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Numerical simulation and experimental investigations of two-phase flow in singulari-
ties

Abstract

Numerical simulations and experimental investigations of a rising individual Taylor bub-
ble through a vertical sudden expansion and contraction in stagnant Newtonian liquid are
presented. The CFD procedure is based on the open source package Gerris which adopts the
volume-of-fluid (VOF) method to represent the gas/liquid interface. The numerical method
is verified using the existing results of single Taylor bubbles rising in straight columns. The
experiments investigate a nitrogen bubble rising in a water-glycerol mixture for different con-
centrations. The pipe diameter ratio ranges from 0.69 to 1.72. The images of the bubble rising
through the singularities are captured by a high-speed camera. Our investigations focus on
the transient process of the bubbles passing the singularity. The variations of the bubble
velocity and the liquid film thickness are investigated. The results show that the greater ex-
pansion ratios yield more perturbations on the bubbles and have strong effects on the tail of
the bubble. The unstable bubble tails are cut off into smaller bubbles in some of the test cases
and a bubble break-up regime map obtained by simulations has been proposed. The bubble
shape variations depend also on the length of the bubbles. For a bubble passing through a
contraction, the blocking phenomenon has been observed and a map has been proposed. Fi-
nally, this study, based on a large range of Eötvös numbers and expansion/contraction ratios,
provides new insights to better understand the effect of singularities on rising Taylor bubbles.

Key words: Two-phase flow, Taylor bubble, contraction, expansion, VOF, experiment
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Etudes expérimentales et numérique du écoulement diphasique en singularités

Résumé

Une étude numérique et des investigations expérimentales sont menées sur une bulle
de Taylor ascendante au passage d’une contraction ou d’un élargissement brusque dans un
liquide Newtonien stagnant. Le code CFD est issu du logiciel libre Gerris utilisant la méth-
ode VOF (Volume Of Fluid) pour représenter l’interface liquide-gaz. La méthode numérique
est vérifiée en utilisant les résultats existants sur des bulles de Taylor ascendantes dans des
colonnes droites. L’étude expérimentale permet d’étudier une bulle d’azote dans un mélange
eau-glycérol pour différentes concentrations. Le rapport des diamètres de la conduite varie
de 0,69 à 1,72. Les images de la bulle montante dans les singularités sont capturées par une
caméra haute vitesse. Les variations de vitesse de la bulle et de l’épaisseur du film liquide
sont étudiées. Les résultats montrent que l’élargissement brusque avec un rapport de di-
amètres plus élevé entraï£¡ne plus de perturbations sur la bulle avec de forts effets sur sa
queue. Les queues de bulles instables sont coupées en petites bulles dans certains cas et une
carte d’écoulement permet de le prédire. En outre, il a été observé que les variations de la
forme de la bulle dépendent de la longueur des bulles. En ce qui concerne la bulle passant
par une contraction, le phénomène de blocage a été observé et une carte de prédiction a été
proposée. Finalement, cette étude, basée sur un intervalle assez large du nombre d’Eötvös
et du rapport de diamètres, propose de nouvelles connaissances pour mieux comprendre
l’ascension d’une bulle de Taylor dans les singularités.

Mots clés: écoulement diphasique, bulle de Taylor, contraction, élargissement, VOF, ex-
périence





ix

Contents

Acknowledgements iii

Abstract v

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives of the study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Layout of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Taylor bubble: a state of the art review 5
2.1 Bubble dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Numerical simulation of two-phase flows . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Two-phase flow equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Interface tracking and capturing methods . . . . . . . . . . . . . . . . . . 9

Level-Set method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Front tracking method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Volume of fluid method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Bubble motion in channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 Rising bubbles in vertical channels . . . . . . . . . . . . . . . . . . . . . . 16

Terminal velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Falling film . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Bubble nose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Experimental studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Bubble motion through expansions and contractions . . . . . . . . . . . . . . . . 26
2.4.1 Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.4.2 Contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.3 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Photobioreactors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Volcanology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 Numerical model and validations 33
3.1 Introduction of the numerical solver . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



x

3.1.2 Numerical method for solving the incompressible Navier-Stokes equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Basics of the projection method . . . . . . . . . . . . . . . . . . . . . . . . 34
Projection method in the present study . . . . . . . . . . . . . . . . . . . 35
Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Volume-of-Fluid (VOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Surface tension calculation . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Height function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Parallelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Basic test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Error quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Lid-driven cavity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.3 Bubble rising in stagnant liquid . . . . . . . . . . . . . . . . . . . . . . . . 40

Benchmark test cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Results of the test case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Results of the test case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Adaptive mesh tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Tests in Cylindrical coordinates . . . . . . . . . . . . . . . . . . . . . . . . 46
3D tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.4 Parallelisation tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Description of the experiments 55
4.1 Description of the experimental test facility . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Bubble generator chamber . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Visualization section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3 Measurements and data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Uncertainty calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.2 Tube diameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.3 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.4 Water-glycerol solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.5 Viscosity measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.6 Density measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.7 Fluid properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.8 Image processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.9 Optical correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3.10 Calculation of the bubble volume . . . . . . . . . . . . . . . . . . . . . . . 65
4.3.11 Calculation of the bubble velocity . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Summary of experimental data range . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



xi

5 Bubble rising in straight tube 69
5.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Mesh independency analysis . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2.2 Effects of initial bubble lengths . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.3 Effects of density ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.4 Effects of viscosity ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.5 Effects of Eo number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Comparison with experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.1 Shape comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.3.2 Terminal velocity comparison . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.3 Liquid film comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.3.4 Velocity field comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.4 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Bubble rising through the expansion 89
6.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.3 Illustration of the bubble features . . . . . . . . . . . . . . . . . . . . . . . 90

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.1 Bubble without break-up in the expansion . . . . . . . . . . . . . . . . . 91

Comparison of experiments and simulations . . . . . . . . . . . . . . . . 91
Velocity variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Bubble length variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Transition time of the bubble in the expansion . . . . . . . . . . . . . . . 98
Necking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.2.2 Bubble with break-up in the expansion . . . . . . . . . . . . . . . . . . . 100
Break-up patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Break-up pattern map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Bubble rising through contractions 105
7.1 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2 Result analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.2.1 Comparison of experiments and simulations . . . . . . . . . . . . . . . . 106
7.2.2 Velocity variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.3 Bubble length variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.4 Transition time of the bubble in the contraction . . . . . . . . . . . . . . . 111
7.2.5 Bubble blocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



xii

7.3 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusions and perspectives 117
8.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
8.2 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
8.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

A Comparison of the bubble rising test cases 121
A.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

B Nomenclature 125

Bibliography 127



xiii

List of Figures

2.1 Shape regime map for bubbles in liquids. (Replot based on [18]). . . . . . . . . . 7
2.2 Iso-level curves from a level-set formulation. The circular bubble initialized at

(x = 0.5, y = 0.5) with 1.0 radius. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 An example of the front of Front-tracking method and its background grid. [109] 12
2.4 Calculating volume fraction column-wise and row-wise to estimate the line

slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Flow pattern map for taylor bubble rising in stagnant liquid. (Replot based on

White and Beardmore [118]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6 Bubble column and air lift bioreactors. (Replot based on [96]). . . . . . . . . . . 29
2.7 Diagram of the Taylor bubble in a lava conduit and its rising towards the lava

lake. (Replot based on [21]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1 Example of quadtree mesh (left) and the corresponding tree-structure repre-
sentation (right). [83] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Geometrical flux computation on a quadtree mesh. [82] . . . . . . . . . . . . . . 37
3.3 Boundary conditions of the lid-driven cavity problem. . . . . . . . . . . . . . . . 40
3.4 Velocity (u and v) comparsion with the results in [43]. (a) Re=100, (b) Re=1000 . 41
3.5 Convergence rates of (a) u-velocity and (b) v-velocity along the center of cavity. 41
3.6 Pressure field along the center of cavity and its convergence rate. . . . . . . . . 42
3.7 Initial configuration and boundary conditions for the test cases. . . . . . . . . . 42
3.8 Time evolution of the interface for test case 1 on the finest grid. . . . . . . . . . 44
3.9 Test case 1 bubble shapes at t = 3. The shapes are computed on different grid

resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.10 Time evolution of the interface for test case 2 on the finest grid. . . . . . . . . . 46
3.11 Test case 2 bubble shapes at time=3. The shapes are computed on different grid

resolutions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.12 Center of mass for test case 1 (A) and 2 (B). . . . . . . . . . . . . . . . . . . . . . 47
3.13 Circularity for test case 1 (A) and 2 (B). . . . . . . . . . . . . . . . . . . . . . . . . 48
3.14 Rise velocity for test 1 (A) and 2 (B). . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.15 Adaptive mesh and interface of the bubble at t = 3 for test case 1. (A) The finest

level of mesh equals to 1/32. (B) Finest level of mesh equals to 1/256. . . . . . . 49
3.16 Relative errors of adaptive mesh with their corresponding results in uniform

mesh for test case 1. (A) Relative error of the center of mass. (B) Relative error
of the velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.17 CPU times consume in uniform mesh and adaptive mesh for test case 2 . . . . . 50



xiv

3.18 Sensitive analysis on the calculation domain width. (Re = 35, Bo = 125) (A)
Bubble velocity. (B) Bubble shape at t = 5. . . . . . . . . . . . . . . . . . . . . . 50

3.19 Bubble shape evolution with the time. (Re = 200, Bo = 200) . . . . . . . . . . . . 51
3.20 Real time spent with different number of CPU cores. . . . . . . . . . . . . . . . . 52
3.21 The maximum, minimum and average number elements on different CPU

cores. Total number of the CPU cores is 16. Finest meshes are (A) h = 1/64
, (B) h = 1 / 512. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1 Configuration of the experimental test bench. . . . . . . . . . . . . . . . . . . . . 56
4.2 Illustration of the bubble generator chamber. . . . . . . . . . . . . . . . . . . . . 56
4.3 Illustration of the visualization section. . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Sketch of the connection plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 (A) Shear rate vs. shear stress of different water-glycerol solutions. (B)Measured

viscosity of the water-glycerol solution as a function of the measured volume
percentage of glycerol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.6 (A) Detecting the tube. (B) Rotating the image. (C) Removing the noises on the
image. (D) Select the main bubble. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Illustration of the light refraction across tube wall. . . . . . . . . . . . . . . . . . 64
4.8 The optical correction along the radius. . . . . . . . . . . . . . . . . . . . . . . . 65
4.9 (A) The points indicate the surface. (B) Rearrangement and connection of the

points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.10 (A) The two halves of the bubble. (B) The results of the bubble volume in each

frame. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Initial configuration for the simulation. . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 (A) Bubble tail shapes for different meshes. (B) Velocity profile in different

meshes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Tail velocities with different initial bubble lengths. . . . . . . . . . . . . . . . . . 72
5.4 (A) Effect of density ratios on bubble tail shapes. (B) Effect of density ratios on

the bubble terminal velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.5 (A) Effect of density ratios on bubble nose velocities. (B) Effect of density ratios

on bubble tail velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6 (A) Effect of viscosity ratios on bubble tail shapes. (B) Effect of viscosity ratios

on the bubble terminal velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.7 (A) Effect of viscosity ratios on bubble tail shapes. (B) Effect of viscosity ratios

on the bubble terminal velocities. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.8 Comparison of the bubble shape. (W-G 95%, Eo = 49.7, log(Mo) = 0.37) . . . . . 80
5.9 Comparison of the bubble shape. (W-G 90%, Eo = 49.1, log(Mo) = -0.68) . . . . 80
5.10 Comparison of the bubble shape. (W-G 80%, Eo = 47.6, log(Mo) = -2.62) . . . . 81
5.11 Comparison of the bubble shape. (W-G 70%, Eo = 41.9, log(Mo) = -3.65) . . . . 81
5.12 Comparison of the bubble shape. ((W-G 60%, Eo = 40.55, log(Mo) = -4.63) . . . 82
5.13 Comparison of the bubble nose and tail shape. . . . . . . . . . . . . . . . . . . . 82



xv

5.14 Numerical results (filled symbols) of the Froude number plotted as a function
of the Eötvös number and for different values of the Morton number. The
dashed and solid lines correspond to the correlations of Wallis [116], Hayashi,
Kurimoto, and Tomiyama [44], and Viana et al. [115]. Experimental data (open
symbols) from White and Beardmore [118] are also added for comparison. . . . 83

5.15 Comparison of the terminal velocity. (A) Experiments vs. correlations (B) Ex-
periments vs. simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.16 Comparison of film thickness for different Ds/D and water-glycerol solutions. 84
5.17 Numerical velocity fields and streamlines for a case with Mo = 4.31×10−2 and

Nf = 111. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.18 Comparison of numerical dimensionless velocity profiles (uz/U∗) at bubble

head with numerical and experimental results from [10]. . . . . . . . . . . . . . 86
5.19 Comparison of numerical dimensionless velocity profiles (uz/U∗) at bubble tail

with numerical and experimental results from [10]. . . . . . . . . . . . . . . . . 86

6.1 Initial configuration for the simulation. . . . . . . . . . . . . . . . . . . . . . . . 90
6.2 Illustration of the bubble features described in this study. . . . . . . . . . . . . . 91
6.3 Experimental and numerical results of the bubble rising through the expan-

sion. (W-G 95%, Eo = 49.7, log(Mo) = 0.37, ε = 1.24) . . . . . . . . . . . . . . . . . 92
6.4 Experimental and numerical results of the bubble rising through the expan-

sion. (W-G 90%, Eo = 49.2, log(Mo) = -0.68, ε = 1.24) . . . . . . . . . . . . . . . . 92
6.5 Experimental and numerical results of the bubble rising through the expan-

sion. (W-G 80%, Eo = 47.5, log(Mo) = -2.62, ε = 1.24) . . . . . . . . . . . . . . . . 93
6.6 Experimental and numerical results of the bubble rising through the expan-

sion. (W-G 70%, Eo = 41.9, log(Mo) = -3.65, ε = 1.24) . . . . . . . . . . . . . . . . 93
6.7 Experimental and numerical results of the bubble rising through the expan-

sion. (W-G 60%, Eo = 40.6, log(Mo) = -4.63, ε = 1.24) . . . . . . . . . . . . . . . . 94
6.8 Numerical results of steady state of bubble (U = VT ) before and after the ex-

pansion (symbols) and the correlations of Wallis [116] and Viana et al. [115]
(line). (Mo = 1× 10−2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.9 Evolution of the dimensionless bubble velocity as a function of the bubble
head position at four locations of the bubble. The vertical dashed lines mark
the location of the bubble entering and leaving the expansion. The horizontal
dashed line indicates the bubble terminal velocity before entering the expan-
sion. (Mo=1× 10−2, Eo=100, expansion ratio=1.2) . . . . . . . . . . . . . . . . . 96

6.10 Evolution of the mass center velocity for different values of the initial bubble
length. The dashed lines mark the locations of the bubble entering and leaving
the expansion. (Mo = 1× 10−2, Eo = 100, ε = 1.1) . . . . . . . . . . . . . . . . . . 97

6.11 Maximum value of the bubble mass center velocity as a function of the Eo
number for different expansion ratios (Mo=1× 10−2). . . . . . . . . . . . . . . . 98



xvi

6.12 Evolution of the bubble length for different expansion ratios as a function of the
bubble head position. The dash lines mark the locations of the bubble entering
and leaving the expansion. (Mo = 1× 10−2, Eo = 100) . . . . . . . . . . . . . . . 99

6.13 Illustration of the transition time of the bubble in the expansion. . . . . . . . . . 100
6.14 Time shift of the bubble in different expansion ratios. (Mo=1× 10−2) . . . . . . 101
6.15 Evolution of the bubble neck radius for different expansion ratios as a function

of the bubble head position. The snapshots show the bubble shape when it
reaches the minimum bubble neck radius. (Mo=1× 10−2, Eo=100) . . . . . . . . 101

6.16 Bubble break-up in the expansion (W-G 95%, ε = 1.72) . . . . . . . . . . . . . . . 102
6.17 Bubble break-up in the expansion (W-G 80%, ε = 1.72) . . . . . . . . . . . . . . . 102
6.18 Bubble break-up in the expansion (W-G 70%, ε = 1.72) . . . . . . . . . . . . . . . 103
6.19 Bubble break-up regime map obtained by simulations. . . . . . . . . . . . . . . 104

7.1 Initial configuration for the simulation. . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Experimental and numerical results of the bubble rising through a contraction

(W-G 70%, Eo = 41.9, log(Mo) = -3.65, ε = 0.93) . . . . . . . . . . . . . . . . . . . 107
7.3 Experimental and numerical results of the bubble rising through a contraction

(W-G 70%, Eo = 41.9, log(Mo) = -3.65, ε = 0.81) . . . . . . . . . . . . . . . . . . . 107
7.4 Experimental and numerical results of the bubble rising through the contrac-

tion (W-G 70%, Eo = 41.9, log(Mo) = -3.65, ε = 0.69) . . . . . . . . . . . . . . . . . 108
7.5 Experimental and numerical results of the bubble rising through the contrac-

tion (W-G 60%, Eo = 40.6, log(Mo) = -4.63, ε = 0.81) . . . . . . . . . . . . . . . . . 109
7.6 Experimental and numerical results of the bubble rising through the contrac-

tion (W-G 80%, Eo = 47.5, log(Mo) = -2.62, ε = 0.81) . . . . . . . . . . . . . . . . . 109
7.7 Evolution of the dimensionless bubble velocity from simulation as a function

of the bubble head position at four locations of the bubble. The vertical dash
lines mark the location of the bubble entering and leaving the contraction. The
horizontal dash line indicates the bubble terminal velocity before entering the
contraction. (Mo = 1× 10−2, Eo = 100, contraction ratio = 0.9) . . . . . . . . . . 110

7.8 Evolution of the bubble head and tail velocity for different values of the initial
bubble length. (Mo = 1× 10−2, Eo = 100, contraction ratio = 0.9) . . . . . . . . . 111

7.9 Evolution of the bubble length in different contraction ratio. (Mo = 1, Eo = 100) 112
7.10 (A) Illustration of the transition time of the bubble in the contraction. (B) Illus-

tration of the bubble interface trajectory. . . . . . . . . . . . . . . . . . . . . . . . 113
7.11 Time shift due to the effects of the contractions. (Mo = 1× 10−2) . . . . . . . . . 113
7.12 Bubble interface trajectory passing through the contraction. (Mo = 1 × 10−3,

Contraction ratio = 0.7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.13 Bubble interface trajectory passing through the contraction. (Mo = 1×10−3, Eo

= 50) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.14 Bubble blocking regime map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.1 Comparison of the minimum circularity. (A) case 1. (B) case 2. . . . . . . . . . . 123
A.2 Comparison of the maximum rise velocity. (A) case 1. (B) case 2. . . . . . . . . . 123



xvii

A.3 Comparison of the final center of mass. (A) case 1. (B) case 2. . . . . . . . . . . . 124





xix

List of Tables

2.1 Summary of the models for liquid film of the Taylor bubble presented in liter-
ature. [61] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Summary of simulations of the Taylor bubble in straight tube presented in lit-
erature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Summary of the experimental studies of the Taylor bubble rising in vertical tube. 31
2.4 Summary of the experimental studies of the Taylor bubble rising in vertical tube. 32

3.1 Physical parameters of the test cases . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Prediction of the bubble shapes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Camera related parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Diameter of the upper tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3 Summary of the properties of the water-glycerol solutions. . . . . . . . . . . . . 62
4.4 The refraction index of glass and glycerol solution. . . . . . . . . . . . . . . . . . 65
4.5 Summary of parameters in the experiments. . . . . . . . . . . . . . . . . . . . . . 67

5.1 Mesh parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Dimensionless numbers of the Taylor bubble in the tube with Din = 16.40 mm. 76
5.3 Film thickness data points in different water-glycerol solutions compared to

correlations from literature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Diameters of the tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Diameters of the tubes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1 Relative error norms and convergence orders for test case 1 . . . . . . . . . . . . 121
A.2 Relative error norms and convergence orders for Test Case 2 . . . . . . . . . . . 122
A.3 Minimum circularity and maximum rise velocity, with corresponding incidence

times and final position of the center of mass for test case 1 . . . . . . . . . . . . 122
A.4 Minimum circularity and maximum rise velocity, with corresponding incidence

times and final position of the center of mass for test case 2 . . . . . . . . . . . . 122





1

Chapter 1

Introduction

1.1 Background

The Taylor bubble flow is one of the liquid-gas flow patterns consisting of elongated bubbles
separated by liquid slugs. The details of the flow patterns will be discussed in Chapter 2.
Taylor bubbles are encountered in research and industry, which exist from micro-fluids to
a much larger scale. In industrial processes, Taylor bubbles are often found in buoyancy
driven fermenters, the transportation of hydrocarbons in oil and gas industry, the boiling
and condensing process in the thermal power plants. Large scale Taylor bubbles also exist
in the natural world. The eruption of Strombolian volcanoes is considered to be caused by
the rise and burst of large Taylor bubbles. The photobioreactor is another application of the
rising bubble. More details of these two examples will be proposed in Chapter 2.

Due to its great importance, the Taylor bubble has been thoroughly investigated in past
decades. But, a large volume of research investigated the rising of Taylor bubbles in straight
tubes. There is little work that reports the rising of Taylor bubbles through expansions or con-
tractions. The expansion or contractions are often called singularities, which are widely seen
in the industrial applications. The design of the oil pipe line or the heat exchanger often use
expansions or contractions in pipe connections. In the example of volcanoes, the bubble rises
form the great depth through the lava conduit. The cross-sectional shapes changes while the
bubble rises. It is not reasonable to apply the research of the Taylor bubbles rising in straight
tubes in such conditions. The Taylor bubble rising through expansion and contraction should
be investigated.

Therefore, the lack of understanding of the mechanisms of the Taylor bubble rising through
the singularities motivates the present research. Based on the research of the Taylor bubble in
straight pipes, we carried out the study on the Taylor bubble rising through singularities.

1.2 Objectives of the study

The primary objective is modeling the Taylor bubbles rising through expansions and contrac-
tions. The aim is to understand the bubble behavior in flow conditions which have not been
studied yet. To achieve this, the work has been divided in the following tasks:

• Visualize the bubble behaviors in the straight pipe and through the expansions and
contractions thanks to experimental investigations.
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• Use CFD (Computational Fluid Dynamics) to model the single rising Taylor bubbles.

• Validated the numerical model thanks to experimental data.

• Characterize the flow disturbances caused by the expansions or contractions using the
CFD model.

1.3 Methodology

An incompressible two-phase flow solver is used for establishing the model to investigate the
Taylor bubble in this research work. The solver is an open source flow solver called Gerris.

The CFD solver will be validated before carrying out further investigation. We perform
several benchmark cases to test the performance of the solver on simulating the two-phase
flow. A comprehensive test on the single bubble rising is carried out.

On the other hand, the experimental methods are also used to investigate the bubble be-
havior. The bubble rising in different water-glycerol solutions has been recorded by a high
speed camera. The bubble shape variation will be further investigated by analyzing the im-
ages. The numerical model will then be validated by the experimental data.

The investigation on the Taylor bubble rising through singularities can be done by ana-
lyzing the reliable data from the experiment and simulation.

1.4 Layout of the thesis

The thesis is divided into eight chapters with several appendices. It is organized as follows:

• Chapter 1 provides a background to the study and the research objectives.

• Chapter 2 gives an overview of the two-phase flow phenomena and the methods of
modeling the two phase flow in particular, the single bubble rising and Taylor bubble
rising in the tube.

• Chapter 3 describes the numerical model used in the present study and the numerical
benchmark tests have been performed to validate the numerical model.

• Chapter 4 describes the experimental test facility. The experimental methodology and
the data reduction procedure are also described.

• Chapter 5 presents the experimental and simulation results of the Taylor bubble rising
in a straight tube. A sensitivity analysis has been carried out to test the accuracy of the
bubble in the straight tube. The simulations have been validated with our experimental
data and data from the literature.

• Chapter 6 presents the experimental and simulation results of the Taylor bubble rising
through the expansions. A detailed analysis on the bubble behavior is shown. The
bubble break up behaviors are also presented.
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• Chapter 7 presents the experimental and the simulation results of the Taylor bubble ris-
ing through the contractions. A detailed analysis on the bubble behavior in the contrac-
tion is shown. The bubble blocking phenomenon will be discussed.

• Chapter 8 presents the general conclusions of this study and the perspectives.
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Chapter 2

Taylor bubble: a state of the art review

In the context of multiphase flow, two-phase flow refers to the flow of any two fluids mixed
together, whereas those fluids do not mix on the molecular level. In another word, the liquids
are not miscible. An interface between two liquids can be observed from a macroscopic view.
Even though we excluded some special circumstances, it still leaves a diverse spectrum of
two-phase flows.

In this chapter, we first present a brief introduction about the bubble dynamics. It will
introduce the basic physical mechanism of the gas bubble in the liquid and clarify the region
of our study. Secondly, we will discuss the widely used numerical methods on interface
capture. Various numerical models are applicable to gas-liquid two-phase flow. We will
discuss most of them. Finally, we focus on the bubble dynamics. A detailed review will be
presented on the Taylor bubble. Both experimental and simulation studies will be reviewed.

2.1 Bubble dynamics

Bubbles can often be observed in various industrial processes, such as boiler, stream gen-
erator in the power plant and chemical reactors. The bubble characteristics depend on the
property of fluids, the quantity of each phase. Bubble dynamics investigates the formation,
movement and collapse of bubbles. In this brief introduction, we mainly introduce the previ-
ous study about the bubble movement, especially the freely rising bubble in stagnant liquid.

The freely rising bubble is a fundamental problem of two-phase flow. This simple problem
eliminates many effects and just focused on the liquid, gas and their interface. Therefore,
the problem is a good test case for the numerical methods. The accurate prediction of the
interface is crucial for aforementioned interface tracking methods. On the other hand, the
bubble rising problem does physically exist. Understanding the bubble behavior has a great
importance of evaluating the force acting on a bubble and mass transfer coefficient.

From a physical point of view, the bubble motion is determined by the forces acting on it,
such as buoyancy, inertial, viscous and interfacial forces. The combination of these forces can
be regrouped into dimensionless numbers. The studies of the freely rising bubbles focus on
the bubble dynamics and eliminate other factors, such as containing the vessel. Bhaga and
Weber [18] presented the results of their experiments in terms of the following dimensionless
groups:
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• Reynolds number:

Re =
ρDU

µ
(2.1)

• Eötvös or Bond number:

Eo =
gD2ρ

σ
(2.2)

• Morton number:

Mo =
gµ4

ρσ3
(2.3)

• Weber number:

We =
ρU2D

σ
(2.4)

where, the characteristic length, D = (6V/π)1/3, is the volume-equivalent diameter of a bub-
ble of volume V . U is the bubble terminal rise velocity, and ρ, µ and σ are the density, viscosity
and surface tension of the liquid. g is the acceleration of gravity. The experimental data in
[18] covers a wide range of Eo = [8.67, 641] and Mo= [8.4×10−4, 711]. And, they presented a
bubble shape regime map. They also classify the bubbles into 7 groups based on the shape: s,
spherical; oe, oblate ellipsoid; oed, oblate ellipsoidal; oec, oblate ellipsoidal cap; scc, spherical
cap with closed steady wake; sco, spherical cap with open unsteady wake; sks, skirted with
smooth skirt; skw, skirted with wavy unsteady skirt. Those 7 regions are shown in Fig. 2.1.

Here, we review works have been done by numerical simulation about the bubble rising.
The development of the numerical methods helps us understand the bubble motion. On the
other hand, the experimental studies help to improve and validate the numerical methods.

Tomiyama et al. [107] has done the pioneering work on rising bubbles by the VOF method.
The simulation affirmed that the sinuous motion of the bubble is induced by the Karman
vortex shedding from the tail of the bubble. The bubble trajectories agreed well with the
available experimental data.

Sussman [100] adopted a coupled level set/volume-of-fluid method to compute growth
and collapse of vapor bubbles. The study focused on the numerical method. They proved
that the overall convergence rate of the coupled method is second order.

Ohta et al. [76] simulated 2D-axisymmetric bubble rising in viscous Newtonian liquids
using the CLSVOF method and compared results with experimental data. The main objective
is to verify the influence of the numerical initial conditions on the bubble rising. They found
that the bubble will break up eventually if the initial bubble is spherical for Eo = 464 and Mo
= 6.5× 10−2. If the bubbles are at low Mo number, the bubble motion is not depending on the
initial bubble shape.

Olsson and Kreiss [77] tested a conservative level set method on an air bubble rising in
water for Re = 500, Fr = 0.45 and We = 0.68.

Sankaranarayanan et al. [88] computed the bubble rising in periodic boxes by the lattice
Boltzmann method. Many test cases have been performed and covered the range of Morton
number from 10−6 to 10−4. The results are compared to empirical correlations.
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FIGURE 2.1: Shape regime map for bubbles in liquids. (Replot based on [18]).

Ohta et al. [76] showed that the bubbles with breaking-up could be numerically simulated
starting from the spherical bubble. They also found that at low Mo number condition the
bubble motion is not subject to the initial bubble conditions.

Wang et al. [117] investigated the viscosity effects on the bubble shape. The VOF method
is adopted. Their simulations ignored the surface tension, Eo = ∞. They found two critical
Re numbers Re1 and Re2. Re1 is in between 30 and 50. If the Re larger than Re1, the bubble
will break into toroidal form. Re2 is in between 10 and 20. If Re < Re2, the splitting will not
happen. According to Fig. 2.1, the bubble with large Re number and lower surface tension,
the final shape will be spherical-cap with an unsteady wake. The bubble breakup may not be
a physical truth. This conclusion agrees with Ohta et al. [76].
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The study of Aoyama et al. [7] focuses on the ellipsoidal bubble. The experiment mea-
sured the bubble aspect ratio from a wide range of fluid properties. They provide a correla-
tion to predict aspect ratio (E) as a function of Eo and Re numbers:

E =
1

(1 + 0.016Eo1.12Re)0.388
(2.5)

This equation covers the range -11 ≤ log(Mo) ≤ 0.63, 3.2 ×10−3 ≤ Re ≤ 1.3 ×103 and 4.2
×10−2 ≤ Eo ≤ 2.9 ×101.

Other studies relate to the rising bubble. But, they include other effects or constraints.
Some of them are worth mentioning. The migration of small bubbles toward the pipe wall
due to the share-induced lift force. Tomiyama et al. [108] and Rabha and Buwa [84] investi-
gated this phenomenon by experiment and simulation. Zun et al. [124] studied the bubble
rising in the stratified water layer. The purpose is to provide further insights on bubble-
induced agitation of heated bulk liquid. The bubble is a 6 mm equivalent sphere diameter air
bubble across a stratified thermal layer. The simulation shows that the bubble wake carries
cold water in the vertical direction and causes a strong longitudinal mixing.

2.2 Numerical simulation of two-phase flows

2.2.1 Two-phase flow equations

One-Fluid Formulations are widely used for modeling of two-phase flow. Instead of solving
each phase separately, only one group of governing equations is solved throughout the flow
domain. The fluid properties, defined on the entire calculation domain, change abruptly at
the phases boundary. The presence of the liquid-gas interface is modeled using a source term
for the surface tension force [22]. The transport equations take the following form:

ρ[
∂u

∂t
+ (u · ∇)u] = ∇ · [µ(∇u + (∇u)T )]−∇p+ ρg + fσ (2.6)

∇ · u = 0 (2.7)

Here, u is the fluid velocity field, ρ and µ are the fluid density and dynamic viscosity, re-
spectively, p is the pressure, g is the gravity acceleration, and fσ is the interface tension force
which appears at the location of the interface. A multidimensional delta function is needed,
which is non-zero where the interface is located. It can be written as:

fσ = δ(Fσ) =

∫
∆s
σκnds (2.8)

where ∆s is a surface element, n is the unit normal to the interface, σ is the surface tension
coefficient, κ is the curvature of the interface. Since the formulation is the same as for the
single-phase flows, the boundary conditions and the solution method are similar to that for
the single phase flow. The additional requirement is finding the interface. In the next section,
a brief review of interface tracking and capturing methods will be given.
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2.2.2 Interface tracking and capturing methods

Finding the interface can be done in an explicit way or in an implicit way. If the interface
is represented by marker points, the surface front can be moved accurately in a Lagrangian
way. The interface is always known while it’s moving. This kind of method is often called
Interface Tracking Method. The Front tracking method is one of such methods.

On the contrary, the interface may be described implicitly using a field function. The
implicit scalar is advected with the liquid using a transport equation. This method often
called Interface Capture Method. Since the interface is implicit, a reconstruction procedure is
needed for this method. The Level-Set method and Volume-of-fluid method are both interface
capture methods. The following section will introduce these three methods.

Level-Set method

The Level-Set method was introduced by Fedkiw [40]. The main idea is to define a smooth
function φ(x, t), which is the signed minimum distance of x to the interface. Here x =

(x1, x2, x3) ∈ R3. For example , if the level set function φ is positive, the x locates in the
liquid. If it is negative, the x is in the gas phase. Therefore, the liquid-gas interface is the
zero level set of φ. Note that we also have |∇φ| = 1. For example in Fig. (2.2), the bubble
interface is the circle where the level-set is φ = 0. The level set function evolves with time (t).
The interface moves with the fluid velocity u. This can be obtained by solving the transport
equation:

∂φ

∂t
+ u · ∇φ = 0 (2.9)

Special care must be taken when resolving the property discontinuity at the interface. The
solution will yield numerical instabilities due to large density and viscosity changes at the
interface. A smoothing method is proposed by Sussman et al. [103]. The density and viscosity
on the interface can be written as:

ρ(φ) = ρg + (ρl − ρg)H(φ)

µ(φ) = µg + (ρl − µg)H(φ)

where ρg, ρl are the density of the gas and liquid phase, µg and µl are the viscosity of the gas
and liquid. H(φ) is the Heaviside function given by

H(φ) =


0 if φ < 0

1/2 if φ = 0

1 if φ > 0

(2.10)
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FIGURE 2.2: Iso-level curves from a level-set formulation. The circular bubble

initialized at (x = 0.5, y = 0.5) with 1.0 radius.

A smoothed Heaviside function Hε(φ) can be constructed to obtain the smeared fluid prop-
erties on the interface:

Hε(φ) =


0 if φ < −ε
(φ+ ε)/(2ε) + sin(πφ/ε)/(2π) if |φ| ≤ ε
1 if φ > ε

(2.11)

where ε is the thickness of the smoothed interface, generally taken as ε = 3∆x/2. When the
level-set function advects with the equation (2.9), one of the major difficulties of the level-set
method is that the fluid mass is not conserved. Another problem is that the signed distance
property (|∇φ| = 1) will be lost and the field function can become highly irregular. These
problems can be remedied by multiple ways. First, we can choose high-order schemes to
discrete the equation (2.9). Second, we can add a reinitialization procedure which is proposed
by Sussman, Smereka, and Osher [102]. This procedure ensures the condition |∇φ| = 1 by
solving the following equation:

∂φ

∂τ
+ sgn(φ0)(|∇φ| − 1) = 0 (2.12)

where sgn(φ) is a sign function, τ is an artificial time, φ0 is the un-initialized field. This
equation can be solved to steady state. But, in practice, Sussman et al. [103] found only two
or three iterations are sufficient.

Compared to the Front tracking method, the level-set method avoids adding and remov-
ing markers to represent the moving interface. Level-set methods can deal with the merging
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and breaking of the interface easily. Furthermore, the generalization to three dimensions is
rather straight forward [102].

Front tracking method

The front tracking method is an interface tracking method for two-phase flows developed
by Unverdi and Tryggvason [113]. The basic idea of this method is defining the interface by
markers moving with the fluid velocity, see Fig. 2.3. While governing equations for the one-
fluid formation are solved on a fixed mesh, the interface is represented by an array of points.
These points are connected to each other often through a linked lists which contains pointers
to the previous and the next object in the list. The three-dimensional front is built in the same
way, but the front is represented by triangles. The front points move in a Lagrangian way,

dxs
dt
· n = us · n (2.13)

where xs is the front points coordinate, us is the velocity of the front points. When the front
moves, it deforms and stretches along with the flow field. The resolution may become inad-
equate at some locations. To keep the method accurate, new points are added to the original
front. Also, it is desirable to remove small elements, especially those containing "wiggles"
which are smaller than the grid size.

Information needs to be transferred between the two grids. For example, the us is ob-
tained by interpolating from grid values to the front locations. In two-phase flows, the sur-
face tension is calculated at the interface, but the Navier-Stokes equations are solved on a
fixed grid. The transfer operation can be done in many ways, but it is necessary that the
transferred quantity is conserved. The interface quantity, φf , is a surface average, whereas
the grid value, φg, is a volume average. The conservation requires:∫

∆s
φfds =

∫
∆v
φgdv (2.14)

After advecting the front, the fluid properties, such as the density and the viscosity, need to be
redefined. This can be done by taking the numerical divergence of the grid-density gradient
results in a numerical approximation to the Laplacian:

∆ρ = ∇h · ∇hρi,j (2.15)

where∇h is gradient operator on the grid with an uniform mesh space h.
The advantage of this method is that interface advection and properties, such as surface

tension, can be computed very accurately. The interface resolution is independent of the
mesh resolution. The drawbacks are a cumbersome implementation, especially in three di-
mensions. It is not easy to handle the interface breakup and coalescence problems.
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FIGURE 2.3: An example of the front of Front-tracking method and its back-
ground grid. [109]

Volume of fluid method

The volume of fluid method tracks a phase indicator function defined in each control volume.
The method was first proposed by Hirt and Nichols [46]. The phase indicator function c (also
known as volume fraction or color function) is defined as:

• c = 0 if the control volume is filled with phase 1

• c = 1 if the control volume is filled with phase 2

• 0 < c < 1 for mixed control volumes containing the interface

In order to obtain the fluid property in each phase, a generic fluid property φ (e.g. density,
viscosity) can be computed from:

φ = cφ1 + (1− c)φ2 (2.16)

The volume fraction c is governed by the simple advection equation:

∂c

∂t
+∇ · (uc) = 0 (2.17)

One of the critical issues with the VOF method is finding a proper way to discrete equation
(2.17). Lower-order schemes smear the interface due to numerical diffusion, while high-order
schemes are unstable and result in numerical oscillations. Thus, several volume advection
techniques have been proposed to avoid undesirable numerical effects and keep the interface
sharp.

A widely used technique is to compute the geometry of the interface in the control volume
and then calculate the flux across the adjacent control volumes. The procedure to compute
the actual geometry of the interface is called interface reconstruction. The simplest way to
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represent the interface is using vertical or horizontal lines. Noh and Woodward [74] proposed
the Simple Line Interface Calculation (SLIC) algorithm. The interface control volume is split by
vertical and horizontal lines. If the advection is in the horizontal direction, the vertical line
is an approximation of the interface, vice versa in the other direction. Therefore, there are
two lines (or three lines) to approximate the interface depending on the advection direction.
Hirt and Nichols [46] modified this method by only using one straight line to approximate
the interface. The line is still parallel to the coordinate axis. The c in neighbor cells are used
to selected the orientation of the straight line. Youngs [120] developed the Piecewise Linear
Interface Calculation (PLIC) algorithm, using an arbitrarily oriented line to approximate the
interfaces. This method has a better approximation to the interface. The equation of the
interface segment can be written as

m · x = α (2.18)

where, m is the normal vector to the interface and α is the distance to the origin of x. Many
studies show that the key to improving advection scheme is finding a better way to recon-
struct the interface. Base on the PLIC method, we should know the orientation of line seg-
ments, i.e. obtain the normal vector of the interface. It can be obtained from the gradient of c,
equation (2.19). If the normal m has been calculated, the α is obtained from area conservation.
The α can be obtained from a pure geometrical calculation [91].

m = −∇c (2.19)

Youngs [120] estimates the ∇c by means of finite-difference schemes in a 3 × 3 in 2D or a
3× 3× 3 block stencil in 3D. The ∇c in the center cell (i, j) is computed as the average of the
cell-corner values.

mi,j = (mx:i,j ,my:i,j)

=
1

4
(mi+ 1

2
,j+ 1

2
+ mi+ 1

2
,j− 1

2
+ mi− 1

2
,j+ 1

2
+ mi− 1

2
,j− 1

2
)

(2.20)

where,

mx:i+ 1
2
,j+ 1

2
= −1

2
(
ci+1,j+1 − ci,j+1

∆x
+
ci+1,j − ci,j

∆x
)

mx:i− 1
2
,j+ 1

2
= −1

2
(
ci,j+1 − ci−1,j+1

∆x
+
ci,j − ci−1,j

∆x
)

mx:i+ 1
2
,j− 1

2
= −1

2
(
ci+1,j − ci,j

∆x
+
ci+1,j−1 − ci,j−1

∆x
)

mx:i− 1
2
,j− 1

2
= −1

2
(
ci,j − ci−1,j

∆x
+
ci,j−1 − ci−1,j−1

∆x
)

We can obtainmy in a similar way. Numerical tests have showed the weakness of this method
which can not represent linear interfaces accurately. Other methods have been proposed. The
block cells are always 3 × 3. The volume fractions can be added along the vertical direction
and horizontal direction, which can be defined as a height function y = f(x) and a width
function x = g(x) as shown in Fig. 2.4. For example, the height yi−1 is given by the expression
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yi−1 = ∆x
1∑

k=−1

Ci−1,j+k. We approximate the height function y = f(x) in the central cell of

the block with the equation
sgn(my)y = −mxcx+ α′ (2.21)

Here, the slope of the straight line, equal to mxc is calculated by a central difference scheme.

mxc = − 1

2∆x
(yi+1 − yi−1) (2.22)

We can also describe the line slope by myc. The similar equation obtained:

sgn(mx)x = −mycy + α′′ (2.23)

And,
myc = − 1

2∆y
(xi+1 − xi−1) (2.24)

It is evident that a given line just has one correct slope. The strategy is to choose a proper
slope for the interface. If the real interface orients as shown in Fig. 2.4(A), we take myc as the
real slope. Otherwise, we take mxc as the real slope (Fig. 2.4(B)). A simple expression can be
used to select slope

|m∗| = min(|mxc|, |myc|) (2.25)

Similarly, we can consider obtaining the slope by using forward and backward finite-difference
method. Six slopes can be obtained in each 3 × 3 block. The more sophisticated method is
needed to obtain the best slope of the line. Pilliod Jr. and Puckett [79] proposed the ELVIRA
(efficient least-squares VOF interface reconstruction algorithm) method. For each of the six
slope, the corresponding new line cuts the 8 neighbor cells and obtains the new volume frac-
tion c′ in each cell. The area error in L2 is

||e||2 =
∑∑

(c′i,j − ci,j)2 (2.26)

The final slope selection is the one that has the minimum error. The calculation blocks can
be changed, and even take more blocks. However, considering the accuracy and calculation
load, a 3 × 3 block is a common choice in most studies. One drawback of the ELVIRA is the
required computation time, especially in three dimensions. A 3D version of ELVIRA has been
implemented by Miller and Colella [68].

Scardovelli and Zaleski [92] proposed a new least-squares fit method. This method is
based on aforementioned methods. Firstly, we obtained the line segments in each interface
cell as the preliminary interface. Then, selecting few points on the segments (e.g. two end
points and mid point). Finally, new slope can be obtained by the least-squares fit method.
This method shows a better representation at high curvature regions.
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FIGURE 2.4: Calculating volume fraction column-wise and row-wise to esti-
mate the line slope.

2.3 Bubble motion in channels

The bubble motion in channels is often classified as the bubble or slug flow regime. If the
bubbles are small enough compared to the size of the containing channel, this flow regime
is often referred to bubbly flow. If the bubble is large enough to occupy most of the cross-
sectional area of the channel, this flow regime is often referred to slug flow.

It is known that slug flow allows great heat and mass transfer between the two phases.
Therefore, the slug flow regime has drawn much attention. A large quantity of research
has been done in the past decades. For clarity, the slug flow regime is influenced by many
different environmental conditions which can be classified into different subgroups.

• The channels have different cross-sectional shapes. In common conditions, the bubble
flows in a circular channel. Whereas, the bubble flowing in non-circular channels exists
in porous materials and blood vessels. For example, Taha and Cui [106] simulated slug
flow in square micro-channels. The liquid film thickness does not distribute around the
bubble evenly. Therefore, the heat transfer coefficients are different on the circular di-
rection of the tube. Roig et al. [87] investigated the bubble rising in a vertical Hele-Shaw
cell and reported a detailed analysis of path and shape oscillations of an air bubble.

• The movement of the bubbles is due to different driving forces. The gravitational force
drives the bubble moving upwards. The pressure pushes both the liquid and the bubble
moving forward. Different driving forces have different effects on the bubbles. If the
bubble is only driven by gravitational force in the vertical channel, the bubble head will
be a bullet shape, the liquid moving downward around the bubble. And, the liquid
film becomes thinner from the top to the bottom of the bubble. If the gravitational force
balance the viscosity force, the liquid film thickness will remain constant. And, the
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bubble rises at a constant velocity. If the bubble is only driven by pressure, the bubble
behaves differently. For example, the bubble moves in a horizontal tube and is pushed
by the liquid flow. Some of the capillary waves can be observed at proximity to the
rear of the bubble. The liquid film thickness decreases from the nose to the rear of the
bubble. Depending on the operating conditions, the film thickness may even equal to 0
(dry out).

• The orientation of the channels has great effects on the bubble motion. For the vertical
channels, the bubble moving upward driven by the buoyancy forces. And, the pressure
difference may also exist. As pointed out by Nicklin [70], the velocity of the bubble in
upward flow consists of two parts, the mean liquid velocity (U∗) and the bubble velocity
in quiescent liquid (VT ). The overall bubble velocity can be expressed as:

V ∗ = C0U
∗ + VT (2.27)

where C0 is the distribution parameter which accounts for the relative velocity between
the two fluids. It is assumed that U∗ is independent of VT [85]. Therefore, the bubble
velocity prediction can be investigated separately. While the real fluid mechanics are
non-linear, the linear assumption for the bubble velocity has proven to be successful
in the literature. For the bubble moving in horizontal channels, if both pressure and
buoyancy cannot be ignored, the film thickness above the bubble becomes thinner. Wall
dry out may occur at the top of the tube under some operation conditions.

In the next section, the discussion focuses on the rising bubble in the vertical circular
channel. We do not intend to provide a comprehensive review covering all aspects of slug
flow. Instead, we summarized the works which we considered as the milestone for Taylor
bubble rising in the vertical circular channel. These studies have close relation and provide
fundamental knowledge for the present thesis. Other reviews about slug flow can be found
in [6].

2.3.1 Rising bubbles in vertical channels

Gas bubbles rising in the vertical channels often appear as bullet shapes. The motion of
bubbles is affected by the shape of channels. These bubbles are often called Taylor bubbles
[33]. The pioneer investigation about the Taylor bubble is presented by Dumitrescu [38]. The
following sections will review the major studies on Taylor bubbles. The methods used to
investigate this phenomenon is the analytical model, experiments and numerical simulation.
First of all, the analytical model will be introduced. It describes the forces acting on the
bubbles. Then, three major study objective about the Taylor bubble will be presented: the
bubble terminal velocity, the falling film, and the bubble nose shape. Finally, a brief review
of both experimental and simulation studies will be shown.

Firstly, we consider a single bubble rising in a stagnant liquid. If the pressure in the gas
is constant, the drift velocity VT of the bubble is also constant. The value of VT depends on
various forces in the two-phase flow system. A general scaling analysis of the Taylor bubble
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or drop motion is presented by Hayashi, Kurimoto, and Tomiyama [44]. Here, we consider
that the liquid is the continuous phase (C) and the gas is disperse phase (D). There are six
different forces governing the dynamics of a Taylor bubble, i.e., inertial (FiC and FiD), viscous
(FµC and FµD), surface tension (Fs) and buoyant (Fb) forces. These forces can be regrouped
in the following dimensionless numbers:

Froude number: Fr =

√
FiC
Fb

=
VT√

∆ρgD/ρc

inverse viscosity number: Nf =

√
FiCFb
F 2
µC

=

√
∆ρgD3

µC

Eötvös number: Eo =
Fb
Fs

=
∆ρgD2

σ

Reynolds number: ReD =
FiC
FµC

=
ρCVTD

µC

Morton number: Mo =
F 4
µCFb

F 3
s F

2
iC

=
gµ4

C∆ρ

ρ2
Cσ

3

denstiy ratio: rρ =
FiD
FiC

=
ρD
ρC

viscosity ratio: rµ =
FµD
FµC

=
µD
µC

(2.28)

Only four dimensionless groups are independent, i.e. Nf , Eo, rρ and rµ. The Morton
number can be derived by Eo and Nf , Mo = Eo3/N4

f . The Archimedes number is obtained
from the manipulation of Nf (Ar = N2

f ) [10]. The Fr and ReD can be obtained after knowing
the VT . The pipe inclination θ can be added to the dimensionless analysis. Zukoski [123] and
Fabre and Liné [39] expressed this dependency through a general relationship.

VT = CT (Nf ,Eo, θ)

√
g∆ρD

ρC
(2.29)

This relationship ignores the viscosity ratio µ∗. In fact, the density and viscosity ratios are
often ignored in the studies of Taylor bubble. The density and viscosity of the gas are gen-
erally much less than those for the liquid (ρC � ρD, µC � µD) . Therefore, the density and
viscosity ratios are both equal to 0 [118, 116].

White and Beardmore [118] performed a wide range of experiments. The Eo number
ranges from 3 to 400. And, The Mo number ranges from 10−12 to 103. As mentioned before,
White and Beardmore [118] have ignored the density and viscosity of the gas phase. The
characteristic density and viscosity correspond to the liquid phase. They summarized the
results to show the dependence of the terminal velocity on each effect. According to the
Fig. 2.5, the following regime can be identified:

• Eo < 4: The bubble does not rise. Gravitational effects are negligible.

• Eo > 70: Capillary effects are negligible.

• Fr < 0.05: Inertial effects are negligible.
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FIGURE 2.5: Flow pattern map for taylor bubble rising in stagnant liquid. (Re-
plot based on White and Beardmore [118]).

• Mo < 10−8: Viscosity effects are negligible.

In Fig. 2.5, the Fr number is estimated by the correlation of [45]. From a general point of view,
Fig. 2.5 shows the basic behaviors of the bubble. In the following section, a brief review on
the terminal velocity is presented.

Terminal velocity

The terminal velocity of the Taylor bubbles rising in tubes is the foremost obvious and im-
portant problem in research on two-phase flow. Dumitrescu [38] firstly propose CT = 0.351 in
equation (2.29). The study is based on potential flow theory and considers ∆ρ/ρC = 1. The
terminal velocity can be expressed as:

VT = 0.351
√
gD (2.30)

Davies and Taylor [33] estimated a new constant equal to 0.328. White and Beardmore [118]
presented a polynomial fit correlation based on their extensive experimental data. The termi-
nal velocity can be express as:

VT = (
a1a2e

a3t

a1 + a2(ea3t − 1)
− a4)

√
gD (2.31)
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where

t = log10(
ρCgD

2

σ
) (2.32)

The parameters ai are seventh-degree polynomials:

ai =
8∑
j=1

cijx
j−1 (i = 1, ..., 4)

x = log10(Mo)

the coefficients cij are given by the matrix:

[ 3.5603852 ×10−1 2.6717658×10−3 -2.7121907×10−3 -2.0001955×10−3

1.5642441×10−3 2.8532721×10−4 4.7831508×10−5 3.605927×10−5

3.059819 -5.2353564×10−1 3.3906415×10−2 2.1368428×10−2

2.3221312×10−2 -1.809746×10−3 9.3468732×10−5 -2.3440168×10−4

8.622533×10−5 5.7198751×10−5 -2.4316663×10−6 -6.7582431×10−7

7.6382727×10−6 1.1736259×10−6 -1.5186036×10−7 1.9756221×10−8

-3.2676237×10−3 -7.302379×10−4 7.2215493×10−5 1.1273658×10−5

5.9716008×10−5 9.7852173×10−6 -1.3514105×10−6 -1.74642×10−7

]

Wallis [116] proposed a more general equation based on experimental data. The CT can
be expressed as:

CT = 0.345(1− e
−0.01Nf

0.345 )(1− e 3.37−Eo
m ) (2.33)

where,

m =


25 Nf < 18

69N−0.35
f 18 ≤ Nf ≤ 250

10 Nf > 250

(2.34)

This estimation also ignores the density difference between the liquid and gas. Therefore,
∆ρ ≈ ρC , and then, ∆ρ/ρC equals to 1. Tung and Parlange [111] studied the terminal state of
the Taylor bubble in a long vertical pipe. They showed that the bubble velocity is reduced as
surface tension effects are more pronounced. They proposed a correlation as follow:

VT = (0.136− 0.944
σ

ρCgD2
)1/2

√
gD (2.35)

Bendiksen [17] proposed a correlation ignoring the viscous forces. This correlation is valid
for the Taylor bubble with relatively small surface tension.

VT = 0.486

√
1 +

20

Eo
(1− 6.8

Eo
)
1− 0.96e−0.0165Eo

1− 0.52e−0.0165Eo (2.36)

Viana et al. [115] summarized experimental data in the literatures and 7 new experiments.
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A new correlation has been proposed. For a fixed Eötvös number, the Froude number de-
pends on the buoyancy Reynolds number, ReD = (D3g∆ρC)1/2/µ. Three separate equations
are obtained in different ReD range. For large ReD (>200) they found

VT = 0.34/(1 + 3850/Eo3.06)0.58
√
gD (2.37)

For small ReD (<10) they found

VT =
9.494× 10−3

(1 + 6197/Eo2.561)0.5793
Re1.026

D

√
gD (2.38)

In the transition region (10 < RD < 200), the equation becomes

VT = L[RD;A,B,C,G] =
A

(1 + (R/B)C)G

√
gD (2.39)

where

A = L[Eo; a, b, c, d]

B = L[Eo; e, f, g, h]

C = L[Eo; i, j, k, l]

G = m/C

and the parameters (a, b, ..., l) are

a = 0.34 b = 14.793 c = 3.06 d = 0.58

e = 31.08 f = 29.868 g = 1.96 h = 0.49

i = 1.45 j = 24.867 k = 9.93 l = 0.094 m = 1.0295

In our study, we find that the equation (2.39) can be applied to the region of large RD (>200)
and small RD (<10).

Mandal, Das, and Das [64] proposed a semi-empirical equation based on the experiments
of liquid-liquid bubble rising. Therefore, their correlation takes the density and viscosity of
the dispersed phase into account.

VT = 0.3507

√
ρC − ρD
ρC

gD

√
1− −1 +

√
1 + 2ND

ND
(2.40)

where
N = [1.81

(ρC − ρD)ρC
µ2
C

g]1/3 (2.41)

For large buoyancy Reynolds number (ReD > 200), they considered the effect of interfacial
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tension using a correction as [116]. Equation (2.40) is corrected by multiplication with follow-
ing term:

1

(1 + 3805
Eo3.06 )0.58

(2.42)

Hayashi, Kurimoto, and Tomiyama [44] proposed a more general correlation for the Tay-
lor drop. This correlation covers wide range of conditions, i.e. 0.002 < ReD < 4960, 4.8 <
EoD < 228, 0 ≤ µ∗ ≤ 70, 1 < Nf < 14700, -12 < log Mo < 4, and d/D < 1.6, where d is the
sphere-volume equivalent drop diameter.

Fr =

√
0.0089

0.0725 + 1
ReD

(1− 0.11Re0.33
D )

(1 +
41

Eo1.96
D

)−4.63 (2.43)

If we ignore the density and viscosity ratio, they equal to 0, the equation (2.43) simplifies to

Fr =

√
0.01

0.0816 + Re−1
D

(1 +
41

Eo1.96
D

)−4.63 (2.44)

The equation agrees with the experimental data of White and Beardmore [118] within a±10%

error.
A special region in Fig. 2.5 needs further investigation, which is the region Eo < 4. White

and Beardmore [118] stated that the bubble will not rise when Eo < 4. Others have shown
similar results. Bretherton [23] gave Eo < 3.37, Barr [14] Eo < 5.8, Bendiksen [17] Eo < 4.7. The
correlations (2.39, 2.43) also show that the rise velocity decreases as the Eo number decreases.
In fact, these bubbles are with large surface tensions but in small tubes. They may stick on the
pipe preventing draining [42]. Anther study could prove this theory. Bi and Zhao [19] studied
the Taylor bubble in miniaturized circular and non-circular channels. They found that for the
triangle and rectangular channels, elongated bubbles always rise upward even though the
hydraulic diameter of the tube is 0.866 mm. Whereas, the bubble stopped in circular tubes
when D < 2.9 mm. Funada et al. [42] pointed out that surface tension cannot close the sharp
corners where drainage can occur.

Falling film

The studies on the falling film around a Taylor bubble follow previous work on general falling
films. The most representative theoretical analysis on the falling film of viscous liquid is
proposed by Nusselt [75]. He derives a solution for the film thickness.

λ = [
3µ2

C

4ρ2
Cg

Ref ]1/3 (2.45)

where λ is the film thickness, Ref = 4ρCλVf/µ is the film Reynolds number. Vf is liquid
velocity in the liquid film. This model is applicable for laminar film flow. If Ref > 1000, the
model under predicts film thickness due to the turbulent transition in the falling film.

For dealing with the falling film around a Taylor bubble, we define a dimensionless film
thickness λ′ = λ/r. The thin-film theory can be applied. When the film is thin (λ′ → 0), we
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can assume that the bubble Reynolds number (Reb = ρCVTDb/µ) equals the film Reynolds
number (Ref ). The equation (2.45) becomes:

λ′ = [
6Reb
N2
f

]1/3 = [
6Fr
Nf

]1/3 (2.46)

The film thickness λ′ can be expressed as a function ofNf . The upper limit forNf in equation
(2.46) is 3000. Dukler and Bergelin [37] proposed a correlation for laminar-to-turbulent flow.

Reb = 4η(3 + 2.5lnη)− 256 (2.47)

where η can be rewritten in terms of the inverse viscosity and the dimensionless film thickness
( i.e., η = Nf (0.5λ′)1.5). Brown [25] proposed a more general quadratic solution based on the
constant Froude number assumption.

λ′ = 2

√
1 + 2.44N

2/3
f − 1

2.44N
2/3
f

(2.48)

Llewellin et al. [61] proposed a model that avoids both the thin-film and the constant Froude
number assumption. They call it the ’Cubic Brown’ model.

λ′3 + aλ′ − a = 0, where a = 6Fr/Nf (2.49)

This results is based upon the assumption of laminar flow and valid for Nf < 3000. There are
a few empirical correlations proposed based on the experiments or simulations [54, 59, 53].
We summarized these equations in table (2.1)

TABLE 2.1: Summary of the models for liquid film of the Taylor bubble pre-
sented in literature. [61]

Source Equation(s) Validity

Nusselt [75] Equation (2.45) Nf < 3000
Dukler and Bergelin [37] Reb = 4η(3 + 2.5 ln η)− 256 1500 < Nf < 9000

η = Nf [λ
′

2 ]3/2

Lel et al. [59] λ′ = 2+0.641Re0.47b

N
2/3
f

40 < Nf < 9000

Karapantsios and Karabelas [54] λ′ = 0.451Re0.538b

N
2/3
f

9000 < Nf < 44000

Brown [25] Equation (2.48) 120 < Nf

Kang, Quan, and Lou [53] λ′ = 0.64N−0.2
f 10 < Nf < 450

Llewellin et al. [61] Equation (2.49) laminar

Another issue related to falling film is the length of the developing film (Z∗). If film
developing length is greater than Z∗, the radial component of the film velocity approximately
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reaches zero. The Z∗ is estimated to be about 2.2D for stagnant liquid and about 3.6D for co-
current flowing liquid [71]. A theoretical estimate of the length Z∗ is reported by [28].

Z∗

D
=

[(gρCδ/2µC) + VT ]2

2gD
(2.50)

This equation was deduced supposing unidirectional flow in a liquid film and applying
Bernoulli’s equation along the free surface streamline. Araujo et al. [10] summarizes the sim-
ulation data and reports that Z∗/D depends only on the inverse viscosity number (Nf ). The
expression is as follows:

Z∗

D
= 1.033 for Nf < 90 (2.51)

Z∗

D
= 7.494−1 lnNf − 2.315 for Nf > 90 (2.52)

Bubble nose

The bullet-shape is the main characteristic of the Taylor bubble. The shape of the bubble
nose is closely related to the liquid film and the bubble terminal velocity. Dumitrescu [38]
provided the first analyses on bubble nose shape based on potential flow. The nose profile
divides into two regions, the nose region and the film region:

(
z

D
) = 0.375[1−

√
1− 7.112(

r

D
)2],

z

D
≤ 0.25 (2.53)

where z is the location starting from the tip of the bubble. D is the tube diameter.

(
z

D
) =

0.0615

(1− 4(r/D)2)2
,

z

D
> 0.25 (2.54)

This equation shows where the bubble nose developed to a stable liquid film. The critical
distance is Z ′ = 0.25D. The values may change base on different experimental operational
conditions. Bugg and Saad [27] obtained Z ′ = 0.3D. Polonsky, Barnea, and Shemer [80]
report that Z ′ = 0.66D. Whereas, Z ′ = 0.55D from [114].

Araujo et al. [10] provide a correlation base on the simulation data:

• For lower Nf , the Z ′/D are almost independent of Mo and Nf . Z ′/D = 0.483

• For Mo between 1.64 × 10−2 and 104, Z ′/D = 2.46 × 10−2 lnNf + 0.393. For Mo =
4.72× 10−5, Z ′/D = 2.626× 10−2 lnNf + 0.373.

For a better representation of the nose shape, the estimated nose curvature radius (Rf )
was defined, which is also called frontal radius. Araujo et al. [10] report a simple correlation
Rf = 0.794(D/2 − δ). This value almost independents of other parameters. Brown [25]
reported a similar result, Rf = 0.75(D/2− δ).
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Numerical simulations

The main objective of the simulation research on rising Taylor bubble are similar with that of
experimental research. The simulation intends to predict the bubble shapes and the velocity
of the bubble and the liquid around it. The advantage the numerical simulation is that it can
cover a wide range of liquid and gas properties. On the contrary, the experimental studies
are limited by the choice of the fluids. Another advantage of simulation is that it provides
detailed flow field information. The advanced experimental techniques such as PIV provides
data only on the liquid phase around the bubbles. But, the simulations can provide the field
information on both phases. And yet, the experiments provide data to validate the numerical
simulations.

The incompressible and laminar flow model are good approximations to simulate the
Taylor bubble. The observations in experiments have shown that the velocities of both liquid
and gas phase are in the range of laminar flow.

The early simulation of the Taylor bubble is presented by Mao and Dukler [67]. The
simulation is only performed on the liquid phase. The strategy is rather simple. Firstly, solve
the flow field around the Taylor bubble with an initially assumed shape and terminal velocity.
Secondly, adjust the bubble shape based on the obtained the velocity field. The new bubble
shape also satisfies the balance of the normal stress at the interface of the bubble. Finally,
a new bubble terminal velocity can be obtained. Repeat above steps, the final converged
velocity field and bubble shape can be obtained.

Tomiyama et al. [107] simulated the Taylor bubble rising with the VOF method. The
study shows that simulation could successfully predict the terminal shape of the bubble. The
simulation could give appropriate predictions for the influence of the Mo and Eo numbers.

Bugg, Mack, and Rezkallah [26] presented 9 cases of the numerical simulation results
which covered 10 ≤ Eo ≤ 100 and 10−12 ≤ Mo ≤ 10. The simulation uses in a finite differ-
ence framework with the VOF method to capture the interface. The results is obtained on a
25 × 400 uniform axisymmetrical mesh. The length of the calculation domain is 8D. Grid
independent test shows that 25 cells in the radical direction are enough to guarantee grid
convergence. The gas volume was initially πD3/3 which assure that the sure bubbles are at
least 2D long. Two initial shapes had been tested. The results show that initial shape of the
bubble affects only its temporal evolution and not the final shape.

Ndinisa, Wiley, and Fletcher [69] have chosen fluid properties and pipe diameter to yield
the dimensionless numbers as follows: Eo = 100, Mo = 0.015 and ReD = 27. The simulation
is performed with the software CFX 5.6. The results agreed well with the experimental data.
The study also showed that the need for extremely fine computational meshes for this type
of flow, because the velocity gradients around the bubble nose and tail are very high. The
simulation also shows that there are no significant oscillations in the wall shear stress at the
wake regions. This does not agree with the results presented by Taha and Cui [104]. Lu and
Prosperetti [63] studied the Taylor bubbles rising in the vertical tube filled with a quiescent
and upward or downward flowing liquid. They also studied the bubble behavior when a
sudden pressure drop occurs above the bubble. There is a strong effect on the rising velocity
and the bubble volume during the transient. Taha and Cui [105] simulated the bubble motion
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TABLE 2.2: Summary of simulations of the Taylor bubble in straight tube pre-
sented in literature.

Source Mo Eo Method

Tomiyama et al. [107] 1×10−6 - 1×101 3.3-70 VOF
Bugg, Mack, and Rezkallah [26] 1×10−12 - 1×101 10 - 100 VOF
Son [97] 2.5 ×10−7, 2.5 ×10−11 84 Level-set
Taha and Cui [105] 4.7×10−5 - 8.0 5 - 300 VOF
Zheng, He, and Che [122] 1×10−14 -1×10−2 158, 160.2, 63.5, 4.23 VOF
Feng [41] 1.6 −2- 5.2 339.43 - 5984 Boundary fit
Lu and Prosperetti [63] 1.8×10−8 - 1.6 ×10−2 15 - 74.6 Front tracking
Kang, Quan, and Lou [53] 2.09 ×10−4 - 836 122-203 Front tracking
Araujo et al. [10] 4.72 ×10−5 - 104 6-900 VOF

in both stagnant and flowing liquids. The simulation is performed in 3D. The results show
that small bubbles were sheered off from the tail due to the liquid jet coming down from the
annular film. They found that the wake region depends on theNf . WhenNf ≤ 500, the wake
is composed of two closed toroidal vortices which are axi-symmetric. When 500 ≤ Nf ≤
1500, the bubble tail is nearly flat. The wake tends to lose symmetry around the tube axis. At
Nf ≥ 1500, the bubble wake opens and turbulent eddies are shed from the main bubble wake.
Kang, Quan, and Lou [53] adopted the front tracking methodology to investigate the behavior
of a Taylor bubble rising in stagnant liquids. They found that Eo and Nf number play a
significant role in determining the elongation of the tail and the wake structures. Araujo et al.
[10] simulated a wide-range of the Taylor bubble rising corresponding to experimental data
[118]. They have investigated the bubble terminal velocity, the development of the liquid film
and the wake region. The simulation is carried out by the Fluent software. Araujo, Miranda,
and Campos [9, 8] simulated a pair of consecutive Taylor bubbles. The results reveal the
process of two bubbles approaching.

Experimental studies

Mao and Dukler [67, 66] studied single Taylor bubbles in a vertical test column. The pipe di-
ameter is 50.8 mm. The measuring section was located 6.68 m above the inlet air nozzle. The
numerical method can reliably predict the flow surrounding the Taylor bubble. The numeri-
cal simulation also suggests that the rise velocity of a Taylor bubble is essentially independent
of viscosity and surface tension for high ReD (ReD > 1850).

Polonsky, Shemer, and Barnea [81] using two experimental techniques to measured the
Taylor bubble motion in a vertical transparent Perspex pipe. The diameter of the pipe is
D = 25 mm and about 4 m (170D) long. Digital image processing is used for the bubble’s
propagation velocity and shape, while the particle image velocimetry technique is employed
for measuring the flow field around the bubble. The results show that negative velocity is
observed in front of the Taylor bubble tip. Polonsky, Barnea, and Shemer [80] used the same
experimental setup and measured the flow field at the tail of the Taylor bubble. The bottom
of the bubble has notable oscillations, which is strongly dependent on the bubble length.
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Van Hout et al. [114] investigated the instantaneous velocity fluctuations around the bubble
rising in the water. They found that the averaged velocities become negligible at 0.5D from
the bubble nose and at 12D from the bubble tail. Whereas, the instantaneous velocity were
found to exist up to 50D from the bubble tail.

Bugg and Saad [27] measured the velocity field around rising bubble by particle image
velocimetry (PIV). The bubble is produced by injecting air into a tube containing stagnant
olive oil. The tube diameter is 19 mm. The fluid properties and pipe diameter described in
dimensionless numbers are Eo = 100, Mo = 0.015 and ReD = 27. The terminal velocity agrees
with the theoretical prediction by equation (2.33). The VT was measured to be 131 mm/s
which yielded a Froude number of 0.303. The results show that the influence of the bubble
on the surrounding liquid is quite limited. The liquid velocity ahead of the bubble is reduced
to 5 % of the bubble velocity at distance of D/3. The wake extends further with the velocity
dropping to 10 % of the bubble speed at about 0.77D below the bubble.

Mandal, Das, and Das [64] investigated the elongated drops rising in vertical tubes. Un-
like the study on Taylor bubbles, the density and viscosity play an important role on drop
rising velocity. They have tested many liquid-liquid systems, such as the kerosene-water,
kerosene-brine, benzene-water.

Santos and Coelho Pinheiro [89] investigated the Taylor bubble rising in a decompression
condition. The experiments show that the bubble volume increases as it ascending close the
free surface. Two reduced pressures (33.3, 20.0 kPa) and atmospheric pressure were main-
tained at the free liquid surface to provide a wide range of expansion rates. They reported
that the bubble volume expansion rate modifies continuously during the Taylor bubble rising
and a well-defined liquid velocity profile can never reach.

A summary of experiments in the literature are shown in Table 2.3 and 2.4. The table
summarizes the operational conditions of each experiment. The fluid properties are shown
in terms of non-dimensional numbers.

2.4 Bubble motion through expansions and contractions

The changing geometry is widely seen in industry applications. There is relatively few liter-
ature investigating this case. Here, we review the results in the literature for the bubble or
slug flow in the vertical tube with singularities. And then we show its applications.

2.4.1 Expansions

We have reviewed a variety of topics about the rising Taylor bubble. Much research has been
done on these topics. But, there are few of them investigating the Taylor bubbles encountering
a change of pipe diameter.

James, Lane, and Chouet [49] reported an experimental investigation on the rising Taylor
bubbles through expansions and contractions. The objective of their work was to compare
the experimental pressure signals against the seismic data recorded at volcanic sites. The
pressure oscillations observed in seismic data may be caused by a large bubble rising through
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a sudden expansion. The data exhibited a similar behavior. The experiments investigated a
variety of pipe expansions and contractions. The working fluids are the sugar syrup solutions
at different concentrations. The pressure sensors are installed at the locations close to the
expansion.

Kondo et al. [58] investigated the vertical co-current gas-liquid flow through expansion.
The experiments include many cases of the Taylor bubble rising in quiescent liquid. The tube
diameter changes from 0.02 m to 0.05 m. The experiment tests air-water two-phase flow at
near atmospheric conditions.

Ambrose et al. [5] simulated the bubble rising through expansion. The results were vali-
dated with the experiments of [49]. They investigated the variation of the angle of the expan-
sion. The expansion angle (θ) varies from 15◦ to 90◦. The expansion ratio is 2.1. The initial
bubble length is 4.4D. They found that, as θ is decreased, larger volumes of bubble pass
through the expansion before splitting into two. For a fixed θ, a critical bubble length can be
defined. If the bubble length is less than the critical length, the bubble passes the expansion
and remains intact. The study of the expansion ratio shows that the ratio is approximately
2.6, the upper pipe has no effect on the critical length of the bubble.

Rinne and Loth [86] measured bubbly flow in a pipe with sudden expansion (from 40
to 90 mm). A dead region can be found downstream where no bubbles are detected. The
experiment shows that the flow downstream has a sudden disturbance and the bubbles re-
distribution along the pipe.

Other numerical simulations about the pipe flow with expansion or contraction in a hor-
izontal configuration are presented in [112]. The flow was in a flat rectangular channel. The
simulation found that the downstream flow pattern is bubble fragments when the gas super-
ficial velocity is lower. In addition, increasing the gas injection, an annular-like flow pattern
can be found.

2.4.2 Contractions

Chen et al. [29] investigated the pressure change and flow patterns subject to the influence
of sudden contractions. The air and water flow from small rectangular channels into 2 mm
round tube. They have revised Abdelall et al. [1]’s homogeneous correlation to predict the
pressure drop. They introduced the Bond number and contraction ratio into the original
correlation as correction factors. The mean error of the new correlation is reduced to 30 % for
the entire database.

Padilla, Revellin, and Bonjour [78] visualized the two-phase flow in horizontal sudden
contractions. The tubes’ diameter varied from 5.3 to 10.85 mm. A new predicting method
for the pressure drop in sudden contractions has been proposed. The correlation has great
accuracy. The mean absolute error is around 12 % and the mean relative error is 0.7 %.

Ueda et al. [112] performed a simulation for contraction, the results seemed to be a similar
nature against the experimental result.

Kaushik et al. [55] perform a numerical study on the core annular flow through sudden
contraction and expansion. The study provides detailed information on the profiles of veloc-
ity, pressure and volume fraction over a wide range of oil and water velocities for an abrupt
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expansion and contraction. The simulation results were compared to the experimental the
results in [13]. Generally speaking, the simulation could enhance the physical insight into
this phenomenon.

To our knowledge, there is no previous work about the Taylor bubble rising through the
contraction. The bubble behavior in the contraction is still unclear. However, a few applica-
tions exist. A brief introduction will be carried out in the next section.

2.4.3 Applications

Photobioreactors

A photobioreactor can be described as an enclosed, illuminated culture vessel designed for
controlled biomass production [96]. It is often made up as a transparent tube. The gas is
injected at the bottom. The gas bubble rises in the tube, filled with algae. The photosynthesis
produce O2 from injected CO2. The objective of the reactor design is increasing the mass
transfer rate and quickly remove the O2 produced by the algae.

Tsoglin et al. [110] suggested a few points to be taken into consideration while designing
the photobioreactor. Here, we restate the points related to two-phase bubble flow:

• High rates of mass transfer must be attained by means that neither damage the cultured
cells nor suppress their growth.

• The reactor should work with intensive foaming.

• The mircoalgae are highly adhesive. The reactor must prevent or minimize the fouling
of the reactor.

The photobioreactor has two sorts of design: bubble column and airlift photobioreactor. The
design of the bubble column reactor has lower capital cost than airlift reactor. It consists of
the cylindrical vessel with a height greater than twice the diameter. Airlift reactors have two
interconnecting parts. One vessel is used for gas mixture and reaction. Another one is down-
comer which has no gas. The residence time of gas in various zone affects the performances
of the reactor. The reactor has been modified into many shapes in order to boost its efficiency,
such as putting sparger into the tube, using a rectangular tube. The disadvantage is that its
complexity increases in scale-up [52]. In the study of Yoon, Choi, and Park [119], they inves-
tigated the effect of bubble shapes on the growth of cyanobactetria cells in a photobioreactor.
The growth rate of cells under slug flow was higher than that under bubbly flow after the cell
entered the deceleration phase. They also concluded that the bubble shape in the slug flow
was advantageous with regard to the radial circulation of cells. Therefore, larger bubble slug
in the airlift reactors may improve their efficiency. The investigation on the slug behavior has
great importance for better designing the reactors.

Volcanology

Seismic signals are obtained from low-viscosity magmas flow. Those signal sources are of-
ten attributed to dynamic fluid processes [49]. The instigation of acoustic sources applicable
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FIGURE 2.6: Bubble column and air lift bioreactors. (Replot based on [96]).

to low-viscosity magmas can be studied by laboratory experiments. James et al. [51] investi-
gated the bursting of gas slugs in liquid-filled vertical and inclined conduits. The experiments
were carried out in a vertical straight tube. At the greater depth of magmas, the magma path-
ways are more likely to be an individual or array of dikes. This suggests that changes in
conduit size, shape and angle are likely to be better the representation of the real situation in
the experimental investigation.

An example of the slug flow linked with the volcano eruptions behavior is Strombolian
volcanoes. It is a relatively small-scale explosive eruption. This phenomenon is widely ac-
cepted to be caused by bubble coalescence leading to the formation of Taylor bubbles. The
Taylor bubble forms in the great depth of the conduit. When it approaches the lava lake, it
undergoes a large expansion to the reservoir. The diagram is shown in Fig. 2.7. Bouche et al.
[21] pointed out the Taylor bubbles rising into reservoir may provide hot magma from depth
which is entrained in their wake and drive convection currents. James, Lane, and Chouet [49]
showed that it is possible to monitor the lava activity from distance by analyzing acoustic
data from the bubble break up in the expansion conduit.

2.5 Chapter conclusion

A review of the two-phase flow, bubble rising, Taylor bubble in vertical tube and bubble
through the contractions and expansions are presented. Both experimental and simulation
works are devoted to this research area. A few conclusions can be drawn from the literature
review:

• Existing numerical methods have proven to be sufficiently accurate for simulating the
bubble flow in the pipe. Both the interfacial tracking and capturing methods can be
used to simulate the bubble motions. Previous work has shown a large quantity of the
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FIGURE 2.7: Diagram of the Taylor bubble in a lava conduit and its rising to-
wards the lava lake. (Replot based on [21]).

simulations related to bubble behavior under a variety of conditions. The simulation
results have been validated with the experimental data.

• The Taylor bubble rising in the vertical tube has been investigated thoroughly. Both the
numerical and experimental studies have been devoted to this subject. Detailed infor-
mation about the bubble has been provided, for example, the bubble terminal velocity,
the filling film, the shape of the bubble nose, etc. The motion of the Taylor bubble in the
straight tube is very well known.

• The investigation about Taylor bubbles rising through expansions is very limited. The
investigations on the Taylor bubble only presented its terminal motion in straight pipe.
The bubble transitional behaviors in the expansion are unclear.

• The bubble rising through the contractions is still an unknown area. A few studies have
investigated the slug flow in the contractions. However, bubble motion encountering
the contraction in a quiescent liquid is unknown and needs to be investigated.

• The literature review on two-phase flow clarified the background of the present study.
We will focus on the Taylor bubble rising in expansions and contractions.
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Chapter 3

Numerical model and validations

Gerris is a free software to solve the partial differential equations governing two-phase fluid
dynamic problems. The source code is available online under the GPL license. This software
is used for the simulations in this thesis.

The software solves the time-dependent incompressible Navier-Stokes equations. It also
contains the VOF algorithm for interfacial flows. Another great advantage of this software is
the Adaptive Mesh Refinement (AMR) algorithm which can adapt the resolution dynamically
according to the features of the flow.

The objective of this chapter is to give a brief introduction of this solver, and to validate its
ability and accuracy for the two-phase flow of interest in this work. This chapter is organized
as follows. Firstly, the governing equations used in the presented simulations are introduced.
Secondly, a simulation of single-phase flow is presented for validation purpose. Finally, a
comprehensive simulation on the single bubble rising is carried out for testing the software
for two-phase flows.

3.1 Introduction of the numerical solver

3.1.1 Governing equations

Gerris solves the incompressible Navier-Stokes equations:

∇ ·U = 0 (3.1)

ρ
∂U

∂t
+ ρ(U · ∇)U = ∇ · (µ(∇U +∇UT ))−∇p+ ρf (3.2)

where U is the velocity, p is the pressure, ρ and µ are the density and viscosity of the fluid,
respectively, f indicates any body forces acting on the fluid. Above equations can be rewritten
in dimensionless form. First, the dimensionless variables are defined as follows:

ū = u/U0, v̄ = v/U0, w̄ = w/U0,

x̄ = x/L, ȳ = y/L, z̄ = z/L,

t̄ = tU0/L, p̄ = p/ρU2
0 ,

ρ̄ = ρ/ρ0, µ̄ = µ/µ0
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where the variables which have subscript 0 are the reference value, and L is the reference
length. Thus, the dimensionless form of the Navier-Stokes equations are

∇̄ · Ū = 0 (3.3)

ρ̄
∂Ū

∂t̄
+ ρ̄(Ū · ∇̄)Ū =

1

Re
∇̄ · (µ̄(∇̄Ū + ∇̄ŪT ))− ∇̄p̄+ ρ̄f̄ (3.4)

where the last term ρ̄f̄ (̄f = fL/U2
o ) can be considered as a general source term. The Reynolds

number Re is ρ0U0L/µ0. The choice of the characteristic variables depends on the problem
itself. But, the dimensionless equations could simplify the implementation of the software.

3.1.2 Numerical method for solving the incompressible Navier-Stokes equations

Basics of the projection method

Chorin [30, 31] has developed a practical numerical method based on a discrete form of the
Hodge decomposition. This method is known as the projection method. The main idea is to
calculate an intermediate velocity field and, then, project to divergence-free fields. The final
velocity fields are recovered by the continuous equation.

Here, for clarity of the description, we simplify the equation (3.4) as follows:

∇ ·U = 0 (3.5)
∂U

∂t
+ A = D−∇p+ f (3.6)

A = (U · ∇)U (3.7)

D = ε∆U (3.8)

where ε = 1/Re. We assume that the density ρ and the viscosity µ are constants in the cal-
culation region. Therefore, the dimensionless ρ̄ and µ̄ are equal to 1. And, we drop the bar
above variables for clarity.

The fractional time scheme can be expressed in an explicit form. The time derivative of the
momentum equation is discretized by a forward explicit scheme. The equation (3.6) becomes

Un+1 −Un

∆t
+ An = Dn −∇pn + fn (3.9)

The velocity at the end of the time step must be divergence free. Therefore,

∇ ·Un+1 = 0 (3.10)

• Prediction step
The pressure term is dropped from the momentum equation. And, an intermediate
velocity (U∗) field is obtained.

U∗ −Un

∆t
+ An = Dn + fn (3.11)
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• Projection step
Find the pressure field coupled with velocity.

∇2p =
1

∆t
∇ ·U∗ (3.12)

• Correction step
Correct the velocity by adding the pressure gradient.

Un+1 = U∗ −∆t∇p (3.13)

This basic three steps projection method illustrated the main idea. But, this explicit method
is only first-order accurate in time. It needs a restrictive time step to obtain acceptable accu-
racy. Kim and Moin [56] used the second-order-explicit Adams-Bashforth scheme for the
convective terms and Crank-Nicolson for the viscous terms. Implicit treatment of the viscous
terms eliminates the numerical viscous stability restriction. This method is second-order ac-
curacy for the velocity. Further improvement of the projection method can be found in [15, 4,
24].

Projection method in the present study

The projection method in the solver is a classical time-fractional projection method [83]. The
method is based on the works of Bell, Colella, and Glaz [15] and Bell and Marcus [16] and
is known as the BCG method. This method is second-order in time for both velocity and
pressure. The advection term is computed using a Godunov procedure. The viscous term is
treated implicitly, the same for the Kim and Moin [56]’s method.

Equation (3.11) is rewritten as:

U∗ −Un

∆t
+ A′ = D′ −∇pn−1/2 + fn (3.14)

where,

A′ = [(U · ∇)U]n+1/2

D′ = ε∆(
Un + U∗

2
)

The advection term A′ approximates at 1/2 time levels to obtain second-order in time by
using an explicit predict-corrector scheme [4]. The scheme is stable for a CFL number smaller
than 1. Note that a half level pressure term is used in equation (3.14). It is treated as a source
term and only updated at the 1/2 time level. The viscous term is discretized by the Crank-
Nicolson scheme.

Adaptive Mesh Refinement

The Gerris solver employs a Quadtree/Octree structure to adapt the mesh. The hierarchical
structures are shown in Figure 3.1. The adaptation proceeds in two steps. Firstly, refine the
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mesh by a user-defined criterion. Multiple criteria can be introduced, for example, the solid
boundary, the vortex, the gradient temperature, etc. The mesh will be refined at a specific
time step based on user’s definition. Secondly, the solver will coarsen the mesh cells which
do not satisfy the refinement criteria.

0

1

2

3

4
FIGURE 3.1: Example of quadtree mesh (left) and the corresponding tree-

structure representation (right). [83]

The refinement procedure needs to interpolate values on the refined mesh. The values
in children cells are calculated by a linear interpolation from their parent cell. The coarse
procedure will take a mass-volumetric average from the children cells to the parent cells
in order to maintain the local conservation. To simplify the calculations at cell boundaries
between different level of the cells, Gerris introduces several constraints:

• The difference of level between direct-neighbor cells can not be bigger than 1;

• The difference of level between diagonal-neighbor cells can not be bigger than 1;

• All the cells directly neighboring a mixed cell must be at the same level;

The physical variables are collocated in the cell center. This type of arrangement is suit-
able for tree structure mesh. It is also simplifies the implementation of the Crank-Nicolson
discretization of the viscous terms. The collocate mesh has a classical problem of decoupling
between the pressure and velocity field. Gerris avoids this problem by carefully dealing with
the projection step by using the approximate projection method [82].

First, the auxiliary velocity field u∗c is computed by equation (3.14). The auxiliary face
velocity field u∗f is calculated by interpolating the cell center value to the face. If the face con-
nects different levels of the cells, the face value is calculated by averaging the values from the
refined faces. This process can guarantee the consistency of the corresponding volume fluxes.
The divergence of the auxiliary velocity field is calculated by a finite-volume approximation.

∇ · u∗ =
1

V
Σu∗f · (afnf ) (3.15)

where V is the volume of the cell, nf is the unit normal vector to the face, af is the face
area. After obtaining the auxiliary velocity field by the equation (3.15), the correction step is
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applied to the face-centered auxiliary field. This procedure makes the velocity on the face-
center divergence free. For the cell-centered velocity the correction step is given by:

un+1
c = u∗c − |∆t∇fpn+1/2|c (3.16)

The operator |.|c denotes the average over all the faces of the control volume. This procedure
obtains a cell-center velocity field un+1

c approximately divergence-free.

Volume-of-Fluid (VOF)

As we mentioned in Chapter 2, Gerris uses the Volume-of-Fluid (VOF) method to represent
the interface. The basic notation is the same as described in Chapter 2. Here, we describe the
method for advecting the volume fraction (c). Gerris adopted a geometrical approach to ad-
vect the c. This method is efficient and easy to implement for the Cartesian mesh. Since adap-
tation of the mesh is adopted in Gerris solver, a modified advection scheme to a quad/octree
should be designed. As illustrated in Fig. 3.2, the total volume fraction in the left large cell
will be advected to the right small cells. The flux will be calculated independently accord-
ing to the size of the small cells. The volume fraction can be calculated as the area in the
two dashed box in Fig. 3.2. The new c can be obtained in both coarse and refined cells.
Next, new interfaces should be reconstructed in the cells. The method used in Gerris is the
Mixed-Youngs-Centred (MYC) method [12]. As mentioned before, the method is one of the
Piecewise Linear Interface Calculation (PLIC) methods.

c ca1

ca2

FIGURE 3.2: Geometrical flux computation on a quadtree mesh. [82]

Surface tension calculation

Accurately predicting the surface tension is one of the most difficult problems in numerical
simulation. The surface tension term (σκδsn) can be added to equation (3.2) as an additional
force.

In the context of VOF method, Brackbill, Kothe, and Zemach [22] proposed the following
approximation:

σκδsn ≈ σκ∇c (3.17)

) where κ = ∇·n is the surface curvature. σ is the surface tension coefficient. This approxima-
tion is called the continuum-surface-force (CSF). In order to recover exact discrete equilibrium
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between surface tension and pressure gradient, the approximations of both gradients should
be compatible. On the other hand, accurately estimating the curvature κ is also necessary.

The naive implementations of the CSF method can easily break the compatibility. There-
fore, Gerris applies the surface tension force to the auxiliary face-center velocity field u∗f

u∗f = u∗f +
∆tσκf
ρ(cf )

∇fc (3.18)

The cell centered surface tension force to u can be obtained in the same way as equation (3.16).

u∗c = u∗c + |∆tσκf
ρ(cf )

∇fc|c (3.19)

The subscript f indicates the face center value and c is the cell center value. The operator ||c
denotes the average over all the faces of the cell, which is the same as the one used for the
pressure gradient in equation (3.16).

Height function

The height function method is used for estimating the curvature of an interface [32]. For
example, the height function of a continuous line f(x) can be define as:

H(x;h) =
1

h

∫ x+h/2

x−h/2
f(x)dx (3.20)

The normal vector and curvature can be written as

n =
1

[1 + (Hx)]1/2
(Hx, 1) (3.21)

κ = −∇ · n =
Hxx

[1 + (Hx)2]3/2
(3.22)

A standard height function in 2D Cartesian grids is proposed by Cummins, Francois, and
Kothe [32]. Firstly, choose a stencil centered on the cell where the curvature is needed to
calculate. The size of the stencil usually 3×7 or 7×3 blocks in 2D. The orientation of the stencil
should be aligned with the interface normal direction. Secondly, build the height function on
each column of the stencil. The function could be y = H(x) or x = H(y), which depends
on the orientation of the stencil. Finally, the curvature can be estimated from equation (3.22).
Improvement of the method and generalization to the quad/octree mesh can be found in [82,
101].

Parallelization

Parallelization is important for the large-scale computational problem. The parallelization of
Gerris is built on the MPI (Message Passing Interface) library. Gerris only allows coarse-grain
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parallelism where the smallest parallel subdomain is an entire quad/octree. The whole calcu-
lation domain consists of multiple quad/octrees. The distribution of the tree data structure
have two cases:

The two neighboring trees are located on the same processor. The connection of the tree is
matching the memory pointers. The memories are shared on the same processor. Therefore,
all operations on the multiple trees can be treated as a single tree.

If the two neighboring trees located on different processors. Ghost layers are needed for
transfer of information between the processors. The ghost layers nodes are defined indepen-
dently and "stitched" on the trees, which are often used for defining the boundary conditions.
In the parallel case, the ghost layer is considered as a parallel boundary condition which
swaps the data through MPI_Send and MPI_Recv functions.

The details of the parallelization in Gerris are reported in [2]. We used Gerris on a cluster.
The real performance needs to be tested and results will be present in the following sections.

3.2 Basic test cases

3.2.1 Error quantification

The relative error norms can be measured against suitable reference solutions. The three
relative error norms are defined as:

‖e‖1 =

∑n
i=0 |qi,ref − qi|∑n
i=0 |qi,ref |

(3.23)

‖e‖2 = (

∑n
i=0 |qi,ref − qi|2∑n

i=0 |qi,ref |
)
1
2 (3.24)

‖e‖∞ =
max|qi,ref − qi|

max|qi,ref |
(3.25)

where qi is the temporal evolution of quantity q. The choice of the quantity q and the reference
qref depends on each test case. Additionally, the rates of convergence (ROC) can be numer-
ically calculated by considering the error ‖e‖h, obtained with grid spacing h, and ‖e‖h/2 at
finer grid. It can be calculated as

ROC =
ln(‖e‖h/‖e‖h/2)

ln(h/(h/2))
(3.26)

3.2.2 Lid-driven cavity

The lid-driven cavity is a classical fluid dynamics problem which has been investigated by
many researchers. Pioneer works [43, 93] presented results of the steady state solutions,
which are often taken as benchmark solutions for the numerical solvers.

The problem is described as the solution of the unsteady incompressible Navier-Stokes
equations in a unit square Ω = (−0.5, 0.5) × (−0.5, 0.5) (Fig. 3.3). Only the velocity u on top
boundary Γ3 equals to 1. The other velocity boundaries are Dirichlet boundary conditions
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and equal to 0. The initial velocities and pressure fields are equal to 0. The flow will be
driven by the lid as time advanced. Here, we consider that steady state is achieved when the
difference of U (=||u||) between the present step and 10 steps before is less than 1× 10−5. We
take this test problem to verify the Gerris solver for the single phase flow.

−0.5 0 0.5
x

−0.5

0

0.5

y

Γ1 : u = 0, v = 0

Γ
2

:
u

=
0,

v
=

0

Γ3 : u = 1, v = 0

Γ
4

:
u

=
0,

v
=

0

FIGURE 3.3: Boundary conditions of the lid-driven cavity problem.

Ghia, Ghia, and Shin [43] presented the u-velocity along the vertical line through the geo-
metric center of the cavity and the v-velocity along the horizontal line through the geometric
center of the cavity. We choose two test cases (Re = 100, Re = 1000) comparing the results with
those obtained with the Gerris solver in Fig. 3.5. The solver obtained results close to those
presented in [43]. The velocity convergence rates are shown in Fig. 3.4. It is clear that the
convergence rate on this problem is close to second-order, except on the finest grid. Further-
more, we investigated the convergence rates for the pressure field. Botella and Peyret [20]
presented the pressure field at Re = 1000, Fig. 3.6. Figure 3.6(b) shows that the pressure con-
vergence rate is also second-order. The solver can handle this test problem very well. Next,
we will test the performance of this solver for two-phase flow problems.

3.2.3 Bubble rising in stagnant liquid

Benchmark test cases

This section describes the setup for the test cases for two-phase flow presented in [3] and [48].
The domain Ω = [0, 1] × [0, 2] is filled with fluid 1 except for a circular bubble, which is

occupied by fluid 2. The configuration of the domain is shown in Fig. 3.7. The bubble is
centered at (0.5, 0.5) with a radius of 0.25. The density of the bubble is smaller than that of
the surrounding fluid (ρ2 < ρ1). The no-slip boundary condition (u = 0) is imposed at the
top and bottom boundaries, whereas the free slip condition is imposed on the vertical walls.

The fluid properties are shown in Table 3.1. The subscript "1" and "2" indicate the param-
eters for fluid 1 and 2, respectively.
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FIGURE 3.4: Velocity (u and v) comparsion with the results in [43]. (a) Re=100,
(b) Re=1000
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FIGURE 3.5: Convergence rates of (a) u-velocity and (b) v-velocity along the
center of cavity.

TABLE 3.1: Physical parameters of the test cases

Test Case ρ1 ρ2 µ1 µ2 g σ ρ1/ρ2 µ1/µ2

1 1000 100 10 1 0.98 24.5 10 10
2 1000 1 10 0.1 0.98 1.96 1000 100

Three benchmark quantities describe the temporal evolution of the bubbles. The quanti-
ties defined specially for the bubbles are:
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FIGURE 3.6: Pressure field along the center of cavity and its convergence rate.

FIGURE 3.7: Initial configuration and boundary conditions for the test cases.

• Point quantities: Various points can be used for tracking the translation of bubbles. Com-
monly, the centroid (center of mass) is used, defined by

Xc = (xc, yc) =

∫
Ω2

Xdx∫
Ω2

1dx
(3.27)

where Ω2 denotes the region that the bubble occupies. The (xc, yc) is the coordinate of
bubble centroid.
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• Circularity:

Φ =
Pa
Pb

=
perimeter of area-equivalent circle

perimeter of bubble
=
πDa

Pb
(3.28)

Here, Pb denotes the perimeter of a circle with diameter Da, which has an area equal to
that of a bubble with perimeter Pb. For a perfectly circular bubble, the circularity will
be equal to 1.

• Rise velocity: The mean velocity of the bubble rising is a particularly important quantity,
defined as

Uc = (uc, vc) =

∫
Ω2

Udx∫
Ω2

1dx
(3.29)

where Ω2 denotes the region that the bubble occupies.

Results of the test case 1

Figure 3.8 shows the evolution of the bubble with time for the finest grid (h = 1/256). The
bubble is initially circular. Then, it stretches horizontally. Finally, it evolves to a stable oval
shape.

We first carry out mesh dependency tests. All computations were performed on uniform
regular grids with cell sizes h = 1/[16,32,64,128,256]. At first, we show the bubble shape at
t = 3 of different resolutions. Figure 3.9 shows that the final bubble shape is not changing
too much with different meshes. The reconstructed segments from the VOF method are not
connecting, in particular for the coarse mesh. Increasing the meshes resolution could remedy
this problem. Merely from observing the bubble shapes, it is hard to tell the accuracy on each
grid. We should use the previously defined benchmark quantities, equations (3.27), (3.28)
and (3.29).

Figure 3.12 shows the center of mass evolving with time. There are no significant dif-
ferences between the different grids. Figure 3.13 depicts the circularity of the bubbles. It is
possible to observe some deviations on the coarsest grid (h = 1/16). The piecewise linear
VOF can not represent curvature accurately on the coarse grid. As shown in Fig. 3.13, the
circularity converges well on finer grids (h < 1/128). The time evolutions of rising velocity
are shown in Fig. 3.14. The rise velocity reaches its maximum value then becomes stable. The
rise velocity and the centroid converge well at different mesh resolution. These two quan-
tities do not depict the bubble shape. Since the VOF method conserves the mass very well,
the total quantity of the color function is the same at different resolutions. Therefore, the rise
velocity and the centroid are not affected by the mesh resolution in this case.

Results of the test case 2

The simulation setup for case 2 is similar to case 1, except for the fluid properties. In test case
2, the decrease in surface tension causes the bubble to evolve to a non-convex shape with
filaments. The bubble will form a skirt shape on the rear the bubble. Without experimental
results, it is still unclear whether the bubble filaments would break off in this condition. In
[3], the filaments become very thin, but they do not break off. In [48], the trailing filaments do
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FIGURE 3.8: Time evolution of the interface for test case 1 on the finest grid.

not remain intact for two codes (TP2D and FreeLIFE) as our results presented here. Fig 3.10
shows the bubble evolving with the time. The filaments elongate at both sides of the bubble
rear. Then, the filaments break off.

The center of mass for test case 2 is shown in Fig. 3.12. The position of the bubble at finer
mesh (h=1/256) is higher than the others with coarse meshes. As shown in Fig. 3.11, more
bubbles fluid with lower resolution is trapped into the tail filaments. The distribution of c
affects the position of the center. Even though, the position of the bubble converges to the
results with finer grids. In Fig. 3.13, the circularities at different resolutions do not converge
to a constant value. The bubbles have their own shapes at different meshes, especially the tail
shapes.

Figure 3.14 shows the rising velocity of the bubbles with different meshes. The velocities
have slight fluctuations because of the formation of the tails. However, the velocity trend
converges for higher resolutions.

We have compared the results obtained by Gerris with the data presented in [3] and [48].
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FIGURE 3.9: Test case 1 bubble shapes at t = 3. The shapes are computed on
different grid resolutions.

The results show a good agreement with [3] for both test cases. The detailed comparison
can be found in appendix A. The comparison shows that the errors are large for lower mesh
resolutions. The different methods have different performances at lower mesh resolutions,
whereas increasing the grid resolutions reduces the errors. The different methods converge
to the same result at finer mesh.

To quantify the accuracy, we tested the errors at different meshes in terms of the center
of mass, circularity and rising velocity. Since there is no analytical solution for these two test
cases, we use the reference solution at finest grid resolution (h=1/256). The results are shown
in appendix A. The ROC for this test is, in general, less than 2. The test 2 has lower converge
order than the test case 1. The results show negative orders of convergence for circularity,
which indicates that model does not yet converge to the reference solution.

Adaptive mesh tests

Adaptive mesh refinement (AMR) changes the accuracy of the solution in certain regions.
Here, we use AMR to adapt the interface. In other words, the grid will be automatically
refined to a certain level in the interface regions where the color function c is between 1 and
0. The bubbles with different adaptive levels are shown in Fig. 3.15. The adaptive mesh
increases the local resolution.

Further comparison of the adaptive mesh and the uniform mesh are shown in Fig. 3.16.
The comparison confirms that the adaptive mesh will reduce the accuracy, but the relative
errors are in the acceptable range. Here, we compare the relative error of the center of the
mass and rising velocity. Figure 3.16(A) shows the relative errors of the center of the mass
between the uniform and adaptive mesh. For example, the results from adaptive mesh are
obtained from a coarse mesh h = 1/16 and finest adaptive mesh h = 1/64 at bubble interface.
The corresponding results on the uniform mesh are obtained with h = 1/64. We have tested
the mesh resolution up to h = 1/256. The errors reduced with increasing the mesh resolution.
Figure 3.16(B) are plotted in the same way. The relative errors of the center of mass are less
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FIGURE 3.10: Time evolution of the interface for test case 2 on the finest grid.

than 1%. And, the relative errors of the bubble velocity are less than 6%. For the mesh with
finest resolution h = 1/256, the errors reduced to less than 0.5% for the center of the mass and
3% for the bubble velocity.

The computational time is shown in Fig. 3.17. The adaptive mesh saves a lot of time of
the calculation. For the mesh of h = 1/128, the calculation on the adaptive mesh is 10.4 times
faster than the corresponding uniform mesh.

The conclusion can be drawn that the adaptive mesh introduces the calculation a small
error, but it saves great amount of the calculation time.

Tests in Cylindrical coordinates

The test cases shown above are done on 2D Cartesian meshes which are not similar to the
real bubble. Here, the configuration changes to cylindrical coordinates which is closer to real
situations. The bubble has a spherical shape in the cylindrical coordinate configuration. The
objective of this section is to simulate the bubble rising in the liquid. This is different from
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FIGURE 3.12: Center of mass for test case 1 (A) and 2 (B).

the test cases in previous sections which intends to validate with the benchmark solutions. In
order to obtain the similar results, we adopted the same parameters presented in the literature
for the benchmark tests.

The bubble initial configuration is similar to the previous case. The only difference is
the vertical center line of the calculation domain is the rotational axi-symmetric boundary.
The bubble is initialized as a sphere at x = (0, 0.5). The diameter of the bubble is 0.5. The
width (L) of the calculation domain should be defined. The bubble is freely rising in the
calculation domains and should not be affected by the side walls. The boundary condition
on the side walls are slip-boundary conditions. The boundary condition of the u-component
is ∂u

∂x = 0. And, the boundary condition of the v-component is v = 0. Here, we carried out 3
tests for different widths of the calculation domains. Since the domains are axisymmetric, the
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FIGURE 3.13: Circularity for test case 1 (A) and 2 (B).
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FIGURE 3.14: Rise velocity for test 1 (A) and 2 (B).

actual width of the calculation domains is only L/2. The tests performed in different domain
widths, L = 2D, 4D, 8D. Figure 3.18(A) shows the bubble rising velocities. The domain
width L = 2D has strong effects on the bubble rising velocity. If the domain width increases
to 4D or 8D. The side wall effects on the bubbles are reduced. On the other hand, the bubbles
in 4D and 8D have similar shapes. But, the bubble locations at t = 5 are slightly different,
see Fig. 3.18(B). The reason is that the existence of the side wall will slow down the bubble.
Considering the computational load and the accuracy, we chose L = 4D as the calculation
domain width for the bubble rising cases.

We have performed multiple tests to predict the bubble in a wide range of Reynolds and
Bond numbers. The results are shown in Table. 3.2. The definition of the Reynolds and Bond
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FIGURE 3.15: Adaptive mesh and interface of the bubble at t = 3 for test case 1.
(A) The finest level of mesh equals to 1/32. (B) Finest level of mesh equals to

1/256.
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FIGURE 3.16: Relative errors of adaptive mesh with their corresponding results
in uniform mesh for test case 1. (A) Relative error of the center of mass. (B)

Relative error of the velocity.

numbers can be found in equation (2.1). The characteristic velocity U is not the terminal
velocity of the bubble. Here, we take U =

√
gD as the characteristic velocity simply since the

terminal velocity is not known a prior. The D is the initial bubble diameter. Similar tests are
carried out by Hua and Lou [47]. But, they used a different solver based on the front tracking
method.

In the regimes of low Re and Bo numbers (Re ≈ 10 or Bo ≈ 1), the bubbles remain spheri-
cal. Slightly increasing the Re number (Re ≈ 20), the bubble shape remains spherical for low
Bo number. Whereas, the bubble bottom becomes flat and dimpled for higher Bo number
(Bo > 35). For the regimes with higher Re number (Re > 50) and lower Bo number (Bo < 50),
the bubble becomes elliptic/oblate ellipsoid shape. If further increasing the Re number (Re
> 100), the elliptical-cap shapes can be observed. The results of [47] show that skirt bubbles
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FIGURE 3.18: Sensitive analysis on the calculation domain width. (Re = 35, Bo
= 125) (A) Bubble velocity. (B) Bubble shape at t = 5.

are formed at higher Re and Bo numbers (50 < Re < 200, 100 < Bo < 200). Our simulation
obtained the similar results at the early stage of the simulation ( t < 2). The skirt of the bubble
will eventually break up into smaller bubbles behind the leading bubble (Re = 200, Bo = 50).
For Re = 200 and Bo = 200, the bubble breaks up soon after starting the simulation. There
are no definitive shapes that can be obtained. Hence, the results are not shown in Table. 3.2.
We will perform the simulation for the case (Re = 200 and Bo =200) in 3D in the next section.
We can conclude that the simulation can predict the bubble shapes in a wide range of flow
regimes. However, for the highest Re and Bo numbers, the bubble shapes deviates to the
results in [47].
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TABLE 3.2: Prediction of the bubble shapes .

Bo
1 5 10 35 50 100 125 200

10

20

Re 50

100

200

3D tests

In the previous section, we have predicted the bubble shape in a wide range of Re and Bo
numbers, but failed at large Re and Bo number. The reason is that the bubbles at large Re and
Bo numbers does not deform in an axisymmetrical way. Here, we carry out a 3D simulation to
test bubble rising at such condition. The Re and Bo numbers are both equal to 200. Similar to
the previous definition, the bubble is initiated as a sphere in Fig. 3.19(A). The bottom quickly
penetrates the bubble in middle (Fig. 3.19(B)). Then, a toroidal bubble can be observed in
Fig. 3.19(C). This observation agrees with the results in [47]. But, the toroidal shape is only a
transient shape. The toroidal ring breaks up and forms 4 offspring bubbles (Fig. 3.19(D)).

(A) t = 0.0 (B) t = 0.16 (C) t = 0.28 (D) t = 0.66

FIGURE 3.19: Bubble shape evolution with the time. (Re = 200, Bo = 200)

3.2.4 Parallelisation tests

We carried out the calculations on the computing center P2HPD hosted by the University of
Lyon 1. We have used 7 nodes in the cluster. Each node has 16 CPU cores. The maximum CPU
cores that can been used are 112 cores. Another calculation resource is the local workstation.
It has 4 cores which are Intel Xeon(R) CPU E5-1607 v2 @ 3.00GHz.

The first test case is the 3D lid-driven cavity flow on the cluster. The test performance is
shown in Fig. 3.20. There are three different uniform mesh sizes (h = 1/32, 1/64, 1/128). The
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computing performance is increased on the cluster. Doubling the number of CPU nodes, the
calculation could save almost half of the time.

However, we found that the calculation performance decreases when using the adaptive
mesh. The parallel strategy limits the parallel subdomains of entire quad/octree [2]. There-
fore, the elements on each CPU core are not the same. The data exchanged between different
nodes are also not the same. A good calculation performance can not be obtained if too much
data exchanges between the cluster nodes. The performance as shown in Fig. 3.20 will not be
achieved. Usually, we could define the load balance ratio to indicate whether the computa-
tion loads are the same. It is written as:

rb = (nmax − nmin/nmax) (3.30)

where nmax and nmin are the maximum and minimum calculation elements on the node. If
the elements are evenly distributed on each node, the balance ratio rb will be zero. In practice,
we should keep the balance ratio as small as possible.

We use the bubble rising case 1 to test the balance ratio. The AMR strategy is based on
the VOF fraction. Here, we choose different finest meshes to maintain a good load balance
ratio. The coarsest mesh is h = 1/32. The finest meshes are h = 1/64, 1/128, 1/256, 1/512.
Figure 3.21 shows the minimum, maximum and average elements on different cores. The
level differences between the coarsest and finest mesh are 1 for Fig. 3.21(A), 4 for Fig. 3.21(B).
The average balance ratios are 0.08 and 0.37. To optimize the computational speed, we choose
the level difference between the coarsest and finest mesh less than 3.
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FIGURE 3.20: Real time spent with different number of CPU cores.

3.3 Chapter conclusion

The numerical solver has been tested with different one and two-phase flow problems. The
Gerris solver is suitable for simulating the bubble flow. The following conclusions can be
drawn:
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FIGURE 3.21: The maximum, minimum and average number elements on dif-
ferent CPU cores. Total number of the CPU cores is 16. Finest meshes are (A) h

= 1/64 , (B) h = 1 / 512.

• The Lid-driven cavity test validates the numerical solver for the single phase Navier-
Stokes equations. The convergence rates are close to second-order both for velocities
and pressure.

• The bubble rising test case validates the numerical solver for the bubble simulations.
The results agree with the data in the literature. The solver can predict the bubble shape
in a wide range of the Re and Bo number. Note that many other test and validation
results concerning both single and two phase flow problems can be found on the Gerris
website (gfs.sourceforge.net).

• The adaptive mesh refinement method improves the efficiency of the solver. This method
saves much of computational time.

• The solver works well on the cluster. The parallelization tests show that performance
may be reduced due to unequal distribution of the computational load for adaptive
mesh.
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Chapter 4

Description of the experiments

This chapter presents the methodology, structure and procedure of a series of experiments
performed in the CETHIL laboratory, National Institute of Applied Sciences (INSA de Lyon).
The experiments detailed in this chapter investigate the behavior of Taylor bubbles rising
through a vertical cylindrical pipe encountering the changing diameters.

4.1 Description of the experimental test facility

The experimental apparatus consists of two main parts, the gas supply and the test section,
shown in Fig. 4.1. In the present experiments, the gas is provided by compressed nitrogen.
The high-pressure nitrogen is depressurized by a valve. The test section has two parts, the
bubble generator chamber and the visualization box. The detailed structure will be showed
in next section.

The test section is filled with liquid. The gas is injected at the bottom of the bubble gen-
erator chamber, see Fig. 4.1. Before entering the test section, the gas pressure is controlled by
two valves, the depressure valve (Valve 1) on the nitrogen bottle and a micro-valve (Valve 2).
The depressure valve is AIR LIQUIDE HBS 200-3-25. It can control the outlet pressure from
0.01 to 0.3 MPa. In the present experiments, the pressure is alway maintained at 0.1 MPa. The
micro-valve controls the gas flux. The bubble forms in the bubble generator chamber show-
ing in Fig. 4.2. And then, the bubble goes to a long vertical pipe. The pipe is long enough to
stabilize the bubble and make sure the bubble reaches the terminal velocity before encoun-
tering expansion or contraction. The length of the tube is 1.2 m. Then, the bubble rises into
the visualization section which is shown in Fig. 4.3. The motion of the bubble is captured by
a high-speed camera. Finally, the bubble reaches the liquid free surface and releases to the
atmosphere.

The experimental test bench is suitable for visualizing bubbles in several kinds of trans-
parent liquids. In the present study, we only tested the water and water-glycerol solutions.

4.1.1 Bubble generator chamber

The bubble generator chamber consists of a cylindrical chamber and a rotational cup which
are shown in Fig. 4.2. Before injecting the liquid, the cup is turned upside down. Then, the
gas is injected from the nozzle at the bottom of the chamber. The diameter of the nozzle is
4 mm. The bubbles generated from the nozzle are rather small. The rotating cup is used for
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FIGURE 4.1: Configuration of the experimental test bench.

collecting the small gas bubbles. The bubbles agglomerate in the cup. When it is stable, the
cup is rotated. The Taylor bubble will rise into the tube.

Gas Injector

Rotator

Gas cup

Lower tube

FIGURE 4.2: Illustration of the bubble generator chamber.

The purpose of the rotating cup is to stabilize the gas and gather the bubbles. Of course,
small bubbles could agglomerate in the pipe and form a Taylor bubble. But, a longer pipe
is then needed to stabilize the bubble. The rotating cup used for generating the large bubble
allows us to reduce the pipe length for stabilizing the bubble. Secondly, the cup helps to
control the volume of the bubbles. The gas quantity can be observed in the rotating cup. In
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the present experiments, the bubble volume is less than 6000 mm3. The real bubble volume
is measured by image analysis.

4.1.2 Visualization section

The schematic view of the visualization section is shown in Fig. 4.3. The visualization box
is a transparent box which is used for reducing the optical distortion. The two pipes with
different sizes are in the middle of the box. The lower pipe is fixed on the visualization box
and connected to the bubble generator chamber. The upper pipe is fixed with the lower pipe
by a thin plate. The camera is installed at the front of the visualization box. The light is
installed at the back of the box.

The cross sectional size of the visualization box is 10 × 10 cm2. The height is 45 cm. The
top side opens to the atmosphere. The bottom side is closed and has drainage outlet. The
four side walls are made of plexiglass. The observation can be done in four directions. The
sketch of the plate is shown in Fig. 4.4. The thickness of the plate is 2 mm and it is made of
plexiglass. It adapts to the two tubes. TheDlower

out hole connects to the down tube. And,Dupper
out

hole connects to the upper tube. The plate can be used for fixing the upper pipe. The depth
of the notch is 1 mm, which prevents fluid exchange between the box and the tube. Note that
sealing between the two pipes is weak. However, we use the same liquid in- and outside of
the tube and the pressure difference is small. Therefore, the notch on the plate just eliminates
the pressure disturbance induced by the bubble and seals the liquid in the tube to the liquid
in the box. The plate also creates a sudden expansion/contraction between two tubes.

High speed 
camera

Light

Visualization
box 

Glycerol-water 
solution 

Connection
plate 

Bubble 

Lower tube

Upper tube

Liquid 

FIGURE 4.3: Illustration of the visualization section.

The camera was connected via an ethernet cable to a computer running the Photron video
capture software to record the images. The software provides an interface which allows the
user to control the resolution of the images, the frame rate and exposure of the video record-
ings. Relevant specification of the high-speed camera are shown in Table 4.1.
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FIGURE 4.4: Sketch of the connection plate.

4.2 Experimental procedure

When the apparatus are tested leak-free, the experiments are ready to start. The procedures
are shown as follows:

• Filling with the liquid: when the glycerol is filled into the tubes and visualization box,
there are many small bubbles trapped in the liquid. They will block the view for ob-
servation. Therefore, we should wait for more than 3 hours before proceeding the ex-
periments with glycerol. If the liquid is water, the small bubbles will release rapidly. In
practice, 10 minutes is sufficient.

• Leveling the apparatus: the main objective is making the pipe vertical. We use the
gradienter to measure the long connection tube from various of directions. And then,
we slightly adjust the tube and make sure it is vertically positioned.

• Aligning the camera: the parameters of the camera are set up before the experiments
according to Table. 4.1. The alignment of the camera is to position the tube vertically
in the middle of the image. The alignment is based on the image measuring tool in the
Photron software.

• Visualizing the Taylor bubbles: the different bubbles were generated manually from the
bubble generator chamber. We intend to visualize the bubble one by one. Therefore, the

TABLE 4.1: Camera related parameters.

Camera Type FASTCAM SA3 model 120K-M2
Record Rate (fps) 1000
Shutter Speed (s) 3000

Total Frame (-) 5453
Image Width (pixel) 256

Image Height (pixel) 1024
Color Bit (-) 8
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time interval between two rising bubbles are 5 minutes. We wait for the liquid in tube
to be quiescent.

• Cleaning the apparatus after the experiments and preserving the glycerol in the bottle:
this procedure prevents the glycerol from absorbing the water in the atmosphere.

4.3 Measurements and data acquisition

4.3.1 Uncertainty calculation

The uncertainty of the result of a measurements generally consists of several components.
The components are regarded as random variables, and can be grouped into two categories
according to the method used to estimate their numerical values:

• Type A: The uncertainty evaluated by statistical methods. The standard deviation of
the mean of a series of independent observations is considered as the uncertainty. The
quantityXi is estimated from n independent observations. The mean value of the quan-
tity Xi can be expressed as:

xi = X̄i =
1

n

n∑
k=1

Xi,k (4.1)

and the standard uncertainty Uxi can be written as follows:

Uxi = (
1

n(n− 1)

n∑
k=1

(Xi,k − X̄i)
2)1/2 (4.2)

• Type B: The uncertainty estimates from other information. This could be information
from past experience, from calibration certificates, manufacturer’s specifications.

In most case, a quantity can not be measured directly, but is determined from other quan-
tities. Here, we introduce the root-sum-square method to estimate the combining uncertainty
from a series of independent variables’ uncertainty [36]. The valuable Uy is an uncertainty of
the valuable which dependents on individual uncertainty Uxi in each independent variable
xi. The relation is expressed as:

Uy =

√√√√ N∑
i=1

(
∂f

∂Xi
· Uxi)2 (4.3)

where y = f(x1, x2, ..., xN ) and the variation in each independent variable is assumed to
follow th Gaussian (Normal) distribution. The next sections will present the uncertainty of
each independent variable. The uncertainty of a combined variable is calculated by equation
4.3.
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TABLE 4.2: Diameter of the upper tubes.

Index D
upper
out (mm) D

upper
in (mm) ε = Dupper

in /Dlower
in

1 32.30 27.80 1.72
2 28.00 23.30 1.44
3 26.00 21.40 1.33
4 24.00 20.00 1.24
5 21.90 18.10 1.12
6 18.90 15.00 0.93
7 17.10 13.10 0.81
8 15.00 11.10 0.69

4.3.2 Tube diameter

The tube diameters have been measured with a vernier caliper with a resolution of ±0.02

mm. The outside diameter is measured 10 times along the tube at random locations. The
outside diameter is the average value from these measurements. The type A uncertainty can
be obtained for the Dout. The value of tubes are listed in Table. 4.2. The maximum relative
uncertainty is

∆Dout/Dout < 0.12%

The inside diameter is measured at both ends of the tube. This uncertainty comes directly
from the measurement instruments.

∆Din = ±0.02

In the present study, the inside diameter of the lower tube is 16.40 mm, and the outside
diameter is 19.90 mm. The upper tubes are connected to the lower tube. Their diameters
are listed in Table. 4.2. Din is the inside diameter of the lower tube. And, Dout refers to the
outside diameter of the lower tube. ε is the inside diameter ratio of the upper tube over the
lower tube, i.e., ε = Dupper

in /Dlower
in .

4.3.3 Temperature

The K-type thermocouple measured the ambient temperature. The thermocouple has been
calibrated. The uncertainty is ±0.1 ◦C. The ambient temperature is 18 ◦C during the experi-
mental tests. The temperature fluctuations during the experiment are

∆T = ±1.2◦C (4.4)

4.3.4 Water-glycerol solutions

The original glycerol is 99.5 wt%, from which 5 different solutions were made by mixing
mixed with the distilled water. The volume percentages are close to 95%, 90%, 80%, 70%, and
60%. The relative uncertainty of the volume percentages is ± 1.4%, i.e.,

∆vol% = ±1.4% (4.5)
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4.3.5 Viscosity measurement

The viscosity measurement is performed on a rheometer (Anton Paar MCR 302). The tem-
perature for the test samples is set at 18◦C. The test results are shown in Fig. 4.5. As can be
seen in Fig. 4.5(A), the shear stress is linear with the shear rate. The water-glycerol solutions
are thus considered as Newtonian fluids. The results are compared with the data in [11].
The viscosity of the original glycerol deviates from the data in [11]. Note that the glycerol
has strong water absorption. During the experiments, the glycerol absorbed the water from
the atmosphere. Therefore, the samples are taken after the experiments. The uncertainty of
viscosity comes from the instrument and is written as:

∆µ/µ = ±1.5% (4.6)
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FIGURE 4.5: (A) Shear rate vs. shear stress of different water-glycerol solu-
tions. (B)Measured viscosity of the water-glycerol solution as a function of the

measured volume percentage of glycerol.

4.3.6 Density measurement

The density of the sample fluid is calculated from the volume and the weight. The volume
is measured by the graduate bottle. Its uncertainty is ±0.2 ml. The weight of the samples is
measured by an electronic balance. The uncertainty is ±0.05 g. The sample volume is 10 ml.
Therefore, the relative uncertainty of the density is 2%, i.e.,

∆ρ/ρ = ±2% (4.7)

4.3.7 Fluid properties

The fluid properties are listed in Table 4.3. The surface tension of the water-glycerol solution
is obtained from [11] using the volume fraction. Nitrogen is the gas phase in the present
study. Its properties were calculated from the REFPROP software.
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TABLE 4.3: Summary of the properties of the water-glycerol solutions.

Samples Density Viscosity Surface tension
(kg·m−3) (mPa·s) (mN·m−1)

Water 996.56 0.853 71.2
Glycerol 1261.34 813.84 62.4
W-G solution 95% 1244.35 520.76 62.8
W-G solution 90% 1235.10 285.52 63.1
W-G solution 80% 1208.50 93.46 63.8
W-G solution 70% 1081.25 50.76 64.8
W-G solution 60% 1053.80 28.90 65.2
Nitrogen 1.1581 0.01747

4.3.8 Image processing

The images are captured by a Photron high-speed camera. The image parameters are shown
in Table 4.1. The original images have a resolution of 256 × 1024 pixels. We used a Python li-
brary to process the images. The library is called Pillow which is a fork of the Python Imaging
Library (PIL). The process procedure is shown as follows:

• Importing the images into the program: in order to obtain a good contrast, we enhance
the contrast of the images. In some of the test cases, the exposure is also increased in
this procedure.

• Detecting the tube: the tube is vertically positioned on the image. We often choose
only one image without the bubble to detect the tube position. First, we chose a sub-
rectangle region on the image, which contains the tube. Then, the operations performed
only in this sub-region. We obtain the gray scale gradients on the horizontal direction.
The location of the maximum gradient is the tube wall. In fact, we could find two peaks
of the grayscale gradient, which correspond to the inner and the outer tube wall. In the
present study, we only detect the peak for the inner tube wall. The horizontal detections
are performed at 10 locations along the vertical direction. As illustrated in Fig. 4.6(A).
All the locations are fitted with a line equation. The slope of the line indicates the image
tilt angle.

• Rotating the images: once we obtain the lines for the tube walls, the tilt angle is known.
Then, all the images are rotated by the same angle. The rotational center is at the con-
nection center of the two tubes (red dots in Fig. 4.6(B)). In practice, we aligned the tube
vertically in the images. If the rotation angle is less than 0.055◦, this procedure can be
ignored.

• Removing the noises on the images: we cropped the images and left the part which is in-
side of the tube. There are still background noises around the bubble (Fig. 4.6(C)). Here,
we do not use the method in Pillow library. The method, such as blurry, will smear the
noise, but also blur the bubble interface. Our method is averaging the grayscale of 2
× 2 pixels to 1 × 1 pixel. The original image is reduced to the resolution of 128 × 512
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pixels. Then, aforementioned gradient detection method is used on this resolution re-
duced image. The edge detections are only applied in the horizontal direction. The
bubble interfaces are obtained on the low resolution images. Then, the region inside of
the bubble projects back to the original image. The same edge detecting method is per-
formed on the original image. This image only has the bubble part. Finally, the interface
of the bubble can be obtained.

• Selecting the main bubble: there are still small bubbles and the connection plate in the
images. Therefore, the original images are transferred to binary images. The potential
bubble regions are set to 1, and the rest parts are set to 0. We design a traversing al-
gorithm to detect the largest region (Fig. 4.6(D)). We consider that region is the Taylor
bubble. The plate for connecting the pipe is also a dark region in the image. We exam-
ined multiple frames to find the dark regions which do not move with time. This region
is considered to be the plate.

(A) (B) (C) (D)

FIGURE 4.6: (A) Detecting the tube. (B) Rotating the image. (C) Removing the
noises on the image. (D) Select the main bubble.

The uncertainty of the interface detection can be considered as the pixel distance from
white to black. The interface is located between these two pixels. The average pixel distance
in the present study is 7 pixels. Therefore, we consider that the uncertainty for the interface
detection is ±3.5 pixels. The real scale of the one pixel is less than 0.3 mm. Therefore, The
uncertainty of the interface detection in millimeter is:

∆x < ±1.05mm (4.8)

4.3.9 Optical correction

The visualization box filled with liquid reduces the optical distortion. However, the refraction
always exists due to the fact that tube wall and the liquid are not made of the same materials.
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Here, we established analytical model to correct the optical refraction. The cross sectional
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FIGURE 4.7: Illustration of the light refraction across tube wall.

view of the tube is shown in Figure 4.7. The coordinate original point locates at the center of
the tube. The location of the bubble interface observed is at V. The real location is at Vr. This
model considers the thickness of the tube wall (δ = Rout − Rin). We assumed that the light
outside of the tube is parallel. A simple relation of the angle of incidence can be obtained
(θ1 = θ5):

sin θ5 = sin θ1 =
V

Rout
(4.9)

According to Snell’s law, for a given pair of media and a wave with a single frequency, the
ratio of the sines of the angle of incidence θ1 over the angle of refraction θ2 is equivalent to
the opposite ratio of the indices of refraction (n2/n1), i.e.,

sin θ1

sin θ2
=
nglass
nliquid

Then, we obtain the incidence angle (θ3) for inner tube wall by

Rin sin θ

δ +Rin −Rin cos θ
= tan θ2 (4.10)

where, θ = θ6 − θ5. Rin is the inner radius of the tube. And then, θ3 = θ + θ2. The refraction
angle θ4 can be obtain by

sin θ3

sin θ4
=
nliquid
nglass

The optical distortion ∆V is thus:

∆V = Vr − V (4.11)

= Rout sin θ5 −Rin sin θ6 +Rin cos θ6 tan(θ6 − θ4) (4.12)
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TABLE 4.4: The refraction index of glass and glycerol solution.

Refractive Index (n)
Pyrex Glass 1.474
Glycerol 1.47339
W-G solution 95% 1.46597
W-G solution 90% 1.45839
W-G solution 80% 1.44290
W-G solution 70% 1.42789
W-G solution 60% 1.41299

In the present study, we obtain the refraction index data from [94] which are listed in Table.
(4.4). Figure 4.8 shows that the optical distortion is large at positions close to the tube wall.
The mixtures with lower glycerol percentage have larger optical distortion. However, the
absolute distortion due to refraction on V is less than 0.064 mm, i.e.,

|∆V | = |Vr − V | < 0.064mm (4.13)
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FIGURE 4.8: The optical correction along the radius.

4.3.10 Calculation of the bubble volume

The results obtained from the image processing are the points on the interface. These points
should be connected to obtain the volume of the bubble. Figure 4.9 shows the points ob-
tained from image processing. The points are separately distributed around the interface.
Our method just detects the interface in the horizontal direction. The points can be separated
into two groups, the points on the right (green) and the points on the left (blue). The first step
is to sort the points from the bubble nose to the bottom. We randomly choose a virtual point
inside of the bubble. This point can be set as the original point of a spherical coordinate.
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Therefore, all points on the interface can be transformed to the spherical coordinate. Each
point has its polar angle (θ).

Then, the points are connected from the bubble nose to the bottom. The results are shown
in Fig. 4.9 (right). We set rotational axis located at the center of the bubble. The two interface
lines rotate around the rotational axis to generate two halves of the bubble, see Fig. 4.10.
This volume calculation method is applied to each frame. The bubble volume variations are
shown in Fig. 4.10. For this particular case, we obtain an average volume equal to 2307 mm3.
The volume will be used for the simulation. We observed that the bubble volume has great
fluctuations from the 1500th to the 1690th frame. The inaccuracy is due to the face that part
of the bubble is blocked by the plate. For the blocked part, we simply use a straight line
to approximate the bubble interface. Considering the inaccuracy of estimating the bubble
interface, the uncertainty of the bubble volume can be shown as:

∆Vbubble/Vbubble < ±7.6% (4.14)
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FIGURE 4.9: (A) The points indicate the surface. (B) Rearrangement and con-
nection of the points.

4.3.11 Calculation of the bubble velocity

The first step of the calculation of the bubbles velocity is detecting the bubble location in each
frame. The distance of displacement of the bubble in consecutive frames can be referred to
∆s. The time interval (∆t) between each frame is fixed, which is 1/1000 s in present study.
The velocity of the bubble can be obtained by U = ∆s/∆t. However, this simple method will
lead to inaccurate results. A few restrictions should be added to obtain the bubble velocity:

• Defining the bubble location at the nose of the bubble. The bubble nose is the most
stable part. It also has a sharp and clear edge on the raw images. Therefore, the dis-
placement of the bubble nose is considered as the displacement of the bubble.
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FIGURE 4.10: (A) The two halves of the bubble. (B) The results of the bubble
volume in each frame.

• Increasing the time interval. In practice, the bubble displacement is very small in 1 ms,
especially, for the bubbles in high viscous liquid. If the bubble movement is less than
the uncertainty of the bubble interface detection, ∆s is inaccurate. In present study, the
bubble should move more than 7 pixels on the images, which can be considered as a
validate displacement.

The uncertainty of estimating the bubble velocity are attributed to the uncertainty of the
bubble interface detection, i.e.,

∆Ububble/Ububble < ±2.4% (4.15)

4.4 Summary of experimental data range

The main parameters for the experiments are shown in Table. 4.5. The table shows the ranges
of the experimental data. The precise values will be given in the next chapters.

TABLE 4.5: Summary of parameters in the experiments.

Fluids : Water-glycerol solution, vol% = [95%,90%,80%,70%,60%]
Gas : Nitrogen

Dupper
in (mm) : 15.00 to 32.30

Dlower
in (mm) : 16.40

ε : 0.69 to 1.72
Bubble volume (mm3): 1322 to 6231
Bubble velocity (m/s): 0.026 to 0.161
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4.5 Chapter conclusion

The experimental test bench has been successfully built up at the CETHIL laboratory. The test
section can adapt to different ratios of the expansion and contraction. A high speed camera
successfully capture the bubble motion through the singularity. The following conclusions
can be drawn as follow:

• The experimental apparatus has been proved to be effective for the present study. The
bubble motion can be captured in the test section.

• The glycerol solutions are made in the laboratory. The volume percentages have rela-
tively large uncertainties. Whereas, the measurements of the properties of the solutions
do not depend on the volume percentages. Therefore, the fluid properties can be ob-
tained accurately.

• The self-designed post-processing algorithm can detect the bubble interface in the raw
images. The bubble shape is then corrected by the optical correction algorithm. A
similar method is also applied to the tube wall detection. Other data, such as bubble
volume, bubble rising velocity, can be obtained.
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Chapter 5

Bubble rising in straight tube

In this chapter, we present the results of the simulation of the bubble rising in a straight tube.
The previous chapters have presented the numerical method and described the experimental
setup. This chapter focuses on the Taylor bubble rising in the straight tube. The purpose is to
validate the numerical model and also verify the experimental data.

The chapter will be presented as follows. First of all, a brief introduction about the config-
uration of the simulation model is shown. A parametric study of the model will be presented.
Then, the simulation results will be compared to the experimental data from the test bench
and also to those from the literature.

5.1 Model description

The simulation is performed on the cylindrical coordinates. The initial shape of the Taylor
bubble is a rectangle body with a semi-circular nose (Fig. 5.1). The radius of the circle is r0.
The distance from bubble bottom to the bottom of the calculation domain is 4r0. This distance
minimizes the effects of the bottom on the bubble. r0 is the initial bubble head radius which
equals to R− λ, where λ is the film thickness which is calculated by equation (2.48). The film
thickness is unknown before the simulation. The value can be set randomly. The final value
will converge to a fixed value for a fixed group of parameters. In other words, the bubble
terminal state is independent of the initial film thickness. We found that a good prediction
of the film thickness will make the bubble reach the terminal state faster. Therefore, we use
equation (2.48) to predict the film thickness. The length of the calculation domain size is L.
Unless indicated otherwise, the domain length was given by L = 8D. This length was chosen
to be sufficiently long so that the bubble could be fully developed [26]. And, the bubble
initial length is l0. The boundary condition on the center is axi-symmetry. The upper and
lower walls explicitly impose the Dirichlet condition (u = 0, v = 0). The side wall is also the
no-slip boundary condition (u = 0, v = 0).

All the quantities are non-dimensional for the simulations. The characteristic length is
the tube diameter (D). Therefore, all the lengths are normalized with respect to D. The
characteristic velocity Uo is

√
gD. The definition of the dimensionless numbers are shown

in equation (2.28). The continuous phase in the present case is the liquid phase. And, the
disperse phase is the gas phase. The subscripts C and D in equation (2.28) change to l and g.



70 Chapter 5. Bubble rising in straight tube

8Do

Do/2

r0

l0

4r0

u=v=0

u=v=0

u=v=0

Gravity

Taylor bubble

z
r

Axes of 
rotational
sysmmetry

z0

zh

FIGURE 5.1: Initial configuration for the simulation.

The governing equations (3.4) can be written as

∇̄ · Ū = 0 (5.1)

ρ̄
∂Ū

∂t̄
+ ρ̄(Ū · ∇̄)Ū =

1

Nf
∇̄ · (µ̄(∇̄Ū + ∇̄ŪT ))− ∇̄p̄+ ρ̄ḡ +

1

Eo
κδsn (5.2)

where Nf is the inverse viscosity number (Nf =
ρl
√
gD3

µl
), Eo is Eötvös number (Eo = ρlgD

2

σ ).
The only body force is the gravity. The g indicates the direction of the gravity.

5.2 Sensitivity analysis

5.2.1 Mesh independency analysis

The adaptive mesh is applied in the present simulation. Chapter 3 has tested the performance
of the AMR. The maximum level difference between the coarsest mesh and the finest meshes
is 3. Here, we carried out 3 tests using the adaptive mesh. The parameters are shown in Table
5.1. The physical parameters are the same for 3 test cases (Eo = 100, Nf = 100). The initial
bubble length is 4r0.
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The results are show in Fig. 5.2. We choose the bubble nose as the reference point. The
bubble shape can be drawn in the same figure. The zh is the location of the bubble nose. There
are small differences of the bubble shape. For bubble nose shapes, it is difficult to observe the
differences. Therefore, Fig. 5.2(A) shows the bubble tail shape. The M2 and M3 are almost
the same. The bubble in M1 is slightly short than the others. A velocity profile comparison is
shown in Fig. 5.2(B). The profiles is at z∗ = (zh−z)/D = −1.54. The average velocities can be
obtained form the profiles. The M3 is the finest mesh. Therefore, the average velocity of M3
can be regarded as the reference value. The relative error of M1 and M2 is -7.4% and -1.8%
respectively. Considering the computational time, we choose M2 for the other simulations.
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FIGURE 5.2: (A) Bubble tail shapes for different meshes. (B) Velocity profile in
different meshes.

5.2.2 Effects of initial bubble lengths

The terminal velocity of the Taylor bubble is independent of the bubble length [118]. This
conclusion is obtained from the experimental study. Here, we carried out 3 tests to confirm
this conclusion. The physical parameters are the same for these 3 cases: Eo = 100, Nf = 100.
The initial bubble lengths are 4r0, 5r0, and 6r0. The dimensionless bubble nose velocities
are the same. The difference can be observed at the bubble tail (Fig. 5.3). The tail velocities
oscillate and finally reach the steady state. The tail velocity of the longer bubble (l0 = 6) takes
longer time to stabilize. The initial film thicknesses for the 3 cases are the same. The bubble

TABLE 5.1: Mesh parameters.

Mesh Coarsest Finest
M1 R/16 R/128
M2 R/32 R/256
M3 R/64 R/512
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evolves to a new shape according to the forces acting on it. And, interface waves develop
from the nose of the bubble to its tail. The longer bubble has a long liquid film which takes
more time to develop to the stable liquid film. Finally, the velocities converge to the terminal
velocity. The observation on the bubble shapes shows that the nose, tail, and film thickness
are the same.

The simulation results confirm that the initial bubble length only affects the transient be-
havior of the bubble. The initial bubble lengths dose not influence of the bubble terminal
state.
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FIGURE 5.3: Tail velocities with different initial bubble lengths.

5.2.3 Effects of density ratios

The density difference creates the buoyancy force which is the driven force of the bubble
rising. Here, we carried out a few simulations to test the effects of density ratios on the
Taylor bubble. The density ratios range from 10 to 1000. In the 5 tests, other parameters
such as viscosity ratio (rµ), Eo number, and inverse viscosity number (Nf ) remain the same,
i.e. rµ = 100, Eo = 50, and Nf = 59.4. The terminal tail shapes are shown in Fig. 5.4(A).
Decreasing the density ratio, the bubble tail becomes elliptic. The differences of the shape can
hardly be observed if the density ratio is greater than 50. Figure 5.4(B) shows the terminal
velocities at different density ratios. The terminal velocities decreases abruptly if the density
ratio is less than 100.

The variations of velocities from the beginning of the simulation are shown in Fig 5.5. The
bubble velocities oscillate at the beginning stage. In the present test case, the nose velocity
becomes stable when t∗ is greater than 6.5 (Fig 5.5(A)). And, the tail velocities need more
time to become stable (t∗ > 9) (Fig 5.5(B)). The tendency of the velocities development is
independent of the density ratio.
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The observation of the bubble shape concludes that the density ratio has a minimal effect
on the bubble shape. The similar results are also found by Kang, Quan, and Lou [53]. The
density ratios have strong effects on bubble terminal velocities, especially for cases where
the density ratios are less than 100. We have tested the density ratio equals to 10000, but the
bubble includes some unphysical filament. The large density jump between the two phases
creates numerical oscillations and produces incorrect results.
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FIGURE 5.4: (A) Effect of density ratios on bubble tail shapes. (B) Effect of
density ratios on the bubble terminal velocities.
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FIGURE 5.5: (A) Effect of density ratios on bubble nose velocities. (B) Effect of
density ratios on bubble tail velocities.
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5.2.4 Effects of viscosity ratios

The viscosity ratios (rµ) ranges from 50 to 10000. 6 cases have been carried out for testing the
effects of viscosity ratios. Other parameters remain the same, i.e. rρ = 1000, Eo = 50, and
Nf = 59.4. The bubble shapes are shown in Fig. 5.6(A). There are no significant changes on
the tail of bubbles as well as for the terminal velocities. They slightly increase with increasing
the viscosity ratios (5.6(B)). Kang, Quan, and Lou [53] and Lu and Prosperetti [63] have found
similar results. Kang, Quan, and Lou [53] found that the selected viscosity ratios lead to
small variation in dimensionless numbers (Eo and Nf ), which gives minimal effects on the
bubble dynamics. In the present study, we keep the same Eo and Nf numbers for all the test
cases. The only variable is the viscosity ratio. The results, both shapes and terminal velocities,
appear to be very similar. Therefore, we can conclude that the viscosity ratio has minor effects
of the bubble motion.
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FIGURE 5.6: (A) Effect of viscosity ratios on bubble tail shapes. (B) Effect of
viscosity ratios on the bubble terminal velocities.

5.2.5 Effects of Eo number

As written in equation (2.28), the Eötvös number (Eo = ρlgD
2/σ) is the combination of the

buoyancy force and the surface tension force. Increasing the Eo number, the surface tension
force will be reduced, and the buoyancy force will be increased. Therefore, the rising velocity
of the bubble increase with increasing the Eo number. The simulation conditions remain the
same except for the Eo numbers. The Eo numbers for 6 test cases are 20, 40, 60, 80, 100, and
150. TheNf numbers are 100 for all the cases. The terminal shapes of the bubble are shown in
Fig. 5.7. The bubble head is almost the same for all the test cases. There are small differences
for Eo = 20, for which the bubble head has a larger radius. The shape differences can be
distinguished at the tail of the bubbles. For a fixed Nf number (Nf = 100), the bubble tail
changes from the convex shape to the concave shape with increasing the Eo number. The
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FIGURE 5.7: (A) Effect of viscosity ratios on bubble tail shapes. (B) Effect of
viscosity ratios on the bubble terminal velocities.

critical Eo in the present cases with a flat bottom is around 40. Kang, Quan, and Lou [53]
tested the Eo number up to 304 and obtained a skirted tail shape.

5.2.6 Summary

A few variables has been tested in sensitivity analysis. The conclusions can be drawn:

• Mesh: Considering the computational load and the accuracy, the mesh M2 is suitable
for carrying out the simulation of the Taylor bubble.

• Initial bubble length: It only affects the transient behavior of the bubble. an independent
value of the bubble terminal state.

• Density ratio: It has minor effects on the bubble terminal velocity when it is larger than
100. The density ratio is set to rρ = 1000 in the remainder of this work.

• Viscosity ratio: It has minor effects on the bubble terminal velocity and the bubble
shape. Its effect can be ignored. The viscosity ratio is set to rµ = 100 in the remain-
der of this work.

• Eo number: It has strong effects on the bubble tail shape.
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5.3 Comparison with experiments

5.3.1 Shape comparison

The bubble shape in the straight tube is defined by the liquid properties. Here, we compare
the shape of the bubbles with those obtained from the simulations. Figures 5.8 to 5.12 show
the terminal shape of the bubbles for different glycerol-water solutions. The properties are
presented in terms of the dimensionless numbers (Eo and Mo). The bubble shapes obtained
from the experimental tests are shown on the right of each figure, which are the original fig-
ures from the high speed camera. The simulation results are shown on the left of each figure.
Both numerical and experimental figures are rescaled to the same dimension for comparison.
z0 is the reference point, which is the end of the lower tube.

TABLE 5.2: Dimensionless numbers of the Taylor bubble in the tube with Din =
16.40 mm.

Solution Eo Nf Mo log(Mo)

W-G 95% 49.71 15.14 2.34 0.36
W-G 90% 49.10 27.40 0.21 -0.68
W-G 80% 47.52 81.91 0.0024 -2.62
W-G 70% 41.86 134.93 0.00022 -3.65
W-G 60% 40.55 230.90 0.000023 -4.63

The general side by side shape comparisons of the bubble are shown in Fig. 5.8 to 5.12.
The percentage of the W-G solution changes from 95% to 60%. The Eo number changes from
49.7 to 40.55. The bubble has an oblate nose and tail shape (Fig. 5.8 and 5.9). Decreasing
the glycerol percentage in the liquid, the bubble tail becomes flat (Fig. 5.10) or concave (Fig.
5.11). The diluted solution leads to decreasing the viscosity, i.e. increasing the Nf number.
Whereas, the Eo number does not change too much with the changing of glycerol percentage.
Therefore, the viscosity effects mainly leads to the changing of the bubble tail shape.

The bubble lengths are slightly different in each Fig. 5.8 to 5.12. The difference is due to
the error of estimating the bubble volumes. In order to verify the simulation could predict
the bubble shape, figure 5.13 shows the bubble nose and tail shape in W-G 95% and W-G 60%.
The points indicate the experimental data extracted from the raw images. The lines show the
simulation results.

The observations on the bubbles lead to two general conclusions:

• The viscous force decreases with diluting the W-G solution. The nose of the bubbles are
oblate spheroids shapes. The tail shapes change from oblate to concave, which seems to
exhibit a higher sensitivity than the nose to the influence of viscous force. The surface
tension force slightly decreases with diluting the W-G solution, which has minor effect
on the bubble shape changing.

• The simulations show a good shape comparison with the experimental results. The
concave tail can hardly be observed in the experimental images. The simulation results
show more clear results of the tail shapes.
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5.3.2 Terminal velocity comparison

Terminal velocity of the bubble indicates the steady state of the bubble. In order to verify
that the simulation could predict the terminal velocity of the bubble. A few test cases have
been carried out based on the experimental results of White and Beardmore [118]. Their ex-
periments include several gas-liquid systems which correspond to a wide range of Morton
numbers. Five different groups of the experimental data have been chosen for the simula-
tion. Reducing the Morton numbers, the influence of the viscous forces on the Taylor bubble
velocity increase. The curves for the Morton number less than 4.7 × 10−5 would merge into a
single line, which is typical for very dilute aqueous solutions. The flow regimes would lead
to turbulent flow [10]. However, we choose the bubble in the laminar regime to simulate.

On the other hand, there are many correlations to predict the terminal velocity of the
Taylor bubble. A review of these correlations can be found in Section 2.3.1. Three correlations
has been chosen to compare with the numerical and experimental results. The first correlation
is proposed by Wallis [116]. And, the second one is proposed by Viana et al. [115], which have
already taken the data of White and Beardmore [118] into account. The third one is proposed
by Hayashi, Kurimoto, and Tomiyama [44].

The results are shown in Fig. 5.14. Each Morton number corresponds to 3 curves which
are predicted by different correlations. The experimental data from [118] and corresponding
simulation data are added to Fig. 5.14 for comparison purposes.

The results show that the best correlation for the present simulations is that of Viana et al.
[115]. The mean relative error (MRE) is -13.03%. The correlation of Wallis [116] deviates from
the simulation results more than -19% (MRE). The terminal velocity deviates from all three
correlations where Eo number less than 10. The reason is that the low value of the bubble
velocities are much more sensitive to small numerical errors. For the bubbles at large Eo
number (Eo > 10), the simulation results agree very well with the correlation predictions.

We compare our experimental results with the correlations of Viana et al. [115] and Hayashi,
Kurimoto, and Tomiyama [44]. In the present experiments, the bubble nose of velocity (U∗h)
close to the outlet of the lower tube is considered as the bubble terminal velocity (VT ). The
length for stabilizing the bubble is larger than 70D. Therefore, it can reasonably believe that
the bubble reaches the terminal state. Figure 5.15(A) shows errors between the experimental
data and the correlations. The mean relative error of both correlations are less than 5%. The
Eo numbers for water-glycerol solutions in the present study is between 40 and 50. In this
region, the correlation could predict the terminal velocity very well.

We simulated the bubbles in the present experiments. Figure. 5.15(B) shows the errors
of the experimental results compare to the numerical results. The mean relative error is less
than 1%.

5.3.3 Liquid film comparison

The wall effects can not be ignored when the bubble rises in the straight tubes. The terminal
velocity and the film thickness of the bubbles are affected by the wall. Obviously, the wall
effects depends on the bubble volume. We define here the spherical equivalent diameter (Ds)
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to represent the size of the bubbles. It can be written as follows:

Ds = 2Rs = 2(3/4πV )1/3 (5.3)

where V is the actual bubble volume. Rs is the spherical equivalent radius. The ratio between
the spherical equivalent diameter (Ds) and tube diameter (D) indicates the proportion of
the tube occupied by the bubble. If Ds/D > 1, the bubble can be considered as the long
bubble rising in relatively small tubes [41]. The bubble behavior is expected to be somewhat
independent of the bubble volume.

In the present study, we normalize the bubble volumes to the spherical equivalent di-
ameters by equation (5.3). The film thickness (λ) is obtained from experimental data. It is
simply considered as the minimum distance from the bubble interface to the tube wall. Fig-
ure 5.16 shows the film thickness in different water-glycerol solutions. The results have been
compared with the correlations presented in Section 2.3.1. The results show that the film
thickness increases ifDs/D is less than 1. The reason is that the bubbles in such condition has
relatively small volume. The bubble shape is close to a spherical shape. And, the liquid film
does not fully develop. Therefore, the film thickness for the Taylor bubble can be obtained
only if the Ds/D is larger than 1.

The present experimental data points compared with existing correlations are summa-
rized in Table 5.3. The mean relative errors and the mean absolute errors are shown. The best
correlation is the one proposed by Llewellin et al. [61]. The mean absolute value is 9.3%. The
mean relative value is 7.7%. It seems that other correlations over estimate the film thickness.
For bubbles in diluted water-glycerol liquids, the correlation proposed by Lel et al. [59] shows
a better estimation.

The numerical simulation results are also added in Table 5.3. The simulations are not
performed for all the data points in the experimental. We have chose only one data point
for each water-glycerol solution. The results show that the simulations accurately predict the
liquid film thickness.



5.3. Comparison with experiments 79

TABLE 5.3: Film thickness data points in different water-glycerol solutions
compared to correlations from literature.

log(Mo) Nusselt Brown Lel et al. Kang et al. Llewellin et al. Simulation

0.37
MRE(%) 12.52 22.13 32.52 16.05 0.79 1.21
MAE(%) 12.52 22.13 32.52 16.05 4.22 5.12

-0.68
MRE(%) 10.04 11.90 17.46 8.19 1.27 2.34
MAE(%) 10.04 11.90 17.46 8.23 4.26 5.13

-2.62
MRE(%) 23.00 17.59 17.15 20.90 15.33 18.22
MAE(%) 23.00 17.59 17.15 20.90 15.33 18.22

-3.65
MRE(%) 17.12 10.92 8.48 18.19 10.03 13.44
MAE(%) 17.12 11.14 9.10 18.19 10.37 15.60

-4.63
MRE(%) 17.15 11.22 7.68 22.54 11.19 14.51
MAE(%) 17.29 12.34 9.84 22.54 12.32 11.78
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FIGURE 5.8: Comparison of the bubble shape.
(W-G 95%, Eo = 49.7, log(Mo) = 0.37)
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FIGURE 5.9: Comparison of the bubble shape.
(W-G 90%, Eo = 49.1, log(Mo) = -0.68)
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FIGURE 5.10: Comparison of the bubble shape.
(W-G 80%, Eo = 47.6, log(Mo) = -2.62)
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FIGURE 5.11: Comparison of the bubble shape.
(W-G 70%, Eo = 41.9, log(Mo) = -3.65)
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FIGURE 5.12: Comparison of the bubble shape.
((W-G 60%, Eo = 40.55, log(Mo) = -4.63)
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FIGURE 5.16: Comparison of film thickness for different Ds/D and water-
glycerol solutions.



5.3. Comparison with experiments 85

5.3.4 Velocity field comparison

We reproduced one of the experimental cases reported in [10], for a system with stagnant
liquid, Mo of 4.31 × 10−2 and Nf of 111. In Fig. 5.17, the resulting numerical velocity fields
and streamlines are presented. The steady state criteria for the rising bubble is the variation of
the velocity of bubble nose. When this velocity changes less than 1% compared to the velocity
at the previous time step, we consider the bubble reaches its steady state (VT = U∗ = U∗h).
The dimensionless time (t∗ = t

√
g/D) of the bubble in Fig. 5.17 equals 10, which already

satisfied the steady state criteria. We subtract the terminal velocity of the bubble from the
whole flow field. This procedure facilitates to plot the streamlines. Fig. 5.18 and Fig. 5.19
show dimensionless axial velocity profiles above the bubble nose and wake regions. The four
locations of the velocity profiles are also shown in Fig. 5.17. Fig. 5.18 and 5.19 shows our
simulation data compare well with the experimental data (the points) of [71] and [72]. The
numerical results (the dash line) of [10] are also added in Fig. 5.18 and 5.19, which show a
close agreement with our simulation data (solid line).
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FIGURE 5.17: Numerical velocity fields and streamlines for a case with Mo =
4.31× 10−2 and Nf = 111.
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5.4 Chapter conclusion

The Taylor bubble in straight tubes has been investigated. The sensitive analysis confirmed
the parameters used in the simulation. The experimental tests allow to visualize the Taylor
bubbles in straight tube (D = 16.4 mm). The different bubble shapes can be obtained from
different water-glycerol solutions. A few conclusions can be drawn:

• The bubble tail shape are sensitive to the mesh size. The bubble terminal state is inde-
pendent of the bubble length. Whereas, the bubble transitional state depends on the
bubble length.
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• The density and viscosity ratios have minor effects on the bubble shape. If density ratio
is less than 100, it will reduce the rising velocity of the bubble. The viscosity ratio effects
on the bubble terminal velocity can be ignored.

• The simulation can predict the bubble terminal shapes. The comparisons of the bubble
shape shows that the simulation predicts the bubble nose and tail shapes in different
water-glycerol solutions.

• The simulation predicts the bubble terminal velocities accurately. The correlation pro-
posed by Viana et al. [115] has the best agreement of the terminal velocities with both
numerical and experimental results.

• If the bubble equivalent diameter is larger than 1, the film thickness becomes to a
constant. The correlation of predicting the bubble film thickness which proposed by
Llewellin et al. [61] has the best agreement to the present experimental data. The simu-
lation can also predict the bubble film thickness.

• The simulation predict the velocity field around the Taylor bubble, which has good
agreement with the data present in the literature.
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Chapter 6

Bubble rising through the expansion

The objective of this chapter is to obtain a better understanding of the behavior of the Taylor
bubbles when they rise through the expansion. The numerical model used in Chapter 5 is
extended for simulating the bubble rising through expansions. Experimental results have
been obtained for different fluid properties and expansion ratios. The experimental data is
used to validate the simulations.

Several bubble characteristics will be discussed in this chapter. First, we analyse the bub-
ble rising through the expansion without breaking up. Then, the bubble break up in the
expansion will be investigated.

6.1 Model description

6.1.1 Simulations

The numerical model introduced in Chapter 5 was used to simulate the bubble rising through
expansions. The configuration is shown in Fig. 6.1. The bubble initial configuration is the
same as that of the model showed in Fig. 5.1. Here, we extend the simulation region to
a larger diameter. The diameters of the lower and upper tubes are Do and De, respectively.
Thus, the expansion ratio is ε = De/Do. The length of the upper tube is 8Do, so that the bubble
will have sufficient length to stabilize. The connection of the two tubes is the horizontal wall,
which makes the connection become a sudden expansion. The boundary conditions for the
tube walls are the Dirichlet conditions (u = 0, v = 0).

The governing equations are again given by Eq. 5.2. The characteristic length is now the
lower tube diameter (Do). All the lengths are normalized with respect to Do.

6.1.2 Experiments

The experimental setup was discussed in Chapter 4. The expansion ratios for the experimen-
tal tests are listed in Table 6.1. Five different expansion ratios have been tested, which range
from 1.12 to 1.72. The inner diameter of the lower tube (Dlower

in ) corresponds to Do in the
simulation. And, the inner diameter of the upper tube (Dupper

in ) corresponds to De.
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FIGURE 6.1: Initial configuration for the simulation.

TABLE 6.1: Diameters of the tubes.

Index Din (mm) Dout (mm) ε = Dupper
in /Dlower

in

Lower tube
1 16.40 20.00

Upper tube
1 27.80 32.30 1.72
2 23.30 28.00 1.44
3 21.40 26.00 1.33
4 20.00 24.00 1.24
5 18.10 21.90 1.12

6.1.3 Illustration of the bubble features

An overview of the hydrodynamic features described in the present chapter are illustrated
in Fig. 6.2. The center of mass is also the geometric center due to the constant density inside
the bubble. The figure shows the locations of the bubble tail center and bubble tail in the z
direction. For bubbles with non-concave tail shapes, these two locations coincide. The bubble
length lb is defined as the distance from bubble head to bubble tail, ∆h is the distance from the
expansion to the bubble head in the z direction and δn is the minimum radius of the bubble
body.



6.2. Results 91

Δh

Center of mass

ztail
ztail center

zhead

ze
lb

δn

FIGURE 6.2: Illustration of the bubble features described in this study.

6.2 Results

We will first analyze the results for the conditions in which the bubble remains intact when
passing through the expansion. Then, we will describe the results for the cases with bubble
break-up.

6.2.1 Bubble without break-up in the expansion

Comparison of experiments and simulations

The bubble shape deformations in the expansions is shown in Fig. 6.3 to 6.7. The expansion
ratio is the same (ε = 1.24). All the bubbles remain intact after passing through the expansion.
The experimental images have been compared to the simulation results. The first row in each
figure is the experimental results. The second row is the simulation results. When the bubble
head reaches the expansion, the time is set to be the starting time (t = 0.0 s). Then, the bubble
rises through the expansion.

Figure 6.3 and 6.4 show the bubble rising in the W-G 95% and W-G 90% mixtures. The
bubbles have a round head and tail shape before entering the expansion. A cone tail shape
can be observed when the bubble passes through the expansion (t = 0.32 s). Figures 6.5 to
6.7 show the bubble rising in the diluted solutions (W-G 80%, W-G 70%, W-G 60%). The
tail shapes are flat before entering the expansion. A concave shape can be observed at the
tail of the bubbles (t = 0.32 s). In the present tests, two distinctive bubble tail shapes can be
observed. When decreasing the viscosity, the bubble tail shape changes from the cone shape
to the concave shape.
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FIGURE 6.3: Experimental and numerical results of the bubble rising through
the expansion. (W-G 95%, Eo = 49.7, log(Mo) = 0.37, ε = 1.24)
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FIGURE 6.4: Experimental and numerical results of the bubble rising through
the expansion. (W-G 90%, Eo = 49.2, log(Mo) = -0.68, ε = 1.24)
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FIGURE 6.5: Experimental and numerical results of the bubble rising through
the expansion. (W-G 80%, Eo = 47.5, log(Mo) = -2.62, ε = 1.24)
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FIGURE 6.6: Experimental and numerical results of the bubble rising through
the expansion. (W-G 70%, Eo = 41.9, log(Mo) = -3.65, ε = 1.24)
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FIGURE 6.7: Experimental and numerical results of the bubble rising through
the expansion. (W-G 60%, Eo = 40.6, log(Mo) = -4.63, ε = 1.24)

Velocity variation

The bubble reaches the steady state before entering the expansion. The bubble velocity will
be changed due to the perturbation created by the expansion. The bubble will reach a new
steady state in the upper tube. The analysis of the bubble velocity begins with the two termi-
nal velocities.

At this point, we need to adapt the aforementioned dimensionless groups for the straight
pipe to the expansion problem due to the change of diameter. The pipe diameter Do at the
lower end of the pipe expands to a new diameter De. The local Eo and Fr numbers that
include the diameter will change correspondingly. Here, we choose Do as the reference di-
ameter to calculate the dimensionless numbers before the bubble moves through the expan-
sion, i.e. Eoo = ρlgD

2
o/σ and Fro = VT /

√
gDo. The Eoe and Fre numbers, characterizing the

bubble flow after the expansion, are obtained by substituting De into the expressions. In all
simulations, the bubble has reached the steady rising velocity before entering the expansion.
Some time after the bubble has passed through the expansion, it reaches a new steady state.
Figure 6.8 shows the transition of the Eo and Fr numbers between the two steady states for
expansion ratios 1.1, 1.2 and 1.3, and for the two cases with Eoo equal to 50 and 100, respec-
tively. The Morton number remains the same, Mo = 1× 10−2. As expected, the figure shows
a very good agreement between the simulations and the correlation by Viana et al. [115]. Both
steady state regimes fall in the conventional scenario of Taylor bubble rising in straight pipes.
The remaining of this section will focus on the analysis of the transient state of the Taylor
bubble passing through the expansion.
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One important feature reflecting the transient state of the bubble in the expansion is its
velocity. We adopt a dimensionless velocity defined as U∗ = U/

√
gDo with U = ||u||. In

order to show the velocity changes, we choose four typical locations for observation: the tip
of the head, the center of the tail, the tip of the tail and the center of mass (Fig. 6.2). The
typical evolution of the velocity at these four locations are shown in Fig. 6.9 as a function of
the normalized dimensionless time (t∗). The time of the bubble head reaching the expansion
is considered as the starting time (t∗ = 0). The two vertical dashed lines mark the instants of
the bubble nose and tail reach the expansion. We see that the head of the bubble accelerates
as soon as it passes through the expansion, while the velocity of the tail of the bubble is still
unchanged. The bubble head reaches quickly the new terminal velocity (at t∗ ' 1.5) and then
remains nearly constant. The tail of the bubble, on the other hand, accelerates with a delay but
reaches a peak velocity much higher than the new terminal velocity. As a result, the bubble
length decreases when the tail velocity catches up with the head velocity (for t∗ > 8.0).

A convex tail shape is formed at t∗ ' 2.5. The oscillations are clearly visible on the ve-
locities of the bubble tail, but not so much on the center of mass and the head velocity. It is
therefore clear that this phenomenon is related to a perturbation of the tail of the bubble, as
also both velocities at this location fluctuate with opposite phases.

The established literature on Taylor bubble rising in straight pipes has shown that the
length of the bubble has a minor effect on the terminal velocity [118]. Therefore, in the di-
mensional analysis concerning straight pipes the dimensionless groups do not include the
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length of the bubble. However, when the bubble goes through an expansion, the length of
bubble is no longer a parameter that can be ignored. A longer bubble will be affected by the
expansion over a longer time period. Figure 6.10 shows the bubble velocity of the center of
mass for different initial bubble lengths. It is observed that both the peak value of the velocity
and the time to obtain a steady state increases with the bubble length.
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FIGURE 6.10: Evolution of the mass center velocity for different values of the
initial bubble length. The dashed lines mark the locations of the bubble entering

and leaving the expansion. (Mo = 1× 10−2, Eo = 100, ε = 1.1)

Figure 6.11 shows the effect of the expansion ratio and the Eötvös number on the maxi-
mum value of the center of mass velocity. As expected, the velocity of the bubbles in larger
expansion ratios changes more significantly than in lower expansion ratios. A higher expan-
sion ratio induces a stronger perturbation on the bubble. The maximum velocity increases
also for larger values of the Eo number. Bubbles with higher Eo number are less subject to
the stabilizing effect of surface tension and are therefore more vulnerable to the perturbation
induced by the expansion.

Bubble length variation

Figure 6.12 shows the bubble length variation (Mo=1×10−2, Eo=100) when it passes through
different expansions. The variation can be divided into three stages. The first stage is an
elongation in the z direction. The bubble length slightly increases due to the expansion of
the head and the shrinking of the body in the radial direction. The concave bubble neck
region forms gradually during this stage. In the second stage, we see the bubble shrinking
in the z direction. The bubble moves through the expansion in a short period of time as
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FIGURE 6.11: Maximum value of the bubble mass center velocity as a function
of the Eo number for different expansion ratios (Mo=1× 10−2).

a result of the increased velocity in the middle of the bubble. Since the bubble radius is
larger after the expansion and the bubble volume remains unchanged, the bubble length is
rapidly decreased. It is noted that the concave shape at the bottom of the bubble is relatively
prominent. From a physical point of view, the flow recirculation behind the bubble tail is
enhanced due to the increasing velocity in the liquid film. The liquid in the recirculation
area pushes the bottom of the bubble inward. When the bubble tail leaves the expansion, the
recirculation suddenly decreased due to the enlarged flow area at the back of the bubble. The
unstable recirculation flow introduces oscillations at the tail of the bubble. As a result, in the
third stage, the oscillation of the bubble length is mainly due to the shape change at the tail
of the bubble. When all the velocities at different parts of the bubble become stabilized, the
length of the bubble remains constant.

Transition time of the bubble in the expansion

In order to determine the transition time of a stabilized Taylor bubble in a straight pipe,
it would be sufficient to know the terminal velocity and the length of the pipe. But when
the pipe contains a sudden expansion, we need also to take into account the evolution of
the bubble velocity near the expansion. Since the terminal velocities before and after the
expansion are perfectly known (and equal to those observed in straight pipes), we only need
to take into account the delay introduced by the singularity. This is most easily done by
introducing a time shift (∆ts), defined as the difference of the actual transition time and that
obtained without taking into account the singularity. Consider the example in which the
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length of the pipe below and above the expansion is defined by respectively lo and le (Fig.
6.13). A simple calculation of the regular transition time, not accounting for the singularity,
would be given by lo/Uo + le/Ue, where Uo and Ue are the initial and final terminal velocities
of the bubble. The actual transition time will then be given by:

∆t =
lo
Uo

+
le
Ue

+ ∆ts

where the time shift ∆ts is added to account for the transition in the singularity. From the
results in Fig. 6.9, it is easily concluded that the time shift will be positive (a time delay) as
the bubble head velocity is initially below the new terminal velocity. For a fixed distance,
the bubble spends more time passing through the expansion than the results simply obtained
without considering the effect of the expansion.

Figure 6.14 shows the time shift for different expansion ratios and Eo numbers. The bub-
ble spends more time in larger expansions. The increase of the Nf number leads to a higher
terminal velocity, but it happens for Nf < 200 [53]. In present tests, the Nf numbers are
in this range. Therefore, the difference of the two terminal velocities increases in larger ex-
pansions. The bubble takes more time to expand in the radial direction to accommodate the
larger flow channel. Another trend in Fig. 6.14 shows the shift time decreasing at larger Eo
number indicating that the surface tension forces become less significant comparing with the
gravitational forces. The deformation of the bubble interface is easier (consumes less energy
to deform), thus ∆ts reduces.
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Necking

When the bubble goes through the expansion, a neck region will appear which is not ob-
served in straight pipes. We define the bubble neck radius δn as the minimum cross-sectional
radius in the bubble neck region. Figure 6.15 illustrates for different expansion ratios the
evolution of the bubble neck radius when the bubble passes through the expansion. Images
of the bubble shape when the minimum bubble neck radius is reached are also added. The
formation of the bubble neck appears to be the result of the flow pattern in the vicinity of the
expansion. When the bubble moves upward and pushes away the liquid above the bubble,
a falling liquid film is created that drains the fluid to the region below the bubble. This phe-
nomenon also exists for bubbles in straight pipes, but in the case of an expansion the liquid
film encounters a forward facing step forcing the flow towards the bubble. The liquid-gas
interface is pushed inwards, thereby creating the concave neck region of the bubble. When
the expansion ratio increases, the neck radius is smaller. Because the falling liquid film en-
counters a larger forward facing step.

6.2.2 Bubble with break-up in the expansion

Break-up patterns

Bubble break-up in the expansion can be observed both in the numerical and experimental
tests. Here, we define three patterns of the bubble breaking up in the expansion.

• Necking: the bubble will be pinched off in the radial direction. The necking effect is
observed on every bubble passing the expansion, resulting in a reduction of δh. If the
minimum δh is 0, the bubble will be pinched off into two bubbles. A typical necking
break-up can be seen in Fig. 6.16.
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• Penetration: the bubble tail retracts in the bubble body along the tube direction and
penetrates the bubble. A typical penetration can be seen in Fig. 6.17.

• Detachment: the downward flow stretches the bubble tail and small bubbles shed off
from the tip of the bubble tail. A typical detachment can be seen in Fig. 6.18.

Note that more than one of these break-up patterns can occur during the event of the
bubble passing through the expansion. For example, a bubble breaks up due to necking
process. It separates into two parts. Then, the leading bubble tail retracts and even penetrates
itself. Therefore, two break-up patterns are observed for the same bubble.
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FIGURE 6.16: Bubble break-up in the expansion (W-G 95%, ε = 1.72)
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FIGURE 6.17: Bubble break-up in the expansion (W-G 80%, ε = 1.72)

Break-up pattern map

A series of simulations are conducted to determine the break-up pattern map for different
expansion ratios. The expansion ratios (ε) range from 1.2 to 1.7. As explained in Section 6.2.1,
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FIGURE 6.18: Bubble break-up in the expansion (W-G 70%, ε = 1.72)

the Morton number is a dimensionless number which is independent of the tube diameter.
Therefore, two groups of simulations were carried out, each with a fixed value of the Morton
number of respectively log(Mo) = -2.62 and 0.37. The first group has the same Mo number
as the W-G 80% mixture. And the second group is similar to the W-G 95% mixture. In the
experimental tests, the bubble length is different for each bubble. But, in the simulations the
initial length of the bubble is fixed to 9ro.

The results are shown in Fig. 6.19. All three break up patterns are observed in Fig. 6.19(A).
There is a small region where the bubble remains intact (ε < 1.4, 20 ≤ Eo ≤ 40). For higher
values of the Eo number, but expansion ratios less than 1.4, small bubbles will be shed off at
the tail of the bubble. The detachment will not affect the bubble main body. When ε > 1.4 and
Eo ≤ 60, the bubble will break up by necking. For increasing Eo number, the recirculation
at the rear of the bubble becomes stronger. The bubble tail will penetrate the entire bubble
instead of cutting it in the middle.

Figure 6.19(B) shows the bubble break up pattern for log(Mo) = 0.37. The detachment is
not found in the present test region. The viscosity forces are relatively large, thus recirculation
at the rear of the bubble is not significant. Bubble penetration can be observed when Eo is
equal to 100. Overall, the dominant break-up pattern is necking.

6.3 Chapter conclusion

The Taylor bubble rising through the expansion has been investigated by means of experi-
ments and simulations. The following conclusions can be drawn:

• The bubble velocity increases in the expansion. The bubble head velocity quickly reaches
a new steady state. The bubble tail velocity shows strong oscillations, which disappear
rapidly.



104 Chapter 6. Bubble rising through the expansion

0 20 40 60 80 100
Eo

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E
xp

an
si

on
ra

ti
o

Intact
Necking
Penetration

Necking + Penetration
Detachment

(A) log(Mo) = -2.62

0 20 40 60 80 100
Eo

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E
xp

an
si

on
ra

ti
o

Intact
Necking
Penetration

Necking + Penetration
Detachment

(B) log(Mo) = 0.37

FIGURE 6.19: Bubble break-up regime map obtained by simulations.

• The time shift of the bubble in the expansion is positive. The bubble spends more time
passing through the expansion than the results simply obtained without considering
the effect of the expansion.

• The concave neck region always exists when the bubble passes the expansion. Increas-
ing the expansion ratio will lead to a reduction of the bubble neck radius.

• Three bubble break-up patterns (necking, penetration, detachment) are observed in the
experiments. A bubble break-up pattern map has been obtained from the numerical
simulations for log(Mo) = -2.62 and 0.37.
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Chapter 7

Bubble rising through contractions

In this chapter, we will discuss the bubble rising through contractions. The same numerical
model is used for this purpose as the model described in Chapter 6. The simulation results
are validated by experiments. First, we will discuss the bubble behaviors in the contraction.
Then, the bubble blocking phenomena will be analyzed.

7.1 Model description

7.1.1 Simulations

The configuration of the numerical model is shown in Fig. 7.1. The diameter of the lower and
upper tubes are Do and Dc, respectively. Thus, the contraction ratio is given by ε = Dc/Do.
The length of the upper tube is 8Do. The connection of the two tubes is the horizontal wall,
which makes the connection a sudden contraction. The boundary conditions for the tube
walls are Dirichlet conditions (u = 0, v = 0).

The description of the hydrodynamic features are similar to those defined in Chapter 6.
The location of the contraction in the z direction is zc. Other parameters are expressed in the
same form as in Fig. 6.2.

7.1.2 Experiments

The contraction ratios in the experiments are listed in Table 7.1. Three contraction ratios have
been tested, ranging from 0.93 to 0.69. The inner diameter of the lower tube (Dlower

in ) corre-
sponds to Do in the simulation. And, the inner diameter of upper tube (Dupper

in ) corresponds
to Dc. The contraction ratio (ε) is equal to Dc/De.

TABLE 7.1: Diameters of the tubes.

Index Din (mm) Dout (mm) ε = Dupper
in /Dlower

in

Lower tube
1 16.40 20.00

Upper tube
1 15.00 18.90 0.93
2 13.10 17.10 0.81
3 11.10 15.00 0.69
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FIGURE 7.1: Initial configuration for the simulation.

7.2 Result analysis

7.2.1 Comparison of experiments and simulations

The bubble shape deformation in the contractions are shown in Fig. 7.2 to 7.6. The first row
in each figure is the experimental data. The second row are the simulation results. A good
agreement is found between simulations and experiments for all cases. The figures show
the dynamic behavior of the bubbles passing through the contractions. When the bubble
head reaches the expansion, the time is set to be the starting time (t = 0.0 s). Unlike the
figures for the bubble passing through the expansion, we show also the bubble shape before
encountering the contraction.

Figures 7.2, 7.3 and 7.4 show the bubbles in the W-G 70% mixture rising through the
contractions with ε = 0.93, 0.81 and 0.69. The bubble has reached its terminal shape before
entering the contraction. When it encounters the contraction, the bubble nose is squeezed
into a smaller round shape to accommodate the diameter of the upper tube. The bubbles
pass through the contractions for ε = 0.93 and 0.81, but for ε = 0.69 the bubble is blocked
by the contraction. The conditions in which the bubble is blocked will be discussed in more
details in the following section.
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FIGURE 7.2: Experimental and numerical results of the bubble rising through a
contraction (W-G 70%, Eo = 41.9, log(Mo) = -3.65, ε = 0.93)
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FIGURE 7.3: Experimental and numerical results of the bubble rising through a
contraction (W-G 70%, Eo = 41.9, log(Mo) = -3.65, ε = 0.81)
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FIGURE 7.4: Experimental and numerical results of the bubble rising through
the contraction (W-G 70%, Eo = 41.9, log(Mo) = -3.65, ε = 0.69)

Figures 7.3, 7.5 and 7.6 show the bubble rising in the W-G 60%, W-G 70% and W-G 80%
mixtures. The contraction ratio ε is 0.81 for the 3 cases. For these cases, the bubble evolution
is very similar. A small difference can be observed for the bubble in the W-G 60% fluid. When
the bubble passes the contraction, capillary waves can be observed at the rear of the bubble.
For the cases W-G 70% and W-G 80%, an oval tail shape can be observed. In the next section,
a detailed discussion on the bubble velocity variation is presented based on the simulation
results.

7.2.2 Velocity variation

Similar to the discussion in Section 6.2.1, we can obtain two terminal velocities, in the lower
tube and in the upper tube. If the reference diameter is Do, the dimensionless numbers for
bubbles in the lower tube are Eoo = ρlgD

2
o/σ and Fro = VT /

√
gDo. Similarly, we obtain the
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FIGURE 7.5: Experimental and numerical results of the bubble rising through
the contraction (W-G 60%, Eo = 40.6, log(Mo) = -4.63, ε = 0.81)
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FIGURE 7.6: Experimental and numerical results of the bubble rising through
the contraction (W-G 80%, Eo = 47.5, log(Mo) = -2.62, ε = 0.81)
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Eoc = ρlgD
2
c/σ and Frc = VTc/

√
gDc as the dimensionless numbers for bubbles in the upper

tube. Both Fr numbers (Fro and Frc) can be predicted by correlations such as Viana et al. [115].
The transient state of the bubble in the contraction can be observed from the velocity vari-

ations. Similar to the definitions in Section 6.2.1, the dimensionless velocity U∗ = U/
√
gDo is

plotted at four locations of the bubble: the tip of the head, the center of the tail, the tip of the
tail and the center of mass. The evolution of the velocity at those four locations is shown in
Fig. 7.7 as a function of the normalized time to the contraction (t∗). We consider t∗ = 0 when
the bubble head reaches the contraction. The two vertical dashed lines mark the instants the
bubble nose and tail reach the contraction. The bubble head velocity begins to decelerate be-
fore reaching the contraction. This is simply due to the liquid ahead of the bubble blocked by
the contraction. For the tail velocities, they begin to oscillate at t∗ ≈ 0.5, and decelerate even
more than the velocity of the bubble head. These observations on the velocities may lead to
the conclusion that the contraction does not induce any oscillation of the bubble surface.

Furthermore, we want to investigate whether the bubble initial length affects the tran-
sient velocity of the bubble in the contraction. Figure 7.8 shows the evolution of the bubble
head and tail velocities for different values of the initial bubble length. The head velocity is
independent of the initial bubble length. The tail velocity follow the same trend, but slightly
shifted in time due to the different lengths of the bubbles.
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7.2.3 Bubble length variation

Figure 7.9 shows the bubble length variation (Mo = 1, Eo = 100) when it passes through the
contraction for different contraction ratios. The initial bubble length for these tests are fixed
at lo = 4ro. The variation can be divided into two stages. The first stage is reducing the
length in the z direction. The bubble head takes some time to accommodate to the smaller
diameter of the upper tube. The bubble will be squeezed in the z direction. Thus, the length
will be reduced. In the second stage, a new bubble head shape formed in the upper tube. The
bubble body continuously passes through the contraction. The bubble will be elongated in
the smaller tube. Therefore, the bubble length increases.

7.2.4 Transition time of the bubble in the contraction

This section is similar to Section 6.2.1. The purpose is to investigate the time shift due to the
effect of the contraction. Here, we define two lengths lo and lc which are the distances below
and above the contraction (Fig. 7.10(A)). A simple calculation of the transitional time, based
on the terminal velocities before and after the contraction, not accounting for the effect of
the singularity, would be given by lo/Uo + lc/Uc, where Uo and Uc are the bubble terminal
velocities in the upper and lower tubes respectively. The actual transition time will then be
given by:

∆t =
lo
Uo

+
lc
Uc

+ ∆ts
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FIGURE 7.9: Evolution of the bubble length in different contraction ratio. (Mo
= 1, Eo = 100)

where the time shift ∆ts is added to account for transition in the contraction. In the following,
the time shift ∆ts is calculated for the bubble head velocity.

Figure 7.11 shows the time shift for different contraction ratios and Eo numbers. The
values of the time shift are positive, which indicates that the contraction introduces a delay
on the time of the bubble passing through the contraction. Increasing the Eo number, the
time shifts in different contractions are reducing. The deformation of the bubble interfaces
are facilitated when the Eo number is increasing, thereby reducing ∆ts. The contraction ratio
has a strong influence on the time shift, in particular for smaller Eo numbers.

7.2.5 Bubble blocking

The bubble blocking phenomenon has been observed both in the experiments and simula-
tions. When the contraction ratio is reduced, the bubble will be blocked by the contraction.
We consider that the bubble is blocked by the contraction if the bubble head velocity reduces
to zero when the bubble reaches the contraction. The investigation in this section focuses on
the blocking phenomenon, but not on the bubble evolving after being blocked. In the exper-
iments, the blocked bubble continuous to evolve. After a few seconds, it may break-up into
small bubbles that pass through the contraction. This phenomenon may be due to the contact
of the bubble interface with the edges of the upper tube. Nevertheless, the bubble stops at
the contraction for at least a few seconds. In the simulation, the event of the bubble interface
in contact with the tube edge is not properly taken into account. Simulation of the bubble
deformation after blocking is therefore not pursued.
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FIGURE 7.11: Time shift due to the effects of the contractions. (Mo = 1× 10−2)

The direct reason of the bubble being blocked is that the bubble interface touches the
tube edges and prevents the liquids flow from ahead of the bubble to its rear. When the
bubble rises, there is always a passage way for liquid flow between the bubbles and the tube
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wall. The illustration of the passage way is shown in Fig. 7.10(B). Figure 7.12 and 7.13 show
this liquid passage way. At each moment, we can obtain one point which is the location of
minimal distance from the bubble interface to the side tube wall. The trajectory of this point
is the line in Fig. 7.12 and 7.13.

Figure 7.12 shows the bubble interface trajectory passing through the contraction (ε = 0.7).
The interface trajectories for different Eo numbers are close to each other. The Eo number has
minor effect on this trajectory for Eo > 100 . When Eo = 100, the trajectory is slightly close
to the tube wall. If the trajectory touches the tube wall, the bubble will be blocked. The
trend of the trajectory is shown in Figure 7.12 with different the Eo numbers. The reason that
increasing the surface tension effects make the bubble difficult to deform when it encounters
the contraction. The new bubble head shape can not accommodate to the diameter of the
upper tube. The bubble head may reach the tube wall, then lead to blocking.

Figure 7.13 shows the bubble interface trajectory passing through different contractions
(ε = 0.7, 7.5, 0.8). In this test, Eo = 50, the bubble is blocked in the contraction where ε = 0.7.
When the contraction ratio increases, the bubble is able to pass through the contraction. A
small changing of the contraction ratio ∆ε = 0.05 leads to large discrepancy on the bubble
interface trajectory. Therefore, the tube geometry changing has major effects on the bubble
blocking.

Two groups of tests have been carried out in order to find the critical contraction ratio of
blocking. The contraction ratio ranges from 0.6 to 0.9. The values of the Eo number are less
than 100. The Mo number for first group is close to the fluid with W-G 95%. The second
group is close to the W-G 80% mixture. The initial bubble lengths are fixed to 4ro. The results
are shown in Fig. 7.14. The two blocking regime maps are very similar. The variation of the
Mo number has minor effect here on the bubble blocking. The tube diameter has a greater
effect on the blocking of the bubble. If the contraction ratio and Mo number are fixed, the
bubbles with smaller Eo number trend to be blocked. In the present tests, if the contraction
ratio is less than 0.7, the bubble will be blocked.

7.3 Chapter conclusion

In this chapter, the Taylor bubble rising in contractions has been investigated. Three differ-
ent contraction ratios have been tested in the experiments. The simulations showed similar
results. A few conclusions can be drawn:

• The bubble velocity will be reduced in the contraction. The contraction will not intro-
duce any bubble interface oscillations.

• The time shift of the bubble in the contraction is positive. The effect of the contraction
on the bubble’s transitional state is a delay of the bubble rising.

• The bubble blocking phenomenon is obtained in experiments and reproduced in our
simulations. Extensive simulations in different conditions show that for a contraction
ratios less than 0.7, the bubble will be blocked.
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Chapter 8

Conclusions and perspectives

This chapter summaries the conclusions drawn from this study together with the perspective
for future work in this field.

8.1 Synthesis

The review presented in Chapter 2 showed the background literature on two-phase flow. In
particular, we focused on the rise of Taylor bubbles. We clarify the flow patterns observed in
two-phase flow in vertical channels. The slug flow is one of the four typical flow patterns,
namely bubble flow, slug flow, churn flow and annular flow. An extensive review on the
Taylor bubble has been carried out. The investigation about the Taylor bubble rising in the
straight tube has been studied. Both the numerical and experimental studies have been de-
voted to this subject. But, the investigation about Taylor bubbles rising through expansions
and contractions is very limited. The main objective of this study is to investigate the bubble
transitional behaviors in the expansion and contraction.

In order to reach the main objective of this work, experimental and numerical tests have
been carried out. Chapter 3 described the numerical model. The classical projection method
is used for solving the governing equations. The Volume-of-fluid (VOF) method is adopted
to present the interface of the bubble. A few test cases have been carried out to test the solver.
The lid-driven cavity flow test shows that the convergence rates are close to second-order
both for velocities and pressure. The single bubble rising test case showed that the solver can
predict the bubble shape in a wide range of the Re and Bo number. Other test cases about the
adaptive mesh refinement and parallelization are carried out to improve the efficiency of the
calculation.

An experimental test bench has been established at the CETHIL laboratory. The details
of the configuration are described in Chapter 4. The experimental apparatus proved to be
effective for the present study. Images of the bubble rising through the expansions and con-
tractions could be obtained with the high speed camera. A self designed algorithm is used
for detecting the interface of the bubble in the images.

The Taylor bubble in straight tubes has been investigated in Chapter 5. A sensitivity anal-
ysis confirmed the parameters used in the simulations. We chose the experimental data of
[118] and carried out a series of simulations. The results of the bubble terminal velocities are
in good agreement with the experimental data and the correlations. A comparison of the sim-
ulations against the present experimental data have been carried out. The shape comparison



118 Chapter 8. Conclusions and perspectives

shows that the simulation could successfully predict the bubble shapes. We also find that
the correlation of Llewellin et al. [61] which predicts the bubble film thickness has the best
agreement to the present experimental data.

The Taylor bubble rising through the expansion and contraction have been investigated
in Chapter 6 and 7, respectively. The investigations are performed by the experiment and
simulation. A detailed analysis is then performed is based on the numerical data.

8.2 Concluding remarks

The conclusions present here is about the bubble rising through the expansion and contrac-
tion, which are the main objective of the present study. These conclusions are as follows:

• The visual comparison shows good agreement between the experimental and numerical
data. The concave shape at the tail of the bubble could be successfully captured by the
simulations. The recirculation at the tail of the bubble pushes the bottom into the bubble
and forms the concave shape. The interface moving inward can be observed on the
experimental images, but it is difficult to detect the interface. However, the simulation
could show the interface of the bubble tail very clear.

• The bubble velocity increases in the expansion. On contrary, the bubble velocity de-
creases in the contraction. The bubble head velocity reaches a new steady state very
quickly. The bubble tail shows oscillations.

• The time shift of the bubble in both expansion and contraction are positive. The bub-
ble spends more time passing through the singularity than the results simply obtained
without considering the effect of the expansion/contraction.

• Three bubble break-up patterns (necking, penetration, detachment) are observed when
the bubble passes through the expansion. A bubble break-up pattern map has been
obtained from the numerical simulation.

• The bubble blocking phenomenon is observed in the experiment. The simulation could
reproduce the same phenomenon. Extensive simulations in different conditions show
that the bubble will be blocked if the contraction ratio is less than 0.7. The surface
tension also has effect on this phenomenon. The bubble tends to be blocked when in-
creasing the surface tension force.

8.3 Perspectives

The experiments carried out in this study have been successfully predicted by the present
numerical data. However, further research definitely needs to be carried out. Specific areas
that should be given priority for future works are suggested below:

• There are other geometry parameters of the singularities that need to be investigated.
For example, the gradual expansion or contraction. In order to further study the effect
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of these parameters on the bubble, more experimental or numerical simulations need
to be carried out.

• Specific numerical methods are needed to calculate the bubble interface contact with
the tube wall. In our simulation, when the bubble is blocked by the contraction and
the interface touches the tube wall, the solver could lead to divergent results. A new
algorithm is needed to consider the situation that the bubble interface contacts with the
tube wall.

• PIV experiments could be performed to compare with the velocity fields obtained by
simulation. Extension of this work towards pressure driven flow can be also an inter-
esting perspective. Actually, such flow is closer to the heat-to-power or power-to-heat
applications.
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Appendix A

Comparison of the bubble rising test
cases

In order to compare the benchmark results obtained by Gerris with that of in the literature,
we list the results in the same way as in the [3] and [48].

A.1 Results

The relative error norms for the circularity, center of mass, and rise velocity together with the
estimated ROC are shown in Table A.1. The reference solution is the one from the computa-
tion on the finest grid (h = 1/256). Similar results of the test case 2 are shown in Table A.2.

Furthermore, we list the minimum circularity and maximum rise velocity, with corre-
sponding incidence times and final position of the center of mass, see Table A.3 and A.4. In
order to compare with the results in [3], we restricted the comparison within the time interval
from 0 to 2 for case 2.

TABLE A.1: Relative error norms and convergence orders for test case 1

1/h ‖e‖1 ROC1 ‖e‖2 ROC2 ‖e‖∞ ROC∞

Circularity
16 2.91E-02 4.43E-02 1.47E-01
32 4.09E-03 2.83 5.55E-03 3.00 3.05E-02 2.27
64 1.20E-03 1.77 1.60E-03 1.79 7.35E-03 2.05
128 3.18E-04 1.91 4.50E-04 1.83 2.95E-03 1.32
Center of mass
16 4.01E-03 5.11E-03 9.91E-03
32 6.32E-04 2.66 7.33E-04 2.80 1.07E-03 3.21
64 1.36E-04 2.21 1.66E-04 2.14 2.51E-04 2.09
128 1.50E-04 -0.14 1.98E-04 -0.25 2.86E-04 -0.19
Rising velocity
16 2.10E-02 2.20E-02 3.02E-02
32 3.08E-03 2.77 4.02E-03 2.45 1.33E-02 1.18
64 1.59E-03 0.95 2.41E-03 0.74 1.40E-02 -0.06
128 9.25E-04 0.78 2.12E-03 0.19 1.28E-02 0.12
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TABLE A.2: Relative error norms and convergence orders for Test Case 2

1/h ‖e‖1 ROC1 ‖e‖2 ROC2 ‖e‖∞ ROC∞

Circularity
16 1.76E-02 2.24E-02 6.13E-02
32 1.05E-02 0.75 1.54E-02 0.54 3.54E-02 0.79
64 7.01E-03 0.58 1.39E-02 0.15 4.39E-02 -0.31
128 3.84E-03 0.87 7.19E-03 0.95 2.35E-02 0.90
Center of mass
16 1.49E-02 2.01E-02 3.43E-02
32 8.61E-03 0.79 1.26E-02 0.68 2.21E-02 0.63
64 4.12E-03 1.07 6.24E-03 1.01 1.18E-02 0.90
128 1.68E-03 1.29 2.32E-03 1.43 3.73E-03 1.66
Rising velocity
16 9.05E-02 1.08E-01 1.81E-01
32 4.87E-02 0.89 6.09E-02 0.82 9.86E-02 0.88
64 2.42E-02 1.01 3.26E-02 0.90 6.45E-02 0.61
128 7.60E-03 1.67 9.75E-03 1.74 2.06E-02 1.65

TABLE A.3: Minimum circularity and maximum rise velocity, with correspond-
ing incidence times and final position of the center of mass for test case 1

1/h Cmin t|C=Cmin Vmax t|V=Vmax yc(t = 3)

16 0.2404 0.88 0.7691 2.51 1.0933
32 0.2418 0.94 0.8880 1.69 1.0835
64 0.2422 0.92 0.8968 1.94 1.0826
128 0.2423 0.92 0.8995 1.85 1.0829
256 0.2425 0.92 0.9003 1.92 1.0826

TABLE A.4: Minimum circularity and maximum rise velocity, with correspond-
ing incidence times and final position of the center of mass for test case 2

1/h Cmin t|C=Cmin Vmax t|V=Vmax yc(t = 2)

16 0.6532 2.00 0.2524 0.92 1.0964
32 0.6617 2.00 0.2485 0.68 1.1102
64 0.6854 2.00 0.2505 0.71 1.1219
128 0.6899 2.00 0.2505 0.74 1.1310
256 0.6929 2.00 0.2508 0.73 1.1353
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A.2 Comparison

We plot the three quantities in Table A.3, A.4 and compare them with the results in [3] and
[48] in Fig. A.1, A.2 and A.3.

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 50  100  150  200  250  300

M
in

im
u

m
 c

ir
cu

la
ri

ty

Grid resolution

model 1 in [Aland, 2012]
model 2 in [Aland, 2012]
model 3 in [Aland, 2012]

model 1 in [Hysing, 2009]
model 2 in [Hysing, 2009]

Gerris

(A)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

 50  100  150  200  250

M
in

im
u

m
 c

ir
cu

la
ri

ty

Grid resolution

model 1 in [Aland, 2012]
model 2 in [Aland, 2012]
model 3 in [Aland, 2012]

model 1 in [Hysing, 2009]
model 2 in [Hysing, 2009]

Gerris (t = 2)
Gerris (t = 3)

(B)

FIGURE A.1: Comparison of the minimum circularity. (A) case 1. (B) case 2.
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FIGURE A.2: Comparison of the maximum rise velocity. (A) case 1. (B) case 2.
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Appendix B

Nomenclature

A cross-section area m2

c Volume of fluid function (color function)
D tube diameter m
e error
F force N
g gravity acceleration m · s−2

l length m
J superficial velocities m · s−1

p pressure Pa
R radius m
Q̇ volumetric flow rates m3 · s−1

VT terminal velocity m · s−1

U bubble rise velocity m · s−1

Abbreviations
AMR Adaptive mesh refinement
ROC rates of convergence
MAE mean absolute error
MRE mean relative error
VOF Volume of fluid
W-G water-glycerol

Dimensionless numbers
Bo Bond number
Eo Eötvös number
Fr Froude number
Mo Morton number
Nf inverse viscosity number
Re Reynolds number

Greeks
ε Diameter ratio
φ level set function
µ dynamic viscosity Pa · s
ρ density kg ·m−3
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κ curvature of the interface m−1

λ film thickness m
σ surface tension N ·m−1

θ inclination angle rad

Sub and superscripts
c contraction
C continuous phase
b bubble
D disperse phase
e expansion
l liquid
g gas
h head or nose
o original or initial
r radial direction
t tail
out outside
in inside
upper upper
lower lower
z coordinate direction
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