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eau-glycérol pour différentes concentrations. Le rapport des diamètres de la conduite varie de 0,69 à 1,72. Les images de la bulle montante dans les singularités sont capturées par une caméra haute vitesse. Les variations de vitesse de la bulle et de l'épaisseur du film liquide sont étudiées. Les résultats montrent que l'élargissement brusque avec un rapport de diamètres plus élevé entrane plus de perturbations sur la bulle avec de forts effets sur sa queue. Les queues de bulles instables sont coupées en petites bulles dans certains cas et une carte d'écoulement permet de le prédire. En outre, il a été observé que les variations de la forme de la bulle dépendent de la longueur des bulles. En ce qui concerne la bulle passant par une contraction, le phénomène de blocage a été observé et une carte de prédiction a été proposée. Finalement, cette étude, basée sur un intervalle assez large du nombre d'Eötvös et du rapport de diamètres, propose de nouvelles connaissances pour mieux comprendre l'ascension d'une bulle de Taylor dans les singularités.
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Background

The Taylor bubble flow is one of the liquid-gas flow patterns consisting of elongated bubbles separated by liquid slugs. The details of the flow patterns will be discussed in Chapter 2.

Taylor bubbles are encountered in research and industry, which exist from micro-fluids to a much larger scale. In industrial processes, Taylor bubbles are often found in buoyancy driven fermenters, the transportation of hydrocarbons in oil and gas industry, the boiling and condensing process in the thermal power plants. Large scale Taylor bubbles also exist in the natural world. The eruption of Strombolian volcanoes is considered to be caused by the rise and burst of large Taylor bubbles. The photobioreactor is another application of the rising bubble. More details of these two examples will be proposed in Chapter 2.

Due to its great importance, the Taylor bubble has been thoroughly investigated in past decades. But, a large volume of research investigated the rising of Taylor bubbles in straight tubes. There is little work that reports the rising of Taylor bubbles through expansions or contractions. The expansion or contractions are often called singularities, which are widely seen in the industrial applications. The design of the oil pipe line or the heat exchanger often use expansions or contractions in pipe connections. In the example of volcanoes, the bubble rises form the great depth through the lava conduit. The cross-sectional shapes changes while the bubble rises. It is not reasonable to apply the research of the Taylor bubbles rising in straight tubes in such conditions. The Taylor bubble rising through expansion and contraction should be investigated.

Therefore, the lack of understanding of the mechanisms of the Taylor bubble rising through the singularities motivates the present research. Based on the research of the Taylor bubble in straight pipes, we carried out the study on the Taylor bubble rising through singularities.

Objectives of the study

The primary objective is modeling the Taylor bubbles rising through expansions and contractions. The aim is to understand the bubble behavior in flow conditions which have not been studied yet. To achieve this, the work has been divided in the following tasks:

• Visualize the bubble behaviors in the straight pipe and through the expansions and contractions thanks to experimental investigations.

Chapter 1. Introduction

• Use CFD (Computational Fluid Dynamics) to model the single rising Taylor bubbles.

• Validated the numerical model thanks to experimental data.

• Characterize the flow disturbances caused by the expansions or contractions using the CFD model.

Methodology

An incompressible two-phase flow solver is used for establishing the model to investigate the Taylor bubble in this research work. The solver is an open source flow solver called Gerris.

The CFD solver will be validated before carrying out further investigation. We perform several benchmark cases to test the performance of the solver on simulating the two-phase flow. A comprehensive test on the single bubble rising is carried out.

On the other hand, the experimental methods are also used to investigate the bubble behavior. The bubble rising in different water-glycerol solutions has been recorded by a high speed camera. The bubble shape variation will be further investigated by analyzing the images. The numerical model will then be validated by the experimental data.

The investigation on the Taylor bubble rising through singularities can be done by analyzing the reliable data from the experiment and simulation.

Layout of the thesis

The thesis is divided into eight chapters with several appendices. It is organized as follows:

• Chapter 1 provides a background to the study and the research objectives.

• Chapter 2 gives an overview of the two-phase flow phenomena and the methods of modeling the two phase flow in particular, the single bubble rising and Taylor bubble rising in the tube.

• Chapter 3 describes the numerical model used in the present study and the numerical benchmark tests have been performed to validate the numerical model.

• Chapter 4 describes the experimental test facility. The experimental methodology and the data reduction procedure are also described.

• Chapter 5 presents the experimental and simulation results of the Taylor bubble rising in a straight tube. A sensitivity analysis has been carried out to test the accuracy of the bubble in the straight tube. The simulations have been validated with our experimental data and data from the literature.

• Chapter 6 presents the experimental and simulation results of the Taylor bubble rising through the expansions. A detailed analysis on the bubble behavior is shown. The bubble break up behaviors are also presented.

• Chapter 7 presents the experimental and the simulation results of the Taylor bubble rising through the contractions. A detailed analysis on the bubble behavior in the contraction is shown. The bubble blocking phenomenon will be discussed.

• Chapter 8 presents the general conclusions of this study and the perspectives.

Chapter 2

Taylor bubble: a state of the art review

In the context of multiphase flow, two-phase flow refers to the flow of any two fluids mixed together, whereas those fluids do not mix on the molecular level. In another word, the liquids are not miscible. An interface between two liquids can be observed from a macroscopic view.

Even though we excluded some special circumstances, it still leaves a diverse spectrum of two-phase flows.

In this chapter, we first present a brief introduction about the bubble dynamics. It will introduce the basic physical mechanism of the gas bubble in the liquid and clarify the region of our study. Secondly, we will discuss the widely used numerical methods on interface capture. Various numerical models are applicable to gas-liquid two-phase flow. We will discuss most of them. Finally, we focus on the bubble dynamics. A detailed review will be presented on the Taylor bubble. Both experimental and simulation studies will be reviewed.

Bubble dynamics

Bubbles can often be observed in various industrial processes, such as boiler, stream generator in the power plant and chemical reactors. The bubble characteristics depend on the property of fluids, the quantity of each phase. Bubble dynamics investigates the formation, movement and collapse of bubbles. In this brief introduction, we mainly introduce the previous study about the bubble movement, especially the freely rising bubble in stagnant liquid.

The freely rising bubble is a fundamental problem of two-phase flow. This simple problem eliminates many effects and just focused on the liquid, gas and their interface. Therefore, the problem is a good test case for the numerical methods. The accurate prediction of the interface is crucial for aforementioned interface tracking methods. On the other hand, the bubble rising problem does physically exist. Understanding the bubble behavior has a great importance of evaluating the force acting on a bubble and mass transfer coefficient.

From a physical point of view, the bubble motion is determined by the forces acting on it, such as buoyancy, inertial, viscous and interfacial forces. The combination of these forces can be regrouped into dimensionless numbers. The studies of the freely rising bubbles focus on the bubble dynamics and eliminate other factors, such as containing the vessel. Bhaga and Weber [START_REF] Bhaga | Bubbles in viscous liquids: shapes, wakes and velocities[END_REF] presented the results of their experiments in terms of the following dimensionless groups:

• Reynolds number:

Re = ρDU µ (2.1)
• Eötvös or Bond number:

Eo = gD 2 ρ σ (2.2)
• Morton number:

Mo = gµ 4 ρσ 3 (2.3)
• Weber number:

We = ρU 2 D σ (2.4)
where, the characteristic length, D = (6V /π) Here, we review works have been done by numerical simulation about the bubble rising.

The development of the numerical methods helps us understand the bubble motion. On the other hand, the experimental studies help to improve and validate the numerical methods.

Tomiyama et al. [START_REF] Tomiyama | Numerical analysis of bubble motion with the VOF method[END_REF] has done the pioneering work on rising bubbles by the VOF method.

The simulation affirmed that the sinuous motion of the bubble is induced by the Karman vortex shedding from the tail of the bubble. The bubble trajectories agreed well with the available experimental data.

Sussman [START_REF] Sussman | A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles[END_REF] adopted a coupled level set/volume-of-fluid method to compute growth and collapse of vapor bubbles. The study focused on the numerical method. They proved that the overall convergence rate of the coupled method is second order.

Ohta et al. [START_REF] Ohta | A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids[END_REF] simulated 2D-axisymmetric bubble rising in viscous Newtonian liquids using the CLSVOF method and compared results with experimental data. The main objective is to verify the influence of the numerical initial conditions on the bubble rising. They found that the bubble will break up eventually if the initial bubble is spherical for Eo = 464 and Mo = 6.5× 10 -2 . If the bubbles are at low Mo number, the bubble motion is not depending on the initial bubble shape.

Olsson and Kreiss [START_REF] Olsson | A conservative level set method for two phase flow[END_REF] tested a conservative level set method on an air bubble rising in water for Re = 500, Fr = 0.45 and We = 0.68.

Sankaranarayanan et al. [START_REF] Sankaranarayanan | Bubble flow simulations with the lattice Boltzmann method[END_REF] computed the bubble rising in periodic boxes by the lattice Boltzmann method. Many test cases have been performed and covered the range of Morton number from 10 -6 to 10 -4 . The results are compared to empirical correlations. Ohta et al. [START_REF] Ohta | A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids[END_REF] showed that the bubbles with breaking-up could be numerically simulated starting from the spherical bubble. They also found that at low Mo number condition the bubble motion is not subject to the initial bubble conditions.

Wang et al. [START_REF] Wang | Viscosity effects on the behavior of a rising bubble[END_REF] investigated the viscosity effects on the bubble shape. The VOF method is adopted. Their simulations ignored the surface tension, Eo = ∞. They found two critical Re numbers Re 1 and Re 2 . Re 1 is in between 30 and 50. If the Re larger than Re 1 , the bubble will break into toroidal form. Re 2 is in between 10 and 20. If Re < Re , the splitting will not happen. According to Fig. 2.1, the bubble with large Re number and lower surface tension, the final shape will be spherical-cap with an unsteady wake. The bubble breakup may not be a physical truth. This conclusion agrees with Ohta et al. [START_REF] Ohta | A computational study of the effect of initial bubble conditions on the motion of a gas bubble rising in viscous liquids[END_REF].

The study of Aoyama et al. [7] focuses on the ellipsoidal bubble. The experiment measured the bubble aspect ratio from a wide range of fluid properties. They provide a correlation to predict aspect ratio (E) as a function of Eo and Re numbers:

E = 1 (1 + 0.016Eo 1.12 Re) 0.388 (2.5)
This equation covers the range -11 ≤ log(Mo) ≤ 0.63, 3.2 ×10 -3 ≤ Re ≤ 1.3 ×10 3 and 4.2

×10 -2 ≤ Eo ≤ 2.9 ×10 1 .
Other studies relate to the rising bubble. But, they include other effects or constraints.

Some of them are worth mentioning. The migration of small bubbles toward the pipe wall due to the share-induced lift force. Tomiyama et al. [START_REF] Tomiyama | Transverse migration of single bubbles in simple shear flows[END_REF] and Rabha and Buwa [START_REF] Swapna | Volume-of-fluid (VOF) simulations of rise of single/multiple bubbles in sheared liquids[END_REF] investigated this phenomenon by experiment and simulation. Zun et al. [START_REF] Zun | Mixing of thermally stratified water layer by a free rising wobbling air bubble[END_REF] studied the bubble rising in the stratified water layer. The purpose is to provide further insights on bubbleinduced agitation of heated bulk liquid. The bubble is a 6 mm equivalent sphere diameter air bubble across a stratified thermal layer. The simulation shows that the bubble wake carries cold water in the vertical direction and causes a strong longitudinal mixing.

Numerical simulation of two-phase flows

Two-phase flow equations

One-Fluid Formulations are widely used for modeling of two-phase flow. Instead of solving each phase separately, only one group of governing equations is solved throughout the flow domain. The fluid properties, defined on the entire calculation domain, change abruptly at the phases boundary. The presence of the liquid-gas interface is modeled using a source term for the surface tension force [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF]. The transport equations take the following form:

ρ[ ∂u ∂t + (u • ∇)u] = ∇ • [µ(∇u + (∇u) T )] -∇p + ρg + f σ (2.6) ∇ • u = 0 (2.7)
Here, u is the fluid velocity field, ρ and µ are the fluid density and dynamic viscosity, respectively, p is the pressure, g is the gravity acceleration, and f σ is the interface tension force which appears at the location of the interface. A multidimensional delta function is needed, which is non-zero where the interface is located. It can be written as:

f σ = δ(F σ ) = ∆s σκnds (2.8)
where ∆s is a surface element, n is the unit normal to the interface, σ is the surface tension coefficient, κ is the curvature of the interface. Since the formulation is the same as for the single-phase flows, the boundary conditions and the solution method are similar to that for the single phase flow. The additional requirement is finding the interface. In the next section, a brief review of interface tracking and capturing methods will be given.

Interface tracking and capturing methods

Finding the interface can be done in an explicit way or in an implicit way. If the interface is represented by marker points, the surface front can be moved accurately in a Lagrangian way. The interface is always known while it's moving. This kind of method is often called Interface Tracking Method. The Front tracking method is one of such methods.

On the contrary, the interface may be described implicitly using a field function. The implicit scalar is advected with the liquid using a transport equation. This method often called Interface Capture Method. Since the interface is implicit, a reconstruction procedure is needed for this method. The Level-Set method and Volume-of-fluid method are both interface capture methods. The following section will introduce these three methods.

Level-Set method

The Level-Set method was introduced by Fedkiw [START_REF] Osher | Level set methods and dynamic implicit surfaces[END_REF]. The main idea is to define a smooth function φ(x, t), which is the signed minimum distance of x to the interface. Here x = (x 1 , x 2 , x 3 ) ∈ R 3 . For example , if the level set function φ is positive, the x locates in the liquid. If it is negative, the x is in the gas phase. Therefore, the liquid-gas interface is the zero level set of φ. Note that we also have |∇φ| = 1. For example in Fig. (2.2), the bubble interface is the circle where the level-set is φ = 0. The level set function evolves with time (t).

The interface moves with the fluid velocity u. This can be obtained by solving the transport equation:

∂φ ∂t + u • ∇φ = 0 (2.9)
Special care must be taken when resolving the property discontinuity at the interface. The solution will yield numerical instabilities due to large density and viscosity changes at the interface. A smoothing method is proposed by Sussman et al. [START_REF] Sussman | An improved level set method for incompressible two-phase flows[END_REF]. The density and viscosity on the interface can be written as:

ρ(φ) = ρ g + (ρ l -ρ g )H(φ) µ(φ) = µ g + (ρ l -µ g )H(φ)
where ρ g , ρ l are the density of the gas and liquid phase, µ g and µ l are the viscosity of the gas and liquid. H(φ) is the Heaviside function given by

H(φ) =          0 if φ < 0 1/2 if φ = 0 1 if φ > 0 (2.10)
Chapter 2. Taylor bubble: a state of the art review A smoothed Heaviside function H (φ) can be constructed to obtain the smeared fluid properties on the interface:

H (φ) =          0 if φ < - (φ + )/(2 ) + sin(πφ/ )/(2π) if |φ| ≤ 1 if φ > (2.11)
where is the thickness of the smoothed interface, generally taken as = 3∆x/2. When the level-set function advects with the equation (2.9), one of the major difficulties of the level-set method is that the fluid mass is not conserved. Another problem is that the signed distance property (|∇φ| = 1) will be lost and the field function can become highly irregular. These problems can be remedied by multiple ways. First, we can choose high-order schemes to discrete the equation (2.9). Second, we can add a reinitialization procedure which is proposed by Sussman, Smereka, and Osher [START_REF] Sussman | A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow[END_REF]. This procedure ensures the condition |∇φ| = 1 by solving the following equation:

∂φ ∂τ + sgn(φ 0 )(|∇φ| -1) = 0 (2.12)
where sgn(φ) is a sign function, τ is an artificial time, φ 0 is the un-initialized field. This equation can be solved to steady state. But, in practice, Sussman et al. [START_REF] Sussman | An improved level set method for incompressible two-phase flows[END_REF] found only two or three iterations are sufficient.

Compared to the Front tracking method, the level-set method avoids adding and removing markers to represent the moving interface. Level-set methods can deal with the merging and breaking of the interface easily. Furthermore, the generalization to three dimensions is rather straight forward [START_REF] Sussman | A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow[END_REF].

Front tracking method

The front tracking method is an interface tracking method for two-phase flows developed by Unverdi and Tryggvason [START_REF] Salih | A front-tracking method for viscous, incompressible, multi-fluid flows[END_REF]. The basic idea of this method is defining the interface by markers moving with the fluid velocity, see Fig. 2.3. While governing equations for the onefluid formation are solved on a fixed mesh, the interface is represented by an array of points.

These points are connected to each other often through a linked lists which contains pointers to the previous and the next object in the list. The three-dimensional front is built in the same way, but the front is represented by triangles. The front points move in a Lagrangian way,

dx s dt • n = u s • n (2.13)
where x s is the front points coordinate, u s is the velocity of the front points. When the front moves, it deforms and stretches along with the flow field. The resolution may become inadequate at some locations. To keep the method accurate, new points are added to the original front. Also, it is desirable to remove small elements, especially those containing "wiggles" which are smaller than the grid size.

Information needs to be transferred between the two grids. For example, the u s is obtained by interpolating from grid values to the front locations. In two-phase flows, the surface tension is calculated at the interface, but the Navier-Stokes equations are solved on a fixed grid. The transfer operation can be done in many ways, but it is necessary that the transferred quantity is conserved. The interface quantity, φ f , is a surface average, whereas the grid value, φ g , is a volume average. The conservation requires:

∆s φ f ds = ∆v φ g dv (2.14)
After advecting the front, the fluid properties, such as the density and the viscosity, need to be redefined. This can be done by taking the numerical divergence of the grid-density gradient results in a numerical approximation to the Laplacian:

∆ρ = ∇ h • ∇ h ρ i,j (2.15) 
where ∇ h is gradient operator on the grid with an uniform mesh space h.

The advantage of this method is that interface advection and properties, such as surface tension, can be computed very accurately. The interface resolution is independent of the mesh resolution. The drawbacks are a cumbersome implementation, especially in three dimensions. It is not easy to handle the interface breakup and coalescence problems. 

Volume of fluid method

The volume of fluid method tracks a phase indicator function defined in each control volume.

The method was first proposed by Hirt and Nichols [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF]. The phase indicator function c (also known as volume fraction or color function) is defined as:

• c = 0 if the control volume is filled with phase 1

• c = 1 if the control volume is filled with phase 2

• 0 < c < 1 for mixed control volumes containing the interface

In order to obtain the fluid property in each phase, a generic fluid property φ (e.g. density, viscosity) can be computed from:

φ = cφ 1 + (1 -c)φ 2 (2.16)
The volume fraction c is governed by the simple advection equation:

∂c ∂t + ∇ • (uc) = 0 (2.17)
One of the critical issues with the VOF method is finding a proper way to discrete equation (2.17). Lower-order schemes smear the interface due to numerical diffusion, while high-order schemes are unstable and result in numerical oscillations. Thus, several volume advection techniques have been proposed to avoid undesirable numerical effects and keep the interface sharp.

A widely used technique is to compute the geometry of the interface in the control volume and then calculate the flux across the adjacent control volumes. The procedure to compute the actual geometry of the interface is called interface reconstruction. The simplest way to represent the interface is using vertical or horizontal lines. Noh and Woodward [START_REF] Noh | SLIC (simple line interface calculation)[END_REF] proposed the Simple Line Interface Calculation (SLIC) algorithm. The interface control volume is split by vertical and horizontal lines. If the advection is in the horizontal direction, the vertical line is an approximation of the interface, vice versa in the other direction. Therefore, there are two lines (or three lines) to approximate the interface depending on the advection direction.

Hirt and Nichols [START_REF] Hirt | Volume of fluid (VOF) method for the dynamics of free boundaries[END_REF] modified this method by only using one straight line to approximate the interface. The line is still parallel to the coordinate axis. The c in neighbor cells are used to selected the orientation of the straight line. Youngs [START_REF] David | Time-dependent multi-material flow with large fluid distortion[END_REF] developed the Piecewise Linear Interface Calculation (PLIC) algorithm, using an arbitrarily oriented line to approximate the interfaces. This method has a better approximation to the interface. The equation of the interface segment can be written as

m • x = α (2.18)
where, m is the normal vector to the interface and α is the distance to the origin of x. Many studies show that the key to improving advection scheme is finding a better way to reconstruct the interface. Base on the PLIC method, we should know the orientation of line segments, i.e. obtain the normal vector of the interface. It can be obtained from the gradient of c, equation (2.19). If the normal m has been calculated, the α is obtained from area conservation.

The α can be obtained from a pure geometrical calculation [START_REF] Scardovelli | Analytical Relations Connecting Linear Interfaces and Volume Fractions in Rectangular Grids[END_REF].

m = -∇c (2.19) 
Youngs [START_REF] David | Time-dependent multi-material flow with large fluid distortion[END_REF] estimates the ∇c by means of finite-difference schemes in a 3 × 3 in 2D or a 3 × 3 × 3 block stencil in 3D. The ∇c in the center cell (i, j) is computed as the average of the cell-corner values.

m i,j = (m x:i,j , m y:i,j ) = 1 4 (m i+ 1 2 ,j+ 1 2 + m i+ 1 2 ,j-1 2 + m i-1 2 ,j+ 1 2 + m i-1 2 ,j-1 2 ) (2.20)
where,

m x:i+ 1 2 ,j+ 1 2 = - 1 2 ( c i+1,j+1 -c i,j+1 ∆x + c i+1,j -c i,j ∆x ) m x:i-1 2 ,j+ 1 2 = - 1 2 ( c i,j+1 -c i-1,j+1 ∆x + c i,j -c i-1,j ∆x ) m x:i+ 1 2 ,j-1 2 = - 1 2 ( c i+1,j -c i,j ∆x + c i+1,j-1 -c i,j-1 ∆x ) m x:i-1 2 ,j-1 2 = - 1 2 ( c i,j -c i-1,j ∆x + c i,j-1 -c i-1,j-1 ∆x )
We can obtain m y in a similar way. Numerical tests have showed the weakness of this method which can not represent linear interfaces accurately. Other methods have been proposed. The block cells are always 3 × 3. The volume fractions can be added along the vertical direction and horizontal direction, which can be defined as a height function y = f (x) and a width function x = g(x) as shown in Fig. 2.4. For example, the height y i-1 is given by the expression Chapter 2. Taylor bubble: a state of the art review Here, the slope of the straight line, equal to m xc is calculated by a central difference scheme.

y i-1 = ∆x 1 k=-1 C i-
m xc = - 1 2∆x (y i+1 -y i-1 ) (2.22) 
We can also describe the line slope by m yc . The similar equation obtained:

sgn(m x )x = -m yc y + α (2.23)
And,

m yc = - 1 2∆y (x i+1 -x i-1 ) (2.24)
It is evident that a given line just has one correct slope. The strategy is to choose a proper slope for the interface. If the real interface orients as shown in Fig. 2.4(A), we take m yc as the real slope. Otherwise, we take m xc as the real slope (Fig. 2.4(B)). A simple expression can be used to select slope

|m * | = min(|m xc |, |m yc |) (2.25) 
Similarly, we can consider obtaining the slope by using forward and backward finite-difference method. Six slopes can be obtained in each 3 × 3 block. The more sophisticated method is needed to obtain the best slope of the line. Pilliod Jr. and Puckett [START_REF] Edward | Second-order accurate volumeof-fluid algorithms for tracking material interfaces[END_REF] proposed the ELVIRA (efficient least-squares VOF interface reconstruction algorithm) method. For each of the six slope, the corresponding new line cuts the 8 neighbor cells and obtains the new volume fraction c in each cell. The area error in L 2 is

||e|| 2 = (c i,j -c i,j ) 2 (2.26)
The final slope selection is the one that has the minimum error. The calculation blocks can be changed, and even take more blocks. However, considering the accuracy and calculation load, a 3 × 3 block is a common choice in most studies. One drawback of the ELVIRA is the required computation time, especially in three dimensions. A 3D version of ELVIRA has been implemented by Miller and Colella [START_REF] Miller | A Conservative Three-Dimensional Eulerian Method for Coupled Solid-Fluid Shock Capturing[END_REF].

Scardovelli and Zaleski [START_REF] Scardovelli | Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection[END_REF] proposed a new least-squares fit method. This method is based on aforementioned methods. Firstly, we obtained the line segments in each interface cell as the preliminary interface. Then, selecting few points on the segments (e.g. two end points and mid point). Finally, new slope can be obtained by the least-squares fit method.

This method shows a better representation at high curvature regions.
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Bubble motion in channels

The bubble motion in channels is often classified as the bubble or slug flow regime. If the bubbles are small enough compared to the size of the containing channel, this flow regime is often referred to bubbly flow. If the bubble is large enough to occupy most of the crosssectional area of the channel, this flow regime is often referred to slug flow.

It is known that slug flow allows great heat and mass transfer between the two phases.

Therefore, the slug flow regime has drawn much attention. A large quantity of research has been done in the past decades. For clarity, the slug flow regime is influenced by many different environmental conditions which can be classified into different subgroups.

• The channels have different cross-sectional shapes. In common conditions, the bubble flows in a circular channel. Whereas, the bubble flowing in non-circular channels exists in porous materials and blood vessels. For example, Taha and Cui [START_REF] Taha | CFD modelling of slug flow inside square capillaries[END_REF] simulated slug flow in square micro-channels. The liquid film thickness does not distribute around the bubble evenly. Therefore, the heat transfer coefficients are different on the circular direction of the tube. Roig et al. [START_REF] Roig | Dynamics of a high-Reynolds-number bubble rising within a thin gap[END_REF] investigated the bubble rising in a vertical Hele-Shaw cell and reported a detailed analysis of path and shape oscillations of an air bubble.

• The movement of the bubbles is due to different driving forces. The gravitational force drives the bubble moving upwards. The pressure pushes both the liquid and the bubble moving forward. Different driving forces have different effects on the bubbles. If the bubble is only driven by gravitational force in the vertical channel, the bubble head will be a bullet shape, the liquid moving downward around the bubble. And, the liquid film becomes thinner from the top to the bottom of the bubble. If the gravitational force balance the viscosity force, the liquid film thickness will remain constant. And, the bubble rises at a constant velocity. If the bubble is only driven by pressure, the bubble behaves differently. For example, the bubble moves in a horizontal tube and is pushed by the liquid flow. Some of the capillary waves can be observed at proximity to the rear of the bubble. The liquid film thickness decreases from the nose to the rear of the bubble. Depending on the operating conditions, the film thickness may even equal to 0 (dry out).

• The orientation of the channels has great effects on the bubble motion. For the vertical channels, the bubble moving upward driven by the buoyancy forces. And, the pressure difference may also exist. As pointed out by Nicklin [START_REF] Nicklin | Two-phase bubble flow[END_REF], the velocity of the bubble in upward flow consists of two parts, the mean liquid velocity (U * ) and the bubble velocity in quiescent liquid (V T ). The overall bubble velocity can be expressed as:

V * = C 0 U * + V T (2.27)
where C 0 is the distribution parameter which accounts for the relative velocity between the two fluids. It is assumed that U * is independent of V T [START_REF] Alexander | Vertical upward intermediate scale Taylor flow: Experiments and kinematic closure[END_REF]. Therefore, the bubble velocity prediction can be investigated separately. While the real fluid mechanics are non-linear, the linear assumption for the bubble velocity has proven to be successful in the literature. For the bubble moving in horizontal channels, if both pressure and buoyancy cannot be ignored, the film thickness above the bubble becomes thinner. Wall dry out may occur at the top of the tube under some operation conditions.

In the next section, the discussion focuses on the rising bubble in the vertical circular channel. We do not intend to provide a comprehensive review covering all aspects of slug flow. Instead, we summarized the works which we considered as the milestone for Taylor bubble rising in the vertical circular channel. These studies have close relation and provide fundamental knowledge for the present thesis. Other reviews about slug flow can be found in [6].

Rising bubbles in vertical channels

Gas bubbles rising in the vertical channels often appear as bullet shapes. The motion of bubbles is affected by the shape of channels. These bubbles are often called Taylor bubbles [START_REF] Davies | The mechanics of large bubbles rising through extended liquids and through liquids in tubes[END_REF]. The pioneer investigation about the Taylor bubble is presented by Dumitrescu [START_REF] Dumitru | Strömung an einer Luftblase im senkrechten Rohr[END_REF]. The following sections will review the major studies on Taylor bubbles. The methods used to investigate this phenomenon is the analytical model, experiments and numerical simulation.

First of all, the analytical model will be introduced. It describes the forces acting on the bubbles. Then, three major study objective about the Taylor bubble will be presented: the bubble terminal velocity, the falling film, and the bubble nose shape. Finally, a brief review of both experimental and simulation studies will be shown.

Firstly, we consider a single bubble rising in a stagnant liquid. If the pressure in the gas is constant, the drift velocity V T of the bubble is also constant. The value of V T depends on various forces in the two-phase flow system. A general scaling analysis of the Taylor bubble or drop motion is presented by Hayashi, Kurimoto, and Tomiyama [START_REF] Hayashi | Terminal velocity of a Taylor drop in a vertical pipe[END_REF]. Here, we consider that the liquid is the continuous phase (C) and the gas is disperse phase (D). There are six different forces governing the dynamics of a Taylor bubble, i.e., inertial (F iC and F iD ), viscous (F µC and F µD ), surface tension (F s ) and buoyant (F b ) forces. These forces can be regrouped in the following dimensionless numbers:

Froude number:

Fr = F iC F b = V T ∆ρgD/ρ c inverse viscosity number: N f = F iC F b F 2 µC = ∆ρgD 3 µ C Eötvös number: Eo = F b F s = ∆ρgD 2 σ
Reynolds number:

Re D = F iC F µC = ρ C V T D µ C Morton number: Mo = F 4 µC F b F 3 s F 2 iC = gµ 4 C ∆ρ ρ 2 C σ 3 denstiy ratio: r ρ = F iD F iC = ρ D ρ C viscosity ratio: r µ = F µD F µC = µ D µ C (2.28)
Only four dimensionless groups are independent, i.e. N f , Eo, r ρ and r µ . The Morton number can be derived by Eo and N f , Mo = Eo 3 /N 4 f . The Archimedes number is obtained from the manipulation of N f (Ar = N 2 f ) [START_REF] Araujo | Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids[END_REF]. The Fr and Re D can be obtained after knowing the V T . The pipe inclination θ can be added to the dimensionless analysis. Zukoski [START_REF] Zukoski | Influence of viscosity, surface tension, and inclination angle on motion of long bubbles in closed tubes[END_REF] and Fabre and Liné [START_REF] Fabre | Modeling of two-phase slug flow[END_REF] expressed this dependency through a general relationship.

V T = C T (N f , Eo, θ) g∆ρD ρ C (2.29)
This relationship ignores the viscosity ratio µ * . In fact, the density and viscosity ratios are often ignored in the studies of Taylor bubble. The density and viscosity of the gas are generally much less than those for the liquid (ρ C ρ D , µ C µ D ) . Therefore, the density and viscosity ratios are both equal to 0 [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF][START_REF] Wallis | One-dimensional two-phase flow[END_REF].

White and Beardmore [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] performed a wide range of experiments. The Eo number ranges from 3 to 400. And, The Mo number ranges from 10 -12 to 10 3 . As mentioned before, White and Beardmore [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] have ignored the density and viscosity of the gas phase. The characteristic density and viscosity correspond to the liquid phase. They summarized the results to show the dependence of the terminal velocity on each effect. According to the Fig. 2.5, the following regime can be identified:

• Eo < 4: The bubble does not rise. Gravitational effects are negligible.

• Eo > 70: Capillary effects are negligible.

• Fr < 0.05: Inertial effects are negligible. [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF]).

• Mo < 10 -8 : Viscosity effects are negligible.

In Fig. 2.5, the Fr number is estimated by the correlation of [START_REF] Hayashi | Dimensional analysis of terminal velocity of a Taylor bubble in a vertical pipe[END_REF]. From a general point of view, Fig. 2.5 shows the basic behaviors of the bubble. In the following section, a brief review on the terminal velocity is presented.

Terminal velocity

The terminal velocity of the Taylor bubbles rising in tubes is the foremost obvious and important problem in research on two-phase flow. Dumitrescu [START_REF] Dumitru | Strömung an einer Luftblase im senkrechten Rohr[END_REF] firstly propose C T = 0.351 in equation (2.29). The study is based on potential flow theory and considers ∆ρ/ρ C = 1. The terminal velocity can be expressed as:

V T = 0.351 gD (2.30)
Davies and Taylor [START_REF] Davies | The mechanics of large bubbles rising through extended liquids and through liquids in tubes[END_REF] estimated a new constant equal to 0.328. White and Beardmore [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] presented a polynomial fit correlation based on their extensive experimental data. The terminal velocity can be express as:

V T = ( a 1 a 2 e a 3 t a 1 + a 2 (e a 3 t -1) -a 4 ) gD (2.31)
where

t = log 10 ( ρ C gD 2 σ ) (2.32)
The parameters a i are seventh-degree polynomials:

a i = 8 j=1
c ij x j-1 (i = 1, ..., 4)

x = log 10 (Mo)

the coefficients c ij are given by the matrix:

3.5603852 ×10 -1 2.6717658×10 -3 -2.7121907×10 -3 -2.0001955×10 -3 1.5642441×10 -3 2.8532721×10 -4 4.7831508×10 -5 3.605927×10 -5 3.059819 -5.2353564×10 -1 3.3906415×10 -2 2.1368428×10 -2 2.3221312×10 -2 -1.809746×10 -3 9.3468732×10 -5 -2.3440168×10 -4
8.622533×10 -5 5.7198751×10 -5 -2.4316663×10 -6 -6.7582431×10 -7

7.6382727×10 -6 1.1736259×10 -6 -1.5186036×10 -7 1.9756221×10 -8

-3.2676237×10 -3 -7.302379×10 -4 7.2215493×10 -5 1.1273658×10 -5

5.9716008×10 -5 9.7852173×10 -6 -1.3514105×10 -6 -1.74642×10 -7

Wallis [START_REF] Wallis | One-dimensional two-phase flow[END_REF] proposed a more general equation based on experimental data. The C T can be expressed as:

C T = 0.345(1 -e -0.01N f 0.345 )(1 -e 3.37-Eo m ) (2.33)
where,

m =          25 N f < 18 69N -0.35 f 18 ≤ N f ≤ 250 10 N f > 250 (2.34)
This estimation also ignores the density difference between the liquid and gas. Therefore, ∆ρ ≈ ρ C , and then, ∆ρ/ρ C equals to 1. Tung and Parlange [START_REF] Wei | Note on the motion of long bubbles in closed tubes-influence of surface tension[END_REF] studied the terminal state of the Taylor bubble in a long vertical pipe. They showed that the bubble velocity is reduced as surface tension effects are more pronounced. They proposed a correlation as follow:

V T = (0.136 -0.944 σ ρ C gD 2 ) 1/2 gD (2.35)
Bendiksen [START_REF] Kjell | On the motion of long bubbles in vertical tubes[END_REF] proposed a correlation ignoring the viscous forces. This correlation is valid for the Taylor bubble with relatively small surface tension.

V T = 0.486 1 + 20 Eo (1 - 6.8 Eo ) 1 -0.96e -0.0165Eo 1 -0.52e -0.0165Eo (2.36)
Viana et al. [START_REF] Viana | Universal correlation for the rise velocity of long gas bubbles in round pipes[END_REF] summarized experimental data in the literatures and 7 new experiments.

A new correlation has been proposed. For a fixed Eötvös number, the Froude number depends on the buoyancy Reynolds number, Re D = (D 3 g∆ρ C ) In the transition region (10 < R D < 200), the equation becomes In our study, we find that the equation (2.39) can be applied to the region of large R D (>200) and small R D (<10).

V T = L[R D ; A, B, C, G] = A (1 + (R/B) C ) G gD (2.
Mandal, Das, and Das [START_REF] Mandal | Liquid Taylor bubbles rising in a vertical column of a heavier liquid: An approximate analysis[END_REF] proposed a semi-empirical equation based on the experiments of liquid-liquid bubble rising. Therefore, their correlation takes the density and viscosity of the dispersed phase into account.

V T = 0.3507 ρ C -ρ D ρ C gD 1 - -1 + √ 1 + 2N D N D (2.40) where N = [1.81 (ρ C -ρ D )ρ C µ 2 C g] 1/3 (2.41)
For large buoyancy Reynolds number (Re D > 200), they considered the effect of interfacial tension using a correction as [START_REF] Wallis | One-dimensional two-phase flow[END_REF]. Equation (2.40) is corrected by multiplication with following term:

1 (1 + 3805 Eo 3.06 ) 0.58 (2.42)
Hayashi, Kurimoto, and Tomiyama [START_REF] Hayashi | Terminal velocity of a Taylor drop in a vertical pipe[END_REF] proposed a more general correlation for the Taylor drop. This correlation covers wide range of conditions, i.e. 0.002 < Re D < 4960, 4.8 < The equation agrees with the experimental data of White and Beardmore [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] within a ±10%

Eo D < 228, 0 ≤ µ * ≤ 70, 1 < N f <
error.

A special region in Fig. 2.5 needs further investigation, which is the region Eo < 4. White

and Beardmore [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] stated that the bubble will not rise when Eo < 4. Others have shown similar results. Bretherton [START_REF] Bretherton | The motion of long bubbles in tubes[END_REF] gave Eo < 3.37, Barr [START_REF] Barr | XXXI. The air-bubble viscometer[END_REF] Eo < 5.8, Bendiksen [START_REF] Kjell | On the motion of long bubbles in vertical tubes[END_REF] Eo < 4.7. The correlations (2.39, 2.43) also show that the rise velocity decreases as the Eo number decreases.

In fact, these bubbles are with large surface tensions but in small tubes. They may stick on the pipe preventing draining [START_REF] Funada | Ellipsoidal model of the rise of a Taylor bubble in a round tube[END_REF]. Anther study could prove this theory. Bi and Zhao [START_REF] Bi | Taylor bubbles in miniaturized circular and noncircular channels[END_REF] studied the Taylor bubble in miniaturized circular and non-circular channels. They found that for the triangle and rectangular channels, elongated bubbles always rise upward even though the hydraulic diameter of the tube is 0.866 mm. Whereas, the bubble stopped in circular tubes when D < 2.9 mm. Funada et al. [START_REF] Funada | Ellipsoidal model of the rise of a Taylor bubble in a round tube[END_REF] pointed out that surface tension cannot close the sharp corners where drainage can occur.

Falling film

The studies on the falling film around a Taylor bubble follow previous work on general falling films. The most representative theoretical analysis on the falling film of viscous liquid is proposed by Nusselt [START_REF] Nusselt | Die Oberflachenkondesation des Wasserdamffes[END_REF]. He derives a solution for the film thickness.

λ = [ 3µ 2 C 4ρ 2 C g Re f ] 1/3 (2.45)
where λ is the film thickness, Re f = 4ρ C λV f /µ is the film Reynolds number. V f is liquid velocity in the liquid film. This model is applicable for laminar film flow. If Re f > 1000, the model under predicts film thickness due to the turbulent transition in the falling film.

For dealing with the falling film around a Taylor bubble, we define a dimensionless film thickness λ = λ/r. The thin-film theory can be applied. When the film is thin (λ → 0), we can assume that the bubble Reynolds number (Re b = ρ C V T D b /µ) equals the film Reynolds number (Re f ). The equation (2.45) becomes:

λ = [ 6Re b N 2 f ] 1/3 = [ 6Fr N f ] 1/3 (2.46)
The film thickness λ can be expressed as a function of N f . The upper limit for N f in equation (2.46) is 3000. Dukler and Bergelin [START_REF] Dukler | Characteristics of flow-in falling liquid films[END_REF] proposed a correlation for laminar-to-turbulent flow.

Re b = 4η(3 + 2.5lnη) -256 (2.47)
where η can be rewritten in terms of the inverse viscosity and the dimensionless film thickness ( i.e., η = N f (0.5λ ) 1.5 ). Brown [START_REF] Brown | The mechanics of large gas bubbles in tubes: I. Bubble velocities in stagnant liquids[END_REF] proposed a more general quadratic solution based on the constant Froude number assumption.

λ = 2 1 + 2.44N 2/3 f -1 2.44N 2/3 f (2.48)
Llewellin et al. [START_REF] Llewellin | The thickness of the falling film of liquid around a Taylor bubble[END_REF] proposed a model that avoids both the thin-film and the constant Froude number assumption. They call it the 'Cubic Brown' model.

λ 3 + aλ -a = 0, where a = 6Fr/N f (2.49)
This results is based upon the assumption of laminar flow and valid for N f < 3000. There are a few empirical correlations proposed based on the experiments or simulations [START_REF] Karapantsios | Longitudinal characteristics of wavy falling films[END_REF][START_REF] Lel | Local thickness and wave velocity measurement of wavy films with a chromatic confocal imaging method and a fluorescence intensity technique[END_REF][START_REF] Kang | Numerical study of a Taylor bubble rising in stagnant liquids[END_REF].

We summarized these equations in table (2.1) [START_REF] Dukler | Characteristics of flow-in falling liquid films[END_REF] Re

b = 4η(3 + 2.5 ln η) -256 1500 < N f < 9000 η = N f [ λ 2 ] 3/2 Lel et al. [59] λ = 2+0.641Re 0.47 b N 2/3 f 40 < N f < 9000
Karapantsios and Karabelas [START_REF] Karapantsios | Longitudinal characteristics of wavy falling films[END_REF] 

λ = 0.451Re 0.538 b N 2/3 f 9000 < N f < 44000
Brown [START_REF] Brown | The mechanics of large gas bubbles in tubes: I. Bubble velocities in stagnant liquids[END_REF] Equation (2.48) 120 < N f Kang, Quan, and Lou [START_REF] Kang | Numerical study of a Taylor bubble rising in stagnant liquids[END_REF] λ = 0.64N -0.2 f 10 < N f < 450 Llewellin et al. [START_REF] Llewellin | The thickness of the falling film of liquid around a Taylor bubble[END_REF] Equation (2.49) laminar

Another issue related to falling film is the length of the developing film (Z * ). If film developing length is greater than Z * , the radial component of the film velocity approximately reaches zero. The Z * is estimated to be about 2.2D for stagnant liquid and about 3.6D for cocurrent flowing liquid [START_REF] Nogueira | Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids[END_REF]. A theoretical estimate of the length Z * is reported by [START_REF] Jblm Campos | An experimental study of the wake of gas slugs rising in liquids[END_REF].

Z * D = [(gρ C δ/2µ C ) + V T ] 2 2gD (2.50)
This equation was deduced supposing unidirectional flow in a liquid film and applying Bernoulli's equation along the free surface streamline. Araujo et al. [START_REF] Araujo | Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids[END_REF] summarizes the simulation data and reports that Z * /D depends only on the inverse viscosity number (N f ). The expression is as follows:

Z * D = 1.033 for N f < 90 (2.51) Z * D = 7.494 -1 ln N f -2.315 for N f > 90 (2.52)

Bubble nose

The bullet-shape is the main characteristic of the Taylor bubble. The shape of the bubble nose is closely related to the liquid film and the bubble terminal velocity. Dumitrescu [START_REF] Dumitru | Strömung an einer Luftblase im senkrechten Rohr[END_REF] provided the first analyses on bubble nose shape based on potential flow. The nose profile divides into two regions, the nose region and the film region:

( z D ) = 0.375[1 -1 -7.112( r D ) 2 ], z D ≤ 0.25 (2.53) 
where z is the location starting from the tip of the bubble. D is the tube diameter.

( z D ) = 0.0615 (1 -4(r/D) 2 ) 2 , z D > 0.25 (2.54)
This equation shows where the bubble nose developed to a stable liquid film. The critical distance is Z = 0.25D. The values may change base on different experimental operational conditions. Bugg and Saad [START_REF] Bugg | The velocity field around a Taylor bubble rising in a stagnant viscous fluid: numerical and experimental results[END_REF] obtained Z = 0.3D. Polonsky, Barnea, and Shemer [START_REF] Polonsky | Averaged and time-dependent characteristics of the motion of an elongated bubble in a vertical pipe[END_REF] report that Z = 0.66D. Whereas, Z = 0.55D from [START_REF] Van Hout | Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water[END_REF].

Araujo et al. [START_REF] Araujo | Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids[END_REF] provide a correlation base on the simulation data:

• For lower N f , the Z /D are almost independent of Mo and N f . Z /D = 0.483

• For Mo between 1.64 × 10 -2 and 104, Z /D = 2.46 × 10 -2 ln N f + 0.393. For Mo = 4.72 × 10 -5 , Z /D = 2.626 × 10 -2 ln N f + 0.373.
For a better representation of the nose shape, the estimated nose curvature radius (R f )

was defined, which is also called frontal radius. Araujo et al. [START_REF] Araujo | Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids[END_REF] report a simple correlation R f = 0.794(D/2δ). This value almost independents of other parameters. Brown [START_REF] Brown | The mechanics of large gas bubbles in tubes: I. Bubble velocities in stagnant liquids[END_REF] reported a similar result, R f = 0.75(D/2δ).

Numerical simulations

The main objective of the simulation research on rising Taylor bubble are similar with that of experimental research. The simulation intends to predict the bubble shapes and the velocity of the bubble and the liquid around it. The advantage the numerical simulation is that it can cover a wide range of liquid and gas properties. On the contrary, the experimental studies are limited by the choice of the fluids. Another advantage of simulation is that it provides detailed flow field information. The advanced experimental techniques such as PIV provides data only on the liquid phase around the bubbles. But, the simulations can provide the field information on both phases. And yet, the experiments provide data to validate the numerical simulations.

The incompressible and laminar flow model are good approximations to simulate the Taylor bubble. The observations in experiments have shown that the velocities of both liquid and gas phase are in the range of laminar flow.

The early simulation of the Taylor bubble is presented by Mao and Dukler [START_REF] Mao | The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid[END_REF]. The simulation is only performed on the liquid phase. The strategy is rather simple. Firstly, solve the flow field around the Taylor bubble with an initially assumed shape and terminal velocity.

Secondly, adjust the bubble shape based on the obtained the velocity field. The new bubble shape also satisfies the balance of the normal stress at the interface of the bubble. Finally, a new bubble terminal velocity can be obtained. Repeat above steps, the final converged velocity field and bubble shape can be obtained.

Tomiyama et al. [START_REF] Tomiyama | Numerical analysis of bubble motion with the VOF method[END_REF] simulated the Taylor bubble rising with the VOF method. The study shows that simulation could successfully predict the terminal shape of the bubble. The simulation could give appropriate predictions for the influence of the Mo and Eo numbers.

Bugg, Mack, and Rezkallah [START_REF] Bugg | A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes[END_REF] presented 9 cases of the numerical simulation results which covered 10 ≤ Eo ≤ 100 and 10 -12 ≤ Mo ≤ 10. The simulation uses in a finite difference framework with the VOF method to capture the interface. The results is obtained on a 25 × 400 uniform axisymmetrical mesh. The length of the calculation domain is 8D. Grid independent test shows that 25 cells in the radical direction are enough to guarantee grid convergence. The gas volume was initially πD 3 /3 which assure that the sure bubbles are at least 2D long. Two initial shapes had been tested. The results show that initial shape of the bubble affects only its temporal evolution and not the final shape.

Ndinisa, Wiley, and Fletcher [START_REF] Ndinisa | Computational Fluid Dynamics Simulations of Taylor Bubbles in Tubular Membranes: Model Validation and Application to Laminar Flow Systems[END_REF] have chosen fluid properties and pipe diameter to yield the dimensionless numbers as follows: Eo = 100, Mo = 0.015 and Re D = 27. The simulation is performed with the software CFX 5.6. The results agreed well with the experimental data.

The study also showed that the need for extremely fine computational meshes for this type of flow, because the velocity gradients around the bubble nose and tail are very high. The simulation also shows that there are no significant oscillations in the wall shear stress at the wake regions. This does not agree with the results presented by Taha and Cui [START_REF] Taha | Hydrodynamic analysis of upward slug flow in tubular membranes[END_REF]. Lu and Prosperetti [START_REF] Lu | A numerical study of Taylor bubbles[END_REF] studied the Taylor bubbles rising in the vertical tube filled with a quiescent and upward or downward flowing liquid. They also studied the bubble behavior when a sudden pressure drop occurs above the bubble. There is a strong effect on the rising velocity and the bubble volume during the transient. Taha and Cui [START_REF] Taha | CFD modelling of slug flow in vertical tubes[END_REF] simulated the bubble motion 10 -100 VOF Son [START_REF] Son | A numerical method for incompressible two-phase flows with open or periodic boundaries[END_REF] 2.5 ×10 -7 , 2.5 ×10 -11 84 Level-set Taha and Cui [START_REF] Taha | CFD modelling of slug flow in vertical tubes[END_REF] 4.7×10 -5 -8.0 5 -300 VOF Zheng, He, and Che [START_REF] Zheng | CFD simulations of hydrodynamic characteristics in a gas-liquid vertical upward slug flow[END_REF] 1×10 -14 -1×10 -2 158, 160.2, 63.5, 4.23 VOF Feng [START_REF] James Q Feng | Buoyancy-driven motion of a gas bubble through viscous liquid in a round tube[END_REF] 1.6 -2 -5.2 339.43 -5984 Boundary fit Lu and Prosperetti [START_REF] Lu | A numerical study of Taylor bubbles[END_REF] 1.8×10 -8 -1.6 ×10 -2 15 -74.6

Front tracking Kang, Quan, and Lou [START_REF] Kang | Numerical study of a Taylor bubble rising in stagnant liquids[END_REF] 2.09 ×10 -4 -836 122-203 Front tracking Araujo et al. [START_REF] Araujo | Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids[END_REF] 4.72 ×10 -5 -104 6-900 VOF in both stagnant and flowing liquids. The simulation is performed in 3D. The results show that small bubbles were sheered off from the tail due to the liquid jet coming down from the annular film. They found that the wake region depends on the N f . When N f ≤ 500, the wake is composed of two closed toroidal vortices which are axi-symmetric. When 500 ≤ N f ≤ 1500, the bubble tail is nearly flat. The wake tends to lose symmetry around the tube axis. At N f ≥ 1500, the bubble wake opens and turbulent eddies are shed from the main bubble wake.

Kang, Quan, and Lou [START_REF] Kang | Numerical study of a Taylor bubble rising in stagnant liquids[END_REF] adopted the front tracking methodology to investigate the behavior of a Taylor bubble rising in stagnant liquids. They found that Eo and N f number play a significant role in determining the elongation of the tail and the wake structures. Araujo et al.

[10] simulated a wide-range of the Taylor bubble rising corresponding to experimental data [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF]. They have investigated the bubble terminal velocity, the development of the liquid film and the wake region. The simulation is carried out by the Fluent software. Araujo, Miranda, and Campos [START_REF] Araujo | Simulation of slug flow systems under laminar regime: Hydrodynamics with individual and a pair of consecutive Taylor bubbles[END_REF][START_REF] Araujo | Flow of two consecutive Taylor bubbles through a vertical column of stagnant liquid -A CFD study about the influence of the leading bubble on the hydrodynamics of the trailing one[END_REF] simulated a pair of consecutive Taylor bubbles. The results reveal the process of two bubbles approaching.

Experimental studies

Mao and Dukler [START_REF] Mao | The motion of Taylor bubbles in vertical tubes. I. A numerical simulation for the shape and rise velocity of Taylor bubbles in stagnant and flowing liquid[END_REF][START_REF] Mao | The motion of Taylor bubbles in vertical tubes-II. Experimental data and simulations for laminar and turbulent flow[END_REF] studied single Taylor bubbles in a vertical test column. The pipe diameter is 50.8 mm. The measuring section was located 6.68 m above the inlet air nozzle. The numerical method can reliably predict the flow surrounding the Taylor bubble. The numerical simulation also suggests that the rise velocity of a Taylor bubble is essentially independent of viscosity and surface tension for high Re D (Re D > 1850).

Polonsky, Shemer, and Barnea [START_REF] Polonsky | The relation between the Taylor bubble motion and the velocity field ahead of it[END_REF] using two experimental techniques to measured the Taylor bubble motion in a vertical transparent Perspex pipe. The diameter of the pipe is D = 25 mm and about 4 m (170D) long. Digital image processing is used for the bubble's propagation velocity and shape, while the particle image velocimetry technique is employed for measuring the flow field around the bubble. The results show that negative velocity is observed in front of the Taylor bubble tip. Polonsky, Barnea, and Shemer [START_REF] Polonsky | Averaged and time-dependent characteristics of the motion of an elongated bubble in a vertical pipe[END_REF] used the same experimental setup and measured the flow field at the tail of the Taylor bubble. The bottom of the bubble has notable oscillations, which is strongly dependent on the bubble length.

Van Hout et al. [START_REF] Van Hout | Experimental investigation of the velocity field induced by a Taylor bubble rising in stagnant water[END_REF] investigated the instantaneous velocity fluctuations around the bubble rising in the water. They found that the averaged velocities become negligible at 0.5D from the bubble nose and at 12D from the bubble tail. Whereas, the instantaneous velocity were found to exist up to 50D from the bubble tail. 

Bubble motion through expansions and contractions

The changing geometry is widely seen in industry applications. There is relatively few literature investigating this case. Here, we review the results in the literature for the bubble or slug flow in the vertical tube with singularities. And then we show its applications.

Expansions

We have reviewed a variety of topics about the rising Taylor bubble. Much research has been done on these topics. But, there are few of them investigating the Taylor bubbles encountering a change of pipe diameter. Ambrose et al. [5] simulated the bubble rising through expansion. The results were validated with the experiments of [START_REF] James | Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in lowviscosity magmas[END_REF]. They investigated the variation of the angle of the expansion. The expansion angle (θ) varies from 15 • to 90 • . The expansion ratio is 2.1. The initial bubble length is 4.4D. They found that, as θ is decreased, larger volumes of bubble pass through the expansion before splitting into two. For a fixed θ, a critical bubble length can be defined. If the bubble length is less than the critical length, the bubble passes the expansion and remains intact. The study of the expansion ratio shows that the ratio is approximately 2.6, the upper pipe has no effect on the critical length of the bubble.

Rinne and Loth [START_REF] Rinne | Development of local two-phase flow parameters for vertical bubbly flow in a pipe with sudden expansion[END_REF] measured bubbly flow in a pipe with sudden expansion (from 40 to 90 mm). A dead region can be found downstream where no bubbles are detected. The experiment shows that the flow downstream has a sudden disturbance and the bubbles redistribution along the pipe.

Other numerical simulations about the pipe flow with expansion or contraction in a horizontal configuration are presented in [START_REF] Ueda | Numerical Simulation of Gas-Liquid Two-Phase Flow in a Horizontally Placed Hydrophobic Rectangular Channel (Part 1, Influence of Abrupt Expansion)[END_REF]. The flow was in a flat rectangular channel. The simulation found that the downstream flow pattern is bubble fragments when the gas superficial velocity is lower. In addition, increasing the gas injection, an annular-like flow pattern can be found.

Contractions

Chen et al. [START_REF] Ing Youn | Two-phase flow pressure change subject to sudden contraction in small rectangular channels[END_REF] for the pressure drop in sudden contractions has been proposed. The correlation has great accuracy. The mean absolute error is around 12 % and the mean relative error is 0.7 %.

Ueda et al. [START_REF] Ueda | Numerical Simulation of Gas-Liquid Two-Phase Flow in a Horizontally Placed Hydrophobic Rectangular Channel (Part 1, Influence of Abrupt Expansion)[END_REF] performed a simulation for contraction, the results seemed to be a similar nature against the experimental result.

Kaushik et al. [START_REF] Kaushik | CFD simulation of core annular flow through sudden contraction and expansion[END_REF] perform a numerical study on the core annular flow through sudden contraction and expansion. The study provides detailed information on the profiles of velocity, pressure and volume fraction over a wide range of oil and water velocities for an abrupt expansion and contraction. The simulation results were compared to the experimental the results in [START_REF] Balakhrisna | Oil-water flows through sudden contraction and expansion in a horizontal pipe -Phase distribution and pressure drop[END_REF]. Generally speaking, the simulation could enhance the physical insight into this phenomenon.

To our knowledge, there is no previous work about the Taylor bubble rising through the contraction. The bubble behavior in the contraction is still unclear. However, a few applications exist. A brief introduction will be carried out in the next section.

Applications

Photobioreactors A photobioreactor can be described as an enclosed, illuminated culture vessel designed for controlled biomass production [START_REF] Singh | Development of suitable photobioreactor for algae production-A review[END_REF]. It is often made up as a transparent tube. The gas is injected at the bottom. The gas bubble rises in the tube, filled with algae. The photosynthesis produce O 2 from injected CO 2 . The objective of the reactor design is increasing the mass transfer rate and quickly remove the O 2 produced by the algae.

Tsoglin et al. [START_REF] Ln Tsoglin | Closed photobioreactors for microalgal cultivation[END_REF] suggested a few points to be taken into consideration while designing the photobioreactor. Here, we restate the points related to two-phase bubble flow:

• High rates of mass transfer must be attained by means that neither damage the cultured cells nor suppress their growth.

• The reactor should work with intensive foaming.

• The mircoalgae are highly adhesive. The reactor must prevent or minimize the fouling of the reactor.

The photobioreactor has two sorts of design: bubble column and airlift photobioreactor. The design of the bubble column reactor has lower capital cost than airlift reactor. It consists of the cylindrical vessel with a height greater than twice the diameter. Airlift reactors have two interconnecting parts. One vessel is used for gas mixture and reaction. Another one is downcomer which has no gas. The residence time of gas in various zone affects the performances of the reactor. The reactor has been modified into many shapes in order to boost its efficiency, such as putting sparger into the tube, using a rectangular tube. The disadvantage is that its complexity increases in scale-up [START_REF] Janssen | Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects[END_REF]. In the study of Yoon, Choi, and Park [START_REF] Jong Hyun Yoon | The cultivation of Anabaena variabilis in a bubble column operating under bubbly and slug flows[END_REF], they investigated the effect of bubble shapes on the growth of cyanobactetria cells in a photobioreactor.

The growth rate of cells under slug flow was higher than that under bubbly flow after the cell entered the deceleration phase. They also concluded that the bubble shape in the slug flow was advantageous with regard to the radial circulation of cells. Therefore, larger bubble slug in the airlift reactors may improve their efficiency. The investigation on the slug behavior has great importance for better designing the reactors.

Volcanology

Seismic signals are obtained from low-viscosity magmas flow. Those signal sources are often attributed to dynamic fluid processes [START_REF] James | Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in lowviscosity magmas[END_REF]. The instigation of acoustic sources applicable

Gas input

Gas output to low-viscosity magmas can be studied by laboratory experiments. James et al. [START_REF] James | Pressure changes associated with the ascent and bursting of gas slugs in liquid-filled vertical and inclined conduits[END_REF] investigated the bursting of gas slugs in liquid-filled vertical and inclined conduits. The experiments were carried out in a vertical straight tube. At the greater depth of magmas, the magma pathways are more likely to be an individual or array of dikes. This suggests that changes in conduit size, shape and angle are likely to be better the representation of the real situation in the experimental investigation.

Sparger

Gas input

Gas output

An example of the slug flow linked with the volcano eruptions behavior is Strombolian volcanoes. It is a relatively small-scale explosive eruption. This phenomenon is widely accepted to be caused by bubble coalescence leading to the formation of Taylor bubbles. The Taylor bubble forms in the great depth of the conduit. When it approaches the lava lake, it undergoes a large expansion to the reservoir. The diagram is shown in Fig. 2.7. Bouche et al.

[21] pointed out the Taylor bubbles rising into reservoir may provide hot magma from depth which is entrained in their wake and drive convection currents. James, Lane, and Chouet [START_REF] James | Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in lowviscosity magmas[END_REF] showed that it is possible to monitor the lava activity from distance by analyzing acoustic data from the bubble break up in the expansion conduit.

Chapter conclusion

A review of the two-phase flow, bubble rising, Taylor bubble in vertical tube and bubble through the contractions and expansions are presented. Both experimental and simulation works are devoted to this research area. A few conclusions can be drawn from the literature review:

• Existing numerical methods have proven to be sufficiently accurate for simulating the simulations related to bubble behavior under a variety of conditions. The simulation results have been validated with the experimental data.

• The Taylor bubble rising in the vertical tube has been investigated thoroughly. Both the numerical and experimental studies have been devoted to this subject. Detailed information about the bubble has been provided, for example, the bubble terminal velocity, the filling film, the shape of the bubble nose, etc. The motion of the Taylor bubble in the straight tube is very well known.

• The investigation about Taylor bubbles rising through expansions is very limited. The investigations on the Taylor bubble only presented its terminal motion in straight pipe.

The bubble transitional behaviors in the expansion are unclear.

• The bubble rising through the contractions is still an unknown area. A few studies have investigated the slug flow in the contractions. However, bubble motion encountering the contraction in a quiescent liquid is unknown and needs to be investigated.

• The literature review on two-phase flow clarified the background of the present study.

We will focus on the Taylor bubble rising in expansions and contractions. 

Numerical model and validations

Gerris is a free software to solve the partial differential equations governing two-phase fluid dynamic problems. The source code is available online under the GPL license. This software is used for the simulations in this thesis.

The software solves the time-dependent incompressible Navier-Stokes equations. It also contains the VOF algorithm for interfacial flows. Another great advantage of this software is the Adaptive Mesh Refinement (AMR) algorithm which can adapt the resolution dynamically according to the features of the flow.

The objective of this chapter is to give a brief introduction of this solver, and to validate its ability and accuracy for the two-phase flow of interest in this work. This chapter is organized as follows. Firstly, the governing equations used in the presented simulations are introduced.

Secondly, a simulation of single-phase flow is presented for validation purpose. Finally, a comprehensive simulation on the single bubble rising is carried out for testing the software for two-phase flows.

Introduction of the numerical solver

Governing equations

Gerris solves the incompressible Navier-Stokes equations:

∇ • U = 0 (3.1) ρ ∂U ∂t + ρ(U • ∇)U = ∇ • (µ(∇U + ∇U T )) -∇p + ρf (3.2)
where U is the velocity, p is the pressure, ρ and µ are the density and viscosity of the fluid, respectively, f indicates any body forces acting on the fluid. Above equations can be rewritten in dimensionless form. First, the dimensionless variables are defined as follows:

ū = u/U 0 , v = v/U 0 , w = w/U 0 , x = x/L, ȳ = y/L, z = z/L, t = tU 0 /L, p = p/ρU 2 0 , ρ = ρ/ρ 0 , μ = µ/µ 0
where the variables which have subscript 0 are the reference value, and L is the reference length. Thus, the dimensionless form of the Navier-Stokes equations are

∇ • Ū = 0 (3.3) ρ ∂ Ū ∂ t + ρ( Ū • ∇) Ū = 1 Re ∇ • (μ( ∇ Ū + ∇ ŪT )) -∇p + ρf (3.4)
where the last term ρf ( f = f L/U 2 o ) can be considered as a general source term. The Reynolds number Re is ρ 0 U 0 L/µ 0 . The choice of the characteristic variables depends on the problem itself. But, the dimensionless equations could simplify the implementation of the software.

Numerical method for solving the incompressible Navier-Stokes equations

Basics of the projection method

Chorin [START_REF] Joel | Numerical solution of the Navier-Stokes equations[END_REF][START_REF] Joel | On the convergence of discrete approximations to the Navier-Stokes equations[END_REF] has developed a practical numerical method based on a discrete form of the Hodge decomposition. This method is known as the projection method. The main idea is to calculate an intermediate velocity field and, then, project to divergence-free fields. The final velocity fields are recovered by the continuous equation.

Here, for clarity of the description, we simplify the equation (3.4) as follows:

∇ • U = 0 (3.5) ∂U ∂t + A = D -∇p + f (3.6) A = (U • ∇)U (3.7) D = ∆U (3.8)
where = 1/Re. We assume that the density ρ and the viscosity µ are constants in the calculation region. Therefore, the dimensionless ρ and μ are equal to 1. And, we drop the bar above variables for clarity.

The fractional time scheme can be expressed in an explicit form. The time derivative of the momentum equation is discretized by a forward explicit scheme. The equation (3.6) becomes

U n+1 -U n ∆t + A n = D n -∇p n + f n (3.9)
The velocity at the end of the time step must be divergence free. Therefore,

∇ • U n+1 = 0 (3.10) • Prediction step
The pressure term is dropped from the momentum equation. And, an intermediate velocity (U * ) field is obtained.

U * -U n ∆t + A n = D n + f n (3.11) • Projection step
Find the pressure field coupled with velocity.

∇ 2 p = 1 ∆t ∇ • U * (3.12) • Correction step
Correct the velocity by adding the pressure gradient.

U n+1 = U * -∆t∇p (3.13)
This basic three steps projection method illustrated the main idea. But, this explicit method is only first-order accurate in time. It needs a restrictive time step to obtain acceptable accuracy. Kim and Moin [START_REF] Kim | Application of a fractional-step method to incompressible Navier-Stokes equations[END_REF] used the second-order-explicit Adams-Bashforth scheme for the convective terms and Crank-Nicolson for the viscous terms. Implicit treatment of the viscous terms eliminates the numerical viscous stability restriction. This method is second-order accuracy for the velocity. Further improvement of the projection method can be found in [START_REF] Bell | A second-order projection method for the incompressible navier-stokes equations[END_REF]4,[START_REF] Brown | Accurate Projection Methods for the Incompressible Navier-Stokes Equations[END_REF].

Projection method in the present study

The projection method in the solver is a classical time-fractional projection method [START_REF] Popinet | Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries[END_REF]. The method is based on the works of Bell, Colella, and Glaz [START_REF] Bell | A second-order projection method for the incompressible navier-stokes equations[END_REF] and Bell and Marcus [START_REF] John | A second-order projection method for variabledensity flows[END_REF] and is known as the BCG method. This method is second-order in time for both velocity and pressure. The advection term is computed using a Godunov procedure. The viscous term is treated implicitly, the same for the Kim and Moin [START_REF] Kim | Application of a fractional-step method to incompressible Navier-Stokes equations[END_REF]'s method.

Equation (3.11) is rewritten as:

U * -U n ∆t + A = D -∇p n-1/2 + f n (3.14)
where,

A = [(U • ∇)U] n+1/2 D = ∆( U n + U * 2 )
The advection term A approximates at 1/2 time levels to obtain second-order in time by using an explicit predict-corrector scheme [4]. The scheme is stable for a CFL number smaller than 1. Note that a half level pressure term is used in equation (3.14). It is treated as a source term and only updated at the 1/2 time level. The viscous term is discretized by the Crank-Nicolson scheme.

Adaptive Mesh Refinement

The Gerris solver employs a Quadtree/Octree structure to adapt the mesh. The hierarchical structures are shown in Figure 3.1. The adaptation proceeds in two steps. Firstly, refine the mesh by a user-defined criterion. Multiple criteria can be introduced, for example, the solid boundary, the vortex, the gradient temperature, etc. The mesh will be refined at a specific time step based on user's definition. Secondly, the solver will coarsen the mesh cells which do not satisfy the refinement criteria. The refinement procedure needs to interpolate values on the refined mesh. The values in children cells are calculated by a linear interpolation from their parent cell. The coarse procedure will take a mass-volumetric average from the children cells to the parent cells in order to maintain the local conservation. To simplify the calculations at cell boundaries between different level of the cells, Gerris introduces several constraints:

• The difference of level between direct-neighbor cells can not be bigger than 1;

• The difference of level between diagonal-neighbor cells can not be bigger than 1;

• All the cells directly neighboring a mixed cell must be at the same level;

The physical variables are collocated in the cell center. This type of arrangement is suitable for tree structure mesh. It is also simplifies the implementation of the Crank-Nicolson discretization of the viscous terms. The collocate mesh has a classical problem of decoupling between the pressure and velocity field. Gerris avoids this problem by carefully dealing with the projection step by using the approximate projection method [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF].

First, the auxiliary velocity field u * c is computed by equation (3.14). The auxiliary face velocity field u * f is calculated by interpolating the cell center value to the face. If the face connects different levels of the cells, the face value is calculated by averaging the values from the refined faces. This process can guarantee the consistency of the corresponding volume fluxes.

The divergence of the auxiliary velocity field is calculated by a finite-volume approximation.

∇ • u * = 1 V Σu * f • (a f n f ) (3.15)
where V is the volume of the cell, n f is the unit normal vector to the face, a f is the face area. After obtaining the auxiliary velocity field by the equation (3.15), the correction step is applied to the face-centered auxiliary field. This procedure makes the velocity on the facecenter divergence free. For the cell-centered velocity the correction step is given by:

u n+1 c = u * c -|∆t∇ f p n+1/2 | c (3.16)
The operator |.| c denotes the average over all the faces of the control volume. This procedure obtains a cell-center velocity field u n+1 c approximately divergence-free.

Volume-of-Fluid (VOF)

As we mentioned in Chapter 2, Gerris uses the Volume-of-Fluid (VOF) method to represent the interface. The basic notation is the same as described in Chapter 2. Here, we describe the method for advecting the volume fraction (c). Gerris adopted a geometrical approach to advect the c. This method is efficient and easy to implement for the Cartesian mesh. Since adaptation of the mesh is adopted in Gerris solver, a modified advection scheme to a quad/octree should be designed. As illustrated in Fig. 3.2, the total volume fraction in the left large cell will be advected to the right small cells. The flux will be calculated independently according to the size of the small cells. The volume fraction can be calculated as the area in the two dashed box in Fig. 3.2. The new c can be obtained in both coarse and refined cells.

Next, new interfaces should be reconstructed in the cells. The method used in Gerris is the Mixed-Youngs-Centred (MYC) method [START_REF] Aulisa | Interface reconstruction with least-squares fit and split advection in three-dimensional Cartesian geometry[END_REF]. As mentioned before, the method is one of the Piecewise Linear Interface Calculation (PLIC) methods. 

Surface tension calculation

Accurately predicting the surface tension is one of the most difficult problems in numerical simulation. The surface tension term (σκδ s n) can be added to equation (3.2) as an additional force.

In the context of VOF method, Brackbill, Kothe, and Zemach [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF] proposed the following approximation:

σκδ s n ≈ σκ∇c (3. 17 
)
) where κ = ∇•n is the surface curvature. σ is the surface tension coefficient. This approximation is called the continuum-surface-force (CSF). In order to recover exact discrete equilibrium between surface tension and pressure gradient, the approximations of both gradients should be compatible. On the other hand, accurately estimating the curvature κ is also necessary.

The naive implementations of the CSF method can easily break the compatibility. Therefore, Gerris applies the surface tension force to the auxiliary face-center velocity field u *

f u * f = u * f + ∆tσκ f ρ(c f ) ∇ f c (3.18)
The cell centered surface tension force to u can be obtained in the same way as equation (3.16).

u * c = u * c + | ∆tσκ f ρ(c f ) ∇ f c| c (3.19)
The subscript f indicates the face center value and c is the cell center value. The operator || c denotes the average over all the faces of the cell, which is the same as the one used for the pressure gradient in equation (3.16).

Height function

The height function method is used for estimating the curvature of an interface [START_REF] Cummins | Frontier of Multi-Phase Flow Analysis and Fluid-Structure Frontier of Multi-Phase Flow Analysis and Fluid-Structure[END_REF]. For example, the height function of a continuous line f (x) can be define as:

H(x; h) = 1 h x+h/2 x-h/2 f (x)dx (3.20) 
The normal vector and curvature can be written as

n = 1 [1 + (H x )] 1/2 (H x , 1) (3.21) κ = -∇ • n = H xx [1 + (H x ) 2 ] 3/2 (3.22)
A standard height function in 2D Cartesian grids is proposed by Cummins, Francois, and Kothe [START_REF] Cummins | Frontier of Multi-Phase Flow Analysis and Fluid-Structure Frontier of Multi-Phase Flow Analysis and Fluid-Structure[END_REF]. Firstly, choose a stencil centered on the cell where the curvature is needed to calculate. The size of the stencil usually 3×7 or 7×3 blocks in 2D. The orientation of the stencil should be aligned with the interface normal direction. Secondly, build the height function on each column of the stencil. The function could be y = H(x) or x = H(y), which depends on the orientation of the stencil. Finally, the curvature can be estimated from equation (3.22).

Improvement of the method and generalization to the quad/octree mesh can be found in [START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF][START_REF] Sussman | Improvements for calculating two-phase bubble and drop motion using an adaptive sharp interface method[END_REF].

Parallelization

Parallelization is important for the large-scale computational problem. The parallelization of Gerris is built on the MPI (Message Passing Interface) library. Gerris only allows coarse-grain parallelism where the smallest parallel subdomain is an entire quad/octree. The whole calculation domain consists of multiple quad/octrees. The distribution of the tree data structure have two cases:

The two neighboring trees are located on the same processor. The connection of the tree is matching the memory pointers. The memories are shared on the same processor. Therefore, all operations on the multiple trees can be treated as a single tree.

If the two neighboring trees located on different processors. Ghost layers are needed for transfer of information between the processors. The ghost layers nodes are defined independently and "stitched" on the trees, which are often used for defining the boundary conditions.

In the parallel case, the ghost layer is considered as a parallel boundary condition which swaps the data through MPI_Send and MPI_Recv functions.

The details of the parallelization in Gerris are reported in [2]. We used Gerris on a cluster.

The real performance needs to be tested and results will be present in the following sections.

Basic test cases

Error quantification

The relative error norms can be measured against suitable reference solutions. The three relative error norms are defined as:

e 1 = n i=0 |q i,ref -q i | n i=0 |q i,ref | (3.23) 
e 2 = ( n i=0 |q i,ref -q i | 2 n i=0 |q i,ref | ) 1 2 (3.24) e ∞ = max|q i,ref -q i | max|q i,ref | (3.25)
where q i is the temporal evolution of quantity q. The choice of the quantity q and the reference q ref depends on each test case. Additionally, the rates of convergence (ROC) can be numerically calculated by considering the error e h , obtained with grid spacing h, and e h/2 at finer grid. It can be calculated as

ROC = ln( e h / e h/2 ) ln(h/(h/2)) (3.26)

Lid-driven cavity

The lid-driven cavity is a classical fluid dynamics problem which has been investigated by many researchers. Pioneer works [START_REF] Ukng Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF][START_REF] Schreiber | Driven cavity flows by efficient numerical techniques[END_REF] presented results of the steady state solutions, which are often taken as benchmark solutions for the numerical solvers.

The problem is described as the solution of the unsteady incompressible Navier-Stokes equations in a unit square Ω = (-0.5, 0.5) × (-0.5, 0.5) (Fig. 3.3). Only the velocity u on top boundary Γ 3 equals to 1. The other velocity boundaries are Dirichlet boundary conditions and equal to 0. The initial velocities and pressure fields are equal to 0. The flow will be driven by the lid as time advanced. Here, we consider that steady state is achieved when the difference of U (=||u||) between the present step and 10 steps before is less than 1 × 10 -5 . We take this test problem to verify the Gerris solver for the single phase flow.

-0.5 0 0.5 x -0.5 Ghia, Ghia, and Shin [START_REF] Ukng Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF] presented the u-velocity along the vertical line through the geometric center of the cavity and the v-velocity along the horizontal line through the geometric center of the cavity. We choose two test cases (Re = 100, Re = 1000) comparing the results with those obtained with the Gerris solver in Fig. 3.5. The solver obtained results close to those presented in [START_REF] Ukng Ghia | High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method[END_REF]. The velocity convergence rates are shown in Fig. 3.4. It is clear that the convergence rate on this problem is close to second-order, except on the finest grid. Furthermore, we investigated the convergence rates for the pressure field. Botella and Peyret [START_REF] Botella | Benchmark spectral results on the lid-driven cavity flow[END_REF] presented the pressure field at Re = 1000, Fig. 3.6. Figure 3.6(b) shows that the pressure convergence rate is also second-order. The solver can handle this test problem very well. Next, we will test the performance of this solver for two-phase flow problems.
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Bubble rising in stagnant liquid

Benchmark test cases

This section describes the setup for the test cases for two-phase flow presented in [3] and [START_REF] Hysing | Quantitative benchmark computations of two-dimensional bubble dynamics[END_REF].

The domain Three benchmark quantities describe the temporal evolution of the bubbles. The quantities defined specially for the bubbles are: • Point quantities: Various points can be used for tracking the translation of bubbles. Commonly, the centroid (center of mass) is used, defined by

Ω = [0, 1] × [0,
X c = (x c , y c ) = Ω 2 Xdx Ω 2 1dx (3.27)
where Ω 2 denotes the region that the bubble occupies. The (x c , y c ) is the coordinate of bubble centroid.

• Circularity:

Φ = P a P b = perimeter of area-equivalent circle perimeter of bubble = πD a P b (3.28)
Here, P b denotes the perimeter of a circle with diameter D a , which has an area equal to that of a bubble with perimeter P b . For a perfectly circular bubble, the circularity will be equal to 1.

• Rise velocity: The mean velocity of the bubble rising is a particularly important quantity, defined as

U c = (u c , v c ) = Ω 2 Udx Ω 2 1dx (3.29)
where Ω 2 denotes the region that the bubble occupies.

Results of the test case 1

Figure 3.8 shows the evolution of the bubble with time for the finest grid (h = 1/256). The bubble is initially circular. Then, it stretches horizontally. Finally, it evolves to a stable oval shape.

We first carry out mesh dependency tests. All computations were performed on uniform regular grids with cell sizes h = 1/ [START_REF] John | A second-order projection method for variabledensity flows[END_REF][START_REF] Cummins | Frontier of Multi-Phase Flow Analysis and Fluid-Structure Frontier of Multi-Phase Flow Analysis and Fluid-Structure[END_REF][START_REF] Mandal | Liquid Taylor bubbles rising in a vertical column of a heavier liquid: An approximate analysis[END_REF]128,256]. At first, we show the bubble shape at t = 3 of different resolutions. Figure 3.9 shows that the final bubble shape is not changing too much with different meshes. The reconstructed segments from the VOF method are not connecting, in particular for the coarse mesh. Increasing the meshes resolution could remedy this problem. Merely from observing the bubble shapes, it is hard to tell the accuracy on each grid. We should use the previously defined benchmark quantities, equations (3.27), (3.28) and (3.29).

Figure 3.12 shows the center of mass evolving with time. There are no significant differences between the different grids. Figure 3.13 depicts the circularity of the bubbles. It is possible to observe some deviations on the coarsest grid (h = 1/16). The piecewise linear VOF can not represent curvature accurately on the coarse grid. As shown in Fig. 3.13, the circularity converges well on finer grids (h < 1/128). The time evolutions of rising velocity are shown in Fig. 3.14. The rise velocity reaches its maximum value then becomes stable. The rise velocity and the centroid converge well at different mesh resolution. These two quantities do not depict the bubble shape. Since the VOF method conserves the mass very well, the total quantity of the color function is the same at different resolutions. Therefore, the rise velocity and the centroid are not affected by the mesh resolution in this case.

Results of the test case 2

The simulation setup for case 2 is similar to case 1, except for the fluid properties. In test case 2, the decrease in surface tension causes the bubble to evolve to a non-convex shape with filaments. The bubble will form a skirt shape on the rear the bubble. Without experimental results, it is still unclear whether the bubble filaments would break off in this condition. In [3], the filaments become very thin, but they do not break off. In [START_REF] Hysing | Quantitative benchmark computations of two-dimensional bubble dynamics[END_REF], the trailing filaments do shows the bubble evolving with the time. The filaments elongate at both sides of the bubble rear. Then, the filaments break off.

The center of mass for test case 2 is shown in Fig. 3.12. The position of the bubble at finer mesh (h=1/256) is higher than the others with coarse meshes. As shown in Fig. 3.11, more bubbles fluid with lower resolution is trapped into the tail filaments. The distribution of c affects the position of the center. Even though, the position of the bubble converges to the results with finer grids. In Fig. 3.13, the circularities at different resolutions do not converge to a constant value. The bubbles have their own shapes at different meshes, especially the tail shapes.

Figure 3.14 shows the rising velocity of the bubbles with different meshes. The velocities have slight fluctuations because of the formation of the tails. However, the velocity trend converges for higher resolutions.

We have compared the results obtained by Gerris with the data presented in [3] and [START_REF] Hysing | Quantitative benchmark computations of two-dimensional bubble dynamics[END_REF].

0.8 0.9 The results show a good agreement with [3] for both test cases. The detailed comparison can be found in appendix A. The comparison shows that the errors are large for lower mesh resolutions. The different methods have different performances at lower mesh resolutions, whereas increasing the grid resolutions reduces the errors. The different methods converge to the same result at finer mesh.

To quantify the accuracy, we tested the errors at different meshes in terms of the center of mass, circularity and rising velocity. Since there is no analytical solution for these two test cases, we use the reference solution at finest grid resolution (h=1/256). The results are shown in appendix A. The ROC for this test is, in general, less than 2. The test 2 has lower converge order than the test case 1. The results show negative orders of convergence for circularity, which indicates that model does not yet converge to the reference solution.

Adaptive mesh tests

Adaptive mesh refinement (AMR) changes the accuracy of the solution in certain regions.

Here, we use AMR to adapt the interface. In other words, the grid will be automatically refined to a certain level in the interface regions where the color function c is between 1 and 0. The bubbles with different adaptive levels are shown in Fig. 3.15. The adaptive mesh increases the local resolution.

Further comparison of the adaptive mesh and the uniform mesh are shown in Fig. 3.16.

The comparison confirms that the adaptive mesh will reduce the accuracy, but the relative errors are in the acceptable range. Here, we compare the relative error of the center of the mass and rising velocity. Figure 3.16(A) shows the relative errors of the center of the mass between the uniform and adaptive mesh. For example, the results from adaptive mesh are obtained from a coarse mesh h = 1/16 and finest adaptive mesh h = 1/64 at bubble interface.

The corresponding results on the uniform mesh are obtained with h = 1/64. We have tested the mesh resolution up to h = 1/256. The errors reduced with increasing the mesh resolution. than 1%. And, the relative errors of the bubble velocity are less than 6%. For the mesh with finest resolution h = 1/256, the errors reduced to less than 0.5% for the center of the mass and 3% for the bubble velocity.

The computational time is shown in Fig. 3.17. The adaptive mesh saves a lot of time of the calculation. For the mesh of h = 1/128, the calculation on the adaptive mesh is 10.4 times faster than the corresponding uniform mesh.

The conclusion can be drawn that the adaptive mesh introduces the calculation a small error, but it saves great amount of the calculation time.

Tests in Cylindrical coordinates

The test cases shown above are done on 2D Cartesian meshes which are not similar to the real bubble. Here, the configuration changes to cylindrical coordinates which is closer to real situations. The bubble has a spherical shape in the cylindrical coordinate configuration. The objective of this section is to simulate the bubble rising in the liquid. This is different from the test cases in previous sections which intends to validate with the benchmark solutions. In order to obtain the similar results, we adopted the same parameters presented in the literature for the benchmark tests.

The bubble initial configuration is similar to the previous case. The only difference is the vertical center line of the calculation domain is the rotational axi-symmetric boundary.

The bubble is initialized as a sphere at x = (0, 0.5). The diameter of the bubble is 0. to 4D or 8D. The side wall effects on the bubbles are reduced. On the other hand, the bubbles in 4D and 8D have similar shapes. But, the bubble locations at t = 5 are slightly different, see Fig. 3.18(B). The reason is that the existence of the side wall will slow down the bubble.

Considering the computational load and the accuracy, we chose L = 4D as the calculation domain width for the bubble rising cases.

We have performed multiple tests to predict the bubble in a wide range of Reynolds and Bond numbers. The results are shown in numbers can be found in equation (2.1). The characteristic velocity U is not the terminal velocity of the bubble. Here, we take U = √ gD as the characteristic velocity simply since the terminal velocity is not known a prior. The D is the initial bubble diameter. Similar tests are carried out by Hua and Lou [START_REF] Hua | Numerical simulation of bubble rising in viscous liquid[END_REF]. But, they used a different solver based on the front tracking method.

In the regimes of low Re and Bo numbers (Re ≈ 10 or Bo ≈ 1), the bubbles remain spherical. Slightly increasing the Re number (Re ≈ 20), the bubble shape remains spherical for low Bo number. Whereas, the bubble bottom becomes flat and dimpled for higher Bo number (Bo > 35). For the regimes with higher Re number (Re > 50) and lower Bo number (Bo < 50), the bubble becomes elliptic/oblate ellipsoid shape. If further increasing the Re number (Re > 100), the elliptical-cap shapes can be observed. The results of [START_REF] Hua | Numerical simulation of bubble rising in viscous liquid[END_REF] show that skirt bubbles For Re = 200 and Bo = 200, the bubble breaks up soon after starting the simulation. There are no definitive shapes that can be obtained. Hence, the results are not shown in Table . 3.2.

We will perform the simulation for the case (Re = 200 and Bo =200) in 3D in the next section.

We can conclude that the simulation can predict the bubble shapes in a wide range of flow regimes. However, for the highest Re and Bo numbers, the bubble shapes deviates to the results in [START_REF] Hua | Numerical simulation of bubble rising in viscous liquid[END_REF]. 

3D tests

In the previous section, we have predicted the bubble shape in a wide range of Re and Bo 

Parallelisation tests

We carried out the calculations on the computing center P2HPD hosted by the University of Lyon 1. We have used 7 nodes in the cluster. Each node has 16 CPU cores. The maximum CPU cores that can been used are 112 cores. Another calculation resource is the local workstation.

It has 4 cores which are Intel Xeon(R) CPU E5-1607 v2 @ 3.00GHz.

The first test case is the 3D lid-driven cavity flow on the cluster. The test performance is shown in Fig. 3.20. There are three different uniform mesh sizes (h = 1/32, 1/64, 1/128). The computing performance is increased on the cluster. Doubling the number of CPU nodes, the calculation could save almost half of the time.

However, we found that the calculation performance decreases when using the adaptive mesh. The parallel strategy limits the parallel subdomains of entire quad/octree [2]. Therefore, the elements on each CPU core are not the same. The data exchanged between different nodes are also not the same. A good calculation performance can not be obtained if too much data exchanges between the cluster nodes. The performance as shown in Fig. 3.20 will not be achieved. Usually, we could define the load balance ratio to indicate whether the computation loads are the same. It is written as:

r b = (n max -n min /n max ) (3.30)
where n max and n min are the maximum and minimum calculation elements on the node. If the elements are evenly distributed on each node, the balance ratio r b will be zero. In practice, we should keep the balance ratio as small as possible.

We use the bubble rising case 1 to test the balance ratio. The AMR strategy is based on the VOF fraction. Here, we choose different finest meshes to maintain a good load balance ratio. The coarsest mesh is h = 1/32. The finest meshes are h = 1/64, 1/128, 1/256, 1/512. The average balance ratios are 0.08 and 0.37. To optimize the computational speed, we choose the level difference between the coarsest and finest mesh less than 3. 

Chapter conclusion

The numerical solver has been tested with different one and two-phase flow problems. The Gerris solver is suitable for simulating the bubble flow. The following conclusions can be drawn: • The Lid-driven cavity test validates the numerical solver for the single phase Navier-Stokes equations. The convergence rates are close to second-order both for velocities and pressure.

• The bubble rising test case validates the numerical solver for the bubble simulations.

The results agree with the data in the literature. The solver can predict the bubble shape in a wide range of the Re and Bo number. Note that many other test and validation results concerning both single and two phase flow problems can be found on the Gerris website (gfs.sourceforge.net).

• The adaptive mesh refinement method improves the efficiency of the solver. This method saves much of computational time.

• The solver works well on the cluster. The parallelization tests show that performance may be reduced due to unequal distribution of the computational load for adaptive mesh. collecting the small gas bubbles. The bubbles agglomerate in the cup. When it is stable, the cup is rotated. The Taylor bubble will rise into the tube. The purpose of the rotating cup is to stabilize the gas and gather the bubbles. Of course, small bubbles could agglomerate in the pipe and form a Taylor bubble. But, a longer pipe is then needed to stabilize the bubble. The rotating cup used for generating the large bubble allows us to reduce the pipe length for stabilizing the bubble. Secondly, the cup helps to control the volume of the bubbles. The gas quantity can be observed in the rotating cup. In the present experiments, the bubble volume is less than 6000 mm 3 . The real bubble volume is measured by image analysis.

Nitrogen

Gas Injector

Visualization section

The schematic view of the visualization section is shown in Fig. 

Experimental procedure

When the apparatus are tested leak-free, the experiments are ready to start. The procedures are shown as follows:

• Filling with the liquid: when the glycerol is filled into the tubes and visualization box, there are many small bubbles trapped in the liquid. They will block the view for observation. Therefore, we should wait for more than 3 hours before proceeding the experiments with glycerol. If the liquid is water, the small bubbles will release rapidly. In practice, 10 minutes is sufficient.

• Leveling the apparatus: the main objective is making the pipe vertical. We use the gradienter to measure the long connection tube from various of directions. And then, we slightly adjust the tube and make sure it is vertically positioned.

• Aligning the camera: the parameters of the camera are set up before the experiments according to Table . 4.1. The alignment of the camera is to position the tube vertically in the middle of the image. The alignment is based on the image measuring tool in the Photron software.

• Visualizing the Taylor bubbles: the different bubbles were generated manually from the bubble generator chamber. We intend to visualize the bubble one by one. Therefore, the time interval between two rising bubbles are 5 minutes. We wait for the liquid in tube to be quiescent.

• Cleaning the apparatus after the experiments and preserving the glycerol in the bottle: this procedure prevents the glycerol from absorbing the water in the atmosphere.

Measurements and data acquisition 4.3.1 Uncertainty calculation

The uncertainty of the result of a measurements generally consists of several components.

The components are regarded as random variables, and can be grouped into two categories according to the method used to estimate their numerical values:

• Type A: The uncertainty evaluated by statistical methods. The standard deviation of the mean of a series of independent observations is considered as the uncertainty. The quantity X i is estimated from n independent observations. The mean value of the quantity X i can be expressed as:

x i = Xi = 1 n n k=1 X i,k (4.1) 
and the standard uncertainty U xi can be written as follows:

U xi = ( 1 n(n -1) n k=1 (X i,k -Xi ) 2 ) 1/2 (4.2)
• Type B: The uncertainty estimates from other information. This could be information from past experience, from calibration certificates, manufacturer's specifications.

In most case, a quantity can not be measured directly, but is determined from other quantities. Here, we introduce the root-sum-square method to estimate the combining uncertainty from a series of independent variables' uncertainty [START_REF] Ernest | Measurement systems: application and design[END_REF]. The valuable U y is an uncertainty of the valuable which dependents on individual uncertainty U xi in each independent variable x i . The relation is expressed as:

U y = N i=1 ( ∂f ∂X i • U xi ) 2 (4.3)
where y = f (x 1 , x 2 , ..., x N ) and the variation in each independent variable is assumed to follow th Gaussian (Normal) distribution. The next sections will present the uncertainty of each independent variable. The uncertainty of a combined variable is calculated by equation 4.3. 

Temperature

The K-type thermocouple measured the ambient temperature. The thermocouple has been calibrated. The uncertainty is ±0. 

Water-glycerol solutions

The original glycerol is 99.5 wt%, from which 5 different solutions were made by mixing mixed with the distilled water. The volume percentages are close to 95%, 90%, 80%, 70%, and 60%. The relative uncertainty of the volume percentages is ± 1.4%, i.e., ∆vol% = ±1.4% (4.5)

Viscosity measurement

The viscosity measurement is performed on a rheometer (Anton Paar MCR 302). The temperature for the test samples is set at 18 • C. The test results are shown in Fig. 4.5. As can be seen in Fig. 4.5(A), the shear stress is linear with the shear rate. The water-glycerol solutions are thus considered as Newtonian fluids. The results are compared with the data in [START_REF] Producers | Association and others. Physical properties of glycerine and its solutions[END_REF].

The viscosity of the original glycerol deviates from the data in [START_REF] Producers | Association and others. Physical properties of glycerine and its solutions[END_REF]. Note that the glycerol has strong water absorption. During the experiments, the glycerol absorbed the water from the atmosphere. Therefore, the samples are taken after the experiments. The uncertainty of viscosity comes from the instrument and is written as: 

∆µ/µ = ±1.5% ( 

Density measurement

The density of the sample fluid is calculated from the volume and the weight. The volume is measured by the graduate bottle. Its uncertainty is ±0.2 ml. The weight of the samples is measured by an electronic balance. The uncertainty is ±0.05 g. The sample volume is 10 ml.

Therefore, the relative uncertainty of the density is 2%, i.e., ∆ρ/ρ = ±2% (4.7)

Fluid properties

The fluid properties are listed in Table 4.3. The surface tension of the water-glycerol solution is obtained from [START_REF] Producers | Association and others. Physical properties of glycerine and its solutions[END_REF] using the volume fraction. Nitrogen is the gas phase in the present study. Its properties were calculated from the REFPROP software. 

Image processing

The images are captured by a Photron high-speed camera. The image parameters are shown in Table 4.1. The original images have a resolution of 256 × 1024 pixels. We used a Python library to process the images. The library is called Pillow which is a fork of the Python Imaging Library (PIL). The process procedure is shown as follows:

• Importing the images into the program: in order to obtain a good contrast, we enhance the contrast of the images. In some of the test cases, the exposure is also increased in this procedure.

• Detecting the tube: the tube is vertically positioned on the image. We often choose only one image without the bubble to detect the tube position. First, we chose a subrectangle region on the image, which contains the tube. Then, the operations performed only in this sub-region. We obtain the gray scale gradients on the horizontal direction.

The location of the maximum gradient is the tube wall. In fact, we could find two peaks of the grayscale gradient, which correspond to the inner and the outer tube wall. In the present study, we only detect the peak for the inner tube wall. The horizontal detections are performed at 10 locations along the vertical direction. As illustrated in Fig. 4.6(A).

All the locations are fitted with a line equation. The slope of the line indicates the image tilt angle.

• Rotating the images: once we obtain the lines for the tube walls, the tilt angle is known.

Then, all the images are rotated by the same angle. The rotational center is at the connection center of the two tubes (red dots in Fig. 4.6(B)). In practice, we aligned the tube vertically in the images. If the rotation angle is less than 0.055 • , this procedure can be ignored.

• Removing the noises on the images: we cropped the images and left the part which is inside of the tube. There are still background noises around the bubble (Fig. 4.6(C)). Here, we do not use the method in Pillow library. The method, such as blurry, will smear the noise, but also blur the bubble interface. Our method is averaging the grayscale of 2 × 2 pixels to 1 × 1 pixel. The original image is reduced to the resolution of 128 × 512 pixels. Then, aforementioned gradient detection method is used on this resolution reduced image. The edge detections are only applied in the horizontal direction. The bubble interfaces are obtained on the low resolution images. Then, the region inside of the bubble projects back to the original image. The same edge detecting method is performed on the original image. This image only has the bubble part. Finally, the interface of the bubble can be obtained.

• Selecting the main bubble: there are still small bubbles and the connection plate in the images. Therefore, the original images are transferred to binary images. The potential bubble regions are set to 1, and the rest parts are set to 0. We design a traversing algorithm to detect the largest region (Fig. 4.6(D)). We consider that region is the Taylor bubble. The plate for connecting the pipe is also a dark region in the image. We examined multiple frames to find the dark regions which do not move with time. This region is considered to be the plate. The uncertainty of the interface detection can be considered as the pixel distance from white to black. The interface is located between these two pixels. The average pixel distance in the present study is 7 pixels. Therefore, we consider that the uncertainty for the interface detection is ±3.5 pixels. The real scale of the one pixel is less than 0.3 mm. Therefore, The uncertainty of the interface detection in millimeter is:

(A) (B) (C) (D)
∆x < ±1.05mm (4.8)

Optical correction

The visualization box filled with liquid reduces the optical distortion. However, the refraction always exists due to the fact that tube wall and the liquid are not made of the same materials. Refractive Index (n) Pyrex Glass 1.474 Glycerol 1.47339 W-G solution 95%

1.46597 W-G solution 90%

1.45839 W-G solution 80%

1.44290 W-G solution 70%

1.42789 W-G solution 60%

1.41299

In the present study, we obtain the refraction index data from [START_REF] Bartlett | Viscosity of glycerol and its aqueous solutions[END_REF] which are listed in Table .   (4.4). Figure 4.8 shows that the optical distortion is large at positions close to the tube wall.

The mixtures with lower glycerol percentage have larger optical distortion. However, the absolute distortion due to refraction on V is less than 0.064 mm, i.e., 

|∆V | = |V r -V | < 0.064mm (4.13) 0.0 0.2 0.4 0.6 0.8 1.0 V * (V /R in ) -8e-03 -6e-03 -4e-03 -2e-03 0e+00 ∆V * ((V -V r )/R in ) Gylcerol W-G solution 95% W-G solution 90% W-G solution 80% W-G solution 70% W-G solution 60%

Calculation of the bubble volume

The results obtained from the image processing are the points on the interface. These points should be connected to obtain the volume of the bubble. Figure 4.9 shows the points obtained from image processing. The points are separately distributed around the interface.

Our method just detects the interface in the horizontal direction. The points can be separated into two groups, the points on the right (green) and the points on the left (blue). The first step is to sort the points from the bubble nose to the bottom. We randomly choose a virtual point inside of the bubble. This point can be set as the original point of a spherical coordinate.

Therefore, all points on the interface can be transformed to the spherical coordinate. Each point has its polar angle (θ).

Then, the points are connected from the bubble nose to the bottom. The results are shown in Fig. 4.9 (right). We set rotational axis located at the center of the bubble. The two interface lines rotate around the rotational axis to generate two halves of the bubble, see Fig. 4.10.

This volume calculation method is applied to each frame. The bubble volume variations are shown in Fig. 4.10. For this particular case, we obtain an average volume equal to 2307 mm 3 . The volume will be used for the simulation. We observed that the bubble volume has great fluctuations from the 1500th to the 1690th frame. The inaccuracy is due to the face that part of the bubble is blocked by the plate. For the blocked part, we simply use a straight line to approximate the bubble interface. Considering the inaccuracy of estimating the bubble interface, the uncertainty of the bubble volume can be shown as: 

∆V bubble /V bubble < ±7.6% ( 

Calculation of the bubble velocity

The first step of the calculation of the bubbles velocity is detecting the bubble location in each frame. The distance of displacement of the bubble in consecutive frames can be referred to ∆s. The time interval (∆t) between each frame is fixed, which is 1/1000 s in present study.

The velocity of the bubble can be obtained by U = ∆s/∆t. However, this simple method will lead to inaccurate results. A few restrictions should be added to obtain the bubble velocity:

• Defining the bubble location at the nose of the bubble. The bubble nose is the most stable part. It also has a sharp and clear edge on the raw images. Therefore, the displacement of the bubble nose is considered as the displacement of the bubble.

x (p ixe l) 80 [START_REF] Scammell | Heat transfer and flow characteristics of rising Taylor bubbles[END_REF] • Increasing the time interval. In practice, the bubble displacement is very small in 1 ms, especially, for the bubbles in high viscous liquid. If the bubble movement is less than the uncertainty of the bubble interface detection, ∆s is inaccurate. In present study, the bubble should move more than 7 pixels on the images, which can be considered as a validate displacement.

The uncertainty of estimating the bubble velocity are attributed to the uncertainty of the bubble interface detection, i.e., ∆U bubble /U bubble < ±2.4% (4.15)

Summary of experimental data range

The main parameters for the experiments are shown in Table . 4.5. The table shows the ranges of the experimental data. The precise values will be given in the next chapters. 

Chapter conclusion

The experimental test bench has been successfully built up at the CETHIL laboratory. The test section can adapt to different ratios of the expansion and contraction. A high speed camera successfully capture the bubble motion through the singularity. The following conclusions can be drawn as follow:

• The experimental apparatus has been proved to be effective for the present study. The bubble motion can be captured in the test section.

• The glycerol solutions are made in the laboratory. The volume percentages have relatively large uncertainties. Whereas, the measurements of the properties of the solutions do not depend on the volume percentages. Therefore, the fluid properties can be obtained accurately.

• The self-designed post-processing algorithm can detect the bubble interface in the raw images. The bubble shape is then corrected by the optical correction algorithm. A similar method is also applied to the tube wall detection. Other data, such as bubble volume, bubble rising velocity, can be obtained.

Chapter 5

Bubble rising in straight tube

In this chapter, we present the results of the simulation of the bubble rising in a straight tube.

The previous chapters have presented the numerical method and described the experimental setup. This chapter focuses on the Taylor bubble rising in the straight tube. The purpose is to validate the numerical model and also verify the experimental data.

The chapter will be presented as follows. First of all, a brief introduction about the configuration of the simulation model is shown. A parametric study of the model will be presented.

Then, the simulation results will be compared to the experimental data from the test bench and also to those from the literature.

Model description

The simulation is performed on the cylindrical coordinates. The initial shape of the Taylor bubble is a rectangle body with a semi-circular nose (Fig. 5.1). The radius of the circle is r 0 .

The distance from bubble bottom to the bottom of the calculation domain is 4r 0 . This distance minimizes the effects of the bottom on the bubble. r 0 is the initial bubble head radius which equals to Rλ, where λ is the film thickness which is calculated by equation (2.48). The film thickness is unknown before the simulation. The value can be set randomly. The final value will converge to a fixed value for a fixed group of parameters. In other words, the bubble terminal state is independent of the initial film thickness. We found that a good prediction of the film thickness will make the bubble reach the terminal state faster. Therefore, we use equation (2.48) to predict the film thickness. The length of the calculation domain size is L.

Unless indicated otherwise, the domain length was given by L = 8D. This length was chosen to be sufficiently long so that the bubble could be fully developed [START_REF] Bugg | A numerical model of Taylor bubbles rising through stagnant liquids in vertical tubes[END_REF]. And, the bubble initial length is l 0 . The boundary condition on the center is axi-symmetry. The upper and lower walls explicitly impose the Dirichlet condition (u = 0, v = 0). The side wall is also the no-slip boundary condition (u = 0, v = 0).

All the quantities are non-dimensional for the simulations. The characteristic length is the tube diameter (D). Therefore, all the lengths are normalized with respect to D. The The governing equations (3.4) can be written as

∇ • Ū = 0 (5.1) ρ ∂ Ū ∂ t + ρ( Ū • ∇) Ū = 1 N f ∇ • (μ( ∇ Ū + ∇ ŪT )) -∇p + ρḡ + 1 Eo κδ s n (5.2) 
where N f is the inverse viscosity number

(N f = ρ l √ gD 3 µ l
), Eo is Eötvös number (Eo = ρ l gD 2 σ ). The only body force is the gravity. The g indicates the direction of the gravity.

Sensitivity analysis

Mesh independency analysis

The adaptive mesh is applied in the present simulation. Chapter 3 has tested the performance of the AMR. The maximum level difference between the coarsest mesh and the finest meshes is 3. Here, we carried out 3 tests using the adaptive mesh. The parameters are shown in Table 5.1. The physical parameters are the same for 3 test cases (Eo = 100, N f = 100). The initial bubble length is 4r 0 .

The results are show in Fig. 5.2. We choose the bubble nose as the reference point. The bubble shape can be drawn in the same figure. The z h is the location of the bubble nose. There are small differences of the bubble shape. For bubble nose shapes, it is difficult to observe the differences. Therefore, Fig. 5.2(A) shows the bubble tail shape. The M2 and M3 are almost the same. The bubble in M1 is slightly short than the others. A velocity profile comparison is shown in Fig. 5.2(B). The profiles is at z * = (z hz)/D = -1.54. The average velocities can be obtained form the profiles. The M3 is the finest mesh. Therefore, the average velocity of M3 can be regarded as the reference value. The relative error of M1 and M2 is -7.4% and -1.8% respectively. Considering the computational time, we choose M2 for the other simulations. 

Effects of initial bubble lengths

The terminal velocity of the Taylor bubble is independent of the bubble length [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF]. This conclusion is obtained from the experimental study. Here, we carried out 3 tests to confirm this conclusion. The physical parameters are the same for these 3 cases: Eo = 100, N f = 100.

The initial bubble lengths are 4r 0 , 5r 0 , and 6r 0 . The dimensionless bubble nose velocities are the same. The difference can be observed at the bubble tail (Fig. 5.3). The tail velocities oscillate and finally reach the steady state. The tail velocity of the longer bubble (l 0 = 6) takes longer time to stabilize. The initial film thicknesses for the 3 cases are the same. The bubble evolves to a new shape according to the forces acting on it. And, interface waves develop from the nose of the bubble to its tail. The longer bubble has a long liquid film which takes more time to develop to the stable liquid film. Finally, the velocities converge to the terminal velocity. The observation on the bubble shapes shows that the nose, tail, and film thickness are the same.

The simulation results confirm that the initial bubble length only affects the transient be-

havior of the bubble. The initial bubble lengths dose not influence of the bubble terminal state. 

Effects of density ratios

The density difference creates the buoyancy force which is the driven force of the bubble rising. Here, we carried out a few simulations to test the effects of density ratios on the Taylor bubble. The density ratios range from 10 to 1000. In the 5 tests, other parameters such as viscosity ratio (r µ ), Eo number, and inverse viscosity number (N f ) remain the same, Decreasing the density ratio, the bubble tail becomes elliptic. The differences of the shape can hardly be observed if the density ratio is greater than 50. The observation of the bubble shape concludes that the density ratio has a minimal effect on the bubble shape. The similar results are also found by Kang, Quan, and Lou [START_REF] Kang | Numerical study of a Taylor bubble rising in stagnant liquids[END_REF]. The density ratios have strong effects on bubble terminal velocities, especially for cases where the density ratios are less than 100. We have tested the density ratio equals to 10000, but the bubble includes some unphysical filament. The large density jump between the two phases creates numerical oscillations and produces incorrect results. 

Effects of viscosity ratios

The viscosity ratios (r µ ) ranges from 50 to 10000. 6 cases have been carried out for testing the effects of viscosity ratios. Other parameters remain the same, i.e. r ρ = 1000, Eo = 50, and N f = 59.4. The bubble shapes are shown in Fig. 5.6(A). There are no significant changes on the tail of bubbles as well as for the terminal velocities. They slightly increase with increasing the viscosity ratios (5.6(B)). Kang, Quan, and Lou [START_REF] Kang | Numerical study of a Taylor bubble rising in stagnant liquids[END_REF] and Lu and Prosperetti [START_REF] Lu | A numerical study of Taylor bubbles[END_REF] have found similar results. Kang, Quan, and Lou [START_REF] Kang | Numerical study of a Taylor bubble rising in stagnant liquids[END_REF] found that the selected viscosity ratios lead to small variation in dimensionless numbers (Eo and N f ), which gives minimal effects on the bubble dynamics. In the present study, we keep the same Eo and N f numbers for all the test cases. The only variable is the viscosity ratio. The results, both shapes and terminal velocities, appear to be very similar. Therefore, we can conclude that the viscosity ratio has minor effects of the bubble motion. 

Effects of Eo number

As written in equation (2.28), the Eötvös number (Eo = ρ l gD 2 /σ) is the combination of the buoyancy force and the surface tension force. Increasing the Eo number, the surface tension force will be reduced, and the buoyancy force will be increased. Therefore, the rising velocity of the bubble increase with increasing the Eo number. The simulation conditions remain the same except for the Eo numbers. The Eo numbers for 6 test cases are 20, 40, 60, 80, 100, and 150. The N f numbers are 100 for all the cases. The terminal shapes of the bubble are shown in Fig. 5.7. The bubble head is almost the same for all the test cases. There are small differences for Eo = 20, for which the bubble head has a larger radius. The shape differences can be distinguished at the tail of the bubbles. For a fixed N f number (N f = 100), the bubble tail changes from the convex shape to the concave shape with increasing the Eo number. The critical Eo in the present cases with a flat bottom is around 40. Kang, Quan, and Lou [START_REF] Kang | Numerical study of a Taylor bubble rising in stagnant liquids[END_REF] tested the Eo number up to 304 and obtained a skirted tail shape.

Summary

A few variables has been tested in sensitivity analysis. The conclusions can be drawn:

• Mesh: Considering the computational load and the accuracy, the mesh M2 is suitable for carrying out the simulation of the Taylor bubble.

• Initial bubble length: It only affects the transient behavior of the bubble. an independent value of the bubble terminal state.

• Density ratio: It has minor effects on the bubble terminal velocity when it is larger than 100. The density ratio is set to r ρ = 1000 in the remainder of this work.

• Viscosity ratio: It has minor effects on the bubble terminal velocity and the bubble shape. Its effect can be ignored. The viscosity ratio is set to r µ = 100 in the remainder of this work.

• Eo number: It has strong effects on the bubble tail shape.

Comparison with experiments

Shape comparison

The bubble shape in the straight tube is defined by the liquid properties. Here, we compare the shape of the bubbles with those obtained from the simulations. Both numerical and experimental figures are rescaled to the same dimension for comparison. z 0 is the reference point, which is the end of the lower tube. The general side by side shape comparisons of the bubble are shown in Fig. 5.8 to 5.12.

The percentage of the W-G solution changes from 95% to 60%. The Eo number changes from 49.7 to 40.55. The bubble has an oblate nose and tail shape (Fig. 5.8 and 5.9). Decreasing the glycerol percentage in the liquid, the bubble tail becomes flat (Fig. 5.10) or concave (Fig.

5.11)

. The diluted solution leads to decreasing the viscosity, i.e. increasing the N f number.

Whereas, the Eo number does not change too much with the changing of glycerol percentage. Therefore, the viscosity effects mainly leads to the changing of the bubble tail shape.

The bubble lengths are slightly different in each Fig. 5.8 to 5.12. The difference is due to the error of estimating the bubble volumes. In order to verify the simulation could predict the bubble shape, figure 5.13 shows the bubble nose and tail shape in W-G 95% and W-G 60%.

The points indicate the experimental data extracted from the raw images. The lines show the simulation results.

The observations on the bubbles lead to two general conclusions:

• The viscous force decreases with diluting the W-G solution. The nose of the bubbles are oblate spheroids shapes. The tail shapes change from oblate to concave, which seems to exhibit a higher sensitivity than the nose to the influence of viscous force. The surface tension force slightly decreases with diluting the W-G solution, which has minor effect on the bubble shape changing.

• The simulations show a good shape comparison with the experimental results. The concave tail can hardly be observed in the experimental images. The simulation results show more clear results of the tail shapes.

Terminal velocity comparison

Terminal velocity of the bubble indicates the steady state of the bubble. In order to verify that the simulation could predict the terminal velocity of the bubble. A few test cases have been carried out based on the experimental results of White and Beardmore [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF]. Their experiments include several gas-liquid systems which correspond to a wide range of Morton numbers. Five different groups of the experimental data have been chosen for the simulation. Reducing the Morton numbers, the influence of the viscous forces on the Taylor bubble velocity increase. The curves for the Morton number less than 4.7 × 10 -5 would merge into a single line, which is typical for very dilute aqueous solutions. The flow regimes would lead to turbulent flow [START_REF] Araujo | Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids[END_REF]. However, we choose the bubble in the laminar regime to simulate.

On the other hand, there are many correlations to predict the terminal velocity of the Taylor bubble. A review of these correlations can be found in Section 2.3.1. Three correlations has been chosen to compare with the numerical and experimental results. The first correlation is proposed by Wallis [START_REF] Wallis | One-dimensional two-phase flow[END_REF]. And, the second one is proposed by Viana et al. [START_REF] Viana | Universal correlation for the rise velocity of long gas bubbles in round pipes[END_REF], which have already taken the data of White and Beardmore [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] into account. The third one is proposed by Hayashi, Kurimoto, and Tomiyama [START_REF] Hayashi | Terminal velocity of a Taylor drop in a vertical pipe[END_REF].

The results are shown in Fig. 5.14. Each Morton number corresponds to 3 curves which are predicted by different correlations. The experimental data from [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] and corresponding simulation data are added to Fig. 5.14 for comparison purposes.

The results show that the best correlation for the present simulations is that of Viana et al. [START_REF] Viana | Universal correlation for the rise velocity of long gas bubbles in round pipes[END_REF]. The mean relative error (MRE) is -13.03%. The correlation of Wallis [START_REF] Wallis | One-dimensional two-phase flow[END_REF] deviates from the simulation results more than -19% (MRE). The terminal velocity deviates from all three correlations where Eo number less than 10. The reason is that the low value of the bubble velocities are much more sensitive to small numerical errors. For the bubbles at large Eo number (Eo > 10), the simulation results agree very well with the correlation predictions.

We compare our experimental results with the correlations of Viana et al. [START_REF] Viana | Universal correlation for the rise velocity of long gas bubbles in round pipes[END_REF] and Hayashi, Kurimoto, and Tomiyama [START_REF] Hayashi | Terminal velocity of a Taylor drop in a vertical pipe[END_REF]. In the present experiments, the bubble nose of velocity (U * h ) close to the outlet of the lower tube is considered as the bubble terminal velocity (V T ). The length for stabilizing the bubble is larger than 70D. Therefore, it can reasonably believe that the bubble reaches the terminal state. Figure 5. 15(A) shows errors between the experimental data and the correlations. The mean relative error of both correlations are less than 5%. The Eo numbers for water-glycerol solutions in the present study is between 40 and 50. In this region, the correlation could predict the terminal velocity very well.

We simulated the bubbles in the present experiments. Figure . 5.15(B) shows the errors of the experimental results compare to the numerical results. The mean relative error is less than 1%.

Liquid film comparison

The wall effects can not be ignored when the bubble rises in the straight tubes. The terminal velocity and the film thickness of the bubbles are affected by the wall. Obviously, the wall effects depends on the bubble volume. We define here the spherical equivalent diameter (D s ) to represent the size of the bubbles. It can be written as follows:

D s = 2R s = 2(3/4πV ) 1/3 (5.3)
where V is the actual bubble volume. R s is the spherical equivalent radius. The ratio between the spherical equivalent diameter (D s ) and tube diameter (D) indicates the proportion of the tube occupied by the bubble. If D s /D > 1, the bubble can be considered as the long bubble rising in relatively small tubes [START_REF] James Q Feng | Buoyancy-driven motion of a gas bubble through viscous liquid in a round tube[END_REF]. The bubble behavior is expected to be somewhat independent of the bubble volume.

In the present study, we normalize the bubble volumes to the spherical equivalent diameters by equation ( 5 For bubbles in diluted water-glycerol liquids, the correlation proposed by Lel et al. [START_REF] Lel | Local thickness and wave velocity measurement of wavy films with a chromatic confocal imaging method and a fluorescence intensity technique[END_REF] shows a better estimation.

The numerical simulation results are also added in Table 5.3. The simulations are not performed for all the data points in the experimental. We have chose only one data point for each water-glycerol solution. The results show that the simulations accurately predict the liquid film thickness. The dashed and solid lines correspond to the correlations of Wallis [START_REF] Wallis | One-dimensional two-phase flow[END_REF], Hayashi, Kurimoto, and Tomiyama [START_REF] Hayashi | Terminal velocity of a Taylor drop in a vertical pipe[END_REF], and Viana et al. [START_REF] Viana | Universal correlation for the rise velocity of long gas bubbles in round pipes[END_REF]. Experimental data (open symbols) from White and Beardmore [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] are also added for comparison. 

Velocity field comparison

We reproduced one of the experimental cases reported in [START_REF] Araujo | Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids[END_REF], for a system with stagnant liquid, Mo of 4.31 × 10 -2 and N f of 111. In Fig. 5.17, the resulting numerical velocity fields and streamlines are presented. The steady state criteria for the rising bubble is the variation of the velocity of bubble nose. When this velocity changes less than 1% compared to the velocity at the previous time step, we consider the bubble reaches its steady state (V T = U * = U * h ). The dimensionless time (t * = t g/D) of the bubble in Fig. 5.17 equals 10, which already satisfied the steady state criteria. We subtract the terminal velocity of the bubble from the whole flow field. This procedure facilitates to plot the streamlines. Fig. 5.18 and Fig. 5. [START_REF] Bi | Taylor bubbles in miniaturized circular and noncircular channels[END_REF] show dimensionless axial velocity profiles above the bubble nose and wake regions. The four locations of the velocity profiles are also shown in Fig. 5.17. Fig. 5.18 and 5.19 shows our simulation data compare well with the experimental data (the points) of [START_REF] Nogueira | Flow in the nose region and annular film around a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids[END_REF] and [START_REF] Nogueira | Flow patterns in the wake of a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids: An experimental study[END_REF]. The numerical results (the dash line) of [START_REF] Araujo | Wide-ranging survey on the laminar flow of individual Taylor bubbles rising through stagnant Newtonian liquids[END_REF] are also added in Fig. 5.18 and 5.19, which show a close agreement with our simulation data (solid line). 

Chapter conclusion

The Taylor bubble in straight tubes has been investigated. The sensitive analysis confirmed the parameters used in the simulation. The experimental tests allow to visualize the Taylor bubbles in straight tube (D = 16.4 mm). The different bubble shapes can be obtained from different water-glycerol solutions. A few conclusions can be drawn:

• The bubble tail shape are sensitive to the mesh size. The bubble terminal state is independent of the bubble length. Whereas, the bubble transitional state depends on the bubble length.

• The density and viscosity ratios have minor effects on the bubble shape. If density ratio is less than 100, it will reduce the rising velocity of the bubble. The viscosity ratio effects on the bubble terminal velocity can be ignored.

• The simulation can predict the bubble terminal shapes. The comparisons of the bubble shape shows that the simulation predicts the bubble nose and tail shapes in different water-glycerol solutions.

• The simulation predicts the bubble terminal velocities accurately. The correlation proposed by Viana et al. [START_REF] Viana | Universal correlation for the rise velocity of long gas bubbles in round pipes[END_REF] has the best agreement of the terminal velocities with both numerical and experimental results.

• If the bubble equivalent diameter is larger than 1, the film thickness becomes to a constant. The correlation of predicting the bubble film thickness which proposed by Llewellin et al. [START_REF] Llewellin | The thickness of the falling film of liquid around a Taylor bubble[END_REF] has the best agreement to the present experimental data. The simulation can also predict the bubble film thickness.

• The simulation predict the velocity field around the Taylor bubble, which has good agreement with the data present in the literature. 

Illustration of the bubble features

An overview of the hydrodynamic features described in the present chapter are illustrated in Fig. 6.2. The center of mass is also the geometric center due to the constant density inside the bubble. The figure shows the locations of the bubble tail center and bubble tail in the z direction. For bubbles with non-concave tail shapes, these two locations coincide. The bubble length l b is defined as the distance from bubble head to bubble tail, ∆ h is the distance from the expansion to the bubble head in the z direction and δ n is the minimum radius of the bubble body. δ n FIGURE 6.2: Illustration of the bubble features described in this study.

Results

We will first analyze the results for the conditions in which the bubble remains intact when passing through the expansion. Then, we will describe the results for the cases with bubble break-up.

Bubble without break-up in the expansion

Comparison of experiments and simulations

The bubble shape deformations in the expansions is shown in Fig. 6.3 to 6.7. The expansion ratio is the same ( = 1.24). All the bubbles remain intact after passing through the expansion.

The experimental images have been compared to the simulation results. The first row in each figure is the experimental results. The second row is the simulation results. When the bubble head reaches the expansion, the time is set to be the starting time (t = 0.0 s). Then, the bubble rises through the expansion.

Figure 6.3 and 6.4 show the bubble rising in the W-G 95% and W-G 90% mixtures. The bubbles have a round head and tail shape before entering the expansion. A cone tail shape can be observed when the bubble passes through the expansion (t = 0.32 s). Figures 6.5 to 6.7 show the bubble rising in the diluted solutions (W-G 80%, W-G 70%, W-G 60%). The tail shapes are flat before entering the expansion. A concave shape can be observed at the tail of the bubbles (t = 0.32 s). In the present tests, two distinctive bubble tail shapes can be observed. When decreasing the viscosity, the bubble tail shape changes from the cone shape to the concave shape. 

Velocity variation

The bubble reaches the steady state before entering the expansion. The bubble velocity will The steady state before expansion The steady state after expansion (ratio = 1.1) The steady state after expansion (ratio = 1.2) The steady state after expansion (ratio = 1.3) FIGURE 6.8: Numerical results of steady state of bubble (U = V T ) before and after the expansion (symbols) and the correlations of Wallis [START_REF] Wallis | One-dimensional two-phase flow[END_REF] and Viana et al. [START_REF] Viana | Universal correlation for the rise velocity of long gas bubbles in round pipes[END_REF] (line). (Mo = 1 × 10 -2 )

One important feature reflecting the transient state of the bubble in the expansion is its velocity. We adopt a dimensionless velocity defined as U * = U/ √ gD o with U = ||u||. In order to show the velocity changes, we choose four typical locations for observation: the tip of the head, the center of the tail, the tip of the tail and the center of mass (Fig. 6.2). The typical evolution of the velocity at these four locations are shown in Fig. 6.9 as a function of the normalized dimensionless time (t * ). The time of the bubble head reaching the expansion is considered as the starting time (t * = 0). The two vertical dashed lines mark the instants of the bubble nose and tail reach the expansion. We see that the head of the bubble accelerates as soon as it passes through the expansion, while the velocity of the tail of the bubble is still unchanged. The bubble head reaches quickly the new terminal velocity (at t * 1.5) and then remains nearly constant. The tail of the bubble, on the other hand, accelerates with a delay but reaches a peak velocity much higher than the new terminal velocity. As a result, the bubble length decreases when the tail velocity catches up with the head velocity (for t * > 8.0).

A convex tail shape is formed at t * 2.5. The oscillations are clearly visible on the velocities of the bubble tail, but not so much on the center of mass and the head velocity. It is therefore clear that this phenomenon is related to a perturbation of the tail of the bubble, as also both velocities at this location fluctuate with opposite phases.

The established literature on Taylor bubble rising in straight pipes has shown that the length of the bubble has a minor effect on the terminal velocity [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF]. Therefore, in the dimensional analysis concerning straight pipes the dimensionless groups do not include the length of the bubble. However, when the bubble goes through an expansion, the length of bubble is no longer a parameter that can be ignored. A longer bubble will be affected by the expansion over a longer time period. Figure 6.10 shows the bubble velocity of the center of mass for different initial bubble lengths. It is observed that both the peak value of the velocity and the time to obtain a steady state increases with the bubble length. Figure 6.11 shows the effect of the expansion ratio and the Eötvös number on the maximum value of the center of mass velocity. As expected, the velocity of the bubbles in larger expansion ratios changes more significantly than in lower expansion ratios. A higher expansion ratio induces a stronger perturbation on the bubble. The maximum velocity increases also for larger values of the Eo number. Bubbles with higher Eo number are less subject to the stabilizing effect of surface tension and are therefore more vulnerable to the perturbation induced by the expansion. a result of the increased velocity in the middle of the bubble. Since the bubble radius is larger after the expansion and the bubble volume remains unchanged, the bubble length is rapidly decreased. It is noted that the concave shape at the bottom of the bubble is relatively prominent. From a physical point of view, the flow recirculation behind the bubble tail is enhanced due to the increasing velocity in the liquid film. The liquid in the recirculation area pushes the bottom of the bubble inward. When the bubble tail leaves the expansion, the recirculation suddenly decreased due to the enlarged flow area at the back of the bubble. The unstable recirculation flow introduces oscillations at the tail of the bubble. As a result, in the third stage, the oscillation of the bubble length is mainly due to the shape change at the tail of the bubble. When all the velocities at different parts of the bubble become stabilized, the length of the bubble remains constant.

Bubble length variation

Transition time of the bubble in the expansion

In order to determine the transition time of a stabilized Taylor bubble in a straight pipe, it would be sufficient to know the terminal velocity and the length of the pipe. But when the pipe contains a sudden expansion, we need also to take into account the evolution of the bubble velocity near the expansion. Since the terminal velocities before and after the expansion are perfectly known (and equal to those observed in straight pipes), we only need to take into account the delay introduced by the singularity. This is most easily done by introducing a time shift (∆t s ), defined as the difference of the actual transition time and that obtained without taking into account the singularity. Consider the example in which the length of the pipe below and above the expansion is defined by respectively l o and l e (Fig.

6.13).

A simple calculation of the regular transition time, not accounting for the singularity, would be given by l o /U o + l e /U e , where U o and U e are the initial and final terminal velocities of the bubble. The actual transition time will then be given by:

∆t = l o U o + l e U e + ∆t s
where the time shift ∆t s is added to account for the transition in the singularity. From the results in Fig. 6.9, it is easily concluded that the time shift will be positive (a time delay) as the bubble head velocity is initially below the new terminal velocity. For a fixed distance, the bubble spends more time passing through the expansion than the results simply obtained without considering the effect of the expansion. • Penetration: the bubble tail retracts in the bubble body along the tube direction and penetrates the bubble. A typical penetration can be seen in Fig. 6.17.

• Detachment: the downward flow stretches the bubble tail and small bubbles shed off from the tip of the bubble tail. A typical detachment can be seen in Fig. 6.18.

Note that more than one of these break-up patterns can occur during the event of the bubble passing through the expansion. For example, a bubble breaks up due to necking process. It separates into two parts. Then, the leading bubble tail retracts and even penetrates itself. Therefore, two break-up patterns are observed for the same bubble. 

Break-up pattern map

A series of simulations are conducted to determine the break-up pattern map for different expansion ratios. The expansion ratios ( ) range from 1.2 to 1.7. As explained in Section 6.2.1, the Morton number is a dimensionless number which is independent of the tube diameter.

Therefore, two groups of simulations were carried out, each with a fixed value of the Morton number of respectively log(Mo) = -2.62 and 0.37. The first group has the same Mo number as the W-G 80% mixture. And the second group is similar to the W-G 95% mixture. In the experimental tests, the bubble length is different for each bubble. But, in the simulations the initial length of the bubble is fixed to 9r o .

The results are shown in Fig. 6.19. All three break up patterns are observed in Fig. 6.

19(A).

There is a small region where the bubble remains intact ( < 1.4, 20 ≤ Eo ≤ 40). For higher values of the Eo number, but expansion ratios less than 1.4, small bubbles will be shed off at the tail of the bubble. The detachment will not affect the bubble main body. When > 1.4 and Eo ≤ 60, the bubble will break up by necking. For increasing Eo number, the recirculation at the rear of the bubble becomes stronger. The bubble tail will penetrate the entire bubble instead of cutting it in the middle. at the rear of the bubble is not significant. Bubble penetration can be observed when Eo is equal to 100. Overall, the dominant break-up pattern is necking.

Chapter conclusion

The Taylor bubble rising through the expansion has been investigated by means of experiments and simulations. The following conclusions can be drawn: • The time shift of the bubble in the expansion is positive. The bubble spends more time passing through the expansion than the results simply obtained without considering the effect of the expansion.

• The concave neck region always exists when the bubble passes the expansion. Increasing the expansion ratio will lead to a reduction of the bubble neck radius.

• Three bubble break-up patterns (necking, penetration, detachment) are observed in the experiments. A bubble break-up pattern map has been obtained from the numerical simulations for log(Mo) = -2.62 and 0.37.

Chapter 7

Bubble rising through contractions

In this chapter, we will discuss the bubble rising through contractions. The same numerical model is used for this purpose as the model described in Chapter 6. The simulation results are validated by experiments. First, we will discuss the bubble behaviors in the contraction.

Then, the bubble blocking phenomena will be analyzed.

Model description

Simulations

The configuration of the numerical model is shown in Fig. The description of the hydrodynamic features are similar to those defined in Chapter 6.

The location of the contraction in the z direction is z c . Other parameters are expressed in the same form as in Fig. 6.2.

Experiments

The contraction ratios in the experiments are listed in Table 7 

Result analysis

Comparison of experiments and simulations

The bubble shape deformation in the contractions are shown in Fig. 7.2 to 7.6. The first row in each figure is the experimental data. The second row are the simulation results. A good agreement is found between simulations and experiments for all cases. The figures show the dynamic behavior of the bubbles passing through the contractions. When the bubble head reaches the expansion, the time is set to be the starting time (t = 0.0 s). Unlike the figures for the bubble passing through the expansion, we show also the bubble shape before encountering the contraction. mixtures. The contraction ratio is 0.81 for the 3 cases. For these cases, the bubble evolution is very similar. A small difference can be observed for the bubble in the W-G 60% fluid. When the bubble passes the contraction, capillary waves can be observed at the rear of the bubble.

For the cases W-G 70% and W-G 80%, an oval tail shape can be observed. In the next section, a detailed discussion on the bubble velocity variation is presented based on the simulation results.

Velocity variation

Similar to the discussion in Section 6. The transient state of the bubble in the contraction can be observed from the velocity variations. Similar to the definitions in Section 6.2.1, the dimensionless velocity U * = U/ √ gD o is plotted at four locations of the bubble: the tip of the head, the center of the tail, the tip of the tail and the center of mass. The evolution of the velocity at those four locations is shown in Fig. 7.7 as a function of the normalized time to the contraction (t * ). We consider t * = 0 when the bubble head reaches the contraction. The two vertical dashed lines mark the instants the bubble nose and tail reach the contraction. The bubble head velocity begins to decelerate before reaching the contraction. This is simply due to the liquid ahead of the bubble blocked by the contraction. For the tail velocities, they begin to oscillate at t * ≈ 0.5, and decelerate even more than the velocity of the bubble head. These observations on the velocities may lead to the conclusion that the contraction does not induce any oscillation of the bubble surface.

Furthermore, we want to investigate whether the bubble initial length affects the transient velocity of the bubble in the contraction. 

Bubble length variation

.9 shows the bubble length variation (Mo = 1, Eo = 100) when it passes through the contraction for different contraction ratios. The initial bubble length for these tests are fixed at l o = 4r o . The variation can be divided into two stages. The first stage is reducing the length in the z direction. The bubble head takes some time to accommodate to the smaller diameter of the upper tube. The bubble will be squeezed in the z direction. Thus, the length will be reduced. In the second stage, a new bubble head shape formed in the upper tube. The bubble body continuously passes through the contraction. The bubble will be elongated in the smaller tube. Therefore, the bubble length increases.

Transition time of the bubble in the contraction

This section is similar to Section 6. where the time shift ∆t s is added to account for transition in the contraction. In the following, the time shift ∆t s is calculated for the bubble head velocity. 

Bubble blocking

The bubble blocking phenomenon has been observed both in the experiments and simulations. When the contraction ratio is reduced, the bubble will be blocked by the contraction.

We consider that the bubble is blocked by the contraction if the bubble head velocity reduces to zero when the bubble reaches the contraction. The investigation in this section focuses on the blocking phenomenon, but not on the bubble evolving after being blocked. In the experiments, the blocked bubble continuous to evolve. After a few seconds, it may break-up into small bubbles that pass through the contraction. This phenomenon may be due to the contact of the bubble interface with the edges of the upper tube. Nevertheless, the bubble stops at the contraction for at least a few seconds. In the simulation, the event of the bubble interface in contact with the tube edge is not properly taken into account. Simulation of the bubble deformation after blocking is therefore not pursued. The direct reason of the bubble being blocked is that the bubble interface touches the tube edges and prevents the liquids flow from ahead of the bubble to its rear. When the bubble rises, there is always a passage way for liquid flow between the bubbles and the tube wall. The illustration of the passage way is shown in Fig. 7.10(B). Figure 7.12 and 7.13 show this liquid passage way. At each moment, we can obtain one point which is the location of minimal distance from the bubble interface to the side tube wall. The trajectory of this point is the line in Fig. 7.12 and 7.13.

Figure 7.12 shows the bubble interface trajectory passing through the contraction ( = 0.7).

The interface trajectories for different Eo numbers are close to each other. The Eo number has minor effect on this trajectory for Eo > 100 . When Eo = 100, the trajectory is slightly close to the tube wall. If the trajectory touches the tube wall, the bubble will be blocked. The trend of the trajectory is shown in Figure 7.12 with different the Eo numbers. The reason that increasing the surface tension effects make the bubble difficult to deform when it encounters the contraction. The new bubble head shape can not accommodate to the diameter of the upper tube. The bubble head may reach the tube wall, then lead to blocking.

Figure 7.13 shows the bubble interface trajectory passing through different contractions ( = 0.7, 7.5, 0.8). In this test, Eo = 50, the bubble is blocked in the contraction where = 0.7.

When the contraction ratio increases, the bubble is able to pass through the contraction. A small changing of the contraction ratio ∆ = 0.05 leads to large discrepancy on the bubble interface trajectory. Therefore, the tube geometry changing has major effects on the bubble blocking.

Two groups of tests have been carried out in order to find the critical contraction ratio of blocking. The contraction ratio ranges from 0.6 to 0. bubbles with smaller Eo number trend to be blocked. In the present tests, if the contraction ratio is less than 0.7, the bubble will be blocked.

Chapter conclusion

In this chapter, the Taylor bubble rising in contractions has been investigated. Three different contraction ratios have been tested in the experiments. The simulations showed similar results. A few conclusions can be drawn:

• The bubble velocity will be reduced in the contraction. The contraction will not introduce any bubble interface oscillations.

• The time shift of the bubble in the contraction is positive. The effect of the contraction on the bubble's transitional state is a delay of the bubble rising.

• The bubble blocking phenomenon is obtained in experiments and reproduced in our simulations. Extensive simulations in different conditions show that for a contraction ratios less than 0.7, the bubble will be blocked. Chapter 8

Conclusions and perspectives

This chapter summaries the conclusions drawn from this study together with the perspective for future work in this field.

Synthesis

The review presented in Chapter 2 showed the background literature on two-phase flow. In particular, we focused on the rise of Taylor bubbles. We clarify the flow patterns observed in two-phase flow in vertical channels. The slug flow is one of the four typical flow patterns, namely bubble flow, slug flow, churn flow and annular flow. An extensive review on the Taylor bubble has been carried out. The investigation about the Taylor bubble rising in the straight tube has been studied. Both the numerical and experimental studies have been devoted to this subject. But, the investigation about Taylor bubbles rising through expansions and contractions is very limited. The main objective of this study is to investigate the bubble transitional behaviors in the expansion and contraction.

In order to reach the main objective of this work, experimental and numerical tests have been carried out. Chapter 3 described the numerical model. The classical projection method is used for solving the governing equations. The Volume-of-fluid (VOF) method is adopted to present the interface of the bubble. A few test cases have been carried out to test the solver.

The lid-driven cavity flow test shows that the convergence rates are close to second-order both for velocities and pressure. The single bubble rising test case showed that the solver can predict the bubble shape in a wide range of the Re and Bo number. Other test cases about the adaptive mesh refinement and parallelization are carried out to improve the efficiency of the calculation.

An experimental test bench has been established at the CETHIL laboratory. The details of the configuration are described in Chapter 4. The experimental apparatus proved to be effective for the present study. Images of the bubble rising through the expansions and contractions could be obtained with the high speed camera. A self designed algorithm is used for detecting the interface of the bubble in the images.

The Taylor bubble in straight tubes has been investigated in Chapter 5. A sensitivity analysis confirmed the parameters used in the simulations. We chose the experimental data of [START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] and carried out a series of simulations. The results of the bubble terminal velocities are in good agreement with the experimental data and the correlations. A comparison of the simulations against the present experimental data have been carried out. The shape comparison Chapter 8. Conclusions and perspectives

shows that the simulation could successfully predict the bubble shapes. We also find that the correlation of Llewellin et al. [START_REF] Llewellin | The thickness of the falling film of liquid around a Taylor bubble[END_REF] which predicts the bubble film thickness has the best agreement to the present experimental data.

The Taylor bubble rising through the expansion and contraction have been investigated

in Chapter 6 and 7, respectively. The investigations are performed by the experiment and simulation. A detailed analysis is then performed is based on the numerical data.

Concluding remarks

The conclusions present here is about the bubble rising through the expansion and contraction, which are the main objective of the present study. These conclusions are as follows:

• The visual comparison shows good agreement between the experimental and numerical data. The concave shape at the tail of the bubble could be successfully captured by the simulations. The recirculation at the tail of the bubble pushes the bottom into the bubble and forms the concave shape. The interface moving inward can be observed on the experimental images, but it is difficult to detect the interface. However, the simulation could show the interface of the bubble tail very clear.

• The bubble velocity increases in the expansion. On contrary, the bubble velocity decreases in the contraction. The bubble head velocity reaches a new steady state very quickly. The bubble tail shows oscillations.

• The time shift of the bubble in both expansion and contraction are positive. The bubble spends more time passing through the singularity than the results simply obtained without considering the effect of the expansion/contraction.

• Three bubble break-up patterns (necking, penetration, detachment) are observed when the bubble passes through the expansion. A bubble break-up pattern map has been obtained from the numerical simulation.

• The bubble blocking phenomenon is observed in the experiment. The simulation could reproduce the same phenomenon. Extensive simulations in different conditions show that the bubble will be blocked if the contraction ratio is less than 0.7. The surface tension also has effect on this phenomenon. The bubble tends to be blocked when increasing the surface tension force.

Perspectives

The experiments carried out in this study have been successfully predicted by the present numerical data. However, further research definitely needs to be carried out. Specific areas that should be given priority for future works are suggested below:

• There are other geometry parameters of the singularities that need to be investigated.

For example, the gradual expansion or contraction. In order to further study the effect 
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 821 FIGURE 2.1: Shape regime map for bubbles in liquids. (Replot based on [18]).

FIGURE 2 . 2 :

 22 FIGURE 2.2: Iso-level curves from a level-set formulation. The circular bubble initialized at (x = 0.5, y = 0.5) with 1.0 radius.

FIGURE 2 . 4 :

 24 FIGURE 2.4: Calculating volume fraction column-wise and row-wise to estimate the line slope.

  [START_REF] Fabre | Modeling of two-phase slug flow[END_REF] whereA = L[Eo; a, b, c, d] B = L[Eo; e, f, g, h] C = L[Eo; i, j, k, l] G = m/Cand the parameters (a, b, ..., l) are a = 0.34 b = 14.793 c = 3.06 d = 0.58 e = 31.08 f = 29.868 g = 1.96 h = 0.49 i = 1.45 j = 24.867 k = 9.93 l = 0.094 m = 1.0295

Bugg and Saad [ 27 ]

 27 measured the velocity field around rising bubble by particle image velocimetry (PIV). The bubble is produced by injecting air into a tube containing stagnant olive oil. The tube diameter is 19 mm. The fluid properties and pipe diameter described in dimensionless numbers are Eo = 100, Mo = 0.015 and Re D = 27. The terminal velocity agrees with the theoretical prediction by equation(2.33). The V T was measured to be 131 mm/s which yielded a Froude number of 0.303. The results show that the influence of the bubble on the surrounding liquid is quite limited. The liquid velocity ahead of the bubble is reduced to 5 % of the bubble velocity at distance of D/3. The wake extends further with the velocity dropping to 10 % of the bubble speed at about 0.77D below the bubble.Mandal, Das, and Das[START_REF] Mandal | Liquid Taylor bubbles rising in a vertical column of a heavier liquid: An approximate analysis[END_REF] investigated the elongated drops rising in vertical tubes. Unlike the study on Taylor bubbles, the density and viscosity play an important role on drop rising velocity. They have tested many liquid-liquid systems, such as the kerosene-water, kerosene-brine, benzene-water.Santos and Coelho Pinheiro[START_REF] Santos | Flow around individual Taylor bubbles rising in a vertical column with water: Effect of gas expansion[END_REF] investigated the Taylor bubble rising in a decompression condition. The experiments show that the bubble volume increases as it ascending close the free surface. Two reduced pressures(33.3, 20.0 kPa) and atmospheric pressure were maintained at the free liquid surface to provide a wide range of expansion rates. They reported that the bubble volume expansion rate modifies continuously during the Taylor bubble rising and a well-defined liquid velocity profile can never reach.A summary of experiments in the literature are shown in

James,

  Lane, and Chouet[START_REF] James | Gas slug ascent through changes in conduit diameter: Laboratory insights into a volcano-seismic source process in lowviscosity magmas[END_REF] reported an experimental investigation on the rising Taylor bubbles through expansions and contractions. The objective of their work was to compare the experimental pressure signals against the seismic data recorded at volcanic sites. The pressure oscillations observed in seismic data may be caused by a large bubble rising through a sudden expansion. The data exhibited a similar behavior. The experiments investigated a variety of pipe expansions and contractions. The working fluids are the sugar syrup solutions at different concentrations. The pressure sensors are installed at the locations close to the expansion. Kondo et al. [58] investigated the vertical co-current gas-liquid flow through expansion. The experiments include many cases of the Taylor bubble rising in quiescent liquid. The tube diameter changes from 0.02 m to 0.05 m. The experiment tests air-water two-phase flow at near atmospheric conditions.

  investigated the pressure change and flow patterns subject to the influence of sudden contractions. The air and water flow from small rectangular channels into 2 mm round tube. They have revised Abdelall et al. [1]'s homogeneous correlation to predict the pressure drop. They introduced the Bond number and contraction ratio into the original correlation as correction factors. The mean error of the new correlation is reduced to 30 % for the entire database. Padilla, Revellin, and Bonjour [78] visualized the two-phase flow in horizontal sudden contractions. The tubes' diameter varied from 5.3 to 10.85 mm. A new predicting method
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 26 FIGURE 2.6: Bubble column and air lift bioreactors. (Replot based on [96]).

D 14 12

 14 in = 6 mm L = 200 mm 3M Novec HFE (C 4 F 9 OCH 3 ) Mo ≈ 1 × 10 -

FIGURE 3 . 1 :

 31 FIGURE 3.1: Example of quadtree mesh (left) and the corresponding treestructure representation (right). [83]
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 32 FIGURE 3.2: Geometrical flux computation on a quadtree mesh.[START_REF] Popinet | An accurate adaptive solver for surface-tension-driven interfacial flows[END_REF] 
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 33 FIGURE 3.3: Boundary conditions of the lid-driven cavity problem.
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 234 FIGURE 3.4: Velocity (u and v) comparsion with the results in [43]. (a) Re=100, (b) Re=1000

FIGURE 3 . 5 :

 35 FIGURE 3.5: Convergence rates of (a) u-velocity and (b) v-velocity along the center of cavity.
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 36 FIGURE 3.6: Pressure field along the center of cavity and its convergence rate.
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 37 FIGURE 3.7: Initial configuration and boundary conditions for the test cases.

FIGURE 3 . 8 :

 38 FIGURE 3.8: Time evolution of the interface for test case 1 on the finest grid.
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 3310 Figure 3.16(B) are plotted in the same way. The relative errors of the center of mass are less

FIGURE 3 . 12 :

 312 FIGURE 3.12: Center of mass for test case 1 (A) and 2 (B).

5 .FIGURE 3 . 13 :

 5313 FIGURE 3.13: Circularity for test case 1 (A) and 2 (B).
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 314 FIGURE 3.14: Rise velocity for test 1 (A) and 2 (B).

Figure 3 .

 3 18(A) shows the bubble rising velocities. The domain width L = 2D has strong effects on the bubble rising velocity. If the domain width increases

FIGURE 3 . 16 :

 316 FIGURE 3.16: Relative errors of adaptive mesh with their corresponding results in uniform mesh for test case 1. (A) Relative error of the center of mass. (B)Relative error of the velocity.
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 317318 FIGURE 3.17: CPU times consume in uniform mesh and adaptive mesh for test case 2

  Fig. 3.19(C). This observation agrees with the results in [47]. But, the toroidal shape is only a transient shape. The toroidal ring breaks up and forms 4 offspring bubbles (Fig. 3.19(D)).

66 FIGURE 3 . 19 :

 66319 FIGURE 3.19: Bubble shape evolution with the time. (Re = 200, Bo = 200)

Figure 3 .

 3 Figure 3.21 shows the minimum, maximum and average elements on different cores. The level differences between the coarsest and finest mesh are 1 for Fig. 3.21(A), 4 for Fig. 3.21(B).
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 320 FIGURE 3.20: Real time spent with different number of CPU cores.

FIGURE 3 . 21 :

 321 FIGURE 3.21: The maximum, minimum and average number elements on different CPU cores. Total number of the CPU cores is 16. Finest meshes are (A) h = 1/64 , (B) h = 1 / 512.
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 41 FIGURE 4.1: Configuration of the experimental test bench.
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 42 FIGURE 4.2: Illustration of the bubble generator chamber.
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 4343 FIGURE 4.3: Illustration of the visualization section.
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 44 FIGURE 4.4: Sketch of the connection plate.

1 •

 1 C. The ambient temperature is 18 • C during the experimental tests. The temperature fluctuations during the experiment are ∆T = ±1.2 • C (4.4)
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 45 FIGURE 4.5: (A) Shear rate vs. shear stress of different water-glycerol solutions. (B)Measured viscosity of the water-glycerol solution as a function of the measured volume percentage of glycerol.

FIGURE 4 . 6 :

 46 FIGURE 4.6: (A) Detecting the tube. (B) Rotating the image. (C) Removing the noises on the image. (D) Select the main bubble.
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 48 FIGURE 4.8: The optical correction along the radius.

FIGURE 4 . 9 :

 49 FIGURE 4.9: (A) The points indicate the surface. (B) Rearrangement and connection of the points.

FIGURE 4 .

 4 FIGURE 4.10: (A) The two halves of the bubble. (B) The results of the bubble volume in each frame.
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 51 FIGURE 5.1: Initial configuration for the simulation.

FIGURE 5 . 2 :

 52 FIGURE 5.2: (A) Bubble tail shapes for different meshes. (B) Velocity profile in different meshes.

FIGURE 5 . 3 :

 53 FIGURE 5.3: Tail velocities with different initial bubble lengths.

i.e. r µ = 100 ,

 100 Eo = 50, and N f = 59.4. The terminal tail shapes are shown in Fig. 5.4(A).

Figure 5 . 4 (

 54 B) shows the terminal velocities at different density ratios. The terminal velocities decreases abruptly if the density ratio is less than 100. The variations of velocities from the beginning of the simulation are shown in Fig 5.5. The bubble velocities oscillate at the beginning stage. In the present test case, the nose velocity becomes stable when t * is greater than 6.5 (Fig 5.5(A)). And, the tail velocities need more time to become stable (t * > 9) (Fig 5.5(B)). The tendency of the velocities development is independent of the density ratio.
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 54 FIGURE 5.4: (A) Effect of density ratios on bubble tail shapes. (B) Effect of density ratios on the bubble terminal velocities.

FIGURE 5 . 5 :

 55 FIGURE 5.5: (A) Effect of density ratios on bubble nose velocities. (B) Effect of density ratios on bubble tail velocities.

4 FIGURE 5 . 6 :

 456 FIGURE 5.6: (A) Effect of viscosity ratios on bubble tail shapes. (B) Effect of viscosity ratios on the bubble terminal velocities.

FIGURE 5

 5 FIGURE 5.7: (A) Effect of viscosity ratios on bubble tail shapes. (B) Effect of viscosity ratios on the bubble terminal velocities.

Figures 5 .

 5 8 to 5.12 show the terminal shape of the bubbles for different glycerol-water solutions. The properties are presented in terms of the dimensionless numbers (Eo and Mo). The bubble shapes obtained from the experimental tests are shown on the right of each figure, which are the original figures from the high speed camera. The simulation results are shown on the left of each figure.
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 58595105115512 FIGURE 5.8: Comparison of the bubble shape.(W-G 95%, Eo = 49.7, log(Mo) = 0.37)

105 FIGURE 5 . 14 :

 105514 FIGURE 5.14: Numerical results (filled symbols) of the Froude number plotted as a function of the Eötvös number and for different values of the Morton number. The dashed and solid lines correspond to the correlations of Wallis[START_REF] Wallis | One-dimensional two-phase flow[END_REF], Hayashi, Kurimoto, and Tomiyama[START_REF] Hayashi | Terminal velocity of a Taylor drop in a vertical pipe[END_REF], and Viana et al.[START_REF] Viana | Universal correlation for the rise velocity of long gas bubbles in round pipes[END_REF]. Experimental data (open symbols) from White and Beardmore[START_REF] White | The velocity of rise of single cylindrical air bubbles through liquids contained in vertical tubes[END_REF] are also added for comparison.
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 515 FIGURE 5.15: Comparison of the terminal velocity. (A) Experiments vs. correlations (B) Experiments vs. simulation.
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 5171551835519 FIGURE 5.17: Numerical velocity fields and streamlines for a case with Mo = 4.31 × 10 -2 and N f = 111.

FIGURE 6 . 1 :

 61 FIGURE 6.1: Initial configuration for the simulation.
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 6364656667 FIGURE 6.3: Experimental and numerical results of the bubble rising through the expansion. (W-G 95%, Eo = 49.7, log(Mo) = 0.37, = 1.24)

  be changed due to the perturbation created by the expansion. The bubble will reach a new steady state in the upper tube. The analysis of the bubble velocity begins with the two terminal velocities. At this point, we need to adapt the aforementioned dimensionless groups for the straight pipe to the expansion problem due to the change of diameter. The pipe diameter D o at the lower end of the pipe expands to a new diameter D e . The local Eo and Fr numbers that include the diameter will change correspondingly. Here, we choose D o as the reference diameter to calculate the dimensionless numbers before the bubble moves through the expansion, i.e. Eo o = ρ l gD 2 o /σ and Fr o = V T / √ gD o . The Eo e and Fr e numbers, characterizing the bubble flow after the expansion, are obtained by substituting D e into the expressions. In all simulations, the bubble has reached the steady rising velocity before entering the expansion.Some time after the bubble has passed through the expansion, it reaches a new steady state.

Figure 6 .

 6 Figure 6.8 shows the transition of the Eo and Fr numbers between the two steady states for expansion ratios 1.1, 1.2 and 1.3, and for the two cases with Eo o equal to 50 and 100, respectively. The Morton number remains the same, Mo = 1 × 10 -2 . As expected, the figure shows a very good agreement between the simulations and the correlation by Viana et al. [115]. Both steady state regimes fall in the conventional scenario of Taylor bubble rising in straight pipes.The remaining of this section will focus on the analysis of the transient state of the Taylor bubble passing through the expansion.
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 69 FIGURE 6.9: Evolution of the dimensionless bubble velocity as a function of the bubble head position at four locations of the bubble. The vertical dashed lines mark the location of the bubble entering and leaving the expansion. The horizontal dashed line indicates the bubble terminal velocity before entering the expansion. (Mo=1 × 10 -2 , Eo=100, expansion ratio=1.2)

FIGURE 6 . 10 :

 610 FIGURE 6.10: Evolution of the mass center velocity for different values of the initial bubble length. The dashed lines mark the locations of the bubble entering and leaving the expansion. (Mo = 1 × 10 -2 , Eo = 100, = 1.1)

Figure 6 . 3 FIGURE 6 . 11 :

 63611 Figure 6.12 shows the bubble length variation (Mo=1 × 10 -2 , Eo=100) when it passes through different expansions. The variation can be divided into three stages. The first stage is an elongation in the z direction. The bubble length slightly increases due to the expansion of the head and the shrinking of the body in the radial direction. The concave bubble neck region forms gradually during this stage. In the second stage, we see the bubble shrinking in the z direction. The bubble moves through the expansion in a short period of time as

Figure 6 .

 6 Figure 6.14 shows the time shift for different expansion ratios and Eo numbers. The bubble spends more time in larger expansions. The increase of the N f number leads to a higher terminal velocity, but it happens for N f < 200 [53]. In present tests, the N f numbers are in this range. Therefore, the difference of the two terminal velocities increases in larger expansions. The bubble takes more time to expand in the radial direction to accommodate the larger flow channel. Another trend in Fig. 6.14 shows the shift time decreasing at larger Eo number indicating that the surface tension forces become less significant comparing with the gravitational forces. The deformation of the bubble interface is easier (consumes less energy
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 616617 FIGURE 6.16: Bubble break-up in the expansion (W-G 95%, = 1.72)

FIGURE 6 . 18 :

 618 FIGURE 6.18: Bubble break-up in the expansion (W-G 70%, = 1.72)

Figure 6 .

 6 Figure 6.19(B) shows the bubble break up pattern for log(Mo) = 0.37. The detachment is not found in the present test region. The viscosity forces are relatively large, thus recirculation

7 . 1 .

 71 The diameter of the lower and upper tubes are D o and D c , respectively. Thus, the contraction ratio is given by = D c /D o . The length of the upper tube is 8D o . The connection of the two tubes is the horizontal wall, which makes the connection a sudden contraction. The boundary conditions for the tube walls are Dirichlet conditions (u = 0, v = 0).

. 1 .

 1 Three contraction ratios have been tested, ranging from 0.93 to 0.69. The inner diameter of the lower tube (D lower in ) corresponds to D o in the simulation. And, the inner diameter of upper tube (D upper in ) corresponds to D c . The contraction ratio ( ) is equal to D c /D e .

Figures 7 . 2 , 7 .

 727 Figures 7.2, 7.3 and 7.4 show the bubbles in the W-G 70% mixture rising through the contractions with = 0.93, 0.81 and 0.69. The bubble has reached its terminal shape before entering the contraction. When it encounters the contraction, the bubble nose is squeezed into a smaller round shape to accommodate the diameter of the upper tube. The bubbles pass through the contractions for = 0.93 and 0.81, but for = 0.69 the bubble is blocked by the contraction. The conditions in which the bubble is blocked will be discussed in more details in the following section.

FIGURE 7 . 2 :(FIGURE 7 . 3 :FIGURE 7 . 4 :

 727374 FIGURE 7.2: Experimental and numerical results of the bubble rising through a contraction (W-G 70%, Eo = 41.9, log(Mo) = -3.65, = 0.93)

FIGURE 7 . 5 :FIGURE 7 . 6 :FIGURE 7 . 7 :

 757677 FIGURE 7.5: Experimental and numerical results of the bubble rising through the contraction (W-G 60%, Eo = 40.6, log(Mo) = -4.63, = 0.81)

Figure 7 .

 7 [START_REF] Araujo | Flow of two consecutive Taylor bubbles through a vertical column of stagnant liquid -A CFD study about the influence of the leading bubble on the hydrodynamics of the trailing one[END_REF] shows the evolution of the bubble head and tail velocities for different values of the initial bubble length. The head velocity is independent of the initial bubble length. The tail velocity follow the same trend, but slightly shifted in time due to the different lengths of the bubbles.

FIGURE 7 . 8 :

 78 FIGURE 7.8: Evolution of the bubble head and tail velocity for different values of the initial bubble length. (Mo = 1 × 10 -2 , Eo = 100, contraction ratio = 0.9)

2 . 1 . 70 FIGURE 7 . 9 :

 217079 FIGURE 7.9: Evolution of the bubble length in different contraction ratio. (Mo = 1, Eo = 100)

Figure 7 .

 7 Figure 7.11 shows the time shift for different contraction ratios and Eo numbers. The values of the time shift are positive, which indicates that the contraction introduces a delay on the time of the bubble passing through the contraction. Increasing the Eo number, the time shifts in different contractions are reducing. The deformation of the bubble interfaces are facilitated when the Eo number is increasing, thereby reducing ∆t s . The contraction ratio has a strong influence on the time shift, in particular for smaller Eo numbers.

FIGURE 7 .

 7 FIGURE 7.10: (A) Illustration of the transition time of the bubble in the contraction. (B) Illustration of the bubble interface trajectory.

FIGURE 7 . 11 :

 711 FIGURE 7.11: Time shift due to the effects of the contractions. (Mo = 1 × 10 -2 )

9 .

 9 The values of the Eo number are less than 100. The Mo number for first group is close to the fluid with W-G 95%. The second group is close to the W-G 80% mixture. The initial bubble lengths are fixed to 4r o . The results are shown in Fig. 7.14. The two blocking regime maps are very similar. The variation of the Mo number has minor effect here on the bubble blocking. The tube diameter has a greater effect on the blocking of the bubble. If the contraction ratio and Mo number are fixed, the

FIGURE 7 . 12 : 70 FIGURE 7 . 13 : 62 FIGURE 7 . 14 :

 7127071362714 FIGURE 7.12: Bubble interface trajectory passing through the contraction. (Mo = 1 × 10 -3 , Contraction ratio = 0.7)

  

  1,j+k . We approximate the height function y = f (x) in the central cell of

	the block with the equation	
	sgn(m y )y = -m xc x + α	(2.21)

  1/2 /µ. Three separate equations are obtained in different Re D range. For large Re D (>200) they found

	V T = 0.34/(1 + 3850/Eo 3.06 ) 0.58 gD	(2.37)
	For small Re D (<10) they found			
	V T =	9.494 × 10 -3 (1 + 6197/Eo 2.561 ) 0.5793 Re 1.026 D	gD	(2.38)

TABLE 2 .

 2 

	Source	Equation(s)	Validity
	Nusselt [75]	Equation (2.45)	N f < 3000
	Dukler and Bergelin		

1: Summary of the models for liquid film of the Taylor bubble presented in literature.

[START_REF] Llewellin | The thickness of the falling film of liquid around a Taylor bubble[END_REF] 

TABLE 2 .

 2 2: Summary of simulations of the Taylor bubble in straight tube presented in literature.

	Source	Mo	Eo	Method
	Tomiyama et al. [107] Bugg, Mack, and Rezkallah [26] 1×10 -12 -1×10 1 1×10 -6 -1×10 1	3.3-70	VOF

Table 2

 2 

.3 and 2.4. The table summarizes the operational conditions of each experiment. The fluid properties are shown in terms of non-dimensional numbers.

TABLE 2 . 3 :

 23 Summary of the experimental studies of the Taylor bubble rising in vertical tube.

	Comments												Visualization	aided by Rouge	Solophenyle 6BL	powder							Air is blown	through centered	tubelets. Water	is flowing down-	wards in a vertical	tube.
			-11 to 10 6															-11 to 10 -5				
	Liquid properties Range		Mo = 10 Water, butyric acid	solution, sucrose	solution, etc.	Electrolytic solu-	tion	(NaOH,	K 3 Fe(CN) 6 and	K 4 Fe(CN) 6 )	air-water system	(σ = 0.010 N/m )	Water, glycerol and	aqueous glycerol	solutions	Water		Mo = 10 Water,	Water-sodium-	polywolframate	solution,	Water-cellulose	ester solutions	Water
	Tube size		D in = 5 to 38.7 mm	L > 0.6 m		D in = 50.8 mm	L = 4.56 m						D in = 19, 52 mm			D in = 25 mm	L = 4 m	D in = 14 mm	L = 4 m				D in = 99.7 mm
	Tube	material	Plexiglass			Plexiglass							Acrylic			Perspex		Perspex				
	Test object		Taylor bubble			co-current gas-	liquid annular	flow, upward	gas-liquid slug	flow			Taylor bubbles ris-	ing through stag-	nant liquids	Velocities in front	of the bubble	Taylor bubbles ris-	ing				Stationary Taylor	bubbles
	Published	articles	[118]			[121]	[65]						[28]			[80]	[81]	[95]					[34]	[35]	[57]
	Test	facilities	1			2							2			3		4					5

TABLE 2 .

 2 

4: Summary of the experimental studies of the Taylor bubble rising in vertical tube.

TABLE 3 .

 3 

			1: Physical parameters of the test cases
	Test Case	ρ 1	ρ 2 µ 1 µ 2	g	σ ρ 1 /ρ 2 µ 1 /µ 2
	1	1000 100 10	1 0.98 24.5	10	10
	2	1000	1 10 0.1 0.98 1.96 1000	100

  Test case 1 bubble shapes at t = 3. The shapes are computed on different grid resolutions.

	1.1 1.2 1.3 1.4	Grid Resolution h=1/16 h=1/32 h=1/64 h=1/128 h=1/256
	1	
	0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	
	FIGURE 3.9:	

  Table. 3.2. The definition of the Reynolds and Bond

					(A)		(B)
				FIGURE 3.15: Adaptive mesh and interface of the bubble at t = 3 for test case 1.
				(A) The finest level of mesh equals to 1/32. (B) Finest level of mesh equals to
							1/256.
		0.6					
	Relative error of center of mass (%)	-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4	0	0.5	1 Finest level h=1/32 1.5 2 Finest level h=1/64 Finest level h=1/128 Finest level h=1/256	2.5	3
					Time		
					(A)		

TABLE 3 . 2 :

 32 Prediction of the bubble shapes .

					Bo			
		1	5	10	35	50	100	125	200
		10						
		20						
	Re	50						
		100						
		200						

TABLE 4 .

 4 

	1: Camera related parameters.
	Camera Type FASTCAM SA3 model 120K-M2
	Record Rate (fps)	1000
	Shutter Speed (s)	3000
	Total Frame (-)	5453
	Image Width (pixel)	256
	Image Height (pixel)	1024
	Color Bit (-)	

TABLE 4 . 2 :

 42 Diameter of the upper tubes. The tube diameters have been measured with a vernier caliper with a resolution of ±0.02 mm. The outside diameter is measured 10 times along the tube at random locations. The outside diameter is the average value from these measurements. The type A uncertainty can be obtained for the D out . The value of tubes are listed in Table.4.2. The maximum relative uncertainty is ∆D

	Index D	upper out	(mm) D	upper in	(mm)	= D	upper in	/D lower in
	1	32.30	27.80		1.72
	2	28.00	23.30		1.44
	3	26.00	21.40		1.33
	4	24.00	20.00		1.24
	5	21.90	18.10		1.12
	6	18.90	15.00		0.93
	7	17.10	13.10		0.81
	8	15.00	11.10		0.69
	4.3.2 Tube diameter							

out /D out < 0.12%

The inside diameter is measured at both ends of the tube. This uncertainty comes directly from the measurement instruments. ∆D in = ±0.02 In the present study, the inside diameter of the lower tube is 16.40 mm, and the outside diameter is 19.90 mm. The upper tubes are connected to the lower tube. Their diameters are listed in Table.

4.2. D in is the inside diameter of the lower tube. And, D out refers to the outside diameter of the lower tube. is the inside diameter ratio of the upper tube over the lower tube, i.e., = D upper in /D lower in .

TABLE 4 .

 4 3: Summary of the properties of the water-glycerol solutions.

	Samples	Density Viscosity Surface tension
		(kg•m -3 ) (mPa•s)	(mN•m -1 )
	Water	996.56	0.853	71.2
	Glycerol	1261.34	813.84	62.4
	W-G solution 95% 1244.35	520.76	62.8
	W-G solution 90% 1235.10	285.52	63.1
	W-G solution 80% 1208.50	93.46	63.8
	W-G solution 70% 1081.25	50.76	64.8
	W-G solution 60% 1053.80	28.90	65.2
	Nitrogen	1.1581	0.01747	

TABLE 4 .

 4 4: The refraction index of glass and glycerol solution.

TABLE 4 .

 4 5: Summary of parameters in the experiments.

	Fluids : Water-glycerol solution, vol% = [95%,90%,80%,70%,60%]
	D upper in D lower in	Gas : (mm) : (mm) :	Nitrogen 15.00 to 32.30 16.40
		:	0.69 to 1.72
	Bubble volume (mm 3 ):	1322 to 6231
	Bubble velocity (m/s):	0.026 to 0.161

TABLE 5 .

 5 

		1: Mesh parameters.
	Mesh Coarsest Finest
	M1	R/16	R/128
	M2	R/32	R/256
	M3	R/64	R/512

TABLE 5 .

 5 2: Dimensionless numbers of the Taylor bubble in the tube with D in = 16.40 mm.

	Solution	Eo	N f	Mo	log(Mo)
	W-G 95% 49.71 15.14	2.34	0.36
	W-G 90% 49.10 27.40	0.21	-0.68
	W-G 80% 47.52 81.91	0.0024	-2.62
	W-G 70% 41.86 134.93 0.00022	-3.65
	W-G 60% 40.55 230.90 0.000023 -4.63

  .3). The film thickness (λ) is obtained from experimental data. It is simply considered as the minimum distance from the bubble interface to the tube wall. Figure 5.16 shows the film thickness in different water-glycerol solutions. The results have been compared with the correlations presented in Section 2.3.1. The results show that the film thickness increases if D s /D is less than 1. The reason is that the bubbles in such condition has relatively small volume. The bubble shape is close to a spherical shape. And, the liquid film does not fully develop. Therefore, the film thickness for the Taylor bubble can be obtained only if the D s /D is larger than 1.The present experimental data points compared with existing correlations are summarized in Table5.3. The mean relative errors and the mean absolute errors are shown. The best correlation is the one proposed by Llewellin et al.[START_REF] Llewellin | The thickness of the falling film of liquid around a Taylor bubble[END_REF]. The mean absolute value is 9.3%. The mean relative value is 7.7%. It seems that other correlations over estimate the film thickness.

TABLE 6 .

 6 

		1: Diameters of the tubes.
	Index	D in (mm) D out (mm)	= D upper in	/D lower in
	Lower tube			
	1	16.40	20.00	
	Upper tube			
	1	27.80	32.30	1.72
	2	23.30	28.00	1.44
	3	21.40	26.00	1.33
	4	20.00	24.00	1.24
	5	18.10	21.90	1.12

TABLE 7 . 1 :

 71 Diameters of the tubes.

	Index	D in (mm) D out (mm)	= D upper in	/D lower in
	Lower tube			
	1	16.40	20.00	
	Upper tube			
	1	15.00	18.90	0.93
	2	13.10	17.10	0.81
	3	11.10	15.00	0.69
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Chapter 4

Description of the experiments

This chapter presents the methodology, structure and procedure of a series of experiments performed in the CETHIL laboratory, National Institute of Applied Sciences (INSA de Lyon).

The experiments detailed in this chapter investigate the behavior of Taylor bubbles rising through a vertical cylindrical pipe encountering the changing diameters.

Description of the experimental test facility

The experimental apparatus consists of two main parts, the gas supply and the test section, shown in Fig. 4.1. In the present experiments, the gas is provided by compressed nitrogen.

The high-pressure nitrogen is depressurized by a valve. The test section has two parts, the bubble generator chamber and the visualization box. The detailed structure will be showed in next section.

The test section is filled with liquid. The gas is injected at the bottom of the bubble generator chamber, see Fig. 4.1. Before entering the test section, the gas pressure is controlled by two valves, the depressure valve (Valve 1) on the nitrogen bottle and a micro-valve (Valve 2).

The depressure valve is AIR LIQUIDE HBS 200-3-25. It can control the outlet pressure from 0.01 to 0.3 MPa. In the present experiments, the pressure is alway maintained at 0.1 MPa. The micro-valve controls the gas flux. The bubble forms in the bubble generator chamber showing in Fig. 4.2. And then, the bubble goes to a long vertical pipe. The pipe is long enough to stabilize the bubble and make sure the bubble reaches the terminal velocity before encountering expansion or contraction. The length of the tube is 1.2 m. Then, the bubble rises into the visualization section which is shown in Fig. 4.3. The motion of the bubble is captured by a high-speed camera. Finally, the bubble reaches the liquid free surface and releases to the atmosphere.

The experimental test bench is suitable for visualizing bubbles in several kinds of transparent liquids. In the present study, we only tested the water and water-glycerol solutions.

Bubble generator chamber

The bubble generator chamber consists of a cylindrical chamber and a rotational cup which are shown in Fig. 4.2. Before injecting the liquid, the cup is turned upside down. Then, the gas is injected from the nozzle at the bottom of the chamber. The diameter of the nozzle is 4 mm. The bubbles generated from the nozzle are rather small. The rotating cup is used for Here, we established analytical model to correct the optical refraction. The cross sectional 

According to Snell's law, for a given pair of media and a wave with a single frequency, the ratio of the sines of the angle of incidence θ 1 over the angle of refraction θ 2 is equivalent to the opposite ratio of the indices of refraction (n 2 /n 1 ), i.e., sin θ 1 sin θ 2 = n glass n liquid Then, we obtain the incidence angle (θ 3 ) for inner tube wall by

where, θ = θ 6θ 5 . R in is the inner radius of the tube. And then, The optical distortion ∆V is thus: Chapter 6

Bubble rising through the expansion

The objective of this chapter is to obtain a better understanding of the behavior of the Taylor bubbles when they rise through the expansion. The numerical model used in Chapter 5 is extended for simulating the bubble rising through expansions. Experimental results have been obtained for different fluid properties and expansion ratios. The experimental data is used to validate the simulations.

Several bubble characteristics will be discussed in this chapter. First, we analyse the bubble rising through the expansion without breaking up. Then, the bubble break up in the expansion will be investigated.

Model description

Simulations

The numerical model introduced in Chapter 5 was used to simulate the bubble rising through expansions. The configuration is shown in Fig. 6.1. The bubble initial configuration is the same as that of the model showed in Fig. 5.1. Here, we extend the simulation region to a larger diameter. The diameters of the lower and upper tubes are D o and D e , respectively.

Thus, the expansion ratio is = D e /D o . The length of the upper tube is 8D o , so that the bubble will have sufficient length to stabilize. The connection of the two tubes is the horizontal wall, which makes the connection become a sudden expansion. The boundary conditions for the tube walls are the Dirichlet conditions (u = 0, v = 0).

The governing equations are again given by Eq. 5.2. The characteristic length is now the lower tube diameter (D o ). All the lengths are normalized with respect to D o .

Experiments

The experimental setup was discussed in Chapter 4. The expansion ratios for the experimental tests are listed in Table 6.1. Five different expansion ratios have been tested, which range 

Necking

When the bubble goes through the expansion, a neck region will appear which is not observed in straight pipes. We define the bubble neck radius δ n as the minimum cross-sectional radius in the bubble neck region. Figure 6.15 illustrates for different expansion ratios the evolution of the bubble neck radius when the bubble passes through the expansion. Images of the bubble shape when the minimum bubble neck radius is reached are also added. The formation of the bubble neck appears to be the result of the flow pattern in the vicinity of the expansion. When the bubble moves upward and pushes away the liquid above the bubble, a falling liquid film is created that drains the fluid to the region below the bubble. This phenomenon also exists for bubbles in straight pipes, but in the case of an expansion the liquid film encounters a forward facing step forcing the flow towards the bubble. The liquid-gas interface is pushed inwards, thereby creating the concave neck region of the bubble. When the expansion ratio increases, the neck radius is smaller. Because the falling liquid film encounters a larger forward facing step.

Bubble with break-up in the expansion

Break-up patterns

Bubble break-up in the expansion can be observed both in the numerical and experimental tests. Here, we define three patterns of the bubble breaking up in the expansion.

• Necking: the bubble will be pinched off in the radial direction. The necking effect is observed on every bubble passing the expansion, resulting in a reduction of δ h . If the minimum δ h is 0, the bubble will be pinched off into two bubbles. A typical necking break-up can be seen in Fig. 6. [START_REF] John | A second-order projection method for variabledensity flows[END_REF].

of these parameters on the bubble, more experimental or numerical simulations need to be carried out.

• Specific numerical methods are needed to calculate the bubble interface contact with the tube wall. In our simulation, when the bubble is blocked by the contraction and the interface touches the tube wall, the solver could lead to divergent results. A new algorithm is needed to consider the situation that the bubble interface contacts with the tube wall.

• PIV experiments could be performed to compare with the velocity fields obtained by simulation. Extension of this work towards pressure driven flow can be also an interesting perspective. Actually, such flow is closer to the heat-to-power or power-to-heat applications.

Appendix A

Comparison of the bubble rising test cases

In order to compare the benchmark results obtained by Gerris with that of in the literature, we list the results in the same way as in the [3] and [START_REF] Hysing | Quantitative benchmark computations of two-dimensional bubble dynamics[END_REF].

A.1 Results

The relative error norms for the circularity, center of mass, and rise velocity together with the estimated ROC are shown in Table A The results show that the greater expansion ratios yield more perturbations on the bubbles and have strong effects on the tail of the bubble. The unstable bubble tails are cut off into smaller bubbles in some of the test cases and a bubble break-up regime map obtained by simulations has been proposed. The bubble shape variations depend also on the length of the bubbles. For a bubble passing through a contraction, the blocking phenomenon has been observed and a map has been proposed. Finally, this study, based on a large range of Eötvös numbers and expansion/contraction ratios, provides new insights to better understand the effect of singularities on rising Taylor bubbles.