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Introduction

1 Contexte historique et motivations

Bien que déjà utilisée pendant l’Antiquité, la cryptologie – étymologiquement science du secret
– n’a justifié son statut de science que récemment grâce aux fondations théoriques posées par
Shannon à la fin des années 40 ([Sha49]), et l’avènement de la cryptographie à clé publique
dans les années 70. Elle se divise en deux disciplines de nature opposées mais complémentaires
: la cryptographie et la cryptanalyse.

La première a pour but de protéger des communications, pour cela il lui faut garantir
quatre propriétés : la confidentialité, l’authenticité, l’intégrité et la non-répudiation de celles-
ci. La première propriété garantie que seuls les participants à la communication aient accès
aux messages. L’authenticité permet d’assurer l’identité des entités qui y participent, tandis
que l’intégrité est nécessaire afin de garantir qu’un message n’ait pas été altéré par un tiers non
autorisé. Enfin la non-répudiation a pour but d’empêcher que l’une des entités participant
à la communication puisse nier l’avoir fait. Afin d’assurer ces propriétés en pratique, les
participants à la communication doivent être en possession d’un secret ou clé.

La cryptanalyse de manière opposée, a pour but de récupérer des informations à partir
d’une communication protégée afin de corrompre l’une, ou plusieurs, des quatre propriétés
précédentes et ce sans avoir nécessairement connaissance de la clé.

Historiquement la cryptographie avait surtout pour but d’assurer la confidentialité des
messages, les autres propriétés sont essentiellement apparues avec la cryptographie moderne
et sont d’autant plus importantes de nos jours avec l’internet. La confidentialité d’un message
est assurée en utilisant une clé, afin de le rendre inintelligible à toute personne ne connaissant
pas la clé. On parle alors de messages chiffré.

En cas de guerre, il est essentiel de s’assurer qu’un message intercepté demeure inintelligible
pour l’adversaire. C’est pourquoi historiquement les innovations en matière de chiffrement
et de cryptanalyse sont principalement apparues au cours de différents conflits. Parmi les
chiffrements célèbres nous pouvons citer la scytale utilisée par les Spartiates lors de la guerre
du Péloponnèse, ou encore le chiffrement de César utilisé par les Romains lors de la guerre
des Gaules.

Plus récemment, lors des deux grands conflits du XXème siècle, la cryptologie eut une
importance décisive. En 1917, les renseignements Britanniques ont intercepté et déchiffré

1



Introduction

un télégramme du ministre allemand des affaires étrangères, Arthur Zimmermann, envoyé à
l’ambassadeur allemand au Mexique dans lequel l’Allemagne proposait une alliance au Mex-
ique. Les termes de cette alliance spécifiaient que le Mexique devrait envahir le sud des
États-Unis, si jamais ceux-ci venaient à abandonner leur neutralité, afin de les empêcher
d’intervenir en Europe. La révélation de ce télégramme poussa les États-Unis à déclarer la
guerre à l’Allemagne et précipita la fin du conflit. Lors de la deuxième guerre mondiale, la
machine Enigma, utilisée par les Allemands pour chiffrer leurs communications fut le premier
exemple de chiffrement mécanique de l’histoire. Sa cryptanalyse, par l’équipe d’Alan Turing
en 1940 nécessita quant à elle la construction du premier ordinateur de l’histoire. Une fois
le chiffrement cassé, les Alliés disposèrent d’un avantage certain sur la suite du conflit. La
cryptologie venait d’entrer dans l’ère moderne.

Jusqu’à la seconde moitié du XXème siècle, la même clé était utilisée pour chiffrer et
déchiffrer les messages ; on parle alors de cryptographie symétrique. Ce type de chiffre-
ment souffre toutefois d’un inconvénient majeur puisqu’il nécessite que les partis souhaitant
communiquer aient échangé la clé de chiffrement, de manière sécurisée, avant le début de la
communication. Le problème est alors d’échanger cette clé de manière sécurisée. Ce problème
fut solutionné dans les années 70 par l’invention du concept de la cryptographie asymétrique,
ou encore cryptographie à clé publique, par W. Diffie et M. Hellman ([DH76]), et de manière
moins connue par R. Merkle ([Mer78]).

La cryptographie à clé publique repose sur le principe que la personne qui doit déchiffrer
le message génère deux clés. La première est une clé secrète, qui comme son nom l’indique
doit rester secrète, la seconde est une clé qui est rendue publique. Cette clé publique est
utilisée par quiconque souhaitant envoyer un message, de manière sécurisée, au détenteur de
la clé secrète afin de chiffrer son message. En revanche, ce dernier est le seul à être capable
de déchiffrer le message grâce à la clé secrète. Si ces deux clés sont bien évidemment liées
entre elles, on s’assure qu’on ne puisse pas retrouver facilement la clé secrète à partir de la clé
publique en faisant en sorte que cela revienne à résoudre un problème calculatoire difficile.

Une bonne analogie à la cryptographie à clé publique est une boite aux lettres. Tout le
monde peut facilement glisser un message dans une boite aux lettres. Par contre il est très
difficile de récupérer les messages si l’on ne possède pas la clé qui l’ouvre, seul le propriétaire
de la boite est en mesure de récupérer les messages facilement.

Dans le contexte de la cryptologie, les mots «facile» ou «difficile» doivent être compris au
sens calculatoire du terme, facile signifiant qu’il existe un algorithme permettant de résoudre
n’importe quelle instance du problème en temps polynomial tandis que difficile signifie que ce
n’est pas facile. Pour des raisons de sécurité il faut que retrouver la clé secrète à partir de la
clé publique soit difficile, mais pour des raisons pratiques on souhaite pouvoir déduire la clé
publique de la clé secrète facilement.

Ainsi, la cryptographie à clé publique repose sur des problèmes calculatoires qui sont
faciles à résoudre dans un sens mais difficile dans l’autre. Un bon exemple d’un tel problème
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est la multiplication/factorisation de deux nombres entiers. Multiplier deux entiers se fait
facilement, par exemple il n’est pas difficile de trouver que 41 × 37 = 1517, en revanche il est
moins évident de trouver que 2021 est en fait le produit de 43 et de 47.

C’est précisément en s’appuyant sur ce problème qu’en 1978, R. Rivest, A. Shamir et L.
Adleman ont créé leur système de chiffrement, baptisé RSA, qui fut la première construction
concrète d’un chiffrement à clé publique ([RSA78]). Une propriété notable du RSA est que
lorsque l’on multiplie deux chiffrés, de deux messages différents, entre eux on obtient alors un
chiffré du produit des deux messages. Cette propriété qui permet d’effectuer des opérations
sur les messages directement à travers leurs chiffrés, sans avoir à les déchiffrer au préalable,
est appelée propriété homomorphe.

Dès lors, la question s’est posée de savoir s’il était possible, ou non, de construire un
schéma généralisant la propriété homomorphe multiplicative du RSA, c’est à dire un chiffre-
ment permettant d’effectuer tout type d’opérations sur les messages directement à travers
leurs chiffrés ([RAD78]). On parlera plus tard de chiffrement complètement homomorphe.

La question de savoir s’il était possible ou non de construire un schéma de chiffrement com-
plètement homomorphe resta ouverte durant de nombreuses années. Sachant que n’importe
quelle fonction continue peut s’approximer par un polynôme sur un compact, il suffit en pra-
tique de pouvoir évaluer des polynômes de manière homomorphique. Pour cela il est seulement
nécessaire de disposer d’additions et de multiplications homomorphiques. Plusieurs schémas
de chiffrement possédant, comme le RSA, une des deux propriétés furent construits dans les
années qui suivirent, par exemple ElGamal pour la multiplication ([ElG85]) et Paillier pour
l’addition ([Pai99]).

Il a fallu attendre 2005 et les travaux de D. Boneh, E. Goh et K. Nissim pour obtenir la
première construction d’un chiffrement possédant les deux propriétés ([BGN05]). Toutefois,
cette construction souffre d’un inconvénient majeur puisqu’elle ne permet l’évaluation que
d’une seule multiplication de manière homomorphique. Le problème fut finalement solutionné
par C. Gentry en 2009, qui proposa la première construction d’un schéma de chiffrement
complètement homomorphe permettant l’évaluation d’un nombre arbitraire d’additions et de
multiplications et résolvant ainsi un problème de plus de trente ans ([Gen09]).

Cette construction, basée sur les réseaux euclidiens, se déroule en deux temps. La pre-
mière étape est la construction d’un schéma de base permettant l’évaluation d’un nombre
limité d’additions et de multiplications de manière homomorphique, on parle alors de schéma
presque homomorphe. Comme chaque chiffré de ce genre de schéma contient un bruit, on
parle de chiffrement bruité. Après chaque opération homomorphe, ce bruit va grossir jusqu’à
atteindre une certaine taille au delà de laquelle il ne sera plus possible de déchiffrer le message
correctement, d’où le nombre limité d’opérations. La seconde étape est la construction d’une
procédure permettant de réduire la taille du bruit d’un chiffré lorsque celle-ci devient trop im-
portante. Cette technique, appelée «bootstrapping», consiste à évaluer homomorphiquement
le circuit de déchiffrement du schéma. Ainsi, à la fin de la procédure, on obtient un nouveau
chiffré du même message, avec un bruit de même taille que si l’on avait évalué homomorphique-
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ment le circuit de déchiffrement à partir d’un chiffré «frais». Sachant que l’augmentation du
bruit après une multiplication est plus importante qu’après une addition, si le schéma de base
permet d’effectuer homomorphiquement une multiplication en plus de l’évaluation de son cir-
cuit de déchiffrement, il est dit «bootstrappable» et peut donc être transformé en un schéma
complètement homomorphe.

De nos jours, ce genre de chiffrement pourrait avoir un impact considérable sur la protec-
tion de la vie privée notamment avec l’essor du «cloud computing». Le chiffrement homomor-
phe offre une solution concrète à différents problèmes apparaissant en cryptographie comme
le calcul multipartite sécurisé, la délégation de calculs ou encore le vote électronique. Mal-
heureusement, bien que théoriquement correcte, la première construction de Gentry requiert
de tels paramètres qu’elle est inutilisable en pratique.

C’est pourquoi, dans les années qui suivirent, la communauté consacra des efforts impor-
tants à améliorer cette première construction de sorte à la rendre implémentable, ce qui fut
accomplit en 2011 ([GH11]). Cette première implémentation fut toutefois rapidement rendue
obsolète par l’arrivée des schémas, dit de deuxième génération, qui furent construit les an-
nées suivantes. Citons par exemple : Brakerski-Gentry-Vaikuntanathan (BGV) ([BGV12]),
Brakerski «scale-invariant» ([Bra12]) ou encore Gentry-Sahai-Waters (GSW) ([GSW13]). Les
meilleures performances obtenues par les schémas susmentionnés sont directement liées au
problème sous-jacent sur lequel leur sécurité est basée : le Learning With Errors (LWE).

Ce problème, basé sur les réseaux euclidiens et introduit par O. Regev en 2005 ([Reg05]),
est actuellement la structure de base sur laquelle une grande partie des schémas de chiffrement
homomorphe sont construits. De manière informelle ce problème consiste à la résolution d’un
système linéaire «bruité». Plus précisément, considérons une matrice A et un vecteur s à
coefficients entiers dans un grand intervalle centré en zéro [q/2, q/2[. Connaissant la matrice
A, la version «décisionnelle» du problème consiste à être capable de déterminer si un vecteur
b a ses coefficients tirés uniforméments dans [−q/, q/2[ ou bien s’il est tel que b = As + e
(mod q), où e est un vecteur de «bruit», i.e. de petits coefficients. De manière équivalente la
version «recherche» consiste à retrouver le vecteur s à partir du couple (A, b = As+e mod q).
Notons l’importance du vecteur e, sans lequel ce problème se réduirait une résolution de sys-
tème linéaire.

Bien que permettant une augmentation significative des performances par rapport à la pre-
mière construction de Gentry, la structure sous-jacente du LWE est loin d’être satisfaisante
en pratique. En effet, pour obtenir des niveaux de sécurité suffisants et un schéma «boot-
strappable», il est nécessaire d’utiliser des matrices et des vecteurs de grande taille avec de
gros coefficients de sorte que les temps de calculs, et les coûts en mémoire, pour manipuler
les éléments deviennent trop importants.

C’est pourquoi, très rapidement, la communauté académique s’est mise à considérer dif-
férentes variantes de ce problème, et en particulier sa version sur les anneaux appelée Ring-
Learning With Errors (Ring-LWE) ou encore Learning With Errors over Rings qui est basée
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sur les réseaux idéaux ([LPR10]). Dans cette version, la matrice A du LWE est remplacée par
un élément a de l’anneau Rq = (Z/qZ)[X ]/(f ) où f est un polynôme unitaire et irréductible
de degré n. Les vecteurs s et e sont à présent considérés comme des éléments de Rq. Le
problème est alors similaire : déterminer si un couple d’éléments (a, b) ∈ R2

q a été tiré de
manière uniforme dans Rq, ou bien s’il existe des éléments s et e tels que b = a · s + e. Il y a
deux bénéfices principaux à cette variante :

• a est désormais représenté par n coefficients au lieu de n2, ce qui permet de gagner un
facteur n sur la complexité en mémoire ;

• plutôt que d’avoir à effectuer des produits matrice vecteur (complexité asymptotique
O(n2)), on multiplie à présent des éléments de Rq ce qui peut être fait plus efficacement
(complexité asymptotique O(n log n)), en particulier lorsque f (X ) = Xn + 1 pour n une
puissance de deux.

Les schémas de chiffrements homomorphes basés sur le LWE se transcrivent assez na-
turellement au Ring-LWE, ce qui permet d’améliorer significativement leurs performances.
Le schéma BGV a été développé directement pour les deux problèmes, la construction de Brak-
erski a été adaptée au Ring-LWE par J. Fan et F. Vercauteren et fut renommée d’après ses
auteurs FV ([FV12]), l’adaptation de GSW fut, quant à elle, renommée SHIELD ([KGV16]).

Les problèmes du LWE et du Ring-LWE se réduisent tout deux, sous certaines conditions,
à des problèmes difficiles sur les réseaux; euclidiens et idéaux respectivement. Pour l’instant
aucun algorithme permettant de résoudre le Ring-LWE plus efficacement que le LWE n’est
connu, en fait la cryptanalyse concrète d’une instance de Ring-LWE se fait en cryptanalysant
une instance de LWE déduite de cette dernière. Dans ce cas les coefficients de a ∈ Rq forment
la première colonne de la matrice A et les colonnes restantes se déduisent à partir de la
première en utilisant la structure du polynôme f .

Néanmoins les avantages apportés par le Ring-LWE ne sont pas sans conséquence poten-
tielle. En effet, il est fortement soupçonné que la structure additionnelle présente dans les
réseaux idéaux, qui provient du polynôme f , puisse être exploitée afin de résoudre des prob-
lèmes dans ce genre de réseaux de manière plus efficace. C’est pourquoi, et ce bien qu’on ne
sache toujours pas si cette structure peut être exploitée ou pas, il est fortement pressenti que
le problème du Ring-LWE est moins difficile que celui du LWE.

En pratique le bootstrapping de Gentry est la procédure la plus coûteuse, ainsi on essaye
généralement de l’utiliser le moins possible. Une façon de procéder est de sélectionner des
paramètres de schéma presque homomorphe de sorte à pouvoir effectuer toutes les opérations
requises par une application particulière, et connue à l’avance, sans utiliser le bootstrapping
([BGV12]).

Toutefois, dans un travail remarquable, L. Ducas et D. Micciancio ont construit un schéma,
appelé FHEW, basé sur le Ring-LWE avec lequel le bootstrapping peut être effectué de manière
efficace – moins d’une seconde ([DM15]). En introduisant une variante du Ring-LWE sur le
tore réel, Chillotti et al. ont amélioré FHEW, qui est devenu TFHE, jusqu’à obtenir un temps
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de 0.1 seconde pour le bootstrapping ([CGGI16]). Dans leur contexte, le bootstrapping est
effectué après chaque évaluation d’une porte logique, ils peuvent ainsi évaluer homomor-
phiquement autant de portes qu’ils le souhaitent obtenant ainsi un chiffrement complètement
homomorphe très compétitif.

Enfin, il est probablement important de mentionner qu’après des années de recherche et de
développement dans les laboratoires académiques, l’ordinateur quantique n’est plus un rêve
fantaisiste. Son arrivée prochaine va confronter la cryptologie moderne à la première grande
révolution de sa jeune histoire.

En effet, avec un tel ordinateur, les problèmes calculatoires sur lesquels repose la sécurité
des systèmes de chiffrements utilisés à l’heure actuelle (factorisation et logarithme discret)
pourront être résolus en temps polynomial ([Sho97]). Ainsi, tous les chiffrements basés sur
ces problèmes ne seront plus sûrs. Il devient donc nécessaire de développer de nouveaux
chiffrements qui soient basés sur des problèmes que l’ordinateur quantique ne pourra pas
résoudre en temps polynomial. L’appel récent de la National Institute of Standards and
Technology (NIST), afin de poser les bases des futurs standards de la cryptographie post-
quantique va dans ce sens.

Dans cette perspective, les problèmes basés sur les réseaux (euclidiens ou idéaux) sont de
bons candidats puisqu’on ne connaît pas, à ce jour, d’algorithme quantique permettant de les
résoudre de manière significativement plus efficace. Ainsi le chiffrement homomorphe n’est pas
compromis à moyen terme par l’arrivée de l’ordinateur quantique. En revanche, l’utilisation
de ce genre de chiffrement est toujours limitée en pratique par les coûts importants qu’il
nécessite, que ce soit en temps ou en mémoire.

2 But et organisation de la thèse

Le but de cette thèse est d’optimiser l’arithmétique sous-jacente à plusieurs schémas de chiffre-
ments presque homomorphes basés sur le problème du Ring-LWE afin d’améliorer leur per-
formances. Nous espérons contribuer ainsi à lever une partie des barrières qui empêchent
toujours l’utilisation de ce type de chiffrement en pratique. Pour cela, nous nous sommes
concentrés sur deux points :

• l’optimisation de l’arithmétique utilisée par les primitives de ces schémas, qu’il s’agisse
d’opérations intrinsèques à leurs primitives, ou bien d’opérations requises dans le con-
texte plus général du Ring-LWE ;

• optimiser les calculs spécifiques à une utilisation concrète de ce type de chiffrement, que
ce soit au niveau des algorithmes utilisés ou de leurs implémentations.

Le chapitre 1 a pour but d’introduire les différentes notions nécessaires à la bonne com-
préhension de la suite de ce manuscrit. Pour cela nous commençons par introduire brièvement
le problème du Ring-LWE dans le cas des corps cyclotomiques tout en mettant en évidence
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son lien avec les réseaux idéaux. Dans une deuxième partie, nous présentons deux des schémas
de chiffrements homomorphes les plus couramment utilisés : BGV et FV, tous deux basés sur le
problème du Ring-LWE. Enfin dans une dernière partie, nous présentons les différents outils
utilisés afin d’effectuer les opérations requises par ce genre de chiffrement de manière efficace.

La première contribution ([BEHZ17]) de cette thèse est présentée dans le chapitre 2.
Ce travail s’est concentré sur l’utilisation du système de représentation des nombres par les
restes (RNS). La représentation RNS permet d’effectuer des additions et multiplications sur
de grands nombres de manière très efficace, ce qui est très utile dans le contexte du chiffrement
homomorphe. Malheureusement, d’autres opérations comme par exemple les comparaisons
ne peuvent pas être effectuées directement en RNS. En surmontant les limitations de cette
représentation, nous avons réussi à effectuer l’ensemble des calculs nécessaires aux différentes
procédures des schémas de chiffrement homomorphe de type «scale-invariant» comme FV. Cela
s’est traduit par une amélioration remarquable des performances de ces schémas.

L’efficacité de l’arithmétique dans l’espace Rq = (Z/qZ)[X ]/(f ) dépend fortement de f no-
tamment à cause de la réduction modulo ce polynôme. Cette efficacité est maximale lorsque
f est un cyclotomique de la forme Xn+1. En revanche ce type de polynômes entraîne d’autres
limitations qui, selon l’application voulue, peuvent nécessiter de considérer d’autres types de
cyclotomiques. Le chapitre 3, présente un travail dans lequel nous nous sommes concentrés
à améliorer l’efficacité de l’opération de réduction par le polynôme f , lorsque celui-ci est un
cyclotomique différent de Xn + 1 ([BEH+18]). Cette opération étant nécessaire pour chaque
produit d’éléments dans Rq, son optimisation a permis d’augmenter significativement les per-
formances des primitives des schémas BGV et FV dans ces cas là.

Finalement dans le quatrième et dernier chapitre nous présentons une application concrète
d’utilisation de chiffrement homomorphe pour la classification de données privées ([BMSZ18]).
De nos jours ce genre de classification utilise de plus en plus des méthodes d’apprentissages
automatiques et notamment des machines à vecteurs de support (MVS). Évaluer homomor-
phiquement une MVS permet de classer des données sans jamais avoir à révéler celles-ci.
Nous commençons par présenter le fonctionnement de ces MVS qui sont des techniques ap-
partenant au domaine de l’apprentissage supervisé. Dans un deuxième temps nous exposons
les méthodes algorithmiques que nous avons utilisées afin d’effectuer homomorphiquement
les opérations requises par ces techniques. L’efficacité de nos méthodes est illustrée par des
implémentations sur différents type d’architectures.

Enfin dans une dernière partie nous présentons les conclusions de cette thèse ainsi que les
perspectives qu’elle nous permet d’envisager.
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Introduction

1 Historical context and motivations

Although already used during ancient times, cryptology – etymologically science of secret –
only justified its science status recently with its theoritical foundations laid out by Shannon
at the end of the 1940s ([Sha49]), and the advent of public-key cryptography (1970s). It
can be split into two mains areas of study which are opposite by nature but complementary:
cryptography and cryptanalysis.

The first is about protecting communications from unauthorized third parties, requiring
four properties: confidentiality, authentication, data integrity and non-repudiation. Confi-
dentiality guaranties that only authorized people can access the messages. The purpose of
authentication is to certify the identity of the participants, while data integrity is required
to ensure that messages were not corrupted by any unauthorized third party. Finally non-
repudiation prevents participants in the communication from falsy denying their implication.
In practice, participants of a communication need to possess a secret, also called key, to ensure
these properties.

On the other hand, cryptanalysis aims at retrieving some information from a secure com-
munication in order to corrupt one, or several, of the previous four properties and this, without
necessarily knowing the key.

Historically cryptography was mainly about ensuring the confidentiality of messages. The
other properties too are integral to modern cryptography and particularly in the current
internet era. Confidentiality of a message is ensured by converting it into an unintelligible
text, called ciphertext, by using a key. From there, the message can only be understood by
people with knowledge of the key.

During war, it is essential to ensure that encrypted messages remain undecipherable to the
adversary in the eventuality where they are intercepted. This is why historically most progress
in encryption techniques and cryptanalysis appeared during different conflicts. Among the
famous classical encryption methods we can mention the scytale used by the Spartans during
the Peloponnesian War, and the Caesar cipher used by the Romans during the Gallic Wars.

More recently, during the two major conflicts of the XXth century, cryptology has been
decisive. In 1917, British intelligence intercepted and decrypted a telegram sent by the Ger-
man foreign secretary, Arthur Zimmermann, to the German ambassador in Mexico in which
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Germany was offering an alliance to Mexico. The terms of this alliance specified that Mexico
should invade the south of the United States in order to prevent Americans from taking action
in Europe in case the United States dropped their neutrality. Once the United States were
aware of the content of this telegram they declared war to Germany which sped up the end
of the conflict. During World War II the Enigma machine, used by the Germans to encipher
their communications, was the first mechanic cipher machine in history. Its cryptanalysis
by Alan Turing’s team in 1940 has itself required the construction of the first computer in
history. Once Enigma was broken, the Allies had a significant advantage for the rest of the
conflict. Cryptology just entered its modern era.

Until the second half of the XXth century, the same key was used to encrypt and decrypt
messages: the case referred to as symmetric cryptography. However symmetric cryptography
suffers from a major drawback since it requires the parties wishing to communicate have
exchanged the cipher key before the communication starts. The problem is therefore to
exchange this key in a secure way. This was addressed in the seventies when W. Diffie
and M. Hellman proposed the concept of asymmetric cryptography, also called public key
cryptography ([DH76]). One should probably mention it was also proposed, roughly at the
same time, by R. Merkle even though it is less well-known ([Mer78]).

The principle of public key cryptography is that the person who needs to decrypt messages
generates two keys. The first one must remain secret while the second one is made public.
The public key is used to encrypt messages by anyone willing to communicate with the owner
of the secret key. However the owner of the secret key is the only one able to decrypt the
messages encrypted with the corresponding public key. Of course the two keys are related,
but it is made sure that one cannot retrieve easily the secret key from the public key unless
by solving a difficult computationnal problem.

An analogy for thinking about public key cryptography is a mail box. Everyone can easily
put a letter in a mail box, however it is hard to get the letters which are inside the box if you
do not have its key. Only the owner of the mail box can easily take the letters inside it.

In the context of cryptology, “easy” and “difficult” must be understood in terms of com-
putational complexities. “Easy” means that there exists an algorithm which can solve any
instantiation of the problem in polynomial time while “difficult” means that it is not easy.
If for security reasons it must be difficult to retrieve the secret key from the public key, for
efficiency reasons deriving the public key from the secret key should be easy.

As a consequence, public key cryptography relies on mathematical problems which are
easy in one way but difficult on the other. A good example of such a problem is the multipli-
cation/factorization of integers. Multiplying two integers is quiet easy, for instance it is not
hard to find that 41 × 37 = 1517, however it is much harder to find out that 2021 is actually
the product of 43 and 47.

It is precisely on this problem that in 1978, R. Rivest, A. Shamir and L. Adleman based
their encryption/signature scheme, called RSA, which was the first concrete public key con-

10



1. Historical context and motivations

struction in history ([RSA78]). A noteworthy property of RSA is that when multiplying two
ciphertexts, encrypting two different messages, one obtains a ciphertext corresponding to the
product of the messages. This property, allowing to process messages directly through their
ciphertexts without having to decrypt them beforehand is called homomorphic property.

From there the question whether or not it is possible to construct an encryption scheme
generalizing the homomorphic property of RSA arose. This encryption scheme should allow
to perform, not only multiplications, but any kind of computations on messages directly
through their ciphertexts ([RAD78]). Later this will be referred as Fully Homomorphic En-
cryption (FHE).

Whether or not it was possible to construct such a scheme remained opened for many
years. Knowing that any continuous function can be approximated over a compact domain
by a polynomial, in practice the question can be reduced to being able to evaluate polyno-
mials homomorphically. This only requires to perform both additions and multiplications
homomorphically. Several encryption schemes allowing to perform one of the two operations
like RSA were built in the ensuing years: for instance ElGamal for the multiplication ([ElG85])
and Paillier for the addition ([Pai99]).

The first significant step was made in 2005 by D. Boneh, E. Goh and K. Nissim who con-
structed the first encryption scheme possessing the two homomorphic properties ([BGN05]).
Nevertheless their construction suffers from a major drawback since it only allows to perform
one homomorphic multiplication. In a major breakthrough C. Gentry in 2009 resolved the
problem by constructing the first fully homomorphic scheme, i.e. which allows to perform an
arbitrary number of additions and multiplications homomorphically, solving a thirty years old
problem ([Gen09]).

Its construction, based on euclidean lattices, works through two steps. The first step is
the construction of a scheme allowing to perform a limited number of additions and multi-
plications. Such restrictive schemes, referred as Somewhat Homomorphic Encryption (SHE),
are called “noisy”. In a nutshell, ciphertexts of SHE schemes contains a noise which grows
after each homomorphic operation. Unfortunately one is only able to decrypt the message
correctly as long as the noise remains small enough, which is the reason why one can only
perform a limited number of operations. The second step of Gentry’s construction is a pro-
cedure to “refresh” ciphertexts, i.e. which allows to reduce the size of the noise inherent to
a ciphertext. This procedure, called “bootstrapping”, roughly consists in running homomor-
phically the decryption function. At the end of the procedure, we obtain a new ciphertext,
encrypting the same message, whose inherent noise has the same size as if one had evalu-
ated the decryption circuit from a “fresh” ciphertext. Noise growth after a multiplication is
more important than after an addition. Therefore if the SHE scheme allows to perform one
multiplication additionally to the evaluation of its decryption procedure, then the scheme is
said “bootstrappable” which means that it can be transformed to a fully homomorphic scheme.

Nowadays, the potential impact of such schemes on privacy is considerable, in particu-
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lar with the rise of cloud computing. FHE offers a concrete solution to different problems
appearing in cryptography such as secure multiparty/outsourced computations or e-voting.
Unfortunately, although theoretically correct, the parameters required by the first construc-
tion of Gentry make it unusable in practice.

Hence in the years following Gentry’s breakthrough, the cryptographic community has de-
voted important efforts to improve this first construction in order to make it implementable.
This was finally accomplished in 2011 by C. Gentry and S. Halevi ([GH11]). This first im-
plementation quickly became outdated with the so-called second generation schemes which
appeared in the next few years. We mention for instance: Brakerski-Gentry-Vaikuntanathan
(BGV) ([BGV12]), Brakerski scale invariant construction ([Bra12]) and Gentry-Sahai-Waters
(GSW) ([GSW13]). The better performances of the aforementioned schemes are directly re-
lated to the underlying problem on which their security is based upon: Learning With Errors
(LWE).

The LWE problem was introduced in 2005 by O. Regev in his seminal work ([Reg05]), is
currently the main structure used for constructing homomorphic encryption schemes. In an
informal way this problem consists in solving a “noisy” linear system. More precisely, let us
consider a matrix A and a vector s both with integer coefficients lying in a large centered
interval [−q/2, q/2[. Knowing the matrix A, the “decisional” version of the problem consists in
distinguishing whether a vector b has its coefficients sampled uniformly in [−q/2, q/2[ or if it is
such that b = As+e (modq), for a vector e with “small” coefficients. Equivalently the search
version of the problem consists in finding the vector s from the couple (A, b = As+e ( mod q)).
Note the importance of the noise/error vector e, without which this problem would reduce to
the resolution of a linear system.

Despite much better performances when compared to Gentry’s first construction, in prac-
tice the structure underlying the LWE problem is not completely satisfying. Indeed, in order
to obtain levels of security high enough, and to make the scheme bootstrappable, one needs
to use large size of matrices and vectors with also large coefficients. As a consequence, the
time and memory complexities required to manipulate these elements turn out to be quickly
unpractical.

Therefore the cryptographic community has started to consider different variants of this
problem and in particular its ring version called Ring-Learning With Errors (Ring-LWE), also
called Learning With Errors over Rings, which is based on ideal lattices ([LPR10]). In this
variant, the matrix A is substituted for an element a lying in the ring Rq = (Z/qZ)[X ]/(f ),
where f ∈ Z[X ] is a monic and irreducible polynomial of degree n. The vectors s and e are
now also considered as elements of Rq. The problem is similar : determine whether a couple
of elements (a, b) ∈ R2

q was sampled uniformly in R2
q or if there exists s and e such that

b = a · s + e. The benefits brought by this variant are twofold:

• a can now be represented by n coefficients instead of n2 for a matrix, which reduces the
memory complexity by a factor n ;
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• instead of performing matrix vector products (asymptotic time complexity O(n2)), one
now performs product of elements of Rq which can be done more efficiently (asymptotic
time complexity O(n log n)), especially when f (X ) = Xn + 1 with n a power-of-two.

Homomorphic encryption schemes based on the LWE problem can be adapted quite nat-
urally to Ring-LWE which enhances significantly their performance. The BGV scheme has
been directly developed to fit on the two problems, Brakerski’ scale-invariant construction
was adapted to Ring-LWE by J. Fan and F. Vercauteren and named after them FV ([FV12])
and GSW’ adaptation was named SHIELD ([KGV16]).

Both LWE and Ring-LWE problems reduce, under some conditions, to hard problems on
euclidean and ideal lattices respectively. So far no algorithm solving Ring-LWE more effi-
ciently than LWE is known, and actually concrete cryptanalysis of a Ring-LWE instantiation
is currently made by constructing an LWE instantiation from it. In this case the coefficients
of the element a ∈ Rq form the first column of the matrix A and the other columns are derived
from the first one by exploiting the structure of the polynomial f .

Nonetheless, the benefits brought by Ring-LWE are not without potential consequences.
Indeed there are important suspicions that the additional structure appearing in ideal lat-
tices, which is brought by the polynomial f , can be exploited to solve problems in this kind
of lattices more efficiently. Hence, despite it is not known yet whether this structure can be
exploited or not, people tends to believe that Ring-LWE is less hard than LWE.

In practice, Gentry’s bootstrapping is the most cumbersome procedure, hence one should
try to avoid using it as much as possible. One way of avoiding it is to select parameters for
an SHE scheme with a targeted application, so that it allows to perform enough operations
to evaluate homomorphically the required functions without bootstrapping ([BGV12]).

In a noteworthy work L. Ducas and D. Micciancio have built a scheme, called FHEW,
based on the Ring-LWE problem in which the bootstrapping procedure can be performed
very efficiently – less than 1 sec ([DM15]). By considering a variant of Ring-LWE on the real
torus, FHEW was improved a few years latter by Chillotti et al. (TFHE) reaching execution
time of 0.1 sec ([CGGI16]). In their setting, bootstrapping is performed after the evaluation
of each logic gate, so that one can evaluate homomorphically as many gates as he wants
achieving therefore FHE with very competitive performance.

It is probably important to mention that after years of research and development in aca-
demic laboratories, the quantum computer is no longer a fanciful dream. Its impending arrival
will confront modern cryptology to the first revolution of its young history.

Indeed with such computer, the problems on which the security of the current cryptosys-
tems are based upon (factorization, discrete logarithm) can be solved in polynomial time
([Sho97]). As a direct consequence, all the cryptographic schemes whose security is based
on these problems will not be safe any longer. Therefore it becomes urgent to develop new
constructions based on problems which cannot be solved more efficiently with a quantum
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computer. The recent call of the national Institute of Standards and Technology (NIST) to
lay down the foundations of the future standards of post-quantum cryptography goes in this
direction.

In view of this, problems based on lattices (euclidean or ideal) are good candidates since
we do not know so far any quantum algorithm to solve them more efficiently than with clas-
sical algorithms. This is why the medium-term security of homomorphic encryption schemes
is not compromised by the quantum computer. However the important costs in time and
memory required in practice by homomorphic schemes are still the major bottleneck to their
deployment for real-life applications.

2 Contributions and organization of the report

The purpose of this thesis is to optimize the underlying arithmetic of several SHE schemes
based on the Ring-LWE problem in order to enhance their performance. In this way, we hope
to break some barriers which still prevent the widespread use of homomorphic encryption. To
this end, we have focused on two main approaches:

• optimize the arithmetic used by the primitive of SHE schemes by considering, either
the specific operations of these primitives, or the operations needed in the more general
framework of Ring-LWE;

• optimize the operations required by a concrete and specific application of homomorphic
encryption, both at the algorithmic level and their practical implementations.

Chapter 1 aims at introducing the different notions needed for a correct understanding of
the rest of the report. We start by briefly introducing the Ring-LWE problem in the context
of cyclotomic fields while highlighting its link with ideal lattices. In a second part we present
two of the most currently used homomorphic encryption schemes: BGV and FV which are both
based on the Ring-LWE problem. Finally, we present the different tools used in practice to
perform the operations needed by these schemes efficiently.

The first contribution of this thesis ([BEHZ17]), presented in Chapter 2, is a suite of
algortihms implementing all the primitives of scale-invariant SHE schemes efficiently within
the Residue Number System (RNS) representation. RNS representation permits efficient
arithmetic (additions and multiplications) for big numbers which is critical to homomorphic
encryption. Unfortunately certain operations, like comparison for instance, cannot be per-
formed directly in RNS. By overcoming these limitations, we have been able to perform all
the computations required by the different procedures of scale-invariant schemes like FV in
RNS representation. This has resulted in a noticeable improvement of the performance of
these schemes.

Efficiency of the arithmetic in Rq = (Z/qZ)[X ]/(f ), which is the ambient space in Ring-LWE,
heavily depends on f , in particular because of the reduction modulo this polynomial. This
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efficiency is maximal when f is a cyclotomic polynomial of the form Xn + 1, but this kind of
polynomials suffers from others limitations which, depending on the targeted application, may
require to consider other kind of cyclotomics. Chapter 3 presents a work in which we have fo-
cused on improving the reduction modulo f procedure, when it is a cyclotomic different from
Xn+1 ([BEH+18]). Since this operation is required for each product of elements in Rq, its opti-
mization has led to a significant improvement of the performance of BGV and FV in these cases.

In the fourth and last chapter we present a concrete use case of homomorphic encryption
to the classification of private data ([BMSZ18]). This classification uses advanced machine
learning techniques and in particular Support Vector Machine (SVM). Evaluating a SVM
homomorphically allows to classify data without revealing them. We start by presenting how
SVMs, which are techniques from the supervised learning domain, work. We then describe the
algorithmic methods we have devised in order to perform the operations required by SVMs
homomorphically. The efficiency of our methods is illustrated by several implementations on
different kind of architectures.

Finally in the last chapter, we summarize the results of this thesis together with directions
for possible future works.
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Chapter 1. Preliminaries

This chapter aims to familiarize the reader with the general context of this thesis. There-
fore we start by introducing the celebrated Ring-LWE problem and its relation to ideal lattices.
Afterwards we present two of the most used homomorphic encryption schemes in practice BGV
and FV, both based on Ring-LWE. Finally we give an overview of the different arithmetic
tools used to perform computations in these schemes.

1.1 Ring-Learning with Errors problem

In this section we introduce the Ring-LWE problem in the context of cyclotomic fields. Al-
though this problem can be defined and proven hard in any number field [PRSD17], we restrict
our exposition to the case of cyclotomic fields, which are among the most used in practice.

1.1.1 Cyclotomic polynomials and cyclotomic number fields

Let m ≥ 1 be an integer and let us consider Km the splitting field of Xm − 1 over Q.

Definition 1.1.1. An element ζ ∈ Km such that ζm = 1 is called a m-th root of unity.
Moreover if ζ is of order m then it is called a primitive m-th root of unity.

Remark 1.1.2. In C, the m distinct m-th roots of unity form a multiplicative group of order
m hence one can think of Km as the smallest extension of Q containing these elements. Since
a finite subgroup of the multiplicative group of a field is cyclic, there exists an element of
order m in Km.

From now, we denote by ζm ∈ Km a primitive m-th root of unity. Since ζm generates all
the m-th roots of unity, it generates in particular all the other primitive m-th roots of unity
thus Km = Q(ζm).

Lemma 1.1.3 ([DF04] section 13.4). Let ζm ∈ Km be a primitive m-th root of unity. For any
0 ≤ k < m, ζkm is a primitive m-th root of unity if and only if k is coprime to m. In particular
there are ϕ(m) primitive m-th roots of unity where ϕ denotes the Euler’s totient function.

From the primitive m-th roots of unity we can define the m-th cyclotomic polynomial
Φm ∈ Km[X ] as the product of the (X − ζm) where ζm ranges over all the primitive m-th roots
of unity.

Definition 1.1.4. Let m ≥ 1 be an integer, the polynomial defined by:

Φm(X ) =
∏

1≤k<m
k∧m=1

(X − ζkm)

is called the m-th cyclotomic polynomial and its degree is n = ϕ(m).

We can deduce directly from the definition that Φm is monic and divides Xm−1; it follows
directly that:
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1.1. Ring-Learning with Errors problem

Proposition 1.1.5 ([DF04] section 13.6). For any integer m ≥ 1 we have:

Xm − 1 =
∏
d |m

Φd (X ) (1.1.1)

Properties to recursively compute cyclotomic polynomials can be derived from (1.1.1). We
do not aim to present those properties but the interested reader can find them in references
such as [Lan05] and [DF04]. However the following is essential for our purpose.

Lemma 1.1.6 ([DF04] section 13.6). For any integer m ≥ 1 the m-th cyclotomic polynomial
Φm is monic and has integer coefficients.

Theorem 1.1.7 ([DF04] section 13.6). For any integer m ≥ 1 the m-th cyclotomic polynomial
Φm is irreducible over the field of rationals Q.

Corollary 1.1.8 ([DF04] section 13.6). Φm is the minimal polynomial of any primitive m-th
root of unity, hence Km = Q(ζm) � Q[X ]/(Φm(X )). The degree of the extension is therefore
[Q(ζm) : Q] = ϕ(m).

Definition 1.1.9. For an integer m ≥ 1, the m-th cyclotomic number field Km = Q(ζm) is the
field extension obtained by adjoining an element ζm of multiplicative order m to Q.

Cyclotomic number fields have been intensively studied but for our purpose we are only
interested in a few of their properties. The interested reader can nonetheless refer to the more
extensive reference [Was97]. We start by introducing the notion of ring of integers.

Definition 1.1.10. A number α ∈ C is called an algebraic integer if it is a root of a monic
polynomial with integer coefficients.

Theorem 1.1.11 ([DF04] section 15.3). The set of algebraic integers of Km is a ring and a
free Z-module of rank n = ϕ(m).

Proposition 1.1.12 ([Was97] Proposition 1.2). The ring of algebraic integers of Km is
Z[ζm] :=

{∑k
i=0 aiζ im / k ∈ N, (ai)ki=0 ∈ Z

}
.

Remark 1.1.13. The set {1, ζm, . . . , ζn−1m } forms a basis of Z[ζm] as a free-Z module called its
power basis. It corresponds to {1, X, . . . , Xn−1} when Z[ζm] is identified to the polynomial ring
R = Z[X ]/(Φm(X )) through the ring isomorphism ζm 7→ X .

We would like to draw the reader’s attention on the following important facts.

Lemma 1.1.14 ([LM06] Lemma 3.2). Let f ∈ Z[X ] a monic irreducible polynomial of degree
n then for every non-zero element a ∈ Z[X ]/(f (X )), the elements a, X · a, . . . , Xn−1 · a are
linearly independent.

As a direct consequence, by identifying Z[ζm] to the polynomial ring R = Z[X ]/(Φm(X )),
we can see that every non-zero element a in an ideal of Z[ζm], generates a shifted basis
{a,a · ζm, . . . ,a · ζ

n−1
m } of this ideal seen as Z-module.
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Corollary 1.1.15. Any non-zero ideal I ⊆ Z[ζm] is a free Z-module of rank n = ϕ(m).

Definition 1.1.16. A fractional ideal F is a set of Km such that there exists a non-zero
d ∈ Z[ζm] and d · F = {df / ∀ f ∈ F } ⊆ Z[ζm] forms an ideal of Z[ζm]. Equivalently it can be
seen as the subset of Km defined by F = d−1 · I for an ideal I ⊆ Z[ζm].

Remark 1.1.17. Note that every ideal of Z[ζm] is a fractional ideal. In order to differentiate
fractional ideals with ideals of Z[ζm] the latter are called integral ideals.

Remark 1.1.18. As fractional ideals are defined through an integral ideal therefore they also
form a free Z-module of rank n, their bases being the bases of the corresponding integral ideal
multiplied by d−1.

Another noteworthy fact about cyclotomic fields concerns their Galois group.

Definition 1.1.19. Let L be an extension of a field K , an automorphism σ of L over K is a
field automorphism of L such that σ coincides with the identity on K .

It is straightforward to show the set of all the field automorphisms of L over K is a group
for the function composition operator. When L is a Galois extension of K , this group is called
the Galois group of L over K and is denoted Gal(L/K ). Since Km is the splitting field of
Xm − 1 over Q it is Galois and we know exactly the structure of its Galois group.

Theorem 1.1.20 ([Was97] Theorem 2.5). There is a group isomorphism between the Galois
group G = Gal(Km/Q) and (Z/mZ)× which is given by i 7→ (ζm 7→ ζ im). In particular Km has
abelian Galois group.

1.1.2 Lattices and ideal lattices

Definition 1.1.21. Let n ≥ 1 be an integer, a lattice L is a discrete additive subgroup of Rn

endowed with a norm ‖ · ‖.

Discrete means that for a given norm there exists an n-dimensional ball centered at zero
that does not contain any vector of the lattice L except 0. Therefore there exists a non-zero
vector u ∈ L which minimizes this norm. This vector is not unique (−u also satisfies this
condition) and is called a shortest vector of L. One may notice that if a vector v ∈ L is
linearly dependent with u, i.e. such that v = α · u, then α ∈ Z. Indeed otherwise the non-zero
vector v− bαe ·u ∈ L, with b·e the rounding to the nearest integer, would have a smaller norm
than u which would contradict the definition of u. From there we can build by induction on
the degree of liberty of L a family of linearly independent vectors that generate L.

Definition 1.1.22. A basis B of a lattice L is a set of d ≤ n linearly independent vectors
{b1, . . . , bd} such that any element of L can be written as a linear combination, with integer
coefficients, of elements of B. The lattice generated by a basis B is denoted L(B).
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As a direct consequence a lattice of rank d can be seen as a free Z-module of rank d. We
can represent it by a matrix B ∈ Mn,d (R) formed by the column vectors of the basis. One
may notice that any non-trivial unimodular transformation (matrix with integer coefficients
whose determinant is ±1) transforms a basis into another. Hence a lattice of rank d ≥ 2 has
an infinite number of bases, all of same cardinality. The common cardinality of the bases is
called the rank of the lattice while a full rank lattice refers to a lattice of rank n. From now
on n = ϕ(m) will denote the dimension of Km as Q-vector space.

Definition 1.1.23. A geometric embedding ι : Km ↪→ Rn is an injective morphism of additive
groups.

Through a geometric embedding ι any fractional ideal can be mapped to Rn and can
therefore be identified to a full rank lattice (remark 1.1.18). However those lattices inherit
some additional structure from the absorption property of their generating integral ideal, in
order to differentiate them from other lattices, they are called ideal lattices.

Definition 1.1.24. Let ι be a geometric embedding, then any fractional ideal I ⊆ Km can be
identified through ι to a full rank lattice L(I) ⊆ Rn and this lattice is called an ideal lattice.

Remark 1.1.25. Depending on the geometric embedding the lattice will not be the same.
Therefore, one should always precise through which one the ideal lattice is considered.

The most intuitive geometric embedding is probably the coefficient embedding which repre-
sents an element a =

∑
aiζ im ∈ Z[ζm] through its coordinates in the power basis (a0, . . . , an−1) ∈

Zn. Unfortunately, despite its relative simplicity, the coefficient embedding is not adapted from
an algebraic point of view since it does not preserve the multiplication and thus the structure
of ideals. The canonical embedding from algebraic number theory on the other hand, allows
to perform multiplication coefficient-wise and thus preserves this structure. Although two
embeddings are always related by a linear transformation of Rn, the multiplicative property
of the canonical embedding makes it more suited for the study of ideal lattices and enables the
security reduction of the Ring-LWE problem ([LPR10]) and thus its theoretical foundation .

Each element σi ∈ G = Gal(Km/Q) defines an embedding from Km to C given by ζm 7→ ζ im

for i ∈ (Z/mZ)×. Since any polynomial with real coefficients which vanishes on a complex
number x also vanishes on its complex conjugate x, complex embeddings in number fields
always come in pairs. Let s1 be the number of real embeddings and s2 be the number of pairs
of complex embeddings, we have s1 + 2s2 = n. We define H ⊆ Rs1 × C2s2 hereafter:

H = {(x1, . . . , xn) ∈ Rs1 × C2s2 : xs1+s2+j = xs1+j, for 1 ≤ j ≤ s2} ⊆ Cn (1.1.2)

Definition 1.1.26. Let the elements of Gal(Km/Q) be denoted σi with 1 ≤ i ≤ n and ordered
such that σs1+s2+j = σs1+j with 1 ≤ j ≤ s2, the canonical embedding is the map σ : Km ↪→ H
such that σ(a) = (σ1(a), . . . , σn(a)) for any a ∈ Km.
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Remark 1.1.27. Since the elements σi are field homomorphisms, additions and multiplica-
tions can be performed coefficient-wise in the canonical embedding.

Remark 1.1.28. General number fields may have some real embedding corresponding to the
real roots of their minimal polynomial but in our case Φm has no real root as soon as m > 2.
Since the cases m = 1, 2 present few interest from a cryptographic point of view, we only
consider the case where m > 2, thus Km has only complex embeddings and s1 = 0.

Remark 1.1.29. For p ≥ 1, H can be endowed with the `p norm defined by ‖x‖p =
(
∑n

i=1 |xi |
p)1/p when p < ∞ and ‖x‖∞ = max1≤i≤n |xi | when p = ∞. By identifying ele-

ments of Km with their canonical embedding in H, we can speak of geometric norm on Km(
‖x‖p = ‖σ(x)‖p

)
.

The attentive reader may have noticed that our definition of the canonical embedding
does not match the definition of a geometric embedding as stated in definition 1.1.23 since it
embeds into Cn. Elements of H have half of their coordinates fixed by complex conjugation,
therefore H has dimension n/2 as C-vector space and thus dimension n as R-vector space. In
order to work with real lattices, we need to differentiate the real and imaginary parts of the
canonical embedding to pull it back to Rn. In the case of cyclotomic fields with m > 2, it can
be done through the linear transformation whose matrix A is given below:

A =
1
√
2

*
,

In/2 In/2
iIn/2 −iIn/2

+
-

with In the identity matrix of size n, i =
√
−1. The normalization factor 1/

√
2 is added in

order to preserve the `2 norm through the transformation A (i.e. such that `2(Ax) = `2(x) for
any x ∈ H).

Figures 1 and 2 illustrate on a small example how different the lattices generated by the
coefficient and canonical embedding are. One can see for instance that one is sparser than
the other and that their number of short vectors is different. The interested reader can find
a more detailed study of the relations between these two embeddings in [Bat15].

Example 1.1.30. Let us consider the lattice generated by the ideal (1 − ζ3) ⊂ Z[ζ3] through
the coefficient and canonical embeddings.

Through the coefficient embedding 1 − ζ3 corresponds to the vector b1 whose coordinates
are (1,−1) ∈ R2 and ζ3(1− ζ3) = ζ3− (−ζ3−1) = 2ζ3+1 (since Φ3(X ) = X2+X +1) corresponds
to the vector b2 = (1, 2). These two vectors form a basis of the lattice generated by (1 − ζ3)
(Lemma 1.1.14) through the coefficient embedding.

However σ(1− ζ3) = (1− ζ3, 1− ζ3) = 1/2(3− i
√
3, 3+ i

√
3) ∈ H (ζ3 = e2iπ/3 = −1/2+ i

√
3/2)

and b′1 = σ(1−ζ3)At = 1/
√
2(3,
√
3). Similarly σ(2ζ3+1) = (i

√
3,−i
√
3) and b′2 = σ(2ζ3+1) At =

(0,
√
6). Thus (b′1, b

′
2) form a basis of the lattice generated by 1 − ζ3 through the canonical

embedding.
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b1

b2

Figure 1: Lattice generated by (1 − ζ3) ⊂
Z[ζ3] through the coefficient embedding.

b′1

b′2

Figure 2: Lattice generated by (1 − ζ3) ⊂
Z[ζ3] through the canonical embedding.

1.1.3 Theoretical hardness of Ring-Learning With Errors

Defining the Ring-LWE problem in a formal way would involve notions and considerations
on the shape of the error distribution which are beyond the scope of this thesis. For the sake
of simplicity, we introduce the Ring-LWE problem and highlight its hardness in an informal
way. For further details on the rigorous definition of Ring-LWE the reader should refer to
[LPR10]. We start by introducing the Shortest (Independent) Vector Problem (S(I)VP) in
the context of ideal lattices. Unless stated otherwise, from now we only consider ideal lattices
through the canonical embedding.

For a given norm, the length of a shortest vector in a lattice L is called the minimum
distance of the lattice and denoted λ1(L). This notion can be extended to define the sequence
of successive minima. The k-th minimum of the lattice L is defined as the smallest positive
real number λk (L) such that there exists k linearly independent vectors of L, with each vector
of norm at most λk (L).

Definition 1.1.31 (SVP and SIVP). Let Km be the m-th cyclotomic number field endowed
with a norm ‖ · ‖ and let γ ≥ 1. The Km-SVPγ problem in the given norm is: given a fractional
ideal I in Km find some non-zero x ∈ I such that ‖x‖ ≤ γ · λ1(I). The Km-SIVPγ problem is
defined similarly, where the goal is to find n linearly independent elements in I whose norms
are all at most γ · λn(I).

Remark 1.1.32. SVP was proven to be an NP-Hard problem for generic lattices ([vEB81],
[Ajt98], [Mic01]), while S(I)VPγ is hard within polynomial factor γ = nO(1) ([Ajt96]). Despite
considerable efforts it is not known so far whether or not these problems are easier for ideal
lattices and the best current strategy to solve them is to use lattice reduction algorithms.

Remark 1.1.33. For convenience we often identify a fractional ideal I with its embedded
lattice L(I), and speak of the minimum distance of an ideal λ1(I).
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Let m ≥ 1 be an integer and R = Z[X ]/ (Φm(X )) (� Z[ζm]) be the ring of integer poly-
nomials modulo Φm(X ). Furthermore for an integer q ≥ 2, consider the ring Rq = R/qR �

(Z/qZ)[X ]/ (Φm(X )), each element of Rq can be represented as a polynomial of degree smaller
than n and coefficients in {0, . . . , q − 1}. Let χerr be an error distribution on R and Uq be

the uniform distribution on Rq. Given a probability distribution D, we use x
$
←− D to denote

that x is sampled randomly from D.

Definition 1.1.34 (Ring-LWE Distribution). For s ∈ Rq and an error distribution χerr over
R, a sample from the Ring-LWE distribution Aq

s,χerr over Rq ×Rq is the distribution obtained

by sampling a
$
←− Uq and e

$
←− χerr and outputting

(
a, [a · s + e]q

)
∈ R2

q.

Definition 1.1.35 (Ring-LWE, Decisional). Let q ≥ 2 be an integer, s ∈ Rq and χerr be a
distribution over R. The decisional version of the Ring-LWE problem is defined as follows:
given access to a polynomial number of independent samples in Rq × Rq, determine whether
they were drawn from Aq

s,χerr or from the uniform distribution on Rq × Rq.

Definition 1.1.36 (Ring-LWE, Search). Let q ≥ 2 be an integer, s ∈ Rq and χerr be
a distribution over R. The search version of the Ring-LWE problem is defined as follows:
given access to a polynomial number of independent samples from the Ring-LWE distribution
Aq
s,χerr , find s.

The error term e is supposed to be sampled according to a discrete n-dimensional centered
spherical Gaussian distribution in the embedding space H, with each coordinate sampled in-
dependently ([LPR10], [CIV16]). A noteworthy case is when m is a power of two, in which
case the geometry of the corresponding cyclotomic field allows to sample the error term e, as
a scaled centered spherical Gaussian, directly in R. We can emphasize two main approaches
to transfer the error in R for a general m. In [LPR13] the authors explain how to invert
the canonical embedding map in quasi-linear time allowing therefore to transfer the error
term from H to R. The authors of [DD12] proposed an alternative method to generate the
error and proved it does not affect notably the difficulty of the problems. Their approach
consists in sampling the error according to a centered spherical Gaussian in Q[X ]/(θm(X )),
where θm(X ) = Xm/2 + 1 if m is even and θm(X ) = Xm − 1 otherwise. From there the error is
reduced to Q[X ]/(Φm(X )) with a polynomial reduction and then its coordinates are rounded
coefficient-wise to get it in R.

Lyubashevski et al. have shown that the Ring-LWE Search problem reduces to the Ring-LWE
Decisional problem [LPR10]. It was later proven that both problems are equivalent [Lyu11]
and both reduce to the Shortest (Independent) Vector(s) Problem:

Theorem 1.1.37 ([LPR10]). Let m be an integer and q a prime congruent to 1 modulo m.
Also let α = α(ϕ(m)) ∈ (0, 1) be a real number such that α · q > ω(

√
log m). If there is an

algorithm that can solve the decisional Ring-LWE problem for a secret s sampled uniformly
in Rq = (Z/qZ)[X ]/(Φm(X )) and an error distribution χerr (α); then there exists a quantum
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algorithm that runs in time O(q · poly(m)) which solves the S(I)VPγ to within a factor γ ∈
Õ(
√

m/α) in any ideal of the ring Z[ζm].

Remark 1.1.38. The conditions on q to be a prime and congruent to 1 modulo m in the
theorem have been removed in [LS12] so that q has only to be an integer greater than 2.

Remark 1.1.39. The secret s should formally be considered as an element of R∨ the dual
fractional ideal of R, however the authors of [DD12] have also shown that it could be chosen
directly uniform in Rq without making the problem any easier.

Selecting parameters for a secure Ring-LWE instantiation requires to take many param-
eters in consideration, in particular the width of the error distribution, and should be done
carefully. In [Pei16], Peikert exposes several instantiations of Ring-LWE which are insecure
because the error distribution is not well chosen.

1.1.4 Practical considerations

Conditions of the Ring-LWE reduction to S(I)VP ensure an asymptotic security however in
practice we need to have an idea of the concrete hardness of an instantiation to estimate its
security. Concrete cryptanalysis of lattice based cryptography is beyond the scope of this
thesis. However having a basic understanding of the relation between the parameters and the
security of a Ring-LWE instantiation is essential to avoid gross errors in parameters selection.
We remind that so far it is unknown whether or not the additional structure brought by the
defining polynomial in Ring-LWE can be exploited for cryptanalysis. Therefore the security
estimations for Ring-LWE are made through analysis for an LWE instance.

Definition 1.1.40. Let L be a lattice of rank d in Rn and let B be a basis of L. The volume
of the lattice L is defined as

√
det(BT B) where B ∈ Mn,d (R) is the matrix whose columns are

formed by the elements of B. When L is full-rank, it corresponds to | det(B) |.

Remark 1.1.41. Two bases being related by a unimodular transformation, the determinant
of a lattice does not depend on the chosen basis. It measures the volume of the d-dimensional
polytope formed by the vectors of a basis.

Definition 1.1.42. For a lattice L of rank d, the root-Hermite factor γB associated to a
basis B is defined as ‖b1‖ = γdB det(L)1/d where b1 is the shortest vector of B.

As mentioned in Remark 1.1.32, the best current strategy to solve S(I)VP or its approx-
imate version is to use lattice reductions algorithms. We have already seen that lattices can
be represented by a basis, however vectors appearing in bases can be of very different lengths.
Intuitively a “good” basis is formed by short vectors almost orthogonal, i.e. with low orthog-
onality defect, by opposition a “bad” basis is formed by long vectors almost collinear. Lattice
reduction algorithms aim at finding a “good” basis from an arbitrary basis, together with
some guaranties on the norm and the orthogonality of the output. The most famous lattice
reduction algorithm is probably the celebrated Lenstra Lenstra Lovász (LLL) ([LLL82]) which
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runs in polynomial time and provides bases of descent quality. Another noteworthy lattice
reduction algorithm is BKZ ([SE94]) which uses LLL and an SVP-oracle, usually based on
enumeration techniques, on small blocks of β < d vectors both as subroutine. For many
cryptanalysis applications BKZ provides bases of higher quality in high dimension however
its running time, as well as the quality of the output, increases significantly with the block
size β. As a consequence, when considering the basis B ′ outputted by a lattice reduction
algorithm A, run on an input basis B, we consider the value γA(B) to measure the quality of
reduction offered by the algorithm:

‖b′1‖ = γ
d
A(B) det(L)1/d

Gama and Nguyen ([GN08]) conjectured that γA(B) depends mostly on the lattice reduc-
tion algorithm used and not on the input basis, thus we will refer to this value as γA . They
also showed that when targeting a given factor γA in high dimension, the running time of the
reduction algorithm mainly depends on γA and not on the dimension or the volume of the
lattice. Thus, by following their idea, there is a minimal factor γmin

A
that one can achieve in

time 2λ, for security level of λ, with algorithm A. In [LP11], Lindner and Peikert proposed
a distinguishing attack which succeeds with probability ε very close to exp(−π(‖v‖σerr/q)2)
with v a short vector of a lattice associated to the Ring-LWE instantiation with modulus q and
error distribution χerr whose standard deviation is σerr . Therefore for the attack to succeed
with probability ε one needs to find a vector of length at most αq/σerr with α =

√
− log2(ε )/π.

Furthermore they showed that for a lattice of rank n, the shortest length of vectors one can
compute for a given γA is 22

√
n log2 (q) log2 (γA ). As a consequence to ensure the security of a

Ring-LWE instantiation the following inequality must hold:

α
q

σerr
< 2

2
√
n log2 (q) log2 (γmin

A
) (1.1.3)

Many works were led to predict more accurately the behavior of BKZ, or other lattice reduction
algorithms, to get better estimations of the root-Hermite factor one could reach in order
to derive better security parameters. The interested reader can refer to the following non-
exhaustive list ([CN11], [vdPS13], [LN14], [APS15], [MW16]). However inequality (1.1.3)
allows us to understand the relations between the different parameters and the security, e.g.
for a fixed dimension n, one cannot increase q beyond a certain bound without also increasing
the standard deviation σerr of the error distribution.

1.2 Somewhat Homomorphic Encryption based on Ring-LWE

This section aims to present two of the most currently used SHE schemes based on the Ring-
LWE problem, namely BGV ([BGV12]) implemented in the Helib library ([HS14]) which is
based on NTL, and Fan-Vercauteren (FV) ([FV12]) implemented in the SEAL library ([LP16],
[CLP17]) developed by Microsoft Research. Ring-LWE based cryptography corresponds to
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“noisy” protocols which means that data are hidden in cryptograms with some noise. Manip-
ulating those cryptograms makes the noise grow and unfortunately data can only be got back
as long as the noise remains smaller than a certain bound.

Throughout the rest of this thesis, Φm(X ) ∈ Z[X ] will denote the m-th cyclotomic poly-
nomial of degree n = ϕ(m), where ϕ is Euler’s totient function. The ring R = Z[X ]/(Φm(X ))
is the main structure of Ring-LWE-based schemes such as FV and BGV. An element of R can
be thought of as a polynomial with integer coefficients and a degree strictly smaller than n.
Unless mentioned otherwise, polynomials are represented in the power-basis {1, X, . . . Xn−1}

and are denoted with bold lower-case letters. For a =
∑n−1

i=0 aiX i ∈ Z[X ], we denote ‖a‖∞ =
max{|ai |, 0 6 i < n} the infinite norm on the coefficients. The expansion factor of the ring R is
defined by δR = sup{‖a · b‖∞/‖a‖∞ · ‖b‖∞ for a, b ∈ R − {0}} and quantifies the size growth of
the coefficients during a multiplication in R in the worst-case scenario. The underlying space
for ciphertexts is Rq = R/qR = (Z/qZ)[X ]/(φm(X )), which is composed of elements of R with
coefficients reduced modulo q while the plaintext space is Rt for an integer t � q.

The notation | · |q is used to denote the classical residue modulo q in [0, q) of an integer,
while the centered residue in [−q/2, q/2) is denoted by [·]q. Moreover b·c denotes flooring
while b·e denotes rounding to the nearest integer. By applying them coefficient-wise, those
notations can be extended to polynomials.

The following two functions are needed to limit the noise growth during an homomorphic
multiplication in the BGV and FV schemes. They are applicable to any a ∈ R, for any radix
ω ≥ 2, and with the subsequent parameter `ω,q = blogω (q)c + 1. Dω,q is a decomposition
in radix base ω, while Pω,q retrieves powers of ω which are lost within the decomposition
process.

Dω,q (a) =
(
[a]ω,

[ ⌊a
ω

⌋ ]

ω
, . . . ,

[ ⌊ a

ω`ω,q−1

⌋ ]

ω

)
∈ R

`ω,q
ω

Pω,q (a) =
(
[a]q, [aω]q, . . . , [aω

`ω,q−1]q
)
∈ R

`ω,q
q

Lemma 1.2.1 ([BGV12] lemma 2). For any (a, b) ∈ R2,
〈
Dω,q (a),Pω,q (b)

〉
≡ a · b mod q.

Uq will denote the uniform distribution on Rq with coefficients sampled independently
in Z ∩ [−q/2, q/2). We will also consider two distributions χkey and χerr on R which are
supposed bounded by Bkey and Berr respectively. It means that any a sampled randomly
from χkey (resp. χerr) verifies ‖a‖∞ ≤ Bkey (resp. Berr). The distribution χerr corresponds
to a distribution statistically indistinguishable from a discrete centered Gaussian of standard
deviation σerr truncated at Berr , for a large enough Berr (e.g. Berr = 6σerr). Despite Ring-
LWE problems being not easier when the secret is sampled from the error distribution χerr

([LPR10]), the key distribution χkey is often chosen different than χerr (e.g. uniform in
{−1, 0, 1}). Since noise growth depends on the size of the secret key in many situations, this
leads to more efficient protocols. However, such choice might introduce security weaknesses,
and thus would require further investigations for any commercial deployment.
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1.2.1 Brakerski-Gentry-Vaikuntanathan

In 2011, Brakerski et al. ([BGV12]) designed a leveled homomorphic scheme, namely ca-
pable of evaluating circuits of arbitrary size, but known beforehand, without involving the
costly bootstrapping procedure of Gentry. The key tool of their construction is the modulus
switching procedure which allows to switch a ciphertext ct encrypted under a modulus q to
a smaller modulus q′ in order to keep the noise level “constant”. Hence by selecting a chain
of moduli {q0, . . . , qL } long enough to perform the desired computations, bootstrapping is no
longer needed. This section describes the BGV encryption scheme in the Ring-LWE setting.

First, accordingly to the desired security level and the targeted application one starts by
selecting public parameters paramsBGV for the scheme: the cyclotomic index m, the plaintext
modulus t, an radix ω ≥ 2, two probability distributions χkey and χerr on the ring R, and a
chain of moduli q0 | q1 | . . . | qL such that qi ≡ qj mod t for any (i, j) ∈ {0, . . . , L}2, and such
that t and qL are coprime.

paramsBGV = (m, t, ω, {qi }Li=0, χkey, χerr )

Remark 1.2.2. Usually qL is a product of L + 1 primes of same size and t is a power of two.

Key generation. The secret key sk = s ∈ R is sampled randomly from the distribution
χkey. The public key pk = ([a · s + te]qL,−a) ∈ R2

qL
corresponds roughly to a Ring-LWE

sample associated to s and qL with a
$
←− UqL and e

$
←− χerr . Finally one generates a public

relinearization key −−→rlk = ([Pω,q (s2)+−→a ·s+t−→e ]qL,−
−→a ) ∈ R

`ω,qL
qL

×R
`ω,qL
qL

by sampling randomly
a vector −→a ∈ R`ω,qL

qL
(resp. −→e ∈ R`ω,qL

qL
) with each component sampled independently from

UqL (resp χerr). Note that s is multiplied to each component of −→a .

Remark 1.2.3. One can think to −−→rlk as an encryption of s2.

Algorithm 1 Key Generation BGV
Require: the public parameters paramsBGV.
Ensure: secret key sk, public key pk and relinearization key −−→rlk
function KeyGenBGV(paramsBGV)

s
$
←− χkey

sk← s

(a, e)
$
←− UqL × χerr

pk← ([a · s + te]qL,−a)

(−→a,−→e )
$
←− U

`ω,qL
qL

× χ
`ω,qL
err

−−→
rlk←

( [
Pω,qL (s2) + −→a · s + t−→e

]
qL
,−−→a

)
return (sk, pk,

−−→
rlk)
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Encryption A ciphertext ct = (c0, c1) ∈ R2
qL

corresponds to a degree 1 polynomial whose
coefficients lie in RqL . The message m ∈ Rt is hidden in the first coefficient c0 of the
ciphertext, more precisely a message m is encrypted under the public key pk as follows:

ct =
(
[[m]t + u · pk0 + te0]qL, [u · pk1 + te1]qL

)
with u

$
←− χkey and e0, e1

$
←− χerr . The noise contained in a ciphertext ct = (c0, c1) is revealed

once it is evaluated on the secret key s, indeed the following equalities hold modulo qL:

c0 + c1 · s = [m]t + u · pk0 + te0 + (u · pk1 + te1) · s

= [m]t + u · (a · s + te) + te0 + (−u · a + te1) · s

= [m]t + t(u · e + e1 · s + e0)

which leads to:
c0 + c1 · s ≡ [m]t + tv mod qL (1.2.1)

where the term v = u ·e+e1 ·s+e0 is the noise inherent to a ciphertext “freshly” encrypted.
Since q0 | q1 | . . . | qL, encryptions can be performed equivalently at any level i, i.e. modulo
qi therefore ciphertexts are always paired with a number 0 ≤ i ≤ L which indicates the level
of the encryption.

Algorithm 2 Encryption BGV
Require: messagem ∈ Rt , public key pk = (pk0,pk1) and the public parameters paramsBGV.
Ensure: level i ciphertext ct = ((c0, c1), i) encrypting m.
function EncBGV(m, pk, paramsBGV)

u
$
←− χkey

(e0, e1)
$
←− χ2err

return ct =
((
[[m]t + u · pk0 + te0]qi , [u · pk1 + te1]qi

)
, i
)

Decryption As shown in equation (1.2.1), by evaluating a ciphertext on the secret key one
almost reveals the message. Therefore to decrypt a message m ∈ Rt encrypted at level i in a
ciphertext ct = (c0, c1) ∈ R2

qi
, one starts by computing m′ = [c0 + c1 · s]qi and then outputs

[m′]t . To ensure correctness of the decryption, the noise v must be “small enough” such that
m′ = m + tv does not wrap-around modulo qi. As a consequence decryption will remain
correct if:



[m]t + tv

∞ <
qi
2

which is ensured as long as:
‖v‖∞ <

⌊ qi
2t

⌋
(1.2.2)
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As explained above, the noise of fresh ciphertexts is v = u · e + e1 · s + e0 with s,u
$
←− χkey

and e, e0, e1
$
←− χerr . Therefore one way to ensure the correctness of the scheme is to choose

q0 such that the norm of this fresh noise ‖v‖∞ ≤ 2δRBkeyBerr + Berr remains smaller than
bq0/2tc i.e. Berr (2δRBkey + 1) < bq0/2tc, with δR the expansion factor of the ring R.

Algorithm 3 Decryption BGV
Require: ciphertext ct = ((c0, c1), i), secret key sk = s and the public parameters paramsBGV.
Ensure: message [m]t (if equation (1.2.2) is satisfied).
function DecBGV(ct, sk, paramsBGV)
m′ ← [c0 + c1 · s]qi
return [m′]t

Modulus switching The modulus switching is a noise management technique allowing to
decrease the size of the noise of a level j > 0 ciphertext, as soon as it becomes too important
(e.g. ‖v‖∞ > bqj/2tc). Roughly, the idea is to drop one (or several) levels in the ladder of
moduli by scaling the ciphertext by qi/qj for i < j, which roughly scales down the noise by the
same factor. More precisely, let ct = (c0, c1) be a level j ∈ (0, L] ∩ Z encryption of a message
m and let i be an integer smaller than j, then set:

δ = (t[−c0/t]qj/qi, t[−c1/t]qj/qi )

In this way for l = 0, 1, δl ≡ 0 mod t and δl ≡ −cl mod qj/qi and we can compute:

ct′ =
qi
qj
· (c0 + δ0, c1 + δ1)

Since cl + δl ≡ 0 mod qj/qi, the division by qj/qi is exact. Now if we want ct′ = (c′0, c
′
1) to

be a level i encryption of m, we need to ensure [c′0 + c
′
1 · s]qi = [c0 + c1 · s]qj mod t. Let k be

such that:

[c0 + c1 · s]qj = c0 + c1 · s − qjk

and so we have:

c′0 + c
′
1 · s =

qi
qj

(c0 + c1 · s + δ0 + δ1 · s)

⇔ c′0 + c
′
1 · s − qik =

qi
qj

(
[c0 + c1 · s]qj + δ0 + δ1 · s

)
notice that for l = 0, 1 ‖δl ‖∞ <

tqj

2qi
, it implies:

‖δ0 + δ1 · s‖∞ ≤
tqj

2qi
(1 + δRBkey)
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therefore if ct = (c0, c1) is such that:




[c0 + c1 · s]qj




∞ <
qj

2
−

tqj

2qi
(1 + δRBkey) (1.2.3)

we have:



c
′
0 + c

′
1 · s − qik




∞ <
qi
2

and so we obtain what we want:

[c′0 + c
′
1 · s]qi = c

′
0 + c

′
1 · s − qik

=
qi
qj

([c0 + c1 · s]qj + δ0 + δ1 · s)

= [c0 + c1 · s]qj mod t (δl ≡ 0 mod t and qj ≡ qi mod t)

Furthermore the noise v′ of ct′ is given by:

v′ =
qi
qj
v + bscale (1.2.4)

with:
‖bscale‖∞ =







qi
tqj

(δ0 + δ1 · s)





∞
≤

1 + δRBkey

2

Therefore when a level i ciphertext satisfies inequality (1.2.3), one is able to reduce the noise
of this ciphertext by converting it to a level i < j. In particular, once a ciphertext reaches
level 0, this method cannot be applied anymore.

Algorithm 4 Modulus Switching BGV
Require: ciphertext ct = ((c0, c1), i) encrypted at level j > 0 satisfying equation (1.2.3), a

level i < j and the public parameters paramsBGV.
Ensure: ciphertext ct′ = ((c′0, c

′
1), i) encrypting the same message than ct at level i

function Mod-SwitchBGV(ct, j, paramsBGV)
δ ← (t[−c0/t]qj/qi, t[−c1/t]qj/qi )

ct′ ←
(( [

qi
qj

(c0 + δ0)
]

qi
,

[
qi
qj

(c1 + δ1)
]

qi

)
, j

)
return ct′

Addition In the case where ct is encrypted at level i and ct′ at level j > i, then one starts
by applying modulus switching to ct from level j to level i. Once both at same level i, adding
the two ciphertexts, which encrypt m and m′ respectively, leads to:

c0 + c
′
0 + (c1 + c′1) · s = c0 + c1 · s + c′0 + c

′
1 · s ≡ [m]t + [m

′]t + t(v + v′) mod qi

≡ [m +m′]t + t(v + v′ + u) mod qi
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where [m]t + [m
′]t = [m ·m′]t + u with ‖u‖∞ ≤ 1. This means that:

ctadd =
(
[c0 + c

′
0]qi, [[c1 + c

′
1]qi ]

)
is a level i encryption of m +m′ and its noise is roughly the sum of the noises of ct and ct′:

vadd = v + v
′ + u.

of norm bounded by:
‖vadd‖∞ ≤ ‖v‖∞ + ‖v‖∞ + 1. (1.2.5)

Algorithm 5 Addition BGV
Require: ciphertexts ct = ((c0, c1), i) and ct′ = ((c′0, c

′
1), j) encrypting messages m and m′

respectively and the public parameters paramsBGV.
Ensure: ciphertext ctadd encrypting m +m′ at level k = min(i, j).
function AddBGV(ct, ct′, paramsBGV)

if i , j then
if i < j then

c̃t′ ←Mod-SwitchBGV(ct′, i, paramsBGV)
c̃t← ct

else
c̃t←Mod-SwitchBGV(ct, j, paramsBGV)
c̃t′ ← ct′

k ← min(i, j)
ctadd ← ([c̃0 + c̃0′]qk , [c̃1 + c̃1

′]qk , k)
return ctadd

Multiplication Similarly to the addition, we first need to convert the two ciphertexts to
the same level, let say i, by applying the modulus switching technique. Then multiplying the
two ciphertexts leads to:

c0 · c
′
0 + (c0 · c′1 + c1 · c

′
0) · s + c0 · c′0 · s

2 = (c0 + c1 · s) · (c′0 + c
′
1 · s)

≡ [m]t · [m
′]t + t([m]t · v

′ + v′ · [m′]t + tv · v′) mod qi

≡ [m ·m′]t + t([m]t · v
′ + v′ · [m′]t + tv · v′ + rm) mod qi

with [m]t · [m
′]t = [m ·m′]t + trm which implies that:

‖rm‖∞ =






[m]t · [m

′]t − [m ·m
′]t

t






∞
≤
δRt2 + 2t

4t
≤
δRt
4
+
1

2
<
δRt
2

(1.2.6)

This means that:

ctmult = ([c0 · c′0]qi, [c0 · c
′
1 + c1 · c

′
0]qi, [c1 · c

′
1]qi ) ∈ R

3
qi

(1.2.7)

32



1.2. Somewhat Homomorphic Encryption based on Ring-LWE

is a degree 2 ciphertext which encrypts m ·m′ and its noise is given by:

vmult = [m]t · v
′ + v′ · [m′]t + tv · v′ + rm

whose norm is bounded by:

‖vmult‖∞ <
δRt
2

(
‖v‖∞ + ‖v

′‖∞ + ‖v‖∞‖v
′‖∞ + 1

)
(1.2.8)

Algorithm 6 Multiplication BGV
Require: ciphertexts ct = ((c0, c1), i) and ct′ = ((c′0, c

′
1), j) encrypting messages m and m′

respectively and the public parameters paramsBGV.
Ensure: degree 2 ciphertext ctmult encrypting m ·m′ at level k = min(i, j).
function MultBGV(ct, ct′, paramsBGV)

if i , j then
if i < j then

c̃t′ ←Mod-SwitchBGV(ct′, i, paramsBGV)
c̃t← ct

else
c̃t←Mod-SwitchBGV(ct, j, paramsBGV)
c̃t′ ← ct′

k ← min(i, j)
ctmult ← ([c̃0 · c̃0′]qk , [c̃0 · c̃1

′ + c̃1 · c̃0
′]qk , [c̃1 · c̃1

′]qk , k)
return ctmult

Relinearization The drawback of the multiplication is the growth of the ciphertext’s degree
in the same way as in polynomials. Therefore after several multiplications the complexity in
terms of time and memory for further operations is considerably increased. In order to keep
the ciphertexts’ degree constant, one can use a relinearization technique, introduced in [BV11],
or sometimes called key switching when ciphertexts reach degree 2.

A degree 2 ciphertext ct = (c0, c1, c2) which encrypts a message m at level i, satisfies:

c0 + c1 · s + c2 · s
2 ≡ [m]t + tv mod qi

Essentially the idea would be to add c2 · s2 to c0 to get back a degree 1 ciphertext. Although
s2 cannot be published, it can be hidden in a kind of encryption under the public key pk. This
is exactly what is done in −−→rlk. However since s2 is encrypted with pk which is derived from s

it requires to use a circular security assumption, i.e. to assume that encrypting a secret key
with its corresponding public key remains safe. Hence by computing:

c̃t =
( [
c0 +

〈
Dω,qi (c2),

−−→
rlk0

〉]

qi
,

[
c1 +

〈
Dω,qi (c2),

−−→
rlk1

〉]

qi

)
∈ R2

qi
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we obtain a degree 1 encryption of m at level i, indeed:

c̃0 + c̃1s ≡ c0 +
〈
Dω,qi (c2),

−−→
rlk0

〉
+

(
c1 +

〈
Dω,qi (c2),

−−→
rlk1

〉)
· s mod qi

≡ c0 + c1 · s +
〈
Dω,qi (c2),

−−→
rlk0

〉
+

〈
Dω,qi (c2),

−−→
rlk1

〉
· s mod qi

≡ c0 + c1 · s +
〈
Dω,qi (c2),Pω,qi (s

2) + −→a · s + t−→e
〉
−

〈
Dω,qi (c2),−→a

〉
· s mod qi

≡ c0 + c1 · s + c2 · s
2 +

〈
Dω,qi (c2),−→a · s + t−→e

〉
−

〈
Dω,qi (c2),−→a

〉
· s mod qi

≡ c0 + c1 · s + c2 · s
2 + t

〈
Dω,qi (c2),−→e

〉
mod qi

≡ [m]t + t(v + brelin) mod qi

with a noise given by:
vrelin = v + brelin = v +

〈
Dω,qi (c2),−→e

〉
whose norm is bounded by:

‖vrelin‖∞ ≤ ‖v‖∞ + ‖brelin‖∞

≤ ‖v‖∞ +




〈
Dω,qi (c2),−→e

〉


∞

≤ ‖v‖∞ +

`ω,qi−1∑
j=0







[ ⌊ c2
ω j

⌋ ]

ω
·
−→e j





∞

≤ ‖v‖∞ +
δR`ω,qiωBerr

2
(1.2.9)

Remark 1.2.4. c2 is decomposed in radix ω because otherwise there would have been a
factor qi instead of `ω,qiω (' log qi) in the right term of (1.2.9). In which case the noise
caused by the relinearization would be potentially much bigger than the decryption bound
given in equation (1.2.2) which cannot be tolerated.

Algorithm 7 Relinearization BGV

Require: degree 2 ciphertext ct = ((c0, c1, c2), i), the relinearization key −−→rlk = (
−−→
rlk0,

−−→
rlk1)

and the public parameters paramsBGV.
Ensure: degree 1 ciphertext ct′ = ((c′0, c

′
1), i) encrypting the same message than ct.

function RelinearizationBGV(ct,
−−→
rlk, paramsBGV)

ct′ ←
(( [
c0 +

〈
Dω,qi (c2),

−−→
rlk0

〉]

qi
,

[
c1 +

〈
Dω,qi (c2),

−−→
rlk1

〉]

qi

)
, i
)

return ct′

Parameters selection As shown in equation (1.2.2), in order to correctly decrypt the noise
must remain smaller than bq0/2tc. The noise growth during additions is linear (eq. (1.2.15))
and thus quite slow. Hence, it is not necessary to perform a modulus switching technique after
each addition. However noise growth during multiplication is quadratic (eq. (1.2.8)), actually
it is even more important since each multiplication is followed by a relinearization. Therefore,
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to prevent the noise to blow up, it is necessary to run a modulus switching procedure at
the end of the multiplication plus relinearization procedures. In order to be able to evaluate
arithmetic circuits of multiplicative depth L, we must ensure that the noise, after being scaled
down by one level, at the end of the whole procedure remains smaller than the noise of the
input ciphertexts. Let us assume that the two level i ciphertexts in input of the multiplication
have a noise whose norm is bounded by V (V < bq0/2tc). By combining inequalities (1.2.8),
(1.2.9) and (1.2.4) we can show that the noise of the level i − 1 ciphertext at the end of the
three procedures has norm bounded by:

‖v̂‖∞ ≤
qi−1
qi

δRt
2

(
V2 + 2V + 1

)
+ ‖brelin‖∞ + ‖bscale‖∞

Therefore if the parameters are selected such that:




qi
qi−1

≥ δRtV for all 1 ≤ i ≤ L

2 + ‖brelin‖∞ + ‖bscale‖∞ ≤
V
2

(1.2.10)

we obtain:

‖v̂‖∞ ≤
1

2V

(
V2 + 2V + 1

)
+ ‖brelin‖∞ + ‖bscale‖∞

≤
V
2
+ 2 + ‖brelin‖∞ + ‖bscale‖∞

≤ V

which means that for a chain of L+1 moduli, we are able to evaluate circuits of multiplicative
depth L.

1.2.2 Fan-Vercauteren

The main drawback of schemes such as BGV is the quadratic growth of the noise during mul-
tiplication which requires the use of the modulus switching technique. In its seminal work
[Bra12], Brakerski introduced a new type of homomorphic schemes where the noise grows only
linearly during multiplication removing thereby the necessity of modulus switching. Therefore
all the computations require only a single modulus q by opposition to the chain of moduli
in BGV. This is achieved by placing the message in the “upper bits”, as opposed to the “lower
bits”, of the decryption equation (1.2.1). This more effective noise control mechanism makes
the scale-invariant schemes, as they are called, particularly interesting. In 2012, Fan and
Vercauteren [FV12] have adapted the scale-invariant scheme of Brakerski ([Bra12]) to the
Ring-LWE setting. We present their scheme (FV) in this section.

Like for BGV, one starts by selecting public parameters paramsFV according to the desired
security level and the targeted application. These parameters are: the cyclotomic index m,
the plaintext modulus t, a radix ω ≥ 2, the ciphertext modulus q � t and two probability
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distributions χkey and χerr on the ring R.

paramsFV = (m, t, ω, q, χkey, χerr )

Key generation. The secret key sk = s ∈ R is sampled randomly from the distribution
χkey. The public key pk = ([a ·s+e]q,−a) ∈ R2

q corresponds this time exactly to a Ring-LWE

sample associated to s and q (a
$
←− Uq and e

$
←− χerr). The relinearization key −−→rlk =

([Pω,q (s2) + −→a · s + −→e ]q,−−→a ) ∈ R`ω,qq × R
`ω,q
q is modified in the same way as the public key

(−→a ∈ R`ω,qq sampled from U`ω,q
q and −→e ∈ R`ω,qq sampled from χ

`ω,q
err ).

Algorithm 8 Key Generation FV
Require: the public parameters paramsFV.
Ensure: secret key sk, public key pk and relinearization key −−→rlk
function KeyGenFV(paramsFV)

s
$
←− χkey

sk← s

(a, e)
$
←− Uq × χerr

pk← ([a · s + e]q,−a)

(−→a,−→e )
$
←− U

`ω,q
q × χ

`ω,q
err

−−→
rlk←

( [
Pω,q (s2) + −→a · s + −→e

]
q
,−−→a

)
return (sk, pk,

−−→
rlk)

Encryption A message m ∈ Rt is encrypted under the public key pk in a ciphertext ct =
(c0, c1) ∈ R2

q as follows:

ct =
(
[∆[m]t + u · pk0 + e0]q, [u · pk1 + e1]q

)
with ∆ = bq/tc, u

$
←− χkey and e0, e1

$
←− χerr . Like for BGV, the noise contained in a ciphertext

ct = (c0, c1) is revealed once we evaluate ct on the secret key s:

c0 + c1 · s ≡ ∆[m]t + u · pk0 + e0 + (u · pk1 + e1) · s mod q

≡ ∆[m]t + v mod q (1.2.11)

with v = u · e + e1 · s + e0 the noise of a ciphertext “freshly” encrypted which has its norm
bounded by:

‖v‖∞ ≤ Berr (2δRBkey + 1) (1.2.12)

Decryption Once again evaluating a ciphertext ct = (c0, c1) ∈ R2
q on the secret key almost

reveals the message (cf. (1.2.11)). However this time one cannot simply retrieve the message
by taking the result modulo t. We first need to get rid of the factor ∆ by scaling the result
by t/q ' ∆−1 and rounding the result:
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Algorithm 9 Encryption FV
Require: message m ∈ Rt , public key pk = (pk0,pk1) and the public parameters paramsFV.
Ensure: ciphertext ct = (c0, c1) encrypting the message m
function EncFV(m, pk, paramsFV)

u
$
←− χkey

(e0, e1)
$
←− χ2err

return ct =
(
[∆[m]t + u · pk0 + e0]q , [u · pk1 + e1]q

)

⌊
t
q
[c0 + c1 · s]q

⌉
=

⌊
t
q

(
∆[m]t + v + qu

)⌉
for some u ∈ R

=

⌊
q − |q |t

q
[m]t +

t
q
v

⌉
+ tu

= [m]t +

⌊
tv − |q |t [m]t

q

⌉
+ tu

the last rounding will vanish if:







tv − |q |t [m]t

q






∞
<

1

2
⇔







v −
|q |t
t
[m]t






∞
<

q
2t

which is ensured as long as:

‖v‖∞ <
q
2t
−
|q |t
2
= Bdec

(
'
∆

2

)
(1.2.13)

Finally, if inequality (1.2.13) holds, one just has to take the result of the rounding modulo t
to get back the message:

[ ⌊
t
q
[c0 + c1 · s]q

⌉]

t

= [[m]t + tu]t = [m]t

As a consequence, to ensure correct decryption of fresh ciphertexts one needs to have:

Berr (2δRBkey + 1) < Bdec (1.2.14)

Algorithm 10 Decryption FV
Require: ciphertext ct = (c0, c1), secret key sk = s and the public parameters paramsFV.
Ensure: message [m]t (if equation (1.2.13) is satisfied).
function DecFV(ct, sk, paramsFV)

m′ ←

⌊
t
q
· [c0 + c1 · s]q

⌉

return [m′]t
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Addition The addition of ciphertexts ct and ct′ encryptingm andm′ respectively is done
exactly like in BGV:

c0 + c
′
0 + (c1 + c′1) · s ≡ ∆

(
[m]t + [m

′]t
)
+ v + v′ mod q

≡ ∆[m +m′]t + v + v
′(q − |q |t )u mod q

≡ ∆[m +m′]t + v + v
′ − |q |tu mod q

where [m]t + [m
′]t = [m ·m′]t + u with ‖u‖∞ ≤ 1, thus:

ctadd = ([c0 + c′0]q, [[c1 + c
′
1]q])

is an encryption of m +m′ and its noise is roughly the sum of the noises of ct and ct′:

vadd = v + v
′ + tu

of norm bounded by:
‖vadd‖∞ ≤ ‖v‖∞ + ‖v‖∞ + t (1.2.15)

Algorithm 11 Addition FV
Require: ciphertexts ct = (c0, c1) and ct′ = (c′0, c

′
1) encrypting messages m and m′ respec-

tively and the public parameters paramsFV.
Ensure: ciphertext ctadd encrypting m +m′.
function AddFV(ct, ct′, paramsFV)

ctadd ←
(
[c0 + c

′
0]q, [c1 + c

′
1]q

)
return ctadd

Multiplication Multiplying ciphertexts like in BGV would make appear a factor ∆2 together
with the message. Therefore to get back a valid ciphertext the product is scaled by t/q, which
roughly remove one factor ∆, and then rounded. Before starting, remark that any valid
ciphertext ct = (c0, c1) ∈ R2

q whose noise has norm smaller than Bdec (< ∆/2) satisfies:

c0 + c1 · s = ∆[m]t + v + qr for some r ∈ R

with:
‖r‖∞ =







c0 + c1 · s − ∆[m]t − v

q






∞
≤
δRBkey + 1

2
+ 1︸              ︷︷              ︸

‖rd ‖∞

(1.2.16)
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Thus:
(
ct · ct′

)
(s) = (c0 + c1 · s) · (c′0 + c

′
1 · s)

= (∆[m]t + v + qr) · (∆[m′]t + v′ + qr′)

= ∆2[m]t · [m
′]t + ∆

(
[m]t · v

′ + v · [m′]t
)
+ q

(
v · r′ + v′ · r

)
+ v · v′

+ q∆
(
[m]t · r

′ + [m′]t · r
)
+ q2r · r′

= ∆2
(
[m ·m′]t + trm

)
+ ∆

(
[m]t · v

′ + v · [m′]t
)
+ q

(
v · r′ + v′ · r

)
+ v · v′

+ q∆
(
[m]t · r

′ + [m′]t · r
)
+ q2r · r′

with rm like in (1.2.6). Then scaling by t/q and using t∆ = q − |q |t leads to:

t
q

(
ct · ct′

)
(s) = ∆[m ·m′]t +

(
[m]t · v

′ + v · [m′]t
)
+

t
q
v · v′ + t

(
v · r′ + v′ · r

)
+ tqr · r′

+ ∆t
(
[m]t · r

′ + [m′]t · r + rm
)
−
|q |t
q

(
∆[m]t · [m

′]t + [m]t · v
′ + v · [m′]t

)
Assuming the ciphertexts in input could decrypt correctly, i.e. have noise v, v’ smaller in
norm than Bdec and thus ∆/2, we can write v · v′ = [v]∆ · [v

′]∆ = [v · v′]∆ + ∆rv with:

‖rv ‖∞ ≤
δR ‖v‖∞‖v

′‖∞

∆
+
1

2
<
δR min{‖v‖∞, ‖v

′‖∞}

2
+
1

2

=⇒ 2‖rv ‖∞ < δR min{‖v‖∞, ‖v
′‖∞} + 1 =⇒ 2‖rv ‖∞ ≤ δR min{‖v‖∞, ‖v‖

′
∞} (1.2.17)

and we obtain:

t
q

(
ct · ct′

)
(s) = ∆[m ·m′]t +

(
[m]t · v

′ + v · [m′]t
)
+ t

(
v · r′ + v′ · r

)
+ (q − |q |t )

(
[m]t · r

′ + [m′]t · r + rm
)
+ rv + tqr · r′

+
t
q
[v · v′]∆ −

|q |t
q

(
∆[m]t · [m

′]t + [m]t · v
′ + v · [m′]t + rv

)
︸                                                                             ︷︷                                                                             ︸

rr

with:

‖rr ‖∞ <
1

q

(
∆t
2
+ |q |t

(
δR∆t2

4
+
δRt
2

(‖v‖∞ + ‖v′‖∞) + ‖rv ‖∞

))
<

1

2
+ |q |tδR

( t
4
+
1

2
+

1

4t

)
<

1

2
+ |q |tδRt

hence:
‖rr ‖∞ ≤ |q |tδRt (1.2.18)

The rounding procedure introduces an error ra ∈ Q[X ]/(Φm(X )) such that:

t
q

(ct · ct′)(s) =
⌊

t
q
c0 · c

′
0

⌉
+

⌊
t
q

(c0 · c′1 + c1 · c
′
0)

⌉
· s +

⌊
t
q
c1 · c

′
1

⌉
· s2 + ra
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which has its norm bounded by:

‖ra‖∞ ≤
1 + δRBkey + δ

2
R

B2
key

2
(1.2.19)

Now, by rounding the above expression and by considering its remainder modulo q we get:

⌊
t
q
c0 · c

′
0

⌉
+

⌊
t
q

(c0 · c′1 + c1 · c
′
0)

⌉
· s +

⌊
t
q
c1 · c

′
1

⌉
· s2 =

t
q

(ct · ct′)(s) − ra mod q

= ∆[m ·m′]t +
(
[m]t · v

′ + v · [m′]t
)
+ t

(
v · r′ + v′ · r

)
− |q |t

(
[m]t · r

′ + [m′]t · r + rm
)

+ rv + rr − ra mod q

So finally we obtain:
⌊

t
q
c0 · c

′
0

⌉
+

⌊
t
q

(c0 · c′1 + c1 · c
′
0)

⌉
· s +

⌊
t
q
c1 · c

′
1

⌉
· s2 = ∆[m ·m′]t + vmult mod q

which means that:

ĉt = *
,

[ ⌊
t
q
c0 · c

′
0

⌉]

q

,

[ ⌊
t
q

(c0 · c′1 + c1 · c
′
0)

⌉]

q

,

[ ⌊
t
q
c1 · c

′
1

⌉]

q

+
-

(1.2.20)

is a degree 2 ciphertext which encrypts m ·m′ and whose inherent noise is:

vmult =
(
[m]t · v

′ + v · [m′]t
)
+ t

(
v · r′ + v′ · r

)
− |q |t

(
[m]t · r

′ + [m′]t · r + rm
)
+ rv + rr − ra

by using the bounds (1.2.6), (1.2.16), (1.2.17), (1.2.18) and (1.2.19) we can show:

‖vmult‖∞ ≤ δRt
(
δRBkey

2
+
3

2

) (
‖v‖∞ + ‖v

′‖∞
)
+
δR min{‖v‖∞, ‖v

′‖∞}

2

+ |q |tδRt
(
δRBkey

2
+ 2

)
+
δ2
R

B2
key
+ δRBkey + 1

2
(1.2.21)

Algorithm 12 Multiplication FV
Require: ciphertexts ct = (c0, c1) and ct′ = (c′0, c

′
1) encrypting messages m and m′ respec-

tively and the public parameters paramsFV.
Ensure: degree 2 ciphertext ctmult encrypting m ·m′.
function MultFV(ct, ct′, paramsFV)

c̃t← (c0 · c′0 , c0 · c
′
1 + c1 · c

′
0 , c1 · c

′
1)

ctmult ← *
,

[ ⌊
t
q
c̃t0

⌉]

q

,

[ ⌊
t
q
c̃t1

⌉]

q

,

[ ⌊
t
q
c̃t2

⌉]

q

+
-

return ctmult
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Relinearization The relinearization step of FV is introduced for the same reasons than in
BGV and works exactly the same. By computing:

c̃t =
( [
c0 +

〈
Dω,q (c2),

−−→
rlk0

〉]

q
,

[
c1 +

〈
Dω,q (c2),

−−→
rlk1

〉]

q

)
∈ R2

q

we obtain a degree 1 ciphertext, which encrypts the same message than ct but with an
additional term brelin in the noise:

ṽ = v + brelin

whose norm is smaller than:
‖brelin‖∞ ≤

δR`ω,qiωBerr

2

Algorithm 13 Relinearization FV

Require: degree 2 ciphertext ct = (c0, c1, c2), the relinearization key −−→rlk = (
−−→
rlk0,

−−→
rlk1) and

the public parameters paramsFV.
Ensure: degree 1 ciphertext ct′ = (c′0, c

′
1) encrypting the same message than ct.

function RelinearizationFV(ct,
−−→
rlk, paramsFV)

ct′ ←
( [
c0 +

〈
Dω,qi (c2),

−−→
rlk0

〉]

q
,

[
c1 +

〈
Dω,qi (c2),

−−→
rlk1

〉]

q

)
return ct′

Multiplicative depth Contrary to BGV which is built such that the multiplicative depth
is the length of the moduli chain minus one, the multiplicative depth in FV can not be read
directly from the parameters. However we can compute it by using the same method than
[BLLN13]. Let us assume that both ciphertexts, in input of the multiplication procedure,
have a noise smaller than V in norm. In the case of fresh ciphertext V is smaller than
Vinit = Berr (2δRBkey + 1). From the bounds on the noise given above we can deduce that the
size of the noise after one multiplication and relinearization is bounded by C1V + C2 with:



C1 = δRt
(
δRBkey + 3

)
+
δR
2

C2 = |q |tδRt
(
δRBkey

2
+ 2

)
+
δ2
R

B2
key
+ δRBkey + 1

2
+
δR`ω,qiωBerr

2

Therefore after L multiplications the noise is bounded by:

CL
1 V + C2

L−1∑
i=0

Ci
1 = CL

1 V + C2

CL
1 − 1

C1 − 1

Thus the theoretical multiplicative depth corresponds to the biggest integer Lmax such that:

CLmax

1 Vinit + C2

CLmax

1 − 1

C1 − 1
< Bdec (1.2.22)
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1.3 Classical arithmetic in cyclotomic rings

In order to use in practice Ring-LWE based cryptography, one needs to implement basic
operations for the arithmetic on cyclotomic rings whose elements can be seen as polynomials
of degree smaller than n with coefficients taken modulo q. However to be able to tolerate
large noise growth, q is usually chosen large (several hundreds of bits). Besides the size of q,
the rank of the associated lattice, which corresponds to n, has to be high enough to meet the
security requirements (usually between 210 and 215). This section aims to present the different
tools which are used in practice to get an efficient arithmetic on the coefficients and on the
polynomials with such parameters. We end our exposition by showing how to encode several
messages into a single one while processing them independently through a single ciphertext.
All these tools rely on the Chinese Remainder Theorem (CRT) that we recall below for the
sake of completeness. We state it in the case of commutative rings which have a neutral
element for the multiplication 1 , 0.

Definition 1.3.1. Let R be a commutative ring, two ideals I and J of R are said to be coprime
if there exists x ∈ I and y ∈ J such that x + y = 1.

Definition 1.3.2. Let R be a commutative ring and I and J two ideals of R, the product I · J
of the ideals I and J is the ideal of R formed by the set of all the finite sums of elements of
the form xy for x ∈ I and y ∈ J.

Theorem 1.3.3 ([DF04] section 7.6). Let I1, . . . , Ik be k ideals of R that are pairwise coprime
and let I = I1 · I2 · · · Ik be their product, then we have the following ring isomorphism:

CRT :
������

R/I
�
−→ R/I1 × · · · × R/Ik

x mod I 7→ (x mod I1, . . . , x mod Ik )

Remark 1.3.4. This ring isomorphism allows to carry the ring operations on the residues
modulo each “small” ideal Ii independently and thus in parallel.

1.3.1 On coefficients: Residue Number System

In order to reach an efficient arithmetic in a polynomial ring, the first thing to do is to get an
efficient one in the ring of the coefficients. In our case the coefficients belong to Z/qZ with q
an integer of possibly several hundreds of bits without any restriction on its shape (Remark
1.1.38). Asymptotic complexities of operations modulo an integer q for naive algorithms are
given in Table 1, for further details on these algorithms one can refer to [MVO96].

As illustrated in Table 1, the bottleneck of modular arithmetic is multiplication (and in-
version) whose time complexity is quadratic in the size of q. Therefore for evaluating the
cost of an algorithm we usually only consider the number of multiplications/inversions and
do not take into account the additions/subtraction’s whose cost is negligible compared to
multiplications.
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Operation Complexity
Modular addition a + b mod q O(log2 q)
Modular subtraction a − b mod q O(log2 q)
Modular multiplication ab mod q O((log2 q)2)
Modular inversion (when possible) a−1 mod q O((log2 q)2)

Table 1: Asymptotic complexity of basic operations in Z/qZ

Although dividing the size of q by a constant k does not affect the asymptotic complexity
of the operations, it brings an important gain in practice. Hence if some application requires a
large modulus q, one has an incentive to decompose it in a product of k smaller prime moduli
and use the representation given via the CRT a.k.a Residue Number System (RNS) ([Gar59]).
Unless stated otherwise, from now we assume q = q1 . . . qk to be a product of k prime moduli
of same size. Hence the polynomials of Rq are represented through k polynomials of same
degree but with smaller coefficients thanks to the ring isomorphism given by the CRT:

RN Sq=q1...qk :
������

Rq
�
−→ Rq1 × · · · × Rqk

a 7→ (a mod q1, . . . ,a mod qk )
(1.3.1)

Remark 1.3.5. The attentive reader should have noticed that to get the isomorphism the
moduli qi only need to be pairwise coprime and not prime. However, for reasons that will be
explained in the next section they are chosen prime.

RNS representation turns out to be very efficient to compute sums and products to the
point where it is commonly used in implementation of RSA ([BI04]) or for elliptic curve
cryptography ([BDEM06]). Furthermore it offers a competitive alternative for issues con-
cerning material implementations with low power consumption [FP97]. However despite its
computational efficiency the RNS representation suffers from the drawbacks of non-positional
representation systems which limit its practicality. Indeed unlike positional representation
such as the binary representation, non-positional representations do not allow to perform any
comparison between numbers. Therefore operations like non-exact divisions or roundings re-
quire to invert the isomorphism (1.3.1) or at least to convert the residues to an other positional
representation like Mix Radix System ([ST67]).

Definition 1.3.6. An (RNS) basis is a finite set of integers B = {b1, . . . , bl } pairwise coprime
and B = b1 · · · bl is called the (RNS) modulus of the basis. The set of residues of an element
a ∈ Rq in basis B is denoted aB.

In the general case, RNS can be used to represent integers and not necessary modular
integers. This only requires to use a basis large enough to represent our elements, i.e. such
that the modulus of the basis is larger than the biggest element we may need to represent.
This condition is needed to avoid an eventual overflow of the basis capacity which would
result in a reduction by the modulus of the basis. However since in our case we only want
to represent integers modulo q, we do not have to fear an eventual reduction modulo q and

43



Chapter 1. Preliminaries

we can use {q1, . . . , qk } as RNS basis. Throughout the rest of this thesis depending on the
context, the letter q may refer either to the product q1 · · · qk or the RNS basis {q1, . . . , qk }.

Proposition 1.3.7. Let a ∈ Rq be represented by its residues aq in base q, then the poly-
nomial of R defined by:

PartialInv(aq) =
k∑
i=1

�����
|a|qi

qi
q

�����qi
q
qi

(1.3.2)

is congruent to a modulo q and has its coefficients belonging to [0, kq) ∩ Z.

Proof. One can verify that |PartialInv(aq) |qi = |a|qi for every modulus qi thus it is congruent
to a modulo q. Its coefficients are positive by definition and by applying the triangular
inequality to upper-bound them we obtain the result. �

Remark 1.3.8. The values |qi/q |qi can be precomputed for every qi so that the partial
inversion requires k multiplications for each coefficients thus kn multiplications in total.

By computing PartialInv one does not necessary obtain the polynomial a ∈ Rq but one
of its representatives whose coefficients are not reduced modulo q. In order to get back a, the
result has to be reduced modulo q:

a = PartialInv(aq) − q · α(aq) (1.3.3)

with α(aq) =
⌊
PartialInv(aq)

q

⌋
which has its coefficients in [0, k) ∩ Z (eq. 1.3.2).

As illustrated in Chapter 2, some computations in RNS require to change the RNS basis
which means to convert the residues of a ∈ Rq, given in basis q, to an other basis B =
{b1, . . . , bl } which can be achieved by computing:

FastBconv(a, q,B) =
(
PartialInv(aq) mod bi

)
b∈B

. (1.3.4)

Even though this computation is quiet efficient (kln modular multiplications) it does not allow
to obtain exactly the residues of |a|q in base B but those of |a|q + α(aq)q with α(aq) ∈ [0, k)
(c.f. eq. (1.3.3)). Getting an exact conversion would require to compute α(aq) with fix or
floating point arithmetic at first glance and thus cannot be achieved directly in RNS. In
[SK89], Shenoy and Kumaresan proposed a method to retrieve α(aq) directly in RNS by
introducing an extra modulus in the initial basis. More precisely, let B = {b1, . . . , bk } and B ′

be two RNS bases used to represent elements of R and bsk a modulus coprime to the product
B = b1 · · · bk . Let us assume that we want to convert exactly the residues of a ∈ R from basis
B to the basis B ′, if we know the residue of a modulo bsk before the conversion, i.e. if we have
the residues of a in Bsk = B ∪ {bsk} then we can compute |α(aB ) |bsk by inverting equation
(1.3.3):

|α(aB ) |bsk =
���B
−1(PartialInv(aB ) − |a|bsk )���bsk (1.3.5)
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Since α(aB ) ∈ [0, k)∩Z, if we choose bsk coprime to B and such that bsk ≥ k then |α(aB ) |bsk =
α(aB ) which means that we are able to correct the error and perform an exact conversion
from B to B ′ at the price of some extra-computations.

1.3.2 On polynomials: Number Theoretic Transform

Multiplication of elements in Rq corresponds to the multiplication of two polynomials of
degree n− 1 followed by a reduction modulo Φm. Since n is large in practice, these operations
are the major bottleneck for the efficiency of Ring-LWE based schemes. Several algorithms
to perform a polynomial product exist, the number of multiplications asymptotically required
by the most important of them is given in Table 2.

Algorithm Complexity
Naive O(n2)
Karatsuba O(nlog2 (3)) (≈ n1.585)
Toom-Cook O(nlog3 (5)) (≈ n1.465)
Fast Fourier Transform (FFT) O(n log2(n))

Table 2: Number of multiplications modulo q asymptotically required for performing a product
of two degree n polynomials with classical algorithms

As illustrated in Table 2, FFT is the most efficient asymptotically and thus is usually
the one used for Ring-LWE arithmetic. We would like to highlight that the name FFT
usually refers to the case where polynomials have real or complex coefficients, but when
the coefficients belong to a finite field the algorithm is called Number Theoretic Transform
(NTT). The principle of the algorithm is to evaluate the input polynomials on the n-roots
of unity, perform the product coefficient-wise and interpolate the result. Since multiplication
coefficient-wise requires a linear number of multiplications, the bottleneck of this procedure is
the evaluation/interpolation of the polynomials. Evaluation of a polynomial of degree n−1 can
be done optimally in the general case with n multiplications using Horner’s method. Hence
an evaluation on n different points, required to interpolate a degree n − 1 polynomial, would
require n2 multiplications with a naive approach. However by using symmetries of the n-roots
of unity, Cooley and Tukey showed that we could evaluate/interpolate a polynomial on the
n-roots of unity, with O(n log2(n)) multiplications asymptotically ([CT65]). This algorithm,
known as Fast Fourier Transform, is optimal for the 2d-roots of unity (d ≥ 0), therefore when
n − 1 is not a power of two the coefficients of input polynomials are usually padded with
zeroes up to the next power of two. Let N2 be the function defined over N such that for any
n ∈ N N2(n) is the smallest power of two greater than or equal to n.

N2 :
������

N → N

n 7→ 2 dlog2 (n)e (1.3.6)

In our context elements of Rq have degree n − 1, thus the product of two elements, before
the reduction modulo Φm(X ), have degree 2n − 2. As a consequence NTT for multiplications
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of elements in Rq must be of size N = N2(2n). The last thing to ensure to be able to use the
NTT algorithm is the existence of the N-roots of unity in the ambient space.

Lemma 1.3.9. Let q be a prime number, then Fq = Z/qZ has an element of order N ≥ 1 if
and only if q = 1 mod N .

Proof. First notice that the multiplicative group of Fq is Fq − {0} which has order q − 1 and
is cyclic. The direct implication is a consequence of Lagrange’s theorem, let ζ be an element
of order m in F∗q then m divides the order of the group q − 1. For the second implication,
consider a generator g of F×q, since N | q − 1 then ψ = g

q−1
N has order N . �

Remark 1.3.10. In our case the arithmetic on Rq is decomposed on k smaller arithmetics
over the Rqi through the RNS representation of the coefficients (c.f. section 1.3.1). Therefore,
to be able to use the NTT algorithm on each Rqi we need to choose all the moduli qi prime
and congruent to 1 modulo N , with N = N2(2n).

Throughout the rest of this section q will denote a prime congruent to 1 modulo N =
N2(2n) and ψ ∈ Fq a primitive N-root of unity. The NTT algorithm can be seen as the
evaluation of the ring isomorphism given by the CRT:

NTTq,N,ψ :
������

Fq[X ]/(XN − 1)
�
−→ Fq[X ]/(X − 1) × · · · × Fq[X ]/(X − ψN−1)

a 7→
(
a(1) , a(ψ) , . . . , a(ψN−1)

) (1.3.7)

Once (1.3.7) is applied we obtain the NTT representation of the polynomials and their
product can be performed coordinate-wise thus the time-complexity of the polynomial arith-
metic becomes linear in N . Intensive efforts have been made to improve the efficiency of the
NTT, either by saving some reductions modulo the prime q [Har14], or by using moduli with
special shape [LN16] to allow lazy reductions. When the context is clear, we will denote an
NTT transformation of degree N by NTTN instead of NTTq,N,ψ. Once the inputs are in NTT
representation, one can compute the NTT representation of the product c = a × b of degree
2n − 2 through:

NTTN (c) = NTTN (a) � NTTN (b) (1.3.8)

where � denotes the component-wise multiplication in Fq. To obtain the value of c = a× b ∈
Rq, a second step is needed, which consists of reducing the result of (1.3.8) modulo Φm(X ).
Further details on this reduction step are given in chapter 3

Before ending this section we would like to draw the reader’s attention on the special case
occurring when the index m of the cyclotomic is a power of two. In this case n = m/2, N = m
and Φm(X ) = Xn + 1 which means that the roots of Φm are the n-roots of −1.

Lemma 1.3.11. Let m ≥ 2 an even integer, n = m/2 and q a prime such that q = 1 mod m.
Let ψ ∈ Fq be an element of order m, in particular ψn = −1 mod q, then Ψ = ψ2 is a primitive
n-root of unity and {Ψiψ}n−1i=0 is the set of the n-roots of −1 over Fq.
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Proof. ψ is of order m thus ψ2 is of order n = m/2 by definition. It is immediate to show that
(Ψiψ)n = −1 mod q for every i ∈ [0, n) ∩ Z. Hence we have n roots of Xn + 1 over Fq which is
a field thus we have all of them. �

Thus when m is a power of two and q and ψ ∈ Fq are like in Lemma 1.3.11 we can evaluate
a polynomial a ∈ Rq directly on the roots of Φm by applying an NTT of size n = N/2 on
fψ (a) =

∑n−1
i=0 aiψiX i ∈ Rq. In this case the product of two polynomials is done directly

modulo Xn +1 = Φm and we can get back the result c = a×b ∈ Rq by just inverting the NTT
representation and fψ through:

c = fψ−1
(
NTT−1

N/2,ψ2

(
NTTN/2,ψ2 ( fψ (a)) � NTTN/2,ψ2 ( fψ (b))

))
(1.3.9)

This technique introduced in [LMPR08], and known as negative-wrapped convolution, al-
lows to perform a product in Rq with NTT of size n = N/2 instead of N and without requiring
any polynomial reduction. The cheap pre- (resp post-) processing required for the evaluations
of fψ (resp. f −1ψ = fψ−1) can be avoided by merging the powers of ψ (resp. ψ−1) with powers
of Ψ = ψ2 (resp. Ψ−1) inside the NTT [RVM+14] (resp. inverse NTT [POG15]).

We end this section by summarizing in Figure 3 the different representations used to
perform computations in Rq with q = q1 · · · qk a product of k prime moduli of same size all
congruent to 1 modulo N = N2(2n).

Classical

Rq = (Z/qZ)[X ]/(Φm(X ))

Simple CRT (RNS)

Fq1 [X ]/(Φm(X )) × · · · × Fqk [X ]/(Φm(X ))

Double CRT (RNS + NTT)

Fq1 [X ]/(X − 1) × · · · × Fqk [X ]/(X − 1)
...

...
...

...
...

...

Fq1 [X ]/(X − ψN−1
1 ) × · · · × Fqk [X ]/(X − ψN−1

k
)

RNSq=q1 · · ·qk RNS−1q=q1 · · ·qk

NTTq1,N,ψ1

NTT−1q1,N,ψ1

(+reduction)
· · · NTTqk,N,ψk

NTT−1qk,N,ψk

(+reduction)

O
( nk

lo
g
2
(q

)) O (nk
lo
g
2(q) )

O

( n
lo
g

n
lo
g
2
(q

)
k

) O (n
log

n
log

2(q)
k

)

Figure 3: Summary of the different representations used for the arithmetic of Rq
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1.3.3 Splitting cyclotomic polynomials for homomorphic encryption

In practice, the efficiency of Ring-LWE based homomorphic encryption schemes is strongly
related to the polynomial arithmetic in the ring Rq. Choosing m as a power of 2 allows to use
NTTs with the negative wrapped convolution technique and thus to perform one multiplication
in Rq through the operations in (1.3.8) with half-sized NTTs, resulting in a very efficient
arithmetic. However, even in this case the efficiency of the schemes remains lowly satisfactory
and hardly practical. In [SV14], the authors found a way to amortize the cost of these
operations by encoding several messages in a single plaintext element, with a technique called
batching. The idea is to choose a prime plaintext modulus t such that, Φm splits modulo t into
` distinct irreducible polynomials F1, ...,F`, thus a message in the original plaintext space
can be split through the CRT into ` smaller plaintext spaces.

Proposition 1.3.12. Let t be a prime and m a positive integer not divisible by t. The m-th
cyclotomic polynomial Φm of degree n = ϕ(m) splits modulo t into ` = n/d irreducible factors
of same degree d, where d is the order of t modulo m.

Proof. Let ζ be a root of Φm in a splitting field K of Φm over Ft . Since ζ is a root of Φm, it
has multiplicative order m in K×. Let d be the degree of the minimal polynomial of ζ over
Ft , then d is the smallest integer such that ζ td = 1, i.e. d is the smallest integer such that
m | td − 1. �

Hence when the conditions of Proposition 1.3.3 are fulfilled,Φm splits modulo t in F1, . . . ,F`

and the CRT gives us the ring isomorphism:

CRTt
������

Rt
�
−→ Ft [X ]/(F1) × · · · × Ft [X ]/(F` )

a 7→ (a mod F1, . . . ,a mod F` )
(1.3.10)

In this way, ` “small” plaintexts m1, ..., m` can be compactly represented as a single
polynomial m ∈ Rt . Afterwards m is encrypted and homomorphic operations applied to this
ciphertext operate on each slot individually. This technique is particularly interesting when
the messages to encode are small. For instance when evaluating Boolean circuits, i.e. with
t = 2, the bit to encrypt is encoded on the degree zero coefficient of the message, thus only
one coefficient (over n) would be used while with batching one can pack `-bits per plaintext.

Remark 1.3.13. When m is a power of two, since Φm(X ) = Xm/2 + 1 ≡ (X + 1)m/2 mod 2,
this technique cannot be used. Thus the efficient arithmetic associated with power-of-two
cyclotomics has limited applicability thus for practical application one may considered non-
power of two cyclotomics (see for instance: [GHS12b], [HS18], [BJ18], [CGH+18], ...).

With batching, the ` slots are processed independently in their ambient space, however
for some computations it can be useful to permute the slots directly through the ciphertexts.
In [GHS12a], Gentry et al. have shown how to achieve this by using the action of the Galois
group of Km = Q(ζm) over Q on the cyclotomic ring R ( Km. We give an overview of their
method in the following.
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Let t and m be like in Proposition 1.3.3 and let G = Gal(Km/Q). We know that (Z/mZ)×

is isomorphic to G through the map i 7→ (X 7→ X i) (theorem 1.1.20). It is noteworthy to
notice that elements of the Galois group σ commutes with CRTt i.e. for a ∈ Rt we have
σ(CRTt (a)) = CRTt (σ(a)) = (σ(a1), . . . , σ(a` )). Moreover since t generates a subgroup of
order d in (Z/mZ)×, G contains a subgroup of order d generated by X 7→ X t .

Proposition 1.3.14 ([DF04], section 13.5). Let F be a field of characteristic t, the map:

Ft :
������

F → F

x 7→ xt
(1.3.11)

is an injective field morphism called the Frobenius endomorphism of F, also simply called the
Frobenius of F. When F is finite it is an automorphism of F over its prime field.

Proposition 1.3.15 ([DF04], section 14.1). Let t a prime and d ≥ 1 an integer. The Galois
group of Ftd over Ft is cyclic of order d and is generated by the Frobenius endomorphism Ft .

In our case, X 7→ X t induces, through CRTt , the Frobenius automorphism over each field
Ft [X ]/(Fi (X )) � Ftd for all the factors Fi of Φm and generates their Galois group over Ft . In
particular the group F =

〈
X 7→ X t〉, seen as Galois group, acts transitively on the roots of

the factors Fi. Thus, by considering the action of the subgroup F of G over all the roots of
Φm, we are able to partition them into ` disjoint subset of cardinality d, where each subset
corresponds to the roots of a factor Fi.

Since G acts transitively on all the roots of Φm, the quotient group H = G/F acts tran-
sitively on the set X1, . . . , X` where each Xi is a representative of the roots of the factor Fi

of Φm modulo t. Since defining a representative Xi essentially means fixing a representation
of the field Ft [X ]/(Fi (X )), the elements ofH act directly as permutations of the plaintext slots.

Now let us consider ` messages m1, . . . ,m` encoded in m ∈ Rt which is encrypted, with
the FV scheme for instance (can be applied to BGV in the same manner), in a ciphertext
ct = (c0, c1) ∈ R2

q with inherent noise v i.e. such that:

c0 + c1 · s = ∆[m]t + v

where s ∈ R is the secret key. For σi : X 7→ X i ∈ G and a ∈ Rq we denote a(i) = σi (a).
Therefore if we apply an element σi ∈ G to this equation we obtain:

c(i)
0 + c

(i)
1 · s

(i) = ∆[m(i)]t + v
(i) mod q

which means that ct(i) = (c(i)
0 , c

(i)
1 ) is an encryption ofm(i), i.e. m with its slots permuted

by σi (modulo the action of the Frobenius), and which requires the secret key s(i) to be
decrypted. In order to be able to decrypt ct(i) with the original key s we need to apply
a key-switching method whose principle is similar to the relinearization procedure. If the
entity which performs the computations on the ciphertexts was given an “encryption” of s(i)

as evaluation key:
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−−→
evki =

( [
Pω,q (s(i)) + −→a i · s +

−→e i

]
q
,−−→a i

)

with −→a i
$
←− U

`ω,q
q and −→e i

$
←− χ

`ω,q
err similarly to the relinearization key. Then the ciphertext:

ct′ =
( [
c(i)
0 +

〈
Dω,q (c(i)

1 ),
−−→
evki0

〉]

q
,

[〈
Dω,q (c(i)

1 ),
−−→
evki1

〉]

q

)
can be decrypted using the key s. Indeed one can verify that:

c′0 + c
′
1 · s = ∆[m

(i)]t + v
(i) +

〈
Dω,q (c(i)

1 ),−→e i

〉
mod q

Therefore the key-switching procedure adds a noise vswitch =
〈
Dω,q (c(i)

1 ),−→e i

〉
of same size

than the one of the relinearization procedure.

‖vswitch ‖∞ ≤
δR`ω,qiωBerr

2

Remark 1.3.16. Making the evaluation key, or even the relinearization key, public implies
to use a circular security assumption i.e. to assume that encrypting a secret key under its
corresponding public key is secure.

A last thing to notice is that the action of G on a ciphertext applies to the encrypted
message and the noise. Therefore it would be interesting to know by how much it increases
the initial noise. The easiest way to get a general bound on this growth is to consider the
infinite norm of the elements through the canonical embedding like the authors of [GHS12a]
do. For a ∈ R and ζm a primitive m-th root of unity it is defined as:

‖a‖can∞ = max
1≤k<m
k∧m=1

(
a(ζkm)

)
= ‖σ(a)‖∞ (1.3.12)

where σ denotes the canonical embedding map. Indeed since elements of G permute
the roots of Φm, the canonical norm is invariant under the action of G. If we consider the
invertible Vandermonde matrix CRTm ∈ Mn,n(C) given by the n = ϕ(m) primitive m-th roots
of unity

(
ζm,1, . . . , ζm,n

)
:

CRTm =

*.......
,

1 ζm,1 · · · ζn−1m,1

1 ζm,2 · · · ζn−1m,2
...

...
...

1 ζm,n · · · ζn−1m,n

+///////
-

(1.3.13)
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we can write for any a ∈ Km:

‖a‖∞ =



CRT

−1
m σ(a)


∞

≤



CRT

−1
m




∞ ‖σ(a)‖∞

≤



CRT

−1
m




∞ ‖a‖
can
∞

≤ cm‖a‖can∞ (1.3.14)

where cm = ‖CRT−1m ‖∞, with ‖A‖∞ = max
1≤i≤n

{
n∑
j=1
|ai, j |

}
for a square matrix A ∈ Mn,n(C). The

interested reader can find details about the constant cm in [DPSZ12], we just would like to
mention that it can grow super-polynomially with m and that when m is a power-of-two it is
equal to 1. Thus going back to key-switching, we can write:




v
(i)


∞ ≤ cm‖v(i) ‖can∞ = cm‖v‖can∞

Thus if the noise v of a ciphertext ct is such that:

cm‖v‖can∞ < Bdec − δR`ω,qiωBerr/2 (1.3.15)

then the ciphertext ct(i) = (c(i)
0 , c

(i)
1 ) will decrypt correctly after the key-switching procedure.

51





Chapter 2

Full RNS scaled-invariant schemes

Contents
2.1 Towards a full RNS decryption . . . . . . . . . . . . . . . . . . . . 55

2.1.1 Fast RNS base conversion . . . . . . . . . . . . . . . . . . . . . . . . 55

2.1.2 Approximate RNS rounding . . . . . . . . . . . . . . . . . . . . . . . 55

2.1.3 Correcting the approximate RNS rounding . . . . . . . . . . . . . . 57

2.1.4 A full RNS variant of FV decryption . . . . . . . . . . . . . . . . . . 57

2.1.5 Staying in RNS is asymptotically better . . . . . . . . . . . . . . . . 58

2.2 Towards a full RNS homomorphic multiplication . . . . . . . . . 61

2.2.1 Auxiliary RNS bases . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.2.2 Adapting the scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.3 Going back to q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.3 Last step: the relinearization . . . . . . . . . . . . . . . . . . . . . 67

2.3.1 Adapting the original procedure . . . . . . . . . . . . . . . . . . . . 67

2.3.2 Combining two levels of decomposition . . . . . . . . . . . . . . . . . 70

2.3.3 Reducing the size of the relinearization key rlkRNS . . . . . . . . . . 70

2.3.4 About computational complexity . . . . . . . . . . . . . . . . . . . . 72

2.4 Software implementation . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4.1 Concrete examples of parameter settings . . . . . . . . . . . . . . . . 74

2.4.2 Influence of b̃ on the noise growth . . . . . . . . . . . . . . . . . . . 75

2.4.3 Some remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

53



Chapter 2. Full RNS scaled-invariant schemes

This work focuses on practical improvement of scaled-invariant homomorphic schemes.
The improvements will be highlighted on the FV scheme although other schemes like Yet
Another Somewhat Homomorphic Encryption’ (YASHE’) [BLLN13], despite the fact that its
security has been called into question recently [ABD16], could also benefit from this work. As
mentioned in section 1.3.1, choosing the ciphertexts modulus q as a product of small moduli
fitting with practical hardware requirements (machine word, etc), allows to use RNS represen-
tation for the coefficients and thus avoid the need of multi-precision arithmetic in almost the
whole scheme. However, since RNS is hardly compatible with several operations: non-exact
division, rounding and decomposition in basis ω occurring in decryption, multiplication and
relinearization, it is required to switch to a positional system at some point for performing
these operations.

In this work we show how to efficiently avoid any switch between RNS and a positional
system for performing these operations. Therefore we avoid the costs associated to the con-
versions (cf. Figure 3) together with costly multi-precision arithmetic. We present our full
RNS variant of FV and analyze the new bounds on noise growth, finally a software imple-
mentation highlights the practical benefits of our variant. It is important to note that this
work is related to the arithmetic at the coefficient level, thus the security features of the
original scheme are not modified. For the same reasons, we will not complicate futilely our
exposition with polynomial arithmetic in the general case and will only consider the particular
case of power-of-two cyclotomics R = Z[X ]/(Xn + 1) with NTT using the negative wrapped
convolution technique (cf. section 1.3.2).

Preliminaries and notations. The ciphertexts modulus q is chosen as a product of k
prime moduli q1 · · · qk . Ciphertexts will be managed as polynomials (of degree 1) in R[Y ].
For ct ∈ R[Y ], we note ‖ct‖∞ = maxi ‖ct[i]‖∞, ct[i] being the coefficient of degree i in Y .
The multiplicative law of R[Y ] is denoted by ?. In the case of power-of-two cyclotomics the
expansion factor δR = sup{‖f · g‖∞/‖f ‖∞ · ‖g‖∞ : (f, g) ∈ (R \ {0})2} is equal to n. For
our subsequent discussions on decryption and homomorphic multiplication, we denote the
“Division and Rounding” in R[Y ], depending on parameters t and q, by:

DRt,q : ct =
deg(ct)∑

j=0

ct[ j]Y j ∈ R[Y ] 7→
deg(ct)∑

j=0

⌊
t
q
ct[ j]

⌉
Y j ∈ R[Y ]. (2.0.1)

The letter ν will denote the size of a machine word. Therefore, from now on, any modulus
b (should it belong to basis q or any other RNS basis) is assumed to verify b < 2ν. In RNS,
an “inner modular multiplication” (IMM) in a small ring like Z/bZ is a core operation. If
EM stands for an elementary multiplication of two words, in practice an IMM is costlier than
an EM. But it can be well controlled. For instance, the moduli provided in NFLlib library
[AMBG+16] (cf. Sect. 2.4) enable a modular reduction which reduces to one EM followed by a
multiplication modulo 2ν. Furthermore, the cost of an inner reduction can be limited by using
lazy reduction, e.g. during RNS base conversions used throughout this paper. For the sake of
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simplicity, NTT and invNTT will denote the Number Theoretic Transform and its inverse used
with the negative wrapped-convolution technique in a ring Rb for a modulus b.

2.1 Towards a full RNS decryption

This section deals with the creation of a variant of the original decryption function DecFV,
which will only involve RNS representation. The definition of DecFV is recalled hereafter.

DecFV(ct = (c0, c1) ∈ Rq[Y ]) =
[
DRt,q

(
[ct(s)]q

)]
t
=

[ ⌊
t
q
[c0 + c1s]q

⌉]

t

We recall that the idea is to compute [c0+c1s]q = [∆[m]t+v]q to reveal the noise v. If this
noise is small enough, and given that [m]t has been scaled by ∆ = bq/2tc, the function DRt,q
allows to cancel the noise while scaling down ∆[m]t to recover [m]t . Concretely, decryption
is correct as long as ‖v‖∞ < Bdec = (∆ − |q |t )/2, i.e. the size of the noise should not go over
this bound after homomorphic operations.

The division-and-rounding operation makes DecFV hardly compatible with RNS at a first
sight. Because RNS is of non positional nature, only exact integer division can be naturally
performed (by multiplying by a modular inverse). But it is not the case here. And the round-
ing operation involves comparisons which require to switch from RNS to another positional
system anyway, should it be a classical binary system or a mixed-radix one [ST67]. To get
an efficient RNS variant of DecFV, we use an idea of [BEMP15]. To this end, we quickly recall
relevant RNS tools.

2.1.1 Fast RNS base conversion

At some point, the decryption requires, among others, a polynomial to be converted from Rq

to Rt . To achieve such kind of operations as efficiently as possible, we suggest to use a “fast
base conversion”. In order to convert residues of a ∈ Rq from base q to a base B (e.g. {t})
coprime to q, we compute:

FastBconv(a, q,B) = *
,

k∑
i=1

�����
a

qi
q

�����qi
×

q
qi

mod b+
-b∈B

. (2.1.1)

This conversion is relatively fast. This is because the sum should ideally be reduced modulo
q in order to provide the exact value a; instead, (2.1.1) provides a +α(aq)q for a α(aq) ∈ R
with coefficients in [0, k) ∩ Z (cf. section 1.3.1). Computing the coefficients of α(aq) would
require extra operations in RNS. So this step is by-passed, at the cost of an approximate
result.

2.1.2 Approximate RNS rounding

The above mentioned fast conversion allows us to efficiently compute an approximation of
b tq [c0 + c1s]qe modulo t. The next step consists in correcting this approximation.
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First, we remark that |ct(s) |q can be used instead of [ct(s)]q. Indeed, the difference
between these two polynomials is a multiple of q. So, the division-and-rounding turns it
into a polynomial multiple of t, which is canceled by the last reduction modulo t. Second, a
rounding would involve, at some point, a comparison. This is hardly compatible with RNS,
so it is avoided. Therefore, we propose to simplify the computation, albeit at the price of
possible errors, by replacing rounding by flooring. To this end, we use the following formula:

⌊
t
q
|ct(s) |q

⌋
=

t |ct(s) |q − |t · ct(s) |q
q

.

The division is now exact, so it can be done in RNS. Since this computation has to be
done modulo t, the term t |ct(s) |q cancels. Furthermore, the term ( |t · ct(s) |q mod t) can be
obtained through a fast conversion. Lemma 2.1.1 sums up the strategy by replacing |ct(s) |q
by γ |ct(s) |q, where γ is an integer which will help in correcting the approximation error.

Lemma 2.1.1. Let ct be such that [ct(s)]q = ∆[m]t +v+ qr, and let vc := tv− [m]t |q |t . Let
γ be an integer coprime to q. Then, for b ∈ {t, γ}, the following equalities hold modulo b:

FastBconv(|γt · ct(s) |q, q, {t, γ}) × | − q−1 |b =
⌊
γ

t
q
[ct(s)]q

⌉
− e

= γ
(
[m]t + tr

)
+

⌊
γ
vc
q

⌉
− e (2.1.2)

where each integer coefficient of the error polynomial e ∈ R lies in [0, k].

Proof. According to (2.1.1), FastBconv( |tγ · ct(s) |q, q, {t, γ}) provides |tγ · ct(s) |q + qa, where
each coefficient ai is an integer lying in [0, k) ∩ Z. Let b be t or γ. Then,

FastBconv(|tγ · ct(s) |q, q, {t, γ}) × | − q−1 |b = (|tγ · ct(s) |q + qa) × | − q−1 |b mod b

=
tγ[ct(s)]q − |tγ · ct(s) |q − qa

q
mod b

=

⌊
tγ[ct(s)]q

q

⌋
− a mod b

=

⌊
tγ[ct(s)]q

q

⌉
− e mod b

where e = a + u, with ui ∈ {0, 1}, i.e. ei ∈ [0, k] ∩ Z. To conclude the proof, it suffices to use
the equality ∆t = q − |q |t . That way, one can write:

t[ct(s)]q = q([m]t + tr) + vc

and the second equality (2.1.2) follows. �

The error e, due to the fast conversion and the replacement of rounding by flooring, is the
same error for residues modulo t and γ. The residues modulo γ will enable a fast correction
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of it and of the term bγ vc

q e at a same time. Also, note that r vanishes since it is multiplied
by both t and γ.

2.1.3 Correcting the approximate RNS rounding

The next step is to show how γ can be used to correct the term (bγ vc

q e − e) of (2.1.2). In
practice it can be done efficiently when the polynomial vc is such that ‖vc ‖∞ 6 q( 12 − ε), for
some real number ε ∈ (0, 1/2].

Lemma 2.1.2. Let ‖vc ‖∞ 6 q( 12 −ε), e ∈ R with coefficients in [0, k], and γ an integer. Then,

γε > k ⇒
[ ⌊
γ
vc
q

⌉
− e

]

γ

=

⌊
γ
vc
q

⌉
− e. (2.1.3)

Proof. By hypothesis, the coefficients
⌊
γ (vc )i

q

⌉
− ei belong to

[
−γ( 12 − ε) − k, γ( 12 − ε)

]
∩ Z for

any i ∈ [0, n) ∩ Z. To have [bγ vc

q e − e]γ = bγ
vc

q e − e, we need to ensure:

−

⌊
γ

2

⌋
−
1

2
6 γ

(vc)i
q
− ei <

⌊
γ − 1

2

⌋
+
1

2

A sufficient condition for this is given by:




γ
(1
2
− ε

)
<

⌊
γ − 1

2

⌋
+ 1

2

−

⌊
γ

2

⌋
−
1

2
6 −γ

(1
2
− ε

)
− k

⇔




(γ odd)



γε > 0

γε > k

(γ even)



γε > 1
2

γε > k − 1
2

�

Lemma 2.1.2 enables an efficient and correct RNS rounding as long as γ, which has to be
greater than:

γ ≥ kε−1 = k
(
1

2
−
‖vc ‖∞

q

)−1
has the size of a modulus i.e. such that γ < 2ν. Concretely, one computes (2.1.2) and uses the
centered remainder modulo γ to obtain γ

(
[m]t + tr

)
modulo t, which reduces to γ[m]t mod t.

In the end, it remains to multiply by |γ−1 |t to recover [m]t .

2.1.4 A full RNS variant of FV decryption

The new variant of the decryption is detailed in Algorithm 14. The main modification for
the proposed RNS decryption is due to lemma 2.1.2. As stated by theorem 2.1.3, for a given
γ, the correctness of rounding requires a new bound on the noise to make the “γ-correction”
technique successful.

Theorem 2.1.3. Let ct(s) = ∆[m]t + v (mod q). Let γ be a positive integer coprime to t
and q such that γ > 2k/

(
1 − t |q |t

q

)
. For Algorithm 14 returning [m]t , it suffices that v satisfies
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Chapter 2. Full RNS scaled-invariant schemes

the following bound:

‖v‖∞ 6
q
t

(
1

2
−

k
γ

)
−
|q |t
2
. (2.1.4)

Proof. According to lemma 2.1.2, the γ-correction technique works as long as:

γ

(
1

2
−
‖vc‖∞

q

)
> k ⇔ ‖vc‖∞ 6 q

(
1

2
−

k
γ

)
Moreover since we have:

‖vc‖∞ = 

tv − |q |t [m]t

∞ 6 t‖v‖∞ + |q |t
t
2

The bound (2.1.4) follows, and the lower bound on γ just ensures it is positive. �

There is a trade-off between the size of γ and the bound in (2.1.4). From a computational
point of view γ should ideally be as small as possible (γ ' 2k) but it would result in a quite
small bound for the noise. However by choosing γ ' 2p+1k for p < ν−1− dlog2(k)e (i.e. γ < 2ν

is a standard modulus), the bound (∆(1−2−p)− |q |t )/2 for a correct decryption should be close
to the original bound (∆ − |q |t )/2 for practical values of ν. In section 2.4.1 we will provide a
concrete estimation of γ which shows that γ can be chosen very close to 2k in practice, and
thus fitting in a basic machine word by far.

Algorithm 14 RNS Decryption of FV
Require: a ciphertext ct, encrypting a message m ∈ Rt and whose noise v satisfies (2.1.4),
and the secret key s both in base q, an integer γ satisfying hypothesis of theorem 2.1.3

Ensure: [m]t
function DecRNS(ct, s, γ))

for b ∈ {t, γ} do
s(b) ← FastBconv( |γt · ct(s) |q, q, {b}) × | − q−1 |b mod b

s̃(γ) ← [s(γ)]γ
m(t) ← [(s(t) − s̃(γ)) × |γ−1 |t ]t
return m(t)

2.1.5 Staying in RNS is asymptotically better

In the decryption technique, (ct(s) mod q) has to be computed first. To optimize this poly-
nomial product, one basically performs kNTT → knIMM → kinvNTT. For the following steps,
a simple strategy is to compute (

⌊
t
q [ct(s)]q

⌉
mod t) by doing an RNS-to-binary conversion

in order to perform the division and rounding. By denoting xi =
���ct(s) qiq

���qi , one computes∑k
i=1 xi

q
qi

mod q, compares it to q/2 so as to center the result, and performs division and
rounding. Since the xis fit in one word and the q/qis fit in k − 1 words, each product xiq/qi
requires n(k − 1)EM. The scaling and rounding only requires O(n) multiplications, hence the
whole procedure requires O(k2n)EM. As shown in equation (1.1.3), in practice security anal-
ysis (cf. e.g. [FV12], [BLLN13], [LN14]) requires that kν = dlog2(q)e ∈ O(n) which leads to
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2.1. Towards a full RNS decryption

an asymptotic complexity of O(n3)EM for leaving RNS representation. On the other hand,
the cost of evaluating the ciphertext on the secret key is asymptotically O(kn log2(n))EM, i.e.
O(n2 log2(n))EM, since k ∈ O(n). So, the cost of leaving RNS to access a positional system is
dominant in the asymptotic computational complexity.

Staying in RNS enables to get a better asymptotic complexity. Indeed, since the oper-
ations in Algorithm 14 are always made modulo b ∈ {t, γ}, all the elements fit in one word,
therefore it requires O(kn)EM operations (excluding the polynomial product). Thus, the cost
of NTT is dominant in this case. By considering k ∈ O(n), we deduce C(DecFV) ∈ O(n3), while
C(DecRNS) ∈ O(n2 log2(n)). However, the hidden constant in “k ∈ O(n)” is small, and the
NTT, common to both variants, should avoid any noticeable divergence (cf. 2.4.4) for practical
ranges for parameters.

In order to provide optimized RNS variants of decryption, we make two remarks.

• First, the reduction modulo q is unnecessary. Indeed, any extra multiple of q in the
sum

∑k
i=1 xi

q
qi

is multiplied by t
q , making the resulting term a multiple of t, which is

not affected by the rounding and is finally canceled modulo t.

• Second, it is possible to precompute t
q as a multi-precision floating point number in order

to avoid a costly integer division. But given the first remark, it suffices to precompute
the floating point numbers Qi ∼

t
qi

with 2ν+log2(k)−log2(t) bits (∼ 2 words) of precision.
In this case, using standard double or quadruple (depending on ν) precision is sufficient.
Finally, it is sufficient to compute b

∑k
i=1 xiQie mod t. This represents about 2knEM, in

particular since reducing modulo t is nearly free of cost when t is a power of 2.

Actually, we can perform the computations even more efficiently. In Algorithm 14, γ is
assumed to be coprime to t. It is possible to be slightly more efficient by noticing that the
coprimality assumption can be avoided since the division by γ is exact. To do it, the for loop
can be done modulo γ × t. For instance, even if t a power of 2, one can choose γ as being a
power of 2, and thanks to the following lemma, finish the decryption very efficiently.

Lemma 2.1.4. Let γ be a power of 2. Let z := |γ[m]t + bγ
vc

q e − e|γt coming from (2.1.2)
when computed modulo γt. If γ satisfies (2.1.3), then (� denotes the right bit-shifting, and
& the bit-wise and)

[(z + (z&(γ − 1))) � log2(γ)]t = [m]t . (2.1.5)

Proof. Let’s denote ṽc := bγ vc

q e − e. By computing (2.1.2) modulo γt, we obtain:

z = ��γ[m]t + ṽc��γt

First, we notice that we can also write z = |γ |m|t + ṽc |γt . Indeed, γ |m|t = γ([m]t + ta), where
ai ∈ {0, 1}. Thus, γta vanishes modulo γt. Next, for any t, and because γ is a power of 2, we
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Chapter 2. Full RNS scaled-invariant schemes

have z&(γ − 1) = |z |γ = |ṽc |γ. Consequently,

z + z&(γ − 1) = |γ |m|t + ṽc |γt + |ṽc |γ

Now, (2.1.3) means that γ is chosen such that the coefficients (ṽc)i, i ∈ {0, . . . , n − 1}, lie
in [−γ2,

γ
2 ). This, together with the fact that (γ |m|t )i ∈ [0, γ(t − 1)], implies that we can write

|γ |m|t + ṽc |γt = γ |m|t + ṽc + γtb with bi ∈ {0, 1} (bi = 1 ⇔ ((γ |m|t )i = 0 and (ṽc)i < 0)). To
sum up, we have established so far that:

z + z&(γ − 1) = γ |m|t + ṽc + |ṽc |γ + γtb

The next step is to show that any coefficient of ṽc + |ṽc |γ lies in [0, γ). This is a direct
consequence of the fact that (ṽc)i ∈ [−

γ
2,
γ
2 ). Indeed, we have:

∀i ∈ [0, n − 1] ,



(ṽc)i ∈ [−γ/2, 0)

(ṽc)i ∈ [0, γ/2)
⇒




(
|ṽc |γ

)
i
= (ṽc)i + γ(

|ṽc |γ
)
i
= (ṽc)i

⇒




(
ṽc + |ṽc |γ

)
i
∈ [0, γ − 2](

ṽc + |ṽc |γ
)
i
∈ [0, γ − 2]

Consequently, (z + z&(γ − 1)) � log2(γ) = |m|t + tb, and (2.1.5) follows. �

Lemma 2.1.4 can be adapted to other values for γ, but choosing it as a power of 2 makes
the computation very easy because it is composed of simple operations on bits. Finally, as
soon as γt fits in 1 word, the cost of such variant (besides the polynomial product) reduces
to knIMM, or simply to knEM modulo 2log2 (γt) whenever t is a power of 2.

Remark 2.1.5. In the previous discussion, the product γt was assumed to fit in one machine
word to simplify complexity analysis. However, for some applications, the plaintext modulus
t can be bigger than a machine word (e.g. homomorphic neural networks [GDL+16], where
t > 280). In such cases, either the plaintexts directly lie in Rt , or t can be decomposed in a
product of smaller moduli t1, . . . , t`, enabling the use of RNS for encoding plaintexts (and then
allowing better homomorphic multiplicative depth for a given dimension n). In the first case,
the optimized RNS decryption (given by lemma 2.1.4) remains available, but the residues
modulo t should be handled with several words. In the second case, a plaintext is recovered
by decrypting its residues modulo each of the ti. These ` decryptions can be done as in lemma
2.1.4, by using γ as a power of 2 (whatever the ti’s are). Finally, the plaintext is reconstructed
from residues modulo the ti’s by using a classical RNS to binary conversion. However, this
conversion is only related to the way the plaintexts are encoded, hence it does not affect
the RNS description described in this section which essentially deals with arithmetic of the
ciphertexts, i.e. modulo q.
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2.2. Towards a full RNS homomorphic multiplication

2.2 Towards a full RNS homomorphic multiplication

Assume that we want to multiply homomorphically two degree 1 ciphertexts ct1 and ct2.
The main obstacle to a full RNS variant of the multiplication procedure in the original FV is
the call to DRt,q for the scaling of the degree 2 ciphertext ct? = ct1 ? ct2 ∈ R3. Indeed, the
context here is different than for the decryption. While in the decryption we are working with
a noise whose size can be controlled, and while we are reducing a value from q to {t}, here the
polynomial coefficients of the product ct1 ? ct2 have kind of random size modulo q (for each
integer coefficient) and have to be reduced towards q. Roughly the idea is to use a second
RNS basis B in which we can compute the scaling by t/q and perform the rounding. We add
two moduli to B: one modulus b̃ to reduce the q-overflow due to the first fast conversion from
q to B and one modulus bsk which is used to perform an exact conversion from bases B to q.
We summarize our strategy in Figure 4.

q = q1 · · · qk Bsk = B ∪ {bsk} b̃



ct1 = (c10, c
1
1)

ct2 = (c20, c
2
1)




ct′′1 = |ct1 |q + qu1

ct′′2 = |ct2 |q + qu2
‖ui ‖∞ < k

FastBconv(cti, q,Bsk ∪ {b̃})

SmMRqb̃ (ct′′i )




ct′1 ≡ |ct1 |q + qu′1
ct′2 ≡ |ct2 |q + qu′2

‖u′i ‖∞ � 1

ct? = (c0, c1, c2)

ct′? = (c′0, c
′
1, c
′
2)

DRt,q (ct′?)

c̃tmult c̃tmult '
⌊
t
qct?

⌋

FastBconv(ct?, q,Bsk)

FastBconvSK(c̃tmult,Bsk, q)

Figure 4: Overview of the strategy for the homomorphic multiplication of FV in RNS

2.2.1 Auxiliary RNS bases

The computation of ct? = ct1 ? ct2 ∈ R3, which is the first step of multiplication, requires
to use enough moduli to contain any product, in R[Y ] (coefficients in Z), of degree-1 elements
from Rq[Y ] (coefficients modulo q). So, we need an auxiliary basis B, additionally to the basis
q. We assume that B contains ` moduli (while q has k elements). A sufficient size for ` will
be given later. An extra modulus bsk is added to B to create an extended base Bsk. It will be
used for a transition between the new steps 1 and 2. Computing the residues of ciphertexts in
Bsk is done through a fast conversion from q (cf. Equation ( (2.1.1))). In order to reduce the
extra multiples of q (called “q-overflows” in further discussions) this conversion can produce,
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Chapter 2. Full RNS scaled-invariant schemes

a single-modulus base b̃ is introduced. All these bases are assumed to be pairwise coprime
which means that all the moduli are pairwise coprime.

Reducing (mod q) a ciphertext in Bsk Prior to each multiplication we need the residues
of the degree 1 ciphertexts ct1 and ct2 in q ∪ Bsk, therefore the residues in basis q must be
extended to Bsk. However, fast conversions (cf. Section 2.1.1) from q can create q-overflows
(i.e. unnecessary multiples of q) in the output which would be added to the noise. Therefore
to limit the impact on noise growth, we give an efficient way to reduce a polynomial c′′ = c+qu
in Bsk. For that purpose, we need to add an extra modulus b̃ to Bsk. The strategy is based
on a Montgomery reduction and is described in Algorithm 15.

Algorithm 15 Small Montgomery Reduction modulo q

Require: c′′ in Bsk ∪ {b̃}
Ensure: c′ in Bsk, with c′ ≡ c′′b̃−1 mod q, ‖c′‖∞ 6 ‖c′′‖∞/b̃ + q/2
function SmMRqb̃((c

′′
m)b∈Bsk∪{b̃ })

rb̃ ← [−c′′
b̃
/q]b̃

for b ∈ Bsk do
c′
b
← |(c′′

b
+ qrb̃)b̃−1 |b

return c′ in Bsk

Lemma 2.2.1. On input c′′
b
= |[b̃c]q + qu|b for all b ∈ Bsk ∪ {b̃}, with ‖u‖∞ 6 τ, and given a

parameter ρ > 0 such that:
b̃ρ > 2τ + 1. (2.2.1)

Algorithm 15 returns c′ in Bsk with c′ ≡ c mod q and ‖c′‖∞ 6
q
2 (1 + ρ).

Proof. Algorithm 15 performs in Bsk the computation of:

[cb̃]q + qu + q[−([cb̃]q + qu)/q]b̃
b̃

.

This quantity is clearly congruent to c modulo q. In accordance with hypothesis (2.2.1), its
norm is bounded by:

q(1/2 + τ + b̃/2)

b̃
6

q
2

(1 + ρ)

�

Remark 2.2.2. To use this fast reduction, the ciphertexts have to be handled in base q
through the Montgomery [Mon85] representation with respect to b̃ (i.e. |b̃c|q instead of
|c|q). This can be done for free during the fast conversions, by multiplying the residues of
c by precomputed ���b̃qi/q

���qi instead of |qi/q |qi . Moreover, since {b̃} is a single-modulus base,

conversion of rb̃ from {b̃} to Bsk (line 4 of Algorithm 15) is a simple copy-paste when b̃ < bi.
Finally, if Algorithm 15 is performed right after a fast extension from q (for converting |b̃c|q),
τ is nothing but k − 1 (cf. section 1.3.1).

62



2.2. Towards a full RNS homomorphic multiplication

Hence at this point we have the residues of both ciphertexts ct1 and ct2 in q ∪Bsk (with
the residues ct′i (≡ cti mod q) in Bsk reduced through Algorithm 15). Therefore we can
compute the product ct? = ct1 ? ct2 in q and ct′? = ct′1 ? ct′2 in Bsk.

2.2.2 Adapting the scaling

We recall that originally this step is the computation of
[
DRt,q (ct?)

]
q
(cf. Equation (2.0.1)).

Unlike the decryption, a γ-correction technique does not guarantee an exact rounding. Indeed,
for the decryption we wanted to get DRt,q

(
[ct(s)]q

)
, and through s we had access to the noise

of ct, on which we had some control. In the present context, we cannot ensure a condition
like ‖[t · ct?]q ‖∞ 6 q( 12 − ε), for some ε−1 ∼ 2ν, which would enable the use of an efficient
γ-correction. Therefore, we suggest to perform a simple uncorrected RNS flooring. For that
purpose, we define for a ∈ R and b ∈ Bsk:

fastRNSFloorq (a, b) := (a − FastBconv( |a|q, q, b)) × |q−1 |b mod b.

Since Algorithm 15 should be executed first, lemma 2.2.1 ensures that if b̃ satisfies the
bound (2.2.1), for a given parameter ρ > 0, then the residues of ct′i (≡ cti mod q) in Bsk are
such that:

‖ct′? := ct′1 ? ct′2‖∞ 6 δR
q2

2
(1 + ρ)2 . (2.2.2)

The parameter ρ is chosen as small as possible in practice to limit the noise growth but
such that equation (2.2.1) holds. Notice that, in base q, ct′i and cti are equals.

Lemma 2.2.3. Let the residues of ct′i ≡ cti mod q be given in base q ∪ Bsk, with ‖ct′i ‖∞ 6
q
2 (1 + ρ) for i ∈ {1, 2}. Let ct′? = ct′1 ? ct′2. Then, for j ∈ {0, 1, 2},

fastRNSFloorq (t · ct′?[ j],Bsk) =
⌊

t
q
ct′?[ j]

⌉
+ bj in Bsk, with ‖bj ‖∞ 6 k . (2.2.3)

Proof. We recall that FastBconv(|t ·ct′?[ j]|q, q,Bsk) outputs |t ·ct′?[ j]|q+qu with ‖u‖∞ 6 k−1.
Then, the proof is complete by using the general equalities:

x − |x |q
q

=

⌊
x
q

⌋
=

⌊
x
q

⌉
+ τ with τ ∈ {−1, 0}

�

Therefore we can use the residues in basis q to compute DRt,q (ct?), through fastRNSFloor,
in Bsk. Note that because of the division by q this cannot be done in basis q. Thus at this
point we have the residues of c̃tmult = DRt,q (ct?) in Bsk whose inherent noise is bounded by
the following proposition.

63



Chapter 2. Full RNS scaled-invariant schemes

Proposition 2.2.4. Let c̃tmult = DR2(ct′?) with ct′? satisfying (2.2.2), and

r∞ :=
1 + ρ

2
(1 + δRBkey) + 1

Let vi be the inherent noise of ct′i. Then c̃tmult(s) = ∆ [m1m2]t + ṽmult mod q with:

‖ṽmult‖∞ ≤δRt
(
r∞ +

1

2

)
(‖v1‖∞ + ‖v2‖∞) +

δR
2

min(‖v1‖∞, ‖v2‖∞)

+ |q |tδRt
(
r∞ +

3

2

)
+
1 + δRBkey + δ

2
R

B2
key

2
. (2.2.4)

Proof. This proof is similar to the one given in the first chapter. Some of the tools and
bounds from there are re-used here. In the following, we write ct′i = (c′i,0, c

′
i,1). In particular,

we have ct′? = (c′1,0 · c
′
2,0, c

′
1,1 · c

′
2,0 + c

′
1,0 · c

′
2,1, c

′
1,1 · c

′
2,1). By hypothesis, each c′i, j satisfies

‖c′i, j ‖∞ 6
q
2 (1 + ρ). In particular, the bound in (2.2.2) comes from the fact that:

‖c′1,1 · c
′
2,0 + c

′
1,0 · c

′
2,1‖∞ 6 δR

q2

2
(1 + ρ)2

Since ct′i = cti mod q and ‖ct′i ‖∞ 6
q
2 (1 + ρ), and by using ‖s‖∞ 6 Bkey we can write:

ct′i (s) = c′i,0 + c
′
i,1 · s = ∆[mi]t + vi + qri

with:

‖ri ‖∞ =








c′i,0 + c
′
i,1 · s − ∆[mi]t − vi

q







∞
≤ (1 + ρ)

1 + δRBkey

2
+ 1 = r∞.

We recall hereafter some useful bounds given in Chapter 1 which come from [BLLN13].




v1 · v2 = [v1v2]∆ + ∆rv, ‖rv ‖∞ ≤
δR
2

min(‖v1‖∞, ‖v2‖∞)

[m1]t · [m2]t = [m1m2]t + trm, ‖rm‖∞ <
δRt
2
.

(2.2.5)

By noticing that ct′?(s) = (ct′1 ? ct′2)(s) = ct′1(s) · ct′2(s), we obtain:

ct′?(s) =∆2[m1]t · [m2]t + ∆([m1]t · v2 + [m2]t · v1) + q∆([m1]t · r2 + [m2]t · r1)

+ v1 · v2 + q(v1 · r2 + v2 · r1) + q2r1 · r2.

Then, by using (2.2.5) and ∆t = q − |q |t , we deduce that:

t
q
ct′?(s) =∆[m1 ·m2]t + ([m1]t · v2 + [m2]t · v1) + tqr1 · r2 + rv + rr

+ (q − |q |t )([m1]t · r2 + [m2]t · r1 + rm) + t(v1 · r2 + v2 · r1).

with rr =
t
q
[v · v′]∆ −

|q |t
q

(
∆[m1]t · [m2]t + [m1]t · v2 + [m2]t · v1 + rv

)
like in (1.2.18). Now
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by introducing the error ra, like in (1.2.19), due to the rounding:

t
q
ct′?(s) =

2∑
i=0

⌊
t
q
ct′?[i]

⌉
· si + ra .

We obtain:

c̃tmult(s) = DRt,q (ct′?)(s) =
t
q
ct′? (s) − ra = ∆ [m1m2]t + ṽmult mod q

with:

ṽmult = ([m1]t · v2 + [m2]t · v1) − |q |t ([m1]t · r2 + [m2]t · r1 + rm)

+ rv + t · (v1 · r2 + v2 · r1) + rr − ra . (2.2.6)

Below we give some useful bounds:




‖ [m1]t v2 + [m2]t v1‖∞ 6
δRt
2

(‖v1‖∞ + ‖v2‖∞)

‖v1r2 + v2r1‖∞ < δRr∞(‖v1‖∞ + ‖v2‖∞)

Next, by bounding each term of (2.2.6) with (1.2.6), (1.2.17), (1.2.18) and (1.2.19) and by
putting all the pieces together we obtain:

‖ṽmult‖∞ ≤δRt
(
r∞ +

1

2

)
(‖v1‖∞ + ‖v2‖∞) +

δR
2

min(‖v1‖∞, ‖v2‖∞)

+ |q |tδRt
(
r∞ +

3

2

)
+
1 + δRBkey + δ

2
R

B2
key

2

which concludes the proof. �

2.2.3 Going back to q

Lemma 2.2.3 states that we have got back DR2(ct′?) + b in Bsk so far, where we have denoted
(b0, b1, b2) by b. To be able to perform future computations modulo q, we need to convert
it back in basis q. However, the conversion has to be exact because extra multiples of B =
b1 . . . b` cannot be tolerated this time otherwise the noise would blow-up. The extra modulus
bsk allows us to perform a complete Shenoy and Kumaresan like conversion described in the
next lemma. It is stated for a more general context where the input can be either positive or
negative, and can be larger, in absolute value, than B.

Lemma 2.2.5. Let B be an RNS base and bsk be a modulus coprime to B =
∏

b∈B b. Let x
be an integer such that |x | < λB (for some real number λ > 1) and whose residues are given
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in Bsk. Let’s assume that bsk satisfies bsk > 2(|B| + dλe). Let αx be the following integer:

αx :=
[
(FastBconv(x,B, {bsk}) − xsk)B−1

]
bsk

. (2.2.7)

Then, for x being either positive or negative, the following equality holds:

FastBconvSK(x,Bsk, q) :=
(
FastBconv(x,B, q) − αxB

)
mod q = x mod q. (2.2.8)

Proof. We set B = {b1, . . . , b` } (|B| = `), the possible negativity of x is the reason why we have
to compute a centered remainder modulo msk in (2.2.7). First, we notice that the residues of
x in B are actually those of |x |B = x+ µB ∈ [0, B), where µ is an integer lying in [−λ+1, λ]∩Z.
Therefore, we deduce that:

∑̀
i=1

�����
x

bi
B

�����bi
B
bi
= |x |B + α |x |B B = (x + µB) + αx+µBB

with 0 6 αx+µM 6 ` − 1. Denoting |x |bsk by xsk, it follows that the quantity computed in
(2.2.7) is the following one:


*
,

∑̀
i=1

�����
x

bi
B

�����bi
B
bi
− xsk+

-
B−1

bsk
=


*
,

∑̀
i=1

�����
x

bi
B

�����bi
B
bi
− (xsk + µB)+

-
B−1 + µ

bsk
=

[
αx+µB + µ

]
bsk

.

It remains to show that [α(x+µB) + µ]bsk = αx+µB + µ or, in other words, that:

−

⌊
bsk
2

⌋
6 αx+µB + µ 6

⌊
bsk − 1

2

⌋

But by hypothesis on bsk, and because ` > 1, we can write bsk > 2(` + dλe) > 2bλc + 1. Then,




αx+µB + µ 6 ` − 1 + dλe 6
bsk
2
− 1 6

⌊
bsk − 1

2

⌋
,

αx+µM + µ > −bλc > −
bsk − 1

2
> −

⌊
bsk
2

⌋
.

Thus, [αx+µB + µ]bsk = αx+µB + µ, and it follows that, by computing the right member of
(2.2.8), we obtain what we wanted:

∑̀
i=1

�����
x

bi
B

�����bi
B
bi
− [αx+µB + µ]bsk B = (x + µB) + αx+µBB − (αx+µB + µ)B = x.

�

Therefore we can convert our ciphertext back to q through the following proposition:
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Proposition 2.2.6. Given a positive real number λ, let bsk and B be such that:

λB > δRt
q
2

(1 + ρ)2 + 1
2 + k and bsk > 2(|B| + dλe). (2.2.9)

Let’s assume that DR2(ct′?) + b is given in Bsk, with ‖b‖∞ 6 k. Then,

FastBconvSK(DR2(ct′?) + b,Bsk, q) =
(
DR2(ct′?) + b

)
mod q.

Proof. By using (2.2.2), we have:

‖DR2(ct′?)‖∞ 6







t
q
ct′?






∞
+
1

2
6 δRt

q
2

(1 + ρ)2 +
1

2

Lemma 2.2.5 concludes the proof. �

Algorithm 16 summarizes the new full RNS variant MultRNS.

Algorithm 16 RNS homomorphic multiplication MultRNS
Require: ct1, ct2 in q with Montgomery representation with respect to b̃
Ensure: ctmult in q with Montgomery representation with respect to b̃
S0: Convert fast ct1 and ct2 from q to Bsk ∪ {b̃}:  ct′′i = cti + q-overflows
S1: Reduce q-overflows in Bsk:  ct′i (in Bsk)← SmMRqm̃(((ct′′i )b)b∈Bsk∪{b̃ })
S2: Compute the product ct′? = ct′1 ? ct′2 in q ∪ Bsk
S3: Convert fast from q to Bsk to achieve first step (approximate rounding) in Bsk:

(c̃tmult + b = DRt,q (ct′?) + b in Bsk) ← . . . ← FastBconv(t · ct′?, q,Bsk)
S4: Convert exactly from Bsk to q to achieve transitional step:

(c̃tmult + b in q) ← FastBconvSK(c̃tmult + b,Bsk, q)

2.3 Last step: the relinearization

At this point, c̃tmult +b = (c0, c1, c2) is known in base q (c̃tmult := DR2(ct′?)). The main issue
with the original procedure is that the function Dω,q (in RelinFV) requires, by definition, an
access to a positional system (in radix base ω), which is hardly compatible with RNS

2.3.1 Adapting the original procedure

We recall that the original relinearization procedure is done as follows:

ctmult =
(
[c0 + 〈Dω,q (c2),Pω,q (s2) − (−→e + s−→a )〉]q, [c1 + 〈Dω,q (c2),−→a〉]q

)
(2.3.1)

where −→e ← χ
`ω,q
err , −→a ←U`ω,q

q . The decomposition of c2 in radix ω enables a crucial reduction
of the noise growth due to the multiplications by the terms ei + (s · a)i. It cannot be done
directly in RNS as is. Indeed, it would require a costly switch between RNS and positional
representation in radix ω. However, we can do something very similar. We recall that we can
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write:

c2 =
k∑
i=1

�����
c2

qi
q

�����qi
×

q
qi

mod q

If ω has the same order of magnitude as 2ν (size of moduli in q), we obtain a similar limitation
of the noise growth by using the vectors:

DRNS,q (c2) = *
,

�����
c2

q1
q

�����q1
, . . . ,

�����
c2

qk
q

�����qk
+
-

and PRNS,q (s2) = *
,

�����
s2

q
q1

�����q
, . . . ,

�����
s2

q
qk

�����q
+
-

both in Rk . This decomposition has the same properties as the original one:

Lemma 2.3.1. For any c ∈ R, we have
〈
DRNS,q (c),PRNS,q (s2)

〉
≡ cs2 mod q.

Thus, by replacing the public relinearization key −−→rlkFV by:

−−→
rlkRNS =

(
[PRNS,q (s2) + (−→e + s · −→a )]q,−−→a

)
with −→a

$
←− Uk

q and −→e
$
←− χkerr and which can be seen as the matrices:

−−→
rlkRNS[0] =

*.....
,

���s
2 q
q1
+ e1 + s · a1

���q1 · · · |e1 + s · a1 |qk
...

...

|ek + s · ak |q1 · · ·
���s

2 q
qk
+ ek + s · ak

���qk

+/////
-

−−→
rlkRNS[1] =

*....
,

|−a1 |q1 · · · |−a1 |qk
...

...

|−ak |q1 · · · |−ak |qk

+////
-

(2.3.2)

we can perform the relinearization step in RNS. The next lemma helps for providing a
bound on the extra noise introduced by this step.

Lemma 2.3.2. Let −→e ← χkerr ,
−→a ←Uk

q , and c ∈ R. Then,





(〈
DRNS,q (c), (−→e + −→as)

〉
+

〈
DRNS,q (c),−−→−a

〉
s
)
mod q


∞ < δRBerr k2ν . (2.3.3)

Proof. First, we have:(〈
DRNS,q (c),+(−→e + −→as)

〉
+

〈
DRNS,q (c),−−→a

〉
s
)
=

〈
DRNS,q (c),−→e

〉
mod q

Second, by using qi < 2ν, we obtain:





〈
DRNS,q (c),−→e

〉


∞ =








k∑
i=1

�����
c

qi
q

�����qi
· ei







∞
<

k∑
i=1

δRqi ‖ei ‖∞ 6 δRBerr

k∑
i=1

qi < δRBerr k2ν

�

Remark 2.3.3. It is still possible to add a second level of decomposition (like in original
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approach, but applied on the residues) to limit a little bit more the noise growth (section
2.3.2). Furthermore, Sect. 2.3.3 details how the size of rlkRNS can be reduced in a similar
way that rlkFV could be through the method described in ([BLLN13], 5.4).

Finally, on input ct = c̃tmult + b = (c0, c1, c2), and the relinearization key rlkRNS =(
[PRNS,q (s2) + (−→e + s−→a )]q,−−→a

)
, the output of the RNS relinearization is the following one:

ctmult =

( [
c0 +

〈
DRNS,q (c2),PRNS,q (s2) + (−→e + −→as)

〉]
q
,

[
c1 +

〈
DRNS,q (c2),−−→−a

〉]
q

)
(2.3.4)

Proposition 2.3.4. Let ctmult be as in (2.3.4), and vmult (resp. ṽmult) the inherent noise of
ctmult (resp. c̃tmult). Then:

ctmult(s) = ∆ [m1m2]t + vmult(mod q)

with:
‖vmult‖∞ < ‖ṽmult‖∞ + k (1 + δRBkey (1 + δRBkey)) + δR kBerr2

ν+1. (2.3.5)

Proof. At this point, we are evaluating RelinRNS(c̃tmult + b). We denote c̃tmult = (c0, c1, c2)
and b = (b0, b1, b2). We can first notice that:

DRNS,q (c2 + b2) = DRNS,q (c2) +DRNS,q (b2) − −→u

where −→u = (u1, . . . ,uk ) ∈ Rk is such that, for any (i, j) ∈ [1, k]× [0, n−1], (ui)j ∈ {0, qi }. In
particular, it can be noticed that ‖|b2

qi
q |qi − ui ‖∞ < qi, and that

〈
−→u,PRNS,q (s2)

〉
≡ 0 mod q.

This latter fact leads to the following equality:

〈
−→u, rlkRNS[0]

〉
+

〈
−→u, rlkRNS[1]

〉
· s =

〈
−→u,PRNS,q (s2) + (−→e + s−→a )

〉
+

〈
−→u,−−→a

〉
· s

=
〈
−→u,−→e

〉
=

k∑
i=1

ui · ei mod q

Consequently, in Rq × Rq we have that:

RelinRNS(ct) =
( [
c0 +

〈
DRNS,q (c2),PRNS,q (s2) + (−→e + −→as)

〉]
q
,

[
c1 +

〈
DRNS,q (c2),−−→−a

〉]
q

)
= RelinRNS(c̃tmult) + RelinRNS(b) −

(〈
−→u, rlkRNS[0]

〉
,
〈
−→u, rlkRNS[1]

〉)
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Thus, a part of the noise comes from the following extra term:




RelinRNS(b)(s) −
〈
−→u, rlkRNS[0]

〉
−

〈
−→u, rlkRNS[1]

〉
· s


∞

=



b0 +

〈
DRNS,q (b2) − −→u, rlkRNS[0]

〉
+ s · (b1 +

〈
DRNS,q (b2) − −→u, rlkRNS[1]

〉


∞

=








b0 + b1 · s + b2 · s

2 −

k∑
i=1

*
,

�����
b2

qi
q

�����qi
− ui

+
-
· ei







∞

<k (1 + δRBkey + δ
2
R

B2
key) + δRBerr

k∑
i=1

qi

<k (1 + δRBkey + δ
2
R

B2
key) + δRBerr k2ν .

and lemma 2.3.2 brings the rest of the noise. �

2.3.2 Combining two levels of decomposition

To reduce the noise growth due to the relinearization step a bit more, we can integrate another
level of decomposition in radix ω where ω = 2θ << 2ν as efficiently as in the original scheme
by doing it on the residues, because they are handled through the classical binary positional
system. By denoting `ω,2ν =

⌈
ν
θ

⌉
, each polynomial ���c

qi
q

���qi is decomposed into the vector of

polynomials
( [ ⌊
|cqiq |qiω

−z
⌋ ]
ω

)
z∈[0,...,`ω,2ν−1]

, and the new decomposition function is defined

by:
DRNS,ω,q (c) =

(
dzi =

[ ⌊���c
qi
q

���qi ω
−z

⌋ ]

w

)
i∈[1,k],z∈[0,...,`ω,2ν−1]

.

Therefore, each term ���s
2 q
qi
+ (ei + (s · a)i)

���qj
in rlkRNS[0] has to be replaced by:

(���s
2 q
qi
ωz + (ezi + (s · a)zi )���qj

)
z
, z = 0, . . . , `ω,2ν − 1, e

z
i ← χerr,a

z
i ←Uq .

It follows that the extra noise is now bounded by:





〈
DRNS,ω,q (c),−→e

〉


∞ =









k∑
i=1

`ω,2ν−1∑
z=0

dzi e
z
i








∞
< δRBerrωk`ω,2ν .

In other words, the term 2ν in (2.3.3) is replaced by ω`ω,2ν . Even if such optimization may
be not really relevant in practice, since the noise caused by the relinearization step is very
small compared to the one caused by the multiplication. This is another argument for saying
that any trick and technique of the original scheme can be efficiently adapted to a pure RNS
approach.

2.3.3 Reducing the size of the relinearization key rlkRNS

In [BLLN13], Sect. 5.4, the authors describe a method to significantly reduce the size of
the public relinearization key rlk (by truncating the ciphertext) which can be applied to the
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original FV scheme. We provide an efficient adaptation of such kind of optimization to the
RNS variant of the relinearization step.

We recall that the relinearization is applied to a degree-2 ciphertext denoted here by
(c0, c1, c2). The initial suggestion was to set to zero, say, the i lowest significant components
of the vector Dω,q (c2). Doing so is equivalent to replacing c2 by c′2 = ω

i bc2ω
−ic = c2 − |c2 |ωi .

Thus, only the `ω,q − i most significant components of rlkFV[0] (and then of rlkFV[1]) are
required (in other words, when rlkFV[0] is viewed as an (`q,ω× k) RNS matrix by decomposing
each component in base q, ik entries are set to zero like this). However this optimization causes
a greater noise than the one in lemma 4 of [BLLN13], indeed given (c0, c1, c2) decryptable
under s, the relinearization step provides:

(c̃0, c̃1) :=
(
c0 +

〈
Dω,q (c′2),Pω,q (s2) + (−→e + −→a · s)

〉
, c1 +

〈
Dω,q (c′2),−−→a

〉)
Thus, (c̃0, c̃1)(s) = c0 + c1s + c′2s

2 +
〈
Dω,q (c′2),−→e

〉
mod q. Consequently, the extra noise

comes from the following term:




−|c2 |ωis2 +
〈
Dω,q (c′2),−→e

〉


∞ =








−|c2 |ωi · s2 +

`ω,q−1∑
j=i

Dω,q (c2)j · ej








∞
< δ2

R
ωiB2

key + (`ω,q − i)δRωBerr . (2.3.6)

In the present RNS variant, the computation of bc2ω−ic is not straightforward. This could be
replaced by bc2(q1 . . . qi)−1c through a Newton like interpolation (also known as mixed-radix
conversion [ST67]). Though the result would be quite similar to the original optimization
in terms of noise growth, its efficiency is not satisfying. Indeed, despite ik entries of the
RNS matrix rlkRNS[0] can be set to zero like this, this Newton interpolation is intrinsically
sequential, while the division by ωi is just an immediate zeroing of the lowest significant
coefficients in radix ω representation. Furthermore, a direct approach consisting in zeroing,
say, the first i components ofDRNS,q (c2) cannot work. Indeed, it would be like usingDRNS,q (Qi×

|c2Q−1i |qi+1...qk ) with Qi = q1 · · · qi. Then, when evaluating the output of relinearization in the
secret key s, it would introduce the term:

〈
DRNS,q

(
Qi × |c2Q−1i |qi+1 · · ·qk

)
,PRNS,q (s2)

〉
= Qi ×

���c2Q−1i
���qi+1 · · ·qk s

2 mod q

=

(
c2 − qi+1 · · · qk ×

���c2(qi+1 · · · qk )−1���Qi

)
s2 mod q

with the norm of ���c2(qi+1 · · · qk )−1���Qi
which has no reason to be small.

For our approach, we rely on the fact that rlkRNS contains Ring-LWE encryptions of the
polynomials

����s
2 q
qj

����q
. Notice that only the jth-residue of

����s
2 q
qj

����q
can be non zero (cf. Equation

2.3.2). So, let’s assume that we want to cancel ik entries in rlkRNS[0] (as it has been done in
rlkFV with the previous optimization). Then we choose, for each index j, a subset of index-
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numbers Ij ⊆ [1, k] \ { j} with cardinality i of zero elements (i.e. at line j of rlkRNS, choose i
elements, except the diagonal one , and set them to zero).

Next, for each j, we introduce a Ring-LWE-encryption of
����s

2 q
qjqIj

����q
, where qIj =

∏
s∈Ij qs,

which is
(����s

2 q
qjqIj

+ (ej + s · aj )
����q
,−aj

)
. So far, the underlying security features are still rele-

vant. Now, it remains to multiply this encryption by qIj , which gives
����s

2 q
qj
+ qIj (ej + s · aj )

����q
.

This corresponds to the jth-line of the new matrix rlk′RNS[0]. It is clear that this line
contains zeros at columns index-numbered by Ij . rlkRNS[1] = (a1, . . . ,ak ) is replaced by
rlk′RNS[1] = ( |qI1a1 |q, . . . , |qIkak |q).

Let’s analyze the noise growth caused by the relinearization with this new relinearization
key. By evaluating in s the output of relinearization with this new rlk′RNS, we obtain:

c0 +
〈
DRNS,q (c2), rlk′RNS[0]

〉
+

(
c1 +

〈
DRNS,q (c2), rlk′RNS[1]

〉)
· s

= c0 +
k∑
j=1

�����
c2

qj

q

�����qj

(
s2

q
qj
+ qIj (ej + s · aj )

)
+

*.
,
c1 −

k∑
j=1

�����
c2

qj

q

�����qj

qIjaj
+/
-
· s

= c0 + c1 · s + c2 · s
2 −

k∑
j=1

�����
c2

qj

q

�����qj

· qIjej

Consequently, the cancellation of ik terms in the public matrix rlkRNS[0] by using this method
causes an extra noise growth bounded by (this can be fairly compared to (2.3.6) in the case
where ω = 2ν, i.e. k = `ω,q):










k∑
j=1

���c2
qj

q
���qj
· qIjej








∞
<

k∑
j=1

δRqjqIj Berr < δR k2ν(i+1) Berr

Therefore, the truncation of ciphertexts can be efficiently adapted to RNS representation
without causing more significant noise growth.

2.3.4 About computational complexity

We analyze the cost of a multi-precision variant, in order to estimate the benefits of the new
RNS variant of multiplication in terms of computational cost.

• The product ct? = ct1 ? ct2 = (c1,0, c1,1) ? (c2,0, c2,1) in MP variant is advantageously
performed in RNS, in order to benefit from NTT. So, the MP variant considered here is
assumed to use a second base B ′ such that qB′ > ‖ct?‖∞. By taking centered remainders
modulo q, we consider ‖cti ‖∞ 6

q
2 . Then B

′ must verify in particular that:



ct?[1]

∞ = ‖c1,0c2,1 + c1,1c2,0‖∞ 6 2δR
q2

4
< qB′

Thus, |B ′ | has to be at least equal to k + 1 (notice that, in RNS variant, we also need
to have |Bsk | = k + 1 for dealing with the multiplication).
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• The conversion, from q to B ′, of each cti has to be as exact as possible in order to
reduce the noise growth. It can be done by computing: [

∑k
i=1 |ca,b |qi × ( | qiq |qi

q
qi

)]q in
B ′. The terms (| qiq |qi

q
qi

) are precomputable and their size is k words (log2(q) bits).
Thus, the sum involves k2nEM. The reduction modulo q can be performed by using an
efficient reduction as described in [AMBG+16], reducing to around 2 multiplications of
k-word integers, that is O(k1+ε)nEM (where ε stands for complexity of multi-precision
multiplication in radix-base 2ν; e.g. ε = 1 for the schoolbook multiplication). Next, the
k-word value is reduced modulo each 1-word element of B ′, through around 2knEM for
the whole set of coefficients. Finally, this procedure has to be executed four times. Its
total cost is around (4k2 + O(k1+ε))nEM.

• Next, the product ct1?ct2 is done in q∪B ′. First, 4(2k+1)NTT are applied. Second, by
using a Karatsuba like trick, the product is achieved by using only 3×(2k+1)nIMM. Third,
3(2k+1)invNTT are applied to recover ct? = (c?,0, c?,1, c?,2) in coefficient representation.

• The next step is the division and rounding of the three polynomials c?,i’s. A lift from
q∪B ′ to Z is required, for a cost of 3(2k +1)2nEM. t/q can be precomputed with around
3k + 1 words of precision to ensure a correct rounding. Thus, a product t

q × c?,i is
achieved with O(k1+ε)nEM. After, the rounding of c?,0 and c?,1 are reduced in RNS
base q by 2 × 2knEM.

• The relinearization step (2.3.1) can be done in each RNS channel of q. By assuming
that ω = 2ν, we would have `ω,q = k. The computation of the vector Dω,q (b tqc2e)
reduces to shifting. The two scalar products in RelinFV, with an output in coefficient
representation, require k`ω,qNTT + 2k2nIMM + 2kinvNTT.

Thus, the total cost of the multi-precision variant is at most the following one:

Cost(MultMP) = (k`ω,q +8k +4)NTT+ (8k +3)invNTT+ [2k2+6k +3]nIMM+ [40k2+O(k1+ε)]nEM.

Now, let’s analyze the cost of the RNS variant.

• The fast conversions from q to Bsk ∪ {m̃} require 4 × k (k + 2)nIMM.

• The reduction of q-overflows requires 4 × (k + 1)nIMM.

• The product of ciphertexts ct′1?ct
′
2 in q∪Bsk requires the same cost as for MP variant,

that is 4(2k + 1)NTT + 3(2k + 1)nIMM + 3(2k + 1)invNTT.

• With adequate pre-computed data, the base conversion from q to Bsk can integrate the
flooring computation in Bsk so that it would cost 3 × k (k + 1)nIMM.

• The exact FastBconvSK to basis q, basically reduces to a fast conversion from B to qsk,
followed by a second one from bsk to q. So, this is achieved with 3 × k (k + 2)nIMM.
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• For the relinearization step, since the function DRNS,q is an automorphism of Rq data in
q can stay in this form throughout the computations. Therefore we can have the vector
DRNS,q (c2) for free. The two scalar products in RelinRNS involve k2NTT + 2k2nIMM +
2kinvNTT, exactly like the relinearisation step in the MP variant.

• Finally 2knIMM are needed to manage the Montgomery representation, in q, with respect
to b̃.

Thus the total cost of the RNS variant is the following:

Cost(MultRNS) = (k2 + 8k + 4)NTT + (8k + 3)invNTT + [10k2 + 25k + 7]nIMM.

To summarize, the RNS variant decreases the computational cost of the whole homomor-
phic multiplication algorithm except the parts concerning polynomial multiplications. Also,
it involves as many NTT and invNTT as the MP variant. Even by considering an optimized
multi-precision multiplication algorithm in the MP variant (with sub-quadratic complexity),
the asymptotic computational complexity remains dominated by the (k2 + O(k))nNTT.

Finally, the MP and RNS variants are asymptotically equivalent when n → +∞, but the
pure RNS variant is more flexible in terms of parallelization.

2.4 Software implementation

The C++ NFLlib library [AMBG+16] was used for efficiently implementing the arithmetic in
Rq. It provides an efficient NTT-based product in Rq for q a product of 30 or 62-bit prime
integers, and with degree n a power of 2, up to 215.

2.4.1 Concrete examples of parameter settings

In this part, we analyze which depth can be reached in a multiplicative tree, and for which
parameters. We recall that the initial noise is at most V = Berr (1 + 2δRBkey) and that the
output of a tree of depth L has a noise bounded by CL

RNS,1V +CRNS,2(CL
RNS,1 − 1)/(CRNS,1 − 1) (cf.

section 1.2.2) with, for the present RNS variant:




CRNS,1 = δRt
(
(1 + ρ)(1 + δRBkey) + 3

)
+
δR
2

CRNS,2 = |q |tδRt
(
(1 + ρ)

1 + δRBkey

2
+
5

2

)
+ (1 + δRBkey + δ

2
R

B2
key

)
(
k +

1

2

)
+kδRBerr2

ν+1.

(2.4.1)

We denote by:

LRNS = max



L ∈ N | CL
RNS,1V + CRNS,2

CL−1
RNS,1 − 1

CRNS,1 − 1
6

q
t

(
1

2
−

k
γ

)
−
|q |t
2



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the maximal depth allowed by MultRNS, when DecRNS is used for decryption.

For an 80-bit security level and parameters Bkey = 1, σerr = 8, Berr = 6σerr , we consider
the security analysis in [LN14], which provides ranges for (log2(q), n) (cf. [LN14], Tab. 2). We
analyze our parameters by using the size of moduli given in NFLlib, because those were used
for our implementation. For a 32-bit (resp. 64) implementation, a set of 291 30-bit (resp. 1000
62-bit) moduli is available. These moduli are chosen to enable an efficient modular reduction
(cf. [AMBG+16], Algorithm 2). Table 3 lists parameters when q and B are built with these
moduli. Note that in powers-of-two cyclotomic, the expansion factor δR is well-known and
is equal to the degree of the cyclotomic n. The parameters were determined by choosing the
largest ρ (up to 2k − 1), and thus the smallest b̃ (chosen as a power of two for efficiency
reasons), allowing to reach the depth LRNS while Lstd corresponds to the bounds for a classical
approach. It also provides sufficient sizes for γ and bsk which allow for bsk, to have |B| = k
through (2.2.9) after having chosen for q the k greatest available moduli. One can notice that
the bound on γ is smaller than 210 for all cases, thus we can choose γ and t as a power of two
with γt fitting in one machine word. For these specific parameters, and despite additional
terms in the noise, the multiplicative depth remains unchanged for the RNS variants.

n t b̃
30-bit moduli 62-bit moduli

k LRNS ρ dlog2(bsk)e γ k LRNS ρ dlog2(bsk)e γ

211
2

28 3
2 (2) 5 18 7

1
0 (0) − − 3

210 1 (1) 5 27 7 0 (0) − − 3

212
2

28 6
5 (5) 11 21 13

3
4 (4) 5 19 7

210 4 (4) 4 27 13 3 (3) 5 28 7

213
2

28 13
13 (13) 1/3 15 46

6
11 (11) 1 17 20

210 9 (9) 9 30 27 8 (8) 6 29 33

214
2

28 26
25 (25) 1/2 17 53

12
23 (23) 1/3 16 27

210 19 (19) 1 27 53 17 (17) 3 29 34

215
2

216 53
50 (50) 1/12 17 351

25
47 (47) 1/2 18 83

210 38 (38) 1/2 27 107 37 (37) 1/10 26 255

Table 3: Parameters for RNS variants, using the moduli of NFLlib. Value in parenthesis
correspond to the multiplicative depth for the non-RNS variant.

2.4.2 Influence of b̃ on the noise growth

After a fast conversion from q, ciphertexts in Bsk can contain q-overflow and verify ‖ct′i ‖∞ <
q
2 (1 + τ) with τ 6 2k − 1. By applying Algorithm 15, this bound decreases to q

2 (1 + ρ), for
some 0 < ρ 6 2k − 1. Having ρ = 2k − 1 in Tab. 3 means that it is unnecessary to use SmMRqb̃
to obtain a best depth, this case only occurs three times. Thus, most of the time doing
such reduction is necessary before a multiplication in order to reach the best possible depth.
Moreover, choosing a lower ρ (i.e. a higher b̃) than necessary can decrease the lower bound
on γ and bsk. To illustrate the impact of SmMRqb̃, Fig. 5 depicts the noise growth for n = 213,
t = 2 and b̃ ∈ {0, 28, 216}. According to Tab. 3, b̃ = 28 is well sufficient in such scenario in order
to reach LRNS = 13. In comparison, a computation with no reduction at all (b̃ = 0) leads to a
theoretical depth LRNS = 11 in this case. More precisely, choosing b̃ = 28 implies an average
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reduction of 25% of the noise, while with b̃ = 216, we gain around 32%. Consequently, SmMRqb̃
has been systematically integrated within the implementation of MultRNS in our prototype.
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Figure 5: Example of noise growth, for n = 213, log2(q) = 390 (ν = 30, k = 13), t = 2, σerr = 8,
Bkey = 1 (dashed line: theoretical bound, using (2.4.1); plain line: measurements).

2.4.3 Some remarks

Tested algorithms The code1 we compared with is an open source implementation of FV
which has been developed in the context of HEAT 2 and which is also based on NFLlib.
Multi-precision arithmetic is handled with GMP 6.1.0 [Gt15], and multiplications by t/q are
performed with integer divisions. MultMP and DecMP denote functions from this code.

Even if the use of SmMRqb̃ could be avoided in MultRNS to reach the maximal theoretical
depth for some parameters, it has been systematically used since its cost is negligible and it
enables a noticeable decrease of noise growth in most of the cases. Moreover relinearization
procedure was systematically added at the end of the multiplication, therefore the timings
presented for the multiplication correspond in reality to multiplication plus relinearization.

Two variants of DecRNS (cf. section 2.1.5) have been implemented. Depending on the
moduli size ν, the one with floating point arithmetic (named DecRNS-flp thereafter) uses double
(resp. long double) for double (resp. quadruple) precision, and then does not rely on any
other external library at all.

Convenient b̃ and γ Given values of ρ in Tab. 3, b̃ = 28 (resp. b̃ = 216) satisfies, by far, any
set of analyzed parameters. This enables an efficient and straightforward modular arithmetic
through standard types like uint8_t (resp. uint16_t) and a type conversion towards the
signed int8_t (resp. int16_t) immediately gives the centered remainder. The parameter
analysis with such b̃ shows that γ = 28 (resp. γ = 210) is sufficient to ensure a correct

1https://github.com/CryptoExperts/FV-NFLlib
2https://heat-project.eu/
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Figure 6: Decryption time (t = 210), with
ν = 30 (plain lines) and ν = 62 (dashed lines).
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Figure 7: Multiplication time (t = 210), with
ν = 30 (plain lines) and ν = 62 (dashed lines).

decryption for all configurations. Furthermore, a reduction modulo γ could be achieved by a
simple type conversion to uint8_t when γ = 28.

2.4.4 Results

The tests have been run on a laptop, using Fedora 22 with Intel R© CoreTM i7-4810MQ CPU @
2.80GHz and using GNU compiler g++ version 5.3.1 with Hyper-Threading and Turbo Boost
turned off. The timings corresponds to an average time on 212 decryptions/multiplications.

Figure 6 presents timings for DecMP, DecRNS and DecRNS-flp, and Fig. 7 depicts timings
for MultMP and MultRNS. Both figures gather data for two modulus sizes: ν = 30 and ν = 62.
Relinearization in MultMP uses a decomposition in radix-base ω = 232 when ν = 30, and ω = 262

when ν = 62. The auxiliary bases Bsk and B ′ involved in MultRNS and MultMP contain k + 1

moduli each. Multiplication timing for (n, ν, k) = (211, 62, 1) is not given since L = 1 already
causes decryption failures. The contributions appear in the speed-ups between RNS and MP
variants.

In Fig. 6, the two variants of decryption described in 2.1.5 are almost equally fast. Indeed,
they perform the same number of elementary (floating point or integer) operations. All the
implemented decryption functions take as input a ciphertext in NTT representation. Thus,
only one invNTT is performed (after the product of residues) within each decryption. As
explained in section 2.1.5, despite a better asymptotic computational complexity for RNS
decryption, the efficiency remains in practice highly related to this invNTT procedure, even
maybe justifying the slight convergence between MP and RNS decryption times observed. In
Fig. 7, the convergence of complexities of MultRNS and MultMP (as explained in Sect. 2.3.4) is
noticeable.

Table 4 presents detailed timings and speed-ups of RNS vs MP variants together with tim-
ings of an RNS decryption and multiplication including the use of SIMD (Single Instruction
Multiple Data). Indeed in RNS variants (as well decryption as multiplication), the replace-
ment of division and rounding by base conversions (i.e. matrix-vector multiplications) allows
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to benefit, easily and naturally, from concurrent computation. An RNS vector-matrix multi-
plication naturally owns two levels of parallelization: along the RNS channels, and along the
dimension of the result. In NFLlib, an element of Rq is stored in a (32-byte aligned) array
_data in which the n first values are the coefficients of the polynomial in Rq1 , and so forth and
so on. Advanced Vector Extensions (AVX2) have been used to accelerate the computations.

An AVX2 register is handled (for our purpose) through the type __m256i. This enables to
handle either 8x32-bit, or 4x64-bit, or again 16x16-bit integers concurrently. Given the con-
figuration of the _data array, reading/writing communications between 256-bit AVX2 registers
and _data are the most efficient (through _mm256_store_si256 and _mm256_load_si256 in-
trinsics, which require the 32-byte alignment of _data) when the base conversion is parallelized
along the dimension n. Therefore this is how we have implemented and tested it. However,
since more convenient intrinsic instructions are available for 32-bit, we have made it only
within the 32-bit implementations.

Regarding the timings, the impact of AVX2 remains quite moderate. This is because
it is used to accelerate the parts of algorithms besides the NTT-based polynomial products
which constitute the main cost. For decryption, the RNS variants, floating point and integer
arithmetic, are already very efficient, whereas the performance of AVX2 variant depends on
time-consuming loading operations from/to vectorial registers, explaining the small differ-
ences. As expected for the multiplication, the timings are converging when n grows, because
of the cost of NTT’s.

2.5 Conclusion

This work has turned the FV scheme entirely compatible with Residue Number Systems
and has led to a publication in the 23rd Selected Areas of Cryptography (SAC) conference
([BEHZ17]). Prior to this work, RNS was already used to accelerate polynomial additions
and multiplications. However, the decryption and the homomorphic multiplication involve
operations at the coefficient level which were hardly compatible with RNS, such as division
and rounding. Our solutions overcome these incompatibilities, without modifying the security
features of the original scheme. As a consequence, we have provided a SHE scheme which
only involves RNS arithmetic and thus only single-precision integer arithmetic. Moreover the
new variant has an higher parallelization potential, since it fully benefits from the properties
of RNS, which could be used in future efficient implementations.

The C++ implementation of our prototype has highlighted the gain in practice of our ap-
proach compared to the classical one which uses multi-precision arithmetic. Since arithmetic
on polynomials is not concerned by this work, our implementation, like the one we are com-
paring with, has been based on the NFLlib library, which embeds a very efficient NTT-based
polynomial product. Hence, our decryption (resp. homomorphic multiplication) variants of-
fers speed-ups from 20 to 5 (resp. 4 to 2) for cryptographic parameters ensuring 80-bit of
security. This work has recently been incorporated by Microsoft Research in the version 2.3
of SEAL, their C++ library implementing FV ([CHH+17]). More recently in [HPS18], Halevi
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n ν k variant Decryption (ms) Speed-up Multiplication (ms) Speed-up

211

30 3

MP 1.153 − 13.809 −

RNS-flp 0.192 6.005 − −

RNS 0.189 6.101 3.159 4.371
RNS-AVX2 0.188 6.133 2.710 5.096

62 1
MP 1.020 − − −

RNS-flp 0.054 18.880 − −

RNS 0.050 20.390 − −

212

30 6

MP 4.587 − 45.055 −

RNS-flp 0.798 5.748 − −

RNS 0.789 5.814 15.614 2.886
RNS-AVX2 0.775 5.919 13.737 3.280

62 3
MP 3.473 − 28.168 −

RNS-flp 0.339 10.245 − −

RNS 0.326 10.653 7.688 3.664

213

30 13

MP 16.051 − 218.103 −

RNS-flp 3.732 4.301 − −

RNS 3.691 4.349 100.625 2.167
RNS-AVX2 3.637 4.413 88.589 2.462

62 6
MP 10.945 − 92.093 −

RNS-flp 1.552 7.052 − −

RNS 1.513 7.234 37.738 2.440

214

30 26

MP 70.154 − 1, 249.400 −

RNS-flp 17.497 4.009 − −

RNS 17.333 4.047 622.596 2.007
RNS-AVX2 16.818 4.171 617.846 2.022

62 12
MP 38.910 − 424.014 −

RNS-flp 6.702 5.806 − −

RNS 6.494 5.992 206.511 2.053

215

30 53

MP 364.379 − 8, 396.080 −

RNS-flp 85.165 4.279 − −

RNS 81.225 4.486 4, 923.220 1.705
RNS-AVX2 72.665 5.015 5, 063.920 1.658

62 25
MP 180.848 − 2, 680.535 −

RNS-flp 33.310 5.429 − −

RNS 31.895 5.670 1, 406.960 1.905

Table 4: Timing results.

et al. proposed another version of this work in which they have chosen to correct the over-
flows due to base conversions by computing it with double precision floating-point arithmetic
resulting in the same noise growth as the original version.

Beyond the immediate benefit for the FV scheme, this work could also be applied to any
protocol or scheme relying on primitives using the same kind of operations in a (Ring)-LWE
like setting ([BLLN13], [KGV16], [BDF17]).
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As illustrated in the previous chapters, the bottleneck of Ring-LWE based homomorphic
schemes coincides with the one of the underlying arithmetic which is the multiplication of
elements. Consequently, because of the efficiency of the NTT with the negative-wrapped con-
volution technique (Section1.3.2), and also the simplicity of the error sampling in this case
(Section1.1.3), most of the research on Ring-LWE based cryptography has focused on power-
of-two cyclotomics (R = Z[X ]/(Xn + 1)). However despite these advantages, computations in
high dimensions (required for FHE for instance), remain hardly practical. As explained in
Section 1.3.3, one way to amortize the cost of these operations is to use the batching tech-
nique to pack plaintexts. However it is not available for power-of-two cyclotomics with binary
plaintext data types. Hence considering other cyclotomic polynomials could offer, beyond a
possible greater number of slots for batching, more flexibility regarding to the dimension of
the underlying lattice and thus to the security of the Ring-LWE instantiation. Even though
such cyclotomics have been previously considered ([GHS12b], [LPR13], [LN14], [SV14], ...),
they remain very much unused because, in part, of its less convenient arithmetic.

Yet, in [LPR13], Lyubashevsky et al. have shown how to handle general Ring-LWE instan-
tiations, whether it concerns the associated arithmetic or the error sampling. Their approach
relies on the tensored representation of cyclotomic fields (Km =

⊗r
i=1Kmi where m = m1 · · ·mr

is the prime power decomposition of m), which allow them to evaluate efficiently (in time
O(n log(n))) the canonical embedding (cf. Section 1.1.2) and its inverse. Once evaluated on
the canonical embedding, additions and multiplications of elements are performed coefficient-
wise and the error can be sampled from a spherical discrete gaussian, while the inversion of the
embedding allows to return in the coefficient representation. Since this method corresponds
to an evaluation/interpolation of the elements (seen as polynomials) on the roots of the cyclo-
tomic, the result does not need to be reduced modulo Φm. Hence their method can be seen,
somehow, as the generalization of the NTT with the negative-wrapped convolution technique.
However, despite its numerous advantages in theory (no reduction modulo Φm, no zeroes-
padding to the next power of two), in practice the evaluation of the canonical embedding
with this method uses Bluestein and Rader algorithms for FFT ([RSR69]) whose efficiency
heavily depends on the prime factors of m and require anyway a zero-padding. Although, an
Haskell implementation of their method is available in the Λ◦λ library ([CP15]), their method
remain seldomly used and several works tend to keep using the univariate representation.

In this context, the work presented in this chapter focuses on improving the efficiency of the
arithmetic associated with the “classical” univariate representation in general cyclotomic rings
R = Z[X ]/(Φm(X )) so that one can use only efficient and well-known algorithms like Cooley-
Tukey based NTT. Our improvements concern the polynomial reduction required after having
performed a product with NTT of size N = N2(2n) and not the product itself. We have also
highlighted the applicability of our reduction algorithms to two of the most used homomorphic
encryption schemes, namely BGV ([BGV12]) and FV ([FV12]) implemented respectively in
HELib ([HS14]) and SEAL 2.3 ([CHH+17]).
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3.1 Preliminaries

This section aims to familiarize the reader with some elements required when working with
general cyclotomic polynomials. We start with the generic Barrett reduction algorithm which
is required to compute the reduction moduloΦm after having performed a polynomial product.
We also discuss about the choice of the cyclotomic polynomial in order to maximize: the
security, the arithmetic efficiency, and the number of slots.

3.1.1 Barrett’s reduction

As explained in Section 1.3.2, once we can compute the polynomial product c = a × b ∈
Z[X ]/(XN − 1) of two elements (a, b) ∈ R2

q through NTT of size N on each RNS channel of
q = q1 · · · qk (with qi prime and congruent to 1 modulo N) through Equation(1.3.8) recalled
herafter:

NTTN (c) = NTTN (a) � NTTN (b)

Hence, we obtain a polynomial c, in NTT representation, of degree smaller than N = N2(2n),
the next power of two greater than, or equal to 2n. At this point, one needs to reduce c
modulo Φm to get the result back on each Rqi and therefore in Rq. One way to perform this
reduction is to use the generic Barrett algorithm, like in [DS16].

Indeed, Barrett’s strategy for modular reduction over the integers [Bar86] can be adapted
to polynomial modular arithmetic to reduce a polynomial c of degree n + α, with α ≥ 0, by a
polynomial of degree n (for instance Φm) and is presented in Algorithm 17. It consists in com-
puting the quotient of the Euclidean division bc/Φmc through multiplications by precomputed
constants and shifts, and once the quotient computed deduce the remainder.

Algorithm 17 NTT based Barrett reduction in Fqi [X ], for a prime qi ≡ 1 mod N

Require: cNTT = NTTN (c) ∈ FNqi with deg(c) = n + α < 2n with qi prime, n = deg(Φm),
ñ = N2(n), A = N2(2α + 1), precomputed NTTñ(Φm) and NTTA(bXn+α/Φmc).

Ensure: c mod (q,Φm) in power-basis.
function NTTBarr(cNTT, qi,Φm)
c← NTT−1N (cNTT)
f ← bc/Xnc

r ← NTT−1A
(
NTTA(f ) � NTTA(bXn+α/Φmc)

)
r′ ← br/Xαc

d← NTT−1ñ
(
NTTñ(r′) � NTTñ(Φm)

)
c′ ← c mod X ñ − 1
return c′ − d

Remark 3.1.1. In [DS16], the authors use somehow NTTs of size N = N2(2n) to perform the
second product while in fact it only requires NTTs of size ñ = N2(n).

For the sake of completness we provide a proof of correctness of Algorithm 17 just below.
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Proof. Since Fqi [X ] is an Euclidean ring, we can write the Euclidean division of c of degree
n + α by Φm of degree n:

c = bc/ΦmcΦm + r

with deg r ≤ n− 1. Let a, b ≥ 0 be two integers, then we can write the following over the field
of fractions of Fqi [X ]:

Xn+a

Φm
·
c

Xn−b
=

(⌊
c

Φm

⌋
+
r

Φm

)
· Xa+b

Let r1 = ��Xn+a��Φm (X) and r2 = |c|Xn−b , we have deg(r1), deg(r2) < n and we can write:

(⌊
Xn+a

Φm

⌋
+
r1
Φm

)
·

(⌊ c

Xn−b

⌋
+

r2

Xn−b

)
=

(⌊
c

Φm

⌋
+
r

Φm

)
· Xa+b

⇔

⌊
Xn+a

Φm

⌋
·

⌊ c

Xn−b

⌋
+ ra + rα+b + r

′ =

(⌊
c

Φm

⌋
+
r

Φm

)
· Xa+b

with deg(ra) < a, deg(rα+b) < α + b and deg(r′) < 0. Writing the Euclidean division of
the product on the left part by Xa+b leads to:



⌊
Xn+a/Φm

⌋
·

⌊
c/Xn−b

⌋

Xa+b


Xa+b + r′′ + ra + rα+b + r

′ =

(⌊
c

Φm

⌋
+
r

Φm

)
· Xa+b

with deg(r′′) < a + b, and thus we finally obtain:

⇔



⌊
Xn+a/Φm

⌋
·

⌊
c/Xn−b

⌋

Xa+b


+
r′′ + ra + rα+b + r

′

Xa+b
=

⌊
c

Φm

⌋
+
r

Φm

By choosing b > 0 and a > α, the right term of the left member of the equation above have a
degree smaller than 0. Therefore we can deduce that the two floored polynomials are equal.

Hence, by taking b = 0 and a = α, we get that b c
Φm
c is equal to the flooring of the left

part of last equation, which is what Algorithm 17 computes for r′. Indeed, since bXn+α/Φmc ·

bc/Xnc is of degree strictly smaller than 2α + 1, the computation can be done with an NTT
of size A = N2(2α + 1).

Finally, we notice that the result of the computation of r = c− bc/Φmc ×Φm has a degree
strictly smaller than n. Since the polynomial c′ in the algorithm is nothing but bc/Φmc ×

Φm mod X ñ − 1 (the reduction modulo X ñ − 1 is a consequence of the NTT based polynomial
product in dimension ñ) at the end we have that c′ − d = (c − bc/Φmc ×Φm) mod (X ñ − 1) =
c mod Φm. The last equality holds because deg(c mod Φm) < n and is thus strictly smaller
than ñ. �

One can notice, that the performance of Algorithm 17 is directly related to the size of the
polynomial to be reduced: the algorithm is more efficient when α is small. More precisely if
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we denote ñ = N2(n) and A = N2(2α + 1) the cost of the algorithm is given by:

CNTT(N ) + 2CNTT(ñ) + 2CNTT(A) + (ñ + A)MMultqi

where CNTT(x) denotes the cost for evaluating (1.3.7) (or its inverse) of size x and MMultqi
the cost of a modular multiplication modulo qi.

3.1.2 About the choice of the cyclotomic

As shown in Section 1.3.2, the bottleneck of Ring-LWE arithmetic is the polynomial products
whose asymptotic complexity is quasi-linear in the degree n of Φm, and even more so when we
are not using power-of-two cyclotomics and thus NTT with negative-wrapped convolution. In
practice, the most efficient NTT algorithms require to have a degree which is a power-of-two.
Hence, even if it requires to pad the polynomials’ coefficients with zeros from 2n to N , we use
NTTs of size N = N2(2n) the next power of two greater than or equal to 2n. Since practical
security of Ring-LWE instantiations increases with the degree n (for a modulus q and an
error distribution χerr carefully chosen, see Section 4.2.5), choosing n (and thus 2n) directly
as a power-of-two maximizes the security without affecting the efficiency of the underlying
arithmetic.

Lemma 3.1.2 ([DF04], Preliminaries). Let m = pr11 · · · p
rs
s be the prime decomposition of m

where each ri ≥ 1, then

ϕ(m) =
s∏

i=1

(pi − 1)pri−1i (3.1.1)

where ϕ denotes the Euler-totient function.

According to Equation(3.1.1), in order to have n = ϕ(m) equal to a power of two we
must select m such that m = 2kp1 · · · ps, where the factors pi are prime numbers of the shape
pi = 2li +1. It is proven that li must necessary be a power-of-two for such number to be prime,
in this case these numbers are called Fermat numbers (22ni +1). However this condition is not
sufficient for the primality and it is not known whether or not there are an infinite number of
Fermat primes. Actually, so far we only know 5 such numbers, which correspond to the first
five Fermat numbers: F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537.

Lemma 3.1.3 ([Lan05], chapter 6.3). Let m = 2kr with r an odd integer, then

Φm(X ) = Φr (−X2k−1 ) (3.1.2)

Equation (3.1.2) shows that a cyclotomic of index m = 2kr with r odd, offers as many
batching slots (see Section 1.3.3) than the cyclotomic of index r. Therefore in order to
minimize the ratio n/`, with ` is the number of batching slots, and thus the arithmetic
efficiency one should choose m odd. As a consequence, in order to maximize the degree, and
thus the security, without increasing the arithmetic cost, m should be chosen as a power of
Fermat primes. Moreover choosing such m allows us to know precisely the number of slots
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of Φm when the plaintext modulus is t = 2 which is particularly interesting for evaluating
homomorphically boolean circuits for instance.

Lemma 3.1.4. Let m = p1 · · · ps the product of s distinct Fermat primes sorted accordingly
to their size, i.e. pi = 2li + 1 prime with li = 2ki and p1 < p2 < . . . < ps, then Φm splits in
` = 2l1+· · ·+ls−ks−1 irreducible factors modulo 2.

Proof. Lemma 1.3.3 states that the number of irreducible factors of Φm modulo 2 is given by
` = n/d where n = ϕ(m) and d is the order of 2modulo m. It is not hard to see that the order of
2 modulo each pi is oi = 2li, and since Z/mZ splits in the cartesian product of the Fpi through
the CRT we know that 2 has order lcm(o1, . . . , os) modulo m. Moreover o1 | o2 | · · · | os
therefore 2 has order os modulo m and so ` = n/os = 2l1+· · ·+ls/2ls = 2l1+· · ·+ls−ks−1. �

Last but not least, it would be interesting to know if cyclotomics whose index is a power
of Fermat primes offer good ratios between the practical cost of their arithmetic and their
number of slots. Indeed if we quantify the arithmetic cost in practice N log2(N ) (' complexity
of NTTs and reductions algorithms), cyclotomics offering the smallest ratio N log2(N )/` are
those which “amortize” best the cost of the arithmetic.
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Figure 8: Amortized cost of the arithmetic for cyclotomics of index 1000 ≤ m ≤ 100000

Figure 8 indexes 103 ≤ m ≤ 105 of cyclotomic polynomials with the smallest ratios
N log2(N )/`. One can see that besides offering a power-of-two degree, and therefore a prob-
ably higher level of security for an arithmetic of size N = N2(2n), Fermat primes product
ratios are among the best ones. Of course, the smallest ratios correspond to the small degree
but depending on the targeted application we may need a large degree. For instance with
homomorphic encryption, the multiplicative depth increases with the ciphertext modulus q
whose size is bounded by the degree n, for a fixed σerr and a given level of security (cf. Equa-
tion(1.1.3)). As a consequence large degree cyclotomics are required for evaluating arithmetic
circuits with an important multiplicative depth.
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3.2 Improving polynomial reduction modulo Φm

In this section, we propose two efficient methods to compute polynomial reductions. The
first method takes advantage of the properties of the cyclotomic polynomials to improve
the efficiency of the Barrett algorithm. The second reduction rests on an adaptation of the
Montgomery modular reduction over integers [Mon85] to polynomials. In order to ease our
exposition, throughout the rest of this section, unless stated otherwise, the letter q will refer
to a prime congruent to 1 modulo N . The reader should not forget that for applications
to Ring-LWE the modulus q is chosen composite q = q1 · · · qk (c.f. Section 1.3.1), and thus
products and polynomial reductions need to be done in each RNS channel of q, i.e. modulo
each prime factor qi of q.

3.2.1 Barrett’s reduction for cyclotomic polynomials

As explained in the previous section, Barrett algorithm is sensitive to the difference between
the degree of the polynomial to be reduced and that of the polynomial we want to reduce by.
The smaller the difference, the more efficient the algorithm will be. Herein we propose an
efficient method to reduce this difference before doing the actual Barrett reduction.

In our context, polynomials have degree 2n − 2 and coefficients in Z/qZ for a prime q
congruent to 1 modulo N and have to be reduced modulo Φm. Let c be such a polynomial, if
c was reduced by a polynomial Qsp of degree n+α+1, the difference between the degree of the
polynomial and the degree of Φm would drop to α. However, in order to obtain the correct
value modulo Φm in the end, Φm has to divide Qsp and for the efficiency of the reduction Qsp

should be sparse enough so that its reduction can be handled through few operations in each
Fqi . Xm−1 would be a good candidate however the difference between m and n = ϕ(m) is quite
important most of the time, and in particular for the Fermat primes product cyclotomics we
consider. Nonetheless, one can find a suitable sparse polynomial Qsp of degree smaller than
m by using cyclotomics properties.

First, the property given in Proposition 1.1.5:
∏

d/mΦd (X ) = Xm − 1, allows us to choose
Qsp as the product of Φm and some Φd for d dividing m.

Lemma 3.2.1 ([Lan05], chapter 6.3). The following propositions are true:

• let m = pr11 · · · p
rs
s be an integer with its prime factorization and let r = p1 · · · ps be the

radical of m then: Φm(X ) = Φr (Xm/r );

• let p be a prime not dividing m′ then: Φm′p (X ) ·Φm′ (X ) = Φm′ (X p).

The first statement generalizes Lemma 3.1.3 in the sense that a cyclotomic of index m will
have a higher degree, but the same number of slots, than the cyclotomic of index r the radical
of m. Hence to optimize the arithmetic efficiency one should choose a square free index m.
By using recursively the second statement on a square free index m = dh, for some d dividing
m, one can choose Qsp = Φd (Xh) since we have Φm | Qsp | Xm − 1. Therefore one should
choose d dividing m such that Φd is very sparse and its degree hϕ(d) is as close as possible
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to n. Moreover if d has at most two distinct odd prime factors then Φd and thus Qsp has its
coefficients lying in {−1, 0, 1} ([Isa94]). In this case reduction modulo Qsp in Fq only requires
additions modulo q and can be performed very efficiently.

In addition, when m < 2n−2, c can initially be reduced by Xm−1 with 2n−m−1 additions
in Fq. Since Φm(X ) | Qsp(X ) | Xm − 1 the strategy remains correct, and the complexity of
the reduction by Qsp(X ) is further reduced. More precisely, if HW(Qsp) denotes the Hamming
weight of Qsp, i.e. its number of non-zero coefficients, the cost of the reduction of c by Qsp

is:
(HW(Qsp) − 1)(m − deg(Qsp))

additions in each Fqi . At this point, we obtain c′ = c mod Qsp (with deg(c′) ≤ n + α and
c′ ≡ c mod Φm).

Our optimized Barrett algorithm is depicted in Algorithm 18. It starts by recovering c
in power-basis from the NTT representation output by (1.3.8). Then it consecutively reduces
c of degree 2n − 2 by Xm − 1 and by the sparse polynomial Qsp. This allows to recover
c′ = c mod Qsp of degree n + α very efficiently. Afterwards, we apply the classical Barrett
reduction to c′ (given in coefficients representation) to get c′′ = c mod Φm.

Algorithm 18 Optimized NTT-based Barrett reduction in Fq[X ], for a prime q ≡ 1 mod N .

Require: cNTT = NTTN (c) with deg(c) 6 2n−2, Qsp ∈ Z[X ] of degree n+α+1, N = N2(2n),
ñ = N2(n), A = N2(2α + 1), precomputed NTTñ(Φm) and NTTA(bXn+α/Φmc).

Ensure: c′′ = c mod Φm in power-basis.
function redBtΦm(cNTT, q, Φm, Qsp)
c← NTT−1N (cNTT)
if m < 2n − 2 then
c← c mod Xm − 1

c′ ← c mod Qsp
f ← bc/Xnc

r ← NTT−1A (NTTA(f ) � NTTA(bXn+α/Φmc))
r′ ← br/Xαc

d← NTT−1
ñ

(NTTñ(r′) � NTTñ(Φm))
c′′ ← c mod X ñ − 1
return c′′ − d

The impact of this sparse reduction is illustrated in Table 5, where polynomials Qsp are
presented for different cyclotomic polynomials. We have chosen to use cyclotomics whose
index is a product of Fermat primes for the reasons discussed in Section 3.1.2. The number
of batching slots ` associated with each cyclotomic is also presented. Moreover, since our
method can be applied to any index m we have also taken the index m = 32767 = 7× 31× 151

which is not a product of Fermat primes but which has a relatively good ratio N log2(N )/`
(Section 3.1.2). In order to highlight the sparsity of Qsp we also give HW(Qsp) which is the
number of non-zero coefficients of Qsp.
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Complexity

Since the complexity of computing multiplications in Fq is much higher than additions, the
cost of the reduction by the sparse polynomial can be neglected. Moreover, with the RNS,
each multiplication in Rq, with q = q1 . . . qk can be decomposed into k independent and
smaller multiplications. The degree of Qsp is n + α + 1 thus NTT of size A = N2(2α + 1) are
required to compute the first polynomial product in Algorithm 18. This is in contrast with
N = N2(2n) which would have been the size required without using the sparse reduction.
Therefore the cost, in terms of modular multiplications, to reduce the polynomial c output
by (1.3.8) is essentially k times the cost of Algorithm 18:

k · (CNTT(N ) + 2 · CNTT(A) + 2 · CNTT(ñ) + A + ñ) .

While the cost of the method by using directly Barrett’s algorithm, i.e. without performing
the reduction by the sparse polynomial, is:

k · (3 · CNTT(N ) + 2 · CNTT(ñ) + N + ñ) .

Based on this analysis, and assuming that CNTT(N ) = N log2(N ), we also provide in Table
5 the theoretical speed-up obtained with the use of the sparse reduction. Those theoretical
speed-ups can be compared with those obtained in practice which are presented in Table 10.

m n ` Qsp deg(Qsp) α HW(Qsp) A N Speed-up
3855 2048 128 Φ3·5(X257) 2056 7 7 24 212 2.06
4369 4096 256 Φ17(X257) 4112 15 17 25 213 2.05
13107 8192 512 Φ3(X17·257) 8738 545 3 211 214 1.86
21845 16384 1024 Φ5(X17·257) 17476 1091 5 212 215 1.86
32767 27000 1800 Φ7(X31·151) 28086 1085 7 212 216 1.95
65535 32768 2048 Φ3·5(X17·257) 34952 2183 7 213 216 1.85

Table 5: Sparse polynomials used for partial reduction with their related parameters.

3.2.2 NTT-based Montgomery’s reduction

We propose a Montgomery reduction of a polynomial given in NTT representation, inspired
by the orginal Montgomery reduction over the integers [Mon85] and the work of Bajard et
al. [BIN06]. The purpose of this new reduction is to overcome the bottleneck of the previous
optimized Barrett algorithm, which is the computation of the inverse NTT of size N of the
input polynomial (1.3.8). Our Montgomery reduction takes advantage of the presence of the
NTT basis of size N/2 (seen as an RNS basis in [BIN06]) in the basis of size N allowing to
perform all the computations, in particular the inverse NTT evaluation, in the basis of size N/2
instead of N .

The NTT representation of a polynomial of size N was defined in (1.3.7) as the set {c mod

(X − ψ j ) |0 ≤ j < N } with ψ a primitive N-th root of unity in Fq. This representation can be
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seen as a polynomial-RNS representation of c mod (XN − 1) since XN − 1 =
∏

0≤ j<N (X − ψ j )
modulo q, with respect to the following NTT-basis:

Bψ,N = {|X − 1|q, |X − ψ |q, . . . , |X − ψN−1 |q }

As XN −1 splits in (XN/2 −1)(XN/2 +1) when N is even, half of the NTTN representation
of c corresponds to its NTTN/2 representation. Hence, the basis Bψ,N is split along even and
odd powers of ψ. We can then define two sub-bases defining two polynomials:




B
(e)
ψ,N = {[X − ψ2j |q, 0 ≤ j ≤ N

2 − 1} and Ψ(e) =
�����

N/2−1∏
j=0

(X − ψ2j )
�����q

B
(o)
ψ,N = {|X − ψ2j+1 |q, 0 ≤ j ≤ N

2 − 1} and Ψ(o) =
�����

N/2−1∏
j=0

(X − ψ2j+1)
�����q

(3.2.1)

It is straightforward to notice that Ψ(e) ≡ |XN/2 − 1|q and Ψ(o) ≡ |XN/2 + 1|q. We also
note that since N is a power of two, one has Ψ(o) ≡ ΦN mod q. Therefore, thanks to Lemma
3.2.3, whose first point is a direct consequence of Lemma 3.2.2 which is recalled below, we
can choose XN/2 + 1 as the Montgomery factor.

Lemma 3.2.2 ([Fil00], Lemma 2). Let n and m be positive integers with n > m. If the
quotient n/m is not a power of a prime, then for every integer a, there exist U and V in Z[X ]

satisfying:
Φm(X ) ·U (X ) +Φn(X ) · V (X ) = a

If for some prime p and some positive integer t we have n/m = pt, then there exist U and V
in Z[X ] satisfying the above equation if and only if p | a

Lemma 3.2.3. Let Φm be the m-th cyclotomic polynomial of degree n and N be the smallest
power of two greater than or equal to 2n. If m is not a power of two then:

• there exists (U,V ) ∈ Z[X ]2 such that U (X ) ·Φm(X ) + V (X ) ·ΦN (X ) = 1;

• for any prime q, Φm and (XN − 1) are coprime in Fq. In particular Φm is a unit in
Fq[X ]/(ΦN ).

Proof. The first point is a direct consequence from Lemma 3.2.2. Since m is not a power
of two, m cannot divide N . By denoting m = 2rm′ with m′ > 1 an odd integer we have
n = 2r−1ϕ(m′), thus 2n = 2rϕ(m′) and then if N divides m, N2(ϕ(m′)) = 1 which is not
possible since m′ > 3. Therefore N and m do not divide each other and we can apply Lemma
3.2.2.

Let α be a root of Φm in the algebraic closure of Fq. If α is also a root of XN − 1 then
αN = 1, since α is of order m by definition of Φm it implies that m divides N which is
impossible since N is a power of two and m is not. So, Φm and XN − 1 are coprime on the
algebraic closure of Fq thus in Fq. The second point comes from Bezout equality in Fq and
from the fact that XN − 1 ≡ (XN/2 − 1)(XN/2 + 1) mod q. �
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One can extract from the coordinates of c in Bω,N the representation ĉ(e) of c in B (e)
ω,N

(resp. ĉ(o) in B (o)
ω,N ). So, given ĉ

(o) and ĉ(e), we can use the NTT operator to get:

NTT−1N/2(ĉ(e)) = c mod (q, XN/2 − 1).

Definition 3.2.4. We define the following function, which takes in as input the residues of
the polynomial c (deg(c) < N) modulo a prime q:

modMgΦm,Ψ
(o),q (c) =

c +Φm × | − c/Φm |Ψ(o)

Ψ(o) mod q. (3.2.2)

The modMgΦm,Ψ
(o),p function defined in (3.2.2) is a classical Montgomery reduction with

factor Ψ(o) and consisting in an exact polynomial division. It always outputs a polyno-
mial congruent to |c/Ψ(o) |Φm , furthermore when deg(c) 6 N/2 + n − 1 the output is exactly
|c/Ψ(o) |Φm .

Lemma 3.2.5. If deg(c) 6 N
2 + n − 1, then modMgΦm,Ψ

(o),p (c) = c/Ψ(o) mod (p,Φm).

Proof. The degree of the numerator in (3.2.2) is bounded bymax(deg(c), deg(Φm)+deg(Ψ(o))−
1) 6 N/2 + n − 1. Thus, the degree of the resulting quotient is bounded by n − 1 < N/2.
Therefore, the output is |c/Ψ(o) |Φm and the computation of (3.2.2) can be made modulo
XN/2 − 1, i.e. in an NTT representation of size N/2 when using primes q ≡ 1 mod N . �

Algorithm 19 details the computation of (3.2.2). The following precomputations are used
therein:




Ŵ (o) : −1/Φm mod (q,Ψ(o)) in base B (o)
ω,N

Ŷ (e) : 1/Ψ(o) ≡ 1/2 mod (q,Ψ(e)) in base B (e)
ω,N

Ẑ (e) : Φm/Ψ
(o) ≡ Φm/2 mod (q,Ψ(e)) in base B (e)

ω,N

Algorithm 19 NTT-based Montgomery reduction in Fq[X ], for a prime q ≡ 1 mod N
.
Require: ĉ = NTTq,N (c), with N = N2(2n) and deg(c) 6 2n−2 < N/2+n−1 and precomputed

constants Ŵ (o), Ŷ (e) and Ẑ (e).
Ensure: R = (c/Ψ(o)) mod (q,Φm) in power-basis.
function redMgΦm,Ψ

(o),q(ĉ, Ŷ
(e), Ẑ (e))

(ĉ(e), ĉ(o)) ← Split(ĉ) . Split the NTT coeff. wrt parity of indexes
Q̂(o) ← ĉ(o) � Ŵ (o)

Q̂(e) ← BaseConv(Q̂(o)) . base conversion from B (o)
ω,N to B (e)

ω,N

T̂ (e) ← ĉ(e) � Ŷ (e) + Q̂(e) � Ẑ (e)

R← NTT−1N/2(T̂ (e))
return R

In line 3 of Alg. 19, we require an operator which takes in as input a vector of coefficients
in base B (o)

ω,N . This vector defines a unique polynomial Q with deg(Q) < N/2. Then this
operator must output the vector of coefficients of Q in base B (e)

ω,N . The function BaseConv is
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defined for any Q with deg(Q) < N/2 by:

BaseConv : (Q(ψ),Q(ψ3), . . . ,Q(ψN−1)) 7→ (Q(1),Q(ψ2), . . . ,Q(ψN−2)) (3.2.3)

In [BIN06], (3.2.3) is computed with a classical Lagrange interpolation. Our context is
more specific, because the points in which polynomials are evaluated are powers of a N th root
of unity ψ in Fq. Therefore it can be implemented with an inverse NTT of size N/2 (with ψ2

as primitive N/2-root of unity) with negative-wrapped convolution (nwc) (cf. Section 1.3.2)
followed by a classical NTT of size N/2. Thus it can be performed basically with one inverse
NTT of size N/2, N/2 modular multiplications and one NTT of size N/2.

NTTN,ψ (c) =
(
c(1), c(ψ), c(ψ2), . . . , c(ψ2N−1)

)
modulo M = XN/2 + 1

(c(ψ), c(ψ3), . . . , c(ψ2N−1))

N/2 mult.

Q = c����−Φ
−1
m

���M

modulo XN/2 − 1

(c(1), c(ψ2), . . . , c(ψ2N−2))

(
Q(1),Q(ψ2), . . . ,Q(ψ2N−2)

)

(c +Q�Φm) �M−1

interpol./eval.

NTT−1
N/2,ψ2 + NTTN/2,ψ2

N mult.
+

N/2 add.NTTN/2,ψ2 ◦

(
(1, ψ−1, . . . , ψ−N/2+1) � NTT−1

N/2,ψ2

)
NTT−1

N/2,ψ2 with nwc

NTT−1
N/2,ψ2

c ·M−1 mod Φm

Figure 9: NTT-based Montgomery reduction

Complexity

As a consequence, reducing a polynomial c of degree 2n − 2 with coefficients taken modulo
q = q1 · · · qk with Algorithm 19 requires to run it on each RNS channel (modulo each qi).
Therefore its cost in terms of modular multiplications is given by:

k · (3 · CNTT(N2(n)) + 4 · N2(n)) .

One can find in Table 6 the predicted speed-up of the proposed Montgomery reduction by
assuming once again than an NTT of size n requires n log2(n) modular multiplications. Despite
its lower complexity, the Montgomery algorithm suffers from one main drawback which is the
presence of the Montgomery factor in the output.
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m 3855 4369 13107 21845 32767 65535
n 2048 4096 8192 16384 27000 32768

Speed-up 2.62 2.62 2.63 2.63 2.63 2.63

Table 6: Theoretical speed-up of Alg. 19 when compared with Alg. 17

3.3 Adaptation of BGV and FV to the Montgomery represen-
tation

In this section, we show how the Montgomery representation induced by Algorithm 19 im-
pacts the BGV and FV schemes and suggest modifications to handle these changes. For
simplicity, we denote by M the Montgomery factor (XN/2 + 1 mod Φm). Thanks to Lemma
3.2.3 we also know that M−1 exists in R. We assume that ciphertexts c̃t are given in Mont-
gomery representation, i.e. such that c̃t = (c̃0, c̃1) = (c0M, c1M ). The conversion to the
Montgomery domain can be integrated in the encryption procedure for increased efficiency,
and the M factor can be removed during decryption by applying a Montgomery reduction
to [c̃0 + c̃1s]q. The Montgomery reduction only impacts procedures involving multiplications
in Rq by adding a factor M−1 to the result. Therefore, homomorphic additions are not af-
fected by this different representation. Notice that the Montgomery representation is stable
with respect to multiplications ((cM ) · (c′M ) = (c · c′)M2 which is transformed in (c · c′)M
(modΦm) after the reduction). Thus the only impact one has to consider is on homomorphic
multiplication.

3.3.1 Impact of the Montgomery representation in BGV

Homomorphic multiplication in BGV corresponds to a polynomial multiplication of the ci-
phertexts, therefore when multiplying two ciphertexts, encrypted at the same level j, cti =
(ci,0, ci,1) ∈ R2

qj
we obtain:

c̃t1 ? c̃t2 = ((c1,0 · c2,0) ·M, (c1,0 · c2,1 + c1,1 · c2,0) ·M, (c1,1 · c2,1) ·M ) = Kct1 ? ct2 = c̃tmult

Thus, the noise is not affected in this part. As explained in Section 1.2.1 usually a relineariza-
tion procedure is applied after each multiplication. Now, we assume that we need to relinearize
the ciphertext c̃tmult = (c̃0, c̃1, c̃2). Note that the relinearization procedure of BGV can be
adapted to RNS in exactly the same way than for FV (cf. Chapter 2), hence we will adopt the
notations of Chapter 2 for this part. Within the RNS variant, the following dot products are
computed over Rqj

〈
DRNS,qj (c2),

−−→
rlki

〉
, where −−→rlk0 =

[
PRNS,qL (s2) + −→as + t−→e

]
qL

and −−→rlk1 =[
−
−→a

]
qL

(cf. Section 1.2.1). The goal of relinearisation is to obtain
〈
DRNS,qj (c2),PRNS,q (s2)

〉
≡
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c2s
2 mod qj with a limited increase of the noise. Indeed, one can write:




〈
DRNS,qj (c2),

−−→
rlk0

〉
≡ c2 · s

2 +
〈
DRNS,qj (c2),−→a

〉
· s + t

〈
DRNS,qj (c2),−→e

〉
mod qj

≡ c2s
2 + a′s + te′ mod qj〈

DRNS,qj (c2),
−−→
rlk1

〉
≡ −

〈
DRNS,qj (c2),−→a

〉
≡ −a′ mod qj

(3.3.1)

Now, we need to obtain the Montgomery representation of the output of this relineari-
sation, i.e. a ciphertext like

((
c2 · s

2 + a′ · s + e′
)
·M,−M · a′

)
. When the Montgomery

representation is used, c̃2 replaces c2 in (3.3.1). Therefore if we modify the relinearisation key
as follows:

−−−−→
rlkM0 =

[(
PRNS,qL

(
s2/M

)
+ −→a · s + t−→e

)
·M2

]
qL
,
−−−−→
rlkM1 =

[
−
−→a ·M2

]
qL

(3.3.2)

In the following equations, we simulate the effect of Montgomery reduction by introducing
a factor M−1 (modΦm):〈

DRNS,qj

(
c̃2

)
,
−−−−−→
rlkM0

〉
·M−1 ≡

[
c̃2 · s

2 ·M +
〈
DRNS,qj

(
c̃2

)
,−→a

〉
· s ·M2

]
·M−1

+
〈
DRNS,qj

(
c̃2

)
,−→e

〉
·M2 ·M−1 mod qj

≡ c̃2 · s
2 +

(
a′′ · s + e′′

)
·M mod qj

=
(
c2 · s

2 + a′′ · s + e′′
)
·M mod qj

Similarly, we get
〈
DRNS,qj

(
c̃2

)
,
−−−−−→
rlkM1

〉
·M−1 ≡ −a′′ ·M mod qj . Hence, we have obtained

the Montgomery representation of the output of relinearisation step at no extra cost - both
computationally and in terms of noise growth.

Finally, one needs to apply a modulus switching procedure so as to manage noise growth.
We consider the ciphertext (c̃0, c̃1) encrypting m at level j and given in Montgomery repre-
sentation. Let ql | qj and δi = [−c̃i/t]qj/ql × t. Then the modulus switching function applied
to c̃i outputs ĉi = (c̃i + δi) ×

ql
qj

(cf. Section 1.2.1).

Lemma 3.3.1. If 


[c0 + c1 · s]qj




∞ <
qj

2 − δR



M

−1


∞
qj t

2ql
(1 + δR ‖s‖∞) and qj = ql mod t,

then [(
ĉ0 + ĉ1 · s

)
·M−1

]
ql
= [c0 + c1 · s]qj

mod t (3.3.3)

and






[(
ĉ0 + ĉ1 · s

)
·M−1

]
ql





∞
6

ql
qj




[c0 + c1 · s]qj




∞ + tδR



M

−1


∞
1 + δR ‖s‖∞

2
(3.3.4)

Proof. It is similar to the proof presented in Section 1.2.1. By definition of c̃i, we have:

[(
c̃0 + c̃1 · s

)
·M−1

]
qj
= [c0 + c1 · s]qj

= c0 + c1 · s − qjk.
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By definition of ĉi, we can write:

(
ĉ0 + ĉ1 · s

)
·M−1 =

ql
qj

(
c̃0 + c̃1 · s + δ0 + δ1 · s

)
·M−1

=
ql
qj

(c0 + c1 · s) +
ql
qj

(δ0 + δ1 · s)M−1

=
ql
qj

[c0 + c1 · s]qj
+ qlk +

ql
qj

(δ0 + δ1 · s) ·M−1.

(3.3.5)

Moreover, since ‖δi ‖∞ 6
qj t

2ql
, we get the following bound:




(δ0 + δ1 · s) ·M−1


∞ 6 tδR
qj

2ql



M

−1


∞ (1 + δR ‖s‖∞)

Thus, from the above and by considering the hypothesis on the norm of [c0 + c1 · s]qj
, we

deduce that:




(
ĉ0 + ĉ1 · s

)
·M−1 − qlk




∞ < ql/2

and then that (
ĉ0 + ĉ1 · s

)
·M−1 − qjk =

[(
ĉ0 + ĉ1 · s

)
·M−1

]
ql
.

Hence, from this previous equality and by bounding the norm of last member of (3.3.5), we
obtain (3.3.4). Finally, we get (3.3.3) by:

[(
ĉ0 + ĉ1 · s

)
·M−1

]
ql
=

(
ĉ0 + ĉ1 · s

)
·M−1 − qlk

=
(
c̃0 + c̃1 · s

)
/M − qk mod t (ĉi = c̃i mod t; qj = ql mod t)

= c0 + c1 · s − qjk mod t (def. of c̃)
= [c0 + c1 · s]qj

mod t .

�

From this lemma, we can see that the Montgomery representation of the ciphertext impacts
the modulus switching procedure by the addition of an extra factor δR ‖M−1‖∞ to the last
term on the bound of the hypothesis and of (3.3.4) compared to those given in Section 1.2.1.
We will discuss the sizes of δR and ‖M−1‖∞ in the next sections.

3.3.2 Impact of the Montgomery representation in FV

We recall that the first step of the FV homomorphic multiplication corresponds to the extension
of ciphertexts to a larger RNS basis, so that coefficients of the product are not reduced
modulo q. In order to improve efficiency, an approximate extension is used which introduces
an important noise growth which has to be reduced through Algorithm 15, in the end the
norm of the polynomials is bounded by q

2 (1 + ρ) for a parameter ρ > 0 (cf. Lemma 2.2.1).
Once the ciphertexts to multiply, given in Montgomery representation, have their residues in
both bases, the product and the scaling are performed resulting in the degree 2 ciphertext
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given below:

c̃tmult = *
,

[ ⌊
t
q

M · c0 · c′0

⌉]

q

,

[ ⌊
t
q

M · (c0 · c′1 + c1 · c
′
0)

⌉]

q

,

[ ⌊
t
q

M · c1 · c′1

⌉]

q

+
-

(3.3.6)

Proposition 3.3.2. Let ct = (c0, c1) ∈ R2
q and ct′ = (c′0, c

′
1) ∈ R2

q two ciphertexts with
inherent noise v and v′ respectively and c̃tmult = (c̃0, c̃1, c̃2) be the degree 2 ciphertext given
in equation (3.3.6). By denoting

rM∞ = δR ‖M
−1‖∞(1 + ρ)

δR ‖s‖∞ + 1

2
+ 1

we have:
(c̃0 + c̃1 · s + c̃2 · s2) ·M−1 ≡ ∆ [m1 ·m2]t + vmult mod q

with the following bound on the noise:

‖vmult‖∞ ≤δRt
(
rM∞ +

1

2

)
(‖v‖∞ + ‖v′‖∞) +

δR
2

min(‖v‖∞, ‖v‖ ′∞)

+ |q |tδRt
(
rM∞ +

δR ‖M
−1‖∞

2
+ 1

)
+ δR ‖M

−1‖∞
1 + δR ‖s‖∞ + δ

2
R
‖s‖2∞

2
. (3.3.7)

Proof. First notice that similarly to equation (1.2.16), any valid ciphertext c̃t = (c̃0, c̃1) ∈ R2
q

in Montgomery representation satisfies:

c̃0 + c̃1 · s =M ·
(
∆[m]t + v

)
+ qr for some r ∈ R .

with:
r =

c̃1 + c̃1 · s −M · (∆[m]t + v)
q

thus:
‖r ·M−1‖∞ ≤ δR ‖M

−1‖∞(1 + ρ)
δR ‖s‖∞ + 1

2
+ 1 = rM∞ . (3.3.8)

Thus when multiplying two valid ciphertexts c̃t = (c̃0, c̃1) and c̃t′ = (c̃′0, c̃′1), in Mont-
gomery representation, encrypted under the key we obtain:

(c̃0 + c̃1 · s) · (c̃′0 + c̃′1 · s) =(∆M · [m]t +M · v + qr) · (∆M · [m′]t +M · v′ + qr′)

=M∆2[m]t · [m
′]t +M∆([m]t · v

′ + [m′]t · v)

+ q∆([m]t · r
′ + [m′]t · r) +M · v · v′ + q(v · r′ + v′ · r)

+ q2r · r′ ·M−1.

We recall the following useful equalities: q = ∆t + |q |t , [m]t · [m
′]t = [m ·m′]t + trm and

96



3.3. Adaptation of BGV and FV to the Montgomery representation

v · v′ = [v · v′]∆ + ∆rv. Then by performing the scaling we obtain:

t
q

(c̃1 + c̃1 · s) · (c̃′1 + c̃′1 · s) =M∆[m ·m′]t +M · ([m]t · v
′ + [m′]t · v) + tqr · r′ ·M−1

+ (q − |q |t )([m]t · r
′ + [m′]t · r + rm) +M · rv + t(v · r′ + v′ · r)

+M · rr .

with rr ∈ R like in (1.2.18), then by considering the rounding error ra ∈ R (Equation (1.2.19))
we get:(⌊

t
q

M · c0 · c′0

⌉
+

⌊
t
q

M · (c0 · c′1 + c
′
0 · c1)

⌉
· s +

⌊
t
q

M · c1 · c′1

⌉
· s2

)
·M−1 ≡ ∆[m·m′]t+vmult [q]

with:

vmult =([m]t · v
′ + [m′]t · v) − |q |tM−1 · ([m]t · r

′ + [m′]t · r + rm) + rv

+ tM−1 · (v · r′ + v′ · r) + rr −M−1 · ra .

By using Equations (1.2.6), (3.3.8), (1.2.17), (1.2.18) and (1.2.19) we can bound vmult:

‖vmult‖∞ ≤δRt
(
rM∞ +

1

2

)
(‖v‖∞ + ‖v′‖∞) +

δR
2

min(‖v‖∞, ‖v‖ ′∞)

+ |q |tδRt
(
rM∞ +

δR ‖M
−1‖∞

2
+ 1

)
+ δR ‖M

−1‖∞
1 + δR ‖s‖∞ + δ

2
R
‖s‖2∞

2
.

�

Concerning the relinearization step, an analysis similar to the one in Section 3.3.1 can be
performed, with minor adaptations for the relinearisation key. Similarly, one concludes that
the Montgomery reduction introduces no extra cost, both in terms of computation and in
terms of noise growth, during this step.

3.3.3 Overall impact on noise growth

For both BGV and FV, ‖M−1‖∞ and the expansion factor δR are involved in the noise growth
due to the scaling steps performed with the Montgomery reduction.

Therefore in this case, one must take into account the norm of the associated M−1 when
selecting parameters but this does not seem to be very restrictive. Indeed on the first 20, 000
cyclotomics less than 13.4% have an infinite norm greater than 10, less than 0.5% greater than
100 and only 3 of them greater than 1, 000. Moreover among those cyclotomics, those whose
M−1’s norm is greater than 100 offer a relatively small number of batching slots compared to
their degree. Indeed their ratio N log2(N )/` is equal to 5343 on average (and lie between 450

and 30720) whereas the cyclotomics proposed in Table 5 have their ratio smaller than 250 (cf.
Figure 8). Therefore the cyclotomics whose M−1 factor has large coefficients do not seem to
be the best suited for batching.

97



Chapter 3. Polynomial arithmetic in general cyclotomic rings

Concerning the expansion factor δR , when m is a power of two, it is equal to n but for
other m it can be much larger (even super polynomial in m [Erd46]). We can derive an
upper bound on the expansion factor for the m-th cyclotomic by considering Fm : Q2n−2[X ]→

Q[X ]/(Φm(X )), so that Fm(a) = a mod Φm for every a ∈ Q[X ] of degree lesser than or equal
to 2n − 2.

Lemma 3.3.3. Let m be a positive integer and let R = Z[X ]/(Φm(X )), with deg(Φm) = n. If
δR denotes the expansion factor of the ring R, then δR ≤ n‖Fm‖∞.

Proof. Let a and b two elements of R−{0}. They naturally embed in Zn−1[X ] ⊂ Q2n−2[X ]. We
can write ‖ab‖∞ ≤ n‖a‖∞‖b‖∞. As the product ab has degree at most 2n− 2 with coefficients
in Z, it belongs to Q2n−2[X ]. Since Fm is a linear map between two vector spaces of finite
dimension it is continuous, then we obtain ‖Fm(ab)‖∞ ≤ ‖Fm‖∞‖ab‖∞ ≤ n‖Fm‖∞‖a‖∞‖b‖∞.

�

These two parameters, are given in Table 7 for the different cyclotomic polynomials con-
sidered in this chapter. From now, we assume that the key distribution χkey and the error
distribution χerr output elements whose infinity norms are bounded by Bkey and Berr = 6σerr

respectively.

BGV

Similarly to Section 1.2.1, if the two level i ciphertexts have a noise whose norm is bounded
by V (V < bq0/2tc), we can show that the level i − 1 ≥ 0 ciphertext resulting from the
multiplication plus relinearization plus modulus switching procedures has its noise bounded
by:

‖v̂‖∞ ≤
qi−1
qi

(
δRt
2

(
V2 + 2V + 1

)
+ ‖brelin‖∞

)
+ ‖bMscale‖∞

≤
qi−1
qi

δRt
2

(
V2 + 2V + 1

)
+ ‖brelin‖∞ + δR ‖M

−1‖∞‖bscale‖∞

where brelin is the noise caused by the relinearization procedure (cf. Equation (1.2.9)), or its
equivalent RNS version (cf. Section 2.3), which remains unchanged with the Montgomery
representation, and ‖bMscale‖∞ = δR ‖M

−1‖∞
1+δRBkey

2 i.e. δR ‖M
−1‖∞‖bscale‖∞ with bscale the

noise caused by the scaling in the original setting (cf. Equation (1.2.4)). Therefore if the
parameters are selected such that:




qi
qi−1

≥ δRtV for all 1 ≤ i ≤ L

2 + ‖brelin‖∞ + δR ‖M
−1‖∞‖bscale‖∞ ≤

V
2

(3.3.9)
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we obtain:

‖v̂‖∞ ≤
1

2V

(
V2 + 2V + 1

)
+ ‖brelin‖∞ + δR ‖M

−1‖∞‖bscale‖∞

≤
V
2
+ 2 + ‖brelin‖∞ + δR ‖M

−1‖∞‖bscale‖∞

≤ V

which means that for a chain of L+1 moduli, we are able to evaluate circuits of multiplicative
depth L. Since the factor δR ‖M−1‖∞ is only added to the noise in the end, the impact of the
Montgomery representation on the parameter selection is quite moderate, actualy in practice
the parameters can remain the same most of the time.

FV

The initial noise of a ciphertext is at most Vinit = Berr (1 + 2δRBkey) (cf. Section 1.2.2). We
recall that rM∞ = δR ‖M

−1‖∞(1+ρ) δRBkey+1

2 +1 and that the k moduli qi have size ν i.e. qi < 2ν.

The output of a tree of depth L has a noise bounded by CL
RNS,M,1V +CRNS,M,2

CL
RNS,M,1 − 1

CRNS,M,1 − 1
(cf.

Section 1.2.2) with:




CRNS,M,1 = δRt
(
2rM∞ + 1

)
+
δR
2

CRNS,M,2 = |q |tδRt
(
rM∞ +

δR ‖M
−1‖∞

2
+ 1

)
+ δR ‖M

−1‖∞

1 + δRBkey + δ
2
R

B2
key

2

+k (1 + δRBkey + δ
2
R

B2
key

) + kδRBerr2
ν+1.

(3.3.10)

We denote by LM
max = max




L ∈ N | CL
RNS,M,1V + CRNS,M,2

CL
RNS,M,1 − 1

CRNS,M,1 − 1
6 Bdec



the depth al-

lowed by the homomorphic multiplication where Bdec corresponds to the decryption bound
of the RNS variant of FV given in (2.1.4). Since a factor δR ‖M−1‖∞ is roughly added to
the orginal CRNS,1 constant (cf. Equation (2.4.1)), we can expect an important impact on the
multiplicative depth.

Table 7 presents the maximal theoretical depths for FV with and without the use of the
Montgomery reduction (LM

max and Lmax respectively). For these computations we have taken
parameters Bkey = 1, following the recommendations of [BF16] σerr = 2

√
n, and a number k

of 62-bits moduli to get the largest size for q ensuring at least 80-bits of security according
to [APS15]. We notice that, as expected, the multiplicative depth is far smaller with a
Montgomery representation in theory and we have been able to confirm this behaviour in
practice.

Mixing optimized Barrett and Montgomery reductions Considering the non-negligible
impact of the Montgomery representation on the multiplicative depth of FV, a more robust
strategy for this cryptosystem corresponds to a mixed Barrett/Montgomery approach. Alg.
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m n k ‖M−1‖∞ δR Lmax LM
max

4369 4096 2 1 35n 1 (4) 1 (3)
13107 8192 5 1 205n 6 (17) 4 (10)
21845 16384 11 1 739n 13 (40) 9 (22)
32767 27000 18 9 2621n 19 (66) 12 (39)
65535 32768 22 1 9886n 22 (80) 15 (45)

Table 7: Theoretical depths with and without Montgomery reduction. Values in parenthesis
are the depths observed in practice.

18 is used during the first stage of homomorphic multiplication, with ciphertexts not exploit-
ing a Montgomery representation. This avoids the noise growth caused by the Montgomery
factor. Nonetheless, the Montgomery reduction can still be used during the relinearisation
stage, since we have seen that this does not cause a larger noise growth. Since we do not
want to obtain a ciphertext in Montgomery representation after the relinearization procedure,
the relinearisation key needs to be modified by replacing the factor M2 of the Montgomery
approach (cf. Equation 3.3.2) by M .

3.3.4 About the expansion factor

The reader may have noticed the important difference between the theoretical and practical
depth for FV presented in Table 7. Of course, the theoretical depth as it is computed represents
the worst-case scenario, thus we expect it to be smaller than the depth observed in practice
on which we have no guarantee. However for practical applications it could be interesting
to have a better approximation of the noise growth behaviour. By definition the expansion
factor δR quantifies the growth of the coefficients after a product in the worst-case scenario,
thus this is the quantity we should try to evaluate more precisely in practice.

Let us assume we want to multiply two polynomials a and b, both of degree n−1. Without
reducing the product by Φm, we have the following bound:

‖a · b‖∞ ≤ n‖a‖∞‖b‖∞

For this bound to be reached in practice it is necessary to have all the coefficients of a (resp.
b) being equals to ‖a‖∞ (resp. ‖b‖∞) at the same time. If we consider that the coefficients of
a and b to be sampled independently from a probabilistic distribution, this bound is likely to
be reached with exponentially low probability in n. From now we assume our two polynomials
have coefficients (a0, . . . , an−1) and (b0, . . . , bn−1) sampled independently and uniformly in a
centered interval [−µ, µ] whose size is exponential in n. To estimate δR , we need to estimate
the distribution of:

δ′i =

i∑
j=0

a jbi−j
‖a‖∞‖b‖∞

=

i∑
j=0

a j

‖a‖∞

bi−j
‖b‖∞

for i ∈ {0, . . . , 2n − 2}. Now if we assume than (a0/‖a‖∞, . . . , an−1/‖a‖∞) has the same distri-
bution than (Ta

i )n−1i=0 a sequence of independent random variables uniform in [−1, 1]. Of course
this is not true since the ai/‖a‖∞ have only rational values and at least one of them is equal to
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±1 with probability 1/2, but we assume this is a good enough approximation for our purpose.

Therefore δ′i has the same distribution than
∑i

j=0 Ta
j Tb

i−j . Notice that for j = 0, . . . i, the
random variables Z i

j = Ta
j Tb

i−j are independents and have the same probability distribution.
We recall that if Z = XY with X and Y two independent random variables following a uniform
distribution in [−µ, µ], then:

P(Z ≤ x) =
1

2
+

x
2µ2

(
1 + ln

(
µ2

|x |

))
for x ∈ [−µ2, µ2] E(Z ) = 0 Var(Z ) = σ2

Z = µ
2/9

Since δ′i, 0 ≤ i ≤ 2n − 2, is a sum of αi = min(i + 1, 2n − i − 1) i.i.d. random variables, the
central limit theorem tells us it has asymptotically the same distribution than N (0, αi/9).

Now, if we assume the δ′is to be independents, since the reduction modulo Φm is a
linear transformation we can deduce the probabilistic law followed by the coefficients of
a · b/(‖a‖∞‖b‖∞) mod Φm. Indeed, if X and Y are two independent random variables such
that X  N (µ1, σ2

1) and Y  N (µ2, σ2
2) then X +Y  N (µ1+ µ2, σ2

1+σ
2
2) and for any λ ∈ R,

λX  N (λµ1, λ2σ2
1). We denote δ = (δ0, . . . , δn−1) = Fm(δ′0, . . . , δ

′
2n−2) where Fm denotes the

reduction modulo Φm as in Lemma 3.3.3.

All the coefficients of δ follow a centered gaussian distribution for which we can compute
the standard deviation σi for each i = 0, . . . , n−1, let σmax be the biggest one, thus |δi | follows a
half-normal distribution of expected value

√
2/πσi. We know that P(|δi | > xσi) = erfc(x/

√
2)

where erfc denotes the complementary error function, as a consequence we can write the
following:

P(‖a · b‖∞ ≥ xσmax‖a‖∞‖b‖∞) ≤ n × erfc
(
x/
√
2
)

Hence, for a small enough probability (smaller than 2−p), i.e. for a large enough x, we
can consider δp = xσmax as a probabilistic bound on the expansion factor. The following
table presents the values of σmax obtained for the different cyclotomics considered in this
chapter together with the bound δp for p = 50. Finally we indicate in the Table below
the multiplicative depths obtained for FV with these bounds. It appears that these bounds
are still around twice smaller than what is observed in practice, however they are twice
larger than the worst-case bounds. Of course to get these bounds we were forced to make

m σmax δ50 Lmax LM
max

4369 122.32 1114 2 2
13107 410.32 3734 9 7
21845 1313.88 12088 21 15
32767 3471.06 32281 33 21
65535 7004.65 65143 39 26

Table 8: Bounds, with faillure probability smaller than 2−50, on the expansion factor for
different cyclotomic polynomials with the associated multiplicative depths for FV.

several approximations (distributions of the ai/‖a‖∞, independence of the δ′is), thus one could
legitimate wonder how reliable our results are. We have run some experiments to check
whether our model was far from the reality or not.
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We present hereafter the results of these experiments for two of the considered cyclotomics.
The results were measured by performing 213 products of polynomials whose coefficients were
sampled uniformly in [−2−25, 225] by using the rand function of the C standard library. The
left part of the folllowing graphics presents the values observed on our experiments for each
coefficient (maximal and average) while the right part presents the values given by our model
(expected values and 2σi).

Experimental and theoretical values of |δi| for the 13107−th cyclotomic on 8192 tests.
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Experimental and theoretical values of |δi| for the 21845−th cyclotomic on 8192 tests.
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Table 9 presents some indicators of the differences between the model and our experiments.
It contains the average (resp. the biggest) relative error εa (resp. εmax

a ) between the expected
value

√
2/πσi and the values observed in average. It also indicates the average relative error

εm (resp. the smallest relative error εmin
m ) between, 2σi and the maximal value observed.

Despite our gross approximations, the results are quite accurate: the expected and average
values differ from less than 0.7% in average and less than 3.3% in the worst case, moreover all
the values obtained were smaller than 2σmax (around 33% in average and 5% in the closest
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m εa εmax
a εm εmin

m

4369 0.0050 0.025 0.337 0.067
13107 0.0056 0.025 0.328 0.093
21845 0.0063 0.032 0.343 0.102
65535 0.0061 0.032 0.332 0.052

Table 9: Relative errors between the theoretical values and the one observed in practice (in
average and in the worst case) for different cyclotomic polynomials.

case). Although further statistical analysis of these results would be required, the first results
tend to indicate the model is reasonable enough for our purpose.

3.4 Experimental results

The proposed methods for polynomial reduction have been implemented using C++, and
compiled with gcc using the optimization flag -O3. All the experimental results presented
herein were measured on an i7-5960X, running at 3.0 GHz with 32 GB of main memory with-
out exploiting any parallelism.

3.4.1 Polynomial reduction

In Figure 10, one can find the execution timings of polynomial reduction, the unoptimized
and optimized Barrett reductions and the Montgomery reduction for the different cyclotomics
we have considered. As a general indication, and to highlight the benefit of our reduction
algorithms, Figure 10 also presents the timings of a generic reduction algorithm, in our case
we have chosen NTL’s one by using preconditioning ([HHSSD17]). All timings correspond
to the execution of the algorithms on a single modulus of 62-bits. Speed-ups up to 1.95 and
2.55 were achieved for the optimized Barrett and Montgomery algorithms respectively when
compared with the unoptimized Barrett reduction. It should be noted that even though the
execution times increase with m, allowing to use FHE parameters with a larger multiplicative
depth, the time per batching slot presents very little variations for the considered polynomials.
Details timings and speed-ups are given in Table 10, one can notice that we obtain speed-ups
comparable to what we expected (cf. Tables 5 and 6).

m 3, 855 4, 369 13, 107 21, 845 32, 767 65, 535

Alg. 17 0.351 0.763 1.660 3.543 7.907 7.941
Alg. 18 0.183 (1.92) 0.392 (1.95) 0.927 (1.79) 1.967 (1.8) 5.189 (1.52) 4.976 (1.6)
Alg. 19 0.138 (2.54) 0.301 (2.53) 0.650 (2.55) 1.402 (2.53) 3.167 (2.5) 3.178 (2.5)

Table 10: Timings (ms) of our different reduction algorithms for the m-th cyclotomic polynomial on
a single 62-bit modulus. Values in parenthesis are the speed-up when compared to Alg. 17.
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Figure 10: Execution time T (ms) (resp. per batching slot T/` (µs)) for multiple reduction strategies
for cyclotomic polynomials of index m on a single 62-bit modulus.

3.4.2 Impact on homomorphic multiplication

The aforementioned reduction methods were used to implement the homomorphic multiplica-
tion operations of the FV and BGV schemes. One can find in Figures 11 and 12 the execution
times (resp. execution times divided by the number of batching slots) of the homomorphic
multiplication of two freshly encrypted ciphertexts for FV and BGV, with the parameters given
in Table 7. Because of their low performances, the results using NTL reduction are omitted.
In order to compare with the most efficient case, we provide instead timings for power-of-two
cyclotomics of same dimension using the NTTs with negative-wrapped convolution (NWC)
algorithm from NFLlib ([AMBG+16]). For instance we compare m = 21, 845 of degree n = 214

with m = 215 of same degree. Unlike Figure 10, the execution time of homomorphic multipli-
cation increases significantly with m. This trend is explained by the relinearisation procedure,
which requires a number of NTTs that increases quadratically with log2 q (cf. Section 2.3.4).

Nevertheless, the employed reduction procedure plays a preponderant role in the efficiency
of the homomorphic multiplication. Indeed, one achieves speed-ups up from 1.24 to 1.12 (resp.
from 1.37 to 1.19) when comparing the homomorphic multiplication exploiting the optimized
and unoptimized Barrett reduction methods for the BGV (resp. FV) scheme. Since using only
Montgomery reduction in FV causes much more important noise growth (cf. Section 3.3.3),
we provide the timings corresponding to the mixed Barrett/Montgomery stategy (cf. Section
3.3.3), which does not impact the noise growth, and gave speed-ups from 1.39 to 1.19. In
contrast, for BGV, where one can exploit the Montgomery representation throughout the whole
procedure without impacting significantly the noise growth, we obtain speed-ups from 1.18 to
1.33. Detailed timings can be found in Table 11.
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Figure 11: Execution time T (µs) for the multiplication plus relinearization of BGV and FV with several
reduction strategies (plus modulus switching for BGV) on the m-th cyclotomic polynomial. Modulus q
is a product of 62-bit prime moduli and y-axis is in logarithmic scale.
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Figure 12: Execution time per slot T/` (µs) for the multiplication plus relinearization of BGV and FV
with several reduction strategies (plus modulus switching for BGV) on the m-th cyclotomic polynomial.
Modulus q is a product of 62-bit prime moduli and the y-axis is in logarithmic scale

Last, one can notice that using power-of-two cyclotomics with NTTs and negative-wrapped
convolution brings a speed-up of roughly 10 , for both BGV and FV, compared to the cyclotomic
we have chosen. However when considering the time spent per batchig slots, non-power-of-two
cyclotomics are clearly more interesting, with a speed-ups up to 100.

The reader may have noticed that the speed-up of the proposed methods decreases as the
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degree n of the cyclotomic polynomial, and thus when log2 q gets larger due to the increasing
complexity of the relinearisation procedure. This suggests that they are most beneficial when
one needs to homomorphically evaluate small circuits. Since a lot of practical applications of
FHE ([GDL+16], [KGV16], [NLV11]) have circuits with small depth, the reduction algorithms
we have proposed can potentially have a wide range of applicability.

m log2 q
BGV FV

Alg. 17 Alg. 18 Alg. 19 Alg. 17 Alg. 18 Mix Alg. 18/19

4, 369 124 11.8 9.5 (1.24) 8.9 (1.33) 27.3 20 (1.37) 19.6 (1.39)

13, 107 310 69.2 57.8 (1.2) 53.8 (1.29) 142.9 110 (1.3) 107.8 (1.33)

21, 845 682 392.5 339.2 (1.16) 322 (1.22) 727.7 579.2 (1.26) 582.1 (1.25)

32, 767 1, 116 1, 738 1, 580 (1.1) 1, 472 (1.18) 2, 905 2, 476 (1.17) 2, 442 (1.19)

65, 535 1, 364 2, 190 1, 963 (1.12) 1, 855 (1.18) 3, 928 3, 294 (1.19) 3, 255 (1.21)

Table 11: Timings (ms) of homomorphic multiplication plus relinearization for BGV and FV encryption
schemes (plus modulus switching for BGV) on the m-th cyclotomic polynomial. Values in parenthesis
correspond to the speed-up compared to Alg. 17.

3.5 Conclusion

Properties of non-power of two cyclotomics allow to pack several binary plaintexts in a single
ciphertext and thus to amortize the important costs required by homomorphic encryption.
Although Lyubashevsky et al. ([LPR13]) have shown one could generalize the efficient NTT
with negative wrapped convolution technique to general cyclotomics, the tensored represen-
tation required for their method is less convenient to implement. As a consequence, their
method remains little used in practice and major homomorphic libraries such as HElib keep
using the simpler univariate representation of elements in the general case.

In this work, we have considered and improved the arithmetic associated to the univariate
representation in general cyclotomic rings. We have proposed two methods for performing
the polynomial reduction: one based on the Barrett reduction and the other on a Mont-
gomery representation both with the same asymptotic complexity. The latter offers better
performances, however it causes more important noise growth in homomorphic schemes. If
this growth remains small enough to not affect the multiplicative depth of BGV, it reduces
considerably the practical and theoretical one of scale-invariant schemes like FV.

We have highlighted the gains brought by our reduction algorithms in practice with a C++
implementation and have obseverved speed-ups up to 1.95 and 2.55 when comparing, respec-
tively, our optimized Barrett and Montgomery reductions with a classical Barrett reduction.
Finally, these reductions have been incorporated into the homomorphic multiplication proce-
dures of BGV and FV, resulting in speed-ups up to 1.33 and 1.49 respectively. If our optimzed
Barrett reduction remains hardly compatible with generic implementation, our Montgomery
reduction however is completely generic and could benefit to implementation of homomorphic
libraries. In particular, since the noise growth caused by the Montgomery representation does
not impact significantly the choice of parameters of BGV, HElib could entirely benefit of this
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reduction procedure.
Part of this work was presented in the 24th Selected Areas of Cryptography (SAC) con-

ference ([BEH+18]).
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Chapter 4. Homomorphic evaluation of support vector machine

As the world moves into an ever more digital-based economy, those who hold the best
quality data have a significant advantage over their competitors. Companies can identify
patterns in their users’ behaviours, and extrapolate their needs of tomorrow [QWD+16]. As
they gather more data, their predictions get increasingly better, further consolidating their
position as market leaders. We can foresee how this strategy can be applied to other markets.
For instance, a pharmaceutical company, who has collected data about the reactions of a large
number of patients to a particular medicine, could potentially extrapolate how other patients
would react to it.

Companies can build high-quality models to predict future patterns based on the large
amounts of data they collect. When these predictions are made as part of a service, for
instance which are the most relevant pages based on a user’s query, or which are the products
a user is most likely to buy based on his past choices, companies will be invested in preventing
the model parameters from being disclosed to a competitor that could potentially mimic their
service. In addition, the clients of this service may wish to protect their own data. For
example, when doctors want to know how patients would react to a certain medicine, the
patients’ data should remain confidential.

In its most basic form, one model would produce a single bit based on the input, signaling,
for example, whether a certain medicine will be effective based on the patient’s heart pressure,
age, etc. A SVM is a machine learning method that works through analogy [CL11]. When
a model is built, a subset of the examples is encoded as support-vectors, along with weights.
During classification, the similarity between the input vector and the examples is evaluated
through a kernel function, and the resulting values are combined through a weighted average.
The sign of the weighted average identifies whether the input belongs to a certain class or
not. In a confidential setting, a user should be able to provide encrypted data to be classified,
and a service provider, namely a company, should be able to return a single encrypted bit,
encoding the classification result; without the client learning anything else about the model,
and without the server learning anything about the input.

Homomorphic encryption offers exactly these properties and is thus perfectly suited to
address this problem. However performing efficiently the computations required by the SVM
from the homomorphic additions and multiplications primitives is quiet challenging. In this
chapter we present efficient methods to perform the computations required by the SVMs quite
efficiently. For this purpose, we use the construction of Cheon et al. ([CKKS17]) which allows
to perform approximate arithmetic homomorphically.

4.1 Preliminaries

This section starts by giving an overview of the related art and in particular of previous
works using homomorphic encryption for the classification of data. Then we briefly present
the different computations that need to be done for evaluating SVM and the construction of
Cheon et al. that we are using.

110



4.1. Preliminaries

4.1.1 Related Art

Homomorphic encryption has been typically exploited to implement either bitwise circuits
([GHS12b], [MS17]) or operations over the integers ([CSVW17]). SVMs are challenging to
implement in this setting since they mix both integer arithmetic (computation of the kernel
functions) and bitwise circuits (extraction of the sign bit). In the past, this latter problem
has been solved by using Garbled Circuits (GCs), requiring interactive protocols ([LLM06]).

In contrast to methods based on GCs, approaches based on homomorphic encryption to
classify private data, after transmitting key material, require no communication other than
the encrypted data to be classified, achieving the minimal possible overhead. Previous works
on the applications of homomorphic encryption to machine learning has mostly considered
the use of exact arithmetic ([GLN13], [BCIV17], [CGH+18], [BV18]). However in [KSW+18],
Kim et al. have shown that the use of an approximate arithmetic does not affect significantly
the quality of the result but has the potential to considerably improve the performance.

The previous works on the application of Homomorphic Encryption (HE) to machine
learning have either considered that the computation of threshold functions could be deferred
until after the decryption ([GLN13]), or focused on systems, such as logistic regression, where
no threshold computation is required ([KSW+18], [CGH+18], [BV18]). Difficulties to imple-
ment the sign function come from the fact that the operations available through homomorphic
encryption are more compatible with the computation of circuits which can be approximated
with polynomials.

However, providing the client with a value rather than its sign may lead to a larger
leak of information than a service provider would be willing to accept. Nevertheless, recent
research has shown inceptive results pertaining to the computation of non-trivial functions,
including the threshold ([CDSM15]) or reduction modulo an integer ([CHK+18]), through
an approximation using sine waves. In this work we use a different method, based on the
Newton-Raphson procedure, which converges quadratically to the sign function; and apply it
to the computation of SVM classification.

4.1.2 Support Vector Machine

Given a multiset of examples {(xi, yi)}i, each encoded as a vector of features xi ∈ R
h with the

corresponding labels yi ∈ {−1, 1}, an SVM selects a subset of them of size r as support-vectors,
assigns them weights αi and a bias β, and computes the parameters to a kernel function K that
maximise the accuracy of the resulting model. This corresponds to the training phase. During
the classification phase, the model is provided with a vector of features x and will output the
most likely label y. The kernel function is used to compute the similarity between the support-
vectors xi and x, and the similarity levels are aggregated through a biased weighted average
to output the most likely label x belongs to:

y = sign *
,

r∑
i=0

αiyiK (xi,x) + β+
-

(4.1.1)
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The four most commonly used kernel functions are:

Klinear(x,xi) = 〈x,xi〉 (4.1.2)

Kγ,ρ,d
polynomial(x,xi) = (γ〈x,xi〉 + ρ)d (4.1.3)

Kγ,ρ
sigmoid(x,xi) = tanh(γ〈x,xi〉 + ρ) (4.1.4)

Kγ
RBF(x,xi) = e−γ | |x−xi | |

2
(4.1.5)

While the first is the most computationally efficient, it is mostly useful for data with a
large number of features. In contrast, kernels like Kpolynomial, KRBF and Ksigmoid are best at
generalising patterns from data with fewer features.

4.1.3 Homomorphic encryption for approximate numbers

We recall that the mth cyclotomic field Q(ζm) can be embedded in the subring H = {(z1, . . . , zn) :
zn/2+j = z j, 1 6 j 6 n/2} of Cn (Equation 1.1.2) through the canonical embedding. Instead of
trying to encode data in the coefficients of a polynomial m ∈ Rt for some plaintext modulus
t as it was usually done, Cheon et al have chosen to encode the plaintext data directly in H.
In this way, they can encode directly n/2 complex values as an element z of H and thus as
an element m of R.

However since σ(R) ( H, one first needs to round z to an element of σ(R). There
are different methods to perform this kind of rounding in general cyclotomic ring, see for
instance [LPR13]. However in the particular case of power-of-two cyclotomics the canonical
embedding σ is an isometry, which means in particular that the columns of the matrix CRTm
(Equation (1.3.13)) form an orthogonal basis of the lattice σ(R). Therefore, in this case it
is staightforward to compute the closest point of z ∈ H belonging to the lattice σ(R) with
orthogonal projections:

bzeσ(R) = z +
n−1∑
i=0



〈
−z/σ(X i)

〉
‖σ(X i)‖22

1
σ(X i) = z + f (4.1.6)

where [·]1 denotes the fractional part between [−1/2, 1/2) of a real number, we extend this
notations to the complex numbers by considering it both on the real and imaginary parts.
Once z approximated by its closest point in the lattice, one can recoverm = σ−1(bzeσ(R)) ∈ R.
Actually since it is an isometry, it is equivalent to directly round the result of the inversion
coefficient-wise, i.e. to compute m = bσ−1(z)e. Finally, in order to avoid the rounding to
affect the most significant bits of z, one should multiply z by a large factor ∆ before performing
the rounding, so that in the end m = σ−1(b∆zeσ(R)).

Cheon et al. were able to adapt the procedure of classical homomorphic schemes to their
encoding method and since under σ both additions and multiplications are coefficient-wise,
homomorphic additions and multiplications act on each slot independently. In particular one
is able to perform directly additions and multiplications of n/2 complex-values in parallel
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even by using power-of-two cyclotomics. Therefore, it is more advantageous that the classical
batching technique described in Section 1.3.3 which depends on the properties of the cyclo-
tomic polynomial. However the main drawback of their construction is that it only allows
to perform arithmetic on approximate numbers. From now for efficiency reasons we only
consider power-of-two cyclotomics.

In the context of [CKKS17], Cheon et al. applied their encoding technique to the BGV

scheme [BGV12]. The main difference between the original scheme and their adaptation is
that they do not use any bound on the size of the coefficient in the plaintext space, hence in
their construction the plaintext space is R and not Rt . In this way the noise is not multiplied
by a factor t and as a consequence, an encryption of m ∈ R in this construction corresponds
to a pair of polynomials ct = (c0, c1) ∈ R2

q which, once evaluated on the secret key s, satisfy:

[c0 + c1 · s]q =m + v = σ
−1(∆z + f ) + v (4.1.7)

with v the noise inherent to the ciphertext. Contrarily to [BGV12], the noise is not removed
during the decryption procedure. As a consequence, this noise plus the error due to the
rounding distort the result so that this construction only allows for an approximate arithmetic.
However one can ensure a certain precision on the computation with the size of ∆, indeed from
Equation (4.1.7) if we want to ensure p bits of precision on the result we need to choose ∆
such that when decrypting:

∆ ≥ 2p (‖v‖can∞ + ‖f ‖∞) (4.1.8)

where f is the error coming from the rounding in Equation (4.1.6).
From there the procedures of BGV can be applied directly to this construction. The homo-

morphic addition of two ciphertexts corresponds to the pairwise addition of the ciphertexts’
polynomials. One can also add a plaintext value directly to a ciphertext by adding it to the
first coefficient of the ciphertext.

Similarly we consider two types of homomorphic multiplications: nonscalar and scalar
multiplications. While the first type of multiplication involves two encrypted messages, in the
second, one of the operands is known in the clear. The nonscalar multiplication of two cipher-
texts ct and ct′ is computed as usual: ctmult ←

( [
c0 · c

′
0

]
q
,

[
c0 · c

′
1 + c1 · c

′
0

]
q
,

[
c1 · c

′
1

]
q

)
.

The relinearization procedure can be performed as usual, however the modulus-switching pro-
cedure is now applied both to reduce the growth rate of the norm of v, due to the homomorphic
multiplication, and to prevent the growth of the size of the message. Indeed, since after a
multiplication, we basically obtain an encryption of ∆2z · z′, one should choose ∆ ' q/q′ so
that after the rescaling operation, the extra ∆ factor is removed.

Scalar multiplications can be computed more efficiently than nonscalar multiplications.
The operand z′ that is known in the clear is encoded as m′ = σ−1(b∆z′eσ(R)). Afterwards,
the ciphertext ct = (c0, c1) is multiplied by m′, producing ([m′ · c0]q , [m

′ · c1]q). Since the
resulting ciphertext has only two elements, relinearisation is no longer required. However, one
still needs to apply modulus-switching.
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It is also useful to permute the slots of a message encrypted under a ciphertext (c0, c1).
In the case of power-of-two cyclotomics, there is a one-to-one correspondence between the
coefficients one obtains through the canonical embedding and the coefficients of the negatively-
wrapped NTT of the polynomial. Hence, changing the order of the latter, while respecting
the position of the complex conjugates, will also permute the slots of the former. Therefore
to permute the slots of a plaintext, one does not need to consider the action of the Galois
group on the slots and can just instead compute the negatively-wrapped NTT of c0 and c1,
and changes the order of the resulting coefficients. After both c0 and c1 are permuted, the
ciphertext is decipherable under the equivalently permuted s (see Section 1.3.3). Hence we
need to apply a key-switching procedure as explained in Section 1.3.3 to be able to decrypt
under the original secret key s.

4.2 Novel homomorphic techniques for SVM classification

In the analysed scenario, two parties are considered: a client who wishes to classify sensitive
data, and a service provider that offers a classification service in a confidential manner.

4.2.1 SVM confidential protocol

The service provider uses large databases to construct an SVM model. Since his objective is
to provide classification as a service, the provider will be invested in preventing someone else
from being able to replicate his SVM model. However, if a client that uses this service has
access to a sufficient amount of samples, he will be able to replicate the SVM by using samples
{(xi, yi)}i as input to the learning algorithm. A solution to this problem might involve limiting
the number of classifications a client might perform in a given period of time. This will lead
to a slower leakage of data. Furthermore, the service provider should limit the number of
information that is leaked with each classification. Consider, for instance, that a linear kernel
is used. In this case, (4.1.1) reduces down to:

y = sign (〈w,x〉 + β) (4.2.1)

where w =
∑r

i=0 αiyixi. If simplifying assumptions were assumed, like in [GLN13], namely by
not computing the sign function in (4.2.1), a client could completely determine the coefficients
of w and β. He would only require h+1 classifications of the kind 〈w,x〉+ β for h+1 linearly
independent x, where h denotes the number of features. The previous example shows the
importance of limiting the amount of information that is provided to the client. Despite the
reduced set of operations available with the considered homomorphic scheme, we will design
efficient sign determination systems to adress this problem.

A second concern is that of protecting the support-vectors. Since the support-vectors
encode examples from the dataset used to train the SVM, they constitute most of the time
confidential data. There should therefore be mechanisms in place that prevent their disclosure.
This security issue has been addressed in [BCN+14]. A randomised mechanism is used during
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the learning phase that supports differential privacy - guaranteeing that even if a training
datum is changed or removed, the model output will not change significantly. This concept
embodies the idea that the output of the learner is an aggregate statistic of the sensitive data,
and if a large amount of data is being aggregated, the statistic should not be very sensitive
to changes or removal of a single datum. With this technique, [BCN+14] is able to prove
security even against an attacker with knowledge of a significant set of the training data,
knowledge of the learning mechanism (barring its source of randomness) and arbitrary access
to the classifier, that tries to determine the features or the training label of a training datum
unknown to him.

In the previous discussion, it has been assumed that the client had knowledge of the
kernel function being used. While the service provider might try to hide this information
from the client, so that it becomes harder for the client to mimic his model, it will not result
in a considerable improvement in performance. First, there is a limited number of kernels
that can be considered. Second, the service provider needs to make the scheme parameters
available which, due to efficiency reasons, should be tuned for the used kernel. By taking
this into consideration the client will be able to further reduce the already small number of
possible used kernels.

Similarly, the client is interested in protecting his own data. Since BGV achieves semantic
security against passive adversaries, it ensures that no adversary is capable of distinguishing
an encryption of one message from another. In addition, we assume that the service provider
is an honest-but-curious party, i.e. it will precisely follow the stated protocol to provide the
desired functionality, but will look at the available information and try to exploit it. This
assumption is a reasonable model for an economically motivated provider. The provider will
be motivated to offer an excellent service, so that its reputation is not damaged, but will still
take advantage of any extra information to improve its profits. A malicious provider would
be a much stronger adversary, who could intentionally produce wrong results. Protecting the
protocol against this type of adversary would significantly increase its complexity, making it
impractical. During the protocol execution, the service provider only has access to the client’s
data in an encrypted form. Due to BGV’s semantic security, we can assume he is unable to
derive any information from there.

The protocol herein proposed consists of three main phases. During the first phase, the
keys underlying BGV are generated by the client, and the service provider is provisioned with
the public-key material. Keys need only to be generated every once in a while (e.g. yearly).
During the second phase, the client sends the service provider the data to be classified in
encrypted format. The provider will operate on it homomorphically and return the encrypted
result of the computation back to the client. In a final phase, the classification result is
decrypted. In the following sections, we will not only focus on optimising the efficiency of
the homomorphic evaluation of the SVM classification by the service provider, but also on
limiting the amount of information that is leaked with each classification.
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4.2.2 Message encoding

...

...{ {
Figure 13: Mapping an input vector of features x and h′ support-vectors xi onto the plaintext
space

Batching is herein exploited to optimise the efficiency of (4.1.1) by evaluating the kernel
function simultaneously for several support-vectors. As previously stated, by exploiting the
canonical embedding, one can encrypt ϕ(m)/2 = n/2 values in the same ciphertext, and apply
homomorphic additions and multiplications that operate on each value independently. Since
we will be working with power-of-two cyclotomics, we restrict ourselves to the case where n
is a power of two. If the value slots are numbered from 0 to n/2 − 1, and an input vector x
has h < n/2 features, then we map it to the plaintext space as follows:

x̃k ·2 dlog2 he+j =




x j if 0 ≤ j < h

0 otherwise
(4.2.2)

The encoding in (4.2.2) replicates n/2dlog2 he+1 times the vector of feature x, as exemplified
in Figure 13 and enables batching without the client knowing the number of support-vectors
that will be operated on. If the server uses more than n/2dlog2 he+1 support-vectors, the
input ciphertext can be replicated to obtain further copies of the same value. In contrast,
if fewer than n/2dlog2 he+1 support-vectors are employed, the unused copies of x in x̃ will
be multiplied by 0 during the kernel evaluation and will not influence further computations.
h′ ≤ n/2dlog2 he+1 support-vectors are encoded in a single cryptogram as depicted in Figure 13
for h′ = n/2dlog2 he+1:

x̃k ·2 dlog2 ek+j =



xk, j if 0 ≤ j < h, 0 ≤ k < h′

0 otherwise
(4.2.3)

Algorithm 20 Homomorphic description of Binary Addition Tree
Require: (logSep, logAmount) ∈ N2

Require: Enc(x̃)
y ← Enc(x̃)
for i ← 0 to logAmount − 1 do

rotY ← Rotate2logSep (y)
y ← HomAdd(y, rotY )
logSep← logSep + 1

return y
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y(0) y0, y1, y2, y3, y4, 0, 0, 0, . . .

Rotate20 (y(0)) y1, y2, y3, y4, 0, 0, 0, , y8, . . .

y(1) = y(0) +

Rotate20 (y(0))
y0 + y1, y1 + y2, y2 + y3, y3 + y4, y4, 0, 0, y8, . . .

Rotate21 (y(1)) y2 + y3, y3 + y4, y4, 0, 0, y8, y8 + y9, , y9 + y10, . . .

y(2) = y(1)

+Rotate21 (y(1))

3∑
i=0

yi,
4∑
i=1

yi,
4∑
i=2

yi, y3 + y4, y4, y8, y8 + y9,
10∑
i=8

yi, . . .

Rotate22 (y(2)) y4, y8, y8 + y9,
10∑
i=8

yi,
11∑
i=8

yi,
12∑
i=9

yi,
12∑
i=10

yi, y11 + y12, . . .

y(3) = y(2)+

Rotate22 (y(2))

4∑
i=0

yi,
4∑
i=1

yi + y8,
4∑
i=2

yi +
9∑
i=8

yi,
4∑
i=3

yi +
10∑
i=8

yi, y4 +
11∑
i=8

yi,
12∑
i=8

yi,
12∑
i=8

yi,
12∑
i=8

yi, . . .

Figure 14: Illustration of the computation of a Binary Addition Tree

The computation of inner products has a central role in the evaluation of kernels. To com-
pute the inner product of h′ copies of x and h′ support-vectors, one starts by homomorphically
multiplying the two ciphertexts that respectively encode them. Afterwards, a binary addition
tree is used to add their values, with Algorithm 20, logSep = 0 and logAmount =

⌈
log2 h

⌉
. In

Algorithm 20, the Rotate2logSep (y) function rotates the slots of y 2logSep places in a circular
fashion (mapping slot i to |i − 2logSep |n/2), and HomAdd homomorphically adds the two cipher-
texts. The steps of the Algorithm are illustrated in Figure 14. We pick up the example of
Figure 13, for vectors of 5 features and additions of slots for the first 5 elements are illustrated.
When the function terminates, the results of the inner products will be located in the slots
k · 2dlog2 he , for all 0 ≤ k < h′, of y.

After the computation of the inner product, the kernel functions operate on y without per-
forming any rotation, producing a value z. The summation in (4.1.1) will thus require adding
the slots k ·2dlog2 he , for all 0 ≤ k < h′, of z. This can be achieved with Algorithm 20 by setting
logSep =

⌈
log2 h

⌉
and logAmount = log2 n−

⌈
log2 h

⌉
−1. When more than n/2dlog2 he+1 support-

vectors are used, z will be spread over several ciphertexts. After applying Algorithm 20 to
each of them, their sum is computed homomorphically.

4.2.3 Polynomial evaluation

The homomorphic evaluation of (4.1.3), (4.1.4) and (4.1.5) relies on the evaluation of poly-
nomials. In particular, (4.1.3) can be interpreted as a polynomial with a single nonzero
coefficient. Similarly, the functions e−γx and tanh(x) in (4.1.5) and (4.1.4) are approximated
by polynomials with Remez’ algorithm ([Rem34]). While a truncated Taylor series would
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approximate a function near a point, Remez’ algorithm provides a minimax approximation of
a function over an interval which is particularly useful in our setting. Hence, by establishing
bounds on the magnitude of the coefficients of x, we are able to bound the magnitude of the
input of e−γx and tanh(x) in (4.1.5) and (4.1.4). Therefore, we are able to maintain a small
maximum error across the whole input interval. Since with a Taylor expansion the error is
kept small close to the approximation point, and gets significantly larger as the points get
further away from it, one would need larger degrees to keep an accurate approximation within
the considered interval.

Traditional polynomial evaluation techniques, which minimise the number of nonscalar
multiplications ([PS73]), have been previously considered in the context of homomorphic
encryption ([CKKS17]). While this type of algorithms is optimal when computing in the
clear, the same is not necessarily true when performing operations with HE. Indeed, one
needs to tune the cryptographic scheme parameters to the multiplicative depth of the circuit
one wants to evaluate. Having larger parameters leads to a severe degradation of performance.
Hence, one can no longer consider the number of multiplications as a whole, but one has rather
to consider the maximum number of multiplications in a computational path.

Algorithm 21 Homomorphic evaluation of a polynomial
Require: chains← {2 : (1, 1), 3 : (1, 2), . . .}
Require: Enc(x)
Require: p0, . . . ,pd

y ← HomAdd((p0, 0), HomMul(Enc(x), (p1, 0)))
powersOfX← {1 : Enc(x)}
for i ← 2 to d do

(a(i)
j , a

(i)
k

) ← chains[i]

xa
(i)
j ← powersOfX

[
a(i)
j

]

xa
(i)
k ← powersOfX

[
a(i)
k

]

xi ← HomMul
(
xa

(i)
j , xa

(i)
k

)
y ← HomAdd

(
y, HomMul

(
xi,pi

))
if a(i)

j does not belong to any pair in chains[i + 1, . . . , d] then

powersOfX← powersOfX\
{
a(i)
j : xa

(i)
j

}
if a(i)

k
does not belong to any pair in chains[i + 1, . . . , d] then

powersOfX← powersOfX\
{
a(i)
k

: xa
(i)
j

}
if i belongs to a pair in chains[i + 1, . . . , d] then

powersOfX← powersOfX ∪
{
i : xi

}

return y

Algorithm 21, herein proposed for the evaluation of a polynomial of degree d, minimises the
circuit multiplicative depth by precomputing the minimum addition chain for each 2 ≤ n ≤ d.
In the Algorithm, the notation d = {k1 : i1, k2 : i2, . . .} is used to denote a dictionary with
elements i1, i2, . . ., that can be accessed by the keys k1, k2, . . ., via the [·] operator: d[k1] =
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i1, d[k2] = i2, . . . Moreover, the notation d[k1, k2, . . .] is used to denote the multiset {i1, i2, . . .}.
An addition chain corresponds to a sequence of integers (a0, . . . , as) such that ∃0≤ j,k<iai =
a j + ak for i > 0 and a0 = 1. A minimum addition chain of n corresponds to a shortest
sequence such that as = n. By using a minimum addition chain (a0, . . . , as) of n, one is
capable of evaluating xn with the minimum multiplicative depth, by computing:

xai = xa j × xak , 0 < i ≤ s, ai = a j + ak (4.2.4)

The proposed procedure computes xn starting at n = 2 and ending at n = d. Each time
a power n of x is computed, xn is stored if n is required by an addition chain of n′ > n.
Furthermore, one only needs to store the final pair a j + ak = n for each 2 ≤ n ≤ d, since the
values of xa j and xak will have been computed previously in the algorithm.

Finally, each time a power of x is computed its value is scaled and added to an intermediate
sum:

p(x) =
d∑
i=0

pixi (4.2.5)

4.2.4 Sign evaluation

The Newton-Raphson method is a technique to find successively better approximations to
roots of real-valued functions. Herein, this method is applied to homomorphically compute
the sign of a number. The proposed procedure approximates the roots of f (y) = 1

y2
− 1,

converging to −1 for an initial negative guess and to +1 for an initial positive value. For an
input value y0 = y a succession y1, . . . , yt is computed such that:

yi+1 = yi −
f (yi)
f ′(yi)

= yi *
,

3 − y2i
2

+
-
= g(yi) (4.2.6)

Lemma 4.2.1. The recurrent sequence defined by (4.2.6) converges to −1 (resp. 1) if y0 ∈
(−
√
3, 0) (resp. y0 ∈ (0,

√
3)) and is constant equal to 0 from rank n = 1 if y0 ∈ {−

√
3, 0,
√
3}.

Moreover the convergence to ±1 is quadratic.

Proof. Figure 15 presents the variations of the function g, defined by (4.2.6), on [−
√
3,
√
3].

y

var.
of g

−
√
3 −1 0 1

√
3

00

−1−1

11

00
0

Figure 15: Variations of the function g

One can see that g([−1, 0]) = [−1, 0] (resp. g([0, 1]) = [0, 1]) and that g([−
√
3, 1]) = [−1, 0]

(resp. g([1,
√
3]) = [0, 1]). Therefore if y0 ∈ [−

√
3,
√
3], all the yis, for i ≥ 1, will belong to

[−1, 1]. The function g is increasing on [−1, 1], thus the sequence defined by yn+1 = g(yn) and
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y0 ∈ [−
√
3,
√
3] is monotonic from rank n = 1 and since it is bounded and g is continuous, it

converges to a limit ` ∈ {−1, 0, 1} which is a fixed point of g.
Studying the sign of g(y)− y shows that the sequence (yn)n∈N is decreasing (resp. increas-

ing) from n = 1 if y0 ∈ (−
√
3, 0) (resp. y0 ∈ (0,

√
3)) and thus converges to −1 (resp. 1). The

case where y0 = 0 is trivial since g(0) = 0 and if y0 = ±
√
3, then y1 = 0.

Even though it is well known that the Newton-Raphson method converges quadratically,
in our case it can be deduced directly from:

|g(yn) − ` |
|yn − ` |2

= |yn/2 + ` | −→
n→+∞

3/2 for yn −→
n→+∞

` ∈ {−1, 1}.

�

Following Lemma 4.2.1, if we assume a certain bound on the coefficients of x in (4.1.1),
one can compute a scaling factor s > 0 such that:

−
√
3 < s *

,

n∑
i=0

αiyiK (xi,x) + β+
-
<
√
3 (4.2.7)

to ensure the convergence of the sign function in (4.1.1) without changing the final result.

4.2.5 Leakage of information

Ideally, the server that homomorphically evaluates the SVM would return nothing but the
encrypted sign of y in order to avoid leaking any information about its model. The encoding
procedure of Cheon et al. [CKKS17] allows to encrypt up to n = ϕ(m) complex values per
plaintext, which permits, as described in Section 4.2, to perform approximated computations
on complex values efficiently. However since the sign of these values is not encoded in a specific
bit or slot it cannot be extracted directly. As a consequence, we choose to use the iterative
Newton-Raphson method described in section 4.2.4, so that after t iterations one will obtain
yt = gt (y0) which will be close to ±1 depending on the sign of y. However, since yt will not
be exactly ±1 we analyse in this section how much information about y0 is leaked with this
approach.

Direct approach

One can see from Figure 15 that g maps [−1, 1] to [−1, 1] with a one-to-one correspondence.
Hence, assuming that the result y is computed with enough precision, a malicious client could
invert g on [−1, 1], and thus retrieve y1 by applying the inverse of g t − 1 times. Since y0 can
belong to either [0, 1) (resp. (−1, 0]) or [1,

√
3) (resp. (−

√
3,−1]), the client will only have to

choose between two possible values for y0. Moreover, since the initial values y0 closer to 0 or
±
√
3 converge more slowly to ±1, these values are easier to distinguish from the others.
A straightforward way to prevent the inversion of the method would be to perform the

computations with a lower precision, by choosing a smaller scaling factor ∆ for the encoding
(cf. Equation 4.1.8). Although this precision is in practice the key point to know whether
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or not a malicious client can invert the process to retrieve the original value y0, reducing it
would result in a service of lower quality. Indeed, the wrong sign value would possibly be
computed for |y | < 2−p, and as a consequence the corresponding input x would be interpreted
as belonging to the wrong class. Therefore, this approach should not be considered as a viable
solution.

Since the convergence to ±1 is quadratic, we can assume that after t iterations the values
close enough to ±1 loose t2 bits of precision. Thus if the values are encoded with 53 bits of
precision, which corresponds to double precision for a floating point representation, running
t = 7 or 8 iterations would be enough to prevent a malicious client to invert the process for
values of y0 not too close to 0 or ±

√
3.

Randomised approach

One way to prevent a malicious client from retrieving the initial values would be to return
a “random” value of the same sign as the real output. However, this is hardly achievable
since the server does not know the sign of y. Nevertheless, it is possible to slightly randomise
the previous approach so that it will be harder for a malicious client to invert the process.
Indeed, one can choose to add a random noise εi uniform in [0, 2−i−1] at the ith iteration of
the previous method so that:

yi+1 = g(yi) + εi+1g(yi) = g̃(yi) with εi+1
$
←

[
0, 2−i−1

]
(4.2.8)

since, for any y ∈ [−
√
3,
√
3], g(y) ∈ [−1, 1] (cf. Figure 15), we can add to g(y) a value of the

same sign and with an absolute value smaller than
√
3 − 1 without changing the sign of the

output. However, in order to avoid slowing down the convergence of values close to ±1, we
need to be sure that yi+1 = g̃(yi) remains far enough from ±

√
3, so that g̃(yi+1) remains far

enough from 0. Hence, we have chosen the εis smaller than 1/2i, which seems to be a good
trade-off experimentally. Note that, because εi → 0, the method still converges to ±1.

The benefits of this approach are twofold: first, the output is now randomized and the
extra-computations to perform this randomisation bring extra errors resulting in additional
loss of precision; second, the sequence moves away from 0 faster and thus the range of values
getting close to ±1 after t iterations slightly increases. Moreover, the values close to 0 or
±
√
3 are more sensitive to the perturbations brought by the εis, which makes them harder to

distinguish from the other values and to be retrieved from yt .
Even if it was assumed that computations were performed with an infinite precision,

i.e. the ideal case for a malicious client, it would be harder to retrieve the initial values with
randomisation than with the regular method. While a malicious client could perform multiple
requests for the same x in order to deduce the average value yt whose distribution he knows.
In this case, since the values can be greater than 1 at each iteration step, he would have to
determine at each inversion step whether the previous value was smaller or larger than 1 in
absolute value, because there is no longer a one-to-one correspondence. As a consequence, by
randomising the output one can use a smaller amount of iterations than for the regular case.
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Practical Considerations

In practice, performing one iteration of the previous methods consumes 2 levels of multiplica-
tive depth. Even though choosing parameters for a large multiplicative depth results in a
significant loss of performance, iterating a larger number of times leads to a smaller leakage of
information. The service provider has therefore to deal with a trade-off between the efficiency
of his service and how much data is leaked. We have seen that for a precision of 53 bits, 7 or
8 iterations of the non-randomised sign determination method, and so also of the randomised
one, should ensure the privacy of almost all the ys. However, in practice one can choose a
smaller number of iterations, especially if using the randomised method, without significantly
affecting the leakage of information.

Figures 16 illustrates the convergence of the two methods for different numbers of itera-
tions, and also presents the standard deviation of the values computed with the randomised
method. Herein, we have chosen to use 4 iterations of the randomised method for the SVM
classification requiring therefore 8 additional levels of multiplicative depth.

4.2.6 Overall system

When considering a linear kernel in the context of (4.1.1), classification boils down to:

y = sign (〈w,x〉 + β) (4.2.9)

where w =
∑n

i=0 αiyixi. In this case, if the number of features h is smaller than ϕ(m)/2,
〈w,x〉 + β can be computed with a single homomorphic multiplication, followed by dlog2 he
permutations and additions. Afterwards, the sign of the result is approximated.

For the polynomial and sigmoid functions, the γxi are precomputed, and the values of
〈γxi,x〉 are computed for ϕ(m)/2dlog2 he+1 support-vectors at a time using batching with the
approach described in Section 4.2.2. Then, ρ is added to the results. A similar reasoning can
be followed when applying the RBF kernel, namely by adding the results of the coefficient-
wise product

(
x j − xi, j

) (
x j − xi, j

)
with Algorithm 20. Afterwards, the function xd, tanh(x)

or e−γx is applied for the polynomial, sigmoid or RBF kernel, respectively, with the techniques
proposed in Section 4.2.3. The constants αiyi are multiplied by the result of K (x,xi), and the
results are added with the binary addition tree proposed in Section 4.2.2. Finally, the bias
term β is added to the intermediate result, and the sign approximation function is applied.

Even though batching is used, the server will only be interested in returning the result of
one slot to the client, since, if no care is taken, the remaining slots might contain sensitive
information. Hence when applying the sign evaluation technique, multiplicative constants
should be encoded in a single slot (e.g. (3, 0, . . . , 0)), so that information in the other slots is
removed. This prevents further information from being disclosed other than the y class.
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Figure 16: Output of regular and randomised methods run on plaintext values for 3, 4 and
5 iterations. Values of the randomised method correspond to an average over 212 tests.
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4.3 Implementation details

In this section, we propose algorithms for implementing the presented techniques on parallel
systems. In particular, we will assume the nomenclature and the parallel computing model of
OpenCL.

4.3.1 OpenCL parallel computing model

The OpenCL computing model considers a host connected to one or multiple compute de-
vices [SGS10]. These compute devices may be Central Processing Units (CPUs), Graphics
Processor Units (GPUs), among others. The compute device is composed of multiple compute
units - which may be Streaming Processors (SPs) in NVIDIA GPUs, or cores in CPUs - which
are further divided into processing elements - corresponding for instance to CUDA cores in
NVIDIA GPUs or Single Instruction Multiple Data (SIMD) channels in CPUs.

A compute device is programmed using a C-like language. Functions signaled as kernels
correspond to entry-points to the code execution. A kernel is replicated thousands of times and
executed in parallel in the compute device. Each of these instances, designated a work-item,
has a unique identifier, enabling them to access and process different data from one another.
Moreover, and up to the extent allowed by the compute device, work-items may be grouped
into work-groups. Whereas it is possible to synchronise work-items in the same work-group,
the same thing is not possible for work-items across different work-groups. Similarly, whereas
global memory can be accessed by all work-items, a faster type of memory, designated local
memory, can be used to share data at the work-group level.

4.3.2 Architecture design

Cheon et al. have provided a generic implementation of their scheme [Che16] based on the NTL
library. The ciphertext modulus q was chosen as a power-of-two for cheap modular reductions.
However, this removes the possibility of using the efficient negatively-wrapped NTT, resulting
in poor performance. In this work we have chosen to use the RNS representation of coefficients
in order to make use of parallel architectures, such as GPUs.

We have chosen q as a product of 62-bit prime numbers in a similar fashion to [AMBG+16].
This allows us to represent a polynomial a ∈ Rq for a q = q1×. . .×qk as a set of polynomials ai ∈
Rqi for all 1 ≤ i ≤ k. Furthermore, we apply the negatively-wrapped NTT to polynomials. Due
to this representation, polynomial operations are independents in nature and therefore readily
parallelizable. More concretely, they leverage two levels of parallelism: the first derives from
the independence of the polynomial coefficients, while the second arises from the independence
of the RNS channels.

Additionally, negatively-wrapped NTTs need to be applied during relinearisation, modulus-
switching and decryption. Since the NTT is the most burdensome operations of homomorphic
computations, it is one of main targets for optimisation. Figure 17 shows how its computation
is structured. For illustrative purposes, a radix-2 NTT of eight points is considered, when
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Figure 17: NTT Work Distribution

executing on a fictional compute device that allows for work-groups with a maximum of two
work-items. The NTT is computed in 3 epochs, where each one of 4 work-items computes
a radix-2 butterfly at each epoch. Each butterfly is comprised of a 2-point Discrete Fourier
Transform (DFT), followed by a multiplication of one of the outputs by a precomputed power
of an 8th primitive root of unity.

One can see in Figure 17 that in the second epoch, the computation of work-item 0 depends
on the output of work-item 2 in the first epoch, and that in the third epoch the computation of
work-item 1 depends on the output of work-item 0 in the second epoch. Since it is not possible
to synchronize 3 work-items in the considered device (since it has a maximum work-group
size of two work-items), one has to execute the first epoch in a different kernel (kernel 1) from
the two last epochs (kernel 2). These two kernels are queued sequentially, and whereas for
kernel 1 one sets a work-group size of 1 work-item, for kernel 2 one defines a work-group size
of 2 work-items. Furthermore, in the latter kernel, a synchronization point is added to each
epoch, and local memory is used for faster accesses.

The example above is generalizable to r-radix NTTs of n points, wherein the initial epochs
are executed on independent kernels, until the number of dependencies is confined to a number
of work-items smaller or equal to the maximal work-group size supported by the compute
device, and from then on computation is limited to the compute device. This technique
minimizes the number of synchronizations between the host and the compute device, and
generally contributes significantly to the total execution time.

4.3.3 Global strategy

We make use of the relinearization and key-switching procedures proposed in Chapter 2 which
are optimised for RNS representations. During the modulus-switching procedure, the cipher-
texts are scaled downed to a smaller ring. For a ciphertext whose elements are contained in
Rq for q = q1 × . . . × qk , we scale them down to the ring Rq′ with q′ = q1 × . . . × qk−1. This
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procedure can be efficiently computed in the RNS domain. Since the value [a]qk is readily

available, the scaling of a ∈ Rq can be computed as
[
a−[a]qk

qk

]

q′
. As stated in Section 4.1.3,

one should choose ∆ as ∆ ' q/q′. In order to achieve this, we have chosen ∆ as q1 since
q1 ' . . . ' qk .

Relinearisation accounts for most of the complexity because it requires k2 NTT (cf. Section
2.3.4). First, an inverse-NTT is applied to a so that DRNS,q (a) can be computed. Then, a

forward-NTT has to be applied to each
(���a

q1
q

���q1 , . . . ,
���a

qk
q

���qk

)
, so that they can be multiplied

by the relinearisation-key. We have reduced the number of times the relinearisation operation
was executed, by only applying it at the beginning of the next homomorphic multiplication
operation, and by performing homomorphic additions on “non-linear” elements by adding
the three corresponding polynomials. In particular, for the homomorphic evaluation of an
expression such as x0x1 + x2x3 and denoting by

(
c(xi,0), c(xi,1)

)
∀i ∈ {0, 1, 2, 3} the “linear”

encryption of xi, one would first compute

cxi xi+1 =
(
c(xi,0)c(xi+1,0), c(xi,0)c(xi+1,1) + c(xi+1,0)c(xi,1), c(xi,1)c(xi+1,1)

)
∀i ∈ {0, 2} .

Afterwards, one would add the two encryptions, producing:

cx0x1+x2x3 = (c(x0x1,0) + c(x2x3,0), c(x0x1,1) + c(x2x3,1), c(x0x1,2) + c(x2x3,2)).

If this result were applied to another homomorphic multiplication, it would require apply-
ing a relinearisation operation to bring the number of elements of cx0x1+x2x3 back to two.
Nevertheless, one relinearisation operation was saved in comparison to a straightforward im-
plementation.

Another important aspect with regards to delaying relinearisation is how this strategy
interplays with the permutation of the batching slots. During the permutation procedure,
key-switching needs to be applied, introducing noise that has the same magnitude as ∆. If
this procedure were applied directly to a permuted “linear” ciphertext, the introduced noise
could be large enough to change the most-significant bits of the encrypted message. We
mitigate this problem with two approaches. When permuting a three-element ciphertext,
we first relinearise it but do not apply modulus-switching. In this case, the message has
a multiplicative factor of ∆2, and the introduced noise will be small when compared with
∆2. When permuting a two-element ciphertext, we first multiply it by it by an encoding of
‘1’, implicitly changing the multiplicative factor to ∆2, so that the previous reasoning about
reducing the impact of the introduced noise is valid. In order to remove the extra ∆ factor,
one needs to apply modulus-switching after the key-switching procedure. We do so lazily,
following a similar reasoning to the previous one that allowed us to reduce the number of
relinearisations: when adding several permuted ciphertexts, we only apply modulus-switching
at the end of the sum.
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4.4 Experimental results

In this section, we experimentally evaluate the proposed methods, and compare them with
state of the art. The characteristics of the considered platforms can be found in Table 12.
We mostly use the GTX 980 as an archetype of the kind of parallel platforms that can be
found in High Performance Computing (HPC) servers to compare different methods; use
the GTX 680 to analyse the scalability of the proposed techniques across different NVIDIA
micro-architectures; and use the i7-5960X for a sequential reference implementation.

Platform Micro-architecture Nbr. of threads/ Frequency Main Memory
CUDA cores (MHz) (GB)

NVIDIA GTX 980 Maxwell 2048 1126 4
NVIDIA GTX 680 Kepler 1536 1006 2
Intel i7-5960X Haswell 16 3000 32

Table 12: Experimental Setup

4.4.1 Polynomial evaluation

The method proposed in [PS73] achieves the minimum number of nonscalar multiplications
for polynomial evaluation. Since this type of multiplication is considerably more expensive
than scalar multiplications, [PS73] is a good candidate for the homomorphic evaluation of
polynomials. Both the method described in Section 4.2.3 and the one described in [PS73]
were implemented in an NVIDIA GTX 980 GPU exploiting HE. When implementing [PS73]
to evaluate a polynomial of degree d, m1 was chosen to be the largest integer dividing d+1 and
smaller than

√
d + 1. Furthermore, m2 was defined as m2 =

d+1
m1

. Initially, the first m1 powers
of the input x are computed by repeated multiplication. Afterwards, the d + 1 coefficients of
the polynomial are split into m2 polynomials each of degree m1 − 1:

p(x) =
d∑
i=0

pixi =
m2−1∑
i=0

*.
,

m1−1∑
j=0

pim1+j x
j+/
-

(
xm1

) i
=

m2−1∑
i=0

gi (x)zi (4.4.1)

where gi (x) =
∑m1−1

j=0 pim1+j x
j and z = xm1 . The polynomials gi were evaluated with m1 − 1

scalar multiplications, since the values of x, . . . , xm1−1 had been previously computed. The
computation of p was finalised using Horner’s method with m2 − 1 non-scalar multiplications.

The efficiency of the two evaluation approaches was tested for polynomials of degree
d ∈ {4, 8, 16, 32, 64} with the coefficients uniformly sampled from the [−1, 1] interval, and
the results were reported in Table 13. As the multiplicative depths of the methods gets
larger, larger values of q need to be used, so that the scheme can cope with the extra noise
generated by the homomorphic multiplications. This leads to a need of increasing the value
of m that defines the underlying cyclotomic ring, so as to ensure security. The performance
of the polynomial evaluation methods is severely degraded as these two parameters increase.
Even though [PS73] aims at minimising the number of non-scalar multiplications, by using
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Method Degree Mult.
m log2 q

# scalar # non-scalar Execution
Depth multiplications multiplications Time (s)

Proposed 4 3 214 310 3 2 0.045
[PS73] 4 4 215 372 0 3 0.070

Proposed 8 5 215 434 7 6 0.34
[PS73] 8 4 215 372 6 3 0.15

Proposed 16 6 215 496 15 14 0.82
[PS73] 16 16 216 1116 0 15 2.23

Proposed 32 8 215 620 31 30 2.24
[PS73] 32 12 216 868 22 11 3.28

Proposed 64 9 215 682 63 62 4.72
[PS73] 64 16 216 1116 52 15 12.23

Table 13: Efficiency of Homomorphic Polynomial Evaluation

more efficient scalar multiplications, its multiplicative depth increases at a faster pace than
the proposed method, leading to the poor scalability of [PS73], as it is clearly observable in
Table 13. In addition, [PS73] performs worst when d+1 is prime, since this will lead to m1 = 1

and m2 = d + 1, contributing to larger multiplicative depths.

4.4.2 Sign evaluation

The efficiency of the proposed sign evaluation method, when compared to that of [CDSM15]
was similarly assessed in an NVIDIA GTX 980, and the results were reported in Table 14.
When using the method proposed in [CDSM15], the sign of an input x is approximated by a
sum of sine functions which are approximated by polynomials:

sign(x) ≈
1

0.8

β∑
j=1

α∑
i=1

(−1) j−1(2i − 1)2j−2

(2 j − 1)!
x2j−1 (4.4.2)

The polynomial described in (4.4.2) was evaluated with the method proposed in Section 4.2.3.
Random values in the [−1, 1] interval were generated and the mean and the standard deviation
of the absolute value of the results were computed for several iterations of the two proposed
methods, and for different values of β and α = 16 for the method in [CDSM15] (α does not
influence the execution time and, as long as it is sufficiently large, it does not significantly
change the accuracy of the result). The parameters m and q were selected to be in the
same order of magnitude for both approaches. Ideally, one should achieve a mean absolute
value of ‘1’ and a small standard deviation. Since the approximation in (4.4.2) converges
slowly, one needs large values of β to achieve significant numeric results. The difference
in convergence rates is highlighted in Figures 18a and 18b. Since the proposed methods
offer a better approximation in the whole domain, while [CDSM15] focus on optimising the
approximation around the origin, one needs a larger degree for the latter method to cover a
more significant interval which negatively affects its performance. Finally, one can see that
the randomisation mechanisms, used to reduce information leakage, impose a small overhead,
on average 11%; while at the same time improving both the mean and the standard deviation
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due to a faster convergence of the values close to 0.
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(a) Proposed Non-Randomised Sign Evaluation
Method
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α = 16, β = 16
α = 16, β = 32
α = 16, β = 64

(b) Sign Evaluation Method Proposed
in [CDSM15]

Figure 18: Comparison of the convergence rates of (a) the sign approximation method pro-
posed herein and (b) that of [CDSM15]

Method # of its/ Mult.
m log2 q

Mean of Std. Dev. of Execution
β Depth Abs. Value Abs. Value Time (s)

Regular 2 4 215 372 0.73 0.30 0.076
Regular 4 8 215 620 0.87 0.24 0.32
Regular 8 16 216 1116 0.98 0.12 3.31
Noisy 2 4 215 372 0.85 0.32 0.089
Noisy 4 8 215 620 0.94 0.21 0.35
Noisy 8 16 216 1116 0.99 0.10 3.54

[CDSM15] 4 5 215 434 69957 128272 0.29
[CDSM15] 16 8 215 620 5.64×107 1.55×108 0.75
[CDSM15] 32 9 215 682 543 3066 4.64
[CDSM15] 64 11 216 806 0.97 0.45 23.33

Table 14: Efficiency of Homomorphic Sign Evaluation

4.4.3 Global procedure

The LIBSVM library [CL11] was used to train models for the Statlog Australian Credit Card
Approval dataset [Fan], the Connectionist Bench (Sonar, Mines vs. Rocks) dataset [Fan], the
Pima Indian Diabetes dataset [Fan] and the Statlog Heart Data Set [Fan] with the characteris-
tic described in Table 15. Whereas with the previous experimental results we were concerned
with comparing the performance of the proposed methods with those of related art, in Ta-
ble 17 we present, for the first time, the performance of homomorphically performing an SVM
classification. We have chosen a standard deviation σerr = 6.0 for the error distribution, the
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secret key has been chosen with 64 non-zero coefficients sampled uniformly in {±1}, and the
level of security λ achieved by our parameters was computed using the online estimator pro-
vided by [APS15]. We also present the size of the keys (relinearization and key-switching) the
client has to upload to the server before starting the protocol together with the size of the
ciphertexts. Remember that we are in an amortised model, so the client has only to provision
the keys once for a long period during which he can perform several requests.

Dataset # of Training Dataset Testing Dataset Kernelfeatures Size Size
Australian 14 400 190 Linear

Sonar 60 160 48 Polynomial (degree 5)
Diabetes 8 600 168 Sigmoid
Heart 13 200 70 RBF

Table 15: Datasets to Test Private SVM Classification

We assess the efficiency of the OpenCL implementation on two generations of NVIDIA
GPUs, in order to evaluate its scalability, and compare it with a reference C++ sequential
implementation on an Intel i7-5960X. The sign function in (4.1.1) was evaluated by iterating
the method proposed in Section 4.2.5 4 times. The sigmoid and exponential functions in
(4.1.4) and (4.1.5) were approximated by polynomials presented in Table 16.

index
Coefficients

x 7→ tanh(x) x 7→ e−γx

a = 0.51225306238208002 a = 115

0 1.4009642707414478e-17 1.0000000000000002
1 0.99999999999995082 -0.00048828100000000192
2 -2.1227219660455179e-14 1.1920916748065294e-07
3 -0.33333333332155596 -1.9402523836879882e-11
4 1.9300123814730566e-12 2.3684705729457643e-15
5 0.1333333325110871 -2.3129124018455077e-19
6 -6.5224256206901339e-11 1.9064448146349986e-23
7 -0.053968227901277463 -4.4241699170007713e-27
8 1.1171625055134562e-09 -7.4394009787886375e-29
9 0.021869040479270206 9.4733594535281552e-31
10 -1.0923689311744991e-08 1.2314188912818555e-32
11 -0.0088586960556909129 -1.5386535912138098e-34
12 6.3527986719020514e-08 -1.1349649205298355e-36
13 0.0035641099208678808 1.3779247892196034e-38
14 -2.170761532109173e-07 5.6034063188191365e-41
15 -0.0013512032562647397 -6.4143854972872915e-43
16 4.0192953621050575e-07 -1.2528959902659904e-45
17 0.00036617202103725164 1.2116502342840465e-47
18 -3.108838239985658e-07 6.3734555982768629e-51

Table 16: Polynomials of degree 18, computed with Remez algorithm, used for approximating
tanh and e−γ on the interval [−a, a] with γ = 0.00048828100000000002.

The accuracy achieved during the homomorphic test was exactly the same as that achieved
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with unencrypted values, leading to the conclusion that the errors introduced by the approxi-
mate arithmetic of [CKKS17] and our polynomial approximations are not significant. Finally,
an average speedup of 2.70 is obtained when comparing the parallel GTX 980 implementation
with the sequential i7-5960X. This is made possible by the exploitation of the RNS, which
makes the computation of the several work-items uniform and hence more suitable to imple-
mentation on GPUs. The improvement in performance that is obtained when comparing the
execution on the GTX 980 to that of GTX 680 shows that the developed OpenCL system
is very scalable with respect to the number of available processing elements, since the GTX
980 has 2048 CUDA cores, while the GTX 680 has 1536 CUDA cores; and also that it is
capable of taking advantage of the reduced latency of the integer arithmetic of the Maxwell
micro-architecture in comparison to the Kepler micro-architecture.

dataset kernel mult.
m log2 q

λ keys (GB) accuracy platform exec.
depth (bits) / ct (MB) (%) time (s)

Australian (4.1.2) 9 215 682 80
0.43

86.32
GTX 980 1.14

/ GTX 680 2.80
3 i7-5960X 3.32

Sonar (4.1.3) 13 216 930 100
1.71

89.58
GTX 980 13.28

/ GTX 680 8.68
8 i7-5960X 25.73

Diabetes (4.1.4) 16 216 1116 89
2.47

76.79
GTX 980 21.14

/ GTX 680 51.17
9 i7-5960X 64.33

Heart (4.1.5) 16 216 1116 89
2.47

81.43
GTX 980 21.42

/ GTX 680 52.11
9 i7-5960X 66.08

Table 17: Performance of the Proposed Homomorphic SVM Classification

In [GLN13], the Linear Means (LM) and Fisher’s Linear Discriminant (FLD) classifiers
were considered. Both methods compute the most likely class y based on the input vector of
features x as follows:

y = sign (〈w,x〉 + β) (4.4.3)

where w is learned during the training phase. However, in [GLN13], the computation of the
sign function is deferred until after decryption. Doing so would not be acceptable in our
setting, because it might lead to a larger information leak. Homomorphic classifications take
up to 6 seconds with the LM classifier on data with 30 features, and up to 20 seconds with
the FLD classifier on data with 10 features, on an i7 processor running at 2.8GHz with 8GB
of main memory. In the context of [GLN13], the model is assumed to be private to the client,
and hence w is only available in encrypted form to the server. The inner-product 〈w,x〉
needs to be computed with nonscalar multiplications, degrading somewhat the computational
performance when compared to the setting considered in this paper. A second source for
the poor performance of [GLN13] is related with the chosen number representation. Instead
of making use of the canonical embedding to represent real values as in [CKKS17], rational
values are scaled by a common factor so that they can be represented as integers, and are

131



Chapter 4. Homomorphic evaluation of support vector machine

afterwards mapped to a ring Rt :

z = sign(z)(zs, zs−1, . . . , z1, z0)2 → mz = sign(z)(z0 + z1x + . . . + zsxs) (4.4.4)

where (zs, zs−1, . . . , z1, z0)2 corresponds to the binary representation of |z |. Homomorphic
multiplications and additions respectively multiply and add polynomials in Rt , and the result
is evaluated at x = 2 to obtain back the corresponding integer. One needs to select a large
enough cyclotomic ring R and a large modulus t, which results in a small multiplicative
depth, to ensure that no wrap-around happens. This leads to a significant degradation of
performance - although not directly comparable, our reference sequential implementation of
classification with an SVM and a linear kernel takes about 3.32s and includes an approximation
to the sign value, while [GLN13] takes up to 6s to produce the LM classification, without any
approximation of the sign.

4.5 Conclusion

With the recent advances in machine learning, data is becoming increasingly more valuable.
When offering classification as a service, companies will be interested in preventing their
models’ parameters from being disclosed, so that no other provider can mimic their services.
Clients are also invested in protecting their own sensitive data. In this context, homomorphic
encryption offers theoretically an ideal solution.

While SVMs have shown their effectiveness in classifying data in the past, they are chal-
lenging to implement homomorphically, since they require both value-wise and bit-wise arith-
metic. In this work we have proposed techniques for homomorphic SVM classification im-
proving both value-wise arithmetic, namely by accelerating polynomial evaluation up to 2.72
times, and bit-wise arithmetic, namely by accelerating sign approximation mechanisms up to
6.59 times. The secrecy of the client’s data is ensured by the semantic security of the employed
HE scheme, while the leakage of the model parameters is reduced through a randomization
of the sign-evaluation method.

While the employed plaintext number representation only allowed for approximate arith-
metic, we have shown that it does not affect the model’s accuracy. Moreover, the possibility
to directly encode up to n/2 real values in a single plaintext permit to reach better perfor-
mances than with the classical batching technique (cf. Section 1.3) where the number of slots
available is much smaller than n/2.

Future directions of research to proceed with this work include expanding on techniques
to evaluate nontrivial functions homomorphically in an efficient manner but also drastically
reducing the size of the different keys needed by the server to process the data.

This work is currently in the process of submission of an international conference.
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Properties of Homomorphic Encryption could be a major asset for privacy protection in the
current numeric era. Gentry’s breakthrough in 2009 proved that it was achievable and since
then a lot of effort has been devoted to make it practical. Despite considerable improvements
since the first construction, homomorphic encryption remained hardly practical at the begin-
ning of this thesis and was still limited by its requirements, either in time or in memory. In
this thesis we have focused on enhancing performance of the arithmetic used by such encryp-
tion schemes in order to contribute at breaking the performance barrier.

An alternative to the costly bootstrapping procedure of Gentry is to use a Somewhat
Homomorphic scheme with parameters large enough to evaluate homomorphically the func-
tions required by a targeted application. In this setting, schemes like BGV require a chain of
moduli q0 < . . . < qL to be able to scale the noise down after each multiplication by switch-
ing the ciphertext to a smaller modulus. When evaluating circuits with large multiplicative
depth one needs to choose a large chain of moduli and thus use higher dimensions resulting in
poor performance. Scale invariant schemes like FV allow to partially overcome this limitation
by removing the need of the modulus-switching procedure which potentially results in the
possibility of evaluating circuits with a bigger multiplicative depth. However, the complex
computations required by the procedures of scale-invariant schemes do not allow to use di-
rectly the efficient RNS representation all along the computations which somehow cancels the
initial benefit brought by these schemes. Our first contribution has been to overcome the
natural limitations of the RNS representation to be able to use it during the entire proce-
dures of scale-invariant schemes like FV ([BEHZ17]). The significant gains we have obtained
by avoiding the reconstruction to a positional representation have permitted to reduce the
performance gap with schemes like BGV. The methods we have proposed have recently been
incorporated in the SEAL library developed by Microsoft Research.

Even though one is able to perform additions and multiplications of plaintext values with
homomorphic encryption, the representation of numbers induced by the plaintext space makes
the plaintext arithmetic challenging unless encrypting only one bit in each ciphertext. How-
ever in this case the ratio between the size of the ciphertext and the size of the plaintext would
be huge limiting a little bit more the practicality of homomorphic encryption. The batching
technique permits to overcome these difficulties by allowing to pack and process several bits
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independently in a single plaintext. Sadly this technique is incompatible with the efficient
power-of-two cyclotomics and thus one has to consider other rings with a less efficient arith-
metic. Our second contribution has been to improve the arithmetic performance in general
cyclotomic rings by focusing on the polynomial reduction procedure required in such cases
([BEH+18]). We have also shown that the impact of our reduction procedures on the noise
growth in the BGV and FV schemes could be handled so that it does not affect the multiplicative
depth of these schemes. Despite its considerable impact on the noise growth of scale-invariant
schemes such as FV, our generic Montgomery reduction is compatible with BGV like schemes
and could probably benefit a library such as HElib in the case of non-power-of-two cyclotomics.

In the big data era, machine-learning offers a concrete solution to solve different decisional
problems and in particular for the classification of data. Fully homomorphic encryption al-
lows in theory to perform this classification on encrypted data ensuring therefore their privacy.
However this kind of computations require to use a threshold function in the end to return
the result. In practice, this threshold function is challenging to implement homomorphically,
essentially because it requires comparisons which are hardly compatible with homomorphic
operations. In a third contribution we have focused on performing the computations required
by a Support Vector Machine (SVM) efficiently ([BMSZ18]). Besides the evaluation of the
threshold function, the methods we have proposed to perform the computations required by
SVMs are more efficient than some methods from the related art and can fully exploit the
strong parallelization potential of devices such as GPU. The experiments we have run show
that we are not so far from practical execution time anymore, however the communication
costs, and in particular the size of the keys one needs to send to the server prior starting the
classification, are still much too important.

Considering that the construction of Gentry in 2009 was not even implementable, we
must admit that homomorphic encryption performance have been considerably improved over
the last years. Even though we cannot claim yet it is practical enough for an imminent
widespread deployment, this idea is no longer completely unrealistic. Of course there is
still a lot of work to be done, for instance one should at least gain an additional level of
magnitude in performance before even considering such deployment. Since the cryptographic
community is still devoting a lot of efforts in improving performance of homomorphic schemes,
it is very likely that homomorphic encryption will reach realistic execution time in the near
future. However there are others bottlenecks to consider; starting with the communication
costs which are still very high. Even though the size of the ciphertexts is not completely
unreasonable, the relinearization key and especially the key-switching keys needed by the
entity performing the computations can easily require several Giga Bytes of memory. However
this problem starts to be considered and recent work of Halevi and Shoup have shown we could
significantly reduce the size of these keys (33%-50%) ([HS18]). However this is probably not
sufficient yet and we believe this problem would deserve more attention in the upcoming years.
Moreover the recent trend for machine-learning has highlighted once more the difficulties to
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perform non-trivial computations with homomorphic encryption. Although this problem has
already received a lot of attention, the current solutions are not completely satisfactory and
would require additional investigations. It is not clear yet, whether or not we will obtain
completely generic fully homomorphic encryption, even though big companies like IBM or
Microsoft are currently trying to develop efficient and generic libraries for it. However it
seems almost certain that we will be able to use efficient homomorphic encryption for several
specific applications. As a consequence, identifying these applications and finding efficient
ways to perform homomorphically the computations they would require should be a subject
of interest for future researches.
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