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The stars are indifferent to astronomy.
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Résumé

4

Les systèmes globaux de navigation par satellite (GNSS) jouent un rôle fondamental
dans l’élaboration du repère international de référence terrestre (ITRF). Cependant,
les GNSS ne se sont jusqu’à présent pas révélés aptes à déterminer de manière fiable

l’échelle terrestre ni la position du centre de masse de la Terre (géocentre) et n’ont
donc pas contribué à définir l’échelle de l’ITRF ni son origine. L’incapacité des
GNSS à déterminer l’échelle terrestre indépendamment de biais conventionnels de

centres de phase satellites est un problème bien connu. En revanche, leur incapacité
à correctement observer le mouvement du géocentre restait jusqu’alors inexpliquée.

Nous avons étudié cette question sous l’angle de la colinéarité entre paramètres
d’un ajustement par moindres carrés. Pour prendre en compte plusieurs particu
larités du problème de la détermination du géocentre par GNSS, un diagnostic de
colinéarité généralisé a été développé. Il a ainsi été mis en évidence que la détermina
tion du géocentre par GNSS est sujette à de sérieux problèmes de colinéarité à cause

de l’estimation simultanée de décalages d’horloges et de paramètres troposphériques
dans les analyses de données GNSS.

Différentes pistes ont finalement été étudiées en vue d’une possible future contri
bution des GNSS à la définition de l’échelle et de l’origine de l’ITRF : l’étalonnage de
l’antenne d’au moins un satellite GNSS, l’invariabilité temporelle des biais de centres
de phase satellites, l’analyse simultanée de données GNSS acquises par des stations
terrestres et des satellites bas, la modélisation d’horloges satellites ultra-stables et la
réduction des erreurs de modélisation orbitale.

Mots-clés : ITRF, GNSS, origine, échelle, géocentre, colinéarité, multicolinéarité,
facteur d’inflation de la variance, corrélation



Abstract
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Global Navigation Satellite Systems (GNSS) play a fundamental rôle in the élabora
tion of the International Terrestrial Reference Frame (ITRF). However, GNSS hâve
so far not proven able to reliably détermine the terrestrial scale nor the location of

the Earth’s center of mass (geocenter) and hâve thus not contributed to defining the
ITRF scale nor its origin. The weak ability of GNSS to détermine the terrestrial
scale apart from conventional satellite phase center offsets is well understood. On

the other hand, their inability to reliably monitor geocenter motion was so far not

clearly explained.

We investigated this question from the perspective of collinearity among the pa-
rameters of a least-squares régression. A generalized collinearity diagnosis was there-
fore developed and allows handling several peculiarities of the GNSS geocenter dé
termination problem. It revealed that the détermination of ail three components

of geocenter motion with GNSS suffers from serious collinearity issues due to the
simultaneous estimation of epoch-wise station and satellite clock offsets and of tro-

pospheric parameters in global GNSS data analyses.

Several prospects were finally investigated in view of a possible future contribution

of GNSS to the définition of the ITRF scale and origin: the antenna calibration of at
least one GNSS satellite, the time invariability of the satellite phase center offsets,

the simultaneous analysis of GNSS data collected by ground stations and low Earth
orbiting satellites, the modelling of ultra-stable satellite docks and the mitigation of
orbit modelling errors.

Keywords: ITRF, GNSS, origin, scale, geocenter, collinearity, multicollinearity,
variance inflation factor, corrélation
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La disponibilité d’un système de référence terrestre et de sa réalisation physique, un
repère de référence terrestre, est nécessaire à de vastes domaines d’applications qui
nécessitent de localiser ou de suivre les mouvements d’objets autour de la Terre. Dans
le domaine particulièrement exigeant des sciences de la Terre, le système international
de référence terrestre (ITRS) est aujourd’hui largement adopté. Il s’agit d’un repère
idéal attaché à la croûte terrestre et défini par son origine (le centre des masses de
la Terre ou géocentre), son échelle (cohérente avec la définition SI du mètre) et son
orientation. Sa réalisation physique, le repère international de référence terrestre

(ITRF) consiste en un jeu de coordonnées pour un ensemble de points géodésiques
et de points de référence d’instruments géodésiques.

La détermination des coordonnées ITRF repose actuellement sur les observations

de quatre techniques de géodésie spatiale: l’interférométrie à très longue base (VLBI),
la télémétrie laser sur satellite (SLR), les systèmes globaux de navigation par satellite
(GNSS) et le système de détermination d’orbite et de radiopositionnement intégré
par satellite (DORIS). Un point particulièrement crucial de l’élaboration de l’ITRF
réside en la définition de son échelle et de son origine. Tandis que l’échelle terrestre
peut être en principe déterminée par les quatre techniques contribuant à l’ITRF,
seuls le VLBI et le SLR ont jusqu’à présent contribué à la définition de l’échelle de

l’ITRF. De la même façon, les trois techniques satellitaires (SLR, GNSS et DORIS)
peuvent en principe déterminer la position du centre des masses de la Terre. Mais

seul le SLR a jusqu’à présent contribué à définir l’origine de l’ITRF.

La contribution des GNSS à l’ITRF est fondamentale par plusieurs aspects. C’est
par les GNSS que sont assurés la dissémination de l’ITRF et le lien entre les trois

autres techniques. Les GNSS ont de plus la contribution la plus robuste et précise
à la détermination des coordonnées ITRF et de certains paramètres d’orientation
de la Terre. La contribution des GNSS à l’ITRF est néanmoins affectée par diverses
erreurs systématiques et reste donc perfectible. En particulier, l’information d’origine
et d’échelle issue de l’analyse de données GNSS n’a jusqu’à présent pas été jugée assez
fiable pour pouvoir contribuer à définir l’origine et l’échelle de l’ITRF. Cette situation
a été la motivation principale de cette thèse. Nous avons ainsi chercher à comprendre
l’incapacité des GNSS déterminer l’échelle terrestre et la position du géocentre de
manière fiable et à proposer des pistes pour améliorer cette détermination.

Le problème fondamental concernant la détermination de l’échelle terrestre par
GNSS avait en fait déjà été identifié par Springer (2000) et Zhu et al. (2003). Dans
une analyse globale de données GNSS, il existe en effet une corrélation quasiment
parfaite entre l’échelle terrestre, les biais de centres de phase satellites, les délais
troposphériques zénithaux humides et les décalages d’horloges des stations et des
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satellites. Comme un étalonnage d’antenne n’est disponible pour aucun des satellites

actuellement en orbite, cette corrélation quasi-parfaite empêche une détermination

fiable de l’échelle terrestre par GNSS indépendamment de biais conventionnels de

centres de phase satellites.

En revanche, l’incapacité des GNSS à correctement observer le mouvement du

géocentre restait inexpliquée au début de cette thèse. Afin de clarifier cette sit
uation, nous avons choisi d’étudier la question sous l’angle de la colinéarité entre
paramètres d’un ajustement par moindres carrés. Pour prendre en compte plusieurs

particularités du problème de la détermination du géocentre par GNSS, un diagnos

tic de colinéarité généralisé, basé sur la notion de facteur d’inflation de la variance

(VIF), a ainsi été développé. Il permet d’évaluer et d’expliquer la colinéarité de tout
paramètre explicite ou implicite d’une régression par moindres carrés généralisés en

présence de contraintes.

Ce diagnostic de colinéarité généralisé a ensuite été appliqué au problème de la
détermination du géocentre par SLR. Il a ainsi été mis en évidence que la détermina

tion des coordonnées X et Y du géocentre par SLR n’est sujette à aucun problème
de colinéarité. Dans des analyses simulées de données SLR, un VIF de l’ordre de 9 a

cependant été obtenu pour la coordonnée Z du géocentre. Cette situation de colinéar
ité modérée s’explique par une corrélation entre la coordonnée Z du géocentre et les

éléments osculateurs des satellites. Elle peut contribuer à expliquer, conjointement

avec la répartition inégale des stations SLR, la moindre qualité de la composante Z

du mouvement du géocentre observé par SLR comparée à ses composantes X et Y.

Dans des analyses simulées de données GNSS, une situation totalement différente

a été mise en évidence par notre diagnostic de colinéarité généralisé. Il a en effet
été démontré que les trois coordonnées du géocentre sont extrêmement colinéaires
aux autres paramètres estimés dans des analyses globales de données GNSS. Cette

situation d’extrême colinéarité explique pourquoi les trois composantes de l’origine

de repères terrestres estimés par GNSS correspondent à des quasi-singularités et
pourquoi le mouvement du géocentre ne peut être restitué de manière fiable par des

analyses GNSS standards.

Parmi les paramètres estimés dans des analyses globales de données GNSS, deux
catégories particulières expliquent quasi-entièrement l’extrême colinéarité des coor

données du géocentre : les décalages d’horloges des stations et des satellites et les
paramètres troposphériques. Il est ainsi possible de conclure que l’incapacité des

GNSS, par opposition au SLR, à observer le mouvement du géocentre de manière

fiable est due à l’estimation simultanée de décalages d’horloges par époque et de
paramètres troposphériques.
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Après avoir identifié les causes de l’incapacité des GNSS à déterminer de manière

fiable l’échelle terrestre et le mouvement du géocentre, nous avons étudié différentes
pistes qui pourraient éventuellement mener à une future contribution des GNSS à

la définition de l’échelle et de l’origine de l’ITRF. Premièrement, le problème de
l’échelle serait entièrement résolu si l’antenne d’au moins un satellite pouvait être
étalonnée indépendamment de toute échelle terrestre conventionnelle. Cela pourrait
devenir le cas si les étalonnages d’antenne effectuées pour les satellites Galileo avant

leur lancement étaient rendus publics. Une autre possibilité consisterait à étalon
ner les antennes des satellites GNSS par rapport aux antennes étalonnées de satel

lites bas (Haines et al., 2004). Cependant, cette méthode est actuellement sujette à
d’importantes erreurs systématiques qui restent à comprender et à atténuer.

Mais avant que des étalonnages absolus d’antennes satellites ne deviennent dispo
nibles, la stabilité à long terme des biais de centres de phase satellites permet déjà
d’envisager une contribution des GNSS à la définition de la dérive d’échelle de l’ITRF.

En supposant l’invariabilité temporelles de ces biais, Collilieux and Schmid (2012)
ont en effet montré que les contributions des différents centres d’analyse de l’IGS à
l’ITRF2008 pouvaient fournir des estimations intrinsèques de la dérive d’échelle du

repère terrestre avec une précision d’environ 0.25 mm/an. La voie d’une contribution
des GNSS à la définition de la dérive d’échelle du prochain ITRF2013 est donc
ouverte.

En vue d’améliorer la détermination du mouvement du géocentre par GNSS et
d’une possible future contribution des GNSS à la définition de l’origine de l’ITRF,
deux pistes complémentaires peuvent enfin être envisagées. La première serait d’amé
liorer la sensibilité des analyses GNSS aux coordonnées du géocentre en réduisant leur
colinéarité. A cet égard, une première piste prometteuse est l’analyse simultanée de
données GNSS acquises par des stations terrestres et des satellites bas. L’inclusion

d’observations acquises par des satellites bas dans une analyse GNSS permet en
effet de décorreler les coordonnées du géocentre des décalages d’horloges satellites.
A l’heure actuelle, cette méthode ne permet cependant pas encore d’obtenir une
estimation réaliste du mouvement du géocentre.

Une seconde piste prometteuse pour réduire la colinéarité des coordonnées du géo
centre dans les analyses GNSS est la modélisation des décalages d’horloges satellites
sous une autre forme que par des paramètres estimés indépendamment à chaque
époque d’observation. De telles modélisations sont déjà possibles pour des satellites

particuliers équipés d’horloges de dernière génération (G062, GIOVE-B) et seront
également applicables à l’ensemble de la future constellation Galileo. Des variations

périodiques non modélisées de ces horloges, dues par exemple à des variations de
température, pourraient cependant compremettre toute réduction significative de la
colinéarité de la composante Z du géocentre par ce biais.
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Outre de la diminution des problèmes de colinéarité, une amélioration de la déter

mination du géocentre par GNSS peut également être attendue du perfectionnement
de la modélisation des orbites des satellites GNSS, et plus particulièrement des forces

non-gravitationnelles agissant sur ces satellites. A cet égard, des paramétrisations
alternatives ou bien des modèles analytiques précis de ces forces non-gravitationnelles

pourraient finir par permettre d’estimer le mouvement du géocentre de façon fiable
par GNSS. Mais le meilleur moyen de surmonter les problèmes de modélisation des

forces non-gravitationnelles serait probablement d’équiper les futurs satellites GNSS
d’accéléromètres 3D.

Il existe ainsi plusieurs pistes pouvant éventuellement déboucher sur une observa

tion fiable du mouvement du géocentre par GNSS. Pour le moment, il est cependant
difficile de prévoir si l’une de ces pistes finira par donner des résultats satisfaisants,

de quelle(s) piste(s) il s’agira et dans combien de temps. Il apparaît néanmoins
raisonnable d’envisager que les GNSS ne deviendront pas capables de rivaliser avec
le SLR pour la définition de l’origine de l’ITRF à court terme.
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Introduction

The availability of a Terrestrial Reference System (TRS) and of its physical real-
ization, a Terrestrial Reference Frame (TRF), is fundamental for a wide range of
applications which involve locating or tracking objects around the Earth. In the
particularly demanding domain of Earth and space sciences, the International Ter
restrial Reference System (ITRS) is nowadays widely adopted. It is an idéal reference
System attached to Earth’s crust and defined by its origin (the center of mass of the
Earth), its scale (given by the SI meter) and its orientation. Its physical realization is
the International Terrestrial Reference Frame (ITRF), which consists of coordinates
for a set of geodetic markers and reference points of geodetic instruments.

The détermination of the ITRF coordinates currently relies on the observations of

four space geodetic techniques: Very Long Baseline Interferometry (VLBI), Satellite
Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and Doppler
Orbitography and Radiopositioning Integrated by Satellite (DORIS). A particularly
crucial point in the élaboration of the ITRF is the définition of its origin and of
its scale. While ail four contributing techniques are in principle sensitive to the
terrestrial scale, only VLBI and SLR hâve so far contributed to the définition of the

ITRF scale. Similarly, while ail three satellite techniques (SLR, GNSS and DORIS)
are in principle sensitive to the location of the Earth’s center of mass, only SLR has
so far contributed to defining the ITRF origin.

The contribution of GNSS to the ITRF is fundamental in several respects. How-
ever, the terrestrial scale and origin information stemming from GNSS data analyses
has so far not been considered reliable enough to contribute to the définition of the
ITRF scale and origin. For now, GNSS alone could thus not suffice to completely
define an accurate TRF. This situation was the main motivation of this thesis. In

view of improving it, we therefore sought to investigate and résolve the weak ability
of GNSS to détermine the terrestrial scale and the location of the Earth’s center of

mass.

In Chapter 1, the general context of this work is set and several fundamental

14
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notions are introduced. Chapter 2 provides a detailed description of the GNSS

contribution to the ITRF and identifies the current related challenges. Chapter

3 présents the mathematical concepts that were used and developed during this

thesis so as to investigate the weak ability of GNSS to détermine the terrestrial
scale and the location of the Earth’s center of mass. Chapter 4 then provides a

detailed understanding of this weak ability. In Chapter 5, several prospects are

finally investigated that could eventually lead to a future contribution of GNSS to
defining the ITRF origin and scale.



Chapter 1

ITRF, geocenter motion and related

challenges

This first chapter is intended to set the overall scene in which the présent thesis took

place. It inevitably starts by introducing several fundamental notions (Sect. 1.1), in
particular the International Terrestrial Reference Frame (ITRF) whose improvement
was the underlying objective of the thesis, and geocenter motion which received a
particular focus in our work. To provide insight into the concrète nature of the
ITRF, the whole procedure used to build the ITRF from the observations of several

geodetic techniques is then detailed in Sect. 1.2. Similarly, the various approaches
allowing to estimate geocenter motion from geodetic observations are presented in
Sect. 1.3. In Sect. 1.4, the current scientific challenges related to the ITRF are finally
summarized.

1.1 Fundamental notions

The ability to locate or track objects around the Earth is today fundamental for a
wide range of applications. This first concerns the scientific observation of various

geophysical processes such as tectonic plate motions, earthquakes, crustal deforma

tions of various origins, post-glacial rebound, present-day ice melting or sea-level
rise. But this ability is also relevant to other scientific domains such as time transfer

and even fundamental physics (Antonello et al., 2012). Wide ranges of non-scientific
activities are finally concerned including navigation, civil engineering and agriculture.

Another requirement of today’s Earth and space science is to accurately monitor

16
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the Earth’s variable rotation in space. It is in particular essential to the précisé

tracking of satellites for, e.g., gravitational studies, to the précisé manoeuvring of
interplanetary flights, to the réduction of any astronomical observation and also
provides insight into the Earth’s internai structure.

Both these requirements could not be met without the availability of a Terrestrial

Reference System (TRS) and of its physical realization, a Terrestrial Reference Frame
(TRF). Such a frame indeed matérialisés a System of coordinates in which objects ail
around the Earth can be quantitatively positioned and also serves as a représentation

of the Earth for describing its motion in space.

This section starts by defining the notions of TRS (Sect. 1.1.1) and TRF (Sect. 1.1.2)
introduced by Kovalevsky and Mueller (1981) and by briefly presenting the Inter
national Terrestrial Reference System (ITRS; Sect. 1.1.3) and its realization, the
International Terrestrial Reference Frame (ITRF; Sect. 1.1.4). The Earth Orienta
tion Parameters (EOPs) used to describe the Earth’s variable rotation in space are
then defined in Sect. 1.1.5. The concept of geocenter motion is finally introduced in
Sect. 1.1.6.

1.1.1 Terrestrial reference System

Since Galileo understood the relative nature of motion, it has been accepted that

"motion and position are not absolute concepts and can be described only with re

spect to some reference" (Kovalevsky and Mueller, 1989). In the Newtonian frame-
work, positions, motions and the laws of physics are thus always attached to a refer

ence System, i.e. a coordinate System of the 3-dimensional space. To locate or track

objects located on the Earth’s surface, it is convenient to adopt a particular sort of

reference System, called Terrestrial Reference System (TRS) and defined as follows.

According to conventions of the International Earth Rotation and Reference Sys

tems Service (IERS; Petit and Luzum, 2010), a TRS is an Euclidean affine frame
(O, E) attached to the solid surface of the Earth and such that:

— its origin O is close to the Earth’s center of mass;

— E — (ex, Cy, ez) is a right-handed, orthogonal basis;

— the basis vectors ail hâve the same norm A = ||ex|| = ||ey|| = \\ez\\ which is
close to the SI meter;

— the Z axis is the Earth’s rotation axis, while the X and Y axes lie in the

équatorial plane.

A TRS is thus entirely characterized by its origin, its scale À and the orientation of
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its basis vectors.

The transformation from one TRS to another is therefore a 3-dimensional simi-

larity which can be written:

x2 = x1 + T + knx1 (î.i)

where:

— Xi and X2 are the coordinates of a point M in two different TRS;

— T = [tx,tY, t'z]1 is the translation vector between both TRS origins;

— k is the ratio between both TRS scales;

— R is the rotation matrix between both TRS orientations.

Geodetic TRS are usually close enough to each other so that a linearized similarity
transformation can be used:

X2 = Xi + T + dXi + RXl (1.2)

where:

II"CS -i;

0 -rz rY

R = rz 0 ~rx

. ~rY rx 0

— rx, ty and rz are the rotation angles around the X, Y and Z axes respectively.

Note that the transformation between two TRS is generally function of time, so as
to reflect the temporal variations between their origins, scales and orientations.

1.1.2 Terrestrial reference frame

Thus defined, a TRS is an idéal mathematical concept and cannot serve to quantify
the position or motion of an object nor the orientation of the Earth without a phys-
ical realization. Such a realization is generally achieved by a given set of physical
points precisely located in the TRS coordinate System. The realization of a TRS
through such a set of reference coordinates is called a Terrestrial Reference Frame
(TRF). Locating an object in a TRS is actually achieved by positioning this object
relatively to the TRF points. These points are usually geodetic markers attached to
the Earth’s crust or the reference points of geodetic instruments. Their coordinates
are determined from the statistical adjustment of geodetic observations and are thus
associated with statistical information, i.e. a covariance matrix which reflects the

précision of the adjusted coordinates.
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Table 1.1 Main geophysical deformations affecting the Earth’s crust

Type Time scale Magnitude

Co-seismic displacements Nearly instantaneous Up to several m

Solid Earth tides Mainly daily and sub-daily, but also

small long-period tides

Several tens of cm

Tidal océan loading deformations Mainly daily and sub-daily, but also

small long-period tides

Several cm

Non-tidal loading deformations Sub-monthly to inter-annual, but

mainly annual

Up to several cm

Post-seismic relaxation Up to several years Up to several m

Tectonic plate motions Secular Several cm/year

Post-glacial rebound Secular Up to 2 cm/year

The Earth’s crust continuously undergoes various geophysical deformations (Ta
ble 1.1). So that a TRF remains usable with a certain accuracy over a certain time
span, it is necessary that the reference coordinates of the TRF points reflect these

geophysical deformations, at least down to a certain magnitude. Real or apparent

displacements of the reference points due to non-geophysical causes (i.e. disconti
nuités due to monumentation or instrumentation changes) need to be taken into
account as well. The reference coordinates of a TRF point are thus function of time,

with the following generic form:

X{t) = XR(t) + '£iÔXi(t) (1.3)
i

where:

— the SXi(t) are conventionally computed displacements that account for certain
well modeled geophysical deformations;

— XR(t) are so-called regularized coordinates, i.e. the part of the reference coor
dinates which is actually determined from geodetic observations.

The conventional corrections 6Xi(t) recommended by the IERS currently include
solid Earth tides, tidal océan loading deformations, Si and S2 atmospheric pressure
loading deformations, rotational deformations due to polar motion and océan pôle

tide loading deformations.

Until now, the regularized coordinates of TRF points hâve traditionally been

represented as piecewise linear functions. This parameterization accounts for long-

term linear displacements and for instantaneous position/velocity changes of the
reference points. On the other hand, it does not handle non-conventional, non-linear

displacements such as non-linear non-tidal loading deformations and can only crudely
approximate post-seismic relaxation.
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The more and more demanding requirements for TRF accuracy make it nowadays
important to consider alternative parameterizations capable of representing such
non-linear displacements. One possibility in that sense is to adopt more complex
parametric models for regularized coordinates. Collilieux (2008) and Altamimi et al.
(2013) thus propose to augment the traditional piecewise linear parameterization
with sines and cosines at various periods to account for periodic non-tidal loading
deformations, while Lercier et al. (2013) introduce exponential and/or logarithmic
functions to account for post-seismic relaxation.

Another, more radical possibility is to model regularized coordinates by a sériés
of coordinates XR(ti) valid over short successive time intervals and obtained from
independent epoch-wise adjustments (Blossfeld et al., 2013) or from a sequential
adjustment (Wu et al., 2012a) of geodetic observations.

1.1.3 The International Terrestrial Reference System

The International Terrestrial Reference System (ITRS) is a particular TRS formally
adopted by the International Association of Geodesy (IAG) since 1991 and by the
International Union of Geodesy and Geophysics (IUGG) since 2007. It is defined by
the following conventions:

— the ITRS origin is the center of mass for the whole Earth, including océans and
atmosphère;

— the ITRS length unit (scale) is the SI meter;

— the ITRS orientation at epoch 1984.0 is that of the Bureau International de

l’Heure (BIH) reference System;

— the time évolution of the ITRS orientation is defined by a no-net-rotation con
dition over the whole Earth’s crust.

1.1.4 The International Terrestrial Reference Frame

Since 1988, the IERS has produced twelve realizations of the ITRS called Interna

tional Terrestrial Reference Frames (ITRF). The ITRS realization currently in use
is the ITRF2008 (Altamimi et al., 2011). A new realization called ITRF2013 is now
under préparation.

Since the sixth ITRS realization (ITRF94; Boucher et al., 1996), the ITRF reg
ularized coordinates hâve been represented by piecewise linear functions. An ITRF

thus consists of positions and velocities for a set of geodetic markers and reference
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points of geodetic instruments, as well as of the associated covariance matrix. But
note that daily sériés of Earth Orientation Parameters (Sect. 1.1.5) are also part of
the ITRS realizations since the penultimate ITRF2005 (Altamimi et al., 2007).

Since the ITRF94, the ITRF coordinates are determined from the observations of

four space geodetic techniques1:

— Very Long Baseline Interferometry (VLBI);

— Satellite Laser Ranging (SLR);

— Global Navigation Satellite Systems (GNSS);

— Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS).

A brief description of these techniques is given in Sect. 1.2.1.

The strategy for determining the ITRF coordinates from these geodetic observa
tions has considerably evolved over time. The computation strategy used for the
latest ITRF release is described in Sect. 1.2.

1.1.5 Earth orientation parameters

The celestial counterpart of the ITRS is the International Celestial Reference System

(ICRS). It is an idéal coordinate System with its origin at the barycenter of the
solar System and whose axes hâve a fixed orientation with respect to distant celestial

objects. The ICRS is realized by the International Celestial Reference Frame (ICRF),
i.e. a set of extragalactic objects with reference coordinates. The ICRS/ICRF serve as
reference to locate or track celestial objects. However, for the purpose of determining
the orbits of Earth satellites, it is more convenient to use a translated version of the

ICRS, the Geocentric Celestial Reference System (GCRS), which has the same origin
as the ITRS, i.e. close to the Earth’s center of mass.

Monitoring the Earth’s rotation concretely cornes to knowing the relative orien

tation between the axes of the ITRS and those of the GCRS. According to the IERS

Conventions (Petit and Luzum, 2010), the rotation from the ITRS to the GCRS at
time t is conventionally decomposed into a sequence of three rotation matrices:

XGCRs(t) = Q(t)R(t)W(t)XITRS(t) (1.4)

where:

— Q(t) accounts for precession and nutation, i.e. motion of the Earth’s rotation
axis in the GCRS (in space). Q(t) dépends on the pôle coordinates in the GCRS

Tunar Laser Ranging (LLR) observations were additionally used to détermine the ITRF2000 (Altamimi et al.,
2002).
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(celestial pôle coordinates) X(t) and Y(t). These coordinates are the sum of
conventional pôle coordinates derived from the IAU 2006 precession-nutation
model (Wallace and Capitaine, 2006) and of small corrections SX (t) and 6Y(t)
known as celestial pôle offsets.

— R(t) represents a clockwise rotation around the Earth’s rotation axis by the
Earth rotation angle ERA(t). ERA(t) can be decomposed into an angle vary-
ing uniformly with the International Atomic Time (TAI) and a correction rep-
resenting variations of the Earth’s angular velocity. This correction is directly
related to the différence DUTltot(t) between the Universal Time UT1 and the
Coordinated Universal Time UTC. DUTliot(t) is the sum of conventionally
modelled variations due to solid Earth tides, océan tides and libration and of

non-conventionally modelled variations DUTl(t).

— W(t) accounts for polar motion, i.e. motion of the Earth’s rotation axis in the
ITRS (with respect to the Earth’s crust). W(t) dépends on the pôle coordinates
in the ITRS x^it) and ypot(t). These coordinates are the sum of conventionally
modelled variations due to océan tides and libration and of non-conventionally
modelled variations xp(t) and yp(t).

The Earth’s orientation in space is thus defined by a set of five parameters (ÔX(t),
SY(t), DUTl(t), xp(t) and yp(t)) called Earth Orientation Parameters (EOPs).
These parameters are usually represented by continuous piecewise linear functions

(daily offsets at midnight) or by discontinuous piecewise linear functions (daily offsets
at noon and daily rates). Daily EOP estimâtes derived from geodetic observations
are regularly published by the IERS.

The latest ITRF realizations hâve included a subset of three EOPs, namely
DUTl{t), xp(t) and yp(t), represented by daily offsets at noon and daily rates. In the
following, we will only consider the same three EOPs with the same parameterization

as in the ITRF. The term EOPs will thus refer to daily pôle coordinates xp and yp at
noon, daily pôle rates xp and ÿp, daily DUT1 offsets and daily values of the length
of day LOD, i.e. the opposite of DUTVs rate integrated over one day.

1.1.6 Geocenter motion

Let CM dénoté the center of mass of the whole Earth System (i.e. of the solid Earth
and its fluid envelopes) and CF dénoté the center of figure of the solid Earth’s surface.
Geocenter motion is usually defined, with varying sign conventions, as the relative
motion between CM and CF. Following Wu et al. (2012b), we define it here as the
motion of CM with respect to CF and dénoté it AvCm/cf- Informally speaking,
geocenter motion can be seen as the net displacement of the Earth system’s mass



1.2. Practical computation of the ITRF 23

with respect to the Earth’s crust. The geophysical cause of geocenter motion is the

permanent redistribution of masses within the Earth System, from daily and sub-daily

periods (e.g. océan tides) to secular time scales (e.g. post-glacial rebound, present-day
ice melting) via seasonal and inter-annual periods (e.g. water mass exchanges).

As discussed by Dong et al. (2003), geocenter motion has direct conséquences on
the nature of the ITRF origin. While the IERS Conventions stipulate that the ITRF

origin should coincide with CM, this is currently not the case at ail time scales.
Firstly, geocenter motion induced by océan tides is in principle correctly represented
as part of the conventionally modelled station displacements recommended by the

IERS. Secondly, long-term geocenter motion can be accounted for by the ITRF sta
tion velocities, so that there should in principle be no offset nor drift between the

ITRF origin and CM. But finally, non-conventionally modeled, non-linear geocenter
motion can currently not be accounted for by the ITRF coordinates due to their linear

parameterization. Against the conventional définition of the ITRF origin, there con-
sequently exist non-linear variations between the ITRF origin and CM, that mostly

consist of an annual signal with an amplitude of a few mm.

However, as detailed by Wu et al. (2012b), some stringent geodetic applications,
like the monitoring of surface mass transport by GRACE or the précisé orbit détermi
nation of, e.g., altimetry satellites, cannot simply ignore this part of geocenter motion

not captured in the ITRF coordinates. The IERS is therefore currently considering

the adoption of a conventional model for the annual part of geocenter motion. But
another solution to handle non-conventionally modeled, non-linear geocenter motion
is to refine the parameterization of the ITRF station coordinates. If the current piece-

wise linear parameterization is augmented with annual periodic terms (as planned
for the next ITRF2013), then the annual part of geocenter motion could for instance
be directly accounted for by the ITRF coordinates. In a TRF where regularized

station coordinates would be represented by discrète time sériés (as investigated by
Wu et al. (2012a) or Blossfeld et al. (2013)), geocenter motion could even be handled
at ail time scales, so that the TRF origin could coincide with CM at ail times.

1.2 Practical computation of the ITRF

This section aims at describing the complété procedure that was used to build the lat-

est ITRF release (ITRF2008) starting from the observations of the four contributing
techniques. This procedure involved four main steps:

— analysis of the observations of each technique by several Analysis Centers (ACs)
on a weekly or daily basis;
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— combination of the AC solutions of each technique on a weekly or daily basis;

— stacking of the combined solutions of each technique into long-term linear frames
(i.e. détermination of regularized station coordinates as piece-wise linear func-
tions in technique-specific terrestrial reference frames);

— combination of the technique long-term frames together with local ties.

After brief présentations of the four contributing techniques (Sect. 1.2.1), this section
describes the four steps of the ITRF computation procedure (Sect. 1.2.2 to 1.2.5). A
spécial emphasis is finally put on the origin and the scale of the ITRF, their définition

and their importance (Sect. 1.2.6).

1.2.1 Contributing techniques

The Very Long Baseline Interferometry (VLBI) technique relies on the simultaneous
collection, by several radio-télescopes, of the signal emitted by an astronomical radio-
source such as a quasar (quasi-stellar radio-source). Correlating the collected signais
allows to détermine the time différences between their arrivais at the different téle

scopes and hence the geometry of the telescope network. Moreover, the observation
of several radio-sources allows to détermine the orientation of the telescope network
relatively to the sources, i.e. to détermine the Earth Orientation Parameters.

Unlike VLBI, the three other techniques contributing to the ITRF rely on satel
lite tracking data. In the case of Satellite Laser Ranging (SLR), a global network
of ground stations send ultra-short laser puises to satellites equipped with retro-
reflectors and then collect the reflected signais. Measures of the signal travel times
thus provide a set of précisé station-satellite ranges from which the satellite orbits can
be determined together with the ground station coordinates and a subset of Earth
Orientation Parameters.

Similarly to SLR, the contribution of Global Navigation Satellite Systems (GNSS)
to the ITRF relies on the measurement of station-satellite ranges. But a major différ
ence with SLR is that GNSS are based on one-way propagated signais. Concretely,
satellite constellations broadcast microwave signais collected by a global network of
ground stations. The signal émission and réception dates are respectively given by
the satellite and station docks. The signal travel times are therefore not directly
accessible, but require the synchronization of the satellite and station docks to a

common time reference. As with SLR, the GNSS satellite orbits, the ground station
coordinates and a subset of Earth Orientation Parameters can be estimated from a

global set of GNSS data. But the satellite and station dock offsets as well as other

nuisance parameters also need to be considered. More detail on the analysis of global
GNSS datasets is given in Sect. 2.1.2.



1.2. Practical computation of the ITRF 25

The last geodetic technique contributing to the ITRF, DORIS, also relies on one-
way propagated signais between ground stations and satellites. But DORIS being an
uplink System, the signais are broadcast by a global network of ground beacons and
received by some number of satellites. The DORIS satellite receivers hâve historically

collected frequency shift (Doppler) measurements, but the new génération of DORIS
receivers now provides similar travel time measurements as GNSS. As with SLR and

GNSS, the DORIS satellite orbits, the ground station coordinates and a subset of

Earth Orientation Parameters can be estimated from a global dataset of DORIS
measurements.

1.2.2 Analysis

International services of the IAG (the IVS, ILRS, IGS and IDS respectively for VLBI,
SLR, GNSS and DORIS) are in charge of collecting and providing data from the four
techniques contributing to the ITRF. Each of the services comprises several Analysis

Centers (ACs) whose rôle is to dérivé geodetic products from the data. On the basis
of a given time period (e.g. one week, one day or one VLBI session), an AC concretely
gathers a set of observations l and estimâtes a set of parameters x that best fits these
observations. The adjusted parameters include:

— the coordinates of the observing stations;

— parameters describing the satellite orbits for SLR, GNSS and DORIS;

— the coordinates of the observed quasars for VLBI;

— ail or a subset of the Earth Orientation Parameters;

— parameters describing the tropospheric delays of the propagated signais;

— other technique-specific biases such as SLR station range biases, GNSS sta

tion and satellite clock offsets, GNSS phase cycle ambiguities, DORIS beacon
frequency offsets...

ACs may use various parameter adjustment methods, such as the widely employed

generalized least-squares régression (Sect. B.l), that ail lead to a so-called normal
équation:

N(x - x0) = b (1.5)

where Xo is a set of a priori parameters. It is possible to reduce spécifie parameters

from such a normal équation so as to retain a subset of parameters of interest only

(Sect. B.3.1). In their contributions to the ITRF, the ACs thus reduce ail parameters
but the station coordinates and the EOPs, so that we will now consider that x

contains only those parameters.
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None of the geodetic techniques provides enough information to unambiguously
estimate station coordinates and EOPs. This translates to the fact that the normal

matrix N is singular so that the normal équation has an infinité number of solutions.

The singularities inhérent to the four contributing techniques are the following:

— None of the four techniques is able to détermine the orientation of the station

network with respect to the crust simultaneously with the EOPs. The pôle co
ordinates and DUTl are indeed not intrinsic quantities, but completely dépend
on the orientation of the terrestrial frame realized by the station coordinates.

In other words, any rotation of the station network can be compensated by
variations of the EOPs without any impact on the geodetic observations. The
normal matrices of ail techniques therefore hâve three orientation singularities.

— As an interferometric technique, VLBI is additionally insensitive to the origin
of the terrestrial frame. Translating the whole station network would indeed
not change the réception time différences of the quasar signais at the different
télescopes. A VLBI normal matrix thus has three origin singularities.

— The three satellite techniques (SLR, GNSS and DORIS), even if the orientation
of the station network is fixed, are insensitive to DUT1. A variation of DUT1

can indeed be compensated by a rotation of the whole satellite constellation

(through variations of the reduced orbital parameters) without affecting satellite
tracking observations. SLR, GNSS and DORIS normal matrices consequently
hâve one DUT1 singularity.

To obtain a unique solution from the normal équation, ACs consequently need
to impose some additional constraints to the estimated parameters. ACs may use
different kind of constraints, for instance minimal constraints (Sect. B.2.3). But,
provided that the constraints are applied as pseudo-observations (Sect. B.2.1) with
respect to the a priori parameters and that they compensate ail singularities of the
normal matrix, any kind of constraints results into a constrained normal équation:

(N + Nc){x-x0) = b (1.6)

where Nc is the normal matrix of constraints and N H- Nc is invertible. Such a

constrained normal équation leads to a unique solution:

x = Xq -(- (iV Nc) 1b (1.7)

The covariance matrix associated with the estimated parameters x is:

Q = (N + NC)~1 (1.8)

The AC contributions to the ITRF concretely consist in weekly, daily or VLBI-
session-wise time sériés of either non-constrained normal équations (i.e. ccq, N and
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b) or constrained solutions (i.e. cc0, x, Nc and Q) provided in the SINEX format2.
It is possible, from a constrained solution, to recover the non-constrained normal

équation by:

A third possible type of AC contributions consist in minimally constrained solutions,
in which case ACs may only provide x and Q, but not necessarily the constraints
Nc they applied.

1.2.3 Intra-technique combination

Each of the geodetic technique services also comprises a combination center whose

rôle is to merge the solutions provided by the various ACs into unique combined
solutions. These intra-technique combinations are performed on the same time basis

as the analysis (i.e. one week, one day or one VLBI session) and essentially consist
in a weighted averaging of the AC solutions. The intra-technique combinations can
either be described as combinations of normal équations or as combinations of so

lutions. Both approaches are often opposed (e.g. Seitz et al., 2012), but are in fact
strictly équivalent under a few mild conditions. We describe here the intra-technique
combination methodology as a combination of solutions.

Suppose that data from one geodetic technique hâve been analysed by several ACs
over the same time span so that we dispose of a set of s SINEX files containing either
non-constrained normal équations, constrained solutions with information about the

applied constraints or minimally constrained solutions. By removing the possibly
applied constraints using Eq. 1.9 and inverting the non-constrained normal équations
using minimal constraints, it is possible to bring ail AC contributions to minimally
constrained solutions. So we will now assume to dispose of a set of s minimally
constrained solutions {x\ Ql)\<i<s 3.

Each set of parameters x1 is composed of station positions and of Earth Orienta

tion Parameters. In the formalism of the combination of solutions, the x1 are used
as pseudo-observations to estimate combined station positions and combined EOPs

via the following observation équations (Altamimi et al., 2004):

2Solution Independent Exchange Format (http://www.iers.org/IERS/EN/Organization/AnalysisCoordinator/
SinexFormat/sinex cont.html)

3Combining minimally constrained solutions is in fact the first condition for the équivalence with the combination
of normal équations.

(1.9)



1.2. Practical computation of the ITRF 28

X1 = Xc + éx + diXc - r'zYc +
yi = Yc + tiy+diYc + r'zXc~r'xZc
z{ = Zc + fz+ diZc - r'YXc + rixYL
Xe = x^ + Yy

ylP = ycp + rix
DUTl1 = DUT1C — r'z/f

xlp syC
XP

ÿ? = ÿcv
LOD1 = LODc

where:

(1.10)

— X\ Y\ Z1 dénoté the coordinates of a particular station in the input solution i
(in m);

— Xe, Ve, Zc dénoté the coordinates of the same station in the combined solution;

— xlp, yp, DUT1\ xlp, ÿLp, LOD1 dénoté EOP estimâtes in the input solution i (in
rad and rad/d);

— xp, yp, DUT1e, xp, ÿp, LODc dénoté the corresponding combined EOPs;

— tx, tlY, tlz, d\ rlx, rly, rlz dénoté seven optional transformation parameters4
(three translations, one scale factor and three rotations in m, unitless and in
rad respectively) between the terrestrial frame realized by the input solution i
and the combined terrestrial frame;

— f — 1.00273781191135448 is the conventional rate of advance of the Earth

Rotation Angle ERA with respect to UT1.

These observation équations can be put in the following matrix form:

...̂ S•"1
Xe

e1

xs .̂ 05 As
es

where:

(î.n)

— J1 — dx1/dxc is a matrix of ones and zéros which associâtes each parameter in
xl to the corresponding combined parameter in xc\

4The second and last condition for the équivalence with the combination of normal équations is that only the
transformation parameters corresponding to singularities of the technique are estimated (e.g. rotations only for the
satellite techniques; rotations and translations for VLBI). It is nevertheless possible to set up additional transforma
tion parameters both in the combination of normal équations and in the combination of solutions, with still équivalent
resuit s.



1.2. Practical computation of the ITRF 29

— 0l is a vector containing the transformation parameters between the input so

lution i and the combined solution;

— A1 = dxl/dOl. For instance, if xl is made of 3k station coordinates followed
by 6 EOPs (xl = [Xu Yu Zu ..., Xk, Ffc, Zk, xp, yp. DUT1, xp, ÿp, LOD]T) and if
ail seven transformation parameters are set up for the input solution i (67 =
[txityi rlx, ry, rz]T), then A1 has the following form:

1 0 0 Ai 0 Al -F!

0 1 0 Fl -Al 0 X\

0 0 1 Zi Fi -A 0

1 0 0 Xk 0 zk —Yk

0 1 0 Yk —Zk 0 Xk

0 0 1 zk Yk -xk 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 -1//

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Although this is clearly not the case since common data are processed by the var-

ious ACs, the pseudo-observation sets (ccl)i<z<s are generally assumed to be statisti-
cally independent. The covariance matrix associated with the whole set of pseudo

observations is therefore taken as a block-diagonal matrix with blocks (XQl)i<i<s.
The Al’s are AC-dependent scaling factors required because (a) the AC covariance
matrices are not consistently scaled with each other (due to the different software
and strategies used) and (b) the AC solutions may be of different qualities. The
Àns need to be initialized with some a priori knowledge. They are then iteratively

updated using some variance component estimation technique, usually the so-called

degree of freedom estimator technique (Sillard, 1999; Bahr et al., 2007).

The observation équations 1.11 and the block-diagonal covariance matrix de-

scribed above form a generalized least-squares System. Because possible outliers

in the input AC solutions need to be detected and removed and because the AC scal

ing factors need to be iteratively estimated, this System has to be iteratively solved

until no outliers remain and the AC scaling factors hâve converged.

Provided that minimally constrained solutions are combined and that only the
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transformation parameters corresponding to singularises of the technique are esti-
mated, the obtained combined normal équation has the same characteristics and

singularities as the AC normal équations: the combination is in this case a simple
weighted averaging of the AC normal équations. Like the AC normal équations, the

combined normal équation thus cannot be solved without additional (e.g. minimal)
constraints. And like the AC contributions, the technique combined contributions
to the ITRF consist in weekly, daily or VLBI-session-wise time sériés of either non-

constrained normal équations or constrained solutions provided in the SINEX format.

1.2.4 Long-term stacking

The next step in the élaboration of the ITRF consists, for each of the four techniques,
in stacking the time sériés of weekly, daily or VLBI-session-wise combined frames

into a long-term frame. This step is performed by the IERS ITRS Centre. Like

the intra-technique combination, this long-term stacking can either be described as
a stacking of normal équations or as a stacking of solutions. But both approaches
are again strictly équivalent under the same conditions as described in Sect. 1.2.3.

We describe here the long-term stacking methodology as a stacking of solutions.

Say that we dispose, for a given technique, of a time sériés of s minimally con
strained solutions (x\ Ql)i<i<s, each referred to a spécifie epoch tl (e.g. the middle of
the analysis week). Although EOPs are included in the technique long-term frames
since the ITRF2005 (Altamimi et al., 2007), we suppose here, for the sake of sim-
plicity, that the parameter sets (æî)i<i<.s are restricted to station positions only.
Stacking these solutions into a long-term frame consists in taking the ad’s as pseudo
observations to estimate the station positions at some reference epoch tref together
with the station velocities. The corresponding observation équations are as follows:

IX* = Xc+(ti-tTe*)Xc + tix + éXc-rizYc + r)rZcY1 = Yc + {f-tref)Ÿc + tiY + diYc + rizXc-rixZc (1.13)

Z* = Ze+{ti-tref)Zc + tiz + d*Zc-r{'Xc + r)cYc

where:

— X\Y\ Z1 dénoté the coordinates of a particular station in the input solution z;

— Xe, Yc, Zc dénoté the coordinates of the same station in the stacked solution

at the epoch tref ;

— Xe, Yc, Zc dénoté the velocity of the same station in the stacked solution;

— tx, ty, tlz, d\ rx, rlY, rlz dénoté seven optional transformation parameters (three
translations, one scale factor and three rotations) between the terrestrial frame
realized by the input solution i and the stacked terrestrial frame.
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These observation équations can be put in the following matrix form:

1•'1 ' J1 (t1 - tTet)Jl1

xs JS (ts _ f.ref'jjsAs

x

xc

el

os

(1.14)

where:

— xc and xc respectively contain the station positions at tref and the station
velocities in the stacked frame;

— J1 = dxl/dxc is a matrix of ones and zéros which associâtes each parameter in
xl to the corresponding parameter in xc\

— 0l is a vector containing the transformation parameters between the input so
lution i and the combined solution;

— A1 = dxl/dOl has the same form as in Eq. 1.12 - except for the EOP part - if
ail seven transformation parameters are set up for the input solution i.

Like in the intra-technique combination, the pseudo-observation sets (xl)i<*<5 are
assumed to be independent, so that the covariance matrix associated with the whole

set of pseudo-observations is taken as a block-diagonal matrix with blocks {Ql)i<i<s-
(No scaling factors are needed here provided that the input solutions were obtained
with a homogeneous combination strategy.) The observation équations 1.14 and this
block-diagonal covariance matrix form a generalized least-squares System which is
iteratively solved until no outlier remain in the input solutions.

Depending on which transformation parameters are set up, the stacked normal

équation may hâve some number of singularities. For example, if X translations are

set up for ail input solutions, the resulting stacked normal équation will hâve one

"translation singularity" (adding some constant to the X coordinates of ail stations
can be compensated by subtracting this constant to ail X translation parameters) as
well as one "translation rate singularity" (adding some constant to the X velocities
of ail stations can be compensated by subtracting a trend from the time sériés of X

translation parameters). The stacked normal équation may thus hâve up to fourteen
singularities in case where ail seven transformation parameters are set up for ail input
solutions.

Each of these fourteen singularities can be cancelled by means of two different
kinds of constraints. For instance, in the case where three translation parameters are

set up for ail input solutions, the six subséquent singularities can first be compensated

by imposing no-net-translation and no-net-translation-rate constraints (Sect. B.2.5)
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between the stacked frame and some external reference frame. The other alternative

is to use so-called internai constraints (Altamimi et al., 2006), i.e. to impose that
the time sériés of transformation parameters between the input solutions and the
combined solution hâve zéro means and zéro drifts. For instance, to compensate the
two singularities due to the estimation of X translations for ail input solutions, the
internai constraint équations would read:

£4 = o
*=1

j2(t* -tre/)t'x = o
i— 1

(1.15)

1.2.5 Inter-technique combination

The final step in the élaboration of the ITRF is to merge the four technique-specific
long-term frames into a unique multi-technique frame, the ITRF itself. This step is
also performed by the IERS ITRS Centre and can again be equivalently described
- under certain conditions - as a combination of solutions or as a combination of

normal équations. In the formalism of the combination of solutions, the station
positions and velocities from the four technique-specific long-term frames are taken
as pseudo-observations to estimate the station positions and velocities in the ITRF.

Up to fourteen transformation parameters (three translations, one scale factor, three
rotations and ail their rates) may also be estimated between each of the technique-
specific solutions and the combined solution. If any of these fourteen parameters is
estimated for ail of the technique-specific solutions, then one singularity arises in the
combined normal équation and needs to be compensated by some constraint.

As the technique-specific frames do not share common points, additional infor
mation has to be brought in order to tie them into a unique frame. That is where

sites hosting instruments from several of the four techniques corne into play. Local
tie surveys are occasionally performed at such co-location sites, providing informa
tion about the relative positions of the reference points of the various instruments

within the site. These local ties are thus included as pseudo-observations in the
ITRF inter-technique combination. Moreover, ail instruments within one co-location

site can reasonably be assumed to hâve the same velocity, so that velocity equality
constraints can be additionally included in the ITRF inter-technique combination.

Local ties and velocity equality constraints at co-location sites are currently the
only information allowing to tie the technique-specific frames into a unique common
frame and hâve therefore a primordial importance in the ITRF élaboration. Although
this importance has been constantly stressed over the past years, the distribution and
quality of local ties, but also the quality of the geodetic stations at co-location sites
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still remain a major limiting factor of the ITRF accuracy (Altamimi et al., 2011).

1.2.6 ITRF datum définition

An especially important aspect of the ITRF élaboration is the définition of its origin,

its scale and its orientation (i.e. its datum), so that they best meet the ITRS spécifi
cations (Sect. 1.1.3). This section describes the strategy that was used to define the
ITRF2008 datum, i.e. which transformation parameters were estimated and which

constraints were applied

ITRF orientation définition The ITRF orientation is the least crucial part of its

datum définition as it is only a matter of convention: as stated in Sect. 1.2.2, none

of the four techniques is indeed able to provide any absolute orientation information.

During the ITRF2008 inter-technique combination, rotation and rotation rate pa
rameters were thus estimated for ail the four techniques, while no-net-rotation and

no-net-rotation-rate constraints were simply applied with respect to the previous

ITRF2005 via a subset of high quality geodetic stations.

ITRF origin définition The définition of the ITRF origin is much more crucial.
As stated in Sect. 1.1.6, with the current parameterization of the ITRF station

coordinates, the ITRF origin cannot coincide with the center of mass of the Earth

(CM) at ail time scales, but can only linearly follow CM. This linear following of CM
is nevertheless critical for the observation of long-term geophysical processes such as

sea-level rise (Beckley et al., 2007; Collilieux et al., 2011), post-glacial rebound or
present-day ice melting.

In principle, ail three satellite techniques contributing to the ITRF could serve to
define its origin. In the analysis of SLR, GNSS and DORIS data, the orbits of the

tracked satellites are indeed represented by differential motion équations that only

hold in a CM-centred frame (i.e. no degree-1 Stokes coefficients are included). The
daily or weekly frames resulting from the analysis of SLR, GNSS and DORIS data

should thus hâve CM as their natural origin. However, the analysis of the technique
solutions provided for the ITRF2008 revealed that the origin information from the
GNSS and DORIS solutions was of much lower quality than the origin information
coming from SLR (Altamimi and Collilieux, 2010; Altamimi et al., 2011; Collilieux
et al., 2011; Valette et al., 2010). Only the origin information from the input SLR
solutions was therefore used to define the origin of the ITRF2008.

Concretely, during the ITRF2008 inter-technique combination, translation and
translation-rate parameters were estimated for the VLBI, GNSS and DORIS solu

tions, but not for the SLR solution. The ITRF2008 thus inherited the origin and the
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origin rate of the stacked SLR frame. Previously, during the long-term stacking of
the weekly combined SLR solutions into the stacked SLR frame, translation param-
eters had been estimated for each of the weekly solutions and internai constraints

had been used to define the origin and the origin rate of the stacked SLR frame.
There is consequently no offset nor drift in the time sériés of translations between

the weekly combined SLR solutions and the ITRF2008, which is a way to ensure that
the ITRF2008 origin linearly follows the CM sensed by SLR.

ITRF scale définition Like the définition of its origin, the définition of the ITRF scale

is critical for the observation of long-term geophysical processes, especially sea-level
rise using GPS-corrected tide-gauge records. Ail the four contributing techniques
are in principle sensitive to the terrestrial scale. But only the scale information
coming from the SLR and VLBI solutions was retained for the ITRF2008. During
the stacking of the combined SLR and VLBI solutions, scale factors were estimated
and internai constraints were used to define the scales and scale rates of the stacked

SLR and VLBI frames. Then, during the inter-technique combination, scale and
scale rate parameters were estimated for ail of the four technique-specific solutions.
The mean of the SLR and VLBI scale parameters was constrained to zéro, so that
the ITRF2008 scale is finally a mean of the terrestrial scales sensed by SLR and
VLBI. The scale rate of ITRF2008 was defined in the same way, as a mean of the
scale rates sensed by SLR and VLBI.

1.3 Geocenter motion estimation

This section first aims at describing the different methods with which geocenter mo
tion can be estimated from geodetic observations, namely the network shift approach
(Sect. 1.3.1), the degree-1 deformation approach (Sect. 1.3.2) and Lavallée et al.
(2006)’s unified approach (Sect. 1.3.3). The current status of the geodetic estimation
of geocenter motion is then summarized in Sect. 1.3.4.

1.3.1 Network shift approach

As explained in Sect. 1.2.6, the analysis of satellite tracking data for some given period
gives in theory access to the tracking station coordinates in CM-centred frames. Daily
or weekly SLR, GNSS and DORIS solutions should thus hâve the quasi-instantaneous
CM as their origins. On the other hand, as explained in Sect. 1.1.6, the origin of a
long-term linear frame such as the ITRF only linearly follows CM. The net trans
lations between quasi-instantaneous SLR, GNSS or DORIS frames and the ITRF
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should therefore reflect the non-linear part of geocenter motion (Dong et al., 2003;
Collilieux et al., 2009). This way of estimating non-linear geocenter motion as net
translations between quasi-instantaneous frames and a long-term linear frame is often

called network shift approach.

Because the whole Earth’s crust is not uniformly covered with geodetic stations,

the center of figure CF of the solid Earth’s surface is in fact not accessible with the
network shift approach. Rather than providing estimâtes of the CM/CF offset, this
approach in fact leads to estimâtes of the offset between CM and the so-called center

of network CN, i.e. the barycenter of the station network. Because of their non-

uniform distribution and of the local motions affecting the tracking stations, relative
motion occurs between CN and CF. This spurious contribution to geocenter motion

estimated with the network shift approach is known as network effect (Collilieux
et al., 2009).

The observation équations of the network shift approach are the following:

" X -XR ' tx ‘ ** " 0 -TZ ry ' ** "

y — yR — ty + d Yr + rz 0 -rx Yr

z -ZR _ tz . ZR . . ry rx 0 _ ZR _

where:

(1.16)

— X,Y, Z dénoté the coordinates of a given station in the quasi-instantaneous
frame;

— XR,YR: ZR dénoté the ITRF coordinates of the same station (propagated at the
epoch of the quasi-instantaneous frame);

— tx- ty.tz are three translation parameters between the quasi-instantaneous frame

and the ITRF representing the CN-CM offset;

— rx,rY,rz are three rotation parameters between the quasi-instantaneous frame

and the ITRF representing the différence between the conventional orientations
of both frames;

— d is an optional scale factor between the quasi-instantaneous frame and the

ITRF, which, according to Lavallée et al. (2006) or Collilieux et al. (2012),
should preferably not be estimated so as to mitigate the network effect.

1.3.2 Degree-1 deformation approach

The part of geocenter motion which is neither conventionally modelled nor accounted

for by the ITRF station velocities (i.e. between daily and secular time scales) is ex-
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pected to be mostly due to the redistribution of mass within the Earth’s fluid en-

velopes. Such surface mass redistributions not only induce geocenter motion, but
also cause variations in the pressure exerted on the Earth’s crust, hence elastic de-

formations of the Earth known as loading deformations.

According to the theory of the surface loading deformations of a spherical, non-
rotating, elastic, isotropie Earth developed by Farrell (1972), the response of the
Earth to some surface load is proportionally dépendent on the applied load in the

spherical harmonie domain. The proportionality coefficients relating the radial and
tangential deformations of the solid Earth’s surface to the load are the so-called load

Love numbers which dépend on assumed rheological properties of the Earth. More

precisely, let us consider a latitude- and longitude-dependent surface load a(0, A)
expressed in kg/m2. This surface load can be decomposed as follows on a basis of
spherical harmonie functions:

where:

+oo l

<*(<!>< A) = XTZ (aï'mYlCm{<t>, A) + A))
1=0 m=0

(1.17)

- Y* and Yt% are spherical harmonie functions here defined by:
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— P™ are the associated Legendre functions defined by:
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— I and m are respectively called spherical harmonie degree and order;

— the crf7m’s and <r^m’s are the spherical harmonie coefficients of the load.

According to Farrell (1972)’s theory, the deformation of the solid Earth’s surface
induced by such a load a(cf), A) can be written:
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where:

— dE(<f>, A), dN((f), A), dU(<j>, À) respectively dénoté the East, North and vertical
displacements (in m) of the Earth’s surface point located at latitude (f) and
longitude A;

— h\ and l\ are respectively the radial and tangential load Love numbers of de-
gree l, which, for degree 1, dépend on the frame in which the Earth’s surface

deformations should be expressed (Blewitt, 2003);

— pe dénotés the mean Earth density expressed in kg/m3.

On the other hand, it can be shown by surface intégration (Trupin et al., 1992;
Lavallée et al., 2006) that the geocenter motion induced by the load cr(0, A) can be
expressed as a function of the degree-1 load coefficients:

^7*CM/CF((?)
1 / (h'l)cE + 2(1[)ce
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(1.23)

where (h[)cE and {Vf)ce are the degree-1 Load love numbers consistent with a CE-
centred frame (CE dénotés the center of mass of the solid Earth).

Consequently, if deformations of the Earth’s crust can be monitored by a net-
work of geodetic stations, the corresponding load coefficients can be inferred using
Eq. 1.20-1.22 and the corresponding loading-induced geocenter motion can finally
be obtained with Eq. 1.23. This way of estimating geocenter motion, known as

degree-1 deformation approach, was first introduced by Blewitt et al. (2001). The
corresponding observation équations can be written as follows:
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— AT, T, Z dénoté the coordinates of a given station in some quasi-instantaneous
frame;

— Xfii Yr-, Zr dénoté the coordinates of the same station in some long-term linear
frame, propagated at the epoch of the quasi-instantaneous frame;

— the coordinate différences X — Xr, Y — YR, Z — ZR constitute the inverted



1.3. Geocenter motion estimation 38

deformation field, in which long-term deformations due to e.g. plate tectonic
motion and post-glacial rebound are supposedly removed, so that only non-
linear deformations assumed to be loading-induced remain;

— tx,tY,tz are three translation parameters between the quasi-instantaneous frame
and the long-term frame. Their estimation ensures that the remaining deforma
tions are expressed in a CF-centred frame, which is why CF-consistent degree-1
load Love numbers are used in the observation équations;

— rx,rY,rz are three rotation parameters between the quasi-instantaneous frame
and the long-term frame representing the différence between the conventional
orientations of both frames;

— 4> and À dénoté the latitude and longitude of the station;

— sin A cos A 0

— sin cf) cos À — sin (j) sin A cos <t> is the rotation matrix from the geo

COS (j) cos À cos (j) sin A sin cf)

centric frame to the station topocentric (East, North, Up) frame;

— Imax is the truncation degree up to which the surface load coefficients are esti-
mated;

— the estimated degree-1 load coefficients can converted into geo
center motion using Eq. 1.23.

1.3.3 Unified approach

Both previously presented geocenter estimation approaches make use of distinct in
formation. The information used in the network shift approach is the realization of
CM stemming from the satellite motion équations. On the other hand, this informa
tion is cancelled in the degree-1 deformation approach because of the estimation of

"nuisance" translation parameters. The degree-1 deformation approach thus entirely
relies on independent information, i.e. non-translational deformations.

Lavallée et al. (2006) proposed a unified geocenter motion estimation approach
which makes use of both information. Their approach is based on the modelling
of surface loading deformations in a CM-centred frame. Unlike in a CF-centred

frame, surface loading deformations expressed in a CM-centred frame indeed contain
a translational part. Lavallée et al. (2006)’s idea was thus to use both the realization
of CM by orbit dynamics and the non-translational deformations contained in global
GPS solutions in order to estimate surface load coefficients, hence geocenter motion.

The observation équations of this unified approach can be written, with the same
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notations as in Sect. 1.3.2, as:
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The main différence with the degree-1 deformation observation équations is that no
translation parameters are estimated, so that the realization of CM by orbit dynamics

is conserved and that loading deformations are modelled in a supposedly CM-centred
frame, which is why CM-consistent degree-1 load Love numbers are used.

1.3.4 Current status

The geodetic estimation of geocenter motion, especially of its annual part, has con-
siderably improved in the past few years. The basic degree-1 deformation approach

described in Sect. 1.3.2 has in particular evolved towards global inversion approaches
that incorporate GRACE and océan bottom pressure data in addition to GPS-sensed

crust deformations (Davis et al., 2004; Wu et al., 2006; Jansen et al., 2009; Rietbroek
et al., 2011) and the annual geocenter motions obtained from such recent global
inversions are now in excellent agreement (Ries, 2013).

The annual geocenter motion estimated from SLR solutions using the network
shift approach is also in good agreement with global inversion results, although the
latest SLR-only-derived amplitudes of the X and Z annual geocenter signais are con-

sistently larger than global-inversion-derived amplitudes (Ries, 2013). But, according
to Wu et al. (2013), this last point of disagreement is understood - it would be due
to the uneven distribution of SLR stations and the subséquent network effect in the

SLR network shift results - and can be resolved by the sequential adjustment of SLR

frames with VLBI, GNSS and DORIS frames, as presented by Wu et al. (2012a).

The fact that two independent methods agréé tends to prove that the annual
geocenter motion is now correctly observed, so that a conventional annual geocenter

motion model could soon be adopted by the IERS. This also opens bright perspectives

for the observation of possible sub-annual and/or inter-annual geocenter motions.

On the other hand, the situation is not as bright as regards the network shift

estimation of geocenter motion from DORIS and GNSS solutions. Although DORIS-
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derived geocenter time sériés recently benefited from tremendous improvements (Gob-
inddass et al., 2009a,b), they remain much noisier than SLR-derived time sériés
and affected by systematic errors, especially in the Z component (Altamimi and
Collilieux, 2010; Altamimi et al., 2011; Valette et al., 2010). GNSS as well hâve
so far not proven able to reliably observe geocenter motion with the network shift
approach (see Sect. 2.4 and Collilieux et al., 2011) although they benefit from many
more satellites and a much denser tracking network than SLR. In other words, the
realization of CM by orbit dynamics is not as reliable in GNSS and DORIS solutions
as in SLR solutions and that is why neither DORIS nor GNSS did contribute to
defining the origin of ITRF2008.

1.4 Today’s challenges for the ITRF

As mentioned in Sect. 1.1, the availability of a Terrestrial Reference Frame is fun-
damental for a wide range of scientific and civilian applications. One of these appli
cations with particular high stakes is the observation of sea level change caused by
climate change, which is also today’s most demanding application in terms of TRF
accuracy. Blewitt et al. (2010) assessed the TRF requirement for the observation of
sea level change to an accuracy level of 1 mm and a stability level of 0.1 mm/yr.
These levels are now one of the fundamental objectives of the GGOS initiative (Gross
et al., 2009). However, the accuracy and stability of the ITRF2008 are likely still
about one order of magnitude larger than these requirements. In particular, external

évaluations of the origin of ITRF2008 assessed its stability to a level of 0.5 mm/yr
(Wu et al., 2011; Collilieux et al., 2014) or even 0.9 mm/yr along the Z axis (Argus,
2012). Given the discrepancy between the terrestrial scales given by VLBI and SLR,
the accuracy of the ITRF2008 scale is believed not to be better than 1.2 ppb (8 mm;
Altamimi et al., 2011), while its stability is believed to be at the order of 0.2 to 0.3
mm/yr (Wu et al., 2011; Collilieux and Schmid, 2012; Collilieux et al., 2014). In
order to meet the GGOS requirements, efforts therefore need to be undertaken at
different levels.

It is first widely accepted that the ground geodetic infrastructure needs to be
improved. The distribution of SLR and VLBI stations over the Earth is currently
poor and, as mentioned in Sect. 1.2.5, the distribution and quality of local ties
between the four techniques contributing to the ITRF is also one major limiting
factor of the ITRF accuracy. But, although several initiatives aiming at improving
the ground geodetic infrastructure are currently emerging (VLBI 2010, NASA’s and
Australia’s space geodesy projects), the few next ITRS realizations will likely still
hâve to accommodate to imperfect ground networks.
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An alternative strategy is to reduce the dependency of the ITRF on local ties by

making use of so-called space ties, i.e. satellites tracked with at least two different
techniques like Jason-1, Jason-2, HY-2A or Envisat. By simultaneously analysing

SLR, GNSS and DORIS data collected by ground stations and such multi-technique
satellites, consistent multi-technique terrestrial frames could be obtained without the

need of ground local ties. However, this approach raises numerous methodological

issues (in particular the consistent tying of the different instruments on board of
multi-technique satellites) and is still an open area of research.

Besides such "technique tying improvements", it is also clear that the current
ITRF formulation needs to be revised. As pointed out in Sect. 1.1.2 and Sect. 1.1.6,

the GGOS requirements cannot be attained with the current piecewise linear param-

eterization of station motions. Different alternatives to this traditional parameteri-

zation are currently under study (see Sect. 1.1.2).

Finally, efforts also need to be undertaken in order to mitigate the systematic
errors that affect station positions estimated with the different geodetic techniques.

Imperfect modelling of the geodetic observations during their analysis indeed induces

biases and time-dependent errors in the station positions input to the ITRF (see
Sect. 2.2). This has of course direct conséquences on the accuracy of the ITRF station
coordinates. But such technique-dependent biases also compromise the correct use

of local ties in the ITRF inter-technique combination. Moreover, global systematic
errors are also the reason why DORIS and GNSS can currently not contribute to

the définition of the ITRF origin. The generic question underlying this thesis (Can
GNSS contribute to improving the ITRF définition?) relates to this last category of
desired improvements.



Chapter 2

GNSS contribution to the ITRF:

issues and challenges

To apprehend how GNSS could contribute to meeting the ITRF-related challenges
identified in Sect. 1.4, a deeper insight into the GNSS contribution to the ITRF is

necessary. The first section of this chapter (Sect. 2.1) thus gives a thorough descrip
tion of this contribution. The next sections introduce spécifie issues and challenges
related to the GNSS contribution to the ITRF and their current understanding,
namely:

— the systematic errors affecting GNSS station position estimâtes (Sect. 2.2),

— the détermination of the terrestrial scale with GNSS (Sect. 2.3),

— the détermination of geocenter motion with GNSS (Sect. 2.4).

2.1 GNSS contribution to the ITRF

This first section is intended to provide insight into the concrète nature of the GNSS

contribution to the ITRF. The various GNSS currently operating or developing, their
operating principles and some of their technical characteristics are first described in

Sect. 2.1.1. Sect. 2.1.2 details how the Analysis Centres of the International GNSS
Service form, from GNSS observations, solutions that constitute the elementary con
tribution of GNSS to the ITRF. Sect. 2.1.3 then présents the contribution of GNSS

to the ITRF2008 and their expected contribution to the ITRF2013. The primordial
rôle of GNSS in the élaboration and dissémination of the ITRF is finally stressed in
Sect. 2.1.4.

42
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2.1.1 Description of current GNSS

Nowadays, several Global Navigation Satellite Systems (GNSS) are jointly either
operating or developing. Ail rely on same basic principle: the broadcast of microwave
signais by a constellation of satellites. The different GNSS listed below mainly differ
by the characteristics of their satellite constellations, but also in some technical

aspects.

The American Global Positioning System (GPS), operational since 1994, pio-
neered the GNSS adventure. The nominal GPS constellation consists of 24 satellites

spread over 6 orbital planes. But more or less 6 backup satellites hâve also been con-

stantly operating since 1994. The nominal GPS orbital planes hâve an inclination
of 55° and are separated by 60° in the équatorial plane. The GPS satellites hâve
quasi-circular orbits with a radius of about 26560 km (i.e. an altitude of about 20200
km) and a révolution period of about 11 hours 58 minutes. Their ground tracks
approximately repeat with a period of 23 hours 56 minutes, but slightly shift each
day due to the precession of the ascending nodes induced by the oblateness of the

Earth. Each GPS satellite broadcasts microwave signais in at least both the L1 and

L2 frequency bands. The latest génération of GPS satellites broadcasts an additional
signal in the L5 frequency band. The different GPS satellites can be identified by

a receiver thanks to satellite-specific C/A-codes which modulate the broadcast sig
nais. This signal séparation technique is known as Code Division Multiple Access or
CDMA.

The Russian counterpart of GPS is the GLONASS System, which first became

operational in 1995. After falling into disrepair until 2003, the GLONASS constella

tion was then progressively reconstructed until it became operational again in 2008.
The nominal GLONASS constellation consists of 24 satellites equally spread over 3

orbital planes. The nominal GLONASS orbital planes hâve an inclination of 64.8°

and are separated by 120° in the équatorial plane. The GLONASS satellites hâve

quasi-circular orbits with a radius of about 25510 km (i.e. an altitude of about 19140
km) and a révolution period of about 11 hours 15 minutes. Their ground tracks
approximately repeat every 8 days. Each GLONASS satellite broadcasts L1 and

L2 signais, but unlike with GPS, the exact frequencies of the broadcast signais are

slightly different for each GLONASS satellite, which allows a receiver to identify the

emitting satellite. Compared with the CDMA technique used by GPS, this signal
séparation technique, known as Frequency Division Multiple Access (FDMA), raises
spécifie issues in the geodetic analysis of GLONASS data (Sect. 2.1.2).

The European Union is currently developing a third GNSS called Galileo. In
addition to the two validation satellites GIOVE-A and GIOVE-B, four Galileo satel

lites are now in orbit. The nominal Galileo constellation will eventually consist of
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27 satellites equally spread over 3 orbital planes. The nominal Galileo orbital planes
hâve an inclination of 56° and are separated by 120° in the équatorial plane. The

Galileo satellites hâve quasi-circular orbits with a radius of about 29600 km (i.e. an
altitude of about 23200 km) and a révolution period of about 14 hours 5 minutes.
Their ground tracks approximately repeat every 10 days. Each Galileo satellite will
broadcast signais in the Ll, E5 and E6 frequency bands. Like GPS, Galileo uses the
CDMA signal séparation technique.

China is also currently developing its own GNSS known as Beidou or Compass.
The Beidou constellation, now composed of 15 satellites, will eventually comprise
5 geostationary (GEO) satellites, 27 medium Earth orbit (MEO) satellites and 3
inclined geosynchronous orbit (IGSO) satellites. Let us finally mention the Japanese
Quasi-Zenith Satellite System (QZSS) composed of 4 satellites in slightly elliptical,
geosynchronous orbits, which aims at improving GNSS positioning over Japan.

2.1.2 Global GNSS data analysis

As mentioned in Sect. 1.2.1, the analysis of a global set of GNSS data collected by
ground stations allows the simultaneous estimation of the GNSS satellite orbits, of

the ground station coordinates and of a subset of EOPs together with other nuisance
parameters. The different Analysis Centers (ACs) of the International GNSS Service
(IGS) regularly perform such analyses and their solutions compose the elementary
contribution of GNSS to the ITRF. This subsection therefore gives an overview of
the global GNSS analyses performed by the IGS ACs.

Thousands of permanent geodetic GNSS stations are nowadays operating world
wide and continuously track the signais emitted by the satellites from one or more

GNSS. Data collected by such stations are made publicly available by different orga-
nizations such as the IGS in the form of RINEX files. RINEX files concretely contain
so-called code and phase pseudo-ranges, usually sampled at 30 seconds, which consti

tue the basic observations used by the IGS ACs. A code pseudo-range is a measure
of the travel time (converted into a distance) of a GNSS signal from a satellite to
a station which is based on the C/A code or P code that modulâtes the signal.
Pseudo-ranges are biased, among other error sources, by the satellite and station
clock errors, hence the prefix "pseudo". Once corrected for different errors, their

précision is roughly at the order of 1 m. A phase pseudo-range is a measure (con
verted into a distance) of the phase différence of a GNSS signal between its émission
by a satellite and its réception by a station. Like code pseudo-ranges, phase pseudo-
ranges are affected by several error sources, including the satellite and station clock
errors. But phase pseudo-ranges are additionally ambiguous by an integer number

of cycles. They are however much more précisé than code pseudo-ranges (roughly at
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the order of 1 cm) and thus constitute the basis of the IGS AC analyses.

One of the error sources affecting phase pseudo-ranges is the ionospheric refraction

of GNSS signais. However, the advance of the GNSS signal phases due to ionospheric
refraction is frequency-dependent, so that if phase pseudo-ranges are measured by

a station for two signais with different frequencies, it is possible to cancel (at least
at first order) the ionosphere-induced error by forming a linear combination of both
phase pseudo-ranges. The IGS ACs thus use either undifferenced ionosphere-free
linear combinations of Ll- and L2-based phase pseudo-ranges, or double différences of
such ionosphere-free linear combinations as observations in their GPS and GLONASS
analyses.

GPS undifferenced observation équation The observation équation for a GPS un

differenced ionosphere-free phase pseudo-range (L3) k measured by a station A; on a
satellite i can be written as follows:

(T3 Yk — p\ + côtk — côt1 + Tl + \nlk + \ô(f)k — Aô(j)1 + (t-modYk + (eerr)fc (2-1)

where:

— p\ is the géométrie station-satellite distance;

— ôtk and ôt1 are respectively the unknown station and satellite clock errors;

— Tlk is the error due to the tropospheric refraction of the GNSS signal (tropo-
spheric delay);

— A is the wavelength of the ionosphere-free linear combination (approximately 11
cm);

— n\ is the so-called phase cycle ambiguity;

— ôcft and ô(j)i are respectively station and satellite biases known as uncalibrated
phase delays (UPD; Ge et al., 2008);

— {f-mod)l groups a number of different modelled effects such as the phase wind-up
bias, the station and satellite antenna phase center corrections, the second and

third order ionospheric effects, relativistic effects...

— {tcrrYk groups ail remaining, non-modelled errors.

GPS double-differenced observation équation In their analyses, SOme IGS ACs do

not directly use undifferenced ionosphere-free phase pseudo-ranges as observations,
but rather double différences between the ionosphere-free phase pseudo-ranges ob-
served at the same time by pairs of stations on pairs of satellites. The observation

équation for such a GPS double-differenced observation involving the stations A;, l
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and the satellites i, j can be written:

U*)S - (22)
= Pki + Tkl + + (emod)kl + ieerr)ki

where each term in the second line is the double-difference of the corresponding term
in Eq. 2.1. An obvious advantage of forming double-differenced observations is that
both station and satellite clock errors and uncalibrated phase delays are cancelled.

Station-satellite distance parameterization The géométrie distance p\ can itself be
expressed, at a given time t, as:

Pi(t) = IlX\t - r) - Q(t)R(t)W(t)(X« + MT*(t))|| (2.3)
where:

— t dénotés the signal travel time;

— Xl{i, — t) are the satellite coordinates, in the GCRS, at time t — r;

— Q(t), R(t) and W(t) are the three rotation matrices that describe the transfor
mation from the ITRS to the GCRS (see Sect. 1.1.5) and dépend on unknown
EOPs;

— Xj* + ÔXk(t) represents the station coordinates in the ITRS as the sum of
conventionally modelled corrections ôXk(t) (see Sect. 1.1.2) and of unknown
regularized coordinates X£.

The partial dérivatives of phase pseudo-ranges with respect to station coordinates
and EOPs can be straightforwardly obtained from Eq. 2.3. Computing their partial
dérivatives with respect to the satellite orbit parameters is more complicated.

The orbit of a satellite is indeed not represented by an explicit time-dependent
function like station coordinates, but rather as the solution of a differential motion

équation:

r X^t)= al(t,X‘(t),X‘(t),pl,...,p!n)
l X*(to )= X'0 (2.4)
{ X‘(t0) = X’Q

where the function a1 is the sum of conventionally modelled accélérations (e.g. grav-
itational accélérations, Earth-reflected radiation pressure, antenna thrust) and of
empirical accélérations depending on unknown parameters p\,... ,plm. The satellite
orbit parameters estimated by an IGS AC consist of the satellite initial position

XJ, the satellite initial velocity Xq and those empirical parameters p\t... ,plm. The
partial dérivatives of Xl(t) (hence of p\[t) and of (L3)J.) with respect to the satel
lite orbit parameters are obtained by numerically integrating so-called variational

équations (see, e.g., Springer, 2000).
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To parameterize empirical satellite accélérations, most IGS ACs use variants of the
Extended CODE Orbit Model (ECOM; Beutler et al., 1994; Springer et al., 1999).
The empirical parameters p\,..., plm are in this case the amplitudes of constant and
once-per-révolution periodic accélérations along the axes D, Y and B of a satellite-
Sun oriented frame1. With this parameterization, the empirical accélération acting
on a satellite can be written:

ûbcom(w) = (Do + Dc cos(w) + Dssm(u)) eD

+ (Yo + Yccos(u) + Ys sin(it)) ey (2.5)

+ (B0 + Bccos(u) + Bssin(u)) eB

where u dénotés the satellite’s argument of latitude. Note that a majority of IGS
ACs only estimâtes a subset of five ECOM parameters: D0, T0, D0, Bc and Bs.

Tropospheric delay parameterization The IERS Conventions (Petit and Luzum,
2010) recommend that the tropospheric delay affecting a GNSS observation be mod-
elled as follows:

Tlk = mh(e)Dhz -f mw(e)Dwz + mg(e) (GN cos (a) + GE sin(a)) (2.6)

where:

— e and a respectively dénoté the élévation and the azimuth of the satellite above
the station;

— the zénith hydrostatic delay Dhz is computed a priori from surface pressure data
or numerical weather models;

— the zénith wet delay Dwz is a priori unknown. It is usually parameterized, for
each station, as a step function or a continuous piecewise linear function with a

time step of one or two hours;

— the North/South and East/West tropospheric gradients GE and GE are the
sums of a priori modelled gradients and of additional unknown gradient param
eters usually parameterized, for each station, as daily linear functions;

— the hydrostatic and wet mapping functions, mh(e) and mw(e), that map the
zénith tropospheric delay to the observation élévation, should either be the

Vienna Mapping Functions (VMF1; Boehm et al., 2006b) or the Global Mapping
Functions (GMF; Boehm et al., 2006a);

— the gradient mapping function mg(e) is given by Chen and Herring (1997).

Handling phase cycle ambiguities Due to the ionosphere-free linear combination, the

phase cycle ambiguity nk of an ionosphere-free phase pseudo-range is not an integer.
It can nevertheless be expressed as a linear combination of two integers: the phase

cycle ambiguities of the L1 and L2 phase pseudo-ranges. L1 and L2 ambiguities

lrThe D axis is the normal to the satellite solar panels, i.e. the satellite-Sun direction. Y is the rotation axis of
the satellite solar panels. B complétés the right-handed System.
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remain constant during the pass of each satellite over each station as long as no
loss of signal lock (cycle slip) occurs. In case of such cycle slips, several L1 and L2
ambiguities need to be considered for the same satellite pass.

The positive impact of ambiguity fixing (i.e. the fixation of L1 and L2 ambiguities
to integer values so that the ionosphere-free ambiguities nlk are known and do not
hâve to be estimated as unknown parameters) in global GNSS analyses has long been
recognized. In their analyses, the IGS ACs thus strive to fix as many ambiguities as
possible. However, due to the presence of station and satellite uncalibrated phase
delays, ambiguity fixing cannot be performed at the level of undifferenced phase
pseudo-ranges. The IGS ACs using double-differenced observations are not affected

by this issue and can directly fix double-differenced ambiguities. On the other hand,
the IGS ACs using undifferenced observations need to introduce the ambiguity fixing
information as relative constraints between undifferenced ambiguities.

With modem geodetic receivers and ambiguity fixation techniques, ACs are nowa-
days able to fix about 90% of the double-differenced ambiguities in a GPS analysis.
As discussed below, the situation is more complicated with GLONASS.

Clock and UPD parameterization Clock errors are currently estimated by the IGS
ACs using undifferenced observations as epoch-wise parameters for each station and
each satellite. Uncalibrated phase delays are currently not estimated and become as
a matter of fact part of the estimated station and satellite clock offsets.

By looking at Eq. 2.1, it is clear that adding one constant offset to the clock
offsets of ail stations and ail satellites has virtually no impact on a set of GNSS
observations. In other words, it is important to bring ail station and satellite docks
to a common time reference, but the choice of this reference is of no importance. As a
conséquence, if epoch-wise clock offsets are estimated for ail stations and ail satellite

in a GNSS analysis, then one singularity arises at each observation epoch. These
singularities are usually cancelled by either choosing one particular station clock as
time reference, or by imposing epoch-wise constraints on the mean of ail estimated
clock offsets.

Finally note that, due to their large numbers, station and satellite clock offsets are

usually reduced (see Sect. B.3.1) by the IGS ACs using undifferenced observations.

Global GPS data analysis: summary Table 2.1 summarizes ail the parameters esti

mated and the constraints applied in a simulated undifferenced GPS-only analysis.
To obtain the numerical values in Table 2.1, we assumed:

— 300-s sampled observations over one day;



2.1. GNSS contribution to the ITRF 49

— an élévation cut-ofF angle of 10° (i.e. ail observations made below an élévation
of 10° were not considered);

— a nominal constellation of 24 GPS satellites;

— a fictive network of 100 well-distributed stations;

— 5 empirical orbit parameters per satellite (D0, Y0, B0, Bc and Bs)\

— a parameterization of tropospheric zénith wet delays as step functions with one
hour time steps;

— a parameterization of tropospheric gradients as linear functions over the day;

— no cycle slip (i.e. only one ambiguity per pass);

— ail double-differenced ambiguities fixed;

— the orientation and DUT1 singularities (see Sect. 1.2.2) respectively cancelled
by no-net-rotation constraints and by fixing DUT1 to its a priori value.

Table 2.1 Numbers of observations, parameters, constraints and degrees of freedom in a

simulated undifferenced GPS analysis

Type Count Number

Obs. Total 207289

Station coordinates 3 per station 300

EOPs 6 6

en
Satellite orbit parameters (6 + 5) per satellite 264

h
(U Zenith wet delays 1 per station and hour 2400

S
rt

c3

Tropospheric gradients 2 per station and component 400

Phase cycle ambiguities 1 per pass 4129

P*
Station clock offsets 1 per station and epoch 28800

Satellite clock offsets 1 per satellite and epoch 6912

Total 43211

en

fl

Double differenced ambiguity fixing
constraints

(1 per pass) - (1 reference ambiguity
per station and satellite)

4005

t*
-M

Time reference constraints 1 per epoch 288

en

fl
0

No-net-rotation constraint 3 3

O DUT1 constraint 1 1

Total 4297

DOF Total 168375

Most IGS ACs use the generalized least-squares estimation method (Sect. B.l),
while some others use sequential adjustment methods. ACs using undifferenced
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observations usually assume that they are independent and thus use diagonal ob
servation weight matrices. Undifferenced observations are generally given elevation-
dependent weights (e.g. proportional to sin(e) or sin2(e)). ACs using double-differenced
observations should in principle propagate the (diagonal) covariance matrix of un-
differenced observations to their chosen set of double-differenced observations so as

to obtain the corresponding weight matrix.

GLONASS specificities As mentioned in Sect. 2.1.1, the exact frequencies of the L1
and L2 signais broadcast by the GLONASS satellites are slightly different for each
satellite (except that pairs antipodal GLONASS satellites use the same frequencies).
Since it is frequency-dependent, the uncalibrated phase delay of a GLONASS receiver
can therefore not be represented by a single term 6(pk as in the GPS case. Conse-
quently, when GLONASS double-differenced observations are formed, the receiver
UPDs do not cancel, which prevents a straightforward fixation of double-differenced
GLONASS ambiguities to integer values.

There exist GLONASS ambiguity resolution techniques that involve the estima
tion of so-called inter-frequency biases (one parameter per station and GLONASS
frequency channel). Another (lazier) solution consists in simply not attempting to
fix GLONASS ambiguities and estimating them as floats.

2.1.3 GNSS contribution to the ITRF2008 and ITRF2013

In 2008, eleven ACs (Table 2.2) reanalyzed the full history of GPS data collected
by the IGS tracking network back to 1994 using the latest models and methodology
available at that time. This unprecedented effort, known as first IGS reprocessing
campaign or reprol (see http://acc.igs.org/reprocess.htral), constituted the
basis of the GNSS contribution to the ITRF2008. Major quality improvements from
the operational IGS products used for the previous ITRF2005 to the reprol products
were noted by, e.g., Griffiths et al. (2009) and Collilieux et al. (2011). The eleven
ACs contributing to reprol performed weekly GPS-only analyses over the period
1994-2008, that resulted in weekly SINEX files including station coordinate, EOPs
and, for some ACs, satellite antenna phase center offset estimâtes. The AC SINEX

files were combined on a weekly basis into so-called igl SINEX files by Remi Ferland
at NRCan (IGS Mail 6136). Those, supplemented with operational combined SINEX
files over the period 2008-2009.5, constituted the IGS contribution to ITRF2008.

The IGS is currently undertaking a second reprocessing campaign (repro2) that
will provide the IGS input to the ITRF2013. Apart from covering a longer period
and involving less ACs, repro2 will differ from reprol in the following respects:
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Table 2.2 IGS Analysis Centers having contributed to reprol

Operational

acronym

Reprol

acronym

Description Country

cod col Center for Orbit Détermination in Europe Switzerland

emr eml Natural Resources Canada Canada

esa esl European Space Operation Centre Germany

gfz gfl GeoForschungZentrum Germany

gtl GeoForschungZentrum - TIGA contribution Germany

jpl jpl Jet Propulsion Laboratory USA

mit mil Massachusetts Institute of Technology USA

ngs ngl National Geodetic Survey USA

pdl Potsdam-Dresden Reprocessing Germany

sio sil Scripps Institution of Oceanography USA

ull Université de la Rochelle France

— Updated models and conventions will be used (see a list at http://acc.igs.
org/reprocess2.html).

— Like in their operational analyses since GPS week 1702 (IGS Mail 6613), the
ACs will provide daily instead of weekly SINEX files.

— Some of the participating ACs will provide combined GPS-GLONASS solutions,
whereas ail AC contributions to reprol were GPS-only solutions.

2.1.4 A primordial contribution to the ITRF

The GNSS contribution to the ITRF is fundamental in several respects. First of

ail, GNSS are by far the cheapest and most widespread technique via which a vast

majority of users access the ITRF, either by positioning a GNSS receiver relatively

to ITRF GNSS stations, or by absolute Précisé Point Positioning (PPP) using ITRF-
consistent satellite orbits and docks. A first primordial rôle of GNSS is thus that

they allow the ITRF dissémination.

Besides that, GNSS also play a primordial rôle in the élaboration of the ITRF,

as the link between the three other techniques. Most of the co-location sites in the

ITRF2008 are indeed composed of one VLBI, SLR or DORIS station and of one

GNSS station. If the 137 local ties involving GNSS stations had not been used, the
ITRF2008 would thus hâve relied on only 8 VLBI-SLR, 10 VLBI-DORIS and 10

SLR-DORIS ties (Altamimi et al., 2011).
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The définition of the ITRF orientation (and its continuity between the successive
ITRF realizations) is also ensured by GNSS. The no-net-rotation and no-net-rotation-
rate constraints used to define the ITRF orientation are indeed applied via a subset
of high quality GNSS stations.

Except for DUT1 to which they are insensitive and LOD of which they give biased
estimâtes (Ray, 1996, 2009), GNSS are additionally the major contributing technique
to the ITRF EOPs. According to the ITRF2008 inter-technique weighting, the GPS-
derived pôle coordinates used in the ITRF2008 combination were for instance more

than ten times more précisé than the pôle coordinates from any of the three other
techniques (Altamimi et al., 2011).

Finally, GNSS also provide more précisé station coordinates than any of the three
other techniques. As an example, Fig. 2.1 shows residual times sériés from the

ITRF2008 technique-specific long-term stacking for four co-located stations (one of
each technique). In the East and North components, the residual time sériés of the
GPS station (shown in red) are clearly much less scattered than those of the three
other stations. In the Up component, the preeminence of GPS is less pronounced (in
particular over SLR), but still noticeable. Considering in addition that they hâve the
denser network of stations, GNSS thus clearly hâve a particularly robust contribution
to the terrestrial part of the ITRF.

However, GNSS-derived station coordinates are known to be affected by various
systematic errors, so that even if the contribution of GNSS to the ITRF is funda-

mental, it remains perfectible. Moreover, as mentioned in Sect. 1.2.6, GNSS did

not contribute to defining the origin, neither the scale of ITRF2008: the origin and
terrestrial scale information stemming from the input GPS solutions was indeed not

considered reliable enough. For now, GNSS alone could thus not suffice to completely
define a Terrestrial Reference Frame. The next sections of this chapter will describe
in more detail the above mentioned issues and their current understanding.

2.2 Systematic errors in GNSS station position estimâtes

In this section, various known sources of systematic errors in GNSS-derived station

coordinates are first reviewed (Sect. 2.2.1). The conséquences of these systematic
errors on the ITRF and on the geophysical interprétation of GNSS station position
time sériés are then discussed in Sect. 2.2.2. Sect. 2.2.3 finally summarizes the results
from a study of the IGS SINEX combination residuals (i.e. of the discrepancies
between station positions estimated by the various IGS ACs) presented at the IGS
Workshop 2012 (Rebischung et al., 2012).
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Figure 2.1 Examples of residual times sériés from the ITRF2008 technique-specific long-term
stacking for one station of each technique. The four selected stations axe ail co-located at the

Hartebeesthoek Radio Astronomy Observatory (South Africa). The DORIS, SLR and VLBI sériés
are respectively shifted by -50, -100 and -150 mm.

2.2.1 Sources

Tide mis-modelling Errors in the modelling of Earth tides, océan tidal loading de-
formations or EOP tidal variations can introduce artificial signais at various tidal

periods in GPS station position time sériés. Moreover, tide modelling errors, com-
bined with either the repeat period of the GPS constellation or the usual 24 hour

period used to process GPS data, can potentially resuit into aliased periodic signais
in GPS station position time sériés, in particular at near annual and near semi-annual

periods (Penna and Stewart, 2003; Watson et al., 2006; King et al., 2008). Ray et al.
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(2013) evidenced fortnightly signais in most recent IGS station position time sériés,
indicating that tide modelling errors are currently still contaminating GNSS station
position estimâtes.

Higher order ionospheric effects Following Kedar et al. (2003) and Hernândez-Pajares
et al. (2007), Petrie et al. (2010) investigated the impact of higher order ionospheric
effects on GPS station position estimâtes. They demonstrate that ignoring the sec
ond and third order ionospheric effects is primarily responsible for spurious global
Z translations of the GPS-derived terrestrial frames, with amplitudes reaching ~10
mm during periods of maximal solar activity. But spurious distortions of the station
network are also induced at the order of ~1 mm during periods of maximal solar
activity. These slowly varying errors may in particular be responsible for biases in
the estimated velocities of GPS stations. The second-order ionospheric effects will be
taken into account in the IGS repro2 campaign. However, small residual systematic
errors will hâve to be expected due to ignoring the third-order ionospheric effects
(Petrie et al., 2010) and to imperfections of the second-order ionospheric corrections
(Garcia-Fernandez et al., 2012).

Orbit mis-modelling There exist several évidences that imperfectly modelling the
GNSS satellite orbits is responsible for systematic errors in GNSS-derived terrestrial
frames. For instance, by improving the orbit modelling employed at the CODE AC,
Springer (2000) could eliminate a ~7 cm bias that was previously affecting the Y
component of the origin of the CODE terrestrial frames. More recently, Rodriguez-
Solano et al. (2011) showed that not modelling the Earth-reflected radiation pressure
acting on GPS satellites was responsible for millimetric periodic errors in GPS station
position estimâtes. But the main evidence that GPS station position estimâtes are
contaminated by mis-modelling of the GPS satellite orbits résides in the so-called
draconitic signais found in GPS station position time sériés.

In the stacked periodogram of GPS station position time sériés, Ray et al. (2008)
indeed observed spurious spectral peaks at harmonies of the GPS draconitic year
(i.e. the period at which the orientation of the GPS constellation with respect to
the Sun repeats, approximately 351.4 d), that no geophysical process could explain.
Systematic errors at harmonies of the GPS draconitic year were later found in other
GPS-derived geodetic products such as EOPs (Ray et al., 2011), satellite orbits
(Griffiths and Ray, 2013) and satellite phase center offsets (Schmid et al., 2007). Ray
et al. (2008) proposed two possible mechanisms that could explain these draconitic
errors: long-period satellite orbit modelling errors and/or the aliasing of station-
specific errors (e.g. antenna mis-calibration or multipath) repeating with the satellite
constellation geometry. The geographical cohérence of the draconitic errors observed
in GPS station position time sériés seems to imply a main orbit-related origin, but
smaller local contributions exist as well, as evidenced in the differential position
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time sériés between pairs of nearby stations Ray et al. (2011). The prédominance
of an orbital origin tends to be confirmed by the results of Rodriguez-Solano et al.

(2014) who achieved a significant réduction of the draconitic errors in various geodetic
Products with an improved modelling of satellite dynamics.

Troposphère mis-modelling Imperfections in the modelling of tropospheric delays of
the GNSS observations may also be responsible for systematic errors in GNSS sta

tion position estimâtes. For instance, the non-estimation of horizontal tropospheric

gradients is known to cause global North-South distortions of GNSS-derived terres-

trial frames due to the équatorial tropospheric bulge (MacMillan and Ma, 1997).
Similarly, not using accurate surface pressure data to compute a priori zénith hy-
drostatic delays can lead to biases and spurious annual variations in GNSS station

height estimâtes (Tregoning and Herring, 2006). However, with the current State of
troposphère modelling, station height biases and annual variations are expected not

to exceed 1 mm (Steigenberger et al., 2009).

Multipath Following Elôsegui et al. (1995), King and Watson (2010) investigated
the effect of not modelling multipath (i.e. the réception of reflected signais by GPS
antennas) on GPS station position estimâtes. They demonstrate that multipath
may be responsible of station-specific height biases up to 7 mm, but also of height

velocity biases up to 2.6 mm/yr and of aliased periodic signais at harmonies of the
GPS draconitic year.

PCC mis-modelling Mis-modelling the phase center corrections (PCCs) of GNSS
station antennas is, like multipath, another possible source of biases and aliased

periodic errors in GNSS station position estimâtes. Biases induced by PCC mis-

modelling can be evidenced by using different antenna calibration models. For in

stance, when the IGS switched from the igs05.atx set of antenna calibrations to the
igs08.atx set (IGS Mail 6355), Rebischung et al. (2012) assessed the impact of the
calibration switch on individual IGS station positions. The obtained position offsets

reached up to 4 mm, 3 mm and 11 mm in the East, North and Up components

respectively. Such offsets do of course not give access to the actual biases in the
estimated station positions, but they constitute at least a démonstration that such

biases exist and are far from negligible.

The set of antenna calibrations currently employed by the IGS (igs08.atx) groups
calibrations from two different categories: calibrations obtained using a robot rotat-
ing and tilting the antenna (Wübbena et al., 1997) and field calibrations relative to a
reference antenna then converted into absolute calibrations (Rothacher, 2001). Some
IGS stations are additionally equipped with antennas covered by radomes for which

no calibration is available. In such a case, the effect of the radome on PCCs is ignored
and the calibration of the antenna without radome is used. igs08.atx contains type
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mean calibrations, i.e. averages of the individual calibrations of several antennas of
the same type.

Position biases due to mis-modelling of GNSS antenna PCCs are expected to be
the smallest in case of robot-calibrated antennas. However, by comparatively using
igs08.atx type mean calibrations and individual antenna calibrations, Baire et al.
(2013) obtained vertical position offsets reaching up to 10 mm and horizontal position
offsets up to 4 mm. Even with robot calibrations, significant biases thus appear to
affect the station positions derived by the IGS, due to using type mean calibrations.
The use of antenna-specific calibrations, when available, could help in reducing those
biases, but would likely not solve the problem entirely. By comparatively using
antenna-specific calibrations from different facilities, Baire et al. (2013) indeed still
obtained a vertical position offset of 5 mm.

Other instrumental effects Ray (2006) noticed that the observed seasonal displace
ments of several IGS stations was seriously altered by changes of the station receivers.
Along the same Unes, he observed striking corrélations between the position time sé
riés and various data quality metrics of several IGS stations. These observations

imply that part of the observed GPS station displacements hâve an instrumental
basis, although the underlying instrumental mechanisms are mostly unknown.

2.2.2 Implications

Biases While constant biases in GNSS station position estimâtes are of no con
séquences for geophysical applications, they are a serious issue in the ITRF inter
technique combination as they limit the accuracy with which local ties can be in-

troduced. Among the error sources listed in Sect. 2.2.1, multipath and PCC mis-
modelling are likely the main contributors to such biases nowadays, with potential
effects of several millimétrés.

By inspecting the ITRF2008 local tie residuals, Altamimi et al. (2011) thus
suspected large discrepancies found at several co-location sites to be due to non-

calibrated radomes covering the GNSS antennas. The IGS therefore undertook a
campaign to measure the position biases due to non-calibrated radomes at several

co-located GNSS stations (Romero et al., 2013). The radomes of these stations
were removed for several months and then put back in their initial positions. We
investigated different time sériés of station positions estimated around the radome

experiment periods, but this analysis was unfortunately mostly inconclusive. Only
two radome-induced biases could indeed be evidenced: a vertical bias of about 13

mm at the TSKB station (Tsukuba, Japan) and an East bias of about 5 mm at
the MDOl station (Mc Donald Observatory, Texas, USA). Additional short baseline
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analyses are planned and may help in better determining the radome-induced posi
tion biases. But more generally, an effective réduction of the GNSS station position
biases could only be expected from a progressive rebuilding of the IGS network with
low multipath, individually calibrated antennas.

Velocity errors GNSS station velocities are of direct interest to the observation of

long-term geophysical processes such as tectonic motions and post-glacial rebound,
but also serve to correct vertical land motions at tide gauges in order to observe

sea-level rise (Wôppelmann et al., 2007). As sea-level rises at rates of a few mm/yr,
this latter application requires especially précisé vertical GNSS station velocities.

If averaged over sufïiciently long time spans, the seasonal and sub-seasonal sig
nais found in GNSS station time sériés cause negligible velocity biases (Blewitt and
Lavallée, 2002). Slowly varying spurious signais induced by ignoring higher-order
ionospheric effects must hâve been responsible for vertical velocity biases of a few

tenths of mm (Petrie et al., 2010). But the residual velocity biases due to ionosphère
mis-modelling should become negligible as the second-order ionospheric effects be-
come conventionally modelled. Nowadays, instrumental effects must therefore likely
be expected as the main cause of velocity biases, via at least three possible mecha-
nisms:

— trends in the impact of multipath on station positions due to the time-evolution

of the satellite constellations (King and Watson, 2010);

— the non-detection of small offsets due to, e.g., equipment changes in GNSS
station position time sériés (Williams, 2003);

— the progressive quality dégradation of the data acquired by some stations be-

cause of antenna and/or receiver ageing.

Spurious seasonal signais GNSS station position time sériés, conveniently expressed

in a given TRF, are expected to reflect geophysical ground motions. Apart from the
long-term motions induced by plate tectonics and post-glacial rebound and from the
conventionally modelled tides and océan tide loading deformations, the main global
source of crustal deformations is the permanent redistribution of masses within the

océans, atmosphère and continental hydrology (i.e. non-tidal loading deformations).
Ignoring GNSS stations affected by post-seismic relaxation, de-trended GNSS sta
tion position time sériés are thus expected to mainly reflect such non-tidal loading
deformations.

Various authors hâve compared de-trended GPS station position time sériés with

geophysical loading deformation models (van Dam et al., 1994, 2001; Dong et al.,
2002; Collilieux et al., 2010; van Dam et al., 2012; Collilieux et al., 2012) or with
loading deformation models derived from GRACE gravity fields (Davis et al., 2004;
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van Dam et al., 2007; Tregoning et al., 2009; Tesmer et al., 2011). Ail found that
loading deformation models were able to reduce the global scatter of GPS time sériés
to some extent, but could not explain ail of the non-linear variations seen in GPS

time sériés. Ray et al. (2011) recently repeated such a comparison using the GPS
time sériés of 706 stations extracted from homogeneously reprocessed IGS combined
solutions (the so-called igb dataset; see IGS Mail 6401) and a loading deformation
model based on NCEP atmosphère pressure data, ECCO océan bottom pressure

data and LDAS continental hydrology data. With this up-to-date dataset, loading
corrections were able to reduce the WRMS of GPS time sériés by only 1.6%, 3.8% and
15.2% in the East, North and Up components respectively. The annual signais in the
GPS time sériés, for which loading corrections are expected to hâve the main impact,
had their amplitudes globally reduced by roughly 10%, 20% and 50% respectively.
A significant gap thus remains to be bridged between GPS time sériés and loading
deformation models.

Other sources of "real" GPS station displacements first contribute to this gap,
including:

— the thermal expansion of bedrock and GPS monuments (Dong et al., 2002; Yan
et al., 2009);

— local loading effects not captured by the geophysical loading models nor by
GRACE due to, e.g., water level variations in lakes or water tables (Meertens
et al., 2012);

— non-loading geophysical processes such as clay swelling (Nahmani et al., 2012)
or poroelastic effects in sédiments (Meertens et al., 2012).

But "apparent" seasonal displacements induced by the error sources listed in Sect. 2.2.1

most certainly contribute to a large extent to the GPS-loading gap and thus limit
the interprétation of observed GPS station seasonal displacements in terms of geo
physical ground motions. Moreover, such spurious seasonal signais will become an
issue for the ITRF as it evolves towards more complicated time représentations of
station coordinates.

2.2.3 Analysis of the IGS SINEX combination residuals

The IGS contribution to the ITRF is obtained by combining the solutions derived
by different ACs with different analysis strategies (Sect. 1.2.3 and 2.1.3). The pri-
mary aim of this combination is to form weighted averaged products that potentially
maximize the benefits from the AC solutions while minimizing their weaknesses. But
it also allows an intrinsic inter-comparison of the AC solutions that offers valuable

insight into the impact of the various AC analysis strategies on their solutions (Re-
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bischung and Garayt, 2013). In the residuals of the IGS SINEX combinations (i.e.
the différences between the AC and IGS combined station positions), common geo-
physical signais should indeed cancel out, leaving only analysis-related effects for
investigation (i.e. différences in the modelling, sélection or weighting of observations,
metadata errors or différences in the impact of common modelling errors).

In 2012, a detailed study of the IGS SINEX combination residuals was initiated

(Rebischung et al., 2012). Similarly to what Ray (2006) observed in position time
sériés, instrumental effects could first be observed in the IGS SINEX combination
residual time sériés of several stations. A first extreme case is the VENE station

(Venezia, Italy; see Fig. 2.2), for which large AC-specific height biases were observed
until the station’s antenna was changed in 2001. Before this change, a metallic ring
was in fact mounted around the antenna, which probably caused spurious phase

center variations. Another interesting case is the MCM4 station (McMurdo, Antarc-
tica; see Fig. 2.3). Again, AC-specific height biases can be observed. The fact that
changes in the AC biases correspond to changes of the station’s equipment tends to
indicate an instrumental origin. Moreover, changes in the seasonal signais présent in
the AC residual time sériés appear likely due to changes of the station’s multipath
behaviour. Both these examples show that instrumental effects can hâve noticeably

different impacts on the station positions estimated by the various IGS ACs. A more

detailed analysis of the instrumental effects in the IGS SINEX combination residuals
nevertheless remains to be done.
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Figure 2.2 IGS SINEX combination residual time sériés of three selected ACs (GFZ, GT1, PDI)
for the height component of station VENE. The GT1 and PDI residual time sériés are
respectively shifted by -40 mm and -80 mm for clarity. The residuals, represented by color dots,

are extracted from the weekly igb combinations. The vertical grey line corresponds to an antenna
change on Feb 1, 2001. The solid color lines were obtained by Vondrak-filtering the residual time

sériés with a cut-off frequency of 3 cpy, separately before and after the 2001 antenna change.
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Figure 2.3 Top: IGS SINEX combination residual time sériés of five selected ACs (COD, ESA,
GFZ, PDI, SIO) for the height component of station MCM4. The AC residual time sériés are
shifted by multiples of -40 mm for clarity. The residuals, represented by color dots, are extracted
from the weekly igb combinations. The vertical grey Unes correspond to a receiver firmwaxe
upgrade on September 7, 1999, a receiver change on January 3, 2002 and a receiver firmware

upgrade on May 19, 2006. The solid color Unes were obtained by Vondrak-filtering the residual
time sériés with a cut-off frequency of 3 cpy, separately before and after each event. Bottom:
Daily RMS of L1 (blue) and L2 (red) multipath at station MCM4. Data are extracted from the
daily TEQC quality checks performed by the IGS Central Bureau.

Rebischung et al. (2012) also analysed the IGS SINEX combination residuals on
a global scale, so as to answer the following questions:

— How large are AC-specific analysis artefacts compared to the GPS-loading gap?
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— How much are the draconitic signais found in GPS station position time sériés
dépendent on the analysis strategy?

A frequency analysis of the igb combination residuals was thus performed for each AC,
station and component using a modified version of the FAMOUS software (Mignard,
2005; Collilieux, 2008). Statistically significant frequencies were extracted from each
of the sériés and identified, when possible, to the annual frequency, the semi-annual

frequency or to a harmonie of the GPS draconitic frequency. Amplitude/phase maps
of the extracted signais were finally drawn for each AC, component and frequency
class. A similar analysis was repeated and similar maps were drawn for the set of

load-corrected IGS position time sériés used by Ray et al. (2011) (see Sect. 2.2.1),
hereafter denoted as igb-load time sériés.

Figure 2.4 Amplitude/phase maps of the annual signais extracted from the height residual time
sériés of eight selected ACs, as well as from the igb-load height time sériés. Amplitudes and phases

correspond to the model Acos((t — 2000.0) — 0), with t in décimal year, and are respectively
represented by the size and color of the dots.

Fig. 2.4 shows for instance maps of the annual signais extracted from the height
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residual time sériés of eight selected ACs, as well as from the igb-load height time
sériés. From Fig. 2.4, it is clear that the vertical annual signais found in the AC
residual time sériés are globally smaller than those found in the igb-load time sé

riés. In other words, the vertical annual GPS-loading gap is mostly due to signais
commonly observed by ail ACs, while AC specificities play a secondary rôle. Similar

conclusions can be drawn for the horizontal annual signais as well as for the vertical
and horizontal semi-annual signais. A noticeable exception in Fig. 2.4 is the JPL

AC, whose residuals seem to show larger annual signais than the other ACs. But
this may be due to the fact that JPL uses disjoint station networks from one week

to the next, so that the JPL residual time sériés are especially sparse and that their
frequency analysis is subject to caution.

Figure 2.5 Amplitude/phase maps of the second draconitic harmonie signais extracted from the
East residual time sériés of eight selected ACs, as well as from the igb-load East time sériés.

Amplitudes and phases correspond to the model Acos((t - 2000.0) - 0), with t in décimal year,
and are respectively represented by the size and color of the dots.

Fig. 2.5 similarly shows maps of the second draconitic harmonie signais extracted
from the East residual time sériés of eight selected ACs, as well as from the igb-load
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East time sériés. The strong spatial cohérence of the second draconitic harmonie

signais extracted from the igb-load time sériés is first striking and corroborâtes the
prédominance of an orbit-related origin. Secondly, apart from NGS, the second

draconitic harmonie signais extracted from the AC residual time sériés are globally
smaller than those found in the igb-load time sériés. Similar conclusions can be

drawn for the North and Up components, as well as for other draconitic harmonies.

In other words, it seems that the spurious draconitic signais found in the AC station
position time sériés are induced by common modelling errors, while AC specificities
play again a secondary rôle. The NGS exception is spécifie to the second draconitic
harmonie and remains unexplained.

In summary, it appears that the impact of the various analysis strategies used by

the IGS ACs is secondary compared to both the GPS-loading gap and the draconitic
signais found in GPS station position time sériés. This situation is quite unfortunate

as it implies that ail ACs hâve somehow converged to common modelling errors,
while AC-specific modelling errors could hâve been much easier to track down.

2.3 GNSS and the terrestrial scale

The fundamental issue concerning the détermination of the terrestrial scale with

GNSS was first documented by Springer (2000) and Zhu et al. (2003). They indeed
demonstrated that GNSS observations were weakly sensitive to the mean of the radial

component of the GNSS satellite antenna phase center offsets (z-PCOs) because of
corrélations with satellite clock offsets, zénith wet delays and station heights. (The
mechanism of these corrélations will be detailed in Sect. 4.2.) Zhu et al. (2003)
showed in particular that a mean error Sz (in m) of the satellite z-PCOs would
induce a net scale change of the GNSS-derived terrestrial frames by approximately

ôs = 7.8 ôz (in ppb).

The second aspect of the problem is that pre-launch antenna calibrations are

not available for any of the GPS and GLONASS satellites launched so far. The

"true" mean of the satellite z-PCOs is thus unknown and can hardly be estimated
from GNSS observations. Current GNSS are therefore considered unable to provide

reliable intrinsic terrestrial scale information. On the contrary, the IGS currently
relies on the ITRF scale to détermine conventional GPS and GLONASS satellite

z-PCOs (Rebischung et al., 2012; Ray et al., 2013). In their analyses, the IGS ACs
then fix or tightly constrain the satellite z-PCOs to their conventional IGS values,
so that, unless these constraints are removed, the scales of the IGS AC solutions are

in turn conventionally determined.
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Figure 2.6 Cyan dots: Scale factors estimated between the weekly gfl solutions processed as
described in the text and the ITRF2008. Grey dots: Scale factors estimated between the SLR
input solutions to the ITRF2008 and the ITRF2008, shifted by -15 mm. The solid lines were
obtained by Vondrak-filtering each of the scale factor time sériés with a cut-off frequency of 3 cpy.

As an illustration, Fig. 2.6 shows how the intrinsic scale of GPS terrestrial frames
actually compares with the scale of SLR frames. VLBI is not considered in this

comparison since VLBI frames are computed on a session-wise basis rather than on a

weekly basis like GPS and SLR frames. The SLR time sériés shown in Fig. 2.6 consists
of the scale factors estimated between the SLR input solutions to the ITRF2008

and the ITRF2008 (see Fig. 6 in Altamimi et al. (2011)). The GPS time sériés
shown in Fig. 2.6 was derived from the weekly reprocessed solutions of the GFZ
AC (gfl ) as follows. The original, non-constrained normal équations, in which the
GPS satellite z-PCOs were included, were first recovered using Eq. 1.9. The normal
équations were then inverted using no-net-rotation constraints only, while letting free
both the satellite z-PCOs and the terrestrial scale. Seven transformation parameters
were finally iteratively estimated between each of the obtained solutions and the
ITRF2008.

The intrinsic scale factors of the gfl solutions are not only globally more scattered
than the SLR scale factors, but also show significant long-term biases and trends.
A particularly pronounced semi-annual signal is also visible, much too large to be
attributed to some network effect (i.e. the aliasing of loading deformations into the
estimated scale parameters). What rather happens is that, when the satellite z-
PCOs are let free, (unidentified) modelling errors tend to spread into the weakly
determined terrestrial scale. It appears anyway justified not to use such intrinsic
GPS scale information in the définition of the ITRF scale.
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2.4 GNSS and geocenter motion

As highlighted in Sect. 1.3, several approaches can be used to estimate geocenter
motion from GNSS observations. We will focus in this section on the realization of

CM via the GNSS satellite orbit dynamics only (i.e. on the network shift approach),
as it is the way by which GNSS could potentially contribute to defining the ITRF

origin.

2.4.1 Current status

GPS network shift estimations of geocenter motion hâve been carried out by several

authors for more than twenty years (e.g. Vigue et al., 1992; Ray, 1999; Heflin et al.,
2002; Dong et al., 2003; Altamimi and Collilieux, 2009; Collilieux et al., 2011). But
although tremendous improvements hâve been achieved during that time, GPS geo
center motion estimâtes are still far from competing with SLR ones. By analysing
the translation time sériés between reprocessed weekly solutions from four IGS ACs

and a preliminary version of ITRF2008, Collilieux et al. (2011) indeed found signif-
icant long-term biases with respect to the SLR translations, as well AC-dependent
trends in the Z component. Moreover, the annual signais présent in the X and Z

components of the IGS AC translation time sériés were in poor agreement with SLR.

In 2012, a deeper analysis of the IGS AC geocenter motion estimâtes was con-

ducted (Rebischung et al., 2012). The inputs of this study were the reprocessed
weekly solutions of seven selected ACs for the period 1998.0-2008.0, supplemented

with their operational solutions for the period 2008.0-2011.3. When necessary, non-

constrained normal équations were first recovered from the original AC solutions and
inverted under no-net-rotation constraints. A long-term stacking was then performed
for each AC as described in Sect. 1.2.4. Finally, three rotation and three transla

tion parameters were iteratively estimated between each weekly AC solution and the

corresponding long-term solution. The obtained translations correspond to network

shift estimâtes of non-linear geocenter motion (Sect. 1.3.1). Note that AC-specific,
well-distributed station sub-networks were used so as to mitigate potential network
effects.

As an example, Fig. 2.7 compares the translation time sériés derived from the

GPS solutions of the ESA AC with SLR geocenter motion estimâtes from Altamimi
et al. (2012). While the GPS and SLR translation time sériés hâve comparable
high-frequency scatter levels, the GPS translations show much stronger sub-annual
signais, especially in the Z component. A frequency analysis of the time sériés indeed
reveals the presence of unexpected spectral peaks at various harmonies of the GPS
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draconitic year (see Fig. 2.8). As can be seen in Fig. C.1-C.6, this situation is not
spécifie to the ESA AC, although the draconitic harmonie spectral peaks hâve various
amplitudes in the translation time sériés of the different ACs.

As non-linear geocenter motion is expected to mostly consist of an annual signal,
a question raised by Rebischung et al. (2012) was the following: despite the spu-
rious sub-annual draconitic signais présent in the IGS AC translation time sériés,
do the underlying seasonal signais constitute reasonable estimâtes of annual geocen
ter motion? To answer this question, the IGS AC translation time sériés were first

Vondrak-filtered with a cut-off frequency of 1.25 cpy, so as to retain their seasonal
(and lower frequency) part only, and compared to similarly smoothed SLR trans
lation time sériés (Fig. 2.9-2.11). Periodic signais at the annual and semi-annual
frequencies and at the seven first harmonies of the GPS draconitic year were then
simultaneously fitted to each of the AC translation time sériés. The amplitudes and
phases of the extracted annual signais were finally compared to reasonable estimâtes

of annual geocenter motion selected by Ries (2011) (Fig. 2.12).

As regards the Y component of geocenter motion, the annual signais of ail IGS
AC translation time sériés show a remarkably good agreement in phase with each
other, with SLR (Fig. 2.10) and with Ries (2011)’s sélection (Fig. 2.12 (Y)). The
amplitudes of the IGS AC annual signais are however quite disparate, ranging from
2 to 5 mm.

The situation is notably different for the Z component of geocenter motion. The
seasonal signais found in the AC Z translation time sériés indeed show long-term
amplitude variations as well as progressive phase shifts with respect to the SLR
seasonal signal (Fig. 2.11). (Note that, except JPL and EMR since 2006, the AC
seasonal signais are rather consistent in phase with each other.) As illustrated in
Fig. 2.13, this behaviour may be partly explained by the interférence of annual signais
with spurious draconitic signais with a near annual period of ~351.4 days. However,
the simultaneous fit of annual and draconitic signais to the AC Z translation time

sériés did not allow to uncover reliable annual signais (Fig. 2.12 (Z)). At least two
possible reasons could explain this fact. First, the annual signais présent in the AC
Z translation time sériés might actually not correspond to "real" geocenter motion.
But it is also possible that the AC Z translation time sériés contain non-stationary
draconitic errors that would prevent a reliable isolation of the underlying annual
signais.

Finally, similarly as in the Z component, the seasonal signais of the IGS AC
X translation time sériés are alternatively in phase and out-of-phase with the SLR

seasonal signal. But the most striking feature in Fig. 2.9 is the small amplitude
of the IGS AC seasonal signais compared to SLR. This can also be observed in
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Fig. C.4 where a lack of spectral power is visible for ail ACs at the animal frequency.
This behaviour might again be explained by an overall destructive interférence of

annual signais with spurious draconitic signais during the considered period. The

simultaneous fit of annual and draconitic signais to the AC X translation time sériés

indeed enabled to uncover realistic annual signais for some ACs (COD, NGS, GFZ; see
Fig. 2.12 (X)). However, the possibility of non-stationary draconitic errors prevents
a definitive interprétation of this resuit.

In summary, the network shift estimation of geocenter motion with GPS currently
remains prone to significant errors, from sub-seasonal to secular time scales, and thus

far from competing with SLR geocenter motion estimation. In the X and Z com-

ponents, the main annual component of geocenter motion can in particular not be

retrieved from GPS network shift estimâtes. As shown by Meindl et al. (2013), the
situation is even much worse with GLONASS-only or combined GPS+GLONASS

network shift estimâtes. These observations explain why the origin information
stemming from GNSS solutions has so far not been considered reliable enough to
contribute to the définition of the ITRF origin.
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Figure 2.7 Cyan dots: Translations derived from the weekly ESA solutions. Grey dote:
SLR-derived translations from Altamimi et al. (2012) shifted by -20 mm, -20 mm and -40 mm
respectively for the X, Y and Z components. The solid lines were obtained by Vondrak-filtering
each of the translation time sériés with a cut-off frequency of 3 cpy.
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GPS draconitic harmonies

Figure 2.8 Lomb-Scargle periodograms of the ESA GPS (blue) and SLR (grey) translation time
sériés shown in Fig. 2.7. For better legibility, the periodograms were computed over a 4 times
oversampled frequency set and boxcar smoothed over 5 adjacent frequencies.
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Figure 2.9 X translation time sériés derived from the reprocessed solutions of seven IGS ACs,

Vondrak-filtered with a cut-off frequency of 1.25 cpy and shifted by multiples of 15 mm. The
background grey lines correspond to the similarly filtered SLR X translation time sériés from

Altamimi et al. (2012).
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Figure 2.10 Y translation time sériés derived from the reprocessed solutions of seven IGS ACs,
Vondrak-filtered with a cut-off frequency of 1.25 cpy and shifted by multiples of 15 mm. The

background grey lines correspond to the similarly filtered SLR Y translation time sériés from

Altamimi et al. (2012).
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Figure 2.11 Z translation time sériés derived from the reprocessed solutions of seven IGS ACs,
Vondrak-filtered with a cut-ofF frequency of 1.25 cpy and shifted by multiples of 15 mm. The
background grey lines correspond to the similarly filtered SLR Z translation time sériés from
Altamimi et al. (2012).
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Figure 2.12 Amplitude/phase diagrams of the annual signais extracted from the IGS AC
translation time sériés (blue dots) and of Ries (2011)’s sélection of reasonable annual geocenter
motion estimâtes (yellow stars).
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Figure 2.13 Blue: Z translation time sériés from the MIT AC, Vondrak-filtered with a cut-off

frequency of 1.25 cpy. Red: Resuit from the simultaneous fit of an annual and a draconitic signal
to this time sériés.
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2.4.2 An unresolved issue

As they benefit from many more satellites and a much denser tracking network than
SLR, the fact that GNSS are still far from competing with SLR for the network shift
estimation of geocenter motion may seem rather counterintuitive. Moreover, until
recently, no précisé corrélation mechanism had been described which could hâve

explained a weak sensitivity of GNSS to geocenter motion. When this thesis started,

the question of why GNSS were performing so poorly, compared to SLR, through
the network shift approach was thus remaining unresolved.

Observations had nevertheless been made by several authors that the modelling
of the GNSS satellite orbits had a particular importance for GNSS geocenter motion
estimâtes. Firstly, the parameterization of the empirical accélérations set up to
account for the non-modelled forces acting on GPS satellites was shown to be of

great influence by Springer (2000) and, more recently, Herring (2011). By fixing
some of the usually set up empirical accélération parameters, they indeed observed a

clear dégradation of GPS geocenter motion estimâtes, especially via a ~7 cm bias in
the Y component and a ~4 cm spurious seasonal signal in the Z component. On the
other hand, by setting up empirical accélération parameters usually not considered,

Meindl et al. (2013) obtained an even stronger dégradation of GPS Z geocenter
motion estimâtes.

Secondly, besides the empirical parameterization of satellite orbits, the a priori
modelling of non-gravitational forces acting on GPS satellites was also shown to influ

ence GPS geocenter estimâtes. In the différences between GPS Z geocenter estimâtes
obtained using different a priori solar radiation pressure models, Hugentobler et al.
(2006) thus observed clear patterns repeating at the period of the GPS draconitic
year. The a priori modelling of Earth-reflected radiation pressure was similarly shown
to hâve a millimetric influence on GPS geocenter estimâtes (Rodriguez-Solano et al.,
2011).

Ail these observations point to a particularly high sensitivity of GNSS geocenter
motion estimâtes to orbit modelling deficiencies. But the cause of this sensitivity had

so far remained unclear. Meindl et al. (2013) recently attempted to shed light on this
question. On the basis of orbit perturbation theory considérations, they incriminated
corrélations between the Z geocenter coordinates and particular empirical accéléra
tion parameters set up by most IGS ACs. But, as will be explained in Sect. 4.5, we

find Meindl et al. (2013) ’s conclusions questionable.
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2.5 Summary

Although the contribution of GNSS to the ITRF is fundamental in several respects
(Sect. 2.1.4), it is nevertheless subject to potential improvements in various areas. A
progressive rebuilding of the IGS network with stable monuments and low-multipath,
individually calibrated antennas would first be highly désirable. This would likely
be the most effective way to mitigate the biases affecting GNSS station position
estimâtes and would also allow a partial réduction of spurious trends and seasonal

signais. However, this objective does not only appear practically unattainable in
the near term, but would also not concern the historical IGS network and data.

Instrumental errors will therefore likely remain an important limiting factor in the
GNSS contribution to at least the few next ITRF realizations.

A second area of potential improvements for the contribution of GNSS to the ITRF

is the global modelling of GNSS observations. In this respect, a primordial objective
is the understanding and mitigation of the draconitic errors found in GNSS station
position estimâtes, which will likely require important progress in the modelling of
GNSS satellite orbit dynamics. But progress in other global modelling aspects (tidal
effects, ionosphère, troposphère) remain necessary as well.

The work done during this thesis falls within a last objective: improving the
détermination of the terrestrial scale and of geocenter motion with GNSS, so that

they could eventually contribute to defining the ITRF scale and origin. The weak

ability of current GNSS to détermine the terrestrial scale is well understood (Sect. 2.3
and 4.2). But, as will be detailed in 5.1, there nevertheless exist prospects for a future
contribution of GNSS to defining the ITRF scale, or at least its scale rate.

On the other hand, the poor performance of GNSS in determining geocenter

motion through the network shift approach was remaining unresolved when this

thesis started (Sect. 2.4.2). In view of a future possible contribution of GNSS to
defining the ITRF origin, a first necessary step was therefore to understand why
GNSS geocenter motion estimâtes were so unreliable. This question is actually the
main thread of the next chapters.



Chapter 3

Mathematical tools and

developments

This chapter présents the mathematical concepts that were used and developed dur-

ing this thesis so as to investigate the poor performance of GNSS for determining geo-
center motion with the network shift approach. In Sect. 3.1, the notion of collinearity
in least-squares régression is first introduced as well as several possible approaches for
diagnosing collinearity issues. In Sect. 3.2, we introduce the notion of implicit param-

eters that will be used to represent quantifies which are, like geocenter coordinates in
GNSS data analyses, not explicitly estimated as model parameters, but nevertheless

implicitly realized through the model parameters (i.e. through station coordinates).
Sect. 3.3 présents a generalized collinearity diagnosis, adapted to several peculiari-
ties of geodetic data analyses, which will be applied to different problems in the next
chapter. Sect. 3.4 finally discusses the question of whether using double-differenced
observations rather than undifferenced observations in global GNSS analyses has an
impact or not on collinearity issues and their diagnosis.

3.1 Collinearity in generalized least-squares régression

Throughout this section, the linear régression model l = Ax + v will be considered,
where:

— I is a vector of n observations associated with a given covariance matrix Qi =
p-1.

— x a vector of p unknown parameters;
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— A = dl/dx is the so-called design matrix;

— Ax is the vector of observations predicted by the parameters x (model prédic
tion);

— v is a vector of unknown observational and model errors (residuals).

Specifying a weight matrix Pi for the observations corresponds to the choice of
a particular metric in the observation space Mn, i.e. of an inner product < 1,1' >=

V Pil' and of the associated norm ||Z|| = y/l1 PR. Let E dénoté the Hilbert obser
vation space Mn equipped with this metric. The row space of the design matrix,

Im(A) = {Ax,x e Mp}, is a subspace of E which spans ail possible model prédic
tions. It will therefore be called the model space.

The objective of generalized least-squares régression is to minimize the norm

||u[| = ||Z — Ax|| of the residual vector. It is achieved when the vector of pre
dicted observations Ax is the orthogonal projection of the observation vector l onto
the model space Im(A). This condition leads to the well-known normal équation:

Nx = b (3.1)

where N = ATPi A is called the normal matrix and b = ArPil. Unless stated
otherwise, A will be assumed of full rank in this section. Under this condition, N is

invertible and the normal équation has a unique solution:

x = N~lb = (ATPiA)~l ArPtl (3.2)

The covariance matrix of the estimated parameters is in this case the inverse of the

normal matrix Q = N~l. The goodness of fit can be measured by the coefficient of
détermination:

R2 = = cos2 0 (3.3)
lr lr

where 6 is the angle between the observation vector l and the model space Im(A).

We refer the reader to Sect. B.l for a less abrupt dérivation of these results.

3.1.1 Conditioning and parameter scaling

When A is of full rank but N is however close to singularity, small perturbations in
the observations may cause relatively large variations in the estimated parameters:

the least-squares régression is ill-conditioned. The closeness of N to singularity can

be measured by its condition number k(N), i.e. the ratio of its largest to its smallest
singular value.
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Because N is symmetric, the idéal case k(N) = 1 is achieved only when:

N = kl &
Vt, Ni'i = ll^ll2 = k

Vz j, -/Vi j =< A^ >= 0
(3.4)

i.e. when the columns of A form an orthogonal basis of the model space Im(A) and
ail hâve the same norm. N can thus be ill-conditioned for two non-exclusive reasons:

either because the columns of A hâve disparate norms (scaling problem), or because
they are far from being orthogonal to each other (collinearity problem).

The first possible reason for ill-conditioning can be circumvented by solving for

an auxiliary set of scaled parameters x such that x\ — ||Aillas* = y^V^-cc*. In
matrix notations, x = D lx where D dénotés the diagonal matrix with éléments
Di i — 1 /y/Nij. This leads to the design matrix Â = AD whose columns ail hâve
unit norms, and to the scaled normal équation Nx = 6, where N — DND has the
form of a corrélation matrix and b — Db.

In terms of condition number, this particular scaling of the parameters may not
be optimal: there may exist other matrices D in the set Vp of ail non-singular p x p
diagonal matrices such that k(DND) < k(N). Nevertheless, a theorem by van der
Sluis (1969) States that:

Ac(iV) < p min k(DND) (3.5)
Dç.'Dp

i.e. that even if the scaling by D is not optimal, it is not far from being optimal. But
the main justification for this particular scaling is that it isolâtes the second possible
source for ill-conditioning: collinearity.

3.1.2 Introduction to collinearity

When the design matrix A is rank déficient and the normal matrix N is consequently
singular, there exists one or more linear dependencies among the columns of A. One
or more linear combinations of the model parameters do not influence the predicted
observations. In other words, the régression model does not provide information
about spécifie linear combinations of parameters, which can therefore not be inferred

from the observations. This situation, well-known in geodetic problems, will be
referred to as perfect collinearity. For instance, in a global GNSS data analysis, any
net rotation of the station network can be compensated by variations of the EOPs

without any impact on the observations (Sect. 1.2.2). Three independent linear
combinations of station positions and EOPs are thus not estimable. The design
matrix A and the normal matrix N hâve three orientation singularities.
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More subtly, the columns of A may be, not exactly, but nearly linearly dépendent,
a situation known as collinearity or multicollinearity. In such a case, spécifie linear
combinations of parameters hâve only few influence on the observations and may

therefore hardly be inferred from them. The harm caused by collinearity to the

estimability of spécifie linear combinations of parameters is thus described as follows

by Belsley et al. (1980): "The essential harm due to collinearity arises from the
fact that a collinear relation can readily resuit in a situation in which some of the

observed systematic influence of the explanatory variables on the response variable
is swamped by the model’s random error term - or in the familiar terminology of

electrical engineering, the signal is swamped by the noise. It is intuitively clear
that, under these circumstances, estimation can be hindered." In other words, if

the influence of some linear combination of parameters is actually below the level of

observation and model errors, its estimation is likely to be unreliable.

For better insight, let us introduce a géométrie interprétation of collinearity. The
resolution of a least-squares problem can be conceptually decomposed into two steps:

— finding the best-fitting model prédiction Ax by projecting the observations l
onto the model space Im(A) (Fig. B. 1);

— finding the parameters x that predict the projected observations Ax, i.e. de-
composing the projected observations onto the basis of Im(A) formed by the
columns of A (Fig. 3.1).

Collinearity is not a concern for the first step: it does not affect how well the model

predicts the observations, i.e. the coefficient of détermination R2. But collinearity
may become an issue during the second step, when attempting to separate the contri

bution of each parameter to the predicted observations. If linear quasi-dependencies

exist among the columns of A, the basis they form indeed tends to be squashed, so
that the décomposition of the predicted observations onto this basis becomes an ill-

posed problem. Collinearity can in fact be geometrically defined as a severe departure

of the basis formed by the columns of the scaled design matrix A from orthogonality

(Farrar and Glauber, 1967) or as its closeness to singularity (Haitovsky, 1969).

Fig. 3.1 gives an illustration of this géométrie interprétation in the simplest pos
sible case of a two-parameter régression. In the left part of the figure, both columns

of A are orthogonal: there exists no linear dependency between Ai and A2. On the

other hand, the angle between Ai and A2 has been decreased in the right part of the

figure, so that Ai and A2 become very approximately collinear (Ai — A2 is relatively
close to zéro). The conséquence of this poorer geometry on the détermination of the
model parameters aq and x2 is nevertheless visible: with the same uncertainty on

the predicted observations, the error bars of the parameters are clearly longer in the
right case. Fig. 3.1 thus points out another conséquence of collinearity. The exis

tence of linear quasi-dependencies among the columns of A does not only hinder the



3.1. Collinearity in generalized least-squares régression 80

estimation of the corresponding linear combinations of parameters, but also inflates
the uncertainties ail involved individual model parameters.

Im(^42)

Figure 3.1 Décomposition of predicted observations Ax onto orthogonal (left) and roughly
collinear (right) two-dimensional bases

3.1.3 Global measures of collinearity

Given the géométrie définition of collinearity introduced in Sect. 3.1.2, a first possible
indicator of the overall collinearity degree of a least-squares problem is the détermi
nant of the scaled normal matrix, det(JV), which indeed measures the volume of the
parallelotope formed by the columns of Â in El. det(iV) necessarily lies between 0
and l2. det(iV) = 1 only if the columns of A form an orthonormal basis (hypercube),
while det(iV) tends to zéro as the parallelotope formed by the columns of Â tends
to be squashed. det(iV) was thus proposed by Farrar and Glauber (1967) as a global
measure of collinearity.

For the same purpose, Belsley et al. (1980) prefer using the condition number
k{N) which ranges from 1 when the columns of Â form an orthonormal basis to
infinity as N approaches singularity. An indicative scale relating k(N) to the severity
of collinearity issues is thus given by Montgomery et al. (2012), but it is likely not
suited to problems with thousands of parameters like GNSS data analyses.

Global measures of collinearity such as det(iV) and k(N) may in fact be useful to
compare the relative level of collinearity between different problems, but seem hardly
interprétable in an absolute sense. Moreover, they do not provide information about
the causes of potential collinearity issues, i.e. about which linear quasi-dependencies
may exist among the columns of A.

1det(iV) is in fact the Gram déterminant of Â in E.
2Let (Ai)1<j<p dénoté the singular values of N. As N is positive-semidefinite, each A, is positive or zéro, so that:

0 < det(7V)1/P = (nAi)1/p < £A;/p = trace(JV)/p = 1
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3.1.4 Belsley et al. (1980)’s procedure

When possible, the singular value décomposition of the scaled normal matrix N can
be a useful tool to diagnose and understand collinearity issues. N, as a symmetric
positive-semidefinite matrix, can indeed be decomposed into N — VAV'1, where:

— V is an orthogonal matrix whose columns are the eigenvectors of TV;

— A = diag(Ai,..., Xp) is the diagonal matrix whose éléments are the eigenvalues
of TV.

In the idéal case where the columns of A form an orthonormal basis of Im(A), ail

eigenvalues of N are equal to 1. On the other hand, when N approaches singularity,

at least one of its eigenvalues approaches zéro, and the corresponding eigenvector(s)

indicate linear combination (s) of the columns of A which is (are) nearly dépendent.
Note that the arithmetic mean of the Aj’s is 1 in any case.

Belsley et al. (1980) therefore proposed a procedure based on the singular value
décomposition of N for diagnosing potential collinearity issues. The first step of

Belsley et al. (1980) ’s procedure consists in identifying potentially harmful linear
quasi-dependencies among the columns of A by means of the condition indices:

Vi =
Aî

(3.6)

where Amax dénotés the largest eigenvalue of N. Linear quasi-dependencies among

the columns of A are indeed indicated by large condition indices (small eigenvalues).
Each eigenvector associated with such a large condition index corresponds to a hardly

estimable linear combination of parameters, potential source of collinearity issues.

An absolute scale for condition indices is proposed by Belsley (1991) who notes
that "the relative strengths of the scaled condition indices are determined by their
approximate position along the progression 1, 3, 10, 30, 100, 300, 1000, and so on."

From his expérience, if the largest condition indices are below 10, then "collinearity
is not really a major problem" while if the largest condition indices are in the range

30-100, then "there are collinearity problems". He finally considers the range 1000-

3000 as "immense". But again, such an absolute scale might not be very well suited
to huge problems like GNSS data analyses.

Another suggestion from Belsley (1991), applicable to any problem, is to plot the
progression of the condition indices. If a gap of several orders of magnitude can
be observed near the end of this progression, it is likely to indicate a séparation
between the really problematic eigenvectors and the others. But if the progression
of the condition indices is wholly smooth, it becomes of course much more difficult
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to isolate nearly dépendent eigenvectors.

After having identified potentially harmful linear quasi-dependencies among the
columns of A, the second step in Belsley et al. (1980)’s procedure is to assess how they
may dégradé the estimation of each individual model parameter. For that purpose,
the variance of each scaled parameter is decomposed into a sum of components, each

associated with one of the eigenvectors of TV. The covariance matrix of the scaled
parameters is indeed Q = TV-1 = VA-1VT, so that the variance of Xi can be
expressed as:

var(æj) Qi,i=
k=l

Yà
Xk

(3.7)

The ratio:

^i,k.
±_Yà
Qi,i

(3.8)

represents the proportion of var(cèi) associated with the kth eigenvector of TV. If a
large proportion of var(æj) is associated with one or more eigenvectors previously
identified as problematic, it is indication that the estimation of Xi may be degraded
by collinearity issues.

3.1.5 Collinearity diagnosis for a spécifie parameter

The singular value décomposition of TV is an indubitably precious tool to diagnose
and understand collinearity issues and its application to GNSS data analyses would
certainly be rich of lessons. However, it is unfortunately hardly applicable to real-

istic GNSS data analyses with several ten thousand parameters. Moreover, as any

parameter is generally involved in several eigenvectors of TV, Belsley et al. (1980)’s
procedure does not appear as the most appropriate tool for the particular purpose

of understanding whether and why the estimation of a particular parameter may
be affected by collinearity issues. This subsection therefore introduces a collinearity
diagnosis applicable to spécifie parameters of interest. This will be the basis for the

generalized collinearity diagnosis developed in Sect. 3.3 and used in Chapter 4.

Signature of a parameter Each column A{ — dl/dxt of A is a vector of the model
space, which represents the impact on the observations predicted by the model of
a unit variation of the ith parameter xt. It can be thought as the signal which
characterizes the influence of xt on the observations. In the following, A{ will thus
be called the signature of Xi on the observations.
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Décomposition of A* Each parameter X{ can also be associated with a particular

hyperplane of the model space. Let e* = <^)2, •••> ^i,P]T (vector with ail zéro
éléments, except a unit ith element) be the coordinates of æ* in the canonical basis
of the parameter space Rp. And let Ki be any p x p — 1 matrix whose columns form

a basis of Ker(ef) = {x G W/efx = 0}. One could choose for instance:

Ki • • • t f'i—li • • • •> ^p\ (3.9)

Under the assumption that A is of full rank, Im(AK%) is a p— 1 dimensional subspace
(hyperplane) of the model space (proposition A.6), which contains the signatures of
ail parameters except x

Let us now décomposé the signature A,; of x{ into the sum of its orthogonal

projection Aj* onto Im(AKi) and of its orthogonal projection Af onto ImfAK,)1
(Fig. 3.2). A^, as it lies in Im(AKi), is strictly collinear with the signatures of
Xi,i, Xi+i,... xp. This part of the signature of Xi is consequently indistin-
guishable from the signatures of the other parameters. Because of the simultane-
ous estimation of the other parameters, the estimation of x{ can therefore only

rely on Af, i.e. the part of A* which is orthogonal to each of the signatures of
Xi,..., x^i, cEf+i,... xp. In the following, AFi will be called the proper signature of
Xi. As proven below, it can be expressed as:

p AQçj
1 ~ Qm

(3.10)

Proof. The columns of the nxp—l matrix AKi form a basis of Im(AKi), so that, according to proposition
A. 16, the matrix form of the orthogonal projection onto ImtA/C;)'1 is:

n = I - (AKi) ((AKi)-1 Pl(AKi)T)~1 (AKi)TPt
= I - AKi(KjNKi)-1KjArPt

The proper signature of ce*, defined as the orthogonal projection of Ai onto In^AA^)-1 can therefore be
expressed as:

A\ = nAx = nAe, - Aet - AK^KjNKi)-1 KjNe*

According to proposition A.19, Ki(K‘ NKp-' K- can be replaced by Q — Qei(e Qep-'ej Q in the
previous équation, which leads, after simplification, to Eq. 3.10.

Variance inflation factor Let us associate to each parameter x{ the angle 6t between

its signature Aj and the hyperplane Im (AKi) (Fig. 3.2). Rf = cos2 ^ is the coeffi
cient of détermination obtained from the régression of Aj on the other columns of
A. The variance inflation factor (VIF) of x{ is defined from the angle 6^, or from i?2,
by:

1

i -RI
(3.11)

Vi = 1 (0i = 7t/2; Rf = 0) means that At is orthogonal to ail other columns of
A, i.e. that Xi is uncorrelated with any other parameter. On the other hand, K
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Figure 3.2 Décomposition of the signature of æ3 in a 3-parameter problem. Im(AK:i) is the
plane containing A\ and A2. A3 is the orthogonal projection of A3 onto this plane. A3 is the
orthogonal projection of A3 onto the line orthogonal to this plane. i93 is the angle between A3 and
this plane.

tends to infinity (9t —> 0; Kj -A 1) when Al tends to lie in Im(AKi) and tends
to be indistinguishable from the other parameters. Vx thus measures the degree of
collinearity of x% with ail other parameters.

VIFs are a widespread tool for diagnosing whether the estimation of spécifie pa
rameters may be harmed by collinearity (see, e.g., Farrar and Glauber, 1967; Belsley
et al., 1980; Draper and Smith, 1998; Montgomery et al., 2012). The term "variance
inflation factor", introduced by Marquardt (1970), dérivés from the fact that the
variance of a parameter xx obeys the relation:

var(æi) = Qix = —— (3.12)

The first factor, 1/TV^, would be the variance of xx if ail other parameters were
known and held fixed. G is thus the factor by which the simultaneous estimation of

the other parameters inflates the variance of Xi. Eq. 3.12 can be demonstrated by
noting that:

, _ < Ai, Af > _ < Ah A,- Avi>
‘ IIAI|||A“|| IIAIIIIA-^II (3.13)

Replacing A1' by its expression in Eq. 3.10 leads to:

COS#i = (3.14)

which is équivalent to Eq. 3.12.
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Let us mention another interprétation of VIFs. Noting that ||A;||2 — Niti and
that, according to Eq. 3.10, ||Af||2 = 1 /Qiti, Eq. 3.12 can indeed be rewritten as:

Vi =<VQUi= MT (3.15)

The numerator in Eq. 3.15 is the squared norm of the signature of x{ on the ob

servations, i.e. of the signal on which the estimation of x\ would rely if ail other
parameters were held fixed. On the other hand, the denominator in Eq. 3.15 is the

squared norm of the proper signature of cc*, i.e. of the signal on which the estimation

of Xi actually relies. Vi thus measures how the magnitude of the signal on which the
estimation of xt relies is reduced because of the simultaneous estimation of the other

parameters.

Like for other measures of collinearity, the questions arise again of what are large
and what are small VIFs. Numerical thresholds may be found in the literature,

commonly seen values being 5 and 10 (see, e.g., Montgomery et al., 2012). However,
as pointed out by Smith and Campbell (1980) or Belsley (1982), VIFs are in fact not
interprétable in an absolute sense. For instance, a parameter may be satisfactorily

estimated if, even despite a strong collinearity with the other parameters (large
VIF), its proper influence on the observations remains significantly larger than the
observation and model errors. What eventually matters to the estimability of some

parameter is how its variance var(ccj) = Q%i = 1/||A^||2 compares to the required
level of précision. The fact nevertheless remains that:

— if the estimation of some parameter is manifestly subject to errors,

— if its variance is near or larger than the required level of précision,

— and if it has a large VIF (i.e. if its variance is large because of a strong collinearity
with the other parameters),

then collinearity constributes to the poor estimability of this parameter.

Even if VIFs hâve no absolute meaning, it can be useful to make relative compar-
isons between, e.g., the VIFs obtained for the same parameter with different analysis
settings. For such relative comparisons, it should be noted that, because of their

quotient nature, VIFs should be considered as varying on a logarithmic scale rather
than on a linear scale. Finally note that, for the ease of interprétation, numerical VIF

values will always be accompanied, in the rest of the thesis, by bracketed percentage
values corresponding to:

cos Qi = Ri = (3.16)

By its nature, this quantity is indeed interprétable in the same way as a corrélation

COSfl^^.§J^etimes called multiple corrélation coefficient between Xi and the other parameters.
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Coordinates of Af When analysing the collinearity of x\ with the other parameters,
not only the values of 0*, and V* are of interest, but also the coordinates of A“

in the basis formed by the columns of A. If xt has a large VIF (small 0*), AJ* is
indeed a linear combination of Ai,..., A;_i, Ai+i,... Av which closely matches A*.
In other words, the coordinates of A" in the basis formed by the columns of A are

the coefficients of a linear combination of X\,..., xi-1, æ*+i, ...xv which is almost
indistinguishable from x%. The coordinates of Af are thus the answer to the question
of why Xi may be hardly estimable.

According to Eq. 3.10,

Ay = Ai- A? = A er -
Q6;

Qi,i
(3.17)

so that the coordinates Hi of Ajx in the basis formed by the columns of A are:

-i T

Ri &i
Qi,i

Ql,i Qi—l,z q Qi+l,i Qp,i
QiÀ ’ ’ Qiti ’ ’ QÛi_

(3.18)

3.1.6 Corrélation coefficients

A common practice in the field of global geodetic analyses is the analysis of pair-
wise corrélation coefficients between the estimated parameters (see, e.g., Gobinddass
et al., 2009b; Rodriguez-Solano et al., 2012; Meindl et al., 2013; Haines et al., 2013).
This subsection aims at replacing this practice in the framework of collinearity and
presenting some of its shortcomings. But let us first point out that the notion of
corrélation coefficients can hâve two different meanings.

In the terminology of Belsley et al. (1980), the corrélation matrix of the estimated
parameters is the scaled normal matrix N. In this case, the corrélation coefficient

between two parameters X{ and Xj is:

'1,3 Nij=
N,

y/NiiNjj

< Aj, Aj >
= cos 0

I A* Il II A h3 (3.19)

where dénotés the angle between the signatures Ai and A3 of both parameters.
While IqjI’s close to 1 clearly indicate pairs of redundant parameters, low |cîj|’s do
not imply the absence of collinearity issues, for problematic linear quasi-dependencies

generally involve more than two parameters1. The ci:J coefficients are therefore in
adéquate for diagnosing and understanding potential collinearity issues.

4A limit case is obtained when the scaled parameter signatures (A)i <i<p tend to form a p — 1-simplex. In this
case, the problem tends to perfect collinearity while ail c^j’s stay as low as l/(p — 1).
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On the other hand, in the geodetic community, the corrélation coefficient between

Xi and Xj is rather usually defined from the éléments of the parameter covariance
matrix Q by:

c?.
COv(X{, Xj) Qi,3

y/vdx(xïÿvâr{xj ) yjQi,îQj,:
(3.20)

From Eq. 3.10, it can be shown that:

<aia*>

K1KII
COS d\j (3.21)

which allows a géométrie interprétation of é[3 as the cosine of the angle between
the proper signatures of æ, and Xj.

As shown by Belsley et al. (1980), if the columns of A tend to be linearly dé

pendent, then the cfj coefficients between ail parameters more or less involved in
linear quasi-dependencies tend to ±1. Large |c? -|’s are thus an indication of potential
collinearity issues. However, as a strong linear quasi-dependency may contaminate
the whole corrélation matrix, the c? ’s are not well suited to understand the causes
of potential collinearity issues.

3.2 Implicit parameters

In global geodetic analyses, some physically meaningful quantities may not be explic-
itly estimated as model parameters, but nevertheless implicitly realized through the
model parameters. For instance, the net translations between a quasi-instantaneous
GNSS terrestrial frame and the ITRF represent in principle the coordinates of CM in

the ITRF and should thus reflect non-linear geocenter motion (Sect. 1.3.1). The co
ordinates of CM in the ITRF are generally not explicitly estimated in global GNSS
analyses, for the corresponding parameters would be fully redundant with station
coordinates. They are rather implicitly realized through the estimated station co
ordinates. Likewise, other quantities implicitly realized through the station coordi

nates estimated in a global GNSS analysis are the surface load coefficients afm
(Sect. 1.3.2).

Such quantities, implicitly realized through the parameters of a generalized least-
squares régression, are termed here implicit parameters. After a formai définition

of implicit parameters is given in Sect. 3.2.1, a method to estimate such quantities
and their uncertainties is presented in Sect. 3.2.2 and 3.2.3. The link between im

plicit parameters and the notion of reference System effect developed by Sillard and
Boucher (2001) is finally highlighted in Sect. 3.2.4.
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3.2.1 Définitions

Implicit parameter Let us define an implicit parameter as a quantity y with respect
to which the partial dérivatives of the explicit model parameters x are a known vector

A = dx/dy of Rp. As an example, consider the implicit parameter y corresponding
to the X coordinate of CM in a global GNSS analysis, i.e. to an X origin shift from
the a priori terrestrial frame to the estimated terrestrial frame. In this case,

dx

A = — = [1,0,0,1,0,0,.. .,1,0,0, 0, 0,0, 0,...,0f (3.22)
station coordinates other parameters

Explicit model parameters are obviously encompassed by the notion of implicit pa
rameter. The partial dérivatives of x with respect to a given x^ are indeed a known
vector ei of Rp.

Independence of two implicit parameters Two implicit parameters y and 2: respec-

tively characterized by dx/dy = A and dx/dz = n will be said independent if
AT/x = 0, i.e. if A and /x are orthogonal in the parameter space Rp. Orthogonality in
the parameter space may be thought in terms of degrees of freedom allowed within

the model. For example, two explicit parameters x{ and x:) are clearly allowed to
vary independently from each other within the model: ej e3 = 0. On the other hand,
a quantity like Xi+Xj cannot vary independently from X{\ e[(e^Te,) ^ 0. More gen-
erally, A 7 /x = 0 means that the implicit parameters y and z can vary independently
from each other within the model.

3.2.2 Estimating implicit parameters in a non-constrained problem

This goal of this subsection is to introduce a method to estimate the values and
uncertainties of implicit parameters. For simplicity, it is first assumed in this sub

section that A is of full rank, so that N is invertible (N~l = Q) and that no
particular constraints are required to estimate the explicit model parameters x. In

this case, a unique set x — Qb of explicit model parameters satisfies the normal
équation Nx = b and has Q as covariance matrix. The case where constraints are

additionally considered will be separately discussed in Sect. 3.2.3.

Recommended approach Let us consider a vector y = [yi,..., yq\ of q implicit
parameters characterized by the partial dérivatives:

dx dx

dyi'" dyq
(3.23)
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For instance, y could consist of the coordinates of CM in the ITRF, while x would

be the parameters estimated in a hypothetical full-rank global GNSS analysis. In
this example, the partial dérivative matrix would be:

A = [J3,I3,13,.. , h, 0,0,0,0,, 0JT (3.24)
N v '' ^ ^ ^

station coordinates other parameters

Provided that A is of full rank (i.e. that there is no redundancy between the
yi s), y can be associated with a g-dimensional subspace of the parameter space
Im(A) = {x G M.p/x = Ay}. This subspace spans the variations of the model pa
rameters x that are fully explainable by some set y of implicit parameters. On the
other hand, its orthogonal complément, Im(A)x = Ker(A7 ), spans the variations of
the model parameters x that are independent from any of the ySs. In the above

example, Im(A) spans net translations of the station network, while Ker(A7) spans
non-translational network distortions and variations of the non-station-position pa

rameters. The décomposition of the parameter space into Im(A)©Ker(A7 ) allows
a unique décomposition of the explicit model parameters x into:

x = Ay + x', with x' G Ker(AT) (3.25)

In Eq. 3.25, the explicit model parameters x are thus split into a part Ay explained

by a set y of implicit parameters y and another part x\ independent of any of the
considered implicit parameters.

This décomposition of the explicit model parameters allows to rewrite the obser

vation équations l = Ax + v as:

l = AAy + Ax' + v (3.26)

Eq. 3.26 defines a re-parameterized model with y and x' as unknown parameters,

while the fact that x' G Ker(AT) can be translated into the condition équation
ATx' = 0. According to Sect. B.2.2, the solution of this re-parameterized problem
can be obtained from the following constrained normal équation:

" ATNA ATN 0 “ y ' ATb '

NA N A x' = b

0 AT 0 k 0

where k dénotés a vector of q Lagrange multipliers.

As proven below, a unique set y of implicit parameters satisfies Eq. 3.27. y

and its covariance matrix Qÿ can be expressed in function of the estimated model
parameters x and of their covariance matrix Q as:

y = (ArA)"1ATæ (3.28)
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Qy = (AtA)'1AtQA(AtA)"1 (3.29)

Eq. 3.28 and 3.29 provide a practical way to infer the values and uncertainties of

implicit parameters from the values and uncertainties of the explicit model param
eters. Note that, if these équations are used for the trivial purpose of inferring the

value and uncertainty of an explicit model parameter from x (i.e. with A = e*),
it leads to the expected results Xi and Qx i. But recall that these équations are only
valid when A and N are of full rank and no constraints are considered.

Proof. A block-decomposition of Eq. 3.27 leads to:

ATNAy + AtNx = ATb (3.30)

N A y b — NAy

At 0 k 0

According to Eq. B. 17, the solution of Eq. 3.31 can be expressed as:

x = K(KTNK)~lKT{b-NAy) (3.32)

where K dénotés any matrix whose columns form a basis of Ker(A7 ). Since N is assumed of full rank,
proposition A. 19 allows to express x' as:

x = (Q - QA(ATQA)-1ATQ) (6 - NAy) (3.33)
Inserting this expression of x' into Eq. 3.30 leads, after simplification, to the following reduced normal
équation:

ArA(ArQAy1ArAy = ATA(ATQA)~1 A1 Qb = ArA(ArQA)~1Arx (3.34)

which clearly has as solution the values of y and Qÿ given in Eq. 3.28 and 3.29.

Traditional approach The method described above, based on a re-parameterization

of the explicit model parameters x into Ay + x' with x' e Ker(AT), constitutes
our recommended approach for estimating the values and uncertainties of implicit

parameters y. However, another commonly employed approach consists in treating
the explicit model parameters x as pseudo-observations and estimating y via a least-
squares régression based on the model:

x - Ay + w (3.35)

If the covariance matrix Q — N^1 of the model parameters is considered, this
approach leads to an estimate:

y = {AtNA)~1AtNx (3.36)

of the implicit parameters and to the covariance matrix:

Qÿ = (AtATA)-1 (3.37)

which is generally scaled by a variance factor function of the régression residuals.
However, the covariance matrix of the model parameters is sometimes discarded, in

which case the estimated implicit parameters and their covariance matrix are:

y = (ATA)-1 ATx (3.38)
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Qy oc (A^A)-1 (3.39)

Treating the explicit model parameters x as pseudo-observations is the approach

traditionally used when inferring, for instance, the coordinates of CM or surface load
coefficients from the results of a global GNSS analysis. There is however no consen
sus on the questions of whether the covariance matrix Q of the model parameters

should be considered or not, and why. On one hand, Lavallée et al. (2006) State
that the full covariance matrix Q needs to be considered in their unified geocenter

motion estimation approach (Sect. 1.3.3). But on the other hand, considering the
full covariance matrix Q in the network shift approach leads to unrealistic results

(Rebischung et al., 2012), so that an identity weight matrix is generally used.

We believe in fact that the traditional approach of treating the explicit model

parameters x as pseudo-observations is misleading. When the covariance matrix
of the model parameters is considered, the results from the traditional approach

(Eq. 3.36 and 3.37) can indeed easily be identified to those who would be obtained,
directly from the observations Z, via the régression model:

l = (AA)y + v (3.40)

and the associated normal équation:

ATNAy = ATb (3.41)

In this case, the traditional approach is therefore équivalent to estimating the im
plicit parameters y directly from the observations, after having fixed ail independent

variations of the (non-reduced) model parameters to their a priori values. In the
example given above, the coordinates of CM and their uncertainties obtained from

Eq. 3.36 and 3.37 can thus be thought as resulting from a global GNSS analysis in
which non-translational network distortions and (non-reduced) non-station-position
parameters would hâve been fixed to their a priori values. This interprétation illus

trâtes why we think that the traditional way of inferring implicit parameters using
Eq. 3.36 and 3.37 is misleading.

In contrast, our recommended approach cornes down to estimating the implicit

parameters y from the observations, simultaneously with independent variations x' of
the model parameters. In the example, the coordinates of CM and their uncertainties

obtained from Eq. 3.28 and 3.29 can thus be thought as resulting from a global GNSS
analysis in which they would hâve been estimated together with non-translational
network distortions and ail other non-station-position parameters.

Finally, an interprétation may hardly be given to the traditional approach when

the covariance matrix of the model parameters is discarded (Eq. 3.38 and 3.39),
except that it is a wrong way to obtain a correct resuit. The implicit parameters
obtained from Eq. 3.38 are indeed the same as obtained with our recommended
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approach (Eq. 3.28). However, the covariance matrix from Eq. 3.39 has obviously
little meaning, as it does not dépend at ail on the uncertainty of the explicit model
parameters.

3.2.3 Estimating implicit parameters in a constrained problem

In this subsection, the approach introduced in Sect. 3.2.2 for estimating the values
and uncertainties of implicit parameters is extended to the case where constraints

are imposed on the parameters, in order to supplément possible rank deficiencies of

A and TV, or for any other purpose. Like previously, our proposed method is based
on the décomposition of the explicit model parameters x into:

x = Ay + x', with x' G Ker(A7 ) (3.42)

which leads to the re-parameterized observation équations:

l = AAy + Ax' + v (3.43)

But we will now consider that x' is subject to the additional constraint CTx' = 0,
where C dénotés a p x c full-rank matrix. It will be assumed that C properly
suppléments the possible rank deficiencies of A and TV, i.e. that rank ([A7 C]) = p.
C could for instance correspond to no-net-rotation constraints in a global GNSS
analysis. We will finally assume that [A C] is of full rank, i.e. that there is no
redundancy between the considered implicit parameters and the applied constraints.

Considering this additional constraint leads
into:

" A7’TVA ATN 0 0 "

TVA N A C

0 AT 0 0

0 CT 0 0

where k' dénotés a vector of c Lagrange multipliers. As proven below, Eq. 3.44
admits a unique set yc of implicit parameters as solution. If K dénotés any matrix
whose columns form a basis of Ker([A C]T), then yc and its covariance matrix Qyc
can be expressed as:

Qyc = (AtATA - (3.45)

ÿc = Qyc (ATb - ATNK(KTNK)'1Krb) (3.46)

As such a matrix K is generally not available, Eq. 3.45 and 3.46 are of no practical
use. To practically estimate the values and uncertainties of implicit parameters in

to extend the normal équation 3.27

y " A7 6 "

x' b

k 0

k' 0

(3.44)
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case where constraints are used, the full normal équation 3.44 needs in fact to be

solved. Alternatively, one could also solve the following équation:

N C' ' x ' b '

C'T 0 k 0

where C' — (/ — A(A7 A) 1A^ ) C. It can indeed be shown that yc and Qÿc can be
inferred from the solution (xc>, Qxc,) of Eq. 3.47 by:

ÿc = (AtA)~'At xcj (3.48)

Qÿc = (A7’A)-1A3’Qic, A(AI'A)”1 (3.49)

Proof. A block-decomposition of Eq. 3.44 leads to:

ArNAy + ArNx' = ATb (3.50)

N AC y 6- NAy

A7 0 0 k = 0

CT 0 0 k' 0

Since [A C] is assumed of full rank, the solution of Eq. 3.51 can be expressed, according to Eq. B. 17, as:

x = K(KTNK)-lKT(b- NAy) (3.52)

where K dénotés any matrix whose columns form a basis of Ker([A C)T). Inserting this expression of x'
into Eq. 3.50 leads to the following reduced normal équation:

(atNA - ATNK(KTNK)~lKTNA) y = A1 b - ArNK(KrNK)~1 Krb (3.53)
which has as solution the values of yc and Qÿc given in Eq. 3.45 and 3.46.

3.2.4 Link with Sillard and Boucher (2001)’s reference System effect

The décomposition of the model parameters x into Ay + x\ with x' G Ker(AT),
used in the previous subsections is somehow arbitrary as it dépends on the choice of

a particular direct complementary subspace of Im(A), in this case, Ker(A7). The
particular choice of Ker(AT) was in fact made in accordance with the notion of
independence between implicit parameters defined in Sect. 3.2.1. But in principle,

any direct complementary subspace A4 of Im(A) could allow a unique décomposition
of the model parameters x into:

x = AyM + x'M , with x'M G A4 (3.54)

and thus lead to a spécifie estimate ym of the implicit parameters y. In case where

no constraints are considered, this estimate can be expressed as:

Vm = {KlMArXO (3.55)
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and has as covariance matrix:

QÿM = {KTM\)-lKTMQKM{\T(3.56)

where Km dénotés any matrix whose columns form a basis of AiL.

Sillard and Boucher (2001) propose a different, but équivalent view of the same
problem: they associate the various possible décompositions of x with different met-
rics of Rp. Each p x p symmetric positive definite matrix W indeed defines a scalar
product < æ, x' >w— &1 Wx' in Rp, from which a particular notion of independence
(i.e. orthogonality) between implicit parameters can be derived. Each W thus allows
a unique décomposition of the model parameters x into:

x = Ayw + xw , with ATWx'w = 0 (3.57)

In case where no constraints are considered, this décomposition of the model param
eters leads to a spécifie estimate

yw = {AtWA)-1AtWx (3.58)

of the implicit parameters y and to the associated covariance matrix

Qyw = {ATWAy1ATWQWA{ATWA)-ï (3.59)

Sillard and Boucher (2001)’s developments were made for the particular purpose of
assessing the uncertainty of the origin, scale and orientation (i.e. the reference System
effect or datum définition) of terrestrial frames derived from space geodesy obser
vations. They therefore consider as implicit parameters y differential translations,
scale factor and rotations and estimate their uncertainties using Eq. 3.59.

The question of how to make a meaningful choice of W (or equivalently M) is
unfortunately not fully addressed by Sillard and Boucher (2001). They recommend
using W = AT, but without clear justification. W — N is also the choice made

by Blewitt (1998) for the particular purpose of removing artificial reference frame
définition from GPS solution covariance matrices. But Sillard and Boucher (2001)
also mention that choosing W = I leads to interesting properties.

Some light can be shed on this question by identifying the choice of W — I with
our recommended approach to estimate the values and uncertainties of implicit pa
rameters with Eq. 3.28 and 3.29 (i.e. simultaneously with independent variations of
the model parameters). On the other hand, the choice of W = N can be identi-
fied with Eq. 3.36 and 3.37, i.e. with the so-called traditional approach to estimate
implicit parameters, in which independent variations of the (non-reduced) model pa
rameters are fixed. In other words, if the choice W = I is made for estimating the
reference System effect of a terrestrial frame, then the corrélations between datum

parameters, network geometry and ail non-station-position parameters are kept into
considération. On the other hand, choosing W = N discards these corrélations and
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results in a tighter, meaningless estimate of the datum définition.

3.3 A generalized collinearity diagnosis

In this section, the method introduced in Sect. 3.1.5 for diagnosing the collinearity

of spécifie parameters is generalized so as to handle several peculiarities of geodetic
data analyses. In Sect. 3.3.1, it is first extended to implicit parameters in the case
where A is of full rank and no constraints are imposed on the model parameters.

Sect. 3.3.2 provides a further generalization to the case where constraints are applied.
In Sect. 3.3.3, a practical method to perform such generalized collinearity diagnoses

is finally exposed.

3.3.1 Generalization to implicit parameters

This goal of this subsection is to extend the collinearity diagnosis introduced in
Sect. 3.1.5 to implicit parameters. For simplicity, it is first assumed in this subsection
that A and N are of full rank and that no constraints are imposed on the parameters.

The case where constraints are additionally considered will be separately discussed
in Sect. 3.3.2.

Let us consider an implicit parameter y characterized by the partial dérivatives

dx/dy = À. Similarly as in Sect. 3.2.2, our developments are based on the décom
position of the explicit model parameters x into:

x = \y + x', with x' G Ker(A7 ) (3.60)

where x' represents parameter variations independent of y.

Signature of an implicit parameter The impact of a unit variation of y on the obser

vations predicted by the model will be called the signature of y on the observations.

It can be expressed as:
dl dx

dx dy
A\ (3.61)

Sy can be thought as the signal which characterizes the influence of y on the obser
vations.

Décomposition of Sy Let Ky dénoté any p x p — 1 matrix whose columns form a
basis of Ker(A7 ). Provided that A is of full rank, Im(AKy) is a p — 1-dimensional
subspace (hyperplane) of the model space Im(A) which spans the signatures of ail
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parameter variations independent of y. Let us now décomposé the signature Sy of
y into the sum of its orthogonal projection SJ onto Im(AKy) and of its orthogonal
projection SJ onto ImfAXy)1. SJ, as it lies in Im(AKy), is strictly collinear with
the signatures of parameter variations independent of y. The estimation of y can

therefore only rely on SJ, which will be called the proper signature of y. As proven
below, SJ can be expressed as:

SPy = (3-62)

Proof. Since A is assumed of full rank, proposition A.6 implies that rank(Ai<ri,) = rank(fCy) — p — 1.
The columns of AKy therefore form a basis of the p — 1-dimensional subspace \m(AKy). According to
proposition A. 16, the matrix form of the orthogonal projection onto Im(AKy)1- is thus:

n = / - AKy [{AKy)TPLAKvyl (AKy)1'Pt
= I ~ AKy(Ky NKy)~1 KyATPi

Therefore,

Sy = nSy = UAX = AX - AKy(K^NKy)~lKlNX

Since N is assumed of full rank, Ky(Ky NKy)~lKy can be replaced, according to proposition A.19, by
Q — QX(X' QX)~lX1 Q in the previous équation, which leads after simplification to the expression of S%
given in Eq. 3.62.

VIF of an implicit parameter Let 9y dénoté the angle between the signature Sy of
y and the hyperplane Im(AKy). Using Eq. 3.62, it can be shown that:

cos 6y =
< Sy, SJ >

ll^lllisjii
< Sy, Sy ~ SJ >
lisj|sy-sj||

(ATA)2

(AT7VA)(ATQA)

(3.63)

One can also show that, if a régression of Sy on the columns of AKy was made, the
obtained coefficient of détermination would be R2y = cos2 9y.

The variance inflation factor Vy of an implicit parameter y can be defined from 9y
or Rl by:

V — - = -

y sin2 9y 1 — R2

Inserting Eq. 3.63 into Eq. 3.64 leads to a formula from which Vy can be practically
computed when disposing of the normal matrix N and of its inverse Q:

T/ (XTNX)(\TQ\)
(ATA)2

(3.65)
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Replacing A by e* in the preceding developments leads back to the équations of
Sect. 3.1.5, which proves that this extension of VIFs to implicit parameters encom-
passes usual VIFs.

The interprétation of such generalized VIFs remains unchanged. Vy = 1 when
Sy is orthogonal to Im(AKy), i.e. when y is uncorrelated with any independent
parameter variation. On the other hand, Vy tends to infinity when Sy tends to
lie in Im(AKy) and y tends to be indistinguishable from independent parameter
variations. Note that VXJ also remains interprétable as a "variance inflation factor".
According to Eq. 3.29, the variance of y, when simultaneously estimated with in
dependent parameter variations, is indeed (A7 QA)/(ATA)2. On the other hand, if
ail independent parameter variations were known and held fixed, the variance of y

would be 1/(A7 2VA). Let us finally mention that Vy can still be interpreted as the
ratio of the squared norm of the signature of y on the observations to the squared

norm of its proper signature (Vy = ||5y ||2/||*SfJ||2).

Coordinates of SJ Like the coordinates of A“ in the basis formed by the columns of
A can enlighten why a parameter Xi may be hardly distinguishable from the other

parameters, the coordinates of Sy in this basis can similarly explain why an implicit
parameter y may be hardly distinguishable from independent parameter variations.

These coordinates can now be interpreted as dx/dz where z is the implicit parameter

independent of y whose signature Sz — Sy most closely matches Sy.

According to Eq. 3.61 and 3.62,

s; =SJ = A(a - (3.66)
so that the coordinates piy of Sy in the basis formed by the columns of A are:

Hy =A - -—QA (3.67)

3.3.2 Generalization to constrained problems

In this subsection, the generalized collinearity diagnosis developed in Sect. 3.3.1 is
further extended to the case where constraints are imposed on the parameters, in

order to supplément possible rank deficiencies of A and N, or for any other purpose.
Like in Sect. 3.2.3, we will now assume that the parameter variations independent of

y are subject to the constraint CTx' = 0, where the p x c matrix C is of full rank
and properly suppléments the possible rank deficiencies of A and N. It will also be

assumed that À ^ Im(C'), i.e. that rank ([A C}) = c + 1.
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Décomposition of Sy Let KVtC dénoté any matrix whose columns form a basis of
Ker([À C]r). Im(AKytC) is a subspace of the model space Im(A) which spans the
signatures of ail parameter variations independent of y and allowed by the con-

straints. Like previously, the signature Sy of y can be decomposed into the sum
of its orthogonal projection SyC onto Im(AKy^c) and of its orthogonal projection
S%,C onto lm(AKy^)1. Sy C is indistinguishable from the signatures of parameter
variations independent of y and allowed by the constraints. The estimation of y

can therefore only rely on its proper signature S?c. As proven below, S%c can be
expressed as:

S£c = AA - AKyiC(Ky CNKytC)~1K^CN\ (3.68)

Proof. Since rank([A C]) = c + 1, dim(Ker([À C]r)) = p — c — 1. Ky,c, whose columns form a basis of
Ker([A C]T) is therefore a p x (p — c — 1) matrix. Moreover, the columns of the p x p matrix A C Ky<c]
form a basis of Rp. The hypothesis that C properly suppléments the rank deficiencies of A is équivalent to

A

CT
[A C Ky,c]

AA AC AKy.c

CT A CTC 0

is of full rank. The n x (p — c — 1) matrix AKVyC is therefore necessarily of full rank itself. In other words,
the columns of AKViC form a basis of In\(AKy,c). According to proposition A.16, the matrix form of the
orthogonal projection onto lm(AKyiC)± is thus:

n = /- AKy,c [{AKy,c)rPlAKy^ ' (AKy^Pt
= I ~ AKV}C(Ky'CNKy,c)~lKy>cArPi

Therefore,

S£c = nsy,c = nAA = AA - AKytC(KlcNKy>c)~lk£cN\

Variance inflation factor Let 9y^c dénoté the angle between the signature Sy of y and
the hyperplane Im(AKy^c). Using Eq. 3.68, it can be shown that:

COS 6y,c =
< Sy: Sy,c >

lisjlisÿj

< Sy. Sy sp >
y,c

IC _ QP I
I &y,c\

\TNKy,c(KlcNKy,c)-'KlcN\
XTNÀ

(3.69)

One can also show that, if a régression of Sy>c on the columns of AKy^c was made,
the obtained coefficient of détermination would be Ry c = cos2 9y^c.

In case where constraints are imposed on the parameters, the variance inflation

factor Vy^c of an implicit parameter y can be defined from

y = 1 1
vy,c

y,c or Rby:

sin 9
y,c

1 - R2
y,c

(3.70)
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Inserting Eq. 3.69 into Eq. 3.70 leads to the following expression of Vy,c:

V,
y,c

XTNX

XTNX - \TNKy,c(KlcNKy,c)-'KlcN\
(3.71)

Like previously, VyiC = 1 means that y is uncorrelated with any independent pa-
rameter variation allowed by the constraints. On the other hand, VViC tends to infinity
when Sy tends to lie in Im(AKy^c) and y tends to be indistinguishable from indepen
dent parameter variations allowed by the constraints. VVtC also remains interprétable
as a "variance inflation factor". In case where constraints are applied, the variance

of y, when simultaneously estimated with independent parameter variations, is in-

deed (XrN\ - \TNKyJK'^cNK,hC)~1 K'!j rNX) according to Eq. 3.45. On the
other hand, if ail independent parameter variations were known and held fixed, the

variance of y would be l/(ATiVA). VV)C can finally still be interpreted as the ratio of
the squared norm of the signature of y on the observations to the squared norm of

its proper signature (VyiC = \\SyW2/\\S^C\\2).

Coordinates of Sy According to Eq. 3.68,

Sic = sy- Sic = AKy,c{KlcNKy,c)-lKlcN\ (3.72)
The vector

nv,c = Ky^KlcNKyJ-'K(3.73)
can therefore be interpreted as dx/dz where z is the implicit parameter independent

of y and allowed by the constraints whose signature Sz = Sy most closely matches
Sy. It can therefore explain why y may be hardly distinguishable from independent
parameter variations allowed by the constraints.

3.3.3 Practical collinearity diagnosis

As a matrix KViC is generally not available, Eq. 3.71 and 3.73 are of no practical use.
A practical method to perform collinearity diagnoses in case where constraints are

applied is therefore exposed in this subsection.

Computing yy,c Given an implicit parameter y such that dx/dy — A, finding the
parameter variation \iy^c independent of y and allowed by the constraints whose
signature most closely matches Sy = AA clearly cornes to solving the following
problem:

fi= argmin (||A(jz - A)]|2)
/LteKP,AT/Li=0,C7>=0

(3.74)
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According to Sect. B.2.2, this problem can be solved through the following con-
strained normal équation:

1 0 1 NX "

\T 0 0 k — 0

1 0H O O k' 0

where k and k' dénoté c + 1 Lagrange multipliers. Eq. B. 17 indeed confirais that the
solution of Eq. 3.75 is nothing but:

My,c = KyJKlcNKy,c)-'KlrN\ (3.76)
Solving Eq. 3.75 thus constitutes the first step of our practical collinearity diagnosis.

Note that to avoid computing TVA, the variable change 7 = A — /x can be made,
leading to:

N AC" 7 0

A7 0 0 k — A7 A

_CT 0 0 k' CTX

(3.77)

Computing VViC Once fiytC has been obtained, the second step of our practical
collinearity diagnosis is the computation of the variance inflation factor VV)C of y.
This step requires the availability of the design matrix A. From A, A, and //yjC,
the signature Sy = AA and the proper signature SJC = A(A — iiy^c) of y can be
computed. Vy,c can then be obtained by:

Note that the quantities l/||£y|| and 1/||5'JC|| are of interest as well. According
to Eq. 3.45, 1/||S'J C|| is nothing but the formai error of the implicit parameter y. On
the other hand, l/HSyH would be the formai error of y in case where ail independent
parameter variations were known and held fixed.

3.4 Impact of double-differencing

As mentioned in Sect. 2.1.2, some Analysis Centers of the IGS make use of double-

differenced GNSS observations while other process undifferenced observations. In
the next chapter, we will consider undifferenced observations only, because of their
simpler géométrie interprétation. The collinearity diagnosis developed above could
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nevertheless be performed in double-differenced analyses and would lead to differ
ent variance inflation factors than in undifferenced analyses. We therefore deem

important to explain how the results of collinearity diagnoses performed in double-
differenced analyses and undifferenced analyses relate to each other. This section
starts by demonstrating that, under certain conditions, processing double-differenced
observations is équivalent to reducing clock parameters from an undifferenced System

(Sect. 3.4.1). A relationship between "undifferenced VIFs" and "double-differenced
VIFs" is then derived and discussed in Sect. 3.4.2.

3.4.1 Equivalence of double-differencing and clock parameter réduction

Clock parameter réduction Consider a global GNSS analysis based on undifferenced

observations l and suppose that the model parameters are organized in such a way

that x7 = [x{ x\ ] where x2 groups the station and satellite clock parameters and X\
ail other parameters. The design matrix A can be accordingly split into two column

blocks: A = [Ai A2\, and the full normal équation can be block-decomposed into:

’ Nu n12 ' X1 ’ bi "

_ n21 -^22 x2 62 _

The réduction of the clock parameters x2 (Sect. B.3.1) leads to the reduced normal
équation NrX\ — br with:

Nr = JVM - Nh2N^N2A

= AjPtAi - ATplA2(Ai;plA2)-1AlPlA1 (3.80)

= Al (P, - PtAiiAlPtAïY'AlPi) A,
and:

br = b] — Ni'2N22b2

= AlPil - AlPtA2(AlPlA2)-'ÂlPll (3.81)

= -

Double-differencing Double-differenced observations ld are obtained from the un

differenced observations l by the application of a rid x n "differencing operator" D:

ld — Dl. According to the variance propagation law, the covariance matrix of the

double-differenced observations is: Qid — DQiD7 . Note that using Pu = Qz 1 as
a weight matrix for the double-differenced observations requires that D be of full
rank, i.e. that the double différences be linearly independent.
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The double-differenced observation équations can be written as:

ld = Dl — D[AiA2]
X\

X2

+ Dv (3.82)

But ail the interest of double differencing résides in the fact that double differenced
observations are insensitive to the clock parameters x2. Mathematically, this means
that the partial dérivatives dld/dx2 = DA2 = 0 so that the observation équations
simplify to:

ld = DAiXi + Dv (3.83)

The corresponding design matrix is Ad = DAi, and the double-differenced normal
équation can be written as NdX\ = bd with:

Nd = AÏQjfAi = AjDT(DQ,DT)~1DA1 (3.84)
and:

bd = ÂdQ[Hd = AT1D(3.85)

Equivalence By comparing Eq. 3.80 and 3.81 with Eq. 3.84 and 3.85, it is clear

that if Pi — PiA2(Al A2)-1 A2 Pi = D1 (DQtD1 )~1D, then the clock parameter
réduction and the double differencing approaches lead to identical normal équations.
According to proposition A. 19, this condition is fulfilled when the columns of DT
form a basis of Ker(A^), i.e. if:

r da2 = o

< D is of full rank (3.86)

[ rank(D) = dim(Ker(A.2 ))
The first condition (DA2 = 0) is "naturally" fulfilled by any double-differencing
operator. The second condition (linear independence of the double différences) was
already assumed, otherwise, the covariance matrix of the double-differenced observa

tions would not be invertible. Only the last condition remains to be met. It basically
means that, under both previous conditions, D should hâve the maximal possible
size, i.e. that as many independent double différences as possible should be formed.

In conclusion, when a maximal set of independent double-differenced observations

is used, processing double-differenced observations leads to the same normal équa
tion as reducing clock parameters from the full undifferenced normal équation. Under
these conditions, processing double-differenced observations therefore leads to identi

cal values and uncertainties for ail non-clock parameters as processing undifferenced
observations.
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3.4.2 Relationship between undifferenced and double-differenced VIFs

Consider, in a global undifferenced GNSS analysis, an implicit parameter y charac-

terized by the partial dérivatives dx/dy = À. Assume that the parameters x are
organized in the same way as in Sect. 3.4.1, and suppose that À has the form:

(3.87)

This hypothesis concretely requires that y be independent of any clock parameter.

For the simplicity of the démonstration, finally suppose that the design matrix A
is of full rank so that the normal matrix N can be inverted into Q = N~l. The
squared norm of the signature of y on the undifferenced observations is:

||Sy||2 = \\AX\\2 = (3.88)

On the other hand, the squared norm of the proper signature of y is, according to
Eq. 3.62:

l I
(AJA):

(3.89)
X'QX

Because of the assumed form of A, Eq. 3.89 can be re-arranged, using proposition
A.18, into:

™||a = (AÏ'AO2
“ (A*(Nu ~ ,)

(3.90)

Suppose now that a set of nd independent double-differenced observations ld — Dl

is formed. The weight matrix of the double-differenced observations:

Pu = Qü1 = (3.91)

induces the norm \\ld\\d = y/ïdPiJd in the space of double-differenced observations
Rnd. The signature of y on the double-differenced observations is:

Sy4 - DSy = DAX = DAlXï = AdX\

and its squared norm is:

IlSy,d\\2d = (AdX1)TPld(AdX1) - (DAX)TPld(DAX)

- (AX)TDT{DQlDT)~1D(AX)

If a maximal set of independent double-differenced observations is used, then, ac
cording to Sect. 3.4.1,

Dt(DQiDt)~1D = Pi-PlA2(A^PlA2)-lA12Pl = (3.94)

where n A ; = I —A2(Al P/A^j)^1 A[P/ is the matrix form of the orthogonal projec-

(3.92)

(3.93)
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tion onto Im(A2)-L = Ker(Aj). Eq. 3.93 can consequently be re-written as:

11^112 = (n^Axyp^n^AX) = ||n^sj2 (3.95)
Eq. 3.95 clearly implies that:

< ll-^yll2 (3.96)

This inequality concretely represents a loss of sensitivity to y due to double-differencing
the observations. If ail independent parameter variations were known and held fixed,
the estimation of y from double-differenced observations would thus lead to a larger
variance (l/||Syid||^) than its estimation from undifferenced observations (l/||Sy||2).

If we still assume, for the simplicity of the démonstration, that A is of full rank,
then the normal matrix Nd of the double-differenced System can be inverted into
Qd — Nd . According to Eq. 3.62, the squared norm of the proper signature of y on
the double-differenced observations can thus be expressed as:

(AfA,)2
I ^y

A{ Qc/Ai
(3.97)

But, according to Sect. 3.4.1, if a maximal set of independent double-differenced
observations is used, then:

Qd= N71 = N'1 = (3.98)

so that comparing Eq. 3.90 and 3.97 yields:

IISÎ.J2 = IISJII2 (3.99)
In other words, double-differencing the observations has no impact on the squared
norm of the proper signature of y, i.e. on the variance of y when estimated simulta-
neously with independent parameter variations. This is a particular conséquence of
the équivalence between the double-differenced and undifferenced approaches proven
in Sect. 3.4.1.

Let us finally compare the VIFs obtained for y in the undifferenced case (Vy =
ISyPl ') and in the double-differenced case (Vy4 = ||5yid|

to Eq. 3.96 and Eq. 3.99, the ratio between both VIFs is:

V,y,d }y,d

V,
< 1

). According

(3.100)

The left term in Eq. 3.100 represents a réduction of the collinearity of y with the
other parameters in the double-differenced case, which naturally stems from the fact
that a double-differenced System has less parameters than an undifferenced System.
On the other hand, the right term in Eq. 3.100 represents, as discussed above, a
loss of sensitivity to y due to double-differencing the observations. As proven in
Sect. 3.4.1, processing double-differenced rather than undifferenced observations has

in the end no impact on the values and uncertainties of the estimated parameters.



3.4. Impact of double-differencing 105

One can therefore conclude that the formation of double différences has the apparent

advantage of reducing collinearity among parameters, but that this advantage is in
fact strictly offset by a réduction of the sensitivity of the observations.

Eq. 3.100 can in particular be used to quantify the sensitivity réduction to geo-

center coordinates qualitatively observed by Meindl et al. (2013) when forming
double-differences. This sensitivity réduction can equivalently be thought in terms of
collinearity of the geocenter coordinates with satellite and station clock parameters.
As already mentioned, we will prefer undifferenced observations in the following for

their simpler géométrie interprétation and thus adopt the latter point of view.



Chapter 4

Terrestrial scale and geocenter
détermination with GNSS: the

collinearity perspective

In this chapter, the problems of determining the terrestrial scale and geocenter motion
with GNSS are examined from the perspective of collinearity. The weak ability of
current GNSS to détermine the terrestrial scale is already well understood (Sect. 2.3).
On the other hand, the question of why the network shift estimation of geocenter
motion with GNSS performs so poorly was remaining unresolved when this thesis

started (Sect. 2.4.2). The main purpose of this chapter is actually to answer this
question by means of the tools developed in Chapter 3.

As an introduction to this chapter, the singular value décomposition of a GNSS-
derived terrestrial frame is first presented in Sect. 4.1. The weak sensitivity of GNSS
to terrestrial scale and geocenter is thus evidenced. In Sect. 4.2, the generalized
collinearity diagnosis developed in Sect. 3.3 is then applied to the GNSS terrestrial
scale détermination problem. The next three sections are devoted to understand the

poor performance of the GNSS geocenter détermination. In Sect. 4.3, the signatures
of the geocenter coordinates on station-satellite range observations are first described

in detail. In Sect. 4.4 and Sect. 4.5, the generalized collinearity diagnosis developed
in Sect. 3.3 is then respectively applied to the geocenter détermination with SLR and
GNSS.
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4.1 Singular value décomposition of a GPS terrestrial frame

In Sect. 3.1.4, Belsley et al. (1980)’s procedure to diagnose and understand potential
collinearity issues, based on the singular value décomposition (SVD) of the normal
matrix, was described. This procedure is unfortunately hardly applicable to realistic

global GNSS analyses, as they involve several ten thousand parameters. SVDs can
however be performed for reduced normal matrices from global GNSS analyses. As

they do not involve ail estimated parameters, such reduced SVDs cannot help in
understanding the causes of potential collinearity issues, but they nevertheless turn
out to be instructive. This section therefore présents and discusses the results of the
SVD of such a reduced normal matrix.

As a starting point, a normal matrix provided by ESA was used, resulting from
the analysis of GPS data collected by 150 stations on July 11, 2008. Ail parameters
except station coordinates were reduced from this normal matrix. Except satellite z-
PCOs, ail reduced parameters had previously been constrained in the same way as in

ESA’s operational analyses. In ESA’s operational analyses, satellite z-PCOs are usu-

ally tightly constrained to conventional IGS values, so that the scales of the obtained
terrestrial frames are in turn conventionally determined (see Sect. 2.3). However,
satellite z-PCOs were intentionally left free of constraints in this experiment, with

the purpose of studying how GPS can intrinsically détermine the terrestrial scale.

An SVD of the reduced normal matrix was then performed. The progression of

the obtained singular values is shown in Fig. 4.1. Let us recall that eigenvectors asso-

ciated with large singular values correspond to well determined linear combinations

of parameters (here station coordinates), while eigenvectors associated with small
singular values correspond to loosely determined linear combinations of parameters.
As visible in the right part of Fig. 4.1, the progression of the obtained singular values
shows a clear gap between the 7th and 8th singular values. The first three singular
values can in fact be considered as numerically zéro. The next four singular values
lie between 346.6 and 793.3, while the 8th singular value is 11768.6, i.e. almost 15
times larger than the previous one. This gap in the progression of the singular values
translates the fact that seven linear combinations of the estimated station coordi

nates (i.e. the eigenvectors associated with the seven smallest singular values) are
especially loosely determined.

In order to give a concrète interprétation of these seven loosely determined linear

combinations, each of the eigenvectors associated with the seven smallest eigenvalues

was regressed onto normalized rotations, translations and scale offset of the station
network. The 6th eigenvector is for instance shown in Fig. 4.2 (in blue), together
with the corresponding régression results (in green) and régression residuals (in red).
The régression coefficients obtained for each of the seven eigenvectors, as well as the
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coefficients of détermination R2 of the seven régressions are given in Table 4.1.

Figure 4.1 Left: Singular values of the reduced normal matrix described in the text, sorted in
ascending order. Right: Zoom on the 50 smallest singular values.

Figure 4.2 Blue: 6th eigenvector of the reduced normal matrix described in the text. Green:
Resuit of the régression of this eigenvector onto normalized rotations, translations and scale offset

of the station network. Red: Residuals of the régression.

Table 4.1 Régression coefficients and coefficients of détermination R2 obtained from the
régression of the seven first eigenvectors of the reduced normal matrix described in the text onto
normalized rotations, translations and scale offset of the station network.

RX RY RZ TX TY TZ SC R2

lst eigenvector 0.99 0.07 0.02 0.00 0.00 0.00 0.00 1.0000

2nd eigenvector -0.06 1.00 0.03 0.00 0.00 0.00 0.00 1.0000

3rd eigenvector 0.05 -0.07 1.00 0.00 0.00 0.00 0.00 1.0000

4th eigenvector 0.02 -0.03 -0.00 -0.09 0.03 -0.74 -0.50 0.9960

5th eigenvector 0.05 0.13 -0.03 -0.28 0.26 0.68 -0.80 0.9943

6th eigenvector 0.23 0.09 -0.06 -0.43 0.87 -0.20 0.36 0.9871

7th eigenvector 0.16 -0.28 -0.01 0.91 0.50 0.03 -0.20 0.9908

Unsurprisingly, the three first eigenvectors, associated with numerically zéro eigen-
values, correspond to pure rotations of the station network. This simply illustrâtes
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the fact that GPS observations do not allow to estimate the orientation of a sta

tion network simultaneously with (reduced) EOPs (Sect. 1.2.2), so that the reduced
normal matrix has three orientation singularities.

More interestingly, the next four eigenvectors quasi-perfectly correspond to linear
combinations of rotations, translations and scale offset of the station network. This

concretely means the origin and the scale of the station network are more loosely de-
termined by the observations than any other distortion of the station network. One
could conclude without much exaggeration that the origin and the scale of the sta
tion network correspond to quasi-singularities of GNSS data analyses. Once again,
the reason why the terrestrial scale corresponds to a quasi-singularity in GNSS data
analyses (in case where satellite z-PCOs are left free) is well understood (Sect. 2.3).
On the other hand, the reason why the origin of the station network similarly corre

sponds to quasi-singularities had so far remained unclear (Sect. 2.4.2). In the next
sections, light will be shed on this question by means the generalized collinearity

diagnosis developed in Chapter 3.

Note that the existence of four quasi-singularities corresponding to the origin and
the scale of the station network are not spécifie to ESA’s normal matrices, but can be

evidenced in the SINEX solutions of ail IGS ACs that include satellite phase center

offsets. Also note that, if the satellite z-PCOs are tightly constrained, then three

quasi-singularities corresponding to the origin of the station network remain in the
reduced normal matrix.

4.2 Collinearity diagnosis of the GNSS terrestrial scale déter
mination

In this section, the generalized collinearity diagnosis developed in Chapter 3 is applied
to the GNSS terrestrial scale détermination problem, mainly with an illustrative

purpose. The signature of the terrestrial scale on station-satellite ranges is first

described in Sect. 4.2.1. The settings we used to simulate a global GPS analysis are

then given in Sect. 4.2.2. The application of our collinearity diagnosis to the GNSS
terrestrial scale détermination problem is detailed in Sect. 4.2.3. Sect. 4.2.4 finally
présents the results of some complementary experiments.
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4.2.1 Signature of the terrestrial scale on station-satellite ranges

In a global geodetic analysis represented by the linear régression model l = Ax + v,
let us consider the implicit parameter y corresponding to a variation ôs = 1 ppb of
the terrestrial scale. The partial dérivatives of the explicit model parameters with
respect to y are:

Dx

A = -5- = fe[...,Xi,yi,zi,...,o,o,o,q...,of (4.1)
station coordinates other parameters

y corresponds to a change of the geocentric radius (height) of any station by ôr ~
apjôs ~ 6.4 mm, where cle dénotés the mean Earth radius. The impact of such a
height change on any station-satellite range observation l made at an élévation angle
e is 81 = — Ærsine ~ —üeSs sine. If Z consists of station-satellite (pseudo-)range
observations, then the éléments of the signature Sy = AX of a unit terrestrial scale
change on l are nothing but such SVs.

4.2.2 Simulation

Using the options listed in Table 4.2, a sériés of 207289 station-satellite range ob
servations l was simulated and a design matrix A including the parameters listed
in Table 4.3 was set up. The considered satellite empirical accélérations are the
five ECOM parameters estimated by most of the IGS Analysis Centers: D0, Y0,

B0, Bc and Bs (Sect. 2.1.2). The considered EOPs are the pôle coordinates xp and
yp at noon, their rates xp and ÿpi the DUT1 offset at noon and the length of day
LOD. Note that simple mapping functions hâve been used for ZWDs (1/sine) and
tropospheric gradients (from Chen and Herring, 1997).

Table 4.2 Simulation options

Aspect Option

Station network Fictive network of 100 well-distributed stations

Satellite constellation 24 GPS-like satellites equally spread over 6 orbital planes

(semi-major axis: a = 26560 km; eccentricity: e = 0; incli
nation: i — 55°)

Data span 24 h

Observation sampling 5 min

Cut-off angle 10°

Observation weighting Ail observations equally weighted with an a priori sigma of
1 cm (Pi = 104m-2/)
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Table 4.3 List of simulated parameters

Type Count Number

Station coordinates 3 per station 300

Zénithal wet delays (ZWDs) 1 per station and hour 2400

Tropospheric gradients 2 per station 200

Station clock offsets 1 per station and epoch 28800

Satellite initial State vectors 6 per satellite 144

Satellite empirical accélérations 5 per satellite 120

Satellite clock offsets 1 per satellite and epoch 6912

Satellite z-PCOs 1 per satellite 24

EOPs 6 6

Except satellite z-PCOs, the list of parameters in Table 4.3 is the minimal common

set of parameters freely estimated by a majority of IGS ACs. It could in fact be the

list of parameters set up by a slightly sub-standard AC. The collinearity diagnoses

exposed in the following will be based on this particular sub-standard list of param

eters. But note that the estimation of additional parameters (e.g. satellite velocity
puises, additional empirical accélérations, but also unfixed phase cycle ambiguities)
by the real ACs can only increase collinearity issues.

The satellite z-PCOs are usually set up, but tightly constrained by the IGS ACs.
In the simulations of this section, they are however freely estimated for the particular

purpose of studying their collinearity with the terrestrial scale.

Except the fictive station network and constellation, the options listed in Table

4.2 could also be those used by an IGS AC. The choice of a perfectly distributed
network and constellation was made in order to avoid that the obtained results be

perturbed by some "network effect". But additional simulations with real network
and constellation will also be performed for comparison in Sect. 4.2.4. The influence

of the cut-off angle and of the observation weighting will similarly be investigated

through additional simulations in Sect. 4.2.4.

Besides the design matrix A, a minimal constraint matrix C was also set up,

including:

— three no-net-rotation constraints on the station network, in order to compensate

the orientation singularities of A (Sect. 1.2.2);

— one constraint on the DUT1 offset, in order to compensate its perfect corrélation

with the satellite orbit parameters (Sect. 1.2.2);

— 288 epoch-wise zero-mean constraints on ail (station and satellite) clock offsets,
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in order to compensate the time reference singularities of A (Sect. 2.1.2).

4.2.3 Collinearity diagnosis

Given the design matrix A, the observation weight matrix Pi, the constraint matrix
C and the partial dérivatives A = dx/dy described above, Eq. 3.75 was set up
and solved. Its solution nyiC represents the linear combination of the estimated
parameters, independent of any scale change of the station network and allowed by
the constraints, whose signature most closely matches Sy. This independent variation
of the estimated parameters turned out to be mainly composed of:

— a mean variation of the satellite z-PCOs by 137.37 mm, plus small satellite-
specific z-PCO variations below 0.19 mm,

— a mean variation of the satellite clock offsets by -105.16 mm (-350.78 ps), plus
small satellite- and epoch-specific variations below 0.23 mm (0.75 ps),

— a mean variation of the station clock offsets by 25.24 mm (84.19 ps), plus small
station- and epoch-specific variations below 0.37 mm (1.24 ps),

— a mean variation of the ZWDs by 0.39 mm, plus small station- and hour-specific
variations below 0.11 mm.

Ail other estimated parameters (EOPs, station coordinates, tropospheric gradients
and satellite orbit parameters) were not found to significantly contribute to [iy c.

The obtained mean variation of the satellite and station clock offsets has for effect

to lengthen the predicted observations by 25.24+ 105.16 = 130.40 mm. The impact
of the obtained mean ZWD variation is to lengthen any observation made at an
élévation e by 0.39/sine mm. Finally, according to Cardellach et al. (2007), the
impact of the obtained mean z-PCO variation is to shorten any observation made at
an élévation e by -137.37-^/1 — a2E cos2 e/a2 mm. The sum of these three effects is
compared in Fig. 4.3 with the signature Sy of a 1 ppb terrestrial scale change.

Fig. 4.3 shows that the signature of a terrestrial scale change can be almost per-
fectly reproduced by variations of independent parameters (clock offsets, ZWDs and
z-PCOs), which indicates a severe collinearity of the terrestrial scale with those pa
rameters. Another view of the same resuit is given in Fig. 4.4, where the signature
Sy — A\ of a 1 ppb terrestrial scale change on the observations made by a particu-

lar station is compared with the corresponding proper signature S^c = A(X — fj,ytC).
There is a réduction by almost 2 orders of magnitude from the signature to the proper
signature of the terrestrial scale change, which also points to a severe collinearity is
sue.
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Figure 4.3 Blue: Signature Sy of a 1 ppb terrestrial scale change, plotted as a function of the
observation élévation angle (-cieÔs sin e). Red: Sum of the impacts of the obtained clock, ZWD
and z-PCO mean variations (130.40 + 0.39/ sine — 137.37^/1 — a% cos2 e/a2).

-6 mm -3 mm 0 mm 3 mm 6 mm -0.2 mm 0.0 mm 0.2 mm

Figure 4.4 Left: Signature a 1 ppb terrestrial scale change on simulated observations made by a

particular station, represented as a skyplot. Each dot represents an element of Sy = A\. Right:
Corresponding proper signature. Each dot represents an element of S% c = T(A - (J-y,c)- Note the
different color scales.

The VIF obtained for the terrestrial scale in this simulation (i.e. \\Sy||2/||<S^C||2)
was in fact 3069.7 (y/l — 1/VIF = 99.984%), far beyond the commonly seen thresh-
olds of 5 (89.443%) and 10 (94.868%). If the terrestrial scale had been estimated
from the simulated observations, independently of any other parameter variation, its

formai error (i.e. 1/||S^||) would hâve been 0.0057 ppb (0.036 mm). But the simulta-
neous estimation of independent parameter variations made the actual formai error

of the terrestrial scale (i.e. l/||SJiC||) as large as 0.3152 ppb (2.010 mm). Note that
this formai error should be interpreted with extreme caution as it is based, not only

on the settings described in Sect. 4.2.2, but also on the assumption that the observa
tions are statistically independent and hâve normally distributed errors. It does not
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account for the temporal corrélations that exist between GNSS observations, neither

for systematic observation and modelling errors, and should therefore be considered
as a very optimistic lower bound of the actual scale uncertainty of a GNSS frame

derived with the settings described in Sect. 4.2.2.

In summary, the strong corrélation already observed by Springer (2000) and Zhu
et al. (2003) between the terrestrial scale on one hand, satellite z-PCOs, ZWDs and
clock offsets on the other, was evidenced by means of our generalized collinearity
diagnosis. As long as satellite z-PCOs are estimated, this severe collinearity results,
to paraphrase Belsley et al. (1980), in a situation in which the systematic influence of
the terrestrial scale on GNSS observations is swamped by observation and modelling
errors. In other words, this severe collinearity explains why the intrinsic scale of

GNSS solutions, such as illustrated in Fig. 2.6, appears unreliable and, consequently,
why GNSS hâve so far not contributed to defining the ITRF scale.

4.2.4 Complementary simulations

Cut-off angle and observation weighting The collinearity diagnosis described in Sect.

4.2.3 was repeated with different cut-off angles and observation weighting functions.
The obtained VIFs are given in Table 4.4. The collinearity of the terrestrial scale

with the other parameters clearly increases when higher cut-off angles are used.

This translates the fact that the more the signature of the terrestrial scale change
(—a^Æssine; blue curve in Fig. 4.3) is truncated, the more accurately it can be
matched by linear combinations of the partial dérivatives of clock offsets, z-PCOs and

ZWDs. Downweighting low élévation observations similarly increases the collinearity
of the terrestrial scale with the other parameters.

Table 4.4 VIFs obtained for the terrestrial scale with different cut-off angles and observation
weighting functions. The other simulation options were as described in Sect. 4.2.2.

Weighting
function

Cut-off angle

0° 5° 10° 20°

1 85.7 (99.415%) 704.7 (99.929%) 3069.7 (99.984%) 46512.7 (99.999%)

sin e 316.3 (99.842%) 1519.0 (99.967%) 5200.4 (99.990%) 58905.2 (99.999%)

sin2 e 1463.2 (99.966%) 3649.1 (99.986%) 9600.7 (99.995%) 79274.9 (99.999%)

Real network and constellation The experiment described in Sect. 4.2.3 was repeated

with a real network of 150 stations and a real constellation of 30 GPS satellites (both
extracted from a solution provided by ESA for July 11, 2008), ail other simulation
options being kept unchanged. The obtained VIF was 3115.1 (99.984%), just slightly
above the VIF obtained with perfectly distributed station network and constellation.
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The mechanism described in Sect. 4.2.3 holds in fact for any network and constel-

network and of the constellation does thus not seem to hâve a significant impact on

the collinearity of the terrestrial scale with the other parameters.

Multi-GNSS The impact of considering multiple GNSS constellations on the GNSS
terrestrial scale détermination was then investigated through a simulation in which
a second constellation of 27 Galileo-like satellites (a = 23222 km, e = 0, i = 56°)
equally spread over 3 orbital planes was included. Ail of the 100 considered stations
were assumed to be multi-GNSS stations, i.e. to provide observations for ail GPS

and Galileo satellites in view. The list of simulated parameters was the same as in

Table 4.3, except that orbit parameters, clock offsets and z-PCOs were estimated for
ail 51 considered satellites, instead of only the 24 GPS-like satellites.

The VIF obtained for the terrestrial scale was 2520.0 (99.980%), i.e. about 1.2
times smaller than in the GPS-only case. This slight collinearity réduction can be

explained as follows. Due to the slightly different radii of the GPS and Galileo orbits,

the partial dérivatives of the GPS and Galileo satellite z-PCOs ( y/l — a\ cos2 e/a2)
are themselves slightly different. On the other hand, the station ZWDs are jointly
determined from GPS and Galileo observations. Reproducing the terrestrial scale

signature (—aEôs sin e) with the partial dérivatives of clock offsets, ZWDs and satel
lite z-PCOs thus cornes down to finding five coefficients (ai)i<i<5 such that both
following functions simultaneously best match —aEôs sine:

Because the coefficient is common to both functions, this problem is slightly

harder to solve than the corresponding single-GNSS problem, which explains the
slight collinearity réduction observed for the terrestrial scale.

Fixed satellite z-PCOs Another simulation was finally run, with the same options

as described in Sect. 4.2.2, except that the satellite z-PCOs were held fixed. The

VIF obtained for the terrestrial scale was in this case 47.3 (98.938%) and its formai
error 0.0391 ppb (0.250 mm). When the satellite z-PCOs are not estimated, clock
offsets and ZWDs become much less able to reproduce the signature of a terrestrial

scale change. The collinearity of the terrestrial scale with the other parameters is
thus greatly reduced.

The impact of this collinearity réduction on actual GPS terrestrial scale estimâtes

is illustrated in Fig. 4.5. The time sériés shown in blue in Fig. 4.5 is the same as

in Fig. 2.6 and represents the scale factors estimated between weekly GPS solutions

obtained without constraining the satellite z-PCOs and the ITRF2008, i.e. intrinsic

lation. As long as satellite z-PCOs are estimated, the distribution of the station

(4.2)



4.2. Collinearity diagnosis of the GNSS terrestrial scale détermination 116

GPS terrestrial scale estimâtes. The time sériés shown in black in Fig. 4.5 is also the
same as in Fig. 2.6 and represents scale factors estimated between weekly SLR solu
tions and the ITRF2008. Finally, the time sériés shown in red in Fig. 4.5 represents
scale factors estimated between weekly GPS solutions in which the satellite z-PCOs
were fixed to conventional values and the ITRF2008.
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Figure 4.5 Cyan dots: Scale factors estimated between the weekly gfl solutions processed as
described in Sect. 2.3 and the ITRF2008. Orange dots: Scale factors estimated between the
weekly gfl solutions processed as described in Sect. 2.3 - except that satellite z-PCOs were fixed
to conventional values - and the ITRF2008, shifted by -15 mm. Grey dots: Scale factors estimated
between the SLR input solutions to the ITRF2008 and the ITRF2008, shifted by -30 mm. The
solid lines were obtained by Vondrak-filtering each of the time sériés with a cut-off frequency of 3
cpy-

While the GPS terrestrial scale estimâtes obtained with free satellite z-PCOs show

a comparatively large scatter, a strong spurious semi-annual signal, as well as long-
term biases and trends, those obtained with fixed satellite z-PCOs show a remarkable

stability and are dominated, as expected, by an annual signal presumably due to
some network effect (i.e. the aliasing of loading deformation into the estimated scale
parameters). From Fig. 4.5, one can conclude that, if the z-PCOs of the GPS satellite
were known, then GPS would certainly provide better estimâtes of the terrestrial

scale than SLR and could clearly contribute to defining the ITRF scale. Pre-launch
antenna calibrations are unfortunately not available for any of the GPS satellites
launched so far, nor for any GLONASS satellite...
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4.3 Signatures of geocenter coordinates on station-satellite

ranges

As a preliminary step before investigating the collinearity of the geocenter coordinates

with the other GNSS parameters, this section describes their signatures on station-

satellite range observations. The signature of the Z geocenter coordinate is first
studied in Sect. 4.3.1, followed by the signatures of the X and Y geocenter coordinates

(Sect. 4.3.2).

4.3.1 Signature of the Z geocenter coordinate

In a global geodetic analysis represented by the linear régression model l = Ax + v,
let us consider the implicit parameter y corresponding to a variation St = 1 cm of
the Z geocenter coordinate. The partial dérivatives of the explicit model parameters
with respect to y are:

A =
dx

dy
[0, 0,8t,..., 0,0, St, 0.0,0,0,..., 0]T
^ v ^ V' V-

station coordinates other parameters

(4.3)

The signature Sy = A\ of y was computed for the particular set of observations
described in Sect. 4.2.2. It is represented in Fig. 4.6 from the point of view of a
particular satellite.

Figure 4.6 Signature of a 1 cm variation of the Z geocenter coordinate on simulated observations

made on a particular GPS-like satellite by the whole station network. Each blue dot represents an

element of Sy. The magenta line corresponds to an epoch mean signature.

The impact of a positive Z geocenter shift is basically to shorten the observations
made when the satellite is in the Northern hemisphere and to lengthen the observa-
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Figure 4.7 Signature of a 1 cm variation of the Z geocenter coordinate on simulated observations
made by five particular stations. An epoch mean signature was first removed for each satellite.

tions made when the satellite is in the Southern hemisphere. That is why, at first
order, the signature the Z geocenter coordinate follows the opposite of the satellite Z
coordinate. For a circular orbit, this results in a sinusoid with an amplitude Ôtsini,
where i dénotés the inclination of the satellite orbit.

The "width" of the blue sinusoid in Fig. 4.6 stems from the fact that, at a given
epoch, observations are made on the same satellite by several stations under different

angles, and are thus slightly differently affected by the geocenter shift. This width
mainly dépends on the radius of the satellite orbit, but also of the employed cut-off
angle.

With slight anticipation over Sect. 4.5, let us mention that the epoch mean sig
nature shown in magenta in Fig. 4.6 can be strictly reproduced by variations of the
satellite clock offsets and is therefore unobservable in a standard GNSS analysis. The
détermination of the Z geocenter coordinate with GNSS can consequently only rely
on the différence between its signature and this epoch mean signature (i.e. on the sig
nal around the magenta line in Fig. 4.6). This second order signature is represented
in Fig. 4.7 from the points of view of five particular stations.
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4.3.2 Signatures of the X and Y geocenter coordinates

Similarly, the impact of a positive X geocenter shift is to shorten the observations
made on satellites lying in the positive X hemisphere of the terrestrial frame and

to lengthen the observations made on satellites lying in the négative X hemisphere.
At first order, the signature of a positive X geocenter shift on the observations of
a particular satellite thus follows the opposite of the satellite X coordinate in the
terrestrial frame. For a circular orbit, this results in the product of two sinusoids,

one at the satellite révolution period, the other at the Earth rotation period. The

signature of a 1 cm variation of the X geocenter coordinate on the set of observations
described in Sect. 4.2.2 is represented in Fig. 4.8 from the point of view of a particular
satellite.

Figure 4.8 Signature of a 1 cm variation of the X geocenter coordinate on simulated
observations made on a particular GPS-like satellite by the whole station network. Each blue dot

represents an element of Sy. The magenta line corresponds to an epoch mean signature.

Like for the Z geocenter coordinate, the epoch mean signature shown in magenta

in Fig. 4.8 can be strictly reproduced by variations of the satellite clock offsets and
is therefore unobservable in a standard GNSS analysis. The détermination of the X

geocenter coordinate with GNSS can consequently only rely on the différence between

its signature and this epoch mean signature (i.e. on the signal around the magenta
line in Fig. 4.8). This second order signature is represented in Fig. 4.9 from the
points of view of seven particular stations.

The signature of the Y geocenter coordinate on station-satellite ranges is similar
in ail respects to the signature of the X geocenter coordinate.



4.4. Collinearity diagnosis of the SLR geocenter détermination 120

2 mm

1 mm

0 mm

-1 mm

-2 mm

Figure 4.9 Signature of a 1 cm variation of the X geocenter coordinate on simulated observations
made by seven particular stations. An epoch mean signature was first removed for each satellite.

4.4 Collinearity diagnosis of the SLR geocenter détermination

The generalized collinearity diagnosis developed in Sect. 3.3 is applied in this section

to the SLR geocenter détermination problem. This interlude will help in understand-
ing why the SLR technique is much more able to retrieve geocenter motion than
GNSS. Sect. 4.4.1 first details the settings that were used to simulate a global SLR
analysis. The collinearity of the geocenter coordinates with the other parameters set

up in global SLR analyses is then studied in Sect. 4.4.2 and Sect. 4.4.3.

4.4.1 Simulation

A sériés of 9896 station-satellite range observations l was simulated with the op
tions listed in Table 4.2, except that a constellation of two LAGEOS-like satellites

(a = 12200 km, e = 0, i\ = 110°, z2 = 53°) was used. A design matrix A was
set up, including the parameters listed in Table 4.5. The considered empirical ac
célérations were constant along-track accélérations and once-per-revolution periodic

accélérations in the along-track and cross-track directions: 50> Sc, S,„ Wc and Ws in
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the notations of Rodriguez-Solano et al. (2012). The main différences with the GNSS
case is that neither clock offsets nor tropospheric parameters needed to be set up.

Finally, a minimal constraint matrix C was built, including three no-net-rotation
constraints on the station network and one constraint on the DUT1 offset.

Table 4.5 List of simulated parameters

Type Count Number

Station coordinates 3 per station 300

Satellite initial State vectors 6 per satellite 12

Satellite empirical accélérations 5 per satellite 10

EOPs 6 6

The choice of a perfectly distributed network of 100 stations providing observa
tions at a 5 min rate is rather unrealistic for an SLR simulation. But like in the

GNSS case, this choice avoids that the obtained results be perturbed by some net

work effect. This will also facilitate the comparison with the GNSS results obtained
in Sect. 4.5.

The choice of a 24 h data span is also questionable, as seven day data batches are

usually processed in SLR. 24 h data batches were used for comparison with GNSS.
But the results of additional simulations using seven day data batches will also be
presented in Sect. 4.4.2 and Sect. 4.4.3.

4.4.2 Collinearity diagnosis of the X and Y geocenter coordinates

The implicit parameter y corresponding to a variation St — 1 cm of the X geocenter
coordinate, i.e. characterized by

dx
A = — = [<ft,0,0,...,gt,0;q, 0,0,0,0,...,0f (4.4)

station coordinates other parameters

was then considered. Given the design matrix A, the observation weight matrix Pi,
the constraint matrix C described above and A, Eq. 3.75 was set up and solved. This

led to the linear combination c of the estimated parameters, independent of any

X translation of the station network and allowed by the constraints, whose signature

most closely matches Sy — AA. The VIF of the X geocenter coordinate was then
computed using Eq. 3.78. The obtained value was 1.82 (67.040%), which clearly
indicates the absence of collinearity issues. This resuit is illustrated in Fig. 4.10,
where it is shown that the signature of the X geocenter coordinate on the observations

made on a particular LAGEOS-like satellite and the corresponding proper signature

hâve similar magnitudes. In other words, the signature of the X geocenter coordinate
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could hardly be reproduced by independent parameter variations.

The same experiment was repeated for the Y geocenter coordinate. An even lower
VIF of 1.22 (42.799%) was obtained. Additional simulations were carried out using a
seven day data batch. The obtained VIFs were respectively 1.04 (20.553%) and 1.04
(19.115%) for the X and Y geocenter coordinates. In conclusion, the détermination
of the X and Y geocenter coordinates with SLR does manifestly not suffer from
collinearity issues.

Figure 4.10 Blue: Signature of a 1 cm variation of the X geocenter coordinate on simulated
observations made on a particular LAGEOS-like satellite. Each blue dot represents an element of
Sy = A\. Green: Corresponding proper signature. Each green dot represents an element of

Si,c = A{A-/iy,c).

4.4.3 Collinearity diagnosis of the Z geocenter coordinate

For the Z coordinate of the geocenter and a 24 h data batch, a larger VIF of 9.03
(94.298%) was obtained. This resuit is illustrated in Fig. 4.11: the proper signa
ture of the Z geocenter coordinate is clearly smaller than its signature. The first
order sinusoidal signal could in particular be reproduced by independent parameter
variations.

Those independent parameter variations, i.e. fxytCi turned out to be mainly com-
posed of variations of the satellite initial State vectors. We therefore investigated
how variations of the satellite initial State vectors could hâve reproduced the first
order sinusoidal signature of the Z geocenter coordinate. It is straightforwardly seen
that this first order signature can be reproduced by a periodic variation of the orbit
radius with:

— an amplitude of ôtsini,
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Figure 4.11 Blue: Signature of a 1 cm variation of the Z geocenter coordinate on simulated
observations made on a particular LAGEOS-like satellite. Each blue dot represents an element of

Sy = AX. Green: Corresponding proper signature. Each green dot represents an element of
Slc = A(\-»y,c).

— its maximum when the satellite reaches the southernmost point of its orbit,

— its minimum when the satellite reaches the northernmost point of its orbit.

Starting from a circular orbit, such a periodic variation of the orbit radius can in

fact simply be obtained through a slight "ellipticization". Let us arbitrarily place

the perigee of the starting circular orbit at uj = 7t/2 (i.e. at its northernmost point)
and consider the perturbed orbit with an eccentricity Se = Stsmi/a. The radial
différence between both orbits is, at first order in Se:

Sr — —aSe cos v — —St sin i cos v (4-5)

where v dénotés the satellite true anomaly. It clearly meets the requirements listed
above.

In summary, the first order signature of the Z geocenter coordinate can be repro-

duced, in case of circular orbits, by variations of the satellite osculating éléments,
or equivalently by variations of their initial State vectors. The parameter variation

fiy:C obtained from our simulation was indeed corresponding to such ellipticizations
of both LAGEOS orbits. It is worth mentioning that this problem is not restricted
to circular orbits. Appendix D shows that the first order signature of the Z geocen
ter coordinate can similarly be reproduced by variations of the satellite osculating
éléments in case of elliptical orbits.

The same experiment was repeated with a seven day data batch. The VIF ob

tained for the Z geocenter coordinate was 8.60 (94.009%), only slightly lower than
for the 24 h case. The mechanism described above, which explains the collinearity
of the Z geocenter coordinate with the satellite osculating éléments, holds in fact for
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any data batch and orbital arc lengths. In addition to the uneven distribution of the
SLR network, this slight collinearity issue may partly explain why the Z component
of SLR-derived geocenter motion is of lower quality than its X and Y components
(see, e.g., Fig. 4 in Altamimi et al., 2011).

4.5 Collinearity diagnosis of the GNSS geocenter détermina
tion

The collinearity diagnosis developed in Sect. 3.3 is eventually applied in this section to
the GNSS geocenter détermination problem. The collinearity of the three geocenter
coordinates with the other parameters of a standard single-GNSS global analysis
is investigated in Sect. 4.5.1 and Sect. 4.5.2. The results of some complementary
experiments are then presented in Sect. 4.5.3. Sect. 4.5.4 studies in detail the rôle

played by the satellite empirical accélérations estimated by most IGS ACs in the
collinearity of the geocenter coordinates. Since our results concerning this rôle enter
in contradiction with conclusions drawn by Meindl et al. (2013), a critical review
of their arguments is given in Sect. 4.5.5. Sect. 4.5.6 finally summarizes the results
obtained in this section.

4.5.1 Collinearity diagnosis of the X and Y geocenter coordinates

A sériés of 207289 station-satellite range observations l was simulated using the
options listed in Table 4.2, and a design matrix including the parameters listed in
Table 4.3 except satellite z-PCOs was set up. The implicit parameter y corresponding
to a 1 cm variation of the X geocenter coordinate was considered and Eq. 3.75 was
solved. The obtained VIF was 2355.6 (99.979%). As illustrated from the point of
view of a satellite in Fig. 4.12 and from the point of view of a station in Fig. 4.13,

the proper signature S%c of the X geocenter coordinate is indeed smaller than its
signature Sy by almost two orders of magnitude. If the X geocenter coordinate
had been estimated from the simulated observations, independently of any other
parameter variation, its formai error (i.e. l/||Sy||) would hâve been 0.038 mm. But
the simultaneous estimation of independent parameter variations made its actual

formai error (i.e. 1/||SJC||) as large as 2.129 mm.

We then examined the independent parameter variations /xy c by which the sig
nature of the X geocenter coordinate could be almost perfectly reproduced. As
anticipated in Sect. 4.3, the epoch mean signature of the X geocenter coordinate
on the observations of each satellite (magenta line in Fig. 4.8) was reproduced by
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Figure 4.12 Blue: Signature of a 1 cm variation of the X geocenter coordinate on simulated
observations made on a particular GPS-like satellite. Each blue dot represents an element of

Sy = AA. Green: Corresponding proper signature. Each green dot represents an element of
Sy.c = A(X —
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Figure 4.13 Left: Signature a 1 cm variation of the X geocenter coordinate on simulated
observations made by a particular station, represented as a skyplot. Each dot represents an

element of Sy = AA. Right: Corresponding proper signature. Each dot represents an element of
S^c = A(A - /iy,c). Note the different color scales.

variations of the respective satellite clock offsets. And as one could hâve expected,

the second order signatures represented in Fig. 4.9 could be reproduced to a great

extent by the station-related parameters (positions, clock offsets, ZWDs and tropo-
spheric gradients). On the other hand, neither the satellite initial State vectors nor
the empirical accélérations did substantially contribute to /xy)C. (The corresponding
3-dimensional orbit différences hâve an overall RMS of 0.3 mm.)
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Fig. 4.14 illustrâtes the part of [iy^c corresponding to station coordinate variations,
i.e. the distortion of the station network which contributed to reproduce the signature
of the X geocenter coordinate. The distortion pattern visible in Fig. 4.14 resembles
the deformation pattern associated the surface load coefficient <i- (Fitting such
a load deformation pattern to the network distortion shown in Fig. 4.14 leads to
a coefficient of détermination of 94.5%.) This resemblance explains the significant
corrélation observed by G. Blewitt (personal communication, 2012) in the solutions
of various IGS ACs between the X component of their origins and the deformation
pattern associated with the surface load coefficient crf\.

E/N: Up:

1 mm

-1 mm 0 mm 1 mm

Figure 4.14 Part of /lAÿ)C corresponding to station coordinate variations. The horizontal
variations are represented by the black arrows; the vertical variations by the color dots.

The same experiment was repeated for the Y geocenter coordinate. The obtained
VIF was 2353.1 (99.979%). While the formai error of the Y geocenter coordinate
would hâve been 0.038 mm if estimated independently of any other parameter vari
ation, its actual formai error was 1.850 mm. The independent parameter variation
liy^c whose signature most closely matches that of the Y geocenter coordinate is sim-
ilar to the one obtained for the X geocenter coordinate. In particular, the obtained
network distortion pattern resembles the deformation pattern associated with the
surface load coefficient af lm

In conclusion, the X and Y coordinates of the geocenter are hardly distinguishable
from independent variations of the parameters estimated in a standard GNSS analy
sis. Their epoch mean signatures can indeed be strictly reproduced by variations of
the satellite clock parameters, while their second order signatures can be reproduced
to a great extent by ail station-related parameters. The détermination of the X and
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Y geocenter coordinates with GNSS can therefore only rely on tiny proper signatures

(of the order of a few tenths of millimeters for 1 cm geocenter shifts). Note that the
VIFs and formai errors obtained for the X and Y geocenter coordinates are of the
same order as those obtained for the terrestrial scale in Sect. 4.2.

4.5.2 Collinearity diagnosis of the Z geocenter coordinate

Using a fictive network of 100 stations and a fictive constellation of 24 satellites, a VIF

of 3157.3 (99.984%) was obtained for the Z geocenter coordinate. While its formai
error would hâve been 0.038 mm if estimated independently of any other parameter

variation, its actual formai error was 2.129 mm. The examination of \iy,c revealed
that both the clock offsets (like for the X and Y geocenter coordinates) and the
initial State vector of each satellite (like in the SLR case) "combined their strengths"
to reproduce the main part of the signature of the Z geocenter coordinate. Like

for the X and Y coordinates, the remaining second order signature could be largely
absorbed by variations of the station-related parameters, leaving a proper signature

of the order of a few tenths of millimeters. The part of ny,c corresponding to station
coordinate variations resembles the deformation pattern associated the surface load

coefficient a({0.

As will be shown in Sect. 4.5.4, the larger VIFs of the Z geocenter coordinate
compared to those of the X and Y geocenter coordinates stem from a particular rôle
played by the estimated satellite empirical accélérations. The VIF and formai error

obtained for the Z geocenter coordinate are of the same order as those obtained in
Sect. 4.2 for the terrestrial scale. This concretely means that, in a standard GNSS

analysis, the Z geocenter coordinate is as weakly determined as is the terrestrial scale
when satellite z-PCOs are estimated.

4.5.3 Complementary simulations

Cut-off angle and observation weighting For completeness, the VIFs of the three

geocenter coordinates were computed for different cut-off angles and observation
weighting functions. Results are summarized in Table 4.6. Like for the terrestrial

scale, using higher cut-off angles or downweighting low-elevation observations has the
effect of increasing collinearity issues. With reasonable cut-off angles and observation
weighting functions, the VIFs obtained for the geocenter coordinate are roughly of
the same order as those obtained for the terrestrial scale in Sect. 4.2.
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Table 4.6 VIFs obtained for the three geocenter coordinates with different cut-off angles and
observation weighting functions. The other simulation options were as described in Sect. 4.2.2,
except that satellite z-PCOs were not estimated.

Cut-off angle

0° 5° 10° 20°

X: 450.1 (99.889%) X: 1066.9 (99.953%) X: 2355.6 (99.979%) X: 12409.1 (99.996%)

1 X: 452.3 (99.889%) X: 1069.3 (99.953%) X: 2353.1 (99.979%) X: 12431.8 (99.996%)

Z: 932.3 (99.946%) Z: 1673.5 (99.970%) Z: 3157.3 (99.984%) Z: 13884.9 (99.996%)

X: 654.7 (99.924%) X: 1273.9 (99.961%) X: 2643.1 (99.981%) X: 13507.6 (99.996%)

sine X: 654.7 (99.924%) X: 1278.5 (99.961%) X: 2644.8 (99.981%) X: 13520.2 (99.996%)

Z: 1306.5 (99.962%) Z: 2022.4 (99.975%) Z: 3583.8 (99.986%) Z: 15133.2 (99.997%)

X: 1126.1 (99.956%) X: 1944.7 (99.974%) X: 3582.3 (99.986%) X: 16115.0 (99.997%)

sin2 e X: 1123.0 (99.955%) X: 1951.5 (99.974%) X: 3585.3 (99.986%) X: 16118.0 (99.997%)

Z: 2026.1 (99.975%) X: 2942.4 (99.983%) Z: 4815.1 (99.990%) Z: 18123.9 (99.997%)

Real network and constellation Another round of simulations was run using a real
network of 150 stations and a real constellation of 30 GPS satellites (both extracted
from a solution provided by ESA for July 11, 2008), ail other simulation options being
kept unchanged. The VIFs obtained for the X, Y and Z geocenter coordinates were

respectively 2233.2 (99.978%), 2431.5 (99.979%) and 3585.2 (99.986%), i.e. at the
same level as the VIFs obtained with perfectly distributed network and constellation.

Float ambiguities If not fixed to integer values, but estimated as unknown param-
eters, phase cycle ambiguities constitute a large set of additional parameters which
may further increase the collinearity of the geocenter coordinates in a global GNSS
analysis. Ambiguities indeed correspond to constant biases per pass of each satellite
over each station, and may therefore clearly contribute to masking the second order
geocenter signatures shown in Fig. 4.7 and 4.9.

In order to assess the impact of not fixing phase cycle ambiguities, simulations
were run in which one float ambiguity was estimated per pass of each satellite over

each station (4129 additional parameters in total). The other simulation options
were as described in Sect. 4.2.2, except that satellite z-PCOs were not estimated.

The VIFs obtained for the X, Y and Z geocenter coordinates were respectively
4462.1 (99.989%), 4310.6 (99.989%) and 13995.1 (99.996%), i.e. 1.9, 1.8 and 4.4 times
larger than in the case where ail ambiguities were assumed to be fixed. Exacerbated
systematic errors are thus to be expected in GNSS geocenter motion estimâtes, and
especially their Z component, in case where phase cycle ambiguities are not fixed.

An illustration of the impact of ambiguity fixation on the Z component of actual
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GPS geocenter motion estimâtes can in fact be found in Springer (2000). In the early
part of his figure 5.7 (b), when GPS ambiguities were not fixed, a strong artificial
periodic signal with an amplitude of about 20 cm is visible. This spurious signal
then vanished as soon as ambiguity fixation was introduced in the processing.

As evoked in Sect. 2.1.2, fixing phase cycle ambiguities to integer values in a
GLONASS analysis is a complicated task. In his GLONASS analyses, Meindl (2011)
could for instance fix less than 50% of ambiguities to integer values, against 90%
for GPS. In addition to larger modelling deficiencies than in the case of GPS, the
fact that a large fraction of GLONASS ambiguities cannot be fixed may thus partly
contribute to the poorer quality of GLONASS-derived geocenter motion estimâtes

observed by Meindl (2011).

Multi-GNSS The impact of considering multiple GNSS constellations was finally

investigated through simulations in which 27 Galileo-like satellites were considered
in addition to the previous 24 GPS-like satellites. The VIFs obtained for the x, Y
and Z geocenter coordinates were respectively 1386.5 (99.964%), 1403.8 (99.964%)
and 2460.5 (99.980%), i.e. 1.7, 1.7 and 1.3 times smaller than in the GPS-only case.
Similarly to the mechanism described for the terrestrial scale in Sect. 4.2.4, this slight

collinearity réduction is due to the combination of both following facts.

— Due to the slightly different radii of the GPS and Galileo orbits, the second order

signatures of the geocenter coordinates (i.e. parts of their signatures that are
distinguishable from the satellite clock offsets) on GPS and Galileo observations
are slightly different.

— Ail station-related parameters are common to both GNSS and are therefore less

able to reproduce the second order signatures of geocenter coordinates in the

multi-GNSS case than in the single-GNSS case.

4.5.4 Rôle of the empirical accélérations

Meindl et al. (2013), on the basis of orbital perturbation considérations, concluded
that the estimation of constant empirical accélérations in the Sun-satellite direc

tions (i.e. the D0 parameter of the ECOM model) was an important limiting factor
in the détermination of the Z geocenter coordinate with GNSS. To investigate the
rôle effectively played by the ECOM parameters in the collinearity of the Z geocen
ter coordinate, a sériés of simulations was run in which different subsets of ECOM

parameters were estimated. The results are summarized in Table 4.7.

The purpose here was to assess the individual and combined contributions of the

five usually estimated ECOM parameters to the collinearity of the Z geocenter coor-
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Table 4.7 VIFs obtained for the Z geocenter coordinate when estimating different subsets of
ECOM parameters. The other simulation options were as described in Sect. 4.2.2, except that
satellite z-PCOs were not estimated.

ECOM parameters VIF y/l - 1/VIF

None 2556.6 99.980%

D0 2558.2 99.980%

Y0 2556.8 99.980%

B0 2560.7 99.980%

Bc, Bs 2609.9 99.981%

Do, Bc, Bs 3147.8 99.984%

Do, Yo, Bq, Bc, Bs 3157.3 99.984%

dinate. It is clear that, when individually estimated, each of these five parameters,
in particular D0, has little impact. When the five parameters are simultaneously es
timated, the VIF of the Z geocenter coordinate increases from about 2550 (99.980%)
to 3157.3 (99.984%). This increase by a factor of about 1.2 can in fact be quasi-fully
explained by the simultaneous estimation of three of the five parameters: D0, Bc and
Bs. It is nevertheless rather minor.

The results in Table 4.7 were however obtained with a particular configuration
of the orbital planes with respect to the Sun. The f3s angles (élévations of the Sun
above the orbital planes) were in this case ranging from —30° to 68°. Another sériés
of simulations was thus run using a configuration considered by Meindl et al. (2013)
as a worst case scénario. A constellation of 24 GLONASS-like satellites (a = 25520
km, e = 0, i = 65°) equally spread over three orbital planes was used. The (3S
angles were respectively 87°, —15° and —15° for the three orbital planes. Results
are summarized in Table 4.8. The VIF of the Z geocenter coordinate is this time
increased by a factor of about 1.9 when estimating the five ECOM parameters. Like
previously, this collinearity increase can be explained by the simultaneous estimation
of only three ECOM parameters: D0, Bc and Bs.

These experiments demonstrate that:

— the Z geocenter coordinate is highly collinear with the other parameters of a
global GNSS analysis, even when no ECOM parameter is estimated;

— estimating the five usual ECOM parameters further increases this collinearity,
but to a very moderate extent;

— this further increase is attributable to the simultaneous estimation of D0, Bc and
Bs, while the estimation of D0 alone causes a marginal increase of collinearity.

From these observations, we think it justified to conclude, in opposition with Meindl
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Table 4.8 VIFs obtained for the Z geocenter coordinate when estimating different subsets of
ECOM parameters and using the GLONASS-like constellation described in the text. The other
simulation options were as described in Sect. 4.2.2, except that satellite z-PCOs were not
estimated.

ECOM parameters VIF y/1 - 1/VIF

None 2577.1 99.981%

Do 2813.5 99.982%

Y0 2577.9 99.981%

Bo 2586.9 99.981%

Bc, Bs 2616.6 99.981%

Do, Bc, Bs 4776.6 99.989%

Dq, Yo, Bq, Bc, Bs 4802.7 99.990%

et al. (2013), that the estimation of the ECOM parameters, and especially of D0
alone, does not play a prédominant rôle in the insensitivity of GNSS to the Z com-

ponent of geocenter motion.

A last experiment was carried out to consolidate this view. The parameters esti

mated in GNSS analyses, but not in SLR analyses were grouped into three categories:

— the five usually estimated ECOM parameters ("ECOM" in Table 4.9),

— tropospheric parameters (ZWDs and tropospheric gradients; "tropo" in Table
4.9),

— station and satellite clock offsets ("docks" in Table 4.9).

And different simulations were run to assess the individual and combined contribu

tions of these parameter categories to the collinearity of the three geocenter coordi-
nates. The obtained VIFs are summarized in Table 4.9.

The GNSS parameter category with the largest individual impact is the clock

offset category: a hypothetical GNSS that could dispense with the estimation of clock
offsets would most certainly allow an accurate détermination of geocenter motion.

The combination of clock offsets with tropospheric parameters has a devastating

effect. It concretely makes the second order signatures shown in Fig. 4.7 and Fig. 4.9
quasi-unobservable. In case of the Z geocenter coordinate, estimating the five ECOM
parameters has an additional, but relatively small impact. That is why we assert

that the inability of GNSS, as opposed to SLR, to properly sense the Z component

of geocenter motion is mostly due to the simultaneous estimation of clock offsets
and tropospheric parameters. For the X and Y components of geocenter motion,

this inability is quasi-entirely due to the simultaneous estimation of clock offsets and

tropospheric parameters.
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Table 4.9 VIFs obtained for the three geocenter coordinates when estimating different subsets of
GNSS-specific parameters. The other simulation options were as described in Sect. 4.2.2, except
that satellite z-PCOs were not estimated.

GNSS parameters Axis VIF y/1 ~ 1/VIF
X 1.0 16.263%

None Y 1.0 16.523%

Z 33.4 98.489%

X 4.0 86.529%

ECOM Y 4.0 86.504%

Z 44.5 98.869%

X 2.4 76.094%

tropo Y 2.4 76.085%

Z 36.4 98.617%

X 675.6 99.926%

docks Y 679.8 99.926%

Z 770.2 99.935%

X 6.6 92.051%

ECOM, tropo Y 6.6 92.067%

Z 55.8 99.101%

X 718.1 99.930%

ECOM, docks Y 719.3 99.930%

Z 1304.9 99.962%

X 2296.9 99.978%

tropo, docks Y 2293.5 99.978%

Z 2556.6 99.980%

X 2355.6 99.979%

ECOM, tropo, docks Y 2353.1 99.979%

Z 3157.3 99.984%

4.5.5 Comments to Meindl et al. (2013)

The conclusion of Sect. 4.5.4 contradicts the one drawn by Meindl et al. (2013),
according to whom the inability of GNSS to properly sense the Z component of
geocenter motion stems from the corrélation between the Z geocenter coordinate
and the ECOM D0 parameters. This subsection therefore gives a critical review of
Meindl et al. (2013)’s arguments.

The reasoning of Meindl et al. (2013) relies on two main arguments. The first
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one can be summarized as follows. According to the orbital perturbation theory, a
constant cross-track accélération W0 has the effect of translating the satellite orbit

orthogonally to the orbital plane. Consequently,

— if ail satellites of a GNSS were lying on a single orbital plane,

— if the Sun was standing perpendicular to this orbital plane (/3S = 90° so that
Do = W0),

— and if the Earth was not rotating,

then a new singularity would appear in the analysis of such GNSS data. Under these
conditions, a mean variation of the D0 parameters (causing a common translation
of ail satellite orbits) could indeed be strictly compensated by a translation of the
station network. This is undeniable. However:

— The Earth rotâtes, so that a translation of the orbital plane is actually not com-

pensable by a translation of the station network. Meindl et al. (2013) neverthe-
less note that, even if the Earth rotâtes, a strong corrélation remains between

the mean of the D0 parameters and the Z geocenter coordinate in the case of a

single orbital plane (-91.2% for j3s — 90°, a value which actually also dépends
on the inclination of the orbital plane).

— This corrélation decreases very rapidly with (5S (only -54.4% for j3s = 80°). It
therefore seems that, even with two orbital planes and (3S = 90° for one of

both, the overall corrélation between the D0 parameters and the geocenter Z

coordinate should not be particularly problematic.

The second argument of Meindl et al. (2013) relies on the comparison of two sériés
of GNSS solutions obtained with and without constraining the Z geocenter coordi

nate, i.e. with and without introducing artificial ôz geocenter shifts. They observed
that the variations of the estimated D0 parameters in response to the introduction

of ôz geocenter shifts were approximately obeying:

E üDq sin p*
ôz k=1

n2 cos i
(4.6)

where

— P dénotés the number of orbital planes,

— SDk0 is the mean variation of the D0 parameters observed for the satellites of
plane k,

— /3^ is the élévation of the Sun above the orbital plane k,

— n dénotés the mean motion of the satellites.

Meindl et al. (2013) justify Eq. 4.6 by the fact that a variation ôD0 has the effect,
among others, of translating the orbit of a satellite by ôD0 sin/3s/(n2 cos?') along the
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Z axis. From Eq. 4.6, they conclude that the geocenter différences ôz between their

two solution sériés are "explained by the différences of the [Z)0] parameters in both
solution sériés".

We were however unable to reproduce Meindl et al. (2013)’s resuit. We introduced
for instance artificial 1 cm Z geocenter shifts into two simulated solutions that were

only differing by the employed cut-off angles (0° in the first, 10° in the second). The
obtained right-hand sides of Eq. 4.6 were respectively 2.3 mm and 5.3 mm, both far
from 1 cm, and also very different from each other. Repeating the same experiment
with one year of real daily solutions provided by ESA led to right-hand sides that
were rather constant (mean: 4.6 mm; standard déviation: 1.0 mm), but again far
from 1 cm. We therefore think that Eq. 4.6 does probably only hold for the particular
analysis settings used by Meindl et al. (2013).

In fact, the point where the reasoning of Meindl et al. (2013) fails is that their
ôz geocenter différences are not explained by the ÔD0 variations. On the contrary,
these ôDq variations are only one particular conséquence of the introduction of the

ôz geocenter shifts (i.e. of the application or not of no-net-Z-translation constraints).
Introducing an artificial Z geocenter shift into a solution admittedly induces varia
tions of the D0 parameters. But ail other parameter categories are affected as well.
With given analysis settings, formulas like Eq. 4.6 could in fact be derived for any

parameter category like, e.g., tropospheric gradients. But each would only give a
partial view of the problem.

4.5.6 Summary

The generalized collinearity diagnosis developed in Sect. 3.3 was applied in Sect. 4.5.1

and 4.5.2 to the problem of determining geocenter coordinates in a standard single-
GNSS global analysis. The fact, already evidenced in Sect. 4.1, that the three geocen
ter coordinates correspond to quasi-singularities in such a global GNSS analysis was
confirmed their huge VIFs. With reasonable analysis settings, the VIFs and formai
errors obtained for the three geocenter coordinates are roughly of the same order as
those obtained for the terrestrial scale in Sect. 4.2.3. One can therefore consider that,

in a standard single-GNSS analysis, the three geocenter coordinates are as weakly
determined as is the terrestrial scale when satellite z-PCOs are estimated.

The various tests performed in Sect. 4.5.4 proved that, among the parameters of a
GNSS analysis, two spécifie categories quasi-fully explain the insensitivity of GNSS
to the X and Y geocenter coordinates: epoch-wise clock offsets and tropospheric

parameters. These two parameter categories also explain most of the insensitivity of
GNSS to the Z geocenter coordinate, which is in addition slightly amplified by the
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simultaneous estimation of three ECOM parameters: D0, Bc and Bs. We therefore

conclude that the inability of GNSS, as opposed to SLR, to properly sense geocenter

motion, including its Z component, is mainly due to the simultaneous estimation of
clock offsets and tropospheric parameters.

This collinearity diagnosis explains why the translation time sériés derived from

IGS AC solutions are far from reflecting a realistic geocenter motion (Sect. 2.4.1).
To paraphrase Belsley et al. (1980), the extreme collinearity of the three geocenter
coordinates with the other parameters of a GNSS analysis indeed results in a situa

tion in which the systematic influence of geocenter motion on GNSS observations is
swamped by observation and modelling errors. A different problem, not answered by

this collinearity diagnosis, is to understand what the IGS AC translation time sériés
do actually reflect, i.e. what are the modelling deficiencies which contaminate GNSS

geocenter motion estimâtes.



Chapter 5

Perspectives

In Chapter 4, the weak sensitivity of current GNSS to the terrestrial scale and to

geocenter motion was explained by means of the generalized collinearity diagnosis
developed in Chapter 3. In both cases, this weak sensitivity results from situations
of extreme collinearity with the other parameters set up in global GNSS analyses.
The mechanisms at the origin of this extreme collinearity were also detailed. In
other words, the question of why current GNSS are quasi-insensitive to the terres

trial scale and to geocenter motion has been answered. The conséquence of this

quasi-insensitivity is that intrinsic GNSS estimâtes of the terrestrial scale (Sect. 2.3)
and of geocenter motion (Sect. 2.4.1) are currently extremely sensitive to modelling
errors and therefore not reliable enough to allow a contribution of GNSS to the
définition of the ITRF scale and origin. In this last chapter, several prospects are

investigated, that could improve the détermination of the terrestrial scale (Sect. 5.1)
and of geocenter motion (Sect. 5.2) with GNSS, and therefore lead to future potential
contributions of GNSS to the définition of the ITRF scale and origin.

5.1 Prospects for a contribution of GNSS to the ITRF scale

When the satellite z-PCOs are estimated in a global GNSS analysis, a quasi-singularity
arises due to a quasi-perfect corrélation between terrestrial scale, ZWDs, station and

satellite clock offsets and satellite z-PCOs (Sect. 4.2.3). On the other hand, when
the satellite z-PCOs are fixed, this quasi-singularity vanishes and the terrestrial scale

becomes in particular well determined (Sect. 4.2.4). It was therefore concluded in
Sect. 4.2 that, if the z-PCOs of the GNSS satellites were known (independently of
any conventional TRF scale), then GNSS could most likely contribute to defining

136
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the ITRF scale. In Sect. 5.1.1 and Sect. 5.1.2, two paths are thus considered that

could lead to such an absolute calibration of the GNSS satellite z-PCOs, hence to a
future contribution of GNSS to the ITRF scale définition.

But, before such absolute z-PCO calibrations become available, the long-term

stability of the GNSS satellite z-PCOs might already be used for a GNSS contribution
to the ITRF scale rate. This is the topic of Sect. 5.1.3.

5.1.1 z-PCO calibrations relative to a reference GNSS satellite

Pre-launch antenna calibrations are unfortunately not available for any GNSS satel

lite launched so far. However, Springer (2000) noted that, if the z-PCO of one single
GNSS satellite was known, then the z-PCOs of the other GNSS satellites may be
determined relative to this reference satellite:

We conclude that it is not feasible to accurately solve for the satellite
antenna offsets in an absolute sense due to the corrélation with the ter-

restrial scale, the tropospheric delays, the receiver antenna phase center

offsets, and elevation-dependent variations. However, we are able to solve

for these offsets in a relative way, e.g., by adopting a spécifie value for a
single satellite. The offsets of the other satellites may then be determined
relative to this adopted value.

Via such relative calibrations, the availability of a pre-launch calibration for a single

GNSS satellite might consequently be enough to allow a GNSS contribution to the
ITRF scale.

The goal of this subsection is to demonstrate the feasibility of the relative z-PCO
calibrations suggested by Springer (2000). From the reprocessed weekly solutions of
the GFZ AC (gfl ), two different sets of GPS satellite z-PCOs are therefore derived
and compared. The first set is obtained in a similar way as the conventional IGS
z-PCO values, i.e., relative to the ITRF2008 scale. On the other hand, the second

set is derived under the assumption that one particular satellite has a known, i.e.

pre-launch calibrated, z-PCO.

z-PCO estimation relative to the ITRF2008 scale From the gfl SINEX solutions of
the period 1998.0-2008.0, a first set of GPS satellite z-PCOs was derived as follows.

The original, non-constrained weekly normal équations were first recovered using
Eq. 1.9. The weekly normal équations were then inverted under no-net-rotation,
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no-net-scale and no-net-translation constraints with respect to the ITRF2008. No-

net-scale constraints were applied in order to remove the quasi-perfect corrélation
that would otherwise exist between the terrestrial scale and the mean of the satellite

z-PCOs (see Sect. 2.3 and 4.2). This allows to obtain robust estimâtes of the satellite
z-PCOs, which however conventionally rely on the ITRF2008 scale. The choice to
additionally apply non-mandatory no-net-translation constraints was made in accor

dance with Collilieux and Schmid (2012), who observed that they had a positive
impact on the détermination of the satellite z-PCOs.

From the obtained solutions, weekly estimâtes of the satellite z-PCOs were ex-

tracted, as well as their covariance matrices. Those weekly estimâtes were finally
rigorously stacked into long-term z-PCO estimâtes. Except for the last step, this
procedure is the same that was used to generate the conventional z-PCO values,
consistent with the ITRF2008 scale, currently in use within the IGS.

For the record, the différences between the obtained z-PCO estimâtes and their

conventional IGS values (mean: 1.7 cm; standard déviation: 1.6 cm) are shown in
Fig. 5.1. Those différences are mostly due to the facts that:

— the conventional IGS values were obtained by averaging weekly z-PCO estimâtes
derived from the solutions of five different ACs, whereas only the gfl solutions
were used here;

— the conventional IGS values were obtained using a longer data span (1994.0-
2010.0).

They are however irrelevant to the présent discussion.

Satellite Vehicle Number

Figure 5.1 Différences between the long-term z-PCO estimâtes derived from the gfl solutions
relative to the ITRF2008 scale and the conventional IGS z-PCO values currently in use.

z-PCO estimation relative to a reference satellite From the same set of weekly gfl
SINEX solutions, a second set of satellite z-PCOs was derived as follows. The weekly
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unconstrained normal équations were this time inverted under no-net-rotation and

no-net-translation constraints only. From the obtained solutions, weekly estimâtes
of the satellite z-PCOs were extracted, as well as their covariance matrices. Be-

cause no-net-scale constraints were not applied, these weekly z-PCO estimâtes were
independent of any conventional TRF scale. However, due to their quasi-perfect cor

rélation with the terrestrial scale, the means of these weekly z-PCO estimâtes were

unreliably determined.

Like previously, the obtained weekly z-PCO estimâtes were then stacked into

long-term z-PCO estimâtes. But during this stacking, the z-PCO of one particular

reference satellite was fixed (Satellite Vehicle Number G061), so as to simulate rela
tive calibrations of the other satellites to a hypothetical ground-calibrated satellite.
Moreover, weekly mean z-PCO bias parameters were additionally estimated in order

to discard information about the unreliably determined weekly z-PCO means.

Comparison Fig. 5.2 shows the différences between the long-term z-PCO estimâtes
thus obtained relative to G061 and those previously obtained relative to the ITRF2008

scale. These différences hâve a mean of 0.3 mm, which, according to Zhu et al. (2003),
corresponds to a negligible terrestrial scale bias of about 0.002 ppb (0.015 mm). They
hâve a standard déviation of 1.2 mm and ail lie between ±4 mm around their mean.

According to Cardellach et al. (2007), this millimetric scatter is also of negligible
conséquence for the terrestrial frame. By assuming that the z-PCO of a particular
satellite was known, we were thus able to calibrate the other satellites, indepen-

dently of any conventional TRF scale, with negligible différences compared with the
calibrations obtained relative to the ITRF2008 scale.

4 mm

2 mm

0 mm

-2 mm

-4 mm

Figure 5.2 Différences between the long-term z-PCO estimâtes derived from the gfl solutions (a)
relative to G061 and (b) relative to the ITRF2008 scale
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Fig. 5.3 shows the same z-PCO différences as Fig. 5.2, plotted in function of the
number of weekly z-PCO estimâtes available for each satellite. It illustrâtes the fact
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that the scatter of these différences is imputable for a large part to satellites with
less than 3 years of data. The z-PCO différences of satellites with more than 3 years
of data indeed hâve a standard déviation of only 0.6 mm and ail lie within ±1.5 mm
around their mean.

4 mm 1 1 1 1 1 i 1 1 1
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Figure 5.3 Différences between the long-term z-PCO estimâtes derived from the gfl solutions (a)
relative to G061 and (b) relative to the ITRF2008 scale, plotted in function of the number of
weekly z-PCO estimâtes available for each satellite. Each blue cross corresponds to one satellite.
The vertical grey line marks the limit of 156 weekly estimâtes (i.e. 3 years). The solid red line
indicates the mean of the z-PCO différences of satellites with more than 156 weekly estimâtes.
The dashed red lines are 1.5 mm above and below this mean.
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Choice of the reference satellite The différences shown in Fig. 5.2 and Fig. 5.3 were
however obtained after a particular reference satellite (G061) was arbitrarily chosen.
To assess the impact of choosing different reference satellites, the previous steps were
repeated with each available satellite successively taken as reference satellite. The

mean and standard déviation of the différences between the long-term z-PCO esti
mâtes obtained relative to each satellite and those obtained relative to the ITRF2008

scale were thus computed. It turned out that the scatter of those z-PCO différences

was independent of the chosen reference satellite. (This scatter seems in fact mostly
linked to the overall number of weekly z-PCO estimâtes available per satellite.)

On the other hand, as illustrated in Fig. 5.4, the mean of those z-PCO différences
is dépendent on the chosen reference satellite, and seems more specifically linked to
the data span available for the chosen reference satellite. In particular, if any satellite
with more than 3 years of data is taken as reference satellite, then the obtained mean

z-PCO différence systematically lies within ±2 mm, corresponding to a terrestrial
scale bias within ±0.1 mm.

Summary With the experiments carried out in this section, it was demonstrated
that calibrations of the GPS satellite z-PCOs relative to a reference satellite could
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Figure 5.4 Means of the différences between the long-term z-PCO estimâtes obtained relative to
each satellite and those obtained relative to the ITRF2008 scale, plotted in function of the number

of weekly z-PCO estimâtes available for the chosen reference satellite. Each blue cross corresponds
to the choice of a particular reference satellite. The vertical grey line marks the limit of 156

weekly estimâtes (i.e. 3 years). The dashed red Unes mark the limits of ±2 mm.

reproduce calibrations relative to a given TRF scale at the level of a few mm. Pro-
vided that at least 3 years of data are available for the chosen reference satellite, the
mean bias observed between both sets of calibrations was below 2 mm, corresponding
to a terrestrial scale bias below 0.1 mm.

In the hypothetical scénario where a pre-launch calibration becomes available for
some future GPS satellite, the relative calibration method described above could

be used to obtain absolute (i.e. independent of any conventional TRF scale) z-PCO
calibrations for ail GPS satellites. Subsequently fixing those absolute satellite z-
PCOs in GPS data analyses would allow an absolute détermination of the terrestrial

scale by GPS, with a better précision than SLR (see Sect. 4.2). The accuracy of this
hypothetical absolute détermination of the terrestrial scale by GPS is however hard
to assess, as it dépends on multiple factors. The maximum expected bias of 0.1 mm

after 3 years of flight of the reference satellite is only one particular aspect of this
problem. It does not take into account possible systematic errors that would hâve

cancelled in the z-PCO différences studied above, nor a possible error in the pre-

launch calibration of the reference satellite. In this scénario, GPS would nevertheless

become at least candidate to the définition of the ITRF scale, and may help in

resolving the discrepancy between the SLR and VLBI estimâtes of the terrestrial

scale (Altamimi et al., 2011).

In the tests carried out and the conclusions drawn in this section, a single GNSS,
namely GPS, was considered. The question was not addressed whether cross-GNSS

relative z-PCO calibrations would be feasible, i.e. whether, for instance, a ground-
calibrated GLONASS or Galileo satellite would allow relative calibrations of the
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GPS satellites. Experiments similar to the GPS-only tests described above were in
fact carried out using combined GPS+GLONASS solutions. But because no homoge-
neous, long enough GPS+GLONASS dataset was available, any definitive conclusion
could not be reached. The question of cross-GNSS relative z-PCO calibrations thus

remains open for the moment, but may be answered soon, by means of the AC
solutions from the second IGS reprocessing campaign.

5.1.2 z-PCO calibrations relative to a reference LEO satellite

An alternative strategy to obtain z-PCO calibrations of the GPS satellites indepen-
dently of any conventional TRF scale was proposed by Haines et al. (2004). They
used the GPS data collected by different low Earth orbiting (LEO) satellites equipped
with ground-calibrated, low-multipath GPS antennas to estimate antenna phase cen-
ter corrections for the GPS satellites. Haines et al. (2011) then used such LEO-based
calibrations of the GPS satellites to compute long-term GPS terrestrial frames. The
scales of these frames however showed large biases with respect to the ITRF2008
(-18 mm using TOPEX-based phase center corrections; +17 mm using GRACE-
based phase center corrections), indicating that their mean LEO-based GPS satellite
z-PCOs were affected by significant errors.

Unlike the calibrations relative to a hypothetical reference GNSS satellite evoked

in Sect. 5.1.1, LEO-based calibrations of the GNSS satellites hâve the advantage
of being readily feasible and thus deserve considération. However, the large mean
z-PCO errors observed in Haines et al. (2011) ’s results will hâve to be understood
and mitigated before LEO-based calibrations can allow a GNSS contribution to the
ITRF scale définition.

5.1.3 Contribution of GNSS to the ITRF scale rate

When the satellite z-PCOs are fixed in a time sériés of GNSS analyses, two different
pièces of information are in fact introduced:

— the fact that the satellite z-PCOs are equal to reference values (at some given
date);

— the time invariability of the satellite z-PCOs.

If the terrestrial frames resulting from such GNSS analyses are stacked into a long-
term linear frame (such as done for the ITRF computation - see Sect. 1.2.4), each of
these two pièces of information will impact particular aspects of the long-term stacked
frame. In particular, the scale of the long-term stacked frame will be controlled by
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the adopted reference z-PCO values, while the scale rate of the long-term stacked
frame will be controlled by the assumed time invariability of the satellite z-PCOs.

In their contribution to the ITRF2013, the IGS ACs will fix the satellite z-PCOs

to conventional values. The scale rate of the long-term GNSS frame that will enter
the ITRF2013 computation will thus be controlled by the assumed time invariability

of the satellite z-PCOs. Depending on the actual validity of this assumption, a
contribution of GNSS to the définition of the ITRF2013 scale rate may therefore be
considered.

This possibility of a GNSS contribution to the ITRF scale rate définition was in

fact studied by Collilieux and Schmid (2012) from a reverse perspective. From the
reprocessed solutions of five IGS ACs, they derived time sériés of satellite z-PCO

estimâtes, relatively to various TRFs obtained from ITRF2008 by only changing its
scale rate. They then searched the scale rate offsets with respect to ITRF2008 for

which the resulting satellite z-PCO estimâtes were as constant as possible over time,
i.e. for which the z-PCO time invariability assumption was best met. Those offsets

represent intrinsic GPS scale rate estimâtes with respect to ITRF2008, based on the

z-PCO time invariability assumption. Depending on the considered AC, the obtained

offsets were ranging from -0.27 mm/yr to -0.06 mm/yr, consistently doser to the SLR
scale rate offset with respect to ITRF2008 (-0.15 mm/yr) than to the VLBI scale
rate offset (+0.15 mm/yr).

Collilieux and Schmid (2012) globally optimized the time invariability of their
z-PCO time sériés over an ensemble of several satellites. But their optimized z-

PCO time sériés nevertheless showed residual satellite-specific trends, with a scatter

of about 5 mm/yr. This scatter can be considered as an estimate of the préci
sion with which the z-PCO time invariability assumption is actually met. It corre
sponds to a précision of about 0.25 mm/yr for the intrinsic GPS terrestrial scale rate,
which is quite consistent with the scatter of the AC scale rate offsets with respect to
ITRF2008.

From Collilieux and Schmid (2012)’s study, it can be concluded that the IGS AC
contributions to ITRF2008 allow a détermination of the terrestrial scale rate, based

on the z-PCO time invariability assumption, with a précision of about 0.25 mm/yr.
A similar analysis will be conducted over the IGS AC contributions to ITRF2013.

Depending on the obtained précision estimate of the intrinsic GNSS scale rate, and
on its agreement with the SLR and VLBI scale rates, a contribution of GNSS to the
définition of the ITRF2013 scale rate could actually be considered.
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5.2 Prospects for improving the geocenter détermination with
GNSS

The collinearity diagnosis performed in Sect. 4.5 clarified why GNSS could so far not
contribute to define the ITRF origin. The three components of the origin of GNSS-
derived terrestrial frames are indeed quasi-perfectly correlated (collinear) with the
other parameters set up in standard GNSS analyses. The détermination of geocenter
motion with GNSS is thus a nearly singular problem, which explains why GNSS
geocenter motion estimâtes hâve so far been unreliable and particularly sensitive to
modelling errors (Sect. 2.4.1). In view of a reliable observation of geocenter motion
with GNSS and a future possible contribution of GNSS to the ITRF origin, two
complementary paths can consequently be considered: the réduction of collinearity
issues and the mitigation of modelling errors.

To reduce the collinearity of the geocenter coordinates in GNSS analyses, two
different paths can again be considered:

— the inclusion of additional decorrelating observations;

— a réduction of the number of parameters to estimate, or equivalently, the addi
tion of constraints on some estimated parameters.

As regards the first path, two possibilities are examined in the following, namely the
joint analysis of observations from several GNSS (Sect. 5.2.1) and the inclusion of
GNSS observations collected by LEO satellites (Sect. 5.2.2).

As regards the second path towards collinearity réduction, one should bear in mind
that the GNSS parameter categories that mostly explain the extreme collinearity of
the geocenter coordinates are epoch-wise clock offsets and tropospheric parameters
(Sect. 4.5.4). Consequently, a collinearity réduction is to be expected from this second
path principally if the number of clock and/or tropospheric parameters to estimate
can be reduced, or if these parameters can be sufficiently constrained. An improve-
ment of global meteorological models up to a point where GNSS analyses could
dispense with the estimation of tropospheric parameters seems rather unfeasible in

the near term. The main remaining prospect within this second path is therefore
the modelling of station and/or satellite docks by other means than non-constrained
epoch-wise offsets. In this respect, the modelling of satellite docks appears especially
attractive: if the time évolution of satellite clock offsets could be tightly enough con
strained, then the epoch mean signatures of the geocenter coordinates (magenta lines
in Fig. 4.6 and 4.8) could indeed become observable. This possibility is investigated
in Sect. 5.2.3.

Finally, besides the réduction of collinearity issues, improvements of the geocen-
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ter détermination with GNSS could also be expected from a réduction of modelling

errors. From the fact that the IGS AC translation time sériés contain strong spuri-

ous signais at harmonies of the GPS draconitic year (Sect. 2.4.1), and from various
experiments showing that changes in orbit modelling hâve significant impacts on
GPS-derived geocenter motion (see Sect. 2.4.2 and, e.g., Springer, 2000; Hugentobler
et al., 2006; Herring, 2011; Rodriguez-Solano et al., 2011; Meindl et al., 2013), it
seems clear that orbit modelling deficiencies are a major source of geocenter contam
ination. Sect. 5.2.4 will therefore discuss several prospects towards orbit modelling

improvements.

5.2.1 Multi-GNSS geocenter détermination

As shown in Sect. 4.5.3, the collinearity of the three geocenter coordinates is slightly
reduced when observations from several GNSS are simultaneously analysed, rather

than observations from a single GNSS. One could therefore expect better geocenter

motion estimâtes from multi-GNSS analyses than from GPS-only analyses. For the

time being, this is however not the case.

At présent, only two fully deployed GNSS indeed allow the estimation of geo
center motion time sériés: GPS and GLONASS. A comparative study of GPS-only,

GLONASS-only and combined GPS+GLONASS geocenter estimâtes can be found in

Meindl (2011) and Meindl et al. (2013). In the X and Y components, their GPS and
GLONASS geocenter time sériés are quite consistent, although the GLONASS time
sériés are clearly noisier. Hardly any différence can be observed between the com

bined GPS+GLONASS and the GPS-only time sériés. In the Z component however,

the GLONASS-only geocenter time sériés is of much lower quality than the GPS-only
time sériés and contains in particular a strong spurious periodic signal with an am

plitude of about 20 cm. The combined GPS+GLONASS time sériés is close to the

GPS-only time sériés, but nevertheless shows traces of the spurious GLONASS signal.

In summary, the overall effect of adding GLONASS observations is a dégradation of
the GPS-only geocenter estimâtes, rather than the expected improvement.

The much lower quality of Meindl (2011) ’s GLONASS-only geocenter estimâtes
is likely due for a large part to larger (orbit) modelling errors than in the GPS
case. In their combined GPS+GLONASS analyses, the gain in collinearity com-

pared to the GPS-only case was thus probably offset by the introduction of those

larger GLONASS modelling errors, resulting in an overall dégradation of the geocen
ter estimation. An actual improvement over GPS-only geocenter estimâtes via the
inclusion of GLONASS observations would in fact likely require that the GLONASS

satellite orbits are modelled with a similar précision as the GPS orbits, which is still

far from being the case (Rodriguez-Solano et al., 2014).
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For the moment, it is hardly assessable whether the inclusion of Galileo obser

vations will improve or dégradé GPS-only geocenter estimâtes. It will first dépend
on the précision with which the Galileo satellite orbits can be modelled when the

full Galileo constellation is deployed. But, even if a similar précision as for the
GPS orbits is reached, the slight collinearity réduction resulting from the inclusion
of Galileo observations may still not be enough to obtain reliable GNSS geocenter
motion estimâtes.

5.2.2 Inclusion of LEO observations

In ail the preceding, only observations collected by ground GNSS stations hâve been
considered. However, many LEO satellites are equipped with GNSS antennas. This
subsection therefore investigates how the simultaneous analysis of GNSS observations
collected by ground stations and LEO satellites may reduce the collinearity of the
geocenter coordinates in a global GNSS analysis.

Several simulations were thus run in which GNSS observations collected by a
GRACE-like satellite (a = 6811.5 km, e — 0, i — 89°) were considered. In addition to
the parameters listed in Table 4.3 (except the GNSS satellite z-PCOs), an initial State
vector, empirical accélérations and epoch-wise dock offsets were estimated for the

GRACE-like satellite. The considered empirical accélérations were, following Rang
et al. (2006), constant along-track accélérations and once-per-revolution periodic
accélérations in the along-track and cross-track directions (S0, Sc, Ss, Wc and Ws
in the notations of Rodriguez-Solano et al. (2012)), each estimated once per orbital
révolution.

In a first round of simulations, the GRACE observations were given the same
weight as the ground observations, i.e. an a priori sigma of 1 cm. The VIFs obtained
for the three geocenter coordinates were 137.7 (99.636%), 138.5 (99.638%) and 1853.4
(99.973%), i.e. 17.1, 17.0 and 1.7 times smaller than in the case where no GRACE
observations were used. Like in the case where no GRACE observations were used,
the epoch mean signatures of the three geocenter coordinates on the ground obser
vations (magenta fines in Fig. 4.6 and 4.8) could be reproduced by variations of the
GNSS satellite dock offsets. These variations of the GNSS satellite dock offsets how

ever had undesirable impacts on the GRACE observations. In case of the X and Y

geocenter coordinates, these side effects could hardly be accommodated by variations
of the GRACE parameters. The inclusion of GRACE observations thus enabled a

partial decorrelation of the X and Y geocenter coordinates from the GNSS satellite
dock offsets. On the other hand, in case of the Z geocenter coordinate, the undesir
able impact of the GNSS satellite dock offset variations on the GRACE observations

could be accommodated to a great extent by variations of the GRACE parameters,
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which is why the collinearity of the Z geocenter coordinate was much less reduced.

In a second run of simulations, the GRACE observations were given an a priori

sigma of 1 mm, while an a priori sigma of 1 cm was kept for the ground observa
tions. The VIFs obtained for the three geocenter coordinates were 23.4 (97.843%),
22.8 (97.780%) and 220.7 (99.773%), i.e. 100.7, 103.2 and 14.3 times smaller than
in the case where no GRACE observations were used. Compared to the previous

simulations, a greater importance was given to the minimization of any undesirable
impact on the heavily weighted GRACE observations. The collinearity between the

three geocenter coordinates and the GNSS satellite clock offsets was thus further re
duced. Further collinearity réductions were similarly observed in simulations where
observations collected by several LEO satellites were considered.

In conclusion, depending on their relative weight to the ground observations,

the inclusion of LEO observations in a global GNSS analysis can lead to a drastic

collinearity réduction for the three geocenter coordinates, hence to a potentially
improved détermination of geocenter motion with GNSS.

Haines et al. (2011) actually compared geocenter motion time sériés derived from
global GPS analyses including (a) ground observations only and (b) additional GPS
observations collected by GRACE. They noted a bénéficiai impact of the inclusion

of GRACE observations on the three components of geocenter motion, via an overall

noise decrease and a dramatic réduction of the draconitic errors in their Z geocenter

time sériés. But, even with GRACE observations included, Haines et al. (2011)’s
geocenter time sériés were still showing some disagreement with SLR-derived and

global-inversion-derived geocenter motion estimâtes (under-estimation of the annual
signais in the X and Z components; presence of residual draconitic errors in the

Z component). For the moment, the question remains open whether giving more
weight to the GRACE observations or including more LEO observations would allow

GNSS to eventually provide compétitive geocenter estimâtes.

5.2.3 Satellite clock modelling

The passive hydrogen maser of the Galileo validation satellite GIOVE-B and the lat-

est génération of rubidium docks of the GPS Block IIF satellites hâve both demon-

strated unprecedented stability (Montenbruck et al., 2012b). The stability of these
new génération docks opens the way for modelling satellite docks by other means

than non-constrained epoch-wise offsets, hence for an increased robustness of global

GNSS analyses. Hugentobler et al. (2012) and Hackel et al. (2014) showed for in
stance that constraining the clock offsets of the GIOVE-B satellite towards a linear
model could improve its orbit détermination. In this subsection, we investigate how
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such modelling of the satellite clocks may reduce the collinearity of the geocenter
coordinates in global GNSS analyses.

The stability of a clock over a specified time interval r is usually measured by its
Allan déviation cry(r). For r up to several thousands of seconds, the Allan déviations
of the new génération Galileo and GPS satellite clocks approximately vary as l/y/r.
The stability spécification for GIOVE-B’s passive hydrogen maser was for instance
IC)~12/y/r. Ground tests demonstrated a stability of 6 x 10~13/y/r. However, the
actual in-flight stability of GIOVE-B’s passive hydrogen maser is rather at the order
of 1.5 x 10-12/v^ (Montenbruck et al., 2012b). The rubidium clock of the GPS
IIF satellite G062 shows a comparable in-flight stability level (Montenbruck et al.,
2012a).

Assuming a given stability cr/y/r for a satellite clock is équivalent to assuming
that the satellite epoch-wise clock offsets are normally distributed with a standard
déviation a. This assumption can be introduced into a GNSS analysis via simple
weighted pseudo-observations (constraints) on the epoch-wise satellite clock offsets
(Hugentobler et al., 2012; Hackel et al., 2014). We will use this approach in the fol-
lowing simulations, with different <r’s and different numbers of stable satellite clocks.

When several stable clocks are simultaneously considered, it is however necessary to
account for relative frequency biases between them (i.e. for their inaccuracy). This
will be done in the following simulations by freely estimating one bias and one rate
for ail but one of the considered stable clocks.

Before coming to the simulation results, it should finally be noted that at least
two stable satellite clocks need to be simultaneously considered. Constraining the
epoch-wise clock offsets of a single satellite indeed has for only effect to compensate
the time reference singularities of a global GNSS analysis (Sect. 2.1.2), but does not
bring any additional information.

Two stable satellite clocks In a first round of simulations, it was assumed that two

GPS-like satellites were equipped with stable clocks. The epoch-wise clock offsets
of those two satellites were therefore constrained with different cr’s. Moreover, a
constant clock bias and a constant clock rate were estimated for one of both satellites.

Ail other simulation options were as described in Sect. 4.2.2 except that satellite z-
PCOs were not estimated.

Fig. 5.5 shows the VIFs of the three geocenter coordinates thus obtained for dif

ferent assumed clock stabilities (i.e. different cr’s). For a down to 3 x 1CT10 s, the
clock constraints hâve no impact on the collinearity of the geocenter coordinates.
Tighter and tighter clock constraints resuit in a progressive collinearity decrease,
until asymptotic VIFs are reached. Interestingly, these asymptotic VIFs are almost
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reached for a = 1.5 x 10 12 s, i.e. for the actual in-flight stability of GIOVE-B’s and
G062’s docks. The asymptotic VIFs of the three geocenter coordinates are 262.6

(99.809%), 285.2 (99.825%) and 954.9 (99.948%), i.e. 9.0, 8.3 and 3.3 times smaller
than without dock constraints. By sufficiently constraining the dock offsets of two
satellites towards a linear model, a modest, but still noticeable collinearity réduction
could thus be achieved.

10~13 10-12 10“11 10"1° 10"9 10-8

Clock constraint (s)

Figure 5.5 VIFs of the three geocenter coordinates obtained when applying different constraints
to the epoch-wise clock offsets of two GPS-like satellites

Whole constellation of stable docks In a second round of simulations, ail 24 con-

sidered GPS-like satellites were assumed to be equipped with stable docks. Ail

epoch-wise satellite clock offsets were therefore constrained with different cr’s. More-

over, constant clock biases and constant clock rates were estimated for ail but one

satellites. Ail other simulation options were as described in Sect. 4.2.2 except that
satellite z-PCOs were not estimated.

Fig. 5.6 shows the VIFs of the three geocenter coordinates thus obtained for dif

ferent assumed clock stabilities (i.e. different cr’s). The overall pattern is similar as in
Fig. 5.5, although a steeper collinearity decrease and much lower asymptotic VIFs can

be observed. The asymptotic VIFs of the three geocenter coordinates are in this case

practically reached for o = 3 x 1CT12 s. Their respective values are 22.0 (97.697%),
22.2 (97.724%) and 82.3 (99.390%), i.e. 107.0, 106.0 and 38.4 times smaller than
without clock constraints. By sufficiently constraining the satellite clock offsets of
a whole GNSS constellation towards a linear model, a drastic collinearity réduction
could thus be achieved for the three geocenter coordinates.

This drastic collinearity réduction is explained by the fact that sufficiently con
strained satellite clock offsets become unable to reproduce the epoch-mean signatures

of the geocenter coordinates (magenta lines in Fig. 4.6 and 4.8). In other words, the
introduced constraints allow a decorrelation of the geocenter coordinates from the
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Figure 5.6 VIFs of the three geocenter coordinates obtained when applying different constraints
to the epoch-wise clock offsets of the 24 considered GPS-like satellites. The VIFs of the X and Y

geocenter coordinates are actually overlapping.

satellite clock offsets. Corrélations with the station clock offsets and the tropospheric
parameters however remain, which explains why the asymptotic VIFs of the geocenter
coordinates are still larger than in an SLR analysis (Sect. 4.4).

Periodic clock variations In the preceding simulations, it was implicitly assumed
that the Allan déviations of the satellite docks were varying as 1/ yfr for r up to one
day. The analysis of actual estimâtes of GIOVE-B’s or G062’s clock offsets however

reveals that this assumption is only valid for r up to about 2000 s (Hugentobler et al.,
2012; Montenbruck et al., 2012b,a; Hackel et al., 2014). The Allan déviations of such
GIOVE-B or G062 clock estimâtes then show a pronounced bump, approximately
centered around r = 20000 s, caused by periodic variations of the clock estimâtes
(mainly once-per-revolution and twice-per-revolution variations with amplitudes of
several cm).

According to Montenbruck et al. (2012a), three mechanisms could be at the origin
of these apparent periodic clock variations:

— coupling with orbit détermination uncertainties, via the strong corrélation be-
tween clock offsets and the satellite radial position;

— frequency variations of the clock oscillator, induced, e.g., by température vari
ations;

— line bias variations, induced, e.g., by température variations.

As evidenced by Svehla (2010) by means of SLR observations, the apparent peri
odic clock variations of GIOVE-B appear mostly induced by orbit modelling errors.
Additional temperature-induced variations can however not be ruled out. On the

other hand, as regards G062, the availability of triple-frequency observations allowed
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Montenbruck et al. (2012a) to unambiguously evidence temperature-induced line bias
variations.

Apparent clock variations induced by orbit modelling errors, such as observed for

GIOVE-B, can provide insight into the underlying orbit modelling deficiencies and

thus help in overcoming them (Svehla et al., 2013). One can therefore expect that
such orbit-induced apparent clock variations will eventually vanish as progress is

made in orbit modelling. On the other hand, "real" temperature-induced (frequency
and/or line bias) clock variations cannot be modelled a priori without a detailed
knowledge of the internai structure and thermal characteristics of the satellites.

As such detailed knowledge is not publicly available, temperature-induced periodic

clock variations will likely need to be accounted for empirically in future global GNSS

analyses, e.g. by freely estimating once-per-revolution and twice-per-revolution clock

variations. In a last run of simulations, we therefore investigated how the estimation
of such parameters would impact the collinearity of the geocenter coordinates. Like
previously, ail 24 considered GPS-like satellites were assumed to be equipped with
stable docks. Ail epoch-wise satellite clock offsets were constrained with a = 1CT12 s.
Clock biases, clock rates and once-per-revolution clock variations were additionally

estimated for ail but one satellites. (The impact of estimating or not twice-per-
revolution clock variations on the collinearity of the geocenter coordinates was found

to be negligible.)

The VIFs thus obtained for the three geocenter coordinates were 22.2 (97.721%),
22.4 (97.744%) and 2680.4 (99.981%). Obviously, estimating or not once-per-revolution
clock variations has little impact on the collinearity of the X and Y geocenter coor

dinates. On the other hand, the VIF of the Z geocenter coordinate is almost as large
as in the case where no stable satellite docks were considered. This can be explained

by the fact that once-per-revolution clock variations can reproduce the epoch-mean

signature of the Z geocenter coordinate (magenta line in Fig. 4.6) almost as efficiently
as freely estimated epoch-wise clock offsets.

Summary Sufficiently constraining the clock offsets of at least two GNSS satellites

towards a linear model allows a decorrelation of the three geocenter coordinates
from the satellite clock offsets. This decorrelation is ail the more effective as the

clock offsets of more satellites are constrained. If the clock offsets of a whole GNSS

constellation could be constrained towards a linear model at a level of 3 x 1CT12

s, then a drastic collinearity réduction could be achieved and would likely lead to

compétitive GNSS geocenter motion estimâtes. This could be the case of the future

Galileo constellation, whose satellites will carry similar passive hydrogen masers as
GIOVE-B. However, if once-per-revolution clock variations need to be estimated in

order to account for non-modelled thermal effects, then stable satellite docks do not
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allow any significant collinearity réduction for the Z geocenter coordinate.

5.2.4 Orbit modelling improvements

As mentioned in the introduction of Sect. 5.2, improvements of the geocenter dé
termination with GNSS can be expected, not only from a réduction of collinearity
issues, but also from a mitigation of orbit modelling errors, which are likely the main
contributor to systematic errors in current GNSS geocenter motion estimâtes. This
subsection therefore gives an overview of several prospects towards orbit modelling
improvements.

Systematic errors in GNSS satellite orbits are currently mostly due to mis-modelling
of the non-gravitational forces acting on GNSS satellites: Earth radiation pressure,
thermal re-radiation, antenna thrust and, above ail, direct solar radiation pressure.
Several évidences, like:

— the systematic Sun-dependent patterns observed by Urschl et al. (2007) in SLR
range residuals to GPS orbits,

— similar patterns observed by Svehla et al. (2013) in the apparent clock variations
of GIOVE-B,

indeed indicate that neither the a priori modelling of solar radiation pressure by
the IGS ACs, nor the empirical orbit parameters they set up are able to completely
account for the effects of solar radiation pressure. In view of an improved considéra

tion of the non-gravitational forces, and especially solar radiation pressure, in global
GNSS analyses, three different ways can be considered.

Alternative orbit parameterizations A first possible way would be the estimation by
the IGS ACs of empirical orbit parameters more able to account for the effects of

non-gravitational forces than those currently estimated. In this respect, Rodriguez-
Solano et al. (2012) proposed to estimate the optical properties of simple satellite box-
wing models, together with additional empirical parameters, rather than the purely
empirical accélérations of the ECOM model. This alternative parameterization of
the GNSS satellite orbits, based on the physical interaction between solar radiation
pressure and the satellite’s surfaces, shows a comparable performance as the ECOM
parameterization in terms of orbit overlap and prédiction errors. However, systematic
différences can be observed between the orbits derived with each parameterization.

Rodriguez-Solano et al. (2014) then studied the impact of this alternative param
eterization on various GNSS-derived geodetic parameters and in particular geocenter
motion. Compared to the ECOM parameterization, they observed a drastic reduc-
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tion of the draconitic errors in the Z component of geocenter motion. The expected

annual signais are however surprisingly not detected in their improved geocenter time
sériés. For the time being, the possibility that alternative orbit parameterizations

may lead to compétitive GNSS geocenter estimâtes thus remains to be demonstrated.

A priori solar radiation pressure modelling The second possible way in view of an

improved considération of non-gravitational forces in global GNSS analyses would
be to dispose of accurate a priori models of these forces. Analytical solar radiation

pressure models hâve been developed for the GLONASS-IIv (Ziebart and Dare, 2001)
and GPS-IIR (Ziebart et al., 2003) satellites, by computing the effects of the solar
photon flux on a computer simulation of the spacecraft structures using ray-tracing

algorithms. Analytical models now also exist for the GPS-IIA and GLONASS-IIM
satellites and additionally account for Earth radiation pressure, thermal re-radiation

and antenna thrust (Ziebart et al., 2012). Their accuracy is however limited by
the ignorance of the actual optical and thermal properties of the satellite materials,
and it is currently unsure whether such analytical models will eventually reach the

accuracy required for précisé GNSS orbit détermination.

Accelerometers Finally, a last possible prospect towards improvements of the GNSS

satellite orbits would be to measure the non-conservative forces acting on GNSS satel
lites rather than imperfectly modelling them. Equipping future GNSS satellites with

3-dimensional accelerometers would in fact likely be the best way to improve GNSS

orbits. This might moreover help in understanding and mitigating orbit modelling
deficiencies for current unequipped satellites.



Conclusion

Although fundamental in several respects, the GNSS contribution to the ITRF re

mains subject to various potential improvements. In particular, the origin and scale
information stemming from global GNSS solutions has so far not been considered

reliable enough to contribute to the définition of the ITRF origin and scale. In view
of a possible future contribution of GNSS to the ITRF origin and scale, a first nec-
essary step was to provide a detailed understanding of the weak ability of GNSS
to détermine the terrestrial scale and geocenter motion. This was actually the core
purpose of this thesis.

The fundamental issue concerning the détermination of the terrestrial scale with

GNSS had in fact already been identified by Springer (2000) and Zhu et al. (2003).
In global GNSS analyses, there indeed exists a quasi-perfect corrélation between the
terrestrial scale, the satellite z-PCOs, the zénith wet delays and the station and
satellite clock offsets. Since pre-launch antenna calibrations are not available for

any of the GNSS satellites launched so far, this quasi-perfect corrélation prevents a
reliable estimation of the terrestrial scale with GNSS apart from conventional satellite
z-PCOs.

On the other hand, the weak ability of GNSS to détermine geocenter motion
through the network shift approach was remaining unresolved when this thesis started.
In order to gain insight into this question, we addressed it from the perspective of
collinearity among the parameters of a least-squares régression. Several peculiarities
of global GNSS analyses required particular mathematical developments. A general-
ized collinearity diagnosis was therefore developed, based on the notion of variance

inflation factor. It allows to assess and explain the collinearity of any explicit or
implicit parameter of a generalized least-squares problem in presence of constraints.

This generalized collinearity diagnosis was then applied to the SLR geocenter dé
termination problem. It turned out that the détermination of the X and Y geocenter
coordinates with SLR does not suffer from any collinearity issue. On the other hand,
the Z geocenter coordinate has a VIF of about 9 in our simulated SLR analyses
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due to corrélations with the satellite osculating éléments. In addition to the uneven

distribution of the SLR network, this slight collinearity issue may partly explain why

the Z component of SLR-derived geocenter motion is of lower quality than its X and
Y components.

On the other hand, ail three geocenter coordinates were shown to be highly
collinear with the other parameters set up in global GNSS analyses. This severe

collinearity explains why the three components of their origin correspond to quasi-

singularities of GNSS-derived terrestrial frames and why standard GNSS analyses
are hardly sensitive to geocenter motion. Among the parameters set up in GNSS

analyses, two spécifie categories quasi-fully explain the severe collinearity of the geo
center coordinates: epoch-wise clock offsets and tropospheric parameters. One can

therefore conclude that the inability of GNSS, as opposed to SLR, to properly sense
geocenter motion is due to the simultaneous estimation of epoch-wise clock offsets

and tropospheric parameters.

Once the weak ability of GNSS to détermine the terrestrial scale and geocenter

motion was understood, several prospects were investigated, that could lead to a
possible future contribution of GNSS to the définition of the ITRF scale and origin.
The entire terrestrial scale issue could be solved if z-PCO calibrations, independent
of any conventional terrestrial scale, were available for one or more GNSS satellites.

This could be the case if the ground antenna calibrations of one or more Galileo

satellites were made publicly available. Another possibility would consist in cali-

brating the GNSS satellite antennas with respect to reference LEO satellites (Haines
et al., 2004). This method is however currently prone to large systematic errors that
remain to be understood and mitigated.

Before absolute z-PCO calibrations become available, the long-term stability of
the GNSS satellite z-PCOs may however already be used for a GNSS contribution

to the ITRF scale rate. By assuming the time invariability of the GPS satellite z-

PCOs, Collilieux and Schmid (2012) indeed showed that the IGS AC contributions
to ITRF2008 could provide intrinsic estimâtes of the terrestrial scale rate with a

précision of about 0.25 mm/yr. The way for a contribution of GNSS to defining the
scale rate of the next ITRF2013 is thus open.

In view of an improved détermination of geocenter motion with GNSS and a pos
sible future contribution of GNSS to the ITRF origin, two complementary paths can
finally be considered. The first one would be to improve the sensitivity of GNSS
analyses to the geocenter coordinates by reducing their collinearity. In this respect,
a first promising way is the simultaneous analysis of GNSS data collected by ground
stations and LEO satellites. The inclusion of LEO observations in global GNSS
analyses indeed allows a decorrelation of the geocenter coordinates from the GNSS
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satellite clock offsets. This method does however not yet provide compétitive geo-
center estimâtes.

A second promising way toward reducing the collinearity of the geocenter coordi-
nates in GNSS analyses is the modelling of satellite clock offsets by other means than
non-constrained epoch-wise clock offsets. Such clock modelling is already possible
for spécifie satellites equipped with latest génération docks (G062, GIOVE-B) and
will become feasible for the whole future Galileo constellation. Non-modelled once-

per-revolution clock variations (e.g. due to thermal effects) may however prevent any
significant collinearity réduction for the Z geocenter coordinate in this way.

Besides the réduction of collinearity issues, improvements of the geocenter dé
termination with GNSS can also be expected from improvements in the modelling
of the GNSS satellite orbits, and especially of the non-gravitational forces acting
on GNSS satellites. In this respect, alternative orbit parameterizations or accurate

analytical modelling of non-gravitational forces might eventually help in leading to
compétitive GNSS geocenter estimâtes. But the best way to overcome the difïicult
modelling of non-gravitational forces would likely be to equip future GNSS satellites
with 3-dimensional accelerometers.

Several possible paths thus exist towards a reliable observation of geocenter motion
with GNSS. At the moment, it is however hardly predictable whether any of these
paths will succeed, which path(s) will possibly succeed and in how much time. One
can nevertheless anticipate that GNSS will likely not become able to complément
SLR for the définition of the ITRF origin in the near term.
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Appendix A

Some linear algebra

A.l Images, ranks and kernels of real matrices

Let A G A4m,n(M) be an m x n matrix of real numbers.

— The image of A is the set of ail possible linear combinations of its row vectors,
i.e. {Ax, x G Mn}. It is a linear subspace of Mm and will be denoted Im(A).

— The rank of A is the dimension of its row space: rank (A) = dim(Im(A)).

— The kernel of A is the set of ail possible vectors x G Mn such that Ax = 0. It

is a linear subspace of Wl and will be denoted Ker(A).

Let us recall some basic properties of the images, ranks and kernels of real matrices.

Proposition A.l. VA G rank(A) < min (m, n). A is said to be of full
rank if rank(A) = min(m, n). Otherwise, A is said to be rank déficient.

Proposition A.2. VA G .Mn,n(M), A is invertible if and only if rank(A) = n, i.e.
A is of full rank.

Proposition A.3. VA G rank(A) = rank^Â1) = rank(AA] ) — rank(AJ A).

Proposition A.4. VA G .Adm)n(®0, Ker(A) is the orthogonal complément of Im{AT)
in M71 equipped with the standard dot product, i.e. Ker(A) = Consequently,
rank(A) + dim(Ker(A)) = n.

Proposition A.5. V(A, J3) G A//m!n(M)xAdniP(]R); rank(AB) < min(rank(A), rank(B)).

Proposition A.6. V(A, B) G A4m>n(M) x AtniP(E), ifrank(B) = n, thenrank(AB) =
rank(A).
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Let us now introduce some more properties used in the following.

Proposition A.7. Let A be any m x n real matrix and P be any n x n symmetric
positive-semidefinite matrix such that rank(PA) = rank(A). Then rank(ATPA) =
rank(A).

Proof. As a symmetric positive-semidefinite matrix, P has a unique symmetric positive-semidefinite square
root \fP. Using proposition A.5 twice leads to the following inequalities:

rank(PA) = rank(\/P\/PA) < rank(\/PA) < rank(A)

The hypothesis that rank(PA) = rank( A) therefore implies that rank(\/PA) = rank( A), so that, according
to proposition A.4,

rank(ATPA) = rank((\/PA)r(\/PA)) = rank(\/PA) = rank(A)

Corollary A.8. Let A be any m x n real matrix and P be any n x n symmetric
positive definite matrix. Then rank(Âl PA) = rank(A).

Proof. As a symmetric positive definite matrix, P is invertible, hence of rank n. Proposition A.6 therefore
implies that rank(PA) = rank(A). Proposition A. 7 complétés the proof.

Corollary A.9. Let A be any m x n real matrix and P be any n x n symmetric
positive semidefinite matrix such that rank(PA) = rank(A). Then Im(ATPA) —
Im(AT).

Proof. Im(ArPA) is trivially included in Im(Ar). But according to proposition A.6, both these subspaces
hâve the same dimension. They are therefore equal.

Proposition A. 10. Let A and B be two nxp matrices of rank p with p < n. Then
ATB is invertible if and only if:

— rank{A) = rank(B) — p;

— Im(B) and Ker(A‘ ) are direct complementary subspaces of MTl.

Proof. Let first suppose that the p x p matrix A7 B is invertible, i.e. of rank p. Proposition A.5 implies
that rank(A) = rank(P) = p, i.e. that dim(Im(P)) — p and dim(Ker(A/)) = n — p. Now, let x €
Im(B) nKer(AT). There exists y £ Rn such that x — By. But as x G Ker(Ar), ATx = ATBy = 0. And
since ArB is invertible, y and x are necessarily 0. The dimensions of Im(P) and Ker(A7 ) sum up to n
and their intersection is restricted to {0}. They are therefore direct complementary subspaces of Rn.

Let us now suppose that rank(A) = rank(P) = p and that Im(P) and Ker(Ar) are direct comple
mentary subspaces of Rn. The intersection of these two subspaces is restricted to {0}. Consequently,
Væ G Im(P), A7 x = 0 if and only if x = 0. Now, let y G Rp. By lies in Im(P) so that A7 By — 0 if and
only if By = 0. And, as P is of full rank, ATBy = 0 if and only if y = 0. This last statement means that
Ker(A7 B) = {0}, i.e. that A7 P is of full rank and hence invertible.

Proposition A.11. Let N be any p x p symmetric positive semidefinite matrix, let
C be any p x c matrix of rank r such that rank( [N C] ) = p and let B dénoté any
pxp — r matrix whose columns form a basis of Ker(C2 ). Then Im(C) and Im(NB)
are direct complementary subspaces of Kp.
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Proof. According to proposition A.6, the fact that rank([iV C]) = p implies that rank(B7 [N C)) =
rank(B7). As the column vectors of B lie in Ker(Cr), C1 B — 0, so that B1 [N C] = [BrN 0] and
that Im(JBr[lV C]) = Im(FTiV). Consequently, rank(FriV) — rank(B1 [N C]) = rank(BT) and, accord
ing to proposition A.7, Ta,nk(BrNB) = rank(S). As its columns form a basis of the p — r-dimensional
subspace Ker(C; ), B is of rank p — r. The p—rxp—r matrix B1 NB is therefore invertible. Proposition
A. 10 complétés the proof.

Corollary A.12. Let N be any p x p symmetric positive semidefinite matrix, let
c = p — rank(N), let C be a p x c Jull-rank matrix such that rank{[N C]) — p and
let B dénoté any p x p — c matrix whose columns form a basis of Ker{CT). Then
Im(C) and Im(NB) = Im(N) are direct complementary subspaces of Rp.

Proof. Corollary A. 12 is a particular case of proposition A. 11. The only additional thing to be proven is
that Im(NB) = Im(N). The inclusion lm(NB) C Im(lV) is trivial. There just remains to prove that
both subspaces hâve the same dimension. According to proposition A.11, dim(Im(iVJB)) = dim(Ker(Cr)).
But under the hypothèses of corollary A.12, dim(Ker(C7 )) = p — c = rank(lV), so that dim(Im(ATS)) =
dim(Im(lV)).

A. 2 Projections

Let E and F be two direct complementary subspaces of Rn. For ail x G Mn, there
exist a unique pair (y, z) G E x F such that x = y + z. The linear application that
associâtes, to each x, the corresponding y is called projection onto E parallelly to
F. The complementary application that associâtes, to each x, the corresponding 2:
is the projection onto F parallelly to E. Both complementary projections obviously
sum up to the identity application. If Rn is equipped with some dot product, the
orthogonal projection onto E is defined as the projection onto E parallelly to its
orthogonal complément.

Let us give some properties of projections.

Proposition A. 13. A linear application p is the projection onto E parallelly to F
if and only if p is idempotent, Im(p) — E and Ker{p) = F.

Proof. From the définition above, it is obvious that, if p is the projection onto E parallelly to F, then p
is idempotent, Im(p) = E and Ker(p) = F. Let us now suppose that p is idempotent, Im(p) = E and
Ker(p) = E. Im(p) = E means that, Vcc G F, there exists y in Rn such that x = p(y). The fact that p is
idempotent then implies that p(x) = p(.p(y)) = p(y) = x, so that, Vx G F, p(x) = x.

Consider now any x G Rn and its unique décomposition into x = y + z with (y, z) G E x F. The
linearity of p implies that p(x) = p(y) + p(z). As z G F = Ker(p), p(z) = 0, and as y E E, p(y) — y, so
that p(x) = y. This proves that p is the projection onto F parallelly to F.

Proposition A. 14. Let A be any matrix whose columns form a basis of E and B
a full rank matrix such that Ker(BT) — F. Then, the matrix form of the projection
onto E parallelly to F is A(BTA)~lBT.
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Proof. A and B axe two full-rank matrices such that Im(A) and Ker(BT) are two complementary subspaces
of Kn, so that proposition A. 10 first ensures the invertibility of B1 A.

Let us now consider the linear application p : x <—» A(BTA)~1BTx. It is obvious that p is idem-
potent, that Im(p) C Im(A) and that Ker(p) C Ker(JB/). Consequently, dim(Im(p)) < dim(Im(A))
and dim(Ker(p)) < dim(Ker(Pr)) = n — dim(Im(A)). But according to proposition A.4, dim(Im(p)) +
dim(Ker(p)) = n, so that the above inclusions are necessarily equalities. p is idempotent, Im(p) = Im(A) =
E and Ker(p) = Ker(jB/ ) = F. p is therefore the projection onto E parallelly to F.

Proposition A. 15. Let A be any matrix whose columns form a basis of E. In Mn
equipped with the standard dot product, the matrix form of the orthogonal projection
onto E is A(Â1 A)~lAr.

Proof. According to proposition A.4, Ker(Ay ) is the orthogonal complément of Im(A) = E in Mn equipped
with the standard dot product. A is thus a full rank matrix such that Ker(AT) is the orthogonal complément
of E. Proposition A. 13 complétés the proof.

Proposition A. 16. Let A be any matrix whose columns form a basis of E. In
Rn equipped with the dot product < x, y >= xl Py, P being an n x n symmet-
ric positive definite matrix, the matrix form of the orthogonal projection onto E is
A(ATPA)~1ATP.

Proof. Ker(A7 P) is trivially included in the orthogonal complément of Im(A) = E. According to proposi
tion A.6, rank(A7 P) = rank(A), so that dim(Ker(ArP)) = dim(Ker(AT)) = n - dim(Im(A)). Ker(A rP)
is therefore the orthogonal complément of E, and A7 P is of full rank. Proposition A. 13 complétés the
proof.

A.3 Other useful propositions

Proposition A.17 (Block matrix inversion formula - I). Let M
A B

C D

a square invertible matrix such that its upper left block A is also invertible. Then,
D- CA1B is invertible and the inverse of M can be expressed as:

M~l
A-1 + A~lB(D- CA^B)-'CA~l -A lB{D - )-*

-(D - CA~1B)~lCA~1 {D -CA-'B)-1

Proof. Since A is invertible, M can be decomposed into the following product:

A 0
1

1

te

C I 0 D-CAlB

Since the déterminant of the product of two square matrices is the product of their déterminants,

det(M) = det
( A 0 ' \ (\

det 1
C I

j det I
/ A~lB

O D — CA~l B
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And since the déterminant of a triangular block matrix is the product of the déterminants of its diagonal
blocks,

det(M) = det(A)det(£> - CA~lB)

As M and A are invertible, their déterminants are both different from zéro, so that the déterminant of
D — CA-1 B is necessarily also different from zéro and that D — CA~lB is invertible.

To complété the proof, form the product of M with the expression of M-1 given above. It simplifies
to I.

Proposition A.18 (Block matrix inversion formula - II). Let M =
A B

C D

a square invertible matrix such that its lower right block D is also invertible. Then,
A — BD~lC is invertible and the inverse of M can be expressed as:

M~l
(A - BD lC)~l -(A - BD-'Cy'BD1

-D lC(A - BD lC)1 D1 + D~lC(A - BD lC)~lBD l

Proof. Proposition A. 18 can be proven in the same way as proposition A. 17, using the following décompo
sition of M:

M =
A — BD~lC BD-1

0 /

I 0

c D

Proposition A. 19. Let M be an xn invertible matrix, A a nxm full-rank matrix

(0 < m, < n) and B a n x n — m, matrix whose columns form a basis of Ker(AT).
Then:

M - MA(ATMA)~lATM = B{BtM~1B)~1Bt

Proof. The columns of R = [AB] form a basis of Rn. R is therefore invertible and its inverse can be
expressed as:

R-i = r (ata)-iat
(BtB)~1Bt

To prove this expression of R~', right-multiply it with R. As A1 B = 0 and B1 A = 0, this product
simplifies to I. Forming the other product, RR-1, leads to:

A(AtA)~1At + B(BrB)~1BT = I

The product:

ATMA A1 MB '

B1 MA BrMB

is itself invertible. Using the matrix block inversion formula (A. 17), the right-bottom block X of (R1 MR)-1
can be expressed as:

X = [btMB - BTMA(ATMA)-1ATMByl
On the other hand:

{RTMR)-1 = R-1M-1{R~1)t

so that another expression of the right-bottom block of (RTMR)-1 is:

X = (BTB)-1 BTM~l B(BTB)'1

rtmr =



A.3. Other useful propositions 179

Both expressions of X given above lead to two expressions of Y = B(BTB) 1X 1(BT B) 1Br:

Y = B(BrB)~lBt (m - MA(ÂrMA)~lÀ1'M^j B(BrB)~lBT

Y = B(BtM~1B)~1Bt

Replacing B(BJ B)1BJ by I — A(A’ A)-1 A1 in the first expression of Y leads, after simplification, to:

Y = M - MA(ArMA)-1ÂrM

The comparison of the two last équations complétés the proof.



Appendix B

The basics of geodetic least-squares

régression

B.l Generalized least-squares régression

Consider a vector l = [h, h, • ••, In]1 of n observations. From physical and mathemat-
ical considérations, it is expected that these observations can be explained by a set
of p parameters x = [x\, x2,xp]T through the prédictive model:

Parameter régression consists in inferring a set of optimal (best fitting) parameters
from the observations l. There exists various régression methods associated with
different optimality criteria. We consider here the generalized least-squares régression
method which is widely used in the geodetic community.

In generalized least-squares régression, it is assumed that the observations hâve

a known covariance matrix Qt. Pi = QZ"1 is called the weight matrix of the ob
servations. Specifying a weight matrix for the observations corresponds to the
choice of a particular metric1 in the observation space Mn, i.e. of an inner prod-
uct < 1,1' >— lTPil' and of the associated norm ||Z|| = y/lTPtl. Let us call E the
Hilbert observation space Mn equipped with this metric.

The generalized least-squares criterion to find best fitting parameters x is the

lrThe choice of this particular metric may seem arbitrary. But Pi is in fact an optimal weight matrix in the sense
that it leads to a minimum parameter variance (Dermanis, 1977).

(B.l)

180
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minimization of the (squared) distance between Z and f(x) in E:

x = argmin(||Z — f(x)\\2)
xeRp

= argmin ((Z - /(æ))TPz(Z - f{x)))
xeRp

(B.2)

To explicitly compute x in practice, one first has to linearize the prédictive function f
around an a priori set of parameters x0 and then solve for ôx = x — x0. But for sake

of notation simplicity, we assume here that the problem was linearized beforehand,

i.e. that f(x) = Ax, where A = df/dx is an n x p matrix called design matrix.
Under this assumption:

\\l-f{x)f =(Z - Ax)TPi(l—

= lrP,l - 2lTP,Ax + xTATP,Ax

A necessary condition to minimize ||Z — f(x)||2, is to nullify the partial dérivatives:

d\\l~f(x)\\2 _ oïT r> A i n~.T aT r> A (34)
dx

= -2V PlA + 2x1 A1 PtA

This condition leads to the well-known normal équation:

(ATPlA)x = ATPtl

<=> Nx = b

where N = A' Pi A is called normal matrix and b = ArPil.

(B.5)

In case where the design matrix A is of full rank, the normal matrix N is invertible

(corollary A.8) so that the normal équation has a unique solution:

x = N~lb = (ATPiA)-lATPil (B.6)

In virtue of the error propagation law, the estimated parameters x hâve Q = N_1
as covariance matrix. The observations predicted by the estimated parameters are
Ax = A{A1 PiA)~1ATPil, while ü = Z- Ax are the residuals of the fit.

Noting that A(Âl PLA)~lAJ Pt is the matrix of the orthogonal projector onto
Im(A) in E allows a simple géométrie interprétation of the generalized least-squares
régression illustrated in Fig. B.l. Im(A) = {Ax, x G Mp} is the subspace of E which
spans ail possible model prédictions. Fitting parameters x to the observations Z

consists in splitting them into the sum of a predicted part Ax G Im(A) and of
residuals Z — Ax. Generalized least-squares do this by orthogonally projecting Z onto
Im(A), which obviously ensures that \\v\\ = ]|Z — Ax|| is minimal.
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Figure B.l Generalized least-squares régression as an orthogonal projection onto Im(A)

B.2 Constraints

In many geodetic problems, the design matrix A is not of full rank, so that the normal
matrix N is not invertible and that the normal équation B.5 has an infinité number

of solutions. The singularities inhérent to the data analysis of the four geodetic
techniques contributing to the ITRF are for instance discussed in Sect. 1.2.1. So as

to supplément the rank deficiencies of A and N and thus obtain a unique set of best
fitting parameters, a common practice in geodesy is the application of constraints.
Constraints can generically be defined as linear relationships that should be satisfied
by the estimated parameters2 * *:

CTx = 0 (B.7)

where C7 is a c x p full-rank matrix whose fines define c linear relationships among
the parameters, i.e. c constraints.

Constraints can concretely be applied in two different ways in a generalized least-
squares régression. These two ways are distinguished in the two next subsections.
Spécial cases of constraints are discussed in the following subsections.

B.2.1 Constraints as pseudo-observations

The first way of applying constraints in a generalized least-squares problem is to
introduce them as pseudo-observations associated with a c x c weight matrix Pc.

2The particular choice of 0 as second member of Eq. B.7 in fact corresponds to the application of constraints with
respect to the a priori parameters xq. Provided that C7 is of full rank, it is always possible to get back to this case
by choosing appropriate a priori parameters.
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The observation vector and the observation weight matrix are thus extended to:

L = and Pi c —
Pi 0

0 Pr
(B-8)

while the model function and the design matrix are extended to:

fc

f RP ^ Mn+C _ _

Ax and Ac =
A

! X '->•
CTx

CT
1

(B.9)

This defines an extended least-squares régression problem which leads to the con-
strained normal équation:

(ArPtA + CPcCT) x = ATPtl
(N + Nc)x = b

where Nr — CPrCT is the normal matrix of constraints.

(B. 10)

Provided that rank(Ac) = p, i.e. that the introduced constraints properly supplé
ment the rank deficiencies of A, the constrained normal matrix N + Nc is invertible

(corollary A.8), so that the constrained normal équation B. 10 has a unique solution:

xc = (N + Nc)~1b(B.ll)

which has Qc = (N + Nc)~1 as covariance matrix. As a curiosity, let us give the
following expression of Qc, valid in case where C is of full rank:

Qc= B (BTNB)~1BT
+ D{CTD)~l (Pc+ (CTD)~lDTND{DTC)~iy1 (

where B dénotés any matrix whose columns form a basis of Ker(Cy ) and D
any matrix whose columns form a basis of Ker(BTN).

(B.12)

dénotés

B.2.2 Constraints as condition équations

The second way of introducing constraints in a generalized least-squares régression
consists in reducing the parameter search space to the only sets of parameters which

strictly satisfy the constraint équation B.7, i.e. to Ker(Cy ) = {æ G W/CTx = 0}.
The constrained problem can in this case be written:

xc= argmin (\\l — f(x)\\2) (B.13)
æ6Ker(Cr)
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It can be solved with the method of Lagrange multipliers (hereafter denoted by A)
through the auxiliary problem:

(æc,Â)= argmin (||Z — f(x) + \TCTx\\2) (B.14)
æeEP,A€Rc

Derivating the cost function in Eq. B. 14 with respect to x and A leads to the following
normal équation extended with condition équations:

4=>

ATPtA

CT

N

CT

C

0

c

0

ATPtl

0

b

0

(B. 15)

Provided that C is of full rank and that rank([A7 C]) = p, i.e. that the introduced
constraints are not redundant and properly supplément the rank deficiencies of A,
the extended normal matrix is invertible (see proof below) so that the extended
normal équation B. 15 has a unique solution:

xc ' N C
-1

’ b '

X CT 0 0

Let B dénoté any matrix whose columns form a basis of Ker(CT). It is shown
below that the solution of the extended normal équation B. 15 can be expressed as:

xc= B (BrNB)~1Brb = B ( 1 (B.17)
Propagating the covariance matrix Qt = PJ-1 of the observations to the estimated
parameters xc using Eq. B.17 leads to the following expression of their covariance
matrix:

Qc = B (BtNB) ^ Bt (B.18)
It can finally be shown that the p x p upper-left block of the inverse of the ex

tended normal matrix can be identified with Qc, which gives practical access to the
covariance matrix of the estimated parameters.

Proof of the above assertions. The condition that rank([ArC]) = p is équivalent to Im(Ar)+ Im(C) = Rp.
According to corollary A.9, Im(iV) = Im(Ar). Therefore, Im(iV) + Im(C') = Rp and rank ([AT C]) = p.
Let B dénoté any pxp — c matrix whose columns form a basis of Ker(C/ ). According to proposition A.11,
Im(C') and Im(NB) are direct complementary subspaces of Rp. Their respective orthogonal compléments,
In^C)-1 = Ker(CT) = Im(B) and lm(NB)± = Ker(B1 N) are therefore direct complementary subspaces
of IRP as well. One can consequently define the orthogonal projection onto Im(iE?) parallelly to Ker(By N).
According to proposition A.13, the matrix form of this projection is: B(BTNB)~l B7 N. If D dénotés
any matrix whose columns form a basis of Ker(BrN), the complementary projection onto Ker(BrN)
parallelly to Im(B) = Ker(C/) can be expressed as D{C‘ D)~1CI. Both projections sum up to the
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identity application, so that:

B(BTNB)~l BTN + D(C'r D)~1Ct = I

One can additionally define the orthogonal projection onto Im(C') and the complementary orthogonal
projection onto Im(C')1' = Ker(CT) = Im(jB). According to proposition A.14, they can respectively be
expressed as C(CTC)~lCI and B{B7 B)~1BT, so that:

B(BrB)~lBr + C(CTC)~lCr = I

Let us now consider the following matrix:

r ‘ B(BrNB)~1 Bt D(CtD)~1
(DtC)~1Dt —(CtC)~1CtND(CtD)~1

Left-multiplying R with the extended normal matrix yields:

N C
R =

" NB(BtNB) ' Bt + C(DtC)~1Dt [I - C(CTC)~1CT) ND(CtD)~l
CT 0 ctb(btnb)~1bt I

The upper-left block of this product was shown to be equal to I. Since the columns of B lie in Ker(C/ ),
C1 B = 0, so that the lower-left block is 0. Finally, the upper-right block can be rearranged into
B(B‘ B)~] B1 ND(C! D)~l. Since the columns of D lie in Ker(B/iV), B1 ND = 0, so that this
upper-right block is 0.

We hâve thus shown that the product of the extended normal matrix with R is I. The extended normal

matrix is thus invertible. Multiplying the expression of its inverse R given above with the right-hand side
of the extended normal équation leads to the expression of xc given in Eq. B. 17. From the expression of
R given above, it is finally clear its upper-left block can be identified with the covariance matrix Qc of the

estimated paxameters.

B.2.3 Minimal constraints

The c x p constraint matrix CT is said to define minimal constraints when
rank([A7 C]) = p and c = p — rank(A) = dim(Ker(A)). In other words, minimal
constraints properly supplément the rank deficiencies of A with as few constraints

as possible, i.e. a number of constraints c equal to the number of singularities of A.
Like any constraints, minimal constraints can be introduced as pseudo-observations
or as condition équations.

Let B still dénoté a matrix whose columns form a basis of Ker(CT). In case
where minimal constraints are introduced as condition équations, the expressions of

the estimated parameters xc and of their covariance matrix Qc given in Eq. B. 17
and B. 18 still hold.

According to corollary A. 12, Ker (B1 N) = Ker(TV) in case of minimal constraints.
Consequently, if D dénotés a matrix whose columns form a basis of Ker (B1 N), the
columns of D lie in Ker(lV) so that ND = 0. In case where minimal constraints
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are introduced as pseudo-observations, the expression of Qc given in Eq. B. 12 can
thus be simplified into:

Qc = Bt + D(B.19)
Right-multiplying this expression of Qc with the right-hand side b of the constrained

normal équation B. 10 and noting that, since the columns of D lie in Ker(AT) =
Ker(A), DTb = DTA1 Ptl — 0, one gets the following expression of the estimated
parameters in case where minimal constraints are introduced as pseudo-observations:

xc = B (B1 NB)"'(B.20)

In case of minimal constraints, the pseudo-observation and the condition équa
tion methods thus lead to the same set of estimated parameters, but with differ

ent covariance matrices. One can moreover note that, when the weights of the
pseudo-observations tend to infinity, the covariance matrix obtained with the pseudo
observation method (Eq. B.19) tends to the covariance matrix obtained with the
condition équation method (Eq. B. 18). That is why it can be said that condition
équations are équivalent to pseudo-observations with infinité weights.

It is also worth noting that the parameters estimated with minimal constraints

satisfy the non-constrained normal équation, i.e. that Nxc = b. That is why minimal
constraints can be said to be non-distorting constraints.

Proof. According to corollary A.12, Im(iV) and Im(C) are direct complementary subspaces of Rp. One
can consequently define the projection onto Im(lV) parallelly to Im(C) = Ker(B7). Since Im(7V) =
Im(iV.B), the p — c columns of NB form a basis of Im(lV), so that the matrix form of this projection
is NB(B1 NB)~] B1. b — A1 Pil G Im(A1 ) = Im(iV). b is therefore equal to its own projection onto
Im(JV) parallelly to Im(C): b = NB(BrNB)~1B1 b = Nxc.

Let us finally give a géométrie interprétation of minimal constraints illustrated
in Fig. B.2. The non-constrained normal équation Nx = b is in fact the équation

of a c-dimensional affine subspace of Wp parallel to Ker(lV). The constraint équa
tion CTx — 0 additionally imposes that the estimated parameters lie in the p — c-
dimensional subspace Ker(CT). The solution xc of the constrained normal équation
is the unique intersection between the affine subspace Nx = b and Ker(C7 ).

B.2.4 Removing unreported minimal constraints

In their SINEX files, some Analysis Centers provide minimally constrained solutions
without providing information about which exact constraints they applied. It is thus
impossible to recover the AC non-constrained normal équation in the standard way
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(i.e. using Eq. 1.9). As described below, there however exists a trick to remove such
unreported minimal constraints.

Suppose that an AC solved the minimally constrained normal équation:

(TV + CPcCT)(x -x0) = b (B.21)

and provided in its SINEX file the a priori parameters x0, the estimated parameters
x and their covariance matrix Q = (TV + CPcCT)~l. By inverting Q, it is possible
to recover the constrained normal matrix Ntot = N + CPcCT'. But without knowing
the normal matrix of constraints CPcCT, it is a priori not possible to recover the
non-constrained normal matrix TV.

Suppose now that the theoretical singularises of TV are known so that a matrix
D can be built whose columns form a basis of Ker(TV). The non-constrained normal
matrix TV can in this case actually be recovered, without knowing the normal matrix
of constraints, by:

N = NtotD(DrNtotD(B.22)

Proof. Since D is of full rank and Ntot is syxnmetric positive definite, corollary A.8 fîrst ensures the
invertibility of DTNtotD. Let us now expand Ntot into N + CPcCT in the right-hand side of Eq. B.22.
Since the columns of D lie in Ker(iV), DN = 0, so that:

Ntot - NtotD(DrNtotD)-1 DrNtot = N + CPcCT - CPcCTD(DrCPcCTD)~lDTCPcCT (B.23)

According to corollary A. 12, Im(C') and Im(7V) = Ker{D1 ) axe direct complementary subspaces of Rp.
Proposition A.10 therefore ensures the invertibility of DTC and CTD. The third term in Eq. B.23 thus
simplifies to —CPcCl and cancels with the second term. This proves Eq. B.22.
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B.2.5 No-net-rotation, no-net-translation and no-net-scale constraints

As mentioned in Sect. 1.2.1, none of the four geodetic techniques contributing to
the ITRF provides enough information to unambiguously estimate the tracking sta
tion coordinates. In an SLR, GNSS or DORIS analysis, the normal matrix thus has
three "orientation singularises", while a VLBI normal matrix has three additional

"origin singularises ". A common practice to overcome these singularities is to ap-
ply so-called no-net-rotation and no-net-translation constraints. Such constraints

respectively guarantee that the orientation and the origin of the estimated terrestrial
frame are the same as that of the a priori terrestrial frame (for instance the ITRF,
if ITRF coordinates are used as a priori station coordinates).

No-net-rotation constraints Let us consider a parameter vector x = [A1, T1, Z1,...,
Xk1 Yk, Zk) made of 3k station coordinates and a corresponding vector of a priori pa-
rameters x0 = [Ag1, V^1, Zq, ..., Ag, Yq, Zq}. The goal of no-net-rotation constraints
is to ensure that, if differential rotations are estimated between x and æO, they should
be zéro. The estimation of differential rotations between x and æO corresponds to
the following observation équations:

' A1 “ *1 0 7l ~yY
y1 Vo1 — 71zo 0 Xi
z1

+

y1 -^ô 0

xk Xk0 0 yk
Z0

\yk
r0

yk y0k 0 ykA0

zk yk
Z0 Y0k Xq 0

rx

ry

rz

(B.24)

or, in matrix notations, x = Xq + Arr. It leads to the following differential rotation
estimâtes:

f = (A' Ar) 1 x0) (B.25)

Nullifying the differential rotations between x and x0 can thus be done by imposing
the following constraint équation:

(A/ Ar)~1A1r (x — x0) = 0 (B.26)

i.e. by taking CT = [A^.Ar)~lAk as constraint matrix.

No-net-translation constraints Similarly, nullifying the differential translations be

tween x and x0 can be done by taking CT = (.AjAt)~lAj as constraint matrix,
where the matrix At of station coordinate / translation partial dérivatives has the
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following form:

A-t —

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

(B.27)

No-net-scale constraints There may finally be some spécial cases in which the scale

of the estimated frame should be the same as that of the a priori frame. This is done
by taking C1 — (A] As)~lAl as constraint matrix where As has the following form:

= PC Y0\ Z^j,, X$, Y0k, Zk]T (B.28)

It is possible to simultaneously impose several of the previous constraints, by
grouping the corresponding matrices Ar, At and As into a single matrix A and
taking Cl = (A1 A)~lAT as constraint matrix. By nullifying spécifie fines of the
matrix A, it is also possible to apply the desired constraints via a spécifie subset
of stations only. Note, finally, that in case of a long-term linear frame made of
station positions and velocities, no-net-rotation-rate, no-net-translation-rate and no-

net-scale-rate constraints can additionally be defined. They respectively take exactly
the same form as no-net-rotation, no-net-translation and no-net-scale constraints

except that they apply to station velocities.

B.3 Réduction and fixation of parameters

In huge least-squares problems with thousands of parameters, such as GNSS data

analysis, not ail parameters may be of interest. A well-known method to reduce the

size of such problems is called réduction of the nuisance parameters and basically
consists in a block-inversion of the normal matrix. Reducing nuisance parameters
does not affect the estimated values of the parameters of interest, neither their co

variance matrix, as the reduced parameters are still implicitly présent in the reduced
normal équation.

Another way to get rid of certain parameters is to simply fix them to their a priori
values, i.e. to remove the corresponding fines and columns from the normal matrix.

Unlike parameter réduction, the fixation of some parameters generally changes the
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values of the other parameters as well as their covariance matrix, as the subséquent
model does not allow implicit variations of the fixed parameters.

This section reviews the mathematical formulations of parameter réduction and

fixation and gives géométrie interprétations of both operations. An inequality is
finally given between the parameter covariance matrix obtained after réduction of

some parameters and the parameter covariance matrix obtained after fixation of the

same parameters.

For the sake of simplicity, it is assumed in this section that the design matrix A
is of full rank, so that the normal matrix N is symmetric positive definite and no

constraints are required. However, the results presented in this section can easily be

extended to the case where A and N hâve rank deficiencies supplemented by (not
necessarily minimal) constraints.

B.3.1 Parameter réduction

Reduced normal équation Suppose that the model parameters are ordered in such

a way that x = [æf,æ^]7, where X\ contains the parameters of interest, while x2
contains the nuisance parameters we would like to reduce. The normal équation
Nx = b can be block-decomposed into:

" Nn n12 ' x1 1i-HnO1
_ n21 n22 x2 bi

Under the hypothesis that N is symmetric definite positive, hence invertible, its

lower right block N22 is itself invertible so that the second set of équations in B.24
can be used to obtain an expression of the nuisance parameters x2 in function of aq:

x2 = N^(b2 - N2lxi) (B.30)

Substituting B.30 into the first set of équations in B.29 yields:

(N11-N12N^N21)xl =

Nr x i = br
(B.31)

Eq. B.31 is called reduced normal équation and allows to compute the values of

the parameters of interest by solving a smaller System than the full normal équation.

To obtain the reduced normal équation, one however needs to invert the right-bottom
block N22 of the full normal matrix, which may be almost as huge as the full normal
matrix itself. However, in the case of GNSS data analysis, the reduced parameters
are usually epoch-wise station and satellite clock offsets, so that N22 has a block-

diagonal structure and is efficiently invertible.
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Still assuming that N is invertible, the reduced normal matrix Nr is itself in-

vertible (see proof of proposition A. 18). The parameter covariance matrix obtained
from the reduced normal équation is thus Qr = IV~1 = (Nn — NuN^1 A^i)-1. Ac-
cording to the block matrix inversion formula A. 18, Qr is nothing but the upper-left
block Qn of the full covariance matrix Q. This proves that the covariance matrix

obtained for X\ is unaffected by the réduction of x2.

Parameter réduction as an oblique projection Let US also split the design matrix
A into two column blocks [AiA2]. In^Ax) is the subspace of Im(A) generated
by the parameters of interest. If A is assumed of full rank, the subspace Im(A2)
generated by the nuisance parameters is a direct supplementary subspace of Im(Ai)
in Im(A). The observations Ax predicted by the whole set of parameters x can thus
be decomposed into a unique sum of two terms:

— A\X\: part of the observations predicted by the parameters of interest;

— A2x2: part of the observations predicted by the nuisance parameters.

Reducing x2 consists in finding A\X\ and consequently X\ directly from the obser
vations Z. We will now show that it is achieved through an oblique projection of l
onto Im(Ai).

Noting that

' Nn Nl2

N2\ N22i

the solution of the reduced normal équation can be re-written as

x! = (BTPlA,)~lBTPll with Bt = Aj (I — PlA2(AlPlA2)~1AÏ)

' AJP, Ai AjPiA2 '
and

fri ’ AJPil '

_ AjPtAi AJPA2 _ fr2 _ AjPtl
(B.32)

(B.33)

The observations predicted by the parameters of interest X\ are consequently:

AlXl = A1(BTPlA1)~1BTPll (B.34)

Ai(Bl PiAi)~lB' Pi can be recognized as the matrix form of an oblique projection
onto Im(Ai). It is in fact équivalent to an orthogonal projection onto Im(A) followed
by a projection onto In^Ai) parallelly to Im(A2) (see Fig. B.3). Very informally,
one could say that the reduced System keeps in memory the existence of the reduced
parameters, so that it "knows" which part of the observations should be attributed

to the parameters of interest and which part to the nuisance parameters, i.e. what is

the "right" direction for projecting the observations onto Im(A!).
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Figure B.3 Parameter réduction as an oblique projection onto Im(Ai)

B.3.2 Parameter fixation

Let us now examine the case where the subset of parameters x2 are simply removed
from the model, or, in other words, fixed to their a priori values. This leads to a

smaller least-squares System with Af = Ai as design matrix, Nf — A^PtAi = Nu
as normal matrix, and bf — A\Pil = b\ as second member of the normal équation.
Under the hypothesis that N is symmetric definite positive, hence invertible, its
upper left block ATn is itself invertible. The solution of the new System is therefore
Xf — Nülbi = (Â[PiAi)~lA^Pil and the predicted observations are AfXj —
Ai(Â[ PiAi)~lA\ Pil, i.e. the orthogonal projection of Z onto Im(Ai).

While, if reduced, the parameters x2 implicitly remain in the reduced System,
this is not the case when they are fixed. The new System does not "remember"
the existence of the fixed parameters, so that it projects the observations directly
orthogonally onto Im(Ai). As a conséquence, its solution xj is generally different
from x\. The covariance matrix oî xf, Qf = Nj1 = TV^1 is also generally different
from Qr — Qu.

B.3.3 Inequality between Qf and Qr

Still assuming that N and hence Q = N~l are positive definite, the parameter
covariance matrix Qf obtained in the fixation case can be expressed, using the block
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matrix inversion formula A. 18, in function of the blocks of the full covariance matrix

Q-

Qf = Nul — Qu — Q12Q22Q21 (B.35)

Qr ~ Qj = Q11 — Qf — Q12Q22Q21 is clearly positive definite, so that we hâve

Qf < Qr (B.36)

in the sense that for two square matrices A and B, A < B if B — A is positive
definite.

To give a more concrète interprétation of this inequality, let q = XTx\ be any
non-zero linear combination of the parameters x\. The variance of q obtained in the

réduction case is of = X1 Q, A, while its variance in the fixation case is a} = \T
We hâve

af - a) = AT(Qr - Q,)\ = ATQ12<3221Q21A > 0 (B.37)

so that any non-zero linear combination of the parameters x\ has a larger variance
in the réduction case than in the fixation case. This inequality applies in particular
to the variances of each individual parameter in Xp

Informally, one could say that in the réduction case, the reduced System "remem-
bers" the uncertainties of the pre-eliminated parameters x2 and their corrélations

with aq, which contribute together to the total uncertainty of X\. On the other
hand, this additional source of uncertainty is "forgotten" in the fixation case, as can
be readily seen in Eq. B.35.



Appendix C

Geocenter motion estimâtes from the

IGS Analysis Centres

Several figures mentioned in Sect. 2.4.1 are grouped in this appendix for practical
reasons. The translation time sériés shown therein resuit from Rebischung et al.
(2012)’s study. Their computation is detailed in Sect. 2.4.1.
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Figure C.l X translation time sériés derived from the reprocessed solutions of seven IGS ACs as

well as from reprocessed SLR solutions, shifted by multiples of 20 mm. The dots represent weekly

translation estimâtes. The solid lines were obtained by Vondrak-filtering each of the sériés with a
cut-off frequency of 3 cpy.
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Figure C.2 Y translation time sériés derived from the reprocessed solutions of seven IGS ACs as

well as from reprocessed SLR solutions, shifted by multiples of 20 mm. The dots represent weekly
translation estimâtes. The solid lines were obtained by Vondrak-filtering each of the sériés with a
cut-off frequency of 3 cpy.
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Figure C.3 Z translation time sériés derived from the reprocessed solutions of seven IGS ACs as

well as from reprocessed SLR solutions, shifted by multiples of 40 mm. The dots represent weekly
translation estimâtes. The solid lines were obtained by Vondrak-filtering each of the sériés with a
cut-off frequency of 3 cpy.
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Figure C.4 Lomb-Scargle periodograms of the X translation time sériés shown in Fig. C.l,
shifted by powers of 103 mm2. The background grey lines correspond to the SLR X translation
time sériés. For better legibility, the periodograms were computed over a 4 times oversampled
frequency set and boxcar smoothed over 5 adjacent frequencies.
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Figure C.5 Lomb-Scargle periodograms of the Y translation time sériés shown in Fig. C.2,
shifted by powers of 103 mm2. The background grey lines correspond to the SLR Y translation
time sériés. For better legibility, the periodograms were computed over a 4 times oversampled
frequency set and boxcar smoothed over 5 adjacent frequencies.
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Figure C.6 Lomb-Scargle periodograms of the Z translation time sériés shown in Fig. C.3,
shifted by powers of 10'^ mm2. The background grey lines correspond to the SLR Z translation
time sériés. For better legibility, the periodograms were computed over a 4 times oversampled
frequency set and boxcar smoothed over 5 adjacent frequencies.



Appendix D

Collinearity of the Z geocenter

coordinate with the osculating

éléments of elliptical orbits

The purpose of this appendix is to show how the epoch mean signature of the Z geo
center coordinate can be reproduced by variations of the satellite osculating éléments
in case of ellipitical orbits. The case of circular orbits was treated in Sect. 4.4.3: in

that case, the epoch mean signature of the Z geocenter coordinate can simply be
reproduced by slight "ellipticizations" of the satellite orbits.

D.l Signature of the Z geocenter coordinate in case of ellip
tical orbits

Fig. D.l shows the signature of a variation ôt = 1 cm of the Z geocenter coordinate
on simulated observations made by a tracking network of 400 stations on a satellite
with an elliptical orbit. The orbit of the considered satellite is similar to a LAGEOS

orbit, except for the eccentricity (a = 12200 km, e = 0.2, i = 110°). The magenta
line in Fig. D.l does not represent an epoch mean signature, but —ôtsincf), where cf>
dénotés the latitude of the satellite. It can in fact be shown that, for an infinitely
dense tracking network on a spherical Earth, the epoch mean signature of the Z
geocenter coordinate would exactly match the epoch mean signature of a shift of the
orbit radius by ôr = —ôtsincf).

This equality does not strictly hold in real observation conditions. But the epoch
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mean signature of the Z geocenter coordinate nevertheless remains close to the epoch
mean signature of a shift of the orbit radius by ôr = —ôtsmcp. We will therefore

limit ourselves to showing how spécifie variations of the satellite osculating éléments
can lead to a variation of the orbit radius by ôr = —St sin 0.
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Oh 6 h 12 h 18 h 24 h

Figure D.l Signature of a 1 cm variation of the Z geocenter coordinates on simulated

observations made on a satellite with an elliptical orbit. Each blue dot represents an element of

Sy. The magenta line represents -Stshup, where 0 dénotés the latitude of the satellite.

D.2 Reproduction by variations of the satellite osculating él
éments

Consider the orbital perturbation induced by:

— a constant variation of the satellite eccentricity by:

sini sinw
ôe — St

— a constant variation of the satellite mean anomaly by:

SM =
\/r

sin i cos uôt
ae

(D.l)

(D.2)

From Kepler’s équation M = E — esin E, one finds that de and ÔM induce a

variation of the satellite eccentric anomaly by:

SM + smEôe ,n
ôE — — — (D.3)

1 — e cos E
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Using the relationships between E and the satellite true anomaly i/, one can then
express the induced variation of the satellite true anomaly as:

ôv —
1 + e cos u

vt
6E +

sinz/ , (1 + ecosz/)2 sin i/{2 + e cos v) ,
1 — é

-de

l\ - e2)3/2
ôM +

1 — é

Finally, from the expression of the orbit radius,

a(l — e2)
1 + e cos v

one can obtain the induced variation of the orbit radius:

ôr =
ae( 1 — e2) sin v

(1 + ecos z/)2
Ôu —

1 + e cos v
2e -f"

(1 — e2) cos v
1 + e cos v

ae sin i/

: à A4 — a cos vàe

y/Ë1

-6e (D.4)

(D.5)

6e

(D.6)

Let us now insert the proposed expressions of 6e and 6M (Eq. D.l and D.2) into
Eq. D.6. This leads to:

ôr = —6t sin zfsin lj cos v + cos uj sin = —6t sin i sin u
v y (D.7)

= -6t sin <P K }

We hâve thus shown how spécifie variations of the satellite osculating éléments can
induce a variation of the orbit radius by 6r = — ôtsmcj), and therefore approximately

reproduce the epoch mean signature of the Z geocenter coordinate.


