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Chapter 1.

The normal form of Moser

Introduction

The so-called "KAM theory", initiated by Kolmogorov in 1954, has at its heart the study of quasi-periodic motions (that is to say a superposi tion of finitely many oscillatory motions of different frequencies) and, more specifically, their persistence under small perturbation. This theory plays a fundamental rôle in the study of conservative dynamical Systems, as one encounters notably in Celestial Mechanics.

In particular, Arnold in the 1960's, proved an important theorem that can be roughly summarized in this way: if planets' masses had been sufficiently

small with respect to that of the Sun (in fact incomparably smaller than real masses themselves, see [Casl5]), for a large (in the sens of measure) subset of initial conditions (initial positions and velocities of planets), the movement of planets would hâve been bounded and without collisions, like their Keplerian approximation. This is an outstanding resuit of stability, even if, on the one hand it does not apply to the Solar System itself, and on the other one, even under the hypothesis that masses are sufficiently small, it does not apply neither to every nor to generic initial condition.

This theory has been developed for general conservative Systems, in par ticular for Hamiltonian ones.

One of the first generalizations to non necessarily conservative Systems is due to Moser, who, in 1967, established The astronomical problem that motivated this work is the so called "dissipative spin-orbit problem", previously presented in the works of Celletti- Chierchia [CC09] and .

Starting from the normal form of Moser we build a more geometrical context in which it becomes natural to deduce other normal form results, depending on the System under study; as an application, we prove a K AM-type resuit for the aforementioned spin-orbit problem.

This approach naturally leads to a better understanding of the dynamical rôle of the parameters at stake in the normal form and opens on a further study of the geometry of the space of parameters involved.

From the normal form of Moser... The first chapter of this thesis is dedicated to the theorem of Moser which although it lias been used by various authors, has remained relatively unnoticed for several years.

We présent an alternative proof of this resuit which consists in finding the solution of a non linear functional équation through an abstract inverse function theorem in analytic class (theorem 1.4). Although the difficulties to overcome in this proof are the same as in the original one (proving the fast convergence of a Newton-like scheme), it relies on a relatively general inverse function theorem (unlike in Moser's approach), following an alternative strategy with respect to the one proposed by Zehnder in [START_REF] Zehnder | Generalized implicit function theorem with applica tions to some small divisor problems[END_REF].

Let us state the normal form resuit.

Let V be the space of germs of real analytic vector fields along Tn x {0} in Tn x Rm and U (a, A) be its affine subspace consisting of vector fields like (0.1) where a e Rn and A e Matm(R) are fixed. A is supposed to be diagonalizable with eigenvalues a = (ai,---,am) and we assume that among the linear combinations ik-a + l-a (kJ)eZnxZm,\l\< 2, |/| = |fi| + -+ \lm\ there are only finitely many which vanish. Moreover we impose the following Diophantine condition, for some real positive 7, r, \ik-a + l-a\> ^for ail (k,l) e ZnxZm \ {(0,0)}, for which the left hand side does not vanish.

INTRODUCTION XI!

Tn x Mm of the forai g(6,r) = (ip(9),Ro(9) + Ri(9)-r) being a diffeomorphism of the torus fixing the origin and Rq,R\ being respectively an Rm-valued and Matm(M)-valued functions defined on Tn.

THEOREM [START_REF] Moser | Convergent sériés expansions for quasi-periodic mo tions[END_REF]. IfveV is close enough to u°eU(a,A) there exists a unique triplet (g, u,\) e Ç x U(a, A) x A such that v = g±u + A.

The notation g*u indicates the push-forward of u by g.

The introduction of the parameter A 6 A is a powerful trick that switches the frequency obstruction (obstruction to the conjugacy to the initial dynamics)

from one side of the conjugacy to the other. Although the presence of the counter-term A breaks the dynamical conjugacy down, it is a finite dimensional obstruction: geometrically, the Çz-orbits of ail u's in U (a, A) form in V a submanifold of finite co-dimension N < n + m + m2, transversal to A.

Notice that, in general, v cannot be of the form v = g*(u + A); as a matter of fact the operator (g, u, A) g*(u + A) is not open despite it has the saine

INTRODUCTION Xll]
The functional setting in which we prove the theorem of Moser is an alterna tive to the one proposée! by Zehnder in his remarkable papers .

Although both approaches rely on the fact that the convergence of the New ton scheme is somewhat independent of the internai structure of variables, they differ for the following reason: inverting the operator as we will in chapter 1, is équivalent to solving implicitly the pulled-back équation [g* = g~l)

with respect to u,g and À as Zehnder did. The problem is that whereas 0 is a local diffeoinorphism (in the sense of scales of Banach spaces), the linearization of <h, is not surjective if for instance g*(X-v) is Liouville. It is invertible in a whole neighborhood of <f> = 0 only up to a second order tenu (see Zehnder [Zeh75,§5j), which prevents us from using a Newton scheme in a straightforward manner.

...to other normal forms. What motivated this work is the paper

[CC09] by Celletti and Chierchia about the persistence of quasi-periodic attractors in Celestial Mechanics in the case of the so callecl "dissipative spin-orbit problem". This problem and other astronomical ones can be reformulated in ternis of normal forms.

The first attempt when studying real astronomical problems subject to dis sipative effects is to consider Systems in which the dissipation terni troubles the équations of motion with a linear friction terni (whose précisé characteristics is very difficult to détermine), while the remaining interactions are still Hamiltonian.

In this line of thought, in the second chapter, section (2.1), we start by presenting Moser's theorem in the purely Hamiltonian context (proved independently by Herman and présent in Féjoz's works [Féj04] and [FéjlO] as the "twisted conjugacÿ" theorem).

Vector fields uH e VHam c V involved correspond to real analytic Hamiltonians H defined in a neighborhood of T[j, the corresponding uH e £7Ham(a,0)

possessing an invariant torus corne from K(6:r) = a-r + 0(r2) instead:

INTRODUCTION

In this case the dimension of the obstruction À is reduced to n and the diffeomorphisms at stake are Hamiltonian. From this context, slightly modifying the class of these vector fields by adding the aforementioned dissipative linear terni2 in the normal direction © (-r}rdr), g € M+ (see section "Hamiltonian -f-dissipation"), it is possible to prove a first generalization to dissipative Systems (see section 2.2 and theorem 2.3 baptized "Herman dissipative") in which the nmnber of needed external parameters breaking the dynamical conjugacy is the same as in the purely Hamiltonian context (a translation terni (33$, (5 € Mn in the angle's direction). For this to be true it is fundamental that dissipation acts the sanie in any direction: the constant matrix A appearing in r-directions is a homothety -r/id.

In a second step, we add a twist hypothesis on the Hamiltonian vec tor fields assuming that the average of the coefficient of the quadratic terni in K(0,r) = a r + ^Q(O) r2 + 0(r3) is a non degenerate quadratic form:

det fT Q t 0. In this context it is natural to take advantage of this non degeneracy condition and perform transformations by symplectic diffeomorphisms. Because of the presence of the constant terni -rjr dr we obtain a translated torus resuit via a normal form theorem (see section 2.4 and the theorem "à la Rüssmann" therein) that can be considered as an analog for vector fields in this class of the celebrated Rüssmann translated curve theorem for diffeomorphisms of the annulus (see [Rüs70]). As a matter of fact we prove that the operator (0.2) <fi : (g,u,b) g*u + bdr = v, beWn is a local diffeomorphism, the image of the torus (/(Tq) by the flow of v is translated by b.

The more general dissipative case in which no Hamiltonian hypothesis is made and the dissipative terni is provided by a more general diagonal matrix A r with négative real entries, is also given as a straightforward corollary to Moser's theorem.

We eventually summarize these results in two diagrams that give a por trait of these dissipative Systems in ternis of normal forms.

Invariant tori: élimination of parameters. It is now évident that in several situations the number of counter ternis a priori needed to solve the conjugacy équation g*u+A = v can be considerably reduced when symmetries are présent in the System. The fact that the submanifold ÇM(a.A) has finite co-dimension leaves the possibility that in sonie cases these obstructions can be even totally eliminated if the System dépends in an opportune way In sonie cases the crucial point is to allow frequencies (ai, •••, an, ai, •••, am) to vary, using the fact that À is Whitney-smooth with respect to them (see appendix B). Herman understood the power of this réduction in the 80's (see [START_REF] Meyer | The implicit function theorem and analytic differential équations[END_REF]) and other authors (Rüssmann, Sevryuk, Chenciner, Broer-Huitema-Takens, Féjoz...) adopted this technique of "élimination of parameters" to prove invariant tori theorems in multiple contexts, at various level of generality, contributing to clarify this procedure. For the sake of completeness, in appendix B we included a "hypothetical translated torus" theorem in the frame of the previous observations, proved by adapting to this normal forms the "hypothetical conjugacy" theorem by Féjoz in [Féj04] or [FéjlO].

In chapter 3, we will show that the central resuit of Celletti-Chierchia in In their approach Celletti-Chierchia look for a function u : T2 -> E such that the solution of (0.3) can be written as 9{t) -at + u(at, t), a being a fixed Diophantine frequency.

Provided that s is small enough, for any 77 e [-770,770] the function u is INTRODUCTION eventually found as the solution of an opportune PDE, for a particular value of v (see [CC09, Theorem 1] for the précisé statement).

The feeling that the above resuit could be found as a conséquence of the theorem of Moser or a similar normal form theorem adapted to this précisé context represented the main motivation of this work.

In our framework the problem becomes:

The vector field corresponding to équation (0.3) after the convenient introduction of cr by translating the "action" variable r, reads J 9 -a + r 1 r --7/r + 7j(i/ -a), when £ = 0. For every Diophantine a the torus r = 0 is invariant, provided v = a.

Can we prove the persistence, under perturbation, of this invariant attractor for a particular value of zq close to a ?

The existence of the attractive torus is shown in two steps. By the translated torus theorem 2.5 adapted to this particular context (corollary 3.2.1), one proves that, provided the perturbation is small enough, a normal form like This is even inore évident in the context of diffeomorphisms, for the generic perturbation of the spin-orbit time 27r-map that we considered (not disposing of the explicit corresponding solution). The general belief is that for no reason an invariant curve should resist any kind of perturbations for any values of dissipation/normal hyperbolicity 7/. In the complément of régions where normal hyperbolicity is strong, the dynamics is expected to be very rich, as is the portrait given by Chenciner.

CHAPTER 1

The normal form of Moser

This the starting point to otlier results in tins spirit of "introducing external parameters" of Moser and Herman (see next chapter) intended to give a more complété portrait of dissipative Systems in ternis of normal forms.

The original statement of Moser concerned Systems defined on the general phase space Tn xRm with n and m non necessarily equal. The way we présent the problem on Tn x Mn instead, does not hâve an impact on the difficulty of solving it; it rather seemed to be more naturally connectable with the even more particular case that will be the center of the first part of this thesis, dissipative Systems coming from real physical problems.

We are interested in analytic vector fields defined by the following System of differential équations in the neighborhood of Tq := Tn x {r = 0} c Tn x Rn where 0 = (6\, •••, 0n) are n angular variables of period 27r, and r = (ri, are real variables. In particular a is a constant vector belonging to Rn, and A stands for higher order ternis in r, tliat may dépend on 6 as well. The spécial feature with vector fields of this kind is that they possess an invariant torus, Tq, carrying a reducible quasi-periodic flow.

We will refer to ai, •••, a", ai, •••, an as the characteristic exponents or characteristic numbers of Tq.

Remark 1.1. That vector fields hâve a linear comportent in the r-direction which is a constant matrix, constitutes a strong hypothesis. If we think of a

Taylor's expansion along Tq of a general vector field, we would hâve something of the form r = const + A($) -r + 0(r2), because nothing ensures that the linearized part has to be constant; in general there is no change of variables that makes A independent of the angles (see [ChalO], for instance).

1.1. OverView (î.i) a diagonalizable matrix in Matn(M), with eigenvalues a = (ai,***,an). 0(rk)

THE NORMAL FORM OF MOSER

The question here is whether this kind of dynamics in a neighborhood of Tq, persists under perturbation. For these reasons we are forced to introchice sonie "external parameters"

to compensate the degeneracy caused by the invariance of frequencies: we modify v by the so-called modifying ternis or counter terms Of course, if we want sonie persistence resuit to hold, we hâve to ask our frequencies to satisfy some arithmetic properties in order to avoid résonances, in the sense that 3 k e Zn \ {0}, such that k • a -k\a\ + ••• + knan = 0.

To get a heuristic idea of résonances, think about two planets revolving about the Sun with frequencies au and a2 respectively, that periodically find themselves in the same mutual position: the gravitational attraction between them will not cancel out in time average, but instead will pile up.

Let 7, r > 0 be positive real numbers. The vector a e ]Rn is called (7, r) -Diophantine if it satisfies the following Diophantine condition:

(1.4) |fc-a|>-E, Vfce Z"x{0}, \k\ := |M| + -+ \kn\.

Actually we will require the characteristic numbers to satisfy the follow ing inequality

(1.5) \ik • a + l a\> --T for ail (k, l) e 7Ln x Zn \ {(0, 0)}, |/| < 2,

(1 + \k\)

for which the left hand side does not vanish. If r is large enough (say r > n-1)

and 7 is small enough, the measure of the set of "good frequencies" tends to the full measure as 7 tends to zéro. For proofs about these facts and further details we refer to fPos89] and [PôsOl] and references therein.

The module's arguments at the left hand sides of inequalities (1.4) and (1.5) are the so called "small divisors" that will pop up when trying to solve the linearized conjucagy problem, indeed the problem itself.

We are now ready to state the main resuit:

THEOREM 1.1 [START_REF] Moser | Convergent sériés expansions for quasi-periodic mo tions[END_REF]. Let us consider a System like (1.2). Sup pose that A is diagonalizable and that its eigenvalues ai,--,an together with o:i,"-,an satisfy the diophantine condition (1.5). If the functions f and g are analytic and e is small enough, there exist an analytic change of variables meaning that it possesses a quasi-periodic solution with the same characteristic exponents as u.

Functional setting

Let V be the space of germs of real analytic vector fields along Tq := Tn X {0} cF xln.

Fix a e Rn and A e Matn(R) diagonalizable of eigenvalues ai,-*-,an and let U{a1 A) be the affine subspace of V consisting of vector fields of the form

(1.7) u(Q, r) = (a + O(r), A r + 0(r2)),
where 0(rk) stands for ternis of order > k in r, that may dépend on 9 as well. This subspace consists of vector fields for whicli the torus Tq is invariant and carries a reducible ci-quasi-periodic dynamics with Floquet exponents We will also use the notation

x(Q,r) = +gl(9,r)-, or X(6,r) = f(9,r)de + g(9,r)dr, i=1 Ovi OTi for X(9,r) = (.f(9,r),g(9,r)).

But no ambiguity will occur: ail vector fields here always hâve 2n components, n in the direction of 9 and n in the direction of r, to which we refer as the tangent and normal directions.

With these new objects, we can state the theorem of Moser in a more compact forai:

Theorem 1.2 [START_REF] Moser | Convergent sériés expansions for quasi-periodic mo tions[END_REF]. Ifv is close enough to some u°eU(a,A), there exists a unique triplet (g,u, A) g Ç xU(a,A) x A such that the équation

(1.8) g*u = v -À is satisfied.
The notation g±u indicates the push-forward via of u via g. When À = 0, ^(Tq) is the invariant torus of u, and u its first order normal form along the manifold.

The stringent requirement we made about the characteristic numbers to be fixed, causes an obstruction (of finite dimension) to the dynamical conjugacy between v and u. represented by the presence of A on the "other side" of the conjugation. Geometrically, this means that in V the Cborbits of u g U (a, A)1

A), form a submanifold of finite codimension < n + n + n2, transverse to A.

In many cases, it happens that the number of obstructions can be considerably decreased (see sections 2.1, 2.2, 2.3 and appendix B), depending on the particularity of the perturbation involved.

We start by giving the functional setting in which we will prove that the map (j) : (g, u, A) ^g*u + A =: v is a kind of local diffeomorphism, in the neighborhoods of (id, vP, 0) and u°. consisting of maps of the forai g(9,r) = (cp(Q),R0(6) + Ri{0) -r), where -the function y? belongs to v4(T",T^) and is such that </?(0) = 0 and |^-id|s<cr, where ip -id is considered as going from T" to Cn -R0 € *4(Tg,Cn) and € >t(T?,Matn(C)) satisfy |i?o(6l) + R\{0) r ~r\s < a. The "Lie Algebra" T-K\Ç°of Ç%, consists of maps g(0,r) = (<pW,Ro (e) + R1(9)-r).

Here g lies in -MT''. C~" ); more specifically 0 € .4 (T", Cn). Rq € .4(T£,Cn)

and Ri e ^4,(T",Matn(C)). We endow this space too with the norm \Ù\S= ™xn(\9j(0,r)\s).

1.2.3. Spaces of vector fields. We define -Vs = ^4(Tg,C2n), endowed with the norm Ms:= max (\vj(Q,r)\ ): l<j<2n and V = Us Vs.

-For a g ]Rn and A e MatnR, Us(a,A) is the subspace of Vs consisting of vector helds in the form n(6, r) = (a + O(r), A r + 0(r2)).

Finally, for a given isomorphism g € QGS1 we define as M9,s := a "deformed" norm depending on g, the notation g* standing for the pullback of v: this in order not to shrink artificially the domains of analyticity.

The problem, in a smooth context, may be solved without changing the domain, by using plateau functions.

1.2.4. The normal form operator 0. According to theorem C.l and corollary C.l.l, the operators (1.9) 0 : Qsia xWs+cr(û0) X A -> Vs, (g, u, A) h> g*U + A, g*u = (g' • u) o g-1, are now defined. Since these operators commute with source and target spaces, we will refer to them in the singular.

We will always assume tliat 0<s<s + cr<l and a < s.

In the following we do not intend to be optimal.

1.2.5. Cohomological équations. Here we présent three dérivation operators and see how to solve the three associated cohomological équations;

we will encounter équations of this type when trying to straighten the tangent and normal dynamics to the torus.

We explicit here the three conditions on small divisors we need to prove our lemmata, which ail follow from (1.5).

(1.10) \k

(1.11) | ik a + cij | > Vfc e Zn \ {0} 7 (i+i*i)'
(1.12) \ih a + l a\ > 7 Vk e Z ,j = l,...,n, V(/c,/)

x Zn n {0}, = 2, (i + i*d

for a e and a = (ui,-"Wn) being the vector of eigenvalues of a matrix A c Matn(R).

Let us consider a constant vector field a = (ai, •••, an) on T", identified with a vector a e Mn and the Lie dérivative operator associated to it The case where A is a diagonal matrix can be recovered from the scalar one just by noticing that to g{6) = (g1 ( 9), corresponda a preimage

f(6) = (J1 (0), •••, fn{9
)) whose components read like in the scalar case.

When A is diagonalizable, let P € GLn(M) such that PAP~l is diagonal.

Considering f'-a + A-f = g, and left multiplying both sides by P, we get /' Q + PAP^1/ = g, where we hâve set g = Pg and / = P f. This équation has a unique solution with the wanted estimâtes. We just need to put / = P~l f. 

f 0 (ai-a2)F21 (ai-a3)F£ ••• (ai-an)F/ x lgj (a2 ~ai)Fi 0 (a2-a3)F32 ••• (,a2-an)F2 {(an-ai)F? (an -a2)F2n ••• ••• 0 }
where we called F-the element corresponding to the z-th line and j-th column of the matrix F(6). Using components notation, the matrix reads and shows ail zéros along the diagonal. Adding it now up with the matrix By conditions (1.10)-(1.12), via the same kind of calculations we did in the previous lemmata, we get the wanted estimate.

Eventually, to recover the general case, we consider the transition matrix F e GLn(R) and the équation

LQ(FFF-1) + P[A, F]F-1 = PGP"1,
and observe that we can see P[A, F]P 1 as

F[A,F]F-1 = PAP~lPFP~l -PFP~lPAP~l = [FAEP-1,FFF-1].
Letting F = FFF-1 and G = FGF-1, F satisfies the wanted estimâtes, and

G = P~1GP.
We address the reader looking for optimal estimâtes to the paper of Rüssmann [Rüs75].

1. THE NORMAL FORM OF MOSER 1.3. Estimâtes on f>'~1 and <f>" v being given, find g, u and A such that the following holds

(1.20) g*u + A = v.
The aim of this and the following sections is to prove the following theorem, from which Moser's theorem 1.2 follows.

Let us fix u°e Us(a,A) and note Vf+a = [v e V : \v -w°| < a) the bail of radius a centered at u°.

Theorem 1.3. The operator <fi is a local diffeomorphism in the sens that for every s < s + a < 1 there exist e > 0 and a unique C°°-map if

^: V£s+a ->ÇS* Us(a, A) x A such that (f) o ip -id.
To shorten notations we sometimes call xq = (id,u°,0).

In order to solve locally 4>(x) -y, we use the remarkable idea of Kolmogorov and find the solution by composing infinitely many times the operator

x i-» x + 4(x)(y -4>(x)),
on extensions T™+cr of shrinking width.

To control the convergence of the itérâtes it is necessary that do exist in a whole neighborhood of xq and that <f'~l and <f" satisfy a suitable estimate.

Let us start to check the existence of a right inverse for 4>\g, : TgStÜ x X A -» Vs,s, if g is close to id. We make the following identifications Both sides are supposed to belong to V5jS+cr; in order to solve the équation we pull it back, using the naturality of the Lie bracket with respect to the pull-back operator, thus obtaining the équivalent System in g*Vs+a

(1.24) [u, g*ôg o g-1] + ôu + g*ôA = g*ôv.

To lighten the notation we baptize the new ternis as À := g*ôA, V := g*ôv,

and read

(1.25) [u,g] + Ôu + X = v.
The unknowns are now g, ôu and A; the new infinitésimal vector field of counter ternis A is no more constant in general, on the other hand, we can take advantage of u in its "straight" form.

Let us expand the vector fields along T"+cr x {0}; we obtain u(9,r) = (ci + u\{6) r + 0(r2), A r + U2{0) •r2 + 0(r3))

g(e,r) = (<po(e),Èo(0) + R1(0)-r) \($,r) = (\o(0),Ào(e) + Àl(8)-r)

. *(e, r) = (vo(0) + O(r), Voie) + V, (0) r + 0(r2)).

We are interested in normalizing the dynamics tangentially at the order zéro with respect to r, while up to the first order in the normal direction; we then consider the "mixed jet" :

j°'1v = + Ù(0)-r). Using the expression d [u,g] = (v • a -ui • R0 + 0(i'2)) -+ Q (Rq • cv -A Rq + ( \A: R\ ] + R-y • et + Rq • U\ -'IU2 ' Rq) r + 0(v2)) --;
or and identifying ternis of the sanie order in (1.25), yelds ^See Appendix.
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(1.26) dp' a -u\ Rq = vq -Ào,

(1.27) R'0 • a -A • Ro = Vo -Ào, (1.28) [A, Ài] + Ri • a + Rq • u\ -2U2 • Ro -V\ -Ài,
where the first équation concerns the tangent direction and (1.27)-(1.28) the normal direction. This is a triangular System that, starting from (1.27), we are able to solve; actually these équations are of the saine type as the ones we already solved in Lemmata 1.2.1-1.2.2-1.2.3 (in the sense of their projection on the image of the operator [u,g]).

We remark that since Su -(O(r), 0(r2)), j0,1ôu = 0 and ôu has 110 contribu tion to the previous équations. Once we hâve solved them, we will détermine du identifying the reminders.

Remark 1.2. Every équation contains two unknowns: the components of g and X, and the given v. We start to solve équations modulo X, eventually SX When g -id, F'd --id. Provided that g stays sufficiently close to the identity, say £o-close to the identity in | • |SQ-norm (sq < s < s + cr), F' will be bounded away from 0. Note in particular that -À is affine in AEA, the System to solve being triangular of the form fJn a(g, v) + A(g) -SX = 0, with diagonal close to 1 if the smalleness condition above is assumed, we hâve m s qcx'

for sonie f > 1. We finally hâve

I | Ç5 1 | £ ,
\ê\s-2a -^r^lfli,s+CT'

Remembering the définition of g we hâve Sg = g' g, hence M8-2a <<T~\l+\g-id|s+J--\ôv\giS+(T.

CT

Finally, we see that ôu is actually well defined in U. s-2a and hâve IH5-2" s -7 <j' a

Up to deffiiing cr' = a/3 and s' = s + a, the proposition is proved for ail indices s' and cr' with s' < s' + o'.

Remark 1.3. In order to solve the linearized équation (f'(g,u,X) (6g, Su, S A) = ôv, we pulled it back to live where dynamics is "straight". One may ask if everything would hâve worked the sanie if, instead of differentiating <f(g,u, A)

then passing through pull-back, we had before pulled cj)(g,u, A) back and then differentiate, that is, to show that

®(g,u,X;v) = u + g*(X -v) = 0 1. THE NORMAL FORM OF MOSER
has an invertible differential. The problem is that the operator

r)Çf> r - -(g,u,X\v) • (ôg,ôu,ôA) = [g*(X-v),g' •5g] + g*ôX + ôu d(g,u, A)
is not invertible in a whole neighborhood of (id, u°, 0, u°): if g* (X-v) is just

Liouville or résonant, the operator is not surjective and this compromises to perform repeatedly a Newton-like scheme. This issue was pointed out by

Zehender in [START_REF] Zehnder | Generalized implicit function theorem with applica tions to some small divisor problems[END_REF], in which he shows that invertibility holds in a neighbor hood of = 0 only up to a second order term. Zehnder tackles the problem by constructing an approximate right inverse. The operations of pull-back and differentiate do not commute. Zehnder's proof and our proof correspond to the two possible paths.

1.3.1. Second dérivative.

Lemma 1.3.1 (Bounding f>"). Let 0 be the normal form operator previously defined. Its second dérivative

): ( x Us," x A)®2 -V" satisfies the following estimate \<t>"(g,u,\)(6g,6v,,S\rX3< %r\(&gMM)t", y j (j C" being a constant depending on \g\s+a and Ms+cr.

Proof. For simplicity call x = (g,u,X) and ôx = (6g,6u,6A). Recall the expression of (f'(x) ôx = \g*u, ôg o g-1] + g*ôu + ÔX. Differentiating again

with respect to x yelds -([g*u,ôgo g-1])' = [[g*u,Sg O g-1] +gJu,ôgog~1] -[g*u, ôg' o g~l -ôg~l] -(gju)' = [g*ôu,ôgo g~l] -(ÔX)' = 0; recalling that ôg~l = ~{g'~l • ôg) °g~1, g*4>"(x)ôx®2 = 2[ôu,g\ + [[u,g],g] + [w,g*(ôg' • g'~l ôg)og~1],
where the last terni simplifies in [u,g'~l (ôg' -g~x the wanted bound follows from repeatedly applying Cauchy's inequality, triangular inequality and Lemma D.2.1.

The abstract inverse function theorem

We présent here the inverse function theorem we use to prove theorem The family {Es, |-|s) is of the previous kind.

Consider then operators commuting with inclusions 0 : Bf+a(cr) -* Fs, 0<s<s + a< 1, such that 0(0) = 0.

We then suppose that if x e Bf+a(<j) then 4>'(x) : Es+a -> Fs lias a right inverse <f'~l(x) : Fs+a -» Es (for the particular operators 0 of this work, 0' is both left and right invertible).

0 is supposed to be at least twice différentiable.

Let t := t' + r" and C := C'C".

Theorem 1.4. Under the previous assumptions, assume

(1.29) \r\x)6y\s < -Nae,s+(J (1.30) \<p"(x)Sxe'2\xs < F\sx\2s+cr,Vs,cr:0<s<s + a<l C' and C" depending on |t|s+(j7 t',t" > 1.

T

For any s,<7,7/ with 77 < s and e < r\ 2 (C > 1, a < 3C), 0 has a right inverse 0 : Bg+a(e) B^(r/). In other words, 0 is locally surjective:

Bs+A^)cH^s(v))- Define (1.31) Q : B^+2a(a) x Bf+2a -> Fs, (r,î)^0(î)-0(i)-0'(x)(x-4
the reminder of the Taylor formula. 

Q(x,x) = J (1 -t)(f)"(xt)(x -x)2 dt, hence \Q{x,x)\x s < £ {l-t)\(j)'\xt){x-x)2\x< (! -t)\(f)"(xt)(x -x) ! cn ^/ (i-0-1(£- J 0 cr- dt Xt ?S + |x£ - dt dt s+(T+|a;t-a;|, ,2 -9^2 'X X\s+cr+\x-x\
We are now ready to prove Theorem 1.4. PROOF. Let s,cr, 77, with 7] < s < 1 be fixed positive real numbers. Let also y g B^+a(£), for some e > 0. We define the following map:

f : Bf+(J(cr) -> Es, x^x + (p'~l(x)(y-(f)(x)).
We want to prove that, if e is sufficiently small, there exists a sequence 

Y z2'1 = z + z2 + z4 + ••• < z Y zU -2z, n>0 n>0 lf2<i.
The key point is to choose £ such that FIa:>û Ct -t (or any positive number < 1) and En^ol^n+i -abi|Sn+1 < ?7, in order for the whole sequence A posteriori, the exponential decay we proved makes straightforward the further assumption \xk -aefc_i|s < cr*. to apply lemma 1.4.1.

Concerning the bounds over the constant C, as Y,k \xk+1 ~xk\Sk+1 -7h we see that ail the \xn\Sn are bounded, hence the constants C' and C" depending on them.

Moreover, to hâve ail the Cn > 1, as we previously supposed, it suffices to assume C > a/3.

Remark 1.4. In the case the operator 0 is defined only on polynomially small halls 0 : Bs+a(CO*7*) Fs, C0 > 0, VS, (J the statem,ent and the proof of theorem l.f still hold, provided that g is chosen small enough (g < 2co(a/l2)f suffices).

This will be the case of the operators defined in the next chapter, where I-2.

We want to show the uniqueness and some regularity properties of the right inverse 0 of 0, assuming the additional left invertibility of 0' (which is the case, for the particular operator 0' of interest to us). Let us assume that the family of norrns (|-|s)s>o of the grading (Es)s>0 are log-convex, which is the case for our choice of norrns (see end of Moser's proof). To prove the uniqueness of 0 we are going to assume that <£>' is also left-invertible (remember proposition 1.3.1).

Proposition 1.4.1 (Lipschitz continuity of 0). Let a < s. If y,y € Bg+a{s) with s = 3'4t2'16t^j, the following inequality holds \^{y)-^(y)\s^L\y-y\x,s+aŵ ith L = 2C'lcrT . In particular, 0 being the unique local right inverse of <f>, it is also its unique left inverse.

Proof. In order to get the wanted estimate we introduce an intermediate parameter 0 that will be chosen later, such tat g <f<cr<s<s + a. c2t

To lighten notations let us call 0(0) =: x and ip(ÿ) = x. Let also £ = 2|r02 so that if y,y e B^+(T(e), x,x c Bf+a_^(g), by theorem 1.4, provided that 7/<s + (T-£-to check later. In particular, we assume that any rr, x € Bf+a_ŝ atisfy \x -t|s+(7_^< 2?/. Writing (x -x) = 0/-1(t) (j){x){x -X), Let us define à -(2£ + 2?/)(l + 1/s) and use the interpolation inequality 

and using <f)'(x)(x -x) -<f>(x) -4>{x) -Q(x, x), we get x -x -4>'~l(x)((f)(x) -</>(;r) -Q(x, £)).
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With these new notations we can see A as

A = ^-0/_1(t) -E = (J)'~\x)((f)'(x) •£-£) = (x)£ -0(^+ 0 + 00)) = -4>'~l(x)Q(x,x + £)
Taking norms we hâve lAL * K\ÿ -y\2x,s+â by proposition 1.4.1 and lenima 1.31. for sonie g which goes to zéro when g does, and some constant K > 0 depending on g . Up to substituting g for cf,

we hâve proved the statement.

In addition tp'(y) = 0"1(?/)/ = 0'"1 = 0'"1(0(i/))! the inversion of linear operators between Banach spaces being analytic, the map y ^0/-1('0(ï/)) is continuons.

The proof of theorem 1.3 hence follows from theorem 1.4 and the last regularity results. x -(g^u.X) e Bs(g)(xo) are such that g e Qa : \g -id|s < cr, u € Us(a,A) : \u -7i°|s < g and |A| < g.

-the norms \g*v\s := |u| s play the rôle of the previous modified norrn \y\x s on the Fs -Vs.

-a = 3 Y,n an is the total loss of width of analyticity (we start from a so = s + cr-neighborhood of the phase space Yn xln), hence to make the algorithm work we need that the deformation due by g remains below this value, and that at every step the distance between one gn and the next one gn+\ remains sufhciently small: \gn+\ ~9n\Sn+l < (Jn+1 (this in order for lemina 1.4.1 to apply).

-Actually in proposition 1.3.1 we showed that given 5v the choice of (ôg, ôu, ÔX)

was unique, then cp' is locally surjective and injective (hence is both riglit and left invertible).

-The bounds of (J)'~[ and 4>" are the ones in proposition 1.3.1 and lemrna

1.3.1.
-The last brick it remains to add is the log-convexity of the weighted norm.

Let x e Es, to prove that s log|x|s is convex one can easily show that Normal for ms for some class of dissipât ive Systems

The aim of this chapter is to give a first portrait of Systems with dis sipation in ternis of normal forms. Although the spirit remains the same as in the first chapter (i.e. introducing external parameters to compensate degeneracy and linearize the perturbed dynamics), we show that for some particular class of vector fields (arising from real physical problems) one can take advantage of their structure and reduce the number of counter ternis needed to solve the conjugacy problem.

We think that this introduction of counter ternis -and the issue of their élimi nation, see chapter 3 -clarifies the difficulties which one must overcome when

showing the persistence of quasi-periodic solutions and highlights the rôle of external free parameters (the so called "drift" or "external frequencies" by some authors in the spin-orbit context) in the issue of finding quasi-periodic attractors.

To set notations we présent the Hamiltonian case of Moser's theorem, due to Herman in 1990. We secondly focus on an opportune class of analytic vector fields obtained from the Hamiltonian ones by adding a very particular non hamiltonian linear terni in the actions directions. In this spécial context, we show that we can still consider Hamiltonian transformations, as the prés ence of the dissipative terni does not affect the general Hamiltonian structure of the équations. Eventually, we présent a parametrized class of vector fields and prove a "translated torus" theorem in the sanie spirit as Rüssmann's translated curve theorem [RiisTO]. Two diagrams will summarize the results

given.

In what follows we rely on the formalism developed by Féjoz in his remarkable works [Féj 12], [FéjlO] and [Féj04], in line with the previous chapter. As always the standard identification Rn* = Rn will be used. Fixing a e D7îT c Rn, consider the affine subspace of H, 1Ca = {KeU:K{6,r) = c + a r + 0(r2)}.

)Ca is the set of Hamiltonians K for which Tq is invariant by the flow uh and a-quasi-periodic:

(2.1)

We define K J 8 = ^r(8,r) = a + {r = -^ §(e,r) = 0(r2).

«Ham(a, 0) = {uK e VHam : K e Ka).

Introduce the set of counter ternis AHam = {A € VHam : A ( = (/3,0)} = R".

We define the complex extension of width s of TnxRn as in section 1.2.1, and note 'Hg the space of Hamiltonians defined on this extension. /C" si the affine subspace consisting of those K e Sis of the form K(6,r) = c + a r + 0(r2).

2.1.1.2. Spaces of conjugacies. Let Vs be the space of maps *> = id+üe .*(¥?, 1?), fixing the origin.

We consider the contragredient action of Vs on T", with values in T^: <p(6,r) = (ip(0), tp'~l{6) -r). This is intended to linearize the dynamics on the tori.

Let Bs be the space of exact complex valued 1-forms p on T".

We define ^am = Vs x Bs and identify it with the space of exact symplectomorphisms 1 esHam = {g ïSs 9(8,r) = V'-HO • (r + p(0)},

^For "exact symplectomorphism" we mean a symplectic g such that g* A -À is exact, X(6,r) = Yfj=orjd9j being the fundamental 1-forni of Liouville on Tn x R'1

The form p -dS being exact (S T" C), it doesn't change the cohomology class of the torus.2

The corresponding vector fields g e T\dGHam are of the form g = (0, -r-p' + dS), Se A(T:),p c A( TJ, <Cn).

We hâve the following Theorem 2.1 (Herman). Let a e V1<T and K°e KA. If H e H is close enough to K°, there exists a unique (K, g, /3) e JCa x (yHam x AHam close to (K°,id. 0) such that

H = K o g + (3 r.
Here too, the presence of (3 r breaks the dynamical conjugacy between H and K: the orbits of K e JCa under the action of p, form a subspace of codimension n.

For a proof of this resuit, known also as "twisted conjugacy theorem", see [FéjlO], and [Féj04] for an analogue in the context-of Hamiltonians with both tangent and normal frequencies.

Phrased in ternis of vector fields, the theorem becomes Coherently, the term Aq has 0-average and the dS-équation can readily be solved.

2In this work we indicated dérivations sometimes by " ' ", "d" or "D" to avoid heavy notations.

Hamiltonian + dissipation: "dissipative Herman" theorem

In Celestial Mechanics dynamical problems taking into account dissipa tive effects are not very easy to handle. In the last few years, an attempt to study non conservative planetary Systems has been to consider problems in which the effect of dissipation is known to be very slight or hâve some effect only on a very large time scale, which allows us to approximate them with conservative Systems to which we add some linear friction term.

2.2.1. Spaces of vector fields. Let Hs = ^4(T" ) and V,fam the space of Hamiltonian vector fields corresponding to Hamiltonians H's € TLS. Let now g e R. be a fixed positive constant.

We introduce (yHam © (-77r<9r))ç and the affine subspace WsHam(a, -î|) = {u e (VHam © (~rirdr))s : u(6,r) = (a + O(r), -gr + 0(r2))}, which is nothing but Uj^am(a,-g) = (WHam(a:,0) © (-grdr))s-3

We extended the class of Hamiltonian vector fields by aclding the very particular linear term -gr in the action direction; the class yHam © (-7jrdr) is The tangent space at the identity of t/]Iam, T[dG^am is endowed with the norm \Ù\S -max(|ÿ|s, \p\s).

According to theorem C.l and corollary C.l.l, the operators (2.2) <j > : Ç?:rV2n x -v) x Rn -VsHam, (g, U, fi) ~g,u + 0de, 'HVe recall that the notation rdr is a shortcut for Y] rjdrj commuting with inclusions, are well defined.

We hâve the following THEOREM 2.3 ("Dissipative Herman"). If v e (VHam ® (-grdr))s+cr is sufficiently close to u°e -rf), there exists a unique (g, u, (3) e Q^am x U^am(a,-g) xW, close to (id,n°,0), such that g*u + (3do = v.

The key point relies on the following two technical observations. Lemma 2.2.1. If g e Ç/Ham and v e VHam ® (-77rdr), the vector field g*v is given by

(2.3) where © = M W dR R = -%-r,R, H (©, R) = H O £f H©, i?) -»)(5 o 90(0)).
The fact that 77 € IR. is fundamental to maintain the Hamiltonian struc ture, which would be broken even if g was a diagonal matrix. Geometrically, the action of g 011 H is "twisted" by the dissipation.

PROOF. g(0,r) = (0,i?), that is, e = v>(0)

R= tip'~1(û) (r + dS

We hâve -in the tangent direction Q = tp'(0)-è = dR -The dérivation of R requires a little more attention:

R = ( V"1 (0))'•r • 0 + V'1 (0)-r+ V'1 (6) • D2S{6) • 0 AB C + (t'fi'~\o)Y-dS(0)-è D
where, expanding and composing with g 1 Introducing the niodified Hamiltonian H as in the statement, the transformed System bas the form uH © (-rjRdfi) hence (2.3).

A = (-V'"1 • V' • V_1) °• ( V °^-1(©) -R-dSo ip-\Q)) • -- v Or H B = -V'-1 o ^-1(0) • --t/R + 7/ V/_1 °(©) • dS o ^_1(0) w C= tV,'-1(9)-D2S(9)= y-1o¥r1(e)..D2so¥r1(e)-ô r £> = -(V'_1-V'-VI)°¥''1(©)-<i'S0¥>"1(©)R emark that if #og-^e, r) = y o v_1(e) -R-dSo^_I(e)), we bave dH _ dH ae ~~dë dH </ 1 Oip \Q) ---• f V" °^(e) • ^'-1 o v^C©) • R - °^"H©) • </-1 °^(©ji.
The sanie is true for tbe pull-back of sucb a v:

Lemma 2.2.2. If g £ Ç/Ham and v e VHam © (-77rdr), the vector field g*v = gllv is given by

(2.4) ( « = # \r-- §-
H being H(6,r) = H o g (#,r) + g S (6).

2.2.3. The linearized problem. The main point of the proof of theorem 2.3 is, again, the existence of a right inverse for . We hence présent the corresponding statement and show that except a minor différence, the System to solve is the saine as the 011e in the purely hamiltonian context.

Proposition 2.2.1. There exists £q such that if (g,u,/3) is in çll+fn,£°x WsH+am(a, -7j) x Rn, t.hen for every Sv in (yHam © (-r/rdr)) £/iere exists a unique triplet (Ôg, 5u, 5/3) e T9^Iam x Us(a, -rj) x Mn swc/i that Coherently, the terni Ào lias 0-average and the dS'-equation can readily be solved.

Solutions and inequalities follow readily from lemmata 1.2.1-1.2.2 and Cauchy's inequality.

Remark 2.2. The System above is the one that solves, when g = 0, the infinitésimal problem of the "twisted conjugacy" theorem presented in [FéjlO, §1.1] and sketched in the previous section. Hence, up to the slight différence in the équation determining dS, the proof of theorem 2.3 follows the same steps and diffïculties as in [FéjlO] (application of theorem l.j in the frame of remark 1.4) and would not bring out anything new, so we omit it.

A fîrst portrait

At this point we can give a fîrst diagram that summarizes the résulta obtained up to now and gives a characterization of the considered dissipative Systems in ternis of normal forais. Before proceeding. for the sake of completeness we give an immédiate corollary to Moser's theorem. about general Systems with dissipation.

It turns out that in Astronomy, sonie problems4 admit équations of mo tions that read like Systems in U (a, A) (remember its définition given in (1.7)). In particular, dissipative effects are supposed to contribute with linear friction terni in the. This translates in the presence of the linear terni A • r; in these cases A is supposed to hâve real négative eigenvalues.

In this frame, from the proof of theorem 1.2 and lemma 1.17 in particular, it is immédiate to deduce the normal form for dissipatives Systems like this. If the eigenvalues a* of A are ail distinct and different from 0, then the external parameters are of the form À = (/?, B • r), with B a diagonal matrix as well.

We hâve the following corollary to Moser's theorem Corollary 2.3.1. Let A e Matm(M) be diagonal with a* + aj if i + j.

If v is sufficiently close to u°€ U(a,À), there exists a unique (g,u, A) g G x U(a. A) x A(/3, B r), close to (id, u°, 0), such that A being of the form A = (/3, diag£? • r), B being diagonal.

A fîrst diagram of dissipative Systems

Here is the diagram that summarizes our results, from the most general to the purely Hamiltonian one. In the context of tlie diffeomorpliisms of the cylinder Txl, Rüssmann proved a resnlt that admits among the most important applications in the study of dynamical Systems: the "theorem of the translated curve". We will give an analogue for vector fields of this theorem. But first, we présent it in one of its possible forms (see [START_REF] Yoccoz | Travaux de Herman sur les tores invariants[END_REF] for this formulation).5

Let A := T1 x K and g : (d,r) (@(<9, r), R(9, r)) a diffeomorphism of A isotopic to the identity, meaning 0(0, r) = 9 + f>(6,r), with f e C°°{A).

We say that g is completely intégrable if <^>(d,r) = l(r) and R(9,r) = r are independent of the angles.

Let now L(9:r) = {9 + l(r),r) be a completely intégrable diffeomorphism of A, such that 1(0) = a and l'(0) £ 0. Fixing b e R, let Tb be the translation Tb : (9, r) t-> (9,r + b).

Theorem 2.4 (Rüssmann). If F is a C°°-diffeomorphism of A sufficiently dose to L in the C°°-topology, there exist bp e (R, 0) and xfp e (^(T1), small, such that the graph off>p is an invariant curve of rotation number a of the translated diffeormorphism Tbp o F.

Under the action of F, the graph of is globally translated by 6, along the second coorclinate.

A natural question arises:

Is there a case in which the perturbed vector field is so particular that we can attempt the conjugacy just by adjusting the normal direction by a translation terni b e Kn?

In the next section we show that there is a particular class of vector fields for which we can define a "hybrid normal form"6 that both relies on the peculiar structure of the vector fields involved and a torsion property; this makes unnecessary the introduction of ail the counter ternis a priori needed if we would hâve attacked the problem in the pure spirit of Moser.

A parametrization from Celestial Mecanics. In this section

we consider a very particular family of vector fields. They corne from Hamiltonians with non-degenerate quadratic terni. In order to take advantage of this torsion property (as it is doue in Kolmogorov theorem) and handle the effect that a symplectic transformation lias on the équations (see lemma 2.4.2), we are led to consider a family of Systems parametrized by a trans lation terni in action directions. These vector fields corne from the so-called 5In the appendix, we prove a more general normal form theorem for diffeomorphism in T x IR in analytic class and deduce Rüssmann's one via some additional remarks. The starting context is the one of section 2.2 and notations are the sanie.

We are interested in those K e K,a of the form (2.7) K(0,r) = c + a-r + -Q(0) -r2 + 0(r3),

Q being a non degenerate quadratic form on T" : det (2n)n / Q(Ô) dO ± 0.

There exist so and Eç> such that Vs > so, A'0 e TLS and for ail H e TLS such that IH -K°\ < £q one has

1 is0 det d2H dr2 (M) de (27r)n * 0.
We assume that s > sq and define k.^{k^k^-.\k-k\<e0}.

We hence consider the corresponding set of vector fields may Sound strange at this level. We introduce it in order to fit and treat the équations coming from the astronomical spin-orbit problem (presented in the following) as a direct conséquence of the results given in this section.

Like in the previous section, V". is the space holomorphic invertible maps (p = id+u : T" -» T£, fixing the origin with |u|s < cr, while Zs the space of closed 1-forms p{9) = d.S{9) + £ on T" (which we see as maps T™ -> Cn) such that \p\s := max(l£li \dS\s) < (7, we consider the set Qf'a -Vf x Z°s of those symplectic transformations g = (<£>, p) of the form g(6,r) = (<p(ô), t<p'~1(9) (r + dS(9)+£)).

The corresponding vector fields g e T\^Q^are of the forin g -r • Cp' + dS + é, S € ,A(T?), O R", e _4(T", C").

Concerning the space of constant counter ternis we consider A(0, b) -{ constant vector fields: A = (0,6), b e IRn}.

According to the following lennnata and its corollary and corollary C.l.l, the normal forai operators (commuting with inclusions)

,0 in, 4 -v) x A(0, b) -* (VHara ® {-tyr + r,Rn)dr),,

(2.10) 5 (g,u,\) g*u + b are well defined. The following lemmata motivâtes the choice of the parametrization.

Lemma 2.4.1. If g e and v e VHam © (-TyT'dr), tge push forward g*v is given by

J w dR 1 = -v(R-i) where H (B, R) = Ho g~l -g(S o ^-1(0) + £ • ((p-1(0) -0)).
The proof is the same as for lemma 2. 

= (( V" • v'~l) °</?-1(©)) • 0 • R + V °• R where As -LPS O ^-'(e) v'-1 o ¥>_1 (O) • 0, /-I _ -1, c r) H A = V"(0 • (V_1(0) ('• + ? + d5(0))) • -- 3AE s = V(0 ' (- § §-»/( VTO (r + $ + dS(0)))) = -g(r + f)-gdS(6) -V(0) dH oe c = -D^s(e)-v'-1(e)--|. r) H + §£•[( 'y L + î+ dS(^))+ V'1 W • o25(0],
introducing iï as in the statement and identifying ternis, the lemma follows.

Hence, if we consider Mn 9 C t-0-vH ® (-7jr + r)Qdr, we hâve COROLLARY 2.4.1. The pull back ofv -vH0 (-pr + pf)dr by a symplectic transformation g 6 Qu rends

(2.12)

f = C = C-£>
where H(6, r) = H o g(6, r) + r](S(0) -f ((p(9) -6)).

Proof. The proof follows readily from lemma (2.4.2) as, the only dif férence stays in the terni "B", giving out an additional terni tjtyj'(6) Ç (2.13) <p'-a-Q(0)-(dS + i) = vg,

(2.14) dS' a + g(dS + £) = V^1 + rjô£ -6,

(2.15) -lDff a + tD(Q(6) (dS + £)) = V?,
where b is of the form tipr • ôb = (id+tvr) ôb (remember that <p -id+u). As always we wrote "H" to emphasize the Hamiltonian nature of ternis.

We are now going to repeatedly apply lemmata 1.2.1, 1.2.2 and Cauchy's estimâtes. Furthermore, we do not keep track of constants -just know that they may dépend on \x\s+a -and hence refer to them as C.

-Note that, averaging the second équation on the torus, we can détermine ôb = 7](ôÇ-£), hence solve the average free dS'-a + r/dS = P0H -V ôb.

Denoting Vq -Vq1 -rfv' ôf, the solution can be written as

(2.16) dS(9) = Y, -/°'* eike+ k i k • a + ï) t vi
where M( 9) is the matrix whose (ij) component reads (Y,k k-a+rj elk°)-In particular by \i k a + 771 > |7/|, we hâve rj\M\s < n\v\s+a/cr, which will remain small in ail the itérâtes, not modifying the torsion terni (see below).

The Fourier coefficients smoothly dépend 011 77.

Remark 2.4. The fact that dS has zéro average implies that dS{6) = 0 + Y -eihe.

teo 1 k a + 77

Hence, when passing to norms on the extended phase space, we can bound the divisors uniformly with respect to 77, since \ik-a + g\ > \ik-a\; we just need the standard Diophantine condition (1.4). This will imply that the limit distance |^-77°|s+(T < £ entailed in theorem l.f, will be defined for every rj varying in some interval containing 0 (e would dépend on 77 though 7 of the Diophantine condition, which appears in C' in the bound of 4>'~l ). This remark is fundamental for the results in the last section.

-Call 5o the first part of (2.16), averaging on the torus équation (2.13), and thanks to the torsion hypothèses, we détermine (217) i=-{jèrLQ-{riM+[A)de) 

V = L~1(vo + Q-(dS + i))
we hâve

(2-20) \T\s-a -^2(J2r+2n l^l'ls,a+<r

As ôg = g' g, we hâve the saine sort of estimâtes for the wanted 5g: It just remains to apply theorem 1.4, and complété the proof for the chosen v g (yHam e + ^)ar)5+CT G y = Us>0 Vs.

In particular note that the distance \v -û\s+a, is independent of £2 and that constants C' and C" (appearing in (1.29) and (1.30)) are eventually uniform with respect to £2 over sonie closed subset of Rn, the dependence of Q being smooth ail over the steps. The uniform convergence of the algorithm, then guarantees a C1-dependence on fl of the lirnit solution.

2.4.3. Second portrait. We conclude the chapter with a second diagram of inclusions.

Moser: Ç x U(a, A) x A((3, b + B r) > V -loe. i "à la Rüssmann": x £YHam(o, -g) x A(0, b) VHam © (-gr + ?/R ~loc.
CHAPTER 3

Invariant tori

The introduction of counter ternis in the perturbed-side of the conjngacy équation is an extremely powerful tool. Remember Moser's theorem:

Let a vector field u°eU(a,A) possessing an invariant quasiperiodic torus of characteristic numbers ai,-,an) ai,--,an be given. If a vector field v is sufficiently close to u°, there exists a unique change of coordinates g, u £ U (a, A) and a constant vector field A e A such that g*u = v -A.

(See section 1.2 to recall définitions of these objects.)

On the one side, thanks to the introduction of A, the vector field u°is not supposed to satisfy any torsion property, on the other one tins normal form can be used to deduce the existence of invariant tori, whenever the System disposes of a sufficient number of free parameters -internai or external to it.

In fact, the équation we solved, locally, entails that in the space of analytic vector fields V, the ones conjugated to vector fields having T[J invariant, form a subspace ÇM(a,A) of finite codimension transversal to A (remember that dim A < n + n + n2), hence if the System dépends on a sufficient number of free parameters and A smoothly dépends on them, we can try to tune the parameters so that A = 0. The key point in a more concrète situation lays on understanding which free parameters we actually hâve at our disposai and how we can use them to eliminate the obstructions. The issue of proving the persistence of an invariant torus is reduced to a problem of finite dimension.

As a meaningful example, in the context of Kolmogorov's theorem the actions themselves actually play the rôle of free parameters and one can deduce Kolmogorov from Herman's "twisted conjugacy" resuit (theorem 2.1), by "killing" the (3. For a proof of this resuit and a generalization to lower dimensional tori, see again [FéjlO] and the illuminating article of Sevryuk about the "lack-of-parameters" problem [START_REF] Meyer | The implicit function theorem and analytic differential équations[END_REF].

The aim of this chapter is to show how to deduce the existence of an invariant attractive torus in the spin-orbit problem, through this technique of "élimination of parameters". The iclea will be to exploit in that context the following reasoning. Notations are the ones given in sections 1.2. be the triplet given by the theorem; if fl h» À (fl) is submersive, there exists fï such that \(Ù) = 0. In particular, if N equals the dimension of A, tins point is locally unique. The corresponding g hence conjugates v and u.

The normal form, thus reduces the issue of proving the existence of an in variant torus to the applicability of the standard inverse function theorem in finite dimension.

3.1. First application: Spin-orbit in n d.o.f.

In this section we show how the main resuit of Stefanelli and Locatelli [START_REF] Stefanelli | Kolmogorov's normal form for équations of motion with dissipative effects[END_REF]theorem 3.1] can be proved by applying theorem 2.5 "à la Riissmann"

-which provides the existence of a translated torus -and eliminating the translation function. K°(6, r) = a • r + ^Q{6) r2 + 0(r3).

The vector field v is hence close to the corresponding unperturbed û : û = uh ® (-77(r-Q)dr).

fl g Rn is a vector of free parameters representing sonie "external freciuencies" (we will see in the concrète example of the "spin-orbit problem" the physical meaning of fl). We will note v and u°the part of v and û with fl = 0.

The following theorem holds Theorem 3.1 (Dynamical conjugacy). Let v -uH ® (-7jrdr) with u11 sufficiently close to uK°. There exists a unique fl g Mn close to 0, a unique u e Ulhim(a, -g) and a unique g e Qu such that v = v + gfldr (close to û = u°+ gQdr) is conjugated to u by g: v = g*u.

Proof. Let us write the non perturbed û :

(3-1) û = 6 = a + O(r) f = -gr + gQ + 0(r2).

We remark that gfl is the first terni in the Taylor expansion of the counter terni bdr appearing in the normal form of theorem 2.5, applied to v close to û. In particular û = id* u°+ gÇldr by uniqueness of the normal form and, if = 0, Tq is invariant for (3.1).

Hence consider the family of maps if : (VHam ® (-77(r -Q)),û) -> (Ç/w x U (a, -g) x A(0,6), (id, u°, r/£2)

) v •-> := (f)~l(v) = (g,u,b)
associating to v the unique triplet provided by the translated torus theorem 2.5.

In order to prove that the équation 6 = 0 implicitly defînes £7, it sufhces to show that £2 >->-6(£2) is a local diffeomorphism; since this is an open property with respect to the C^-topology, and v is close to û, it sufhces to show it for û, wliich is immédiate. Remember in particular that 6 = Y,k bbk where Sbk, uniquely determined at each step of the Newton scheme, is of the form ôbk -g(ÔQk -Çk)-Hence 6 = gQ + (perturbations « gQ).

So there exists a unique value of £7, close to 0, such that 6(£2) = 0.

Remark 3.1. £2 is the value that compensâtes the "total translation" of the torus, given by the successive translations provided by the f' s at each step of the Newton algorithm; this can be directly seen by looking at the itérâtes of (given by the pull-back of ôv2 by g\ determined at the previous step) is 7]SÙ = g(Sf\ -6£i) = O1. And so on.

^Because of the form of g and the fact that £ € Rn, the terms ôl; and £ appearing in 5g and g = g'~l 5g are the same.

Spin-Orbit problem of Celestial Mechanics

In this section we présent the spin-orbit problem of Celestial Mechanics, studied by Celletti and Chierchia in [CC09] in ternis of normal forms. In addition to recover the first resuit of [CC09, theorem 1] as a conséquence of theorems 2.5 and 3.1, that the élimination of the obstructing translation parameter "b" provides here a picture of the space of parameters proper to this physical System (see theorem 3.2). Results in this section will be the starting point of a more global study with respect to (dissipation, frequency, perturbation), developed in the next chapter.

We want to study the rotation of a non rigid triaxial body about its spin axis.

Let us consider a planet orbiting about its star, and make the following assumptions:

-The center of mass of the body moves on a given keplerian orbit focused on a massive point S.

-The body is a triaxial ellipsoid whose spin (polar) axes is considered to be perpendicular to the orbit plane.

-The internai structure of the body is non-rigid. We take small dissipative effects into account: some small internai friction affects the rotation of the body, compromising the conservation of some known quantifies (energy, angular momentum...).

-The only dynamical variable we are interested in is the angle 6 formed by the direction of the major équatorial axis with the direction of the semi major axis of the Keplerian ellipse. In other words we just look at the rotation of the satellite around its spin axis.

We say that a satellite is in n : k spin-orbit résonance when it rotâtes n finies around its spin axes while revolving exactly k times about S. There It lias been proven (see [GP66]) that a good model of the motion is the équation The model follows from the symmetries considered above. Concerning the dissipative ternis, an exaustive physical explanation of how they are introduced in that forai can be found in the work of Goldreich and Peale [GP66].

In what we are concerned, we just give -and need -the following indications: anomaly of the satellite, i.e. the portion of area swept by the orbital radius times 2tt

-R 3 7/ > 0 is the fixed "dissipation constant", which may dépend on the internai rigidity constant of the body, the eccentricity, Love numbers...

There is a real "conflict" about which ternis and in which way this constant dépends on; of course every body described by this équation lias its proper internai structure (number of layers, océans...) and making a more faithful model is very complicated.

-s > 0 measures the size of the perturbation, indeed the oblateness of the satellite: when calculating the potential exercised by the satellite, if the two équatorial axes are not of the sanie length a coupling between r and 6 appears and the so called "tidal potential" makes its entrance in addition to the Keplerian one.

-v e IR is a free parameter, representing a frequency proper to the System.

We will see its physical meaning in a moment.

We suppose that the potential function is real analytic in ail its variables. Now, we can distinguish two particular situations:

-e = 0 and 7/ ± 0:

introducing the vector field associated witli (3.2):

(3.2) 6 +v(@ -v)+ edgf(6, = 0.

The conservative part of the équation is obtained by writing 7/ = 0:

6 + edgf(0,t) = 0.

(6>, t) e T2; in the physical problem the time variable t represents the mean The unique invariant curve is r = 0 and its frequency is v. On the other hand, the general solution of 6 + y (9 -v) is given by 8(t) = vt + 6°--e~vt),

>1

showing that the rotation tends asymptotically to a v-quasi-periodic behavior. Here the meaning of v is revealed: v is the frequency of rotation to which the satellite tends because of the dissipation, if no "oblate-shape effects" are présent.

-e * 0 and y = 0:

we are in the conservative régime, and the KAM theory applies: fixing sonie a diophantine, if the perturbation is small enough and the associ- As we haven't perturbed yet, the terni 77(1/ -a) plays the rôle of the counter terni: we hâve bo = y{v -a), which we can eliminate only by u = a.

This isn't surprising: with no perturbation, restricting to r = 0, there is a quasi-periodic curve of frequency 6 = v.

The main question is: fixing a Diophantine does there exist a value of the proper rotation frequency u such that the perturbed System possesses an Q-quasi-periodic invariant attractive torus?

3.2.1. Extending the phase space. I11 order to apply our general scheme to the non autonomous perturbation of (3.4), as usual we extend the phase space by introducing the time (or its translates) as a variable. The phase space becomes T2 x M2 with variable 62 corresponding to time and r2 its conjugated.

Hence consider the family of vector fields (parametrized by Q e IR) v = vn ® (-7]r + 7jÇ})dr, where D = (v -a, 0) and uH corresponds to

H(6,r) = a-ri + r2 + -r2 +ef(6i,62). 0\ -a + ri $2 = 1 (3-5) v= / 9/ n = -ï/(ri -(v-a))-e%fc . r2 = -r)r2-e §fc.
The following objects are essentially the ones introduced in section 2.4, taking into account the introduction of the time-variable 62 = t and its conjugated 7*2 • -let ÿ, be space of real analytic Hamiltonians defined in a neighborhood of To = T2x{0} such that for H eÜ, dr2H = 1. For these Hamiltonians the frequency $2 = 1 (corresponding to time) is fixed.

-Let JC = Hn JC and JCa the affine subspace of Ü defined by K.= ^KejC:K(6,r) = c + â-r + ^Q(O) r2 + 0(r3), â = (a,l)j, c g I and fj2 Qn(0) d9 ± 0. Hamiltonian vector fields corresponding to sonie K e JCa are such that T2 x {0} is an â-quasi-periodic invariant torus.

_ yHam ^ie Space 0f Hamitonian vector fields corresponding to H's in % -Z^Ham(â,0) as its affine subspace consisting of Hamiltonian vector fields corresponding to K's in JCa.

- It is a well known fact that these transformations keep H e Ü in its particular forai: the "new action" introduced will not affect the dynamics of the System.

The corresponding g e T^Ç are g -(c^, t(p' • r + dS + £) with dp -(t^i,0) and i = (£i,0)

-À={A: A(«,r) = ^}iE -The vector Q e R2 appearing in the extension is of the forai O = (z/-a, 0).

-As shown in section 1.2.1, we complexify domains and targets and endow spaces with the Fourier's weighted norm.

-By restriction, the normal forai operator 4>: Osll/2n x -77) x A ^(VHam © (-77r + yR)dr)s, (.g, u, A) *-» g*u + bdri, and the corresponding è\g, : üSiâ, -i))«V ( VHam ® (~Vr + are now defined.

3.2.2. A curve of invariant tori. We hâve the following Theorem 3.2 (A curve of normally hyperbolic tori). Fixing a Diophantine and e sufficiently small, there exists a unique analytic curve Ca, in the plane (rj,v) of the forrn v = a + 0(e2), along which the counter term b( v, a, ?/, s) "à la Rüssmann " vanishes, so that the perturbed System possesses an invariant torus carrying quasi-periodic motion of frequency a. This torus is attractive (resp. répulsive) if r) > 0 (resp. g < 0).

The proof can be easily recovered from the previous results. For the sake of completeness we check the main steps.

COROLLARY 3.2.1 (of theorem 2.5, Normal form for time-dependent per turbations). The operator

4> Ô'tT12" x K«"(a,-V) x À -» (VHam 0 (-r/r + is a local diffeomorphism.
PROOF. The proof is recovered from the one of theorem 2.5; taking into account that the perturbation belongs to the particular class TL.

Lemma 3.2.1 (Inversion of 0'). If (g,u, A) e Qs+a ^2n x -g) x À7 for every ôv € (VHam © (-gr + gM.dri )) s+o. there exists a unique triplet (ôg,6u,6\) tTgOf x W 77) x A such that 4>(g,u,X){5g,5u,5 A) = ôv; corresponds to the direction of 9 and the second twos to the zéro order terni in r in the normal direction.

The tangential équation relative to the time component (that we omitted above) is easily determined: computation gives v2,0 = 0, because of ÔvÔq.2 = 0 and the form of g'~l, and 02 = 0, as well as Q(9) dS d$2 = 0.

Equations relative to the linear terni, follow from the Hamiltonian character.

-First, détermine ôb = r)(ôQ -£1), and solve the average free équations

(3.8)-(3.9): dSi = (La +T,)-1(V&-àhV1Sb), dS-2 = {La + r})~l(Vÿa-dg2v1Sb).

As before, write dS\ = Sq(9) + ijM(9)Ç.

-Second, the average of équation (3.7) détermines è = -(--fT2Qn(o)(id+vM(e))de^-fj^o + Qn(e)so(0)de, hence we solve it and find èi = L-sl(v«1+Qu(e)-( ds+i1)).

The same kind of estimâtes as in lemma 2.4.3 hold, hence the required bound.

Lemma 3.2.2. There exists a constant C", depending on |#|s+cr such that in a neighborhood of (id,u°,0) e Qf+a x (â,-ri) x À the bilinear map 4>"(x) satisfies the bound \(f"{x)-6x®2\ <-\8x\]+a.

i/î (J

The proof is straightforward and works as in lemma 1.3.1.

Proof of the theorem. We observe the following facts:

-the existence of this unique local inverse for ff and the bound of cf" allow to apply theorem 2.5 and prove the resuit once we guarantee that

\v -u 01 = max(f K d9i dl d9o r2 r )<5 28rC2 '
(here we hâve replaced the constant 77 appearing in the abstract function theorem with in order not to generate confusion with the dissipation terni). This ensures that the inverse mapping theorem can be applied, as well as the regularity propositions (1.4.1 and 1.4.2). Note that the constant C appearing in the bound contains a factor I/72 coming from the diophantine condition (3.6), independent of 77, since the remark 2.4 still holds here.

-For every ?/ e [-770,770], apply theorem 3.1 and find the unique ta such that b(v,ri,a,£) = 0, (as in the previous case b is of the form b = v -a + Efc ^5 smooth with respect to v and 77 and analytic in e).

In particular the value of v that satisfies the équation is of the form v(e, 77) = a + 0(e2).

To see this, just look at the very first step of Newton' scheme

x\ = xo + (p'~l(xo) • (v -0(xo)),
wliere xq = (id, u°, rj(u-a)). In particular u°= (a, 1, -77ri, -17x2), and (v-4>(xo)) = (0,0,e^-,e^-). Developing the System that gives the first terni ôxi = 4>'~l(x0) • (u-0(xo)), due to the particular form of the perturbation and the fact that the torsion is the constant Qu = 1/2, the e-order terni ôf is not needed when solving the first équation meant to straighten the tangent dynamics: The results obtained for the spin-orbit problem. theorem 3.2 and corollary 3.2.2, are intimately related to the very particular nature of the équa tions of motions. On the one hand it opens the way for a global study of the geometry of the space of parameters (7/, u, c), on the other it points out an existing dichotomy between generic dissipative vector fields and the "modihed Hamiltonian" ones considered up to now.

To make it clearer, we recall the cohomological équations in these two contexts and the corresponding spaces of conjugacies. Thanks to the Hamiltonian character of both v and u, g*Sv conserves its

Equations corresponding to

Hamiltonian structure (remember lemma 2.4.1). Only the Rn-term 7undergoes a variation which is added to the modifying part 7/(r+ Q). Only the first two équations need to be solved.

On the other hand, if the perturbation is not Hamiltonian, éclations read

dp' • a -Q(9) • R0 = t)0, Rq -a + 77-Ko = Vo + ï]ÔÙ -b, R'1-a + (Q(9)-R0y = V1-È,
where -v € Vs+a has no more underlying Hamiltonian structure -g € Qs, is a real analytic isomorphism g(9,r) = ((p(9), Ro(9) + R\ • r).

In this case there is 110 reason for Vo and V\ to be of zéro average, and no relation subsists between the first and the third équation. In particular, for the spin-orbit problem in one and a half degree of freedom, using transformations as g(6, r) -((/?($), 62, Ro(@) + Ri(0) r) in T2 x R, the We recall that the équation corresponding to the spin-orbit problem is 0 + 7](6 -v)+ edef(6, t) = 0, 7] e R+ being a fixed constant and / an analytic function 27r-periodic in its arguments, v € R is the external free frequency aforementioned.

We recall that after the convenient introduction of the frequency a the unperturbed équations relative to the spin-orbit are given by When e ^o, the Cantor set of curves mentioned above consists of (C^, a Diophantine }.

At every point of each curve, there exists an invariant attractive/repulsive quasi-periodic torus for the corresponding small perturbation of û.

The aim is to understand what happens for values of parameters (77, v) in the complément of the Cantor set of curves Ca.

Our study starts from the general solution of (4. The period of the perturbation being 27F, we are interested in the rnap (4.2) P(0(O),r(O)) = (9(27r),r(27r)).

The circle r = r(0) is "translated" by the quantity (4.3) t = r(27r) -r(0) = (e~2nn -l)(r(0) -(v -a.))

and "rotated" by the angle

1 _ p~2ttt7 6{2tt) -0(0) = 2'kv + [r(0) -{y -cr)]
In particular, the unique circle which is rotated by an angle 2rra is the one In the appendix, we prove an analogue of Moser's theorem for diffeomorphisms of the annulus and deduce Rüssman's resuit as a conséquence.

Moreover, applying Rüssmann's translated curve theorem to the perturbed flow, it is still possible to show the existence of curves along which the trans lation vanishes, this guaranteeing the existence of invariant quasi-periodic circles for generic analytic perturbations Q of P, for values of r/ sufficiently large with respect to the perturbation. The components of Q(6,<p(6)) are:

1 _ p-2tt7] © o (id, <p)(0) = 0 + 27tv + cp($) + £/(#, f(^))
R o (ld, ip)(9) = ip(6)e~2nri + eg(6,ip( 6)).

We define as usual the "graph transform" T : <p i-> T</? by: (4.5) T<p : 0 P o (id, (/?) o [@ o (id, (/?)]"1(6I).

The graph of Tp is the image by Q of the graph of p: Q(Gvp) = Gr(Tc^).

Since p -0 is the oiily invariant curve of P, we hope to find a unique invari ant curve of Q as the fixed point of T.

The "graph transform" is a standard tool for proving the existence of invari ant normally hyperbolic objects (see [Shu78] for instance).

R FIGURE 1. How the graph transform acts

We look for a class of Lipschitz functions Lipfc such that T defines a contraction of Lipfc in the (7°metric. Although we are interested in small values of k > 0 (s being small, we do not expect the invariant curve to be in a class of functions with big variations) we will need k as well as 77 to be larger than e. We will try to realize this for 1 » ?],k,e, since if 7/ is in the vicinity of 1, the persistence of the invariant circle is very easily shown.

We give some technical lemmata in order to make the proof easier to read.

Since / and g are real analytic on T x [-po,po]5 they are Lipshitz.

First of ail we hâve to guarantee the invertibility of 0 o (id, p) = id +u.

LEMMA 4.1.1. For every positive g, provided e is siLffi,ciently small, 0 o (id,c/?) is invertible.

Proof. If u is a contraction, id+u is invertible with Lip(id+ii)-1 < 1 -[l V ^+ + \0i-e2\.

We want to find conditions on g and k, such that e « \ being fixed, T is well defined in Lipfc; we must satisfy 1 -e~27VV ke-27TT]+ sAg(l + k)< k\l It sufhces to choose k so that (4.6) 1 » 77 » A; with k > -.

V Clearly, the larger g is, the easier it is to realize the inequality.

The following technical lemma will be the key of the final proof. P ROOF. We want to show that T defines a contraction in the space Lipfc:

indeed Lipfc is a closed subspace of the Banach space C°(T, [-po,po]), hence complété. The standard fixed point theorem then applies once we show that F is a contraction.

Let z be a point of T, for every pi,p2 in Lipk we want to bound \Tpx(z) -Vp2(z)\.

The trick is to introduce the following point in T x \-po,po\, • Bi(6) = e~2wrl -Dp(h(Ç + 2tta)) (-^-+ £%(9,p(9))) + (0,7(0)), hence it is of order 1 + O(e),

• Bi(6), for i > 1, is the coefficient of the order-z terni in x from the devel opment of terms as

1 1 - 1,93 f 1 <9ia --Dl'y(h(Ç + 2Tra))-{ £+£ J] -~(0,7(0)) x3)1+£--{9,p{9)), z! 77 7=[ J-op3 i\opl
and has order O(e).

• Ai{9) is the order-z terni coming from We are going to prove: Theorem 4.2. Whenever a is Diophantine, it is possible write Q as the perturbation of a diffeomorphism of the form:

k k (4.9) N (O, R) = (Q + 2na + YâiRi,\(T,£) + Y/3iRi), Z=1 Z=1
âi and pi being constants.

In particular, for values of the parameters belonging to the régions defined by 7] » s and |r| <rf, Q possesses an invariant attractive quasi-periodic circle.

4.2.1. Towards another normal form. The aim of this section and the following 011e is to write Q in a form that entails the existence of an invariant circle and to delimit régions in the space of parameters in which the normal hyperbolicity is still strong enough to guarantee its persistence.

If A * 0, it seems impossible to write Q in a form as gentle as X1hT. The idea is to use ail the strength of the translation A: we perforai coordinates changes that push the dependence 011 the angles as far as possible, let say up to a certain order k, and eventually remark that ail the dependence on the angles of the remaining terms will cancel out with A.

Let us try to be more précisé.

In the following we do an extensive use of the Diophantine property of a, repeatedly applying lemma A. 1.1.

Here we say that a is Diophantine if, for 7, r > 0, (4.10) \ka-l\>-V(fc,I)eN\{0}xZ. \k\ Using the fact that Bi(£) is close to 1, we see that the différence équation The goal is now to détermine sonie région in the space of parameters in which it is still possible to apply the graph transform method to prove the existence of a normally hyperbolic invariant circle close to Rq.

In order to do so, we perforai a last change of variables:

(e,R)» (Q,R-R0 = R). Now centered at Rq, the diffeomorphism Q reads ' R) = (&,&)
©' = © + 2ttq + cnRo + Zti âiÉi + O(e|i?0||.R|) + 0(e|/?|A'+l) + O(e|R0|2) + 0(e|A|) _ R' = (À + ZU ifc Rb'1)R + 0(£|/?o||À|2) + 0(<=|À|2) + O(e|fl0|2) + 0(e|A|). Now R = 0 is the invariant circle of the normal forai, and the ternis O(g|i?o|2) + 0(g|A|) represent perturbations.

To better see, let us write explicitly the order one terni:

k (4.21) R' = (1 -2np + eM\ + 0{ep) + f) i fc R^1) R + O(-) i=2 4.3.

Summary of the results

We conclude by summing iip results presented up to now, which give a first "découpage" of the parameters' space of the spiu-orbit flow in ternis of régions in which the existence of an attractive/repelling invariant circle is guaranteed.

Cantor set of curves. We start by recalling that the existence of the Cantor set of curves Ca in the plane (r, 77) for every fixed value of admissible s is subordinated to the élimination of the translation function of the torus:

the parameter b "à la Rüssmann" of theorem 2.5 in the case of vector fields, or of section (A. 11) in the case of diffeomorphisms. This élimination, which takes place for any tj for vector fields of the spin-orbit, it is not guaranteed for generic diffeomorohisms close to the spin-orbit unperturbed flow as considered in this chapter. Still, in section (A.2.4) of the Appendix, we prove the existence of a Cantor set of curves that exist up to values of 77 greater than a fixed admissible perturbation e. Along the curves the existence of an invariant quasi-periodc Diophantine torus is guaranteed and the further study of "what happens between the curves" provided in this chapter apply.

Graph transforms 1&2. I11 the first section of the current chapter we gave a fist rough région in which the existence of an invariant attrac tive/repelling curve is guaranteed for any rotation 27tq provided that the normal hyperbolicity (given by the dissipation terni e~2irT,r) prevails over the perturbative terms : 77 >> \fë.

In the following, we performed a second localization and used ail the Diophantine properties of the rotation number to apply Rüssmann translated curve theorem and changes of coordinates that allowed to write the perturbed diffeomorphism in a meaningful form: we drew régions in which it is still possible to apply the graph transform technique to prove the existence of an invariant attractive/repelling torus: 77 » e, \t\ < tj2. For generic perturbations the dynamics containecl in this strip is expected to be very rich: in a further study the existence of Birkhoff attractors and Aubry-Mather sets is likely to be proven.

The case of our interest will be when A close to 0, as whenever the normal hyperbolicity gets large with respect to the perturbation, one can prove the actual persistence of Tq via the method of the graph transform. where Aq is close to 0. Hence, defining î> Mx.4(T5+", TcxC) -» A)xA, (A,Q) ~= (G, P, A)

in the neighborhood of (Ao, Pn), by the iniplicit function theorem locally for ail Q there exists a unique A such that B(À,Q) = 0. It remains to define ^(Q)=^(Â,Q).

Whenever the interest lies on the translation of the curve and the dynamics tangential to it, do not care about the "final" A and consider the situation that puts B -0.

In particular the graph of 7( 9 I11 order to get the dynamical conjugacy to the rotation stated by Rüssmann's theorem, it is of fundamental importance for Q to satisfy sonie torsion prop erty, and this is provided by the request that t'(r) > 0 for every r. Once this property is satisfied, in the light of the previous section, in order to prove Rüssmann's theorem is suffices to show that there exists a unique c close to 0 such that P = /3(c) = 0.

We want to show that the map c f3(c) is a local diffeomorphism.

It suffices to show this for the trivial perturbation P®. The Taylor expansion of P® directly gives c -> (3(c) = t(c) + 0(c2), wliich is a local diffeomorphism due to the torsion hypothesis on Q. Hence, the analogous map for Qc, is a small perturbation of the previous one, hence a local diffeomorphism too.

Then there exists a unique c e R such that /3(c) = 0.

In dimension higher than 2, the analogue of Rüssmann's theorem could not be possible: needing the matrix B e Matn(R), n > 2, to solve the third homological équation and disposing of just n characteristic exponents of A that we may vary as we did in the last sections, it is hopeless to kill the whole P. As a conséquence, the obtained surface will undergo more than a simple translation.

Let now U (a, A) be the space of germs of diffeomorphisms along Tq c Tn x Rm of the form P(0, r) = (6 + 27tq + T(r) + 0(r2), (1 + A) r + 0(r2)),

where A e Matm(R) is a diagolanizable matrix of real eigenvalues aj + 0 and T(r) is such that T(0) = 0 and T'(r) is invertible for ail r e Rm.

Let also Ç be the space of germs of real analytic isomorphisms of the form g(9,r) = (</?(6,),Po(0) + AE>i(#),7')i ip being a diffeomorphism of Tn fixing the origin, Rq and Pi an Rm-valued and Matm(R)-valued functions defined on i _ e-2*v Q(0,p) = (0 + 2ira + p + e/((9, p), e~27n/p + r + eg(0, p)).

In this case, nothing ensures that the CQ portrayed in the very particular context of the vector-field of the spin-orbit, exist and reach the 77 = 0 axis (the hamiltonian axes). If these curves are not expected to exist for every value of 77 and e, we can still guarantee their existence provided 77 being not too small.

As a matter of fact, we notice that when 110 perturbation occurs Q reduces b it is évident that = 27777 ^0-Considering the map v Because of the uniform convergence and the smallness condition on e uniform with respect to parameters, the limit solution b keeps its real analytic dependence 011 e, and smoothness with respect to 77, v.

Considering the map IR3 3 (e,!/,77) >-* fr(£,z/,7/) we already know that at Po = (0, o, 7/) we hâve b(po) = 0 and that 1^-, = 2m] > 7777 > 0.

av\e=0

In order to hâve 6 = 0 when £ ± 0, we need to guarantee that its differential with respect to v remains bounded away from 0. But this can be seen as follows.

Let us consider the closed bail of radius sp centered at po g R3 and call it B£q (po). Because of the regularity of 6 with respect to £,v and 77, there exists a positive constant M independent of £,77,7/ such that \\b\\c2 < M. Let For simplicity, let A be already in its diagonal forai and note a the vector of its eigen values, corresponding to vector fields u g U(a, A) and define U= JJ U(oc,A). The conjugacy g giving the translated torus is rightfully called "hypo thetical " because its existence is subordinated to the arithmetic condition that (a, a), a priori unknown, hâve to satisfy. For example, let assume that the unperturbed vector fîeld u°g U(a, A) dépends on some parameter s g R .

In Celestial mechanics this parameter could be the length of the semi-major axes or, in the purely Hamiltonian context of Kolmogorov, the action coordinates. So, in particular the perturbed frequencies smoothly dépend on this parameter. The main point consists in measuring the set of s g R5 for whicli

the Whitney extension of the perturbed frequencies s t-> (as,as), which is close to the unperturbed one s *-> (a®, a®), is Diophantine. Hence if this last satisfy some open property that implies a big measure for the corresponding set of s, the saine will be for the perturbed one. 

  a remarkable normal form for analytic perturbations of vector fields possessing a reducible invariant torus carrying a reducible quasi-periodic Diophantine flow. His interest was on perturbations of Systems of the form 9 influence on their movements and the one of their satellites. To day the influence of dissipation on the rotation of satellites is a main object of interest.

  2We noted dr -(dri, •••, drn ) and omitted the tensor product sign r ® dr INTRODUCTION xv on a sufficient number of free parameters -either internai or external parameters. When A = 0, the image #(Tq) is invariant for v and u détermines the first order dynamics along this torus. The infinité dimensional conjugacy problem is reduced to a finite dimensional one.

[

  CC09, Theorem lj and Stefanelli-Locatelli in [SL12, Theorem 3.1] (who generalize the work of Celletti-Chierchia to any dimension) can be deduced from the translated torus theorem of section 2.4 and the élimination of the translation parameter "6" (see sections 3.1.1 and 3.2.2). The spin-orbit problem. Celletti and Chierchia in [CC09] study the dissipative spin-orbit model given by the following équation of motion in IR: (0.3) 6+ rj(Ô -n) + £def(0,t) = 0, where (6,t) are 27r-periodic variables. This équation describes the dynamics of the rotation about its spin axis (represented by the angular variable 6) of a triaxial body whose center of mass revolves along a given elliptic Keplerian orbit around a fixed massive point. The rotation axis is perpendicular to the orbital plane. The internai structure of the body is non-rigid and contributes with sonie linear friction (represented by 7)6,77 e IR+) under gravitational forces. I11 the case of a triaxial ellipsoid with different équatorial axis, the calculation of the potential gives out a supplementary terni £<%/(#,£) where e = is proportional to the différence of the two smallest axes of inertia. The external parameter u e E is the proper frequency of the attractor of the dynamics when e = 0.
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 112 FIGURE 1. The Cantor set of surfaces: transversely cutting with a plane e -const we obtain the Cantor set of curves like the one described in theorem 3.2

FIGURE 1 .

 1 FIGURE 1. Linear flow on the invariant torus

  b being constant vectors belonging to Rn and B a matrix in Matn(R) satisfying A-b = 0 = [A, B] respectively. These conditions will guarantee that the existence of such parameters is unique.

  1. THE NORMAL FO RM OF MOSERdefined in a neighborhood of Tn x {0}, and three counter terms (3(s), b(s) and B{e), uniquely defined and depending analytically on e,

  the space of germs along Tq of real analytic isomorphisms of the forai g(6,0 = ^(0),Ro(8) + Ih(8)-r), <p being a diffeomorphism of the torus Tn fîxing the origin, and Ro and Ri sonie Rn and Matn(R)-valued functions respectively, defined on the torus T71 as well. Let finally A be the finite-dimensional space of vector fields in Tn x ]Rn of the form \(6,r) = (0,b + B-r), {3, b e Wl and B e Matn(R), satisfying A b = 0 = [A, B].

  consider the corresponding s-neighborhoods defined using ^°°-balls (in the real normal bundle of the torus):T" = id g TJ : max |Im0j| < s} and TJ = {(0,r) g TJ : |(Im#,r)| < s},

Figure 2 .

 2 Figure 2. Deformed complex domain

Finally, consider an

  analytic function F on T"+cr with values in Matn(C). LaF means that we are applying the Lie dérivative oper ator to each component of the matrix F (read ((LaFp*-) if the components notation for matrices results clearer), and [A, F] is the usual commutator. We hâve the following Lemma 1.2.3 (Straighten the first order dynamics). Let a e Rr! and A € Matn R be a diagonalizable matrix satisfying the Diophantine conditions (1.10) and (1.12) respectively. For every G e A{T!?+(7, MatTl(C)); such that Jjn G\ (2n)n = there exists a unique F e A(T", Matn(C)), having zéro average diagonal éléments fJn F--AEÿi = 0, such that the matrix équation LaF + [A,F] = G is satisfîed; moreover the following estimate holds lfU--PL, Cs being a constant depending only on the dimension n and the exponent t. Proof. Let us start with the diagonal case. Let A = diag(ai,•••,an) be diagonal and F e Matn(C) be given, the commutator [A, F] reads

  g* (Sg o g~l) = g'~l • 5g. In addition, we see sections of T(x C") as éléments of A.(T^x Cn, C2n). PROPOSITION 1.3.1. There exists £$ such that if (g,u,\) are in Gs+a x Us+a(a, A)xA thenfor every ôv in V9)S+cr there exists a unique triplet (5g, 5u, 5A) e TgGs x Us x A such that (1.21) (f'(g,u, A) • (5g, ôu,ô\) = ôv\ moreover, we hâve the following estimate (C being a constant that dépends only on \g\s+a and \u Proof. Let a vector fîeld ôv in Vg,s+a be given, we want to invert (f)\g, u, A) • (6g, ôu,6X) = ôv. Calculating1 explicitly the left hand side of the équation, we get (1.23) \g*u, ôg °g~ll\ + g*ôu + ôX = ôv.

BFg

  will be uniquely chosen to kill the component of the right hand side belonging to the kernel of [u,g\ (i.e. the constant part of the given terras in (1.26)-(1.27)-(1.28) belonging to the kernel of A and [A,-] respectively), and solve the cohomological équations. Let us proceed with solving the System. We are going to repeatedly apply lemmata 1.2.1-1.2.2-1.2.3 and Cauchy's inequality. First, consider (1.27). Defining b = fJn Vo -Ào ^)n > we have R0 = (La + A)-\Va-ka-bMatm(R)-valued solution of (1-28) reads fii =(lû + [a,-])-1(U+A1-b), 1.3. ESTIMATES ON <p'~l AND <f>' having defined V\ = V\ -R'0 • u\ + 2U2 • Ro, B being the average to handle the choice of <5A that makes équations average free. Consider the vector field À(d,r) = (j3,b + B -r), which consequently lays in A, and the map

1. 3 .

 3 We follow [Féjl2], Consider two decreasing families of Banach spaces (Es, |-|s) and (Fs, |-| ), 0 < s < 1 carrying increasing norms |-|s and let Bf(a) -{x e E : |t|s < a} be the bail of radius a centered at 0 in Es. We additionally endow (Fs)s>o with sonie deformed norms which dépend on x € Bg (s) such that \y\o,a = \y\s and \y\x,8z\y\x,8+\x-x\a-Example 1. Let Es be the space of functions which are holomorphic over EDS = {z e C : \z\ < s} such that |/|s < +oo with XfnZn :=EIAKn s n

  defined by induction by | x0 = 0 ( xn+]_ = f{xn), converging towards some point x e Bf (77), a preimage of y by <£>. Let us introduce two sequences -a sequence of positive real numbers (crn)n>o such that 3 £n<7n = a be the total width of analyticity we will hâve lost at the end of the algoritlnn, -the decreasing sequence (sn)n>o defined inductively by so = s + a (the starting width of analyticity), sn+1 = sn -3crn. Of course, sn s when n -* +00. Suppose now the existence of xq, ...,xn+\. From xk-xk-\ = (J)^1 (xk_i)(y-(f)(xk-i)) we see that y-<f>(xk) = -Q(xk-i,xk), which permits to write xk+\ -xk = (xk)Q(xk-i,xk), for k = 1 Assuming that \xk -xk-\\Sk < <jk, for k = from the estimate of the right inverse and the previous lemma we get c \xn+\ xn\Sjl+1 ^9 T\xn xn-l\Sn ^^CnCn_yC{ \x\ AEo|Sl j 2(7With Cn = £f-

(

  xk) to exist and converge in Bs(t]) c Es. Hence, using the définition of the CVs and the fact that tir constraint 3 En>o<Jn = <r gives cr^= -(-)fc, which, plugged into (1.33), gives:

  2£7F -x\s+à)\X -X\s -~B\y ~y\x,s+o-We now choose r/ so small to hâve -g < <j -£, which implies \x -x\s+à -^sllffices to hâve 77 < -|£. s~i ^1 -77 < in order to hâve -|;r -x\s+cr < A possible choice is ^and rj = (f^Y * 4^0 hence our choice of e. Proposition 1.4.2 (Smooth différentiation of ip). Let g < s < s + g and £ as in proposition 1.4-1. There exists a constant K such that for every y, ye bs+<j(£) we have Iÿ(ÿ) -${y) -<P'~\ÿ(y))(ÿ -2/)|s ^K(a)\ÿ -y\l,s+a, and the mapip' : B^+a(s) -> L(Fs+a: Es) defined locally by'ip'(y) = <f>'~l(ip(y)) is continuons. In particular has the sanie degree of smoothness of <f>. P ROOF. Let's baptize sonie ternis -A := 'ip(ÿ) -if>(y) -(/W1 (x)(ÿ -y) -ô := y -y, the incrément -£ := "0(2/ + S) -if(y) -H := (f>(x + £) ~(f{x).

1. 5 .

 5 Proof of Moser's theorem Moser's theorem now follows directly from theorem (1.3). In particular -Let v e V = Us Vs close to u°eU = (Js Vs nW(o, A), with say |u°-v\s+a < £ -let Es = Qs x Us(a, A) x A, E = (Es)s>o and the origin xq = (id, t/°, 0), -let Bs(g)(xo) be the bail centered at to of radius g in the s-norm, then

  \x\s < il e [0,1], Vs = (1 -fi)si + Son by Hôlder inequality with conjugates (l-/i) and /x, with the counting measure on Zn, observing that |rr|s coincides with the ^^norm of the sequence (Me1*15)-Hence the existence of (g,u,\) such that g*u + A = v is guaranteed by theorem 1.4, uniqueness and smooth différentiation follow from propositions 1.4.1 and 1.4.2, once |u -u°|s+cr satisfies the required bound.CHAPTER 2

2. 1 .

 1 Hamiltonian Systems: Herman's theorem The Hamiltonian analogue of Moser's theorem was presented by Michael Herman in a colloquium held in Lyon in 1990. It is also an extension of the normal form theorem of Arnold for vector fields on Tn. The context is the following. Vector fields will be defined on Tn x Wn. 2.1.1. Notations &; objects. We adapt previously introduced nota tions to this context.

  2.1.1.1. Spaces of vector fields. Let T-L be the space of germs of real analytic Hamiltonians defined on some neighborhood of Tq = T" x {0} c Tn xln, and VHam the corresponding set of germs along Tq of real analytic Hamiltonian vector fields.

  Theorem 2.2(Herman). If uH is close enough to uK°e WHam(a, 0), there exists a unique (g,uh ,(3) e ^HamxWIIam(a;, 0)xAHarn, close to (id,nAo,0) such that g*uK + (3 de = vH. Remark 2.1. In the Hamiltonian context we can reduce the number of counter terms (AHam = KT) in the Moser normal form of vH = g*uH + À: vH being Hamiltonian, it would read vH(0,r) = (^t+fi,~+b + B-ry, averaging on Tn the second component, we must hâve b -0 = B. Indeed, when writing down the cohomological équations, we don't need any b or B r to control the averages. As a matter of fact, the homological équations corresponding to (1.26)-(1.27)-(1.28) read (p • a -u\ dS = Vq -(3, dS'-a = V0H -Ào, -tDp'-a + tD(u1-dS) = V1h-Ai, where Ào = p'~l Sf3, Âo = -deCp'"1 p(0)) • S/3 and Ài = fX'Q.

  mathematically peculiar: it is invariant under the Hamiltonian transforma tions in Ç/Ham. Physically, the described System undergoes a constant linear friction which is the saine in every directions. For these Systems, Tg is an invariant attractive quasi-periodic torus.2.2.2. Spaces of conjugacies. As well as in the purelyHamiltonian case, we use exact symplectic transformations. If we call the space real holomorphic invertible maps ip -id +v : T" -> T^, fixing the origin with Ms = inax(|i;j| ) c a, l<j<n and Bg the space of exact 1-forms p{6) = dS(6) on T" (S being a map Tg -* C) such that \p\a := max(|Pjls) <cr,

  constant that dépends only on \g\s+a and |u|s+cr.Proof. The proof is recovered from the one of proposition 1.3.1, additionally imposing that the transformation is Hamiltonian and the vector fields belong to this particular class "Hamiltonian + dissipation". The interesting fact relies on the homological équation intended to "relocate" the torus.Calculating cp'(x) -Sx and pulling back, équation (2-u\ dS = v0 -Ào, dS' -a + gdS = V0H -À0, ^Dp' a + tD(Q(0) • dS) = V? -Âj, where Ào = p'~l • 5/3, Ào = -dQ(fp'~x • p(9)) 5/3 and Ài = fÀg.Thanks to lemma 2.2.2, the right hand sides consist of Hamiltonian ternis, normal directions are of 0-average and, according to the symmetry of a Hamiltonian System, just the first two équations are needed to solve the whole Systems, as the third one (corresponding to the coefficient of the linear terni of the r-component) turns out to be the transpose of the 0-derivative of the first.

  6This term has been suggested to me by Bassarn Fayad, during one of a sériés of fruitful discussions in which I told him about this work 2.4. NORMAL FORM "À LA RÜSSMANN" "spin-orbit" problem of Celestial Mechanics, presented in the works[CC09] and[SL 12]. In this case the System dépends on external free parameters QeRn.

  2.1, taking care of the additional terni ro <p~l • £ coming from the non exactness of p(0). Concerning the pull-back intervening in the équation of 4>'~l, we hâve the following Lemma 2.4.2. If g eQu and v e yliam © (-7irdr), the vector field g*' o tp-1 (0) • R -dS o ip~l(B) -f.

2. 4

 4 .2. A translatée! torus theorem. We are about to prove the following Theorem 2.5 (Vector fields "à la Rüssmann"). If v = uH ® (-rjr + î]Q)dr is sufficiently close to û-uK © (-rjr + gQ)dr, for any 77 e[-770,770]> 770 € R+, there exists a unique (g,u,b) ex £YHam(a, -77) x A(0, b), close to (id,wü,0), such that g*u + bdr = v.From the normal form, the image c/(Tq ) is not invariant by v, but trans latée! in the action direction during each infinitésimal time interval.The proof can still be recovered from the inverse function theorem 1.4 (in the frame of remark 1.4) and propositions 1.4.1-1.4.2, once we check the invertibility of the corresponding <f' with a bound 011 it and <f". PROOF. The main part consists in checking the invertibility of <f>'. Let 4> 5sifl2n x MjiTO, -v) x A(0, b) -> (VHam ® (-rjr + nKn)6g, ôu, ôb) » [g*u, ôg o g~l] + gju + 6b elefined 011 the tangent space be given. As in proposition 1.3.1. we pull it back and expancl vector fields along Tq. In this context 9 = 9~l -àg= (<£,-V -r + dS + £), with S : TJ -C, 0 e A(TJ, Cn), f e Rn.

  vector field v g V smoothly dépends on some external parameter fl g ÜA(0) (the unit bail in ~RN) and that, u°g U (a, A) being given, v is sufficiently close to it. Suppose also that estimâtes proven in propositions 1.3.1 and lemma 1.3.1 are uniform with respect to fl. The parametrized version of Moser's theorem follows readily. Calling and x/jq the corresponding parametrizations of the normal form operators, let ipn'-v^(g, u, A)

3. 1

 1 .1. Normal form &: élimination of b. We consider a vector field on Tn x Rn of the form v -uH © (-r](r -fl)<9r) where is a Hamiltonian vector-field whose Hamiltonian H is close to the Hamiltonian in Kolmogorov normal form with non degenerate quadratic part introduced in section 2.4.1:

the

  Newton operator of theorem 1.4 applied to this problem. Using the same notations, we hâve xq = (id, u°, rjQ), 4>{x0) = uü + gQ.dr hence xi=x0 + 0) (v -0(xo)), where (v -<f(x0)) has no more gkldr. Thus the term ôb\ determined by <f>'~l(xçf) • (u-<f(xo)) results in ôb\ --gôf\ (remember System (2.13)-(2.14)-(2.15),). At the second iterate, 662 = -gd^2, since the term we called r/6£2

  are various examples of such a motion in Astronomy, among which the Moon (1:1) or Mercury (3:2).

ated

  Hamiltonian lias non-degenerate quadratic part, there exists a diffeormophism conjugating the perturbed System into the cvquasi-periodic unperturbed one.Let us again observe the unperturbed vector field corresponding to

  The set UHam(â, -77) = WHam(o;,0) © (-777*) J--The frequencies a g R satisfying the following Diophantine condition (3.6) |fcia + fc2|> A, Vfc e Z2 \ {0}. \k\ -The space of real analytic symplectic isomorphisms of T2 x R2 that leave the time variable unchanged ê" = {ff«6":$ = (Ç,o )MS) = (<Pi(e),e2)}.

  depending only on \g\s+a and |u|s+cr. PROOF OF THE lemma. Following the calculations made in the proof of lemma 2.4.3 we need to solve the following homological équations: gdS2 = V2h0 -de.2vlSb, The lower indices indicate the component and the order of the corre sponding term in r whose they are the coefficient.2 Hence, the first one 2We noted with v1 = <pi -id, coming from the first component of y» = ((fi, id).
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 2 FIGURE 1. The Cantor set of surfaces: transversely cutting with a plane s = const we obtain a Cantor set of curves like the one described in theorem 3.2

  Stefanelli-Locatelli or Celletti-Chierchia read ÿ' a -Q(9) (dS + Èf) =Vq, dS' • a + r](dS + Ô = Vq1 + r)5Q -b, -tDip'-a + tD(Q(6)-(dS + Ô) = VlH, the first one corresponding to the constant part with respect to r in the angle direction, the second two to the constant and linear part in the action direction. The objects involved are -the vector field u(9,r) = (a + 0(r),-r]r + 0(r2)), obtained from a non degenerate Hamiltonian in Kolmogorov normal form K(9,r) = c + a r + Q(9) • r2 + 0(r3) by adding the linear terni -gr -the perturbed v e VHam © (-77(7* + 0) J-) along Tq, close to u -the symplectomorphisms g(6, r) = (<p(û), t<p,~1(û)'(r + dS(0) +Ç)) on T^+cr and the corresponding tangent vector g = (ÿ(d), -rÿ'(d) + dS{9) + £) -v = g*Sv, b = g*ôb, ôv and ôb being the variations of v and b e A respectively.

First

  situation. What is so particular about the first situation is the persistence, £ being fixed, of normally hyperbolic quasi-periodic invariant tori for any 77 e[-770,770], 770 c R. The reason lies in the second cohomological équation as pointée! out in remark 2.4: the given terni V = V0H -r}(£ + ÔQ,) -b being of zéro average thanks to the good choice of ôb, the formai solution reads dS(0) = O+Y ,V°'k eik4, k*o ik-a + rj and, since \ik-a + r)\ > \ik-a\, we can bound the divisors uniformly with respect to 77. By the hypothesis of torsion Q{0), the only counter-term needed is b, which is eventually eliminated via theorem 3.1.Second situation. Here, even if the System satisfies some torsion property and one détermines the average of Ro at the first équation in order to solve it, there is no way to avoid both the counter terni b (used as in the previous case to kill the average and allow a bound uniform on 7/) and B, in order to solve équation tliree. Disposing of just n free parameters Oi, •••,S7n, the best possible resuit is to eliminate b, but it is hopeless to get rid of the obstruction represented by B.

  â + (Q-Ro)' = Vi-è, â = (a, 1), ôb, SB e R and, disposing of v e R only, we could try at best to solve 6 = 0.A worst situation could even pop out: if no torsion property is assumed -as in the original form of Moser theorem -we would still hâve two counter-terms (/3 to solve the équation tangentially and B to solve the linear terni) but the second équation would carry a small divisor 7] which we cannot allow to get arbitrarily small. A Diophantine condition like \ik a + r/| > 7/(1 + \k\)~T , for sonie fixed 7, r > 0, would imply that the bound on e of theorem 1once e is fixed, the curves Ca (obtained by eliminating /3 for example) do not reach the axis 77 = 0 in the plane e = const. (we noted C' ail the other ternis appearing in the bound).

Figure 3 .

 3 Figure 3. The two situations: l)blue surfaces v = ^(77,e) corresponding to the case "Hamiltonian + dissipation" of theorern 3.2.2 2) Red surfaces corresponding to the more generic case (no torsion and no Hamiltonian structure): they corre sponds to invariant tori of co-dimension 1 (B * 0).

  v -<a, To = ïx {r = 0} isan invariant quasi-periodic torus for û.

  1) | 6>(t) = 0(O) + i4 + [r(O)-(i/-a)]^~, | r(t) = r(0) + (e_r?i -l)[r(0) -{v -a)]

  we localize our stucly in a neighborhood of the invariant circle of rotation number 27rp and prove that for high enough values of the dissipation 77, this circle persists under the perturbation, no matter what 2irv is. It results a first région where the normal hyperbolicity prevails (see theorem 4.1). Then, adapting Rüssmann's translated curve theorem to this context, we perforai a second localization (section (4.2)), and use ail the strength of the Diophantine properties of a to put the perturbation Q in a meaningful normal forai. It is then possible to identify a new région in which the normal hyperbolicity is strong enough to imply the existence of an invariant normally hyperbolic circle (section 4.2, theorem 4.2).

4. 1 .

 1 Invariant circles of arbitrary rotation number Corollary 3.2.2 guarantees the existence, in a plane e = const. in the space (77,^, e), of a Cantor set of curves Ca := b(v(r}, a,e) = 0

1l-

  Lip u ' Using the définition of u and / being analytic, we hâve |u(9i)-u(e2)| < Lip y (1 ~e V) -e2\ + eAf\(e1, y(fli ) ) -(<WA))I 11 < (27r/c + £-4/(1 + &))|0i -^21, with Ay = sup(|A>/|,|A./|). Since e, k « 1, Lip u <1. Lemma 4.1.2. The functions 0 and R are Lipschitz on T x [-p0,Po]-P ROOF. It easily follows from the expression of Q. Let z\ and z2 in T x [-po,Po]5 the following inequalities hold: \R(zi) -R{z2)| < e 27TT,\zi -z2| + sAg\zi -z2| < (e 2,7111 + eAg)\zi -

  Lemma 4.1.3. The graph transform T is well defmed from Lipfc to itself where k satisfies sIg < k « g « 1. Proof. From the définition of the graph transform and the previous lemmata, we hâve |rv(<?i) -rv(«>2)|< Lipii°('d,y)|ol -e2\ 1 -Lip u ke~2^+eAg(l + k)

  Lemma 4.1.4. Let z = (0,p) be a point in T x [-po,Po\ and let p,k,e satisfy condition (4.6). The following inequality holds for every p <= Lipfc: \R(e,p)-rpoG(e,p)\<c\p-p(e)\, C being a constant smaller than 1. P ROOF. The following chain of inequalities holds: |iî(e.p) -rv °0(fl,p)£^((9)) -0(6>,/9)| < ( -H < (2?r + eAf) \p(0) -p\, hence |i?(0, p) -T<^o 0(0, p)| < [Lip i? + Lip Tp (27t + £./!/) ]|<^(0) -p|, and tins chain of inequalities holds LipAE + LipT(^(27r + £^4/) < Lip .R + k(2ir + eAf) < e~2nn + sAg + k2n + ekAf -1 -2tt77 + 0(p2) + k2ir + eAg + skAf < 1 since (4.6) holds and, consequently, p » e, k and p » ke. We are now ready to state and prove the following Theorem 4.1 (Existence of an invariant circle for Q). If 7] » y/ë, the map Q possesses a unique invariant circle in the vicinity of Cq = Tx {p = 0}.

  p) = r^2(0([0 o (id, Pi)]~l(z), pi([Q °(id, 'P)]-1)^))) = R o (id, p2) o [0 o (id, p^y1 o [0 o (id,£^i)][0 o (id, pi )]-1(z) = Ro(i±p2) o [0 O (id,p2)]~l(z) = Tep2(z).

  annulus. This resuit guarantees, if 27ra is Diophantine, if P has torsion (in this case ---> 2tt, when p -* 0) and if the perturbation is small enough, the existence of an analytic function 7 : T -> R, a diffeomorphism of the torus h close to the identity and A e M. such that -the image of the curve p = 7(0) via Q, is the "translated" curve of équation p = A + 7(6>)-the restriction of Q to Gi'7 is conjugated to the rotation ' • 9 ^9+27ra.As a byproduct, always in the annex, we show that if 77 is larger than Me, M a real positive constant, it is still possible to eliminate the translation A, along sonie curve of parameters.Hence, in the conditions of applicability of Rüssmann's theorem, the local diffeomorphism G:(0,p)~{h-\0)=i,p-'r(6)=x), sends p = 7(#) to x = 0 and is such that G o Q o G-1 has x = 0 as a translated curve on which the dynamics is the rotation of angle 27TO:. We hâve: x) = (Ç + 2Tra + Y,Ai(Oxl, A + YJBi(Ç)xl), i i where

  1 (h(£ + 27ra:)) • ( x + £YJ-]-pxj{9^(9))xjy. z! 77 jtî jldpJ In particular Ai{9) are of order 1 + O(e) for z = 1 and O(e) otherwise.We noted 9 = h(f) and omitted indices indicating the smooth dependence x = 0 invariant, with a translation T\ in the normal di rection. Remark that when e = 0, we hâve h = id, 7 = 0 and A = r, thus Q would read as before the perturbation; in addition even if we don't dispose of the explicit form of the translation fnnction À, the implicit function theorem tells us that À = À(r) = r + O (s).

  (4.11) log£i(£) + logAT(£)-logX(£ + 27ro) = -f log Bi(Ç)d£ Z7T JO then has a unique analytic solution X(£) close to 1-/ logi?i(£)G?£ = l-27r77+27r2?/2+eAfi+Ê:2M2+0(Ê:7/)+0(£3,7/3), 277 Jo AA being constants coming from the average of the order-s* ternis in the Taylor's expansion of log J3i(£)-Just as for (4.11), there is a unique analytic solution smoothly depending on the parameters -through /A -, of the non constant coefficient /A(£) into its average /A-Generalizing, by composing the following changes of variables («,</)-(€,y+ *(0(Oyi) i = 2,-,fc 0\ xW(Ç + 2na) -h X«(£) + /3;(Ç£|iî|*+1) + 0(|A|e), where âq and (3\ are of order 1 + O(e) while cA,/A for i > 1, of order O(e). We thus hâve been able to confine the angle's dependency entirely in the ternis 0(---); in particular the ternis O([A|s) vanish when no translation occurs. 4.2.2. Normally hyperbolic invariant circle, again. Starting from (4.18) we show that Q possesses an invariant normally hyperbolic attractive (resp. répulsive) circle, provided that the parameters (p,i/,£) lie in some delimited régions in the space. Proposition 4.2.1. If p » £ and |r| < p2, the diffeomorphism Q pos sesses an invariant attractive (resp. répulsive) circle. Tliis proposition is an improvement (with respect to the previous resuit, valid for ail kind of frequency) in ternis of the minimal admissible size of p that guarantees a normally hyperbolic régime. The diffeomorphism Q is a perturbation of the normal form k k (4.19) JV(e, -R) = (0 + 2™ + Y, a,R', Ht, £ ft lé), i=1 z=l which possesses an invariant circle R = Rq, solution of R = X + Y,k=i PiR1-Using the implicit function theorem and the structure of the ternis P\ and
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 2 Figure 2. Two situations: for the real spin-orbit flow curves reach the Hamiltonian axes, they stop at the order O(e) otherwise.

Figure 3 .

 3 Figure 3. Graph transform improvement.

A(

  .l. Outline of the proof A.l.l. Spaces of conjugacies. We extend manifolds with complex strip and consider Ts and Ts and endow them with the s-weighted norm I \s ' -We recall that we indicate with A(US, Vs>) the set of holomorphic functions from one complex extension to another and with A(US) the set of those with image in C. -We consider the set Qas of germs of holomorphic diffeomorphisms on Ts such that Yp~id|s < cr as well as l-Ro + (Ri -id) • r\s < cr. -We endow the tangent space at the identity of Q°s with the norm |G|s = max(|Gi|s,|G2|s) -Let Us(a, A) be the subspace of A(TS, Te x C) of those diffeomorphisms P of the form P(6, r) -(6 + 2tra + 0(r), (1 + A) • r + 0(r2)). We will indicate with pi and Pi the coefficients of the order-z terni in r in 6 and r-directions respectively. -If G e Qg and F is a diffeomorphism over G(TS) we define the following deformed norm \r\a,s :=T°G|S-A.1.2. The normal form operator. Thanks to theorem (C.l) and corollary(C.l.l) the following operator (A.6) <t>-Sg+a x C,+<r(a,A) x A -i(Ts,TcxC) (G, P, A) w TA o Go P o G'1 is now well defined.A. 1.3. Différence équation on the torus.Lemma A. 1.1. Let a be Diophantine in the sense of (A.2), g e A(Ts+cr)and let some constants a,b eR\{0} be given. There exist a unique f e A(TS)of zéro average and a unique AeM such that the following is satisfied > f |x|,£ e [-f, f ] and condition (A.2). Hence the lemma.We address the reader interested to optimal estimâtes to [Rüs76].A.1.4. Inversion of <f>' and bound of <f>". Proposition A.1.1. Let 0<sq<s<s + g. There exists eq such that if (G, P, A) e x Us+(T(a, A) x A, for ail ÔQ e A.(Ts+cr,Tc x C), there exists a unique triplet (JG,£P, J max(|<ÎG| , |<5P|" |5A|) < P|<5Q|GjS, G C' being a constant depending on |ae|_s+CT.

  ) := Ro °is translated by b and its dynamics is conjugated to modulo the terni /3: Q(6>,7(6»)) -(P + ip°R2ira o^_1(^),6 + 7(^o i?27rQ A.2.2. A family of translated curves. Theorem A. 1 guarantees that any given diffeomorphism Q, sufhciently close to P°(see équation (A.3)), is of the form Q = T\ o G o P o G~l, with G, P and T\ uniquely determined, implying the existence of a curve whose image by Q is translated. Actually there exists a whole family of translated curves. Indeed, let us consider a parameter c € 5i(0) (the unit bail in R) and the family of diffeomorphisms Qc{0,r) := Q(0. c + r) relative to the given Q. Considering the corresponding normal form operators 0C, the parametrized version of theorem A.l follows readily. Now, if Qc is close enough to P°, proposition A.2.1 asserts the existence of (Gc, Pc, Xc) e Ç x U (q, A) x A2 such that Qc -T\o Gc °Pc 0 Gc 1. Hence we hâve a family of curves parametrized by c = c + /T 7 , Q(0,c + 7(0)) = (P + ¥ °R2iva 0 p~l (6) ,b + c + o R2lTa o (f~1 (6))), where 7 = 7 ~A 7 77 • A.2.3. Torsion property: élimination of (3. As we hâve seen in the last section, under smallness and diophantine conditions on Q, there exists a family of curves, parametrized by c, whose images are translated by b in the r-direction and whose tangential dynamics is conjugated to the rotation ^27tq5 modulo the terni P e R.

  {À = (0, b + B r), b e R777 , B € Matm(R)}, where B e Matm(R) lias m2 -m entries different from 0. Theorem A.3. Let a be Diophantine. If Q is sufficiently close to P°e U(a,Ao), there exists a unique (G, P, À) e Ç x U (a, A) x Am2, close to (id,P°,ü) such that Q = TxoGoPoG~l. The proof follows from the generalization in dimension > 2 (which is not hard to recover) of the previous results. A.2.4. Curves Ca for general perturbations of the unperturbed spin-orbit flow. With no further assumptions on Q, one cannot expect that the translation b vanishes in sonie circumstances. If in the case of vector fields relative to the spin-orbit problem, the Hamiltonian structure of équations and the dependence on the external parameter reR has been the key point to kill the counter terni b and obtain the dynamical conjugacy, in this study we consider generic analytic perturbation of the time 27r-map relative to the unperturbed spin-orbit équations:

  p) = (6 + 2na + p, e~2lxr]p + r), Tl and the circle p -0 undergoes the translation 6 := r = 27777(7/ -a). For the unique choice of the parameter u = et, To is invariant. Riissmann's theorem A.2 applied to the perturbation Q asserts the existence, for ail £ < £0 (^o being the maximal admissible perturbation), a unique curve 7, a diffeomorphism <p and a translation function b sucli that considering

  now consider a bail of radius £ < £q. The mean value theorem applied to the supremum norm. By the triangular inequality we obtain db db in particular fixing p\ = po, a sufficient condition for having | (p2 ) | > 7777 is that 7T7)/AM > e.Hence, for every fixed vaine of e, we can guarantee that the dérivative of b with respect to v is different from 0, for those rj's such that 77 > /ir, this guarantees us to hnd v such that 6(z/, £,7/) = 0 whenever this condition on 7/ is fulfilled.in Taylor at (v, xv). We hâve0(i/ + fi, x"+ll) = cf(v,£") • (fi, xu+^-xu) + O (fi2, \xv+M lience formally defining the dérivative dvxv := -0[71(xi/)-5I/0z/(xz/), we obtain ^~<9^• fi = 0(71 (a;*/) • O (fi2), hence \xv+v -Xv-duxu • /i|s = 0(fi2) by Lipschitz property oî v ^xv, when fi ^0, locally imifornily with respect to u. Hence u >-» xu is C^-Whitney-smooth and the claimed extension exists (see [AR67] for the proof of this extension in the case of interest to us: xf takes values in a Banach space. Note that the extension direction is of finite dimension though.).

  l (Hypothetical translated torus). For any u°g U, locally in its neighborhood there exists a gerrn of C°°map ÿ • (Vs+cr, u°) -* (Us x Gs x R, (u°, id, 0)), v (g, u, À)such that if (a, a) are Diophantine in the sense of (1.5), then v = g*u + b, beRn.

  Proof. Let us introduce <f>v the operator depending on frequencies (ci, a), and define the map : D^t x Vs+a Us(a,A) x Çs x A, f>u(v) := <j>'jl(v) = (g, u, A) locally in the neighborhood of ((a:0,a0),w°), u°e U(a°, A0). Silice <f>u is differentiable, there exists an extension of xj) xjj : R2n x Vs+a -> Us(a, A) x Qs x A. Let us now artificially write vP as vP = u(a, A) + (a0 -a, (A0 -A) • r), for the uniqueness of the normal forai we hâve xjj(u0) = (u, id, À), A = (Aa, AA • r). implicit function theorem (in finite dimension) for ail v sufficiently close to u°there exists unique v = (â,â) such that À(â,A, b) = (0,6)-If remains to define ip(v) = COROLLARY B.OA (Hypothetical conjugacy). If vP = (q°+ O(r), A0-r + 0(r2)) is such that the eigen values of A0 are ail different frorn 0 and pair wise distinct, locally in its neighborhood there exists a germ, of C°°map xjj : (Vs+CT,u°) -> {Us x Qs, (w°,id)), v h* (u,g) such that if {a, a) are Diophantine in the sense of (1.5), then v = g*u.

4> (g.u, X) g*u + \ = v. $(g,u, A;u) = g* {v -A) -u = 0, 6 = a + O(r)r = 0(r2).

THE NORMAL FORM OF MOSER

NORMAL FO RM S FOR SOME CLASS OF DISSIPATIVE SYSTEMS

INVARIANT TORI 

counter terrn b vanishes, guaranteeing the existence of invariant attractive (resp. répulsive) tori carrying an â-quasi-periodic dynamics.

THE PARAMETERS' SPACE

and if we want 1 -2ttt] to dominate, 7/ still lias to satisfy 7/ >> e. Our régions

along which the invariant attractive torus with Diophantine frequency a persists nnder perturbation. We recall that ail along Ca the perturbed vector field v can be written in the form g*u = (a + 0(r),-rjr + 0(r2)), where g is a symplectic diffeomorphism, showing that 77 = 0 is the only value of transition between the attractive and the répulsive régime of the invariant torus. Q(6,p) = (6 + 2ttv + p + ef(9,r),pe 2n71 + sg(9, r)), V f and g being two real analytic functions in their arguments, we show that the normal hyperbolicity of the invariant circle implies its persistence nnder perturbations of size £, provided it is strong enough with respect to e.

Theorem. If 7] » sfe, Q possesses a normally hyperbolic invariant closed curve.

The proof is decomposed into some lemmata: the key point is to look for the invariant curve as the fixed point of a "graph transform" on an opportune functional space; the dissipation makes the graph transform a contraction.

We start considering the compact T x [-p0, Po] centered at p = 0 in T x R and a Lipschitz map <p : T -> [-po,po], 9 ^9), with Lipp> < k. We will call Lip^the set of Lipschitz functions with Lipschitz constant less than or eqnal to k.

Let Gr tp = {((9, <p{9)) c T x [-po, po]} be the graph of p. For convenience, we hâve supposée! that Q is defined everywhere. hence the composition Q(Grp) makes sense.

We note Q(9,r) = (0,R). We endow functional spaces with the sup-norm1 | • |, and define, for 2 e T x I, \z\ := max(|7Ti(z)|, ^2(2)!), where 7Ti and 7T2 are the projections on the first and second coordinate.

*^Here we abandon the weighted Fourier's norm

We hence apply lemma 4.1.4 to ip = <pi at the point (#,p) previously introduced. We hâve |r<pi(z) -T<p2(z

Taking the supremum for ail z and remembering that C < 1, concludes the proof of the theorem.

Second localization

In the last section we proved that if 77 is sufficiently strong, the existence of a unique invariant attractive (resp. répulsive, for négative 77) circle is guaranteed. We now consider the part of the (77, i/)-plane defined by |7/| << 1, in which the graph transform does not work. In the following we show that it is still possible to find a région where 011e can put Q into a suitable normal form and deduce, again, the existence of an attracting (resp. répulsive) invariant circle.

In this section, with the help of Rüssmann's theorem we perform a coordinate change (9,p) i-> (Ç,x) on Q, that allow us to see Q as the composition of a diffeomorphism leaving the circle x = 0 invariant up to a translation in the r-direction.

In section 4.1.1 we hâve localized our study to the circle p = 0; we now want to focus 011 the translated 011e with a given rotation 27tqï.

To do so, note that the translation function r = 2'nr){y -a) defines a family of hyperbolas in the (77,7/)-plane.

In the ternis of (r, 77), P becomes the term foRo is of order 0(er]) + °q^•

We remark in particular tliat each région of this type actually contains the curve Ca along which v = a + 0(e2).

This point being crucial for the following, it calls for an Important comment. Up to now, we hâve made our calculations without making any hypothesis on ef and eg, which led us, following coordinates changes, to the expression in (4.21). In the previous chapter for the spinorbit problem we proved the existence of a Cantor of curves Ca, for which there exists a normally hyperbolic attractive (resp. répulsive, when 77 < 0)

invariant torus provided the perturbation is small enough. In particular, the bound 011 the perturbation was uniform witli respect to 77, meaning that to every fixed value of £0 < £, in the space (e, 77, v) the plane £ = £0 contains the C'as of normally hyperbolic dynamics and that these curves are defined even for I77I small enough, and passing through the 77 = 0 change their dynamical régime. By normal hyperbolicity, we know a priori that in a thin cusp neighborhood along each of these curves a normally hyperbolic invariant circle persists (normally hyperbolicity is a stable property).

The régions we defined above enlarge the known domain of normal hyperbol icity which, up to now, we know to include values of 77 » sfë. Nevertheless, if we hope to draw these régions till 77 = 0, the ternis £lMi constitute an ob struction to the normal hyperbolicity, which would be guaranteed if (1 dominated over the rest.

In addition, not even the first order terni of the time-s flow <f)£ of v = 6 = a + r r = -r)T + 77(1/-a) -£fe(0,t)

hints anything about the nullity of, at least, the first terni eM, once we impose the only exploitable information we hâve: the corresponding flow is conformally symplectic, as the divergence of v is equal to the constant -77.

Hence <Jfv*d6 Adr = e~£T]d6 a dr.

In addition, let us suppose that Q lives in the class of those flows for which e1 Mi -0. Even in this very spécial case, 77 won't be allowed to reach 0; the first terni would be R! = (1 -2tt77 + + °(£7l))R + -, (4.23)

would then stop at a certain point and cannot follow tightly the C'as till the end.

In the région defined by |r| < r/2 and T] » e, Ro is of order 0(t/) + 0(e/r/)

and

having denoted by C the twist ---In particular the terni O(e|i?o|2) is constant and much smaller than s, in the région considered.

Applying the "graph transform" method in the annulus \É\ < 1 centered at R -0, is now an easy matter. The prépondérance of 1 -2ttt] with respect to the reminder's ternis in the régions considered, makes the procedure work and guarantee the existence of an attractive (resp. répulsive) circle in a neighborhood of Rq. normal hyperbolicity domain A normal form theorem for diffeomorphisms in T x M

We are interested in real analytic diffeomorphisms in ïxM that, in the neighborhood of the circle To = T x (r = 0}, can be expressed as

where a e M satisfies the following Diophantine condition for 7, r > 0

and A is a positive or négative real constant, f,g are real analytic functions.

of which Q represents a perturbation.

We call U(a, A) the sets of gérais along To of real analytic diffeomorphism of the form (A.3).

We introduce the set of germs of real analytic transformations: We remark that the term containing T$x is no constant; expanding along r = 0, it reads

The vector field G reads G(9,r) = (<p(9)7Ro(0) + Rm-r).

The problem is now: G, À, P, Q being given, find G, ÔP and À, hence SX and ôg.

We are interested in solving the équation up to the 0-order in r in the 6direction, and up to the fîrst order in r in the action direction; hence we consider the Taylor expansions along To to the needed order.

We remark that since ÔP = (G(r), 0(r2)), it will not intervene in the cohomological équations given out by (A. 10), but will be uniquely determined by identification of the reminders.

Let us proceed to solve the équation (A. 10), which splits into the following three

The first équation is the one straightening the tangential dynamics, while the second and the third are meant to relocate the torus and straighten the normal dynamics.

For the moment we solve the équations "modulo A". According to lemma Up to redefining a' = cr/2 and s' -s + a, we hâve the wanted estimâtes for ail s', a' : s' < s' + a'.

A.1.5. Second dérivative. We consider the bilinear map <p"(x). We hâve Lemma A. 1.2 (Boundness of (f)"). The bilinear map (f)"(x)

4>"(x) ÎÜM) x A)®2 --4(TS, Te X C). 

Once we precompose with G, the estimate follows.

A.1.6. Hypothesis of theorem 1.4 are satisfied; theorem A.l follows.

A.2. The translated curve of Rüssmann

The diffeomorphisms considered by Rüssmann are of this kind in a neighborhood of Tq (A.ll) Q(0,r) = (9 + 2tra + t(r) + f (0, r),(l + A)r + g(9,r)),

where a is Diophantine, t(0) = 0 and t'(r) > 0 for every r. This represents a perturbation of P°(6,r) = (6 + a + t(r), (1 + T)r), for which Tq is invariant and carries a rotation 2ttq.

A. A NORMAL FORM FOR DIFFEOMORPHISMS OF T x R

Theorem A.2 (Rüssmann). Fix a e D1jT and P°(6, r) = (6 + 27ra + t(r) + 0(7-2), (1 + A)?-+ 0(r2)) € U (a, A)

such that £(0) = 0 and t'(r) > 0.

If Q is close enough to P°there exists a unique analytic curve 7 € A(T,IR), close to r = 0, a diffeomorphism of T close to the identity and b e R, close to 0, such that Q(9, 7(0)) = (^0^27ra0^"1(é,),^+ 7(^0^27ra0^"1(^)))-

Actually in its original version the theorem is stated for A = 0; to consider the more general case with A close to 0, does not bring any further difficnlties.

To deduce Rüssmann's theorem from theorem A.l we need to get rid of the counter-terms (5 and B. In this purpose it is convenient to extend the inverse of the normal forai operator 0 to non Diophantines frequencies (a, A). The constructed map 0, inverse of 0 : (g, u, À) g*u + A, is actually Cl in the sense of Whitney, with respect to parameters (a, A), and thus admits an extension.

Let us call v -(aq, an, ai, an) the vector of characteristic frequen cies, and suppose that v e B2'1, the unit bail in M2n.

Let us indicate with <f>v the normal form operator as now we want frequencies to vary. The corresponding inverse is analogously indicated with f>v.

Let assume that 0[, is C1 with respect to v and that estimâtes on cf'f1 and 0" are uniform with respect to v over some closed subset D of R2n. We présent here a classical resuit on the inversion of holorphisms on the complex torus T, that intervened to guarantee the well définition of normal form operators <f>. Moreover, we give the explicit différentiation of some im portant rnaps that we considered; we stress the fact that since the beginning we endowed every space considered with analytic norms and saw it as Banach.

C.l. Inversion of a holomorphism of T™

As in the ail manuscript the complex extensions of manifolds are defined at the help of the ^°°-norm, TÏ = (^Tg:|^| := max |Im| < si.

I 1<j<n J

Let also define R™ := Rn x (-s, s) and consider the universal covering of T", Theorem C.l. Let v : T" Cn be a vector field such that |n|s < cr/ro.

The map id +v : Trf_(J -> R" induces a m,ap p -id +v : -> T'1 which is a biholomorphism and there is a unique biholomorphism ip : T"_2cr ^s-a such that p o dj = idxn s-'lcr

In particular the following hold:

W -idls-2cr ^Ma-* and, if |n|s < cr/2n b'-idU"£fHs-PROOF. Let p := id +v o p : R" -> R"+cr be the lift of p to R".

Let's start proving the injectivity and surjectivity of p] the sanie properties for p descend from these.

-p is injective as a map from R^CT -» R".

Let p(x) = p(x'), from the définition of p we hâve hence x' = x.

-p : R"_2(T c p(RJ_J is surjective.

Define, for every y the map / :

-> x m-y -V o pO), which is a contraction (see the last but one inequality of the previous step).

Hence there exists a unique fixecl point such that p(x) = x + v o p(x) = y.

For every k € 27rZn, the function R" -> R", x •-> p(x + k) -p(x) is continuons and 27rZn-valued. In particular there exists A e GLn(Z) such that p(x + k) = p(x) + Ak.

-p : T^_(j -» Tg is injective. -That p : -> TJ_2o. c ipÇVf-p) is surjective follows from the one of p.

-Estimate for ip : T"_2cr -> T"_a the inverse of p. -if g 6 Cf/2", then g'1 € *4(TJ,T?+(T).

As a conséquence, the operators (p in (1.9), (2.2) and (2.10) are well defined.

P ROOF. We recall the form of g e Gs+a:

g(0,r) = (p(Ô),Ro(9) + R1(e)-r).

g 1 reads 9 l(0,r) = {(p \9),Rl1op l( 6)-(r-R0op(6))). Concerning those g e Gs+a ^ln we recall that g~l is given by g~\e,r) = (y?,-1(0), tip' oip-\6) -r -p O Lp~l( 6))- where we bound |fc|e"lfclcr with the maximum attained by xe~xa, x > 0, in 1/cr, that is 1/ecr. For the example we stressed the index "s" also in the notation of the Fourier's coefficient \hk\s in order to stress where the supremum was taken.

Therefore, consider / and g in their