N

N
N

HAL

open science

High Performance Level-set based Topological Data
Analysis

Charles Gueunet,

» To cite this version:

Charles Gueunet. High Performance Level-set based Topological Data Analysis. Image Processing

[eess.IV]. Sorbonne Université, 2019. English.

NNT: . tel-02141632v1

HAL Id: tel-02141632
https://hal.science/tel-02141632v1
Submitted on 28 May 2019 (v1), last revised 23 Sep 2020 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/tel-02141632v1
https://hal.archives-ouvertes.fr

Sewame WKitware

THESE DE DOCTORAT DE
SORBONNE UNIVERSITE

Spécialité

Informatique

Présentée par

Charles GUEUNET

Pour obtenir le grade de

DOCTEUR de SORBONNE UNIVERSITE

Calcul Haute Performance
pour 1’Analyse Topologique de Données

par Ensembles de Niveaux

Soutenue publiquement le 15 février 2019

Devant le jury composé de :

M. Christoph GARTH University of Kaiserslautern Rapporteur

M. Bruno RAFFIN INRIA Grenoble Rapporteur

Mme. Raphaélle CHAINE Université de Lyon Examinatrice
M. Raymond NAMmYST Université de Bordeaux Examinateur
M. Pierre SENs Sorbonne Université Examinateur
M. Pierre FORTIN Sorbonne Université Co-encadrant
M. Julien JoMIER Kitware Co-encadrant

M. Julien TIERNY CNRS, Sorbonne Université Directeur de théese

AUTHOR’S PUBLICATIONS

MAIN PUBLICATIONS

International Journals

e Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,
“Task-based Augmented Contour Trees with Fibonacci Heaps”
IEEE Transactions on Parallel and Distributed Systems, accepted

for publication

International Conferences

e Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,
“Task-based Augmented Merge Trees with Fibonacci Heaps”
IEEE Large Data Analysis and Visualization 2017, pp. 6-15

e Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,
“Contour Forests: Fast Multi-threaded Augmented Contour Trees”

IEEE Large Data Analysis and Visualization 2016, pp. 8592

Abstract-Only National Conferences

e Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,
“Arbres de jointure augmentés par tiches avec les tas de Fibonacci”

Journées Visu 2018

e Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,
“Calcul parallele de I'arbre de contour augmenté via une forét d’arbres”

Journées Visu 2017

iii

iv

OTHER PUBLICATIONS

International Journals

e Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles
Gueunet, Michael Michaux
“The Topology Toolkit”

IEEE Transactions on Visualization and Computer Graphics 2018

e Jonas Lukasczyk, Garrett Aldrich, Michael Steptoe, Guillaume
Favelier, Charles Gueunet, Julien Tierny, Ross Maciejewski, Bernd
Hamann, Heike Leitte
“Viscous fingering: A topological visual analytic approach”

Applied Mechanics and Materials 2017, pp. 9-19

Misc.

e Guillaume Favelier, Charles Gueunet, Julien Tierny
“Visualizing Ensembles of Viscous Fingers”

IEEE Visualization Contest 2016 [Honorable mention]

e Guillaume Favelier, Charles Gueunet, Attila Gyulassy, Julien
Jomier, Joshua Levine, Jonas Lukasczyk, Daisuke Sakurai, Maxime
Soler, Julien Tierny, Will Usher, Qi Wu
“Topological Data Analysis Made Easy with the Topology ToolKit”
IEEE VIS Tutorials 2018

SOFTWARE

e Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,
“Task-based Augmented Contour Trees with Fibonacci Heaps”
IEEE Transactions on Parallel and Distributed Systems

https://github.com/CharlesGueunet/Codemit/blob/master/FTC.tgz

e Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,
“Task-based Augmented Merge Trees with Fibonacci Heaps”
IEEE Large Data Analysis and Visualization 2017
https://github.com/CharlesGueunet/Codemit/blob/master/FTM.zip

e Charles Gueunet, Pierre Fortin, Julien Jomier and Julien Tierny,
“Contour Forests: Fast Multi-threaded Augmented Contour Trees”
IEEE Large Data Analysis and Visualization 2016
https://github.com/CharlesGueunet/Codemit/blob/master/ContourForests.zip

e Julien Tierny, Guillaume Favelier, Joshua A. Levine, Charles
Gueunet, Michael Michaux

“The Topology Toolkit”
IEEE Transactions on Visualization and Computer Graphics

https://github.com/topology-tool-kit/ttk

https://github.com/CharlesGueunet/Codemit/blob/master/FTC.tgz
https://github.com/CharlesGueunet/Codemit/blob/master/FTM.zip
https://github.com/CharlesGueunet/Codemit/blob/master/ContourForests.zip
https://github.com/topology-tool-kit/ttk

CONTENTS

-
_ON

N

INTROD

T1

[Foundations|

2 BACKGROUND|

I DATASEDo
[2.1.1 Triangulation|
[2.1.2 Manitoldness|
[2.1.3 Connectivity|
[2.1.4 Neighborhood|
2.2 CALARS|
[2.2.1 Critical points|
[2.3 TOPOLOGICAL ABSTRACTIONS|.
[2.3.1 Reebgraph{
2.3.2 Contour treel
233 Mergetree
[2.4 DATA STRUCTURES|
4.1 Graphand lree.
[2.4.2 Connectivity problems|
|2.4.3 Ordered traversal[.
[2.5 PARALLEL COMPUTING|.
[2.5.1 Multi-core parallelism|
[2.5.2 Many-core parallelism|
[2.5.3 Multi-node parallelism|.

[3 STATE OF THE ART|

[3.1

MERGE TREES|.

[3.1.1

Sequential reference algorithms|

vii

11
11
14
15
16
17
18
20
20
21
22
24
24
25
27
28
28

33
34

37
39
39

vii

viii

[3.1.2 Parallel algorithms| 42

3.2 CONTOUR TREES|, 46
[3.2.1 Sequential reference algorithm|. 46

[3.2.2 Parallel algorithms|, 47

3.3 REEBGRAPHS|, 48
[3.3.1 Cut-based approaches| 49

[3.3.2 Dynamic connectivity|o 0L 50

l4 POSITIONING 55
I Contributions 59

[5 INPUT SENSITIVE CONTOUR [REES USING CONTOUR FORESTS| 61

[5.1 OVERVIEW| 63
[5.2 SCALAR VALUE BASED DECOMPOSITION FOR PARALLEL |

[CONTOUR TREE COMPUTATIONS|. « . . v v v v v v v v o 64
[5.2.1 Domain partitioning| 64

[5.2.2 Local computations|. 66

[5.2.3 Contour forest stitching| 67

[5.3 EXPERIMENTAL RESULTS|. 68
[5.3.1 Detailed performance results| 70

[5.3.2 Limitations|00 71

[5.4 CONCLUSION|ot v ittt e et 73

6 _OUTPUT OSENSITIVE [ASK-BASED MERGE [REES WITH |
[FiBonacct HEAPs| 75
6.1 OVERVIEW| 78
[6.2 LOCAL PROPAGATIONS FOR MERGE TREE COMPUTATIONS|. . . . 79
[6.2.1 Leafsearch| 79

[6.2.2 Leafgrowth{. 79

[6.2.3 Saddle stopping condition| L. 81

[6.2.4 Saddlegrowth| 82

(.25 Trunkgrowthf. 84

[6.2.6 Segmentation|. o oL 85

[6.3 TASK-BASED PARALLEL MERGE TREES|. 85
[6.3.1 Taskification| 86

[6.3.2 Synchronization| 87

[6.3.3 Parallel trunk growth| 88

6. ESULTS|. o oot e e e e e e 89

|6.4.1 Performance analysis|. 90

|6.4.2 Limitations| 0oL 95

6.5 CONCLUSION| ittt 97

[OutpuT SENSITIVE TASK-BASED (CONTOUR [REES WITH |
| FiBoNAccI HEAPS| 99
[7.1 OVERVIEW| 101
[7.2 TASK-BASED CONTOUR TREE COMPUTATIONS| 102
721 Leafsearch| 102

[7.2.2 Task overlapping for merge tree computation|. 102

|7.2.3 Merge tree post-processing| 103

[7.2.4 Parallel combination| 104
............................... 106
[7.3.1 Performance analysis|., 107

I73.2 Limitations| 00000 112

[7.4 CONCLUSION| 114

[8.2 LOCAL PROPAGATIONS FOR REEB GRAPH COMPUTATIONS

[8.2.1 Leafsearch|
[8.2.2 Localgrowth|
[8.2.3 Critical vertex detection|
[8.2.4 Saddle vertex handling|.
[8.2.5 Laziness mechanism for preimage graph|

[8.3 TASK-BASED PARALLEL REEB GRAPHS|

[8.3.1 Leafsearch|
832 Localgrowth|
[8.3.3 Saddle vertex handling|.

[8.4 PARALLEL DUAL SWEEP|

841 Leafsearch|
.42 Localgrowthl
[8.4.3 Saddle vertex handling|.
[8.4.4 Post-processing for merged arcs|
8. ESULTS|. © & o v vttt e e e e e e e e e e e e e e
[8.5.1 Performance analysis|.
[8.5.2 Comparisons| oo
[8.5.3 Limitations| 000000,

ix

[8.6 CONCLUSION|

[IIT Exploitation|

{0 APPLICATIONS|

[0.1 PERSISTENCE|

[0.2 MERGE TREES|

9.3 CONTOURTREES|

[0.4 REEB GRAPHS|

[0.5 REAL-CASE ANALYSIS|

[0.5.1 IEEE Scientitic Visualization Contest 2016.

[0.5.2 Inputdatasets|

[0.5.3 Analysis| o oo

[0.6 CONCLUSION|

[10 CONCLUSION]|

[BIBLIOGRAPHY|

133

135
137
138
140
140
142
142
142
144
151

153

157

1.1

INTRODUCTION

0 and 1 are the only informations a computer can manipulate. These
0 and 1 are named bits and can be structured in order to represent
characters, which put together form a text like the one you are reading.
These characters or the final text are different levels of abstraction of the
underlying bits. Other frequently used abstractions in computer science
include pictures, musics, videos, ...or simulation/acquisition results in
the case of scientific data sets. In the following, we describe such data sets
and detail how modern computers are able to store and process more 0
and 1 than ever, as well as the consequences and new problems this raises,

especially in the context of data analysis.

CONTEXT AND MOTIVATIONS

In this manuscript, we focus on data sets containing information related
to two or three dimensional phenomena. These data sets are from two
main origins: they can either be acquired, which means they come from
measurement of a real world phenomenon, or simulated when they are

resulting from a simulation ran on a (super) computer.

Data acquisition

Data acquisition occurs when measurements of real world phenomena are
transformed into numeric values that, in our case, can be manipulated
by computers (0 and 1 as previously seen). Phenomena that are
to be measured can be as varied as sensors allow. Some examples
include: meteorology, medical scans (cf. or ground-penetrating
radargrams. Acquired data sets usually suffer from noise due to
measurement errors.

Through years, measurement techniques and probe accuracy have
improved, leading to an increase in the size and details of acquired data

sets.

Chapter 1. Introduction

Figure 1.1 — (0): A Computerized Tomography (CT) scan used in medical imaging to

obtain a tomographic 3D image of a specific area, from Wikimedia (by NithinRao).
(1): Result of a CT scan on a human foot. This data set has a resolution of 2563 samples.
Actual scan results are closer to 2048> or even 40963 samples.

Data simulation

As physical and chemical models are presently able to accurately reflect a
significant number of real world phenomena, it may be easier to simulate a
phenomenon than to reproduce it through experimentation. Additionally,
there are situations where experimentation is not possible. It can be
for ethical reasons, in the case of virus spreading or nuclear testing for
example. Simulations are also used in order to reduce the number of tests
in real conditions when these are expensive, like in the case of rocket
launches or crash-tests for cars. Finally, simulations are also used to
explore phenomenon that can not be directly reproduced like in the case
of the cosmological simulation (see [Figure 1.2{1)).

The size of these simulations is driven by the performance of the
computer on which these are run (from a workstation to a supercomputer
like the one shown in [Figure 1.2(0)). Furthermore, the compute power is
growing through time. A good example of this continuous expansion is
the well known Moore’s law about the exponential growth of the number
of transistors in processors, which has been observed to double every two
years. Along with the ever larger use of ever more powerful HPC facilities,

this has lead to amounts of data that cannot be interpreted by humans.

1.1. Context and motivations

Tog{n/fem™

~32-24 -16-0.8 0.0 08 16 2.4

(0) (1)

Figure 1.2 — (0): The Oak Ridge Leadership Computing Facility supercomputer with a
computational power of 200 petaflops.

(1): A cosmological simulation from when the universe was only one billion years old,
from Wikimedia (by Vis-sns).

Data analysis

Whether they are acquired or simulated, these data sets must be analyzed.
Data analysis is the process of representing, manipulating and exploring
data in order to extract relevant information. As we consider two and
tree dimensional phenomena, we can rely on scientific visualization, a
branch of computer science aimed to help the exploration of such data
sets through the use of graphical representations. As data sets get bigger
and more complex, it becomes challenging for scientists to glean insight
from their data. In the same way the 0 and 1 are not convenient for human
beings but a text is, we can create new abstractions that help the analysis
of complex data sets: this is the role of topology-based visualization
methods. Informally, topology is the study of geometrical properties
of spaces, unaltered by continuous deformations such as stretching or
bending. In practice, it can be used to create abstractions that serve as
maps of the original data set. Data analysis using topological abstractions
is part of topological data analysis, often abbreviated TDA. Thanks to its
robustness and its ability to extract features of interest at multiple scales
of importance, TDA gained in importance over the last few years and

was successfully applied to a variety of applications (combustion ,

chemistry 139], astrophysics [68, 71, [78]], material science 51,
fluid dynamics [19, 85|, medical imaging [12) (18], etc). In

we present several data analysis examples, where topological
tools are used to extract and evaluate areas of interests on various data

sets. Each time, data sets are colored according to segmentations induced

Chapter 1. Introduction

1.2

ISAAANRN KRN NIV

Figure 1.3 — Four data analysis results on simulated and acquired data sets. In these
examples, data exploration is guided by topological tools allowing to extract, count and

evaluate the robustness of features on each data set.

by contour based abstractions, which will be formally defined in the

remainder of this manuscript.

Limitations

The increase in size of current data sets represents a challenge for
interactivity in the context of topological data analysis. To make matters
worse, traditional algorithms used to compute topological abstractions
are often sequential and thus do not fully exploit the compute power of
modern architectures. These algorithms rely on a global view of the data

which makes their parallelization challenging.

MOTIVATION AND STRUCTURE OF THE THESIS

For ten years, the compute power has grown through parallelism and
has significantly increased the size of data sets, without impacting the
execution times of topological data analysis algorithms. Indeed, most
topological abstractions are still computed using intrinsically sequential
algorithms and existing parallel approaches offer limited speedups.
Therefore, efficiently parallelizing them would be desirable to exploit at
best modern architectures, improving interactivity on workstations and
efficiency on supercomputers.

The main topic of this thesis is the design of efficient parallel algorithms

1.2. Motivation and structure of the thesis

for topological data analysis, focusing on level set based abstractions:
merge trees, contour trees and Reeb graphs.

The first part of this manuscript (chapters 2 to 4) is dedicated to
prerequisites. All the required definitions are first given in
Traditional algorithms used to compute level set based abstractions are
presented in[chapter 3]and existing parallel approaches are also discussed.
In we describe in details the scientific positioning of this thesis:
we list the topological abstractions on which we focus, and we justify our
choices regarding HPC architectures and algorithms. We also present
an overview of our contributions. Afterward, the second part of the
manuscript (chapter 5 to 8) details our contributions. First, we present
in an approach that efficiently computes contour trees in parallel
on shared memory workstations. This algorithm uses thread-based
parallelism and relies on a static decomposition of the input mesh by scalar
values. Then, an approach using independent local propagations and
task-based parallelism to compute merge trees is presented in
and refined in to deal with contour trees. Additionally, a task-
based algorithm also relying on independent propagations to compute
Reeb graphs is detailed in The last part of this manuscript
(chapter 9 and 10) is used to emphasize how this work can be exploited
through applications and examples in Finally, a conclusion on
this thesis is given in and perspectives of this work are also

presented.

Part 1

Foundations

BACKGROUND

CONTENTS
1 DATASET 11
[2.1.1 Triangulation| o o o oL 11
|2.1.2 Manifoldness| oL 14
213 Connectivity|. L Lo 15
[2.1.4 Neighborhood|. 16
2.2 SCALARS| o oo 17
[.2.1 Critical points| o o oo 18
[2.3 TOPOLOGICAL ABSTRACTIONS|. 20
3.1 Reebgraph| 20
23.2 Contourtreel. 21
233 Mergetree| oo Lo o 22
[2.4 DATA STRUCTURES| 24
[24.1 GraphandTreel 24
[2.4.2 Connectivity problems|. 25
|2.4.3 Ordered traversal| 27
[2.5 PARALLEL COMPUTING|. it 28
[2.5.1 Multi-core parallelism| 28
[2.5.2 Many-core parallelism| 33
[2.5.3 Multi-node parallelism{. 34

I His chapter introduces all theoretical notions required for the

understanding of this manuscript, as well as parallel computing.

2.1. Data set

2.1 DATA SET

In scientific visualization, input data sets are usually geometrical objects
(meshes) on which are defined scalar, vector or tensor fields. In the context
of this manuscript, we consider manifold triangulations and univariate
scalar fields. In the following, we formalize these terms and describe some

topological notions required in the remainder of this document.

2.1.1 Triangulation

Computer science is fundamentally a discrete world and so geometrical
objects are usually manipulated using meshes. A mesh is a set of polytopes
used to represent a surface or a volume, like a CFD simulation model, a
mechanical piece, a video game character or any other 2D/3D discrete
shape.

The surface or volume on which the analyzed phenomena take place
is named the domain. To introduce the notion of domain, we start by

defining topological spaces.

Definition 1 (Topological space) A topological space is an ordered pair (X, T), where X is a set

and T is a collection of subsets of X having the following properties:

o O and X belong to T
o Any union of members of T belongs to T

o Any finite intersection of members of T belongs to T
In order to locate in this space, we use the notion of point.

Definition 2 (Point) A point in the Euclidean space RY of dimension d > 0, is a set of d

coordinates.

In the domain, a point is a position in space (not to be confused with
a vertex, which is an object of dimension zero as we will see later). In a
triangulation with a dimension up to three, the type of cells that can be
used are restricted to: vertices, edges, triangles and tetrahedra (only for
dimension three). These cells are simplices. To define a simplex, we need

the notion of convexity.

Definition 3 (Convex set) A set S of an Euclidean space R? of dimension d is convex if for any

two points x,y in S and all t € [0, 1] the point (1 — t)x + ty also belongs to S.

Intuitively, a set S is convex if all for all pairs of points x,y € S all

points on the segment (x,y) are also in S (cf. (0)).

12 Chapter 2. Background

Definition 4 (Convex hull) The convex hull of a set of points P in an Euclidean space RY is the

unique minimal convex set containing all points of P.

(1) shows the minimal convex set of three linearly

independent points (yellow). This form a convex hull, in this case a

triangle.

(0) (1)

Figure 2.1 — Example of the convex hull of three yellow points: In (0) the highlighted area
is a convex set containing the three yellow points. It is convex since all pairs of points
inside it can be joined by a segment entirely inside the set, an example is shown using the
two shaded points. In (1) the highlighted area is the minimal convex set containing the

three yellow points: the convex hull.

Definition 5 (Simplex) A n-simplex is the convex hull of n + 1 points linearly independent in an
Euclidean space RY, with0 < n < d.

In simplices up to dimension 3 are illustrated. As we have
seen previously, the O0-simplex is a vertex. Additionally, the 1-simplex is an

edge, the 2-simplex a triangle and the 3-simplex is a tetrahedron.

Definition 6 (Face) A face is a simplex containing a sub set of the vertices of another simplex

called co-face.

For example, a tetrahedron has four distinct triangles as face, but also
six edges and four vertices. These simplices are the elementary bricks
used to represent the geometry of our data sets. Glued together, they form

a simplicial complex.

Definition 7 (Simplicial complex) A simplicial complex K is a finite collection of simplices o;

2.1. Data set

13

@ o

(0) (1) (2) (3)

Figure 2.2 — Illustration of simplices up to dimension three:
dimension 0: a vertex containing the red point;

dimension 1: an edge containing the two green points;
dimension 2: a triangle containing the three yellow points;

dimension 3: a tetrahedron containing the four blue points.

such that every face of a simplex of K is also in KC, and any two simplices intersect
in a common face or not at all. The dimension of the simplicial complex is the

highest dimension among its simplices.

A simplicial complex of dimension k is noted k-simplicial complex. For
example, a 2-simplicial complex may contain vertices, edges and triangles,

but not any higher dimensional simplices.

(0) (1)

Figure 2.3 — The set of vertices (0), edges (1), triangles (2) and tetrahedra (3) composing

the simplicial complex (4).

In all simplices contained in the 3-dimensional simplicial
complex (4) composed of a single tetrahedron are represented. If we
consider vertices, edges and triangles only, omitting the tetrahedron, we
obtain a 2-simplicial complex (a surface) in a 3-dimensional domain.

In the context of topological data analysis, a triangulation is a simplicial
complex and every mesh in dimension two or three can be easily converted
into a triangulation by subdividing its cells into simplices. We will see in
the next subsection that the notion of simplicial complex is still too generic

for our use cases and requires the definition of the notion of manifoldness.

Chapter 2. Background

2.1.2 Manifoldness

(0) (1) (2)

Figure 2.4 — Three different 3-simplicial complexes, each cell having a different color:
(0): two tetrahedra;

(1): a mingled tetrahedron is added to (0), the mesh is not manifold anymore;

(2): subdividing simplices allows to obtain a new manifold triangulation

The notion of simplicial complex alone allows cells to cross each other.
shows a triangulation having mingled tetrahedra (1). In this
case it is possible to subdivide simplices in order to obtain a new mesh
without overlapping, having the same shape than the previous one as
presented in (2). The term “manifold”, described next, requires the notion

of homeomorphism.

Definition 8 (Homeomorphisms) Two topological spaces A and B are said to be homeomorphic
if and only if there exists a continuous bijection f : A — B such that the inverse

function f~1: B — A is also continuous.

Roughly speaking, a homeomorphism is a continuous stretching and
bending of a topological space into a new shape. For example, a triangle
and a square are homoemorphic to each other, while a sphere and a
torus are not. But this description can be misleading as some continuous
deformations are not homeomorphisms such as the deformation of a
line into a point. Moreover some homeomorphisms cannot be achieved
using only continuous deformations, for example a knot and a circle are
homeomorphic but the knot needs to be cut and stitched back to be turned

into a circle.

Definition 9 (Manifold) A topological space X of dimension d is manifold if every point p € X
has an open neighborhood homeomorphic to an open neighborhood of R?. More

precisely, in dimension d a manifold is referred to as a d-manifold.

Intuitively, a manifold space locally resembles a Euclidean space near

2.1. Data set

each point. In (1), some points are both in the brown and white
tetrahedron, therefore this mesh is not manifold (for this overlap region,
there is no bijection from the complex to R%). In (2), mingled tetrahedra
have been subdivided so there is no more overlapping. Another classical
example of a non manifold mesh would be two tetrahedra touching only
on a single vertex. At this particular vertex the neighborhood is not

homeomorphic to a 3-ball and the mesh is not manifold.

2.1.3 Connectivity

Some of the algorithms presented later require the input mesh to be simply

connected. This notion is introduced constructively.

Definition 10 (Connected space) A topological space X is said to be connected if for every pair of

points in X there is a path in X between them.

Definition 11 (Connected component) A connected component is the maximal subset of a

topological space which is connected.

Definition 12 (Simply connected) A topological space X is simply connected if it is connected and

for any pair of points in X, any path can be continuously deformed into another.

1 i
s :

(0) (1) (2)

"y

-

Ll
a

Figure 2.5 — Let C; be the simplicial complex corresponding to the number (i).

Ko is not connected as we can find two points (A and B) with no path in Ky to join them.
K1 is a connected simplicial complex: there is a path in ICy between every pair of points.
ICy is a connected simplicial complex: but contrary to K1 it is not a simply connected one
as we can find two paths that cannot be continuously transformed one into each other.

In examples of topological spaces illustrating these various
connectivities are presented. The first one (0) is composed of two distinct

triangles. Each of these triangles is a connected component and this space
is not simply connected. The second one (1) is connected as there is a
path between every pair of points on the space. As every path between
these points can be continuously deformed into another, this second space

is simply connected. On the contrary, the third example (2) shows a hole

Chapter 2. Background

which prevents paths to be deformed into some others without stitching.
It is not a simply connected topological space, just a connected topological

space.

2.1.4 Neighborhood

All domains we consider being simplicial complexes, the notion of
neighborhood for a simplex is consistent. For example a vertex is always in
the neighborhood of all its neighbors. Several topological notions related
to neighborhood are used in this manuscript and we give here their formal

definitions.

Definition 13 (Closure) The closure of a collection of simplices o of a simplicial complex K

denoted Cl(c) is the minimal sub-simplicial complex of KC that contains each face
of 0.

Definition 14 (Star) The star of a collection of simplices o of a simplicial complex K denoted

St(0) is the set of simplices of K having a simplex of o as a face.

Definition 15 (Link) The link of a collection of simplices o of a simplicial complex K denoted
Lk(o) is the closure of the star (the closed star) of o minus the star of o:
Lk(o) = CI(St(0)) — St(0o).

The link can also be expressed as the set of faces of the simplices in the

star of ¢ that are disjoint from o.

ISR

a0 Cl(c0) ol St(ol) a2 Lk(02)

Figure 2.6 — Three collections of simplices o (in blue) in a simplicial complex K with

their corresponding closure, star and link (in red).

In the notions of closure, star and link are illustrated. On
the left, 00 is composed of an edge and a triangle, so the closure CI(¢0)
is composed of the triangle along with its three edges and three vertices,
and the lone edge and its two vertices. The result is a valid simplicial
complex. In the middle, o1 is a single vertex. Its star in red is composed
by this vertex along with adjacent edges and triangles. This is not a valid

simplicial complex as some edges on the triangles are missing. Finally, on

2.2. Scalars

the right 02 is also a vertex. Its link is composed of the simplices which

are in the closed star of 02 but not directly attached to the vertex 2.

2.2 SCALARS

Data sets in scientific visualization usually contain scalar, vector or tensor
fields. In the context of this manuscript, only univariate scalar values,
elements of IR, are considered. These scalars generally correspond to
simulation or acquisition results, can it be a temperature, a density, a
pressure or any other physical measure. These values are defined on
every vertex of the data set and for the remainder of this manuscript, we
consider that each vertex has a distinct scalar value. In practice, this is not
a limiting constraint as we can use the simulation of simplicity [30] in order
to obtain a consistent disambiguation in an existing data set. These scalar
values can be extended to the whole mesh using a linear interpolation with

barycentric coordinates.

Figure 2.7 — This data set is a
brake disk with the scalar field
corresponding to the temperature
(blue low, yellow high). Below the
blue line the scalar field associated
to vertices of the mesh is shown.
Then, between the two lines an
interpolation extend these scalar
values to edges. Finally, above

the red line scalar wvalues are

interpolated to the whole mesh.

Scalar values being extended to the whole mesh allows to define the

pre-image of a scalar value: the level set.

Definition 16 (Level set) On a simplicial complex K, the level set f~1(i) of an isovalue i € R

relatively to a scalar field f : K — IR is the pre-image of i onto K through
fof7H) =A{p e Klf(p) = i}.

On a d-manifold, a level set is a (d — 1)-manifold. A notion heavily

used in the remainder of this manuscript is the concept of contour.

Definition 17 (Contour) On a simplicial complex K, let f~1(i) be the level set of an isovalue i
relatively to a scalar field f : K — R. A connected component of f~1(i) is called

a contour.

18 Chapter 2. Background

As a connected component of level set, a contour can also be
represented with a simplicial complex. In the following, we denote
—1 . .
f(f(p)), the contour containing the point p.
Instead of taking the pre-image of a single scalar, we can also consider the

pre-image of all scalars above or below a certain isovalue.

Definition 18 (Sub-level set) On a simplicial complex K, the sub-level set f~1(i) of an isovalue
i € R relatively to a scalar field f : K — R is the set of points having a scalar
value lower than i through f : f~1(i) = {p € K|f(p) < i}.

The sur-level set is defined symmetrically as the set of points that have
a scalar value above or equal to certain isovalue. This scalar field can be

used to refine notions previously seen.

Definition 19 (Lower star) The lower star St~ (0y) of a vertex oy is the set of simplices in the star
of 0y : St(09) having all their vertices in f='(f(0p)).

And symmetrically, the upper star is the set of simplices in St(0p) that

are in the sur-level set of the scalar value associated with op.

Definition 20 (Lower link) The lower link Lk~ (0y) of a vertex oy is the set of simplices in the
link of 09 : Lk(0y) having all their vertices in the sub level set of the isovalue

associated with oy.

And the upper link is defined similarly using the sur-level set and is
noted Lk (0p). The union of the lower and upper star is not necessarily
equal to the complete star as some simplices may be crossing the scalar

value of the related vertex. The same remark can be done for the link.

2.2.1 Critical points

The scalar field of a simplicial complex is a piecewise linear function (when
a linear interpolation is used). As such, it admits critical points. These
points are located on vertices and can only be of two kinds: extrema and
saddles.

Definition 21 (Extremum) On a simplicial complex KC with a scalar field f : K — R, a vertex v
is a maximum (respectively a minimum) of f iff Lk™ (v) (respectively Lk~ (v)) is
empty.

Definition 22 (Saddle) On a simplicial complex K with a scalar field f : K — R, a vertex v is a

saddle of f iff Lk~ (v) or Lk (v) have more than one connected components.

A point which is not a critical point is said to be regular.

2.2. Scalars

19

(0) (1) (2) (3) (4) (5)

Figure 2.8 — Neighborhood of a vertex v in grey, with the connected components of the
link emphasized:

(0): |Lk~ (v)| = 0, a local minimum;

(1: |[Lk* (v)| = 0, a local maximum;

(2): |Lk= (v)| = |Lk™ (v)| = 1, a regular vertex;

(3): |[Lk~ (v)| =1, |Lk™ (v)| = 2, a split saddle;

(4): |Lk~ (v)| =2,|Lk" (v)| = 1, a join saddle;

(5): |Lk~ (v)| = 3,|Lk™ (v)| = 3, a degenerate saddle.

In examples of vertices neighborhood are given. In (0) and
(1) the grey vertex is either the lowest or highest in its neighborhood, hence
it is an extrema. In (2), we have an example of a regular vertex with one
connected component of both lower and upper link. All other cases are

saddles. Using the link to compute critical points of a data set is a classical

approach (and is embarrassingly parallel).

Maxima

Split saddle

Elevation

—04

I)
0.0e+00

Figure 2.9 — 2-triangulation where the scalar field is the height, from blue (low) to red

(high). Critical points of the mesh are shown using spheres: red for maxima, gray for
saddles and blue for minima. Three level sets are shown using colored curves.

For a macroscopic view of critical points, presents a simple
data set consisting of two hills with a height scalar field. At the top of

each hill we have a local maximum and there is a split saddle at the point

20

Chapter 2. Background

2.3

2.3.1

where these two hills become distinct (hence the name of split saddle). The
two hills become distinct when the level set change from one connected
component to two. On a simplicial complex with a linearly interpolated
scalar field, such a change in the number of connected components of
level set (or contour) can only occur at the vicinity of a critical point. The
opposite is not true, a critical point does not always imply a change in the

number of contours.

TOPOLOGICAL ABSTRACTIONS

In this section, we define three topological abstractions which are at
the core center of this manuscript. These abstractions track connected
components of level sets (or sub-level sets), hence the term level set
based abstractions used to describe them in this thesis. Other topological
abstractions exist, like the Morse-Smale complex [40] which relies on the
gradient for example (its definition is out of the scope of this manuscript).

Level set based abstractions also rely on the notions of graph and tree

formally defined |subsection 2.4.1 For now, a graph is a 1-simplicial

complex, if it has no loop we can also call it a tree. In this manuscript,
the terms arc and node are used to describe a graph structure whereas the

terms edge and vertex refer to the mesh.

Reeb graph

The Reeb graph is a topological abstraction reflecting the evolution of the
connected components of level sets (contours) on a manifold M. In the
context of this manuscript, the input mesh is a manifold triangulation as
previously defined.

Let ~ be an equivalence relation such that two points are equivalent
through ~ if and only if these two points reside on the same contour. The

Reeb graph is defined as the quotient space M/ ~.

Definition 23 (Reeb graph) On a manifold M, the Reeb graph R(f) is a one dimensional

simplicial complex defined as the quotient space on M x R by the equivalence

relation (p1, f(p1)) ~ (p2, f(p2)) which holds iff:
f(p1) = f(p2)
p1e (f1(f(p2),,

presents the Reeb graph of a height scalar field on a hand
data set. On the right, two level sets are shown with their contours colored

2.3.2

2.3. Topological abstractions

21

1.0e+00

l.

— 0.6

Elevation

04
I 02
0.0e+00

Figure 2.10 — A 3-triangulation of a hand with the height scalar field. On the left, the

scalar field is shown along with all the corresponding critical points. On the right, the

Reeb graph of this data set is presented along with the corresponding segmentation. Two
level sets are given to emphasize the contour contraction mechanism.

accordingly to the arc they are related with. Each contour can be replaced
by a single point, equivalent to all the points in the contour though ~: this
is called a contraction. The Reeb graph of f can also be defined as the
continuous contraction of each contour into a point. With this definition,
we can see that each arc corresponds to a region where the number of
connected components of level sets is equal to one. The corresponding
segmentation is used to color the mesh on the right side of

As seen in fsubsection 2.2.1, the number of contours can only change at a

critical point. This means the arcs of the Reeb graph can only start and end
at critical points (but not all critical points are critical nodes on the Reeb
graph).

In the topological handle created by the fingers leads to
a loop in the graph. A loop in the Reeb graph can only occur around a
topological handle. The next subsection focus on the case where the input

data set has no topological handle.

Contour tree

When the input domain has no topological handle, the output Reeb graph
is granted to have no loop. On a simply connected manifold the Reeb

graph is called contour tree.

22

Chapter 2. Background

Definition 24 (Contour tree) The Reeb graph of a scalar field f defined on a simply connected

2.3.3

manifold M is called contour tree and noted C(f).

As we will see later, computing the contour tree is several orders
of magnitude faster than the Reeb graph computation in practice. This
is particularly useful for regular grids which are simply connected by
construction. For unstructured meshes, knowledge about the data set is
required as a contour tree algorithm may return a wrong output on a non

simply connected domain.

1.0e+00

.

0.6

Elevation

— 04

[02
0.0e+00

Figure 2.11 — A simply connected 3-triangulation of a hand with a height scalar field. On

the left, the scalar field is shown along with all the corresponding critical points. On the

right the contour tree is presented along with the corresponding segmentation.

shows the contour tree of a height scalar field on a simply
connected, manifold triangulation of a hand data set. This data set is

analogous to the one presented but does not contain the
handle. As a result, the output is the tree shown on the right.

Merge tree

In the same way the contour tree tracks changes in the number of
connected components of level sets, the merge tree tracks changes in the
number of connected components of sub/sur-level sets. In this manuscript,
we call join tree the merge tree tracking changes in the number of sub-level
set components as this tree contains all the minima and critical points
where the corresponding components join together. We call split tree the
one containing split saddles and maxima. In the literature, the names of

these two trees are sometime interchanged.

2.3. Topological abstractions

&’ i 4

Figure 2.12 — A simply connected 3-triangulation of a hand with a height scalar field.

On the left, the scalar field is shown along with all the corresponding critical points.
On the middle, the join tree of this data set is presented along with the corresponding
segmentation. There are only three leaves on this tree as this data set has only three
minima. On the right, the sub-level set just below the first join saddle is shown, we can
see the three connected components. In particular, the light blue and yellow components

are about to merge at the saddle.

presents the join tree of a height scalar field on the 3-
triangulation of a hand, analogous to those presented previously. There

are three minima on this data set, a global one on the wrist and two others
on the lowered fingers. The splits and maxima are not tracked by the join
tree as they do not change the number of connected components of sub-
level sets. The root of the join tree is the global maximum, where the last
connected component of sub-level sets ends.

The merge tree is a topological abstraction generally used on data
sets where areas of interests are either minima or maxima and their
corresponding regions. Additionally, reference algorithms to compute

the contour tree also rely on the merge tree computation, as detailed in

[subsection 3.2.1 Finally, merge trees are used to compute the persistence

diagram, which is a powerful tool to measure the number and the

robustness of features on a data set.

Segmentation

The hand data sets shown previously are colored according to the
segmentation induced by the topological abstraction on the figure. The
segmentation is the mapping between all vertices to arcs they belong to
in the graph/tree. When the output data structure explicitly models this

information, the graph/tree is said to be augmented. Otherwise, the output

24

Chapter 2. Background

2.4

2.4.1

is only a skeleton and called non-augmented. In practice, to enable the full
extent of level set based applications (as shown in [Figure 1.3), augmented
trees are required. Non-augmented trees can only be applied to a specific
sub-set of applications. This is challenging as the computation of the

augmented trees is more intensive than for non-augmented ones.

DATA STRUCTURES

The main contributions presented in the second part of this manuscript
consist in new algorithms to compute the abstractions presented
previously. These computations rely on existing data structures, presented

in this section.

Graph and Tree

In computer science, a graph data structure is a set of vertices linked
together by edges. As is, an edge can link a vertex to itself. However,
in the context of this manuscript, graphs are guaranteed to be 1-simplicial
complices and an edge can only link two distinct vertices. More precisely,
an arc can only link two distinct nodes as these terms are preferred to

describe the graph structure.

] Root
~
2| | ® «—————=Reqular
(U -
5 g nodes
D_ \.
S ®
(V5] e
Saddle
node
Leaves

Figure 2.13 — A simple graph composed of three (super) arcs and four critical nodes.

Regular nodes of the root arc are shown as stored separately.

For Reeb graphs, contour trees and merge trees, the graph structure
maps to the mesh. This means our graph structure has to deal with regular
nodes. As presented we have chosen to store the sorted list of
regular nodes of each arc separately. This methods requires less memory
than an explicit storage as arcs between these nodes are implicit. As
emphasized in the figure, arcs between two critical nodes are called super

arcs. As our graph representation only contains super arcs, we adopt the

2.4.2

2.4.2.1

2.4.2.2

2.4. Data structures

25

convention that arcs are always assumed to be super arcs unless otherwise
stated.

Connectivity problems

Identifying connected components in a graph (eventually subject to
updates) is called the connectivity problem. In the following, we detail
data structures addressing this problem, depending on the changes

allowed for the graph.

Static connectivity

When a graph is static (no arcs are to be added or removed), the only

operation required to query connected components is:
e connected(v,w): return true if v and w are connected.

This operation can be implemented using a breadth-first search traversal
detailed below.

Breadth First Search. Starting at a n-simplex, it recursively explores its
neighborhood using the (closed) star of the current simplex to store the
next n-simplices to visit in a queue. It generally stops when there is no
more candidate to visit. In other word, a BFS is a walk across simplices,
using neighborhood relationship to visit the structure. By construction, it
visit all given n-simplices in a connected component, thus this algorithm
can check if two vertices are connected. It is used in practice to count the

number of connected components in a complex.

Incremental connectivity

In the case of the incremental connectivity problem, arcs can be added to
the graphs, which means connected components can merge together. The

operations required by a data structure addressing this problem are:
e connected(v,w): return true if v and w are connected.
e insert(v, w): add an edge between nodes v and w in the graph.

An efficient data structure addressing this problem is the Union-Find,

presented below.

26

Chapter 2. Background

2.4.2.3

@ @’ @ Figure 2.14 — Example of an Union-Find data structure on a

set with three elements. First, all the elements are distinct, each

union(2,3) tree has a distinct root. After the first union operation, a link is
@3 created between nodes 2 and 3. These two nodes have a common

@/@ root now (here 2). At this point a findRoot operation on these
union(1,3) two nodes would return the same representative (2). Finally,

after the second union, all nodes are on the same tree and have
@m the same representative (2).

Union-Find. An Union-Find [21] is a set of two operations (union and
findRoot) operating on disjoint data sets to track whether some elements
are in the same connected component or not. Internally, it works by
maintaining rooted trees. Elements are nodes of the tree and the root is the
representative. A findRoot operation returns the root of the tree containing
the given element. In practice, this operation is typically used to determine
the connected component to which belongs a vertex. An union operation
creates an arc between given distinct trees. This mechanism is illustrated

In practice, path compression and tree balancing are used to improve
the complexity of these operations [82], leading to an amortized time per
operation of O(a(n)) where n is the number of elements in the structure
and « is the extremely slow growing inverse of the Ackerman function.

(x(n) < 5 for any value that can be written in the physical universe.)

Algorithm 1 connected operation

procedure CONNECTED(v,w)
return findRoot(v) = findRoot(w)

end procedure

In the context of the incremental connectivity problem, the connected
operation can be implemented using an Union-Find data structure by
checking if the two vertices have the same root as shown in

The insert operation is the same as the union operation.

Dynamic connectivity

In the case of the dynamic connectivity problem, arcs can either be added
or removed from the graphs, which means components can merge together
and split. The operations required by a data structure addressing this

problem are:

2.4.3

2.4. Data structures

27

e connected(v,w): return true if v and w are connected.
e insert(v, w): add an edge between nodes v and w in the graph.
e delete(v, w): remove the edge v, w in the graph.

An efficient data structure addressing this problem is the ST-Trees,

presented below.

ST-Trees. ST-Trees are dynamic graph data structures described by D.
Sleator and R. Tarjan [74], based on vertex-disjoint paths. Each path is
represented by an auxiliary data structure like binary search trees or splay
trees [75]. Complexities achieved by ST-Trees are shown

Operation ~ Amortized complexity

findRoot O (log n)
insert O(logn)
delete O(logn)

Table 2.1 — Amortized complexities of ST-Trees functions for a graph of size n.

In the complexities presented are not exactly those for the
dynamic graph connectivity problem. The findRoot operation returns the
root of the tree containing a node. Similarly to the findRoot operation

presented for the Union-Find data structure, it can be used to implement

the connected operation like in

Ordered traversal

In computer science, priority queues are containers in which elements are
retrieved according to a priority, for example the minimum first (according
to some ordering criteria, such as function values). Usually, a priority
queue guarantees a constant time lookup of the first element, at the
expense of logarithmic insertions and extractions.

Breadth-first search can wuse priority queues to store simplex
candidates. This way, simplices are visited in a sorted fashion, depending
on the criterion used by the priority queue. In the following of this
manuscript, we use breadth-first search traversals to visit vertices in the

order of scalar values, thanks to the efficient priority queue detailed below.

Fibonacci heap The Fibonacci heap is a priority queue described by

M. Fredman and R. Tarjan [21, [33] based on a collection of (binomial)

28

Chapter 2. Background

2.5

2.5.1

2.5.1.1

trees. This data structure offers low amortized time complexities as shown

aple

Operation ~ Amortized complexity

findMin 0o(1)
insert o(1)
delete O(logn)
merge o(1)

Table 2.2 — Amortized complexities of Fibonacci heap functions for a heap of size n.

These low complexities are due to the heavy use of lazy operations.
For example, the merge of two heaps into a single one is done in constant
time by simply concatenating the two lists of internal trees. Inserting an
element is equivalent to a merge with a one sized heap. It is only when
the current first element is removed that the internal trees are consolidated,

hence the logarithmic time of this step.

PARALLEL COMPUTING

As we have seen in the introduction, the main topic of this thesis is the
design of efficient parallel algorithms for topological data analysis. Parallel
computing consists in executing multiple operations simultaneously. In
terms of hardware, parallel computing encompasses multi-core CPUs,
many-core architectures and multi-node parallelism. These types of
hardware and existing programming paradigms used to exploit them are

presented in the following.

Multi-core parallelism
Hardware

Shared memory architectures became particularly developed in the years
2000 with the emergence of multi-core CPUs (Central Processing Units).
Before this the computational power relied mainly on to frequency [53]. As
shown a higher frequency also implies a higher consumption.

This growth in power was not sustainable anymore, so hardware
manufacturers have changed their strategy in favor of parallelism. Let
us see how this new model has addressed the power issue.

A comparison between two fictive electrical systems is presented
The first one has a single processor and the second one two

processors in parallel running at half the frequency to process the same

2.5. Parallel computing

29

30

o5 Pentium 4 (Psc) /

Pentium 4 (Wmt)

20
ower = perf / 1.7/
15 P P Growth in power

/ is unsustainable
10
Pentium Py‘
5
486, —% Pentium
0 T T T

0 2 4 6 8
Scalar Performance

Power

Source: E. Grochowski of Intel

Figure 2.15 — At the beginning of the years 2000, the power consumption used to
grow almost quadratically with respect to the scalar performance (which reflect the
compute power of the processor). This chart comes from A “Hands-on” Introduction to
OpenMP [53]l.

amount of input in the same time. In this scenario, the second system has a
bit more than twice the capacitance of the first one as it has two processors.
The voltage scales with the frequency so we consider the second voltage
being at most 0.6 times the first one. This leads us to a same amount of
computation per unit of time for only 40% of the power required for a
single processor system: the power issue is addressed. But this scenario
is only possible if the processing can be divided between cores: sequential
algorithms need to be parallelized in order to exploit the full power of

these architectures.

The CPU architectures. CPUs are designed to have a high serial compute
power on each core. In 2018, we can target processors with up to
32 cores. Each core can process a stream of instructions called thread.
Simultaneous Multi-Threading (SMT) is a technique aimed at improving
the efficiency of the processor, by allowing two or four threads to be
executed simultaneously on a single core. On Intel processors, SMT is

named Hyper-threading.

30

Chapter 2. Background

2.5.1.2

|
rocessor
A . 0
e

Capacitance = C] n
Voltage=V

Frequency =f
Power = CV2f

Figure 2.16 — Two electrical systems able to process the same amount of data. The
system with two processors only needs 40% of the power required by a single processor
for the same processing power. (Example retieved from A “Hands-on” Introduction to
OpenMP [53])

NUMA effect. Present-day shared memory workstations may have
several processors and several memory banks. In this case, the memory
access time may depend on the memory location relative to the processor.
As shown [Figure 2.17} a processor may access its local memory bank faster
than the memory bank of another processor. This is referred to as a NUMA
(Non Uniform Memory Access) architecture. In such a case, data locality
needs to be taken into account by parallel algorithms to achieve the best

performance.

SIMD CPU vector (or SIMD — Single Instruction, Multiple Data) units
can be used when the same operation can be performed on contiguous
elements in a vector register. This mechanism relies on specific sets of
instruction like SSE (128-bits), AVX (256-bits) or the newer AVX-512 (512-
bits).

Programming

Thread-based programming. Multi-core parallelism can be achieved
using thread-based programming, a paradigm focused on the creation
and handling of threads within a single process. Explicit, low-
level programming is available with POSIX threads and higher level

programming can be done with specific programming interfaces, such as

2.5. Parallel computing

31

CPU1 +11 CPU2

+10 +10

RAM1 RAM2

Figure 2.17 — Simple example of NUMA effects on a dual processor architecture. In this
example, CPU1 accesses memory in RAM1 in only 10 cycles, when it needs 21 cycles to

access RAM2. These numbers are taken from one of our personal workstations.

OpenMP [59], a non intrusive programming paradigm based on pragmas

(or compiler directives).

Algorithm 2 Thread-based parallelism examples

Model parallel section
Do in parallel
ParallelJobA()
ParallelJobB()
End
EndModel
Model parallel for loop
for i = 0 to n do in parallel
IndependantProcessing(i)
end for
EndModel

In examples of classical thread-based parallelism

constructs are given. In the parallel section, several computations are
started simultaneously and the end of the section is reached when the
last computation is finished. In the parallel for loop, an independent

processing is launched at each iteration of the loop. In practice, several

32

Chapter 2. Background

iterations (successive or not) can be given to each thread. We aim here
at balancing the work equally among threads to achieve the best parallel
efficiency (i.e. speedup divided by the number of cores). If the amount of
work of each iteration is known prior to execution, the loop iterations can
be equally distributed among threads using a static scheduling. Otherwise,
the distribution of work is made at runtime: the loop is divided into small
chunks and each available thread processes a chunk until none left. This is
called dynamic scheduling, an overhead at runtime is induced by the chunk
management.

When several threads are working simultaneously, concurrent data
accesses are possible. If a thread accesses data being written by another
thread, a data race occurs and leads to an undefined behavior. Mutexes
(Mutual Exclusion) and semaphores are examples of low level mechanisms
which can be used to synchronize threads and to ensure that a memory
location is only accessed by a single thread at a time. OpenMP also
provides critical sections and atomic operations via compiler directives. The
critical section relies on a global lock, to ensure that a portion of code can
be executed by at most one thread at a time. A name can be given to a
critical section so that only the sections with the same name are mutually
exclusive. Atomic operations are lighter synchronization mechanisms
processing a single operation in an uninterruptible way, impacting only
the corresponding cache line thanks to the cache coherency protocol of

multi-core processors.

Task-based programming is a paradigm for multi-core parallelism
introduced by Cilk [11] in 1994 that gained a greater interest in the last
ten years. A task is a sequence of instructions within a program that can
be processed concurrently with other tasks in the same program [84]. As
illustrated tasks are stored in a pool of tasks on which available
threads pick jobs to process using a dynamic scheduling.

As task-based programming relies on dynamic load balancing, it is
well suited for while loops. It is also an efficient approach for recursive
algorithms and nested parallelism, which is particularly useful to visit or
construct hierarchical structures like trees or graphs. Using tasks usually
offers better performance than parallel sections for nested parallelism. As
a side note, it is interesting to remark that, internally, mutexes are attached
to threads and not to tasks. If tasks are not tied to threads, using a mutex
may thus lead to a deadlock.

Dependencies between tasks may be expressed to prevent the runtime

2.5.2

2.5.2.1

2.5. Parallel computing

33

incoming tasks Task pool threads

o \ pick tasks
0
o

o>
o I E—

Figure 2.18 — Example of a pool of tasks with dynamic load balancing. On the left, new
tasks are added into the pool. On the right, two threads are picking tasks to execute. The
computation loads of these tasks are not necessarily balanced.

from executing a task before the end of another one. The most advanced
runtimes like StarPU [6} 83], or OmpSs [27] make use of a dependency
graph. These dependencies can be used to solve data races by preventing
tasks operating on a same memory location to be executed simultaneously.
Such runtimes can also use the dependency graph to distribute the work
cleverly on heterogeneous architectures. A priority mechanism giving the
runtime hints on which task to execute first is also potentially available
and can be used to improve performance. This task parallelism has been
progressively introduced in OpenMP [59], independent tasks first, then

dependencies and lately priorities.

Many-core parallelism

Designed for a high degree of parallelism, many-core architectures offer a
number of cores greater than CPUs, at the expense of reduced cache and

memory sizes and lower single core performance.

Hardware
We present here some of the main many-core architectures used for

scientific computing.

Graphics Processing Units (GPUs) have a significantly higher number

of cores than CPUs [and so are able to execute instructions to more

INote however that a GPU core does not match a CPU core, but rather a CPU SIMD

lane.

34

Chapter 2. Background

2.5.2.2

2.5.3

data simultaneously. Additionally, GPUs have a simplified instruction
processing. Each GPU core relies on in-order execution, without branch
prediction. Also, GPU caches are significantly smaller than the CPU ones.
The best performance is obtained for massive, regular and fine-grained
data parallelism. Finally, data needs to be transferred from the processor
memory to the GPU along with instructions to be executed as the GPU is

a separate device: this can undermine the overall GPU performance.

Integrated GPUs. Starting from 2010-2011, Intel has introduced
integrated GPUs (iGPUs) and AMD the Accelerated Processing Unit (APU)
containing an iGPU. On these two devices, the GPU share the same die as
the CPU and so can access its memory directly. This avoids the possible
data transfer bottleneck of discrete GPUs. In the same way, they also offer
reduced energy consumption compared to the CPU + GPU approach.
However, their compute power and memory bandwidth are lower than
discrete GPU ones.

Xeon Phi. The last many-core device to be presented here has been
introduced by Intel in 2012. Xeon Phi are many-core processors designed
to compete with GPUs but using up to 72 x86-compatible cores (288
threads using SMT). The first generation was designed as a PCI device,
like discrete GPUs: data and instructions needed to be transferred on the
Xeon Phi. The last generation is available as a standalone processor. In
November 2017, the last Xeon Phi generation (Xeon Phi 7200, codenamed
Knights Landing) has been discontinued by Intel in favor of another

architecture built for exascale in the future.

Programming

For scientific computing, GPUs can be programmed using OpenCL [79],
and CUDA [58] (only for NVIDIA). Xeon Phis support C, C++, Fortran and
OpenMP [59] as well as Intel TBB [65] and MPI [32]. For graphic processing
on GPU (like shaders or rendering), OpenGL [72] and Vulkan [49] can be
used. Finally, some higher level programming tools support many-core

architectures like OpenMP [59] or OpenAcc [94].

Multi-node parallelism

A shared memory architecture as previously seen is a single compute

node. When higher levels of performance are required, several nodes can

2.5.3.1

2.5.3.2

2.5. Parallel computing

35

be linked together to form a cluster. A supercomputer is a large cluster of
nodes, designed for efficiency and linked together by high speed networks.
These architectures allow to reach high compute power that could not be
reached with a single machine for decades and to process data distributed

among nodes that would not fit in a single workstation.

Hardware

These architectures differ from shared memory workstations by the
distributed aspect of their memory and computational power. Transferring
data between nodes can be slow (accessing the memory of the current
node is 100x faster than accessing the one of an external node on the Titan
supercomputer for example [g]) and may represent a bottleneck, especially
for memory intensive computations having sparse memory accesses.
With such a computational power, saving large results may also
represent a major bottleneck (transferring data between nodes is 10x faster
than a disk access on the Titan supercomputer for example [g]]). For this
reason, in-situ visualization [67] is aimed to bring scientific visualization
algorithms to run within the supercomputer along with the simulation to

circumvent the bottleneck associated with saving and retrieving the data.

Programming

To exploit distributed architectures, parallel programming needs to be
paired with multi-process programming in order to run simultaneously on
distinct nodes. For more than 20 years, the HPC standard for multi-process
parallel programming has been the Message Passing Interface (MPI) [32], a
portable message passing standard. Several implementations are available,

as well as bindings for other languages like Python, R or Matlab.

STATE OF THE ART

CONTENTS
3.1 MERGE TREES| 39
[3.1.1 Sequential reference algorithms| 39
[3.1.2 Parallel algorithms| 42
[3.2 CONTOUR IREES|. 46
[3.2.1 Sequential reference algorithm| 46
[3.2.2 Parallel algorithms| 47
[3.3 REEBGRAPHS| 48
[3.3.1 Cut-based approaches|, 49
[3.3.2 Dynamic connectivity| 50

I : EFERENCE algorithms to compute merge trees, contour trees and Reeb
graphs in sequential are detailed here. Corresponding parallel

algorithms, when they exist, are introduced and discussed.

37

3.1.1

3.1.1.1

3.1. Merge Trees

39

In this chapter we present the related work regarding the three contour-

based topological abstractions: merge trees, contour trees and Reeb graphs
presented in We focus on the augmented version of these

abstractions.

MERGE TREES

Merge trees (presented in [subsection 2.3.3) are used to track sub/sur-level

set components. In this manuscript, join trees are merge trees tracking sub-
level set components and having minima and join saddles as nodes. Split
trees are merge trees tracking sur-level set components having maxima and

split saddles as nodes.

Sequential reference algorithms
Overview

The merge tree of piecewise linear data defined on a manifold simplicial
complex can be computed using algorithms similar to the Kruskal’s
minimum spanning tree algorithm [14, 80, 91]. Carr et al.| [16] described
an algorithm which became the reference, with optimal time-complexity,
good practical performance results and able to deal with data defined in
arbitrary dimension. This algorithm relies on a vertex sweep in increasing

order of scalar value (for the join tree), while maintaining an Union-Find

data structure (see [subsubsection 2.4.2.2) to track connected components

of sub-level sets. This algorithm starts by a global sort of vertices by scalar
value. For completeness, we recall here that vertices with identical scalar
value can be distinguished using a consistent artificial noise thanks to a
simulation of simplicity [30].

The main procedure to compute the merge tree is described in
Initially, each vertex is associated to its own Union-Find
component. For a join tree computation, vertices are visited in increasing
order (line 2). For each vertex v;, distinct Union-Find representatives on
its lower link are added into a cc set (line 5). If this set is empty, the
current vertex has no element in its lower link and is thus a minimum: a
new arc is created (line 8). For each representative in cc, its corresponding
arc is updated (line 11). This update operation consists in adding v; to
the list of regular vertices of this arc. Additionally, v; is used as the new
closing node of this arc. An union operation between lower Union-Find

representatives and the current vertex is also done (line 12) to propagate

40

Chapter 3. State of the art

Algorithm 3 Merge tree construction: mesh traversal
1: procedure SWEEP(M)

2 for all vertex v; € M by increasing scalar order do

3 cc < emptySet

4 for all v, in Lk~ (v;) do > representatives in Lk~ (v;)
5 add(cc, findRoot(v;))

6 end for

7: if |cc| < 1 then > new arc on minimum
8: newArc(v;, findRoot(v;))

9: end if
10: for all c € cc do > update arcs and Union-Find
11 updateArcs(getArc(c), v;)
12: union(c, findRoot(v;))
13: end for
14: if |cc| > 1 then > new arc on join saddle
15: newArc(v;, findRoot(v;))
16: end if
17: end for

18: end procedure

the corresponding sub-level set component. If the number of distinct
Union-Find representatives in cc is greater than one, the current vertex
is a saddle (line 14): a new arc is created, starting at this join saddle.
shows a join tree computation on a toy example. (1) The
lowest vertex v; is visited first, this is the global minimum. Its lower link
being empty, v; is a leaf of the tree and a new arc (blue) is created. (2) The
second vertex v, is a local minimum leading to the creation of another arc
(yellow). (3) For the third vertex vs, the lower link contains one vertex. v3
has one Union-Find representative in its lower link so this is a regular node
in the join tree. v3 is added as regular vertex in the tree structure and an
union is made between v3 and the representative in its lower neighborhood.
(4) The fourth vertex to be visited, v4, has two distinct representatives in
its lower link: blue and yellow. So v, is a join saddle. A new arc (green) is
created and arcs ending on vy are closed. An union operation between the
Union-Find representative of the yellow and blue arcs is made. The new
representative is highlighted in green. (5) On the fifth step, the current
vertex vs has a yellow and a green vertex in its lower link. Thanks to the

previous union, both return the same (green) representative after the merge

3.1.1.2

3.1.1.3

3.1. Merge Trees

41

(1) (2) (3)
Q Q Q
o) o) o)
g g o]
) o —
Vs @) [oR o o I e} { (@)
~4 4 S o

' OV2 o 9 2N —> 0 e}
Oowvi -
Initial data set
o) o o o)
(4) ((6)

5)

Figure 3.1 — Join tree computation on a toy data set with a height scalar field. Nodes are
colored according to the Union-Find representative (or arc) they correspond to. In this
example, the blue and yellow components merge on a join saddle to form a new (green)

component.

so there is only one connected component of sub-level set in the lower link
and us is a regular vertex. (6) At the end, the last vertex is the global

maximum. The arc reaching this vertex is closed, the tree is complete.

Complexity

This algorithm starts by a sort of all vertices. This can be done in
O((To log(cro)) steps, where 0y is the number of vertices of the mesh. The
Union-Find data structure is used to visit the lower link vertices of each
vertex using edges of the mesh. This step takes O (0104(01)) steps, where oy
is the number of edges in the mesh and « is the slow growing inverse of the
Ackermann function. See Worst-case Analysis of the Set Union Algorithms, by
Tarjan and van Leeuwen| [81] for a complete explanation. This leads to a
total time complexity of O(oplog(op) + cra (o)) for the complete merge

tree computation.

Non augmented merge tree

If the segmentation information (cf. [subsection 2.3.3) is not required,

another sequential algorithm can be used to compute the merge tree [20].
The idea is to extract all critical points of the mesh, then to compute
monotonously decreasing paths starting at these critical points and ending
at local minima. Finally, these paths are stitched together at saddles to
form the skeleton of the tree. These steps are shown In theory,
this algorithm only visits a sub-part of the geometry and should be faster

42

Chapter 3. State of the art

3.1.2

3.1.2.1

40

I 20
0.0e+00

Figure 3.2 — A toy example of a hand data set with an elevation scalar field (0). Critical

(0) (1) (2)

points and the monotonously decreasing path are shown in (1). Finally, the skeleton of
the tree is obtained by connecting these paths at saddles (remaining reqular nodes are

removed).

than the previous algorithm. In practice, the saddle extraction takes almost

as much time as the reference algorithm of [16].

Parallel algorithms

Several algorithms to compute merge trees in parallel already exist and
are presented next. We focus here on shared memory architectures.
Regarding distributed memory architectures, Morozov and Weber [55) 56]
have presented two approaches to exploit merge and contour trees in a
multi-node environment, minimizing inter nodes communications. Most
of the papers presented in this section are aimed at computing the contour
tree. But all these approaches only differ on how they compute the two
internal merge trees used to obtain the contour tree (see next section). For
this reason they are presented in this section.

We divide existing algorithms in two parts: in the input sensitive section,
the degree of parallelism depends on the input mesh size, whereas in the
output sensitive section the degree of parallelism depends on the topology

of the output tree.

Input sensitive

Methods presented here are based on a static decomposition of the input

domain.

3.1. Merge Trees

43

Spatial decomposition. The first paper to compute the merge tree in
parallel has been presented by Pascucci and Cole-McLaughlin| [61] and
is based on a spatial decomposition of the input data set. Using a divide
and conquer approach, the domain is split into two halves recursively until
only a single cell remains. The merge tree of piecewise linear scalar
field defined on a single cell can be deduced directly. Then, cells and
their local trees are merged back two by two until the original domain is
reconstructed. In practice, it is possible to stop the recursive split when
enough independent partitions have been created. The local merge tree
of each partition can then be computed using the sequential reference

algorithm. shows an example of this divide and conquer
approach using four partitions.

'rs
!
A

Figure 3.3 — Divide and conquer algorithm used to compute the join tree of an elevation
scalar field defined on the hand data set.

(0): four partitions remain, a lot of noise is visible on the partitions boundaries.

(1): partitions are merged two by two, noise on the merging boundaries is removed.

(2): all partitions have merged, only one remains containing the final tree.

This algorithm is particularly well suited for regular grids, where
splitting the domain evenly is trivial. It can compute the augmented merge
tree and is not restricted to barycentric linear interpolation for scalars. This
approach is specially adapted to multi-core CPU and can also be exploited
in a distributed architecture if the data set is divided spatially between
nodes. In that case, the final tree obtained after all local tree merges still
has to fit in a single node (2)). A drawback of this algorithm
is that, as cells merge, the amount of work increases (the boundary gets
larger) but the parallelism degree decreases. At the end, the largest merge

between the two last halves of the data set is done in serial. Moreover,

44

Chapter 3. State of the art

3.1.2.2

this approach does not guarantee that the work load is balanced among
partitions, which can undermine the parallel efficiency. Finally, computing
a merge tree requires to cut the mesh recursively into two halves, which is
not trivial for unstructured meshes. This operation can be done in O(n;)

time for each split where 7, is the size of the local domain to split.

Scalar value decomposition. Another approach to split the input mesh
is to rely on scalar values. This approach is a contribution made in the
context of this thesis and is the topic of the The main idea
is to divide the input mesh using level sets of the input domain. Each
partition thus obtained can be used to compute the merge tree locally.
Finally, these merge trees are stitched together on the boundaries using
a simple procedure identifying matching arcs. We refer the reader to the

corresponding chapter for further details.

Output sensitive

Monotone paths. To compute the non-augmented merge tree, parallel
versions of the monotone path based approach [20] have been proposed.
The first one has been presented by Maadasamy et al| [52]. The initial
critical point extraction is easily parallelizable as only local computations

are involved (cf. [subsection 2.2.1). As shown monotone
paths grow independently and can be computed in parallel. Finally,

these paths are connected hierarchically together in parallel using a few
synchronizations. At the end, we obtain the final non-augmented merge
tree. As some saddles may not be nodes of the merge tree, regular nodes
may appear on the data structure. To the best of our knowledge, this is the
first article presenting an algorithm that runs efficiently on GPU (thanks
to its massive parallelism) for the merge tree computation.

This algorithm has been refined for the special case of regular grids
by |Acharya and Natarajan| [3]. This new approach is a mix between the
parallel monotone path version previously presented and the divide and
conquer strategy [61]. On the input regular grid, several partitions are
created on which the parallel monotone path approach is used. Then these
local trees are merged back recursively to obtain the final non-augmented
merge tree. Adapting this approach to run on GPU is left as future work.

These two methods offer good performance results on regular grids.
The hybrid CPU-GPU approach offers 13x speedups using GPU compared

to the sequential reference algorithm, while the refined algorithm is about

3.1. Merge Trees

45

55x faster on 64 CPU cores compared to the reference sequential algorithm.
However, the output of this algorithm is a non-augmented tree, which is
less versatile application-wise, while the reference algorithm deals with
all the segmentation information. Moreover, on unstructured meshes only
the hybrid CPU-GPU approach can be used and requires at least four CPU

cores to be faster than the sequential algorithm.

Path compression. Another massive data parallel approach on GPU,
named Parallel Peak Pruning [17], has been presented in 2016 to compute
the augmented merge tree. As the authors wrote themselves “this
algorithm is somewhat complex”, so the following explanations are just
a summary. The core idea is to construct monotone paths from saddles to
extrema and then iteratively “prune” peaks, i.e., cuts merge tree branches
ending in an extremum. Each prune creates a new extremum-saddle
region. In practice, these monotone paths are constructed from each
vertex to an extremum. A path compression called pointer jumping [45]
is used to label each vertex with its corresponding extremum. Then,
all edges are sorted according to the extrema they lead to and saddles
in their neighborhood to deduce extrema-saddle pairs and prune the
corresponding regions. Every existing path leading to a pruned extremum
is redirected to point to the corresponding saddle. At this point, monotone
paths are compressed, edges sorted and extrema-saddle pairs pruned once
more, until no saddle remain. At the end, unassigned vertices form the last
arc of the tree, the root arc.

The sequential version of this algorithm is 40% slower on CPU than
the sequential reference algorithm, however reported results show 9.2x
speedups with 16 CPU cores over the sequential reference algorithm [16].
The GPU version on their data set is 21x faster than the reference algorithm
on one CPU core. However, the algorithm itself is complicated and
up to now, no performance results for 3-dimensional meshes have been
reported. Moreover, efficiently computing augmented trees with this

approach seems to be still an open problem.

Local propagations. Another output sensitive approach is to use local
propagations corresponding to the arcs of the merge tree. This approach
is a contribution made in the context of this thesis and is the subject of the
To the best of our knowledge, this is the most efficient method

to compute augmented merge trees.

46

Chapter 3. State of the art

3.2

3.2.1

3.2.1.1

3.2.1.2

CONTOUR TREES

The contour tree is a topological abstraction tracking the connected

components of level sets (contours) on a simply connected manifold. See

lsubsection 2.3.2|for more details.

Sequential reference algorithm
Overview

The reference algorithm to compute the contour tree [16] is based on a
3-pass method on the data set. Two symmetric merge trees are computed,
a join and a split tree. Then these two trees are combined together to form
the final contour tree. Any method can be used to compute the two merge
trees, but critical nodes of each tree need to be transferred in the other one

before the combination. The main steps of this algorithm are the following.
1. Sort vertices by scalar value.

2. Construct the join tree by sweeping vertices in increasing order of

scalar value.

3. Construct the split tree by sweeping vertices in decreasing order of

scalar value.
4. Transfer critical nodes of each merge tree in the other one.
5. Combine the two merge trees into the final contour tree.

All these steps are either self-explanatory or previously described
except for the combination of the two merge trees, which is described in

the following section.

Merge tree combination

The combination algorithm is illustrated Initially, each merge
tree needs to be augmented with the critical nodes of the other tree (step
0). Then, all leaves of both trees are added onto a queue 0 (green arrows
in step 1). While 6 is not empty, its first leaf is taken out and its parent
arc is processed. The node and its parent arc are added into the contour
tree (steps 2 to 6). The node is also deleted from the two merge trees. If a
new leaf is created in one of the original merge trees (like in steps 2 and 5),

this new leaf is pushed into 6. For augmented trees, assuming a super arc

representation as introduced in [subsection 2.4.1} the list of regular vertices

3.2.1.3

3.2.2

3.2. Contour Trees

47

of each processed arc is traversed and vertices not already in the contour

tree are assigned to the newly created arc.

AYAY AYe AV

3)

% /X\ - /X& TV

o
(5) (6)

Figure 3.4 — Example of a combination of a join (left) and a split (right) tree to construct
the contour tree (grey background).

(0) the join and the split tree to be combined.

(1) the join and split trees augmented with nodes of the opposite tree.

(2-6) leaves are removed one by one and added to the contour tree.

(6) the two merge trees have no remaining arcs, the contour tree is complete.

Complexity

The combination algorithm is a sweep on the two merge trees. In the
case of non augmented trees, it takes O(a) steps where a is the number
of arcs of the output tree. In the augmented case, this algorithm traverses
the list of regular vertices of each arc, therefore its complexity becomes
O ((70), where 07 is the number of vertices in the input mesh. Therefore, the
contour tree processing is bounded by the two merge tree computations,
each with complexity O(oplog(co) + cia(01)), o1 being the number of

edges in the input mesh.

Parallel algorithms

Parallel algorithms to compute the contour tree are based on the 3-pass
method [16] previously described. All merge tree algorithms presented
in can be used to compute the join and split trees in parallel.
Additionally, as these two trees are independent, they can be computed
simultaneously to add more parallelism. Most of these approaches were
documented as using the sequential reference combination [3} 52, l61].
In the following, approaches that differ from the sequential reference

algorithm are discussed.

Chapter 3. State of the art

33

The first article mentioning a parallel combination is the Hybrid Parallel
Algorithm for Computing and Tracking Level Set Topology [52], in which the
idea is to process leaves simultaneously. However, the parallel algorithm
is not detailed and performance results are only presented using the
reference sequential version.

Using a similar idea, the article Parallel Peak Pruning [17] presents
a parallel combination on which upper leaves of the split tree and
lower leaves of the join tree are processed in parallel alternatively. In
this approach, nodes are not deleted in the merge tree during the arc
processing but in an intermediate procedure after current leaves have been
processed. This way, no data race occurs during the arc processing. Finally,
consecutive regular vertices are collapsed in a single (super) arc.

Another parallel combination has been studied in the context of this

thesis and is described [subsection 7.2.4 Once again, leaves are processed

in parallel step by step, but a final parallel procedure is described for the
last monotone path.

Finally, even if the original combination algorithm is used it is worth
to mention Contour Forest, detailed In this algorithm the
combination is automatically computed in parallel as each independent

partition can compute the full contour tree.

REEB GRAPHS

(0) (1) (2)

Figure 3.5 — A toy example with a topological handle (the domain is not simply

(3)

connected). (0) The heigh scalar field defined on the mesh ranging from blue (low scalar
values) to red (high scalar values). (1) During the join tree computation, both sides of the
handle corresponds to a same sub-level set components. The final join tree (2) does not
contains information about the handle. The split tree is symmetric to the join tree on this
simple example, the final contour tree (3) does not contain a loop.

To compute the Reeb Graph, Union-Find based methods previously

3.3.1

3.3. Reeb Graphs

49

described for the merge and contour tree computations cannot be used
anymore. If the mesh is not simply connected, a level set component
can split and merge back around a topological handle (see [Figure 3.5),
leading to a loop in the output graph. Such an event has no impact
on the connectivity evolution of the sub/sur-level set: the contour tree
algorithm [16] would thus miss the loops in the output data structure. In

the following, we introduce existing algorithms to compute Reeb graphs.

Cut-based approaches

The first approach date back to 1991 [47] and is based on a systematic
cut of the mesh on all vertices (leading to a quadratic complexity). In
the early 2000, several methods based on quantized range contouring
were presented [10, 96]. These approaches are approximated, their

complexity goes from linear to quadratic as we increase the precision of

the approximation.

Figure 3.6 — On a torus with a simple elevation, there are four critical points shown on
(0). Using a cut-based approach [24], the mesh is cut at each saddle point as shown
on (1). Each connected component consequently obtained (critical point excluded) is
homeomorphic to a cylinder. These components are visited by monotone paths in (2)

and glued together to obtain the output graph in (3).

Focusing on exact methods cutting the mesh only on specific points,
the first approach has been introduced in 2008. It proceeds to a

cut for each level set corresponding to a saddle point (we have seen in

jsubsection 2.2.1| that the topology of level sets only changes at the vicinity

of critical points). Arcs of the Reeb graph are then obtained by using an
adjacency graph constructed from the regions of the domain delimited by
the previously created cuts. A second approach presented in 2009 and
named Loop surgery proposes to cut the mesh to guarantee that
the corresponding Reeb graph becomes loop-free and hence efficiently
computable. Afterward, a contour tree algorithm is used and the Reeb

graph is deduced by stitching facing arcs around each cuts. A third

50

Chapter 3. State of the art

3.3.2

3.3.2.1

approach has been documented in 2012 [27], which is also based on a
cut of the mesh on all saddle vertices. Areas thus obtained are visited
using monotone paths propagation, as shown and the Reeb
graph is deduced. In 2013 was introduced an algorithm [26] on which
the cut is only made on a subset of the saddles. A contour tree algorithm
is used on the resulting domain similarly to the Loop surgery approach.
Finally, a parallel algorithm [43] has been introduced in 2018, based on the
monotone paths based approach [24]. In this algorithm, results have only
been documented in 2D. To the best of our knowledge, this is the first and
only existing parallel algorithm to compute Reeb graphs.

Because of the cut step, these algorithms have theoretically a quadratic
worst case complexity. However, these are generally efficient approaches

in practice as the quadraticity does not express in most real case data sets.

Dynamic connectivity

In 2007 was introduced an on-line algorithm [63] for Reeb graphs
computations. This approach is able to operate in a streaming way,
processing simplices of the 2-skeleton of the input mesh in arbitrary order.
A separate graph is used to reflect the neighborhood of the input simplices
so when a new simplex is encountered the Reeb graph is updated locally to
take this new simplex into account. When all simplices have been visited,
the Reeb graph is complete. The final complexity of this algorithm is
O(|vo| x |v1]), where |vg]| is the number of vertices and |v1| the number
of edges of the input mesh. Even if this algorithm is sequential, its
ability to process vertices in arbitrary order can be of great interest in
an in-situ context, where the Reeb graph algorithm is executed alongside
the simulation and processes parts of the mesh as they become available.
The authors also present an “out-of-core” mode, exploiting the streaming
nature of the algorithm to process the input data set by small pi