
UNIVERSITÉ PARIS 1
PATHÉON SORBONNE

Mémoire de Synthèse
présenté par

Welington Luis de Oliveira

pour l'obtention d'une

Habilitation à diriger des recherches

Spécialité : Mathématiques Appliquées

Optimisation non di�érentiable et optimisation stochastique :
de la théorie aux applications

soutenu le : 19/12/2018
devant un jury composé de :

M. Michel Théra Président
M. René Henrion Rapporteur
M. Georg P�ug Rapporteur
M. Philippe Bich Examinateur
M. Stephane Gaubert Examinateur
Mme. Nadia Maïzi Examinateur
Mme. Claudia Sagastizábal Examinateur
M. Jean-Marc Bonnisseau Garant

Ce travail est dédié à mon épouse Valentina.

Remerciements

Je souhaiterais exprimer toute ma gratitude au personnel du Centre de Mathématiques Appliquées
(CMA) de MINES ParisTech pour l'accueil qu'il m'a réservé depuis mon arrivée et son soutien permanent
qui a grandement contribué à mon intégration. En particulier, je voudrais remercier la directrice du CMA
Nadia Maïzi pour son appui et ses encouragements à rédiger ce manuscrit, la responsable administrative
et �nancière du CMA Catherine Auguet-Chadaj pour son aide inconditionnelle, et mes collègues Valérie
Roy et Matthieu Denoux pour le concours qu'ils m'ont apporté dans la relecture de la partie française
de ce mémoire.

Je suis également très reconnaissant à tous mes co-auteurs, en particulier Wim van Ackooij, Erlon Fi-
nardi, Antonio Frangioni, Claude Lemaréchal, Jérôme Malick, Claudia Sagastizábal et Mikhail Solodov
que je tiens à remercier pour nos échanges techniques enrichissants et l'amitié qu'ils veulent bien
m'accorder.

Je suis très sensible à l'honneur que me font professeurs René Henrion et Georg P�ug en acceptant d'être
rapporteurs de mon travail, le professeur Michel Théra de présider le jury de mon HDR, et les professeurs
Philippe Bich, Jean-Marc Bonnisseau, Stephane Gaubert, Nadia Maïzi et Claudia Sagastizábal en ac-
ceptant d'être examinateurs.

En�n, j'adresse mes plus sincères remerciements à mes familles brésilienne et italienne pour leur soutien
et leurs encouragements.

Welington Luis de Oliveira
École Nationale Supérieure des Mines de Paris - Mines ParisTech
Centre de Mathématiques Appliquées - CMA
1, rue Claude Daunesse, 06904, Sophia Antipolis, France
E-mail: welington.oliveira@mines-paristech.fr

Sophia Antipolis, décembre 2018

Abstract

This document is devoted to theoretical and practical aspects of two sub�elds of the mathematical pro-
gramming, namely nonsmooth optimization and stochastic programming. In general, real-life stochastic
programming models give rise to large-scale optimization problems that can only be solved with the help
of decomposition techniques and specialized algorithms. Invariably, techniques such as Benders decom-
position, Lagrangian relaxation, two-stage or multistage decomposition yield objective functions that
are not only nonsmooth but also di�cult to evaluate. For this reason, e�cient nonsmooth optimization
methods must come into play. This document highlights some of my contributions to these key sub�elds
for decision-making in real-life optimization problems, such as those coming from the industry of energy.

i

Résumé étendu

Ce mémoire présente des aspects spéci�ques de mes recherches et donne un aperçu de mes contributions
sur des sujets pratiques et théoriques de la programmation (optimisation) mathématique. Motivé par
des applications réelles de l'industrie de l'énergie, le c÷ur de mes recherches réside dans les aspects
algorithmiques de l'optimisation non di�érentiable (non lisse) et de la programmation stochastique, mais
a également une intersection avec des sujets plus théoriques tels que l'analyse de complexité, l'analyse
variationnelle et la convergence forte dans les espaces de Hilbert de certaines méthodes de faisceaux.

Le document est rédigé en anglais, à l'exception de cette partie introductive qui présente l'organisation
du mémoire et résume le chapitre 1 en mettant en évidence mes contributions à l'optimisation non lisse,
à la programmation stochastique et à leurs applications aux problèmes de la gestion de l'énergie.

La première section ci-dessous présente une vue générale des domaines de mes recherches, et la deuxième
partie donne un aperçu des contributions scienti�ques rapportées dans les chapitres 2, 3, 4, 5 et 6.
Cette partie introductive adopte un style concis et conversationnel, évitant une quantité signi�cative de
détails techniques. L'objectif est de rendre le contenu accessible non seulement aux experts sur des sujets
de l'optimisation non lisse et/ou stochastique, mais aussi à un public plus large. Les autres chapitres
présentent cinq de mes articles sur l'optimisation non lisse et la programmation stochastique qui ont été
publiés dans des revues spécialisées de programmation mathématique au cours des années 2016, 2017
et 2018. Ces contributions, présentés en détail dans les chapitres suivants, ont été choisies pour donner
une idée de mes divers sujets de recherche.

Les chapitres 2 et 3 traitent de l'optimisation déterministe non lisse : le premier discute de l'optimisation
convexe en présentant de nouvelles extensions des méthodes dites de niveau [50], et le second considère
l'optimisation non convexe et étudie une classe d'algorithmes avec une force d'inertie pour résoudre des
programmes DC (Di�erence de fonctions Convexes) [51].

Le chapitre 4 décrit le problème de plani�cation à long terme de la conception et de l'gestion du réseau
brésilien de gaz naturel étudié dans [32]. Une telle application aussi importante est modélisée comme un
programme linéaire stochastique à deux étapes et résolue en combinant une technique de décomposition,
un algorithme de faisceaux, et des techniques de réduction de scénarios.

Les chapitres 5 et 6 traitent de l'optimisation sous contrainte en probabilité : le premier présente des
résultats sur la convexité éventuelle de problèmes sous contrainte en probabilité structurée par Copulæ
[11], et le second rapporte le travail [4] sur des techniques d'optimisation basées sur le concept de p-
e�cient point et des méthodes de faisceaux inexactes.

En�n, le chapitre 7 conclut avec quelques remarques et des directions futures de mes recherches. Une
liste de toutes mes activités de recherche depuis mon doctorat, sous la forme d'un Curriculum Vitæ
étendu, est donnée en annexe.

Programmation mathématique : champs d'action

La programmation mathématique est la branche des mathématiques concernée par la théorie et les méth-
odes permettant de trouver des extrema de fonctions sur des ensembles d'espaces vectoriels. Le terme
"programmation mathématique" est lié au fait que l'objectif de résoudre un problème mathématique (de
trouver un maximum ou un minimum d'une fonction sur un ensemble admissible) est de choisir un pro-
gramme/plan d'action. Par exemple, une entreprise dans le domaine de l'énergie cherche un programme
d'action pour générer de l'électricité au coût minimum pour répondre à une demande de charge.

La formulation des problèmes de programmation mathématique (ou simplement problèmes d'optimisation)
considérée dans ce document est la suivante :

min
x∈X

f(x) s.t. c(x) ≤ 0 , (0.0.1)

où X 6= ∅ est contenu dans un ensemble ouvert O d'un espace de Hilbert H (dans la plupart de ce

ii

document H est simplement l'espace Euclidien Rn) et f, c : O → R sont fonctions convexes données.
Dans le contexte de l'optimisation non lisse, il n'y a pas de perte de généralité en considérant une
fonction de contrainte scalaire c, car elle peut être dé�nie comme le maximum de toutes les fonctions de
contrainte.

On distingue habituellement les branches suivantes de la programmation mathématique : linéaire,
quadratique, convexe, non lisse, stochastique, entière (mixte)/discrète, DC, etc. Naturellement, un
problème d'optimisation donné peut correspondre à plusieurs branches : par exemple, un problème de
programmation stochastique peut être non lisse et convexe en même temps. En fait, c'est dans cette
intersection des branches de la programmation mathématique que se trouve une partie importante de ma
recherche [4, 23, 148, 199]. La plupart de mes travaux traitent des problèmes d'optimisation convexe non
lisse, à savoir la formulation (0.0.1) où X est un ensemble convexe et où les fonctions f et c sont convexes,
e.g. [5, 9, 21, 45, 48, 50, 148, 149]. D'autres de mes publications considèrent les problèmes convexes
de programmation en nombres entiers mixtes (MINLP) : problème (0.0.1) avec des fonctions convexes
mais où X est un ensemble à nombres entiers mixtes [53, 150, 203]. Récemment, mes recherches ont été
étendues à un large éventail de problèmes dans lesquels X est convexe, mais f et c sont des fonctions
DC [51, 201].

Pourquoi étudier l'optimisation non lisse ? La programmation non lisse étudie la résolution des
problèmes d'optimisation sous la forme (0.0.1) où la fonction objectif f ou la contrainte c n'est pas
continûment di�érentiable. Pour résoudre de tels problèmes, il est nécessaire de considérer un objet
mathématique spécial : le sous-di�érentiel d'une fonction convexe f , noté ∂f(x), qui est un concept
fondamental dans l'analyse convexe. Si f est lisse (c'est-à-dire continûment di�érentiable) en un point
donné x, alors le sous-di�érentiel de f en x est un singleton et coïncide avec le gradient ∇f(x). Sinon,
dans le contexte convexe, le sous-di�érentiel de f en x est un ensemble donné par

∂f(x) := {g ∈ H : f(y) ≥ f(x) + 〈g, y − x〉 ∀ y ∈ H} .

Cette dé�nition dit que ∂f(x) est composé des pentes des hyperplans supportant l'épigraphe de f en
(x, f(x)). Chaque élément g de ∂f(x) est appelé un sous-gradient.

La principale raison d'examiner les méthodes d'optimisation non lisse est la suivante : la non-di�érentiabilité
des fonctions exclut l'application des méthodes d'optimisation lisse. Souvent en pratique, les (sous) gra-
dients des fonctions impliquées ne sont pas calculés exactement. En optimisation di�érentiable (lisse), les
gradients sont fréquemment obtenus à partir des valeurs fonctionnelles par des di�érences �nies. Cette
approche n'est valide que dans le cas lisse, car f ′(x; d) = 〈∇f(x), d〉 est linéaire en d et peut être ap-
proché par des quotients des di�érences �nies. Lorsque f n'est pas di�érentiable, la fonction multivaluée
x → ∂f(x) n'est pas continue. En conséquence, les quotients des di�érences �nies n'appartiennent pas
nécessairement au sous-di�érentiel, même pas à la limite [29, page 125]. En fait, la non-di�érentiabilité
empêche même l'application des méthodes sans dérivées (algorithmes qui ne nécessitent pas de calcul
de dérivées) : puisque l'analyse de la convergence de ces méthodes dépend fortement des hypothèses de
di�érentiabilité [42].

De plus, de nombreuses applications motivent l'étude de la programmation non lisse. En e�et, les prob-
lèmes de minimisation d'origine économique conduisent fréquemment à la manipulation de fonctions qui
ne sont pas continûment di�érentiables. Très souvent, la non-di�érentiabilité est introduite arti�cielle-
ment par les techniques de décomposition utilisées pour la résolution des problèmes "réels", qui sont à
la fois de grande taille et de nature hétérogène. C'est le cas du problème de plani�cation du réseau de
gaz naturel présenté au chapitre 4.

Pourquoi étudier l'optimisation stochastique ? La programmation stochastique est la branche
de la programmation mathématique dans laquelle on étudie la théorie et les méthodes pour résoudre
des problèmes d'optimisation qui dépendent de paramètres incertains ayant des distributions de proba-
bilités connues. L'optimisation stochastique est parfois appelée optimisation sous incertitude, mais cette
dernière désignation devrait être évitée car elle est si large qu'elle englobe des problèmes d'optimisation

iii

pour lesquels aucun modèle stochastique (avec une distribution de probabilité connue) n'est disponible.
En raison de la présence de paramètres aléatoires, la théorie de la programmation stochastique combine
les concepts d'optimisation avec la théorie des probabilités et des statistiques [181].

Les nombreuses applications motivent l'étude de la programmation stochastique : des modèles d'optimisation
stochastique sont présents dans presque tous les domaines de la science et de l'ingénierie, de la gestion
du système d'électricité, transport et à la �nance, etc. De tels modèles sont généralement utilisés comme
substituts aux formulations déterministes lorsque ces dernières se présentent comme insatisfaisantes ou
inappropriées pour faire face à la prise de décision dans des situations réelles. En général, les modèles
d'optimisation stochastique donnent lieu à des problèmes d'optimisation de grande taille qui ne peu-
vent être résolus qu'à l'aide de techniques de décomposition et d'algorithmes spécialisés. Souvent, des
techniques telles que la décomposition de Benders, la relaxation Lagrangienne, la décomposition à deux
où à plusieurs étapes rendent des fonctions objectives qui ne sont pas seulement non lisse mais aussi
di�cile à évaluer. Ces deux di�cultés sont présentes dans les deux sous-domaines de la programmation
stochastique, à savoir la programmation stochastique avec recours et la programmation sous contrainte
en probabilité.

Dans les problèmes d'optimisation avec recours, il faut résoudre plusieurs sous-problèmes pour estimer
la fonction non lisse f (généralement donnée sous une forme d'espérance mathématique), et dans les
problèmes sous contrainte en probabilité, la fonction c dépend d'une mesure de probabilité qui est
calculée via l'intégration numérique multidimensionnelle et/ou la simulation. Dans les deux cas, évaluer
exactement les fonctions dans des temps de calcul raisonnables est une tâche di�cile en général. Cette
di�culté est encore plus critique lorsque l'on considère des problèmes d'optimisation de grande taille,
comme ceux provenant de l'industrie de l'énergie.

Problème de la gestion de l'énergie : comme application et source d'inspiration. Le prob-
lème de la gestion de l'énergie consiste à utiliser e�cacement des ressources pour répondre aux besoins
énergétiques. Il rassemble la plani�cation et la gestion d'unités de production et de consommation
d'énergie. À titre d'exemple, dans les systèmes électriques, il faut générer de l'électricité pour répondre
à la demande en temps réel, ce qui implique une plani�cation appropriée et éventuellement une augmen-
tation des moyens de production. Bien que la minimisation des coûts et la maximisation des revenus
soient les objectifs les plus courants, la conservation des ressources et la protection environnementale
reviennent de plus en plus fréquemment dans les débats tandis que de nouvelles lois relatives à l'évolution
des systèmes énergétiques entrent en jeu.

Dans la catégorie des problèmes de la gestion de l'énergie, l'importance des méthodes de programmation
mathématique a été reconnue depuis longtemps. Avec la croissance des sources d'énergie renouvelable
intermittentes, le besoin de gérer l'incertitude dans de tels problèmes d'optimisation est devenu primor-
dial pour la quête de rentabilité et d'une plus grande �abilité du système. Dans ce nouveau paradigme,
comment pouvons-nous gérer le caractère aléatoire des sources renouvelables de production d'électricité
? La programmation stochastique o�re des réponses à cette question, pour cette raison, les méthodes
d'optimisation stochastique sont devenues des outils essentiels dans l'industrie de l'énergie.

Les problèmes d'énergie réels engendrent des problèmes d'optimisation de grande taille qui, en général,
ne peuvent être résolus qu'à l'aide de techniques de décomposition. Comme mentionné ci-dessus, de telles
techniques conduisent à des fonctions objectif qui sont non seulement non lisses mais également di�ciles à
évaluer. En plus, très souvent, l'hypothèse de convexité est aussi absente. Ces caractéristiques soulèvent
des problèmes d'optimisation présentant un niveau de di�culté marquant, parfois prohibitif dans le cadre
des problèmes de grande taille. En conséquence, de nouvelles techniques d'analyse variationnelle sont
nécessaires pour améliorer les méthodes de résolution dans ce contexte.

iv

Un aperçu des travaux rapportés dans ce mémoire

Cette section présente un aperçu de cinq des mes travaux de recherches sur l'optimisation non lisse et
la programmation stochastique, et met en évidence mes contributions dans ces domaines. La section
commence par une discussion sur les algorithmes pour l'optimisation non lisse en présentant les méth-
odes de faisceaux, la programmation DC, et �nit par les programmes stochastiques sous contrainte en
probabilité.

Optimisation non lisse. Comme nous l'avons déjà mentionné, la non di�érentiabilité des fonctions
impliquées empêche l'application des méthodes d'optimisation di�érentiable, y compris celles qui ne
nécessitent pas de calcul des dérivées. Les problèmes d'optimisation non lisse nécessitent des méthodes
spéciales tenant compte de la discontinuité du sous-di�érentiel. Parmi ces techniques spéciales, les
méthodes du sous-gradient et des plans sécants sont peut-être les approches les plus connues pour
les problèmes d'optimisation non lisse. De telles méthodes sont également connues pour avoir une
convergence lente (dans certains cas, le nombre de points d'essai générés par la méthode des plans sécants
augmente de façon exponentielle avec la dimension du problème [142, pp. 158-160]). Les méthodes de
faisceaux [29] sont des algorithmes particulièrement appropriés pour l'optimisation convexe non lisse
lorsque la précision de la solution et la �abilité sont une priorité.

Les méthodes de faisceaux pour l'optimisation convexe.
Pour le moment, concentrons-nous sur le problème (0.0.1) sans la contrainte non linéaire c et supposons
que f est une fonction convexe. De plus, nous supposons qu'un oracle (exact) pour f est disponible :
pour tout point donné x ∈ X, l'oracle nous fournit f(x) et un sous-gradient g ∈ ∂f(x).

En ayant collecté un faisceau d'information {(f(x1), g1), . . . , (f(xk), gk)} sur les points d'essai xj , j ∈
Jk := {1, . . . , k}, la convexité de f assure que le modèle des plan sécants

f̌k(x) := max
j∈Jk
{f(xj) + 〈gj , x− xj〉} satisfait f̌k(x) ≤ f(x) pour tout x ∈ H.

Avec un tel modèle à la main, la méthode des plans sécants de Kelley [103] dé�nit un nouveau point
d'essai comme une solution du programme maître

xk+1 ∈ arg min
x∈X

f̌k(x) , (0.0.2)

qui est un problème de programmation linéaire si X est polyédrique. Un inconvénient majeur de la
méthode devient évident : puisque le faisceau d'information indexé par les éléments de Jk croît avec le
processus itératif, le sous-problème (0.0.2) devient de plus en plus di�cile à résoudre. Contrairement à
la méthode des plans sécants de Kelley, la plupart des méthodes de faisceaux ont une mémoire bornée :
le faisceau d'information provenant d'oracle peut être borné, ce qui permet d'économiser de la mémoire
informatique sans nuire à la convergence. Ceci est particulièrement intéressant pour les problèmes
d'optimisation de grande taille. Sans faire de distinction de notation entre le modèle des plans sécants
complet où Jk = {1, . . . , k} et un modèle éventuellement plus économique donné par un certain sous-
ensemble Jk ⊂ {1, . . . , k}, nous rappelons maintenant les principaux éléments des méthodes de faisceaux.

Les méthodes des faisceaux standard utilisent trois composants principaux : un modèle convexe f̌k qui
(idéalement) est une sous-approximation de la fonction f ; un centre de stabilité x̂k qui est en général le
"meilleur" point généré par le processus itératif; et un paramètre (tk > 0, f lev

k ∈ R ou ρk > 0) à mettre
à jour à chaque itération k. Un nouveau point d'essai xk+1 d'une méthode de faisceaux dépend de ces
composants, dont l'organisation dé�nit plusieurs variantes :

la variante proximal

xk+1 := arg min
x∈X

f̌k(x) +
1

2tk
‖x− x̂k‖2 (0.0.3)

la variante de niveau

xk+1 := arg min
x∈X

1

2
‖x− x̂k‖2 s.t. f̌k(x) ≤ f lev

k (0.0.4)

v

la variante de région de con�ance

xk+1 := arg min
x∈X

f̌k(x) s.t. ‖x− x̂k‖2 ≤ ρk. (0.0.5)

Il est bien connu que pour des paramètres (proximal tk, niveau f lev
k et région de con�ance ρk) bien choisis

et le même centre de stabilité x̂k, il est toujours possible de générer le même point d'essai en résolvant
soit (0.0.3), (0.0.4) ou (0.0.5). Dans ce sens théorique, les trois approches peuvent être considérées
comme équivalentes. Les détails de la mise en ÷uvre et des performances pratiques peuvent cependant
être très di�érents, en particulier, parce que les paramètres sont mis à jour par des stratégies spéci�ques
à chacune des méthodes et que les règles correspondantes ne sont pas liées de manière directe.

D'autres variantes récentés de la méthode de faisceaux sont données dans [153], [48] et [50]. En particulier,
le dernier article est rapporté dans le chapitre 2. Comme nous le verrons, [50] fournit l'analyse de
convergence et des extensions de la méthode du rayon cible introduite brièvement à la �n de [153]. L'une
des extensions proposées dans [50] est dédiée à la résolution de problèmes sous la forme de (0.0.1) avec
la contrainte c dé�nie par une fonction continûment di�érentiable et fortement convexe s : X → R :

c(x) ≤ 0 ≡ s(x) ≤ δ .

Chaque itération de la méthode du rayon cible proposée est donnée par :

xk+1 := arg min
x∈X

s(x) s.t. f(xj) + 〈gj , x− xj〉 ≤ f lev
k,j ∀ j ∈ Jk . (0.0.6)

Si le point d'essai donné ne satisfait pas la contrainte non linéaire s(x) ≤ δ, alors xk+1 est ignoré,
minj∈Jk {f lev

k,j } devient une borne inférieure valide pour la valeur optimale de (0.0.1), et des nouveaux
paramètres de niveau f lev

k+1,j > f lev
k,j sont actualisés. Ceci est une règle originale et pratique pour dé�nir

des limites inférieures pour le problème (0.0.1). La formulation ci-dessus montre clairement le lien entre
la méthode du rayon cible et les algorithmes de niveau : il su�t de prendre f lev

k,j := f lev
k pour tous

les j ∈ Jk, s(x) := 1
2 ‖x− x̂‖

2 et comparer avec (0.0.4). L'intérêt d'avoir des paramètres de niveau
individuel (un paramètre par linéarisation) au lieu d'un paramètre de niveau unique pour le modèle est
justi�é par les "pentes" gj , j ∈ Jk : si la pente générée par gj est plus raide que celle émise par gi,
alors il pourrait être intéressant de prendre f lev

k,j < f lev
k,i pour essayer de pousser xk+1 vers l'ensemble

de solutions ou, dans l'autre cas, le pousser hors de l'ensemble admissible (e.g. s(xk+1) > δ), obtenant
sans e�ort une nouvelle et meilleure estimation inférieure du problème (0.0.1). La méthode du rayon
cible peut également être considérée comme une extension de la méthode du plan sécant avec le centre
de Chebyshev [64].

L'article [50] prouve que l'algorithme donné possède une complexité d'itération indépendante de la
dimension du problème et que le taux de convergence est optimal pour la minimisation d'une fonction
convexe non lisse sur une boule Euclidienne, un simplex et d'autres domaines. Un mécanisme innovant
permettant de borner la mémoire de la méthode est également proposé. En outre, [50] présente la
première méthode de niveau pour la classe particulière d'optimisation à deux niveaux.

min
x∈Rn

s(x) s.t. x ∈ arg min
y∈X

f(y) .

La méthode du rayon cible et ses variantes sont examinées en détail dans le chapitre 2.

Programmation DC (Di�érence de fonctions Convexes).
La programmation DC constitue un sous-domaine important de la programmation non convexe qui reçoit
beaucoup d'attention de la communauté de la programmation mathématique. Les problèmes de cette
classe correspondent à la formulation (0.0.1) avec X un ensemble convexe, f = f1− f2 et c = c1− c2, où
f1, f2, c1 et c2 sont des fonctions convexes. Certaines applications de la programmation DC incluent les
problèmes sous contrainte en probabilité, les problèmes de gestion de l'énergie, l'analyse de regroupement
et d'autres.

Les principaux avantages de la programmation DC sont qu'il s'agit d'une extension de la programmation
convexe qui est su�samment vaste pour couvrir presque tous les problèmes d'optimisation non convexe

vi

(par exemple, toutes les fonctions Lower -C2 sont DC), tout en permettant l'utilisation d'outils puissants
d'analyse convexe et d'optimisation convexe.

Comme pour l'optimisation non convexe et non lisse, de nombreuses dé�nitions de points stationnaires
existent pour l'optimisation DC non lisse. Quelle est la dé�nition la plus forte ? Pouvons-nous calculer
un point stationnaire ? Pour répondre à la première question, nous nous basons sur [155], qui prouve que
la dé�nition la plus forte est la B(ouligand)-stationnarité. En ignorant la contrainte non linéaire c dans
(0.0.1) et en se concentrant sur la formulation par contrainte convexe pour des raisons de simplicité, la
dé�nition de B-stationnarité est mieux connue sous le nom de d(irectionnel)-stationnarité :

∂f2(x̄) ⊂ ∂f1(x̄) +NX(x̄) ,

où NX(x̄) est le cône normal de l'ensemble convexe X au point x̄. Véri�er la B-stationnarité n'est pas
une tâche facile lorsque f2 est une fonction (convexe) non lisse générale. On se contentera donc d'une
dé�nition de stationnarité plus faible, appelée criticité :

∅ 6= ∂f2(x̄) ∩ ∂f1(x̄) +NX(x̄) .

(Notons que la criticité et la B-stationnarité coïncident lorsque f2 est lisse).

Dans l'article [51], nous proposons une nouvelle classe d'algorithmes DC non monotones. Pour ce
que nous savons, tous les algorithmes DC dans la littérature sont monotones et, en conséquence, sont
facilement piégés par des points critiques de mauvaise qualité. Dans le but de calculer les points critiques
qui sont également B-stationnaires (sans aucune hypothèse supplémentaire sur f1 ou f2), nous avons
proposé un schéma algorithmique doté d'une procédure de force d'inertie semblable à la méthode Heavy-
Ball de Polyak. Contrairement à l'algorithme DC classique de [193], nos approches ne nécessitent pas
de résoudre les sous-problèmes convexes jusqu'à l'optimalité pour dé�nir les points d'essai : seules les
solutions inexactes du sous-problème convexe suivant su�sent

xk+1 ∈ arg min
x∈X

f1(x)− 〈gk2 + β(xk − xk−1), x〉, avec gk2 ∈ ∂f2(xk) et β ≥ 0 donnés.

L'approche a été évaluée numériquement sur des modèles non convexes (de grande taille) de débruitage
d'image. De tels modèles sont devenus des outils importants dans les systèmes de vision computation-
nelle. Plus de détails sur cette classe de méthodes sont présentés dans le chapitre 3.

Programmation stochastique. Presque tous les domaines de la science et de l'ingénierie utilisent
des modèles d'optimisation stochastique. De tels modèles sont souvent des substituts aux formulations
déterministes lorsque celles-ci se révèlent insatisfaisantes ou inappropriées pour prendre des décisions
dans des situations réelles.

Programmation stochastique avec recours.
En programmation stochastique avec recours, la fonction objectif dans (0.0.1) est en général donnée par

f(x) = ϕ(x) +R[Q(x, ω)],

où ω est un vecteur aléatoire suivant une distribution de probabilité connue, ϕ : Rn → R est une
fonction déterministe, f : Rn × Ω → R est une fonction dépendant à la fois de la variable de décision
x et du vecteur aléatoire ω, et R est une mesure de risque [161], [181, chapitre 6]. Ci-dessous nous
allons considérer le cas neutre au risque, c'est-à-dire, R est l'opérateur de l'espérance mathématique par
rapport à la mesure de probabilité de ω : R[Q(x, ω)] = E[Q(x, ω)].

Que signi�e "recours" dans les programmes stochastiques ?
En règle générale, si l'on prend une décision here-and-now x qui se présente incorrecte lorsque le futur
événement ω est révélé, il existe la possibilité de faire une correction (à un coût élevé) pour compenser
une décision aussi défectueuse.

vii

Dans la con�guration de la programmation stochastique (linéaire) à deux étapes, la fonction de recours
Q(x, ω) est la valeur optimale du problème (dual) de programmation linéaire

Q(x, ω) :=

{
max 〈b(ω)− T (ω)x, u〉
s.t. W>u ≤ q(ω) ,

(0.0.7)

pour des vecteurs q(ω), b(ω) et des matrices T (ω) et W donnés. Soit ux,ω une solution du sous-problème
ci-dessus : il est bien connu que, pour tout x ∈ Dom(f), le vecteur g := ∇ϕ(x) − E[T (ω)>ux,ω] est un
sous-gradient de f en x, i.e., g ∈ ∂f(x).

Les modèles d'optimisation stochastique emploient généralement une formulation par scénarios : le
vecteur aléatoire ω est approximé par un échantillon de scénarios Ω := {ω1, ω2, . . . , ωN} avec les
probabilités associées πω > 0, ω ∈ Ω, et l'espérance mathématique E[Q(x, ω)] devient la somme∑
ω∈Ω πω[Q(x, ω)]. Dans ce cadre, il est donc évident que la fonction f(x) = ϕ(x) + E[Q(x, ω)] est

non seulement non lisse (car le sous-problème (0.0.7) peut avoir plusieurs solutions), mais aussi di�cile
à évaluer : un oracle pour f doit résoudre |Ω| problèmes de programmation linéaire (0.0.7) pour calculer
f(x) et un vecteur g ∈ ∂f(x). Selon la dimension du sous-problème et le nombre de scénarios |Ω|, l'oracle
peut être très coûteux en calcul. Par exemple, l'oracle du problème linéaire stochastique à deux étapes
du chapitre 4 résultant du problème de plani�cation du réseau de gaz naturel dans [32], avec seulement
|Ω| = 200 scénarios, prend 34 minutes pour calculer f(x) et g ∈ ∂f(x) sur un ordinateur relativement
puissant1.

Si les temps de calcul sont prohibitifs, comment pouvons-nous résoudre les problèmes d'optimisation
de cette nature ? Trois alternatives sont possibles : (i) examiner plus de scénarios et réaliser une
optimisation inexacte des sous-problèmes; (ii) e�ectuer une optimisation exacte des sous-problèmes mais
en considérant moins de scénarios sélectionnés par une procédure mathématique assurant la stabilité des
résultats; (iii) une combinaison des approches (ii) et (iii).

Le chapitre 4 présente l'article [32] sur un problème énergétique stochastique à deux étapes provenant
de la PETROBRAS, la société pétrolière et gazière brésilienne. Le chapitre modélise les incertitudes du
problème de la plani�cation et de la gestion à long terme du réseau brésilien de gaz naturel, et applique
l'approche (ii) citée ci-dessus combinée aux méthodes de faisceaux et à la décomposition stochastique à
deux étapes pour résoudre le problème sous-jacent. Les stratégies étudiées ont été mises en ÷uvre dans
le logiciel MONGE, qui sera utilisé en 2019 lors de la renégociation du contrat d'approvisionnement de gaz
naturel entre le Brésil et la Bolivie.

Programmation stochastique sous contrainte en probabilité.
En termes généraux, un problème d'optimisation stochastique impliquant une contrainte en probabilité
peut être écrit sous la forme de (0.0.1), où c dépend d'une mesure de probabilité, e.g.

c(x) := p− P[G(x, ω) ≥ 0] .

Dans cette notation, G : Rn × Ω → Rm est une fonction donnée, ω : Ω → Rm est un vecteur aléatoire
m-dimensionnel dé�ni sur un espace de probabilité (Ω,A,P), et p ∈ (0, 1] est un paramètre pré-spéci�é.
La contrainte en probabilité

c(x) ≤ 0 ≡ P[G(x, ω) ≥ 0] ≥ p (0.0.8)

signi�e que le vecteur de décision x ∈ Rn est admissible si, et seulement si, le système d'inégalités
aléatoires G(x, ω) ≥ 0 est satisfait avec une probabilité d'au moins p [166]. Des contraintes en probabilité
sont rencontrées dans de nombreux problèmes d'ingénierie impliquant des données incertaines. Il existe
des applications dans les télécommunications, l'expansion des réseaux électriques, la gestion des réservoirs
hydroélectriques, etc.

Puisque la fonction c ci-dessus est non linéaire, écrire la contrainte sous la forme c(x) ≤ 0 dans (0.0.1)
fait que le problème apparaît comme un problème classique de programmation non linéaire. Cependant,
cette formulation néglige une di�culté cachée : dans la plupart des cas, les valeurs explicites de c ne sont

1Intel Xeon X5650 2.67GHz, avec 2 processeurs, 48 Go de mémoire RAM, 64 bit Windows Server 2008.

viii

pas disponibles. De plus, les calculs sont souvent inexacts, car calculer la probabilité P[G(x, ω) ≥ 0] (pour
un point x donné) implique généralement de résoudre une intégration numérique multidimensionnelle
et/ou d'appliquer des méthodes de (quasi) Monte Carlo. Quelques di�cultés supplémentaires sont liées
à la di�érentiabilité et à la convexité de c : parfois, cette fonction ne parvient pas à être convexe et
di�érentiable même lorsque −G est convexe et di�érentiable en x [86, 87].

En général, les modèles sous contraintes en probabilités traitent plus explicitement la distribution de
probabilités elle-même, alors que les modèles avec recours représentent le caractère aléatoire par un
nombre �ni de scénarios utilisés pour approximer l'espérance mathématique par une somme pondérée
�nie. Pour cette raison, les modèles sous contrainte en probabilités peuvent être mathématiquement plus
compliqué que les modèles stochastiques avec recours, car ils explorent mieux les informations contenues
dans la distribution de probabilité.

La programmation sous contrainte en probabilité est généralement divisée en di�érentes classes de prob-
lèmes en fonction de leur nature aléatoire (distributions de probabilités discrètes, continues et elliptiques)
et des propriétés de G (linéaire, non linéaire, non séparable ou séparable, i.e., G(x, ω) = g(x)− ω, avec
g : Rn → Rm).

En considérant la classe des contraintes en probabilités dont le vecteur de décision et le vecteur aléatoire
sont séparés, i.e., P[G(x, ω) ≥ 0 ≡ P[ω ≤ g(x)], le théorème de Sklar garantit que la fonction de
probabilité peut être représentée par une fonction composite impliquant g(x) = (g1(x), . . . , gm(x)), les
distributions marginales Fi, i = 1, ...,m, de ω, et une copula C : [0, 1]m → [0, 1] :

P[ω ≤ g(x)] = C(F1(g1(x)), . . . , Fm(gm(x))) .

Une copula est une distribution de probabilité multivariée pour laquelle la distribution de probabilité
marginale de chaque variable est uniforme. Le chaptire 5 présente l'article [11] qui examine la convexité
éventuelle de l'ensemble admissible

X(p) := {x ∈ X : C(F1(g1(x)), . . . , Fm(gm(x))) ≥ p} .

La convexité éventuelle signi�e que X(p) est convexe pour tout p assez grand. C'est une propriété
utile en pratique, car on se préoccupe généralement de la convexité de X(p) quand p est proche de
1 (un système stochastique d'inégalités devrait être satisfait avec une probabilité élevée). Dans [11],
nous avons montré que la grande classe de CopulæArchimedeannes donne une convexité éventuelle de
l'ensemble X(p) (à condition que certains ensembles de niveaux de gi soient convexes). Naturellement,
la convexité éventuelle de X(p) n'implique pas que la fonction x 7→ −C(F1(g1(x)), . . . , Fm(gm(x))) soit
convexe, mais quasi-convexe (sur l'ensemble admissible). Le travail [11] propose la première méthode de
niveau capable de traiter une fonction de contrainte possédant des propriétés de convexité généralisées
(par exemple la quasi-convexité). Tous les détails sur ce sujet sont donnés dans le chapitre 5.

Toujours dans le cadre de la fonction de probabilité séparable, si la variable aléatoire est unidimension-
nelle (i.e., m = 1), alors le problème de la minimisation d'une fonction f sur X ∩ {x ∈ Rn : P[ω ≤
g(x))] ≥ p} peut être exprimé dans une forme déterministe en employant le concept de p-quantile de la
fonction de distribution F (g(x)) = P[ω ≤ g(x)] :

min
x∈X

f(x) s.t. g(x) ≥ F−1(p) .

Calculer le p-quantile F−1(p) n'est pas une tâche di�cile (quand m = 1) et peut être e�ectué par des
routines de probabilités et de statistiques pour un large éventail de distributions unidimensionnelles.
Une fois que F−1(p) est calculé, le problème ci-dessus devient un problème d'optimisation déterministe
résoluble par des algorithmes standard.

Dans le cas multidimensionnel m > 1, le concept de p-quantile a été étendu à ce qu'on appelle un point
p-e�cient : Un vecteur v ∈ Rm est appelé un point p-e�cient de la distribution de probabilité de ω, si
P[ω ≤ v] ≥ p et qu'il n'y a pas de y ≤ v, y 6= v tel que P[ω ≤ y] ≥ p.
Au lieu d'une seule valeur F−1(p), l'ensemble V des points p-e�cient peut contenir un nombre in�ni

ix

de points (seulement un nombre �ni si le support de la distribution de probabilité est �ni). Avec cette
dé�nition, le problème (0.0.1) avec c donné dans (0.0.8) peut être réécrit comme

min
x,v

f(x) s.t. g(x) ≥ v , x ∈ X and v ∈ V.

Du point de vue algorithmique, le principal avantage de cette formulation est qu'elle exempte du calcul
des sous-gradients de la fonction de probabilité. Mais cette propriété intéressante a un prix : pour
calculer un point p-e�cient, il faut résoudre un sous-problème combinatoire dont la dimension dépend
de la taille de l'échantillon généré pour approximer les paramètres incertains. Que faire si, pour accélérer
les calculs, nous considérons des points p-e�cients approximés ? Quel type de résultats en termes de
qualité de solution pouvons-nous espérer ?

Pour répondre à ces questions, dans le chapitre 6, nous presentons l'article [4] qui propose un processus
itératif pour calculer des points à partir de V en résolvant inexactement les sous-problèmes combinatoires.
En adoptant un point de vue dual, nous avons développé une solution qui inclut et étend plusieurs
formulations existantes. Notre approche, qui peut s'appliquer à la fois aux variables aléatoires discrètes
et continues, représente une contribution sur trois fronts. Premièrement, en étendant au cadre primal-
dual la théorie sur les méthodes de faisceaux inexactes développées dans [149], nous avons révélé l'impact
de l'inexactitude (de la fonction dual) sur le problème primal. Deuxièmement, nous avons conçu de
nouvelles approches inexactes appelées on-demand accuracy qui ont donné des meilleurs résultats dans
nos expériences numériques. Troisièmement, grâce à la vue uni�catrice de notre article, nous avons
prouvé la convergence d'une généralisation des techniques Regularized Dual Decomposition et Progressive
Augmented Lagrangian de [56, 59]. Le chapitre 6 discute en détail les approches ci-dessus.

Toutes les stratégies brièvement discutées ici sont détaillées, en anglais, dans les chapitres 2, 3, 4, 5 et
6, tandis que le chapitre 1 reprend et développe ce résumé.

x

Contents

Abstract i

Résumé étendu ii

1 Introduction 1

1.1 Mathematical programming: �elds of action . 1

1.1.1 Why nonsmooth optimization? . 2

1.1.2 Why stochastic programming? . 3

1.1.3 Some questions that enlighten my research . 3

1.1.4 Energy management: as an application and as a source of inspiration 4

1.2 Scienti�c achievements: a bird's eye view . 5

1.2.1 Nonsmooth optimization . 5

1.2.1.1 Convex bundle methods . 5

1.2.1.2 Mixed-integer optimization . 9

1.2.1.3 DC (Di�erence-of-Convex functions) programming 11

1.2.2 Stochastic programming . 12

1.2.2.1 Stochastic programming with recourse . 12

1.2.2.2 Chance-constrained programming . 17

2 Target radius method for nonsmooth convex optimization 20

2.1 Introduction . 20

2.1.1 Problems of interest and main assumptions . 21

2.2 Target radius method . 21

2.2.1 The Ouorou's algorithm . 22

2.2.2 The new algorithm . 22

2.3 Convergence analysis . 24

2.3.1 Special setups and asymptotic result . 25

2.4 Bilevel target radius method . 26

2.5 Concluding remarks . 26

xi

3 An inertial algorithm for DC programming 28

3.1 Introduction . 28

3.2 Notation, main de�nitions and illustrative examples . 30

3.3 An inertial DC algorithmic pattern . 33

3.3.1 Some speci�c settings for the algorithmic pattern with λ = 0 34

3.3.1.1 The DC algorithm with/without inertial force 34

3.3.1.2 The linearized proximal method with/without inertial force 34

3.3.1.3 Convex setting: proximal method and proximal subgradient splitting
method . 34

3.3.2 Some speci�c settings for the algorithmic pattern with λ > 0 35

3.3.2.1 A local-search like method with/without inertial force 35

3.3.2.2 Bundle-like algorithm with/without inertial force 35

3.3.3 An alternative stopping test . 36

3.4 Convergence analysis . 37

3.4.1 Rate of convergence . 37

3.5 Application of interest: nonconvex image denoising . 38

3.5.1 DC decomposition of nonconvex denoising models 38

3.5.2 Speci�c DC models . 39

3.6 Numerical results . 39

3.6.1 Assessing numerical performance on several instances 42

3.7 Concluding remarks . 44

4 Optimization techniques for the Brazilian natural gas network planning problem 46

4.1 Introduction . 46

4.1.1 Natural gas industry: the Brazilian case . 47

4.1.1.1 Natural gas for power production: source of uncertainty for gas demand . 47

4.1.1.2 Accounting the uncertainties and modeling of the problem 48

4.1.2 Related works . 48

4.1.3 Contributions and organization . 49

4.2 The long-term planning problem . 49

4.2.1 Problem statement . 49

4.2.2 Mathematical model . 50

4.2.3 Compact formulation . 52

4.3 Incorporating stochasticity into the problem . 52

4.3.1 Test problem . 53

4.3.2 Solving smaller instances of the problem . 53

4.4 Decomposition . 54

xii

4.4.1 Two-stage stochastic linear programming formulation 54

4.4.2 Proximal bundle method . 55

4.4.2.1 Description of the method . 55

4.4.3 Numerical assessment: decomposition and bundle method 57

4.5 Optimal scenario reduction . 58

4.5.1 Numerical assessment: optimal scenario reduction 59

4.6 Concluding remarks . 61

5 Convexity and optimization with copulæ structured probabilistic constraints 62

5.1 Introduction . 63

5.1.1 Separating out convexity . 64

5.1.2 Bender's decomposition: a bird's-eye view . 65

5.1.3 Main contributions and organization of the work 65

5.1.3.1 Contributions to supporting hyperplane and level bundle methods 65

5.1.3.2 Contributions to the GBD literature . 66

5.1.3.3 Organization . 66

5.2 Preliminaries: copulæ and generalized concavity . 66

5.2.1 Copulæ in a nutshell . 66

5.2.2 Generalized concavity and its properties . 67

5.3 Convexity statements: convexity of the nominal problem and the value function 69

5.3.1 Convexity of the nominal problem . 69

5.3.2 Convexity of the value function in generalized Benders decomposition 70

5.4 Algorithm: regularized GBD with an interpolation step 72

5.4.1 Ingredients: cutting-plane models . 73

5.4.2 A regularized supporting hyperplane algorithm . 74

5.4.3 Convergence analysis . 75

5.5 Test problems and numerical experiments . 75

5.5.1 Approximation of a chance-constrained problem with random technology matrix . 75

5.5.1.1 The problem, solvers, and instances for numerical experiments 77

5.5.1.2 Test problem structure . 77

5.5.1.3 General results . 78

5.5.1.4 Gaussian copula . 80

5.5.2 Cascaded-reservoir management . 80

6 Probabilistic optimization via approximate p-e�cient points and bundle methods 83

6.1 Introduction . 83

6.2 The probabilistic optimization problem . 85

6.2.1 Blanket conditions . 85

xiii

6.2.2 Primal and dual views . 86

6.2.3 Combinatorial pattern: an alternative to p-e�cient-based approaches 87

6.3 Approximate p-e�cient points . 88

6.3.1 Discrete distributions . 88

6.3.2 Continuous distributions . 91

6.3.2.1 Sampling . 91

6.3.2.2 Restoration . 91

6.3.2.3 Linking the sample size to approximate p-e�ciency 91

6.4 Computing dual vectors: a bundle method detour . 93

6.4.1 On the importance of models . 93

6.4.2 The case of exact serious evaluations . 95

6.4.3 Handling inexact information at serious steps . 97

6.5 Relation with some dual methods from the literature . 99

6.6 Numerical Comparison of Solvers . 102

7 Concluding remarks and pespectives 106

7.1 General perspectives . 106

7.2 Speci�c perspectives . 107

7.2.1 Stochastic programming with recourse . 107

7.2.2 Stochastic programming with chance constraints 108

7.2.3 Convex nonsmooth optimization . 108

7.2.4 Nonconvex nonsmooth optimization . 109

A Curriculum Vitæ 110

A.1 Philosophy of work . 110

A.2 Education . 110

A.3 Work experience . 111

A.4 Awards . 111

A.5 Teaching experience . 112

A.6 Supervisions . 112

A.6.1 Concluded supervisions . 112

A.6.2 On-going supervisions . 114

A.7 Articles published in refereed journals . 114

A.8 Articles published in annals of events . 116

A.9 Research reports . 116

A.10 Industrial projects . 117

A.11 Organization of international conferences . 118

A.12 Invited speaker . 119

xiv

A.13 Participation in dissertation committees . 120

Bibliography 121

xv

Chapter 1

Introduction

This document highlights speci�c aspects of my research and gives an overview of my contributions to
both practical and theoretical sides of the mathematical programming. Motivated by real-life applica-
tions from the industry of energy, the core of my research lies in the algorithmic aspects of nonsmooth
optimization and stochastic programming, but has also an intersection with more theoretical subjects
such as variational analysis and strong convergence in Hilbert spaces of some bundle methods.

The present chapter is the entry door for this document: Section 1.1 presents an overview of the sub�elds
of my research and Section 1.2 highlights my scienti�c contributions to convex nonsmooth optimization,
mixed-integer programming, DC (di�erence-of-convex functions) programming, stochastic programs with
recourse and chance-constrained programming. Di�erently from the others chapters, this introduction
has a concise and conversational style, avoiding a signi�cant amount of technicalities. The goal is to make
the content of this chapter accessible not only to experts on nonsmooth and or stochastic programming
but also to a broader audience.

The remaining of the document brings forward �ve of my articles on nonsmooth optimization and
stochastic programming that have appeared in specialized journals of mathematical programming in the
years 2016, 2017 and 2018. These materials were select to give a �avor on my various interests, subjects,
and developments. Deterministic nonsmooth optimization is considered in Chapters 2 and 3, where the
former deals with the convex setting by presenting new extensions of the so-called level bundle methods
[50], and the latter investigates a class of algorithms with an inertial force for addressing nonsmooth
DC programs [51]. Chapter 4 describes the long-term design and operation planning problem of the
Brazilian natural gas network investigated in [32]. Such a critical application is modeled as a two-stage
stochastic linear program and solved by combining decomposition, a bundle algorithm, and scenario
reduction techniques. Chapters 5 and 6 deal with chance-constrained programs: eventual convexity of
Copulæ structured chance-constrained problems [11] are presented in Chapter 5, and Chapter 6 reports
the work [4] on optimization techniques based on p-e�cient points and inexact bundle methods. Finally,
Chapter 7 closes with some remarks and presents some future directions of my research. A list of all my
activities as a researcher, in the form of an extended Curriculum Vitæ, is given in the Appendix.

1.1 Mathematical programming: �elds of action

Mathematical programming is the branch of mathematics concerned with the theory and methods for
�nding extrema of functions on sets of given vector spaces. The term "mathematical programming" is
related to the fact that the goal of solving a mathematical problem (of �nding a maximum or a minimum
of a function over a feasible set) is choosing a program/plan of action. For instance, an electric power
company seeks for a program of action to generate enough electricity to meet a load demand at the
minimum cost.

1

The formulation of the problems of mathematical programming (or simply optimization problems) con-
sidered in this document reads as

min
x∈X

f(x) s.t. c(x) ≤ 0 , (1.1.1)

where X 6= ∅ is contained in an open set O of a Hilbert space H and f, c : O → R are given nonsmooth
functions. In most of this document, H is simply the n-dimensional Euclidean space Rn. Note that in
the nonsmooth setting, there is no loss of generality in considering a scalar constraint function c, as it
can be de�ned as the maximum of all the constraint functions.

One customarily distinguishes the following branches of mathematical programming: linear, quadratic,
convex, nonsmooth, stochastic, (mixed-)integer/discrete, DC (di�erence-of-convex functions) program-
ming, and others. Naturally, a given optimization problem can �t more than one branch: for instance, a
stochastic programming problem can be nonsmooth and convex at the same time. Incidentally, it is in
this intersection of mathematical programming branches that a signi�cant part of my research lies [4, 23,
148, 199]. Most of my works deal with nonsmooth convex optimization problems, that is, formulation
(1.1.1) with X a convex set and with f and c convex objective and constraint functions, e.g. [5, 9, 21,
45, 48, 50, 148, 149]. Some of my publications consider convex mixed-integer programming problems
(MINLPs): X is a mixed-integer set [53, 150, 203]. Recently, my research has been extended to a broad
class of nonconvex problems in which X is convex, but f and c are DC functions [51, 201].

1.1.1 Why nonsmooth optimization?

Nonsmooth programming investigates optimization problems in the form of (1.1.1) whose objective
function f or constraint c is not continuously di�erentiable. To solve such problems, it is necessary to
consider a special mathematical object: the subdi�erential of a convex function f , denoted by ∂f(x),
which is a fundamental concept in convex analysis. If f is smooth (i.e., continuously di�erentiable) at
a given point x, then the subdi�erential of f at x is a singleton and coincides with the gradient ∇f(x).
Otherwise, in the convex setting, the subdi�erential of f at x is a set in H given by

∂f(x) := {g ∈ H : f(y) ≥ f(x) + 〈g, y − x〉 ∀ y ∈ H} .

Figure 1.1: Example of a nonsmooth function on R: f(x) = |x|. Its subdi�erential is given by ∂f(x) = −1 if
x < 0, ∂f(x) = 1 if x > 0, and ∂f(0) = [−1, 1].

This de�nition says that ∂f(x) is constructed with the slopes of the hyperplanes supporting the epigraph
of f at (x, f(x)). Each element g of ∂f(x) is called a subgradient.

The primary reason for investigating methods for nonsmooth optimization is that nonsmoothness of the
functions precludes application of any method for smooth optimization problems. Often in practical
situations, (sub)gradients of the involved functions are not computed exactly. In smooth optimization,
the gradients are frequently obtained from the function values by �nite di�erences. This approach is
valid only in the smooth case, because f ′(x; d) = 〈∇f(x), d〉 is linear in d and can be approximated by
di�erence quotients. When f is not di�erentiable, the mapping x→ ∂f(x) is not continuous. Therefore,

2

di�erence quotients do not necessarily belong to the subdi�erential, not even in the limit [29, page 125].
In fact, nonsmoothness even hinders the application of derivative-free methods (algorithms which do
not require the calculation of derivatives): convergence analysis of such methods strongly depends on
di�erentiability assumptions [42].

Furthermore, the study of nonsmooth programming is motivated by its numerous applications. Indeed,
minimization problems of economic origin often lead to functions that are not continuously di�erentiable.
Very often, nonsmoothness is introduced arti�cially by decomposition techniques employed to tackle real-
life optimization problems, which are in general large-scale and heterogeneous in nature. This is the case
of the natural gas network planning problem presented in Chapter 4.

1.1.2 Why stochastic programming?

Stochastic programming is the branch of mathematical programming in which one studies the theory
and methods for the solution of optimization problems that depend on uncertain parameters having
known probability distributions. As pointed out in the recent article [160], the assumption on having a
known probability distribution has been replaced in some applications (such as portfolio management)
by the weaker assumption that only a set of distribution is known which includes the true distribution.
Such a weaker assumption yields models that �t better in the �eld of robust optimization, a branch of
the mathematical programming that is not covered in this document.

Stochastic optimization is sometimes referred to as optimization under uncertainty, but this latter des-
ignation should be avoided because is so broad that it encompasses optimization problems for which no
stochastic model (depending on a known probability distribution) is available. Due to the presence of
random parameters, the theory of stochastic programming combines concepts of optimization and the
theory of probability and statistics [181].

The study of stochastic programming is motivated by its numerous applications: stochastic optimization
models occur in almost all areas of science and engineering, from power system management, transporta-
tion to �nance and others. Such models are usually employed as substitutes for deterministic formulations
when the latter present themselves as unsatisfactory or inappropriate to tackle decision-making in real-
life applications. In general, stochastic optimization models give rise to (very) large-scale optimization
problems that can only be solved with the help of decomposition techniques and specialized algorithms.
Invariably, techniques such as Benders' decomposition, Lagrangian relaxation, two-stage or multistage
decomposition, yield objective functions that are not only nonsmooth but also di�cult to evaluate. These
two issues are present in both subareas of the stochastic programming, namely stochastic programming
with recourse and chance-constrained programming, to be considered in Subsection 1.2.2.

In optimization problems with recourse one needs to solve several subproblems to estimate the nonsmooth
function f (generally given in a form of expectation), and in chance-constrained problems the probability
measure de�ning c is assessed via multidimensional numerical integration and or simulation. In both
cases, evaluating exactly the involved functions in (1.1.1) in reasonable CPU time is di�cult or impossible
in general. These issues have led me to some questions that have shaped my research in the last years.

1.1.3 Some questions that enlighten my research

It's not the answers, but the questions that move the world, said the propaganda of a Brazilian television
channel1. Naturally, the questions constitute the driving force in the scienti�c research. Concerning the
areas of nonsmooth optimization and stochastic programming, the questions that have in�uenced my
research are related to the design and mathematical analysis of e�cient algorithms to tackle nonsmooth
optimization problem of the form (1.1.1), whose involved functions and subgradients are di�cult to
evaluate: Is it possible to design fast computational routines (black-boxes, oracles) to e�ciently esti-
mate functional values and subgradients in stochastic programming? If the objective function f or and

1Canal Futura.

3

constraint is/are inexactly evaluated along the optimization process of certain algorithms of the bundle
method family [29], can we still have some convergence guarantees? What is the solution quality we can
expect, and what are the CPU time savings? These questions have been addressed in the works [48, 133,
149] that show how bundle methods can be modi�ed to e�ciently handle several types of inexactness
coming from the functions and subgradient evaluations.

For functions whose exact evaluations are possible, although too time-consuming: Is it possible to de-
sign optimization algorithms that use inexact information in most of the iterations but still eventually
compute an exact solution to the problem? How do the worst-case complexity results of such methods
relate to the complexity of their counterpart using exact information? The publications [10, 148] have
addressed these questions by considering a special class of bundle methods, the level variants. In particu-
lar, the paper [148] introduced a more �exible type of inexact black-boxes called oracles with on-demand
accuracy that has been used in the mathematical programming community to tackle general nonsmooth
programs [12], stochastic programs with recourse [156, 208, 209] and chance-constrained problems [203],
[4]. The latter work is presented in Chapter 6.

When dealing with chance-constrained problems, nonsmoothness and inexactness of the probability
constraint are not the only di�culties: the lack of nonconvexity makes the problem even more di�cult.
Are the (upper) level sets of particular classes of probability functions convex for large enough pre-
speci�ed probability level p ∈ (0, 1]? This question, that is relevant in both theory and practice, is
addressed in Chapter 5.

When nonconvexity comes into play in nonsmooth problems of the form (1.1.1), �nding a global solution
with an optimality certi�cate is out of reach even for problems of moderate size. Computing stationary
points becomes then the only doable goal. To this end, not only appropriate constraint quali�cations
must be investigated but also implementable forms for computationally checking stationarity. For the
broad class of DC problems (1.1.1) whose objective f = f1 − f2 and constraint c = c1 − c2 are DC
functions, is it possible to weaken assumptions on c (and point of interest) issuing Slater-like constraint
quali�cations? Would calmness of c su�ce as constraint-quali�cation yielding certain de�nitions of
stationarity? These questions are under investigation, but partial answers can be found in the recent work
[201]. Concerning convex-constrained DC programs, is it possible to design algorithms for computing
better-quality stationary points without relying on further assumptions on f? This is the subject of
Chapter 3.

The scienti�c research develops from the questions. But where do the questions come from? In my case,
they come from the thirst for knowledge, from curiosity, and from real-life optimization problems coming
from the industry of energy, more speci�cally energy management problems.

1.1.4 Energy management: as an application and as a source of inspiration

Energy management is about e�ciently using/employing resources for balancing energy demands. It in-
cludes the planning and operation of energy production and energy consumption units. As an example, in
electrical systems one needs to balance power and demand in real-time, which implies appropriate plan-
ning and possibly expansion of power systems. Although cost minimization and income maximization
are the most common objectives, conservation of resources and climate protection may gain protagonism
as new legislation on the energy system evolution comes in.

In the class of energy management problems, the importance of mathematical programming methods
has been recognized a long time. With the increasing share of intermittent renewable sources of power
generation, the need of handling uncertainty within such optimization problems has become of paramount
importance for the quest of higher reliability of the system and higher pro�tability. As one can notice,
not only the questions move the world as previously quoted, but also the world moves the questions: In
this new paradigm, how can we deal with the random nature of renewable sources of power generation?
Stochastic programming provides the answers, and for this reason, stochastic optimization methods have
become essential tools in the industry of energy.

4

As well known, real-life energy problems give rise to very large optimization problems that, in general, can
only be solved with the help of decomposition techniques. As already mentioned, such techniques lead
to objective functions that are not only nonsmooth but also di�cult to evaluate. In some applications of
interest, exact evaluations of the function (and its subgradient) are prohibitive in terms of computational
time. Very often, not only di�erentiability assumptions are absent, but also convexity. These issues rise
optimization problems possessing a high level of di�culty, which is sometimes prohibitive in the large-
scale setting. Therefore, new techniques from variational analysis and computational mathematics are
required to improve solution methods in this setting. To put it in a nutshell, energy management
problems constitute a source of inspiration and a challenging application of mathematical programming
tools.

1.2 Scienti�c achievements: a bird's eye view

This section presents an overview of my research on nonsmooth optimization and stochastic programming
and highlights my contributions to these �elds. The section starts with a discussion on algorithms for
nonsmooth optimization by presenting bundle methods, DC programming, to stochastic programs with
chance constraint.

1.2.1 Nonsmooth optimization

As already mentioned, the nondi�erentiability of the involved functions precludes application of any
method for smooth optimization problems, including those which do not require the calculation of
derivatives. Nonsmooth optimization problems require special methods, taking into account the discon-
tinuity of the subdi�erential. Among such special techniques, the subgradient and the cutting-plane
methods are perhaps the most well-known approaches for dealing with nonsmooth optimization prob-
lems. Such methods are also famed for having slow convergence (in some cases, the number of trial
points generated by the cutting-plane method grows exponentially with the problem dimension, [142,
pp. 158-160]). When accuracy in the solution and reliability are a concern, bundle methods [29] are the
algorithms of choice for nonsmooth convex optimization. Is it also the case when the involved functions
can only be assessed through an oracle providing inexact information? What if either the feasible set
or the objective function lacks convexity? Are bundle methods still the "algorithms of choice" in these
situations? These questions are addressed in the sequel.

1.2.1.1 Convex bundle methods

Let us, for the moment, focus on problem (1.1.1) without the nonlinear constraint c and make the
assumption that f is a convex function. Moreover, we assume that an (exact) oracle for f is available:
for any given point x ∈ X, the oracle provides us with f(x) and a subgradient g ∈ ∂f(x).

Having collected a bundle of information {(f(x1), g1), . . . , (f(xk), gk)} on the trial points xj , j ∈ Jk :=
{1, . . . , k}, convexity of f ensures that the cutting-plane model

f̌k(x) := max
j∈Jk
{f(xj) + 〈gj , x− xj〉} satis�es f̌k(x) ≤ f(x) for all x ∈ H.

With such a model at hands, the cutting-plane method of [103] de�nes the new trial point as a solution
of the master program

xk+1 ∈ arg min
x∈X

f̌k(x) , (1.2.1)

which is a linear programming problem if X is polyhedral. One main disadvantage of the method
becomes evident: since the bundle of information indexed by elements in Jk grows with the iterative
process, subproblem (1.2.1) becomes more and more di�cult to solve. Di�erently from the Kelley's
cutting-plane method, most bundle methods have limited memory: the bundle of oracle information

5

can be kept bounded saving computational memory without impairing convergence. This is particularly
interesting for large-scale optimization problems. Without making any notational distinction between
the full cutting-plane model issued with Jk = {1, . . . , k} and a possibly more economical one given by a
certain subset Jk ⊂ {1, . . . , k}, we now recall the main elements of bundle methods.

Standard bundle methods make use of three main ingredients: a convex model f̌k that (ideally) approx-
imates the function f from below; a stability center x̂k that is in general the "best� point generated
by the iterative process; and a bundle parameter (tk > 0, f lev

k ∈ R or ρk > 0) to be updated at each
iteration k. A new iterate xk+1 of a bundle method depends on these ingredients, whose organization
de�nes di�erent variants:

Proximal bundle variant

xk+1 := arg min
x∈X

f̌k(x) +
1

2tk
‖x− x̂k‖2 (1.2.2)

Level bundle variant

xk+1 := arg min
x∈X

1

2
‖x− x̂k‖2 s.t. f̌k(x) ≤ f lev

k (1.2.3)

Trust-region bundle variant

xk+1 := arg min
x∈X

f̌k(x) s.t. ‖x− x̂k‖2 ≤ ρk. (1.2.4)

It is known that for properly chosen prox, level and trust-parameters (tk, f lev
k , ρk) and the same stability

center x̂k, it is always possible to generate the same next iterate by solving either (1.2.2), (1.2.3) or
(1.2.4). In this theoretical sense the three approaches can be considered equivalent. However, details
of the implementation and practical performance can be quite di�erent: because the parameters are
updated by strategies speci�c to each of the methods and the corresponding rules are not related in any
direct way.

The last few years have seen the advent of a new generation of bundle methods, capable of handling
inexact oracles, polluted by "noise": given x ∈ Rn, an inexact oracle returns with fx = f(x)− ηvx and

gx ∈ Rn such that f(·) ≥ fx + 〈gx, · − x〉 − ηsx
with ηvx ≤ η and ηsx ≤ η for all x ∈ Rn.

(1.2.5)

In the above scheme, the bound η ≥ 0 is possibly unknown. The subscripts v and s on the errors in
(1.2.5) make the distinction between function value and subgradient errors. Notice that if η = 0, then
(1.2.5) boils down to an exact oracle. If η > 0 but ηsx = 0 (i.e., the linearization issued by fx and gx
lies under the function f), then (1.2.5) is a lower oracle in the parlance of [148]. Instead, if ηsx can be
positive we have an upper oracle: the value fx can overestimate f(x). We care to mention that with
inexact oracles of the upper type, the inexact model

f̌k(x) = max
j∈Jk
{fxj + 〈gxj , x− xj〉}

may cut o� the graph of the function f . This undesirable feature complicates convergence analysis of
bundle methods, and generally requires an extra procedure to deal with errors.

Many applications of optimization to real-life problems lead to nonsmooth objective and or constraint
functions that are assessed through inexact oracles of the above form. For example, this is the typical
case in Lagrangian relaxation of large-scale (possibly mixed-integer) optimization problems, in stochastic
programming (as it will be discussed in the next section), and in robust optimization, where the oracles
perform some numerical procedure to evaluate functions and subgradients, such as solving one or more
optimization subproblems, multidimensional integration, or simulation.

Proving convergence of a bundle method is never simple and coping with inexact oracles substantially
increases the technicalities. Besides, several variants exist to deal with noise, each one needing an ad hoc

6

proof to show convergence. In the joint work with Claudia Sagastizábal (Unicamp, Brazil) and Claude
Lemaréchal (INRIA, France) [149] we provided a synthetic convergence theory, in which we highlight
the main arguments and specify which assumption is used to establish each intermediate result. The
framework is comprehensive and generalizes in various ways a number of algorithms proposed in the
literature. Our depth analysis covers many proximal bundle methods in the literature and opened the
way to more variants [4, 12].

A �exible class of lower oracles with on-demand accuracy, motived by stochastic programs with recourse,
was introduced in [148] and further investigated in [9, 203]. An oracle of this class satis�es (1.2.5) with
the following additional assumptions, where 0 ≤ ηk ≤ η and f tark ∈ R are given parameters:

ηsx ≡ 0 and ηvx ≤ ηk if fx ≤ f tark . (1.2.6)

This kind of oracles provide information with accuracy up to ηk for those points whose function ap-
proximations do not exceed the given target f tark (see Figure 1.2.1.1). The target value f tark can be, for

Figure 1.2: Oracle with on-demand accuracy. When the oracle identi�es that the approximate value fx2 is
greater than the given target f tar2 , then it returns with the poor information (fx2 , gx2): there is no need to
spend CPU time for computing exactly f(x2) once x2 is identi�ed to be no better than the previous iterate
x1. Notwithstanding, the cheap and new oracle information (fx2 , gx2) is possibly of poor quality, but can be
employed to improve the cutting-plane model of f . If the oracle is of the lower type, then the cutting-plane
model never cuts o� the function.

instance, the best known upper bound for the optimal value of the problem: f tark = minj≤k{fxj + ηvxj}.
Other possibilities are given in [148]. The concept of oracles with on-demand accuracy has been extend
in [12] where the authors consider oracles providing not only lower but also upper estimates for the
function. As just mentioned, dealing with inexact oracles is not a straightforward task. The situation is
more involving when the goal is to compute an exact solution to the problem by making use of inexact
(but controlled) information: the two parameters f tark and ηk must be carefully handled. The level bun-
dle method algorithms proposed in [148], with Claudia Sagastizábal, eventually �nd an exact solution to
the problem by automatically setting up these two additional parameters and ensuring limk→∞ ηk = 0.
We proved mathematically that, although the new method uses inexact oracle information, not only an
exact solution to the problem is eventually found but also the same complexity result O(1

ε2) of exact
level bundle methods is preserved. (The worst-case complexity of the inexact methods is the same as
the one of exact algorithms except for a multiplicative constant). The paper [148] was awarded the 2014
Charles Broyden Prize2.

While the level bundle methods of [148] deal with inexact oracles whose errors can be controlled, the
work [133], in collaboration with Jérôme Malick (CNRS, France) and So�a Zaourar (NAVER LABS,
France), proposes a new inexact level bundle algorithm for dealing with very general inexact lower ora-
cles. We proposed an original implicit procedure to handle excessive inexactness permitting asymptotic
convergence of the algorithm without boundedness assumption.

2http://explore.tandfonline.com/page/est/charles-broyden-prize

7

The work [149] deals only with proximal bundle methods, whereas [133, 148] investigate the level variants.
Overall, there seems to be a consensus that for solving unconstrained problems proximal bundle methods
are very good choices, although the updating rule for tk is somewhat of an issue (at least from the
viewpoint of combining theory and e�ciency). On the other hand, there is some evidence that for
constrained problems level bundle methods might be preferable. Also, strategies for updating the level
parameter f lev

k are readily available. It is thus appealing to try to combine the attractive features of both
approaches in a single algorithm that performs for unconstrained (respectively, constrained) problems
as well as proximal bundle methods (respectively, level bundle methods), or maybe even better in some
cases. To this end, with Mikhail Solodov (IMPA, Brazil) we proposed what we call a doubly stabilized
bundle method, that combines both proximal and level stabilizations in the same subproblem, namely

xk+1 := arg min
x∈X

f̌k(x) +
1

2tk
‖x− x̂k‖2 s.t. f̌k(x) ≤ f lev

k . (1.2.7)

As showed in [48], the unique solution to problem (1.2.7) is also a solution to at least one of the
problems (1.2.2) or (1.2.3). Hence, the method indeed combines the proximal and the level approaches,
"automatically" choosing between the two at every step: each iteration of the doubly stabilized method
is either a level iteration (issued by subproblem (1.2.3)) or proximal iteration (issued by subproblem
(1.2.2)); see Figure 1.3. Another interesting feature of the doubly stabilized method is that it does not

Figure 1.3: Illustration of a proximal iteration (left) and a level iteration of the doubly stabilized bundle method.

require any extra procedures to handle inexactness from the oracle, in contrast to all previous bundle
methods in the literature. The doubly stabilized method �rstly appeared in the conference paper [49],
but it was fully investigated in [48].

From what we have discussed so far, we already have an answer to one of the questions raised at
the beginning of this subsection: yes, bundle methods are e�cient and robust for dealing with noisy
functions. They can be considered as the "methods of choice" even when the involved functions can only
be assessed through an oracle providing inexact information.

Without exploiting inexact oracles, other bundle variants are given in [153] and [50]. In particular, the
latter article is reported in Chapter 2. As we will see, [50] provides a convergence analysis and presents
some extentions of the target radius method brie�y introduced at the end of [153]. One of the given
extensions is dedicate to solve problems in the form of (1.1.1) with constraint c de�ned by a continuous
di�erentiable and strongly convex function s : X → R:

c(x) ≤ 0 ≡ s(x) ≤ δ .

Every iterate of the proposed target radius methods is given by

xk+1 := arg min
x∈X

s(x) s.t. f(xj) + 〈gj , x− xj〉 ≤ f lev
k,j ∀ j ∈ Jk . (1.2.8)

If the given trial point does not satis�es the nonlinear constraint s(x) ≤ δ, then xk+1 is disregarded,
minj∈Jk {f lev

k,j } is a valid lower bound on the optimal value of (1.1.1), and new level parameters f lev
k+1,j >

8

f lev
k,j are set up. This is an original and practical rule to de�ne lower bounds for problem (1.1.1). The
above formulation makes clear the link between the target radius and level bundle algorithms: take
f lev
k,j := f lev

k for all j ∈ Jk, s(x) := 1
2 ‖x− x̂‖

2 and compare with (1.2.3). The interest of having
individual level parameters (a parameter per linearization) instead of a single level parameter for the
model is justi�ed by the "slops" gj : if the slop yielded by gj is steeper than the one issued by gi, then it
might be convenient to take f lev

k,j < f lev
k,i in order to try to push xk+1 near to the solution set or, in other

case, to push it out from the feasible set (i.e. s(xk+1) > δ) issuing for free a new and better lower bound
estimate. The work [50] proves that the given algorithm possesses dimension-independent iteration
complexity and optimal (in the large-scale case) rate-of-convergence results for the minimization of a
convex function over a Euclidean ball, a standard simplex, and other domains. An innovative mechanism
allowing to keep the method's memory bounded is also proposed. In addition, [50] presents the �rst
level-like bundle method for the particular class of bilevel optimization

min
x∈Rn

s(x) s.t. x ∈ arg min
y∈X

f(y) .

The target radius method and its variants are considered in details in Chapter 2.

Moving now to optimization problems in Hilbert spaces, the two works [5, 21] investigate strong converge
of bundle methods. A key procedure in proximal bundle methods for convex minimization problems is
the de�nition of stability centers x̂k, which are points generated by the iterative process that successfully
decrease the objective function. In general, a rule to de�ne stability centers depends on the decrease of
the function in the following manner, for a given κ ∈ (0, 1):

If f(xk+1) ≤ f(x̂k)− κ[f(x̂k)− f̌k(xk+1)], then x̂k+1 := xk+1 else x̂k+1 := x̂k .

It follows that f(x̂k) − f̌k(xk+1) ≥ 0 due to convexity and subproblem (1.2.2). Therefore, the above is
indeed a descent-test. In [5] we proposed and investigated a di�erent stability-center classi�cation rule
for proximal bundle methods:

If f(xk+1) ≤ f(x̂k)− κ[f(x̂k)− f̌k(xk+1)], then x̂k+1 := ProjXk(x0) else x̂k+1 := x̂k ,

where ProjXk(x0) stands for the convex projection of the initial point x0 onto a certain level set Xk of f ;
see [5, Eq. (17)]. We showed that the proposed bundle variant has at least two particularly interesting
features: (i) the sequence of stability centers generated by the method converges strongly to the solution
that lies closest to the initial point, and (ii) if the sequence of stability centers is �nite, x̂ being its
last element, then the sequence of nonstability centers converges strongly to x̂. Property (i) is useful in
some practical applications in which a minimal norm solution is required. The results of [5] extends and
strengths the convergence results from the seminal work [43] (e.g., the latter work does not prove either
(ii) nor that the method provides a solution that is closest to the initial point).

In the other publication [21] with Yunier Bello-Cruz (Northern Illinois University, USA), we not only
proved convergence of a level bundle variant but also provided an original manner to update the level
parameter f lev

k . This idea has been employed by other colleagues in [38] to prove worst-complexity results
and optimal rate-of-convergence for minimizing a convex function over the entire space. The work [21]
also exploits a link between level bundle methods and projected subgradient methods. This subject was
further studied in [45] by focusing on strong convergence of the latter class of algorithms.

So far, the mentioned bundle methods were designed for convex optimization. The nonconvex setting is
discussed in the sequel.

1.2.1.2 Mixed-integer optimization

Many real-life optimization problems are modeled in a mixed-integer setting, involving discrete and con-
tinuous decision variables. Optimization algorithms for solving mixed-integer nonlinear programming
(MINLP) problems have become an important focus of research over the last years. Most of the al-
gorithms for solving problems of this type require the objective and constraint functions to be convex

9

and di�erentiable. The latter hypothesis is very often absent in optimization problems coming from
the industry of energy, hindering thus the applicability of many powerful algorithms for MINLP. It is
thus appealing to investigating optimization methods for nonsmooth convex MINLP, i.e., problems as
in (1.1.1) where X is a mixed-integer set and f and c are nonsmooth convex functions. The two main
obstacles in this class of problems are the discrete nature of (a part of) X and nonsmoothness of f
and c. These two obstacles have been extensively addressed individually in the communities of mixed-
integer programming and nonsmooth optimization, respectively. However, the combination of these two
optimization areas is sparse, although most of the methods for MINLP and methods for nonsmooth
programming have as ancestor the same cutting-plane method of Kelley [103].

The work [150] proposes a class of level bundle methods for convex MINLP. In contrast to most methods
found in the literature, the proposed approaches do not require the involved functions to be either
di�erentiable or easy to evaluate. Convergence analysis is presented by assuming that each iterate is
arbitrarily chosen in a certain localizer set. Although solving mixed-integer linear master programs
is optional, numerical results show that when certain regularized master problems are solved along
iterations the number of function evaluations is signi�cantly reduced. This is a feature of practical
importance, for instance to handle MINLP with a (hard-to-evaluate) probabilistic constraint. Indeed,
the ideas of [150] were further explored in [203] to handle, in particular, chance-constrained programming
with �nite support.

The methods proposed in [150] and [203] are of the (extended) cutting-plane method type: at every
iteration the method adds new linearizations (cuts) of the involved functions to the master program

xk+1 ∈ arg min
x∈X

1

2
‖x− x̂k‖� s.t. čk(x) ≤ 0, f̌k(x) ≤ f lev

k , x := (xc, xd) ∈ Rnc × Znd ,

where čk is a cutting-plane model for c, and ‖·‖� is an arbitrary norm (in general the `1 or `∞ norms yield-
ing a mixed-integer linear master program), and xc and xd are the continuous and discrete components
of the vector x.

It is well-known that better ("deep") cuts can be obtained by the so-called outer-approximation (OA)
methods. Algorithms of this class compute trial points by (inexactly) solving the master program

(x̃c, x
k+1
d) ∈ arg min

x∈X
f̌k(x) s.t. čk(x) ≤ 0, x := (xc, xd) ∈ Rnc × Znd ,

and then the integer variables are �xed and a resulting convex nonlinear subproblem is exactly solved
in the continuous variables

xk+1
c ∈ arg min

x∈Rn
f(xc, x

k+1
d) s.t. c(xc, x

k+1
d) ≤ 0, (xc, x

k+1
d) ∈ X.

The outer-approximation algorithm for MINLP was proposed 1986 in the pioneering work [63]. In this
latter paper the authors not only assume the functions to be smooth but also a linear dependence on the
integer variables: f(x) = ϕ(xc)+q>xd, where ϕ is a smooth convex function and q is a given vector. The
linearity assumption was removed in 1994 in the seminal paper [68], but the hypothesis on smoothness
was still required. Many improvements on the OA algorithm have been proposed along the years, but it
was only in 2018 that the assumption on smootheness was completely removed: in the paper [53] with my
former PhD student Adriano Del�no (UFTPR, Brazil) we succeeded in proposing outer-approximation
algorithms for general nonsmooth convex MINLP problems. To ensure convergence of the methods we
needed not only to solve the convex nonlinear subproblem at every iteration (as all OA algorithms do)
but also to compute speci�c subgradients satisfying its KKT system. The latter is a nontrivial task
and therefore cannot be expected to be accomplished by an ordinary oracle. By designing a specialized
proximal bundle method we managed to compute subgradients satisfying the required conditions and,
therefore, any OA algorithm that is convergent for smooth problems is also convergent in the nonsmooth
setting when equipped with such a bundle algorithm. This was the main theoretical contribution of [53],
which also deals with a chance-constrained MINLP problem. We highlight that the theory of bundle
methods studied in [53] gave then a de�nitive answer to an open question (of more than 30 years) from
the MINLP community.

Sometimes, the lack of convexity is not related to the feasible set, but the functions themselves.

10

1.2.1.3 DC (Di�erence-of-Convex functions) programming

DC programming forms an important sub�eld of nonconvex programming and has been receiving much
attention from the mathematical programming community. Problems of this class �t formulation (1.1.1)
with X a convex set, f = f1 − f2 and c = c1 − c2, where f1, f2, c1 and c2 are given convex functions

min
x∈Xc

f1(x)− f2(x) with Xc := {x ∈ X : c1(x)− c2(x) ≤ 0} . (1.2.9)

Some applications of (1.2.9) include chance-constrained problems, energy management problems, production-
transportation planning problems, cluster analysis and others.

The main advantages of DC programming is that it is an extension of convex programming that is vast
enough to cover almost all nonconvex optimization problems (e.g., all lower-C2 functions are DC), but
still allows the use of powerful tools from convex analysis and convex optimization.

As for nonconvex nonsmooth optimization, in nonsmooth DC programs many de�nitions of stationary
points exist too. Which is the strongest one? Can we compute it? To answer the �rst question we rely
on [155], which proves that the sharpest de�nition is the B(ouligand)-stationary: a feasible point x̄ is
called a B-stationary point of (1.2.9) if the directional derivative of f with respect to d is nonnegative
for all d ∈ TXc(x̄), the Bouligand tangent cone of Xc at point x̄ ∈ Xc. This is equivalent to

f ′1(x̄; d) ≥ f ′2(x̄; d) ∀ d ∈ TXc(x̄) . (1.2.10)

Here TXc(x̄) is the Bouligand tangent cone of Xc at point x̄ ∈ Xc. In the general setting where f2 (or
c2) is a nonsmooth function, checking the B-stationarity of a given point is a di�cult task.

In a joint work with Wim van Ackooij (EDF, France), we investigated in [201] DC-constrained DC
programs as in (1.2.9) and proposed a weaker constraint quali�cation permitting to characterize the
Bouligand tangent cone (and therefore the de�nition (1.2.10)) in a workable form. In addition, we pro-
posed and analyzed (less computational demanding) minimization algorithms to address the problem
of computing (under more restrictive hypotheses) B-stationary points to (1.2.9). The proposed algo-
rithms were numerically assessed on a DC reformulation of an energy management problem considering
a smart-grid controlled by a local actor (follower) and its interaction with a global actor (leader) in the
power system.

When there is no DC constraint, the B-stationarity de�nition is better known as d-stationarity

∂f2(x̄) ⊂ ∂f1(x̄) +NX(x̄) ,

where NX(x̄) is the normal cone to the convex set X at point x̄. As in the DC-constrained setting,
checking B-stationarity is not an easy task when f2 is a general nonsmooth convex function. We
therefore shall be satis�ed with a weaker stationarity de�nition, called criticality :

∅ 6= ∂f2(x̄) ∩ ∂f1(x̄) +NX(x̄) .

(Notice that criticality and d-stationarity coincide when f2 is smooth.)

In these convex-constrained setting (i.e., problem(1.2.9) without the nonlinear constraint), the joint
paper with Michel Tcheou (UERJ, Brazil) [51] proposes a new family of non-monotone DC algorithms.
To the best of acknowledgment, all the DC algorithms in the literature are monotone and, therefore,
are easily trapped by poor quality critical points. With the aim of computing critical points that are
also d-stationary (without any additional assumption on either f1 or f2) we proposed an algorithmic
scheme equipped with an inertial-force procedure akin to the Heavy-Ball method of Polyak. In contrast
to classical DC algorithm of [193], our approaches do not require solving convex subproblems up to
optimality to de�ne trial points: only inexact solutions of the following convex subproblem su�ces

xk+1 ∈ arg min
x∈X

f1(x)− 〈gk2 + γ(xk − xk−1), x〉, with given gk2 ∈ ∂f2(xk) and γ ≥ 0.

11

The approach was numerically assessed on large-scale nonconvex and nonsmooth image denoising models,
which have become important tools in computer vision systems. More details in Chapter 3.

The manuscript [47] also deals with convex-constraiend DC programs and extends the bundle method
of [101] by (i) considering convex-constrained nonsmooth DC programs, (ii) by proving convergence
of the resulting proximal bundle algorithm with weaker assumptions on the management of the oracle
information (there is no need to keep an individual bundle for f2), and (iii) by proposing the �rst
implementable algorithm able to compute d-stationary points under the assumption that f2 is the point-
wise maximum of �nitely many smooth convex functions. The master program of the bundle method of
[47] reads as

xk+1 ∈ arg min
x∈X

f̌k1 (x)− 〈gk2 , x〉+
1

tk
D(x, x̂k),

where f̌k1 is a cutting plane of f1, D is a Bregman function (e.g. the Euclidean distance) and x̂k is
a given stability center. Instead, the master problem of [101] for unconstrained problems uses a DC
cutting-plane model

xk+1 ∈ arg min
x∈Rn

f̌k1 (x)− f̌k2 (x) +
1

2tk
‖x− x̂k‖2 ,

which can be signi�cantly more di�cult to solve depending on the number of linearizations used to de�ne
the model f̌k2 .

All the methods discussed above �nd applications in stochastic programming.

1.2.2 Stochastic programming

This subsection presents an overview of my research on stochastic programming. The presentation
starts with a discussion on how to design oracles providing exact or inexact information on the objective
function and subgradient of two-stage stochastic programs with recourse, passing by scenario reduction
and regularization techniques in the multistage setting, to the discussion on eventual convexity of chance-
constrained programs, where optimization techniques for both chance-constrained problems with �nite
support and with continuous probability distributions are considered.

1.2.2.1 Stochastic programming with recourse

In stochastic programming with recourse the objective function in (1.1.1) is in general given by

f(x) = ϕ(x) +R[Q(x, ω)],

where ω is a random vector following a known probability distribution, ϕ : Rn → R is a deterministic
function, f : Rn×Ω→ R is a function depending on both the decision variable and random vector, and
R is a risk measure [161],[181, Chapter 6]. In the risk-neutral setting, R is the expected value operator
w.r.t. the probability measure of ω: R[Q(x, ω)] = E[Q(x, ω)]. A risk-averse formulation can be obtained,
for instance, with R[Q(x, ω)] = E[Q(x, ω)] + rVar[Q(x, ω)], with r > 0 a given constant and Var the
variance of f(x, ω). Other risk measures can be found in [161]. For simplicity, in what follows only the
risk-neutral setting is considered to discuss two-stage and multistage stochastic linear programs.

What does recourse mean in stochastic programs?
In a �rst stage, a decision x is chosen to be feasible with respect to the deterministic �rst stage constraints:
{x ∈ X : c(x) ≤ 0}. Later on, after the realization of the random vector ω a possible de�ciency in some
second stage constraints has to be compensated by an appropriate recourse decision y(ω). This process
continues until the last stage of decision. Generally speaking, if one makes a here-and-now decision x
that presents itself wrong when the future event ω reveals, there exists the opportunity to use or do
something to compensate such an incorrect decision. This is what recourse means.

Two-stage stochastic programs
In a two-stage (linear) programming setting, the recourse function Q(x, ω) is the optimal value of the

12

linear programming problem

Q(x, ω) :=

{
min 〈q(ω), y〉
s.t. y > 0 ,Wy = b(ω)− T (ω)x

for given vectors q(ω), b(ω) and matrices T (ω) and W . The evaluation of the recourse function can be
done by solving the dual linear program{

max 〈b(ω)− T (ω)x, u〉
s.t. W>u ≤ q(ω) .

(1.2.11)

Let ux,ω be a solution of the above subproblem. It is well known that, for all x ∈ Dom(f),

g := ∇ϕ(x)− E[T (ω)>ux,ω] ∈ ∂f(x) .

Evaluating exactly the objective function f and a subgradient g, when the probability distribution
of ω is continuous, is impossible in problems of practical relevance. Hence, stochastic optimization
models generally consider a scenario formulation: the random vector ω is approximated by a sample
of scenarios Ω := {ω1, ω2, . . . , ωN} with associated probabilities πω > 0, ω ∈ Ω, and the expectation
E[Q(x, ω)] becomes the sum

∑
ω∈Ω πω[Q(x, ω)]. In this setting, it is thus evident that the function

f(x) = ϕ(x) + E[Q(x, ω)] is not only nonsmooth (because subproblem (1.2.11) can have more than one
solution), but also di�cult to evaluate: an oracle for f must solve |Ω| linear programming problems
(1.2.11) to compute f(x) and a vector g ∈ ∂f(x). Depending on the subproblem's dimension and on the
number of scenarios |Ω|, the oracle can be too time consuming. For instance, the oracle for the two-stage
stochastic linear problem resulting from the natural gas planning problem of [32], with only |Ω| = 200
scenarios, takes 34 minutes for computing f(x) and g ∈ ∂f(x) in a reasonably power computer3.

If CPU time is an issue, how can we tackle optimization problems of this nature? Is it taking fewer
scenarios the only doable way to go? By the Law of Large Numbers, one should look at as much
scenarios as possible to estimate well the true objective function based on the expectation involving the
continuous probability of ω. Hence, if one randomly generates a small sample Ω of scenarios, the sample
average approximation of the expectation (and therefore the problem's approximation) can be very poor.
Three alternatives to overcome this di�culty are possible: (i) looking at more scenarios and performing
inexact subproblem optimization; (ii) performing exact subproblem optimization but considering fewer
scenarios selected by some mathematical procedure ensuring stability of results; (iii) a combination of
the approaches (ii) and (iii).

By employing approach (i) to speed up calculations, if instead of performing the maximization in (1.2.11)
for the considered ω we just take a feasible point ux,ω (satisfying W>ux,ω 6 q(ω)), then an oracle giving

fx := ϕ(x) + E[〈b(ω)− T (ω), ux,ω〉] and gx := ∇ϕ(x)− E[T (ω)>ux,ω]

is of lower type, in the parlance of [148]: fx and gx satisfy (1.2.5) with ηsx = 0, i.e., fx = f(x)− ηvx and
gx ∈ Rn such that f(·) ≥ fx + 〈gx, · − x〉
with ηvx ≤ η for all x ∈ Rn.

If the approximate dual solution ux,ω is not feasible to (1.2.11), then ηsx can be positive and the inexact
oracle (1.2.5) is of the upper type: the value fx can overestimate f(x).

If ones selects a (much smaller) subset Ωk ⊂ Ω of scenarios to perform the subproblem optimization,
another upper oracle can be obtained by setting fx and gx as above but with E replaced by Ek, the

3Intel Xeon X5650 2.67GHz, with 2 processors, 48 Gbyte of RAM Memory, running 64 bit Windows Server
2008.

13

expected value with respect to the probability of (fewer) scenarios in Ωk. As investigated in [202], such a
smaller subset of scenarios can be obtained by applying iteratively scenario reduction techniques to the
set of vectors {b(ω)− T (ω)x}ω∈Ω (depending on the current decision vector). This is akin to approach
(iii) above. Di�erently, scenario reduction/selection techniques in stochastic programming are in general
employed in a static manner, considering the scenarios ω ∈ Ω [52, 62, 159]. This yields the strategy (ii).

Lower oracles with on-demand accuracy is also possible for two-stage programs. Such oracles satisfy
(1.2.5) with the additional assumptions in (1.2.6), where 0 ≤ ηk ≤ η and f tark ∈ R are given parameters.
The target f tark can, for instance, be the (approximate) value of the function at a given previous iterate
xj ; see [148] for more alternatives. An oracle with on-demand accuracy satisfying these assumptions for
two-stage stochastic programs is described in Algorithm 1.

Algorithm 1 Oracle with on-demand accuracy for two-stage linear programs

. Initialization
1: Inputs: a point xk, oracle error ηk ≥ 0, target f tark and
2: a set D with �nitely many feasible points for (1.2.11)

. Fast approximation
3: for all ω ∈ Ω do
4: Compute uxk,ω ∈ arg max 〈b(ω)− T (ω)xk, u〉 s.t. u ∈ D
5: end for

6: Set fxk := ϕ(xk) + E[〈b(ω)− T (ω), uxk,ω〉] and i := 0
. Improving the approximation

7: while fxk < f tark and i < |Ω| do
8: Set i = i+ 1 and pick up a (di�erent) scenario ω ∈ Ω
9: Compute a ηk-solution uxk,ω to (1.2.11)
10: Add uxk,ω to D and consider removing an old point from D
11: Set fxk = ϕ(xk) + E[〈b(ω)− T (ω), uxk,ω〉]
12: end while

Exit with fxk and gxk := ∇ϕ(xk)− E[T (ω)>uxk,ω]

Notice that in the �rst part of the algorithm, denoted by fast approximation, there is no need to solve
any linear programming problem. Since D contains only �nitely many points, the procedure of piking
up a point uxk,ω is essentially a matrix multiplication combined with a sorting process. When the oracle
identi�es that the approximate value fxk is greater than the given target f tark , then it returns with the
possibly poor information (fxk , gxk): there is no need to spend CPU time for computing exactly f(xk)
once xk is identi�ed to be no better than a previous iterate yielding f tark . Notwithstanding, the cheap
and new oracle information (fxk , gxk) is possibly of poor quality, but can be employed to improve the
cutting-plane model of f . Since the oracle is of the lower type (which is the case if uxk,ω is feasible for
(1.2.11)), then the cutting-plane model never cuts o� the function. Finally, we mention that between
the lines 7-12 of Algorithm 1 the estimated value fxk is nondecreasing.

Specialized level bundle methods making use of an oracle as the one of Algorithm 1 has been applied
to a large family of two-stage stochastic linear problems in [148]. We veri�ed that the given methods
could be up to 72% faster than the classical algorithm (L-Shaped) for that class of problems, without
any accuracy loss. Later on it was showed by other colleagues in [209] that the level bundle method with
on-demand accuracy reduces average solution time by 79% in an even larger battery of tests.

As another contribution to the two-stage setting, in the recent work [202] with Wim van Ackooij and
Yongjia Song (Clemson University, USA), we proposed several strategies to solve two-stage stochas-
tic linear programs by integrating the so-called adaptive partition-based approach with level bundle
methods. A partition-based formulation is a relaxation of the original stochastic program, obtained by
aggregating variables and constraints according to a scenario partition. As a theoretical contribution, we
showed that for general two-stage stochastic linear programs with �xed recourse, there exists a particular
partition whose corresponding partition-based master problem gives an optimal solution to the original
stochastic program, and the size of this partition is independent of number of scenarios. In order to

14

try to determine such particular partition, partition re�nements are guided by the optimal second-stage
dual vectors ux,ω computed at certain �rst-stage solutions x: for instance by applying clustering and
scenario reduction techniques to the set of vectors {ux,ω}ω∈Ω. This also can be seen an approach of type
(iii) mentioned above.

Still in the two-stage stochastic setting, Chapter 4 presents the work [32] on a real-life two-stage stochastic
energy problem from PETROBRAS, the Brazilian oil and gas company. The chapter models uncertain-
ties in the long-term design and operation planning problem of the Brazilian natural gas network, and
applies alternative (ii) above combined with bundle methods and two-stage decomposition to solve the
underlying problem. The investigated strategies were implemented in the software MONGE that will assist,
in 2019, the renegotiation of the 20-year gas supply contract between Brazil and Bolivia.

Multistage stochastic programs
Multistage stochastic programs explicitly model a series of decisions interplayed with partial observation
of uncertainty. As in the two-stage setting, the typical approach to multistage stochastic programs
is to approximate the underlying random process by using a scenario tree. This yields, in general,
large-scale mathematical programming problems that can only be handled by specialized algorithms
that employ decomposition techniques and very often sampling. Two popular decomposition schemes
for handling multistage stochastic programs are the nested decomposition [27] and the stochastic dual
dynamic programming (SDDP) [157]. By considering a dynamic formulation of the underling multistage
linear problem, both strategies approximate the dynamic programming equations

Qt(xt−1, ξt) :=

{
min
xt≥0

c>t xt +Qt+1(xt)

s.t. Atxt = bt −Btxt−1 ,
(1.2.12)

where the stochastic process is denoted by ξt(ω) := (ct(ω), At(ω), Bt(ω), bt(ω)) (for short ξt := (ct, At, Bt, bt)),
Qt+1(xt) := E[Qt+1(xt, ξt+1)] for t = T − 1, . . . 1, and QT+1(xT) := 0. The �rst-stage problem becomes

min
x1∈X

f(x1), with f(x1) := c>1 x1 +Q2(x1) . (1.2.13)

In general terms, this problem �ts (1.1.1) with f a nonsmooth convex function and c nonexistent.
However, formulation (1.2.13) hides a serious di�culty : to date, there is no e�cient and implementable
oracle for the function f . Since f depends implicitly on a number of subproblems that in turn depend on
other subproblems and so on, computing f (and a subgradient) is only possible via a recursive procedure
that replaces the recourse functions Qt by cutting-plane models Q̌t (≤ Qt), t = 2, . . . , T :

x̄t ∈

{
arg min

xt≥0
c>t xt + Q̌t+1(xt)

s.t. Atxt = bt −Btx̄t−1 .
(1.2.14)

Such recursive procedure is split into two steps: a forward one de�ning feasible polices x̄1, . . . , x̄T as
above and estimating an upper bound for f(x̄1), and backward step enriching the cutting models Q̌t,
t = T, . . . , 2, and computing a valid lower bound for the problem.

For numerical tractability, the stochastic process {ξ}Tt=1 (with ξ1 �xed) is represented by a scenario tree,
as illustrated in the top of Figure 1.4. Each scenario ξi = (ξi1, . . . , ξ

i
T) consists of a path starting from

the root node of the tree and going up to one of the leaf nodes. It is thus evident that the number of
scenarios grows exponentially with the number of stages. Needless to say, the computational burden
to solve (1.2.13) also grows with the number of scenarios. It is worth mentioning that the number of
scenarios should be large enough to represent (by the Law of Large Numbers) well the stochastic process
nature, but on the other hand the tree's size should be small to allow solving (1.2.13) in a reasonable CPU
time. Important strategies to overcome (as much as possible) this di�culty are the scenario reduction
techniques [159].

In a joint work with my PhD student Felipe Beltrán and my colleague Erlon Finardi, both from Federal
University of Santa Catarina, Brazil, we investigated in [23] the scenario reduction algorithm of [109]
applied to the Brazilian medium-term hydrothermal scheduling problem. Such a problem is modeled as a

15

Figure 1.4: Stage-wise dependent and independent scenario trees. Both trees in the bottom of the �gure
represent the same 18 scenarios.

multistage stochastic program whose objective is to obtain an optimal operation policy over a planning
horizon of few months by minimizing the expected cost of thermal generation. Water in�ows to the
hydro-plant reservoirs follow a stochastic process that is approximated by a multistage scenario tree.
Under the assumption that the stochastic process is stage-wise independent, the scenario tree becomes
a lattice, as illustrated in the bottom of Figure 1.4.

The considered scenario reduction algorithm employs the quadratic distance process, a particular instance
of the nested distance of probability distributions proposed by George Ch. P�ug and Alois Pichler in
[158]. Under the assumption that the scenario tree is stage-wise independent the algorithm of [109] can
be simpli�ed, permitting its usage to handle very large multistage scenario trees. For instance, a tree of
seven stages and 4096 scenarios (denoted by original tree) for the Brazilian medium-term hydrothermal
scheduling problem could be reduced to a smaller one (denoted by reduced tree) with 256 scenarios (93%
of size reduction) in less than one second. With the original tree, the nested decomposition required
almost three hours of processing, whereas the optimization problem issued by reduced tree was solved
in less than one minute. When comparing the obtained solutions (decisions on power generation) in a
out-of-sample simulation, the di�erence between the function values was less than 2%.

In general terms, numerical assessments of the investigated algorithm for stage-wise independent scenario
trees applied to a smaller hydrothermal con�guration extracted from the Brazilian system showed that
reduced trees obtained by eliminating 80% of the scenarios provide approximate solutions to the problem
with less than 1% of accuracy errors and CPU time reduction of around 90%. More details can be found
in [23].

Another contribution to the �eld of multistage stochastic programming is the recent manuscript [199]
that is the �rst work investigating level bundle methods for this class of problems. In that work we
consider the nested decomposition and SDDP algorithm with a new scheme based on normal solutions
for stabilizing iterates during the solution process. The given algorithms combine ideas from �nite
perturbation of convex programs and level bundle methods to regularize the so-called forward step of
these decomposition methods. Essentially, instead of de�ning policies as in (1.2.14) in the forward step
the manuscript proposes the following rule

x̄t ∈


arg min

xt
‖xt − xreft ‖

2

s.t. xt ∈

{
arg min

y≥0
max{c>t y + Q̌t+1(y), f lev

t }

s.t. Aty = bt −Btx̄t−1 ,

(1.2.15)

where xref is a reference vector (e.g. xref = 0) and f lev
t is a given parameter estimating the optimal

value Qt(x̄t−1, ξt) of (1.2.12). By employing the theory of �nite perturbation of convex programs, the
above subproblem becomes a quadratic programming problem (in contrast to (1.2.14) that is simply

16

linear). As a subproduct of this regularization scheme we showed that after �nitely many steps the
multistage regularized decomposition of [18] boils down to a particular case of SDDP, which seeks speci�c
policies during the forward step. As a conclusion, the involving convergence analysis of the multistage
regularized decomposition given in [18] can be alternatively replaced with a directly application of the
well-understood SDDP analysis. Numerical experiments on a hydrothermal scheduling problem indicated
that the new regularized algorithms are competitive with the state-of-the-art approaches in the area,
outperforming the classical SDDP in many instances of the problem.

In summary, my main contributions to the �eld of stochastic programming with recourse consist in
the algorithmic design and mathematical analysis of computational approaches to speed calculations
for solving problems of this class. To this end, the combination of tools from convex analysis, bun-
dle methods and scenario reduction/clustering proved crucial. Although very important, the class of
stochastic programs with recourse is not the only type of stochastic problems that arise in practice:
chance-constrained problems is of paramount importance when reliability is an issue.

1.2.2.2 Chance-constrained programming

In general terms, a stochastic optimization problem involving a chance constraint can be written in the
form of (1.1.1), where c depends on a probability function, e.g.

c(x) := p− P[G(x, ω) ≥ 0] .

In this notation, G : Rn × Ω→ Rm is a given mapping, ω : Ω→ Rm is a m-dimensional random vector
de�ned on some probability space (Ω,A,P), and p ∈ (0, 1] is a pre-speci�ed probability level. The chance
constraint

c(x) ≤ 0 ≡ P[G(x, ω) ≥ 0] ≥ p (1.2.16)

(also known as probabilistic constraint) expresses that the decision vector x ∈ Rn is feasible if and only
if the random inequality system G(x, ω) ≥ 0 is satis�ed with high enough probability [166]. Probabil-
ity constraints are encountered in many engineering problems involving uncertain data. We can �nd
applications in water management, telecommunications, electricity network expansion, hydro reservoir
management, etc.

Since the function c above is nonlinear, writing the constraint in the form c(x) ≤ 0 makes (1.1.1) appear
as a conventional nonlinear programming problem. However, this writing neglects a hidden di�culty:
in most situations explicit values of c are not available. Furthermore, often calculations are inexact,
as computing the probability P[G(x, ω) ≥ 0] for a given point x typically involves multidimensional
numerical integration and or (quasi) Monte Carlo methods. Other issues are that function c sometimes
fails to be convex and di�erentiable even when the mapping −G is convex and di�erentiable on x [86,
87].

In general, chance-constrained models deal more explicitly with the probability distribution itself,
whereas recourse models represent the randomness by �nitely many scenarios and approximates the
expectation by a �nite weighted sum. For this reason, chance-constrained models can be mathematically
more complicated than stochastic models with recourse, because they also explore more the informa-
tion contained in the probability distribution. Naturally, there are also scenario-based strategies for
chance-constrained programming.

A signi�cant amount of e�ort has been made to understand the chance-constraint's properties such as
(eventual) convexity [90] and (sub)di�erentiability [200], as well as to design specialized optimization
methods to better explore and e�ciently solve problems of this class. To this end, chance-constrained
programming is in general split into di�erent families of problems according to their randomness na-
ture (discrete, continuous, elliptical probability distributions) and properties of the mapping G (linear,
nonlinear, non-separable or separable, i.e., G(x, ω) = g(x)− ω, with g : Rn → Rm).

By considering probabilistic constraints wherein the decision and random vector are separated, i.e.
left/right-hand side uncertainty P[G(x, ω) ≥ 0 ≡ P[ω ≤ g(x)], the Sklar's Theorem ensures that

17

the probability function can be represented by a composite function involving the mapping g(x) =
(g1(x), . . . , gm(x)), the marginal distributions Fi, i = 1, ...,m, of ω, and a Copula C : [0, 1]m → [0, 1]:

P[ω ≤ g(x)] = C(F1(g1(x)), . . . , Fm(gm(x))) .

Copula is a multivariate probability distribution for which the marginal-probability distribution of each
variable is uniform.

In the joint paper [11] with Wim van Ackooij we modeled probabilistic constraints with Copulæ and
investigated eventual convexity of the feasible set

X(p) := {x ∈ X : C(F1(g1(x)), . . . , Fm(gm(x))) ≥ p} .

Eventual convexity means that although the set X(p) is not convex for all p ∈ (0, 1], there exists a
threshold p∗ ∈ (0, 1] depending on C, g (possessing generalized concavity properties) and marginals Fi
i = 1, . . . ,m, such that X(p) is a convex set for all p ≥ p∗. This is a property of practical interest, since
one generally cares about convexity of X(p) for p nearly 1: a stochastic system of inequalities should be
satis�ed with a high probability. In [11] we showed that the broad class of Archimedean Copulæ yields
eventual convexity of the set X(p) (provided certain level sets of gi are convex). Naturally, eventual
convexity of X(p) does not imply that the function x 7→ −C(F1(g1(x)), . . . , Fm(gm(x))) is convex. In
order to solve the resulting problem (1.1.1) with constraint

c(x) ≤ 0 ≡ p− C(F1(g1(x)), . . . , Fm(gm(x))) ≤ 0

the work [11] proposed the �rst level bundle method able to deal with a constraint function possessing
generalized convexity properties (e.g. quasi-convexity). More details on this subject are given in Chapter
5.

Still in the setting of separable probability function, if the random variable is uni-dimensional (i.e.,
m = 1), then the problem of minimizing a function f over X ∩ {x ∈ Rn : P[ω ≤ g(x)] ≥ p} can be
stated in a deterministic form by employing the concept of p-quantile of the probability distribution
F (g(x)) = P[ω ≤ g(x)]:

min
x∈X

f(x) s.t. g(x) ≥ F−1(p) .

Computing the p-quantile F−1(p) is not a di�cult task (when m = 1) and can be accomplished by stan-
dard computational toolboxes of probability and statistics for a wide range of uni-variate distributions.
Once F−1(p) is computed, the above becomes an ordinary deterministic optimization problem that can
be solved by standard algorithms.

In the multidimensional setting m > 1, the concept of p-quantile was extended to what is called p-
e�cient point:
A vector v ∈ Rm is called a p-e�cient point of the probability distribution of ω, if P[ω ≤ v] ≥ p and
there is no y ≤ v, y 6= v such that P[ω ≤ y] ≥ p.
Instead of a single value F−1(p), the set V of p-e�cient points can contain in�nitely many of them (only a
�nite number if the support of the probability distribution is �nite). With this de�nition, problem (1.1.1)
with c given in (1.2.16) can be rewritten as

min
x,v

f(x) s.t. g(x) ≥ v , x ∈ X and v ∈ V.

From the algorithmic point of view, the main advantage of this formulation is that it exempts the need
of computing subgradients of the probability function. But this interesting feature comes with a price:
to compute a p-e�cient point one needs to solve a combinatorial subproblem whose dimension depends
on the size of the sample generated to approximate the uncertain parameters. What if, to speed up
calculations, we consider approximated p-e�cient points? What type of result regarding solution quality
can we expect?

To answer these questions, in [4] we iteratively computed points from V by inexactly solving the com-
binatorial subproblems and, by adopting a dual point of view, we developed a solution framework that

18

includes and extends various existing formulations. Our approach, which can be applied to both discrete
and continuous random variables, represents a contribution in three fronts. First, by extending the the-
ory on inexact bundle methods developed in [149] to the primal-dual setting, we revealed the impact of
inexactness in primal terms. Second, we designed new on-demand accuracy approaches which performed
the best in our numerical experiments. Third, thanks to the unifying view, we showed convergence for a
generalization of both the Regularized Dual Decomposition and the Progressive Augmented Lagrangian
algorithm [56, 59]. This work is discussed in details in Chapter 6.

If probability constraints is not separable, then the p-e�cient point strategy is not suitable and other
solving strategies must come into play. In the joint work with Wim van Ackooij and Antonio Frangioni
(University of Pisa) [203] we investigated the celebrated (generalized) Benders' decomposition approach
applied to probability constraints (not necessarily separable) with �nite support Ω. Binary variables
were employed to handle the �nite set of scenarios Ω:

min
x∈X,z

f(x)

s.t. G(x, ω) ≤ zωM
〈π, z〉 ≤ 1− p
zω ∈ {0, 1} ∀ω ∈ Ω ,

where M ∈ Rm+ is a vector composed of large enough constants, and π is the vector of probabilities. We
then split these (binary) variables into a �rst stage of decisions, yielding a value function resulting from
the optimization of the easier (but not trivial) subproblem:

v(z) := min
x∈X

f(x) s.t. G(x, ω) ≤ zωM ∀ω ∈ Ω .

By de�ning this subproblem, the master program then becomes purely combinatorial
min
z

v(x)

s.t. 〈π, z〉 ≤ 1− p
zω ∈ {0, 1} ∀ω ∈ Ω .

The approach proposed in [203] combines stabilization in such a Benders's decomposition in two ways: via
a trust region in the `1 norm, or via a level constraint and inexact function computation (solution of the
subproblems). Managing both features simultaneously required a non trivial convergence analysis. We
provided it under very weak assumptions on the handling of the parameters controlling the informative
on-demand inexact oracle corresponding to the subproblem, strengthening earlier known results [9, 148].

Final comments on this chapter.
By starting with the presentation of my �elds of action in mathematical programming, a general dis-
cussion on my scienti�c contributions has been presented. As we could see, the core of my research
lies in the algorithmic aspects of nonsmooth optimization (convex, mixed-integer, DC) and stochastic
programming (with recourse and with probabilistic constraint). Energy management problems as the
ones of [9, 23, 32, 49] have motivated most of the research topics discussed above. In what follows,
the �ve articles [4], [11], [32], [50] and [51] on stochastic programming and nonsmooth optimization are
presented in details, except for the mathematical proofs that can be found in the original publications.

19

Chapter 2

Target radius method for nonsmooth

convex optimization

This chapter is extract from the following paper, where the convergence analysis of the Target Radius
Method (TRM) of [153] is presented:

W. de Oliveira
Target radius methods for nonsmooth convex optimization.
Operations Research Letters, 2017, volume 45, issue 6, pp. 659-664.

The work shows that the method belongs to the level bundle family, and signi�cantly improves the TRM
of [153] by handling particular classes of nonlinearly constrained convex problems and bilevel programs.
The paper [50] also provides an original limited-memory strategy that can employed in bundle methods.
Moreover, it is shown that the given TRM possesses dimension-independent iteration complexity and
optimal (in the large-scale case) rate-of-convergence results for the minimization of a convex function
over a Euclidean ball, a standard simplex, and other domains.

2.1 Introduction

We study the Target Radius Method � TRM � proposed in [153] for minimizing a nonsmooth convex
function f : Rn → R over a convex set X 6= ∅:

min
x∈X

f(x). (2.1.1)

The method combines the central cutting-plane algorithm of [64] with level bundle methods [30, 106,
123, 148], and de�nes every trial point (candidate solution) as the center of the closest sphere (with a
given radius) inscribed in a certain polyhedron issued by a set of linearizations of function f .

Adam Ouorou brie�y proposed TRM as a variant of the Proximal Chebychev Center Cutting Plane
Algorithm (pc3pa) in [153, page 260]. No convergence analysis was given. In this work, we provide a
convergence analysis with worst-case bound for complexity results and propose a handy rule to update
the method's most important parameter: the inscribed sphere's radius. Furthermore, we extend TRM
to handle two additional classes of convex nonsmooth optimization problems described below.

20

2.1.1 Problems of interest and main assumptions

Throughout this paper we make the assumption that c : Rn → R is a continuous di�erentiable and
strongly convex function on X with parameter ρ > 0, w.r.t. the norm ‖·‖p (p ∈ [1,∞]), that is

c(x) ≥ c(y) + 〈∇c(y), x− y〉+
ρ

2
‖x− y‖2p ∀x, y ∈ X . (2.1.2)

In addition to (2.1.1), we deal with problems of the form

min
x∈X

f(x) s.t. c(x) ≤ δ . (2.1.3)

Nonlinearly-constrained optimization problems as (2.1.3) arise, for instance, as subproblems in Trust-

Region Methods whose nonlinear constraint c is a Bregman function (e.g. ‖x− x̂‖22 and x̂ ∈ Rn is a given
stability center). Notice that setting (2.1.1) can be recovered from (2.1.3) by setting δ = +∞, making
the constraint c(x) ≤ δ in (2.1.3) super�uous. With this in mind, we provide a uni�ed presentation
handling problems (2.1.1) and (2.1.3) in an identical manner, yielding the same complexity result for
both classes of problems.

After some simple modi�cations, TRM is extended to handle the following particular class of bilevel
problems

min
x∈Rn

c(x) s.t. x ∈ arg min
y∈X

f(y) . (2.1.4)

For the particular case c(x) = ‖x‖22, the above problem is the so-called minimal norm solution problem,
see [5]. A more general (yet particular) bilevel program is investigated in [187] under the light shed
by bundle methods and penalty functions. Di�erently from [187], we do not employ any penalization
approach.

In summary, we propose two algorithms: one handling problems (2.1.1) and (2.1.3), and another one
dealing with problem (2.1.4). Both algorithms generate a subsequence of candidate solutions converging
to an optimal solution of the underlying optimization problem. Trial points are obtained by solving a
master problem of the form

min
x∈X

c(x) s.t. Gx+ α ≤ 0, (2.1.5a)

with G and α given matrix and vector representing a cutting-plane approximation of f . We focus on
a particular class of problems whose constraint function c and feasible set X are simple enough so that
solving either problem (2.1.5a) or its dualized version (yielding the dual function of (2.1.5a))

min
x∈X

c(x) + 〈λ,Gx〉 (2.1.5b)

is a simple (or at least computationally cheap) task. If the considered problem is of type (2.1.1),
then we have freedom to choose an appropriated function c (combined with X) to make the master
problem (2.1.5a) (or (2.1.5b)) easy to solve; and/or to obtain nearly dimension-independent (and nearly
optimal in the large-scale case) rate-of-convergence results; see [25, 110].

2.2 Target radius method

As our �rst algorithm can handle both problems (2.1.1) and (2.1.3) in a similar manner, we will focus
on the more general problem (2.1.3), keeping in mind that problem (2.1.1) can be recovered by setting
δ =∞. As a result, we will not make any distinction between these settings (except when needful).

The proposed method for solving problem (2.1.3) generates a sequence of iterates belonging to

{x ∈ X : c(x) ≤ δ}.

21

For every point xk an oracle is called to compute f(xk) and a subgradient gk ∈ ∂f(xk). With such
information, the method creates the linearization

f(xk) + 〈gk, x− xk〉 ≤ f(x) ,

where the inequality follows from convexity of f . At iteration k, let fup
k := f(xbest) := minj≤k f(xj).

Since trial points are feasible, fup
k is a valid upper bound for problem (2.1.3). Suppose a valid lower

bound f low
k is known; we compute the optimality gap and level parameter as

∆k := fup
k − f

low
k and f lev

k := f low
k + γ1 ∆k, with γ1 ∈ (0, 1) .

Note that ∆k ≥ 0 and f lev
k ∈ (f low

k , fup
k). The algorithms below stop when ∆k is smaller than a given

tolerance Tol > 0.

2.2.1 The Ouorou's algorithm

Given a radius σk ≥ 0 at iteration k, the algorithm proposed in [153] de�nes the next trial point xk+1

as a solution of {
min
x∈X

1
2

∥∥x− xbest
∥∥2

2

s.t. f(xj) + 〈gj , x− xj〉+ σkλj ≤ f lev
k , ∀ j = 1, . . . , k ,

(2.2.1)

with λj := 1 +
√

1 + ‖gj‖22, that is, the algorithm searches for the sphere of radius σk inscribed in

Lk :=

{
(x, r) ∈ Rn+1

∣∣∣ f(xj) + 〈gj , x− xj〉 ≤ r, ∀ j ≤ k
r ≤ f lev

k

}
,

whose x-component of the center (xk+1, rk+1) is closest to the point xbest; see [153] for more details.
Notice that (2.2.1) is a particular case of the master problem (2.1.5a) with c(x) = 1

2 ‖x− x̂‖
2
2 and

constraints properly written. If σk ≡ 0 for all iterations k, then subproblem (2.2.1) becomes the master
problem of level bundle methods [30, 106, 123, 148].

The updating rule for σk proposed in [153] is: σk+1 = γσmax
k , γ ∈ (0, 1), where σmax

k is the radius of the
Chebychev sphere in Lk, which then needs solving an extra linear subproblem.

2.2.2 The new algorithm

In [25] the authors show that better complexity results can be obtained by replacing the quadratic
objective function in level methods' master problems with appropriate Bregman-like distances �tting
the structure of X. In this work we go further and replace the objective function in (2.2.1) with a
(di�erentiable) strongly convex function c on X. To this end, we consider the following set

V :=
{
x ∈ X : 〈∇c(x), x− z〉 ≤ 0 ∀ z ∈ S∗

}
, (2.2.2)

where S∗ 6= ∅ is the solution set of (2.1.3). We associate to ‖·‖p (p ∈ [1,∞]) its dual norm ‖·‖q with
q = p/(p− 1), and the convention that 1/0 =∞ and ∞/∞ = 1. Given σk ≥ 0, the next trial point xk+1

solves 
min
x∈X

c(x)

s.t. 〈∇c(x̃k), x̃k − x〉 ≤ 0
f(xj) + 〈gj , x− xj〉 ≤ f lev

k − σk[1 + ‖(1, gj)‖q]
j ∈ Jk

(2.2.3)

where x̃k is either xk or x0 ∈ V , and Jk ⊂ {0, . . . , k}. The choice of x̃k is automatically performed by
our algorithms in order to obtain a limited-memory method (i.e., when Jk is required to be uniformly
bounded). Note that if the given norm ‖·‖p is the Euclidean one (i.e., p = 2), then ‖(1, gj)‖2 =

22

√
1 + ‖gj‖22 as in [153]. Our algorithms, however, do not restrict themselves to the Euclidean norm.

Alternatively, we may replace 1 + ‖(1, gj)‖q in (2.2.3) with ‖gj‖q: in this case, the sphere of radius σk
will be inscribed in

{x ∈ Rn : f(xj) + 〈gj , x− xj〉 ≤ f lev
k }

rather than in Lk.

Let Λk := maxj=0,...,k{1+‖(1, gj)‖q}. The following two lemmas ensure that if (2.2.3) is infeasible, then

f lev
k − σkΛk is a lower bound for the optimal value of (2.1.3).

Lemma 2.2.1. ([50, Lemma 1]). Let f∗ and S∗ 6= ∅ be the optimal value and solution set of prob-
lem (2.1.3), Xk be the feasible set of (2.2.3), and V as in (2.2.2). If f lev

k − σkΛk ≥ f∗ and x̃k ∈ V ,
then S∗ ⊂ Xk and the next iterate xk+1 solution of (2.2.3) is well-de�ned, belongs to V and satis�es
c(xk+1) ≤ δ.

The following lemma gives a handy rule to update lower bounds of f∗.

Lemma 2.2.2. ([50, Lemma 2]). Given xk0
∈ V and k0 ≥ 0, let the sequence {xi} be generated by

solving (2.2.3), and let k > k0. Suppose that {f lev
i − σiΛi}ki=k0

is a nonincreasing sequence and x̃i = xi
for all i = k0, . . . , k. If either Xk = ∅ or c(xk+1) > δ, then f∗ > f lev

i − σiΛi for some i ∈ {k0, 1, . . . , k}
and, in particular, f lev

k − σkΛk is a lower bound for f∗.

As a result of Lemma 2.2.2, we update the lower bound f low
k by the following rule: set f low

k+1 = f lev
k −σkΛk

whenever Xk = ∅ or c(xk+1) > δ. In order to ensure the above rule provides valid lower bounds along the
iterative process we need to start with x0 ∈ V and reset x̃k to a point in V whenever f low

k is updated.
This is automatically done by Algorithm 2.

Algorithm 2 Target Radius Algorithm

Step 1. Let x0 = arg minx∈X c(x), compute f(x0), g0 ∈ ∂f(x0). De�ne fup
0 = f(x0), xbest = x0, Λ0 =

1 + ‖(1, g0)‖q and J0 = {0}. Determine f low
0 < f∗, choose γ1 ∈ (0, 1), γ2 ∈ [0, 1), Tol ≥ 0, m ≥ 2 and set

k = l = k(0) = 0.

Step 2. De�ne ∆k = fup
k − f

low
k .

If ∆k ≤ Tol, stop and return xbest and f(xbest).

Step 3. Set f lev
k = f low

k + γ1 ∆k and σk = γ2γ1∆k/Λk.
Set x̃k = xk if k > k(l), or x̃k = x0, if k = k(l).

Step 4. Try to solve (2.2.3) to compute xk+1.
If (2.2.3) is infeasible or c(xk+1) > δ, then set f low

k+1 = f lev
k − σkΛk, k(l+ 1) = k+ 1, l = l+ 1, fup

k+1 = fup
k ,

Λk+1 = Λk and go to Step 6. Otherwise set f low
k+1 = f low

k and continue.

Step 5. Compute f(xk+1), gk+1 ∈ ∂f(xk+1) and set Λk+1 = max{1 + ‖(1, gk+1)‖q ,Λk}.
If f(xk+1) < fup

k , set fup
k+1 = f(xk+1) and xbest = xk+1. Otherwise f

up
k+1 = fup

k .

Step 6. Choose J̃ ⊂ Jk such that |J̃ | ≤ m− 2. Set Jk+1 = J̃ ∪ {0, k + 1}, k = k + 1 and go back to Step 2.

Remark 2.2.3. The initial point x0 solution of the strongly convex program minx∈X c(x) is readily available

in some important applications. This is the case of trust-region subproblems and signal/image processing where

c : X → R+ is a Bregman function c(x) = s(x) − s(x̂) − 〈∇s(x̂), x − x̂〉 de�ned with x̂ ∈ X. The distance-

generating-function s : X → R is assumed to be a continuous di�erentiable and strongly convex on X with

parameter ρ > 0, w.r.t. the norm ‖·‖p. In such setting x0 = x̂ is the unique minimizer of c over X. However,

if x0 is not known in advance, we may �nd it by employing an out-of-shelf algorithm for smooth optimization

to the problem minx∈X c(x). The �rst-order optimality condition yields 〈∇c(x0), x − x0〉 ≥ 0 for all x ∈ X. In

particular, x0 ∈ V and c(x0) ≤ δ because (2.1.3) is feasible.

Suppose an initial lower bound f low
0 is not available. If X is a compact set we may compute f low

0 by
solving minx∈X 〈g0, x〉, justi�ed by the inequality f(x0) + 〈g0, x− x0〉 ≤ f(x).

23

Notice that the choice γ2 = 0 is possible. In this case Algorithm 2 becomes a level bundle algorithm,
[30]. Choosing γ2 > 0 yields deep cuts, cutting o� a larger region of the feasible set. According to Step
3 of the algorithm, the vector x̃k is reset to x0 whenever the lower bound is updated. Otherwise x̃k is
the current point xk. This strategy is crucial to ensure that f low

k ≤ f∗ for all k (c.f. Lemma 2.2.2).

If function c and feasible set X have favorable structures, the natural way is to solve (2.2.3) directly by
some speci�c (QP, conic etc.) solver. If it is not the case, then we may solve the dual problem of (2.2.3):

max θ(λ) s.t. λ ∈ R|Jk|+1
+ , with θ(λ) := 〈λ, α〉+ min

x∈X
c(x) +

∑
j∈Jk

λj〈gj , x〉 − λ0〈∇c(x̃k), x〉. (2.2.4)

We assume the inner subproblem de�ning θ(λ) is easy to solve, having possibly an explicit expression
for computing its solution. The task of maximizing θ can be performed by a bundle algorithm [30, 148,
149]. Suppose δ < ∞. If for a given λ one has θ(λ) > δ, then the optimal value of (2.2.4) is strictly
greater than δ. By the weak duality the optimal value of (2.2.3) (possibly +∞ when the master problem
is infeasible) is also strictly greater than δ, and thus xk+1 is not feasible (by Lemma 2.2.2) for (2.1.3).
We shall thus stop the optimization process of (2.2.4) and update the lower bound f low

k according to
Step 4.

Step 5 ensures that size of Jk is overall bounded bym ≥ 2, a constant that is chosen at Step 1. A moderate
value of m makes problem (2.2.3) (and (2.2.4)) easier to solve, however a larger value for m provides
a better approximation of f and possibly decreases the number of iterations to solve problem (2.1.3).
The bundle management of Step 6 always keep the oracle information of x0. This is not crucial for the
algorithm convergence, but it is useful to prove its low complexity (see Proposition 2.3.3 below).

2.3 Convergence analysis

Throughout this section we denote κ := 1− γ1(1− γ2) ∈ (0, 1) and λj := 1 + ‖(1, gj)‖q. We recall that f
is a �nite-valued convex function, and hence its subdi�erential ∂f(x) is nonempty, convex, and bounded
for all x. Let

Y := X ∩ {x ∈ Rn : c(x) ≤ δ} be a compact set. (2.3.1)

Then there exists a constant Λ > 0 such that ‖g‖q ≤ Λ− 1 for all g ∈ ∂f(x) and all x ∈ Y . As a result,
the value Λk = maxj=0...,k λj in Algorithm 2 is an approximation of Λ, which we assume w.l.o.g. to
satisfy Λk ≤ Λ for all k. We will also make use of the following useful index set

Kl := {k(l), k(l) + 1, . . . , k(l + 1)− 1} , ∀ l = 0, 1, . . . , (2.3.2)

splitting the iterative process of Algorithm 2 into cycles.

Lemma 2.3.1. ([50, Lemma 3]). Step 4 of Algorithm 2 ensures that ∆k(l+1) ≤ κ∆j, for all j ∈ Kl and

all l = 0, 1, . . . Moreover, {f lev
j − σjΛj}j is nonincreasing for all j ∈ Kl.

The convergence analysis given below, inspired in [106], consists in showing that every cycle Kl in (2.3.2)
is �nite.

Lemma 2.3.2. ([50, Lemma 4]). Let k ∈ Kl and assume that xk+1 is well de�ned. Then ‖xk+1 − xk‖p ≥
κ∆k/Λ if k > k(l), and ‖xk+1 − x0‖p ≥ κ∆k/Λ if k = k(l).

Proposition 2.3.3. ([50, Proposition 5]). Assume (2.3.1) and let D be δ − c(x0) ≥ 0 if δ < ∞, or
max
x∈X

c(x)− c(x0) ≥ 0 otherwise. If k ∈ Kl and ∆k > 0, then

k − k(l) ≤ 2D

ρ
[Λ/(κ∆k)]2.

24

Let k be the largest index in Kl. Then, cardinality |Kl| of Kl is k − k(l) + 1, which is bounded by
2D
ρ [Λ/(κ∆k)]2 + 1 (c.f. Proposition 2.3.3). However, as the oracle is not called at iterations k(l), for
l = 1, 2, . . . , (see Step 4 of the algorithm) the number of oracle calls in every index set Kl (except K0)
is |Kl| − 1. In what follows we present a bound on the maximum number of oracle calls required by
Algorithm 2 to obtain a Tol-solution.

Theorem 2.3.4. ([50, Theorem 6]). Consider Algorithm 2, assume (2.3.1) and let D be as in Proposi-
tion 2.3.3. Then, to reach an optimality gap smaller than Tol > 0 it is enough to perform at most

2D

ρ

(
Λ

Tol

)2
1

κ2(1− κ2)
+ 1 oracle calls.

Remark 2.3.5. Let us now consider the case in which D in Proposition 2.3.3 is zero. In this case, Theorem 2.3.4
states that Algorithm 2 will perform only one oracle call (at the point x0). This is as expected, as discussed below:

� suppose δ < ∞, i.e., we are in the setting of problem (2.1.3). Notice that D = 0 implies c(x0) = δ. Since c is
a strongly convex function and x0 is its minimizer over X, we conclude that the feasible set of problem (2.1.3)
is the singleton {x0};

� suppose δ = ∞, i.e., problem (2.1.1) is considered. In this case, D = 0 implies maxx∈X c(x) = c(x0) =
minx∈X c(x), and therefore the feasible set of problem (2.1.1) is the singleton {x0}.

In both cases Algorithm 2 will not perform more than one oracle call. However, if ∆0 > 0 it will require at most
log(Tol /∆0)

log(κ)
iterations until proving that x0 is a Tol-solution.

2.3.1 Special setups and asymptotic result

The best possible bound in Theorem 2.3.4 is 8D
ρ

(
Λ

Tol

)2
+ 1, achieved when κ = [1− γ1(1− γ2)] =

√
2/2.

When problem (2.1.1) is considered, we have the possibility to choose a suitable function c to adjust to the
geometry of the feasible set X, minimizing thus the fraction D

ρ . This allows us to get nearly dimension-
independent (and nearly optimal in the large-scale case) rate-of-convergence results for minimization of
a convex function over a Euclidean ball, a standard simplex, and other domains [25, � 2.3].

2.3.1.0.1 Mahalanobis distance Given a squared, symmetric and positive de�nite matrix Q, sup-
pose function c is given by c(x) = 1

2 〈x − x̂, Q(x − x̂)〉, with x̂ ∈ X a given stability center. If X is a
polyhedron, then (2.2.3) is a QP. If X is the whole space Rn, then the dual problem (2.2.4) is a QP
with |Jk|+ 1 variables, being easy to solve if |Jk| is of moderate size (say a few hundreds). If Q = I and
δ = 1, then ρ = 1, x0 = x̂ and D = δ − c(x0) = δ = 1. In this case, the bound on the number of oracle

calls is dimension independent: 8
(

Λ
Tol

)2
+ 1.

2.3.1.0.2 Generalized Kullback-Leibler (GKL) divergence Consider problem (2.1.1) withX =
{x ∈ Rn+ :

∑n
i=1 xi = 1}. Then the function of choice is the GKL divergence c(x) = s(x) − s(x̂) −

〈∇s(x̂), x− x̂〉, with x̂ a �xed point in X and s(x) =
∑n
i=1(xi+νn−1) log(xi+νn−1), for a given positive

tolerance ν ≈ 0. In this setup, computing the solution of (2.2.3) amounts at �nding a root of a certain
unidimensional equation (e.g., [25, page 421], which is an easy task. Moreover, it can be shown that
ρ = (1+ν)−1, ‖·‖p = ‖·‖1 and D ≤ (1+ν)[1+ln(n(1+ν)/ν)], [25, � 2.3]. The initial point in Algorithm 2
is x0 = x̂.

In contrast to [25], Algorithm 2 (a) considers �deep cuts" yielded by radius σk in (2.2.3); (b) does not
require solving an extra (linear or nonlinear) subproblem to update lower bounds; (c) has the possibility
to consider more general functions c (not only Bregman functions as in [25]). Moreover, Algorithm 2 is
able to solve the bilevel problem (2.1.4) under the more restrictive assumption (2.3.3) below.

Theorem 2.3.6. ([50, Theorem 7]). Assume (2.3.1) and let Tol = 0 in Algorithm 2. Then lim ∆k = 0
and any cluster point of the sequence {xbest

k } converges to a solution of (2.1.3).

25

Furthermore, suppose that δ =∞ and

f lev
k − σkΛk ≥ f∗ ∀ k = 0, 1, 2, . . . (2.3.3)

Then {xbest
k } converges to the unique solution of (2.1.4).

Assumption (2.3.3) is satis�ed, for instance, when the optimal value f∗ of (2.1.1) is known and we
take f low

0 = f∗ (and therefore f low
k = f∗ for all k). This situation is, nevertheless, unrealistic in many

problems of practical interest. Below we propose a variant of Algorithm 2 that is able to solve (2.1.4)
without requiring assumption (2.3.3).

2.4 Bilevel target radius method

Consider the particular class of bilevel programming represented by problem (2.1.4). We rely on Algo-
rithm 2 and modify its rule to de�ne upper bounds: instead of de�ning fup

k+1 = max{f(xk+1), fup
k } as in

Step 5 of Algorithm 2, the method given below sets upper bounds as fup
k+1 = f(yk+1), where {yk} ⊂ X is

a (second) sequence of points generated by the algorithm. More speci�cally, the sequence {yk} is gener-
ated as follows: set y0 = x0, the initial point; for k > 0, set yk+1 = yk if f(xk+1) > f(yk)− 1

2 (1− γ1)∆k,
otherwise yk+1 is the (unique) solution of the following extra subproblem

min
y∈X

c(y)

s.t. f(xj) + 〈gj , y − xj〉 ≤ f(xk+1), j ∈ Jk
f(yk) + 〈gyk , y − yk〉 ≤ f(xk+1)
〈∇c(yk), yk − y〉 ≤ 0 .

(2.4.1)

Algorithm 3 Bilevel Target Radius Algorithm

Step 1. As Step 1 of Algorithm 2. In addition set y0 = x0.

Step 2. De�ne ∆k = f(yk)− f low
k .

If ∆k ≤ Tol, stop and return yk and f(yk).

Step 3. Set f lev
k = f low

k + γ1 ∆k and σk = γ2γ1∆k/Λk.
Set x̃k = xk if k > k(l), or x̃k = yk, if k = k(l).

Step 4. As Step 4 of Algorithm 2.

Step 5. Compute f(xk+1), gk+1 ∈ ∂f(xk+1) and set Λk+1 = max{1 + ‖(1, gk+1)‖q , Λk}.
If f(xk+1) ≤ f(yk)− 1

2
(1− γ1)∆k, set yk+1 as the solution of (2.4.1). Else yk+1 = yk.

Step 6. As Step 6 of Algorithm 2.

Notice that the extra subproblem (2.4.1) is solved only at iterations providing signi�cant decrease of f .

Lemma 2.4.1. ([50, Lemma 8]). Subproblem (2.4.1) is well de�ned for all iterations k = 0, 1, . . .

Theorem 2.4.2. ([50, Theorem 9]). Consider Algorithm 3 with Tol = 0 and assume that X is a compact
set. Then the sequence {yk} ⊂ X generated by the algorithm converges to an optimal solution of (2.1.1).
Moreover, ȳ = limk yk solves problem (2.1.4).

2.5 Concluding remarks

This work signi�cantly improves the TRM of [153] by handling problems of the form (2.1.3) and (2.1.4);
di�erent norms ‖·‖p (p ∈ [1,∞]) for de�ning �deep cuts"; a new rule to update the inscribed sphere's
radius; and by skipping solving a LP to update lower bounds. In the setting of problem (2.1.1), we

26

generalize the approach of [25] and extend the TRM of [153] to deal with general continuous di�erentiable
strongly convex functions c (not necessarily Bregman-like distances) exploiting the structure of the
feasible set. Furthermore, we present convergence analysis of our algorithms and provide complexity
results for Algorithm 2. As shown, the given algorithms generalize the well-known level bundle methods
and employ a more general scheme for yielding limited memory. Our algorithms require, however, the
initial point x0 to be the minimizer of c over X. While it is straightforward to determine x0 if c is a
Bregman function, it might not be the case for a more general function c (c.f. Remark 2.2.3). This a
downside of our proposals when dealing with problems of type (2.1.3).

27

Chapter 3

An inertial algorithm for DC

programming

This chapter is extracted from the forthcoming publication

W. de Oliveira and M. Tcheou
An inertial algorithm for DC programming
To appear in Set-Valued and Variational Analysis, 2018.
DOI: 10.1007/s11228-018-0497-0

The manuscript deals with nonsmooth DC programs and proposes a non-monotone algorithmic pattern
with an inertial-force procedure to compute critical points for optimization problems of this class. The
inertial-fore scheme, akin to the Heavy-Ball method of Polyak, helps to prevent the given algorithms from
converging to bad-quality critical points. Convergence analysis and rate of convergence are presented.
Moreover, one variant of the given algorithmic pattern is assessed numerically on large-scale nonconvex
and nonsmooth image denoising models in computer vision systems.

3.1 Introduction

In this work we consider nonconvex nonsmooth optimization problems of the form

min
x∈Rn

f(x), with f(x) := f1(x)− f2(x) , (3.1.1)

where f1, f2 : Rn → R∪{+∞} are convex and possibly nonsmooth functions. Problems of this type are
known in the literature as DC programs, with �DC" standing for Di�erence-of-Convex functions [93].
We assume throughout this manuscript that f1 is a closed function and that Dom(f1) ⊂ O ⊂ Dom(f2),
where O is an open and convex set in Rn. This assumption allows us to encompass convex constrained
DC programs in formulation (3.1.1). Indeed, notice that the �rst component function f1 can be, for
example, the sum of a convex function ϕ : Rn → R with the indicator function iX of a convex set X ⊂ O,
i.e., f1(x) = ϕ(x) + iX(x) with iX(x) = 0 if x ∈ X and iX(x) = +∞ otherwise.

DC programming forms an important sub-�eld of nonconvex programming and has been receiving much
attention from the mathematical programming community [81, 93, 95, 101, 112, 188, 193, 196].

More general DC programs with DC constraints are investigated in [113, 155, 189, 190, 191, 201]. Some
applications include production-transportation planning problems [97], location planning problems [196,
Chapter 5], physical layer based security in a digital communication systems [155], chance-constrained
problems [50], cluster analysis [19, 104], engineering design problems [74, 196], energy management prob-
lems [201] and others. We refer to [196, Part II] for a comprehensive presentation of several algorithms

28

designed for DC optimization problems. Solving globally nonsmooth programs as (3.1.1) is a challeng-
ing task, especially in the large-scale setting. We will, therefore, deal with this class of problems by
employing local-solution approaches.

A well-known method for dealing with the optimization problem (3.1.1) is the DC Algorithm (DCA) of
[193] (see also [16, 112, 194]). The classical DCA handles problem (3.1.1) by de�ning a sequence of trial
points according to the following rule, for a given starting point x0 ∈ Dom(f1):

for all k = 0, 1, 2, . . ., compute gk2 ∈ ∂f2(xk) and xk+1 ∈ ∂f∗1 (gk2), (3.1.2)

where ∂f2(xk) is the subdi�erential of the convex function f2 at point xk (see de�nition in Section 3.2
below) and f∗1 is the conjugate function of f1. It can be shown [193, Theorem 3] that every cluster point
x̄ (if any) of the sequence {xk} generated by rule (3.1.2) is a critical point of problem (3.1.1), i.e., x̄
satis�es

∂f1(x̄) ∩ ∂f2(x̄) 6= ∅ . (3.1.3)

It follows from convexity of the component functions f1 and f2 that rule (3.1.2) yields a monotone
sequence of function values, i.e., f(xk+1) ≤ f(xk) for all k = 0, 1, . . . (see [193, Theorem 3(i)] for more
details). While monotonicity might be seen as a quality of the method, demanding monotonically de-
creasing function values might not be an ideal scheme in nonconvex optimization: depending on starting
points, iterates are attracted by poor-quality critical points that prevent the (monotone) algorithm from
computing a critical point of better quality. In the context of DC programming, we mean by a �critical
point of better quality" a critical point x̄ that is d(irectional)-stationary, i.e., x̄ satis�es

∂f2(x̄) ⊂ ∂f1(x̄) . (3.1.4)

As shown in [93, 155], d-stationarity is the sharpest stationary de�nition for nonconvex problems of
type (3.1.1); see also additional comments in Section 3.2. It is clear from its de�nition that computing
d-stationary points for (3.1.1) is not a trivial task in general. Few exceptions are the situations in
which either f1 or f2 are di�erentiable, [73, Section 2], and the case when f2 is the pointwise maximum
of �nitely many convex and di�erentiable functions. The latter case is investigated in [155], where the
authors propose a proximal linearized method that solves several convex programs per iteration, and thus
has a high computational burden. A less computational demanding method is a variant of the proximal
bundle algorithm proposed in [50], but may require solving many quadratic programs per iteration; see
[50, Algorithm 2].

In this work, we are concerned with algorithms of low computational costs to compute critical points.
Moreover, we do not assume that f2 is the pointwise maximum of �nitely many convex and di�erentiable
functions. In order to try to transpose critical points that are not d-stationary, we furnish the DCA
algorithm represented by rule (3.1.2) with an inertial scheme that can be seen as a version of the heavy-
ball method of Polyak [162].

In a di�erentiable and convex framework, the heavy-ball method is a two-step gradient algorithm that
can be interpreted as an explicit �nite di�erences discretization of the so-called heavy-ball with friction
dynamical system [146]. In summary, the algorithm incorporates an inertial force in the iterative process
of gradient methods by appending to the negative-gradient direction the inertial term γ(xk − xk−1),
where γ ≥ 0 is a given parameter. The heavy-ball method has been generalized in several manners: the
authors of [216] consider di�erentiable but nonconvex optimization problems, and in [14, 15, 139] the
heavy-ball method was extended to handle maximal monotone operators. The paper [146] deals with
nonsmooth nonconvex optimization problems of the form minx∈Rn f1(x)+ζ(x), where f1 is as above and
ζ : Rn → R is a smooth nonconvex function with Lipschitz continuous gradient. The authors of [146]
assume f1 + ζ to be coercive and propose a linearized proximal method with inertial force to compute
stationary points.

In the DC context, ζ = −f2 is a concave function. However, in this work we do not assume that either
f2 is smooth nor f = f1− f2 is coercive. Our proposal follows the general lines of the DCA and replaces
the subgradient gk2 of the second component function f2 in rule (3.1.2) by gk2 +γ(xk−xk−1), with γ ≥ 0.

29

This leads to the following iterative scheme, for a given point x0 ∈ Dom(f1):

for all k = 0, 1, 2, . . ., compute gk2 ∈ ∂f2(xk) and xk+1 ∈ ∂f∗1 (gk2 + γ(xk − xk−1)). (3.1.5)

As we will see in Section 3.4, the sequence of function values issued by the above scheme is not necessarily
monotone due to the inertia imposed by the term γ(xk − xk−1). As already said, this property can be
bene�cial for the quest of computing critical points that are also d-stationary for (3.1.1). Nevertheless,
it is not assured that our Inertial DC Algorithm (InDCA) illustrated by rule (3.1.5) will always compute
d-stationary points, but critical ones. Numerical experiments reported in Section 3.6 below show that
InDCA is more robust than DCA, meaning that for the same starting points InDCA computes very
often better critical points than DCA does.

As for (3.1.2), rule (3.1.5) is not practical when a subgradient of f∗1 is not easily computed. For this
reason, the given algorithm relaxes the requirement xk+1 ∈ ∂f∗1 (gk2 + γ(xk − xk−1)) by a milder one,
that can be understood as demanding xk+1 to belong to an approximate subdi�erential of f∗1 at point
gk2 + γ(xk − xk−1) with a vanishing approximation error. (This is done by inexactly solving the primal
subproblem given in (3.2.2) below). This is the second property of practical interest of our algorithm
as it substantially reduces the computational burden to compute a d-stationary/critical point of DC
programs.

The remainder of this work is organized as follows: Section 3.2 provides some notation and preliminary
results that will be employed throughout the text. In addition, the section contains two examples
illustrating the bene�ts of incorporating an inertial force to the DC algorithm. Section 3.3 presents
our inertial DC algorithmic pattern as well as some practical issues concerning the implementation of
some of its variants. Convergence analysis and convergence rate are considered in Section 3.4, and the
application of interest is discussed in Section 3.5: nonconvex image denoising models. Section 3.6 reports
some preliminary numerical results comparing InDCA against DCA and the nonconvex algorithm iPiano
of [146]. Finally, Section 3.7 closes the paper with some concluding remarks.

3.2 Notation, main de�nitions and illustrative examples

For any points x, y ∈ Rn, 〈x, y〉 stands for the Euclidean inner product, and ‖·‖ for the associated norm,
i.e., ‖x‖ =

√
〈x, x〉. For a set X ⊂ Rn, we denote by iX its indicator function, i.e., iX(x) = 0 if x ∈ X

and iX(x) = +∞ otherwise. For a convex set X its normal cone at the point x is denoted by NX(x),
which is the set {y : 〈y, z − x〉 6 0 ∀ z ∈ X} if x ∈ X and the empty set otherwise.

As convex functions are directionally di�erentiable in the interior of their domains [173, Theorems 23.1
and 23.4], the limit

f ′i(x; d) := lim
t↓0

fi(x+ td)− fi(x)

t

for fi, i = 1, 2, is well de�ned for all x in the interior of Dom(fi) and all d ∈ Rn. It is well known that
f ′i(x; d) = maxg∈∂fi(x)〈g, d〉, where

∂fi(x) := {g ∈ Rn : fi(y) ≥ fi(x) + 〈g, y − x〉 ∀ y ∈ Rn}

is the subdiferential of fi at point x. For ε ≥ 0 the ε-subdiferential is denoted by

∂εfi(x) := {g ∈ Rn : fi(y) ≥ fi(x) + 〈g, y − x〉 − ε ∀ y ∈ Rn}.

Since DC functions are also locally Lipschitz continuous (because their components fi are so), their
directional derivatives are well de�ned for all x in the interior of Dom(fi), i = 1, 2:

f ′(x; d) = f ′1(x; d)− f ′2(x; d) .

A point x̄ ∈ Rn is a d(irectional)-stationary point of problem (3.1.1) if f ′(x̄; (x − x̄)) ≥ 0 for all
x ∈ Rn, which can be shown to be equivalent to the inclusion (3.1.4), [93]. Notice that verifying

30

(3.1.4) computationally is impractical in many cases of interest. Hence, one generally employs a weaker
notion of stationarity: a point x̄ ∈ Rn is called a critical point of problem (3.1.1) if x̄ satis�es (3.1.3).
In summary, all local minimizers of problem (3.1.1) are d-stationary points, which in turn are critical
points of (3.1.1). The reverse implications are, in general, not true as illustrated in [155, Example 2]
(see also Example 3.2.1 below).

In what follows we consider rules (3.1.2) and (3.1.5) and present practical manners to de�ne trial points.
We recall that the conjugate of a convex function f∗i is

f∗i (gi) := sup
x∈Rn
{〈gi, x〉 − fi(x)} .

Since f1 is a closed and convex function, we have that xk+1 ∈ ∂f∗1 (gk2) (rule (3.1.2)) if and only if
gk2 ∈ ∂f1(xk+1) [96, Prop. 6.1.2]. The latter inclusion is satis�ed if xk+1 is a solution of the following
convex subproblem

min
x∈Rn

f1(x)− 〈gk2 , x〉 . (3.2.1)

Analogously, the condition xk+1 ∈ ∂f∗1 (gk2 + γ(xk − xk−1)) of (3.1.5) is satis�ed if xk+1 solves

min
x∈Rn

f1(x)− 〈gk2 + γ(xk − xk−1), x〉 . (3.2.2)

Throughout this work we assume the following condition, which is a mild hypothesis in the DC setting:
Assumption A1. Function f2 is strongly convex on O with a known parameter ρ > 0, that is, for
every g2 ∈ ∂f2(x) one has

f2(y) ≥ f2(x) + 〈g2, y − x〉+
ρ

2
‖y − x‖2 , ∀x, y ∈ O. (3.2.3)

We care to mention that A1, also present in [201], is not a restrictive assumption at all. In fact, if
A1 does not hold for a certain DC function f = ϕ − ψ we can obtain another DC decomposition of f
satisfying A1 by adding an arbitrary strongly convex function s : O → R to the component functions:
note that f = f1− f2 with f1 = ϕ+ s and f2 = ψ+ s. Since one can always take s(·) = ‖·‖2, then ρ can
be assumed known in A1 without loss of generality (just take ρ = 2 in this case).

Under A1 and the hypothesis that the inertial parameter γ in (3.1.5) satis�es 0 ≤ γ < ρ/2 we illustrate
the behavior of the sequences generated by rules (3.1.2) and (3.1.5) in the following two examples.

Example 3.2.1 (Transposing critical points that are not d-stationary). Consider the bi-dimensional DC

function f(x) = f1(x) − f2(x), with f1(x) = ‖x‖2 and f2(x) = max(−x1, 0) + max(−x2, 0) + 0.5 ‖x‖2.
Its curve is plotted in Figure 3.2.1, as well as the behavior of some sequences of points generated by
de�ning the next iterate xk+1 as in (3.1.2) (DCA, Figure 3.2.1(b)) and sequences generated by the new
rule (3.1.5) (InDCA, Figure 3.2.1(c)) with inertial factor γ = 0.49, which was chosen to be less than
ρ/2 = 0.5.

-2

0

2

4

6

8

-2 -20
x

2

0
x

1

2 2

(a) DC function

-3 -2 -1 0 1 2
x

1

-3

-2

-1

0

1

2

3

x 2

(b) DCA

-3 -2 -1 0 1 2
x

1

-3

-2

-1

0

1

2

3

x 2

(c) InDCA with γ = 0.49

Figure 3.1: Iterative process and level curves of function f(x) = f1(x)− f2(x), with f1(x) = ‖x‖2 and f2(x) =
max(−x1, 0) + max(−x2, 0) + 0.5 ‖x‖2. Comparison between the classical DCA and the proposed inertial DC
algorithm.

31

For the four di�erent starting points, DCA determined four di�erent critical points, all presented in
Table 3.2.1. However, the global solution x̄ = (−1,−1)> is the only d-stationary point of the problem of
minimizing f over R2.

x̄ f(x̄) ∂f1(x̄) ∂f2(x̄)

(−1,−1)> −1 (−2,−2)> (−2,−2)>

(0,−1)> −0.5 (0,−2)> (s,−2)> with s ∈ [−1, 0]

(−1, 0)> −0.5 (−2, 0)> (−2, s)> with s ∈ [−1, 0]

(0, 0)> 0 (0, 0)> (s1, s2)> with s1, s2 ∈ [−1, 0]

Table 3.1: Critical points of function f(x) = ‖x‖2 − [max(−x1, 0) + max(−x2, 0) + 0.5 ‖x‖2] determined by
rule (3.1.2).

While the critical points computed by the classical DC algorithm depend strongly on the starting points,
the inertial DC algorithm is able (in this example) to compute the d-stationary point (in this case a global
solution) regardless the initial point. This is thanks to the inertial factor γ(xk−xk−1) that prevents the
iterative process from stopping at critical points that are not d-stationary. In some situations it is also
possible to overcome local solutions, as illustrated by the following example.

Example 3.2.2 (Trasposing local minimizers: a two-variable nonconvex 1D denoising model). We
consider the following nonconvex denoising optimization problem for 1D signals:

min
x∈Rn

µ

2
‖x− b‖2 +

n−1∑
i=1

φ(|xi+1 − xi|) .

The concave function φ(r) := log(1 + 2r)/2 is employed to induce sparsity of the one-lag-di�erence of
the reconstructed signal x̄: one wishes to reconstruct piecewise constant signals. As it will be shown
later (see Proposition 3.5.2) the above nonconvex objective is indeed a DC function f = f1 − f2,

with possible DC components given by f1(x) := µ
2 ‖x− b‖

2
+
∑n−1
i=1 |xi+1 − xi| + ‖x‖2 and f2(x) :=∑n−1

i=1 |xi+1−xi|−
∑n−1
i=1 φ(|xi+1−xi|)+‖x‖2 (hence the parameter of strongly convexity of f2 is ρ ≥ 2).

In order to analyze the iterative process yielded by rules (3.1.2) and (3.1.5) applied to this problem, we
consider dimension n = 2 and parameters µ = 0.6, b = (0.1, 3)>. Notice that di�erently from Exam-
ple 3.2.1, subproblems (3.1.2) and (3.1.5) do not have explicit solutions. We therefore compute iterates
by solving these subproblems numerically up to a given tolerance. The iterative processes with �ve dif-
ferent initial points are presented in Figure 3.2.2, with 0 ≤ γ < ρ/2. In three of the �ve initial points,

-2 0 2 4
x

1

-2

0

2

4

x 2

(a) DCA

-2 0 2 4
x

1

-2

0

2

4

x 2

(b) InDCA γ = 0.7

-2 0 2 4
x

1

-2

0

2

4

x 2

(c) InDCA γ = 0.9

Figure 3.2: Iterative process and level curves of function f(x) = µ
2
‖x− b‖2 +

∑n−1
i=1 φ(|xi+1−xi|), with µ = 0.6,

b = (0.1, 3)> and φ(r) = log(1 + 2r)/2. The global solution is x̄ = (0.3970, 2.7030)> and the optimal value
is f(x̄) ≈ 0.91538. The set of critical points of f that does not contain the global solution is C = {(r, r) :
max{b1, b2} − 1/µ ≤ r ≤ min{b1, b2}+ 1/µ}, i.e, C ≈ {(r, r) : 1.333 ≤ r ≤ 1.7667}.

sequences generated by DCA could not converge to the global minimum x̄ = (0.3970, 2.7030)>, but to the
critical point (31/20, 31/20)> that is a local solution (thus a d-stationary point) of the problem. Instead,

32

rule (3.1.5) was more successful due to inertial factor γ: for γ = 0.7, only one sequence converged to the
critical point that is not the global minimum. Yet, for γ = 0.9 all �ve sequences converged to the global
solution.

Example 3.2.2 suggests to consider a larger factor of inertia γ ≥ 0. However, our analysis given in
Section 3.3 shows that γ cannot be arbitrarily large: the inertial parameter can vary along the interval
[0, ρ/2), where ρ ≥ 0 is the constant of strongly convexity of the second component function f2.

3.3 An inertial DC algorithmic pattern

In this section, we formalize our inertial DC algorithm (InDCA) represented by rule (3.1.5) (which is
related to iteratively computing a solution of (3.2.2)). We care to mention that if subproblem (3.2.2)
is di�cult to solve (e.g. when f1 is assessed via simulation, optimization, numerical multidimensional
integration etc.) then de�ning trial points by rule (3.1.5) (as well as (3.1.2)) can be too time consuming.
To overcome this di�culty we follow the lead of [188, 191] and allow trial points to be inexact solutions
of subproblem (3.2.2). In [191] trial points are de�ned as εk+1-solutions of the convex subproblems,
where εk+1 → 0. This idea is also explored in the context of linearized proximal methods in [188].

Di�erently from [188, 191] we de�ne the trial point xk+1 in such a manner that the εk+1-subdi�erential
of f1 at xk+1 intersects the set ∂f2(xk) + γ(xk − xk−1):

∂εk+1f1(xk+1) ∩ ∂f2(xk) + γ(xk − xk−1) 6= ∅ .

The motivation for such a strategy lies in the fact that if the sequence {xk} converges to a point x̄ and
{εk} vanishes, then the above condition eventually implies criticality (3.1.3) of x̄. In fact, as it will be
shown in Section 3.4, convergence of the whole sequence {xk} is not required: any cluster point of {xk}
can be shown to be a critical point of (3.1.1). Furthermore, the inexactness εk+1 involved in the iterative
process is automatically controlled by our algorithm in such a manner that errors vanish as the iterative
process progresses. The InDCA is presented in the following algorithmic pattern.

Algorithm 4 Inertial DC algorithmic pattern

1: Let x0 ∈ Dom(f1), Tol ≥ 0, λ ∈ [0, 1) and γ ∈ [0, (1− λ)ρ/2) be given. Set x−1 = x0

2: for k = 0, 1, 2, . . . do
3: Set dk = γ(xk − xk−1) and �nd xk+1 ∈ Rn such that

∂εk+1f1(xk+1) ∩ ∂f2(xk) + dk 6= ∅ with 0 ≤ εk+1 ≤ λρ
2
‖xk+1 − xk‖2 (3.3.1)

4: if ‖xk+1 − xk‖ ≤ Tol and
∥∥dk∥∥ ≤ Tol then

5: Stop and return (xk, f(xk))
6: end if

7: end for

The following is an alternative to condition (3.3.1) that is suitable when the �rst component function f1

is smooth: compute xk+1 ∈ Rn such that∥∥gk+1
1 − (gk2 + dk)

∥∥ ≤ λρ
2
‖xk+1 − xk‖ for some gk+1

1 ∈ ∂f1(xk+1) and gk2 ∈ ∂f2(xk) . (3.3.2)

The Algorithmic pattern 4 boils down to speci�c optimization algorithms upon the choice of its pa-
rameters. We start by addressing some particular cases issued by the choice λ = 0. The choice λ > 0
means that subproblem (3.1.5) can be inexactly solved. Practical details on how to implement (3.3.1)
and (3.3.2) for λ > 0 are given in Subsection 3.3.2.

33

3.3.1 Some speci�c settings for the algorithmic pattern with λ = 0

3.3.1.1 The DC algorithm with/without inertial force

Consider the Algorithmic pattern 4 with λ = γ = 0. With this choice of parameters condition (3.3.1) is
equivalent to (3.3.2), which reads as

∂f1(xk+1) ∩ ∂f2(xk) 6= ∅ .

Such condition is ensured, for instance, if gk2 ∈ ∂f2(xk) and xk+1 solves minx∈Rn f1(x) − 〈gk2 , x〉 , the
subproblem of the classic DC algorithm of [193]: optimality of xk+1 implies gk2 ∈ ∂f1(xk+1), and therefore
gk2 ∈ ∂f1(xk+1) ∩ ∂f2(xk).

If λ = 0 but γ > 0 then either (3.3.1) or (3.3.2) is equivalent to de�ne xk+1 by solving (3.2.2): its
optimality condition is gk2 + γ(xk − xk) ∈ ∂f1(xk+1). We use this property in the sequel.

3.3.1.2 The linearized proximal method with/without inertial force

Consider λ = 0 in the Algorithmic pattern 4. Suppose that s : Rn → R+ is a strongly convex and
continuously di�erentiable function, and that f1(x) = ϕ(x) + s(x) and f2(x) = ψ(x) + s(x), i.e., s is
a regularizing function. Under this assumption, gk2 ∈ ∂f2(xk) is given by gk2 = gkψ + ∇s(xk), with
gkψ ∈ ∂ψ(xk). Accordingly, subproblem (3.2.2) (yielding (3.3.1) when λ = 0) becomes

min
x∈Rn

ϕ(x) + s(x)− 〈gkψ +∇s(xk) + γ(xk − xk−1), x〉 .

By adding the constant term −s(xk) + 〈gkψ +∇s(xk) +γ(xk−xk−1), xk〉 to the above subproblem we get

min
x∈Rn

ϕ(x) + s(x)− s(xk)− 〈gkψ +∇s(xk) + γ(xk − xk−1), x− xk〉

= min
x∈Rn

ϕ(x)− 〈gkψ + γ(xk − xk−1), x− xk〉+D(x, xk), (3.3.3)

with D(x, xk) := s(x)− s(xk)− 〈∇s(xk), x− xk〉 the Bregman function induced by s. Hence, Algorithm
4 becomes an Inertial Linearized Proximal Method for DC programming, a new variant of proximal
methods.

In particular, suppose that s(x) = ρ
2 ‖x‖

2. Then the solution of subproblem (3.3.3) also solves

min
x∈Rn

ϕ(x)− 〈gkψ, x〉+
ρ

2

∥∥∥x− [xk +
γ

ρ
(xk − xk−1)

] ∥∥∥2

. (3.3.4)

We care to mention that depending on the structure of ϕ, subproblem (3.3.4) can be e�ciently solved by
specialized algorithms. This is the case of nonconvex image denoising models, the application considered
in Sections 3.5 and 3.6.

If one chooses γ = 0, then Algorithm 4 satisfying (3.3.1) with λ = 0 by solving (3.3.4) is just the
linearized proximal method applied to problem (3.1.1) [155, 188]. On the other hand, if γ > 0 then
Algorithm 4 can be seen as an extension of the iPiano algorithm of [146] to deal with nonsmooth DC
programs (the original algorithm of [146] requires the nonconvex function -ψ to be di�erentiable and its
gradient to be Lipschitz continuous, an assumption that is not required here).

3.3.1.3 Convex setting: proximal method and proximal subgradient splitting method

Once again, suppose that f in (3.1.1) is given by f1(x) = ϕ(x) + ρ
2 ‖x‖

2 and f2(x) = ψ(x) + ρ
2 ‖x‖

2.
As seen above, subproblem (3.2.2) becomes (3.3.4). Furthermore, suppose that ψ is not convex but a
concave function. Then Algorithm 4 satisfying (3.3.1) with λ = 0 by solving (3.3.4) becomes a proximal

34

subgradient splitting method [22] applied to the (now convex) problem minx∈Rn ϕ(x)−ψ(x). Di�erently
from the proximal subgradient splitting methods found in the literature employing (3.3.4) with γ = 0,
the one resulting from Algorithm 4 (under the above assumptions) is of the inertial type because it
allows γ 6= 0. Besides, if ψ := 0 then subproblem (3.3.4) yields an inertial iteration of a proximal method
applied to (3.1.1), which is (in this particular case) simply minx∈Rn ϕ(x).

3.3.2 Some speci�c settings for the algorithmic pattern with λ > 0

We start by showing that if λ > 0, then Algorithm 4 relates to the local-search method of [191].

3.3.2.1 A local-search like method with/without inertial force

Note that (3.3.1) implies the following inclusion, where gk2 is a subgradient of f2 at point xk,

gk2 + γ(xk − xk−1) ∈ ∂εk+1f1(xk+1).

The de�nition of the εk+1-subdi�erential ∂εk+1f1(xk+1) provides the inequality

f1(x) ≥ f1(xk+1) + 〈gk2 + γ(xk − xk−1), x− xk+1〉 − εk+1 for all x ∈ Rn,

which in turn gives

f1(x)− 〈gk2 + γ(xk − xk−1), x〉 ≥ f1(xk+1)− 〈gk2 + γ(xk − xk−1), xk+1〉 − εk+1 for all x ∈ Rn.

In particular, xk+1 is an εk+1-solution of (3.2.2). This procedure is akin to the local-search method
of [191], but with the following di�erences: in [191] γ = 0 and the error εk+1 must be chosen to form
a summable series. We care to mention that the local-search of [191] is general enough to handle DC
constraints, which is not the case of Algorithm 4. An extension of our algorithm to handle DC constraints
is left for future investigation.

3.3.2.2 Bundle-like algorithm with/without inertial force

Suppose that s : Rn → R+ is a strongly convex and continuously di�erentiable function, f1(x) =
ϕ(x) + iX(x) + s(x), f2(x) = ψ(x) + s(x) and X is a convex set. In order to compute a point xk+1

satisfying (3.3.1) we consider subproblem (3.2.2), which reads as

min
x∈X

ϕ(x) + s(x)− 〈gk2 + γ(xk − xk−1), x〉 , (3.3.5)

and an �inner" iterative process ν = 0, 1, 2, . . . generating a sequence of iterates {zν} whose clusters points
solve (3.3.5). Instead of de�ning xk+1 as one of the cluster points of {zν}, we break the inner iterative
process and de�ne xk+1 := zν+1 as soon as zν+1 is an εν+1-solution of (3.3.5), with εν+1 satisfying the
right-side of (3.3.1). To this end, we replace the convex function ϕ in (3.3.5) with a cutting-plane model
ϕ̌ν de�ned by

ϕ̌ν(x) := max
j≤ν
{ϕ(zj) + 〈gjϕ, x− zj〉} with gjϕ ∈ ∂ϕ(zj), j = 0, 1, . . . , ν . (3.3.6)

Convexity of ϕ ensures that ϕν approximates ϕ from below: ϕν(x) ≤ ϕ(x) for all x. These are the main
ingredients of the following implementable scheme for computing a trial point xk+1 satisfying (3.3.1).

Proposition 3.3.1. ([51, Proposition 1]). Let k be �xed and suppose that xk does not solve (3.3.5).
Then Algorithm 5 stops after �nitely many steps ν with a point xk+1 := zν+1 satisfying (3.3.1).

If xk is the unique solution of (3.3.5), then Algorithm 5 ensures (under the analysis of [43]) that {zν}
converges to xk. Therefore, to guarantee that Algorithm 5 will always halt after �nitely many steps one
may consider the following additional test ensuring that zν+1 is a Tol-solution of (3.3.5): if ϕ(zν+1) −
ϕν(zν+1) ≤ Tol, then exit xk+1 := zν+1.

35

Algorithm 5 An implementable scheme for satisfying (3.3.1)

1: Given λ > 0, 0 ≤ γ < ρ/2, xk and xk−1, set dk = γ(xk − xk−1) and z0 = xk
2: Compute (ϕ(z0), g0

ϕ ∈ ∂ϕ(z0))

3: for ν = 0, 1, 2, . . . do
4: De�ne ϕ̌ν as in (3.3.6) and let zν+1 be a solution of

min
x∈X

ϕ̌ν(x) + s(x)− 〈gk2 + dk, x〉 (3.3.7)

5: Compute (ϕ(zν+1), gν+1
ϕ ∈ ∂ϕ(zν+1)) and set εν+1 := ϕ(zν+1)− ϕ̌ν(zν+1)

6: if εν+1 ≤ λ ρ
2

∥∥zν+1 − xk
∥∥2

then
7: Stop and exit with xk+1 := zν+1

8: end if

9: end for

Computing a point satisfying condition (3.3.2)

We now show how to compute xk+1 satisfying (3.3.2) for a particular class of problem (3.1.1) whose �rst
component f1 is of class C1 and the domains of both f1 and f2 is the whole space Rn. Given an arbitrary
vector gk2 ∈ ∂f2(xk), let y(xk) ∈ Rn be a solution of subproblem (3.1.5). Under the given assumptions,
it follows that ∇f1(y(xk))− (gk2 + dk) = 0 . Let {zν} be a sequence of points generated by a convergent
algorithm applied to (3.1.5) (e.g. a Newtonian method, [100]) such that limν∈N ′ z

ν+1 = y(xk). Then,
by continuity of ∇f1 we conclude that

lim
ν∈N ′

∇f1(zν+1) = ∇f1(y(xk)) = gk2 + dk.

If there is no index ν ∈ N ′ such that
∥∥∇f1(zν+1)− (gk2 + dk)

∥∥ ≤ λρ2
∥∥zν+1 − xk

∥∥, then {zν+1}N ′
would converge to xk faster than {∇f1(zν+1)}N ′ converges to gk2 + dk. This yields y(xk) = xk and
∇f1(xk) = gk2 + dk, proving that xk is a critical point of (3.1.1) if dk = 0. Otherwise, Algorithm 4 sets
xk+1 = xk (resulting dk+1 = 0) and proceeds to next iteration. (If dk = 0 and xk is not a critical point,
the condition of (3.3.2) can be satis�ed after �nitely many steps by some inner iterate zν+1.)

3.3.3 An alternative stopping test

The stopping test given in the Algorithmic pattern 4 is a reliable and straightforward one. However,
it may not scale well the underlying optimization problem when the function is ��at" around a critical
point and/or when the dimension of x is very large.

A more practical stopping test depending on the function values has been investigated in [191, Remark
4]. We thus rely on [191] and Lemma 3.4.2 below to propose the following alternative stopping test for
Algorithm 4:

An alternative stopping test for Algorithm 4

1: if
∣∣∣f(xk+1) + (1−λ)ρ−γ

2
‖xk+1 − xk‖2 −

[
f(xk) + (1−λ)ρ−γ

2
‖xk − xk−1‖2

]∣∣∣ ≤ Tol then

2: Stop and return (xk, f(xk))
3: end if

As it will be seen in Lemma 3.4.2, the sequence {f(xk+1) + (1−λ)ρ−γ
2 ‖xk+1 − xk‖2} is monotonically

decreasing. The reasoning of the above test is to stop the algorithm when the decrease issued by such a
sequence is small enough.

36

3.4 Convergence analysis

As point xk+1 is chosen to satisfy either (3.3.1) or (3.3.2) we conclude that ∂f1(xk+1) 6= ∅ and therefore
xk+1 ∈ Dom(f1), implying that {xk} ⊂ Dom(f1). By assumption, there exists an open set in Rn
satisfying Dom(f1) ⊂ O ⊂ Dom(f2). Hence, the sequence of points generated by Algorithm 4 is well
de�ned. Furthermore, since f2 is a convex function, its subdi�erential ∂f2 is locally bounded. As a
result, any sequence {gk} with gk ∈ ∂εk+1f1(xk+1)∩∂f2(xk) + dk is bounded as long as {xk} is bounded
as well. With this in mind, we start the convergence analysis of Algorithm 4 with the following simple
lemma. Throughout this subsection we consider Algorithm 4 with Tol = 0.

Lemma 3.4.1. ([51, Lemma 1]). Suppose Algorithm 4 terminates at iteration k. Then xk is critical
point of problem (3.1.1).

The following lemma plays an important role in the convergence analysis of Algorithm 4.

Lemma 3.4.2. ([51, Lemma 2]). Let {xk} be the sequence generated by Algorithm 4. If assump-

tion A1 holds, λ ∈ [0, 1) and γ ∈ [0, (1 − λ)ρ/2), then (1−λ)ρ−2γ
2 > 0 and the sequence {f(xk) +

(1−λ)ρ−γ
2 ‖xk − xk−1‖2} is monotonically decreasing, that is

f(xk+1) +
(1− λ)ρ− γ

2
‖xk+1 − xk‖2 ≤ f(xk) +

(1− λ)ρ− γ
2

‖xk − xk−1‖2 −

(1− λ)ρ− 2γ

2
‖xk − xk−1‖2 for all k = 0, 1, 2, . . .

The property that the sequence {f(xk) + (1−λ)ρ−γ
2 ‖xk − xk−1‖2} is monotonically decreasing is enough

to prove convergence of Algorithm 4. We care to mention that the sequence of functional value {f(xk)} is
not necessary monotone, in contrast to all other DC algorithms found in the literature (see for instance,
[50, 73, 101, 155, 188, 193]). Remind that the non-monotonicity of the function values was crucial for
InDCA to escape from the local solution in Example 3.2.2.

Theorem 3.4.3. ([51, Theorem 1]). Consider Algorithm 4, assume A1, λ ∈ [0, 1), γ ∈ [0, (1− λ)ρ/2),
and x0 ∈ Dom(f1). Assume also that the level set Lf (x0) := {x ∈ Rn : f(x) ≤ f(x0)} is bounded. Then
any cluster point x̄ of the sequence {xk} generated by the algorithm is a critical point of problem (3.1.1).

Once the convergence analysis of Algorithm 4 has been established, we now turn our attention to its
speed of convergence. To this end, we consider a particular instance of Algorithm 4.

3.4.1 Rate of convergence

Throughout this section, we assume that f1(x) = ϕ(x) + ‖x‖2 /2 and f2(x) = ψ(x) + ‖x‖2 /2, yielding
ρ ≥ 1 in A1 and γ ∈ [0, 1/2) in Algorithm 4. We moreover assume that λ = 0 in condition (3.3.1) and
let gkψ be an arbitrary subgradient of ψ at point xk. In this manner, determining xk+1 satisfying either
(3.3.1) or (3.3.2) results in de�ning (for gk2 = gkψ + xk)

xk+1 = arg min
x∈Rn

ϕ(x) + ‖x‖2 /2− 〈gkψ + xk + γ(xk − xk−1), x〉

= arg min
x∈Rn

ϕ(x) +
1

2

∥∥x− (xk + gkψ + γ(xk − xk−1))
∥∥2

:= (I + ∂ϕ)−1(xk + gkψ + γ(xk − xk−1)) .

As a result, this choice of parameter makes Algorithm 4 a linearized proximal method with inertia force.
This allows us to rely on the analysis of [146, � 4.6] to establish the rate of convergence of this method
applied to the DC program (3.1.1). To this end, we denote by r(x) the following residuum

r(x) := x− (I + ∂ϕ)−1(x+ gψ) , with gψ ∈ ∂ψ(x).

37

Notice that if r(xk) = 0, then xk solves minx∈Rn ϕ(x) + 1
2

∥∥∥x− (xk + gkψ)
∥∥∥2

. Its optimality condition

yields gkψ ∈ ∂ϕ(xk), showing that xk is a critical point for problem (3.1.1) (which reads for this particular
setting as minx∈Rn ϕ(x)−ψ(x)). The following result shows that the rate of convergence of both sequences
{‖r(xk)‖2} and {‖xk+1 − xk‖2} is O(1

k).

Theorem 3.4.4. ([51, Theorem 2]). Suppose that the level set Lf (x0) := {x ∈ Rn : f(x) ≤ f(x0)} is
bounded, γ ∈ [0, 1/2) and let f̄ := minLf (x0) f(x) and k > 0. Then

(a) min
i∈{0,...,k}

‖xi+1 − xi‖2 ≤
(

2

1− 2γ

)
f(x0)− f̄
k + 1

and

(b) min
i∈{0,...,k}

‖r(xi)‖2 ≤
(

16

1− 2γ

)
f(x0)− f̄
k + 1

.

3.5 Application of interest: nonconvex image denoising

Image reconstruction techniques have become important tools in computer vision systems and many other
applications that require sharp images obtained from noisy/corrupted ones. The convex total variation
(TV) formulations have proven to provide a good mathematical basis for several basic operations in
image reconstruction [36]. In order to present such formulations, let b ∈ Rn be the vectorization of a
corrupted n1 × n2 grayscale image B (in this case, n = n1 · n2). A TV formulation, with penalizing
function φ : R+ → R, consists in solving the following minimization problem

min
x∈Rn

µ

2
‖x− b‖2 + TVφ(x), with TVφ(x) :=

n∑
i=1

φ(‖(∇x)i‖) , (3.5.1)

where µ > 0 is a �delity parameter and (∇x)i ∈ R2 denotes the discretization of the gradient of image x
at pixel i, that is, (∇x)i represents �nite di�erence approximations of �rst-order horizontal and vertical
partial derivatives. In a matrix representation X ∈ Rn1×n2 of x ∈ Rn we have that

(∇x)i :=

(
Xl+1,j −Xl,j

Xl,j+1 −Xl,j

)
, with ith the coordinate of x where the pixel Xl,j is stored.

Thus ‖(∇x)i‖ =
√

(Xl+1,j −Xl,j)2 + (Xl,j+1 −Xl,j)2.

If the penalizing function is chosen to be φ(r) = r, then problem (3.5.1) consists in a convex nons-
mooth optimization problem that can be e�ciently solved by several specialized algorithms such the
ones proposed in [13, 20, 41]. This is the main bene�t of using a convex formulation for image denois-
ing. Nevertheless, nonconvex regularizations have remarkable advantages over convex ones for restoring
images, in particular, high-quality piecewise constant images with neat edges [144]. In order to preserve
edges in the restoration process, some authors [111, 126] employ a nonconvex penalizing function φ to
induce sparse image gradients (∇x)i. This makes (3.5.1) a nonconvex and nonsmooth problem, that has
been recently dealt with by local (strongly) convex approximations in [111].

In what follows we show that for a wide class of penalizing functions φ : R+ → R, problem (3.5.1) is
indeed a DC programming problem with available DC decompositions.

3.5.1 DC decomposition of nonconvex denoising models

Assume that φ : R+ → R is a concave and non-decreasing function. As a result, its right derivative is
well de�ned for all r ≥ 0, that is, the limit φ′+(r) := limh↓0

φ(r+h)−φ(r)
h exists for all r ≥ 0. Our goal is to

prove that under these assumptions, the composite function TVφ(x) =
∑n
i=1 φ(‖(∇x)i‖) can be written

as a di�erence of two convex functions. To this end, we will need the following useful result, whose proof
can be obtained by combining some developments presented in [196, � 4].

38

Lemma 3.5.1. ([51, Lemma 3]). Let c : Rn → R+ be a convex function. If φ : R+ → R is a concave
and non-decreasing function such that φ′+(0) <∞, then τ c(x)− φ(c(x)) is convex for all τ ≥ φ′+(0).

Proposition 3.5.2. ([51, Proposition 2]). Let φ : R+ → R be as in Lemma 3.5.1, and the TV function
given by TV (x) :=

∑n
i=1 ‖(∇x)i‖ . Then τ TV (x)− TVφ(x) is a convex function for all τ ≥ φ′+(0) ≥ 0.

Since the requirements on the penalizing function φ are mild, Proposition 3.5.2 is quite general. For
instance, all the functions φ considered in [111] and reported in Table 3.2 satisfy the assumptions of
Proposition 3.5.2 with τ ≥ 1. (This ensures that function f2 in Example 3.2.2 is indeed convex.)

φlog φrat φatan φexp

φa(r) log(1+ar)
a

r
1+ar/2

atan((1+ar)/
√

3)−π/6
a
√

3/2

1−exp(−ar)
a

φ′a(r) 1
1+ar

1
(1+ar/2)2

1
1+ar+a2r2

1
exp(ar)

Table 3.2: Some examples of concave, di�erentiable and non-decreasing penalizing functions φa : R+ → R+

parameterized by a > 0.

3.5.2 Speci�c DC models

We now focus on subproblem (3.2.2) resulting from the considered nonconvex image denoising model.
Without loss of generality, we assume in the remaining of this paper that the penalizing function φ :
R+ → R satis�es φ′+(0) = 1 (this is the case of the functions presented in Table 3.2). In this setting, the
DC function reads as

f(x) =
µ

2
‖x− b‖2 + TVφ(x) =

µ+ ρ

2
‖x− b‖2 + TV (x)︸ ︷︷ ︸

f1(x)

−
[ρ

2
‖x− b‖2 + TV (x)− TVφ(x)

]
︸ ︷︷ ︸

f2(x)

(3.5.2)

In the above de�nition, ρ > 0 is an arbitrarily chosen parameter to satisfy Assumption A1. In our
numerical experiments we set ρ = 1. Since f is nonnegative and centered around b, f is coercive and
thus has bounded-level sets, satisfying thus the assumption of Theorem 3.4.3.

With this formulation, subproblem (3.2.2) reads as

min
x∈Rn

µ+ ρ

2

∥∥x− ζk∥∥2
+ TV (x), with ζk := b+ (gk2 + γ(xk − xk−1)/(µ+ ρ) , (3.5.3)

i.e., a convex denoising problem with corrupted image b perturbed by (gk2 + γ(xk − xk−1)/(µ + ρ). As
already mentioned this subproblem can be e�ciently solved by several specialized methods [13, 20, 41].

3.6 Numerical results

In this section, we consider the nonconvex image denoising model (3.5.1) with penalizing function φatan
given by φ(r) := atan((1+ar)/

√
3)−π/6

a
√

3/2
with a = 4. Given that similar results can be achieved with the

remaining functions of Table 3.2, adequately tuned, we only provide detailed results for this penalizing
function. Since φ′+(0) = 1, Proposition 3.5.2 ensures that the objective function of (3.5.1) has the DC
decomposition f1 − f2, with f1 and f2 given in (3.5.2).

In our numerical experiments we set ρ = 1 in (3.5.2) and λ = 0 in Algorithm 4. As a result, condition
(3.3.1) is equivalent (for λ = 0) to de�ne the next iterate xk+1 as a solution of the convex image denoising
problem (3.5.3) with corrupted image perturbed by an inertial force. This task is accomplished at every
iteration of our algorithm by employing the convex nonsmooth denoising method known as FISTA
(Fast Iterative Shrinkage/Thresholding Algorithm) [20]. We have also tested our algorithm with λ > 0

39

employing the bundle-method's idea described in Algorithm 5. However, for this class of problems, the
resulting DC bundle algorithm was not competitive with its exact counterpart employing FISTA. Hence,
we do not report results on inexact variants of Algorithm 4. In what follows we examine the numerical
performance of the following solvers, all of them coded in Matlab version R2015b:

• DCA - Algorithm 4 with γ = λ = 0. The trial point xk+1 is de�ned by solving the convex subproblem
(3.5.3) with a Matlab implementation of FISTA1.

• InDCA - The same as DCA, but with inertial factor γ = 0.499 instead.

• InDCAγk - The same as DCA, but varying the inertial factor γ > 0 along the iterative process. We
initialize the solver with γ = 2.5 and set

γ ← max{0.499, γ/2} whenever f(xk+1) +
1− γ

2
‖xk+1 − xk‖2 > f(xk) +

γ

2
‖xk − xk−1‖2 .

The reasoning behind this rule is given by Lemma 3.4.2, which ensures f(xk+1)+ 1−γ
2 ‖xk+1 − xk‖2 ≤

f(xk) + γ
2 ‖xk − xk−1‖2 for all γ ∈ [0, 1/2) (because we set ρ = 1). However, due to the nature

of function f2, Assumption A1 may hold for a larger ρ (this is why start with γ = 2.5 instead of
γ < 1/2). If the inequality in the above rule holds and γ ≥ 1/2, then γ is found to be too large
to ensure convergence of the algorithm. We thus must reduce γ until becoming lower than the
threshold ρ/2 = 1/2.

• iPiano - Inertial proximal algorithm for nonconvex optimization. This is an implementation of
Algorithm 2 given in [146], with the inertial parameter therein �xed to2 0.8, and constants L,α
given by 100 and 0.003, respectively. This choice of parameters was made upon some tuning. This
solver requires function −f2 to be di�erentiable and Lipschitz continuous, which is not the case of
f2 given in (3.5.2). Therefore, for iPiano only, we replaced f2 with the convex and di�erentiable
function fsmooth2 (x) := µ

2 ‖x− b‖
2

+
∑n
i=1[s(‖(∇x)i‖)− φ(s(‖(∇x)i‖))], where s(t) =

√
t2 + c2 − c

is the pseudo-Huber function with parameter c = 10−3. Once an oracle provides the gradient gk

of
∑n
i=1[s(‖(∇x)i‖) − φ(s(‖(∇x)i‖))] at x = xk, the next iterate is computed in a closed form:

xk+1 := [αµb+ (xk − gk + γ(xk − xk−1))]/(1 + αµ). Therefore, when compared to the DC solvers
above, iPiano possesses a much lower computational burden per iteration. Although we considered
fsmooth2 along the optimization process of iPiano, the function values provided in the tables below
correspond to the function f = f1 − f2 (without smoothing).

All these solvers employ the same black-box for f2 and the same stopping-test: the iterative process
terminates when the inequality

max{‖xk+1 − xk‖ , γ ‖xk − xk−1‖} ≤ 5× 10−4 (1 + ‖xk−1‖) is satis�ed.

We set the maximum number of iterations of the DC solvers to 100. Since iPiano has a low computational
burden per iteration, its maximum number of iterations was �xed to 1000.

The numerical performances of these four nonconvex solvers (with three of them exploiting the DC
decomposition (3.5.2) of (3.5.1)) are assessed on two piecewise-constant images corrupted by a Gaussian
noise with mean 0 and variance 0.1. Figures 3.3(a) and 3.3(c) present the original (non-corrupted) images
whereas Figures 3.3(b) and 3.3(d) show the corrupted ones. Each image has dimension 200× 200, which
yields large-scale nonsmooth DC optimization problems of dimension n = 40 000. Numerical experiments
were performed on a computer with Intel(R) Core(TM), i3-3110M CPU 2.40, 4G (RAM), under Windows
10, 64Bits.

1Available at https://web.iem.technion.ac.il/images/user-files/becka/papers/tv_fista.zip
2For this algorithm, the inertial parameter needs to be less than one.

40

(a) QR code Original (b) QR code Corrupted (c) Checkerboard Origi-

nal

(d) Checkerboard Cor-

rupted

Figure 3.3: Piecewise constant images. The corrupted images were obtained by the original ones by adding a
Gaussian noise. All images have dimension 200×200.

In order to check the quality of the restored images we employ two well-known measures in the community
of computational vision: the peak signal-to-noise ratio PSNR and the structural similarity SSIM. Detailed
descriptions of these measures can be found in [78, 206]. For our purposes, it is enough to keep in mind
that the larger the PSNR is the better is the restoration. The same indication can be yielded when the
SSIM is closer to one. Nevertheless, the focus here is on CPU time and function values provided by
considered solvers: we aim at illustrating the performances of the new proposal, rather than investigating
technical matters of Digital Images/Computational Vision.

We start by presenting in Table 3.3 the results obtained by applying the four considered solvers to the
nonconvex image denoising model (3.5.1) issued by the corrupted QR-code image of Figure 3.3(b). In
our experiments, the �delity parameter µ ranges from 0.55 to 1.25.

The results show that the inertial DC algorithms provide lower function values in less CPU time/subgradient
evaluations. Concerning these features, the performance of InDCA was better than the one of DCA. More-
over, solver InDCAγk (that has a larger inertial factor) signi�cantly outperformed DCA in this application.
For instance, for the case µ = 1.15 solver InDCAγk found a critical point with function value around
1.18% lower than the function value provided by DCA. Furthermore, in this case, solver InDCAγk was
almost 50% faster than DCA.

In Figure 3.4 we present the restored images obtained by the solvers applied to the instance with µ = 0.85
(the one with highest values of PSNR and SSIM). In addition to the nonconvex models, we present in

(a)Convexmodel

PSNR = 19.453

SSIM = 0.813

f(xk)=10334.721

(b) iPiano

PSNR = 21.355

SSIM = 0.888

f(xk) = 9989.072

(c) DCA

PSNR = 21.687

SSIM = 0.893

f(xk) = 9762.382

(d) InDCA

PSNR = 21.731

SSIM = 0.894

f(xk) = 9755.709

(e) InDCAγk

PSNR = 21.835

SSIM = 0.902

f(xk) = 9686.490

Figure 3.4: Restored QR-code images. Convex model with �delity parameter µ = 3.75 and nonconvex model
with µ = 0.85. For comparison reasons, the �nal value f(xk) in (a) was computed with µ = 0.85.

Figure 3.4(a) the image restored by employing a convex model (resulting from setting φ(r) := r in
(3.5.1), i.e., TV (x) instead of TVφ(x)). The convex denoising model was solved by algorithm FISTA
[20]. Among all the considered values of the �delity parameter µ in (3.5.1), the best results were

41

Solver µ CPU(s) # g2 f(xbest) PSNR SSIM
iPiano 0.55 469 1000 9322.314 21.687 0.882
DCA 0.55 122 58 9084.983 21.931 0.882
InDCA 0.55 111 53 9084.814 21.855 0.881
InDCAγk 0.55 62 26 9045.975 19.253 0.839
iPiano 0.65 477 1000 9543.678 21.719 0.890
DCA 0.65 223 100 9302.109 22.033 0.889
InDCA 0.65 223 100 9300.447 21.997 0.888
InDCAγk 0.65 140 60 9263.575 21.332 0.874
iPiano 0.75 473 1000 9763.515 21.591 0.891
DCA 0.75 234 100 9528.582 21.951 0.892
InDCA 0.75 189 80 9526.251 21.935 0.892
InDCAγk 0.75 242 100 9476.832 21.817 0.897
iPiano 0.85 479 1000 9989.072 21.355 0.888
DCA 0.85 213 88 9762.382 21.687 0.893
InDCA 0.85 190 79 9755.709 21.731 0.894
InDCAγk 0.85 109 45 9686.490 21.835 0.902
iPiano 0.95 472 1000 10209.231 21.107 0.884
DCA 0.95 174 72 9995.409 21.323 0.891
InDCA 0.95 137 57 9993.745 21.390 0.890
InDCAγk 0.95 95 39 9900.572 21.505 0.876
iPiano 1.05 470 1000 10434.161 20.810 0.876
DCA 1.05 192 80 10221.634 21.103 0.888
InDCA 1.05 134 56 10220.961 21.055 0.887
InDCAγk 1.05 84 35 10118.874 21.453 0.879
iPiano 1.15 472 1000 10672.028 20.545 0.864
DCA 1.15 163 67 10461.936 20.738 0.879
InDCA 1.15 162 67 10452.538 20.785 0.880
InDCAγk 1.15 82 34 10338.301 21.263 0.879
iPiano 1.25 487 1000 10909.249 20.226 0.856
DCA 1.25 162 68 10706.295 20.433 0.872
InDCA 1.25 158 66 10694.461 20.479 0.875
InDCAγk 1.25 102 42 10547.789 20.932 0.858

Table 3.3: Restoration of the corrupted QR-code image. CPU times are given in seconds. The notation # g2

stands for the number of subgradient evaluations of function f2 (or f smooth2). This coincides with the number of
iterations performed by the algorithms. The maximum number of subgradient evaluations was set to 1000 for
solver iPiano and to 100 for the other solvers.

obtained with µ = 3.75 for the convex model. The quality-measure values in Figure 3.4(a) indicates
that convex models are not e�ective to preserve edges in the restoration process of piecewise-constant
images, corroborating thus with the conclusion drawn in [144]. Moreover, the quality of the restored
image of Figure 3.4(a) is visibly worse than the one restored by solver InDCAγk . In fact, Figure 3.4(e)
contains less noise than the images restored by solvers iPiano, DCA and InDCA.

In what follows we examine the corrupted checkerboard image of Figure 3.3(d). Table 3.4 contains some
results obtained by applying the four considered solvers to this image by varying the �delity parameter
µ from 0.8 to 1.6.

Once again, the inertial DC solver InDCAγk provided better results than the other considered solvers.
The inertial solvers required fewer iterations than DCA to terminate with a critical point of better quality
(except for the instance µ = 0.9, at which solver InDCA performed more iterations than DCA).

In Figure 3.5 we present the restored images obtained by the solvers applied to the instance with µ = 1.
Once again, the convex denoising model was solved by algorithm FISTA.

3.6.1 Assessing numerical performance on several instances

In order to assess the numerical performances of the considered DC solvers we examine 72 instances of
the nonconvex image denoising model (3.5.1), obtained by varying µ as in Table 3.4 and by considering
four di�erent penalizing functions φ as in Table 3.2, and the two corrupted images of Figure 3.3.

We present the performance pro�les [61] of DCA, InDCA and InDCAγk on these 72 instances. As an

42

Solver µ CPU(s) # g2 f(xbest) PSNR SSIM
iPiano 0.80 474 1000 9026.884 23.879 0.820
DCA 0.80 105 56 8778.145 24.049 0.826
InDCA 0.80 81 44 8779.285 24.160 0.826
InDCAγk 0.80 110 58 8716.393 24.239 0.772
iPiano 0.90 479 1000 9251.406 23.481 0.812
DCA 0.90 81 44 9014.267 23.670 0.822
InDCA 0.90 86 47 9006.346 23.702 0.824
InDCAγk 0.90 60 32 8921.761 23.862 0.734
iPiano 1.00 474 1000 9475.528 23.166 0.801
DCA 1.00 112 61 9237.498 23.337 0.811
InDCA 1.00 106 57 9232.004 23.365 0.812
InDCAγk 1.00 56 30 9138.142 24.230 0.849
iPiano 1.10 470 1000 9708.161 22.730 0.786
DCA 1.10 114 61 9481.109 22.952 0.799
InDCA 1.10 105 56 9474.022 22.968 0.801
InDCAγk 1.10 52 28 9326.864 24.059 0.773
iPiano 1.20 472 1000 9949.721 22.205 0.761
DCA 1.20 109 58 9727.282 22.451 0.782
InDCA 1.20 92 49 9719.249 22.511 0.783
InDCAγk 1.20 63 34 9536.481 23.969 0.803
iPiano 1.30 476 1000 10187.130 21.754 0.739
DCA 1.30 140 73 9968.101 21.992 0.765
InDCA 1.30 134 70 9959.879 22.045 0.768
InDCAγk 1.30 77 42 9757.747 23.434 0.794
iPiano 1.40 475 1000 10424.813 21.317 0.714
DCA 1.40 149 75 10215.140 21.553 0.742
InDCA 1.40 116 59 10208.485 21.593 0.744
InDCAγk 1.40 55 29 10035.034 22.944 0.822
iPiano 1.50 476 1000 10673.945 20.855 0.684
DCA 1.50 165 85 10473.202 21.082 0.713
InDCA 1.50 127 64 10464.077 21.091 0.716
InDCAγk 1.50 61 31 10277.361 22.424 0.808
iPiano 1.60 476 1000 10921.842 20.390 0.661
DCA 1.60 155 80 10731.337 20.626 0.683
InDCA 1.60 136 70 10724.553 20.635 0.687
InDCAγk 1.60 54 28 10524.680 21.858 0.786

Table 3.4: Restoration of the corrupted checkerboard image. The notation # g2 stands for the number of
subgradient evaluations of function f2 (or f smooth2). This coincides with the number of iterations performed by
the algorithms. The maximum number of subgradient evaluations was set to 1000 for solver iPiano and to 100
for the other solvers.

(a)Convexmodel

PSNR = 22.101

SSIM = 0.725

f(xk)=9513.226

(b) iPiano

PSNR = 23.166

SSIM = 0.801

f(xk) = 9475.528

(c) DCA

PSNR = 23.337

SSIM = 0.811

f(xk) = 9237.498

(d) InDCA

PSNR = 23.365

SSIM = 0.812

f(xk) = 9232.004

(e) InDCAγk

PSNR = 24.230

SSIM = 0.849

f(xk) = 9138.142

Figure 3.5: Restored checkerboard images. Convex model with �delity parameter µ = 3.4 and nonconvex model
with µ = 1. For comparison reasons, the �nal value f(xk) in (a) was computed with µ = 1.

43

example, let the criterion of analysis be CPU time. For each solver, we plot the proportion of instances
that is solved within a factor η of the time required by the best algorithm. More speci�cally, denoting
by ts(i) the time spent by solver s to solve instance i and by t∗(i) the best time for the same instance
among all the solvers, the proportion of instances solved by s within a factor η is

αs(η) :=
number of instances i such that ts(i) ≤ η t∗(i)

total number of instances
.

Therefore, the value αs(1) gives the probability of the solver s to be the best by a given criterion.
Furthermore, unless ts(i) = ∞ (which means that solver s failed to solve instance i), it follows that
limη→∞ αs(η) = 1. Thus, the higher is the line, the better is the solver (by this criterion).

Figure 3.6.1(a) presents the performance pro�le of the solvers with respect to CPU time. Solver InDCAγk
was the fastest one in 74% of the considered instances, followed by InDCA (18%). A similar conclusion
can be drawn concerning the number of subgradient evaluations of f2 (that coincides with the number of
iterations): Figure 3.6.1(b) shows that InDCAγk was the solver that required less subgradient evaluations
in 75% of the instances.

We recall that the optimal values of the considered instances of problem (3.5.1) are unknown. To assess
the quality of the solutions computed by the solvers we proceed as follows. Let f̄si be the function value
of instance i computed by solver s, and let f̄ besti := mins f̄

s
i be the best function value computed by

the three solvers. In Figure 3.6.1(c) we plot the performance pro�le of the solvers with respect to the

criterion3 f̄si −f
best
i +1

fbesti +1
. Solver InDCAγk computed the best function value in 86% of the cases, followed by

InDCA that was the most e�ective one in 12.5% of the instances.

1 1.5 2 2.5 3

Performance ratio,

0

0.2

0.4

0.6

0.8

1

s
(

)

CPU time

DCA

InDCA

InDCA
k

(a) CPU time

1 1.5 2 2.5 3

Performance ratio,

0

0.2

0.4

0.6

0.8

1

s
(

)

Iterations (# evaluations of g
2
)

DCA

InDCA

InDCA
k

(b) Subgradient evaluations of f2

1 1.5 2 2.5 3

Performance ratio,

0

0.2

0.4

0.6

0.8

1

s
(

)

Best function value

DCA

InDCA

InDCA
k

(c) Critical points' quality

Figure 3.6: Performance pro�le over 72 instances of the nonconvex image denoising model (3.5.1).

These results show that furnishing the DC algorithm with an inertial force pays o�: for the considered
application we observed that the quality of the computed critical points improves whereas the CPU time
decreases. Finally, we comment that the total CPU time to solve these 72 instances by DCA was 137
minutes, by InDCA 127 minutes, and by InDCAγk 108 minutes. The latter provided a CPU time reduction
of around 21% concerning DCA.

3.7 Concluding remarks

With the purpose of computing critical points of better quality in (unconstrained or convex-constrained)
DC programs we have equipped the classical DC algorithm with an inertial force. Convergence analysis
and rate of convergence of the new proposal have been established. Moreover, we have investigated less
demanding procedures to compute trial points and have shown that the given algorithmic pattern covers

3We added �1" to prevent this measure being zero.

44

and extends some well-known optimization methods found in the literature, such as the DCA, proximal
linearized method, and DC bundle methods.

The numerical performance of two variants of the given algorithmic pattern was assessed on nonconvex
and nonsmooth image denoising models yielding optimization problems of dimension 40 000. In this
application, every iteration of our inertial DC algorithm amounts to solving a convex image denoising
model with corrupted image perturbed by an inertial force. As presented in the numerical section, such
a perturbed model can be e�ciently solved by specialized approaches such as the FISTA algorithm. At
least for this application, our numerical experiments indicate that the proposed algorithm outperforms
the classic one in terms of CPU time, number of subgradient evaluations (of the second-component
function) and, mainly, in terms of quality of the computed critical points.

45

Chapter 4

Optimization techniques for the

Brazilian natural gas network planning

problem

This chapter presents the following work that models uncertainties in the long-term design and operation
planning problem of the Brazilian natural gas network:

S.V.B. Bruno, L.A.M. Moraes and W. de Oliveira
Optimization techniques for the Brazilian natural gas network planning problem.
Energy Systems (ENSY), 2017, volume 8, issue 1, pp. 81�101.

The paper is one of the products of the collaboration between IMPA and PETROBRAS, the Brazilian
oil and gas company. The considered problem is modeled as a two-stage stochastic linear program and
solved by combining decomposition, a bundle method algorithm, and scenario reduction techniques.
These strategies were implemented in the software MONGE that will assist, in 2019, the renegotiation of
the 20-year gas supply contract between Brazil and Bolivia.

4.1 Introduction

Expansion and operation planning of the existing supply chain is a key activity in the natural gas market.
By expansion, one can consider physical expansion of pipelines, construction of new ones, and negotiation
of prices and volumes for supply and demand contracts � new or existent ones. There is also a need for
an integration between expansion and operation plans, due to the quest for higher pro�tability. Thus,
existent and new infrastructure must operate in an optimal way, considering the following options for
natural gas use:

• acquisition � production or purchase of imported gas or lique�ed natural gas (LNG) loads;

• consumption � local distribution companies demand, internal consumption, and thermoelectric
power plants fueling.

Figure 4.1 shows an example of a natural gas supply chain that starts with exploration and production
activities that, together with imports, correspond to gas acquisition. Gas is shipped to delivery nodes
that represent consumption. Activities covered by the model presented in this work are marked with a
rectangle.

46

Figure 4.1: Activities of natural gas supply chain

Investments in new natural gas sources usually take up to ten years until production is initiated reliably
and safely and involve large amounts of money. Thereby, long-term planning of a natural gas supply
chain, taking into account infrastructure development and long-term operation of the system, is of great
importance for the pro�tability of the natural gas industry, [124].

4.1.1 Natural gas industry: the Brazilian case

In Brazil, natural gas is expected to have a more relevant role in the energy market over the coming
decades. Most of the Brazilian natural gas is associated to oil production and this associated volume
will increase as soon as more pre-salt oil �elds come into operation. In 2012 natural gas average supply
was about 2.65 BCF/day, of which 1.39 BCF/day is related to domestic production, 0.95 BCF/day were
imported from Bolivia and the remaining 0.31 BCF/day refers to LNG loads, specially from Nigeria and
Trinidad and Tobago. These numbers correspond to a 22% increase, if compared to 2011 numbers.

It is expected that by 2019 Brazilian natural gas consumption will be about 6 BCF/day, of which 30%
will be related to industrial sector and about 9.5% will be used for energy generation. In that same year
the Brazil/Bolivia 20-year supply contract must be renegotiated.

Natural gas has several uses: in residences, in industries, in oil �elds for re-injection purposes, as fuel
for re�neries and rigs, for vehicles, and for energy generation. Some of these demands can be deter-
ministically forecast due to its low variability, such as residences, industries, and vehicles consumption.
However, gas demand for energy generation purposes can be highly uncertain, as explained below.

4.1.1.1 Natural gas for power production: source of uncertainty for gas demand

The Brazilian power generating system is hydro dominated and characterized by large reservoirs with
multi-year regulation capability, arranged in complex cascades over several river basins. According to the
Brazilian Electricity Regulatory Agency (ANEEL), the hydroelectric plants were responsible for about
62% of the total energy generation in 20151. Due to this hydro predominance, operation is driven
by the rainfall events � occurrence and forecasting. Therefore, thermoelectric dispatch (and thus gas
consumption) depends on the rainfall, which is uncertain.

As an example, if hydroelectric reservoirs are at low levels and a dry period (in terms of rainfall) is
expected, then thermoelectric dispatch is high, in order to save water in the hydroelectric reservoirs. On
the other hand, if reservoirs are at regular or high levels, and no dry period is being expected in the
coming months, so thermoelectric dispatch tends to be small because there is no need to save water.

In Brazil, thermoelectric dispatch is centralized by an independent system operator (ONS) supported

1http://www.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm

47

by the computational model newave, the o�cial optimization program for operating and planning the
Brazilian power system [130]. One of the outputs of this model is a set of scenarios of thermoelectric
dispatch that can be used to represent the stochasticity of the gas demand for energy generation purposes.

4.1.1.2 Accounting the uncertainties and modeling of the problem

The stochastic process of gas demand in Brazil can be approximated by a set of scenarios extracted
from the thermoelectric dispatches provided by the optimization model newave. This opens the way
to address the Brazilian natural gas network planning problem by adopting the framework of stochastic
programming with recourse, as de�ned in [28]. An approach with recourse is suitable for the case of
interest because one can always buy natural gas from the international market (at higher prices) to
supply a possible de�cit of natural gas in the domestic market.

In this work we consider a case based on a real-life natural gas industry problem from PETROBRAS, the
Brazilian oil and gas company. Such problem, which is of large-scale and di�cult to solve, was modeled
as a two-stage stochastic linear problem, meaning that some decisions � investments in infrastructure
and new contracts � are of here-and-now type, i.e., they do not depend directly on the uncertain data.
In each scenario the decision maker can wait-and-see the uncertainty revealed, and plan the network by
taking into account existing infrastructures and new investments. In this (second) stage, natural gas
volumes, pipelines use and thermoelectric plants operation must be decided.

By adopting a continuous framework where decisions variables related to investments can take fractional
values, we study a compromise between uncertainty representation and solvability for the considered
application: considering a large number of gas demand scenarios the resulting problem is solved by
applying a decomposition technique akin to the L-Shaped method [186], but using a bundle method
instead. An additional approach consists in selecting a much smaller but representative amount of sce-
narios to represent the gas demand uncertainties. The representative scenarios are selected by applying
the optimal scenario reduction technique developed in [82].

4.1.2 Related works

The use of optimization models for natural gas supply chain has been studied in a deterministic fashion
in [85]. The authors have also explored a related natural gas design problem in a multistage stochastic
programming approach in [84].

Several authors have studied the use of stochastic programming methods in di�erent planning levels �
strategic, tactical or operational. In [176] one can �nd an extensive list of examples of decomposition
models applied to energy systems optimization.

The work [179] presents a stochastic model for supply chain network design under uncertainty. The goal is
to route the �ow of products from a supplier to customers, and to de�ne which processing centers should
be built. The modeling results in a mixed-integer linear problem, which is solved via sample average
approximation, [107]. In [180] a supply chain design under uncertainty is also studied. The authors
apply sample average approximation and Lagrangian relaxation techniques to the resulting two-stage
stochastic problem. Cutting-plane [103] and bundle methods [94] are used to solve the Lagrangian dual
problem. The article [183] addresses a multistage capacity expansion planning problem using Dantzig-
Wolfe Decomposition. In [102] an application to energy markets is studied, considering some preliminary
decomposition strategies. An investment heuristic based on the stochastic dual dynamic programming
approach for electricity markets was proposed in [143].

Another example of integrated design and operation problem is presented by [125], where a large-scale
mixed-integer problem is solved by the so called nonconvex generalized Benders decomposition algorithm
[145].

48

4.1.3 Contributions and organization

A contribution of the present work is the modeling of the Brazilian natural gas network planning problem
by considering uncertainties in gas demand for power generation. By accounting for these uncertainties
the proposed model is able to represent in a better manner real-world variables, leading to more e�-
cient mathematical tools to assist decision making in this strategic supply chain problem of signi�cant
importance for the economical development of Brazil. As an additional contribution we highlight the
empirical comparison of the bene�ts of decomposition techniques and optimal scenario reduction, as well
as their e�ect over the considered natural gas network planning problem.

The paper is organized as follows. In Section 4.2 some characteristics of the considered problem are ex-
plained and the mathematical modeling is presented. A stochastic approach for the problem is proposed
in Section 4.3. In Section 4.4, a decomposition technique and a bundle method are considered for solving
practical instances. Section 4.5 addresses the optimal scenario reduction technique. Some concluding
remarks are reported in Section 4.6. Numerical experiments for a 20-year horizon planning problem are
given throughout Sections 4.3, 4.4 and 4.5.

4.2 The long-term planning problem

4.2.1 Problem statement

The Brazilian natural gas network planning problem is composed of:

• natural gas supply nodes � representing domestic gas production, imported gas, and LNG loads;

• demand nodes � representing local distribution companies and internal consumption (e.g. fertilizers
factories and re�neries);

• pipelines for the gas transportation;

• compressors to help with the gas transportation through pipelines;

• natural gas processing units � NGPU; and

• thermoelectric plants.

As we are dealing with a long-term (20-years horizon) planning problem, operational constraints are
modeled with far less details than they would be in a short-term model, but some of them are still
present in the model, such as pipeline maximum allowed �ows and the use of a heat rate to convert
natural gas into energy at thermoelectric plants.

The main goal of the model is to determine an optimal investment plan, including pipeline capacity
expansions (or pipeline construction), volumes for new demand contracts (with, e.g., local distribution
companies) and optimal operation of the whole network, i.e., gas �ows through pipelines, gas volumes
sent to demand nodes and absorbed in supply nodes, and thermoelectric plants operation.

In the modeled problem, a company buys natural gas at some input nodes (supply nodes) and must
carry this gas to demand nodes or thermoelectric plants through its own pipelines network. For the sake
of simplicity, we consider that no gas loss occurs during transportation. Each demand node expects to
receive a certain amount of gas, varying from a minimal to a maximal value. If the optimal decision is
to deliver less than the minimal natural gas demand at a node, company must pay for this unsatis�ed
amount of gas. The demand of thermoelectric plants are related to their dispatch levels, i.e., energy
dispatch is converted into gas demand taking into account generator machines' e�ciency, given by their
nominal heat rate.

Investments may be made in certain periods within the planning horizon and are o�ered in projects. A
project may consist of any combination of investment in: new pipelines or expansion of existing ones,

49

minimal and maximal volumes for supplying and demand contracts. As an example, a project may
consist of a new pipeline to carry gas from a developed �eld to a new demand node, also included in the
project, with minimal and maximal demand values.

The expansion and operation planning problem consists of deciding (i) which investment projects must be
made, when and at which level, and (ii) given an optimal investment policy, volumes of gas to be bought
at supply nodes, delivered at demand nodes (including thermoelectric plants), and volumes carried by
pipelines.

In Figure 4.2 a schematic representation of the problem is given. Supply nodes, where natural gas can
be bought by the company, are represented by boxes with capital letter S, while demand nodes, where
natural gas is delivered, are represented by boxes with capital letter D. Gas can also be delivered to
thermoelectric plants, represented by capital letter T. The company's internal network is composed of
pipelines, compressors, and natural gas processing units (NGPU), represented by capital letters C and
U, respectively.

Figure 4.2: Natural gas network representation

4.2.2 Mathematical model

Let us �rst de�ne two main sets: N and P stand for the set of nodes and pipelines, respectively. Each
node n ∈ N can symbolize a gas input (resp. output) point, representing a supplier (resp. demand) or
a concentration point, at which two or more pipeline segments converge to or diverge from. Two nodes
can be connected by a pipeline segment, a compressor or a processing unit. Compressors and processing
units are represented by sets C and U , respectively. Each thermoelectric plant θ ∈ Θ consists of a set
of engines with di�erent heat rates hrθ. Supply and demand nodes are represented by sets S ⊂ N and
D ⊂ N . Naturally, the set of thermoelectric plants is contained in the set of demand nodes, i.e., Θ ⊂ D.
Finally, let I denote the set of investment projects and T the set of periods. The decision variables of
the considered problem are:

• xti ∈ [0, 1] the percentage of investment i made up to period t;

• zti ∈ [0, 1] amount of investment made at period t;

• wtij ≥ 0, the �ow of gas from node i to node j at period t;

• etθ ≥ 0, representing the amount of energy generated in plant θ, at period t; and

50

• utj ≥ 0, natural gas de�cit in node j, period t.

The deterministic version of the considered natural gas network planning problem can now be stated
and symbolized by

min
x,z,w,e,u

∑
t∈T

∑
i∈I

cii · zti +
∑
j∈S

(
cgtj ·

∑
k∈N

wtjk

)
+

+
∑

j∈S∪D\Θ

csj · utj −
∑

j∈D\Θ

(
rgtj ·

∑
k∈N

wtkj

)
−
∑
θ∈Θ

retθ · etθ

 (4.2.1a)

s.t.
∑
k∈N

wtjk + utj ≥ vtj +
∑
i∈I

(
xti · viij

)
, ∀j ∈ S,∀t ∈ T (4.2.1b)∑

k∈N

wtjk ≤ υtj +
∑
i∈I

(
xti · υiij

)
, ∀j ∈ S,∀t ∈ T (4.2.1c)∑

k∈N

wtkj + utj ≥ vtj +
∑
i∈I

(
xti · viij

)
, ∀j ∈ D\Θ,∀t ∈ T (4.2.1d)∑

k∈N

wtkj ≤ υtj +
∑
i∈I

(
xti · υiij

)
, ∀j ∈ D\Θ,∀t ∈ T (4.2.1e)

wtij ≤ φtij +
∑
i∈I

(
xti · φiij

)
∀t ∈ T (4.2.1f)

hrθ · etθ =
∑
k∈N

wtkθ, ∀θ ∈ Θ,∀t ∈ T , (4.2.1g)

etθ ≥ edtθ, ∀θ ∈ Θ, t ∈ T , (4.2.1h)

zti = xti − xt−1
i ≥ 0, ∀i ∈ I,∀t ∈ T , (4.2.1i)

w ∈ F , e ∈ Σ, x ∈ X . (4.2.1j)

In this model, cii represents the total investment cost for project i and it is applied to the di�erence
xti − x

t−1
i (= zti), which is equivalent to the amount of investment made at period t. Parameters cgj

and rgj denote unitary acquisition cost and sale price for natural gas at node j, respectively. Additional
cost term csj is included to penalize gas shortfall. Energy remuneration is represented by parameter
reθ, for thermoelectric plant θ. Thus, objective function (4.2.1a) consists of minimizing investment, gas
acquisition and penalty costs minus demand and thermoelectric remuneration. In other words, solving
the above problem is equivalent to maximizing the total pro�t of the company subject to operational
and investment constraints.

Constraints (4.2.1b) and (4.2.1c) require minimum and maximum values of natural gas acquisition to be
satis�ed. Parameters vtj and viij represent minimum amounts of natural gas to be bought � the former
one represents original minimal value, and the later one represents the increase in minimal values due
to investments. Constraints (4.2.1d) and (4.2.1e) represent the same requirements for demand nodes,
mutatis mutandis. Pipeline capacities are represented in constraint (4.2.1f).

Energy generation is represented by constraints (4.2.1g) and (4.2.1h) � the former one shows the relation
between natural gas consumption,

∑
wtkθ, and energy generation etθ at thermoelectric plant θ, and the

latter one ensures a minimal generation, representing energy dispatch. In constraint (4.2.1i), investments
are forced to be non-decreasing, i.e., disinvestment is not allowed. Sets F , Σ, and X , in constraint
(4.2.1j) represent, respectively, bounds on the �ow of gas, bounds on energy generation of each plant θ,
and bounds on the amount of investments for each period of the whole planning horizon.

The presented model is essentially a natural gas �ow model, since thermoelectric dispatch is represented
by equivalent natural gas demand. For our long term model we will assume an average operational heat
rate for each unit of the considered thermoelectric power plants. In reality there is a heat rate curve

51

given by the load level of the unit, which must be accounted for in shorter time scales, such as real time
operational decisions.

The model is general enough to represent onshore and o�shore gas production, LNG supply and imports
by the Brazil-Bolivia pipeline. Periods will have a duration ranging from one month up to a year.

4.2.3 Compact formulation

For convenience, model (4.2.1a)-(4.2.1j) is represented with the more compact notation
min
x,y

〈c, x〉+ 〈q, y〉
s.t. Tx+Wy ≤ h

x ∈ X, y ∈ Y ,
(4.2.2)

where vector x keeps representing investment decisions, and planning decisions are symbolized by y =
(w e u)>. Thus, the cost vector c is a rearrangement of vector ci, while q is de�ned by

q = ((cg − rg) − re cs)>.

Constraints (4.2.1b)-(4.2.1f) are represented in (4.2.2) by Tx + Wy ≤ h (note that constraint (4.2.1g)
can easily be included in the latter matrix-vector formulation). Vector h is composed of parameters v,
υ, φ, and ed. The polyhedral set X represents (4.2.1i) and the operational constraints x ∈ X . The
constraints w ∈ F , e ∈ Σ given in (4.2.1j) and u ≥ 0 are represented in (4.2.2) by the compact form
y ∈ Y .

For practical interests, problem (4.2.2) (and thus (4.2.1)) is too simplistic. In fact, some parameters
involved in problem (4.2.2) may not be considered deterministic, such as the energy dispatch repre-
sented by parameter edtθ whose reasons were presented in Section 4.1. Thereby, the deterministic model
symbolized by problem (4.2.2) needs to be examined in a stochastic context.

4.3 Incorporating stochasticity into the problem

Concerning the Brazilian natural gas planning problem, the question we address in this section is the
following one: Is there a signi�cant gain by introducing stochasticity into the model represented by
problem (4.2.1)?

In order to answer this question we consider energy dispatch scenarios to represent the uncertainty
related to the natural gas demand edtθ in (4.2.1h). One might also consider uncertainty in gas supplying,
since the availability of some sources depend on exploratory success of natural gas and oil �elds. We
will however refrain from modeling this latter kind of uncertainty, since in the Brazilian case the gas
supplying is much less uncertain than the natural gas demand.

As already mentioned in � 4.1.1.1, a set of N gas demand scenarios ω1, ω2, . . . , ωN , with associated
probability πi > 0 for all i = 1, . . . , N is available by the computational program newave, described
in [130]. Therefore, by adopting the framework of stochastic programming with recourse we can write
the problem of interest in the following deterministic equivalent form, which is a linear programming
problem (LP): 

min
x,yi

〈c, x〉+
∑N
i=1 πi[〈q, yi〉]

s.t. Tx+Wyi ≤ h(ωi)
x ∈ X, yi ∈ Y for all i = 1, . . . , N .

(4.3.1)

In order to evaluate the dependency of this problem on the gas demand scenarios, we solve an instance
of the considered planning problem for several samples of scenarios. In what follows we describe the
problem's instance.

52

4.3.1 Test problem

The test problem is a realistic instance of the Brazilian network planning problem, composed of 65 supply
nodes, 305 demand nodes, 33 thermoelectric plants and 68 pipeline segments. The planning horizon is
20 years, split into 76 planning periods � each time period can represent either a month or a whole
year, depending on the proximity of this period. The thermoelectric plants are centrally dispatched
by the Brazilian independent system operator (ONS) and they will generate energy whenever the spot
price is higher than their marginal operation cost. Nine investments projects are o�ered: four of them
are related to the expansion of pipeline capacities, three represent new supply contract opportunities
and the remaining two represent new demand contracts that need to be evaluated. It is important to
the company to decide if it is worth to invest in these contracts. As stated above, only thermoelectric
dispatch (along with spot energy prices) was considered to be uncertain in this work. Scenarios for
thermoelectric dispatch were obtained by the o�cial Brazilian energy planning program described in
[130].

All computations were carried out on a Intel Xeon X5650 2.67GHz, with 2 processors, 48 Gbyte of RAM
Memory, running 64 bit Windows Server 2008. All implementations were performed using AIMMS 3.13
and Gurobi 5.1 to solve resultant linear problems.

4.3.2 Solving smaller instances of the problem

We solved the original problem 100 times considering 10 scenarios randomly chosen from a reference
sample with 200 scenarios. Then the probability of having pro�t losses was estimated as follows. Let x̄10

denote a solution to problem (4.3.1) with 10 scenarios randomly chosen, and f200(·) denote the objective
function in problem (4.3.1) considering the reference sample with N = 200 scenarios. We denote by
f∗200 the optimal value of the latter instance (this value was obtained by employing a decomposition
technique, as described in � 4.4 below). We estimate the probability of having pro�t losses greater or
equal to ` ≥ 0 by

P
(
f200(x̄10)− f∗200 ≥ `

)
.

Figure 4.3 shows on the x-axis the pro�t loss ` and on the y-axis the above probability estimate. The

Figure 4.3: Probability of pro�t losses

�gures shows that there is a signi�cant probability � about 20% � of having, for instance, US$ 5 million

53

or more of pro�t loss. Some statistics on these losses, such as the average, standard deviation, minimum
and maximum values are presented in Table 4.1. We can conclude that choosing randomly a small

Statistics (103 US$)
Average 3 938.26
Std Deviation 6 168.83
Min 0
Max 32 881.94

Table 4.1: Statistics on objective function values

sample with 10 scenarios can lead to losses of up to approximately US$ 33 million. On average, the
losses are around US$ 4 million. Thereby, we conclude that: (i) uncertainties play an important role in
the Brazilian natural gas planning problem; and (ii) a smaller sample of scenarios should not be chosen
randomly.

In order to represent the uncertainties in a better manner we shall consider larger samples of scenarios.
However, for the considered application and N = 80 gas demand scenarios, the LP (4.3.1) has approxi-
mately 20, 883, 165 variables and 6, 752, 380 constraints; being too large to be solved by traditional LP
solvers even using a powerful computer like the one described in � 4.3.1. The design premise of most
commercially available solvers requires in-memory storage of the problem matrix and any disk caching
can drastically reduces performance. In this manner, for larger instances where it is impossible to al-
locate RAM memory for the whole problem the best commercials solvers will still perform poorly. If
increasing the available computer memory is not an option, then for solving the problem with N ≥ 80
scenarios one may consider two approaches: (a) decomposition; (b) scenario reduction. In the remaining
of this work we investigate these two alternatives, starting from approach (a).

4.4 Decomposition

We have concluded in the previous section that representing the uncertainties on the gas demand is an
important matter for the considered natural gas network planning problem. However, when the number
of scenarios is greater than 80 the problem becomes too large and can not be solved by commercial LP
solvers. In this section we describe a decomposition technique applied with a nonsmooth optimization
method for solving problem (4.3.1).

4.4.1 Two-stage stochastic linear programming formulation

Following the lead of [181], the linear problem (4.3.1) can be decomposed as

min
x

f(x) s.t. x ∈ X with f(x) := 〈c, x〉+

N∑
i=1

πiQ(x, ωi), (4.4.1)

where
∑N
i=1 πiQ(x, ωi) is the expectation of the second stage costs given by

Q(x, ω) :=


min
y

〈q, y〉
s.t. Wy ≤ h(ω)− Tx

y ∈ Y.
(4.4.2)

Given the characteristics of problem (4.2.1), problem (4.4.2) has a solution for every given investment
decision x ∈ X, and for all (gas demand) scenarios ωi, i = 1, . . . , N (the company can always buy gas
in the international market to supply a domestic demand). This property is known in the stochastic

54

programming literature as relatively complete recourse. Given this assumption, it is well known that
problem (4.4.1)-(4.4.2) is convex, �nite valued, but nonsmooth; see ([181, � 2.1]) for further information.

Most optimization techniques for solving nonsmooth problems rely on an oracle (black-box) to provide
�rst-order information of f . For the considered two-stage stochastic linear problem (4.4.1)-(4.4.2), an
oracle is a decomposable optimization procedure that computes, for any given feasible point x, the value
of the objective function and a subgradient at this point. Such procedure is described below:

Oracle 4.4.1. (Oracle for two-stage stochastic linear problems).

. Step 0
1: Input: xk ∈ X

. Step 1
2: for i = 1, 2, . . . , N do

3: Solve problem (4.4.2) for x = xk and ω = ωi
4: Get the optimal value Q(xk, ωi)
5: Obtain a Lagrange multiplier ui for (4.4.2)
6: end for

. Step 2
7: Compute the value of the function:

f(xk)← 〈c, xk〉+
∑N
i=1 πiQ(xk, ωi)

8: Compute a subgradient:
gk ← c−

∑N
i=1 πiT

>ui

9: Output: (f(xk), gk).

Proposition 2.2 in [181] ensures that gk computed above is indeed a subgradient of f at the point xk,
i.e.,

f(x) ≥ f(xk) + 〈gk, x− xk〉 for all x ∈ Rn .

In the following section we present the optimization tool employed in this work to solve problem (4.4.1)-
(4.4.2), making use of Oracle 4.4.1.

4.4.2 Proximal bundle method

Bundle methods are designed to solve nonsmooth convex optimization problems by making use of only
�rst-order information of the involved functions; see [94] and [29]. Such methods are well known by their
robustness and by having an e�cient stopping test. Moreover, di�erently from cutting-plane methods
like L-Shaped [186], most bundle methods have limited memory: the bundle of oracle information can
be kept bounded saving computational memory without impairing convergence. This is particularly
interesting for large-scale optimization problems, as the considered one.

This section restricts itself to the presentation of a proximal bundle algorithm suitable for solving problem
(4.4.1)-(4.4.2). We refer to [174], [65], [66], and [148] for other bundle method variants.

4.4.2.1 Description of the method

The method generates a sequence of feasible iterates {xk} ⊂ X. For each point xk, Oracle 4.4.1 is called
to compute f(xk) and a subgradient gk. With such information, the method creates the linearization

f̄k(x) := f(xk) + 〈gk, x− xk〉 (≤ f(x)) .

At iteration k a polyhedral cutting-plane model of f is available:

f̌k(x) := max
j∈Jk

f̄j(x) with Jk ⊂ {1, . . . , k} . (4.4.3)

55

The set {xj , f(xj), gj}j∈Jk is called information bundle. For instance, the L-Shaped method [186] takes
Jk = {1, . . . , k} for all k. In contrast, bundle methods can keep Jk with only two properly chosen
linearizations, as shown in Remark 4.4.2 below.

Given a parameter tk > 0 and denoting x̂k a stability center (the best past iterate) at iteration k, the
next iterate xk+1 is the unique solution to the quadratic program

min
x∈X

f̌k(x) +
1

2tk
‖x− x̂k‖2 , (4.4.4)

which is equivalent to 
min
x,r

r + 1
2tk
‖x− x̂k‖2

s.t. f̄j(x) ≤ r, ∀ j ∈ Jk
x ∈ X, r ∈ R .

(4.4.5)

Denoting by iX the indicator function of the set X, the optimality conditions for (4.4.4) give (see [43]
for more details)

xk+1 = x̂k − tkĝk, (4.4.6)

with

ĝk = pkf + pkX and


pkf :=

∑
j∈Jk

αkj gj ∈ ∂f̌k(xk+1)

pkX := −xk+1 − xk
tk

− pkf ∈ ∂iX(xk+1) .
(4.4.7)

The simplicial multiplier αk satis�es the following relations for all j ∈ Jk∑
j∈Jk

αkj = 1 , αkj ≥ 0 , αkj [f̌k(xk+1)− f̄j(xk+1)] = 0,

and can be used to save storage without impairing convergence. More precisely, �inactive� indices,
corresponding αkj = 0, can be dropped: Jk+1 ⊃ {j ∈ Jk : αkj 6= 0}.

An important convergence parameter of the method is the following:

φk := f(x̂k)− f̌k(xk+1)− tk ‖ĝk‖2 + 〈ĝk, x̂k〉 . (4.4.8)

It can be shown (see [149, Thm. 4.5]) that

f(x̂k) ≤ f(x) + φk − 〈ĝk, x〉 ∀ x ∈ X .

Therefore, proximal bundle algorithm can stop with a satisfactory solution x̂k when both φk and |ĝk|
are small. In fact, [149, Thm 4.5] ensures that convergence amounts to obtaining the following property:

a subsequence {(φk, ĝk)}k∈K converges to (φ, 0) with φ ≤ 0.

A rule decides whether to move the center (x̂k+1 = xk+1, descent-step) or to keep it (x̂k+1 = x̂k, null-
step). This rule views f(x̂k) as a threshold, which each iteration strives to improve: a descent-step is
performed if it improves the threshold by a de�nite amount; say

f(xk+1) ≤ f(x̂k)− κ vk, (4.4.9)

with vk := f(x̂k)− f̌k(xk+1) and some �xed κ ∈ (0, 1).

Algorithm 6 outlines the considered proximal bundle method variant. If (xk+1, rk+1) is a solution to
problem (4.4.5), then rk+1 = f̌(xk+1). Hence, the updating rule of vk on line 6 of the algorithm coincides
with the de�nition in (4.4.9).

56

Algorithm 6 Proximal bundle method
. Step 0: initialization

1: Select κ ∈ (0, 1) and t1 ≥ tmin > 0
2: Choose x1 ∈ X and stopping tolerances, Tolφ, Tolg > 0
3: Call Oracle 4.4.1 to compute (f(x1), g1) and set x̂1 ← x1 and J1 ← {1},
4: for k = 1, 2, . . . do

. Step 1: Next iterate
5: Obtain (xk+1, rk+1) and αk by solving (4.4.5)
6: Set ĝk ← (x̂k − xk+1)/tk, vk ← f(x̂k)− rk+1, and φk as in (4.4.8).

. Step 2: Stopping test
7: if φk ≤ Tolφ and ‖ĝk‖ ≤ Tolg) then
8: return x̂k and f(x̂k)
9: end if

. Step 3: Oracle call
10: Call Oracle 4.4.1 to compute (f(xk+1), gk+1)
11: De�ne taux = 2tk[1 + (f(x̂k)− f(xk+1))/vk]
12: if f(xk+1) 6 f(x̂k)− κvk then
13: Set x̂k+1 ← xk+1 and tk+1 = min{taux, 10tk}
14: else
15: Set x̂k+1 ← x̂k and tk+1 = min{tk, max{taux, tmin}}
16: end if

. Step 4: Bundle management
17: Choose Jk+1 ⊃ {j ∈ Jk : αkj 6= 0} ∪ {k + 1}
18: end for

Remark 4.4.2 (Bundle compression). It is worth mentioning that the set Jk gathering bundle infor-
mation can be kept with at most Mmax indices, for some chosen integer Mmax ≥ 2. In fact, if at Step
4 of Algorithm 6 one has |{j ∈ Jk : αkj 6= 0}| = Mmax, one can choose any two indices j, i ∈ Jk and

replace the two triples (xj , f(xj), gj) and (xi, f(xi), gi) by the arti�cial one (xk+1, f̌k(xk+1), ĝk). In this
manner, one of the indices j or i will be related to the triple (xk+1, f̌k(xk+1), ĝk), while the other one can
be eliminated from the set Jk. Since the bundle updating incorporates the new index k+ 1 into Jk+1, the
bundle size will remain Mmax. This strategy is called bundle compression, and it is an e�cient manner
to keep the auxiliary problem (4.4.5) easy to solve without impairing convergence of the algorithm.

Another proximal bundle method variant designed for two-stage stochastic linear programming is the so
called regularized decomposition, proposed by [174]. Algorithm 6 is more general than the regularized
decomposition in the sense that the presented algorithm uses the bundle compression mechanism and
updates the prox-parameter tk along the iterative process. Convergence analysis of Algorithm 6 can be
obtained in [94], and in a more general setting in [149].

4.4.3 Numerical assessment: decomposition and bundle method

Formulation (4.3.1) becomes computationally intractable for 80 gas demand scenarios or more. To solve
the deterministic equivalent problem using N = 200 scenarios we then used Algorithm 6 and Oracle 4.4.1.

With 200 scenarios, the corresponding problem has more than 52 million variables and almost 17 million
constraints, and it was solved in 79 iterations for tolerances Tolφ = 10−3

√
n and Tolg = 10−3

√
n, with√

n = 684 (n is the dimension of the �rst-stage variable x, i.e., investment decisions).

Figure 4.4 shows the evolution of {−f(xk)} along iterations 10 to 79. Circular markers indicate iterations
at which a descent-step was found. We recall that for the considered application, minimizing the objective
function in problem (4.3.1) corresponds to maximizing the total pro�t of the company: −f(x) is the pro�t
provided by the plan of investment x. Algorithm 6 using Oracle 4.4.1 was able to solve the deterministic

57

Figure 4.4: Evolution of −f(xk), k = 10, · · · , 79.

equivalent problem, but it took 45 hours and 48 minutes in order to satisfy the stopping criteria. It turns
out that each call to Oracle 4.4.1 takes around 34 minutes. Roughly speaking, allocating computational
memory and solving problem (4.4.2) for a given x and ω takes 10 seconds of CPU time. Therefore,
supposing problem (4.3.1) with N = 2, 000 scenarios and estimating 70 iterations for Algorithm 6 to
stop, the total CPU time for solving the resulting problem would be more than 15 days. In a strategic
level of planning, as it is considered in this work, this amount of CPU time may be acceptable. However,
other strategies should be tested as an attempt to reduce solving time while still considering uncertainties
in a proper manner.

4.5 Optimal scenario reduction

In this section we apply the scenario reduction technique proposed in [80] and [82] to e�ciently select,
among N demand gas scenarios {ω1, ω2, . . . , ωN} with probability πi for i = 1, . . . , N , a smaller but
representative subset of scenarios. Reducing the number of scenarios entails redistributing the initial set
of probabilities P := {πi : i = 1, . . . , N} by taking an index set Irep ⊂ {1, 2, . . . , N} such that:

P̃ := {π̃i : i = 1, . . . , N} with

{
π̃i = 0 for i 6∈ Irep∑
i∈Irep π̃i = 1 .

With such a redistribution P̃ , the resulting (smaller) deterministic equivalent problem is

min
x∈X

f̃(x) with f̃(x) = 〈c, x〉+
∑
i∈Irep

π̃iQ(x, ωi) . (4.5.1)

Let VAL(P) and VAL(P̃) be the optimal values for the problems (4.4.1) and (4.5.1), respectively. Ac-
cordingly, S(P) ⊂ X and S(P̃) ⊂ X are the respective solution sets (it is assumed that both S(P)
and S(P̃) are nonempty sets). Let the number Nrep = |Irep| of representative scenarios be given (natu-
rally, Nrep < N). What we wish is to determine P̃ such that the distance between the optimal values
|VAL(P)− VAL(P̃)| and the error ε ≥ 0 such that S(P̃) ⊂ S(P) + εB(0, 1) are as small as possible (here
B(0, 1) stands for the unit ball in Rn). In order to accomplish this task the work [82] proposes to use

58

a probabilistic metric that estimates the distance between the optimal values, and allows at same time
for stability of the solution sets, i.e., a small ε ≥ 0.

GivenNrep, the best redistribution P̃ of P is determined by solving a combinatorial optimization problem,
as shown below. The result in [80, Thm. 2] shows that given a norm or pseudonorm d : Ω×Ω→ R+ (for
instance, d(ωi, ωj) = ‖ωi − ωj‖2 can be the Euclidean distance) and a set I ⊆ {1, . . . , N}, the particular
case of the Monge-Kantorovich functional

MK(I) :=
∑
j 6∈I

pj min
i∈I

d(ωj , ωi)

is, except for a multiplicative constant, an upper bound for the distance between the given probability
P and the new one P̃ , de�ned by

π̃i =

{
πi +

∑
j∈Ji πj if i ∈ I

0 if i /∈ I where Ji := {j 6∈ I : i ∈ arg min
l∈I

d(ωj , ωl)} . (4.5.2)

Providing that the feasible set X is compact, it follows from [80, Eq. (4) and Thm. 2] that∣∣∣∣∣
N∑
i=1

πiQ(x, ωi)−
∑
i∈I

π̃iQ(x, ωi)

∣∣∣∣∣ ≤ L · MK(I) for each x ∈ X ,

where L > 0 is a constant that depends on the problem and on the chosen pseudonorm d. Given the
rule (4.5.2) for the new probability P̃ , a natural criterion for approximating problem (4.4.1) by problem
(4.5.1) should strive to minimize the functional MK(I), by choosing the best set I = Irep ⊂ {1, . . . , N} with
Nrep indices. This is a combinatorial optimization problem, and thus di�cult to solve. Following [82],
the representative scenario index set Irep is chosen by a heuristic method, called Fast Forward Selection.
More precisely, this work applies Algorithm 2.4 proposed in [82] to select representative scenarios of gas
demand. The main idea of this algorithm is to iteratively solving problems of the form

min
I⊂{1,2,...,N}

MK(I) s.t. |I| = N − i ,

for i = N,N − 1, . . . , N −Nrep. We refer to [80] and [82] for more information on scenario reduction for
two-stage stochastic programming; see also [83], [52] and [158] for the multistage setting.

4.5.1 Numerical assessment: optimal scenario reduction

By using optimal scenario reduction technique, a subset ΩNrep
=
{
ωj1 , ωj2 , · · · , ωjNrep

}
is chosen from

the set of N = 200 scenarios used in � 4.4. Then, the reduced deterministic equivalent problem (4.5.1)
is solved, using only Nrep selected scenarios ω ∈ ΩNrep

with new probability P̃ . As usually Nrep � N , it
takes signi�cantly less CPU time to solve (4.5.1) than to solve problem (4.4.1).

We have considered 7 di�erent instances of problem (4.5.1) corresponding to taking

Nrep ∈ {10, 20, 30, 40, 50, 60, 70}.

Let x̄Nrep
be an optimal investment decision to problem (4.5.1) and

f̃(x̄Nrep
) = 〈c, x̄Nrep

〉+
∑
i∈Irep

π̃iQ(x̄Nrep
, ωi)

be its optimal value. In Table 4.2 we compare �rst stage (investment) cost, 〈c, x̄Nrep
〉, expected second

stage costs ∑
i∈Irep

π̃iQ(x̄Nrep
, ωi) and

200∑
i=1

πiQ(x̄Nrep
, ωi) , (4.5.3)

59

Nrep Obj. Function (106 US$) Problem Size CPU (s)

〈c, x̄Nrep
〉

∑
i∈Irep

π̃iQ(x̄Nrep
, ωi)

200∑
i=1

πiQ(x̄Nrep
, ωi) Variables Constraints

10 -8.69 4 367.07 4 733.38 2 610 995 845 080 151
20 -8.70 4 473.30 4 733.54 5 221 305 1 688 980 260
30 -8.72 4 515.01 4 733.60 7 831 615 2 532 880 471
40 -8.72 4 566.87 4 733.60 10 441 925 3 376 780 560
50 -8.72 4 597.55 4 733.60 13 052 235 4 220 680 843
60 -8.72 4 645.87 4 733.60 15 662 545 5 064 580 1 025
70 -8.72 4 692.17 4 733.60 18 272 855 5 908 480 1 207
200 -8.72 4 733.60 4 733.60 52 206 885 16 879 180 164 879

Table 4.2: Problem comparison for Nrep ∈ {10, 20, 30, 40, 50, 60, 70}

number of variables and constraints, and CPU time for each instance Nrep. As expected, increasing Nrep

increases solution x̄Nrep
quality. Moreover, as reported in Table 4.2 the values in (4.5.3) become closer

to each other as Nrep increases, showing e�ectiveness of the scenario reduction technique.

In many practical applications, decision makers are concerned not only with optimal values deviation,
but also with optimal decision variables deviation. The practical interest is the optimal policy - that
is, the best �rst stage decisions. In our application, deviation on optimal solutions might result in
very di�erent company's actions: for instance, expanding a pipeline rather than importing gas. Figure
4.5 shows di�erent decisions for a speci�c investment project when solving the problem with di�erent
number of scenarios. We see that the bigger the number Nrep of scenarios the closer are the optimal

Figure 4.5: Di�erent investment decisions

decisions (obtained with N = 200 scenarios). By using Nrep = 30 scenarios or more, optimal decisions
are achieved for this investment project.

60

4.6 Concluding remarks

In this work we have investigated the Brazilian natural gas network planning problem by considering
stochasticity in the gas demand. Numerical results show that a stochastic setting to the problem should
be considered due to the potential improvements in investment policy and net pro�ts. The gain obtained
by using a two-stage stochastic linear approach to the problem was estimated to be approximately US$ 38
million. Such estimate was drawn by comparing the obtained investment decisions to the ones produced
by a deterministic model that ignores uncertainties in the problem.

We have shown that unstable optimal values and investment decisions can be obtained if small samples
of scenarios (N = 10) are randomly chosen to represent the gas demand. On the other hand, solving
the problem for larger samples, say 80 scenarios or more, is only possible via decomposition technique
(and specialized nonsmooth optimization methods). For N = 200 gas demand scenarios the resulting
problem has more than 52 million variables and almost 17 million constraints. CPU time needed to solve
the problem was almost 46 hours, and estimates of solving time for the case with 2, 000 scenarios is 15
days. The method used to solve large instances of the decomposed problem was the (state of the art)
proximal bundle algorithm, presented with details in � 4.4.2.

Since the CPU time required to solve the problem with many scenarios (say N = 2, 000) might not
be a�ordable for the company's studies, an e�cient tactic consists in combining both optimal scenario
reduction and decomposition strategies: �rst, a representative but smaller subset of scenarios is select as
described in � 4.5 and then the resulting planning problem is solved either by employing a LP commercial
solver to the deterministic equivalent formulation (if the number of selected scenarios is small enough)
or by the presented bundle method algorithm combined with decomposition.

To conclude we mention that the techniques presented in this work are implemented in the o�cial model
of PETROBRAS to assist decision making in this strategic supply chain problem, which is of signi�cant
importance for the economical development of Brazil.

61

Chapter 5

Convexity and optimization with

copulæ structured probabilistic

constraints

It is generally asserted that probability constraints are not "convex". However what is really meant is
the convexity of the feasible set

{x ∈ X : P[G(x, ω) ≥ 0] ≥ p} ,

where G : Rn ×Ω→ Rm is a given mapping, ω : Ω→ Rm is a m-dimensional random vector de�ned on
some probability space (Ω,A,P), and p ∈ (0, 1] is a pre-speci�ed probability level.

In probabilistically constrained optimization it is well known that the above set is convex whenever G
is jointly quasi-concave and ω ∈ Rm is a random vector having a density that itself admits generalized
concavity properties. Important special cases involve structures as: G(x, ω) := g(x) − ω, wherein g
is concave. Then as soon as ω is chosen among an appropriate class of distributions, the function
P[ω ≤ g(x)] can be asserted to have some degree of generalized concavity, which in turn entails convexity
of its level sets. Convenient choices for ω are multivariate Gaussian, multivariate log-normal, multivariate
student. Situations readily occur wherein this general result can not be employed: for instance, when
the mapping g has generalized concavity properties only.

Despite what is commonly stated, it turns out that some degree of convexity remains preserved anyway,
as investigated by R. Henrion and C. Strugarek in [90]. But instead of disposing of convexity results for
all level sets of P[ω ≤ g(x)], it is only necessary in some applications to dispose of convexity results for
p "large enough". In this chapter, the results of which are taken from

W. van Ackooij and W. de Oliveira
Convexity and optimization with Copulae structured probability constraints
Optimization, 2016, volume 65, issue 7, pp. 1349-1376,

the su�ciency of generalized concavity properties of g in G(x, ω) := g(x)−ω holding only on certain level
sets of g is highlighted. For that purpose, this chapter deals with Copulæ structured chance-constrained
programs. The chapter investigates how potential "convexity" resulting from g can be split from any
"non-convexity" due to the combination of it with a probability constraint. To this end, it is employed
a Generalized Benders' decomposition and a supporting hyperplane level bundle method algorithm to
deal with the underlying optimization problem with generalized convexity properties is proposed.

62

5.1 Introduction

In this work we are interested in optimization problems involving separable probabilistic constraints of
the type

P[ω ≤ g(x)] ≥ p. (5.1.1)

Constraints of this form, also named chance-constraints or probabilistic constraints [166], express that
the decision vector x ∈ Rn is feasible if and only if the random inequality system ω ≤ g(x) is satis�ed
with high enough probability. These constraints are encountered in many engineering problems involving
uncertain data. We can �nd applications in water management, telecommunications, electricity network
expansion, mineral blending, chemical engineering etc. (e.g., [2, 7, 88, 138, 166]). For an overview of
theory, numerics and applications of chance constraints we refer to [54, 166] and references therein.

It is worthy mentioning that separable probabilistic constraints of the form (5.1.1) are not the most gen-
eral class, but still a class widely present in relevant applications; see for instance [2, 17] for applications
on power system optimization and [129] for chance constrained optimization applied to transportation
problems. Although non trivial, chance constraints of the form (5.1.1) are easier to handle than more
general ones.

We will assume throughout this paper that each component ωi of the random vector ω has a known
unidimensional continuous distribution function zi ∈ R 7→ Fi(zi) := P[ωi ≤ zi], i = 1, ...,m. Therefore,
Sklar's Theorem [184] ensures that constraint (5.1.1) can be represented by a composite function involving
the mapping g(x) = (g1(x), . . . , gm(x)), the marginal distributions Fi, i = 1, ...,m, and a copula C :
[0, 1]m → [0, 1]:

P[ω ≤ g(x)] = C(F1(g1(x)), ..., Fm(gm(x))) . (5.1.2)

Under this notation, the optimization problem we are interested in is:

min
x∈X(p)

f(x) (5.1.3a)

where f : Rn → R is a convex function and, for a given p ∈ (0, 1],

X(p) :=

{
x ∈ X

∣∣∣ C(F1(g1(x)), ..., Fm(gm(x))) ≥ p
gi(x) ≥ `i, i = 1, . . . ,m

}
, (5.1.3b)

with X a polyhedral set and ` ∈ Rm a given vector.

An important matter for numerical tractability of chance-constrained optimization problems as (5.1.3)
is convexity of its feasible set. In this work we will provide conditions under which X(p) given in
(5.1.3b) is a convex set. These conditions involve generalized concavity of the composite function
C(F1(g1(·)), ..., Fm(gm(·))), a threshold p∗ ∈ (0, 1] and a condition of the type p ≥ p∗. Di�erent copulæ
C and di�erent marginal distributions Fi provide di�erent computable thresholds p∗.

The convexity results presented in this paper are essentially an extension of the work initiated in [3, 90,
91]. More speci�cally we show that all Archimedean copulæ belong to the class of δ-γ-concave copulæ
introduced in [3]. In addition, we provide a stabilized variant of the supporting-hyperplane algorithm
of [204], suitable for probabilistically constrained optimization problems with eventual convexity only.
The new algorithm is combined with a generalized Benders decomposition that separates the potential
non-convexity induced by the probability constraint from any inherent convexity of the nominal data.
Prior to making this precise in Section 5.1.1 below, let us mention that [39] also considers copulæ in
conjunction with probability constraints. This work, aiming to provide convexity results for probability
constraints involving random technology matrices, seems to rely however on an unclear results on the
independence of certain types of copulæ on the decision vector x ([39, Lemma 2.7]). This Lemma can
be stated as follows:

Consider the probability function Rn 3 x 7→ φ(x) = P[Tx ≤ h], where the random K × n matrix T
has rows following an elliptically symmetric distribution with positive de�nite covariance matrix. Then
there exists a copula C independent of x such that φ(x) = C(Ψ1(g1(x)), ...,ΨK(gK(x))), where for each

63

i = 1, ...,K, gi : Rn → R are deterministic mappings depending on gi and Ψi are x-independent marginal
1-dimensional distribution functions.

This Lemma is false:

Example 5.1.1. Assume that the 2× 2 matrix T follows a multivariate Gaussian distribution centered
in 0 with correlation matrix (when T is seen as a �vector� stored rows �rst):

S =


1 0.75 −0.25 −0.10

0.75 1.0 −0.10 −0.25
−0.25 −0.10 1.00 0.75
−0.10 −0.25 0.75 1.00

 ,
then Tx is a centered 2-variate Gaussian random variable. Moreover

P[Tx ≤ h] = FΘ̃(x)(g1(x), g2(x)),

where Θ̃(x) is a 2×2 correlation matrix having Θ̃(x)12 =
−0.25x2

1−0.25x2
2−0.20x1x2

x2
1+x2

2+1.5x1x2
, gi(x) = gi√

x2
1+x2

2+1.5x1x2

,

i = 1, 2. (see, e.g., [1, proof of Theorem 3.2.4] for details on this derivation) and FΘ̃(x) is the 2-variate

Gaussian distribution function of a centered Gaussian vector with correlation matrix Θ̃(x). Now the

Gaussian copula CΘ̃(x) (de�ned as CΘ̃(x)(u1, u2) := FΘ̃(x)(Φ
−1(u1),Φ−1(u2)), resulting from Sklar's

theorem, gives with u = (0.25, 0.25), x = (0, 1) and y = (0.75, 1):

CΘ̃(x)(u) = 0.0387 6= 0.0431 = CΘ̃(y)(u).

Note that since 1-dimensional Gaussian distribution functions (denoted Φ above) are continuous, by [185,
Corollary to Theorem 1], the Gaussian copula is the unique copula satisfying the requested representation.
Hence this provides a concrete counterexample against the Lemma.

The algorithms considered in [39] (the same are considered in [99]) are based on an ad-hoc implementation
of a cutting plane method (with a priori generation of cutting planes) and a method seemingly related
to p-e�cient point approaches with interpolation (inner approximation). The convergence to an optimal
solution is not established and the numerical experiments conducted on 5 instances indicate that the
methods fail to close the gap below 2% on average. In contrast we provide a general optimization
framework based on level bundle methods, establish convergence and show the interest of the methods
on 1500 instances with respect to a competing standard software. We also mention the work [212]
that uses a notion akin to g-concavity as introduced by [192] in order to generalize convexity results of
probabilistically constrained feasible sets in the separable case (see also [3, Remark 3.3]). However they
consider the situation of components-wise independence for the random vector ω.

5.1.1 Separating out convexity

Let us introduce extra variables u ∈ Rm to reformulate problem (5.1.3) as follows:

vmin := min
u∈[0,1]m

v(u) s.t. C(u) ≥ p, and ui ≥ Fi(`i), i = 1, . . . ,m , (5.1.4a)

with objective function given by

v(u) = min
x∈X

f(x) s.t. gi(x) ≥ F−1
i (ui), i = 1, . . . ,m . (5.1.4b)

The relation between formulations (5.1.3) and (5.1.4) is established in � 5.3.2. In the parlance of Bender's
decomposition, subproblem (5.1.4b) is denoted by slave problem and (5.1.4a) is the so-called master
problem. Notice that the optimization of the slave problem is performed only in variable x, i.e., u is
seen in (5.1.4b) as a parameter. Therefore, solving (5.1.4b) for a given u amounts to solving a convex
optimization problem provided that f is a convex mapping and gi disposes of generalized concavity
properties. As a result, any potential non-convexity of problem (5.1.3) has been moved to the master
problem. This motivates us to solve (5.1.3) through an algorithm based on Bender's decomposition.

64

5.1.2 Bender's decomposition: a bird's-eye view

Generalized Bender's decomposition (GBD) hinges on the key observation that certain problems can
become signi�cantly easier when a subset of variables is �xed. This observation originally made for
problems with an underlying linear structure [26] potentially with stochastics [186] was generalized to
problems with some underlying convexity in the seminal work by Geo�rion [76]. For a general overview
we refer to [44, 69].

The optimal value of the slave problem is seen as a mapping of the �xed variables, called slave mapping
or value function. The master problem is related to �nding the optimal allocation of the previously
temporarily �xed variables. It need not be a convex optimization problem. Since the domain of the
value function need not be the whole space, the master problem is augmented with the so called feasibility
cuts (i.e., an outer approximation of the convex domain of the value function). These can be computed
using an auxiliary optimization problem involving slacks. The master problem is also enriched with
optimality cuts, as a matter of fact, a cutting-plane model of the value function. In this view, GBD can
be seen as a variant of the (Kelley's) cutting-plane method given in [103]. It can therefore be subject
to the well-known oscillation e�ect and slow convergence. In order to tackle this, the authors of [213]
suggest what we would now call an inexact lower oracle (see [149]), i.e., inexactly solving the slave
problem to compute some inexact but �cheap" cuts. An appropriate choice of cuts (approximating the
value function) is crucial, as illustrated in [108].

The works [60, 178, 182, 207, 211] concretely deal with strategies for generating good (optimality) cuts,
occasionally with a problem-dependent �avour. The authors of [40] are concerned with generating strong
feasibility cuts and provide an important contribution in this view. Further improvements to the general
scheme are concerned with a relaxation of the convexity assumption of the slave problem by allowing
for integer variables [35] or the use of generalized �logic� duality (called inference duality) in [98]. The
success of GBD is easily seen from the existence of many application, e.g., [177] or [37, 67, 77, 132, 136,
140, 151, 170, 198] just to name a few. To the best of our knowledge only a single work [215] deals
with the study of GBD under generalized concavity properties. The authors suggest a layered Benders
decomposition framework (two embedded Generalized Benders decompositions).

In our setting, we cannot apply a cutting-plane method to solve the master problem because the Copula
C in (5.1.4a) need not be concave. However, due to the generalized concavity assumptions on C, and
provided that p ∈ (0, 1] is a large enough probability level (see Theorem 5.3.1 for more details), we rely
on the supporting hyperplane method of [204] to solve problem (5.1.3) through Bender's decomposition.

5.1.3 Main contributions and organization of the work

In addition to theoretical results establishing δ-γ-concavity of all Archimedean copulæ (Theorem 5.3.3)
and making explicit that it is su�cient for gi to dispose of generalized concavity properties on certain
sets only (Theorem 5.3.1), we can enumerate the following contributions of this manuscript.

5.1.3.1 Contributions to supporting hyperplane and level bundle methods

In the present work, we rely on decomposition and employ a supporting hyperplane algorithms akin to
[204] to �nd an optimal solution to problem (5.1.3) even when functions f and gi are nonsmooth. In
contrast to [204] the proposed algorithm is able to handle extended real-valued objective functions. This
is an important matter for dealing with value functions as in (5.1.4b). Another novelty with respect to
[204] is that our algorithm employs a level-set regularization strategy similarly to [121] to avoid tailing-o�
e�ect that makes calculations unstable as the iteration process progresses. The algorithm is therefore an
extension of level bundle methods [9, 121] to handle optimization problems having nonlinear constraints
with generalized concavity properties and extended real-valued objective function. To the best of our
knowledge, level bundle methods in the literature are only able to deal with: (a) linearly and nonlinearly
constrained optimization problems involving convex functions, [121, 147]; or (b) linearly constrained

65

optimization problems with real-valued but quasi-convex objective function, [210]. In contrast to most
level bundle methods in the literature that need to solve a QP master problem to de�ne trial points, the
proposed level bundle algorithm is general enough to de�ne the master problem as a linear programming
problem. This is an interesting feature when dealing with large-scale optimization problems. However,
this feature might reduce convergence speed.

5.1.3.2 Contributions to the GBD literature

With respect to the existing literature on generalized Benders decomposition the contributions of the
this work are as follows. We are concerned with local generalized concavity of mappings (generalized
concavity of the mapping on certain level sets only). Compared to [215] we suggest a single layer
framework. Moreover, we are interested in chance constrained problems with �left-hand side� uncertainty.
To the best of our knowledge generalized Benders decomposition was not suggested for these problems
before. With respect to this application, we incorporate in the master problem a special �feasible
allocation� to avoid (possible) ill-conditioning related to sti�-gradients (see [134] and the discussion
in [10]). The proposed algorithm combines in a single framework GBD, level bundle and supporting
hyperplane methods.

Although we have not investigated the enhancements related to appropriately selecting elements in the
value function sub-di�erential, in the spirit of [131], we believe that this feature can be appended to the
framework in a straightforward manner.

5.1.3.3 Organization

This paper is organized as follows: in Section 5.2 we present notation and several (already known) con-
cepts. Section 5.3 is dedicated to convexity results: (a) of the set X(p) in (5.1.3b) provided p is large
enough; (b) of the value function appearing in (5.1.4b). The algorithm and its convergence analysis
are presented in Section 5.4. In Section 5.5 we approximate a very challenging chance-constrained
optimization problem by adopting the framework of problem (5.1.3) and consider such a reformu-
lated/approximated problem in our numerical experiments. We also consider chance-constrained op-
timization problems arising from cascaded reservoir management (with real-life data). A comprehensive
battery of experiments is presented in the same section, where we have also solved problem (5.1.3) by
the nonlinear optimization solver IPOPT [205].

5.2 Preliminaries: copulæ and generalized concavity

In this section we will review several of the key concepts required in the remainder of this paper.

5.2.1 Copulæ in a nutshell

In probabilistic terms, copulæ are parametrically speci�ed joint probability distributions generated from
given marginals distributions [141, 195]. In analytic terms, a copula is de�ned as follows [135]:

De�nition 5.2.1. A function C : [0, 1]m → [0, 1] is called a copula if it satis�es the following conditions:

(i) C(1, . . . , 1, u, 1, . . . , 1) = u for all u ∈ [0, 1];

(ii) C(u1, . . . , ui−1, 0, ui+1, . . . , um) = 0 (the copula is zero if one of its arguments is zero);

(iii) C is quasi-monotone on [0, 1]m.

66

The last property can be equivalently expressed as the C-volume of any m-dimensional interval is non-
negative (more details in [135]). A well known result is Sklar's theorem [184], which states that every
multivariate cumulative distribution function F of a random vector ω ∈ Rm with continuous marginals
Fi(yi) = P[ωi ≤ yi] can be written as

F (y1, . . . , ym) = C(F1(y1), . . . , Fm(ym)) ,

where C is an appropriate copula. In order to give an idea of how Sklar's theorem works, we begin by
recalling that Ui = Fi(ωi) is uniformly distributed in the interval [0, 1]. By assuming that each marginal
distribution function Fi is continuous, we have Fi(yi) ≤ ui if and only if yi ≤ F−1

i (ui), for i = 1, . . . ,m.
Consequently,

F (y1, . . . , ym) = P[ω1 ≤ y1, . . . , ωm ≤ ym] = P[ω1 ≤ F−1
1 (u1), . . . , ωm ≤ F−1

m (um)]
= P[U1 ≤ u1, . . . , Um ≤ um] .

The copula of ω ∈ Rm is de�ned as the joint cumulative distribution function of (U1, U2, . . . , Um):
C(u) = P[U1 ≤ u1, . . . , Um ≤ um], i.e., the m-copula C above is a m-dimensional distribution function
with all m univariate marginals being uniform in the interval [0, 1].

We care to emphasize that Sklar's theorem is not �constructive". Hence, from a modeling perspective
one would rather take a copula C and through this choice implicitly �x the joint distribution (5.1.2).
This will also be our angle of attack, i.e., we will assume that C is given.

Several families of copulæ are known in the literature. We now focus on an important class, called
Archimedean copulæ, which enjoy considerable popularity in a number of practical applications, (see
references in [135]).

De�nition 5.2.2. A copula C is called Archimedean if it has the representation

C(u1, . . . , um) = ψ
[−1]
θ (ψθ(u1) + · · ·+ ψθ(um))

where ψθ : [0, 1] → [0,∞) is a continuous, strictly decreasing and convex function such that ψθ(1) = 0
and θ is the real parameter on which it depends. The mapping ψθ is called the generator of the copula C.

The inverse of the generator function ψθ is written as ψ−1
θ , and the pseudo-inverse ψ[−1]

θ is given by

ψ
[−1]
θ (t) =

{
ψ−1
θ (t) if 0 ≤ t ≤ ψθ(0)
0 if ψθ(0) ≤ t ≤ ∞.

The following generators are commonly considered:

i) Joe's copula, with generator ψθ(t) = − ln(1− (1− t)θ), θ ≥ 1;

ii) Frank's copula, with generator ψθ(t) = − ln(e
−θt−1
e−θ−1

), θ ∈ R\{0};
iii) Ali-Mikhail-Haq's copula, with generator ψθ(t) = ln(1−θ

t + θ), θ ∈ [−1, 1);
iv) Clayton copula, with generator ψθ(t) = 1

θ (t−θ − 1) , θ ∈ [−1,∞)\{0};
v) Gumbel copula, with generator ψθ(t) = (− log(t))

θ, θ ∈ [1,∞).

We provide a brief illustration of several dependency structures for m = 2 in Figure 5.1 (e.g., [152] and
references therein). This �gure illustrates a scatter plot of u ∈ [0, 1]2 generated according to the joint
distribution C.

In order to show that X(p) in (5.1.3b) is a convex set for a given copula C, we will make extensive use of
generalized concavity and its properties. We will introduce notation and useful results in the following
subsection.

5.2.2 Generalized concavity and its properties

In order to de�ne generalized concavity in a convenient way, the following function will be required.

67

(a) Gumbel(3) (b) Gumbel(5) (c) Clayton(1) (d) Clayton(3)

(e) Clayton(5) (f) Frank(-1) (g) Frank(3) (h) Frank(5)

(i) AMH(-1) (j) AMH(0) (k) AMH(0.9) (l) Joe(5)

Figure 5.1: The dependency structure for several copulæ. Each point represents a randomly generated
realization. Since the marginal distributions of a copula are uniform, each random realization belongs
to [0, 1]2. The number in between parentheses is the parameter of the copula. The abbreviation AMH
stands for Ali-Mikhail-Haq.

68

De�nition 5.2.3. Let α ∈ [−∞,∞] and mα : R+ × R+ × [0, 1]→ R be de�ned as follows

mα(a, b, λ) = 0 if ab = 0,

for a > 0, b > 0, λ ∈ [0, 1]:

mα(a, b, λ) =


aλb1−λ if α = 0

max {a, b} if α =∞
min {a, b} if α = −∞

(λaα + (1− λ)bα)
1
α otherwise.

The following lemma, given in [54], will be used throughout this text.

Lemma 5.2.4. ([54, Lemma 4.8]) Let mα be the mapping as de�ned in De�nition 5.2.3. The mapping
α 7→ mα is nondecreasing and continuous.

We now provide the de�nition of generalized concavity:

De�nition 5.2.5. A non-negative function f de�ned on some convex set C ⊆ Rn is called α-concave
(α ∈ [−∞,∞]) if and only if for all x, y ∈ C, λ ∈ [0, 1]:

f(λx+ (1− λ)y) ≥ mα(f(x), f(y), λ), (5.2.1)

where mα is as in De�nition 5.2.3.

Remark 5.2.6. If, for some α ∈ [−∞,∞], f is α-concave, then it is also α̃-concave for all α̃ ≤ α.
A function f is 0-concave if its logarithm is concave. This is usually referred to as log-concavity. For
α 6= 0, α ∈ R, the function f is α-concave if either fα is concave for α > 0 or fα is convex for α < 0.
In particular, if α = 1 then f is simply concave, and if α = −∞ then f is quasi-concave.

For some further calculus rules with α-concavity we refer to Theorems 4.19�4.23 of [54]. We also recall
the de�nition of generalized concavity for copulæ, [3]:

De�nition 5.2.7. Let γ ∈ R be given, and let the set D(γ) be de�ned as D(γ) = [0, 1]m for γ > 0,
D(0) = (−∞, 0]m and D(γ) = [1,∞)m for γ < 0. Let δ ∈ [−∞,∞] be equally given. We call a copula

C : [0, 1]m → [0, 1] δ-γ-concave if the mapping u : D(γ) 7→ C(u
1
γ) is δ-concave, whenever γ 6= 0 and

u : D(0) 7→ C(eu) is δ-concave whenever γ = 0.

In De�nition 5.2.7 the generalized concavity properties need not hold on the full set D(γ), but only on
a speci�c subset of it. It is therefore also useful to introduce the following local version of δ-γ-concavity
for copula (see [3]).

De�nition 5.2.8. Let q ∈ (0, 1)m be some point and de�ne the sets D(q, γ) as follows D(q, γ) =∏m
i=1[qγi , 1] for γ > 0, D(q, 0) =

∏m
i=1[log(qi), 0] and D(q, γ) =

∏m
i=1[1, qγi] for γ < 0. We call a copula

C : [0, 1]m → [0, 1] δ-γ-q-concave if the mapping u : D(q, γ) 7→ C(u
1
γ) is δ-concave, whenever γ 6= 0 and

u : D(q, 0) 7→ C(eu) is δ-concave whenever γ = 0.

Remark 5.2.9. Notice that for δ = −∞ and γ = 1, i.e., −∞-1-concavity of a copula C : [0, 1]m → [0, 1]
the notion of δ-γ-concavity is equivalent to ordinary quasi-concavity of the same function C on [0, 1]m.
This property yields convexity of the level sets {u ∈ [0, 1]m : C(u) ≥ p}, for all p ∈ [0, 1] and conversely,
as is well known.

5.3 Convexity statements: convexity of the nominal problem and

the value function

5.3.1 Convexity of the nominal problem

We now gather and extend some results given in [3] to establish convexity of the feasible set X(p) in
(5.1.3b).

69

Theorem 5.3.1. ([11, Theorem 3.1]). Let ω ∈ Rm be a random vector with associated copula C, and
let gi : Rn → R be functions such that

P[ω ≤ g(x)] = C(F1(g1(x)), ..., Fm(gm(x))),

where Fi is the marginal distribution function of random variable ωi, for i = 1, ...,m. Assume that,
for any i = 1, ...,m, we can �nd αi ∈ R, such that the functions gi are αi-concave and a second set of
parameters γi ∈ (−∞,∞], b̂i > 0 such that either one of the following conditions holds:

i) αi < 0 and z 7→ Fi(z
1
αi) is γi-concave on (0, b̂αii]

ii) αi = 0 and z 7→ Fi(exp z) is γi-concave on [log b̂i,∞)

iii) αi > 0 and z 7→ Fi(z
1
αi) is γi-concave on [b̂αii ,∞),

where i ∈ {1, ...,m} is arbitrary. If the copula is either δ-γ-concave or δ-γ-F (b̂)-concave for γ ≤ γi ≤ ∞,
i = 1, ...,m, it holds that

a) the set M(p) := {x ∈ Rn : P[ω ≤ g(x)] ≥ p} is convex for all p > pM := maxi=1,...,m Fi(b̂i);

b) if, in addition, each individual distribution function Fi, i = 1, ...,m is strictly increasing, then
convexity can moreover be derived for all p ≥ pM ;

c) if αi ≥ 0 and Fi is γi-concave everywhere, i = 1, ...,m, then the set M(p) is convex for all p ∈ [0, 1].

We now weaken the assumption on gi: assume that there exists a vector b ∈ Rm, such that gi is αi-
concave, on the level sets D := {x ∈ Rn : gi(x) ≥ bi, ∀ i = 1, . . . ,m} for αi ∈ R. Moreover, the marginals
Fi satisfy once again either one of the conditions i)-iii), but they are not necessarily strictly increasing.
By de�ning p∗ := C(F1(b1), . . . , Fm(bm)), it holds that

d) if b ≥ b̂, then the set M(p) ∩D is convex for all p ≥ p∗;
e) if `i ≥ max{bi, b̂i}, i = 1, . . . ,m, then the feasible set X(p) in (5.1.3b) is a convex set for all p ≥ p∗.

Corollary 5.3.2. In the setting of Theorem 5.3.1, assume that αi = 1 and that Fi is γi-concave every-
where, where γi ∈ (−∞,∞] for all i = 1, . . . ,m. If the copula is δ − γ-concave, the feasible set X(p) in
(5.1.3b) is convex for all p ∈ [0, 1] regardless of `i ∈ [−∞,∞), i = 1, . . . ,m.

Note that the extension of the results of [3] contained in Theorem 5.3.1 resides in making explicit that
it is su�cient for gi to be generalized concave on speci�c sets only.

An important assumption in Theorem 5.3.1 is that the considered copula: C : [0, 1]m → [0, 1] needs to
be δ-γ-concave. Next, we show that all Archimedean copulæ belong to the class of δ-γ-concave copulæ
and, hence, provide eventually convexity of the feasible set X(p) given in (5.1.3b).

Theorem 5.3.3. ([11, Theorem 3.3]). Let C : [0, 1]m → [0, 1] be an Archimedean copula, and ψ :
(0, 1]→ [0,∞) be its generator. Then C is a −∞-1-concave copula, i.e., a quasi-concave copula.

Remark 5.3.4. We care to note that stronger generalized concavity properties are known for the Clayton
copula. Indeed, it is δ-0 concave for speci�c δ values depending on the parameter of its generator (see
[3]). Similarly, the Gumbel, independent and maximum copulæ are 0-0-concave as shown in [90].

5.3.2 Convexity of the value function in generalized Benders decomposition

If X(p) in (5.1.3b) is a nonempty and convex set, and f is a convex function, then under a Slater
type assumption, any KKT point for problem (5.1.3) is also an optimal solution. Note that the Slater
assumption, i.e., the existence of x such that (5.1.1) is satis�ed strictly is a mild assumption (for instance
also needed for stability results [89]). If, moreover, all the involved functions are di�erentiable, then the
task of solving (5.1.3) can be carried out by general purpose solvers for nonlinear and di�erentiable
optimization. There are, however, situations in which more specialized algorithms are preferable for
solving problem (5.1.3) through suitable reformulations. For instance, when the considered copula is

70

di�cult to evaluate, as discussed in � 5.5.1.4 below. Another situation arises when some or all constraints
gi are nonsmooth, but suitable reformulations exist that allow their handling with specialized algorithms.
This case is addressed in the �rst part of Section 5.5.

The use of additional variables frequently plays an important role in the quest of e�ciently solving opti-
mization problems. Indeed, since the marginal distribution function Fi is monotonically nondecreasing,
the constraint gi(x) ≥ `i in (5.1.3b) is equivalent to Fi(gi(x)) ≥ Fi(`i). Therefore, by adding the extra
variables u ∈ [0, 1]m problem (5.1.3) is equivalent, in terms of optimal value and feasible region for x, to

min
(x,u)∈X×[0,1]m

f(x)

s.t. C(u) ≥ p
Fi(gi(x)) ≥ ui, i = 1, . . . ,m
ui ≥ Fi(`i), i = 1, . . . ,m .

(5.3.1)

The value function v : [0, 1]m → R∪{∞} de�ned in (5.1.4b) is thus obtained by splitting variables x and
u from the above problem, and representing the constraint Fi(gi(x)) ≥ ui by gi(x) ≥ F−1

i (ui), avoiding
the need of computing derivatives for the (very often implicit) function Fi. As already mentioned in
the introduction, under appropriate assumptions on functions f and gi, i = 1, . . . ,m, problem (5.1.4b)
can be easily solved. For instance, if f and all gi are linear (respectively concave quadratic) functions,
(5.1.4b) is a linear (respectively convex conic) programming problem.

The value function v allows us to split problem (5.3.1) into two subproblems: the slave subproblem
(5.1.4b) and the master problem (5.1.4a). The relation between formulations (5.1.3) and (5.1.4) is
established by the following result, whose elementary proof is omitted.

Lemma 5.3.5. Assume that problem (5.1.3) admits an optimal solution. Then problem (5.1.4) also
admits an optimal solution and both optimal values are identical. Moreover, if u∗ is optimal for (5.1.4a),
and x∗ optimal for problem (5.1.4b), in which u = u∗, then x∗ is optimal for (5.1.3).

Since C is a copula we cannot expect C to be concave in general (see for example Theorem 5.3.3). Still
C may have generalized concavity properties such as δ-γ-concavity (De�nition 5.2.7). Consequently,
the feasible set in (5.1.4a) can not be properly approximated by using �rst-order linearizations of C,
a standard procedure in convex (nonsmooth) optimization. If C happens to be δ-γ-concave for some
γ ≤ 1, then the feasible set in problem (5.1.4a) is a convex set. We recall here that (see [3, Lemma
3.5]) δ-γ-concavity of a copula implies δ-α-concavity of the same copula for all α ≥ γ. If C fails to
be δ-γ-concave, we have nonetheless split the non-convexity induced by the copula from the inherent
convexity structure in v. Convexity of function v is ensured by the following result.

Lemma 5.3.6. ([11, Lemma 9]). Let f : Rn → R be a real-valued and convex function. Assume,
moreover that, for each i = 1, . . . ,m, we can �nd αi ∈ R such that the functions gi are αi-concave on
level sets {x ∈ R : gi(x) ≥ bi}, and a second set of parameters γi ∈ [1,∞], b̂i > 0 satisfying either one

of the conditions i), ii) or iii) in Theorem 5.3.1. Moreover, suppose that `i ≥ max{bi, b̂i}, i = 1, . . . ,m.
Then v de�ned in (5.1.4b) is a convex function on the set {u ∈ [0, 1]m : ui ≥ Fi(`i), i = 1, . . . ,m}.

For any given u ∈ Dom(v), suppose that problem (5.1.4b) admits optimal Lagrange multipliers sui associ-
ated with the constraints Fi(gi(x)) ≥ ui, i = 1, . . . ,m. Then, the vector su belongs to the subdi�erential
of v at the point u, i.e., su ∈ ∂v(u).

Notice that there is a gap between the convexity results of Theorem 5.3.1 and those of Lemma 5.3.6.
The former allows for the parameters γi ∈ (−∞,∞], whereas the latter requires γi ≥ 1. This gap can
actually be �lled by appropriately rede�ning v as indicated below:

Corollary 5.3.7. Let D(γ) be as in De�nition 5.2.7. Under the assumptions of Lemma 5.3.6 assume
the existence of a γ ∈ (−∞,∞) such that γi ≥ γ for all i = 1, ...,m and that v : D(γ)→ R ∪ {∞} given
in (5.1.4b) is (re-)de�ned as follows:

v(u) = min
x∈X

f(x) s.t. Fi(gi(x)) ≥ u
1
γ

i , i = 1, . . . ,m, (5.3.2a)

71

when γ 6= 0 and
v(u) = min

x∈X
f(x) s.t. Fi(gi(x)) ≥ exp(ui), i = 1, . . . ,m, (5.3.2b)

when γ = 0. Then v is a convex function on the set {u ∈ D(γ) : u
1
γ

i ≥ Fi(`i), i = 1, ...,m} (γ 6= 0) or
{u ∈ D(γ) : exp(ui) ≥ Fi(`i), i = 1, ...,m} (γ 6= 0).

Since u ∈ [0, 1]m can be arbitrary, problem (5.1.4b) may be infeasible. In order to deal with this, we
consider the following auxiliary problem:

f(u) :=

{
min

x∈X,z∈Rm+
‖z‖1

s.t. Fi(gi(x) + zi) ≥ ui, i = 1, . . . ,m
(5.3.3)

Since X 6= ∅, problem (5.3.3) is feasible for all u ∈ [0, 1]m. Therefore, f is a �nite valued function:
f : [0, 1]m → R+. Moreover, f(u) = 0 if and only if the feasible set of problem (5.1.4b) is nonempty.

Lemma 5.3.8. ([11, Lemma 10]). Under the assumptions of Lemma 5.3.6, function f given in (5.3.3)
is convex on {u ∈ [0, 1]m : ui ≥ Fi(`i), i = 1, . . . ,m}. Moreover for any given u ∈ [0, 1]m, any optimal
Lagrange multiplier sui associated to the constraints Fi(gi(x)+zi) ≥ ui, i = 1, . . . ,m, satis�es su ∈ ∂f(u).
The linearization

f(u) + 〈su, ũ− u〉 ≤ 0, (5.3.4)

is a feasibility cut for problem (5.1.4a).

5.4 Algorithm: regularized GBD with an interpolation step

We now investigate algorithms for solving problem (5.1.3) through formulation (5.1.4). In view of
Theorem 5.3.1 and Lemma 5.3.6 we will assume throughout this section that v : Rm → R∪∞ in (5.1.4b)
is an extended real-valued and convex function, and the feasible set of (5.1.4a) is nonempty and convex
for a large enough p ∈ (0, 1]. We are, however, assuming that C satis�es only generalized concavity
assumptions.

If the domain of v contains the feasible set of problem (5.1.4a), then we can solve (5.1.4) (and therefore
problem (5.1.3)) by applying the supporting hyperplane algorithm proposed in [204] to the following
reformulated problem:

min
u∈[0,1]m
y≤y≤y

y s.t. v(u) ≤ y, C(u) ≥ p, ui ≥ Fi(`i), i = 1, . . . ,m ,

where y and y are properly chosen bounds satisfying y ≤ vmin ≤ y. In the application of interest, the
domain of v does not contain, in general, the m-dimensional unit box and therefore feasibility cuts must
be added to the above problem. As a result, [204] cannot be directly applied to this reformulation (the
algorithm in [204] is suitable for real-valued functions, only). Even endowing the supporting hyperplane
algorithm of Veinott with means to handle extended real-valued functions the resulting (new) algorithm
is not very appealing: supporting hyperplane method possesses slow convergence and requires many
function evaluations for solving the problem. Since function v in (5.5.5) is costly, we would like to
employ a method for solving (5.1.4a) that requires as few function evaluations as possible.

In the quest of e�ciently solving (5.1.4a), we thus propose a new variant of level bundle methods [121] for
nonsmooth optimization problems whose objective function is convex but can assume the value in�nity,
and wherein the nonlinear constraint mappings satisfy only generalized concavity assumptions. To the
best of our knowledge, the proposed optimization method is the �rst bundle algorithm with global
convergence guarantees for such an optimization setting. The full algorithm is described in � 5.4.2, but
�rst we present some key ingredients.

72

5.4.1 Ingredients: cutting-plane models

Given a sequence of generated trial points
{
ũ1, ũ2, . . . , ũk

}
, we will split the index set {1, . . . , k} into two

subsets: the optimality index set Ok gathering indices j such that v(ũj) <∞, and the feasibility index
set Fk gathering indices j such that f(ũj) > 0. We thus have that Ok∩Fk = ∅ and Ok∪Fk = {1, . . . , k}.
Accordingly, we de�ne the cutting-plane models for function v and f, respectively:

v̌k(u) := max
j∈Ok

{
v(ũj) + 〈sjũ, u− ũ

j〉
}
, f̌k(u) := max

j∈Fk

{
f(ũj) + 〈sjũ, u− ũ

j〉
}
.

Since v and f are convex functions, the models v̌k and f̌k approximate, respectively, v and f from
below. As C is not concave, we cannot approximate C by using �rst-order linearizations of the type
C(u) + 〈∇C(u), · − u〉 without cutting-o� the set

M(p) = {u ∈ [0, 1]m : C(u) ≥ p} . (5.4.1)

However, since this latter set is convex (e.g., Theorem 5.3.1), we can approximate M(p) by using tangent
directions, as shown by the following classic result (e.g., [96, Chapter III]).

Lemma 5.4.1. Let C : [0, 1]m → [0, 1] be a continuously di�erentiable copula such that M(p) given
in (5.4.1) is a convex set for a given p ∈ [0, 1]. Then for any ũ ∈ [0, 1]m such that C(ũ) = p, the
inequality 〈∇C(ũ), u− ũ〉 ≥ 0 is a supporting hyperplane for M(p). Moreover, if ∇C(ũ) 6= 0 and if uin is
a point in the interior of M(p), then, 〈∇C(ũ), uin − ũ〉 > 0.

Corollary 5.4.2. Let C : [0, 1]m → R be a continuously di�erentiable Archimedean copula and consider
the constraint set C = {u ∈ [0, 1]m : C(u) ≥ p}. Then for any u ∈ C with C(u) = p, we have ∇C(u) 6= 0.

Remark 5.4.3. The existence of a point uin in the interior ofM(p), de�ned in (5.4.1), is not a restrictive
assumption. Indeed, for Archimeadean copulæ such a point uin can be easily computed: let p ∈ (0, 1)
and ϕθ (the copula generator function) be given and 1 be the vector of ones in Rm. Then uin de�ned as

uin := 1ϕ−1
θ

(ϕθ(p+1
2)

m

)
is readily seen to belong to interior of M(p). Note that by taking uin su�ciently

large enough (close to 1), one can ensure that uini > Fi(`i) holds as well.

Having the cutting-plane information at iteration k, let vk+1
low be the optimal value of the following linear

programming problem:

vk+1
low :=


min
u

v̌k(u)

s.t. f̌k(u) ≤ 0
〈∇C(ũj), u〉 ≥ 〈∇C(ũj), ũj〉, j ∈

{
i ≤ k : C(ũi) = p

}
u ∈ [0, 1]m, ui ≥ Fi(`i), i = 1, . . . ,m .

(5.4.2)

In view of Lemma 5.4.1 problem (5.4.2) is an outer-approximation of problem (5.1.4a). As a result, vk+1
low

is a lower bound for the optimal value of (5.1.4a): vk+1
low ≤ vmin for all k = 1, 2, Algorithm 5.1 given

below generates two sequences of iterates:
{
uk
}
and

{
ũk
}
both satisfying the last two constraints in

(5.4.2), where the last sequence satis�es also C(ũk) ≥ p for all k. Since ũk is a feasible point, v(ũk) is an
upper bound for the optimal value of problem (5.1.4a): vmin ≤ v(ũk) for all k = 1, 2, An optimality
measure for problem (5.1.4a) is, therefore, the gap

∆k+1 := min
j∈Ok

v(ũj)− vk+1
low . (5.4.3)

Indeed, if ∆k+1 ≤ η for some tolerance η > 0, we have that

η ≥ min
j∈Ok

v(ũj)− vk+1
low ≥ min

j∈Ok
v(ũj)− vmin ≥ 0. (5.4.4)

(If the index i is de�ned as i := arg minj∈Ok v(ũj), then ũi is η-optimal for (5.1.4a) since v(ũi) ≤ vmin+η.)
We now explain how our algorithm de�nes the two sequences of iterates

{
uk
}
and

{
ũk
}
. In order to

73

do that, we select a parameter κ ∈ (0, 1) and a stability center ûk feasible for problem (5.1.4a). The
sequence

{
uk
}
is generated by solving, at iteration k, the following problem:

min
u

∥∥u− ûk∥∥2

s.t. v̌k(u) ≤ vklow + κ∆k

f̌k(u) ≤ 0
〈∇C(ũj), u〉 ≥ 〈∇C(ũj), ũj〉, j ∈

{
i ≤ k : C(ũi) = p

}
u ∈ [0, 1]m, ui ≥ Fi(`i), i = 1, . . . ,m ,

(5.4.5)

We propose to set û0 := uin, kref := 1 and update the stability center according to the rule

ûk+1 ←
{
uk+1 if ∆k+1 ≤ (1− κ)∆kref (in this case set kref ← k + 1)
ûk if ∆k+1 > (1− κ)∆kref .

(5.4.6)

However, other rules for updating the stability center are possible. For instance, we can set ûk = uk for
all k or, simply, ûk = uin for all k. Let uin as in Lemma 5.4.1 be given, then the sequence of feasible
points

{
ũk
}
is obtained by de�ning

ũk = uin + λk(uk − uin) , (5.4.7)

where λk ∈ (0, 1] is the largest number such that C(ũk) ≥ p. Accordingly, ũk = uk whenever C(uk) ≥ p
(i.e., λk = 1), and C(ũk) = p if C(uk) < p. In this latter case, continuity of C ensures that ũk as in (5.4.7)
can be computed by employing a bisection procedure on the interval [0, 1].

5.4.2 A regularized supporting hyperplane algorithm

We now present our algorithm, which we will refer to as RSHM in the sequel.

Algorithm 5.1. A regularized supporting hyperplane algorithm

Step 0 (Initialization) Let uin be as in Lemma 5.4.1. Set O0 = F0 = ∅, ∆1 =∞, ũ1 = uin, k = 1 and choose
η > 0 and κ ∈ (0, 1).

Step 1 (Stopping Test) If ∆k ≤ η, stop.
Step 2 (Oracle v) Try to compute v(ũk) and skũ ∈ ∂v(ũk).

If problem (5.1.4b) is infeasible, set Ok ← Ok−1 and go to Step 3.
Otherwise, set Ok ← Ok−1 ∪ {k}, Fk ← Fk−1 and go to Step 4.

Step 3 (Oracle f) Compute f(ũk), skũ ∈ ∂f(ũk) and set Fk ← Fk−1 ∪ {k}.
Step 4 (Primal Step) Compute vk+1

low by solving the LP problem (5.4.2) and uk+1 by solving the master
problem (5.4.5).

Step 5 (Bisection) If C(uk+1) < p, compute ũk+1 as in (5.4.7) and ∇C(ũk+1). Otherwise, set ũk+1 = uk+1.

Step 6 (Loop) Compute ∆k+1 as in (5.4.3) and obtain ûk+1 as in (5.4.6) (or another suitable rule). Set
k ← k + 1 and return to Step 1.

The case in which either Ok or Fk is an empty set deserves comments: (i) if Ok = ∅, then (5.4.2) must be
interpreted as the problem of �nding a point uk+1 in the feasible set de�ned in (5.4.2). In this case, vk+1

low

should be de�ned as −∞; (ii) if Fk = ∅, then f̌k is meaningless, and it should be removed from (5.4.2)
and (5.4.5). Since at each iteration the algorithm adds more constraints in problem (5.4.2) (because
either Ok or Fk is enlarged), we conclude that the sequence {vklow}k is non-decreasing.

The original level method [121] was designed to solve optimization problems with convex objective and
constraint functions (concave functions if we are thinking of constraints of the type C(u) ≥ p). Each
iteration of the level method in [121] involves solving two optimization subproblems; �rst a linear program
to compute the level parameter vklow+κ∆k, and then a projection problem to de�ne a new iterate. This is
also the strategy adopted by Algorithm 5.1 that successively solves both subproblems (5.4.2) and (5.4.5)
at each iteration of the algorithm. However, solving (5.4.2) to de�ne a lower bound vk+1

low is optional. In
fact, we can let the lower bound �xed along some iterations until the algorithm identi�es that the master

74

problem (5.4.5) is infeasible. In this case, the lower bound must be increased: the most common rule is
to set vk+1

low = vklow + κ∆k if (5.4.5) is infeasible, and vk+1
low = vklow otherwise. This rule ensures that, for

any k > 0, vklow is a lower bound for the optimal value of (5.1.4a) as long as v0
low satis�es v0

low ≤ vmin;
see [9, Lemma 2].

5.4.3 Convergence analysis

In order to establish convergence we will need the following auxiliary result.

Lemma 5.4.4. ([11, Lemma 12]). Consider Algorithm 5.1 and assume that ∇C(·) is continuous on
[0, 1]m and 0 6= ∇C(u) for all u ∈ [0, 1]m such that C(u) = p. Assume that the algorithm generates an
in�nite sequence of iterates. Let ũ be a cluster point of the sequence

{
ũk
}
. Then, there exists an index

set K ⊆ N such that limk∈K u
k = ũ = limk∈K ũ

k.

Convergence of Algorithm 5.1 is given in the following theorem.

Theorem 5.4.5. ([11, Lemma 4.1]). Under the assumptions of Lemma 5.3.6, suppose in addition that
all subgradients of v generated by the oracle in Step 2 of Algorithm 5.1 are uniformly bounded, ∇C(·)
is continuous on [0, 1]m and 0 6= ∇C(u) for all u ∈ [0, 1]m such that C(u) = p. Moreover, suppose that
η = 0 and that the algorithm produces in�nitely many optimality cuts whose indices are gathered in the
index set O. Then, any cluster point ũ of the sequence

{
ũk
}
k∈O generated by Algorithm 5.1 is a solution

to problem (5.1.4a).

The assumption that ∇C(·) is continuous and di�ers from zero for all u ∈ [0, 1]m such ∇C(u) = p is
satis�ed, for instance, for all Archimedean copulæ; see Corollary 5.4.2.

If, after a certain iteration k̄, only feasibility cuts are generated, it can be shown that limk f(ũ
k) = 0.

Hence, any cluster point of ũ of {ũk} belongs to the domain of v.

We �nalize this section by mentioning that the given convergence analysis does not require any as-
sumption on the norm ‖·‖ in (5.4.5). If the objective function

∥∥u− ũk∥∥2
is replaced with

∥∥u− ũk∥∥
1

or
∥∥u− ũk∥∥∞ (i.e., `1 or `∞ norms), then the resulting master problem becomes a linear program-

ming problem. This is an interesting feature for dealing with large-scale optimization problems, whose
quadratic master solution can be expensive. The convergence speed may be reduced by this change
in stabilization. However, this may largely be compensated by a gain in resolution speed because the
master problem is less expensive [24, 71, 72].

5.5 Test problems and numerical experiments

We now focus on the numerical solution of problem (5.1.3). The task of choosing a suitable copula that
models the dependency among the random variables {ω1, . . . , ωm} is beyond the scope of this work and
will not be discussed here.

The Matlab sources and test-problem generator (as well as many copulæ) used in Section 5.5.1 below
are publicly available at the link www.oliveira.mat.br/solvers.

5.5.1 Approximation of a chance-constrained problem with random technol-

ogy matrix

In this subsection we consider the following special case of problem (5.1.3) where the mappings gi
in (5.1.3b) are given by

gi(x) =
ai − µT

i x√
xTΣix

, (5.5.1)

75

with given vectors µi ∈ Rn and symmetric positive de�nite matrices Σi ∈ Rn×n for all i = 1, . . . ,m.
These mappings satisfy some generalized concavity assumptions, as stated in the following lemma.

Lemma 5.5.1 ((see [39])). Let a > 0 be given, µ ∈ Rn and Σ be an n × n positive de�nite matrix.
De�ne the mapping g : D → R+ ∪ {∞} as:

g(x) =

{
a−µTx√
xTΣx

if x 6= 0

∞ else,
(5.5.2)

where D is the set D =
{
x ∈ Rn : µTx ≤ a

}
. This mapping is (−r)-concave on the set

{x ∈ D : g(x) > b(r)} , with b(r) :=
r + 1

r − 1
(λmin)

− 1
2 ‖µ‖ (5.5.3)

for all r ∈ (1, 3], where λmin > 0 is the smallest eigenvalue of the positive de�nite matrix Σ. Here we use
the convention 1

∞ = 0.

The above lemma is an improvement on [91].

Given gi in (5.5.1), we assume that each component ωi of the random vector ω is a standard Gaussian
random variable, i.e., ωi ∼ N (0, 1) for all i = 1, . . . ,m. Sklar's Theorem ensures that there exists a
suitable copula C such that the probability P[ω ≤ g(x)] can be written as

P[ω ≤ g(x)] = P[ωi ≤ gi(x), i = 1, ...,m] = C(Φ(g1(x)), . . . ,Φ(gm(x))) , (5.5.4)

where Φ (= Fi) is the standard Gaussian cumulative distribution function. For instance, if the random
variables {ω1, . . . , ωm} are mutually independent, then C above is the product (or independent) copula
C(u) = Πm

i=1ui. In the dependent case, other copulæ must be used instead.

Under these assumptions, problem (5.1.4b) de�ning function v(u) can be written as:

v(u) = min
x∈X

f(x) s.t. µT
i x+ Φ−1(ui)

√
xTΣix ≤ ai, i = 1, . . . ,m . (5.5.5)

Consequently, if f is linear or quadratic convex, then the above problem is a convex conic optimization
problem, and can be e�ciently solved by standard methods.

Remark 5.5.2. Consider the speci�c instance of problem (5.1.3) with constraint mappings (5.5.1) and
structure (5.5.4). Item e) in Theorem 5.3.1 requires that `i ≥ bi, i = 1, . . . ,m. Since bi = b(r) de�ned
in (5.5.3) is positive, it follows that when u ∈ [0, 1]m is feasible for (5.1.4a), then ui ≥ Fi(`i) > Fi(0) = 1

2 .

In this case Φ−1(ui) > 0 and the constraints in (5.5.5) reads as µT
i x − ai ≤ −Φ−1(ui)

√
xTΣix < 0 for

all x 6= 0. Moreover, by assuming that each component ai is strictly positive the nonlinear constraints in
(5.5.5) are also satis�ed for x = 0.

Motivation. The motivation for this speci�c form of the mappings gi and ωi comes from the following
special form of constraint mapping

P[ωT
i x ≤ ai, i = 1, ...,m] ≥ p, (5.5.6)

where each ωi ∼ N (µi,Σi) follows a multi-variate Gaussian distribution. For each i = 1, ...,m, the
following holds:

P[ωT
i x ≤ ai] = P

[
ωi ≤

ai − µT
i x√

xTΣix

]
= P[ωi ≤ gi(x)].

Let ω be the m × n matrix stacking the m rows following distribution ωi. It is readily observed that
η(x) := ωx ∈ Rm is also a Gaussian random vector with x dependent mean of which the ith component
equals µT

i x and also with x dependent Covariance matrix Θ(x). For any i, j = 1, ...,m, one can show that
Θij(x) = xTΣijx, where Σij is the covariance matrix between rows i and j respectively and Σii = Σi.

76

Now (5.5.6) is equivalent to P[η̃(x) ≤ g(x)] ≥ p, where g : Rn → Rm contains as i-th component
the mapping gi given in (5.5.1), and η̃(x) is a centered multivariate Gaussian random variable with
correlation matrix Θ̃(x) having components:

Θ̃ij(x) =
xTΣijx√

xTΣix
√
xTΣjx

.

Therefore, (5.5.4) considerably simpli�es the dependency structure in (5.5.6), already by removing the
dependency on x in it. Still, dependency can be introduced through the choice of an x-independent
Copula and we believe this to be worthwhile. It is clear that (5.5.4) �ts the assumptions of this work.
Moreover from the viewpoint of (5.5.6), de�ning g(0) =∞ is natural. Indeed, when a > 0, it is readily
seen in (5.5.6) that x = 0 is feasible for all p ∈ [0, 1]. By including x = 0 in the de�nition of g in this
manner, it also belongs to the level set (5.5.3) and to the feasible set in (5.5.5), again regardless of p.

5.5.1.1 The problem, solvers, and instances for numerical experiments

From now on we focus on problem (5.1.3) whose objective function f is linear and constraints gi,
i = 1, . . . ,m, are given in (5.5.1).

The problem data µi ∈ Rn, Σi ∈ Rn×n, ai ∈ R, i = 1, . . . ,m and f(x) = cTx, with c ∈ Rn were
generated randomly by using three di�erent seeds for the random number generator. Vector c de�ning
the linear function f was drawn from the sparse Gaussian distribution with mean equal to zero and
variance equal to 300, i.e., N (0, 300). The vectors µi, i = 1, . . . ,m, were de�ned by µi = 1

10
√
n
Vi, where

each coordinate of vector Vi ∈ Rn was randomly drawn from N (0, 1). Each matrix Σi was generated
by using the Matlab function gallery(`randcorr',n). Numbers ai were de�ned by the following rule,
with 1 the vector of ones in Rm: ai = µ>i 1 + Φ−1(0.55)

√
1>Σi 1 . In our implementation we make sure

that the randomly generated data yields ai ≥ δ, for i = 1, . . . ,m and δ = 10−5. The set X in (5.1.3b)
was de�ned by

X =

x ∈ Rn : 0 ≤ xj ≤ 10, j = 1, . . . , n, and
n∑
j=1

xj ≥ δ

 .

The reason for using δ = 10−5 in the two de�nitions above is to satisfy the assumption a > 0 in
Lemma 5.5.1 and to exclude zero from the feasible set of the problem. Indeed note that the mappings
(5.5.1) of this application may display degenerate numerical behaviour near zero. Finally, the bounds `i
in (5.1.3b) were de�ned by `i ≥ ti0(r̄i), i = 1, . . . ,m, where the function ti0(r) given in the Appendix of
[11] depends on bi(r) in (5.5.3) and r̄i is a(n approximated) solution to the unidimensional optimization
problem min ti0(r) s.t. r ∈ (1, 3]. This choice yields that the feasible set (5.1.3b) is convex for all
p ≥ p∗ := C(Φ(b1(r̄1)), . . . ,Φ(bm(r̄1)).

Di�erent instances of the problem have been obtained by varying m, n and p as follows:

n ∈ {20, 50, 100}, m ∈ {2, 5, 10, 15} and p ∈ {p∗, 90%, 97.5%} .

Furthermore, several Archimedean copulæ are examined: the Clayton, Gumbel, Independent, Joe, Frank
and Ali-Mikhail-Haq copulæ, with di�erent values for the parameter θ. In � 5.5.1.4 we employ the
Gaussian copula, a non Archimedean copula, for analyzing further the two considered formulations of
the problem.

5.5.1.2 Test problem structure

Two formulations are considered for the problem with data described above and function gi given
by (5.5.1):

77

� a monolithic formulation corresponding to problem (5.1.3), i.e.,
min
x∈Rn

c>x

s.t. gi(x) ≥ `i i = 1, . . . ,m
C(Φ(g1(x), . . . ,Φ(gm(x)) ≥ p∑n
j=1 xi ≥ δ, 0 ≤ xj ≤ 10 j = 1, . . . , n .

Since all the functions in the above problem are smooth we can solve this problem by a general purpose
solver for nonlinear optimization. We employed IPOPT [205] through the OPTI toolbox for Matlab
[46].

� The decomposition formulation (5.1.4) with value function v(u) given by (5.5.5). In this approach,
problem (5.1.4a) is solved by Algorithm 5.1 and by a supporting hyperplane algorithm based on
[204], but with some new features allowing to consider convex and extended real-valued objective
function (instead of linear as assumed in [204]). This new algorithm is denoted by the mnemonic
SHM (supporting hyperplane method). In what follows we refer to Algorithm 5.1 by RSHM (regularized
supporting hyperplane method).

The Slater points uin for solvers SHM and RSHM were de�ned as in Remark 5.4.3. For the monolithic
approach, the OPTI toolbox was setup with the following parameters:

optiset('solver','ipopt','display','iter','maxiter',5e3,'maxfeval',3e4,'maxtime',3.6e3,'tolrfun',5e-5).

Solvers SHM and RSHM also employed a limit CPU time of one hour. The maximum number of iterations
for these two solvers was set to 1000 and relative tolerance for the optimality gap as 5× 10−5 (the same
tolerance set for IPOPT).

5.5.1.3 General results

We start this section by analyzing the impact over the optimal value, CPU time and number of iterations
by changing the copula in 12 di�erent instances of the problem corresponding to n = 50, all four values
of m and all three considered values for p. Table 5.1 also reports the obtained threshold p∗. Since the
set {u ∈ [0, 1]m : ui ≥ Fi(`i)} in (5.1.4b) (with `i given at item e) of Theorem 5.3.1) is contained in
{u ∈ [0, 1]m : C(u) ≥ p∗}, the instances with p = p∗ are easier than those with p > p∗. Except for
these easy instances, solver RSHM uniformly outperformed SHM in the considered test-problems. When
compared to IPOPT, solver RSHM outperforms the former one in many instances with copulæ Frank(3)
and Ali-M-H(0.9). However RSHM is outperformed by IPOPT when copula Clayton(1) and m ∈ {10, 15}
are considered.

In Figure 5.2 we consider fourteen di�erent copulæ for presenting the solver's performance. The �gure
reports performance pro�les (we refer to [61] for more information) in terms of CPU time and number
of copula evaluations (oracle calls) for the three considered solvers. In this case, the higher is the curve
the faster is the method (or fewer oracle calls are required).

78

Table 5.1: Analysis of the three solvers on three di�erent Copulæ.

Data # Iterations CPU Time (s)
Copula n m p∗ (%) p (%) f∗ SHM RSHM IPOPT SHM RSHM IPOPT

Frank(3) 50 2 91.3 91.3 -563.9 2 6 27 0.1 0.2 1.2
Frank(3) 50 2 91.3 95.0 -487.3 14 11 66 0.3 0.3 2.6
Frank(3) 50 2 91.3 97.5 -423.1 16 9 38 0.4 0.3 1.8
Frank(3) 50 5 80.9 80.9 -456.2 2 7 32 0.3 0.9 2.1
Frank(3) 50 5 80.9 95.0 -341.6 83 38 234 14.6 7.2 13.4
Frank(3) 50 5 80.9 97.5 -305.2 110 46 523 17.0 8.3 29.8
Frank(3) 50 10 70.2 70.2 -558.6 2 3 33 1.1 1.2 3.4
Frank(3) 50 10 70.2 95.0 -404.1 312 112 35 247.2 82.1 3.6
Frank(3) 50 10 70.2 97.5 -365.9 190 96 338 119.6 70.9 31.1
Frank(3) 50 15 60.9 95.0 -659.7 2 2 33 1.4 1.9 4.7
Frank(3) 50 15 60.9 95.0 -448.4 586 205 127 485.7 148.8 16.3
Frank(3) 50 15 60.9 97.5 -410.4 426 200 5000 337.8 161.6 637.1

Clayton(1) 50 2 91.2 91.2 -563.9 2 6 40 0.1 0.2 1.8
Clayton(1) 50 2 91.2 95.0 -485.9 15 11 35 1.2 0.4 1.5
Clayton(1) 50 2 91.2 97.5 -422.6 13 10 36 0.4 0.4 1.6
Clayton(1) 50 5 79.6 79.6 -456.1 2 7 36 0.3 1.1 2.4
Clayton(1) 50 5 79.6 95.0 -340.4 82 40 47 16.4 8.0 4.3
Clayton(1) 50 5 79.6 97.5 -304.7 90 47 32 15.5 9.4 3.0
Clayton(1) 50 10 67.2 67.2 -558.6 2 3 31 0.8 1.4 3.4
Clayton(1) 50 10 67.2 95.0 -402.7 243 118 36 194.7 92.8 3.5
Clayton(1) 50 10 67.2 97.5 -365.0 225 110 31 146.5 76.6 3.2
Clayton(1) 50 15 56.5 56.5 -659.4 2 3 58 1.4 1.8 7.8
Clayton(1) 50 15 56.5 95.0 -446.9 584 193 36 487.0 156.2 6.3
Clayton(1) 50 15 56.5 97.5 -409.5 449 206 65 325.0 159.1 9.1

Ali-M-H(.9) 50 2 91.1 91.1 -563.9 2 6 47 0.1 0.2 1.9
Ali-M-H(.9) 50 2 91.1 95.0 -485.8 16 11 58 0.4 0.3 2.3
Ali-M-H(.9) 50 2 91.1 97.5 -422.6 13 10 87 0.3 0.3 3.5
Ali-M-H(.9) 50 5 79.5 79.5 -456.2 2 7 33 0.3 0.8 2.2
Ali-M-H(.9) 50 5 79.5 95.0 -340.3 83 37 2146 16.1 8.1 121.9
Ali-M-H(.9) 50 5 79.5 97.5 -304.7 94 40 5000 16.1 6.7 284.9
Ali-M-H(.9) 50 10 66.7 66.7 -558.6 2 3 30 0.5 1.5 3.2
Ali-M-H(.9) 50 10 66.7 95.0 -402.6 286 108 88 215.5 73.5 8.3
Ali-M-H(.9) 50 10 66.7 97.5 -365.4 222 119 5000 139.9 80.2 457.7
Ali-M-H(.9) 50 15 55.7 55.7 -446.8 2 3 36 1.4 1.7 5.0
Ali-M-H(.9) 50 15 55.7 95.0 -446.8 576 180 1985 421.0 138.7 249.3
Ali-M-H(.9) 50 15 55.7 97.5 -409.7 452 212 5000 291.7 164.0 635.0

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

τ

P
(τ

)

Perfamance profile: CPU time

SHM
RSHM
IPOPT

5 10 15 20 25 30 35 40 45 50 55 60
0

0.2

0.4

0.6

0.8

1

τ

P
(τ

)

Perfamance profile: oracle calls

SHM
RSHM
IPOPT

Figure 5.2: Performance pro�le over 1512 instances. CPU time and number of copula evaluations.

In a total, 1512 instances1 are considered for each solver. The top sub�gure in Figure 5.2 shows that
IPOPT was the fastest method in around 38% of all instances, followed by RSHM (32%). However, as

1Which correspond to 14 copulæ, 3 values for p ∈ {p∗, 95%, 97.5%}, 3 di�erent seeds for randomly generating
data, 3 values for dimension n ∈ {20, 50, 100} and 4 values for the number of constraints m ∈ {2, 5, 10, 15}.

79

shown in top and bottom sub�gures, solver RSHM is more robust that IPOPT in both CPU time and
number of copula evaluations: the line corresponding to RSHM approaches the value 1 faster than the
other lines. In the bottom sub�gure we can see that solver RSHM requires overall less copula evaluations.
This is an advantage of RSHM over IPOPT when dealing with copulæ that are di�cult to evaluate, such
as the Gaussian one analyzed below.

5.5.1.4 Gaussian copula

The Gaussian copula is de�ned as CGauss(u) = ΦΣ(Φ−1(u1)), . . . ,Φ−1(um)), where ΦΣ is the cumulative
distribution function of a multivariate normal distribution with zero mean and covariance matrix Σ and
Φ−1 the inverse of the one-dimensional (standard) Gaussian distribution function. Therefore, computing
CGauss(u) for a given u requires computing numerically a multidimensional integral, which is a di�cult
task even for moderate dimension m (say, m = 20 or more). One would need to resort to the use of
Genz' code (e.g., [75]). Since numerical integration is employed, exact values for C (and its gradient)
can not be expected.

In Table 5.2 we compare the solvers IPOPT and RSHM for 36 instances of the problem de�ned by the Gaus-
sian copula. The instance size is represented by n-m. Notice that n ranges in the set {10, 20, 30, 50} and
m in {2, 3, 5}. Again, three di�erent seeds were employed for the random number generator. Since each

Table 5.2: CPU time average over 3 instances. Values in seconds. Time limit is 3600 (s).

Solver/n-m 10-2 10-3 10-5 20-2 20-3 20-5 30-2 30-3 30-5 50-2 50-3 50-5

RSHM 0.19 0.40 63.25 0.20 0.51 249.68 0.13 0.51 204.45 0.27 0.72 133.51
IPOPT 1.75 4.43 3600∗ 2.55 5.97 3600∗ 5.02 8.00 3600∗ 6.37 15.24 3600∗

C oracle call is expensive and inexact, the solver IPOPT could not solve the instances with m = 5 within
one hour. We recall that m = 5 involves evaluating a 5 dimensional multi-variate Gaussian distribution
function and its derivatives (requiring evaluating m− 1 dimensional multivariate Gaussian distribution
functions (e.g., [8] and references therein)). Bi- and uni-variate Gaussian distribution functions can be
evaluated very e�ciently (see [75, Chapter 2]). Consequently the situation m = 5, is signi�cantly harder
than the situation m = 3. For the Gaussian copula the solver RSHM is around 90% faster than IPOPT,
since the latter requires more oracle calls. This is an expected fact, since cutting-plane methods are
known to be more robust when dealing with noisy functions.

5.5.2 Cascaded-reservoir management

We now investigate a joint-chance-constrained programming problem coming from cascaded reservoir
management. For benchmark purposes we consider a real-life con�guration of the French hydro valley
Isère, described in [7]. The optimization problem can be written as

min
x∈X

c>x s.t. P[ω ≤ g(x)] ≥ p , with g(x) =

(
−a−Ax
b+Ax

)
, (5.5.7)

X ⊂ Rn a bounded polyhedron and ω = (−ξ, ξ) ∈ Rn a random vector. Vectors a, b and matrix A,
having appropriate dimensions, are assumed to be �xed. The above problem arises since we wish to
make sure that volumes in the reservoirs remain within bounds with high enough probability p. The
volumes are impacted by random water in�ows ω and turbining strategy. Variable x (belonging to R566)
represents the operation planning of power units, and quantity −c>x represents the pro�t yielded by
decision x.

In this subsection we assume that each individual random variable ωi follows a certain Gaussian dis-
tribution. We are therefore in the setting of Corollary 5.3.2 and hence p∗ = 0. By replacing con-
straint P[ω ≤ g(x)] ≥ p by C(Φ1(g1(x)), ...,Φm(gm(x))) ≥ p the slave problem (5.1.4b) and feasibility

80

problem (5.3.4) become Linear Programming problems. Furthermore, problem (5.5.7) is a nonlinear
programming problem with nonlinear and nonconvex constraint, which is solved through IPOPT.

We consider two variants of the joint-constrained cascaded reservoir problem (5.5.7): one having m = 96
and another with m = 192 linear constraints. In each instance, the dimension of the vector x is 566.
Table 5.3 reports the number of iterations and CPU time required to solve 28 instances of the problem.
Once again, 14 di�erent Copulæ are considered and time limit for all the three solvers SHM, RSHM and
IPOPT was set to 1800 s.

As we can see, solver SHM failed to solve some instances within the maximum CPU time allowed. Solver
RSHM was overall faster than SHM. Moreover, solver IPOPT was outperformed by RSHM in most of the
instances. The bene�ts of regularization is evident from Table 5.3. For instance, the number of iterations
of RSHM is signi�cantly smaller than the number of iterations of solver SHM (see the families of Copulæ
Gumbel and Joe, for instance).

Table 5.3: Analysis of the three solvers on fourteen di�erent Copulæ. Parameters: n = 566, p = 80%
and CPU time limit of 1800 s. The symbol �-" means solver failure.

Data # Iterations CPU Time (s)
Copula m f∗ SHM RSHM IPOPT SHM RSHM IPOPT

Clayton(1) 96 -346881.1 201 92 144 22.4 12.7 42.0
Clayton(1) 192 -342927.8 368 195 153 88.7 46.5 48.5
Clayton(3) 96 -346983.3 218 104 182 20.2 9.1 51.6
Clayton(3) 192 -343105.8 375 193 586 67.2 34.9 183.1
Clayton(5) 96 -347083.9 235 118 196 22.7 10.7 54.8
Clayton(5) 192 -343288.3 415 212 516 86.8 42.5 159.9
Indep 96 -346830.3 179 105 190 15.5 9.0 51.9
Indep 192 -342836.3 332 224 163 54.0 46.1 46.4
Gumbel(3) 96 -347489.7 1171 32 418 603.4 2.3 118.0
Gumbel(3) 192 -344285.7 1306 60 818 1800* 7.0 258.8
Gumbel(5) 96 -347592.2 1501 22 323 1213.0 1.4 92.0
Gumbel(5) 192 -344580.2 1267 102 320 1800* 13.8 105.9
Joe(3) 96 -347465.0 1142 30 196 559.8 2.0 55.9
Joe(3) 192 -344228.0 1310 57 58 1800* 6.5 21.9
Joe(5) 96 -347578.0 1501 27 154 1255.7 1.7 44.1
Joe(5) 192 -344539.9 1285 96 242 1800* 12.3 72.8
Frank(-1) 96 -346808.2 189 104 197 16.3 8.8 55.3
Frank(-1) 192 -342802.3 349 211 110 57.5 37.7 34.0
Frank(3) 96 -346925.6 205 112 225 18.4 9.9 64.1
Frank(3) 192 -343006.6 413 182 - 78.4 30.0 -
Frank(5) 96 -347014.1 217 94 461 20.0 7.7 131.0
Frank(5) 192 -343163.3 391 206 50 70.8 38.0 17.9
Ali-M-H(-1) 96 -346780.7 198 82 92 17.2 6.0 26.2
Ali-M-H(-1) 192 -342759.4 331 241 - 50.8 39.9 -
Ali-M-H(0) 96 -346829.2 206 101 195 18.3 8.5 53.7
Ali-M-H(0) 192 -342836.6 327 164 - 51.6 25.0 -
Ali-M-H(.9) 96 -346874.8 208 114 198 18.7 10.1 54.7
Ali-M-H(.9) 192 -342909.1 325 285 - 50.9 69.6 -

In order to analyze the solver performances we considered 84 instances of the problem obtained by
fourteen copulæ, two variants of the problem, and three values of p ∈ {80%, 90%, 95%}. Figure 5.3
presents the performance pro�le of the solvers with respect to CPU time and number of copula evaluations
(oracle calls). In these numerical experiments, solver RSHM was not only the more robust solver but also
the fastest one in around 75% of the cases.

81

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

τ

P
(τ

)

Perfamance profile: CPU time

SHM
RSHM
IPOPT

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

τ

P
(τ

)

Perfamance profile: oracle calls

SHM
RSHM
IPOPT

Figure 5.3: Performance pro�le over 84 instances. CPU time and number of Copula evaluations.

82

Chapter 6

Probabilistic optimization via

approximate p-e�cient points and

bundle methods

This chapter concerns optimization methods for dealing with separable chance constraint of the form
P[ω ≤ g(x)] ≥ p. Denoting by V the set of p-e�cient points (generalizations of p-quatile) of P[ω ≤ g(x)],
the resulting chance-constrained problem can be written in a deterministic fashion

min
x∈X,v∈V

f(x) s.t. g(x) ≥ v

if V is known. However, the set of p-e�cient points is not known is advance and, moreover, each of its
elements is di�cult to compute. For this reason, e�cient optimization methods must come into play. In
this chapter, whose results are taken from

W. van Ackooij, V. Berge, W. de Oliveira and C. Sagastizábal.
Probabilistic optimization via approximate p-e�cient points and bundle methods
Computers & Operations Research, 2017, volume 77, pp. 177-193,

we investigate inexact bundle methods based on p-e�cient points to tackle this class of chance-constrained
optimization problems.

6.1 Introduction

Probabilistic constraints arise in many real-life problems, for example electricity network expansion,
mineral blending, chemical engineering [7, 138, 167, 168]. Typically, these constraints are used when
in an ordinary inequality system certain random parameters are identi�ed as critical for the decision
making process. We are interested in the so-called separable case, in which the random quantities appear
only on one side of the constraint set:

X(p) :=
{
x ∈ Rn : P[g(x) ≥ ω] ≥ p

}
, (6.1.1)

where g : Rn → Rm is a constraint mapping, x ∈ Rn the decision variable, ω ∈ Rm a random vector with
probability measure P, and p ∈ (0, 1] a probability level. Since the mapping x 7→ ψ(x) := P[g(x) ≥ ω]
is nonlinear, writing the constraint in the form ψ(x) ≥ p makes (6.1.1) appear as the feasible set of a
conventional nonlinear programming problem. However this writing neglects a hidden di�culty: in most

83

situations explicit values are not available. Furthermore, often calculations are inexact, as computing
the probability ψ(x) for a given point x typically involves some sort of numerical integration and or
(quasi) Monte Carlo methods. Another issue is that the feasible set (6.1.1) sometimes fails to be convex;
we refer to [3, 11, 90] for conditions ensuring convexity for su�ciently large probability levels. In order
to deal with convex feasible sets regardless of the probability value, throughout we suppose that g(·)
is concave and the ω-density has generalized concavity properties (e.g., the multivariate Gaussian and
Student densities [165]).

An overview of the theory and numerical treatment of probabilistic constraints can be found in [165, 166].
Regarding solution methods, the �rst approaches [167] were based on cutting planes. More recently,
sample average and scenario approximations, [127, 128] and [33, 34] respectively, were employed for
linear constraint mappings. The nonlinear programming viewpoint in [9, 10, 31] is likely more suitable
for uncertainty with a continuous distribution, as these methods tackle the constraint set (6.1.1) directly
by viewing the probability constraint as a nonlinear mapping. Except for [31], convexity of X(p) is
assumed and a gradient of the probabilistic constraint needs to be computed.

In this work we follow the lead of [54, 56] and consider solution methods based on the notion of p-e�cient
points, a quantile generalization introduced originally in [163]. The set of p-e�cient points is de�ned as
follows:

V :=
{
v ∈ Z : no w exists in Z such that w ≤ v, w 6= v

}
where Z := {v ∈ Rm : P[ω ≤ v] ≥ p}

is the level set of the probability distribution. For the case when V contains a �nite number of elements,
early works were concerned with a full enumeration [169]. Notwithstanding, identifying V can prove
di�cult, to the extent that in many situations, it is only a�ordable to compute one p-e�cient point per
iteration.

Methods in this family approximate iteratively the feasible set in (6.1.1) by generating points x for which
g(x) ≥ v for some p-e�cient point v ∈ V. From an optimization perspective, knowing the whole set V
does not really matter: only p-e�cient points making active the constraint near a solution are of interest.
In a manner similar to column generation in Linear Programming, the process is primal-dual: at the
kth iteration, there is a primal pair (xk, vk) ∈ X(p) × V and a dual vector uk related to the constraint
g(x) ≥ v. The p-e�cient methodology is suitable for both discrete and continuous random vectors, as
long as constraints are separable.

The well-known supporting hyperplane methods [134, 167] generate p-e�cient points when computing a
subgradient to de�ne a direction. The recent bundle approaches in [9, 10] work directly in the nonlinear
programming framework without generating p-e�cient points, but rather de�ning linearizations that
may support the set Z, for a level below p. By contrast, the approximate p-e�cient points used in this
work (see Section 6.3), belong to a set Z for a level above p. Another di�erence with the nonlinear
programming approach is that no gradient of the probability constraint needs to be computed with
the approach suggested here. Furthermore convergence to an optimal solution of the �direct� bundle
methods [9, 10] relies on convexity of the underlying set of feasible solutions. In contrast, in principle
the p-e�cient point methods do not necessarily require a convexity hypothesis and by moving to the
Lagrangian dual (as done in this work too), potential non-linearity of g is separated from dealing with the
multivariate distribution function of ω. In contrast in the non-linear programming based methods (e.g.,
[9, 10]) one would need to deal with g inside the multivariate distribution function directly. A gradient
could be computed through the use of a chain rule or result from a more general formula ([6, 200]).
Then a mechanism needs to be designed involving the precision with which the gradient is computed
and precision control of the overall algorithm along the lines of [10, Section 5] or [86]. An advantage of
the non-linear programming approach is that, in principle, it works for any coupling of the decision and
random vector, whereas p-e�cient point methods rely on the separability assumption.

In our understanding, the combination of regularization techniques with the iterative primal-dual gener-
ation of p-e�cient points is behind the excellent results reported in [56, 57], con�rmed in our numerical
experiments in Section 6.6 below. Our study reveals several interesting relations between those works
and bundle methods. Thanks to this connection we develop a general framework for approaches based

84

on p-e�cient points, using as unifying view the proximal bundle theory [149]. This recent bundle variant,
dealing with on-demand accuracy, was designed to use information from an oracle whose calculations
have varying precision, following the directives of the bundle solver. In the p-e�cient point setting, this
amounts to computing such points inexactly, with variable accuracy. This technique makes it possible
to solve the problem exactly by starting the algorithmic procedure with coarse estimations, increasing
exactness of the oracle calculations as the iterations progress. On-demand algorithms keep the conver-
gence properties of classical bundle methods and, as shown by our numerical experiments, can provide
very signi�cant gains in CPU time without losing accuracy in the solution.

Our approach, which can be applied to both discrete and continuous random variables, represents a
contribution in three fronts. First, by extending the theory in [149] to the primal-dual setting, we reveal
in Lem. 6.4.4 and Thm.6.4.5 the impact of inexactness in primal terms. Second, we design new on-
demand accuracy approaches, including PAL5 in Section 6.6, which performed the best in our numerical
experiments. Third, thanks to the unifying view, we show convergence for a generalization of both the
Regularized Dual Decomposition and the Progressive Augmented Lagrangian algorithm [56, 57]. The ex-
tension incorporates varying regularization/augmentation parameters and the so-called bundle selection
or compression mechanism. This additional �exibility proves fundamental for numerical experiments;
we refer to Sections 6.4 and 6.6 for details.

This work is organized as follows. Section 6.2 revises concepts and methods in probabilistic optimiza-
tion. For both discrete and continuous distributions, Section 6.3 discusses oracles that compute, in an
on-demand mode, approximate p-e�cient points. Section 6.4 describes the basics of on-demand-accuracy
bundle methods in the considered setting and gives primal and dual convergence results. The relation
with the Regularized Dual Decomposition [57] and the Progressive Augmented Lagrangian method [56]
is explained in Section 6.5. This section also contains the new algorithms introduced in this work.
Section 6.6 studies the performance of �fteen di�erent solvers on several instances of cash-matching, cas-
caded reservoir management, and probabilistic transportation problems. A thorough analysis, reporting
CPU times and quality of the solution both in terms of optimality and feasibility, gives a clear panorama
of the merits of the di�erent methods in the benchmark.

Our notation is standard. The inner product and induced norm are 〈·, ·〉 and ‖·‖. For a convex function
f , a point u ∈ Rm and η ≥ 0, the exact and approximate convex analysis subdi�erentials are denoted by
∂f(u) and ∂ηf(u). For a concave function ϕ we consider the corresponding objects of its negative, i.e.,
∂(−ϕ)(u) and ∂η(−ϕ)(u). The normal cone of the nonnegative orthant in Rm at u is NRm+ (u) = {p ∈
Rm : p ≤ 0 and 〈p, u〉 = 0}.

6.2 The probabilistic optimization problem

We recall background material relative to probabilistic constraints from [54, 55, 56].

6.2.1 Blanket conditions

We suppose the multivariate random variable ω ∈ Rm has an α-concave distribution, so that the following
relations, from [54, Thms. 4.42, 4.60, 4.63, and Lems.4.57 and 4.59], hold:

Z =
⋃{

v + Rm+ : v ∈ V
}
is convex, nonempty and closed, convV ⊂ Z, and V is bounded from below.

This assumption is convenient in so much as that it allows us to simplify the presentation on the impact
of the recovered solution in terms of primal optimality. Otherwise the assertions concerning optimality
of the primal found solution would simply need to be interpreted in the view of a speci�c convexi�ed
primal problem which can be made explicit with the tools developed in [122]. We also care to emphasize
the di�erence between the notion of α-concave distribution functions of continuously distributed random
variables and discrete random variables. Development of α-concavity theory for discrete distributions
has started with [58] and is much less developed that for continuous distributions dating back to the

85

pioneering works of Prékopa (e.g., [164]). In the former case results such as [54, Theorem 4.65] can be
employed to arrive at appropriate assertions concerning Z. Second we highlight that it is quite common
to rely on sampling to move from a continuous to a discrete distribution (e.g., [57, Examples 1 & 2]),
the relation of which with respect to the original distribution is also well studied (e.g., [128]).

Given a convex function f : Rn → R, a nonempty and simple convex compact set X ⊂ Rn is (for example
a polyhedron), and a concave mapping g : Rn → Rm, we suppose that our problem of interest

min
x∈X

f(x) s.t. P[g(x) ≥ ω] ≥ p , (6.2.1)

has a nonempty solution set and, hence, a �nite optimal value, fmin. In view of the relations above for
Z, the problem below, obtained by variable splitting, is convex:

min
(x,v)∈Rn×m

f(x) s.t. g(x) ≥ v , x ∈ X and v ∈ V . (6.2.2)

For this problem to be well-de�ned, nonemptiness of the feasible set is usually ensured by a Slater
condition. If boundedness of the multipliers in (6.2.2) is a concern, the stronger (Mangasarian-Fromowitz-
like) constraint quali�cation below can be used,

∃(xs, vs) ∈ X×Z : g(xs) > vs and, in X ×Z,
{

a�ne equality constraints are linearly independent
inequality constraints are satis�ed strictly by (xs, vs) .

(6.2.3)

For the problem on dual variables

max
u∈Rm+

ϕ(u) with ϕ(u) := h(u) + d(u), where

{
h(u) := min

x∈X
{f(x)− 〈u, g(x)〉}

d(u) := min
v∈V
〈u, v〉 , (6.2.4)

de�ning d as a minimum is possible (u ≥ 0 and V has a lower bound). Also, by the disjunctive expression
for Z,

d(u) = min
v∈V
〈u, v〉 = min

v∈convV
〈u, v〉 = min

v∈Z
〈u, v〉 for all u ∈ Rm+ , (6.2.5)

because the minimand is linear. As a result, ϕ in (6.2.4) coincides with the dual function of problem
(6.2.2). By weak duality using the point (xs, vs) from (6.2.3), the dual function is bounded above
(ϕ(u) ≤ fmin for all u ∈ Rm+), thus justifying the use of a maximum instead of a supremum in (6.2.4).
Furthermore, since there is no duality gap between (6.2.2) and (6.2.4), by [56, Cor. 1] both (6.2.1) and
(6.2.2) have (6.2.4) as dual problem and the respective optimal values coincide.

The more general setting in [56], allowing for unbounded sets X, requires additional conditions, such as
solvability of the h-problems in (6.2.4), which are automatic in our case, because X is bounded.

6.2.2 Primal and dual views

In (6.2.2), the di�cult set Z is not available explicitly. Like in a Dantzig-Wolfe approximation, solution
approaches adopting a primal view keep track of past information, v1 , v2 , . . . , vk, and consider the unit
simplex associated with the index set Jk = {1, . . . , k}:

∆|Jk| :=
{
α ∈ R|Jk|+ : with

∑
j

αj = 1
}
.

A new p-e�cient point vk+1 is generated by using the optimal multiplier of the inequality constraint in

min f(x) s.t. g(x) ≥ v , x ∈ X and v ∈ Vk :=
{∑
j∈Jk

αjv
j : α ∈ ∆|Jk|

}
. (6.2.6)

We refer to [55, 58] for details; see also [117] and [169].

86

Dual methods such as [56] relax the constraint g(x) ≥ v in (6.2.2) and maximize the dual function
h + d from (6.2.4). Computing the h-term amounts to solving a convex problem (X is a simple set),
the di�culty lies in the calculation of d(u) (involving the set V or its convex hull, by (6.2.5)). Even
for distributions with �nite support, a challenging mixed-integer linear programming (MILP) problem
needs to be solved; see [116, 129]. This con�rms the relevance of designing algorithms that can deal with
approximate p-e�cient points.

As shown in [56, Sec. 3], when both the h- and d-problems in (6.2.4), (6.2.5) are solved exactly at a
given point u = uj ,

sjh := −g(xj) satis�es − sjh ∈ ∂(−h)(uj), for xj ∈ X minimizing f(x)−
〈
uj , g(x)

〉
(6.2.7)

sjd := vj satis�es − sjd ∈ ∂(−d)(uj), for vj ∈ convV minimizing
〈
uj , v

〉
, (6.2.8)

sj := sjh + sjd satis�es − sj ∈ ∂(−ϕ)(uj) .

Recall that, without loss of generality, the minimizer vj in (6.2.8) can be taken in V, convV, or Z, by
(6.2.5).

By assuming that the support set of ω is �nite (and the random vector dimension is not too large), an
alternative procedure to e�ciently solve (6.2.1) can be obtained by using the combinatorial patterns in
[114, 115], explained in the sequel.

6.2.3 Combinatorial pattern: an alternative to p-e�cient-based approaches

Suppose the support set of ω is �nite. The main idea in [114, 115] is to pre-specify a set of cut-
points c1,j , ..., cnj ,j for each component j = 1, ...,m of the random vector ω. The �rst cut-point is
c1,j := F−1

j (p) for Fj the jth marginal distribution function of ωj . The other cut-points c`,j belong to
the set Zj := {ωkj : Fj(ω

k
j) ≥ p}, whose cardinality is nj . The random realizations ωi are binarized

and the jth component represented as (βi1,j , ..., β
i
nj ,j

), where for a given j = 1, ...,m and ` = 1, ..., nj ,
βi`,j = 1 if ωij ≥ c`,j and zero otherwise. For B =

∑m
j=1 nj , problem (6.2.1) can be written as

min
(x,r)∈X×{0,1}B

f(x)

s.t. gj(x) ≥
∑nj
`=1 c`,jr`,j j = 1, ...,m∑m

j=1

∑nj
`=1 β

i
`,j r`,j ≤ m− 1 ∀ i ∈ Ω̄−B∑nj

`=1 r`,j = 1, j = 1, ...,m,

(6.2.9)

where Ω̄−B contains all p-insu�cient realizations with β1j = 1 for j = 1, ...,m. The theory developed
in [114, 115] ensures that formulation (6.2.9) is an exact variant of (6.2.1) if, for j = 1, . . . ,m, the set
of cut-points c1,j , . . . , cnj ,j includes all the di�erent elements of Zj . This binarization process has been
extended to optimization problems with stochastic quadratic inequalities in [118].

An important advantage of the binarization process is that the set of binary vectors allows for a linear
description of the set of feasible realizations; e.g. (6.2.9). Strengths of this strategy are the following,
[118]: the approach can handle any type of dependency between random variables and any type (linear,
quadratic, etc.) of stochastic inequalities; the size of the reformulated problem (6.2.9), in particular
its number of binary variables, do not grow linearly with the number of scenarios used to represent
uncertainty, but with the number of cut points used in the binarization process. As a result, for the bi-
narization approach to be successful the number nj of cut-points should not be too large: problem (6.2.9)
has m +

∑m
j=1 nj variables, and can have as many as Πm

j=1nj constraints. Hence, the assumption that
(the low dimensional random vector) ω has �nite support becomes crucial for this approach.

Since we do not assume neither �nite support nor low-dimensional random vector ω, p-e�cient ap-
proaches become more appropriate under the hypothesis of separable chance constraints. We therefore
stick with p-e�cient-based strategies and refer interested readers to the outstanding theory in [114] and
the excellent results reported in [115] and [118].

87

6.3 Approximate p-e�cient points

Most of the dual approaches identify a new p-e�cient point by solving the d-problem (6.2.5) at the
current dual iterate, uj . Since this calculation involves knowing the set V, this is a computationally
heavy task. To alleviate the oracle calculations, we consider that the information is delivered with an
inaccuracy ηuj , as follows:

hju = f(xj)− 〈uj , g(xj)〉 and sjh = −g(xj) for xj ∈ X,
dju = 〈uj , vj〉 and sjd = vj for vj ∈ convV,
ϕuj = hju + dju and sj = sjh + sjd are such that,
ϕuj satis�es ϕuj ∈ [ϕ(uj), ϕ(uj) + ηuj] and −sj ∈ ∂ηuj (−ϕ)(uj), with ηuj ≥ 0 .

(6.3.1)
We present two variants for the inexact d-evaluation, obtained by generating elements in the level set Z,
(larger than V, but convex, recall Section 6.2.1). We refer to these elements as approximate p-e�cient
points.

6.3.1 Discrete distributions

Suppose the random vector ω ∈ Rm has �nitely many realizations ω1, ω2, . . . , ωN with associated prob-
abilities π1, π2, . . . , πN . As shown in [129], problem (6.2.5) amounts to the following MILP:

d(u) =


min

(v,z)∈Rm×N
〈u, v〉

s.t. ωi(1− zi) ≤ v − bzi, i = 1, . . . , N ,∑N
i=1 πizi ≤ 1− p ,

zi ∈ {0, 1}, i = 1, . . . , N ,

(6.3.2)

where b ∈ Rm has components bj := min1≤i≤N ω
i
j , j = 1, . . . ,m, and u ∈ Rm+ is given.

For any feasible pair (v̄, z̄) in (6.3.2), the v̄-component is an approximate p-e�cient point: problem (6.3.2)
gives the �best" one. For large N , the computational e�ort of solving (6.3.2) can be prohibitive, and
several authors have considered �cheaper" reformulations, starting with [129]. In [116], the N scenarios
are preprocessed to reduce the number of random realizations, while [154] presents an alternative based
on certain quantization process.

We combine these approaches with a fast heuristic, based on a reformulation with only N 0-1 variables,
instead of the m×N mixed-integer variables in problem (6.3.2). Speci�cally, for a feasible pair (v, z) ∈
Rm × {0, 1}N in (6.3.2),

N∑
i∈I0(z)

πi ≥ p and ωi ≤ v for all i ∈ I0(z) := {1 ≤ l ≤ N : zl = 0} .

As a result, problem (6.3.2) is equivalent to solving the combinatorial problem

d(u) = min
z ∈{0,1}N

du(z) s.t.
N∑
i=1

πizi ≤ 1− p , with du(z) := min
v∈Rm

〈u, v〉 s.t. ωi ≤ v for all i ∈ I0(z) .

(6.3.3)
Even though the function du is neither convex nor continuous on z ∈ {0, 1}N , its computation is ex-
tremely easy, as the minimum in (6.3.3) is attained at the point

ṽ ∈ Rm such that ṽj := max
i∈I0(z)

ωij for all j = 1, . . . ,m , with optimal value du(z) =

m∑
j=1

uj

[
max
i∈I0(z)

ωij

]
.

(6.3.4)

In order to tackle (6.3.4) numerically, we employ two heuristics given below.

88

Heuristic h1 (Incremental Selection. Input: u ∈ Rm+ , p > 0, as well as ωi and πi for all i = 1, . . . , N)

Step 1. Take z = 0 ∈ RN and J+ = {j : uj > 0}.

Step 2. De�ne ṽ as in (6.3.4) and A = {i : zi = 0} ∩ {i : ωij = ṽj for some j ∈ J+} ∩ {1, . . . , N}.

Step 3. For all i ∈ A, de�ne new trial points z̃i = z with zii = 1 (z̃i di�ers from z only by its ith

component).

Step 4. If all trial points z̃i are infeasible for (6.3.3), stop. Return ṽ and du(z) = 〈u, ṽ〉.

Step 5. Evaluate du from (6.3.4) at all new trial points z̃i feasible for (6.3.3). Set j ∈ argmini∈A du(z̃i),
z = zj and go back to Step 2.

Heuristic h2 (On-Demand Accuracy, input as in Heuristic h1)

Procedure: Stop the MILP solver for (6.3.2) as soon as it �nds a feasible point.

As each cycle between Steps 2 and 5 switches a single component of z (zi = 0 becomes zi = 1), Heuristic
h1 terminates after �nitely many cycles. As for Heuristic h2, since the objective function in (6.3.2) is
linear, any feasible point realizes the η-subgradient inequality in (6.3.1).

Example 6.3.1. In order to illustrate Heuristic h1 consider the following bi-dimensional example with
p = 0.70 and u = (1, 1.2)> in (6.3.2), and ten equiprobable scenarios given in Table 6.1. To solve (6.3.3)

i 1 2 3 4 5 6 7 8 9 10
ωi1 -1 1 1 4 5 4 6 4 5 2
ωi2 3 9 4 9 10 7 8 4 3 0
πi 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Table 6.1: Ten scenarios ωi ∈ R2

we properly select, out of the ten scenarios, three indices i1, i2, i3 so that zi1 = zi2 = zi3 = 1 and the
other components are all null. Indeed, by (6.3.4), if zi = 0 for all i then ṽ = (6, 10)> as shown by the
dashed lines in Figure 6.1. Lower values for ṽj, j = 1, 2 are better to minimize 〈u, ṽ〉 = ṽ1 + 1.2 ṽ2 for
u ≥ 0. We should therefore discard three scenarios yielding the minimum value of ṽ1 + 1.2 ṽ2. Out of the
120 possible combinations, h1 checks only those preventing ṽ1 and ṽ2 from being small. For instance,
scenario ω5 yields ṽ2 = 10 and scenario ω7 implies ṽ1 = 6, as shown in Figure 6.1. This results in
A = {5, 7} at the �rst iteration of Heuristic h1. Notice that if ω5 is discarded, setting z5 = 1 and zi = 0,

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

Figure 6.1: Ten scenarios: zi = 0, i = 1, . . . 10 and du(z) = 18

for all i 6= 5 gives ṽ2 = 9, so du(z) = 〈u, ṽ〉 = 16.8. On the other hand, if ω7 is discarded, ṽ1 = 5

89

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

(a) z5 = 1, zi = 0, i 6= 5 and

du(z) = 16.8

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

(b) z7 = 1, zi = 0, i 6= 5 and

du(z) = 17

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

(c) z4,5 = 1, zi = 0, i 6= 4, 5 and

du(z) = 16.8

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

(d) z5,7 = 1, zi = 0, i 6= 5, 7 and

du(z) = 15.8

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

(e) z4,5,7 = 1, zi = 0, i 6= 4, 5, 7 and

du(z) = 15.8

−1 0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

9

10

11

ξ1

ξ2

ξ3

ξ4

ξ5

ξ6

ξ7

ξ8

ξ9

ξ10

(f) z5,7,9 = 1, zi = 0, i 6= 5, 7, 9

and du(z) = 14.8

Figure 6.2: Steps of heuristic h1 in the case of Example 6.3.1

and therefore du(z) = 17. This procedure is illustrated in Figures 6.2(a) and (b). As du(z) is lower
when scenario ω5 is discarded, Heuristic h1 removes ω5 from the set of scenarios (�xing z5 = 1) and
continues the procedure. Now scenarios ω2 and ω4 (resp. ω7) prevent v2 (resp. ṽ1) from decreasing; see
Figures 6.2(c) and (d). So A = {2, 4, 7} at the second iteration of Heuristic h1. Discarding scenario
ω7 reduces ṽ1 to 5, and 〈u, ṽ〉 = 15.8. To reduce ṽ2 it su�ces to check either ω2 or ω4 (we just checked
ω4); see Figure 6.2 (c). Without scenarios ω5 and ω7, v2 (resp. ṽ1) cannot decrease because of ω2 and
ω4 (resp. ω9); see Figures 6.2(e) and (f): at the third iteration, A = {2, 4, 9}. Finally, by checking ω4

and ω9 we conclude that 〈u, ṽ〉 is lower when scenario ω9 is discarded: ṽ = (4, 9)> is an approximate
p-e�cient point for the set of scenarios in Table 6.1; see Figure 6.2(f). Heuristic h1 is exact for this
example: ṽ = (4, 9)> is indeed a p-e�cient point.

For the example above, h1 checks only 6 combinations, out of the 120 possibilities. If δ := int(N(1−p)),
the largest integer smaller than N (1 − p), and u ∈ Rm has m̄ nonzero components, then h1 checks at
most δ m̄ scenario combinations (in the example δ = 3 and m̄ = 2). So when p is large and δ = 1, h1
�nds the exact solution, because all the combinations decreasing the components of ṽ will be checked.
As stated, h1 performs in a forward manner, by successively taking a zero component of vector z and
setting it to one. A backward strategy for h1 would initialize z ≡ 1 ∈ RN , iteratively setting to zero
some components, until

∑N
i=1 πizi ≤ 1− p. This backward strategy is appropriate when p < 0.5, while

h1 is more suitable when p > 0.5.

The idea of solving (6.3.2) inexactly actually lies in obtaining an estimate of d quickly in order to jauge
if the current dual vector u is of su�cient interest. If such is the case, a more accurate computation of
(6.3.2) can be triggered, taking advantage of �hot-starting�, if possible. When the current dual vector is
not su�ciently interesting, evaluating d more accurately is useless. These assertions will be made precise
in Section 6.4 below. Before we exemplify the combinatorial pattern approach of [114] (and commented
in (6.2.3)) by using our toy problem.

Example 6.3.2. For the toy problem in Example 6.3.1 (with x = v and c(x) = 〈u, v〉), cut-points are
the elements of the sets Z1 = {4, 5, 6} and Z2 = {8, 9, 10}. The Cartesian product of these two sets
generates six new scenarios: ω11 = (4, 8)>, ω12 = (4, 10)>, ω13 = (5, 8)>, ω14 = (5, 9)>, ω15 = (6, 9)>

and ω16 = (6, 10)>. Among these new scenarios, only ω11 and ω13 do not satisfy P[ω ≤ ωk] ≥ p, and
therefore the index set Ω̄−B is just {11, 13}. The constraints βi`,jr`,j ≤ m − 1 for all i ∈ Ω̄−B in (6.2.9)
means that if r1,1 = 4 or r2,1 = 5, then r1,2 cannot take the value 8 (a solution v̄ of (6.2.9) must strictly
dominate both scenarios ω11 and ω13). In fact, the optimal value of (6.2.9) is reached when v̄1 = 4, the

90

minimum element in Z1, and v̄2 = 9, the smallest element in Z2 allowed to combine with v̄1 = 4.

6.3.2 Continuous distributions

When the random variable has an in�nite support, approximate p-e�cient points can be obtained by
combining sampling and restoration. We provide new theoretical insights on the link between the sample
size N and feasibility for the continuous distribution, along the lines of [128, 181].

6.3.2.1 Sampling

Consider (6.3.2) for a given sample with N realizations ω1, ..., ωN , and let ṽ be a feasible point, computed
for instance using h1. In general, ṽ is unfeasible for the continuous distribution, i.e., P[ω ≤ ṽ] < p, so
ṽ is not an p-e�cient point for the continuous distribution. To ensure that ṽ ∈ Z, the restoration step
explained below can be used.

6.3.2.2 Restoration

Computing a Slater point for (6.3.2) is easy, because limv→∞ P[ω ≤ v] = 1 and, hence, taking su�ciently
large components for vs ensures P[ω ≤ vs] > p with the continuous distribution. Restoration is achieved
by computing (the smallest) λ ∈ (0, 1) such that P[ω ≤ v(λ)] ≥ p, where v(λ) = λṽ + (1 − λ)vs. In
general this procedure requires a few interpolation steps only, depending on the required accuracy for
feasiblity.

6.3.2.3 Linking the sample size to approximate p-e�ciency

We �rst state a technical result relating feasibility for the continuous distribution with feasibility for
problem (6.3.2). We just mention here that, di�erently from [128], our proof uses simultaneously Bern-
stein's and Hoe�ding's bounds.

Lemma 6.3.3. ([4, Lemma 1].) Let G : Rn × Rm → Rk be a mapping, ω ∈ Rm a multivariate
random variable and consider the probabilistic constraint ψ(x) := P[G(x, ω) ≤ 0] ≥ p, with feasible set
X(p) := {x ∈ Rn : ψ(x) ≥ p}. For N ≥ 1, let ω1, ..., ωN be an i.i.d. sample of ω with approximate

feasible set MN
q :=

{
x ∈ Rn : 1

N

∑N
i=1 1IG(x,ωi)≤0 ≥ q

}
, where 1 > q > p. For any x /∈ X(p), the

following estimate holds true:

P[x ∈MN
q] ≤ exp

(
−N (q − p)2 max

{
2 ,

1

2ψ(x)(1 − ψ(x)) + 2
3 (q − p)

})
.

The lemma can be combined with a covering argument to determine the con�dence level for a point
that is feasible for problem (6.3.2) to be also feasible for the continuous probabilistic constraint. To
do so, we de�ne a grid which roughly covers the zone of interest. Here the advantage of being able to
switch between Hoe�ding's and Bernstein's bounds shows its full potential (the weaker form, using only
Hoe�ding's bound, is [128, Thm. 5]). Since many points in the grid will have a relatively low probability
level, often the feasible region X(p) has a very gully-shaped look, with �many� x having small ψ(x) and
the mapping ψ(x) rapidly increases over a small range [134]. The advantage of using Bernstein's bound

over Hoe�ding's bound arises when ψ(x) ≤ 1
2−
√

1
4 + (1

3 (q − p)− 1
4) or ψ(x) ≥ 1

2−
√

1
4 + (1

3 (q − p)− 1
4).

Therefore if many grid-points have a low probability level, a signi�cant improvement could be obtained;
the results in Figure 6.3 con�rm this expectation.

Accordingly, in addition to the assumptions of Lemma 6.3.3, suppose the set X ⊆ Rn is compact. For
η > 0, a collection of points G := {xi}Ki=1 ⊆ X is called a g-dominating η-lattice if and only if for any
x ∈ X there exists xi ∈ G with ‖x− xi‖ ≤ η and G(x, ω) ≤ 0 implies G(xi, ω) ≤ 0 almost surely.

91

The notion of a g-dominating η-lattice is very similar to the requirements of precedence in [175]. For
the separable case (G(x, ω) = g(x) − ω), the construction in [128, Theorem 9] shows how such a g-
dominating η-lattice can be set up. To this end, let l be the lower bound for V in Section 6.2.1.
By compactness of X there exists U ∈ Rk such that g(x) ≤ U for all x ∈ X. We may therefore
restrict our attention to the set {x ∈ X : l ≤ g(x) ≤ U} without loss of generality. Now de�ne the

set of points Yj =
{
lj + i

(Uj−lj)
P , i = 1, ..., P

}
for each j = 1, ..., k and G =

∏k
j=1 Yj . Then for any

y ∈ [l, U] we can �nd y′ ∈ G such that y ≤ y′ and ‖y − y′‖ ≤ η. Indeed de�ne the jth component
of y′ as y′j = minw∈Yj :w≥yj . By construction y′ ≥ y and

∣∣y′j − yj∣∣ = y′j − yj ≤
Uj−lj
P , which entails

‖y′ − y‖∞ ≤ max1≤j≤k
Uj−lj
P . By equivalence of norms in Rk, it is immediate that one can select P in

such a way as to make the right-hand size smaller than any desired η > 0.

We now link the sample size N in problem (6.3.2) with feasibility of the resulting solutions for the
probabilistic constraint with continuous distribution:

Theorem 6.3.4. ([4, Theorem 1].) With the assumptions and notation in Lemma 6.3.3, suppose that
the set X ⊆ Rn is compact and ψ is Lipschitz continuous with constant L (w.r.t. the norm ‖·‖). Let

G := {xi}Ki=1 be a g-dominating η-lattice, for η > 0 such that Lη ∈ (0, q − p). For the approximate
feasible set MN

q given in Lemma 6.3.3, we have that

P[MN
q ⊆ X(p)] ≥ 1−

K∑
j=1

exp

(
−N (q − p − Lη)2 max

{
2 ,

1

2ψ(xj)(1 − ψ(xj)) + 2
3 (q − p − Lη)

})
1Ixj /∈M(p+Lη) .

Example 6.3.5. A graphical illustration of Theorem 6.3.4 can be obtained by taking a set {xj ∈ G :

ψ(xj) ≤ 0.1} containing K1 ≤ K points. Then P[MN
q ⊆ X(p)] ≥ 1−K1 exp

(
− N (q−p−Lη)2

18
100 + 2

3 (q−p−Lη)

)
− (K −

K1) exp
(
−2N (q − p − Lη)2

)
. Note that when taking in the set ψ(xj) ≤ 0.01 the constant 18

100 above is
to be replaced by 0.0198. For the cash-matching problem [87], we have K1 ≈ 0.98K and, for a given
con�dence level 1 − δ and using concrete data p = 0.8, q = 0.802, η = 0.001, L = 1, we plotted the
dependency of δ on N in Figure 6.3. The advantage of using Bernstein's over Hoe�ding's bound can be
noticed in the �gure, which shows that the change roughly brings a gain of one order of magnitude on N .
Further improvements can be achieved when for 0.98K points in the grid the probability is ψ(x) < 0.01,
as shown by comparing the two Bernstein's plots in Figure 6.3.

4 5 6 7 8 9
−50

−40

−30

−20

−10

0

10

Power of N

Lo
g

of
 c

on
fid

en
ce

 le
ve

l

Hoeffding
Bernstein ψ(x)≤ 0.1
Bernstein ψ(x)≤ 0.01

Figure 6.3: The size of N versus precision for the cash matching problem, with a logarithmic scale.

Recall that our approach is based on the iterative primal-dual generation of p-e�cient points. Having
addressed the primal concerns of how to e�ciently approximate d(u) in (6.2.4), we now turn our attention
to the e�cient generation of dual vectors u, by means of a bundle methodology.

92

6.4 Computing dual vectors: a bundle method detour

The dual problem (6.2.4) has a concave objective function ϕ which is nonsmooth at those points uj

having more than one xj or vj solving (6.2.7) or (6.2.8), respectively. Recall that in (6.2.5) the set V
complicates the function calculation; otherwise, if ϕ was easy to compute, a proximal algorithm [137,
171] could be employed. At the kth-iteration and having a proximal stepsize tk > 0, this method de�nes
iterates as follows:

uk+1 := arg max
u∈Rm+

{
ϕ(u)− 1

2tk

∥∥u− uk∥∥2
}
.

In our case, one iterate is as hard to compute as solving problem (6.2.4); the bundle approach presented
below addresses this issue, paramount for computational e�ciency.

6.4.1 On the importance of models

Bundle methods [29, Part II] replace the di�cult function ϕ by a simplermodel Mk, to be improved along
iterations. With the exact function, the next iterate uk+1 always provides ascent, but now (depending
on the model quality), there is no guarantee that ϕ(uk+1) will be larger than ϕ(uk). Bundle methods
separate iterates providing su�cient ascent into a special center subsequence {ûk}. The limit points of
this subsequence, also called sequence of serious steps, solve (6.2.4). A bundle algorithm of the proximal
type de�nes iterates as below:

uk+1 = arg max
u∈Rm+

{
Mk(u)− 1

2tk

∥∥u− ûk∥∥2
}
. (6.4.1)

An example of the rule deciding when there is a serious step and the iterate becomes the new center
ûk+1 can be found in (6.4.13). We just recall here the optimality conditions characterizing uk+1, the
unique solution to the concave maximization problem (6.4.1)

uk+1 = ûk + tkŝ
k with ŝk := pk1 − pk2 for

{
−pk1 ∈ ∂(−Mk)(uk+1)

pk2 ∈ NRm+ (uk+1) .
(6.4.2)

The computational work involved in solving (6.4.1) depends on the speci�c model Mk. The general
bundle theory [149] is very �exible in this sense, below we provide three possible choices.

Example 6.4.1 (Aggregate cutting-plane model: Mk = ϕ̌k). Perhaps the most natural choice is to
replace the concave function ϕ by an outer approximation de�ned by linearizations, or cutting planes.
This is the function

ϕ̌k(u) := min
j∈Jk

Lj(u) where Lj(u) := f(xj) +
〈
u, vj − g(xj)

〉 for xj ∈ X as in (6.2.7)
and vj ∈ convV as in (6.2.8).

(6.4.3)
The index-set Jk gathers past linearization indices until iteration k; for instance all of them: Jk =
{1, . . . , k} (in Section 6.5 more economical sets Jk, collecting less linearizations, are considered).

Taking the model Mk = ϕ̌k gives in (6.4.1) a convex quadratic programming problem (QP), easy to
solve. Because the model is a piecewise a�ne convex function,

pk1 =
∑
j∈Jk

αk+1
j (vj − g(xj)) with αk+1 ∈ ∆|Jk| such that Mk(uk+1) =

∑
j∈Jk

αk+1
j f(xj) +

〈
pk1 , u

k+1
〉
.

(6.4.4)
In the bundle set Jk, strongly active indices correspond to active linearizations with positive weight:

j ∈ Jk such that αk+1
j > 0 and Mk(uk+1) = Lj(uk+1) . (6.4.5)

For asymptotic analysis reasons, we assume that the number of strongly active indices is uniformly
bounded in k. This natural property is ensured for instance by most active-set QP solvers, whose linearly

93

independent bases involve at most m+ 1 Carathéodory-like positive simplicial multipliers, regardless of
the cardinality of Jk.

The aggregate cutting-plane model is used in the Regularized Dual Method [57, Sec. 4], taking a constant
stepsize tk = t (coresponding to a �xed regularization parameter) and a full bundle of information
Jk = {1, 2, . . . , k}. �

The following model takes advantage of the sum-structure of the function ϕ.

Example 6.4.2 (Disaggregate cutting-plane model: Mk = ȟk+ďk). Each term has its own linearization

Ljh(u) := f(xj) +
〈
−g(xj), u

〉
and Ljd(u) := 〈vj , u〉 .

The disaggregate model is the sum of the individual cutting-plane models, using separate index sets, Jk
and J̃k:

ȟk(u) + ďk(u) := min
j∈Jk

Ljh(u) + min
j∈J̃k

Ljd(u) .

Taking the disaggregate model gives again a convex QP subproblem (6.4.1), of larger size than the
aggregate one, to account separately for the two bundles of information. In particular, the subgradient
of this model at uk+1 is

pk1 =
∑
j∈Jk α

k+1
j vj −

∑
j∈J̃k α̃

k+1
j g(xj) with

αk+1 ∈ ∆|Jk|

α̃k+1 ∈ ∆|J̃k|
such that Mk(uk+1) =

∑
j∈Jk α

k+1
j f(xj) +

〈
pk1 , u

k+1
〉
,

(6.4.6)
and, hence, in this model there are strongly active indices (6.4.5) for each separate bundle. �

The third model takes the exact function h.

Example 6.4.3 (Partially exact model: Mk = h + ďk). Only the di�cult function d is modeled by
cutting planes:

h(u) + ďk(u) := h(u) + min
j∈J̃k

Ljd(u) = min
x∈X

{
f(x)− 〈g(x), u〉

}
+ min
j∈J̃k
〈vj , u〉 .

The subgradient for this model is

pk1 =
∑
j∈J̃k

α̃k+1
j vj − g(xk+1) with

h(uk+1) = f(xk+1) +
〈
uk+1, g(xk+1)

〉
α̃k+1 ∈ ∆|J̃k|

(6.4.7)

and such that Mk(uk+1) = f(xk+1) +
〈
pk1 , u

k+1
〉
. Naturally, if neither f nor g are linear or quadratic

functions, the model Mk = h+ ďk no longer yields a QP and (6.4.1) becomes a general convex optimiza-
tion problem. �

Regarding the quality of the various models above, from their de�nition it is straightforward that for all
u ∈ Rm+

ϕ̌k(u) ≥ ȟk(u) + ďk(u) ≥ h(u) + ďk(u) ≥ ϕ(u) , (6.4.8)

i.e., the partially exact model is better than the disaggregate model, in turn better than the aggregate
one. On the other hand, subproblem (6.4.1) becomes easier for the choice Mk = ϕ̌k, and more di�cult
for Mk = h + ďk. It will be shown in Section 6.5 that (6.4.1) with Mk = h + ďk corresponds to the
Progressive Augmented Lagrangian method [56], which relaxes the constraint g(x) ≥ v in (6.2.6); see
Example 6.5.3 for details.

94

6.4.2 The case of exact serious evaluations

As in [149], we suppose that the inaccurate evaluations in (6.3.1) have uniformly bounded errors:

for all uj ∈ Rm+ the inaccuracy ηuj in (6.3.1) satis�es ηuj ≤ η for some η ≥ 0. (6.4.9)

This does not require to know explicitly the oracle error bound η, its mere existence su�ces (the bound
is not used by the algorithm). By evaluating at u = uj the ηuj -subgradient inequality in the last line of
(6.3.1) we see that

ϕuj ∈ [ϕ(uj), ϕ(uj) + ηuj] approximates the exact value from above . (6.4.10)

We consider here only two situations. Either the oracle always delivers exact information (ηuj ≡ 0), as
in Examples 6.4.1 and 6.4.3; or the oracle delivers exact information only when there is a serious step,
at points that become a center (ηuj > 0, except for ηûk ≡ 0), as in Example 6.5.2 below, derived from
Example 6.4.2. As a result, throughout this subsection the oracle error is null at serious steps: ηûk ≡ 0
(cf. (6.4.13)). The more general case will be the subject of Section 6.4.3, noting that for all the oracles
and models (including those in Section 6.4.3) the model functions satisfy

ϕ(u) ≤Mk(u) for all u ∈ Rm+ . (6.4.11)

This property will be referred to as having an upper model (in the parlance of [147], minimizing the
convex function −ϕ, the model is of lower type). Similarly, we shall say Lj is an upper linearization
when

Lj(·) is an a�ne function such that ϕ(u) ≤ Lj(u) for all u ∈ Rm+ . (6.4.12)

The solution of (6.4.1) with a model Mk satisfying (6.4.11) gives uk+1. Given a parameter κ ∈ (0, 1), a
serious step is declared and ûk+1 := uk+1, when

ϕuk+1 ≥ ϕûk + κ vk for vk := Mk(uk+1)− ϕûk , where ϕûk = ϕ(ûk) because ηûk = 0. (6.4.13)

Otherwise, the iteration is declared null, keeping ûk+1 := ûk. The subgradient inequality for pk1 in

(6.4.2), combined with the de�nitions of ŝk and pk2 , ensures that M
k(uk+1) ≥Mk(ûk) + tk

∥∥ŝk∥∥2
. Then,

(6.4.12) implies that (6.4.13) is an ascent test, checking increase in the function values:

vk ≥Mk(ûk) + tk
∥∥ŝk∥∥2 − φûk ≥ tk|ŝk|2 − ηûk = tk

∥∥ŝk∥∥2 ≥ 0 if ηûk = ϕûk − ϕ(ûk) = 0. (6.4.14)

For future reference, note that the relations in (6.4.13) and (6.4.14) hold because the evaluation error is
null at ûk.
The aggregate linearization

Ak(u) := Mk(uk+1) + 〈pk1 , u− uk+1〉 (6.4.15)

available after solving (6.4.1), is of the upper type (due to the de�nitions in (6.4.2)):

ϕ(u) ≤ Ak(u) for all u ∈ Rm+ . (6.4.16)

The aggregate linearization is the highest outer approximation of ϕ that can be used without losing
information, Ak condenses all the past information generated by the method and is the key behind the
mechanism called bundle compression described in Example 6.5.1 below; see also [29, Ch. 10.3.2].

By combining the rightmost identities in (6.4.4)-(6.4.7) with (6.4.15) written for u = 0, we see that

Ak(0) =


∑
j∈Jk

αk+1
j c(xj) with the aggregate and disaggregate models (Examples 6.4.1 and 6.4.2)

c(xk+1) with the partially exact model (Example 6.4.3).
(6.4.17)

95

These relations are fundamental to show primal convergence. For dual convergence, two important
objects, computable after solving (6.4.1), are the aggregate gap and the Fenchel measure, de�ned respec-
tively by

êk := vk − tk
∥∥ŝk∥∥2

and φk := êk − 〈ŝk, ûk〉 . (6.4.18)

As in (6.4.14), having upper models with exact serious evaluations implies that the gap is always non-
negative:

êk ≥ −ηûk , if ηûk = 0. (6.4.19)

We now state some important primal-dual relations highlighting the role of these objects regarding
convergence.

Lemma 6.4.4 (Primal and dual optimality certi�cates). ([4, Lemma 2].) Suppose the oracle evaluations
and the model satisfy, respectively, (6.4.10) and (6.4.11). Associated with the model in (6.4.1) consider
the primal pair

(x̂k+1, v̂k+1) :=


∑
j∈Jk α

k+1
j

(
xj , vj

)
generated with the aggregate model (Ex. 6.4.1)(∑

j∈Jk α
k+1
j xj ,

∑
j∈J̃k α̃

k+1
j vj

)
generated with the disaggregate model (Ex. 6.4.2)(

xk+1,
∑
j∈J̃k α̃

k+1
j vj

)
generated with the partially exact model (Ex. 6.4.3).

(6.4.20)
The following holds:

(i) ϕ(u) ≤ ϕ(ûk) + ηûk + φk + 〈ŝk, u〉 for all u ∈ Rm+ .

(ii) The primal pair satis�es (x̂k+1, v̂k+1) ∈ X × convV ⊂ X ×Z, with

v̂k+1 ≤ g(x̂k+1) + ŝk and f(x̂k+1) ≤ ϕ(ûk) + ηûk + φk .

(iii) If ŝk = 0 and φk ≤ 0 then ûk is an ηûk -solution to (6.2.4) and (x̂k+1, v̂k+1) is an ηûk -solution to
(6.2.2).

Algorithm 3 Concave Proximal Bundle Method for Upper Models and Exact Serious Evaluations (pbm)

Step 0: Initialization. Select κ ∈ (0, 1) and t1 ≥ tlow > 0. For u1 ∈ Rm+ compute h(u1), d(u1) and
subgradients (6.2.7) and (6.2.8). Choose a modelM1 ≥ ϕ, stopping tolerances, Tolφ, Tolg ≥ 0 and
set û1 = u1, k = 1.

Step 1: Next iterate. Obtain uk+1 by solving (6.4.1).
Compute vk as in (6.4.13), ŝk = uk+1−ûk

tk
from (6.4.2), and φk from (6.4.18).

Step 2: Stopping test. If φk ≤ Tolφ and
∥∥ŝk∥∥ ≤ Tolg, stop and return ûk and (x̂k+1, v̂k+1) from

(6.4.20) as the solution.

Step 3: Oracle call. Compute an upper linearization Lk+1 as in (6.4.12), for example using the exact
values h(uk+1), d(uk+1) and respective subgradients (6.2.7) and (6.2.8).

Step 4: Ascent test. If (6.4.13) holds (serious step), make new calculations if needed, so that ηûk+1 =
ηuk+1 = 0. Set ûk+1 = uk+1 and choose tk ≥ tlow. If (6.4.13) does not hold (null step), set
ûk+1 = ûk and choose tk+1 ∈ [tlow, tk].

Step 5: Model. Choose a model satisfying ϕ ≤Mk+1 ≤ min{Lk+1, Ak} .

Step 6: Loop. Set k = k + 1 and go back to Step 1.

Algorithm 3 describes the Proximal Bundle Method (pbm), when the model is of upper type and evalu-
ation errors are null at serious steps: both (6.4.11) and (6.4.10) hold with ηûk ≡ 0.

96

By item (ii) of Lemma 6.4.4, the aggregate gradient and the Fenchel measure respectively estimate
primal feasibility and the duality gap; the algorithm stops when those values are su�ciently small.
Theorem 6.4.5 shows that (6.4.21), an asymptotic version of the conditions in item (iii), guarantees
eventual solution of (6.2.4) and (6.2.2).

The need of new calculations mentioned in Step 4 in Algorithm 3 typically arises when the solution
procedure in the oracle is organized so that �rst a coarse estimation is delivered, to check ascent. If
the test declares a null step, the algorithm proceeds. Otherwise, the algorithm returns to the oracle
requesting an exact calculation; examples of this situation are given by Steps 3' and 4' in Example 6.5.2
below, and also by the �coarse" and ��ne" phases implemented for the on-demand oracles in Section 6.6.

The order of steps in Algorithm 3 is the usual one in bundle methods: �rst the new dual iterate is found
in Step 1 and only in Step 3 the oracle �nds corresponding primal points, solving the h and d problems
in (6.2.4), (6.2.5). A variant with a primal-dual update is given in Example 6.5.3.

Regarding convergence, when pbm loops forever, there are two cases: either there is an in�nite tail of
null steps, or the algorithm generates in�nitely many serious steps. These are the two mutually exclusive
cases considered for the set K∞ in Theorem 6.4.5, noting that always at least one of them has in�nite
cardinality when k →∞.

Theorem 6.4.5 (Primal and dual convergence for pbm). ([4, Theorem 2].) Consider a primal problem
(6.2.2) and its dual problem (6.2.4) such that the assumptions in Section 6.2.1 hold. Suppose that in
Algorithm 3 the model satis�es (6.4.11) and the stopping tolerances are taken null (Tolφ = Tolg = 0). If
the oracle satis�es (6.4.9) and (6.4.10) and at serious steps there is no error evaluation (ηûk = 0) then

lim sup
k∈K∞

φk ≤ 0 and lim
k∈K∞

ŝk = 0 , (6.4.21)

for an in�nite iteration-set de�ned by

either K∞ := {k ≥ k̂} if after a last serious step at iteration k̂ (6.4.13) always fails
or K∞ := {k : uk+1 is declared serious in Step 4 } , otherwise .

It follows that the primal subsequence {(x̂k+1, v̂k+1)} always has limit points, and any of them solves
(6.2.2). When the center subsequence {ûk} has limit points, any of them solves (6.2.4). �

6.4.3 Handling inexact information at serious steps

So far, the models are built with exact oracle information at serious steps. Since exact evaluations involve
computing a di�cult p-e�cient point, it is appealing to let evaluations at serious steps become exact
only asymptotically. We now put in place an on-demand accuracy bundle method, able to handle oracles
for which in (6.4.10) one may have ηuj > 0 even when uj becomes a serious step. The impact of this
apparently innocuous modi�cation is not so minor: if ηûk is not null, the predicted increase in (6.4.14)
(and the aggregate gap in (6.4.19)) may become negative. When this situation arises, the test (6.4.13)
is meaningless because it no longer checks ascent. To handle this situation, Step 1 in Algorithm 3 must
be suitably modi�ed; this is the role of Step 1.2 of Algorithm 4 below, which declares noise as being
�excessive" when the aggregate gap êk becomes �too" negative.

The list below describes several possibilities for the oracle inaccuracy, the acronyms between parentheses
refer to the corresponding methods benchmarked in Section 6.6:

- Having ηuj ≡ 0 corresponds to the exact oracles in (6.2.7) and (6.2.8) (version 1 of BM and PAL).

- The case in which ηuj = 0 if uj yields a serious step gives the partially inexact Example 6.5.2
(versions 2 and 3 of BM and PAL).

- An asymptotically exact method drives the inaccuracy to zero for all points (version 4 of BM and
PAL).

97

- A partially asymptotically exact algorithm drives ηûk → 0 (version 5 of BM and PAL).

An inexact oracle designed to work in an on-demand accuracy mode returns function values whose error
is smaller than ηuj , sent as an input by the optimization procedure. For the functions h and d we now
explain how to build such a mechanism while still ensuring (6.4.12), a property crucial to have upper
models and show convergence. The starting idea is that, as both h and d in (6.2.4), (6.2.5) involve
minimizing an objective function that is linear on the dual variable u, any feasible point realizes the
η-subgradient inequality in (6.3.1). An on-demand oracle for d was devised in Heuristic h2, by stopping
prematurely the solver for the d-problem in (6.2.5). For the function h, let uj ∈ Rm and a bound ηjh ≥ 0
be given. When both f and g are linear functions, a primal-dual Linear Programming solver is called.
If the value ηjh is set as stopping tolerance of the solver, the output will be a point xj ∈ X satisfying[

f(xj)− 〈uj , g(xj)〉
]
− h(uj) ≤ ηjh . (6.4.22)

Taking huj := f(xj) − 〈uj , g(xj)〉 satis�es huj ∈ [h(uj), h(uj) + ηuj], i.e., condition (6.4.10) for the
function h. Similarly for (6.3.1), taking as subgradient sjh := −g(xj), and using (6.4.22),

h(u) = min
x∈X

{
f(x)− 〈u, g(x)〉

}
= min
x∈X

{
f(x)− 〈uj , g(x)〉+ 〈−g(x), u− uj〉

}
(6.4.23)

≤ f(xj)− 〈uj , g(xj)〉+ 〈−g(xj), u− uj〉 = hju + 〈sjh, u− u
j〉 =: Ljh(u) ≤ h(uj) + ηjh + 〈sjh, u− u

j〉 .

By (6.3.1), and in spite of inexactness, the linearization is still of the upper type. This follows from

ϕ(u) ≤ ϕ(uj) + 〈sj , u− uj〉 ≤ ϕuj + 〈sj , u− uj〉 =: Lj(u) ,

ensuring (6.4.12) also with the inexact oracle. This validates the use of upper modelsMk in Algorithm 4
below.

The important property (6.4.9) is straightforward for (6.4.23), because the inaccuracy is controlled by
the bundle solver. We refer to [105, 147, 149, 208, 214] for di�erent inaccurate oracles and ways to deal
with inexactness.

We now describe the few modi�cations that need to be brought into pbm when the oracle delivers inexact
information. The ascent test as well as the aggregate gap and Fenchel measure remain as in (6.4.13) and
(6.4.18), respectively. The di�erence is that now the predicted increase and the gap can be negative. In
particular, by (6.4.18),

vk ≥ 0 ⇐⇒ êk ≥ −tk
∥∥ŝk∥∥2

,

so to make (6.4.13) a meaningful ascent test (vk ≥ 0) the noise detection step below checks if êk <

−βtk
∥∥ŝk∥∥2

for a parameter β ∈ (0, 1), as in [10, 149]. To attenuate excessive noise, the strategy proposed
in [92, 105] can be adopted. Namely, increase the stepsize tk and solve problem (6.4.1) changing neither
the model nor the center. If no noise is detected, the predicted increase is nonnegative and the algorithm
proceeds as Algorithm 3.

In Algorithm 4 the parameter na is used to block a decrease of the stepsize tk when the iterate is declared
null and noise attenuation steps had been done in Step 1.3 (otherwise, since Step 1.3 increases tk, stepsize
zigzagging could hinder the convergence process).

Regarding convergence, a di�erence with pbm is that, in addition to the usual serious and null steps
dichotomy, now the algorithm can loop forever inside of Step 1, trying to attenuate noise. Assumption
(6.4.9) ensures that the gap is bounded below, by (6.4.19). In this situation, having in�nitely often

êk < −βtk
∥∥ŝk∥∥2

in Step 1.1 while driving tk →∞ makes ŝk eventually null and once more Lemma 6.4.4
applies. Naturally, the solution quality, both in terms of optimality and feasibility, depends on the
asymptotic accuracy of the oracle at serious points. More precisely, on η∞ := lim inf ηûk .

98

Algorithm 4 Concave Proximal Bundle Method for Upper Models with Inexact Oracles (pbmηuj>0)

Step 0: Initialization. As in Step 0 of Algorithm 3, but with inexact values satisfying (6.3.1), and
noise parameters na = 0 and β ∈ (0, 1).

Step 1.1: Next iterate. As in Step 1 of Algorithm 3, computing also êk from (6.4.18).

Step 1.2: Noise detection. If êk ≥ −βtk
∥∥ŝk∥∥2

go to Step 2 (noise is not too cumbersome).

Step 1.3: Noise attenuation. Set tk+1 = 10tk, na = 1, Mk+1 = Mk, ûk+1 = ûk, k = k + 1, go back to Step 1.1.

Step 2: Stopping test. As in Step 2 of Algorithm 3

Step 3: Oracle call. Compute an upper linearization Lk+1 as in (6.4.12), using oracle information
satisfying (6.3.1), with uk+1 replacing uj .

Step 4: Ascent test. If (6.4.13) is satis�ed (serious step), set ûk+1 = uk+1, na = 0 and choose tk ≥
tlow.
Otherwise (null step), set ûk+1 = ûk and choose tk+1 ∈ [(1− na)tlow + natk, tk].

Steps 5 and 6. As in Algorithm 3.

6.5 Relation with some dual methods from the literature

We consider the three model choices in Examples 6.4.1, 6.4.2 and 6.4.3, in the framework of Algorithms 3
or 4. We present new dual methods based on p-e�cient points, and make some links with previous works
in the literature.

Example 6.5.1 (Extending the Regularized Dual Decomposition of [57]). Consider pbm with aggregate
cutting-plane model and exact evaluations. When Mk is the aggregate model in Example 6.4.1, and the
oracle information is exact, Algorithm 3 is a standard proximal bundle method, with linearizations of
the form

Lj(u) = ϕ(uj) + 〈sj , u− uj〉 = f(xj) + 〈vj − g(xj), u〉 for xj ∈ X as in (6.2.7)
and vj ∈ convV as in (6.2.8).

.

The Regularized Dual Decomposition [57] is a particular case of this variant, which �xes tk = t0
and sets in (6.4.3) the full index set, Jk = {1, . . . , k}. The corresponding model update is Mk+1 =
min{Lk+1, Mk}, which by (6.4.15) satis�es the conditions in Step 5. A di�culty with this update is
that the size of the QPs (6.4.1) increases at each iteration. To keep the QP size controlled, the bundle
can be reduced by introducing either a selection or a compression mechanism. The latter amounts to
taking Mk+1 = min{Lk+1, Ak} (similarly to the �generalized Frank-Wolfe rule" in [172, Eq. (3.31)]).
This very economic model satis�es (6.4.11) and results in a QP with just two constraints, so each bundle
iteration is fast, but many iterations may be needed to converge. By contrast, the selection mechanism
keeps in the new model only active linearizations, as in (6.4.4):

Mk+1 = min
{
Lk+1, min{Lj : j ∈ Jk such that Lj(uk+1) = Mk(uk+1)}

}
.

When compared with the compression technique, selection yields a less economic QP, but in general the
additional time spent in solving (6.4.1) is compensated by a smaller number of iterations.

In view of Theorem 6.4.5, the Regularized Dual Decomposition [57] maintains its convergence proper-
ties for varying stepsizes satisfying tlow ≤ tk and with smaller QP subproblems, while improving its
convergence speed. �

The aggregate model above uses exact information: in (6.4.10) the error ηuj is always null. If the
model Mk is chosen to be the disaggregate cutting-plane model, it is possible to avoid computing the

99

expensive d-information at null steps. We now explain how to implement this saving without impairing
the convergence results in Theorem 6.4.5.

Example 6.5.2 (Two new on-demand accuracy methods). Consider Algorithm 3 with a disaggregate
partially inexact model. In Step 3, to provide an approximate value ϕuk+1 satisfying (6.4.10), the oracle
takes the exact value for h(uk+1) and uses the cutting-plane value ďk(uk+1) to replace the d-value. The
new methods called BM2 and BM3 in the numerical Section 6.6 implement this variant.

Calculations are organized by modifying Steps 3 and 4 in Algorithm 3 as follows.

Step 3': First oracle call. Compute h(uk+1) and its subgradient (6.2.7).
For the linearization Lk+1

d take the approximation (duk+1 , sk+1
d) := (ďk(uk+1), v̂k+1), available from

(6.4.6).

Step 4': Ascent test and possible second oracle call. Declare a null step if h(uk+1) + duk+1 <
ϕ(ûk) + κ vk. Otherwise, compute the exact d-information from (6.2.8) to obtain ϕ(uk+1) and
check if the (exact test) inequality ϕ(uk+1) ≥ ϕ(ûk) +κ vk is satis�ed: if yes declare a serious step,
otherwise a null step.

The inequality ďk(u) ≥ d(u) is always satis�ed (ďk is an upper model); so when the �rst test at Step
4' holds the (exact) ascent test fails and the iteration is declared null. The replacements Step 3' and
Step 4' spare the the expensive d-computation at null points. At null steps, the model update in Step 5
takes Mk+1 = ȟk+1 + ďk. At serious steps, ηuk+1 = 0 and the new exact linearization Lk+1

d enters the
d-model: Mk+1 = ȟk+1 + ďk+1. In both cases, the model satis�es (6.4.11) and, since (6.4.10) holds with
ηûk ≡ 0, Theorem 6.4.5 applies.

For the disaggregate model it is also possible to put in place a selection/compression mechanism, proceed-
ing separately for each term. The optimality conditions (6.4.2) for this speci�c model give an aggregate
linearization that can be split into two functions, say Akh and A

k
d. Then Step 5 can take any cutting-plane

model satisfying

Mk+1 = ȟk+1 + ďk+1 with h ≤ ȟk+1 ≤ min
{
Lk+1
h , Akh

}
and d ≤ ďk+1 ≤ min

{
Lk+1
d , Akd

}
.

The new methods BM4 and BM5 in the numerical Section 6.6 use the disaggregate model with inexact
oracle information in a manner similar to BM2 and BM3, but in the framework of Algorithm 4.�

The next example is the Progressive Augmented Lagrangian introduced in [56]. This variant of Algo-
rithm 3 switches the original dual-primal order for the updates (Steps 1 and 3), de�ning �rst primal
iterates.

Example 6.5.3 (Extending the Progressive Augmented Lagrangian algorithm of [56]). We now focus
on pbm with a partially exact model, Mk is

Mk(u) = h(u) + ďk(u) = min
x∈X

{
f(x)− 〈g(x), u〉

}
+ min
j∈J̃k
〈vj , u〉 ,

given in Example 6.4.3. Following the development in [56] we now make the relation between pbm and
the augmented Lagrangian method for (6.2.2); see also [119]. We start by rewriting the cutting-plane
model ďk as an optimization problem:

ďk(u) = min
j∈J̃k
〈vj , u〉 =

{
minv 〈v, u〉

v ∈ Vk from (6.2.6)
=

{
min 〈

∑
j∈J̃k αjv

j , u〉
s.t. α ∈ ∆|J̃k| .

This notation is useful to rewrite the partially exact model Mk in the form

Mk(u) = min
x∈X,α∈∆|J̃k|

f(x)− 〈g(x), u〉+ 〈
∑
j∈J̃k

αjv
j , u〉

 ,

100

showing that the model is in fact the dual function associated with problem (6.2.6). More precisely,
letting u denote the multiplier associated with the constraint g(x) ≥ v, we see that

Mk(u) = min
x∈X,α∈∆|J̃k|

L(x, α;u) for L(x, α;u) := f(x) + 〈u,
∑
j∈J̃k

αjv
j − g(x)〉 .

Therefore, the (negative of the concave) model has subgradients of the form g(x)−
∑
j αjv

j for any pair
(x, α) solving the minimization above. In particular,

Mk(uk+1) = L(xk+1, αk+1;uk+1) = min
x∈X,α∈∆|J̃k|

L(x, α;uk+1) for (xk+1, αk+1) from (6.4.7).

Regarding Algorithm 3, this model gives for (6.4.1) in Step 1 the concave subproblem

uk+1 solves max
u≥0

{
Mk(u)− tk

2

∥∥u− ûk∥∥2
}
≡ max

u≥0
min

x∈X,α∈∆|J̃k|

{
L(x, α;u)− tk

2

∥∥u− ûk∥∥2
}
.

The argument in the right hand side formulation is the regularized Lagrangian from [56, Eq. (25)]. By
strict concavity with respect to u and compactness of X, the triplet (xk+1, αk+1, uk+1) is a saddle point
for the regularized Lagrangian and, in particular,

max
u≥0

min
x∈X,α∈∆|J̃k|

{
L(x, α;u)− tk

2

∥∥u− ûk∥∥2
}

= min
x∈X,α∈∆|J̃k|

L(x, α;uk+1)− tk
2

∥∥uk+1 − ûk
∥∥2

.

The expression of pk1 from (6.4.7) together with the normal element de�nition for pk2 gives in (6.4.2) that

uk+1 := max

(
0, ûk + tk

(∑
j∈J̃k

αk+1
j vj − g(xk+1)

))
for (xk+1, αk+1) from (6.4.7), (6.5.1)

which highlights the primal-dual feature of this variant: to make the dual update, the primal points
xk+1 and vk+1 =

∑
j∈J̃k α

k+1
j vj need to be available.

The Augmented Lagrangian perspective from [56] reveals that the primal points can be computed by
solving, either the dual problem (6.4.1) written with the partially exact model, or a problem on primal
variables, involving the Augmented Lagrangian associated with (6.2.6). More precisely, consider

Lk(x, α;u) := f(x) + 〈u,G(x, α;u)〉+
tk
2
‖G(x, α;u)‖2

where we de�ned

Gi(x, α;u) := max

−ui
tk
,
∑
j∈J̃k

αjv
j
i − gi(x)

 for i = 1, . . . ,m.

Taking the derivatives and using the de�nition above, it is easy to see that

∂Lk(x, α;u)

∂(x, α)
=
∂L(x, α;u+ tkG(x, α;u))

∂(x, α)
.

Since in addition

u+ tkG(x, α;u) = max

(
0, u+ tk

(∑
j∈J̃k

αjv
j − g(x)

))
,

together with (6.5.1) we see that

∂Lk(xk+1, αk+1; ûk)

∂(x, α)
=
∂L(xk+1, αk+1;uk+1)

∂(x, α)
.

101

This means that

the pair (xk+1, αk+1) solves min
x∈X,α∈∆|J̃k|

Lk(x, α; ûk) = min
x∈X,α∈∆|J̃k|

L(x, α;uk+1) ,

and, hence, solving the left hand side problem above gives the desired primal points, to be used in (6.5.1)
to make the dual update. Accordingly, Algorithm 3 with the partially exact model can be enhanced as
follows:

Step 1': Next primal and dual iterates. Obtain (xk+1, αk+1) by solving min
x∈X,α∈∆|J̃k|

Lk(x, α; ûk) ,

and compute uk+1 as in (6.5.1).
Compute vk as in (6.4.13), ŝk = uk+1−ûk

tk
from (6.4.2), and φk as in (6.4.18).

Step 3': Oracle call of d. Compute the linearization Lk+1
d using the exact information from (6.2.8).

In Step 3', the oracle only delivers information on d because the model Mk = h + ďk has no need of
linearizations for h. In view of (6.4.7), once the primal point xk+1 is available in Step 1', both the exact
function value and a subgradient for h are straightforward to compute. Since only exact information is
used in this variant (either via the oracle or directly from h), convergence follows from Theorem 6.4.5.

Algorithm 3 with the modi�ed Steps 1' and 3' corresponds to the Progressive Augmented Lagrangian
algorithm in [56], with the additional �exibility of allowing for varying stepsizes and bundle selection
or compression. Speci�cally, to manage the bundle size, as only a bundle for d is de�ned, instead of
(6.4.15), the aggregate linearization is the a�ne function ďk(uk+1) + 〈vk+1, u− uk+1〉 = 〈vk+1, u〉.

Finding a uniform bound η as in (6.4.9) with the partially inexact model may be delicate if the dual
sequence becomes unbounded (in this case, Step 4' needs exact oracle evaluations until a serious iteration
can be declared).�

6.6 Numerical Comparison of Solvers

We compare 15 methods implemented in C++, obtained by combining the three dual models with �ve
oracles.

Instances We consider seven problems listed in Table 6.2, they are linear programs with bilateral
probabilistic constraints �tting (6.2.1), with ω ∈ Rm a centered multivariate Gaussian random variable,
that is

X = {x ∈ [x, x] ⊂ Rn : Ax ≤ b} , and P[ar +Arx ≤ ω ≤ Brx+ br] ≥ p .

Table 6.2: Size of problems in the benchmark. Here # A stands for the number of rows in matrix A .

Problem n # A m p description
CM 3 1 15 0.9 cash matching [87]
Ain48 672 1296 48 0.8 cascaded reservoir management [7]
Isr48 566 268 48 0.8 cascaded reservoir management[7]
Isr96 566 172 96 0.8 cascaded reservoir management[7]
Isr168 566 28 168 0.8 cascaded reservoir management[7]
PTP1 2000 40 50 0.9 probabilistic transportation problem [128]
PTP2 2000 40 50 0.9 probabilistic transportation problem [128]

For each problem, we considered 7 instances, corresponding toN ∈ {50, 100, 250, 500, 1000, 2000, 5000}.

102

Oracles The calculations for h in (6.2.4) involve solving a simple LP problem, so the h-oracle is exact.
For the d-oracle (6.2.5), the oracle error bound in (6.4.9) is η∞ = 10−4. We de�ned several on-demand
accuracy versions: at iteration k the oracle receives uk+1, a target tark (typically some value greater
than ϕûk , for instance the right hand side term in the ascent test (6.4.13)), and a bound gapk for the
inaccuracy ηuk+1 .

To compute the oracle output, calculations are split into a coarse and a �ne phase:

1. The coarse phase uses Heuristic h1 or h2 from Section 6.3 to de�ne an estimate dk+1
u for d(uk+1).

This phase is meant to be fast (only a few minutes). If the target is reached, i.e., h(uk+1)+dk+1
u <

tark, the oracle returns the information to the bundle method and the algorithm proceeds in Step
4 to test for ascent. Otherwise, if h(uk+1) + dk+1

u ≥ tark, the oracle passes to the next phase.

2. The �ne phase computes better estimates by solving problem (6.3.2) until reaching either a relative
gap inferior to gapk or the one hour CPU time limit.

Inexact Oracles

- 1: tark = −∞ and gapk = 10−4. This oracle always passes to the �ne phase and corresponds
roughly to an exact pbm or to the Progressive Augmented Lagrangian - PAL, except when the 1h
time limit is reached and the oracle outputs inexact information.

- 2: tark = ϕ(ûk) and gapk = 10−4. The d-oracle information is exact (or at least more accurate)
at iterates which provide some ascent with respect to the threshold ϕ(ûk): ηûk = 0.

- 3: tark = ϕ(ûk) + κ vk and gapk = 10−4. Similar to variant 2.

- 4: tark = −∞ and gapk = min
{

0.5, 0.01vk

k

}
. Since the oracle error vanishes because gapk goes to

zero, the d-oracle information is asymptotically exact (at all iterations).

- 5: tark = ϕ(ûk) + κ vk and gapk = min
{

0.5, 0.01vk

k

}
. The d-oracle information is asymptotically

exact at serious steps.

For all the methods the total CPU time limit is 48 hours, with κ = 0.1 to test for descent in (6.4.13),
β = −1.0 to test for noise in Step 1.2 of pbmηuj>0 , and no bundle compression/selection. The rule
to update the stepsize tk is the poorman formula in [29, Sec. 10.3.3]. To solve (6.4.1) we use the dual
simplex QP method of CPLEX 12.4. Computations were carried out on Intel Xeon X5670 westmere
computer cluster with 8 Gb of reserved memory.

To refer to the many possible combinations, we adopt as mnenomics to append to BM1 (or BM2, BM3,
etc) �rst the heuristic name and then a letter, a or d, to identify the aggregate or disaggregate cutting-
plane model. For instance, when BM2 uses Heuristic h1 and an aggregate model, it is referred to as
BM2h1a. Its counterpart using Heuristic h2 and disaggregate model is BM2h2d. Quite similarly PAL5
refers to the partially exact dual model and the use of oracle Strategy 5 (asymptotically exact at serious
steps) described above. We exploited the scenario preprocessing method from [116] as it consistently
reduced the total number of scenarios by up to 70%.

Results The quality of x̂kstop+1 from (6.4.20) (iteration kstop triggered the stopping test) can be
checked assessing feasibility w.r.t. the continuous distribution problem, by computing P[ar+Arxkstop+1 ≤
ω ≤ Brxkstop+1 + br] ≥ p using the code [75]. Instances Isr168, PTP1 and PTP2 require more than 2000
scenarios for the solution to be feasible for the continuous problem. Problems involving a large number of
scenarios can only be solved when exploiting the inexact oracles at its full potential, i.e., using Strategy
5. This is seen by making performance pro�les on CPU times, [61], with the proportion of problems
that solved by each method, within a factor of the time required by the best algorithm (ordinate φ(γ)

103

and abscissa γ in the pro�les). When it comes to speed, the leftmost ordinate value gives the probability
of each method to be the fastest in the benchmark, while robustness is seen by the rightmost ordinate
value, with the proportion of problems solved by each method.

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Bundle1h2s1
Bundle2h2s1
Bundle3h2s1
Bundle4h2s1
Bundle5h2s1

(a) Aggregate Model

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Bundle1h2s2
Bundle2h2s2
Bundle3h2s2
Bundle4h2s2
Bundle5h2s2

(b) Disaggregate Model

50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

PAL1h2s1
PAL2h2s1
PAL3h2s1
PAL4h2s1
PAL5h2s1

(c) Partially Exact Model

Figure 6.4: Performance pro�les for various model variants and oracle strategies.

Figure 6.4 shows how the di�erent model variants perform depending on the oracle strategy. A �rst
immediate observation is that the 5th oracle strategy is the most succesful, independently of the model
variant. Most notably, while the PAL methods fail on nearly half the instances with oracles strategies 1
to 3, all instances were solved with oracles 4 and 5, i.e., as soon as inexact computations for p-e�cient
points were integrated in the oracle strategy. This phenomenon is not present in the other bundle
methods, where all oracle strategies roughly solved the same percentage of instances within the time
limit. Both the aggregate and disaggregate bundle methods managed to solve all instances with 1000
scenarios or less, regardless of the oracle strategy. In contrast, the partially exact dual model did not
manage to solve all the 1000 scenario instances for oracle strategies 1 to 3.

1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Bundle5h2s1
Bundle5h2s2
PAL5h2s2

(a) All

1000 2000 3000 4000 5000 6000
0

0.2

0.4

0.6

0.8

1

γ

φ(
γ)

Performance profile based on CPU(s)

Bundle5h2s1
Bundle5h2s2
PAL5h2s2

(b) Easy

Figure 6.5: Oracle strategies 5 and 3 on all the instances (left) and on an �easy" subset, N ≤ 1000
(right).

The next observation refers to Figure 6.5, where the importance of the relation (6.4.8) is striking: the
partially exact model systematically brings very signi�cant improvements This model has two potential
drawbacks, though: it needs an exact oracle for h, and it can make too di�cult the bundle subproblem
(6.4.1), if h is a general concave function. This observation is backed up by Table 6.3, showing that 97
% of the CPU time is spent in the d-oracle (mean over all methods and instances). This cost levels o�
as the dual model model improves and the oracle variant exploits more �inexactness�.

104

Dual model/Oracle variant 1 2 3 4 5

Aggregate 99.9 99.7 99.7 95.2 92.9
Disaggregate 99.5 99.4 99.3 96.0 90.6

Partially Exact 98.2 97.6 97.7 91.6 86.6

Table 6.3: Percentage of the total CPU time spend in the d-oracle

Concluding Remarks

A uni�ed framework for dual approaches based on p-e�cient points was presented. Thanks to the adopted
bundle perspective, it is possible to compute approximate p-e�cient points without losing precision in
the solution. The numerical experiments highlight the interest of such inexact oracles, especially when
N is large. The need of having a su�ciently large number of realizations to ensure feasibility was also
demonstrated. As line of future work, possibly escaping the convenient setting (6.4.11), we mention the
development of solvers dealing with oracles that progressively increase N along iterations, all the while
using bundle management in order to eliminate previously generated points that are not p-e�cient.

105

Chapter 7

Concluding remarks and pespectives

This document presents an excerpt from the research results that I have obtained since I received my
PhD in January 2011. Chapter 1 highlights my research activities. To that end, the chapter was split
into sub�elds of research pointing out my contributions on convex nonsmooth optimization, convex
nonsmooth MINLP, nonsmooth DC programming, stochastic programming with recourse, and chance-
constrained programming.

Chapters 2, 3, 4, 5 and 6 presented �ve of my recent papers. Each one of which illustrates a di�erent
aspect of my research. Two of my works on (deterministic) nonsmooth optimization were presented in
Chapters 2 and 3. Chapter 2 was dedicated to the target radius method, a level-bundle like algorithm
for solving convex nonsmooth programs [50]. Extensions of the method to deal with particular class
of nonlinearly constrained and bilevel otimization problems were investigated. Nonsmooth nonconvex
programs were considered in Chapter 3, where a new family of DC algorithms with inertial force was
proposed to compute critical points of DC programs. The content of the chapter was extracted from the
manuscript [51] that deals with nonconvex denoising models.

By dealing with a real-life application from the �eld of energy, Chapter 4 combined two-stage stochastic
linear programming, scenario reduction techniques, and a bundle method algorithm to deal with the
Brazilian natural gas network planning problem. The content of that chapter is the article [32].

Chapter 5 presented my work on eventual convexity of Copulæ structured chance-constrained program-
ming. The material was extracted from the article [11]. The discussion on optimization problems with
probability constraint was extended to Chapter 6 where the work [4] on chance-constrained programming
via (inexact) p-e�cient points was considered

7.1 General perspectives

Nonsmooth optimization, stochastic programming, and energy problems are always keywords in my
research perspectives. To these, I would like to add more two items, one of practical and the other of a
theoretical nature: climate and variational analysis.

Climate. Methodologies for creating multi-scale optimization models (spatial and temporal) that tackle
energy system evolution issues in the short and long terms are of key importance to the industry of energy.
The importance of taking into account climate models and new legislation on the energy system evolution
becomes evident nowadays. A more accurate modeling gives rise to optimization problems that evolve
and become more complex.

Regarding this area of application, my assignment in 2017 to CMA Mines ParisTech was motivated by
and leads me to focus my work around optimization issues in the �eld of energy and climate, which has
gained signi�cant attention in both scienti�c and industrial spheres. In addition, these issues have some

106

technical characteristics that interest me and, moreover, take part in the modeling activities associated
with the ParisTech Chair on Modeling for Sustainable Development, in which CMA is recognized for its
expertise in long-term approaches.

I have already started working on this subject with my colleagues from CMA.

Variational analysis. As mentioned above, accurate optimization models taking into account climate
and new legislation to tackle energy system evolution become more and more complex. Very often, not
only di�erentiability assumptions are absent, but also convexity. These issues give rise to optimization
problems possessing a high level of di�culty, which is sometimes prohibitive in the large-scale setting.
Therefore, new techniques from variational analysis and computational mathematics are required to
improve solution methods in this setting.

In my future research, the intention is to work on extensions of regularity concepts appropriate for study-
ing stability (the "radius of good behaviour") of solutions to optimization problems, particularly those
related to the stability of nonconvex stochastic problems and also optimization problems with equilib-
rium constraints, when standard assumptions are not satis�ed (e.g. standard constraint quali�cations).
The outcomes will have an impact on enhancing convergence of numerical methods and facilitating the
post-optimal analysis of solutions. An initial work on this direction is the manuscript [201] that in-
vestigates constraint quali�cation facilitating the veri�cation and computation of Bouligand-stationary
points of certain nonconvex nonsmooth programs.

7.2 Speci�c perspectives

In terms of research perspectives, there are several direct and indirect extensions of my works on stochas-
tic programming with recourse, chance-constrained programming, and nonsmooth optimization (both
convex and nonconvex cases). Some future works in each of one these �elds are listed below.

7.2.1 Stochastic programming with recourse

Multistage stochastic programs explicitly model a series of decisions interplayed with partial observation
of the uncertainties, which are approximated by scenario trees. This yields large-scale mathematical
programming problems that can only be handled by specialized algorithms that employ decomposition
techniques and very often sampling, as the stochastic dual dynamic programming (SDDP) [157]. In
general terms, the SDDP is a cutting-plane based-method, which is well-known for presenting slow con-
vergence when dealing with large-scale problems. Several strategies have been proposed to overcome this
issue: aggregation of state-variables, cut-selection strategies, and scenario reduction. Recent attempts to
accelerate the SDDP convergence by employing regularization techniques have been investigated in [18]
and [199]. The main idea is to control trial points in the forward step as an attempt to construct cuts
in favorable regions of the problem (improving thus the method's e�ciency). These regularized works
require the solution of more complicated subproblems in the forward step, which may entail additional
di�culties when the number of decision variables per stage is large. To cope with this more general
setting, other (computational cheaper) strategies to tackle multistage programs should be investigated.
The intention to study more straightforward regularization strategies for the SDDP algorithm. A �rst
attempt is to de�ne trial points in the forward step as Chebyshev centers of certain polyhedrons issued
by the cutting-plane approximation of the recourse functions. Such a strategy yields regularized linear
subproblems that are not more di�cult than the unregularized ones of SDDP. This is a subject under
investigation with my PhD student Felipe Beltrán and colleagues from (UFSC, Brazil).

107

7.2.2 Stochastic programming with chance constraints

Concerning optimization problems with chance constraints, the topics of research envisaged in the short
term are (i) DC approximations of probability functions and (ii) study and applications of Copulæ
to model climate variables in energy management problems. For instance, instead of using forecasts
for wind or photovoltaic power generation in a smart-grid, we could model the uncertainties and their
inter-independence by employing specialized Copulæ. The estimation of an appropriate copula and its
variational analysis (eventual convexity, di�erentiability) are not trivial tasks in general. This explains
in general terms the item (ii). Concerning the item (i), the plan is to investigate probability functions
of the form

P[c1(x, ω)− c2(x, ω) ≤ 0], (7.2.1)

with c1, c2 : Rn × Ω → R convex (w.r.t argument x) but possibly nonsmooth functions. This kind of
probability function appears, for instance, in chance-constrained optimal power �ow problems modeling
power-demand uncertainties, and in gas transport management [79].

Given t > 0 a small parameter, the (discontinuous) characteristic function 1[0,+∞)(z) can be approxi-
mated by the DC function [z + t]+/t− [z]+/t. This allows the following approximation

P[c1(x, ω)− c2(x, ω) ≤ 0] = E[1[0,+∞)(c2(x, ω)− c1(x, ω))]

≈ 1

t
E[max{c2(x, ω) + t, c1(x, ω)}]− 1

t
E[max{c2(x, ω), c1(x, ω)}]

which is a DC function. The expectation E[·] can be approximated via Monte-Carlo simulation by
considering a �xed sample of scenarios randomly generated accordingly to the distribution of ω. Hence,
the problem of minimizing a convex (or DC) function subject to a convex set and chance constraint
(7.2.1) can be e�ciently approximated by a (DC-constrained) DC program. This motivates, from the
variational-analysis point of view, the study of nonsmooth DC constraints to investigate proper constraint
quali�cations facilitating the veri�cation and computation of stationary points, as well as the study of
calmness yielding exact (DC) penalization functions to general DC problems.

7.2.3 Convex nonsmooth optimization

Large problems in stochastic programming with recourse are heavily structured, often amenable to
parallel computing by standard decomposition schemes (e.g. by scenarios, by production units, or even
both). For instance, two-stage programs with �nitely many scenarios can be written as

min
x∈X

f(x), with f(x) :=

m∑
i=1

f i(x) ,

where each component function f i : Rn → R∪{∞} is convex. Existing optimization algorithms exploiting
this decomposability are all synchronous: given a point xk, m machines (oracles) deliver (f i(xk), gik ∈
∂f i(xk)) yielding f(xk) =

∑m
i=1 f

i(xk) and a subgradient
∑m
i=1 g

i
k = gk ∈ ∂f(xk) so that a master

program computes a new trial point xk+1. It is then evident that the master program may be idle for
a long time, waiting all the m machines to return with (synchronous) information. In unit-commitment
problems from energy management, some component functions f i are assessed by solving relatively
large mixed-integer linear programming problems, whereas other components can be easily computed by
solving (much simpler) linear programming problems. Therefore, until all machines respond, not only
the master program is idle but also the machines assigned to the easy-to-evaluate component functions
f i. If, instead, the master program processes a new trial point as soon as a single machine f i responds,
neither oracles/machines nor the master program becomes idle and the optimization process is boosted.

The goals in a short-term research plan are (i) to explore this idea and develop a fully asynchronous
bundle method for di�cult nonsmooth convex optimization problems with additive structure; and (ii)
to investigate randomized variants of the method yielding almost surely convergence. To date, neither
fully asynchronous nor randomized bundle method exists in the literature.

108

7.2.4 Nonconvex nonsmooth optimization

As argued above, the use of more sophisticated models to represent real-life problems comes at a price:
complex (large-scale, nonsmooth, nonconvex) optimization models. To tackle such problems, the plan
is to continue the work started in 2017 on DC programming and investigate more general nonsmooth
nonconvex optimization problems.

Concerning general DC programs of the form

min
x∈X

f1(x)− f2(x) s.t. c1(x)− c2(x) ≤ 0, (7.2.2)

where X and all involved functions are convex, the plan is to investigate (in addition to what was
commented in the Subsection 7.2.2) specialized primal-dual methods for e�ciently handling this kind
of problems. My �rst intention is to employ generalized augmented Lagrangian functions yielding zero-
duality gap between the dual and primal optimal values. For the dual problem that consists in maxi-
mizing the (hard-to-evaluate) concave dual function, the use of the arsenal of inexact bundle methods
developed in [149] might be employed to design a specialized bundle algorithm for handling generalized
Lagrangians. Concerning the dual function, whose value and subgradient are computed by globally
solving a convex-contrained DC program, the intention is to combine the ideas of the recent manuscript
[51] with randomized strategies in order to compute critical points of good quality.

Another subject plan worth investigating is the problem of minimizing a lower C2 function f : Rn → R
over a convex set X. If f is lower C2, then there exists a constant ρ such that f(x) + ρ ‖x‖2 /2 is convex
on X. Hence,

f(x) = f(x) +
ρ

2
‖x‖2 − ρ

2
‖x‖2

is indeed a DC function and DC algorithms could be employed to compute a stationary point of

min
x∈X

f(x)

as long as the constant ρ is known. Since ρ is in general unknown, the plan is to study strategies to
estimate ρ that, when combined with DC algorithms, may yield practical algorithms to this class of
problems.

109

Bibliography

[1] W. van Ackooij. �Chance Constrained Programming: with applications in Energy Management�.
PhD thesis. École Centrale Paris, 2013, p. 250.

[2] W. van Ackooij. �Decomposition approaches for block-structured chance-constrained programs
with application to hydro-thermal unit commitment�. In: Mathematical Methods of Operations
Research 80.3 (2014), pp. 227�253.

[3] W. van Ackooij. �Eventual Convexity of Chance Constrained Feasible Sets�. In: Optimization (A
Journal of Math. Programming and Operations Research) 64.5 (2015), pp. 1263�1284.

[4] W. van Ackooij, V. Berge, W. de Oliveira, and C. Sagastizábal. �Probabilistic optimization via
approximate p-e�cient points and bundle methods�. In: Computers & Operations Research 77
(2017), pp. 177 �193. issn: 0305-0548.

[5] W. van Ackooij, J. B. Cruz, and W. de Oliveira. �A strongly convergent proximal bundle method
for convex minimization in Hilbert spaces�. In: Optimization 65.1 (2016), pp. 145�167.

[6] W. van Ackooij and R. Henrion. �Gradient Formulae for nonlinear probabilistic constraints with
Gaussian and Gaussian-Like Distributions�. In: SIAM Journal on Optimization 24.4 (2014),
pp. 1864�1889.

[7] W. van Ackooij, R. Henrion, A. Möller, and R. Zorgati. �Joint Chance Constrained Programming
for Hydro Reservoir Management�. In: Optimization and Engineering 15 (2014), pp. 509�531.

[8] W. van Ackooij, R. Henrion, A. Möller, and R. Zorgati. �On probabilistic constraints induced by
rectangular sets and multivariate normal distributions�. In: Mathematical Methods of Operations
Research 71.3 (2010), pp. 535�549.

[9] W. van Ackooij and W. de Oliveira. �Level Bundle Methods for Constrained Convex Optimization
with Various Oracles�. In: Computational Optimization and Applications 57.3 (2014), pp. 555�
597.

[10] W. van Ackooij and C. Sagastizábal. �Constrained Bundle Methods for Upper Inexact Oracles
with Application to Joint Chance Constrained Energy Problems�. In: SIAM Journal on Opti-
mization 24.2 (2014), pp. 733�765.

[11] W. van Ackooij and W. de Oliveira. �Convexity and optimization with copulæstructured proba-
bilistic constraints�. In: Optimization 65.7 (2016), pp. 1349�1376.

[12] W. van Ackooij and A. Frangioni. �Incremental Bundle Methods using Upper Models�. In: SIAM
Journal on Optimization 28.1 (2018), pp. 379�410.

[13] M. V. Afonso, J. M. Bioucas-Dias, and M. A. T. Figueiredo. �Fast Image Recovery Using Variable
Splitting and Constrained Optimization�. In: IEEE Transactions on Image Processing 19.9 (2010),
pp. 2345�2356.

[14] F. Alvarez. �Weak Convergence of a Relaxed and Inertial Hybrid Projection-Proximal Point
Algorithm for Maximal Monotone Operators in Hilbert Space�. In: SIAM Journal on Optimization
14.3 (2004), pp. 773�782.

[15] F. Alvarez and H. Attouch. �An Inertial Proximal Method for Maximal Monotone Operators
via Discretization of a Nonlinear Oscillator with Damping�. In: Set-Valued Analysis 9.1 (2001),
pp. 3�11.

121

[16] L. T. H. An and P. D. Tao. �The DC (Di�erence of Convex Functions) Programming and DCA
Revisited with DC Models of Real World Nonconvex Optimization Problems�. In: Annals of
Operations Research 133.1 (2005), pp. 23�46.

[17] T. Arnold, R. Henrion, A. Möller, and S. Vigerske. �A mixed-integer stochastic nonlinear op-
timization problem with joint probabilistic constraints�. In: Paci�c Journal of Optimization 10
(2014), pp. 5�20.

[18] T. Asamov and W. B. Powell. �Regularized Decomposition of High-Dimensional Multistage
Stochastic Programs with Markov Uncertainty�. In: SIAM Journal on Optimization 28.1 (2018),
pp. 575�595.

[19] A. M. Bagirov and J. Yearwood. �A new nonsmooth optimization algorithm for minimum sum-of-
squares clustering problems�. In: European Journal of Operational Research 170.2 (2006), pp. 578
�596.

[20] A. Beck and M. Teboulle. �Fast Gradient-Based Algorithms for Constrained Total Variation Image
Denoising and Deblurring Problems�. In: IEEE Transactions on Image Processing 18.11 (2009),
pp. 2419�2434.

[21] J. Y. Bello-Cruz and W. de Oliveria. �Level bundle-like algorithms for convex optimization�. In:
Journal of Global Optimization 59.4 (2014), pp. 787�809.

[22] J. Y. Bello Cruz. �On Proximal Subgradient Splitting Method for Minimizing the sum of two
Nonsmooth Convex Functions�. In: Set-Valued and Variational Analysis 25.2 (2017), pp. 245�
263.

[23] F. Beltran, W. de Oliveira, and E. C. Finardi. �Application of Scenario Tree Reduction Via
Quadratic Process to Medium-Term Hydrothermal Scheduling Problem�. In: IEEE Transactions
on Power Systems 32.6 (2017), pp. 4351�4361.

[24] H. Ben Amor, J. Desrosiers, and A. Frangioni. �On the Choice of Explicit Stabilizing Terms in
Column Generation�. In: Discrete Applied Mathematics 157.6 (2009), pp. 1167�1184.

[25] A. Ben-Tal and A. Nemirovski. �Non-euclidean restricted memory level method for large-scale
convex optimization�. In: Math. Program. 102 (3 2005), pp. 407�456. issn: 0025-5610.

[26] J. Benders. �Partitioning procedures for solving mixed-variables programming problems�. In: Nu-
merische Mathematik 4.1 (1962), pp. 238�252.

[27] J. R. Birge. �Decomposition and Partitioning Methods for Multistage Stochastic Linear Pro-
grams�. In: Operations Research 33.5 (1985), pp. 989�1007.

[28] J. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer, New York, 1997.

[29] J. Bonnans, J. Gilbert, C. Lemaréchal, and C. Sagastizábal. Numerical Optimization: Theoretical
and Practical Aspects. 2nd. Springer-Verlag, 2006, p. 490.

[30] U. Brannlund, K. C. Kiwiel, and P. O. Lindberg. �A descent proximal level bundle method for
convex nondi�erentiable optimization�. In: Operations Research Letters 17.3 (1995), pp. 121 �126.

[31] I. Bremer, R. Henrion, and A. Möller. �Probabilistic constraints via SQP solver: Application to
a renewable energy management problem.� In: Computational Management Science 12 (2015),
pp. 435�459.

[32] S. V. Bruno, L. A. Moraes, and W. de Oliveira. �Optimization techniques for the Brazilian natural
gas network planning problem�. In: Energy Systems (ENSY) 8.1 (2017), pp. 81�101.

[33] G. C. Cala�ore and M. C. Campi. �Uncertain Convex Programs: Randomized Solutions and
Con�dence Levels�. In: Mathematical Programming 102.1 (2005), pp. 25�46.

[34] M. C. Campi and S. Garatti. �A Sampling-and-Discarding Approach to Chance-Constrained
Optimization: Feasibility and Optimality�. In: Journal of Optimization Theory and Applications
148.2 (2011), pp. 257�280.

[35] C. C. Caroe and J. Tind. �L-shaped decomposition of two-stage stochastic programs with integer
recourse�. In: Math. Programming 83 (1998), pp. 451�464.

122

[36] V. Caselles et al. �An introduction to Total Variation for Image Analysis�. In: Theoretical Founda-
tions and Numerical Methods for Sparse Recovery, De Gruyter, Radon Series Comp. Appl. Math.
9 (2010), pp. 263�340.

[37] E. Castillo et al. �Estimating the parameters of a fatigue model using Benders decomposition�.
In: Annals of Operations Research 210.1 (2013), 309331.

[38] Y. Chen, G. Lan, Y. Ouyang, and W. Zhang. Fast Bundle-Level Type Methods for unconstrained
and ball-constrained convex optimization. Tech. rep. 1412.2128. 2014, p. 29.

[39] J. Cheng, M. Houda, and A. Lisser. Second-order cone programming approach for elliptically
distributed joint probabilistic constraints with dependent rows. Tech. rep. 2014, pp. 1�26.

[40] G. Codato and M. Fischetti. �Combinatorial Benders' Cuts for Mixed-Integer Linear Program-
ming.� In: Operations Research 54.4 (2006), pp. 756�766.

[41] L. Condat. �A Primal�Dual Splitting Method for Convex Optimization Involving Lipschitzian,
Proximable and Linear Composite Terms�. In: Journal of Optimization Theory and Applications
158.2 (2013), pp. 460�479.

[42] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction To Derivative-Free Optimization.
Society For Industrial And Applied Mathematics, 2009, pp. 1�289.

[43] R. Correa and C. Lemaréchal. �Convergence of some algorithms for convex minimization�. In:
Mathematical Programming 62.2 (1993), pp. 261�275.

[44] A. M. Costa. �A survey on benders decomposition applied to �xed-charge network design prob-
lems�. In: Computers & Operations Research 32.6 (2005), 14291450.

[45] J. Y. B. Cruz and W. de Oliveira. �On Weak and Strong Convergence of the Projected Gradient
Method for Convex Optimization in Real Hilbert Spaces�. In: Numerical Functional Analysis and
Optimization 37.2 (2016), pp. 129�144.

[46] J. Currie and D. I. Wilson. �OPTI: Lowering the Barrier Between Open Source Optimizers and
the Industrial MATLAB User�. In: Foundations of Computer-Aided Process Operations. Ed. by
N. Sahinidis and J. Pinto. Savannah, Georgia, USA, 2012.

[47] W. de Oliveira. Proximal bundle methods for nonsmooth DC programming. Tech. rep. Available
at www.oliveira.mat.br., 2017, p. 25.

[48] W. de Oliveira and M. Solodov. �A doubly stabilized bundle method for nonsmooth convex
optimization�. In: Mathematical Programming 156.1 (2016), pp. 125�159.

[49] W. de Oliveira. �Combining level and proximal bundle methods for convex optimization in energy
problems.� In: EngOpt 2012 - International Conference on Engineering Optimization. 404. 2012,
pp. 1�10.

[50] W. de Oliveira. �Target radius methods for nonsmooth convex optimization�. In: Operations
Research Letters 45.6 (2017), pp. 659�664.

[51] W. de Oliveira and M. P. Tcheou. �An Inertial Algorithm for DC Programming�. In: Set-Valued
and Variational Analysis (2018).

[52] W. L. de Oliveira et al. �Optimal scenario tree reduction for stochastic stream�ows in power
generation planning problems�. In: Optimization Methods and Software 25.6 (2010), pp. 917�936.

[53] A. Del�no and W. de Oliveira. �Outer-approximation algorithms for nonsmooth convex MINLP
problems�. In: Optimization 67.6 (2018), pp. 797�819.

[54] D. Dentcheva. �Optimisation Models with Probabilistic Constraints.� In: Lectures on Stochastic
Programming. Modeling and Theory. Ed. by A. Shapiro, D. Dentcheva, and A. Ruszczy«ski. Vol. 9.
MPS-SIAM series on optimization. SIAM and MPS, Philadelphia, 2009, pp. 87�154.

[55] D. Dentcheva, B. Lai, and A. Ruszczy«ski. �Dual methods for probabilistic optimization prob-
lems�. In: Mathematical Methods of Operations Research 60.2 (2004), pp. 331�346.

[56] D. Dentcheva and G. Martinez. �Regularization methods for optimization problems with proba-
bilistic constraints�. In: Math. Programming (series A) 138.1-2 (2013), pp. 223�251.

123

[57] D. Dentcheva and G. Martinez. �Two-stage stochastic optimization problems with stochastic
ordering constraints on the recourse�. In: European Journal of Operational Research 219.1 (2012),
pp. 1�8.

[58] D. Dentcheva, A. Prékopa, and A. Ruszczy«ski. �Concavity and e�cient points for discrete dis-
tributions in stochastic programming�. In: Mathematical Programming 89 (2000), pp. 55�77.

[59] D. Dentcheva and G. Martinez. �Augmented Lagrangian method for probabilistic optimization�.
In: Annals of Operations Research 200.1 (2011), pp. 109�130.

[60] J. V. Dinter et al. �The unit commitment model with concave emissions costs: a hybrid Benders
Decomposition with nonconvex master problems�. In: Annals of Operations Research 210.1 (2013),
pp. 361�386.

[61] E. D. Dolan and J. J. Moré. �Benchmarking optimization software with performance pro�les�. In:
Mathematical Programming 91 (2 2002), pp. 201�213.

[62] J. Dupa£ová, N. Gröwe-Kuska, and W. Römisch. �Scenario reduction in stochastic programming :
An approach using probability metrics�. In: Mathematical Programming 95.3 (2003), pp. 493�511.

[63] M. Duran and I. E. Grossmann. �An outer-approximation algorithm for a class of mixed-integer
nonlinear programs�. English. In: Mathematical Programming 36.3 (1986), pp. 307�339. issn:
0025-5610.

[64] J. Elzinga and T. G. Moore. �A central cutting plane method for the convex programming prob-
lem�. In: Mathematical Programming 8 (1975), pp. 134�145.

[65] C. Fábián. �Bundle-type methods for inexact data�. In: Proceedings of the XXIV Hungarian
Operations Researc Conference (Veszprém, 1999). Vol. 8 (special issue, T. Csendes and T. Rapcsk,
eds.) 2000, pp. 35�55.

[66] C. Fábián and Z. Sz®ke. �Solving Two-Stage Stochastic Programming Problems with Level De-
composition�. In: Computational Management Science 4 (2007), pp. 313�353.

[67] A. Fakhri and M. Ghatee. �Solution of preemptive multi-objective network design problems ap-
plying Benders decomposition method�. In: Annals of Operations Research 210.1 (2013), pp. 295�
307.

[68] R. Fletcher and S. Ley�er. �Solving mixed integer nonlinear programs by outer approximation�.
In: Mathematical Programming 66.1-3 (1994), pp. 327�349.

[69] C. A. Floudas. Generalized Benders Decomposition. Appearing in [70]. 2nd. Springer - Verlag,
2009, pp. 1163�1174.

[70] C. Floudas and P. P. (Eds). Encyclopedia of Optimization. 2nd. Springer - Verlag, 2009, pp. 1�
4067.

[71] A. Frangioni and B. Gendron. �A Stabilized Structured Dantzig-Wolfe Decomposition Method�.
In: Mathematical Programming B 104.1 (2013), pp. 45�76.

[72] A. Frangioni and E. Gorgone. �Generalized Bundle Methods for Sum-Functions with "Easy"
Components: Applications to Multicommodity Network Design�. In: Mathematical Programming
145.1 (2014), pp. 133�161.

[73] M. Gaudioso, G. Giallombardo, G. Miglionico, and A. M. Bagirov. �Minimizing nonsmooth DC
functions via successive DC piecewise-a�ne approximations�. In: Journal of Global Optimization
71 (1 2018), pp. 37�55.

[74] M. Gaudioso, G. Giallombardo, and G. Miglionico. �Minimizing Piecewise-Concave Functions
Over Polyhedra�. In: Mathematics of Operations Research 43.2 (2018), pp. 580�597.

[75] A. Genz and F. Bretz. Computation of multivariate normal and t probabilities. Lecture Notes in
Statistics 195. Springer, Dordrecht, 2009.

[76] A. M. Geo�rion. �Generalized Benders Decomposition�. In: Journal of Optimization Theory and
Applications 10.4 (1972), pp. 237�260.

124

[77] M. Ghotboddini, M. Rabbani, and H. Rahimian. �A comprehensive dynamic cell formation design:
Benders decomposition approach�. In: Expert Systems with Applications 38.3 (2011), 24782488.

[78] R. C. Gonzalez and R. E. Woods. Digital Image Processing (3rd Edition). Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 2006. isbn: 013168728X.

[79] T. G. Grandón, H. Heitsch, and R. Henrion. �A joint model of probabilistic/robust constraints
for gas transport management in stationary networks�. In: Computational Management Science
14.3 (2017), pp. 443�460.

[80] N. Gröwe-Kuska, H. Heitsch, and W. Römisch. �Scenario Reduction and Scenario Tree Con-
struction for Power Management Problems�. In: IEEE Bologna Power Tech. Conference (2003),
p. 7.

[81] T. Gruzdeva and A. Strekalovsky. �A D.C. Programming Approach to Fractional Problems�. In:
Learning and Intelligent Optimization: 11th International Conference, LION 11, Nizhny Nov-
gorod, Russia, June 19-21, 2017, Revised Selected Papers. Ed. by R. Battiti, D. E. Kvasov, and
Y. D. Sergeyev. Cham: Springer International Publishing, 2017, pp. 331�337.

[82] H. Heitsch and W. Römisch. �Scenario Reduction Algorithms in Stochastic Programming�. In:
Computation Optimization and Applications 24.2-3 (2003), pp. 187�206.

[83] H. Heitsch and W. Römisch. �Scenario Tree Reduction for Multistage Stochastic Programs�. In:
Computational Management Science 6 (2009), pp. 117�133.

[84] L. Hellemo, K. Midthun, A. Tomasgard, and A. Werner. �Multi-Stage Stochastic Programming for
Natural Gas Infrastructure Design with a Production Perspective�. In: Stochastic Programming.
2013. Chap. 10, pp. 259�288.

[85] L. Hellemo, K. Midthun, A. Tomasgard, and A. Werner. �Natural Gas Infrastructure Design with
an Operational Perspective�. In: Energy Procedia 26.0 (2012). 2nd Trondheim Gas Technology
Conference, pp. 67 �73. issn: 1876-6102.

[86] R. Henrion. �Gradient estimates for Gaussian distribution functions: Application to probabilis-
tically constrained optimization problems�. In: Numerical Algebra, Control and Optimization 2
(2012), pp. 655�668.

[87] R. Henrion. �Introduction to chance constraint programming�. In: Tutorial paper for the Stochastic
Programming Community HomePage, http://www.wias-berlin.de/people/henrion/publikat.html (2004).

[88] R. Henrion and A. Möller. �Optimization of a continuous distillation process under random in�ow
rate�. In: Computer & Mathematics with Applications 45 (2003), pp. 247�262.

[89] R. Henrion and W. Römisch. �Metric regularity and quantitative stability in stochastic programs
with probabilistic constraints.� In: Mathematical Programming 84 (1999), pp. 55�88.

[90] R. Henrion and C. Strugarek. �Convexity of Chance Constraints with Dependent Random Vari-
ables: the use of Copulae.� In: Stochastic Optimization Methods in Finance and Energy: New
Financial Products and Energy Market Strategies. Ed. by M. Bertocchi, G. Consigli, and M.
Dempster. International Series in Operations Research and Management Science. Springer, 2011,
pp. 427�439.

[91] R. Henrion and C. Strugarek. �Convexity of Chance Constraints with Independent Random Vari-
ables�. In: Computational Optimization and Applications 41 (2008), pp. 263�276.

[92] M. Hintermüller. �A Proximal Bundle Method Based on Approximate Subgradients�. In: Compu-
tational Optimization and Applications 20 (3 2001). 10.1023/A:1011259017643, pp. 245�266.

[93] J.-B. Hiriart-Urruty. �Generalized Di�erentiability / Duality and Optimization for Problems Deal-
ing with Di�erences of Convex Functions�. In: Convexity and Duality in Optimization: Proceedings
of the Symposium on Convexity and Duality in Optimization Held at the University of Gronin-
gen, The Netherlands June 22, 1984. Ed. by J. Ponstein. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1985, pp. 37�70.

[94] J.-B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms. Grund.
der math. Wiss 305-306. (two volumes). Springer-Verlag, 1993.

125

[95] J. Hiriart-Urruty. Optimisation et analyse convexe. Presses Universitaires de France, 1998. isbn:
9782130489832.

[96] J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I. 2nd.
Grundlehren der mathematischen Wissenschaften 305. Springer-Verlag, 1996, p. 418.

[97] K. Holmberg and H. Tuy. �A production-transportation problem with stochastic demand and
concave production costs�. In: Mathematical Programming 85.1 (1999), pp. 157�179.

[98] J. N. Hooker and G. Ottosson. �Logic-based Benders decomposition�. In: Math. Programming 96
(2003), pp. 33�60.

[99] M. Houda and A. Lisser. �On the Use of Copulas in Joint Chance-constrained Programming�. In:
Proceedings of the 3rd International Conference on Operations Research and Enterprise Systems.
2014, pp. 72�79.

[100] A. F. Izmailov and M. V. Solodov. Newton-Type Methods for Optimization and Variational Prob-
lems. 1st. Springer Series in Operations Research and Financial Engineering. Springer Interna-
tional Publishing, 2014, p. 573.

[101] K. Joki, A. M. Bagirov, N. Karmitsa, and M. M. Mäkelä. �A proximal bundle method for nons-
mooth DC optimization utilizing nonconvex cutting planes�. In: Journal of Global Optimization
68.3 (2017), pp. 501�535.

[102] S. Kazempour and A. Conejo. �Strategic Generation Investment Under Uncertainty Via Benders
Decomposition�. In: Power Systems, IEEE Transactions on 27.1 (2012), pp. 424�432.

[103] J. Kelley. �The Cutting-Plane Method for Solving Convex Programs�. In: Journal of the Society
for Industrial and Applied Mathematics 8.4 (1960), pp. 703�712.

[104] W. Khalaf, A. Astorino, P. d'Alessandro, and M. Gaudioso. �A DC optimization-based clustering
technique for edge detection�. In: Optimization Letters 11.3 (2017), pp. 627�640.

[105] K. Kiwiel. �A proximal bundle method with approximate subgradient linearizations�. In: SIAM
Journal on Optimization 16.4 (2006), pp. 1007�1023.

[106] K. Kiwiel. �Proximal level bundle methods for convex nondi�erentiable optimization, saddle-point
problems and variational inequalities.� In: Math. Programming 69.1 (1995), pp. 89�109.

[107] A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello. �The Sample Average Approximation
Method for Stochastic Discrete Optimization�. In: SIAM Journal on Optimization 12.2 (Feb.
2002), pp. 479�502. issn: 1052-6234.

[108] A. Kolokolov and N. Kosarev. �Analysis of Decomposition Algorithms with Benders Cuts for
p-Median Problem�. In: Journal of Mathematical Modelling and Algorithms 5.2 (2006), pp. 189�
199.

[109] R. M. Kovacevic and A. Pichler. �Tree approximation for discrete time stochastic processes: a
process distance approach�. In: Annals of Operations Research 235.1 (2015), pp. 395�421.

[110] G. Lan. �Bundle-level type methods uniformly optimal for smooth and nonsmooth convex opti-
mization�. In: Mathematical Programming 149.1 (2015), pp. 1�45.

[111] A. Lanza, S. Morigi, and F. Sgallari. �Convex Image Denoising via Non-convex Regularization
with Parameter Selection�. In: Journal of Mathematical Imaging and Vision 56.2 (2016), pp. 195�
220. issn: 1573-7683.

[112] H. A. Le Thi and T. Pham Dinh. �DC programming in communication systems: challenging
problems and methods�. In: Vietnam Journal of Computer Science 1.1 (2014), pp. 15�28. issn:
2196-8896.

[113] H. A. Le Thi, T. Pham Dinh, and H. V. Ngai. �Exact penalty and error bounds in DC program-
ming�. In: Journal of Global Optimization 52.3 (2012), pp. 509�535.

[114] M. A. Lejeune. �Pattern-Based Modeling and Solution of Probabilistically Constrained Optimiza-
tion Problems�. In: Operations Research 60.6 (2012), pp. 1356�1372.

126

[115] M. A. Lejeune. �Pattern de�nition of the p-e�ciency concept�. In: Annals of Operations Research
200 (2012), pp. 23�36.

[116] M. A. Lejeune and N. Noyan. �Mathematical Programming Approaches for Generating p-E�cient
Points�. In: European Journal of Operational Research 207.2 (2010), pp. 590�600.

[117] M. A. Lejeune and A. Ruszczy«ski. �An e�cient Trajectory Method for Probablistic Production-
Inventory-Distribution Problems�. In: Operations Research 55.2 (2007), pp. 378�394.

[118] M. A. Lejeune and F. Margot. �Solving Chance-Constrained Optimization Problems with Stochas-
tic Quadratic Inequalities�. In: Operations Research 64.4 (2016), pp. 939�957.

[119] C. Lemaréchal. �Lagrangian decomposition and nonsmooth optimization: bundle algorithm, prox
iteration, augmented lagrangian�. In: Nonsmooth optimization methods and applications. Ed. by
F. Giannessi. Gordon & Breach, 1992, pp. 201�216.

[120] C. Lemaréchal, J. Malick, and S. Zaourar. �Coûts Marginaux en Production Journalière�. In:
Rapport Final du Contrat (2011), pp. 1�7.

[121] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. �New variants of bundle methods�. In: Math.
Programming 69.1 (1995), pp. 111�147.

[122] C. Lemaréchal and A. Renaud. �A geometric study of duality gaps, with applications�. In: Math.
Programming 90 (2001), pp. 399�427.

[123] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. �New variants of Bundle Methods�. In: Math.
Program. 69.1 (1995), pp. 111�147. issn: 0025-5610.

[124] X. Li, E. Armagan, A. Tomasgard, and P. I. Barton. �Long-term planning of natural gas produc-
tion systems via a stochastic pooling problem�. In: American Control Conference (ACC), 2010.
2010, pp. 429 �435.

[125] X. Li, Y. Chen, and P. I. Barton. �Nonconvex Generalized Benders Decomposition with Piece-
wise Convex Relaxations for Global Optimization of Integrated Process Design and Operation
Problems�. In: Industrial & Engineering Chemistry Research 51.21 (2012), pp. 7287�7299.

[126] C. w. Lu. �Image restoration and decomposition using nonconvex non-smooth regularisation and
negative Hilbert-Sobolev norm�. In: IET Image Processing 6.6 (2012), pp. 706�716.

[127] J. Luedtke. �A branch-and-cut decomposition algorithm for solving chance-constrained mathe-
matical programs with �nite support�. In: Mathematical Programming 146.1-2 (2014), pp. 219�
244.

[128] J. Luedtke and S. Ahmed. �A Sample Approximation Approach for Optimization with Proba-
bilistic Constraints�. In: SIAM Journal on Optimization 19 (2008), pp. 674�699.

[129] J. Luedtke, S. Ahmed, and G. Nemhauser. �An integer programming approach for linear programs
with probabilistic constraints�. In: Mathematical Programming 122.2 (2010), pp. 247�272.

[130] M. E. P. Maceira et al. �Ten years of application of stochastic dual dynamic programming in
o�cial and agent studies in Brazil � description of the NEWAVE program�. In: Power Systems
Computation Conference, 2008. 2008, pp. 429 �435.

[131] T. L. Magnanti and R. T. Wong. �Accelerating Benders decomposition: algorithmic enhancement
and model selection criteria.� In: Operations Research 29.3 (1981), pp. 464�484.

[132] P. Mahey, A. Benchakroun, and F. Boyer. �Capacity and �ow assignment of data networks by
generalized Benders decomposition�. In: Journal of Global Optimization 20.2 (2001), pp. 173�193.

[133] J. Malick, W. de Oliveira, and S. Zaourar. �Uncontrolled inexact information within bundle
methods�. In: EURO Journal on Computational Optimization 5.1 (2017), pp. 5�29.

[134] J. Mayer. On the Numerical solution of jointly chance constrained problems. Chapter 12 in [197].
1st. Springer, 2000, pp. 220�235.

[135] A. McNeil and J. Ne²lehová. �Multivariate Archimedian Copulas, D-Monotone functions and l1
norm symmetric distributions�. In: The Annals of Statistics 37 (2009), pp. 3059�3097.

127

[136] R. Montemanni and L. M. Gambardella. �The robust shortest path problem with interval data
via Benders decomposition�. In: 4OR 3.4 (2005), 315328.

[137] J. J. Moreau. �Proximité et dualité dans un espace Hilbertien�. In: Bulletin de la Société Mathé-
matique de France 93 (1965), pp. 273�299.

[138] D. Morgan, J. Eheart, and A. Valocchi. �Aquifer remediation design under uncertainty using a
new chance constraint programming technique�. In:Water Resources Research 29 (1993), pp. 551�
561.

[139] A. Mouda� and M. Oliny. �Convergence of a splitting inertial proximal method for monotone
operators�. In: Journal of Computational and Applied Mathematics 155.2 (2003), pp. 447 �454.
issn: 0377-0427.

[140] E. Munõz and M. Stolpe. �Generalized Benders Decomposition for topology optimization prob-
lems�. In: Journal of Global Optimization 51.1 (2011), pp. 149�183.

[141] R. B. Nelsen. An Introduction to Copulas. 2nd. Springer Series in Statistics. Springer, 2006, p. 272.

[142] Y. Nesterov. Introductory Lectures on Convex Optimization. A Basic Course. Vol. 87. Applied
Optimization. Springer Science, 2004, pp. 1�236.

[143] N. Newhan. �Power system investment planning using stochastic dual dynamic programming�.
http://hdl.handle.net/10092/1975. PhD thesis. University of Canterbury, New Zealand, 2008.

[144] M. Nikolova, M. K. Ng, and C. P. Tam. �Fast Nonconvex Nonsmooth Minimization Methods
for Image Restoration and Reconstruction�. In: IEEE Transactions on Image Processing 19.12
(2010), pp. 3073�3088.

[145] �Nonconvex Generalized Benders Decomposition for Stochastic Separable Mixed-Integer Nonlin-
ear Programs�. In: Journal of Optimization Theory and Applications 151 (3 2011), pp. 425�454.
issn: 0022-3239.

[146] P. Ochs, Y. Chen, T. Brox, and T. Pock. �iPiano: Inertial Proximal Algorithm for Nonconvex
Optimization�. In: SIAM Journal on Imaging Sciences 7.2 (2014), pp. 1388�1419.

[147] W. de Oliveira and C. Sagastizábal. �Bundle methods in the XXI century: A birds'-eye view�.
In: Pesquisa Operaciona 34.3 (2014), pp. 647�670.

[148] W. de Oliveira and C. Sagastizábal. �Level Bundle Methods for Oracles with On Demand Accu-
racy�. In: Optimization Methods and Software 29.6 (2014), pp. 1180�1209.

[149] W. de Oliveira, C. Sagastizábal, and C. Lemaréchal. �Convex proximal bundle methods in depth:
a uni�ed analysis for inexact oracles�. In: Math. Prog. Series B 148 (2014), pp. 241�277.

[150] W. de Oliveira. �Regularized optimization methods for convex MINLP problems�. In: TOP 24.3
(2016), pp. 665�692.

[151] H. Osman and K. Demirli. �A bilinear goal programming model and a modi�ed Benders decom-
position algorithm for supply chain recon�guration and supplier selection�. In: Int. J. Production
Economics 124 (2010), pp. 97�105.

[152] N. Oudjane. Utilisation des copules pour la gestion du risque. Tech. rep. HI-23/2002/006. EDF
R&D, 2002, pp. 1�50.

[153] A. Ouorou. �A proximal cutting plane method using Chebychev center for nonsmooth convex
optimization�. In: Math. Program. 119.2 (2009), pp. 239�271.

[154] G. Pagès and J. Printems. �Optimal quadratic quantization for numerics: the Gaussian case�. In:
Monte Carlo Methods and Applications 9.2 (2003), pp. 135�166.

[155] J.-S. Pang, M. Razaviyayn, and A. Alvarado. �Computing B-Stationary Points of Nonsmooth DC
Programs�. In: Mathematics of Operations Research 42.1 (2017), pp. 95�118.

[156] B. S. Pay and Y. Song. �Partition-based decomposition algorithms for two-stage Stochastic integer
programs with continuous recourse�. In: Annals of Operations Research (2017).

[157] M. Pereira and L. Pinto. �Multi-stage Stochastic optimization applied to energy planning�. In:
Mathematical Programming 52.2 (1991), pp. 359�375.

128

[158] G. C. P�ug and A. Pichler. �A Distance For Multistage Stochastic Optimization Models�. In:
SIAM Journal on Optimization 22.1 (2012), pp. 1�23.

[159] G. C. P�ug and A. Pichler. �Approximations for Probability Distributions and Stochastic Opti-
mization Problems�. In: Stochastic Optimization Methods in Finance and Energy. Springer New
York, 2011, pp. 343�387.

[160] G. C. P�ug and M. Pohl. �A Review on Ambiguity in Stochastic Portfolio Optimization�. In:
Set-Valued and Variational Analysis (2017).

[161] G. C. P�ug and W. Römisch. Modeling, Measuring and Managing Risk. WORLD SCIENTIFIC,
2007, p. 304.

[162] B. Polyak. �Some methods of speeding up the convergence of iteration methods�. In: USSR Com-
putational Mathematics and Mathematical Physics 4.5 (1964), pp. 1�17.

[163] A. Prékopa. �Dual Method for a one-stage stochastic programming problem with random rhs
obeying a discrete probabiltiy distribution.� In: Z. Operations Research 34 (1990), pp. 441�461.

[164] A. Prékopa. �Logarithmic Concave Measures with Applications to Stochastic Programming�. In:
Acta Scientiarium Mathematicarum (Szeged) 32 (1971), pp. 301�316.

[165] A. Prékopa. �Probabilistic programming.� In: Stochastic Programming. Ed. by A. Ruszczy«ski
and A. Shapiro. Vol. 10. Handbooks in Operations Research and Management Science. Elsevier,
Amsterdam, 2003, pp. 267�351.

[166] A. Prékopa. Stochastic Programming. Kluwer, Dordrecht, 1995.

[167] A. Prékopa and T. Szántai. �Flood Control reservoir system design using stochastic programming�.
In: Math. Programming Study 9 (1978), pp. 138�151.

[168] A. Prékopa and T. Szántai. �On optimal regulation of a storage level with application to the water
level regulation of a lake�. In: European Journal of Operations Research 3 (1979), pp. 175�189.

[169] A. Prékopa, B. Vízvári, and T. Badics. �Programming under probabilistic constraints with discrete
random variable.� In: New Trends in Mathematical Programming : Hommage to Steven Vajda.
Ed. by F. Giannessi, S. Komlósi, and T. Rapcsák. Vol. 13. Applied Optimization. Springer, 1998,
pp. 235�255.

[170] S. Rebenack. �Combining sampling-based and scenario-based nested Benders decomposition meth-
ods: application to stochastic dual dynamic programming�. In: Math. Programming To Appear
(2015), pp. 1�47.

[171] R. T. Rockafellar. �Monotone operators and the proximal point algorithm�. In: SIAM Journal on
Control and Optimization 14 (1976), pp. 877�898.

[172] R. T. Rockafellar and R.-B. Wets. �A Lagrangian �nite generation technique for solving linear-
quadratic problems in stochastic programming�. In: Mathematical Programming Study 28 (1986),
pp. 63�93.

[173] R. Rockafellar. Convex Analysis. 1st. Princeton University Press, 1970, p. 472.

[174] A Ruszczy«ski. �A Regularized Decomposition Method for Minimizing a Sum of Polyhedral Func-
tions�. In: Math. Program. 35 (3 1986), pp. 309�333.

[175] A. Ruszczy«ski. �Probabilistic programming with discrete distributions and precedence con-
strained knapsack polyhedra.� In: Mathematical Programming 93 (2002), pp. 195�215.

[176] C. Sagastizábal. �Divide to conquer: decomposition methods for energy optimization�. In: Math-
ematical Programming 134 (1 2012), pp. 187�222. issn: 0025-5610.

[177] G. K. D. Sahiridis, M. G. Ierapetritou, and C. A. Floudas. Benders Decomposition and Its Ap-
plication in Engineering. Vol. 210. Annals of Operations Research. Springer, 2013, pp. 1�432.

[178] G. K. D. Sahiridis, M. Minoux, and M. G. Ierapetritou. �Accelerating Benders method using
covering cut bundle generation�. In: International Transactions In Operational Research 17 (2010),
pp. 221�237.

129

[179] T. Santoso, S. Ahmed, M. Goetschalckx, and A. Shapiro. �A stochastic programming approach
for supply chain network design under uncertainty�. In: European Journal of Operational Research
167.1 (2005), pp. 96 �115. issn: 0377-2217.

[180] P. Schütz, A. Tomasgard, and S. Ahmed. �Supply chain design under uncertainty using sample
average approximation and dual decomposition�. In: European Journal of Operational Research
199.2 (2009), pp. 409 �419.

[181] A. Shapiro, D. Dentcheva, and A. Ruszczy«ski. Lectures on Stochastic Programming. Modeling
and Theory. Vol. 9. MPS-SIAM series on optimization. SIAM and MPS, Philadelphia, 2009.

[182] H. Sherali and B. J. Lunday. �On generating maximal nondominated Benders cuts�. In: Annals
of Operations Research 210.1 (2013), pp. 57�72.

[183] K. Singh, A. B. Philpott, and R. Wood. �Dantzig-Wolfe Decomposition for Solving Multistage
Stochastic Capacity-Planning Problems�. In: Operations Research 57.5 (2009), pp. 1271�1286.

[184] A. Sklar. �Fonctions de répartition à dimensions et leurs marges�. In: Publications and l'Institut
de Statistique de Paris 8 (1959), pp. 229�231.

[185] A. Sklar. �Random variables, joint distribution functions, and copulas�. In:Kybernetika 9.6 (1973),
pp. 449�460.

[186] R. van Slyke and R.-B. Wets. �L-shaped linear programs with applications to optimal control and
stochastic programming�. In: SIAM Journal of Applied Mathematics 17 (1969), pp. 638�663.

[187] M. V. Solodov. �A Bundle Method for a Class of Bilevel Nonsmooth Convex Minimization Prob-
lems�. In: SIAM Journal on Optimization 18.1 (2007), pp. 242�259.

[188] J. C. O. Souza, P. R. Oliveira, and A. Soubeyran. �Global convergence of a proximal linearized
algorithm for di�erence of convex functions�. In: Optimization Letters 10.7 (2016), pp. 1529�1539.

[189] A. Strekalovskiy. �An exact penalty method for D.C. optimization�. In: AIP Conference Proceed-
ings 1776.1 (2016), p. 060003.

[190] A. Strekalovsky and I. Minarchenko. �On local search inD.C. optimization�. In: 2017 Constructive
Nonsmooth Analysis and Related Topics (dedicated to the memory of V.F. Demyanov) (CNSA).
2017, pp. 1�4.

[191] A. S. Strekalovsky. �On local search in d.c. optimization problems�. In: Applied Mathematics and
Computation 255.1 (2015), pp. 73�83.

[192] E. Tamm. �On g-concave functions and Probability measures (Russian)�. In: Eesti NSV Teaduste
Akademia Toimetised, Füüsika-Matemaatika 28 (1977), pp. 17�24.

[193] P. D. Tao and L. T. H. An. �Convex analysis approach to DC programming: theory, algorithms
and applications�. In: Acta Mathematica Vietnamica 22.1 (1997), pp. 289�355.

[194] P. D. Tao and E. B. Souad. �Algorithms for Solving a Class of Nonconvex Optimization Problems.
Methods of Subgradients�. In: North-Holland Mathematics Studies 129 (1986), pp. 249 �271.

[195] P. K. Trivedi and D. M. Zimmer. �Copula Modeling: An Introduction for Practitioners�. In:
Foundations and Trends in Econometrics 1.1 (2007), pp. 1�111.

[196] H. Tuy. Convex Analysis and Global Optimization. 2nd. Springer Optimization and Its Applica-
tions. Springer, 2016, pp. XVI, 505. isbn: 1931-6828.

[197] S. Uryas'ev (ed). Probabilistic Constrained Optimization: Methodology and Applications. Kluwer
Academic Publishers, 2000, pp. 1�320.

[198] H. Üster, G. Easwaran, E. Akçali, and S. Çetinkaya. �Benders decomposition with alternative
multiple cuts for a multi-product closed-loop supply chain network design model�. In: Naval
Research Logistics (NRL) 54.8 (2007), pp. 890�907.

[199] W. van Ackoij, W. de Oliveira, and Y. Song. On regularization with normal solutions in decom-
position methods for multistage stochastic programming. Tech. rep. 5806. 2017, pp. 1�27. url:
http://www.optimization-online.org/DB_HTML/2017/01/5806.html.

130

[200] W. van Ackooij and R. Henrion. �(Sub-)Gradient Formulae for Probability Functions of Ran-
dom Inequality Systems under Gaussian Distribution�. In: SIAM/ASA Journal on Uncertainty
Quanti�cation 5.1 (2017), pp. 63�87.

[201] W. van Ackooij and W. de Oliveira. Nonsmooth DC-constrained optimization: constraint quali�ca-
tion and minimizing methodologies. Tech. rep. CMA - Mines ParisTech. Available at www.oliveira.mat.br,
2017.

[202] W. van Ackooij, W. de Oliveira, and Y. Song. �Adaptive Partition-Based Level Decomposition
Methods for Solving Two-Stage Stochastic Programs with Fixed Recourse�. In: INFORMS Journal
on Computing 30.1 (2018), pp. 57�70.

[203] W. van Ackooij, A. Frangioni, and W. de Oliveira. �Inexact stabilized Benders' decomposition ap-
proaches with application to chance-constrained problems with �nite support�. In: Computational
Optimization and Applications 65.3 (2016), pp. 637�669.

[204] A. Veinott. �The supporting hyperplane method for unimodal programming�. In: Operations Re-
search 15 (1967), pp. 147�152.

[205] A. Wachter and L. T. Biegler. �On the implementation of an interior-point �lter line-search
algorithm for large-scale nonlinear programming�. In: Mathematical Programming 106.1 (2006),
pp. 25�57.

[206] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. �Image quality assessment: from
error visibility to structural similarity�. In: IEEE transactions on image processing 13.4 (2004),
pp. 600�612.

[207] P. Wentges. �Accelerating Benders' Decomposition for the Capacitated Facility Location Prob-
lem�. In: Mathematical Methods of Operations Research 44.2 (1996), pp. 267�290.

[208] C. Wolf, C. I. Fábián, A. Koberstein, and L. Stuhl. �Applying oracles of on-demand accuracy in
two-stage stochastic programming. A computational study�. In: European Journal of Operational
Research 239.2 (2014), pp. 437�448.

[209] C. Wolf, C. I. Fábián, A. Koberstein, and L. Stuhl. �Applying oracles of on-demand accuracy in
two-stage stochastic programming. A computational study�. In: European Journal of Operational
Research 239.2 (2014), pp. 437�448.

[210] H. Xu. �Level Function Method for Quasiconvex Programming�. In: Journal of Optimization
Theory and Applications 108.2 (2001), pp. 407�437.

[211] Y. Yang and J. M. Lee. �A tighter cut generation strategy for acceleration of Benders decompo-
sition�. In: Computers and Chemical Engineering 44 (2012), pp. 84�93.

[212] Z. M. Zadeh and E. Khorram. �Convexity of chance constrained programming problems with
respect to a new generalized concavity notion�. In: Annals of Operations Research 196.1 (2012),
pp. 651�662.

[213] G. Zakeri, A. Philpott, and D. M. Ryan. �Inexact cuts in Benders decomposition�. In: SIAM
Journal on Optimization 10.3 (2000), pp. 643�657.

[214] S. Zaourar and J. Malick. �Prices stabilization for inexact unit-commitment problems�. In: Math-
ematical Methods of Operations Research 78.3 (2013), pp. 341�359.

[215] C. J. Zappe and A. V. Cabot. �The Application Of Generalized Benders Decomposition To Certain
Nonconcave Programs�. In: Computers Math. Applic. 21.6/7 (1991), pp. 181�190.

[216] S. K. Zavriev and F. V. Kostyuk. �Heavy-ball method in nonconvex optimization problems�. In:
Computational Mathematics and Modeling 4.4 (1993), pp. 336�341.

131

