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't also applies for a “she”... and for any other human being...

“Hd'Who loves practice without theory is like
the sailor who boards ship without a rudder
and compass and never knows where he may

cast.”

Leonardo da Vinci



ii



Abstract

This dissertation presents theoretical advances in the application of the Stochastic Partial Differential Equa-
tion (SPDE) approach in Geostatistics. This recently developed approach consists in interpreting a region-
alised data-set as a realisation of a Random Field satisfying a SPDE. Within the theoretical framework of
Generalized Random Fields with a mean-square analysis, we are able to describe with a great generality the
influence of a linear SPDE over the covariance structure of its potential solutions. A criterion of existence
and uniqueness of stationary solutions for a wide-class of conveniently defined linear SPDEs has been ob-
tained, together with an expression for the related spectral measures. This result allows to encompass a great
variety of already known relationships between stationary covariance models and SPDEs. It also allows
us to obtain new stationary covariance models that are easily related to SPDEs, and to propose SPDEs for
some already known covariance models such as the Stein model and the J—Bessel model. We apply these
results to construct spatio-temporal covariance models having non-trivial properties. By analysing evolution
equations presenting an arbitrary fractional temporal derivative order, we have been able to develop non-
separable models with controllable non-symmetric conditions and separate regularity over space and time.
We present results concerning stationary solutions for physically inspired SPDEs such as the advection-
diffusion equation, the Heat equation, some Langevin equations and the Wave equation. We also present
developments on the resolution of a first order evolution equation with initial condition. We then study a
method of non-conditional simulation of stationary models within the SPDE approach, following the reso-
lution of the associated SPDE through a convenient PDE numerical solver. This simulation method, whose
practical applications are already present in the literature, can be catalogued as a spectral method. It consists
in obtaining an approximation of the Fourier Transform of the stationary Random Field, using a procedure
related to the classical development on Fourier basis, and for which the computations can be efficiently ob-
tained through the use of the Fast Fourier Transform. We have theoretically proved the convergence of this
method in suitable weak and strong senses. We show how to apply it to numerically solve SPDEs relating the
stationary models developed in this work, and we present a qualitative error analysis in the case of the Matérn
model. Illustrations of models presenting non-trivial properties and related to physically driven equations

are then given.
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Résumé

Ces travaux présentent des avancées théoriques pour I’application de I’approche EDPS (Equation aux Dérivées
Partielles Stochastique) en Géostatistique. On considere dans cette approche récente que les données région-
alisées proviennent de la réalisation d’un Champ Aléatoire satisfaisant une EDPS. Dans le cadre théorique
des Champs Aléatoires Généralisés avec une analyse en moyenne-quadratique, nous avons décrit avec une
grande généralité I’influence d’une EDPS linéaire sur la structure de covariance de ses éventuelles solu-
tions. Un critere d’existence et d’unicité des solutions stationnaires pour une classe assez large d’EDPSs
linéaires a été obtenu, ainsi que des expressions pour les mesures spectrales reliées. Ce résultat nous per-
met de rassembler dans un cadre unifié un grand nombre de liens déja connus entre modeles de covariance
stationnaires et EDPSs. Il nous permet en outre d’obtenir de nouveaux modeles de covariance stationnaires
immédiatement reliés a des EDPSs, et de proposer des EDPSs pour des modeles de covariance déja con-
nus comme le modele de Stein et le modele J—Bessel. Nous appliquons ces résultats a la construction de
modeles de covariance spatio-temporels présentant des propriétés intéressantes. A travers I’analyse des équa-
tions d’évolution comprenant un opérateur différentiel temporel d’ordre fractionnaire arbitraire, nous avons
développé des modeles non-séparables ayant des conditions d’asymétrie et de régularités spatiale et tem-
porelle séparées contrdlables. Nous présentons des résultats concernant des solutions stationnaires pour des
EDPSs issues de la physique, telle que I’équation d’advection-diffusion, 1’équation de la chaleur, quelques
équations de Langevin, et I’équation d’onde. Nous présentons aussi des développements pour la résolution
des modeles d’évolution de premiere ordre ayant une condition initiale. Puis, nous étudions une méthode de
simulation non-conditionnelle pour des modeles stationnaires dans le cadre de 1’approche EDPS. Pour cela,
nous nous inspirons de la résolution de I’EDPS associée moyennant une méthode de résolution numérique
des EDP choisie de maniere appropriée. Cette méthode de simulation, dont son application pratique est déja
présente dans la littérature, peut étre considérée comme une méthode spectrale. Elle consiste a obtenir une
approximation de la Transformée de Fourier du Champ Aléatoire stationnaire par une procédure intimement
reliée au développement classique en base de Fourier, et pour laquelle nous pouvons obtenir des méthodes
de calcul efficaces grace a la Transformée de Fourier Rapide. Nous avons démontré théoriquement la con-
vergence de cette méthode dans aux sens faible et forte dans des conditions appropriées. Nous montrons

comment appliquer cette méthode pour la résolution numérique des EDPSs reliant les modeles stationnaires
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développés dans ces travaux, et nous présentons une analyse qualitative de I’erreur pour le cas du modele
Matérn. Des illustrations de modeles présentant des propriétés non-triviales et reliés a des équations de la

physique sont alors présentées.
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Chapter 1

Introduction

1.1 Geostatistics and Stochastic Calculus

The stochastic modelling of natural phenomena can be done following methodologies grounded on many
different approachesﬂ Let us consider two approaches in particular: the approach of Stochastic Analysis
or Stochastic Calculus, and the approach of Geostatistics. Within the first approach, the modelling of a
particular phenomenon is often done by following a physically-based model imposed to the phenomenon,
usually expressed through a differential equation. This differential equation is then sfochastized in some
sense, that is, some random mathematical objects are added in the equation or the deterministic objects are
interpreted as random mathematical objects. These objects may describe, for example, a noise acting as a
source term or as a force vector field, the structure of irregular media or geometries, an initial or boundary
condition which we do not know in detail, etc. The resulting differential equation is then called a Stochastic
Differential Equation (SDE), and when the problem is treated in a spatial context with dimension higher
than 1, it is called a Stochastic Partial Differential Equation (SPDE). The branch of mathematics which
rigorously formalizes these notions and studies its properties and rules of use is called Stochastic Calculus or

Stochastic Analysis, and it is a sub-branch of Probability Theory. Its main mathematical tool is the Stochastic

"We understand by stochastic modelling of a natural phenomenon any mathematical modelling of a natural phenomenon
grounded on the consideration that we do not know how this phenomenon behaves and that we do not know how, or we do not
want to describe it with full precision. The objective is then to describe grosso-modo the behaviour of the variables involved, to
recover their main general characteristics and to describe roughly their variability. The modelling is done by describing the be-
haviour of the unknown quantities through random mathematical objects defined in Probability Theory, more precisely, random
variables, whose behaviour is determined by probability laws. The precision level with which the natural phenomenon is studied in
a stochastic context depends on the needs and objectives of the user of the model. The criterion to select such a precision level is
then, left to the freewill of who makes the model and why does this person wants it. We understand by a random phenomenon any
phenomenon for which we do not exactly know how it behaves. In the last rigorous sense, every natural phenomenon is a random
phenomenon, but in practice, we call deterministic phenomenon every natural phenomenon which we know and understand how it
behaves up to some precision level which is sufficient for our objectives and needs. Hence, the determinism or stochasticism of a
natural phenomenon is not really a property of the phenomenon but of our knowledge about it.
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Process. Stochastic Calculus provides then a rigorous framework to treat mathematically the intuition of a
SPDE and to apply it to model natural phenomena.

On the other hand, we have the geostatistical approaclﬂ In principle, this approach does neither con-
sider a physical model that the studied variable must follow, nor some kind of differential equation it must
satisfy. This approach is based on Data Analysis, studying data-values of variables changing over the space
and/or time. A typical methodology consists in interpreting the obtained data-values as the evaluation of
a realisation of a Random Function. The variability of the studied variable is then described statistically
through a selected covariance function, variogram or another mathematical tool determining the Random
Function. The selected model must, in some sense, fit the data obtained during the study of a particular
case of a natural phenomenon. Once the model is selected, it is then used to treat the unknown quantities of
the phenomenon: prediction at a future time or at a non-sampled location, or the general behaviour of the

variability of the variable along the space-time, etc.

These two approaches differ in their inspiration but coincide in the mathematical tools used. A Stochastic
Process and a Random Function are exactly the same thing: both are a family of random variables indexed
by a non-empty setﬂ The difference relies rather on the way to describe it or to determine it. Stochastic
Analysis does it by imposing a SPDE the Random Function must satisfy. Geostatistics does it by imposing a
covariance structure that the Stochastic Process must follow. Under suitable mathematical conditions, both
approaches determine completely this mathematical object. From these considerations, a question arises
somewhat naturally: are these approaches related? Is it equivalent to fix a covariance structure the Random

Function must follow or to fix a SPDE that it must satisfy?

The answer is, roughly speaking, yes. In this dissertation we will get into the details of this answer and
we will address other questions arising from this issue. In an intuitive way, we can remark the following
fact: Geostatistics has always described the increments of the studied variable with respect to changes in the
spatial or temporal components. These increments are modelled as random quantities described statistically
through the specification of their laws, moments or mutual dependences structures. On the other hand, in
a typical deterministic modelling context the increments of a studied variable are described infinitesimally
through a differential equation. Hence it also describes the increments with respect to changes on the spatial
or temporal components, or with respect to others variables of interest. It is not very surprising then that the

stochastized version of such a differential equation would describe the variability of the variable in a similar

In what concerns this paragraph, we can use as synonyms, Geostatistics, Spatial Statistics, Spatio-temporal Statistics, Time-
Series Analysis, etc. In general, any branch of Statistics for which its methodology of study considers the place where and/or the
moment when the data-value was obtained as an important and determinant information, in addition to the data-value itself.

*Some authors restrain the term stochastic process to the cases where the indexation set represents a time-interval or an ordered
set. The concept of Random Function is then more general, usually used when the indexation set is the space or the space-time.
Another typical terminology which involves both concepts is the term Random Field. We have decided not to make a strong
distinction between these terms, since, mathematically, they present no difference in principle: what changes is only the indexation
set, which will be always specified.
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way as Geostatistics does: through an interpretation of the increments as random quantities, but controlling
the statistical behaviour of these increments through a differential equation imposing a particular behaviour
to the infinitesimal increments. Hence, it is reasonable to think that both methodologies are connected and

may be equivalent under some suitable hypotheses.

In the last decade a new geostatistical modelling paradigm based on these considerations (either explic-
itly or implicitly) has been developed. It is called the SPDE Approach. It has arisen from the needs of the
statistical community and not from the probabilist community. It consists in interpreting the studied variable
as the realisation of a Random Function which satisfies some SPDE. Although this kind of modelling has
always been done in Stochastic Analysis, it has not necessarily been grounded on the need of conveniently
fitting a stochastic model to a data-set, nor by the need of interpreting statistical techniques in an analyst way.
This approach has allowed many theoretical and practical developments. From the practical point of view, it
allows the analysis of geostatistical models through the use of numerical tools used in the analysis of Partial
Differential Equations (PDEs). PDE numerical solvers such as the Finite Element Method (FEM) or spec-
tral methods can now be used to inspire new simulation and statistical inference methods of geostatistical
models. All the imaginable benefits of the world of Numerical Analysis are then applicable in Geostatistics.
In particular, the computing time for simulations and inference methods has been notably reduced thanks
to the fast computing performance of PDE numerical solvers in some contexts. From the theoretical view-
point, this approach has allowed the introduction of new geostatistical models related to SPDEs which can
be added to the already known valid covariance models. In some cases, these models can present a tradi-
tional physical meaning, and hence, the parameters of classical geostatistical covariance models can carry
a traditional physical interpretation. A classical geostatistical parameter such as the scale, which describes
roughly the spatial or spatio-temporal range, defined as the distance below which the correlation is signifi-
cant enough, can be interpreted as a damping parameter. Other parameters, now considered as parameters
of the associated SPDE rather than of the covariance model itself, can be also physically interpreted. This
is the case for example of a velocity vector, a diffusivity coefficient or an anisotropic diffusivity matrix, a

curvature coefficient, or a wave propagation velocity.

In the next sections we will enter into the details and precisions of such a paradigm, giving the adequate

bibliographical sources of the statements claimed in this section.

1.2 The SPDE Approach in Geostatistics: state-of-the-art

The term SPDE Approach was first used in the seminal discussion paper by [Lindgren et al.| (2011)). The
selection of such a terminology arises from the point of view of a statistical community which did not
necessarily face their problems using concepts and methodologies associated to Stochastic Calculus. Hence,

it was worth being called a new approach in geostatistical analysis. In this paper, the authors considered a
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SPDE over the Euclidean space R? of the form
(K2 —A)2U =W, (1.1)

where k > 0, a > %, A is the Laplacian operator and TV is a Gaussian White Noise. The operator (k2 —A) 2
is fractional pseudo-differential operator which can be defined through the Fourier Transform. Then, they

exploited the theoretical link between this equation and the stationary covariance function

1
(27T)d/22afll€2afdr(a)

p(h) = (5IAD 2 Ko app(slh]), heR?, (1.2)
where K _ d denotes the modified Bessel function of the second kind of order o — % > (. The members of
this class of covariance models are called Matérn models or K —Bessel models. The function (1.2) is actually
the only possible covariance function which a stationary solution to Eq. can follow. This theoretical
result was obtained in |Whittle| (1963)). Before entering into the details of the exploitation of this theoretical
link done in|Lindgren et al.|(2011) and in reasons as to why this idea has been so beneficial and fertile, let us

make a little historical analysis of similar theoretical relationships between covariance models and SPDEs.

The idea of obtaining covariance models arising from solutions of SPDE:s is actually quite old. Rigor-
ously speaking, it can be said that the probabilist community has always done this. Since the very beginning
of the theory of Stochastic Processes and Stochastic Calculus, the covariance function has been an important
mathematical tool which characterises roughly the stochastic processes involvecﬂ However, they do not
necessarily use this mathematical tool as a basis of model construction or modelling methodology. From the
statisticians standpoint, most techniques are grounded on this mathematical tool, such as kriging, simulation
methods, conditional simulations and inference methods based on the analysis of the second moments of
the random variables involved such as variographic analysis or likelihood methods in square-integrable con-
texts. Within the statistical objectives, many authors have obtained and described covariance models from
the resolution of stochastic differential equations. The earlier works we have found in this aim are those of
Heine and Whittle. |Heine| (1955) presents formulas of stationary covariance functions describing solutions
to some SPDEs involving hyperbolic, parabolic, and other type of second order differential operators in spa-
tial dimension 2. In [Whittle| (1954)) the author is inspired by a typical time-series interpretation, analysing
the increments of a random process with respect to constant gaps in the temporal domain, adding indepen-
dent innovation terms. The analogue idea is then applied to the spatial case with symmetric second-order

gaps in two dimensions. It is then concluded that such a model follows a stochastic Laplace equation with

*Kolmogorov and Prokhorov referred to the correlation function (Kolmogorov & Prokhorov, [1992). Without using a particular
name for it, Doob presents this concept in the framework of real Gaussian Processes where it plays a determinant role since, together
with the mean function, it determines completely the Random Function (Doob, |1953| Chapter II, Section 3). It6 also refers to the
Khintchine’s covariance function referring to |Khintchine (1934), and he also refers to the covariance distribution in the case of
Generalized Random Processes (It0, [1954).
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damping (Eq. (I.1) with o = 2). In[Whittle| (1963)), the author generalizes these results. He develops a gen-
eral framework where stationary Random Functions are related to some SPDEs, showing the link between
Eq. and the Matérn model and presenting other examples such as spatio-temporal models related to
diffusion equations with damping. Later, [Vecchial (1985) proposed models obtained from SPDEs involv-
ing operators which are compositions of operators exposed in [Heine|(1955) and in Whittle| (1963), defining
spectral densities following products of diverse spectral densities. |Gay & Heyde| (1990) proposed models
based on solutions of SPDEs involving fractional Laplacian operators without damping parameters (x = 0 in
Eq. (I.1))). These models are said to have a long-range dependence covariance structure, and they have been
worked out in great detail in Kelbert et al.|(2005) and in the works of members of the Granada school (Anh et
al.,|[1999; Angulo et al.,[2000; M. Ruiz-Medina et al.,2003). In|Anh et al.|(1999) examples of such fractional
models are exposed, and their regularity is analysed through the use of the Reproducing Kernel Hilbert Space
associated to the covariance structure, presenting also a SPDE these models must satisfy. In|Kelbert et al.
(2005), the authors obtain models associated to fractional forms of the stochastic Heat equation. A summary
exposition of this kinds of models can be found in M. Ruiz-Medina et al.| (2003). Fontainebleau’s school of
Geostatistics also provided advances in this framework. In the doctoral thesis Dong|(1990), different covari-
ance structures of univariate and multivariate geostatistical models are obtained from the analysis of PDEs,
particularly the cases of the Poisson equation and other equations arising from Hydrogeology. In|Jones &
Zhang| (1997) stationary covariance spatio-temporal models issued from some SPDEs are developed, which
allow the construction of non-separable models. Examples of the stochastic diffusion equation with damping
and associated generalizations in spatial dimension 2 are presented. More recently, |[Lim & Teo| (2009) and
Bolin & Lindgren| (2011) proposed covariance models which are associated to more general forms of the
SPDE (I.1)), and hence presented as generalizations of the Matérn Model.

It is then concluded that the idea of obtaining new covariance models from SPDEs is not a new idea but
rather an already well established practice in the statistical community. However, the exploitation of these
models taking advantage of this explicit link between their covariance structures and a SPDE is a quite new
practice. Bibliographical sources can be found where this link is exploited in the backwards sense as it has
been done in|[Lindgren et al.| (2011). That is, a SPDE is fitted to data using classical statistical techniques.
The earlier work we have found considering the explicit notion of fitting a SPDE to a data-set is in [Jones
(1989). In this work, the author proposes to fit a SPDE to aquifer data by considering the example of Eq.
(L.I) with « = 2. He presents the SPDE, makes reference to the relation with a Matérn model following
the results obtained in [Whittle| (1963)), and then fits the model to a data-set using classical likelihood-based
statistical methods. The relation with the SPDE is almost anecdotal. Jones fitted a SPDE without never
really considering the SPDE itself, but using its related covariance model and applying typical statistical
techniques. In the conclusion of its work, Jones also states that this method was somewhat a “brute force”

method due to the high computational cost of likelihood based algorithms.

From these considerations we can identify the real major contribution of the work|Lindgren et al.|(2011]).
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The approach in this paper is on the opposite direction as the one in Jones| (1989). The authors begin
considering the Matérn covariance model, which is particularly popular among the statistical community.
They then present the connection with the SPDE obtained in |Whittle| (1963), and then they forget the
related covariance function and work with discretized versions of the SPDE, which are provided by the FEM.
Hence, the approach consists in considering that the Random Function follows a particular SPDE which
determines its covariance structure and then work with that SPDE, rather than with the covariance function
itself. It turns out that this method presents real advantages in the case of the Matérn model with
integer values of «. The authors show that when applying the FEM to discretize the linear SPDE (1.1)), the
matrix involved in the numerical method can be identified as the precision matrix (that is, the inverse of the
covariance matrix) of the approximated Random Function evaluated at the nodes of the triangulation mesh,
which in this case is sparse. The sparsity of the matrices involved in the FEM approximation is theoretically
justified by the Markovian behaviour of the Matérn model for integer values of . This consideration allows
to immediately work with a sparse precision matrix completely determined by the FEM triangulation, hence
avoiding inverting the covariance matrices as it is done in usual geostatistical techniques. This has allowed to
reduce considerably the computational time of geostatistical techniques which require the precision matrix,
such as non-conditional and conditional simulations, Bayesian inference methods, kriging, etc. Precisely, the
authors show that the complexity of the computations are reduced from O(N?3) to O(N %) in 2D, N being
the number of sampling points. This method provides then a methodology for handling large to very large
> 106) data sets. As stated in Jones| (1989)), such an amount of data sets could not be treated satisfactorily

with classical likelihood based methods.

The SPDE approach has then set a new paradigm for geostatistical modelling. The Matérn model, which
enjoyed a considerable popularity within the statistical community even before the introduction of the SPDE
approach (see the conclusive expression “use the Matérn model" in Stein| (1999, page 14)), is equipped now
with new treatment techniques which makes it even more attractive for practical applications. Thanks to
the fast computation treatment provided by this technique, the SPDE approach has been widely used for
analysing large data sets, in particular in environment or climate science (Bolin & Lindgren, 2011;|Cameletti
et al., 2013; Huang et al.,|2017; Mena & Pfurtscheller,2017). Some authors even consider that it is no longer
really necessary to explicitly use the covariance function when analysing some geostatistical models right
now, since we can now count on a SPDE which implicitly imposes a covariance structure and whose numer-
ical resolution provides more practical treatment techniques. We refer to |Simpson et al.| (2012} for such a
discussion, together with a comparison of the computational benefits when using SPDE approach techniques
with respect to other classical geostatistical techniques. In addition, since the positive-definiteness restric-
tion on a covariance function makes the construction of new models intricate, the SPDE approach allows to
implicitly construct models through the specification of SPDEs. This has allowed, for example, the develop-
ment of non-stationary models (Fuglstad et al.,|2013)). Generalizations of the Matérn model to more general
manifolds as in the case of the sphere representing the planet Earth can now easily be obtained through the
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resolution of suitable SPDEs defined over the sphere; see the application section inLindgren et al.[(2011) for
the details on this approach, and see Lang et al.|(2015) for a theoretical analysis of Gaussian Random Fields
related to SPDEs over the sphere, together with practical simulation methods. It is interesting to contrast
this SPDE-based construction of covariance models with other more classical techniques of constructing
positive-definite functions over the sphere, framework which presents special theoretical issues. We refer
to [Porcu et al.| (2016) and White & Porcu| (2018) for the difficulties and advances within this classical geo-
statistical approach, considering covariance functions over the sphere cross time. The SPDE approach has
also inspired the development of other PDE-solver based methods with efficient performances for a wider
class of models. We refer to [Sigrist et al.|(2015) for the study of a stochastic form of the advection-diffusion
equation with damping, using Fourier Analysis methods in space and a strict resolution of the SPDE in time
to perform efficient simulation techniques based on the Fast Fourier Transform. See |Liu et al. (2016) for
the case of approximations of Matérn models over the space using bivariate splines, approach which allows,
in particular, to easily consider extensions to non-stationary models. Finally, we refer to Bolin & Kirchner

(2017) for adaptations of the FEM to the cases of Matérn models with non-integer parameter c.

We finally remark that the SPDE approach has allowed to consider particular physical meanings for some
parameters of the developed models. We consider for instance the already mentioned case of the advection-
diffusion equation worked out in (Sigrist et al., 2015), where the SPDE involves parameters defining a
damping number, a velocity vector, and an anisotropic diffusion matrix. We remark also the work M. D. Ruiz-
Medina et al.| (2016)) which allows to obtain new spatio-temporal covariance models related to SPDEs with
fractional regularities on time and defined over bounded sets in space. The approach consists in the resolution
of a deterministic version of a fractional PDE (without random source terms) considering a random initial
condition. The solution Random Field and its covariance are expressed through their developments in a
convenient orthonormal basis of functions, and the models are treated using wavelet-based methods. Such
models involve, for example, fractional versions of the Heat equation with fractional temporal derivatives

and a fractional spatial Laplacian operator.

1.3 Objectives

This new approach relating Geostatistics and the analysis of SPDEs open many doors in both theoretical and
practical aspects. When this PhD project was conceived, the main general questions that were aimed to be

worked out were the following ones:

1. How can we obtain new covariance models from the analysis of SPDEs, in order to add them to the
catalogue of valid available models? How can we describe the main properties of these models such
as its variance, range and regularity from the analysis of the parameters of the associated SPDE?

Which of these new models are related to classical physically driven PDEs, and hence with parameters
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describing for example transport, diffusions and wave propagation phenomena, among other possibil-
ities? How can we apply conveniently this approach in order to obtain models in a spatio-temporal

context with non-trivial properties?

2. Once the link between a geostatistical model and a SPDE is established, how can we exploit this link
in order to obtain ad-hoc treatment techniques of the geostatistical model? In particular, which PDE
numerical solver approach is more convenient to use for solving a SPDE in order to obtain an adapted

framework for simulations and statistical inference methods?

3. How can we relate well-known geostatistical models to particular classes of SPDEs, and hence allow-

ing to treat these models with techniques issued from the SPDE approach?

These three questions are very generic and they lead to many different research works involving more
specific questions. In this dissertation we have mainly worked out the theoretical issues which appear when
facing these questions, mainly for questions 1 and 2. Let us present the issues and objectives of this work in
this aim. Since all the chapters in this dissertation present suitable introductory and discussion sections with
plenty of details and bibliographical sources, in this section we will not give many bibliographical sources

for our statements. All of them are treated more deeply further.

Question 1 proposes the challenge of relating explicitly the resolution of SPDEs with the construction
of covariance models. Hence, here we have to study and exploit the connection between the framework of
Stochastic Analysis and Geostatistics introduced roughly in Section The question is rather how does
the SPDE impose a particular behaviour to the covariance of a stochastic process. This requires us to
enter into the details of Stochastic Calculus and the resolution and well-posedness of SPDEs. Hence, the
technical details which appear in the theory of stochastic processes and in Stochastic Analysis are present.
In particular, the well-posedness of a SPDE is a crucial question. The definition of a differential operator
acting on a stochastic process is one of the first basic issues in Stochastic Calculus, since many of the most
important stochastic processes do not have a regular behaviour. Even if such operation is well-defined, the
questions about the existence and uniqueness of solutions to some SPDEs, including in which sense we
interpret these potential solutions, are determinant. In some situations there are no solutions to a SPDE,
hence there are no covariance models at all to be concerned about. In other cases there exist many different
solutions, so there may be many possible covariance models whose associated Random Fields satisfy the
equation, hence the covariance structure is not completely determined by the equation. If we are in the case
of uniqueness of a solution, we still have to verify, in general, if such a solution has a covariance structure:
it could be a stochastic process with no square-integrable evaluations. Only after all these issues have been
tackled, we can really consider the covariance model which the solution to the SPDE follows. Finally, by
imposing a particular square-integrable multi-dimensional law which the process must follow (Gaussian, for

instance), we can really say that in such a context posing the SPDE and fixing the corresponding covariance
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model are equivalent methodologies.

It is then necessary to select a convenient framework between the possible ones already present in
Stochastic Analysis to work with. This is not an immediate selection to do and a naive choice may not
be very adapted to the objectives of this dissertation. We could try, as a first tentative, to use a typical main-
stream framework in Stochastic Calculus as the one based on a particular stochastic process: the Brownian
motion (or the White Noise, which is its derivative). Such a framework is the basis of Itd6 Calculus and other
similar approaches of Stochastic Calculus involving stochastic integrals. This framework often deals with the
analysis of filtrations, martingales and Markovian behaviours, and it is usually inspired by a strictly temporal
framework. However, a geostatistician who just starts entering into the technical details of Stochastic Anal-
ysis may be a little bit surprised by the general need of basing the whole theory on this particular stochastic
process or on the already mentioned concepts. In principle, a geostatistician is not particularly interested in
specific technical conditions such as a martingale behaviour or measurability along a particular direction of
the axes using filtrations. Such kind of properties are rather characteristics of particular stochastic processes
which the geostatistician has no reason to impose to a model in a first sight. Even Markovian models are not
theoretically preferred in principle. In practice, they are quite popular for practical reasons such as allowing
fast computations through the specification of sparse precision matrices, as already mentioned in Section
[[.2] Although this motivation is quite important, in the general sense there is no other reason to restrict our
work to a Markovian mode]ﬂ At the end of the day, the data-set and the simplicity of the model are the main
criteria determining which kind of model is preferable for a particular situation.

Concerning the definition of Stochastic Differential Equations, an interesting methodological question
arises. If the aim of Stochastic Calculus is to do Calculus with Random Functions, where does the need
of fixing a basis stochastic process, such as Brownian motion or White Noise, come from? If classical
deterministic calculus and analysis of PDEs are not based on a particular function but rather on the concepts
of continuity, differentiability, integration and other related concepts, why does Stochastic Calculus need to
be based on a particular stochastic process? The answer is simple: it does not. Indeed, all we need is a good
definition of differential operators acting on a stochastic process. This includes the correct specification of
these operations, the class of stochastic processes that they can be applied to, and to which class of stochastic
processes belongs the result of these operations. The necessity of fixing a particular stochastic process as
basis, or to restrict the work to processes presenting martingale or Markovian behaviour is not really present.
The construction of a stochastic integral, which is a tool often used to solve SPDEs, does not really require to
be based on Brownian Motion, nor does it necessitate a process presenting a Markovian behaviour or being
a martingale over the time. All we really need to define a stochastic integral is a Random Measure and a

precise Integration Theory with respect to this measure.

It is then necessary to focus in other, maybe less mainstream but also simpler theories of stochastic calcu-

SFor instance, geostatistical techniques do not require the concept of causality, even when working in a temporal context. Hence,
the notion of the future depending on the past in a particular manner is not really necessary.
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lus. First of all, the typical geostatistical framework works with the covariance structure, and hence a square-
integrability condition must be imposed to the processes. The so-called mean-square theory (Sobczyk,|1991)
seems to be the most adapted to geostatistical purposes. Here the convergence and equalities of the random
variables are all considered in a mean-square sense. Hence, the connection with the covariance structure
framework in Geostatistics is immediate. In addition, one can construct Stochastic Differential Equations
without imposing the right side to be a typical model such as a White Noise. Instead, one only interprets the
equation as a PDE with Random Functions involved. Hence, this framework is not based on any particular
stochastic process, for instance, not on White Noiseﬂ Finally, the definition of a differential operator acting
on an arbitrary stochastic process poses more sophisticated theoretical issues. These are often worked out by
interpreting the differential equation as an integral equation. However, another option which is simpler, is to
use the more sophisticated theory of Generalized Random Fields, that is, Random Distributions, the stochas-
tic version of the Theory of Distributions. In this theory many operations such as differential operators and
the Fourier Transform can be applied freely, and even some pseudo-differential operators interpreted as frac-
tional forms of classical differential operators can be applied under suitable conditions. We will thus see that
this framework is perfectly adapted to the analysis and treatment of linear SPDEs over the space or space-
time and for the description of the covariance structure of Random Fields. This framework also allows to put
in the same bag Random Functions, Random Measures and Random Distributions and to work with them in a
unified context. For instance, for the analysis of stationary Generalized Random Fields, the freedom we gain
when considering the Fourier Transform of a stationary Random Field as an orthogonal Random Measure
allows us to obtain a quite special treatment in this context and to well-define, analyse and solve a wide-class
of linear SPDESs, with a simple description of the covariance model following immediately. This is thus, the
framework which we decided to choose in this dissertation: Generalized Random Fields in a mean-square
analysis context. The mathematical tools needed to develop this framework are exposed in Chapters [2| and
B] Its application to analyse stationary solutions for a wide-class of linear SPDEs is presented in Chapter [
and in Chapter [5| we apply it to develop spatio-temporal covariance models presenting non-trivial properties
and being related to physically driven SPDEs.

Concerning Question 2, in this dissertation we deal with the problem of choosing a suitable PDE solver
numerical method which can be easily adapted to the developments presented in this dissertation. In the liter-
ature the main methods are the Finite Element Method and spectral methods. Both kinds of methods present
advantages and disadvantages, mainly considering its versatility to treat wide classes of SPDEs, and hence
wide classes of possible covariance models in a geostatistical framework. Considering the developments in
this dissertation, we concluded that the most adapted method for non-conditional simulation of stationary
models related to SPDEs is the one based on a spectral method based on the approximation of the Fourier

Transform of the Random Field. This method is closely related to the development on the Fourier basis,

6 Along this dissertation we will see that the White Noise, while not a cornerstone, has many special properties which makes it
meritorious of our attention, either for theoretical or practical purposes.
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although it is not exactly the same method. This method is not new (Pardo-Iguzquiza & Chica-Olmo, [1993;
Lang & Potthoff], 2011)), although in the literature there is no theoretical proof for its performance. Within
our framework we have been able to prove theoretically the convergence of the numerical method to the the-
oretical solution of the associated SPDE in convenient weak and strong senses. We have been able then, to
apply it to illustrate approximations of the models presented in Chapters 4] and [5] specially those presenting
non-trivial properties and related to physically driven SPDEs. These developments are presented in Chapter
[6l We do not enter on the problem of developing adapted inference methods and conditional simulations for
the SPDE Approach.

Regarding Question 3, on the relation of known geostatistical models with particular SPDEs, we do not
present general explicit advances in this dissertation. Implicitly, in Chapter[d we develop a framework where
it is easy to relate a stationary covariance model to a SPDE when we know the spectral measure of the
Random Field and if it has the form of a density with respect to another spectral measure. This has allowed
us to obtain new relationships between some known covariance models and some type of SPDE which we
will specify further. However, the problem of relating a general geostatistical model to a convenient SPDE
has not been tackled. In the conclusive Chapter [7] we show indices for advances in this aim, which are also
embedded in our Generalized Random Fields framework with a mean-square approach.

1.4 Organisation of this dissertation

This dissertation is organised in five main chapters. The first two chapters are mainly expositions of mathe-
matical tools used in this dissertation. The other three chapters are devoted to new results and applications

with geostatistical purposes.

In Chapter[2] we introduce the main deterministic mathematical tools which are required on the formalism
of the SPDE approach. It consists of an exposition of Measure Theory over the Euclidean space and of
Distribution Theory. We present the notion of a complex locally finite random measure over the Euclidean
space. We remark the special cases of slow-growing, compactly supported and finite measures. We recall
the classical Riesz Representation Theorem which allows to characterize locally finite and finite measures
as continuous linear functionals over convenient spaces of continuous functions, and we present analogue
results for the cases of slow-growing and compactly supported measures. We remark also the important case
of measures concentrated on subsets of the Euclidean space. We present the most important definitions and
results of Distribution Theory in a tempered framework. We then show how differential operators and the
Fourier Transform are applicable in this context. We present the concepts of tensor products of distributions
and operators, and we recall important results such as the Exchange Formula for the Fourier Transform and

the Nuclear Theorem.

In Chapter [3| we present in detail the stochastic tools used both in classical geostatistical frameworks and
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in this dissertation. We present the classical framework of Random Functions, with all necessary notions to
relate geostatistical analysis with basic theories of PDEs, such as the definitions of continuity, differentiabil-
ity and integrability in a mean-square context. We then introduce the stochastized version of the deterministic
tools presented in Chapter[3] that is, Random Measures and Generalized Random Fields or Random Distribu-
tions. We define those tools in the context of the mean-square theory, where the main characteristics of these
objects are determined by the characteristics of the covariance structure. For instance, a Random Measure
is defined as being determined by a covariance measure. The cases of finite, slow-growing and compactly
supported Random Measures are related to analogue properties for the covariance measure. We present the
important case of orthogonal Random Measures. We show how to define integrals of deterministic functions
with respect to Random Measures within this framework. We then present the theory of Generalized Ran-
dom Fields. We show the main important aspects which allow to properly deal with differential operators
and the Fourier Transform on Random Fields with a huge generality. We present the definition of a stationary
Generalized Random Field and we recall the important result relating them with slow-growing orthogonal
Random Measures through the Fourier Transform. This result is widely used. We then present our definition
of a SPDE, and we show how linear SPDEs impose deterministic PDEs to the covariance structures of the
involved fields. We also give a brief but enlightening way to construct bivariate geostatistical models through
the SPDE approach. The final two sections of this chapter are devoted to explain the theoretical issues that
arise in Stochastic Analysis and the differences and similarities between the framework used in this disserta-
tion and other typical approaches to Stochastic Calculus. We present the differences between mean-square
theories and sample-paths theories, which are determinant on the cases of Random Functions and Random
Measures. We also present the theoretical issues that arise when trying to define multiplications between
GeRFs and hence when trying to define non-linear SPDEs or SPDEs involving a multiplicative noise. We
show that this issue is also related to the classical problem of the non-canonical definition of a stochastic
integral of general stochastic processes with respect to Random Measures. These theoretical issues push us
to restrict our work to the cases of linear SPDEs involving deterministic operators.

In Chapter 4] we generalize the results in[Whittle| (1963)) regarding stationary solutions for a wide class of
linear SPDEs. Within the framework of stationary Generalized Random Fields, we obtain conditions under
which there exist strict stationary solutions and under which there is a unique solution. The criteria consists in
a suitable integrability condition between the symbol function defining the operator and the spectral measure
of the source term. We present the particular case of a White Noise source term and we show that it can
be considered as a fundamental case since, under suitbale conditions, the covariances of the solutions with
more general source term can be related to the one of the White Noise source term case through convolution.
These results allow to recover and encompass stationary models already present in the literature. They also
give a direct enlightening on the problem of relating stationary models to SPDEs. We recall the Matérn
model, the Matérn model without scale parameter, and Markovian stationary models. We present examples
of SPDE:s related to the J-Bessel covariance model and the Stein model (Stein, [2005). We end this chapter
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with a remark concerning the associated deterministic PDEs. This framework can be used to analyse the
means of the Random Fields involved in a SPDE without necessarily supposing a constant or zero mean as

it is done in a stationary framework.

In Chapter [5| we present new spatio-temporal covariance models which we obtained within this SPDE
approach. We begin by recalling the special issues and difficulties in the framework of spatio-temporal
Geostatistics. We recall the concepts of separability, symmetry, spatial and temporal traces and margins in
a classical geostatistical framework, and we show how to properly define these notions in the framework
of Generalized Random Fields. We present then new stationary spatio-temporal covariance models associ-
ated to evolution equations presenting a fractional derivative order in time and an arbitrary operator defined
through a symbol in space. We present sufficient conditions for existence and uniqueness of a stationary so-
lution regardless of the source term and the imaginary part of the spatial symbol function. We then describe
the spectral measures associated to these models and we show how we can easily control the separability,
the symmetry, and the separate spatial and temporal regularity of the model. We give more details in the
cases of first order and second order evolution models. We describe the covariance of the spatial traces of
these models in symmetric cases. We point out already existent particular cases of these models which are
present in the literature, such as the case of the advection-diffusion equation (Sigrist et al., [2015) and some
Langevin’s equations (Hristopulos & Tsantili,2016). We then introduce the Evolving Matérn models, which
are spatio-temporal stationary solutions to these evolution equations which follow a Matérn spatial covari-
ance model. We also obtain interesting results on the existence and uniqueness of stochastic forms of the
Heat and Wave equations. In the case of the Wave equation, we show that there exists a great variety of
stationary models which satisfy spatio-temporally its homogeneous form, and which can be chosen to follow
an arbitrary spatial covariance behaviour. We call these kinds of models Waving models. The last section
of the chapter is devoted to the study of first order evolution models satisfying an initial condition. The
results, presented informally, generalize well-known results on the analysis of such type of spatio-temporal
PDEs and SPDEs, which involve for instance the advection-diffusion equation, Langevin’s equations and the
Heat equation with a fractional Laplacian operator. The problem is solved considering solutions in a suitable
space of tempered distributions for which an initial condition makes sense. Under suitable assumptions, it is
claimed that the solution of this initial value problem converges asymptomatically spatio-temporally as the
time flows to the spatio-temporal stationary solution (in the geostatistical sense) associated to a first order

evolution model, already studied in this chapter.

In Chapter [6| we present a method of simulation of approximations of the models developed in this
dissertation. It is a well-known simulation model based on the spectral representation of stationary Random
Fields, taking advantage of the computational benefits of the Fast Fourier Transform. This method has
already been introduced by [Pardo-Iguzquiza & Chica-Olmol| (1993)) in a geostatistical context and by [Lang
& Potthoff] (2011) as an efficient numerical method for solving suitable SPDEs. This method turned out
to be perfectly adapted to the approach presented in this dissertation. We present the theoretical basis of
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the methods and we have been able to theoretically prove the convergence of the method when increasing
the approximation order. The convergence is considered in suitable mean-square weak and strong senses.
We show how to apply this method to the resolution of SPDEs of the form presented in Chapter 4, to
numerically solve the initial value problem related to first order evolution models, and to simulate Waving
models. We implement this method in a particular convenient setting. We show a qualitative error analysis of
the simulated approximations by comparing the average over 50 independent realisations with the theoretical
variogram in the case of the Matérn model. We then illustrate simulations of different type of models,
presenting advection effects, different regularities along different directions, and non-symmetric behaviour
inspired by the developments done in Chapter[5] We also present illustrations of first order evolution models
with random initial condition and of Waving models. We finish with final words on the advantages and

disadvantages of this simulation method.

We finish with the conclusive Chapter[7|where we summarize the obtained results and we present possible
future courses of research within the SPDE approach, which are closely related to the issues exposed in this

dissertation.



Chapter 2

Theoretical Framework: Deterministic
Tools

SUMMARY

In this chapter we present the main non-stochastic mathematical tools that will be used in this
dissertation. It is basically a recall on Measure Theory for the Euclidean space and Distribution
Theory. It can be considered as a special chapter of this dissertation which does not deal
with strictly speaking geostatistical concepts. Hence, some geostatisticians who do not often
use these theories may find this exposition useful. Some of the notions and terminologies we
use here are not broadly used in classical treaties of these theories or they are presented in a
different way as we do. Hence, even if the reader knows well these theories, we suggest anyway

to make at least a fast reading of this chapter.

Section 2.1 deals with Measure Theory for the Euclidean space. Here the concept of locally
finite or Radon complex measure over RY is presented and exploited. We present the defini-
tion of complex measures as set functions. The vector space of complex measures over R? is
described. The space of finite complex measures is also presented, together with the concept
of measure of total variation. We recall the construction of the Lebesgue integral with respect
to positive and complex measures. We introduce the space of slow-growing complex measures
which will be of great importance in this dissertation. We recall the classical Riesz Represen-
tation Theorem which states that any continuous linear functional over the space of compactly
supported continuous functions is a complex Radon measure. Variants of the Riesz Repre-
sentation Theorem are also presented, including the cases of compactly supported measures,
finite measures and slow-growing measures as continuous linear functionals over the spaces of

continuous functions, continuous functions vanishing at infinity and fast-decreasing continuous

15
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functions respectively. We finish this section with an exposition of measures concentrated on
subsets of the Euclidean space, where we remark measures concentrated on the Sphere, on the

Hyperplane {y = x} and on the spatio-temporal cone.

Section 2.2] deals with Schwartz’s Distribution Theory. We restrain ourselves to the case
of tempered distributions. We introduce the Schwartz space and its dual space of tempered
distributions. Some examples of such distributions are given. We present examples of operations
which can be defined for tempered distributions, all of them defined through an adjoint. We
give the most important examples: differential operators, multiplication with multiplicators of
the Schwartz space, convolution with fast-decreasing distributions and the Fourier Transform,
together with its famous multiplication-convolution exchange formula. We recall the concept of
tensor product for the cases of functions, measures, tempered distributions and linear operators
over tempered distributions. Finally, we recall the important Nuclear Theorem. Some comments

on other spaces of distributions are also given.

Since we have used some notions and terminologies which are different to standard ones, many
claims presented in this section are not easily findable in the literature in the way we state them,
even if they could seem obvious for some specialists. In these cases, we always give a proof in

Appendix[A|or a convenient reference.

2.1 Measures over the Euclidean space

In this section we recall some concepts and results of Measure Theory for the Euclidean space R¢, with
d € N,. We will always work with Borel measures, that is, our measurable space will always be (R?, B(R%)),
with B(R?) being the Borel 0 —algebra of RY.

Some definitions and terminologies that we have chosen to use in this work differ with classical termi-
nologies that can be found in most bibliographical sources. This choice is done mainly for practical reasons.
We will sometimes make reference to some treaties or articles using the same mathematical objects as we do
but with different names for those. We will specify the details when necessary. Some of the results presented
in this section are not easily findable in the literature, mainly because of this different usage of terminology.
For some of them, as Theorems @] and @ we are not aware about if they are new or not, but we did
not find a source where they are stated in the way we needed. We give, of course, proofs of those and to any
other result which is not immediately easy to find in the literature. We think, however, that these results are,

if not evident, at least intuitive for a Measure Theoretician or for an Analyst.

We refer to [Knapp) (2005, Chapter 6) for a general description of positive Borel measures over the Eu-
clidean space, and toRudin| (1987, Chapter 6) for a general theory of complex (finite) measures over abstract

measurable spaces. Here we make a general compendium of the main ideas on those and other bibliograph-
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ical sources, with no restriction to finite complex measures. Sources based on the other way of defining
measures over R?, that is, by using the Riesz Representation Theorem as basis are also recommendable,
for which we remark the student-oriented Demengel & Demengel (2000) or the classical (and polemical)
Bourbaki| (1965). This approach is also discussed in Section[2.1.4]

2.1.1 Locally finite complex measures as set functions

We begin by giving our definition of a Radon complex measure, or a locally finite complex measure over
R?. The term Radon measure is mainly used for measures defined over more abstract measurable spaces
with extra properties required for the measure, namely, inner and outer regularity. However, in the case
of the Euclidean space with its Borel o—algebra, the property of being locally finite is equivalent to being
Radon. See Knapp| (2005, Theorem 6.2), the author using the term Borel measure for what we would call
here a positive locally finite measure. Hence, in this context it is not necessary to make a distinction between
the adjectives Radon and locally finite. We will set-up the next convention: all measures defined over the
Euclidean space used in this work are supposed to be Radon, and so locally finite, unless explicitly stated

otherwise. We will then drop the adjectives Radon or locally finite unless it is useful to recall them.
We denote by Bg(RY) the collection of all bounded Borel subsets of RY.
Definition 2.1.1. A locally finite complex measure (from now on, a complex measure, or simply a measure)

over R% is a function 1 : Bp (Rd) — C such that for every countable collection of mutually disjoint bounded
Borel sets (Ap)nen © Bp(R?) such that U eny An € Bp(R%), it holds that

neN
1 (U An) = u(Ap). (2.1)
neN neN

This definition is not a traditional one. Most bibliographical sources require the measure to be defined
over the whole o—algebra of Borel sets and not just over the bounded Borel sets. Some authors use the term
pre-measure for this mathematical object, at least in the positive case (see |C. Rogers, (1970, Definition 5 in
Chapter 1). Indeed, that name is often used when the function p is not defined over the whole o —algebra of
subsets of the space but rather over a ring or over a §—ring of subsets of the spaceﬂ However, the stronger
requirement that ; must be defined over the whole o—algebra B(R?) produces problems when trying to
define a complex measure over unbounded sets, since in those cases expressions of the form oo — o0 + (00 —
o0) may arise, even for very basic and useful measures (the Lebesgue measure, for instance). Actually, it

can be proven that if we define a complex set function satisfying (2.1)) for every arbitrary countable partition

If X is a non-empty set, a ring of subsets of X is a collection of subsets of X stable under finite unions and under set
differences. A d—ring of subsets of X is a ring of subsets of X stable under countable intersections. Every o —algebra is a —ring,
but the converse is of course not true in general. The collection Bg (]R‘i) forms a —ring but not a c—ring. SeeRao|(2012}, Chapter
1) for an introduction to measure theory using these notions.
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of any Borel set, this measure is necessarily a finite measure, notion that will be explained later (see Rudin,
1987, chapter 6). Definition [2.1.1] allows thus to bypass this problem since we are not concerced on what
happens over unbounded Borel sets. Some authors use this notion of complex measure, often inspired by the

manipulation of complex measures in Distribution Theory; see for example Schwartz| (1966, Chapter I, §1).

The property related to Eq. (2.1) is called the o-additivity property. We remark that the series in
must be absolutely convergent, since | J,, oy An is still the same set for every rearrangement of the
family (A, )nen. We denote by .7 (R%) the space of locally finite complex measures over R?. This space
is a complex vector space with the sum (u + v)(A) := u(A) + v(A) and with the scalar multiplication
(ap)(A) := au(A), for all v € 4 (RY), a € C, and A € Bg(R?). If a measure y satisfies p(A) € R for
every A € Bp(R?), it is said to be real. If a measure y satisfies y(A) > 0 for every A € Bg(R?), it is said
to be positive. We denote by .#* (R?) the space of all positive measures over R<.

If 4 € 4 (R%), its reflection measure /i is defined as ji(A) := p(—A) for every A € Bg(R?), where
—A:= {z e RY : —x € A}. Itis straightforward that /i is a well-defined measure. A measure i is said

to be even if u = fi and odd if z = —pu. Its conjugate measure 7z is defined as fi(A) := u(A) for every

A € Bp(R%), and it is a well-defined measure. The real part of ; is the real measure pp := %ﬁ, and the

imaginary part of 4 is the real measure py := ”;Zp, satisfying 4 = pp + ipr. A measure y is said to be

Hermitian if 1, = 7z, that is, if its real part is even and its imaginary part is odd.

We introduce the next important definition.

Definition 2.1.2. Let yu € .# (R?). Its measure of total variation is defined as the measure || € .4+ (R?)
defined for every A € Bg(R?) by

lu|(A) = sup{ 2 |u(Ey) ‘ (Ep)nen © B(RY) partition of A}. (2.2)

neN

The measure of total variation || is actually, as its name states, a measure, which is in addition positive.
It is also the smallest positive measure satisfying |u|(A) = |uu(A)| for all A € Bg(R?). Those claims can be
proven following Rudin| (1987, Theorems 6.2 and 6.4). It can thus be concluded that ||(A) < oo for every
A € Bp(R?). Ttis clear that if € .+ (R?), then |u| = p. If u € .#(R?) is a real measure, we define its
positive part as the positive measure y+ = ‘“‘%, and its negative part as the positive measure 1~ = MT_M’
satisfying then p = u* — p~. This decomposition of real measures is also called the Jordan decomposition
(Rudin, |1987, Section 6.6). Using the positive and negative parts of the real and imaginary parts of a complex
measure L, it is easy to see that u can be decomposed in four positive measures ,ujg, Mg, u}’, p; €M (RY)
through pu = pf — pp +i(pf — py). If p e 4 (RY) and A € Bp(R?), we say that A is a null set of 4, or a

p—null set, if |p|(A) = 0. This definition can also be extended to unbounded Borel sets.

We give now our definition of a measure of finite total mass.
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Definition 2.1.3. A measure ji € .# (R?) is said to be a finite measure, or to have a finite total mass if its

domain can be extended to B(R?) maintaining the o—additivity property:
o 1(A) e Cforall Ae B(RY),

e for every countable collection of mutually disjoint Borel sets (Ap)nen © B(R?), the o— additivity
property (2.1) holds.

We denote by . (R?) the space of complex finite measures over R?, and ., (R?) the set of all positive
finite measures over RY. It is immediate that .#(R?) is a complex vector space. It is also clear that for a
positive measure . € .+ (R?), being a finite measure is equivalent to having p(R?) < cc. For a complex

measure, an analogue condition is required to the measure of total variation, as the next Proposition states.

Proposition 2.1.1. Let 1 € .# (R?). Then, i € M 1(R?) if and only if |u| € 47+ (RY).

Since we have used non-traditional definitions of measure and finite measures, this result is not easily
findable in the literature in the exact way we state it. We then give a proof of Proposition [2.1.1]in Appendix
[A.T] From Proposition [2.1.1] it is straightforward that the reflection, the conjugate, the imaginary and real
parts, and the positive and negative parts (in the real case) of a finite measure are also finite measures. We can
also conclude that the Jordan decomposition of a finite measure p consists of four positive finite measures
[y s 1 iy € A7 (RY), having = ph — pp +i(uf — py). If o is a finite measure, the positive real
value |p|(R?) is called the total variation of .

We finish this section with two basic but essential examples of measures over R%:

e The Lebesgue measure, denoted by Leb, which satisfy to be the unique measure in . (R?) that gives
to every set of the form [a1,b1] x ... X [ag,bq], with —0c0 < a; < b; < oo forall j € {1,...,d},
the value Leb([a1,b1] % ... x [ag,bq]) = H;l:l |b; — a;]. Itis also the unique measure in .~ (R?)
which is invariant under translation and which gives the value 1 to the hyper-cube [0, 1]d. Hence,
the Lebesgue measure is the formalisation of the intuitive notion of area in R? or the volume in R3. It

is not a finite measure.

e The Dirac measure at z € R?, denoted by d,, which is the measure that for every A € Bg(R?) gives
the value 6,(A) = 1if x € A, and 6,(A) = 0if = ¢ A. It is a positive finite measure. If x = 0, the
Dirac measure at x is simply denoted by 6.

2.1.2 Reminders on Lebesgue integrability

In this section we recall some notions of Lebesgue integrability over the Euclidean space. As the reader

probably knows, the Lebesgue integral can be defined on quite abstract measure spaces. The recall made

*That is, that for every A € Bp(R?), Leb(A + h) = Leb(A) for all h € R?, where A + h denotes the set {z € R? |z —h € A}.
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here is restricted to integration over the Euclidean space, and it is presented mainly to clarify the language,
notions and results that will be used further in this work, with special emphasis on the construction of
the Lebesgue integral. We do not give any proof of the claims presented in this section, since they are
either broadly known, or straightforward from well-known results. There are many classical bibliographical
sources about this subject. We suggest for example [Rudin| (1987). Fast and effective introductions can be
found in [Donoghue| (1969, Chapter 5) and in L. Rogers & Williams| (2000, Chapter 2, §1), the latter with a
probabilistic approach. This section can be skipped by a reader already familiar with this theory.

We consider the measurable space (R?, B(R?)). A not-necessarily Radon positive measure over this
space, is a set function p : B(R?) — [0, 0] satisfying the o—additivity property (Z.1)) for every countable
mutually disjoint family of Borel sets. Such a measure can take infinite (positive) values over bounded Borel
sets, and it has necessarily the property ;(A) < p(B) if A ¢ B. If A € B(R) is such that u(A) = 0, we

say that A is a null set of yu, or a y—null set.

We will first focus on integration of positive extended-real valued functions. A positive extended-real
valued function f : R? — [0, c0] is said to be measurable if f~'(B([0,0])) = B(R?), that is, if the pre-
image of every Borel subset of [0, o0] is a Borel subset of RY. The set of positive extended-real functions
is a cone stable under multiplication, maximum and minimum, and point-wise monotone convergence. A
particular class of measurable positive extended-real valued functions are the so-called simple functions,
which are measurable functions taking a finite number of values. A simple function f : R% — [0, o0] can be
expressed as a finite linear combination of indicators functions of Borel sets:

f=>Ya1a;, 2.3)
jeJ

with 4; € B(R?) and a; € [0, 00] for all j € J, with #(J) < oo, where #(.J) denotes the cardinality of the
index set J. If f is a function of this form, its Lebesgue integral with respect to a positive not-necessarily

Radon measure p is defined as
F@)du(z) = aju(A;). (2.4)

R4 jeJ

This expression can take infinite positive values, even when i is in . (R%) and f takes finite values, since
one of the involved Borel sets could be not bounded. For a positive extended-real measurable function f, it
is known that we can always construct a sequence of positive simple functions that converges monotonically
(increasing) point-wise to f. The Lebesgue integral of a positive extended-real measurable function f is
then defined as follows: if (fy,)nen is a sequence of positive simple functions monotonically point-wise

convergent to f, we define

f(z)du(x) ;== lim fn(x)dp(z). (2.5)
Rd n—90 Jprd

This limit always exists (it can be infinite). This limit does not depend on the choice of the sequence of
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simple functions converging to f. The Lebesgue integral with respect to x4 defines a linear mapping over the
cone of positive measurable functions. When the limit (2.9) is a finite positive real number we say that the
function f is integrable with respect to . The Lebesgue integral is monotonic in the following sense: if
f, g are two positive extended-real measurable functions such that f < g, and p is a positive not-necessarily

Radon measure, then

f@)dn(e) < | gla)duo). 2.6)
Rd Rd

Let us right now consider the case of a complex function f : R? — C. We say that f is measur-
able if f~1(B(C)) = B(R?). Every continuous complex function is a measurable function. The space of
all complex measurable functions is a complex vector space stable under complex conjugation, multiplica-
tion, maximum and minimum in the case of real functions, and under point-wise limits. Every complex
measurable function f can be decomposed in four positive measurable functions f;, Y fi 1 /7 through
f= fR fr +i(ff = fr)- We can take, for instance, I = max{f+f 0}, fr = mln{f 0 ff =
max{ o ,O}, fr =— mm{f ,0}, with f being the complex conjugate of f. We remark that with this
decomposition, |f| = fR + fr + f[ + f; . If p is a positive not-necessarily Radon measure, we say that
f is integrable with respect to y if | f| is integrable with respect to u, which holds if and only if all the four
positive functions f E IR f;r , f; are integrable with respect to u. In such a case, the Lebesgue integral of

f with respect to p is defined as

|, @)= | ri@aut- [ sr@duta (f i @du(o) = | 7 @t ).<2.7>

We finally consider the case where . € .2 (R?%) and f is a measurable complex function. In such a case, we
say that f is integrable with respect to p if | f| is integrable with respect to |u|. Using the decomposition of
4 in four positive measures, p = ME — pp+ z(u}r — p ), it is immediate that f is integrable with respect
to p if and only if all the positive measurable functions f;{, frrf f , f; are integrable with respect to each
one of the positive locally finite measures ME, KR ,uj, 7 . In such a case, the Lebesgue integral of f with
respect to 4 is defined as

J F@)dph (@ f F(@)dyr (@ U (x)d,u}r(x)—JRd f(x)du;(x)). 2.8)

In an analogous way, a positive extended-real measurable function f is said to be integrable with respect to
a complex measure p € .2 (R%) if it is integrable with respect to ||, which is equivalent to require that f
is integrable with respect to each one of the four measures ME, Mg, u}’, py . In such a case, the Lebesgue
integral of f with respect to 4 is defined through the expression (2.8). When the measure p is the Lebesgue

measure, the integral of a function f in any of the aforementioned cases, if well-defined, is denoted by

$ga f(2)da
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In all the mentioned cases for f and p, if the Lebesgue integral of f with respect to u is well-defined, the

|, r@na

Let A € B(R?), f be a function and x a measure in any of the aforementioned cases. If the function 14 f

following inequality holds:

< | 1r@ldpa). 29)

is integrable with respect to y, the Lebesgue integral of f with respect to i over A is defined by

f F (@) du(a) = j 14(2) f(2)dpa(z). 2.10)
A R4

If f is a measurable positive extended-real function and p is a positive not-necessarily Radon measure,
the expression (2.10) is always well-defined independently of the integrability condition (it can be infinite).
In such a case, the apphcatlon A e B(RY) — i 4 f(x)du(z) is actually a positive not-necessarily Radon
measure, called the multiplication between f and u, and it is denoted by f .

If 11 is a measure in any of the aforementioned cases, and f is a measurable function, complex or positive
extended-real, such that for every compact subset I of R? the function 1x f is integrable with respect to
1, we say that f is locally integrable with respect to p. In such a case, the Lebesgue integral (2.10) is
well-defined for every bounded Borel set A, and the application A € Bg(R%) Suf 4 f(x)dp(zr) is a measure
in .2 (R%), which is also called the multiplication between f and 4 and it is denoted by fu. Every locally
bounded measurable function f (that is, such that | f| a4 := sup,ec4 |f(x)] < oo for every bounded set
A c R% is locally integrable with respect to every measure . € .# (R?), and thus fu € .# (R?). This holds
in particular if f is a continuous function. We also remark that if f is any measurable function and p is any
measure of the aforementioned cases, if f is integrable with respect to u, the multiplication fu is a finite
measure. In particular, every measurable and bounded complex function f is integrable with respect to every
finite measure p, and thus the multiplication fy is a finite measure for which it holds that |(fu)(R%)| =
| $g F@)du(@)] < |folul(RY), where | f]o denotes de supremum norm of f, | floo = sup,eza [ £()].
In order to fix some notation and terminology, when v = f is the multiplication between a function f and a
measure y, we note this fact also as dv(z) = f(z)du(x), and we say that v has a density f with respect to .
In the case where p is the Lebesgue measure, we rather denote this by dv(x) = f(x)dx, and we simply say

that v has a density, without necessarily specifying that the density is with respect to the Lebesgue measure.

We recall two important results from Integration Theory.

Theorem 2.1.1 (Monotone Convergence Theorem). Let 1. be a positive measure over R%, Radon or not.
Let (f,)nen be a sequence of positive extended-real measurable functions which is monotonically increasing.

Let f be the point-wise limit f(x) = lim,, o fn () (Which is also measurable). Then,

im | fula f F(@)dp(z @.11)

n—o0
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Theorem 2.1.2 (Lebesgue’s Dominated Convergence Theorem). Let (f,)nen be a sequence of complex
measurable functions over R® which is point-wise convergent to a measurable complex function f. Let 11 be
a complex measure over R% and suppose that there exists a positive function g integrable with respect to 1

such that | f,,| < g for all n € N. Then, f is integrable with respect to p and

lim fnd,u J flx)du(z (2.12)

n—oo

This Theorem is also applicable for point-wise converging sequences of positive extended-real valued
functions which are bounded by a positive extended-real measurable function integrable with respect to
w. The condition of point-wise convergence can also be relaxed to have point-wise convergence outside a

p—null set.

We finally recall the definitions and notations of the Lebesgue spaces. Given a measure i over RY,
Radon or not, we denote by .Z*(R?, 1) or .2 (R%, ;1) the set of all complexEI measurable functions which
are integrable with respect to p. For p € [1,00) the set .ZP(R%, 1) denotes the space of all complex
measurable functions f such that |f|P is integrable with respect to . We denote by Z*(R?, 1) the
space of all complex measurable functions f such that there exists C' > 0 such that |f(x)| < C for
all z € RAND where D € B(R?) is a u—null set. The spaces .Z”(R%, ;1) with p € [0,00] are com-
plex vector spaces. The associated quotient spaces of those spaces with respect to the equivalence re-
lation of equality outside a p—null set are denoted by LP(R?, ;). Hence the spaces LP(R?, 1) are not
spaces of functions but rather of equivalence classes of measurable functions. For p € [1, ), the spaces
LP(R%, 11) are endowed with the norm 1 lop(ra y = (Spa |f(2) |pd|u|(az))% for any f representing its

equivalence class of functions. For p = oo, LP(R%, 11) is endowed with the norm of the essential supre-

mum, y 1= inf{C >0 | |f(z)] < C forall z outside a u—null set}. For every p € [1, 0], the
so-constructed topological vector space LP(R?, 1) is a Banach space, that is, a complete normed space. For
p = 2, it is a Hilbert space, with the inner product defined through (f, ) r2(ra ) = $pa f(2)g(2)d|u|(2),
being f, g two any representatives of their equivalence classes. When the measure p is the Lebesgue mea-

sure, we drop the in the notation of the associated Lebesgue spaces and their norms, denoting them
simply as .27 (R%), Lp(Rd) and | - | Lp(gay-

2.1.3 Slow-growing measures

We introduce now another space of measures which plays a particular role in the theory of stationary Ran-
dom Fields. In contrast to the case of locally finite measures and finite measures, this definition cannot be
immediately extended to more abstract measurable spaces.

3Some authors also include the extended-real measurable functions. We do not.
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Definition 2.1.4. Let ji € .# (RY). We say that ju is a slow-growing measure if there exists a strictly positive
polynomial p : R® — R such that the measure % W is finite, or equivalently, if there exists N € N such that

d|pl(z)
JRCI T+ <™ (2.13)

The equivalence stated in Definition comes from the fact that for every polynomial p : R — C
there exist N € N and C' > 0 such that |p(z)| < C(1 + |z|?)" for all z € R%. We denote by .#Zs;(R?) the
set of slow-growing complex measures over R, It is immediate that it is a complex vector space, and that
the inclusion .Zr(R?) < .#sc(R?) holds, since for every finite measure it suffices to set N = 0 in (2.13).
If 1 is a slow-growing measure, its reflection, its conjugate, its imaginary and real parts, and its positive and
negative parts in the real case are also slow-growing. We denote by . ;G(Rd) the set of all positive slow-
growing measures. The Jordan decomposition of a slow-growing measure j consists then of four positive
slow-growing measures (1}, fig, (5, 1y € M de(R), having p = pf — pp +i(uy — py)

Let f : R? — C be a polynomially bounded measurable function and let 1 € .#sc(R?). Then, the
multiplication fu is a slow-growing measure. To see this, consider Ny € N such that (1 + |z|?) 7 f is
bounded and N,, € N such that (1 + |z|?) =™k is finite. As every bounded measurable function is integrable

with respect to any finite measure, we obtain

d|ful(x) |f ()] dlp| ()
JRd ( < fRd ( < o, (2.14)

L [z)NrENe = Jga (14 J22)Nr (1 + [2]?) N

from which we conclude that f is a slow-growing measure, as it can be seen by setting N = Ny + N, in

Eq. (2.13).

2.1.4 Measures as linear functionals over spaces of continuous functions

In this section we recall some classical results which identify spaces of complex measures as members of the
dual of some vector spaces of continuous functions. Hence, we present the Riesz Representation Theorem

and some of its variants.

We denote by C(R?) the space of all complex continuous functions over R? and Cz(R?) the space of
all bounded complex continuous functions over R?. Let us first recall the definition of support of a function

and of a measure.

Definition 2.1.5. Let f : R® — C be a function. Its support is defined as the closure of the set where f is

not null:

supp(f) := {z e R? : f(z) # 0}. (2.15)

Ifue # (]Rd), its support is defined as the complementary of the largest open set where the total variation
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is null:
supp(p) = (U{O c R? : Oisopen and |u|(0) = O})C. (2.16)
The support of a function or a measure is always a closed set. It is, roughly speaking, the set where the
function or the measure is not null. A function or a measure is said to be compactly supported if its support
is a compact set. This definition is also applicable to extended-real functions and to positive not-necessarily
Radon measures. It is immediate that || (supp(u)¢) = 0 and thus |p|(supp(r)) = |p|(R?). Ttis also easy to
see that if f is a measurable complex (or positive extended-real) function, its Lebesgue integral with respect
to any measure u, Radon or not, satisfies, when the integral is well-defined,

f<x>du<x>=j f (@) du(z) = f f(@)dp(x) = f@)du(z).  @17)
Rd supp(f)

supp(11) Lum)(f)ﬁsuma(u)
It follows that in the case where supp(f) nsupp(x) = &, then fu = 0. The same applies if |u|(supp(f)) =
0 or if f is null over supp(u).

Let us introduce the next spaces of continuous functions:

e C.(R%), the space of compactly supported continuous functions:

C.(RY) = {p € C(RY) | supp(¢) is compact}. (2.18)

e Cy(R%), the space of continuous functions vanishing at infinity:

Co(RY) = {pe CRY | lim ¢(z) = 0}. (2.19)

|z|—>00

o Cr D(Rd), the space of fast-decreasing continuous functions, that is, functions that decrease faster

than any polynomial:

C’FD(]Rd) ={pe C’(Rd) ‘ [(1+ |x|2)Ng0Hoo = sup [(1 + |x|2)Ng0(x)| <o VYNeN} (220

zeR4

We remark that C,.(R%) < Cpp(RY) < Cy(R%) = C(R?). Each one of these sets are complex vector
spaces, and each one of them will be endowed with a particular topology which makes them complete
locally convex topological vector spaces (see Appendix [D)). Their dual spaces will be identified with spaces
of measures. We recall that for a general complex topological vector space F, its dual is the space of all
continuous linear functionals over E, and it is denoted by E’. If T € E’, its action over an element x € E,
that is 7'(), (T is a function from E to C) is more comfortably denoted by (7', z), to highlight the fact that

T 1s linear.
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The topologies these spaces will be endowed with are not all trivial. The space Cy(R?) will be endowed
with a norm which makes it a Banach space. The spaces Crp(R?) and C(R?) will be endowed with a
metric topology which makes them Fréchet spaces. The space C..(R%) will be endowed with a more technical

topology which makes it a Hausdorff locally convex topological vector space.

We start with the space C.(R%). The topology defined in this space is rather technical and it will be
explained in detail in a footnoteﬂ Most authors do not make it explicit, but rather describe it roughly through
the description of the convergent sequences on this spac A sequence (o )neny © Co(R?) converges to 0
in C.(RY), denoted by ¢, %o, if (and only if) [, ]| — 0 and if there exists a compact K < RY such that
supp(,) © K foralln € N. If ¢ € C.(R?), a sequence (¢, )nen = Ce(R?) is said to converge to ¢ in
C.(R%), denoted by ¢,, A pif o, — ¢ % 0. Another way of describing the topology of C..(R?) is through
the characterisation of the continuous linear functionals defined over it. A linear functional 7" : C,(R%) — C
is continuous if (and only if) for all compact K < R¢ there exists Cx > 0 such that

KT, o) < Ck|@lloos Ve € Co(R?) such that supp(p) < K. (2.22)

We remark that any function in C..(R?) is integrable with respect to any measure p € .# (R?), since

|, e@dnto)

_ f (@) ()| < Joluolul (supp()) < 0. (2.23)
supp(p)

We conclude that the integral with respect to any y € .# (R?) defines a linear functional over C,.(R%), which
can be seen by setting Cx = |pu|(K) for a corresponding compact set K < R? in Eq. (2.22). We present

the famous Riesz Representation Theorem for Radon measures, which states the converse: any continuous

*The topology of C.(R?) is defined in order to make it a Hausdorff complete locally convex topological vector space. Its
topology can be fully determined through the specification of the associated family of semi-norms. This family will be indexed by
the set of all decreasing to zero sequences of strictly positive real numbers. Let (€, )nen < R} be such a sequence. The associated
semi-norm is defined as

_ ()] d
Plen)pen () = sup{ sup b, Ve Ce(RY). (2.21)

neN |z|zn  €n

It is difficult to find authors presenting this topology in this way. What we have done here is just a copy-paste of the description
of the topology of the classical space of smooth and compactly supported functions in Distribution Theory, @(]Rd), as done in
Schwartz| (1966, Chapter III), and restrain the definition of the semi-norms to the case of non-differentiable functions. It can be
proven that C..(R?) equipped with this topology is, as expected, complete. Theorem I in|Schwartz| (1966, Chapter III, § 1) states that
9 (Rd) is complete, and the same arguments can be used to prove that C. (]Rd) with this topology is complete. Another approach to
prove the completeness of C..(R?) is by considering that it is the strict inductive limit of Banach spaces; see|Reed & Simon| (1980)
Section V.4) for an introduction of this concept and its properties. In this same source and section, the authors present in Example 1
the analogue to our space C..(R%), in the case d = 1, there denoted by x(R).

5In a general topological space, the description of the convergent sequences in the space does not suffice to define the topology.
This would hold, for example, over a metrizable topological space. The space C..(R?) is an example of a non-metrizable topological
vector space, whose topology cannot be completely determined by its convergent sequences. A generalization of the concept of
sequence is the concept of net, which can be used to describe completely the continuous functions over a topological space, and
hence to describe topologies defined from a family of functions desired to be continuous. See (Reed & Simon, 1980, Section 1V.2).
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linear function over C.(R?) can be represented by a measure in . (R%).

Theorem 2.1.3 (Riesz Representation for locally finite complex measures). .7 (R?) = C'.(R?), that is,
every measure ju € M (RY) defines a continuous linear functional T over C.(R?) through the integral

@)= | pladdula), Ve CR. 24

Conversely, for every continuous linear functional T' : Cc(Rd) — C there exists a unique | € M (Rd) such

that (2.24) holds.

This Theorem is quite remarkable and powerful. It allows to completely describe a measure by its action
over continuous functions with compact support rather than over sets, which in some cases simplifies the
analysis. It also gives a criterion for discriminating when a set function or a linear functional over some
vector spaces of functions actually defines a measure, allowing to use freely the properties and operations
well-defined for measures. But maybe the most important consequence is that this Theorem provides a
framework where an Integration Theory can be constructed using tools of topological vector spaces and
relate them to Distribution Theory. Indeed, some authors define a Radon Measure as a continuous linear
functional over C,(R%) and then construct the Integration Theory over Borel sets. This is the approach
described in |Bourbaki (1965)). A student-oriented exposition of this approach can be found in |[Demengel &
Demengel (2000). Other sources which take advantage of this vector space oriented theory are Schwartz
(1966) and Treves| (1967, Chapter 21).

Theorem is usually presented in a more general setting than the measure space (R, B(R?)). In-
deed, an analogue result holds for more abstract measurable spaces, namely, when R is replaced by a locally
compact Hausdorff topological space, and it is endowed with its Borel o —algebra. The representation is done
using Radon measures in the strict sense: locally finite, inner and outer regular measures. A proof of the
positive version of this Theorem, that is, that every positive linear functional can be represented by a posi-
tive Radon measure, dropping the continuity condition, can be found in a general form in Donoghue (1969,
Chapter 5) or in |[Reed & Simon| (1980, Theorem IV.18). A proof of the case of complex measures over R,
whose arguments also hold for the case over R? stated as in Theorem[2.1.3] can be found in (Reed & Simon|,
1980, Section V.4, Example 1), with a reference to other developments done in the book. There, a simple
argument considering that C.(R?) is an inductive limit of Banach spaces is presented. The authors then
conclude that its dual is the space of locally finite complex measures (called Baire measures in this source).
See also the comments on (Reed & Simonl 1980, Theorem IV.18) and its related results.

Consider right now a case with a simpler topology. Consider the space Co(R%). We endow it with
the topology induced by the supremum norm || - [|o. Co(RY) with this norm is a Banach space. Since
Co(R?) = Cp(RY), any function in Co(R?) is Lebesgue integrable with respect to any finite measure

€ Ar(R?), and it is immediate that the integral defines a bounded (and hence continuous) linear functional
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over Co(R?).

Theorem 2.1.4 (Riesz Representation for finite measures). .#5(R?) = C,(R?), that is, every finite mea-
sure ju € M (R?) defines a continuous linear functional T over Co(R?) through the integral

@)= | pladuta). Ve CoR). CES)

Conversely, for every continuous linear functional T : Co(R?) — C there exists a unique ji € M r(R?) such

that (2.23) holds.

For a proof, we suggest the one presented in Rudin| (1987, Theorem 6.19). This Theorem is also usually
presented in the more general setting of a locally compact Hausdorff topological space. This Theorem is
also often presented before the generic Riesz Representation Theorem since the topology over Co(R?)
is easier to describe than the one of C,.(R%).

We present now two variants of the Riesz Representation Theorem, for which we have not found proofs

in the literature. They are almost a direct application of the previous Theorems, in an adequate way.

Let us consider the space C'(R%). We endow this complex vector space with the topology of uniform
convergence over compact sets, that is, a sequence (), € C(R%) is said to converge to 0 in C(R9), noted

on 5 0 if for every K < R? compact,

Onlloo,k = supex |¢n(x)] — 0 as n — co. This topology is
equivalent to the one induced by the metric:

1 =950
(0, 0) = > B0

— (2.26)
N _ )
NEN* 2 ]' + H(,D quOO,BN(O)

where B,.(x)  R? denotes the open ball of radius » > 0 centred at z. Using standard methods of basic
analysis, it is easy to prove that C'(R?) endowed with this metric is a complete metric space (actually a

Fréchet space).

Let us right now describe a particular class of complex measures. We denote by .#Z.(R?) the space of
all complex compactly supported measures in . (R?). It is a complex vector subspace of .# (R?). The
local finiteness of the measures in .# (R?) guarantees that .Z.(R?) c .#r(R?). We denote by .Z+ (R%) the
space of all positive compactly supported measures over R%. It is straightforward that the measure of total
variation, the reflection, the conjugate, the imaginary and real parts, and the positive and negative parts (in the
real case) of a compactly supported measure are also compactly supported measures. We also conclude that

the Jordan decomposition of a compactly supported measure u consists of four positive compactly supported
measures (i, g, (1], 1y € A (RY), having i = pj — pg +i(uf — p7).

Every function ¢ € C(RY) is locally bounded. This implies that ¢ is integrable with respect to any
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measure y € .#.(R%), since

|, e@duto)

j P < [l o pp(3) < 0 2.27)
supp(p

This suggests that we can obtain an analogue to Riesz Representation Theorem for the dual of the space
C(R%).

Theorem 2.1.5 (Representation for compactly supported measures). .Z.(R?) = C'(R%), that is, every
compactly supported measure | € ///c(Rd) defines a continuous linear functional T over C (]Rd) through
the integral

@)= [ o@inte). voeCR®Y, (2.28)

Conversely, for every continuous linear functional T : C(R?) — C there exists a unique ji € M .(R?) such

that holds.

We give a proof of this Theorem in Appendix We remark that this Theorem can be generalized
to more abstract measurable spaces, provided that the arguments used to prove it hold also for those spaces:
analogues to Lemmas[A.2.2]and[A.2.3|must be verified. This holds for example, over every separable locally
compact metric space, using Radon measures in the strict sense of the term.

We finally consider the case of the space Cp(IR?). We equip this space with the following topology: a
sequence of functions (¢, )nen © Crp(R?) converges to 0, denoted by ¢, “EP ), if for all N € N we have
that (1 + |z|?)Y ¢n]o — 0. This is equivalent to require that the sequence (¢, )nen is such that (poy, )nen
converges uniformly to 0 for every polynomial p : R — C. We say that a sequence (¢, )neny © Crp(R?)

Crp

converges to ¢ € Crp(RY), denoted by ¢, = o, if ¢, — ¢ “EP 0. This topology over Crp(R?) is

induced by the metric

L@+ 2N (e = 0)]o
(0, 8) — ), 2N 1+ (1 + [22)N(p — @)oo

NeN

(2.29)

The space C'rp(R?) equipped with this metric is a complete metric space, which in addition is Fréchetﬂ

We remark that every function ¢ € Crp(R?) is Lebesgue integrable with respect to any slow-growing
measure u € .#sc(R?). Indeed, let i be a slow-growing measure and let N € N such that (1 + |z|2) =" |u|
is a finite measure. Then (1 + |z|?)V ¢ € Cp(R?) (it is actually in Crp(R?) too), from which we obtain

J QAR )] < 10 + 1) ol (14 Jo) Vil (B < 0. 230
ra (1+ [z[?)

|, et

%This is not complicated to conclude using standard arguments. For instance, the same arguments used to prove the completeness
of the Schwartz space . (R?) can be used to prove the completeness of Crp(R?). See Definition in Section and the
references therein.
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We have then an inspiration for an analogous to Riesz Representation Theorem for the case of the space
Crp(RY).

Theorem 2.1.6 (Representation for slow-growing measures). .#Zsc(R%) = Ct.,(R?), that is, every slow-
growing measure | € MsG (]Rd) defines a continuous linear functional T over Crp (Rd) through the integral

(T, ) = JRdgo(x)du(x), Vip € Cpp(RY). 2.31)

Conversely, for every continuous linear functional T : Crp(R?) — C there exists a unique p € Msq(R?)
such that (2.31)) holds.

We give a proof of Theorem [2.1.6]in Appendix[A.2.2] Since this Theorem uses the multiplicative struc-
ture of the components of a vector in R?, used to define polynomials, it cannot be generalized to more
abstract measure spaces without a suitable adaptation, in contrast to the cases of Theorems [2.1.3] [2.1.4] and
2.1.6

We summarize the duality and inclusion relationships. We put the dual of every space below itself:

C.(RY) c Crp(RY) < Cy(RY) = C(RY) 03
M(RY > Msa(RY o Mp(RY > #.(RY). '
Taking advantage of the new interpretation of a measure w as a continuous linear functional, we will

often use the notation

Gty | f@duto) 2.33)

when f is a measurable complex function integrable with respect to u. We will use conveniently both the
linear functional notation or the fully integral notation, depending on which one is more convenient to write
or more explicit for communicating the desired message. In the same spirit, along this work we will use
conveniently both interpretations of a measure g as a linear functional over a space of continuous function

or as a set function.

2.1.5 Measures concentrated on subsets

In this section we focus on measures which are, in some sense, null outside some particular Borel subset and

thus it is not necessary to treat them outside of it.

Definition 2.1.6. Let 11 € .# (R?), and let A € B(R?). We say that yu is concentrated on the set A if for all
BeBp(RY, AnB =g = u(B)=0.
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The o—additivity allows to easily conclude that 1 is concentrated on A if and only if (A N B) = u(B)
for all B € Bg(R?). It is also true that y is concentrated on A if and only if || is concentrated on A, claim
which can be concluded by analysing the definition of the total variation measure (2.2). The relationship
between a set on which u is concentrated and the support of p is not immediate to describe. Of course,
any measure is concentrated on its support. It is also immediate that a measure y is concentrated on any
Borel set A such that supp(u) < A, and if A is a closed set, then y is concentrated on A if and only if
supp(u) < A. Nevertheless, there are examples of measures which are concentrated on sets strictly included

in their supports. Take for instance, p = ZneN oz 16 1, which is a finite measure. Then, 4 is concentrated on

UneN*{%}’ but Supp(ﬂ) = {O} Y UneN*{n}‘

The main interest of this definition is that now we are able to consider measures concentrated on subsets
of R¢ which can have null Lebesgue measure. The main example is the Dirac measure at a point z € R,
dz, for which supp(d,) = {z}. It is particularly interesting to define measures which are concentrated on
sub-manifolds of R? which have dimension smaller than d. When working on the one dimensional Euclidean
space R, sub-manifolds of dimension O would be for example point-sets, and hence measures concentrated
on these sub-manifolds are linear combinations (possibly countable, if local finiteness is provided) of Dirac
measures. In higher dimensions we can still use Dirac measures, but other more interesting measures can

appear since there exist sub-manifolds of higher dimensions, like for example curves.

We give some examples of these kinds of measures. We will extensively use the Riesz Representation
Theorem [2.1.3] since describing a measure concentrated in a sub-manifold is usually easier by describing its

action on continuous functions with compact support rather than its action over Borel sets.

Example 2.1.1. Consider the two dimensional Euclidean space R2. Consider the sphere of radius R > 0 cen-
tred at the origin, which we will denote by 6Bg) (0). We can travel across this set with a typical parametriza-
tion of the curve, using the mapping v : [0,27) — R? defined through () = R (cos(6),sin(f)). A mea-
sure y, € .#(R?) concentrated on the sphere 83(2)( 0) can then be defined through a measure over R,

v e A (R), by

(i 0) = f 0, POOO), e CE), (2.34)
Since ‘S[ozn) @(7(9))du(9)‘ H(pHOO 2520 |1/|([0 27)) < oo, p is a continuous linear functional over
C(R?) (cf. Eq. (A:6)) and thus y,, is a well defined compactly supported measure (Theorem [2.1.5). We
remark that this definition depends on the measure v and on the selected parametrization . When using
the already specified parametrization v and when the measure v is of the form dv() = (2rR)~'d0, the
measure 4, defined through (2.34) is called the uniform measure over the sphere 835%2) (0). It is a positive
finite measure with total mass equal to 1, that is, a probability measure. This concept is naturally generalized

/2
T(d/2)" We

to the d—dimensional case using polar coordinates and the surface of the d — 1-sphere, 2R~

(d)( )

will denote by uufz ¥ ®) the uniform measure supported on 0B (d )(0) c R o
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More generally, consider A — R? a Borel sub-manifold of dimension m < d. Let us suppose, for
simplicity, that A is homeomorphic to a subset D of R™, and hence we can use a parametrization of A given
by a continuous mapping v : D < R™ — A c R? that defines an homeomorphism between D and A (v
is bijective with continuous inverse). Since -y is continuous, D is a Borel subset of R". We then consider a

measure v € . (R™) and we define
i) 1= | oO)0), Ve C(RY. 2.35)

This defines a continuous linear functional over C..(R?). Indeed, let K — R? be a compact set. Since + is an
homeomorphism, v~! is continuous. Hence, the set 7' (A n K) is bounded since v~} (A n K) = v~ (K)
and y~1(K) is compact. We conclude that for all ¢ € C.(R?) such that supp(p) = 7~ }(A n K) it holds
that

|<Muv@>|::‘J;)@(W(H))du(eﬂ _

f PO O)| < [0l V(7 HANK)) . (236)
Y= 1(ANK) -

~
<00

Hence, y,, defines a continuous linear functional over C.(R%) (Eq. ([2.22))). From Riesz Representation
Theorem |2.1.3} we obtain that 11, is a well-defined measure in .2 (R?), and it is concentrated on A.

Example 2.1.2. This is the MOST IMPORTANT example of this section. Consider the space of doubled
dimension R? x R? (= R??). Consider the hyperplane {y = z} := {(z,y) € R? x R? | y = «}, which
is a sub-manifold of dimension d. Let y € .#(R%). We then define a measure over R x R?, denoted by
Mé{y:x}’ as

(=", oy = JRd p(z,z)du(z), Vo Co(RT x RY). (2.37)

The measure 0'¥="} defined in this way is then concentrated on the hyperplane {y = =}. For this type of

measures, a two-dimensional integral is reduced to a one-dimensional one, since we have

|, e dws =) ) = | pl)duta), @.38)
Ra x R4 Rd
for every ¢ € C,(R? x R?). This kind of measure can also be described in a quite simple way through its
action to (some) Borel subsets of R¢ x R?. Indeed, if we consider subsets of R? x R? of the form A x B
with A, B € Bg(R?), then

u6W="1(A x B) = u(A n B). (2.39)

This can be shown by approaching the indicator function 1 4« g(z,y) = 14(z)15(y) by a suitable sequence
of functions in C.(R? x R%). See Lemma in Appendix applicable when A and B are open, which

is enough to completely characterize the measure. This also allows to conclude, using typical results of
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Measure Theory, that Eq. (2.38)) also holds for any measurable ¢ such that z — ¢(x, ) is integrable with

respect to (.

We can actually prove the stronger condition that every measure in .# (R? x R%) which is concentrated
on {y = z} can be expressed in the form (2.39) for some measure x € .# (R?). Indeed, if v € .# (R? x R?)
is concentrated on {y = x}, we can define p(A) := v(A x R?) for all A € Bg(R?). Since v is concentrated
on {y = z}, it follows that

p(A) = v(Ax RY) = ((AxRY) 0 {y =2}) = v (A x A) 0 {y = a}) = v(4 x 4),

hence p(A) € C since A is bounded. The o—additivity of u follows immediately from the o—additivity of
v. qu is then a well-defined measure. If A, B € Bg(RY), then

wANB) =v(AnB)x (AnB))=v{y=2}n(AnB)x(AnDB))=v({y =2} n (A x B)) =v(AxB).
(2.40)
We consider the next result which relates the characteristics of p to those of pdW==} The proof of this

Proposition is presented in Appendix[A.3.1]

Proposition 2.1.2. Let j designating “c”, “F” or “SG”. Then, ndtv==} ¢ M;(RT x RY) if and only if
we (R

The kind of measure exposed in this example will be used to describe orthogonal Random Measures, a
stochastic tool which is a key concept in the study of Random Fields, specially in a stationary framework. We
finally remark that if 1 is the Lebesgue measure, the associated measure ;u;{y:””} is more often denoted by
0(y — x) (or 6(x —y)). This measure of two variables plays a central role in the theory of Partial Differential

Equations since it is used to define Green’s functions. o

Example 2.1.3. Let ¢ > 0. Consider the subset of R? x R, C¢ := {(z,t) € R x R | |t] = c|=|}, which
we call a spatio-temporal cone. Even if C¢ is not strictly speaking a manifold, we can still define measures
concentrated on C¢ using the same principle as in (2.35). Consider two measures yi1, iz € .4 (R?). We

define the measure u( e .#(R? x R) as

[1,42)
G s ) o= J (@, clz))dp () +J W(@, —cla))dps(z), Ve Cu(RY xR).  (241)
Ra R\ (0]

Let K < R? x R be a compact set. Let K; < R? and K; < R compacts such that K < K; x K. If
Y € C.(R? x R) is such that supp(p) = K, then

< [ |(Ka) sup [¢(x; cla])] < | (Ka)l|[¢]w. (242)

fBEKd

U (@, clal)dp (2

\ j (@, clal)dpu (2)
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CC
(p1,p2)
continuous linear functional over C..(R? x R) and hence a well-defined measure. Integration with respect to

The same principle is applied to the integral with respect to o in (2.41). This proves that u is a

such a measure transforms a d + 1— dimensional integral into two d—dimensional integrals, having

|, 0, (o) = | wlaclabdm@ + | vlo (), @43)
RY xR ' R4 RAN{0}

for every ¢ € C.(R? x R). This kind of measure can also be described through its action over some Borel
subsets of R% x R. Consider the sets of the form A x B with A € Bg(R?%) and B € Bg(R). Then, it holds
that

/1'((:;1,“2) (A X B) = f 6c\x|(B)dN1 (.73) +J 6fc|m\(B)d,U'2(x) (2.44)
A A\{0}

The same arguments used in Example[2.1.2]to prove the analogue relation (2.39) can be used to prove (2.44).
Similarly, we can prove that every measure in .# (R¢ x R) concentrated on C¢ can be expressed in the form
([2.44) for some pair of measures ji1, i € .4 (R?). Indeed, if v € .4 (R? x R) is concentrated on the cone,
we take 111 (A) = (A x RY) and po(A) = v(A x R} for every A € Bg(R?). With the same arguments as
in Example it can be proven that ;1 and po are well-defined measures in ./ (R?) and that they satisfy
(2.44) for M€;1,#2) = v. It also follows that expression (2.43) is still valid for every measurable 1) such that
the mappings = — ¢ (x, c|z|) and z — (x, —c|z|) are integrable with respect to p1 and po respectively.

We have, in addition, an analogous to Proposition [2.1.2] The proof of this Proposition is presented in

Appendix[A.3.2]

Proposition 2.1.3. Let j designating “c”, “F” or “SG”. Then, ,uf;l o) € ///j(Rd x R) if and only if both
p1 and po are in A;(RY).

The name spatio-temporal cone makes reference to the use of the set C¢ in the study of some physical
phenomena in a spatio-temporal context. As it will be seen in Chapter [5] this set plays an important role

when analysing solutions to the homogeneous Wave equation. o

2.2 Distributions

The Theory of Distributions is a mathematical theory developed by Laurent Schwartz in the middle of the
20th century whose main aim is to rigorously define the derivative of a large class of objects, such as any ar-
bitrary continuous function or Radon measures. In this framework the main objects are not functions which
can be evaluated at points of the space, but rather objects that act over test-functions belonging to convenient
functional spaces, describing how the variable acts on a region of the space rather than in a singular point.

Such objects are called Distributions or sometimes also Generalized Functions. The development of this
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theory has allowed enormous advances in many branches of theoretical and applied mathematics. Borrow-
ing words from (Demengel & Demengel, [2000, Preface): “...this theory is so revolutionary in its concept as
Einstein’s Relativity Theory in Physics”. The freedom in the manipulation of the new objects has allowed
to well-pose and analyse equations arising from Physics, Engineering, Signal Analysis and other fields. Re-
garding Probability Theory and Statistics, it provides a framework where calculus with Stochastic Processes
or Random Functions can be rigorously treated, and hence the analysis of SPDEs is possible. We will present

this last application of Distribution Theory in Section [3.4] of Chapter 3]

There are plenty of treaties and bibliographic sources concerning the Theory of Distributions and its
associated issues. The Bible of this theory is the classical Schwartz’s treaty (Schwartz, [1966). A source with
a little less depth but with an effective and clear exposition isDonoghue|(1969). The exposition presented in
Reed & Simon|(1980)) is also remarkable. Here the authors present the basis of modern Functional Analysis,
together with the main concepts of Topology, which allows them to compile a coherent and clear presentation
passing through the most important details of the theory of locally convex topological vector spaces. The
exposition of the so-called tempered distributions, done inReed & Simon| (1980, Section V.3 and Appendix),
is presented before the exposition of general distributions, and it stands out for its compactness, clarity,
and also because of the inclusion of quite deep and important results such as the Regularity Theorem, the
Nuclear Theorem and the development on the Hermite basis. Another introductory source on Theory of
Distribution, which is non-specialist oriented and less technical can be found in |Richards & Youn| (1995)).
This source is recommendable for an easier understanding of the theory and its basic results, but it is also
remarkable because of its Chapter 7, where a very interesting symmetric definition of the multiplication
and convolution of distributions in a more general framework than the classical ones is exposed with an
astonishing simplicity. We finally suggest a special last bibliographic source, which gives a fast and effective
introduction to Distribution Theory with geostatistician objectives: the Appendix A in the Geostatistics’s
classical opus|[Matheron! (1965)).

In this work we focus on tempered distributions, which is a framework in which differential operators
and the Fourier Transform can be used freely. In section [2.2.5] we make some comments on more general
spaces of distributions. The definitions and results presented in this section will be used extensively in this

dissertation.

All along this work we will extensively use the convenient multi-index notation for differential operators
and vector powers. If o € N, we denote by |a| = a; + ... + ag. For differential operators over R?, we use
the notation:

olal

DY = ——. 2.45
ot ...0xy? (2.45)

For a vector = (11, ..., 24) € R%, the symbol 2 denotes the real number determined by

= xt ey ayt (2.46)
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We will sometimes work with spaces of double dimensions, that is, over spaces of the form R? x R™ =
R™ with d,m € N,, where the first variables in R? may play a different role that the second vari-
ables in R™. In such a case the first components will be denoted by the letter = and the second com-
ponents by the letter y. If « € N? and 8 € N™, its concatenation multi-index is denoted by (a, 3) :=

(ai,...,aq,B1, ..., Bm) € N¢ x N™ = N9*+™_ Hence, in such a case D(@B) denotes the differential oper-
plal+18]
633‘111 ...6x3d6yfl ...6y§d )

it xjdyflyQB?... ygd, for (x,7) € R? x R™. Sometimes, we will also write o < f3 for o, B € N,

ator over R? x R™: For the power, we will have, of course, (z, y)(o‘vﬁ) = xo‘yﬁ =

meaning o; < 3; forall j € {1,...,d}.

We make explicit a terminological convention which is quite necessary in this work since we are going
to use concepts from Distribution Theory and from Probability Theory: all along this dissertation, we will
always use the word “distribution” referring to a Generalized Function, and NEVER to the “probability dis-
tribution” of a random variable, term widely used in Statistics and Probability. For the latter mathematical

object, we use the word “law”.

2.2.1 Tempered distributions

We denote by C*(R%) the space of smooth complex functions over RY. We introduce the following space

of smooth functions.

Definition 2.2.1. The Schwartz space, denoted by . (R?), is defined as the space of smooth fast-decreasing

complex functions over R%. Explicitly,

S (RY) 1= {p e CPRY) | |z*DPp|o < 0, Vo, B € N} (2.47)

Equivalently, the Schwartz space can be defined as the space of complex smooth functions such that all
of its derivatives are in C=p(R?). Typical examples of members of this space are Gaussian functions, that
is, functions of the form ¢(z) = be~** with a > 0 and b € C. A function in .7 (R%) will be often called a
test-function.

The Schwartz space is equipped with a topology determined by the metric
1 z*DP (¢ — ¢)
(()0’ ¢) N 2 -~ ” N HOO ,
21l +181+2 1 + [2DB(p — §)] 0

o,peNd

o, ¢ € .7 (RY. (2.48)

This topology can be described equivalently using semi-norms of the form ¢ + ||(1 + |z|2)N DP | o with
N € Nand 8 € N9, similarly to the case of the space Crp(RY) (see Eq. (2:29)) but with differentiable
functions. It is known that .7 (R%) equipped with this topology is a complete locally convex metric space,

hence it is a Fréchet space; see Reed & Simon| (1980, Theorem V.9) or the arguments in |[Donoghue| (1969,
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Chapter 28). We can thus speak about continuous linear functionals over .7 (R%).

Definition 2.2.2. A tempered distribution is a continuous linear functional over the Schwartz space, T :
Z(R%) — C, that is, a member of the dual space of .#(R%). This dual space, denoted by .#"'(R?) is called
the space of tempered distributions.

We present a general criterion for verifying if a linear functional is a tempered distribution, which comes
immediately from Theorem Let T : .#(R%) — C be a linear functional. Then, T € .’ (R?) if and
only if there exists C > 0 and N € N such that

KT, o)l <C ) [a°DPy|lw, Vee s RY). (2.49)

a,BeN?
laf,|Bl<N

Let us present some important examples of tempered distributions.

Example 2.2.1. Let f : R? — C be a polynomially bounded measurable function. Then, the linear
functional defined through the integral

Sopr= | S@e@i, oo s @Y, 2.50)

defines a tempered distribution. This is easy to verify using the criterion (2.49). This holds in particular
for polynomially bounded continuous functions. It can also be proven that any function in the Lebesgue
spaces f € LP(R?), with p € [1, 0], defines a tempered distribution through the integral (2.50). Hence, in
all of this cases the function f can be identified with a temperate distribution. In this work we will use the

common abuse of language of saying that the function f is a tempered distribution. o

Example 2.2.2. Let 1 be a slow-growing measure. The linear functional defined through the integral

ey = | e@inte), pe S @Y, @s

defines a tempered distribution, which can be seen directly from Eq. (2.30). Hence, every measure p €
Msc(RY) determines a tempered distribution. As in the case of functions, we will simply say that s is
a tempered distribution. It follows that every finite measure and every compactly supported measure is
also a tempered distribution. It can be proven that a positive measure 1 € .#*(R?) defines a tempered
distribution if and only if it is slow-growing. Some non-positive non-slow-growing measures in . (R%) can
also determine tempered distributions but not exactly through the Lebesgue integral but rather by taking a
limit of Lebesgue integrals (See |Schwartz, [1966, Theorem VII, Chapter VII and the comments therein). o

The space of tempered distributions can then be seen as an abstract space where usual objects such as

some kinds of functions and measures are included. Of course, there are many other types of objects in this
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class. The main motivation of this space is to have a unified class where typical operations of calculus and

Fourier Analysis can be applied without formal problems.

Let T ¢ .7/(RY). If (T,p) € R for every real function ¢ € .#(R%), T is said to be real. The
complex conjugate of T, denoted by T, is defined as the distribution determined by (T, p) := (T, %) for
all p € .7(R%). Following criterion (Z.49) it is immediate that T € .#/(RY) . The real part of T is
defined as Tg := g, and its imaginary part is defined as T} = % Both T'r and 17 are real tempered
distributions, and it holds that T = Tk + iT7. If ¢ : R* — C is any function, its reflection, denoted by
¢ is the function defined as ¢(x) = o(—z) for every = € RY. The reflection of the tempered distribution
T, denoted by T, is defined through (T, ) = (T, @) for every ¢ € .#(R%) and we can also conclude that
T e '(RY). If T satisfies T = T, it is said to be even. If it satisfies T = —T, it is said to be odd. If it
satisfies T = T, that is, if its real part is even and its imaginary part is odd, it is said to be Hermitian. The
reader can verify that all the definitions given in this paragraph coincide with the corresponding classical

definitions when 7" is a function or a measure.

Let us present a topology that we will sometimes use for the space of tempered distribution .7’ (R?).
Since this space is a dual space, there are many possible topologies that it can be endowed with (see [Treves,
1967, Chapter 19). We are going to use the simplest one: the so-called weak-star, or weak-x, topology,

which is no other but the topology of point-wise sequential convergenceﬂ A sequence of tempered distribu-
/

tions (T}, )nen is said to converge to T’ € .#/(R?) in the weak-# topology, denoted by T}, % T, if for every
p € SR, (Tn, ) — (T, ).

2.2.2 Operations on Tempered distributions

In this section we will define some linear operations that are defined for tempered distributions and which

generalize classical operations in calculus and Analysis.

We begin by giving a criterion to determine when a linear operator over the Schwartz space £ : .7 (RY) —
(R%) is continuous. Such a linear operator is continuous if and only if for every «, 3 € N there exists
C > 0 and N € N such that

[2°D L(p)|w < C 3} ¥ D7 pleo, Vo€ S(RY). (2.53)

O/,ﬂ’ENd
B <N

"To be more precise, the weak-# topology on .’ (]Rd) is the one determined by the family of semi-norms:

Pet,eon (T) = SupN} |<T7 SDJ'>|7 Te yI(Rd)7 (2.52)

je{1,...,

for every finite family of test-functions (¢;)je(1,... . N} < 7 (Rd) This topology is not metric, and the description of convergence
sequences is not sufficient to completely describe the topology.
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Similarly to criterion (2.49), this criterion is obtained directly from Theorem [D.0.1] We define now a class
of linear operators over the space of tempered distributions. The members of this class are said to be defined

through an adjoint.

Definition 2.2.3. Let £ : Z(R?) — Z(R?) be a continuous and linear operator over the Schwartz space.
Its adjoint operator, denoted by L*, is the linear operator over the space of tempered distributions L* :

S(RY) — 7'(RY) defined through,

(L¥T, @) := (T, L), VT e.7' R, pe.7(RY). (2.54)

In other words, the adjoint operator simply does £*T = T o L for every T € .’ (R%). It is immediate
that £*T is in .#/(R?) since it is a linear functional which is the composition of continuous linear mappings,

hence it is continuous. It is also straightforward that £* is sequentiallyﬂ continuous with the weak-# topology.

Most linear operators defined over .’ (R%) used in practice (and theory) are defined in this way. Those
operators are very convenient since they are completely defined through an action on test-functions, for

which many traditional linear operators are defined.

Let us remark two simple examples of operators defined in this way. The first is the reflection operator
T € &' (R?) > T, defined as in Section m By definition, it is clear that the reflection operator on
' (R%) is the adjoint of the reflection operator over .7 (R%), ¢ € .#(R?) + (. Another example is the
translation operator. Let i € R%. The translation by & of a function ¢ : R? — C, denoted by 73,¢, is the
function 7, : R — C defined as 7,¢0(x) := ¢(x — h) for all z € R%. The translation by & defines a linear
operator from .7 (R%) to . (R?) and it is also continuouﬂ The translation by h for tempered distributions
is defined as the adjoint of the translation by —h for test-functions. Explicitly, if 7 € ./ (R%), we define
its translation by h, denoted by 7,7, as the distribution defined through (7, T, p) = {T,7_p¢) for every
¢ € Z(RY). Then, 73, : .7"(R%) — .#'(RY) is a continuous linear operator. Using a change of variable in
the integral defining the linear functional, the reader can verify that this definition coincides with the classical

definition of translation when 7' is a function or a measure.

We remark that .7 (R9) < .#/(RY) in the sense of distributions since every test-function can also deter-
mine a tempered distribution following Example[2.2.1] Hence, the adjoint operator £* is also defined for test-
functions. It must not be mistaken, however, with the initial operator £. The case where £ can be identified
with £* is the case of so-called self-adjoint operators, which are operators satisfying (¢, Lo) = (L, p)
for all couple of test-functions ¢, ¢ € .7 (R%). For example, the reflection operator is self-adjoint, while the

translation operator is not.

8t is, actually, continuous. See the discussion after Example 1 in|Reed & Simon| (1980} Section V.3).
%A few technical arguments using Taylor’s expansion and convexity, as it is done in the case of Lemma in Appendix
can be used to prove this claim.
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We present now the most important examples of linear operators over the space of tempered distributions

which are defined in this way.

Differentiation

Let o € N? and let D its associated differential operator. D* : . (R?) — .#(R%) is linear and continuous,
which is easy to obtain following criterion (2.53)). Its adjoint can then be defined through the expression
(2.54). Nevertheless, it is more important to directly define D® over the space of tempered distributions and

then to identify its pre-adjoint, which is not necessarily the operator D for test-functions.

Definition 2.2.4. The differential operator over the space of tempered distributions D* : .#'(R?) —
" (RY) is defined through

(DT, @) := (—D)IT, D%, VT € #'(RY), p € .#(RY). (2.55)

In other words, D® is the adjoint of the operator (—1)'0“D°‘ defined over the Schwartz space. This
definition is inspired by the integration by parts formula. The reader can verify, for example, that if f €
Clal (R4) is a polynomially bounded function with polynomially bounded derivatives, then the function D f
in the classical sense satisfies (D f, ¢) = (=1)l(f, D¥p) for all p € .#(R%). Hence, the derivative D® is
a generalization of the classical notion of the derivative for enough regular functions, and it can be applied to
any tempered distributions any number of times. This allows to formally differentiate complicated objects.
For instance, any function as presented in the Example 2.2.1] can be differentiated any number of times.
Slow-growing measures can also be differentiated any number of times. The objects which are obtained
after applying this operator are not necessarily, of course, functions or measures, but they are well-defined
tempered distributions. Actually, it is true that every tempered distribution is the derivative of large enough

order of a polynomially bounded continuous function (Reed & Simon, 1980, Theorem V.10).

We give an example of application: the classical example of the Heaviside function on R, which is the
indicator function of the positive real line, 1p+. This function is of course not differentiable at 0. However,
its derivative in distributional sense is the Dirac measure at 0, %(111%) = J. The Dirac measure can also be

differentiated, obtaining the tempered distribution ¢ € .7 (R) > —%2(0).

We finally remark that differential operators of even order are self-adjoint, while differential operators of

odd order are not.

Multiplication with O,;(R%)

Let us introduce the next space of functions:
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Definition 2.2.5. The space of multiplicators of the Schwartz space, denoted by Oy;(R?) is defined as
the space of all complex smooth functions such that all of their derivatives of all orders are polynomially

bounded. Explicitly,

Oum(R?) = {f € C*(RY) |Va e N*3C > 03N € N such that |D* f(z)| < C(1 + |z|*)" Yz e R%}.
(2.56)

If f € Op(RY) and p € . (RY), then f € .7 (R?). Moreover, the application o — f is a continuous
linear operator from . (R?) to .#(R%). This can be seen by applying criterion (2.53) together with the
polynomials bounding the derivatives of f. It can actually be proven that if f is a measurable function, then
the multiplication by f, ¢ > fy over .7 (R%), is a continuous linear operator from .7 (R%) to . (R?) if
and only if f € Oy (]Rd) (Reed & Simon, 1980, Problem 23 in Chapter V). We remark, in addition, that
Ou(RY) © . M56(RY) 7' (RY).

The multiplication with f € O/ (IRY) over the space of tempered distributions .’ (R?) is defined as the

adjoint operator of the multiplication with f over the Schwartz space . (R?). Explicitly, if T € ./’ (R?) and
f € O (RY), the multiplication f71" € .7’ (R%) is defined as the distribution which satisfies

(T, ) := (T, fo), Vpe S (RY). (2.57)

It follows that the multiplication with f is a self-adjoint operator.

It is not immediate to generalize the notion of multiplication, that is, to define ST for two arbitrary
tempered distributions 7" and S, while maintaining good topological properties and the analogies to the case
of continuous functions. It is actually, a kind of weakness of the Theory of Distributions: the lack of a
multiplicative algebra of spaces of distributions. See (Schwartz, [1954)) for a discussion in the case generic
distributions (not necessarily tempered). The particularity of the space Oy;(R?) is that members of this
space can be multiplied with any tempered distribution. However, it is possible to define products between
less regular functions with members in more restricted subspaces of .#’(R%). For instance, we know (cf.
Section[2.1.3)) that every polynomially bounded measurable function can be multiplied with any distribution
in .#s(RY), obtaining as a result a member of .Z5c(R?) = .#/(R?). However, some “nice properties” of
the multiplication which we would like to hold are losm Some generalizations can be found in Shiraishi &
Itano| (1964) and the references therein. Other ways of describing multiplicative products between tempered
distributions which will be sharply pointed out in Section [2.2.3] can be found in [Richards & Youn| (1995|
Chapter 7).

OFor instance, the Exchange Formula of the Fourier Transform, which will be presented in Section could fail.
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Convolution with O’.(R%)

In this section we restrain ourselves to the convolution between a tempered distribution and a distribution
of fast decreasing behaviour. This concept is entirely described in Schwartz| (1966, Chapter VII, §5), but a
simpler exposition, which is the one we will follow, can be found in|Treves| (1967, Chapter 30).

We recall that for two complex valued functions over R?, o, ¢, which by simplicity are supposed to be

in .7 (R%), their convolution product is defined as

(p=*@)(z) = JRd p(x —y)o(y)dy. (2.58)

The convolution product is commutative. It is also true that for functions ¢, ¢ in the Schwartz space, its
convolution is also in .7 (R%) (Donoghue, 1969, Chapter 29). If D® is a differential operator, it is well-
known that D%(¢ = ¢) = D% * ¢ = ¢ x D¥¢.

If T e .#'(RY), its convolution with a test-function ¢ € . (R?) is defined as the function
ze R (T = ) (x) = (T, 1,0). (2.59)

It can be proven that this function is in C®(R?). Moreover, it is actually in O, (R%) (Treves, (1967, Theorem
30.2). In particular, T * ¢ is a tempered distribution. If D® is a differential operator, then it holds that
DT = ) = DT % ¢ = T = D%p. The next definition is the one stated in Treves| (1967, Definition 30.1).

Definition 2.2.6. Let T € .7’ (R%). We say that T is of fast decreasing behaviour if for all N € N there
exists My € N and there exists a finite family of continuous functions ( fa)aend jaj<ry < C (R?) such that
(1 + |z|>)N fa € Co(RY) for all a € N¢ with |a| < My, and such that

T= > D%, (2.60)

la|<Mn

where the derivatives are taken in the distributional sense.

The space of distributions of fast decreasing behaviour over R? is denoted by O.(R?) and it is also
often called the space of convoluters of tempered distributions. If S € O’(R?) and ¢ ¢ .#(R?), then
S x p e .Z(RY), and it can be proven that the application ¢ +—> S * ¢ is a continuous linear operator from
S (R?) to .7 (R?) (Treves, 1967, Theorem 30.1).

Let S € OL(RY). The convolution with S is the linear operator defined over .’ (R%) as the adjoint of
the convolution with S over .7 (R%). Explicitly,

(T 8,0y :=(T,8 %), YTeSRY, pec.7RY. (2.61)
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The convolution 7"+ S'is then a well-defined tempered distribution. It also holds that if D is a differential
operator, then D(T" « §) = DT % S = T = D*S. The reader can verify that the definition of convolution
following Eq. (2.61) coincides with the classical one when 7" and .S are convolable functions.

Fourier Transform

The Fourier Transform is the raison d’étre of the Schwartz space and of tempered distributions: these spaces
are created in order to apply the Fourier Transform to more general objects than in the classical framework
of functions in L?(R%), while maintaining all of its interesting properties. In this section we make precise

the convention of the Fourier Transform we use in this work and we recall its main properties.

Let p € .(R%). Its Fourier Transform is defined as the function

F()(&) = 1 i J e_igT‘Ecp(az)d:c, e R (2.62)
(2m)z JRrd

The Fourier Transform is a linear and continuous bijective operator from .7 (R%) to .#(R%). Its inverse
operator is the Inverse Fourier Transform and it is determined by

FHp)(€) = (;)d JR € T p(z)dz, ¢ eRY (2.63)
m)2 JRA

Of course, .# ! also defines a continuous linear operator from . (R?) to .(R%). See Donoghue] (1969,
Chapter 29). We will mainly use the letter ¢ to describe the variables in the space R after applying a Fourier

Transform. This space is called the frequency space.

Definition 2.2.7. The Fourier Transform over .7’ (RY) is defined as the adjoint operator of the Fourier
Transform over .7 (R?). Explicitly,

(F(T), ) =T, F(p)), VTe.sRY, ¢e.7RY. (2.64)

This definition is inspired by the transfer formula, which states that for o, ¢ € L?*(R?) it holds that
(ZF (), ) = {p, F(p)). This allows then to define the Fourier Transform for a quite large class of objects,
such as polynomially bounded functions, not necessarily integrable or in L?(R%), and for slow-growing
measures, not necessarily finite. We give as typical examples, .7 (1) = (2#)%5 and, with more generality,
F(z%) = (277)%2"‘“‘D0‘5, with o € N%. We remark that if T € ./ (R?), then .% (T) is real if and only if T is

Hermitian.

The classical property of the Fourier Transform of a derivative also holds for tempered distributions,

and with more interest than in the classical case since now all objects are differentiable. Thus, .# (D“T") =
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(i€)*.F(T) for all T € .#'(R?) and for all @ € N? Here we have denoted by (i£)® the function ¢ €
Z(RY) v (i€)™ which is in Oy (RY).

Another important property of the Fourier Transform is the Exchange Formula between the convolution
and the multiplication. For two test-functions ¢, ¢ € . (R%), it holds that .7 (¢ * ¢) = (27r)%9’ (p)Z(9)
(Donoghue, (1969, Chapter 29). For distributions it is a little bit more restrictive since we cannot multiply
or convolute arbitrary tempered distributions at will, but it holds for the cases seen in this section. It can
be proven that the Fourier Transform is a bijective linear operator from O;(R?) to O’(R?): the Fourier
Transform exchanges the space of multiplicators with the space of convoluters (Treves, 1967, Theorem
30.3). If T e .7'(RY), S € OL(RY) and f € Oy (R?), then

d
2

F(T+8S)=2n):Z(T)F(S) ; F(T) = ©2n) 2 Z(T) + F(f). (2.65)

Some generalizations of this formula will be pointed-out in section[2.2.3]
We finally recall an important result of Fourier Analysis in the classical case of functions in L' (R%).

Theorem 2.2.1 (Riemann-Lebesgue Lemma). Let f : R? — C be a function in L'(R%). Then, F(f) €
Co(R%).

See [Donoghue| (1969, Chapter 30) for a proof. Obviously, this also applies when considering the Inverse

Fourier Transform .% 1.

2.2.3 Tensor products

In this section we recall the definitions of tensor products of functions, measures, distributions and linear
operators over .7 (R%) and .#’/(R?). The latter case is the only case which is not easily findable in the

literature in the way we state it here. For the rest, we just follow usual terminologies and results.

Tensor product of Functions and Measures

Let f : R? - C and g : R™ — C be two functions. The tensor product between the functions f and g is
the function (f ® g) : R x R™ — C defined through (f ® g)(z,y) = f(x)g(y) for all z € R? and y € R™.

If € .#(R%) and v € .#(R™), the tensor product between the measures ;. and v is a measure over
R? x R™, denoted by 1 ® v, which satisfies that (1 @ v)(A x B) = u(A)v(B) for every A € Bp(R?)
and B € Bp(R™). A typical result from Measure Theory guarantees that there is a unique measure y @ v €

M (R? x R™) satisfying this condition. The next Proposition also holds.

Proposition 2.2.1. If i € .# (R?) and v € .4 (R™), then |un @ v| = |u| ® |v|.
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A proof of this Proposition is presented in Appendix [A.4.1] From this Proposition it is straightforward
that the tensor product between finite (respectively, slow-growing, respectively compactly supported) mea-

sures is a finite (respectively, slow-growing, respectively compactly supported) measure.

Tensor product of distributions

Let T € ./(R%) and S € .#/(R™). The tensor product between the distributions 7" and S is the tempered
distribution ' ® S € .7/ (R% x R™) defined through

(T®S,¢):= (T, x> (S, ¢(x,))), Vipe SR xR™). (2.66)

It can be proven that this definition determines a unique tempered distribution in .7’ (R? x R™) (Richards &
Youn, [1995| Theorem A in Chapter 7). In addition, the following “Fubini’s Theorem” holds:

S,y = (T, y))) =T @S9y =T,z = (5, ¥(,))). (2.67)

In|Schwartz (1966, Chapter 1V) this result is presented in the case of generic distributions. We remark that
if Y € .7 (R% x R™) is of the form ¢ = ¢ ® ¢, with ¢ € .7(R?) and ¢ € .#(R™), then the tensor product
satisfies (T'® S, o ® ¢) = (T, p){S, ¢).

Let us make a special comment about this product: it can be used to give a more general definition of the
convolution and the multiplicative product of distributions than the one presented in Section We will
detail the case of the convolution since it is not necessary to introduce new definitions to do it. The definition
of the convolution between two generic distributions, as presented in Schwartz| (1966|, Chapter VI) is based
on the idea of tensor products. For the specific case of multiplications between tempered distributions, we
suggest the more recent and didactic Richards & Youn| (1995} Chapter 7).

In the case of functions, one can show that, if f € L'(R%) and g € L'(R?) for instance, then

J(f*g)(x)w(x)drc= J f F(@)g)e + y)dedy, Vo e F(RY. (2.68)
R4 Rd JR4

This inspires a criterion of convolvability of two arbitrary tempered distributions. Two tempered distributions
S, T e .7'(RY) are said to be .’ —convolvable (Dierolf & Voigt, (1978) if the application

pe L (RY > (T®S,(x,y) — oz + 1)) (2.69)

defines a tempered distribution. In that case, this distribution is called the convolution between 7' and
S. In[Richards & Youn| (1995| Chapter 7) a general description about the convolvability of two tempered

distributions is done. In this same source, the tensor product is used to define a multiplication criterion
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between two tempered distributions, based on the idea of localization. This concept uses similar notions to
those considered in the Example of measures supported on the hyperplane {y = x}, applied to the
case of distributions. Within this framework, the authors prove that the multiplicability of two tempered
distributions is a necessary and sufficient condition for the convolvability of their Fourier Transforms, and
an Exchange Formula for the Fourier Transform, similar to (2.63)), is stated in the case where convolvability
and multiplicativity are satisfied (Richards & Youn, 1995 Theorem 7.6). See |[Richards & Youn|(2000) for a
briefer exposition about this theory of localization, multiplication and convolution of distributions, and the

associated Exchange Formula for the Fourier Transform.

Tensor product of linear operators

We consider now two linear and continuous operators defined through an adjoint, £ : .#'(R?) — .#'(R%)
and L3 : /' (R™) — .#'(R™). The objective of this section is to present the definition of the tensor product
between L} and £3, denoted by £F ® £3, which is a linear and continuous mapping from .7’ (R? x R"™) to
' (R? x R™). The intuitive meaning of this operator is that it applies the operator L} to the first component
of its argument and the operator L3 to the second one.

We will first consider the definition of the tensor product of linear operators on the space of test-functions.
We denote by Z, the identity operator from . (R%) to .#(R%) and Z,,, its analogue for R™.

Definition 2.2.8. Let £ : ./ (R%) — .7 (R?) be linear and continuous. We define the mapping L1 ® Ly,
(R x R™) — .Z(R% x R™) as

L1 ®Tm(¥) = (z,y) = L1((y))(x), Vipe S (R x R™). (2.70)

Let us clarify how this operator acts on a test-function ¢ € .#(R?% x R™). For a function 1) and for a fixed
y € R™, the function (-, y) is clearly in .#(R?). The operator £; is applied to that function, and the result
is evaluated at x. Hence, this operator follows the intuition of applying £ to the first component of 1), while
doing nothing to the second one. It is not obvious that this procedure defines a function in .#(R¢ x R™),

nor that the operation is linear and continuous.

Proposition 2.2.2. The operator L1 ® I, : .7 (R? x R™) — .Z(RY x R™) is well-defined and it is linear

and continuous.

Although Proposition may seem intuitive, its proof is not easily findable in the literature without
entering into deep and sophisticated theories of tensor products and Kernels. We give in Appendix [A.4.2]
a proof of this Proposition which is more accessible given the notions introduced in this work, but also
probably longer than what it could be if we were using more sophisticated theories. We remark that the

main difficulty is rather topological than algebraical. The definition of the operator £1 & Z,,, over the space
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Z(R%) ® .7(R™) of finite linear combinations of tensor products between functions in . (R%) and in
& (R™) is straightforward. A density argument could guarantee that the definition can be extended to the

whole space . (R? x R™), but for this the continuity of the operator must be verified.

If Lo : Z(R™) — .#(R™) is linear and continuous, the construction of the operator Z; ® Lo : .7 (R? x
R™) — #(R? x R™) is done similarly to Definition We thus define £1 ® L, easily.

Definition 2.2.9. Let L1 : Z(R?) — Z(R?) and Ly : S (R™) — .Z(R™) be linear and continuous
operators. We define the tensor product between L1 and Lo as the linear and continuous operator £1® Lo :
S (R x R™) — (R x R™) defined through

(L1® L) (W) = (Za® L2) (L1 ®Ly) (¥), 1€ LR x R™). 2.71)

Hence, £1 ® L5 is just the composition between Zy @ Lo and £1 ® Z,,. It is clear that for two test-
functions ¢ € .7 (R?) and ¢ € . (R™) it holds that (£; ® L2)(¢ ® ¢) = L1¢ @ La¢. An argument using
the density of .7 (R?) @ .7 (R™) in .7 (R? x R™) guarantee that Definition does not depend on the
order in which the composition is done, thatis, £1 ® L2 = (L1 ®Zy,) 0 (Za® L2) = (Zg® L2) o (L1 ®RTLy,).

From this the way of defining the tensor product of two operators defined through an adjoint, L] :
S (RY) — #'(R?) and L : .7 (R™) — .#'(R™), is quite intuitive.

Definition 2.2.10. Let £1 : ./ (RY) — Z(RY) and Ly : S (R™) — Z(R™) be two continuous linear
operators. Let LT and L3 be the adjoint operators of L1 and Lo respectively. The tensor product between
LY and L3 is defined as the adjoint of the operator L1 & La:

LIQL; = (L1®Ly)" (2.72)

This definition, although intuitive, is a little bit artificial since we have avoided the notion of defining
the operators acting on each component of its argument, as we did in Definition [2.2.8] Nevertheless, it can
be proven that such a definition would be equivalent. This can be seen by considering that for tempered
distributions in .7’ (R? x R™) of the form T'® S, with T’ € .#'(R?) and S € .#'(R™), the operator L ® L
does simply (L7 ® L3)(T'® S) = LT ® L£5S. The equivalence can thus be concluded using density
argument@ We will omit those details and we will just work with Definition

' An argument using the development of functions in .%(R?) on the base of Hermite functions can be used to conclude the
density of .7 (R?) ® .7 (R™) in 7 (R% x R™). SeeReed & Simon|(1980, Appendix to V.3). An analogue result also holds for the
space .’ (R?) ® .7/ (R™), which is sequentially dense in the space .’ (R? x R™) with the weak-# topology.

12Cf, footnote
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2.2.4 Nuclear Theorem

We present here a particular Theorem which is valid for the space of tempered distributions and which has
important consequences on the theory of Generalized Stochastic Processes.

Let K : .Z(R%) x #(R™) — C be a bilinear form. We say that K is separately continuous if for every
¢ € . (R%), the mapping ¢ € .7(R™) - K (¢, ¢) is continuous and hence an element of .#/(R™), and in
a symmetric way, if for every ¢ € .(R™) the mapping ¢ € .7 (R%) > K (i, ¢) is in /' (R?).

Theorem 2.2.2 (Nuclear Theorem for tempered distributions). Let K : . (R%) x .7 (R™) — C be a
separately continuous bilinear form. Then, there exists a unique tempered distribution T € .'(R? x R™)
such that

(T,o®¢) = K(p,¢), Vpe SR pe.sR"). (2.73)

We suggest|Reed & Simon| (1980, Theorem V.12) and the comments in Appendix to section V.3 of this
source for a proof. A general description of spaces which satisfy a similar result, namely, Nuclear spaces,
can be found in Treves| (1967, Part III).

2.2.5 Comments on other spaces of distributions

The Theory of Distributions has been developed using a space of test-functions more restrictive than the
Schwartz space. It is the space of compactly supported smooth functions over R?, denoted by Z(R%). This
space is endowed with a suitable topology which makes it to be a complete Hausdorff locally convex topo-
logical vector space, similarly to the case of the space C.(R?). Its dual 2’ (R?) is the space of distributions,
in the generic sense, and the Theory of Distributions in the broadest sense uses this space. Here, every
continuous function is identified with a member of 2’(IR%), not just the polynomially bounded ones. Analo-
gously, every measure in . (R%), being or not slow-growing, determines a member in 2’ (R?). Differential
operators as defined in Section are also defined for any distribution in 2’(R?) and hence, any contin-
uous function and any complex measure over R? can be differentiated any number of times. Multiplication
with any smooth function, not necessarily a member of the space (’)M(Rd) is also possible. The convo-
lution is more restricted, being the space of so-called distributions with compact supporIE-] the only space
of distributions whose elements can be convoluted with any distribution in 2’(R%). Tensor products and
thus convolutions in more general cases, as presented in section are also immediately extended to this
space. The Nuclear Theorem [2.2.2] also holds for this space, result which is known as the Schwartz’s Kernel
Theorem (Treves), 1967, Theorem 51.7). The Fourier Transform, however, is just defined for tempered dis-
tributions, and hence all Fourier Analysis techniques to solve and treat PDEs are restricted, in principle, to

the tempered framework.

3The support of a distribution can be defined analogously to the definition of support of a measure (2.16), using test-functions
supported on open sets. See|Donoghue| (1969, Chapter 29).
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Another commonly used space is the space of smooth functions denoted by & (R?), which is actually
nothing but the space C®(R?). The notation & (R?) is used when it is understood that the space is endowed
with the topology of uniform convergence on compact sets of the derivatives, similarly to the case of the
space C'(R?) described in Section but with smooth functions. Its dual &”(R%) is actually the space of
distributions with compact support, and it is a subspace of the space of tempered distributions. A Nuclear
Theorem analogue to Theorem [2.2.2] can also be obtained (Tréves| 1967, Theorem 51.6 and Corollary). We

summarize the inclusion relationships between spaces of test-functions and distributions:
2R ¢ ZRY c ERD“ &R ¢ S'(RY) < 2'(RY). (2.74)
Other inclusions which are useful to retain are the ones related to spaces of measures:

2R ¢ C.(RY“ c” C'(RY) = .#(RY) ¢ 9'(RY),

(2.75)
SR < Crp(RN)“ c” Cpp(RY) = Msa(RY) = 7'(RY).
And the simplest but maybe the most important one for many applications:
S (RY c L2(RY) ¢ 7' (RY). (2.76)

We claim that all of these inclusions are dense when the corresponding spaces are endowed with a suitable
topology (see Proposition in Appendix (C| for the case of .7 (R?) = Crp(R?), the other cases are

well-known in Distribution Theory).
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Chapter 3

Theoretical Framework: Stochastic Tools

SUMMARY

In this chapter we present the stochastic tools that will be used in the next chapters. It is
basically a framework where Random Functions, Random Measures and Random Distributions
can be defined starting from specified mean and covariance structures. We explain how to do
Stochastic Calculus with these objects and how to pose and analyse some linear SPDEs. All this
framework is embedded in the so-called mean-square analysis, where the random variables are

supposed to be square-integrable and the convergences are considered in a mean-square sense.

In Section 3.2 we recall the classical geostatistical framework of square-integrable Random
Functions. We recall the concepts of mean and covariance functions. We recall the concepts
of stationarity, positive-definite functions and spectral measures. We study the mean-square
regularity of Random Functions, and we present the definitions of continuity, differentiability

and integrability with respect to deterministic measures.

In Section[3.3|we present our concept of Random Measure. We define it as a stochastic process
indexed by the bounded Borel sets being determined by mean and covariance measures. We
present the construction of the stochastic integral of deterministic functions with respect to
Random Measures. We give our definitions of finite, slow-growing and compactly supported
Random Measures. We present the interpretation of Random Measures as linear functionals
over spaces of continuous functions, following an analogy to Riesz Representation Theorems
in the deterministic case. We also present the notion of a Random Measure concentrated on
a subset. We finally introduce the class of orthogonal Random Measures and we recall its

relationship with stationary Random Functions.

In Section we present the theory of Generalized Random Fields or Random Distributions,

51
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which is the stochastic analogue of the Theory of Distributions. We define them as stochastic
processes indexed by the Schwartz space determined by mean and covariance distributions.
We show how to apply linear operators defined through an adjoint over Generalized Random
Fields, and we explain how this operators modify the mean and covariance structures. We recall
the definition of a stationary Generalized Random Field, its main properties and its relationship

with slow-growing orthogonal Random Measures.

In Section [3.5| we present the class of SPDEs which will be considered in the next chapters.
We always consider SPDEs defined through a deterministic operator. We make the distinction
between satisfying a SPDE strictly, in law, and in a second-order sense. We specify how a linear
SPDE determines the mean and covariance structure of a model, translated on linear PDEs to

be satisfied by the mean and the covariance.

In Section[3.6lwe give comments about how the SPDE framework can be used in multivariate
Geostatistics, particularly in the case of bivariate models. We give a brief overview of the
concept of a bivariate model in a generalized sense, introducing the cross-covariance. We show
the relationships that two processes must satisfy in order to be equal in a convenient sense, and
we present how to apply this condition when the variables in the model are related through a
SPDE. We give a necessary and sufficient condition for a general linear SPDE to be satisfied
strictly, which is stated through PDEs that the means, the covariances and the cross-covariance

must satisfy.

In Section[3.7\we make some comments about other frameworks of Stochastic Analysis beyond
the mean-square theory. We present the issues involved when trying to define Random Func-
tions and Random Measures in a stricter sense than the mean-square sense. We remark the
impossibility of defining convenient orthogonal Random Measures. We remark that, contrarily
to the case of Random Functions and Random Measures, the case of Random Distributions can
be worked out in a stricter framework without problems, due to the Bochner-Minlos Theorem,

applicable to the case of tempered distributions since the Schwartz space is Nuclear.

We end in Section with some comments about stochastic integrals of Random Functions
with respect to Random Measures and how some non-linear SPDEs can be defined through
them. This framework is not used in the rest of this dissertation. We present the classical Ito
Integral and we explain the typical issue of the non-canonical way of defining a stochastic inte-
gral. We show that this issue is related to the structure of the cross-covariance Kernel between
the Random Function to be integrated and the reference Random Measure. We show why these
notions are important in order to pose non-linear SPDEs or SPDEs with multiplicative noise
and we give some examples of such SPDEs, together with a brief explanation of their issues and

some related theories already developed in the literature in order to treat them.
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3.1 General introduction

In this chapter we introduce the stochastic objects which we will work with along this dissertation. We
keep in mind the following almost correct idea: what has been defined in the deterministic world, has its
counterpart in the stochastic world. Hence, we will be able to work with Random Functions, Random
Measures and Random Distributions, all of them defined through a mean and a covariance structure. The
intuition in mind is that a SPDE is just a PDE with random objects involved, and doing Stochastic Calculus is
simply doing calculus with Random Functions and their generalizations. Reasons about why we have used

the “almost correct” expression in this paragraph are commented in Section

We keep our loyalty to the tradition of the Fontainbleau school. Hence, we do not specify the laws of
the random variables involve Indeed, the developments in this chapter are done, in principle, without
any regard to the laws of the random variables involved, besides the fact that we require them to be square-
integrable. This fradition is based on the historical development of Geostatistics, which has been developed
as a framework to deal with unique phenomena. We will sometimes, however, make references to the

framework of Gaussian processes.

From now on, we will always work with a fixed arbitrary probability space (€2, .4, P). All random vari-
ables we use are supposed to be defined over this space. We will work with complex stochastic processes,
that is, families of complex random variables indexed by a non-empty set 7', (X ) with some characteris-
tics to be described. The existence of such a mathematical entity is guaranteed by Kolmogorov’s Theorem,
which provides an enough general mathematical framework to work with. We refer to Appendix [B| for a
statement of this Theorem and its application to construct the objects introduced in this chapter.

None of the results presented in this chapter is essentially new. We give proofs for some of them which
may be difficult to find in the literature in the way we state them. Which may be considered as new, is the
compendium of different applications of the mean-square approach to Stochastic Calculus that can be found
in the literature. Here we focus our exposition in a mean-square based framework in order to simplify its

potential application in geostatistical analysis.

3.2 Random Functions: the classical geostatistical framework

A real Random Function over R?, also called a Stochastic Process indexed by RY, is a family of real
random variables indexed by the Euclidean space (Z(x)),cre. We suppose that all of the random variables
are square-integrable: Z(z) € L2(9, A, P) for all 2 € R%. In such a case, the mean and covariance structures
of Z can be studied. The mean function is the function mz : R? — R defined by mz(x) = E(Z(x)). The
covariance function is the function C; : R? x RY — R defined by Cz(z,y) = Cov(Z(x), Z(y)). The

'Note of the author: I am not only an apprentice of the Bellifontaine school, I am also a Chilean: 1 cannot care about the law.
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covariance function must be a positive-definite Kernel: a function (of two-variables) C' : R? x R¢ — R
is said to be a positive-definite Kernel if for every finite collections of complex numbers and points in the
space, (A1, ..., Ax) € CV and (21, ...,zx) = (RH)YN, with N € N,, it holds that

N

DN C (g, @) = 0. (3.1)
jk=1

Every positive-definite Kernel can be used as a covariance function of a square-integrable stochastic pro-
cess. This is a consequence of Kolmogorov’s Theorem; see Appendix [Bl The definition of C'z implies that
Cz(x,x) = 0forall z € R? and that it is symmetric: Cz(z,y) = Cz(y, z). The Cauchy-Schwarz inequality
implies that C satisfies |Cz(z,y)| < 4/Cz(z,7)Cz(y,y).

The typical methodology in geostatistical analysis of unique phenomena consists in supposing that a
variable varying spatially or spatio-temporally is the realisation of a Random Function for which its covari-
ance and mean functions are to be selected to model the phenomenon. The mean is often selected to be
null or constant, although any arbitrary function can be used as a mean function of a Random Function.
The choice of the covariance function is more determinant and intricate since it has to satisfy the Kernel
positive-definiteness condition (3.1]). Geostatisticians usually work with a sort of catalogue of well-known
positive-definite Kernel functions that can be used as covariance functions and for which their properties are
well studied and mastered. The selection of the covariance function, usually refereed in a broader sense as
selection of the model, is done by diverse techniques of statistical inference such as variographic analysis
or likelihood maximisation. Typical treaties on this practice are |Chiles & Delfiner| (1999) and Wackernagel
(2003).

3.2.1 Stationarity

Let Z = (Z(x)),era be areal square integrable Random Function. We say that Z is second order stationary
(from now on, simply stationary) if its mean function is constant and if its covariance function depends only
on the gap = — y of the variables. Hence, myz(z) = myz € R, and there exists a function pz : R? —» R
such that Cz(z,y) = pz(z — y) for all 7,y € RY. The stationarity condition is equivalent to require that the
mean function m is invariant under translations and that the covariance function C'z is invariant under equal
translations on both of its components. Explicitly, mz(x) = mz(x + h) and Cz(x,y) = Cz(x + h,y + h)
for all z,y,h € Rd When Z is stationary, its associated function pz is called the stationary covariance

function or simply its covariance function if stationarity is clear in context and it is not mistaken with C'z.

2This is not the typical and strict definition of stationarity of Random Functions. In a more traditional terminology, a Random
Function is said to be stationary or strictly stationary, if its finite-dimensional laws are invariant under translations. Hence, it is not
only the first and second order structures that are invariant under translations but the whole probability law. Since we work with the
covariance as the main tool, we will always use the concept of stationarity only referring to its second order sense.
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The function pz must be a positive-definite functiorﬂ also called a function of positive-type. This means
that p satisfies that for every finite family of complex numbers and points in the space, (A1, ..., Ax) € CV
and (1, ...,zn) € (RN with N € N,, it holds thaf

N
3 Nipz(aj — z) A, = 0. (32)
G k=1

This implies that pz(0) > 0 and that pz is even: pz(h) = pz(—h) for all h € RY. The Cauchy-Schwarz
inequality implies that |p(h)| < p(0) for all h € R,
A practical description of real and continuous positive-definite functions is given by the well-known

Bochner’s Theorem: a rea/E] and continuous function p : R¢ — R is positive-definite if and only if it is the

Fourier Transform of a positive even and finite measure [ € M ;5 (R%):

ph) = —— f e M S dp(e). (33)

If Z is a stationary Random Function and if pz is its covariance distribution, the measure p 7 that satisfies
pz = F(uz) is called the spectral measure of Z. Bochner’s Theorem has a crucial importance in both
Probability Theory and Geostatistics. Probabilists use it (in a more general version) to show the existence of
convenient probability measures over abstract spaces, starting from well-defined positive-definite functions
over those spaces. Geostatisticians use it mainly to obtain new covariance models to add to their catalogue,
since defining a finite measure over the Euclidean space is not a complicated task to do, while the direct
construction of different classes of positive-definite functions may be intricate. In this work we focus on the
geostatistician application of this theorem. See Donoghue| (1969, Chapter 37) for an exposition and proof of

this theorem.

Stationary Random Functions are basic tools for the geostatistical modelling since they provide a suitable
statistical methodology for unique phenomena: even if we suppose that we analyse a single realisation of
the Random Function, stationarity guarantees that the behaviour of the variable will be similar in every

part of the analysed region, and thus it provides, intuitively, an analogue to the independent and identically

3The reader must not confuse a positive-definite function with a positive-definite Kernel. This terminological distinction is crucial
when remarking the difference between a stationary covariance model and a non-stationary one. The term positive-definite Kernel
designates always a function of two variables, like the covariance function C'z. The term positive-definite, without the mention
“Kernel”, always refers to a function of one variable, like pz, used to describe stationary models. This terminology selection is the
most appropriated given its current use in the literature. We will use an analogue terminology for the cases of Random Measures
and Generalized Random Fields

“Some authors require the function pz to satisfy that the quadratic form is strictly positive, unless the complex numbers
involved are all null. We do not require that stronger condition. If the function p satisfies this stronger requirement, it will be said
to be strictly positive-definite.

SBochner’s Theorem does not really require the function to be real but complex, and thus the associated measure needs not to be
even. Of course, it must remains positive and finite.
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distributed random variables framework of classical statistical methodologies.

We give four important examples of stationary covariance models over R? which are widely used in the
practice of Geostatistics. We present them together with their associated spectral measures. All of them are
presented in their isotropic version, that is, the covariance function pz depends only on the Euclidean norm

of its argument.

e The Gaussian model:

2 .d
pz(h) =% e o dug(e) = Tg-e TP e, (3.4)

with o2, a > 0.

¢ The Exponential model:

h
pz(h) =oe lal 5 dug(¢) = : : (3.5)
Wr (L) F
with 02, a > 0. I" denotes the Gamma function.
e The Matérn model (also called K -Bessel model):
1 _ d§
h) = W K, ap(slh)) 5 d = :
() = Gt D Kok 3 s = e

(3.6)
with k,a > 0 and o > %. K, _a denotes the modified Bessel function of the second kind of order
2

o — %l > (. This model is actually a generalization of the Exponential model.

o The J—Bessel model:

o? (d)
= ———Ja_(5IA) oz =Py ), 3.7)
klhlz =1 2

pz(h)
where 02,k > 0 and J, /2—1 denotes the Bessel function of the first kind of order d/2 — 1. We recall

(d)
that uifff ) denotes the uniform measure on the d — 1-sphere of radius « (see Example [2.1.1).

3.2.2 Regularity of Random Functions and operations

Within this framework of Random Functions it is already possible to enter into the domain of Stochastic
Calculus and to consider some kinds of SPDEs. To do this, the stochastic analogues of continuity, integrals

and derivatives must be specified. All of these concepts are defined in the deterministic world through
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limits of things. In the stochastic framework, since there are many possible ways in which a sequence of
random variables may converge, we need to specify the sense in which the limits are considered. Since
the main tool of geostatistical analysis is the covariance function, the most adapted framework is the so-
called mean-square analysis, where the limits are taken in the sense of L?(, A, P). Here we are going to
present the basic notions and concepts of this framework. This is not exactly the most traditional way of
exposing Stochastic Calculus: usually a stronger or different mode of convergence is required, considering
for example an almost-surely continuity for Random Functions, the existence of a continuous modification
(typical requirement for Brownian Motion for instance, see @ksendal (2003, Definition 2.2.2)), or simply
that the Random Functions have sample paths which are always, strictly speaking, continuous functions. We

give comments on other approaches of Stochastic Calculus in Section [3.7]

A sufficient and simple exposition about the mean-square analysis can be found in Sobczyk]| (1991, Part
II, Chapter 14 and Part III, Section 21.1). The exposition presented here follows similar principles. Other

approaches to Stochastic Calculus can be also found in this same treaty.

Continuity and Integrals

Let us begin with the concept of continuity. Let Z = (Z(x)),cre be a Random Function. Z is said to
be mean-square continuous or, more simply from now on, continuous, if both its mean and covariance
functions are continuous. This definition is equivalent to the following one: Z is a continuous Random

Function if for every convergent sequence of points in the space (2, )ney = R%, ,, — 2 € R, it holds that

2
Z(an) " 5” Z(z) (Sobezyk,[1991, Definition 2.2 and Theorem 2.2).

For a real continuous Random Function many mathematical operations are possible. Let us remark one:
the classical Riemann Integral. We are going to present it in detail since the concepts presented here will
be used further in this dissertation. Let K — R be a compact set. The Riemann Integral of a continuous
function in the deterministic case is constructed using a limit of Riemann sums. We are going to make
explicit the same procedure. Consider a family of non-empty Borel subsets of R¢ | (V;N ) je{1,...,N},NeNy»
with the following properties:

o UY, V)N =K forall N eN,.
o VN VY = Zforall N € N, and forall j, k € {1,..., N} such that j # k.

e max diam(VjN) — 0as N — 0.
je{l7"'7N}
Here diam(A) denotes the diameter of the set A. Hence, (VJN )je{l,....N},NeN, 1S a class of subsets such
that for a fixed IV the collection (V]N ) je{1,...,N} 18 a partition of K, and such that the size of every set in the

partition converges to 0 as [V grows. For simplicity, we will give a name to this kind of class of sets: it will
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be called a Riemann sequence of partitions of /. The typical example when defining Riemann sums is by

taking rectangles of smaller and smaller size covering K. Let us consider in addition, for every set VjN , an
N
J

(V]‘N)je{l,..‘,N},NeN*- We define the integral of Z over K as the limit in the sense of L?(Q, A, P):

arbitrary point xév € VjN . The collection (x:") je{1,...,N},Nen, Will be said to be a collection of tag points of

N
f Z(z)dx = lim Y |VV[Z(z}), (3.8)
K 1

N—0 4
j:

where |VJN | = Leb(VjN ) denotes the Lebesgue measure of the set VjN .

Rather than verifying if the integral (3.8) is well-defined, we will use this idea to define a more general
integral of continuous Random Functions. Note that the definition of a Riemann sequence of partitions of K

can be extended immediately to every K € Bg(R%).

Definition 3.2.1. Let Z be a real continuous Random Function over R?. Let u € .4 (RY) and let A €
Bp(R%). The integral of Z with respect to ji over A is defined as the limit in L*(Q, A, P):

N
| 2@t = i 32720 (3.9)
j=1

where (V}N)je{L...,N},NeN* is a Riemann sequence of partitions of A and (mé\[)je{lva},NeN* is a collection

of tag points of (V) jeq1,.. N}y, e,

The following result guarantees that the previous definition is consistent, and it describes some properties

of the integral.

Proposition 3.2.1. Let Z be a real continuous Random Function over R, i € .# (R?) and A € Bp(R?).
Then, the integral § , Z(x)dp(z) is well-defined as a random variable in L*(2, A, P) and it does neither
depend on the choice of the Riemann sequence of partitions of A nor on the choice of its tag points. Moreover,
if A,B € Bg(R%), and pu,v € .#(R?), the following expressions for the mean and the covariance of the
integral hold:

B ( [ 2@auo) = [ mawinta) (3.10)

Cov (L Z()du(), JB Z(a:)dy(x)> _ L JB Cp () du(2) Ao (y). 3.11)

A proof of this Proposition is presented in Appendix Notice that Definition [3.2.1] which is inspired
by the classical construction of Riemann sums, is also related to the construction of the Lebesgue integral for
a continuous function. Indeed, the sum in (3.9) can be interpreted as the Lebesgue integral of the Random
Simple Function Zy(x) = Z;VZI Z(xév) ]_VjN (x) with respect to p over A, and one can prove that Zn (z) —
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Z(z) in the sense of L?(12, A,IP) for every x € A. Hence, the integral can be interpreted also as a limit
of integrals of simple functions converging, in a mean-square-point-wise sense to Z. Another, maybe more
interesting way of interpreting this integral is, rather than approaching the function Z by simple functions,
is by approaching the measure (1 by a linear combination of punctual masses: uy = Z;V: 1 u(VjN )(53;;\7 The
sequence of measures (/1) Nen, converges in some sense to the measure p. Therefore, we can expect that

the limit of the integrals is the integral of the limitﬁ

Extensions of Definition [3.2.1]to the case of not bounded sets are possible, thereby obtaining a notion of
a continuous Random Function integrable with respect to ;.. We will make precise this idea in Section [3.3]

Derivatives

Let Z be a real Random Function over R%. A broadly used notion of differentiability of Z is the next
one: Z is mean-square continuously differentiable if its mean function is continuously differentiable
and its covariance function is two-times continuously differentiable. It can be proven that this definition
is equivalent to the next one: Z = (Z(x)),crae is mean-square continuously differentiable if for every
x € RY, for every normal vector v € R?, and for every converging-to-zero sequence of positive real numbers

(hn)nen € (0, 0), the limits of the form lim,,,q %’w converge in the sense of L?(Q, A, P) to
a random variable Y, (x), and the so defined Random Functions (Y, (x)), cga are continuous. This can be

concluded from the developments in|Sobczyk]| (1991, Section 14.3).

If Z is mean-square continuously differentiable and if % is the partial derivative with respect to the
J
j—th component on R¢, we have the expressions for the mean and the covariance:
_ om VA 820 7

moz = ;o Coz = . (3.12)
2z, 0x; ax;  0x;0y;

Hence, the derivative of the mean is the mean of the derivative, and the covariance of the derivative is the
corresponding double derivative of the covariance (we recall that the covariance C is a function of two
vectorial variables). The definition of the derivative of arbitrary order NV € N is done analogously, with
the mean m required to be in CV(R?) and with the covariance C required to be in C?V(RY x R?).

Considering the multi-index notation, the generalization of Eq. (3.12)) is in such a case
mpez =D%mz ; Cpez=D*ICy, (3.13)

for a € N with |a| < N.

When Z is stationary with zero-mean, the differentiability condition is equivalent to require that the sta-

SThis holds, for example, when approaching measures of compact support in the sense of the weak-# topology in the space
M. (R?) which, as we have seen, is the dual of the space of continuous functions C'(R%) (Theorem .
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tionary covariance function pz is twice differentiable, with the same analogue for higher orders of derivation.
In such case, we have
ppez = (=1)°ID*py. (3.14)

An important point to notice in the stationary case is the relation between the mean-square regularity of
Z and the growing behaviour of its spectral measure pz. Using the relation between pz and the spectral
measure pz, pz = F(uz) (Eq. (3.3)), it is not hard to conclude using a typical application of Dominated
Convergence Theorem that p is [N —times continuously differentiable if and only if the multiplication mea-
sure |¢|Ndpuyz(€) is finite. Hence, the slower juz increases at infinity, the more regular pz (and thus the
Random Function Z) is. For example, the Gaussian model (3.4) is infinitely differentiable since its spec-
tral measure has a density which decreases faster than any polynomial. The J—Bessel model is also
infinitely differentiable since its spectral measure is compactly supported. The Matérn model (3.6) has the
particularity that the parameter « controls its regularity: using polar coordinates, one verifies that the covari-
ance of the Matérn model is 2N —times differentiable, and thus Z is N —times mean-square differentiable,
if and only if o > ‘HTN. This control of regularity available for the Matérn model is one of the reasons of its
popularity; see for instance the comment “use the Matérn model” in [Stein| (1999, page 14) and an example
of application in this spirit in Minasny & McBratney| (2005). We finally remark that the Exponential model
(3.5)) is not mean-square differentiable. This can be concluded by considering that the Exponential model is
a particular case of the Matérn model with o = %. However, it is, of course, continuous, and it is one of

the most used models in practice.

The notions exposed in this section are actually sufficient to develop a rich enough Stochastic Calculus
and to well-pose and solve some SPDEs. See the examples discussed in |Chiles & Delfiner (1999, Section
8.3), and the developments in [Sobczyk| (1991, Chapter III). Nevertheless, the strong restriction of differ-
entiability constrains us to a rather limited framework both in the theory of Stochastic Analysis and in the
practice of Geostatistics. Indeed, many models used in practice are non-differentiable. Hence it is not clear
how they could be related to a differential equation with differential operators acting on them. In addition,
most of the well-known SPDE-based models (mainly the Matérn model) are related to a SPDE which is not
properly defined in the framework of Random Functions: they involve a differential operator (or something
like that) applied over an insufficiently differentiable Random Function. This issue is also present in the
domain of Stochastic Calculus based on Brownian Motion: as the reader probably knows, the sample paths
of Brownian Motion are continuous but nowhere differentiable, and many of the most interesting processes
used in this theory present also this condition. There is thus a need for working with things that are more
general than a function, where the objects can be differentiated freely. Having in mind the theory presented
in Section[2.2] we know in which direction we should be heading to. We will describe this theory in Section
[3.4] We remark the discussion on this subject proposed in|Chilés & Delfiner (1999, Chapter 8), where all of

these issues are commented, presenting also interesting applications of the regular framework presented on
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this section in Hydrogeologyﬂ

3.3 Random Measures

A Random Measure can be defined in many different ways. The definition that we are going to use is inspired
in a mean-square analysis as we did in the case of Random Functions. Hence, we interpret the o—additivity
condition in a mean-square sense. We will also restrict our work to the case where the covariance Kernel
determines a covariance measure. The bibliographical source which exposes a theory of Random Measures
in the most similar way as we do here is/Rao|(2012). We will not follow strictly its terminology, but the main
idea is the same. We give some comments on other ways of approaching the Random Measure Theory in
Section[3.71

3.3.1 Formal definitions

We begin with a first generic definition. We will not actually use this concept as main tool of analysis due
to some issues that will be exposed later. Nevertheless, it is worth being presented and discussed. The name

selected for this object is strictly restricted to this dissertation and it is not inspired by the literaturﬂ

Definition 3.3.1. A L?>—generic complex random measure (simply, a Generic Random Measure) over
RY is a complex stochastic process indexed by the bounded Borel sets M := (M (A)) AeBy(Rd) Such that for

every countable collection of mutually disjoint bounded Borel sets (Ap)nen © Bg(R?) such that Unen 4n €
Bp(RY), it holds that

neN

M (U An> N M(A), (3.15)
neN

where the series in is taken as a limit in L*(Q, F,P).

We will call the property (3.13)) the L?— o—additivity condition. We remark that this additivity condi-
tion is not strict as in the sense of the deterministic Definition 2. 1.1l

Let M be a Generic Random Measure over R%. Consider the set function my; : Bg(R?) — C, de-
fined as mys(A) = E(mp(A)). An immediate implication of the L?— o—additivity condition (3.13) is
that the function mj; is in A (]Rd). We call m,; the mean measure of M. Consider now the function
Ky Bg(RY) x Bg(RY) — C, defined through K/ (A, B) = Cov(M(A), M(B)). Ky is called the
covariance bi-measure Kernel of //. The choice of the name is important. Using the L?— o —additivity,

7Chapter 8 in|Chiles & Delfiner|(1999) has been, unfortunately, dropped out of the latest editions of this book. The reference is
then, particularly, to the 1999’s edition.
8We do not suggest it neither.
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one can verify that K, is what some authors call a bi-measure (Horowitz, |1977}; Morse, |1955}; [Rao, [2012):
for any fixed B € Bg(RY), the set application A € Bg(R%) + Kj/(A, B) is in .# (R?), and correspond-
ingly, for any fixed A € Bg(R%), the set application B € Bp(R%) — Kj(A, B) is also in . (R?).
This Kernel must be a positive-definite bi-measure Kernel, that is, for every finite collection of bounded
Borel sets (A;);e (1,...N} < Bp (R?) and for every finite collection (of the same size) of complex numbers
(A1, ..., An) € CV, N € N,, it must hold that

N
DT NKM(A), ANy = 0. (3.16)
G k=1

Let us explain now why we have added the adjective “generic” in Definition [3.3.1] It would be expected
that this Kernel determines a sort of covariance measure, Cy; € 4 (R x R?), which satisfies C'(A x
B) = Ky (A, B) for A, B € Bg(R?). The theoretical problem that arises is that this does not hold at all:
the covariance bi-measure Kernel does not necessarily determine a measure in .4 (R® x Rd)ﬂ This is a
remarkable consideration which holds particularly in the case of measures. As we shall see later, in the case

of Random Distributions this issue is not present thanks to the Nuclear Theorem.

We remark that this is not actually a real theoretical problem: even if the bi-measure Kernel does not
determine a measure, an Integration Theory with respect to the associated Generic Random Measure can be
anyway developed, with remarkable results. The construction of the associated integral is grounded on the
concept of integral with respect to a vector valued measure, that is, a measure taking values in a Banach
space. Indeed, the Generic Random Measure M according to definition |3.3.1|is nothing but a o —additive
function taking values in the Hilbert space L?(2, A,P). The integral with respect to such a measure is
called the Dunford-Schwartz Integral. The related theory can be found in its general deterministic form in
Dunford & Schwartz (1958, Chapter III and Section IV.10). We refer to (Rao, 2012, Chapter 2) for the
associated stochastic theory. We thus conclude that even if a Generic Random Measure does not have a
strictly speaking covariance measure describing its second order structure, it can be anyway manipulated as
a measure in a satisfactory manner. The real issue is rather practical or methodological, and it concerns for
example the practice of geostatsticians: it is far simpler and intuitive to define a Random Measure starting
from a covariance measure, than using the more generic but complicated concept of covariance bi-measure

Kernel.

We will thus avoid all of these issues and we will work with the following definition of Random Measure.

°In [Rao| (2012, Chapter 2, Example 2) the author presents sophisticated arguments which implicitly prove that the positive-
definite bi-measure Kernel of the form
Kni(A,B) = ) va(A)7n(B), (3.17)
neN
with v, (A) = S(o,zx €1 4 (z)dz, does not determine a measure in . (R? x R%). We say implicitly because the author does not
show explicitly the Kernel in the form (3.17), but he rather works with the associated Generic Random Measure.
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Definition 3.3.2. A L?—Complex Random Measure over R (from now on simply a Random Measure) is
a Generic Random Measure M such that there exists a measure Cyy € 4 (R? x R?) such that

Cr(A x B) = Cov(M(A), M(B)), VA,B e Bgp(R?). (3.18)

It is possible to give necessary and sufficient conditions for a covariance bi-measure Kernel to actually
determine a measure in the way of Definition [3.3.2] The extra requirement is that the associated potential
measure must have finite total variation over bounded Borel subsets of R? x R?. See Horowitz| (1977)
for the associated result in the case of finite measures in more general measure spaces. The case of non-
finite measures can be proven following similar arguments restricting the analysis to bounded sets. Another
approach may be based on convenient extension theorems, which can be used to prove the existence and
uniqueness of a complex measure which extends the domain of a complex measure of local bounded variation
defined over the ring of sets of the form A x B, A, B € Bg(R?). See for example Takahashi (1966) for such
an extension theorem. Kupkal (1978)) also provides an extension theorem which may be useful in this aim.
We omit the details since this issue is beyond the scope of this dissertation. We also claim, without proof,
that if Ky is positive, that is, Ky(A, B) = 0 for all A, B € Bg(R?), then it does determine a covariance
measure on .Z +(R? x Rd) although such a requirement excludes some useful covariance models such as
the J—Bessel model.

We focus hence, once and for all, on Random Measures as in Definition [3.3.2] Let M be a Random
Measure over R, The measure Cy; € . (R? x R?) satisfying (3.18) is called the covariance measure
of M. Analogously to covariance functions, this measure must satisfy a positive-definiteness condition
associated to condition (3.16). We will make it explicit. We say that C; € .# (R? x R?) defines a positive-
definite Kernel if for every finite collection of bounded Borel sets (4;);eq1,.. vy © B (R?) and for every
finite collection (of the same size) of complex numbers (A1, ..., Any) € CN, N € N,, it holds that

N
D1 A Cu(A) x Ap)Xg = 0. (3.19)
G k=1

Hence, if a Random Measure model is needed for describing some phenomenon, a geostatistician needs to
fix a mean measure and a covariance measure defining a positive-definite Kernel, analogously to the case of

Random Functions. Then, classical geostatistical tools such as Kriging and simulations follow immediately.

Let M be a Random Measure over R%. Its complex conjugate is defined as the Random Measure
M(A) := M(A) for every A € Bg(R%). M can be decomposed into its real and imaginary parts, denoted

'0This can be concluded using the same arguments presented in Dellacherie & Meyer| (1978, Chapter III, N° 74) for the case of
probability measures, restricting the analysis over bounded sets and then extending. We remark that this holds only when working
with Radon measures, which satisfy inner and outer regular conditions and are defined over Borel sets, which is our case. For
instance, [Rao| (2012} Chapter 3, Example 2) provides a counterexample considering non-Borel sets.
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by Mp and M respectively, determined by Mp(A) = w and Mj(A) = %ﬁw for every
A € Bp(R?Y). M is said to be real if M;(A) = 0 for all A € Bg(R?), or equivalently, if for every
A € B(RY), the random variable M (A) is almost surely a real random variable. The reflection measure of
M is the Random Measure defined as M (A) := M (—A) for every A € Bg(R?). If for every A € Bg(R?),
it holds that M (A) =" M(A), we said that M is even, and if it holds that M (A) =" —M (A), we say that it
is odd. Finally, if M satisfies that for every A € Bg(R?), M(A) = ﬁ(A), M is said to be an Hermitian

Random Measure.

In Section [3.2] we have restricted our framework to real Random Functions, while in the case of Random
Measures we have allowed the use of complex random variables. We have done this because along this
dissertation many of the Random Measures used are complex, although with a special condition: they are
obtained as a result of a complex operation applied to a real stochastic process. In a general framework of
complex square-integrable stochastic processes, the covariance Kernel is not sufficient to fully-characterise
the second-order structure of the process: the cross-covariance structure between the real and imaginary
parts must also be specified (see Section [3.6). Hence, the theoretical model of a geostatistician is not com-
plete by only setting the covariance Kernel. Nevertheless, if the complex stochastic process is actually the
result of a complex operation applied to a real stochastic process, the covariance Kernel paradigm still works,
being the real and imaginary parts of the complex process determined implicitly by the complex operation
and the real covariance Kernel of the real stochastic process. This will be clarified later when analysing the
spectral behaviour of stationary Random Functions. In this dissertation we always work with real stochas-
tic processes as basis, but we will sometimes apply complex operations on them such as, for example, the

Fourier Transform.

We make a last remark. We have not defined the stochastic analogous to the total variation measure,
nor the Jordan decomposition of the Random Measure (see Section [2.1.T). In more generality, we have
not defined positive Random Measures. We are not going to do that. Reasons for this choice will be com-
mented in Section We can always, however, work with the total variation measure and with the Jordan

decomposition of the mean and covariance measures.

3.3.2 Examples

The first two examples of Random Measures presented here will be widely used along this dissertation. The
third one is rather presented to show to the reader the kinds of distinct areas of Stochastic Analysis that can
be included within this framework.

Example 3.3.1 (White Noise). This is the most important example of a Random Measure used in this
workEl Let W = (W(A)) sep,, (re) be @ Random Measure. We say that IV is a White Noise if its mean

Tt would not be very bold to say that it is the most important example of all times... until now at least...
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measure myy is null and if its covariance measure Cyy is determined by
Cw(A x B) = Leb(A n B). (3.20)

Hence Cyy is the measure supported on the hyperplane {y = z}, Cyw = 6(z — y) (Example 2.1.2). It is
easy to prove that Cyy defines a positive-definite Kernel. A particularity of this measure is that if A and
B are two disjoint Borel sets with equal Lebesgue measure (for example, take A a bounded rectangle and
B be an enough distant translation of A), then the random variables W (A) and W (B) are non-correlated
with the same variance. Hence, it is a particularly useful tool for modelling variables with stationary erratic
behaviour. It is widely used, for example, in Signal Analysis and it is a basis of all standard developments
in Stochastic Calculus and its applications{T_fl Other interesting properties of White Noise will be presented

further in this work. o

Example 3.3.2. Let Z be a real continuous Random Function over R?, and let i € .# (R?). We define for
every A € B(R?), the random variable

(Z0)(A) = | Z(@)u(a), (3.21)

where the integral is defined as in Definition The so-defined stochastic process ((Z1)(A)) sepy, ra)
will be called the multiplication between Z and p. From Proposition [3.2.1} it follows immediately that the
multiplication Zy is a Random Measure over R, with mean measure given by Mz, = mzph € M (RY)
and covariance measure given by Cz, = Cz(u @ i) € .#(R? x R?). Hence, we are able to define a
stochastic analogue of the multiplication of a continuous function with a measure. When the measure p is
the Lebesgue measure, we say simply that the multiplication measure Z(x)dx is Z. Hence, every continuous

Random Function defines a Random Measure. o

Example 3.3.3. We remark the example of Point Processes, which we will describe roughly. Consider
(X)) nen a sequence of RY—valued random variables. We suppose this sequence is such that almost-surely
for every bounded set A — R? the quantity of random variables in the family (X,,),ex that belongs to A is

finite. We define then the random variables

P(A) =) 6x,(4), AeBg(®Y. (3.22)

neN

An almost-surely o—additivity condition follows immediately from the definition of P, and the local finite-

2Maybe the reader knows that the most popular branches of Stochastic Calculus are not exactly based on the White Noise but
rather on Brownian Motion. Actually, both can be equivalently used as basis for the same developments: the White Noise is just the
derivative of Brownian motion, in a generalized sense. See Section See for example Holden et al.| (2009)), where a Stochastic
Calculus is developed starting from White Noise rather than Brownian motion, and the same concepts arise from any of the two
starting concepts.
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ness guarantees that the random variable (3.22) is well-defined. This kind of process is called a Point Process,
and it is of crucial importance in Probability Theory and its applications. Although we are not going to focus
on this concept in this work, it is worth emphasizing that it can be included in our analysis without ma-
jor technical difﬁcultie If we suppose that for every set A € Bg(R?) the random variable P(A) is in
L?(92, A, P), Eq. (322) defines a Random Measure according to Definition and we can describe its
mean and covariance measures. These measures depend of course on the dependence structure of the family
(X1 )nen. For instance, when the point process is a homogeneous Poisson process, its covariance measure is
the same as the covariance measure of the White Noise. Although in the framework of Point Processes the
covariance bi-measure Kernel and the mean measure are not the most important or determinant tools, they
can at any rate be used to characterise some properties of the behaviour of the process. For instance, some
authors develop inference and extrapolation methods for Point Processes using the structure of their first two
moments. See for example, Gabriel| (2014); Gabriel et al.[(2017).0

3.3.3 Integrals

Analogously to the deterministic framework, integrals of (deterministic) measurable functions with respect
to Random Measures can be defined without major difficulties. The approach is the same the one of the
Lebesgue integral described in Section Here we follow the exposition in Rao| (2012} Section 2.2).

Let M be a Random Measure. Let f : R? — C be a simple function of the form f = Zj\f: 1 a514,, with
(aj)jeqr,...ny © Cand (Aj)jeqr,.. Ny € Bi (R). Then, its Integral with respect to M is defined as

N
L F@)dM (@) = ) a;M(4y). (323)
j=1

Let f : R? — C be measurable and let (f,)nen be a sequence of simple functions such that f, — f
point-wise and |f,| — |f| point-wise monotonically increasing. If the sequence of random variables
(S]Rd fn(x)dM (a;))n ey € L?(92, A,P) is a Cauchy sequence, we say that f is integrable with respect to
M. We define in such a case the integral of f with respect to M as

f(z)dM(z) := lim fn(x)dM(z), (3.24)
Rd n—0o0 Rd

where the limit is taken in the sense of L?(f2, A, P). In such a case, standard arguments prove that the limit

does not depend on the sequence of simple functions ( f,,)nen approaching f. It can also be proven that this

integral acts linearly on f, and that analogue results to Dominated Convergence Theorem and Monotone

Convergence Theorem hold. See the comments in|Rao| (2012, Definition 2.2).

3We can, for example, study SPDEs having a point process as a source term.
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Proposition 3.3.1. Let M be a Random Measure over R® with mean measure my; and covariance measure
C. Let f be a measurable complex function over R If f € LY (R4, mypr) and fQ f € L1 (R xRY, Cyy),
then f is integrable with respect to M. If f and g are two complex measurable functions satisfying these

requirements, then

E ( f(w)dM(w)) — [ faydma ), (3.25)
Rd Rd

Cov < y f(z)dM(x) 7JR4 g(x)dM(a?)> = JR f(2)g(y)dCr(z,y). (3.26)

d wRd

See Appendix [A.6|for a proof.

A measurable function f : R? — C is said to be locally integrable with respect to M if for every
compact set K — R¢ the function 1x f is integrable with respect to M. It is immediate from Proposition
that this holds when f is locally integrable with respect to mp; and f & f is locally integrable with
respect to C'j7. In such a case we define the multiplication between the function f and the Random Measure
M, denoted by f M, as the Random Measure defined by

(FADA) = | 1a@)f @M (z), YA€ Ba(®?). (3.27)
R
From Proposition [3.3.T]it is immediate that

mev = fmy 3 Crv = (f ®7)C’M. (3.28)

3.3.4 Finite, slow-growing and compactly supported Random Measures

As seen in Section [2.1.1] the concept of a finite measure can be defined equivalently through an extension-
domain to the whole o —algebra of Borel sets requirement, or through a finite total variation measure. Here
we are going to take an easy way out and we will just determine the finiteness of a Random Measure through

a finiteness condition of its mean and covariance measures.

Definition 3.3.3. Let M be a Random Measure over R® with mean measure my; and covariance measure
Cy. We say that M is a finite Random Measure if my; € #p(R?) and Cyr € Mp(R? x R?).

Let M be a finite Random Measure. It is immediate from Proposition that every measurable
and bounded function is integrable with respect to M. It follows also that a characterisation analogue to
Deﬁnitioncan be done: the indexation set of the stochastic process (M (A)) aep,, (re) can be extended
almost-surely uniquely to the set of all Borel sets, obtaining a square-integrable process (M (A)) sep(ra) for
which the mean-square-o—additivity condition (3.15)) holds for every arbitrary countable partition of Borel

sets. Indeed, this follows immediately from the integrability with respect to M of the functions of the form
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14 with A € B(R%)[H]

Let us consider the case of a continuous Random Function Z. As we have seen in Example
it defines a Random Measure through the application A € Bg(RY) +— {, Z(z)dz. We say that Z is an
integrable Random Function if this measure is a finite Random Measure, condition obtained when its
mean function m is integrable with respect to the Lebesgue measure over R? and its covariance function
C is integrable with respect to the Lebesgue measure over R? x R%. Following the same spirit, we can define

a continuous Random Function integrable with respect to an arbitrary deterministic measure p € .7 (R%).

We introduce in a natural way the definition of a slow-growing Random Measure.

Definition 3.3.4. Let M be a Random Measure over R%. We say that M is a slow-growing Random Measure
if there exists a strictly positive polynomial p : R% — Ry such that %M is a finite Random Measure, or
equivalently, if there exists N € N such that (1 + |z|?) = M is a finite Random Measure.

It is immediate from the definition of a finite Random Measure that M is slow-growing if and
only if my; € Msq(R?) and Oy € Msq(R? x R?). Indeed, the finiteness of I%M, with p : R —» R}
being a strictly positive polynomial implies the finiteness of %m M and (% ® %)C’ M- Itis also immediate that
any polynomially bounded measurable function is locally integrable with respect to a slow-growing Random
Measure M.

The definition of the support of a Random Measure will be quite intuitive, although the typical subtleties

of almost-surely defined properties are involved.

Definition 3.3.5. Let M be a Random Measure over R%. Its support is defined to be the complement of the
largest open set where the measure M has L*-norm equal to zero:

d 2 N

supp(M) := (U{o cR? : O is open and E(|M(0)|?) = 0}) . (3.29)

A Random Measure M is said to be compactly supported if its support is a compact set. Using standard

arguments, one proves that a Random Measure M is compactly supported if and only if my; € .#.(R?)

and C; € . (R? x R%). It can also be concluded that supp(M) is always contained inside the union

between supp(m;) and the complementary of the largest open set O < R such that |C/|(O x O) = 0.

It is immediate that any locally bounded measurable function is integrable with respect to any compactly

supported Random Measure M.

14We remark that we have catalogued Deﬁnitionas an easy way out since we have avoided the statement of an equivalence
between the finiteness of m s and Cs and the properties described in this paragraph. Indeed, it would have been more sophisticated
to define a finite Random Measure as a Random Measure whose indexation domain can be extended to the whole system of Borel
sets of R?, similarly to Deﬁnition and then conclude that the mean and covariance measures are finite. We ignore if such an
implication holds.
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3.3.5 Interpretation as linear functional

Let us right now remark the interpretation of M as a linear functional over spaces of continuous functions,
analogously to the case of deterministic measures explained in Section [2.1.4] From now on, we will some-
times use the notation (M, f) to denote the integral of a measurable function f with respect to a Random

Measure M, when f is integrable with respect to M.

It is straightforward from the results on Section that every function ¢ € C.(R?) (respectively in
Crp(R?), in Cp(R?), in C(R?)) is integrable with respect to any Random Measure over R? (respectively,
with respect to any slow-growing Random Measure, with respect to any finite Random Measure, with respect

to any compactly supported Random Measure). We will focus on the general case of the space C.(R?).

If M is a Random Measure over R?, we can then define a square-integrable stochastic process indexed
by the set C..(R%) through the integrals, ((M, ¢)) peC.(Rd)- The mean and covariance of this process are then
described through

E(M, ¢)) =<ma ) 5 Cov((M,9),(M, ) ={C, 9 ® ). (3.30)
for very o, ¢ € C.(R?). The following statement can be concluded.

Proposition 3.3.2. The mapping M : C.(R?) — L%*(Q, A, P) defined through M (p) := (M, @) for every

¢ € C.(R?) determines a continuous linear functional.

The proof of this Proposition can be found in Appendix[A.7] This proof is grounded on the continuity of
myr and C) interpreted as continuous linear functionals over C.(R?) and C.(R? x R?) respectively (Riesz
Representation Theorem [2.1.3). We remark that the converse is not true: a continuous linear mapping from
C.(RY) — L%*(Q, A, P) does not necessarily define a Random Measure in the sense of Definition m
Instead, it would be expected to define a Generic Random Measure in the sense of Definition [3.3.1] We do
not enter in those detail{™|

An analogue to Proposition[3.3.2]can be concluded for slow-growing Random Measures, finite Measures
and compactly supported Measures using the spaces Crp(R?), Co(R?) and C(R?) respectively. A sketch
of proof of this is presented in the proof of Proposition[3.3.2]

We conclude that we can interpret a Random Measure M both as a set-function or as a continuous linear
functional over C,(R?). Passing from one to the other version is done using typical procedures of Measure
Theory. If we start from the linear functional version, we obtain the set-function version by taking a point-

wise limit of functions in C,(R%) to indicator functions. The convergence of the related random variables

"SIt is the lack of a Nuclear Theorem similar to Theorem for the case of the space C.(R?) which does not allow us to
conclude that M determines a Random Measure. The same problem arises in the cases of the spaces Crp(R?), Co(R?) and

C(R?).
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is always interpreted in the sense of L?(€2, A, P). The inverse is done through the definition of the integral
presented in Section[3.3.3]

The last remark we do is that we can now, without difficulties, define a Random Measure concentrated

on a subset of R?, and describe integrals through expressions analogue to Eq. (2.33).

Definition 3.3.6. Let M be a Random Measure over R? and let A = B(RY). We say that M is concentrated
on A if for every set B € Bg(R?) such that A n B = (, it holds that M (B) "= 0.

It is immediate that a Random Measure is concentrated on a set A € B(R?) if and only if myy is
concentrated on A and C) is concentrated on A x A. The procedures explained in Section [2.1.5] can be
applied in this stochastic framework without technical difficulties. Hence, Random Measures concentrated

on the sphere, on the hyperplane {y = x} or on the spatio-temporal cone (Examples [2.1.1} [2.1.2|and [2.1.3)

are constructed analogously to the deterministic case.

3.3.6 Orthogonal Random Measures and relationship with stationary Random Functions

In this Section we introduce an important class of Random Measures which is, actually, what justifies all the

material presented up to now in this section.

Definition 3.3.7. Let M be a Random Measure over R%. We say that M is an orthogonal Random Measure

if its mean measure is null and if its covariance measure is concentrated on the hyperplane {y = x}.

Let M be an orthogonal Random Measure and let Cy; € . (R? x RY) be its covariance measure.
Following Example there exists a unique measure vy, € . (R?) such that Cj(A x B) = vp (A B)
for every A, B € Bg(R?). We emphasize this fact using the notation introduced in Example Cy =
var6t=1_ Since () defines a positive-definite Kernel, 0 < Cp(A x A) = vys(A) for every A € Bp(R%),
and hence vy is a positive measure. This measure vy, € .+ (R?) is called the weight of the orthogonal
Random Measure M. It follows that

Cov(M(A), M(B)) = vi(An B), VA,BeBg(RY). (3.31)

Hence, an orthogonal Random Measure produces non-correlated values when evaluated at disjoint Borel
sets. If we consider ¢, ¢ € C.(R?), it follows from Eq. (2.38) and from Proposition that

Coul(M, ). (M. ) = | pla)d(a)don(a). (6.32)

Hence, the covariance between the action of M over two functions in C.(R?) is the inner product on

L?(R%, vys) of the two involved functions. If the functions ¢ and ¢ have disjoint supports, it follows that
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(M, ) and (M, ¢) are not correlated. Following an approximation argument, we conclude from Eq. (3.32)
that a measurable function f : R? — C is integrable with respect to M if and only if f € .Z?(R%, vps). We
remark, finally, that if two functions f, g € Z?(R%, v)s) are orthogonal with respect to the inner-product of
L?(R%, vyr), then the random variables (M, f) and (M, g) are uncorrelated, regardless of their supports.

From Proposition [2.1.2] it follows that an orthogonal Random Measure is slow-growing if and only
if vy € Mg (R?), finite if and only if v € 4 (R?), and compactly supported if and only if vp; €
M (RY).

The following result also holds for orthogonal Random Measures. Its proof is presented in Appendix

A8l

Proposition 3.3.3. Let M be an orthogonal Random Measure over R® with weight vy;. Let us suppose that
M is Hermitian. Then, vy is an even measure, and the real and imaginary parts of M are uncorrelated real

Random Measures with the following covariance measures:

vm(An B) +vy(An (—B))

' v (A n B) — vy (An (—B))
2 Y

Cuy (Ax B) = 9 )
(3.33)

Car(A x B) =

forall A, B € Bg(R9).

Example 3.3.4. The White Noise over R%, W, is an orthogonal Random Measure whose weight is the
Lebesgue Measure, dvys(z) = dz. Hence, every function integrable with respect to the White Noise is
necessarily a function in L?(R?). Since the Lebesgue measure is slow-growing, the White Noise is a slow-

growing orthogonal Random Measure. It is not a finite Random Measure. o

The main importance of orthogonal Random Measures is their relationship with stationary Random

Functions. We recall that relationship in the following Proposition.

Proposition 3.3.4. Let Z be a real stationary Random Function with zero mean, with spectral measure (7.
Then, Z is the Fourier Transform of a finite Hermitian orthogonal Random Measure M whose weight is

Upnr = (27‘(‘)%#25
Z() = — dJ e EAM(€). (3.34)
(2m)2 JRd

The Hermitian condition in this Proposition comes from the fact that Z is real. This is a well-known
result which simplifies considerably the theoretical and practical treatment of stationary Random Functions.
We will not give a proof of this result, since we will actually work with a more general version which will be
presented in Section |3.4.3] where the finiteness condition can be replaced by a slow-growing condition. We
remark that we could have used the Inverse Fourier Transform in this result without changing the covariance
structure of M: we would obtain the reflection

!6The reflection of an orthogonal Random Measure with even weight measure has the same covariance measure that the non-
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3.4 Generalized Random Fields

In this section we present the stochastic version of the Theory of Distributions. The idea is analogue to the
stochastic version of functions and measures: the Random Distribution is determined by a mean distribution
and a covariance distribution, and the linearity and continuity conditions are always interpreted in a mean-
square sense. We then show that this notion provides a generalization of the notion of Random Function and
Random Measure where differential operators of arbitrary order can be freely applied. Hence, linear SPDEs

in a quite general and useful framework can be well-posed and analysed.

This theory is actually quite old. The first important treaty on this subject is |Gelfand & Vilenkin| (1964,
Chapter III). Due to its earlier work (Gelfand, [1955)), Gelfand is often considered as the first author to
introduce the concept of Generalized Stochastic Process and its related theory. Other authors also worked on
this theory at the time. We note for instance the work by Itd in the case of stationary Generalized Stochastic
Processes on the real line (Itd} [1954)). Since these early developments, many authors have based their works
on this theory. It is in particular the case of |Y. A. Rozanov| (1982)), where the author develops a theory of
Markov Random Fields based on the concept of Generalized Random Field. (Matheron, |1965, Chapter X)
presents an interesting geostatistically-oriented exposition of Random Distributions. Although this theory is
widely used in Probability Theory and Stochastic Analysis, not many authors from the statistical community
deal with this concept and take advantage from this theory in order to construct new geostatistical models or
develop adapted inference methods. We point out the exceptions of |[Kelbert et al.| (2005) and [Angulo et al.
(2000), although these authors prefer to restrain their analysis to the case of Hilbert spaces, usually focusing

on stochastic processes indexed by convenient Sobolev spaces.

We present here the theory in a tempered framework, always restricted to a mean-square analysis. We
do not base our work on the remarkable Bochner-Minlos Theorem in this subject. Some comments on this
theorem and related developments are given in Section Our framework is based on the simple fact that
we can define a stochastic process of square-integrable random variables indexed by the Schwartz space with
linearity and continuity conditions, following desired mean and covariance structures. See Appendix [B| for
the proof of this claim, based on the classical Kolmogorov Existence Theorem.

3.4.1 Formal definitions

Random Distributions, also referred as Generalized Random Fields, are stochastic processes indexed by a
space of test-functions, satisfying some linearity and continuity conditions. We are going to use the Schwartz
space .7 (RY) as space of test-functions, working thus in a tempered framework. We also restrain ourselves

to the case of real Generalized Random Fields as basis. Any complex Generalized Random Field that could

reflected orthogonal Random Measure. This is the situation in Proposition [3.3.4] since the spectral measure ju is supposed to be
even.
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appear in this work will be the result of a complex operation applied over a real Generalized Random Field.

Definition 3.4.1. A real mean-square-tempered Random Distribution (also called Random Distribution,
Generalized Stochastic Process, Generalized Random Function, or, to set a unique terminology, Generalized
Random Field, and abbreviated GeRF) over R? is a real and continuous linear operator from ./ (R%) to

L*(Q, A, P).
Let us make this definition more explicit. A mapping Z : .7 (RY) — L%(Q, F,P) is a real GeRF if

o Z(p+¢)E Z(p) + Z(¢) and Z(Ap) = AZ () forall p,¢ € .7 (R?) and A € C.

o If p € .7 (RY) is a real test-function, Z(¢) is an almost-surely real random variable.

e 2
o If (¢n)nen < -7 (R?) is a sequence of test-functions such that ¢, 20, then Z (pn) EE .

Thus, Z can be interpreted as a stochastic process indexed by the Schwartz space, (Z(¢)),e » ®4). With a
real, linear and mean-square continuous behaviour. Since both .7 (R%) and L?(, A, P) are metric spaces,
the sequential continuity guarantees the continuity of Z. In order to emphasize that Z works as a continuous

linear functional, we will from now on explicitly write
(Z, )= Z(p), (3.35)

for every p € ./ (RY).

Since the random variables ((Z, ) e »(ra) are all in L?(Q, A,P), a mean and a covariance structure
can be described. For instance, let us consider the mean function my : . (R?%) — C defined as

mz(¢) = E(Z, ). (3.36)

Since Z is real and linear, m is also real and linear. If (¢, )pen © 7 (R?) is a sequence such that ¢, %0,

we argue by Holder inequality that

Imz(en)l < VE((Z, on)l*) = 0,

and thus my is a continuous real linear functional, so it is a real tempered distribution: mz € .#’(RY). We

call m the mean distribution of Z. We write thus (m, ©) := mz(¢p) for all ¢ € .7 (R?).
Let us now define the application K : .7 (R%) x .(R%) — C through

Kz(p,¢) = Cou({Z,¢), (2, 8)). (3.37)
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We call Kz the covariance Kernel of Z. By definition of the covariance, the application Kz is a sesquilinear
form. In addition, it is a positive-definite Kernel. Indeed, let (1, ..., on) € -Z(RDN and (Aq, ..., \y) €
CN, with N € N,. By the sesquilinearity, we argue that

N N
D1 NKz(eh oMk = Y. Kz(A\joj, ouMe)
k=1 k=1
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We remark that the vector space structure of .#(R%) allows us to describe the positive-definiteness of the
covariance Kernel K 7 in a simpler way: a sesquilinear form K : .7 (R%) x.#(R%) — C is a positive-definite
Kernel if and only if K (¢, ) = 0 for all ¢ € .7 (R?).

Let us right now fix ¢ € . (R%), and consider the linear functional over .7 (R%), ¢ — Kz(p, ¢). Let
(Vr)nen < -7 (R?) such that ¢, Z, 0. Since Z is continuous, {(Z,on) L 0, and using the Cauchy-Schwarz

inequality we obtain that

|K7(¢n, 8)| < A/ Var((Z, ouy)Var((Z, ¢)) — 0.

Hence, ¢ — Kz(p, ¢) is a continuous linear functional, thus it is in .#/(R?). Doing the same procedure
with the linear functional ¢ — Kz (i, ¢), ¢ € .7(R?) being fixed, one concludes that it is also in .7’ (R%).
Hence, the bilinear form

(0,0) = Kz (v, ) (3.39)

defines a separately continuous form on .(RY) x .#(R?). By the Nuclear Theorem [2.2.2] there exists a
unique tempered distribution C7 € ./ (R? x R?) such that

(Cz,0@0) = Kz(p,0), VYo,pe SR (3.40)

This tempered distribution is called the covariance distribution of Z, and it satisfies, of course,

(Cz,0 @by = Cov({Z,0),{Z,$)), Yp,pe.7(R?). (3.41)

We say also that Cz defines a positive-definite Kernel. In general, a distribution C' € .#’(R? x R?) is said to
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define a positive-definite Kernel if
(C,p@F) =0, VYoe.Z(RY). (3.42)

Since we have supposed that Z is a real GeRF, it also follows that Cz is a real distribution in .7’ (R¢ x R9).
With a few basic but tedious computations, one proves that Cz is also symmetric in the sense that

(Cz,0® ) =(Cz, 0@ ¢y, Vo,pe.LRY. (3.43)

We remark that in this case, the Nuclear Theorem has allowed us to identify the covariance Kernel with
a covariance distribution in its own right, contrarily to the case of Random Measures exposed in Section [3.3]
More comments about this are given in Section Hence, in order to model the variable of a phenomenon
as a distribution, a mean and a covariance distribution (of two-variables) must be set, analogously to the case

of Random Functions.

Example 3.4.1 (Random Functions with polynomially bounded mean and covariance). Let my : R? —
R be a continuous polynomially bounded function and let C; : R? x R? — R be a polynomially bounded
continuous function which is a positive-definite Kernel. Let (Z(z)),cra be a real Random Function with
covariance function C'z and with mean function mz. We can thus define the generalized version of Z by

defining for every ¢ € .7 (R%):
{Z,p) = J , Z(x)p(x)dx. (3.44)
R

Following Proposition we conclude that for every ¢ € .7 (R?) this integral is well-defined. Indeed,
the random function = € R? — (x)Z(x) is integrable since both functions z € R? > ¢(x)myz(z) and
(z,y) € R x R? s o(2)p(y)Cz(x,y) are integrable over their respective domains. We obtain thus a
stochastic process indexed by the Schwartz space ((Z, ¢)),.¢ »(ra)> and it is not hard to prove that it defines
a real GeRF. The covariance distribution of Z, also noted C7 € ./ (R? x R?) is determined by

(Cz, ) = Cylz, y)P(x, y)dady, Ve S (R x RY). (3.45)

Re xRd
An analogue result holds for the mean function. Thus, the generalization of the continuous Random Function
Z, that is, its interpretation as a Random Distribution, is done analogously to the interpretation of continuous
functions as a distribution in the deterministic case: using its integral. In addition, we can verify that the
criteria of positive-definiteness of Cz interpreted as a distribution is equivalent to the classical definition
for continuous functions. We make the statement in the general continuous, not-necessarily polynomially

bounded case.

Proposition 3.4.1. Let C; : R? x R — R be a continuous function. Then, it is a positive-definite Kernel if
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and only if
JW y Cy(z, y)e(x)p()d(x,y) =0 Yoe Z(RY). (3.46)

We give a sketch of proof of this Proposition in a footnot In general, we will say that a continuous
Random Function with continuous polynomially bounded mean and covariance functions is a GeRF. Con-
versely, we will say that a GeRF over R? is a continuous Random Function if both its mean and covariance

distributions are continuous functions. o

Example 3.4.2 (Slow-growing Random Measures). Let M be a slow-growing Random Measure over R,
with mean measure m s € .#sc(R?) and covariance measure C; € .#sq(R? x R?). Since every function
in the Schwartz space decreases faster than any polynomial, it follows that for every ¢ € .7(R%), the
multiplication measures pm s and (¢ ® $)C) are finite measures, and hence ¢ is integrable with respect
to M (Proposition [3.3.1). We consider then

(M, p) = JRd o(x)dM(z), VYee.Z(RY). (3.47)

The so-defined process ((M, ¢)) e (r4) is then a GeRF, due to the linearity of the integral and to the fact
that my; € Msa(R?Y) < ' (RY) and Cz € Msq(R? x R?)  .7'(R? x R?). Its covariance distribution

thus Cy, interpreted as a tempered distribution:

(Cor, ) = Y(@,y)dCu(z,y), Vi e SR xRY). (3.48)

R x R4
An analogue result holds for the mean measure. Hence, here again the procedure is done analogously to the
deterministic case. The interpretation of a slow-growing Random Measure as a GeRF is done through the
associated integral. We keep thus this idea and we will simply say that a slow-growing Random Measure is
a GeRF. Conversely, we say that a GeRF over R?, Z, is a slow-growing Random Measure if both its mean

and covariance distributions are slow-growing measures. o

3.4.2 Operations with GeRFs

In this section we explain how to apply some continuous linear operators defined for tempered distributions

to a GeRF. The definition is actually straightforward: for an operator defined through an adjoint, we can pass

""Sketch of proof of Proposition for the necessity, express the integral as a limit of convenient Riemann sums (using
partitions of supp(¢) x supp(¢) in rectangles and fixing the middle points as tag points, for instance). One verifies that the sums
obtained have the form of a quadratic form which are always positive due to the positive-definiteness of C'z, and thus the integral is
positive as a limit of positive numbers. For the sufficiency, if we consider (1, ..., zx) € (R))™ and (A1, ..., An) € CV arbitrary, we
can consider N sequences of functions in Z(R?), (@2 )nen, -, (¢ Ynew such that f, — 0z, in the sense of C'(RY) = . (RY)
for every j € {1,...,N}. One verifies then that the sums };; ; w;{CZz, ) ® ok Ywy, are positive and that they converge to the
associated quadratic form }; , w;Cz(z;, T )ws, which is then positive. H
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the action of the operator fo the test-function, and hence apply it without problems.

We will slightly change the notations in a way that is not standard at all. Rather than using the notation
presented in Section where £ denotes a continuous linear operator from .7 (R%) to .#(R?) and L*
denotes its adjoint, we will use the following inverted notation: L is going to be a linear and continuous
operator from .’ (R%) to .#”’(R%) which will be always supposed to be defined through an adjoint, and we
will note L, : .7 (R%) — .7 (R?) its pre-adjoint, that is, the continuous linear operator for which (£,)* = L.
The motivation of this usage if that in this dissertation we will mainly work with operators applied to GeRFs
and tempered distributions, and hence it is better to keep for them the letter £ without any * symbol on it.

Consider then £ : .7/(R%) — .#/(R?) be a continuous linear operator defined through an adjoint. Let
L :.7(RY) — .7 (RY) be its pre-adjoint. Let Z be a real GeRF. We define then the GeRF LZ as

(LZ,p) = {Z,Lsp), Ve SR (3.49)

The operation is well-defined algebraically speaking since L is in .7(R?) for every ¢ € .#(R%). The
continuity of £Z as a linear mapping from . (R%) to L?(Q, A, P) is guaranteed by the continuity of Z and
L. Hence, ((LZ,¥)) e #(rdy 18 a well-defined GeRF. We notice that it is not necessarily real since the

operator £ may be a complex operator.

Let us make explicit the mean and the covariance distributions of £Z. For the mean, we obtain for every
pe SR,
(mez, ) = BKLZ, 9)) = B(Z, Lap)) = (mz, Lap) = (Lmz, ¢). (3.50)

For the covariance, consider ¢, ¢ € .%(R?) arbitrary. Then,

(Crz,9®¢) = Cov((LZ,¢),{LZ,$)) = Cov({Z, Lsp),{Z, Ls¢))
= <CZ7E*§0®@> = <CZ7[’*30®?*($)> (3.51)
={Cz,(Ls ®L:) (¢ ® ) ={(LOL)C7, 0 ® P).

Here we have used the definition of the tensor product operator £® £ and its pre-adjoint £, ® L, following
Sectionm L denotes the complex conjugate of L, which does L(T) = L(T) for every T € .#'(R%). L,

is the complex conjugate of L., with an analogous definition. We conclude that for £LZ we have

mez =Lmyz ;5 Crz=(LRL)Cy. (3.52)

We will make explicit the application of the operators presented in Section [2.2.2] to stochastic objects.
In these examples, Z denotes a real GeRF over R? with mean distribution mz € .#’(R%) and covariance
distribution Cz € .7/ (R% x RY).
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Example 3.4.3 (Derivatives). Let « € N? be a multi-index and let D : ./(R%) — .#'(R%) be the
differential operator associated. The derivative of Z is then simply the GeRF defined through

(D°Z,0) := (—-)l*(Z, D), Vpe L (RY. (3.53)

Hence, a GeRF can be differentiated any number of times. It is thus the appropriate tool to well-pose linear

SPDEs. The mean and covariance distributions of D*Z satisfy
Mmpaoyg = Damz ) CDO‘Z = D(a’a)CZ. (3.54)

Hence, we have obtained the generalized form of Eq. (3.14)) of the case of Random Functions. o

Example 3.4.4 (Multiplication with O;(R9)). Let f € Oy(R?) (deterministic). The multiplication be-
tween Z and f is the GeRF defined through

(fZ,9):={Z.f¢), YoeSR). (3.55)
The mean and covariance distributions of fZ are simply
mgz = fmy ; CfZ = (f@?)CZ o (3.56)

Example 3.4.5 (Convolution with O’.(R%)). Let S € O.(R?) (deterministic). The convolution between Z
and S is the GeRF defined through

(Z%8,0):=(Z,8xp), Vpe.ZRY). (3.57)
A few computations which will be omitted prove that the mean and covariance distributions of Z * S are
mzes =S*myz 3 Crws=(S®8)xCy. o (3.58)
Example 3.4.6 (Fourier Transform). The Fourier Transform of Z is simply the GeRF defined through
(F(2),¢):=(Z,F(¢)), Vpe LR (3.59)
The mean and the covariance distributions of .7 (Z) are
Mgz = F(mz) 5 (F@F ) (Cz). (3.60)

Here we have used that .# = .#~!. An analogue definition and result holds for the Inverse Fourier Trans-
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form. It also holds, of course, that .# 1 (.#(Z)) = Z. Finally, the Exchange formula

ol

F(Z % S) = (2m)2.F(8).7(Z) (3.61)

holds for every deterministic S € O(R?), for which we recall that .7 (S) € Op;(R?). o

3.4.3 Stationary GeRFs

We now provide more details about stationary GeRF's with their main properties. In order to introduce this
concept intuitively, consider first of all the case of a real continuous stationary Random Function (Z(x)) ,epa
with covariance function (Kernel) C'; and with stationary covariance function pz. From the inequality
lpz(h)| < pz(0), it follows that pz is continuous and bounded and hence it defines a tempered distribution
in.#'(R9). Cy is also continuous and bounded hence it defines a tempered distribution in ./ (R% x RY). The
mean function of Z is a constant so it also defines a tempered distribution in .#/(R%). It follows (Example
that Z defines a GeRF, and hence, any stationary Random Function can be interpreted as a tempered
Random Distribution. Recalling that Cz(x,y) = pz(xz — y), the covariance distribution of Z (also noted
C7) satisfies

(Cz,0@¢) = Cz(z,y)e(x)p(y)d(z,y) = f pz(x —y)p(x)o(y)d(z,y), (3.62)
RI x R4 RI x R4

for every ¢, ¢ € .#(R?). With a change of variable and Fubini’s Theorem one obtains

C900) = | patw) [ olu=notivdu= | prterddn G
Inspired by this, we give a more general definition of a stationary GeRF.

Definition 3.4.2. Let Z be a real GeRF over R® with mean distribution mz and covariance distribution C'y.
We say that Z is a second order stationary GeRF (from now on, stationary GeRF ) if its mean distribution
is a constant function and if there exists a tempered distribution py € . (Rd) such that

(Cr,0@8) ={pz,0* ). (3.64)

The distribution py stated in Definition [3.4.2] is called the stationary covariance distribution of Z.
When the stationarity is clear in context and C'z does not intervene in the exposition, we call it simply the
covariance distribution of Z. Since C'z is a real distribution, it follows that p is also a real distribution. We
remark that pz is an even distribution: pz = pz. This can be concluieii, from the symmetry of C'y stated in
Eq. (3.43), the commutativity of the convolution product, and from ¢ = =@ o.
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The stationarity condition stated in Definition [3.4.2] implies, and actually is implied by a translation
invariant property of its second order structures, analogously to the case of Random Functions. Indeed, it
can be proven that a GeRF Z is stationary if and only if for every » € R? it holds that 7,my = my and
(th ® T,)Cz = Cyz, with 73, being the translation operator. See the arguments in Matheron| (1965, Chapter
X, Section 2).

The fact that C'z defines a positive-definite Kernel also implies a positive-definiteness condition for the
distribution p that we will specify in general. A distribution p € 2'(R%), that is, not necessarily tempered,
is said to be a positive-definite distribution or a distribution of positive-type if

(p,p %y =0, Ve 2(RY. (3.65)

In Definition we have imposed p to be in .’ (R%). The following theorem, which is a generalization
of Bochner’s Theorem, known as the Bochner-Schwartz Theorem, guarantees that we have lost nothing

with this restriction.

Theorem 3.4.1 (Bochner-Schwartz). Let p € 2'(R%). Then, pisa rea positive-definite distribution if and
only if p € .7 (R%) and p is the Fourier Transform of an even positive slow-growing measure i € M. ;G(Rd):
p=F(W.

See Donoghue| (1969, Chapter 42) for a proof. Hence, from this Theorem we conclude that if Z is

a stationary GeRF with stationary covariance distribution pz, there exists a unique even measure Ly €
M3 (RY) such that

pz = F(uz). (3.66)

The measure 1z which satisfies (3.66) is called the spectral measure of Z. Since both the distribution p
and the measure pz are even, it follows that pz = F(uz) = F1(uz). We conclude quite easily the
generalization of Proposition [3.3.4]

Theorem 3.4.2. Let Z be a real, zero mean, stationary GeRF over R with spectral measure pz. Then, Z
is the Fourier Transform of an Hermitian slow-growing orthogonal Random Measure Mz whose weight is
proportional to its spectral measure, vy, = (271')% wz. Conversely, the Fourier Transform of any Hermitian
slow-growing orthogonal Random Measure My, over R® with weight VM, 1S a real zero-mean stationary

GeRF over R with spectral measure 17 = (27r)‘guMZ.

This theorem is quite old and well-known. It can be found in Matheron| (1965, Chapter X, Section 3),
and in [It6 (1954) for dimension d = 1. Anyway, with the framework exposed until now, the proof of this

18 Again, this Theorem does not actually require the distribution to be real. The related measure must not necessarily be even, but
it has to be positive and slow-growing.
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theorem is quite straightforward: we have just to analyse the covariance distribution of .% ~1(Z). We make

explicit the calculation since it is simple and beautiful.

Cov((FHZ), ), (FTHZ), ¢)) = Cov((Z, T (), (2, T ~(9)))

(3.67)

— d
2

pz, ey = {(2m)

Here we have used the definition of .# 1, the relation .# ~1(¢) = .# ~1(¢), the Exchange Formula for the
Inverse Fourier Transform (it holds analogously to the case of the Fourier Transform), and the Bochner-
Schwartz Theorem [3.4.1] Hence, we conclude that

1z8Y=" 0 ® ¢).

Cy1(z) = (2m) 7 pzd=2), (3.68)

This proves that . ~1(Z) is a slow-growing orthogonal Random Measure with weight (27) 5 iz. Conversely,
starting from an Hermitian slow-growing orthogonal Random Measure M 7, the result is straightforward con-
sidering that M defines a GeRF through the well-defined integrals (M, ¢ for all ¢ € .7 (R?) (Example
B.4.2), and hence . (M) is well-defined as a GeRF. The stationarity of .7 (M) is proven following a

computation similar to (3.67).

We note that the Hermitian condition in Theorem [3.4.2]is a consequence of Z being real. We could
have used the Inverse Fourier Transform to state the Theorem without changes in the covariance structure
of Mz: we would obtain the reflection of the Random Measure in |3.4.2] which has the same covariance
measure since pz is even, analogously to the case of Proposition We also note that we could have
stated a similar theorem without the assumption of Z being zero-mean. In this case, Z would be the Fourier
Transform of a slow-growing Random Measure whose mean measure is proportional to Dirac measure, and

its covariance measure still, of course, concentrated on the hyperplane {y = x}.

Example 3.4.7 (White Noise). Consider the White Noise over R%, V. As we have seen in Example[3.3.1]
the covariance measure of W is Cyy = 6=} = §(y — z). Hence,

Cwip@D) = | pladlo)ds = [ o0 = ojo=a)dz = 5.0 (3:69)

Hence, W is a stationary GeRF with stationary covariance distribution pyy = §. Since 4 is not a function,

the White Noise cannot be interpreted as a Random Function, but only as a Random Measure or as a GeRF.
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From the relation uy = Z (pw ), it follows that the spectral measure of the White Noise is proportional to
the Lebesgue measure: duyy (§) = (27r)‘gd£ . Let us describe the orthogonal Random Measure associated
to the White Noise My = % (W). Using formula (3.68) (which also holds for the Fourier Transform), one

concludes

d d
2 2

Crwy = (2m) 2 pwd®="} = (21)% ((21) 2 Leb)s1v=" = 61v=2} = Oy, (3.70)

Hence, the Fourier Transform of a White Noise is a White Noise. This is a particularly interesting property of
the White Noise arising from the relation between its covariance measure and the inner-product on L2(R%).
Another property related with this is that the White Noise is, up to a multiplicative constant, the only station-
ary orthogonal Random Measure. This can be concluded considering that every locally finite measure over
R? which is invariant under translations is proportional to the Lebesgue measure. Hence, the weight mea-
sure of a stationary orthogonal Random Measure must be proportional to the Lebesgue measure to satisfy
the invariance under translation imposed by the stationarity. From this it also follows that the White Noise
is the only slow-growing orthogonal Random Measure such that its Fourier Transform is also an orthogonal

Random Measure, up to a multiplicative constant. o

3.5 Stochastic Partial Differential Equations

The notion of SPDE presented here is not the most general conception of such a concept. The main difference
between our definition and others that can be found in Stochastic Analysis and its applications, is that we
require the involved operator to be a deterministic operator. Other branches of Stochastic Analysis do not
require that, and the cases where the operator is also a random object are numerous. We mention for instance
the concept of stochastic homogenezation, which arises when dealing for example in problems of diffusion
in random media; see |Armstrong et al.| (2017)) for an exposition of this theory and its applications. SPDEs
determined by a multiplicative noise are also excluded. We restrain our work to deterministic operators and
hence a SPDE will be simply a PDE with Generalized Random Fields involved.

We call a SPDE over R? an equation of the form
LU = X, (3.71)

where both U and X are GeRFs over R%, and £ : D < .#/(R?%) — ./(R%) is a mapping defined over a
subset of the space of tempered distributions such that its action over GeRFs is well-defined™] We do not

“Important remark: here we have done an explicit and shameless abuse of language. Since the operator £ is not necessarily a
differential operator, this equation is not a SPDE, stricto sensus. We will nevertheless maintain this abuse of language anyway. The
main motivation of doing this is (like almost every motivation on terminology selection), a social one: the term SPDE Approach
was forged when working in a framework where the stochastic equations used did not involve strictly speaking differential operators
(namely, in the case of the SPDE related to the Matérn model, Eq. (I.1)), but it was anyway popularised with the term SPDE. We
decided to maintain this popular name. If the reader is not satisfied with this usage, we suggest to consider that the letter P in SPDE
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suppose, for instance, that £ is linear, nor continuous, but we will assume that it is well-defined for GeRFs
without entering at this stage in further details. The GeRF X in equation (3.71) is called the source term.
As it may be expected, we will fix the source term and try to find a GeRF U which satisfies (3.71).

We need more precisions about this concept, namely, in which sense do we interpret the equality (3.71).
We will use the following terminology: for a fixed source term X, we say that a GeRF U satisfies (3.71)
strictly if

(LU, @) “E (X, 9y, Ve LR (3.72)

In the language of stochastic processes, this is equivalent to require that the process ((LU, g0>)¢ey(Rd) isa
modification of the stochastic process ((X, ) e.»(r+)- When working with Random Functions or Random
Measures, we use an analogue definition replacing ( with points in the space (or more precisely, with Dirac

measures at points in the space) or with indicator functions of bounded Borel sets, respectively.

The strict sense (3.72) is the strongest notion of SPDE we will use in this work. However, in some cases
we will work with weaker conditions. We say that a GeRF U satisfies (3.71) in law if for every finite vector
of test-functions (1, ..., pn) € .7 (RN, N € N,,, we have

(LU, 1), ooy (LU, oY) "2 (X, 01D 000y (XL o)), (3.73)

where the equality "% eans an equality in law of the random vectors involved, that is, that they have the

same probability law over R™. In such a case, we write
LU X, (3.74)

This notion of SPDE is only useful to describe the behaviour of the law of the stochastic process U when
it is supposed to satisfy Eq. (3.71). It does not describe any kind of equality between the random variables
involved as in equation (3.72)). Indeed, if we suppose U to satisfy in law, we do not even impose any
equality conditions between the random variables obtained when evaluating U and X over test-functions:
both processes can even be independent and still satisfy (3.73).

An even weaker but useful condition is the following one: a GeRF U satisfies (3.71) in the second-order

sense, if both LU and X have the same mean and covariance distributions, explicitly if
mey =mx ;5 Cru = Cy. (3.75)

In such a case, we write

LU e x. (3.76)

stands for "Pseudo-", and L can be called a pseudo-differential operator.
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This notion is even weaker than the solution in law since it only involves the first two moments. In some

cases both conditions are equivalent, for example for Gaussian processes.

Let us consider right now the well-defined and specified case where £ is a linear operator defined through
an adjoint. If U satisfies Eq. (3.76), then from equations (3:52)) and (3.73)), we conclude that my and Cyy

must satisfy the following deterministic PDEs:
Lmy=myxy ; (LR®L)Cy=Cx. (3.77)

The lesson of this section lies on this equation: in the second order framework, the SPDE relating X to
U leads to usual PDEs relating the means and the covariance structures. Hence, the problem of describing

covariance models through a SPDE is related to a problem involving deterministic PDEs.

We recall that if condition (3.77) holds, this does not imply a strict equality between LU and X. If this
stronger equality is desired, one must analyse the cross-covariance relationship between LU and X. We

will specify this notion in Section [3.6]

3.6 SPDEs and bivariate models

We now relate the SPDE approach to an important branch of Geostatistics: multivariate Geostatistics. Al-
though we are not going to explicitly enter in the framework of multivariate models in this work, we will
show in this section that the SPDE Approach can be used as an inspiration to describe cross-covariances
models in a quite simple way. We will introduce the notion of a bivariate geostatistical model in the context

of GeRFs. The classical case of Random Functions follows immediately.

Let X and Y be two real GeRFs over R%. We call the cross-covariance Kernel between X and Y the
application Ky y : .7(R?) x .#(R?) — C defined through

Kxy(p,¢) = Coo((X,9),{Y,0)), ¢,¢€.7(R?). (3.78)

Following the same arguments as in Section 3.4.1} one concludes that K x y defines a separately continuous
sesquilinear form. From the Nuclear Theorem there exists a unique distribution C'x y € ./ (R4 x R%)
such that

(Cxy,p®¢) = Kxy(p,¢) Vo,de.7RY. (3.79)

The distribution C'x y is called the cross-covariance distribution between X and Y. This distribution is
real since both X and Y are supposed to be real GeRFs. An analogue definition holds for the covariance

Kernel and distribution in the reverse sense Y, X, that is, Ky x and Cy, x. By definition of the covariance
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and the reality of C'y x, it holds that

(Cxy,¢p®b)y={Cyx,0®@%) = Cyrx,0®¢), Vo s s (R?. (3.80)

In this context there is also a positive-definiteness condition that C'x y must satisfy, but it is not a condi-
tion in Cx y alone but on the whole system of bi-variate distributions C'y, Cx y, Cy,x, Cy. Specifically, any
random vector of the form ((X, ), (Y, ¢)), with ¢, ¢ € .7 (R%), must have a positive-definite covariance
matrix, and hence it must hold that

<CX5@®¢>+<CX,Y5¢®$>+<CY,X7¢®¢>+<CY5¢®$>20) V¢>¢ey(Rd) (381)

The linearity of the distributions involved allows us to conclude that an analogue equation holds for every
possible (finite-dimensional) random vector consistent in evaluations of the GeRFs X and Y over arbitrary
test—function@ A system of four distributions Cx,Cxy,Cy x,Cy € ./ (RY x RY) that satisfies
and (3.80) is called a valid system of cross-covariances. This is the required condition that a geostatistician
must have in mind when selecting a model (that is, selecting covariances and cross-covariances distributions)
in a bivariate framework. If we consider for any ¢, ¢ € .(R?) the complex number A, € C to be such
that |\, 4| = 1 and such that A, 4s(Cxy,» ® ¢y = |[{Cx.y, ® ¢)|, one proves by using —\,, »¢ instead
of ¢ in Eq. (3.81) and using the relationship (3.80), that a system of distributions C'x, Cxy,Cy.x,Cy €
" (R? x R?) is a valid system of cross-covariances if and only if

5 . Vo, ¢ e Z(RY). (3.82)

Cxy,p® )| <

This criterion does not use Cly, x since it is completely determined by C'x y- from (3.80).

The cross-covariance distribution C'y y describes thus the interactions between the processes X and Y
beyond their own covariance structures. For example, C'xy = 0 implies that the GeRFs X and Y are
uncorrelated, and hence independent if we assume them to be real Gaussian processes. If we choose C'x y
appropriately, we can guarantee that both GeRFs are equal, in the sense that one is a modification of the
other. More precisely, two real GeRFs X and Y satisfy (X, o) “= (Y, ) for all ¢ € .7 (R?) if and only if

mx = my and CX = Cy = nyy. (3.83)

The necessity is straightforward. The sufficiency arises immediately from the analysis of E(|{X,¢) —

(Y, ©)|?). With this fact in mind, it is straightforward to obtain a necessary and sufficient condition for

'More precisely, set ¢ = Z;VZI Ajpj and ¢ = ny:l We Pk, With (1,...,08) € LRYY, (¢1,...,6m) € L(RHM,
(A1, An) € CY and (wi,...,war) € CM. Eq. (B81) gives then the variance of Zj.vzl MX, 05 + St widY, o), and
hence the possible quadratic forms of the associated random vector ({X, 1), ..., (X, pn), Y, d1), ..., Y, da)).
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a GeRF U to satisfy strictly the SPDE (3.71]) expressed through the first and second order structures of U
and the source term X. A GeRF U satisfies Eq. (3.71) strictly if and only if

mey = mx and CLU = CX = CEU,X' (3.84)

Hence, when L is linear and defined through an adjoint, we obtain that U satisfies (3.71)) strictly if and only
if the following PDEs hold:

Lmy =mx ; (L®L)Cy=Cx=(L®I)Cyx, (3.85)

where 7 : .7/ (R?) — .#'(R%) denotes the identity operator. This expression can be obtained following the
same procedure as in (3.51)). Hence, the SPDE is fully described by the determination of the covariances and
cross-covariances of the GeRFs U and X, which follow suitable PDEs.

These results show the intimate relationship between the SPDE Approach and multivariate Geostatistics.
Indeed, we can describe a bivariate model either classically by setting a system of cross-covariances distri-
butions, or instead with the SPDE Approach, by setting a model for one variable and then choosing a SPDE
relating the two GeRFs. From this fact arises an idea worth to be discussed: the real interest of the SPDE
Approach is in multivariate Geostatistics. Indeed, more interesting than having a particular SPDE for a given
model, is to have a SPDE relating two different variables of interest directly. This approach allows to dis-
criminate between different bivariate covariance models based for example on traditional physical models,
where the variables involved are related through a PDE. Cokriging techniques can then be adapted by taking
advantage of the relationship defined by the specified SPDE. This approach has already been worked out in
Dong (1990), where estimation methods for variables related through PDEs are developed, with applications

to the Poisson equation and to PDEs from Hydrogeology.

3.7 A general comment on Random Functions, Measures and Distributions

In this section we make some general comments regarding the stochastic framework presented above and we
compare it to other approaches that can be found in the literature.

In this chapter we have defined Random Functions, Measures and Distributions in order to well-define
classical operations of PDE analysis on them. We have restrained ourselves to a mean-square analysis,
where all random variables are square-integrable and all convergences involved are interpreted in the sense
of L?(€2, A, P). This has an important implication: we have never worked with, strictly speaking, continuous
functions, measures or distributions. Indeed, the sample-paths of the processes involved are not required to

satisfy themselves any particular regularity property. Let us be explicit.

Consider our probability space (£2, .4, P). Consider, first of all, a real and continuous Random Function
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(Z(x)),era according to the terminology fixed in Section As every stochastic process, Z can be
interpreted as a function Z : Q x R? — R, for which the functions z € R? + Z(w, ) for a fixed w € Q
are called the sample-paths of Z. Although we have supposed the mean and covariance functions to be
continuous, this does not imply that the sample-paths are continuous functions. Hence, the interpretation
that we use of this process as a continuous random function is rather special: we do not guarantee that
our function will have continuous realisations in general, but we continue to manipulate it as a continuous
function. This works quite well in order to define integrals, limits, derivatives in a regular case, and with
a little more generality, to define linear operations. However, some non-linear operations that we do with
deterministic continuous functions are not necessarily well-defined in this mean-square framework. For
instance, calculating the maxima of a Random Function over a bounded subset of R? is not necessarily
a well-defined operation without supposing extra regularity conditions on the sample-paths of the process.
The typical approach in Stochastic Calculus is to use processes which have a modification with almost-surely
continuous sample-paths. In this stricter framework, properties of boundedness of the Random Functions, for
example, are usually better described than in a mean-square analysis. We refer to |Sobczyk| (1991, Chapter
II) for a general exposition of both the mean-square approach and the almost-surely continuous sample-
path approach. We refer to (@ksendal, 2003, Chapter 2) for the concept of modification with almost-surely
continuous sample-paths.

The case of Random Measures is not better. Actually, a theory of mean-square-Random Measures, where
the o—additivity is considered in the sense of L?(€2,.A,P) is not a quite standard framework. Although
the concepts necessary to describe it and to establish an associated Integration Theory are an immediate
application of the Dunford-Schwartz integral (Dunford & Schwartz, |1958), the only big treaty we could find
which works completely in this framework is the recent Rao (2012)). It is easier to find authors who work
with Random Measures in a stricter sense. If (M (A)) sep,, (re) is a process, it is required that the function
M : Q x Bg(R?) — C must be such that M (w, -) defines a measure for every w € €. A huge literature
can be found for this stricter framework. See for instance the recent big treaty Kallenberg| (2017) and the
references therein. An older bibliographical source which is rather at the beginnings of such a theory is
Morando| (1969). This theory may seem more intuitive to work with since any realisation of the process is
actually a measure for which all the concepts and developments of the deterministic Measure Theory can
be applied, including in particular, the concepts of measure of total variation and Jordan decomposition.
Nevertheless, it turns out that this theory is so strict that many typical models of Random Measures are
excluded. For instance, Gaussian orthogonal Random Measures cannot satisfy such a restriction, unless
their weight measures are sums of punctual masses (Horowitz, [1986). Hence, the Gaussian White Noise is
outside this framework, and in general, every Gaussian stationary Random Field whose spectral measure has
a density is also excluded. Moreover, even without the Gaussian hypothesis, it can be proven that in order
to construct an orthogonal Random Measure which follows this strict definition of Random Measure, the
process must be a Point Process (Kingman, |1967). Hence, the notion of an orthogonal Random Measure
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acting “continuously” over the measurable space is lost. In order to not lose this important concept, we
did not consider this framework, and we decided to restrain ourselves to the mean-square analysis where
linear operations such as integrals and evaluations at bounded Borel sets work fine. However, we have lost
in general the concept of a Random Measure of Total Variation bounding any arbitrary Random Measure
(See for example [@ksendall, 2003| Exercise 2.17). We do not know if a less restrictive condition such as
having a modification which is almost-surely a measure, analogously to the idea of having an almost-surely
continuous modification in the case of Random Functions, provides a more exploitable framework. We

ignore if an associated theory has already been developed.

The case of Random Distributions is quite special. Although we have defined the linearity and continuity
of a GeRF ({Z, g0>)¢ey(Rd) just in a mean-square sense, a framework with a strict distributional behaviour
can be constructed. Let us be precise. Consider a distribution mz € .#/(R?) and a distribution Cy €
Z'(R? x R?) defining a positive-definite Kernel. Consider the measurable space (' (R%), B(.”'(R%))),
where B(.'(R%)) denotes the Borel o —algebra of .7/ (R%) equipped with the weak-* topology. Let us set
this measurable space as our probabilisable space (2, A) = (7/(R%), B(.#'(R%))). It can be proven, at
least in a Gaussian frameworl@ that there exists a unique probability measure over (£2,.4), denoted by
P,,.c,» such that the application Z : (w, ¢) € Q x ./ (R9) > (w, ) defines a Gaussian process with mean
m and covariance C'z. To be precise, for every w € Q = .7/ (R%), Z(w, -) is simply the distribution w, and
for all p € .(R?) the random variable Z (-, ), which we will denote by (Z, o), satisfies

E (e7449)) = eTHKIDAP,,, ¢, () = KM =5 Cr 8D, (3.86)
S1(Rd) S

Hence, the random variables ((Z, ¢)) ¢ »(re) are Gaussian since their characteristic functions are the ones
associated to the Gaussian law, following given mean and covariance structures. This result is known as
the Bochner-Minlos Theorem, which is actually a generalization of Bochner’s Theorem, since it involves a
“Fourier Transform” of a finite measure over the space .’ (]Rd), and whose result is a positive-definite con-
tinuous functional over . (R?). In conclusion, a strictly speaking Random Distribution can be constructed,
as a process following desired mean and covariance structures and whose realisations are tempered distribu-
tions. Hence, every well-defined operation over tempered distributions from the deterministic world can be
applied to such a process. A relatively simple proof of the Bochner-Minlos Theorem can be found in/Holden
et al| (2009, Appendix A), stated in the particular case where myz = 0 and C is the covariance of the
White Noise, although the authors mention that the right side of (3.86) can be replaced with any continuous
positive-definite functional over .7 (R?%) whose evaluation at 0 equals 1. In particular, C'7 can be taken to be

any distribution defining a positive-definite Kernel.

2I'The Gaussianity condition is actually not needed. The only necessary mathematical tool is the definition of a continuous
positive-definite functional over . (R) such that its evaluation at 0 equals 1. A Gaussian functional provides easily such a func-
tional, but there are other options. For example, we can construct functionals associated to characteristic functions of the form (B.6)
presented in Appendix
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This difference between the case of Random Distributions and the cases of Random Functions and Ran-
dom Measures relies on the lack of a Nuclear Theorem such as Theorem[2.2.2] Indeed, the Bochner-Minlos
Theorem is actually stated in a more general framework where the probability space €2 is the dual of a Nu-
clear space. A Nuclear space is, very roughly speaking, a space where a Nuclear Theorem such as [2.2.2]
holds. The theory of Nuclear spaces was developed by Alexandre Grothendieck while searching for a gen-
eral class of spaces where an analogue to the Nuclear Theorem applies (Grothendieckl [1955). See [Treves
(1967, Part III) for a deep exposition of the theory of Nuclear spaces and its relation with Nuclear Theorems.
Minlos then developed an extension to Bochner’s Theorem considering a Fourier Transform over Nuclear
spaces to show the existence of convenient probability measures over these spaces. It turns out that the
nuclearity of a space is actually a necessary condition to obtain such a result as Bochner-Minlos Theorem
(Cartier, |1963). The spaces of test-functions &' (R%),. (R?) and 2(R?) are Nuclear spaces, for which there
is a Nuclear Theorem and the Bochner-Minlos Theorem applies to define a probability measure over their
dual spaces. It is known that infinite dimensional Banach spaces are not nuclear (Treves, (1967, Corollary 2
to Proposition 50.2), and hence this procedure fails to determine a probability measure on the dual of such

spaces. In particular, Hilbert spaces do not satisfy this property.

We conclude this section with a final argument to support our use of a mean-square analysis in this work.
We do not need to have processes with sample-paths determining, strictly speaking, functions, measures
or distributions: we only need things which act like that in some particular useful way and for which the
operations involved in the SPDEs considered in this work are well-defined. This always holds in our mean-
square framework even if the things are not necessarily functions, measures or distributions, since we can
anyway apply the linear operators described in this chapter in complete analogy to the deterministic case.
However, we must confess that we can do like this only because we restrain ourselves to SPDEs defined
through linear deterministic operators: if we would like to consider non-linear or non-deterministic operators,
for example taking extrema of continuous Random Functions, or working with linear SPDEs involving a

multiplicative noise, then a stricter framework with more conditions on the sample-paths is needed.

3.8 Comments on stochastic integrals and non-linear SPDEs

We conclude this chapter with comments on stochastic integrals and more general theories of SPDEs than
the framework used in this work. This section is quite apart from the rest of this dissertation and it can
be skipped in a first reading. Here we will sometimes make some claims without giving proofs, since this

subject goes beyond the scope of this dissertation.

We have defined integrals of Random Functions with respect to deterministic measures (Section [3.2.2))
and of deterministic functions with respect to Random Measures (Section [3.3.3). What we have not done,

which is a crucial difference between our approach and other branches of Stochastic Calculus, is the defini-
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tion of a stochastic integral of a Random Function with respect to a Random Measure. Such a definition is
actually the starting point of It6 calculus and other approaches. The key issue is that there is not a canonical
way to define such an integral. We could follow, for example, an approach defining the integral through a
Riemann sequence of partitions of the domain, together with associated tag points, and take a limit in some
sense. However, it turns out that in general such a limit depends on the selection of the Riemann sequence
of partitions and on the selection of the tag points. We will detail this issue. See |@ksendal| (2003|, Chapters
2 and 3) for a complete exposition of the Itd integral over R*. Here we present just the main facts without

deep precision nor proofs.

Let us first of all explain in broad terms the framework of Itd Calculus over R in its most basic form. It
is based on Brownian Motion, a particular Gaussian Random Function over R, but we will actually present
it in our way. Consider a real Gaussian White Noise over R, (W (A)) sep(r)- If we define the Random
Function B := (B(t))er as B(t) := W([0,t]) if ¢ = 0 and B(t) := —W ((t,0)) if t < 0, it can then be
proven that B is a zero-mean continuous Random Function whose derivative in distributional sense is
The covariance function of B is given by Cp(t, s) = min(t, s) if t,s = 0, Cp(t,s) = max(t, s) if t,s < 0,
and Cp(t,s) = 0 otherwise. Hence, B is a centred Brownian Motion. What is referred to as an integral
with respect to a White Noise in this dissertation (Section [3.3.3) is named integral with respect to Brownian

Motion in Itb calculus.

Basic It6 Calculus fix W as the Random Measure with respect to which we make the integrations.
It also describes the class of Random Functions that can be integrated with respect to W in some sense.
The definition of the It6 Integral is actually quite simple. Consider a Random Function (Z(t))er Which
we suppose can be integrated with respect to W (@ksendal, 2003, Definition 3.14). Consider [ ¢ R™ a
bounded interval. The Itd Integral of Z with respect to W over [ is simply the integral obtained as a typical
limit of Riemann sums using a Riemman sequence of partitions of I consistent in subintervals, and using
as tag points the left limits of the intervals in the partition. The result is a Random Variable denoted by
§; Z(t)dB(t). The limit is defined in the sense of L*(€2,.A,P), and Z must have some conditions for this
limit to be well-defined. The selection of the left limit is crucial since the limit depends upon the tag points.
Another example of stochastic integral in this aim is the Stratonovich integral, which defines the stochastic
integral in the same analogous way but considering as tag points the middle-points of the intervals in the
partition. Both definitions differ in general, and actually, any change in the choice of the tag points may

produce a change in the resulting limit, obtaining another form of a stochastic integral. The typical example

22 In a general deterministic framework, a primitive in distributional sense of a complex measure over R is always a function with
locally bounded variation (Schwartz,|1966, Theorem II, Chapter II), which can be chosen to be right-continuous and with left-limits
(a cadlag function). Indeed, if 4 € .# (R), then the function F' : R +— C defined as F'(t) = p([0, t])1g+ (t) — p((¢, O))IR; (t)
is a cadlag function which satisfies — §, F'(t)¢'(t)dt = §, o(t)du(t) for all ¢ € Z(R). As a sketch of proof, consider for
instance ¢ € 2(R) such that supp(y¢) < R™, the general case following similarly. Using Fubini’s Theorem and integration
by parts, one concludes that — § . ([0, ¢])¢" (t)dt = — o, $op Lio,a(s)du(s)’ (t)dt = o — $oi Lps,oo) (0)¢ (B)dtdp(s) =
SIR+ ©(s)dp(s). The stochastic analogue (with p interpreted as a Random Measure) is presented in full detail in Proposition
in Appendix|[C]
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of this situation is obtained when trying to integrate a Brownian Motion B with respect to its own derivative
which is a White Noise. Rather than exposing it right now, we will later explain in our way this dependence
on the tag points. The non-uniqueness in this definition pushes the authors to chose between a particular
kind of integral, which is often done following practical considerations. We refer to (@ksendall, 2003, end of

Chapter 3) for a discussion on this selection.

Let us remark, however, a particular case of stochastic integration where this problem does not actu-
ally arise. Let A € Bg(R%). Let (VJN )jefl,..,N},NeN, be a Riemann sequence of partitions of A, and
let (xéy)je{l,__’NLNeN* be any collection of tag points of (VjN)je{l,...,N},NeN*‘ Consider the case where
(Z(2))zera is a zero-mean continuous Random Function with covariance function Cz and (M (A)) 4¢3, (ra)
is a zero-mean Random Measure with covariance measure Cs, independent of Z. Hence, the cross-
covariance structure between Z and M is null. In this case, we claim without giving a proof that the limits

of the form
N

. N N
J\PLnoo, 1M(VJ )Z(z;") (3.87)
Jj=

exist with the limit being taken in the sense of L'(, A,P), and the result does neither depend on the choice
of the Riemann sequence of partitions of A, nor on the choice of its tag points. The result is then a uniquely
defined integrable random variable with zero-mean that we may write §, Z(x)dM (x). It can be verified
that the application A — §, Z(x)dM(z) defines a Random Measure in a L'-sense, with the o—additivity
satisfied in the sense of the first moment. If we suppose more conditions, for example that M and Z are
Gaussian processes, the limit can also be taken in the sense of L?((2, A, P), obtaining a Random Measure for
which we can study the covariance structure. Following similar arguments as in Lemma[A.5.2]in Appendix
one can show that the covariance Kernel is of the from (4, B) — §, 5 Cz(z,y)dC(z,y).

The difference between the well-defined integral § , Z(x)dM (x) and the issues exposed at the beginning
of this section is the independence condition. In general, if Z and M have a dependence relationship,
which could be described through a cross-covariance Kernel, then new things may arise. Consider the
measure-function cross-covariance Kernel Ky 7 : Bp(R?) x RY — C defined through K mz(A ) =
Cov(M(A), Z(x)). Then, the mean of (3.87) would be, if well-defined, the limit

N
lim Y Kz (V)Y z). (3.88)

N—>w

J=1

This would define, roughly speaking, a sort of integral of the measure-function Kernel with respect to himself.
It is not clear if this limit is always well-defined, and it is known that in some cases where it is actually well-
defined, the limit depends on the selection of the tag points. The counterexample is the already mentioned
case which shows that the Itd integral and the Stratonovich integral differ. Consider A — R" measurable
and bounded with positive Lebesgue measure. Let M = W be a White Noise over R, and let Z = B be
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its primitive centred at 0, which is a Brownian Motion. The cross-covariance Kernel satisfies for ¢ = 0,
Kw (A, t) = Cov(W(A),B(t)) = Cov(W(A),W([0,t])) = Leb(A n [0,¢]). If we want to define the
integral of B with respect to W over A, we could try it through a Riemman sequence of partitions of A,

defining a Riemann sum as in (3.87). Consider the case where such a partition is made through intervals

with tag points being their left limits, i.e. VjN = [xév ) xﬁl) then
]\}iinOOZKW,B(X/jN,xf) = lim > Leb([z}Y,2},) n [0,2]]) =0, (3.89)
J J

N +aly
. . . . . . .« . N N N N
while by taking the middle points of the intervals as tag points, writing V™ = [a i b; ) and 7} =+,

one obtains

: N N : N N N, N ; b —al¥ _ Leb(A)
lim 3 Kwp(V;Y,2)) = lim 3 iLeb([af’, 67) 0 [0, (b +af")/2)) = Jim H) ot = =55 > 0
J

N> = -
J J

(3.90)
This shows that the difference in the results when choosing different tag points, and hence the difference
between Itd and Stratonovich Integrals is grounded on the structure of the cross-covariance Kernel. It is
K,z and only K 7 (in this mean-square analysis framework) the mathematical object which determines
this distinction. An interesting question that arises is if there are other cases, besides the trivial case of
non-correlation, where the cross-covariance Kernel would admit a definition of a stochastic integral without
ambiguity. For instance, when the Kernel K 7 is a tensor product between a measure and a continuous
function, or a finite sum of such kinds of Kernels, the stochastic integrals may be uniquely defined, provided
that we have a valid system of cross-covariances. In such cases, a framework where Random Functions can

be integrated without problems with respect to Random Measures may be developed.

The interest of defining stochastic integrals uniquely and with enough generality does not only come
from a mathematical curiosity. In fact, it can be conceived as a subset of the problem of defining the product
of two different Generalized Random Fields, and thus a way to define particular classes of non-linear SPDEs
or SPDEs presenting a multiplicative noise. Indeed, maintaining always the analogy with the deterministic
framework, the multiplication of two distributions is not always well-defined, but there is a meaning, for
example, when one distribution is a measure and the other is a continuous function (using the definition of
multiplication measure such as stated in Section[2.1.2)). Hence, it is natural to wonder if such a multiplication
between Random Measures and Random Functions can be defined through a stochastic integral and if we
can use this definition to interpret some products which appear in some SPDEs. The same idea may be
applied if one of the GeRFs has a behaviour similar to a member of the class Oy;(R?). An example of
SPDE that could be included within this framework is the Diffusion equation with random diffusivity over

the space-time R? x R:

%{t] — div(HVU) = X, (3.91)
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where X is a GeRF over R? x R and H is a positive-definite matrix of GeRFs over R%. div and V are
the divergence and gradient spatial operators respectively. This is an example of a linear equation with
a multiplicative noise. Even in the deterministic case, the meaning of the multiplication VU must be
specified, requiring conditions on H and/or on the solution U. For example, if H is a matrix of measures,
VU may be a vector of continuous functions, the resulting multiplication being a vector of measures. Even
if this multiplication is well-defined, the source term X must also satisfy compatibility conditions if we want
Eq. to make sense. For example, if VU is a vector of measures, X must have the behaviour of a
derivative of a measure. All of these problems get worse when entering into the stochastic world, where even
if H defines a matrix of Random Measures and VU defines a vector of continuous Random Functions, their
product, i.e. the associated vector of stochastic integrals, is not uniquely defined and a convenient framework
must be selected. Requiring in addition that X is a White Noise, which is a common practice in Stochastic
Analysis, impose even more theoretical problems to this analysis. The same problem is still present if we

require H to be a deterministic object but we require X to be a White Noise.

Other SPDEs presenting multiplicative noise can be found in (Holden et al., [2009). In this treaty, the
authors base their work on the concept of the Wick product, which allows them to define a sort of multiplica-
tive product between stochastic processes with great generality. However, this product does not necessarily
follow any analogy with the product of objects in the deterministic case: this product can only be interpreted
for stochastic objects, and the realisations of such objects may not possibly be interpreted as functions, mea-
sures or distributions, but rather as averaging values over a space of random variables. We refer to the
introduction in [Holden et al.| (2009) for a discussion on this approach and its theoretical benefits. However,
it is not obvious how to relate this approach to the practice of Geostatistics, since the covariance structure is
not a basic tool of this framework, and moreover the interpretation of the realisations of the involved random

objects as regionalized variables is unclear or lost.

Consider now an example of a non-linear SPDE, the Kardar-Parisi-Zhang (KPZ) Equation (Kardar et al.,
1986)), which is a space-time SPDE of the form

ou

A 2
S —vAU - SIVUE =W, (3.92)

where v, \ are parameters, A denotes the (spatial) Laplacian operator, and |VU|? denotes the squared-
Euclidean norm of the (spatial) gradient of U. Hence, in this equation terms of the form (aaTUj)Q appear,
requiring to give a definition of the multiplication of the derivatives of U with themselves. In order to
define such a multiplication we could require, for instance, U to be a continuously differentiable Random
Function, hence the multiplication of its derivatives is immediate to define. However, the presence of the
White Noise at the right side requires that the behaviour of the left side must be a measure which is not
determined by a continuous function, hence this regularity restriction to U may not work to define a solution

to (3.92)). This equation has been an inspiration for an intense work in the SPDE community. The analysis of
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a well-defined solution to the KPZ equation in the case of spatial dimension 1 has been done by M. Hairer
in (Hairer, 2013)). The ideas used to define such a solution inspired the development of a more general
and sophisticated framework to treat SPDEs which presents some forms of multiplicative products between
Random Distributions, called the Theory of Regularity Structures (Hairer, [2014). The development of this
theory made Hairer be one of the winners of the Fields Medal in 2014.

The problems exposed in this section are then typical, and somewhat basiﬂ theoretical issues which are
presented in the theory of SPDEs in the wide-sense, which engender a huge need for rather sophisticated
theories. In general, it is unclear how to relate the already existing theories to the framework of Geostatis-
tics. For these reasons, in this dissertation we deal only with linear SPDEs defined through a deterministic
operator. This framework is at the same time rich and simple enough to allow us to develop and study new

interesting geostatistical models without entering into the issues exposed in this section.

BBasic in the sense that they are problems at the basis of the theory, not in the sense that they are easy to deal with...



Chapter 4

Stationary Solutions for a class of SPDEs:
existence, uniqueness and examples

SUMMARY

In this chapter we present a result concerning the existence and uniqueness of stationary
solutions to a wide class of linear SPDEs. This result encompasses many of the most important
cases of stationary models related to SPDEs presented in the literature. It can be considered

then, as a review, as a generalization and as a simplification.

In Section we present the motivations of these developments and the questions that are
tackled.

In Section we present the class of linear operators which will determine the class of
SPDEs considered in this chapter. It consists in operators acting over the space of tempered
distributions such that their Fourier Transforms are slow-growing measures. These operators
are defined through the Fourier Transform and a symbol function, which is an Hermitian mea-
surable polynomially bounded function. We describe the action of such a class of operators,

which are proven to maintain the stationarity.

In Section the main result of this chapter is presented, which is Theorem We first set
the class of considered SPDEs, which consists of linear SPDEs involving an operator defined
through a symbol and a stationary source term. Then, we present Theorem which states
that the existence of a stationary solution to a SPDE in our class is equivalent to a slow-growing
behaviour requirement of the multiplication between the squared-norm of the reciprocal of the
symbol function and the spectral measure of the source term. The uniqueness of such a solution

is equivalent to a never-null requirement for the symbol function. We make some remarks con-
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cerning similar well-known results in the literature, the characterisation of some cases where
existence and uniqueness is assured regardless of the source term, characterisations of station-

ary solutions to homogeneous cases, and some possible extensions.

In Section we remark the case where the source term is a White Noise, which deserves to
be considered as a fundamental case. We present Theorem which states, under suitable
conditions, that the covariance distribution of the solution of a general SPDE can be expressed
as the convolution between the covariance of the source term and the covariance of the solution

with a White Noise source term.

In Section|d.5|\we present some examples of applications which are known in the literature and
we propose some SPDEs for well-known models whose relation to some SPDEs are not broadly
known. We review the popular Matérn model with its typical associated SPDE. We present
the case of Matérn models without range parameter. We present the case of stationary Markov
Random Fields according to Rozanov’s Theory. We also show some examples where we propose
some SPDE:s for well-known models. We give a SPDE which describes non-exhaustively the
J—Bessel model. Finally, we propose a SPDE whose unique stationary solution follows a Stein

model in a spatio-temporal context.

We finally make a remark about the associated deterministic problem in Section We
discuss roughly some differences between the approach developed in this chapter and some
typical approaches in the theory of PDEs. We also state, in the stochastic context, a result on

existence and uniqueness of solutions with non-zero mean and stationary centred form.

The proof of every statement is presented in Appendix|[A]

4.1 Motivation

The SPDE approach in Geostatistics has been popularised in the last decade since the apparition of the
seminal paper of |[Lindgren et al.| (2011). In this work, the authors exploit an already known link between
the Matérn model and a particular class of SPDEs (Whittlel |1963)). The authors also notably remarked an
important fact: the Matérn fields are not necessarily the only solutions to the related SPDEs, but rather
the only stationary solutions. Indeed, for some cases of the involved class of SPDEs, deterministic (or
even random) solutions to the associated homogeneous problem can be added, and hence the solution is not
unique. We will specify those details further in Example [4.5.1]

The questions that arise are then the next ones: when do stationary solutions to some particular classes
of SPDEs exist? When does exist a unique stationary covariance model that the solutions to such SPDEs
must follow? Can we fully characterise the covariance structure of these models by taking advantage from
the fact that they solve a particular SPDE?
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In this section we answer these questions. For this purpose, we restrain ourselves to a particular class of
linear SPDEs which are particularly adapted to treat the problem of stationary solutions, and which gives an
enough rich and general framework to encompass many well-known results relating stationary covariance
models to SPDEs. The results presented in this chapter will be a basis for further developments in this
dissertation. It will allow us, in particular, to construct new stationary models with non-trivial properties and

to verify when do stationary solutions to some important physically driven SPDEs exist.

All along this chapter we suppose that all of the random objects have null mean, except in Section {.6|
If X and Y are two GeRFs, the notation “X = Y” means that X is a modification of Y. We will anyway

recall this particular equivalence meaning when we feel it is necessary, in order to avoid any confusion.

4.2 A class of linear operators

Let us consider the next subspace of tempered distributions:
V' (RY) = {T e SR | F(T) e MscRY)} = F HMsc:(RY)). 4.1)

It is immediate that #’(R?) is a vector subspace of .#/(R%). The choice of this space has been done on
purpose: it was conceived considering the fact that the Fourier Transform of a stationary GeRF is a slow-
growing Random Measure (Theorem [3.4.2)). Hence, it is expectable that this space will be quite useful when
working with stationary Random Fields. We remark from the Bochner-Schwartz Theorem [3.4.1] that every
positive-definite distribution is in #”(R%). Actually, since a slow-growing measure can be decomposed in
four positive slow-growing measures (see Section, 7' (RY) is the complex span of the cone of positive-

definite distributions.

We will define a class of linear operators which can be applied over distributions on 7”/(R?). Let g :

R? — C be a polynomially bounded measurable function. We define the operator £, : #'(R%) — 77/(R?)
as

L,(T) = F 1 (9F(T)), VT eV RY. 4.2)

Let us analyse this definition. First, since .#(T) € #sc(R?) and g is measurable and polynomially
bounded, the multiplication g.%(T') is a well-defined slow-growing measure (Section . Its Inverse
Fourier Transform .7 =1 (9.7 (T')) = L4(T) is well-defined in the sense of distributions and it is an element
of #/(R%). The operator L, is thus well-defined. It is also immediate, that it is a linear operator. Due to
the properties of the Fourier Transform, the operator L, is real if and only if g is an Hermitian function. An
Hermitian polynomially bounded measurable function g : R¢ — C will be from now on said to be a symbol
function over R?. In such a case, the associated operator L, defined through (4.2) will be said to be an
operator defined through a symbol, and we will say that g is the symbol of L,. We remark that every differ-
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ential operator D®, with v € N¢, is an operator defined through a symbol. Indeed, by using the property of
the Fourier Transform with respect to derivation, .7 (D°T) = (i&)*.Z(T) for T € .#'(RY), it follows that
D = L, for (&) = (i€)®, € € R% Other examples of such operators will be worked out in Section and

further in this dissertation.

Let us now consider the application of £, over a stationary GeRF Z over R?. We have the following

property:

Proposition 4.2.1. Let Z be a real stationary GeRF over R® with covariance distribution py and spectral
measure [iz. Let g be a symbol function over R and let Ly be its associated operator. Then, L,Z is a

real stationary GeRF over R? with covariance distribution pp .z = Lg2px and spectral measure jic,7 =

|9|2MZ~

See Appendix for a proof. Hence, operators of the form L, maintain the stationarity, and are
applicable to any real stationary GeRF without restriction. We remark that the expression of the spectral
measure fic,z = |g |>11z is particularly simple while in general the expression of the covariance PLyz =
L42pz may be more complicated since L4z may not be an operator simple to deal with. It turns out that
in this framework it will be easier to work with spectral measures rather than with the covariances. For

simplicity, from now on every even measure in ./ ;G(Rd) will be said to be a spectral measure over R?.

4.3 Associated SPDEs: an existence and uniqueness Theorem

Let g be a symbol function over R%. Let X be a stationary GeRF over R?. Consider the following SPDE
which involves X as source term:
LU =X. 4.3)

We recall that with our notation, Eq. (4.3) means that the equality must be strict (see Section [3.3]), meaning
that £,U is a modification of X. The question that arises is to establish under which conditions there exists
a stationary GeRF U solution to (#.3)) or not, whether it is unique and, when solutions exist, whether we can

characterize their covariance structures.

In order to obtain conditions about the resolvability of Eq. (4.3), let us first of all analyse sufficient

conditions to solve the weaker equation

EgU Qni o. X (44)

From Proposition[4.2.1] it follows that if U is a solution to (4.4), then the next PDE must hold:

Lig2pu = px- (4.5)
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Equivalently, the next expression relating the spectral measures must be satisfied:

91 = px. (4.6)

Eq. (4.06) is a multiplicative equation, so it is more immediate to treat. Such a problem is called in Distribution
Theory a division problem. We can argue that there exists a stationary solution to (#.4) if there exists a
spectral measure solution to (#.6). Intuitively, we could require 17 to be the multiplication between |g| =2 and
px. This multiplication can always be done, the result |g| =2/ x being in general a positive not-necessarily
Radon measure. It is even since px is even and ¢ is Hermitian. Hence, a possible criterion of existence of a
stationary solution to (#3) is to require the measure |g| 2pux to be in .#Zg,(R?). The next Theorem states
that actually, this condition is necessary and sufficient for the existence of a strict stationary solution to (4.3)),
and provides in addition a criterion to determine when the solution is unique, together with the specification

of its spectral measure.

Theorem 4.3.1. Let X be a real stationary GeRF over R with spectral measure jx. Let g be a symbol
function over R and let Ly be its associated operator. Then, there exist real stationary solutions to the
SPDE (@.3)) if and only if there exists N € N such that

dux (&)
JRd G©P + [¢)N = F 4.7)

In such a case, there is a unique up to a modification real stationary solution to (.3)) if and only if |g| > 0.
If this holds, the unique real stationary solution U to {@.3)) has spectral measure

po = 9| px. (4.8)

The proof of this theorem relies, roughly speaking, in the correct definition of the application of an
operator of the form .# 4(%? (+)) over X. Since é is not necessarily polynomially bounded, such an
operator is not necessarily of the form (4.2) and hence it cannot be in general applied to any stationary

GeRF. The details of the proof are presented in Appendix[A.10] We make the following remarks:

Remark 4.3.1. When N = 0 in 7), i.e. if |g| =2 is integrable with respect to the measure /., the measure
py 1s finite and the solution U is thus a mean-square continuous random function. This case was studied in
Whittle| (1963), restricted to the SPDE in the second-order sense (4.4). In his same work, Whittle mentioned
that solutions corresponding to non-finite measures p; still make sense in some framework, the theory of

which was at that time not completely available. Our work can be seen as one possible answer to this note.

Remark 4.3.2. A sufficient condition for existence and uniqueness of a strict stationary solution to (4.3,

regardless of the source term X, is to require that |g| is inferiorly bounded by the inverse of a strictly positive

polynomial. Indeed, in such a case é is a symbol function, and hence L1 is an operator defined through a

g
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symbol. The operator £, : ¥’(R?) — #”(R?) is actually bijective, with inverse operator Lt =L L. This
implies that Eq. (4.3) can be solved explicitly by setting simply U = £1 X. U is then the unique stationary
solution and its spectral measure is given by (#.8)), following PI‘OpOSitiOIgl We shall henceforth refer to
this condition as the Polynomially Bounded Reciprocal condition on g, abbreviated as the PBR condition on

g. We will also say that g has a PBR, in such a case.

Remark 4.3.3. When the measurable set g~1({0}) = {¢€ € R? | g(¢) = 0} is non-empty, the non-uniqueness

is due to the existence of stationary solutions to the homogeneous problem
LUk = 0. 4.9)

Indeed, for a spectral measure 177, over R? concentrated on g~*({0}), its associated stationary random field
satisfies strictly Eq. @9), since yuz,u, = |g|*ws = 0. Thus, if existence is provided, the sum of any
stationary solution to (4.3]) with a non-trivial independent stationary solution to {.9) is also a stationary
solution to (4.3). This remark is an inspiration for describing stationary solutions to homogeneous problems,

and we will use it extensively.

Remark 4.3.4. Theorem has been stated under the polynomially bounded condition on g in order to
freely apply L, to any stationary GeRF. However, if we restrict the domain of definition of £,, we can
include some new SPDEs, valid for more restricted classes of stationary GeRFs. For instance, let us suppose
that U is a stationary Random Function following a Gaussian covariance, with the same parameters as in Eq.
(3.4). Then, it is clear that U satisfies a SPDE of the form

F HgF (U)) =W, (4.10)
with g being the function
d
21 42
g(6) = 2m)i 2L 5P cer @.11)
oa?

This function is not polynomially bounded, hence the potential associated operator £, cannot be applied
to any arbitrary stationary GeRF, as well as it cannot be applied to any arbitrary distribution in 7’ (R%).
However, it can be applied to a Random Function with this Gaussian covariance, obtaining as a result a
White Noise.

4.4 A fundamental case: White Noise source term

In this section we will present a result concerning the particular case of equation (4.3) when the source term
X is a real White Noise W. We will see that the covariance structure of the solution in the cases with other

source terms can be related to the solution of the White Noise case in a convenient way. This can be seen
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as a special and important property of the White Noise, which can be added to all the properties given in
Examples[3.3.1] [3.3.4]and[3.4.7] We recall that W is a stationary GeRF with covariance distribution py = §
and with spectral measure duyy (§) = (27r)7gd§ .

We then focus on the equation
LU =W. (4.12)

Theorem .31 allows to conclude that there exist stationary solutions to (4.12)) if and only if the measure
(2%)7% 19(€)|72d¢ is in A, (RY). Let us suppose this holds. From Proposition , every stationary
solution (4.12)) must have a covariance distribution satisfying

£|g\2PU = pw = 0. (413)

It turns out that solutions to the deterministic equation (.13)) can be seen as Green’s Functions of the operator
L42, concept which is used in the theory of PDESs in order to obtain fundamental solutions to some class of
PDE. These fundamental solutions are used to construct solutions to more general forms of the PDE, usually
through a convolution. From this typical application of the theory of Green’s Functions arises the idea that
a solution to the more general case L 2py = px may be expressed as a convolution between px and the
solution to @.13)). It is then expected that such a solution would be the covariance distribution of the more
general SPDE (4.3)). The next result presents some cases where this idea holds regardless of the source term
X.

Theorem 4.4.1. Let X be a real stationary GeRF over R% with covariance distribution px. Let g be a
symbol function over R? satisfying at least one of the following requirements:

1. ; € Oy (RY);

2. there exists N € N such that F ((1 + |z|?)N|g|~2) € L'(RY).

Let L be the associated operator. Then, there exists a unique stationary solution to the SPDE (4.3)), and its

covariance distribution is given by

pu = pl *px, (4.14)

where pWV denotes the covariance distribution of the unique stationary solution to .
PU q ry

The proof of this Theorem can be found in Appendix[A.T1] It is based on the idea that when there exists
a stationary solution to (#.3)), the measure pyy := |g| 2ux is slow-growing and it is the multiplication of
lg] =2 and px. Since |g|~? is, up to a multiplicative constant, the spectral measure of a solution to (#.12)),
the convolution relation comes from an application of an Exchange Formula of the Fourier Transform, if the

convolvability between the Fourier Transforms of |g|~2 and px is satisfied. We make the following remarks.
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Remark 4.4.1 (Remark of academic honesty). A result on Distribution Theory which we found very lately
(while writing this manuscript, a few weeks before its delivery) is the one stated in|Richards & Youn| (1995,
Example 3, Section 6, Chapter 7). Using suitable and not-quite-traditional-but-intuitive definitions of the
multiplicativity and convolvability between tempered distributions, the authors state that any continuous and
polynomially bounded function is multiplicable (in their sense of multiplication) with any finite measure,
and hence their Fourier Transforms are convolvable, satisfying the Exchange Formula. Hence, with just a

few more arrangements, a more general and simpler form of Theorem 4.4.1|can be stated as follows:

Let X be a real stationary GeRF over R¢ with covariance distribution px. Let g be a symbol function
over R? such that |g|=2 is continuous and polynomially bounded. Let Ly be its associated operator. Then,
there exists a unique stationary solution to the SPDE ([@.3), and its covariance distribution is given by pyy =
p(‘/}/ * px, where p‘év denotes the covariance distribution of the unique stationary solution to (4.12)).

Conditions and actually imply that |g| =2 is continuous and polynomially bounded (see the arguments
in the proof of Theorem[.4.T]in Appendix[A.TI). Hence, this statement is more general than Theorem{.4.1]

The reason why we have decided to present this result in the weaker form of Theorem {.4.1]is founded
on two motivations: first, we do not know in detail the theory of multiplication and convolution presented in
Richards & Youn| (1995), hence we cannot really justify the result; second, and more important, the result
regarding the multiplicavility between polynomially bounded continuous functions and finite measures is not
proven in the book Richards & Youn! (1995), it is left as an exercise. Since we have not done this exercise,

we do not feel with the right to state the result in its general form.

We remark however a curiosity: the continuity condition is imposed to |g| 2 and not to g. Hence, g may
have an irregular behaviour. The continuity of |g| =2 cannot be immediately dropped out, since the Exchange
Formula of the Fourier Transform does not hold in general for the multiplication (in our sense) between
a measurable polynomially bounded function and a slow-growing measure. As counter-example, consider
the function f = 1o, and the Dirac measure . Then fé = 6, so F(fd) = (27r)_%, but #Z(f) = 0in
distributional sense, and hence .7 (f) = % (0) = 0.

Remark 4.4.2. The conditions on g are imposed, as already said, to obtain a condition regardless of the
source term X, and hence px can be any positive-definite distribution. If px is in a particular class of
positive-definite distributions, then other less restrictive conditions may be required on g in order to obtain
an analogue result to Theorem In particular, it could be argued that, as long as pgf exists and it
is convolvable with px, an analogue result may hold. This can be studied, for example, in a classical

framework of convolvability between functions.

It can be thus concluded that the case with a White Noise source term is of big importance in the analysis
of the covariance structures of solutions to Eq. (4.3)). The connection with the concept of Green’s Function

and fundamental solutions to PDEs justifies the use of the expression “fundamental case” in this context.
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Because of this, many of the examples of geostatistical models related to SPDEs presented in this dissertation

will be studied mainly using a White Noise source term.

4.5 Examples

The framework presented in this chapter encompasses many models already developed in the literature. In-
deed, the only things that our analysis has provided is the formalization and generalization of the idea of
defining a stationary covariance model whose spectral measure has a density with respect to other spectral
measure, and a way to relate this covariance model to a particular class of SPDEs. We refer to some biblio-
graphical sources where similar approaches have been applied to construct models, all of them considering

also an associated SPDE.

o Whittle| (1963) for the general case where the spectral measure of the solution p; is finite (Remark

A.3.1).

Heine| (1955)) describing models associated to second order differential operators in dimension 2 and

Vecchial (1985) for models obtained from compositions of such type of operators.

Anh et al.|(1999) and |Gay & Heyde| (1990)) for cases associated to fractional Laplacian operators, and

(Kelbert et al., 2005) for their generalization used to describe fractional forms of the Heat equation.

Bolin & Lindgren| (2011)) and [Lim & Teo|(2009) for more general forms of the Matérn model.

Jones & Zhang| (1997)) for examples on a spatio-temporal context.

In this section we will detail some of those examples and we will also present relations of some known
geostatistical models with SPDEs which are not present in the literature. Other examples will be detailed

further in this dissertation.

Example 4.5.1 (Matérn Model). As a first example, we start with the well-known and increasingly popular
Matérn model (See Eq. (3.6)). The relationship between the Matérn Model and the SPDE over R?

(K2 =AU =W, (4.15)

with k£ > 0, « € R has been established a long time ago (Whittle, |1963) and recently revisited and exploited
in [Lindgren et al| (2011). This relationship can be easily re-obtained from Theorem {.3.1] Indeed, the
operator (k2 — A) 2 is nothing but an operator of the form @2) with symbol function g(¢) = (k2 + |£[2) 2.

This function satisfies the PBR condition, and hence there exists a unique stationary solution to (4.15])).
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Following Eq. (4.8), the spectral measure of this solution is

e
dul¥ (&) = . . (4.16)
M) = T + e

d
If a > 3

with a = 1). When o < %, we still obtain a unique stationary solution, defined as a GeRF. We refer to this
model as the generalized Matérn Model. The associated covariance distribution pEV =7 (,uEV) is called the

the measure ,uVUV is finite, and it is exactly the spectral measure of the Matérn Model (Eq. (3.6),

generalized Matérn covariance.

We remark that g is actually a function in Oy;(R%), and so does its reciprocal. Hence, the operator
(k2 — A)? is actually a bijective operator from .’(R%) to .#/(R%), not only in ¥’(R%). In particular, g
satisfies condition [I)in Theorem4.4.1] Hence, for any real stationary GeRF X, the SPDE

(k2= A)2U = X (4.17)

has a unique stationary solution whose covariance is the convolution between px and the generalized Matérn

covariance.

We finally remark that, for example, for v = 2, the functions of the form f(z) = ae"‘”%, r € RY, with
a € Rand v € R? with |v| = 1, are solutions to the homogeneous equation associated to Eq. (#.13)). We can
also make the parameters a and v be random variables, so we would obtain a Random Function solution to
such homogeneous equation. However, those solutions are not stationary (they are not even tempered). This
is the importance of the stationarity assumption in the researched solutions, as it was pointed out in|/Lindgren
et al. (2011). o

Example 4.5.2 (Matérn Model without range parameter). The condition x > 0 in the Matérn SPDE
defined in Eq. can be relaxed. Setting x = 0, we obtain a fractional Laplacian operator (—A)%,
which is an operator of the form £, with symbol function g(£§) = |{|* for & > 0. Let us thus consider the
SPDE

(=A)2U = W. (4.18)

In Theorem the existence condition requires that there exists N € N such that the integral
§pa(1 + €2~V ]€|72~d¢ is finite. Because of the singularity at the origin, this is only possible if a < d/2.
In this case, the spectral measure of a particular stationary solution to the SPDE (4.18)) is

1 d¢

d:U’U(f) = (271_)% |£|2a'

(4.19)

The associated covariance distribution is its Fourier Transform, which is the locally integrable function (see
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Donoghue, (1969, Chapter 32):

[fsH

—a) 1
(@)  |h|d=2e’

1

d
2

pu(h) = h e R%. (4.20)

!

™

The function py in is not defined at A = 0. It is not continuous, but it is still positive-definite in
distributional sense. The associated GeRF cannot thus be interpreted as a mean-square continuous Random
Function. This is an example of the kinds of covariance structures we obtain when working with non-
finite spectral measures. Such models are said to have a long-range dependence behaviour. They have been
studied in|Anh et al.|(1999) and in|Gay & Heyde|(1990), in which the SPDE is specified with a slightly
different definition of the operator (—A)?.

We remark that the symbol function g(§) = |£|® has a zero at the origin. Hence, the uniqueness condition
does not hold. The stationary solution associated to the covariance (@.20) is not the unique possible solution.
To describe all possible stationary solutions, we follow Remark [4.3.3] and we consider spectral measures
which are supported at the origin, i.e., which are proportionals to the Dirac measure p7,, = ad, with a > 0.
The associated covariance distributions are then constant positive functions, and thus the associated GeRFs
are random constants, that is, Random Functions of the form Uy (xz) = A, for all z € RY, with A being
a centred random variable with variance (27r)_%a. In other words, the only stationary solutions to the

homogeneous equation (—A) 2Upy = 0 are random constants.

Another consequence of the fact that g equals zero at the origin is that Theorem cannot be applied
since |g| 2 is not continuous. If it is desired to describe the covariance of a potential stationary solution to
a SPDE of the form (—A)2U = X through a similar principle, a convolvability condition between py and
the covariance (4.20), when it exists, must be satisfied. o

Example 4.5.3 (Markov Models). Let p : Rt — R/ be a strictly positive polynomial over R*. We
consider the SPDE over R¢
PR (=AU =W, @21)

where the operator p% (—A) is of the form (@.2) with symbol function g(§) = p% (1€]?). Since p is strictly
positive, the PBR condition holds. Hence, the SPDE (4.21) has a unique stationary solution with spectral

measure

W L dg

d . 4.22
Ho ) = o T oD (422

This is a measure whose density is the reciprocal of a strictly positive and isotropic polynomial. Rozanov’s
Theorem (Y. A. Rozanov, 1982, Section 3.2.3) allows to conclude that this model is an isotropic stationary
Markov Random Field (MRF). In Rozanov’s Theory, a MRF is, roughly speaking, a GeRF such that for
every domain of R?, evaluations of the random field on the interior of the domain are independent upon

evaluations on the interior of the complement of the domain, conditionally to the behaviour of the random
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field on a neighbourhood of the boundary of the domain. By evaluations, we mean the action of the GeRF
over test-functions whose supports are included in the interior of the corresponding set. Rozanov’s Theorem
states that every stationary MRF has a spectral measure whose density is the inverse of a strictly positive
polynomial. Thus, in the case of isotropic models, MRFs satisfy equation (#.21)). An anisotropic model can
be obtained by applying an anisotropy matrix to £ in Eq. (¢.22). See|Y. A. Rozanov|(1982)) for a complete
theory of MRFs which also uses the theory of GeRFs, orlJ. A. Rozanov|(1977) for a shorter exposition which
also includes the relation of MRFs with some SPDEs.

Note that g satisfies condition [I]in Theorem[4.4.1] Hence, for any real stationary GeRF X, there exists a
unique stationary solution to the SPDE
p? (AU = X, (4.23)

whose covariance is the convolution between px and the covariance of the MRF solution to Eq. (¢.21). o

Example 4.5.4 (The J-Bessel Model). Let U be a real Random Function over R4 following the J-Bessel
model (See Eq. (3.7)), we will follow the same parametrization). Since its spectral measure is proportional to
the uniform measure over the d —1-sphere of radius x > 0, 6B,(.id) (0), it follows that for any symbol function
g which equals 0 over 6B,(4d)(0), U satisfies L,U = 0. This is immediate following Remarkm since in
such a case puy; is concentrated on g~*({0}). In particular, the .J—Bessel model satisfies the homogeneous
SPDE

(k2 + AU = 0, (4.24)

case for which the associated symbol function is g(¢) = x2 — |£|2. We remark that this is not the unique
homogeneous SPDE that is satisfied by the J—Bessel model since there are many symbol functions which
are 0 over the d —1-sphere. In addition, this equation is not only restricted to the J—Bessel model: any
stationary GeRF with spectral measure concentrated on 8B,£d) (0) also satisfies it. However, since the Fourier
Transform of a distribution invariant under rotations is also invariant under rotations, any stationary GeRF
with isotropic covariance and satisfying (4.24)) follows a J—Bessel covariance model. We remark that
SPDE (@4.24) does not tell us anything about the variance of U, nor the extra isotropic condition. Hence,

more restrictions on U must be required in order to fix its variance. o

Example 4.5.5 (The Stein Model). Here we present a spatio-temporal example. We work on R? x R with
d being the spatial dimension. The variable £ € R? denotes a variable of the spatial frequency domain,
and w € R denotes a variable of the temporal frequency domain. Rather than starting from a SPDE and
describing its potential solution we make the procedure backwards: we start with a known covariance model

and we propose a SPDE that a GeRF following this model must satisfy, similarly to what we have done in

Example
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Let us consider the spectral measure over R¢ x R proposed in [Stein| (2005):

dédw
(2r) 5 (0(s? + w?)P +a(k? +[€]2)*)"

dpy (& w) = (4.25)
with a,b > 0, s> + k? > 0, and o, 8, v € R, satisfying that 5 > 0if s> = 0 and a > 0 if K> = 0. This is
always a well-defined spectral measure over R% x R, being finite when «, 3,7 > 0 and ﬁ + % < 2 (Stein,
2005)), case in which the associated Random Function is said to follow a Stein covariance model. When
(#@.25) is not finite, we say that the associated GeRF follows a generalized Stein covariance model. Except

for some particular values of the parameters, there is no closed-form expression for the covariance.

We then consider the spatio-temporal symbol function
g(&,w) = (b(s® + )P +a(k? + )2, (6, w) e R xR, (4.26)

With the conditions required on the parameters, this symbol function satisfies the PBR condition, hence
any SPDE involving the associated operator £, has a unique stationary solution. The form of g allows us
to write its associated operator in terms of fractional second-order differential operators. Using a spatio-
temporal White Noise, W (i.e., with spectral measure dpuyy (€,w) = (27)~(4*+D/2d¢dw), a corresponding
SPDE for the Stein model is

62 B v/2
(b <52 — 8152) +a (52 — A)a> Uu=Ww. 4.27)

Hence, the unique stationary solution to Eq. follows a generalized Stein covariance model.
When &, s,a,b > 0 and «, §, v are not null, the symbol function (#.26) satisfies condition [I]in Theorem
Hence, for any stationary GeRF X, the SPDE

82 8 v/2
<b (52 — aﬂ) +a (k- A)“) U=X (4.28)

has a unique stationary solution whose covariance is the convolution between px and the covariance of the

generalized Stein model.

We finally remark that the models proposed in |[Kelbert et al. (2005, Section 3) are Stein models in the
particular cases where s = 0 and 8 = 1. In such cases, the SPDE may be re-written using first-order
temporal differential operators. o
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4.6 Remark: the deterministic problem

In this section we make a simple remark about the deterministic problem associated to Eq. (4.3) and Theorem
M.3.1] It can be considered as a non-geostatistical analysis, but it can also be applied to describe the means
of non-centred GeRFs related through a SPDE of the form (4.3), analysis that we will also do.

Considering that Theorem has been obtained following the idea that . (U) acts as a slow-growing
measure over R?, it is quite intuitive that we can obtain the following deterministic result. We will use lower

case letters to denote deterministic distributions.

Proposition 4.6.1. Let f € ¥'(R?). Let g be a symbol function over R? and let L be its associated operator.

Then, there exist solutions in V' (R?) to the equation
Lou=f (4.29)

if and only if é is locally integrable with respect to .7 (f) and the multiplication measure éﬁ (f) is slow-
growing. If this holds, there is a unique solution in ¥V'(R?) to @29) if and only if |g| > 0. In such a case,

the solution is given by

1
uw=F ! <9(f)> . (4.30)
g
The proof of this result is very similar to the proof of Theorem .3.1] and it is presented in Appendix
We can also state analogous remarks to those proposed for Theorem [4.3.1}

e There exist solutions in the space .% (.#(R?)) if and only if |g| ! is integrable with respect to .7 ( f).

e If g satisfies the PBR condition, the solution is unique regardless of the source term f since L, is

bijective.

e The non-uniqueness when g~!({0}) # (& is explained through the existence of solutions in 7’ (R%)
to the homogeneous problem when f = 0, which can be obtained by using a slow-growing measure

concentrated on g~ 1({0}).

e More general results can be stated if we require some extra conditions on f.

The motivation to state this remark is to make a sort of comparison between the analysis we have done
in this chapter and more typical analysis presented in the theory of deterministic PDEs. In the deterministic
case, there are often many possible solutions to a proposed PDE, and one manner of selecting one of the
possible solutions is by imposing a condition to the behaviour of the solution at the boundary of the working
domain. For example, an initial condition is often used in the case of Ordinary Differential Equations or

spatio-temporal PDEs, and in the case of spatial PDEs, Dirichlet or Neumann type conditions are usually a



4.6. REMARK: THE DETERMINISTIC PROBLEM 109

basis of analysis for existence and uniqueness. These conditions are often inspired by our “knowledge” of
some physical conditions in a particular phenomenon. For instance, the initial condition requirement is based
on the idea that we “can know”, at least up to some precision, the present or past state of a system, while
we “cannot know” the future state. Dirichlet conditions are used when we “know” the values of the interest
variable at the boundary of the domain, and Neumann conditions are used when we do not necessarily know
the values of the variable at the boundary but rather we “know” some other physical condition acting on it,
like an impermeability condition. At the end of the day, all of these considerations are used in order to fix a
subspace of possible solutions where there may be a unique solution to the PDE and hence to work with this
solution. In this chapter we have done something different. The reason why we selected a particular solution
of the PDE was not founded on physical considerations but rather on a statistical methodology consideration,
namely, that the studied variable can be described by a stationary geostatistical model. Hence, the only
assumption we do about the variable is that it behaves in a “similar manner” all along the domain. This
was the inspiration of the use of the space 7’ (R%) as a basis. We have not imposed boundary conditions
but rather the condition of belonging to the space #”(R%), which imposes some conditions on the increasing
behaviour and on the regularity of the solution. We do not know if this approach is better, in some sense,
than the classical approach of using boundary conditions and solving Cauchy problems. What we do know
is that our proposition is fairly more adapted to traditional geostatistical methodologies. At the end of the
story, the practice and contrast with data in some contexts and the exploitability and utility of the selected
model are the only criteria to discriminate between one model and another, or between one methodology and

another.

We finally present the following result which is an immediate consequence of Theorem and Propo-
sition Here the GeRFs are not supposed to have zero mean. We omit the proof.

Theorem 4.6.1. Let X be a real GeRF over R? with mean distribution mx € ¥'(R?) and such that X —mx
is a stationary GeRF with spectral measure jx. Let g be a symbol function over R® and let Ly be its
associated operator. Then, there exits a real GeRF U solution to @3) with mean distribution m; € ¥'(R?)
and such that U — my; is stationary if, and only if, there exist N1, No € N such that

d|.7 (mx)| (€) dpix (€)
fRd GO+ epm =% fRd 9(E)2(1 + [€2)N

< . 4.31)

If this holds, up to a modification, there is a unique such a solution if and only if |g| > 0. In such a case, it

holds that

1
my = F! (gf(mx)) and py = || %px, (4.32)

where uyr denotes the spectral measure of the stationary GeRF U — my.
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Chapter 5

Spatio-temporal models driven from

evolution equations

SUMMARY

In this chapter we focus on spatio-temporal geostatistical models which can be obtained

through the SPDE approach.

In Section[5.1|we give a general introduction to space-time Geostatistics. We recall the most
important concepts in classical space-time geostatistics and we give a brief exposition of al-
ready existing methodologies to construct space-time covariance models. We recall the con-
cepts of separability and symmetry. We present the formalism of spatio-temporal Generalized
Random Fields. We present the generalized concepts of separability and symmetry. We give
simple criteria to determine if a stationary spatio-temporal GeRF is separable or symmetric
through requirements on its spectral measure. We also present the analogue of spatial and tem-
poral margins. In particular, we focus on the case where a stationary spatio-temporal GeRF

can be considered as having a continuous point-wise meaning in time.

In Section[5.2|we present new stationary space-time covariance models which can be related to
spatio-temporal SPDEs. The general setting consists of equations involving a temporal differ-
ential operator of arbitrary real positive order and a spatial operator defined through a symbol.
We give conditions when there exists a unique stationary solution to those equations regardless
of the source term and of the imaginary part of the symbol, and we specify the associated spec-
tral measure. The separability, symmetry and time regularity is easily described through the
properties of the spatial symbol function and the temporal derivative order. We remark the

cases of first and second order evolution models for which the spatial covariance structure is

111
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described. The subsections in this chapter are devoted to present particular examples with both
physical and statistical interest. We present two examples of already known geostatistical mod-
els grounded on physical considerations, namely through an advection-diffusion equation with
damping, and through a Langevin equation. We present the case of Evolving Matérn models,
which are spatio-temporal GeRFs following a Matérn covariance model in space. We study the
existence of stationary solutions to the stochastic Heat Equation, where we obtain the result
that there exist stationary solutions to the Heat equation with White Noise source term only for
spatial dimension higher than 2. We study models related to the stochastic Wave equation. We
show that we can construct spatio-temporal models solving the homogeneous Wave equation
and following an arbitrary spatial covariance structure. These models are called Waving mod-
els. We also show that there are no stationary solutions to the Wave equation with White Noise

source term.

In Section [5.3] we present informally the resolution of a Cauchy problem involving a first
order evolution equation with a particular initial condition. We start by solving the associ-
ated deterministic problem under the requirement that the spatial Fourier Transforms of the
source term and of the initial condition must be slow-growing measures. The solution has
a cadlag-in-time representation. Under more restrictive conditions on the source term and
on the spatial symbol function, we claim that the solution is spatio-temporally asymptotically
convergent as the time flows to the unique tempered solution to the first order evolution equa-
tion whose spatio-temporal Fourier Transform is a slow-growing measure. We then present the
stochastic analogue, which is done in complete similarity by using GeRFs whose spatial Fourier
Transforms are slow-growing Random Measures. In the case with stationary source term and
initial condition, we claim that the solution of the Cauchy problem converges spatio-temporally
asymptotically to the unique stationary solution to the first order evolution SPDE as the time
flows. Under suitable conditions, if the initial condition follows a suitable spatial covariance
behaviour, the solution follows this same stationary space-time model. We give some examples
using separable stationary source terms. In the particular case of a white in time and coloured

in space source term, a Markovianity in time structure is described.

The proofs of the statements presented in Sections 5.1 and [5.2] are given in Appendix[A] The
complete formalisation of the claims proposed in Section is presented in Appendix|C]

In this chapter we work in a spatio-temporal context. We will always work over the space-time Euclidean
domain R? x R, where d € N, denotes the spatial dimension. The variables in the initial (or physical) space-
time will be denoted by (z, ) € R? x R, while variables in the frequency space-time domain will be denoted

by (¢,w) € R? x R. We suppose that all the random objects in this chapter have zero mean.
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5.1 Generalities on spatio-temporal geostatistical models

5.1.1 Classical spatio-temporal models

A classical spatio-temporal geostatistical model is a real Random Function Z indexed by the space-time
RYxR, (Z(z, t)) (z,)eRéxR © L?(9, A, P). Its covariance function is then a positive-definite Kernel function
Cz: (R?xR) x (R?xR) — R. In principle, there is no mathematical difference in considering a covariance
over R x R? or over (R? x R) x (R? x R): we have just added an extra dimension. Hence, classical
spatial geostatisical models can be extended to the spatio-temporal case without technical issues. All results
we have presented in the previous chapters of this dissertation can be applied to the spatio-temporal case,
simply replacing R¢ with R x R; we specify the notions in the case of spatio-temporal GeRFs in Section
[5.1.2] Nevertheless, in practice one needs to find models which are particularly adapted to the case of
spatio-temporal phenomena. Namely, it is often expected to use models which behave differently when
evolving over time than when changing the space variables. The covariance structure should then reflect
these differences. It is also expected that the covariance models involve parameters which can control the
statistical properties of the model when changing over time, over space, or over the whole space-time. The
difficulty is then, to find valid covariance models, that is, functions which do satisfy the positive-definiteness
condition, and still being manipulable enough in order to easily control the parameters of the space-time
interactions. Hence, new subtleties arise in the field of spatio-temporal Geostatistics which must be taken

into account.

A basic construction of a valid spatio-temporal covariance model is done through the concept of sepa-
rability. A spatio-temporal Random Function Z is said to be separable or to have a separable covariance if

there exists a spatial covariance C'z : R4 xR? - Randa temporal covariance C'z,. : R x R — R such that
Cz((x,t), (y,5)) = Czg(x,y)Czp(t,5), Y(z,y) e R x R V(t, s) e R xR. (5.1)
When Z is a stationary separable Random Function, the stationary covariance function can be expressed as

pz(h,u) = pzs(h)pz,(u), (5.2)

for a spatial stationary covariance function pz, and a temporal stationary covariance function pz,.. This kind
of covariance is one of the most basic construction of valid covariance functions over the space-time. It is ob-
tained, for example, when there exist two independent Random Functions, one over the space (Zs(x)) crds
the another over the time (Z7(t)),era, such that Z(z,t) = Zg(x)Z7(t).

Separability is an oversimple construction which often fails to reflect the variability of a variable which
varies over the space-time. Nevertheless, it is a good starting point to construct more complicated models.

An immediate extension is given by considering a so-called product-sum model (see for example, De laco et
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al., 2001)), which is given by a finite sum of separable models:

N
CZ((‘T’t)v (y7 S)) = Z CZs,j(xay)CZT,j(tvs)a (53)
j=1

for finite collections of spatial and temporal covariance functions (Czg ;) jeq1,.. vy and (Czy j)jeq1,... N}

respectively. The case of stationary models follows immediately.

Other more popular class of non-separable stationary covariance models is the Gneiting class of covari-
ance models (Gneiting, 2002). A stationary covariance of this class is constructed through a continuous
completely monotone function fg : R™ — R™ and a positive function f7 : RT — R™ with completely

monotone derivative, by

(h, u) o’ f ( i ) V(h,u) e R? x R (5.4)

pPz\N,u) = S ) y U ’ .
fr(u2)z”” \fr(u?)

for some o2 > 0. The spatial and temporal behaviours of the covariance can be easily described through

the specification of fg and fr7. Hence, this construction proposes a general and flexible way of constructing

non-separable models.

Other methodology for obtaining non-separable models with a practical parametrization is through the
specification of a convenient spectral measure, as it is done for example in the case of the Stein model
presented in Example [4.5.5] As mentioned, this controls easily the spatial and temporal regularities of the

covariance structure.

Although the Gneiting and Stein classes of covariance models are rich enough to describe some statis-
tical properties of a spatio-temporal variable, both of them have a limitation: they are symmetric or fully-
symmetric models. In a symmetric model, the direction of the time evolution is ignored, obtaining equal
covariance values if we look either forward or backward in time. More precisely, a spatio-temporal Random

Function Z is said to be spatio-temporally symmetric if its covariance function satisfies

CZ(($7t)v (y,s)) = CZ((x7S)> (y7t)) = CZ((yvt)7 (.7}, S)) = Cz((y,S), ($,t)), (5.5)

forall (x,7) € RYxR? and for all (t, s) € RxR. Although the equality Cz((z, 1), (y,)) = Cz((y, s), (z,1))
comes from the definition of covariance, the stronger equality (5.5) is an extra requirement. In the stationary

case, the symmetry is translated into the condition for the stationary covariance function:
PZ(h7 U) = pZ(_ha u) = pZ(h’ _u) = pZ(_h> —U), V(hv ’LL) € Rd x R. (5.6)

Separable models and product-sum models are always symmetric. It is known that symmetric models fail to
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describe the variability of a variable submitted to transport phenomena, as can be the case of atmospheric and
environmental variables. A well-known example of a non-symmetric stationary model is the one induced by a
transport phenomenon according to a constant velocity profile determined by a velocity v € R?. For example,
if Cz : (R? x R) x (R? x R) — R is a symmetric covariance function, then the transported covariance
Cyz, : (R? x R) x (R? x R) — R defined through Cyz, ((x,t), (y,s)) = Cz((x — vt,t),(y — vs,s)) isa
non-symmetric covariance. If Z is stationary, the associated transported covariance is also stationary. This
and other examples of non-symmetric covariance models induced by a transport phenomenon can be found
in|Ailliot et al.[(2011)).

Besides the transport approach of constructing covariance models, in the literature there are few propo-
sitions of non-symmetric covariances, often lacking in generality and/or simplicity. Stein| (2005) proposes a
construction based on the derivatives of a convenient particular non-symmetric covariance Kernel. |[Zhang &
Zhang| (n.d.) propose a not-so-simple construction of non-symmetric models with Matérn spatial and tem-
poral margins based on a convenient analogy with the conditional probability density functions of a suitable

random vector.

To finish this section, we recall a somewhat obvious and already implicitly introduced but important con-
cept in the case of stationary Random Functions. If Z is a spatio-temporal real stationary Random Function
with covariance function pyz, then for every ¢ € R, the spatial Random Function Z(-, t) is a stationary spatial
Random Function. Z(-,t) is said to be a spatial trace of Z. All spatial traces of Z are stationary with same
stationary spatial covariance function given by pz.(h) = pz(h,0) for all h € RY. The covariance pz, is
called the spatial margin of the covariance pz. Analogously, for every x € RY, the temporal Random Func-
tion Z(z, -) is called a temporal trace of Z, and all the temporal traces of Z are stationary temporal Random
Functions with same covariance function given by pz, (u) = pz,(0,u) for all u € R. pz, is said to be the

temporal margin of the covariance function pz.

We refer to|Gneiting et al.|(2006) for a more general discussion on spatio-temporal covariance models.

5.1.2 Spatio-temporal GeRFs

A generalized spatio-temporal geostatistical model is a real GeRF Z over R? x R. Its covariance distribution
Cy is then a real distribution belonging to ./ ((R? x R) x (R¢ x R)) defining a positive-definite Kernel.
The covariance structure in the stationary case is described through a positive-definite even distribution
pz € '(R? x R) and a positive even spectral measure iz € .#3,(R? x R).

Let us set some notations, mostly chosen for ease of reading. We use the letters ¢ and ¢ to denote spatial
test-functions (functions defined over R%), 6 for temporal test-functions (defined over R), and ) for spatio-
temporal test-functions (defined over R? x R). We denote by .# the spatio-temporal Fourier Transform,
which is applicable to distributions in .7’ (R¢ x R). We denote by .#5 and .%r the spatial and the temporal
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Fourier Transforms, respectively, which applied to a spatio-temporal test-function 1) € .7 (R¢ x R) are
defined as:

1

Fs()(,t) :=
s()(&, 1) =

—itTx . P . L it
: JRde Y(z, t)de 5 Fr)(z,w) = mJRe P(x,t)dx. (5.7)

Using typical arguments which prove the continuity and bijectivity of .% (see [Donoghuel (1969 Chapter
30), one can prove that both the spatial and temporal Fourier Transforms are continuous bijective endomor-
phisms over .7 (R% x R). The spatial and temporal Inverse Fourier Transforms, denoted by .7 g L and Fr !
respectively, are defined as in without the minus sign in the exponentials. If T' € .#/(R? x R), its
spatial and temporal Fourier Transforms are defined respectively through their applications to a test-function
Y e .7 (R? x R) by

(Fs(T), ) =T, Fs@)) 5 (Fr(D)¢) =T, Fr(¥)). (5.8)

Hence, %5 and % are simply the adjoints of the respective spatial and temporal Fourier Transforms over
(R4 x R), and we also have that both .%5 and .%7 are continuous bijective endomorphisms over .7/ (R% x
R). The Inverse spatial and temporal Fourier Transforms, denoted by .7 ¢ Land Fr ! respectively, are defined

analogously.

We will use the following notation concerning tensor products. The symbol [x] will be reserved to denote
spatio-temporal tensor products, that is, tensor products between two objects, one defined over the space and
the other over time. Explicitly, if S € ./(R%) and T € .#’(R), then SX T € .#'(R? x R). The same idea
applies for the tensor product between spatial test-functions (resp. measures) with temporal test-functions
(resp. measures): if p € .7 (R%) and 0 € .7 (R), then ¢ X0 € .7 (R? x R) (resp., if pg € #sq(R?) and
pr € Msa(R), then g X pur € AMsq(R? x R)). We will always follow the spatio-temporal writing order:
we write the spatial object on the left side of the tensor product [x] and the temporal on the right side. The
symbol @ will be reserved for objects acting over the same space, that is, both acting over R%, over R, or
over R? x R. For instance, if Z is a spatio-temporal GeRF, ¢y, 02 € . (R%) and 6y, 6, € .#(R), then we

have the expression

Cov({Z, p1 X1 01),{Z, p2 K1 02)) = (Cz, (p1 K 01) ® (2 [x]62)). (5.9)

In the next sections we explain the concepts of separability, symmetry, and spatial and temporal margins

in the case of a spatio-temporal GeRF.
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Separability

A GeRF over R? x R, Z, is said to be separable if there exists Oz, € .7/(R? x R?) and Cy, € /(R x R)
such that

(Cz, (p1001) @ (p202)> = {Czq, p1@p2){Czy, 01@02), Vi1, 2 € F(RY), 01,05 € 7 (R). (5.10)

When Z is separable, we denote it by Z = ZgX| Z7, Zg and Z representin two GeRFs over R? and over
R respectively, with covariances C'z, and C'z,. respectively. In the stationary case, separability is equivalent
to require that the stationary covariance distribution pz € .#/(R? x R) is the spatio-temporal tensor product
of two positive-definite even distributions, pz, € .7/(R%), and pz,. € .7'(R):

pz = pzs X pzp. (5.12)

Consequently, the spectral measure pz € 4. JG(Rd x R) can also be expressed as the spatio-temporal tensor

product of a spatial spectral measure 17, € .#4-(R?) and a temporal spectral measure 17, € #q4.(R),
Wz = phze X pzyp. (5.13)

A typical separable model which can be found in the literature is the so-called white in time and coloured in
space noise, which is a real spatio-temporal stationary stationary GeRF with an arbitrary spatial covariance
distribution pz, and a White Noise in time covariance py, = § € .’(R). Such a model is denoted by
Zs X Wr. See the use of this terminology for example in Sigrist et al.[(2015).

"We remark what do we mean with Zs and Zr representing two GeRFs rather than just being GeRFs. For simplicity we consider
the framework of Gaussian GeRFs. If Zs is a real Gaussian GeRF over R? with covariance Czg, and Zr is a real Gaussian GeRF
over R with covariance C'z,. independent of Zs, then it is possible to define a GeRF over R? x R (or at least its action over
test-functions in . (R%) ® .7 (R)), say Z, through the expression

(Z,0R0) =Zs,oXZ1,0), VYpe S (R),V0e.7(R). (5.11)

In such a case, Z is called the tensor product between Zs and Zr, and hence can be denoted by Z = Zs[X] Zr. Z has a covariance
structure given by equation (5.10), but Z is not necessarily Gaussian. However, one can always construct a Gaussian GeRF over
R? xR havin g covariance Cz, regardless of the initial spatial and temporal GeRFs Zg and Zr. In such a case, the Gaussian random
variables of the form {(Z, o [X] #) have, in principle, nothing to do with the random variables {Zs, p) and {Zr,0). Moreover, if
we consider Z to be a Gaussian GeRF over R? x R with covariance given by (5.10), it is not clear at all if we can construct two
GeRFs Zgs and Zr, Gaussian or not, such that @I) holds. Hence, in this dissertation the notation Z = Zs [X] Zr, when applied to
GeRFs, is merely symbolic and it does not mean that Z is the tensor product between two GeRFs: it rather symbolizes a separability
condition on the covariance structure of Z, and not on Z itself. The same issue is present in the case of Random Functions and
Random Measures.
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Symmetry

A real GeRF Z over R? x R is said to be symmetric if

(Cz,(p1 X 01) @ (p2 K O2)) = {Cz, (1 X02) ® (p2 X 1))
={Cz,(p2X61) ® (1 X b2)) (5.14)
={Cz,(p2®b2) ® (1 X 1)),

for all test-functions o1, o € .7 (R%) and 6, 0 € . (R). In the stationary case, the symmetry is equivalent

to have for the covariance pz € .7/ (R%):

{pz, ¢ BR0) = {pz,0E0) = {pz,pK0) = {pz,pK0), Vpe.7(R?),0€ 7 (R). (5.15)

Because of the properties of the Fourier Transform with respect to reflections, we obtain that a real stationary

GeRF over R? x R is symmetric if and only if its spectral measure pz € .#J,(R? x R) satisfies

d#Z(g’ U.)) = d:U’Z(éa —W) = dMZ(_Ea OJ) = d//JZ(_gv —W), (516)
condition which is more explicitly expressed through
pz(Ax B) = uz(A x (=B)) = uz((—A) x B) = nz((—A) x (-=B)), VA, B e Bg(R?), (5.17)

or through,

Ptz = | D= —wdnz(ew)
’ (5.18)

for all ¢ € .(R? x R). Hence, when Z is stationary and symmetric, its spectral measure is not only even in

1/’(57 —W)dHZ(&W) = f

Re xR

fRdXR P& w)dpz (€ w) = f

R xR

the sense of a measure over R? x R, having /iy = 11z, but it is also invariant under partial reflections of the
space and time components. We say that such a measure over R? x R depends on the temporal frequency
variable only through its absolute value. The usage of this characterization of uy is inspired by the case
where 117 has a density, say duz(§,w) = fu,(&, w)d{dw. Indeed, in such a case, if ;17 satisfies (5.18),
then f,, satisfies f,,(§,w) = fu, (&, —w) = fu,(&, |w]) almost everywhere. The usage of the expression
“depending on the temporal variable only through its absolute value” can be justified in more general cases
using disintegration expressions of spatio-temporal measures. We will not enter into these details in this

dissertation.

It turns out that an easy manner to obtain non-symmetric models is through the specification of a spec-
tral measure over R? x R not depending on its temporal frequency variable only through its absolute
value. For instance, if we define a positive even and integrable function f,, : R? x R — R* such that

Juz (& w) # fu,(§, —w) for some values (§,w) in a set of non-null Lebesgue measure, then its spatio-
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temporal Fourier Transform provides a non-symmetric stationary covariance function. In Section (5.2)) we
provide non-symmetric stationary covariance models, whose non-symmetry can be verified immediately

through this criterion.

Spatial and Temporal Margins

In the case of a spatio-temporal GeRF Z, the spatial and temporal traces or margins are not immediate to
describe since we cannot always evaluate at a fixed point z € R? or ¢t € R. An approach fixing a spatial
test-function ¢ € .#(R%) and then analysing the structure of the associated temporal GeRF (Z, ¢ [X] -) can
always be done, as well as in the other sense fixing a temporal test-function # € .%’(R). We will not enter into
these details. We will rather present a case which is a kind of middle ground between the case of Random

Functions and GeRFs, in the context of spatio-temporal stationary GeRFs.

Let Z be a real stationary GeRF over R? x R, and consider its spectral measure p1; € ./, ;G(Rd x R).
In the case of a continuous stationary Random Function, p 7 is finite. In the case of a general GeRF, pz is

slow-growing, not necessarily finite. We say that 1 is temporally integrable if it satisfies
pz(AxR) <o, VAeBg(RY. (5.19)

When p7 is temporally integrable, the covariance distribution pz has a continuous meaning in time. Let us
explain this notion. Since pz is temporally integrable, its temporal Fourier Transform .%7(uz), which is a
tempered distribution over R? x R, can be identified with a measure-function Kernel, F1(uz) : Bg(R9) x
R — C, defined through

1 .
LO}\T(MZ)(A7 U) = E \[4 R eizuwd,U/Z(éa CU), Ae BB(Rd)7 u€R. (520)

Equivalently, .7 (1) can be identified with a distribution-function Kernel, Zr(uz) : Z(R%) x R — C
through

1 ,
Frpa)e) = o= | e o@dus(ew), pe SR uek 5:21)

A typical application of Dominated Convergence Theorem allows to conclude that for every ¢ € .7 (R%),
the function u € R — Zp(uz)(p,u) is continuous. Since py = F(uz) = Fs(Fr(uz)), one may define
for every u € R the spatial distribution p% € .%/(R9):

pz = Fs(Fr(pz)(u)), (5.22)
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whose explicit expression is

G ) = Frlu) Fsoh) = = | IO durle.w), Voo SRY. (523

The following fact follows from Fubini’s Theorem: there exists a family of spatial tempered distributions
(p%)uer = ' (R?) such that:

e forall p € . (R%), the function u € R — {p%, ) is continuous.

e forall p € .7(R?) and for all § € .#(R), it holds that

@L¢m®=£@%@mwm. (5.24)

In general, any spatio-temporal tempered distribution pz € .7/ (R x R) satisfying these conditions is known
as a continuous-in-time distribution, and the family of spatial distributions (p%),er < -#”(R?) is known

as the continuous-in-time representation of p.

When a spatio-temporal real stationary GeRF Z has a temporally integrable spectral measure, it can be
proven that Z itself has a continuous meaning in time. This can be seen intuitively from the fact that its
covariance distribution p is continuous in the time component. Let us explain this formally. We say that Z
is continuous in time or that it has a continuous-in-time representation if there exists a family of spatial
GeRFs (Z;)ter such that

e for all p € .7(R?), the Random Function ¢ € R + {Z;, ) is continuous in mean-square.

e forall p € .7(R?) and for all § € .#(R), it holds that
(2.980) = | (D) (5.25)
R

We obtain the following result.

Proposition 5.1.1. Let Z be a real stationary GeRF over R% x R such that its spectral measure [y is
temporally integrable. Then, Z has a continuous-in-time representation, (Zi)ier. Moreover, if py is the
stationary covariance distribution of Z and (p%)yer is its continuous-in-time representation, then it holds
that

Cov({Zy, p),{Zs, d)) = {ply *, 0 &), Vo, b€ S (RY, Vs eR. (5.26)

The proof of this result is given in Appendix [A.13] Hence, we are able to evaluate the spatio-temporal

GeRF Z at time locations, as it would be a temporal function, without technical issues. Every member of the
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family (Z;)ser is called a spatial trace of Z. It is not hard to conclude from Proposition that for every
t € R, the spatial GeRF Z; is a stationary real GeRF over R?, with covariance distribution ptZ_t = p% and
hence, as expected, all spatial traces have the same spatial covariance structure, given by p%. We denote by
Pz 1= p% and we call it the spatial margin of the covariance distribution pz. The spectral measure of the

spatial traces can be obtained by evaluating (5.20) at 0, obtaining the measure defined through

1
A) = ——puz(A xR), VAe Bg(R?). 5.27
pzs(A) muz( ) B(RY) (5.27)
Hence, we obtain the spectral measure of the spatial traces of Z through the temporal integration of its

spectral measure. It follows that pz, = Fg(uz,). We write generically Zg representing any spatial trace of
Z.

It is also concluded from Proposition that for every ¢ € .7 (R%), the continuous Random Function
t — (Zy, p) is stationary. Its covariance function, denoted by p‘gT, is given by pgT (u) = {p%, @ * Py for all
u € R. We call p?T the (o—temporal margin of the covariance distribution pz. If we change ¢ with another
test-function ¢ € .7 (R?), the covariance pdz)T is in general a different distribution. An equality is anyway
present when ¢ is a translation of ¢. We do not enter in details about the spectral measures associated to

these temporal margins.

When pz7 is temporally integrable, it is possible to prove that the Fourier Transform of Z, say My =
F (Z), which is a slow-growing orthogonal Random Measure, is also temporally integrable in the sense that
the random variables of the form Mz (A x R), with A € Bg(R%), are well-defined square-integrable random
variables. This notion can be extended immediately to every spatio-temporal Random Measure. We do not

enter in details.

We finally remark that this procedure can be done analogously in the other sense, by using spatio-

temporal spectral measures spatially integrable, obtaining a stationary GeRF which is continuous in space.

5.2 Evolution equations: new stationary spatio-temporal models

In the most general sense, any spatio-temporal PDE or SPDE deserves to be called an evolution equation.
However, in this section we will restrict this name to a particular class of SPDEs which involves an operator
which is the sum of a temporal differential operator of arbitrary order (including fractional operators), and a
purely-spatial operator defined through a symbol. We will also restrict our analysis to stationary models, in
order to apply the results of Chapter 4]

We consider thus SPDEs over R? x R of the form:

oPU
aF+,59U=X, (5.28)
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where X is a real stationary spatio-temporal GeRF, # > 0 and g : R? — C is a spatial symbol function. We
denote by gp the real part of g and g7 the imaginary part of g. For this class of SPDEs, we study in detail
several examples of physical and statistical interest. They involve for example Langevin-type equations,

advection, diffusion and wave propagation phenomena.

First of all, for 5 > 0, we specify the definition of the fractional differential operator gt—[;:
il 1
55 =1 ((iw)2 21 (). (5.29)

Hence, gTif is nothing but an operator defined through a symbol (Eq. {.2)), specifically through the symbol
function over R:
w > (iw)? = |w|Petsen@)fs (5.30)

The function (5.30) is Hermitian, continuous and bounded by a polynomial for every 8 > 0, so it is indeed
a well-defined symbol function. Similar definitions of a fractional differential operator can be found in
Mainardi et al. (2007). We call a fractional order evolution model every real spatio-temporal stationary
solution of the SPDE (5.28) with 5 ¢ N. For § € N, (5.29) coincides with a classical differential operator.
The corresponding stationary solutions are called 5-th order evolution model.

The spatio-temporal symbol function of the operator involved in (5.28) is the function

(€. € RIXR o ()" +0(0) = ol cos (5 ) 40m(©) 41 (sl sin () +ar(©)) . 530
Theorem[4.3.1] allows us to conclude that there exists stationary solutions to (5.28) if and only if the measure

d:U’X(ng)
|(iw)? + g(&)[*’

is slow-growing. We will focus on the result stated on Remark [4.3.2]and look at for conditions on g such that

dpy (§,w) = (5.32)

(5.31) satisfies the PBR condition and thus to have a unique stationary solution regardless of the source term
X. The next proposition, proven in Appendix [A.14] allows us to identify the cases where the PBR condition
holds regardless of the imaginary part g;.

Proposition 5.2.1. Let gp : RY — R be an even and polynomially bounded measurable function. Then,
the spatio-temporal function defined through (5.31) satisfies the PBR condition for every odd polynomially
bounded measurable function g; : R® — R if and only if gg satisfies the PBR condition and gp cos(%”) = 0.

We suppose that the conditions on g in Proposition[5.2.T] hold. Let us study the properties of this kind

of model. For simplicity, we restrict ourselves to the cases where X is a separable model X = Xg x| X7.
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The spectral measure of the unique stationary solution to (5.28) is then

P + 20]? (gr(€) cos (5 ) +sen(w)gr(€)sin () ) +|9()?

A separable model is obtained when g; = 0 and gp is a constant function. Otherwise, the model is not
separable. The function sgn in (5.33)) allows to identify the cases where the spectral measure does not depend
on the argument w only through |w| and thus the symmetry of the model can be controlled. A symmetric
model is then obtained when [ is an even integer or when the function g; is null. A non-symmetric model
is obtained otherwise. In this case the non-symmetry can be parametrized by controlling the function g;.
This fact is what gives importance to Proposition [5.2.1] since in the cases considered in this Proposition the
function gy can be controlled freely. The mean-square temporal regularity of the associated random field
depends on the parameter 3, as it can be seen by analysing the temporal-integrability of the measure pi;.

Thus, this model allows a practical control of the separability, symmetry and regularity conditions.

The covariance structure of a spatial trace of this model can be described if the measure p is temporally-
integrable, that is, if §, |(iw)” + g(§)|7?dpx, (w) < o0. Let us restrict ourselves to the case where X is a

White Noise in time, X = Xg X Wy, ie. dux(&,w) = dpxg(§)duw, (w) = duxg (§)(27r)_%dw. In that
1

5.
be obtained by calculating the corresponding integral. We study the spatial structure in the case gy = 0. The

case, the measure 7 is temporally-integrable when 3 > 5. The spectral measure of the spatial traces can
general case with g; # 0 is much more technical and we have not found simple and enlightening expressions
for the spatial covariance behaviour, so it is not presented in this dissertation. The spectral measure of a
spatial trace Ug is then

1 dw
hus(6) = 27 JR |w[?8 + 2|w|®gr(€) cos (55) + g%(ﬁ)d'uXS(f) (5.34)
_gr(©1P 2 i
- T Jo 62 + 20sgn(gr) cos (58) + 1d9 dpxs(6), (5.35)
T,

where we have used the parity of the function with respect to w and then used the change of variable w =
(| gR(§)|0)%. The integral I3 does not depend on ¢ since gr does not change in sign. This integral can be
computed (see for instance Gradshteyn & Ryzhikl 2014, 3.252.12). In particular, [; = I = 7/2. Then, the
spatial traces of the solution satisfy the spatial SPDE

mp L Ug Mo xg. (5.36)

g " |gn|' 725
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1o, . .
This model has a continuous point-wise meaning when the function |gg|? %is integrable with respect to the

measure /i x, case in which the measure s is a finite measure.

Condition[I]in Theorem §.4.T|does not hold when 3 ¢ N since the symbol function (5.31) is not smooth.
The case 5 € N can be worked out supposing some regularity conditions on g. We present the corresponding
analysis for the cases § € {1, 2}. We are not going to focus on conditionin Theorem We remark that
if the statement that we have considered in Remark {.4.Tholds, then it is sufficient to consider g continuous
satisfying conditions in Proposition [5.2.1|to obtain a convolution result such as in Theorem[4.4.1] Indeed, in

|72

such a case, the function (¢, w) — |(iw)” + g(£)|~2 is continuous and polynomially bounded.

A first order evolution model is a stationary solution of Eq. (5.28) when 5 = 1. Letus set X = W,
the spatio-temporal White Noise. The spectral measure is then

1 dédw
gy (€ ) = : (5.37)
Hee (2m) 5 (W +91(9)? + 97(¢)
From this we obtain that its covariance is of the form
1 etugr(@—lullgr(®l
w a
pu (hw) = Fs | €= (5.38)
0 ( emi 2Aon(©)]

This model can then be seen as a mixture of (complex) exponentials. For ease of reading, we have used a
functional notation for the variables (h, ) in (5.38)), but p‘[/]v is not necessarily a function. Generally, it is a
tempered distribution, and it depends on gp if this distribution can be identified with a continuous function
or not. A continuous function is obtained when |gr| ! is an integrable function. The spatial margin of pEV
is obtained by setting u = 0 in (5.38). We see that it does not depend on g;. Thus, Eq. (5.36) can be used to
describe the spatial behaviour of the model for the case Xg = Wg, including the cases where gr # 0.

A similar analysis can also be done easily for the case X = Xg [x] W, a coloured in space and White

in time noise. For that, it is enough to replace the term d¢ in (5.37) with (27)%?dux(€). The covariance
)U(SWT

P in such a case is given by
DKW () _ (g e s, (s)) (n). (5.39)
Setting u = 0, the covariance of a spatial trace is simply
A0 = 5 (6 Slar© () () (5.40)

from where we obtain immediately that the spatial traces follow the SPDE in second-order sense (c.f. Eq.
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©36))
Var nd o yo (5.41)

lgr| ™2
We thus obtain a particular description which holds for first order evolution models: the spatial behaviour
is completely described by gr, while the spatio-temporal non-symmetry is described by gr. This does not

necessarily hold for other values of 3, as it will be shown for the case § = 2.

Condition |I{in Theorem can be applied if gr, g7 and 1/gp are in Oy (RY), since in this case the
reciprocal of the spatio-temporal symbol function (&, w) + iw + g(£) is in Op(R? x R). We obtain in that

case that the covariance of the solution with an arbitrary source term X is the convolution p}/}/ * px, with pgf

given by (5.38).

A second order evolution model is a stationary solution of Eq. (5.28) when 8 = 2. Consider again
X = W. Since g satisfies conditions in Proposition [5.2.1] in particular gr < 0. The spectral measure is

then 1 dgd
du’ = 7
(€, w) (2m) 5 (W2 = gr(€))? + g7 (&)

(5.42)

and the covariance distribution pg’ is the Fourier Transform of ,u‘{JV. To simplify the notation, consider the
complex spatial function y : £ +— C defined through

9@ +9r&) . (19| — gr(§)

d
) 5 , VEeRT (5.43)

() =

The function + is never null since gr < 0. Let us denote by yr and vy the real and imaginary parts of ~y
respectively. The covariance pEV is then

e~ (I +ivr(E))|ul
DEERTPATE [mosn @) @ = m@ T e

1 ci2vR(9)ul ci2vr(©lul _ 1

ol (how) = 7 (sH ]) (h).
(5.44)
The term (e277(©)u — 1) /iy g (€) is interpreted to be equal to 2|u| when yg(£) = 0, which corresponds to
gr(¢€) = 0. This covariance distribution is a continuous function if the function |y;|~!|y|=2 is integrable
over R?, which is equivalent to require that the function |g|~*(|g| — ¢ R)_% is integrable over RY. Contrarily
to the case of first order evolution models, this model is always symmetric and the covariance structure of
the spatial traces depends on both gr and gz, as it can be seen by evaluating (5.44)) at v = 0. Thus, Eq.

(5.36) does not hold for gy # 0. The spectral measure of a spatial trace is

dg

dugy, (€) = .
o5 ¢) (2m)22v/2]9(€)[\/19(E)] — gr(€))

: (5.45)
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from which we obtain that a spatial trace Ug satisfies the spatial SPDE

A 2v2L Ug L% Wy, 5.46
V2 ollgl—gr ° S (546)

where Wy is a spatial White Noise. An analogue expression is obtained in the case X = Xg X Wr, by
replacing W by X in (546)) and d¢ by (27)%2dux,(€) in (5:42)) and (5.43)). When X is a general
spatio-temporal stationary GeRF, a sufficient condition to apply Theoremis that gr, 1/gr and gy are in
the space Oy (R?). In this case, the only stationary solution to the SPDE (5.28)) with 3 = 2 has a covariance
of the form pyy = pJ¥ * px, where p}} is given by (5.44)).

We now present some particular models inspired by physical and statistical literature. In some cases
Proposition [5.2.1|can be applied. In other cases, there is no uniqueness and sometimes not even existence of

stationary solutions.

5.2.1 Some examples from the literature

We present two briefs examples of models which are inspired by physical consideration and have been used
to define geostatistical models.

Example 5.2.1 (Advection-diffusion equation.). |Sigrist et al.|(2015) propose estimation methods and sim-
ulation algorithms for the unique stationary solution of the SPDE over R? x R:

oUu

=+ K2U + 0T VU — div(EVU) = Xg X W, (5.47)
where x > 0 is a damping parameter, v € R? is a velocity vector and ¥ is a symmetric positive-definite
matrix controlling non-isotropic diffusion. W is a temporal White Noise and X g represents a stationary
spatial random field. This equation, known as the advection-diffusion equation, is a particular first order

evolution model. Its spatial symbol function is
g(&) = K+ T8e + ",

for which conditions in Proposition [5.2.T] are satisfied. Without advection (v = 0), this equation was studied
in |Whittle| (1963)) in a non-generalized framework. Sigrist et al| (2015) consider a Matérn Model for Xg,
with smoothness parameter equals to 1, corresponding to v = 2 in (3.6) when d = 2. The spatial behaviour
of this model is described by the SPDE (5.36)) for 5 = 1.

Example 5.2.2 (A Langevin Equation). Using linear response theory, Hristopulos & Tsantili| (2016)) pro-
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pose stationary random fields which are solutions to the following Langevin equation

oU D

ot —— (1=mEA+ VAU =W, 5.48

at+2k%( mk*A + vk A?) : (5.48)
with D, k,n9 > 0, n1,v = 0. The parameter v is called the curvature coefficient. For simplicity, let

C = D/(2k%ng). For this first order evolution model, the spatial symbol function is

9(€) = C (1 +mk*[€]* + vE?[€]Y)

which satisfies conditions of Proposition[5.2.1] Hence, (5.48) has a unique stationary solution, whose spectral
measure can be obtained using the general expression of first order evolution model in (5.37). [Hristopulos
& Tsantili| (2016) provide expressions of the related covariance structures, which are functions for d < 3,
and which can be obtained through formulas similar to in combination with the Fourier Transform of
radial functions. The spatial behavior of this model can be described following equation (5.36), with spatial
White Noise source term, Xg = Wg.

5.2.2 [Evolving Matérn model

In the most general term, we call Evolving Matérn model every spatio-temporal GeRF such that its spatial
traces follow Matérn covariance models. In the case of stationary solutions to Eq. (5.28)), evolving Matérn
models can be obtained by adequately controlling g, X or both. In this section we focus on stationary
solutions to equations of the form

kU o

—— +sga(k? — A)2U = W, (5.49)

oth
where W is as usual a spatio-temporal White Noise, x2,a > 0, € R, and s is a parameter that takes the
value 1 or —1 depending conveniently on 3 in order to obtain conditions in Proposition for g(&) =
sga(r? + |€|?)> . There is then a unique stationary solution to (5.49). Its spectral measure is

1 dédw

duU(ng) = o .
(27?)% |w[28 + 2|w|Ba(k? + [£]2)2 | cos (%ﬂ) | + a?(k? + [€]?)e

(5.50)

Following Eq. (5:36), when 3 > 3 the spatial traces of this model follow the spatial SPDE

@ 1
7;—5@1‘%(;@2 — A)5(1*ﬁ>US 2d oy, (5.51)
\ 15
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where Wy is a spatial White Noise. Direct identification between (5.51) and the SPDE (@.13) in Exam-
ple [4.5.1] indicates that the spatial covariance is a Matérn covariance. It has a functional meaning when
a(l—1/(28)) > d/2. Explicit expressions of the covariance can be obtained using expressions of the

Fourier Transform of radial functions (Donoghuel (1969, chapter 41).

In particular, for 5 = 1, we get

1 0 e—alw? )l
pu(h,u) = f Jaa (|h|r) ——————%rzdr, (5.52)

() @m)lhT Jo 2 (i) 2a(K? +17)2
where J;, denotes the Bessel function of the first kind of order b. This model has also been proposed in
Jones & Zhang|(1997), in which an approach similar to our framework was followed for first order evolution
equations. This is a symmetric non-separable model which can be identified as a mixture of a J—Bessel

model in space with an exponential model in time.

Notice that in this case 5 = 1 we can add a non-null imaginary part g; to the symbol function without
changing the spatial behaviour, thereby generating non-symmetric evolving Matérn models. This can be
concluded from our development explained above concerning first order evolution models. However, in such

a case the expression (5.52) no longer applies.

For B = 2, one gets

eVl Tl (1 4\ Ja(k? + 12) 5 |u))
dar/a(k? + 7'2)37(1

1 @ d
pu(h,u) = dd—QJ Ja—2 (|h|r) radr. (5.53)
2|h| 2 Jo 2

(2m)
This covariance is a mixture of J—Bessel model in space and a Matérn model in time since the spectral
measure (5.42) has the form of a Matérn spectral measure in w (we recall that gr < 0 for § = 2 and gr = 0).
This covariance has a functional meaning for av > %d. Notice that this mixture property between a J—Bessel
model in space and a Matérn model in time does not hold for 8 ¢ {1, 2}, the spectral measure (5.50) having
not the form of a Matérn spectral measure in the variable w.

Notice that both g and 1/gg are in Oy (R%). Thus, for 8 € {1,2} Theorem can be applied. In
these cases, the covariance of the solution to an equation of the form (5.49) with an arbitrary source term X
is the convolution between (5.52)) for § = 1 (respectively (5.53) for 5 = 2) and px.

Some classes of models which are evolving Matérn models can be found in the literature. For instance,
for the cases § € N these models are Stein models. See the correspondences between Eq. (@.25) and Eq.
(5.50) in those cases, considering the temporal scale parameter s = 0. The advection-diffusion equation ex-
posed in Example[5.2.1]also provides evolving Matérn models. The Langevin equation presented in Example

[5.2.2] provides evolving Matérn models when the curvature coefficient v equals 0 and 7; > 0.
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We finally remark that we also obtain evolving Matérn models when replacing W in Eq. (5.49) with a
coloured in space and white in time noise, X sX]Wr, with X g following a Matérn model with scale parameter

k. Another example of evolving Matérn model is the Waving Matérn model, which will be exposed in Section

524

5.2.3 Heat equation

We now consider the stochastic Heat (or Diffusion) Equation over R? x R

oU
oy TaAU =X, (5.54)

where a > 0 is the diffusivity parameter. It is a first order evolution model with spatial symbol function
g(&) = al¢|?. In this case, the spatio-temporal symbol function (&, w) + iw + a|¢|? is not strictly positive,
the origin being the only zero of g. From Theorem [4.3.1] there is no uniqueness of stationary solutions,
if they exist. Following Remark [4.3.3] since the only zero point of the symbol function is the origin, the
stationary solutions to the homogeneous problem

oUg

— aAUwy = )
o aAUg =0 (5.55)

must have spectral measures supported on the origin, hence proportional to the Dirac measure. We conclude
that the only stationary solutions to the homogeneous Heat Equation are random constants (c.f. Example

Because of the singularity at the origin of the function |g| 2, the existence condition (&.7) does not
always hold. Existence needs to be checked for each source term X. Let us first consider the case where the

source term is a spatio-temporal White Noise. Equation (5.54) becomes

%—Z —aAU =W. (5.56)

Using Theorem {#.3.1] one concludes (see Appendix [A.I5.1)) that there exist stationary solutions to the
stochastic Heat equation (5.56) only for spatial dimensions d > 3. In addition, in these cases, the solutions
can only be conceived as GeRFs and never as continuous Random Functions. When d = 3, computations

reported in Appendix [A.15.2]show that the covariance structure of a particular solution is described by

1 T |h]
w
h,u) = erf . 5.57
o () (2) 5" 2alh] <2 a|u|> (5.57)

Since the covariance (5.38) is not defined at |h| = |u| = 0, it must be interpreted in a suitable distributional
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sense which is also explained in Appendix [A.T15.2] A spatial trace of the stationary GeRF associated to
, Ug, can be described evaluating this covariance in v = 0 with h # 0. We obtain that Ug satisfies the
g
spatial SPDE
V2(=2)2Us "L W, (5.58)

where Wy is a spatial White Noise. In other words, Ug is a Matérn model without range parameter as
presented in Example [4.5.2] (see Eq. @.18)).

When X is an arbitrary source term, Theorem cannot be applied for spatial dimensions smaller
than 3. For d = 3, a convolvability condition between px and must be satisfied. Nevertheless, the
existence of a solution can be ensured independently of the existence of solutions with White Noise source
term by imposing some sufficient conditions on px such that the existence criterion in Theorem [4.3.1]
holds. For example, one could require ptx to be concentrated on the complementary of some neighbourhood

of the origin.

5.2.4 Wave equation and Waving models

As a final example we consider the stochastic wave equation

2
e —PAU=X, (5.59)

where X is a real stationary random field and ¢ > 0 is the wave propagation velocity. This is a second order
evolution model with spatial symbol function g(¢) = c2|¢|?. The null-set of the associated spatio-temporal
symbol function (&, w) — —w? + c?|¢|? is the spatio-temporal cone C¢ = {(£,w) € R? x R | |w| = c[¢]}
(see Example[2.1.3). As a consequence, uniqueness of a potential stationary solution does not hold.

We call a Waving model any spatio-temporal real stationary GeRF solution to the homogeneous Wave

equation
Uy
ot?
Following Remark the spectral measure of such a model must be concentrated on C¢. Following Eq.

— AUy = 0. (5.60)

(2.41), if p117,, is the spectral measure of a stationary solution to (5.60), then y7,, is of the form

(g ) = f B(E clédpn (€) + f B(E,—cleDdua(e), Ve S®RIxR),  (5.61)
Rd RA{0}

for some measures fi1, pip € .4 (R?). Since i, must be slow-growing, then i1, po € 43 (R?) (Propo-
sition , and since ji7,, must be even, it turns out that ;5 and ps are equal over R4\ {0} and both are
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even. Hence, there exists an even measure fys € M éTG(Rd), i.e. a spatial spectral measure, such that

P(&, clg]) + (&, —cl€

<NUH,¢>:\/27rJd (& cleD) 5 ( | |)d,uU§(§), vy e S (R? x R). (5.62)
R

Hence, all stationary solutions of (5.60) have a spectral measure of the form (5.62), and conversely, every

measure of the form (5.62), with ts being a spatial spectral measure, is a spectral measure over R% x

R whose associated stationary GeRFs are solutions to (5.60). The factors /27 and % are included for

convenience. Another way of expressing measures of this form is through the disintegration language:

iy () = Vr (=9 @) ), 569

The associated covariance distribution over R? x R is its Fourier Transform, which is

pus (b w) = Fs (€1 cos(clelul)duys (6)) (h). (5.64)

By setting v = 0, it follows that the covariance of a spatial trace is the spatial Fourier Transform of fys »
and hence 1us is the spectral measure of the spatial traces, describing then the spatial behaviour of the
solution Upgr. We conclude that a Waving model can follow any arbitrary spatial covariance model, which
can be chosen freely by fixing the spatial spectral measure s - In addition, if this spatial spectral measure
is finite, the associated Waving model is a continuous Random Function over R¢ x R, since in such a case

the measure is finite.

We consider as example the case of Waving Matérn models, which are Waving models which follow a
Matérn model in space. Hence, their spectral measures must be of the form (5.62)), with dpuyrs being of the

form i
dpgs (&) = ) (5.65)
T (2m)fa(e? + g
with a, k > 0 and « € R. The associated covariance is
cos(c[¢||ul)
p(h,u) = Fg (f - p (h). (5.66)
(2m)za(k? + [£[*)"

Let us now go back to the existence of stationary solutions to (3.59) in a non-homogeneous form. Con-
sider the case X = W, i.e.
U,
o AU =W. (5.67)
Since the function (&,w) + (—w? + ¢2|¢]?)~2 is not locally integrable, by applying Theorem we

conclude that there are no stationary solutions to the stochastic wave equation (5.67). Hence, we cannot
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apply Theorem [4.4.T]to relate the covariance of a possible stationary solution of (5.59) to the covariance of
the solution with White Noise source term. The existence of a stationary solution to (5.59) must be then
studied for every particular case of X. Notice however that the existence is guaranteed when the support of

the spectral measure of the source term 1 x and the spatio-temporal cone C¢ are separated by neighbourhoods.

5.3 Further developments on first order evolution models

In this section we discuss informally the particular case of first order evolution models satisfying a particular
initial condition. The resolution of an associated Cauchy problem in a general case provides spatio-temporal
geostatistical models which are in general non-separable, non-symmetric, and non-stationary. Under suitable
conditions, we are able to prove an asymptotic convergence to a spatio-temporal stationary solution when

the time flows enough.

The formal definitions and proofs of the statements proposed in this section are presented in Appendix

5.3.1 The deterministic problem

We will follow a more typical approach in analysis of PDEs and SPDEs. We will first of all consider the
deterministic problem of finding a solution to the Cauchy problem over R% x R™:

oU
o TLU=X (5.68)
U‘t=0 = U

Here X is a distribution over R? x R and Uy is a distribution over R?, both of them belonging to suitable
subspaces of tempered distributions. ¢ : R? — C is a continuous spatial symbol function with real part gr
and imaginary part g; for which we suppose in addition that gr = 0. The fact that we require an initial
condition to be satisfied implicitly requires that the solution must have a functional meaning in time, or at

least at a neighbourhood of ¢ = 0. This condition is obtained by requiring suitable conditions on X .

We require X to be in the subspace of tempered distributions such that their spatial Fourier Transforms
are slow-growing measures over R% x R*. Uy is also required to be such that its (spatial) Fourier Transform
is a slow-growing measure over R?. We apply then a spatial Fourier Transform to (5.68)), and we obtain the

transformed Cauchy problem

av
o Tev=Y (5.69)
V‘t:O =V

where Y = .Zg(X) is a slow-growing measure over R? x R* and V = .Z5(Up) is a slow-growing measure
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over R%. In such a case we can prove the existence of a unique solution V' to (5.69), which is a slow-growing
measure over R? x RT and which can be described in a particular convenient way which will be specified
further. For now, we remark that in a classical case where Y and 1 are sufficiently regular functions (for
example in . (R? x R) and .7 (R?) respectively), the solution to (5.69) is given by

t
V(Et) = e 9OV(E) + f e~ =90y (¢, 5)ds, (5.70)
0

and the solution to is the inverse spatial Fourier Transform of V. Supposing that the function { —
e 19 is integrable for every ¢ > 0, the solution can be expressed through the Duhamel’s Formula:

t d
Ute,t) = (0 Vo)) + [ (cb &0 Y(-,s>) ()ds, (5.71)
0
where
B, (z) = (21)2 Fg(€ > 79O (2), Yu > 0. (5.72)

In (3.71)), the symbol (Hid) denotes a spatial convolution between the spatial function ®;_; and the spatial
function Y (-, s). We remark that ®( can be interpreted as the Dirac measure at 0. The regular case of formula
is actually restrictive and it does not include very interesting cases. For instance, in the stochastized
version of the PDE, we are interested in the cases where Y behaves as a measure, for example when using
a White Noise. Hence, our requirement that Y must be a slow-growing measure over R x R* is more
adapted. We will nevertheless be inspired by expression in order to find a solution in our more general
approach.

We recall that a function f : R — C is said to be cadlag if it is right-continuous with left-limits. We
recall that for every measure ;o over R there exists a unique cadlag function f such that f(0) = w©({0})
and which is a distributional primitive of 1 (see footnote [22] in Chapter [3). Since in problem (5.69) we
expect a solution whose derivative has the behaviour of a slow-growing measure, it is not surprising that the
solution V' may have a functional cadlag meaning in time. Indeed, consider V' the slow-growing measure
over R? x R* solution to (5.69). It can be proven that it has a cadlag-in-time representation. By this we
mean the following: there exists a family of slow-growing measures over R%, (V;),cp+ < #sq(R?) such
that

o forall p € Crp(R?), the function t € RT > (V;, ) is cadlag.
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o forall p € Cpp(R?) and for all @ € Cpp(R*) P we have

(V,o®0) = JR+<V“ 50(1) L. (5.73)

It can be shown that the members in the family (V}),cp+ can be expressed as

Vi = e9(Vo — Y (- x {0})) +f =99y (. x ds). (5.74)
0.1

Considering that Y is a slow-growing measure over R? x R*, expression Y (- x {0}) denotes a spatial slow-
growing measure. We can express (5.74)) in a more explicit way through the action of V; over every bounded
Borel set A € Bg(RY) through

W) = |

eftg(ﬁ)d(vo —Y (- x {O)(&) + J e’(tfs)g(i)dy(g’ s), (5.75)
A

Ax[0,t]

or equivalently through its action on a spatial test-function ¢ € Crp(R?) through
Vo) = | HOpOdVe =YX OO + [ MOy (6s). 6576
Rd R x[0,t]

Finally, the solution of is simply the inverse spatial Fourier Transform of V, U = ¢ 1(V). It can
also be shown that there exists a cadlag-in-time representation of U, which consists in a family of spatial
tempered distributions in the space 7’ (R%) (See the definition in Chapter , (Ut)4er+, such that

o forall p € .7 (R%), the function t € RT > (U, ) is cadlag.

o forall ¢ € .7 (R%) and for all § € Crp(R*), we have

U, 56 = fw@, 20(t)dt. (5.77)

This family is simply obtained through U; = Z o ! (V4), for all t € R*. Hence, we can write

0.¢]

Uy = Fg' <et9(vo —Y(-x {0})) + f e 99y (. x ds)) , VieR". (5.78)
[

We remark that, differently to the regular case of functions (5.71)), we cannot simply express U, as a spatial

convolution of distributions, since we are not aware if an Exchange Formula holds for the multiplication

>We denote by Crp (R™) the space of continuous functions defined over Rt with fast decreasing behaviour. That is, the
continuous functions 6 : R* — C such that for every N € N we have sup, .+ |(1 + t*)V0(t)| < 0.
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between the spatial function £ — e %9() and any arbitrary slow-growing measure. This holds, for example,
when g is such that £ — =% ¢ O 1 (R?) for all t € R*, case in which we can use an Exchange Formula
at least on expression e~ 9(Vy — Y (- x {0})). It is not clear if we can do so in the case of expression

S[o 1 e*(t*S)g(')Y(- x ds), even with this extra supposition on g.

)

5.3.2 Asymptotic behaviour

We consider now the slightly more restrictive case where X in (5.68)) is required that both its spatial Fourier
Transform and its spatio-temporal Fourier Transform are slow-growing measures over the whole space R x
R. Hence, Y = Z5(X) € #sc(R? x R) and in addition X € #’(R? x R), the space of spatio-temporal
tempered distributions whose spatio-temporal Fourier Transform is in .#sg(R? x R). In such a case, we

can analyse the equation

a(?(t] +L,U =X (5.79)

simply through the analysis of the spatio-temporally Fourier Transformed problem
(iw + g(§)) My = Mx, (5.80)

where we have denoted by Mx = .#(X) and My = .#(U). Let us suppose that there exists a positive
constant £ > 0 such that gg > k. If we consider solutions to which are in #”/(R¢ x R) we can simply
follow the approach of Proposition 4.6.1} and argue that there exists a solution U € #’(R? x R) if and only
if mM x € Msq(R? x R). We can apply Proposition for 5 = 1 to argue that this holds in this
case since gr > k. The solution is also unique since the spatio-temporal symbol function iw + g(§) is never

null. We will denote this solution by U®, which we know it is given by

0 _ g-1 1
U® = 7 <iw+g(£)Mx> (5.81)

The question that arises is if there is any relation between this solution U® € #”/(R¢ x R) and the solution
to the Cauchy problem (5.68). The answer is yes, and it is described through a spatio-temporal asymptotic
convergence. Under the already proposed extra requirements for X, if U is the solution to (5.68)), it can be
proven that for every ¢ > 0 and for every o € . (R?), there exists te,, € RT such that

(U™ —U,pR0)| <e, V8e #(R) such that supp(6) © RY x [t o, 0) and f 0(8)]dt = 1. (5.82)
R+

Hence, the solution U™ describes how the solution U behaves spatio-temporally after enough time. This

convergence does not depend on the initial condition Uy used in the Cauchy problem (5.68).



136 CHAPTER 5. SPATIO-TEMPORAL MODELS DRIVEN FROM EVOLUTION EQUATIONS
In the case where My is temporally integrable, which is the case when

1

——dMx(§,w) <o ,VAe Bg(RY), (5.83)
JAXR iw +g(8)

it can be proven that U® has a continuous-in-time representation (U°),cg+ < #"'(R9). If we consider the

case where the initial condition to the Cauchy problem (5.68) is set to be Uy = Uy, then it can be proven

that the solution U equals U® over R? x R™.

5.3.3 Stochastized version

We consider now a stochastized version of problem (5.68)), with analogue conditions to the deterministic
case. Namely, X is now a real GeRF over R? x R such that its spatial Fourier Transform Y = .Zg(X)
is a slow-growing Random Measure over R? x R*. We suppose also that Uy is a real GeRF over R? such
that its (spatial) Fourier Transform V = .Zg(U)) is a slow-growing Random Measure over R?. The strict
solution to this problem is constructed with complete analogy to the deterministic case. Let us explain it
roughly. It can be shown that the problem has a unique solution U, which is a GeRF over R¢ x R such that
its spatial Fourier Transform is a slow-growing Random Measure over R? x R*. It can also be proven that U
has a cadlag-in-time representation, that is, there exists a family of GeRFs over R?, (U),cg+ With analogue
properties to the continuous-in-time representation of a GeRF presented in Section but requiring the
associated random functions ¢ — (U, ) to be cadlag in mean-square rather than continuous, for every
¢ € Z(RY). All members of the family (Uy);ep+ satisfy that their (spatial) Fourier Transforms are slow-
growing Random Measures over R?. For V' = .#5(U), which is a slow-growing Random Measure over
R? x R*, we also obtain a cadlag-in-time representation through V; = .%¢(U;). The stochastic interpretation
of expressions and are well-defined as stochastic integrals, and we can obtain the associated
covariances expressions.

Since we have supposed that Y = .Zg(X) is a slow-growing Random Measure over R? x R7, its
covariance measure Cy is in .Zgq((R? x R*) x (R? x R*)). Analogously, since Vy = Z5(Up) is also
a slow-growing Random Measure, we have Cy;, € .#sc(R? x R?). For simplicity, let us suppose that Uy
and X are independent. Let V' be the solution of the stochastic transformed problem (5.69)), for which it can
be proven it is a slow-growing Random Measure. Then, the covariance of V, Cy, which is in .Zgq ((R? x

R*) x (R? x RT)), can be described, for example, by analysing the random variables of the form (5.76)),
obtaining for two spatial test-functions ¢, ¢ € Cpp(R?) and for two time locations ¢, s € R*,

CoolVeun Vert) = | e 0T €)50)dCr oo (Em) +

(e—(t—u)g(ﬁ) _ e—tg(f)l{o}(u)) (e—(s—u)ﬁ(n) _ 6_5§(n)1{0}(v)) o()B(m)dCy ((€,w), (1, v)).
(5.84)

LRdx[O,t])x(Rdx[O,s])
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It turns out that the covariance measure Cy, can be also expressed through a family of spatial covariance
measures (C"(}t’s))(t’s)eRJrXIRJr c Msq(R? x RY), which satisfies:

e forall p,p € Cpp(R%) and for all t € R, the function s € RT <C‘(/t’s), © ® ¢) is cadlag.
o forall p, ¢ € Cpp(R%) and for all s € R, the function t € R* — (C{") | o @ ) is cadlag.

e forall p, ¢ € Crp(R?) and for all 61, 03 € Crp(RY), it holds that

(Cv, (v B0 © 0RO = | | R+<c$’s>, © ®@ )01 (1)a(s)d(1, ). (5.85)

The family (C‘(/t’s))(ts)eRJr «Rr~+ 1s of course determined by expression (5.84) through

(P, 0 BB) = Cou((Vi, ),V 8)), Vg, &€ Crp(RY), (5.86)
which we may write similarly as expression (5.74):

Cy) = (et ® e~ ) Cy—y(-x{0})

+ J (ef(tfum _ e*tgl{o} (u)) ® (ef(sfv)ﬁ _ eisgl{o} (U)> dCy ((+, du) x (-,dv)).
[0,t]x[0,s]
(5.87)
The solution U can also be expressed through a cadlag-in-time representation, defining the family (Uy)ep+
through Uy = F ¢ 1(Vt) for every t € R*. The covariance structure of U is described by a distribution Cyy
over (R% x RT) x (R? x R*), which can also be described by a family (C'(Ut’s))(us)e]w <+ © V'(RY x RY),
This family is defined by

€y @9 = (), 51 (0) @ 75 (0), (538)
hence, it holds that
(Cu, (¢ 61) @ ($K b)) = (C) | 0@ 330, (1)Ba(s)d(t, s)
RExR* (5.89)

- J]R+ R+<C‘(}S)’ ggl((p) ®M>‘91 (t)@(s)d(t, 5),

for every ¢, ¢ € .7 (R?) and 61, 05 € Cpp(RY).
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5.3.4 Asymptotic convergence to the stationary solution

We consider now a particular case for X and Uy for which we obtain a stochastic analogue result to the

convergence when the time flows long enough to a convenient solution of the equation (5.79).

Let X be a real stationary GeRF over R¢ x R such that its spatial Fourier Transform is a Random Measure
over R? x R. Of course, the spatio-temporal Fourier Transform of X, say My = .%(X), is also a Random
Measure (Theorem [3.4.2)), but the requirement that its spatial Fourier Transform is also a Random Measure
is an extra supposition. Examples of such GeRFs are separable models between any spatial stationary GeRF

and a temporal continuous stationary Random Function, or a coloured in space and white in time noise.

From Proposition [5.2.1]it can be concluded that if we suppose that gr > « for some x > 0, there exists
a unique stationary solution to the SPDE (5.79). Let us call U*!% this stationary solution, which is given by

1 1
Uttt = g ( F(X ) =7 < M > : 5.90

Consider now U to be the solution to the stochastic Cauchy problem (5.68)), where U is a real stationary
GeRF over R independent of X. We remark that in such a problem only the values that X takes over
R? x R* intervene, and not the values over the negative time. Then, the following fact about the asymptotic
convergence for large enough ¢ is obtained: for all ¢ > 0 and for all € .7 (R?), there exists te, € RT such
that

E (‘(U — ystat, 4,09)‘2) <e¢, V0e .S (R? such that supp(f)  [tep,0) and J |6(t)|dt = 1.
R+
(5.91)

Hence, the solution U is arbitrarily close in a mean-square sense to the stationary solution U*!% for large

enough times.

5.3.5 Some examples. Time Markovianity.

In order to show some particular examples, we will consider the case with the requirement presented in

Section[5.3.4] We will always suppose that there exists £ > 0 such that g > k.

Consider Uy a spatial real stationary GeRF with spectral measure p;,. Let X be a spatio-temporal
real stationary GeRF with separable form X = Xg [x] X7 (we recall that this is not a tensor product stricto
sensus), where X g represents any spatial real stationary GeRF with spectral measure x4 and X7 represents
a temporal real stationary GeRF which can be either a continuous Random Function over time or a White
Noise in time, hence with spectral measure /1 x . either finite or either proportional to the Lebesgue measure.

We suppose Uy and X independent. If U5 is the unique stationary solution to (5.79), its spectral measure
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* Ao (€)dpix, ()

dpiystar (€, w) = liw + g(€)[2

) (5.92)

and in this case, this spectral measure is always temporally integrable. The spectral measure of the spatial
traces of U*! is given by

d w)
ot (A) mf JR |Zw“fg OF Sduxg(€), VAe Bp(RY. (5.93)

Consider the solution U to the stochastic Cauchy problem (5.68)). The analysis of its covariance struc-
ture is easier through the analysis of the covariance structure of V' = .Zg(U) which is the solution to the
stochastic transformed problem (5.69). V' has a continuous-in-time representation (V;),;cp+ with the covari-
ance structure given by (5.84). In our case V) = Z5(Up) is orthogonal, as well as the spatial behaviour of
Y = Zg(X) L
its acts as a continuous Random Function or as a White Noise in time. We obtain thus the next expression

F5(Xg)X Xr. In addition, with our suppositions Y (- x {0}) is null almost-surely, since

for the covariance structure of V' for every pair (¢, s) € R* x RT and every ¢, ¢ € .7 (R%):

Coul(Viuih (Vi ) = (2m)% [ 19O~ p(65(6) s (0
. N (5.94)
)2 JRd Jl) b —(t—u)g(&)—(s—v)g(§) (f)¢(f)dCXT (u, U)dMXS (©).

Here C'x,. denotes de covariance distribution of X7, which under our assumptions, is either a continuous
temporal stationary covariance function, with dC'x . (u, v) = px, (u—v)dudv, or the covariance distribution
of a temporal White Noise, Cx, = 6(u — v) = Leb ="}, The solution U has a continuous-in-time

representation (Uy )+ given by U = (Vt) and hence

Cov({Ut, ), (Us, ¢)) = (2 )3J eWOTIOZ ()6 F 5 ($)(E)dpus, (€)

d (5.95)
QJ J e (WO~ Z 1, )(g)ygl(gﬁ)(g)dCXT(u,v)duxs(é).
R4 J[0,t]x[0,s]

As stated in the previous section, the solution U converges to the stationary solution U*'% as ¢ becomes

large enough.

In some particular cases, it holds that if we consider a stationary initial condition Uy following the
spatial spectral measure (5.93)), the covariance structure of the solution U is stationary with the same spectral
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measure as U*'%, given by (5.92). This is the example where X7 = Wr. In such a case, equation (5.94) is

Cov({Vz, 99, {Vs, ¢))
= Cmf [ O T3, (0

+ (271—)% f J ef(tg(ﬁ)fsﬁ(é))+2ugR(§)¢(§)$(5)duduxs ().
R4 J[0,tAs]

= () [ OO (€3, ()
4 e~ i(t=5)g1(&)—lt—slgr (&) _ e—(tg(£)+s9(¢)) _
et | [ (€. ©) - [ S 0B @)

(5.96)
where we have solved the temporal integral and used the expression ¢t A s = HS%M We remark the

similarities between the “time stationary term”

a e~ it—s)g1(§)—t—slgr(&) _
ent | PE)B(E)dnx, (©) (5.97)
Rd 2gr(€)

which depends only on the gap ¢ — s, and the expression of the stationary covariance (5.39). The asymptotic
convergence to the stationary covariance model determined by (5.92)) can be simply obtained in this case by
analysing expression and remarking that the first and third terms tend to O as ¢, s — 0. It is also more
obvious to see that if we chose the right model for Uy through the identification pg, = %, the solution

follows a stationary model whose covariance is the same as in (5.39).

The case X = Xg [X] Wr presents also another particularity. Let us consider, for simplicity and rigor-
ousness, that all the real GeRFs involved are Gaussian. Let us write Mx, = .#g(X). The orthogonality in
time of X7 = Wy induces a Markovianity in time, in the classical sense of Markovianity. Precisely, if U is
the solution to the stochastic Cauchy problem (5.68)), and (U;),cr+ is its continuous-in-time representation,
then for any s > 0, the GeRFs (Uy)¢>5 are independent to the GeRFs (Ut)¢o,s), conditionally to the GeRF
Us. To see this, we can consider the solution to the transformed problem V' = .#¢(U), represented through

its continuous-in-time representation (V;);eg+, for a At > 0, and for any ¢ € . (R%) through

Viear,p) = fRd e (AN (E)aVo(€) + fRd eanC T TR@d M IW)(E )
" (5.98)
= (Vi e™ ) + JRd g © TTAOAOx W)€ ).
x (t,t+

Since Y = Mx X] Wr is an orthogonal Random Measure, and the expression (V%, e A1) only considers
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integrations with respect to Y up to the time ¢, then the expression

oy ARG, BV 6,
X (t,t+

is uncorrelated with (V;, e =% (), and hence they are independent in this Gaussian framework. The temporal
Markovianity of the solution U is obtained immediately through the relation U; = Z¢ L(V}) for every
t € RT. We remark however, that we have been able to prove this Markovian structure only when X
has a White Noise in time covariance structure. Indeed, since we have required X to be stationary, and
that .#s(X) is an orthogonal Random Measure, its temporal covariance structure must be such that it is a

stationary orthogonal Random Measure, and the unique covariance structure which satisfies this is the one
of the White Noise (see Example[3.4.7), up to a multiplicative constant.
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Chapter 6

Simulations

SUMMARY

In this chapter we present a method of non-conditional simulation of general stationary GeRFss.
This method is based on a convenient approximation of the Fourier Transform of the field. We
show that this method is immediately adapted to the models already presented in this disserta-
tion. Taking advantage of numerical algorithms such as the Fast Fourier Transform, efficient
simulation methods can be achieved. This method is not new, and it has been already applied
to obtain efficient simulations of stationary Random Fields related to SPDEs, although a theo-

retical proof of its performance lacks in the literature.

In the introductory Section[b.1|we describe roughly and without technical details some method-
ologies of simulation of Random Fields within the SPDE approach. They consist in using nu-
merical solvers for PDEs applied in a stochastic framework. We describe roughly the Finite
Element Method, together with its advantages and issues. We also mention spectral methods,
that is, methods based on the development of the Random Field in a suitable basis of orthonor-
mal functions. We then present the motivations which lead us to select the method presented in
this chapter. They rely mainly on its adaptability to the models presented in this dissertation
and to the capacity of simulating general classes of models over large grids with an efficient

computing time.

In Section we present the theoretical foundations of the method. In the case of a stationary
GeRF, we show that this method provides approximations which converge in a weak sense to the
desired solution. We are also able to prove a mean-square-uniformly-on-compacts convergence
in the case of continous Random Functions. We show how to apply this method in the cases of

SPDEs presented in this dissertation. We are able to prove convergence of the approximation
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under suitable conditions. We also show how to apply this method to obtain simulations of first

order evolution models and Waving models.

In Section[6.3|we present the implementation of this method together with the technical details
that must be considered. We propose a qualitative error analyse in the case of the Matérn
model, for which the mean-square-uniformly-on-compacts convergence of the covariances is
theoretically proven. We propose illustrations of different types of models that can be easily
simulated with this method. In particular, cases with different forms of advections, asymmetries,
and separated regularities along different directions are illustrated. We show illustrations of
first order evolution models, together with the theoretical asymptotic convergence exposed in
Section (5.3). We also present illustrations of a Waving model following a Matérn covariance

in space.

We finish in Section [6.4) with some final words. We discuss the advantages and disadvantages

of this method, together with propositions to improve it.

The proofs of the theoretical results are presented in Appendix[A]

6.1 Introduction

Within the SPDE approach, the simulation of a Random Field related to a SPDE can be performed through
the use of numerical solvers to PDEs. Such an approach is performed by considering a suitably discretized
or approximated version of the PDE and its solution, restricting the space of possible solutions to spaces of
finite dimension. The application to the stochastic framework is done simply by replacing the deterministic

functions with Random Functions of GeRFs, which finally consists in simulating a suitable random vector.

The most popular method used within the SPDE approach in Geostatistics is the FEM. This method
considers an approximation of the solution of the PDE expressed as a finite linear combination of suitable
functions defined over the space. These functions are determined by a triangulation of the working domain,
usually consisting in a mesh of triangular elements with associated nodes an edges. There are many biblio-
graphical sources on this method, both for the deterministic framework of PDEs and the stochastic one. We
suggest Zienkiewicz et al.|(2013)) and |Braess| (2007) as treaties on this practice in the deterministic case. In
the probabilist community, this method is widely used to analyse approximations of solutions to SPDEs. See
Stefanou| (2009) for a general review and |Barth & Lang|(2012) for application examples. We will not enter
into the technical details of this method. However, we remark its main advantages within the needs of the

geostatistical community, together with its limitations when trying to apply it to more general cases.

In the geostatistical community, the use of this method was popularised by |[Lindgren et al.| (2011])), in

which the main interesting properties while solving the equation associated to the Matérn model are pre-



6.1. INTRODUCTION 145

sented. As mentioned in the introductory chapter, when the Matérn model has a Markovian behaviour
(o € Nin Eq. @.T3), applying Rozanov’s Theorem presented in Example 4.5.3), the precision matrices
obtained when applying the FEM are sparse, condition which allows a fast computational treatment of the
model. Another particularity of the FEM, which holds regardless of the Markovianity of the Random Field,
is that the values obtained by the approximation at the nodes of the triangulation mesh are given immediately
by the method. Hence, when facing a particular data base with values located at arbitrary points in the space,
the FEM can be easily adapted for inference and conditional simulation methods by identifying the sampling
location points with nodes in the triangulation mesh. Inference methods and conditional simulations can be

then performed, the required precision matrices being already obtained once the SPDE is discretized.

Although the FEM presents many advantages, it is not immediately adapted to more general models
related to SPDEs which do not involve classical differential operators. For instance, [Lindgren et al.[ (2011])
apply the method for the Matérn model only for integer values of «.. Other values with fractional regularities
must be treated differently through suitable adaptations. In the commentary section of |Lindgren et al.|(2011)),
the authors propose to approximate the target Random Field in the case of fractional « by a suitable Markov
Random Field, with a spectral density defined by the inverse of a suitable strictly positive polynomial deter-
mined in order to obtain an appropiate approximation. In[Bolin & Kirchner|(2017)) a method of adaptation of
the FEM to cases of the Matérn model with fractional regularity parameter is proposed, performed through
a rational approximation of the SPDE. The methodology allows to obtain simulation and inference methods
maintaining the computational benefits of the Markovian case. In general terms, this method needs ad-hoc
adaptations when facing different types of SPDEs. Hence, the generality of this method is limited. For non-
Markovian models, the sparse condition on the precision matrices is also lost in general, needing an extra
special treatment. The necessity of suitable adaptations are more intricate when considering spatio-temporal
PDEs, specially if they involve fractional operators of different orders in time and space, as the models
presented in Chapter [3]

Another approach of numerical resolution of PDEs, and hence to SPDEs in a stochastic framework is
done through spectral methods. The term spectral has different meanings depending on the community. In
the geostatistical community, the term spectral is often used for methods of simulations or inference based
on a suitable utilisation of the spectral measure of a stationary Random Field. See the usage, for instance, in
Chiles & Delfiner| (1999, Section 7.5.3), Lantuéjoul| (2013, Section 15.2.3), and Emery et al.|(2016)). In the
PDE community, the term is used for methods of numerical resolution of PDEs based on the development
of the functions in a basis of linearly independent functions generating the space of possible solutions, often
taken to be a complete orthonormal basis with respect to the interior product of a suitable Hilbert space to
which the theoretical solution belongs. The solution, the source term and other functions involved in the
PDE can be formally developed in this basis through an infinite (countable) linear combination. The typical
approach is to truncate the infinite development at a large enough finite order, obtaining a development on

a subspace of finite dimension of the original vector space, generated by a finite sub-basis of the original
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infinite basis. The coefficients associated to each orthonormal function are then determined by the PDE, and
can be obtained solving linear systems in the case of linear PDEs, analogously to the FEM. The convergence
of these approximations to the theoretical solution, when it exists, are considered in the sense of the norm
of the associated Hilbert space. The initial basis of orthogonal functions can be selected in many ways.
One possible approach is to select them considering the geometry of the domain where the PDE is analysed.
Typical approaches are, for example, to chose an orthonormal basis of the space L?(D) for a domain D —
R, Spaces of the form L?(D, \), with ) being a suitable positive measure over the domain D are also
considered, the resulting functions in the basis being usually identified with convenient polynomials such
as Chebyshev polynomials or Hermite polynomials. Sobolev spaces are also used when facing fractional
differential operators or in contexts where the solution has a fractional differentiability order. When working
in particular geometrical settings, ad-hoc basis of functions can be selected. For example when considering
PDEs defined over the unitary sphere in R¢, 0B§d) (0), the spherical harmonic functions are often used (Dai
& Xu, |2013). Another interesting approach is to select a basis of functions which is not independent of the
operator involved on the PDE. For instance, when facing an equation involving different forms of the Laplace
operator over bounded domains, a typical approach consists in considering the basis of eigenfunctions of
minus the Laplacian —A; see for instance the developments in M. D. Ruiz-Medina et al.| (2016). We refer
to |Gottlieb & Orszag| (1977) for a simple introduction on spectral methods in a deterministic framework,
presenting applications to typical PDEs and showing the advantages and disadvantages that such a method

may present in particular contexts. We refer toCanuto et al.|(2006) for a deeper exposition.

In a stochastic framework, spectral methods (in the PDE sense) are widely used in the probabilist com-
munity to analyse approximations of solutions to specific SPDEs. See for instance Kargaard (2013)) for a
source with an explicit theoretical background plus applications, and Bréhier et al.| (2016)) for the study of the
resolution of specific space-time SPDEs with this approach. InLang et al.| (2015) applications for the case
of differential equations defined over the sphere can be found. In the geostatistical community this approach
has not been widely exploited, at the best of our knowledge. Some examples using a wavelet basis can be
found in M. D. Ruiz-Medina et al.|(2016)). An important example of spectral method is obtained when using
the Karhunen-Lo¢ve expansion of a stochastic process, where the basis of orthonormal functions is taken to
be adapted to the covariance model of the process; see|Loeve| (1978, Chapter XI) and|Yaglom| (1987, Chapter
4, Section 26.1).

The question that arises is how to discriminate between the already existent simulation methods based on
PDE solvers and identify which ones are more easily adaptable to the framework presented in this disserta-
tion. The FEM lacks in generality for cases with complicated operators involved, needing ad-hoc adaptations.
A spectral method (in the PDE sense) requires to fix a particular basis of functions which may be useful in

some particular settings, but that could be less adapted to different kinds of equations.

In this chapter we have decided to apply an already existent method which may be catalogued as a
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spectral method both in the geostatistical and PDE sense. It is intimately related to the oldest spectral
method: the one consisting in the development of a periodic and square-integrable over a rectangle function
in the Fourier basis. It is not, however, exactly this method. As mentioned, in a usual spectral method the
basis of orthonormal functions is fixed, and the approximation is done by truncating the development of the
target function up to some large enough order. In contrast, the method presented here changes the basis
of functions when changing the approximation order. We remark that this is also the case when doing an
approximation through the FEM. This method is based on the approximation of the Fourier Transform of a
stationary Random Field, which is an orthogonal Random Measure. Under suitable arrangements which will
be specified in this chapter, we can obtain an easily computable form of a Discrete Fourier Transform, and
hence apply the Fast Fourier Transform algorithm (FFT) (Cooley & Tukeyl [1965)) to obtain a fast simulation

even for large simulation grids.

This method is not new at all. We refer toPardo-Iguzquiza & Chica-Olmo|(1993) for a detailed exposition
of the method considering a geostatistical approach, that is, done under the context and needs of geostatistical
simulations and applications. A general description of this method is also presented in (Chiles & Delfiner
(1999, Section 7.5.3), where adequate bibliographical sources concerning the details of this method are
presented. InLang & Potthoff] (2011) this method is also presented in the context of the numerical resolution
of SPDEs. The equations considered therein are almost of the same form as the ones we presented in Chapter
H] The differences rely on our use of complex symbol functions and arbitrary stationary source terms, while
in|Lang & Potthoff] (2011)) the exposition of the method is restricted to positive symbol functions and White
Noise source terms. In practice, these restrictions do not really pose a real problem: it can be proven that
by using positive symbol functions we obtain the same desired covariance structures for the solutions (the
final spectral measure is determined by |g|), and for many applications and interesting models, such as those
presented in Chapter[5] the restriction to the case of a White Noise source term is not an issue. Nevertheless,
even if this method is old, in the literature there is a lack of theoretical justifications of the convergence of
the approximations to the target model to be simulated. [Pardo-Iguzquiza & Chica-Olmo| (1993)) compare
experimental variograms obtained from the simulations with theoretical models with satisfactory results.
Lang & Potthoff| (2011) illustrate the convergence to theoretical covariance expressions when increasing the
approximation order in the case of a Matérn covariance model. However, none of these sources presents a
rigorous mathematical proof of some form of convergence of the method when increasing the approximation

order.

The framework of GeRFs exposed in this dissertation has allowed us to prove the theoretical convergence
of this method in quite general cases. When the Random Fields are interpreted as GeRFs, we are able to
prove the convergence to the target solution in a mean-square-."’ (Rd)—weak—* sense, which is probably the
weakest form of convergence which may be achieved without using more general theories. Under suitable
conditions, we have been able to prove a mean-square-uniformly-on-compacts convergence in the case of

stationary Random Functions. This implies that the covariance functions of the approximations converge
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uniformly on compacts to the covariance function of the target Random Function. This convergence is more
adapted to geostatistical needs than other kinds of convergences in the sense of Hilbert spaces obtained when
applying typical spectral methods, since a point-wise convergence guarantees, for instance, that the variance
of the Random Field will be well-approximated when considering large enough approximation orders. It also
allows us to prove the convergence of the approximation when considering continuous non-differentiable
Random Functions, case in which, for instance, typical spectral methods based on the Fourier basis may fail

to approximate the solution (See Deitmar, 2005, Chapter 1).

The attractiveness of this method relies mainly on two aspects: first, it is computationally fast thanks
to the orthogonal structure of the Fourier Transform of a stationary Random Field and the application of
the FFT algorithm; second, it is general and immediately adaptable to the context of SPDEs presented in
this dissertation. Indeed, this method, as it will be seen, is ad-hoc for cases of equations of the form (4.3,
and hence it allows us to simulate approximations of quite general and interesting Random Fields, whether
if its associated SPDE involves a classical differential operator or not, contrarily to the case of the FEM.
We are thus able to illustrate 2D-versions of the models developed in Chapter [5 without technical issues or

adaptability needs.
We could refer to |Pardo-Iguzquiza & Chica-Olmo| (1993)) and to |Lang & Potthotf] (2011)) for the imple-

mentation details. However, it seems more convenient to present them in our way and within the context of
this dissertation, so the theoretical proofs and practical implementation issues will be exposed with more clar-
ity. We will thus, present all the technical details of this method and its implementation. For spatio-temporal
models, we adapt this method to obtain simulation techniques of first order evolution models inspired by
the developments in Section [5.3|in Chapter [5] The method is a generalization of the methodology proposed
in [Sigrist et al.| (2015) in the case of the advection-diffusion equation (Example [5.2.1), which consists in a
Fourier Analysis-based spectral method in space using FFT, with an explicit resolution of the equation over

time. We also present the adaptation of this method to simulate Waving models.

6.2 A Spectral Method based on the Fourier Transform

The method we present here is not exactly based on the development of the stochastic process on the Fourier
basis but rather on an approximation of its Fourier Transform. We will see that both approaches are intimately
related but they are not exactly the same. We restrict ourselves to stationary Random Fields. In such a case,
the Fourier Transform of the process is an orthogonal Random Measure, finite if the process is a Random
Function, and slow-growing if the process is a GeRF. The approach is then to approximate this Random

Measure and then apply a Fourier Transform which can be expressed in a convenient discretized manner.
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6.2.1 Theoretical foundations of the method

Let us consider our definition of a Riemann sequence of partitions of a bounded Borel set of R? which we
introduced in Section Such a sequence consists of a collection of bounded subsets of RY satisfying
suitable properties. Rather than recalling the details, we will give now a definition of a Riemannn sequence
of partitions growing to the whole space R?. A sequence of finite collections of bounded Borel subsets of

R, (V]N ) je{1,....N},NeN, 18 said to be a Riemann sequence of partitions growing to R? if

o VN VY =, forall j, ke {1,.., N} such that j # k, for all N € N,

e max diam(V}N) — 0as N — oo,
je{17~“’N}

e forall K ¢ R? compact, there exists Ny € N such that forall N > Ny, K < U;V: 1 VjN .

Hence, this sequence forms partitions of bounded subsets of R¢ whose union grows to the space R? as N
grows, and such that the size of each set in the partition decreases to 0 as IV grows. For every N € N,,
we denote by Dy := R%\ Uj\[: 1 VjN . The sequence of sets (Dy)nen, decreases to & as N grows, in the
sense that ) Nen, DN = . To the sequence of partitions (VJN )je{l,...,N},NeN,» WE associate an arbitrary
sequence of finite collections of points in R?, (§§V )je{1,...,N},NeN * satisfying fév € VjN and called the tag
points of (VjN)je{l,...,N},NeN*- We denote by £ := maxje( . n} diam(V}N) for every N € N,. Hence
(/N)Nen, is a sequence of positive real numbers which converges to 0. For every NV € N,., we will consider
an additional tag point d € Dy, which will play an auxiliary role. The definition of a Riemann sequence

of partitions growing to any other unbounded Borel set of R is completely analogous.

Consider now a (deterministic) measure over R?, 1 € .# (R%). We can consider an approximation of y

by defining:

N
v = 3 (Vi )den. (6.1)
j=1

For every N € N,, p is a finite measure (it is actually compactly supported), and it is easy to prove (see
Lemma using supp(i) as A) that for any ¢ € C.(RY), {un,p) — {u,¢) as N grows. Hence, the
sequence of measures (1) Nen, converges to u in the sense of the weak-+ topology on the space . (RY) =
CL(RY).

Let us consider now the stochastic case. We consider the case of a real stationary GeRF over R?, Z
with stationary covariance distribution pz and spectral measure p ;. Following Theorem [3.4.2] its Fourier
Transform, which will be denoted by M, = .%(Z), is a complex Hermitian slow-growing orthogonal

Random Measure. We are going to interpret Mz both as a Random set-function (considering the random

'In this context, we will use the notation £ for the variables in R? since the Riemann sequence of partitions will be actually
constructed over the frequency space.
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variables of the form Mz (A) for A € Bg(R%)) and as a linear functional (considering the random variables

{Mz, ) for every ¢ integrable with respect to My).

For every N € N, let us consider the complex Random Measure defined as
2 Mz(V}¥)dex. (6.2)

Mz, is compactly supported, hence it is a finite complex Random Measure. In addition, Mz, is orthogonal.
Indeed, let us consider A, B € Bg(R?). Since My is an orthogonal Random Measure with weight (27r)g nz,

and since the class of sets (V]N ) je{1,...,n} forms a partition, we conclude that

N N
Cov(Mz,, (A), Mz, (B 2 Z (B)Cov(Mz(V}Y), Mz (Vi)
=1

N N J
226 A)den (B)(2m) 2 pz (VY A ViY)

k
=1

—_
=

.

—_
Ed

.

=

= (2 X dgr ()i (B (1)

N

= (2m)2 ), 0ex (A n B)uz(V)Y) = ™) (Z pz(V; 55N) (An B).
! (6.3)

IS

. . . d QN
Hence Mz, is an orthogonal Random Measure with weight vz, = (27)2 > ;7 MZ(V )5£N

Since both M and My, are slow-growing, we can analyse the random variables of the form (M7, ¢) —
(Mg, ,p) for any p € .7 (R%). Hence, we can compare their respective Inverse Fourier Transforms. We
define

1
ZMZ (Ve G eRrd (6.4)

Zy(x) = F7H (Mzy)(x) =
(271') -

Zn is a complex Random Function, and since it is the Fourier Transform of a finite Random Measure, it
is continuous. If we want it to be a real Random Function, we need to choose conveniently the collection
(‘/}N)je{17,,,7N}7NGN* and the tag points (§§V)je{1mN},NeN* in order to make Mz, be an Hermitian Random
Measure. In such a case, Zy is a real stationary Random Function. We will require the Hermitian condition
on Mz, in the implementation Section , but here we will simply work with the cample,\ﬂ stationary

2Without much detail, we can define a complex continuous stationary Random Function over R¢ as a Random Function which
is a Fourier Transform of a complex finite orthogonal Random Measure. A complex continuous stationary Random Function has
a spectral measure which is positive and finite but not necessarily even, and a continuous stationary covariance function which is
positive-definite, neither necessarily real nor even but always Hermitian.
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Random Function Z . From (6.3)) we conclude that the spectral measure of Zy is

N
nzy = ) 1z(Vi)oe. (6.5)
j=1
The covariance function of Z is then
1 Al TN
pax(h) = —= 3 uz (Ve (6.6)
(2m)2 j5

The next result states that the Random Functions (Zy) yen, approach Z in some sense.

Proposition 6.2.1. Let Z be a real stationary GeRF over RY with spectral measure jiz. Let My = F(Z).
Let (Zn) Nen,, be the sequence of Random Functions over R? defined through (6.4) for an arbitrary Riemann
sequence of partitions growing to R%, (VjN)je{L...,N},NeN* and for arbitrary tag points (§JN)je{1,._7N}7N€N*.

Then, Zn converges to Z in a mean-square-.& ’(Rd)—weak-* sense, that is,

E (|<Z, o) — (Zn, g0>|2> 0, asN — o,V e #(RY). 6.7)

Proposition is proven in Appendix The result stated in this Proposition gives us an idea of
how to construct Random Fields which converge to a desired GeRF in a weak sense. It is then expected
that if we require more conditions on Z, stronger forms of convergence may arise, which may be useful to
describe. In this aim, let us suppose now that Z is a real continuous stationary Random Function, and let
us follow the same procedure as in the generalized case. The Fourier Transform of Z, Mz, is now a finite

Random Measure, and the random variables Mz (R%) and Mz (D) have finite variance.

Theorem 6.2.1. Let Z be a real stationary continuous Random Function over R¢ with Fourier Transform
My = F(Z). Let (ZN)Nen, be the sequence of Random Functions over R? defined through (6.4) for an
arbitrary Riemann sequence of partitions growing to R?, (VjN)je{l,.A.,N},NeN* and for arbitrary tag points
Ny, . Then, Zx converges to Z in a mean-square-uniformly on compacts sense, that is,
5 Jje{l,..,N},NeNy 8 q y p

sup E (|Z(aj) - ZN(z)|2) -0, as N — ©,YK c R? compact. (6.8)
zeK

It is not hard to conclude that Theorem implies that the sequence of covariance functions (pz,, ) Nen,
converges to pz uniformly on compact sets. We give a proof of Theorem [6.2.1) in Appendix [A.I7] In

such proof, the following vanishing bound for the mean-square-uniformly on compacts convergence ([6.8) is
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proven:

sup E (|Z(x) - ZN(:U)|2) <L [umz(md) sup |2 + MZ(DN)] , VK c RY compact.  (6.9)
zeK (271-)5 zeK

Hence, the rate of convergence of Zx to Z is determined by the selection of the Riemann sequence of
partitions (VJN )je{1,...,N},NeN, and by “how fast pz decays at infinity”. Indeed, the two elements which
determine the rate of convergence are ¢ and pz(Dy). The term pz(Dy) depends on the decreasing
behaviour of 1 at infinity, and as we have seen in Section [3.2.2] this is closely related with the regularity
of the Random Function Z. The less regular Z is, the slower the term pz(Dy) goes to 0. We remark
also that all Random Functions in (Zy) nen, are smooth in mean-square, since their Fourier Transforms are
compactly supported Random Measures. Hence, it is expected that approximation methods based on this

Theorem work better for regular Random Functions Z.

Remark 6.2.1. The Random Function Zy is periodic. This follows immediately from the fact that the
. l T N . . . . . . .

functions of the form ¢ &' are all periodic. Hence, when doing computational implementations of this

method, one must be aware of simulating over a domain of R? where it is assured that an undesired periodic

behaviour will not be present.

Remark 6.2.2. Z does not have the same variance as Z. Its variance is always smaller since

Var(Z(e)) — Var(Zy (@) = —— (uz(RY) - uzy (&)

(2m)
1 N
= — (M(Rd) —pz(|J VjN)> (6.10)
(2m)?
1
= Wuz(DN) = 0.

The rate of convergence of the difference of the variances is then determined by iz (Dy). In cases where Z
is not sufficiently regular, the differences between the variances may be considerably high, generating issues
for some statistical purposes. We propose two options to construct an approximation of Z which has the

same variance as /:

o through the addition of the stationary Random Function

izTdn
Ry(z) = MZ(DN)€(2 - F~H(Mz (Dn)ba,), 6.11)
)2

the stationarity of this function being guaranteed since My (Dy)dq, is an orthogonal Random Mea-

sure, which can be proved using the same arguments as in (6.3);



6.2. A SPECTRAL METHOD BASED ON THE FOURIER TRANSFORM 153

e through a convenient normalization. Precisely, if we set 0% := Var(Z(z)) = pz(0) and

1 Y 1 N
0%y 1= Var(Zy(x)) = p3,(0) = —— > pz (V) = ——pz (U vﬂ) : (6.12)
(2m)2 ;o (2m)2 =1

we consider the sequence of stationary Random Functions (;’TZZ N) NeNy -
N
Proposition 6.2.2. Both sequences of Random Functions (Zn + RN ) Nen, and (%Z N) NeN, converge to
Z in a mean-square-uniformly on compacts sense, and all of the Random Functions in the sequences have

the same variance as Z.

A proof for Proposition is given in Appendix [A.18] In such a proof we obtain also the following bounds for

the mean-square-uniform on compacts convergence:

supE (|Z(x) —(Zn(z) + RN(a?))|2) < 2 y [QE?V/LZ(RCI) sup |z| + ,uZ(DN)} , VK c R?compact
3

reK zeK
2)

N
pz(®Y =z ([ V)

(6.13)
and

2

+ (46%,/12(]1@) sup |z|* + ,uZ(DN)> , VK c R? compact.
TeEK

(6.14)
The bound (6.13) is larger than the bound (6.9)), with the addition of (27r)_%u z(Dy). The bound (6.14) is the
largest of the three. This implies that even if we have corrected the variance, the approximation is worse than
originally in the sense of the mean-square-uniform convergence of compact sets, and hence other properties

of the target Random Function such as its regularity or the practical range may be worse reproduced.

Remark 6.2.3. Consider the classical approach of developing a square-integrable function over the interval
[0, 27] in its Fourier basis. Such an approach consists in approximating a function f € L2([0, 27]) by trun-
cating the development of f on the basis of functions of the form (%)nel' The expression of a truncated

expansion is given by
N

1 . .
fn= 3 5 (F e rqoame™ (6.15)
n=—N

for some N € N. We remark some similarities with respect to Eq. (6.4) for d = 1. The big difference is that
in the case of the Fourier basis the distances between the associated tag points are constant and not depending
of N. Hence, the distances are not bounded by a term such as ¢y which goes to 0. Such an approach would

not necessarily provide a convergence in a mean-square-uniformly on compacts sense, not even a point-wise
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convergence in general.

Remark 6.2.4. We mention the most important fact of this approximation method. Since the Random
Measure My is orthogonal, the random variables of the form M, Z(VjN ) and Mz(Dy) are mutually non-
correlated. Hence, they are easy to simulate. Two difficulties are anyway still present. The first is calculating
their variances. Since M7 is an orthogonal Random Measure with weight (277)% bz, the variances are given
by

Var(Mz(V)) = (2m)2 uz (V) (6.16)

and
Var(Mz(Dy)) = (27) 2 uz(Dy). (6.17)

If we can rely on a closed and easily computable form for 1 Z(VjN ) and pz(Dy), we are then able to obtain
the variances without practical problems. If not, other approaches must be followed to obtain the variances.
For example, one may use a computational method to approximate the integrals. This produces an extra
error in the approximation and increases the computational cost of the method. Another option is giving an
easily computable approximation of the integral, but this may produce extra errors in the approximation. We

discuss an example of this option in Section[6.2.2]

The second difficulty comes from the Hermitian condition on M. As already mentioned, the random
variables of the form M, Z(VjN ) are mutually uncorrelated but, since they are complex, this does not imply
independence, even in a Gaussian framework. Hence, the procedure is not as simple as simply simulating a
vector of independent random variables without any special regard. For instance, if for two different indices
J.k € {1,..., N}, the associated sets VjN and V;V satisfy VjN = —V;V, then the Hermitianity of Mz implies

that M Z(VjN ) = Mz(V}V), and hence M Z(VjN ) and Mz(V;") cannot be independent. This detail can be

tackled in many manners. We will show an example on how to do this in the implementation section [6.3]

Once these difficulties are tackled, expression (6.4) can be computed by interpreting it as a discrete
Fourier Transform and applying convenient numerical algorithms for its computation. This will be detailed

in the implementation section [6.3]

6.2.2 Application to SPDEs

The results presented in Section [6.2.T] can be applied to develop simulation methods of approximations of
stationary GeRFs or Random Functions with a big generality, whether the GeRF being concerned by a SPDE
or not. However, it also gives us an inspiration to develop numerical methods to solve some classes of SPDEs.

In this section we explain how to do this.
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Let us consider the case of the equation studied in Chapter
LU =X, (6.18)

where X is an arbitrary stationary GeRF over R? with spectral measure px. We will suppose that the
symbol function g satisfies the PBR condition and that it is continuous. We recall that this implies that
|g| > 0. Hence, there exists a unique stationary solution to (6.18]) and it is simply given by

U="~L.1X. (6.19)
g

Denoting Mx = %#(X), we construct an approximation of the source term X following the principles

exposed in the previous section. Let (V]N ) jef{1,..,N},NeN, be a Riemann sequence of partitions growing to

R?, and let (§§V)je{17,,‘7N}7NeN* be a collection of associated tag points. We set

1 ¥ TN N
Xn(z) = —— D Mx (V)™ & =71 Y Mx (V)6 |- (6.20)
(2m)z ;= =1 !

Then, we propose an approximation of U through the Random Function:
Un(x) = L1(Xn)(2). (6.21)

. d 1 _ 1 .
Since for every £ € R?, one has 555 = 3 d¢, we obtain

_ N MX(V'N) 1 N MX(VN) . T ¢N
U =71 SR Y JUV J 7 it &5 6.22
v (2 o€ > anf & ) o

Uy is a stationary Random Function with spectral measure

N N
px (Vi)
KUy = ), — e Oen s (6.23)
" JEI g
and with covariance function N N
1 ,UX(VJ' ) ihTeN
pux(h) = e Si. (6.24)
" (27)% ; 9(&))

By definition, it is immediate that Uy satisfies the SPDE:
LUy = X, (6.25)

which may be seen as an approximation of the original SPDE ({6.18). The next result shows that the sequence
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of Random Functions (Uy) e, converges in a mean-square-.7’ (R?)-weak-* sense to the solution of (6.18).

Proposition 6.2.3. Let X be a real stationary GeRF over RY with spectral measure px. Let Mx = .F(X).
Let g be a continuous symbol function satisfying the PBR condition. Let (Un)nen, be the sequence of
Random Functions over R defined through (6.22)) for an arbitrary Riemann sequence of partitions growing
to R¢, (‘/jN)je{l,‘..,N},NeN* and for arbitrary tag points ({év)je{lqu}WeN*. Then, (Un) Nen, converges
to the unique stationary solution to (6.18)) in a mean-square-."'(R?)-weak-x sense. That is, if U is such a

solution, then

E <|<U, o) — (U, <,0>|2) 50, asN — o0,V e S (RY. (6.26)

Similarly to what has been done in Section [6.2.1f we can also prove a stronger convergence when the
objective GeRF U is a stationary continuous Random Function. However, we need more conditions on the
symbol function g. We recall that the solution U to is a stationary continuous Random Function if
and only if |g| 2 is integrable with respect to the spectral measure of X (Remark . The next result is

proven in Appendix [A.20]

Theorem 6.2.2. Let X be a real stationary GeRF over RY with spectral measure pix. Let My = F(X).
Let g be a continuous symbol function such that |g|~2 is integrable with respect to ux and such that there

exist o € R and two constants C, Co > 0 satisfying
CiL+[€)* < 1g(€)] < Ca(1 + [, vEeR? (6.27)

Let (Un)Nen, be the sequence of Random Functions over R? defined through (6.22)) for an arbitrary Rie-
mann sequence of partitions growing to R%, (VJN )je{l,..., N},NeN,, and for an arbitrary collection of tag
points (£ jN )je{1,....N},NeN,- Then, the sequence (Un)Nen, converges in a mean-square-uniformly on com-
pacts sense to the unique real stationary solution to (6.18), which is a continuous Random Function U.
Explicitly,

supE (|U(a:) — UN(x)|2) —0, asN — o,YK c R? compact. (6.28)
reK

Remark 6.2.5. The proof of Theorem [6.2.2]relies on the Dominated Convergence Theorem, and it does not
provide a vanishing bound to measure the error of the approximation. It can be verified that the error is
higher than the error when approximating a GeRF through the approach of Theorem [6.2.1]

Remark 6.2.6. We can highlight some cases where the condition (6.27) is not necessary and still having a
mean-square-uniform convergence on compact sets. Always supposing that g is a continuous symbol func-
tion satisfying the PBR condition and such that |g| 2 is integrable with respect to jx, under the following

cases the convergence is also guaranteed:

. é is uniformly continuous and p x is finite.
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e 4x has compact support.
e The tag points are not arbitrary and they are chosen such that |g(£)| < |g(¢ ]N )| forall £ € VjN .

Under these conditions the convergence is easily verified by bounding expressions of the form

N f
Z VN
J=1v%;

which appear in the proof of Theorem [6.2.2] On the first two cases, a vanishing bound for the error can be

1

1
7O @ dpx (€) (6.29)

obtained using the uniform continuity of %.

Remark 6.2.7. Rather than solving the SPDE (6.18)) one could follow the approach in Theorem to
construct an approximation of a Random Function with the same covariance structure as U. This is highly
recommended if the integrals of the form Svj N T/;(%)(I? are well-known or can be exactly computed. The
approach using the approximation (6.22) is actually nothing but following the approach in Eq. (6.4) with
an approximation of the variances of the random variables MU(V]-N ). Indeed, one could argue that a good

approximation for such variances is given by

NVY — (972 Ny — (92 dpx(§) 7TgMX(VjN)
Var(My (V) = 2m)4 s (V) = (2m) JV sor ~ e e 6
Mx (V)

The last expression coincides with the variance of a random variable of the form &) in Eq. (6.22),
hence the approach of solving the approximative SPDE is equivalent in law to use an approximation
of the form (6.4) with an approximative computation for the variances. We have noticed in Remark [6.2.5]
that such an approximation produces difficulties. Theorem [6.2.2] proposes a convergence with a restrictive
condition on g, for which we do not have a bound to measure the error. It is then preferable, if possible,
to use the approach of Theorem with an exact computation of the variances. However, a subtlety still
remains: we have not solved the SPDE (6.18), and hence we have not simulated approximations of both
Random Fields U and X. If U is the only Random Function of interest, this is not so much of an issue.
However, if we want to simulate the couple (U, X) in a bivariate modelling approach (Section , the only
simulation of U using Theorem is insufficient. Given a good approximation U, say Uy, we still can
simulate an approximation of X through X = £,Uy, the approach being, at the end of the story, the same
as in Theorem [6.2.2] Hence, a non-controlled error will be present in some of the two simulated Random
Fields. We suggest then, if possible, to use the approximation (6.4) without approximative variances to

approach the one we are more interested in, if we are not in a bivariate context.
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6.2.3 Adaptation to first order evolution models

In this section we show how to apply the results presented in Section[6.2.1]to solve numerically the Cauchy
problem associated to first order evolution models studied in Section[5.3] The approach is a generalization of
the method used in [Sigrist et al.[(2015)) to simulate solutions to the stochastic advection-diffusion equation,
where the approach is to do a spatial FFT combined with an exact expression of the solution in time. Here we
give the details of such an approach. We show that it can be generalized to the cases of other equations (just
by changing the function g), and we prove the convergence of the approximations to the theoretical solution
in a weak sense. In this section we work in a spatio-temporal framework, hence we use the notational

conventions pointed out at the beginning of Chapter [5}

We consider thus the Cauchy problem as presented in Section[5.3}

oU
o ThU =X (6.31)
U|t:0 =Uo

We recall that here g is a spatial symbol function for which we suppose in addition that g = 0, being gp its

real part. We will focus on the resolution of the spatial-Fourier transformed problem

oV
o tov=Y (6.32)
V|t:0 =W

where Y = Z5(X) and Vy = F5(Uy). We suppose that we are in the case presented in Section
where X is a real GeRF such that Y = .Zg(X) is a slow-growing Random Measure over R% x R, and Uy
is a real GeRF such that Vj = .Z5(Up) is a slow-growing Random Measure over R?. The principle is to
use an approximation of Y and Vj constructed using a Riemann sequence of partitions growing to the space
R<. Then, we propose a spatial approximation of the solution to (6.32)), and we can thus give an explicit

expression for its time evolution.

Let (VjN)je{l,...,N},NeN* be a Riemann sequence of partitions growing to R%, and let (ij)je{L...,N},NeN*
be a collection of associated tag points. We introduce the following slow-growing Random Measure, defined

as a set-function:

N
N(Ax B) =) Y( B)ien(A), VAe Bz(RY), B e Bg(R"). (6.33)
j=1
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Equivalently, Yy can be described through its action to test-functions v € .7 (R? x R) by

() = 2f L (e DY (€. ) (6.34)
The initial condition Vj is also approximated through our method. We consider thus the Random Measure

Vo.v —ZVO 7)o (6.35)
j=1

We consider then the solution to the approximated transformed problem

oV

ot
VN‘tZO = Vo.N

+gVny =Yn (6.36)

As we have seen in Section [5.3.3] there is a unique solution Vv to (6.36) which is a slow-growing Random
Measure with a cadlag-in-time representation. We can hence express this solution as a collection of Random
Measures over R%, (VN .t)er+. having a cadlag behaviour in time. The expression is given by

Vni(A) = f

e (Vo — Y (- x {0})(€) + f e MOayy(65),  (637)
A Ax[0,t]

for all A € Bg(R?). Such expression, which may be quite complicated to compute for a general Y, can now

be expressed in a simpler manner due to the definition of Y}y using Dirac delta measures:

N

Ve =) <e—t9(@”> (Vo(V) =YV} x {0})) +J[ ]e—“—S)g(&éV)dY(vjN x .)(s)> Sen,  (6.38)
0,t J

Jj=1

or more explicitly,

V(A 2 (e tg(¢N) VO(V}N) _ Y(V;N x {0})) + f[o’t] ef(tfs)g(Ejv)dY(VjN % .)(3)> 6§]N(A)

(6.39)
for all A € Bg(R?). Indeed, in this case we have used the well-defined Random Measures over R* deter-
mined by the collection of random variables (Y(VjN X B))peBy(m+)- Since Y is a Random Measure over
R? x R, the covariance Kernel of Y(VJN x - ) defines a measure over Rt x R™ for every N € N, and for

every j € {1,..., N}. Hence, the expressions of the form

J =9 gy (VN )(s) (6.40)
[0.1]
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are simply the stochastic integrals of the temporal deterministic functions of the form s — e~ (=997 with
respect to the temporal Random Measure Y(VjN x - ) over the interval |0, ¢]. In addition, since gr > 0, the
functions s — e " 99") are bounded over [0,¢], which guarantees the good definition of this stochastic

integral.

Finally, we consider the non-transformed approximated problem

oUn
or TLeUn =X (6.41)

UN‘t:O = Uon

where Xy = .Zg 1 (Yn)and Up ny = Fg 1 (Vo,n). The solution is given by the spatial Fourier Transform of
(6-38)), which is a Random Function over R x R, determined by

Uy

Z ( —t9E) (Vo (V) = Y (VY x {o})) +J e~ =9 gy (VN x -)(s)> e
[0.1

4
2

(6.42)
Uy is a Random Function smooth in mean-square in space and cadlag in time.

In expression we have used the random variables of the form V;, N(VjN ), Y(VjN x {0}) and the
stochastic integral (6.40). For general slow-growing Random Measures Y and Vj, these random variables
are not necessarily non-correlated, hence we have not win that much in simplicity when looking for a method
to simulate the solution (6.38)). This situation is avoided when requiring the extra conditions on X and Uy
which were presented in Section Namely, that X and Uy are stationary, and that Y = Z#g(X) is a
slow-growing Random Measure. For simplicity we will suppose that Y(VjN x {0}) = 0. In such a case,

expression (6.38)) gives

N

Vive =), (atg@ Wo (V) +J[ ]e‘(t‘s)9<5§v Jay (VN x .)(s)> . (6.43)
0,t

j=1

We suppose, in addition, that X and Uy are independent. Consequently, the random variables of the form
Vo(VjN ) are independent of the random variables of the stochastic integrals of the form (6.40). Since X is
stationary and Y is the spatial Fourier Transform of X, Y must have an orthogonal behaviour in space, and

hence for a fixed t € R™ and for every N € N,, the collection of random variables

( f e~ =99 gy (VN x -)(s)) (6.44)
[O’t] jG{l,...,N}

are mutually uncorrelated. With these extra suppositions, the simulation of Vi, for a fixed t € R is easy to

compute, maintaining anyway the subtleties presented in Remark[6.2.4]
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The next proposition gives sufficient conditions when this approximation procedure converges to the
desired solution U in a weak sense. The proof is presented in Appendix

Proposition 6.2.4. Let X be a real stationary GeRF over R% x R such that X is separable in the form
X = XgX X7 (symbolically), where X represents a stationary Random Measure over R. Let g : R* — C
be a continuous spatial symbol function such that gz > 0. Let Uy be a real stationary GeRF over RY.
Let (Un) nen* be a sequence of Random Functions defined as in for an arbitrary Riemann sequence
of partitions growing to R¢, (VJ‘N)je{l,...,N},NeN* and for arbitrary tag points (§§V)je{1,...,N},NeN*- Let U
be the solution to the Cauchy problem (6.31)), and let (Uy);cr+ be its cadlag-in-time representation. Then,

Uy — U in a mean-square-. '(Rd)—weak-* sense in space and in point-wise sense in time. Explicitly,

2
E <‘<Ut, ©) — f Un(z,t)p(x)dz ) -0, asN - w,Veoe.7(RY, vteRY. (6.45)
R4

Remark 6.2.8. Proposition (6.2.4) also holds when X has a product-sum form, say

M
X =) XtmXF, MeN,, (6.46)
k=1

7777

in a product-sum model, the representation (6.46) means that the covariance of X can be expressed as
the covariance of sums of tensor products as in (6.46)), being the families of GeRFs (XF) ke{1,..,n} and
(X5)ket1,...ary all mutually independent.

Remark 6.2.9. Under the conditions of Proposition[6.2.4] and if we require in addition that gp > x > 0 for
some £ > 0, as we have pointed out in Section [5.3.4] the covariance of the solution to the problem (6.31)
converges spatio-temporally to the covariance of the unique stationary solution of the associated equation
(5.79) as the time flows. In the approximated case, the solution to the approximated Cauchy problem (6.41))

converges spatio-temporally to the unique stationary solution of the approximated SPDE

oUN

T Lo(Un) = X5 R X, (6.47)

where X éV represents a spatial approximation of the spatial trace X g, through the method exposed in Section

Hence, we obtain a convergence to an approximation of the stationary solution U/,

Let us now consider the problem of simulating U at different time locations. In this case we can follow

a recursive approach to obtain a practical expression for Viy. Lett € R* and At > 0. With some simple
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algebraic calculations, one obtains the next formula for Viy ;1 A+ as a function of Vi ;:

Viesarld) = |

e A qVy 1 (€) + f e THA=)9Q) gy (€, 5), VAeBa(RY. (6.48)
A

Ax(t,t+At]
Equivalently, we can express Vy 1At as

N
VN t+ar = 2 (emg(@) [etg(éév)vo(vjN) +J[

ef(tfs)g(gév)dY(VjN X )(s)]) Oen
j=1

0,t] I

N (6.49)
. Z J e,(t+At—s)g(€§V)dY(VjN x -)(s) 56”'
21 \J@t+at] J

If we have already a simulation of Vy; through the specification of the collection of random variables

(etg(ﬁj-v)vo(y}N) + J

e (9D gy (VN x -)(s)) , (6.50)
[0.1]

je{L,...,N}

we can use these random variables to calculate the first sum in (6.49). The second sum contains the random

variables of the form
f =899 Gy (VN x )(s), (6.51)
(t,t+At]

which may be seen as innovation terms. Such terms are not necessarily uncorrelated with the random vari-
ables of the form (6.50). The dependence structure between them is determined by the covariance structure
of Y, which is not necessarily orthogonal in time. A case where there is no correlation between the inno-
vation terms (6.51)) and the random variables (6.50) is when Y™ has the structure of a orthogonal Random
Measure in time, case in which, as we have seen in Section [5.3.5] the solution V" has a Markovian behaviour
in time when working in a Gaussian framework. Consider then the case where Y is an orthogonal Random
Measure over R? x R. If vy € .#J,(R? x R) is its weight, the variances of the involved random variables
can be expressed as

Var (etg(fj-v)vo(vjN) _|_J[ e*(t*S)g(ij)dy(VjN « )(S)>

0,1] (6.52)
— 297 (28 gy (V) + J e 207090 (VN ¢ ) (),
[0.4]

and

Var (J e_(t+At_5)g(§év)dY(VjN X )(5)> = J 6_2(t+At_S)gR(§J]'V)dVY(VjN x+)(s), (6.53)
(t,t+At] (t,t+AtL]
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where Ly, is the spectral measure of Up. Hence, when Y is orthogonal we have an easy way to simulate the
involved random variables and hence to obtain a non-limited in time simulation of the spatio-temporal model.
We remark that if the variances and are known exactly, the simulation does not accumulate time
errors when evolving in time: the solution is the strict solution to the approximated problem (6.32). The

errors in the approximation are completely determined by the spatial approximation.

We remark that, as we have mentioned in|5.3.5] the conditions that X is stationary and that Y = .Zg(X)
is orthogonal require that X must be both orthogonal and stationary in time, and hence, possibly, the only
kind of models which satisfy this property are those who have the behaviour of a White Noise in time. In

the implementation section[6.3| we consider the case where X is a coloured in space and white in time noise,
X = Xsg X Wr.

6.2.4 Adaptation to Waving models

Let us consider the application of these principles to obtain approximations of real stationary solutions to
some homogeneous SPDEs. We consider the homogeneous SPDE

L,U =0, (6.54)

for which we look to approximate a particular stationary solution. As stated in Remark [4.3.3] this is only
possible in the case when g has null values, and in such a case the stationary solutions have spectral measures

concentrated on the subset g~1({0}). Hence, a general expression for U is given by
U=2"YMy), (6.55)

where My is an Hermitian slow-growing orthogonal Random Measure concentrated on g~ ({0}). The gen-
eral principle is to use a Riemann sequence of partitions of g=1({0}) (or growing to g=1({0}) if it is not
bounded) together with tag points, and then defining a Random Function Uy following the same principle
as in Eq. (6.4), using an orthogonal Random Measure My concentrated on g~ 1({0}). Hence, .#(Uy) is
an orthogonal Random Measure concentrated on g~1({0}), and hence it is immediate that Uy satisfies Eq.
(6.54). However, we still need a criterion to select a particular solution. Since there are many possible spec-
tral measures concentrated on the set g~ 1({0}), there are also many possible orthogonal Random Measures
M which can be chosen. Such a selection is arbitrary and it is done in order to obtain a model with desired
extra properties, besides the fact of solving Eq. (6.54).

In this section we will focus on the case of Waving models (Section[5.2.4). The selection of a particular
stationary solution for the associated homogeneous Wave equation is done in order to make the solution

follow a desired spatial covariance model. We maintain the notational conventions of the spatio-temporal
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framework as considered in Chapter [5

Let U be a real stationary GeRF over R? x R solution to the homogeneous Wave equation

o*U
Sr - AU =0, (6.56)

As we have seen in Section U must have a spectral measure of the form

o) = V2 (Y s ), 657)

where (17 is a spectral measure over R4, pu describes the spatial behaviour of U. Let My = .7 (U). My
is an orthogonal Random Measure concentrated on the spatio-temporal cone C® = {(¢,w) € R x R | |w| =
c|€|]}. We consider a spatial Riemann sequence of partitions growing to RY, (VJN )je{l,...,N},NeN,» With
associated tag points (@N ) je{l,...,N},NeN,- Starting from this spatial sequence of partitions, we construct a
spatio-temporal Riemann sequence of partitions growing to C€ as follows: for every N € N, and for every
j € {l,..., N}, we define the sets

By, :== (VN xR*)nC® ; B :=

j77 :

(VN xR,) nce. (6.58)

77777

to the "positive-temporal-frequency part" of the spatio-temporal cone, C° n (R? x R*). Analogously, the
collection of sets (BN )jefl,....N},NeN, forms a Riemann sequence of partitions growing to C* n (RY x R;).
To every set of the form B]-’ we associate the tag point (£; ,c|£N ) € C¢ n (R? x RT), while to a set of
the form Bjj.Yf we associate the tag point (£ i —c|§JN ) € C¢ n (RY x Ry ). Since My is concentrated on C°,
we have that MU(VjN x RY) = MU(B]]-Y+) and MU(V}N xRy) = MU(Bﬁ_). We propose then the next
approximation for Mp;:

N
= 2, My(Vi¥ x R7)d(en jenpy + Mu(VY < RO)(en —gjen)- (6.59)

We recall that the Dirac measures of the form 5( €N ¢|¢IV|) are measures over R xR. M, Uy 1s then a compactly
Jj’ J

supported orthogonal Random Measure concentrated on C¢ and hence its spatio-temporal Inverse Fourier

Transform is a stationary complex Random Function which satisfies Eq. (6.56). Such Random Function is

determined by

Un(z,t) =

N
Z < e g (VN < RY) + et A (VY x R;)) e (6.60)
7j=1
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Let us make explicit the variances of the random variables of the form MU(V}N x R*) and MU(VjN xR, ).
My is an orthogonal Random Measure over R? x R with weight (2%)%/1(], with g given by (6.57).
Hence, for every B € Bg(R? x R),

d+1

Var(My(B)) = (27) 2 py(B). (6.61)
Following the disintegration expression (6.57), one has
Var(My(V;¥ x RY)) = (2m) F pr (VY < RY)

4 Oc 0_c
- eyt | ST e 6

d 55 +5,C 5C +5,c
—ente| [ ST @+ [ ST T @ ¢
V.V\{0} VN {0}

= @ | G (MOD + (Y o (0]
(6.62)

Following the same arguments one obtains

Var(My(V}¥ x R;)) = ~——pug (V;\{0}). (6.63)

We obtain thus the following results which are consequences of Proposition [6.2.3 and Theorem [6.2.1] We

omit the proofs.

Proposition 6.2.5. Let U be a real stationary GeRF over R? x R which is solution to the homogeneous
Wave equation (6.56). Let My be its spatio-temporal Fourier Transform. Let (Un)nen, be the sequence
of Random Functions over R% x R defined through (6.60) for an arbitrary Riemann sequence of partitions
growing to R%, (VjN)je{l,...,N},NeN* and for arbitrary tag points (fjv)je{l,...,N},NeN*- Then, (UN)NeN,
converges to U in a mean-square-.&"' (Rd x R)-weak-+ sense, that is,

E <|<U, b — <UN,¢>|2) 50, asN — o0,V e # (R x R). (6.64)

For the next result, we remark that if U is a real stationary solution to the homogeneous Wave equation
such that the spectral measure describing its spatial behaviour 7 is finite, we obtain immediately from
that its spatio-temporal spectral measure p; is also finite, hence U is a continuous stationary Random

Function.

Theorem 6.2.3. Let U be a real stationary GeRF over R x R which is solution to the homogenoeus Wave
equation (6.56), and such that the spectral measure describing its spatial behaviour juy is finite. Let My be

its spatio-temporal Fourier Transform. Let (Un)nen, be the sequence of Random Functions over R? x R
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defined through (6.60) for an arbitrary Riemann sequence of partitions growing to RY, (V}N )jefl,...N},NeNy
and for an arbitrary choice of tag points (ﬁjv)je{L._.’NLNeN*. Then, (Un)nNen, converges to U, which is a

continuous Random Function, in a mean-square-uniformly on compacts sense, that is,

su}EE (|U(x) — UN(m)|2> —0, asN — o,VK c R? x R compact. (6.65)
xe

Remark 6.2.10. Concerning the explicit computation of the variances (6.62) and (6.63) for a particular
spatial spectral measure ji;;, we have the same issues as in Remark [6.2.7] If we know how to calculate them
explicitly, we can apply Theorem|6.2.3|and obtain an approximation which converges mean-square uniformly
on compacts. However, if we rather do an approximation, similarly as in Eq. (6.30), some extra conditions
over this spatial spectral measure must be required in order to justify the convergence. For instance, if we
suppose the spatial traces of U to satisfy an equation of the form (6.18)), and if we apply the procedures of
section to approximate U, the conditions on Theorem[6.2.2] are required.

To conclude, we remark that in this case we have a similarity with the approach followed in section[6.2.3]
for first order evolution models: the approximation is only spatial. Temporally, our approximation Uy solves

the homogeneous Wave equation strictly.

6.3 Implementation

The results presented in Section [6.2] are now applied to simulate approximations of some GeRFs and so-
Iutions of SPDEs. We will present examples in a spatial context with a study of the convergence of the
approximations in the case of the Matérn model. We will illustrate other models with interesting properties
in the case of dimension d = 2. In the spatio-temporal context, we will illustrate first order evolution models

and Waving models.

The simulations are done in a Gaussian framework. Hence, all the non-correlated real random variables
involved are independent. Before concerning about the simulation itself, we will point out some necessary
technical specifications about the computational adaptation of our results and how to relate them to a classical
Fourier Analysis computational problem, obtaining expressions associated to Discrete Fourier Transforms.

The simulations are performed in R.

The Riemann multi-sequence of partitions

In this implementation section we will always use the same Riemann sequence of partitions growing to R?
(or to R% x R). The collection of sets of the form (VJN ) je {1,...,N},NeN, Will be now re-indexed in a convenient

way. The approximation order will not be described by an integer NV € N, but by a multi-index of positive
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integers, which will be written in bold letters N € N¢, and we will further require all of its components to
grow together to oo, which we denote by N — c0. We denote by [—(N—1), N—1] := {j € Z¢ | -(N-1) <
j < N — 1}, where the inequality relation —(N — 1) < j < N — 1 is taken component-wise. The collection
of partitions will be described through a Riemann multi-sequence of partitions growing to R, determined
for every j € [~(N — 1), N — 1] and for every N € N¢ through:

1 1 1 1 1 1
VN = 1= =1+ = o — = jo 4+ = | X oo X |Ja—=,da + = 6.66
;T =anN {71 2;]1+2> X[h 2,]2+2> X . X {]d 27.7d+2>, (6.66)
where (QN)NeNi is a multi-sequence of positive numbers such that ay — 0 as N — oo and such that
anN — o as N — co. It is clear that for a fixed N € N¢, the collection (VjN)je[[(fol),Nfl]] forms a

partition of its reunion. Such a reunion is given by

1 1 1 1 1 1
VN —an [N ==, N+ =) x| No— =, No+= | x..x |[Ng—=,Ny+ =}, (6.67)
, J 2 2 2 2 2 2
JE[-(N—-1),N+1]
which we may denote informally by
1 1
N--N+-]. 6.68
aN [ 5N+ 2) (6.68)

Since anN — 00 as N — oo, the reunion (6.67) grows to the whole space R? as N grows. In addition, all
of the members of the partition (VJN) je[-(N—1),N—1] have the same diameter for a fixed N € N¢, given by

diam(V;Y) = anVd, (6.69)

which goes to 0 as N grows. Hence, we can properly say that (6.66) defines a Riemann multi-sequence of

partitions growing to R<.

Finally, we choose the associated collection of tag points, which will be given simply by

&' = anij, (6.70)

forall je [-(IN — 1),N — 1] and for all N € N¢,

This selection of Riemann multi-sequence of partitions and tag points is preferred for many reasons.
We first remark that it is the most intuitive and classical Riemann partition: we made a partition given by
rectangles and the selected tag points are the middle points. In addition, we remark that we have the following
condition

~N =)’ and N =€, Vie[-(N-1),N-1[,VyNeN, (671

where (VJ.N)O denotes the interior of the set VjN. This condition will be beneficial when considering ap-
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proximations of Hermitian Random Measures, in order to identify which random variables are conjugate
one of the other when simulating a real stationary GeRF. Finally, this selection is, as it will be made explicit
below, closely related to the traditional form of a discrete Fourier Transform, for which there are well-known
algorithms of fast computation such as the FFT (Cooley & Tukey, [1965)).

We remark that, in any case, this choice is of course not the only possible one, and that other options
may be more adapted for particular cases. For instance, if the target GeRF Z has an isotropic stationary
covariance, a partition grounded on pizza slices centred at the origin, rather than rectangles, may be more

comfortable for analytic computations, although the FFT algorithm is not immediately adapted.

Expression as a Discrete Fourier Transform

Let Z be a real stationary GeRF over R%. For simplicity, we will suppose that it is a continuous Random
Function over R? and we will simulate approximations of Z over a fixed domain of R?, say [0, L]¢ = RY,
with L > 0. The principle is to approach Z by the corresponding analogue approximation (6.4), which is a
stationary Random Function. In the case of the Riemann multi-sequence of partitions considered here, Zn

is given by

Zn(z) = —— Z My (VN)eione"i = =1 Z Mz(VN)dan | (@), (6.72)
? j=—(N-1) —(N-1)

where Mz = .7 (Z), which is Hermitian since Z is real. The random variables (Mz(ViN))je[—(N—1),N-1]
for a fixed N € N are all uncorrelated, although non-independent due to the Hermitianity condition. Let
us assume, for simplicity, that the spectral measure of Z, uz, satisfies that p Z(&VJ-N) = 0, that is, that the
boundary of the sets of the form (6.66)) are 11z —null sets, which holds for example when 7 has a density
with respect to the Lebesgue measure. In such a case one has that M Z(VJ-N) =M Z((VjN)O), and since M
is Hermitian, by one has

Mz(V) = Mz(VR). (6.73)

We can conclude that the orthogonal Random Measure

Mzy = Y. Mz(V{N)day; (6.74)
j=-(N-1)
is Hermitian. Indeed, if A € Bg(R?), then

Mz (A) = Y, Mz(VN)dani(A) = Z Mz (VIS ani(—A) = Mz (=4),  (6.75)
j=—(N-1) j=-(N-1)
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where we have used a simple rearrangement of the sum. Hence, Z is a real stationary continuous Random

Function.

We recall that from Remark [6.2.1 the Random Function Zy is periodic. If we want to simulate its
values over the domain [0, L]d we need to ensure that no undesired periodical behaviour will be present.
From expression (6.72)), we see that the frequencies along the canonical directions are multiples of an,
hence it is through the control of this multi-sequence that we can control the periodicity of Zx over the
desired domain. The lower frequency in expression (6.72) in the direction k € {1, ..., d} is given by j = 1.
In such a case, the associated function e?*N®* has period 2—; From this, we obtain that if we want to simulate

Z at points belonging to [0, L]d, we must take an < 2% In order to avoid a reflective behaviour, that is,

not necessarily periodic but rather having undesirable cases such as Zn(z) = —Zn(y) for two different
points z, y, we must impose
T
aN < I (6.76)

With these considerations we can already simulate the Random Function Zn over an arbitrary finite col-
lection of points belonging to the domain [0, L]d. Let us suppose that there are M € N points in this domain
where we want to simulate Zn. Supposing that the computations of the variance and the simulation of every
random variable M Z(VJ-N) are of order O(1), a direct computation of the sum (6.72)) involves a quantity of
operations with complexity O(M N1 N,...N;). The FFT algorithm allows to reduce the “M” part of this
complexity to a log(M). However, in order to apply it, the points of evaluation in the domain [0, L] must
be on a regular grid. Let us fix the regular grid which must be used. We recall that the classical expression
of a Discrete Fourier Transform in a uni-dimensional case of a vector of complex numbers (Xo, ..., Xy _1)

is given by the vector (Yp, ..., Yy_1) determined by

N-1
Yi= Y X;e i¥h, ke {o,..,N —1}. (6.77)
j=0

The minus sign in the exponentials in can be removed without technical issues, the result being a non-
normalized Discrete Inverse Fourier Transform, for which the FFT algorithm also applies. The adaptation
to a form of the multiple sum is done using algebraical rearrangements, for which the final expres-
sion is given by a combination of Discrete Fourier Transforms and non-normalized Discrete Inverse Fourier
Transforms. What really lacks is the presence of an expression of the form z%rk: 7 in the exponentials in Eq.
(6.72), whose multi-variate version consists in expressions of the form i2w(% + xﬁ,—f + ...+ xf{,—f), for

x = (21,...,24) € R% In order to obtain such an expression, we consider for any fixed N € N? and for any

k € N9, the point in R%:
2w [k k
N 1 d
ne= - (Nl""’Nd> . (6.78)
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These points are set on a regular grid over [0, oo)d. If we evaluate Zn; on one of them we obtain

) = 1
ZN(zy) =

o [ k1j ki
3 My (V) () vy e e, (6.79)

d J
* = (N1

Hence, we obtain an expression which can be easily related to a multivariate form of combinations of Discrete
Fourier Transform and Inverse Discrete Fourier Transforms. Such an adaptation must be done by rearranging
the sum (6.79) into multi-sums over [0, N — 1].

Methods based on the FFT algorithm produce arrays of the same quantity as the array which is trans-
formed, and hence we will obtain values associated to the points )Y such that k € [0,N — 1]. We remark
that just some of these points are in the desired domain |0, L]d. A point JIE is in such a domain if and only

if for the associated multi-index k = (ky, ..., kg) € N we have

anN;

k <
2

L, Vie{l,..d. (6.80)

We remark that from condition (6.76)), this implies that k1 < % forall [ € {1,...,d}, hence we will only
retain a small part of the values obtained when applying the FFT algorithm (less than the half for d = 1, for
instance). We remark also that since anyIN — o0 as N — oo, the quantity of points included in [0, L]d also
grows, obtaining a finer simulation grid as we take a higher order of approximation IN. The total quantity of

evaluation points included in the domain [0, L]¢ is

d
I1 Qa;ierLJ v 1). (6.81)

=1

The complexity of the algorithm is O(N;...Nglog(N;...Ng)).

The simulation of the random variables involved in the approximation

Consider the problem of simulating the complex random variables (M Z(VJN)) je[—(N—1),N—1] in expression
(6.4). These complex random variables are non-correlated but they are not all mutually independent since
they are related through Hermitianity conditions. The variances of each one of these random variables are
given by
N 4 N
Var(Mz(VN)) = (2m)% puz (V). (6.82)

We split M Z(VJ.N) in its real and imaginary parts

Mz (Vi) = ME(VN) +iMZ (V). (6.83)
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Since M7 is orthogonal and Hermitian, from Proposition , M g and M é are non-correlated real Random
Measures, and hence independent in this Gaussian framework. Recalling relation (6.71)) and that we have

supposed that Mz is null over the boundaries of the sets (VJN) jel-(N—1),N—1],NeNd» We obtain the variances

Var(B) = CD% (i) 4z (5 o V)
4 (6.84)
Var(a5) = C (i () =z (VY 2 V).

From relation (6.73) one gets that it is just necessary to simulate a part of these random variables, the rest
of them being determined by the already simulated ones through a complex conjugation. The procedure is
quite immediate in the case d = 1, where in the sum we have to just to simulate the cases of index
7 = 0 and then obtain the case of the negative ones through the Hermitian condition. In higher dimensions
the problem is a little bit more complicated.

e We first consider the case where j is such that j; > 1 and its reflections. In such a case, VjN NV =g

and hence the random variables M R(VN) and M1 (VN) are independent with same variance equal

to (2m)2 HZ( (Eq (6.84)). We simulate these independent real random variables and then we
set MZ(V}N) = MZE(VN) +iML(VY). We then set Mz (VDY) = MZ(VJ.N). The total number of
independent real random variables simulated is 2(N; — 1) Hf:2(2Nl —1).

e We then consider the case where j; = 0 and j» = 1. We apply an analogue procedure since we

still having VjN N Vf} = . The total number of real independent random variables simulated is
2(Na — 1) [ 152N, — 1).

o We apply recursively the same principle until the case j; = j2 = ... = jg—1 = 0 and jg = 1, where

the total number of real independent random variables simulated is 2(Ng — 1).

e Finally, the random variable Mz (VY), where 0 = (0, ..., 0) € N, is a real random variable since M
is Hermitian and VON is a symmetric set (VON = —VON). The variance of this real random variable is

d
(2m)2uz(Vg)).
In this procedure, the final total number of real independent random variables simulated is

d
[ [N -1, (6.85)
=1

which is the same number of sets in the partition (V; ) je[—(N—1),N—1]- We remark that this procedure gets

highly memory-consuming for big values of N.
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6.3.1 Implementation in the case d = 2

In this section we apply the method to cases in dimension d = 2. We consider the case of SPDEs of the form
(6.86)

LU =W,

restricting ourselves to the case where the solution U is a continuous Random Function, i.e. when |g]| 2 is
integrable. We follow the approach described in Section [6.2.2] and hence we simulate the solution to the
(6.87)

approximated problem
LyUn = Wn,
where Wy is an approximation of the White Noise using expression (6.72)). Since the Fourier Transform of
a White Noise is a White Noise, we have the convenient simple expression of the variances:
Var (M (V}Y)) = Leb(Myw (V™)) = ag (6.88)

which does not depend on j. The expression for the solution U to is given by
(6.89)

1 N-1
: 2, 9(&Y)

(2m)

Un(zy) =

(6.90)

for every point mllj on the evaluation grid.
1

We set the simulation domain to be [0, L] x [0, L] = R?, for L = 100. We also set from now on:

™
aN = -+ )
Llogyg(maxeqs,.. ay V1)

which has been chosen arbitrarily. For simplicity, we will always work with multi-indices of the form
(6.91)

N = (N,..,N) € N? for some N € N, which will determine the approximation order. Under these

conditions, the total number of points in the simulation grid is given by (Eq. (6.81)):
N N 2
¥ 1) - ([ J ¥ 1) .
J 2logyo(IV)

N
i) 1) " (|
([2log10(N)J 2log;o(N)
For instance, for N = 210 the grid has 170 x 170 evaluation points, for N = 2! it has 310 x 310 points, and
for N = 2!2 it has 567 x 567 points. From expression (6.78) it follows that the step between two neighbour
2L1log;o(N)
e,

points in the grid along an arbitrary canonical direction is given by
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The variance of the approximation U, is given by
d N-1
N d Ny2?

(6.92)

which can be obtained from the evaluation of Eq. (6.24) at h = 0 (we recall duw (§) = (27r)7gd§). This is
used in order to obtain normalized simulations, which are then approximations to the normalized version of
the solution to (6.86).

Matérn model: illustrations and qualitative Error Analysis
We begin by considering the case of the well-known Matérn model. We consider then the equation

(2= A)2U =W, (6.93)

for some k > 0 and o > 4. Hence g(¢) = (K + |¢ )2. We consider simulations of the normalized

approximated version. Figure [6.1]shows illustrations of such simulations for different approximation orders

N and for different regularity parameters o, maintaining the same scale parameter k.

In order to analyse the quality of this approximate procedure, we computed the average experimental
variograms of 50 independent simulations and compared it to the theoretical variogram of the Matérn model.
The experimental variograms are considered using 20 separation distance bins of width 3, hence considering
points separated up to a distance of 60 units (we recall that L = 100). The comparison is done for different
orders of approximation, regularities and scale parameters. The cases of scale parameter xk = % are presented

in Figure The cases of scale parameter Kk = %0 are presented in Figure

In Figures and it can be appreciated that when the approximation order N grows, the average
experimental variograms get closer to the theoretical variogram near to the origin. This tendency is stronger
in the cases with high regularity and small practical range. In the sense of the behaviour at the origin, the
method produces better approximations under higher regularities, which is not surprising since, as mentioned
before, the theoretical approximation Uy is a smooth Random Function. In broad terms, the coincidence
between the mean of the empirical mean of the variograms and the theoretical variogram is not ideal. The
particular case @ = 4 and k = %0 presents more difficulties, probably related to the high practical range of

this case.

While it is theoretically proven that the approximation gets better as the approximation order grows
(Theorem|[6.2.2]applies in the case of the Matérn model), it is also true that in such case both the computation
time of the method and the memory required to perform it grow. Hence, it is not an issue which may be easily

tackled in practice without producing extra computational problems.
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FIGURE 6.1: ILLUSTRATION OF APPROXIMATIONS OF THE MATERN MODEL FOR DIFFERENT ORDERS OF AP-

PROXIMATION N AND DIFFERENT REGULARITIES. THE SCALE PARAMETER IS SET AT Kk = % THE VARIANCE IS
NORMALIZED.
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FIGURE 6.3: COMPARISON BETWEEN THE AVERAGE EXPERIMENTAL VARIOGRAMS OF 50 INDEPENDENT SIM-
ULATIONS OF APPROXIMATIONS OF A MATERN MODEL (IN BLACK) AND THE THEORETICAL VARIOGRAM OF

THE MATERN MODEL (IN RED). THE SCALE PARAMETER IS SET AT K
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Tllustrations of miscellaneous models

One real advantage of this simulation procedure is its generality: we can now easily simulate approximations
of a large variety of models presenting different interesting behaviours and being related to different SPDEs.
The key issue is the control of the symbol function g, which in the case of equation (6.86) determines
the spectral measure of the solution, which has a density. Taking advantage of this condition, we show

illustrations of a big variety of models related to different kinds of SPDEs.

All the simulations are normalized. The approximation order is set at N = 212,

Lim-Teo generalization of the Matérn model. We consider the SPDE

(K2 + (=A))2U =W, (6.94)

fork > 0, & > 0 and v > O such that oy > %. The unique stationary solution of this SPDE follows a

generalization of the Matérn model which was studied in [Lim & Teo|(2009). The symbol function defining
the operator in (6.94)) is given by

ol
2 .

9() = (v + [€[**)

The mean-square regularity of this model is determined by the product ay. Since in this case we can

(6.95)

dissociate this product by controlling the parameters o and ~y separately, we are able to control the practical
range of the model without changing the parameter , which now plays the role of a regularising parameter
which guarantees the positivity of g and hence the existence of a unique stationary solution. We present in
Figure[6.4]two illustrations of approximations of this model using our method. In both of them we have that
ay = 2, hence the regularity, that is, the mean-square differentiability order is the same, and the parameter
Kk is also set at kK = % We illustrate that through the change in the parameters « and v we are able to control

then the practical range.

Advections and other asymmetries. We present examples which consider a symbol function with non-
null imaginary part. As seen in Section such a condition produces an asymmetric behaviour of the
variability of the Random Function with respect to the two spatial components (we may consider it as a non-
symmetric anisotropy). The simplest way of doing this is by considering a vector v € R? and considering
symbol functions of the form g(¢) = gr + v’ €. The associated SPDE is then of the form

LU +0'VU =W, (6.96)

which is related to transport phenomena. We take advantage of the generality of our method to consider

other non-typical asymmetries induced by particular symbol functions. The imaginary part gr must be odd.
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(@ a=05v=4 (b)a=3,7:§

FIGURE 6.4: SIMULATIONS OF APPROXIMATIONS OF THE LIM-TEO GENERALIZATION OF THE MATERN MODEL.
THE PARAMETER K IS FIXED AT Kk = % NORMALIZED. WE APPRECIATE DIFFERENT PRACTICAL RANGES WHEN
COMPARING BOTH SIMULATIONS, WHILE THE REGULARITIES ARE THE SAME.

We can obtain a large variety of them by considering any continuous polynomially bounded odd function
f over R and then setting g;(£) = f(vT€). It is then expected that some behaviour similar to the simple
case of advection (6.96) will be present if we consider the same vector v. We consider the odd functions

3, arctan and sin. For the case of x2 a classical differential operator of third order can be obtained. For

x
the cases of functions arctan and sin, we do not know if there exists a widely used operator associated to

symbol functions involving them.

The results are illustrated in Figure[6.5] In all cases we consider the real part of g to be the one associated
to the Matérn model, gr (&) = (k2 + |€[2) 2, with k = 1 and o = 2. We set v = (—1,4). In the basic case
of g7(¢) = v’'¢ an anisotropy is clearly apparent, which presents higher correlations at same distances in the
direction of the vector v with respect to other directions. A similar anisotropy is clearly present in the cases
of the functions sin and arctan. In both cases extra small-range correlations are visible along the direction
orthogonal to v. In the case of the sin function, a slight periodic behaviour along the direction of v can be
perceived. In the case of the function 2% the anisotropy is less clear. This can be explained from the extra
regularity that the term (v7'¢)? imposes to the Random Function. Since it is a high order polynomial, the
associated spectral density of the solution, which is the inverse of a strictly positive polynomial of degree
6, is integrable with respect to high order polynomials, hence it is a more regular covariance model. The

simulation shows a significant increase of the practical range with respect to the other cases.
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FIGURE 6.5: REALISATIONS OF MODELS WITH NON-SYMMETRIC BEHAVIOUR IN BOTH COMPONENTS, INDUCED
BY AN ADVECTION VECTOR SET AT v = (—1,4). THE PARAMETERS OF THE REAL PART OF THE SYMBOLS
FUNCTIONS ARE ALL SAME, SET AT K = 1 AND o = 2.
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Models with different regularities along the axes. Within this approach it is easy to construct models
presenting different regularities along the axes. The idea is quite similar to the case of the Stein model
in a spatio-temporal context (Example £.5.5). We consider, for instance, a symbol function of the form
g(&) = K2 + |&? + &%2, for k > 0 and aq, ag > % The associated SPDE can be written as

62 ai 52 az
(2 (-5m) +(-55) Jv=w ©97

Since a (resp. a2) controls the integrability of the spectral density with respect to the first (resp. second)
frequency component, both parameters can control separately the regularities along the axes. In Figure [6.6]
we present an illustration of such a model, for which we also show the behaviour along one axis when the
other component is fixed at a particular position. As expected, a more regular behaviour along the component

with the higher aw—value associated is clearly visible.

1.0

L

' £ 3 g 4 .
: ¥ SRS -

4 3
. :
E ] «? 2 R QA
1 b !
‘ . § - -3 @ @
— T A
0.0 02 04 06 0.8 1

08
LA

06

0.2

0.0

T T T T T T T T T T T T
0 0 100 200 300 400 500 0 100 200 300 400 500

(a) a1 =3,a2 =0.7 (b) Trace at a fixed 2 (c) Trace at a fixed x1

FIGURE 6.6: SIMULATION OF AN APPROXIMATION OF A MODEL WITH DIFFERENT REGULARITIES ALLONG THE
CANONICAL AXES SATISFYING SPDE (6.97). NORMALIZED. x = . AT THE CENTER AND AT THE RIGHT, WE
PRESENT AN EXAMPLE OF TRACES ALONG THE AXES, OBTAINED BY FIXING ONE COMPONENT TO A PARTICULAR
VALUE. THE FIXED VALUE IN BOTH CASES CORRESPONDS TO THE 50TH POSITION IN THE REGULAR SIMULATION
GRID (EQUALS TO 8.642853 € [0, 100] IN THIS CASE).

The model associated to Eq. (6.97) is symmetric in the sense of Section [5.1.2] (we can interpret, for
instance, the second component as a time component). Hence, it is interesting to illustrate the behaviour of

a non-symmetric case, as presented in Section[5.2] We will thus consider solutions to SPDEs of the form

[e3

02 )2 oPU
K- U+—=W, (6.98)
< ax% é’xg
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fork >0, a > % and 8 > % The associated symbol function is then

9(&) = (K2 + &) % + (i&)”. (6.99)

As we mentioned in Section [5.2] these models present a non-symmetric behaviour which in addition
allows to control the regularity along the axes. In Figure[6.7] illustrations of approximations of these models
are presented, with different combinations of the regularity parameters v and 5. The parameter « is set at
k = %. The regularity along the axes is studied similarly to the case of the symmetric model (6:97). A
corresponding change in the regularities along the axes when changing the parameters « and [ is observed,

as expected.

6.3.2 First order evolution models: asymptotic convergence

We illustrate a simulation of a first order evolution model. We follow the approach proposed in Section[6.2.3]
We consider the case where the spatial symbol function is the one associated to the Matérn model, g(&) =
(k2 + ¢ |2)% The source term is supposed to follow a coloured in space and white in time noise, which is
spatially approximated as explained in Section Xlﬂ Wr, with Xl‘% representing the approximation
of a Matérn model with parameters ~x, and ax,. We also consider a null initial condition.

We simulate hence a GeRF Un which satisfies the Cauchy problem:

%—i—(ﬁQ—A)%UN:XﬁTWT over R? x RF

UN‘t:O =0

(6.100)

We set the parameters to x = %,

the other parameters of the approximation method are set as in section The order of approximation N

a=312 kxs = %, and arxg = 0.65. The spatial domain, as well as

is set at N = 2! The time simulation is done over a regular temporal grid starting at ¢ = 0 and with step
At =0.1.

Some images related to particular time locations are illustrated in Figure[6.8] Atevery fixed time location,
we calculate an experimental spatial variogram following the same conventions as in Section [6.3.1] and we
compare them with the spatial stationary variogram which the solution should follow once the time has flown
long enough, as it was stated in Section[5.3.4] In this case, the theoretical limit spatial variogram is the one
of a Matérn model, with scale parameter Kygtat = %, regularity parameter Qpgtat = 5 +axs = 2.21, and

with variance (sill) equal to

1 1
O_Ug'tat = 5 o 161615

2(aU§tat_1)
477((){U§tat - ]-)IiUgtat
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FIGURE 6.7: SIMULATION OF APPROXIMATIONS OF THE SOLUTION TO EQ. @) FOR DIFFERENT COMBINATION
OF REGULARITIES. NORMALIZED. Kk = % AT THE CENTER AND AT THE RIGHT, WE PRESENT AN EXAMPLE
OF TRACES ALONG THE AXES, OBTAINED BY FIXING ONE COMPONENT TO A PARTICULAR VALUE. THE FIXED
VALUE IS THE SAME AS IN FIGURE@
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The convergence to the stationary model can be observed in this simulation.

6.3.3 Waving models

We finish this illustration section with simulations of a Waving model. We follow the approach proposed in
Section[6.2.4] The spatial behaviour is set to be a normalized approximation of a Matérn model, obtaining
thus Waving Matérn models (Section[5.2.4). Hence, the approximation Uy satisfies the system of SPDEs:

*Un —AAUn =0 over R% x R
o2 N , (6.101)
(KQ — A)5UN7S 2nd o. %W&N over R?

where Wiy s denotes an approximation of a spatial White Noise following our method. a > 0 is a constant

normalizing the variance of the solution.

We set the parameters of the spatial model to k = % and a = 2. The wave propagation velocity c is set at
¢ = 8. The spatial domain, as well as the other parameters of the approximation method are set as in section
The order of approximation N is set at N = 2'0. The time simulation is done over a regular temporal
grid starting at ¢ = 0 and with step At = 0.1. Some images related to particular time locations are illustrated
in Figure At every fixed time location, we calculate an spatial experimental variogram following the
same conventions as in Section [6.3.1] and we compare them with the theoretical spatial variogram which
is the one of a Matérn model. The resulting experimental variograms oscillate around the theoretical one,
which is the expected behaviour due to the statistical variability of a experimental variogram with respect to

its theoretical counterpart.

6.4 Discussion

The method discussed in this chapter allows us to obtain simulations of approximations of stationary models
with great generality. The versatility of the method has allowed us to illustrate solutions to many SPDEs,
with associated covariance models having non-trivial properties which are easily controllable by suitable
parameters. It provides hence a quite general method to visualize the behaviour of new stationary models
associated to SPDEs without the restrictions on the associated operator which are present in the case of the
FEM. It also allows to simulate over a spatial regular grid with a large quantity of points.

Within the framework worked out in this dissertation, we were able to theoretically prove the convergence
of this method to the target model in weak and strong senses under suitable conditions. This is also a contri-
bution to the development of this method, for which its main principles and applications have been already

proposed in the literature, for example in [Pardo-Iguzquiza & Chica-Olmo| (1993)) in the case of a general
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TOTICALLY SPATIO-TEMPORALLY TO ITS STATIONARY SOLUTION FOLLOWING SPATIALLY A MATERN MODEL.
ILLUSTRATIONS AT DIFFERENT TIME LOCATIONS. AT THE RIGHT, THE ASSOCIATED SPATIAL EXPERIMENTAL
VARIOGRAM (IN BLACK), COMPARED WITH THE THEORETICAL SPATIAL VARIOGRAM (IN RED) OF THE LIMIT
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stationary Random Function (as stated in Section[6.2.T) and in [Lang & Potthoff] (2011)) for its application to
SPDE:s (as stated in Section [6.2.2)). The uniform convergence on compacts sense of the covariance provides
a framework where the variograhic behaviour of the approximated simulated models is similar enough to the
target model when the approximation order is high enough. However, other criteria of good approximation
can be stated for these simulations based on other ways of convergence. For instance, rather than focusing
on a particular theoretical convergence of the approximation Random Fields to the target Random Field, one
may define a good approximation criterion using statistical approaches, and arguing that the approximation
is good enough if after some approximation order the model passes suitable statistical tests grounded on the
target model. This approach is for example the one applied in [Lang| (2007)), and the one proposed in [Pereira

& Desassis| (2018) under other context of approximations of Gaussian Random Fields.

The use of the FFT algorithm allows us to simulate efficiently the approximations of the model over
a regular grid on the desired domain. As the approximation order IN grows, this method provides a more
accurate simulation, both in the sense of a better approximation of the target Random Function and in the
sense of the quantity of simulation points. Its complexity increases dramatically with the spatial dimension.
The memory problem can be tackled using different approaches, see for instance the Singleton’s algorithm
presented in [Teukolsky et al.[ (1992, Section 12.6). However, if we are interested in simulating an approxi-
mation of the model over a non-regular grid, or over a quantity of points which is much smaller than (6.8T),

the direct computation of the sum (6.72)) is more convenient.

In a general and qualitative sense, the approximation method behaves relatively well in regular cases
with limited practical range. In case with less regularity, the method provides approximations which may
fail to recreate the regularity at low approximation orders. Although we have proved a uniform on compacts
convergence of the covariance of the approximation to the target covariance model, we have not provided
a vanishing bound to the general case of a resolution of the SPDE (6.18). Hence we have not been able to
theoretically indicate at which approximation order this method provides an approximation similar enough
to the target model. This increases the difficulties in the implementation of the method, since an augmen-
tation on the approximation order increases the computational time and the memory storage of the method,
specially for high dimensions.
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Chapter 7

Conclusion and Perspectives

In this dissertation we have entered into the theoretical details of the current application of the SPDE ap-
proach in Geostatistics. We have set a particular framework of Stochastic Analysis, namely, the framework
of Generalized Random Fields within the mean-square theory. We have exposed this framework and con-
trasted its differences with other approaches to Stochastic Calculus, and we concluded that it is the most
adapted for the needs of geostatistical analysis. Within this framework where Random Functions, Measures
and Distributions cohabit together, we have been able to give a rigorous notion of a linear SPDE and we have
explained how such an equation determines the covariance structure of its potential solutions. We have been
able to obtain criteria of existence and uniqueness of stationary solutions of linear SPDEs involving opera-
tors defined through a symbol. This has allowed us to recover many already known theoretical relationships
between SPDEs and covariance models, and to obtain new relationships. These developments have also
allowed us to construct spatio-temporal geostatistical models presenting non-trivial properties, allowing to
control easily the spatio-temporal symmetry and separated regularity. We have been able to obtain interesting
results concerning stationary solutions for physically-driven SPDEs, and we have entered into the details of
the initial value problem relating SPDEs with a first-order temporal derivative operator involved. Concern-
ing simulation methods, we have studied a particular already known spectral method which was perfectly
adapted to the framework of this dissertation, and for which we have given rigorous mathematical proofs of
its performance. This method has allowed us to easily illustrate models presenting non-trivial properties and

to visualize the models we have developed in this dissertation.

As mentioned in the introductory chapter, the SPDE approach is a vast theoretical and practical field
which requires, and will keep requiring, further research work and developments. We expect that the results
presented in this dissertation will enlighten some ideas and motivate future research questions, but there
are still many important points within this framework which have not been worked out in this dissertation.

We present here our perspectives of future work for the points which we consider are the most important
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ones. They are grounded on questions and approaches which arise immediately from the developments
presented in this work. These perspectives concern three major issues: the theoretical question concerning
the possibility of relating an arbitrary and well-known covariance model with a convenient SPDE (which is
basically the inverse problem of what we have done in Chapters ff] and [3)), the development of non-stationary
models taking advantage of the SPDE approach, and the development of inference methods adapted to this

framework and to the models developed in this dissertation.

A SPDE for a generic model

The third question presented in the introductory Section|l.3|was not addressed explicitly with whole general-
ity. By following the approach presented in Chaptersd|and[5] we know that we can easily present a SPDE for
a stationary model whose spectral measure has a density with respect to another spectral measure, relating
the density to a convenient symbol function. We can also apply this idea for stationary models whose spectral
measures are concentrated on suitable subsets of the frequency space, obtaining a homogeneous SPDE for
the model to satisfy. With this aim we have been able, for example, to propose SPDEs for the Stein model
(Example[d.5.5) and the J—Bessel model (Exampled.5.4). However, there are still many other models, even
in a stationary framework, for which we do no not know how to relate them to a convenient SPDE, particu-
larly if we do not know the spectral measure associated to the model. For instance, a convenient SPDE for
the Gneiting class of covariance functions (5.4) would produce a huge interest within the spatio-temporal
statistical community, since such a model is popular for its flexibility and capacity to obtain non-separable

models, and for which we do not have an explicit spectral measure associated.

The direct general question “how can we relate a covariance model to a convenient SPDE” has then not
been fully answered in this work. Well understood, any GeRF over R?, say Z, can be trivially related to a
SPDE involving any operator £ for which its application to Z is well-defined. But in such a case, the SPDE
may not be convenient since on the right side of the equation we may obtain a rather complicated GeRF for
which the facilities within the SPDE approach may not be immediate to apply. A more interesting question
is, for example, the following one: given a GeRF Z over R? following a particular covariance structure,
does it exist an operator L : . (R?) — " (R?) such that

LZ =W? (7.1)

Here W denotes, as usual, a White Noise over R%. This more precise question is more relevant for many
reasons. For instance, results presented in Section .4 have shown the importance of the case with a White
Noise source term. In addition, a White Noise is a sort of simple model, in the sense that, due to all of its

properties presented in this dissertation, it is easy to treat, simulate and analyse.

We have actually advanced in this question during the PhD period. Although we do not have a formal
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result, we have many indices as to how to answer this question theoretically. A first simple analysis shows
that the solution is not unique: different operators may lead to the same covariance structure. For example,
consider the SDEs over R:

+i U=ocW : _ 4 U=ocW : 2 @ %U— W, (7.2)
K I =0 ; K dr =0 ; K a2 =oW, .

where x, 0 > 0 and W is a White Noise. Using our typical approach with symbol functions, it is not difficult
to prove that all these equations have unique stationary solutions, and that they all have the same spectral
measure dug (§) = %‘ﬁég, which corresponds to an exponential model (Eq. (3.5)). More generally, when
facing equations of the form £,U = X as seen in Chapter 4, we recall that the spectral measure of the
potential solution(s) depends on ¢ only through |g|, and hence different symbol functions with the same
modulus generate the same covariance model. Hence, a criterion for selecting one of these solutions should
be proposed. An example is, for instance, to require that the operator is self-adjoint and positive-definite, that
is, such that (L(), ®) = {p, L(¢)) and that (L(¢), 7> = 0 for all ¢, ¢ € .7 (R?). For instance, in the case

. . . . 2 d? 2
of SDEs (7.2) the only operator satisfying these properties among the presented operators is (/-; — W) .

We remark that, at any state, the solutions to equations (7.2) are different strictly speaking: they only coincide
in the covariance structure that they follow.

More generally and regardless of this uniqueness issue, the existence of an operator £ such that (7.1)
holds can be studied following a different approach based on convenient spectral decompositions of Z and
the White Noise W. The idea is actually quite simple. Let us suppose that we are in a Gaussian framework.
It can be proven that any GeRF over R can be completely determined by an at most countable quantity of
independent random variables. This may be astonishing at first: one may have the idea that, for instance,
a Random Function (Z(z)),cga is determined by a non-countable quantity of random variables. While
this is true in general, when imposing regularity conditions such as continuity it is easy to verify that 7 is
completely determined if we just specify the evaluations at a countable dense subset of R%. Although those
evaluations are not necessarily independent, a similar but more technical analysis can be done to obtain
an at most countable family of independent random variables which determines completely the Random
Function Z. An approach using a Karhunen-Log&ve expansion, for instance, may provide such a family
of random variables. In the framework of GeRF, we conjecture that an analogue procedure can be done.
This arises from the fact that the Schwartz space .7 (R?) is separable (Reed & Simon, |1980, Corollary 2
to Theorem V.14). Hence, by defining the random variables {Z, ¢) for all the functions ¢ belonging to a
suitable countable dense subset of . (R?), we have determined completely the GeRF Z. We conjecture
that a generalized Karhunen-Loéve expansion can be constructed, and that it is possible to obtain an at most
countable basis of functions on .#(R?) such that the development of Z on this basis involves mutually
independent random variables with the same variance. Such a basis can be obtained through the use of

the covariance distribution of Z, Cz € .#/(R? x R%), and taking advantage of its positive-definite Kernel
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structure in order to construct a pre-inner product over a suitable subspace of . (R?), from where the basis
functions can be obtained as a result of an orthogonalisation process. We give as example the case of the
White Noise W, for which we can use, for instance, the Hermite functions as a basis of functions in .% (Rd)
(see Reed & Simon, 1980, Appendix to V.3). Let us denote by (h3) gene the collection of Hermite functions
over R, Tt is known that this countable collection of functions is included in .#(R?), that they form an
orthonormal system of L2(RY), and that every test-function in ./ (R?) and every tempered distribution can
be decomposed in a formal series based on this system of functions (Reed & Simon, |1980, Theorems V.14

and V.15). In the stochastic framework, one has for the White Noise:

W =Y (W, hghg, (7.3)

BeNd

where the multi-series is considered in the sense of a mean-square-.#’(R?)-weak-# sense. The orthonor-
mality of the Hermite functions allows to conclude that the random variables ((W, b)) gena are mutually
independent with same variance. For a general GeRF Z, the formal series

Z= Y (2 (.4

BeNd

also holds, the random variables ((Z, b)) gene being not necessarily independent. We conclude that, intu-
itively speaking, any GeRF can be identified with a countably-infinite dimensional random vector. A linear
operator £ : .7/ (R%) — .#/(R?) defined through an adjoint can then be identified with a countably-infinite
matrix, determined by its action on the Hermite functions. The idea is then, to construct this matrix deter-
mining the operator L in such a way that we could obtain a vector of independent random variables from
the collection ({Z,hg))gene. This procedure could be done, for instance, through a generalization of the
Cholesky factorisation to an infinite-dimensional case. With these developments, we conjecture then the

following results:

e Let Z be areal GeRF over R?. Then, there exists a real linear operator £; : .#'(RY) — .#/(R?) and
a real White Noise W such that
Z = LiW. (7.5)

e Let Z be a real GeRF over R? with covariance distribution Cz. Let us denote by Ker(Z) = {¢ €
(R || {(Z,p) “= 0}. If the quotient space .#(R?)/Ker(Z) has an infinite absolute basis, then
there exists a real linear operator £ : .7/(R%) — .#/(RY) such that

LoZ =W, (7.6)

where W5 is a White Noise.
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For these conjectures the intuition is actually simple. For the first one, we relate it to the discrete result
of determining a finite random vector with a desired covariance matrix starting with a vector of independent
random variables, the typical method being a Cholesky decomposition of the covariance matrix. For the
second one, we follow the intuition that we cannot obtain countably many independent random variables
with the same strictly positive variance starting from a random vector which is only determined by a finite
quantity of independent (non-constant) random variables. Hence, to construct a White Noise starting from Z,
we necessarily need that Z must be determined by an infinite quantity of independent random variables. The
operators £1 and L9 are not the only ones satisfying these properties, but as stated before, extra requirements

may provide a unique particular selection, such as requiring self-adjointness and positive-definiteness.

These developments, if achieved, would have a huge theoretical value which will improve our under-
standing of GeRFs and the relationship between SPDEs and covariance structures. We remark that we have
not supposed stationarity here, so the conjectures involve quite general covariance structures. However, it is
not immediate to apply them in a practical context. The construction of the operator L is rather abstract and
it is not clear in general how to relate it to classical differential operators or operators defined through a sym-
bol. A study on the action of these well-known operators on the Hermite functions may provide conditions
that £ must satisfy in order to identify it as an operator belonging to an already known class of operators.
Simulation and inference methods associated to this development may be achieved by studying the suitability

of a spectral method based on the Hermite basis.

Non-stationarity

The construction of non-stationary geostatistical models presents special issues. Concerning the positive-
definiteness condition that a covariance Kernel must satisfy, constructing valid and flexible covariance mod-
els is specially intricate, since we do not even count on Bochner’s Theorem to easily provide a positive-
definite structure as in the stationary case. Many approaches of development on stationary models have been
done. We refer to |Fouedjio| (2014) for a presentation and developments of different methodologies in this
aim.

The SPDE approach is then one interesting proposition to construct non-stationary models in a simple
way without the technical requirements on the positive-definite Kernel structure. Indeed, if the Random
Field is the unique and well-defined solution to a SPDE which presents parameters varying spatially or
spatio-temporally, then its covariance structure presents a non-stationary behaviour, which is in addition
easily controllable and parametrizable. We do not even need to know the covariance itself, the SPDE makes
all the job. This is the approach, for example, in|Fuglstad et al.[|(2013), where a non-stationary anisotropical

diffusion matrix is added on the Matérn equation (I.1).

This dissertation did not deal explicitly with this issue. In Chapter [5] we deal mainly with stationary
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models. In Section [5.3] we construct solutions to first order evolution models which are in general non-
stationary models, although the most interesting properties are rather present in the cases where stationarity
holds. The simulation technique proposed in Chapter [6] works also, theoretically, for non-stationary models,
provided that the Random Fields are such that their Fourier Transforms are slow-growing Random Measures.
However, even in such a case, the Random Measure is not orthogonal, and since one of the particularities
of this simulation method is that it takes advantage of this orthogonality, we conclude that this simulation
method proposes no essential advantages at all: the random variables of the form A, Z(VjN ) in (6.4) are
correlated and hence they are as difficult to simulate as the evaluation of the Random Field at arbitrary points
in the space. Besides those facts, the subject of non-stationary models has not been properly treated. The
main reason is actually that the stationary framework provided an easier context where to obtain new results,

and hence was more attractive to attack in a first sight.

Many questions for future research follow. For instance, the application of the ideas presented in [Fuglstad
et al.| (2013) into a spatio-temporal context would provide interesting spatio-temporal covariance model
with non-trivial properties. This would be one possible approach for solving the SPDE (3.91). We have
already mentioned some theoretical issues related to this equation in Section [3.8] Studying its deterministic
counterpart may provide a potential enlightenment for the stochastic case under the right conditions, similarly
to the case of first order evolution models presented in Section[5.3] The Lax-Milgram theorem may provide
a theoretical justification of a solution to such equation (see for instance [Clément & Martin, [2016) . We
remark that the main theoretical difference to the stationary case is that when stationarity is supposed, the
studied Random Fields behave as members of the space #’(R?) (Eq. (@.1))). Hence, it is easier to restrict our
space of possible solutions and to determine the kinds of operations that can be applied on its members. In
a non-stationary context, there is no particular special subspace (besides .’ (R?) itself) on which to restrict
our work: such a space will depend on the particular cases depending on the behaviour of the parameters
of the model along the space-time. We remark, however, that a numerical method such as the FEM can be
applied in a first tentative of studying equations such as Eq. (3.91)). Even if a theoretical justification for its
resolution is not provided, we may been able to study this equation in a qualitative way through the behaviour

of empirical try-outs using the FEM.

Inference

In this dissertation we have not worked on inference methods for the models developed here or for more
general contexts within the SPDE approach. We give, however, some indices that may be interesting in this
aim. Some typical statistical inference methods such as likelihood based methods and Bayesian techniques
are often based on a suitable manipulation of the precision matrices involved. It is in this point where

the SPDE approach may provide a particular contribution. The conception of inference methods can be
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accomplished in this framework following for example [Lindgren et al.| (2011)), where the knowledge of the
precision matrices associated to evaluations of the Random Field over the nodes in the discretization mesh
is exploited. The general principle is the following: consider the SPDE, discretize it using the FEM, and
work with the matrix associated to the FEM discretization to construct the precision matrix, regardless of
the covariance matrix itself or to the explicit covariance function. The parameters to be estimated are the
parameters defining the discretization matrix, in other words, the parameters of the SPDE. The advantages
of such an approach depends on the SPDE considered and on the discretization or numerical method used to
solve the SPDE selected.

Let us consider, for example, the simulation method presented in Chapter[6} When solving a SPDE such
as in section [6.2.2] we have been able to determine properly the covariance function of the approximation
Uy, given by (6.24)). With this covariance function, we are actually able to provide an explicit expression for
the covariance matrix of a random vector of the form (Un (z))kef1,... ar}» Where (21, ..., xp7) is an arbitrary
finite collection of points in the working domain. Then, it is immediate that the covariance matrix, say 3,
can be factorised as X = VDV, with two matrices V € CM*N and D e CNV*N given by

1
el & gl . gialEy G 0 ‘e 0
;2T ¢ N T ¢ N - T ¢N 1
eiT2 &1 eiT2 &2 s e 8N 1 0 TENE - 0
2
V=1 S S N T : (7.7)
eizﬁlfi\f eizﬁlgé\] e 67@};15% 0 0 1
B lg(¢N)1%

We remark that the matrix V' is neither square nor unitary in general, and it is not immediate to interpret
the factorisation of X as a typical eigenvalue decomposition. However, this factorisation still provides an
immediate expression for the covariance matrix which may be practical for some techniques. We have no
general expression for the , which may not exist in some cases: we claim that the covariance function (6.24))
is not strictly positive definite. It is not clear neither in which cases the precision matrix, when it exists, is
sparse. We remark that when both the evaluation points (z1, ..., z3s) and the tag points (£ ]N ) je{l,...,N},NeNy
are on a regular grid, the matrices are intimately related to classical Fourier matrices which appear in the
analysis of Discrete Fourier Transforms. Hence, it is expected that a typical analysis technique from such
a framework can be applied within our context. For instance, when M = N and the regular grids are
set conveniently, the matrices involved are exactly those of typical Discrete Fourier Transforms, and the
factorisation . = VDV can be interpreted as an eigenvalue decomposition. The precision matrix is given
simply by VD yT up to a multiplicative normalising constant. It is then possible to conceive inference
methods based on Fourier Analysis methods, which are now interpreted within the SPDE approach, taking

advantage of a convenient expression of the precision matrices.

We expect that inference will be one of the most important research directions within the SPDE approach
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in a near future. After all, the SPDE approach may also inspire a new methodological paradigm to select
geostatistical models for determined situations: under some phenomena theoretically submitted to physically
driven PDEs, the geostatistician may now be guided by the physical consideration and select covariance
models where the parameters carry some physical meaning. Then, inference techniques adapted to these
kinds of models will be applied. Hence, the physical knowledge of the phenomena may now help the
geostatistical practice. This is maybe a somewhat naive dream about how things will work in practic but

still deserves attention and try-outs within the future of Geostatistics.

IReality almost never works as we want it to do...
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Appendix A

Proofs

A.1 Proof of Proposition 2.1.1

The necessity is an immediate conclusion from Rudin| (1987, Theorem 6.4), from which we conclude that
|u|(R?) < oo. We prove the sufficiency. Let p € .#(R?). p is by definition a function from Bp(R?)
to C and we need to prove that we can extend its domain to B(R?) obtaining finite complex values and
maintaining the o—additivity property. We first prove that we can define ;(A) for all A € B(R?). Let
A € B(R?%). A particular property of the Euclidean space is that A can be partitioned in a countable family
of mutually disjoint bounded Borel subsets: A = | J .y Bn, (Bp)neny © Bs(RY), B, N B, = & if m # n.
As |u| € ;5 (R?), we consider that

neN

> 1(Bn)

neN

< 0 u(Ba)| < D |pl(Bn) = |ul(A) < oo (A.1)

neN neN

Thus the series ), . 1(Bp) is absolutely convergent. Using the fact that a finite union of bounded set is
also bounded, we define the complex number by = limy o0 2, <y #{Bp) = limy—o0 1 (U< Bn)- Let
us prove that this limit does not depend on the collection of bounded Borel sets used as partition of A. Let
(Cr)nen = Bp(RY) be a collection of mutually disjoint bounded Borel sets such that A = | ], _ Cy,. By

the same previous arguments, the series > _ 1(Cy) is absolutely convergent to a limit which is a complex

neN

number c4. By triangular inequality one obtains

(U)oU) (Y )

197

lba —ca| < + +

cA—u<U (Jm>‘ (A.2)

m<N
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Both terms ‘bA —u (UngN Bn)‘ and ‘cA —u (UmgN Cm)‘ converge to 0 as IV grows. Considering that

Un<n Bn = UnéNﬂnEN By, nCyy,, we argue that /’L(UnéNﬂneN B,nCy) = ZnéN,mEN w(Bp N Cyy,) since
all the sets involved are bounded and their reunion too. Using the same argument as in Eq. (A.I), we can

argue that

2 w(Bp n Cp) + 2 (B, N Cpy) = 2 w(By N Cpy), (A.3)

n<N,meN n>N,meN n,meN

with all the series in (A.3)) being absolutely convergent. Applying the same procedure to | J,, .y Cn =
UnGN,mgN B, n C,, we obtain

(Y)Y

<

Z 1w(Bn 0 Cp) — Z W(Bn 0 Cp)

n,meN n>N,meN
— Z w(By N Cp) + Z w(By, N C’m)‘
n,meN neN,m>N

Z w(B, N Cp)| + Z w(Bn n Cp) A4)

n>N,meN neN,m>N

< I\ul <UN >+Iul <mL>JNC )

"

—0as N—x since |ule#F (R9)

We conclude that b4 — c4| can be bounded by any arbitrarily small positive number and thus by = c4,
and thus > _ p(By,) converges to the same limit regardless of the partition on bounded Borel sets selected.
We call then ji(A) := by € C, and we have thus extended the domain of 4 to all B(R?). The o—additivity
property still holds if the partition of the set A is made of bounded Borel sets. We still need to prove that
it holds for an arbitrary countable partition in Borel sets (A, )neny © B(R?), but this follows immediately:
the series >, . 14(Ay,) is absolutely convergent, which can be seen by applying the same argument as in Eq.
, considering that the terms p(A,,) for unbounded sets A,, are now well-defined. Every set A,, can be
expressed as a union of mutually disjoint bounded Borel sets, for example of the form A,, = | J,,,cjy An N B

From this we have

Zu(An)ZZ,U,(UAntm> D w(An 0 Br) = p(A). (A5)

neN neN meN neN meN

Here the last equality is justified as the collection (A, N Bp,)n men i a countable and mutually disjoint
collection of bounded Borel sets whose reunion is A. This proves the o —additivity condition and thus that

is a well-defined finite measure. l
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A.2  Proofs of the variants of the Riesz Representation Theorem

Before proving both theorems let us describe the continuous linear functionals over C(R%) and Crp(R?).
Both are complete metric spaces, but from a more general point of view, they are locally convex topological
vector spaces. Hence, their topologies are described by families of semi-norms (see Appendix [D)). Contin-
uous linear functionals and then described by the corresponding families of semi-norms, following criteria
Let us apply this principle to the cases of C(R) and Crp(R?).

In the case of the space C'(R?), a family of directed semi-norms defining the topology can be the norms
| - |00 for every compact set K < ]Rd We conclude then that a linear functional T’ : C'(R?) — C is

continuous if and only if there exists C' > 0 and there exists a compact set &' — R? such that

KT, )| < Cllg)w,ix, Vo€ CRY. (A.6)

In the case of the space Crp(R?), a directed family of semi-norms inducing its topology is the family
(] (1 + 212N (-)]loo ) ven- We conclude that a linear functional 7' : Crp(RY) — C is continuous if and only
if there exists C' > 0 and there exists /N € N such that

KT, o) < CI(1+ [a])¥ollo, Yo € Crp(RY). (A7)
We are going to use the next three Lemmas, which are typical results from Analysis and Measure Theory.
Lemma A.2.1. C.(R%) is a dense subspace of both Co(R?) and C(R?) with their respective topologies.

Proof: Consider a function ¢ € C(R?). For every n € N, consider a continuous function ¢,, : R —
[0, 1] such that ¢,, = 1 over By, (0) and ¢,, = 0 over By,;1(0)¢, which can be constructed thanks to Urysohn’s
Lemma. Then, the sequence of functions (i, )nen defined through ¢, = ¢, ¢ is in C.(R?) and it is clear

that ¢, < ¢ since for every compact set K — R? there exists a large enough ny € N such that ¢ = ¢,
over K for all n > ng. If ¢ € Co(R?), then for every € > 0 there exists a large enough m € N for
which ¢ B, (0)c < € Forn = m, ¢, = ¢ over By, and then ||¢ — ¢nllo = [[(dn — Dleo, B (0)e <
|¢lloo, B, (0)c < €. This proves that ¢, % w. B

Lemma A.2.2. Let O < RY be an open set. Then, there exists a sequence of positive functions (¢ )nen C

C.(R?) such that (¢n)nen converges monotonically increasing point-wise to 1¢.

Proof: We use the fact that every open set of the Euclidean space can be expressed as a union of a

countable quantity of bounded open rectangles. This fact can be proven using the density of the rational

"We could have taken a countable family of these norms by considering only the compact sets of the form By (0) with N € N
as in metric (2.26), but this actually will not help us very much.
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numbers. If O is an open set, we consider a countable collection of bounded open rectangles (R )xen such
that O = | J,cn Ri. We write these rectangles as

Ry, = (a®,b5) x -+ x (a5, b8), ke, (A.8)

having of course —o0 < a? < bé? < o forallj =1,...,dand for all kK € N. Foreachn € N, k € N and
je{l,..,d}, we consider the piece-wise linear function 905;7"3) R — [0, 1] which takes the Value 1 over the

k k k k bk
closed interval [a + ph— J- | and the value 0 outside the open interval (a + 4( i

k
2(n+1) > 7 2(n+1) n+1) ’ bj (n+1j))

its graph forming a trapezium for n > 1. For every k € N and n € N we define w(k) — [0, 1] as the
tensor product gogl) = (1 ®..® go% %) that is, the function determined by go( )( ) = H;l 1 gp,(f’k)( xj)
for every x = (x1, ...,:cd) € RY. Finally, we define for each n € N the function ¢, : RY — [0,1] as
Vn = MaXg<n cpgﬂ). It follows then that the sequence (0, )nen is in C.(R?) since the maximum of a finite
quantity of continuous function with compact support is continuous with compact support. We also have
that supp(y,,) < O for all n and that 0 < ¢,, < ¢,,+1, so the sequence is monotonically increasing. Finally
if x € O, there is a rectangle Ry, such that x € Ry and since Ry, is open, it is clear that for a large enough
no € N it will holds that ¢, (x) = 1 for every n > ng. Since supp(p,) < O, it follows that ¢, (z) = 0 for

all x € O°¢ and for all n € N. This proves that ¢,, — 1o monotonically increasing and point-wise. ll

Lemma A.2.3. Let € .#(RY) and let O  R? be an open set. Suppose that for every ¢ € C.(R?) such
that supp(p) < O, we have that §5, o(x)dp(z) = 0. Then, supp(p) < O°.

Proof: Let i € .#(R%) and O — R? an open set with the specified condition. For simplicity we
will first suppose that O is bounded. Consider the decomposition of y in four positive measures p =
/fé —pp+ z(u}“ — ;). Let A O be any open subset of O. Consider a monotonically increasing sequence
of functions (¢, )nen © C.(RY) approaching 14 as in Lemma We have supp(p,) € A < O, and
hence {3, ondp(z) = 0 for all n € N. This implies that

J pndpp, = J Pndpip f Pndpy = J Pndpy, VneN. (A.9)
Rd Rd Rd Rd
Using the Monotone Convergence Theorem [2.11] we take the limit when n — o0 to obtain

pp(A) = pgp(A) 5 pr(A) =p;(A), VYAcO, open. (A.10)

Thus, the positive measures NE and ,u}r coincide respectively with the positive measures pi, and p; over
every open subset of O. Since the collection of open subsets of O is the collection which engenders the
o—algebra of Borel subsets of O, denoted by B(O), a typical result in Measure Theory (see for example
Williams, 1990, Lemma 1.6, applicable since ;4(O) < o) guarantees that (A.10) holds for every A € B(O).
This proves that u(A) = ph(A) — pr(A) +i(uf (A) — puy (A)) = 0 for all A € B(R?) such that A < O.
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By definition of the total variation measure (see Eq. (2.2))), it follows that |u|(O) = 0. Since supp(u) is the

complementary of the largest open set where || is null, it follows that supp p < O°.

If O is an unbounded open set, it can be expressed as a countable union of bounded open sets, O =

U,,eny An- Applying the previous argument for the sets (Ay,)pen, it follows that

1l(0) < D |ul(An) =0, (A.11)

neN

from which it follows that supp(u) < O°. B

A.2.1 Proof of Theorem 2.1.5

If u € . (R%), it follows immediately from Eq. (2.27)) that the integral with respect to 1 defines a continuous
linear functional on C'(R?) by setting C' = || (supp(u)) in (A-6).

We prove now the converse. Suppose 7' : C(R?) — C is linear and continuous. Let X — R? be a
compact set and let C' > 0 be such that [T, ¢)| < C||¢]eo i for all ¢ € C(R?). In particular, this holds
for every € Cp(RY), for which we also have (T, ¢)| < C|¢|owx < C|@|w. This proves that T is
also a continuous linear functional over Co(R%). By the Riesz Representation Theorem for finite measures
there exists a unique finite measure y € .#r(R?) such that (2.23) holds. Consider now any function
¢ € C.(R?) such that supp(¢) < K€. From Eq. it follows that (T', o) = {5, ¢(x)du(x) = 0. Since
K¢ 1is open, we obtain from Lemmathat supp(u) € K. Hence, i1 has compact support. Since {T', p) =
§pa (z)dp(x) holds for all ¢ € C.(R?), the integral with respect to x coincides with 7" as a continuous
linear functional in a dense subspace of C' (Lemma . It follows that (T', @) = §z4 ¢()dpu(z) for all
e C(RY). 1

A.2.2 Proof of Theorem

Proof: Let i € .#sc(R?). From equation (2.30) it follows immediately that the integral with respect to
defines a continuous linear functional on Crp(R?). Indeed, set N € N such that (1 + |=|>)~ |y is finite

and C' = |(1 + [z]?) N p| (R?) in (A7).
Let us prove the converse. Let T € C.(R?) and let C > 0 and N € N such that (A7) holds. Let us
define the linear functional (1 + |z|?)~NT : Cpp(R?) — C by

(L+ [2[)™NT () == AT (L + [2[1) ™). (A.12)

Since for all ¢ € Crp(R?) the function (1 + |z|?)~N ¢ is also in Crp(RY), this functional is well-defined.
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In addition,
(1 +12) "N T ()| = KT, (1 + 2) V)| < C(1 + |2)N (1 + |2*) N gl = Cllploo,  (A13)

hence, T is continuous. Expression (A.13) holds in particular for every ¢ € C.(R?) = Crp(R?). Hence
(1 + |z|?)~NT is a bounded linear functional in the sense of the supremum norm on C.(R?). By Hahn-
Banach extension Theorem (Reed & Simon), 1980, Theorem IIL.5 or Theorem V.3), (1 + |x|?)="T can be
extended to a continuous linear functional over Cy(R?), and since C.(R?) is dense in Cp(R?) by Lemma
the extension is unique and Eq. (A.13) holds for every ¢ € Cy(R?). By Riesz Representation
Theorem for finite measures we conclude that (14 |2|?) =T is identified with a unique finite measure
v € #p(R). Consider then the multiplication measure 1 = (1 + |=|2)Nv, which is in .Zsg(R?). We
conclude that for every ¢ € Crp(R?) we have
A+ [N 2\—N 2N N _ 2\N _
T = BB T+ )% = [ e@+ )Y avle) = | ole)dute).
(A.14)

<T’ <)0> = <T,

This completes the proof. H

A.3 Proofs of Propositions 2.1.2 and 2.1.3

A.3.1 Proof of Proposition 2.1.2]

Since for all the cases for j € {“c”, “F"”, “SG”}, u € .4;(R?) if and only if |u| € //lj+ (R%), it is sufficient to
prove this claim for positive measures. The case j = “c” is straightforward from (2.39) since if supp(r) =
K it follows that supp(u61¥=*}) ¢ K x K. Conversely, if supp(ud'?=*}) = Ky < R? x R?, K5 compact,
then there exists a large enough compact set X — R? such that K, — K x K, for which we obtain that
supp(p) € K. When j = “F” it is also straightforward from since pn(RY) = potv=2H(R4 x RY).
Finally, for j = “SG”, from Eq. (2.38) we have that for every N € N,

d(psv=")(2,y) dpu(z)
J]Rded (14 |22 + [y2)N JRd m (A.15)

It follows that if one of the two integrals is finite for some N € N then the other is finite. Hence, we can
find a strictly positive polynomial such that the multiplication between its reciprocal and the corresponding

measure is a finite measure. l
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A.3.2 Proof of Proposition 2.1.3

As in Proposition [2.1.2] we prove this just for positive measures. The case j = “F” follows immediately
from (2.44)) since uf;l i2) (RYxR) = p1(RY) + 2 (RN {0}). We remark that p15({0}) < oo since we suppose
Mo € %(Rd)

For j = “c”, if supp(,u(cljhm)) c K4 x K1, with K; c R% and K; c R compact, then it follows that

pr(KG) = 1y oy (KGx RY) = 0= gy (KG x Ry) = pa(KG), (A.16)
which proves that supp(u;) U supp(ue) < Kg4. Conversely, suppose supp(u1) w supp(ug) < Ky for some
K4 < R? compact. This implies that both ;1 and po are finite so uf;l o)
subset of R, K1 = {alz| € R| — ¢ < a < ¢, x € Kg}. Let us evaluate /‘(C;l #2)((Kd x K1)¢). Using the

o—additivity and the finiteness of “((:;1 42) ((Ky4 x K7)¢), we obtain

is finite. Consider the compact

Hy oy (B X K1)) = oy (KG %K) 4 1y, 0y (KG X K1)+ 4, 0y (Ko x KT). (A7)

Since supp(u1 ) Usupp(pe) < Ky, it is immediate from Eq. (2.44) that “61,#2) (K{x KY) = M((:;huz) (K§ x
K1) = 0. From Eq. (2.44) we also obtain

o a5 K5) = | b (s ) + | o Bl (), (A18)
d d

Since for x € Ky we have £c|z| € Kj, both expressions 6.,(K{) and 6_,(KT) are null, and hence

Ky x K§) = 0. We conclude that x¢° ((Kq x K1)¢) = 0 and therefore supp(

CC CC
’u(#huz)( (p1,p2) 'u(ul,#z)) <

Ky x Ky, so ,uf;hm)) € M.(R? x R).

Finally, when j = “SG”, we consider that for all NV € N it holds that

CC
rixk (L4 22+ [E2)N 0 Jga 1+ L+ )PV Jraygop (14 (1+ ) |2HN '

Hence, if NV is such that the integral on the left side of is finite, the multiplication between the
reciprocal of the polynomial  + (14 (14 ¢?)|z|?)"V and p is a finite measure, as well as its multiplication
with p9. Hence both measures are slow-growing. Conversely, supposing that 11 and pgo are slow-growing,
we can find a number N € N such that both integrals on the right side of (A.19) are finite, and hence “%;huz)

is slow-growing. l
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A.4 Proof of Propositions about tensor products (Section 2.2.3)

A.4.1 Proof of Proposition 2.2.1

We consider the next Lemma. It can be found in the context of complex finite measures over abstract measure
spaces in |Rudin| (1987, Theorem 6.12).

Lemma A.4.1. Let i € .#(RY). Then, there exists a complex measurable function Ju: R? — C such that
|fu(z)| = 1 for all v € R and such that i1 = f,|ul.

Proof: SeeRudin| (1987, Theorem 6.12) for the case of finite measures. The case of not finite measures
is straightforward by restricting the analysis to a collection of disjoint bounded Borel sets whose union is
the whole space R? and defining the function fu. as the sum of the corresponding functions restricted to the

corresponding bounded Borel sets. B
Proof of Proposition 2.2.1}:

Let pp € #(R%) and v € .4 (R™). Let f, : R? — C and f, : R™ — C be two measurable complex
functions obtained as in Lemma Consider O € Bg(R? x R™). By definition of the total variation

measure, we have that

L ®v|(0) = sup{ 2 (p®@v)(0y)] ‘ (Op)nen < B(R? x R™) partition of O}

neN

= sup{ Z ‘ fo f#(x)f,,(y)d|,u|(m)d|u|(y)‘ ‘ (On)nen © B(Rd x R™) partition of O}

neN

< sup{ Z (|| @ |v])(On) ‘ (On)nen © B(R? x R™) partition of O}

neN
= (Jul ® ¥)(0).
(A.20)
Let us now consider the case where O is of the form O = A x B, with A € Bg(R%) and B € Bg(R™).
Since the definition of the total variation measure over a set uses the supremum over all partitions of the set,
it holds in particular that

(@) (AxB) > fuoriaxm) > sw{ 3 uor(a,<B.)lf = s { T4l T B} a2

n,meN neN meN

where the supremum is taken over all the possible collections (A, X By,)nmen < B (R? x R™) which
satisfies that (A,) < B(R?) is a partition of A, (By,)mey © B(R™) is a partition of B. For every such a
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partition of A x B, it holds that

Kl (API(B) = X 1n(An)l Y (B)

neN meN

< |lml(A) = > ju(A

neN

| Y, (Bl +

| me N

WI(B) = 3 (Bl lul(4).

meN

arbitrarily small SIVI( ) arbitrarily small
(A.22)

Hence, we can find such a partition (A4,, X By,)n men Which approaches (|| ® |v|)(A x B). This proves
that the inequalities in Eq. (A.21) are, in fact, equalities. Hence

(lul@ (A x B) = [p®v|(A x B) VA€ Bp(R),BeBpR™). (A.23)

The equality of both measures in the whole system of rectangles guarantees the equality for every set in
Bp(R? x R™). A

A.4.2  Proof of Proposition 2.2.2]

To establish this Proposition, we need a few Lemmas describing some basic behaviour of some objects in
Distribution Theory.

Lemma A.4.2. Let ) € .7 (R x R™). Let (yn)nen © R™ be a sequence such that y,, — yo € R™. Then,
S (RY)
w(vyn) - qzz)(uyO)

Proof: Let € .7 (R? x R™). For N € N and o € N let us consider the function ¥y, : R? x
R™ — C defined through ¥y o (z,y) = (1 + |2[2)V D(@0m)e(z,y) for every (z,y) € R? x R™. Here
Om = (0,...,0) € N denotes the multi-index with m null components and (o, 0,,) € N¢ x N™ denotes the
concatenation between « and 0,,. Clearly ¥, € .77 (R? x R™). Let () nen © R™ such that y,, — yo €
R™. We consider then that

sup [ n,o(7,yn) — Una(2,%0)| < || VYN [olyn — ol — 0, (A.24)

z€R4

where VW y , denotes the gradient of the function U . Here || [VUn o| o0 = Sup(, yerixrm VYN (2, y)]

is a finite number since ¥ o, € (R? x R™) and hence all of its derivatives are bounded. Since N and «

: . (R
were arbitrary, this proves the convergence (-, ¥y, ) ZRD ¥(-,y0). A

Lemma A.4.3. Let p € .7(R%). Let (t,)nen © Ry be a sequence such that t, — 0 as n — oo. Let ej € RA

. V() L (R?
be the canonical vector in the direction j € {1, ...,d}. Then, #lttneg) o) Z(R)

5@
. 3, as n — .

Proof: Let p € .7(R?) and let o € N?. Let z € R%. We consider the Taylor’s formula for D%y at
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with integral form of the reminder

«

oD 1
Doo(x + tnes) = D () + tn 2P (2) + t,%f (1—1)
0z 0

aZDago
ax?

(x + tye;t)dt. (A.25)

Let N € N. We obtain thus

D n€i — D% Do 1 2Da
1+ |z[H)N ( P& + tne;) p_9 “%)) - th 1 =01 + P T2 (0 4 trest)t.

tn ox;j 0 ax?

(A.26)
Using the convexity of the functions z € R? + |z]? and z € R > |z|", one can verify that for every
z,y € R? it holds that (1 + |z[2)V < 2V71(1 + 2|z — y|?)V + 22V~1|y|2. Applying this idea with
y = —tye;t in (A.20), it follows that the integral in this equation can be bounded in the following way:

1 2 o 1 2 «
0“D%p _ 0“D%p
Jo(l —)(1 + [z|H)N oo (T +tnet)dt| < 2N 1L(1 — ) (1 + 2|7 + tnet|)N 57 @+ tnest) | dt
J J
1 62D°‘g0
+22N—1|tn|2NJ A=Y | T2 (@t test)| dt
0 aLEJ
02D~ 02D~
<2V sup |(1 4 2fe)N 55 (@) +22N—1|tn|2N‘ s
eRd 0; oxs ||,
< since Z23ec. (Rd)
(A.27)
It follows that
D° tne;) — D* oD 02D~
sup (1 + |$|2)N ( (P(Ji-i‘ ej) (p(CC) _ (p(x)>‘ < |tn|2N_2 (1 +2|$|2)N 230
reRd tn 6:1:]- 6xj o0
[t PN 192N 0>D*p (A.28)
" 6m? ”

— (0 asn — oo0.

Since Da(a‘%) = %(Do‘cp) and since D“ (“’('Hn::')—@()) - Da“’('Hng)_D%('), this proves that

Pl ttnes) — () @) 0p o
tn &’xj'

Proof of Proposition 2.2.2;
Let £; : /(R?) — .7(R%) be linear and continuous. Let ¢ € .(R? x R™). We need to verify that
(L1 ® Z,,,) () defined as in is in .7 (R? x R™) and that the operator defines a continuous mapping.

Note that for any fixed y € R™, the function (-, y) is in .#(R%). Hence, for every y the function z —
L1(1(-,y))(x) is a well-defined function in .7 (R%). This proves that £; ® Z,, is a well-defined mapping
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from .7 (R x R™) to the space CR*R™ of all complex functions defined over R% x R™. It is straightforward

that this mapping is linear. For simplicity, we will denote by ¥ = (£1 ® Z,,,)(¢)) € CRIxR™,

We need to prove that ¥ is in .7 (R% x R™). We begin by proving that it is continuous. Let (z,,),eny < R?
and (y,)nen © R™ be sequences such that (x,,,7,) — (x0,%0) € R? x R™. It holds then that

(W (2, yn) = (0, Y0)| < [W(@n, Yn) = ¥ (2n, yo)| + [¥(2n, yo) — ¥(z0, yo)|
= [L1(P(yn) = ¥ y0))(@n) | + L0 ( 90)) (2n) — L1(P(:,90)) (20)]
< sup L1 yn) — (5 90)) ()] + [L1( (5 m0)) (@n) — L1(4(-5 y0)) (o)
(A.29)

7 d
The term sup,,cra | £1(¥ (-, yn) — ¥ (+, yo))(u)| goes to zero since by Lemmal|A.4.2{we have that ¢ (-, y,,) TR

¥(-,yo0) and L; is continuous. The term | L1 (¢ (-, yo)(xn) — L1(¥(-,y0))(x0)| goes to zero since = +—>
L1(1(+,90))(7) € .#(R?) and hence it is continuous at z¢. This proves that ¥ is continuous in R% x R™,

Let us now prove that W is differentiable. The differentiability of ¥ with respect to the first components
is immediate since ¥(-,y) € 7 (RY) for every y € R™. Hence, for every o € N the function (z,%) +>
D(Q’OM)\II(:JJ, y) is well-defined. Its continuity can be verified using the same arguments used to prove the
continuity of W. Let us now prove the differentiability with respect to the second components. Let e; € R™

be the canonical vector in direction j € {1,...,m}. Lett # 0 and consider the expression of the form
U(z,y+te;)—V(x
¢

Wlz,y +tej) = W(zy) _ Loy +te)@) = LGy _ . (w<-,y +tej) — ¢ y)

t - ¢ ¢

Y) for a fixed (z,y) € R? x R™. The linearity of £; guarantees that

)@
(A.30)

d
A slightly different but valid interpretation of Lemma |A.4.3[allows to conclude that w y(—RQ
% w(-,yﬂei)*w(ny)) (z) —

L4 (%(79)) (x) ast — 0. Hence,

(-,y) forall y € R™ as ¢t — 0. Since £, is continuous it follows that £ (

Wy +te) = Uey) o (W(,w)) () ast— 0. (A31)
t 0y,

Since this is valid for every (z,4) € R? x R™, this proves that ¥ is also differentiable at every point
with respect to the second components, and that %(JU, y) = Ly (%(-, y)) (x). In addition, since % €
7 (R% x R™), the same argument used to prove the continuity of ¥ can be used to prove the continuity of 6%'
Since this procedure can be repeated for any derivative of any order with respect to the second components
of U, it follows that all the derivatives of W exist and are continuous. This proves that ¥ € C®(R% x R™).

We remark that we have implicitly proved that (£1 ® Z,) (%) = 22 ((£1 ®Zn)(¢)). and this is also
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valid for differential operators with respect to the second components of bigger order:
DOA((Ly @ L) (¥)) = (L1 @ L) (D7), (A32)

for any ¢ € .7 (R% x R™) and any 3 € N, Here 0; € N denotes the multi-index with d null components.

We will prove at the same time that the function ¥ and its derivatives are fast-decreasing and that £1 QZ,,
is continuous. For this we will recall the criterion of a continuous linear operator over . (R?) given in Eq.
(2.53). We will use this criterion for both cases n = d and n = d + m, separating the multi-index notation

using concatenations. Let o,y € N% and let 3,0 € N, We need to study the expression
22y’ DOz, y),  (z,y) e RY x R™.

Using the linearity of £ and the exchange between differential operators with respect to second components
(A-32)), we conclude that for all (z,y) € R? x R™ it holds that

2y’ DOV (,y) = 2%y’ DO Ly (DOD (-, y))(2)) = 2*DT O L, (yﬂzv(odv@)w(-,y)) ().  (A33)
Using then the continuity of £; over .7 (R?), it follows that there exist C' > 0 and N € N such that

sup :cayﬁD(W’e)\Il(:c,y) = sup

zeR4 zeR4

D00 Ly (P DODy(,y)) ()

<C 2 sup |z DO0m) (yﬂD(Od’e)T/J) (3373/)‘

R4
o y/eNd TE (A.34)

[o/| |y [<N
=C Z sup
Nd zeR4

2y DO () (a,y)]
o' y'e
lo/| 1y [<N

By taking the supremum over all possible y € R™ we finally obtain

sup |a2y DOO(Ly @ T,) (W) (w,y)| = sup

(z,y)eERE xR™ (z,y)eERExR™

2*y? DO (z, y)‘

<C Y sw s o7y DO @) (ay)

cRm d
o' /Y’ENd Yy zeR

o/ [y |<N
<C » sup  [a'y? DO () (a, y)‘ :
o 'eNd (z,y)eERE xR™
B/79/€N"'L

[, 1B ] 1,10 <N +]B1+19]
(A.35)

Here we have used that for any bounded function f : R?xR™ — C it holds that SUPyerm SUDgepd | f(7,Y)] =
SUP(y y)erdxrm | f (2, y)]. Since ¢ € 7 (RY x R™) is arbitrary, the expression (A.35) proves two things:
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first that all the derivatives of (£; ® Z,,)(%) have fast decreasing behaviour and thus (£; ® Z,,)(¢)) €
7 (R?% x R™), and that the operator £1 ®Z,, is continuous, which follows from criterion (Z.53)). This proves

Proposition |

A.5 Proof of Proposition 3.2.1

The proof of this Proposition follows standard arguments. We have decided to specify them in the setting of

this Proposition. We first prove the deterministic analogue, which is not obvious.

Lemma A.5.1. Let f € C(RY), p € .4 (R?Y) and A € Bp(R?). Then, for every Riemann sequence of
partitions of A, (V] )je{l N},NeN, and for every choice of tag points x € VN it holds that

77777

N
[REZCE REDWCRTCH (A36)

where S 4 f(x)dp(z) denotes the Lebesgue integral of f with respect to yi over A.

Proof: We consider that for a fixed N € N,,,

N N
2 VM) f 2 f flx 1VN 2)dp(x J(Z 1VN )du(:c). (A.37)

Consider for every N € N, the measurable function fy = Zj 1 f(; )1VN( x). From Eq. (A.37), the
Riemann sum in (A:36) is just §, fx(x)du(z). Let € > 0. Since A is bounded and f is continuous, f is
uniformly continuous on A. Hence, there exists 0 > 0 such that |f(z) — f(y)| < € for every z,y € A such
that |z — y| < d. Let Ny € N, be large enough such that max diam(VjN) < ¢ forall N > Ny. Hence,

]6{17"'7N}

ifx,ye VjN, then |f(z) — f(y)| < e. It follows that if N > N, then

§g§|fw<x>—f<x>|<Jegﬁa’fm;§; |fv(x) = f(z)] = {I{lva}’(N}xSel\l/% f(@Y) = f(@)] <e  (A38)

This proves that fy — f uniformly on A. Hence,

JA I (@) — F@)du(@)| < |ul Q)| fx = Flaa — 0. (A.39)

which proves the convergence (A.36). B

The following Lemma extends in some sense the result of Lemma[A.5.1]to the case of double dimension

in a particularly convenient way.
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Lemma A.5.2. Let F ¢ C(R? x R™), A € Bg(RY), B € Bg(R™), and A € .#(R? x R™). Then, for
every Riemann sequence of partitions of A, (VJN )jel1,...,.N},NeN, C B B(R?), for every Riemann sequence of
partitions of B, (Uévl)ke{l,...,M},MeN* c Bp(RY x R™), and for every choice of tag points xév € VjN and
yé\/f eU ,?/[ , the following double limits hold:

|

5
M=
M=

~

L Fag)dA(.9) = (@ YAV x UM)

N,M—00 4

<
I
—_
b
Il
—_

M=
M=

Fal gt AW xUh (A.40)

lim lim
N—00 M—0 4

<
Il
—
B
Il
—

lim lim
M—00 N—o0 4

M=
M=

F(zy g JAVY < U,

<
Il
—
o
Il
—

Proof: We remark, first of all, that the limit limy »/—.c means the limit when both N, M grow
to o0 togethelﬂ For every N, M € N, let Fi )/ be the measurable function defined by Fy a(x,y) =
Zé\f:l s Pz, y]iv)]_v}z\r ()1 (y). The double sums in (A-40) are then the Lebesgue integral of Fiv, s
with respect to A. Let us analyse the class of subsets of R x R™, (VJN X U%)(j’k)e{17...7N}X{L“.’M}’N’MeN*.
This class forms a sort of Riemann double-sequence partition of A x B. More precisely, it is immediate that
Ax B =Ugnen, . nxq.n Vi x U forall N, M e N, and that (VY x UY) n (V] x Ul) = &
if (j1,k1) # (j2, ko). Since for every vector (z,y) € R? x R™ it holds that |(z,y)|3,,, = |z|2 + |y|%,, with
| - |, being the Euclidean norm in R"™, we conclude that diam(VjN x UM) = \/ diam(VjN )2 + diam(U}M)2.
Hence,

lim max diam(VjN x UMY =0,
N,M—w (j,k)e{l,...,.N}x{1,...M}

and the same holds for the corresponding iterated limits limy_,o, limps o and limp; o0 limy 0. We
argue then that the same arguments used in the proof of Lemma [A.5.T] can be used in this case. Indeed,
since F' is continuous and A x B is bounded, F' is uniformly continuous on A x B. Let ¢ > 0. Then,
there exists > 0 such that for every (z,y), (u,v) € A x B such that |(z,y) — (u,v)| < 4, it holds
that |F'(z,y) — F(u,v)| < e. Take Ny € N, big enough such that for every N, M > N, we have that
Max(; pye(l,...,N}x{1,..,M} diam(V;»N x UMY < §. Then, it holds that

sup  |Fnm(z,y) — F(z,y)] < max sup  |Fym(z,y) — Fz,y)| <e
(Qj,y)EAXB (jvk)e{lv---vN}X{lv"'vM} (gjyy)e‘/ijUé\/[

(A.41)
We conclude that limy a7 Fiv,ar = F uniformly on A x B. Since A x B is bounded and A € .# (Rd X

2If (@, m )n,mem is a double-sequence of complex numbers, we say that limy, m— o Gn.m = a, for a complex number a, if for
every € > 0 there exists No € Ny such that for every n,m = Ny we have |amm — a| < €. It does not hold, in general, that
limp, moow @Gnm = liMp— o limm o0 an,m = limy— o0 limp 00 @n,m. See|Habil (2016).
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R™), then |A|(A x B) < oo. This proves that

L Fym(z,y) — F(z,y)dA(z, y)| < [A[(A x B)[Fny — Fllo,axs = 0, (A.42)
x B

as N, M grow together. We conclude that the double limit in (A.40) holds.

Consider now the iterative limits in (A.40). For every N € N, and for every j € {1, ..., N'}, let us define
the set application Ay, n : Bg(R™) — C through A\~ (U) = A(VjN x U) for every U € Bg(R™). Clearly,
J J
. ) . m ) .
)\VjN is a well-defined complex measure in .# (R"). Hence, from Lemmalt holds that

M M
lim 3 Py )AVY x U = Tim 3 PG,y A (U) = jB Fle,p)dAyx(y).  (A43)
k=1

M
—0 k=1

The integral in (A.43) is thus well-defined for every N € N,. An analogue argument can be used to prove
the existence of the partial limit with limy_,o. By a known property of double-sequences (Habil, 2016,
Theorem 2.13), this proves that the iterative limits in (A.40) converge to the same limit which is equal the
double limit. Hence, the double sums converge, in all the senses, to the Lebesgue integral of F' with respect
toAover A x B. 1

Proof of Proposition [3.2.1;

Let us prove that the integral exists as a square-integrable random variable for a fixed arbitrary Riemann
sequence of partitions of A, (VJN )jef1,....N},NeN,» and for fixed tag points xév € VjN . Consider the sequence

of squared-integrable random variables (2?:1 wvVinz (a:?)) N Each random variable of this sequence
NEN g

isin L2(£), A, P) since it is a finite linear combination of random variables in L?(2, A, P). We remark that

M(V;.N ) € C since p € .#(R?). Let us prove that it is a Cauchy sequence. For n,m € N,, consider the

expression

n 2

2 VN Z(a)) = Y w2

j=1 k=1

E (A.44)
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We split it and we apply the linearity of the expectation to obtain,

= jZlkzlz VIV + ]21 2 2 2V )
=3 2 2@ 2@ VIRV = Y 3 2@ 2@V )

Il
—
B
Il

j=1k=1 j 1

(Cz(af, x}) + mz(a])mz(ag) ) (Vi) (Vi)

I
NgE

Jmik= (A.45)
+ 303 (Coal 2 + maayma (@) w(V p(Vi)
j=lk=1
=3 (Colal 2 + ma (@ ma (e u(V R
j=1k=1
=30 2 (Colal ) + ma (e yma @) (VR ).
j=1k=1
This is equal to
n n 2
{23 Cola, an(VRVE) + | Y ma e (V)
j=1k=1 Jj=1
m m m 2
30 Cola A VRV + | 3 ma ) (V)
J=th=1 I=1 (A.46)
=3 Catalt AV = Y ma (Vi) Y m (V)
j=1k=1 j=1 k=1
=33 Gl VRV — S ma (V) S maau(ve) }.
j=1k=1 j=1 k=1

We remark that, from Lemma | the sums of the form SV =1 mz(T; Myu (VN ) converge to § , mz(x)dp(x)
as N — oo. For the double sums involving the covariance, we apply Lemma [A.5.2]to conclude that sums
of the form Zjvzl Zﬁil C’Z(:Uév,a:%)u(VjN)u(U%) converge to §, , Cz(x,y)d(p @ m)(x,y) as N, M
grow together, and also for the corresponding iterative limits. From this we obtain that (A.44)) can be made
arbitrarily close, as n, m grow together, to

2

C LXA Cz(z,y)d(u ®F)(z,y) — UA mz(x)dpu(x)

=0.

o[ cotenawonen) +|[ mei)

)

(A47)
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This proves that the sequence (Z?Zl wVivyz (a:?)) N is a Cauchy sequence in L?(2, A, IP), which is a
ne
Hilbert space. Hence, it converges to a well-defined squjlre—integrable random variable which we will note

for now Iy.

Let us prove that this limit does not depend on the Riemann sequence of partitions chosen. Let us then

consider (UJN )je{1,...,N},NeN, be another Riemann sequence of partitions of A, and let us fix any arbitrary

collection of tag points ij eU ]N . The sequence (Z;‘:l Z(y}) U j”)> Ly, converges to a square-integrable
£

random variable that we will call I;;. We have then that

Iy — Iy = lim Z Z@)) (Vi) — Z(y}) Uy, (A.48)

n—o

where the limit is taken in the sense of L?(€2, A, P). It follows that

2
E(|Iy — Iy*) = lim E

n—aco

Z Z(x — Z(y})(U;}")

2
If we compute the expression E(|Iyy — I7[?) = lim,, o E <‘Z;‘1 Z(@) (V) — Z(y ) (U}) one

obtains similar expressions as in Eq. (A.43). By applying Lemmas [A.5.1 and [A.5.2] one obtains that this
expression converges to as n grows, hence it vanishes. This proves that Iy = Iy in L?(2, A, P), and

hence the limit is unique and it does not depend on the Riemann sequence of partitions of A selected. The
limit Iy, will be denoted then by § , Z(x)dpu(x).

We finally prove the formulas of the mean (3.10) and the covariance (3.11)). Let (V;N )jefl,....N},NeN, be
a Riemann sequence of partitions of A, with tag points wév € VjN . The formula of the mean is immediate
from Lemma since

N
E < L Z(m)du(x)) —E ( NHEL,; Z(aMpvN) > = lim Z mz (@Y )u(V}) = f my(x)du(x). (A.49)

Finally, if (U,ﬁ” ) ke{l,..,M},MeN, 1 any Riemann sequence of partitions of B with its associated points
yM € UM, then applying Lemma to the case A = ;1 ® 7, one obtains
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N M

N—00 M—00

N M
= lim lim Cov (Z Z(xév),u(VjN) , Z Z(y;i”)v(UkM))

Il
%
%

Q

N

ﬁ

@

\5:
S|
=

(A.50)
where we have used the sesquilinearity of the covariance and the convergence of covariances of double-

sequences of square integrable random Variablesﬂ This proves the desired result. H

A.6 Proof of Proposition 3.3.1

Let M be a Random Measure over R? and let f : R — C be a measurable function such that f €
LY R, my) and f @ f € LY (R x R, Cyy). In order to prove that f is integrable with respect to
M, we need to prove, following the definition of the integral (3.24), that for any sequence of simple func-
tions (f,,)nen converging point-wise to f and such that | f,,| converges point-wise monotonically increasing
to fn(2)dM(x))nen is a Cauchy sequence in L?(€2, A, P). Let us consider (f;,)nen
such a sequence. We have then for m,n € N,

[

( o)==

= Var (fRd (@) = fn (2 )
+[E <JW fn(z) — ) 2 (A.51)

=f (@) = Fon (@) 0 — Fon@))dCrs ()
R4 xRd

o(@)dM () = | ful)an

2
> (by linearity)

+j'uam—ﬁamMmM@y
R(i

If (Xn)neny and (Yin)men, are two sequences of square integrable random variables converging in L*(2, A,P) to X
and Y respectively, then limy - Cov(Xn, Ym) = limm—o limy—o Cov(Xn, YVin) = limy—o limpy—o Cov(Xn, Yin) =
Cov(X,Y). This can be proven using the Chauchy-Schwarz inequality.
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The convergence to 0 of the final expression in (A.5T)) as n, m — o0 is guaranteed from the facts that

fa(@)dmar(z) — | fz)dma(z)
Rd R4

as n — oo and

fo(@) fin(y)dCr1 (2, y) — (f ® ) (x,y)dCn(z,y)
Re xR R4 x R4

as n,m — o0. These last convergences are guaranteed by the integrability of the involved functions with
respect to the involved measures and by Dominated Convergence Theorem This proves that f is
integrable with respect to M. The formula of the mean and covariance [3.26]hold evidently when f and
g are simple functions, and with the Dominated Convergence Theorem, one proves that the same holds when

f and g satisfy the required conditions. Il

A.7 Proof of Proposition 3.3.2 and its variants

Let M be a Random Measure over R?, and consider the random variables ((M, ©)) peC.(rd) defined through
the integrals of ¢ with respect to M. The linear functional ¢ € C.(R?) > (M, ) € L*(Q,A,P) is

continuous if and only if for all compact & < R? there exists C'x > 0 such that

KM, ) r2,.4p) < Ckllelo, Vo€ C.(R%) such that supp(y) c K. (A.52)

This comes from the typical criterion of continuity of lineal operators between locally convex vector spaces
(Theorem [D.0.1). Thus, let K = R be a compact set and let ¢ € C.(R?%) such that supp(p) = K.
Considering that my; € .#(R%) = C%(R%) and Cy; € .4 (R? x R?) = C’(R? x R?) (Riesz Representation
Theorem , it follows from criterion that there exist C'}7* > 0 and C%”XI x > 0 such that

[Kmar, )l < CMlelle 5 KOm, 0 @)l < CRiigllely. Vo € Ce(R7) such that supp(p) < K. (A.53)

Hence,
IKM, @) L2 ,ap) = VE (KM, 9)|?)

— \/Var((M, ) + [E (M, )P

= V{Cr, e ®B) + Kmas, )|? (A.54)
<A\JCLL Mol + (2l

— O+ ()2

Hence, proves that M defines a continuous linear functional.

The proof for the cases of the spaces Crp(R?), Co(R%) and C(R?) is done in complete analogy, con-
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sidering criteria of continuity of mp;, Cyy and M according to the topology associated to each space. B

A.8 Proof of Proposition 3.3.3

Let M be an Hermitian orthogonal Random Measure over R?, with weight v/5;. The parity of vy, comes

immediately from
var(A) = Var(M(A)) = Var(M(—A)) = Var(M(=A)) = vy (—A), VAe Bp(R?). (A.55)

Here we have used that the variance of a complex random variable equals the variance of its conjugate. Let
Mg, and M7 be the real and imaginary parts of M respectively. Let A, B € Bg(R?). Using the Hermitianity
of M and the parity of v);, we obtain that
Cov(Mg(A), M1(B)) = E (Mr(A)M;(B))
E (M(A) + M(A) M(B) - M(B))

2 2

- %E (M(A)M(—B) — M(A)M(B) + M(~A)M(—B) — M(—A)M(B))

%(COU(M(A)’M(—B)) — Cov(M(A), M(B)) (A.56)
+ Cov(M(—A), M(—B)) — Cov(M(-A), M(B)))
= _ZZ (uM(A N (=B)) —vy(An B) + gM((—A) N (—B)z - gM((_A) A BE)

~~ ~~

=vnm(AnB) =vp (An(—B))

= 0.

Hence, My and M7 are non-correlated Random Measures. The expressions for the covariance measures of
both My and M are obtained following the same principles as in (A.56). B

A.9 Proof of Proposition 4.2.1

Let Z be a real stationary GeRF over R? with covariance distribution Cz € .#/(R? x R%), stationary co-
variance distribution pz € .%/(R?) and spectral measure pz € .#4-(R?). Let g be a symbol function over
RY, with L, being its associated operator. Since Z is real and stationary, its Fourier Transform is an Hermi-
tian slow-growing orthogonal Random Measure (Theorem [3.4.2). Since g is measurable and polynomially
bounded, it is clear that g ® is locally integrable with respect to C'z( 7y and that the measure g ® gC z(z) is
in /s (R% x R?) (see Section . Hence, the multiplication g.% (Z) is a well-defined Random Measure
over R? (see Section , and since Cyz(z) = g gCz(z) = |g|2(27r)%,uz5{y=$}, it follows that it is a
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slow-growing orthogonal Random Measure. It is also Hermitian since g is Hermitian. Finally, using again
Theorem it follows that it Inverse Fourier Transform .# ~1(¢.% (Z)), which is then £,Z, is a real sta-
tionary GeRF over R?, with spectral measure i, oz = | g|?11z. The expression for the stationary covariance
pr,z is immediate since iz = Z (pz), and hence pz,z = . F *(|g|°uz) = F 1|92 F (pz)) = Lig2pz-
|

A.10 Proof of Theorem 4.3.1

We will need the following intuitive but not-so-obvious Lemma.

Lemma A.10.1. Let M be a Random Measure over R with mean measure my; and covariance measure
Cy. Let f : R* — C be a measurable function such that % is locally integrable with respect to my; and
% ® % is locally integrable with respect to Cy;. Then, f (%M ) = M, that is, (%M ) is a well-defined

Random Measure which is a modification of M.

a.s

Proof: We first recall that the condition of modification means that for all A € Bg(R?), (f %M )(A) =
M(A). When all the involved measures are slow-growing, this implies an equality in the sense of modi-
fication between GeRFs when interpreting the measures as GeRFs. This is implied from the definition of

integrals of slow-growing measures with respect to functions in the Schwartz space (Example [3.4.2).

The local integrability conditions on f and on f ® % imply two things: first that % is locally integrable
with respect to M, and hence that the Random Measure %M is well-defined (see Section and second
that [ma|(f1({0})) = 0 = [Cum|(f1({0}) x f1({0})). This implies that M (f~ ({o})) = 0. In
addition, following Proposition[3.3.Tand Eq. (3.28), we conclude that f is locally integrable with respect to
%M , hence the multiplication Random Measure f (%M ) is well-defined. Using the o—additivity of M one
obtains for A € Bg(R?),

This proves that M (A) = (f %M )(A), and hence f %M is a modification of //. W
Proof of Theorem 4.3.1:

Let X be a real stationary GeRF over R? with spectral measure . Let g be a symbol function over R¢
and let £, be its associated operator. We start by proving the existence criterion. Let us prove the necessity.
Suppose there exists a real stationary GeRF over R, say U, satisfying (#.3)). Let z1;7 be its spectral measure.
Proposition 4.2.1}, implies that |g|>uy = px. This implies in particular that px (g~1({0})) = 0. Since
pu € Mo (RY), we can take N € N such that (1 + [£[*) ™V s is finite. We have then that

dyux (§) _ 9P dpu() _ dpy (6) dp (€)
fw T+ EPMgOF Lgﬂ} @+ €PN 19O F Lgﬂ} L+ [EPN S f L+ ep)y =0 B9
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Let us prove the sufficiency. Since X is a real stationary GeRF, .% (X)) is an Hermitian slow-growing
orthogonal Random Measure, with covariance measure Cz(x) = (27r)%,u x6W=2} (Bq. (3.69) applied to
the Fourier Transform). Following the developments in Section let us verify that the multiplication
éﬁ (X) is a well-defined Random Measure. Let A € Bg(R?). The function %1 A is integrable with respect

to .7 (X) if§1A ® §1A e L' (R? x RY, Cz(x)). We have that,

JRd xRd

Since condition implies in particular that the measure |g| 2ux is locally finite (the polynomial con-

trolling only its growing behaviour), the expression (A.59) is finite since A is bounded. Hence, %35 (X)isa

(2m 2

: |g(€§|22 dpix (). (A59)

9(&)g(n)

L a6, m)dICr x| (62) = JA

well-defined Random Measure. In addition, its covariance measure is given by

d
2

11 B .
Cirz = ;@ ZCrw0 = (212 (4l 2pux)6tv=") (A.60)

Hence, éﬁ (X) is a well-defined orthogonal Random Measure with weight v1 5y = (2#)% lg|2ux. Tt
g

is in addition Hermitian since both % and .# (X ) are Hermitian. Finally, from condition (4.7), it follows
that the weight measure v1 Z(X) is slow-growing and hence, by the arguments developed in Section @
g

%9 (X)) is an Hermitian slow-growing orthogonal Random Measure. Its Inverse Fourier Transform is then
well-defined, and from Theorem , U=7"1 (59 (X)) is a real stationary GeRF over R%. From Lemma

A.10.1|it follows that géﬁ(X) = .%(X), and hence
F YW gFU)) =F H-97 (X)) = X. (A.61)

Hence £,U = X, so the existences of a strict stationary solution to Eq. .3]is proven.

Let us now prove the uniqueness criterion. Let us prove the necessity. Let us suppose that g~ ({0}) #
. Consider j1r7,, be an even positive slow-growing measure concentrated on g~1({0}). We can take, for
instance, pp,, = 6, + 0_¢, for any & € R? such that g(¢y) = 0 (we remark that in such a case g(—&p) = 0
since g is Hermitian). It follows that |g|>uy,, = 0. Let U be a real stationary solution to and let Uy be
a real stationary GeRF with spectral measure 117, independent of U. It follows that £,(Up) = 0, since by
Proposition pe,uy = 91*puy = 0. Hence Ly(U + Upy) = LU = X. Since the addition of two
independent stationary GeRFs is a stationary GeREF, it follows that the solution is not unique. This proves

the necessity.

Let us finally prove the sufficiency. Let us suppose that there is no uniqueness, and hence there are two

different stationary solutions U; and U, to (4.3)), that is, that one is not the modification of the other. Hence,
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L4Uy = X = L4U;. Taking Fourier Transform, one obtains
97 (Uh) = X = gF (Us). (A.62)

Letuscall f = %. Since |g| > 0, f is measurable taking finite complex values. Eq. (A.62) is then

1

T ) = F(X) = 17 (). (A63)

This implies that | f| =2y, = px € A 3o (R?), which in particular implies that (% ® %) is locally integrable
with respect to C g (g, ), since

fRded

for all A € Bg(R?). The same can be stated for the local integrability of (% ® %) with respect to Cz(1,)-
By Lemmal[A.T0.1] it follows that multiplying (A.63)) by f we obtain

1

F&)fn)

(2m)
HGE

1AXA(§7n)d|Cf(U1)|(€7n) = JA dMUl (é-) = (QW)%/'LX(A) < 0, (A.64)

F(U) = f}ff(Un - f}fw?) — F (1), (A65)

where the equality means that the involved Random Measures are a modification one of another. Taking

Inverse Fourier Transform, we finally obtain
Uy = Us. (A.66)

Hence, U; is a modification of Us. The contradiction allows us to conclude that the stationary solution to
(#.3) is unique up to a modification.

It follows that the solution U = .% ! (;9? (X)), is the only stationary solution that satisfies @.3) up to a
modification. From this, the fact that the spectral measure of the unique stationary solution to (4.3)) is of the
form (@.8) comes immediately. l

A.11 Proof of Theorem 4.4.1

For the proof of this Theorem we need two Lemmas. The first one is a straightforward result that we just
mention in order to make it explicit. The second one is a known result of convolutions between some kinds

of distributions.

Lemma A.11.1. Let f be a function defining a tempered distribution over R? such that 7 (f) € L'(R?). Let
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p € Mr(RY). Then F(f) and F (1) are convolvable and the exchange formula of the Fourier Transform
holds: F(fp) = (2m)~2.F (f) » F (1).

Proof: The convolvability is straightforward since if s is finite, .7 (1) € C(R?), and every bounded
measurable function is convolvable with an integrable one. We remark that f € Cp(R?) by Riemann-
Lebesgue Lemma (Theorem [2.2.1)). Since 1 is finite and f is continuous and bounded, the multiplication f
isin .4 (R?), hence .% (f 1) is a continuous and bounded function. The Exchange Formula must be verified
in the classical sense of continuous functions. Let us call ¢ = Z(f). Using the formula of the Inverse

Fourier Transform and Fubini’s Theorem, we obtain

B conmes

Ra

F(fu)(€

M\m.

r , 1 .
e_ZITEdJ " () dndp(x)
2 JRA

J
de (2m)
)
J

N’\Q

(A.67)

i 1 i(—mTz
7| e du(z)(n)dn
Rd (27-(-)5 Rd

r

w\&

F ()€ = mF(Fn)dy = (2m) "5 (F (1) » Z(f))(€) W

M\g.

Ra

Lemma A.11.2. Let f; € L'(RY) and fo € L®(R?). Then, for every a, 3 € N% Df, and DP f, are
' —convolvable. The next equality holds in the sense of distributions for every a, f € N%:

D f1x DP fy = D**P(f1 + fo) = D*(f1+ D’ fo) = DP(D*f1 = fa). (A.68)

Proof: f; and f5 are convolvable in the classical sense of functions and their convolution is a continuous
and bounded function. Hence f; * fo € .%/(R%), and the derivative Doth (f1 * f2) is a well-defined element
of .7/(RY).

Since in this case we are not in the framework explained in Section [2.2.2] we rather use the defini-
tion through the tensor product presented in Section [2.2.3] Hence, we need to verify if the corresponding

derivatives of fi and fo are ./ —convolvable.

Consider then f; € L'(R%) and fy € L®(R%). The tensor product f; ® fo is simply the function
(x,y) — f1(z)f2(y). A typical argument using a change of variables and Fubini’s Theorem guarantees that

the convolution f; = f5 is well-defined in the sense of distributions, obtaining

(fr# fo, 0) = (L ® fo, (z,y) > plz +y)), Yepe L (RY. (A.69)

Let us consider right now the derivatives in distributional sense D® f; and D? f,. Their tensor product is then
D® fi@D? f,, and it holds that (Schwartz,| 1966, Theorem VII, Chapter IV) D® fi®D” fo = DA (f1®f>).
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By definition of the derivative,

(DD (f1® fo), ) := (~1) P f @ fo, D@Dy, vip e #(RT x RY).

Since DA ((z,y) - o(z+1y)) = (z,y) — D*Bp(z+y), and D* Py e .7(R?) for every ¢ € . (RY),
it follows that

(D L1®D’ fo, (2,y) = p(a+y)y = (=1) 1@ fs, (2,y) = D Pop(a+y)) = (=1) 1P frx fo, DO P ),

(A.70)
for all ¢ € .#(R%). This proves two things: first D f; and D”f, are .#’—convolvable, and second
DYtB(f1 % f) = Df, * DPf,, which follows from an immediate application of the definition of the
derivative in (A.69). Applying the same principles for the convolutions D®f; * fo and f; * D fo, one

obtains equality (A.68) . B
Proof of Theorem 4.4.1k

We first prove the case of condition [T} which is actually immediate within the framework of tempered
distributions. Indeed, if % € Op(RY), then it is obvious that |g| > 0 and that the PBR condition holds,
hence there exists a unique stationary solution to (4.3)) (and to (@.12)) too). Its spectral measure is then given
by the multiplication iy = |g|™2ux. The condition % e Oy (RY) also implies that [g|=2 € O (RY).
Since px € Mg (R?) < ' (R?), the multiplication measure |g| =24ty is simply the multiplication between
a multiplicator of the Schwartz space (Section [2.2.2)) and a tempered distribution. Hence, the Exchange
Formula for the Fourier Transform (Eq. (2.63)) holds, obtaining:

5.7(19172) + F (ux) = F((2m) %19 72) # px = F (W) ) = px = pl) *px.
(A.71)

pu = F(ww) = F(|g| 2ux) = (27)~

The case of condition [2] is more sophisticated. We will use Lemmas [A.TT.T) and [A.TT.2] Let us first
prove that the solution to (4.3) exists and that it is unique. If g satisfies condition [2] then the function

(1 + |2|%)~~|g| 2 is the Inverse Fourier Transform of an integrable function, and hence it is in Cp(R?) by
Riemann-Lebesgue Lemma (Theorem[2.2.1). Hence, |g| =2 < [|(14|z|*) N |g]| 72| oo (1 4 |z|*)Y and so |g| 2

is polynomially bounded. We conclude that the PBR condition holds, hence there exists a unique stationary

solution to (4.3)) with spectral measure gy = |g|2px.

Lemma [A.T1.T] gives us the proof for the case when N = 0 in condition 2] and px is a finite measure.
Let us prove the general case. Consider g satisfying condition 2{and ux € . ;G (R%) any arbitrary spectral
measure. Let Ny € N such that condition holds. Let N, € N such that (1 + |2|2)™Vex py is a finite
measure. We consider that

g2 wx
(1+ 22N (1 4 |o?)Vex

.

9] 2px = (1 + |f?) Vot Nox (A72)

eFULIRY)  enr (R
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Considering the exchange formula for the case of Lemma[A.TT.T|and the property of the Fourier Transform
with respect to multiplications by polynomials, .Z ((1 + |z|>)MT) = (1 — A)M)T for M € Nand T €
7' (R%), we obtain

—2
F (g 2ux) = @) 3 (1 — AYNo+ic y("”) 9(”) AT
(|g| /‘LX) ( 7T) 2( ) (1 + |.’E|2)N9 J* (]_ + |;1;|2)NMX) ( )
eL1(RY) €Cp(RY)CL* (RY)

We then apply Lemma to split conveniently the differential operators between the two convolving
functions. We conclude that

Fol ) = 2n) ¢ | (1= )07 (W)N)} oz <(ux>]

(1+[af? Lot [y e

_d lg] 2 WN Bx
—n) 2.7 (142N —L Ve ([ (14 |xf) Ve — 2
0 (( D e o ey

= 2m) 2 F(|lg2) * F (ux)

= F(uy ) = F(ux) = p{f *px.M
(A74)

A.12 Proof of Proposition 4.6.1

Let f € 7'(R%). Let g be a symbol function over R and let L be its associated operator. Let us prove the
necessity. Let u € #”(R?) be such that L, (u) = f. Hence, .7 (u) = Z(f) € Msc(R?). Thus, there exists
N € N such that (1 + |¢|2)=" ¢.% (u) is finite. It also follows that |.Z (f)|(¢~*({0})) = 0. Hence,

J UEZIICS :J 19()|  d[-F(u)|(§) :J dlﬂ’(u)l(5)<J d|F (u)|(§)
re (L+ PN Jigrop A+ 19(9)] g0y (LHEPN = Jra (1 + [N )

This proves that 59’ (f) is slow-growing, and in particular |g| ! is locally integrable with respect to .7 (f).

< 0.

Let us prove the sufficiency. If % is locally integrable with respect to .% (f), then the multiplication
59’ (f) defines a measure in .# (R%). Since we have supposed in addition that %9’ (f) € Msc(RY), then
its inverse Fourier Transform, u = .7 ! (éﬁ (f)) is well-defined in distributional sense, and it is an element
of 7'(R%). Let us verify that it solves [@#.29). It is clear that .7 (u) = %f (f). Since é is locally integrable
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with respect to the measure .7 ( f), it follows that |.# (f)| (¢~ ({0})) = 0. Hence,

F(f)(A) = 92) 5 = d<15‘ > = d(F = (97 (u)) (A).
=] SR OE =] @ ([F0) @ = [ @)@ = 7w @

(A.76)
We conclude that g.7 (u) = 7 (f) € M sc(R?). Taking Inverse Fourier Transform, it follows that £, (u) =
f, hence the existence is proven.

Let us prove the necessity of the uniqueness criterion. If we suppose that g1 ({0}) # ¢, then any
slow-growing measure £ concentrated on g~ ({0}) (for instance, p = d¢, for any & € g1 ({0})), satisfies
gp = 0. Hence, setting uyy = .Z 1 (p), one gets that Lyuy = 0. If w is any solution to @29), then u + upy

is also a solution to (4.29)), which implies non-uniqueness.

Let us now prove the sufficiency of uniqueness criterion. Let us suppose |g| > 0. This implies that % is
a complex measurable function. It is straightforward hence that for any measure p € .# (R%), y = g% W=
%g,u. If there are two solutions u1, uz € ¥/ (R%) to @#29), then ¢.7 (u1) = 9.7 (u2) = F(f) € Msc(RY).
Multiplying by é, one obtains that .# (u;) = % (uz), and hence u; = ug. The solution is then unique. l

A.13 Proof of Proposition 5.1.1

Let Z be a real stationary GeRF over R? x R with temporally integrable spectral measure f17 € .43, (R? x
R). As stated in Section the covariance distribution pz € .#/(R? x R) has a continuous-in-time
representation (p%),er < -7/ (R%). The objective is to define the random variables of the form (Z;, ), with
pe (R and t € R.

Let t € R and let (A7) en be a sequence of positive functions in . (R) converging to d; in the following

sense: (., 6! (u)du = 1 for all n € N, and for every f € C(R) polynomially bounded, one has that
$r On y poly y

(f, 0Ly — (6, [ = f(t), asn— . (A7)

An example of such a sequence is given by a sequence of Gaussian probability density functions centred at

t with the variance decreasing to 0 as n grows. It follows that

1 A
0% )( J _“'“‘Qt Ydu — ——e ™" asn — oo, Vw e R. A.78
Frl)) = N (A78)
Hence, the temporal Fourier Transforms of the functions in (6%),en converge point-wise to the function
w \/%e_"“’t.

Let us fix ¢ € .(R?) and ¢ € R and let us consider the sequence of square-integrable random variables
({Z, p X0 >) nen. Let us prove that it converges in L?(£2, A, P). Let n,m € N. Using the linearity and that



224 APPENDIX A. PROOFS
d+1
Ca-1(zy=(2m) 2 pz0*=Y}  we obtain that

E(K&¢g¢@—<Z¢Hﬁpf)ZEG@QWsz—ﬁﬁﬁ)
- E((7(2), Zslp) B0, - 6,

- Cn)* [ 1B |0k — o)) du(e, )
" (A79)

The point-wise convergence of .Z(6t ) to the function w — ——e = implies that
p g n NeT p

|20}, — 0) @) = |ZrO) @) + | Zr00) @) — (Fr604) @) PO @) + Fr(0h) (@) Fr(05)@))
2 2
1 efiwt +‘ 1 efiwt ( 1 7zwt 1 7iwt + 1 e—iwt 1 zwt>
s | Vom NG N N
=0.
(A.80)
Hence, | Z7(6, — 6 )‘ — 0 point-wise as n, m — o0. In addition we have that
2
F —0L) J gl — ot ) (u)du
26~ ) = | = )
2
0! — 6% |(u)du )
(\/ J ) (A.81)
< —= | @, +6)(u du)
(5= s o
2
S
Hence, | Zr (6% — 9;1)‘2 — 0 point-wise as n,m — oo and in addition dominated by % Since py is

temporally integrable, one has

a+1

(2m) 5" j Zs(0) ()P g (€, w) < . (A82)
R xR 2

It follows from Dominated Convergence Theorem that

d+1

(2w)2Jd | Zs(2) (€)1 | (0, — 04) ()| dpuz (€, w) — 0, asn,m — oo, (A.83)
R4xR

Hence, the sequence of random variables ({Z, ¢ K16}, >)nen is a Cauchy sequence in L2(Q2, A, P), and hence
it is convergent to a unique square-integrable random variable, which we will denote by (Z;, ). This
limit does not depend on the sequence (6! ),en. This can be concluded by considering another sequence

of temporal test-functions, say (9% ),en, converging d; in the same sense as (6%),en, and considering the
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sequence of random variables ((Z, o [x] (0%, — 9% )>)nen. Following similar arguments as those exposed in
this proof, one proves that (Z, p X (6%, — 9%)> — 0in L?(2, A, P) as n — o0, and hence

(Zipy = lim (Z, o R0;,) = lim (Z, o R,,). (A.84)

Let us now fix two time coordinates ¢, s € R. Consider two sequences of temporal test-functions (6%, ),,en
and (07 ) ey converging respectively to d; and to d5 in the sense given above. Let f : R — C be a continuous
and bounded function. Then, Fubini’s Theorem, a change of variable and a passage to limit, we conclude
that

G0+ = | f) | Ohu =0T (=oidodu = [ =0 T 0)d(00) > fle =), asn oo

xR
(A.85)
Let us then consider two spatial test-functions ¢, ¢ € .#(R?). Then, one has
Cov((Ze, ¢, (Zs, $)) = lim Cov((Z, p B, (Zs, 9 E2)
= lim (pz, (o % &) B (0}, * 3)
(A.86)

= lim, [ (o« 9)(0) ) ()

n
=o'y % ¢ = ¢,

where we have used the continuity of the function u € R — (p%, ¢ * ¢) and the limit expression (A.83).

Using the continuity-in-time structure of the family (p%)er, one concludes immediately that for every
¢ € Z(R%), the Random Function ¢ — {Z;, ¢) is a continuous Random Function, which is in addition
stationary. On the spatial dimension, using the tempered structure in space of the family (p%)uer <= -7/ (R9),
one obtains that for every ¢ € R, the family of random variables ({Z;, <,0>)Lpey(Rd) satisfies the linearity and
continuity conditions to be a well-defined real spatial GeRF, which is also stationary. This completes the

proof. B

A.14 Proof of Proposition 5.2.1

Let 3 > 0. For an arbitrary symbol function g : R — R, with gr and g; being its real and imaginary parts
respectively, we denote by f,, 4, the function over R? x R

B

Fonan(€:6) = (19 +.96) =l cos () 4 9@+ (sslel?sin () +0r(©)) . a8
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Let us first prove the sufficiency of our claim. Let g : R* — R satisfying the PBR condition and such
that gp cos(ﬁi) 0. Let p : R? — R} be a strictly positive polynomial such that | gR| 1/p. When 3 is
an odd integer, we get cos(ﬂ ) = 0, and it is thus straightforward that | f,, ¢,|> = g% > 1/p?, from which
we obtain that f,, ,, has PBR for any chosen g;. When 3 is not and odd 1nteger the choice of the sign
of gr is made in order to make that both cos.(ﬁ2 ) and gr have the same sign, and hence |gr cos(ﬁ2 )| =
|gr||cos(B%)|. Thus, for all (¢, w) € R? x R we have

2 2 1

anan €l > (ol cos(5) + 00 ) = (Il leosG1 + lonl(©)) > lon(©)F > oo

(A.88)

Hence, f,;, 4, satisfies the PBR condition for any chosen g;.

Let us now prove the necessity. Suppose that for every gy there exists a strictly positive polynomial g, :
RY x R — R such that | for.gr| = =, which is equivalent to say that f,, ,, satisfies the PBR condition for
any gr. Then, in particular for g; = 0 and evaluating at w = 0, we get | fg,.0(£,0)|2 = g%(£) = qo(&,0)72
from which we obtain that gp satisfies the PBR condition. Let 8 be such that cos(ﬁz’r) < 0. Since ggr
has PBR, it cannot take the value 0. Suppose there exists £; € RY such that gp(&;) > 0. If we consider

1
we, = <—gR(§1)/cos(%”)) ? we obtain that for every g,

fonon(61.06) = ~a0(6) + g€ +i (~onteyan (F) v ). s

It suffices then to take a particular measurable polynomially bounded odd function g; such that g;(&1) =
gr(&1) tan(ﬁ 7). to obtain fy, 4, (&1, we, ) = 0. This proves that f,, ,, does not satisfies the PBR condition.
The contradiction proves that gr must be a negative function. An analogue argument is used to prove that

gr must be a positive function when £ is such that cos (57/2) > 0.1

A.15 Proofs regarding the stochastic Heat equation (Section 5.2.3)

A.15.1 Existence of stationary solutions

According to Theorem [4.3.1] there exists a stationary solution to the stochastic Heat equation with White

Noise source term (5.56) if and only if the spatio-temporal measure
(w? + a®¢|*)  dédw

is in .73, (R? x R). This would hold if the function (£,w) > (w?+a?|¢|*) ! is locally integrable, the slow-

growing behaviour being provided by the fact that this function is bounded outside every neighbourhood of
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the origin. It suffices thus to study the integrability over subsets of R? x R of the form Bg) (0) x [-M, M|
for R, M > 0, where Bg)(o) c R? is the ball of radius R centered in 0. Using integration with polar

coordinates in the spatial domain and the symmetry in the time interval, we obtain

J ;d(é’ w)=0C JR arctan (M) rd=3dr (A.90)
B (0)x[-M,M] w? +a?lg[t 0 ar? '

) < arctan(2%) < I forall r € [0, R], we

M M
aR? ar?

conclude that the integral (A.90) is finite only for d > 2. We conclude that there exist stationary solutions

for some positive constant C'. Since we have that arctan(

to the SPDE (5.56) only for spatial dimensions d > 3. In these cases, the stationary solutions would be
continuous Random Functions if the measure (w? + a?|¢[*) 1 d€dw was finite, which would hold if the limit
when M and R go to co would exist and was finite. However, by seeing that Sé% arctan(%)rd_‘q’dr =
arctan(%)%, and by letting M — oo first and R — oo second, one gets that the limit is not finite.
Hence, the stationary solutions to (5.56) in spatial dimensions higher that 2 have a meaning as GeRFs and

not as continuous Random Functions.

A.15.2 Covariance structure for d = 3

The covariance distribution (5.57) is the Fourier Transform of the spatio-temporal spectral measure

d+1

dpy (&, w) = (2m) 2 (@ + a®[¢|") " dédw

for d = 3. This measure is not finite. The computation of the Fourier Transform py; = .% (uy) is obtained

as the limit in a distributional sense of continuous functions. Let us be precise.

Let R > 0 and let us denote by ,uﬁ the restriction of the measure pg7 to the subset BS) (0) xR c R® xR,

ie.
d
dufi(§,w) = (2m)7F (P + @[]) My g ()l

This measure is even, positive and finite, so pg =7 (uﬁ) is a continuous positive-definite function over
R? x R. Since for every 1) € .7 (R? x R) we have <,u,§,w> = {uy, ¢1B$)(0)xR>’ and that wlBg)XR —
point-wise and dominated by || € .Z!(R? x R, uyy) as R — oo, we obtain by Dominated Convergence
Theorem that

(B, by — (uy, ) as R — oo (A.91)

Hence, ,uﬁ — py as R — oo ina .’ (R? x R)—weak-# sense. By continuity of the Fourier Transform, we



228 APPENDIX A. PROOFS

7

have that p% % pu- Let us calculate pf(h, u) for (h,u) € R x R,

7zuw ihTe

pii(h,

* JB® ) Jr w? + a?l¢[t

—alé|?|u]
_ —ihTe€ 7
— e d
(2 )3 2a JB@”(O) al§|? :

R Ji(|h
\/>J 1 | | a|u|r2d7“
27r

sin |h|r) ~alulr?
_ alu|r . A.92
<2w>2a|h|fo o (A2

Here we have used the expression of the Fourier Transform of radial functions (Donoghue, 1969, Chapter 41).
Let us evaluate the limit of pf¥(h,u) when R — oo for |h| # 0 # |u|. Consider the function fr : RT — R
defined by fr()\) = Sé% Sln(”) e~alul”® gp for A > 0, and fr(0) = 0. A typical application of the Dominated
Convergence Theorem proves that fr is continuous over Rt and differentiable over R} . Differentiating
under the integral, we have that f,(\) = S? cos(Ar)e=alul” dr for A > 0. Using the expression of the

Fourier Transform of a Gaussian function, one proves that

)\2
li - dalu] A93
RE)%O fR( ) 4a|u| € ) ( )
for every A > 0. Using fr(\ So [R(s)ds and again the Dominated Convergence Theorem, we obtain

1 4a\u|d f A 4
Rl—rgofR J \/ 4a|u ¢ 57 er (2@) (A-54)

Using this result in (A.92) with A = |h| and R — oo, we finally obtain the distribution associated to the

Junction

1 T |h
h,u) = f . A.95
pU( 7u) (27_‘_)2 2a|h| er (2 a|u|) ) ( )

which is the expression in (5.57).

It is worth emphasizing that this expression is only valid in a distributional sense. The distribution py; is

only meaningful when applied to test-functions, satisfying

(pv, ) = lim (pt}, ), V9 € SR xR). (A.96)

The expression associated to the function (A.95) refers to the fact that for every test-function 1) such that its
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support does not contain the origin, we have

(ou, ) = LR rf( Ul >w(h,u)dhdu. (A.97)

e
r3xR (27)? 2ah| 24/ alul

This expression does not hold for a general test-function 1) € .%(R3 x R).

A.16 Proof of Proposition 6.2.1

Let o € .Z(R%). By linearity, the expression (Z, o) — (Zy, @) is simply (Z — Zn, ). Setting ¢ =
F Y p) € .7 (R?), we have
(Z=Zn,p) =(F(Z—2N),9).

We have that
F(Z—Zn)=Mz—Mg,. (A.98)

From the definition of Mz, one obtains that
N N
N N
Mz, ) = <; Mz(Vi")dex, 6y = (Mz. ]; H(E ) Lyn ). (A.99)

Hence,
E(I(Zx = 2,0)) = E (IKMzy, = Mz, 6)1?)
2

N
=E ‘<MZ, ¢ — 2, BNy (A.100)

j=1

Consider the sequence of functions ¢y = Z;V: L& JN )1, ~. Let us verify that it converges point-wise
J

2
dpz(§).

N
$(€) = D #(& )1y~ (€)
j=1

to ¢. Let £ € R% Since the union of the Riemann sequence of partitions (VJN ) je {1,...,N},NeN, Zrows to
R%as N grows, there exists Ny € N, such that for all N > Ny, & € UjV: 1 VjN , and it belongs, of course,
to just one of the VjN ’s. Since ¢ is continuous at &, for every € > 0 we can find a 6 > 0 such that
|p(&) — o(n)| < eif [€ —n| < §. By taking N; € N large enough such that if N > Ny, £ < §, one gets
that for N > max{Ny, N1},

68 (&) — D(E)] = 6(&) — (V)] < e, (A.101)

where £V is the tag point of the set V& which contains &.
j gp j
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Consider now M € N such that (1 + [£]?) ?M uy € .t (R?). Expression (A.100) equals to

2 duz(§) .

T+ )™ (A2

mf [ 10+ 167 (006 — o)

Consider the sequence of functions defined through fn (&) = [(1 + [¢[)M (¢(€) — qu(.f))‘Q. Since ¢ —
¢ point-wise, fy — 0 point-wise. It is clear that

?, veeR” (A.103)

[N (€] < Suﬂg\ L+ [n2)M ()| +Sup\ (L + )M on(n)
ne

N

<o since ¢e.s (R4)
By convexity of the function ¢ € R? — |€|2, it holds that
L+ 1Y < @ +20e - &P + 2 Y <21+ e - &P + 167 HY

Using a binomial expansion, we have that for every & € RY,

I
=

(1 + €)M on (€] (1 + €)M oMLy ()

<.
Il
_

2+ + 16 = & M e(EN)1yn (€)

N\
M=

<.
Il
—

(A.104)

N

=2M§§( )<1+|5N|>M Hlo(eN11€ = &V 1yn (€)
N J - VjN

"

.
<sup, gl (LM Fo(n)] <3k

(1 + [n)M~Fo(n)|

< oM Z sup

k=0 neRd

Since ¢ € . (R%) and ¢ — 0 this expression is bounded by a constant which does neither depend on N
nor on £, which we will denote by Cy 37 > 0. It follows that

2
[In] < sup |(1+ )M o), + CF (A.105)
neRd
Hence, the sequence (fn)nen, is dominated by a constant, which is of course integrable with respect to the
finite measure (1 + |¢|>)~2M 117. By Dominated Convergence Theorem, expression (A.102) goes to 0 as N
grows, which proves the result. B
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A.17 Proof of Theorem 6.2.1

(A.106)

1

(27)

J eingdMZN (€)-
R4

We consider the expressions
d
2
(A.107)

Considering that
T N T N T ¢N
| e eantzy e = 3 e S vy = || Z 1 (€M (E),
R - R
7=1
and using the simple fact ¢?*"¢ = SV 1781y (¢) 4+ € €1 (€) for all 2 € R% and € € R, we obtain
J
2)

J e“deMZ(g)—J e EdMy,, (€)
R4 R4
2

T Ly (©)dMz (€)

1E<
2

(12(@) - Zn(@)P) =

t&N

TG AM(6) + fD e EdMz(€)
(A.108)
and SDN izt dMz (&)

2m Ay
V a
N} and N € N,. Hence, expression (A.108) equals to

)

YLy (€) + € €1p . (€)dM(€)
2

Since My is orthogonal, the stochastic integrals of the form S N eTE_ et ang A

are mutually non-correlated for all j € {1
2
TﬁNsz@)‘ T < J ¢ EdMy(€)
Dy

J

(A.109)

! 3 izTe _
e | 4 JV
1 . 4 ixT iz T eN 2 d iaT
= ) (le(%)zjw e e _ T (6) (QW)QJDN e €2y 4( )>
N
- a (Z JVN e e 2dMZ(§) +,UZ(DN))
2 \y=17Y
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Using a typical application of Taylor’s Theorem, one obtains that

"€ — G| < 2ale — €N] < 2alln, VEEVH. (A.110)

Applying this to expression (A.109), we obtain

2 1 ixT¢ izTeN 2
E(12(2) - Zn(@)?) = — et _ i, (€) + uz(Dy)
(2m)% \Jv
1
< Az "ty pz U VN | + pz(Dy) (A-111)
(2m)%
1
<— [4|:n|2£Nuz<Rd> + uz(Dy) |

(2m)3

(A.112)

Since ji7 is a positive finite measure, we conclude that for any K < R? compact
(R sup |z]> + pz(Dy) ] — 0.

1
s (|Z() — Zn @) € —[4 & wz
(27T) ’ —0 as N—w # —0 as N—ow
<00

zeK
This proves the mean-square-uniformly on compacts convergence and gives a bound for analysing the rate

of convergence. B

A.18 Proof of Proposition 6.2.2
(A.113)

Let us consider the case with the addition of the Random Function Ry . By definition of R, one has that

! J e AN AN (€).
Dy

= d
2

Ry(x)
T e

Following the same procedure and arguments as in (A.108)) and (A.109)), one gets that for all 2 € R?
2
izl ¢ dMZ(f) +J eizTg _ el deMZ(g) )
Dy

Z JV‘N ein
(©) + fD "€ — et AN 2y ( >>

1 N
‘(z)E<

o (B

|46z @)l +2u2(Dy)

(12@) = (Zn (@) + By (@)?)
(A.114)

= 4
2
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Hence,
2
supE (|Z(2) = (Zn(2) + Rn (@))€ = |26mz(®RY) sup o + uz(Dy)| >0, (A115)
zeK (271')2 zeK

which proves that Zx + R converges mean-square-uniformly on compacts to Z, and also proves the bound
(6.13).

The convergence of —4- 7 to Z using the triangular inequality:

o
oZN
]E (

22 Zn(x) — Z(x)

2
) = 5B (07~ 02,)2Zn(2) + (Zn(2) - Z())o7, )

0Zn UZN
< 02; [E (02 = 02,)Zn(@)) +E (|02, (Zy(2) - 2@)P)
- U; (|UZ — O'ZN|20'ZI2V + UZ12\7E <|ZN(x) - Z(x)|2))

=2\oy — 04,2+ 2E (|ZN(:U) - Z(x)|2> .
(A.116)
Since 0z, — o0z and from Theorem [6.2.1] the convergence in the sense of mean-square-uniformly on
compact sets follows. The bound (6.14) also follows immediately.

The equality of the variances between %Z w 1s straightforward. The equality between the variances of
Zn + Ry and Z follows from

Var(Z(z)) = Var(Z(0)) = Var < ! - MZ(Rd)> = Var ((;)d (Mg, (RY) + Mg, (Rd))>

(2m)

= Var(Zn(0) + Rn(0)) = Var(Zy(x) + Ry(x)).
(A.117)

Here we have used that Ry and Zy are non-correlated stationary random Functions and that
Mz (RY) + Mgy (RY) = Mz(R?), (A.118)

which is easy to conclude from the definition of Ry. l
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A.19 Proof of Proposition 6.2.3

We follow the same arguments as in the proof of Proposition We consider ¢ € .(R?) and we set
¢ =F p). We call

N
My, = F(Xy) = )] MX(X/}N)ééév. (A.119)
j=1
Using that
1 ol o(&}) N oE))
Mxy,=¢) =Y Mx(VN) L2 = (My, I Z1n), A.120
Wy 50 = 2, Mx (V) ey = O 2 eyt (120

we conclude that

E (KU, @) - (Un, o) =E <‘<£;X7 20 <£},XN’¢>‘2)

)

_E <\<MX, ;¢> My, ;¢>

2

N (e
-5 o o £
7=1 J
- N p(eN 2
[ 405 i
7=1 J
[ N ¢N 2 2
~ent | [ 295 @) dux©+ [ 29 duxte
j=19\5j N
) (A.121)

The convergence to 0 of the first integral is concluded using Dominated Convergence Theorem following the

same arguments as in the proof of Proposition Namely, using the continuity of % one proves that

ﬁ?lw ©)| =0 (A.122)
(€ j )

as N grows for any ¢ € R?. Using that g satisfies the PBR condition, there exists ¢ > 0 and m € N such that

lg(&)] = W for all ¢ € R?, and hence |%| < (1 + [€[2)me(€)] for all £ € RY. We apply then the

same procedures as in equations (A.102)), (A.103)), and (A.104) to prove that the convergence is dominated,
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N
using M such that (1 + |£]2)72M 14 is finite, replacing ¢ by Zévzl jgéivi 1VjN (€) and fn (&) by
J

N
(1+ [Py (‘ﬁg% =)

N
and taking advantage from the inequalities |j§§3vi <L+ |ij |2)m¢(§§\’ )| in (A.104).
i

JDN g(&)

vanishes as N — 0 since |§|2 is integrable with respect to px and Dy decreases to 5. ll

Finally, the integral
2

YO ux©) (A123)

A.20 Proof of Theorem 6.2.2

We follow a similar approach as in Theorem Since |g| 2 is integrable with respect to 1y we have that
é is integrable with respect to the Random Measure Mx (Section|3.3.6). We recall that we have supposed
that g satisfies the PBR condition, hence |g| > 0. We consider that the unique stationary solution U to

can be written as
ixTe

1 e
U(z) = dM . A.124
) (2m)% J]R{d g M (129
And the approximation Uy can be written as
Uy (a) = — f o (€)= — J L (©)dMx (&) (A.125)
N (2m)8 Jra 9(6) " Y (2m)% Jra A g(6)) Y e ‘
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Using the orthogonality of M x we obtain that

E(JU() - Un(@)?) = ﬁﬁ ( j g i wo oy Ly (M () )
(fw )Y ( J;) o @i + | j;;de(f) 2)
S g ) |
oL »
| 2w @ 21%N(5)d“x“”fm Tgé(f)}
<<2i)g{f'x'2@vfw ‘T;‘i‘ wof, S ] ot « [ e}
- ~(A.126)

Here we have used an inequality of the form |« + y|?> < 2(|z|? + |y|?) and the bound (A.TT0). The vanishing
integrals are justified by the integrability of |g|~2 with respect to px and the fact that Dy decreases to
&. For every K — R compact, we can take the supremum over all € K in procedure and the
vanishing integrals still going to zero. We need then to verify the convergence to 0 of the integral

From the continuity of ¢ and using the same arguments which concluded (A.T0T) in the proof of Proposition

[6.2.1] on proves the point-wise convergence

N
j=1

Let us prove that the convergence is dominated. For this, we use condition to conclude that

2
9@ [ el © A1)

PG

2
1yn(€) >0, asN — o0, VéeR™ (A.128)

9(§)

2
<1
" 9(&})

L 9
Ct \ 1 +1¢"?

2 2\ ¢
) LG (IR ) eerdvie N (A129)
g(éj )
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From the mean value theorem one can conclude the inequality:

log(1 + u?) — log(1 + v? 2
og(L+u”) —log(l+v7)| 1 2% 11 vuwuso, (A.130)
u—v w>0 |1+ w?
from where we can conclude that
1+ ¢ N N
log | — x5 || < =16 < €= (A.131)
<1+|5]N|2 ‘ J ‘ J

Using the monotony of the logarithm, one obtains ( A denotes minimum and v maximum)

1+(|f| 4 |§N|)2 1+|§|2
1 J = log { ez || <l — & A132
(e - () e wm
and hence
UV IEND® e i

+(I€] A |€N|)2

We obtain thus that for & € V;V:

CT A\ 1+ CT A\ 1+ (€] A I€)])? cp° a;°

(A.134)
Since E ~ — 0and N — oo, we obtain thus that the convergence (A.128) is dominated by the constant

1+ 2 @ SUPNeNs IV Since | g| —2 is integrable with respect to z1x, from Dominated Convergence Theorem

9§
‘1 9(&y)

we conclude that the integral (A.127) vanishes as N — co. This proves the mean-square-uniformly on
compacts convergence. ll

A.21 Proof of Proposition 6.2.4

Let Y = Z5(Xg) X1 X7 (symbolically). Since X is stationary and its temporal trace X7 is a Random
Measure, we have that Y is a Random Measure over R? x R. Let Cx,. € .#Zsc(R x R) be the covariance
measure of X7, and let px, be the spectral measure of the spatial trace Xg. The covariance measure of ¥

is then determined by

d

(Cy, ) = (2m)2 JR . Rdlb((f 1), (&, 8)dux (§)dCxy (t,5), Ve S (R x R) x (R x R)),
g (A.135)
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form which we remark that Y has the structure of an orthogonal Random Measure in space, but not neces-

sarily on time.

We set as usual Vy = F5(Up) and Vj y its approximation given by (6.35). We consider the solution
to the transformed problem (6.36)), expressed through its cadlag-in-time representation (Vv ¢);cgr+ given by
equation (6.43)). Let V' be the solution to (6.31), and let (V});egr+ be its cadlag-in-time representation. It is
clear that holds if and only if it also holds for the spatial Fourier Transforms Viy and V' of Uy and U
respectively, hence it suffices to analyse the mean-square-.#’(R?)-weak-+ in space and point-wise in time

convergence of (Vi) nen, to V. Let ¢ € . (R?). Using the independence of V; and Y we have

2

E (|(Vi = Vi OI7) = E (| = Vov, e 99 ) +E e =9O0p(e)d(Y - Yi)(E, 5)

dx[0,t]
(A.136)
For the first expectation we consider that
N N
Vo ) = (Vo, 3 e 0 )1y n), (A.137)
j=1
and hence
N 2
E (|(Vo = Vo, e 0)) = E | [(Vo,e719% = 3 e 96 p(eM)1
0= Vo, e D[ ) =E | [(Vo,e™¥p— 3 e S p(g) 1y n)
j=1
N 2
d _ N
=<27r>2f () - Y e Do)y dusy(©)
Rd ) (A.138)
d N N 2
et | L[ 0e(e) = D] 1y €

T (@2n)f fD 1€19©) (&) Py, (€).

Using the same arguments using Dominated Convergence Theorem as in the proof the Proposition[6.2.1] and
considering that g > 0 and hence |e~%| < 1, we obtain that (A.138)) vanishes as N — c0.

Let us now bound the second expectation in the right side of (A.136). Using that

N
L e mOpgavae s = [ 3 eI @ar(es,  (a139)
RIx[0,¢] R x[0,¢]

Jj=1
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we obtain that

N

fRd (O e D) @Y€ ) + [ e Oav g
X j 1

2
DNX[O,t] )
J]Rd JOI‘] x[0,s] {

N
Z(e’“’“)g‘%(ﬁ)—e (D p(e)) ) (e OB(E) — e ER(EN)) 1vw<£>}dch<u,v>duxs<f>

% f J e~ (t—u)g(&)—(s—v)g(¢ |Q0( )| dCx,, (u ’U)dMXS (5)
Dy J[0,t]x[0,s]
(A.140)
Following the approach of Proposition , one proves that for all £ € RY,

]ZV: < (t—u)g(€) o(€) — e*(t*“)g(ﬁf)gp(gj.v)) <€*(sfv)§(§)¢(§) —(t—w)g(¢) ) (§N)> ~(&) — 0,

(A.141)
as N — oo, and using again that |e*t9(5)| < 1 for every t € R™, one proves that the convergence is
dominated. Finally, since |¢|? is integrable with respect to px, € .#J,(R?) and Dy decreases to &, then

f j ¢ (9O~ (=0T | () PdCxy (u, v)dpis (€)
Dy 0 t]X[O S

< [Coxrl@ % 0.5]) | (O Pdiex (©)-

<o e ~ _
—0aS N-x
(A.142)

This proves that convergence of (A.136) to 0. W
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Appendix B

Formal Construction of Generalized
Random Fields

In this Appendix we present a way of constructing (or rather, we show the existence of) Generalized Random
Fields as stated in Definition [3.4.1] following a wide-range of possible laws, not-necessarily Gaussian, and
following desired mean and covariance structures. It is based on the classical Kolmogorov’s Theorem of
existence of Stochastic Processes with finite-dimensional evaluations following a family of compatible laws.
This Theorem will be sufficient for our developments. This construction is completely analogue to the one
described inMal (2009) in the case of continuous Random Functions, where the construction is simply done
by multiplying a Gaussian Random Function with a suitable independent positive random variable. Here we
present the general case for Generalized Random Fields describing explicitly the multi-dimensional laws of
the constructed stochastic process.

In Section we have defined a real GeRF Z as a real and continuous linear mapping from . (R%)
to L?(Q, A,P). Then, we have concluded that a mean distribution my € .#’(R%) and a covariance distri-
bution Cz € .7/ (R% x R?) exist. This definition of a GeRF is quite useful for the understanding of this
mathematical object and for practical applications based on the analysis of the mean and covariance struc-
tures. Nevertheless, the formal mathematical proof of the existence of such a mathematical object is usually
done backwards, that is, we choose an arbitrary distribution mz € .#/(R?) which will be our mean distri-
bution, and we also choose a distribution of two variables Cz € .#/(R% x R%) defining a positive-definite
Kernel which will be our covariance distribution. Starting from these deterministic objects we construct a
stochastic process indexed by . (Rd) following a particular law with its mean and covariance structures

being characterised by mz and C'z respectively.

We will make explicit this construction, for which we will use a Fourier-Transformed version of Kol-

mogorov’s Theorem.

241
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B.1 Reminders on Kolmogorov’s Theorem

Kolmogorov’s Theorem is the basic tool used to construct stochastic processes indexed by arbitrary sets.
Although this approach could produce some technical problems regarding the regularity of the sample-paths

of the processes as mentioned in Section this framework will be sufficient for us.

Theorem B.1.1 (Kolmogorov, real values case). Let T' be a non-empty set. For every finite vector of
elementsinT, (t1,...,tN) € TN, with N € Ny, we consider a probability measure H(ty,....tx) OVEr RN, Sup-

pose that the so-defined family of probability measures (,U(tl,‘..,t N))( tx)eTN NeN, Satisfies the following

t,...,
compatibility conditions:

o Permutability: 1, ¢ )(A1 X ... x Ay) = /‘(ta(1>,-~~,t0(w))(Aa(1) X ... X Ag(n)), for any collection
of Borel sets Ay, ..., An € B(R) and for any permutation o : {1,..., N} — {1,..., N}, forall N € N,.

o Projectivity: i, 4y in. ) (A1 X o X AN X R) = p, (A1 x .. x Ap) for any collection of
Borel sets Ay, ..., An € B(R), for all N € N,.

Then, there exists a probability space where a family of real random variables (X)er such that the law of

an arbitrary finite vector of this family (Xt,, ..., Xty ) is piy, ... 15 can be well-defined.

B

To be more precise about what the statement “there exists a probability space where...” means, Kol-
mogorov’s Theorem actually states that there exists a unique probability measure over the space R” of all
mappings from 7" to R equipped with the cylinders o—algebra such that the random vectors constructed
through the evaluation of these functions over a finite quantity of points of 7" have the corresponding prob-
ability law in the family (M(tl,...,tN))(tl,...,t N)ETN NeN, - We are not going to enter into these details, and
we will just use Kolmogorov’s Theorem to assure that a real stochastic process indexed by an arbitrary set
exists provided that we have a compatible family of probability measures describing the laws of the finite
vector valued sub-families. See Kolmogorov| (1956, Section 4, Chapter III) for a statement of this theorem
and a proof. See also the development in |[Dellacherie & Meyer| (1978|, Chapter III, N° 50 to 52), applicable
when R is replaced by a complete metrizable space. Another source exposing this Theorem with additional
conditions concerning compact classes associated to each point ¢ € 7' is the classical Neveu| (1970, Chapter

111, §3).

Let X be a random vector taking values in R™ with N € N, and let p ¢ be its probability law over RN,
As we know, this probability measure can be completely described by its characteristic function

px©) =B EX) = | e rdug(@), cerY, ®.1)

Hence, defining a compatible family of probability measures is equivalent to defining a compatible family

of characteristic functions. We recall that from Bochner’s Theorem |3.4.1|it can be concluded that necessary
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and sufficient conditions for a function ¢ : RY — C to be a characteristic function is to be continuous,
to satisfy ¢(0) = 1, and to be a positive-definite function (see Eq. (3.2))). Thus, we are going to re-write

Kolmogorov’s Theorem in terms of these characteristic functions.

Theorem B.1.2 (Kolmogorov, real values case, characteristic functions version). Let T be a non-empty

set. For every vector of elements in T, (t1,...,tn) € TN, with N € N,, we consider a characteristic

.....

-----

€ RN and for all permutation o : {1,..., N} — {1,..., N}, forall N € N,.

o Projectivity: ¢, i i) (€1 €N, 0) = @y i) (€1 s EN), for all vector € = (&1,...,En) €
RN,for all N € N,,.

Then, there exists a probability space where a family of real random variables (X;)wer such that the law
of an arbitrary finite vector of this family (X, , ..., Xt ) is the law associated to the characteristic function

P(ty,....tx) Can be well-defined.

We will see that it is much easier to work in the context of this transformed theorem. In particular for
some laws of square-integrable random variables, it will be quite easy to see where must the covariance and

mean structure act.

B.2 Schoenberg’s Theorem and some characteristic functions

Defining a compatible family of characteristic functions satisfying our desired properties is easier than ex-
pected. For this, we need then to define characteristic functions over R with N taking different values.
Our approach is to use a very useful theorem due to Schoenberg which describes isotropic positive-definite

continuous functions in any dimension.

Theorem B.2.1 (Schoenberg). Let g : [0,00) — R be a continuous function. Then, g has the property that
for every N € N, the function ¢ : RN — R defined through

() = g(=]) (B.2)

is a positive-definite function if and only if g is of the form:

g(t) = J e_rt2d1/(r), (B.3)
[0,0)
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with v being a positive finite measure over ([0, c0), B([0, 20))).

See (Donoghuel (1969, Chapter 41) for a proof. Thus, this theorem describes continuous positive-definite
functions which are radial and valid for any arbitrary dimension. We see that if we ask the measure v to
satisfy v(|0,00)) = 1, that is, to be a probability measure, the associated function ¢ satisfies p(0) = 1,
hence it is a characteristic function of the form

w(§) = J[o )e_rszdy(r), e RN, (B.4)

This is a valid characteristic function over RY for any dimension N. We see that this function is always
positive and it decreases as we advance in some particular direction in R™V. This implies that the probability
law over RY associated to this characteristic function is invariant under rotations (thus symmetric with

respect to 0) and its support is the whole space R (it is necessarily not bounded in every direction).

Since we work in a L? context, we also need ¢ to be twice continuously differentiable. By Dominated

Convergence Theorem, this requires that the measure v must satisfy
J r2dy(r) < co. (B.5)
[0,00)

We will suppose this holds. Hence, the law of the random vector associated to the characteristic function
has square-integrable components. In particular, every real random vector of dimension N having
(B.4) as characteristic function have 0 mean and uncorrelated components (not necessarily independent).
We are going to see that in order to construct vectors with some particular covariance structure (matrix), all

we need to do is to conveniently insert an anisotropy matrix.

B.3 Construction

Let us fix once and for all a real mean distribution my € .7’ (Rd) and a real covariance distribution C'z €
" (R? x R?) defining a positive-definite Kernel. We are going to construct a real stochastic process indexed
by real functions of the Schwartz space. This subspace of the Schwartz space will be denoted by .& (R%).
Thus, we need to construct finite-dimensional laws or characteristic functions indexed by finite vectors of

real test-functions. Let us fix a probability measure v over ([0, o), B([0, o)) which satisfies (B.3).

Forall N € N, we consider a finite vector of real test-functions (¢1, ..., ¢ ), and we define the following

characteristic function over R%:

___r NN . .
¢(¢1,...,¢N)(£1,...,£N)=ei2?151<m27¢a’>f B O P N T,
[

0,00)



B.3. CONSTRUCTION 245

We verify that this function is well-defined as a characteristic function. For that, consider a function
¢ defined as in (B.4). Consider any symmetric positive-definite matrix A € RV*N and let VA be its
symmetric positive-definite square root. Then, the function p 0 v/A : RV — R, is continuous and it is
straightforward that it is positive-definite. In addition, its evaluation at 0 equals to 1. Hence, it is a well
defined characteristic function, where v/A works as an anisotropy matrix for the isotropic function ¢. If in
addition we consider any vector v € R, then it is straightforward that the function e_i“T(')cp(\/Z(-)) is also

a characteristic function. Here the vector v acts as a translation vector for the original associated law.

In Eq. (B-6) we have then considered a mean vector m(?1»+#~) ¢ RN using mz through

m(¢1,...,¢N) = (<mZ,¢1>,...,<mZ7¢N>)7 (B7)

and we have also considered a covariance matrix C(¢1¢~) — (C§.¢k1""’¢N ))é‘\,fk=1 € RV*N obtained using
Cz thorough

Clo ™) = (Cz,6; @), Vike {L,... N}, (B.8)

Since Cz € .7/ (R? x RY) defines a positive-definite Kernel, the matrix (B.8)) is positive-definite and sym-
metric. We express thus the function more explicitly through this vector and this matrix:

. (b . r  ¢{roler
D1 (E) = e J e Ton ¢ dv(r) (B.9)
[0,00)

The matrix )C(d’l““"z’f\’ ) is positive-definite and we can take its square root as an anisotropy ma-

1
2 S[Om) tdu(t
trix. The vector m(?1-9N) is acting as a translation vector. It turns out that the function is a valid

characteristic function for every vector (¢1, ..., pn) € (RN,

It is quite easy to verify that this so-defined family of characteristic functions form a compatible family
according to Kolmogorov’s Theorem Indeed, both the expressions ET m(¢1:-4~) and é’T C(é1, 0N )E
are stable under permutations of the respective components of the vectors and matrices involved, and if
we evaluate any of the components of é’ in 0 we will obtain analogous expressions in dimension N — 1,
hence the projectivity condition is also satisfied. We conclude that there exists a real stochastic process
({Z, 9)) pe. (r) Whose finite-dimensional laws are described by the characteristic functions (B.9). Now,
for any arbitrary complex test-function ¢ € .7 (R?), we simply define the associated random variable

(Z,¢) :={Z,¢r) +Z, b1), (B.10)

where ¢ and ¢ are the real and the imaginary parts of ¢ respectively. The resulting stochastic process
(«Z, ¢>)¢€ #(rd) s then well-defined and it has the property of producing real random variables when eval-

uated at real test-functions.
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Differentiating (B.9) and evaluating at 0, we can conclude that for any vector of test-functions (¢1, ..., )
it holds that

¢W<o> = E(Z, ;) = mi? ) = (mz, ;). B.11)
J

And differentiating twice and evaluating at 0 , considering real test-functions (¢1, ..., ¢ ), we obtain

Q... : )
— LI (0) = B((Z, 6,7, 6x)) = mi O o) glGneon)

08085 ’ (B.12)
= {mz, ¢;)mz, ¢r) +{Cz, ¢; ® ).
And thus we obtain for two arbitrary real test-functions ¢ and v:
E((Z,¢)) = (mz, $) (B.13)
Cov((Z,9),{Z,¥)) = (Cz,0 Q) (B.14)

By linearity we see that formula (B.13) also holds for complex test-functions. The sesquilinearity of the

covariance allows to conclude that for two complex test-functions ¢ and 1 it holds that

Cov({(Z,$),{Z, ) ={Cz,9 @), (B.15)

which is what we expected to have. Hence, the distributions myz and C'z do describe the moments of the

stochastic process Z.

We still need to verify the linearity and continuity conditions, but this is straightforward in this squared-
integrable context. Indeed, for the linearity consider ¢, € .% (Rd ) and o, B € C. A few calculations based
on the linearity of mz and the bi-linearity of (¢, ) — (Cz, » ® 1) of Cz allow to show that

E (I(Z.a + B¥) - (aZ.6) + BZW))IP) = 0. (B.16)

Hence, (Z,a¢ + ) “C ol Z, ¢) + B{Z, ). To prove the continuity, let us consider a sequence of test-

. d 54 C . .. . — S(RIxRY) |
functions (¢p)neny < - (R?) such that ¢, = 0. Considering that this implies that ¢, ® ¢, —> ~ 0|’}
we obtain from the continuity of mz and C'z that

E(KZ, ¢n)I?) = Var((Z, ¢n)) + E(Z, $n))E(Z, $n)) = {Cz, bn ® $n) + Mz, dn){mz, dp) — 0.
(B.17)
This proves that the so constructed stochastic processes Z defines a continuous mapping in the mean-square

'This is concluded immediately from the fact that for every ¢ € . (R?), SUD (5, )erd xrd |P(2)P(Y)| = [ #]2, and applying this
to every function of the form z®D? .
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sense. Hence, we have proved the existence of a GeRF following the required mean and covariance structures

and with finite-dimensional laws described by the family of characteristic functions determined by (B.9).
Remark B.3.1. Using v of the form v = §; for some ¢ € (0, c0) in (B.9), we obtain a Gaussian process.

Remark B.3.2. An analogue construction can be done outside the framework of square-integrable random
variables, but still using a “mean” and “covariance” structures as basis. Such a construction is done by con-
sidering mz € .7/ (R?%) and Cz € 7' (R¢ x R?) taken as always and considering the family of characteristic

functions:
‘P(¢1,-..,¢N)(g) _ im0 ¢>N)f 6_T€TC(¢1W"¢N)§dV(T‘). B.18)
[0,00)

From the arguments exposed above, this defines a compatible family of characteristic functions. The gener-
alization is done by considering a probability measure v which does not satisfy (B.3). It is not even necessary
to require 8[07 ) tdv(t) < co. The only difference is that the continuity of the associated stochastic process
({Z. ¢)) ge.7(r+y must be interpreted in probability and not in the sense of L?(9, A, P). The arguments that
we have used in this Appendix do not work to prove the linearity and continuity in such a case, since we have
used the mean-square structure. However, both linearity and continuity can be proven by analysing directly
the characteristic functions associated. Indeed, by doing some algebraic calculations using the linearity of
my and the bi-linearity of the Kernel associated to C'z, one can prove that the characteristic function of a
random variable of the form (Z, a¢ + S — (alZ, ¢) + B{Z, b)), with o, B € C and ¢, € .7 (R?), is
the constant function 1. Hence the random variable equals 0 almost-surely (its probability law is the Dirac
measure). Analogously, if ¢,, Z, 0 one proves that the characteristic functions of the associated random vari-
ables (Z, ¢,y converges point-wise to the function 1. From Lévy’s Theorem one concludes that the sequence
({Z, ¢n))nen converges in law to 0, and since every sequence of random variables which converges in law
to a constant also does it in probability, it follows that Z is continuous in probability. We omit the details
of this procedure. We conclude that we can construct a GeRF Z continuous in probability with the same
principles as done in the square-integrable case, using mz and C'z as basic tools. Here the “mean” and “co-
variance” distributions do not determine, exactly, the first two moments of Z, since they do not necessarily
exist. However, they do describe the dependence structure between the random variables of the process, and

they do it in a quite analogous way as the mean and covariance do: through a translation and an anisotropy.

Remark B.3.3. Using another space of test-functions such as Z(R?) or &(R?), with the mean and co-
variance belonging to the corresponding dual space (the covariance defining, of course, a positive-definite
Kernel), the same procedure can be used to prove the existence of Random Distributions in the generic sense
and of Random Distributions with compact support. The same idea also holds if we take as spaces of test-
functions C.(R%), Crp(R%), Co(R%) and C(R?) in order to construct Random Measures, slow-growing
Random Measures, finite Random Measures and Random Measures of compact support respectively, by

making the mean and the covariance being in suitable spaces of measures. Random Measures interpreted
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as set-functions also enters in this framework, applying the same procedures by replacing the test-functions
with indicator functions of bounded Borel sets. Finally, and getting back a little into a more basic frame-
work, this procedure also shows the existence of Random Functions with any mean function and covariance
functions. For that, replace simply the test-functions with Dirac measures at the corresponding points in the

space, interpreting of course (mz, ¢,y and (Cz, d; ® §,) as mz(x) and Cz(x,y) respectively.



Appendix C

Formal resolution of first order evolution
equations.

In this Appendix we deal with the resolution of a spatio-temporal SPDE of the form

%—i—ﬁgU:X, (C.1)
where X and U are GeRFs over R? x R having a suitable behaviour, and L, is a spatial operator defined
through a continuous symbol function g : R4 — C (see Chapter for which we will suppose that its real
part satisfies gr = 0. We will follow a traditional approach and obtain an existence and uniqueness result
by fixing an initial condition that the solution must follow. This actually poses more theoretical problems
than those which are simplified. When requiring, for example, that the evaluation at 0 of the solution must
be equal to some particular spatial GeRF, we have already implicitly required that the solution must have
a functional meaning in time, at least at £ = 0 or at a neighbourhood of ¢ = 0. This restricts the space of
possible solutions to the problem and hence it also restricts, in principle, the type of operators we can apply
over members of this space. However, we will fix a special space where the functional meaning in time of
the solution can be guaranteed, without losing much generality. The approach is done by considering spaces
of spatio-temporal distributions such that their temporal derivatives are measures in time. This selection has
been done by following the fact that the distributional primitive of every measure over R can be identified

with a cadlag function.

We will first show how to solve the associated deterministic problem. The resolution of the stochastic

version of the problem will follow analogously.

We will use the same notational conventions used in the spatio-temporal context presented in Chapter 5]

249
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C.1 Solving the deterministic problem

C.1.1 Convenient spaces of test-functions and their dual spaces

In Chapter @ we have introduced a convenient space of tempered distributions over R?, 77(R%), which is
the space of all tempered distributions such that their Fourier Transforms belong to .#Zsc(R?). We have not
justified the notation #”’(R?) as the dual of a particular space, but using the Riesz Representation Theorem

for slow-growing measures this can be done easily. Let us consider the next space of test-functions:
V(RY) = {p e CPRY) | 3¢ € Crp(R?) such that p = F(¢)} = F(Crp(R)). (C.2)

We have defined 7 (R?) in such a way that 7 (RY) = C{°(RY), but this requirement actually follows from
Riemann-Lebesgue Lemma (Theorem . Indeed, a function ¢ € Crp(R?) can be multiplied by any
polynomial, the result being always integrable. Hence, the Fourier Transform of ¢ is smooth and all of
its derivatives vanish at infinity. 7 (R?) is a strict subspace of C° (Rd) The space # (R?) can be defined
equivalently as the space of functions in C$°(R%) such that their Inverse Fourier Transforms are in Cp (R?).
In such a case, the Inverse Fourier Transform must be interpreted in distributional sense, considering the
members of C{°(R?) as tempered distributions. Of course, if we use the Inverse Fourier Transform instead
of the Fourier Transform in the definition (C.2) of #'(R%), the space remains the same.

We endow 7 (R?) with the topology induced by the directed family of semi-norms

p(p) = sup 1+ )Y Z () (©)], NeN. (C3)
€
This topology is equivalent to the one induced by the metric
;e (1 + €)Y F (0 = 0)(©)]
(9,9) = : . Ve, ge V(RY. (CH
];N 2V 4 sup [(L+ €)Y F (0 — 9)(€)]

£eRd

Hence, a sequence of functions (¢, )nen < ¥ (RY) converges to 0 as n — oo on ¥ (R%), denoted by ¢, A 0,
if and only if Z () <5 0 (See Section for a recall on the topology of C'rp(R%)).

Since Crp(R?) c £ (R?), the Fourier Transform of a fast-decreasing continuous function is defined
classically as an integral. The same holds for the Inverse Fourier Transform. For the members in 7 (R%) these
operations are algebraically defined in distributional sense, having a one-to-one correspondence between
members in ¥ (R?) and Crp(R?), and satisfying .Z ~!(.Z (¢)) = ¢ for every ¢ € ¥ (R?) and also for every

'For d = 1, the function £ — \/% %(5) isin Cg” (R), but it is the Fourier Transform of 1;_1 17, which is not in Crp (R).
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¢ € Crp(R?). From Theorem it follows immediately that the Fourier Transform and its inverse
are continuous linear operators from 7 (R?) to Crp(R?) (or from Crp(R?) to ¥ (RY), as pleasure). The
completeness of Crp(R?) and the continuity of the Fourier Transform imply the completeness of # (R%).
7 (RY) is a Fréchet space.

Proposition C.1.1. The Schwartz space satisfies . (R?) < #(R?) and .7 (R?) < Cpp(RY) and it is a

dense subspace of both spaces with their respective topologies.

Proof: The inclusions are straightforward. We will just prove the density of .(R%) in Crp(R?). The

density in 7' (R?) follows immediately from the continuity of the Fourier Transform.

We first prove that if f € Cpp(R?) and ¢ € .Z(R?), then f * ¢ € .#(R?). It is clear that f is
integrable and bounded, as well as ¢ which is in addition smooth. Thus f * ¢ is a smooth integrable
and bounded function, and its Fourier Transform satisfies .7 (f * @) = (277)%9’ (f)Z (). We have that
Z(p) € .Z(RY) since .Z is a bijective endomorphism of . (R%). Since f € Crp(R?), then .7 (f) €
7 (RY) = CP(RY) = Op(R?). This implies that (27r)%ff(f)9‘(gp) e Z(RY). This proves that f x ¢ =
7 (eniF(NF(9) e #RY).

Let (¢ )nen < -7 (RY) be a regularizing sequence of positive compactly supported smooth functions,

such that supp(¢,) = B1(0) and {3, ¢, (x)dx = 1 for all n € N. We consider the sequence of functions

fn = f * ¢, which are all in . (R?). We will prove that f,, “rp £ Letm € N be fixed. We must show that
11+ 212)™(fro— )|l — 0asn — oo. Lete > 0. As f € Cpp(R?), we can take R > 0 large enough such
that for every z such that |z| > R — 1, (1 + 2|z|2)™|f ()| < W holds. Notice that in this case,
(1 + |z[*)™|f(x)| < §. Since f is continuous, it is uniformly continuous over the compact set Br11(0).
Thus, there exists § > 0 such that if |z — y| < J, then |f(x) — f(y)| <

Consider ng € N such that % < 6. Then, for all n = ny,

m for all X,y € BR+1(O)

I(L+ )™ (f = f)loo = sup J (L+ [2%)™(f (@) = f& = y))dn(y)dy
zeR4 B%(O)

< sup jB (1+ [2P)™(F() — f(x — 1)) dy

:EGBR(O

N

(C.5)
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For the first term (a), the uniform continuity of f implies

(@) = sup Ou(y)dy =

IEBR(O)

f (Lﬂﬂ%mﬁ@f—ﬂf—WMMMQISJ (o f—
B%(O) B

(0) 3(1 + R2)m

3=

Regarding the second term (b), the integral is split to obtain

(1 + 2" (2 = len)dy ). (€T)

W< s {f A Er @i |

z€BR(0) B1(0)

n

4

N
wim

When applying a convexity argument twice, one shows that (1+|x[?)™ < 2™ 1[(142|z—y[?)™+2™|y|>™]

for all « and ¥, and thus

f u+w%mum—wwaw@<2m1u' (1420 = yP)"[f@ —y)| uly)dy
B%(O) B (0)

v |
B

3=

<73(2m71j22m71> from |z—y|>R—1

=) m%wm@mﬂ
—_—

(0)

3=

<3(2'm—1i22m—1) <1
€ € €
< om-l 4 2™ =3
(3(2m1 + 22m71) 3(2m71 + 22m71) 3

(C.8)
Hence considering (C-7) and (C-8) we finally obtain (b) < %. Putting together this result and (C.6) on
equation (C.3)), we finally obtain that for all n > ny,

(L + 2™ (f = fu)lwo <, (C9)

hence |(1 + |z|?)™(f — fu)|c — 0. Since m was arbitrary, this result holds for all m. We therefore
conclude that f, Crp f. Since for any arbitrary f € Crp(R?) we can find a sequence included in . (R%)

which converges to f, we conclude that .# (R?) is dense in Cp(R?). B

The dual space of ¥ (R?) is then denoted by #”(R?). From Theorem [D.0.1 it follows that a linear
functional 7' : #(R?) — C is in #"(R?) if and only if there exist C > 0 and N € N such that

KT, o) < C;tﬁg L+ €PN Z(0)(©)], Voe 7 (RY). (C.10)

The density of .7 (R9) in ¥ (R?) and the integrability of the functions in Crp(R?) allow to conclude the

following inclusions:
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S (RY « ¥(RY) c ¥ (RY) c " (RY). (C.11)

The Fourier Transform over #’(R?) can be defined equivalently as the restriction over #"(IRY) of the
Fourier Transform on .#/(RY), or as the transpose of the Fourier Transform .# : Crp(R%) — 7 (R?).
Using this second option, it follows immediately that it is a sequentially continuous linear functional .% :
7' (RY) +— Chp(RY) in the sense of a weak- convergence. Since Chp(R?) = #s(R?) from Riesz
Representation Theorem , we conclude that 7”(R?) is indeed the space of tempered distributions such

that their Fourier Transforms are slow-growing measures, as it was defined in Chapter ]

Let us now introduce some special spaces of test-functions which consider that we work over the positive

time, hence over the space R? x R rather than over R? x R.

We define the next space of test-functions:

Crp(RY x RY) = (e CRI x RY) | sup  [(1+ [o2)" (1 + )" (€, )| < 0, Vs, nr € N).
(€,H)eRE xR+
(C.12)

This space can be equivalently defined as the space of restrictions of functions in Crp(R? x R) to the subset
R? x R*. Crp(R? x R*) is endowed with the topology induced by the metric

sup (1 + €)™ (1 + )" (¥1 — ¥2)(6, 1))

1 (€,t)ERE xR+
1,12) — — — — ; (C.13)
(r02) nS;ﬁN?”S*”T”H sup  [(1+ €)™ (1+ )" (1 — ) (€, 1))
’ (&,t)eRE xR+

for all ¥1,19 € Cpp(R? x RY). Crp(R? x RT) is a Fréchet space. We denote by C7.,(R? x RY) its
dual space. A linear functional T : Crp(R? x R*) — C is continuous if and only if there exist C' > 0 and
Ng, Nt € N such that

KT,y <C  sup  [(L+ €PN (L +8)Np( 1), Vi e Crp(RY x RY). (C.14)
(&,t)eRI xR+

Let us now define the space .#Zsq(R? x R*). We define it as the space of slow-growing complex

measures such that their absolute variation over R? x R} is null:
Msc(RT x RY) 1= {p € Msq(R? x R) | [u|(R? x R,) = 0}. (C.15)

We could have defined .#sc(R? x RT) as a space of measures over R? x R* without concerning on what
happens over the negative time, but it is actually easier to work with measures defined over the whole space
R? x R but for which we only look at their behaviours over the subset R? x R*. .#Zgq(R? x RT) is also
equivalently defined as the space of slow-growing measures with support included in R? x R*.
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The next Proposition follows from Riesz Representation Theorem.
Proposition C.1.2. .Zsc(R? x RY) = CL,(R? x RT).

Proof: The inclusion .#Zsg(R? x R™) < CF.,(RY x RY) is immediate. Let T’ € Cl ) (R? x RT). Let
Y € Opp(R? x R). We define the action of T" over 1) as

(T, := (T, | ga s - (C.16)

Since T € Clp(R? x R™), there exist C > 0 and Ng, Ny € N such that

KT = (T, g )

<C  sup L +[EPYNA+)NTY(E )]
(&,t)ERI xR+

<C sup (14 €N+ )NT(E, 1))
(€,)eRExR

(C.17)

This proves that the extension of 7 to the whole space Crp(R?% x R) is a continuous linear functional and
hence there exists a slow-growing measure y1 € .#Zsq(R? x R) such that

(T, % |gavps) = JRde¢($a t)du(z,t), Vi e Crp(R? x R). (C.18)

It can be concluded either using the inequality or the Lemma[A.2.3|that the measure £ has its support
in R? x R*. This proves that C%.,(R? x RT) = #Zsc(R? x RT). R

We also define the space Crp(R™) of continuous fast decreasing functions over R, with an analogous
topology which makes it a Fréchet space. Its dual can be represented as the space .Zsc(R") of measures
over the positive-time, which can as well be identified with the space of measures in .#Zsc(R) which have
their supports contained in R™. We omit the details for such claims since they are analogous to the analysis

already done for the space Crp(R? x RT).

We consider right now the following space of test-functions which are spatial Fourier Transforms of
functions in Cpp(R? x R*):

¥ (RYXKCFp(RT) 1= {1 € C(R? x RY) | 3¢ € Cpp(R? x RT) such that ¢ = Fg(1h2)}.  (C.19)

Members of this class act as members of 7 (R?) spatially and as members of Crp(R*) temporally.
That is, if 1 € ¥ (RY)XCrp(R"), then for every z € R%, ¢(x,-) € Crp(R") and for every t € R,
Y(-,t) € ¥ (RY). Tt is immediate that this set of functions forms a complex vector space. Every function of

the form ¢ X ¢, with ¢ € 7 (R?) and ¢ € Crp(R™) is a member of this class, as well as any finite linear
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combination of functions of this form. The notation ¥ (R%)XIC'=p(R™") has a deep inspiration in the theory
of Nuclear spaces: the notation EQF, when E and F are more general topological vector spaces, is used to
represent a completition, under suitable topologies, of the space E® F' of finite linear combinations of tensor
products (see [Treves| (1967, Part III) or |Grothendieck (1955)). We will not enter in those details explicitly,
and we will simply work with definition (C.19) and its notation ]

The space ¥ (RY)XICrp(R) is endowed with the topology induced by the metric:

sup (L4 [€[%)" (1 +¢2)"7 Fg ' (1 — 12) (&, 1))
1 (€,t)eRd xR+

Ww2) = Y0 g 1+ sup [+ [EP)s(1+ )T Zg (g1 — o) (&, 1)

,nreN
ns,nT (£,6)eRd xR+

(C.20)

V1,99 € ¥V (Rd)CF p(RT). In virtue of Theorem the spatial Fourier Transform (and its inverse)
defines a continuous linear functional from C'rp(R% x R*) to # (RY)XICrp(R*), and it also does it in
the reversed sense from ¥ (RY)XICrp(R¥) to Crp(R? x RT), with the spatial Fourier Transform being
interpreted in a distributional sense. From the continuity of .%g and the completeness of Crp(R? x R¥), it
can be concluded that ¥ (RY)XCrp(R*) is a Fréchet space.

The dual space of ¥ (RY)XICrp(R*) is denoted by (¥ (RY)XKICr D(R*)),. A linear functional
T: ¥ RHYRCrp(RT) - C
is a member of (“I/(Rd)CpD(R+)), if and only if there exist C > 0 and Ng, Nt € N such that

KT, ¢yl < C( )Sup 1+ PN (1 + 2N FZZ )& 1), Ve V(RORICED(RT).  (C21)
EERIXRT

The spatial Fourier Transform .Zg over (¥ (RHXICrp (R*))I is defined as the adjoint of the spatial Fourier
Transform over Crp(R?% x R*), whose range is the space ¥ (RY)XICrp(R*). We obtain thus a sequentially

continuous linear operator
. !
Fs - («/(Rd)CFD(Rﬂ) > MR x RY).
More explicitly, #s(T) is the distribution in C%.,,(R? x RT) = .#Zsq(R? x R*) such that

(F(T),0) := (T, Fs(1)), Y€ Cpp(R? x RY). (C.22)

The spatial Fourier Transform and its inverse interchange thus the spaces (¥ (RHXICrp (R*))I and

*This notation would be fully justified if it turns out that the space ¥ (R?) is nuclear. See|Tréves| (1967, Proposition 50.7).
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Msa(R? x RY).
We remark that both spaces (¥ (RY)XICrp (R+))/ and .#sq(R? x R¥) are subspaces of ./ (R% x R),

that is, their members are tempered distributions. To see this, we can consider that for every ¢ € .7 (R% x R),

we can define the application

(T, ) := (T, Y| g gr s (C.23)

for T € Msc(R? x RY) or T € (¥ (RH)XCrp(R")). It is easy to see that for every ¢ € .#(R? x R)
the restriction ¢|Rde . is in both spaces Crp(R? x RT) and ¥ (R*)XICrp(R*), hence this application
is well-defined. It also defines a tempered distribution, which can be obtained easily following criterion
[2.49) and using criteria (C.10) and (C.14). It turns out that every distribution in .#sc(R? x R*) or in
(v (RYXICE D(R*))/ can be differentiated any number of times, and that the spatial, temporal and spatio-

temporal Fourier Transforms can be applied freely. We say thus, that (¥ (RYXICE D(R*)), is the space of
all tempered distributions whose spatial Fourier Transforms are slow-growing measures over R¢ x R™.

C.1.2 Temporal Integration and cadlag-in-time primitives

Let T € (V(RHKCrp (R+))/. This distribution acts as a measure in the positive time. To see this, we
consider the following fact:

e Forevery p € 7(R%), 0 € Crp(R*) > (T, p X 0) is a slow-growing measure over R,
e Forevery § € Crp(R*), p € ¥ (RY) v (T, p X 6) is in ¥/ (R?).

This comes immediately from criterion (C.21). Indeed, let us consider C, Ng, Ny as in (C.2I). If 6 €
Crp(RT), set Cg = Csupyep+ |(1 + t2)N76(t)|. Then,

(T, o 0)| < Cesup\1+|x|) Fs(@)(€)|, VeV (RY, (C.24)
£eR

which shows that (T,- X 0) € #’/(R%). On the other hand, by fixing ¢ € #(R%) and setting C, =
C supgega |(1 + |€[%)™ Fs(p)(€)| we obtain

. VOe Cpp(RY). (C.25)

KT, 0| < Cyp sup |(1+t2)NTo(2)
teR+

Hence (T, p[x]-) is in C%,(R™), and hence it is a slow-growing measure by Riesz Representation Theorem.

The fact that 7' acts temporally as a measure implies that we can construct integrals with respect to
its time component. To be precise, for every ¢ € ¥ (R?), we can extend the domain of definition of the

application 8 — (T, ¢ [X] ) to every measurable function with fast decreasing behaviour over R*. In
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particular, for any A — R" Borel and bounded, we have the right to write:

expression that can be defined through limiting arguments. In particular, when A is any bounded closed
interval, the definition can be done by considering limits of functions in C..(R™) which converge point-wise
monotonically-decreasing and bounded by 1 to the indicator function 1 4 (a sequence of functions whose
graphs form trapeziums, for instance). Hence, we can consider for any ¢ € R™, the expression (7', ¢[x]1 [0,¢] ).
Since T' is a measure in the temporal component, the function t € R — (T, ¢ 1j0,4, is a cadlag function.

Since (¥ (RYRCrp(RY))" < #'(R? x R), the distributions in (¥ (R)KCrp(RY))" can be dif-
ferentiated with respect to the temporal component in a distributional sense. With these considerations,
let us describe the distributions in (¥ (Rd)C'FD(R+))’ whose temporal derivatives are also in the set
(v (RYXICE D(R+))/. According to our intuition, such a distribution should follow a cadlag behaviour in
time, since their temporal derivatives behave like a measure in the time component. The next Proposition

states that this intuition is correct.

Proposition C.1.3. Let T € (V(Rd)CFD(R+)), such that % € (V/(Rd)CFD(RJ”))I. Then, there exists
a family of spatial distributions (T}),cg+ < V' (R?) such that

e the functiont € R* — (T}, ) is a cadlag function for every p € ¥ (R%).

o (T, o0y = 5. (T1, p)0(t)dt for all p € ¥ (R?) and for all § € Cpp(RT).

Before proving this Proposition, let us prove the next Lemma:

Lemma C.1.1. Let f : R — C be a cadlag function. Let ty € R. Let (07(lt0))neN be a sequence of functions

approaching 0y, from the right-side, that is, (G%to))neN < CF(R) is such that for all n € N, supp(&(f 0)) c

[to, to + %H] and §, 05 (t)dt = 1. Then,

lim | F()0%0 (t)dt = f(to). (C.27)

n—eo R

Analogously, if (ng))neN is a sequence of functions approaching d, from the left-side, that is, (egf}))neN c

CH(R) is such that for all n € N, supp(07(f°)) c [to — 2 to] and { Hy(fo)(t)dt = 1. Then,

lim | f(6)05) (t)dt = f(ty), (C.28)

n—0oo R

where f(t,) = limtﬁta f).
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Proof: Let f : R — C be a cadlag function and let (GS()))%N be such a sequence of functions
approaching d;, by the right-side. Let € > 0. Since f is cadlag, there exists o > Oﬂsuch that | f(to) — f(t)| <
€ for all ¢ such that 0 < ¢ —#p < ¢. Considering ng € N such that —— < 4, it follows that if n > ng then

to-i-n+1
tydt — f(to) eJt 000)(t)dt = e.  (C.29)

0

J:o+n+1 (f(t) — f(tO))Q,(fO)(t)dt <

0

Which proves the convergence. The converge to the left-limit f(¢; ) is done analogously. W

Proof of Proposition[C.1.3; The proof consists in verifying that the family of (evidently linear) appli-

cations or
v L) = (G e By, te R, (C.30)

satisfies the required properties. Let us first prove that (C.30) does define a spatial distribution in #”(R¢) for
any fixed t € R*. Since %p € (”f/(IR{d)CFD(Rﬂ)/, there exist C' > 0 and Ng, Nt € N such that (criterion

(€21

T
|<‘7af,soe>|<0(5 sup A+ W+ YIS0, Vo ¥ (R W0 e Crp(®T). (3D
JHERI XRF

Let us approach the function 1o} by a convenient sequence of functions. Let us consider a sequence of
positive functions (G(t))neN c C (RT), continuously differentiable over R and such that G(t) = 1 over

[0,¢] and 0( ) = 0 over [t + oo>, having a decreasing behaviour over the open interval (¢,t + ——).

n+1’ n+1

Then, the functions (9§L ))neN converge point-wise to the function 1y 4, and they are all bounded by 1[g ;1)

It follows from Dominated Convergence Theorem (we recall that %—? acts as a measure on the temporal

component) that

oT
‘< 5 790.1[015]>‘ = lim ‘<,wl9(t)>‘
< Jim € sup |(1+ )60 ()] sup |(1+ [€[%)™ Zs(0)(©)] (C.32)
ueR+ &eRd
< C(1+ (t+ DAV sup |(1+ €)Y Zs () ()]

£eRd

This proves that the family @D defines spatial distributions in 7’ (R%) for all t € R* (criterion (C.10)).
Let us fix p € ¥ (RY). Since 2 ﬁ behaves as a measure in the temporal component, the function ¢ +—

at ;X1 4 is a cadlag function, and from (C.32) it follows that it is also polynomially bounded. Hence,

*Do not confuse with the Dirac measure at 0.
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for every 6 € Crpp(R™), the integral
oT
| Gremtapea

is well-defined. We remark that the sequence of differentiable functions (H%t))neN is such that the sequence
(t) (t)

dfﬁ ) < [t t+ n+1] oy < Oand — g, di)ﬁ (s)ds = 1 for

all n € N, hence they approach —d; from the right. Let 7% be the slow—growmg measure over R™ such that

% (A) = (T, p X 1,) for every bounded Borel set A — R*. From these considerations, it follows that

( ) )
of derivatives (2% 7 )nen satisfies that supp(

T
J <aa—t, O X 1jo,4)0(t)dt = hni J <—, © OOt )dt (since 6 — 110, point-wise dominated)
R+ n—«
. d9n o
= hn%« —J T, X >9( )dt (Def. of derivative)

dot®
li __n T,¢
Tim fw Jw O (5)u™ ()0t

t
limf J _ dn (5)0(t)dtdu™%(s) (Fubini’s Theorem)
R+ Jr+  d

n—o

Jm 0(s)du™(s) = (T, B ). (Lemma[C.TT)

(C.33)
Hence,

| Gromtppstia = | dppoi = @ ome). vee R ¥0e Crp®"), (€34

and thus the family (C.30) satisfies all the required conditions.

IfT e (V (RHXICrp (R*))I satisfies the conditions presented in Proposition , we say that it has a
7#'(R%)-in-space and cadlag-in-time behaviour. We also say that 7" has a cadlag-in-time representation
and that the associated family of spatial distributions (T});cg+ < #’(R?) is the cadlag-in-time representa-
tion of 7.

We remark that the notion of cadlag-in-time representation can be applied for many other distributions,
not necessarily with a spatial behaviour in #”(R%). We remark in particular the case where T € .Zsc(R? x
R*), for which we say that it has a cadlag-in-time representation if there exists a family of slow-growing

spatial measures, (T})cp+ © Asc(R?) such that

o the function t € R* — (T}, ) is a cadlag function for every ¢ € Crp(R?).

o (T, 0) = 5. (T3, p)b(t)dt for all p € Crp(R?) and for all § € Cpp(R™).

The next Proposition follows almost immediately.
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Proposition C.1.4. Let T € .#sq(R? x RY). Then, T has a cadlag-in-time representation if and only if
Fs(T) e (”//(Rd)C'FD (R+))I has a cadlag-in-time representation.

Proof: Since Fg(Msq(R? x RY)) = (”V(]Rd)CFD(RJF))/, it suffices to take (Zg(7}))er+ as the
family defining the cadlag-in-time representation of .Zg(7'). B

C.1.3 The PDE

Let us now consider the PDE (C.I). In principle, we interpret this PDE in distributional sense considering
X e #'(R? x R) and looking at for solutions in ./ (R? x R). This can be worked out for example when
g € Op(RY), since for those distributions both operators % and L, are well-defined. However, since we
also want to restrain the solution to obey a particular initial condition, more requirements on X, and hence
on the solution must be added. Let us explain a method to do this. Such a method will allow us to properly
speak about an initial condition and in addition to consider the cases where g is continuous and polynomially

bounded, not necessarily in Oy (R?).

First of all, we restrain the space where X belongs to our space (¥ (RHXICrp (R*))I. Let us apply the

spatial Fourier Transform to problem (C.I)) to obtain the spatially-multiplicative problem:

ov
StV =Y, (C.35)

where Y = Zg(X) and V = Zg(U). From the developments presented in the previous section, the
distribution Y is in .#Zsc(R? x R*). We recall that we have supposed gr = 0. Let us define the following
operator, which will be called the Duhamel’s Operator. Consider D, : Crpp(R? x RT) — Cpp(R? x RY)
defined through

Dy(P)(&,t) := Jw e T9Oy(e, s)ds  (€,1) e RY x RT. (C.36)

t
We remark that this operator is nothing but a temporal convolution with the function s € R — €*91(_; g (s)
(we may, for instance, extend the domain of ¢ to R? x R by making it null over R x Ry, in order to
properly define such a convolution). Let us verify that this operator is well-defined. The linearity of D, is
straightforward. If we consider a sequence (&, tn)neny © R? x R* such that (&,,t,) — (£,t) € R x RT

as n — 0, it is immediate to verify using the continuity of g and v that

ef(sft”)g@")l/)(fn, $)1(1,,.00)(8) = ef(sft)g(g)i/)(f, $)1(wy(s), asn—0,Vse RT. (C.37)
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Considering that gr > 0, we also have that |e~*9(€)| < 1 for every a > 0, hence

SUD (5 u)eRd x R+ W(n, s)(1+ 32)‘
1+ 2

(6, )10, 0y (5)] < [0(60. ) < T 14 ) <

We conclude that the convergence (C.37) is dominated by the integrable function

(C.38)

SUP(, wyerd xr+ (1, 8) (1 + 57|
N
1+ 2

(we have used that ) € C'pp (]Rd x R*)). It follows from Dominated Convergence Theorem that the function
Dy(1)) is continuous. Let ng, ny € N. We consider that

(+lepy=+ ey | " =000 (¢, s)ds

t

sup (1 + [€3)"5(1+ 3)""Dy(¥) (&, 1) = sup
(€,t)eRd xR+ (¢,t)eRd xR+

[ asieprsareyivesias)

[ asieprsa s e o)

| @i sy sl s )
R+

(€,t)eRE xR+ (1+ s2)

sup [(1+[€]%)" (1 + %)™ H (€, 5)] -

™
< —
4 (¢,5)cRIxR+

X

(C.39)
This proves that Dy (1)) is a fast-decreasing function, hence D, is well-defined. In addition, this also proves
that D, is a continuous linear operator from Crp(R? x RT) to Crp(R? x RT) (Theorem . The
adjoint operator of Duhamel’s operator is denoted by Dy and it is a sequentially continuous linear operator
from . #sq(R? x RT) to .Asc(R? x RT). Explicitly,

(Di(T), ) := (T, Dy(vb)), YT € Msc(R? x RY), Yy € Cpp(R? x RY). (C.40)
Proposition C.1.5. Ler Y € .#sq(R? x RT) ¢ '(R? x R). Then, D}(Y) satisfies

ODE(Y)
ot

+gDEY) = Y, (C.41)
in the sense of /' (R% x R).

Proof: Lett € .7(R% x R). We have that

oD (Y)
at

0 0 0
0 = =30, 50 = <030, Pheue) = 00 (P ) €42

< ot
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Now, we consider that for every (£,t) € R? x R*, we have by integration by parts that

o
_DQ <at Rde+> (fvt)

(e 8¢
— (s—t)g(§) U7
ﬁ e . (&, s)ds

_ {e—(s—t)g(£)¢(§, s)o_) - JOO e~ (=09 (—g(€)) (¢, S)ds}
-, (C.43)

a0
~|vten 4 0(@) [ O syas)
t
From the definition of Duhamel’s Operator, it is immediate that gDg4(v) = D4(g1)). We obtain thus that

oDH(Y)
(—5—

Uy =Y, 9) =Y, Dy(g9)) = Y, 9) = (Dg(YV), gy =Y, 9) = {gDg(Y),¢),  (C.44)

where the equality (D7 (Y), g¢) = (gD (Y'), ) is justified since Dy (Y') is a slow-growing measure and
g is a continuous polynomially bounded continuous function, hence the multiplication is well-defined as a
measure in .#Zsc(R? x R*). This proves that Dy (Y') satisfies the PDE (C.41)) in the sense of . (R? x R).
|

Corollary C.1.1. Let Y € #Ms(R? x RT). Then, % € Msq(R? x RT).

&
Proof: aD%t(Y) =Y —gD;(Y)e Msa(RY x RY) since Dy and the multiplication by g are operations

with values in .Zsg(R? x R*). B

From Propositions|C.1.3]and [C.1.4] the following Corollary follows immediately.

Corollary C.1.2. Let Y € #s5c(R% x RY). Then, D;(Y') has a cadlag-in-time representation.

We conclude then that we can always find a solution to the transformed problem which has a
cadlag-in-time behaviour, and hence for which the notion of an initial condition makes sense. Nevertheless,
the following result shows that we still have some difficulties if we want to consider any arbitrary initial
condition to a Cauchy problem associated to equation (C.33).

Proposition C.1.6. Dy (Y') is the unique possible solution in M s (RY x RY) to equation (C.33).

This result follows from a simple fact, which is actually a statement equivalent to Proposition [C.1.6} the

homogeneous problem

gy = (C.45)

has no non-trivial solutions in Msc(R? x RY).
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Proof: Let us suppose there are two solutions in .#Zsg(R? x R*), say V; and V. Then, by linearity
of the equation, the difference Viy = V; — V5 € #sq(R? x RY) must satisfy the homogeneous problem
(C.45). Let us see if such kinds of solutions exist. Let us look for solutions to the homogeneous problem in
the bigger space of measures . (R% x R). We recall that .Zsq(R? x RT) c .#(R¢ x R*)  2'(R? x R).
If Vi € #(R? x R) satisfies (C43), we have that 252 € .#(R? x R) since Vi € .4 (R? x R). With a
typical analysis we have that Vj; satisfies

0

ég(etgvy)zo. (C.46)
Hence,

eIV =SX1 (C47)

for some S € 2'(R? x R), and since we have required that V7 must be a measure, S must be in .# (R%). It
turns out that Vi is of the form
Vg =e Y (SX1). (C.48)

Since we want V7 to be slow-growing, it is necessary to require S € .#sc(R?). However, expression (C.43)
does not provide a measure with support on R? x R* unless S = 0. Hence, there is no solution to (C.43) in
Msc(R? x RY) besides the trivial solution. This completes the proof. H

In the last proof we remark that if we consider the restriction of the measure Vi over R? x R*, which
is the measure which is null outside R? x R* an equals Vz over R x R*, denoted by 1ga, g+ Vi, then we
do obtain a measure in .Z5c(R? x RT) if S € .#55(R?). However, this measure does not satisfy (C.43) in
the sense of .7/ (R? x R).

C.1.4 The Cauchy Problem

Let us right now concentrate, once and for all on the Cauchy problem of the form

oU
‘%+%U_X (C.49)
U‘t:O = Uo

for suitable distributions X and Uj.

We require X € (¥ (RY)XICrp (R+))I and Uy € 7'(R%). We apply the spatial Fourier Transform and
we work with the transformed Cauchy problem

oV
Al _y
P , (C.50)

V‘tzo =V
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where Y = Z5(X) € Msa(R? x RY), Vi = Zs(Uy) € Msq(R?) and V = F5(U) is the transformed
unknown.

Proposition guarantees that if we look at for solutions in .#Zgg(R? x R*) to the Cauchy problem
(C.50), we will have just one possibility: Dj (Y'). We recall that D} (Y") has a cadlag-in-time representation,
which we will denote by (Dy(Y)t)ier+ < Msc(R?). This measure is the solution to the Cauchy problem
if and only if it holds that D7 (Y")o = Vp. Hence, we have no freedom at all to fix an arbitrary initial
condition. The next result proves that, with just some arrangements, we can gain more freedom in the initial
condition by requiring that the restriction to R? x R* of the solution is in .#Z5q(R% x RT), rather than the

solution itself.

Theorem C.1.1. Let Y € #sc(R? x RT). Let g : R* — C be a continuous symbol function such that
gr = 0. Let Vo € Msq(RY). Then, there exists a unique measure V€ .# (R% x R) such that

* % + gV =Y inthe sense of@/(Rd % R).

e Its restriction to R? x R* is in Msq(R? x RY) and it has a cadlag-in-time representation whose

evaluation att = 0 is V.

Proof: for the existence, consider simply the measure V € .# (R¢ x R) defined by
V=e((Vo—Di(Y)o)®1) + Di(Y), (C.51)

which is more explicitly expressed as (we recall that Dy (Y) is a measure over R? x R* and Vj and Dy (Y)o

are measures over R%):

oy = | | e Oue 0Dy I©de+ | H(ENADYED. Ve R xR,

R JR R xR ©52)
The fact that V' satisfies the PDE (C.33) arises from Proposition [C.1.5] and from the fact that the measure
e ((Vo — D5 (Y)o) 1) satisfies the homogeneous equation (C:43), since it is of the form (C:47).

The restriction of V over R? x R is given by
Tgagg+V =79 (Vo — Dy(Y)o) B 1g+) + Dy (Y). (C.53)

It is immediate that 1pa, g+ V is in .#Zsq (R x R) since gr > 0. A typical computation using the derivative
of the product and Proposition[C.1.5|allows to conclude that

a — * — * *
pr (gaxp+V) = —ge 9 (Vo =D} (Y)) R1g+ + ¢ 9 (Vo —D}(Y)o) Ko, — gD5(Y) +Y, (C.54)
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where 0y, is the Dirac measure at 0 € R*. We remark that
™9 (Vo — DF(Y)o) Ko, = (Vo — D (Y)o) Ko,

From this we obtain that the temporal derivative of 1ga, p+V is a measure in .Zsg(R? x RT) since it is
a sum of measures in .Zsq(R? x R*). From Propositions and [C.1.3] it follows that 1ga, g+ V has
a cadlag-in-time representation. Applying expression to test-functions of the form ¥ = ¢ [x] 6 with
¢ € Crp(R%) and # € Cpp(RT) (which can be done since the involved distributions are measures), one
obtains that the cadlag-in-time representation of V over R% x R* (which is evidently the same as the cadlag
representation of 1pa g+ V') is given by

Vi=e " (Vo —Di(Y)o) + Di(Y): € Msa(RY), VteR™. (C.55)

And from this, it is immediate that the evaluation at ¢ = 0 if this cadlag representation equals the desired

initial condition Vj. This proves the existence.

If we suppose that there are two measures V; and V5 satisfying the conditions in Theorem [C.I.1| we
consider then the difference Vi = Vi — V5 must satisfies the homogenoeus problem (C.43), and hence it
must be of the form for some S € .#s(R?). But this implies that the evaluation at 0 of its cadlag-in-
time representation is V7 o = S. Since in addition, V; ‘ ieo = Vo ‘ 0 then it follows that V7 o must be null,
and hence S = 0. It follows that Vi = 0. This proves that V" is the unique solution to (C.50) satisfying the
required properties.

As stated in the proof of Theorem the solution V' has a cadlag-in-time representation over R™.
Let us describe the corresponding family (V}),cg+ Which determines it. For this, let us first study the cadlag
representation of Dy (Y'). Let ¢ € Crp (RY) and § € Crp(R*). We have thus that

(DY), ¢ 0) = (Y, Dy (o 06))

- [ DemoEsar(es)

RIxR+

o0
— =(t=5)9(8) (VO (t)dtdY
Lo | etmougomay e ©56)

- f f =09 (€)1, oy (D)LY (€, 5)

RedxR+ JR+
- J J e~ =090 (€)1 4 (5)dY (€, 5)8(1)dt,

R+ JRxR+

where we have used Fubini’s Theorem. It follows that

By = | e OpO1pn()dY (€ s), VR (C57)
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We write then,

DY), = J e =990y (- x ds) € Msa(RY), VieRY, (C.58)
[0,¢]

for which we mean the measure such that

Di(Y)(A) = J e =990y (¢,5), VAe Bp(RY). (C.59)
Ax|0,t]
We remark that D (Y )o is simply
DE(Y)o = Y (- x {0}). (C.60)

It follows that the cadlag-in-time representation over R™ of the solution V' determined in Theorem is
given by the family (V;),ep+ © s (R?) defined by

Vi=e 9 (Vo—Y(-x{0}) + J e =390y (L x ds), VteRT. (C.61)
[0.4]

Theorem C.1.2. Let X € (¥ (RYXICE D(R*))/. Let g : RY — C be a continuous spatial symbol function

such that gr > 0. Let Uy € 7' (RY). Then, there exists a unique distribution U € (V/(Rd)CFD(RJF))/
such that

o [t has a cadlag-in-time representation whose evaluation at t = 0 is U.

o [t satisfies

<a§ + LUy = (X, ), Vi e S (RY x R) such that suppip c RY x RY. (C.62)

Proof: Let us prove the existence. Let Y = .Zg(X) € #sq(R? xR*) and Vo = F5(Up) € M sc(RY).
Let us then consider the solution V' of the transformed problem obtained from Theorem and

which is given by (C.51)). Let us consider its restriction to R? x R*, 1ga,r+V, which is given by (C.53).
We define then

U=75" (1paxp+V) = Fg' (e (Vo —Di(Y)o) M 1g+) + Di(Y)) . (C.63)

Clearly U € (¥ (RHXICrp (R*))/ since it is the spatial inverse Fourier Transform of a measure in .#gq(R? x
R*). Since 1ga,p+V has a cadlag-in-time representation, it follows that U also has it (Proposition |C.1.4),
and that its evaluation at t = 0is Uy = .75 (Vp).
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Using the rule of the product of the derivative and Proposition [C.1.5] we obtain that

2 (1gasp+V) = =g (7 (Vo = Di(Y)o) Kl 1g+) + Dy (Y)) +Y — 7 (Vo — D (Y )o) K o)

ot
(C.64)
Since % o Fgl =750 % over .#'(R% x R), it follows that U satisfies, in the sense of .7/ (R? x R), the

equation

oU
T LU =X+ (Vo - FZ5H(DE(Y)o)) X bo- (C.65)

If we restrain the space of test-functions to those in .#(R? x R) such that their supports are included in
R? x R*, then we will obtain condition (C.62) since for such kinds of test-functions we have t(-,0) = 0
and hence ((Uy — Fg " (D;< (Y)0)) ®do,., ¥y = 0. This proves the existence of such a solution.

The uniqueness is proven in a typical manner, by supposing that there are two different solutions satisfy-
ing the conditions and then taking the difference between the solutions. It follows that such difference must
be of the form

Uy = F5' (e WS 1g+) (C.66)

for some S € ¥ (R?). Uy has a cadlag-in-time representation which must be null. It is then immediate to

conclude that S = 0, and hence there is a unique solution satisfying the desired conditions. l

The solution U € (”V(Rd)CF D (R+))/ satisfying (C.49) in the sense of Theorem can be then
described through its cadlag-in-time representation (U;),cp+ < 77 (R%), given by

Uy = Fg' <etg (Fs(Uy) — Zs(X)(- x {0})) +J[ e (73090) Zg(X) (- x d3)> . VteRT. (C.67)

0.4]

This is simply Uy = .7 ¢ L(V}), with (Vy);ep+ © A5 (R? x RT) being the cadlag-in-time representation of
the solution to the transformed problem.

C.1.5 Asymptotic Analysis

Consider now the problem (C.49) with the slightly different conditions that both Y := .#g(X) and Mx :=
Z(X) are in #sc(R? x R). Hence, X € #'(R? x R) and the restriction of .Zg(X) to R? x R* is in
Msc(R? x RY). In such a case we can analyse the equation

oU

= TLU=X (C.68)
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following the approach presented in Section 4.6] Hence, we can solve the problem by analysing the spatio-

temporal Fourier Transformed equation
(iw + g(§)) My = Mx, (C.69)

where My = % (U). Let us suppose there exists x > 0 such that gg > £. In such a case, Proposition[4.6.1|

guarantees the existence of a unique solution in 7’ (R?% x R) given by

o _ g-—1 1 g1 1 or
vr=7 (z‘w T MX) =7 (z’w T g(é‘)J(X)> | (€70

We study right now the relation between the solution U™ and the solution U to the associated Cauchy
problem studied in the previous section whose existence and uniqueness is stated in Theorem [C.1.2] The
next Theorem states that, actually, the solution U*® describes how the solution U behaves spatio-temporally
once the time has flown long enough.

We remark that since for the Cauchy problem (C:49) we work over R? x R*, the distribution X is
interpreted as a restriction 1a, r+X when facing this Cauchy problem. This can be done since X acts as a

measure in time.

Theorem C.1.3. Let X € V'(R? x R) n Fg ' (Msc(R? x R)). Let g : RY — C be a continuous symbol
function such that there exists k > 0 such that gr > k. Let Uy € 7'(R?). Let U ¢ (”V(Rd)CFD(R+))I
be the unique solution to the Cauchy problem (C.49) (interpreting X as lga,p+ X ) satisfying conditions in
Theorem Let U™ be the unique solution in ¥'(R? x R) to the equation (C.68). Then, for every ¢ > 0
and for every ¢ € .7 (R%), there exists te,p € R such that

KU —U,pR0)| <€, Y0e L (R)suchthat supp(d) < [tc,0) and J |0(t)|dt =1. (C.71)
R+

Proof: We note as usual Y = .Zg(X) € #sq(R? x R) and Vy = F5(Uy) € Msc(R?). We recall that
the Cauchy problem (C.49) is analysed with Y € .Z55(R? x R¥) rather than in .#Z5c(R? x R). Hence, the

solution U in this case is expressed through the restriction of V to R% x R* as
U=27"(e7 ((Vo — D} (Lpayp+Y)o) M 1g+) + Di(Lpayp+Y)) - (C.72)

We consider the difference U® — U acting on a test-function of the form ¢ = ¢ [x] 6, with ¢ € .#(R%) and
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0 € #(R) with supp(f) < R*. Considering that

1

U»-U=%" (
w+ g

ﬂ\(X)) — f;l (eftg ((VO — D;(llR'ix]R+ Y)o) 1R+) + D;(leXR+Y))

1
=75 <ﬁ;1 (iw " gﬁT(Y)> - D;‘(lexR+Y)) ~ Z5 (e (Vo — D (Lgayr+Y)o) M 1g+)),
(C.73)
Fr (Y)) and Dy (1gayp+Y) acting on test-functions of the already mentioned

g1
let us compare % (W 3

form. We consider that

it (s 7)) w0 = Vo (

ag—1
Wt Fr (0)) ). (C.74)

w+g

Using the exchange formula for the temporal Fourier Transform, which holds since the function w — m
is in Op7(R) for all £ € R? since gr > & > 0, we have that

1 _ 1 1 (R)
F Z710)) = F 0. C.75
T(iw—l—g T()> \2r T<iw+g> ’ ( )

(R) . . . . .
Here + denotes a convolution with respect to the temporal component. A known result in Fourier Analysis,

which is obtained considering that gr = x > 0, is that

1
F t) = V2mel91 (¢ C.76
r (o0, ) O = varer o ©76)
in distributional sense. Hence,
oFr F7H0) ) = (e, o). (C.77)
iw+g T Ry

And as we have mentioned in Section [C.1.3] doing this convolution and applying Duhamel’s operator is
equivalent over test-functions in Cpp(R? x R¥). Since supp(d) = R*, we are in this case. We conclude
that

1
(Frt (iw n gﬁT(Y)) X0y =(Dy(Y), pX0), Vpe Z(R%), 0 € . (R) such that suppf c R,
(C.78)
It follows that
(U* = U,oR0)| = (F5 (7" (Vo — D (Lpaxr+Y)o) M 1g+)) ,909>\
= [(e™ (Vo — D} (Lpaxp+Y)o) M 1g+) ,-Fg ' () K6)| (C.79)

_ fRd JW 190 F21 () (€)0(E)dtd(Ve — D (Lgaras Y )o) ()]
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We suppose that Vo # Dj (1gaxg+Y )o. Otherwise, the result is obvious. Let us fix ¢ € Z(R%). Since
gr =k > 0, |e7"] < e~ . We can hence bound (C.79) by

(Voo < [ [ [ mO75 ) ©0(0)] did]Vo - DL Yl €

< | 176 @O d]Vo = Dm0 €) [ e o0t

(C.80)

We set
C, - JRd |75 (£)(©) d|Vo — D} (1gayzs Yo (€)

which is a non-null positive real number since the measure Vo — Dy (1gayg+Y)o # 0isin Msc(RY). Let
e > 0. If we chose t.,, € RT such that e "fe¢ < C%}, it follows that if we take # € .(R) such that
supp(6) < [tep,0) and §p. |0(t)|dt = 1,

(U - Uem)| <Cy [ e ool

B . (C.81)

< ij e teek|9(t)|dt = CWJ 10(t)]dt = .
[te,p,0) Co Jite,p,0)

This proves the desired result. H

Hence, as the time flows, the solution U is more and more similar to the solution U*. We remark
that, although U has a cadlag-in-time representation, it is not clear if the solution U® does. The asymptotic
convergence described in Theorem|C.1.3]is obtained only in a suitable sense of distributions. Let us consider,

however, the case where My» = #(U®) is temporally integrable, which is the case when

AMx (6.0) )
JAXR iw + g(&) <o, VAeBp(RY). (C.82)

Then, U™ is a continuous-in-time distribution (see Eq. (5.24), interpreted in a deterministic context). There

exists then a continuous-in-time representation (U );cr < 7" (RY).

Proposition C.1.7. If Uy = U° in the Cauchy problem (C.49) (with X restricted to 1pag+), then its

solution U and the distribution U® coincide over RT.

Proof: It suffices to show that
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over R? x R*. For that, consider ¢ € .7 (R%) and # € .#(R) such that supp() = R*. We have

(F5' (D} (paxp+ Fs(X))), oK) = (D (1Rde+3?S ), 5_1 ) X16)
= (Apaxp+Fs(X), Dy (F5' (p) W6))
=<95(X)7Dg( S (<P)9)>
= (X, Fs5 (Dy (F5 ' () W0))),

(C.83)

where the equality (1gayp+-Z#s(X), Dy (5‘_1( )X0)) = (Fs(X), Dy (ﬂ’s_l( ) X16)) is justified since
Fs(X) is a measure and supp(¢) c RT and hence we have supp(Dy (Z 5 ) X X6)) « R x RT. We

continue our development to obtain
(X, 75 (Dg (F5 ' (9)®0))) = (Dy (F5(X)), T35 (v) D)
_ _ 1
=(Fg* (ﬂTl (iw+g<ﬁ%‘T (%(X))» ,pB6) (C.84)

ﬁ(X)) PR,

where we have used that D} = Tt (5 —7r()) over R? x R*, as we have already proved in Eq. (C.78).

The equality follows, and hence both .7 ¢ ! (D; (1gayp+Zs(X))) and 7! (iwigf(X)> have the same

representation over R™ which is actually a continuous-in-time representation. In particular,

5 (05 (taness 75(3)), = 77 (1

F(X = UP.
w + g ( )) 0

0
Since the solution U is given by
U=Zg" (e (UP = Di(Apaxp+ Zs(X))o) M lpasps) + Fg ' (D (Lpayg+Fs(X))),

it follows that over R% x R*:

U=04+ 25" (D (g F5(X))) = 71 ( !

M+ggz(X)) —U*. m

C.2 Stochastized version

Let us now consider the problem (C.49) but with the elements being interpreted as convenient GeRFs with
analogue properties to the deterministic case. Say, X is a GeRF over R? x R such that its spatial Fourier
Transform Y = .#5(X) is a slow-growing Random Measure concentrated on R? x R, and Uy is a GeRF

over R? such that its (spatial) Fourier Transform is a slow-growing Random Measure. The function g is,
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as usual, a continuous spatial symbol function such that gr = 0. The resolution in this case is done in a
completely analogous way to the method of the deterministic case. Indeed, Duhamel’s operator and the other
operations used to construct the solution (C.63)) can be applied without technical difficulties to the stochastic
case, since they are all defined through their actions over test-functions. The only concept which deserves a

little review is the one of cadlag-in-time representation.
We suppose that all the random objects have zero mean.
C.2.1 Some facts about mean-square cadlag Random Functions

We first make explicit the definition of a cadlag in mean-square temporal Random Function. Let (Z(t)):er
be a real Random Function over R. We say that Z is cadlag in mean-square, or simply cadlag, if

2
o foralltye R, Z(t) "5 Z(to) if t — 7,
2
e for all ¢y € R, there exists a random variable Z(t,) € L*(Q2, A, P) such that Z(t) L@ Z(t,) if
t— 1.

Cadlag temporal Random Functions have many similar properties to deterministic ones. In particular,
they are continuous outside an at most countable set. To see this, we can apply the same arguments as
used to prove such a property for deterministic cases. See for instance the Theorems in |Swanson| (2011,
which can be applied to our case since a temporal Random Function is a function from R to the metric
space L?(2, A,P). The main consequence of this fact is that we can define the integral with respect to the
Lebesgue measure of a cadlag Random Function without technical difficulties, just by considering the sum
of the integrals outside the discontinuity points, where the procedure presented in Section [3.2.2]can be used.
Hence, for every compactly supported and bounded measurable function f : R — C, one can define

f f@)Z(t)dt. (C.85)
R

The following Theorem is a simplified stochastic version of Fubini’s Theorem.

Theorem C.2.1 (Stochastic Fubini’s Theorem). Let M be a Random Measure over R® and let 1 €
A (R™). Let f : R? x R™ — C be a measurable and bounded function with compact support such
that the Random Function over R™, y — §oq f(x,y)dM (x), is continuous outside a pi—null set. Then,

J £ (o y)dp(y) dM (x) = f F () AM (2)dpu(y). (C.86)
Rd RT” m Rd

The condition on f in Theorem|C.2.1|is required for the simple reason that in this dissertation we have not

defined the stochastic integral of a Random Function that is not continuous outside a non-null-measure Borel
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set (we have only done it for continuous Random Functions or for cadlag Random Functions in dimension

d = 1). In order to prove this Theorem, we need the following Lemma.

Lemma C.2.1. Let yu € .#(R?) and let Z be a Random Function over R? which is continuous outside a

p—null set and such that it is null outside a compact set. Then,

Cov (f Z(a;)du(x),X) = | Cov(Z(x),X)du(z), VX e L*(,AP). (C.87)
R4

R4

Proof: Let X € L?(Q, A,P). Let B € Bg(R?) such that Z is null outside B and let D € B(R?) such
that || (D) = 0 and such that Z is continuous outside D. Set K = B n D°. Since Z is continuous over K,
the integral of Z with respect to s is well-defined through the use of a Riemann sequence of partitions of K,

(V) jeqt,....np.Nen, © Bp(R?) together with associated tag-points (¢3) jeq1..... ny, ven, » having

N

= T r) = lim N A VN .
| z@au) = | z@au) = im 3 2 2 v, (38)

=1

where the limit is taken in the sense of L?((2, A, P) (Definition [3.2.1). We remark that the deterministic
function x — Cov(Z(x), X) is continuous over K, which can be verified using the Cauchy-Schwarz in-
equality and using the continuity of Z over K. Its integral over K can also then be obtained as the limit of

its corresponding evaluations in the tag points of the sequence (VJN ) je{l,..,N},NeN, - One has then,

Cov (JRd Z(x)du(x) > = J\Pinoo Z Cov(Z X)) (VN N K)
= lim Cov (2 Z@EN) (VN n K), X>
(C.89)
- Nhfloo 2 Cov ( ,X) (VY A K)
f Cou(Z(w). X)dua) = | Con(Z(w). X)dua). m

Proof of Stochastic Fubini’s Theorem: Since the deterministic function 2 € R? — (o, f(z,y)du(y)
is a measurable function with compact support (typical result from Measure Theory) which in addition is
bounded, it is integrable with respect to M (Proposition[3.3.T). Both integrals in (C.86) are then well-defined
as random variables in L?(€2, A, P). We consider then the value

VW(Lde@ymm>m4 fMRJWyMM<mm>) (©90)
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which equals

Fov <JRd R™ J (@ y)duly)dM (@), fRd Rm flu, ”)dﬂ(v)dM(u))
+ Cov (J [z, y)du(y)dM(a:H f(u, v)dM(u)du(U)>
Rd JR™ g Jrd

(C.91)
— Cov <ij y flx,y)dM(z)dp(y), j

f(:c,y)du(y)dM(w))
Rd JRm

— Cov (ij » [z, y)dM (z)du(y), j

f<u,v>dM<u>du<v>) |

R™ JR4

Using conveniently Lemma [C.2.T] and Proposition [3.3.1] one concludes that this expression equals

f f(,y)du(y) J £, 0)dpp(0)dCrs (z, v)
RdxRd JRm R

+ J [ £ (@, y)d(y) F(u, 0)dCs (2, ) di(v)
R JRxRE JRm (C.92)

_ JR"L j flz,y) f(u, v)dp(v)dChy (2, u)du(y)

Rd xRd Rm

L] e T O e wduty)ante),
Rm J Rd xR

Rm

where C); is the covariance measure of M. The classical deterministic Fubini’s Theorem guarantees that all
the repeated integrals in (C.92) are equal, hence expression (C.90) equals 0. This proves the Theorem. l

The next Proposition presents a simple analogue to the case of deterministic functions whose derivatives
are measures.

Proposition C.2.1. Let M be a Random Measure over R. Then, the Random Function defined by
Z(t) = M([0,t])1r+(t) — M ((¢,0)) 1R; (t), teR, (C.93)
is a cadlag Random Function whose derivative in distributional sense is M.
Proof: Let C; be the covariance measure of M. Let tg € R™, and let At > 0. One has that

E (12(to + A1) = Z(to)”) = E (IM([0,t0 + At]) = M([0,10]) )
—E (|M((t0, to + At])|2) (C.94)

= Crp((to, to + At] x (to, to + At]).

Since C) is a measure over R x R and the set (¢o, to + At] x (to, to + At] decreases to ¢J as 6t — 0, one
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has that expression (C.94)) goes to 0 as At — 0, and hence Z is mean-square right-continuous. If t; < 0 and
At is small enough, the same argument can be used to prove that 7 is also right-continuous in mean-square

over R .

Let now ¢y < 0. We consider that
E (12(to — A1) = M([to, ) ) = E (|M((to — At,0)) = M([t0,0)))
= B (|M((to — At,10)) ) (C.95)
= O ((to — At, to) x (to — At, tg)),

expression which goes to 0 as At — 0 since (to — At,tg) x (to — At,to) decreases to ¢ as At — 0 and
Chs is a measure. Hence Z has left-limits in mean-square over every tg € R, which are given by the
random variables of the form M ([tp,0)). This same argument is applied for ty = 0, using as limit a null
random variable, and for tp > 0 using as limit the random variable M ([0, ¢o)). This proves that Z is cadlag

in mean-square.

Let us now prove that % = M in distributional sense. For that, we consider # € D(R) and we see that,

(M,0) = JR 0(s)dM (s)

= ), 0e)dM(s) + 9( )dM (s)

JR+ J t)dtdM (s f f (t)dtdM (s) (C.96)

JRJM Lsoo)(DtdM (s +ff (1o ()t (s)

JR+ JR+ s)dtdM(s) + JR* JR* (s)dtdM (s),
we use Stochastic Fubini’s Theorem [C.2.1]to obtain
(M,0) = — J:RH Jw Zf() [0,4(8)dM (s dt—i—J f 1.0y(s)dM (s)dt
" db df
- Jf“d Zt( .+ | GOM (0 a o
- dt( )2 (1)
= —Z, > < 9>- L]

dt
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We finish by describing the covariance of a cadlag Random Function.
Proposition C.2.2. Let Z be a cadlag real Random Function over R. Then, its covariance function Cy :

R x R — R satisfies:

e forallte R, Cy(t,-) is a cadlag function, and

o the function t — Cyz(t,t) is cadlag.

The first condition in Proposition is equivalent to say that C'z is separately cadlag, that is, that the
one-variable function obtained when fixing any of the two components is a cadlag function. The equivalence

is obtained immediately from the symmetry of a covariance function.

Proof: Let us prove the necessity. Let ¢y € R be fixed. Then, by Cauchy-Schwarz inequality one has
for every s, sp € R,

Co(to, ) — Calto, s0)| = [E((Z(s) — Z(50))Z(to))| < v/Var (Z{to))/Var (Z(s) — Z(s0))- (C.98)

Since Z is cadlag, then Var (Z(s) — Z(sg)) — 0 as s — s;. This proves that the function Cz (%o, ") is
right-continuous. Now, let (£,,),en < R be a sequence of real numbers such that s,, — s, . Let us consider
the sequence of real numbers (Cz (%o, $n))nen- Let n,m € N. Using again the Cauchy-Schwarz inequality,

one obtains,

|C 2 (to, sn) — Cz(to, sm)| < A/Var (Z(to))\/Var (Z(sn) — Z(sm)). (C.99)

Since Z is cadlag, the sequence (Z(s;,))nen converges in L2(£2, A, P), and hence it is a Cauchy sequence.
It follows that Var (Z(s,) — Z(sm)) — 0as n,m — oo. It follows that the sequence (Cz (%o, Sn))nen is
Cauchy and hence it converges to a limit as s,, — s . This proves that C'z (%o, -) has left-limits, and hence it
is cadlag. In order to prove the second condition, we consider that if ¢ € R, then

|C2(t,t) — Cz(to, to)| = [E (22(t) — Z2(t0))|
= |E((2() - 2())?) + 2B (Z(t0) (Z(1) ~ Z(t0))
(C.100)
<E(12() - Z(t0)*) +24/Var (Z(t0)) v/ Var (Z(1) = Z(to)),
—0 as t—tF —0as =g

where we have used the Cauchy-Schwarz inequality and that Z is cadlag. This proves that t — Cz(t,t)
is right-continuous. Finally, consider a sequence (t,)nen < R such that ¢, — t;. We consider then the
sequence

Cz(tn,tn) =E(Z(tn)?), mneN. (C.101)

Since Z is cadlag, and t,, — t5, Z(t,) is Cauchy on L?*(Q, A, P), and hence it converges. It follows that
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its squared-norm also does it, and hence Cz(t,,t,) has a limit as n — oo. This proves that the function
t — Cz(t,t) has left-limits, and hence it is cadlag. H

C.2.2 Solving the stochastic Cauchy problem

Let Z be a GeRF over R? x R. We say that Z has a cadlag-in-time representation if there exists a family of
spatial GeRFs such that

e for all p € .7(R?), the Random Function ¢ — (Z;, ¢ is cadlag in mean-square,

o forall ¢ € .7 (R%) and for all § € .7 (R), it holds that

(7, o R05 = JR<zt, SOV (C.102)

If Z has a cadlag-in-time representation, then its covariance distribution Cz € ./ ((R? x R) x (R? x R))
has a separately-cadlag-in-time representation, that is, there exists a family of tempered distributions in
S (R x RY), (Cgs)(t,s) € R x R, such that

o forall , ¢ € . (R?) and for all ¢ € R, the function s +> <C§S, © ® ¢) is cadlag,
e forall p, ¢ € .7 (R?%) and for all s € R, the function ¢ - <Cgs, © ® ¢y is cadlag,

o forall , ¢ € .7(R?), and for all 6y, 6, € .7 (R?), it holds that

(Cz. (0 0) @ (6 E162)) = fR (CY @O0 5). (C.103)

This claim can be easily proven using Proposition|[C.2.2]

This definition of a cadlag-in-time representation can be defined analogously in the specific cases when
Z is a slow-growing Random Measure (using ¢ € Crp(R?) and § € Crp(R), the family (Z;)scr being a
family of spatial slow-growing Random Measures), a slow-growing Random Measure over R x R (that is,
Cy e Msa((R? x RT) x (R? x R1)), using ¢ € Cpp(R%) and § € Cpp(RT), the family (Z;),cp+ being
a family of spatial slow-growing Random Measures), or if Z is such that .#g(Z) is a slow-growing Random
Measure over R? x R*, that is, it acts analogously as a member of (”//(Rd)C FD (R+))/ (using ¢ € ¥ (RY)
and 0§ € Cpp(R™), the family (Z;),cg+ being a family of spatial GeRF for which the action to test-functions
in 7 (R?) is well defined). For the latter two cases, the mean-square cadlag condition is only required over
RT. Let us describe the latter case more in detail. Let Z be a real GeRF over R? x R such that its spatial
Fourier Transform is a slow-growing Random Measure concentrated on R% x R*. Hence, the covariance
distribution of F5(Z), Cz(z), is in Msc ((R? x RT) x (R? x R*)). Using the density of .#(R?) in
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¥ (RY), it is clear that the random variables of the form (Z, p[x]0) for ¢ € ¥ (R?) and § € Crp(R™*) can be
defined by a limiting argument in a mean-square sens It follows that if # € C'p(R™), then the application
¢ > (Z, X1 0) defines a GeRF which acts similarly to a member of #’(R?), in the sense that its Fourier
Transform is a Slow-growing Random Measure over R?. Similarly, for every ¢ € #(R?), the application

0 € Crp(RY) — {(Z, ¢ X0) defines a slow-growing Random Measure over R™.

The next Proposition is the stochastic analogue of Proposition|C.1.3

Proposition C.2.3. Let Z be a spatio-temporal GeRF such that its spatial Fourier Transform is a slow-
growing Random Measure over R* x R*. Suppose in addition that %—f is also such that its spatial Fourier

Transform is a slow-growing Random Measure. Then, Z has a cadlag-in-time representation.

Proof: LetU = F5(Z). U is a Random Measure over R? x R*, and so does &. We consider the
family of GeRFs over R? defined through:

oU oU
(Ui, ) = <E’ X1y = Sﬁ(x)l[o,t](s)dﬁ(% s), teRT, (C.104)

RAxR*
for p € Crp(R%). It is immediate that ¢ € Cpp(R?) +— (Uy, ) defines a spatial slow-growing Random

Measure.

If ¢ € Cpp(RY) is fixed, the application A € B(R) — {54, o+ gp(m)lA(t)d%(m, t) defines a temporal
Random Measure, and hence it is immediate from Proposition m that the random function t — (U, )
defines a mean-square cadlag Random Function, for which in addition its covariance function is polynomially
bounded since %(t] is slow-growing. The stochastic integrals of the form (., (U;, ©)0(t)dt are then well-

defined for every p € Cpp(R?) and § € Cpp(R™).

Let us now prove that the family (C.104) represents U in the sense of Eq. (C.102). As we did in the
(t)

proof of Proposition | we approach the function 1o ;) by a sequence of positive functions (Or, )neN c
C.(R™), continuously differentiable over R} and such that o) = 1 over [0,¢] and 6 = 0 over [t + - +1 , oo)
having a decreasing behaviour over the open interval (¢,¢ + n—H) Then, the functions (GS))%N con-
verge point-wise to the function 1y, and they are all bounded by 1pp;q). In addition, (Hff))neN is

) , (t) (t)
such that the sequence of derivatives (dflt )neN satisfies that supp(den ) < [t t+ Tﬂ] Do < (0 and

SR+ - ( Yds = 1 for all n € N, hence, they approach —J; from the right. Let us denote by MUY the
temporal Random Measure defined by MY¥(A) = (U, p X1 14) for every A € Bg(R). It follows from the
stochastic versions of the Dominated Convergence Theorem (see Section [3.3.3)) and Fubini’s Theorem [C.2.T]

“It is a little bit more technical, but also possible to prove that the random variables of the form (Z,) for ¢ €
¥ (RHRICrp(RT) can be defined and hence we can treat Z as a continuous linear functional from ¥ (RY)XICrp(RT) to
L?(Q, A, P). To prove this, it is necessary to prove that the restrictions of functions of the Schwartz space . (R% x R) to R* x R*
form a dense subspace of ¥ (RY)XICrp(RT) and of Crp(R? x R*). This can be proven following similar arguments as in

Proposition[C.T.1}
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that

JR+<66[15]’ e 19, 0(t)dt = lim J <—, P X I9(t)>6( t)dt (since O — 1[o,¢] point-wise dominated)

n—o

Jim [ o e

1imf J de” 5)dMY % (5)0(t)dt
Rt JRt

n—ao0

limf J
now Jp+ Jr+

JR+ H(S)dMU"P(s) = U, X o). (Lemma[C.T.T)

0(t)dtdMY?(s) (Stochastic Fubini’s Theorem)

(C.105)
and thus the family of GeRFs (C.104) satisfies all the required conditions. The passage to Z is simply
obtained by applying a spatial Inverse Fourier Transform to each member of the family U;, t € R*. B

Now, in order to construct a solution to the stochastic version of the Cauchy problem (C.49)), we see that

we have all the necessary tools to justify the use of the solution
U=25" (1gayp+V) = F5' (7 (Vo — Di(Y)o) M 1g+) + Di(Y)), (C.106)

where Y = .Zg(X) is a slow-growing Random Measure over R? x R* and V = .%5(Up) is a Random Mea-
sure over R?. Indeed, Duhamel’s operator Dy can be applied without problem to a slow-growing Random
Measure over R? x R since it is defined through an adjoint, the result still being a slow-growing Random
Measure over R? x R* which has a cadlag-in-time representation thanks to Proposition . The rest
of the operations such as the restrictions to R* are well-defined for slow-growing Random Measures. The
uniqueness of the solution is guaranteed using the same arguments which prove the uniqueness in the case
of Theorem[C.1.2] The analogue of Theorem [C.1.2]can be then stated.

Theorem C.2.2. Let X be a GeRF over R% x R such that its spatial Fourier Transform is a slow-growing
Random Measure concentrated on R® x RT. Let Uy be a GeRF over R% such that its (spatial) Fourier
Transform is a slow-growing Random Measure over R, Then, there exists a unique-up-to-a-modification
GeRF over R? x R, U such that its spatial Fourier Transform is a slow-growing Random Measure and such
that

o [t has a cadlag-in-time representation whose evaluation at t = 0 equals Uy almost surely.
e [t satisfies (C.62).

The resolution of the stochastized transformed problem (C.61) is done immediately by using a spatial

Fourier Transform.
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C.3 Convergence to the stationary solution

Let us now consider the case where X is a stationary GeRF over R? x R such that its spatial Fourier
Transform Y = %g(X) is a slow-growing Random measure. An example of such a GeRF is a separable
GeRF with any arbitrary spatial stationary structure and a temporal stationary structure which represents
a continuous random function or a random measure: X = Xg [X] X7, with X7 representing a stationary

temporal stationary random function or, for instance, a White Noise.

In this case, if we suppose in addition that there is £ > 0 such that gr > K, we can consider the unique
stationary solution to (C.68)), which is given by

1

Ustat = ngl
w+g

T (X)> . (C.107)

We consider hence both GeRFs U/**** and the solution over R x R* to the stochastic Cauchy problem
U, with Uy being any spatial real stationary GeRF which we will suppose is independent of X. Consider U
to be the solution to the associated Cauchy problem, using the restriction of X to R x R* as source term,
which has a cadlag-in-time representation given by (C.67). The following analogue to Theorem|C.1.3]is then

obtained.

Theorem C.3.1. For every e > 0 and for every ¢ € .7 (RY), there exists tep € RT such that

E (‘U - Uswt,cp9>‘2> <e, V0e S (RY) suchthat supp(6)  [tep, ) and J |0](t)dt = 1.
R+
(C.108)

Proof: The proof is completely analogue to the proof of Theorem [C.1.3] considering the fact that

both Duhamel’s operator and the operator .7 ! (iwig ﬁT(Y)> coincide over R% x R* in the sense of Eq.
(C.78), and that this also holds in our stochastic case, since every argument for such a claim is applied to the

test-functions. It follows that (see Eq. (C.79)),
2)

_ fRd . fw O FS () FF (MBI Ay, (1,0 E)
(C.109)

), is a slow-growing measure over R? x RY, we can argue similarly

E (|<Ustat _ U7¢9>|2) _E <

JRd fR+ e 199 241 (0)(©)0(1)dtd(Vo — D (ga s Y )0) (€)

Since gr = k > 0 and CVO*DE"(lexwY

to the case of Theorem [C.1.3]to prove the convergence to 0 as the time flows, obtaining and arbitrarily small

value for fixed ¢ € ¥ (R?) and 6 such that {, |0|(t)d¢t = 1 with supp(6) being contained in an interval
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sufficiently far away from 0. H

We conclude that as the time flows, the solutions gets closer spatio-temporally to the stationary solution
Ustat‘
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Appendix D

Some notions on Topological Vector Spaces.

A (complex) Hausdorff locally convex topological vector space E is a vector space endowed with a topology

determined by a family of semi-norms indexed by an arbitrary index set I, (p;);es, and satisfying the axiom
pi(x) =0forallie [ = z=0. (D.1)

Precisely, the topology with which E' is endowed is the weakest topology in which the addition, the multi-
plication by scalar and all the semi-norms (p;)e; are continuous.

A family of semi-norms (p;);es over E is called directed if for all 7, j € I there exists k € [ and C' > 0
such that
pi(z) +pj(z) < Cpi(z), VzeE. (D.2)

One can prove that for every Hausdorff locally convex topological vector space endowed with an arbitrary
family of semi-norms, we can construct a directed family of semi-norms which is equivalent to the initial
one, that is, such that the topologies generated by the two families are the same. If the family of directed
semi-norms consists in just one semi-norm (which is then automatically a norm), the space is a normed
space, and it is called a Banach space if it is complete. If the family of directed semi-norms consists in a
countable family of semi-norms, the space is a metric space, and it is called a Fréchet space if it is complete.

The next Theorem, which can be found in (Reed & Simon, 1980, Theorem V.2) has been widely used in
this dissertation:

Theorem D.0.1. Let E and F two complex Hausdorff locally convex topological vector spaces with families
of semi-norms (p;)icr and (d;) jes respectively. Then, a linear map T : E — F' is continuous if and only if
for all j € J there exist i1, ..., 1, € I and C > 0 such that

dj (T (x)) <C(pi(x) + ... +pi,(x)), VaxekE. (D.3)
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In particular, if the family (p;)ier is directed, then T is continuous if and only if for all j € J there exists
t€ 1 and D > 0 such that
di (T (z) ) < Dpi(xz), VrekFE. (D.4)

A particular case of Theorem[D.0.1]is when the space F'is C. In such a case, T': E — C is a continuous
linear functional if and only if there exists C' > 0 and i;, ..., i,, € I such that

(T, x)| < C (piy () + .. + pj, (2)), Va€eE, (D.5)
or equivalently, if and only if there exists ¢ € I and D > 0 such that
KT, z)| < Dpi(z), VYxeFE, (D.6)

if the family (p; );e; is directed.

For the proofs of these claims and for more details about locally convex topological vector spaces, we
refer to (Reed & Simon, 1980, Chapter V).
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RESUME

Ces travaux présentent des avancées théoriques pour I'application de I'approche EDPS (Equation aux Dérivées Partielles
Stochastique) en Géostatistique. On considére dans cette approche récente que les données régionalisées proviennent de
la réalisation d'un Champ Aléatoire satisfaisant une EDPS. Dans le cadre théorique des Champs Aléatoires Généralisés,
l'influence d’'une EDPS linéaire sur la structure de covariance de ses éventuelles solutions a été étudiée avec une grande
généralité. Un critere d’existence et d’'unicité des solutions stationnaires pour une classe assez large d’EDPSs linéaires
a été obtenu, ainsi que des expressions pour les mesures spectrales associées. Ces résultats permettent de développer
des modéles spatio-temporels présentant des propriétés non-triviales grace a I'analyse d’équations d’évolution présentant
un ordre de dérivation temporel fractionnaire. Des paramétrisations adaptées de ces modéles permettent de contréler
leur séparabilité et leur symétrie ainsi que leur régularité spatiale et temporelle séparément. Des résultats concernant des
solutions stationnaires pour des EDPSs issues de la physique telles que I'équation de la Chaleur et I'équation d’Onde sont
présentés. Puis, une méthode de simulation non-conditionnelle adaptée a ces modéles est étudiée. Cette méthode est
basée sur le calcul d’'une approximation de la Transformée de Fourier du champ, et elle peut étre implémentée de fagon
efficace grace a la Transformée de Fourier Rapide. La convergence de cette méthode a été montrée théoriquement dans un
sens faible et dans un sens fort. Cette méthode est appliquée a la résolution numérique des EDPSs présentées dans ces
travaux. Des illustrations de modéles présentant des propriétés non-triviales et reliés a des équations de la physique sont
alors présentées.

MOTS CLES

Modéles géostatistiques, Champs aléatoires généralisés, Equations aux Dérivées Partielles Stochastiques, Ap-
proche EDPS, Géostatistique spatio-temporelle, Simulation.

ABSTRACT

This dissertation presents theoretical advances in the application of the Stochastic Partial Differential Equation (SPDE)
approach in Geostatistics. This recently developed approach consists in interpreting a regionalised data-set as a realisation
of a Random Field satisfying a SPDE. Within the theoretical framework of Generalized Random Fields, the influence of a
linear SPDE over the covariance structure of its potential solutions can be studied with a great generality. A criterion of
existence and uniqueness of stationary solutions for a wide-class of linear SPDEs has been obtained, together with an
expression for the related spectral measures. These results allow to develop spatio-temporal covariance models presenting
non-trivial properties through the analysis of evolution equations presenting a fractional temporal derivative order. Suitable
parametrizations of such models allow to control their separability, symmetry and separated space-time regularities. Results
concerning stationary solutions for physically inspired SPDEs such as the Heat equation and the Wave equation are also
presented. A method of non-conditional simulation adapted to these models is then studied. This method is based on the
computation of an approximation of the Fourier Transform of the field, and it can be implemented efficiently thanks to the
Fast Fourier Transform algorithm. The convergence of this method has been theoretically proven in suitable weak and strong
senses. This method is applied to numerically solve the SPDEs studied in this work. lllustrations of models presenting
non-trivial properties and related to physically driven equations are then given.

KEYWORDS

Geostatistical models, Generalized random fields, Stochastic Partial Differential Equations, SPDE Approach,
Space-time Geostatistics, Simulation.
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