Numbers for 2017 are preliminary estimates. Aviation data are from the NTSB; marine data are reported by the US Department of Homeland Security; all other data are reported by the US Department of Transportation. 2 Pedalcycles include bicycles and other cycles. 3 Other refers to non-occupants (excluding pedestrians and pedalcyclists) and occupants in other or unknown vehicle types. 4 Grade crossing fatalities are reported as a separate category but should not be added to the total because they are included in the highway and rail fatalities as appropriate. 5 Freight, passenger, and commuter rail data are reported by the Federal Railroad Administration. 6 Trespassing fatalities are reported as a separate category but should not be added to the total because they are included in the freight, passenger, and commuter rail fatalities. Trespassing fatalities are not available for rail transit. 7 Rail transit data are reported by the Federal Transit Administration and include fatalities involving heavy rail, light rail, cable car, inclined plane, monorail/automated guideway, streetcar rail, and hybrid rail. 8 9

Total fatalities may not equal the sum of each category because accidents may involve multiple categories.
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I (.) ∇(.) (.) ( .) (.) a × b a b F u v γ σ ε ε e ε in ε p ε vp C E ν λ μ ε u ε = 1 2 ∇u + (∇u) T ε ε e ε in ε = ε e + ε in ε in = ε p ε in = ε vp σ ε σ ε σ = C : ε e C σ = 2μ(ε e ) + λ (ε e )I V k V k A k F (A k ) Vk = - γ ∂F ∂A k , γ ∈ R F f f σ eq σ y J 2 f = σ eq -σ y
σ eq β r f = σ eqσ y (r), = γ • High-speed resolution changes at higher rates.

σ eq = 3 2 S -β : S -β S = σ - 1 3 (σ) β, r β σ 3 σ 1 σ 2 df = 0 f < 0 f σ eq (σ -β) r f ≤ 0 f = 0 ḟ = 0 f = 0 ḟ < 0 ḟ = 0 df = ∂f ∂ σ -β : d σ -β +
σ y (p) = σ 0 + R(p) σ 0 R R(p) = Kp n K n R(p) = Kp + σ ∞ [1 -e -bp ] K σ ∞ b d dt β C = 2 3 εin -2 3 B C εin β ∂β ∂t = 2 3 H ∂ε in ∂t H ε vp ε p ḟ σ y f = σ y -σ eq ≤ 0 T T 0 m T f ṗ εeq,0 M σ 0 K n σ y = σ 0 + Kp n 1 + M ṗ εeq,0 1 - T -T 0 T f -T 0 m J 2 ΔL F ε n ε n(t) = ΔL(t)
ε σ ε t 1 →t 2 = L(t 2 ) L(t 1 ) dL L = L(t 2 ) L(t 1 ) = (1 + ε n t 1 →t 2 ) σ(t) = F (t) S(t) = F (t) S 0 (1 + ε n 0→t ) E σ 0 σ = Eε ε p = ε -σ E K n ε ε M ε0 ϕ σ MOD σ EXP X X = [σ 0 , K, n, M, ε0 ] N ϕ(X) = N i σ EXP (i) -σ MOD (i)(X) σ EXP (i) 2 ϕ ¯ S F G F Ḡ S i ¯ 1 1000+ i∈S F i -G i 2 i∈S ⎧ ⎨ ⎩ F i j∈S F 2 j - G i j∈S G 2 j ⎫ ⎬ ⎭ 2 i∈S ⎧ ⎨ ⎩ Fi j∈S F 2 j - Ḡi j∈S Ḡ2 j ⎫ ⎬ ⎭ 2 A γ ω φ REF DEF u(x) = -1 ω [φ DEF (x) -φ REF (x)] I(x, y) = A 1 + γ ωx + φ x (x, y) + ωy + φ y (x, y) u(x) = - 1 ω φ DEF x + u(x) -φ REF x s g φ = [ŝ] + 2nπ, n ∈ Z 2π x ŝx (x, y, ω) = R 2 s(u, v)g(x -u, y -v) [-ωx]dudv y ŝy (x, y, ω) = R 2 s(u, v)g(x -u, y -v) [-
• Resolution from specs or pixel size (1:1 Imaging) 

v ε τ C C v τ E(v, τ, C ) = τ -C : ε(v) C J 2 ∀u * , V ε(u) : [C -C * ] : ε(u * ) dV = ∂Ω ( t.u * -t * .û) dS V u t û t * u * C (x) = D(x)C 0 C 0 - V σ(X) : ε * dV + ∂V t.u * dS + V f .u * dV = V ργ.u * dV - W * int (X) + W * ext = W * acc V σ X u * ε * t f ρ γ W * int X W * ext W * acc W * int (X) W * ext W * acc W * int W * ext V σ(X) : ε * dV = ∂V t.u * dS W * int (X) W * acc W * ext V σ(X) : ε * dV + V ργ.u * dV = 0 σ ε ε ⎡ ⎣ σ xx σ yy σ xy ⎤ ⎦ = ⎡ ⎣ Q xx Q xy 0 Q xy Q xx 0 0 0 Qxx-Qxy 2 ⎤ ⎦ ⎡ ⎣ ε xx ε yy ε xy ⎤ ⎦ Q xx = E 1 -ν 2 Q xy = νE 1 -ν 2 S u * ε * Q xx S ε xx ε * xx + ε yy ε * yy + 1 2 ε xy ε * xy dV + Q xy S ε yy ε * xx + ε xx ε * yy - 1 2 ε xy ε * xy dV = ∂S t x u * x + t y u * y dS A 11 A 12 A 21 A 22 Q xx Q xy = B 1 B 2 A Q = B i ∈ {1, 2} i A i1 = S ε xx ε * (i) xx + ε yy ε * (i) yy + 1 2 ε xy ε * (i) xy dS A i2 = S ε xx ε * (i) yy + ε yy ε * (i) xx - 1 2 ε xy ε * (i) xy dS B i = S t x u * (i) x + t y u * (i) y dS u * (1) ε * (1) u * (2) ε * (2) A B F Q xx Q xy [A ij ] u * x = i,j a ij x i y j u * y = i,j b ij x i y j σ xy = Q xy ε xy - dQ xy ε 3 xy d W * int (X) σ(X) X ϕ i ϕ (X) = i W * (i) int (X) -W * (i) ext W * (i) ext 2 σ y = σ 0 + Kp σ y = σ 0 + Kp + σ ∞ [1 -e -bp ] σ 0 K n M m • ε u * ∀x ∈ ∂V, u * (x) = 0 firing tube camera flash light specimen triggering system × × × × × × × × × × × × ¯ A 11 A 12 A 21 A 22 Q xx Q xy = B 1 B 2 A Q = B A i1 = - S ε xx ε * (i) xx + ε yy ε * (i) yy + 1 2 ε xy ε * (i) xy dS A i2 = - S ε xx ε * (i) yy + ε yy ε * (i) xx - 1 2 ε xy ε * (i) xy dS B i = S a x u * (i) x + a y u * (i) y dS ≈ ¯ W * acc W * ext σ 0 C M ε J 2 J 2 J 2 ε σ ε J 2 ṗ ṗ trial k + 1 k k f trial k+1 = σ eq (σ trial k+1 )-σ k y ≤ 0 σ k+1 = σ trial k+1 σ k+1 y = σ k y σ k σ trial k+1 σ k+1 elastic prediction (visco)plastic correction f k < 0 f k = 0 f k+1 = 0 k + θ θ ∈ [0, 1] θ θ = 0 θ = 1 σ y σ y = σ 0 + Kp n 1 + M ṗ εp eq,0 1 - T -T 0 T f -T 0 m σ y = σ 0 + Kp n ṗ ≤ εvp eq,0 σ 0 + Kp n 1 + M ṗ εvp eq,0 ṗ > εvp eq,0 k + 1 k k + 1 k θ = 1 x ∂x ∂t k+1 = x k+1 -x k t k+1 -t k = Δx k+1 Δt k+1 k +1 σ trial k+1 σ k+1 σ trial k+1 = 2μ(ε k+1 -ε vp k ) + λ[ (ε k+1 ) -(ε vp k ) =0 ]I σ k+1 = 2μ(ε k+1 -ε vp k+1 ) + λ[ (ε k+1 ) -(ε vp k+1 ) =0 ]I ⇒ σ k+1 = σ trial k+1 -2μΔε vp k+1 Δε vp k+1 = 3 2 Δγ k+1 S k+1 σ eq (σ k+1 ) = 3 2 Δp k+1 S k+1 σ eq (σ k+1 ) σ y p ṗ σ k+1 y Δp k+1 σ k+1 y (Δp k+1 ) = σ 0 + K(p k + Δp k+1 ) n Δp k+1
Δt k+1 ≤ εvp eq,0 

σ 0 + K(p k + Δp k+1 ) n 1 + M Δp k+1 Δt k+1 εvp eq,0 Δp k+1 Δt k+1 > εvp eq,0 Δp k+1 σ k+1 k + 1 f k+1 = σ eq (σ k+1 ) -σ k+1 y (Δp k+1 ) = 0 Δε vp k+1 S k+1 = S trial k+1 -2μΔε vp k+1 = S trial k+1 -3μΔp k+1 S k+1 σ eq (σ k+1 ) ⇒ S trial k+1 = 1 + 3μ Δp k+1 σ eq (σ k+1 ) S k+1 σ eq (σ trial k+1 ) = 3 2 S trial k+1 : S trial k+1 = 1 + 3μ Δp k+1 σ eq (σ k+1 ) 3 2 S k+1 : S k+1 = 1 + 3μ Δp k+1 σ eq (σ k+1 ) σ eq (σ k+1 ) ⇒ σ eq (σ k+1 ) = σ eq (σ trial k+1 ) -3μΔp k+1 Δp k+1 -f k+1 = 3μΔp k+1 + σ k+1 y (Δp k+1 ) -σ eq (σ trial k+1 ) = 0 S trial k+1 = 1 + 3μ Δp k+1 σ eq (σ k+1 ) S k+1 = 1 + σ eq (σ trial k+1 ) -σ eq (σ k+1 ) σ eq (σ k+1 ) S k+1 = σ eq (σ trial k+1 ) σ eq (σ k+1 ) S k+1 ⇒ S trial k+1 σ eq (σ trial k+1 ) = S k+1 σ eq (σ k+1 ) Δp k+1 σ eq (σ k+1 ) Δp k+1 ∂σy ∂Δp Δp R + ∂σy ∂Δp = α + β Δp (α, β) ∈ R 2 Δp → 0 Δp Δp k+1 = e z f f (z) = -f (Δp k+1 ) φ : R * + ---→ R * + Δp k+1 ---→ z = (Δp k+1 ) f (z) = 3μe z + σk+1 y (z) -σ eq (σ trial k+1 ) = 0 z ∀z ∈ R, d f dz (z) > 0 z (n+1) = z (n) - f (z (n) ) d f dz (z (n) ) f (z) = 3μe z + σk+1 y (z) -σ eq (σ trial k+1 ) d f dz (z) = 3μe z + dσ k+1 y dz (z) σk+1 y (z) dσ k+1 y dz (z) z ≤ ( εvp eq,0 Δt k+1 ) σk+1 y (z) = σ 0 + K(p k + e z ) n dσ k+1 y dz (z) = ne z K(p k + e z ) n-1 z > ( εvp eq,0 Δt k+1 ) σk+1 y (z) = σ 0 + K(p k + e z ) n 1 + M z - εvp eq,0 Δt k+1 dσ k+1 y dz (z) = ne z K(p k + e z ) n-1 1 + M z - εvp eq,0 Δt k+1 + M σ 0 + K(p k + e z ) n ε zz [ε vp ] = 0 ε e zz = ν ν -1 ε e xx + ε e yy ε vp zz = -ε vp xx + ε vp yy ε ∈ { } t 0 φ( t) t ∈ [0, 1] u i (t/t 0 ) = v i (t/t 0 )dt = v 0 φ i (t/t 0 )dt i v 0 t 0 0.5 1.0 φ 1 ( t) (-) 0.0 0.2 0.4 0.6 0.8 1.0 t (-) 0.5 φ 1 ( t)d t (-) t =0.2 -1 0 1 φ 2 ( t) (-) 0.0 0.2 0.4 0.6 0.8 1.0 t (-) 0.2 0.4 φ 2 ( t)d t (-) t =0.05 t =0.5 (φ 1 ) (φ 2 ) ε = ε ∈ { } J 2 ε k+1 k n MAX k + 1 σ trial k+1 = 2μ(ε k+1 -ε vp k ) + λ (ε k+1 )I f trial k+1 = σ eq (σ trial k+1 ) -σ k y f trial k+1 ≤ 0 k + 1 ε zz,k+1 = ν ν-1 ε e,k+1 xx + ε e,k+1 yy -ε vp,k xx + ε vp,k yy z (0) = 0 z (n) ← z (n-1) - 3μe z (n-1) + σk+1 y (z (n-1) ) -σ eq (σ trial k+1 ) 3μe z (n-1) + dσ k+1 y dz (z (n-1) ) n = n MAX |z (n) -z (n-1) | ≤ Δp k+1 = [z (n) ] σ k+1 y = σk+1 y (z (n) ) Δε vp k+1 = 3 2 Δp k+1 S trial k+1 σ eq (σ trial k+1 ) p k+1 = p k + Δp k+1 εvp eq,k+1 = Δp k+1 Δt k+1 σ k+1 = σ trial k+1 -2μΔε vp k+1 σ eq (σ k+1 ) -σ k+1 y = 0 σ k+1 ← σ k+1 y σ eq (σ k+1 ) σ k+1 ε vp k+1 = ε vp k + Δε vp k+1 ε e k+1 = ε k+1 -ε vp k+1 ε zz,k+1 = ν ν-1 ε e,
u y = -u 1 (t) x y u y = u 2 (t) u y = -u 2 (t) x y u x = u 1 (t) u x = 0 x y u y = u 1 (t) u y = -u 1 (t) u x = -u 1 (t) u x = u 1 (t) o 0 -1 0 ε σ y p ṗ p 0 1 2 3 ε yy (.) ×10 -1 0.0 0.5 1.0 1.5 σ yy (MPa) ×10 3 0 1 2 3 p (.) ×10 -1 1.0 1.2 1.4 σ y (MPa) ×10 3 0 1 2 3 p (.) ×10 -1 10 10 10 10 εp eq (s -1 ) FEM -ε ∝1s -1 FEM -ε ∝10 2 s -1 FEM -ε ∝10 3 s -1 RMA -ε ∝1s -1 RMA -ε ∝10 2 s -1 RMA -ε ∝10 3 s -1 σ yy ε yy σ y p ṗ p ε p 10 -1
10 0 10 1 10 2 10 3 10 4 ε(s -1 ) 10 

σ yy σ y p ṗ W * int 0.0 0.5 1.0 1.5 ε yy (.) ×10 -1 -1 0 1 σ yy (MPa) ×10 3 0 1 2 3 p (.) ×10 -1 1.0 1.2 1.4 σ y (MPa) ×10 3 0 1 2 3 p (.) ×10 -1 εp eq (s -1 ) FEM -ε ∝1s -1 FEM -ε ∝10 2 s -1 FEM -ε ∝10 3 s -1 RMA -ε ∝1s -1 RMA -ε ∝10 2 s -1 RMA -ε ∝10 3 s -1 σ yy ε yy σ y p ṗ p × n ψ s ψ ∂ n ψ ∂s n N p Δs a i i ∈ Z a i ∂ n ψ ∂s n m = 1 Δs n a m ψ m + Np i=1 a m-i ψ m-i + (-1) n a m+i ψ m+i a i |H(ω)| 0 π 4 π 2 3π 4 π ω (rad) 0.0 0.2 0.4 0.6 0.8 1.0 |H(ω)| FD* N p =2 N p =3 N p =4 0 π 4 π 2 3π 4 π ω (rad) 0.0 0.2 0.4 0.6 0.8 1.0 |H(ω)| FD* N p =2 N p =3 N p =4 0 π 4 π 2 3π 4 π ω (rad) 0.0 0.2 0.4 0.6 0.8 1.0 |H(ω)| FD* N p =2 N p =3 N p =4 0 π 4 π 2 3π 4 π ω (rad) 0.0 0.2 0.4 0.6 0.8 1.0 |H(ω)| FD* N p =2 N p =3 N p =4 N p = 1 N p u(t) u(t) N p1 N p2 ε γ N p1 N p2 ε γ ∀s ∈ {x, y}, ∂u ∂s m = 1 Δs a m u m + N p1 i=1 a m-i u m-i -a m+i u m+i (a i ) i∈Z 1 2 2N p1 -1 2(N p1 -1) N p1 -i - 2(N p1 -1) N p1 -i -2 ∂ 2 u ∂t 2 m = 1 Δt 2 a m u m + N p2 i=1 a m-i u m-i + a m+i u m+i (a i ) i∈Z 0 i > 2N p2 + 1 1 i = 2N p2 + 1 1 2 2N p2 -1 (N p2 -i) 2(N p2 -2)a i+1 -(N p2 -i -2)a i+2 Np1 Np2 φ u ε(t) γ(t) R p L p L s D s H s M θ = 1 S S M i θ i N i (x, y)dxdy N i i P i S θ ξ η P 1 P 2 P 3 P 4 -1 1 -1 1 x y P 1 P 2 P 3 P 4 θ θ = S i θ i N i (x, y)dxdy S dxdy N 1 (ξ, η) = 1 4 (1 -ξ)(1 + η) N 2 (ξ, η) = 1 4 (1 -ξ)(1 -η) N 3 (ξ, η) = 1 4 (1 + ξ)(1 -η) N 4 (ξ, η) = 1 4 (1 + ξ)(1 + η) θ = S i θ i N i (ξ, η)|J(ξ, η)|dξdη S |J(ξ, η)|dξdη |J(ξ, η)| J(ξ, η) = i ∂N i ∂ξ x i i ∂N i ∂ξ y i i ∂N i ∂η x i i ∂N i ∂η y i = 1 4 i α i N i (ξ, η) α 1 = --→ P 1 P 2 × --→ P 1 P 4 α 2 = --→ P 1 P 2 × --→ P 2 P 3 α 3 = --→ P 2 P 3 × --→ P 3 P 4 α 4 = --→ P 1 P 4 × --→ P 3 P 4 θ = S M i θ i N i (ξ, η)|J(ξ, η)|dξdη S |J(ξ, η)|dξdη ⇔ θ = S i θ i N i (ξ, η) 1 4 j α j N j (ξ, η)dξdη S 1 4 j α j N j (ξ, η)dξdη ⇔ θ = i,j θ i α j S N i (ξ, η)N j (ξ, η)dξdη i α i S N i (ξ, η)dξdη =1 ⇔ θ = i,j α i θ j Φ ij i α i Φ ij = S N i (ξ, η)N j (ξ, η)dξdη θ = i,j α i θ j Φ ij i α i = A T Φ Θ A 1 Φ = 1 9 ⎡ ⎢ ⎢ ⎣ 4 2 1 2 2 4 2 1 1 2 4 2 2 1 2 4 ⎤ ⎥ ⎥ ⎦ A = ⎡ ⎢ ⎢ ⎢ ⎣ --→ P 1 P 2 × --→ P 1 P 4 --→ P 1 P 2 × --→ P 2 P 3 --→ P 2 P 3 × --→ P 3 P 4 --→ P 1 P 4 × --→ P 3 P 4 ⎤ ⎥ ⎥ ⎥ ⎦ Θ = ⎡ ⎢ ⎢ ⎣ θ 1 θ 2 θ 3 θ 4 ⎤ ⎥ ⎥ ⎦ ∀i ∈ 1, 4 α i = 1 N θ = 1 N N i θ i θ = 1 N i θ i θ = i,j α i θ j Φ ij i α i u * = (1, 0) - S σ(X) : ε * dS = 0 + ∂S t.u * dS D(x) t x dl = S ργ.u * dS S(x) ργx dS 1 D(x) D(x) t x dl σxx(x) = 1 D(x) S(x) ργ x dS σ EP X (x) = σ REC (x) x y S(x) x D(x) Impact direction x = k, k ∈ R σ EP X (x) σ EP X (x) = 1 D(x) D(x) σ xx (x, y) dy = 1 D(x) i σ xx (i) d(x,i) dy =d(x,i) i D(x) d(x, i) i D(x) σ EP X (x) = ω(x, i)σ xx (i) ω(x, i) = d(x, i) D(x) σ REC (x) σ REC (x) = 1 D(x) S(x) ργ x dS = ρ D(x) γ x (x, j) S(x,j) dS =S(x,j) S(x, j) j S(x) σ REC (x) = ρ D(x) j γ x (x, j)S(x, j) × S(x) N t 1 N t Nt t=1 σ EP X (x, t) -σ REC (x, t) σ EP X (x, t)
x d y d ξ i η i x u y u M (x M , y M )
4x M = (x 1 + x 2 + x 3 + x 4 ) 4x G + (x 24 + x 13 ) ξ M + (x 24 -x 13 ) η M + (x 24 + x 13 ) ξ M η M 4y M = (y 1 + y 2 + y 3 + y 4 ) 4y G + (y 24 + y 13 ) ξ M + (y 24 -y 13 ) η M + (y 24 + y 13 ) ξ M η M η M η M (y 24 -y 13 )(4x M -4x G ) + [(y 24 -y 13 )(4x M -4x G ) -(x 24 + x 13 )(y 24 -y 13 )]ξ M = (x 24 -x 13 )(4y M -4y G ) + [(x 24 -x 13 )(4y M -4y G ) -(x 24 -x 13 )(y 24 + y 13 )]ξ M ξ M = 2 --→ MG × ( --→ P 1 P 3 - --→ P 2 P 4 ) --→ P 1 P 3 × --→ P 2 P 4 + 2 --→ MG × ( --→ P 1 P 2 + --→ P 3 P 4 ) ∀(i, j), --→ P i P j = (x ij , y ij ) = (x j -x i , y j -y i ) G(x G , y G ) η M η M = 2 --→ MG × ( --→ P 1 P 3 + --→ P 2 P 4 ) --→ P 1 P 3 × --→ P 2 P 4 -2 --→ MG × ( --→ P 1 P 2 + --→ P 3 P 4 ) x u y u P 1 P 2 P 3 P 4 + -1 1 -1 1 ξ η P 1 P 2 P 3 P 4 + x d y d P 1 P 2 P 3 P 4 + (x u , y u ) ← -- (ξ i , η i ) ← -- (x d , y d ) I (x, y) I 0 γ ω 2π Δ Δ I(x, y) = I 0 1 + γ (ωx) + (ωy) - (ωx) - (ωy) F (x, t) F u ε α 1 α 2 α 1 (t) = t 3 α 2 (t) = (πt) t ∈ [0, 1] N p1 N p2 × × X 1 X 2 -1 1 -1 1 x 1 x 2 -1 1 -1 1 α i F u ε x 1 = X 1 + α 1 (t)X 2 x 2 = X 2 1 α 1 (t) 0 1 α 1 (t)X 2 0 1 2 α 1 (t) α 1 (t) 0 x 1 = [1 + α 2 (t)]X 1 x 2 = X 2 1 + α 2 (t) 0 0 1 α 2 (t)X 2 0 α 2 (t) 0
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 

u x (mm) ×10 -2 α i i ∈ {1, 2}
γ x (.10 3 m.s -2 ) ×10 -2 0.0 0.2 0.4 0.6 0.8 1.0 Time (ms) -2.0 -1.5 -1.0 -0.5 0.0 γ x (.10 3 m.s -2 ) ×10 -2 (X 1 , X 2 ) = (0.22, -0.22) σ ε σ ε γ u σ y p ṗ σ y = σ 0 + Kp n ṗ ≤ εvp eq,0 σ 0 + Kp n 1 + M ṗ εvp eq,0 ṗ > εvp eq,0 p ṗ M σ stat

FE data

Synthetic experimental data 3D FEA Step 1

Step 1.1

Step 2

Step 2.1

Step 3

Step 3.1

Step 3.1.1

Step 3.1.1.1 p Frame rate (Mfps) --------← ---------← ---------← --------- --------← ---------← ---------← --------a x × a 10 -3 10 -2 10 -1 p (.) --------← ---------← ---------

Imaging toolchain features

≈ × μ L p R p L s D s H s V p S in s V p S in s μ V p ---------→ ---------→ ---------→ p ṗ ≈ 12μ ≈ 25μ ṗ ∝ 10 3 ε ∝ V p /L s =
V p V p V p V p p ṗ p V p V p V p V p V p ---------→ ---------→ ---------→ p μ t 0 ṗdt V p σ zz σ zz ∝ -1 0 1 z -coordinate (mm) 2 3 4 5 σ zz (MPa) -1 0 1 z -coordinate (mm) -5 -4 -3 σ zz (MPa) ×10 1 -1 0 1 z -coordinate (mm) -5 -4 -3 σ zz (MPa) ×10 1 σ zz V p
×10 3 σ 1 σ 2 σ 3 V p ε xx ε yy ε xy ε zz σ xx σ yy σ xy σ zz = 0 ε xx ε yy ε zz ε xy ε yz ε xz σ xx σ yy σ zz σ xy σ yz σ xz p ṗ σ y σ xx ε zz L s i X M M i M p u * x = x(x -L s ) u * y = 0 ε * xx = 2x -L s ε * yy = 0 ε * xy = 0

2D plane stress tridimensional

ṗ V p Φ(X) = M i i ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 + Mp k=1 σ xx (i, k, X)2x -L s S(k) ρ Mp k=1 γ x (i, k)x(x -L s ) S(k) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 2 Φ(X) M M V p V p V p M M p ṗ M V p
M F E/DV F M -M REF M REF (%) Specimen 0 Specimen 1 Specimen 2 V p V p V p M V p M φ u ε(t) γ(t) M ≡ ≡ ≡ ≡ N p1 N p2 M expanded = noise-free + random noise-free random = 2σ[ noise ] M noise-free M expanded M random N p1 N p2 × × × × 0.
M V F M -M REF M REF (%) Specimen 0 Specimen 1 Specimen 2 M M σ y ṗ p M σ xx μ σ xx M V p × V p × × M L s Φ(X) X M M i M p V p = V p = M V p = V p = σ y = σ 0 + Kp n ṗ ≤ εvp eq,0 σ 0 + Kp n 1 + M ṗ εvp eq,0 ṗ > εvp eq,0 u * x = x(x -L s ) u * y = 0 ε * xx = 2x -L s ε * yy = 0 ε * xy = 0 Φ(X) = M i i ⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 1 + Mp k=1 σ xx (i, k, X)(2x -L s ) S(k) ρ Mp k=1 γ x (i, k)x(x -L s ) S(k) ⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ μ μ μ Δt = Ls √ E/ρ ≈ μ ∀x, σ xx (x) = ρ D(x) j γ x (x, j)S(x, j) E ν E E 1 -ν 2 = σ xx ε xx + νε yy μ μ μ μ ← -
ε xx ε xx μ μ μ μ ← -
σ xx p M p ṗ μ μ μ μ ← --------- ← --------- ← --------- ← --------- σ xx σ xx μ μ μ μ ← --------- ← --------- ← --------- ← --------- p p μ μ μ μ ← --------- ← --------- ← --------- ← --------- ṗ × ṗ p ṗ 4 μ μ μ M u * x = x/Ls u * y = 0 ε * xx = 1/Ls ε * yy = 0 ε * xy = 0 ± ± ± ± ± ± M V p =
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Virtual Fields Method for the Dynamic Behaviour of Metallic Materials under Purely Inertial Loads

This thesis aims at developing an innovative methodology for viscoplastic material behaviour characterization of metallic materials under purely inertial loads. Indeed, their mechanical behaviour under extreme conditions (e.g., crash, impact or explosions) is often rate-dependant. Statically determinate approaches are mainly used to characterize their behaviour. However, they require numerous tests for which testing conditions are strongly constrained, such as the strain rate which has to remain constant in time and space for instance. By contrast, statically undeterminate approaches enable test processing with a few (or without) hypotheses on experimental conditions. In this work, the Image-Based Inertial Impact test methodology has been extended to characterize the viscoplastic behaviour of metallic materials. Owing to the Virtual Fields Method, it enables the identification of constitutive material parameters with the sole knowledge of strain and acceleration fields (possibly heterogeneous in time and space). Therefore, constitutive models can be characterized over a wide range of plastic strain and strain rate, while the number of tests is limited. Tests design notably relies on the development of a synthetic images generator to determine the experimental setup (e.g., specimen geometry or testing conditions). Finally, experiments are carried out with optimized test configurations to identify Johnson-Cook parameters over a predicted range of plastic strain and strain rate for a titanium alloy widely used in aerospace industry. Identification uncertainties are also quantified and analysed in this work. 
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  VIRTUAL FIELDS METHOD ; IMPACT TEST ; VISCOPLASTICITY ; JOHNSON-COOK MODEL ; OPTIMIZATION Méthode des Champs Virtuels pour la caractérisation du comportement dynamique de matériaux métalliques sous chargement purement inertiel Les travaux de la thèse visent à mettre en place une méthodologie innovante de caractérisation du comportement viscoplastique des matériaux métalliques sous chargement purement inertiel. Sous chargements mécaniques extrêmes (e.g., crash, impact ou explosions), leur comportement mécanique présente en effet pour nombre d'entre eux une sensibilité à la vitesse de déformation. Des approches dites statiquement déterminées sont majoritairement utilisées pour caractériser leur comportement, mais elles requièrent de nombreux essais dont les conditions expérimentales sont souvent contraintes comme par exemple l'homogénéité de la vitesse de déformation qui doit être maintenue constante en temps par exemple. En revanche, des approches dites statiquement indéterminées permettent l'exploitation d'essais mécaniques avec peu d'hypothèses (voire sans) sur les conditions d'essai. Une méthodologie fondée sur un essai d'impact purement intertiel est mise en oeuvre ici pour identifier le comportement viscoplastique de ces matériaux. Avec la Méthode des Champs Virtuels, la méthodologie permet l'identification des paramètres matériaux en exploitant uniquement la mesure des champs de déformation et d'accélération, potentiellement hétérogènes en temps et en espace. Ainsi, celui-ci peut être caractérisé sur une large gamme de déformations et de vitesses de déformation plastiques en procédant à un nombre limité d'expériences. La méthode repose sur le développement d'un simulateur d'images avancé permettant de définir au préalable l'ensemble du dispositif expérimental (géométrie de l'éprouvette et conditions expérimentales). Optimisées numériquement pour prescrire les paramètres d'essai critiques, les réalisations expérimentales menées sur un alliage de Titane utilisé dans l'industrie aéronautique ont permis d'identifier les paramètres d'un modèle de Johnson-Cook sur un spectre de déformations et de vitesses de déformation plastiques pré-déterminé. Les incertitudes de la mesure sont également intégrées et analysées dans ce travail. s : METHODE DES CHAMPS VIRTUELS ; ESSAI D'IMPACT ; VISCOPLASTICITE ; MODELE DE JOHNSON- COOK ; OPTIMISATION