
HAL Id: tel-02113377
https://hal.science/tel-02113377v1

Submitted on 28 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical Time in Model-Driven Engineering
Frédéric Mallet

To cite this version:
Frédéric Mallet. Logical Time in Model-Driven Engineering. Embedded Systems. Université Nice
Sophia Antipolis, 2010. �tel-02113377�

https://hal.science/tel-02113377v1
https://hal.archives-ouvertes.fr

UNIVERSITÉ NICE-SOPHIA ANTIPOLIS

École Doctorale STIC

Habilitation à Diriger des Recherches

Spécialité: INFORMATIQUE

par

Frédéric MALLET

Logical Time in Model-Driven
Engineering

Soutenue publiquement le 26 novembre 2010 devant le jury composé
de:

Rapporteurs M. Robert France Professor CSU
M. Suzanne Graf DR CNRS/HDR
M. Jean-Pierre Talpin DR INRIA/HDR

Président M. François Terrier DR CEA/Professor

Examinateurs M. Charles André Professor UNS
M. Robert de Simone DR INRIA/HDR

Laboratoire I3S, salle de conférences

Preface

In this document, I introduce some work realized over the last few years in col-

laboration with the team-project Aoste and other people with various backgrounds.

AOSTE is a joint team between I3S and INRIA, bi-localized in Sophia Antipolis and

Rocquencourt. It builds on previous experience by research scientists from the former

TICK and OSTRE INRIA teams, and the I3S SPORTS team from the University of

Nice-Sophia antipolis. Aoste tackles several topics in the design methodologies for

real-time embedded systems. Here design means altogether:

� High-Level Modeling ;

� Transformation and Analysis ;

� Implementation onto Embedded platforms.

To cover this vast spectrum of subjects we need to specialize the type of formalisms

considered. Aoste focuses on synchronous reactive systems, such as Esterel/SyncCha-

rts, and on the AAA methodology. Part of our activity is devoted to enrich the Model

Based Design approach with a proper uml modeling diagrams and profiles with el-

ements allowing for efficient modeling and embedding of synchronous designs. The

main idea was to extend the Unified Modeling Language (uml) so as it could be used

for the design of embedded and real-time systems. uml provides a broad range of

diagrams to cover all aspects of a system (e.g., requirements, object models, func-

tional models, state machines, data flows, deployment). It allows extensions through

the definition of profiles and seems to be a good front-end to capture models. These

models need a precise semantics and depending on the analysis context the same

i

diagrams may be interpreted with a different semantics. To allow interoperability of

models, the expected interpretation must not be left outside the model and should

rather be made explicit within the model.

Following some collaborations with the CEA-List and Thalès Research & Tech-

nology, we have had the opportunity to contribute to the definition of the uml profile

for Modeling and Analysis of Real-Time and Embedded systems (marte) by the

Object Management Group (omg). The main part of this contribution was to lead

the definition of its model and allocation models. Inspired by our background in

synchronous reactive systems, we setup in 2005 to define a language, called the Clock

Constraint Specification Language (ccsl), as a support to make explicit the causal

and chronological relations between events of a system. Even though it was devised

as a companion language for uml/marte models, ccsl has been developed indepen-

dently and is now defined as a model (rather than a language) that can complement

not only uml models but also non-uml ones (e.g., ecore-based).

The first part of this document describes ccsl. The remaining two parts give

usage examples of ccsl for modeling (Part II) and for verification (Part III).

ii

Acknowledgement

I must say that, as most research works, this work would not have been possible

without the help and contribution of several administrative, engineering and research

staff and students. So I want to thank every one that felt concerned by this work at

some point or another.

I am greatly in debt to the referees and members of my examination committee.

In a time where the administrative duties are overwhelming I know how demanding

it may be to read and report on dissertations. I am grateful that they took some of

their time to do it for me and to be part of my committee.

I also want to thank the Aoste team members, current and paste, for being good

sparring partners and our assistants for helping me through the administrative maze.

Special thanks to Charles, for his great work in defining ccsl, for his huge contribu-

tion to this work and for having always been very helpful and ready to discuss. Many

thanks to Robert for, as team leaders should do, providing the resources required to

foster research activity (research tracks, fundings and collaboration partners).

I have special thoughts for Fernand who has followed my work since the begin-

ning of my Master. He has been of a great support to decrypt and synthesize the

tremendous work of philosophers and physicists who have, for ages, tried to grasp the

essential nature of time.

To my parents,

To Iris,

To Luc & Vincent.

iii

Contents

Preface i

Acknowledgement iii

I Logical Time at/as design time 1

1 Background 3

1.1 Models of Computation and Communication 3

1.2 Events, causality, exclusion . 6

1.3 Tag structures . 8

1.4 Logical time and logical clocks . 11

2 The Clock Constraint Specification Language 13

2.1 Instants, clocks and time structures 13

2.2 Clock constraints . 16

2.2.1 Coincidence-based clock constraints 16

2.2.2 Derived coincidence-based clock constraints 17

2.2.3 Precedence-based clock constraints 18

2.2.4 Derived precedence-based clock constraints 19

2.2.5 Mixed constraints . 20

2.2.6 TimeSquare . 22

2.3 UML for Real-Time and Embedded systems 23

iv

2.3.1 UML, SPT, Marte . 23

2.3.2 Marte Time profile . 25

2.3.3 UML and formal methods . 27

2.3.4 UML and synchronous languages 28

2.3.5 SysML/Marte . 29

2.4 The future of MARTE Time Model 31

3 How does CCSL compare ? 33

3.1 Petri Nets . 34

3.1.1 Time Petri nets . 34

3.1.2 Encoding CCSL operators in Time Petri nets 35

3.2 Process networks . 38

3.2.1 Synchronous Data Flow . 38

3.2.2 A CCSL library for SDF . 39

3.2.3 Discussion and perspectives 40

3.3 Polychronous languages . 42

3.3.1 Signal . 42

3.3.2 Encoding CCSL operators in Signal 43

3.3.3 Hierarchization of CCSL clock constraints 47

3.4 Perspectives . 48

II Modeling 51

4 The automotive domain 53

4.1 An ADL for automotive software: East-ADL2 53

4.1.1 Timing Requirements . 54

4.1.2 Example: An ABS controller 56

4.2 A CCSL library for East-ADL . 57

4.2.1 Applying the UML profile for Marte 57

4.2.2 Repetition rate . 58

4.2.3 Delay requirements . 59

v

4.3 Analysis of East-ADL specification 60

4.4 Perspectives . 61

5 The avionic domain 63

5.1 Architecture & Analysis Description Language 64

5.1.1 Modeling elements . 64

5.1.2 AADL application software components 64

5.1.3 AADL execution platform components 65

5.1.4 AADL flows . 65

5.1.5 AADL ports . 66

5.2 From AADL to UML Marte . 66

5.2.1 Two layers or more . 66

5.2.2 AADL application software components 68

5.2.3 Modeling ports . 69

5.3 Describing AADL models with Marte 69

5.3.1 AADL flows with Marte . 69

5.3.2 Five aperiodic tasks . 71

5.3.3 Mixing periodic and aperiodic tasks 72

5.4 Perspectives . 74

III Verification 75

6 Building language-specific observers for CCSL 77

6.1 The generation process . 77

6.2 Adapters . 80

6.2.1 In Esterel . 80

6.2.2 In VHDL . 80

6.3 Relation observers . 81

6.3.1 In Esterel . 82

6.3.2 In VHDL . 82

6.4 Generators . 83

vi

6.4.1 In Esterel . 84

6.4.2 In VHDL . 85

6.5 Perspectives . 86

7 Verifying Esterel implementations 87

7.1 Example: a digital filter . 87

7.2 CCSL specification . 88

7.3 Running simulations with TimeSquare 91

7.4 Analysis with Esterel observers . 92

8 Verifying VHDL implementations 95

8.1 Example: an AMBA AHB to APB Bridge 95

8.2 CCSL specification . 96

8.3 Analysis with VHDL observers . 99

IV Conclusion 103

Bibliography 106

vii

List of Figures

1.1 Exclusion in occurrence nets and event structures 6

1.2 Causality and exclusion . 7

1.3 Enabling and consistency. 8

1.4 Tag structure by example . 10

1.5 Logical clocks by example . 10

2.1 Graphical representation of instant relations 15

2.2 Coincidence-based clock constraint 17

2.3 Precedence-based clock constraint . 19

2.4 Sampling constraints . 21

2.5 SysML parametric diagrams . 30

3.1 Precedence and alternation in Time Petri net 35

3.2 B isPeriodicOn A period=P offset=δ 36

3.3 Operator defer: B = A $C 2 . 37

3.4 CCSL alternatesWith encoded as an automaton 43

4.1 The metamodel of East-ADL Timing Requirements. 55

4.2 Timing requirements for the ABS . 56

4.3 Example of the ABS . 57

4.4 Executing the east-adl specification of the ABS with timesquare . . 60

5.1 The example in AADL . 64

5.2 Three-layer approach with Marte . 67

5.3 A UML/Marte library for AADL threads 68

viii

5.4 End to end flows with UML Marte 70

5.5 AADL thread activation conditions denoted as CCSL clocks 71

5.6 Five aperiodic tasks. 71

5.7 Mixing periodic and aperiodic tasks. 73

6.1 The observation network structurally reflects the ccsl model 79

7.1 Some time constraints on the DF behavior 89

7.2 Pixel dependency . 90

7.3 One acceptable solution generated by TimeSquare 92

8.1 A typical write transfer through the bridge 97

8.2 Sample Execution of Constraint 3 on CCSL Simulator 100

ix

x

Part I

Logical Time at/as design time

1

2

ccsl has arisen from different inspiring models in an attempt to abstract away the

data and the algorithms and to focus on events and control. Even though ccsl was

initially defined as the time model of the uml profile for marte, it has now become

a full-fledged domain-specific modeling language for capturing causal, chronological

and timed relationships. It is intended to be used as a complement of other syntactic

models that capture the data structure, the architecture and the algorithm.

Chapter 1 introduces the background and the historical models of concurrency

that have inspired the construction of ccsl. Chapter 2 introduces ccsl and its

relationships to the uml and marte. Chapter 3 compares ccsl to related concurrent

models.

Chapter 1

Background

1.1 Models of Computation and Communication

Embedded systems are built by assembling various kinds of concurrent components

: hardware or software. For hardware components, the concurrency is physical be-

cause components actually run in parallel; hardware description languages consider

components as concurrent processes that communicate through shared signals. Em-

bedded software is increasingly a composition of concurrent processes and departs

from traditional software engineering by making explicit the concurrency and by of-

fering mechanisms to model the time. For software components, the concurrency

is potential and mainly due to the dependency or rather independence between data

(and control) processed by algorithms. In both cases, the components interact in a va-

riety of ways, not limited to the simple transfer of control of the classical synchronous

message-passing mechanism predominantly used in software engineering. Compo-

nents represent computations (or communications) and their interaction are governed

by so-called Models of Computation1 and Communication (MoCC) [Lee00, Jan03].

The heterogeneity of modern systems requires the joint use of several MoCCs and a

1Computational models have been developed as early as the 1930s, Turing Machines are examples.
The term ”Model of Computation” came in use much later in the 1970s. The use of ”Model of
Computation and Communication” is even more recent (2000s). It underlines the actual effort to
design computations and communications separately.

3

4 CHAPTER 1. BACKGROUND

framework to combine them [EJL+03]: state machines for control-dominant aspects,

data-flow for data-intensive processing, discrete-event to deal with mainly aperiodic

systems, time-triggered or synchronous when predictability is required.

Following Petri’s view, computations (processes) are often represented in terms of

their events, on which they synchronize, and their effect on local states 2.

Untimed (causal) models focus on the causal dependency and conflicts between

events. The word event refers either to one occurrence of a certain ’atomic’ action

or to the set of all the occurrences of this action, depending on the level considered.

Atomicity, meaning here instantaneous or without duration, also largely depends on

the abstraction level; what is considered as indivisible at a certain level–because its

duration is negligible compared to other actions–may have a complex structure when

refined. Examples of untimed models include Petri’s Transition Nets [Pet87], where a

transition represents a set of all the occurrences of a given action, occurrence nets and

event structures [NPW81], where each transition represents a single occurrence. It

also includes untimed process algebras like CCS [Mil80] or CSP [Hoa78], that consider

processes as primitive elements and not only events. In that context, event names

denote an event class and there may be many occurrences of events in a single class.

A major difference with causal nets resides in the communications. Communications

in causal nets are through events of mutual synchronization, whereas process calculi

use (synchronous or asynchronous) channels.

While untimed models mainly deal with causality, timed models deal with sequen-

tialization [KK98], i.e., an action must occur before another one in some sequential-

ization, in some temporal ordering of events. Causality clearly induces sequentializa-

tion, if a causes b, then b must never be observed before a in any sequentialization.

However, causality is not the only reason for sequentialization. There may be some

extra-functional reasons: it has been decided that an event should occur periodically

every 10 ms because of some (arbitrary or not) reasons, because of the way the sam-

pling mechanism was designed, because by doing so, there will only be some harmonic

2Strachey and Scott assumed a view as a function acting in a continuous fashion between
datatypes, but the event-based view is closer to our preoccupations.

1.1. MODELS OF COMPUTATION AND COMMUNICATION 5

task sets and some scheduling algorithms would apply. Extra-functional considera-

tions are essential for embedded systems and time is one of the property that must

be taken into account, especially in safety-critical hard real-time systems. Time has

deliberately been ignored by untimed models, not only to simplify the designs and

reasoning but also because it was considered purely extra-functional and so, had to

be treated independently of the logical correctness of the design.

“Another detail which we have deliberately chosen to ignore is the exact timing

of occurrences of events. The advantage of this is that designs and reasoning about

them are simplified, and furthermore can be applied to physical and computing systems

of any speed and performance. In cases where timing of responses is critical, these

concerns can be treated independently of the logical correctness of the design. Inde-

pendence of timing has always been a necessary condition to the success of high-level

programming languages.”

C.A.R. Hoare, Communicating Sequential Processes, 2005.

However, in parallel computations, time is not solely a performance issue as it is

in sequential computations, but it can alter the functional behavior. In a system-

on-chip with multiple time domains for instance, the relative frequency between the

processor clock and the bus clock has an impact on the global functional behavior. In

real-time systems, it is sometimes preferable to send approximate data rather than

sending them too late (e.g., video processing), this means altering the actual function

performed not to miss a deadline. It is sometimes preferable not to send a data when

we know it will arrive too late, e.g., to save resources. Time constraints that have

an impact on the logical correctness should therefore be integrated into the model.

When addressing these problems where time is part of the functional specification,

time is qualified as logical [Lam78], as opposed to physical. It does not necessarily

means that the actual timing must be included in the model but that at least the

relative orderings must be considered.

The purpose of this work is to propose a model that combines causal and time

aspects.

6 CHAPTER 1. BACKGROUND

1.2 Events, causality, exclusion

Let us consider a set E of event occurrences. We do not say what events are, they

can be anything performed by a process as time goes on. Two primitive relations are

considered between events: exclusion and causal dependency.

For various reasons, some events may exclude some others. It may be because

physically two values cannot be at the same time at some place or because they

compete for the same resource. Forwards conflicts in occurrence nets (see Fig. 1.1-a)

are simple examples that induce an exclusion. a and b shares the same condition, so

if a occurs then b will never occur and vice-versa. In, Figure 1.1-b, the relation is

directly denoted by the dashed line connecting two events. The upper right figure

denotes events as in place/transition nets. The lower right figure is more concise.

a) Forwards conflict in occurrence nets

a b

b) Exclusion in event structures

a b

event

dependency

condition

ba
event

exclusion

Figure 1.1: Exclusion in occurrence nets and event structures

Some events may cause others. Causality is not really the right English word,

it rather denotes a necessity [Win08]. In that context, a causes b does not mean

that if a occurs then b must occur, but rather that b cannot occur, unless a has

already occurred. In the following, we abusively use the terminology causality or

causal dependency to remain consistent with other works on the topic. Figure 1.2-a

illustrates the causal dependency on an occurrence net: events a and b cannot occur

unless c has already occurred. Figure 1.2-b abstracts away the shared condition and

directly represents the causal dependency with a plain arrow directed from the cause

to the effect. It must be acknowledged that this kind of causality is purely logical and

not temporal (as might wrongly suggest the present perfect). It does not say anything

about the date at which the events occur but only specifies the logical ordering in

1.2. EVENTS, CAUSALITY, EXCLUSION 7

which events must occur. It differs from the (temporal) precedence relation introduced

later.

a b

a) Occurrence nets b) Event structures

a b

c
c

event

dependency

condition event

causality

exclusion

Figure 1.2: Causality and exclusion

There have been many presentations and variants of event structures. In [NPW79],

elementary event structures are simply a partially ordered set (E,≤), where E is a

set of events (occurrences) and ≤ ⊂ E × E is a partial ordering over E, called

the causality relation. Assuming that in physical systems, there is an upper bound

on the speed at which causality travels, a property of finite causes is considered:

∀e ∈ E, {e′ ∈ E|e′ ≤ e} is finite. In event structures, a conflict relation # ⊂ E × E,

a symmetrical and irreflexive relation on E, is added. The axiom of conflict heredity

is stated as follows: ∀e, e′, e′′ ∈ E, (e#e′ ∧ e′ ≤ e′′)⇒ e#e′′.

Later [Win86], the binary relations are replaced by N-ary relations. The en-

abling relation generalizes the causality relation and stands for events that have

multiple causes (AND-Causality [Gun92]) (see Fig. 1.3-a). A consistency predicate,

Con ⊂ Fin(E) over the finite subsets of E, generalizes the binary conflict relation

by picking out some events that can occur together. Figure 1.3-b shows the domain

of configurations for a simple consistency predicate. a is not directly in conflict with

neither b nor c, since {a, b} ∈ Con ∧ {a, c} ∈ Con but a will never occur when

both b and c have occurred. Ultimately, a, b, c cannot all occur: {a, b, c} /∈ Con.

The binary exclusion implies the following simple rule on the consistency predicate:

(a#b)⇒ (∀X ∈ Con)({a, b} * X).

8 CHAPTER 1. BACKGROUND

a

b

c

d

a) Enabling: {a,b,c} d b) Consistency:
Con = {{},{a},{b},{c},{a,b},{a,c},{b,c}}

{}

{a} {c}{b}

{a,b} {b,c}{a,c}

Figure 1.3: Enabling and consistency.

Flow event structures [BC88] are a more flexible notion of event structures ob-

tained by relaxing the axiom of conflict heredity, the finite cause property and by

replacing the causal dependency by a weaker (irreflexive) relation, the flow relation,

denoted ≺.

1.3 Tag structures

The notion of Tag Systems has been initially introduced in the Lee and Sangiovanni-

Vincentelli’s (LSV) tagged-signal model [LS98]. LSV is a denotational approach

where a system is modeled as a set of behaviors. Behaviors are sets of events. Each

event is characterized by a data value and a tag. It departs from the work on event

structures by not relying on the category theory to be more accessible. The paral-

lel composition of systems consists in taking the intersection of their corresponding

sets of behaviors. Tag Systems gave rise to Tag Structures [BCC+08] and to Tag

Machines [BCCSV05]. Tag structures aim at providing a compositional theory of

heterogeneous reactive systems. They restrain the generality of tag systems and give

more structure to the behaviors, which become finite sets of signals, signals being

sequences of events. They also introduce the concept of stretching to allow certain

deformations of the tags for behaviors. The stretching mechanism allows an entire

1.3. TAG STRUCTURES 9

characterization of the MoCCs. Parallel composition is allowed through the fibered

product of tag structures and requires an appropriate algebra. More formally, a tag

structure is a triple 〈T ,≤,Φ〉, where:

� T is a set of tags and (T ,≤) is a partial order;

� Φ is a set of increasing total functions φ : T → T , the set of stretching functions.

This work departs from the event structures by considering timed systems. Tags

are time stamps. For instance, the tag structure 〈N,≤, {id}〉, where ≤ is the usual

total order on natural numbers, can be used in modeling synchrony. Tags indicate

the reaction indices. The tag structure 〈R+,≤, {id}〉 can be used in modeling time-

triggered systems. Tags become real-time dates.

The stretching function Φ allows deformations of the tags. When Φ = {id} no

deformations are allowed and the structure is rigid. When, for instance, Φ is the set

of all dilating increasing functions, i.e., functions φ such that φ(τ) ≥ τ for all τ ∈ T ,

then the tags represent the earliest possible dates for execution of events.

Tag structures then consider a set of variables V . A behavior σ considers a finite

subset V ⊂ V with domain D and is a mapping defined as follows:

σ ∈ V → N→ (T ×D)

meaning that, for each v ∈ V , the nth occurrence of v in behavior σ has tag τ ∈ T
and value x ∈ D. For a given variable and a given behavior the clock is extracted.

The clock of v in σ is the first projection of the map σ(v) and must be an increasing

(order-preserving) function f : N→ T , i.e., f(≤N) ⊆ ≤T .

Figure 1.4 shows an example, where values are not displayed. T is a set of tags and

the solid arrows denote the partial order ≤. Each bold line represents a behavior for

a given variable. The dashed lines are the clocks for this behavior, the blue (upper)

ones for variable v1 and the red (lower) ones for variable v2. Note that, the third

event of v2 in σ has the same tag than the second event of v1 in σ. The two events

occur at the same time, they are coincident.

10 CHAPTER 1. BACKGROUND

1 2 3

T
Partial order

(T,≤)

σ(v2)

1 2
σ(v1)

Figure 1.4: Tag structure by example

We consider that clocks are central in such a model as they are in synchronous

languages. We propose a time model that abstracts away the values and focuses on

the clocks themselves. Figure 1.5 shows the same example with logical clocks. The

clock c1 represents the clock of σ(v1), whereas c2 represents the clock of σ(v2). Clock

c is introduced to capture the lonely tag not used in any of these two behaviors. The

plain vertical connection (in red) denotes a coincidence. The two instants (circles)

represent occurrences of events that are a priori independent. Forcing a simultaneous

occurrence of the events is done by mapping them to the same tag in the tag structure

model and by adding a coincidence relation in our model. The dashed arrow denotes

the precedence relationship that gives the ordering between the occurrences of the

two events. In this model, our clock is more an element of 2T with a proper total

order relation rather than a mapping to T (T N) as in tag structures.

1 2 3
c2

1 2
c1

c

Figure 1.5: Logical clocks by example

1.4. LOGICAL TIME AND LOGICAL CLOCKS 11

The next section discusses further the notions of logical time and clocks indepen-

dently of any specific model.

1.4 Logical time and logical clocks

Tag structures go beyond event structures by considering tags, which provide a sup-

port to model timed systems. The word time is used here in a very broad sense where

the relative ordering between events primes over the actual date. This logical time is

widely used in models dedicated to embedded, real-time, reactive systems and in par-

ticular it is the time model in use in synchronous languages [BCE+03]. Discrete-time

logical clocks (or simply logical clocks) represent/measure the logical time. Clocks

that refer to the “physical time” or real-time are called chronometric clocks. Logical

clocks as originally defined by Lamport [Lam78] are a special case introduced as a

support to build a distributed synchronization algorithm.

Logical time is sometimes qualified as multiform. Indeed, when renouncing to

represent the physical time only, the same model can be used to represent chronolog-

ical relationships between events on different natures. Chronology being the order in

which a series of events occur. The events can be ticks of a processor or cycles of a

communication bus, but also ticks emit by sensor that measures the rotation degree

of a crankshaft in an engine or the sending of a message between two components.

(Logical) clocks are central in synchronous languages and play an important role

in tag structures. We propose a model called the Clock Constraint Specification

Language (ccsl) dedicated to building logical clocks and expressing relations on

clocks. ccsl is described in the following chapter.

12 CHAPTER 1. BACKGROUND

Chapter 2

The Clock Constraint Specification

Language

The Clock Constraint Specification Language (ccsl) has initially been introduced as

a companion language for the uml profile for marte (Modeling and Analysis of Real-

Time and Embedded systems). It has then become a domain-specific language (DSL)

on its own and it is now developed independently. It aims at being a specification

language to equip syntactic models (uml-based or other DSLs) with a timed causality

model that explicitly expresses the causal and chronological relationships amongst

events of the modeled systems.

The initial intent of marte being to cover both design and analysis, a large set of

ccsl constraints have been introduced for convenience on top of a relatively small set

of kernel primitives. Section 2.1 introduces the ccsl time model. Section 2.2 discusses

some fundamental coincidence and precedence constraints. Then, Section 2.3 presents

the integration of this model into uml, through marte stereotypes.

2.1 Instants, clocks and time structures

ccsl focuses on the events and their occurrences and abstracts away the values. This

is a major difference with other related models (Signal, Tag structures), which usually

13

14 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

consider an event as a pair value/time stamp. In ccsl, the value may be added as

an annotation and never influences the scheduling in any way. ccsl deals with sets

of event occurrences I, called instants to avoid the possible confusion between the

events and their occurrences. On these events we build a time structure 〈I,≺,≡〉 by

considering the two primitive binary relations: strict precedence (denoted ≺) and the

coincidence (denoted ≡). ≺ is irreflexive and transitive, it is only a partial relation

and therefore is not asymmetric, there can be instants that are not related to each

other. The coincidence is a direct emanation of synchronous languages. ≡ is a partial

equivalence relation, i.e., reflexive, transitive and symmetric. The coincidence is the

major difference with the general net theory and the event structures because it forces

one instant to occur when another has occurred or prevents an event from occurring

when another one is not ready. The coincidence is universal, no referential can tell

apart two coincident instants. Petri’s model (following the relativity theory) restricts

coincidence to single points in space-time. In ccsl, the coincidence relationship

“melts” a priori independent points (instants) to reflect design choices and thus is a

foundational relation.

From these two relations, we build three more: exclusion (denoted #), precedence

(denoted 4) and independence (denoted ‖). The exclusion is when the instants can

never be coincident. Note, that this definition of exclusion is weaker than the exclusion

of event structures (see section 1.2), since it does permanently prevent the other

event from occurring but just prevents them from being coincident. The precedence

is the union of the strict precedence and the coincidence. It is the equivalent of the

causality relation in event structures and 4 is a partial pre-order, i.e., it is reflexive

and transitive but neither antisymmetric, nor asymmetric. If a 4 b and b 4 a then

a is not necessarily identical to b but is coincident with it (a ≡ b). The graphical

representation of instant relations is given in Figure 2.1.

All these relations are defined on instants (event occurrences). However, in a

specification, it is more likely to talk about the events themselves and therefore we

define a clock c as a totally ordered set of instants Ic. 〈Ic,4 c〉 is a total order1. 4 c is

1Colors distinguish the total order on clocks in blue from the partial order on the time structure
in red

2.1. INSTANTS, CLOCKS AND TIME STRUCTURES 15

i

j

i j≡

i j
i j

i j
i j≺

i j
#i j

i j
||i j

Figure 2.1: Graphical representation of instant relations

antisymmetric since no two instants of a given clock can be coincident without being

identical. We chose the word clock, instead of events or signals to avoid confusion

with these highly overridden words. The word comes from the synchronous languages,

in which the clock is a pure signal (without values). It represents events, but the

word event is sometimes used to denote the occurrences and sometimes to denote

the classes of occurrences. Additionally, event also exists in uml and we therefore

needed another word. Note that the set of instants can be either dense or discrete. A

discrete-time clock is a clock c with a discrete set of instants Ic. Since Ic is discrete,

it can be indexed by natural numbers in a fashion that respects the ordering on Ic:
let N? = N\{0}, idx : Ic → N?, ∀i ∈ Ic, idx(i) = k if and only if i is the kth instant in

Ic. c[k] is defined so as ∀k ∈ N?, idx(c[k]) = k. °i is the unique immediate predecessor

of i in Ic. For simplicity, we assume a virtual instant (called birth) the index of which

is 0, and which is considered as the immediate predecessor of the first instant.

From a set of clocks C, we build a time structure 〈I,≺,≡〉 such that

� I =
⋃
c∈C Ic

� ≺ =
⋃
c∈C ≺ c, where ≺ c is the reflexive reduction of 4 c for a clock c

� ≡ = IdI

Instant relations are then extended to clock relations, which usually represent

infinitely many instant relations at once. The following section explains how, given a

set of clocks and its underlying time structure, we augment it by considering a given

specification, a set of clock relations Rel.

16 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

2.2 Clock constraints

Specifying a full time structure using only instant relations is not realistic, all the

more so since a clock usually has an infinite number of instants therefore forbidding

an enumerative specification of instant constraints. Instead of defining individual

instant pairings, a clock constraint specifies generic associations between (infinitely)

many instants of the constrained clocks.

In this section we define the most general clock constraints and we introduce

some usual constraints, derived from the basic ones. The clock constraints are classi-

fied in three main categories: 1) coincidence-based constraints, 2) precedence-based

constraints, and 3) mixed constraints.

Actually, most constraints only partially constrain the systems and therefore sev-

eral time structures are possible. So a specification induces a set of time structures

that share the same set of instants I. For one given time structure TS, ITS = I
denotes its set of instants, ≺TS is its precedence relation and ≡TS its coincidence

relation.

2.2.1 Coincidence-based clock constraints

Coincidence-based clock constraints are classical in synchronous languages and can

then be very easily specified with such languages.

Sub-Clocking is the most basic coincidence-based clock constraint relationship.

Let a, b be two clocks. The clock relation b isSubClockOf a imposes b to be a sub-

clock of a. Intuitively, this means that each instant in b is coincident with exactly

one instant in a (Figure 2.2). More formally, a time structure TS = 〈I,≺ TS,≡ TS〉
satisfies the clock relation b isSubClockOf a if and only if there exists an injective

2.2. CLOCK CONSTRAINTS 17

mapping h : Ib → Ia such that :

(1) h is order preserving:

(∀i, j ∈ Ib) (i 4 b j) =⇒ (h(i) 4 a h(j))

(2) an instant of Ib and its image are coincident:

(∀i ∈ Ib) i ≡ TS h(i)

A

B
h

Figure 2.2: Coincidence-based clock constraint

In what follows, this constraint is denoted as b ⊂ a, read “b is a sub-clock of a”

or equivalently “a is a super-clock of b”.

2.2.2 Derived coincidence-based clock constraints

h can be specified in many different ways.

Equality a = b is the symmetric relation that makes the two clocks a and b “syn-

chronous”: h is a bijection and the instants of the two clocks are pair-wise coincident.

It is strictly equivalent to b = a.

Other coincidence-based clock expressions allow the creation of a new clock, sub-

clock of a given clock (denoted new clock , defining expression). Three such clock

expressions are presented hereafter.

18 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

Restriction b , a restrictedTo P where a is a given clock, b is a new clock, and P

is a predicate on Ia × Ib, such that

(∀i ∈ IA,∀j ∈ IB) i ≡ h(j)⇐⇒ P (i, j) = true

Filtering b , a filteredBy w, where a and b are discrete-time clocks, and w is a

binary word. For filtering, the associated predicate is such that

(∀i ∈ Ia,∀j ∈ Ib)
(
P (i, j) = true⇐⇒ idxa(i) = w ↑ idxb(j)

)
where w ↑ k is the index of the kth 1 in w. The use of infinite k-periodic binary

words in this kind of context has previously been studied in N-Synchronous Kahn

networks [CDE+06]. This constraint is frequently used in clock constraint specifica-

tions and is denoted A H w in this document. It allows the selection of a subset of

instants, on which other constraints can then be enforced.

In what follows, a (periodic) binary word is denoted as w = u(v)ω, where u is called

the transient part of w and v its periodic part. The power ω means that the periodic

part is repeated an unbounded number of times. So, u(v)ω denotes u.v.v. · · · .v. · · · .

Periodicity Defining the periodicity of discrete clocks consists in using a binary

word with a single 1 in the periodic part. b isPeriodicOn a period p offset d defines a

periodic clock b. The same clock can be built with a filtering b , a H 0d.(1.0p−1)ω.

In this expression, for any bit x, x0 stands for the empty binary word. Note that this

is a very general definition of periodicity that does not require a to be chronometric

contrary to the usual definition.

2.2.3 Precedence-based clock constraints

Precedence-based clock constraints are easy to specify with concurrent models like

Petri nets but are not usual in synchronous languages. A discussion on main differ-

ences with Time Petri nets can be found in some of our previous work [MA09].

2.2. CLOCK CONSTRAINTS 19

Precedence The clock constraint Precedence consists in applying infinitely many

precedence instant relations. Two forms can be distinguished: the strict precedence

a strictly precedes b, and the non strict precedence a precedes b. Intuitively, this

means that each instant in b follows one instant in a (Fig. 2.3). More formally, a time

structure TS = 〈I,≺ TS,≡ TS〉 satisfies the clock relation a precedes b if and only if

there exists an injective mapping h : Ib → Ia such that :

(1) h is order preserving:

(∀i, j ∈ Ib) (i 4 b j) =⇒ (h(i) 4 a h(j))

(2) an instant of Ib and its image are ordered:

(∀i ∈ Ib)
(
h(i) 4 TS i

)
for the non strict precedence

(∀i ∈ Ib)
(
h(i) ≺ TS i

)
for the strict precedence

A

B
h

Figure 2.3: Precedence-based clock constraint

2.2.4 Derived precedence-based clock constraints

When a and b are discrete clocks, the precedence relationship gives rise to more

specific constraints. Three often used precedence constraints are discussed here.

Discrete precedence A time structure TS satisfies a strictly precedes b (denoted

a ≺ b) iff

(∀i ∈ Ib)(k = idxb(i)) =⇒ a[k] ≺ TS b[k]

20 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

There also exists a weak form (denoted a 4 b) of this constraint where ≺ TS is

replaced by 4 TS.

Alternation A time structure TS satisfies a alternatesWith b (denoted a ∼ b) iff:

(
a ≺ b

)
∧
(
b ≺ a′

)
,where a′ , a H 0.1ω

The equivalent following specification uses instant relations instead of clock relations,

(∀i ∈ Ia)(k = idxa(i)) =⇒ (a[k] ≺ TS b[k] ∧ b[k] ≺ a[k + 1]).

Synchronization A time structure TS satisfies a synchronizesWith b (denoted a ./

b) iff

(
a ≺ b′

)
∧
(
b ≺ a′

)
where a′ , a H 0.1ω, and b′ , b H 0.1ω

This constraint can also be expressed using instant relations:

(∀k ∈ N?)(a[k] 4 TS b[k + 1]) ∧ b[k] 4 TS A[k + 1]).

Precedences used in the definition of Alternation and Synchronization can be non-

strict precedences, thus there exist four different variants of these clock relations. An-

other extension considers instants by “packets”. For instance, a by α strictly precedes b by β

(denoted a/α ≺ b/β) is a short notation for

(
af ≺ bs

)
where af , a H

(
0α−1.1

)ω
, and bs , b H

(
1.0β−1

)ω
2.2.5 Mixed constraints

Mixed constraints combine coincidences and precedences. They are used to synchro-

nize clock domains in globally asynchronous and locally synchronous models.

2.2. CLOCK CONSTRAINTS 21

Sampling The commonest constraint of this kind is the Sampling constraint. c ,

a sampledOn b, where b and c are discrete clocks and a can be either discrete or dense,

constrains the clocks a, b and c so that c is a sub-clock of b that ticks only after a

tick of a (Fig. 2.4). A time structure TS satisfies c , a sampledOn b iff

(∀ic ∈ Ic)(∃ib ∈ Ib)(∃ia ∈ Ia)(ic ≡ TS ib) ∧ (ia 4 TS ib) ∧ (°ib ≺ TS ia)

B

C

A

B

C

A

(A) (B)

Figure 2.4: Sampling constraints

A time structure TS satisfies the strict form c , a strictly sampledOn b iff:

(∀ic ∈ Ic)(∃ib ∈ Ib)(∃ia ∈ Ia)(ic ≡ TS ib) ∧ (ia ≺ TS ib) ∧ (°ib 4 TS ia)

Delay A slight variation of the sampling is the Delay constraint. c , a delayedFor N b

(also denoted c , a $b N) samples the clock a on the N th occurrence of the discrete

clock b. c is necessary discrete and is a subclock of b. a can be either discrete or

dense.

Note that this operator is polychronous, contrary to usual synchronous delay

operators (pre in Lustre, $ in Signal). There is also a binary variant of this ternary

operator denoted $ and which is equivalent to a delay when a is synchronous with b.

c , a $ N is equivalent to c , a $a N .

22 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

2.2.6 TimeSquare

Most constraints only partially constrain the system, which means that several (pos-

sibly infinitely many) time structures may satisfy a set of constraints. timesquare

has been built to implement ccsl and provide support for the analysis of ccsl spec-

ifications. Several kinds of analyses are possible. Given a set of clocks and a set of

constraints, the clock calculus engine can find one possible time structure that satis-

fies all the constraints. Actually, this is done in simulation and the time structure is

only built partially up to the current simulation point. Since it is not always possible

to choose a single time structure in a deterministic way the simulation may be non de-

terminate. The clock calculus relies on ccsl structural operational semantics (SOS)

to run the simulation. A description of the SOS semantics is available in [And09].

The ccsl constraints are encoded as a set of Boolean equations that determines at

each step, which clock can is enabled and which one is not. With non determinis-

tic specifications several solutions (each of which may involve several clocks) may be

valid. A simulation policy is then used to pick one solution and fire the associated

clocks. Depending on which clocks were fired, the rewriting rules allows to process

a new set of boolean equations. This ends the current simulation step and the sim-

ulation engine proceeds to the next one. Several simulation policies are offered. For

instances, the random policy randomly chooses one possible solution amongst the set

of solutions. The minimum policy chooses a consistent solution where the number

of firing clocks is minimal. The maximum policy chooses a consistent solution where

the number of firing clocks is maximal.

Another kind of analyses is also possible. Given a time structure (e.g., defined as

a by-product of the execution of some code) and a ccsl specification, one can verify

whether the time structure satisfies all the constraints in the specification. This

aspect is described further in the third part of this document. The time structure is

given by an existing implementation of the system on which we have no control. The

implementation forces some clocks to tick while preventing others to be fired. Our

observer-based verification technique can be used to check that the implementation

satisfies all the constraints of the specification.

timesquare has been implemented as a set of Eclipse plugins and is available for

2.3. UML FOR REAL-TIME AND EMBEDDED SYSTEMS 23

download at http://www.inria.fr/sophia/teams/aoste/dev/time_square. time-

square is protected by the APP (Agence pour la protection des programmes).

2.3 UML for Real-Time and Embedded systems

2.3.1 UML, SPT, Marte

The Unified Modeling Language (uml) [OMG09b] is a general-purpose modeling lan-

guage specified by the Object Management Group (omg). It proposes graphical

notations to represent all aspects of a system from the early requirements to the de-

ployment of software components, including design and analysis phases, structural

and behavioral aspects. As a general-purpose language, it does not focus on a spe-

cific domain and maintains a weak, informal semantics to widen its application field.

However, when targeting a specific application domain and especially when building

trustworthy software components or for critical systems where life may be at stake, it

is absolutely required to extend the uml and attach a formal semantics to its model

elements. The simplest and most efficient extension mechanism provided by the uml

is through the definition of profiles. A uml profile adapts the uml to a specific

domain by adding new concepts, modifying existing ones and defining a new visual

representation for others. Each modification is done through the definition of anno-

tations (called stereotypes) that introduce domain-specific terminology and provide

additional semantics. However, the semantics of stereotypes must be compatible with

the original semantics (if any) of the modified or extended concept.

The uml profile for Modeling and Analysis of Real-Time and Embedded systems

(marte [OMG09a]) extends the uml with concepts related to the domain of real-time

and embedded systems. It supersedes the uml profile for Schedulability, Performance

and Time (spt [OMG05]) that was extending the uml 1.x and that had limited

capabilities. marte has three parts: Foundations, Design and Analysis.

The foundation part is itself divided into five chapters: CoreElements, NFP, Time,

Generic Resource Modeling and Allocation. CoreElements defines configurations and

modes, which are key parameters for analysis. In real-time systems, preserving the

24 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

non-functional (or extra-functional) properties (power consumption, area, financial

cost, time budget. . .) is often as important as preserving the functional ones. The

uml proposes no mechanism at all to deal with non-functional properties and relies on

mere String for that purpose. NFP (Non Functional Properties) offers mechanisms

to describe the quantitative as well as the qualitative aspects of properties and to

attach a unit and a dimension to quantities. It defines a set of predefined quantities,

units and dimensions and supports customization. NFP comes with a companion

language called VSL (Value Specification Language) that defines the concrete syntax

to be used in expressions of non-functional properties. VSL also recommends syntax

for user-defined properties. Time is often considered as an extra-functional property

that comes as a mere annotation after the design. These annotations are fed into

analysis tools that check the conformity without any actual impact on the functional

model: e.g., whether a deadline is met, whether the end-to-end latency is within the

expected range. Sometimes though, time can also be of a functional nature and has

a direct impact on what is done and not only when it is done. All these aspects are

addressed in the time chapter of marte [AMdS07]. The next section elaborates on

the time profile.

The design part has four chapters: High Level application modeling, Generic com-

ponent modeling, Software Resource Modeling, and Hardware Resource Modeling.

The first chapter describes real-time units and active objects. Active objects depart

from passive ones by their ability to send spontaneous messages or signals, and react

to event occurrences. Passive objects can only answer to the messages they receive.

The three other parts provide a support to describe resources used and in particular

the execution platform on which the application may run. A generic description of

resources is provided, including stereotypes to describe communication media, stor-

ages and computing resources. Then this generic model is refined to describe software

and hardware resources along with their non-functional properties.

The analysis part also has a chapter that defines generic elements to perform

model-driven analysis on real-time and embedded systems. This generic chapter is

specialized to address schedulability analysis and performance analysis. The chapter

on schedulability analysis is not specific to a given technique and addresses various

2.3. UML FOR REAL-TIME AND EMBEDDED SYSTEMS 25

formalisms like the classic and generalized Rate Monotonic Analysis (RMA), holistic

techniques, or extended timed automata. This chapter provides all the keywords

usually required for such analyses. In Chapter 5 of this document, we follow a rather

different approach and instead of focusing on syntactic elements usually required to

perform schedulability analysis (periodicity, task, scheduler, deadline, latency), we

show how we can use marte time model and its companion language ccsl to build

libraries of constraints that reflect the exact same concepts. Finally, the chapter on

performance analysis, even if somewhat independent of a specific analysis technique,

emphasizes on concepts supported by the queueing theory and its extensions.

marte extends the uml for real-time and embedded systems but should be refined

by more specific profiles to address specific domains (avionics, automotive, silicon)

or specific analysis techniques (simulation, schedulability, static analysis). The three

examples addressed here consider different domains and/or different analysis tech-

niques to motivate the demand for a fairly general time model that has justified the

creation of marte time subprofile.

2.3.2 Marte Time profile

Time in spt is a metric time with implicit reference to physical time. As a successor

of spt, marte supports this model of time. uml 2, issued after spt, has introduced

a model of time called SimpleTime [OMG09b, Chap. 13]. This model also makes

implicit reference to physical time, but is too simple for use in real-time applications

and was, right from the beginning, expected to be extended in dedicated profiles.

marte goes beyond spt and uml 2. It adopts a more general time model suitable

for system design. In marte, Time can be physical, and considered as dense, but

it can also be logical, and related to user-defined clocks. Time may even be mul-

tiform, allowing different times to progress in a non-uniform fashion, and possibly

independently to any (direct) reference to physical time.

In marte, time is represented by a collection of Clocks. Each clock specifies a

totally ordered set of instants (see Section 2.1). There may be dependence relation-

ships between instants of different clocks. In practice, clocks should be associated

26 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

with events whose occurrence should be constrained or with events used to constrain

others. In uml, TimeEvent is specialization of Event stating that this special kind of

events can carry a time stamp. Our intent is to allow any kind of event to carry a

time stamp. For instance, the goal would be to constrain the way a message is sent

or received, a behavior starts or finishes its execution. Therefore time (or causality)

must be orthogonal to the various events and not a special kind of events.

The marte Time profile defines two stereotypes ClockType and Clock to represent

the concept of clock. ClockType gathers common features shared by a family of clocks.

The ClockType fixes the nature of time (dense or discrete), says whether the represented

time is linked to physical time or not (respectively identified as chronometric clocks

and logical clocks), chooses the type of the time units. A Clock, whose type must

be a ClockType, carries more specific information such as its actual unit, and values

of quantitative (resolution, offset, etc.) or qualitative (time standard) properties, if

relevant.

TimedElement is another stereotype introduced in marte. A timed element is

explicitly bound to at least one clock, and thus closely related to the time model.

For instance, a TimedEvent, which is a specialization of TimedElement extending uml

Event, has a special semantics compared to usual events: it can occur only at instants

of the associated clock. In a similar way, a TimedValueSpecification, which extends uml

ValueSpecification, is the specification of a set of time values with explicit references

to a clock, and taking the clock’s unit as time unit. Thus, in a marte model of a

system, the stereotype TimedElement or one of its specializations is applied to model

elements which have an influence on the specification of the temporal behavior of this

system.

The marte Time subprofile also provides a model library named TimeLibrary. This

model library defines the enumeration TimeUnitKind which is the standard type of time

units for chronometric clocks. This enumeration contains units like s (second), its

submultiples, and other related units (minute, hour. . .). The library also predefines

a clock type (IdealClock) and a clock (idealClk) whose type is IdealClock. idealClk is a

dense chronometric clock with the second as time unit. This clock is assumed to be

an ideal clock, perfectly reflecting the evolutions of physical time. idealClk should be

2.3. UML FOR REAL-TIME AND EMBEDDED SYSTEMS 27

imported in user’s models with references to physical time concepts (i.e., frequency,

physical duration, etc.).

2.3.3 UML and formal methods

The uml is a general-purpose modeling language. Its semantics is described in English

in the omg specification. Several aspects are left unspecified in so-called semantic

variation points to allow user-defined adaptations for addressing domain-specific is-

sues. There have been many efforts to use the uml in formal environments to address

critical systems or domains where formal verification is mandatory. A brief classifi-

cation is attempted hereafter even though it is usually acknowledged [BLMF00] that

building a full taxonomy is difficult:

1. The first kind consists in using a formal language to build uml expressions

and/or constraints. Since, uml does not enforce any specific syntax for ex-

pressions and constraints, any language can be used. Even though the Object

Constraint Language (OCL) [OMG06] may seem the most natural choice, for-

mal languages (e.g., Z [GL00], Labelled Transition Systems [SCK09]) are also

used to specify invariants in uml use cases or pre-condidions/post-assertions

on uml operations. Then, scenarios (uml interaction diagrams) or behaviors

(state machines or activities) are statically analyzed [CPC+04, GBR07, YFR08]

to check whether the use case invariants and the post-assertions hold.

2. The second kind of approaches is transformational. It consists in transforming

every uml model element into a model element of a formal language (for in-

stances, Petri Nets [Stö05] or π-calculus [YsZ03]). After transformation, various

analyses become possible, like symbolic model-checking [Esh06].

3. In the third kind, the semantics resides in annotations (stereotypes). For in-

stance, the semantics of Concurrent Sequential Processes [Hoa78] can be given

to a uml state machine provided that a uml profile for Concurrent Sequential

Processes [FGL+08] is defined.

28 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

4. In the fourth kind, only a subset of the uml is allowed to make it suitable

for a specific domain, e.g., the uml state machines can be reduced to timed

automata [AD94] thus giving access to a whole family of formal tools [BDL+06].

In all cases, the semantics remains outside the model and therefore the model may

be interpreted differently by another tool or another user. The purpose of ccsl

is to provide a domain-specific language (DSL) to build an explicit semantic model

that would be linked into the model itself to define its time/causal semantics. Our

approach is not specific to uml models and can be used with domain-specific models

as well. We propose to use the marte time model and its companion language ccsl

(Clock Constraint Specification Language) to build the semantic model.

2.3.4 UML and synchronous languages

Synchronous languages [Hal92, BCE+03] are well-suited to formal specification and

analysis of reactive system behavior. They are even more relevant with safety-critical

applications where lives may be at stake. However, to cover a complete design flow

from system-level specification to implementation, synchronous languages need to

interoperate with other, more general, specification languages. One of the candidates

is the uml associated with sysml, the uml profile for systems engineering [Wei08,

OMG08]. This is very tempting since synchronous languages internal formats rely

on state machines or data flow diagrams both very close to uml state machines and

activities. Moreover, SyncCharts [And96] are a synchronous, formally well-founded,

extension of uml state machines and are mathematically equivalent to Esterel [Ber00],

one of the three major synchronous languages. As for sysml, it adds two constructs

most important for specification: requirements and constraint blocks (see 2.3.5).

There have been attempts to bridge the gap between the uml and synchronous

languages. Some [LD06] choose to import uml diagrams into Scade, a synchronous

environment that combines Safe State Machines (SSM—a restriction of SyncCha-

rts) together with block diagrams, the semantics of which is based on Lustre. Oth-

ers [BRG+01] prefer to define an operational semantics of uml constructs with a

synchronous language, like Signal. In both cases, the semantics remains outside

2.3. UML FOR REAL-TIME AND EMBEDDED SYSTEMS 29

the uml and within proprietary tools. Other tools, from the same domain, would

interpret the same models with a completely different semantics, not necessarily com-

patible. Therefore, it is impossible to exchange diagrams between tools, not only

because of syntactical matters but also for semantic reasons. Different environments

are then competing rather than being complementary. To provide full interoper-

ability between tools of the embedded domain, the uml absolutely requires a timed

causality model. The uml Profile for marte has introduced a time model with that

purpose (see 2.3.1). Its companion language, ccsl is advertised as a pivot language to

make explicit the interactions between different models of computations [MAdS08],

like Ptolemy directors [EJL+03]. It offers a rich set of constructs to specify time

requirements and constraints.

2.3.5 SysML/Marte

The uml profile for System Engineering (sysml) [OMG08] is an adopted omg Spec-

ification to be used at the system level. sysml is based on a selected subset of uml

constructs, called UML4SysML, and provides few new extensions amongst which Re-

finement and Parametric diagrams. The former helps making explicit system-level

requirements and tracing their proposed implementations. The latter should be used

to represent “non-causal” relationships amongst values of the system and possibly

making explicit within the model, physical laws required for the design. “non-causal”

is used here to denote equations in which variables are not assigned a particular role

or direction. In F = m × γ, no distinction is made between F , m and γ. A causal

or functional interpretation would have considered m and γ as inputs and F as an

output.

So, we can use this sysml construct to represent laws related to time, whether

physical or logical. sysml recommends building a new “Constraint Block” for each

new law and uses these blocks in so-called parametric diagrams to apply a law to

relevant design values. In ccsl, there is a small number of identified relations among

logical clocks. Consequently, we can easily construct a library of ccsl-specific con-

straint blocks. Figure 2.5 shows a ccsl specification expressed using sysml constraint

30 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

blocks and parametric diagrams.

par [ConstraintBlock] PeriodicAperiodicPeriodic

« clockType »
{isLogical, nature=discrete}

Thread

Parameters
super : Thread
sub : Thread
P : UnlimitedNatural

: UnlimitedNatural

constraints
{{CCSL} sub isPeriodicOn super

period=P offset= }

« constraint »
Periodic

parameters
super : Thread
sub : Thread
trigger : Thread

constraints
{ {CCSL} sub = trigger
sampledOn super }

« constraint »
Sampling

parameters
a : Thread
b : Thread

constraints
{ {CCSL} a alternatesWith b }

« constraint »
Alternation

bdd [package] CCSL

: Periodic
sub:

t1_p : = 2

P:

offset : = 0

super:

c_100

: Periodic
sub:

t2_p : = 4

P:

offset : = 0

super:

: Alternation
a:

b:

t1

: Alternation
a:

b:

step1
t3

step3

: Sampling
sub:

super:

trigger:

step2

Figure 2.5: SysML parametric diagrams

The left-hand side part is an excerpt of the library. Three constraint blocks

(Periodic, Alternation, Sampling) have been defined for each of the three ccsl relations

introduced previously. Each constraint block has three compartments. The bottom

one, called parameters contains typed formal parameters. The middle compartment,

called constraints, contains the constraint itself that applies on the parameters. In

our case, the constraint is defined in ccsl. However, this library is built once and for

all, so end-users need not being entirely familiar with the concrete syntax and only

need to be familiar with underlying concepts.

The right-hand side part models the following ccsl specification as a sysml para-

metric diagram:

t1 isPeriodicOn c 100 period=2 of fset=0 // p e r i o d i c thread t1

t3 isPeriodicOn c 100 period=4 of fset=0 // p e r i o d i c thread t3

t1 alternatesWith s tep1 // t1 execute s step1

step1 alternatesWith s tep2 // step2 s t a r t s when step1 f i n i s h e s

step3 = step2 sampledOn t3 // step3 samples the r e s u l t from step2

In such a diagram, boxes are properties extracted from the model. Some of the

properties are clocks (t1, step1 . . .), some others have integer values (offset, t1 p

. . .). These properties may come from different diagrams and different blocks. The

2.4. THE FUTURE OF MARTE TIME MODEL 31

rounded rectangles are usages of constraint blocks. Their ports, which represent

parameters, are connected with properties using non-causal connectors. Being non-

causal means that there is no input or output, whichever value is known causes the

other to update. For instance, considering Alternation, if b is known, one can deduce

(partially) a but if a is known, then one can deduce (partially) b. This example is

further presented in Chapter 5.

2.4 The future of MARTE Time Model

marte v1.0 has been adopted in November 2009 and the first revision committee

should release marte v1.1 by the end of 2010. The major modification in revision

v1.1 concerning the time model is to authorize the stereotype �clock� to extend the

metaclass �Event�. The intent of this modification is to make it clear that any event

of any kind (Call, Time, Send, . . .) can be used as a logical time base in time

specifications. They are no major modifications anticipated for release v1.2, but we

shall continue our effort to disseminate marte and to increase the tool support. A

second important requirements is to maintain and enhance the compatibility with

sysml. The objective of next year being to provide sysml with a lighter time model

that would be compatible with marte. sysml users do not seem ready to accept

a textual language (like ccsl). Working with predefined domain-specific libraries

as explained in Section 2.3.5 is one possible solution. An alternative would be to

provide a better integration with the OMG’s Object Constraint Language (ocl),

more and more used, by offering a logically timed ocl. Timed ocl extensions already

exist [F02] but propose to extend ocl with temporal logics constructs which is rather

different from our objective.

32 CHAPTER 2. THE CLOCK CONSTRAINT SPECIFICATION LANGUAGE

Chapter 3

How does CCSL compare ?

This chapter compares ccsl to other closely related concurrent models: Petri Nets,

Process networks, Signal. The comparison to Petri Nets and to Signal has been pub-

lished at ISORC’09 [MA09] and the work on using the hierarchization mechanism has

been published in the workshop MOBE-RTS [YTB+10]. The comparison to process

networks have been accepted to be published in September 2010 in the proceedings

of FDL 2010.

33

34 CHAPTER 3. HOW DOES CCSL COMPARE ?

3.1 Petri Nets

3.1.1 Time Petri nets

marte Time model conceptually differs from Petri’s work on concurrency theory [Pet87].

Petri’s theory restricts coincidence to single points in space-time. In our model, the

foundational relationship coincidence gathers a priori independent points (instants)

to reflect design choices.

Petri nets have well-established mathematical foundations and offer rich analysis

capabilities. They support true concurrency and can be used to specify some of our

clock relations. However it is not possible to force two separate transitions to fire

“at the same time”, i.e., to express coincidence. Thus, we use Time Petri net, the

Merlin’s extension [Mer74] that associates a time interval (two times a and b, with

0 ≤ a ≤ b and b possibly unbounded) with each transition. Times a and b, for

transition t, are relative to the moment θ at which the transition was last enabled. t

must not fire before time θ+a and must fire before or at time θ+b unless it is disabled

(in case of conflicts) by the firing of another transition. Even with this extension, the

specification of ccsl constraints is far from straightforward.

In our representation, each marte discrete-time pure clock c = 〈Ic,≺c〉 is repre-

sented as a single transition ct (called clock transition) of a Time Petri net. Instants

of a clock are firings of the related transition. For a given initial marking and for a

given firing sequence, there is an injective function firing : CT ×N? → N, where CT

is the set of clock transitions. firing(ct, i) is the time at which, the clock transition ct

fires for the ith time in the firing sequence. We consider a Time Petri net as equivalent

to a ccsl clock constraint, iff for all possible firing sequences and all clock transitions

(other transitions do not matter), firing preserves the ordering (Eq. 3.1).

(∀c1, c2 ∈ C)(∀k1, k2 ∈ N?)

((c1[k1] 4 c2[k2]) (3.1)

⇔ (firing(c1t, k1) ≤ firing(c2t, k2))

3.1. PETRI NETS 35

where c1t (resp. c2t) is the clock transition associated with clock c1 (resp. c2).

Note that, even though Time Petri nets can handle continuous time, we restrict our

comparison to discrete-time clocks and therefore we consider the transition firing time

as a natural number (∈ N).

3.1.2 Encoding CCSL operators in Time Petri nets

Precedence

ccsl strict precedence has a straightforward equivalent in Time Petri net (Fig. 3.1(a)).

Note that the time interval [1,∞[of A prevents multiple firing of transition A at the

same time. This condition can be weakened if needed. However, the time interval

[1,∞[for B ensures the strictness of the relation: the ith occurrence of B is strictly

after the ith occurrence of A in any valid behavior. The weak form of the precedence

(depicted in Figure 3.1(b)) weaken the lower bound to allow simultaneous occurrences.

In both cases, the place in-between the two transitions prevents B from ticking faster

than A.

A

[1,∞[

B

[1,∞[

(a) A strictly precedes B

A

[1,∞[

B

[0,∞[

(b) A weakly precedes B

A

[1,∞[

B

[1,∞[

(c) A strictly alternatesWith B

A

[1,∞[

B

[0,∞[

(d) A weakly alternatesWith B

n n

Figure 3.1: Precedence and alternation in Time Petri net

36 CHAPTER 3. HOW DOES CCSL COMPARE ?

At the initial state (time=0) no transitions are enabled, only time can evolve.

Then, transition A is enabled but there is no upper bound for its firing. Transition

B will not become enabled before A fires. When A eventually fires, B becomes

immediately enabled for the weak form and can fire “synchronously” with A. In the

strict form, because of the time interval [1,∞[, B must wait one instant before being

enabled. Still, there is no upper bound.

Clearly both models are not bounded, only A can tick leading to (infinite) ac-

cumulation of tokens in the intermediate place. Alternation bounds the model by

adding a cycle (see Fig. 3.1(c)-(d)). The number n of tokens in the newly introduced

place gives the maximum advance A can have on B: default is 1.

Subclocking

Subclocking is achieved by using time intervals of [0, 0] (see Fig. 3.2). This forces

a transition (e.g., B) to fire at the very same time it has been enabled. Conflicts

may prevent the subclock (e.g., B) from ticking but the subclock can never tick

unless it has been enabled by the super clock (e.g., A). As an example, we consider

ccsl clock relation isPeriodicOn. Figure 3.2 models the following ccsl statement:

A isSubclockOf B. Transition A must fire δ + 1 times before anything can happen

[1,∞[

A

[0,0]

BP
P+

Figure 3.2: B isPeriodicOn A period=P offset=δ

to transition B. Then every P th firing of transition A, B must fire synchronously

because the time interval is [0, 0]. Such a solution is not compositional, since the time

interval is relative to the time at which the transition is enabled, which depends on

the marking of all incoming places.

3.1. PETRI NETS 37

Delay and Sampling

The binary delay of ccsl (i.e., B = A $ δ) is equivalent to a periodic relation with

P = 1 (see Fig. 3.2). The ternary delay (defer, B = A $C δ), where the delay duration

δ is relative to the ticks of a third clock (C), is more difficult to model.

Figure 3.3 attempts to represent B = A $C 2. Operator defer produces a clock B

that is a subclock of C, which is represented with a time interval [0, 0] for transition

B. The same net (dashed part) can be unfolded as many times as needed depending

on δ. However, this breaks the rule of having just one transition for each ccsl

clock. And thus, such a model would require some external conditions to enforce that

all transitions with the same label (here C) must necessarily fire at the same time

instants. Other solutions described at ISORC’09 [MA09] rely on priorities but still

require some kind of external scheduling policy that cannot be directly enforced with

Time Petri nets. The major limitation being that it is not possible to enforce the

simultaneous firing of different transitions. This comes from the initial design choice

to restrict coincidence to single points in time.

A

[1,∞[

C

[1,∞[

C

[1,∞[

B

[0,0]

Figure 3.3: Operator defer: B = A $C 2

Note that sampling is natural in Petri nets. In that example, clock A is sampled

on clock C to build a new clock B subclock of C but A is not necessarily in any

subclocking relation with neither C nor B. Since ccsl operator sampledOn combines

sampling and synchronizations, it requires similar assumptions than for the defer.

See [MA09] for more details.

38 CHAPTER 3. HOW DOES CCSL COMPARE ?

3.2 Process networks

3.2.1 Synchronous Data Flow

Process Networks [Kah74] is a common model for describing signal processing sys-

tems where infinite streams of data (unbounded FIFO channels) are incrementally

transformed by processes executing in sequence or parallel. The global execution

semantics of such systems is given by the set of local data dependencies between

the processes (defined by the channel connections): i.e., a process can only execute

when his input channels contain enough data items. These local dependencies can

be defined with ccsl by associating a logical clock with each process execution event

and by translating each local data dependency into clock constraint rules. The rules

would specify that, on a channel, the read of a data element (by the slave process1)

must be preceded by the write of this data element (by the master process).

A common application of the process networks, in data-flow languages, uses a

component-based approach for specifying the functionality of a system. “Actors”

(or components) are the main entities. An actor consumes a fixed2 amount of data

(“tokens”) from its input ports and produces a fixed amount of data on its output

ports. A system is successively and hierarchically decomposed into a series of actors

that are connected through data paths (“arcs”), which denote the flow of data.

Such basic assumptions favor static analysis techniques to compute a static sched-

ule that optimizes a given criterion (e.g., the buffer sizes) but limit the expressiveness

of the specification. Additional features were introduced in many derivative languages

to overcome these limitations. Several data-flow specification models have been pro-

posed throughout the time. Most of these languages were designed around the Syn-

chronous Data Flow (SDF) [LM87], proposed by Lee and Messerschmitt, or its multi-

dimensional extension, Multidimensional Synchronous Data Flow (MDSDF) [ML02],

designed to preserve the static properties for efficient implementations, while ex-

tending its expressiveness to cover a larger range of applications. SDF graphs are

equivalent to Computation graphs [KM66], which have been proven to be a special

1The slave is on the arrow end of the arc
2Numerical values known at specification time

3.2. PROCESS NETWORKS 39

case of conflict-free Petri nets.

The multidimensional extension is essential for specifying complex data-flow ap-

plications where the data structures are commonly represented as multidimensional

arrays or streams. On the other hand, this extension has an important impact on

the actual execution order. Whereas the SDF model defines a strict ordering in time,

MDSDF only defines a partial ordering: each dimension defines quasi-independent re-

lations “past-future”, as called in [ML02]. External constraints need to be introduced

into the system to define a complete ordering in time. With MDSDF these additional

constraints are hidden in the computation of a specific schedule optimized accord-

ing to a specific criterion (e.g., minimizing the buffer sizes, exploiting maximum of

parallelism).

Array-OL [GDB09] takes the concept of multidimensional order even further, by

completely mixing space and time into the data-structures at the specification level: a

single assignment of multidimensional arrays with possibly infinite dimensions (maxi-

mum one by array) defines the set of data values that will transit through the system.

Data dependencies between uniform and repetitive patterns of data are defined. The

global order depends on the sets of depending pairs of actor executions, where two

actor instances are execution-dependent if the patterns produced/consumed share at

least a common data element. In such a MoCC, a total order between executions

cannot be deduced unless additional environment constraints are specified.

3.2.2 A CCSL library for SDF

In [MDAd10], data-dependencies defined by SDF arcs are expressed as ccsl relations.

The actor executions are modeled by logical clocks. Each clock instant denotes one

execution of the related actor. Logical clocks are also used to model read/write

operations on the arcs. The ccsl rule associated with an arc represents a conjunction

of three relations, as follows:

1. A packet-based precedence between the logical clock read, representing reading

instants from the channel, and the logical clock slave, representing the execution

of the slave. Eq. 3.2 states that wrd read events are needed before an actor can

40 CHAPTER 3. HOW DOES CCSL COMPARE ?

execute. The strictly positive integer wrd represents the slave input weight.

2. Each actor execution is followed by wwr write events on each of the output arcs

(see Eq. 3.3). wwr represents the master output weight.

3. For a given arc, the ith tick of write must precede the ith tick of read. When

delay tokens are initially available in the queue, the ith read operation uses the

data written at the (i− delay)th write operation, for i > delay (see Eq. 3.4).

def arc(clock master, clock write, int wwr, int delay,

clock slave, clock read, int wrd) ,

(read by wrd) ≺ slave (3.2)

master = (write by wwr) (3.3)

write ≺ (read $ delay) (3.4)

3.2.3 Discussion and perspectives

The data dependencies between two actors at the ends of an arc are expressed in this

proposition by ccsl clock constraints between element-wise production/consumption

on this arc. For SDF models with actors that produce and consume a larger num-

ber of tokens by execution, this approach explodes in size at simulation. Moreover,

the essential aspects between the relative executions of actors would be completely

negligible compared to the overwhelming information concerning token writings and

readings. Therefore, we have proposed3 a new way to translate data dependencies

induced by a SDF arc into ccsl relations between actor executions, without going

through the element-wise write/read operations. The read tokens/execute actor/write

tokens operations are abstracted by a single atomic event. Expressing the execution

dependency between a master and a slave actor (linked by an arc) means identifying

the minimum number of executions of the master actor needed to enable the slave

3In a paper actually under a review process

3.2. PROCESS NETWORKS 41

actor execution. This requires a local scheduling the result of which can be expressed

with ccsl operator filteredBy. The details are not given here.

In this context, ccsl is used as a language based on logical time to define a timed

causality semantics for models. Syntactic models are complemented with a semantic

model described in ccsl. The behavior of a system is thus expressed as a formal

specification encoding the set of schedules corresponding to a correct execution. SDF

is particularly well-adapted to build a dedicated ccsl library since the semantics

of a system is fully defined by the set of local execution rules imposed by the data

dependencies. Part II shows other examples that have been addressed with ccsl.

In [MDAd10], fine grain element-wise data dependencies of SDF were encoded in

ccsl. During his postdoctoral year, Calin Glitia has proposed to express directly

the actor activations by processing local data dependencies and its algorithm has

been implemented and integrated as a new plug-in in timesquare. For more complex

languages, translating the data dependencies into execution dependencies that can

be expressed by the ccsl language implies more complex computations. Extension

to MDSDF is straightforward. However, it is more complex to encode the execution

rules of Array-OL or other polyhedral models where data dependencies are defined

relatively to regular but arbitrary shaped sub-arrays.

Beyond that simple encoding in ccsl, we think that ccsl can complement data-

flow languages by reflecting the actual (partial) ordering in which data are processed,

enter or exit the system. Indeed, whereas data flow languages focus on the different

production and consumption rates of data, ccsl focus on logical ordering of actions.

Typically, such multidimensional ordering is just partially defined in MDSDF where

dimensions are a priori independent. However, when computing a particular static

scheduling to optimize some criteria (e.g., buffer sizes), decisions are taken on the

actual ordering of data. Different algorithms take different ordering choices. Our

point is that this choice should be part of the model and can be made explicit with

ccsl instead of being hidden in the chosen scheduling algorithm. In other words,

there is an opportunity here to define scheduling algorithms that take benefit from a

joint use of the time and the repetitive structure models of marte.

42 CHAPTER 3. HOW DOES CCSL COMPARE ?

3.3 Polychronous languages

3.3.1 Signal

Signal is a synchronous dataflow language, which is based on synchronized data-

flows (flows + synchronization). Variables (e.g., x) are called signals and represent

an infinite typed sequence, which is mapped onto the logical time indexed by natural

numbers, i.e., x is actually (xτ)τ∈N. The symbol ⊥, which represents the absence of

the signal at certain instant on the logical time, expands the domain of signal. A

signal has an associated clock (not to be mistaken with ccsl clocks) indicating the

set of instants when the signal is present. A process is considered as a program that

is composed of a system of equations over signals and an interface. As in marte, the

physical amount of time between two values is not relevant.

Signal allows the specification of multiclock/polychronous systems, in which a

process can be deactivated while other processes are still activated. Two kinds of

operators are defined in Signal: monochronous and polychronous. The former op-

erates on signals with the same clock, i.e., signals that are always present at the

same time. The latter handles signals with different clocks. In addition, the Signal

formal model allows partial and nondeterministic specifications. The model also sup-

ports a design methodology which goes from specification to implementation, from

synchrony to asynchrony. We only consider here the time structure of marte and

relations on instants, we do not use the labeling functions. So ccsl clocks are very

similar to signals and clocks compare to Signal clocks (or pure signals, type event).

ccsl clock relations compare to Signal polychronous operators. In this document,

we never discuss equivalent for Signal monochronous operators that would work on

labels associated with instants rather than on the time structure itself.

3.3. POLYCHRONOUS LANGUAGES 43

3.3.2 Encoding CCSL operators in Signal

Precedence

Encoding the unbounded ccsl Precedence requires to use a local integer (line 6) that

counts occurrences of signals A and B (lines 3 and 4) and allows B to tick only when

the counter is greater than zero (line 6), but not necessarily always.

1 process s t r i c t l y P r e c e d e s =

2 (? event A,B)

3 (| zcounter := counter$1 in i t 0 ;

4 | counter := zcounter + 1 when A when not B

5 | default zcounter − 1 when B when not A default zcounter

6 | B ˆ> when counter>0

7 |) where integer counter in i t 0 , zcounter end ;

Even though the alternation can be seen as the composition of two precedence

relations, it is more efficient to encode a finite automaton (see Fig. 3.4).

stm strictlyAlternatesWith

super ! super

A

B

stm alternatesWith

super ! super

A

B
A B

Figure 3.4: CCSL alternatesWith encoded as an automaton

When two clocks strictly alternate, there is a super clock, more frequent than both

A and B (the relation is endochronous). To implement such a relation in Signal,

one just need to build the common super clock explicitly. In the following Signal

implementation, line 1 declares a concurrent process and line 2 declares its two pure

input signals. Line 3 builds a two-state automaton (see Figure 3.4, left part) that

44 CHAPTER 3. HOW DOES CCSL COMPARE ?

alternates between the two states. The Boolean signal super is local (see line 6) and

alternatively takes the value true and false, starting with true. Signal A is present

when and only when super is true (line 4). Signal B is present when and only when

super is false (line 5).

1 process s t r i c t l y A l t e r n a t e s W i t h =

2 (? event A,B)

3 (| super := not (super $ 1 in i t fa l se)

4 | A ˆ= when super

5 | B ˆ= when not super

6 |) where Boolean super end ;

The weak form is more complex because either A and B simultaneously occurs,

or A occurs alone and B should occur alone in the future. Note that B cannot occur

alone when super is true. The implementation below directly implements the state

machine shown on the right-hand side of Figure 3.4. There are still two states encoded

with the local Boolean signal super. The state can also change when either A or B

occurs. The signal union is denoted by the operator ˆ+ in Signal (line 3). When

B occurs, then the next state (nextsuper) is necessarily true (line 5), whatever the

current state and whether or not A occurs. When B does not occur the next state

is false (line 4). Conversely, A must and can only occur when super is true (line 7).

When super is false, B must occur but B can also occur when super is true. Line 8

reads that B is more frequent than when super is false. The only other possible case

is when super is true because of the signal union in line 3.

3.3. POLYCHRONOUS LANGUAGES 45

1 process a l t e rnatesWith =

2 (? event A,B)

3 (| nextsuper ˆ= super ˆ= A ˆ+ B

4 | nextsuper := fa l se when not B

5 default true

6 | super := nextsuper $ 1 in i t true

7 | A ˆ= when super

8 | B ˆ> when not super

9 |) where Boolean supe r ,nex t supe r end ;

Subclocking

Expressing subclocking is straightforward in Signal (operatorˆ<) and ccsl operator

filteredBy is very close to the Signal operator when, except that when uses a Boolean

condition whereas filteredBy uses a binary word. Encoding ccsl operator isPeriodicOn

is one simple application.

1 process i sPer iod i cOn =

2 { integer o f f s e t , p e r i o d }

3 (? event A, B)

4 (| nb ˆ= B

5 | z i := nb $ 1

6 | nb := ((z i + 1) when z i /= (per iod−1))

7 default 0

8 | ˆA ˆ= when zi=0

9 |) where

10 integer z i in i t −o f f s e t , nb

11 end ;

46 CHAPTER 3. HOW DOES CCSL COMPARE ?

Not surprisingly, all coincident-based operators have almost direct equivalent in

synchronous languages in general and in Signal. It is not always the case for

precedence-based operators for which it may be tedious. Even when the languages

can be twisted to model such constraints, the compiler is not always able to find a

solution. Consequently, it is really useful to have a specification language that simply

supports various concepts even if several implementation languages must be combined

to find possible solutions.

Delay and Sampling

Signal delay operator ($) is monochronous and ccsl binary operator $ is equivalent.

However, ccsl operator defer is a polychronous operator that has no direct equivalent

in Signal. defer samples a clock inp on the nth occurrence of another clock clk.

ccsl operator sampledOn is a defer with a duration of 1. We describe the encoding

of this operator in Signal. Its weak form is more difficult to implement since it

implies instantaneous reactions. The following Signal process counts the number

of occurrences of inp between two successive occurrences of clk. A sampling occurs

where there is at least one occurrence of inp (zc not equal to 0, zc/=0).

1 process str ict lySampledOn =

2 (? event i n p , c l k ! event outp)

3 (| c ˆ= zc ˆ= inp ˆ+ c l k

4 | zc := c $ 1 in i t 0

5 | c := 1 when c l k when inp

6 default 0 when c l k

7 default zc+1 when inp

8 | outp := when zc/=0 when c l k

9 |) where integer c , zc end ;

The weak form is similar but if the input event (inp) occurs simultaneously with

the sampling clock (clk), i.e., it is not strictly future, then it must be sampled. This

requires to be one more step ahead (zzc) (see [MA09] for details).

3.3. POLYCHRONOUS LANGUAGES 47

3.3.3 Hierarchization of CCSL clock constraints

As a collaborative work with INRIA team-project ESPRESSO, Huafeng Yu has stud-

ied ways to use the Signal tool suite and its clock calculus engine to analyze ccsl

specifications [YTB+10]. ccsl aims at providing a general time model with regards

to clock relations. However it is not yet supported by many tools. On the contrary,

Signal comes with plenty of analysis tools for clock relations (Polychrony). Hence

it is a promising approach to benefit from the various tools of Polychrony to enhance

the analysis capability of timesquare. Nevertheless, the expressiveness of the two

languages, i.e., Signal and ccsl, is different as they are not faced with the same

problems. The main differences between timesquare/ccsl and Polychrony/Signal

are summarized here:

� ccsl aims at providing a more generic time model than Signal. Both dense

time and discrete time are supported in ccsl, whereas only logical time is

allowed in Signal. Hence, it is necessary to map dense and discrete time of

ccsl onto the logical time of Signal. For instance, the dense time is mapped

onto the discrete time through sampling or discrete observation. Then, the

discrete time is mapped onto the logical time in a natural way.

� ccsl allows the specification of clock relations with numerical properties. Some

of them can be also specified in Signal. However, some numerical properties,

e.g., duration, are not well supported by the code generation of Signal pro-

grams. On the contrary, Signal arithmetic operations on numbers are not

supported in ccsl.

� Asynchronous clock constraints are more easily specified and addressed in ccsl

than in Signal. timesquare provides a constraint solver that addresses these

constraints in a nondeterministic way, thus it allows nondeterminism in the sim-

ulation. Signal also allows the specification of asynchronous clock constraints,

whereas the Signal compiler refuses direct code generation for these nondeter-

ministic constraints. Hence, a valid specification of timesquare is not always

accepted by the Signal compiler for code generation.

48 CHAPTER 3. HOW DOES CCSL COMPARE ?

The main expected benefit of integrating Polychronous and timesquare is to be

able to use the clock hierarchization of Polychrony to detect determinism in ccsl

specifications and then use Signal facilities for code generation or deterministic

simulation. Non deterministic specifications can still be analyzed with timesquare

classical mechanisms.

One of the main objectives of the hierarchization is to determine an endochronous

clock system E by analyzing a Signal program S. An endochronous system implies

a unique root node in the hierarchization tree. This endochronous system ensures the

deterministic scheduling of arriving events only according to the internal signal state

and structure of S. In Polychrony, E can be used to generate code.

However, it is not always easy to build an endochronous system from S since S

can be polychronous. Clocks can be completely independent, i.e., no communication

occurs between processes. Clocks can also have constraints between them, but no

synchronous relationships. For instance, when using ccsl relation sampledOn. In

this case, it induces nondeterminism. In timesquare, the user can choose amongst a

set of possible simulation policies (e.g., random, as soon as possible, priority-based)

to select one solution out of the many possible ones. In Polychrony, code cannot be

generated for nondeterministic specifications.

There are several solutions to obtain a deterministic behavior. The first solution

offered by Polychrony consists in adding supplementary clocks to endochronize poly-

chronous clocks. For endochronous systems, the code generation is possible. It is

therefore complementary to the timesquare constraint solver. Unfortunately, it is

not always possible to find appropriate supplementary clocks for polychronous sys-

tems. Moreover, once these supplementary clocks are integrated into the system, the

compositionality of these systems cannot be ensured.

3.4 Perspectives

We have compared ccsl to other concurrent models that are often used in the field.

The comparison work is not over and as the scope of ccsl increases, the comparison

targets augment. Petri nets and process networks are natively untimed and time

3.4. PERSPECTIVES 49

comes as a decoration to describe mostly non functional properties. In ccsl time,

causal and chronological relations are natively built to emphasize on the functional

role that time can play in a specification. Signal, even though very close to ccsl,

appeared as of complementary use and there is an ongoing effort to combine them.

Part III describes a possible use of ccsl specifications as a base to verify vhdl

implementations. As such ccsl appears to have overlapping objectives with temporal

logics in general and the Property Specification Language (PSL) [PSL05] in particular.

A comparison with temporal logics in on-going and has to be completed. Preliminary

results showed that some ccsl operators (like precedence) could not be encoded with

temporal logics, whereas some (Linear Temporal Logics) LTL operators (e.g., UNTIL)

could not be encoded in ccsl.

In any cases, our goal is to integrate ccsl in a design flow and to show how it can

complement other formal languages and models.

50 CHAPTER 3. HOW DOES CCSL COMPARE ?

Part II

Modeling

51

52

This part gives usage examples of the marte time model selected from projects

in which we were involved and addressing several application domains.

The work described in chapter 4 was conducted in the context of the ANR RNTL

MeMVaTEx (Méthode de Modélisation pour la Validation et la Traçabilité des Ex-

igences) project (2006-2009), led by Siemens VDO. The main goal of MeMVaTEx

was to define a uml-based methodology for the design of embedded software for the

automotive domain. It focused on the validation and traceability of requirements.

The work has been presented at ISORC’09 [MPFA09] and an extended version is

available as a research report [MPA08].

Chapter 5 describes a work that was started during the elaboration of marte in

order to use marte as a uml profile for aadl4 (Architecture & Analysis Description

Language) [FGH06]. aadl is an architecture description language (adl) [MT00]

adopted by the sae (Society of Automotive Engineering) that offers specific sup-

port for schedulability analysis. It also considers classical computation (periodic,

sporadic, aperiodic) and communication (immediate/delayed, event-based or timed-

triggered) patterns. However, it departs from east-adl because it explicitly considers

the execution platform to which the application is allocated. Our illustration uses

marte (and notably its allocation subprofile) to build a model amenable to archi-

tecture exploration and schedulability analysis. The expression in ccsl of imme-

diate and delayed communications in case of periodic tasks has been presented at

FDL’07 [MAdS07]. The merging of event-based and time-triggered aspects has been

presented at FDL’08 [MdSR08]. The effort on the convergence between marte and

aadl is still on-going and is partly conducted in the context of a 3-year FUI project,

called Lambda (Libraries for Applying Model-Based Development Approaches), which

started in 2008.

4http://www.aadl.info

Chapter 4

The automotive domain

We first consider an example from the automotive domain. We build a ccsl library

to express formal time requirements. The operational semantics of ccsl is exploited

to make the requirements executable.

4.1 An ADL for automotive software: East-ADL2

There is a stringent need to master the growing complexity of automotive electronic

architectures (and thus software), which has taken a tremendous part in the automo-

bile design flow. Many initiatives have proposed to tackle this growing complexity

by providing a common architecture between suppliers and manufacturers. These

initiatives have involved the entire automotive electronic value system, ranging from

semiconductor industries, tool and software vendors through tier-one suppliers to the

car makers themselves. Such a broad collaboration requires a common methodology

and the definition of standards and interchange formats to support tool interoper-

ability.

Since 2003, the main effort in that path from the industry has lead to AutoSAR

(AUTomotive Open System ARchitecture)1, an open and standardized automotive

software architecture, jointly developed by automobile manufacturers, suppliers and

1http://www.autosar.org

53

54 CHAPTER 4. THE AUTOMOTIVE DOMAIN

tool developers. There have also been several academic/industry European projects

following the same line and that have fostered some of the solutions actually adopted

by AutoSAR. One of this project is East-EEA [The04], an ITEA European project

(2001-2003), whose main visible result was to propose a dedicated uml profile called

east-adl (Electronic Architecture and Software Tools, Architecture Description Lan-

guage). To integrate proposals from the emerging standard autosar and from

other requirement formalisms like sysml [Wei08, OMG08], a new release called east-

adl2 [CCG+07, The08] has been proposed by the atesst project (Advancing Traffic

Efficiency and Safety through Software Technology)2. In this section, we abusively

refer to both versions under the name east-adl.

Structural modeling in east-adl covers both analysis and design levels. In this

paper the focus is on the analysis level and especially on timing requirements. We

build a ccsl library for expressing the semantics of east-adl timing requirements.

Their semantics is left informal in east-adl specification ([The08], chapter 14) and we

had to disambiguate some of their definitions to build our ccsl model. By building

this library we make east-adl requirement specifications executable and allow the

use of timesquare to execute and animate uml models annotated with east-adl

stereotypes. The formal semantics can then lead the transformation to dedicated

analysis tools (such as SymTA/S [HHJ+05, PEP02], MAST [HGGM01], the Real-

Time Calculus toolbox [TCN00]), whereas a purely syntactic model transformations

would prevent an actual interpretation of analysis results on the uml model.

4.1.1 Timing Requirements

east-adl requirements extend sysml requirements and express conditions that must

be met by the system. They usually enrich the functional architecture with extra-

functional characteristics such as variability and temporal behavior. We focus here

on the three kinds of timing requirements (Fig. 4.1):

2http://www.atesst.org/. atesst and its follow-up atesst 2 are STREP projects funded by
the European Commission.

4.1. AN ADL FOR AUTOMOTIVE SOFTWARE: EAST-ADL2 55

1. DelayRequirement that constrains the delay “from” a set of entities3 “until” an-

other set of entities. It specifies the temporal distance between the earliest event

occurrence on the “from” entity and the latest event occurrence on the “until”

entity. It is used to specify end-to-end delays;

2. RepetitionRate that defines the inter-arrival time of data on a port or the trig-

gering period of an elementary ADLFunction;

3. Input/OutputSynchronization that expresses a timing requirement on the input/out-

put synchronization among the set of ports of an ADLFunction. It should be used

to express the maximum temporal skew allowed between input or output events

or data of an ADLFunction.

TimingRestriction

+ lower: Bound
+ upper: Bound
+ jitter: Bound
+ nominal: Bound

TimingRequirement DelayRequirement

InputSynchronization

OutputSynchronization

RepetitionRate

ADLContext
ADLCoreConstructs::

ADLEntity

+from
0..* 0..*

+from
0..* 2..*

+until
0..* 0..*

+reference
0..* 1

+reference
0..* 1

+until
0..* 2..*

+reference
0..* 1

Bound

+ value : ADLDouble

Timing Requirements

Figure 4.1: The metamodel of East-ADL Timing Requirements.

Timing requirements specialize the meta-class TimingRestriction, which defines bounds

on system timing attributes. The timing restriction can be specified as a nominal

value, with or without a jitter, and can have lower and upper bounds. The jitter is

the maximal positive or negative variation from the nominal value. A bound is a real

number associated with an implicit time unit (ms, s. . .).

3Entity is the official terminology of east-adl. In practice, it mainly refers in that case to a port
of a software component.

56 CHAPTER 4. THE AUTOMOTIVE DOMAIN

4.1.2 Example: An ABS controller

As an illustration, we consider an Anti-lock Braking System (ABS). This example and

the associated timing requirements are taken from the atesst report on east-adl

timing model [JLF08]. The ABS architecture consists of four sensors, four actuators

and an indicator of the vehicle speed. The sensors (ifl, ifr, irl, irr) measure the

rotation speed of the vehicle wheels. The actuators (ofl, ofr, orl, orr) indicate the

brake pressure to be applied on the wheels. The FunctionalArchitecture is composed of

FunctionalDevices for sensors and actuators and an ADLFunctionType for the functional

part of the ABS. An ADLOutFlowPort provides the vehicle speed (speed).

The execution of the ABS is triggered by the successive occurrences of event R

(Fig. 4.2), a RepetitionRate. Parameter Ls represents the latency of sensor sampling.

At each cycle, the values acquired by the four sensors must arrive on the respective

input ADLFlowPorts within the delay Jii (InputSynchronization). A similar OuputSyn-

chronization delay Joo is represented on the output interface side. Lio represents the

delay from the earliest event occurrence amongst the four input ports of the ABS until

the latest event occurrence amongst the four output ports, it is a DelayRequirement

in east-adl terminology. The sampling interval of the sensor is given by parameter

H. All these parameters are modeled by timing requirements characterized by timing

values or time intervals with jitters.

Rk-1 Rk

Lsk-1 Liok-1 JookJiikJook-1Jiik-1 Lsk Liok

Hk-1

ABS ABS

Hk

H : Sampling Interval
Ls : Sampling Latency
Lio : Input-Output Latency

Jii : Input Synchronization
Joo : Output Synchronization
R : Trigger

Figure 4.2: Timing requirements for the ABS

4.2. A CCSL LIBRARY FOR EAST-ADL 57

4.2 A CCSL library for East-ADL

east-adl introduces a vocabulary specific to the sub-domain considered (delay re-

quirement, input/output synchronization, repetition rate). These time requirements

can be modeled simply by composing ccsl relations. For each one of the three timing

requirement kinds, we build a ccsl relation definition, stored in a library.

4.2.1 Applying the UML profile for Marte

The ABS function is modeled in uml (Fig. 4.3) and some model elements (TimedElements)

are selected to apply the ccsl clock constraints. The reaction of a timed element is

dictated by the clock associated with it. For instance, sensor ifl is a timed element

associated with clock ifl. Ticks of clock ifl should be interpreted as a data acquisition

from the sensor. Similarly when clock ofl ticks, actuator ofl emits data.

Figure 4.3: Example of the ABS

In the following, we explain how the three different kinds of timing requirements

defined in east-adl can be modeled with ccsl constraints.

58 CHAPTER 4. THE AUTOMOTIVE DOMAIN

4.2.2 Repetition rate

A RepetitionRate concerns successive occurrences of the same event (data arriving

to or departing from a port, triggering of a function). In all cases, it consists in

giving a nominal duration between two successive occurrences/instants of the same

event/clock. We build a ccsl relation definition called repetitionRate with three

parameters: element, rate and jitter. element is the clock on which a repetition rate

is applied. rate is an integer, the actual repetition rate. jitter is a real number, the

jitter with which the repetition rate is expressed.

def repetitionRate(clock element, int rate, real jitter) ,

clock c1 = idealClk discretizedBy 0.001 (4.1)

| element isPeriodicOn c1 period rate (4.2)

| element hasStability jitter/rate (4.3)

This relation definition involves three ccsl constraints. For the duration to be

specified in seconds (time unit s), we use the clock idealClk defined in the marte time

library (Section 2.1). The ccsl expression discretizedBy discretizes idealClk and defines

a chronometric discrete clock c1 so that the distance between two successive instants

of c1 is 0.001 s (Eq. 4.1). The unit (here s) is the default unit defined for idealClk

and therefore c1 is a 1 kHz chronometric clock. Eq. 4.2 uses the ccsl expression

isPeriodicOn to undersample c1 and build another clock element, rate times slower

than c1. Eq. 4.2 is equivalent to element = c1 H (1.0rate−1)ω.

Finally, Eq. 4.3 expresses the jitter of the repetition rate. The ccsl constraint

hasStability states that the clock element is not strictly periodic: a maximal relative

variations of jitter/rate is possible on its period.

Now, back to the ABS example. One time requirement of the atesst example

specifies that the ABS function must be executed every 5 ms with a maximum jitter

of 1 ms. If abs.start is the clock that triggers the execution of the function ABS,

then repetitionRate(f.start, 5, 1) enforces this requirement. A jitter of 1 ms for a

nominal period of 5 ms corresponds to a stability of 20 %.

4.2. A CCSL LIBRARY FOR EAST-ADL 59

4.2.3 Delay requirements

A DelayRequirement constrains the delay between a set of inputs and a set of outputs.

At each iteration, all inputs and outputs must occur. So, defining a delay requirement

between two model elements means constraining the temporal distance between the

ith occurrences of their respective events. In the atesst example, a delay requirement

is used, for instance to constrain the end-to-end latency of ABS: at each iteration,

the distance between the reception of the earliest input and the emission of the lat-

est output must be less than 3 ms. Consequently, we define a ccsl clock relation

named distance with three parameters: begin, end and duration, so that the distance

between the ith occurrence of begin and the ith occurrence of end must be less than

duration ms. When a better precision than the ms is required, a 10 kHz chronometric

clock can replace the 1kHz one (Eq. 4.4). delayedFor (Eq. 4.5) expresses a pure delay

where the delay duration is counted in number of ticks of c10.

def distance(clock begin, clock begin, int duration) ,

clock c10 = idealClk discretizedBy 0.0001 (4.4)

| end ≺ (begin delayedFor duration on c10) (4.5)

As we need to model the arrival of the earliest input and of the latest output, we

use the Kernel ccsl expressions inf and sup. inf(a, b) is the greatest lower bound of

a and b for the precedence relation 4 and sup(a, b) is the lowest upper bound.

clock iinf = inf(ifl, ifr, irl, irr); clock isup = sup(ifl, ifr, irl, irr);

clock oinf = inf(ofl, ofr, orl, orr); clock osup = sup(ofl, ofr, orl, orr);

With these four new clocks, the specification of the end-to-end latency becomes

distance(iinf , osup, 30). Similarly, input (resp. output) synchronizations are special-

izations of a delay requirement. An input synchronization delay requirement for the

function ABS bounds the temporal distance between the earliest input and the latest

60 CHAPTER 4. THE AUTOMOTIVE DOMAIN

input (specified by Jii on Figure 4.2). distance(iinf , isup, 5) enforces an input synchro-

nization of 0.5 ms. Likewise, distance(oinf , osup, 5) enforces an output synchronization

of 0.5 ms (see Joo on Fig. 4.2).

4.3 Analysis of East-ADL specification

timesquare proposes menus dedicated to east-adl requirements, allowing an inter-

active specification of east-adl models. The menus build an internal model of the

specification as well as a uml marte model. The internal model is then transformed

into either a pure east-adl model or a pure ccsl specification. east-adl models

can be used by east-adl-compliant tools. ccsl specifications are analyzed by the

timesquare clock calculus engine to detect inconsistent specifications or to execute

the uml model. The execution trace can be dumped as a VCD file or can drive the

animation of the uml model. Figure 4.4 shows a trace example resulting from a com-

plete specification of the ABS. This execution exhibits a violation of the specification

showing that all the computations involved (ABS, sensors and actuators) cannot be

executed within the imposed 5 ms repetition rate.

Figure 4.4: Executing the east-adl specification of the ABS with timesquare

4.4. PERSPECTIVES 61

4.4 Perspectives

In November 2009, the official timing model of autosar has been released [AUT09].

A similar work should be conducted on this specification. It seems that ccsl is

well-adapted for this purpose. autosar timing model is based on the observation of

events and their occurrences. Timing requirements are specified by applying timing

constraints on event occurrences. autosar proposes a classification of events, this

classification exactly identifies the kinds of events that can be considered. For in-

stance, when working at the level of a software component, autosar considers three

kinds: runnableEntityActivated, runnableEntityStarted, runnableEntityTerminated. In ccsl,

the nature of events is not given, so nothing prevents us from assigning one ccsl clock

to an event for each kind of events, for each runnable entity. In marte, the uml

defines what can be considered as an event and new events are introduced by some

stereotypes of the marte time model. For instance, �TimedProcessing� introduces

a start and a finish event for any action, behavior or message. Nothing is actually

proposed to distinguish the activation from the start. Consequently, providing a full

mapping from marte to autosar requires a careful analysis of both specifications.

Looking at autosar Requirements on Timing Extensions ([AUT09], section 1.6),

several concepts from east-adl are directly reused. For instance, the requirement

RSTM002 states that “The AUTOSAR templates shall provide the means to describe

timing constraints, such as software and hardware latency, input/output delay, syn-

chronization and runnable execution order constraints with clearly defined seman-

tics.”. There are also some novelties that are perfectly within the scope of ccsl, like

the one considered by RSTM008: “The AUTOSAR templates shall provide the means

to describe multiple asynchronous clocks/time bases and their interrelation.”.

Even though in autosar and east-adl, all the timing requirements are expressed

relatively to the physical time, the analysis tools generally ignore the units. The

important information is the relative rates between repetitive event occurrences, and

therefore the library could be rewritten by ignoring the figures related to physical

time and simply relying on pure logical clocks.

62 CHAPTER 4. THE AUTOMOTIVE DOMAIN

Chapter 5

The avionic domain

In this second example, we consider aadl and use a combination of marte and ccsl

to build its software components, execution platform components, express the binding

relationships. Our intent is to allow a uml marte representation of aadl models so

as uml models can benefit from the analysis tools (mainly for schedulability analysis)

that accept aadl models as inputs.

The uml profile for aadl is defined as a subset of marte. It is included in the

omg marte specification ([OMG09a], Annex A.2). Part of the discussion presented

here has now been included in the marte annex. However, the focus here is not so

much on the relation with marte but rather with ccsl. Indeed, ccsl can explicitly

model aadl execution patterns (periodic, sporadic, aperiodic) and communication

schemes (delayed and immediate). These computation patterns and communications

schemes are not compositional (i.e., the semantics of a compound cannot be directly

inferred from the semantics of the components) and a careful analysis [FH07] of a com-

pound is required to understand the emerging semantics. ccsl can be used to model

explicitly this emerging semantics. To illustrate the discussion, we use an example

(see Fig. 5.1) taken from a report introducing latency analysis with aadl [FH07].

63

64 CHAPTER 5. THE AVIONIC DOMAIN

p2p1

t1 t2 t3

Ds Da

CPU1 CPU2

db1

« binding » « binding »

step1 step2 step3

acquire release

Figure 5.1: The example in AADL

5.1 Architecture & Analysis Description Language

5.1.1 Modeling elements

aadl supports the modeling of application software components (thread, subpro-

gram, and process), execution platform components (bus, memory, processor, and

device) and the binding of software onto execution platform. Each model element

(software or execution platform) must be defined by a type and comes with at least

one implementation.

5.1.2 AADL application software components

Sequential executions are modeled with so-called subprograms, which can be called

from threads and from other subprograms. A thread represents a sequential flow of

control that executes instructions. A thread models a schedulable unit that transitions

between various scheduling states. A thread always executes within a process. A

process represents a virtual address space. Process and threads communicate through

typed ports (see Section 5.1.5).

5.1. ARCHITECTURE & ANALYSIS DESCRIPTION LANGUAGE 65

Type and implementation declarations provide a set of properties that character-

izes model elements, like the nature and type of the ports. For threads, aadl standard

properties include the dispatch protocol (periodic, aperiodic, sporadic, background),

the period (if the dispatch protocol is periodic or sporadic), the deadline, the mini-

mum and maximum execution times, along with many others.

In Figure 5.1, p1 and p2 are two processes, t1, t2 and t3 are threads, and step1,

step2, step3 are subprograms.

5.1.3 AADL execution platform components

There are four categories of execution platform components in aadl: processor,

device, memory and bus.

Processors can execute threads and can contain memory subcomponents. Pro-

cessors and devices can access memories over buses. Memories represent randomly

addressable storage capable of storing binary images in the form of data and code.

Buses provide access between processors, devices, and memories. Devices represent

entities that interface with the external environment of an application system and may

have complex behaviors. A device can interact with application software components

through their ports and subprogram features.

In Figure 5.1, CPU1 and CPU2 are two processors, Ds and Da are two (aperiodic)

devices, and db1 is a bus.

5.1.4 AADL flows

aadl end-to-end flows identify a data-stream from sensors to the external environ-

ment (actuators).

In Figure 5.1, the flow starts from a sensor (Ds) and sinks in an actuator (Da)

through two process instances. The first process executes the first two threads while

the last thread is executed by the second process. The two devices are part of the

execution platform and communicate via a bus (db1) with two processors (cpu1 and

cpu2), which host the three threads with several possible bindings. All processes

are executed by either the same processor, or any other combination. One possible

66 CHAPTER 5. THE AVIONIC DOMAIN

binding is illustrated by the dashed arrows. The component declarations and im-

plementations are not shown. Several configurations deriving from this example are

modeled with marte and discussed in Section 5.3.

5.1.5 AADL ports

There are three kinds of ports: data, event and event-data. Data ports are for data

transmissions without queueing. Connections between data ports are either imme-

diate or delayed. Event ports are for queued communications. The queue size may

induce transfer delays that must be taken into account when performing latency anal-

ysis. Event data ports are for message transmission with queueing. Here again the

queue size may induce transfer delays. In our example, all components have data

ports represented as a filled triangle. We have omitted the ports of the processes

since they are required to be of the same type than the connected port declared

within the thread declaration and are therefore redundant.

5.2 From AADL to UML Marte

5.2.1 Two layers or more

AADL considers two families of components: software and execution platform. How-

ever, when specifying flows, a mix is required. In Figure 5.1, the flow starts from a

device (execution platform), goes through several processes and threads (application)

and ends in another device (execution platform). This domain-specific two-layer ap-

proach can be generalized by abstracting the flow itself from the actual (software or

hardware) execution platform used. This particular example can be modeled with a

3-layer model (Fig. 5.2), where the top-most layer is the algorithmic view (the flow of

data and events), the second intermediate layer describes the software execution plat-

form used (the set of processes and threads) and the last layer describes the hardware

execution platform (processors, devices, buses). In Figure 5.2, we have used uml ac-

tivities to represent the algorithmic view and structured classifiers for the two bottom

5.2. FROM AADL TO UML MARTE 67

layers. More levels could be considered depending on the particular example. The

idea is that one layer focuses on one particular aspects or concerns for the designer.

For instance, we could also separate the thread view from the processes. In other

examples, we could have one layer for the operating system, another for a middleware

and another for a virtual machine running on top of them.

AllPeriodic

« allocated »

t1 : PeriodicThread

« allocated »

t2 : PeriodicThread
« allocated »

t3 : PeriodicThread

ExecutionPlatform

« allocated »

Ds : Device

« allocated »

cpu2 : Processor

« allocated »

Da : Device
db1 : Bus

« allocated »

cpu1 : Processor

« allocate » « allocate »

ad End-to-end flow

acquire step1 step2 step3 release

« allocate »« allocate »

<<allocate>>
« allocate » « allocate »

« allocate »

Figure 5.2: Three-layer approach with Marte

In the remainder of this subsection, we discuss possible choices for each layer.

68 CHAPTER 5. THE AVIONIC DOMAIN

5.2.2 AADL application software components

We have created a uml library to model aadl application software components [LMdS08]

(see Fig. 5.3). aadl threads are modeled using the stereotype SwSchedulableResource

from the marte Software Resource Modeling sub-profile. Its meta-attributes deadli-

neElements and periodElements explicitly identify the actual properties used to repre-

sent the deadline and the period. Using a meta-attribute of type Property avoids a

premature choice of the type of such properties. This makes it easier for the trans-

formation tools to be language and domain independent. In our library, marte type

NFP Duration is used as an equivalent for aadl type Time.

+ deadline : NFP_Duration

+ minExecutionTime : NFP_Duration

+ maxExecutionTime : NFP_Duration

+ dispatchProtocol : SupportedDispatchProtocols

AADLThread

+ period : NFP_Duration

{self.dispatchProtocol = periodic}

<<swSchedulableResource>>

{deadlineElements=deadline,

periodElements=period}

PeriodicThread

+ periodic

+ sporadic

+ aperiodic

+ background

<<enumeration>>

SupportedDispatchProtocols

{self.dispatchProtocol = aperiodic}

<<swSchedulableResource>>

{deadlineElements=deadline}

AperiodicThread

period = (50.0, ms)

deadline = (45.0, ms)

minExecutionTime = (6.0, ms)

maxExecutionTime = (10.0, ms)

dispatchProtocol = periodic

t1 : PeriodicThread

deadline = (70.0, ms)

minExecutionTime = (15.0, ms)

maxExecutionTime = (23.0, ms)

dispatchProtocol = aperiodic

t2 : AperiodicThread

Figure 5.3: A UML/Marte library for AADL threads

This uml/marte library mimics the aadl way of building specific types to denote

periodic and aperiodic threads. This, as in aadl, demands to change the model when

the application software components change. For instance, if t2 becomes aperiodic,

then we can replace the middle layer by another layer where t2 is of type Aperiodic-

Thread. Section 5.3 proposes an alternative model that focuses on thread activations

and represents them as ccsl clocks.

5.3. DESCRIBING AADL MODELS WITH MARTE 69

5.2.3 Modeling ports

uml components are linked together through ports and connectors. No queues are

specifically associated with connectors. The queueing policy is better represented on

a uml activity diagram that models the algorithm. A uml activity is the specification

of a parameterized behavior as the coordinated sequencing of actions determined by

token flows. A token carries an object, datum, or locus of control. A token is stored

in an activity node and can move to another node through an edge. Nodes and edges

have flow rules that define their semantics. In uml, an object node (a special activity

node) can contain 0 or many tokens. The number of tokens is bounded according to

its property upperBound. The order in which the tokens flow out of an object node

is selected by setting its property ordering. FIFO (First-In First-Out) is the default

ordering value. So, we propose to use object nodes to represent both event and event-

data aadl communication links. The token flow represents the communication itself.

The standard rule is that only a single token can be chosen at a time. This is fully

compatible with the aadl dequeue protocol OneItem. Representing the aadl dequeue

protocol AllItems requires to set edge weights. This allows any number of tokens to

pass along the edge, in groups. The weight attribute specifies the minimum number

of tokens that must traverse the edge. Setting this attribute to the unlimited weight

(denoted ‘*’) means that all the tokens at the source are offered to the target in one

single transaction. aadl data ports are modeled with �datastore� object nodes. In

such nodes, tokens are never consumed thus allowing multiple readings of the same

token. Therefore, aadl data ports are equivalent to a uml data store object node

with an upper bound equal to one.

5.3 Describing AADL models with Marte

5.3.1 AADL flows with Marte

We choose to represent the aadl flows using a uml activity diagram. Fig. 5.4 gives

the activity diagram equivalent to the aadl example described in Fig. 5.1. The

70 CHAPTER 5. THE AVIONIC DOMAIN

diagram was built with Papyrus (http://www.papyrusuml.org), an open-source uml

graphical editor.

«timedProcessing»

End-to-end flow

«timedPr...

Acquire
«timedPr...

Release
«time...

step1

«centralBuffer»
ds

out

in

«time...

step2

«centralBuffer»
d1

in

out

«time...

step3

«centralBuffer»
d2

in

out da

«centralBuffer»
d3

«TimedProcessing»
 on = [t3]

 «TimedProcessing»
 on = [ds, t1, t2, t3, da]

Figure 5.4: End to end flows with UML Marte

As discussed previously, object nodes are used to represent the queues between

two tasks. This uml diagram is untimed and we use marte Time Profile to add

time information. This diagram is a priori polychronous since each aadl task is

independent of the other tasks. ccsl focuses on event occurrences. In this example,

we focus on thread activations and build a dedicated, logical and discrete, clock type

to represent aadl thread activations (e.g., AADLTask as in Fig. 5.5). Still using uml

structured classifiers, we can build another generic layer (see Fig. 5.5) that represents

the software execution platform made of three threads, whose activations are modeled

as ccsl clocks. The three threads become three logical clocks (t1, t2, t3). Two other

logical clocks (ds, da) denote the activations related to the devices. The actual

execution semantics as well as the selected dispatch protocol (periodic, aperiodic) are

specified as ccsl constraints on these five logical clock constraints.

The tight relationship between the actions in Figure 5.4 and the execution plat-

form is made concrete by a marte allocation as shown in Figure 5.2. In that partic-

ular case, the stereotype �TimedProcessing� completes the information given by the

allocation and states that action step1 can only start when thread t1 is active.

5.3. DESCRIBING AADL MODELS WITH MARTE 71

SoftwareExecutionPlatform

« clock »

t1 : AADLTask

« clock »

t2 : AADLTask

« clock »

t3 : AADLTask

« clockType »

{isLogical, nature = discrete}

AADLTask

Figure 5.5: AADL thread activation conditions denoted as CCSL clocks

5.3.2 Five aperiodic tasks

The five clocks are a priori independent. The dispatch protocols of the tasks de-

termines the ccsl constraints to use. Aperiodic tasks (e.g., devices) can start their

execution as soon as the data is available on their input port. ccsl relation alterna-

tion (∼) models asynchronous communications. For instance, action Release starts

when the data from Step3 is available in d3. t3 is the clock associated with Step3 and

da is the clock associated with Release. The asynchronous communication is there-

fore represented as follows: t3 ∼ da. Fig. 5.6 represents the execution proposed by

timesquare with only aperiodic tasks: ds ∼ t1, t1 ∼ t2, t2 ∼ t3, t3 ∼ da. The

optional dashed arrows represent instant precedence relations .

Figure 5.6: Five aperiodic tasks.

72 CHAPTER 5. THE AVIONIC DOMAIN

This is only an abstraction of the behavior where task durations are neglected.

Additionally, note that this specification allows a pipelined behavior: ds occurs a

second time before the first occurrence of da. This is because ∼ is not transitive.

An additional constraint (ds ∼ da) would be required to ensure the atomic execution

of the whole activity. Finally, this run is one possible behavior and certainly not the

only one. Most of the time, and as in this case, clock constraints only impose a

partial ordering on the instants of the clocks. Applying a simulation policy reduces

the set of possible solutions. The one applied here is the random policy that relies

on a pseudo-random number generator. Consequently, the result is not deterministic,

but the same simulation can be played again by restoring the generator seed.

5.3.3 Mixing periodic and aperiodic tasks

Logical clocks are infinite sets of instants but we do not assume any periodicity,

i.e., the distance between successive instants is not relevant. The clock constraint

isPeriodicOn allows the creation of a periodic clock from another one. This is a more

general notion of periodicity than the general acceptation. A clock c1 is said to be

periodic on another clock c2 with period P if c1 ticks every P th ticks of c2. In ccsl,

this is expressed as follows: c1 isPeriodicOn c2 period P offset δ.

To build a periodic clock with the usual meaning, the base clock must refer to the

physical time, i.e., it must be a chronometric clock. As in Section 4, we can discretize

idealClk for that purpose and build c100, a 100 Hz clock (Eq. 5.1).

c100 = idealClk discretizedBy 0.01 (5.1)

Figure 5.7 illustrates an execution of the same application when the threads t1 and

t3 are periodic. t1 and t3 are harmonic and t3 is twice as slow as t1 (see Eqs. 5.2–5.3).

t1 isPeriodicOn c100 period 2 (5.2)

t3 isPeriodicOn t1 period 2 (5.3)

5.3. DESCRIBING AADL MODELS WITH MARTE 73

Coincidence instant relations imposed by the specification are shown with vertical

edges with a diamond on one end. Depending on the simulation policy there may

also be some opportunistic coincidences. Clock ds is not shown at all in this figure

since it is completely independent from other clocks.

Figure 5.7: Mixing periodic and aperiodic tasks.

Note that, the first execution of t3 is synchronous with the first execution of t1

and occurs before the first execution of t2. Hence, the task step3 has no data to

consume. This is compatible with the uml semantics only when using data stores.

The data stores are non-depleting so if we assume an initialization step to put one

data in each data store, the data store can be read several times without any other

writings. The execution is allowed, but the result may be difficult to anticipate and

the same data will be read several times. When the task t1 is slower than t3, i.e.,

when oversampling, some data may be lost. A discussion on these aspects is available

in another work [MdS09].

The VCD produced by timesquare is annotated with information derived from

the ccsl specification to facilitate the interpretation. We have already discussed the

instant relations (dashed arrows and vertical edges). Fig. 5.7 also exhibits ghost-tick

feature. Ghosts may be hidden or shown at will and represent instants when the

clock was enabled but not fired. For instance, the first ghost of c 100 shows c 100

was enabled at the first of occurrence of t2, but was not fired. It also shows that

even though the second occurrence of t2 is simultaneous with the fourth occurrence

of c 100, it was not strictly imposed by the specification. Additionally, that particular

specification happens to be conflict-free but we do not have any criterion to decide

74 CHAPTER 5. THE AVIONIC DOMAIN

on the conflict-freeness of a ccsl specification in general: the firing of one clock may

disable others. These are classical problems occurring when modeling with Petri nets

and that also appear with ccsl because of this precedence instant relation.

5.4 Perspectives

More and more model transformations are proposed from aadl to other (formal) lan-

guages [JHR+07, YTG08, CRBS08]. This is part of a larger effort to build platforms

(OpenEmbeDD1, TopCaseD2) that rely on largely accepted modeling languages (like

aadl, uml, sysml) as front-ends and propose a variety of back-ends to perform vari-

ous kinds of analyses (performance, schedulability, model-checking . . .). The expected

result is to enlarge the potential community of users by combining complementary

analysis tools and replacing the niche formats by graphical modeling languages en-

dorsed by standardization bodies.

However, each of these transformations gives its own semantics to aadl without

any guarantee whatsoever that two different transformations actually maintain the

same semantics. To address this issue, some environments like TopCased promote the

use of a pivot language (like FIACRE) as a common base for the transformation. Our

proposed encoding in ccsl can be seen as yet another transformation. Nevertheless,

our proposition departs from the others because ccsl is a modeling language that can

be directly attached to uml or sysml model elements, through marte stereotypes.

Therefore, the selected semantics, described in ccsl, becomes explicit within the

model instead of being defined by a transformation to an external language. ccsl

can then be used as a reference semantic models to guide transformations to other

languages. Ensuring that two transformations are equivalent amounts to showing

that the result is equivalent to the same ccsl specification. Comparing ccsl with

other formal languages is an on-going work. Some preliminary comparison results are

given in Chapter 3.

1http://openembedd.org
2http://www.topcased.org

Part III

Verification

75

76

This part proposes to check existing code against a ccsl specification. The main

idea is that logical time is flexible enough to capture causal and time requirements at

all modeling levels from the gates (Register Transfer Level - rtl) to the functional

level (communicating processes following Cai & Gajski’s terminology [CG03]), in-

cluding the transaction level (tlm). Indeed, synchronous languages [Hal92, BCE+03]

have been successfully used at the functional level in safety-critical systems but also as

modeling languages able to synthesize optimized rtl code (vhdl) as well as tlm code

(systemc). We discuss here a verification technique in which observers are generated

by a structural transformation of a ccsl specification. We have addressed two specific

target languages (Esterel [Ber00] and vhdl) that rely on two different programming

paradigms, namely synchronous reactive and discrete event. The proposed generation

technique can be extended straightforwardly to other languages relying on the same

paradigms. Some efforts are currently undertaken to generate code for Scade, another

synchronous language, and systemc, another discrete-event simulation language.

Chapter 7 summarizes the main results presented at LCTES’09 [AMallet09]. A

research report [And10] details a library of Esterel modules that allows the automated

construction of observers for any ccsl specification. The key of the success resides in

the closeness of the semantics of ccsl and Esterel that are both instant-based fixed

point semantics. Chapter 8 explores an adaption of this process for vhdl implemen-

tations. The adaptation is not trivial because of the semantic gap between the ccsl

semantics and the simulation semantics of vhdl based on microsteps with delta cy-

cles. Building a library of vhdl components for ccsl specification checking requires

a careful comparison between the two semantics. This work was initiated during the

PhD thesis of Aamir Mehmood Khan, who defended in March 2010 [Meh10]. A po-

sition paper was presented at FDL 2009 [MKMAdS09]. A more thorough analysis

has been recently published [AMD10]. General aspects regarding the construction of

observers for ccsl specifications, not specific to either vhdl or Esterel, are briefly

presented in the remainder of Chapter 6. The proposed generic transformation was

implemented in timesquare by Antoine Boulinguez during his training period to ob-

tain his second year degree from Nice’s institute of technology.

Chapter 6

Building language-specific

observers for CCSL

6.1 The generation process

Verification by observers is a technique widely applied to property analysis / check-

ing [HLR94, ABL98, BBKT05, BJB05]. As its name indicates, an observer continu-

ously observes executions of a system to detect some specific, possibly undesirable,

behaviors. Often the observers are used at runtime or in simulation. An observer

can see input, output and internal events or values of the program. If the observed

evolution does not satisfy one expected property, the observer enters a failure state

and reports a violation. Usually, the observer is written in the same language as the

model (e.g., Esterel, systemc, vhdl) as long as this language supports the parallel

composition.

A ccsl specification is a set of possibly inter-related constraints that express

safety properties. Our goal is to generate an observer from the ccsl specification.

We propose to create a library of “components”, for each ccsl constraint (relations

and expressions) and perform a structural generation. Relations and expressions are

of a different nature. An expression defines a new clock. For each expression, we

build a component called a generator. A relation constrains two clocks. Since we use

77

78 CHAPTER 6. BUILDING LANGUAGE-SPECIFIC OBSERVERS FOR CCSL

non-intrusive observers, we cannot force anything to happen and we can only observe

violations. For each relation, we build a component called a relationObserver, which

has two inputs (one for each clock) and one output: the violation signal. A violation

of the specification will occur if any violation output of any relation relationObserver

is asserted.

The semantics of each ccsl constraint is given by an SOS rule that determines,

given a configuration, which clock MUST, CAN or CANNOT tick. The idea is to

encode the SOS rule directly in the target language. Clocks are encoded by three-state

values: respectively 1, X, 0 in vhdl. A violation occurs either when the clock must

tick according to the specification and does not actually tick in the implementation,

or when the clock cannot tick (according to the specification) and actually ticks (in

the implementation). When a clock can tick (according to the specification), then it

may or may not actually tick (in the implementation).

A generator creates a new clock from its inputs. Those inputs are fully determined

by the program under test or by another generator, and therefore the resulting clock

is fully deterministic. For this reason, the specification of a generator is exactly the

SOS rule of the corresponding expression. However, whereas the Esterel encoding

of the SOS rule will only provide a constructive solution, a naive encoding in vhdl

might cause glitches and false violations. The two following chapters describe the

proposed encoding in Esterel and in vhdl.

An observer must verify that something bad never happens. However, the SOS

rule corresponding to a relation specifies what should happen. Consequently, a vi-

olation occurs when the incoming clocks falsify the enabling condition. Therefore,

the violation condition—checked by the observer—is just the logical negation of the

enabling condition. The initial conditions and the internal state evolution rules are

directly encoded from the SOS rewrite rules. Here again, naive implementations may

cause false violations due to the lack of constructiveness.

From the SOS rules, it is possible to obtain the specification for the generators

and the observers. Both of them consider logical clocks as inputs. However, whereas

Esterel signal can be seen as ccsl logical clocks with values, the vhdl valued signals

6.1. THE GENERATION PROCESS 79

are very different. In both cases, a conversion between signals (or possibly a combina-

tion of signals) into logical clocks is required. Such an adaptation is done by specific

hand-made components called adapters. Adapters are also very useful to use the same

specification for different implementations of the same system at different abstraction

levels. Adapters are sometimes called transactors when they play such a role. Even

with a fairly large library of common adapters, it may always appear new cases that

have to be designed individually. For instance, in Figure 6.1, the adapter TF is a

sequential component that builds the logical clock tbf , so that it ticks whenever the

signal PSEL has been asserted HIGH in two consecutive cycles of signal CLK. This

particular example is further discussed in Chapter 8.

« adapter »

risingEdge

« generator »

delay

APB

Bridge

HSELB

HREADY

PSEL

« generator »

inf

« generator »

minus

« observer »

equal

v3

input- only

passive

interfaces

c_invhready
CLK

« adapter »

TF

« adapter »

fallingEdge

1

Implementation
Property checker generated

from a CCSL model

full

tbs

tbf

tbs $ 1

Figure 6.1: The observation network structurally reflects the ccsl model

ccsl models conform to the ccsl metamodel and can therefore be represented as

a tree. The root of this tree is the clock relation, the leaves are clocks, and interme-

diate nodes are clock expressions. Thus, the components used to implement a clock

relation checker are assembled as a tree that reflects the same structure. An observer

80 CHAPTER 6. BUILDING LANGUAGE-SPECIFIC OBSERVERS FOR CCSL

component is the root, adapter components are the leaves, and generator components

are the intermediate nodes. This structure is acyclic: information starting from the

leaves eventually arrives at the root. For optimization reasons, some components may

be shared. So, the actual structure can be a Directed Acyclic Graph (DAG) of com-

ponents, whose maximal elements are observer components, and minimal elements

are adapter components (see Fig. 6.1). Be it a tree or a DAG, we call an assembly of

components used to check a clock relation an observation network.

6.2 Adapters

6.2.1 In Esterel

Pure Esterel signals are strictly equivalent to ccsl logical clocks. Valued signals carry

a logical clock and a value. Building adapters for Esterel can be as simple as extracting

the pure signal from any valued signal. It could also involve a more complex Esterel

module that combines different Esterel signals and takes the values into account. For

the example of the digital filter discussed in Chapter 7, the former case has been

retained in most cases. The following Esterel adapter binds the output valued signal

OutPixel to a pure signal c OutPixel, which stands for a ccsl clock outP ixel. That

is to say, clock outP ixel ticks whenever the signal OutPixel is present, whatever its

value.

sustain c OutPixe l i f OutPixel

6.2.2 In VHDL

In VHDL, it makes no sense to test for the presence of a signal. So we have to find a

way to encode ticks of logical clocks. For this purpose, we use a ‘pulsed’ signal whose

pulses represent the clock ticks. The width of a pulse is ε (EPSILON). ε is strictly

positive but ‘as small as possible’, i.e., far smaller than the minimal duration (∆min)

between application events. ε > 0 ensures that the rising and the falling edges of the

6.3. RELATION OBSERVERS 81

pulse occur at different simulation time, i.e., not within another delta cycle at the

same simulation time. ε� ∆min makes that the pulse falling-edge is the simulation in-

stant immediately following the pulse rising-edge. A pulse is easily generated in vhdl

by assigning waveforms to a signal. Execution of c out <= ’1’, ’0’ after EPSILON;

produces a pulse whose width is EPSILON, a given constant typed Time.

In its simplest form, an adapter takes a single input signal and generates a pulse

on a particular (vhdl) event on this signal (e.g., a rising-edge). The library provides

adapters for rising-edge and falling-edge. Sometimes, specific adapters must be writ-

ten. This was the case for example addressed in Chapter 8, which uses an adapter

that implies a sequential behavior on two signals.

6.3 Relation observers

To compare the process of building observers in Esterel and in vhdl, we choose the

example of the ccsl relation precedes (denoted ≺). For a specification, i.e., a set

of discrete clocks C, we associate a function χ called configuration, χ : C → N that

gives the current time, i.e., the index of the current instant for each clock. The initial

configuration χ0 is so that (∀c ∈ C)(χ0(c) = 0). In the operational semantics of the

strict precedence (c1 ≺ c2), we compare the configurations for the two clocks c1 and

c2 (i.e., δ = χ(c1)− χ(c2)) and we allow c2 to tick only when δ > 0. This is formally

expressed with the following SOS rule:

δ , (χ(c1)− χ(c2))q
c1 ≺ c2

y
= (δ ≤ 0⇒ ¬c2)

(strict precedence)

This rule (or rather its negation) must be encoded in the target language. Note

that, the rule essentially prevents δ from being negative (this is the case, for the initial

configuration). Therefore, the observer should count the occurrences of c1 and c2 and

should emit a violation whenever δ becomes negative.

82 CHAPTER 6. BUILDING LANGUAGE-SPECIFIC OBSERVERS FOR CCSL

6.3.1 In Esterel

The encoding of the SOS rule is straightforward in Esterel:

1 module Ccs l R precedes :

2 input c1 , c2 ;

3 output Vio l a t i on ;

5 signal Delta : value unsigned in i t 0 in

6 sustain {

7 V io l a t i on i f (pre(?Delta) = 0) and c2 ,

8 ?Delta <= pre(?Delta) + 1 i f c1 and not c2 ,

9 ?Delta <= pre(?Delta) − 1 i f not c1 and c2

10 }

11 end signal

12 end module

Note that this implementation uses an unsigned signal (Delta, line 5) to encode

the difference in the number of occurrences between clocks c1 and c2. This makes

unbounded models that, consequently, cannot be verified by model-checkers. To run

a model-checker, the unsigned variable must be bounded prior to verification.

6.3.2 In VHDL

To avoid false violations due to glitches, we use postponed processes. Since a relation

observer is always at the end of the observation network, the code of an observer can

be executed at the last delta cycle. The internal state δ is represented by an integer

variable delta, initialized to 0 (line 4). The negation of the enabling condition (i.e.,

the violation condition) is (δ = 0) ∧ c2. Lines 11 to 14 check this condition and set

violation accordingly. Lines 15 to 20 maintain the internal state. The whole process

is postponed (line 8), so that its code is executed only when all signals are stable.

6.4. GENERATORS 83

1 architecture Ccs l R precedes of Ccsl R Observer i s

2 begin

3 postponed process (c1 , c2)

4 variable d e l t a : i n t e g e r := 0 ;

5 begin

6 i f (d e l t a = 0) and (c2 = ’1 ’)

7 then v i o l a t i o n <= ’ 1 ’ ; −− v i o l a t i o n

8 else v i o l a t i o n <= ’ 0 ’ ; end i f ;

9 i f c1 = ’1 ’ then d e l t a := d e l t a + 1 ; end i f ;

10 i f c2 = ’1 ’ then d e l t a := d e l t a − 1 ; end i f ;

11 end process ;

12 end architecture Ccs l R precedes ;

6.4 Generators

Generators implement ccsl expressions, which build new clocks from existing ones.

Whereas the semantics of a ccsl relation is purely combinatorial, the semantics of ex-

pressions is sequential. Consequently, some SOS rules decide whether the constructed

clock ticks or not, for a given configuration. Other SOS rules rewrite the expression

into a new one. As an example, we study expression wait. wait 5 c is an expression

that ticks once at the 5th occurrence of c. It departs from the delay operator by not

being reentrant. It has been chosen because of its simplicity. Encoding the reentrant

delay is a bit more complex but follows the same line.

β , (n = 0)

Jwait n cK = (β ∧ c)
(wait)

c ∈ F n > 0

wait n c→ wait (n− 1) c
(RWwait)

84 CHAPTER 6. BUILDING LANGUAGE-SPECIFIC OBSERVERS FOR CCSL

Rule (wait) states that the clock built by wait n c only ticks when c ticks and

n = 0. The second rule decrements the counter n when c ticks. If c does not tick,

nothing happens. When n reaches 0, the new clock ticks whenever c ticks.

6.4.1 In Esterel

A direct Esterel encoding of the rules is as follows

1 module Ccs l E wai t :

2 input c ;

3 constant N: unsigned ;

4 output o ;

6 signal count : unsigned in i t = N do

7 every c do emit o i f ?count=0 end every

8 | |

9 sustain {

10 ? counter <= pre(?count) − 1 i f c and ?count>0

11 }

12 end signal

13 end module

The values of the constant N (line 3) is set at the compile-time module instantiation.

We use a local unsigned variable count (line 6) to count up to N occurrences of c.

Line 7 implements the first rule (wait), whereas lines 9-10 implement the second rule

(RWwait). The parallel operator (‖) put them together. However, let us note that the

expression wait is a primitive operator in Esterel. The above module is equivalent

to wait N c; emit o; but the purpose of this example is to illustrate the possible

automatic encoding from the rewriting rules.

6.4. GENERATORS 85

6.4.2 In VHDL

Since a generator is not a maximal element in the observation network, it cannot

be implemented as a postponed process. The idea is to realize it as two separate

processes. The first process, named surface, deals with the combinatorial behavior.

This process drives the generator output o and may introduce glitches. The second

process, named depth, is sequential and manages the internal state. depth is a post-

poned process, thus it works only when the observation network has stabilized. The

names ‘surface’ and ‘depth’ come from the synchronous language compilers that also

separate combinatorial and sequential evolutions. This is illustrated on a generator

that implements delay. Such a generator has one input clock c, a natural number

input parameter n, and one output clock o.

entity Ccs l E de lay i s

generic (N: NATURAL := 1) ;

port (c : in b i t ; o : out b i t := ’0 ’) ;

end Ccs l E de lay ;

architecture Ccs l E de l ay a r ch of Ccs l E de lay i s

signal count : NATURAL := N;

begin

s u r f a c e : o <= ’1 ’ when c = ’1 ’ and count=0 else ’ 0 ’ ;

depth : postponed process (c)

begin

i f c = ’1 ’ and count>0 then count := count − 1 ; end i f ;

end process ;

end Ccs l E de l ay a r ch ;

The local counting signal count is declared and initialized at line 6. This signal is

accessible by the two processes: surface for reading, and for reading and writing. Line

86 CHAPTER 6. BUILDING LANGUAGE-SPECIFIC OBSERVERS FOR CCSL

8 implements the enabling condition (surface). Process depth updates the counting

signal whenever c ticks and until it reaches 0. Note that, the output o is also a

pulsed-signal if c is a pulsed-signal. For all expressions and relations, it is important

to check that this property is preserved on all signals that represent logical clocks.

6.5 Perspectives

By providing this observer-based verification process, we extend the possible use of

ccsl in a design flow. This proposed flow is as follows. It starts with a uml model.

The model is annotated with ccsl constraints by applying the profile marte and

using its stereotypes. The resulting executable specification is assessed and refined

by using feedbacks from timesquare simulation. Finally, the implementation is vali-

dated through observers generated from the ccsl specification. Following this flow,

the ccsl specification can act as a golden model against which, several alternative im-

plementations, possibly at different abstraction levels, can be checked. For now, this

process is applicable with two target implementation languages (Esterel and vhdl).

Extensions to similar languages (Scade, systemc) are ongoing. Relying on Esterel

gives access to its formal verification suite, thus extending timesquare capabilities.

Chapter 7 illustrates the approach with Esterel and discusses the use of Esterel

Studio verification suite. Chapter 8 illustrates the process to verify an amba ahb to

apb bridge.

Chapter 7

Verifying Esterel implementations

In this chapter, we use the simple example of a digital filtering video application to

illustrate our process applied to the Esterel language. The example is described in

Section 7.1. Section 7.2 uses ccsl to specify the expected behavior of the digital

filter. The specification is simulated with timesquare, an environment we have de-

veloped, dedicated to marte Time Specification and ccsl analysis. We then rely on

Esterel Studio formal verification facilities to check the conformance of a candidate

Esterel/SyncCharts implementation with its specification.

7.1 Example: a digital filter

This section introduces the example selected to illustrate our proposal: a simple

digital image filtering (DF) application. This example is borrowed from the “Getting

Started Manual” of Esterel Studio and was designed as a tutorial on its modeling

capabilities.

DF is used in a video system. It reads groups of pixels from a memory, filters

them and sends output pixels out to a display device.

One image is composed of LPI lines, each line consists of PPL pixels. The pixels

are stored in words. A word contains PPW pixels, a line WPL words
(
WPL =

87

88 CHAPTER 7. VERIFYING ESTEREL IMPLEMENTATIONS

dPPL/PPW e
)
. The pixel transformation (digital filtering) is defined by a dot prod-

uct:

y[k] =

j=+L∑
j=−L

c[j] ∗ x[k − j] (7.1)

where k is a natural number, index of the pixels in a line, y is an array of output

pixels, x is an array of input pixels, and c is an array of 2L+ 1 constant coefficients.

DF has four signal ports. The input port InWord conveys WORD values, the output

port OutPixel conveys PIXEL values. The two other output ports (Ready and EndOfLine)

are pure signals, that is, they do not carry values and are used for signaling event

occurrences. A rough specification of the behavior of DF is as follows. DF requests

a new incoming word by asserting Ready ¬. In response, an external memory sends

back the next word of the image (signal InWord). OutPixel are sequentially issued after

receiving InWord and performing the filtering. EndOfLine is asserted each time the

last pixel of a line is emitted ®. The circled numbers (¬, , ®), in Figure 7.1, refer

to instant relations and are discussed in the next subsections.

7.2 CCSL specification

Events of the system are modeled as logical clocks and the specification is imposed

by applying constraints to these clocks. An event can be a signal receipt (e.g.,

inWord), a signal emission (e.g., outP ixel), or the presence of a pure signal (e.g.,

ready, endOfLine). A logical clock ticks each time the associated event occurs. For

convenience, we denote the clock associated with a signal by the name of the signal

in italic and with an initial lower case letter.

Precedence arrows and coincidence edges in Figure 7.1 represent some instant rela-

tions implied by the specification. Precedence relation ¬ states that for each request

(each tick of ready) a new word must be released (inWord must tick). Precedence

expresses that each received word produces four output pixels. The rounded-corner

rectangle makes it explicit that a word gives rise to four output pixels exactly. Coin-

cidence ® says (for the unlikely case of a 8-pixel line) that the first tick of endOfLine

7.2. CCSL SPECIFICATION 89

is coincident with the 8th outpixel.

ready

inWord

outPixel

endOfLine

PPW=4
PPL=81

2

3

Figure 7.1: Some time constraints on the DF behavior

Of course, the instant relations represented in Figure 7.1 hold for all lines of the

image and all parameter settings. Instead of expressing instant relations on an instant-

pair base, it is more convenient to apply constraints on clocks directly. Adequate clock

constraints that correctly implement the specification are informally described in the

following subsection.

Clock constraints are a generic way to define various aspects of a specification.

They may derive from the algorithm itself or from performance requirements, and

also from the data structure used or the operating mode. We have identified here

four primary constraints covering several of these aspects.

(Cstr ¬) The specified protocol implies that each request (ready) is followed by

a new word (inWord) and that no new request is sent before the preceding

request has been acknowledged. This is an alternation constraint where, ready

alternates with inWord (ready ∼ inWord). In terms of clocks, each instant of

ready precedes an instant of inWord, which precedes the next instant of ready,

and so on.

(Cstr) Because of the chosen data structure, input pixels are packed within words

of length PPW , whereas output pixels are individually released. The algorithm

imposes that the number of pixels is preserved. A by-packet precedence relation

denotes such a fact. Each tick of inWord precedes a group of PPW consecutive

ticks of outP ixel: inWord ≺
(
outP ixel/PPW

)
.

90 CHAPTER 7. VERIFYING ESTEREL IMPLEMENTATIONS

(Cstr ®) endOfLine ticks every PPL ticks of outP ixel. This constraint directly re-

flects the semantics of the end of line: endOfLine = outP ixel H (0PPL−1.1)ω.

(Cstr ¯-°) Additional non-functional constraints must be set to impose readiness

and reduce communication buffers. Such a constraint should avoid delaying

unnecessarily the processing of received input words and gives rise to further

precedence constraints between outP ixel and inWord.

The periodic pattern (in ®) models regular data flows. Here, each pixel line has

the same length, and the same transformation periodically applies to each line.

The pixel transformation being a dot product (Eq. 7.1), each output pixel de-

pends on 2L + 1 consecutive input pixels. ccsl only deals with the structural rela-

tions, therefore the actual transformation is not relevant and the data dependencies

(between inputs and outputs of the pixel transformation) are implemented by sev-

eral precedence constraints that are surely much stronger than (Cstr)). Figure 7.2

shows these precedence constraints for one single image row in the simplistic case

where PPL = 8, and L = 2. A more general characterization is given in [AMallet09].

inPixel

outPixel

0 1 2 3 4

2

0 1

0

2 5 6 7

7

(A) (B) (C)

pad pad

Figure 7.2: Pixel dependency

As always in pipelined specifications, three phases must be considered for each

line. The prolog, when filling the pipeline, the kernel, when the pipeline is in a steady

state, the epilog, when draining the pipeline.

Figure 7.2 (A) shows the beginning of the line processing (prolog) where padding

pixels are necessary to apply the dot product. OutPixel[0] depends on InPixel[-2..2]. A

default value is given to padding pixels InPixel[-2] and InPixel[-1].

7.3. RUNNING SIMULATIONS WITH TIMESQUARE 91

Figure 7.2 (B) illustrates the steady phase (kernel) where the computation of

each output pixel depends on five inputs pixels. OutPixel[2] depends on InPixel[0..4]

. . . InPixel[4]. Because of the implicit ordering on input pixels (InPixel[j] precedes

InPixel[k], for any j < k), only one precedence is required: InPixel[4] must precede

OutPixel[2].

Figure 7.2 (C) represents the ending of the 8-pixel line processing (epilog). Out-

Pixel[7] depends on InPixel[5..9]. InPixel[8] and InPixel[9] are also padding pixels for

which a default value is assumed.

Since signal InPixel is not part of the interface, the precedence relations between

InPixel and OutPixel have to be expressed as precedence relations between InWord and

OutPixel (Constraint ¯). Relation ° is a back-pressure constraint to guarantee that

output pixels are delivered fast enough so the communication buffer contains at most

two words.

(
inWord H (0.1)ω

)
≺
(
outP ixel H 02.

(
1.07

)ω)
¯(

outP ixel H 0.
(
1.07

)ω) ≺
(
inWord H (0.1)ω

)
°

Overall, the specification mixes synchronous (Cstr ®) and asynchronous (Cstr

¬, , ¯) constraints and involves functional and non-functional aspects. Such a

specification is a good example to have a broad overview of ccsl expressiveness.

7.3 Running simulations with TimeSquare

Figure 7.3 illustrates a correct run for the given specification generated by the time-

square simulation engine. Note that alternative runs may also be correct since the

simulation engine generates one possible solution.

TimeSquare VCD viewer displays instant relations when requested. Precedence

relations are displayed as dashed arrows. Coincidence relations are shown as vertical

lines with a diamond on the side of the super clock. When packet-based constraints

(as in) are used, the packets are depicted as rounded-corner rectangles surrounding

92 CHAPTER 7. VERIFYING ESTEREL IMPLEMENTATIONS

Figure 7.3: One acceptable solution generated by TimeSquare

the related clock ticks.

Even though simulation can help to discover some specification inconsistencies, it

only considers one possible solution at a time. It must be combined with exhaustive

analysis for corner bug detection and formal verification of safety requirements. This

is addressed in Section 7.4.

7.4 Analysis with Esterel observers

Now that we are confident that our ccsl specification includes all the properties

that we want to verify, we want to use this specification on an existing implementa-

tion. We took the code provided in the previously mentioned Esterel-Studio’s Getting

Started manual. The DF program consists of two parts: the Feeder, written in Sync-

Charts [And96], and the Filter, written in Esterel [Ber00]. Esterel and SyncCharts

semantics are fully compatible, and any SyncChart can be translated into a semanti-

cally equivalent Esterel code [And04, Zaf05].

The Esterel compiler is part of a comprehensive development environment named

Esterel Studio. This environment provides compilation, simulation, coverage, verifi-

cation and code generation facilities. In this subsection we consider only the fourth

one. Formal verification of Esterel programs relies on two complementary technolo-

gies: 1) Symbolic model checking based on a BDD technology, 2) Bounded and Full

7.4. ANALYSIS WITH ESTEREL OBSERVERS 93

model checking based on SAT-technology. Bounded Model Checking (BMC) is effi-

cient in searching for bugs in design and property specifications. Since BMC can only

falsify properties, it cannot be used to prove a property correct. On the contrary,

Full Model Checking (FMC) can prove that a property holds, but the process may

take a great amount of time. FMC makes its best to combine SAT-solver with induc-

tion [SSS00] and improved strategy combining interpolation and SAT-based model

checking [McM03]. Symbolic Model Checking (SMC) can be used both to falsify

and to prove properties. The drawback of this BDD-based model checking is the

possibility to run out of memory and thus be inconclusive.

A property to check is directly expressed in Esterel either as an assertion or as

an observer. An assertion may represent an assumption about the execution envi-

ronment of the program to check. An assertion also allows implementing parts of its

intended behavior as executable and verifiable predicates, into the design code. An

observer is a special program unit, not part of the design, and used in property check-

ing. It continuously observes input and output signals of the program and detects

possible property violations. Used in combination with model checking, observers

are a powerful means to find bugs and formally establish properties. If a violation

occurs, the model checker generates a simulation trace leading to this violation, thus

exhibiting a counter-example of the checked property. Note that the observers are

non-intrusive: they do not alter the behavior of the tested Esterel program.

Generally, verification starts with a search for bugs or property violations. This is

done by BMC. In the application at hand, a violation is detected when checking Cstr

¬. The model checker generates a counter-example sequence of 13 reactions. This

trace confirms the presence, at instant 12, of a spurious signal Ready. This unexpected

emission of Ready is caused by a abnormal use of a weak preemption. This abnormal

behavior is corrected by forbidding the emission of Ready when processing the last

input word of a line. With the modified program all the ccsl constraints are satisfied

by applying FMC.

94 CHAPTER 7. VERIFYING ESTEREL IMPLEMENTATIONS

Chapter 8

Verifying VHDL implementations

Chapter 6 describes the principle of a component-based implementation of ccsl con-

straint observers. Here, we apply this principle to vhdl. Information (clock ticks)

has to propagate through the observation network before reaching the terminal node

(an observer component). In this network, different paths with different lengths can

cause glitches because of the microstep semantics. So, a naive implementation might

detect false violations. The challenge was to devise delta-delay insensitive vhdl ob-

servers. This chapter describes our solution and illustrates the process on a ahb to

apb Bridge that is part of a larger design (a LeonII-based embedded system, whose

vhdl model is available in open source1). The example is introduced in Section 8.1.

8.1 Example: an AMBA AHB to APB Bridge

The Advanced Microcontroller Bus Architecture (amba) specification defines an onchip

communications standard for designing high-performance embedded microcontrollers.

We consider two buses defined with the amba specification:

� The Advance High-performance Bus (ahb) for high-performance, high clock

frequency system modules;

1http://www.gaisler.com

95

96 CHAPTER 8. VERIFYING VHDL IMPLEMENTATIONS

� The Advanced Peripheral Bus (apb) optimized for minimal power consumption

and reduced interface complexity to support peripheral functions.

In a typical amba architecture, which contains both types of bus, an ahb to apb

bridge is necessary. The apb bridge interfaces the ahb to the apb and converts

system bus transfers into apb transfers. It buffers address, control, and data from

the ahb, drives the apb peripherals and returns data or response signals to the ahb.

On a data transfer request, it decodes the address using an internal address map and

generates a peripheral select, PSELx. Only one select signal can be active during a

transfer. The bridge drives the data onto the apb for write transfers or, in case of

read transfers, it drives the apb data onto the system bus.

Figure 8.1 illustrates a write transfer on the apb bridge. The transfer starts when

the destination address is written in HADDR. A central address decoder is used to

provide a select signal, HSELx, for each slave on the ahb bus. The select signal is a

combinatorial decode of the high-order address signals. Let HSELB be the select signal

for the bridge. When HADDR is set to a value within a given address range, HSELB

is set to high and the bridge should initiate a transfer (at T2). A write transfer is

initiated when HWRITE is set to high, a read transfer is initiated otherwise.

For write transfers, the data must be given in HWDATA and must be available at

the next cycle (at T3). Each transfer takes exactly two cycles to complete on the

apb. In a first step (T3-T4), the address is further decoded by the bridge to select

the appropriate apb slave. The address is set in PADDR, the date is set in PWDATA

and the appropriate PSEL signal is asserted. In a second step (T4-T5), PENABLE is

asserted and the write transaction is completed.

8.2 CCSL specification

From this specification we attempt to extract a higher view of the transaction and

identify the logical events that can be modeled as logical clocks. We identify two log-

ical clocks here: tbs (transfer bridge start), whose instants characterize the initiation

of the transfer; tbf (transfer bridge finish), which characterizes the completion of the

8.2. CCSL SPECIFICATION 97

Data 1

Addr 1

Data 1

Addr 1

T1 T2 T3 T4 T5 T6

HADDR

HWRITE
HWDATA
HREADY

PADDR
PWRITE

PSEL
PENABLE

PWDATA

CLK

tbs

tbf

HSELB

Figure 8.1: A typical write transfer through the bridge

98 CHAPTER 8. VERIFYING VHDL IMPLEMENTATIONS

transfer. A basic property that should be valid for any kind of transfer is that the

initiation should always precede the completion. Such a property can be expressed

in ccsl using the relation precedence (see Eq. 8.1).

tbs ≺ tbf (8.1)

To bridge the abstraction gap between the high-level logical view of the specifi-

cation and the specific rtl implementation, we need an adapter. To build such an

adapter, we have to decide what exactly is considered as the initiation of the transfer

and what is considered as the end. Focusing on the initiation (tbs), several solutions

are possible. An asynchronous view (ignoring the bus clock CLK) could consider the

rising edge of signal HSELB (i.e., some time between T1 and T2) as the actual initia-

tion. A synchronous view would rather consider the rising edge of signal CLK when

HSELB is high (at T2). Both solutions are acceptable. The latter one has been chosen

and depicted in Figure 8.1.

Considering now the case of the transfer completion (tbf), the adaptation appears

a bit more complex. A synchronous interpretation of the transfer dictates that the

actual completion occurs on the second raising edge of CLK when PSEL has been

continuously high during two cycles (at T5). An asynchronous interpretation could

consider the transfer completion on the falling edge of PENABLE. We chose the syn-

chronous version.

Bounded transfers The simple specification provided in Eq. 8.1 is general to any

request/response or producer/consumer system. In the apb bridge, the request is

the transfer initiation (tbs) and the response is the transfer completion (tbf). Such a

transfer is unbounded, it only specifies that the response must come at some point

but it can be arbitrarily far from the request. In most cases, this is not suitable and

transfers need to be bounded. This is actually the case for the ahb to apb bridge,

whose specification explicitly mention a bound of 2. That is to say that at most two

(but no more) consecutive requests can be performed even though the response to

the first request has not been given yet.

8.3. ANALYSIS WITH VHDL OBSERVERS 99

For a buffer of size n, the specification would be that the kth response always

precedes the (k + n)th request: (∀k ∈ N?) tbf [k] ≺ tbs[k + n]. This can easily be

expressed in ccsl by combining the relation precedence with a delay as in Eq. 8.2.

tbf ≺ tbs $ n (8.2)

8.3 Analysis with VHDL observers

In the presentation of the apb bridge (Section 8.1), we specified two high-level prop-

erties about the data transfers through the bridge:

� P1 : any apb bridge transaction is always as a result of a transaction initia-

tion from the ahb bus. A causality relation expressed as a precedence ccsl

constraint: tbs ≺ tbf .

� P2 : before the current bridge transaction is completed, at most one new request

for bridge transaction can be sent by the ahb bus master. This is expressed in

ccsl as tbf ≺ tbs $ 2.

We add a third property concerning the control flow through the bridge.

� P3 : the apb bridge forbids access when its buffer is full. In ccsl this is

represented by a logical clock (full) that ticks whenever the buffer gets full. At

the rtl level, this results in setting the HREADY signal to low.

These properties are checked against the available vhdl model of a LeonII-based

architecture, already mentioned in the introduction. Recall that the observation net-

work directly reflects the abstract syntax of the clock constraint. As a consequence

the implementations of the three properties are of increasing complexity. Neverthe-

less, observation networks for all three properties can be generated systematically.

The only manual decision concerns the choice of adapters. In most cases, we simply

use adapters that simply produce a pulsed signal when detecting a rising edge or

a falling edge. For property P3, we require a more complex adapter to detect the

100 CHAPTER 8. VERIFYING VHDL IMPLEMENTATIONS

completion of the write transfer. Indeed, the write transfer completes when the sig-

nal PSEL has been asserted HIGH during two consecutive cycles of clock CLK. This

implies a sequential behavior.

We can formulate the saturation of buffer (property P3) in terms of logical clocks

as in Eq. 8.3. From there, we can derive a ccsl specification (Eq. 8.4).

(∀j ∈ N?)(∃k ∈ N?)(tbs[j + 1] ≺ tbf [j])⇔ (full[k] ≡ tbs[j + 1]) (8.3)

full =
(
(tbs $ 1) ∧ tdf

)
− tdf (8.4)

The observation network for property P3 is depicted in Figure 6.1. The expression

a ∧ b, where ∧ denotes the ccsl inf operator, defines the slowest clock among all the

clocks faster than a and b. The expression a − b, where − denotes the ccsl minus

operator, defines a clock that ticks in coincidence with a whenever b is not coincident

with a. For convenience, we can define two auxiliary clocks: tbs d1 , tbs $ 1 and

first , tbs d1 ∧ tdf , so that Eq. 8.4 can be rewritten as full = first − tdf .

Figure 8.2 shows an example of execution that respects P3.

0Number of items
in the buffer 1 2 1 1 1 12 2 0 0

tb_s

tb_f

full

Figure 8.2: Sample Execution of Constraint 3 on CCSL Simulator

The question is now how to relate this observation to the apb bridge behavior.

An amba slave (e.g., the apb bridge) indicates to its master that it is ready to accept

transfers by asserting the signal HREADY. So, when the bridge buffer gets full, the

bridge drives signal HREADY to low on the next bus cycle. Hence, in the observation

network (Fig. 6.1), we had to delay c full for 1 instant of c clk. This is done by

8.3. ANALYSIS WITH VHDL OBSERVERS 101

a defer generator. Now, since the saturation is manisfested by a low level on signal

HREADY, we used a fallingEdge adaptor to sense HREADY. c full d1 and c invhready

are then observed to be coincident.

The simulation of the LeonII system raises no violation for properties P1 and P2.

However, running the simulation against the property observer of P3 has exhibited

a problem in the actual implementation of the bridge, that was confirmed as being

a weak implementation of the specification. Indeed, the implementation does not

support burst transfers.

102 CHAPTER 8. VERIFYING VHDL IMPLEMENTATIONS

Part IV

Conclusion

103

104

The design process for complex systems makes use of numerous models different in

their abstraction level and their nature (underlying model of computation). Usually,

the most abstract models are untimed or causal. Timing information, regarded as

a non-functional property, is introduced in later stages and has the form of “real-

time constraints”. Since time information may also carry functional intent, some

time constraints should be part of the functional models, even at high abstraction

levels. We advocate that multiform logical time, as promoted since several years

by synchronous languages, is adequate to express a wide variety of time constraints

not specific to synchronous systems. Logical time constraints are expressive enough

to cover the classical real-time ones but also to represent causal relationships and

chronological expressions.

ccsl has been defined as a support to specify multiform logical constraints. It

provides a set of classical logical time patterns that can be used to build domain-

specific libraries (aadl, east-adl). ccsl models made out of these libraries provide

an explicit timed causality model for other purely syntactic models. Even though

ccsl was initially defined as a support to the implementation of the marte time

model, ccsl can be used with any kind of models, uml-based or not. Clearly, since

ccsl only focuses on control aspects and abstracts away values, structure and algo-

rithms, it should be combined with other languages that cover these aspects. Another

reason for comparison and combination with other languages is to augment the set

of analysis tools that could be used. We have started an effort to increase the inter-

operability with synchronous languages (Polychrony/Signal, Esterel, Scade) but this

effort is ongoing and shall be continued. We have also investigated how to integrate

ccsl into the design flows of other kinds of systems, with vhdl or systemc. This

latter aspect raised new problems and in particular justified the need to compare to

temporal logics and PSL in particular. Initially, such languages where clearly not in

the same scope than ccsl.

Another important aspects for marte as a profile is to provide official reference

implementations. Papyrus uml has become the reference open-source environment to

build marte models and therefore a seamless integration with Papyrus is required.

This effort has started with the first release of Papyrus and shall continue over the

105

next year on the brand-new version that should be released at the end of 2010.

As a longer term perspective, we shall continue to promote the use of logical time

in models. As the term logical time is a bit confusing at first and even though the

notion has long been accepted by the embedded, reactive systems community, the

model-driven engineering community appears to be less incline to consider timing

problems in general and even less logical time. Gaining the acceptance of this com-

munity is a challenge for the next years. Indeed, because of the massive spreading

of manycore systems, the software engineering community in general and the MDE

one in particular can no longer ignore the underlying architectures. It appears more

than ever that software must exhibit its concurrency explicitly rather than expecting

compilers to extract it automatically so that parallelization becomes possible.

Bibliography

[ABL98] Luca Aceto, Augusto Burgueño, and Kim Guldstrand Larsen. Model

checking via reachability testing for timed automata. In Bernhard Stef-

fen, editor, TACAS, volume 1384 of Lecture Notes in Computer Science,

pages 263–280. Springer, 1998.

[AMallet09] Charles André and Frédéric Mallet. Specification and verification of

time requirements with CCSL and esterel. In Christoph Kirsch and

Mahmut Kandemir, editors, Int. Conf. on Languages Compilers, and

Tools for Embedded Systems (LCTES’09), volume 44, pages 167–176,

Dublin, Ireland, June 2009. ACM SIGPLAN/SIGBED, ACM Digital

Library.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoret. Comp.

Sci., 126(2):183–235, 1994.

[AMD10] Charles André, Frédéric Mallet, and Julien Deantoni. VHDL observers

for clock constraint checking. In Symposium on Industrial Embedded

Systems (SIES), pages 98–107, Trento, Italy, July 2010. IEEE.

[AMdS07] Charles André, Frédéric Mallet, and Robert de Simone. Modeling

time(s). In 10th Intern. Conf on Model Driven Engineering Languages

and Systems (MODELS ’07), number 4735 in LNCS, pages 559–573,

Nashville, TN, USA, September 2007. ACM-IEEE, Springer.

106

BIBLIOGRAPHY 107

[And96] Charles André. Representation and analysis of reactive behavior: a syn-

chronous approach. In Computational Engineering in Systems Applica-

tions (CESA), pages 19–29. IEEE-SMC, 1996.

[And04] Charles André. Computing synccharts reactions. Electronic Notes in

Theoretical Computer Science, 88:3–19, 2004.

[And09] Charles André. Syntax and semantics of the clock constraint specification

language (ccsl). Rapport de recherche 6925, INRIA, 05 2009.

[And10] Charles André. Verification of clock constraints: CCSL observers in

Esterel. Research Report 7211, INRIA, 02 2010.

[AUT09] AUTOSAR. Specification of Timing extensions, November 2009. V1.0.0,

R4.0 Rev 1.

[BBKT05] S. Bensalem, M. Bozga, M. Krichen, and S. Tripakis. Testing confor-

mance of real-time applications by automatic generation of observers.

Electronic Notes in Theoretical Computer Science, 113:23–43, 2005.

[BC88] Gérard Boudol and Ilaria Castellani. Permutation of transitions: An

event structure semantics for CCS and SCCS. In J. W. de Bakker,

Willem P. de Roever, and Grzegorz Rozenberg, editors, REX Work-

shop, volume 354 of Lecture Notes in Computer Science, pages 411–427.

Springer, 1988.

[BCC+08] Albert Benveniste, Benôıt Caillaud, Luca P. Carloni, Paul Caspi, and

Alberto L. Sangiovanni-Vincentelli. Composing heterogeneous reactive

systems. ACM Trans. Embedded Comput. Syst., 7(4), 2008.

[BCCSV05] Albert Benveniste, Benôıt Caillaud, Luca P. Carloni, and Alberto L.

Sangiovanni-Vincentelli. Tag machines. In Wayne Wolf, editor, EM-

SOFT, pages 255–263. ACM, 2005.

108 BIBLIOGRAPHY

[BCE+03] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and

R. de Simone. The synchronous languages twelve years later. Proceedings

of the IEEE, 91(1):64–83, 2003.

[BDL+06] Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John

H̊akansson, Paul Pettersson, Wang Yi, and Martijn Hendriks. Uppaal

4.0. In QEST, pages 125–126, Riverside, California, USA, September

2006. IEEE Computer Society.

[Ber00] G. Berry. The foundations of Esterel. In C. Stirling G. Plotkin and

M. Tofte, editors, Proof, Language and Interaction: Essays in Honour

of Robin Milner. MIT Press, 2000.

[BJB05] Belgacem Ben Hedia, Fabrice Jumel, and Jean-Philippe Babau. Formal

evaluation of quality of service for data acquisition. In FDL, pages 579–

589. ECSI, 2005.

[BLMF00] Jean-Michel Bruel, Johan Lilius, Ana M. D. Moreira, and Robert B.

France. Defining precise semantics for UML. In Jacques Malenfant,

Sabine Moisan, and Ana M. D. Moreira, editors, ECOOP Workshops,

volume 1964 of Lecture Notes in Computer Science, pages 113–122.

Springer, 2000.

[BRG+01] J-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. Le Guernic, and

Y.-M. Tang. Modeling statecharts and activitycharts as signal equations.

ACM Trans. Softw. Eng. Methodol., 10(4):397–451, 2001.

[CCG+07] Philippe Cuenot, DeJiu Chen, Sebastien Gérard, Henrik Lönn, Mark-

Oliver Reiser, David Servat, Carl-Johan Sjostedt, Ramin Tavakoli Ko-

lagari, Martin Torngren, and Matthias Weber. Managing complexity of

automotive electronics using the East-ADL. In Proc. of the 12th IEEE

Int. Conf. on Engineering Complex Computer Systems (ICECCS’07),

pages 353–358. IEEE Computer Society, 2007.

BIBLIOGRAPHY 109

[CDE+06] A. Cohen, M. Duranton, C. Eisenbeis, C. Pagetti, F. Plateau, and

M. Pouzet. N-synchronous kahn networks: a relaxed model of synchrony

for real-time systems. In J. Gregory Morrisett and Simon L. Peyton

Jones, editors, POPL, pages 180–193. ACM, January 2006.

[CG03] Lukai Cai and Daniel Gajski. Transaction level modeling: an overview.

In Rajesh Gupta, Yukihiro Nakamura, Alex Orailoglu, and Pai H. Chou,

editors, CODES+ISSS, pages 19–24. ACM, 2003.

[CPC+04] Dan Chiorean, Mihai Pasca, Adrian Cârcu, Cristian Botiza, and Sorin

Moldovan. Ensuring uml models consistency using the ocl environment.

Electr. Notes Theor. Comput. Sci., 102:99–110, 2004.

[CRBS08] Mohamed Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph

Sifakis. Translating AADL into BIP - application to the verification of

real-time systems. In Michel R. V. Chaudron, editor, MoDELS Work-

shops, volume 5421 of Lecture Notes in Computer Science, pages 5–19.

Springer, 2008.

[EJL+03] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu,

J. Ludvig, Stephen Neuendorffer, S. Sachs, and Yuhong Xiong. Tam-

ing heterogeneity - the ptolemy approach. Proceedings of the IEEE,

91(1):127–144, 2003.

[Esh06] Rik Eshuis. Symbolic model checking of UML activity diagrams. ACM

Trans. Softw. Eng. Methodol., 15(1):1–38, 2006.

[F02] Stephan Flake and Wolfgang Müller 0003. An ocl extension for real-time

constraints. In Tony Clark and Jos Warmer, editors, Object Modeling

with the OCL, volume 2263 of Lecture Notes in Computer Science, pages

150–171. Springer, 2002.

[FGH06] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture

analysis & design language (AADL): An introduction. Technical Report

CMU/SEI-2006-TN-011, CMU, February 2006.

110 BIBLIOGRAPHY

[FGL+08] Marc Frappier, Frédéric Gervais, Régine Laleau, Benoit Fraikin, and

Richard St-Denis. Extending statecharts with process algebra operators.

ISSE, 4(3):285–292, 2008.

[FH07] Peter H. Feiler and Jörgen Hansson. Flow latency analysis with the

architecture analysis and design language. Technical Report CMU/SEI-

2007-TN-010, CMU, June 2007.

[GBR07] Martin Gogolla, Fabian Büttner, and Mark Richters. Use: A uml-based

specification environment for validating uml and ocl. Sci. Comput. Pro-

gram., 69(1–3):27–34, 2007.

[GDB09] Calin Glitia, Philippe Dumont, and Pierre Boulet. Array-OL with de-

lays, a domain specific specification language for multidimensional inten-

sive signal processing. Multidimensional Systems and Signal Processing,

21(2):105–131, 2009.

[GL00] Wolfgang Grieskamp and Markus Lepper. Using use cases in executable

z. In ICFEM, pages 111–120, 2000.

[Gun92] Jeremy Gunawardena. Causal automata. Theor. Comput. Sci.,

101(2):265–288, 1992.

[Hal92] Nicolas Halbwachs. Synchronous Programming of Reactive Systems.

Kluwer Academic Publishers, Norwell, MA, USA, 1992.

[HGGM01] Michael González Harbour, J. J. Gutiérrez Garćıa, José C. Palencia

Gutiérrez, and J. M. Drake Moyano. Mast: Modeling and analysis suite

for real time applications. In ECRTS, pages 125–134. IEEE Computer

Society, 2001.

[HHJ+05] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst.

System level performance analysis - the symta/s approach. Computers

and Digital Techniques, IEE Proceedings, 152(2):148–166, March 2005.

BIBLIOGRAPHY 111

[HLR94] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Syn-

chronous observers and the verification of reactive systems. In AMAST

’93: Proceedings of the Third International Conference on Methodology

and Software Technology, pages 83–96, London, UK, 1994. Springer-

Verlag.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commun. ACM,

21(8):666–677, 1978.

[Jan03] Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency and

Time in Models of Computation. Systems on silicon. Morgan Kaufmann

Publishers, June 2003.

[JHR+07] Erwan Jahier, Nicolas Halbwachs, Pascal Raymond, Xavier Nicollin, and

David Lesens. Virtual execution of AADL models via a translation into

synchronous programs. In Christoph M. Kirsch and Reinhard Wilhelm,

editors, EMSOFT, pages 134–143. ACM, 2007.

[JLF08] Rolf Johansson, Henrik Lönn, and Patrick Frey. ATESST timing model.

Technical report, ITEA, 2008. Deliverable D2.1.3.

[Kah74] Gilles Kahn. The semantics of a simple language for parallel program-

ming. Information Processing, pages 471–475, 1974.

[KK98] Leila Ribeiro Korff and Martin Korff. True concurrency = interleaving

concurrency + weak conflict. Electr. Notes Theor. Comput. Sci., 14,

1998.

[KM66] Richard M. Karp and Rayamond E. Miller. Properties of a model for par-

allel computations: Determinacy, termination, queueing. SIAM Journal

on Applied Mathematics, 14(6):1390–1411, 1966.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed

system. Commun. ACM, 21(7):558–565, 1978.

112 BIBLIOGRAPHY

[LD06] A. Le Guennec and B. Dion. Bridging UML and safety-critical software

development environments. In Int. Conf. on Embedded and Real-Time

Software, ERTS, 2006.

[Lee00] Edward A. Lee. What’s ahead for embedded software? IEEE Computer,

33(9):18–26, 2000.

[LM87] Edward A. Lee and David G. Messerschmitt. Static scheduling of syn-

chronous data flow programs for digital signal processing. IEEE Trans.

Computers, 36(1):24–35, 1987.

[LMdS08] Su-Young Lee, Frédéric Mallet, and Robert de Simone. Dealing with

AADL end-to-end flow latency with UML MARTE. In 13th Inter-

national Conference on Engineering of Complex Computer Systems

(ICECCS’08), pages 228–233, Belfast, Northern Ireland, apr 2008. IEEE,

IEEE Computer Press.

[LS98] E. A. Lee and A. L. Sangiovanni-Vincentelli. A framework for comparing

models of computation. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 17(12):1217–1229, December 1998.

[MA09] Frédéric Mallet and Charles André. On the semantics of UML/Marte

clock constraints. In Int. Symp. on Object/component/service-oriented

Real-time distributed Computing (ISORC’09), pages 301–312, Japan,

Tokyo, March 2009. IEEE, IEEE Computer Press.

[MAdS07] Frédéric Mallet, Charles André, and Robert de Simone. Modeling of im-

mediate vs. delayed data communications: from AADL to UML Marte.

In FDL, pages 249–254. ECSI, September 2007.

[MAdS08] Frédéric Mallet, Charles André, and Robert de Simone. CCSL: speci-

fying clock constraints with UML/Marte. Innovations in Systems and

Software Engineering, 4(3):309–314, 2008.

BIBLIOGRAPHY 113

[McM03] K.L. McMillan. Interpolation and SAT-based model checking. In Warren

A. Hunt Jr. and Fabio Somenzi, editors, CAV, volume 2725 of Lecture

Notes in Computer Science, pages 1–13. Springer, July 2003.

[MDAd10] Frédéric Mallet, Julien DeAntoni, Charles André, and Robert de Simone.

The clock constraint specification language for building timed causality

models. Innovations in Systems and Software Engineering, 6(1–2):99–

106, March 2010.

[MdS09] Frédéric Mallet and Robert de Simone. MARTE vs. AADL for Discrete-

Event and Discrete-Time Domains, volume 36 of LNEE, chapter 2, pages

27–41. Springer, may 2009.

[MdSR08] Frédéric Mallet, Robert de Simone, and Laurent Rioux. Event-triggered

vs. time-triggered communications with UML Marte. In Forum on Spec-

ification, Verification and Design Languages, 2008 (FDL 2008)., pages

154–159, Stuttgart, Germany, September 2008. IEEE Computer Press.

[Meh10] Aamir Mehmood Khan. Model-Based Design for On-Chip Systems:

using and extending Marte and IP-Xact. PhD thesis, Université de

Nice/Sophia-Antipolis, March 2010.

[Mer74] P. Merlin. A Study of the Recoverability of Computer Systems. PhD,

University of California, Irvine, 1974.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of

Lecture Notes in Computer Science. Springer, 1980.

[MKMAdS09] A. Mehmood Kahn, F. Mallet, C. André, and R. de Simone. IP-XACT

components with abstract time characterization. In Forum on specifica-

tion, verification & Design Languages, FDL’09. ECSI, IEEE Computer

Press, September 2009.

[ML02] P.K. Murthy and E.A. Lee. Multidimensional synchronous dataflow.

Signal Processing, IEEE Transactions on, 50(8):2064–2079, aug 2002.

114 BIBLIOGRAPHY

[MPA08] Frédéric Mallet, Marie-Agnès Peraldi-Frati, and Charles André. Marte

CCSL and East-ADL2 timing requirements. Research Report 6781, IN-

RIA, December 2008.

[MPFA09] Frédéric Mallet, Marie-Agnès Peraldi-Frati, and Charles André. Marte

CCSL to execute East-ADL timing requirements. In Int. Symp.

on Object/component/service-oriented Real-time distributed Computing

(ISORC’09), pages 249–253, Japan, Tokyo, March 2009. IEEE, IEEE

Computer Press.

[MT00] Nenad Medvidovic and Richard N. Taylor. A classification and compar-

ison framework for software architecture description languages. IEEE

Trans. Software Eng., 26(1):70–93, 2000.

[NPW79] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets,

event structures and domains. In Gilles Kahn, editor, Semantics of Con-

current Computation, volume 70 of Lecture Notes in Computer Science,

pages 266–284. Springer, 1979.

[NPW81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets,

event structures and domains, part i. Theor. Comput. Sci., 13:85–108,

1981.

[OMG05] OMG. UML Profile for Schedulability, Performance, and Time Specifica-

tion, v1.1. Object Management Group, January 2005. formal/05-01-02.

[OMG06] OMG. Object Constraint Language, v2.0. Object Management Group,

May 2006. formal/2006-05-11.

[OMG08] OMG. Systems Modeling Language (SysML) Specification, v1.1. Object

Management Group, November 2008. formal/08-11-02.

[OMG09a] OMG. UML Profile for MARTE, v1.0. Object Management Group,

November 2009. formal/2009-11-02.

BIBLIOGRAPHY 115

[OMG09b] OMG. UML Superstructure, v2.2. Object Management Group, February

2009. formal/2009-02-02.

[PEP02] Traian Pop, Petru Eles, and Zebo Peng. Holistic scheduling and anal-

ysis of mixed time/event-triggered distributed embedded systems. In

Jörg Henkel, Xiaobo Sharon Hu, Rajesh Gupta, and Sri Parameswaran,

editors, CODES, pages 187–192. ACM, 2002.

[Pet87] C.A. Petri. Concurrency theory. In W. Brauer, W. Reisig, and G. Rozen-

berg, editors, Petri Nets: Central Models and their properties, volume

254 of Lecture Notes in Computer Science, pages 4–24. Springer-Verlag,

1987.

[PSL05] IEEE standard for Property Specification Language (PSL), IEEE std

1850-2005, 2005.

[SCK09] Daniel Sinnig, Patrice Chalin, and Ferhat Khendek. Lts semantics for

use case models. In Sung Y. Shin and Sascha Ossowski, editors, SAC,

pages 365–370, Honolulu, Hawaii, USA, March 2009. ACM.

[SSS00] M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties

using induction and a sat-solver. In W. A. Hunt Jr. and S. D. Johnson,

editors, FMCAD, volume 1954 of Lecture Notes in Computer Science,

pages 108–125. Springer, November 2000.

[Stö05] H. Störrle. Semantics and verification of data flow in UML 2.0 activities.

Electr. Notes Theor. Comput. Sci., 127(4):35–52, 2005.

[TCN00] Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time

calculus for scheduling hard real-time systems. In International Sympo-

sium on Circuits and Systems ISCAS 2000, volume 4, pages 101–104,

Geneva, Switzerland, 2000.

[The04] The East-EEA Project. Definition of language for automotive embedded

electronic architecture approach. Technical report, ITEA, 2004. Deliv-

erable D.3.6.

116 BIBLIOGRAPHY

[The08] The ATESST Consortium. East-ADL2 specification. Technical report,

ITEA, March 2008. http://www.atesst.org, 2008-03-20.

[Wei08] T. Weilkiens. Systems Engineering with SysML/UML: Modeling, Anal-

ysis, Design. The MK/OMG Press, Burlington, MA, USA., 2008.

[Win86] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig,

and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume 255 of

Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

[Win08] Glynn Winskel. Events, causality and symmetry. In Erol Gelenbe, Sam-

son Abramsky, and Vladimiro Sassone, editors, BCS Int. Acad. Conf.,

pages 111–127. British Computer Society, 2008.

[YFR08] Lijun Yu, Robert B. France, and Indrakshi Ray. Scenario-based static

analysis of uml class models. In Krzysztof Czarnecki, Ileana Ober, Jean-

Michel Bruel, Axel Uhl, and Markus Völter, editors, MoDELS, volume

5301 of Lecture Notes in Computer Science, pages 234–248, Toulouse,

France, October 2008. Springer.

[YsZ03] Dong Yang and Shen sheng Zhang. Using pi - calculus to formalize UML

activity diagram. In ECBS, pages 47–54. IEEE Computer Society, 2003.

[YTB+10] Huafeng Yu, Jean-Pierre Talpin, Löıc Besnard, Thierry Gautier,

Frédéric. Mallet, Charles André, and Robert de Simone. Polychronous

analysis of timing constraints in UML MARTE. In MoBE-RTES 2010,

page 7, Carmona, Spain, May 4th 2010.

[YTG08] Ma Yue, Jean-Pierre Talpin, and Thierry Gautier. Virtual prototyp-

ing AADL architectures in a polychronous model of computation. In

MEMOCODE, pages 139–148. IEEE Computer Society, 2008.

[Zaf05] L. Zaffalon. Programmation synchrone de systèmes réactifs avec Esterel

et les SyncCharts. Presses Polytechniques et Universitaires Romandes,

Lausane (CH), 2005.

Résumé:

ccsl a été construit pour abstraire les données et l’algorithme dans l’intention de

focaliser sur les événements et le contrôle. Même si ccsl a été initialement conçu

pour servir de modèle de temps au profil uml marte, il est devenu un langage de

modélisation à part entière dédié à la capture des relations de causalités, chronologiques

et temporelles, inhérentes à un modèle. Il est destiné à complémenter des modèles

syntaxiques qui eux capturent les structures de données, l’architecture et l’algorithme.

Ce document commence par décrire les modèles de parallélisme qui ont inspirés ccsl.

Ensuite, le langage ccsl est présenté puis utilisé pour construire des bibliothèques

dédiées à deux spécifications standardisées dans les domaines de l’avionique (aadl)

et de l’automobile (east-adl). Finalement, nous introduisons une technique basée

sur des observateurs pour vérifier des implantations (Esterel et vhdl) et s’assurer

qu’elles respectent bien les propriétés données par une spécification ccsl.

Abstract:

ccsl has arisen from different inspiring models in an attempt to abstract away the

data and the algorithms and to focus on events and control. Even though ccsl was

initially defined as the time model of the uml profile for marte, it has now become

a full-fledged domain-specific modeling language for capturing causal, chronological

and timed relationships. It is intended to be used as a complement of other syntactic

models that capture the data structure, the architecture and the algorithm. This

work starts by describing the historical models of concurrency that have inspired the

construction of ccsl. Then, ccsl is introduced and used to build libraries dedi-

cated to two emerging standard models from the automotive (East-ADL) and the

avionic (AADL) domains. Finally, we discuss an observer-based technique to verify

implementations in different languages (Esterel, vhdl) against a ccsl specification.

