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Pr. Arnaud Guillin Université Clermont Auvergne
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-What do you want to be when you grow up?
-An honest, brave, compassionate human being.

-No... I mean, how do you want to sell your labor?

Corey Mohler, Existential Comics

This was in a lecture room, and I invited him to consider the proposition:
‘There is no hippopotamus in this room at present’.

When he refused to believe this, I looked under all the desks without finding one;
but he remained unconvinced.

Bertrand Russell on Ludwig Wittgenstein

Vos exergues sont absurdes.

Catherine K., Principia Impressoricae
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Résumé
Ce mémoire présente la majeure partie de mes travaux effectués depuis la fin de ma thèse. Mon

travail porte principalement sur des questions mathématiques à l’interface entre analyse et probabilités.
Les résultats présentés ici portent principalement sur trois thèmes : la méthode de Stein et ses applications
à l’estimation de distances entre mesures de probabilité, la stabilité des inégalités fonctionnelles, et les
notions de courbure de Ricci pour les espaces discrets et leurs applications. Chacun de ces thèmes est
l’objet d’un des chapitres de ce mémoire. Dans mes travaux sur chacun de ces thèmes, on retrouve des
idées et méthodes issues de deux sujets à l’interface entre analyse et probabilités : le transport optimal
de mesures et les inégalités fonctionnelles.

Une question qui revient fréquemment dans mes travaux est celle d’estimer quantitativement la prox-
imité entre différentes mesures de probabilités. Ce type de problème apparait sous diverses formes dans
de nombreux domaines des mathématiques et des sciences, par exemple pour évaluer la qualité d’un
algorithme numérique ou d’un estimateur statistique, la vitesse de convergence d’un processus vers un
état d’équilibre, ou encore pour étudier la rigidité d’un problème variationnel. L’accent sera donc sur
les estimées quantitatives que l’on obtient, et leur dépendance en les différents paramètres des problèmes
considérés.
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Summary
This document presents a large part of my work since the end of my PhD thesis. I have mostly worked

on mathematical problems at the boundary between analysis and probability. The results described here
mostly deal with the following three topics: Stein’s method and its uses in estimating distances between
probability measures, stability of functional inequalities, and notions of Ricci curvature bounds for discrete
spaces and their applications. Each of these topics will be the focus of a chapter of this manuscript. In
all of them we shall see ideas and techniques from two fields at the interface of analysis and probability:
optimal transportation of measures and functional inequalities.

A question that frequently appear in my work is to quantitatively estimate how close various probabil-
ity measures are. This type of problem arises in various forms in many areas of mathematics and natural
sciences, for example in order to evaluate the efficiency of a numerical scheme or a statistical estimator,
the rate of convergence of some process towards a stationary state, or to study rigidity in variational
problems. There will therefore be an emphasis on the quantitative bounds we can obtain, and the way
they depend on the various parameters of the problems considered.
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Chapter 1

Introduction

This text describes some of my post-PhD research work, since 2014. I have mostly worked on the five
following topics:

1. Convergence of interacting particle systems to some scaling limit;

2. Rigorous analysis of error bounds for stochastic numerical schemes;

3. Stein’s method and error bounds for approximation of probability measures;

4. Functional inequalities in probability theory, and their stability;

5. Notions of Ricci curvature for discrete spaces and their applications.

The distinction made here between these topics is somewhat arbitrary, and many of my works mix
several of them. The first two topics were the main focus of my PhD thesis. Although I have continued
working on both of them, I will not discuss here my post-PhD work on them (items 11, 12 and 13 in
the list below), and focus on the last three, each of which will be the main focus of one chapter of this
document.

A common feature in most of my work is the use of tools and ideas from analysis (calculus of variations,
PDEs, regularity estimates) to derive quantitative bounds in problems from the field of probability,
in a broad sense, such as error estimates in random approximation problems, rates of convergence to
equilibrium for stochastic dynamics, rigorous error bounds from a scaling limits for discrete models in
statistical physics, non-asymptotic confidence intervals for statistical estimators...

1.1 Publication list

Articles described in this manuscript

1. T.A. Courtade and M. Fathi, Stability of the Bakry-Émery theorem on Rn. Arxiv preprint 2018.

2. M. Fathi, A sharp symmetrized form of Talagrand’s transport-entropy inequality for the Gaussian
measure. to appear in Electronic Communications in Probability, 2018.

3. M. Fathi, Stein kernels and moment maps. to appear in Annals of Probability, 2018.
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4. T.A. Courtade, M. Fathi and A. Pananjady, Existence of Stein Kernels under a Spectral Gap, and
Discrepancy Bounds to appear in Annales de l’IHP: Probabilités et Statistiques, 2018

5. T.A. Courtade, M. Fathi and A. Pananjady, Wasserstein stability of the entropy power inequality
for log-concave densities IEEE Transactions on Information Theory 64, 8, 5691-5703, 2018. (a short
version was also published in the proceedings of the 2017 International Symposium on Information
Theory).

6. M. Erbar and M. Fathi, Poincaré, modified logarithmic Sobolev and isoperimetric inequalities for
Markov chains with non-negative Ricci curvature. Journal of Functional Analysis 274 (2018), no.
11, 3056-3089

7. M. Fathi and B. Nelson, Free Stein kernels and an improvement of the free logarithmic Sobolev
inequality, Advances in Mathematics 317 (2017) pp. 193-223.

8. M. Fathi and Y. Shu, Curvature and transport inequalities for Markov chains in discrete spaces,
Bernoulli, 24(1), 2018, 672-698

9. M. Fathi, E. Indrei and M. Ledoux. Quantitative logarithmic Sobolev inequalities and stability
estimates. Discrete and Continuous Dynamical Systems 36 (2016), no. 12, 6835-6853.

10. M. Fathi and J. Maas, Entropic Ricci curvature bounds for discrete interacting systems, Annals of
Applied Probability 26 (2016), no. 3, 1774-1806.

Other articles

11. M. Erbar, M. Fathi, V. Laschos and A. Schlichting, Gradient flow structure for McKean-Vlasov
equations on discrete spaces, Discrete and Continuous Dynamical Systems 36 (2016), no. 12,
6799-6833.

12. M. Fathi and M. Simon, The gradient flow approach to hydrodynamic limits for the simple exclusion
process. Particle Systems and Partial Differential Equations III, ed. A. J. Soares and P. Goncalves,
Springer Proceedings in Mathematics & Statistics.

13. M. Fathi and G. Stoltz, Improving dynamical properties of stabilized discretizations of overdamped
Langevin dynamics. Numerische Mathematike 136 (2017), no. 2, 545-602.

14. M. Fathi. A gradient flow approach to large deviations for diffusion processes. Journal de
Mathématiques Pures et Appliquées (9) 106 (2016) , no. 5, 957-993.

15. M.H. Duong and M. Fathi. The two-scale approach for non-reversible dynamics. Markov Processes
and Related Fields Volume 22, Issue 1, 1-36, 2016.

16. M. Fathi. Modified logarithmic Sobolev inequalities for canonical ensembles. ESAIM: Probab.
Stat. Vol. 19 (2015) 544–559

17. M. Fathi and G. Menz. Hydrodynamic limit for conservative spin systems with super-quadratic,
partially inhomogeneous single-site potential.unpublished manuscript, 2014

18. M. Fathi, A.-A. Homman and G. Stoltz. Error analysis of the transport properties of Metropolized
schemes. Proceeding of the 2013 CEMRACS summer school, ESAIM: Proceedings and Surveys,
vol. 48, p.341-363, 2015.
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19. M. Fathi and N. Frikha. Transport-Entropy inequalities and deviation estimates for stochastic
approximation schemes. Electronic Journal of Probability, Volume 18 (2013), no. 67, 1-36.

20. M. Fathi. A two-scale approach to the hydrodynamic limit. Part II: local Gibbs behavior. ALEA,
Lat. Am. J. Probab. Math. Stat., 10(2): 625-651, 2013.

In this list, items 14 to 20 correspond to my PhD thesis.

1.2 Content of the manuscript

We now briefly describe the content of the rest of this manuscript.

Chapter 2 is a (minimal) introduction to several topics that play an important role in my work:
optimal transport, information-theoretic functional inequalities, and Ricci curvature lower bounds. It
mostly contains background material, the basic definitions and some important theorems on these topics
that are either used in my work, or motivate some of the questions I study.

Chapter 3 is about Stein kernels and their applications to quantitative central limit theorems. It
describes results from the publications 3, 4 and 6 in the above list. The main topic is a particular way of
implementing a strategy for estimating distances between probability measures, known as Stein’s method.
It consists in characterizing probability measures via integration by parts formulas, and using these to
compare the measures. For example, the standard Gaussian measure on Rd can be characterized as the
only probability measure such that ∫

x · f(x)dγ =

∫
div(f)(x)dγ

for all nice smooth vector-valued test functions f . It then turns out that if another probability measure
satisfies this integration by parts inequality up to a small error, for some large enough class of test
functions, then it is close to being Gaussian, and this statement can be made explicitly quantitative. My
main contribution has been two constructions of Stein kernels, a class of objects that can be used to
define approximate integration by parts formulas for probability measures. As an application, I derived
various estimates on the rate of convergence in the classical central limit theorem, with a particular focus
on the dependence in the dimension. I have also worked on the counterpart of these Stein kernels in free
probability, with applications to free functional inequalities and rates of convergence in the free central
limit theorem.

Chapter 4 is about refinements and stability of functional inequalities, describing results from the
(pre)publications 1, 2, 4, 5 and 9. A typical functional inequality compares two integral quantities.
Classical examples include Sobolev inequalities and isoperimetric inequalities. The main example of
interest in my work is the logarithmic Sobolev inequality, which, given a reference probability measure
µ, states (if it holds) that

Entµ(f) ≤ CLSI(µ)

∫
|∇f |2

2f
dµ

for all positive smooth function f . While in general the sharp constant CLSI(µ) is hard to compute,
for the standard Gaussian measure we know that it is equal to 1 in all dimensions. Moreover, equality
holds if and only if f is of the form C exp(λ · x) for some λ ∈ Rd. We can then try to see if further
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improvements are possible, for example by extracting an extra remainder term measuring how far f is
from being an exponential, or by improving the constant over some restricted class of functions that
exclude exponentials. Similar questions can be raised for many other inequalities, such as isoperimetric
inequalities, spectral inequalities, etc... Beyond the Gaussian LSI, I have worked on transport-entropy
inequalities, the Shannon-Stam entropy power inequality and spectral inequalities.

Chapter 5 is about Ricci curvature bounds in discrete spaces, describing results from articles 6, 8
and 10. Ricci curvature bounds play an important role in differential geometry, and over the past few
years there have been several attempts at defining an analogous notion in a discrete setting, motivated
by the development of tools for proving functional inequalities on graphs. I have worked on several of
these notions, although mostly on the so-called entropic Ricci curvature, and proved several discrete
counterparts to classical results in Riemannian geometry, such as a discrete Buser theorem relating
spectral gap and Cheeger isoperimetric constant in nonnegative curvature, as well as a relation between
diameter and (modified) logarithmic Sobolev constant for such graphs. I have also worked on methods
for computing curvature lower bounds for concrete examples.

1.3 Notations

• γd,p stands for the d-dimensional Gaussian probability measure with barycenter at p ∈ Rd. If the
subscript is omitted, it stands for the standard centered Gaussian measure.

• Entµ(f) stands for the relative entropy of the nonnegative function f with respect to the measure µ,
given by

∫
f log fdµ−

(∫
fdµ

)
log
(∫
fdµ

)
. Similarly, if ν is another probability measure, Entµ(ν)

is the entropy of the density of ν with respect to µ (and takes value +∞ if ν is not absolutely
continuous w.r.t. µ).

• Iµ(f) stands for the relative Fisher information of the nonnegative function f with respect to the

measure µ, given by
∫ |∇f |2

2f dµ. Similarly, Iµ(ν) is the relative Fisher information of the density of

ν with respect to µ (and takes value +∞ if ν is not absolutely continuous w.r.t. µ).

• id stands for the identity map.

• Id stands for the identity matrix (with dimension specified by the context).

• µ#F is the pushforward of the measure µ by the function F .

• Π(µ, ν) is the set of all couplings between the two probability measures µ and ν.

• C is a constant that may change from line to line, or even within a line.
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Chapter 2

Background

2.1 Optimal transport

The aim of this section is to provide a brief introduction to optimal transport, with a focus on the aspects
most relevant to my own work. For a more extensive presentation of the field, we refer to the monographs
[165, 166].

The optimal transport problem was first proposed by Monge in [136]. Its relaxed form, proposed by
Kantorovitch, takes the following form: given two probability measures (which represent the location of
the mass to be transported, and the target allocation) and a cost function c (representing the cost of
moving some mass from a point x to some point y), we look for a coupling π of µ and ν that minimizes
the quantity ∫

c(x, y)dπ.

Equivalently, we are looking for the distribution of a pair of random variables (X,Y ) such that X has
law µ and Y law ν, that minimizes among all such pairs the quantity E[c(X,Y )].

Over the past 30 years, there has been a huge amount of progress, both on the theory of optimal
transport (structure, existence, uniqueness, behavior under additional constraints...) and its applications
to various areas of mathematics (PDEs, probability, statistics, geometry, operator algebras...) and other
natural sciences (statistical physics, engineering, economics...). The purpose of this section is to review
a few highlights of the theory, with a particular focus on the case where the cost is the squared distance
on some metric space, which is the one most relevant to my work.

The first structural result we would like to highlight is the Brenier theorem [27] (later improved
by McCann [129]), which states that on the Euclidean space, and when considering the quadratic cost
c(x, y) = |x−y|2, if one of the two measures, say µ, has a density (or more generally, does not give positive
mass to some lower-dimensional subset), the optimal transport plan has a very specific structure: it is
supported on the graph of the gradient of some convex function, i.e. it takes the form

π(dx, dy) = µ#(id,∇ϕ)

with ϕ : Rd −→ R convex. In particular, this result implies the existence of a map sending µ onto ν with
this specific structure. In some of the results and techniques we shall later discuss, the optimality of the
map will in some sense play no direct role, we will only exploit the fact that there exists a map with such
a specific geometry.
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As a consequence, if we assume that both measures have a density and write the change-of-variable
formula for the optimal transport map ∇ϕ sending µ = ρ0(x)dx onto ν = ρ1(x)dx, we see that it solves
(in a weak sense) the following PDE:

ρ0(x) = ρ1(∇ϕ(x)) det Hessϕ(x) (2.1)

This type of PDE, involving the determinant of the Hessian of the unknown function, is known as a
Monge-Ampère PDE. McCann [130] showed that the optimal transport map solves this PDE almost
everywhere, if the Hessian is understood in the sense of Alexandrov.

If we consider a cost function of the form c(x, y) = d(x, y)p, it turns out that the optimal transport
cost

Wp(µ, ν) =

(
inf

π∈Π(µ,ν)

∫
d(x, y)pdπ

)1/p

is a distance on the (sub)space of probability measures with finite p-moment Pp. These distances are
known as Wasserstein or Monge-Kantorovitch distances, and control the weak-∗ convergence of probability
measures (plus convergence of the p−moment). A particular feature of this family of distances is that
they trivially provide an isometric embedding of the base space into the space of probability measures.
We will later see how the geometry of the space of probability measures endowed with a Wasserstein
distance remembers some features of the geometry of the base space.

We now move on to a dynamic viewpoint on optimal transport, based on work of Benamou and Brenier
[14], and further refined by Otto [99, 147]. The basic idea is that instead of minimizing over all possible
way of allocating the mass of the source to its target, we can minimize over all ways of continuously
moving the mass from the source to the target.

W2(µ0, µ1)2 = inf

∫ 1

0

∫
|vt(x)|2dµtdt

where the infimum is taken over all pairs (µt, vt) of curves of probability measures (with endpoints µ0

and µ1) and of vector fields satisfying the relation

µ̇t + div(vtµt) = 0. (2.2)

If we analyze the curve (µt, vt) that attains the minimum, we can show it is actually induced by the
optimal coupling in the original formulation of W2, via the relations µt = ((1 − t)id + t∇ϕ)#µ0 and
vt(x) = ∇ϕ(((1− t)id+ t∇ϕ)−1(x)), i.e. the flow follows the geodesic between x and ∇ϕ(x). This point
of view extends to the Riemannian setting.

We can view the Benamou-Brenier formula as allowing to endow the space (P2(Rd),W2) with a
formal (infinite-dimensional) Riemannian structure. This point of view has been developed by Otto
[147], following earlier work by Jordan, Kinderlehrer and Otto [99]. The relation (2.2) allows to identify
the tangent space at a measure µ with vector fields, and the quantity

∫
|v(x)|2dµ is then an L2 norm on

this tangent space. The Benamou-Brenier formula can then be viewed as stating that the Wasserstein
distance between measures is obtained by minimizing the action over all possible curves linking the
two measures, which matches with the usual definition of Riemannian distances. Curves of probability
measures achieving the minimum in the Benamou-Brenier formula are then geodesics in the space of
probability measures.

Finally, I would like to mention Kantorovitch’s dual formulation of the optimal transport problem.
Under some assumptions on the cost function c, we have

inf
π∈Π(µ,ν)

∫
c(x, y)dπ(x, y) = sup

φ(x)+ψ(y)≤c(x,y)

∫
φ(x)dµ(x) +

∫
ψ(y)dν(y).
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In the case of the L1 Wasserstein distance, the above dual formula is known as the Kantorovitch-
Rubinstein formula, and can be written as

W1(µ, ν) = sup
f 1−lip

∫
fdµ−

∫
fdν (2.3)

where the property of being Lipschitz is understood relative to the distance used to define the cost. It
will play an important role in several of the results we shall discuss in this manuscript.

2.2 Functional inequalities

Functional inequalities are inequalities comparing integral quantities over classes of functions or measures.
Emblematic examples include Sobolev inequalities in PDE theory and geometric functional analysis in-
equalities, such as the Brunn-Minkowski inequality or isoperimetric inequalities. They can be used to
quantify various phenomenon, by using them to compare certain distances or other quantities of interest.

I will start by defining the three main type of functional inequalities I am interested in:

Definition 1. A probability measure µ on Rd is said to satisfy:

• a Poincaré inequality with constant ρ (denoted by PI(ρ)) if for any smooth test function

V arµ(f) ≤ 1

ρ

∫
|∇f |2dµ;

• a logarithmic Sobolev inequality with constant ρ (denoted by LSI(ρ)) if for any smooth nonnegative
test function

Entµ(f) ≤ 1

2ρ

∫
|∇f |2

f
dµ;

• a transport-entropy, or Talagrand inequality, of order p and constant ρ (denoted by Tp(ρ)) if for
any probability measure ν

Wp(ν, µ)2 ≤ 2

ρ
Entµ(ν).

For the Talagrand inequality, we shall mostly be interested in the cases p = 1 and p = 2. A basic
example of probability measure satisfying these inequality is the standard Gaussian measure, for which
the sharp constant is ρ = 1 in any dimension. All three of these inequalities compare two kinds of
distances to the reference measure.

We have already seen Wasserstein distances in the previous section. Before commenting on the
functional inequalities we just defined, I would like to briefly explain why we are interested in the other
quantities playing a role in those inequalities.

The relative entropy Entµ(ν) =
∫
f log fdµ of a probability measure ν = fµ with respect to a

reference probability measure µ plays an important role as a measure of information in several areas,
most notably kinetic theory and information theory. It was first introduced by Boltzmann in his work
on the Boltzmann equation in kinetic theory, as a monotone quantity along the flow, in accordance with
the second principle of thermodynamics, and hence a good way of quantifying the trend to equilibrium.
Note that the way we define entropy is as the negative of the physical entropy, so it will end up being
decreasing rather than increasing. The Pinsker inequality asserts it dominates the squared total variation
distance between µ and ν, so that it indeed controls convergence in distribution. It then appeared in
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information theory, where Shannon [157] used it as a measure of the rate at which a stochastic source
of data produces information. Informally, a source with low (mathematical) entropy makes it harder for
the receiver to identify data from the signal he receives. Later on, it appeared in the theory of large
deviations, as a sharp way of estimating the exponential decay rate of the probability of observing an
abnormal behavior for a large collection of i.i.d. random variables sampled from the reference measure.
We refer to the nice survey by Chafäı [39] for more about the history of entropy and its applications to
many fields of mathematics and natural sciences.

Historically, Fisher information was introduced in statistics as a way of quantifying the information an
observable contains about an unknown parameter on which its distribution depends. It plays an important
role in quantifying the risk of using certain estimators to infer the value of the target parameter. The
two main applications that motivate our interest in it come however from slightly different problems: it
arises as the rate of dissipation of entropy for certain stochastic dynamics, and as the large deviations
rate function for the occupation measure of Markov processes.

The LSI was first introduced by Gross [94] in 1975, in relation with the hypercontractivity of certain
Markovian semigroups. It can be viewed as a type of Sobolev inequality, where the embedding of the
weighted Sobolev space H1(µ) is not in an Lp space but in an Orlicz-type space L2 logL (i.e. we gain a
logarithmic factor in integrability, rather than improve the exponent).

Transport-entropy inequalities were introduced by Talagrand [164] and Marton [128] to study con-
centration of measure. We also refer to the survey [91]. These functional inequalities and their variants
have found applications to many concrete problems, among which we can mention:

• Long-time behavior of stochastic processes and PDEs [8]

• Statistics: confidence intervals, concentration of measure [25]

• Statistical physics: interacting particle or spin systems [171], hydrodynamic limits [95, 104], com-
putational statistical physics [118]

• Computer science: analyzing algorithms, optimization problems, information theory [150]

A striking feature of LSI and Poincaré inequalities, as well as T2 inequalities, is that they tensorize:
a product measure whose factors satisfy one of these inequalities also does. In particular, a product
measure µ⊗n satisfies these inequalities with the same constant as µ. This observation allows us to use
functional inequalities to derive dimension-free quantitative estimates. These are particularly useful when
analyzing the behavior of high-dimensional systems, such as interacting particle systems in statistical
physics (where the dimension is typically of the order of the Avogadro number, i.e. around 1024), certain
numerical schemes such as spatial discretizations of PDE (where the effective dimension is of order ε−d,
where ε is the size of the mesh, which typically has to be taken quite small) or various models in statistics.
See aso [138] about the role of large numbers in mathematics.

The Poincaré and logarithmic Sobolev inequalities are naturally connected with long-time behavior
of Markov process: they respectively control the rate of convergence to equilibrium in L2 distance and
relative entropy of certain diffusion processes. Transport-entropy inequalities lie between the two, for
example we have

LSI(ρ) =⇒ T2(ρ) =⇒ PI(ρ).

We can show that T2 and LSI imply PI by linearizing. The fact that the LSI implies T2 is a celebrated
theorem of Otto and Villani [146], extended in full generality by Gozlan [92]. Transport-entropy inequal-
ities are also a functional way of encoding concentration inequalities. For example, a measure satisfies a
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T1 inequality if and only if for all 1-lipschitz functions f we have

µ

(
f ≥

∫
fdµ+ r

)
≤ C exp(−cr2) (2.4)

for all r ≥ 0 and some positive constants c and C [17]. Such inequalities are known as Gaussian con-
centration inequalities. T2 inequalities are equivalent to a dimension-free form of such inequalities [92].
Concentration of measure has been an active field of research since V. Milman’s proof of Dvoretzky’s
theorem on sections of convex bodies [135], and has found applications in geometry, statistical physics
and statistics. We refer to Ledoux’s monograph [110] for an introduction to the field.

To clarify the connection between functional inequalities, I would like to briefly described the now-
classical Herbst argument, which shows how the LSI implies the Gaussian concentration estimate (2.4).
Consider a 1-Lipschitz function f with

∫
fdµ = 0. If we introduce the log-Laplace transform on R+

H(λ) = λ−1 log

∫
eλfdµ

we have

H ′(λ) =
1

λ
Entµ

(
eλf∫
eλfdµ

)
so if we can apply the LSI, using the fact that f is Lipschitz we get

H ′(λ) ≤ 1/(2ρ)

and hence

log

∫
eλfdµ ≤ λ2/(2ρ).

We then apply the usual Markov inequality

µ

(
f ≥

∫
fdµ+ r

)
≤ e−λr exp(λ2/(2ρ))

and optimize in λ to get the Gaussian concentration bound (2.4).
We will see in the next subsection the Bakry-Emery theorem, one of the main results on sufficient

conditions for a LSI to hold, based on curvature bounds for an underlying weighted space. Other methods
for proving functional inequalities include Lyapunov-functional approaches [38], coupling techniques [148],
Muckenhoupt-type criteria in dimension one [137] and multi-scale expansions [95, 117].

To conclude this section, I would like to mention one of the main conjectures in the field.

Conjecture 1 (KLS conjecture). There exists a universal constant that bounds the Poincaré constant of
isotropic log-concave measures. In particular, this constant does not depend on the dimension.

The currently known best upper bound is of order d1/2, due to works of Eldan, Lee and Vempala [114].
The original motivation behind this conjecture was the study of the mixing time of random algorithms
used to approximate the volume of convex sets in high dimension. We refer to the recent survey [115]
for an overview of this conjecture, its relation with other open problems in geometric functional analysis,
and its applications in computer science. We shall later discuss the Bakry-Emery theorem, which gives a
dimension-free bound under a stronger assumption.

Let us now give a brief explanation of the role of convexity in this conjecture. If we only consider
uniform densities on sets, log-concavity is equivalent to convexity of the support. Recall that the Poincaré
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constant controls the mixing time of the Brownian motion on the set. By deforming a convex set to form a
bottleneck, we create an obstruction to convergence, and hence slow down the convergence to equilibrium,
so the Poincaré constant should get worse. The thinner the bottleneck, the worse the constant gets.
Assuming convexity rules out this behavior. Similarly, if we add a potential, creating a double well
slows down the diffusion process, since it must overcome an energy barrier to explore the whole space.
Convexity in some sense rules out the presence of bottlenecks, in a fairly strong sense, and the conjecture
predicts that this is enough to guarantee a dimension-free rate of convergence to equilibrium.

2.3 Curvature

The main purpose of this section is to give a brief introduction to the Lott-Sturm-Villani synthetic notion
of lower bounds on Ricci curvature for metric spaces. It will mostly play a role as inspiration for the
work presented in Chapter 5 of this thesis, but curvature bounds also play an implicit role in many of
the results presented in chapters 3 and 4, in particular via the Bakry-Emery theorem on the connection
between positive curvature and functional inequalities.

The Ricci curvature tensor is a tensor associated to a Riemannian manifold. We will not give a
presentation of its standard definition, since it will not directly play a role here, as we will mostly
be interested in lower bounds on curvature, and we will soon see an equivalent synthetic definition.
The picture to keep in mind is that there are model spaces having constant Ricci curvature, which are
spheres when the curvature is positive, flat Euclidean spaces for null curvature and hyperbolic spaces
for negative curvature [170]. Having curvature bounded from below by some constant κ will mean that
certain quantities of geometric interest, such as diameter, spectral gap and sharp constants in certain
functional inequalities will necessarily be better than those of the model space with constant curvature
and same dimension. Interestingly, Ricci curvature tensor is a local notion, but will still allow us to
deduce quantitative bounds on global quantities.

The connection between the Ricci curvature tensor and probability is made via the Laplace-Beltrami
operator ∆, which is the generator of the Brownian motion on the manifold (up to a scaling factor 1/2,
depending on conventions). The Bochner-Lichnerowicz formula

1

2
∆(|∇f |2) = ∇f · ∇(∆f) + |∇2f |2 + Ric(∇f,∇f)

then connects the Ricci curvature tensor, the Laplacian and the Riemannian metric. In particular, if
curvature is nonnegative

1

2
∆(|∇f |2)−∇f · ∇(∆f) ≥ 0.

If we replace the Laplacian by the generator of a Markov process, the left-hand side above corresponds
to the Bakry-Emery Γ2 tensor, and its nonnegativity is known as the curvature-dimension condition
CD(0,∞).

Bakry and Emery [6], in their study of long-time behavior and functional inequalities for diffusion
processes on manifolds, proposed an extension of the Ricci curvature tensor to weighted manifold. The
motivation is to take into account the effect of an extra gradient vector field on the heat flow, i.e. diffusion
PDEs of the form

∂tf = ∆f −∇f · ∇V

where ∆ is the Laplace-Beltrami operator and ∇V is a gradient vector field. This PDE generates a
semigroup Pt, acting on functions, and its adjoint P ∗t , acting on probability measures. When the vector
field is zero, the heat flow semigroup corresponds to the flow generated by Brownian motion.
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Lott, Sturm and Villani [124, 162, 161] defined a synthetic notion of Ricci curvature via optimal
transport, building up on previous works [146, 54, 168].

Theorem 1. Let M be a smooth, connected complete Riemannian manifold, and µ a positive measure
with density e−V with respect to the volume measure. The following are equivalent:

1. The curvature dimension condition Ric + HessV ≥ K holds with K ∈ R (which we shall denote by
CD(K, ∞));

2. For any path (νt) achieving the minimum in the Benamou-Brenier formula among all curves linking
any two fixed probability measures ν0 and ν1, we have

Entµ(νt) ≤ (1− t)Entµ(ν0) + tEntµ(ν1)− Kt(1− t)
2

W2(ν0, ν1)2.

The first property is the Bakry-Emery curvature-dimension condition for weighted manifolds The
second property expresses the semi-convexity of the entropy along those paths. In particular, nonnegative
curvature for an unweighted manifold is equivalent to plain convexity of the entropy (with respect to the
volume measure). The full theory also takes into account the dimension, but we will not discuss that
aspect here.

Since the two properties are equivalent, we can adopt the second one as a definition of lower bounds
on Ricci curvature, known as the entropic curvature-dimension condition CD(K,∞). However, unlike
the first one, which a priori requires a genuine Riemannian structure to be well-defined (although this
can be relaxed a bit, see [2]), the second one has a meaning as soon as the underlying space is geodesic.

An explanation of this equivalence can be made via the so-called Otto calculus [146, 147] that we
have briefly mentioned earlier. Formally, we can interpret the Wasserstein distance W2 as a Riemannian
distance on the space of probability measures, and view the Benamou-Brenier formula as a reformulation
of the distance as the minimal energy of a path linking two probability measures. Hence these curves can
be viewed as geodesics, and the convexity property (ii) corresponds to geodesic (semi-)convexity of the
entropy. A formal computation of the Hessian of the entropy in this Riemannian structure shows that it
is given by the Bakry-Emery curvature tensor, and hence convexity properties are indeed expected to be
equivalent to curvature bounds. This formal Riemannian calculus can be made rigorous, see for example
[1] and the references therein.

The main reason why I am interested in curvature is that it provides a convenient tool to study and
prove functional inequalities. The basic result in that direction is the Bakry-Emery theorem [6], which
we formulate here in the more general setting of metric spaces [166]:

Theorem 2. Assume that the weighted metric space (X, d, µ) has Ricci curvature is bounded from below
by κ > 0. Then the measure µ satisfies LSI(κ−1).

There is actually a stronger version of this theorem, by Bakry and Ledoux [7], that derives an isoperi-
metric inequality. If the curvature is merely nonnegative, this result does not hold, but there are some
results relating strong functional inequalities to weaker concentration inequalities [29, 120, 109, 133], with
more recent extensions to slightly negative curvature [134, 93]. Other families of functional inequalities
where curvature bounds play a role include Sobolev inequalities, capacity inequalities in potential theory,
heat kernel estimates, Harnack gradient estimates...

A crucial ingredient in the theory are the gradient bounds, which quantify the interplay between
derivatives and semigroups.
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Theorem 3. Assume that curvature is bounded from below by κ ∈ R, and let Pt be the semigroup with
generator ∆−∇V · ∇. Then we have the subcommutation relation

|∇Ptf | ≤ e−κtPt|∇f |.

These gradient bounds, which are also related to the Li-Yau parabolic Harnack inequalities [120, 9],
allow to quantitatively control norms and regularity bounds along the flow. They can also be used to
prove functional inequalities. For example, for the Poincaré inequality when κ > 0, we have

V arµ(f) = 2

∫ ∞
0

∫
|∇Ptf |2dµdt

≤ 2

∫ ∞
0

∫
e−2κtPt|∇f |2dµdt =

1

κ

∫
|∇f |2dµ.

There are similar proofs of logarithmic Sobolev inequalities and many other interesting estimates via this
gradient bound and its variants [8].
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Chapter 3

Stein’s method: an analytic
viewpoint

Stein’s method is a set of techniques for bounding distances between probability measures, implemented
via integration by parts formula. It was originally proposed by Stein [159, 160], and has developed in a
large field of research, with many variants and applications. We refer to [153, 42] for recent surveys of
the field.

Let us start by presenting the methods in the Gaussian case. As remarked by Stein, the standard
Gaussian measure γ on Rd is the only probability measure satisfying the integration by parts formula∫

x · fdγ =

∫
Tr(∇f)dγ ∀f : Rd −→ Rd. (3.1)

It is often enough to consider the weaker formula∫
x · ∇gdγ =

∫
∆gdγ ∀g : Rd −→ R (3.2)

which expresses the fact that the standard Gaussian measure is the invariant measure of the Ornstein-
Uhlenbeck process, a diffusion process with generator

Lg = ∆g − x · ∇g.

At a heuristic level, Stein’s idea was that a measure that approximately satisfies the above integration
by parts formula for a large enough class of test functions should be close in some sense to γ. The next
step to apply this heuristic to obtain concrete estimates is to find a way to associate error estimates in
the Stein equation (3.1) to distance bounds. The easiest case is the Wasserstein distance W1, because of
the Kantorovitch-Rubinstein duality formula (2.3).

If we consider a given 1-lipschitz function g, we can solve the Poisson equation

Lhg = g −
∫
gdγ

and get

W1(µ, γ) ≤ sup
g

∫
∆hg − x · ∇hgdµ.
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Due to the elliptic nature of L, we can show that hg inherits some regularity properties from g. In
particular ||Hesshg||HS ≤ 1 pointwise [43]. So if we have an error bound on the integration by parts
formula over the class of test functions satisfying this regularity property, we deduce a bound on W1(µ, γ).
This strategy adapts well to distances of the form

d(µ, ν) = sup
g∈A

∫
gdµ−

∫
gdν

with A some class of test functions, such as the total variation distance or the Kolmogorov distance. It
is also possible to estimate some distances that do not admit a dual formula of this form, such as W2, by
using more involved extensions of this scheme.

The concrete challenge is then to find bounds on
∫

∆hg − x · ∇hgdµ. While concrete proofs are
problem-specific, there are broad classes of tools and techniques that have been devised to obtain such
bounds, such as zero-bias transforms and exchangeable pairs methods. My work has been focused on one
particular way of implementing Stein’s method, using an object known as a Stein kernel.

3.1 Stein kernels

Definition 2. A function τ : Rd −→Md(R) is said to be a Stein kernel for a given centered probability
measure ν on Rd (relative to the standard Gaussian measure) if for all smooth test functions f : Rd −→ Rd
we have ∫

x · f(x)dν =

∫
〈τ,∇f〉HSdν. (3.3)

Stein kernels were used somewhat implicitly in some of Stein’s works. They started getting used more
explicitly in works of Chatterjee [40] and Nourdin and Peccati [139, 141, 140] for random variables that
can be realized as the image of a Gaussian variable by some smooth function, either via direct formulas
or via the tools and formalism of Malliavin calculus.

We start by remarking that Stein kernels may not exist. Indeed, if the measure ν is purely atomic,
there cannot be a matrix-valued function satisfying (3.3) for all smooth compactly-supported functions.
We shall give several sufficient conditions for existence, but we do not know of a synthetic characterization
of measures admitting a Stein kernel. Moreover, they are not unique in dimension d ≥ 2.

In dimension one, for measures with nice density, which we shall denote by p, Stein kernels are unique,
and we have the explicit formula

τ(x) =
1

p(x)

∫ ∞
x

yp(y)dy.

This formula and its variants for other target measures have been extensively used, see [119] and the
references therein. My own contributions have mostly focused on the multidimensional setting, where we
do not have an explicit formula anymore, so I will not develop features specific to the one-dimensional
situation here.

An immediate reformulation of Stein’s characterization of the normal law is that the identity matrix
is a Stein kernel for ν if and only if ν is exactly the standard centered Gaussian distribution. Hence we
expect that if the measure ν admits a Stein kernel that is close in some sense to the identity matrix,
then the measure itself will be close to Gaussian. We will later see various inequalities that quantify this
heuristic. The most natural way of quantifying proximity of a Stein kernel to the identity matrix is to
use an L2 norm, which leads to the following definition:
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Definition 3. The Stein discrepancy S(ν) of a probability measure ν is given by

S(ν) := inf
τ

(∫
|τ − Id|2HSdν

)1/2

where the infimum is taken over all Stein kernels for µ. More generally, we can define an Lp Stein
discrepancy for p ≥ 1 as

Sp(ν) := inf
τ

(∫
|τ − Id|pHSdν

)1/p

.

Ledoux, Nourdin and Peccati [112], proved several functional inequalities involving the Stein discrep-
ancy. Among them, we should mention:

Entγ(ν) ≤ S(ν)2

2
log

(
1 +

Iγ(ν)

S(ν)2

)
;

W2(ν, γ) ≤ S(ν).

The first inequality, called the HSI inequality, is an improvement of the Gaussian LSI, allowing to
deduce entropy bounds from discrepancy bounds for measures with bounded Fisher information. The
second inequality states that convergence in discrepancy is stronger than convergence to the Gaussian in
W2 distance, and hence justifies using such discrepancies as a way of estimating how close two probability
measures are, since the topologies controlled by transport distances and entropy are well understood. It is
also possible to control Lp transport distances by Lp discrepancies [112, 79]. The case p = 1 is an almost
immediate consequence of the regularity bound on solutions to the Poisson equation we discussed earlier.
We also mention that earlier work of Nourdin, Peccati and Swan [142] connected Stein discrepancy and
Fisher information.

With Courtade and Pananjady, we established existence of Stein kernels under a spectral gap assump-
tion:

Theorem 4. Assume ν is a centered probability measure satisfying PI(ρ). Then there exists a vector
valued function g such that its Jacobian matrix ∇g is a Stein kernel for ν, and moreover the discrepancy
satisfies

S2(ν)2 ≤ (ρ−1 − 2)

∫
|x|2dν + d

In particular, if ν is isotropic
S2(ν) ≤

√
d(ρ−1 − 1).

We actually proved a more general version, using converse weighted Poincaré inequalities, which
encompasses some measures with heavy tails, such as generalized Cauchy distributions with density
ν(dx) = C(1 + |x|2)−β with β large enough.

The proof is based on the observation that the Stein identity characterizing Stein kernels can be
recast as the Euler-Lagrange equation for minimizing the convex functional f −→

∫ (
( 1

2 |∇f |
2 − x · f

)
dν.

Weighted Poincaré type inequalities are enough to guarantee existence of a minimizer, and also provide
an estimate on their norm, which leads to the above theorem.

The second construction I have found [79] is based on a variant of the optimal transport problem,
known as the moment measure/map problem. It is based on a result of Cordero-Erausquin and Klartag
[51], stating that given a measure ν ∈ P1(Rd) that is centered and not supported on a hyperplane, there
exists a convex function ϕ such that

e−ϕdx#(∇ϕ) = ν. (3.4)
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If we assume ν has a density h with respect to the Lebesgue measure, this condition boils down to the
Monge-Ampère equation

e−ϕ = h(∇ϕ) det(Hessϕ); (3.5)

The map ∇ϕ is also the Brenier map sending e−ϕ onto ν, so this problem can be viewed as a variant
of the optimal transport problem, where instead of specifying both measures, we only specify the target
measure, and require a relation between the source measure and the map. We also refer to [154] for a
construction of these moment maps that highlights the connection with optimal transport. This problem
was originally motivated by applications in complex geometry, where the maps associated to convex
polytopes play a role in the construction of Kähler-Einstein metrics on toric varieties [15, 169]. Because
of this connection with geometry, the associated Monge-Ampère equation e−ϕ = ρ(∇ϕ) det Hessϕ is
sometimes called the toric Kähler-Einstein equation.

Let us now formally show that we can construct a Stein kernel for ν from this moment map. By
writing the change of variable formula, integrating by parts and recalling that the Legendre transform
ϕ∗ of ϕ satisfies ∇ϕ∗ = (∇ϕ)−1, we have

∫
x · f(x)dν =

∫
∇ϕ(y) · f(∇ϕ(y))e−ϕ(y)dy

=

∫
Tr(Hessϕ(y)∇f(∇ϕ(y)))e−ϕ(y)dy =

∫
Tr(Hessϕ(∇ϕ∗(x))∇f(x))dν.

Hence, we see that up to regularity issues Hessϕ◦∇ϕ∗ is a Stein kernel. The integration by parts formula
above can be established rigorously for measures with a nice density and a convex support.

A nice feature of this particular construction is that it yields a Stein kernel whose values are positive,
symmetric matrices. It is not clear at all that the first construction above has this property. In particular,
this allows to introduce the process

dXt = −Xtdt+
√

2 Hessϕ(∇ϕ∗(Xt))dBt

and see that the Stein identity for ν implies it is an invariant measure for this process. This can be
compared to the classical drift-diffusion equation

dXt = −∇V (Xt)dt+
√

2dBt

where V is the potential of ν. Both SDEs are modification of the Ornstein-Uhlenbeck process that
leave ν invariant. For the second one, we modify the drift without changing the diffusion matrix. This
alternative process introduced above in some sense follows the opposite logic: we modify the diffusion
coefficient without changing the drift to target some given probability measure. Both are equally natural
choices, at least at a conceptual level, yet it is the second one that is mostly used, both as a theoretical
tool to study properties of ν, and for numerical simulations.

Another nice feature of this construction is that it implies that the Stein discrepancy can be controlled
by a suitable regularity estimate on the solution to (3.5). If we look at the discrepancy associated to this
kernel, we have

Sp(ν)p ≤
∫
||Hessϕ(∇ϕ∗)− Id ||pHSdν =

∫
||Hessϕ− Id ||pHSe

−ϕdx.

So this construction leads to a bound on the discrepancy given by a regularity estimate on an associated
Monge-Ampère type equation. While in general, such global regularity estimates are hard to obtain, in
the log-concave setting, Klartag obtained regularity bounds [107] of the form

∫
(∂iiϕ)pe−ϕdx ≤ C(p),

leading to the following estimate:
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Theorem 5. Assume that ν is a log-concave, isotropic probability measure on Rd and satisfies some
regularity assumptions. For any p ≥ 2, we have a universal bound on the Lp Stein discrepancy

Sp(ν) ≤ Cp3d.

A last interesting consequence of this construction is a weighted version of the Poincaré inequality
involving this Stein kernel, generalizing to arbitrary dimension a result of Saumard [155].

3.2 Rate of convergence in the central limit theorem

The main application of Stein kernels is that they allow to get clean bounds on rates of convergence in
the central limit theorem, with little effort. In all this section, ν will be a centered, isotropic probability
measure on Rd, and νn will be the law of n−1/2

∑n
i=1Xi where the Xi are i.i.d. random variables

distributed according to ν. The central limit theorem states that νn converges to the standard Gaussian
distribution γ, and we wish to quantify the rate of convergence. A hint as to why Stein kernels work so
well for this is given by the following result, obtained in collaboration with Courtade and Pananjady:

Theorem 6. For any n ≥ ` ≥ 1, we have

S2(νn) ≤
√
`

n
S2(ν`).

In particular, the discrepancy is monotone along the CLT, and converges to zero at rate n−1/2.

This result generalizes a classical known bound when l = 1, which was already sufficient to get a rate
of convergence in the CLT. The rate is sharp. Monotonicity results along the CLT have a long history,
going back to Shannon’s conjecture on monotonicity of entropy [157], which was solved fifty years later by
Artstein, Ball, Barthe and Naor [4]. Unlike the above result on Stein discrepancy, monotonicity results
for entropy (and related results in Fisher information) do not include a contraction rate. In particular,
it is much easier to derive sharp rates of convergence for the discrepancy than for entropy.

The proof is based on the following representation of a Stein kernel for a sum of i.i.d. random variables:

τn(x) = E[τ(X1)|Sn = x]

where τ is a Stein kernel for a single random variable. To show this, we simply have to remark that due to
independence, a Stein kernel for the whole vector (X1, .., Xn) is given by the block-diagonal matrix whose
blocks are Stein kernels for each random variable, and then project by the map (x1, ..., xn) −→ n−1/2

∑
xi.

The estimate then follows from a general correlation bound for partial sums along the CLT, due to Dembo,
Kagan and Shepp [60].

When p > 2, we can also obtain decay rates of order n−1/2, but it seems unlikely that the associated
discrepancies would be monotone in full generality, since the picture looks very similar to the Rosenthal
inequality for sums of i.i.d. random variables.

Combining the various results we described, we get the following rates of convergence in the CLT:

Theorem 7. If ν satisfies PI(ρ), then W2(νn, γ) ≤
√
d(ρ−1−1)√

n
;

If ν is log-concave, then for all p ≥ 2 Wp(νn, γ) ≤ Cp4d√
n

, where C is a universal constant, independent

of ν.

If ν is uniformly log-concave, i.e.satisfies CD(K,∞) with K > 0, then Wp(νn, γ) ≤ Cp4
√
d√

Kn
.
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Once again, the rate n−1/2 is optimal in general, although it can be improved under extra moment
conditions. The best possible dependence on the dimension is

√
d, as it is the correct bound for random

variables with independent coordinates. Bonis [23] recently proved the sharp rate under much weaker,
sharp moment conditions on the random variables, albeit with a worse dependence on the dimension.
In dimension one, sharp rates of convergence in transport distance have been derived by Rio [151] and
Bobkov [19]. The sharp entropic CLT in dimension higher than one is still an open problem [3, 10, 69].

We would like to conclude this section with some ongoing work. If we look at the Edgeworth asymp-
totic expansion for various distances in the CLT [20, 19], we see that the rate of convergence should be
better for random variables whose moments of order k ≥ 2 match with those of the standard Gaussian.
It is possible to use Stein’s method to see this, by introducing the integration by parts formula associated
to Hermite polynomials. Indeed, the Gaussian measure (in dimension one, for simplicity) satisfies∫

Hk(x)f(x)dγ =

∫
Hk−1(x)f ′(x)dγ

where Hk is the k-th Hermite polynomial Hk(x) = ex
2/2 dk

dxk (e−x
2/2). For each moment of order k ≥ 2

that match with the Gaussian, we can introduce a Stein kernel representing associated to Hk, and it
turns out that we can build a linear combination of these kernels whose variance decays like n−k. By
following the same line of arguments as described above for standard Stein kernels when k = 2, we can
get for example the following rate of convergence:

Theorem 8 (F. 2018, in preparation). If ν is centered, isotropic, satisfies PI(ρ) and if moreover its
mixed third moments are equal to zero, then we have

W2(νn, γ) ≤
√
dρ−1(ρ−1 − 1)

2n
(1 + log n− log ρ)

Note that we miss the expected sharp rate n−1 for such random variables by a logarithmic factor. On
the other hand, the dependence on the dimension is once again sharp. It is possible to get a rate of n−1,
at the cost of weakening the distance used. For variables satisfying higher moment constraints, it is also
possible to get a sharp rate under a spectral gap, but with a distance that is further modified. In the
case k = 2 and in dimension one, Goldstein and Reinert also proved a similar rate of convergence for a
weaker distance using another variant of Stein’s method [90].

3.3 Free probability

Free probability is an area of research pioneered by Voiculescu that aims at understanding the structure
of Von Neumann algebras related to free groups. The starting point is that there is an analogy between
traces of products of operators Tr(Ak11 · · ·Aknn ) and mixed moments of random variables E[Xk1

1 · · ·Xkn
n ].

In particular, if we only consider a single operator, we can represent the collection of traces Tr(Ak) as
the moments of a probability measure on R. However, we do not wish to assume that the operators
commute, so that unlike moments of random variables the above traces depend on the order in which the
operators are written.

The framework is to consider an algebra of operators endowed with a linear functional ϕ : A −→ R
such that ϕ(1) = 1, that plays the role of a (normalized) trace.

The counterpart to independence in free probability is the notion of free independence. Two non-
commuting random variables are freely independent if when considering the algebras Ai (i = 1, 2) they
generate, for any sequence x1, . . . , xn with xj ∈ A`j , `j+1 6= `j and ϕ(xj) = 0 for all j we have

ϕ(x1 · · ·xn) = 0.

29



That is, alternated products of centered elements are also centered. The definition extends similarly to a
larger number of variables. Note that since the variables do not commute, we cannot just exchange the
order in the trace. An important discovery by Voiculescu is that large random matrices with independent
entries are asymptotically freely independent, as the size of the matrices goes to infinity.

To keep notations simple, we shall mostly describe our results in the one-dimensional case, that is
consider an algebra generated by a single operator, and associate to it a probability measure whose
moments correspond to the trace of powers of the element generating the algebra.

In the basic analogy between classical probability and free probability, the measure that plays the
role of the standard Gaussian distribution is the semicircular law, whose density on R is given by

dσ(x) =

√
4− x2

2π
1|x|≤2dx.

This measure plays two important roles:

• It describes the asymptotic limit of the spectrum of large random matrices with independent entries.

• It is the universal limit in the free analogue of the central limit theorem. In particular, there is a
free analogue of Shannon’s problem on monotonicity of entropy, solved by Shlyakhtenko [158].

The counterpart to entropy is Voiculescu’s free entropy, defined as

E(µ) = −
∫ ∫

log |x− y|dµ(x)dµ(y).

Part of the analogy between the semicircular law and the Gaussian law is that the semicircular law
minimizes the free entropy, under a constraint of fixed second moment. In dimension higher than one,
there are two ways of defining free entropy (one as a large deviations rate function, the other as a monotone
quantity for convolution with semicircular laws of increasing variance), and it is an open problem to show
that they match. They were originally introduced with the aim of constructing new invariants for von
Neumann algebras.

In joint work with Nelson [82], we introduced free Stein kernels, which are counterparts of classical
Stein kernels adapted to free probability. In dimension one, and relative to a semicircular law, they are
defined as a function τ : R2 −→ R such that∫

xf(x)dµ =

∫ ∫
τ(x, y)

f(x)− f(y)

x− y
dµ(x)dµ(y)

for all nice test functions f . The right-hand side involves the free difference quotient f(x)−f(y)
x−y , which

plays the role of a derivative in free probability. As in the classical case, we can take τ = 1 iff µ is a
semicircular law with unit variance. It turns out that these kernels were implicitly used by Guionnet and
Shlyakhtenko in their construction of free monotone transport maps for small deformations of semicircular
laws [96].

Using these free Stein kernels, we can introduce a Stein discrepancy, and prove the free counterparts
of the functional inequalities of [112]. In particular, we obtain a free HSI inequality, that improves on
the free logarithmic Sobolev inequality of Biane and Speicher [16]. We also deduced as a straightforward
application of these inequalities new rates of convergence in the free CLT. In dimension one, the improved
free LSI takes the following form:
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Theorem 9. For any centered probability measure µ on R, given a free Stein kernel τ , we have

1

2

∫
|x|2dµ−

∫ ∫
log |x− y|dµ(x)dµ(y)− 3

4

≤ 1

2

(∫
|τ(x, y)− 1|2dµ(x)dµ(y)

)
log

(
1 +

∫
(Hµ(x)− x)2dµ(x)∫

|τ(x, y)− 1|2dµ(x)dµ(y)

)
.

The same result holds in higher dimension, if we use the so-called non-microstates free entropy.
After we communicated this result, Mai realized that in free probability existence of Stein kernels is

a much easier problem than in classical probability, and that Stein kernels always exist, with an explicit
formula. Indeed, in dimension one, it is easy to check that if the measure is centered, τ(x, y) = (x−y)2 is
always a free Stein kernel relative to the semicircular law. A similar formula holds in higher dimension,
and for other reference measures. In particular, the prefactor in the rate of convergence in the free CLT
in Wasserstein distance is controlled by the fourth moment. The same holds in classical probability, but
the proof is surprisingly much more difficult. With Cébron, we realized that the arguments of [57] also
extend to the free setting with no assumption beyond centeredness, and yet the Stein kernel obtained
this way never coincides with the one Mai discovered (it is necessarily a free difference quotient). So in
particular free Stein kernels are never unique.

3.4 Perspectives

3.4.1 Dependent random variables

While the classical CLT is the most standard situation where a sum of random variables converges to a
Gaussian, there is a vast literature on CLTs for sums of non-independent random variables. Important
examples include the CLT for additive functionals of Markov chains [105], combinatorial CLTs [22] and
fluctuation bounds for interacting systems in statistical physics [41]. Some of these can be proved using
variants of Stein’s method. It is natural to ask whether we can also use Stein kernels in some of these
situations.

In Section 3.2, we have discussed rates of convergence for the classical CLT, with i.i.d. random
variables. The fact that they are identically distributed is not essential, for example we could still get
similar results with a uniform bound on the Poincaré constant of each random variable. However, we
make a strong use of the assumption of independence. The main reason is that if we look at a Stein
kernel for the joint laws, we get a matrix that is block-diagonal. If the random variables are correlated,
this is not the case anymore. However, if the off-diagonal blocks were small enough, their contribution
to the discrepancy for the law of the sum would also be small, and we could still hope to get a rate
of convergence. At this point, the main question would be to figure out how to translate the classical
conditions that ensure a CLT holds (for example, stationary strongly mixing sequences under moment
conditions) into a bound on the off-diagonal elements of this joint Stein kernel. Further questions of
interest include the rate of convergence in the martingale CLT and error bounds for the convergence of
equilibrium fluctuations of interacting particle systems to their Gaussian limit.

3.4.2 Stein kernels in non-Gaussian settings

Until now, I have mostly worked on Stein’s method when the target distribution is Gaussian. However,
the abstract setup can be easily adapted to other target distributions. What we need to adapt the
abstract framework is to have an integration by parts formula that characterizes it.
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A first natural example of non-Gaussian limit theorem where the methods presented above should
find some application are stable CLTs. For certain random variables with heavy tails and infinite second
moment, the classical CLT does not apply, but nevertheless at a different scale we observe convergence
in distribution for the normalized average n−α/4

∑
Xi, for some exponent α ∈ (0, 2). The one parameter

family of possible limits are known as stable laws. These are infinitely divisible distributions, related
to alpha-stable Lévy processes. In particular, (up to normalization) they are the invariant measures for
Lévy-Ornstein-Uhlenbeck processes, whose generator are given by

Lα = −(−∆)α/2 + x · ∇.

Hence they satisfy an integration by parts formula involving the fractional Laplacian (−∆)α/2. It is
natural to expect that the technique of [56] could be used to derive rates of convergence for stable CLTs,
by working in some appropriate fractional Sobolev space.

In the discrete setting, once can use random walks or other Markov chains to define a discrete inte-
gration by parts formula that characterizes a given measure. For example, the Poisson measure on N is
the invariant measure of the simple birth and death process, and hence satisfies the discrete integration
by parts formula

E[Xf(X)] = E[f(X + 1)− f(X)].

Once again, this is enough to set up the abstract framework of [112]. Natural questions are whether there
are natural conditions to ensure the validity of discrete functional inequalities mimicking those of [112]
for discrete measures, and bounds on distances between discrete measures via Stein’s method. A first
example would be to recover the bounds of [46] on the quantitative law of small numbers via arguments
from functional analysis, in the spirit of [56]. It seems likely that there is a connection with intertwinings
of semigroups [49].

Finally, if we consider a general probability measure µ with density e−V on Rd, Barbour’s generator
approach to Stein’s method suggests to use the integration by parts formula∫

∇V (x) · f(x)dµ =

∫
div f(x)dµ

which suggests to define Stein kernels relative to µ as matrix-valued functions satisfying∫
∇V · fdν =

∫
〈τ,∇f〉HSdν

for a large enough class of smooth vector-valued test functions f . Under some strong assumptions on V
it is possible to prove functional inequalities involving the discrepancy [112]. The arguments of [57] can
be extended to establish existence of such kernels under a spectral gap and integrability assumptions on
∇V . A first example of application would be estimating the rate of convergence to equilibrium of the
diffusion

dXt = −∇V (Xt)dt+
√

2dBt

in Stein discrepancy. The quantity should be well-adapted, since it is the generator of the diffusion that
has been used to provide the integration by parts formula as a starting point.

3.4.3 CLT for random eigenfunctions in positive curvature

I would like to conclude this chapter with a conjecture motivated by some of the results discussed above.
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Conjecture 2. Let (Mn, gn, µn) be a sequence of weighted Riemannian manifolds with a uniform positive
lower bound on their Ricci curvature, and assume that there is a fixed value −λ > 0 that is an eigenvalue
of the Laplacian on any of these spaces, and that the associated sequence of eigenspaces En have dimension
dn growing to infinity. Is it true that as n goes to infinity a typical random eigenfunction (w.r.t. the
uniform measure on the unit sphere of En) has distribution close to the (standard) Gaussian measure?

The main motivation for this conjecture is that it would give a single geometric, unified framework
that would include as corollaries a version of the fourth moment theorem of Nualart and Peccati [143],
and Klartag’s central limit theorem for convex bodies [106]. This first result can be derived using
Stein’s method and the representation of polynomials as eigenfunctions for the Gaussian space [111]. The
connection with the CLT for random projections of convex bodies is that if we consider the moment map ϕ
associated with a uniform measure on a centered, isotropic convex body, this CLT is equivalent to saying
that the pushforward of e−ϕ by ∂eiϕ is approximately Gaussian for most directions ei. However, if we
introduce the weighted Riemannian manifold (Rd, (Hessϕ)−1, e−ϕ), it turns out that the functions ∂eiϕ
are all eigenfunctions for the Laplacian on this manifold, and moreover the convexity of the set implies
that curvature is bounded from below by 1/2 [108]. Hence a positive answer to the above conjecture
would indeed recover Klartag’s result. To our knowledge, there is no proof of this CLT that exploits the
structure we just described. Moreover, we do not know in general the sharp rate of convergence for this
CLT, and this problem is related to the KLS conjecture.

In [131], a criterion for asymptotic normality of eigenfunctions is given, and applied for spheres of
growing dimensions (which are indeed spaces of constant positive curvature), but we still lack an argument
to apply it to general manifolds of positive curvature.
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Chapter 4

Refinements of functional
inequalities

In the past few years, there has been a lot of interest in the problem of establishing deficit estimates
for sharp functional inequalities. The problem can be stated as follows: given a functional inequality
for which all cases of equality are known, is there a quantitative estimate that shows how an object for
which equality almost holds is close to the set of equalizers? For example, for the classical isoperimetric
inequality, it is known that for a given perimeter, the sets that maximize the volume are balls, and it
turns out that sets with almost maximal volume are nearly round.

I have been interested in two ways of refining functional inequalities:

• Deficit estimates: given a functional inequality for which all cases of equality are known, is there
a quantitative estimate that shows how an object for which equality almost holds is close to the
set of equalizers? An example to keep in mind is the isoperimetric inequality, which we mentioned
above.

• Improved functional inequalities for subclasses of functions. For example, it is sometimes possible to
further improve the sharp constant in a functional inequality by considering some class of arguments
that satisfy extra regularity or symmetry assumptions.

Several important breakthroughs have been obtained in the past decade, including deficit estimates
for isoperimetric inequalities , Sobolev inequalities, concentration inequalities and the Brunn-Minkowski
inequality [11, 65, 67, 88, 86, 87]. We refer to [85] for an overview. Techniques that have been used
include optimal transport, calculus of variations, PDE methods and stochastic calculus.

Let us list a few applications of refined functional inequalities:

• Convergence to equilibrium, see for example [34] where a stability estimate is used to study the
Keller-Segel model at the critical mass.

• Improved mixing times for specific initial data.

• Information theory [58].

• Quantum mechanics [35].
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4.1 Gaussian functional inequalities

This section describes results from [80, 57, 78] on refinements of Gaussian functional inequalities.
The first inequality I have studied is the Gaussian logarithmic Sobolev inequality, originally proved

by Gross in 1975 [94], and which states that

Entγ(µ) ≤ 1

2
Iγ(µ).

The constant 1/2 is sharp, as can be shown by considering non-centered standard Gaussians, for which
the above inequality is an equality. Carlen [33] showed that these are the only equality cases, and in
particular that among centered measures equality holds only for γ.

There have been several results on estimating from below the deficit in the Gaussian LSI

δLSI(µ) :=
1

2
Iγ(µ)− Entγ(µ),

among which we can mention [18, 63, 84, 113]. Applications include faster rates of convergence for
diffusion processes and refined inequalities in quantum mechanics. More recently, Eldan has studied
upper bounds on the deficit [66], motivated by applications to large deviations for mean-field models in
statistical physics.

My main contribution to this problem, obtained in joint work with Indrei and Ledoux [80], is a sharp
dimension-free deficit estimate for measures satisfying a Poincaré inequality:

Theorem 10. Assume that µ is centered and satisfies a Poincaré inequality with constant ρ > 0. Then
the deficit in the Gaussian LSI satisfies

δLSI(µ) ≥ c(ρ)Iγ(µ)

where c(ρ) := (1−ρ)2−1+ρ−ρ log ρ
2(1−ρ)2 (and c(1) = 1/4).

This result can also be recast as an improvement of the constant in the LSI for a subclass of measures.
Lower bounds on the deficit in other metrics (entropy, transport, total variation) immediately follow
by comparison. The constant we obtain is sharp. When ρ = 1, this result detects the sharp threshold
for cutoff of independent Ornstein-Uhlenbeck processes starting from the origin, so in some sense for
applications to convergence to equilibrium there cannot be a better entropy bound valid for all measures
in PI(1). An earlier version was obtained in [98], with a control on the Wasserstein distance and assuming
extra two-sided bounds on the Hessian of the potential.

The proof we came up with is based on a semigroup argument, by extracting an extra positive term
in the Bakry-Emery proof of the LSI [6]. Let us briefly describe how it goes. We consider the Ornstein-
Uhlenbeck dynamic, whose distributions at a given time are given by the identity in law

Xt ≡ e−tX +
√

1− e−2tU

where X is the initial data and U is a standard Gaussian random variable, independent from X. Alter-
natively, this describes in closed form the solution to the stochastic differential equation

dXt = −Xtdt+
√

2dBt.

If we write for νt the law of Xt, the relative entropy Entγ(νt) is decreasing along the flow, and its
dissipation is given by the relative Fisher information Iγ(νt). To prove the LSI, Bakry and Emery
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computed the derivative of the Fisher information (which, up to the sign, is the second derivative of the
entropy), and obtained the formula

d

dt
Iγ(νt) = −2Iγ(νt)− 2

∫
|Hess log dνt/dγ|2dνt.

To prove the LSI, we can neglect the second term on the left-hand side, which is nonpositive, and obtain
the decay rate Iγ(νt) ≤ e−2tIγ(ν0). Integrating in time yields the LSI, and the constant turns out to be
sharp in general. However, the second term that was neglected contains some information about the way
entropy decays along the flow. In particular, if νt satisfies a Poincaré inequality with a constant ρt, then∫

|Hess log dνt/dγ|2dνt ≥ ρtIγ(νt)

and we could improve the rate of decay of the Fisher information. It turns out that, using gradient
estimates in positive curvature from Theorem 3, we can prove that the flow propagates in some sense
Poincaré inequalities: if the initial data ν satisfies it with a constant ρ, then at later times νt also does,
with a constant ρt that is bounded in an explicit way, depending on time and ρ. Using explicit estimates
on how the constants involved depend on time leads to Theorem 10.

Kolesnikov and Kosov recently gave an alternative proof of Theorem 10, based on optimal transport,
refining Cordero-Erausquin’s proof of the LSI [52]. Other deficit estimates include [18, 113, 97].

We have also investigated lower bounds for the deficit in the Gaussian Talagrand transport-entropy
inequality

δTal(µ) := 2Entγ(µ)−W2(µ, γ)2.

As for the LSI, the constant 2 is sharp in general and equality holds if and only if µ is a standard Gaussian
measure with arbitrary mean. δLSI and δTal can be related via the HWI inequality [146]

Entγ(µ) ≤W2(µ, γ)
√
Iγ(µ)− 1

2
W2(µ, γ)2,

yielding

δLSI(ν) ≥ δTal(ν)2

16Entγ(ν)
.

Our main result is the following deficit estimate

Theorem 11. For any centered probability measure ν, the deficit in the Gaussian Talagrand inequality
satisfies

δTal(ν) ≥ cmin

(
W1,1(ν, γ)2

d
;
W1,1(ν, γ)√

d

)
where W1,1 stands for the L1 Wasserstein distance associated to the L1 distance on Rd.

This result was improved by Cordero-Erausquin [53], who replaced the quantity W1,1/
√
d by the

stronger W1 distance with an L2 cost. These estimates are obtained by refining Cordero-Erausquin’s
transport-based proof of the inequality, in the spirit of the work [88] on isoperimetric inequalities. How-
ever, the estimate is not entirely satisfactory: while unlike Theorem 10 we have no strong regularity
assumptions on the data, if we test the estimate on a high-dimensional product measure µ⊗d, we get a
lower bound of order

√
d, while the deficit tensorizes and is of order d. The lower bound on δLSI obtained

as a corollary behaves even worse, as it is of order 1 instead of d.
In another direction, I have shown the following strengthening of the Gaussian Talagrand inequality,

as a dual formulation of the functional Santaló inequality in convex geometry [5].
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Theorem 12. Let µ be a centered probability measure on Rd, and ν another probability measure. We
have

W2(µ, ν)2 ≤ 2(Entγ(µ) + Entγ(ν)).

This inequality improves on Talagrand’s inequality, since we recover it when taking µ = γ. Note that
the Talagrand inequality implied this inequality up to a factor two by just applying the triangle inequality,
so the point here is the sharp improved constant. It allows to slightly refine some Gaussian concentration
estimates, and can also be extended to symmetric probability measures satisfying a curvature condition,
by pushing forward the Gaussian inequality by the optimal transport map, which is 1-lipschitz according
to Caffarelli’s contraction theorem [30].

Finally, with Courtade and Pananjady [57], we looked into stability for the Shannon-Stam entropy
power inequality. This inequality states that

exp

(
−2

d
Entdx(µ ∗ ν)

)
≥ exp

(
−2

d
Entdx(µ)

)
+ exp

(
−2

d
Entdx(ν)

)
for any pair of probability measures µ and ν, and where µ ∗ ν stands for their convolution. The quantity
exp

(
− 2
dEntdx(µ)

)
is usually denoted by N(µ), and is called the entropy power of µ. It was originally

proposed by Shannon in his pioneering work on communication channels, and rigorously proved by Stam.
See also [116] for a very simple stochastic proof.

Carlen and Soffer [32] showed that for isotropic measures with bounded Fisher information, the deficit
in the EPI controls an increasing function of the entropy. This function is non-explicit (it is built via a
compactness argument) and depends on the dimension and the information bound. Later on, Toscani
derived a (somewhat complicated) formula for the deficit, and raised the question of whether it could be
bounded from below by some explicit distance to the set of Gaussian measures, at least for log-concave
measures. Our main deficit estimate is the following answer to Toscani’s question:

Theorem 13. Let µ and ν be probability measures satisfying the curvature condition CD(ρ,∞) with
ρ > 0. Then

N(µ ∗ ν) ≥ (N(µ) +N(ν))∆EPI(µ, ν)

with

∆EPI(µ, ν) := exp

(
ρmin(θ, 1− θ)

4d

(
(1− θ)W2(µ,Γ)2 + θW2(ν,Γ)2 + dF (µ, ν)2

))
where W2(µ,Γ) is the distance of µ to the set of centered Gaussian measures, and dF (µ, ν)2 = infs∈(0,1) ||

√
sΣ

1/2
µ −√

1− sΣ1/2
ν ||2HS where Σµ is the covariance matrix of µ, and θ is chosen such that θ/(1−θ) = N(µ)/N(ν).

Following the general ideas of [88], the proof consists in extracting from an optimal transport proof of
the EPI, due to Rioul [152], an extra reminder term, which can be compared to the Wasserstein distance
when the transport map from the Gaussian onto the argument satisfies some uniform C2 regularity
bound. Caffarelli’s contraction theorem [30] provides uniform pointwise bounds on those maps when the
measures are uniformly log-concave, which results in the above bound. Weaker estimates can also be
obtained under weaker assumptions, as detailed in [57].

4.2 Spectral inequalities

There are several areas of mathematics and applications where we consider some family of positive
symmetric operators, and seek a uniform bound on their spectrum. A classical example is the Faber-
Krahn inequality, which states that the spectrum of −∆ on sets satisfying a volume constraint, and
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enforcing Dirichlet boundary condition, is bounded from above by the spectral gap on a ball with suitable
volume. Stability estimates for the spectrum of the Laplacian plays a role in shape optimization, as well
as long-time behavior of stochastic processes [163, 149].

As mentioned previously, the Poincaré inequality has a spectral interpretation: the best constant for
the measure µ = e−V dx is also the smallest eigenvalue of the operator L = −∆ +∇V · ∇, viewed as a
symmetric operator on L(µ)/{constants}.

A first result arises as a direct consequence of the estimate on the Stein discrepancy from Theorem 4.
Assume that a given measure µ is isotropic. The normalization of the second moments of each coordinate
implies that the best constant in the Poincaré inequality for µ must satisfy ρ ≤ 1. Hence among all
isotropic measures, the one with the best Poincaré constant is the standard Gaussian measure. Borovkov
and Utev [24] showed that this property actually characterizes the Gaussian law among all centered,
isotropic measures. With Courtade and Pananjady [56], we showed that this remark can be improved
into the following result:

Theorem 14. Let µ be a centered, isotropic probability measure. Then its Poincaré constant satisfies

CP (µ) ≥ 1 +
W2(µ, γ)2

d
.

Both the exponent 2 and the dependence on the dimension here are sharp, as can be seen when testing
this estimate on high-dimensional product measures.

In another direction, as a consequence of either the Brascamp-Lieb inequality or the Bakry-Emery
theorem, any probability measure of the form e−V dx on a convex set with HessV ≥ Id is in PI(1), i.e.
its Poincaré constant is better than that of the normal law. It was shown [47] that any such measure
for which the Poincaré constant is one must have a Gaussian factor. De Philippis and Figalli [59] later
gave a quantitative dimension-dependent version of this statement, and recently with Courtade [55] we
improved the bounds and eliminated the dependence on the dimension in that last result, obtaining the
following estimate:

Theorem 15. Let µ = e−V dx be a probability measure with HessV ≥ In, and assume that there exists k
functions ui ∈ H1(µ), k ≤ n, such that for any i ∈ {1, .., k} we have∫

uidµ = 0;

∫
u2
i dµ = 1;

∫
∇ui · ∇ujdµ = 0, ∀j 6= i

and ∫
|∇ui|2dµ ≤ 1 + ε

for some ε ≥ 0. Then there exists a vector p ∈ Rk and a function W : Rn−k −→ R satisfying HessW ≥
In−k such that

W1(µ, γk,p ⊗ e−W ) ≤ 26k3/2
√
ε.

In particular, if CP (µ) is the sharp Poincaré constant of µ, we have

W1(µ, γk,p ⊗ e−W ) ≤ 26
√
CP (µ)−1 − 1.

The proof uses three main ingredients. First, we show that the fact that the ui are approximate
optimizers in the Poincaré inequality gives rise to an approximate integration by parts formula∣∣∣∣∫ uifdµ−

∫
∇ui · ∇fdµ

∣∣∣∣ ≤ C√ε∫ |∇f |2µ.
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The second step, which was already proved in [59], is to show that the ui are close to affine functions.
This allows to compare the above approximate integration by parts identity to the Stein identity, and
hence compare µ to a Gaussian measure via Stein’s method. The main reason why we get a better bound
than [59] is that we mostly remain at a linear level, while the proof of [59] uses nonlinear estimates at the
level of the Monge-Ampère equation for the transport map between the standard Gaussian measure and
µ. It is also possible to derive a similar stability result for logarithmic Sobolev inequalities and Gaussian
concentration bounds for uniformly log-concave measures with the same broad technique, albeit under
strong regularity assumptions on the near-extremizers and a worse dependence on ε.

This result leaves open several interesting questions. The first is about optimality: some computations
of [59] suggest that the sharp rate should actually be of order ε instead of

√
ε. Another natural question

is the extension to a geometric setting. For example, is there is an analogue of this theorem in the
setting of metric spaces satisfying a curvature-dimension condition CD(K,N). Cavaletti and Mondino
have shown that such a space with almost maximal spectral gap is close to a spherical suspension, which
corresponds to the case k = 1 in the above result. The proof uses Klartag’s needle decomposition, a non-
smooth variant of Obata’s maximal diameter theorem due to Ketterer, and a compactness argument. In
particular, the estimates they obtain are not constructive. We do not know of a variant of Theorem 15 in
a geometric setting when k ≥ 2, or of constructive estimates even when k = 1. One of the difficulties in
obtaining a constructive stability estimate is that we have to work in the Gromov-Hausdorff topology, and
hence look at embedded representations of the space we consider and the target space in some unknown
ambient metric space.

4.3 Perspectives

4.3.1 Stability for variational problems

At an abstract level, the argument for deriving an integration by parts formula for near-minimizers in the
Poincaré inequality is a particular instance of a much more general phenomenon. If we seek to minimize
a functional of the form

∫
H(f,∇f)dµ, the Euler-Lagrange equation associated to a minimizer u is∫

h∂1H(u,∇u) +∇h · ∂2H(u,∇u)dµ = 0 ∀h

which is indeed an integration by parts formula for µ. Hence if we know that minimizing the above
quantity with respect to two different measures leads to approximately the same minimizers, we expect
that Stein’s method could be used to prove the measures are close, at least if the minimizers are nice
enough.

There are many interesting problems in the calculus of variations that take this form. For example, it
would be interesting to see if there is a variant of Stein’s method allowing to give easy proofs of stability
of spectral inequalities for sets, or for best constants in Sobolev-type inequalities [127]. For instance, the
Faber-Krahn inequality on eigenvalues of the Laplacian with Dirichlet boundary condition states that the
minimal value is given when the domain is a ball. See [26] for a recent survey. It is easy to see that the
variational formulation for the smallest eigenfunction gives rise to an integration by parts formula for the
set under consideration, with coefficients given by the associated eigenfunction, so maybe Stein’s method
could be used to compare this formula to the one characterizing the uniform measure on the ball (with
coefficients given by a Bessel function) and extract quantitative estimates. As a motivation, we note that
there are some open questions remaining on stability for certain boundary conditions.
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4.3.2 Estimates on optimal transport maps

This section is partly based on discussions with Maria Colombo.
In [56] (and many other works on functional inequalities and concentration for uniformly log-concave

measures), we made use of Caffarelli’s contraction theorem [30], which states that the optimal Brenier
map sending the standard Gaussian measure onto a probability measure on Rd satisfying CD(ρ,∞) for
some ρ > 0 is ρ−1/2-Lipschitz. This statement actually implies the Bakry-Emery bound on the LSI
constant. Motivated by the KLS conjecture, it is natural to ask what regularity estimates can be proved
when the target measure is only log-concave, without a uniform bound. The example of the exponential
measure shows that the map cannot be expected to always be lipschitz. However, in dimension one, we
can obtain the following estimate [56]:

Proposition 1. Let T be the optimal transport map sending the standard Gaussian measure onto a
centered log-concave probability measure µ with unit variance. There is a numerical constant c independent
of µ such that T ′(x) ≤ c

√
1 + |x|2.

In view of this statement, it is natural to conjecture the following:

Conjecture 3. The optimal transport map T sending the standard d-dimensional Gaussian measure onto
a centered, isotropic log-concave probability measure µ satisfies

||∇T (x)||op ≤ c
√
d+ |x|2.

The guess of the constant d is because the norm |X| of an isotropic log-concave random variable is
highly concentrated around its expectation, which is of order

√
d, so taking something smaller would not

change the typical size of the upper bound in this conjecture. A positive answer would imply weighted
Poincaré and logarithmic Sobolev inequalities for the Gaussian measure. As an additional motivation,
we mention that E. Milman showed that if we can get a universal upper bound on

∫
||∇T (x)||opdγ for

all isotropic log-concave measures, then the KLS conjecture would hold true [133].
With Maria Colombo, we proved the following universal estimate on such transport maps:

Theorem 16 (Colombo & F., in preparation). The optimal transport map sending the standard Gaussian
measure onto a centered isotropic log-concave probability measure satisfies

|T (x)| ≤ cd1/4(d+ |x|2)

with c a universal constant.

We actually prove an upper bound with a prefactor that depends on the Poincaré constant of the target
distribution, the above statement is then obtained by combining with the best known result estimating
these constants. It can be seen as a (hopefully non-sharp) integrated form of the regularity bounds we
would like to prove.
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Chapter 5

Discrete Ricci curvature

The question of how to define a notion of Ricci curvature lower bound for discrete spaces, such as the
discrete hypercube was raised in the 1990s by Gromov and Stroock. The motivation was that many
consequences of Ricci curvature bounds were known to hold for the hypercube. Several definitions have
been proposed in the past fifteen years. In this section, I will dicuss some of them, and their consequences.

There are two motivations to study curvature in a discrete setting:

• Using the insight from classical differential geometry to guess and prove discrete geometric state-
ments.

• Develop discrete analogues of the tools used to prove functional inequalities in a continuous setting,
and use them to study the mixing time and other properties of Markov chains on discrete spaces.

Several possible definitions of curvature bounds have been proposed, each based on adapting to the
discrete setting one particular property that characterizes these bounds in the continuous setting. We
shall first discuss entropic Ricci curvature, and Ollivier’s coarse Ricci curvature.

5.1 Entropic curvature

The synthetic notion of Ricci curvature lower bound of Lott, Sturm and Villani (LSV) does not rely on
a genuine Riemannian structure, but requires the underlying space to have a geodesic structure. This is
not the case for discrete spaces, so some modification is required.

In [125, 132, 75, 48], Erbar, Maas, Mielke and Chow et al. proposed a natural extension of the LSV
definition of curvature. It views the generator of a given reversible Markov chain as the counterpart to
the Laplacian for a manifold (which is the generator of Brownian motion). Their next step is to derive
a counterpart to the Jordan-Kinderlehrer-Otto point of view on the heat equation as the gradient flow
of the entropy with respect to the L2 Wasserstein distance. Loosely speaking, the main element can be
described as follows:

Given a reversible irreducible Markov chain with kernel K on a finite space X , with invariant
probability measure π, there exists a Riemannian distance on the space of probability measures

(identified with a simplex) such that the evolution of the law of the Markov chain is the gradient flow of
the relative entropy Entπ with respect to W.
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The distance W is defined by mimicking the Benamou-Brenier formula, and will play the role of W2.
Let us recall this formula:

W2(µ0, µ1)2 = inf
(µt,vt)

∫ 1

0

∫
|vt(x)|2dµtdt,

where (µt, vt) solves the continuity equation µ̇t + div(vtµt) = 0. To mimic this formula, we must first
define the analog of the continuity equation µ̇+div(vµ) = 0. The discrete analog of a vector field v would
be a function defined on the edges of the graph, i.e. Φ : X × § −→ R, that represents the flux in each
direction. But since it is defined on edges and not on vertices, to define the analog of div(vµ) we must
associate to the measure µ a measure µ̂ on edges. The divergence is then naturally given by

div(Φµ̂)(x) =
∑
y∈X

Φ(x, y)µ̂(x, y).

We can then associate to a path of probability measures µt at least one time-dependent discrete vector
field Φt such that

µ̇t + div(Φtµ̂t) = 0

and then define the discrete transport distance as

W(µ0, µ1)2 = inf
(µt,Φt)

∫ 1

0

∑
x,y

Φt(x, y)2µ̂t(x, y)dt.

All that is left is to make explicit the choice of measure µ̂. It turns out that the right choice of µ̂
associated to a measure µ = ρπ is to define it as µ̂(x, y) = Λ(ρ(x), ρ(y))K(x, y)π(x) := ρ̂(x, y)K(x, y)π(x)
with Λ(a, b) := a−b

log a−log b the logarithmic mean. This choice ensures that the discrete gradient applied to
the logarithm of the density satisfies the chain rule

∇ρ(x, y) = ρ̂(x, y)∇ log ρ(x, y)

which is the discrete counterpart to the usual chain rule for the logarithm. This relation is crucial to
ensure that the gradient flow of the relative entropy (which is the expectation of log ρ with respect to
µ) is indeed the discrete heat equation. This gradient flow structure has been adapted to other types of
dynamics, such as jump processes [70], spatially homogeneous Boltzman dynamics [71], discrete mean-
field dynamics [73] and quantum Markovian dynamics [36, 37]. It is also a suitable framework for the
study of spatial discretization schemes for PDEs [126, 77].

At this point, the definition of Ricci curvature suggested by this approach is clear: we define a lower
bound on the (entropic) Ricci curvature as a lower bound on the second derivative of Entπ along all
W-geodesics.

Several applications of curvature to functional inequalities have immediate discrete counterparts with
this definition. The most important one is that a positive lower bound implies a modified logarithmic
Sobolev inequality (mLSI):

Entπ(ρ) ≤ 1

2κ

∑
x6=y

(ρ(x)− ρ(y))(log ρ(x)− log ρ(y))K(x, y)π(x). (5.1)

This inequality corresponds to a bound on the entropy by the entropy production functional for the
Markovian dynamic with rates K. In particular, positive curvature implies an exponential rate of con-
vergence to equilibrium in relative entropy for the underlying Markov chain.
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Due to the lack of chain rule for discrete derivatives, there are several inequalities that would formally
be a discrete counterpart to the classical LSI, and they are not equivalent. What is usually called a LSI
for discrete spaces is the inequality

Entπ(ρ) ≤ C
∑
x 6=y

(
√
ρ(x)−

√
ρ(y))2K(x, y)π(x)

which is strictly stronger than the mLSI, and does not necessarily hold with a constant of order κ−1

for Markov chains with curvature bounded from below by κ. For example, for the random walk on the
complete graph with N sites, the curvature is bounded by a constant independent of N , but the above
LSI holds with constant (logN)−1 (while the mLSI constant is indeed of order 1).

As in the continuous setting, the discrete mLSI implies a discrete Poincaré inequality

V arπ(f) ≤ 1

2c

∑
x,y

(f(x)− f(y))2K(x, y)π(x),

as well as Gaussian concentration bounds and a discrete version of Talagrand’s transport-entropy in-
equality.

With Erbar [72], we have studied functional inequalities for Markov chains when the curvature is
nonnegative, but not strictly positive. The main goal was to get discrete analogs of the results of E.
Milman on the equivalence between isoperimetry and concentration under curvature bounds. While we
have not been able to prove a full discrete counterpart to that theory, we obtained a few weaker results.
The two main results are the following:

Theorem 17. Consider a Markov chain with nonnegative entropic Ricci curvature.

• The sharp constant CP in the discrete Poincaré inequality and the Cheeger constant

h = sup
A⊂X

π+(∂A)

π(A)(1− π(A))

where the perimeter measure of A is given by π+(∂A) :=
∑

x∈A,y∈Ac

K(x, y)π(x), satisfy

h ≥
√

9K∗CP

where K∗ = min{K(x, y) : K(x, y) > 0} is the minimal transition rate.

• The mLSI constant satisfies λmLSI ≥ cD−2, where D is an upper bound on the diameter (with
respect to the distance W) and c is a universal constant. The same holds for the Poincaré constant.

The first part is a discrete analog of a theorem of Buser [29], and a matching upper bound up to a
universal constant holds in full generality, without any curvature assumption. The Cheeger isoperimetric
inequality is equivalent to an L1 version of the Poincaré inequality. The proof follows a strategy of [109].
The second part combines ideas from [93] and [12], where we first obtain a non-tight mLSI, with an
extra constant, using a discrete HWI inequality implied by the curvature bound, and then tighten it by
carefully estimating the contribution to the entropy of regions where the function considered takes large
values. Both proofs use discrete gradient estimates that arise as a discrete counterpart to Theorem 3.

My second contribution to the study of entropic curvature is about examples of Markov chains with
curvature bounds. With Maas, we have worked on how to compute lower bounds for the entropic Ricci
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curvature for concrete Markov chains. While the Hessian of the entropy is computable, the expression
is somewhat complicated, and directly computing its infimum over a high-dimensional simplex is not
feasible in practice. The tensorization property of Ricci curvature allows for computing bounds for high-
dimensional non-interacting systems. However, as soon as there is an interaction, this does not apply
anymore. By mimicking a strategy proposed by Caputo, Dai Pra and Posta [31] for proving mLSI for
discrete Markov chains, we have developed a method for estimating the Hessian of the entropy in presence
of non-trivial interactions. One of the main examples for which we were able to derive a bound is the
zero-range process on a complete graph:

Theorem 18. Consider the following system of K interacting particles on the complete graph with L
vertices. For each site x, we denote by ηx the number of particles present at a given time. At rate cx(ηx),
a single particle chooses another site uniformly at random, and jumps there. Then, assuming that for
any x, k we have

0 < c ≤ cx(k + 1)− cx(k) ≤ c+ δ

with δ < c, the entropic Ricci curvature of the system is bounded from below by (2c−5δ)/4. In particular,
we have positive curvature if δ < 2c/5.

Note that the bound is dimension-free: it depends neither on the size of the graph, nor on the number
of particles.

Our method has been pushed further in [74] to cover more examples, such as the Ising model at
some high enough temperature. The techniques have also been used in [102, 103] to establish Beckner
inequalities, and to study convergence to equilibrium for spatial discretizations of certain PDEs.

5.2 Discrete transport-information inequalities

In joint work with Shu [83], I have also studied functional inequalities under other discrete notions of
curvature bounds, namely discrete versions of the Bakry-Emery curvature condition and Ollivier’s coarse
Ricci curvature condition. To avoid introducing too many definitions, I will mostly focus on our results
for the second one, and only briefly describe afterward what we did for the first one.

Ollivier’s coarse Ricci curvature for Markov chains on general metric spaces [144, 145] is defined as a
contraction rate for the dynamic. More precisely, curvature is bounded from below by a constant κ ∈ R
if for any two probability measures µ and ν and any time t ≥ 0 we have

W1(P ∗t µ, P
∗
t ν) ≤ e−κt

where W1 is the usual L1 Wasserstein distance and P ∗t is the semigroup, acting on measures, generated
by the Markov dynamic. A similar definition is possible for discrete-time processes. The motivation for
this definition is that in the Riemannian setting curvature bounds are equivalent to contraction of the
semigroup generated by Brownian motion in Wasserstein distance W2. The choice of W1 instead of W2

for the coarse definition is motivated by applicability to discrete Markov dynamics. Contraction rates for
Markov chains have been studied since Dobrushin’s work on the Ising model [62], where it was used as a
tool to give bounds on the critical temperature. It has since been revisited for various applications, for
example [100]. We remark that this definition is in some sense less intrinsic than the entropic curvature
condition, since the choice of the distance is not specified by the Markov process, although in many
concrete situations there is a particular natural distance, such as the graph distance. It is sometimes
possible to deform the natural distance to make curvature positive, even though at the beginning it was
not [64].
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In practice, estimating this curvature is done by constructing a well-chosen coupling between arbitrary
initial data, and showing that the trajectories indeed get closer at a strictly positive rate. The literature
on constructing such couplings is extremely vast, going back to Bubley and Dyer’s work on Markov chain
mixing time [28]. However, there is no completely general method, they are usually constructed in an ad
hoc way.

When coarse curvature is bounded from below by a strictly positive constant, we can derive a lower
bound on the spectral gap, as well as certain exponential concentration estimates [144], with applications
for example to error bounds for Markov Chain Monte Carlo algorithms [101]. In general, it seems this
curvature condition does not recover the strongest functional inequalities that can be derived using the
entropic curvature condition we described in the previous section.

With Yan Shu [83], we proved that for random walks on graphs, if the coarse Ricci curvature is
bounded from below by a constant κ > 0, then the invariant measure π satisfies the transport-information
inequality

W1(ρπ, π)2 ≤ 1

κ2

∑
x,y

(ρ(x)− ρ(y))(log ρ(x)− log ρ(y))K(x, y)π(x).

This inequality is stronger than a transport-entropy inequality, but weaker than the mLSI. It controls
the Gaussian concentration for fluctuations of additive functionals of the Markov chain. The proof mimics
the Bakry-Emery argument, by adapting it to the discrete setting, where the lack of chain rule causes
some issues.

Note that a similar functional inequality where W1 would be replaced by the stronger W2 distance
would never be true in the discrete setting, except in the trivial situation of a measure whose support is
a single point.

As a corollary, this result implies a Talagrand inequality T1 holds, with a constant proportional to
κ−1, and with the transport distance constructed from the standard graph distance. This result was first
proved by Eldan, Lee and Lehec [68], using a more information-theoretical approach.

Actually, most of the work in [83] deals with proving transport-information and transport-entropy
inequalities under discrete variants of the Bakry-Emery curvature condition [156, 121, 13, 123]. It turns
out that under a variant of that condition, the transport-entropy inequality can be improved to control
a transport-like distance that is stronger than W1 (but still weaker than W2).

5.3 Perspectives

5.3.1 The Peres-Tetali conjecture

One of the main advantage of the entropic curvature condition compared to the coarse curvature con-
dition is that it implies a modified logarithmic Sobolev inequality, and hence exponential convergence
to equilibrium in relative entropy. While in full generality it is not true that a coarse Ricci curvature
bound implies the same bound on the mLSI constant, Peres and Tetali asked the following question in
the restricted setting of random walks:

Conjecture 4. Consider a simple random walk on some finite graph, and assume that the coarse Ricci
curvature is bounded from below by some positive constant κ. Is this enough to guarantee that a modified
logarithmic Sobolev inequality holds, with constant of order κ−1?

This is actually the question that motivated [68] and [83], but current results only concern weaker
transport inequalities, rather than the mLSI.
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This conjecture highlights the difference of understanding between the entropic curvature described in
Section 5.1 and Ollivier’s coarse Ricci curvature. For the first one, as we have already seen the analogue
of this conjecture holds (and the proof is a straightforward adaptation of its continuous counterpart). So
as an abstract tool, entropic curvature seems stronger than coarse Ricci curvature. But we have many
examples where we know a lower bound on the coarse curvature holds, but do not know how to estimate
the entropic curvature. For example, for the Ising model, the temperature threshold at which we can
prove positive curvature is much higher for the entropic curvature than for the coarse curvature (where
the bound matches with the Dobrushin uniqueness condition [62]).

One of the motivations for raising this question is that a positive answer would imply new bounds
on the mixing times of certain algorithms for counting proper colorings of graphs. Moreover, a positive
answer to this conjecture would imply that there is no family of expander graph with a uniform positive
bound on the coarse Ricci curvature, answering a question of E. Milman and Naor [145].

5.3.2 Geometry and censoring for Markov chains on discrete spaces

To motivate the discussion in this section, let us start by stating a conjecture of Ding and Mossel [61]:

Conjecture 5. A subset A of the hypercube {0, 1}d is said to be monotone increasing if for any x ∈ A
and any y ∈ {0, 1}d such that xi ≤ yi ∀i = 1, ..d we have y ∈ A.

Let A be a monotone increasing subset of the d-dimensional hypercube, with π(A) = c, where π stands
for the uniform probability measure on the hypercube, and consider a censored random walk restricted to
A, that is a simple random walk, where any jump attempt that leaves A is suppressed. Is it true that the
mixing time of this random walk is bounded by a quantity of the form ϕ(c)d log d, with ϕ independent of
d?

This conjecture is a particular instance of a much more general question: given a Markov chain, is it
possible to modify it by forbidding it to visit certain regions without significantly worsening the rate of
convergence to equilibrium?

If we consider diffusions on manifolds, Ricci curvature bounds give a nice sufficient condition for this
to happen: if we restrict a diffusion with positive curvature to a geodesically complete subset, then the
curvature bound still controls the rate of convergence to equilibrium. Similar results are possible when
curvature is only nonnegative, or even slightly negative if the set is not too small, by combining the
results of [134] and [21].

At a heuristic level, it would seem like Conjecture 5 should fit in this framework: the discrete hypercube
has positive curvature, and given two points inside a monotone set, there is at least one path of minimal
length (w.r.t. the graph distance) that remains inside that set. However, if we use entropic curvature, the
set of probability measures supported on some monotone set is in general not geodesically complete, and
hence a proof would require new ideas. Recently, Erbar, Maas and Wirth [76] have started investigating
which subsets of some discrete space support a geodesically complete space of probability measures, with
respect to the discrete transport metric W.

5.3.3 Long-time behavior for mean-field equations on discrete spaces

This section is based on discussions with Matthias Erbar and Andre Schlichting.
One of the main successes of the optimal transport viewpoint on curvature bounds is the study of long-

time behavior for McKean-Vlasov equations. Carrillo, McCann and Villani noticed that these dynamics
can be written as a gradient flow of a certain entropy functional in the Wasserstein space, and convexity
properties can be easily characterized via convexity properties of the underlying potential, in the spirit of
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the Bakry-Emery theorem. If we consider a spatial discretization of these PDEs, we are led to consider
discrete mean-field equations on graphs, and recently there have been some attempts at understanding
their long-time behavior [50, 167].

With Erbar, Laschos and Schlichting, we have uncovered a gradient flow structure for certain families
of nonlinear mean-field dynamics on graphs [73]. Just as in the case of linear Markov dynamics, if the
driving entropy functional is uniformly convex along geodesics for the associated distance, we automati-
cally deduce a rate of convergence to equilibrium. We are currently working on adapting the techniques
of [81, 74] to compute curvature bounds in this setting.

5.3.4 Rigidity of curvature bounds in the discrete setting

One of the active mathematical field that grew out of the study of Ricci curvature bounds is the study
of geometric rigidity theorems under curvature bound assumptions, pioneered by Cheeger and his collab-
orators. A typical statement of this type asserts that if a certain geometric quantity (diameter, volume,
spectral gap...) is as large as possible given a certain bound on the (Ricci) curvature, then the manifold
under consideration must be of a certain type. We have already seen an example of such a phenomenon
in Section 4.2, where we discussed stability of the Bakry-Emery bound on the spectral gap of a weighted
Euclidean space.

Since we have notions of Ricci curvature bounds for discrete spaces, it is natural to wonder if there
are similar rigidity theorems in the graph setting. At this point, I do not know of any rigidity/stability
results for entropic Ricci curvature in discrete spaces.

Let us now present one particular problem. The splitting theorem of Cheeger and Gromoll [45, 44]
asserts that a manifold with nonnegative curvature that contains a line is isometric to a product manifold
R ×M ′. It was extended to the non-smooth setting in [89]. A first guess for a discrete analog would
be the following question: consider a Markov chain with nonnegative (entropic) curvature, and assume
that there exists a function f : X −→ Z such that the process f(Xt) is a simple random walk on Z.
Is there a relabeling of X such that the Markov chain is a random walk on a product space Z × X ′,
with coordinates that evolve independently conditionally on their initial values, and such that the first
coordinate performs a simple random walk, and the second coordinate is a Markov chain with nonnegative
(entropic) curvature.

Matthias Erbar pointed out to me that the answer to this question is negative: the simple random walk
on the two-dimensional triangle lattice has nonnegative curvature, and its projection on a line performs
a simple random walk, yet it is not equivalent up to relabeling to a random walk on a product space
with independent coordinates. So the naive guess does not hold. But maybe it is possible to classify the
graphs with nonnegative curvature that contain a line?

In a different direction, [122] has recently considered a discrete counterpart to the maximal diameter
theorem in the setting of graphs with positive discrete Bakry-Emery curvature and the Lichnerowicz
eigenvalue estimate.
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bounds on graphs. Calc. Var. Partial Differential Equations, 57(2):Art. 67, 9, 2018.

[124] John Lott and Cédric Villani. Ricci curvature for metric-measure spaces via optimal transport.
Ann. of Math. (2), 169(3):903–991, 2009.

[125] Jan Maas. Gradient flows of the entropy for finite Markov chains. J. Funct. Anal., 261(8):2250–2292,
2011.

[126] Jan Maas and Daniel Matthes. Long-time behavior of a finite volume discretization for a fourth
order diffusion equation. Nonlinearity, 29(7):1992–2023, 2016.

[127] Francesco Maggi and Cédric Villani. Balls have the worst best Sobolev inequalities. J. Geom. Anal.,
15(1):83–121, 2005.

[128] Katalin Marton. A measure concentration inequality for contracting Markov chains. Geom. Funct.
Anal., 6(3):556–571, 1996.

[129] Robert J. McCann. Existence and uniqueness of monotone measure-preserving maps. Duke Math.
J., 80(2):309–323, 1995.

[130] Robert J. McCann. A convexity principle for interacting gases. Adv. Math., 128(1):153–179, 1997.

[131] Elizabeth Meckes. On the approximate normality of eigenfunctions of the Laplacian. Trans. Amer.
Math. Soc., 361(10):5377–5399, 2009.

[132] Alexander Mielke. Geodesic convexity of the relative entropy in reversible Markov chains. Calc.
Var. Partial Differential Equations, 48(1-2):1–31, 2013.

[133] Emanuel Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent.
Math., 177(1):1–43, 2009.

[134] Emanuel Milman. Isoperimetric and concentration inequalities: equivalence under curvature lower
bound. Duke Math. J., 154(2):207–239, 2010.

[135] V. D. Milman. New proof of the theorem of Dvoretzky on sections of convex bodies. Funct. Anal.
Appl., 5:28–37, 1971.
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[155] Adrien Saumard. Weighted poincaré inequalities, concentration inequalities and tail bounds related
to the behavior of the stein kernel in dimension one. Arxiv preprint, 2018.

56



[156] Michael Schmuckenschläger. Curvature of nonlocal Markov generators. In Convex geometric anal-
ysis (Berkeley, CA, 1996), volume 34 of Math. Sci. Res. Inst. Publ., pages 189–197. Cambridge
Univ. Press, Cambridge, 1999.

[157] Claude E. Shannon and Warren Weaver. The Mathematical Theory of Communication. The Uni-
versity of Illinois Press, Urbana, Ill., 1949.

[158] Dimitri Shlyakhtenko. Shannon’s monotonicity problem for free and classical entropy. Proc. Natl.
Acad. Sci. USA, 104(39):15254–15258, 2007. With an appendix by Hanne Schultz.

[159] Charles Stein. A bound for the error in the normal approximation to the distribution of a sum
of dependent random variables. In Proceedings of the Sixth Berkeley Symposium on Mathemati-
cal Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. II: Probability
theory, pages 583–602. Univ. California Press, Berkeley, Calif., 1972.

[160] Charles Stein. Approximate computation of expectations, volume 7 of Institute of Mathematical
Statistics Lecture Notes—Monograph Series. Institute of Mathematical Statistics, Hayward, CA,
1986.

[161] Karl-Theodor Sturm. On the geometry of metric measure spaces. I. Acta Math., 196(1):65–131,
2006.

[162] Karl-Theodor Sturm. On the geometry of metric measure spaces. II. Acta Math., 196(1):133–177,
2006.

[163] Alain-Sol Sznitman. Fluctuations of principal eigenvalues and random scales. Comm. Math. Phys.,
189(2):337–363, 1997.

[164] M. Talagrand. Transportation cost for Gaussian and other product measures. Geom. Funct. Anal.,
6(3):587–600, 1996.

[165] Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics.
American Mathematical Society, Providence, RI, 2003.

[166] Cédric Villani. Optimal transport, volume 338 of Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. Old and new.

[167] Denis Villemonais. Lower bound for the coarse Ricci curvature of continuous-time pure jump
processes. Arxiv preprint, 2017.

[168] Max-K. von Renesse and Karl-Theodor Sturm. Transport inequalities, gradient estimates, entropy,
and Ricci curvature. Comm. Pure Appl. Math., 58(7):923–940, 2005.

[169] Xu-Jia Wang and Xiaohua Zhu. Kähler-Ricci solitons on toric manifolds with positive first Chern
class. Adv. Math., 188(1):87–103, 2004.

[170] Zach Weinersmith. http://www.smbc-comics.com/comic/angles.

[171] Boguslaw Zegarlinski. The strong decay to equilibrium for the stochastic dynamics of unbounded
spin systems on a lattice. Comm. Math. Phys., 175(2):401–432, 1996.

57


