
HAL Id: tel-02120668
https://hal.science/tel-02120668

Submitted on 6 May 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solutions for safe human-robot collaboration
Benjamin Navarro

To cite this version:
Benjamin Navarro. Solutions for safe human-robot collaboration. Robotics [cs.RO]. Université
d’Orléans, 2017. English. �NNT : �. �tel-02120668�

https://hal.science/tel-02120668
https://hal.archives-ouvertes.fr

UNIVERSITÉ
D’ORLÉANS

ÉCOLE DOCTORALE
MATHÉMATIQUES, INFORMATIQUE,

PHYSIQUE THÉORIQUE ET INGÉNIERIE
DES SYSTÈMES

Laboratoire : PRISME – Pôle IRAuS

Thèse présentée par :

Benjamin Navarro

soutenue le : 14 décembre 2017
pour obtenir le grade de : Docteur de l’Université d’Orléans

Discipline/ Spécialité : Robotique

Solutions for safe human-robot collaboration

Thèse dirigée par :
Gérard POISSON Professeur, Université d’Orléans
Philippe FRAISSE Professeur, Université de Montpellier

RAPPORTEURS :
Véronique PERDEREAU Professeur, UPMC
Angelika PEER Professeur, UWE, Angleterre

JURY :
Nikolaos TSAGARAKIS Directeur de recherche, IIT, Italie, examina-

teur
Aïcha FONTE Maître de conférences, UO, co-encadrante
Andrea CHERUBINI Maître de conférences HDR, UM, co-

encadrant

Acknowledgments

3

4

Contents

Introduction 11

1 Background and State of the art 15
1.1 Human-robot interactions . 15

1.1.1 Terminology . 15
1.1.2 Social interaction . 16
1.1.3 Physical interaction . 16
1.1.4 Physical collaboration . 17

1.2 Compliant actuators . 17
1.3 Control for safe physical human-robot interaction and collaboration 18
1.4 Interacting with robots other than serial manipulators 20

1.4.1 Mobile manipulators . 20
1.4.2 Robotic hands . 21

2 Joint torque control and external force estimation 23
2.1 External torques and forces estimation . 24
2.2 Torque control of a Kuka LWR4+ . 25
2.3 Torque control scheme . 28
2.4 Experiments . 31
2.5 Conclusion . 40

3 Task space control solutions 41
3.1 Two-layer safe damping control framework 42
3.2 Force inputs . 44

3.2.1 Interaction forces . 45
3.2.2 Virtual stiffness and mass . 45
3.2.3 Potential field method . 45

3.3 Velocity inputs . 46
3.3.1 Reference trajectory . 46
3.3.2 Force control . 46

3.4 Constraints . 47
3.4.1 Emergency stop . 47
3.4.2 Velocity limitation . 47
3.4.3 Acceleration limitation . 48
3.4.4 Power limitation . 48
3.4.5 Force limitation . 49
3.4.6 Kinetic energy limitation . 50

5

CONTENTS

3.4.7 Separation distance . 51
3.5 Software implementation . 51

3.5.1 Project organization . 52
3.5.2 Example . 52
3.5.3 Benchmarks . 54
3.5.4 Sum up . 54

3.6 Experiment . 55
3.7 Conclusion . 61

4 Extending to other robots 63
4.1 Mobile comanipulation framework . 63

4.1.1 End-effector control . 63
4.1.2 Whole body control strategy . 64
4.1.3 Constraints . 64
4.1.4 Distance to singularities . 64
4.1.5 Manipulability . 65
4.1.6 Distance to objects . 65
4.1.7 Angular deviation . 66
4.1.8 Constraint deactivation . 66
4.1.9 Merging the constraints . 67
4.1.10 Experiments . 67
4.1.11 Validation . 67
4.1.12 Real experimental setup . 71
4.1.13 Results . 72
4.1.14 Conclusion on mobile comanipulation 73

4.2 Hand control . 74
4.2.1 Tactile sensing . 74
4.2.2 Grasp motion and force control . 76
4.2.3 Test cases . 77
4.2.4 Conclusion on hand control . 82

4.3 Conclusion . 84

Conclusion 85

A Polynomial interpolation and trajectory generation 87
A.1 Fith-order polynomials . 87
A.2 Interpolation . 89
A.3 Trajectory generation . 89

A.3.1 Constrained trajectory generation 90
A.3.2 Synchronization . 91
A.3.3 The case of orientations . 92
A.3.4 Path tracking . 93
A.3.5 Benchmarks . 93

6

List of Figures

1 Lightweight robots . 11
2 General block Diagram of the contents of the thesis and its structure. . . . 13

1.1 Difference between divisible and interactive tasks 16
1.2 Stiff, series elastic and variable stiffness actuators. 18
1.3 Illustration of the ISO15066 standard. 19

2.1 Average torque tracking error and standard deviation on a Kuka LWR4+. . 26
2.2 Torque tracking accuracy on a Kuka LWR4+. 27
2.3 Average stiction torques and standard deviation of a Kuka LWR4+. 28
2.4 Stiction torques for each joint of a Kuka LWR4+. 29
2.5 Proposed torque control scheme with stiction compensation. 31
2.6 Joints numbering of a Kuka LWR4+ . 32
2.7 Position command q∗ and response q, feedforward only (case 1). 33
2.8 Torque commands, feedforward only (case 1). 34
2.9 Torque commands, feedforward with friction compensation (case 2). 34
2.10 Position command and response, feedforward with friction compensation

(case 2). 35
2.11 Position command and response, feedforward with friction compensation

and a collision (case 3). 36
2.12 Torque commands, feedforward with friction compensation and a collision

(case 3). 37
2.13 External torques, feedforward with friction compensation and a collision

(case 3). 37
2.14 Position command and response, feedforward with friction compensation

plus PD control and a collision (case 4). 38
2.15 Torque commands, feedforward with friction compensation plus PD control

and a collision (case 4). 39
2.16 External torques, feedforward with friction compensation plus PD control

and a collision (case 4). 39

3.1 Overview of the proposed controller. 42
3.2 Examples of interaction, stiffness and repulsive forces. 44
3.3 Safe and unsafe power values. 49
3.4 Velocity limitation depending on separation distance. 51
3.5 Benchmarks of the controller running on a 7 degrees of freedom manipulator. 55
3.6 Setup for the experiment. 56

7

LIST OF FIGURES

3.7 Finite state machine used for the experiment. A + sign indicates an addi-
tion to the controller (new constraint or new input) while a - indicates a
removal. 57

3.8 Snapshots of the experiment: teaching (a-c) and replay (d-h) phases. . . . 58
3.9 Relevant variables during the experiment. 60

4.1 Distance to singularity simulation. Top: smallest singular value σm and
damping factor λ, middle: singularity constraints as = as,vx = as,vy = as,ωz ,
bottom: velocity commands along the x axis. tact is the time at which the
constraint gets activated. 68

4.2 Manipulability simulation. Top: manipulability measure m, middle: ma-
nipulability constraints am = am,vx = am,vy = am,ωz , bottom: Velocity
commands along the x axis. tact is the time at which the constraint gets
activated. 69

4.3 Distance to objects simulation. Top: Minimal distance dx, middle: workspace
constraints, bottom: Velocity commands along the x axis; tact is the time
at which the constraint gets activated. 69

4.4 Angular deviation simulation. Top: Angular error ∆θz, middle: workspace
constraints, bottom: Velocity commands (z axis); tact is the time at which
the constraint gets activated. 70

4.5 The Bazar mobile manipulator. 71
4.6 Snapshots of the experiment. 72
4.7 Experimental results. From top to bottom: velocity command ẋ (m/s,

rad/s), arm velocity command ẋarm (m/s, rad/s), base velocity command
ẋbase (m/s, rad/s) and constraint values avx , avy and aωz 73

4.8 BioTac with its attached reference frame. 74
4.9 Electrodes on a BioTac sensor. 75
4.10 BioTac sensor calibration. 76
4.11 Grasping FSM . 77
4.12 EMG controlled robotic hand setup . 78
4.13 Raw and filtered EMG signals. 79
4.14 Hand configurations. From left to right: open hand, palmar pinch and

key-grip. 80
4.15 EMG based control mode 5 . 80
4.16 Force regulation on the little finger (Z axis). 82
4.17 FSM states during the collaborative screwing experiment. 83
4.18 FSM for the collaborative screwing experiment. 83

A.1 Interpolation function fint for x− = 0.5, x+ = 2, y− = 0 and y+ = 0.25. . . 89
A.2 Comparison of the synchronization mechanisms. 91
A.3 Trajectories’ coefficients computation benchmark. 95

8

List of Tables

3.1 Detailed project hierarchy. 52

4.1 EMG-based control modes. 79

A.1 Trajectories’ waypoints. 94
A.2 Trajectories. 94
A.3 Number of iterations to compute the trajectories. 94

9

LIST OF TABLES

10

Introduction

The need for collaborative robots (cobots) is becoming more and more important over the
years. The industry seeks cobots that partially automate current manual tasks, to help
human workers during difficult tasks by reducing pain, fatigue and the associated risk of
injury. Factories also want to increase their flexibility by allowing non-robotics experts
to program new behaviors through learning by demonstration, hence allowing skilled
workers to transfer their knowledge to robots. Health care institutions could also benefit
from collaborative robot technology for surgery, physiotherapy and domestic assistance of
elderly or disabled people, to mention a few.

Despite the high demand for cobots, there is one aspect that is limiting their prolif-
eration: safety. Indeed, cobots must be capable of ensuring the safety of their operators,
other human beings in their surroundings and lastly their own, before being suited for a
general adoption. Safety first comes from mechanical design, starting with the so-called
lightweight robots. These robots present round shapes and low link inertia to lower their
kinetic energy, reducing injuries upon impact. Many robot manufacturers provide such
robots in different configurations: single or dual arms and with or without a mobile base,
as shown in Fig. 1. Fixed single arm robots are closer to common industrial ones and
thus easier to integrate in today’s factories. They also generally present basic safety mea-
sures (e.g. collision detection, velocity and power limitation), to simplify the integration
regarding current safety standards. However, since these robots are meant to collaborate
with humans, more human-like shapes can be beneficial. Fixed-base dual-arm robots
adopt a human upper-body structure and can act as a human helper for part assembly or
inspection. While fixed-base robots can already be found in some places, mobile manipu-

Figure 1 – Examples of lightweight robots, from left to right: Kuka LBR iiwa (2013),
Rethink Robotics Sawyer (2015), ABB YuMi (2015), Pal Robotics TIAGo (2015), Kawada
Industries HRP-4 (2011).

11

lators and humanoids are still absent from the factory floor. Both types benefit from their
increased mobility (using either wheels or legs), e.g., to help with object transportation
or large product inspections. On one hand, wheeled cobots, with their inherent stability
and the strong research community working on localization, path planning and control for
decades, are almost ready to be utilized in factories. On the other hand, they are limited
to relatively flat surfaces and cannot accommodate to any obstacle (e.g. stairs, ladders).
Humanoid robots, by adopting a complete human-like structure (legs, torso, arms, head)
are intended to deal with any environment accessible to humans. However, they are still
research products only, since many challenges need to be overcome before their adoption
(e.g. locomotion on uneven terrain, stability, fall recovery, mechanical limitations).

When considering collaborative applications, lightweight robots clearly represent an
improvement over the classical robotic manipulators currently in use in factories, but they
can be enhanced using passive compliance to better absorb shocks due to unexpected
collisions. Passive compliance can take different forms, from soft covers to elastic joint
transmissions. The former can easily be added to existing robots with a relatively low
cost, but provides only a limited range of action, while the latter, by deforming the whole
structure, has a higher range of action but requires a specific and costly joint design
and cannot be added to already existing robots. In any case, the purpose of mechanical
compliance is to serve as a fast impact absorption mechanism before the robot’s controller
takes over. Indeed, control can help in various ways to increase the system’s safety.
First, preventive actions (typically protective stops or collision avoidance) can be taken
to avoid dangerous situations. Then, if a physical contact occurs, additional compliance
can be introduced to overcome the mechanical compliance limits. This is often performed
using impedance or admittance control or one of their many variations. However, during
collaborative tasks, physical contacts between the robot and a human are often necessary.
In that case, different safety measures must be taken, such as velocity, power or force
monitoring. Moreover, the robot must remain stable once the contact with the human
is established. For example, during manual guidance, nothing forbids the operator to
move the robot to a singular configuration, an action which will lead to instability if not
properly accounted for.

This thesis focuses on the control of collaborative robots and solutions to enforce safe
behavior, particularly in the presence of humans.

Figure 2 gives an overview of the work discussed in this thesis and its repartition among
the chapters. In this figure, two switches are present, SMM and SHA, both represented in
their off state. The first one allows to switch between controlling a single robot (off) and
controlling a mobile manipulator (on), using a special redundancy solution. The second
one switches between the control of an arm using torque commands (off) and a hand
via position commands (on). Since it does not make sense to use the hand along with a
mobile base, the case SMM = SHA = on is forbidden.

Some background on human-robot interaction and collaboration will be given in Chap-
ter 1. Then, in Chapter 2, we investigate how torque control and external forces estima-
tion can be performed on real robots in the presence of non-modelisable static frictions.
Chapter 3 presents a generic framework to design collaborative tasks using a serial ma-
nipulator while ensuring various safety criteria. Finally, extensions from the classic serial
manipulator to mobile manipulators and robotic hands are presented in Chapter 4.

This thesis has been supported by ANR (French National Research Agency) SISCob

12

Figure 2 – General block Diagram of the contents of the thesis and its structure.

(Safety Intelligent Sensor for Cobots) project1. This project aimed at increasing the safety
of collaborative robots by improving their compliance, either though mechanical design
with a novel passive compliant device or through control, as discussed in this thesis.

The main contributions of this work are:

• A procedure for an active calibration of tactile sensors mounted on a robotic hand,
presented in [1] and in Section 4.2.1.

• A safe adaptive damping control framework answering the constraints of the ISO10218-
2011 standard. The results were published in [2].

• A framework for the collaboration between a human operator and a mobile manip-
ulator, with a strong emphasis on the intuitiveness of operation. The work has been
published in [3] and is presented in Section 4.1.

• A generalization of the safe adaptive damping framework, able to deal with many
collaborative scenario and freely distributed within the OpenPHRI software. It
has been submitted to Robotics and Automation Magazine for the special issue on
Human-robot collaboration for production environments. It is presented in Chapter
3.

• The control of a robotic hand by individuals with tetraplegia using an EMG inter-
face. The study has been published in [4] and presented in 4.2.3.

• The control in torque of a robot in presence of non-modelisable static frictions,
presented in Chapter 2.

• A polynomial-based trajectory generator with velocity and acceleration constraints,
suitable for joint or task space trajectories, presented in Appendix A.

1ANR-14-CE27-0016: http://anr-siscob.prd.fr

13

http://anr-siscob.prd.fr

14

Chapter 1

Background and State of the art

The contribution of this thesis is toward better physical interactions and collaborations
between robots and human, while ensuring safety criteria to protect both the operators
and the environment. This can be achieved in several ways, starting with specifically
designed actuators or dedicated devices to higher level control schemes. Some background
on physical human-robot interaction (pHRI) and collaboration (pHRC) is given in Sect.
1.1. In Sect. 1.2, we will detail how mechanical design and low level controllers has been
used as a first step to enable human-robot interaction. Next, in Sect. 1.3, we will see how
higher level control solutions has been tailored for pHRI with robotic manipulators, and
how safe operation has been ensured. Finally, in Sect. 1.4, we present works where pHRI
has been extended to robotic systems other than serial manipulators.

1.1 Human-robot interactions
Human-robot interaction (HRI) has received increasing attention in recent years from
both the academic research and the industry [5–7]. HRI is a very vast domain since
interactions between a human and a robot can and will occur in various scenarios, either
in homes or at work. These interactions can be split in two main groups, social and
physical interactions. Some terminology employed in HRI will be given in 1.1.1, then a
brief overview of social human-robot interactions will be given in subsection 1.1.2 before
moving to physical interactions (pHRI) (1.1.3) and physical collaborations (pHRC) (1.1.4)
which are the two main topics of this thesis.

1.1.1 Terminology

In this thesis, we adopt the task taxonomy presented in [8]. Some slight modifications
to that taxonomy have been performed here, in order to target precisely the work of this
thesis without altering the meanings. A task performed between two agents (humans
and/or robots) can be described in two different ways:

1. divisible vs. interactive task,

2. competitive vs. cooperative task.

A divisible task employs multiple agents working without any conflict between them,
whereas for an interactive task, the work has to be performed jointly and simultaneously.

15

1.1. HUMAN-ROBOT INTERACTIONS

Figure 1.1 – Difference between divisible and interactive tasks1.

For example, surface related tasks, such as cleaning, mowing or painting, can be divided
among the agents while large object transportation can only be performed in an interactive
way. Figure 1.1 illustrate divisible vs. interactive tasks, where the robot on the left
operates on its own part and has its own workspace, whereas the robot on the right is
interacting with a human operator to handover a part. On the other hand, competitive
tasks require the agents to work against each other, while joint work is required to perform
a cooperative task. A chess game is an example of a competitive task since both agents
pursue their own goal. On the other hand, an object assembly, e.g. one agent holding
an object and the other putting parts on it, is a cooperative task. This thesis addresses
interactive and cooperative tasks.

1.1.2 Social interaction

Social human-robot interactions are essentially built around communication between the
agents. This communication can be performed in several ways, including speech [9, 10],
gestures [9, 11], gaze [12] or even emotions through voice and facial analysis [13, 14].
The exchange is bidirectional, since each agent tries to transfer information or intentions
to the other one while getting some feedback. In order for the robot to communicate
properly with a human, researchers have first looked into human-human interactions in
order to highlight the key aspects that need to be mimicked [15,16]. This is crucial, since
humans tend to expect the robot to have a human-like behavior and will even attribute
it some personality traits depending on its actions [17], which can improve or degrade
the interactions. Social human-robot interaction is a very important key towards better
collaborative robots but has not been dealt with in this thesis since the focus has been
made on physical interaction.

1.1.3 Physical interaction

Physical human-robot interactions refer to situations where a physical contact occurs
between the two agents. This contact can be either intentional or undesired from the

1Source: www.robotics.org

16

www.robotics.org

1.2. COMPLIANT ACTUATORS

human perspective. Undesired contacts generally happen when the human enters the
robot’s workspace while no presence detection system (e.g. light barriers, floor mat,
laser scanner) is used and can lead to severe injuries and ultimately death, as it already
happened multiple times with industrial robots [18]. Voluntary physical interactions, on
the contrary, emerge when the person makes contact with the robot to stop it, to guide
it or to teach it a behavior for instance. These two types of physical interaction require
different design or control strategies to ensure the humans’ safety, as will be detailed
respectively in Sections 1.2 and 1.3.

1.1.4 Physical collaboration

Collaboration can be seen as a special case of interaction. In this thesis, we will refer
to physical human-robot collaboration for any task performed jointly by a human and a
robot, that is both interactive and cooperative. Collaborations including multiple robots
and/or multiple humans are out of scope here. pHRC has a great potential in many
areas where the robot can enhance the human skills or lower the task’s difficulty and
the associated health risks [19]. This includes robots used for object transportation, as
assistive tools, rehabilitation devices or exoskeletons. During collaborative tasks, it is still
crucial that the robot presents a safe behavior but it is also necessary to be intuitive to
use and to ease the task completion. In [20], the robot adapts its configuration during
a collaborative load carrying task to decrease static joint torques in the human body to
limit human fatigue and the risk of injury. In [21], human muscular fatigue is estimated
in order to provide a higher assistance level when necessary, by adjusting the control
parameters. Such considerations are very important for assistive robots to be effectively
accepted and introduced in the industry, health care centers or at home.

1.2 Compliant actuators

In order to be fast and precise, classic industrial robotic manipulators are designed to
be very stiff at both joint and structural levels. This leads to little impact absorption
in case of collision. Moreover, their shape may present sharp edges and the high inertia
of their links may induce high kinetic energy dissipation upon impact, leading to severe
injuries [22]. This is why mechanical design is the first step toward safer robots that can be
used for interactive tasks. This question is already partly solved since the birth of so-called
light-weight robots [23], that present low inertia, thanks to the use of advanced materials,
and round shapes to mitigate the injuries and the damages in case of impact. However,
most of these robots still rely on stiff actuation and require attention on the control
part to truly behave safely. Some compliant joint designs have been proposed [24–26].
These include series elastic actuators (SEA), where a passive compliant element (e.g.,
a spring) is introduced to absorb the high frequency impact forces. In most designs,
the passive element stiffness can be adjusted, to be rigid and precise when moving at
low velocities or compliant during high speed motions to limit the injuries or damages
induced by an impact [27]. A schematic view of these types of actuators is given in
Fig. 1.2. The elastic element can also be used to store, then release, energy for more
efficient walk or for throwing objects for instance, as demonstrated in [28] and [29]. The
major drawback of such mechanisms is that they limit the torque control bandwidth,

17

1.3. CONTROL FOR SAFE PHYSICAL HUMAN-ROBOT INTERACTION AND
COLLABORATION

Figure 1.2 – Stiff, series elastic and variable stiffness actuators1.

introducing inaccuracies in the controlled position, even in absence of collision. To deal
with this problem, distributed macro-mini actuators (DM2) have been proposed [24]. With
this solution, the joint actuation is divided between two motors: a powerful one being
fixed at the robot base, actuating the joint trough cables and elastic coupling, and another
smaller one at the joint level with a stiff, low friction and high bandwidth actuation. This
gives the same properties as SEA, while being able to provide high frequency torques
thanks to the joint level actuators, thus increasing accuracy, force control performance
and disturbances rejection. Also, having only small motors at the joint level decreases the
overall inertia, making the robot safer to work with. The main issue here (that limited the
proliferation of this solution) is the added complexity and cost to doubling the actuators.
But even with a proper mechanical design, control needs to be taken into account for safe
operations, since predictive actions can be performed and mechanical compliancy, when
present, has a limited range of action and can only be used as the first security measure
before the control can take over. The goal of the ANR SISCob project, in which our
laboratories are involved, is to increase the robots’ safety with on one hand, the design
of a new modular device that brings safety using intrinsic compliance, in the vein of the
SEAs, and on the other hand, to approach safety using control. Control techniques for
pHRI are reviewed in the next section.

1.3 Control for safe physical human-robot interaction
and collaboration

During interaction and collaboration with a human, the robot must adopt a safe behav-
ior to minimize the risk of injuries to close coworkers. However, until recently, precise
requirements for a collaborative robot were not specified. In 2011, in the last revision of
the ISO10218 standard [31], the International Organization for Standardization included
requirements for a safe industrial robot. This standard specifies that any robot must
respect velocity, power and contact force limits at the tool control point (TCP) in the
presence of a human. In the original standard specification, numerical values were given
for these limitations (0.25m.s−1, 80W, 150N) but these are now left to be fixed by the
end-user, depending on the performed task and on the degree of collaboration between
operator and robot. The ISO/TS 15066 [32] further extends the ISO10218 by defining
four types of collaborative operation, illustrated in Fig. 1.3, that can also be combined:

• Safety-rated monitored stop: interactions with the robot are only allowed when the
robot is stopped. Automatic operation is resumed when the operator leaves the

1Source: [30].

18

1.3. CONTROL FOR SAFE PHYSICAL HUMAN-ROBOT INTERACTION AND
COLLABORATION

Figure 1.3 – Illustration of the ISO15066 standard1. a) Safety-rated monitored stop, b)
Hand-guiding operation, c) Speed and separation monitoring, d) Power and force limita-
tion.

collaborative workspace.

• Hand-guiding operation: the operator guides the robot using physical contact.

• Speed and separation monitoring : the robot speed is reduced as the operator gets
closer to the robot. A protective stop is issued when a potential contact occurs.

• Power and force limitation: exerted force and transmitted power are limited to
avoid any harm to the operator in the case of accidental contact with the robot.
A risk assessment for each body region must be performed to derive the imposed
limitations.

The safety-rated monitored stop is what most present-day robot manufacturers [34]
provide, since it is very simple to integrate with presence detection systems already
available. Any intrusion detected in the robot workspace will trigger a protective stop.
Hand-guiding operation is also proposed by some manufacturers [34], since it allows non-
programming experts to perform tasks with a collaborative robot (e.g. heavy object
transportation) hence increasing the production line flexibility. These kinds of tasks fall
into what is called teaching-by-demonstration. Teaching-by-demonstration methods allow
the robot to learn from a human specific behaviors to be reproduced. These range from
simple pick and place [35] tasks to both motion and control gain learning [36] making the
robot behave “as humanly” as possible. Speed and separation monitoring, to the best of
our knowledge, is not directly implemented by robot manufacturers but has been investi-
gated in the research literature, e.g., in [37]. Finally, power and force limitation is a much
more challenging problem since it requires first a complete risk assertion study to deter-
mine which power and force limits to use, and second specific measures to ensure these
limitations. Robot manufacturers generally implement a fixed electrical power limitation

1Source [33].

19

1.4. INTERACTING WITH ROBOTS OTHER THAN SERIAL MANIPULATORS

(e.g. 80W for the original ISO10218, as with the Kuka LWR4+) but this may be too re-
strictive since more power may be needed when no operator is present. Control solutions
can help to better monitor the exchanged power and force and dynamically adapt the
limitations. Force limitation methods can be employed for torque control robots, as it has
been shown in [38]. Otherwise, a protective stop or a fallback strategy can be triggered
when a force threshold is trespassed.

After this overview of the literature in safe pHRI, it can be seen that no single solution
capable of dealing with the four collaborative operations defined by the ISO15066 exists.
In Chapter 3, we will detail how a unique framework can be constructed to bridge this
gap.

1.4 Interacting with robots other than serial manipu-
lators

Even if most of the physical human-robot interaction research is performed using serial
manipulators, other types of robots can be of interest. In this survey, as a complement of
the classical serial manipulators studied in the first part, we consider mobile manipulators,
that benefit from the increased workspace offered by their mobile base, and robotic hands,
that can handle more complex objects than simple grippers and that can also rely on tact
to sense the environment and interact with humans. To our knowledge of the literature,
applications using dual manipulators in pHRI are not numerous and authors generally
consider them as two separate arms [38].

1.4.1 Mobile manipulators

Mobile manipulators benefit from the dexterity of a standard manipulator with the ex-
tended workspace of a mobile platform. Locomotion can be realized by wheeled, legged
or flying bases. However, mobile manipulators are over-actuated robots that need specific
control algorithms to deal with their redundancy. Several approaches have been proposed
to deal with this issue in non-collaborative cases, depending on the type of mobile base
that is used. For wheeled bases, differential drive actuation introduces non-holonomic con-
straints due to the rolling without slipping of the wheels on the ground. These constraints
limit the set of velocities that can be realized by the mobile base, and that need to be
integrated in the controller. This has been addressed with several approaches, e.g., using
a path planning strategy [39] or producing a complete kinematics model together with a
redundancy scheme [40]. Instead, for mobile bases with steerable wheels, a global kine-
matics model cannot be used directly, since velocities on the steering axes do not induce
velocities on the robotics platform. This has been investigated in [41], where the Jacobian
null space projection and a global input-output linearization with dynamic feedback have
been tested and compared.

Legged robots equipped with an arm generally fall into two categories, biped and
quadruped. Biped robots, usually adopt a humanoid structure. For these systems, loco-
motion and manipulation are tightly coupled, since the robot balance needs to be guar-
anteed. Generally, for dealing with the system’s high redundancy, researchers use opti-
mization with a set of tasks (e.g., base velocity and hand/s pose/s) and constraints (e.g.,

20

1.4. INTERACTING WITH ROBOTS OTHER THAN SERIAL MANIPULATORS

stability and self collision avoidance). This strategy has been applied in [42] and in [43],
to achieve human-humanoid interaction. Quadruped robots equipped with a manipulator
have been investigated since [44], where the base is modeled as a parallel robot to define
the pose of the arm’s base frame and inverse kinematics are used to control the whole
robot.

Recently, researchers have embedded manipulators on aerial robots [45, 46]. In such
scenarios, the dynamic effects of the arm motion must be taken into account, along with
redundancy, to keep the robot stable.

When considering physical human interaction with a mobile manipulator, only a few
works have been published. In [47], a fully omnidirectional wheeled robot is made com-
pliant using force control. Physical interaction with mobile manipulators has also been
studied in [48], where force thresholds are used to decide if the base, arm or both have to
move, and in [49] where the use of a tactile skin permits full body compliance.

In section 4.1, we will introduce a solution exploiting redundancy for mobile manip-
ulators with omnidirectional bases that focuses on the intuitiveness of operation during
human-robot collaborations with a mobile manipulator.

1.4.2 Robotic hands

Hands, robotic or human ones, can be used in various ways, including communicating
between agents, environment sensing and object grasp/handover. Human-robot interac-
tions can greatly benefit from such features. Take an example where a hand-arm system
is used to perform an assembly, with some parts being out of reach. When the robot has
to grasp an object outside of its workspace, it can point it to inform an operator that
it requires assistance to perform the task, as in [50]. This non-verbal and non-physical
interaction is very powerful, since it is easily understandable by anyone, in contrast with
voice based communication. Once the operator picked up the part, he has to hand it
over to the robot, leading to a physical interaction between the two agents. Human-
robot handover has been investigated by the research community and several solutions
are available [51, 52]. Tactile sensing can then be useful to successfully grasp the object,
but can also be used as a way to enable physical communication, as shown in Sect. 4.2.1,
where a finger’s tactile sensor is used to trigger the various tasks required to insert screws
in a wood piece. Handshaking is another example of physical communication implying
robotics hands and had been investigated in [53,54].

In section 4.2, we will detail how tactile sensing capabilities of a robotic hand can be
used to derive the contact force at the fingertips and how it can be used to enable object
grasping and tactile communication with a human operator.

From this review of the state-of-the-art in safe physical human-robot interaction and
collaboration, we can notice that a lot of work still need to be done on both the hardware
and the control sides to obtain truly safe robots. This thesis focuses on control, first with
serial manipulators at both a low level, as discussed in Chapter 2, and at a higher level,
with the unified framework for safe pHRI presented in Chapter 3. And finally, in Chapter
4, extensions of this framework to omnidirectional mobile manipulators and robotic hands
will be presented.

21

1.4. INTERACTING WITH ROBOTS OTHER THAN SERIAL MANIPULATORS

22

Chapter 2

Joint torque control and external force
estimation

As previously mentioned, the robot dynamic model is often required for safe pHRI, since
its knowledge allows:

• low level torque control,

• estimation of the external (often, human-applied) forces and torques fext ∈ R6,

• derivation of interesting metrics, e.g., the reflected inertia [55], explained in Sect. 3.4.6.

However, the robot dynamic model is generally not provided by the manufacturers1
and therefore an identification procedure is required. Furthermore, any modification to
the robot, such as mounting a tool at the end-effector, requires updating the model.
Collaborative robots may be subject to frequent tool exchange if the operators require
different tools to perform different tasks using the same robot. In such cases, the robot
must be able to quickly identify its tool to update its dynamic model in order to gain
accuracy in its positioning and in the estimation of the interaction forces and torques.

To this end, we developed a novel approach for identifying the inertial parameters
(links’ mass, center of mass, inertia matrix) and joint friction coefficients (viscous and
dry friction) of a Kuka LWR4+ using an optimal exciting motion2. In that work, we
compared three different cost functions to maximize the identification accuracy of the
identified parameters, while minimizing the exciting motion duration. We also considered
the geometric model identification of a tool based on a look-up table and on an inverse
geometric model of the robot.

Since the modeling and estimation part of this work has been mainly developed by the
co-authors, in this thesis we will focus on the estimation of the external forces/torques
and on torque control, which are the aspects I contributed to. In particular, we show the
difficulties that arise when dealing with static friction for torque control. We propose a
solution to this, and validate it in experiments, including one where the robot collides
with a human operator, a case study of major interest in safe pHRI.

1Some may provide approximate parameters based on CAD data.
2This joint work with Katsumata et al. has been submitted to Robotics and Autonomous Systems.

23

2.1. EXTERNAL TORQUES AND FORCES ESTIMATION

2.1 External torques and forces estimation
In order to detect physical interaction with the environment or the operator intention,
two approaches are generally considered.

The first one consists in mounting a force/torque sensor at the robot end-effector
to measure interaction forces and torques. If a tool is attached to the sensor, its inertial
parameters must be identified in order to remove its effects on the measurements. Physical
interaction with a human usually happen with a slowly moving robot, so the identification
of the tool mass and center of mass is sufficient to get a good compensation. This translates
to:

fext = fFT −
[

mtool
TRB g

ctool ×mtool
TRB g

]
, (2.1)

where fFT ∈ R6 is the force/torque vector measured by the sensor, mtool and ctool are the
mass and center of mass of the tool, given in the sensor frame, g is the Earth gravity
vector expressed in the robot base frame and TRB is the rotation matrix between the
robot base and tool frames.

The second approach is applicable when joint torque sensors are mounted between the
gearbox output and the attached link. In such a case, as it is with the Kuka LWR4+,
the knowledge of the robot dynamic model allows for individual joint external torque
estimation and for reconstructing the external forces/torques at the end-effector, using
the Jacobian matrix. Let us first recall the dynamic model expression for a rigid serial
manipulator in the free space (i.e., when no external forces/torques are applied):

M(q)q̈ + C(q, q̇)q̇ + g(q) + τf (q̇) = τdyn, (2.2)

with M(q) ∈ Rn×n the robot inertia matrix, C(q, q̇) ∈ Rn×n the Coriolis and centripetal
matrix, g(q) ∈ Rn the vector of gravity torques and τf ∈ Rn the joint torques due to dry
and viscous friction effects. n is the joint space dimension. In the presence of external
interaction torques τext or forces fext:

τ = τdyn + τext (2.3)

τ = τdyn + J>(q)fext, (2.4)

where τ ∈ Rn indicates the torques acting on the joints and J ∈ R6×n the manipulator
Jacobian matrix tied to the point of application of fext, generally assumed to be the end-
effector. In (2.3), τext ∈ Rn is the vector of externally applied torques. In (2.4), fext ∈ R6

is the external wrench applied at the end-effector, mapped to the joint space using the
manipulator’s Jacobian matrix. Using (2.2), the above equations become:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) + τf (q̇) + τext (2.5)

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) + τf (q̇) + J>(q)fext. (2.6)

With an accurate dynamic model and joint torque sensors, the external joint torques
and external wrench, both needed to detect interactions at the end-effector or along the
kinematic chain, can be computed using:

τext = τ − τdyn (2.7)

fext = J−>(q)τext (2.8)

24

2.2. TORQUE CONTROL OF A KUKA LWR4+

In the case of a redundant manipulator, the Moore-Penrose pseudo-inverse can be used in
(2.8) instead of the classic matrix inversion. In the case of the Kuka LWR4+, both τext
and fext can be computed thanks to the presence of joint torque sensors.

To conclude on this section, it is important to note that the two presented approaches
are not perfect. Indeed, using a force/torque sensor at the end-effector often requires
integration work for attaching the device to the robot, dealing with the sensor cable, etc.
Moreover, it cannot be used to detect collisions or interactions forces on points along the
robot other than the end-effector, leading to potential security issues. On the other hand,
as mentioned previously, joint torque sensors are not always available due to their cost
and to the increased integration complexity. Besides, even when available, they cannot
be used to estimate the external wrench at the end-effector in the presence of kinematic
singularities, as can be seen from (2.8), nor the location and magnitude of a contact along
the kinematic chain. The same applies to the first approach, unless a tactile skin covers
the robot joints, providing the contact point position. For the best sensing capabilities,
both solutions should be used jointly but this, of course, comes with an increased cost
and system complexity. In our case, we prefer to rely on a force/torque sensor at the
end-effector for a more precise estimation of the interaction forces and to use external
joint torques only for collision detection. A precise end-effector wrench estimation allows
for better hand guiding or force control for instance while even an approximate estimation
of the external joint torques is sufficient to detect unexpected collisions along the robot’s
body that might occur during pHRI and then take a preventive action (e.g. a safety-rated
monitored stop).

2.2 Torque control of a Kuka LWR4+
As seen in the previous section, to estimate the interaction forces using joint torque
sensors, the knowledge of the joints torque commands is necessary. Since this data is not
generally offered by the robots embedded controllers, torque control must be performed
on the user side. In this section, we will detail how torque control can be achieved on a
Kuka LWR4+.

The Kuka LWR4+ controller (KRC) is shipped with three different control modes:

• joint position control,

• joint impedance control,

• cartesian impedance control.

It can be seen that no torque control mode is directly available. This means that
workarounds should be implemented on both the KRC side and the PC control interface
library FRI1, to control the robot actuator torques. Among the three available control
modes, joint impedance control is the only one that can be adapted to perform joint
torque control. First, let us recall the joint impedance control equation, given in the KRC
manual and FRI documentation, and rewritten for clarity as:

τ ∗ = Kj∆q + D(dj) + τdynamics(q, q̇, q̈,g) + τFRI . (2.9)
1FRI (Fast Research Interface), available at http://cs.stanford.edu/people/tkr/fri/html/

25

http://cs.stanford.edu/people/tkr/fri/html/

2.2. TORQUE CONTROL OF A KUKA LWR4+

In this equation, τ ∗ ∈ R7 are the command torques sent to the actuators, Kj is a 7x7
diagonal matrix of stiffness parameters, D ∈ R7 is a vector relative damping torques1
parametrized by dj ∈ [0, 1]7, ∆q = qr − q ∈ R7 is the tracking error, τdynamics is the
embedded dynamic model2 and τFRI is an additional input torque that can be set through
FRI. In usual, τFRI is set to zero in order to meet the expected joint impedance behavior
but it is thanks to this variable that we can achieve torque control.

It is clear from (2.9) that to achieve torque control, all the terms on the right hand
side of the equation, except for τFRI , must be canceled. This is done by setting Kj = 0,
dj = 0 ∀j = {1, . . . , 7} and g = 0, where g is Earth’s gravity vector configured in the
KRC and used by τdynamics. Doing so leaves us with:

τ ∗ = τFRI . (2.10)

Equation (2.10) can then be used to send the desired torque commands directly to the
robot actuators. Modifications of the FRI library and KRC scripts to enable torque
control are available online3.

However, it is also important to note that the torque tracking accuracy on this robot
is far from perfect, as can be seen from our tests, that are presented in figures 2.1 and
2.2. The first figure gives the average error and standard deviation for each joint torque.
The second one displays the difference between the torques sent to the robot (τ ∗) and
the ones measured by the torque sensors (τ). The data in Fig. 2.2 has been prefiltered
using a low pass 2nd order Butterworth filter with 10Hz cutoff frequency, to improve
readability. Since Kuka provides no details about the KRC controller, there is no way to
pin-point the exact cause of these errors and they are most probably tied to force sen-
sor inaccuracies, unmodeled and/or uncompensated joint frictions and/or to the robot’s
torque regulation loop. Even if these errors may seem reasonable (< 1 N.m), they are
problematic for motions with low accelerations producing low torque variations, as we
will show in Sect. 2.3.

1 2 3 4 5 6 7
Joint number

0.0

0.5

1.0

M
ea
n
to
rq
ue

tr
ac
ki
ng

er
ro
r
(N

.m
)

Figure 2.1 – Average torque tracking error and standard deviation on a Kuka LWR4+.

1The actual damping torques are computed relative to the stiffness coefficients.
2This is not detailed in the documentation, but probably corresponds only to gravity compensation.
3https://github.com/BenjaminNavarro/api-driver-fri

26

https://github.com/BenjaminNavarro/api-driver-fri

2.2. TORQUE CONTROL OF A KUKA LWR4+

0 5 10

−25

0

25

T
or
qu
e
(N

.m
)

τ ∗1 τ1

0 5 10

−25

0

25

τ ∗2 τ2

0 5 10
−5

0

5

T
or
qu
e
(N

.m
)

τ ∗3 τ3

0 5 10
−20

0

τ ∗4 τ4

0 5 10

−1

0

1

T
or
qu
e
(N

.m
)

τ ∗5 τ5

0 5 10
Time (s)

−1

0

1

τ ∗6 τ6

0 5 10
Time (s)

−1

0

T
or
qu
e
(N

.m
)

τ ∗7 τ7

Figure 2.2 – Torque tracking accuracy on a Kuka LWR4+.

27

2.3. TORQUE CONTROL SCHEME

2.3 Torque control scheme
In this section, we detail the torque control scheme used to drive the Kuka LWR4+ to a
target joint configuration.

A classic approach to realize joint positioning using torque control is the computed
torque method [56]:

τ ∗ = M(q)(q̈r + Kp∆q + Kv∆q̇) + C(q, q̇)q̇ + g(q) + τf (q̇). (2.11)

In this equation, Kp and Kv are positive diagonal gain matrices used to apply position
and velocity feedback in addition to the feedforward acceleration term q̈r. Vector τf is
generally expressed as:

τf (q̇) = Fvq̇ + Fc sign(q̇), (2.12)

where Fv and Fc are the diagonal matrices of viscous and static friction coefficients,
respectively. These coefficients must be identified on a robot basis.

However, using (2.12) is not a perfect real-world solution since stiction (static friction)
torques are not constant across the robot configuration space. To demonstrate this, we
set-up an experiment with a Kuka LWR4+ mounted horizontally with the joint axes laying
in the horizontal plane so that the gravity does not interfere, leading to all joints being at
their zero position. Then each joint is sequentially driven to five different positions (-2, -1,
0, 1 and 2 radians) before being brought back to zero using simple gravity compensation
with PD control law:

τ ∗ = Kp∆q + Kv∆q̇ + g(q) (2.13)

At each position, the PD gains for the test joint are zeroed and the desired torque value
is slowly increased, starting from 0 with 0.01 N.m steps, until a motion is detected. This
way, the minimum positive torque needed to overcome stiction is estimated. The same is
performed with reversed sign, to measure the minimum negative torque that overcomes
stiction. To assess if, at a given position, the stiction torques are constant or not, the
experiment was run three times. The results are given in figures 2.3 and 2.4.

1 2 3 4 5 6 7
Joint number

0.0

0.5

1.0

1.5

M
ea
n
st
ic
ti
on

to
rq
ue

(N
.m

)

Figure 2.3 – Average stiction torques and standard deviation of a Kuka LWR4+.

Several important aspects can be derived from these graphs. First, for a given joint,
the stiction torque is not constant. This forbids the use of constant values in Fc as it
would be insufficient in some cases or lead to overcompensation and thus instability in the
others. Secondly, for a given joint at a given position, the stiction torques are generally

28

2.3. TORQUE CONTROL SCHEME

−2

−1

−0

1

2

S
ti
ct
io
n
to
rq
ue

(N
.m

)

Joint 1 Joint 2

−2

−1

−0

1

2

S
ti
ct
io
n
to
rq
ue

(N
.m

)

Joint 3 Joint 4

−2

−1

−0

1

2

S
ti
ct
io
n
to
rq
ue

(N
.m

)

Joint 5

-2 -1 0 1 2
Position (rad)

Joint 6

-2 -1 0 1 2
Position (rad)

−2

−1

−0

1

2

S
ti
ct
io
n
to
rq
ue

(N
.m

)

Joint 7

Figure 2.4 – Stiction torques for each joint of a Kuka LWR4+.

not symmetric. This avoids the use of the sign function in (2.12). Finally, important
variations can be measured between experiments, as can be seen for example for joint 2

29

2.3. TORQUE CONTROL SCHEME

at -2 radians in figure 2.4. In summary, it is clear that the stiction torques cannot be
compensated using (2.12) and that another solution must be considered.

In this regard, a first improvement over (2.11) would be to apply:

τ ∗ = M(q)q̈r + Kp∆q + Kv∆q̇ + C(q, q̇)q̇ + g(q) + Fvq̇. (2.14)

With (2.14), the stiction is compensated using only the feedback terms (Fc = 0) and
without pre-multiplying them by the inertia matrix, thus producing always the same
torque for a given tracking error. However, this may not be satisfactory in all cases.
Indeed, to quickly compensate the deviations from the trajectory due to joint stiction,
very high gains are required. This leads to a very stiff position control scheme. The
solution we propose here is to decouple the stiction compensation problem from the more
general perturbation rejection problem. The main idea is to use two PD control laws: a
first one with very high gains and limited torque output to overcome stiction and a second
one that can be tuned freely to obtain the desired perturbation rejection behavior.

For the friction compensation part, this translates to:

τ ′f (q̇,∆q) = Fvq̇ +−τ c
max
bKc

p∆q + Kc
v∆q̇eτ c

max . (2.15)

Now, the static friction is compensated using a PD controller with gains Kc
p and Kc

v and
output limited to the [−τ cmax, τ cmax] range. This presents the advantage of not relying on
any stiction parameters estimation and cannot lead to overcompensation.

We then propose two alternative control schemes, based on equations (2.11), (2.14)
and (2.15):

τ ∗ = M(q)q̈r + Kp∆q + Kv∆q̇ + C(q, q̇)q̇ + g(q) + τ ′f (q̇,∆q) (2.16)
τ ∗ = M(q)(q̈r + Kp∆q + Kv∆q̇) + C(q, q̇)q̇ + g(q) + τ ′f (q̇,∆q). (2.17)

The choice between (2.16) and (2.17) depends on the desired perturbation rejection be-
havior. With the first equation, an opposing torque will be created when a tracking error
appears. This enables the limitation of the torque transmitted to the environment by
choosing safe fixed values for Kp and Kv or even tuning their values online to keep the
exerted torque below a given limit. However, if a consistent perturbation rejection behav-
ior is desired, the second control law is recommended, since the feedback action is passed
through the inertia matrix and will produce the same motion, regardless of the current
robot configuration. These two control schemes are depicted in Fig. 2.5, where the choice
between one and the other is made through the Spos switch. This switch should not be
toggled online as this can lead to discontinuities in the control output.

30

2.4. EXPERIMENTS

PD (position)

PD (stiction)

Trajectory

generator Robot

Dynamic
model

Friction compensation

Position control

-
+

+
+

+

+

+

+

+

+

+

+

+

Figure 2.5 – Proposed torque control scheme with stiction compensation.

2.4 Experiments

To demonstrate the effectiveness of the proposed solution, a trajectory following experi-
ment has been conducted using (2.16) in the following scenarios:

Case 1: All feedback gains set to zero (Kp = Kv = Kc
p = Kc

v = 0).

Case 2: Static PD friction compensation only (Kp = Kv = 0,Kc
p 6= 0,Kc

v 6= 0).

Case 3: Static PD friction compensation only with a collision (human operator,
Kp = Kv = 0, Kc

p 6= 0,Kc
v 6= 0).

Case 4: Static PD friction compensation and PD control with a collision
(human operator, Kp 6= 0, Kv 6= 0, Kc

p 6= 0, Kc
v 6= 0).

(2.16) has been chosen over (2.17) in this case to have a non-configuration depen-
dent reaction to externally applied torques. The generated trajectory drives all the joints
from −1 to 1 radian with a maximum acceleration of 0.5 rad.s−2 and a maximum ve-
locity of 0.5 rad.s−1. The values of M(q), C(q, q̇), g(q) and Fv in (2.16) were obtained
by dynamic model identification. The friction compensation parameters, when used,
are Kc

p = diag(10000, 5000, 2000, 2000, 500, 200, 200), Kc
v = diag(50, 100, 30, 30, 20, 10, 10)

and τ cmax = [3, 4, 2, 2, 2, 1, 1]. These parameters were manually tuned to try to get the best
possible compensation. The numbering of the Kuka LWR4+ joints is given in Fig. 2.6.

Results from the first test (case 1) are shown in figures 2.7 and 2.8. In Fig. 2.8,
gravity torques as well as torques generated from the other feedforward terms are displayed
separately. It can be seen that the torques computed to perform the motion (i.e. excluding
gravity compensation) are low and, considering the problems mentioned previously, are
not sufficient to drive the joints to the target positions. This is confirmed by Fig. 2.7,
where the target and actual position of each joint is plotted. Indeed, except for joint 2
where the braking torque makes the joint move in the wrong direction towards the end of
the trajectory, all joints stay stationary. This clearly demonstrates the need for a stiction
compensation mechanism.

31

2.4. EXPERIMENTS

Figures 2.9 and 2.10 give the results for the second experiment (case 2). We notice from
Fig. 2.9 the presence of the friction compensation torques. Thanks to these additional
torques, the trajectory can be followed way more precisely than in the previous case, as
can be seen in Fig. 2.10. We can see that at the beginning of the trajectories, the errors
start to grow but are kept low thanks to the friction compensation mechanism described in
(2.15). In this particular case, the errors generally stay below 0.005 radians (0.3 degrees),
except for joint 2 where the error goes up to 0.008 radians (0.45 degrees) before being
brought back to 0.

The next experiment (case 3) uses the same configuration as the previous one but
includes a collision with a human operator at the end-effector. Results are given in
figures 2.11-2.13. As expected, the collision induces large tracking errors (Fig. 2.11) while
keeping the external torques relatively low, with a maximum of 12 N.m at around 2s.
(Fig. 2.13). The behavior is very close to an ideal control with no feedback. However, the
presence of the friction compensation torques (Fig. 2.12) makes the robot slowly converge
to the target when the perturbation disappears (Fig. 2.11).

Figure 2.6 – Joints numbering of a Kuka LWR4+1

In the last experiment (case 4), we introduce the PD controller to enhance the posi-
tion tracking accuracy using the following gains: Kp = diag(150, 500, 100, 200, 50, 20, 20),
Kv = diag(5, 5, 3, 3, 2, 1, 1). These gains are tuned so that the robot still presents some
compliance. It can be seen from Fig. 2.14 that the tracking error is improved, even in the
presence of a collision. Since the robot really reacts to the collision by generating high
torques, the external torques are also higher than previously, as seen in figures 2.15 and
2.16.

These experiments confirm that special care is required when dealing with real world
static friction and that the proposed approach allows for an effective compensation without

1Source [57].

32

2.4. EXPERIMENTS

enforcing any perturbation rejection behavior, i.e. the robot can be as soft or as stiff as
desired. A video of these experiments is joint to the manuscript2.

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗1 q1

0 2 4

−1

0

1

q∗2 q2

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗3 q3

0 2 4
−1

0

1

q∗4 q4

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗5 q5

0 2 4
Time (s)

−1

0

1

q∗6 q6

0 2 4
Time (s)

−1

0

1

P
os
it
io
n
(r
ad
)

q∗7 q7

Figure 2.7 – Position command q∗ and response q, feedforward only (case 1).

2Also avaible at https://youtu.be/fvHh1080I5I

33

https://youtu.be/fvHh1080I5I

2.4. EXPERIMENTS

0

20

G
ra
vi
ty

to
rq
ue
s
g
(q
)

(N
.m

)

J1 J2 J3 J4 J5 J6 J7

0 1 2 3 4 5
Time (s)

−1

0

1

F
ee
df
or
w
ar
d

to
rq
ue
s
τ
d
y
n
−
τ
f

(N
.m

)

Figure 2.8 – Torque commands, feedforward only (case 1).

−20

0

20

G
ra
vi
ty

to
rq
ue
s
g
(q
)

(N
.m

)

J1 J2 J3 J4 J5 J6 J7

−1

0

1

F
ee
df
or
w
ar
d

to
rq
ue
s
τ
d
y
n
−
τ
f

(N
.m

)

0 1 2 3 4
Time (s)

−2.5

0.0

2.5

F
ri
ct
io
n
co
m
p
en
sa
ti
on

to
rq
ue
s
τ
f

(N
.m

)

Figure 2.9 – Torque commands, feedforward with friction compensation (case 2).

34

2.4. EXPERIMENTS

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗1 q1 ∆q1

−0.01

0.00

0.01

0 2 4
−1

0

1

q∗2 q2 ∆q2

−0.01

0.00

0.01

E
rr
or

(r
ad
)

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗3 q3 ∆q3

−0.01

0.00

0.01

0 2 4
−1

0

1

q∗4 q4 ∆q4

−0.01

0.00

0.01

E
rr
or

(r
ad
)

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗5 q5 ∆q5

−0.01

0.00

0.01

0 2 4
Time (s)

−1

0

1

q∗6 q6 ∆q6

−0.01

0.00

0.01

E
rr
or

(r
ad
)

0 2 4
Time (s)

−1

0

1

P
os
it
io
n
(r
ad
)

q∗7 q7 ∆q7

−0.01

0.00

0.01

E
rr
or

(r
ad
)

Figure 2.10 – Position command and response, feedforward with friction compensation
(case 2).

35

2.4. EXPERIMENTS

0 5
−1

0

1

P
os
it
io
n
(r
ad
)

q∗1 q1 ∆q1

−0.01

0.00

0.01

0 5
−1

0

1

q∗2 q2 ∆q2

−1

0

1

E
rr
or

(r
ad
)

0 5
−1

0

1

P
os
it
io
n
(r
ad
)

q∗3 q3 ∆q3

−0.05

0.00

0.05

0 5
−1

0

1

q∗4 q4 ∆q4

−0.05

0.00

0.05

E
rr
or

(r
ad
)

0 5
−1

0

1

P
os
it
io
n
(r
ad
)

q∗5 q5 ∆q5

−0.01

0.00

0.01

0 5
Time (s)

−1

0

1

q∗6 q6 ∆q6

−0.01

0.00

0.01

E
rr
or

(r
ad
)

0 5
Time (s)

−1

0

1

P
os
it
io
n
(r
ad
)

q∗7 q7 ∆q7

−0.01

0.00

0.01

E
rr
or

(r
ad
)

Figure 2.11 – Position command and response, feedforward with friction compensation
and a collision (case 3).

36

2.4. EXPERIMENTS

−40

−20

0

20

G
ra
vi
ty

to
rq
ue
s
g
(q
)

(N
.m

)

J1 J2 J3 J4 J5 J6 J7

−1

0

1

F
ee
df
or
w
ar
d

to
rq
ue
s
τ
d
y
n
−
τ
f

(N
.m

)

0 1 2 3 4 5 6 7
Time (s)

−2.5

0.0

2.5

F
ri
ct
io
n
co
m
p
en
sa
ti
on

to
rq
ue
s
τ
f

(N
.m

)

Figure 2.12 – Torque commands, feedforward with friction compensation and a collision
(case 3).

0 2 4 6
−5

0

5

10

E
xt
er
na
l

to
rq
ue
s
τ
ex

t

(N
.m

)

J1 J2 J3 J4 J5 J6 J7

Figure 2.13 – External torques, feedforward with friction compensation and a collision
(case 3).

37

2.4. EXPERIMENTS

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗1 q1 ∆q1

−0.01

0.00

0.01

0 2 4
−1

0

1

q∗2 q2 ∆q2

−0.1

0.0

0.1

E
rr
or

(r
ad
)

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗3 q3 ∆q3

−0.02

0.00

0.02

0 2 4
−1

0

1

q∗4 q4 ∆q4

−0.1

0.0

0.1

E
rr
or

(r
ad
)

0 2 4
−1

0

1

P
os
it
io
n
(r
ad
)

q∗5 q5 ∆q5

−0.025

0.000

0.025

0 2 4
Time (s)

−1

0

1

q∗6 q6 ∆q6

−0.02

0.00

0.02

E
rr
or

(r
ad
)

0 2 4
Time (s)

−1

0

1

P
os
it
io
n
(r
ad
)

q∗7 q7 ∆q7

−0.01

0.00

0.01

E
rr
or

(r
ad
)

Figure 2.14 – Position command and response, feedforward with friction compensation
plus PD control and a collision (case 4).

38

2.4. EXPERIMENTS

−20

0

20

G
ra
vi
ty

to
rq
ue
s
g
(q
)

(N
.m

)

J1 J2 J3 J4 J5 J6 J7

−20

0

20

40

F
ee
df
or
w
ar
d

to
rq
ue
s
τ
d
y
n
−
τ
f

(N
.m

)

0 1 2 3 4
Time (s)

−2.5

0.0

2.5

F
ri
ct
io
n
co
m
p
en
sa
ti
on

to
rq
ue
s
τ
f

(N
.m

)

Figure 2.15 – Torque commands, feedforward with friction compensation plus PD control
and a collision (case 4).

0 1 2 3 4
−20

0

20

40

E
xt
er
na
l

to
rq
ue
s
τ
ex

t

(N
.m

)

J1 J2 J3 J4 J5 J6 J7

Figure 2.16 – External torques, feedforward with friction compensation plus PD control
and a collision (case 4).

39

2.5. CONCLUSION

2.5 Conclusion
In this chapter, we discussed about the importance of having a dynamic model including
static friction to provide external forces and torques estimation and to enable low level
torque control. It was noticed that static friction cannot be compensated using a Coulomb
friction model, since it is not uniform across the joint space. Instead, we proposed the
use of an output-limited PD stiction controller to quickly compensate deviations from
the trajectory. This compensator was incorporated into a computed torque scheme to
enable precise joint positioning. Experiments showed that a good stiction compensation
strategy is required otherwise the joints stay still when subject to low acceleration profiles.
The proposed solution was proven effective to quickly compensate for the stiction related
errors without enforcing a stiff joint positioning.

In the next chapter, we will expose a framework for safe human-robot physical col-
laboration. In this framework, the control output is the vector of target joint positions
that can be used as input to (2.16). The internal position controller of the Kuka LWR4+
is very sensitive to the input and could not be used to achieve the fast reactive motions
often required during pHRI. Instead, the use of the proposed controller allowed to realize
any motion within the mechanical limits of the robot.

40

Chapter 3

Task space control solutions

In this chapter, we present a novel controller tailored for safe physical human-robot inter-
action and collaboration. This controller, being kinematics-based, outputs a joint velocity
vector used as an input for the torque control scheme presented in the previous chapter
(Fig. 2.5).

This controller can take into account velocities and forces (real or virtual ones, e.g.
repulsive force) at both the joint and task level, along with a velocity reduction method to
ensure a set of safety criteria. Sect. 3.1 presents the controller, starting with its derivation
from impedance control [58], then showing how joint and task space motions are fused
and how safety constraints can be incorporated. Sect. 3.2 and Sect. 3.3 detail some
possible force and velocity inputs that can be fed to the controller. Then, various safety
constraints are presented in Sect. 3.4, ranging from simple emergency stop to task space
kinetic energy limitation. An overview of the open source software implementation of the
methods presented in this chapter is given in Sect. 3.5. Finally, an experiment featuring
the controller in a mock-up collaborative scenario is presented in Sect. 3.6.

We consider a robot (open kinematic chain) with j degrees of freedom (dof) and one
control point (CP) on the terminal segment (TS), and denote: q ∈ Rj its joint values,
Bx ∈ SE (3) the TS pose at the CP, and Bẋ =

[
v> ω>

]> the TS velocities, both expressed
in the robot base frame (B). Velocities can be mapped between the CP frame (T) and
the base frame using:

Bẋ = BVT
T ẋ (3.1)

T ẋ = TVB
Bẋ = BV>T

Bẋ, (3.2)
(3.3)

with BVT being the spatial motion transform matrix defined by:

BVT =

[
BRT 03

03 BRT

]
, (3.4)

where BRT is the rotation matrix between the CP and the base frame. The mapping
between joint space and task space velocities is achieved using the Jacobian matrix J ∈
R6×j:

Bẋ = Jq̇. (3.5)

41

3.1. TWO-LAYER SAFE DAMPING CONTROL FRAMEWORK

However, to obtain the inverse mapping, the inversion of the Jacobian matrix must be
performed and it is well known that kinematic singularities can lead to instabilities if the
Jacobian’s (pseudo-)inverse is used. When interacting with a human operator, there is no
guarantee that s/he does not bring the robot in singular configurations, which might be
a threat to his safety, as the Jacobian’s inversion is not properly handled. To solve this
issue, we use, as in [59], an adaptive damped least squares pseudo-inverse instead of the
classical one:

J† = J>(JJ> + λ2I6)−1, (3.6)

with λ2 being calculated as:

λ2 =

{
0 if σm ≥ ε,

(1− (σm
ε

)2)λ2
max otherwise.

(3.7)

In (3.7), σm is the smallest singular value of J, which can be obtained from its singular
values decomposition, ε is a threshold that activates the damping effect, and λmax is the
maximum value for λ. The advantage of using (3.7) over a constant value for λ is that
the arm performance is not degraded away from singularity.

3.1 Two-layer safe damping control framework

Two-layer safe damping
control framework

Velocity

inputs

Force

inputs

Damping

Joint space

Velocity

inputs

Force

inputs

Damping

Task space

Forward
kinematics

Inverse
kinematics

Constraints

+

+ +

+

Robot interface

Figure 3.1 – Overview of the proposed controller.

The controller proposed in this section, outlined in Fig. 3.1, is based on damping
control, a special case of impedance control [58]. Impedance control relies in general on

42

3.1. TWO-LAYER SAFE DAMPING CONTROL FRAMEWORK

a mass-spring-damper system, as reminded in (3.8), that relates the forces f∗ applied on
the CP with its displacement ∆x from the reference pose. The impedance system is:

f∗ = Kt∆x + Bt∆ẋ + Mt∆ẍ, (3.8)

with ∆x = x−xr, Kt,Bt,Mt ∈ R6×6 diagonal positive matrices of stiffness, damping and
mass parameters respectively. Here, we consider only damping, and extend the paradigm
to both task and joint spaces, using:

f∗ = Bt∆ẋ (3.9)
τ ∗ = Bj∆q̇, (3.10)

with Bj ∈ Rj×j a diagonal positive matrix of damping parameters, ∆ẋ = ẋ − ẋr and
∆q̇ = q̇ − q̇r the errors between the current and reference velocities. Vectors f∗ and
τ ∗ indicate the forces at the CP and joint level, respectively. The generic term force
will be used when dealing with both forces and torques at the CP and joint levels in
order to simplify both the notations and the explanations. Also, throughout this chapter,
subscripts t and j indicate respectively task space and joint space related variable.

Equations (3.9) and (3.10) can be rewritten in order to output velocity commands
based on input (i.e., measured) forces and reference velocities:

T ẋ∗ = B−1
t

T fext + T ẋr. (3.11)
q̇∗ = B−1

j τext + q̇r. (3.12)

While (3.11) and (3.12) were proven to be useful to comply with interaction forces while
following a predefined trajectory, they can be extended to fit many more scenarios, as we
will show in this chapter.

To this end, we build a more generic two-layer controller that includes sets of force
inputs F and Γ (torques) and of velocity inputs V and ω (angular velocities):

T ẋ∗ = B−1
t

∑
fi∈F

T fi +
∑
ẋi∈V

T ẋi (3.13)

q̇∗ = B−1
j

∑
τi∈Γ

τi +
∑
q̇i∈ω

q̇i, (3.14)

with |F| , |V| , |Γ| , |ω| ∈ N. In this framework, the total task and joint velocities can be
computed with:

T ẋtot = T ẋ∗ + TVBJq̇∗ (3.15)

q̇tot = J† BVT
T ẋ∗ + q̇∗. (3.16)

It is important to note that (3.15) and (3.16) are related by:
T ẋtot = TVBJq̇tot, (3.17)

and thus represent the same motion expressed in two different spaces. Both (3.15) and
(3.16) are needed since, for example, one can design a trajectory at the joint level in ω
and add some compliance at the CP by including the external force in F .

With our method, real world forces can be combined with virtual ones, and it is
possible to add velocity sources in V and ω other than the reference – real – joint or task
space trajectories. In this work, the focus has been on :

43

3.2. FORCE INPUTS

• interaction forces,

• virtual mass and stiffness effects,

• attractive and repulsive forces generated by potential fields,

• velocities generated by a trajectory generator and a force control law.

This is of course not restrictive and many other inputs can be considered to fit more
scenarios.

When considering safety during human-robot interaction, most solutions can be ex-
pressed as some form of velocity reduction. This includes: stopping the robot upon
contact, reducing its velocity when nearby operators are approaching, and imposing con-
straints on velocity, kinematic energy or exchanged power. To cope with these issues, we
consider the following velocity scaling factor α ∈ [0, 1]:

α = min(1,min(C)). (3.18)

with C the set of constraints Ci ∈ R≥0 to fulfill, with |C| ∈ N.
This is finally used to reduce (if needed) the joint velocity that is sent to the robot

actuators:

q̇con = α q̇tot. (3.19)

Equations (3.13) - (3.19) make up our generic framework for safe physical human-robot
interaction and collaboration. In the next sections, we will detail the different constraints
and control inputs that have been considered in our work.

3.2 Force inputs
This section presents joint or task space force inputs that, when included respectively in
sets F in (3.13) and Γ in (3.14), let the robot comply with real world forces or react to
virtual ones. An illustrative example is given in Fig. 3.2.

Figure 3.2 – Examples of interaction, stiffness and repulsive forces.

44

3.2. FORCE INPUTS

3.2.1 Interaction forces

In many cases, it is necessary to adapt the robot motion in the presence of external forces,
e.g for kinesthetic guidance (teaching by demonstration). In such scenarios, the external
force fext can be included in F . If this is the only force input in F , the controller is a
classic damping controller. The same can be done at the joint level by including τext into
Γ.

3.2.2 Virtual stiffness and mass

Using a full impedance model, including stiffness and mass effects in (3.9) has been inten-
sively investigated in the literature and has proven useful in many cases [58, 60–62]. Let
us first recall the complete impedance law [58]:

f = Kt∆x + Bt∆ẋ + Mt∆ẍ, (3.20)

where ∆x = x − xr, ∆ẍ = ẍ − ẍr and K and M are diagonal positive semi-definite
matrices of stiffness and mass parameters, respectively. (3.20) can be rewritten in the
following form:

ẋ = B−1
t (f−Kt∆x−Mt∆ẍ) + ẋr. (3.21)

We can then derive the two force inputs needed to emulate (3.21) in our controller (3.13):

fx,stiff = −Kt∆x (3.22)
fx,mass = −Mt∆ẍ. (3.23)

Using F = {fext, fx,stiff , fx,mass} will result in classical admittance control. With a similar
approach, stiffness and mass effects can be described at the joint level in (3.14) with:

τq,stiff = −Kj∆q (3.24)
τq,mass = −Mj∆q̈. (3.25)

3.2.3 Potential field method

If the robot has to avoid collisions with operators or if it has to perform a motion in a clut-
tered environment, a collision avoidance algorithm should be used. Here, we demonstrate
how already existing obstacle avoidance mechanisms can be implemented in this frame-
work. We will take the case of the potential field method (PFM) [63], where obstacles are
sources of repulsive forces, and the target location is an attractive force source. Summing
up all these forces results in a motion in the most promising direction, i.e the solution is
not global and local minima may prevent the robot from reaching its goal. Dealing with
this limitation would require a complete knowledge of the environment which is usually
not available due to the use of limited field of view sensors (e.g., LIDAR or cameras) and
of dynamic scenarios. The PFM can be summed up as:

fatt = Kattηatt, (3.26)

frep =


∑
i

Krepi

(
1
d0i
− 1

drepi

)
ηrepi if drepi < d0

0 otherwise.
(3.27)

45

3.3. VELOCITY INPUTS

In (3.26) and (3.27), Katt and Krepi are positive scalar gains, ηatt and ηrepi are unit
vectors pointing from the robot to the target and to the i-th repulsive object, respectively.
Further, drepi is the distance to the i-th repulsive object and d0i is the distance at which the
repulsive effect starts appearing. In this framework, fatt can be omitted if some stiffness
effect fx,stiff is already included since it will provide the same attractive effect. Since
repulsive forces grow to infinity as drep → 0, it is recommended to include the velocity
constraint Cx,vel into the constraints set C to avoid excessively fast – hence dangerous –
motions.

3.3 Velocity inputs
In this section, we describe possible joint and task space velocity inputs. These velocities
can be, for instance, the result of a trajectory generator (Sect. 3.3.1) or of a force control
law (Sect. 3.3.2).

3.3.1 Reference trajectory

Since trajectory generation and tracking are present in most robotics applications, it
is crucial to have these in the presented framework. To this end, a polynomial-based
trajectory generator has been developed and is detailed in Appendix A. It can be used to
generate smooth joint or task space trajectories either with a given duration, or with given
velocity and acceleration limits (in the latter case, the minimum duration is computed).
Using (A.1) we can define the following inputs:

ẋr(t) = Ṗ(t, cx) (3.28)

q̇r(t) = Ṗ(t, cq), (3.29)

with cx ∈ R6×6 and cq ∈ Rj×6 the coefficients of the task and joint space trajectories
respectively. When needed, ẋr has to be included in V while q̇r has to be included in ω.

3.3.2 Force control

Force control is used extensively in various cases such as grinding, polishing, assembling,
echographic monitoring, needle insertion or minimally invasive surgery. We will demon-
strate how force control, or generally any control law outputting a velocity command can
be used within our framework. Let us first define the target force fr and its associated
error vector:

∆f = S(fr − fext), . (3.30)

Here, S is a diagonal binary selection matrix with elements S(i, i) = {0, 1}. It allows
to select which task space components will be driven by the force controller. Then, PD
control can be applied using (3.30) to compute the control point velocity to be included
in V :

ẋfc = KP∆f + KD∆̇f, (3.31)

with KP and KD diagonal positive gain matrices. If ∆f becomes large, high velocities can
be generated. To mitigate this, velocity limitation (that will be presented in Sect. 3.4.2)
can be included when force control is used.

46

3.4. CONSTRAINTS

3.4 Constraints

In this section, we will detail how different constraints (all of them being a form of velocity
reduction) can be described in order to be included in our controller through (3.18).

3.4.1 Emergency stop

A simple way to provide some level of safety, is to stop the robot motion when a contact
with a nearby operator occurs. This is mainly used in situations where a robot that relies
only on proprioception works near humans and any physical contact between the two
agents is prohibited. To provide such mechanism, we define the following constraint:

Cstop(t) =


0 if ‖fext‖ > Fth or ‖τext‖ > τth,

1 if ‖fext‖ < Fth and ‖τext‖ < τth,

Cstop(t− Ts) otherwise.
(3.32)

In (3.32), fext and τext are the external task and joint forces applied to the robot, the
upper and lower bars denote the activation and deactivation thresholds respectively and
Ts is the controller sample time. Using (3.32) in (3.18) results in a complete stop of the
robot when the external force passes one of the activation thresholds. Motion can be
resumed only when both ‖fext‖ and ‖τext‖ go below the deactivation thresholds.

3.4.2 Velocity limitation

Another very common safety criterion is velocity limitation. This is often part of safety
standards currently applied in robotics, such as the ISO10218-2011 [31]. Moreover, even
with a carefully planed trajectory respecting the imposed velocity limitation, other in-
puts in the controller can lead the robot to an increase in velocity, breaking the safety
requirements. To deal with this and respect any velocity limitation in any situation, we
define the following constraint:

Cx,vel =

{
Vmax

‖vtot‖ if ‖vtot‖ > 0

1 otherwise,
(3.33)

where Vmax ∈ R>0 is the maximum velocity allowed. By using this formulation, the value
of Cx,vel will stay above 1 as long as the robot total velocity is lower than Vmax, hence will
have no affect in (3.18).

Similarly, joint velocities can also be limited, e.g., to respect the mechanical constraints
of the robot’s actuators. To do so, the following constraint can be applied:

Cq,vel = min (q̇max � |q̇tot|) , (3.34)

where � denotes component-wise division1 and q̇max ∈ Rj
>0 is the vector of joint velocity

limits.
1This operator returns one in the case of a division by zero.

47

3.4. CONSTRAINTS

3.4.3 Acceleration limitation

To prevent the robot from performing abrupt motions, its acceleration1 can be constrained.
To do so, a limitation similar to (3.33) can be written, by taking into account the previous
control point velocity and the maximum velocity increase that can occur in one time step:

Cx,acc =

{
‖v(t−Ts)‖+Amax Ts

‖vtot(t)‖ if ‖vtot‖ > 0

1 otherwise,
(3.35)

with Amax ∈ R>0 the maximum acceleration allowed. This limitation can also be described
in the joint space using a similar approach:

Cq,acc = min ([|q̇(t− Ts)|+ q̈max Ts]� |q̇tot(t)|) , (3.36)

with q̈max ∈ Rj
>0 the vector of joint acceleration limits. Cx,acc and Cq,acc can then be

included in C if needed.

3.4.4 Power limitation

Another safety criteria in the ISO10218-2011 standard is power limitation. Power can be
limited at a low level, e.g. electric power as with the Kuka LWR4+, or at control level,
as we do here. One advantage of providing the limitation at the control level is that it
can easily be tuned online or even deactivated to allow high dynamic motions when no
operator is present. To this end, we propose a new constraint that can be added to the
controller to limit the amount of exchanged power. Let us first consider the definition of
power:

P =
〈
T fext, T ẋtot

〉
. (3.37)

Equation (3.37) can also be expressed at the joint level using:

P = 〈τext, q̇tot〉 . (3.38)

The choice between the two expressions depends on the sensors available on the robot.
Then, using either (3.37) or (3.38), we can define the associated power constraint:

Cpow =

{
Pmax

|P | if P < 0

1 otherwise,
(3.39)

Pmax ∈ R>0 being the maximum exchanged power allowed. It can be noticed that the
limitation can be effective only when the power is negative, i.e. when energy is absorbed
by the human. This way, the velocity will only be reduced when the robot represents a
potential threat to the operator. This is illustrated in Fig. 3.3.

1We only consider positive acceleration: limiting the deceleration is not possible in our framework
since we decide to only reduce the robot velocity. This choice is also motivated by the fact that limiting
the deceleration could break other constraints.

48

3.4. CONSTRAINTS

Safe Potentially unsafe

Figure 3.3 – Safe and unsafe power values.

3.4.5 Force limitation

Force limitation is the third and last constraint of the ISO10218-2011. True force lim-
itation is a really challenging problem, since it requires a complete knowledge of the
environment, including present humans. While for the environment a complete map (po-
sition, materials, etc) can be obtained, it is nearly impossible to have the same knowledge
about humans, as this would require estimation of their motion and body impedance
parameters which change over time (e.g. fatigue or muscular co-contraction may stiffen
a joint) and from a person to another. Hence, we decided to adopt a reactive approach
that does not rely on an environment model. By doing so, even if the external force can
pass the limit, the robot will react and quickly move away from the impact, to reach a
safe state. This approach has two steps. The first step consists in generating a very high
velocity in the direction opposite to the external force to move away from the collision and
to mitigate the other inputs. The second step consists in adding one or more constraints
to limit the actual velocity T ẋ generated by the first step, to a safe value.

Let us first describe the required velocity input to be included in V :

T ẋFlim
(t) =


−β fext

‖fext‖ if ‖fext‖ ≥ Fmax

0 if ‖fext‖ = 0
T ẋFlim

(t− Ts) otherwise.
(3.40)

In this equation, β is a very high gain (e.g. 1012 m.s−1) and Fmax ∈ R>0 is the force limit.
In can be seen from (3.40) that a very high velocity is generated as soon as the external
force passes the limit and maintained until the contact with the operator or environment
disappear.

Then, in order for the robot to behave safely while executing T ẋFlim
, its velocity must

be limited. This is done by including one or more velocity constraints in set C. For
example, to respect the ISO10218-2011, velocity and power limitations must be included:

Cforce = min(Cx,vel, Cpow). (3.41)

Cforce can then be included in C to provide the safety requirements.

49

3.4. CONSTRAINTS

3.4.6 Kinetic energy limitation

In the case of a robot colliding with a human operator, kinetic energy is closely related to
the level of injury endured by the operator. Haddadin et al. have proposed a methodology
to find a mapping between the kinetic energy, the impactor shape and the induced level
of injury [22]. Kinetic energy is a major concern when it comes to safety, and as such
should be limited. The kinetic energy of a rigid body in translation only is defined as:

Ek =
1

2
m‖v‖2 (3.42)

where m is the mass of the body. Limiting the kinetic energy can be seen as a form of
velocity limitation. As such, the following constraint can be derived from (3.33):

CEk
=


√

2Ekmax
m

‖vtot‖ if ‖vtot‖ > 0

1 otherwise,
(3.43)

It can be seen that (3.43) is equivalent to (3.33) in the case Vmax =
√

2Ekmax

m
. Plugging

(3.43) into (3.18) yields to a total kinetic energy limited to Ekmax.

The case of manipulators

When controlling a manipulator, (3.42) cannot be applied to compute the robot kinetic
energy since it cannot be represented as a point mass, but an alternative solution can be
found thanks to the concept of equivalent mass meq presented below. Let us first recall
the joint space dynamics of a rigid robot, previously detailed in 2.1:

τ = M(q)q̈ + C(q, q̇)q̇ + g(q) + τf (q̇). (3.44)

As it has been shown in [55], it is possible to define an operational space kinetic energy
matrix:

Λ(q) = (Jp(q)M(q)−1J>p (q))−1, (3.45)

with Jp(q) the Jacobian matrix that relates operational space velocities at the expected
collision point1 p to joint velocities. This kinetic energy matrix can be decomposed [22]
into:

Λ−1(q) =

[
Λ−1
v (q) Λ̄vω(q)

Λ̄>vω(q) Λ−1
ω (q).

]
(3.46)

The equivalent mass perceived at the impact point along the direction of the unit vector
u pointing toward the closest operator is given in [22]:

meq = (u>Λ−1
v (q)u)−1. (3.47)

The equivalent mass computed with (3.47) can then be used in (3.43) to limit the kinetic
energy of the manipulator.

1This can be chosen as the robot point closest to the operator or as the robot end effector.

50

3.5. SOFTWARE IMPLEMENTATION

3.4.7 Separation distance

If the separation distance between the robot and near operators is monitored, then it can
be used to adapt the limits imposed to the robot. Indeed, only a low level of security may
be required if no one is present in the robot surrounding, whereas very strict limitations
may be imposed when working closely or in collaboration with humans. A simple example
is depicted in Fig. 3.4. To accommodate with this, we use the interpolation function

Limited velocity

Full velocity

Figure 3.4 – Velocity limitation depending on separation distance.

described in Sect. A.2 to allow a smooth adaptation of the limits depending on the distance
dmin to the closest operator or to any other object to be avoided. As an example, we can
use (A.15) to smoothly interpolate the velocity limit in (3.33) so that: the robot will stop
if an operator is at less than 50 cm, and moves at up to 0.25 m.s−1 if the workspace if
free within a 2 m radius:

Vmax = fint(dmin, 0.5, 2, 0, 0.25). (3.48)

3.5 Software implementation

The controller, constraints and various inputs described in this chapter are available
through the OpenPHRI library, distributed online1 free of charge under the GNU LGPL
license2. The library is written in C++ to maximize the efficiency in terms of computa-
tions and memory footprint and also to be easily embedded in already existing projects.
Python bindings are also provided, since this language is largely used in the robotics com-
munity and it allows quick prototyping, while keeping low computational times since most
computations are performed in machine language. An interface for the robotics simulator
V-REP3 is provided and interfaces to other simulators and robots can be easily added.

1https://github.com/BenjaminNavarro/OpenPHRI
2https://www.gnu.org/licenses/lgpl-3.0.en.html
3http://www.coppeliarobotics.com

51

https://github.com/BenjaminNavarro/OpenPHRI
https://www.gnu.org/licenses/lgpl-3.0.en.html
http://www.coppeliarobotics.com

3.5. SOFTWARE IMPLEMENTATION

3.5.1 Project organization

Here is the detailed hierarchy of the project:

Table 3.1 – Detailed project hierarchy.

Hierarchy Content
src Source files for the libraries
• OpenPHRI C++ implementation of the controller and of the robot

data structure
- constraints Constraints implementation
- force_generators Task space force inputs
- velocity_generators Task space velocity inputs
- torque_generators Joint space force inputs
- joint_velocity_generators Joint space velocity inputs
- utilities Various utilities such as clock, data logger, intergra-

tor/derivator
• pyOpenPHRI Python bindings for OpenPHRI, developed with

Boost.Pythona

• vrep_remote_api APIb for external V-REP control
• vrep_driver OpenPHRI to V-REP interface
include Header files for the libraries, that follow the same struc-

ture as src
tests Unit tests for various parts of the OpenPHRI library
apps Example and demonstrations, to help getting started

with OpenPHRI
share Robot models and scenes for V-REP
build Build directory

3.5.2 Example

Listing 3.1 presents a short but meaningful example of OpenPHRI usage. In less than
25 lines of code (comments excluded) one can set up a V-REP scenario where a serial
manipulator robot Kuka LWR4+ is moved with an external force applied, while limiting
its velocity, reading sensory input, and sending joint commands to the simulator. It can
be seen (at lines 10 and 18) that smart pointers4 are used instead of raw pointers to pass
data through the library. This has the advantage of releasing automatically the associated
memory when it is no longer referenced in the program, avoiding memory leaks. Also,
using pointers instead of values allows the user to change some parameters (e.g. maximum
velocity) online very easily.

Since the example is self-explanatory thanks to the comments, we only highlight few
key elements of the library. First, a Robot object is required. This is a data structure
containing all the information regarding its current state (e.g., joint positions, external
force, kinematics) and control parameters (e.g., velocity bounds, damping factor). Next,
the controller itself, called SafetyController , is created and paired to the robot to control.

4Shared pointers from the standard C++ library.

52

3.5. SOFTWARE IMPLEMENTATION

A generic add method can be used to add constraints, velocity and force inputs to the
controller. The name given as first parameter to the add method can be used to retrieve or
remove the associated constraint or input from the controller. Then, to run the controller,
the call operator (line 36) is used.

1 #inc lude <OpenPHRI/OpenPHRI . h>
2 #inc lude <vrep_driver / vrep_driver . h>
3

4 // Use namespaces to shorten the types
5 us ing namespace phr i ;
6 us ing namespace std ;
7

8 i n t main (i n t argc , char ∗ argv []) {
9 // Create a robot with a name (used by the V−REP dr i v e r) and a j o i n t

count
10 auto robot = make_shared<Robot>("LBR4p" , 7) ;
11 // Set task space damping va lue s to 100
12 ∗ robot−>controlPointDampingMatrix () ∗= 100 . ;
13

14 // Create a c o n t r o l l e r f o r the robot
15 auto s a f e t y_con t r o l l e r = Sa f e t yCon t r o l l e r (robot) ;
16

17 // Create a po in t e r to s t o r e the maximum ve l o c i t y , here 0 . 1m/ s
18 auto max_vel = make_shared<double >(0.1) ;
19 // Add t h i s to the c o n t r o l l e r
20 s a f e t y_con t r o l l e r . add (" v e l o c i t y c on s t r a i n t " , Ve loc i tyCons t ra in t (

max_vel)) ;
21

22 // Feed the ex t e rna l f o r c e to the c o n t r o l l e r
23 s a f e t y_con t r o l l e r . add (" ex t e rna l f o r c e " , ExternalForce (robot)) ;
24

25 // Create a V−REP dr i v e r f o r sending j o i n t p o s i t i o n s with 5ms sample
time

26 vrep : : VREPDriver d r i v e r (robot , Contro lLeve l : : Joint , 0 . 005) ;
27 // Use V−REP synchronous mode .
28 d r i v e r . enableSynchronous (t rue) ;
29 // Star t the s imua l t i on
30 d r i v e r . s t a r tS imu la t i on () ;
31

32 whi le (1) {
33 // Update the robot with the cur rent s imu la t i on data
34 d r i v e r . getSimulat ionData () ;
35 // Run the c o n t r o l l e r
36 s a f e t y_con t r o l l e r () ;
37 // Send the con t r o l output
38 d r i v e r . sendSimulationData () ;
39 // Tr igger a s imu la t i on step
40 d r i v e r . nextStep () ;
41 }
42 }

Listing 3.1 – Example of a short OpenPHRI application.

53

3.5. SOFTWARE IMPLEMENTATION

3.5.3 Benchmarks

In physical human-robot interaction, in order for the robot to react quickly in the case
of an impact or to be as transparent as possible when physically collaborating with a
human, its control loop should run at a minimum of 1kHz. It is crucial that the controller
presented here and its implementation in OpenPHRI are fast enough to comply with this
timing constraint. To assess the performance of this library, some benchmarks have been
run on a computer equipped with an Intel i7-6700HQ @ 2.6GHz running Linux 4.11 and
the results are present below.

In Fig. 3.5, we present the results of the benchmarks for the controller associated with
different constraints and force or velocity inputs running on a 7 degrees of freedom manip-
ulator. At each iteration, the controller is run 10000 times and the average computation
time is retained. On Fig. 3.5a-3.5e, the average computation time t̄ and the standard
deviation σ over 1000 iterations are indicated. It should be noted that the computation
of the forward and inverse kinematics is not included in these results to only focus on
the control computation time overhead. Also, the current controller implementation is
single-threaded but, given the very low computational times observed in the benchmarks
(t̄ < 4µs in the most complex scenario presented, i.e., 3.5e), a multi-threaded version does
not seem to be required (although it would be possible to develop one). From Fig. 3.5f, it
can be seen that the memory usage1 stays very low, with a peak at 186 KiB. The abscissa
of this graph represents snapshots taken regularly during execution.

3.5.4 Sum up

Regarding the benchmark results, the presented controller can be executed at very high
rates (>1kHz) or on low end machines, while still achieving good performances. Moreover,
the OpenPHRI library is easy to use, and programs can be written in a very concise way,
while retaining high readability. The open source nature of the project allows its users to
add new features and to make improvements, avoiding it to become outdated on a long
term.

1Measured using the Massif tool from the Valgrind profiling software.

54

3.6. EXPERIMENT

0 200 400 600 800 1000
Iteration

1.0

1.2

1.4

1.6

T
im

e
(µ
s)

Computation time

Average

t̄ = 1.006µs
σ = 0.048µs

(a) Controller with no constraints and no inputs.
(C = V = F = ω = Γ = {})

0 200 400 600 800 1000
Iteration

1.0

1.2

1.4

T
im

e
(µ
s)

Computation time

Average

t̄ = 1.030µs
σ = 0.054µs

(b) Controller with a velocity constraint (C =
{Cx,vel}, V = F = ω = Γ = {}).

0 200 400 600 800 1000
Iteration

1.0

1.5

2.0

T
im

e
(µ
s)

Computation time

Average

t̄ = 1.154µs
σ = 0.132µs

(c) Controller with velocity and power con-
straints (C = {Cx,vel, Cpow}, V = F = ω = Γ =
{}).

0 200 400 600 800 1000
Iteration

3.5

4.0

4.5

T
im

e
(µ
s)

Computation time

Average

t̄ = 3.483µs
σ = 0.178µs

(d) Controller with velocity, power and kinetic
energy constraints (C = {Cx,vel, Cpow, CEk

}, V =
F = ω = Γ = {}).

0 200 400 600 800 1000
Iteration

3.5

4.0

4.5

5.0

T
im

e
(µ
s)

Computation time

Average

t̄ = 3.675µs
σ = 0.210µs

(e) Controller with velocity, power and kinetic
energy constraints and with a potential field,
a virtual stiffness and a force controller in the
task space (C = {Cx,vel, Cpow, CEk

}, V = {ẋfc},
F = {fx,stiff , frep}, ω = Γ = {}).

0 10 20 30 40 50
Snapshot

0

100

200

300

M
em

or
y
us
ag
e
(K

iB
)

186KiB

Heap memory

Stack memory

Heap + Stack memory

(f) Memory usage while executing the con-
troller benchmarks ((a)-(e)) sequentially.

Figure 3.5 – Benchmarks of the controller running on a 7 degrees of freedom manipulator.

3.6 Experiment
Let us now present the results of a full-featured experiment using the framework described
in this chapter.

The experiment is split in two phases, a teaching-by-demonstration phase, and a replay
phase, where the robot operates autonomously, in the presence of an obstacle and near
the human operator. Figure 3.6 shows the setup, consisting in a Kuka LWR4+ arm, with
external force fext estimated through the FRI interface1. All the code was written in C++
using the OpenPHRI library and integrated inside the Knowbotics Framework, currently
under development at LIRMM, to interface with the hardware. The FRI library was used
to communicate with the Kuka arm. The controller sample time was T=1 ms. To manage
the robot behavior, we designed in OpenPHRI the finite state machine shown in Fig. 3.7.

It is important to note that our framework is used continuously throughout both the
teaching and replay phases. An equivalent application using the V-REP simulator is

1http://cs.stanford.edu/people/tkr/fri/html/

55

http://cs.stanford.edu/people/tkr/fri/html/

3.6. EXPERIMENT

Figure 3.6 – Setup for the experiment.

available in the OpenPHRI repository under “apps/demo”1. The whole application has
less than 600 lines of code: 125 for the main file and 440 for the finite state machine
(header + source).

The teaching phase consists in manually guiding the robot, by applying fext ∈ F , to
teach it the waypoints where it should later realize a force control task (apply fr = 30N
for 2 s perpendicularly to the end-effector). The number of waypoints is not known a
priori. A waypoint is recorded when no motion is detected for 3 s and the teaching phase
ends if the robot remains still for 3 more seconds.

Once the operator has specified all the desired points, the replay phase is triggered.
The trajectory generator is used to output the control point (end effector) reference ve-
locity (ẋr ∈ V) for reaching each waypoint. When a waypoint is reached, the task space
force controller is activated (ẋfc ∈ V). After the force has been correctly applied, the
robot moves to the next waypoint. Once all the force control tasks have been performed,
the robot returns to its original position using the trajectory generator. During the replay
phase, while moving between waypoints, the external force at the control point is moni-
tored to trigger an emergency stop if its norm exceeds 10 N, as explained in Sect. 3.4.1.
Motion is resumed only when the external force is lower than 1 N. Additionally, potential
fields (frep ∈ F) are used to avoid a known object (here, an apple) in the environment.

Throughout the experiment, the joint velocities sent to the robot are output by (3.19),
with scaling factor α computed with the constraints in (3.18). The task space damping
matrix is set to Bt = diag(250, . . . , 250), while joint space damping Bj is not used.
During force control tasks execution, an acceleration limit (Cx,acc ∈ C) of Amax = 0.5 m/s2

is applied, to avoid abrupt motions. During the replay phase, a virtual stiffness Kt =
diag(1000, . . . , 1000), described in Sect. 3.2.2, is added to compensate deviations from the

1https://github.com/BenjaminNavarro/OpenPHRI/tree/master/apps/demo

56

https://github.com/BenjaminNavarro/OpenPHRI/tree/master/apps/demo

3.6. EXPERIMENT

Teach
initialization

+ Velocity limit (0.1 m/s)
+ External force

Wait for motion

Move

Record waypoint

No motion for 3 seconds

Replay
initialization

- Velocity limit (0.1 m/s)
- External force
+ Velocity limit (0.15 m/s)
+ Virtual sti�ness
+ Potential �eld

Compute trajectory

Force task execution
- Emergency stop
- Virtual sti�ness (z axis)
+ Force control (z axis)
+ Velocity limit (0.1 m/s)
+ Acceleration limit (0.5m/s²)

Go to next

waypoint
+ Emergency stop

Force task termination
- Force control (z axis)
- Velocity limit (0.1 m/s)
- Acceleration limit (0.5m/s²)
+ Virtual sti�ness (z axis)

Remaining waypoints > 0

Waypoint reached

Force applied for 2 seconds

Go to initial position

End

Initial position reached

No remaining waypoints

No motion
for 3 seconds

Figure 3.7 – Finite state machine used for the experiment. A + sign indicates an addition
to the controller (new constraint or new input) while a - indicates a removal.

trajectory. Both Bt and Kt were tuned experimentally to provide a suitable behavior. The
potential fields for obstacle avoidance are activated when the distance from the obstacle
is below 0.2 m. Throughout the experiment the velocity is limited, to Vmax = 0.1 m/s
during teaching, and to Vmax = 0.15 m/s during replaying.

Snapshots of the experiment are displayed in Fig. 3.8 while the results are shown in
Fig. 3.9. A video of the experiment is joint to this manuscript1. The teaching phase takes
place during the first 36 s. Then, the replay phase starts.

In Fig. 3.9a, the external force applied to the end-effector is displayed. The forces
applied by the operator during the teaching phase (snapshots 3.8b-3.8c) can be observed
from 2 to 30s. Then, the four force control tasks on the z axis (30N, snapshot 3.8e) as
well as the collision on the y axis (70s, snapshot 3.8g) can be recognized.

The components of the total control point velocity ẋtot are given in Fig. 3.9b. During
the first 30s, the relationship with the forces given in Fig. 3.9a is clear. Then, velocities
are generated by the trajectory generator (snapshots 3.8d,3.8h) and the force control law.

The influence of the constraints can be observed in Fig. 3.9c-3.9d, where the scaling

1Also available at https://youtu.be/Kt7u4p2Xz1g

57

https://youtu.be/Kt7u4p2Xz1g

3.6. EXPERIMENT

(a) The robot is waiting
in its initial position.

(b) The operator
teaches the first

waypoint.

(c) The operator
teaches the second

waypoint.

(d) The robots goes to
the first waypoint.

(e) Force control is
performed at the first

waypoint.

(f) The robot avoids
the obstacle by using
repulsive potential

fields.

(g) The operator stops
the robot to access the

workspace.

(h) The robot returns
to the initial pose.

Figure 3.8 – Snapshots of the experiment: teaching (a-c) and replay (d-h) phases.

factor α is plotted on the first one and where the control point velocity after the velocity
reduction is given in the second one. We can notice that the velocity has to be reduced
several times during the experiment in order to comply with the constraints and maintain
the operator’s safety.

Finally, in Fig. 3.9e, the current velocity limitation and the norms of the control point
translational velocities, before and after the velocity reduction, are given. We can see
that during the teaching phase, the forces applied by the operator led to a velocity above
the 0.1 m/s limit that was correctly reduced to meet the constraint. At the end of the
teaching phase, the velocity limit is increased to 0.15 m/s since the operator should not
be in the robot’s workspace anymore. During the replay phase, the velocity is reduced
while avoiding the obstacle at around t =70 s (snapshot 3.8f). We can also notice that
during this avoidance motion, the velocity is brought to zero since the operator makes an
unpredicted contact with the robot (snapshot 3.8g).

58

3.6. EXPERIMENT

0 20 40 60 80 100
Time (s)

−50

−25

0

25

50

F
or
ce
s
(N

,
N
m
)

fext,x fext,y fext,z τext,x τext,y τext,z

(a) Components of the external force fext, applied by the human for teaching or upon collision
(at t = 70 s), then by the robot during the four force control tasks.

0 20 40 60 80 100
Time (s)

−0.2

−0.1

0.0

0.1

0.2

V
el
oc
it
y
(m

.s
−1
,
ra
d.
s−

1
)

Vx Vy Vz ωx ωy ωz

(b) Components of the control point total velocity ẋtot.

0 20 40 60 80 100
Time (s)

0.00

0.25

0.50

0.75

1.00

α

(c) The scaling factor α, diminishing whenever the constraints are active.

59

3.6. EXPERIMENT

0 20 40 60 80 100
Time (s)

−0.1

0.0

0.1

V
el
oc
it
y
(m

.s
−1
,
ra
d.
s−

1
)

Vx Vy Vz ωx ωy ωz

(d) Components of the control point velocity applied after velocity reduction ẋcon = Jq̇con.

0 20 40 60 80 100
Time (s)

0.0

0.1

0.2

V
el
oc
it
y
(m

.s
−1
)

‖vtot‖ ‖vcon‖ Vmax

(e) Comparison between the current velocity limit Vmax and the total and applied translational
velocity norms (‖vtot‖ and ‖vcon‖).

Figure 3.9 – Relevant variables during the experiment.

60

3.7. CONCLUSION

3.7 Conclusion
We proposed a new control framework to design safe human-robot interactive and collab-
orative applications. By adopting a two-layer approach, we can use, at the same time,
constraints and inputs (velocity and force) expressed in both joint and task spaces, al-
lowing to fit a wide range of scenarios. It has been made as easy to use as possible so
that it can be quickly adopted and extended by other users. The associated open source
library, OpenPHRI, aims to its adoption even more. The method as been proven effective
in a mock up scenario with an operator guiding the robot to all the locations where a
given force needs to be applied, then letting the robot perform the tasks autonomously.
Velocity limitation has been applied during the whole task with the addition, during the
autonomous phase, of collision avoidance and a protective stop in the case of unpredicted
collisions. Benchmarks run on the controller showed that its performance is suitable for
control loops of 1kHz or more, as often required for collaborative tasks.

In this framework, we considered a fixed manipulator but, of course, many different
robot structures can be found and be useful in collaborative scenarios. In the next chapter,
we will discuss the extension of this work to omnidirectional mobile manipulators and
robotic hands.

61

3.7. CONCLUSION

62

Chapter 4

Extending to other robots

In the previous chapter, we presented a framework for the control of robotic manipulators
physically interacting with humans. In this chapter, we will investigate how this col-
laborative framework can be extended to include different robot types, including mobile
manipulators and robotic hands.

4.1 Mobile comanipulation framework
In this section, we consider a serial manipulator, as described in Chap. 3, mounted on
an omnidirectional mobile platform with ẋbase ∈ SE (3) its cartesian control input. In
this case, both x and ẋ are expressed in the robot base frame, attached to the center
of the mobile base. Velocities at the end-effector will be generated using the two-layer
safe damping control framework presented in Sect. 3.1. The work in this section focuses
on the redundancy that arises from having both a manipulator and a mobile platform
sharing some of the task space degrees of freedom and on how to provide a solution that
emphasizes intuitiveness during physical collaboration.

4.1.1 End-effector control

As explained above, the end-effector is driven using the framework presented in Sect. 3.1.
However, since the focus is made on physical collaborations, where the operator manually
guides the robot, we configure (3.19) to have the external wrench being the only input.
Also, for the sake of clarity, no safety constraints are imposed (although these can of
course be added). This translates to:

V = {} (4.1)
F = {fext} (4.2)

ω = {} (4.3)
Γ = {} (4.4)
C = {} (4.5)

Then, the end-effector velocity is obtained using:

ẋ = Jq̇con (4.6)

63

4.1. MOBILE COMANIPULATION FRAMEWORK

4.1.2 Whole body control strategy

Because of redundancy, mobile manipulators inherently share some mobility of the Carte-
sian space between the manipulator and the mobile base. In order to solve for such
redundancy, we adopt the following strategy:

ẋarm = Aẋ, (4.7)
ẋbase = (I−A)ẋ, (4.8)
A = diag{avx , avy , avz , aωx , aωy , aωz} ∈ R6×6. (4.9)

In these equations, ẋarm is the velocity command for the arm and all six a ∈ [0, 1]. The
derivation of the a values will be explained in section 4.1.3.

Inverse kinematics is used on the manipulator to map task space to joint space veloc-
ities:

q̇ = J†(q)ẋarm. (4.10)

Since different kinematic structures exist to allow omnidirectional motion (Swedish or
spherical wheels, legs, flying base, etc.) the actuation of the mobile base dof is not
considered in this work and we assume that the mapping from ẋbase to the base joint
values exists and is known.

4.1.3 Constraints

In this section, we explain how the a values are calculated, in order to satisfy a set
of constraints: distance to singularities, minimal manipulability, distance to objects and
angular deviation. For each constraint, the goal is to move only the arm, while the system
is far from that constraint. This is a major difference with classic whole body control,
where all joints are actuated to perform a task. Our choice arises from the fact that for an
operator manipulating the robot, it is more intuitive that the base is fixed when working
locally, and moves only when a distant target needs to be reached. This behavior is more
intuitive since it mimics the human one.

In order to get a smooth evolution of the a values, we use the interpolation fint function
described in appendix A.2 and illustrated in Fig. A.1.

4.1.4 Distance to singularities

Clearly, when the arm reaches a singular configuration, the mobile base has to take over.
To this aim, we use λ (see (3.7)) as a measure of the distance to singular poses to derive
the a values:

s = 1− λ2/λ2
max (4.11)

as,i = fint(s, 0, 1, 0, 1), ∀i ∈ {vx, vy, ..., ωz}. (4.12)

Using (4.11) leads to s varying from 1 in non-sigular poses (λ = 0) to 0 at singularity
(λ = λmax).

64

4.1. MOBILE COMANIPULATION FRAMEWORK

4.1.5 Manipulability

The manipulability index defined by Yohikawa [64] is a largely used metric in mobile
manipulation to solve the redundancy since it is related to the ability, for the arm, to
produce velocities in the task space. It can be computed as:

µ =

√
det(JJ>) =

M∏
i=1

σi (4.13)

where σi is the i-th singular value of J. This measure can be weighted with a factor
decreasing near joint limits, as in [65]. We propose the following penalization cost:

β(q) =

j∏
i=1

[
1−

[
2qi − (q+

i + q−i)

q+
i − q−i

]2
]
∈ [0, 1] , (4.14)

where q+
i and q−i are the upper and lower limits of the i-th joint. We can then merge the

two measures using:

m = [β(q)ϕ+ (1− ϕ)]µ, (4.15)

with ϕ a scalar value that can be adjusted from 0 (no penalization) to 1 (full penalization)
depending on the desired effect of β on the manipulability.

To account for manipulability, we set the a values to:

am,i = fint(m,mmin,mth, 0, 1),∀i ∈ {vx, vy, ..., ωz}, (4.16)

mmin being the smallest manipulability allowed and mth the manipulability threshold at
which velocities start to be transfered to the mobile base.

4.1.6 Distance to objects

The manipulator workspace can be limited by real (e.g. the mobile base body, to avoid
self-collisions) or virtual (e.g. a virtual wall limiting the arm motion) physical constraints.
We consider them all as geometric objects (e.g., planes, spheres, etc). We attach to the
end effector a virtual sphere, with a radius large enough to contain any tool the robot
may be carrying. Then, we define the set of n physical constraints (objects) limiting the
arm workspace. Finally, we compute the distance between each object and the sphere,
using the GJK algorithm [66]. This algorithm outputs the pair of closest points, pobj and
psphere, that respectively belong to the surface of the object and to that of the sphere. To
compute the a values, we first evaluate for each object k a distance vector dk = [dkx d

k
y d

k
z]
>

using algorithm 1.
In this algorithm, dmin and dth represent the minimum and threshold distances used

by the interpolator. We also impose dmin > 0 so that |∆pi| = 0 is true only when the
i-th axis is unconstrained. Finally, we can compute the a values realizing the distance
constraint with:

ad,vi =
n∏
k=1

dki ,∀i ∈ {x, y, z}. (4.17)

65

4.1. MOBILE COMANIPULATION FRAMEWORK

for k ← 1 to n do
∆pk = pkobj − psphere
for i ∈ {x, y, z} do

if |∆pki | > 0 then
dki = fint(|∆pki |, dmin, dth, 0, 1)

else
dki = 1

end
end

end
Algorithm 1: Workspace distance computation.

4.1.7 Angular deviation

In order to let the operator rotate the mobile base when needed, we constrain the angular
deviation to the reference orientation θ∗. To do so, we define:

ad,ωi
= fint(∆θi,∆θth,∆θmax, 1, 0),∀i ∈ {x, y, z} (4.18)

where ∆θi = |θ∗i −θi|, ∆θth is the angular activation threshold and ∆θmax is the maximum
angular error. In (4.18), the a values vary from 1 at the angular threshold to 0 at the
maximum deviation.

4.1.8 Constraint deactivation

Since all the constraint values depend solely on the current robot state, the arm can
be locked in one or more task space directions if the corresponding a values approach
zero (e.g., if the operator stretches it to the singular configuration, s/he cannot move it
afterwards). To solve this problem, we propose a general deactivation strategy that allows
the manipulator to move again if the generated velocity ẋ tends to move the robot away
from the constraint. For this, we define a virtual manipulator with joint values qv ∈ Rj,
end effector pose xv ∈ SE (3) and associated Jacobian Jv. Then, we execute the end-
effector velocity ẋ on the virtual arm over a sampling period Ts, starting from the real
robot’s current configuration. This gives us two manipulator configurations to compare.
At each sample time, we update the virtual robot with:

qv = TsJ†(q)ẋ + q, (4.19)
xvarm = fx(qv), (4.20)

Jv = fJ(qv). (4.21)

In these equations, fx and fJ are the forward kinematics algorithms for extracting the
manipulator’s pose and Jacobian, respectively. Then, constraints (4.12), (4.16), (4.17)
and (4.18) are computed for both the real and virtual arm. For each pair of constraints,
if the virtual arm constraint value is greater than the real arm one, the deactivation
mechanism is triggered. This results in:

a =

{
ar if av < ar or t > tend,

fint(t, tstart, tend, ai,start, 1) otherwise,
(4.22)

66

4.1. MOBILE COMANIPULATION FRAMEWORK

with ar and av the constraint values for the real and virtual arm respectively, t the current
time, tstart the time at which the mechanism was triggered and its associated value ai,start
and tend (initialized to 0) the time at which the a value will reach 1. With this technique,
we ensure a smooth transfer of the velocities from the mobile base to the arm.

4.1.9 Merging the constraints

In order to use different constraints at the same time, we propose to multiply them to
derive the value to inject in (4.9). This translates to:

a =
∏
i∈C

ai, (4.23)

with C being the set of constraints to include.
Instead of the product, the minimal value could also have been used. However, this

would not allow the operator to feel that a new constraint is approaching, and react to it
if the effect is not the desired one.

4.1.10 Experiments

In this section, we present the experiments assessing the correct behavior of the proposed
framework. In Sect. 4.1.11, we present simulations for a given reference trajectory ẋ∗

with each constraint taken separately; then, in Sect. 4.1.12, we introduce the setup for
real robot validation, and we comment the results in Sect. 4.1.13.

4.1.11 Validation

Distance to singularity

Figure 4.1 presents simulation results when only the singularity constraint is activated.
The velocity command ẋ extends the arm to reach a singular configuration, where the
mobile base starts moving, then retracts it to a non-singular pose. The relevant parameters
are the following: ε = 0.1, λmax = 0.1 and C = {s}. At t = 6.65s, the singularity
constraint is activated and velocities are progressively transferred from the arm to the
mobile base, until t = 9.75s, when the mechanism is deactivated. From this instant, the
as values increase up to 1 where the mobile base is stopped and only the arm moves.

Manipulability

Results for the manipulability constraint test are displayed in Fig. 4.2. The same velocity
command ẋ as in 4.1.11 is used. The parameters for this test aremth = 0.06, mmin = 0.03,
ϕ = 0.2 and C = {m}. As expected, the arm follows the velocity trajectory until the
manipulability measure drops below the threshold mth (at t=5.8s) and stops when mmin

is reached (in this example, the manipulability stays just above 0.03 so the arm is not at
a complete rest, but almost disabled). At this point, the mobile base fully tracks ẋ and
the arm is at rest. At t = 10s, the arm starts moving fatser again.

67

4.1. MOBILE COMANIPULATION FRAMEWORK

0.0

0.1

0.2 σm

λ

ǫ

0.00

0.25

0.50

0.75

1.00

C
o
n
st
ra
in
ts

as

tact

tstart

tend

2 4 6 8 10 12 14 16 18

Time (s)

−0.10

−0.05

0.00

0.05

0.10

V
el
o
ci
ty

(m
.s

−
1
)

vx
varm,x

vbase,x

Figure 4.1 – Distance to singularity simulation. Top: smallest singular value σm and
damping factor λ, middle: singularity constraints as = as,vx = as,vy = as,ωz , bottom:
velocity commands along the x axis. tact is the time at which the constraint gets activated.

Distance to objects

To assess the behavior of the workspace constraint, we use only one object (n = 1), a
1 × 1 × 2 m box, centered at the base frame origin. The same velocity profile as in
Sect. 4.1.11 is used but with opposite sign to first send the TCP against the mobile base
and then move away from it. The TCP virtual sphere radius is set to 15cm and we use
dth = 0.05, dmin = 0.001 and C = {d}. Results are presented in Fig. 4.3. As in the
previous experiments, the arm tracks the velocity profile until the threshold distance is
reached. Then, velocities are progressively transferred to the mobile base. It is only when
ẋ becomes positive (to send the TCP away from the mobile base) that the arm starts
moving again and the base starts to decelerate and finally stop.

Angular deviation

For the angular deviation test, we use a reference rotational velocity ω∗z that rotates the
TCP above the maximum allowed orientation error ∆θ = 1 rad. We use C = {a}. It can
be seen from Fig. 4.4 that the constraint gets activated when ∆θz crosses ∆θth = 0.5 rad
and that the velocities are correctly transfered from the arm to the mobile base. As in
the previous examples, deactivation occurs when the velocity sign changes.

68

4.1. MOBILE COMANIPULATION FRAMEWORK

0.04

0.06
M
an
ip
u
la
b
ili
ty

m

mth

mmin

0.0

0.5

1.0

C
o
n
st
ra
in
ts

am

tact

tstart

tend

2 4 6 8 10 12 14 16 18

Time (s)

−0.1

0.0

0.1

V
el
o
ci
ty

(m
.s

−
1
)

vx
varm,x

vbase,x

Figure 4.2 – Manipulability simulation. Top: manipulability measure m, middle: manip-
ulability constraints am = am,vx = am,vy = am,ωz , bottom: Velocity commands along the
x axis. tact is the time at which the constraint gets activated.

0.0

0.1

0.2

0.3

D
is
ta
n
ce

dx

dth

dmin

0.0

0.5

1.0

C
o
n
st
ra
in
ts

ad,vx
ad,vy = ad,ωz

tact

tstart

tend

2 4 6 8 10 12 14 16 18

Time (s)

−0.1

0.0

0.1

V
el
o
ci
ty

(m
.s

−
1
)

vx
varm,x

vbase,x

Figure 4.3 – Distance to objects simulation. Top: Minimal distance dx, middle: workspace
constraints, bottom: Velocity commands along the x axis; tact is the time at which the
constraint gets activated.

69

4.1. MOBILE COMANIPULATION FRAMEWORK

0.0

0.5

1.0

A
n
g
le ∆θz

∆θth

∆θmax

0.0

0.5

1.0

C
o
n
st
ra
in
ts

ad,vx = ad,vy
ad,ωz

tact

tstart

tend

4 6 8 10 12 14 16 18 20

Time (s)

−0.5

0.0

0.5

V
el
o
ci
ty

(r
a
d
.s

−
1
)

ωz

ωarm,z

ωbase,z

Figure 4.4 – Angular deviation simulation. Top: Angular error ∆θz, middle: workspace
constraints, bottom: Velocity commands (z axis); tact is the time at which the constraint
gets activated.

70

4.1. MOBILE COMANIPULATION FRAMEWORK

4.1.12 Real experimental setup

To validate the proposed approach, we set up an application where an operator needs
to move the TCP, attached to the arm’s end effector, to a distant area, outside the
manipulator’s workspace. To this end, we used the LIRMM Bazar1 platform, shown in
Fig. 4.5. Bazar is composed of a Neobotix MPO700 mobile base, two Kuka LWR4 arms,
two Shadow Hands and cameras. Only the right arm and the mobile base were used for
this experiment. The external wrench hext is estimated through the FRI interface2. The
implementation has been realized on a computer with an i7-6700HQ processor running
Linux with the Realtime Preemption patch3. All the code was written in C++ using the
Knowbotics Framework, currently under development at LIRMM. The FRI library was
used to communicate with the Kuka arm while a UDP bridge was set up to send cartesian
velocities to the computer embedded in the mobile base. The controller sample time was
T=1 ms and the average computation time was 0.15 ms. Due to technical limitations in
the mobile base low level controller, this was only updated every 25 ms.

Figure 4.5 – The Bazar mobile manipulator.

1Bimanual Agile Zany Anthorpomorphic Robot.
2http://cs.stanford.edu/people/tkr/fri/html
3https://rt.wiki.kernel.org/index.php/Main_Page

71

http://cs.stanford.edu/people/tkr/fri/html
https://rt.wiki.kernel.org/index.php/Main_Page

4.1. MOBILE COMANIPULATION FRAMEWORK

(a) Base is fixed,
arm

is moving.
t < 12s

(b) Base is
moving, arm

is fixed.
12s < t < 30s

(c) Base is fixed,
arm

is moving.
30s < t < 38s

(d) Both base and
arm

are moving.
38s < t < 47s

(e) Base is fixed,
arm is moving.

t > 47s

Figure 4.6 – Snapshots of the experiment.

4.1.13 Results

For this experiment, all three constraints were used C = {s,m, d, a}, with the following
parameters:

• distance to singularity constraint: ε = 0.1, λmax = 0.1,

• manipulability constraint: mth = 0.04, mmin = 0.02, ϕ = 0.2,

• allowed workspace constraint: dth = 0.05 m, dmin = 0.001 m, θmax = 1 rad, θth = 0.5
rad,

• deactivation mechanism: tend − tstart = 2 s.

Results from this experiment are shown in Figures 4.6, 4.7 and in the video attached
to this manuscript1. During the first 12 seconds the operator moves the arm freely and
the mobile base stays fixed (Fig. 4.6a). Then, since the TCP approaches a singular
configuration, the manipulability and singularity constraints are activated to transfer
the velocities to the mobile platform. This allows the operator to move the robot to
another location. During this phase, both translations and rotations of the mobile base
are performed in order to reach the desired configuration (Fig. 4.6b). At t = 30s, the
deactivation mechanism is triggered and the operator can again control the manipulator
(Fig. 4.6c). At t = 38s, the end effector is pushed toward the mobile base, activating the
workspace constraint. Until t = 47s, the mobile platform moves backward but the arm is
still allowed to move in the unconstrained directions (Fig. 4.6d). Finally, the deactivation
mechanism is enabled a second time to stop the mobile base and unconstrain the arm
motion (Fig. 4.6e).

1Also available at https://youtu.be/zEp2ycuUvcU

72

https://youtu.be/zEp2ycuUvcU

4.1. MOBILE COMANIPULATION FRAMEWORK

−0.25

0.00

V
el
oc
it
y
co
m
m
an
d

(m
.s
−1
,
ra
d.
s−

1
)

vx vy vz ωx ωy ωz

−0.1

0.0

0.1

A
rm

ve
lo
ci
ty

(m
.s
−1
,
ra
d.
s−

1
)

vx vy vz ωx ωy ωz

−0.25

0.00

B
as
e
ve
lo
ci
ty

(m
.s
−1
,
ra
d.
s−

1
)

vx vy ωz

0 10 20 30 40 50
Time (s)

0

1

C
on
st
ra
in
ts

avx avy aωz

Figure 4.7 – Experimental results. From top to bottom: velocity command ẋ (m/s, rad/s),
arm velocity command ẋarm (m/s, rad/s), base velocity command ẋbase (m/s, rad/s) and
constraint values avx , avy and aωz .

4.1.14 Conclusion on mobile comanipulation

The key point of this section is a new redundancy solution for mobile manipulators to
enhance physical human-robot collaboration. The tool velocity can be modified through
a reference trajectory or by interaction forces applied by a human operator. Four con-
straints have been proposed to exploit redundancy: distance to singularity, minimum of
manipulability, distance to objects and angular deviations. The framework has been val-
idated in both simulated and real environments. In future work, we will study different
scenarios where new constraints may be needed. These include navigation in cluttered
environments (e.g., for assistance to disabled people or to workers in factories).

73

4.2. HAND CONTROL

4.2 Hand control
In this section, we will investigate how a robotic hand (the Shadow Dexterous Hand with
five fingers) equipped with tactile sensors at the fingertips can be used in pHRI scenarios.
In Sect. 4.2.1, we will see how tactile data can be processed in order to extract meaningful
information, such as the point of contact and the applied force, or can be utilized as a way
for the operator to communicate with the robotic system. In Sect. 4.2.2, we expose how
the framework described in Sect. 3.1 can be used to grasp objects. Finally, two different
experiments are presented in Sect. 4.2.3.

4.2.1 Tactile sensing

Before any control or tactile communication can take place, fingertip sensors must be
calibrated in order to extract meaningful information. In this work, we focused on the
Syntouch1 BioTac sensors. They are equipped with a pressure sensor to measure static
pressure and vibrations, a temperature sensor for absolute temperature and heat flow
measurements and an array of 19 electrodes that, thanks to a conductive fluid present
between the electrodes and the flexible skin, relates to the skin’s deformation. A BioTac
sensor is represented, with its attached frame of reference, in figure 4.8.

Figure 4.8 – BioTac with its attached reference frame.

In order to enable force control at the fingertips and touch-based communication, we
need to extract force information from the sensor. To do so, two steps are required. The
first one is the calibration of the pressure sensor to establish a mapping between the raw
static pressure data provided by the sensor and the contact force magnitude, which can
be expressed as:

Fc = KPF (P − P0), (4.24)

with P the measured pressure, P0 the pressure offset and KPF a scaling gain. Then, after
a calibration, the electrode array can be used to reconstruct the point of contact. With
with point of contact, we can estimate a three-dimensional force by scaling the surface
normal vector at this point by the previously estimated force magnitude. This is done
under the assumption that the force is applied in the direction of the surface normal vector
(otherwise it would be impossible to reconstruct a three-dimensional force). The contact
point is computed, as in [67], using:

(xc, yx, zc) =

∑19
i=1 |e∗i |

2 (xi, yi, zi)∑19
i=1 |e∗i |

2 , (4.25)

1https://www.syntouchinc.com/

74

https://www.syntouchinc.com/

4.2. HAND CONTROL

with e∗i = ei − ei,0 being the i-th electrode value with its offset removed and (xi, yi, zi)
its position in the BioTac frame. An illustration of a BioTac sensor with its electrodes
visible is given in Fig. 4.9.

Figure 4.9 – Electrodes on a BioTac sensor.

The BioTac shape is composed of a cylindrical part for x < 0 and a spherical part for
x ≥ 0. Knowing this, we can compute the normal vector at the contact point:

ηc =



 0

cos(θcyl)

− sin(θcyl)

 if x < 0

sin(θsph) ∗ cos(φsph)

sin(θsph) ∗ sin(φsph)

cos(θsph)

 otherwise.

, (4.26)

with θcyl = arctan(−zc/yc), θsph = arctan(
√
x2
c + y2

c) and φsph = arctan(yc/xc). Knowing
both ηc and Fc allows us to estimate the three-dimensional force applied to the sensor:

fc = Fcηc. (4.27)

In order to use equations (4.24)-(4.27) we need to identify P0, KPF and e0, i.e., a total
21 parameters for each BioTac sensor. To this end, we set up an experiment where a force
plate is placed in front of a robotic hand equipped with a BioTac sensor on each fingertip
(see Fig. 4.10a). Then, during the experiment, the hand presses the plate which each
finger sequentially. Three sequences, each with a distinct level of pressure, are performed
to establish the relationship between the BioTac pressure data and the force measured by
force sensor ffs. The offset values P0 and e0 are obtained by averaging the sensor values
when the hand is still and not in contact with the plate. Plotting ffs against P − P0

clearly shows a linear mapping between the two, as seen in figure Fig. 4.10b. KPF can
then be derived using linear regression. More detailed information can be found in [1].

To enable touch-based communication, the tactile sensors can be used as buttons
to trigger some events (e.g., to start to grasp an object). To do so, we implement a

75

4.2. HAND CONTROL

(a) BioTac pressure sensor calibration
setup.

(b) Pressure to force relationship for a
BioTac sensor.

Figure 4.10 – BioTac sensor calibration.

comparator with hysteresis to detect if the sensor has been pressed:

C(t) =


1 if F > FH

0 if F < FL

C(t− Ts) otherwise,
(4.28)

where FH and FL (FH > FL > 0) are the pre-tuned high and low thresholds at which the
state changes. With this triggering system, the operator can command the robot during
interaction without the need of an external, sophisticated interface.

4.2.2 Grasp motion and force control

To successfully grasp an object, we first need to generate a trajectory to make contact
with it, then apply sufficient force to avoid any slippage. To do so, we apply the framework
described in 3.1 to each finger separately, to generate the grasping motion and to regulate
the fingertips contact forces. Hence, for each finger, we apply Eq. (3.19) with ẋfc ∈ V and
q̇r ∈ ω. The choice of having joint space trajectories instead of task space ones is due to
the fact that the default configuration oq∗ for a hand (open with finger extended) presents
kinematic singularities. With the proposed approach, only the force control is expressed
in the task space and, since this happens when the fingers are in a closed configuration
cq∗, the kinematic singularities do not cause any problem. A simple finite state machine
(as the one shown in Fig. 4.11) can be designed to handle the grasping.

76

4.2. HAND CONTROL

The first step consists in opening the hand, allowing the object to be handed over to
the hand. Then, the fingers are driven to a configuration known to be close to contact
with the object. Once that configuration is reached, a non-zero target force fgrasp is set,
forcing the hand to make contact with the object and to apply a force sufficient to hold
the object. When the object has to be released, fgrasp is set to zero before the hand is
brought back to its open configuration. The close configuration cq∗ and the amount of
force needed to grasp the object fgrasp has to be determined experimentally.

Start graspGo to open hand

con guration

Go to close hand

con guration

Set target forceReset target force

Target pose

reached

End grasp

Target pose

reached

Figure 4.11 – Grasping FSM

4.2.3 Test cases

We will detail two applications based on the previously exposed tactile sensing and hand
control. The first one consists in controlling a robotic hand via electromyography (EMG)
on tetraplegic patients as a training before performing electromyostimulation (EMS) on
their own hand. The second experiment consists of a robotic hand mounted at the end-
effector of a serial manipulator to grasp and actuate an electric screwdriver during a
physical collaboration task. In both applications, the system is composed of a Shadow
Dexterous Hand1 equipped with Syntouch BioTacs sensors at the fingertips. A ROS
interface2 was used to control the Shadow Hand and get the BioTacs measurements.
Kinematic computations were performed using the Robotics Library3.

EMG hand control

The goal of this experiment, depicted in figure Fig. 4.12, was to determine if patients
suffering from tetraplegia could use some of their still functioning upper body muscles4 to
trigger EMS on their own hand to restore functional motion. The complete results were
published in [4]. Here, we will only discuss the part that is relevant to this thesis.

When a muscle is stimulated (electrically or neurologically), its cells generate an elec-
tric potential. This potential can be measured using surface or intramuscular electrodes
and it reflects the muscle activity: the stronger the contraction, the higher the signal.
EMG signals need to be filtered before being used. Here, we are interested in the muscle
contraction level, so we need to extract the envelope of the signal. The filtering process
consists of a high-pass filter (Butterworth, fourth-order, 20Hz) followed by a low pass fil-
ter (Butterworth, fourth-order, 2Hz) on the absolute value of the previous filter’s output

1https://www.shadowrobot.com/products/dexterous-hand/
2http://wiki.ros.org/shadow_robot
3http://www.roboticslibrary.org
4Some of them can be contracted but do not induce motion.

77

https://www.shadowrobot.com/products/dexterous-hand/
http://wiki.ros.org/shadow_robot
http://www.roboticslibrary.org

4.2. HAND CONTROL

Figure 4.12 – EMG controlled robotic hand setup

signal. Illustrations of this filtering process on two different EMG signals are given in
figure Fig. 4.13. Then, the filtered signal is normalized using the value obtained from a
maximum contraction, to ensure homogeneous values between patients. Since valid mus-
cles differ between patients, a first identification phase was necessary. During this phase,
electrodes were put on the skin above each muscle and the patient was asked to contract
it as much as possible. Then, we determined if the signal was high enough above the noise
level to be usable.

In case the muscle was usable, the patient used it to control the closing of the robotic
hand. Two different grasps, palmar pinch and key grip, shown in figure Fig. 4.14, were
programmed and five different modes of control were investigated, as summed up in table
4.1. For continuous contractions, the contraction must be held to keep the hand closed.
In impulse modes, the first contraction triggers the closing of the hand while the second
one triggers its opening. For these two modes, a comparator with hysteresis is used to
detect if the muscle is contracted or not. The thresholds for the comparator were adjusted
on a patient and muscle basis, depending on how easy or difficult it was for the patient
to contract a given muscle. In the proportional mode, the stronger the contraction, the
more the hand closes. When using two muscles, the patient could choose between the two
available grasps. As an illustration, the FSM for mode 5 is given in figure Fig. 4.15. Tactile
sensing was also used to stop the grasp once a force threshold was reached, i.e C(t) = 1.
It allowed the patient to trigger grasps on different objects without the fear of damaging
them. A video of the experiment is attached to this document1. This experiment was run
on two different patients. Later on, a simplified version using only one control mode has
been conducted on 10 patients over three months to assess their muscles functioning and
to train them before performing EMS on their own hands. All these experiments were
conducted at the Propora clinic in Montpellier, France.

1Also available at https://youtu.be/nohOt01bW0Q

78

https://youtu.be/nohOt01bW0Q

4.2. HAND CONTROL

0 5 10 15 20 25 30 35 40 45
−1.5

−1

−0.5

0

0.5

1

1.5

Times (s)

V
o
lt
a
g
e
 (

m
V

)

(a) Biceps raw EMG signal.

0 5 10 15 20 25 30 35 40 45
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

V
o
lt
a
g
e
 (

m
V

)

Times (s)

(b) Biceps filtered EMG signal.

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5

Temps(s)

T
e
n
s
io

n
(m

V
)

(c) Trapezius raw EMG signal.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Temps(s)

T
e
n
s
io

n
(m

V
)

(d) Trapezius filtered EMG signal.

Figure 4.13 – Raw and filtered EMG signals.

Mode Description
1 Continuous contraction, one muscle
2 Impulse, one muscle
3 Proportional, one muscle
4 Impulse, two muscle
5 Continuous contraction, two muscle

Table 4.1 – EMG-based control modes.

79

4.2. HAND CONTROL

Figure 4.14 – Hand configurations. From left to right: open hand, palmar pinch and
key-grip.

Open
hand

Palmar
pinch

Key
grip

Figure 4.15 – EMG based control mode 5

80

4.2. HAND CONTROL

Collaborative screwing

The second experiment aimed at developing a robotic solution to provide assistance to an
operator during a screwing task. The system was composed of a Kuka LWR4+ arm with
a Shadow Dexterous Hand mounted at the end-effector.

The arm was under admittance control using (3.19), with the external forces (fext ∈ F)
used to move the tool to the screwing positions and a reference velocity (ẋr ∈ V) needed
to bring the robot back to its starting position at the end of the task. Virtual stiffness
(Kt ∈ F) was also used at specific moments, as will be explained later.

As specified by the ISO10218 standard, velocity (3.33), power (3.39) and force (3.40-
3.41) constraints were also applied to guarantee the operator’s safety. The task space
damping matrix was set to Bt = diag {250, 250, 250, 20, 20, 20} except in state (F) where
it is incresed along the non-screwing axes, the stiffness is set to
Kt = diag {500, 500, 500, 50, 50, 50} through states (A) to (D) and to Kt = 0 in the other
ones. The hand was driven using the methodology described in 4.2.2. For the contact
detection, the thresholds were set to FH = 2.1 N and FL = 1.9 N. A finite state machine
was designed to handle the various steps required to perform the task. Most of the state
changes are driven by the touch interface signal C (4.28), either on its rising edge ↑ C
or on its falling edge ↓ C. We detail below the steps involved for this task and represent
their transitions in Fig. 4.17:

(A) The tool moves to an initial fixed pose x∗, while the hand is still.

(B) The tool is still while the fingers are reset to their default configuration (oq∗).

(C) The tool is still while the hand prepares for grasping (fingers driven to an interme-
diate pq∗). The operator hands the screwdriver to the robot before triggering the
next step.

(D) The tool is still while the hand grasps the screwdriver (fingers driven to cq∗ before
force control is activated).

(E) The operator can translate and reorient the tool using (3.11), with ẋr = 0. When
the desired screwing position is reached, the operator triggers the next step.

(F) Tool motion is tolerated only along the screwdriver direction (z axis of the tool
frame), by setting Bt = diag {105, 105, 250, 105, 105, 105}.

(G) When the operator presses the thumb, the middle finger moves to power the screw-
driver. Since the middle finger’s BioTac does not touch the screwdriver, the finger
is controlled in open-loop. When the thumb is released, we move to state (H).

(H) The tool is stopped. If the previous press was long, we go back to (F) to continue
the screwing on the same axis, otherwise the FSM moves to (I).

(I) The operator can choose (via the thumb pressure duration) between pursuing screw-
ing at another location (E) or making the tool return to its initial position (A).

In Fig. 4.17, the force applied to the thumb tactile sensor, the short and long press
signals as well as the FSM states are displayed. The bottom graph is a close up between 30

81

4.2. HAND CONTROL

and 33 seconds to highlight the trigger signals changes. We can see that all the changes in
the FSM are correctly performed using the thumb presses and that such a simple interface
can be used even in moderately complex scenarios. Fig. 4.16 shows the evolution of the
little finger’s contact force before and after the tool is grasped. A large overshoot can be
observed before the force is regulated to its target value. This is due to the embedded
joint position controller that cannot accurately track the joint position command and
react fast enough to the sudden changes in the external force, mainly because of frictions
and flexibilities inherent to cable-driven robots. A video of the experiment is joint to this
manuscript1.

4.2.4 Conclusion on hand control

In this section, we proposed an extension to the collaborative framework presented in
chapter 3 for a robotic hand, allowing object grasping with contact force regulation but
also tactile communication. Both aspects rely on the presence of tactile sensors at the
fingertips. A methodology to extract meaningful data from such sensors has been detailed,
allowing the estimation of both the direction and the amplitude of the contact force as
well as the derivation of basic human intentions through tactile presses. These aspects
have been applied in two different scenarios, for the control of the hand via EMG signals
by tetraplegic patients and for collaborative screwing task.

1Also available at https://youtu.be/l8llthn_B4I

0.0 2.5 5.0 7.5 10.0 12.5
Time (s)

0

1

2

3

F
or
ce

(N
)

Contact force

Force target

Figure 4.16 – Force regulation on the little finger (Z axis).

82

https://youtu.be/l8llthn_B4I

4.2. HAND CONTROL

0 10 20 30 40 50 60 70 80
0.0

2.5

5.0

7.5

10.0

F
or
ce

(N
)

B C D
E

F G H
F
GH
I

E F G H
F
G H

I
A B

30.0 30.5 31.0 31.5 32.0 32.5 33.0
Time (s)

0.0

2.5

5.0

7.5

F
or
ce

(N
)

0

1

T
ri
gg
er

si
gn
al
C

Thumb force Short press Long press

0.0

0.5

1.0

T
ri
gg
er

si
gn
al
C

Figure 4.17 – FSM states during the collaborative screwing experiment. The bottom
figure is a close up between 30 and 33s to highlight the thumb presses detection.

Move to

initial pose

(A)

Reset hand

(B)

Prepare hand

for grasp

(C)

Grasp the

screwdriver

(D)

Moving

the tool

(E)

Lock motion

along screw

axis (F)

Power the

tool

(G)

Power o

the tool

(H)

No

Short button

press ?

Short button

press ?

No

Yes

Wait for

decision

(I)

Figure 4.18 – FSM for the collaborative screwing experiment.

83

4.3. CONCLUSION

4.3 Conclusion
We proposed two extensions of our safe damping controller presented in Chapter 3 to
enable the control of mobile manipulators and robotic hands in addition to serial manip-
ulators. For the mobile manipulators with an omnidirectional base, the proposed solution
splits the realization of the end-effector task between the arm and the base based on a set
of criteria to mimic a human behavior. Experiments, both in simulation and with the real
platform, have been conducted to prove the effectiveness of our solution. To achieve the
control of a dexterous robotic hand, we first explained how tactile sensors at the fingertips
can, once properly calibrated, be used to reconstruct a three-dimensional contact force.
Then, we proposed a finite state machine that uses both our safe damping controller and
the newly estimated force to perform grasps on an object. This work has been showcased
in two distinct experiments, one where the robotic hand was used as part of study aiming
to restore functional hand motion for tetraplegic subjects and a second one where the
hand, mounted at a manipulator end-effector, is used to grasp and actuate an electric
screwdriver and to detect human intentions using the force applied to the thumb tactile
sensor.

84

Conclusion

In this thesis, we explored physical human-robot interaction and collaboration and how
control can bring safety to these scenarios.

We first recalled the importance of a dynamic model for implementing low level torque
control, estimating the interaction forces and deriving some interesting safety criteria,
such as the reflected inertia. We showed that, when using a computed torque method
to achieve position control, the Coulomb friction model can hardly be used to describe
the joint dry friction of real robots, such as the Kuka LWR4+. The proposed solution
is a PD based model-free compensator with a very limited output range, that allows a
quick compensation of the errors induced by the dry frictions, without altering the desired
external perturbation behavior, and instead allowing accurate non-stiff joint positioning.

Then, we exploited damping control, a special case of admittance control, to build a
framework to design collaborative tasks while ensuring safety criteria. In this framework,
collaborative tasks can be described in either the joint or task space, using input velocities
and forces/torques. Safety constraints are introduced through velocity reduction, allowing
emergency stops, limitation of the joint and/or tool velocity, acceleration and power. It
is also possible to limit the force and the kinetic energy at the end-effector. Separation
distance monitoring, when available, allows to tune these limitations online, to adopt a
safer behavior when a human is close and to relax the limitations when no one is present in
the workspace. As mentioned earlier in this thesis, it seems that no single solution capable
of dealing with the four collaborative operations defined by the ISO15066 exists to this
day. To remedy this issue, we developed an open source library, called OpenPHRI, that
implements everything presented in this chapter and provides an interface for the V-REP
simulation software. The library was proven to be very efficient in terms of computation
and memory footprint, allowing execution at 1kHz or more.

In the last chapter, we extended this control framework to both omnidirectional mobile
manipulators and robotic hands. For mobile manipulators, the goal was to mimic a
human-like behavior by leaving the base fixed when the arm can execute the task by
its own and moving it only when necessary, to reach a distant object or to avoid self
collision for example. To cope with this and the task space redundancy introduced by
the mobile base, we proposed to split the velocity generated at the end-effector between
the arm and the base according to a set of constraints. These constraints are based on
the arm’s kinematic singularities and on the manipulability index, workspace limitations
and orientation deviation. The default behavior is to move only the arm but, when a
constraint is approaching, velocities start to be transferred to the mobile base. When
any of the given constraints are reached, the arm is completely stopped and only the
mobile base is used to perform the task. Also, a generic constraint deactivation strategy
has been designed to give the control back to the arm when the operator is moving

85

the robot away from a constraint. In the second part of this chapter, we looked at the
estimation of external forces using tactile sensors mounted on the fingertips of a robotic
hand and at how to provide a grasping strategy and contact forces regulation, based on
the work presented in chapter 3. This work was showcased in two different applications,
a collaborative screwing task and EMG-based control for tetraplegic patients.

Even if the solutions provided in this thesis aim for better physical human-robot collab-
orations, many things need to be done before such interactions can be fully considered for
real world applications. First, hardware must improve while reducing the costs. Collabo-
rative robots with flexible skin and/or joints are yet to be found in robot manufacturers’
catalogs but are a necessary step to make robot intrinsically safer to work or interact
with. Better sensing capabilities would benefit a lot to collaborative applications, with,
for example, a tactile skin to sense the location and intensity of a contact force anywhere
on the robot or even capacitive sensing to detect the direct proximity of humans without
relying on cameras or laser scanners. All this technology already exists to some extent,
but has not reached the market yet, limiting its spread.

Then, considering control, a huge amount of solutions have been proposed to solve
specific problems, but we are still missing a common framework to tackle any collaborative
task, slowing down the progress in the area. Moreover, the lack of open source software
makes the integration of previously published work harder and can quickly become very
time consuming.

OpenPHRI is a first attempt to bridge this gap but it is not perfect. Being solely based
on kinematics it can not include dynamics-based constraints, such as torque limitations,
or incorporate works from others that rely on a dynamic model and on torque control.
These issues will be investigated for future versions of OpenPHRI, to make the library
usable in more cases.

While physical human-robot interactions are still mainly focused on serial manipu-
lators, it is important to consider other robot structures to be able to bring a larger
set of innovative solutions to current robotics problems. We investigated the use of mo-
bile manipulators with an omnidirectional base during physical collaborations but non-
omnidirectional bases must also be considered since differential drive is common in cur-
rently available robots, thanks to its simplicity and low cost. For non-omnidirectional
bases, non-holonomic constraints have to be accounted for. This will lead eventually to a
more complex solution that the one we proposed here. Regarding robotic hands, a device
fully covered with a tactile skin would help to have a better sense of the grasped object
and would make tactile signing possible, allowing more detailed intention communication
to the robot. Miniaturization of the motorization would make light1 and dexterous hand
design possible, allowing these to be incorporated in other robots, typically humanoid.

Although improvements on control, software and hardware are required before we
can have access to truly collaborative robots, we still believe that this thesis contributed
to make robots easier to integrate, when designing collaborative applications and safer
to work with. We also hope that this work will contribute positively to the future of
collaborative robots.

1The Shadow Dexterous Hand weighs around 4.5kg.

86

Appendix A

Polynomial interpolation and trajectory
generation

This appendix will present how fifth-order polynomials are used in this thesis for smooth
interpolation and trajectory generation under velocity and acceleration constraints.

A.1 Fith-order polynomials

The order of a polynomial used for interpolation or trajectory generation is given by the
number of constraints to satisfy. In our case, we need to impose initial and final values as
well as their first and second derivatives. This leads to six constraints that can be satisfied
by a polynomial composed of six parameters, hence the use of fifth-order polynomials.

In this section we will recall how such functions are described and how their parameters
can be computed to satisfy the given constraints. The equations of a fifth-order polynomial
and its two first derivatives are given in (A.1)-(A.3):

P(t, c) = [t5 t4 t3 t2 t 1] c (A.1)

Ṗ(t, c) = [5t4 4t3 3t2 2t 1 0] c (A.2)

P̈(t, c) = [20t3 12t2 6t 2 0 0] c, (A.3)

where t ∈ R and c = [a b c d e f]> ∈ R6 are the vector of the polynomial coefficients.
Then, we define the initial and final constraints as:

P(0) = Pi P(T) = Pf (A.4)

Ṗ(0) = Ṗi Ṗ(T) = Ṗf (A.5)

P̈(0) = P̈i P̈(T) = P̈f , (A.6)

with T ∈ R>0. Using t ∈ [0, T] instead of the more general form t ∈ [T1, T2] allows simpler
expressions and solutions as well as faster computations. To compute the polynomial

87

A.1. FITH-ORDER POLYNOMIALS

coefficients, we put the problem in matrix form:

Pi
Ṗi
P̈i
Pf
Ṗf
P̈f

 = Ac =


0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 2 0 0
T 5 T 4 T 3 T 2 T 1
5T 4 4T 3 3T 2 2T 1 0
20T 3 12T 2 6T 2 0 0




a
b
c
d
e
f

 , (A.7)

that can then be solved with:

c(T,Pi, Ṗi, P̈i,Pf , Ṗf , P̈f) = A−1



Pi
Ṗi
P̈i
Pf
Ṗf
P̈f

 . (A.8)

It can be found that the determinant of A = −4T 9, leading to the matrix always being
invertible since T is strictly positive. Once the coefficients have been computed, the
evaluation of the polynomial and its first and second derivatives can be obtained using
(A.1)-(A.3). When generating multiple polynomials at the same time, the output vectors
can be obtained using:

P(t, ctraj) =


c>0
c>1
...

c>p



t5

t4

...
1


(A.9)

Ṗ(t, ctraj) =


c>0
c>1
...

c>p




5t4

4t3

...
0


(A.10)

P̈(t, ctraj) =


c>0
c>1
...

c>p




20t3

12t2

...
0

 ,
(A.11)

with p ∈ N the number of polynomials.
Trajectories should often be described using multiple waypoints. To deal with this,

we can split the trajectory into segments, each represented by a polynomial. This can be
translated to:

P(t, cs) = [t5 t4 t3 t2 t 1]


c0 if 0 ≤ t ≤ T0

c1 if T0 < t ≤ T1

...
cq if Tq−1 < t ≤ Tq

, (A.12)

with q ∈ N the number of segments. To avoid discontinuities in the trajectory, we impose
the following condition:

Ṗki = Ṗk−1
f (A.13)

P̈ki = P̈k−1
f , (A.14)

∀k ∈ [1, q].

88

A.2. INTERPOLATION

A.2 Interpolation
To perform smooth interpolations, we define the following function based on the polyno-
mial described in Sect. A.1:

fint(x, x
−, x+, y−, y+) =


y− if x ≤ x−,

y+ if x ≥ x+,

P(t, c(T, y−, 0, 0, y+, 0, 0)) otherwise.
(A.15)

with t = x − x− and T = x+ − x−. Imposing Ṗi = P̈i = Ṗf = P̈f = 0 gives us
a smooth function for all real value x, as depicted in Fig. A.1, where the evolution of
fint(x, 0.5, 2, 0, 0.25) for x ∈ [0, 2.5] is given. It can be seen that the constraints are
respected and that fint can be used when smooth interpolation is needed.

A.3 Trajectory generation
We will detail four complementary methods used in this work to generate task or joint
space trajectories.

The first method, presented in Sect. A.3.1, allows to generate polynomial-based trajec-
tories under velocity and acceleration constraints with arbitrary initial and final position,
velocity and acceleration. Similar solutions, such as the Reflexxes Motion Library [68],
are already available, with the main differences being bang-bang acceleration profiles, no
notion of waypoints to build complex trajectories and that they are only usable with
rotations described by Euler angles. Bang-bang acceleration profiles will produce the
shortest trajectories between two points, but are very demanding on the robot actuators
and can even cause them some damage due to their discontinuous nature. Also, smooth
trajectories are preferable during human-robot interaction, since they provide a more nat-
ural motion. Using fifth-order polynomials results in smooth and acceleration-continuous
trajectories, at the cost of a longer completion time.

The second method allows multiple trajectories, possibly each composed of several
segments, to be synchronized. It will be detailed in Sect. A.3.2.

In Sect. A.3.3, a method to generate trajectories in task space using unit quaternions
while maintaining translational and rotational velocities and accelerations under a given
limit will be presented.

0.0 0.5 1.0 1.5 2.0 2.5
x

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

f in
t

x −

x +

y −

y +

fint

Figure A.1 – Interpolation function fint for x− = 0.5, x+ = 2, y− = 0 and y+ = 0.25.

89

A.3. TRAJECTORY GENERATION

The last method monitors the tracking error to pause the trajectory generation when
the error becomes too large, and to resume it when the robot is close enough to the
target pose. This avoids the robot from “trying to catch up” with the trajectory if it
has been stopped (Sect. 3.4.1), slowed down (Sections 3.4.2, 3.4.4, 3.4.6) or pushed away
(Sections 3.2.1, 3.2.3).

A.3.1 Constrained trajectory generation

If a trajectory segment has to be completed in a given time, one can just use (A.8) to
compute the coefficients of the polynomial. Instead, if the time is not constrained, but
velocity and acceleration limits are given, T is a parameter to be determined.

Let us first consider the specific case of null initial and final velocities and accelerations:

c(T,Pi, 0, 0,Pf , 0, 0) =
[

6∆P
T 5 −15∆P

T 4
10∆P
T 3 0 0 0

]>
, (A.16)

with ∆P = Pf − Pi. Solving P̈(tvmax , c) = 0 gives us the time at which the velocity is
maximal, which is tvmax = T

2
. The maximum velocity is then determined by:

max[Ṗ(c)] =
30∆P
16T

, (A.17)

which leads to the minimum time required to satisfy the velocity limit Vmax:

Tmin,v =
30∆P
Vmax

, (A.18)

with Vmax ∈ R>0. The same reasoning can be applied to the acceleration limit Amax
resulting in:

Tmin,a =

√
10
√

3∆P
3Amax

, (A.19)

with Amax ∈ R>0. The minimum duration required for a segment to satisfy both con-
straints is:

T = max(Tmin,v, Tmin,a). (A.20)

When the initial and final velocities and accelerations are non zero, no trivial solution can
be found for T . To solve this problem we can use Alg.2 that, given an initial value for T
(set to 1 here, but could be any T ∈ R>0), will converge to the minimum time necessary
to comply with both constraints. The first part will solve T for the velocity limit Vmax
and the second one for the acceleration constraint Amax. At the end, (A.20) is used to
obtain the segment duration. In this algorithm, the minimum durations updates (∗) and
(∗∗) for Tmin,v and Tmin,a are exact in the specific case described above and are assumed
to be a good approximation in the general case. The maximum velocity max[Ṗ(c)] and
acceleration max[P̈(c)] for a given polynomial can be found using a zero search algorithm,
such as [69]. Benchmarks of Alg.2 are presented in A.3.5.

90

A.3. TRAJECTORY GENERATION

Tmin,v = Tmin,a = 1
repeat

vmax =
∣∣∣max[Ṗ(c(Tmin,v,Pi, Ṗi, P̈i,Pf , Ṗf , P̈f))]

∣∣∣
∆v = vmax − Vmax
Tmin,v = Tmin,v

vmax

Vmax
(∗)

until |∆v| < εv;
repeat

amax =
∣∣∣max[P̈(c(Tmin,a,Pi, Ṗi, P̈i,Pf , Ṗf , P̈f))]

∣∣∣
∆a = amax − Amax
Tmin,a = Tmin,a

√
amax

Amax
(∗∗)

until ∆a < εa;
T = max(Tmin,v, Tmin,a).

Algorithm 2: Segment minimum time computation.

A.3.2 Synchronization

When multiple trajectories must be generated simultaneously, some synchronization mech-
anisms should be used. This is illustrated in Fig. A.2, where two trajectories P0 and P1,
each composed of two segments, are represented using no synchronization (top), waypoint
synchronization (middle) and trajectory synchronization (bottom). For the the waypoint

−1

0

1
No synchronization

P0 waypoints

P1 waypoints

−1

0

1
Waypoint synchronization

P0 waypoints

P1 waypoints

0 2 4 6 8
Time (s)

−1

0

1
Trajectory synchronization

P0 waypoints

P1 waypoints

Figure A.2 – Comparison of the synchronization mechanisms.

synchronization, the duration of the shortest segments (the ones of P0 in the example) is
increased to match with the longest one (P1 segments here). For the trajectory synchro-
nization, each segment duration of the shortest trajectories (P0) is increased so that their

91

A.3. TRAJECTORY GENERATION

total duration matches the longest one (P1). This can be translated to:

T kj =


T kmin,j if no synchronization
max(T k) for waypoint synchronization
T kmin,j +

max(Tj)−Tmin,j

N
for trajectory synchronization,

(A.21)

where T kj denotes the duration of the k-th segment of the j-th trajectory, T kmin,j is the
minimum desired duration for the segment, Tmin,j =

∑N
k=1 T

k
min,j the minimum trajectory

duration, max(T k) the longest of the k-th segments, max(Tj) the longest of the trajectories
and N ∈ N is the number of waypoints. When T kmin,j is computed to respect velocity and
acceleration constraints (i.e., output by Alg.2), increasing it for synchronization purposes
does not violate the initial limits since the segment maximum velocity and acceleration
can only be lowered.

A.3.3 The case of orientations

Using unit quaternions to describe orientation in three dimensional space has several
advantages over both Euler angles (simpler composition, no gimbal lock) and rotation
matrices (more compact and numerically stable). Nevertheless, using unit quaternions
over Euler angles has the disadvantage that their interpolation under velocity and accel-
eration (or higher derivative) constraints is not trivial. To overcome this, we propose a
method to convert the quaternion interpolation problem in a form that allows the trajec-
tory generator described above to be used. We define the orientation quaternion as:

q = Q (qv, qw) (A.22)

with qv being the vector part and qw the scalar part. The target orientation is denoted
by q r. Then, we can compute an angular error vector ∆θ between q r and q vector using:

∆q(t) = q r(t)q(0) (A.23)

φ =

{
2 cos−1(∆qw) if ∆qw ≥ 0

2 cos−1(∆qw)− 2π otherwise
(A.24)

∆θ(t) = φ
∆qv(t)
‖∆qv(t)‖

. (A.25)

Using (A.24) gives φ ∈]−π, π], allowing the rotation to be kept at its minimum (e.g.,
a rotation of −π instead of 3π

4
). The trajectory generator described earlier can then be

configured to output a trajectory going from 03 = [0 0 0]> to ∆θ(t) under the desired
velocity and acceleration constraints ωmax and ω̇max:

∆θ∗(t) = P(t, c′) (A.26)

ω∗(t) = Ṗ(t, c′) (A.27)

ω̇∗(t) = P̈(t, c′). (A.28)

92

A.3. TRAJECTORY GENERATION

For pose tracking, the orientation quaternion q∗ to be tracked can be computed after each
interpolation as follow:

q∆(t) = Q
(

∆θ∗(t)

2
, 0

)
(A.29)

q∗(t) = eq∆(t)q(0) (A.30)

A.3.4 Path tracking

When the robot is paused or slowed down due to α in (3.18) being lower than 1 while
following a trajectory, the tracking error will grow, resulting in abrupt motions when it
becomes unconstrained. In fact, the robot will try to reach the current desired position
using the shortest path, which may be different from the initially planned one. To avoid
such problems, a path following approach can be used. The goal here is to monitor the
tracking error and to stop the trajectory generation when the error becomes too large.
This translates to:

tTG(0) = 0 (A.31)

tTG(t) =

{
tTG(t− Ts) + Ts if ‖xr − x‖ < εTG

tTG(t− Ts) otherwise
(A.32)

x∗ = P(c′, tTG(t)). (A.33)

Here, we can see that the time given to the trajectory generator is increased only when
the tracking error stays below the threshold εTG. When the error becomes too large, tTG
remains constant so that the target pose will no longer be updated. The generation of the
trajectory will be resumed only when the last computed target pose x∗ is reached within
εTG.

A.3.5 Benchmarks

Here, we only assess the good performance of algorithm 2. Indeed, the actual evaluation
of the polynomial is very fast since it only requires a limited number of additions and
multiplications and thus does not requires benchmarking. We defined three trajectories
(one for each task space translation), each composed of six segments using three different
waypoints. Details of the trajectories are presented in tables A.1 and A.2. It can be
seen that the trajectory on the x axis always has null velocity and acceleration. Thus,
its waypoints fall in the specific case described in A.3.1. The y axis trajectory is a bit
more complicated since the velocity and acceleration at the second waypoint are non-null.
Finally, the z axis trajectory is the most complicated one, since non-null velocity and
acceleration are imposed to all the waypoints.

All the benchmarks have been run on a computer equipped with an Intel i7-6700HQ @
2.6GHz running Linux 4.11. Figure A.3 gives the trajectory parameters computation time
using Alg. 2 for each individual trajectory and for the three together, using different syn-
chronization methods. The velocity and acceleration thresholds are set to εv = 10−6 m/s
and εa = 10−6 m/s2. Figure A.3 shows that the synchronization method has no noticeable
impact on the computation time. Moreover, the average computation time in the worse

93

A.3. TRAJECTORY GENERATION

case scenario (generating x, y and z trajectories) is around 40µs, which is suitable even
for online use. Table A.3 gives the number of iterations needed to converge to the solution
for εv,a = 10−6 (high precision) and εv,a = 10−3 (lower precision). It can be seen that for
the x axis trajectory, the number of iterations per segment is 4, which is minimal since
two iterations are needed to compute both Tmin,v and Tmin,a (one to update the minimum
duration and a second to check that the solution has been found). Reducing the precision
has a great impact on the convergence in non-ideal cases (y and z trajectories) since the
number of iterations is approximatively divided by two in this example.

Table A.1 – Trajectories’ waypoints.

Axis P1 P2 P3

P Ṗ P̈ P Ṗ P̈ P Ṗ P̈
x 0 0 0 0.1 0 0 0.3 0 0
y 0 0 0 0.2 0.1 0.05 0.3 0 0
z 0 0.1 0.1 0.2 0.05 -0.05 0.1 -0.1 0.1

Table A.2 – Trajectories.

Axis P1→P2 P2→P3 P3→P1 P1→P3 P3 → P2 P2→P1

Ṗmax P̈max Ṗmax P̈max Ṗmax P̈max Ṗmax P̈max Ṗmax P̈max Ṗmax P̈max
x 0.05 0.01 0.1 0.02 0.05 0.01 0.1 0.02 0.05 0.01 0.05 0.01
y 0.15 0.1 0.25 0.2 0.15 0.1 0.25 0.2 0.15 0.2 0.25 0.2
z 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Table A.3 – Number of iterations to compute the trajectories.

x y z

Total iterations (εv,a = 10−6) 24 87 136
Total iterations (εv,a = 10−3) 24 47 63

Iterations per segment (average, εv,a = 10−6) 4 14.5 22.6
Iterations per segment (average, εv,a = 10−3) 4 7.8 10.5

94

A.3. TRAJECTORY GENERATION

X Y Z XYZ
0

10

20

30

40

T
im

e
(µ
s)

No synchronization

Waypoint synchronization

Trajectory synchronization

Figure A.3 – Trajectories’ coefficients computation benchmark.

95

A.3. TRAJECTORY GENERATION

96

Bibliography

[1] B. Navarro, P. Kumar, A. Fonte, P. Fraisse, G. Poisson, and A. Cherubini. Active cal-
ibration of tactile sensors mounted on a robotic hand. In IEEE/RSJ IROS Workshop
on Multimodal sensor-based robot control for HRI and soft manipulation, 2015.

[2] B. Navarro, A. Cherubini, A. Fonte, R. Passama, G. Poisson, and P. Fraisse. An
ISO10218-compliant adaptive damping controller for safe physical human-robot in-
teraction. In IEEE International Conference on Robotics and Automation, pages
3043–3048, May 2016.

[3] B. Navarro, A. Cherubini, A. Fonte, G. Poisson, and P. Fraisse. A framework for
intuitive collaboration with a mobile manipulator. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pages 3043–3048, May 2017.

[4] Wafa Tigra, Benjamin Navarro, Andrea Cherubini, Xavier Gorron, Anthony Gelis,
Charles Fattal, David Guiraud, and Christine Azevedo-Coste. A novel EMG interface
for individuals with tetraplegia to pilot robot hand grasping. IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 2016.

[5] R. Alami, et al. Safe and dependable physical human-robot interaction in anthropic
domains: State of the art and challenges. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2006.

[6] S. Haddadin, A. Albu-Schäffer, and G. Hirzinger. Requirements for safe robots:
Measurements, analysis and new insights. International Journal of Robotics Research,
2009.

[7] A. De Luca and F. Flacco. Integrated control for pHRI: collision avoidance, detec-
tion, reaction and collaboration. In IEEE RAS/EMBS International Conference on
Biomedical Robotics and Biomechatronics, 2012.

[8] Nathanaël Jarrassé, Themistoklis Charalambous, and Etienne Burdet. A framework
to describe, analyze and generate interactive motor behaviors. PLOS ONE, 7(11):1–
13, 11 2012.

[9] R. Stiefelhagen, C. Fugen, R. Gieselmann, H. Holzapfel, K. Nickel, and A. Waibel.
Natural human-robot interaction using speech, head pose and gestures. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, volume 3, pages 2422–
2427 vol.3, Sept 2004.

97

BIBLIOGRAPHY

[10] B. Burger, F. Lerasle, I. Ferrane, and A. Clodic. Mutual assistance between speech
and vision for human-robot interaction. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4011–4016, Sept 2008.

[11] Eri Sato, Toru Yamaguchi, and Fumio Harashima. Natural interface using pointing
behavior for human-robot gestural interaction. IEEE Transactions on Industrial
Electronics, 54(2):1105–1112, apr 2007.

[12] Charles Rich, Brett Ponsler, Aaron Holroyd, and Candace L. Sidner. Recognizing
engagement in human-robot interaction. In 5th ACM/IEEE International Conference
on Human-Robot Interaction. IEEE, mar 2010.

[13] Mohammad Rabiei and Alessandro Gasparetto. System and method for recognizing
human emotion state based on analysis of speech and facial feature extraction; ap-
plications to human-robot interaction. In 4th International Conference on Robotics
and Mechatronics. IEEE, oct 2016.

[14] Ntombikayise Banda, Andries Engelbrecht, and Peter Robinson. Feature reduction
for dimensional emotion recognition in human-robot interaction. In IEEE Symposium
Series on Computational Intelligence. IEEE, dec 2015.

[15] A. Bruce, I. Nourbakhsh, and R. Simmons. The role of expressiveness and attention in
human-robot interaction. In Proceedings IEEE International Conference on Robotics
and Automation. IEEE, 2002.

[16] T. Fincannon, L.E. Barnes, R.R. Murphy, and D.L. Riddle. Evidence of the need
for social intelligence in rescue robots. In IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2004.

[17] Michiel Joosse, Manja Lohse, Jorge Gallego Perez, and Vanessa Evers. What you
do is who you are: The role of task context in perceived social robot personality. In
IEEE International Conference on Robotics and Automation. IEEE, may 2013.

[18] Lee M. Ssanderson, James W. Collins, and James D. McGlothlin. Robot-related
fatality involving a u.s. manufacturing plant employee: Case report and recommen-
dations. Journal of Occupational Accidents, 8(1-2):13–23, jun 1986.

[19] J. Krüger, T.K. Lien, and A. Verl. Cooperation of human and machines in assembly
lines. CIRP Annals - Manufacturing Technology, 58(2):628 – 646, 2009.

[20] Wansoo Kim, Jinoh Lee, Luka Peternel, Nikos Tsagarakis, and Arash Ajoudani.
Anticipatory robot assistance for the prevention of human static joint overloading in
human–robot collaboration. IEEE Robotics and Automation Letters, 3(1):68–75, jan
2018.

[21] Luka Peternel, Nikos Tsagarakis, Darwin Caldwell, and Arash Ajoudani. Adaptation
of robot physical behaviour to human fatigue in human-robot co-manipulation. In
IEEE-RAS 16th International Conference on Humanoid Robots. IEEE, nov 2016.

98

BIBLIOGRAPHY

[22] Sami Haddadin, Simon Haddadin, Augusto Khoury, Tim Rokahr, Sven Parusel,
Rainer Burgkart, Antonio Bicchi, and Alin Albu-Schaffer. A truly safely moving
robot has to know what injury it may cause. In IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, oct 2012.

[23] Gerd Hirzinger and Alin Albu-Schaeffer. Light-weight robots. Scholarpedia,
3(4):3889, 2008.

[24] M. Zinn, O. Khatib, B. Roth, and J.K. Salisbury. Playing it safe. IEEE Robotics
and Automation Magazine, 11(2):12–21, 2004.

[25] A. Albu-Schaffer et al. Soft robotics. IEEE Robotics and Automation Magazine,
15(3):20–30, 2008.

[26] R. Schiavi, G. Grioli, S. Sen, and A. Bicchi. VSA-II: A novel prototype of variable
stiffness actuator for safe and performing robots interacting with humans. In IEEE
International Conference on Robotics and Automation, 2008.

[27] Antonio Bicchi, Giovanni Tonietti, Michele Bavaro, and Marco Piccigallo. Variable
stiffness actuators for fast and safe motion control. In Springer Tracts in Advanced
Robotics, pages 527–536. Springer Berlin Heidelberg, 2005.

[28] J.C. Dean and A.D. Kuo. Elastic coupling of limb joints enables faster bipedal
walking. Journal of The Royal Society Interface, 6(35):561–573, oct 2008.

[29] Sami Haddadin, Tim Laue, Udo Frese, Sebastian Wolf, Alin Albu-Schäffer, and Gerd
Hirzinger. Kick it with elasticity: Safety and performance in human–robot soccer.
Robotics and Autonomous Systems, 57(8):761–775, jul 2009.

[30] Raphaël Furnémont, Glenn Mathijssen, Tom Verstraten, Dirk Lefeber, and Bram
Vanderborght. Bi-directional series-parallel elastic actuator and overlap of the actu-
ation layers. Bioinspiration & Biomimetics, 11(1):016005, jan 2016.

[31] ISO 10218-1:2011 Robot for industrial environments - Safety requirements - Part 1
: Robot. Technical report, International Organization for Standardization, Geneva,
Switzerland, 2006.

[32] ISO/TS 15066:2016 robots and robotic devices – collaborative robots. Technical
report, International Organization for Standardization, Geneva, Switzerland, 2016.

[33] Martin J. Rosenstrauch and Jorg Kruger. Safe human-robot-collaboration-
introduction and experiment using ISO/TS 15066. In 2017 3rd International Con-
ference on Control, Automation and Robotics (ICCAR). IEEE, apr 2017.

[34] Robotiq. Collaborative robot ebook - http://blog.robotiq.com.

[35] Antoine de Rengerve, Julien Hirel, Pierre Andry, Mathias Quoy, and Philippe
Gaussier. On-line learning and planning in a pick-and-place task demonstrated
through body manipulation. In IEEE International Conference on Development and
Learning. IEEE, aug 2011.

99

BIBLIOGRAPHY

[36] Luka Peternel, Nikos Tsagarakis, and Arash Ajoudani. Towards multi-modal in-
tention interfaces for human-robot co-manipulation. In IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, oct 2016.

[37] Jeremy A. Marvel and Rick Norcross. Implementing speed and separation monitoring
in collaborative robot workcells. Robotics and Computer-Integrated Manufacturing,
44:144–155, apr 2017.

[38] A Vick, D Surdilovic, and J. Krüger. Safe physical human-robot interaction with
industrial dual-arm robots. In 9th IEEE Workshop on Robot Motion and Control,
pages 264–269, 2013.

[39] H. G. Tanner, S. G. Loizou, and K. J. Kyriakopoulos. Nonholonomic navigation
and control of cooperating mobile manipulators. IEEE Transactions on Robotics and
Automation, 19(1):53–64, Feb 2003.

[40] A. De Luca, G. Oriolo, and P. R. Giordano. Kinematic modeling and redundancy
resolution for nonholonomic mobile manipulators. In IEEE International Conference
on Robotics and Automation, pages 1867–1873, May 2006.

[41] A. De Luca, G. Oriolo, and P. Robuffo Giordano. Kinematic control of nonholo-
nomic mobile manipulators in the presence of steering wheels. In IEEE International
Conference on Robotics and Automation, pages 1792–1798, May 2010.

[42] J. Vaillant, K. Bouyarmane, and A. Kheddar. Multi-character physical and be-
havioral interactions controller. IEEE Transactions on Visualization and Computer
Graphics, PP(99):1–1, 2016.

[43] D. J. Agravante, A. Sherikov, P. B. Wieber, A. Cherubini, and A. Kheddar. Walk-
ing pattern generators designed for physical collaboration. In IEEE International
Conference on Robotics and Automation, pages 1573–1578, May 2016.

[44] H. Adachi, N. Koyachi, T. Arai, and K. I. Nishimura. Control of a manipulator
mounted on a quadruped. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, volume 2, pages 883–888 vol.2, Nov 1996.

[45] A. E. Jimenez-Cano, J. Martin, G. Heredia, A. Ollero, and R. Cano. Control of an
aerial robot with multi-link arm for assembly tasks. In IEEE International Conference
on Robotics and Automation, pages 4916–4921, May 2013.

[46] J. U. Álvarez-Muñoz, Nicolas Marchand, Fermi Guerrero-Castellanos, Sylvain Du-
rand, and A. E. Lopez-Luna. Improving control of quadrotors carrying a manipulator
arm. In XVI Congreso Latinoamericano de Control Automático, page 6, -, Mexico,
October 2014.

[47] K. S. Kim, A. S. Kwok, G. C. Thomas, and L. Sentis. Fully omnidirectional compli-
ance in mobile robots via drive-torque sensor feedback. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 4757–4763, Sept 2014.

100

BIBLIOGRAPHY

[48] Y. Jia, H. Wang, P. Stürmer, and N. Xi. Human/robot interaction for human support
system by using a mobile manipulator. In IEEE International Conference on Robotics
and Biomimetics, pages 190–195, Dec 2010.

[49] Q. Leboutet, E. Dean-León, and G. Cheng. Tactile-based compliance with hierarchi-
cal force propagation for omnidirectional mobile manipulators. In IEEE-RAS 16th
International Conference on Humanoid Robots, pages 926–931, Nov 2016.

[50] Fei Chao, Zhengshuai Wang, Changjing Shang, Qinggang Meng, Min Jiang, Changle
Zhou, and Qiang Shen. A developmental approach to robotic pointing via hu-
man–robot interaction. Information Sciences, 283:288–303, nov 2014.

[51] Jim Mainprice, Mamoun Gharbi, Thierry Simeon, and Rachid Alami. Sharing effort
in planning human-robot handover tasks. In IEEE RO-MAN: The 21st IEEE In-
ternational Symposium on Robot and Human Interactive Communication. IEEE, sep
2012.

[52] Huajin Tang, Boon Hwa Tan, and Rui Yan. Robot-to-human handover with obsta-
cle avoidance via continuous time recurrent neural network. In IEEE Congress on
Evolutionary Computation. IEEE, jul 2016.

[53] Dimitrios Papageorgiou and Zoe Doulgeri. A kinematic controller for human-robot
handshaking using internal motion adaptation. In IEEE International Conference
on Robotics and Automation. IEEE, may 2015.

[54] M. Jindai and T. Watanabe. A handshake robot system based on a shake-motion
leading model. In IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, sep 2008.

[55] O. Khatib. Inertial properties in robotic manipulation: An object-level framework.
The International Journal of Robotics Research, 14(1):19–36, feb 1995.

[56] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics.
Springer Berlin Heidelberg, 2008.

[57] Łukasz Wolinski and Paweł Malczyk. Dynamic modeling and analysis of a lightweight
robotic manipulator in joint space. Archive of Mechanical Engineering, 62(2), jan
2015.

[58] N. Hogan. Impedance control: An approach to manipulation: Part II-
Implementation. Journal of Dynamic Systems, Measurement, and Control, 107(1):8–
16, 1985.

[59] S. Chiaverini, O. Egeland, and R. K. Kanestrom. Achieving user-defined accuracy
with damped least-squares inverse kinematics. In 5th International Conference Ad-
vanced Robotics, pages 672–677 vol.1, June 1991.

[60] F. Almeida, A. Lopes, and P. Abreu. Force-impedance control: A new control strat-
egy of robotic manipulators. In Recent Advances in Mechatronics, Springer, Singa-
pore, pages 126–137, 1999.

101

BIBLIOGRAPHY

[61] S. Jung, T.C. Hsia, and R.G. Bonitz. Force tracking impedance control of robot
manipulators under unknown environment. IEEE Transactions on Control Systems
Technology, 12(3):474–483, May 2004.

[62] G. Muscio, F. Pierri, and J. Trinkle. A hand/arm controller that simultaneously
regulates internal grasp forces and the impedance of contacts with the environment.
In IEEE International Conference on Robotics and Automation, pages 895–900, May
2014.

[63] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. The
International Journal of Robotics Research, 5(1):90–98, mar 1986.

[64] T. Yoshikawa. Manipulability and redundancy control of robotic mechanisms. In
IEEE International Conference on Robotics and Automation, volume 2, pages 1004–
1009, Mar 1985.

[65] Bong-Huan Jun, Pan-Mook Lee, and Jihong Lee. Manipulability analysis of under-
water robotic arms on rov and application to task-oriented joint configuration. In
MTTS/IEEE TECHNO-OCEAN, volume 3, pages 1548–1553 Vol.3, Nov 2004.

[66] Adrien Escande, Sylvain Miossec, Mehdi Benallegue, and Abderrahmane Kheddar.
A strictly convex hull for computing proximity distances with continuous gradients.
IEEE Transactions on Robotics, 30(3):666–678, June 2014.

[67] V. Ciobanu, D. Popescu, and A. Petrescu. Point of contact location and normal
force estimation using biomimetical tactile sensors. In 8th International Conference
on Complex Intelligent and Software Intensive Systems, pages 373–378, 2014.

[68] Torsten Kroger. Opening the door to new sensor-based robot applications - the
reflexxes motion libraries. In IEEE International Conference on Robotics and Au-
tomation. IEEE, may 2011.

[69] M. A. Jenkins and J. F. Traub. A three-stage algorithm for real polynomials using
quadratic iteration. SIAM Journal on Numerical Analysis, 7(4):545–566, 1970.

102

[Benjamin NAVARRO]
[Solutions pour une collaboration

humain-robot sûre]
L’interaction physique humain-robot devient cruciale dans un nombre grandissant
d’applications, de la santé à l’industrie, impliquant différents types de machines robo-
tiques : manipulateurs sériels, plates-formes mobiles, manipulateurs mobiles ou humanoïdes.
Dans les phases d’interactions, le robot ne doit assurément causer aucune blessure à
l’opérateur humain. C’est dans ce but que des efforts de standardisation ont étés réalisés
(ISO 10218, ISO/TS 15066) afin de fournir des guides lors de développements de tâches
collaboratives entre un humain et un robot. Cependant, à l’heure actuelle, aucune solution
globalement acceptée n’est en passe de répondre à ces problématiques. Les solutions
disponibles ne se concentrent que sur un nombre limité de fonctionnalités et ne peuvent
pas encore être utilisées seules pour répondre à la grande variété de scénarios collaboratifs.
Dans cette thèse, nous proposons un «framework »de contrôle sûr en amortissement à deux
niveaux, conjointement à son implémentation libre sur la plateforme ouverte OpenPHRI.
Celui-ci permet de décrire une grande variété de tâches tout en offrant la capacité de respecter
plusieurs critères de sécurité. Ce respect de la sécurité impose par ailleurs une maîtrise de
différents niveaux matériels. Nous nous intéresserons ainsi au contrôle bas niveau en couple de
robots présentant des frottements secs non modélisables, à l’estimation des forces et couples
externes, mais aussi à des extensions de notre framework aux manipulateurs mobiles, grâce
à une gestion de la redondance inspirée du comportement humain. Nous nous intéresserons
enfin aux mains robotiques équipées de capteurs tactiles permettant l’estimation des forces
de contact et la détection des intentions humaines simples.

Mots clés : robotique, interaction, collaboration, contrôle, sécurité

[Solutions for safe human-robot collaboration]

Physical human-robot interaction is becoming crucial in an increasing number of applications,
from health care to industrial processes, with many types of robots: serial manipulators,
mobile platforms, mobile manipulators or humanoids. During the interactions phases, the
robot must certainly not cause any harm to the human operator. To this end, some
standardization efforts have been realized to provide guidelines (ISO 10218, ISO/TS 15066)
when developing human-robot collaboration tasks but no generally accepted solution have
been proposed so far to fulfill these requirements. Present day solutions focus on a limited
set of features and so can’t be used, alone, to accommodate with a large variety of scenarios.
In this thesis, we propose a two-layer safe damping control framework, alongside with its
open source implementation OpenPHRI, that allows to describe a wide range of tasks while
being able to respect multiple safety constraints. This respect for safety also imposes a good
knowledge of the devices behavior. So, we also take a look at low level torque control in the
presence of non-modelisable static frictions, the estimation of external torques and forces,
as well as extensions to our framework to mobile manipulators, using a novel redundancy
solution that mimics a human behavior. We finally study robotic hands equipped with tactile
sensors allowing the extraction of contact forces and the detection of basic human intentions.

Keywords : robotics, interaction, collaboration, control, safety

PRISME, Université d’Orléans, Château de la
Source, Avenue du Parc Floral, BP 6749,

45067 Orléans Cédex 2

	Introduction
	Background and State of the art
	Human-robot interactions
	Terminology
	Social interaction
	Physical interaction
	Physical collaboration

	Compliant actuators
	Control for safe physical human-robot interaction and collaboration
	Interacting with robots other than serial manipulators
	Mobile manipulators
	Robotic hands

	Joint torque control and external force estimation
	External torques and forces estimation
	Torque control of a Kuka LWR4+
	Torque control scheme
	Experiments
	Conclusion

	Task space control solutions
	Two-layer safe damping control framework
	Force inputs
	Interaction forces
	Virtual stiffness and mass
	Potential field method

	Velocity inputs
	Reference trajectory
	Force control

	Constraints
	Emergency stop
	Velocity limitation
	Acceleration limitation
	Power limitation
	Force limitation
	Kinetic energy limitation
	Separation distance

	Software implementation
	Project organization
	Example
	Benchmarks
	Sum up

	Experiment
	Conclusion

	Extending to other robots
	Mobile comanipulation framework
	End-effector control
	Whole body control strategy
	Constraints
	Distance to singularities
	Manipulability
	Distance to objects
	Angular deviation
	Constraint deactivation
	Merging the constraints
	Experiments
	Validation
	Real experimental setup
	Results
	Conclusion on mobile comanipulation

	Hand control
	Tactile sensing
	Grasp motion and force control
	Test cases
	Conclusion on hand control

	Conclusion

	Conclusion
	Polynomial interpolation and trajectory generation
	Fith-order polynomials
	Interpolation
	Trajectory generation
	Constrained trajectory generation
	Synchronization
	The case of orientations
	Path tracking
	Benchmarks

