said to be regular.

2.2. Scalars 19

Figure 2.8 – Neighborhood of a vertex v in grey, with the connected components of the

link emphasized:

(0): |Lk−(v)| = 0, a local minimum;

(1): |Lk+(v)| = 0, a local maximum;

(2): |Lk−(v)| = |Lk+(v)| = 1, a regular vertex;

(3): |Lk−(v)| = 1, |Lk+(v)| = 2, a split saddle;

(4): |Lk−(v)| = 2, |Lk+(v)| = 1, a join saddle;

(5): |Lk−(v)| = 3, |Lk+(v)| = 3, a degenerate saddle.

In Figure 2.8 examples of vertices neighborhood are given. In (0) and

(1) the grey vertex is either the lowest or highest in its neighborhood, hence

it is an extrema. In (2), we have an example of a regular vertex with one

connected component of both lower and upper link. All other cases are

saddles. Using the link to compute critical points of a data set is a classical

approach (and is embarrassingly parallel).

Figure 2.9 – 2-triangulation where the scalar field is the height, from blue (low) to red

(high). Critical points of the mesh are shown using spheres: red for maxima, gray for

saddles and blue for minima. Three level sets are shown using colored curves.

For a macroscopic view of critical points, Figure 2.9 presents a simple

data set consisting of two hills with a height scalar field. At the top of

each hill we have a local maximum and there is a split saddle at the point

20 Chapter 2. Background

where these two hills become distinct (hence the name of split saddle). The

two hills become distinct when the level set change from one connected

component to two. On a simplicial complex with a linearly interpolated

scalar field, such a change in the number of connected components of

level set (or contour) can only occur at the vicinity of a critical point. The

opposite is not true, a critical point does not always imply a change in the

number of contours.

2.3 Topological abstractions

In this section, we define three topological abstractions which are at

the core center of this manuscript. These abstractions track connected

components of level sets (or sub-level sets), hence the term level set

based abstractions used to describe them in this thesis. Other topological

abstractions exist, like the Morse-Smale complex [40] which relies on the

gradient for example (its definition is out of the scope of this manuscript).

Level set based abstractions also rely on the notions of graph and tree

formally defined subsection 2.4.1. For now, a graph is a 1-simplicial

complex, if it has no loop we can also call it a tree. In this manuscript,

the terms arc and node are used to describe a graph structure whereas the

terms edge and vertex refer to the mesh.

2.3.1 Reeb graph

The Reeb graph is a topological abstraction reflecting the evolution of the

connected components of level sets (contours) on a manifold M. In the

context of this manuscript, the input mesh is a manifold triangulation as

previously defined.

Let ∼ be an equivalence relation such that two points are equivalent

through ∼ if and only if these two points reside on the same contour. The

Reeb graph is defined as the quotient spaceM/ ∼.

Definition 23 (Reeb graph) On a manifold M, the Reeb graph R(f) is a one dimensional

simplicial complex defined as the quotient space on M×R by the equivalence

relation (p1, f (p1)) ∼ (p2, f (p2)) which holds iff: f (p1) = f (p2)

p1 ∈ (f−1(f (p2)))p2

Figure 2.10 presents the Reeb graph of a height scalar field on a hand

data set. On the right, two level sets are shown with their contours colored

2.3. Topological abstractions 21

Figure 2.10 – A 3-triangulation of a hand with the height scalar field. On the left, the

scalar field is shown along with all the corresponding critical points. On the right, the

Reeb graph of this data set is presented along with the corresponding segmentation. Two

level sets are given to emphasize the contour contraction mechanism.

accordingly to the arc they are related with. Each contour can be replaced

by a single point, equivalent to all the points in the contour though ∼: this

is called a contraction. The Reeb graph of f can also be defined as the

continuous contraction of each contour into a point. With this definition,

we can see that each arc corresponds to a region where the number of

connected components of level sets is equal to one. The corresponding

segmentation is used to color the mesh on the right side of Figure 2.10.

As seen in subsection 2.2.1, the number of contours can only change at a

critical point. This means the arcs of the Reeb graph can only start and end

at critical points (but not all critical points are critical nodes on the Reeb

graph).

In Figure 2.10, the topological handle created by the fingers leads to

a loop in the graph. A loop in the Reeb graph can only occur around a

topological handle. The next subsection focus on the case where the input

data set has no topological handle.

2.3.2 Contour tree

When the input domain has no topological handle, the output Reeb graph

is granted to have no loop. On a simply connected manifold the Reeb

graph is called contour tree.

22 Chapter 2. Background

Definition 24 (Contour tree) The Reeb graph of a scalar field f defined on a simply connected

manifoldM is called contour tree and noted C(f).

As we will see later, computing the contour tree is several orders

of magnitude faster than the Reeb graph computation in practice. This

is particularly useful for regular grids which are simply connected by

construction. For unstructured meshes, knowledge about the data set is

required as a contour tree algorithm may return a wrong output on a non

simply connected domain.

Figure 2.11 – A simply connected 3-triangulation of a hand with a height scalar field. On

the left, the scalar field is shown along with all the corresponding critical points. On the

right the contour tree is presented along with the corresponding segmentation.

Figure 2.11 shows the contour tree of a height scalar field on a simply

connected, manifold triangulation of a hand data set. This data set is

analogous to the one presented Figure 2.10 but does not contain the

handle. As a result, the output is the tree shown on the right.

2.3.3 Merge tree

In the same way the contour tree tracks changes in the number of

connected components of level sets, the merge tree tracks changes in the

number of connected components of sub/sur-level sets. In this manuscript,

we call join tree the merge tree tracking changes in the number of sub-level

set components as this tree contains all the minima and critical points

where the corresponding components join together. We call split tree the

one containing split saddles and maxima. In the literature, the names of

these two trees are sometime interchanged.

2.3. Topological abstractions 23

Figure 2.12 – A simply connected 3-triangulation of a hand with a height scalar field.

On the left, the scalar field is shown along with all the corresponding critical points.

On the middle, the join tree of this data set is presented along with the corresponding

segmentation. There are only three leaves on this tree as this data set has only three

minima. On the right, the sub-level set just below the first join saddle is shown, we can

see the three connected components. In particular, the light blue and yellow components

are about to merge at the saddle.

Figure 2.12 presents the join tree of a height scalar field on the 3-

triangulation of a hand, analogous to those presented previously. There

are three minima on this data set, a global one on the wrist and two others

on the lowered fingers. The splits and maxima are not tracked by the join

tree as they do not change the number of connected components of sub-

level sets. The root of the join tree is the global maximum, where the last

connected component of sub-level sets ends.

The merge tree is a topological abstraction generally used on data

sets where areas of interests are either minima or maxima and their

corresponding regions. Additionally, reference algorithms to compute

the contour tree also rely on the merge tree computation, as detailed in

subsection 3.2.1. Finally, merge trees are used to compute the persistence

diagram, which is a powerful tool to measure the number and the

robustness of features on a data set.

Segmentation

The hand data sets shown previously are colored according to the

segmentation induced by the topological abstraction on the figure. The

segmentation is the mapping between all vertices to arcs they belong to

in the graph/tree. When the output data structure explicitly models this

information, the graph/tree is said to be augmented. Otherwise, the output

24 Chapter 2. Background

is only a skeleton and called non-augmented. In practice, to enable the full

extent of level set based applications (as shown in Figure 1.3), augmented

trees are required. Non-augmented trees can only be applied to a specific

sub-set of applications. This is challenging as the computation of the

augmented trees is more intensive than for non-augmented ones.

2.4 Data structures

The main contributions presented in the second part of this manuscript

consist in new algorithms to compute the abstractions presented

previously. These computations rely on existing data structures, presented

in this section.

2.4.1 Graph and Tree

In computer science, a graph data structure is a set of vertices linked

together by edges. As is, an edge can link a vertex to itself. However,

in the context of this manuscript, graphs are guaranteed to be 1-simplicial

complices and an edge can only link two distinct vertices. More precisely,

an arc can only link two distinct nodes as these terms are preferred to

describe the graph structure.

Figure 2.13 – A simple graph composed of three (super) arcs and four critical nodes.

Regular nodes of the root arc are shown as stored separately.

For Reeb graphs, contour trees and merge trees, the graph structure

maps to the mesh. This means our graph structure has to deal with regular

nodes. As presented Figure 2.13, we have chosen to store the sorted list of

regular nodes of each arc separately. This methods requires less memory

than an explicit storage as arcs between these nodes are implicit. As

emphasized in the figure, arcs between two critical nodes are called super

arcs. As our graph representation only contains super arcs, we adopt the

2.4. Data structures 25

convention that arcs are always assumed to be super arcs unless otherwise

stated.

2.4.2 Connectivity problems

Identifying connected components in a graph (eventually subject to

updates) is called the connectivity problem. In the following, we detail

data structures addressing this problem, depending on the changes

allowed for the graph.

2.4.2.1 Static connectivity

When a graph is static (no arcs are to be added or removed), the only

operation required to query connected components is:

• connected(v,w): return true if v and w are connected.

This operation can be implemented using a breadth-first search traversal

detailed below.

Breadth First Search. Starting at a n-simplex, it recursively explores its

neighborhood using the (closed) star of the current simplex to store the

next n-simplices to visit in a queue. It generally stops when there is no

more candidate to visit. In other word, a BFS is a walk across simplices,

using neighborhood relationship to visit the structure. By construction, it

visit all given n-simplices in a connected component, thus this algorithm

can check if two vertices are connected. It is used in practice to count the

number of connected components in a complex.

2.4.2.2 Incremental connectivity

In the case of the incremental connectivity problem, arcs can be added to

the graphs, which means connected components can merge together. The

operations required by a data structure addressing this problem are:

• connected(v,w): return true if v and w are connected.

• insert(v, w): add an edge between nodes v and w in the graph.

An efficient data structure addressing this problem is the Union-Find,

presented below.

26 Chapter 2. Background

Figure 2.14 – Example of an Union-Find data structure on a

set with three elements. First, all the elements are distinct, each

tree has a distinct root. After the first union operation, a link is

created between nodes 2 and 3. These two nodes have a common

root now (here 2). At this point a findRoot operation on these

two nodes would return the same representative (2). Finally,

after the second union, all nodes are on the same tree and have

the same representative (2).

Union-Find. An Union-Find [21] is a set of two operations (union and

findRoot) operating on disjoint data sets to track whether some elements

are in the same connected component or not. Internally, it works by

maintaining rooted trees. Elements are nodes of the tree and the root is the

representative. A findRoot operation returns the root of the tree containing

the given element. In practice, this operation is typically used to determine

the connected component to which belongs a vertex. An union operation

creates an arc between given distinct trees. This mechanism is illustrated

Figure 2.14.

In practice, path compression and tree balancing are used to improve

the complexity of these operations [82], leading to an amortized time per

operation of O
(
α(n)

)
where n is the number of elements in the structure

and α is the extremely slow growing inverse of the Ackerman function.

(α(n) < 5 for any value that can be written in the physical universe.)

Algorithm 1 connected operation
procedure Connected(v,w)

return findRoot(v) = findRoot(w)

end procedure

In the context of the incremental connectivity problem, the connected

operation can be implemented using an Union-Find data structure by

checking if the two vertices have the same root as shown in Algorithm 1.

The insert operation is the same as the union operation.

2.4.2.3 Dynamic connectivity

In the case of the dynamic connectivity problem, arcs can either be added

or removed from the graphs, which means components can merge together

and split. The operations required by a data structure addressing this

problem are:

2.4. Data structures 27

• connected(v,w): return true if v and w are connected.

• insert(v, w): add an edge between nodes v and w in the graph.

• delete(v, w): remove the edge v, w in the graph.

An efficient data structure addressing this problem is the ST-Trees,

presented below.

ST-Trees. ST-Trees are dynamic graph data structures described by D.

Sleator and R. Tarjan [74], based on vertex-disjoint paths. Each path is

represented by an auxiliary data structure like binary search trees or splay

trees [75]. Complexities achieved by ST-Trees are shown Table 2.1.

Operation Amortized complexity

findRoot O
(

log n
)

insert O
(

log n
)

delete O
(

log n
)

Table 2.1 – Amortized complexities of ST-Trees functions for a graph of size n.

In Table 2.1 the complexities presented are not exactly those for the

dynamic graph connectivity problem. The findRoot operation returns the

root of the tree containing a node. Similarly to the findRoot operation

presented for the Union-Find data structure, it can be used to implement

the connected operation like in Algorithm 1.

2.4.3 Ordered traversal

In computer science, priority queues are containers in which elements are

retrieved according to a priority, for example the minimum first (according

to some ordering criteria, such as function values). Usually, a priority

queue guarantees a constant time lookup of the first element, at the

expense of logarithmic insertions and extractions.

Breadth-first search can use priority queues to store simplex

candidates. This way, simplices are visited in a sorted fashion, depending

on the criterion used by the priority queue. In the following of this

manuscript, we use breadth-first search traversals to visit vertices in the

order of scalar values, thanks to the efficient priority queue detailed below.

Fibonacci heap The Fibonacci heap is a priority queue described by

M. Fredman and R. Tarjan [21, 33] based on a collection of (binomial)

28 Chapter 2. Background

trees. This data structure offers low amortized time complexities as shown

Table 2.2.

Operation Amortized complexity

findMin O
(
1
)

insert O
(
1
)

delete O
(

log n
)

merge O
(
1
)

Table 2.2 – Amortized complexities of Fibonacci heap functions for a heap of size n.

These low complexities are due to the heavy use of lazy operations.

For example, the merge of two heaps into a single one is done in constant

time by simply concatenating the two lists of internal trees. Inserting an

element is equivalent to a merge with a one sized heap. It is only when

the current first element is removed that the internal trees are consolidated,

hence the logarithmic time of this step.

2.5 Parallel computing

As we have seen in the introduction, the main topic of this thesis is the

design of efficient parallel algorithms for topological data analysis. Parallel

computing consists in executing multiple operations simultaneously. In

terms of hardware, parallel computing encompasses multi-core CPUs,

many-core architectures and multi-node parallelism. These types of

hardware and existing programming paradigms used to exploit them are

presented in the following.

2.5.1 Multi-core parallelism

2.5.1.1 Hardware

Shared memory architectures became particularly developed in the years

2000 with the emergence of multi-core CPUs (Central Processing Units).

Before this the computational power relied mainly on to frequency [53]. As

shown Figure 2.15, a higher frequency also implies a higher consumption.

This growth in power was not sustainable anymore, so hardware

manufacturers have changed their strategy in favor of parallelism. Let

us see how this new model has addressed the power issue.

A comparison between two fictive electrical systems is presented

Figure 2.16. The first one has a single processor and the second one two

processors in parallel running at half the frequency to process the same

2.5. Parallel computing 29

Figure 2.15 – At the beginning of the years 2000, the power consumption used to

grow almost quadratically with respect to the scalar performance (which reflect the

compute power of the processor). This chart comes from A “Hands-on” Introduction to

OpenMP [53].

amount of input in the same time. In this scenario, the second system has a

bit more than twice the capacitance of the first one as it has two processors.

The voltage scales with the frequency so we consider the second voltage

being at most 0.6 times the first one. This leads us to a same amount of

computation per unit of time for only 40% of the power required for a

single processor system: the power issue is addressed. But this scenario

is only possible if the processing can be divided between cores: sequential

algorithms need to be parallelized in order to exploit the full power of

these architectures.

The CPU architectures. CPUs are designed to have a high serial compute

power on each core. In 2018, we can target processors with up to

32 cores. Each core can process a stream of instructions called thread.

Simultaneous Multi-Threading (SMT) is a technique aimed at improving

the efficiency of the processor, by allowing two or four threads to be

executed simultaneously on a single core. On Intel processors, SMT is

named Hyper-threading.

30 Chapter 2. Background

Figure 2.16 – Two electrical systems able to process the same amount of data. The

system with two processors only needs 40% of the power required by a single processor

for the same processing power. (Example retieved from A “Hands-on” Introduction to

OpenMP [53])

NUMA effect. Present-day shared memory workstations may have

several processors and several memory banks. In this case, the memory

access time may depend on the memory location relative to the processor.

As shown Figure 2.17, a processor may access its local memory bank faster

than the memory bank of another processor. This is referred to as a NUMA

(Non Uniform Memory Access) architecture. In such a case, data locality

needs to be taken into account by parallel algorithms to achieve the best

performance.

SIMD CPU vector (or SIMD — Single Instruction, Multiple Data) units

can be used when the same operation can be performed on contiguous

elements in a vector register. This mechanism relies on specific sets of

instruction like SSE (128-bits), AVX (256-bits) or the newer AVX-512 (512-

bits).

2.5.1.2 Programming

Thread-based programming. Multi-core parallelism can be achieved

using thread-based programming, a paradigm focused on the creation

and handling of threads within a single process. Explicit, low-

level programming is available with POSIX threads and higher level

programming can be done with specific programming interfaces, such as

2.5. Parallel computing 31

Figure 2.17 – Simple example of NUMA effects on a dual processor architecture. In this

example, CPU1 accesses memory in RAM1 in only 10 cycles, when it needs 21 cycles to

access RAM2. These numbers are taken from one of our personal workstations.

OpenMP [59], a non intrusive programming paradigm based on pragmas

(or compiler directives).

Algorithm 2 Thread-based parallelism examples
Model parallel section

Do in parallel

ParallelJobA()

ParallelJobB()

End

EndModel

Model parallel for loop

for i = 0 to n do in parallel

IndependantProcessing(i)

end for

EndModel

In Algorithm 2, examples of classical thread-based parallelism

constructs are given. In the parallel section, several computations are

started simultaneously and the end of the section is reached when the

last computation is finished. In the parallel for loop, an independent

processing is launched at each iteration of the loop. In practice, several

32 Chapter 2. Background

iterations (successive or not) can be given to each thread. We aim here

at balancing the work equally among threads to achieve the best parallel

efficiency (i.e. speedup divided by the number of cores). If the amount of

work of each iteration is known prior to execution, the loop iterations can

be equally distributed among threads using a static scheduling. Otherwise,

the distribution of work is made at runtime: the loop is divided into small

chunks and each available thread processes a chunk until none left. This is

called dynamic scheduling, an overhead at runtime is induced by the chunk

management.

When several threads are working simultaneously, concurrent data

accesses are possible. If a thread accesses data being written by another

thread, a data race occurs and leads to an undefined behavior. Mutexes

(Mutual Exclusion) and semaphores are examples of low level mechanisms

which can be used to synchronize threads and to ensure that a memory

location is only accessed by a single thread at a time. OpenMP also

provides critical sections and atomic operations via compiler directives. The

critical section relies on a global lock, to ensure that a portion of code can

be executed by at most one thread at a time. A name can be given to a

critical section so that only the sections with the same name are mutually

exclusive. Atomic operations are lighter synchronization mechanisms

processing a single operation in an uninterruptible way, impacting only

the corresponding cache line thanks to the cache coherency protocol of

multi-core processors.

Task-based programming is a paradigm for multi-core parallelism

introduced by Cilk [11] in 1994 that gained a greater interest in the last

ten years. A task is a sequence of instructions within a program that can

be processed concurrently with other tasks in the same program [84]. As

illustrated Figure 2.18, tasks are stored in a pool of tasks on which available

threads pick jobs to process using a dynamic scheduling.

As task-based programming relies on dynamic load balancing, it is

well suited for while loops. It is also an efficient approach for recursive

algorithms and nested parallelism, which is particularly useful to visit or

construct hierarchical structures like trees or graphs. Using tasks usually

offers better performance than parallel sections for nested parallelism. As

a side note, it is interesting to remark that, internally, mutexes are attached

to threads and not to tasks. If tasks are not tied to threads, using a mutex

may thus lead to a deadlock.

Dependencies between tasks may be expressed to prevent the runtime

2.5. Parallel computing 33

Figure 2.18 – Example of a pool of tasks with dynamic load balancing. On the left, new

tasks are added into the pool. On the right, two threads are picking tasks to execute. The

computation loads of these tasks are not necessarily balanced.

from executing a task before the end of another one. The most advanced

runtimes like StarPU [6, 83], or OmpSs [27] make use of a dependency

graph. These dependencies can be used to solve data races by preventing

tasks operating on a same memory location to be executed simultaneously.

Such runtimes can also use the dependency graph to distribute the work

cleverly on heterogeneous architectures. A priority mechanism giving the

runtime hints on which task to execute first is also potentially available

and can be used to improve performance. This task parallelism has been

progressively introduced in OpenMP [59], independent tasks first, then

dependencies and lately priorities.

2.5.2 Many-core parallelism

Designed for a high degree of parallelism, many-core architectures offer a

number of cores greater than CPUs, at the expense of reduced cache and

memory sizes and lower single core performance.

2.5.2.1 Hardware

We present here some of the main many-core architectures used for

scientific computing.

Graphics Processing Units (GPUs) have a significantly higher number

of cores than CPUs 1 and so are able to execute instructions to more
1Note however that a GPU core does not match a CPU core, but rather a CPU SIMD

lane.

34 Chapter 2. Background

data simultaneously. Additionally, GPUs have a simplified instruction

processing. Each GPU core relies on in-order execution, without branch

prediction. Also, GPU caches are significantly smaller than the CPU ones.

The best performance is obtained for massive, regular and fine-grained

data parallelism. Finally, data needs to be transferred from the processor

memory to the GPU along with instructions to be executed as the GPU is

a separate device: this can undermine the overall GPU performance.

Integrated GPUs. Starting from 2010–2011, Intel has introduced

integrated GPUs (iGPUs) and AMD the Accelerated Processing Unit (APU)

containing an iGPU. On these two devices, the GPU share the same die as

the CPU and so can access its memory directly. This avoids the possible

data transfer bottleneck of discrete GPUs. In the same way, they also offer

reduced energy consumption compared to the CPU + GPU approach.

However, their compute power and memory bandwidth are lower than

discrete GPU ones.

Xeon Phi. The last many-core device to be presented here has been

introduced by Intel in 2012. Xeon Phi are many-core processors designed

to compete with GPUs but using up to 72 x86-compatible cores (288

threads using SMT). The first generation was designed as a PCI device,

like discrete GPUs: data and instructions needed to be transferred on the

Xeon Phi. The last generation is available as a standalone processor. In

November 2017, the last Xeon Phi generation (Xeon Phi 7200, codenamed

Knights Landing) has been discontinued by Intel in favor of another

architecture built for exascale in the future.

2.5.2.2 Programming

For scientific computing, GPUs can be programmed using OpenCL [79],

and CUDA [58] (only for NVIDIA). Xeon Phis support C, C++, Fortran and

OpenMP [59] as well as Intel TBB [65] and MPI [32]. For graphic processing

on GPU (like shaders or rendering), OpenGL [72] and Vulkan [49] can be

used. Finally, some higher level programming tools support many-core

architectures like OpenMP [59] or OpenAcc [94].

2.5.3 Multi-node parallelism

A shared memory architecture as previously seen is a single compute

node. When higher levels of performance are required, several nodes can

2.5. Parallel computing 35

be linked together to form a cluster. A supercomputer is a large cluster of

nodes, designed for efficiency and linked together by high speed networks.

These architectures allow to reach high compute power that could not be

reached with a single machine for decades and to process data distributed

among nodes that would not fit in a single workstation.

2.5.3.1 Hardware

These architectures differ from shared memory workstations by the

distributed aspect of their memory and computational power. Transferring

data between nodes can be slow (accessing the memory of the current

node is 100x faster than accessing the one of an external node on the Titan

supercomputer for example [9]) and may represent a bottleneck, especially

for memory intensive computations having sparse memory accesses.

With such a computational power, saving large results may also

represent a major bottleneck (transferring data between nodes is 10x faster

than a disk access on the Titan supercomputer for example [9]). For this

reason, in-situ visualization [67] is aimed to bring scientific visualization

algorithms to run within the supercomputer along with the simulation to

circumvent the bottleneck associated with saving and retrieving the data.

2.5.3.2 Programming

To exploit distributed architectures, parallel programming needs to be

paired with multi-process programming in order to run simultaneously on

distinct nodes. For more than 20 years, the HPC standard for multi-process

parallel programming has been the Message Passing Interface (MPI) [32], a

portable message passing standard. Several implementations are available,

as well as bindings for other languages like Python, R or Matlab.

3State of the art

Contents

3.1 Merge Trees . 39

3.1.1 Sequential reference algorithms 39

3.1.2 Parallel algorithms . 42

3.2 Contour Trees . 46

3.2.1 Sequential reference algorithm 46

3.2.2 Parallel algorithms . 47

3.3 Reeb Graphs . 48

3.3.1 Cut-based approaches . 49

3.3.2 Dynamic connectivity . 50

Reference algorithms to compute merge trees, contour trees and Reeb

graphs in sequential are detailed here. Corresponding parallel

algorithms, when they exist, are introduced and discussed.

37

3.1. Merge Trees 39

In this chapter we present the related work regarding the three contour-

based topological abstractions: merge trees, contour trees and Reeb graphs

presented in section 2.3. We focus on the augmented version of these

abstractions.

3.1 Merge Trees

Merge trees (presented in subsection 2.3.3) are used to track sub/sur-level

set components. In this manuscript, join trees are merge trees tracking sub-

level set components and having minima and join saddles as nodes. Split

trees are merge trees tracking sur-level set components having maxima and

split saddles as nodes.

3.1.1 Sequential reference algorithms

3.1.1.1 Overview

The merge tree of piecewise linear data defined on a manifold simplicial

complex can be computed using algorithms similar to the Kruskal’s

minimum spanning tree algorithm [14, 80, 91]. Carr et al. [16] described

an algorithm which became the reference, with optimal time-complexity,

good practical performance results and able to deal with data defined in

arbitrary dimension. This algorithm relies on a vertex sweep in increasing

order of scalar value (for the join tree), while maintaining an Union-Find

data structure (see subsubsection 2.4.2.2) to track connected components

of sub-level sets. This algorithm starts by a global sort of vertices by scalar

value. For completeness, we recall here that vertices with identical scalar

value can be distinguished using a consistent artificial noise thanks to a

simulation of simplicity [30].

The main procedure to compute the merge tree is described in

Algorithm 3. Initially, each vertex is associated to its own Union-Find

component. For a join tree computation, vertices are visited in increasing

order (line 2). For each vertex vi, distinct Union-Find representatives on

its lower link are added into a cc set (line 5). If this set is empty, the

current vertex has no element in its lower link and is thus a minimum: a

new arc is created (line 8). For each representative in cc, its corresponding

arc is updated (line 11). This update operation consists in adding vi to

the list of regular vertices of this arc. Additionally, vi is used as the new

closing node of this arc. An union operation between lower Union-Find

representatives and the current vertex is also done (line 12) to propagate

40 Chapter 3. State of the art

Algorithm 3 Merge tree construction: mesh traversal
1: procedure Sweep(M)

2: for all vertex vi ∈ M by increasing scalar order do

3: cc← emptySet

4: for all v−i in Lk−(vi) do . representatives in Lk−(vi)

5: add(cc, findRoot(v−i))

6: end for

7: if |cc| < 1 then . new arc on minimum

8: newArc(vi, findRoot(vi))

9: end if

10: for all c ∈ cc do . update arcs and Union-Find

11: updateArcs(getArc(c), vi)

12: union(c, findRoot(vi))

13: end for

14: if |cc| > 1 then . new arc on join saddle

15: newArc(vi, findRoot(vi))

16: end if

17: end for

18: end procedure

the corresponding sub-level set component. If the number of distinct

Union-Find representatives in cc is greater than one, the current vertex

is a saddle (line 14): a new arc is created, starting at this join saddle.

Figure 3.1 shows a join tree computation on a toy example. (1) The

lowest vertex v1 is visited first, this is the global minimum. Its lower link

being empty, vi is a leaf of the tree and a new arc (blue) is created. (2) The

second vertex v2 is a local minimum leading to the creation of another arc

(yellow). (3) For the third vertex v3, the lower link contains one vertex. v3

has one Union-Find representative in its lower link so this is a regular node

in the join tree. v3 is added as regular vertex in the tree structure and an

union is made between v3 and the representative in its lower neighborhood.

(4) The fourth vertex to be visited, v4, has two distinct representatives in

its lower link: blue and yellow. So v4 is a join saddle. A new arc (green) is

created and arcs ending on v4 are closed. An union operation between the

Union-Find representative of the yellow and blue arcs is made. The new

representative is highlighted in green. (5) On the fifth step, the current

vertex v5 has a yellow and a green vertex in its lower link. Thanks to the

previous union, both return the same (green) representative after the merge

3.1. Merge Trees 41

Figure 3.1 – Join tree computation on a toy data set with a height scalar field. Nodes are

colored according to the Union-Find representative (or arc) they correspond to. In this

example, the blue and yellow components merge on a join saddle to form a new (green)

component.

so there is only one connected component of sub-level set in the lower link

and v5 is a regular vertex. (6) At the end, the last vertex is the global

maximum. The arc reaching this vertex is closed, the tree is complete.

3.1.1.2 Complexity

This algorithm starts by a sort of all vertices. This can be done in

O
(
σ0 log(σ0)

)
steps, where σ0 is the number of vertices of the mesh. The

Union-Find data structure is used to visit the lower link vertices of each

vertex using edges of the mesh. This step takes O
(
σ1α(σ1)

)
steps, where σ1

is the number of edges in the mesh and α is the slow growing inverse of the

Ackermann function. See Worst-case Analysis of the Set Union Algorithms, by

Tarjan and van Leeuwen [81] for a complete explanation. This leads to a

total time complexity of O
(
σ0 log(σ0) + σ1α(σ1)

)
for the complete merge

tree computation.

3.1.1.3 Non augmented merge tree

If the segmentation information (cf. subsection 2.3.3) is not required,

another sequential algorithm can be used to compute the merge tree [20].

The idea is to extract all critical points of the mesh, then to compute

monotonously decreasing paths starting at these critical points and ending

at local minima. Finally, these paths are stitched together at saddles to

form the skeleton of the tree. These steps are shown Figure 3.2. In theory,

this algorithm only visits a sub-part of the geometry and should be faster

42 Chapter 3. State of the art

Figure 3.2 – A toy example of a hand data set with an elevation scalar field (0). Critical

points and the monotonously decreasing path are shown in (1). Finally, the skeleton of

the tree is obtained by connecting these paths at saddles (remaining regular nodes are

removed).

than the previous algorithm. In practice, the saddle extraction takes almost

as much time as the reference algorithm of Carr et al. [16].

3.1.2 Parallel algorithms

Several algorithms to compute merge trees in parallel already exist and

are presented next. We focus here on shared memory architectures.

Regarding distributed memory architectures, Morozov and Weber [55, 56]

have presented two approaches to exploit merge and contour trees in a

multi-node environment, minimizing inter nodes communications. Most

of the papers presented in this section are aimed at computing the contour

tree. But all these approaches only differ on how they compute the two

internal merge trees used to obtain the contour tree (see next section). For

this reason they are presented in this section.

We divide existing algorithms in two parts: in the input sensitive section,

the degree of parallelism depends on the input mesh size, whereas in the

output sensitive section the degree of parallelism depends on the topology

of the output tree.

3.1.2.1 Input sensitive

Methods presented here are based on a static decomposition of the input

domain.

3.1. Merge Trees 43

Spatial decomposition. The first paper to compute the merge tree in

parallel has been presented by Pascucci and Cole-McLaughlin [61] and

is based on a spatial decomposition of the input data set. Using a divide

and conquer approach, the domain is split into two halves recursively until

only a single cell remains. The merge tree of piecewise linear scalar

field defined on a single cell can be deduced directly. Then, cells and

their local trees are merged back two by two until the original domain is

reconstructed. In practice, it is possible to stop the recursive split when

enough independent partitions have been created. The local merge tree

of each partition can then be computed using the sequential reference

algorithm. Figure 3.3 shows an example of this divide and conquer

approach using four partitions.

Figure 3.3 – Divide and conquer algorithm used to compute the join tree of an elevation

scalar field defined on the hand data set.

(0): four partitions remain, a lot of noise is visible on the partitions boundaries.

(1): partitions are merged two by two, noise on the merging boundaries is removed.

(2): all partitions have merged, only one remains containing the final tree.

This algorithm is particularly well suited for regular grids, where

splitting the domain evenly is trivial. It can compute the augmented merge

tree and is not restricted to barycentric linear interpolation for scalars. This

approach is specially adapted to multi-core CPU and can also be exploited

in a distributed architecture if the data set is divided spatially between

nodes. In that case, the final tree obtained after all local tree merges still

has to fit in a single node (Figure 3.3 (2)). A drawback of this algorithm

is that, as cells merge, the amount of work increases (the boundary gets

larger) but the parallelism degree decreases. At the end, the largest merge

between the two last halves of the data set is done in serial. Moreover,

44 Chapter 3. State of the art

this approach does not guarantee that the work load is balanced among

partitions, which can undermine the parallel efficiency. Finally, computing

a merge tree requires to cut the mesh recursively into two halves, which is

not trivial for unstructured meshes. This operation can be done in O
(
nl
)

time for each split where nl is the size of the local domain to split.

Scalar value decomposition. Another approach to split the input mesh

is to rely on scalar values. This approach is a contribution made in the

context of this thesis and is the topic of the chapter 5. The main idea

is to divide the input mesh using level sets of the input domain. Each

partition thus obtained can be used to compute the merge tree locally.

Finally, these merge trees are stitched together on the boundaries using

a simple procedure identifying matching arcs. We refer the reader to the

corresponding chapter for further details.

3.1.2.2 Output sensitive

Monotone paths. To compute the non-augmented merge tree, parallel

versions of the monotone path based approach [20] have been proposed.

The first one has been presented by Maadasamy et al. [52]. The initial

critical point extraction is easily parallelizable as only local computations

are involved (cf. subsection 2.2.1). As shown Figure 3.2, monotone

paths grow independently and can be computed in parallel. Finally,

these paths are connected hierarchically together in parallel using a few

synchronizations. At the end, we obtain the final non-augmented merge

tree. As some saddles may not be nodes of the merge tree, regular nodes

may appear on the data structure. To the best of our knowledge, this is the

first article presenting an algorithm that runs efficiently on GPU (thanks

to its massive parallelism) for the merge tree computation.

This algorithm has been refined for the special case of regular grids

by Acharya and Natarajan [3]. This new approach is a mix between the

parallel monotone path version previously presented and the divide and

conquer strategy [61]. On the input regular grid, several partitions are

created on which the parallel monotone path approach is used. Then these

local trees are merged back recursively to obtain the final non-augmented

merge tree. Adapting this approach to run on GPU is left as future work.

These two methods offer good performance results on regular grids.

The hybrid CPU-GPU approach offers 13x speedups using GPU compared

to the sequential reference algorithm, while the refined algorithm is about

3.1. Merge Trees 45

55x faster on 64 CPU cores compared to the reference sequential algorithm.

However, the output of this algorithm is a non-augmented tree, which is

less versatile application-wise, while the reference algorithm deals with

all the segmentation information. Moreover, on unstructured meshes only

the hybrid CPU-GPU approach can be used and requires at least four CPU

cores to be faster than the sequential algorithm.

Path compression. Another massive data parallel approach on GPU,

named Parallel Peak Pruning [17], has been presented in 2016 to compute

the augmented merge tree. As the authors wrote themselves “this

algorithm is somewhat complex”, so the following explanations are just

a summary. The core idea is to construct monotone paths from saddles to

extrema and then iteratively “prune” peaks, i.e., cuts merge tree branches

ending in an extremum. Each prune creates a new extremum-saddle

region. In practice, these monotone paths are constructed from each

vertex to an extremum. A path compression called pointer jumping [45]

is used to label each vertex with its corresponding extremum. Then,

all edges are sorted according to the extrema they lead to and saddles

in their neighborhood to deduce extrema-saddle pairs and prune the

corresponding regions. Every existing path leading to a pruned extremum

is redirected to point to the corresponding saddle. At this point, monotone

paths are compressed, edges sorted and extrema-saddle pairs pruned once

more, until no saddle remain. At the end, unassigned vertices form the last

arc of the tree, the root arc.

The sequential version of this algorithm is 40% slower on CPU than

the sequential reference algorithm, however reported results show 9.2x

speedups with 16 CPU cores over the sequential reference algorithm [16].

The GPU version on their data set is 21x faster than the reference algorithm

on one CPU core. However, the algorithm itself is complicated and

up to now, no performance results for 3-dimensional meshes have been

reported. Moreover, efficiently computing augmented trees with this

approach seems to be still an open problem.

Local propagations. Another output sensitive approach is to use local

propagations corresponding to the arcs of the merge tree. This approach

is a contribution made in the context of this thesis and is the subject of the

chapter 6. To the best of our knowledge, this is the most efficient method

to compute augmented merge trees.

46 Chapter 3. State of the art

3.2 Contour Trees

The contour tree is a topological abstraction tracking the connected

components of level sets (contours) on a simply connected manifold. See

subsection 2.3.2 for more details.

3.2.1 Sequential reference algorithm

3.2.1.1 Overview

The reference algorithm to compute the contour tree [16] is based on a

3-pass method on the data set. Two symmetric merge trees are computed,

a join and a split tree. Then these two trees are combined together to form

the final contour tree. Any method can be used to compute the two merge

trees, but critical nodes of each tree need to be transferred in the other one

before the combination. The main steps of this algorithm are the following.

1. Sort vertices by scalar value.

2. Construct the join tree by sweeping vertices in increasing order of

scalar value.

3. Construct the split tree by sweeping vertices in decreasing order of

scalar value.

4. Transfer critical nodes of each merge tree in the other one.

5. Combine the two merge trees into the final contour tree.

All these steps are either self-explanatory or previously described

except for the combination of the two merge trees, which is described in

the following section.

3.2.1.2 Merge tree combination

The combination algorithm is illustrated Figure 3.4. Initially, each merge

tree needs to be augmented with the critical nodes of the other tree (step

0). Then, all leaves of both trees are added onto a queue θ (green arrows

in step 1). While θ is not empty, its first leaf is taken out and its parent

arc is processed. The node and its parent arc are added into the contour

tree (steps 2 to 6). The node is also deleted from the two merge trees. If a

new leaf is created in one of the original merge trees (like in steps 2 and 5),

this new leaf is pushed into θ. For augmented trees, assuming a super arc

representation as introduced in subsection 2.4.1, the list of regular vertices

3.2. Contour Trees 47

of each processed arc is traversed and vertices not already in the contour

tree are assigned to the newly created arc.

Figure 3.4 – Example of a combination of a join (left) and a split (right) tree to construct

the contour tree (grey background).

(0) the join and the split tree to be combined.

(1) the join and split trees augmented with nodes of the opposite tree.

(2–6) leaves are removed one by one and added to the contour tree.

(6) the two merge trees have no remaining arcs, the contour tree is complete.

3.2.1.3 Complexity

The combination algorithm is a sweep on the two merge trees. In the

case of non augmented trees, it takes O
(
a
)

steps where a is the number

of arcs of the output tree. In the augmented case, this algorithm traverses

the list of regular vertices of each arc, therefore its complexity becomes

O
(
σ0
)
, where σ0 is the number of vertices in the input mesh. Therefore, the

contour tree processing is bounded by the two merge tree computations,

each with complexity O
(
σ0 log(σ0) + σ1α(σ1)

)
, σ1 being the number of

edges in the input mesh.

3.2.2 Parallel algorithms

Parallel algorithms to compute the contour tree are based on the 3-pass

method [16] previously described. All merge tree algorithms presented

in section 3.1 can be used to compute the join and split trees in parallel.

Additionally, as these two trees are independent, they can be computed

simultaneously to add more parallelism. Most of these approaches were

documented as using the sequential reference combination [3, 52, 61].

In the following, approaches that differ from the sequential reference

algorithm are discussed.

48 Chapter 3. State of the art

The first article mentioning a parallel combination is the Hybrid Parallel

Algorithm for Computing and Tracking Level Set Topology [52], in which the

idea is to process leaves simultaneously. However, the parallel algorithm

is not detailed and performance results are only presented using the

reference sequential version.

Using a similar idea, the article Parallel Peak Pruning [17] presents

a parallel combination on which upper leaves of the split tree and

lower leaves of the join tree are processed in parallel alternatively. In

this approach, nodes are not deleted in the merge tree during the arc

processing but in an intermediate procedure after current leaves have been

processed. This way, no data race occurs during the arc processing. Finally,

consecutive regular vertices are collapsed in a single (super) arc.

Another parallel combination has been studied in the context of this

thesis and is described subsection 7.2.4. Once again, leaves are processed

in parallel step by step, but a final parallel procedure is described for the

last monotone path.

Finally, even if the original combination algorithm is used it is worth

to mention Contour Forest, detailed chapter 5. In this algorithm the

combination is automatically computed in parallel as each independent

partition can compute the full contour tree.

3.3 Reeb Graphs

Figure 3.5 – A toy example with a topological handle (the domain is not simply

connected). (0) The heigh scalar field defined on the mesh ranging from blue (low scalar

values) to red (high scalar values). (1) During the join tree computation, both sides of the

handle corresponds to a same sub-level set components. The final join tree (2) does not

contains information about the handle. The split tree is symmetric to the join tree on this

simple example, the final contour tree (3) does not contain a loop.

To compute the Reeb Graph, Union-Find based methods previously

3.3. Reeb Graphs 49

described for the merge and contour tree computations cannot be used

anymore. If the mesh is not simply connected, a level set component

can split and merge back around a topological handle (see Figure 3.5),

leading to a loop in the output graph. Such an event has no impact

on the connectivity evolution of the sub/sur-level set: the contour tree

algorithm [16] would thus miss the loops in the output data structure. In

the following, we introduce existing algorithms to compute Reeb graphs.

3.3.1 Cut-based approaches

The first approach date back to 1991 [47] and is based on a systematic

cut of the mesh on all vertices (leading to a quadratic complexity). In

the early 2000, several methods based on quantized range contouring

were presented [10, 44, 96]. These approaches are approximated, their

complexity goes from linear to quadratic as we increase the precision of

the approximation.

Figure 3.6 – On a torus with a simple elevation, there are four critical points shown on

(0). Using a cut-based approach [24], the mesh is cut at each saddle point as shown

on (1). Each connected component consequently obtained (critical point excluded) is

homeomorphic to a cylinder. These components are visited by monotone paths in (2)

and glued together to obtain the output graph in (3).

Focusing on exact methods cutting the mesh only on specific points,

the first approach [64] has been introduced in 2008. It proceeds to a

cut for each level set corresponding to a saddle point (we have seen in

subsection 2.2.1 that the topology of level sets only changes at the vicinity

of critical points). Arcs of the Reeb graph are then obtained by using an

adjacency graph constructed from the regions of the domain delimited by

the previously created cuts. A second approach presented in 2009 and

named Loop surgery [86] proposes to cut the mesh to guarantee that

the corresponding Reeb graph becomes loop-free and hence efficiently

computable. Afterward, a contour tree algorithm is used and the Reeb

graph is deduced by stitching facing arcs around each cuts. A third

50 Chapter 3. State of the art

approach has been documented in 2012 [24], which is also based on a

cut of the mesh on all saddle vertices. Areas thus obtained are visited

using monotone paths propagation, as shown Figure 3.6 and the Reeb

graph is deduced. In 2013 was introduced an algorithm [26] on which

the cut is only made on a subset of the saddles. A contour tree algorithm

is used on the resulting domain similarly to the Loop surgery approach.

Finally, a parallel algorithm [43] has been introduced in 2018, based on the

monotone paths based approach [24]. In this algorithm, results have only

been documented in 2D. To the best of our knowledge, this is the first and

only existing parallel algorithm to compute Reeb graphs.

Because of the cut step, these algorithms have theoretically a quadratic

worst case complexity. However, these are generally efficient approaches

in practice as the quadraticity does not express in most real case data sets.

3.3.2 Dynamic connectivity

In 2007 was introduced an on-line algorithm [63] for Reeb graphs

computations. This approach is able to operate in a streaming way,

processing simplices of the 2-skeleton of the input mesh in arbitrary order.

A separate graph is used to reflect the neighborhood of the input simplices

so when a new simplex is encountered the Reeb graph is updated locally to

take this new simplex into account. When all simplices have been visited,

the Reeb graph is complete. The final complexity of this algorithm is

O(|v0| × |v1|), where |v0| is the number of vertices and |v1| the number

of edges of the input mesh. Even if this algorithm is sequential, its

ability to process vertices in arbitrary order can be of great interest in

an in-situ context, where the Reeb graph algorithm is executed alongside

the simulation and processes parts of the mesh as they become available.

The authors also present an “out-of-core” mode, exploiting the streaming

nature of the algorithm to process the input data set by small pieces,

without holding it entirely in memory. Additionally, the output graph

is written to disk as simplices are visited, allowing to compute the Reeb

graph on data sets too large to fit in memory.

3.3.2.1 Sweep approaches

The first algorithm [25] to compute the Reeb graph using an ordered

sweep of the data (similarly to merge tree algorithms) has been introduced

in 2003. Using a sweep on the data set while explicitly maintaining

the level set components, this approach is only available in 2D. In 2009

3.3. Reeb Graphs 51

was introduced another method, using a similar sweep for the mesh

traversal as well as a dynamic graph data structure to maintain the level

set components. This approach also works with 3D data sets and is shown

in Figure 3.7. This algorithm has been improved in 2013 [60] by the use of

an ST-Trees data structure for the dynamic graph and the introduction of

a laziness mechanism for the dynamic graph updates. This results in the

algorithm with the best time complexity for the Reeb graph computation.

It has a worst-case complexity of O(m log m), where m is the size of the

2-skeleton, this is certainly optimal if the number of edges and triangles

of the complex is in the same order as the number of vertices. It obtains

good performance results in practice, however it relies on a global view of

the data which makes this approach intrinsically sequential. We address

this problem using independent local propagations with the parallel Reeb

graph approach presented in chapter 8. In the following, we detail this

sequential reference algorithm [60].

Figure 3.7 – On a torus with a simple elevation, four level sets are shown. These level sets

are computed on the 2-skeleton of the mesh. During the sweep algorithm, the history of

the connected component is maintained, illustrated here by the dotted lines. This method

outputs the augmented Reeb graph.

3.3.2.2 Reference sweep algorithm

This algorithm starts by a global sort of the vertices by scalar values. The

main procedure of this sweep algorithm is shown Algorithm 4. For each

vertex, the preimage graph Gr is queried to deduce the number of contours

in its lower star. This is done using the LowerComponent procedure detailed

Algorithm 5. Then, the preimage graph is updated at the current scalar

value to make the level set grow. This step is detailed in the next paragraph

using Algorithm 6. The UpperComponent procedure used to deduce the

number of contours in the upper star of the vertex is similar to the

LowerComponent procedure. Finally, these numbers of contours are used

to deduce the criticality of the current vertex in the Reeb graph R(f),

52 Chapter 3. State of the art

Algorithm 4 Reeb graph construction: mesh traversal
procedure Sweep(M)

for all vertices vi ∈ M increasing scalar order do

Lc = LowerComponent(vi)

UpdatePreimage(vi)

Uc = UpperComponent(vi)

if |Lc| 6= 1 or |Uc| 6= 1 then

UpdateReebGraph(vi)

end if

end for

end procedure

each contour corresponding to an arc of R(f). If the number of connected

components of level sets in the vicinity of a vertex v goes from 0 to 1, v

is a local minimum and a new arc is created in R(f), starting at v (see

Figure 3.7 (0)). Symmetrically, if this number goes from 1 to 0, v is a local

maximum and the corresponding arc in R(f) is closed. Otherwise, if the

number of connected components in the vicinity of v is greater than one

below or above v, v is a saddle vertex. Corresponding arcs of R(f) are

updated like shown in Figures 3.7 (1) and (3).

Algorithm 5 Gather dynamic graph components below vi

procedure LowerComponent(vi: current vertex)

Lc ← empty list

for all edges e ending at vi do

c← find(e) . dynamic graph representative

if c is not marked then

add c to Lc

mark c

end if

end for

end procedure

In Algorithm 5 the LowerComponent procedure is shown, the

UpperComponent is symmetric. In the following, we consider that an edge

starts at its vertex of lower scalar value and ends at the one with higher

value. In this procedure, distinct representatives in the edges of the lower

star of vi (i.e. edges ending on vi) are gathered and added into Lc. The size

3.3. Reeb Graphs 53

of Lc, noted |Lc|, is the number of connected components of level sets in

the lower star of vi.

Algorithm 6 Impact the dynamic graph to make it growths above f (vi)

1: for all triangles t = v1, v2, v3 containing vi do

2: assuming f (v1) < f (v2) < f (v3)

3: if vi = v1 then . new arc

4: insert((v1, v2),(v1, v3))

5: end if

6: if vi = v2 then . update existing

7: delete((v1, v2),(v1, v3))

8: insert((v1, v3),(v2, v3))

9: end if

10: if vi = v2 then . remove arc

11: delete((v1, v3),(v2, v3))

12: end if

13: end for

Dynamic graph update. The procedure used to make the preimage

graph grow with the current level set is the procedure UpdatePreimage

described in Algorithm 6. As this procedure is the key of the sweep

algorithm, an example is shown Figure 3.8. In this example, a single

triangle is processed, and each case of the UpdatePreimage is emphasized.

To update the preimage graph Gr on a vertex vi, all triangles containing

vi are visited. On each triangle, vi can be the lowest, the middle or the

highest vertex (corresponding to the lowest, medium and highest scalar

values). If vi is the lowest one (Algorithm 6 line 3), the growing level set

is entering the triangle. An arc is added into Gr between the two lowest

edges as shown Figure 3.8 (1). If vi is the middle vertex of the triangle

(Algorithm 6 line 6), an existing arc in Gr has to be updated as shown

Figure 3.8 (2). Finally, if vi is the highest vertex (Algorithm 6 line 10) the

level set is growing outside the triangle and the arc of Gr is removed as

shown Figure 3.8 (3).

This sweep algorithm is unrolled step by step on an example with a

join saddle Figure 3.9. In this example, the first two vertices to be visited

are local minima on (0) and (1). At this point, we can see the two distinct

connected components of the dynamic graph in the lower star of the join

saddle. This join is detected on step (2), and these two components merge

54 Chapter 3. State of the art

Figure 3.8 – On a single triangle with an elevation scalar field (0), the initial dynamic

graph Gr has no arc, only nodes on the edges (red squares). When the lower vertex is

first processed (1), Gr is updated to correspond to the growing level set: the green arc is

added between the two lower edges. The middle vertex is processed in (2), the existing arc

being replaced as shown to make the level set grow above the middle vertex. Finally at the

vertex with the highest scalar value (3) the level set leaves this triangle and the arc of Gr

is deleted.

Figure 3.9 – Two triangles with an elevation scalar field, and one join saddle at the center.

The sweep algorithm executed on this data set starts by identifying two local minima in

(0) and (1). On step (2), the current vertex is a join saddle. The last vertex visited on (3)

is the global maximum and the output Reeb graph is shown on (4).

in a single one during the UpdatePreimage call. Finally, the maximum value

is reached on step (3) and the last component disappears.

To reduce the number of operations on the preimage graph Gr a lazy

evaluation mechanism is used. It consists in storing the additions of

arcs to process on the preimage graph while only regular vertices are

visited. When reaching a critical point, the graph Gr is updated using

this list of operations. In practice, a significant number of operations are

removed from the insertion list during the visit of regular vertices, without

impacting Gr. However, this mechanism requires a critical point extraction

in a preprocessing stage to determine vertices on which the preimage

graph has to be updated.

The complexity of this algorithm given in the original paper [60] is

O
(
m log m

)
where m is the size of the 2-skeleton of the mesh. The quadratic

term of previously introduced Reeb graph algorithms is not present.

4Positioning

For scalar field visualization, level set based topological abstractions

are fundamental structures that enable the development of advanced data

analysis, exploration and visualization techniques. Reeb graphs, contour

trees and merge trees, which are the three level set based abstractions

at the center of this manuscript, can be used for example in the context

of: small seed sets extraction for fast isosurface traversal [18, 91], feature

tracking [50, 76], data-summarization [62], transfer functions design

for volume rendering [90, 93], similarity estimation [44] and automatic

rigging [7, 66]. Their abilities to capture areas of interest in a robust

and multi-scale way has been used in a variety of applications such

as combustion [15], astrophysics [68], material science [31, 51], fluid

dynamics [19, 42, 69, 77], medical imaging [12, 18], etc. These areas

are defined using the mapping between vertices of the mesh and arcs

of the graph/tree, only available when the graph/tree is augmented

(cf. subsection 2.3.3). Therefore, to enable the full extent of level set

based applications, we focus on algorithms computing these augmented

abstractions in this manuscript.

The main objective of this work is to speed up the computation of level

set based topological abstractions in order to improve the interactivity

of data exploration. Indeed, the benefits of ten-fold speedups in terms

of interactivity are presented in: “Power of 10: Time scales in user

experience” [57]. Results presented in this study detail the impact of

the computer response time on the user experience: for example a 0.1

second response time creates the illusion of a direct manipulation, a 1

second response time feels like the computer is causing the result but

enables the user to stay focused on their current train of thought and a

10 second response time is more than what the short term memory can

usually handle to maintain user focus.

In the context of data analysis, post-processing algorithms are usually

run on a workstation composed of multi-core CPUs with shared memory

55

56 Chapter 4. Positioning

and possibly with GPU. We will thus target such workstations and

not consider here distributed memory architectures. Current massively

parallel approaches [3, 24, 43, 52] are suitable for GPUs and rely on fine

grain parallelism (for example using one thread per input vertex). They

are not able to compute augmented abstractions, as they are based on

monotone paths starting at critical points and only visit a sub-part of the

input mesh. The full mapping between all vertices of the input mesh and

arcs of the tree is thus not computed. The only massively parallel approach

theoretically able to compute augmented contour trees is the recent

Parallel Peak Pruning algorithm [17], introduced in 2016. However, there

is currently no implementation of this approach providing augmented

trees and results have only been documented for a 2D implementation.

Additionally, massively parallel approaches induce more total work than

optimal sequential algorithms. For example, the parallel monotone path

approach detailed in [52] is three times slower in sequential than the

reference implementation for augmented trees (libtourtre [23], see Tab.1

in [52]). This only yields eventually speedups between 1.6 and 2.8 with

regard to libtourtre on a 8 core CPU (20% and 35% parallel efficiency

respectively). We suspect that these moderate speedups over libtourtre

are due to the lack of efficiency of the sequential monotone path based

algorithm [20] in comparison to the sweep approach [16]. Indeed, from

our experience, although the extraction of critical points of the field is a

local operation, we found in practice that its overall computation time is

often larger than that of the contour tree itself. For these reasons, we have

chosen not to rely on massively parallel algorithms, but rather to revisit the

efficient sweep algorithm [16]. The sweep being a sorted traversal of the

vertices of the mesh by scalar value, this approach relies on a global view

of the data and is thus intrinsically sequential. A parallel version of this

approach is likely to have a few number of independent sets of instructions

and to rely on coarse-grain parallelism (each thread heaving a substantial

amount of work). This type of parallelism is hence better suited for multi-

core CPUs. Additionally, our algorithms involve a significant number of

sparse memory accesses which make them not suitable for vectorization.

For parallel work, we propose a distinction between approaches whose

parallelism degree depends on the input mesh size, hereafter named input

sensitive, and those whose parallelism degree depends on the output graph

topology, hereafter named output sensitive.

Our first algorithm, Contour Forests [38] (cf. chapter 5) is an input

sensitive approach based on a static decomposition of the input mesh

57

by scalar values to compute augmented contour trees. Contrary to

spatial based decompositions [3, 61] which involved additional work

for unstructured meshes, this method is suited to both regular grids

and unstructured meshes. It uses thread-based parallelism (with

OpenMP [59]). The scalar decomposition is used to create partitions,

each one being the area between two level sets. Contour trees of each

partition can be fully computed in parallel and the global contour tree

is obtained by stitching matching arcs on each contour at the interfaces

between partitions. This approach is the first one using a fully parallel

combination.

In order to improve the load balancing and to avoid redundant work,

we present an output sensitive, parallel algorithm to compute augmented

merge trees named Fibonacci Task-based Merge trees (FTM) [36] (cf.

chapter 6). This approach is based on local propagations corresponding

to arcs of the merge tree. These propagations visit the mesh locally in

scalar order, using sorted breadth-first searches based on Fibonacci heaps

priority queues (cf. subsection 2.4.1). These independent propagations can

be expressed as parallel tasks: we use OpenMP [59], a widely available

task runtime providing all the features we require (priorities, task groups,

critical sections, atomic operations,. . .). Notice that we do not use any

dependency graph, as we cannot predict our task terminations: hence we

cannot exploit advanced task runtimes like StarPU [6, 83] or OmpSs [27].

For augmented contour trees, we present the Fibonacci Task-based

Contour trees algorithm (FTC) [37] (cf. chapter 7). This output sensitive

approach revisits the traditional 3-pass method described in [16] and

benefits from the task-based nature of FTM for the concurrent computation

of the two merge trees. It combines them using a newly introduced parallel

algorithm.

Finally, the Fibonacci Task-based Reeb graphs algorithm (FTR)

presented chapter 8 is another output sensitive, task-based approach,

relying on local propagations to compute augmented Reeb graphs. Our

experience with Contour Forests showed us that cut based approaches [24,

64] tend to involve redundant work and memory overhead depending on

the number of cuts when parallelized. For these reasons, we choose to

revisit a sweep based approach [60] similar to the one used for the merge

tree computation. This approach has the best time complexity among

Reeb graph algorithms but is intrinsically sequential. We address this

problem by using local propagations relying on Fibonacci heaps, similar

to the ones introduced for the merge tree computation in FTM. During

58 Chapter 4. Positioning

these propagations, a dynamic graph data structure (implemented as an

ST-Tree) is used to track the connected components of level sets.

For all our algorithms, we have chosen to represent input meshes with

simplicial complexes. This choice is made for practical genericity as any

mesh (regular or unstructured) can easily be converted into a simplicial

complex. Moreover, we restrict our study to manifold domains, as most

commonly found in scientific visualization. Additionally, our output data

structure is based on a super arc representation, each arc having a sorted

array of regular vertices (as opposed to an explicit structure keeping all

the small arcs between regular vertices). Our representation is efficient in

memory, allows fast traversal of the structure and is a prerequisite of the

new parallel combination presented in chapter 7.

Regarding technical aspects, for our implementations we rely on C++,

which is relevant for high performance software. This choice is also

motivated by Paraview [8] and VTK [70], two well-known open-source

software packages for scientific visualization. Paraview is a GUI around

VTK, both of them are implemented in C++ and can be extended through

C++ plugins. All our developments are integrated in TTK [88], an open

source platform aimed to help with topological data analysis. It has an

integration with Paraview and VTK (using the plugin mechanism). Using

TTK allowed us to implement our approaches focusing on the core of the

algorithm, the Paraview/VTK wrapping being ensured at minimal cost by

the platform. As said earlier in this section, our algorithms are likely to use

coarse grain parallelism. For this reason we have chosen not to use VTK-

m [54], an emerging toolkit targeting many-core architectures and relying

on fine grain data parallelism

Tasks-based approaches presented in chapter 6, chapter 7 and chapter 8

rely on priority queues for the task growths. We have chosen to use

Fibonacci heaps [21, 33] (see subsection 2.4.3) instead of Pairing Heaps [34]

as these lead to better performance in practice in our implementations.

Part II

Contributions

59

5Input sensitive Contour

Trees using Contour Forests

Contents

5.1 Overview . 63

5.2 Scalar

value based decomposition for parallel contour tree

computations . 64

5.2.1 Domain partitioning . 64

5.2.2 Local computations . 66

5.2.3 Contour forest stitching . 67

5.3 Experimental results . 68

5.3.1 Detailed performance results 70

5.3.2 Limitations . 71

5.4 Conclusion . 73

An input sensitive approach with a scalar value based partitioning

strategy is presented for the parallel computation of the augmented

contour trees. This work has been published in IEEE LDAV 2016 [38].

61

5.1. Overview 63

(a) (b)

Figure 5.1 – Algorithm overview on the height function f of a volume M with two

threads. (a) Input scalar field f (color gradient) with its critical points (blue: min,

white: saddle, green: max). The domain is split into two partitions Pi and Pj of

roughly equal size corresponding to the pre-images of contiguous intervals Ii and Ij

of f (M). The interface level-set between such two partitions is shown in red. (b) The

augmented contour trees C(f)i (top) and C(f)j (bottom) are constructed in parallel for

each partition. These local trees can be easily and efficiently stitched together to form the

output augmented contour tree (right).

In 2016, the only parallel approach [61] to compute the augmented

contour tree relied on a spatial decomposition. In this chapter, we present

Contour Forests, a new approach which decomposes the input data set

based on the scalar value of the mesh vertices. The parallelism degree thus

mostly depends on the input mesh, leading to an input sensitive approach.

In this chapter, we present the following new contributions:

1. a fast, shared memory multi-threaded algorithm for the computation

of augmented contour trees on tetrahedral meshes;

2. the first method with a fully parallel combination algorithm.

5.1 Overview

Our approach is based on a range-driven partitioning strategy, as

illustrated in Figure 5.1. First, given nt threads, the image of the domain

f (M) is divided into nt/2 contiguous, non-overlapping intervals Ii that

contain (nearly) the same amount of vertices ofM (subsection 5.2.1):

f (M) = I0 ∪ I1 ∪ · · · ∪ I(nt/2)−1 (5.1)

|σ0|i ≈ |σ0|j ∀i 6= j

where |σ0|i refers to the number of vertices ofM mapping to Ii. Next, two

threads are assigned to each partition Pi, Pi being the pre-image of the

64 Chapter 5. Input sensitive Contour Trees using Contour Forests

corresponding interval, Pi = f−1(Ii) (subsection 5.2.1). The two threads

then compute the augmented contour tree of the restriction of the function

to its partition (subsection 5.2.2), with a variant of the algorithm by Carr

et al. [16]: one thread builds the join tree, and the other the split tree1. This

yields a forest of contour trees: {C(f)0, C(f)1, . . . C(f)nt−1}. Finally, the

output contour tree is retrieved by connecting the trees of the forest along

common connected components of partition boundaries (subsection 5.2.3).

Despite its simplicity, our range-driven approach exhibits many

advantages. In particular, our strategy enables the computation of

augmented contour trees, since it extends Carr et al.’s algorithm. Second,

since the input mesh is split into partitions of roughly equal size (in

terms of vertices), the work load should be well balanced between the

threads. Third, since it is range-driven, our approach allows for a full

computation of the local contour tree within each partition (join and

split tree computations, plus their combination in the contour tree) while

previous approaches systematically delayed the combination to a post-

process pass (implemented in serial). Finally, since it is range-based, our

approach allows for a simple stitching of the local trees of the forest into

the output contour tree, while previous approaches needed to run a special

procedure on the common boundary of merged partitions: [52, 61].

5.2 Scalar value based decomposition for parallel

contour tree computations

This section details the algorithms for each step of our approach. As a

reminder, the term edge in this manuscript refers to a 1-simplex of the

input mesh, while the term arc refers to a 1-simplex of the output tree (or

graph).

5.2.1 Domain partitioning

The first step of our approach consists in sorting the vertices of M by

increasing function value, which can be efficiently done in parallel [35, 73,

89]. This step can be done in O(|σ0| × log(|σ0|)) where |σ0| is the number of

vertices inM. Next, the sorted list of vertices is split into nt/2 contiguous

sets Pi of roughly equal size, whose images correspond to the intervals Ii

1Note that nt threads could have been used (one thread per partition), by building these

trees sequentially. However, our experiments showed that it was less efficient than using

two threads per partition.

5.2. Scalar value based decomposition for parallel contour tree computations 65

(a) (b) (c)

Figure 5.2 – Domain partitioning for a 2D toy example (height function). (a) Partition

Pi (green) with its overlap simplices (red) and its augmented contour tree C(f)i. (b)

Partition Pj (blue) with its overlap simplices (red) and its augmented contour tree C(f)j.

The common region between the two partitions is made of all the triangles containing red

edges and being crossed by the interface level-set (black dashes). (c) The output, stitched,

augmented contour tree C(f).

described in Equation 5.1. Next, each vertex set Pi is extended into a set

P ′i with the following procedure. Let fi− and fi+ be the two extremities

of the interval Ii: Ii = (fi− , fi+). The level-sets for the isovalues fi− and

fi+ are called interface level-sets. Let (σ1)i− and (σ1)i+ be the set of edges

of M whose image contains fi− and fi+ respectively. The vertex set Pi is

extended into P ′i by adding the vertices of (σ1)i− and (σ1)i+ (red circles,

Figure 5.2). We call such vertices boundary vertices. Note that with this

approach, two adjacent partitions P ′i and P ′j will overlap, precisely along

the simplices crossed by fi− or fi+ (triangles with red edges, Figure 5.2).

This strategy guarantees that each connected component of an interface

level-set is captured by the overlaps in between the partitions (triangles

with red edges, Figure 5.2). Therefore, all possible contours living in

the interval Ii are completely captured by P ′i . This guarantees that the

restriction of the local contour tree C(f)i (computed on P ′i) to the interval

Ii (in green in Figure 5.2(a) and blue in Figure 5.2(b)) is equal to the

restriction of the output contour tree C(f) to Ii. This property will be

of paramount importance to guarantee an efficient stitching of the contour

forest into the output contour tree (subsection 5.2.3).

In practice, this expansion procedure is performed efficiently by

visiting in parallel all the edges (σ1) of M and tracking the vertices of

the edges crossing fi− and fi+ for a given interval Ii, in O(|σ1|) steps.

In particular, each of the nt threads maintains its own list of boundary

vertices, which are merged globally (and sequentially in practice since this

merge implies minor computation times).

66 Chapter 5. Input sensitive Contour Trees using Contour Forests

Other methods. The partitioning method presented previously is the

most efficient one we have tested. Our first idea was to assign an Union-

Find representative corresponding to a virtual extrema on each contour

of the interface level sets. This required to process a BFS to extract these

contours on each interface level set, which in practice took almost as much

time as the full contour tree computation. Another idea was to stop the

computation at the boundary level set (without overlap) and to deal with

the noise after the local tree computation, during the stitching step. But

the procedure to remove the noise, similar to the zipping procedure used

in [63] would replace a linear step by a quadratic one.

5.2.2 Local computations

The contour tree C(f)i of each of the nt/2 partitions P ′i is computed by two

distinct threads. Note that in practice, the partitions P ′i are not copied,

but represented implicitly. In particular, the list of vertices of the initial

partition Pi is represented by an interval in the global sorted list of vertices.

The boundary vertices added in the expansion procedure described in

subsection 5.2.1 (red circles, Figure 5.2) are represented by two sorted lists

of vertices Bi− and Bi+ , representing the boundary vertices below fi− and

above fi+ respectively.

Given a partition P ′i , its augmented contour tree is computed with a

variant of the Carr et al.’s algorithm[16], described subsection 3.2.1. This

algorithm has time complexity of O
(
σ0 log(σ0) + σ1α(σ1)

)
, where σ0 is the

number of vertices inM and σ1 the number of edges.

Our approach to the local computation of the augmented contour

tree C(f)i for each partition P ′i only requires a slight modification to

this algorithm. In particular, when constructing the join tree T −(f)i,

our algorithm first visits the boundary vertices Bi− (if any) in increasing

order. Next, it visits the vertices of Pi by traversing the global sorted

vertex list within the interval prescribed by the domain partitioning step

(subsection 5.2.1). Finally, it completes the traversal by considering the

vertices of Bi+ (if any) in increasing order. For each of these three

traversals, the join tree construction algorithm [16] is applied as-is by

the corresponding thread. The split tree T +(f)i is constructed with

a symmetrical pass by the other thread: Bi+ , then Pi and finally Bi− .

Once the join and split trees are constructed, they are combined into the

augmented contour tree C(f)i with the original algorithm ([16]) by one

of the two threads. This combination does not require parallelization

5.2. Scalar value based decomposition for parallel contour tree computations 67

within each partition since its computation time is not significant, and

since parallelization already applies among partitions.

5.2.3 Contour forest stitching

Once the nt threads have finished the computation of each local augmented

contour tree C(f)i, the resulting forest is stitched into the final augmented

contour tree C(f) with the following procedure.

During the local computation of the contour tree C(f)i (see

subsection 5.2.2), each 1-simplex (each arc) that crosses an interface level

set is added to a list of crossing arcs, noted Xi. This corresponds in

Figure 5.2 to the arcs (a, j) in Figure 5.2(a) and (h, n) in Figure 5.2(b)

Then, the stitching procedure consists in visiting sequentially the list

of crossing arcs Xi for each local contour tree C(f)i. Given such an arc ai,

its regular vertex v exactly above fi+ (or below fi−) is identified through

a dichotomic search (vertex j in Figure 5.2(a)). Since augmented contour

trees store the destination of each vertex into the tree, it is possible to

retrieve in constant time the homologous arc aj from the adjacent tree C(f)j

which contains v. This corresponds to the arc (h, n) in Figure 5.2(b).

Finally, ai is updated to form the union of the arcs ai and aj. This operation

includes the modification of the higher extremity of ai (to use aj’s instead)

as well as the concatenation of the two sorted lists of regular vertices (see

Figure 5.2(c)). Note that the vertex v can belong to multiple partitions. In

such a case, ai will be updated iteratively to form the union of multiple

arcs (ai, aj, ak, etc.), by successively applying this pairwise stitching in

increasing order of function value (i.e. ai and aj will first be stitched,

then the result of this stitching will be stitched with ak and so on). As

discussed in section 5.3, this final stitching procedure is extremely fast in

practice (hence performed sequentially), since only a small portions of the

arcs are visited (only the crossing arcs) and since the merging operation

is simple (it simply consists in stitching pairs of arcs across interface

level-sets). Note that the simplicity of this stitching procedure is due to

our domain partitioning strategy, which guarantees that the restriction

of a local tree C(f)i to the interval Ii is equal to the restriction of C(f)

to Ii (subsection 5.2.1). Note that the zipping procedure employed in

the streaming Reeb graph computation algorithm by Pascucci et al. [63]

could also be employed for the stitching of the local trees. However, this

procedure admits a quadratic time complexity in the number of nodes

68 Chapter 5. Input sensitive Contour Trees using Contour Forests

Data-set |M| |C(f)|A Sequential Sort Overlap Local trees Stitching Overall Speedup

Elevation 82,906,875 1 29.18 0.91 0.18 4.18 0.14 5.42 5.38

EthaneDiol 82,906,875 29 33.09 0.67 0.33 6.64 0.14 7.81 4.37

Combustion 82,906,875 3649 28.04 0.61 0.34 6.19 0.15 7.31 3.83

Boat 82,906,875 3235 29.94 0.69 0.41 6.17 0.14 7.44 4.02

Jet 82,906,875 4171 26.82 0.65 0.36 6.03 0.15 7.21 3.72

Enzo 82,906,875 282800 39.63 0.74 1.50 9.48 0.66 12.40 3.20

Foot 82,906,875 844463 18.09 0.49 0.99 7.12 1.10 9.72 1.86

Plasma 1,310,720 2851 0.18 0.01 0.01 0.06 0.01 0.09 2

Bucky 1,250,235 4377 0.11 0.01 0.01 0.05 0.01 0.08 1.38

SF Earthquake 2,067,739 11887 0.19 0.01 0.02 0.09 0.02 0.13 1.46

Table 5.1 – Running time of the different steps of the algorithm (in seconds). |M|
denotes the number of vertices in the data-set, and |C(f)|A the number of arcs in the

output contour tree. Overall corresponds to the complete application, including memory

allocations, etc.

of C(f), which is prohibitive in our approach, where only sub-quadratic

routines have been used.

Segmentation

In terms of implementation, we rely on the notion of super arc introduced

subsection 2.4.1. This tree representation has the same information than

the explicit one storing all arcs between each regular vertices but allows

for a faster computation of the merge tree by marking vertices first during

the computation and retrieving the lists or regular vertices of each super

arc in parallel in a separate pass. It is also efficient for the combination

algorithm as it can deal with the list of regular vertices of an arc directly.

5.3 Experimental results

In this section, we present practical results obtained with a VTK-based

C++ implementation of our algorithm (publicly available in TTK [88]).

Experiments were performed on a desktop computer with an Intel Xeon

CPU E5–2630 v3 (2.4 GHz, 8 cores) with 64GB of RAM. All parallel

tests are run with nt = 8 threads for np = 4 partitions. Other results

in this thesis are presented using two CPUs, the choice of using only

one for this algorithm is due to both its sensitivity to NUMA effects

(see subsection 2.5.1) and mainly to the redundant work induced by the

split step (further investigated in subsection 5.3.2) which prevented our

algorithm to achieve good speedups on 16 cores.

5.3. Experimental results 69

Data-set sTourtre pTourtre Speedup wrt. Ours Speedup wrt.

sTourtre sTourtre pTourtre

Elevation 20.63 10.07 2.04 5.42 3.81 2.64

EthaneDiol 23.47 13.96 1.68 7.81 3.00 1.79

Combustion 21.26 12.39 1.72 7.31 2.91 1.70

Boat 23.26 12.52 1.85 7.44 3.13 1.68

Jet 20.60 11.50 1.79 7.21 2.86 1.60

Enzo 32.51 18.07 1.80 12.40 2.62 1.46

Foot 13.52 8.40 1.60 9.72 1.39 0.86

Plasma 0.08 0.08 1.00 0.09 0.89 0.89

Bucky 0.07 0.06 1.16 0.08 0.88 0.75

SF Earthquake 0.12 0.10 1.20 0.13 0.92 0.77

Table 5.2 – Overall running time comparison (in seconds) between the sequential

libTourtre implementation (sTourtre), a naive parallel implementation of libTourtre

(pTourtre) and our approach.

Figure 5.3 – Speedups obtained by our contour forests implementation as a function of

the number of threads (one curve per data set).

70 Chapter 5. Input sensitive Contour Trees using Contour Forests

5.3.1 Detailed performance results

Table 5.1 first presents detailed performance results for various data-sets.

Plasma, Bucky and SF Earthquake are standard data-sets available at

the [4] repository: these are however too small to fully exploit our 8-core

CPU. In fact, with our experimental setting, even the sort step is slower

in parallel than in sequential for these data-sets (results not shown). This

explains the low parallel speedups for such tests.

We thus focus in the following on larger tetrahedral meshes (upper

part of Table 5.1) which have been obtained by triangulating regular grids.

For the sake of comparison, these have systematically been upsampled to

2563 vertices. One can first see that the additional Overlap step required

to build the Bi− and Bi+ lists (see subsection 5.2.2) leads to low overheads.

Moreover, the stitching step is efficiently performed in sequential which

results in small run-times. As far as parallel speedups are concerned,

the Elevation data-set is a synthetic and very simple one that shows

good speedups, with a parallel efficiency of 5.38/8 = 67%. Moving to

more complex data-sets (i.e. resulting in larger contour trees), one can

see that we obtain good or average speedups (parallel efficiencies ranging

between 55% and 40%), except for the Foot data-set which shows a limited

speedup. We will detail these limitations and their causes in the next

sub-section. The scalability of our approach is evaluated with Figure 5.3,

which presents the evolution of the speedup obtained by our algorithm

as a function of the number of threads. The slope of these curves shows

that the scalability of our approach, similarly to the speedups discussed

above, is data-set dependent as well. In particular, our algorithm seems

less scalable for the data-sets which result in complex output trees (see the

third column of Table 5.1 which shows the number of arcs per tree). Also,

the smallest slope (nearly constant) is also observed with the Foot data-set,

as further discussed in the next sub-section.

Next, we compare our parallel implementation with the reference

sequential Libtourtre implementation in Table 5.2. Our speedups with

respect to Libtourtre range between 2.6 and 3.8 (except for Foot), which

compares favorably (even if the data-sets differ) with the 1.6–2.8 speedups

of the approach based on parallel monotone paths [52], on tetrahedral

meshes. Note additionally that in contrast to our approach, the method

presented in [52] does not compute the augmented tree. We also added

in Table 5.2 performance results of a naive parallel implementation of

Libtourtre (library implemented by Dillard [23]), which uses a parallel sort

5.3. Experimental results 71

(a) (b)

Figure 5.4 – Size difference between two interface level-sets on the Foot data-set. (a)

Interface crossing 1, 507, 357 edges (blue). (b) Interface crossing 606, 276 edges (green).

This difference can lead to load imbalance between our partitions.

Data-set ideal min max

Elevation 4,194,304 4,259,840 4,325,376

EthaneDiol 4,194,304 4,362,086 4,616,938

Combustion 4,194,304 4,353,986 4,635,078

Boat 4,194,304 4,418,409 4,791,092

Jet 4,194,304 4,358,176 4,701,586

Enzo 4,194,304 5,234,144 6,474,322

Foot 4,194,304 4,499,572 6,044,708

Table 5.3 – Partition sizes (in vertices).

and two OpenMP threads to build independently the join and split trees.

Our parallel algorithm outperforms this naive implementation in all our

test cases with exception of the foot, which further stresses the efficiency

of our approach.

5.3.2 Limitations

In this section, we detail the three factors that limit our parallel speedups

in practice.

As presented in Table 5.3, we can see that the actual number of vertices

per partition is always greater than the ideal one (obtained by dividing the

total number of vertices by the number of partitions). This is due to the

72 Chapter 5. Input sensitive Contour Trees using Contour Forests

Data-set 8 threads: min max 1 thread: min max

Elevation 1,623,500 1,768,720 2,151,250 2,292,390

EthaneDiol 963,962 1,108,170 1,470,960 1,804,410

Combustion 1,029,050 1,190,160 1,688,080 2,006,210

Boat 1,055,410 1,237,030 1,463,880 1,985,720

Jet 1,065,720 1,256,730 1,754,240 2,094,010

Enzo 860,937 933,616 1,166,540 1,366,070

Foot 1,120,560 4,031,030 1,220,800 5,195,250

Table 5.4 – Computation speeds (in vertices/second) for join or split tree computations

with our parallel implementation and with one single thread to perform all computations

required by our parallel approach.

boundary vertices that have to be added to each partition, which imply

redundant computations that directly impact the parallel speedups. In

particular, there can be important variations in the size of the interface

level sets (in terms of crossed edges, in red in Figure 5.2) within a single

data-set, as shown in Figure 5.4. Therefore the size of the overlaps between

the partitions (expressed as the number of vertices in the lists Bi− and Bi+ ,

see subsection 5.2.2) can also vary. This induces redundant computations

of varying importance within a single data-set. One can also see larger

imbalance in the number of vertices per partition for more complex data-

sets. This adds load imbalance to the parallel computations which further

decreases the speedups.

This load imbalance is worsened by the fact that, depending on its

impact on the join and split tree constructions, each vertex of M does

not require the same processing time in practice. This effect is shown in

Table 5.4 which shows varying computation speeds among the different

partitions of a given data-set. In particular, the more complex is the

contour tree, the larger is the gap among the computation speeds. One

could choose to use several partitions per thread, with dynamic load

balancing, in order to minimize such load imbalance, but this would

introduce even more redundant computations (because of the boundary

vertices). That is why we choose to use nt/2 partitions for nt threads: this

indeed minimizes the redundant computations, while fully exploiting the

complete independency between the join and split tree computations.

These two factors (redundant computations and load imbalance) jointly

explain our lower speedups with more complex data-sets (especially for

Foot).

Finally, a third factor also limits our parallel efficiencies for any data-

5.4. Conclusion 73

set. The contour tree computation requires on average very few operations

with respect to the number of memory accesses. Its operational intensity

(see [95]) is therefore low which makes such an application memory-

bound, like most graph traversal algorithms ([5]). As shown in Table 5.4,

giving the parallel computations of the join and split trees to a single

thread leads to higher computations speeds. Hence speedups linear in the

number of cores cannot be obtained for such memory-bound applications:

the memory bandwidth of the processor can not cope with the memory

requirement of the height threads at a time. This also justifies our choice

not to rely on the 2-way SMT (Simultaneous Multi-Threading) capability of

our CPU, and to use only one thread (instead of two) per physical CPU

core.

5.4 Conclusion

The approach presented here is an efficient algorithm to compute

augmented contour trees of scalar fields defined on both unstructured

meshes and regular grids. This method relies on a subdivision of the input

data set by scalar value, allowing to compute in parallel the full contour

tree of each partition thus obtained. In our tests, this algorithm compares

favorably to a reference implementation. However, adding more threads

leads to redundant computations during the split step and prevents this

approach to obtain a good parallel efficiency when using a high number

of threads on most data sets. Moreover, computation times of local trees

are not balanced among partitions, leading to threads becoming idle.

Using a high number of threads, the mesh may be cut in such a way

that the corresponding Reeb graph is loop free (if all topological handles

have been cut for example). In that case, after the stitching step the

final structure of Contour Forests would be the Reeb graph, loops being

reconstructed by the stitch procedure. However, a loop entirely contained

in a partition would not be cut and thus would be missing in the final

output (the local contour tree does not contain it). As a consequence, the

number of partition can be used to control the minimum size (in terms of

scalar values) a loop should be to ensure it is present in the output of the

algorithm.

6Output Sensitive Task-based

Merge Trees with Fibonacci

Heaps

Contents

6.1 Overview . 78

6.2 Local propagations for merge tree computations 79

6.2.1 Leaf search . 79

6.2.2 Leaf growth . 79

6.2.3 Saddle stopping condition . 81

6.2.4 Saddle growth . 82

6.2.5 Trunk growth . 84

6.2.6 Segmentation . 85

6.3 Task-based parallel merge trees 85

6.3.1 Taskification . 86

6.3.2 Synchronization . 87

6.3.3 Parallel trunk growth . 88

6.4 Results . 89

6.4.1 Performance analysis . 90

6.4.2 Limitations . 95

6.5 Conclusion . 97

An output sensitive approach with task-based independent local

propagations is presented for the parallel computation of the

augmented merge trees. This chapter presents the works of two

75

76 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

publications. The first version of this algorithm has been published at

IEEE LDAV 2017 [36]. Then, performance results have been improved and

the algorithm refined for the case of the augmented contour tree, leading

to a paper accepted to the IEEE TPDS [37] journal (to appear).

6.1. Overview 77

In this chapter a new parallel algorithm to compute augmented

merge trees is presented. It is based on independent local propagations

corresponding to the arcs of the output tree. The contour tree related

contributions are presented chapter 7. We recall here than the merge

tree tracking the join of sub-level sets components as introduced in

subsection 2.3.3 is named join tree and the one tracking sur-level sets

components is named split tree. Additionally, the term arc is used to

describe a 1-simplex belonging to the output tree while the term edge is

preferred to describe a 1-simplex belonging to the input mesh.

This chapter presents the following contributions:

1. A new local algorithm based on Fibonacci heap: We present

a new algorithm for the computation of augmented merge trees.

Contrary to massively parallel approaches [3, 17, 52], our strategy

revisits the optimal sequential algorithm for augmented trees [16].

A major distinction with the latter algorithm is the localized nature

of our approach, based on local sorting traversals whose results are

progressively merged with the help of a Fibonacci heap. In this

context, we also introduce a new criterion for the detection of the

saddles which generate branching in the output tree, as well as an

efficient procedure to process the output arcs in the vicinity of the

root of the tree (hereafter referred to as the trunk). Our algorithm

is simple to implement and it improves practical time performances

over a reference implementation [23] of the traditional algorithm [16].

2. Parallel augmented merge trees: We show how to leverage the task

runtime environment of OpenMP [59] to easily implement a shared-

memory, coarse-grained parallel version of the above algorithm for

multi-core architectures. Instead of introducing extra work with a

static decomposition of the mesh among the threads (as in chapter 5),

the local algorithm based on Fibonacci heaps naturally distributes the

merge tree arc computations via independent tasks on the CPU cores.

We hence avoid any extra work in parallel, while enabling an efficient

dynamic load balancing on the CPU cores thanks to the task runtime.

This results in superior time and scaling performances compared to

previous multi-threaded algorithms for augmented merge trees [38].

78 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

Figure 6.1 – Overview of our augmented merge tree algorithm based Fibonacci heaps

(2D toy elevation example). First, the local extrema of f (corresponding to the leaves

of the join tree T −(f)) are extracted (left, subsection 6.2.1). Second, the arc σm of

each extremum m is grown independently along with its segmentation (matching colors,

center left, subsection 6.2.2). These independent growths are achieved by progressively

growing the connected components of level sets created in m, for increasing f values, and

by maintaining at each step a priority queue Qm, implemented with a Fibonacci heap,

which stores vertex candidates for the next iteration (illustrated with colored dots). These

growths are stopped at merge saddles (white disks, center left, subsection 6.2.3). Only the

last growth reaching a saddle s is kept active and allowed to continue to grow the saddle’s

arc σs (matching colors, center right, subsection 6.2.4). The constant time merge operation

of the Fibonacci heap (to initialize the growth at s) enables a highly efficient execution for

this step in practice. Last, when only one growth remains active, the tree is completed by

simply creating its trunk, a monotone sequence of arcs to the root of the tree which links

the remaining pending saddles (pale blue region, right, subsection 6.2.5). The task-based

parallel model allows for a straightforward parallelization of this algorithm, where each

arc is grown independently, only requiring local synchronizations on merge saddles.

6.1 Overview

An overview of our augmented merge tree computation algorithm is

presented in Figure 6.1 in the case of the join tree T −(f). The purpose

of our algorithm, in addition to construct T −(f), is to build the explicit

segmentation map φ, which maps each vertex v ∈ M to T −(f). Our

algorithm is expressed as a sequence of procedures, called on each vertex

of M. First, given a vertex v, the algorithm checks if v corresponds to

a leaf (Figure 6.1 left, subsection 6.2.1). If this is the case, the second

procedure is triggered. For each leaf vertex, the augmented arc connected

to it is constructed by a local growth, implemented with a sorted breadth-

first search traversal (Figure 6.1 middle left, subsection 6.2.2). A local

growth may continue at a join saddle s, in a third procedure, only if it

is the last growth which visited the saddle s (Figure 6.1 middle right,

subsection 6.2.4). To initiate the growth from s efficiently, we rely on

the Fibonacci heap data-structure (described in subsection 2.4.3) in our

breadth-first search traversal, which supports constant-time merges of sets

of visit candidates. A fourth procedure (the trunk growth) is triggered to

abbreviate the process when a local growth happens to be the last active

6.2. Local propagations for merge tree computations 79

growth. In this case, all the unvisited vertices above s are guaranteed to

map through φ to a monotone super-arc-path (a path composed of super

arcs) from s to the root (Figure 6.1 right, subsection 6.2.5). Overall, the time

complexity of our algorithm is identical to that of the reference algorithm

by Carr et al. [16]: O(|σ0| log(|σ0|) + |σ1|α(|σ1|)
)
, where |σi| stands for

the number of i-simplices in M and α() is the inverse of the Ackermann

function (cf. subsubsection 2.4.2.2).

6.2 Local propagations for merge tree computations

In this section, we present our algorithm for the computation of

augmented merge trees based on local arc growth. Our algorithm consists

in a sequence of procedures applied to each vertex, described in each of

the following subsections. In the remainder, we illustrate our discussion

with the join tree T −(f), which tracks connected components of sub-level

sets, initiated in local minima.

6.2.1 Leaf search

Algorithm 7 Find minima of the input mesh
procedure LeafSearch(Mesh: M)

for each vertex v ∈ M do . in parallel (tasks)

add v to leaves if |Lk−0 (v)| = 0

end for

return leaves

end procedure

The procedure LeafSearch, used to find the minima on which local

growths will later be initiated, is shown in Algorithm 7. Minima are

vertices with an empty lower link: |Lk−0 (v)| = 0.

6.2.2 Leaf growth

For each local minimum m, the leaf arc σm of the join tree connected to

it is constructed with a procedure that we call ArcGrowth, presented in

Algorithm 8. The purpose of this procedure is to progressively sweep

all contiguous equivalence classes (section 2.3) from m to the saddle s

located at the extremity of σm. We describe how to detect such a saddle

s, and therefore where to stop such a growth, in the next subsection

80 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

Algorithm 8 Local growth computing one arc of T −(f)
procedure ArcGrowth(Qm: Fibonacci heap, uf: Union-Find)

Open a new arc in T −(f) at the first vertex of Qm

while not the last active growth do

Pop the first vertex of Qm in v

Process v

Add Lk+0 (v) into the Qm

Use Lk−0 (v) to check if v is a merging saddle

if v is a merging saddle then

if last growth reaching v then

SaddleGrowth(v)

end if

return

end if

end while

end procedure

(subsection 6.2.3). In other words, this growth procedure will construct

the connected component of sub-level set initiated in m, and will make it

progressively grow for increasing values of f .

This is achieved by implementing an ordered breadth-first search

traversal of the vertices of M initiated in m. At each step, the neighbors

of v which have not already been visited are added to a priority queue

Qm (if not already present in it), implemented as a Fibonacci heap [21, 33].

Additionally, v is processed by the current growth: the vertex is marked

with the identifier of the current arc σm for future addition. The purpose

of the addition of v to σm is to augment this arc with regular vertices, and

therefore to store its data segmentation. Next, the following visited vertex

v′ is chosen as the minimizer of f in Qm and the process is iterated until

s is reached (subsection 6.2.3). At each step of this local growth, since

breadth-first search traversals grow connected components, we have the

guarantee, when visiting a vertex v, that the set of vertices visited up to

this point (added to σm) indeed equals to the set of vertices belonging

to the connected component of sub-level set of f (v) which contains v,

noted f−1
−∞
(

f (v)
)

v in section 2.2. Therefore, our local leaf growth indeed

constructs σm (with its segmentation). Also, note that, at each iteration, the

set of edges linking the vertices already visited and the vertices currently

in the priority queue Qm are all crossed by the level set f−1(f (v)
)
.

6.2. Local propagations for merge tree computations 81

Figure 6.2 – Local merge saddle detection based on arc growth (2D elevation example

from Figure 6.1). The local growth of the arc σm (green) will visit the vertex v′ at value

3 after visiting the vertex at value 1 (following the priority queue Qm). At this point,

the neighbors of v′ which have not been visited yet by σm and which are not in Qm yet

(dashed green edges) will be added to Qm. The minimizer v of Qm (vertex 2) has a scalar

value lower than v′. Hence v′ is a merge saddle.

The time complexity of this procedure is O(|σ0| log(|σ0|) + |σ1|), where

|σi| stands for the number of i-simplices inM.

6.2.3 Saddle stopping condition

Given a local minimum m, the leaf growth procedure is stopped when

reaching the saddle s corresponding to the other extremity of σm. We

describe in this subsection how to detect s.

In principle, the saddles of f could be extracted by using a critical

point extraction procedure based on a local classification of the link of

each vertex, as presented in subsection 2.2.1. However, such a strategy has

two disadvantages. First not all saddles of f necessarily corresponding to

branching in T −(f) and/or T +(f), thus some unnecessary computation

would need to be carried out. Second, we found in practice that even

optimized implementations of such a classification [88] tend to be slower

than the entire augmented merge tree computation in sequential. Hence,

another strategy should be considered for the sake of performance.

The local ArcGrowth procedure (subsection 6.2.2) visits the vertices

of M with a breadth-first search traversal initiated in m, for increasing f

values. At each step, the minimizer v of Qm is selected. Assume that at

some point: f (v) < f (v′) where v′ was the vertex visited immediately

before v. This implies that v belongs to the lower link of v′, Lk−(v′).

Since v was visited after v′, this means that v does not project to σm

through φ. In other words, this implies that v does not belong to the

82 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

Figure 6.3 – Union of priority queues at a merge saddle (2D elevation example from

Figure 6.1). Initially, each arc growth maintains its own priority queue (illustrated with

colored dots, left inset). When reaching a merge saddle s (second inset), the growths

which arrived first in s are marked terminated. Only the last one (green) will be

allowed to resume the growth from s to construct the arc σs (last inset). To continue

the propagation of the sub-level set component which contains s, the priority queues of all

growths arrived at s need to be merged into only one (third inset) prior to resuming the

propagation. If done naively, this operation could yield a quadratic runtime complexity for

our approach overall. Since Fibonacci heaps support constant time merges, they guarantee

the linearithmic complexity of our overall approach.

connected component of sub-level set containing m. Therefore, v′ happens

to be the saddle s that correspond to the extremity of σm. Locally

(Figure 6.2), the local leaf growth entered the star of v′ through the

connected component of lower link projecting to σm and jumped across

the saddle v′ downwards when selecting the vertex v, which belongs to

another connected component of lower link of v′.

Therefore, a sufficient condition to stop an arc growth is when the

candidate vertex returned by the priority queue has a lower f value than

the vertex visited last. In such a case, the last visited vertex is the saddle s

which closes the arc σm (Figure 6.2).

6.2.4 Saddle growth

Algorithm 9 Start a local growth at a join saddle
procedure SaddleGrowth(s: join saddle)

Close arcs in Lk−(s)

Qm ← union Qm0 ,Qm1 , . . .Qmn ∈ Lk−0 (s)

uf ← union uf0, uf1,. . . ufn ∈ Lk−0 (s)

ArcGrowth(Qm, uf)

end procedure

Up to this point, we described how to construct each arc σm connected

to a local minimum m, along with its corresponding data segmentation.

The remaining arcs can be constructed similarly.

6.2. Local propagations for merge tree computations 83

Given a local minimum m, its leaf growth is stopped at the saddle s

which corresponds to the extremity of the arc connected to it, σm. When

reaching s, if all vertices of Lk−(s) have already been visited by some

local leaf growth, we say that the current growth, initiated in m, is the

last one visiting s. In such a case, the procedure SaddleGrowth presented

in subsection 6.2.4 is called (see Algorithm 8) and the same breadth-first

search traversal can be applied to grow the arc of T −(f) initiated in s,

noted σs. However, in order to represent all the connected components of

sub-level set merging in s, such a traversal needs to be initiated with the

union of the priority queues Qm0 ,Qm1 , . . .Qmn of all the arcs merging in

s. Such a union models the entire set of candidate vertices for absorption

in the sub-level component of s (Figure 6.3). Since both the number of

minima of f and the size of each priority queue can be linear with the

number of vertices in M, if done naively, the union of all priority queues

could require O(|σ0|2) operations overall. To address this issue, we model

each priority queue with a Fibonacci heap (described in [21, 33]), which

supports the removal of the minimizer of f from Qm in log(|σ0|) steps,

and performs both the insertion of a new vertex and the merge of two

queues in constant time.

Similarly to the traditional merge tree algorithm [16, 80], we maintain

a Union-Find data structure [21] (introduced subsubsection 2.4.2.2) to

precisely keep track of the arcs which need to be merged at a given

saddle s. Each local minimum m is associated with a unique Union-

Find element, which is also associated to all regular vertices mapped to

σm (subsection 6.2.2). Also, each Union-Find element is associated to the

arc it currently grows. When an arc σ reaches a join saddle s last, the find

operation of the Union-Find is called on each vertex of Lk−(s) to retrieve

the set of arcs which merge there and the union operation is called on all

Union-Find associated to these arcs to keep track of the merge event. Thus,

overall, the time complexity of our augmented merge tree computation

is O
(
|σ0| log(|σ0|) + |σ1|α(|σ1|)

)
, where α() is an extremely slow-growing

function (inverse of the Ackermann function). The |σ1|α(|σ1|) term yields

from the usage of the Union-Find data structure, while the Fibonacci heap,

thanks to its constant time merge support, enables to grow the arcs of

the tree in logarithmic time. The time complexity of our algorithm is

then exactly equivalent to the traditional algorithm [16, 80]. However,

comparisons to a reference implementation by Dillard [23] (section 6.4)

show that our approach provides superior performance in practice.

84 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

6.2.5 Trunk growth

Algorithm 10 Compute the last monotone super-arc-path
procedure Trunk

Close arcs on pending saddles

Create a monotone super-arc-path from the last visited vertex to the

global maximum

for each unvisited vertex vu do . in parallel (tasks)

Project vu into its arc on the monotone super-arc-path

end for

end procedure

Time performance can be further improved by abbreviating the process

when only one arc growth is remaining. Initially, if f admits N local

minima, N arcs (and N arc growths) need to be created. When the

growth of an arc σ reaches a saddle s, if σ is not the last arc reaching

s, the growth of σ is switched to the terminated state. Thus, the number

of remaining arc growths will decrease from N to 1 along the execution

of the algorithm. In particular, the last arc growth will visit all the

remaining, unvisited, vertices of M upwards until the global maximum

of f is reached, possibly reaching on the way an arbitrary number of

pending join saddles, where other arc growths have been stopped and

marked terminated (white disks, Figure 6.1, third column). Thus, when

an arc growth reaches a saddle s, if it is the last active one, we have the

guarantee that it will construct in the remaining steps of the algorithm a

sequence of arcs which constitutes a monotone super-arc-path from s up

to the root of T −(f). We call this sequence the trunk of T −(f) (Figure 6.1)

and we present the corresponding procedure in Algorithm 10. The trunk of

the join tree can be computed faster than through the breadth-first search

traversals described in subsection 6.2.2 and subsection 6.2.4. Let s be the

join saddle where the trunk starts. Let S = {s0, s1, . . . sn} be the sorted set

of join saddles that are still pending in the computation (which still have

unvisited vertices in their lower link). The trunk is constructed by simply

creating arcs that connect two consecutive entries in S. Next, these arcs

are augmented by simply traversing the vertices of M with higher scalar

value than f (s) and projecting each unvisited vertex vu to the trunk arc

that spans it scalar value f (vu).

Thus, our algorithm for the construction of the trunk does not use

any breadth-first search traversal, as it does not depend on any mesh

6.3. Task-based parallel merge trees 85

traversal operation, and it is performed in O(|σ0| log(|σ0|)) steps (to

maintain regular vertices sorted along the arcs of the trunk). To the best of

our knowledge, this algorithmic step is another important novelty of our

approach.

Finally, the overall merge tree computation is presented in

Algorithm 11.

Algorithm 11 Overall merge tree computation for a meshM
leaves← LeafSearch(M)

for each v ∈ leaves do

Qm ← new Fibonacci heap containing v

uf ← new Union-Find

ArcGrowth(Qm, uf) . task

end for

Trunk()

6.2.6 Segmentation

Our output tree is based on a super arc representation (introduced

subsection 2.4.1), each arc having a list of regular vertices. This

representation allows to compute efficiently the segmentation in a 2-pass

manner. Vertices are marked with the identifier of the arc they correspond

to during the merge tree construction, then the lists of regular vertices

of each arc are pre-allocated and filled in parallel. This way, memory is

allocated once. Maintaining the list of vertex on the fly would either leads

to scattered memory access for vertex retrieval or re-allocation during

the computation as the number of regular vertex on each arc cannot be

foreseen.

6.3 Task-based parallel merge trees

The previous section introduced a new algorithm based on local arc

growths with Fibonacci heaps for the construction of augmented join

trees (split trees being constructed with a symmetric procedure). Note

that this algorithm enables to process the minima of f concurrently.

The same remark goes for the join saddles; however, a join saddle

growth can only be started after all of its lower link vertices have

been visited. Such an independence and synchronization among the

numerous arc growths can be straightforwardly parallelized thanks to

86 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

the task parallel programming paradigm. Also, note that such a split

of the work load does not introduce any supplementary computation

or memory overhead. Task-based runtime environments also naturally

support dynamic load balancing, each available thread picking its next

task among the unprocessed ones. We rely here on OpenMP tasks [59],

but other task runtimes (e.g. Intel Threading Building [65] Blocks, Intel

Cilk Plus [1], etc.) could be used as well with a few modifications. In

practice, users only need to specify a number of threads among which the

tasks will be scheduled. In the remainder, we will present our taskification

process for the merge tree computation, as well as the required task

synchronizations.

At a technical level, our implementation starts with a global sort of

all the vertices according to their scalar value in parallel (using the GNU

parallel sort [35]). This reduces further vertex comparisons to comparisons

of indices, which is faster in practice than accessing the actual scalar values

and which is also independent of the scalar data representation. Our

experiments have shown that this sort benefits from a better data locality,

and is thus more efficient, when using an array of structures (AoS) rather

than a structure of arrays (SoA) for the vertex data structures (id, scalar

value, offset).

6.3.1 Taskification

Parallel leaf search: For each vertex v ∈ M, the extraction of its lower

link Lk−(v) is a local operation. This makes this step embarrassingly

parallel and enables a straightforward parallelization of the corresponding

loop using OpenMP [59] tasks: see Algorithm 7. Once done, we have the

list of extrema from which the leaf growth should be started. This list is

sorted so that the leaf growths are launched in the order of the scalar value

of their extremum, starting with the “deepest” leaves. With minor changes,

it is also possible to launch the growth on the fly during the leaf search,

but we found in practice that the scheduling induced by the “deepest” leaf

first strategy gives better performance results.

Arc growth tasks: Each arc is independent from the others, spreading

locally until it finds a saddle. Each leaf growth is thus simply implemented

as a task, starting at its previously extracted leaf as shown in Algorithm 11.

All tasks but the last one stop at the next saddle: this last task then

proceeds with this saddle growth.

6.3. Task-based parallel merge trees 87

6.3.2 Synchronization

In the following, we present the task synchronizations required for a

parallel execution of our algorithm.

Saddle stopping condition: The saddle stopping condition presented in

subsection 6.2.3 can be safely implemented in parallel with tasks. When a

vertex v, unvisited so far by the current arc growth, is visited immediately

after a vertex v′ with f (v) < f (v′), then v′ is a saddle. To decide if

v was indeed not visited by an arc growth associated to the sub-tree

of the current arc growth, we use the Union-Find data structure [21]

described in subsubsection 2.4.2.2 (one Union-Find node per leaf). In

particular, we store for each visited vertex the Union-Find representative

of its current growth (which was originally created on a minimum).

Our Union-Find implementation supports concurrent find operations from

parallel arc growths (executed simultaneously by distinct tasks). A find

operation on a Union-Find currently involved in a union operation is

also possible but safely handled in parallel in our implementation. Since

the find and union operations are local to each Union-Find sub-tree [21],

these operations generate only few concurrent accesses. Moreover, these

concurrent accesses are efficiently handled since only atomic operations

are involved.

Detection of the last growth reaching a saddle: When a saddle s is

detected, we also have to check if the current growth is the last to reach s as

described in subsection 6.2.4. For this, we rely on the size of Lk−0 (s), noted

|Lk−0 (s)| (number of vertices in the lower link of s). This computation being

restricted to vertices where it is necessary, we address synchronization

issues as follows. Initially, a lower link counter associated with s is set to

−1. Each task t reaching s will atomically decrement this counter by nt, the

number of vertices in Lk−(s) visited by t. Using here an OpenMP capture

atomic operation, only the first task reaching s will retrieve −1 as the initial

value of s (before the decrement). This first task will then compute |Lk−0 (s)|
and will (atomically) increment the counter by |Lk−0 (s)|+ 1. Since the sum

over nt for all tasks reaching s equals |Lk−0 (s)|, the task eventually setting

the counter to 0 will be considered as the “last” one reaching s (note that

it can also be the one which computed |Lk−0 (s)|). We thus rely here only

on lightweight synchronizations, and avoid using a critical section.

88 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

Growth merging at a saddle: Once the lower link of a saddle has

been completely visited, the “last” task which reached it merges the

priority queues (implemented as Fibonacci heaps), and the corresponding

Union-Find data structures, of all tasks terminated at this saddle. Such

an operation is performed sequentially at each saddle, without any

concurrency issue both for the merge of the Fibonacci heaps and for the

union operations on the Union-Find. The saddle growth starting from

this saddle is performed by this last task, with no new task creation.

This continuation of tasks is illustrated with shades of the same color in

Figure 6.1 (in particular for the green and blue tasks). As the number of

tasks can only decrease, the detection of the trunk start is straightforward.

Each time a task terminates at a saddle, it decrements atomically an integer

counter, which tracks the number of remaining tasks. The trunk starts

when this number reaches one.

Early trunk detection: In parallel, an early trunk detection procedure

can be considered in order for the last active task to realize earlier,

before reaching its upward saddle, that it is indeed the last active task

and therefore to trigger the efficient (and parallel) trunk processing

procedure even earlier. This detection consists in regularly checking,

within each local growth, if a task is the last active one or not. In practice,

we check the number of remaining tasks every 10, 000 vertices on our

experimental setup to avoid slowing down significantly the computation.

This improvement is particularly beneficial on data sets composed of large

arcs. In this case, a significant section of the arc that would have been

processed by only one active task is efficiently processed in parallel during

the trunk growth procedure.

6.3.3 Parallel trunk growth

During the arc growth step, we keep track of the pending saddles (saddles

reached by some tasks but for which the lower link has not been

completely visited yet). The list of pending saddles enables us to compute

the trunk in parallel as described in Algorithm 10. Once the trunk growth

has started, we only focus on the vertices whose scalar value is strictly

greater than the lowest starting node of arcs ending at the lowest pending

saddle, as all other vertices have already been processed during the regular

arc growth procedure. Next, we create the sequence of arcs connecting

pairs of pending saddles in ascending order. At this point, each vertex can

6.4. Results 89

Figure 6.4 – FTM scalability on our 5123 regular grid data sets for (a) the join tree and

(b) the split tree computation. The gray area represents the usage of two threads per core

with SMT (simultaneous multithreading).

be projected independently of the others along one of these arcs. Using

the sorted nature of the list of pending saddles, we can use dichotomy for

a fast projection. Moreover when we process vertices in the sorted order of

their index, a vertex can use the arc of the previous one as a lower bound

for its own projection: we just have to check if the current vertex still

projects in this arc or in an arc with a higher scalar value. We parallelize

this vertex projection procedure using tasks: each task processes chunks

of contiguous vertex indices out of the globally sorted vertex list (see e.g.

the OpenMP taskloop construct [59]). For each chunk, the first vertex is

projected on the corresponding arc of the trunk using dichotomy. Each

new vertex processed next relies on its predecessor for its own projection.

Note that this procedure can visit (and ignore) vertices already processed

by the arc growth step.

6.4 Results

In this section we present performance results obtained on a workstation

with two Intel Xeon E5–2630 v3 CPUs (2.4 GHz, 8 CPU cores and 16

hardware threads each) and 64 GB of RAM. By default, parallel executions

will thus rely on 32 threads. These results were performed with our

VTK/OpenMP based C++ implementation (available publicly in TTK [88])

using g++ version 6.4.0 and OpenMP 4.5 [59]. This implementation (called

Fibonacci Task-based Merge tree, or FTM) was built as a TTK module. FTM

uses TTK’s triangulation data structure which supports both tetrahedral

meshes and regular grids by performing an implicit triangulation with

90 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

Sequential Parallel (32 threads on 16 cores)

Leaf Arc Trunk

Data set |T (f)| Overall Sort search growth growth Overall Speedup

1 11.44 0.84 0.14 0 0.20 1.19 9.57

Elevation
1 18.71 0.84 0.65 0 0.20 1.71 10.89

17 35.13 1.31 0.28 5.16 0.62 7.38 4.75

Ethane Diol
19 30.79 1.31 0.30 2.58 0.62 4.82 6.38

5,426 29.72 1.24 0.24 0.07 0.64 2.21 13.41

Boat
1,715 29.59 1.24 0.40 0.59 0.63 2.88 10.27

26,981 37.20 1.23 0.37 3.04 0.61 5.27 7.04

Combustion
23,606 32.38 1.23 0.29 0.53 0.63 2.69 12.03

96,061 129.62 1.35 0.36 12.79 0.69 15.20 8.52

Enzo
115,287 43.23 1.35 0.36 4.06 0.77 6.55 6.59

147,748 31.21 1.28 0.37 0.42 0.70 2.78 11.19

Ftle
202,865 35.85 1.28 0.31 0.60 0.70 2.91 12.31

241,841 25.06 1.04 0.26 0.80 0.55 2.67 9.38

Foot
286,654 48.59 1.06 0.55 7.82 0.53 9.97 4.87

472,862 96.34 1.07 0.30 3.59 0.73 5.71 16.86

Lobster
490,236 36.64 1.05 0.62 5.45 0.78 7.91 4.62

Table 6.1 – Running times (in seconds) of the different steps of FTM on a 5123 grid for

the join and split trees (white and gray backgrounds respectively). |T (f)| is the number

of arcs in the tree.

no memory overhead for the latter. For the Fibonacci heap, we used the

implementation available in Boost.

Our tests have been performed using eight data sets from various

domains. The first one, Elevation, is a synthetic data set where the scalar

field corresponds to the z coordinate, with only one connected component

of level set: the output is thus composed of only one arc. Five data sets

(Ethane Diol, Boat, Combustion, Enzo and Ftle) result from simulations

and two (Foot and Lobster) from acquisition, containing large sections of

noise. For the sake of comparison, these data sets have been re-sampled,

using single floating-point precision, on the same regular grid and have

therefore the same number of vertices.

6.4.1 Performance analysis

Table 6.1 details the execution times and speedups of FTM for the join

and the split trees on a 5123 grid. One can first see that the FTM

sequential execution time varies greatly between data sets despite their

equal input size. This denotes a sensitivity on the output tree, which is

common to most merge tree algorithms. Moving to parallel executions the

embarrassingly parallel leaf search step offers very good speedups close to

14. The key step for parallel performance is the arc growth. On most of

6.4. Results 91

Sequential Parallel

Data set Arc growth Trunk Arc growth Trunk

Elevation 0 113,217,189 0 468,537,720

Ethane Diol 472,861 13,862,083 1,003,125 202,175,593

Boat 446,981 13,941,128 933,281 193,274,082

Combustion 453,784 14,104,274 1,416,082 196,810,503

Enzo 344,129 11,170,128 2,514,479 138,666,543

Ftle 594,694 14,007,046 3,198,233 154,453,693

Foot 447,270 27,073,541 2,257,674 182,413,262

Lobster 734,705 19,884,438 2,534,264 135,125,845

Table 6.2 – Process speed in vert/sec for the arc growth and trunk procedure in sequential

and in parallel (join tree, grid: 5123).

our data sets this step is indeed the most-time consuming in parallel, but

its time varies in a large range: this will be investigated in subsection 6.4.2.

The last step is the trunk computation, which takes less than one second.

Overall, with a minimum speedup of 4.62x, a maximum one of 16.86x

and an average speedup of 9.29x on 16-cores, our FTM implementation

achieves an average parallel efficiency greater than 58%. These speedups

are detailed on the scaling curves of the join and split tree computation

in Figure 6.4a and Figure 6.4b. The first thing one can notice is the

monotonous growth of all curves. This means that more threads always

implies faster computations, which enables us to focus on the 32-thread

executions.

Another interesting point is the Lobster data set presenting speedups

greater than the ideal one when using four threads and more. This

unexpected but welcome supra-linearity is due to the trunk processing of

our algorithm. As highlighted in Table 6.2, in sequential mode, the trunk

step is indeed able to process vertices much faster than the arc growth step,

since no breadth-first search traversal is performed in the trunk step (see

subsection 6.2.5). In parallel, the performance gap is even larger thanks

to the better parallel speedups obtained in the trunk step than in the arc

growth step. The trunk processing step is 30x faster than the arc growth

in sequential execution, and 110x faster in parallel. The arc growth is

indeed 3x faster in parallel than in sequential while the trunk is 10x faster

in parallel than in sequential. This enforces the benefits from maximizing

the trunk step in our algorithm to achieve both good performances and

good speedups. However, for a given data set, the size of the trunk highly

depends on the order in which arc growths (leaves and saddles) have been

processed. Since the trunk is detected when only one growth remains

92 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

Data set Min Max Range Average Std. dev

Elevation 1.17 1.19 0.02 1.18 0.01

Ethane Diol 7.37 8.67 1.29 8.00 0.42

Boat 2.11 2.21 0.09 2.14 0.02

Combustion 4.61 5.27 0.65 4.89 0.17

Enzo 14.44 15.82 1.38 15.29 0.53

Ftle 2.75 2.82 0.07 2.78 0.02

Foot 2.63 2.70 0.07 2.67 0.02

Lobster 5.36 5.71 0.34 5.53 0.13

Table 6.3 – Stability of the execution time of FTM in parallel (join tree, 10 runs, 5123

grid).

active, distinct orders in leaf and saddle processing will yield distinct

trunks of different sizes, for the same data set. Hence maximizing the size

of this trunk minimizes the required amount of computation, especially for

data sets like Lobster where the trunk encompasses a large proportion of

the domain. That is why we launch the leaf growth tasks in the order of the

scalar value of their extremum (subsection 6.3.1). Note however, that the

arc growth ordering which would maximize the size of the trunk cannot be

known in advance. In a sequential execution, it is unlikely that the runtime

will schedule the tasks on the single thread so that the last task will be the

one that corresponds to the greatest possible trunk. Instead, the runtime

will likely process each available arc one at a time, leading to a trunk

detection at the vicinity of the root. On the contrary, in parallel, it is more

likely that the runtime environment will run out of leaves sooner, hence

yielding a larger trunk than in sequential and thus leading to increased

(possibly supra-linear) speedups. For example, on the Lobster data set the

number of vertices processed by the trunk step is about 70 millions (57%

of the data set) during sequential executions while this number grows up

to 124 millions (92% of the data set) during parallel executions.

As the dynamic scheduling of the tasks on the CPU cores may vary

from one parallel execution to the next, it follows that the trunk size may

also vary across different executions, hence possibly impacting noticeably

runtime performances. As shown in Table 6.3, the range within which the

execution times vary is clearly small compared to the average time and the

standard deviation shows a very good stability of our approach in practice.

Finally, in order to better evaluate the FTM performance, we compare

our approach to two reference implementations, which are, to the best of

6.4. Results 93

Data set LT CF FTM LT / FTM CF / FTM

Elevation 5.81 7.70 1.44 4.01 5.31

Ethane Diol 11.59 17.75 3.61 3.20 4.91

Boat 11.84 17.11 3.06 3.86 5.57

Combustion 11.65 16.87 4.05 2.87 4.15

Enzo 14.33 17.99 13.62 1.05 1.32

Ftle 11.32 15.62 3.55 3.18 4.39

Foot 9.45 12.72 3.20 2.95 3.97

Lobster 11.65 14.80 10.05 1.15 1.47

Table 6.4 – Sequential join tree computation times (in seconds) and ratios between

libtourtre (LT [23 - Dillard]), Contour Forests (CF [38 - Gueunet et al.]) and our Fibonacci

Task-based Merge tree (FTM), on a 2563 grid.

Data set LT CF FTM LT / FTM CF / FTM

Elevation 5.00 2.33 0.18 27.19 12.67

Ethane Diol 8.95 4.54 0.85 10.52 5.33

Boat 8.24 4.40 0.29 28.02 14.96

Combustion 7.96 5.82 0.54 14.62 10.69

Enzo 12.18 8.92 1.60 7.60 5.56

Ftle 8.19 4.98 0.54 15.12 9.19

Foot 7.60 6.94 0.86 8.78 8.02

Lobster 8.40 9.02 0.92 9.03 9.70

Table 6.5 – Parallel join tree computation times (in seconds) and ratios between libtourtre

(LT [23 - Dillard]), Contour Forests (CF [38 - Gueunet et al.]), and our Fibonacci Task-

based Merge tree (FTM) on a 2563 grid.

94 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

our knowledge, the only public implementations supporting augmented

trees:

• Libtourtre (LT) [23], an open source sequential reference

implementation of the traditional algorithm [16];

• the open source implementation [88] of the parallel Contour Forests

(CF) algorithm [38].

In each implementation, TTK’s triangulation data structure [88] is

used for mesh traversal. Due to its important memory consumption,

we were unable to run CF on the 5123 data sets on our workstation.

Thus, we have created a smaller grid (2563 vertices) with down-sampled

versions of the scalar fields used previously. For the first step of

this comparison we are interested in the sequential execution. The

corresponding results are reported in Table 6.4 We note that in sequential,

Contour Forests and Libtourtre implements the same algorithm. Our

sequential implementation is about 3.90x faster than Contour Forests and

more than 2.70x faster than Libtourtre for most data sets. This is due to the

faster processing speed of our trunk step. The parallel results for the merge

tree implementation are presented in Table 6.5. The sequential Libtourtre

implementation starts by sorting all the vertices, then computes the tree.

Using a parallel sort instead of the serial one is straightforward. Thus, we

used this naive parallelization of LT in the results reported in Table 6.5

with 32 threads. As for Contour Forests we report the best time obtained

on the workstation, which is not necessarily with 32 threads. Indeed, as

detailed in chapter 5 increasing the number of threads in CF can result

in extra work due to additional redundant computations. This can lead

to greater computation times, especially on noisy data sets. The optimal

number of threads for CF has thus to be chosen carefully. On the contrary,

FTM always benefit from the maximum number of hardware threads. In

the end, FTM largely outperforms the other implementations for all data

sets: Libtourtre by a factor 15.11x (in average) and Contour Forests by a

factor 9.51x (in average). We emphasize that the two main performance

bottlenecks of CF in parallel, namely extra work and load imbalance, do

not apply to FTM thanks to the arc growth algorithm and to the dynamic

task scheduling.

6.4. Results 95

Figure 6.5 – Number of remaining tasks through time for a parallel execution on the Enzo

data set. Each step of the algorithm is shown with a distinct color. The suboptimal section

is shown in the area stripped in gray.

Figure 6.6 – Worst case data set with the initial scalar field (top left, blue to green), with

50% (top middle), and with 100% of randomness (top right). The red circle indicates

a saddle point induced by the Elevation scalar field, called hereafter “natural saddle”.

Vertices processed by the trunk procedure are shown in red (bottom).

6.4.2 Limitations

In order to understand the limitations of our approach, in Figure 6.5 is

presented the number of remaining tasks through time, focusing on the

part where this number of tasks becomes lower than the number of cores

(16). During the arc growth step (shown in green on the figure), the

number of active tasks is decreasing as the propagations merge at saddles.

When this number becomes lower than 16, the algorithm enters what we

call a suboptimal section (stripped area on the figure). During this time,

there is less active tasks than available cores, so we do not fully exploit the

parallel compute power of our CPUs. This suboptimal section stops when

there is only one propagation (task) remaining and the highly parallel

trunk procedure is triggered.

The main limitation of this algorithm is the presence of this so-

called suboptimal section. In order to further evaluate the impact of this

96 Chapter 6. Output Sensitive Task-based Merge Trees with Fibonacci Heaps

0

20

40

60

80

100

120

0 20 40 60 80 100

Ti
m

e

Random part (percentage)

Join Tree Time (2 threads)

Join Tree Time (32 threads)

Figure 6.7 – FTM join tree computation times for 2 and 32 threads on our worst case

data set as the random part progresses from 0 to 100%.

suboptimal section, Figure 6.6 presents a data set used for a worst case

analysis. On the initial state (leftmost version), the scalar field is a simple

elevation and the join tree is only composed of two large arcs merging in

a small root. These two arcs correspond to the two preponderant peaks of

the mesh and merge on the natural saddle emphasized with the red circle.

Then, we progressively introduce randomness at the bottom of the data set

(at the leaves of the tree) and make it grow until it covers the whole mesh.

In Figure 6.7, merge tree computation times are presented for this worst

case data set with the randomness ranging from 0 to 100% by step of

10%. During the join tree computation on the initial scalar field (simple

elevation), having two or more threads available only have a low impact

on the execution times as the predominant arc growth step can only spawn

two tasks. As the random progresses, more and more work can be done in

parallel using more than two tasks and so the computation with 32 threads

becomes shorter than the one with 2 threads. Above 90% of randomness,

the random area has reached the natural saddle. At this point, the two

peaks have no more impact on the tree topology and the data set becomes

similar to a completely random one. Interestingly, such a random data set

is no longer the worst case for our algorithm (see the execution time drop

at 100%, Figure 6.7), as the set of vertices processed by the efficient trunk

procedure remains sufficiently large (Figure 6.6, right).

6.5. Conclusion 97

6.5 Conclusion

We have presented here a new approach to compute augmented merge

trees based on local propagations. These propagations correspond to arcs

of the tree and can be expressed as parallel tasks, benefiting from the

dynamic load balancing of the task runtime for parallel computations.

Additionally, this method does not include redundant work in parallel

and, contrary to Contour Forests (chapter 5), leads to greater speedups

for an increasing number of threads. Results obtained using our

implementation show that this algorithm is efficient in sequential, offering

2.70x speedups over a reference implementation thanks to an optimized

processing of the last monotone super-arc-path (named trunk). In addition

to this efficiency, this approach leads to significant speedups, with an

average of 9.29x on our 16 cores setup.

7Output Sensitive Task-based

Contour Trees with

Fibonacci Heaps

Contents

7.1 Overview . 101

7.2 Task-based contour tree computations 102

7.2.1 Leaf search . 102

7.2.2 Task overlapping for merge tree computation 102

7.2.3 Merge tree post-processing 103

7.2.4 Parallel combination . 104

7.3 Results . 106

7.3.1 Performance analysis . 107

7.3.2 Limitations . 112

7.4 Conclusion . 114

An output sensitive approach, extending the strategy with task-based

independent local propagations described in chapter 6, is presented

for the parallel computation of augmented contour trees. This work is

described in a paper accepted to the IEEE TPDS [37] journal (to appear).

99

7.1. Overview 101

This chapter focus on the contour tree computation algorithm. The

Fibonacci Task-based Contour Tree algorithm described here will be

abbreviated FTC.

In this chapter, we introduce the following contributions:

• Task overlapping: Every parallel work for our entire approach has

been expressed using tasks and nested parallelism. This complete

taskification enables us to overlap tasks arising from the concurrent

computations of the join and split trees. In practice this allows the

runtime to pick tasks from one of the two trees if the other is running

out of work, thus improving the parallel efficiency.

• Parallel combination of the join and split trees: We present a

new parallel algorithm to combine the join and split trees into the

output contour tree. First, we describe a procedure to combine arcs

in parallel which exploits nested parallelism. Second, to further

speedup this step, we introduce a new original method for the fast

parallel processing of the arcs on the trunk of the tree. Detailed

performance results concerning this parallel combination are given

and analyzed.

7.1 Overview

The reference sequential algorithm to compute the contour tree described

subsection 3.2.1 is based on the combination leaf by leaf of two symmetric

merge trees. The algorithm presented here uses FTM [36] described in

the previous chapter, to compute these two merge trees in parallel. For

completeness, we recall here the main steps of the join tree computation

with FTM. This method is based on local propagations initiated at the

minima and merging together at join saddles until one monotone super-

arc-path (a path composed of super arcs) remains. At this point, an

efficient trunk procedure processes all remaining vertices independently

by projecting them into the monotone super-arc-path.

In the case of the contour tree, the join and the split trees can be

computed simultaneously, which enables tasks from both tress to overlap.

Once they are both computed, a short post-processing step computing

the list of regular vertices for each arc is done. Finally, the two trees

are combined together with an algorithm inspired from the reference

algorithm [16], processing each block of leaves in parallel until only

102 Chapter 7. Output Sensitive Task-based Contour Trees with Fibonacci Heaps

one monotone super-arc-path remains. This last monotone super-arc-

path is processed by the same trunk procedure than described for FTM

subsection 6.2.5.

7.2 Task-based contour tree computations

Algorithm 12 Overall contour tree computation for a meshM
LeafSearch(M)
Compute JT

Compute ST

}
. using 2 concurrent tasks

Post-processing of the two merge trees

ArcsCombine()

TrunkCombine()

Our task-based merge tree algorithm (described chapter 6) can be used

to compute augmented contour trees efficiently in parallel. First, as shown

in Algorithm 12 the LeafSearch procedure (detailed subsection 7.2.1) is

used to extract all the leaves of both merge trees in a single traversal. Then,

these two merge trees are computed concurrently (see subsection 7.2.2)

taking advantage of the task-based nature of the FTM algorithm. A post-

processing step (described subsection 7.2.3) is required before the new

efficient parallel combination algorithm (introduced subsection 7.2.4).

7.2.1 Leaf search

In the FTM algorithm, the merge tree computation starts by extracting the

extrema corresponding to the leaves of the tree: minima for the join tree

and maxima for the split tree. When computing a contour tree, both can be

extracted in a single sweep. This allows to traverse the data set only once,

reducing the total amount of data accesses. In terms of implementation, we

rely on the task mechanism to perform this leaf search in parallel, giving

each task a chunk of 400, 000 vertices to mitigate the cost of creating and

managing them.

7.2.2 Task overlapping for merge tree computation

When FTM was presented chapter 6, every parallel step has been expressed

using tasks. This also applies to the merge tree post-processing step (see

subsection 7.2.3) The task mechanism can be exploited when computing

the two merge trees at the same time by overlapping tasks from both

7.2. Task-based contour tree computations 103

trees. This increases the number of available tasks during the computation

and thus improves the parallel efficiency. More precisely, as discussed

in subsection 6.4.2, during the arc growth step, the number of active

tasks decreases monotonically and is driven by the topology of the tree.

When the number of remaining tasks to process becomes smaller than the

number of available threads, the computation enters a suboptimal section,

where the parallel efficiency of our algorithm is undermined as some

threads are idle. During the contour tree computation the two merge

trees are computed simultaneously and the task overlapping enables us

to lower the performance impact of the suboptimal sections. Indeed, when

the computation of one of the two merge trees enters a suboptimal section,

the runtime can pick tasks from the other tree computation (from its arc

growth step, or from subsequent steps). By overlapping the two merge

tree computations, we can thus rely on more tasks to exploit at best the

available CPU cores.

In order to introduce such task overlap only when required, and thus

to benefit from it as long as possible, we also impose a higher priority on

all tasks from one of the two trees. We tried another simple heuristic to

make the best choice here: the highest priority for the tree with the highest

number of leaves. The purpose is to cover the largest suboptimal section

with tasks form the other tree, which means having a higher priority on

tasks of the tree with this largest suboptimal section. In practice, this

heuristic did not give better results over all data sets than just choosing

randomly on of the two trees. As the suboptimal section size cannot easily

be determined a priori, there is no simple heuristic to make this choice

with the limited amount of information we have. Having one tree with a

higher priority still helps cover its suboptimal section at best.

7.2.3 Merge tree post-processing

Our merge tree procedure segments M by marking each vertex with the

identifier of the arc it projects to through φ. In order to produce such

a segmentation for the output contour tree (subsection 7.2.4), each arc of

T (f) needs to be equipped at this point with the explicit sorted list of

vertices which project to it. We reconstruct these explicit sorted lists in

parallel. For vertices processed by the arc growth step, we save during each

arc growth the visit order local to this growth. During the parallel post-

processing of all these vertices, we can safely build (with a linear operation

count) the ordered list of regular vertices of each arc in parallel thanks to

104 Chapter 7. Output Sensitive Task-based Contour Trees with Fibonacci Heaps

Figure 7.1 – A join (a) and a split (b) tree augmented with the critical nodes of the final

tree. The combination of these two trees results in the final contour tree (c). The notion

of level (length of the shortest monotone super-arc-path to the closest leaf) is emphasized

using the blue and green boxes, corresponding respectively to the levels 0 and 1. The last

monotone super-arc-path can be filled using our highly parallel trunk procedure and is

highlighted in red. In (d), we illustrate the list of regular vertices corresponding to the arc

segmentation.

this local ordering. Regarding the vertices processed by the trunk step,

we cannot rely on such a local ordering of the arc. Instead each thread

concatenates these vertices within bundles (one bundle per arc for each

thread). The bundles of a given arc are then sorted according to their

first vertex and concatenated in order to obtain the ordered list of regular

vertices for this arc. Hence, the O(n log n) operation count of the sort only

applies to the number of bundles, which is much lower than the number

of vertices in practice. At this point, to use the combination pass the join

tree needs to be augmented with the nodes of the split tree and vice-versa.

This step is straightforward since each vertex stores the identifier of the

arc it maps to, for both trees. This short step can be done in parallel, using

one task for each tree.

7.2.4 Parallel combination

For completeness we sketch here the main steps of the reference

algorithm [16] used to combine the join and split trees into the final contour

tree. According to this algorithm, the contour tree is created from the two

7.2. Task-based contour tree computations 105

merge trees by processing their leaves one by one, adding newly created

leaves in a queue until it is empty:

1. Add leaf nodes of T −(f) and T +(f) to a queue Q.

2. Pop the first node of Q and add its adjacent arc in the final contour

tree C(f) with its segmentation.

3. Remove the processed node from the two trees. If this creates a new

leaf node in the original merge tree, add this node into Q

4. If Q is not empty, repeat from 2.

During phase 2, the arc and its list of regular vertices (shown in

Figure 7.1d) are processed. The list of regular vertices is visited and all

vertices not already marked are marked with the new arc identifier in the

final tree. As a vertex is both in the join and split trees, each vertex will be

visited twice. In phase 3, when a node is deleted from a merge tree, three

situations may occur. First, if the node has one adjacent arc: remove the

node along with this adjacent arc. Second, if the node has one arc up and

one down: remove the node to create a new arc which is the concatenation

of the two previous ones. Finally in all other situations, the node is not

deleted yet: a future deletion will remove it in a future iteration.

We present here a new parallel algorithm to combine the join and the

split trees, which improves the reference algorithm [16]. First, we define

the notion of level of a node in a merge tree as the length of the shortest

monotone super-arc-path to its closest leaf. For example, in Figure 7.1

the blue nodes are the leaves and correspond to the level 0, while the

green ones at a distance of one arc correspond to the level 1. During the

combination, all the nodes and arcs at a common level can be processed

in arbitrary order. This corresponds to the ArcsCombine procedure in

Algorithm 12. We use this for parallelism, by allowing each node (and its

corresponding arc) to be processed in parallel. Moreover, processing an arc

consist of marking unvisited vertices with an identifier. This can be done in

parallel, using tasks, by processing contiguous chunks of regular vertices.

In summary, we have two nested levels of task-parallelism available during

the arc combination. First we can create tasks to process each arc, then we

can create tasks to process regular vertices of an arc in parallel. We use

this to create tasks with a large enough computation grain size, and to

avoid being constrained by the (possible) low number of arcs to process.

In our experimental setup, we choose 10, 000 vertices per task.These two

106 Chapter 7. Output Sensitive Task-based Contour Trees with Fibonacci Heaps

levels of parallelism are a novelty of our approach, improving both the

load balancing and the task computation grain size while also increasing

the parallelism degree. However, we note that two synchronizations are

required. First, the procedure needs to wait for all nodes of a given level to

be processed before going to the following level. Second, data races may

occur if the node deletion is not protected in the merge trees as several

nodes can be deleted along a same arc simultaneously. A critical section is

added around the corresponding deletions. In practice, since most of the

time is spent processing arcs and their segmentations, this lock does not

represent a performance bottleneck.

Finally, similarly to the merge tree, there is a point where all

the remaining work is a monotone super-arc-path tracing, when the

contribution of the join and split trees is reduced to one node each. We

can interrupt the combination and use the same trunk procedure than

described in subsection 6.2.5 for the merge tree to process the remaining

nodes, arcs and vertices in parallel. This trunk procedure (corresponding

to the TrunkCombine procedure in Algorithm 12) will indeed offer a

higher parallelism degree at the end of our combination algorithm. This

procedure ignores already processed vertices and project the unvisited

ones in the arcs of the remaining monotone super-arc-path. Note that

the size of this trunk does not depend on the task scheduling (as it is the

case for the merge tree), but is fixed by the topology of the join and split

trees.

7.3 Results

In this section we present performance results obtained on a workstation

with two Intel Xeon E5–2630 v3 CPUs (2.4 GHz, 8 CPU cores and 16

hardware threads each) and 64 GB of RAM. By default, parallel executions

will thus rely on 32 threads. For the sake of comparison, this setup is the

same than the one used for the FTM algorithm described in the previous

chapter. These results were performed with our VTK/OpenMP based C++

implementation (publicly available in TTK [88]) using g++ version 6.4.0

and OpenMP 4.5. This implementation (called Fibonacci Task-based Contour

tree, or FTC) was built as a TTK module. FTC uses TTK’s triangulation

data structure which supports both tetrahedral meshes and regular grids

by performing an implicit triangulation with no memory overhead for the

latter. For the Fibonacci heap, we used the implementation available in

Boost.

7.3. Results 107

Sequential Parallel (32 threads on 16 cores)

Data set |T (f)| Overall Sort Leaf search MT Combine Overall Speedup

Elevation 1 20.92 1.07 0.61 1.08 0 2.77 7.54

Ethane Diol 35 70.63 1.48 0.44 9.29 0.61 11.84 5.96

Boat 7,140 59.33 1.39 0.48 2.55 2.78 7.21 8.22

Combustion 50,586 76.00 1.37 0.49 5.22 1.57 8.66 8.76

Enzo 211,346 215.08 1.47 0.58 15.63 1.99 19.68 10.92

Ftle 350,602 73.42 1.46 0.56 3.32 1.73 7.08 10.36

Foot 528,494 83.44 1.15 0.77 10.06 3.01 14.99 5.56

Lobster 963,068 143.15 1.21 0.89 9.80 6.77 18.68 7.66

Table 7.1 – Contour tree computation times (in seconds) with FTC on the 5123

grid. Extremum detection is reported under the Leaf Search column. The concurrent

computation of the two merge trees is reported under the MT column. The parallel

combination of these trees is in the Combine column.

Figure 7.2 – FTC scalability on our 5123 regular grid data sets for (a) the join tree (from

FTM), (b) the split tree (from FTM), (c) the contour tree computation. The gray area

represents the usage of two threads per core with SMT (simultaneous multithreading).

Our tests have been performed using the same eight data sets than we

used for FTM (cf. section 6.4).

7.3.1 Performance analysis

Table 7.1 details execution times for our contour tree computation. As

for the merge tree, the sequential times vary across data sets due to the

output sensitivity of the algorithm. A single leaf search is performed for

both merge trees (corresponding to a 25% performance improvement for

this step over two separate executions, both in sequential and in parallel).

Regarding parallel executions, most of the time is spent computing

the join and the split trees as reported under the MT column. We

further investigate this step later with Table 7.2 and Figure 7.3. As for

the combination, it takes longer to compute for larger trees, with the

exception of the Boat data set having a particularly small trunk. This

illustrates the output sensitivity of our combination algorithm, as detailed

in Table 7.3. Our contour tree computation algorithm results in speedups

108 Chapter 7. Output Sensitive Task-based Contour Trees with Fibonacci Heaps

Data set JT then ST Task overlapping Overlap speedups

Elevation 2.25 1.73 1.30

Ethane Diol 12.80 10.14 1.26

Boat 3.90 3.11 1.25

Combustion 6.49 5.55 1.17

Enzo 21.34 17.69 1.21

Ftle 4.74 3.86 1.23

Foot 12.14 10.48 1.16

Lobster 14.45 10.81 1.34

Table 7.2 – Merge tree processing time during the parallel contour tree computation (5123

grid). JT then ST reports results obtained by separately computing first the join tree then

the split tree, leading to the successive execution of two distinct suboptimal sections. In

Task overlapping, the two trees are concurrently computed and overlap occurs in their

task scheduling.

varying between 5.56 and 10.92 in our test cases, with an average of 8.12

corresponding to an average parallel efficiency of 50.75%.

The evolution of these speedups as a function of the number of threads

is shown in Figure 7.2c. These speedups are consistent with those of the

merge tree (recalled Figure 7.2a and Figure 7.2b). Our algorithm benefits

from the dynamic task scheduling and its workload does not increase with

the number of threads. This also applies to our combination algorithm.

Therefore in theory, the more threads are available, the faster FTC should

compute the contour tree. In practice, this translates into monotonically

growing curves as shown in Figure 7.2. For the contour tree computation,

curves shown Figure 7.2c have lower slopes than those of the merge trees

(Figure 7.2a and Figure 7.2b). This is mainly due to the combination

procedure which has a smaller speedup than our merge tree procedure

as detailed below in Table 7.3.

Task overlapping. Table 7.2 presents speedups obtained by computing

both trees concurrently, allowing tasks to overlap in their scheduling

during the merge tree parallel computation, thanks to the complete

taskification of our implementation. This overlap reduces the size of

the suboptimal section, as shown in Figure 7.3. This strategy results

in speedups up to 1.34x (1.24x in average) compared to a successive

computation of the two trees.

Indeed, as mentioned in subsection 7.2.2, during the arc growth

computation, the number of remaining tasks becomes smaller than the

number of threads. As illustrated Figure 7.3 this leads to a suboptimal

7.3. Results 109

Figure 7.3 – Number of remaining tasks over time for a parallel execution on the Enzo

data set. Each step of the algorithm is shown with a distinct color. The suboptimal sections

are shown with areas stripped in gray. At the top, the join and split trees are computed

separately (join tree first). At the bottom, they are computed concurrently (hence, at a

given time, the number of remaining tasks is the sum of the overlapping curves).

110 Chapter 7. Output Sensitive Task-based Contour Trees with Fibonacci Heaps

Sequential Parallel Seq / parallel

Data set Ref no trunk trunk no trunk trunk FTC with trunk

Elevation 0 0 0 0 0 N.A.

Ethane Diol 3.23 3.82 6.40 2.51 0.54 5.98

Boat 3.11 3.99 3.60 2.63 2.64 1.17

Combustion 3.29 3.63 5.62 3.30 1.49 2.20

Enzo 4.72 4.52 7.03 4.18 1.90 2.48

Ftle 4.79 5.13 7.62 5.01 1.70 2.81

Foot 4.63 4.46 5.15 5.04 3.14 1.47

Lobster 7.11 7.22 7.46 8.33 6.72 1.05

Table 7.3 – Task-based combination procedure times for sequential and parallel executions

with and without the trunk processing, compared to the sequential combination procedure

(Ref, without tasks), on a 5123 grid. The 0 values for the Elevation data-set are due to the

filiform nature of its merge trees (which implies instantaneous combintations).

section, where some available threads are left idle. On this chart, the

suboptimal section is shown using the stripped gray area. If the join

and split trees are computed one after the other, (Figure 7.3, top chart)

we observe two distinct suboptimal sections: one for the join tree and

one for the split tree. In contrast, when the join and split trees are

computed simultaneously (Figure 7.3, bottom chart) the OpenMP runtime

can pick tasks among either trees, hence reducing the area of the stripped

section. Moreover, at the bottom chart of Figure 7.3, when the arc growth

procedure of the split tree finishes, that of the join tree is still processing.

The remaining steps of the split tree computation (trunk processing and

regular vertex segmentation) continue in the meantime, which contributes

to reducing the suboptimal section (blue and red columns in Figure 7.3).

At the end, this task overlapping strategy results in a smaller stripped area

and so in an improved parallel efficiency. In the same manner, the total

time of the leaf search plus merge tree computation reaches 21.34 seconds

when merge trees are computed one after the other and 17.69 seconds in

an overlapped merge trees execution (cf. Table 7.2).

Parallel Combination. For the combination step, we report in Table 7.3

comparisons between various versions of our task-based combination

and the reference sequential combination algorithm (without tasks, cf.

subsection 7.2.4) Note that our parallel algorithm executed sequentially,

without triggering the fast trunk procedure, lead to execution times similar

to those of the reference sequential algorithm [16]. According to this table,

enabling the trunk on a sequential execution of our new algorithm is

slower by 33% in average. We believe this is due to two reasons. First,

7.3. Results 111

Data set LT CF FTC LT / FTC CF / FTC

Elevation 10.84 8.15 2.82 3.83 2.88

Ethane Diol 21.54 17.73 6.61 3.25 2.67

Boat 21.10 16.63 5.68 3.71 2.92

Combustion 21.52 16.92 7.38 2.91 2.29

Enzo 27.79 19.71 19.33 1.43 1.01

Ftle 23.05 15.89 7.33 3.14 2.16

Foot 19.24 13.41 9.77 1.96 1.37

Lobster 23.39 51.32 17.04 1.37 3.01

Table 7.4 – Sequential contour tree computation times (in seconds) and ratios between

libtourtre (LT [23]), Contour Forests (CF [38]) and our current Fibonacci Task-based

Contour tree FTC, on a 2563 grid.

each regular vertex additionally checks if it should be added to the current

arc (subsection 7.2.4). Second, the trunk procedure may re-visit some

vertices already visited by the arc combination procedure, which results

in redundant visits (subsection 7.2.4). In our test cases, this redundant

work affects less than 1% of the total number of vertices. In contrast,

enabling the trunk procedure in a parallel execution is necessary to achieve

significant speedups, by an average factor of 1.98x in Table 7.3, with respect

to the sequential reference algorithm implemented in FTM. Indeed, in the

parallel combination algorithm the number of arcs at each level decreases,

inducing a decreasing trend in the number of vertices processed (and tasks

created) at each level, and leading to another suboptimal section. The

trunk procedure occurs at a point where the arcs combination is likely to

use a small number of tasks and replace it by a highly parallel processing,

thus improving parallel efficiency. Finally, according to these observations,

we choose to trigger the trunk processing only for parallel executions.

Comparison. For the contour tree computation we compare our

approach with the two public reference implementations computing the

augmented contour tree. Results are shown in Table 7.4. Due to

the important memory consumption of Contour Forests [38], we were

unable to run these tests on our 5123 regular grid. Results are reported

using a down-sampled 2563 grid. Our implementation in sequential

mode outperforms the two others for every data set. FTC is in average

2.70x faster than libtourtre [23] and 2.29x faster than Contour Forests.

In sequential, these two implementations correspond to the reference

algorithm [16]. As shown with the merge tree in section 6.4, our algorithm

112 Chapter 7. Output Sensitive Task-based Contour Trees with Fibonacci Heaps

Data set LT CF FTC LT / FTC CF / FTC

Elevation 5.00 2.33 0.40 12.31 5.73

Ethane Diol 8.95 4.54 1.23 7.24 3.67

Boat 8.24 4.40 0.92 8.93 4.77

Combustion 7.96 5.82 1.15 6.86 5.01

Enzo 12.18 8.92 2.87 4.23 3.09

Ftle 8.19 4.98 1.35 6.03 3.66

Foot 7.60 6.94 3.10 2.44 2.23

Lobster 8.40 9.02 4.66 1.80 1.93

Table 7.5 – Parallel contour tree computation times (in seconds) and ratios between

libtourtre (LT [23]), Contour Forests (CF [38]) and our current Fibonacci Task-based

Contour trees (FTC), on a 2563 grid.

is able in practice to process vertices faster thanks to the trunk step, hence

the observed improvement.

For the comparison in parallel, results are presented in Table 7.5. For

libtourtre, a naive parallelization is achieved by using the GNU parallel

sort and by computing the two merge trees concurrently. For contour

forests, we present the best time using the optimal number of threads

(not necessarily 32). Again, FTC is the fastest for all our test cases. It

outperforms libtourtre by an average factor of 6.23x (up to 8.93x for real-

life data sets), our naive parallelization of libtourtre having a maximum

speedup of 2.81x on 16 cores. FTC is also faster than Contour Forests by

a factor 3.76x, taking benefits from the dynamic task scheduling and from

the absence of additional work in parallel.

7.3.2 Limitations

As seen subsection 6.4.2, a limitation of the merge tree approach is

the presence of the suboptimal section. By launching the tasks of the

two merge trees concurrently (allowing them to overlap), the suboptimal

section is reduced (see Figure 7.3).

We have also considered using task priorities to maximize the task

overlapping, or to minimize the suboptimal sections. We have first studied

simple heuristics (based e.g. on the higher number of extrema) to choose

which tree will be computed with the high task priority (subsection 7.2.2).

However no simple heuristic led to the best choice for all our data sets. We

thus arbitrarily assign the high priority to the split tree tasks. Second, we

have also considered using task priorities to maximize the number of active

tasks at the end of the arc growth step. However this would likely reduce

the trunk size, which would lead to lower overall performance results since

7.3. Results 113

Figure 7.4 – Worst case data set with the initial scalar field (top left, blue to green), with

50% (top middle), and with 100% of randomness (top right). The red circle indicates

a saddle point induced by the Elevation scalar field, called hereafter “natural saddle”.

Vertices processed by the trunk procedure are shown in red (bottom).

Figure 7.5 – FTC contour tree computation time for 2 and 32 threads on our worst

case data set as the random part progresses form 0 to 100% (plain lines, left axis) and

percentage of vertices processed by the trunk procedure (dashed lines, right axis).

the trunk processing is two orders of magnitude faster than the arc growth

one (section 6.4). Finally, we have also tried using distinct task priorities

for the successive steps of our algorithm (and still for the two merge trees),

but to no avail.

As for FTM (subsection 6.4.2), we have created a worst case data set

in order to illustrate the performance impact of these suboptimal sections.

This data set is composed of only two large arcs as illustrated on the left

of Figure 7.4. As expected, the speedup of the join tree arc growth step on

this data set does not exceed 2, even when using 32 threads (results not

shown). Then we randomize this worst case data set gradually, starting

by the leaf side as illustrated in Figure 7.4 and report the corresponding

contour tree computation times with 2 and 32 threads in Figure 7.5. As

114 Chapter 7. Output Sensitive Task-based Contour Trees with Fibonacci Heaps

the random part progresses (from 0 to 90%) the execution time increases.

This is due to the output sensitive nature of contour tree algorithms, but

also to the smaller trunk size when the percentage of random vertices

increases. Figure 7.4 shows the vertices processed by the trunk procedure

(in red, bottom) for different percentages of randomness. Increases in the

level of randomness (from left to right) decrease the number of vertices

processed by the efficient trunk procedure. When the level of randomness

goes beyond the natural saddle of the data set (red circle, Figure 7.4), the

specifically designed 2-arc worst-case structure disappears and the data

set becomes similar to a fully random data set. This translates into better

performance results in Figure 7.5, this phenomena already emphasized in

FTM (subsection 6.4.2) shows once again that a random data set is not the

worst case scenario for our algorithm.

7.4 Conclusion

The approach presented here allows to efficiently compute the augmented

contour tree using the FTM algorithm presented chapter 6. This method

takes advantage of the task-based nature of FTM, overlapping tasks of

the two merge trees and thus reducing the suboptimal section size and

improving the parallel efficiencies. A new parallel algorithm for the

combination of the two merge trees is also presented, relying on tasks

for nested parallelism and using the highly parallel trunk procedure for

improved parallelism. The corresponding implementation offers 2.70x

speedups over a reference implementation in sequential and results in

an average speedup of 8.12x on our 16-core setup. To the best of our

knowledge, this is the fastest implementation to compute the augmented

merge and contour trees.

8Output Sensitive Task-based

Augmented Reeb Graphs with

Dynamic ST-Trees

Contents

8.1 Overview . 118

8.2 Local propagations for Reeb graph computations 119

8.2.1 Leaf search . 119

8.2.2 Local growth . 119

8.2.3 Critical vertex detection . 120

8.2.4 Saddle vertex handling . 120

8.2.5 Laziness mechanism for preimage graph 121

8.3 Task-based parallel Reeb graphs 122

8.3.1 Leaf search . 122

8.3.2 Local growth . 122

8.3.3 Saddle vertex handling . 123

8.4 Parallel dual sweep . 124

8.4.1 Leaf search . 124

8.4.2 Local growth . 124

8.4.3 Saddle vertex handling . 125

8.4.4 Post-processing for merged arcs 126

8.5 Results . 126

8.5.1 Performance analysis . 127

8.5.2 Comparisons . 128

8.5.3 Limitations . 131

8.6 Conclusion . 131

115

116 Chapter 8. Task-based Augmented Reeb Graphs with Dynamic ST-Trees

An output sensitive approach with task-based independent local

propagations is presented for the parallel computation of the

augmented Reeb graphs. This chapter presents a work in progress, which

has not been submitted yet.

8.1. Overview 117

In this chapter a new parallel algorithm to compute augmented Reeb

graphs is presented. We recall here that the input domain is not required to

be simply connected contrary to the case of the contour tree computation.

For this reason, Reeb graphs may contain loops (see Figure 8.1) and cannot

be computed using the 3-pass method [16]. The algorithm presented here

is based on independent local propagations maintaining a dynamic graph

data structure corresponding to the connected components of level sets,

similarly to the Parsa’s algorithm [60] presented subsubsection 3.3.2.2.

Results presented here are preliminary results.

This chapter presents the following contributions.

1. A local algorithm based on Fibonacci heaps: we present a new

algorithm for the computation of augmented Reeb graphs. This

approach revisits the sequential sweep algorithm presented by

Parsa [60] which offers the best time complexity among Reeb graph

algorithms. Our method is based on local sorting traversals, whose

results are progressively merged with the help of Fibonacci heaps.

2. An improved laziness mechanism for ST-Trees updates: we

improve the laziness mechanism presented in [60] by further

reducing the number of operations impacting the dynamic graph.

We update this graph only locally when a saddle vertex is

encountered. This results in a significant performance improvement

on most data sets.

3. Parallel augmented Reeb graphs: we show how the task runtime

environment of OpenMP can be used to implement a shared-

memory parallel version of the above algorithm. Our approach

benefits from the dynamic load balancing induced by the task

runtime, without introducing extra work when new threads are

added.

4. Parallel dual sweep: we present an improved version of the parallel

algorithm using two sweeps to increase the parallelism degree while

processing the data set. The first one uses a mesh traversal in

increasing order of scalar value while the second one relies on a

decreasing order. These sweeps stop when they cross each other.

118 Chapter 8. Task-based Augmented Reeb Graphs with Dynamic ST-Trees

Figure 8.1 – Overview of our augmented Reeb graph algorithm based on Fibonacci heaps

on a 2D toy elevation example. (a) The local minima of f (corresponding to leaves of

R(f)) are extracted. (b) The arc σm of each minimum is grown independently along

with its segmentation. These independents growths are achieved by progressively growing

the connected components of sub-level sets created at m, for increasing f values, and by

maintaining at each step a priority queue θm, implemented with a Fibonacci heap, which

stores vertex candidates for the next iteration (illustrated with disks colored according to

their starting minimum). These growths stop at join saddles as shown with the red one

in (b). (c) The blue growth on the right has visited a split saddle and is now handling

two arcs (orange and green) thanks to the dynamic graph implemented with a ST-Tree

data structure. (d) When this local growth reaches the left saddle, only the last growth

reaching a saddle is kept active. Here, the red one merges in the blue one. (d) The last

growth manages two arcs around the topological handle. (e) The augmented Reeb graph

of this toy example is complete.

8.1 Overview

An overview of our augmented Reeb graph computation algorithm is

presented Figure 8.1. The purpose of our algorithm, in addition to

construct the Reeb graph R(f), is to build the explicit segmentation map

φ, which maps each vertex v ∈ M to R(f). Our algorithm is based on the

sequential sweep approach of Parsa [60], described subsubsection 3.3.2.2

but uses independent local growths for the mesh traversal. First, given

a vertex v, the algorithm checks if v corresponds to a local minimum

(Figure 8.1a, subsection 8.2.1). Then, a second procedure is triggered: for

each local minimum vertex v, a local growth in charge of constructing

the augmented arc attached to v is executed, based on a sorted breadth-

first search traversal (Figure 8.1b, subsection 8.2.2). A dynamic graph data

structure corresponding to the growing level set components is maintained

during the growth. As described in subsubsection 3.3.2.2, this dynamic

graph allows to track both join and split saddles and to update the

Reeb graph data structure accordingly on the fly (Figure 8.1 b to e). To

ensure that the lower link of any processed vertex has always been visited,

only the last growth reaching a join saddle can continue the processing,

8.2. Local propagations for Reeb graph computations 119

after having processed the saddle with a third procedure described in

subsection 8.2.4.

8.2 Local propagations for Reeb graph computations

In this section, we present a new algorithm for the computation of

augmented Reeb graphs based on local growths. Our algorithm consists

in a sequence of procedures applied to each vertex, described in each of

the following sub-sections.

8.2.1 Leaf search

First, given a vertex v ∈ M, its lower link Lk−(v) is constructed. If it is

non-empty, v is not a local minimum and the procedure stops. Otherwise,

if it is empty, v is a local minimum (a leaf) and the growth procedure

described in the next sub-section is called.

8.2.2 Local growth

Given a local minimum m, a local growth procedure, named local growth

starting at m is called. The purpose of this procedure is to progressively

sweep all contiguous equivalence classes (section 2.3) from m to the next

join saddle s. In other words, this growth procedure will sweep the

connected components of sub-level set initiated in m while maintaining

a growing level set to construct the corresponding arcs of R(f) on the fly.

The sweep on the connected components of sub-level set is achieved by

implementing an ordered breadth-first search traversal of the vertices of

M initiated in m. At each step when a vertex v is processed, the neighbors

of v which have not already been visited are added to a priority queue

Qm (implemented as a Fibonacci heap, presented subsection 2.4.3) if not

already present in it. Next, the following visited vertex v′ is chosen as

the minimizer of f in Qm and the process is iterated until a join saddle

s is reached (subsection 8.2.4). At each step of this local growth, since

breadth-first search traversals grow connected components, we have the

guarantee, when visiting a vertex v, that all the edges of M connecting

visited vertices to visit candidates (stored in Qm) are indeed crossed by the

connected component, the contour, of f−1(f (v)) which contains v. Hence,

this sorted traversal indeed maintains connected components of level sets

at each iteration of the local sweep.

120 Chapter 8. Task-based Augmented Reeb Graphs with Dynamic ST-Trees

Figure 8.2 – On a 2D toy elevation example, priority queues (colored dots) and dynamic

graphs (plain circles) in the proximity of critical points are highlighted. First, on the left

and the top, the right growth has passed a split saddle. The blue priority queue contains

candidates vertices of both sides and handles two connected components of the preimage

graph shown, below the priority queue, in orange and green with its corresponding arcs.

Second, on the right and bottom, the left join saddle has been processed. The red and blue

priority queues have merged and a single growth is remaining, handling two arcs (purple

and green). The red and orange components of preimage graphs have also merged at the

join saddle.

During the sweep, the preimage graph Gr is maintained on each

vertex using the same procedure as the reference algorithm described in

subsubsection 3.3.2.2 (cf. Algorithm 6). In practice this preimage graph is

implemented as a ST-Tree data structure.

8.2.3 Critical vertex detection

Critical vertices are detected using the preimage graph as done in the

reference algorithm. This detection is described in subsubsection 3.3.2.2

(cf. Algorithm 5).

8.2.4 Saddle vertex handling

Join saddles. If the number of connected components of dynamic graph

in edges ending at v is greater than 1 before v has been processed, v is a

join saddle and the current growth stops (without updating the preimage

graph). Only the last local growth reaching the join saddle can process

it and continue (similarly to the FTM algorithm in chapter 6). The last

growth detection can be done by looking at edges in the lower star of a join

saddle s, if all these edges have already been visited, the current growth

is the last one visiting s and is in charge of carrying on the computation.

This situation is illustrated in Figure 8.2. The arcs of the Reeb graph in the

lower star of s are retrieved using the dynamic graph Gr and closed at s like

8.2. Local propagations for Reeb graph computations 121

in the reference algorithm (red and orange arcs in Figure 8.2a). Then the

dynamic graph is updated on s. Priority queues of local growths stopped

at s are merged with the current one before a new growth, initiated with

the resulting priority queue, is run. This merge is done in constant time,

thanks to the Fibonacci heap. In Figure 8.2, we can see the red priority

queue merging into the blue one at the join saddle.

Split saddles. If the number of connected components of dynamic graph

in edges starting at v is greater than 1 after v has been processed (and

so Gr updated), v is a split saddle. Like in the reference algorithm, the

arc ending here is closed (if v is not also a join saddle) and a new arc

is created for each component of dynamic graph in the upper star of v.

The current local growth continues the processing, handling both arcs at

a time. Figure 8.2a shows an example of a local growth that encountered

a split saddle (right, white circle): the orange and green arcs have been

created at the split saddle and a same growth (blue) handles both.

8.2.5 Laziness mechanism for preimage graph

In the reference algorithm, a “lazy insertion” optimization is described. In

order to make the implementation faster, additions of arcs in the dynamic

graph Gr are stored into a list. When a critical vertex v is encountered,

the stored operations are applied to Gr making it grow to the level set at

the value f (v). This way, additions and deletions of a same arc of the

preimage graph are discarded, without impacting Gr. This optimization

however requires to extract all saddles in a previous step, which can be

done by counting the number of connected components in the lower and

upper star of each vertex as described in subsection 2.2.1.

This optimization can be improved by breaking this global list of

operations into local ones. A naive way would be to have one insertion

list per local growth. This way, when a saddle vertex s is encountered,

instead of updating the preimage graph on the whole level set f (s) only the

sub-level set component containing s is updated. However, we found out

that we can improve this mechanism by subdividing the list of operations

further, having one insertion list per arc of the output graph R(f). This

way, when a local growth encounters a saddle vertex s, only the connected

component of level set containing s is updated, which corresponds to the

minimal amount of operations to maintain a valid preimage graph.

122 Chapter 8. Task-based Augmented Reeb Graphs with Dynamic ST-Trees

8.3 Task-based parallel Reeb graphs

The previous section introduced a new algorithm based on local growths

with Fibonacci heaps for the construction of augmented Reeb graphs.

Note that this algorithm enables to process the growths starting at the

minima and at the split saddles of f concurrently. The same remark

goes for the join saddles; however, a join saddle growth can only be

started after all of its lower link vertices have been visited. Such an

independence and synchronization among the numerous growths can be

straightforwardly parallelized thanks to the task parallel programming

paradigm. Also, note that such a split of the work load does not introduce

any supplementary computation. In the remainder, we will detail our task-

based implementation for the arc growth step, and also present how we

have parallelized the other steps.

At a technical level, our implementation starts with a global sort of

all the vertices according to their scalar value in parallel (using the STL

parallel sort). This allows all vertex comparisons to be done only by

comparing two indices, which is faster in practice than accessing the scalar

values, and which does not depend on the scalar type of the input data

set.

8.3.1 Leaf search

For each vertex v ∈ M, the extraction of its lower link Lk−(v) is a local

operation. This makes this step embarrassingly parallel and enables a

straightforward parallelization of the corresponding loop using OpenMP.

When the optimization described subsection 8.2.5 is enabled, both the

lower and the upper links of v are extracted in order to also detect saddle

vertices. We recall that some vertices may be locally saddles, but do not

imply changes in the number of connected components of level sets and

so end up being regular nodes in the output Reeb graph.

8.3.2 Local growth

Each local growth initiated at a leaf is independent from the others,

spreading locally until it finds a join saddle. Each local growth is

thus simply implemented as a task, starting at its previously extracted

leaf. Each growth manages its own connected components of dynamic

graph so the update on each vertex does not involve any data race.

Similarly, the list of edge deletions and insertions used for the laziness

8.3. Task-based parallel Reeb graphs 123

optimization described in subsection 8.2.5 only impacts the preimage

graph on components local to the current growth and so no data race

may occur.

8.3.3 Saddle vertex handling

The saddle vertex detection presented in subsection 8.2.4 can be

implemented in parallel with tasks. For regular vertices, split saddles

and maxima, only preimage graph components local to the growth are

involved. In case of join saddles, a growth can make connectivity queries

on preimage graph components local to another growth. The only relevant

information required in such a case is the presence of edges ending in v

which are not in the current preimage graph component. Such an edge can

be either unvisited (its corresponding growth is yet to come), or already

visited by another growth. In both case, the join saddle is detected when

the number of preimage graph components in the lower star is greater than

one. Such concurrent query is safely handled by our implementation.

When a join saddle s is detected, we also have to check if the current

growth is the last to reach s as described in subsection 8.2.4. For this,

we rely on the size of Lk−0 (s), noted |Lk−0 (s)| (number of vertices in the

lower link of s). We restrict this computation to vertices where it is

necessary and address synchronization issues as follows. Initially, a lower

link counter associated with s is set to −1. Each task t reaching s will

atomically decrement this counter by nt, the number of vertices in Lk−(s)

visited by t. Using here an OpenMP capture atomic operation, only the

first task reaching s will retrieve −1 as the initial value of s (before the

decrement). This first task will then retrieve |Lk−0 (s)| and will (atomically)

increment the counter by |Lk−0 (s)|+ 1. Since the sum over nt for all tasks

reaching s equals |Lk−0 (s)|, the task eventually setting the counter to 0

will be considered as the “last” one reaching s (note that it can also be

the one which retrieved |Lk−0 (s)|). We thus rely here only on lightweight

synchronizations, and avoid using a critical section.

The processing done by the last task reaching the join saddle, described

in subsection 8.2.4 only involves finished work. Arcs are closed, the

preimage graph updated and the priority queues merged without data

race.

124 Chapter 8. Task-based Augmented Reeb Graphs with Dynamic ST-Trees

8.4 Parallel dual sweep

In the parallel algorithm described section 8.3, the number of independent

growths (i.e. the number of tasks) corresponds initially to the number of

minima and strictly decreases as join saddles are encountered, eventually

reaching one. As a consequence, a substantial part of the data set (at least

all the region above the highest join saddle) may be processed sequentially,

using a single task and undermining parallel performance. In order to

reduce this effect, we propose a parallel dual sweep algorithm traversing

the data set simultaneously from minima (in increasing order of scalar

value) and from maxima (in decreasing order of scalar value). These two

sweeps use local growths as described previously and stop when they cross

each other.

Sweeping the data set using both minima and maxima leads to the

creation of a higher number of independent growths and allows to process

with a higher parallelism degree areas of the mesh that would have been

processed by a low number of tasks otherwise.

8.4.1 Leaf search

In order to launch growths from minima and maxima, both are extracted in

a single pass using the lower and upper link of each vertex. Local growths

initiated at maxima are symmetric to those starting at minima and traverse

the data set in decreasing order of scalar value. In practice, this step is also

in charge of extracting all saddles, as required by the laziness mechanism

described in subsection 8.2.5.

8.4.2 Local growth

The growths initiated at minima and those initiated at maxima will

eventually encounter each other. In the following, we describe how

to detect when two growths are crossing and how to merge the

corresponding arcs.

Growths mark vertices they visit in two arrays: one for growths

sweeping in increasing order of scalar value and one for growths sweeping

in decreasing order. This information is used by a local growth to check if

its current vertex has not already been visited by an opposite one. If so, the

current arc is marked as merged with the incoming arc from the opposite

growth (see Figure 8.3 (e)), and the current growth stops processing this

arc. A post-processing step described in subsection 8.4.4 is in charge of

8.4. Parallel dual sweep 125

computing the final arc, resulting from this merge. The candidate vertices

in Qm corresponding to a merged arc can be discarded. Atomic operations

are used to visit (and check) vertices in order to avoid data races.

Figure 8.3 – Evolution of the number of active arcs for the local propagation initiated at

the blue minimum. The green arc is computed by a decreasing growth and is only here to

show an example of arcs merging.

(a): initially, there is one active arc (blue).

(b): after the join, there is two arcs managed by this growth (purple and orange).

(c): at the split, one arc is closed (orange) and one opened (yellow), the number of active

arcs remains two.

(d): an arc (purple) is closed at a maximum and only one arc (yellow) remains active.

(e): the last arc (yellow) of the growth merges in an incoming arc (green), the growth has

no more active arc and stops.

During the traversal, each growth keeps a local counter of the number

of arcs it handles (see Figure 8.3). This counter is increased when new arcs

are created (Figure 8.3 (b)) and decreased when arcs are closed or merged

(Figures 8.3 (d) and (e)). For the last growth continuing at a join saddle,

its counter is incremented by the number of arcs each merged growth was

handling. If this counter reaches 0 during the computation, the current

growth has no more arc to manage and can stop (Figure 8.3 (e)).

8.4.3 Saddle vertex handling

At critical vertices, the nodes of the Reeb graph are created using a

global lock (implemented as a critical section in OpenMP) so that a given

node cannot be created simultaneously by an increasing growth and by a

decreasing one. As detailed in section 8.5, this global lock does not have a

significant impact on execution times in practice.

If a growth tries to create an already existing node, this growth is

crossing an opposite one (that created the node). Therefore, the current

growth does not propagate after the node as the corresponding region has

already been visited by an incoming growth.

126 Chapter 8. Task-based Augmented Reeb Graphs with Dynamic ST-Trees

Figure 8.4 – Two halves of an arc computed by opposite growths are merged into a single

arc. Regular vertices are updated accordingly. Blue-ish colors are used for arcs computed

by decreasing growth initiated at maxima, red-ish colors for increasing growth initiated

at minima.

8.4.4 Post-processing for merged arcs

When the dual sweep is performed in parallel, it is possible for two arcs

to merge in the middle of their construction (like in Figure 8.3). A post

processing step is in charge of computing the final arc from these two

parts and to update the regular vertices accordingly (see Figure 8.4). In

practice, this step takes a negligible time in our computations (less than

5% of the total time).

8.5 Results

In this section we present performance results obtained on a workstation

with two Intel Xeon E5-2630 v3 CPUs (2.4 GHz, 8 CPU cores and 16

hardware threads each) and 64 GB of RAM. By default, parallel executions

will thus rely on 32 threads. These results were performed with our

VTK/OpenMP based C++ implementation using g++ version 7.3.0 and

OpenMP 4.5. This implementation (called Fibonacci Task-based Reeb graph,

or FTR) was built as a TTK [88] module. For the Fibonacci heap [33],

we used the implementation available in Boost and for the dynamic

graph we have implemented our own ST-Tree [74] data structure (cf.

subsection 2.4.1).

Our tests have been performed using eight data sets from various

domains. The first one, Spring, is a synthetic closed surface data set

composed of four distinct springs with a radial elevation corresponding to

the x coordinate. The corresponding Reeb graph has 16 leaves each leading

to a large arc. Three other data sets (Dragon, BrakeDisc and Happy) are

8.5. Results 127

Sequential Parallel (32 threads on 16 cores)

|σ0| Data set |R(f)| Overall Sort Leaf search Sweep Overall Speedup

1728k 2D Spring 44 8.86 0.06 0.19 0.41 0.66 13.42

1798k 2D Dragon 1,681 14.66 0.06 0.19 2.45 2.70 5.43

8249k 2D BrakeDisc 419 119.84 0.35 0.85 28.85 30.05 3.99

1303k 2D Happy 15,599 7.15 0.04 0.15 2.64 2.83 2.53

4271k 3D Hand 2,238 122.46 0.79 2.04 22.74 25.57 4.79

5387k 3D Skull 27 230.64 1.04 2.50 64.68 68.22 3.38

2793k 3D Post 131 111.38 0.48 1.22 39.73 41.43 2.69

6596k 3D Mechanic 180 220.24 1.13 2.87 33.97 37.97 5.80

Table 8.1 – Running times (in seconds) of the different steps of FTR on our data sets. |σ0|
is the number of vertices in the mesh and |R(f)| the number of arcs in the output Reeb

graph. These executions use the dual sweep strategy.

also closed 2D surfaces and the last four (Hand, Skull, Post, Mechanic)

are 3-manifolds. Most of these data sets have been subdivided in order to

obtain significant execution times on our setup.

8.5.1 Performance analysis

Table 8.1 details the execution times and speedups of FTR on our data

sets. One can first see that the FTR sequential execution time does

not vary logarithmically with the size of the input mesh, as predicted

by the complexity of the algorithm. This denotes a sensitivity on the

output graph, which is common to most Reeb graph algorithms and

which is further accentuated by our lazy update mechanism. Moving to

parallel executions, the embarrassingly parallel leaf search offers very good

speedups (averaging at 18.4x). The key step for parallel performance is the

Sweep step performing the independents local growths. On all our data

sets this step is indeed the most time-consuming in parallel and offers an

average speedup of 5.2x. The almost ideal speedup (13.4x on 16 cores)

of the spring data set can be used as an evidence that neither the critical

section on node creation nor the atomic update on visited vertices prevent

good speedups.

In order to further investigate these speedups, we present in Figure 8.5

the scaling curves of our FTR implementation on our various data sets. The

first thing one can notice is the monotonous growth of these curves. This

means that more threads imply shorter (or similar) execution times. We

highlight that the maximum number of tasks created for the local growths

is equal to the number of leaves in the output graph, which implies that

the speedups of the sweep step is bounded by this number of leaves. In

128 Chapter 8. Task-based Augmented Reeb Graphs with Dynamic ST-Trees

Figure 8.5 – FTR scalability for our data sets. The gray area denotes using 2 threads per

core.

practice, tasks merge together at saddles and the number of available tasks

quickly decreases. This translates in reduced parallel efficiencies: our

speedups quickly reach 2 but seem to come to a plateau around 4 for

most data sets. This will be investigated further in subsection 8.5.3.

In parallel, the dynamic load balancing of the task runtime can

lead to different schedulings between multiple executions over a given

data set. However, as already demonstrated in the case of the merge

tree in section 6.4, this kind of task-based approaches offers consistent

computation times between executions. In our experiments, the average

standard deviation obtained using 10 runs on our data sets is 0.8 second

for an average time of 28.0 seconds.

8.5.2 Comparisons

In order to evaluate the performance gains obtained by our improved

laziness mechanism for the preimage graph update (introduced

subsection 8.2.5), we present in Table 8.2 execution times with various

degrees of laziness, using the single sweep strategy and sequential

executions. In the initial column, results are reported when no laziness

mechanism is used. The naive column presents results when one list of

insertion per local growth is used. Finally the improved column reports

results obtained with our improved laziness mechanism, having one list

8.5. Results 129

Times Gain/initial

Data set inital naive improved naive improved

2D Spring 38.63 8.58 5.81 4.50 6.65

2D Dragon 217.99 27.76 11.29 7.85 19.31

2D BrakeDisc 3630.76 586.49 118.15 6.19 30.73

2D Happy 70.00 7.34 4.33 9.54 16.17

3D Hand 78.23 93.08 76.23 0.84 1.03

3D Skull 248.14 209.67 159.49 1.18 1.56

3D Post 121.77 149.40 77.39 0.81 1.57

3D Mechanic 177.43 167.22 144.16 1.06 1.23

Table 8.2 – Execution times (in seconds) of the sweep procedure using no lazyness

(initial), a naive version with one list per propagation or our improved version using one

list per arc. These tests are run using sequential executions of the single sweep approach.

Data set Single sweep Dual sweep Speedup

Spring 1.21 0.66 1.83

Dragon 9.43 2.70 3.49

BrakeDisc 119.10 30.05 3.96

Happy 5.14 2.83 1.82

Hand 57.71 25.57 2.26

Skull 146.64 68.22 2.15

Post 70.95 41.43 1.71

Mechanic 97.62 37.97 2.57

Table 8.3 – Comparison of execution times (in seconds) between the single sweep and

the dual sweep strategies (presented respectively in sections 8.3 and 8.4) during parallel

executions.

per arc of the output graph. These optimizations are especially efficient

on 2D data sets, improving execution times by an average factor of 7.02x

for the naive version and an average factor of 18.22x for our improved

mechanism. On our 3D data sets, the naive version failed to expedite

the computation, leading to an average speedup of 0.97x, however our

improved mechanism still manages to improve the computation time by

an average factor of 1.35x.

The dual sweep method introduced in section 8.4 is aimed at improving

the parallel efficiency of our approach. The gains obtained by this dual

sweep over a single one for a parallel execution are presented in Table 8.3.

In this array, complete execution times are reported as the dual sweep

method impacts both the leaf extraction and the sweep steps. Starting

from both minima and maxima leads to a significantly higher number of

tasks and allows to process efficiently in parallel regions of the mesh that

would have been processed by a low number of tasks using the single

sweep method. The double sweep mechanism hence leads to an average

speedup of 2.5x over the single sweep version.

130 Chapter 8. Task-based Augmented Reeb Graphs with Dynamic ST-Trees

Times FTR Speedups

Data set Sweep FTR (1) FTR (4) FTR (32) (1) (4) (32)

2D Spring 23.08 8.86 2.56 0.66 2.60 9.01 34.97

2D Dragon 16.20 14.66 3.78 2.70 1.11 4.29 6.0

2D BrakeDisc 69.71 119.84 33.80 30.05 0.58 2.06 2.32

2D Happy 12.63 7.15 4.13 2.83 1.77 3.06 4.46

3D Hand 147.17 122.46 40.97 25.57 1.20 3.59 5.76

3D Skull 236.51 230.64 94.88 68.22 1.03 2.49 3.47

3D Post 160.00 111.38 47.25 41.43 1.44 3.39 3.86

3D Mechanic 224.93 220.24 59.50 37.97 1.02 3.78 5.92

Table 8.4 – Reeb graph computation times (in seconds) and ratios between the original

Parsa’s Sweep algorithm (cf. subsubsection 3.3.2.2) and our Fibonnaci Task-based Reeb

graph (FTR) implementation using 1, 4 and 32 threads.

Additionally, the dual sweep approach implies that growths initiated at

minima and those initiated at maxima can cross each others, visiting some

vertices of the mesh twice (along connected components of level sets). Such

a situation occurs on crossing arcs and in practice the work overhead is

negligible: the average number of vertices visited twice is about 0.4% of

the total number of vertices in average in our test cases.

Finally, in order to better evaluate the FTR performance, we compare

our approach to the sequential reference implementation of the sweep

algorithm by Parsa [60] in Table 8.2. For 3D data sets, the implementation

of this algorithm (kindly provided by the authors) requires the explicit

construction of the 2-skeleton of the mesh as a pre-process, whose

computation times have not been reported in Table 8.2. Additionally,

even if the implementation visits all the vertices of the mesh, it results

in a non augmented graph, without the segmentation information. This

implementation offers similar performance in sequential than our FTR

algorithm. However, even with 4 threads, as we can find in any present-

day setup, our implementation offers substantial performance gains (3.96x

faster in average). Using 16 cores leads to slightly better performance,

speeding up the computation by a factor of 8.35x in average (4.54x

without Spring). In terms of memory, the footprint of the implementation

of the reference sequential algorithm is higher than the one of our

implementation. Internally, it pre-sorts some simplices of the 2-skeleton in

arrays: vertices of each edge, edges of each triangle, adjacent triangles and

edges in the neighborhood of each vertex. These arrays are used during the

sweep to retrieve already sorted vertices (speeding up the computation).

8.6. Conclusion 131

Figure 8.6 – Number of remaining tasks throughout time. This chart is cropped at 16 to

highlight the suboptimal section on our 16-core setup.

8.5.3 Limitations

During the sweep procedure, the number of available tasks decreases

through time, as local propagations merge at join saddles. There is a

time during the execution where the number of available tasks eventually

becomes lower than the number of threads (cf. Figure 8.6). During

this suboptimal section, the computational power of our multi-core CPU

is not fully exploited, undermining the parallel efficiency of the approach.

Using the dual sweep approach and depending on the data set, there is a

substantial amount of time when the number of available tasks is 2. This

is the reason why our approach seems to achieve almost ideal speedups

when using two threads on Figure 8.5, but fails to deliver good parallel

efficiencies (except for spring) when more threads are used.

8.6 Conclusion

The method presented here is a parallel approach based on the sequential

algorithm with the best time complexity. The resulting implementation is

the fastest to compute augmented Reeb graphs using only four threads.

However, speedups are bounded by around 5 for most data sets. This is

partly due to the presence of large suboptimal sections where we do not

fully exploit all available cores. Contrary to our merge tree algorithm,

there is also no trunk step to expedite these suboptimal sections.

Part III

Exploitation

133

9Applications

Contents

9.1 Persistence . 137

9.2 Merge Trees . 138

9.3 Contour Trees . 140

9.4 Reeb Graphs . 140

9.5 Real-case analysis . 142

9.5.1 IEEE Scientific Visualization Contest 2016 142

9.5.2 Input data sets . 142

9.5.3 Analysis . 144

9.6 Conclusion . 151

We present here some applications aimed to illustrate the utility

of level-set based topological abstractions for data analysis and

exploration. A real case analysis presented at the IEEE Scientific

Visualization contest [31] is also detailed.

135

9.1. Persistence 137

Figure 9.1 – Persistence diagrams can be computed from the contour tree by pairing

leaves with saddles hierarchically using the Elder’s rule [29].

(0): a join tree with arcs colored according to the persistence pairs.

(1): the persistence diagram corresponding to this join tree.

(2): the persistence curve corresponding to this join tree. The three persistences are shown

with dotted lines.

The analyses presented in the following are aimed at illustrating the

utility of level set based topological abstractions. These results have

been obtained using TTK [88] and can be reproduced using data sets

available on the TTK website [88]. Merge and contour tree examples

follow a pipeline analogous to one used in the flexible isosurface [18] and

TopoAngler [12] frameworks.

9.1 Persistence

Persistence diagrams and persistence curves [28] are powerful tools to

measure the number and robustness of features on a data set. For low

dimensions, these diagrams can be computed by using the hierarchy

induced by merge trees (cf. Figure 9.1). Here, given a simple join tree

(0) the persistence diagram (1) is obtained by sweeping the tree structure

and tracking component birth and death. When arcs merge together only

the oldest component is kept alive, as stipulated by the Elder’s rule [29].

The scalar range of pairs thus defined is named persistence. The number

of remaining pairs depending on a persistence threshold results in the

persistence curve (shown Figure 9.1 (2)). The persistence diagram and

persistence curve filters in TTK are based on FTM (chapter 6) since 2017.

In Figure 9.2, we present a classical example in fluid dynamics, the

von Kármán vortex street. In this data set, vortices are created by a

body disrupting a stream of liquid and studied using the rotational of

the z-coordinate. The corresponding persistence curve, shown at the

top right, can be subdivided in three parts. First, for low persistence

138 Chapter 9. Applications

Figure 9.2 – A two dimensional data set representing a von Kármán vortex street: a fluid

stream disrupted by a blunt body. The scalar field is the rotational of the z-coordinate

(normal to the plane of the data set), commonly used to study vortices. On the left, spheres

are used to emphasize the main vortices. In the center, the data set is wrapped using the

scalar value to show the vortices. On the right, the persistence curve and diagram of this

data set are shown.

values, the number of pairs strictly decreases. These pairs have a small

persistence, thus correspond to the noise. Secondly, we can see a plateau

(for persistence values ranging from 0.002 to 0.02) which corresponds to

the smallest vortices emphasized with the spheres. Finally, for higher

persistence values even the pairs corresponding to these vortices are

removed and the curve shows a new decrease to 0. The presence of a

plateau between the noise and the features is a common phenomenon,

which is commonly used to drive topological simplification [87].

9.2 Merge Trees

In the following, we will see how the merge tree segmentation can be

applied on medical data sets, using Figure 9.3 (0) which shows a 3D scan

of a human foot. The considered scalar field is the matter density, different

densities corresponding to different tissues (high density indicating bones,

medium density skin and lower density air). In this case, we are interested

in extracting and identifying the bones of the foot, areas of high density.

Using a split tree, we are able to extract regions attached to local maxima,

corresponding to the segmentation of the leaf arcs. However, the split tree

9.2. Merge Trees 139

Figure 9.3 – Medical scan of a human foot on which the scalar field is the density. We

use the split tree segmentation to extract areas of high density corresponding to bones.

(0) One contour corresponding to the skin of the foot. (1) The different bones highlighted

using the segmentation of the deepest arcs of the tree. (2) Using topological simplification

enables us to identify bones belonging to a common toe.

of the initial data set contains 192, 375 leaves as small “bumps” due to

noise in the data set lead to many local maxima. In order to reduce this

noise, we pre-process the data using a topological simplification [87] based

on persistent homology [29]. The persistence diagram and persistence

curves allow to control this simplification in order to keep only the desired

number of features. In Figure 9.3 (1), we present the segmentation obtained

by the leaf arcs of the split tree when only the 10 most important leaves

are kept. With this level of simplification, the resulting segmentation

extracts the bone area successfully. In Figure 9.3 (2), only the five more

robust leaves are kept and the resulting segmentation corresponds to

the five toes of the foot. Thanks to the merge tree algorithms and

implementations presented in this thesis, this exploration can be done in

a handful of seconds on our setup, even for 5123 grids, which greatly

improves interactivity in visual exploration tasks.

Another example emphasizing the interest of merge tree segmentation

is shown in Figure 9.4. This data set is a chemical one, representing the

electronic density of an Ethylene Glycol molecule. In (0) the initial contour

tree of the data set is shown. Opaque regions are areas corresponding to

leaf arc segmentations. In this data set, each maximum is an atom, the

smallest ones being hydrogen. Saddles of the electron density (red spheres

in the figure) are located in configurations at the boundary between

multiple atom influence zones. These correspond to covalent bounds.

Here, we are not interested in areas attached to minima so in (1), only the

split tree is considered. Topological simplification as previously described

is also used, so each region corresponds to an atom group: hydrogen atoms

140 Chapter 9. Applications

Figure 9.4 – Molecular data set (representing an Ethylene Glycol molecule) on which the

scalar value is the electronic density. In (0), the full contour tree is shown and in (1), the

simplified split tree allows to extract regions containing carbon and oxygen atoms (linked

to hydrogen ones).

are merged with the atom they are linked to. Such a segmentation enables

quantitative analysis of these features (for instance volume measurement).

9.3 Contour Trees

For the contour tree algorithm, we present the topological analysis of

the result of an Enzo simulation in Figure 9.5. This data set contains

cosmology simulation results, the scalar field being the density of matter

on each vertex. Such a simulation is used in order to better understand the

growth of the universe, as well as the dark matter distribution. Once again,

the initial data set (0) is too noisy for a human exploration so topological

simplification is used. This result in (1), where regions attached to maxima

form the cosmic web, with areas of high density linked together by long

filaments and surrounded by large zones of lower density named voids.

These two types of regions correspond to leaf arcs of the contour tree, the

core structure of the cosmic web is shown using opaque areas in (1).

9.4 Reeb Graphs

To emphasize another use of level set based abstractions, we will move

away from scientific data analysis and use the Reeb graph to extract the

skeleton of a 3D mesh. Its ability to track shapes has already been used in

automatic rigging [7, 66], in the context of 3D animation. In Figure 9.6, we

present a mesh of a dancer (0). Using a distance field from the center of

9.4. Reeb Graphs 141

Figure 9.5 – The Enzo data set is a regular grid on which the defined scalar field is the

matter density, obtained from a universe simulation. This type of data set is used to

analyze the cosmic web. In (0), the full contour tree of the data set is shown, leading to

challenging exploration. In (1) topological simplification is used and the core structure of

the cosmic web is shown using opaque areas.

Figure 9.6 – (1) Skeleton and (2) segmentation of the mesh (0) of a dancer, using a

distance field from the center of the mesh.

142 Chapter 9. Applications

the mesh, the corresponding Reeb graph is able to accurately describe the

shape of the dancer, each limb being represented by a distinct arc of the

graph (1). The corresponding segmentation is shown in (2).

9.5 Real-case analysis

In the following, we present a real-case analysis where level set based

abstractions (and more precisely persistence diagrams) have been used.

The amount of data to explore in this use case was large (several terabytes)

and so efficient approaches were required in order to process all the data in

the given time frame. In particular, the pipeline presented in the following

makes use of the persistence diagram, which relies on our Fibonacci Task-

based Merge tree presented in chapter 6. This section is also used to show

a full analysis pipeline.

9.5.1 IEEE Scientific Visualization Contest 2016

In 2016, the IEEE “Sci Viz” contest [2] focused on a phenomenon studied

in material science, called viscous fingering. Our participation led to two

publications: the first one is our submission for the contest [31] for which

we received an honorable mention. The second one [51] combine our work

with the results of the winning team. Their submission uses the Reeb

graph segmentation to identify fingers and to track them, along with an

interactive tracking graph to represent their evolutions through time. The

approach presented in the following only relies on our submission.

During the contest, several tasks were given to the participants. We

had to create a framework allowing a (near-)interactive visualization and

browsing of the data. Fingers had to be identified at each time step and

we had to be able to track them through time in order to make statistics

about their evolutions (as individuals and all together).

9.5.2 Input data sets

Viscous fingering is an instability phenomenon which occurs in porous

media at the interface between two fluids of distinct viscosity. In particular,

it appears when a less viscous fluid is injected within a more viscous

one. It intervenes in many fields of science and engineering, including

geology, hydrology as well as in oil industry where it plays a key role in

the extraction process.

9.5. Real-case analysis 143

Figure 9.7 – Nine time-steps of a same run on the simulation of continuously dissolving

salt and water after we have extracted and identified fingers created by the viscous

fingering phenomenon. Data sets are shown upside down to reduce occlusion.

144 Chapter 9. Applications

This phenomenon is characterized by the formation of a characteristic

pattern, called viscous fingers (Figure 9.7). In particular, the geometrical

evolution of these patterns provides good indications about the evolution

of the penetration of the less viscous fluid. Thus, capturing, tracking and

analyzing the geometry of viscous fingers is of first importance for the

understanding of the penetration process.

Viscous fingering can be decomposed into three major regimes. First,

the launch: initially, the interface between the two fluids is approximately

planar. Then, the less viscous fluid starts to penetrate the more viscous

one when sufficient injection force is applied to it. Viscous fingers of low

and uniform amplitude start to appear in this phase as shown Figures 9.7

(0) and 9.7 (1). Then, the expansion phase occurs: once the reaction

is launched, the difference of pressure between the two fluids tends to

favor an acceleration of the penetration speed for the areas where the

less viscous fluid penetrates the most the more viscous fluid. In other

words, larger fingers will tend accelerate and grow faster than smaller

ones, cf. Figures 9.7 (3) to (8). Optionally, a termination phase: depending

on the characteristics of the media and of the fluids, the two fluids can

eventually mix together in a termination state, where the finger pattern

has completely disappeared, after the merge of the large fingers.

In our case, the simulation studies viscous fingering in the context

of the mix of continuously dissolving salt and water. As detailed

in [2], the simulation runs are given as time-varying particle data-sets

representing salt concentration. Due to the stochastic nature of the

simulation algorithm, several runs are considered, at distinct resolutions.

This yields the following challenges:

1. The overall volume of generated data prevents a fast and easy

analysis, visualization and interpretation of the phenomenon.

2. The stochastic nature of the simulation code raises the question of

the stability of the fingering process across several runs, which needs

to be analyzed.

3. The multi-resolution nature of the data raises the question of the

convergence of the simulation code, which also needs to be analyzed.

9.5.3 Analysis

In this section, we present an interactive framework for the analysis and

visualization of ensembles of viscous fingers. In particular, we show

9.5. Real-case analysis 145

Figure 9.8 – On a single time-frame, (0) the initial data sets composed of independent

vertices and (1) the result after our Shepard’s method has been used.

how to extend and adapt to viscous fingering the data analysis pipeline

proposed by Laney et al. [48] in the context of the study of the Rayleigh

Taylor instability. Finally we report the findings we made using our data

analysis framework.

9.5.3.1 Data Pre-processing

The input data is given by three sets of simulation runs (one set per

resolution). Each run is represented by time-varying particles carrying salt

concentration. We pre-process each time-step by computing a volumetric

interpolation of the particle data onto a 1283 regular grid, as shown in

Figure 9.8. This results in a tetrahedral mesh that will be the input to our

data analysis pipeline (cf. subsubsection 9.5.3.2).

9.5.3.2 Data Analysis Pipeline

Our data analysis pipeline adapts the approach of Laney et al. [48] to

viscous fingering. It is composed of 5 steps, illustrated in Figure 9.9, which

are described in the following.

1. Fluid discrimination per time-step: For each time step we separate the

dissolving salt from the ambient water. Given the piecewise linear scalar

field fc representing salt concentration and defined on the tetrahedral

meshM representing our input domain, we identify as dissolving salt the

sur-level set L+ of fc at the isovalue isalt : f−1
+ (isalt) (cf. section 2.2). From

146 Chapter 9. Applications

Figure 9.9 – Overview of our topological data analysis pipeline. (0) The dissolving salt

is first isolated from the ambient water by considering the largest connected component

(noted S , in gray) of the sur-level set of salt concentration. (1) Finger tips are identified

as local maxima (small light green spheres) of the geodesic distance fd : S → R (color

gradient and level lines) from the top of the cylinder. Restricting the identification to

the most persistent maxima (larger dark green spheres) enables the identification of the

most prominent fingers. (2) Geodesic distance field from the most persistent maxima

ft : S → R. (d) The Morse complex of ft decomposes S into fingers. (3) Each finger

at time step t is connected to the finger at time step t + 1 which maximizes the volume

of their intersection. (4) An example finger is shown in yellow while the corresponding

maximizer at time step t + 1 is shown in transparent black. Data-sets are shown upside

down to reduce occlusion.

9.5. Real-case analysis 147

our experience, we found that an isovalue isalt of 10 gave consistent results

along time steps and across runs. Finally, to ignore spurious bubbles,

we only consider in the remainder the largest connected component of

L+(isalt), that we note S (Figure 9.9(0)).

2. Finger identification per time-step: Given the geometry of the

dissolving salt S , we aim at extracting in a robust manner the tips of

the viscous fingers. To achieve this, we consider as finger tips the points

which are locally the furthest away from the top of the domain, where

salt is continuously added. Intuitively, this corresponds to salt particles

which traveled the furthest from their origin. As shown in Figure 9.9(1)

(small light green spheres), this strategy identifies as finger tip even slight

bumps in the geometry. Thus, we employ persistent homology [29] (using

the persistence diagram introduced section 9.1) to filter the maxima. In

particular, we found in practice that preserving maxima whose persistence

is higher than 10% of the function span provides consistent results along

time-steps and across runs (Figure 9.9(1), large dark green spheres). Next,

given the list of finger tips T previously identified, we compute for

each vertex of S , the geodesic distance to its closest finger tip, noted

ft : S → R+ (Figure 9.9(2)). We finally identify as viscous fingers each

cell of the Morse complex of ft (a topological abstraction based on the

gradient, see [22] and [40]). The result is shown Figure 9.9(3).

3. Finger tracking per run: Once fingers have been extracted on a

per time-step basis, we proceed to their tracking through time with an

approach similar to topology based techniques [15, 76]. In particular, for

each finger at a time-step t, we connect it to the finger at time-step t + 1

which maximizes the volume of their intersection (Figure 9.9(4)).

4. Quantitative analysis per run: Once the fingers have been tracked

through time, various time-varying statistics are computed on a per

finger basis, such as the evolution of its volume for instance (see

subsubsection 9.5.3.3 for a comprehensive list of measures). Each of these

statistics is shown to the users as a 1D plot over time with a color code

matching that of the segmentation in the 3D view (cf. Figure 9.10).

5. Comparative analysis across runs: Our user interface also offers

comparative analysis capabilities by supporting the side by side display

148 Chapter 9. Applications

Figure 9.10 – Screen-shot of the user interface to our data-analysis framework (intra-run

mode). Users can select from the bottom-left list the per-finger, time-varying statistics to

visualize on the right side of the screen (white background). There, the vertical black line

indicates the time-step being currently visualized in the linked 3D view (center). Users

can navigate through time steps with the time navigation buttons (top, center). Various

per-finger statistics can be displayed in the 3D view by pointing on a finger with the

cursor (dark rectangle).

Figure 9.11 – Screen-shot of the user interface to our data-analysis framework

(comparative inter-run mode). Users can select from the bottom-left list the global time-

varying statistics to visualize on the right side of the screen. In this case, the evolution

of the number of fingers, of the fingers’ volume, of average salt concentration and average

velocity are shown for the runs #1 and #3 of the lowest particle resolution. There, the

vertical black line indicates the time-step being currently visualized in the linked 3D

views (center top: run #3, center bottom: run #1). Users can navigate through time steps

with the time navigation buttons (top, center).

9.5. Real-case analysis 149

of multiple time-varying global statistics (one per run), as well as 3D views

that are linked to each of the time-varying statistics windows (Figure 9.11).

9.5.3.3 Results

This section reports the findings we made using our data analysis

framework. In particular, we first focus our analysis on the 22 runs at high

resolution (1.7M particles, green curves in Figure 9.12). The comparative

analysis across resolutions (544k and 194k particles) is discussed in the

Inter-resolution analysis

Regime identification: In this paragraph, we first try to corroborate the

decomposition of the fingering process in three regimes (subsection 9.5.2).

To do so, we will first inspect summary views of global statistics (cf. the

Comparative analysis across runs step in subsubsection 9.5.3.2) for all

runs. We first analyze the evolution of the descent of the dissolving salt,

by looking at the Minimum Z-Coordinate (in Figure 9.12) of S through time:

high resolution are shown using green curves. The three regimes identified

in subsection 9.5.2 are clearly visible: the launch phase for time steps 0 to

10, the dissolving salt remains at the top of the domain; then the expansion

phase from time steps 10 to 50, the dissolving salt traverses the domain

almost linearly; finally the termination step occurs between time steps 50

and 60.

Characteristics of the expansion regime: In this paragraph, we try to

corroborate the description of the fingering process in the expansion

regime (subsection 9.5.2), where larger fingers are supposed to grow

faster, at the expense of smaller ones, which they eventually absorb. To

do so, we first inspect the evolution of the Finger Number through time

(in Figure 9.12). This plot confirms that the number of fingers globally

decreases for all runs, with a consistent decrease rate across runs, to

eventually tend to a small number (typically five or less) towards the end

of the expansion regime.

Inter-resolution analysis: In this paragraph, we study the impact of

the input data particle resolution on the characterization of the viscous

fingering process. To do so, we visualize global summarizes provided

by global time-varying statistics for all runs in Figure 9.12. In particular,

each of the three resolutions is represented with a distinct color. These

three sets of curves exhibit similar global behaviors: a salt descent

150 Chapter 9. Applications

Figure 9.12 – Global statistics as a function of time for the 22 high-res (green curves),

23 medium-res (red curves) and 48 low-res (blue curves) runs. These three sets of curves

exhibit similar global behaviors: a salt descent according to a linear slope (Minimum Z-

Coordinate), a linear decrease of salt concentration in the expansion regime (Dissolving

Salt Concentration) and a linear increase in both volume (Dissolving Salt Volume)

and velocity (Average Finger Velocity). However, each resolution can be easily

distinguished from the others as curves of the same color tend to cluster, with only few

overlap with the other colors. This indicates clear distinctions between resolutions. The

Minimum Z-Coordinate of the dissolving salt S indicates clearly distinct descent rates

for the deepest fingers (different slopes). Here lower resolutions hit the bottom of the

domain faster. The Average Salt Concentration of the dissolving salt S indicates clearly

distinct initial salt concentration levels, with a slight delay for the start of the expansion

regime (local maximum of concentration) as the resolution decreases. The Dissolving

Salt Volume S also indicates different growth rates (lower resolutions grow faster), as

suggested by the Minimum Z-Coordinate. The Average Finger Velocity within the

dissolving salt S also indicates different average speeds, confirming the increase in speed

for lower resolutions. The evolution of the Finger Number indicates a clear distinction

for the lowest resolution in the early time-steps. However, this increase is not confirmed in

the expansion regime (typically around time-step 25), where fewer fingers are extracted as

the resolution decreases. In conclusion, runs of distinct resolutions exhibit similar global

behavior, however with later expansion starts, faster penetration rates and fewer viscous

fingers as the resolution decreases. This comparative study shows that the similarity to

the highest resolution runs (according to the above criteria) decreases with the resolution,

suggesting a convergence of the simulation code for increasing resolutions.

9.6. Conclusion 151

according to a linear slope in Minimum Z-Coordinate, a linear decrease of

salt concentration in the expansion regime in Dissolving Salt Concentration

and a linear increase in both volume and velocity in Dissolving Salt

Volume and Average Finger Velocity. However, each resolution can be

easily distinguished from the others as curves of the same color tend to

cluster, with only few overlap with the other colors. This indicates clear

distinctions between resolutions.

9.6 Conclusion

For all the applications presented in this chapter, the time to wait for a

result to be available harms the user experience. We have already seen

how a 10-fold speedup can improve the interactivity in chapter 4 and we

have presented here some examples where our efficient parallel algorithms

can be used to transform a tedious wait into an interactive exploration.

This motivation for interactivity has also been illustrated by the “Sci Viz”

contest, for which interactivity was the first challenge participants were

asked to address.

10Conclusion

In this manuscript, we have presented a framework for the efficient

parallel computation of level set based topological abstractions on multi-

core shared memory workstations. The approaches presented here are

generic, both in terms of input and output. Input meshes can be any

dimensional triangulations. In practice, any mesh can be easily converted

into a triangular one. The output of our algorithms are augmented

abstractions, containing all the segmentation information and allowing the

full extent of level set based analysis.

The major contribution of this manuscript resides in the use of the task

mechanism to compute, in parallel, augmented level set based topological

abstractions. We have revisited efficient sequential algorithms [16, 60]

relying on a global view of the data and we have designed new approaches

based on independent local propagations expressed as parallel tasks.

These propagations, based on sorted breadth-first searches, rely on the

Fibonacci heap data structure in order to traverse the mesh with the same

complexity as the original sweep traversal. Resulting algorithms can be

executed in parallel with no overhead, and benefit from the dynamic load

balancing induced by the task runtime. Task-based approaches presented

for the augmented merge and contour tree computations are, in practice,

more than twice as fast in sequential as the traditional algorithm [16]

introduced in 2000. This speedup is due to an optimization (named the

trunk), where the last growth processing arcs forming a monotone super-

arc-path ending at the root of the tree is replaced by a procedure having

a linear time complexity. Additionally, these approaches offer significant

speedups on our 16-core setup, with an average speedup of 9.29x for our

merge tree algorithm and of 8.12x for our contour tree algorithm.

From a user perspective, this framework requires no knowledge of the

underlying algorithms as more threads always imply faster computations.

In practice, the level set based abstractions presented in this manuscript

153

154 Chapter 10. Conclusion

are of great interest for scientists and their parallelization allows for new

interactive applications [12, 90, 92].

Finally, this work is part of the TTK [88] open-source library, a

software collection for topological data analysis providing generic, efficient

and robust implementations of key algorithms in this domain. As this

framework is open-source, it is freely available to any end user (students,

engineers, researchers) and also to any developer, whom contributions are

welcome. The free availability of this work is also a way to help researchers

reproduce our results for comparison. Thanks to TTK, this work is also

available in VTK [70] and ParaView [8], which are two well established

scientific visualization software packages, providing all the tools required

(I/O, rendering, user interaction, filters,. . .) to load, represent, manipulate

and explore scientific data sets.

Perspectives

We think the locality of the task-based merge tree approach presented in

chapter 6 can be exploited for an on-the-fly simplification of the output

data structure, by maintaining the persistence of the local growths during

the arc computations. The hierarchical traversal made by the growths

during the local propagation step is similar to how the persistence pairs

are constructed from the final merge tree. We believe this property could

be exploited to simplify the merge tree during the computation, without

having to rely on a preprocessing stage like this is actually the case.

This would greatly simplify the pipeline for most merge and contour

tree based analysis and improve the interactivity of the exploration.

For the Reeb graph algorithm presented in chapter 8, we believe the

sequential efficiency can be pushed further. Using advanced profiling may

help us locate the hotspots in our implementation and guide our future

optimizations. Additionally, we would like to check the execution time of

our implementation on new data sets to bring more diversity, especially in

3D where most of our actual data sets only have a low number of arcs.

In terms of performance, out-of-core algorithms could be considered.

These approaches are used to process large data sets that do not fit

in memory by visiting the data set piece by piece without holding it

entirely in RAM. The memory footprint of approaches developed in this

manuscript is large as we focused our efforts on speed optimization. With

64 GB of RAM, we could not compute the merge tree of most of our

10243 data sets. Furthermore, the memory consumption of the Reeb graph

155

algorithm is even higher, due to more adjacency information required

in memory. Improving the memory consumption of these approaches

is definitely a future work, but adapting these algorithms to make them

out-of-core would have a greater impact, especially for the command line

version of our plugins, suited for streaming processing.

The main limitation of our approaches is the presence of a suboptimal

section as introduced in chapters 6, 7 and 8. On these task-based

approaches the number of tasks strictly decreases during the computation

and at some point becomes lower than the number of core, which

undermines their parallel efficiencies. This problem is worse when a high

number of cores is used as the suboptimal section intervenes sooner and

the number of idle threads is higher. We believe that task parallelism

will not enable us to overcome these performance bottlenecks, as these

are intrinsic to our approaches. We rather think that only a complete

revisit of our algorithms would allow to circumvent these limitations: this

is currently a real challenge.

At the pipeline level, we would like to study the benefits of our task-

based approaches when computing several abstractions simultaneously.

Presently, each abstraction is computed in a separate process, and each

process has several threads. We believe it could be beneficial to use a single

task pool for the tasks of all abstractions. This would allow the runtime

to reduce the suboptimal sections using a task overlap mechanism similar

to the one introduced in chapter 7, by efficiently overlapping independent

steps of the pipeline. Additionally, a single task pool would reduce the

number of threads created and the memory contention between them.

Furthermore, we would like to emphasize the suitability of our task-

based approaches for in-situ visualization. In this context, topological

data analysis algorithms are run alongside the simulation and resources

are shared between them. The local nature of our algorithm could be

exploited in order to only process parts on which the simulation is already

completed. Additionally, the resources allocated to the topological data

analysis algorithm may vary during the computation and the dynamic

load balancing induced by the task runtime is better suited to a variable

number of threads. Finally, if a single process is used for both a task-based

simulation and our task-based abstraction computation, these can share a

single task pool so that task priorities can be used to drive the computation.

Overall, we believe task-based parallelism as presented here has a

great potential to parallelize algorithms relying on a sorted traversal of

the input domain. Therefore, we would like to exploit it for other types

156 Chapter 10. Conclusion

of topological abstractions, that could lead to new contributions to the

TTK library. In the longer term, the TTK library is meant to be tied

more closely with Paraview. The idea is to bring new features to people

already using Paraview, but also to potentially open new markets for the

Kitware company. TTK may help topological data analysis to become more

accessible to end users.

Bibliography

[1] Intel Cilk Plus homepage. URL http://www.cilkplus.org/.

Accessed Sep. 16th, 2014. (Cited page 86.)

[2] IEEEVIS. Scientific visualization contest. 2016. http://www.uni-kl.

de/scivizcontest/. (Cited pages 142 and 144.)

[3] A. Acharya and V. Natarajan. A parallel and memory efficient

algorithm for constructing the contour tree. In pacificVis, 2015. (Cited

pages 44, 47, 56, 57, and 77.)

[4] AIM@SHAPE. AIM@SHAPE Shape Repository. http://shapes.

aim-at-shape.net/, 2006. (Cited page 70.)

[5] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis, P. Husbands, K. Keutzer,

D. Patterson, W. Plishker, J. Shalf, S. Williams, and K. Yelick. The

landscape of parallel computing research: a view from Berkeley.

Technical report, University of California at Berkeley, 2006. (Cited

page 73.)

[6] Cedric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-

Andre Wacrenier. StarPU: A Unified Platform For Task Scheduling

On Heterogeneous Multicore Architectures. Concurrency and

Computation: Practice and Experience, 23(2):187–198. doi: 10.1002/cpe.

1631. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/

cpe.1631. (Cited pages 33 and 57.)

[7] Grégoire Aujay, Franck Hétroy, Francis Lazarus, and Christine

Depraz. Harmonic Skeleton for Realistic Character Animation.

In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, SCA ’07, pages 151–160, Aire-la-Ville,

Switzerland, Switzerland, 2007. Eurographics Association. ISBN

978-1-59593-624-0. URL http://dl.acm.org/citation.cfm?id=

1272690.1272711. (Cited pages 55 and 140.)

[8] Utkarsh Ayachit. The ParaView Guide: A Parallel Visualization

157

http://www.cilkplus.org/
http://www.uni-kl.de/scivizcontest/
http://www.uni-kl.de/scivizcontest/
http://shapes.aim-at-shape.net/
http://shapes.aim-at-shape.net/
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1631
http://dl.acm.org/citation.cfm?id=1272690.1272711
http://dl.acm.org/citation.cfm?id=1272690.1272711

158 Bibliography

Application. Kitware, Inc., USA, 2015. ISBN 1930934300,

9781930934306. (Cited pages 58 and 154.)

[9] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,

K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W.

Bethel. In Situ Methods, Infrastructures, and Applications on High

Performance Computing Platforms. Computer Graphics Forum, 35(3):

577–597. doi: 10.1111/cgf.12930. URL https://onlinelibrary.

wiley.com/doi/abs/10.1111/cgf.12930. (Cited page 35.)

[10] Silvia Biasotti, Michela Mortara, and Michela Spagnuolo. Surface

compression and reconstruction using reeb graphs and shape

analysis. In Spring Conference on Computer Graphics, pages 174–185,

2000. (Cited page 49.)

[11] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,

Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: An

Efficient Multithreaded Runtime System. SIGPLAN Not., 30(8):207–

216, August 1995. ISSN 0362-1340. doi: 10.1145/209937.209958. URL

http://doi.acm.org/10.1145/209937.209958. (Cited page 32.)

[12] Alexander Bock, Harish Doraiswamy, Adam Summers, and Claudio

Silva. Topoangler: Interactive topology-based extraction of fishes.

IEEE transactions on visualization and computer graphics, 24(1):812–821,

2018. (Cited pages 3, 55, 137, and 154.)

[13] Roberto A Boto, Julia Contreras-Garcı́a, Julien Tierny, and Jean-Philip

Piquemal. Interpretation of the reduced density gradient. Molecular

Physics, 114(7-8):1406–1414, 2016. (Cited page 3.)

[14] Roger L Boyell and Henry Ruston. Hybrid techniques for real-time

radar simulation. In Proceedings of the November 12-14, 1963, fall joint

computer conference, pages 445–458. ACM, 1963. (Cited page 39.)

[15] Peer-Timo Bremer, Gunther Weber, Julien Tierny, Valerio Pascucci,

Marc Day, and John Bell. Interactive Exploration and Analysis of

Large-Scale Simulations Using Topology-Based Data Segmentation.

IEEE Transactions on Visualization and Computer Graphics, 17(9):1307–

1324, September 2011. ISSN 1077-2626. doi: 10.1109/TVCG.2010.253.

URL http://dx.doi.org/10.1109/TVCG.2010.253. (Cited pages 3,

55, and 147.)

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12930
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12930
http://doi.acm.org/10.1145/209937.209958
http://dx.doi.org/10.1109/TVCG.2010.253

Bibliography 159

[16] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all

dimensions. In Proc. of Symposium on Discrete Algorithms, pages 918–

926, 2000. (Cited pages 39, 42, 45, 46, 47, 49, 56, 57, 64, 66, 77, 79, 83,

94, 101, 104, 105, 110, 111, 117, and 153.)

[17] H. Carr, G. H. Weber, C. M. Sewell, and J. P. Ahrens. Parallel peak

pruning for scalable SMP contour tree computation. In ldav, 2016.

(Cited pages 45, 48, 56, and 77.)

[18] Hamish Carr, Jack Snoeyink, and Michiel van de Panne. Simplifying

Flexible Isosurfaces Using Local Geometric Measures. In Proceedings of

the Conference on Visualization ’04, VIS ’04, pages 497–504, Washington,

DC, USA, 2004. IEEE Computer Society. ISBN 0-7803-8788-0. doi: 10.

1109/VISUAL.2004.96. URL http://dx.doi.org/10.1109/VISUAL.

2004.96. (Cited pages 3, 55, and 137.)

[19] Fang Chen, Harald Obermaier, Hans Hagen, Bernd Hamann, Julien

Tierny, and Valerio Pascucci. Topology analysis of time-dependent

multi-fluid data using the Reeb graph. Computer Aided Geometric

Design, 30:557–566, 07 2013. doi: 10.1016/j.cagd.2012.03.019. (Cited

pages 3 and 55.)

[20] Y. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and optimal

output-sensitive construction of contour trees using monotone paths.

Computational Geometry Theory and Applications, 2005. (Cited pages 41,

44, and 56.)

[21] T.H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction

to Algorithms. MIT Press, 2009. (Cited pages 26, 27, 58, 80, 83, and 87.)

[22] Leila De Floriani, Ulderico Fugacci, Federico Iuricich, and Paola

Magillo. Morse complexes for shape segmentation and homological

analysis: discrete models and algorithms. In Computer Graphics

Forum, volume 34, pages 761–785. Wiley Online Library, 2015. (Cited

page 147.)

[23] S. Dillard. libtourtre: A Contour Tree Library. http://graphics.

cs.ucdavis.edu/~sdillard/libtourtre/doc/html/, 2007. (Cited

pages 56, 70, 77, 83, 93, 94, 111, and 112.)

[24] H. Doraiswamy and V. Natarajan. Output-Sensitive Construction of

Reeb Graphs. IEEE Transactions on Visualization and Computer Graphics,

http://dx.doi.org/10.1109/VISUAL.2004.96
http://dx.doi.org/10.1109/VISUAL.2004.96
http://graphics.cs.ucdavis.edu/~sdillard/libtourtre/doc/html/
http://graphics.cs.ucdavis.edu/~sdillard/libtourtre/doc/html/

160 Bibliography

18(1):146–159, Jan 2012. ISSN 1077-2626. doi: 10.1109/TVCG.2011.37.

(Cited pages 49, 50, 56, and 57.)

[25] Harish Doraiswamy and Vijay Natarajan. Efficient algorithms for

computing Reeb graphs. Computational Geometry, 42(6-7):606–616,

2009. (Cited page 50.)

[26] Harish Doraiswamy and Vijay Natarajan. Computing Reeb Graphs

as a Union of Contour Trees. IEEE Trans. Vis. Comput. Graph., 19(2):

249–262, 2013. (Cited page 50.)

[27] Alejandro Duran, Eduard Ayguade, Rosa M. Badia, Jesus

Labarta, Luis MArtinell, Xavier Martorell, and Judit Planas.

OmpSs: A Proposal For Programming Heterogeneous Multi-core

Architectures. Parallel Processing Letters, 21(02):173–193, 2011.

doi: 10.1142/S0129626411000151. URL https://doi.org/10.1142/

S0129626411000151. (Cited pages 33 and 57.)

[28] Edelsbrunner, Letscher, and Zomorodian. Topological persistence

and simplification. Discrete & Computational Geometry, 28(4):511–533,

Nov 2002. ISSN 1432-0444. doi: 10.1007/s00454-002-2885-2. URL

https://doi.org/10.1007/s00454-002-2885-2. (Cited page 137.)

[29] H Edelsbrunner and J Harer. Computational topology: An

Introduction. American Mathematical Society, 2009. (Cited pages 137,

139, and 147.)

[30] Herbert Edelsbrunner and Ernst P Mucke. Simulation of simplicity:

a technique to cope with degenerate cases in geometric algorithms.

ACM ToG, 1990. (Cited pages 17 and 39.)

[31] Guillaume Favelier, Charles Gueunet, and Julien Tierny. Visualizing

ensembles of viscous fingers. In IEEE Scientific Visualization Contest,

2016. (Cited pages 3, 55, 135, and 142.)

[32] Message Passing Interface Forum. MPI: a Message-passing

Interface Standard: Version 3.1. High-Performance Computing

Center, 2015. URL https://www.mpi-forum.org/docs/mpi-3.1/

mpi31-report.pdf. (Cited pages 34 and 35.)

[33] Michael Fredman and Robert Tarjan. Fibonacci Heaps and Their Uses

in Improved Network Optimization Algorithms. Journal of the ACM,

1987. (Cited pages 27, 58, 80, 83, and 126.)

https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1142/S0129626411000151
https://doi.org/10.1007/s00454-002-2885-2
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Bibliography 161

[34] Michael L. Fredman, Robert Sedgewick, Daniel D. Sleator, and

Robert E. Tarjan. The pairing heap: A new form of self-adjusting

heap. Algorithmica, 1(1):111–129, Nov 1986. ISSN 1432-0541. doi:

10.1007/BF01840439. URL https://doi.org/10.1007/BF01840439.

(Cited page 58.)

[35] GNU. C++ Standard Library, Parallel Mode. https://gcc.gnu.

org/onlinedocs/libstdc++/manual/parallel_mode.html. (Cited

pages 64 and 86.)

[36] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented

Merge Trees with Fibonacci heaps. In LDAV, 2017. (Cited pages 57,

76, and 101.)

[37] C. Gueunet, P. Fortin, J. Jomier, and J. Tierny. Task-based Augmented

Contour Trees with Fibonacci heaps. In pending, pending. (Cited

pages 57, 76, and 99.)

[38] Charles Gueunet, Pierre Fortin, Julien Jomier, and Julien Tierny.

Contour Forests: Fast Multi-threaded Augmented Contour Trees. In

IEEE Large Data Analysis and Visualization, 2016. (Cited pages 56, 61,

77, 93, 94, 111, and 112.)

[39] David Gunther, Roberto A Boto, Julia Contreras-Garcia, Jean-Philip

Piquemal, and Julien Tierny. Characterizing Molecular Interactions in

Chemical Systems. 20:2476, 12 2014. (Cited page 3.)

[40] A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. Efficient

Computation of Morse-Smale Complexes for Three-dimensional

Scalar Functions. IEEE Transactions on Visualization and Computer

Graphics, 13(6):1440–1447, Nov 2007. ISSN 1077-2626. doi: 10.1109/

TVCG.2007.70552. (Cited pages 20 and 147.)

[41] A. Gyulassy, A. Knoll, K. C. Lau, B. Wang, P. Bremer, M. E. Papka,

L. A. Curtiss, and V. Pascucci. Interstitial and Interlayer Ion Diffusion

Geometry Extraction in Graphitic Nanosphere Battery Materials. IEEE

Transactions on Visualization and Computer Graphics, 22(1):916–925, Jan

2016. ISSN 1077-2626. doi: 10.1109/TVCG.2015.2467432. (Cited

page 3.)

[42] David Günther, Joseph Salmon, and Julien Tierny. Mandatory Critical

Points of 2D Uncertain Scalar Fields. Computer Graphics Forum, 33(3):

https://doi.org/10.1007/BF01840439
https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/parallel_mode.html

162 Bibliography

31–40. doi: 10.1111/cgf.12359. URL https://onlinelibrary.wiley.

com/doi/abs/10.1111/cgf.12359. (Cited pages 3 and 55.)

[43] Mustafa Hajij and Paul Rosen. An Efficient Data Retrieval Parallel

Reeb Graph Algorithm. 08 2018. (Cited pages 50 and 56.)

[44] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and Tosiyasu L.

Kunii. Topology Matching for Fully Automatic Similarity Estimation

of 3D Shapes. In Proceedings of the 28th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’01, pages 203–212,

New York, NY, USA, 2001. ACM. ISBN 1-58113-374-X. doi: 10.1145/

383259.383282. URL http://doi.acm.org/10.1145/383259.383282.

(Cited pages 49 and 55.)

[45] Joseph F. JaJa. An introduction to parallel algorithms. Addison Wesley

Longman Publishing Co., Inc., Redwood City, CA, USA, 1992///

1992. ISBN 0-201-54856-9. (Cited page 45.)

[46] J. Kasten, J. Reininghaus, I. Hotz, and H. Hege. Two-Dimensional

Time-Dependent Vortex Regions Based on the Acceleration

Magnitude. IEEE Transactions on Visualization and Computer Graphics,

17(12):2080–2087, Dec 2011. ISSN 1077-2626. doi: 10.1109/TVCG.

2011.249. (Cited page 3.)

[47] T. L. Kunii and Y. Shinagawa. Constructing a Reeb graph

automatically from cross sections. IEEE Computer Graphics and

Applications, 11:44–51, 11 1991. ISSN 0272-1716. doi: 10.1109/38.

103393. URL doi.ieeecomputersociety.org/10.1109/38.103393.

(Cited page 49.)

[48] Daniel Laney, P-T Bremer, Ajith Mascarenhas, Paul Miller, and Valerio

Pascucci. Understanding the structure of the turbulent mixing layer

in hydrodynamic instabilities. IEEE Transactions on Visualization &

Computer Graphics, (5):1053–1060, 2006. (Cited page 145.)

[49] Pawel Lapinski. Vulkan Cookbook. Packt Publishing, 2017. ISBN

1786468158, 9781786468154. (Cited page 34.)

[50] Jonas Lukasczyk, Ross Maciejewski, Christoph Garth, and Hans

Hagen. Understanding hotspots: A topological visual analytics

approach. In Proceedings of the 23rd SIGSPATIAL International

Conference on Advances in Geographic Information Systems, page 36.

ACM, 2015. (Cited page 55.)

https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12359
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12359
http://doi.acm.org/10.1145/383259.383282
doi.ieeecomputersociety.org/10.1109/38.103393

Bibliography 163

[51] Jonas Lukasczyk, Garrett Aldrich, Michael Steptoe, Guillaume

Favelier, Charles Gueunet, Julien Tierny, Ross Maciejewski, Bernd

Hamann, and Heike Leitte. Viscous Fingering: A Topological Visual

Analytic Approach. In Physical Modeling for Virtual Manufacturing

Systems and Processes, volume 869 of Applied Mechanics and Materials,

pages 9–19. Trans Tech Publications, 9 2017. doi: 10.4028/www.

scientific.net/AMM.869.9. (Cited pages 3, 55, and 142.)

[52] Senthilnathan Maadasamy, Harish Doraiswamy, and Vijay Natarajan.

A hybrid parallel algorithm for computing and tracking level set

topology. pages 1–10, 12 2012. (Cited pages 44, 47, 48, 56, 64, 70,

and 77.)

[53] Tim Mattson. A ’Hands-on’ Introduction to OpenMP. https://www.

openmp.org/wp-content/uploads/Intro_To_OpenMP_Mattson.pdf.

(Cited pages 28, 29, and 30.)

[54] Kenneth Moreland, Christopher Sewell, William Usher, Li-Ta Lo,

Jeremy Meredith, David Pugmire, James Kress, Hendrik Schroots,

Kwan-Liu Ma, Hank Childs, Matthew Larsen, Chun-Ming Chen,

Robert Maynard, and Berk Maynard. VTK-m: Accelerating the

Visualization Toolkit for Massively Threaded Architectures. 36:48–

58, 05 2016. (Cited page 58.)

[55] D. Morozov and G. Weber. Distributed Contour Trees. In TopoInVis,

2013. (Cited page 42.)

[56] D. Morozov and G. Weber. Distributed Merge Trees. In ACM

Symposium on Principles and Practice of Parallel Programming, 2013.

(Cited page 42.)

[57] J. Nielsen. Power of 10:

Time scales in user experience. 2009. https://www.nngroup.com/

articles/powers-of-10-time-scales-in-ux/. (Cited page 55.)

[58] NVIDIA Corporation. NVIDIA CUDA C programming guide, 2010.

Version 3.2. (Cited page 34.)

[59] OpenMP Architecture Review Board. OpenMP Application Program

Interface, V 4.5, 2015. (Cited pages 31, 33, 34, 57, 77, 86, and 89.)

[60] Salman Parsa. A deterministic o(m log m) Time Algorithm for the

Reeb graph. Discrete Comput. Geom., 49(4):864–878, June 2013. ISSN

https://www.openmp.org/wp-content/uploads/Intro_To_OpenMP_Mattson.pdf
https://www.openmp.org/wp-content/uploads/Intro_To_OpenMP_Mattson.pdf
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/
https://www.nngroup.com/articles/powers-of-10-time-scales-in-ux/

164 Bibliography

0179-5376. doi: 10.1007/s00454-013-9511-3. URL https://doi.org/

10.1007/s00454-013-9511-3. (Cited pages 51, 54, 57, 117, 118, 130,

and 153.)

[61] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the

Topology of Level Sets. Algorithmica, 2003. (Cited pages 43, 44, 47, 57,

63, and 64.)

[62] Valerio Pascucci, Kree Cole-McLaughlin, and Giorgio Scorzelli. Multi-

Resolution Computation and Presentation of Contour Trees. 01 2004.

(Cited page 55.)

[63] Valerio Pascucci, Giorgio Scorzelli, Peer-Timo Bremer, and Ajith

Mascarenhas. Robust on-line computation of Reeb graphs: simplicity

and speed. In Acm transactions on graphics (tog), volume 26, page 58.

ACM, 2007. (Cited pages 50, 66, and 67.)

[64] G. Patane, M. Spagnuolo, and B. Falcidieno. Reeb graph computation

based on a minimal contouring. In 2008 IEEE International Conference

on Shape Modeling and Applications, pages 73–82, June 2008. doi:

10.1109/SMI.2008.4547953. (Cited pages 49 and 57.)

[65] Chuck Pheatt. Intel® Threading Building Blocks. J. Comput.

Sci. Coll., 23(4):298–298, April 2008. ISSN 1937-4771. URL http:

//dl.acm.org/citation.cfm?id=1352079.1352134. (Cited pages 34

and 86.)

[66] Martin Poirier and Eric Paquette. Rig Retargeting for 3D Animation.

In Proceedings of Graphics Interface 2009, GI ’09, pages 103–

110, Toronto, Ont., Canada, Canada, 2009. Canadian Information

Processing Society. ISBN 978-1-56881-470-4. URL http://dl.acm.

org/citation.cfm?id=1555880.1555907. (Cited pages 55 and 140.)

[67] Marzia Rivi, Luigi Calori, Giuseppa Muscianisi, and Vladimir Slavnic.

In-situ visualization: State-of-the-art and some use cases. PRACE

White Paper, pages 1–18, 2012. (Cited page 35.)

[68] Paul Rosen, Bei Wang, Anil Seth, Betsy Mills, Adam Ginsburg, Julia

Kamenetzky, Jeff Kern, and Chris R. Johnson. Using Contour Trees in

the Analysis and Visualization of Radio Astronomy Data Cubes. 04

2017. (Cited pages 3 and 55.)

[69] Dominic Schneider, Alexander Wiebel, Hamish Carr, Mario

Hlawitschka, and Gerik Scheuermann. Interactive comparison of

https://doi.org/10.1007/s00454-013-9511-3
https://doi.org/10.1007/s00454-013-9511-3
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=1555880.1555907
http://dl.acm.org/citation.cfm?id=1555880.1555907

Bibliography 165

scalar fields based on largest contours with applications to flow

visualization. IEEE Transactions on Visualization and Computer Graphics,

14(6), 2008. (Cited pages 3 and 55.)

[70] W. J. Schroeder, K. Martin, L. S. Avila, and C. C. Law. The VTK user’s

guide. Kitware, 2001. (Cited pages 58 and 154.)

[71] Nithin Shivashankar, Pratyush Pranav, Vijay Natarajan, Rien van de

Weygaert, EG Patrick Bos, and Steven Rieder. Felix: A topology

based framework for visual exploration of cosmic filaments. IEEE

Transactions on Visualization and Computer Graphics, 22(6):1745–1759,

2016. (Cited page 3.)

[72] Dave Shreiner. OpenGL Reference Manual: The Official Reference

Document to OpenGL, Version 1.2. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 3rd edition, 1999. ISBN

0201657651. (Cited page 34.)

[73] J. Singler, P. Sanders, and F. Putze. The Multi-Core Standard Template

Library. In Euro-Par, 2007. merged in STL since GCC 4.3. (Cited

page 64.)

[74] Daniel D. Sleator and Robert Endre Tarjan. A data structure for

dynamic trees. Journal of Computer and System Sciences, 26(3):362 – 391,

1983. ISSN 0022-0000. doi: https://doi.org/10.1016/0022-0000(83)

90006-5. URL http://www.sciencedirect.com/science/article/

pii/0022000083900065. (Cited pages 27 and 126.)

[75] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting

Binary Search Trees. J. ACM, 32(3):652–686, July 1985. ISSN 0004-

5411. doi: 10.1145/3828.3835. URL http://doi.acm.org/10.1145/

3828.3835. (Cited page 27.)

[76] B. . Sohn and Chandrajit Bajaj. Time-varying contour topology. IEEE

Transactions on Visualization and Computer Graphics, 12(1):14–25, Jan

2006. ISSN 1077-2626. doi: 10.1109/TVCG.2006.16. (Cited pages 55

and 147.)

[77] Maxime Soler, Mélanie Plainchault, Bruno Conche, and Juilen Tierny.

Lifted Wasserstein Matcher for Fast and Robust Topology Tracking.

In IEEE Symposium on Large Data Analysis and Visualization, Berlin,

Germany, October 2018. URL https://hal.archives-ouvertes.fr/

hal-01857913. (Cited pages 3 and 55.)

http://www.sciencedirect.com/science/article/pii/0022000083900065
http://www.sciencedirect.com/science/article/pii/0022000083900065
http://doi.acm.org/10.1145/3828.3835
http://doi.acm.org/10.1145/3828.3835
https://hal.archives-ouvertes.fr/hal-01857913
https://hal.archives-ouvertes.fr/hal-01857913

166 Bibliography

[78] Thierry Sousbie. The persistent cosmic web and its filamentary

structure–I. Theory and implementation. Monthly Notices of the Royal

Astronomical Society, 414(1):350–383, 2011. (Cited page 3.)

[79] John E. Stone, David Gohara, and Guochun Shi. OpenCL: A Parallel

Programming Standard for Heterogeneous Computing Systems. IEEE

Des. Test, 12(3):66–73, May 2010. ISSN 0740-7475. doi: 10.1109/MCSE.

2010.69. URL http://dx.doi.org/10.1109/MCSE.2010.69. (Cited

page 34.)

[80] S. Tarasov and M. Vyali. Construction of contour trees in 3D in O(n

log n) steps. In SoCG, 1998. (Cited pages 39 and 83.)

[81] Robert E. Tarjan and Jan van Leeuwen. Worst-case Analysis of Set

Union Algorithms. J. ACM, 31(2):245–281, March 1984. ISSN 0004-

5411. doi: 10.1145/62.2160. URL http://doi.acm.org/10.1145/62.

2160. (Cited page 41.)

[82] Robert Endre Tarjan. Efficiency of a Good But Not Linear Set Union

Algorithm. J. ACM, 22(2):215–225, April 1975. ISSN 0004-5411. doi:

10.1145/321879.321884. URL http://doi.acm.org/10.1145/321879.

321884. (Cited page 26.)

[83] StarPU Doc Team. StarPU 1.3 Reference Manual. Samurai Media

Limited, United Kingdom, 2017. ISBN 9789888407149, 9888407147.

(Cited pages 33 and 57.)

[84] Peter Thoman, Kiril Dichev, Thomas Heller, Roman Iakymchuk,

Xavier Aguilar, Khalid Hasanov, Philipp Gschwandtner, Pierre

Lemarinier, Stefano Markidis, Herbert Jordan, Thomas Fahringer,

Kostas Katrinis, Erwin Laure, and Dimitrios S. Nikolopoulos. A

taxonomy of task-based parallel programming technologies for high-

performance computing. The Journal of Supercomputing, 74(4):1422–

1434, Apr 2018. ISSN 1573-0484. doi: 10.1007/s11227-018-2238-4. URL

https://doi.org/10.1007/s11227-018-2238-4. (Cited page 32.)

[85] J. Tierny and H. Carr. Jacobi Fiber Surfaces for Bivariate Reeb Space

Computation. IEEE Transactions on Visualization and Computer Graphics,

23(1):960–969, Jan 2017. ISSN 1077-2626. doi: 10.1109/TVCG.2016.

2599017. (Cited page 3.)

[86] J. Tierny, A. Gyulassy, E. Simon, and V. Pascucci. Loop surgery for

volumetric meshes: Reeb graphs reduced to contour trees. IEEE

http://dx.doi.org/10.1109/MCSE.2010.69
http://doi.acm.org/10.1145/62.2160
http://doi.acm.org/10.1145/62.2160
http://doi.acm.org/10.1145/321879.321884
http://doi.acm.org/10.1145/321879.321884
https://doi.org/10.1007/s11227-018-2238-4

Bibliography 167

Transactions on Visualization and Computer Graphics, 15(6):1177–1184,

Nov 2009. ISSN 1077-2626. doi: 10.1109/TVCG.2009.163. (Cited

page 49.)

[87] Julien Tierny and Valerio Pascucci. Generalized topological

simplification of scalar fields on surfaces. IEEE Transactions on

Visualization & Computer Graphics, (12):2005–2013, 2012. (Cited

pages 138 and 139.)

[88] Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles Gueunet,

and Michael Michaux. The Topology ToolKit. IEEE TVCG (Proc. of

IEEE VIS), 2017. https://topology-tool-kit.github.io/. (Cited

pages 58, 68, 81, 89, 94, 106, 126, 137, and 154.)

[89] P. Tsigas and Y. Zhang. A simple, fast parallel implementation of

quicksort and its performance evaluation on SUN enterprise 10000.

In Conference on Parallel, Distributed and Network-based Processing, 2003.

(Cited page 64.)

[90] Will Usher and Qi Wu. Topology Guided Volume Exploration.

Technical report, 2017. Accessed: 2018-07-13. (Cited pages 55

and 154.)

[91] Marc van Kreveld, René van Oostrum, Chandrajit Bajaj, Valerio

Pascucci, and Dan Schikore. Contour Trees and Small Seed Sets for

Isosurface Traversal. In Proceedings of the Thirteenth Annual Symposium

on Computational Geometry, SCG ’97, pages 212–220, New York, NY,

USA, 1997. ACM. ISBN 0-89791-878-9. doi: 10.1145/262839.269238.

URL http://doi.acm.org/10.1145/262839.269238. (Cited pages 39

and 55.)

[92] Lei Wang, Quan Guo, Jianqiao Zhao, Shengnan Zhang, and Lisu Yang.

The Fast Contour Tree-Based Medical Volume Rendering Method.

Journal of Medical Imaging and Health Informatics, 8(7):1451–1455, 2018.

(Cited page 154.)

[93] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann.

Topology-Controlled Volume Rendering. IEEE Transactions on

Visualization and Computer Graphics, 13(2):330–341, March 2007. ISSN

1077-2626. doi: 10.1109/TVCG.2007.47. (Cited page 55.)

[94] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey.

OpenACC: First Experiences with Real-world Applications. In

https://topology-tool-kit.github.io/
http://doi.acm.org/10.1145/262839.269238

168 Bibliography

Proceedings of the 18th International Conference on Parallel Processing,

Euro-Par’12, pages 859–870, Berlin, Heidelberg, 2012. Springer-

Verlag. ISBN 978-3-642-32819-0. doi: 10.1007/978-3-642-32820-6 85.

URL http://dx.doi.org/10.1007/978-3-642-32820-6_85. (Cited

page 34.)

[95] S. Williams, A. Waterman, and D. Patterson. Roofline: An Insightful

Visual Performance Model for Multicore Architectures. Commun.

ACM, 52(4):65–76, 2009. (Cited page 73.)

[96] Zoë J Wood, Mathieu Desbrun, Peter Schroder, and David Breen.

Semi-regular mesh extraction from volumes. In Visualization 2000.

Proceedings, pages 275–282. IEEE, 2000. (Cited page 49.)

http://dx.doi.org/10.1007/978-3-642-32820-6_85

Bibliography 169

Calcul Haute Performance pour l’Analyse Topologique de Données
par Ensembles de Niveaux

L’analyse de données topologique nécessite des algorithmes de plus en plus efficaces

pour être capable de traiter des jeux de données dont la taille et le niveau de détail

augmente continûment. Dans cette thèse, nous nous concentrons sur trois abstractions

topologiques fondamentales dérivées des ensembles de niveaux : l’arbre de jointure, l’arbre

de contour et le graphe de Reeb. Nous proposons trois nouveaux algorithmes parallèles

efficaces pour leur calcul sur des stations de travail composées de processeurs multi-cœur

en mémoire partagée. Le premier algorithme élaboré durant cette thèse se base sur du

parallélisme multi-thread pour le calcul de l’arbre de contour. Une seconde approche

revisite l’algorithme séquentiel de référence pour le calcul de cette structure et se base

sur des propagations locales exprimables en tâches parallèles. Ce nouvel algorithme est

en pratique deux fois plus rapide en séquentiel que l’algorithme de référence élaboré en

2000 et offre une accélération d’un ordre de grandeur en parallèle. Un dernier algorithme

basé sur une approche locale par tâches est également présenté pour une abstraction plus

générique : le graphe de Reeb. Contrairement aux approches concurrentes, nos algorithmes

construisent les versions augmentées de ces structures, permettant de supporter l’ensemble

des applications pour l’analyse de données par ensembles de niveaux. Les méthodes

présentées dans ce manuscrit ont donné lieu à des implémentations qui sont les plus

rapides parmi celles disponibles pour le calcul de ces abstractions. Ce travail a été intégré

à la bibliothèque libre : Topology Toolkit (TTK).

High Performance Level-set based Topological Data Analysis

Topological Data Analysis requires efficient algorithms to deal with the continuously

increasing size and level of details of data sets. In this manuscript, we focus on three

fundamental topological abstractions based on level sets: merge trees, contour trees and

Reeb graphs. We propose three new efficient parallel algorithms for the computation

of these abstractions on multi-core shared memory workstations. The first algorithm

developed in the context of this thesis is based on multi-thread parallelism for the

contour tree computation. A second algorithm revisits the reference sequential algorithm

to compute this abstraction and is based on local propagations expressible as parallel

tasks. This new algorithm is in practice twice faster in sequential than the reference

algorithm designed in 2000 and offers one order of magnitude speedups in parallel. A last

algorithm also relying on task-based local propagations is presented, computing a more

generic abstraction: the Reeb graph. Contrary to concurrent approaches, these methods

provide the augmented version of these structures, hence enabling the full extend of level-

set based analysis. Algorithms presented in this manuscript result today in the fastest

implementations available to compute these abstractions. This work has been integrated

into the open-source platform: the Topology Toolkit (TTK).

170 Bibliography

	Contents
	Introduction
	Context and motivations
	Motivation and structure of the thesis

	I Foundations
	Background
	Data set
	Triangulation
	Manifoldness
	Connectivity
	Neighborhood

	Scalars
	Critical points

	Topological abstractions
	Reeb graph
	Contour tree
	Merge tree

	Data structures
	Graph and Tree
	Connectivity problems
	Ordered traversal

	Parallel computing
	Multi-core parallelism
	Many-core parallelism
	Multi-node parallelism

	State of the art
	Merge Trees
	Sequential reference algorithms
	Parallel algorithms

	Contour Trees
	Sequential reference algorithm
	Parallel algorithms

	Reeb Graphs
	Cut-based approaches
	Dynamic connectivity

	Positioning

	II Contributions
	Input sensitive Contour Trees using Contour Forests
	Overview
	Scalar value based decomposition for parallel contour tree computations
	Domain partitioning
	Local computations
	Contour forest stitching

	Experimental results
	Detailed performance results
	Limitations

	Conclusion

	Output Sensitive Task-based Merge Trees with Fibonacci Heaps
	Overview
	Local propagations for merge tree computations
	Leaf search
	Leaf growth
	Saddle stopping condition
	Saddle growth
	Trunk growth
	Segmentation

	Task-based parallel merge trees
	Taskification
	Synchronization
	Parallel trunk growth

	Results
	Performance analysis
	Limitations

	Conclusion

	Output Sensitive Task-based Contour Trees with Fibonacci Heaps
	Overview
	Task-based contour tree computations
	Leaf search
	Task overlapping for merge tree computation
	Merge tree post-processing
	Parallel combination

	Results
	Performance analysis
	Limitations

	Conclusion

	Task-based Augmented Reeb Graphs with Dynamic ST-Trees
	Overview
	Local propagations for Reeb graph computations
	Leaf search
	Local growth
	Critical vertex detection
	Saddle vertex handling
	Laziness mechanism for preimage graph

	Task-based parallel Reeb graphs
	Leaf search
	Local growth
	Saddle vertex handling

	Parallel dual sweep
	Leaf search
	Local growth
	Saddle vertex handling
	Post-processing for merged arcs

	Results
	Performance analysis
	Comparisons
	Limitations

	Conclusion

	III Exploitation
	Applications
	Persistence
	Merge Trees
	Contour Trees
	Reeb Graphs
	Real-case analysis
	IEEE Scientific Visualization Contest 2016
	Input data sets
	Analysis

	Conclusion

	Conclusion
	Bibliography

