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Abstract

Galaxies lie in a large panel of environments from isolated galaxies, to pairs, groups or clusters. The

environment is expected to bave an impact on galaxy properties such as morphology, stellar formation,

metallicity... Some studies already tried to quantify the importance of the global environment (linked
to the dark matter halo mass) and the local environment (galaxy position in the group). These
studies hâve shown that the environment plays a minor rôle except for low mass galaxies. But the

quantification of the environment is difficult since detected groups in redshift space (the only one
accessible by the observer) are very elongated, making it difficult to extract spherical groups in real
space. If these quantification errors are too important, environment effects will not be measured

correct ly.

Moreover, other physical processes are at work inside groups wliose relative rôles are not well

understood. For example, major or minor mergers (rich or poor in gas, between satellite galaxies, or
after the decay of the orbit of a satellite onto the central galaxy by dynamical friction), rapid flybys
harassing galaxies, stripping of the interstellar gas by ram pressure or of the gaseous réservoir by

tidal forces. Although semi-analytical codes of galaxy formation from initial conditions of a ACDM

Universe fit well a large set of observed relations, tliere are still some discrepancies that might be

possibly explained by a lack of correct physical recipes of environmental effects in these models.

Our goal with this thesis is to hâve a detailed compréhension of the rôle of environment on galaxy

properties, and finally détermine tlie major physical processes in the modulation of these properties

with both local and global environment. For this, an optimal extraction of galaxy groups from the

projected phase space is necessary.

We performed a study and re-implementation of some existing group finder to estimate their

strengths and w'eaknesses in the détection of galaxy groups.

A galaxy mock catalogue in redshift space, designed to mimic the primary spectroscopic sample of

the SDSS survey was created to apply several galaxy group algorithms. An advantage is the already

known membership that we can compare to galaxy groups extracted from redshift space. Semi-

analytical codes of galaxy formation give us such galaxy catalogs we transformed to be cohérent with
the vision of an observer.

With these mock catalogues, we tested the very popular Friends-of-Friends grouping algorithm.

We determined the optimal linking lengtlis against the set of tests and optimal criterion we developed

to judge the efficiency of an algorithm. It appears that this choice of linking lengtlis dépends on the

scientific goal to do with the group catalogue.

A large part of the thesis consisted on the realization of a new grouping algorithm called MAGGIE

(Models and Algorithm for Galaxy Groups, Interlopers and Environment), Bayesian and probabilistic.
MAGGIE uses our priors acquired with analysis of cosmological simulations for large scale structure

and of observations obtained from large galaxy surveys, to better constrain the sélection of galaxy

groups from redshift space. Comparison of MAGGIE with the FoF algorithm shows that MAGGIE is

superior in avoiding the fragmentation of real space groups, the membership sélection (completeness,
reliability) and in the group properties (group mass, luminosity). The better performance of MAGGIE
cornes from its probabilistic nature, the use of astrophysical and cosmological priors, and the use of

halo abundance matching technique linking central galaxy distributions (stellar mass or luminosity)
to physical properties of dark matter halos.

The future application of MAGGIE on galaxy surveys such as the Sloan Digital Sky Survey or the

deeper Galaxy and Mass Assembly, taking care of their own observational problems, should improve

our understanding of the modulation of galaxy properties with their global and local environments

and physical processes operating inside galaxy groups.
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Résumé

Les galaxies reposent dans un large éventail d’environnements allant des galaxies isolées, aux

paires, aux groupes ou amas. Il est donc légitime de penser que cet environnement peut influer sur

les différentes propriétés des galaxies comme la morphologie, la formation stellaire, la métallicité,

etc. Des études ont déjà tenté de quantifier les rôles de l’environnement global (lié à la masse du
halo de matière noire du groupe) et de l’environnement local (la position de la galaxie dans le
groupe). Elles ont montré que l’environnement joue un rôle mineur dans leurs propriétés excepté

pour les galaxies de faible masse. Mais la quantification de l’environnement est difficile car les

groupes détectés dans l’espace des redshifts (seul accessible à l’observateur) sont très allongés et
ne facilitent donc pas la recherche de l’appartenance d’une galaxie à un groupe donné. Si ces

erreurs de quantification sont trop importantes, les effets de l’environnement seront alors mal
mesurés.

De plus, d’autres processus physiques sont à l’œuvre dans les groupes dont l’importance n’est

pas tout à fait comprise. Par exemple les fusions majeures ou mineures des galaxies (riches ou
pauvres en gaz, entre galaxies non centrales, ou entre une centrale et une non centrale par "déclin"

de son orbite après friction dynamique), les survols rapides qui arrachent du gaz aux galaxies,
le dépouillement du gaz interstellaire par la pression du gaz intra-groupe ou intra-amas, ou de

celui du réservoir de gaz qui forme les disques des galaxies par des effets de marées. Bien que les

modèles semi-analytiques de formation des galaxies à partir de conditions initiales d’un Univers

ACDM représentent assez bien les observations faîtes sur les galaxies, il y a toujours des écarts

qui peuvent être sûrement liés à un manque de prise en compte des effets d’environnement dans
ces modèles.

On vise donc avec cette thèse à avoir une compréhension détaillée du rôle de l’environnement

sur les propriétés des galaxies et finalement connaître le ou les processus physiques qui ont une

importance prépondérante dans la modulation de ces propriétés avec l’environnement local et

global. Pour cela, il est nécessaire de réaliser une extraction optimale des groupes de galaxies

depuis l’espace des phases projeté.

Une étude et ré-implémentation de certains algorithmes de regroupement de galaxies déjà

existants a été réalisée pour déterminer leur efficacité et leurs faiblesses dans la détection des

groupes de galaxies.

Un catalogue de galaxies test (mock catalogue) a été réalisé pour appliquer nos divers al
gorithmes de regroupement sur un échantillon de galaxies certes fictif, mais avec des propriétés

physiques semblables (fonction de luminosité, profil de densité des galaxies dans les groupes, biais

liés au décalage vers le rouge comme indicateur de distance,...). L’avantage est que l’appartenance
d’une galaxie à un groupe donné est connue à l’avance et que l’on peut donc comparer les sélections

faîtes par les algorithmes à cette "réalité". Les sorties de codes semi-analytiques de formation de

galaxies fournissent de tels catalogues que nous avons transformés pour convenir au point de vue
d’un observateur.



Avec des mocks catalogues à notre disposition, nous avons pu tester et comparer divers algo

rithmes de regroupement à un même échantillon de galaxies et avoir une idée de leurs performances

de manière quantitative et non seulement qualitative. Nous nous sommes intéressés au plus pop

ulaire algorithme de regroupement qu’est la méthode de la percolation ou algorithme amis d’amis

(Friends-of-Friends, FoF ci-après). Nous avons déterminé le jeu de paramètres de liens optimums

pour la sélection de groupes de galaxies avec un ensemble de tests et de critères optimaux, que

nous avons développé, pour juger de l’efficacité d’un algorithme de groupes de galaxies. Il est

également apparu que le choix des paramètres de liens à considérer pour un FoF dépend beaucoup

de la science que l’on souhaite réaliser avec notre catalogue de groupes.

Une partie de la thèse a consisté à réaliser un tout nouvel algorithme de regroupement nommé

MAGGIE (Models and Algorithm for Galaxy Groups, Interlopers and Environment), bayésien
et probabiliste. MAGGIE utilise les a priori acquis à l’aide des analyses des simulations cos

mologiques sur les structures à grandes échelles et les observations obtenues à partir des larges sur-

veys sur les galaxies pour mieux contraindre la sélection des groupes de galaxies à partir de l’espace

des phases projeté (biaisé par la distorsion des groupes liée au décalage vers le rouge). Les résul
tats de la comparaison de MAGGIE avec l’algorithme de FoF ont montré que, bien qu’équivalent

dans la capacité à retrouver les galaxies membres des groupes (complétude et fiabilité), MAGGIE
est bien meilleur dans l’estimation des propriétés des groupes (masses stellaires, luminosités...)
grâce à la probabilité d’appartenance qui réduit l’importance des galaxies non réellement membres

du groupe (interlopers). MAGGIE réduit significativement la fraction de fausses détections de

groupes de galaxies, c’est-à-dire de groupes sporadiques, issus de la fragmentation par les algo

rithmes d’un groupe réel en plusieurs sous-groupes. L’estimation de l’environnement global est

également améliorée grâce à la méthode de correspondance d’abondance (abundance matching)
qui compare et lie les distributions des masses stellaires des galaxies centrales des groupes aux

propriétés physiques des halos de matière noire pour une meilleure précision dans l’estimation de

la masse virielle des groupes de galaxies.

Une future application de MAGGIE sur des surveys de galaxies tels que le Sloan Digital
Sky Survey ou le Galaxy and Mass Assembly, en tenant compte de tous les problèmes liés aux

observations de chacun d’eux, devrait nous permettre par la suite d’améliorer notre compréhension

des processus physiques dans les groupes de galaxies.
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Since the discovery of galaxies as distant objects from the Milky Way (Hubble, 1929), much
work has been done to understand how they formed and what drives their observable properties

(morphologies, color... ) at our epoch and earlier in their évolution (Benson, 2010; Silk et al.,
2013; Silk & Mainon, 2012). The combination of the structure formation of cold dark matter
(CDM) particles and their history (Zentner, 2007), with the baryon physics inside dark matter

halos (Kravtsov & Borgani, 2012) has been quite successful in reproducing and explaining the
observations from galaxy surveys. But there are still some lacks in the galaxy formation scénario,

which are headaches to solve for theorists (Weinmann et al., 2012). A frequent solution to résolve
this puzzle is to introduce different recipes in galaxy formation simulations to account for the

missing physics in the scénario. Such an example (and the most known problem of ACDM) is
the overabundance of dwarf galaxies predicted by semi-analytical models (SAM) in simulations of
galaxy formation. Reducing their number implies the éjection excessive baryons through several

physical processes (feedback, e.g. Brooks et al. (2013), see Silk & Mamon (2012) for a review)
in order to make the dwarfs not resolvable. Such typical processes are, for example, supernovae

winds (Dekel & Silk, 1986; Hirschmann et al., 2013) or ram pressure stripping (Gunn & Gott,

1972). But introducing them leads to a more and more complex scénario, and doesn’t allow to

clearly distinguish the effect of each physical process on the galaxy évolution.

The formation and évolution of galaxies is expected to be tightly correlated to the galaxy

environment. Indeed, galaxies are gregarious, living in different hosts environments from isolated

galaxies, to pairs, groups, clusters and super clusters. This environment impacts on galaxy prop

erties in different manner, at different epochs, through several physical processes. But not ail

them are important according to the redshift and environment of galaxies. The characterization

of the major physical process at work inside environments should improve the prédictions of semi-

analytical models of galaxy formation and évolution (SAMs), by including more précisé models
and recipes in the code, directly extracted from the analysis of the observations. Moreover, this

should also improve the galaxy formation scénario constructed until now, and work as a test



for this scénario. This goal can only be achieved with an optimal sélection of galaxy group and
clusters.

1.1 Galaxy formation

The large scale structure of the Universe, observed in both the sky and in numerical simulations,

is usually probed through galaxies and their content since the dark matter only interacts gravi-

tationally with “ordinary” (baryonic) matter. At this time, the commonly accepted scénario for
the formation of large scale structure is the hierarchical model, where small structures are cre-

ated early in the history of the Universe and then merged to become more massive. This is the

ACDM paradigm (CDM for cold dark matter): Universe is in expansion by action of dark energy
(the A term) and structures appear through the gravitational interactions of cold dark matter, in
opposition to hot dark matter where the intrinsic velocities of dark matter avoid the formation

of early small structures. Then, baryons, visible and non-dominant fraction of matter, collapses
inside dark matter halos, cools and forms stars.

If this process goes without nothing to stop it, the mass of galaxies should increases without

limits: this is the overcooling problem (Blanchard et al., 1992; White & Rees, 1978). But baryons
are not only submitted to gravitation and several processes can prevent the star formation in

side such structures. At the two extremes of the halo mass function, the gas is prevented from

fragmenting into stars by heating processes, avoiding the cooling of the gas to the center of the

potential well of dark matter structures. This heating can be intrinsic to the gas in the halo

because of the photo-ionization (Rees, 1986) or due to a pre-heating of the gas before it enters
the halo (Borgani et al., 2001), acting essentially for low mass halos. Supernova explosions hâve

also a contribution to the re-heating of the gas (Dekel & Silk, 1986; Efstathiou, 2000) for low
and intermediate masses. In high mass halos, the cooling is less efficient but a large quantity of

gas can still cool to form very massive galaxies. Material ejected by active galactic nuclei (AGN)
is possibly an explanation for heating gas (Silk & Rees, 1998), although the mechanism through
which AGN opérâtes is not well understood.

Figure 1.1: Illustration of the ram pressure stripping experienced on a galaxy, whose interstellar gas in moved,
quenching the star formation since the “fuel” of this process is dropped out.

The environment plays an important rôle. Galaxy over-density in groups leads to several

physical processes, caused by interactions between each galaxy and/or the group. Galaxy mergers

(essentially major mergers involving two galaxies of similar masses) are expected to morphologi-
cally transform galaxies to spheroidal (Bournaud et al., 2005; Mamon, 1992; Naab et al., 1999),



and to create bursts of star formation inside merging galaxies (Cox et al., 2008; Teyssier et al.,

2010). On the other hand, the group environment acts too on galaxy properties. Tidal forces
exerted by the group and the ram pressure stripping can remove the outer gaseous régions in

orbiting galaxies leading to a quenching of the star formation (Bekki, 2014; Larson et al., 1980).

Some of these intra-group physics were already, more or less well, introduced in SAMs (Font
et al., 2008; Guo et al., 2011; Lanzoni et al., 2005; Okamoto & Nagashima, 2003). But ail these

methods tend to over-simplify, by use of simple formulas, very complex processes depending

on several parameters and the galaxy environment. A better modeling of the physics involved in

galaxy group should improve the SAM and correct their difficulties in fully describing the observed

Universe. This can only be achieved by optimally extracting and measuring galaxy groups from

redshift space galaxy catalogs.

1.2 The importance of galaxy groups

1.2.1 Galaxy group physics

Observed galaxy groups are a direct conséquence of the hierarchical growth of structure. Galaxies

therein are affected by this growth since they formed in dark matter sub-halos that merged with

most massive halos along the Universe expansion according to the hierarchical scénario (Lacey &
Cole, 1993). So their properties must be correlated with their parent dark matter halo and reflect
the history of the processes acting on it. Some evidence of such a modulation of galaxy properties

with galaxy environment were already observed previously on the galaxy luminosity (Robotham

et al., 2010) and stellar mass (Yang et al., 2009) functions.

Galaxies can be classified in two distinct classes: a blue class of gas rich and young stellar

population and a red one, poor in gas with an old stellar population (Driver et al., 2006). This
bi-modality is also visible in their morphologies where red galaxies are essentially ellipsoidal and

blue galaxies are spiral. A ségrégation of these galaxies exists with the environment close to

our epoch (low redshifts): red galaxies lie in dense environments such as clusters, while the blue
population is more présent in the field (outside dense environments as clusters or groups).

But some other properties lead to discrepant results. For example, the fraction of galaxies

with large spécifie star formation rate (SSFR) doesn’t show a dependence on the environment

for high stellar mass galaxies according to Peng et al. (2010), but following von der Linden et al.

(2010), there is clearly a trend of décliné of the fraction of high SSFR for star forming galaxies
towards groups center (for ail galaxy masses). The results of Peng et al. (2010) are surprising since
the dense environment is expected to quench the star formation in galaxies. This contradiction

is possibly explained by the sélection of a tracer for the environment in Peng et al. (2010) that
doesn’t distinguish between the two kind of environments: the local one related to the position

of the galaxy relatively to its halo, and the global environment that characterizes the total mass

embedded in the parent halo of the galaxy. An example is shown in Figure 1.2 where we plot

the over-density as defined in Peng et al. (2010) for two different halo masses with a density
profile from Navarro et al. (1996) (see Appendix B), a concentration from Macciô et al. (2008),
as a function of the position relative to the halo center in units of virial radius. We chose two

extremes masses (1012 and 1015/r1M0) to hâve two very distinct halos. The over-density is
essentially sensitive to the local environment, but the global one has only a small effect through

the concentration parameter. So, Peng et al. (2010)’s measure of environment is essentially a local
measure, and can’t trace global environment.



Figure 1.2: The over-density relatively to the mean density for two different halos of mass 1012 and 1015 h~1 Mq
as a function of the distance to the halo center in units of virial radius rvir. A density profile from Navarro et al.
(1996) is assumed with concentrations computed from Macciô et al. (2008).

ri

1.2.2 Galaxy groups as tests

Galaxy groups are not just limited to test and improve the models for the galaxy formation
theory, but also appear in other astrophysical domains. In cosmology, they are a tool to access
the cosmological parameters (Wang & Steinhardt, 1998). General relativity can be tested with
them (Wojtak et al., 2011).

Unfortunately, a clean characterization of the environment from the redshift space is difficult

since the redshift distortions (Jackson, 1972), called also Fingers-of-God (Tully & Fisher, 1978),
caused by the velocity dispersion of the galaxy group can create overlapping between galaxies of

foreground or background groups. But the over-density used in Peng et al. (2010) is computed from
galaxy nearest neighbors in redshift space, clearly affected by interlopers because of projection
effects.

I
Remark 1

Assuming the density profile of p(r) Navarro et al. (1996), the over-density 5 is:

P (r) - pm
5 =

Pm
(î.i)

Using équations from Appendix B, and writing the mean density of the Universe as pm =
Fimpc where fim is the density fraction of matter in the Universe and pc is the critical density
equal to 3Hq/ (87tG), we finally hâve:

s __ AP (r/Vyjr) _
3

(1.2)

with A the value of the density in units of the critical density used to defined a halo relatively
to the background, and p the normalized density profile as defined in Appendix B.



1.3 Characterizing the environment

1.3.1 History

Many galaxy group catalogs were already published, usually following the first publications of

data from galaxy surveys. First attempts were doue with visual sélections (Abell, 1958; Rose,
1976; Zwicky et al., 1961). The sélection was based on a criteria for a visual over-density of

galaxies.

Then the percolation or Friends-of-Friends (FoF) algorithm followed (Huchra & Geller, 1982;
Nolthenius & White, 1987). One of its advantages is that it is based on a physical choice for

the way to link galaxies between them in groups. A linking length is used to relate to galaxies

that are doser than this distance in redshift space. The FoF algorithm requires two different

linking lengths in the line-of-sight and perpendicular (plane of sky) directions to avoid the redshift

distortion effect. Eke et al. (2004) and Berlind et al. (2006) published group catalogs from the
application of the FoF algorithm, but taking into account, in their sélection, the incompleteness

induced by the galaxy surveys used.

Marinoni et al. (2002) developed a method similar to FoF but with the use of a redshift space

partitioned into Voronoi cells, to hâve an initial seed for the over-density (Voronoi cells volume

trace the galaxy density) around each galaxy. But this method suffers from the necessity to use
it in small surveys in angle because of the difficulty to create a tessellation of the celestial sphere

directly.

With the increasing advances in our understanding of galaxy formation processes, capacities

of numerical computation and prédictions of the cosmological simulations, started to appear

Bayesian algorithms that used priors on galaxy groups to improve their extraction from galaxy

surveys. Yang et al. (2005, 2007) developed an itérative method to select galaxy groups based on

a density contrast criterion, which uses assumptions based on cosmological simulation results for

the density profile of groups.

Galaxy surveys hâve limitations that are difficult to overcome in galaxy group algorithms.

In the case of photometric redshifts surveys, probabilistic Friends-of-Friends were developed to

attempt avoiding the large (and sometimes catastrophic) uncertainties in redshift measures (Liu
et al., 2008). Then, probability was used to improve the membership of galaxies inside their

groups, as in Dommguez Romero et al. (2012), allowing a soft affectation of galaxies to groups.

Finally, group finding algorithms continue their insertion of galaxy formation results, combin-

ing it with the advantage of geometrical methods. Munoz-Cuartas & Müller (2012) used a FoF

applied on dark matter halos associated to galaxies, with the initial assumption that ail galaxies

are their own halo, and so the central galaxy mass is a tracer of the density field (the most massive
central galaxies are associated to the most massive halos).

1.3.2 And now.. . ?

Current and future générations of galaxy surveys allow us to probe galaxy groups in different

aspects, each of them with their improvements and limits. The Sloan Digital Sky Survey (SDSS),
with around one million of spectroscoped galaxies, gives us a good overview of the density field for

a large range of redshifts. But this abundance of précisé redshifts as the counterpart that not ail

galaxies hâve spectroscopic redshifts, and around 5-10% of galaxies, because of the fiber collision

problem (Blanton et al., 2003), need to fall back to photometric redshifts, more inaccurate. The

Galaxy And Mass Assembly, at its final stage, will contain around 300 000 galaxies with a spec

troscopic redshift (Hopkins et al., 2013), less than the SDSS. But the completeness of the sample
will be higher than the SDSS with ~ 99% of the sample spectroscoped and it is two magnitudes

deeper. The counterpart is a less précisé measurement of galaxies recession velocities (Hopkins



et al., 2013; Robotham et al., 2011). Moreover, the adjoining angular coverage is lower becau.se

of the fragmentation of the survey régions. In conséquence, galaxy group algorithms must be

sufficiently flexible to be applied to and give the same results in many, different and (surprisingly)
Creative future galaxy survey projects. Their common limitations and advantages must be taken
into account when developing it.

So we need to go beyond the usual standard and static définition of groups and work with the

inévitable polluted environment of extracted galaxy groups to hâve a précisé understanding of the

major physical processes at work inside galaxy groups. We start by an overview of some common

grouping algorithms, their innovations and limitations in Chapter 2. Silice such algorithms must

be tested in order to access their capacities in recovering the clustering from redshift space, we
detailed the construction of a galaxy mock catalogue, difhculties inhérent to its création and

biases introduced voluntary or not in Chapter 3. We were also interested in the most popular

algorithm that is the Friends-of-Friends or percolation algorithm and performed a detailed test

on its performances in Chapter 4. We présent and test MAGGIE, a probabilistic Bayesian galaxy
group algorithm that reduces the effects of interlopers in the galaxy group properties observed in

Chapter 5. In Chapter 6, we describe our analysis of the Sloan Digital Sky Survey in the goal of
a future application of MAGGIE on its database.
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As previously discussed, a good characterization of the galaxy environment implies a good

sélection of galaxy groups. But galaxy observations are made in redshift space, where the velocity

dispersion of galaxies inside clusters stretch the line-of-sight distribution of galaxies. Galaxies in a

structure are not seen in a local région of the space, but the structure is extended in larger range

of redshifts from the projected phase space, wliich is the only one accessible by an observer. In

conséquence, the extraction of a galaxy group from the redshift space is complex since a galaxy

in the field can be associated to a group if it lies in a similar position on the sky but up to 10-20

virial radii in front or behind. Such a galaxy is called an interloper (inside the group by sélection,

but not pertaining to it in reality).

A large number of group catalogues were constructed with a large panel of methods for han-

dling redshift distortions. A summary of some of such galaxy group algorithms follows, with a

description of their strengths and weaknesses.

2.1 Some algorithms

2.1.1 Marinoni et al. (2002)

2.1.1.1 Description

Marinoni et al. (2002) hâve introduced a group finder based on Delaunay-Voronoi tesselation. The
idea is to use over-densities of galaxies in the three dimensional space (reconstructed simply from

the redshift space), and use them as potential centers for groups. Over-densities are estimated by
use of a Voronoi partition of space. The set of Voronoi cells forms a complété partition of space,

and the volume of a cell is inversely proportional to the galaxy density around the galaxy in the

cell. Then galaxies are sorted by decreasing densities in order to use them as potential galaxy

groups.

The procedure for selecting galaxy groups is divided in three principal steps, with an additional

phase of initialization. The latter consists on the création of the Voronoi-Delaunay tessellation of



(a) Convex hull (b) Delaunay (c) Voronoi

Figure 2.1: Illustration of the tessellation of space in a sub-sample of randomly positioned points. In black the
real point distribution (reflecting the real galaxy distribution) and in blue the sub-sample used for the tessellation
(reflecting the volume limited galaxy survey). (a) The convex hull is the set of points forming the hull of the
sample. (b) The Delaunay mesh is represented by the Unes interconnecting points. Each triangle of the mesh
has its circumscribing circle without a point inside it by définition, (c) The Voronoi partition is the dual of the
Delaunay mesh. Each node is the resuit of the Crossing médian of the Delaunay mesh. Working on a sub-sample
of galaxies shows that the Delaunay mesh is not well constrained at the edges, and the Voronoi cells are affected

too. A conséquence is that their volumes are biased and do not correspond to the real galaxy density around
them when one gets too close to borders.

the galaxy sample in three dimensional space. The Voronoi partition is the dual of the Delaunay
mesh and be can deduced from it. An illustration of each set of points is given in Figure 2.1.

The first step is to search for potential groups by using the Voronoi partition. Voronoi cells

hâve the property that their volume is inversely proportional to the local density around each

point. In case of galaxies, this allows to access to local density around them. The detected high
densities in the three dimensional space are used as potential group centers. Galaxies are sorted

by increasing volume of their Voronoi cell, i.e. decreasing density. First-order galaxies, first linked
to these potential groups, are searched in a 1 Mpc région, using the Delaunay triangulation to
access the neighborhood of the group. If ail first-order galaxies are already assigned to another
group, the two structures are merged.

The second step takes into account the redshift distortions, neglected in the first step. For

this, a cylindrical région is created with a base radius perpendicular to the line-of-sight, and a
height of around 20 Mpc. Ail galaxies inside this région, not already linked as first-order galaxies,
are second-order galaxies. The size of the cylinder is chosen to take into account the redshift

élongation introduced in a typical group.

The third step uses the information created from the two previous steps, which are only a
sélection of potential groups. From the richness of those potential groups, a relation between

the richness and the cylinder lengths is deduced since the number of galaxies inside a group

and its virial mass are correlated. This implies that the group sample isn’t affected by some
incompleteness, such as luminosity incompleteness. From a constructed complété sub-sample,

the relation between the richness and the characteristics sizes of the cylinder are deduced and

modeled. Then, the second step is reapplied, the cylindrical région inferred from the previous
relations with help of the richness of the group.



2.1.1.2 Advantages and weaknesses

The group extraction doesn’t rely on physical assumptions, but uses a geometrical approach,

based directly on the available galaxy sample. Moreover, there are no free parameters, since the

cylindrical région is then adjusted, based on a relation between the virial radius and the group

richness. This relation is adjusted in a complété sub-sample of galaxies to avoid incompleteness

corrections, the algorithm should be robust under different galaxy surveys.

But the Delaunay-Voronoi tessellation has some drawbacks. The computation of the Delaunay

mesh is very difïïcult in non-Euclidean spaces, as the redshift space, from the point of view of an

observer. Moreover, the computation of the volume of the Voronoi cell is complex too, especially

with non-Euclidean spaces. As a conséquence, the computation must be done assuming that the

redshift space is perpendicular and fixed in space (in other words, the line-of-sight direction at
different location on the celestial sphere is the same). Neglecting the celestial distortions limits
the application of the algorithm to a small portion of the sky of a few degrees of side.

In addition, border effects can’t be neglected with the Voronoi partition of space. Since Voronoi

cells form a complété partition, cells at the edges of the galaxy sample hâve an infinité volume

size. Also, the volume of cells close to borders is biased because the distribution of galaxies is

unknown beyond the sample, and the Delaunay mesh can’t be fully constrained to reflect the

real density of galaxies at edges. In other words, the volume of Voronoi cells near edges doesn’t

really reflect the local density around galaxies, since the galaxy distribution is unknown beyond

the limit of the sample.

Finally, the tessellation is computed for a flux-limited sample of galaxies, but the density

around galaxies is used to search high mass halos first. Since the luminous incompleteness is

decreasing the observed number of galaxies with increasing redshift, the effect is that nearby

groups are searched first. With the redshift distortions, the conséquences of such bias in the

sélection aren’t trivial to understand on the resulting group catalogue.

In conclusion, the Voronoi-Delaunay method of Marinoni et al. (2002) can’t be really applied
to recent galaxy surveys covering a large area of the sky.

2.1.2 Yang et al. (2007)

Yang et al. (2005, 2007) devised a Bayesian grouping algorithm based upon cosmological simula
tions. In particular, tliey assume that the galaxy density profile inside groups follows the Navarro

et al. (1996) model that reproduces well the density profiles of halos in cosmological dark matter
only simulations. A density contrast parameter is defined as the ratio between the projected

density of galaxies inside a halo and the density of field galaxies (which are the interlopers). The

higher is this ratio, the more likely the galaxy belongs to the group. The density of galaxies

in the halo is simply the intégration of the distribution function along the line-of-sight, and for

interlopers, it is the intégration of the mean density of the Universe along the line-of-sight over

the Hubble distance. This leads them to the following définition for the density contrast:

H0E(R)
PM (R, A*) = ——^p (Az) (2.1)

c p

where Hq is the Hubble constant, c the speed of light, E (R) the projected surface density of

galaxies at the projected radius A, p the mean density of the Universe and p (Az) is the velocity

distribution of galaxies in terms of redshift différences Az with the group redshift. This définition

is problematic: the density of interlopers is assumed to be constant and the same for ail halos.

But as described in Mamon et al. (2010), the density of interlopers is related to the position in
the halo, and their line-of-sight velocity distribution isn’t fiat.
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Using this density contrast criterion implies to hâve potential groups on which to apply it. For

this, initially, a FoF algorithm is done on the galaxy sample but with very small linking lengths.

These potential groups are whose membership must be updated using the density contrast, as
described below.

For each group, the virial mass is estimated from a relation between the group luminosity and

its mass. Initially, this is a constant ratio, then adjusted on the group sample itself. From it, the

density contrast can be computed for each galaxy on each group. A galaxy is assigned to a group

if Pm > B where B is a threshold. If this condition is satisfied for multiple groups, it is assigned
to the group with the highest Pm-

Then group centers and luminosities are recomputed with the new membership, iterating over

the previous step until a convergence in the membership is observed.

Once the convergence is reached, the relation between the virial mass and the luminosities of

groups is recomputed by abundance matching (see Chapter 5) between the distribution of group

luminosities obtained from the sample and the expected distribution of virial masses assuming

a halo mass function. Then the previous itérative process is done again, and this goes until a
convergence is reached for the relation.

The algorithm hâve some drawbacks that should be technically and physically corrected to be

good enough in the group extraction. Indeed, some incohérences are présent in the implémentation

of the grouping algorithm. For example, the given formula for the computation of the virial radius

is done for halos being over-densities of A = 180 of the mean density of the Universe, while the

computation of the abundance matching is done with the halo mass function of Warren et al.

(2006) for the FoF mass of halos from the cosmological simulation used. The différence between

the FoF mass and the virial mass is significant and should be taken into account in the grouping

process.

2.1.3 Domfiiguez Romero et al. (2012)

Domfnguez Romero et al. (2012) adapted the algorithm of Yang et al. (2007), based on a better
Bayesian approach, noting that the grouping method of Yang et al. (2007) is simply a learning
algorithm called K-means. Instead of hard assignments of galaxies to groups in the itérative pro

cess, this method assigns “responsibilities”, équivalents of a probability of belonging to a group,

weighted over ail groups in the sample, using the density contrast définition above as some prob

ability to be in the group.

First, potential groups are estimated assuming that the most luminous galaxies are linked to

most massive Systems. Then, galaxies are assigned to a group as satellite members if they hâve a

density contrast superior to a chosen low threshold to allow a maximum of galaxies to belong to

the group, without introducing too many interlopers since their responsibilities will be low and

won’t affect group properties. As in Yang et al. (2007), an itération over the membership and the

relation used to compute virial properties is done until convergence. Finally, galaxies are assigned
to the group for which the responsibility is the highest.

The drawbacks of this method are essentially inherited from Yang et al. (2007), since it is an
improvement of the Yang et al. algorithm.

2.1.4 Munoz-Cuartas &; Müller (2012)

Munoz-Cuartas & Müller (2012) developed a method similar to the FoF algorithm, but applied

directly on groups and not on galaxies. From an initial set of groups, a maximal circular radius

is computed from the virial radius in the transverse direction to the line-of-sight. A maximal

length of search for the redshift dimension is estimated from the circular velocity of the group.

Those groups are sorted by decreasing masses. For each one, other groups (and their galaxies) are



merged into the current group if they belong to the ellipsoid defîned by the two lengths defined

above, centered on the group.

Then, group properties are computed from the membership obtained previously. The new

virial masses are evaluated with an abundance matching between the group stellar masses and

the halo mass function. The itération is stopped once the number of groups doesn’t change.

Tliis method doesn’t hâve any free parameter and doesn’t rely on too many assumptions and

models. Only the abundance matching can be responsible for a bias, since the virial mass is

crucial in the merging of halos. As mentioned by Yang et al. (2007), the one-to-one assumption of

the abundance matching créâtes an intrinsic dispersion in the mass estimation that is relatively

low, and thus should not affect the galaxy grouping.

2.2 Discussion

We can extract common principles of the different algorithms described above. There are two

approaches for the galaxy grouping: a geometrical one based only on the positional informations of

galaxies and a Bayesian one using priors on group properties and galaxies therein. What emerged

is that most of these algorithms make a harmonious combination of these approaches. A typical

geometrical algorithm is the Friends-of-Friends (see also Chapter 4), linking galaxies between
them if they are doser than a linking length. This method lias the default of creating bridges

between two different galaxy groups if two of their members are doser than the linking length.

Adding priors to such a scheme, the membership can be improved by breaking the problematic

bridges. This is a good summary for the method of Marinoni et al. (2002) or Munoz-Cuartas

&; Müller (2012). Moreover, the bias in distance introduced by redshift can be reduced with the
same prescriptions as done in Liu et al. (2008).

The Bayesian approach used in the described galaxy group algorithms also has its pitfalls: if

the chosen models are bad, the clustering will be affected too. For example, Yang et al. (2007)
assume a fiat line-of-sight velocity dispersion and a fiat distribution of distant interlopers in the

computation of density contrast, which clearly dépends on the projected radius pointed by the

observer. Another problem is the way to test such algorithms. The different algorithms were

tested on different galaxy mock catalogues, not constructed in the same way. In conséquence, the

comparison is very difficult because not operated in the same conditions. Finally, the définition

of an optimal extraction, and the statistics used to assess their performances differ among the

different galaxy group algorithm developers.

To go beyond such limitations that will never be completely avoided, a probabilistic approach

of galaxy groups seems to be a good compromise (see Chapter 5). Moreover, the tests for algo
rithms must be well defined, with a common galaxy mock catalogue to perform the comparisons

and a good définition of the statistics to use. How well are recovered galaxy groups? How well

are they polluted by interlopers? How many selected groups are spurious? How well are the virial

properties of the parent halo recovered? How well are the scaling relations recovered? These are

the questions to answer in order to characterize the quality of a grouping algorithm.
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3.1 Introduction

A mock catalogue is a useful tool to test galaxy group algorithms. These mocks can reproduce

many properties of galaxies, e.g. clustering, luminosity function, etc, and add observational effects

such as incompleteness and measurement errors. There are different methods to obtain such a

mock catalogue. Ail of them involve cosmological simulations of dark matter halos. According to

the model of galaxy formation, we can use the halo occupation distribution (HOD) to populate

dark matter haloes with galaxies and putting some luminosity functions (for example) as con-
straints. We can, alternatively, follow galaxies in semi-analytical models (SAM) in cosmological
simulations outputs in order to hâve statistical properties of galaxies that agréé with observational

results. With such realistic galaxies, we can use those simulation boxes to place an observer into

it, and create a mock survey. But to hâve a realistic mock catalogue, it’s necessary to take care

of many things which will be described in the next section.

3.2 Populating dark matter halos

The hrst step in the construction of a galaxy mock catalogue is to populate galaxies inside their

dark matter halos, according to the model of the galaxy formation and the constraints imposed

by the observations. The real large scale structure of the Universe is not directly observable and

we must be confident in the different cosmological simulation code outputs available to get the

distribution of dark matter halos. For example, there is the Millennium-II run (Boylan-Kolchin

et ah, 2009) of 2160'3 dark matter particles, with a simulation box size of 100 h~lMpc allowing a
relatively high resolution for the particles mass (6.9 106 /z-1MQ) and a précisé détermination of



the halo mass function and the history of each individual halo. Several cosmological simulation
codes exist to follow the dark matter particle distribution along the évolution of the Universe

(Springel, 2005; Springel et al., 2001; Teyssier, 2002).
From the outputs of this cosmological simulations, informations on dark matter halos are

extracted using halo fînder codes (Knollmann & Knebe, 2009; Planelles & Quilis, 2010; Tweed
et al., 2009). Several methods exist to identify such structures: the Friend-of-Friends approach
(Davis et al., 1985) that tends to link between them different halos by bridges of linked dark
matter particles, and doesn’t identify sub-halos; the spherical over-density measuring the density
field and searching around density peaks iteratively until the desired density threshold is reached
(Press & Schechter, 1974a); Subfind of Springel et al. (2001) is similar to FoF with peaks searched
within the extracted FoF halos... With ail available informations on halos, they can be populated
by galaxies with prescriptions of the galaxy formation model.

3.2.1 Halo occupation distribution

In the Halo Occupation Distribution method (Berlind & Weinberg, 2002; Martinez & Saar, 2002;
Zehavi et al., 2011), the galaxy richness in groups is deduced on a probability distribution function
depending on the halo mass, and their physical properties such as luminosity from conditional

luminosity functions depending on the dynamical mass too (Yang et al., 2003). A relation between
the galaxy and matter distribution is imposed by three constraints: the probability distribution
P (N\M) that a halo of mass M contains N galaxies, the spatial relation between the galaxy and
dark matter, and the same for the velocity distribution. The galaxy distribution is assumed to
be spherically symmetric, and follows that of the dark matter particles in the halos of ACDM

cosmological simulations (e.g., NFW), the velocities are drawn from Maxwellian distributions (see
Beraldo et al., 2014 for the limitations of this assumption), with radial and tangential velocity
dispersions derived from the Jeans équation of local dynamical equilibrium, assuming some form
for the radial variation of the velocity anisotropy.

3.2.2 Semi-analytical models

In Semi-Analytical Models (SAMs, e.g., Kauffmann et al., 1999; Roukema et al., 1997), galaxy
properties (in particular stellar mass and r-band luminosity) are painted on the halos and subhalos
of cosmological N body simulations across cosmic time, following well-defmed physical recipes for

star formation and galaxy feedback. This procedure produces galaxies that follow relatively well
the observed luminosity, stellar mass functions and scaling relations.

We hâve chosen this second approach, because the recent SAM by Guo et al. (2011), run on the
Millennium-II simulation (Boylan-Kolchin et al., 2009) fits well the z=0 observations (as shown
by Guo et al.). The Millennium-II simulation involved 21603 particles in a box of comoving size
137 Mpc, running with cosmological parameters Om = 0.25, = 0.75, h = 0.73, and ag = 0.9.
The particle mass was thus 9.5 x 106Mq.

We extracted the SAM output of Guo et al. (2011) from the Guo2010a database on the

German Astrophysical Virtual Observatory website. 1 The real-space groups were extracted by
Guo et al. using the FoF technique applied to the particle data, with over 105 particles for groups
of mass > 1012Mq. The database includes the mass within the sphere of radius r2oo, where the
mean mass density is A = 200 times the critical density of the Universe, centered on the particle
in Millennium-II simulation, within the largest sub-halo, with the most négative gravitational

potential (Boylan-Kolchin et al., 2009). We slightly modihed the membership of the true groups
by considering only the galaxies within r2oo-2

1 http://gavo.mpa-garching.mpg.de/Millennium/Help, see Lemson & the Virgo Consortium (2006)
2We kept the galaxies outside the sphere of radius 7-200 as possible interlopers.



3.3 Mock structure

In ail this section, we will assume that we hâve already in our possession a dark matter simulation

box which has been populated with galaxies with one of the methods described below (SAM,

HOD... At this step, physical properties of those galaxies aren’t interesting.

3.3.1 Placing boxes

The first step to make a mock catalogue is to get galaxies positions like in a survey, to get an

(a, ô) frame to simulate the sky coverage of survey.
The mock catalogue must hâve the saine volume as the galaxy survey we want to mimic. For

example for the SDSS survey, we can measure redshift to a value of 0.3 and more. But the problem

is that the majority of the simulation boxes hâve a size of around Lbox = 100 — 300 h-1 Mpc,
letting us with a maximal redshift in our mock survey of around HqL\dox/c æ 0.025 in the case of

a box of 100 h~l Mpc in size. Bigger simulations exist, and allow us to access higher redshifts,
but this increasing size reduces the resolution of the simulation in particle mass and therefore we
cannot hâve low mass halos in the simulations.

The solution is to take a “little” simulation box and to replicate it and to make some “Tetris”

cube until we reach the maximal redshift we want. An example of the resulting “mock cube” is

shown on Figure 3.1.

Figure 3.1: The structure of the mock catalog once we hâve replicated the simulation box chosen to populate
dark matter halos. Each cube represents a simulation box whose galaxies were randomly rotated and translated

in positions. Placing an observer at a given position (the black dot), we can access different geometries for the
survey and go to higher redshift ranges than those possible with an unique simulation box.

Now, if we take an observer at some position into this big box, we can hâve different sky

coverage for the observer. The simplest is to place the observer at a corner, which gives a solid

angle of tt/2 steradians. At the centre, we hâve a full sky coverage but we reduce the redshift
extension by two. For the SDSS, as in Figure 3.1, the area of the survey is large (see Appendix 6)
and we need to cover half of the sky to get the same volume.

If we want to care about redshift évolution of galaxies for the observer, we need to use other

snapshots at different redshifts, simply joining cubes in comoving coordinates. Indeed, the cosmo-

logical redshift of the galaxy is deduced from the relation between the redshift and its comoving

distance, equals to the comoving transverse distance (or proper motion distance) in the case

of a Hat Universe fl*. = 0 (Hogg, 1999). Moreover, the comoving séparation Rc between two
points with angular séparation 9 on the sky, at comoving distance Dc from the observer, are

simply related by a geometrical relation Rc = 6DC. This séparation 9 deduced from comoving



coordinates should be the same as those of the observer working with physical coordinates. The

observer wants to know the physical séparation Rp between the two galaxies, so Rp — #dang giving
Rp (1 + z) — Rpja (z) — Rc = 6DC (where a (z) is the scale factor with a (0) = 1).

Placing boxes as described previously créâtes a perspective effect from the point of view of

an observer (Blaizot et al., 2005), and the conséquences aren’t predictable in a statistical sense.
To avoid this, we apply some coordinate transformations on galaxies in the initial cube like

inversions, rotations and periodic translations. Rotations are multiples of 7t/2 around the three
principal coordinates axes, because if other rotations are allowed, this create over-densities in

some régions of the final mock which aren’t physical. Translations are performed on the three

principal axes and when galaxies are out of the initial cube, periodic conditions are applied. Ail

of those transformations are randomly generated for each cube in the final mock catalogue.

3.3.2 Physics

3.3.2.1 Celestial coordinates

The first step to simulate this is to transform Cartesian coordinates (A, F, Z) in the 3D space to
celestial coordinates ((a, 5) frame). In our case, the origin of coordinates is the observer. Getting
these coordinates is the same as computing spherical coordinates.

a — arctan2 (F, X) mod 27t

ô — sgn (Z) arccos
yx2 + f2 ^

Vx2 + Y2 + Z2 J
where sgn is the sign function3

(3.1)

3.3.2.2 Redshifts

If we keep the distance as calculated previously, the observer can still hâve précisé détermination

of the distance of a galaxy. In reality, we observe it in redshift space so the redshift as distance

indicator is biased by peculiar velocities. Our initial galaxy catalog allows us to get the velocity

of a galaxy, so we compute the line of sight (los) velocity of this galaxy relatively to the observer.

OG.v

^los
pec

IOGI

iFor the sign function:

and the arctan2 function is:

1 if x > 1

sgn(a;) = < -1 if x < 1

0 else

' 4> x sgn(y) x > 0

arctan2 (y, x) = < x sgn(y) x = 0

k (n — (j)) x sgn(y) x < 0

with tan è = particular cases:

0 x > 0

arctan2 (0, x) = <( not defined x = 0
7T x < 0

(3.5)

(3.2)

(3.3)

(3.4)



where O is the observer and G the galaxy, vpec its peculiar velocity. This velocity has a sign. The
redshift is just the expression of a shift in wavelength. The observed wavelength À is linked to

the original (emitted) wavelength Aq by:

À — (1 + z)Ao (3.6)

The shift caused by Universe expansion is Acos = (1 + zCos)^o where the subscript cos refer to the

cosmological expansion. The shift caused by the peculiar velocity is A = (1 + -2pec)ACos- So the
observed wavelength is A = (1 + zpec)(l + zCOs)^o- The resulting observed redshift is:

(1 T = (1 T 2pec)(l + -^cos) (3-7)

The peculiar redshift is the relativistic Doppler effect:

/l + /3
(1 + -Zpec) — y Y _ [3 (3-8)

with fi = uios/c. The cosmological redshift is approximated by zcos = HqD/c where D is the
physical distance of the galaxy to the observer and Ho the Hubble constant, in the case of a

simple computation of the redshift. We can also make a more précisé computation by searching

the solution of D = dpm (zcos) with dpm (z) the proper motion distance at the redshift 2.
Applying this method to mock catalogue, we can hâve galaxies whose “distance” is biased by

peculiar velocities in redshift space. With such a treatment, the velocity dispersion of galaxies

in groups leads to the apparition of “fingers of God”, an élongation of galaxy groups along the

line-of-sight, as in redshift space observations.

We don’t hâve to add the wavelength shift due to the translation of the observer relatively to

the Cosmological Microwave Background (CMB). Velocities in the simulation are relative to an

“absolute” frame, but our Galaxy has a movement in relation to the CMB creating an additional

shift in wavelength depending on the observed région of the celestial sphere, and we should

include it in our mock catalogue. But frequently, redshifts accessible in galaxy surveys are already

corrected for the CMB relative motion, or can be easily pre-corrected to avoid this component.

In conséquence, we don’t integrate it in our mock catalogue.

3.3.2.3 Survey mask

With our frame in redshift space relative to the observer, we can apply different masks on angular

coordinates according to the survey we want to mimic. An example of such a mask is in Chapter 6,

where we describe how to décidé if a galaxy is inside the mask or not, in the case of the SDSS.

3.3.2.4 K-corrections

In reality, an observer studies galaxies in a given bandwidth in wavelength and can’t use the

bolometric flux of the object. With the expanding Universe, ail the spectral energy distribution

(SED) of galaxy is shifted. Ail wavelengths are shifted by the same value for a given redshift. So,
knowing the luminosity L of a galaxy in a given band in reality (using the true SED), computing
its apparent magnitude for an observer aren’t as easy as correcting for the distance modulus. The

observer in a given band sees a different part of the rest frame SED. The flux observed in the

same band as the rest frame flux is maybe higher or lower. A correction for this effect is needed

in the real galaxy survey to estimate the distance of an object and must be taken into account in

our mock catalogue.

As explained before, this correction dépends on the SED of galaxies and the band used in the

survey. The common way of correcting, it when we hâve a multi-band photometry, is to fit the



observed SED in those bands with theoretical templates of SEDs. Such templates can be obtained

with existing programs as PEGASE (Le Borgne et al., 2004), giving us galaxy SEDs. But those
programs are a little time consuming, a problem for mock when we want to run several of them.

A quick alternative solution is provided by Chilingarian et al. (2010), where the K-correction is
fitted on templates for SEDs as given by PEGASE in terms of a 2D polynomial of the redshift

of the galaxy and its colour. The corresponding K-correction is précisé for redshifts until 0.3

in different survey bands (including ugriz for the SDSS). This work reduces the computation of
K-corrections to the use of simple polynomial relations and make our task easier.

By définition, the K-correction K for a galaxy of apparent magnitude mx in a given band X
and absolute magnitude Mx in the same band is:

mx = Mx + 5 log10 (dium [pc]) - 5 + K (3.9)

In our case, the K-correction dépends on the redshift of the galaxy and its colour in apparent

magnitude given two bands. So we can rewrite:

mx = Mx + 5 log10 (dium [pc]) — 5 + K (z, mx - mx') (3.10)

where:

Ni NJ

K {z,mx ~ mx') = ££*«zl{mx - mX')j
z=0 j—0

(3.11)

and dij is a Ni x Nj matrix containing the coefficients of the two dimensional polynomial. These
coefficients dépend on the bands of the survey used for the colour computation.

The observer in the mock can just, in theory, access to apparent magnitude of the survey. But

we don’t know in advance these magnitudes, and as we can see in the expression of Equation 3.10,

we need apparent magnitudes to compute apparent magnitudes. If we use the other bands of the

survey, with a^ coefficients, we can always write a set of équations for a galaxy which involves ail
apparent magnitudes of the survey. So we can write a set of non linear équations with polynomial

of order Nj (redshift of the galaxy is supposed to be known). Numerically it’s easy to solve this
set of équations, and relatively fast with équations solvers or by itérations. In practice, the first is

faster than the second method, even if both methods give similar results in apparent magnitudes.

3.3.2.5 Flux limit

We will see in Chapter 6 that spectroscoped galaxies are defined for galaxies whose apparent

magnitude is less than 17.77 in the r band. So, in ail the redshift sub-samples, we will miss

galaxies that are not sufficiently bright. To take into account this effect, we remove galaxies
not reaching the limit apparent magnitude of the survey. An additional sélection on surface

brightness is also done in the SDSS, but estimating this is difficult from Virtual galaxy catalogs
and the number of “lost” galaxies is sufficiently low to ignore this step in the construction of the

mock catalog.

3.3.2.6 Spectroscopic and photometric redshifts

Sometimes, we don’t hâve access to spectroscopic redshifts, but only to less précisé photometric

redshifts. In the SDSS, for example, this is due to tiling process. Fibers analysing the spectrum

of galaxies cannot be doser from each other than 55", so if for a target galaxy (selected to obtain
a spectrum) there is an other galaxy doser than those 55”, the tile containing ail fibers doesn’t

hâve the possibility to measure the redshift of this galaxy. A very good algorithin to place tiles in

order to limit the number of missed galaxies (i.e. the number of fiber collision) has been applied



to the galaxy sample of the SDSS (Blanton et al., 2003). But there is still sortie galaxies witliout
spectroscoped redshifts, especially in dense régions such as the cases of groups and clusters. If

we remove those galaxies from our sample, there will be a spectroscopic incompleteness with
unknown effects on our results.

Unfortunately, there is no simple way to simulate this in the mock catalogue and we choose

to ignore it. Just a small fraction of galaxies are not spectroscoped and this must not affect our

results, when we will apply galaxy group algorithms on a real galaxy survey.

3.3.2.7 Observational errors

The way we organized the construction of the mock catalogue is useful for the introduction of

observational errors. For example, we treat the case where we want to add errors on the absolute

magnitude of galaxies in the final mock catalog. If we hâve a model for introducing such errors

according to some physical galaxy properties in the Virtual galaxy catalogue, we can just add them

inside this Virtual catalogue and magnitude errors will be reported on the mock galaxy catalogue.

If errors dépend on properties computed in the mock catalogue, we can simply add magnitude

errors while constructing the mock catalogue. Any kind of errors can be added such as redshift

measurement errors, astrometry, photometry, etc.

3.3.3 Galaxy samples

3.3.3.1 Définition

Ail previous steps lead to a final galaxy mock catalogue, with or without observational errors, flux

limited at a given apparent magnitude. But working with flux limited samples requires correcting

for missing galaxies when extracting galaxy groups. The only way to avoid errors introduced by

the different choices of the model is to work with a doubly complété sample of galaxies: limited

in luminosity and in volume, thus avoiding completeness issues.

We choose a minimal galaxy luminosity for our sample and the maximal redshift is computed

with the maximal distance at which we can observe a galaxy with this minimal luminosity. We

note that if K-correction is considered, this limit dépends on the considered galaxy. A clean

définition of the sample in this situation should be done by restricting a little more the redshift

extent to not lose fainter galaxies. But the galaxy loss is low and we didn’t consider such a case.

In Table 3.1, we show the six galaxy samples that we constructed from our flux limited galaxy

mock catalogue, with statistics on each of them.

3.3.3.2 Limitations

The mock catalogue is constructed from the adjoining of multiple simulation boxes, each of them

having periodic boundaries. A conséquence is that some galaxy groups are split by a simulation

box size, and from the point of view of the observer, members are at two different locations on the

celestial sphere. Inclusion of such groups in statistics leads to biased results of the performance

of grouping algorithms, and a flag is used to distinguish and remove such groups.

Moreover, the limited volume extension of the survey truncates some groups. In redshift

space, these limits are of two kinds: the angular mask cutting groups ail along the line-of-sight

(i.e. survey edges and possibly holes), and the redshift eut with a more important efîect due to

the élongation in redshift coordinates by the intrinsic velocity dispersion of the System. Since

ail the information on the group is not accessible by the observer, estimation of group properties

is less précisé. To avoid the dégradation of the performances of grouping algorithms, we flag

selected groups (after the application of a grouping algorithm) if they are close to edges of the



Figure 3.2: An illustration of the doubly complété
galaxy samples used. Black dots represent galaxies in

the mock catalogue. Colored rectangles show samples

for a threshold absolute magnitude in the r band Mr

of -19, -20, -21. Their sizes reflects the corresponding

limits of the minimal luminosity. As we can see, in these

régions, there is no need to correct for missing galaxies.

Ail galaxies above the given threshold magnitude are
visible.

Figure 3.3: Comparison of counts in redshift of galax
ies in the mock catalog with the theoretical expectation

deduced from the number density of galaxies. In red the

theory and in green counts directly done on the mock

catalog. The small discrepancies observed at high red
shift are caused by an imprécision in the computation

of the integrated luminosity fonction, since we use an

interpolation of the luminosity fonction, and only few

bright galaxies at high redshift are visible making the
intégration difficult.

angular mask or edges in depth (see Chapter 4 for a detailed définition) and remove them from
the statistics in tests.

3.4 Validity

Finally, we test the construction of our mock catalogue with a simple comparison with the expec
tation from the theoretical redshift counts. Indeed, the redshift count is:

dN dN dV
— X —

dz dV dz
(3.12)

where V is the comoving volume,

luminosity function 4>:
dN

dV

The first term of the rhs of Equation 3.12 is just the integrated

d2N

dVdLdL =
Llim(z)

$(L)dL (3.13)

The luminosity function is directly deduced from the virtual galaxy catalog of Guo et al. (2011).
The second term of the rhs of Equation 3.12 is the variation of the comoving volume with

redshift (see Hogg (1999)):

(3.14)

where dfl is the elemental solid angle, dpm the proper motion distance (or comoving distance, see
Appendix G), Dh the Hubble distance c/Ho and E (z) the évolution of the Hubble constant with
the redshift. The resuit of the theoretical prédiction and the comparison with the obtained mock

catalog is shown in Figure 3.3.



Table 3.1: Doubly complété mock galaxy subsamples

ID Mmax L™in/L* -^max Number n

(Mpc~3)

n-1/3

(Mpc)

Fraction

split

1 -18.5 0.09 0.042 47158 0.0125 4.32 5.3%

2 -19.0 0.14 0.053 72510 0.0099 4.66 6.1%

3 -19.5 0.22 0.066 112629 0.0078 5.05 6.6%

4 -20.0 0.36 0.082 166899 0.0058 5.56 7.4%

5 -20.5 0.56 0.102 213546 0.0040 6.29 8.6%

6 -21.0 0.90 0.126 245821 0.0025 7.40 9.9%

Notes: Columns are: sample, maximum r-band absolute magnitude, minimum luminosity in units of L* (adopting

M* = —20.44 + 5 logh in the SDSS r band from Blanton et al., 2003), maximum redshift, sample size, mean
density n, proxy for the mean séparation to the closest neighbor, n-1^3, and the percentage of true groups that are
flagged because they are split during the simulation box transformations. The minimum redshift of each subsample
is 2 = 0.01. "FSTS
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4.1 Introduction

Although several grouping algorithms has been developed recently, using our knowledge on the

galaxy formation and évolution processes (as described in the Chapter 2), the Friends-of-Friends

algorithm (hereafter FoF) has been the most popular grouping algorithm over time. Many cata-
logs of galaxy groups hâve been constructed from redshift space catalogs,1 using FoF algorithms
(Huchra &; Geller, 1982; Merchân & Zandivarez, 2002; Nolthenius & White, 1987; Ramella, Geller,

& Huchra, 1989; Trasarti-Battistoni, 1998; Berlind et al., 2006; Eke et al., 2004; Robotham et al.,

2011; Tago et al., 2010; Tempel et al., 2014).

1 Turner & Gott (1976) applied a grouping algorithm in projected space that turned out to be a Friends-of-Friends
algorithm.



Starting with Nolthenius & White (1987), nearly ail FoF group analyses on redshift space
catalogs were accompanied with tests on mock galaxy catalogs derived from N-body simula
tions. However, not ail FoF developers hâve applied the sanie tests to calibrate their linking
lengths. Nolthenius &; White (1987) were the first to compute the accuracy of group masses, as

well as radii and velocity dispersions, Crossing times and mass-to-light ratios. Ramella et al. (1989)
were the first to test the recovered group multiplicity function. Frédéric (1995) was the first to
measure the galaxy reliability of extracted groups (comparing the FoFs of Huchra & Geller, 1982

and Nolthenius & White, 1987), as later done by Merchân & Zandivarez (2002), who also measured
group completeness (against mergers of true groups) and reliability (against fragmentation of true
groups). Eke et al. (2004) also tested the true group completeness and fragmentation, as well as
the accuracy on group sizes and velocity dispersions. They also considered a quality criterion that

amounts to a combination of galaxy completeness and reliability. Finally, Berlind et al. (2006)
performed similar tests as Eke et al., with another test combining galaxy completeness and relia

bility. Berlind et al. noted that one cannot simultaneously optimize the accuracies on group sizes,

velocity dispersions and [multiplicity function OR combined galaxy completeness/reliability].

Unfortunately, none of these studies is fully convincing: many did not perform the full suite

of important tests, which we believe are true group fragmentation (group reliability) and merging
(group completeness), galaxy completeness and reliability studied separately, and mass accuracy.
Many hâve not measured the qualities of their LLs in terms of group parameters such as estimated

mass and richness. Few studies hâve optimized the LLs: Eke et al. (2004) separately optimized

b_l and b\\. Berlind et al. (2006) jointly optimized 6j_ and by on a grid, for groups of 10 or more
galaxies, while Robotham et al. (2011) jointly fit the LLs and their variation with density contrast
and galaxy luminosity for groups of 5 or more galaxies to optimize for the product of four fairly
complex measures of group and galaxy completeness and reliability. However, there is no strong
agreement between the optimized LLs of Eke et al., Berlind et al., and Robotham et al. (see
Table 4.1).

Moreover, we believe that in this era of large redshift surveys of > 105 galaxies, it makes little
sense to extract groups from flux-limited galaxy samples, for which most current implémenta
tions of the FoF algorithm scale the maximum séparations proportionally to the mean séparation
between neighboring field galaxies, n-1/3. Indeed, since the minimum luminosity in flux-limited
samples increases with redshift, the mean number density of galaxies decreases with redshift, and

thus the mean séparation between neighboring galaxies increases with redshift. Therefore, the

standard implémentation of the FoF algorithm leads to groups that become increasingly sparse
and with increasingly higher velocity dispersion with redshift (while their multiplicity function is
preserved). Alternatively, since the mean neighbor galaxy séparation increases with redshift in

flux-limited samples, using a fixed physical linking length leads to lower reliability at low redshift

and lower completeness at higher redshifts. Moreover, grouping algorithms on flux-limited sam

ples must evaluate the luminosity incompleteness as a function of redshift, which is difflcult and

imprécise (e.g., Marinoni et al., 2002; Yang et al., 2007). It is therefore much safer to consider
subsamples that are complété in both distance and galaxy luminosity (as done for FoF grouping
by Berlind et al., 2006, Tago et al., 2010 and Tempel et al., 2014). Admittedly, one recovers
at best of order of one-quarter of the galaxies of the flux-limited sample, but one then avoids

extracting a heterogeneous sample of groups (see Tempel et al., 2014) whose sizes and velocity
dispersions stretch with redshift (when scaling the physical linking lengths with n-1/3) or whose
completeness and reliability vary with redshift (when adopting fixed physical linking lengths).

In the présent work, we shall provide the first optimization of group LLs for doubly complété
subsamples of galaxies, for six measures of the quality of the FoF grouping algorithm: minimal
fragmentation and merging of true groups, maximum completeness and reliability of the galaxies
of the extracted groups, and minimum bias and inefficiency in the recovered group masses. These



Table 4.1: Friends-of-Friends linking lengths and physical parameters

Authors sample b±_ 6II V&l ôn/n K

Huchra & Geller 82 CfA 0.23 1.34 6.3 20 5.7

Ramella et al. 89 CfA2 0.14 1.9 13 80 5.8

Trasarti-Battistoni 98 PPS2 0.13 1.7 13 108 4.9

Merchan & Zand’z 02 2dFGRS 0.14 1.4 10 80 4.4

Eke et al. 04 2dFGRS 0.13 1.43 11 178 3.9

Berlind et al. 06 SDSS 0.14 0.75 5.4 86 2.3

Tago et al. 10 SDSS 0.075 0.75 10 565 1.7

Robotham et al. 11 GAMA 0.060 1.08 18 1100 2.2

Tempel et al. 14 (Mr < -19) SDSS 0.11 1.1 10 178 3.0

Tempel et al. 14 (Mr < -21) SDSS 0.066 0.67 10 830 1.4

Notes: The (normalized) linking lengths of Huchra & Geller (1982), Ramella et al. (1989), and Trasarti-Battistoni
(1998) are derived (using Equation 4.1 and Equation 4.2) from their physical linking lengths at the fiducial distance
and from the mean density at that distance, as derived by integrating the respective luminosity functions given by

these authors. The linking lengths of Merchân & Zandivarez (2002) are estimated directly from the overdensity
ôn/n given by these authors (using Equation 4.3), those of Tago et al. (2010) are found from the densities deduced
from the numbers of galaxies counted by these authors (again with Equation 4.1 and Equation 4.2). Eke et al.

(2004) provide b± and b\\/b±, while Berlind et al. (2006) and Tempel et al. (2014) provide b± and b\\. When not
provided by the authors, the overdensity ôn/n is obtained through Equation 4.3, and should be multiplied by 1.5
for a more accurate estimation (see text). Finally, the number of group velocity dispersions along the LOS, k is
obtained with Equation 4.7 assuming = 0.3.

tests are performed on a wide grid of over 250 pairs of LLs. We hâve applied them to several

doubly-complete subsamples of galaxies eut from a mock flux-limited, SDSS-like, sample of galax

ies, and we analyze our results in terms of both true and estimated masses of the groups, as well
as of their estimated richness.

4.2 Description

4.2.1 Predicted linking lengths and galaxy reliability

Because of the redshift distortions, the physical linking lengths are chosen to be of order of 10 times

longer for the line-of-sight (LOS) séparations than for the plane-of-sky (POS) ones. Moreover,
for flux-limited galaxy catalogs, the physical linking lengths are scaled with the mean three-

dimensional séparation between neighboring galaxies, s ~ n-1/3, where n is the mean number
density of galaxies in the Universe at a given redshift (Huchra & Geller, 1982). In other words,

the FoF algorithm involves two dimensionless linking lengths (hereafter LLs):

b±

b\

Max(<Sj_)

s

Max(S'n)
s

(4.1)

(4.2)

where and S’y are the POS and LOS nearest neighbor séparations, respectively.
One can relate the choice of 5y to the minimum galaxy overdensity (in number) of the groups

with
ôn 3

47t63n
(4.3)



(from Huchra & Geller, 1982). Hence, if galaxies are unbiased tracers of mass, i.e. ôn/n = A/Ûm,
where Qm is the cosmological density parameter, then Equation 4.3 easily leads to

( 3/(4tt) y/3
\A/Qm ± 1 /

(4.4)

According to Equation 4.4, if one desires to hâve virialized groups of overdensity (relative to
critical) A = 200, one requires b± ~ 0.07 (for 0.24 < £îm < 0.35). On the other hand, given
Qm = 0.279 or 0.317, respectively obtained with the 9th-year release of the Wilkinson Microwave

Anisotropy Probe (Bennett et al., 2013) and the Planck mission (Planck Collaboration et al.,
2013), one deduces ôn/n = 352 and 326 from Bryan & Norman’s (1998) approximation for A at
the virial radius , leading to b± ~ 0.09 in both cases, according to Equation 4.3.

One can also estimate the ratio of LOS to transverse LLs, as the ratio of LOS to POS group
sizes caused by redshift distortions: if the LOS velocities span ±« group velocity dispersions, the

inferred LOS spread of distances in redshift space will be ±ijk, V200/H0 = ±77«\/A/2 7*200 (see
Mamon et al., 2010), where 77 = crv/vv — 0.65 for an NFW model with realistic concentration and
velocity anisotropy (Mamon et al., 2013), and where we used Equation 4.3. Therefore,

[K
(4-5)

>“/? (£)• <«>
Combining Equation 4.4 and Equation 4.5, one easily deduces

Vb±b\i . (4.7)

For example, according to Equation 4.5, probing galaxies along the LOS to ±1.65 ov (encom-
passing 95% of the galaxies for Maxwellian LOS velocity distributions), for A = 200, leads to
b\\/b± = 11, hence with b± = 0.07, one finds by = 0.7 (the values are rounded off).

These theoretical LLs assume that groups are spherical and that ail but one galaxy is in the

center. In fact, galaxies are distributed in a more continuous fashion (especially in rich groups
and clusters). One can more accurately estimate the value of the transverse LL by writing

Max(<Sj_)
7i-1/3 ’

Max(£±) rvir / ôn\~1/3

rvir nPj/3 V n /

f 3/(47r) ^1/3 Max(5j.) 1/3
VA/nm±i; rvir vir

(4.8)

where one recognizes the previous estimate of b± (Equation 4.4) in the first term of the right-hand
side of Equation 4.8.

We estimated the value of the second term of the right-hand side of Equation 4.8 by running
Monte-Carlo simulations of cylindrical groups of unit virial radius with surface density profiles
obeying the (projected) NFW model of scale radius of 0.2 (i.e. concentration 5). With 10 000
realizations each for N = 2,4,8,16,32 and 64 galaxies within the maximum projected radius
allowed for the galaxies in the simulated groups, Rmayi = 7*200 = 1, we found that the 95th

percentile for the maximum - for ail galaxies of the group - distance to the nearest neighbor is



Max(iSj_)
Equation

require

~ 1.48 TV 0 25 in units of the virial radius. Inserting this value of Max(5'j_)/rvir into
4.8, with A = 200 and f7m = 0.25, we predict that to obtain a completeness of 0.95, we

b± ~ 0.09 TV0 08 , (4.9)

where we took into account that, for our adopted NFW model, the ratio of the number of galaxies

within the virial sphere to that within the virial cylinder is Nv\v/N ~ 0.80. Equation 4.9 predicts

5j_ — 0.10 for TV = 4 and b± = 0.12 for TV = 40, i.e. = 1.1 for TV = 4 and b\\ = 1.3 for TV - 40,
given 6||/6j_ = 11 found above. In other words, Equation 4.3 underestimates ôn/n by a factor
Max(S,_L)/rvir TvV3 ~ 1.4 TV008, i.e. by 1.5 for TV = 4 and 1.8 for TV = 40. The slight increase of
5_l with richness suggests that fixing b± will lead to the fragmentation of rich groups.

Adopting instead the virial ôn/n = A/f2m = 326 (Planck, see above) would lead to b_\_ = 0.14
1 /3

for TV = 4 and b± = 0.17 for TV = 40. Since, at constant A, b±_ oc Om (Equation 4.4), moving
from £4m = 0.25 to — 0.3 (a compromise between WMAP and Planck), keeping A = 200,

yields b± = 0.11 (TV = 4) or 0.13 (TV = 40). According to Equation 4.5, b\\/b± does not vary with
üm at fixed A, hence we now obtain 5|| = 1.3.

Had we taken a maximum projected radius that is much smaller than 7*200 > we would obtain

a much smaller value for b±. Indeed, our Monte-Carlo simulations indicate that with Rmax

and scale radius both equal to 0.2r2oo> we find Max(*S'j_) ~ 1.85 TV-0 33 in units of 7?max, hence
Max(5'_L)/r’2oo — 0.37 TV-0-33. Inserting this ratio into Equation 4.8, we now obtain b± = 0.023,
independent of TV. Thus, to hrst order, 6j_ scales with Rmax/^200- Turning the argument around,
a low b_l leads to selecting galaxies in groups with projected radii limited to a small fraction of
the virial radius.

We can also predict the reliability of the galaxy membership in groups, as follows. The

expected number of interlopers from the extracted group out to a LOS distance of ±b\\n~1^ is

TV 611

iVintCa22Ô0 bl (4.10)

where we simply stretched the group by a factor of b\\/b\_ along the LOS, and where TV is the
number of galaxies in the real space group. For b\\/b± — 11, Equation 4.10 yields TVjnt = 0.44 for
TV = 4 and TVint = 4 for TV = 40. Thus, the fraction of interlopers should roughly be independent

of the richness hence mass of the real space group. For b± ~ 0.1, corresponding to groups with

overdensity 200 relative to critical sampled at 95% completeness, and sampling the LOS with 95%

completeness (leading to b\\/b± — 11), one then expects N[nt/N = 0.11. One then infers a galaxy
reliability of R = (TV/TVint)/[l + (TV/TVint)] = 90%.

Equation 4.10 assumes that the Universe is made of spherical groups that are truncated at their

virial radii. In fact, galaxy clustering brings galaxies close to groups, in a fashion that the radial

number density profile pursues a graduai decrease beyond the virial radius. For NFW models of

concentration of 5, the projected number of galaxies within the virial radius is 1/0.80 = 1.25 times
the number within the virial sphere. Hence the numbers of interlopers to the virial sphere should

satisfy TVint/TV = 0.25. Then, one expects a reliability of R = (TV/TVjnt)/[l + (TV/TVjnt)] = 80%.

4.2.2 Previous implémentations

Table 4.1 lists the dimensionless LLs for the different group FoF analyses. The values of ôn/n and
k, of different FoF analyses, inferred from their LLs according to Equation 4.3 and Equation 4.6,

are listed in Table 4.1. One sees that 5 of the 7 previous studies advocate b± — 0.13 or 0.14,

and two (Eke et al., 2004 and Tempel et al., 2014 for Mr < —19) hâve pairs of LLs close to our

predicted values of (b±,b\\) « (0.11,1.3). The two greatest outliers are Huchra & Geller (1982),
whose transverse linking length appears too large and Robotham et al. (2011), both of whose



LLs appear too small. We will check these conclusions in Section 4.4 and Section 4.5 using our
analysis of mock galaxy and group catalogs.

4.2.3 Practical implémentation of the FoF algorithm

There are two issues that need to be optimally handled when writing an FoF algorithm: rapidly

extracting the séparations in redshift space and properly estimating the mean density.

We followed the Huchra & Geller (1982) algorithm, used in most FoF implémentations. Huchra

& Geller write that two galaxies with redshifts Z{ and Zj and an angular séparation in 6ij are linked
using criteria that amount to

{£) (* + ‘*)™(y)
C

H~o
Zi - Zn

We Equation 4.11 and Equation 4.12

^comov (zl) + ^comov (*2)
e

|dComov(^l) dcomov (Z2)\

< b l n 1/3

< b\\ n“1//3
il

to3

< 5_l n"1^3

< 6|| n-1/3 .

(4.11)

(4.12)

(4.13)

(4.14)

Thus, Huchra & Geller (1982) and Berlind et al. (2006) neglected cosmological effects. For

our deepest mock SDSS catalog, at 2 = zmax — 0.125 (Catalog 6, see Table 3.1 below),
dcomov/(cz/Ho) — 0.97. So, the formula d — cz/Hq leads to slightly too large distances, hence to
slightly too strict choices of angles and différences in redshifts.

One could argue that, since groups are virialized, 011e ought to use the cosmological angular

distance, dang(z) — dcomov(z)/(l + z) for the distances with which one computes the physical
transverse séparation in terms of the angular séparation. But one should then also compress the

line-of-sight distances accordingly, and we are not aware of any work doing such a compression.
Hence, we chose to stick with Equation 4.13 and Equation 4.14.

Since we are working with samples that are complété in luminosity, and since they are shallow

enough that evolutionary effects are small, observers can estimate the mean number density of
galaxies directly from the data.

Finally, for each galaxy, we computed the maximal angular distance to define the région
in which potential neighbors could be found for the given transverse linking length. With the

celestial sphere grid that we hâve constructed (see Appendix E), we searched for galaxies obeying
the criterion of Equation 4.13, and then searched for galaxies meeting Equation 4.14. The linked

galaxies were then placed in a tree structure according to the Union-Find method (Tarjan &
van Leeuwen, 1984). Once ail galaxies were analyzed, we compressed the trees constructed with

linked galaxies by replacing, in each group, the links of links with links to a single galaxy, giving
us the identity of the group to which galaxies belong to. This implémentation allows for a fast

computation of galaxy groups for large samples of galaxies.

4.3 Analysis

We tested the FoF algorithm by running it on our mock redshift-space, doubly complété subsam-

ples of galaxies, for a set of 16 x 16 geometrically-spaced pairs of LLs. By directly comparing the

2The comoving distance, dCOmov(z) = c f dz/H(z), in Equation 4.13 should really be the proper motion distance
dpm(z) = dium(z)/(l + z) = (1 + z) dàng(z), but for flat cosmologies, dpm(z) = dCOmoV(z).

3Equation 4.13 is similar to the relation used by Zandivarez et al. (2014), with the exception of a minor différence
in projected sizes given angle.



CHAPTER 4. FRIENDS-OF-FRIENDS ALGORITHM

(b) Fragmentation

(c) Merging

Figure 4.1: Schematic links between true groups (TGs, green circles) and FoF-extracted groups, (EGs, red
circles), each with their respective most massive galaxy (black dots). The solid circles represent primary true
and FoF groups, while the dashed circles respectively correspond to secondary true groups and FoF fragments.

The cyan double arrows each indicate the one-to-one correspondence between the most massive galaxy in the true

and extracted groups. The purple rightwards-pointing arrows correspond to the most massive galaxy of a true

group ending up as a galaxy that is not the most massive of its extracted group. The purple leftwards-pointing
arrows represent the cases where the most massive galaxy of an extracted group is not the most massive of its

parent true group.

properties of our extracted groups (EGs) in redshift space with their “parent” true groups (TGs)
in real space, we could assess the performance of the FoF in recovering the real space information

from the projected phase space observations. Note that TGs can hâve as little as one single

member galaxy. Also, galaxies in redshift space with no linked galaxies can be considered as EGs

with one single galaxy.

4.3.1 Linking real space and projected redshift space

There are several ways to link the EGs and TGs. We followed Yang et al. (2007), by linking the
EG to the TG that contains the EG’s most massive galaxy (MMG), and conversely linking the
TG to the EG that contains the TG’s MMG. With this définition for linking, we could easily

associate FoF groups to real groups.

4.3.2 Global tests

Our définition of the link between EGs and TGs allowed us to search for cases where there is no

one-to-one correspondence between the groups in real and redshift space: a TG can suffer from

fragmentation into several EGs, while an EG can be built from the merging of several TGs.

Figure 4.1 illustrâtes different cases (following an analogous figure in Knobel et al., 2009). The



top panel shows a one-to-one correspondence between the true and extracted groups.

We defined a fragmented TG as one that contains the MMGs of several EGs. Multiple situ

ations can cause fragmentation of TGs. In some cases, the FoF algorithm fails to recover entire

TGs, selecting instead its primary and secondary substructures (see panel Figure 4.1b). In other
cases, an EG is mostly composed of galaxies from one TG, but the MMG of another TG is ‘acci-

dentally’ linked to the first TG. In conséquence, the EG could be linked to a TG providing only
a single member galaxy to the EG, in comparison with more members arising from another TG.

When fragmentation occurred, we distinguished the primary EG, as that whose MMG corresponds

to the MMG of the parent TG, from the other EGs, which we called fragments.

The dual of fragmentation is merging. In this situation, an EG contains the MMGs of several

TGs. Proceeding similarly as for the case of fragmentation, we denoted primary TG of a given EG

the TG whose MMG corresponds to the MMG of that EG, denoting the other TGs as secondary.

An example of merging is shown in Figure 4.1c. Note that a true group can be fragmented and
its primary extracted group can be the resuit of a merger of the true group with another one, as

illustrated in Figure 4.1d.

4.3.3 Local tests

Our local tests check the membership of the EGs. We defined completeness as the fraction of

galaxies in the TG (i.e. within the sphere of radius r2oo) that were members of the primary EG.
Given this définition, it did not make sense to consider the completeness for secondary fragments,
hence we limited our tests to the primary EGs.

We defined reliability as the fraction of galaxies in the EG that were members of the parent

TG (i.e., within the sphere of radius r2oo)- Here, we also limited our tests to the primary EGs.

Mathematically speaking, these définitions of galaxy completeness, C, and reliability, R, can

respectively be written as

^ _ TG G EG
TG

TG n EG

R= ËG '

Looking at Figure 4.1, the completeness is the fraction of galaxies in the TG (left, green circles)
recovered in the EG (right, red circles), while the reliability is the fraction of galaxies in the EG
that belong to the TG.

These four quantities allow one to define the capacity of the FoF grouping algorithm (or any
other grouping algorithm) to recover groups in real space from galaxy catalogs in redshift space.

Note that EGs that are fragments can hâve high reliability, while fragmentation causes primary

EGs to hâve reduced completeness. When EGs are mergers of TGs, the secondary TGs lead to a
decrease in the reliability, but can hâve high completeness.

4.3.4 Mass accuracy

There are many properties of groups that one wishes to recover with optimal accuracy (see
Sect. 4.1). We focused here on one single property that appeared to us as the most relevant:

the group total mass. We measured the masses of our EGs using the virial theorem formula of

Ileisler, Tremaine, h Bahcall (1985)

, . 071 . o

A4eg = -q (R)h O'v
37T N vf
“2G~ Jfi<j l/Rij ’

(4.15)



where (R)h — (1 /Rij)~l is the harmonie mean projected séparation, while av is the unbiased
measure of the standard déviation of the group velocities.

More precisely, we computed the accuracy of the log masses, respectively defming the bias

and inefficiency as the médian and équivalent standard déviation (half 16-84 interpercentile)
of log(.Meg/Mtg), where Mtg is the mass of the TG within the sphere of radius r2oo (see
Section 4.3.3).

4.3.5 Quality

It is not simple to extract a unique pair of optimal LLs frorn the four tests (fragmentation, merging,

completeness, and reliability). To reduce the number of tests, we combined fragmentation and

merging into a single global quality and combined completeness and reliability into a single local

quality.

We could define our qualities by multiplying F (fragmentation) by M (merging) and similarly,
C by R. However, one could alternatively multiply 1 — F by 1 — M, etc. Instead, we chose quality

estimâtes that minimize the distance to the perfect case. The advantage of using distance rather

than multiplying probabilities is that the former gives less weight to situations where one of the

two parameters is perfect and not the other. For example, consider the case F — M = p. With

the multiplication method, we would find that Q = p2 is also reached with F = e <C 1, yielding
Mmuit = V2/e-> which can be quite large (hence plenty of merging). On the other hand, with the
distance method, we would find that Q = pyj2 is also reached with F = e <C 1 for M&jst ~ pyj2,
which is much more restrictive. In a perfect algorithm, fragmentation and merging don’t occur,

hence F = M = 0 they are null. We therefore chose to minimize the global quality, defined as

Qglobal = + M2 (4.16)

Moreover, in a perfect grouping algorithm, the EGs are fully complété and reliable, i.e. (C) =
(R) = 1, where the means are over ail the groups of a mass bin. We, hereafter, drop the brac.kets,

so that C and R should now be understood as means over groups within mass bins. We then

define the local quality as

Qlocal= VU-Cf + U-.R)2. (4.17)
Both global and local qualities tend to zéro for a perfect galaxy group algorithm. So the

optimal LLs will be those that minimize Qgiobah Qiocal? mass bias and mass inefficiency. The
maximum possible value of both qualities is y/2.

4.3.6 Scope of the tests

We lirait our tests to TGs containing at least 3 galaxies and that are not split by the transfor

mations of the simulation box (see Chapter 3). Moreover, we only consider EGs with at least 3

galaxies and that do not lie near the survey edges (the virial radius, 2.3 Mpc, of a true group of log

mass 15.2 in solar units, placed at z = zm\n = 0.01, i.e. at an angle of more than 3?27) or redshift
limits (1.8^200 ~ 2.7 crv, of the saine mass group, corresponding to 3073 kms-1). Typically 60%
(sample 2) to 25% (sample 6) of the groups are flagged. Finally, the tests of galaxy completeness

and reliability, as well as mass bias and inefficiency are restricted to primary EGs of TGs (not

fragments).

4.4 Results

We hâve applied the FoF algorithm on near and distant doubly complété subsamples (numbers
2 and 6 in Table 3.1), repeating the tests for a grid of 16x16 geometrically-spaced pairs of LLs.



Figure 4.2: Contours of group fragmentation (first column) and merging (second column), as well as mean galaxy
completeness (third column) and reliability (fourth column) computed for a 16x16 grid of linking lengths for the
nearby doubly complété galaxy subsample 2 in Table 3.1. Results are shown for three bins of true group masses,
for unflagged groups of at least 3 members (for both the extracted and parent groups), and further restricted to
primary groups in the completeness and reliability panels. Pairs of linking lengths corresponding to previous are
also shown as red letters (H: Huchra & Geller 1982; R: Ramella et al. 1989; t: Trasarti-Battistoni 1998; E: Eke

et al. 2004; B: Berlind et al. 2006; T: Tago et al. 2010; R: Robotham et al. 2011; T: Tempel et al. 2014).

Fragmentation Merging Completeness Reliability

Figure 4.3: Same as Figure 4.2, but where the different rows correspond to different bins of extracted group
masses estimated from the virial theorem. The white zones show cases where the linking lengths led to no unflagged
groups extracted.



Fragmentation Merging Completeness Reliability

Figure 4.4: Same as Figure 4.2, but for the distant doubly complété galaxy subsample 6 in Table 3.1.

Fragmentation Merging Completeness Reliability

Figure 4.5: Same as Figure 4.4, but where the different rows correspond to different bins of estimated masses.



Figure 4.6: Global and local quality factors in a 16x16 grid of linking lengths for subsamples 2 (left) and 6
(right), in three bins of true masses Results are shown for unflagged groups (restricted to primary groups for
Qiocai) of at least 3 members (in both the true and extracted group). The symbols are as in Figure 4.2

The results of our tests are shown in Figure 4.2 and Figure 4.8. The LLs of the different grouping
studies listed in Table 4.1 are shown, except for Merchân & Zandivarez (2002), whose LLs nearly
overlap with those of Eke et al. (2004).

4.4.1 Group fragmentation and merging

Figure 4.2 indicates that, for the nearby doubly complété subsample (number 2), fragmentation
only affects the massive TGs (up to «80% of them for popular LLs), while Figure 4.3 shows that,
for popular LLs, the fragmentation is lower (10-30%) at high EG mass, hence fragment masses
tend to be small (typically 20-40% fragmentation at small and intermediate estimated masses).

On the other hand, the distant doubly complété subsample behaves in almost the opposite
manner: fragmentation is most important at the lowest TG masses (roughly 50% fragmentation,
Figure 4.4) and is independent of estimated EG masses (at roughly 20-30%, Figure 4.5).

In any event, fragmentation tends to decrease with greater linking lengths, as expected, al-

though it decreases somewhat faster with increasing b± than with increasing b\\.
Since merging is the dual of the fragmentation, one expects the level of merging to vary in the

opposite way as fragmentation. Indeed, Figure 4.3 and Figure 4.5 indicate that merging becomes
more important at higher estimated masses, respectively reaching up to 90% and 65% for high
estimated masses with popular choices of LLs in subsamples numbers 2 and 6. However, Figure 4.2
and Figure 4.4 shows that the merging fraction increases only slowly with TG increasing mass,
with typically 15-40% (increasing fast with 6j_) of the TGs being merged with other ones. Finally,
merging decreases with smaller LLs, especially with smaller bj_.

Figure 4.6 and Figure 4.7 show the Qgiobai quality indicator that combines fragmentation and
merging into a single parameter. These figures show that decreasing b± leads to a better tradeoff



Figure 4.7: Same as Figure 4.6 but in bins of estimated masses. The white zones show cases where the linking
lengths led to no unflagged groups extracted.

between fragmentation and merging, i.e. that the decrease of merging with decreasing b± has a

stronger efîect than the increase of fragmentation with decreasing b±: the optimal Qgiobal is often
reached for bj_ < 0.02.

4.4.2 Galaxy completeness and reliability

Figure 4.2 and Figure 4.4 indicate that completeness is very high (> 99%) at low TG masses,

and decreases to lower values (60 — 99%) at high TG mass. A weaker trend occurs when EG

mass is substituted for TG mass (see Figure 4.3 and Figure 4.5). Since high mass TGs are less

complété, their estimated masses should be smaller, and the EGs with high masses will be the

lucky complété ones, which explains the weaker trend of completeness with EG mass. Note that

we are only considering primary groups of at least 3 members. The transverse and LOS linking

lengths hâve roughly the same impact on galaxy completeness.

The reliability of the group membership decreases with increasing EG mass (Figure 4.3 and

Figure 4.5): regardless of the subsample, the reliability is 80-90% for low mass EGs, but only
50-85% for high mass EGs. The value of has virtually no effect on galaxy reliability. We will

discuss this lack of convergence of the reliability with in Section 4.5.

Galaxy reliability also decreases with the masses of the TGs, but the trend is weaker (Figure 4.2

and Figure 4.4): as the reliability decreases from 85-95% to 60-90%, roughly independent of the
subsample.

The right panels of Figure 4.6 and Figure 4.7 show that, again, the transverse LL appears to

be more décisive than the LOS one when combining galaxy completeness and reliability into a

single local quality factor.



Figure 4.8: Bias (//) and inefficiency (<r) of the group masses estimated by the virial theorem (Equation 4.15) on
our 16x16 grid of linking lengths, in four bins of extracted group richness (we do not consider extracted groups
for which the parent true group has < 3 members). The bias and inefficiency are respectively computed as the
médian and half 16-84 interpercentile of log10 (Meg/Mtg) Results are shown for primary, unflagged groups.
The left and right panels are respectively for galaxy subsamples 2 and 6. The symbols are as in Figure 4.2. The
white zones indicate linking lengths with no unflagged groups extracted.

4.4.3 Mass accuracy

The left columns of the two panels of Figure 4.8 show that the primary EG masses recovered by

the FoF algorithm are systematically biased low: for the popular choices of LLs, the bias (//) is
as strong as —0.6 ± 0.2 dex at low multiplicity (Neg < 6), decreasing to 0.0 ± 0.3 dex at high
multiplicity (tVeg > 30).

The right columns of the two panels of Figure 4.8 indicate that, even if the biases could

be corrected for, the masses cannot be recovered to better than 0.8-0.9 dex at low multiplicity,

improving to 0.2 dex at high multiplicity. The inefficiency (a) is minimal for b± æ 0.05 (within a

factor 2) and b\\ æ 1.0 (low richness) or ^1.0 (intermediate and high richness). For transverse
LLs within 40% of b± = 0.1, the inefficiency is not very insensitive to hy.

The situation becomes even worse when fragments are included in the statistics. In this work,

we hâve separated the accuracy of the group masses with the occurrence of group fragmentation.
But observers cannot tell if a group is a fragment or a primary EG.

4.5 Conclusions and Discussion

Before testing the FoF algorithm using a mock galaxy catalog in redshift space, we first argued

on physical grounds (Section 4.2.1) that the normalized transverse linking length, ought to be
b± « 0.10 (slightly increasing with richness) to extract 95% of the galaxies within the virial



Figure 4.9: Variation of the mass bias and reliability
as a function of 6|| for b± — 0.1, for subsamples 2 (left)
and 6 (right).

Figure 4.10: An example of group and halo for fejj =
20.8 and b± = 0.1 for subsample 4. The width of the

cône is exaggerated by a factor of roughly 5 for illustra

tive purposes. Outer and inner circle colors respectively

refer to the TGs and EGs. The horizontal green and red

Unes respectively indicate the maximum redshift, zmax

and the redshift where galaxies are flagged for being close

to zmax. Some galaxies of the red EG, whose TG is the

black one, are flagged for being close to zmax, hence the

group would not be considered in our tests.

radius of NFW true groups. We also argued that, restrictiug the galaxies along the line-of-sight

to ±1.65 av (95% of the galaxies) for groups defiued to be 200 times denser than the critical density

of the Universe, requires b\\/b± æ 11, hence ~ 1.1. These LLs are estimated from our mocks
that are based upon the Millennium-II simulation that had adopted Qm = 0.25. Converting to

Qm = 0.3 yields b± = 0.11 and by = 1.3. Finally, estimating the contamination by interlopers, we
predict between 80% (NFW model extended outwards) to 90% (NFW model truncated to sphere
plus random interlopers) galaxy reliability.

We then built a mock redshift space galaxy catalog with the properties of the flux-limited

SDSS primary spectroscopic sample, from which we extracted 2 subsamples that are doubly

complété in distance and luminosity (Chapter 3). We then extracted groups from both of these

subsamples, running the standard FoF algorithm for 16 x 16 pairs of linking lengths. In eacli case,

we measured the fraction of true groups that were fragmented in the FoF extraction process, the

fraction of extracted groups that were built by the merging of several true groups, as well as the

bias and inefficiency with which the group masses were extracted. Moreover, we computed the

completeness and reliability of the galaxy inembership relative to the spheres of radius r2oo in

which the true groups are defined.

We analyzed group fragmentation, merging, galaxy completeness and reliability, mass bias

and inefficiency for two doubly complété subsamples and in bins of true and estimated mass or

estimated richness (for the mass accuracy).

We found that massive true groups are more prone to fragmentation, as expected, but that,

for popular choices of linking lengths, the probability of fragmentation is greatest (30%) at low



estimated mass, i.e. the fragments are of low mass. The process of fragmentation of rich (massive)
groups is similar to images of large galaxies being preferentially fragmented by automatic image
extraction pipelines (e.g., De Propris et al., 2007).

Group merging is low at low estimated mass, but increases drastically to reach 40-90% (for
popular linking lengths) at high estimated mass. Galaxy completeness is high, typically > 80%.
Galaxy reliability is typically 75 to 90% depending on group mass.

Our analytical prédiction of 95% completeness for b± ~ 0.10 is only met for groups of high
true masses (Figure 4.2 and Figure 4.4). Groups of low mass will hâve more concentrated galaxy
populations, which will lead to smaller values of Max(5'j_)/r2oo5 hence smaller values of Also,
our analytical prédiction of 80-90% reliability for groups with bj_ = 0.10, = 1.1 is accurate for

groups of ail masses of the distant subsample (Figure 4.4). However, for the nearby subsample
(2), our predicted reliabilities are only accurate for groups of low true masses, but optimistic for
higher mass groups, for which R ~ 70 — 75%.

Group merging and galaxy reliability dépend little on 6||, especially at high transverse linking
length, b± > 0.1, where the galaxies are extracted to projected radii beyond r200) hence the

contamination by interlopers is mainly in the transverse direction. The lack of optimal b\\ for
galaxy reliability may seem surprising at first. We checked our analysis by measuring the reliability

for b± = 0.1, for a very wide range of by extending from 0.3 to 40. The top panels of Figure 4.9
indicate that the reliability does end up decreasing fairly fast beyond some large value of 6y ~ 6,
i.e. beyond the limits of Figure 4.2 and Figure 4.4. The second row of panels of Figure 4.9 show
a different behavior in bins of estimated mass. This is the conséquence of the estimated mass

increasing very fast with 5y, as shown in the bottom panels of Figure 4.9. The increase, with
increasing 6y, of the mass bias is roughly parallel to the corresponding decrease of the reliability
(in bins of TG mass). At low 6y, the reliability decreases fairly rapidly and the mass bias increases
rapidly (towards zéro), then both settle into an almost constant plateau in the range 1.4 ^ b\\ <; 8,
then both worsen rapidly up to 6y ~ 25, beyond which both saturate, because the longitudinal
link is so large that one reaches the minimum and maximum redshifts of the subsample, where

most groups are flagged. Massive groups that are built from TG merging can be fairly reliable if
the secondary TGs hâve negligible mass relative to the primary one. This explains why R remains

fairly high when M is high. The plateau around 6y« 3 appears to represent the range of optimal
longitudinal LLs.

An illustration is given in Figure 4.10, where a given EG lias reached the limits of the catalog

with a very large value of 6y. Figure 4.10 also shows that interloping TGs are highly clustered.
This may explain why increasing 6y has only a small effect on galaxy reliability: there is a void
behind the main TG (black outer circles).

While fragmentation, measured in bins of true group mass, decreases with increasing 6y, as
expected (Figure 4.2 and Figure 4.4), we find that in bins of estimated mass, the fraction of groups

that are (secondary) fragments increases with 6y (Figure 4.3 and Figure 4.5). We believe that
this is caused by interlopers increasing the group estimated mass (Figure 4.9).

The masses, estimated with the virial theorem (Equation 4.15) are a strong function of the
multiplicity of the extracted group. The estimated masses are systematically biased low, especially
for low extracted group multiplicities (typically by a factor 4!). Similar trends hâve been found
for FoF groups (Robotham et al., 2011) and for other, mostly dynamical, group mass estimators
(Old et al., 2014). The estimated group masses are inaccurate, even after correcting for the biases:
the typically errors are 0.8-0.9 dex at low multiplicity, decreasing to 0.3 dex at high multiplicity.

The optimal completeness and reliability of the galaxy membership lead to fairly extreme

linking lengths, i.e. bj_ < 0.1 and by > 2. However, the use of such a small transverse linking
length amounts to extracting the inner régions of groups, thus missing their outer envelopes.

Indeed, one notices that fragmentation worsens at increasingly lower values of b±. Therefore, our



attempt to define a local quality by combining galaxy completeness and reliability is of little use

if one wishes to recover galaxies out to close to the virial radii of groups.

In fact, the optimal linking lengths dépend on the scientific goal:

• statistical studies of environmental effects require higli reliability (say R > 0.9), accurate
masses and, to a lesser extent, minimal fragmentation.

• cosmographical studies of group mass functions require accurate masses, minimal group

merging and fragmentation.

• studies for followups at non-optical wavelengths (e.g. X-rays), benefit from high complété-
ness.

For statistical studies of environmental effects, it seems best to adopt b± ~ 0.06, b|| æ 1.0,
for which the reliability is roughly as high as it gets for the choice of b±: over 90% at low Meg

and over 80% at intermediate and high Meg- Then, the completeness is higher than 70% at high

estimated mass and much higher at low Meg- The mass inefiiciency is minimal, but with this

choice of LLs, there will be virtually no EGs with more than 30 galaxies in the distant more

luminous subsample (Figure 4.8).
This choice of LLs is close to that of Robotham et al. (2011), which may seem obvious since

both studies used some form of optimization of the LLs. However, the details of the optimization

criteria are somewhat different: Robotham et al. multiplied four criteria: basically the group com

pleteness and reliability, which bears some resemblance to our group fragmentation and merging,

but theirs is based on TG-EG pairs that hâve more than half their galaxies in cornmon, as well

as two measures of a combination of galaxy completeness and reliability, averaged over TGs and

EGs respectively. Our analysis differs in that we directly constrained group fragmentation and

merging, as well as galaxy completeness and reliability for primary fragments, and finally mass

accuracy.

For cosmographical and other studies involving accurate group mass functions, it appears

best to adopt b± ~ 0.05, 6y ~ 2, as lower by increases fragmentation (Figure 4.3 and Figure 4.5),
while higher bu causes too high group fragmentation at high EG masses. This value of 6y ~ 2 is in
agreement with the intersection of the régions of (b±, 6y) space that optimize both the multiplicity
function and velocity dispersions obtained by Berlind et al. (2006).

Finally, for non-optical followups, for which galaxy completeness is perhaps the sole important

parameter, one should privilège large linking lengths, e.g. bj_ — 0.2, 6y ~ 2 — 4. However, one can
also adopt b± = 0.1, 6y ~ 2 — 4, for which the completeness is greater than 95% at ail masses and
for both subsamples.

Converting from Om = 0.25 (Millennium-II Simulation) to Gm = 0.3 (WMAP-Planck com
promise), 6j_ must be increased by 6% (Equation 4.4) to b± ~ 0.07 for the choices optimizing

environmental or cosmographical studies. Since b\\/b± is independent of Om at given A, 6y must
also be increased by 6%, i.e. to 5y~ 1.1 for environmental studies.

We finally note that while high estimated mass group fragmentation and merging dépends on

the particular doubly complété subsample, galaxy completeness and reliability as well as mass

accuracy dépend little on the subsample. Berlind et al. (2006) had similarly concluded that the

doubly complété subsample influenced little their tests of the group multiplicity function and the

accuracy of projected radii and velocity dispersions.

FoF grouping techniques can be used as a first guess for other more refined grouping methods

(Yang et al., 2005, 2007). In a future paper (Duarte & Mamon, 2014b), we will présent another
grouping algorithm, which is not an FoF, but is instead a probabilistic grouping algorithm that

is built upon our current knowledge of groups and clusters (partly from X-rays and independent

of FoF analyses of optical galaxy samples) and from cosmological N body simulations.
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5.1 Introduction

We showed in the previous chapter that the very popular grouping algorithm should hâve its

two linking lengths optimized, and that this dépends on the scientific goal of the group catalog

obtained. With these limitations, it is clear why Bayesian methods appeared. Indeed, with our

knowledge of the galaxy formation and évolution processes, it is possible to constrain better the

galaxy grouping. With the FoF algorithm, galaxies are selected in a pure geometrical way, and

their formation history doesn’t matter in this sélection, since only the over-density is relevant.

With Bayesian algorithms, it is possible to combine geometrical and physical approaches. The

history of galaxies is available by their observable properties such as luminosity, stellar mass,

morphology and is used to assign galaxies to a group, in complément of the geometrical information

from the density.

We already described Bayesian algorithms in Chapter 2, for example Yang et al. (2007) or
Dommguez Romero et al. (2012), where similar spatial methods to the FoF are adopted, with



priors on the density profile of galaxies inside halos to constrain the assignaient. But because

of observational uncertainties, model divergences, various incompletenesses..., the extraction

of groups from observational data will always be affected by these problems, and the galaxy
environment polluted by interlopers, creating biases in group characteristics. This leads to the

blurring of the modulation of galaxy properties with their environment and of our understanding
of intra-groups physical processes.

Recently, with the improvement of computer performances in terms of memory and CPU
power, it becomes possible to include many priors in the computation, and to use the most

computer-intensive applications of statistics. Since interlopers will still be problematic, the new

powerful computer era allows for probabilistic membership of galaxies in groups. Systematic er-
rors in galaxy surveys can be reduced or integrated in the grouping by probabilities. For example,

Liu et al. (2008) used a probabilistic FoF in a galaxy survey with photometric redshifts to avoid

the uncertainties inhérent to this method. Dommguez Romero et al. (2012) also used “responsibil-
ities” to improve the assignment of galaxies to groups and reduce the effect of interlopers on the

observable properties of groups. In Rykoff et al. (2014), galaxies hâve their probabilities based on
the group richness estimations.

It seems that using probabilities to describe the membership inside galaxy groups will be

inévitable, because of the systematic errors and biases présents in the actual and future galaxy
surveys. In particular, the modulation of the galaxy properties with their environment that we

want to extract from galaxy group catalogues should be less biased by interlopers if we use proba

bilities as weights. Indeed, interlopers, even if they are still présent in the group membership, will

hâve a low probability to pertain to the group, and their contribution to galaxy group properties
reduced.

Here is the starting point of our galaxy group algorithm called MAGGIE: Models and Al-

gorithm for Galaxy Group, Interloper and Environment. We combine our understanding from
the galaxy formation, using various models, to compute a probability for galaxies to belong to
a peculiar group, and use it in the algorithm for the group extraction. Then interloper effects
should be reduced in the characterization of the environment.

In the following sections, we will describe the algorithm and its implémentation, the application
to the SDSS and show its limitations.

5.2 Algorithm

5.2.1 Description

MAGGIE doesn’t assign a galaxy to a unique group, but it assigns a probability for this galaxy
to be in a given group (rather than being an interloper). With this principle, a galaxy is possibly
assigned to more than one group. The goal of MAGGIE is to obtain the properties of galaxy groups
in statistical and probabilistic senses. This allows users of catalogues generated by MAGGIE to

compute some properties of groups, weighting galaxies in accordance to their probability.
MAGGIE is organized in an itérative way in order to be self-consistent with the data being

analysed, as for learning algorithms. For this reason, we will describe the implémentation of

the algorithm in different steps. In what follows, we assume that we hâve a galaxy sample with
positions (right ascension RA, déclination DEC), redshifts, stellar masses or luminosities, apparent
magnitudes in a given band and absolute magnitudes. It’s the minimum set of data necessary.

Hl. We begin with seed groups before launching the itérative process. For this, we assume thatthe most massive galaxies (in stellar mass) are potential group centers. In an other implé

mentation, we use the luminosity of the central (the reason is explained in Section 5.5.4).
But, some intra-group physical process can lead to a false détection of the brightest galaxy
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as the central oiie (Ebeling et al., 2013). From the galaxy sample, we sort by decreasing

stellar mass (or luminosity) ail galaxies and we start with the most massive (most luminous)
as centre of a potential group.

2. For ail our potential groups, we need to get our potential members. We are just interested

in the virial sphere (of radius r2oo) of groups. Since the unique information on groups at this

step is the central galaxy, we use its stellar mass (or luminosity). At first itération, we use

the relation between halo mass and central stellar mass from Behroozi et al. (2010) (and a

simple ratio relation for luminosity). We also tried other models to see the influence of this
choice (see Section 5.5.1). For subséquent itérations, we use the same relation, but learned

from our previous itérations. We can estimate the virial radius of the group assuming that

the halo mass corresponds to the virial mass. We refer to this method as MAGGIE-m.

Alternatively, we can use central galaxy luminosities to estimate the virial radius, and we

call this method MAGGIE-L. Tlien, we select ail galaxies in a cône generated by an angular

séparation corresponding to the virial radius physical size at the group’s redshift (the redshift
of the central galaxy).

3. We compute probabilities that galaxies are members of a given group. The probability is

computed assuming a density profile of galaxies and dark matter in groups, and a velocity

distribution of the galaxies. Considering that galaxies form in dark matter halos, we assume

that galaxies in groups must follow a NFW distribution (Navarro et al., 1996), which fit well
the dark matter particles distribution in ACDM simulations, and assume that the galaxy

number density profile is proportional to the mass density profile. The detailed computation

of the probability is provided in Section 5.3.

4. We compute the weighted (by probability) multiplicity, stellar mass and luminosity of
groups. For this we use a probability threshold pmem to décidé if a galaxy is associated

to a group, i.e. if we take the galaxy for the estimation of the group stellar mass and lumi

nosity. This parameter will be optimized by tests. The way of computing these properties

for a group is the following: we sum, using the probability weights, luminosities and stellar

masses of galaxies that hâve an absolute magnitude less than the limiting magnitude defined

by the sample, in order to be complété.

5. Using the stellar mass of the central galaxy, we can estimate the halo mass of the group.

We use the abundance matching technique which assumes that there is a one-to-one relation

between the central stellar mass of the group and its halo mass. It allows to compare the

cumulative distribution functions (CDFs) of the two quantities. Indeed, with this assump-

tion, the number of groups above a given central stellar mass (or luminosity) is the same
as the number of groups above the corresponding halo mass. If we consider a certain halo

mass function, we can predict the halo mass of a group with a given central stellar mass

(or luminosity) by comparing the CDF of the data with that predicted by the halo mass
function.

6. With the halo mass found for group by this abundance matching, we go back to step 2 and

recompute groups with the halo mass-central stellar mass relation previously obtained. This

process goes until there is a convergence in the number of groups.

If we follow this schéma, there will be as many groups as galaxies. To avoid the inhérent

fragmentation introduced by this method, we used another threshold probability to reduce the

number of groups. We allow a galaxy to be a central galaxy only if its probability to belong to

another group (already determined in the loop for potential galaxy groups) is smaller than the
threshold pcen. For this comparison, we consider the maximum probability among ail groups in



Figure 5.1: Schéma illustrating a galaxy group observed from the point of view of an observer. The line-of-sight
is represented by the line, corresponding to the principal axis of the cylindrical coordinates used. R is the projected
radius, r the distance of a given point P to the origin of the group in O, and 2 the line-of-sight distance, or the
height of the point in the cylindrical coordinates. The view is face on the plane defined by the position vector of
the point P and the cylindrical axis.

which the galaxy maybe a member. In this way, we exclude while iterating over potential groups
a large number of central galaxies, and avoid the fragmentation.

5.3 Membership probability

The membership probability is 011e of the most important aspect of MAGGIE. Since the observer

studies galaxy groups only in projected phase space (hereafter pps), for defîning the probability,

we consider the location in the pps of the group with its projected radius R and the line-of-sight

velocity vz. The probability of membership to a given group, is the number of cases where we

are inside the halo relative to the total number of cases. The pps density g is this définition of

“number of cases”. We can write our probability p to be in the halo as:

p{R,vz)
9h (#, vz)

gh (R, vz) + gi (R, vz)
(5.1)

where g^ is the pps density inside the group and gi is the foreground/background pps density, i.e.
the interloper density.

In Section 5.3.1, we describe how to compute the probability with a general density profile
and then in Section 5.3.2, we provide some analytical forms for several models.

5.3.1 General case

To compute the projected density of galaxies in the group we hâve to assume some models for

their phase space distribution. So we use the distribution function / of the System, expressing the

number of galaxies whose phase space coordinates are lying in the range [r, r + dr] and [v, v + dv].

/ (r, v) drdv = p (r) dxdydz hsr> (v) dvxdvydvz = d6N (5.2)

where /13D (v) is the 3D velocity distribution of galaxies in the group.

If we consider the line of sight as the axis of cylindrical coordinates, the density profile of
the System will be simplified. For the velocity distribution, we transform Cartesian coordinates

to spherical coordinates. Since both Systems are related only by rotations, the Jacobian of the

variable substitution for velocities is unity. Hence:

/ (r, v) drdv = p (r) RdRd(j)dz hsr> (v) dryd-i^dity (5.3)



By définition, the projected phase space density is just the number N of galaxies with their

pps coordinates in the ring defined by the range R + dR and vz + dvz.

gh (R, vz) 2'KRdRdvz — d2 N (5-4)

We can see that r2 = z2 + R2, so dz = r/\/r2 — R2dr. Now, to hâve the projected density on
the sphere, we just need to integrate over the line of sight and angles:

r'I'K C^max(r) frvir To(v')
gh(R,vz)= / / /(r,v)drdv = 2 / 2n - =RdRdr h3D (v) dvrdvedv^ (5.5)

Jo Jz= 2max(r) Jr=R V» — R

We need to integrate on the velocities too in order to get the line-of-sight component, and

retrieve the pps. For velocities, we make a transformation of coordinates: we pass to spherical

coordinates to the coordinates defined where v\ and v$ are perpendicular to the line of sight
defined by the z axes. The rotation matrix between both coordinates System is:

vr\ /cos 6 sin0 0

vq = sin# cos 9 0

M \ 0 0 1
(5.6)

so the Jacobian of the transformation is unity:

-27T r-Z

gh (R, vz ) =
max(r)

/ (r, v) drdv = 2
’rvir ro(r)

27r—t===RdRdrh (vz) dvz
<r=R Vr2 - R2

= S (R) (h(vz\R,r))Los (5.7)

where h (vz) = jf^ h3D (v) dvidv^
For simplifying the équations later, we use a normalization as in Appendix B. With this

normalization, we can write:

( D A Mvir 1 f1
gh (R,vz) - ~^2 '

xp(x)

rr- 2tt R/r™ yjx2 — (A/rVn-)'
dxh (vz) (5.8)

The density of interlopers is extracted from Mamon et al. (2010), with:

2"

9i (R,vz) = -gi (R, \vz\) = - f Aexp 1 (Vz
2 l (Ti + B

Mv

.2
vir ’

= 9i (R,vz)
vir*

(5.9)

5.3.2 Analytical forms

In the following, we will refer to different équations of Appendix B.

If we assume that the groups are in dynamical equilibrium, the velocity distribution of galaxies

should follow a Maxwellian (Gaussian) distribution. This assumption can be discussed (Beraldo

et al., 2014).
In this case, the velocity distribution can be written:

, 1 / 1 ( v2r , «I + %
k!t(v) = rfxexphb+

{271)' <JQ<Jr en
(5.10)

assuming that we split the three components of the velocity into three independent velocity
distributions. We can transform:

2 J»„,2 \

2 ] = aVz + bvf + cv^ + 2vzvid± + ve+\ I __..2 , ,..2 , ...2
a? a

(5.11)



for the coordinate System defïned in Section 5.3.1 with:

a

b

c

d

f cos2 6 sin2#\

\ J
f cos2 9 sin2 6 \

V c72q <J? J
1

(5.12)

Putting Equation 5.11 in canonical form and integrating Equation 5.5 over v$ and v\ we get (Ma-
mon et al., 2013):

h(vz) (5.13)

since:

(5.14)

and (3 is the anisotropy profile (3 — 1 — oj/cr2.
Finally, the projected density of galaxies in a halo is:

9h (Æ, vz)
Mvir rl xp{x) 1

2«rvirl:vir jR/r.,n ^,.2 _ v'2t:'T:î
(5.15)

where we work with velocities in units of the virial velocity vv, i.e. vz — vz/vv[r, and we use the
dimensionless expression of the line-of-sight velocity dispersion (see Appendix B for details). The
ratio between the interloper and halo pps density is:

* (R, vz)= ^ i2^)3/2g,(^,|iî,|)
9h acosh(^-J (xr COSh u) p (xr COSh u) / ± ~2

’° <7Z (xr, Xr COSh u) ^ \ 2 aî(xR,xR coshu)

(5.16)

where we used the transformations x — xr cosh u and xr = R/rvir, to obtain a better convergence
for the numerical intégration. Simplifications corne from the expression of the virial velocity

,2 _
GNL

and the dimensionless expression of the radial velocity dispersion deduced from the

Jeans équation (see Appendix B).

5.3.3 Comparisons with simulations

To test our computation of the probability, we compared our theoretical expression with the dark

matter particles from the Borgani et al. (2004) simulation used in Mamon et al. (2010) to deduce
the pps density of interlopers. For this, a sélection of high mass dark matter halos was performed
on the cosmological simulation. Then, particles coordinates were translated to make the center

of the halo the origin of the simulation box. A fictitious observer is placed on the side of the

box, and ail observed coordinates in phase space are computed from the observer point of view.
The coordinates of ail particles in the cône defined by the observer and the radius of the halo are

computed in units of the virial radius and velocity. This allows to easily define a particle as an



interloper or not, with their three dimensional radial coordinate r. If in units of the virial radius,

r ^ 1 means that the particle is belonging to the halo, else it’s an interloper. We can stack ail

the particles from ail the cônes of each halo to create an unique halo, with numerous partiales,

used as a test case for our models and to estimate the interloper pps density.

In Figure 5.2, we show the contours of the halo membership probability (in gray for the

simulation, in black for our model from the Equation 5.16) in the pps. For this model, we used

a Gaussian velocity distribution of particles in the halo, with the anisotropy from Mamon &

Lokas (2005) that fit the anisotropy profile of dark matter particles, and we assumed a NFW

density profile. Moreover, we assume that the characteristic radius of the anisotropy of Mamon

& Lokas (2005) is equal to the a radius at which the slope of the density profile is —2. The theory
fits relatively well the data from the cosmological simulation, except that the simulation is more

sharply truncated at high velocity than is our model.
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Figure 5.2: Contours of halo membership probability from the simulation of Borgani et al. (2001) as stacked
by Mamon et al. (2010) and our model. In gray the contours obtained with particles from the cosmological
simulation, and in black the theoretical expectation from Equation 5.16. The color scale reflects the probability

from the simulation. The theoretical probability agréés with the cosmological simulation except for high velocities

along the line-of-sight.

Here, we assume that a NFW density profile, since the dark matter particles of the Borgani

et al. (2004) simulation follow this distribution (see Mamon et al. (2010)). But we are interested
in groups of galaxies and they must follow the saine distribution to apply our model. We used

the galaxies from the z = 0 output of the Guo et al. (2011) semi-analytical code and checked
that they follow a NFW density profile too. But as expected, there is a bias between the galaxies

and dark matter particles. Indeed, if we fit the concentration of the NFW profile in Guo et al.

(2011) and compare it to the model of Macciô et al. (2008) obtained from dark matter particles,
we can see that the two functions are different. A conséquence is that the link between halo

mass and concentration must be adjusted for galaxies in our model. The différence between the

two concentration-mass relations is shown in Figure 5.3. But we note that the modulation of

the concentration with the halo mass is dépendent of the cut-off in luminosity applied to the

galaxy sample, making the use of a spécifie density profile for galaxies inadéquate. We checked

the influence of this choice on MAGGIE by comparing the performance with the concentration

from Guo et al. (2011) and from Macciô et al. (2008). No noticeable impact is observed in the



Remark 2

We may think that the observed discrepancies in Figure 5.2 are the conséquence of a bad

choice for the ratio of anisotropy radius to scale radius b/a (see Appendix B) or for the
concentration, but changing this value doesn’t reduce them. The contours for the simulation

seem to show a cut-off in the line-of-sight velocity dispersion for high velocities, as if the

distribution is truncated above a given velocity. A functional form with such a property is

the generalization of the Gaussian called the g-Gaussian or Tsallis distribution. Assuming

such a velocity distribution, the computation of the probability involves several intégrais,

Iwhich is CPU time consuming. Instead, we can fit a g-Gaussian on the line-of-sight velocity
distribution from the simulation and incorporate it in the probability computation. But

unfortunately, this doesn’t solve the problem. It seems that the number of particles with

high velocities is too low to correctly define the probability to be in the virial sphere of the

halo, and to compare it to theoretical expectations. The velocity distribution model isn’t

1 involved.

completeness, reliability and fragmentation, except on stellar masses and luminosities of groups

but without being significant.

5.4 Results on mock catalogues

5.4.1 Description

For tests, we proceed as described in Duarte & Mamon (2014a); Yang et al. (2007) and Chapter 4.
To link a selected group by the algorithm in redshift space to the true halo in real space, we use

the most massive galaxy of the group. The true halo of a group is the true halo to which the

most massive galaxy in the selected group (referred as the central galaxy) belongs to. With this
link, we compute the completeness and reliability of groups relatively to this halo in real space.

We define statistics used to quantify the performance of MAGGIE. The completeness C is the

fraction of galaxies in the real space group (limited to the virial sphere) recovered in the selected
group. The reliability R is the fraction of galaxies in the selected group présent in the real space

group (limited again to the virial sphere). A primary group is defined as a selected group whose

central galaxy matches the central galaxy of the real space associated group, remaining groups

are fragments. A complété and detailed description of the statistics can be found in Duarte &

Mamon (2014a) and Chapter 4.
The reliability in the case of MAGGIE is more complex since we use probabilities for galaxies

in groups. To take advantage of our probabilities, let us give a new définition for the reliability.

In Duarte Sz Mamon (2014a), we wrote:

fi=T^TEG = ^m (5.17)
^ l^ieeg

But many galaxies belong to our group with this définition and so we weight galaxies in the

previous sum by their probabilities in order to hâve a cohérent définition of the reliability with

our probabilistic détermination of groups. Our new définition in the case of a probabilistic galaxy

group algorithm as MAGGIE is:

R =
TGOEG ZàeTGnEG Pi

Ylie EG PiEG
(5.18)
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Figure 5.3: halo concentration as a function of halo mass for Macciô et al. (2008) in green and concentration
of the galaxy population (NFW fit) from Guo et al. (2011) with Mr ^ —15 in blue. In low mass halos, the
concentration of galaxies is much higher than that of dark matter particles.

For the completeness, since the probability doesn’t introduce a bias in the sélection relatively

to the real group, we keep the computation as described in Duarte & Marnon (2014a), without
weighting by probabilities.

Without probabilities, galaxies in groups form a complété partition of the survey since groups

can be seen as disjoints sets of redshift space. But with MAGGIE and probabilities, a galaxy can

be in multiple groups so the sets of groups are overlapping, and the dual analysis in Duarte &

Mamon (2014a) for the merging of real space groups cannot be correctly done. This is because the
central galaxy of a real space group can potentially belong to several extracted groups in redshift

space.

5.4.2 Optimization

MAGGIE dépends on two probability thresholds: the first we call central probability (pcen) con-
straining the fragmentation of galaxy groups by allowing galaxies to be the central galaxy of a

potential galaxy group, the second one the membersliip probability (pmem)> defining a threshold
to consider or not a galaxy in a group for the computation of its properties.

In fact, a galaxy is considered as possible central galaxy while looping through ordered galaxies

only if the galaxy has ail its probabilities in its other groups lower than the central probability

threshold. For membersliip, galaxies are “assigned” to a group (i.e. they are assumed to hâve a
probability to be in this group) only if their probabilities are above the threshold membersliip

probability.

Checking the dependence of MAGGIE to these parameters is done in the saine way as we

performed in Chapter 4. We computed the mean completeness, reliability, fragmentation and

merging, as well as the quality factors we previously defined, for a range of threshold probabilities
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(PcentrabPmembership) £ [l0~15,0.4]2. Fortunately, results are not dépendent on these thresholds. A
small variation is observed only for very high values of these probabilities (above 0.1). Increasing
these probabilities leads to relatively worst statistics, while keeping them small is better, but

without significant variations.

We selected pcen — pmem = 0.001. Since this value is relatively small, we should notice that it

is équivalent to defining the membership in the virial cône constructed with the virial radius of

the group. The sélection of background galaxies, far away in velocities, is avoided by Pmem, since

with this value, when galaxies are beyond 4-5 uVir from the group, they are not considered. The

same happens for pcen where galaxies associated to a group through their probabilities cannot be

potentially the center of a new group.

When working with non-probabilistic algorithms, the set of galaxy groups is a complété par

tition of the space formed by galaxies. In other words, groups are non-overlapping and fragmen
tation is avoided naturally if the assignaient is doue properly. But with probabilities and our

method, removing these threshold parameters, there are as many groups as galaxies. Setting the

two thresholds to zéro makes MAGGIE behave like non-probabilistic algorithms. Note that if we

set Pmem = 0, each galaxy group will be formed of its entire virial cône, which is not désirable.

The introduction of threshold probabilities is a way to make a “compatibility” between MAGGIE

with its soft assignment and non-probabilistic grouping algorithms and their hard assignments.
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5.4.3 Results

The following tests resuit from the application of MAGGIE on the perfect (no observational errors,
no K-corrections) mock catalogue whose construction is described in Chapter 3. In this case, we

assume the halo mass function extracted from the Millennium-II outputs, with an NFW galaxy
number density profile identical to that for dark matter particles in their halos. The influence of

these assumptions will be developed in Section 5.5, in particular taking observational errors in
our mocks into account.

We compare MAGGIE with the popular FoF grouping algorithm (see Chapter 4). The set of
linking lengths used for the FoF is the one defined in Duarte & Mamon (2014a) for an optimal FoF,

close to the parameters used by Robotham et al. (2011), with values of (6j_, b\\)= (0.07,1.1). This
will let us see if the our probabilistic Bayesian approach improves the galaxy grouping compared

to a simple geometrical approach such as FoF.

5.4.3.1 Fragmentation

Estimating the fraction of groups in the sélection that are the resuit of the fragmentation of a

real group is important since an observer using a group catalog can’t distinguish the primary

group from the other. In Figure 5.5, we show the fraction of fragmented groups (defined as in
Chapter 4) as a function of the estimated group mass. This allows to see the expected fraction of

fragmented groups by an observer using a group catalog with only information on the estimated
halo mass.

MAGGIE shows much less fragmentation than FoF, for ail estimated group masses, such

log10 M/Mq ^ 12 (nearby sample) or 12.3 (distant sample). This is due to the combination of
the abundance matching that gives good estimâtes of group virial masses and the ordered search

of groups from galaxy stellar masses. But fragmentation increases with the decreasing estimated
mass, since with groups of few members, it is easier to make a mistake in the sélection of the

central galaxy of the group.
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Figure 5.4: The cumulative distribution functions of the completeness F(> C) and reliability F(> R) for
bins of true halo mass for two sub-samples of the mock catalogue (nearby in left and distant in right). The
colored histograms are for FoF (blue), MAGGIE-m with no observational errors (dark green), MAGGIE-L with
no observational errors (light green), MAGGIE-m with 0.2 dex errors on stellar mass (red) and MAGGIE-L with
0.04 dex errors on luminosités (gold). Details for latter cases are in Section 5.5.4. Results are shown only for
primary groups (i.e. groups that are not fragments of real space halos) with the same filter as in Chapter 4.

5.4.3.2 Completeness and reliability

Figure 5.4 shows the cumulative distribution functions of the completeness C and reliability R

as defined in Section 5.4.1 for MAGGIE and the FoF algorithm. Results are shown only for

two doubly complété sub-samples (see Chapter 3), different with Chapter 4, where we use now

catalogues 2 and 5. Only two bins in true group virial halo mass are used. MAGGIE (in dark

green) shows a better behaviour in completeness for ail masses in both catalogues than FoF (in

blue), while the reliability is équivalent to the optimal FoF, except for high masses for the more

distant catalogue, where FoF is more reliable (médian reliability is 0.90 for FoF and 0.85 for

MAGGIE).

5.4.3.3 Virial masses

In the Figure 5.6, we compare the estimation of the virial mass by application of the virial theorem

for FoF algorithm and by abundance matching for MAGGIE. As we already discussed, the virial

theorem isn’t very suitable in recovering the virial masses of groups when they hâve a small mass

(between 1012 and 1O13M0). We can’t really see this in the bias of the estimation between the
two algorithms. On the other hand, the scatter in recovered masses of groups in the distant

sub-sample is lower with MAGGIE (0.25 dex) than with FoF (0.35 dex), except for M ^ 1O15M0,
where MAGGIE suffers from uncertainties in the abundance matching caused by small number

statistics at the high end. In the nearby sub-sample, both MAGGIE and FoF produce scatter in
virial mass of æ 0.3 dex.

5.4.3.4 Group luminosities and stellar masses

We test the deduced stellar mass and luminosity of selected groups for each algorithm. For non-

probabilistic FoF, they are just the sum of the galaxy contributions. But for MAGGIE, we use

the computed probabilities inside the group to weight the stellar mass and luminosity of each

galaxy. If X is the property of the group, X{ the property of the galaxy i in the group with the



groups that are fragments in bins of esti- 1°gioMe9t/-Mo i°gioMrat/M®
mated mass of extracted groups, for cata
logues 2 and 5. Colors are the same as in (b) Bias and dispersion for virial masses
Figure 5.4.

Figure 5.6: Comparison of the virial mass estimated by the
galaxy group algorithms and the true masses obtained from the

Millennium-II simulation, for catalogues 2 and 5. The top panel

shows the comparison and the bottom panel bias and the dispersion
of the logarithmic différence of masses. Colors are the same as in

Figure 5.4.
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In Figure 5.7 and Figure 5.8, we compare the true luminosity of groups (computed assuming
a perfect sélection of groups in the sub-sample) with the luminosity computed with the galaxy
membership of each algorithm. In the bottom panel, we show the bias and the dispersion of the

différence between the true and estimated luminosities. These figures show the same for stellar

masses. The optimal FoF algorithm has a lower bias than MAGGIE, while the scatter is lower for

MAGGIE at high masses (13.3 ^ log10M/M© ^ 14.7) thanks to the probability weighting that
reduces the effect of interlopers.

5.5 Discussions

A simple comparison of MAGGIE with the most popular and geometrical grouping algorithm
shows that MAGGIE is well adapted in recovering galaxy groups from redshift space catalogues.



(a) Comparison for group luminosities

Figure 5.7: Comparison of group luminosities in r band and stellar masses with the real space for primary
groups in catalogues 2 and 5.. Colors are the same as in Figure 5.4.

Extracted global properties of groups are less biased and catastrophic cases avoided by using

probabilities as weights to smooth the estimation. The membership inside these groups is better

too since the completeness shows that MAGGIE selects a large part of galaxies from the real

group, without polluting it by interlopers (as shown by the reliability). Moreover, the importance
of interlopers is reduced still by using probabilities. The abundance matching technique is also

a very good way to contribute to this galaxy group extraction, since the virial mass estimation

relies only on group or galaxy properties, which are observables certainly biased and uncertain,

but with less importance than biased geometrical informations (velocity dispersion, richness... ).
On the contrary, a geometrical based group finder such as FoF performs well when the number of

galaxies is important because interlopers act as a small noise in the group membership, even with

their relatively important presence at high halo masses for the FoF algorithm. Hence, velocity

dispersion and harmonie radius are more efficient with high richness and the virial theorem thus

becomes more précisé.

This comparison is done in the case where the data on galaxies is perfect, in the sense that

there are no observational errors and we perfectly know the various scaling relations used in our

models. But the behaviour of MAGGIE is unknown in the real situation of an observer, with

a limited knowledge in these models. In the following sections, we study the robustness of the



(a) Bias and dispersion for luminosities (b) Bias and dispersion for stellar niasses

Figure 5.8: Bias and dispersion for group luminosities and stellar masses for catalogues 2 and 5. Colors are the
same as in Figure 5.4.

performance of MAGGIE under pertubations, i.e. in cases where we modify our initial estimate
of virial radius, aw well as the halo mass function, and when we take into account observational

errors in the galaxy luminosities and stellar masses.

5.5.1 Prior halo mass — central stellar mass relation

We tested the choice for the initial relation between the halo mass and the central stellar mass of

groups to see its effects on MAGGIE. We used the relation from Behroozi et al. (2010) against a
simple ratio relation with different values for the ratio. Extracted groups are insensitive to this

choice, if we keep this choice with physical values. The itérative process corrects a bad assumption
in our initial guess.

5.5.2 Influence of the halo mass function model

The estimation of the virial mass (radius) is a crucial step of MAGGIE (and other Bayesian
methods). A biased estimate of group masses will affect observed trends of galaxy properties with
the global environment.

Our mass computation needs to be précisé in the largest mass range possible, and independent

of the pollution of groups by interlopers. The abundance matching technique seems to be a good
way to estimate the virial mass of galaxy group halos. In principle, it seems more biased than

using the luminosities or stellar masses of groups, but since the central galaxy in a selected group
is well recovered, this is a quantity less affected by interlopers and so the halo mass estimation

will be good enough. But since there is a saturation of the relation between the halo mass and

the central stellar mass at high halo mass, we expect that the estimation will be poorer for high
masses than other methods.

Most halo mass functions described in the literature fit the FoF mass of the halos instead of

the spherical over-density mass, which is related to the virial mass of the halo. Since we used

the galaxy catalogue from Guo et al. (2011), whose semi-analytical code was applied onto the
Millennium-II run, we fit the virial halo mass function directly on its output. We show it in

Figure C.2 where we plot the FoF mass function (in red) and the virial mass function (in black)
for halos in the Millennium-II simulations at redshift zéro. Virial masses are lower than FoF

masses so we don’t use existing models of halo mass functions displayed too on the figure. The
way of computing such halo mass functions is described in Appendix C.



(a) Catalogue 2 (b) Catalogue 5

Figure 5.9: The cumulative distribution functions of the completeness and reliability for comparison of the per-
fect case of MAGGIE-m in green with the halo mass function model of Warren et al. (2006) in orange and Courtin
et al. (2011) in red. The filter applied on groups is the same as in Chapter 4. The three different halo mass
functions lead to similar group memberships.

(a) Group halo masses (b) Group stellar masses

(c) Group luminosities

Figure 5.10: Group properties compared to the perfect case of MAGGIE-m (no observational errors) using the
halo mass function measured in the Millennium-II output, for both Warren et al. (2006) and Courtin et al. (2011)
halo mass functions. Colors and filter are the same as in Figure 5.9. As seen in Figure 5.9, différences are not

really significant.



The robustness of MAGGIE against the choice of the halo mass function is important because

this choice will affect the completeness and reliability of our selected groups and their properties

too in a non obvious way. Indeed, the halo mass function is a prior in MAGGIE and doesn’t reflect

necessary the reality. We apply an équivalent of the perturbation method to test the stability of

MAGGIE under a bad choice of model. We used two halo mass functions very different of the

halo mass function measured on the Millennium-II simulation: Warren et al. (2006) and Courtin
et al. (2011). Those models are fits of the FoF halo mass function from different cosmological
simulations. This is not the saine as the virial mass but idéal for a perturbation test. The resuit

of the application of MAGGIE with these models is shown in Figure 5.9 and Figure 5.10.

Comparisons are performed against the perfect case of MAGGIE-m (no observational errors)
in green with the halo mass function directly fitted on the Millennium-II, perfect stellar masses

and luminosities for galaxies. In orange, halo mass function of Warren et al. (2006) and in red,
that one of Courtin et al. (2011). The influence of the halo mass function is very small on the
completeness and reliability for ail catalogues and for group properties. The fragmentation is not

shown but behaves like in other plots, not affected by the choice of halo mass function.

5.5.3 Influence of cosmological parameters

The distances used by MAGGIE dépends on the choice of cosmological parameters. For example,

when computing the projected radius of a galaxy at the redshift of the group (i.e. its plane-of-

sky distance to group center), we implicitly need to compute the luminosity distance which is

cosmology dépendent. We assume in our case a fiat Universe and in this case, it is computed

using just elliptic intégrais (Eisenstein, 1997; Liu et al., 2011) Moreover, the different analytical
halo mass functions tested in Sect 5.5.2 ail assumed the same cosmological parameters as in our

mock (based on those from the Millennium-II simulation). The observer may choose a slightly
different set of cosmological parameters. We therefore now run MAGGIE on our mock, assuming
slightly incorrect cosmological parameters, to test how sensitive is its performance on the correct

choice of cosmological parameters.

We ran MAGGIE-m with the“true” cosmology (from Millennium-II simulation) and two“false”
cosmologies (Planck and WMAP9) to compare results. As expected, the importance of the cos

mology is low, of the order of statistical errors, as seen in Figure 5.11 and Figure 5.12.

5.5.4 Influence of observational errors

Our way of sorting galaxies by mass uses our prior on the galaxy formation scénario. Indeed,

the stellar mass of the central galaxy of a dark matter halo is correlated to its virial mass. But

the relation is saturated at high halo masses. So the intrinsic précision is affected by this choice.

Moreover, estimâtes of stellar masses from observations are not very précisé and can significantly
differ according to the chosen model for computing them. We show the différences between several

spectral models présent in the SDSS data base, with the bias and dispersion for each distribution,

in Chapter 6.

Typically, the errors in the estimation of stellar mass is roughly 0.2 dex. We introduce such

errors in the stellar masses of the mock catalogue to estimate the effect of the bad estimation. We

generated Gaussian errors without bias and dispersion of 0.2 dex. The application of MAGGIE-m

on these galaxy mock catalogues is shown on Figure 5.4, Figure 5.7, Figure 5.8, Figure 5.5 and

Figure 5.6 in red.

The effect of a 0.2 dex error on stellar masses (red) is to slightly increase group fragmentation,
which remains well below the level found for the FoF algorithm. The completeness of MAGGIE-m

is reduced to a level between that of the perfect MAGGIE-m and the optimal FoF. The effect of

stellar mass errors on the reliability is less important since probabilities reduce the importance



(a) Catalogue 2 (b) Catalogue 5

Figure 5.11: The cumulative distribution functions of the completeness and reliability for comparison of the
perfect case of MAGGIE-m (no observational errors) (green) to different cosmologies orange for Planck Collabora
tion et al. (2013) and red for Bennett et al. (2013). Errors in the cosmological parameters don’t hâve a significant
impact on the group extraction.
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Figure 5.12: Group properties compared to the perfect case (no observational errors) of MAGGIE-m for
both Planck Collaboration et al. (2013) and Bennett et al. (2013) cosmologies. Colors are the same as in Fig
ure 5.11. Again, the différences are not significant.



of interlopers introduced by the decrease in completeness. In fact, the reliability is, surprisingly,
slightly higher once the stellar mass errors are incorporated. Finally, galaxy group properties

(luminosity, stellar and halo mass) are not very affected by these errors in stellar masses, except
for high halo masses, where they are biased high and more scattered. In this case, if the most
massive galaxy has not its mass well estimated, the estimation of the halo mass is bad and

probabilités can’t “correct” this effect properly. This is visible in Figure 5.6 where, for the nearby
sub-sample, the bias in the estimation of the halo mass is very important for high group masses
and the dispersion is increased in ail group masses.

One may wonder whether it would be better to use another tracer for the halo mass such as

the central luminosity, which is less affected by observational errors. Despite its very high quality,
the SDSS survey is not immune to errors on galaxy luminosity or stellar mass. Writing the r-band
absolute magnitude of a galaxy as:

Mr — r — ji(z) — kr(z) — Ar (5.20)

where p. is the distance modulus, while r, /cr, and Ar are the apparent magnitude, k-correction

and extinction, ail in the r band. The photometric errors are expected to be less than 0.05 mag,
i.e. less than 0.02 dex on luminosity. The error caused by the uncertain distance can be written:

e(log Lr)
1

ln 10
0.056 dex (5.21)

for e(u) ~ 30 km s 1, cr(up) ~ 200 km s x, and 2 > 0.01 (where the assumption of zéro différence
in peculiar velocity between the galaxy and the observer dominâtes the error). Finally, according
to Figure 2 of Chilingarian et al. (2010), the intrinsic scatter in the k-correction is of order

0.015 mag, i.e. 0.006 dex. Admittedly, the k-correction of Chilingarian et al. suffers from some

catastrophic errors, but since 99.9% of the galaxies with 2 < 0.12 hâve k-corrections between

—0.15 and 0.25, it suffices to impose these limits to kr. Finally, since SDSS spans high galactic

latitudes the uncertainty o the Galactic extinction is of order 0.075 mag (the médian error of
SDSS galaxies), i.e. 0.03 dex. The uncertainty on internai extinction is more difficult to measure,

but can be estimated to be 0.1 mag, i.e. 0.04 dex. Combining these 6 errors (photometry, redshift,
assumption of no peculiar velocity, k-correction, Galactic extinction and internai extinction) in
quadrature, we deduce that the error on luminosity is of order of 0.08 dex.

The inclusion of the luminosity instead of stellar mass in the group extraction process of
MAGGIE is quite simple. The abundance matching between the virial mass and the central stellar

mass is replaced by an abundance matching between the virial mass and the central luminosity.
Intrinsically, using luminosities instead of stellar masses in the inference of group virial masses is

expected to be less précisé because the relation between the luminosity of the central galaxy and
the halo mass is more saturated for high mass groups. But the loss at high mass should be offset
by the 2.5 times greater précision.

Comparing the perfect case of MAGGIE using galaxy luminosity (light green) to the per-
fect case of stellar masses (dark green) shows, as expected, that the completeness is worse for

luminosities (the reliability is a little better since the completeness has decreased). But group
properties are not really affected still by the use of probabilities to avoid bad membership. The

fragmentation is worse too since groups aren’t entirely recovered (missing galaxies are considered

as belonging to fragment groups). For group mass estimations, the bias induced by using lumi
nosities is comparable to the perfect case of stellar masses. It is only in the dispersion that we

observe the counterparts, specifically for high group masses, due to the uncertainties introduced

by the saturation in the relation between the central luminosity and the virial mass in this range
of halo masses. But it is somewhat better than using stellar masses with errors.



Adding errors following a Gaussian distribution without bias and a dispersion of 0.08 dex on

luminosities, we compare it (light orange) to the perfect case of the luminosity. As expected,
introduced errors do not hâve a real impact, because the behaviour of light orange and light green

curves are roughly identical.

The négative point of using luminosities instead of stellar masses is that it seems to increase

the fragmentation of true groups. But this fragmentation remains lower than that found for the

FoF group. We should discuss a little how we make a match between the real space and the

observed space. To say which galaxy is the central of a group in the real space, we can’t directly

use the one given by Guo et al. (2011) since in our mock catalogue, there is a magnitude limit
removing a large number of galaxies not sufficiently luminous. The central is not necessarily the

most luminous of the group and the flux limit can possibly hide us the central while the group is

visible with help of some of its galaxies. To defîne the central galaxy in real space, we use the most

massive in stellar mass of the group taking into account only galaxies within the complété sample

used. Without such a treatment, we could possibly increase the fragmentation artificially by a

lack of central galaxy in the sample. With MAGGIE-L, the central galaxy in extracted groups

has a strong chance to be the most luminous (not necessarily the most massive in stellar mass)
and the match with real space groups will frequently say that the central galaxy of the extracted

group is not the same as the true group, resulting in a frequent fragmentation in our tests. This
is what we observe in the results of MAGGIE-L.

A possible conclusion is that observational errors are very important when working with

Bayesian galaxy group algorithms based on physical priors, contrary to geometrical based algo-

rithms, where such uncertainties do not influence their performances.

5.5.5 Conclusion

MAGGIE perforais quite well in comparison to the optimal FoF. The use of probabilities to

recover group properties is very useful to reduce the effect of inévitable interlopers présent in the

group membership. But when applied on data with uncertainties, its performances are reduced

compared to tests with a perfect knowledge of the various needed observables. Although there are

some counterparts for MAGGIE on realistic data, we note that globally it perforais better than

the FoF algorithm applied on perfect data. The extracted membership is better than the FoF and

the virial mass estimation by abundance matching compared to the simple virial theorem used

generally with FoF.

This makes MAGGIE a suitable grouping algorithm to be applied on large galaxy surveys

such as the Sloan Digital Sky Survey (SDSS) and the Galaxy And Mass Assembly (GAMA).
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6.1 Introduction

An application of MAGGIE on a real galaxy survey implies an analysis of the galaxy sample. We

must understand the various incompletenesses it suffers in order to be able to correct them. Here

we describe the analysis we performed on the Sloan Digital Sky Survey, with the various problems
we encountered.

6.2 Analysis

6.2.1 Définitions

In SDSS, stripes are bands of observations along great circles of the survey. Each of them is

composed of six parallel scanlines (of 13 arcmin wide) with gaps of approximately the saine width

between them. Two stripes make a single stripe of 2.5°. Each scanline include ail the data (in
ugriz), and is divided in fields (that can overlap). So when accessing an observation at a given

position in the sky, we access a spécifie field. A given observation is completely defined by its run

number, the number of the camcol of the scanline and by the field number.

The pipeline of the SDSS is applied for the objects extraction. They are detected as pixel

over-densities relative to the background. With this method, multiple real and different objects

can be seen as a single object. They are linked by their pixels as galaxies using Friends-of-Friends

algorithm. A deblending algorithm is then applied to résolve child objects from their parents



(defined as the fîrst détection). Then a résolve algorithm is applied to extract the best object
when multiple fields are overlapping.

There are numerous object flags that are useful to select well observed galaxies. In the

PhotoObjAll table, there is a clean for a predefined sélection of the most common good flags,
which facilitâtes the sélection of galaxies.

There can be many problems with the photometry, with cases of bright galaxies with sky

levels not well estimated and missing faint galaxies for example. Most of these known problems

are corrected in the recent releases (DR9 and DR10).

Old releases worked with a spectrograph of 640 fîbers, with collisions at 55", while the new

BOSS survey works with a 1000-fiber spectrograph but with a greater collision size of 64". The

coverage of the old releases should be used for the new BOSS, so its better to use latest releases.

Moreover, the pipeline used for the spectrum had changed and improved along releases.

Following définitions given in the SDSS website, we can define two coordinate Systems in the

survey.

Great Circle: This coordinates System is define with two angles (/q v). Coordinates are relatives

to one stripe so they can be used when working with galaxies inside a stripe région.

Survey Coordinates: It’s an other System similar to celestial coordinates but “centred” on the

contiguous block of galaxies of the survey. Coordinates are written (À, 77). The range of
7r TT

these coordinates is: — — < 77 < — and —7r < A < tt.

We will work only with survey coordinates as they allow us to easily define a mask for the SDSS.

The celestial coordinates and survey coordinates are the same System of coordinates, except that

one is a particular rotation of the other. The relations between the two Systems are:

6.2.1.1 Survey coordinates to celestial coordinates

5 — arcsin (cos Àsin (77 + ^0))

a = atan2 (sin A, cos A cos (77 + ôo)) + ao

(6.1)

with (ao.ÆoVj) = (185°, 32.5°)(ct j) = (0,0),^,.

6.2.1.2 Celestial coordinates to survey coordinates

The inverse transformation is:

77 = atan2 (sin (5, cos J cos (a — ap)) ~

À = arcsin (cos ô sin (a — ao))

(6.2)

with (ao,£o)(a,ô) ~ (185°, 32.50)(Q}($) = (0,0)(Ar?). Periodic conditions must be applied to angles
found by the latter équation:

r] —>• 77 + 180° A —> 180° — À if 77 < —90° or 77 > 90'

77 —> 77 — 360° if 77 > 180°

A -> A — 360° if A > 180°

(6.3)
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6.2.1.3 Stripe number

Stripes hâve a constant width of 2.5° along the g coordinate. So, stripe number n of a galaxy

witli r] coordinate is:

n - floor
r] + 58.75e

2.5°
(6.4)

6.2.2 Galaxy sélection

Many tables in the SDSS save galaxies and other objects properties extracted from images of the

survey. These tables are the results of different sélections in objects extracted in images. When

Crossing objects between images of the survey that overlap, there are some différences in positions

for the same object. So there are possibilities that an object is observed twice or more. In many

of tliose tables, there is no object duplicated.

In the SDSS database, the Galaxy view is a sélection from the PhotoPrimary for objects

flagged as galaxy, with type=3. The Galaxy view contains the photometric parameters (no
redshifts or spectroscopic parameters) measured for resolved primary objects. But we hâve other
useful informations to link with tables that give us photometric and spectroscopic redshifts. There

is the specobjid entry to link with spectroscopic redshifts in the table SpecObj which doesn’t

contain duplicates (it’s a clean table of SpecObj Ail with clean redshifts). If specobj id=0, the

galaxy doesn’t hâve a spectroscopic redshift (the galaxy wasn’t spectroscoped). The objid allows
to link to the Photoz table which contains ail photometric redshifts for galaxies in the Galaxy

table. Estimation is based on a robust fit on spectroscopically observed objects with similar colors

and inclination angle. There is also the PhotozRF where estimâtes are based on the Random Forest

technique. Galaxies in the SDSS are limited to mr < 17.77 and a given surface brightness. So we

need to apply the same flux limitations when selecting galaxies on the Galaxy table. A possible

SQL query for selecting galaxies in this table and link them with redshift tables is for spectroscoped

galaxies:

SELECT G.ra, G.clec, G.petroMag_u, G.petroMag_g, G.petroMag_r,

G.petroMag_i, G.petroMag_z, G.specobjid, G.objid, Z.z, Z.Zerr

FROM Galaxy AS G

JOIN SpecObj AS Z ON Z.specobjid=G.specobjid

WHERE G.specobjid!=0

AND G.petroMag_r-G.extinction_r<17.77

and for galaxies which couldn’t be spectroscoped:

SELECT G.ra, G.dec, G.petroMag_u, G.petroMag_g, G.petroMag_r,

G.petroMag_i, G.petroMag_z, G.specobjid, G.objid, Z.z, Z.Zerr

FROM Galaxy AS G, Photoz AS Z

WHERE G.specobj id=0

AND G.objid=Z.objid

AND G.petroMag_r-G.extinction_r<17.77

Stripe limits are given in the table StripeDef s but they represent the limits that were planned

at the beginning of the survey, not the actually observed limits.

F.STS



Some planned régions aren’t still observed, so we need to define other limits in A coordinates

for incomplète stripes. We fînd, by hand, the new limits of stripes which contains spectroscoped
galaxies. Now, the survey mask is like in Figure 6.1. We will consider just galaxies in this mask
in order to find groups in the SDSS.

1.0 0.5 0.0 .5

A radians]

Figure 6.1: Galaxies in the SDSS DR10 with stripes limits defined by hand. The red lines limits of the stripes
make the SDSS mask used to identify edges.

6.2.2.1 Flags in the SDSS

Galaxy photometry can hâve some troubles in the SDSS. In the general case, those objects are
flagged with clean property which indicates by 1 that the photometry is OK and by 0 when there
is a problem. Details of the problems are in the bit flag. But for groups, we need to select ail

galaxies, even if they are not clean, or our groups will suffer incompleteness in their membership
and their physical properties such as luminosity, stellar mass... will be biased.

However, we hâve to take into account the error on the redshift estimation using zErr. For
photometric redshifts, if zErr is too high, we can use nnAvgZ, which is the average redshift of
galaxies in the neighbourhood of the considered galaxy. It can be better if the photometric redshift
is strongly different from its value.

SpecObjAll contains duplicates and bad data. But SpecObj contains just clean spectra. The

held zWarning can be used to décidé if we keep a redshift or not.

6.2.3 Fibre collision estimation

We need a sample of galaxies for which we can easily characterize borders and where ail galaxies
are présent given the flux limit of the survey. But there is the problem of missing galaxies due to

fibre collisions. But our algorithm is tested on a “perfect” mock catalogue. In order to know the



behaviour of the algorithm with these problematic galaxies, we need to implement the effect of

fibre collisions in our mock catalogue.

In the SDSS, galaxy spectra are obtained on fibers using a plate of 1.5° diameter. But on the

plate, the number of fibres is limited. Moreover, each portion of the sky can’t be spectroscoped

multiple times, because the SDSS had to cover a predefined portion of the sky in a fixed number

of years. Although spectroscopic runs inay overlap, there are galaxies that can’t be spectroscoped.

Indeed, while fibres collect spectra in a 3" diameter field, their coatings prevent two fibres of lying

close than 55" from one another. When galaxies are doser than this distance, one (or more) of
those galaxies aren’t spectroscoped. We can see this fibre collision effect in Figure 6.2, where

we hâve taken the nearest neighbour of a galaxy on the celestial sphere, and determined the

différences in angular positions and redshift between the two galaxies. As expected, the number

of galaxies that are doser than 55" is much less than what would be extrapolated from greater

séparations. There are still some galaxies because the overlapping of runs allows to observe galaxy

spectra below this limit.

Figure 6.2: Distribution of spectroscoped galaxies in the SDSS DR8 in angular size and redshift différences with
the nearest neighbour galaxy.

Nevertheless, the dense régions with more than one galaxy per 55" diameter circle are partially
incomplète in the SDSS spectroscopic sample.

We tried to implement this sélection effect in our mock catalogue. For this, we computed the

local density in the field, taking ail galaxies (spectroscoped or not) in the neighbourhood of 1.5°

around each galaxy, and at the same time, we détermine the fraction of galaxies that do not hâve

a spectroscopic redshift, to see the relation between spectroscopic completeness and photometric

galaxy number density. We expect to deduce a relation between the density field and the fraction

of fibre collisions. In the mock catalogue, we compute the same density field and we apply the

spectroscopic completeness relation estimated in the SDSS sample to the mock. We hâve to

remove galaxies that are close to survey edges, because otherwise, there are missing galaxies and

the spectroscopic completeness will be affected. Edge galaxies are those lying doser than 1.5 deg

from the survey edges, which we measure in practice by generating XXX random points within a

circle of 1.5 deg radius around each galaxy.

We didn’t see the trend we expected with the density field, so we thought that it can be due

to the large area in which we compute the fraction of spectroscoped galaxies and we ran the same

with a radius of 0.3°, but without success too.



Remark 3

We can generate samples of points at an angular distance d to a point at position (ao, ôo)
using formulas of the spherical triangle. If we define a triangle by the pôle, the point (ao, 5o)
and the point whose we want coordinates (a, J), we can write the following relations using
the spherical triangle and its dual:

sin S

sin Sq cos 7

sin <$o cos d + cos <5o sin d cot 7

cos £0 cot d — sin 7 cot (a — ao)

(6.5)

where 7 is like a polar angle, which hâve ail the values between 0 and 2ir. We can rewrite:

5

a — ao

arcsin (sin <5q cos d + cos Ôq sin d cos 7)

sin 7 \
arctan

cos <$o cot d — sin cos 7

(6.6)

There are problems at pôles. For a 70 limit, angles can’t be recovered with above formulas.

Indeed, the problem appears when tan Aa —> 00. So:

cos cot d — cos 70 sin Æq — 0 (6.7)

implying:

cosyo =

1

tan d tan £0
(6.8)

So to handle these limit cases, we summarize the correction for the différences in right
ascensions by:

Aa —> Aa + 7r if sign (<5q) cos 7 ^ sign (£q) cos 70

(6.9)

Another way to draw circles on the sphere is to consider the point for which we want to

know celestial coordinates around a given angular distance as the pôle of a new coordinate

System. In this System, points at a given distance of our central point are just points with

7r/2 — ô and a running between 0 and 2ir. We now can détermine cartesian coordinates of

those points in this System and apply a rotation to go from the “real” System to the System
where the central point is the pôle. This can be easily done if we know the axis of rotation

and the angle using quaternions, which is numerically more efficient than Euler angles.

Moreover, including photometric redshifts in the mock catalogue and in MAGGIE is very
complex. For example, we measured the bias and dispersion of the distribution of différences

between spectroscoped and photometric redshifts in the SDSS. Figure 6.3 shows that while the

dispersion remains roughly constant, the bias increases with the spectroscoped redshift. So sonie

effects are not still under control when computing photometric redshifts, and we should avoid

their use in galaxy group algorithms when possible. In the case of surveys where spectroscopic

redshifts are not available, the photometric redshifts should be as clean as possible.



Figure 6.3: Bias (yu) and scatter (cr) of zphot — -zSpec-

Figure 6.4: Détermination of the area of the SDSS for our sélection with a Monte Carlo process. Results
converge on a value of 2.1993 ± 0.0001 steradians (i.e. roughly 7220 ± deg2).



6.3 Coverage of the SDSS

For many computations in this thesis, we need to détermine the solid angle covered by our galaxy

sample. In the SDSS, the mask we constructed allows us to do it easily by a Monte Carlo process.

First, we generate a number N of points around a point of coordinates (<ao, <So) with a maximal
angular séparation 9max which is larger than the maximal angular séparation in our sample. The

fraction of points falling inside the mask gives us the fraction of the generated area corresponding

to the mask. This area is just S = max JQ27r sin 6d6d(/) = 2ir (1 — cos#max). We ruade this
calculation for different cône angles 9max and for different number of points to see if we hâve a

convergence in the value of the area. Figure 6.4 shows that our geometry has a solid angle of
7220 ± ldeg2 but this required five simulations with 108 points.

r ————————————— v

Remark 4

y Generating points uniformly on the celestial sphere around a point of coordinates (c*o, #o)
to an angular distance d can be done by assuming that this point is the upper pôle of an

other spherical System. In this situation, points follow 0 ^ 6 ^ d and 0 ^ 0 ^ 2ir, assuming

spherical coordinates and not celestial one. The azimuthal 0 coordinates are generated as

I 2ttC7i where U\ is a random variable following an uniform distribution between 0 and 1. The

latitude 9 coordinates, follow ^p(0) = -sin#^ and are generated by 9 = arccos(2[/2 — 1),
II where U2 is a variable following an uniform distribution with values between 0 and 1.

Then, the points are rotated by quaternions to (cko, £o)- The rotation axis is just the cross
product between the pôle vector and the vector defined by (ao^o), and the rotation angle

6.4 Galaxy stellar masses

In SDSS, contrary to coordinates, magnitudes or redshifts, stellar masses are not measured by

the SDSS pipelines. Instead, several teams hâve applied stellar population models to the spec-

tra and corrected their stellar masses from the area subtended by the spectroscopic fiber to the

entire galaxy, using the apparent magnitudes within the fiber (fiberMag) and that extrapolated
to the entire galaxy (petroMag or modelMag). Indeed, contrary to coordinates, magnitudes or
redshifts, the stellar mass is not a direct observable. Its estimation is based on the application of

various stellar population models on the galaxy spectrum observed by the SDSS. Several models

exist, but they do not provide the saine estimation for a given galaxy. In Figure 6.5, we compare

eight models to hâve an order of the inaccuracy of the stellar mass: FSPSGranWideDust, FSPS-

GranWideNoDust, FSPSGranEarlyDust and FSPSGranEarlyNoDust from Conroy et al. (2009),
PassivePort and StarFormingPort from Maraston et al. (2009), PCAWiscMll and PCAWiscBC03
from Chen et al. (2012) and MPA-JHU from Brinchmann et al. (2004); Kauffmann et al. (2003);
Tremonti et al. (2004).

The principal discrepancies between the models corne essentially from the various stellar pop

ulation synthesis (SPS) models involved in the fit of the galaxy spectrum, necessary for the stellar

mass estimation. But each model has also some internai variations. For example, Conroy et al.

(2009) assume an early star formation in galaxies for its FSPSGranEarlyNoDust (without dust



extinction correction) and FSPSGranEarlyDust (with dust extinction correction), while FSPS-
GranWideDust and FSPSGranWideNoDust assume an extended star formation history. As we

can see, différences are relatively important: models using different SPS hâve large dispersion

in their estimation, while when using the same SPS, stellar masses are cohérent. Some models

are also biased between each other, but bias can be corrected and not considered in our analysis.

Generally, models agréé to better than 0.3 dex, i.e. errors on individual masses are of 0.3/\/2 = 0.2
dex. In particular, the MPA-JHU masses agréé with ail others to typically better than 0.2 dex in
a.

6.5 Final galaxy sample

Ail previous sections are showing something important in the SDSS data: observational errors

can be important, and the automatic processing of this data sometimes leads to false détections,

artefacts..., making analysis and corrections complex.

Fortunately, recently in their FoF analysis of galaxy groups in the SDSS-DR10, Tempel et al.

(2014) had to deal too with such problems and the contamination they introduce. Major problems

are stars classified as galaxies, nearby large galaxies fragmented into several galaxies or poor

photometry of some galaxies due to bright stars or bad sky level estimation in the neighbourhood.

They performed an impressive filtering on the sample by visually checking 30000 galaxies that

were potentially problematic galaxies. Tempel et al. (2014) thus checked the following:

• 10000 apparently brightest galaxies (in r band). For galaxies brighter than mr < 13.5,
about 10% of the objects were spurious. For galaxies 13.5 < Mr < 14.5, about 1% were

spurious entries; this fraction decreases with luminosity;

• 5000 intrinsically brightest galaxies in the sample (< 1% were spurious);

• 3000 intrinsically faintest galaxies in the sample (to ensure the correctness of the faint-end

of the luminosity function);

• ail the sources with the spectroscopic class QSO;

• ail the objects with bestobjid missing or not GALAXY. For these objects, they used

fluxobjid if the matched photometric object was classified as a galaxy;

• ail the objects for which the différence between r band point spread function (PSF) magni
tude and model magnitude was smaller than 0.25 (thus further excluding some of the stellar
sources in the catalogue);

• ail the galaxies with the différence between r band Petrosian and model magnitudes greater

than 0.4;

• ail the galaxy pairs that were doser than 5' (in order to remove double/multiple entries);

• the entries where the colour indices g — r, r — z, and g — i had extreme values.

Finally, Tempel et al. (2014) removed around 600 galaxies, while 1400 other galaxies were
flagged as having a bad photometry. We decided to use their galaxy sample, since it covers

exactly the same area we use and their conscientious clean up of the SDSS-DR10 is difficult to

surpass.
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Figure 6.5: Comparison between stellar mass models applied onto galaxies from SDSS. Contours show the
offsets in units of the scatter a. Ordinates and abscissas are the logarithmic stellar masses of galaxies in the solar
units. The upper left box shows the bias (//) and dispersion (cr) of the logarithmic différence between both models.
The models are FSPSGranWideDust, FSPSGranWideNoDust, FSPSGranEarlyDust and FSPSGranEarlyNoDust
(Conroy et al., 2009), PassivePort and StarFormingPort (Maraston et al., 2009), PCAWiscMll and PCAWiscBC03
(Chen et al., 2012) and MPA-JHU (Brinchmann et al., 2004; Kauffmann et al., 2003; Tremonti et al., 2004).



6.5.1 Stellar masses

Stellar masses are a major component of our algorithm, but Tempel et al. (2014) did not work
with them, letting us the choice of the stellar masses to use. In Figure 6.5, we show that there

are large différences between available models in the SDSS database. Estimations of some models

are different from the other and should not be used. A way to deal with this problem is, for

each galaxy in the sample, to use the médian of the stellar mass for ail models. But sometimes,

we don’t hâve access to the stellar mass of a galaxy and removing it from the sample will create

supplementary incompleteness. In such situations, we provide by default the photometrically-

based stellar mass estimation of Bell et al. (2003). Those fitting formulas allow to get the stellar

mass of a galaxy directly from its color and luminosity. Several colors are available to make the

computation. We show in Figure 6.6 the stellar mass distribution for several colors used on the

formula of Bell et al. (2003). The r — z color créâtes fewer outliers in stellar masses than other
bands. A possible explanation is that the magnitude bands involved in the computation are less

sensitive to dust extinction and thus provide a more accurate estimation of stellar mass. So, we

adopt the stellar mass from r — z color for those galaxies without spectral mass estimâtes in the
SDSS database.

Figure 6.6: The distribution of stellar masses for
galaxies on the SDSS with the médian of models de-

scribed in Figure 6.5 and the default value for galaxies

without stellar mass estimations from Bell et al. (2003)
for different magnitude colors. The number of non-

physical values for stellar masses is reduced by using

the r — z color, less affected by dust extinction and
hence more accurate.

Figure 6.7: The distribution of stellar masses in so-
lar units for our SDSS galaxy sample once chosen the

r — z color magnitude as default estimation. There are

no high mass galaxies, but some stellar masses hâve un-

physically low stellar masses. We keep them to avoid in-

troducing supplementary incompleteness in the galaxy
sample.

The resulting stellar mass distribution from our galaxy sample is shown in Figure 6.7. No

galaxies hâve too high stellar masses, but a lot of them are very low and seems to not be physical.

But we can’t remove them without introducing an incompleteness hence we keep them in the

sample.

6.5.2 Star formation rate

Measures of the star formation rate suffer the same problems as stellar masses: the different

models (from the same teams) do not necessarily agréé with one another. The comparison of the

SFR measures (shown as the spécifie star formation rate, SSFR = SFR divided by stellar mass)
is shown on Figure 6.8. Some models disappeared: PCAWiscMll and PCAWiscBC03 do not

provide SFR estimâtes for galaxies, wliile PassivePort and StarFormingPort produce null SFR
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Figure 6.8: Comparison of several spécifie star formation rate (SSFR) measures from different models. FSPS
GranWideDust, FSPSGranWideNoDust, FSPSGranEarlyDust and FSPSGranEarlyNoDust from Conroy et al.
(2009) and MPA-JHU Brinchmann et al. (2004); Kauffmann et al. (2003); TYemonti et al. (2004). Two variants
exist for MPA-JHU according to if the estimation is based on the région of the fiber (suffixed fib) or is also
extrapolated (suffixed tôt). Axes are log10 SSFR in units of Gyr-1. We show also the bias and dispersion of the
log-difference of models. FSPS models are not very consistent between one another and we do not use them.

MPA-JHU are relatively cohérent but we should prefer the total estimation since with the fiber estimation not ail

the stellar population of the galaxy is probed.

n



values for too many galaxies. MPA-JHU has several estimâtes of the SFR: one based only on

informations acquired by the fiber pointing to the galaxy to get its spectrum (suffixed by fib) and
the other where an extrapolation of the informations is done outside the aperture (suffixed by
tôt).

Figure 6.8 shows that the SSFR values from the different FSPS models are not consistent with

one another, hence we did not use them in our analysis. The bias and scatter between both models

of MPA-JHU are small, making them good measure of the SSFR of galaxies. Our preference goes

to the total model, since the extrapolation used by the authors (at roughly constant SSFR) must
be better than none.

l°g10SSFR/Gyr-1

Figure 6.9: The distribution of SSFR from the MPA-JHU model. We can see a bi-modality in the distribution,
splitting galaxies into star forming and passive galaxies (the green dashed line shows the séparation).

The resulting distribution of the SSFR in Figure 6.9 shows that galaxies can be classified into

two categories: a star forming population where an important fraction of the galaxy stellar mass

is produced in a time scale of 1 Gyr and a passive one, where ongoing or recent star formation

represents a small fraction of its stellar mass. The green line in Figure 6.9 shows this limit. It will

be useful when searching if there is a modulation with the environment of the fraction of young

galaxies.
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Conclusions and perspectives

r

7.1 Conclusions

The optimal extraction of galaxy groups from redshift space is not an easy task. The observer has

to deal with observational errors, projection effects and bias to perform such an optimal grouping.

We hâve argued that ail previously created galaxy group algorithms are imperfect in the sense

that with their assumptions, there are some lacks in extracted groups, explaining the apparition

of two different kind of algorithms: Bayesian and geometrical.

We constructed a galaxy mock catalogue to test several grouping algorithms. We tested the

Friends-of-Friends algorithm to understand what is the optimal set of linking lengths. We conclude

that the choice of optimal linking lengths dépends on the science one wishes to do.

We created MAGGIE, a Bayesian galaxy group finder, using probabilities to constrain the

membership in groups. The virial radii are estimated from either the stellar mass (MAGGIE-m)
or the luminosity (MAGGIE-L) of the central galaxy. We show by tests on our mock catalogues

that both implémentations of MAGGIE perform better on perfect data with no observational

errors than the optimal FoF algorithm. We also show that Bayesian algorithms as MAGGIE are

more sensitive to the quality of observational data than geometrical ones as FoF. Nevertheless,

both MAGGIE-m (with 0.02 dex errors in stellar masses) and MAGGIE-L (with 0.08 dex errors
in observed luminosities) perform better than the optimal FoF, except at very high group masses,
where the abundance matching technique used in MAGGIE becomes inaccurate.

The application of MAGGIE on real galaxy surveys implies a full understanding of the possible

incompletenesses of these surveys. The analysis of the SDSS-DR10 indicates that correcting for

luminous and spectroscopic incompletenesses is very important but also very difffcult, since the

extraction of galaxy groups implies no missing galaxies. Incomplète membership can affect the

grouping, but also the informations obtained from their analysis. Indeed, environmental effects

we wish to observe in galaxy groups (essentially through the SSFR) can be very sensitive to the
way incompleteness is handled. Therefore, MAGGIE is a very powerful tool for galaxy group

analysis, but we hâve to apply it carefully on the analysed data or the interprétation of results
can be biased.

7.2 Perspectives

We plan to run MAGGIE on the SDSS-DR10 and publish optimized galaxy groups in different

doubly complété subsamples in redshift and luminosity, and to re-assess the modulation of sSFR,

etc... with local and global environments. If a modulation of galaxy properties is observed, we

will model it and apply it in semi-analytical codes to see if it reduces discrepancies between

observations and outputs of such codes. It will be a new measure of quenching of star formation
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with global and local environments. We also wish to run MAGGIE on the deeper GAMA redshift

survey to be able to extract the évolution in time of environmental effects on galaxies. We already

hâve some preliminary results on this modulation applying MAGGIE on the SDSS. Figure 7.1

and Figure 7.2 show the médian SSFR and the fraction of non-passive galaxies with local and

global environment for the SDSS, and the same for group catalogues of Tempel et al. (2014) in
Figure 7.3 and Figure 7.4. We use two complété catalogues to show this modulation: catalogue 3

to hâve sufficient statistics in number of galaxies and catalogue 5 to see the behaviour at larger
redshifts.

The modulation of the SSFR and fraction of young galaxies is very dépendent of the catalogue

of groups used. Since these results between the two algorithms, a deeper analysis must be done

to understand from where the discrepancies corne from.

Still for MAGGIE, we plan to improve the galaxy grouping by the use of the red-blue ségré

gation of galaxies. We can use some priors for the modulation of the fraction of blue galaxies in

groups to adapt the probability computation according to the class of the galaxy. Then, we can

iteratively reduce the impact of our initial model for the blue fraction by using the informations

obtained by MAGGIE to de-project the red-blue ségrégation observed in groups. For next itéra

tions, we can re-use our new real space model in the probability computation, and do it until the

convergence of memberships.

In parallel, we plan to launch a collaborative project with other grouping algorithm developers.

We will propose to each developer (and myself) to apply their algorithms to a set of mock catalogs
constructed in the same way to avoid cosmic variance on the results, for blind tests. Then, we

will run the same tests on each algorithm in order to hâve a clear understanding of the strengths

and weaknesses of each of them. It will be the first time that galaxy grouping algorithms will be
compared in the same conditions.

Given that imperfect grouping algorithms wash out the observable environmental effects, it

is also interesting to know if there is a lirnit to recover the real space modulation of galaxy

properties (such as spécifie star formation rate) with environment when trying to extract it from
projected redshift space. This can be easily done by imposing ourselves a modulation in the

outputs of galaxy formation codes, and then construct galaxy mock catalogues in redshift space.

We can then see if the imposed modulation is recovered in the observations, and if galaxy group
algorithms introduce biases in some cases. This will allow one to détermine the maximum level of

environmental dependence of star formation quenching that is consistent with the observations.

In continuation with the thesis work, we can try to theoretically explain the observed de-

pendency of galaxy properties with their environments. Using hydrodynamical simulations of

galaxies in groups, we wish to understand and model intra-cluster physical processes (ram pres
sure stripping, tidal stripping... ). This will imply running academie simulations independently

for each physical process, then model as a function of the different input parameters (local and
global environment essentially). And by trying to switch them on-off in semi-analytical codes of
galaxy formation, détermine their relative importance on galaxy properties (sSFR, bulge to disk
ratios... ).

fe fm
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Figure 7.1: Mean SSFR for galaxies with 10 ^ log10m» < 11 (left panel) and 11 ^ log10m* < 12 as a function
of the projected radius in units of virial radius (local environment) and of the virial mass in solar units (global
environment), for galaxy groups found with MAGGIE.
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Figure 7.2: Fraction of galaxies classified as star forming galaxies according the criterion of Section 6.5.2 for the
same range in stellar masses as in Figure 7.1, with galaxy group from MAGGIE.
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Figure 7.3: Same as Figure 7.1 but for galaxy groups from Tempel et al. (2014).
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Figure 7.4: Same as Figure 7.2 but for galaxy groups from Tempel et al. (2014).
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Appendix A.

MAGGIE's adventures

While developing MAGGIE, we tried several methods with the goal of improving the extraction of

galaxy groups. Many of those methods weren’t viable because of bad performances when applied

to the galaxy mock catalogue we constructed, or because their implémentation were too complex

by technical impératives or some physical knowledges not easily accessible. We describe some

of these methods in the following sections. We describe also what we think are possible future
improvements of MAGGIE.

A.l Flux-limited algorithm

A.1.1 Problem

For MAGGIE, we tried to create a flux-limited version of the algorithm to apply it to a large
range of luminosities and redshift.

The problem is that we must correct for missing low-luminosity galaxies. One way is to take

into account the luminosity function of galaxies in the sample, and with that assumption, one

can correct for the fraction of missing galaxies expected at a given redshift. Assuming that the

luminosity function is <j>(L), this fraction can be written:

/(W*))
JZL*W(L)dL

(A.l)

where Lum (z) is the minimal luminosity that a galaxy should hâve to be observed at the redshift
z, given the observed magnitude limit raüm of the survey:

Llim(z) = (4gM) i0o.4(Me-mi,m) (A.2)
with M0 the absolute magnitude of the Sun in the saine band as the limit magnitude mum,

dium (z) the luminosity distance at the redshift 2 and Lthresh is the minimal luminosity of the
sample.

We expect the galaxy environment to modulate galaxy properties such as their luminosity.
Correcting for missing galaxies in ail groups in the same way is in conséquence not idéal. We

can modulate the luminosity function with the group total mass by transforming the luminosity
function into a conditional luminosity function. Since our estimations of the virial mass M of the

group is good, we can use it as modulation parameter and so:

<f>(L) -+<t>{L\M) (A.3)



In this way, the previous missing fraction correction should be accurate enough for the cor

rection. But for this to work, we must be able to détermine properly this modulation with the
halo mass.

A. 1.2 Modulation of the luminosity function with the global environment

In galaxy groups, we separate galaxies into two classes: centrais and satellites. Centrais are

expected to be the most massive galaxies in groups, and probably the most luminous. A consé

quence is that if we can’t see the central galaxy, we can’t see other galaxies in the group and the

correction is not needed because we don’t know how to correct for incompleteness. So for the

correction, we simply need to constrain the distribution of luminosities in satellite galaxies. In

practice, we hâve to choose a functional for this conditional luminosity function (CLF) which can
be easily fitted and integrated to détermine the correction factor in our group luminosities.

There are two kinds of luminosity functions widely used. The Schechter function can be
written as:

0(i)=^*(è) exp(~è) (A-4)
where a characterizes the slope in log-space of the function, L* the luminosity of turn-off and </>*
is the normalization of the function.

In studies of the galaxy sample from the SDSS survey as in Blanton et al. (2005), the LF has
been well fitted by a double Schechter functional form which can be written:

4> (L)— (A.5)

This model allows for two galaxy populations in luminosity with different faint end slopes ai and

a2 but same high end luminosity cutoff L*.

Now we assume that the CLF hâve the same form of Equation A.5. The dependence on the

group mass M is done with the parameters of the double Schechter (DS). For example ai —>
ai (M\6), where the functional form of this dependence is not given explicitly here, and 6 is a
set of parameters relative to the function used to describe the dependence with group mass. The

number of parameters in 9 can vary greatly, depending on the function used.

The form of this dependence cannot be determined in advance when we want to fit the CLF

on the data. For example in the SDSS, we hâve to know in advance the properties of the groups

in order to choose a dependence for the parameters of the DS with virial mass. For testing the

viability of this method, we hâve to select a functional that describes correctly the modulation of

the parameters with the group mass, and samples of galaxies that can give us these informations

are présent in outputs of semi-analytical models (SAM). To validate this method of correction for
incompleteness, we test it on galaxy mock catalogues.

A. 1.3 Parameter estimation

When working with distribution functions, it is common and better to use the maximum likelihood

estimation. We define pi (L{\Q) as the probability to get the luminosity Li given the parameters

0, so it is a probability density function. To détermine it, we calculate the number of galaxies in

the sample which are between L{ and L{ + dL;, compared to the total number of points in the set:

Vl [Ll\G)dLldV =
d2N,

NM
(A.9)



Remark 5

We consider a set of independent data {X} drawn from distribution following the probability
distribution function p, dépendent of parameters 6. If we assume that observations are inde

pendent and identically distributed, the probability to obtain the given set of observations

given the parameters 6 is just the joint probability function of the observations. We define
it as the likelihood function:

c(e\x) = Y[Pdxt\e) (a.6)
i

To obtain the most probable parameters allowing the probability function p to correctly fit

the data, we need to find the given set of parameters 9 maximizing the likelihood function.

If we consider Bayesian statistics, the likelihood is defined as p(X\6) and the Bayes’s
theorem gives that we need to maximize for the given set of data:

P (6\X) =
riiPi(Vi|g)pw

p(X)
(A.7)

where p (6) is the prior distribution of the parameters and p (X) is the probability to obtain
the set of data. But we can see that our likelihood is in reality the posterior distribution

which is proportional to the likelihood in the définition of Bayesian statistics, multiplied by a

prior. If we take a constant for the prior (probability equal for each value of the parameter),
since the probability to obtain the data is constant, using directly the likelihood defined in

Equation A.6, the obtained parameters after the maximization are the same.

Numerically, ifs more convenient to use the logarithm of the likelihood in order to pre-

vent numerical problems when calculating the likelihood and the product in Equation A.6

becomes a sum. Often, numerical methods for optimization minimize of function instead of

maximizing it so we put a minus sign in front of it:

-log£(0|A) = -]riog(pj(Xi|0)) (A.8)
i

j

By définition of the CLF, which is the number of galaxies in the sample between L and L + dL

at a given halo mass M, we can write:

d27V = 0 (L\M) dLdV (A.10)

So we can write:

(j) (LAM)
Pi {Li\0) dLidV = JdLidV (A.11)

''tôt

and the total number of galaxies in this kind of halo (with mass M) is just:

r roc

JVtot= / / <fi(L\M)dLdV (A. 12)
JV J Lthres

where V is the volume of the galaxy sample, and Lthres is the minimal luminosity used for the

sample. If a physical superior limit of luminosity exists, it should replace the infinity in the

intégration to not allow a probability to hâve luminosities superior to this limit.



In the case of the simple Schechter, the total number is:

-Nitot — r ( 1 + <a,
-^thres

L*
<p*V

and for the double Schechter:

Nitôt r [ 1 + cr,
-^thres \ 4*2

+ 0ÎF 1 + “’
^thres

U
V

(A.13)

(A.14)

where T(a,x) — f£° exp (—t) £a-1d£ is the incomplète gamma function (see Appendix F for its
computation with négative values of a). Then the computation of the density function p is easy
in each case and we can do the minimization of the likelihood to estimate the best fit parameters
G.

Remark 6

There are many ways of doing such a minimization. When the probability density isn’t too

complex, 6 can be determined analytically. But in this case, with the DS, the incomplète

gamma function prevents us to do it in this way. So we are constrained to use numerical

methods in order to minimize the likelihood. Many algorithms exist to do this job like

Powell’s method, Newton-Raphson’s method, etc..., but they share the same problem: when

they find a minimum, we don’t know if it is the global minimum or if it is a local minimum.

The resuit dépends on the initial starting point of the algorithm in the parameter space.

Some other methods use Monte-Carlo methods to do a better exploration of this parameter

space, allowing some “jumps” to other régions in order to see if there isn’t a better minimum.

An example of such an algorithm is the simulated annealing method which implement the

cooling of a material, where the function to minimize becomes the energy of the System,

and a fictive température T is introduced to allow some température jumps. But it is not

always sure that we get the global minimum. Moreover, we can’t easily détermine errors

on the estimation of the parameters, except using bootstraps or jackknife techniques which

need many estimation of the parameters varying the sample which may be expensive in
calculation time.

Another way is too estimate the posterior distribution of the parameter 6 by using the

Markov Chains Monte Carlo method (MCMC). From it we can estimate the errors of choosing
6 since we can estimate the distribution of the parameters.

We tested a large number of such methods for the minimization and it seems to be the

Nelder-Mead (or simplex) algorithm that gives the better estimation of the best fît param
eters G. m

A. 1.4 Tests on mock catalogues

There are two steps to détermine the dependence of the luminosity function on the group mass.

First, we hâve to détermine what is the best functional form to fît this dependency which can be

done on a complété sample of galaxies. Secondly, we can see if we can recover this parametrization

and modulation with a flux-limited sample of this galaxies to know if the method works well when

applied in a real survey.



Mr

Figure A.l: Fits of the galaxy luminosity distribution of the Guo2010a catalogue in the r band. We fitted the
simple Schechter function in green and the double Schechter function in red over the data in blue. Values in the

legend correspond to the best fit parameters for each model, as described in the text.

A. 1.4.1 Complété sample

We use a sample of galaxies, complété in luminosity, taken from the outputs of the SAM of Guo

et al. (2011) applied on dark matter halos from the Millennium II run. We limit our sample of

galaxies from this catalogue to galaxies with a luminosity such that the absolute magnitude in

the r band is Mr < —15. For each galaxy, we hâve the virial mass of the halo (group) containing
this galaxy (this is a cheat in comparison with running a group hnder, but serves for illustrative
purposes).

First, we détermine what is the best model for the luminosity function. We tried to adjust a

simple Schechter and a double Schechter. Results are shown on Figure A.l. The double Schechter

fits better the data than the simple Schechter because we can constrain the two populations of

galaxies. We see that there is a faint population with a high faint end slope and a brighter
population with a lower slope. Différences with data for bright galaxies is due to the fact that the

number of galaxies with Mr < — 24 is very low, in some bins there is just one galaxy. As expected,

both Schechter and double Schechter functionals are adéquate models for the luminosity function.

We want to see the modulation of the parameters with the halo mass. We take galaxies in

bins of logarithmic halo mass, and we compute the parameters that fit well the data in each, as

previously. This modulation is represented in Figure A.2.

A.1.4.2 Flux limited sample

With a flux-limited sample, we just need to rewrite the normalization to take into account the

total number of galaxies observed for a given redshift z. This can be proven by rewriting the

probability density in tenus of the cumulative distribution. The probability that a galaxy hâve a



Table A.l: Simple Schechter fit on the real space and on the redshift space mock catalogue.

M* a

Real space -22.34 -1.37

Redshift space -22.40 -1.31

Table A.2: Double Schechter fit on the real space and on the redshift space mock catalogue.

M* ai OL2 l°SlO (02/0Î)

Real space -21.02 -1.47 -0.19 0.53

Redshift space -21.09 -1.43 -0.05 0.57

magnitude A4 superior (fainter) than M is given by:

P (A4 > M\z)
PX4>(M') f (M')AM'

where / is the completeness function:

/(«)-{; Mbright < M < Mfaint

else

(A.15)

(A.16)

Calculating the probability density is straightforward:

P(M> M\z) = (A.17)

and so:

Finally:

p{M\z)
dP (M > M\z)

dM

p(Mi\zi)
4>(Mi)

(A.18)

(A.19)

and this defines the new likelihood in the case of a flux limited sample.

The resuit of the application of the MLE method on our mock redshift space catalogue (see
Chapter 3) is shown on Figure A.2.

The parameters are more or less well recovered in flux-limited space. The bright population is

poorly recovered since its faint end slope is very badly estimated and so is the ratio between the

two populations too. In the simple Schechter fit, the discrepancies with the real space appear for

low mass halos. Such groups are formed of faint galaxies disappearing at high redshift because

of the magnitude limit. Thus, there are fewer galaxies for the statistics of low mass groups and
the fit is poor. Moreover, the random filtering of boxes in the mock création increases the cosmic

variance of the data for low mass groups. The ratio in number between the two populations is
roughly of 5%, and the statistics are always poor for each bin of halo mass.

To verify this assumption, and not to incriminate a bad implémentation of the MLE for flux-

limited samples, we applied the method on perfect samples of galaxies. We generated an Universe

with a given luminosity function and applied the flux limit to galaxies in this région. We
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Figure A.2: Modulation of the parameters of both Schechter and double Schechter luminosity distributions with
the halo mass obtained from the redshift space mock catalog (in red) and from the real space mock data (in green)
from Guo et al. (2011).



Remark 7

Generating galaxies following a given luminosity function is done by the inverse transform

sampling method. Let suppose that F is a cumulative distribution function. This function

is monotonie. Let U be an random variable following a uniform distribution over [0,1]. If
we define Y = F-1 (U), this random variable follows the distribution of F. By définition,

I the cumulative distribution function of Y is p{Y < x) — p(F~l (U) < x). Since the function
is monotonie, p(F~l (U) < x) = p(U < F(x)). The last expression is the cumulative
distribution function for uniform distribution applied to the variable F (x), which is directly
equal to F (x).

The cumulative distribution function for the simple Schechter is:

r I a +1,

F(L) =
L, r r + 1’i:

r [ & +1, — r [ a +1,

(A.20)

and for the double Schechter:

F(L) =

7ai m + 7q2 [L]

7m [Lmax] + 7a2 [Lmax]

(A.21)

with:

7a[x] = r(a + i,—-rU + 1,7 (A.22)

Clearly, we cannot invert such cumulative distribution functions analytically. By interpo-

lating them in the range of luminosities to generate, we can do a numerical inversion and

obtain the precious random variables following the Schechter distributions. This is fast and

précisé enough.

The double Schechter can also be generated by two populations of simple Schechter func

tions. If Ni is the number of galaxies following the distribution with parameters ai and 0*,

the ration between the two population is:

N2_(p2 la2 \Lmax]
N\ 4>\ 7m [-^max]

(A.23)

with Atot — N1+N2. But its easier to take the cumulative distribution function of the double

Schechter, otherwise we need to shuffle the resulting two single Schechter populations.

are able to recover the simple Schechter parameters used to generate the distribution in the flux

limited sample. Using a double Schechter distribution for the génération of galaxy luminosities,

its parameters are more difficult to recover, essentially for the bright population whose number is
low relative to the faint one.

The results are also dépendent of the initial guess chosen for the minimization. This is a

problem if we want to iteratively correct for missing galaxies in MAGGIE, since we need it to



be robust against this choice. Indeed, the group population is varying in the itérative process

and the modulation of galaxy properties with groups will evolve, as will our assumptions on the

luminosity function parameters.

Since it can be very difficult to correct our groups in a flux-limited sample, we will restrict

our analysis to doubly complété samples, where corrections for luminosity incompleteness are not

required.

A.2 Red and blue galaxies

Galaxies form a bimodal distribution, mainly separated into red and blue ones (representing low

and high SSFR). From previous studies, their distributions inside galaxy groups are not the saine.

Incorporating this ségrégation into MAGGIE should improve the group sélection and our measures
of the environment.

Incorporating red versus blue galaxies can be doue inside the membership probability. We

compute a different probability if the galaxy is red or blue, by adjusting the models according

to the galaxy color. Such models are updated in the itérative process, in order to get a relative

independence of our results to the adopted models.

Taking again the computation of the probability, if we know the fraction of blue or red galaxies

at a given radius to the group center, we can multiply the density profile by this fraction, giving

us the projected phase space density of blue or red galaxies in halos. We hâve:

$halo (^5 vz)
rrv

JR

fi (r) R (r)
y/r2 — R2

h {vz\R, r) dr (A.24)

where h(vz\R,r) is the line of sight velocity distribution and fi (r) is the fraction of i galaxies,
with i G {red, blue}. The fraction is a model whose parameters must be fitted to the data for
each itération with the set of extracted groups. Since its a distribution function, it implies the use

of MLE with numerical computation of the intégral, and a double intégral for the normalization

of the density since:

^halo vz)
d2Nj

27rRdRdvz
(A.25)

Supposing this computation can be easily doue, there are still two problems.

• The NFW profile is dépendent of the concentration. Several studies shows that the con

centration of blue and red galaxies inside clusters are different. For example, Guo et al.

(2012) find that around red central SDSS galaxies, the red satellites hâve a concentration
c = 3.2 ± 0.4 while the blue satellites hâve c — 1.7 ± 0.2, which is signifîcantly lower.

• The probability needs to be normalized with the projected phase space density of interlopers.

But we hâve no idea of their distribution when red and blue galaxies are separated. This

needs to be extracted from mock catalogues, leading to densities not universal and dépendent

of the semi-analytical code used, the chosen cut-off in magnitude for the complété sample

used. In a first approximation, the fraction of interlopers that are, say blue, should be

independent of projected radius R and line-of-sight velocity vz.

A.3 Abundance matching

In MAGGIE, the virial mass estimation by abundance matching is performed between the central

stellar mass or luminosity and the halo mass function. But the relation between the stellar mass

and the halo mass is saturated for high masses, making the relation relatively fiat, and so the



(a) Catalogue 2 (b) Catalogue 5

Figure A.3: Same as Figure 5.4, but with primary groups defined as the most massive in halo mass of groups
linked to a real group.

Figure A.4: Same as Figure 5.7, but with primary groups defined as the most massive in halo mass of groups
linked to a real group.
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Figure A.5: Same as Figure 5.8, but with primary groups defined as the most massive in halo mass of groups
linked to a real group.
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(a) Comparison of virial masses

Figure A.6: Same as Figure 5.5, but with
primary groups defined as the most mas

sive in halo mass of groups linked to a real

group.

(b) Bias and dispersion for virial masses

Figure A.7: Same as Figure 5.6, but with primary groups defined
as the most massive in halo mass of groups linked to a real group.



Appendix B.

Density profiles

B.l Introduction

In this chapter, we provide details on the computation of the density profiles and their derived

quantities. We define here the different normalizations used along the thesis for some popular

density profiles.

B. 1.1 Définitions

The number of galaxies in a sphere of radius r with a density profile in number u{r) is the case
of a spherical symmetry:

N (r) = f 47rr/2i/(r/)dr/ (B.l)
Jo

To start, we define some dimensionless functions to facilitate the computations.

N (r) =N(a)N(r/a)

N (a) _
"W (R2)

with a the radius at which the logarithmic slope of the density profile is equal to — 2. We also
define the same relations for a virial normalization.

N{r) = Nv N (r/rvir)

v (r)
Nv

47Tr3-
vir

£ (r/rvir) (B.3)

We also define the concentration c as the ratio between the virial radius rvir and the radius a,

i.e. c = rvir/a. We define rvir = ^200 f°r simplicity. We should note that the ‘slope’ normalization

and the virial normalization can be linked together simply by setting c = 1 on the définition of

the virial normalization, in order words the normalization radius that is rvir becomes the slope
radius a.

B.2 Density profiles

B.2.1 Navarro et al. (1996)

The NFW density profile is:

r(r + a)2
i/(r) = (B.4)
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B.2. DENSITY PROFILES

with vq a constant density.

We can write by int

ing for the constant zz0:

We can write by integrating previous relations with x2v (x) dx = x2V (x) dx and search-

V(x)

N (x) =

V(x) =

ln2- 1/2

ln 2 — 1/2 x(l + x)‘

ln (1 + x) —
x + 1

1

N (x)

ln (1 + c) — c/(1 + c) x(l/c + x)‘

1 (

ln (1 + xc) —
xc

ln (1 + c) - c/ (1 + c) xc + 1

B. 2.2 Einasto

For an Einasto density profile:

v (r) = vq exp

l/m

Writing the définition of the a radius with this density profile, we hâve:

l/m lira

2m I

leading to the following normalizations:

v(x)
(2m)

3m

exp ^—2mï1//mjmy (3m, 2m)

7 (3m, 2mx1/m)

P(x) -

IV (x) =

(2m)

7 (3m, 2m)
3m

•exp 2m(xc) l/m

my (3m, 2mc1/7n)

7 (dm, 2m(xc)1^m
IV (x) =

7 (3m, 2mc1/m)

B.2.3 Generalized NFW

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B. 11)

(B-12)

(B.13)

(B.14)

If any previous density profiles isn’t sufficient to describe the distribution of dark matter particles

or galaxies inside the halos, a solution is possibly to ht a generalized NFW profile, whose the

density is:

v(r) =

In this case:

N {x)

ra(r + a)/3 a

B-x (3 — a, 1 + a — /3)

i (3 — a, 1 + a. — (5)

(B.15)

(B.16)



therefore:

v(x) =

For the virial normalization:

(-l)Q+1£_i (3 - a, 1 + a - (3) xa(l + xf~a

N{x) =

V(x) =

B-xc (3 - a, 1 + a- fi)

£>_c (3 — a, 1 + a — P)

1 1

(—1)“+1S_C (3 - a, 1 + - /3)(æc)“(l + xc)0~a

where B is the function defined as:

r(a)r(6) r1 h ,
B (a, b) J / f-'il + ty6_1d*

F (a + b) Jq

and its incomplète version is:

Bz(a,b)= f ta 1(l + t)b 1dt
Jo

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

B.3 Radial velocity dispersion

Galaxies in groups (and their associated dark matter halos) are assumed to be a System of particles
only submitted to the gravitation. Neglecting mergers and other physical processes inside galaxy

groups, the number of galaxies doesn’t evolve in phase space, and the distribution function is

constant along the évolution of the System. In this case, we can use the collisionless Boltzmann

équation to extract dynamical properties of galaxy groups.

The Jeans équation is the fîrst velocity momentum of the Boltzmann équation. In a spherical

symmetry, assuming stationarity, the Jeans équation is:

d \y{r)o^{r)\
dr

2/3(r)
[i/(r)a?(r)] =- -v{r)

GM(r)
(B.22)

where /3 (r) is the radial profile of velocity anisotropy p — 1 — a^/a^.
We can compute the radial velocity dispersion using Equation B.22 for a spherical System at

equilibrium. The solution to this équation is given by:

iy{r)crr{r) =
J r

with Kr(r,s) the kernel of the intégral defined as:

Kr{r, s) = exp

GM(s)
Kr(r: s)v(s) x—ds

fs dt

l ^

(B.23)

(B.24)

There are two ways of normalizing the radial velocity dispersion according to the normalization

used for the density and mass profiles. We show it for the virial normalization for illustration:

(x) =
1

V(x)

M(s)
Kr(x, s)u(s)—5~ds (B.25)

F.STS



(B.26)

We are interested only in the NFW profile in the thesis, since it is accurate enough to adjust

the model. If we want an analytical form for ar (r), we need to choose a model for the anisotropy
profile (3(r). We provide here some expressions of the radial velocity dispersion, assuming the
NFW density profile, for a useful anisotropy model.

B.3.1 Manion & Lokas (2005)

This model is of the form:

= (B.27)

where b is a characteristic radius of the model. Introducing this expression in Equation B.25, we
obtain:

~2r \ __ c/[6y(y + b)]
°r{X) ln(c + 1) — c/(c + 1)

x jô(36 - 2)(y + l)2y2U2{-y) - 3by2(y + l)2 lny + 3(36 - 2)y2(y + l)2 ln2{y + 1)
+ 3 (y + 1) [6 (y3 - 5y2 - 3y + l) + 2y(2y + 1)] ln (y + 1)

+tt2(36 - 2)y4 + (6tt26 - 216 - 4?r2 + 12) y3 + [3 (tt2 - 9) 6 - 2tt2 + 15] y2 - 36y}
(B.28)

with 6 = cb/rvir, x = r/rvir and y — ex.

B.4 Line of sight velocity variance

We will compute in this section the line of sight velocity dispersion of galaxies in a general spherical

density profile, and then compute it specifically for an NFW profile. This is useful to make cuts

at ±k<7los {R) hi the pps.

By définition, the variance is the mean of the squared quantity. We use a general density

profile which is invariant under rotations v{r). In our case, we make this mean on the line of
sight, so:

t2 (m_ -OLOS"Md2
LOS ( 3 “ ( 3

But in the group, r2 = R2 + z2 so:

^LOS(R) ~

2 2Z J R VLOS

v(r)r

y/r2 — R2

v(r)i

dr

rj TT’max

Jr
dr

(B.30)

The denominator is by définition the projected density surface along the line of sight and we
dénoté it

E(Æ) = 2
u{r)r

y/r2 — R2
(B.31)

Normally the intégration is for rmax -* oo but in our case we want to restrict to a limited région

in the group (to the virial sphere precisely).



In the same coordinate System as previously, the line of sight velocity can be expressed in

spherical coordinates as:

ulos — vr cos 0 — vq sin 9 (B.32)

We suppose that we are at the equilibrium and so that there is no flow in the group in conséquence

we can neglect means of velocities. In terms of velocity variance we hâve now:

gmax IS\T)T

S(r)°LOs(Æ) = 2 JR KW COS2 e + (J0 sin2 °) \jr2 _ R2 dr (B-33)

If we want to use the anisotropy parameter (3(r) = 1 — cr^(r)/cr^(r) in case of sphericity, we can
write:

Z(r)alos(R) = 2
'R

1 ~
R2\ v{r)a2(r)r
r2 x/r2 - R‘2

dr (B.34)

We can compute the radial velocity dispersion using the Jeans équation for a spherical System

at equilibrium.

B.4.1 Mamon &; Lokas (2005) anisotropy

With the décomposition of the intégral over the domain of intégration, we can write:

Z(R)ctlos2{R) =2 f (a t aV(s)GM(s)ds
JR1R s'

rs 1 / R

+ 2

rR \ r + a 2\ r + a

(s + a)

\/r2 — R2
dr

-u(s)GM(s)ds

1 / R

'R r + a 2 l r + a y / \/r2 - R2
dr

where we are setting rmax to rv. So now we can write:

et2
C+OS (#) =V

M(c)£(Æ/a,c)

if ( x—, — I v{x)—~dx + / [ c—, — J J{c)a a \... . M{x) . l a a

R/a

-uasign(ua - 1)

R RJ x \ R R

Ua2 - 1/2 x ^ 1 + UWa
Ur — 1|3/2 U + Ua

I{u,ua) = < -facostm +
1/2 Vu2 - 1

Ua + U Ua2 - 1 ’

acoshu —
u— 1 ( 8 + 7u

u + 1 \ 6(1 + u)

1

= 1

K(u,ua) = (i + — ) I(u,ua)

(B.35)

(B.36)

(B.37)

(B.38)

with:



and:

C-\X)
acoshX ua> 1

acosX ua < 1

We also hâve an other intégral:

r°° x + 1
J(y) = / —^—v{x)M{x)dx

Jy X

In the case of an NFW profile, this can be expressed in an analytical way:

J(y) =mi+y)(\^-iŸ {y ('3+y{~9+"2 (1+v)))

+ 3ÿ3 ln (l + tj + 3 ln (1 + - y+ + (1 +
—3y2 ln (y (1 + y)) + 6y2 (1 + y) Li2 (-y))

(B.39)

(B.40)

where the dilogarithm function is defined in our case as:

'l ln (1 — zt)Li2 (z) = - [
Jo

d t

For the NFW model, Mamon et al. (2010) provide the expression of E:

1 fc dx
S(X,c) =

2 ln 2 — 1 Jx (1 + x)Vx2 — X2

1

1

3/2
cosh-1

c + X2

(c+ l)X

2 ln 2 - 1

(1-X2)
Vc2 — 1 (c + 2)

3(c+l)2
1 Vc2 - X2 1

(c+1) X2-l (X2-l)

1 \/c2 - X2

(c+1) 1-X2

3/2
COS

-1
c+X2

(c+ l)X

(B-41)

if 0 < X < 1

if X = 1 < c

if 1 < X < c

if X = 0 or X > c

(B.42)
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C.l Theory

C.l.l Définition

By définition, the halo mass function by unit of comoving volume is the number of halos with

mass M between M and M + dM. If N is the number of halos in comoving volume V, the halo

mass function (p (M) can be written:

d2 N
4>(M) =

dn

(C.l)
AMAV AM

In this case, n can be the comoving density of halos, or the cumulative distribution function of

the density. In the latter case, we hâve:

'M

and so:

dn

rivi

n (M, z)= (j) (M, z) dM
Jo

r * iM’ dM= 2) - f (0,z)) = 4 (M, z)

(C.2)

(C.3)
dM dM Jo

where $ is a primitive of (p.

According to Press & Schechter (1974b), the halo mass function is:

Pm {z) d ln a~l , 0
*(M’z) = A/2 exp /2) (C'4)

where v = 5C (z) jo (M), Sc a threshold parameter, pm the mean density of the Universe and
cr the standard déviation of density fluctuations.
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C.1.2 In practice

Jenkins et al. (2001) found a general way to fit halo mass functions from different cosmological
simulations done with different cosmologies, allowing an easy comparison between the different

redshifts and cosmologies. The halo mass function is related to the standard déviation of density

fluctuations cr, which is a function of halo mass. A function / (cr) has been introduced for that,
which is the fraction of matter that is inside a halo of mass M by units of ln cr-1. So:

r ( \ _ dP/pm (z) _ M dn
dîner-1 pm(z) dîner-1

and the halo mass function is:

4>{M,z)
d ln cr 1

dM

Pm (z)

M
f (°)

Pm (z)

M2

d ln cr

d ln M
/ M (C.6)

where the computation of cr involves the power spectrum P (k) and the Fourier space représenta
tion of the real space top hat filter W (h):

1 f°°
a2 (M) = -^ P (k) W2 (kR) k2dk (C.7)

J0

and its logarithmic dérivative is:

dîner R r°° dW2 (kR) ,
dtaM=-^kïïrk p{k)dk

By définition, if we assume that ail the matter is contained in dark matter halos,

ail the possible variance gives us the total mass, so:

(C.8)

summing over

/ (cr) d ln a
-1

(C.9)

The variance of density fluctuations follows the évolution of the linear perturbations and must

grow with them, so we need to multiply it by the growth rate to extend the expression to other
redshifts.

C.1.3 Window function

By définition, a is the variance of mass within a sphere of radius R containing mass M with the

mean density of the Universe. For this, a top-hat filter is used in real space corresponding to the

sphere of radius R. Its expression in the Fourier space is:

W (kR) =
3 [sin (kR) — kR cos (kR)]

(kR)3

and we can explicitly write the dérivative:

dW2 (x)
dx

[sin x — x cos x] x sinx + 3
cosx

X

(c. 10)

(C.ll)



C.1.4 Power spectrum

In the context of the theory of small perturbations, over-densities, expressed as S (x) =
(p (x) — p) j~p grow linearly if they are small (i.e. ô <C 1). The power spectrum is the second
moment of the probability distribution function of the density perturbation field expressed in

Fourier space:

P(fc)°c(l<Sk|2) (C.12)
Inflation models predicts a power spectrum of the form:

P(k)ockn (C.13)

where n is the spectral index, close to 1. Different kinds of matter contribute to the power

spectrum and in general diverge from this simple model. The transfer function T (k) accounts for
this, as a correction to the inflation model:

P(k) oc knT2(k) (C.14)

The transfer function is sensitive to the model of dark matter matter and the density of baryons

through Çîf,. The transfer function is difflcult to compute precisely and thus we dépend on the

CAMB program (Lewis et al., 2000).

The normalization of the power spectrum is not predictable by the theory, hence must be set

by confrontation to the observations. For this, the variance of the density field of the fluctuations

within the smoothing window function of radius R = 8/i-1Mpc is used, and by comparison with
the value obtained from observations with the galaxy distribution or other method, the power

spectrum is fully determined.

If we want to compute the power spectrum at different epochs, we must apply the growth

factor to the power spectrum, under the assumptions of linear évolution of fluctuations. In this

case ô (x, a) = D (a) Si (x), where D (a) is the growth factor and a = 1/(1 + z) the scale factor.
For the growing mode of perturbations:

D(z)
+ z')

(*0
(C.15)

with:

H(z) / ô
E iz) — ~ y^m{ 1 + z) + (C.16)

for a flat Universe (see Carroll et al. (1992); Hogg (1999)). The growth factor to apply to the
power spectrum is:

d(z)
D(z)

D(z = 0)
(C.17)

The power spectrum and the variance of the standard déviation of the perturbations evolve

in the following way:

P (k, z) — d2 (z)P{k,0)

a (M, z) = d {z) g (M, 0) (C. 18)



C.2.1 Approximation

As described above, the computation of the density fluctuation variance involves computing an
intégral that must be done numerically, since the power spectrum doesn’t hâve an analytical
form. Hence, the halo mass function involves evaluating two intégrais numerically, which is time
consuming. Luckily, van den Bosch (2002) has provided a good approximation for the standard
déviation of the density field:

a(M) = as7&) (ai9)
where:

f (u) = 64.087(1 + 1.074u°'3 - 1, 581ua4 + 0.954u05 - 0.185u°'6)~10 (C.20)
with:

U = 3.80410~4r
/ Mh \ 1/3

Us = 32T

V 0 J

r = Gmi0/iexp -nb (l + y/2h/n

Now, with this approximation, we can compute the dérivative of cr and:

(C.21)

d ln g \

dM J

with:

1 _ (-0.000310111A1-7 + 0.00225895A16 - 0.00505879A15 - 0.1XL2)
2 ~ (-0.000328357A1-8 + 0.00310111X1-7 - 0.0090358A1-6 + 0.0101176A1-5)

(C.22)

x = r (C.23)

In Figure C.l, we show the comparison between the variance computed with the transfer

function obtained from the CAMB program and the approximation of van den Bosch (2002).
The approximation diverges from the theoretical computation involving the transfer function, but

when used for the computation of the halo mass function, discrepancies are not significant.

C.2.2 Halo mass function rnodels

We put in Table C.l some popular models for the halo mass function, and used in the thesis for

various comparisons. A detailed list can be found in Murray et al. (2013).
We used these models of halo mass function to compare them to the halo mass function

obtained directly from the data of Boylan-Kolchin et al. (2009) extracted on the Millennium-II
database. Most of these models are defined using FoF halo masses, resulting directly from the
sum of the dark matter particle masses constituting the halo. But for MAGGIE, we are just
interested on the mass within radius r2oo- As we can see in Figure C.2, both définitions are very
different.

For the abundance matching technique in MAGGIE, we need to use the halo mass function in

black in Figure C.2. The fit done on the data is shown in green. Discrepancies are important at

high virial masses because of the low number of halos at such masses, giving a poorly constrained

relation. But this fit is sufficient and gives relatively good results when using it with MAGGIE
(see Chapter 5).
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Figure C. 1: Comparison between the variance of the density fluctuation computed numerically from the transfer
function obtained from CAMB (Lewis et al., 2000) in green and the approximation from van den Bosch (2002)
in blue. Models diverge at low masses but the computation of the halo mass function seems to not be affected by

this divergences.

logioM

Figure C.2: Cumulative halo mass function for the output of the Millennium-II run for FoF masses (red) and
virial masses (black), and some models of halo mass functions. We show the fit we hâve done on the virial mass
function (green). Virial and FoF masses are very different and we must be careful when using it in MAGGIE,
using just groups at equilibrium.



Table C.l: A table of some models for the halo mass function.

Model / (cr) Parameters

Warren et al. (2006)

Courtin et al. (2011)

Crocce et al. (2010)

Jenkins et al. (2001)

Tinker et al. (2008)

/ (cr) = A (a a + b) exp

/ (cr) =A

x exp

f((i) = A (a~a

%a)
2a2)

+ b) exp

/ (cr) = A exp |ln a 1 + a|6^)

f^)=A ((?P + !) exP

A = 0.7234,

a = 1.625,

b = 0.2538,

c= 1.1982

A = 0.348,

a = 0.695,

P = 0.1,

ôc = 1.673

A{z) = 0.58(1 + z)~0'13,
a(z) = 1.37(1 + z)-0'15,
b(z) = 0.3(1 + z)“0-084,
c(z) = 1.036(1 + z)~0024

A = 0.315,

a = 0.61,

5 = 3.8

-i 1.2

A(z) = A0(l+z)-014
a(z) = ao(l + z)-°OS,
b(z)= &o(l + z) Q,

r 0.75

log10a-- - (A0 = 0.1 log10 A - 0.05,
a0 = 1.43 + (log10 A — 2.3)1'5,
feo = 1.0 + (log10 A — 1.6)-1'5,
c0 — 1.2 + (log10 A — 2.35)1'6
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Our first computations of the probability of membership for MAGGIE were not satisfying when
compared to the probability estimated directly from the cosmological simulation. Probability
contours let us think in a stronger truncation in the velocity distribution for high velocities in
the simulation than that of the assumed Gaussian distribution, creating discrepancies between

our expectations and data. A natural distribution with this property is the g-Gaussian or Tsallis

distribution, which lias an additional free parameter, measuring the departures from Gaussianity.

It can lead to stronger truncation in the velocity distribution. But the resulting distribution

function of the particle System becomes quite complex and the analytical computations difficult

in some cases, resumed in the following sections.

D.l g-Gaussian (or Tsallis) distributions

Tsallis (1988) developed a generalization of the entropy, non extensive, in terms of an additional

parameter g leading to Systems that are not at the equilibrium. According to Hansen et al. (2006),
the radial and tangential velocity distributions of dark matter particles in halos in cosmological
simulations do not exactly follow a Gaussian distribution, but are more accurately adjusted by a
Tsallis distribution. A possible explanation is that halos are not fully at the equilibrium at our
epoch.

Radial vr and tangential Vt velocity distributions at a given point of coordinates r are of the

following forms:

1 -Br (D.l)



(D.2)
diV A f n fvt
— = Atvt 1 - Bt[ —
dvt \ \ <7*

In the two above équations, integrating over the corresponding velocities gives us the number of

particles at a given coordinates by unit of volumes, in other words the density profile v (r). Inte
grating over the second moment, we hâve the velocity dispersion, another constraint to détermine
the normalization factor.

J f (r, v) dv = y” = v (r) (D-3)

Jvi2f(r,v)dv = J v2—dvi = g2u{y) (D.4)
In the case of the tangential velocity u2 = v’q + v^, the dispersion is simply cr2 = g‘q + cdy In the
following sections, we will assume isotropy and so by symmetry gq = g

For the intégration over vr, we need to take into account the two cases Br > 0 and Br < 0.

f1 (l-x2)“dx= ^r(1 + “)

a <

a > — 1

r (§ + <*)

Equation D.3 gives us normalizations by substitution to hâve the équations Equation D.6:

(D.5)

(D.6)

Ary/7TGrF (— \ — ar)
yJ—BrT (—ar)

AryfïÎGrT (1 + ar)

r y 1
= i/(r) < - -

= v (r) ar > — 1
y/BrF + ar)

For second moment équations, we use the following équations:

f°° 2/-, V^r(-|-a) 3
/ xz[l + xz) dx = ^ s—- a < — -

givmg us:

J1 x2{l-

Ary/7TGr3r (—| — a)
2(-Br)3/2T{-a)

Ar^ar3r (1 + ar)

2Sr3/2r(|+ar)

Finally, normalizations are:

Ar —

Br

^ (r) r ( — Or)

2r(-o0

a j y/ftT (1 + a)
dx= 7 ~ Q > -1

r(! + «)

2 / \ 3
= Gr is(r) ar < --

= Gr2u (r) ar > — 1

1

3 + 2cx7

1

Ar —

r (— \ — ar) y/- (3 + 2ar) 7ray

u (r) F (| + ar) 1
r(l-|-a7-) -^/(S + 2ar) 7tgt

Ctr > — 1

(D.7)

(D.8)

(D.9)

(D.10)

(DU)

(D.12)

(D.13)

(D.14)

(D.15)



Integrating other tangential velocities, we use following

l x{l+xrdx = ~w^)

l

giving:

+ a)

rl 01 oo

/ rr3(l ± x2)adx =
J0

1

2(1 +a) (2 + a)

1
B* =

A, -

(2 + at)

^ (r) (1 + at)

at (2 + at)

results:

a < — 1

a > —1

a > —1 or a < —2

(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

D.2 Choice of a distribution function

The global velocity distribution is the combination of the radial and tangential distributions, not

as easy as wanted.

D.2.1 Similar to Gaussian case

We choose a form similar ot the Gaussian case, but not identical in the sense of a strict product

of independent variables. We hâve:

/(r,v) A (a) 1 - B (a) (D.21)

We find normalizations in the same way as previously. We must worry in the choice of the

limiting velocity for the intégration in the case where B (et) > 0. But if we choose to impose a
limit on one velocity, the constraints on the two others becomes the considération of the three

velocities as a single one with the good substitution in the intégration. We just consider the

triplet of velocities following the constraint (y21) + < 1. In conséquence, we find
for the normalizations:

vJ?) r(-oQ
15/2 + a\3//2(2n)3/,‘2argq1 T ( 3/2 — a)

z'(r) T (5/2 + et)

|5/2 + ct|3/2(27r)3/2crr.(j02 r(l + a)

5
a<--

a > — 1

(D.22)

(D.23)

B (a)
1

5 + 2a
(D.24)

Integrating over we get the radial distribution and the tangential distribution when integrating

over vr. The définitions of the g-Gaussian distributions imply ar — 1 + a et cq = 1/2 + a. But
fitting these distributions to the data of the cosmological simulation gives different values of a for

the radial and tangential distribution, hence the model of the global velocity distribution is not

adapted and we need to find an other expression.



Remark 8

However, if we want to obtain the velocity distribution along the line-of-sight we need to

integrate this form on the two velocities perpendicular to the line-of-sight. Computations

are simple if the quadratic form is transformed into a canonical one, useful with the previous
intégral définitions.

D.2.2 Separable joint velocity distribution

We treat the case:

/(riv) — A 1 - Br

Constraints give:

R 1
2 (2 + at)

B - 1
r (3 + 2ar)

and following cases, we obtain for A in the Table D.l the different normalizations.

(D.25)

(D.26)

(D.27)

Table D.l: Table of coefficient for the normalization in different cases.

ar < -3/2 ar > — 1

ou < -2
(l + at)z/(r)r(-ar (1 + ou) v (r) T(3/2 + ar)3/2

V'-7r(3 + 2ar)<W (2 + at) T (-1/2 - ar) y/-tt (3 + 2ar)arot2 (2 + at) T (1 + ar) T(5/2 + ar)1/2

(1 + at) i/(r) T (-ar)
•v/-^ (3 + 2ar)arat2 (2 + af) T (-1/2 - ar)

(l+ad^(r)r(3/2 + cvr)3/2
T(3”+~2(2 + ad T (1 + or) T(5/2 + crr)h2

Integrating to obtain the radial and tangential distribution, we see that we hâve two different

values of a, each one equal to the tangential and radial a. This seems to correspond with what

observed in the cosmological simulation. The problem is that to obtain the line-of-sight velocity

distribution, the équation doesn’t hâve an analytical expression, and in conséquence not useful in

the computation of the probability of MAGGIE. So we choose to abandon this model. Moreover,

in simulations, it turns out that ar dépends on at hence the joint distribution / (r, v) is not
separable.

D.3 Generating g-Gaussian distributions

D.3.1 One dimension

The distribution function is expressed as:

f(r,v) = A B ^)r (D.28)



where we replaced a with its équivalent q which is q/ (1 — g), making the modeling easier since
there is no eut in values of the q parameter. The distribution is centered in p, with dispersion a.

According to Thistleton et al. (2006), random numbers following the g-Gaussian distribution are
expressed as:

Zi = ln3g-i U\ cos (2irU2)
9+ 1

Z2 ln3(7-1 U\ sin (2ttU2)
9+1

(D.29)

(D.30)

with:

ln9 x —
x1 q — 1

1 ~q
(D.31)

where U\ and U2 are two random variables following a uniform distribution, with their values

between 0 and 1. To generate a one dirnensional Tsallis with dispersion g and mean /r, the

following random variables are sufhcient:

Z - GZi + fj, (D.32)

where i G {1, 2}.

D.3.2 Two dirnensional case

In the case of the tangential distribution:

/(r,v) = Av\ 1 - B
(v~ VÏ

l-g

G'
(D.33)

We force /i = 0 for an easier computation. The cumulative distribution function is:

Fx{x) = J Av(l-B(^) 1 du (D.34)

If U is an uniform random variable between 0 and 1, hence U = Fx (X). Inverting the relation,
we find X following the distribution. In ail cases where q < 1 and 1 < q < 2, we can find:

X = g\ 12 [ ) (l-U'-v)
1 ~q

(D.35)

With the mean of the distribution:

X = l* + v\l‘2[—

D.4 Cumulative distribution functions

(D.36)

The cumulative distribution function can be useful in the situation where we search parameters

fitting an unknown distribution by the Kolmogorov-Smirnov method for example.



D.4.1 One dimensional case

By définition of the cumulative distribution function:

/;X f (x) dx
-oo

with f (x) the distribution function. With the dispersion a and the bias /x:

I? r \ Ar(J I \fïx V\Br\ ( \ 2-n fl 3
( } = VW\ W 7 (a) + "V (æ “ Fl ( 2’ 2’ ~Br

X — /i

G

(D.37)

(D.38)

where Ar and Br are the same coefficients found previously, 2Fi the Gaussian hypergeometric
and Z1 a function such:

Z1 (a)
n-r»

r (-«)

r (1 + a)

r(-a)

a < ~2

a > — 1

D.4.2 Two dimensional case

In this case the computation is easier:

Fx (x=
Ata2 1

Bt 2(1+a)

with At and Bt identical to the coefficients determined previously.

n

zS

(D.39)

(D.40)

(D.41)



Appendix E.
JÜfPrt

QuadTree on

E.l Introduction

The extraction of galaxy groups frorn redshift space involves various algorithms to search for

galaxies in a given région of the sky. Methods as those used in numerical simulations for searching
dark matter halos can be applied. Such techniques often use a partition of the space to make a
brute force computation of the distance between particles only on a small portion of the three
dimensional space. Same partitioning of the celestial sphere can be done, but the non-euclidean
metric of celestial coordinates make the task a little harder.

E.2 QuadTree

The principle of the QuadTree is to make a partition of the space (celestial sphere in our case).
Each created partition will be partitioned too if the number of galaxies in it is superior to a limit

we define at the création of the QuadTree. If the number of levels in the refinement is superior
to a given limit, we stop the refinement.

This is clearly a tree structure, since the partitions, called nodes, are subdivided into other

nodes. This allow to rapidly search for galaxies in a given région since we can easily détermine
which node intersect a given région.

E.2.1 Construction

The construction is straightforward with the description above. We start by defining the limits
in the (a, ô) plane for the région to refine. This région is the root node. Then, the following
instructions are applied recursively.

• We détermine in which child node each point is falling inside. We keep an array of the

identities of points in the tree to which each node point to. In this array, identities are
ordered according to the node of the point. So, at the end of the tree construction, the
array of the identities will be structured in the same as the tree, allowing for optimization
of the memory and for future searches of points.

• If the maximal level of refinement is reached, we no longer subdivide the node.

• If the number of points in the child node is superior to the fixed limit, we subdivide the
node in four other nodes.

• Go to the brother of the node.



Figure E.l: A simple illustration of a QuadTree generated for the SDSS adjoining block of galaxies. The tree
is more refined in the régions at higher surface density.

For optimization, we keep just nodes that are not empty, linking together brother nodes.

During the construction of the node, we also keep the information of their spatial geometry

such as extremal coordinates in right ascension and déclination, center position, half width in

each axis to avoid useless computations when searching points on the celestial sphere.

At this stage, we make a simple partition of the space as in any other QuadTree, without

caring about the spécial metrie involved.

An illustration of a QuadTree generated for the galaxies in the adjoining block of the SDSS

is shown in Figure E.l.

E.2.2 Searching in a given région

To search in a given région, we go recursively through the tree structure, finding ail nodes that

intersect it. An improvement can be done by computing if a node is entirely contained by the

searching région. If yes, we can directly use the pointer to the identities array to include its points,

without descending more in the tree.

It is easy to détermine whether the région and a node intersect is easy, since they are defined

as two rectangles in a two dimensional space.

The rectangular région is defined in the déclination axis simply by taking the central déclina

tion coordinate and adding it the angular distance for the research région, since no distortions are

présent along this axis. For the right ascension, we need to know the maximal séparation between

the central point and the spherical circle generated by the angular distance. For this extremal

case point, it is clear that the corresponding meridian is tangent to the spherical circle. So, in

the spherical triangle formed by our central point, the extremal point and the pôle, we hâve a

supplementary constraint. The sinus formula applied to it gives us:

sin d
Aa = asin

cos <5q
(E.l)



where d is the angular radius inside which we are searching for points and is the déclination

of the central point around which we search. Our rectangular area is completely defined, and the

intersections with the nodes of the tree are easy to compute.

The case of the periodic search is complex. If the rectangular région fall outside the periodic

limits (inferior to 0 or superior to 2ir in right ascension on the celestial sphere), we need to
duplicate the search région and make the intersection with nodes for two régions instead of one.

Tliis is a little time consuming but is the only way to handle correctly the periodic case.

E.2.3 k nearest neighbors

The k nearest neighbors in the celestial sphere uses the implémentation of the search in a given

région of the sky.

We find the leaf node to which our central point belongs to. A particular attention must be

done since we keep only non empty nodes. If the point belongs to an empty one, we affect to it

the parent node. In each case, we take the parent node of the found node and search points inside

it. Their identities are added to a queue of size k in ascending order of distance to the central

point.

We define a search région with this most distant point and fill again the queue with points of

this région. If the number of points found is inferior to k, we take the parent node and redo the

same computation until the queue is entirely filled with the k nearest neighbors.





Appendix F.

F.l Legendre elliptic intégral function

F. 1.1 Introduction

The Legendre elliptic intégral function appears naturally when evaluationg distances like the

luminosity distance in a fiat Universe. But the most of the time, this function is not used directly

because of the difficulty in its implémentation. When it is already adapted, it is only for spécial

values. In following sections, we described how to use the NSWC implémentation of elliptic

intégrais.

F. 1.2 Luminosity distance

Our goal is to easily and precisely compute the luminosity distance given a cosmology according
to the formula:

dL(z)
c( 1 + z)

Ho

dt

(F.l)
0 T flA

Making the change of variable u — 1/t and defining s — \/3(l — flm)/fl7rL gives us:

c(l + z)
dL{z) -

Ho y/Sfl ?

T (s) - T
1-hz

(F.2)

with:

T(X) = r
J 0

du

Vu4 + u

(F.3)

As described in Liu et al. (2011), this intégral is an elliptic intégral, and such intégrais can be
expressed in terms of Carlson symmetric forms Rf(xi, X2, xs):

1 r
Rf{X1,X2,X3) = - J

dt

'0 y/{t + x\){t + x2)(t + X3)

With help of the réduction theorem, we can write:

T(x) = 4RF(m, m + 3 + 2\/3, m + 3 — 2\/3)

(F.4)

(F.5)

where:



2 Va:2 — x + 1 2
m(x) = 1 1

x x
(F.6)

F.2 Incomplète gamma function

F. 2.1 Introduction

By définition, the incomplète gamma function T (a, x) is:

/OO

T (a, x) = / e~Ha-làt (F.7)
JX

By default, many algorithms used to evaluate incomplète gamma functions do not allowed for

a < 0. Moreover, we need to use an algorithm that do not use the “simple” gamma function T (a):

roo

r(a) = / e-H^dt (F.8)
J0

because that function hâve singularities for négative values of a where a is an integer, as we can

see in figure Figure F.l. So we need an algorithm that does not involve the gamma function for

Figure F.l: The gamma function showing singularities at zéro and négative integers.

négative values. Here is described such algorithm.

F.2.1.1 Theory

The best way to compute the incomplète gamma function for a négative values is to use récurrence
relations. Let us define:

/oo

r (u T 1, x) — / e~*£adt (F.9)
J X

Defining u' = e~l and v = ta, we can use intégration by parts:

roo

r(a+l,a:)= + a / e~tta~1dt (F.10)
J X

The term in square brackets is always zéro at infinity, Va, and the second member of the right

hand side of the previous équation lets appear the définition of the incomplète gamma function.
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So the récurrence relation for the incomplète gamma function is:

r (a + 1, x) = e Xxa + ar (a, x) (F-11)

We can see that computing the incomplète gamma function for a ^ 0 can be done with a recursive

function using the function at liigher values of a.

r (a, x)
r(fl + i,i)-c Xxa

a
(F.12)

The previous équation shows that there is still a problem for integer values of a because if a = —2

for example, at a moment in the recursion, we hâve a value of 0 for a which create problems. If

we refer to Abramowitz & Stegun (1964), the définition of the elliptical intégral is:

En (z) e ztt ndt (F.13)

for integer values of n. If we change the variable in the intégral to t' — zt, we can rewrite the
équation to hâve:

En (z) = zn~1T (1 - n, z) (F.14)

so:

T (a,x) = xaEi-a (x) (F.15)

for a < 0 and a integer. Now we hâve a good computation for the incomplète gamma function.

But numerically, there is still a problem near integer négative values of a. If a is very close to an

integer value, then at some moment in the recursion, a will be very small. So 1/a can be greater
than the overflow value for the machine. To avoid this, we add a condition for a when it is near
zéro.

An other définition of the incomplète gamma function is:

T (a, x) — T (a) — 7 (a, x) — F (a) (1 — P (a, x)) (F-16)

with:

7 (F.17)

In Press et al. (1992) exists a précisé computation of the function P(a,x). We can remark that
this function is not required in the recursion if we hâve already access to a function that computes
the incomplète gamma function for positive values of a.

We provide below the algorithm for computing the incomplète gamma function without loss

of précision and without numerical problems for négative values of a.

FlfiTS
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def gammainc(a, x):

fl II II

To compute the incomplète gamma function

without loss of précision or without mimerical

problems. 0F is the value of the overflow for

the machine and expint( n, x ) the function

which computes the intégral function for n and x.
n n n

import numpy as np

if x >= 0. :

if a <= 1.:

if a == (a) or OF * abs(a) < 1 :

return x ** int(a) * expint(l - Lni (a), x)
else :

return (gammainc(a +1, x) -

np.exp(-x) * (x ** a)) / a

else :

return gamma(a) (1 - P(a, x))

# or call the function which computes

# the incomplète gamma function for

# positive values of a

i

I



Formulae

o 9

G.l Introduction

In this appendix are described the formulae used in ail computations realized during my thesis. Its

just a simple way to share and verify that the job is done correctly. Référencés to those formulae

are indicated too, in order to improve search when some doubts are présent.

G. 2 Formulas

The luminosity distance is defined as the relation between the galaxy flux S and its absolute

luminosity L by:

An analytical précisé computation is not possible and while numerical computations exist, they
are computationally slow. Some other analytical approximations of this distance were created.

For example, Wickramasinghe & Ukwatta (2010) provided an approximation for fiat Universe

The other distances are simply linked to this luminosity distance. The angular distance dang and
the proper distance dpm related with dium(2) = (1 + z)2dàng{z) = (1 + z)dpm(z).

The element of comoving volume is expressed using the Robertson-Walker metric as:

(G.l)

good to 0.3% is available for a range of values in compatible with WMAP and Planck results:

c 1 + z

= ^üf(i-üA)1/3
['P (x (0, fiA)) - «P (x (z, fiA))] (G.2)

with:

* (x) = Zx'W3 1 — - H —
21060

(G.3)

(G.4)

ck ( Ha) — 1 + 2
Ha 1

(G.5)
1 — HA (l + z)3

dV = -j—-dpm(z)2düdz (G.6)



The évolution of the fraction of matter, and dark energy is the following:

(i + 2)3
(2) — 0

ÜA (2) -
^A,0

(G.7)

(G.8)
E(z)2

where z is the redshift and the subscript 0 refers to the actual value of the parameter.

The distance modulus represents the magnitude différence between the observed flux of the galaxy

and what it would be if the galaxy were at a distance of 10 pc:

= 5 log10
^lum iz)

10 pc
(G.9)

where 2 is the redshift of the galaxy and dium is the luminosity distance.

The apparent magnitude m of galaxy in the perfect case where isn’t K-correction, extinction, is

just:

m = M + p (2) (G.10)

where M is the absolute magnitude of this galaxy in the saine band of m and p{z) is the distance
modulus at redshift 2.

Magnitudes are defined at a given constant which is the same for each object so:

M — Mq = —2.51og10 (G.Il)

where M is absolute magnitude, L the luminosity of the object and 0 refers to Sun’s quantities.

We can determined the luminosity by this relation which gives:

— = iqOA(Mq-M)
Lq

(0.12)

For galaxies at a given redshift 2, we can see ail galaxies with an absolute magnitude (using

équation (G. 10)):
M < miim — /r (2) (G. 13)

where m\im is the apparent magnitude limit for a survey.

The virial radius rA is defined as the radius at which the density is A times the critical density
of the Universe. So we hâve:

P O'a) = A (G.14)

with pc —
3H(zÿ

87tG
If we suppose that the density is constant in this radius, we hâve:

3H{z)‘

' 87tG

Ma

47rr^/3
(G.15)



where Ma is the virial mass. We can now defined three quantities, the virial mass as:

\2„3

Ma =
&H(zyrj

2G
(G.16)

the virial radius as:

and the virial velocity as:

( 2GMa \
[ah(zÿ)

va H (z) rA

(G.17)

(G.18)

Sometimes, the density at the virial radius isn’t defined in relation with the critical density but

instead with mean density of the Universe. So the équation (G. 14) becomes:

P {?a) = Apm — mPc (G.19)

We can treat this situation in the saine way as previously, but formally with A —> AÇlm.
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Abstract

Galaxies lie in a large panel of environments from isolated galaxies, to pairs, groups or clusters. The
environment is expected to hâve an impact on galaxy properties such as morphology, stellar formation,

metallicity... Some studies already tried to quantify the importance of the global environment (linked
to the dark inatter halo mass) and the local environment (galaxy position in the group). These
studies hâve sliown that the environment plays a minor rôle except for low mass galaxies. But the

quantification of the environment is difficult since detected groups in redshift space (the only one
accessible by the observer) are very elongated, making it difficult to extract spherical groups in real
space. If these quantification errors are too important, environment effects will not be measured

correct ly.

Moreover, other physical processes are at work inside groups wliose relative rôles are not well

understood. For example, major or minor mergers (rich or poor in gas, between satellite galaxies, or
after the decay of the orbit of a satellite onto the central galaxy by dynamical friction), rapid flybys
harassing galaxies, stripping of the interstellar gas by ram pressure or of the gaseous réservoir by
tidal forces. Although semi-analytical codes of galaxy formation from initial conditions of a ACDM

Universe fit well a large set of observed relations, there are still some discrepancies that might be
possibly explained by a lack of correct physical recipes of environmental effects in these models.

Our goal with tliis thesis is to hâve a detailed compréhension of the rôle of environment on galaxy
properties, and fhially détermine the major physical processes in the modulation of these properties

with both local and global environment. For tins, an optimal extraction of galaxy groups from the
projected phase space is necessary.

We performed a study and re-implementation of some existing group finder to estiinate their

strengths and weaknesses in the détection of galaxy groups.

A galaxy mock catalogue in redshift space, designed to mimic the primary spectroscopic sample of
the SDSS survey was created to apply several galaxy group algorithms. An advantage is the already
known membership that we can compare to galaxy groups extracted from redshift space. Semi-
analytical codes of galaxy formation give us such galaxy catalogs we transformed to be cohérent with
the vision of an observer.

With these mock catalogues, we tested the very popular Friends-of-Friends grouping algorithm.
We determined the optimal linking lengths against the set of tests and optimal criterion we developed
to judge the efficiency of an algorithm. It appears that this choice of linking lengths dépends on the
scientific goal to do with the group catalogue.

A large part of the thesis consisted on the realization of a new grouping algorithm called MAGGIE

(Models and Algorithm for Galaxy Groups, Interlopers and Environment), Bayesian and probabilistic.
MAGGIE uses our priors acquircd with analysis of cosmological simulations for large scale structure
and of observations obtained from large galaxy surveys, to better constrain the sélection of galaxy
groups from redshift space. Comparison of MAGGIE with the FoF algorithm shows that MAGGIE is

superior in avoiding the fragmentation of real space groups, the membership sélection (completeness,
reliability) and in the group properties (group mass, luminosity). The better performance of MAGGIE
cornes from its probabilistic nature, the use of astrophysical and cosmological priors, and the use of

halo abundance matching technique linking central galaxy distributions (stellar mass or luminosity)
to physical properties of dark matter halos.

The future application of MAGGIE on galaxy surveys such as the Sloan Digital Sky Survey or the

deeper Galaxy and Mass Assembly, taking care of their own observational problems, should improve
our understanding of the modulation of galaxy properties with their global and local environments

and physical processes opérâting inside galaxy groups.


