d'accéléromètres 3D.

Il existe ainsi plusieurs pistes pouvant éventuellement déboucher sur une observa tion fiable du mouvement du géocentre par GNSS. Pour le moment, il est cependant difficile de prévoir si l'une de ces pistes finira par donner des résultats satisfaisants, de quelle(s) piste(s) il s'agira et dans combien de temps. Il apparaît néanmoins raisonnable d'envisager que les GNSS ne deviendront pas capables de rivaliser avec le SLR pour la définition de l'origine de l'ITRF à court terme. D.l Signature of the Z geocenter coordinate in case of elliptical orbits . . . D.2 Reproduction by variations of the satellite osculating éléments

Les systèmes globaux de navigation par satellite (GNSS) jouent un rôle fondamental dans l'élaboration du repère international de référence terrestre (ITRF). Cependant, les GNSS ne se sont jusqu'à présent pas révélés aptes à déterminer de manière fiable l'échelle terrestre ni la position du centre de masse de la Terre (géocentre) et n'ont donc pas contribué à définir l'échelle de l'ITRF ni son origine. L'incapacité des GNSS à déterminer l'échelle terrestre indépendamment de biais conventionnels de centres de phase satellites est un problème bien connu. En revanche, leur incapacité à correctement observer le mouvement du géocentre restait jusqu'alors inexpliquée.

Nous avons étudié cette question sous l'angle de la colinéarité entre paramètres d'un ajustement par moindres carrés. Pour prendre en compte plusieurs particu larités du problème de la détermination du géocentre par GNSS, un diagnostic de colinéarité généralisé a été développé. Il a ainsi été mis en évidence que la détermina tion du géocentre par GNSS est sujette à de sérieux problèmes de colinéarité à cause de l'estimation simultanée de décalages d'horloges et de paramètres troposphériques dans les analyses de données GNSS.

Différentes pistes ont finalement été étudiées en vue d'une possible future contri bution des GNSS à la définition de l'échelle et de l'origine de l'ITRF : l'étalonnage de l'antenne d'au moins un satellite GNSS, l'invariabilité temporelle des biais de centres de phase satellites, l'analyse simultanée de données GNSS acquises par des stations terrestres et des satellites bas, la modélisation d'horloges satellites ultra-stables et la réduction des erreurs de modélisation orbitale.

Mots-clés : ITRF, GNSS, origine, échelle, géocentre, colinéarité, multicolinéarité, facteur d'inflation de la variance, corrélation Abstract Global Navigation Satellite Systems (GNSS) play a fundamental rôle in the élabora tion of the International Terrestrial Reference Frame (ITRF). However, GNSS hâve so far not proven able to reliably détermine the terrestrial scale nor the location of the Earth's center of mass (geocenter) and hâve thus not contributed to defining the ITRF scale nor its origin. The weak ability of GNSS to détermine the terrestrial scale apart from conventional satellite phase center offsets is well understood. On the other hand, their inability to reliably monitor geocenter motion was so far not clearly explained.

We investigated this question from the perspective of collinearity among the parameters of a least-squares régression. A generalized collinearity diagnosis was therefore developed and allows handling several peculiarities of the GNSS geocenter dé termination problem. It revealed that the détermination of ail three components of geocenter motion with GNSS suffers from serious collinearity issues due to the simultaneous estimation of epoch-wise station and satellite clock offsets and of tropospheric parameters in global GNSS data analyses.

Several prospects were finally investigated in view of a possible future contribution of GNSS to the définition of the ITRF scale and origin: the antenna calibration of at least one GNSS satellite, the time invariability of the satellite phase center offsets, the simultaneous analysis of GNSS data collected by ground stations and low Earth orbiting satellites, the modelling of ultra-stable satellite docks and the mitigation of orbit modelling errors.

Keywords: ITRF, GNSS, origin, scale, geocenter, collinearity, multicollinearity, variance inflation factor, corrélation Résumé substantiel La disponibilité d'un système de référence terrestre et de sa réalisation physique, un repère de référence terrestre, est nécessaire à de vastes domaines d'applications qui nécessitent de localiser ou de suivre les mouvements d'objets autour de la Terre. Dans le domaine particulièrement exigeant des sciences de la Terre, le système international de référence terrestre (ITRS) est aujourd'hui largement adopté. Il s'agit d'un repère idéal attaché à la croûte terrestre et défini par son origine (le centre des masses de la Terre ou géocentre), son échelle (cohérente avec la définition SI du mètre) et son orientation. Sa réalisation physique, le repère international de référence terrestre (ITRF) consiste en un jeu de coordonnées pour un ensemble de points géodésiques et de points de référence d'instruments géodésiques.

La détermination des coordonnées ITRF repose actuellement sur les observations de quatre techniques de géodésie spatiale: l'interférométrie à très longue base (VLBI), la télémétrie laser sur satellite (SLR), les systèmes globaux de navigation par satellite (GNSS) et le système de détermination d'orbite et de radiopositionnement intégré par satellite (DORIS). Un point particulièrement crucial de l'élaboration de l'ITRF réside en la définition de son échelle et de son origine. Tandis que l'échelle terrestre peut être en principe déterminée par les quatre techniques contribuant à l'ITRF, seuls le VLBI et le SLR ont jusqu'à présent contribué à la définition de l'échelle de l'ITRF. De la même façon, les trois techniques satellitaires (SLR, GNSS et DORIS) peuvent en principe déterminer la position du centre des masses de la Terre. Mais seul le SLR a jusqu'à présent contribué à définir l'origine de l'ITRF.

La contribution des GNSS à l'ITRF est fondamentale par plusieurs aspects. C'est par les GNSS que sont assurés la dissémination de l'ITRF et le lien entre les trois autres techniques. Les GNSS ont de plus la contribution la plus robuste et précise à la détermination des coordonnées ITRF et de certains paramètres d'orientation de la Terre. La contribution des GNSS à l'ITRF est néanmoins affectée par diverses erreurs systématiques et reste donc perfectible. En particulier, l'information d'origine et d'échelle issue de l'analyse de données GNSS n'a jusqu'à présent pas été jugée assez fiable pour pouvoir contribuer à définir l'origine et l'échelle de l'ITRF. Cette situation a été la motivation principale de cette thèse. Nous avons ainsi chercher à comprendre l'incapacité des GNSS déterminer l'échelle terrestre et la position du géocentre de manière fiable et à proposer des pistes pour améliorer cette détermination.

Le problème fondamental concernant la détermination de l'échelle terrestre par GNSS avait en fait déjà été identifié par [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF] et [START_REF] Zhu | Satellite antenna phase center offsets and scale errors in GPS solutions[END_REF]. Dans une analyse globale de données GNSS, il existe en effet une corrélation quasiment parfaite entre l'échelle terrestre, les biais de centres de phase satellites, les délais troposphériques zénithaux humides et les décalages d'horloges des stations et des satellites. Comme un étalonnage d'antenne n'est disponible pour aucun des satellites actuellement en orbite, cette corrélation quasi-parfaite empêche une détermination fiable de l'échelle terrestre par GNSS indépendamment de biais conventionnels de centres de phase satellites.

En revanche, l'incapacité des GNSS à correctement observer le mouvement du géocentre restait inexpliquée au début de cette thèse. Afin de clarifier cette sit uation, nous avons choisi d'étudier la question sous l'angle de la colinéarité entre paramètres d'un ajustement par moindres carrés. Pour prendre en compte plusieurs particularités du problème de la détermination du géocentre par GNSS, un diagnos tic de colinéarité généralisé, basé sur la notion de facteur d'inflation de la variance (VIF), a ainsi été développé. Il permet d'évaluer et d'expliquer la colinéarité de tout paramètre explicite ou implicite d'une régression par moindres carrés généralisés en présence de contraintes.

Ce diagnostic de colinéarité généralisé a ensuite été appliqué au problème de la détermination du géocentre par SLR. Il a ainsi été mis en évidence que la détermina tion des coordonnées X et Y du géocentre par SLR n'est sujette à aucun problème de colinéarité. Dans des analyses simulées de données SLR, un VIF de l'ordre de 9 a cependant été obtenu pour la coordonnée Z du géocentre. Cette situation de colinéar ité modérée s'explique par une corrélation entre la coordonnée Z du géocentre et les éléments osculateurs des satellites. Elle peut contribuer à expliquer, conjointement avec la répartition inégale des stations SLR, la moindre qualité de la composante Z du mouvement du géocentre observé par SLR comparée à ses composantes X et Y.

Dans des analyses simulées de données GNSS, une situation totalement différente a été mise en évidence par notre diagnostic de colinéarité généralisé. Il a en effet été démontré que les trois coordonnées du géocentre sont extrêmement colinéaires aux autres paramètres estimés dans des analyses globales de données GNSS. Cette situation d'extrême colinéarité explique pourquoi les trois composantes de l'origine de repères terrestres estimés par GNSS correspondent à des quasi-singularités et pourquoi le mouvement du géocentre ne peut être restitué de manière fiable par des analyses GNSS standards.

Parmi les paramètres estimés dans des analyses globales de données GNSS, deux catégories particulières expliquent quasi-entièrement l'extrême colinéarité des coor données du géocentre : les décalages d'horloges des stations et des satellites et les paramètres troposphériques. Il est ainsi possible de conclure que l'incapacité des GNSS, par opposition au SLR, à observer le mouvement du géocentre de manière fiable est due à l'estimation simultanée de décalages d'horloges par époque et de paramètres troposphériques.

Après avoir identifié les causes de l'incapacité des GNSS à déterminer de manière fiable l'échelle terrestre et le mouvement du géocentre, nous avons étudié différentes pistes qui pourraient éventuellement mener à une future contribution des GNSS à la définition de l'échelle et de l'origine de l'ITRF. Premièrement, le problème de l'échelle serait entièrement résolu si l'antenne d'au moins un satellite pouvait être étalonnée indépendamment de toute échelle terrestre conventionnelle. Cela pourrait devenir le cas si les étalonnages d'antenne effectuées pour les satellites Galileo avant leur lancement étaient rendus publics. Une autre possibilité consisterait à étalon ner les antennes des satellites GNSS par rapport aux antennes étalonnées de satel lites bas [START_REF] Haines | One-centimeter orbit détermination for Jason-1: new GPS-based strategies[END_REF]. Cependant, cette méthode est actuellement sujette à d'importantes erreurs systématiques qui restent à comprender et à atténuer.

Mais avant que des étalonnages absolus d'antennes satellites ne deviennent dispo nibles, la stabilité à long terme des biais de centres de phase satellites permet déjà d'envisager une contribution des GNSS à la définition de la dérive d'échelle de l'ITRF.

En supposant l'invariabilité temporelles de ces biais, Collilieux and Schmid (2012) ont en effet montré que les contributions des différents centres d'analyse de l'IGS à l'ITRF2008 pouvaient fournir des estimations intrinsèques de la dérive d'échelle du repère terrestre avec une précision d'environ 0.25 mm/an. La voie d'une contribution des GNSS à la définition de la dérive d'échelle du prochain ITRF2013 est donc ouverte.

En vue d'améliorer la détermination du mouvement du géocentre par GNSS et d'une possible future contribution des GNSS à la définition de l'origine de l'ITRF, deux pistes complémentaires peuvent enfin être envisagées. La première serait d'amé liorer la sensibilité des analyses GNSS aux coordonnées du géocentre en réduisant leur colinéarité. A cet égard, une première piste prometteuse est l'analyse simultanée de données GNSS acquises par des stations terrestres et des satellites bas. L'inclusion d'observations acquises par des satellites bas dans une analyse GNSS permet en effet de décorreler les coordonnées du géocentre des décalages d'horloges satellites.

A l'heure actuelle, cette méthode ne permet cependant pas encore d'obtenir une estimation réaliste du mouvement du géocentre.

Une seconde piste prometteuse pour réduire la colinéarité des coordonnées du géo centre dans les analyses GNSS est la modélisation des décalages d'horloges satellites sous une autre forme que par des paramètres estimés indépendamment à chaque époque d'observation. De telles modélisations sont déjà possibles pour des satellites particuliers équipés d'horloges de dernière génération (G062, GIOVE-B) et seront également applicables à l'ensemble de la future constellation Galileo. Des variations périodiques non modélisées de ces horloges, dues par exemple à des variations de température, pourraient cependant compremettre toute réduction significative de la colinéarité de la composante Z du géocentre par ce biais.

Outre de la diminution des problèmes de colinéarité, une amélioration de la déter mination du géocentre par GNSS peut également être attendue du perfectionnement de la modélisation des orbites des satellites GNSS, et plus particulièrement des forces non-gravitationnelles agissant sur ces satellites. A cet égard, des paramétrisations alternatives ou bien des modèles analytiques précis de ces forces non-gravitationnelles pourraient finir par permettre d'estimer le mouvement du géocentre de façon fiable par GNSS. Mais le meilleur moyen de surmonter les problèmes de modélisation des forces non-gravitationnelles serait probablement d'équiper les futurs satellites GNSS D Collinearity of the Z geocenter coordinate with the osculating él éments of elliptical orbits

Introduction

The availability of a Terrestrial Reference System (TRS) and of its physical realization, a Terrestrial Reference Frame (TRF), is fundamental for a wide range of applications which involve locating or tracking objects around the Earth. In the particularly demanding domain of Earth and space sciences, the International Ter restrial Reference System (ITRS) is nowadays widely adopted. It is an idéal reference System attached to Earth's crust and defined by its origin (the center of mass of the Earth), its scale (given by the SI meter) and its orientation. Its physical realization is the International Terrestrial Reference Frame (ITRF), which consists of coordinates for a set of geodetic markers and reference points of geodetic instruments.

The détermination of the ITRF coordinates currently relies on the observations of four space geodetic techniques: Very Long Baseline Interferometry (VLBI), Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS). A particularly crucial point in the élaboration of the ITRF is the définition of its origin and of its scale. While ail four contributing techniques are in principle sensitive to the terrestrial scale, only VLBI and SLR hâve so far contributed to the définition of the ITRF scale. Similarly, while ail three satellite techniques (SLR, GNSS and DORIS) are in principle sensitive to the location of the Earth's center of mass, only SLR has so far contributed to defining the ITRF origin.

The contribution of GNSS to the ITRF is fundamental in several respects. However, the terrestrial scale and origin information stemming from GNSS data analyses has so far not been considered reliable enough to contribute to the définition of the ITRF scale and origin. For now, GNSS alone could thus not suffice to completely define an accurate TRF. This situation was the main motivation of this thesis. In view of improving it, we therefore sought to investigate and résolve the weak ability of GNSS to détermine the terrestrial scale and the location of the Earth's center of mass.

In Chapter 1, the general context of this work is set and several fundamental notions are introduced.

Chapter 2 provides a detailed description of the GNSS contribution to the ITRF and identifies the current related challenges. Chapter 3 présents the mathematical concepts that were used and developed during this thesis so as to investigate the weak ability of GNSS to détermine the terrestrial scale and the location of the Earth's center of mass. Chapter 4 then provides a detailed understanding of this weak ability. In Chapter 5, several prospects are finally investigated that could eventually lead to a future contribution of GNSS to defining the ITRF origin and scale.

Chapter 1

ITRF, geocenter motion and related challenges

This first chapter is intended to set the overall scene in which the présent thesis took place. It inevitably starts by introducing several fundamental notions (Sect. 1.1), in particular the International Terrestrial Reference Frame (ITRF) whose improvement was the underlying objective of the thesis, and geocenter motion which received a particular focus in our work. To provide insight into the concrète nature of the ITRF, the whole procedure used to build the ITRF from the observations of several geodetic techniques is then detailed in Sect. 1.2. Similarly, the various approaches allowing to estimate geocenter motion from geodetic observations are presented in Sect. 1.3. In Sect. 1.4, the current scientific challenges related to the ITRF are finally summarized.

Fundamental notions

The ability to locate or track objects around the Earth is today fundamental for a wide range of applications. This first concerns the scientific observation of various geophysical processes such as tectonic plate motions, earthquakes, crustal deforma tions of various origins, post-glacial rebound, present-day ice melting or sea-level rise. But this ability is also relevant to other scientific domains such as time transfer and even fundamental physics [START_REF] Antonello | Précision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam[END_REF]. Wide ranges of non-scientific activities are finally concerned including navigation, civil engineering and agriculture.

Another requirement of today's Earth and space science is to accurately monitor the Earth's variable rotation in space. It is in particular essential to the précisé tracking of satellites for, e.g., gravitational studies, to the précisé manoeuvring of interplanetary flights, to the réduction of any astronomical observation and also provides insight into the Earth's internai structure.

Both these requirements could not be met without the availability of a Terrestrial

Reference System (TRS) and of its physical realization, a Terrestrial Reference Frame (TRF). Such a frame indeed matérialisés a System of coordinates in which objects ail around the Earth can be quantitatively positioned and also serves as a représentation of the Earth for describing its motion in space.

This section starts by defining the notions of TRS (Sect. 1.1.1) and TRF (Sect. 1.1.2) introduced by [START_REF] Kovalevsky | Comments on conventional terrestrial and quasiinertial reference Systems[END_REF] and by briefly presenting the Inter national Terrestrial Reference System (ITRS; Sect. 1.1.3) and its realization, the International Terrestrial Reference Frame (ITRF; Sect. 1.1.4). The Earth Orienta tion Parameters (EOPs) used to describe the Earth's variable rotation in space are then defined in Sect. 1.1.5. The concept of geocenter motion is finally introduced in Sect. 1.1.6.

Terrestrial reference System

Since Galileo understood the relative nature of motion, it has been accepted that "motion and position are not absolute concepts and can be described only with re spect to some reference" [START_REF] Kovalevsky | Introduction[END_REF]. In the Newtonian framework, positions, motions and the laws of physics are thus always attached to a refer ence System, i.e. a coordinate System of the 3-dimensional space. To locate or track objects located on the Earth's surface, it is convenient to adopt a particular sort of reference System, called Terrestrial Reference System (TRS) and defined as follows.

According to conventions of the International Earth Rotation and Reference Sys tems Service (IERS; [START_REF] Petit | IERS Conventions[END_REF], a TRS is an Euclidean affine frame (O, E) attached to the solid surface of the Earth and such that:

-its origin O is close to the Earth's center of mass;

-E -(ex, Cy, ez) is a right-handed, orthogonal basis;

-the basis vectors ail hâve the same norm A = ||ex|| = ||ey|| = \\ez\\ which is close to the SI meter;

-the Z axis is the Earth's rotation axis, while the X and Y axes lie in the équatorial plane.

A TRS is thus entirely characterized by its origin, its scale À and the orientation of its basis vectors.

The transformation from one TRS to another is therefore a 3-dimensional similarity which can be written:

x2 = x1 + T + knx1 (î.i)
where:

-Xi and X2 are the coordinates of a point M in two different TRS;

-T = [tx,tY, t'z]1 is the translation vector between both TRS origins;

-k is the ratio between both TRS scales;

-R is the rotation matrix between both TRS orientations.

Geodetic TRS are usually close enough to each other so that a linearized similarity transformation can be used: Note that the transformation between two TRS is generally function of time, so as to reflect the temporal variations between their origins, scales and orientations.

Terrestrial reference frame

Thus defined, a TRS is an idéal mathematical concept and cannot serve to quantify the position or motion of an object nor the orientation of the Earth without a physical realization. Such a realization is generally achieved by a given set of physical points precisely located in the TRS coordinate System. The realization of a TRS through such a set of reference coordinates is called a Terrestrial Reference Frame (TRF). Locating an object in a TRS is actually achieved by positioning this object relatively to the TRF points. These points are usually geodetic markers attached to the Earth's crust or the reference points of geodetic instruments. Their coordinates are determined from the statistical adjustment of geodetic observations and are thus associated with statistical information, i.e. a covariance matrix which reflects the précision of the adjusted coordinates. 

Magnitude

Co-seismic displacements Nearly instantaneous Up to several m ble 1.1). So that a TRF remains usable with a certain accuracy over a certain time span, it is necessary that the reference coordinates of the TRF points reflect these geophysical deformations, at least down to a certain magnitude. Real or apparent displacements of the reference points due to non-geophysical causes (i.e. disconti nuités due to monumentation or instrumentation changes) need to be taken into account as well. The reference coordinates of a TRF point are thus function of time, with the following generic form:

X{t) = XR(t) + '£iÔXi(t) (1.3) i where:

-the SXi(t) are conventionally computed displacements that account for certain well modeled geophysical deformations;

-XR(t) are so-called regularized coordinates, i.e. the part of the reference coor dinates which is actually determined from geodetic observations.

The conventional corrections 6Xi(t) recommended by the IERS currently include solid Earth tides, tidal océan loading deformations, Si and S2 atmospheric pressure loading deformations, rotational deformations due to polar motion and océan pôle tide loading deformations.

Until now, the regularized coordinates of TRF points hâve traditionally been represented as piecewise linear functions. This parameterization accounts for longterm linear displacements and for instantaneous position/velocity changes of the reference points. On the other hand, it does not handle non-conventional, non-linear displacements such as non-linear non-tidal loading deformations and can only crudely approximate post-seismic relaxation.

The more and more demanding requirements for TRF accuracy make it nowadays important to consider alternative parameterizations capable of representing such non-linear displacements. One possibility in that sense is to adopt more complex parametric models for regularized coordinates. [START_REF] Collilieux | Analyse des séries temporelles de positions des stations de géodésie spatiale : application au Repère International de Référence Terrestre (ITRF)[END_REF] and Altamimi et al. (2013) thus propose to augment the traditional piecewise linear parameterization with sines and cosines at various periods to account for periodic non-tidal loading deformations, while [START_REF] Lercier | Assessment of parametric post-seismic models in reference frame détermination[END_REF] introduce exponential and/or logarithmic functions to account for post-seismic relaxation.

Another, more radical possibility is to model regularized coordinates by a sériés of coordinates XR(ti) valid over short successive time intervals and obtained from independent epoch-wise adjustments [START_REF] Blossfeld | Non-linear station motions in epoch and multi-year reference frames[END_REF] or from a sequential adjustment (Wu et al., 2012a) of geodetic observations.

The International Terrestrial Reference System

The International Terrestrial Reference System (ITRS) is a particular TRS formally adopted by the International Association of Geodesy (IAG) since 1991 and by the International Union of Geodesy and Geophysics (IUGG) since 2007. It is defined by the following conventions:

-the ITRS origin is the center of mass for the whole Earth, including océans and atmosphère;

-the ITRS length unit (scale) is the SI meter;

-the ITRS orientation at epoch 1984.0 is that of the Bureau International de l'Heure (BIH) reference System;

-the time évolution of the ITRS orientation is defined by a no-net-rotation con dition over the whole Earth's crust.

1.1.4

The International Terrestrial Reference Frame

Since 1988, the IERS has produced twelve realizations of the ITRS called Interna tional Terrestrial Reference Frames (ITRF). The ITRS realization currently in use is the ITRF2008 (Altamimi et al., 2011). A new realization called ITRF2013 is now under préparation.

Since the sixth ITRS realization (ITRF94; [START_REF] Boucher | Global distortion of GPS networks associated with satellite antenna model errors[END_REF], the ITRF reg ularized coordinates hâve been represented by piecewise linear functions. An ITRF thus consists of positions and velocities for a set of geodetic markers and reference points of geodetic instruments, as well as of the associated covariance matrix. But note that daily sériés of Earth Orientation Parameters (Sect. 1.1.5) are also part of the ITRS realizations since the penultimate ITRF2005 (Altamimi et al., 2007).

Since the ITRF94, the ITRF coordinates are determined from the observations of four space geodetic techniques1:

-Very Long Baseline Interferometry (VLBI);

-Satellite Laser Ranging (SLR);

-Global Navigation Satellite Systems (GNSS);

-Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS).

A brief description of these techniques is given in Sect. 1.2.1.

The strategy for determining the ITRF coordinates from these geodetic observa tions has considerably evolved over time. The computation strategy used for the latest ITRF release is described in Sect. 1.2.

Earth orientation parameters

The celestial counterpart of the ITRS is the International Celestial Reference System (ICRS). It is an idéal coordinate System with its origin at the barycenter of the solar System and whose axes hâve a fixed orientation with respect to distant celestial objects. The ICRS is realized by the International Celestial Reference Frame (ICRF),

i.e. a set of extragalactic objects with reference coordinates. The ICRS/ICRF serve as reference to locate or track celestial objects. However, for the purpose of determining the orbits of Earth satellites, it is more convenient to use a translated version of the ICRS, the Geocentric Celestial Reference System (GCRS), which has the same origin as the ITRS, i.e. close to the Earth's center of mass.

Monitoring the Earth's rotation concretely cornes to knowing the relative orien tation between the axes of the ITRS and those of the GCRS. According to the IERS Conventions [START_REF] Petit | IERS Conventions[END_REF], the rotation from the ITRS to the GCRS at time t is conventionally decomposed into a sequence of three rotation matrices:

XGCRs(t) = Q(t)R(t)W (t)XITRS(t) (1.4)
where:

-Q(t) accounts for precession and nutation, i.e. motion of the Earth's rotation axis in the GCRS (in space). Q(t) dépends on the pôle coordinates in the GCRS Tunar Laser Ranging (LLR) observations were additionally used to détermine the ITRF2000 (Altamimi et al., 2002).

(celestial pôle coordinates) X(t) and Y(t). These coordinates are the sum of conventional pôle coordinates derived from the IAU 2006 precession-nutation model [START_REF] Wallace | Precession-nutation procedures consistent with IAU 2006 resolutions[END_REF] and of small corrections SX (t) and 6Y(t) The latest ITRF realizations hâve included a subset of three EOPs, namely DUTl{t), xp(t) and yp(t), represented by daily offsets at noon and daily rates. In the following, we will only consider the same three EOPs with the same parameterization as in the ITRF. The term EOPs will thus refer to daily pôle coordinates xp and yp at noon, daily pôle rates xp and ÿp, daily DUT1 offsets and daily values of the length of day LOD, i.e. the opposite of DUTVs rate integrated over one day.

1.1.6

Geocenter motion

Let CM dénoté the center of mass of the whole Earth System (i.e. of the solid Earth and its fluid envelopes) and CF dénoté the center of figure of the solid Earth's surface.

Geocenter motion is usually defined, with varying sign conventions, as the relative motion between CM and CF. Following Wu et al. (2012b), we define it here as the motion of CM with respect to CF and dénoté it AvCm/cf-Informally speaking, geocenter motion can be seen as the net displacement of the Earth system's mass with respect to the Earth's crust. The geophysical cause of geocenter motion is the permanent redistribution of masses within the Earth System, from daily and sub-daily periods (e.g. océan tides) to secular time scales (e.g. post-glacial rebound, present-day ice melting) via seasonal and inter-annual periods (e.g. water mass exchanges).

As discussed by [START_REF] Dong | Origin of the International Terrestrial Reference Frame[END_REF], geocenter motion has direct conséquences on the nature of the ITRF origin. While the IERS Conventions stipulate that the ITRF origin should coincide with CM, this is currently not the case at ail time scales.

Firstly, geocenter motion induced by océan tides is in principle correctly represented as part of the conventionally modelled station displacements recommended by the IERS. Secondly, long-term geocenter motion can be accounted for by the ITRF sta tion velocities, so that there should in principle be no offset nor drift between the ITRF origin and CM. But finally, non-conventionally modeled, non-linear geocenter motion can currently not be accounted for by the ITRF coordinates due to their linear parameterization. Against the conventional définition of the ITRF origin, there consequently exist non-linear variations between the ITRF origin and CM, that mostly consist of an annual signal with an amplitude of a few mm.

However, as detailed by Wu et al. (2012b), some stringent geodetic applications, like the monitoring of surface mass transport by GRACE or the précisé orbit détermi nation of, e.g., altimetry satellites, cannot simply ignore this part of geocenter motion not captured in the ITRF coordinates. The IERS is therefore currently considering the adoption of a conventional model for the annual part of geocenter motion. But another solution to handle non-conventionally modeled, non-linear geocenter motion is to refine the parameterization of the ITRF station coordinates. If the current piecewise linear parameterization is augmented with annual periodic terms (as planned for the next ITRF2013), then the annual part of geocenter motion could for instance be directly accounted for by the ITRF coordinates. In a TRF where regularized station coordinates would be represented by discrète time sériés (as investigated by Wu et al. (2012a) or [START_REF] Blossfeld | Non-linear station motions in epoch and multi-year reference frames[END_REF]), geocenter motion could even be handled at ail time scales, so that the TRF origin could coincide with CM at ail times.

Practical computation of the ITRF

This section aims at describing the complété procedure that was used to build the latest ITRF release (ITRF2008) starting from the observations of the four contributing techniques. This procedure involved four main steps:

-analysis of the observations of each technique by several Analysis Centers (ACs) on a weekly or daily basis;

-combination of the AC solutions of each technique on a weekly or daily basis;

-stacking of the combined solutions of each technique into long-term linear frames (i.e. détermination of regularized station coordinates as piece-wise linear functions in technique-specific terrestrial reference frames);

-combination of the technique long-term frames together with local ties.

After brief présentations of the four contributing techniques (Sect. 1.2.1), this section describes the four steps of the ITRF computation procedure (Sect. 1.2.2 to 1.2.5). A spécial emphasis is finally put on the origin and the scale of the ITRF, their définition and their importance (Sect. 1.2.6).

Contributing techniques

The Very Long Baseline Interferometry (VLBI) technique relies on the simultaneous collection, by several radio-télescopes, of the signal emitted by an astronomical radiosource such as a quasar (quasi-stellar radio-source). Correlating the collected signais allows to détermine the time différences between their arrivais at the different téle scopes and hence the geometry of the telescope network. Moreover, the observation of several radio-sources allows to détermine the orientation of the telescope network relatively to the sources, i.e. to détermine the Earth Orientation Parameters.

Unlike VLBI, the three other techniques contributing to the ITRF rely on satel lite tracking data. In the case of Satellite Laser Ranging (SLR), a global network of ground stations send ultra-short laser puises to satellites equipped with retroreflectors and then collect the reflected signais. Measures of the signal travel times thus provide a set of précisé station-satellite ranges from which the satellite orbits can be determined together with the ground station coordinates and a subset of Earth Orientation Parameters.

Similarly to SLR, the contribution of Global Navigation Satellite Systems (GNSS) 

Analysis

International services of the IAG (the IVS, ILRS, IGS and IDS respectively for VLBI, SLR, GNSS and DORIS) are in charge of collecting and providing data from the four techniques contributing to the ITRF. Each of the services comprises several Analysis Centers (ACs) whose rôle is to dérivé geodetic products from the data. On the basis of a given time period (e.g. one week, one day or one VLBI session), an AC concretely gathers a set of observations l and estimâtes a set of parameters x that best fits these observations. The adjusted parameters include:

-the coordinates of the observing stations;

-parameters describing the satellite orbits for SLR, GNSS and DORIS;

-the coordinates of the observed quasars for VLBI;

-ail or a subset of the Earth Orientation Parameters;

-parameters describing the tropospheric delays of the propagated signais;

-other technique-specific biases such as SLR station range biases, GNSS sta tion and satellite clock offsets, GNSS phase cycle ambiguities, DORIS beacon frequency offsets... ACs may use various parameter adjustment methods, such as the widely employed generalized least-squares régression (Sect. B.l), that ail lead to a so-called normal équation:

N(x -x0) = b (1.5)
where Xo is a set of a priori parameters. It is possible to reduce spécifie parameters from such a normal équation so as to retain a subset of parameters of interest only (Sect. B.3.1). In their contributions to the ITRF, the ACs thus reduce ail parameters but the station coordinates and the EOPs, so that we will now consider that x contains only those parameters.

None of the geodetic techniques provides enough information to unambiguously estimate station coordinates and EOPs. This translates to the fact that the normal matrix N is singular so that the normal équation has an infinité number of solutions.

The singularities inhérent to the four contributing techniques are the following:

-None of the four techniques is able to détermine the orientation of the station network with respect to the crust simultaneously with the EOPs. The pôle co ordinates and DU Tl are indeed not intrinsic quantities, but completely dépend on the orientation of the terrestrial frame realized by the station coordinates.

In other words, any rotation of the station network can be compensated by variations of the EOPs without any impact on the geodetic observations. The normal matrices of ail techniques therefore hâve three orientation singularities.

-As an interferometric technique, VLBI is additionally insensitive to the origin of the terrestrial frame. Translating the whole station network would indeed not change the réception time différences of the quasar signais at the different télescopes. A VLBI normal matrix thus has three origin singularities.

-The three satellite techniques (SLR, GNSS and DORIS), even if the orientation of the station network is fixed, are insensitive to DUT1. A variation of DUT1 can indeed be compensated by a rotation of the whole satellite constellation (through variations of the reduced orbital parameters) without affecting satellite tracking observations. SLR, GNSS and DORIS normal matrices consequently hâve one DUT1 singularity.

To obtain a unique solution from the normal équation, ACs consequently need to impose some additional constraints to the estimated parameters. ACs may use different kind of constraints, for instance minimal constraints (Sect. B.2.3). But, provided that the constraints are applied as pseudo-observations (Sect. B.2.1) with respect to the a priori parameters and that they compensate ail singularities of the normal matrix, any kind of constraints results into a constrained normal équation:

(N + Nc){x-x0) = b (1.6)
where Nc is the normal matrix of constraints and N H-Nc is invertible. Such a constrained normal équation leads to a unique solution:

x = Xq -(-(iV Nc) 1b

(1.7)

The covariance matrix associated with the estimated parameters x is:

Q = (N + NC)~1 (1.8)
The AC contributions to the ITRF concretely consist in weekly, daily or VLBIsession-wise time sériés of either non-constrained normal équations (i.e. ccq, N and b) or constrained solutions (i.e. cc0, x, Nc and Q) provided in the SINEX format2.

It is possible, from a constrained solution, to recover the non-constrained normal équation by: A third possible type of AC contributions consist in minimally constrained solutions, in which case ACs may only provide x and Q, but not necessarily the constraints Nc they applied.

Intra-technique combination

Each of the geodetic technique services also comprises a combination center whose rôle is to merge the solutions provided by the various ACs into unique combined solutions. These intra-technique combinations are performed on the same time basis as the analysis (i.e. one week, one day or one VLBI session) and essentially consist in a weighted averaging of the AC solutions. The intra-technique combinations can either be described as combinations of normal équations or as combinations of so lutions. Both approaches are often opposed (e.g. [START_REF] Seitz | The 2008 DGFI realization of the ITRS: DTRF2008[END_REF], but are in fact strictly équivalent under a few mild conditions. We describe here the intra-technique combination methodology as a combination of solutions.

Suppose that data from one geodetic technique hâve been analysed by several ACs over the same time span so that we dispose of a set of s SINEX files containing either non-constrained normal équations, constrained solutions with information about the applied constraints or minimally constrained solutions. By removing the possibly applied constraints using Eq. 1.9 and inverting the non-constrained normal équations using minimal constraints, it is possible to bring ail AC contributions to minimally constrained solutions. So we will now assume to dispose of a set of s minimally constrained solutions {x\ Ql)\<i<s 3.

Each set of parameters x1 is composed of station positions and of Earth Orienta tion Parameters. In the formalism of the combination of solutions, the x1 are used as pseudo-observations to estimate combined station positions and combined EOPs via the following observation équations (Altamimi et al., 2004): 3Combining minimally constrained solutions is in fact the first condition for the équivalence with the combination of normal équations.

(1.9) -0l is a vector containing the transformation parameters between the input so lution i and the combined solution;

-A1 = dxl/dOl. For instance, if xl is made of 3k station coordinates followed by 6 EOPs (xl = [Xu Yu Zu ...,Xk,Ffc,Zk,xp,yp. DUT1,xp,ÿp, LOD]T) and if ail seven transformation parameters are set up for the input solution i (67 =

[txityi rlx, ry, rz]T), then A1 has the following form:

1 0 0 Ai 0 Al -F! 0 1 0 Fl -Al 0 X\ 0 0 1 Zi Fi -A 0 1 0 0 Xk 0 zk -Yk 0 1 0 Yk -Zk 0 Xk 0 0 1 zk Yk -xk 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 -1 // 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Although this is clearly not the case since common data are processed by the various ACs, the pseudo-observation sets (ccl)i<z<s are generally assumed to be statistically independent. The covariance matrix associated with the whole set of pseudo observations is therefore taken as a block-diagonal matrix with blocks (XQl)i<i<s.

The Al's are AC-dependent scaling factors required because (a) the AC covariance matrices are not consistently scaled with each other (due to the different software and strategies used) and (b) the AC solutions may be of different qualities. The Àns need to be initialized with some a priori knowledge. They are then iteratively updated using some variance component estimation technique, usually the so-called degree of freedom estimator technique [START_REF] Sillard | Modélisation des systèmes de référence terrestres. PhD thesis, Ob servatoire de Paris Sillard P, Boucher C[END_REF][START_REF] Bahr | Variance component estimation for combination of terrestrial reference frames[END_REF].

The observation équations 1.11 and the block-diagonal covariance matrix described above form a generalized least-squares System. Because possible outliers in the input AC solutions need to be detected and removed and because the AC scal ing factors need to be iteratively estimated, this System has to be iteratively solved until no outliers remain and the AC scaling factors hâve converged.

Provided that minimally constrained solutions are combined and that only the We describe here the long-term stacking methodology as a stacking of solutions.

Say that we dispose, for a given technique, of a time sériés of s minimally con strained solutions (x\ Ql)i<i<s, each referred to a spécifie epoch tl (e.g. the middle of the analysis week). Although EOPs are included in the technique long-term frames since the ITRF2005 (Altamimi et al., 2007), we suppose here, for the sake of simplicity, that the parameter sets (aeî)i<i<.s are restricted to station positions only.

Stacking these solutions into a long-term frame consists in taking the ad's as pseudo observations to estimate the station positions at some reference epoch tref together

with the station velocities. The corresponding observation équations are as follows:

IX* = Xc+(ti -tTe*)Xc +t i x +éXc-ri zYc +r)rZc

Y1 = Yc + {f-tref)Ÿc + tiY + diYc + rizXc-rixZc (1.13) Z* = Ze+{ti-tref)Zc + tiz + d*Zc-r{'Xc + r)cYc
where:

-X\Y\ Z1 dénoté the coordinates of a particular station in the input solution z;

-Xe, Yc, Zc dénoté the coordinates of the same station in the stacked solution at the epoch tref ;

-Xe, Yc, Zc dénoté the velocity of the same station in the stacked solution;

-tx, ty, tlz, d\ rx, rlY, rlz dénoté seven optional transformation parameters (three translations, one scale factor and three rotations) between the terrestrial frame realized by the input solution i and the stacked terrestrial frame.

These observation équations can be put in the following matrix form: 1 -xc and xc respectively contain the station positions at tref and the station velocities in the stacked frame;

-J1 = dxl/dxc is a matrix of ones and zéros which associâtes each parameter in xl to the corresponding parameter in xc\ -0l is a vector containing the transformation parameters between the input so lution i and the combined solution;

-A1 = dxl/dOl has the same form as in Eq. 1.12 -except for the EOP part -if ail seven transformation parameters are set up for the input solution i.

Like in the intra-technique combination, the pseudo-observation sets (xl)i<*<5 are assumed to be independent, so that the covariance matrix associated with the whole set of pseudo-observations is taken as a block-diagonal matrix with blocks {Ql)i<i<s-(No scaling factors are needed here provided that the input solutions were obtained with a homogeneous combination strategy.) The observation équations 1.14 and this block-diagonal covariance matrix form a generalized least-squares System which is iteratively solved until no outlier remain in the input solutions.

Depending on which transformation parameters are set up, the stacked normal équation may hâve some number of singularities. For example, if X translations are set up for ail input solutions, the resulting stacked normal équation will hâve one "translation singularity" (adding some constant to the X coordinates of ail stations can be compensated by subtracting this constant to ail X translation parameters) as well as one "translation rate singularity" (adding some constant to the X velocities of ail stations can be compensated by subtracting a trend from the time sériés of X translation parameters). The stacked normal équation may thus hâve up to fourteen singularities in case where ail seven transformation parameters are set up for ail input solutions.

Each of these fourteen singularities can be cancelled by means of two different kinds of constraints. For instance, in the case where three translation parameters are set up for ail input solutions, the six subséquent singularities can first be compensated by imposing no-net-translation and no-net-translation-rate constraints (Sect. B.2.5) between the stacked frame and some external reference frame. The other alternative is to use so-called internai constraints (Altamimi et al., 2006), i.e. to impose that the time sériés of transformation parameters between the input solutions and the combined solution hâve zéro means and zéro drifts. For instance, to compensate the two singularities due to the estimation of X translations for ail input solutions, the internai constraint équations would read:

£4 = o *=1 j2(t* -tre/)t'x = o i-1
(1.15)

Inter-technique combination

The final step in the élaboration of the ITRF is to merge the four technique-specific long-term frames into a unique multi-technique frame, the ITRF itself. This step is also performed by the IERS ITRS Centre and can again be equivalently described -under certain conditions -as a combination of solutions or as a combination of normal équations. In the formalism of the combination of solutions, the station positions and velocities from the four technique-specific long-term frames are taken as pseudo-observations to estimate the station positions and velocities in the ITRF.

Up to fourteen transformation parameters (three translations, one scale factor, three rotations and ail their rates) may also be estimated between each of the techniquespecific solutions and the combined solution. If any of these fourteen parameters is estimated for ail of the technique-specific solutions, then one singularity arises in the combined normal équation and needs to be compensated by some constraint.

As the technique-specific frames do not share common points, additional infor mation has to be brought in order to tie them into a unique frame. That is where sites hosting instruments from several of the four techniques corne into play. Local tie surveys are occasionally performed at such co-location sites, providing informa tion about the relative positions of the reference points of the various instruments within the site. These local ties are thus included as pseudo-observations in the ITRF inter-technique combination. Moreover, ail instruments within one co-location site can reasonably be assumed to hâve the same velocity, so that velocity equality constraints can be additionally included in the ITRF inter-technique combination.

Local ties and velocity equality constraints at co-location sites are currently the only information allowing to tie the technique-specific frames into a unique common frame and hâve therefore a primordial importance in the ITRF élaboration. Although this importance has been constantly stressed over the past years, the distribution and quality of local ties, but also the quality of the geodetic stations at co-location sites still remain a major limiting factor of the ITRF accuracy (Altamimi et al., 2011).

ITRF datum définition

An especially important aspect of the ITRF élaboration is the définition of its origin, its scale and its orientation (i.e. its datum), so that they best meet the ITRS spécifi cations (Sect. 1.1.3). This section describes the strategy that was used to define the ITRF2008 datum, i.e. which transformation parameters were estimated and which constraints were applied

ITRF orientation définition

The ITRF orientation is the least crucial part of its datum définition as it is only a matter of convention: as stated in Sect. 1.2.2, none of the four techniques is indeed able to provide any absolute orientation information.

During the ITRF2008 inter-technique combination, rotation and rotation rate pa rameters were thus estimated for ail the four techniques, while no-net-rotation and no-net-rotation-rate constraints were simply applied with respect to the previous ITRF2005 via a subset of high quality geodetic stations.

ITRF origin définition

The définition of the ITRF origin is much more crucial.

As stated in Sect. 1.1.6, with the current parameterization of the ITRF station coordinates, the ITRF origin cannot coincide with the center of mass of the Earth (CM) at ail time scales, but can only linearly follow CM. This linear following of CM is nevertheless critical for the observation of long-term geophysical processes such as sea-level rise [START_REF] Beckley | A reassessment of global and régional mean sea level trends from TOPEX and Jason-1 altimetry based on revised reference frame and orbits[END_REF]Collilieux et al., 2011), post-glacial rebound or present-day ice melting.

In principle, ail three satellite techniques contributing to the ITRF could serve to define its origin. In the analysis of SLR, GNSS and DORIS data, the orbits of the tracked satellites are indeed represented by differential motion équations that only hold in a CM-centred frame (i.e. no degree-1 Stokes coefficients are included). The daily or weekly frames resulting from the analysis of SLR, GNSS and DORIS data should thus hâve CM as their natural origin. However, the analysis of the technique solutions provided for the ITRF2008 revealed that the origin information from the GNSS and DORIS solutions was of much lower quality than the origin information coming from SLR [START_REF] Collilieux | Impact of loading effects on détermination of the International Terrestrial Reference Frame[END_REF]Altamimi et al., 2011;Collilieux et al., 2011;[START_REF] Valette | IDS contribution to ITRF2008[END_REF]. Only the origin information from the input SLR solutions was therefore used to define the origin of the ITRF2008.

Concretely, during the ITRF2008 inter-technique combination, translation and translation-rate parameters were estimated for the VLBI, GNSS and DORIS solu tions, but not for the SLR solution. The ITRF2008 thus inherited the origin and the origin rate of the stacked SLR frame. Previously, during the long-term stacking of the weekly combined SLR solutions into the stacked SLR frame, translation parameters had been estimated for each of the weekly solutions and internai constraints had been used to define the origin and the origin rate of the stacked SLR frame.

There is consequently no offset nor drift in the time sériés of translations between the weekly combined SLR solutions and the ITRF2008, which is a way to ensure that the ITRF2008 origin linearly follows the CM sensed by SLR.

ITRF scale définition Like the définition of its origin, the définition of the ITRF scale is critical for the observation of long-term geophysical processes, especially sea-level rise using GPS-corrected tide-gauge records. Ail the four contributing techniques are in principle sensitive to the terrestrial scale. But only the scale information coming from the SLR and VLBI solutions was retained for the ITRF2008. During the stacking of the combined SLR and VLBI solutions, scale factors were estimated and internai constraints were used to define the scales and scale rates of the stacked SLR and VLBI frames. Then, during the inter-technique combination, scale and scale rate parameters were estimated for ail of the four technique-specific solutions.

The mean of the SLR and VLBI scale parameters was constrained to zéro, so that the ITRF2008 scale is finally a mean of the terrestrial scales sensed by SLR and VLBI. The scale rate of ITRF2008 was defined in the same way, as a mean of the scale rates sensed by SLR and VLBI.

Geocenter motion estimation

This section first aims at describing the different methods with which geocenter mo tion can be estimated from geodetic observations, namely the network shift approach (Sect. 1.3.1), the degree-1 deformation approach (Sect. 1.3.2) and Lavallée et al.

(2006)'s unified approach (Sect. 1.3.3). The current status of the geodetic estimation of geocenter motion is then summarized in Sect. 1.3.4.

Network shift approach

As explained in Sect. 1.2.6, the analysis of satellite tracking data for some given period gives in theory access to the tracking station coordinates in CM-centred frames. Daily or weekly SLR, GNSS and DORIS solutions should thus hâve the quasi-instantaneous CM as their origins. On the other hand, as explained in Sect. 1.1.6, the origin of a long-term linear frame such as the ITRF only linearly follows CM. The net trans lations between quasi-instantaneous SLR, GNSS or DORIS frames and the ITRF should therefore reflect the non-linear part of geocenter motion [START_REF] Dong | Origin of the International Terrestrial Reference Frame[END_REF][START_REF] Collilieux | Effect of the satel lite laser ranging network distribution on geocenter motion estimation[END_REF]. This way of estimating non-linear geocenter motion as net translations between quasi-instantaneous frames and a long-term linear frame is often called network shift approach.

Because the whole Earth's crust is not uniformly covered with geodetic stations, the center of figure CF of the solid Earth's surface is in fact not accessible with the network shift approach. Rather than providing estimâtes of the CM/CF offset, this approach in fact leads to estimâtes of the offset between CM and the so-called center of network CN, i.e. the barycenter of the station network. Because of their nonuniform distribution and of the local motions affecting the tracking stations, relative motion occurs between CN and CF. This spurious contribution to geocenter motion estimated with the network shift approach is known as network effect [START_REF] Collilieux | Effect of the satel lite laser ranging network distribution on geocenter motion estimation[END_REF].

The observation équations of the network shift approach are the following: (1.16) -X,Y, Z dénoté the coordinates of a given station in the quasi-instantaneous frame;

-XR,YR: ZR dénoté the ITRF coordinates of the same station (propagated at the epoch of the quasi-instantaneous frame);

-tx-ty.tz are three translation parameters between the quasi-instantaneous frame and the ITRF representing the CN-CM offset;

-rx,rY,rz are three rotation parameters between the quasi-instantaneous frame and the ITRF representing the différence between the conventional orientations of both frames;

-d is an optional scale factor between the quasi-instantaneous frame and the ITRF, which, according to [START_REF] Lavallée | Geocenter motions from GPS: a unified observation model[END_REF] or [START_REF] Collilieux | Strategies to mitigate aliasing of loading signais while estimating GPS frame parameters[END_REF], should preferably not be estimated so as to mitigate the network effect.

Degree-1 deformation approach

The part of geocenter motion which is neither conventionally modelled nor accounted for by the ITRF station velocities (i.e. between daily and secular time scales) is ex-pected to be mostly due to the redistribution of mass within the Earth's fluid envelopes. Such surface mass redistributions not only induce geocenter motion, but also cause variations in the pressure exerted on the Earth's crust, hence elastic deformations of the Earth known as loading deformations.

According to the theory of the surface loading deformations of a spherical, nonrotating, elastic, isotropie Earth developed by [START_REF] Farrell | Deformation of the earth by surface loads[END_REF], the response of the Earth to some surface load is proportionally dépendent on the applied load in the spherical harmonie domain. The proportionality coefficients relating the radial and tangential deformations of the solid Earth's surface to the load are the so-called load

Love numbers which dépend on assumed rheological properties of the Earth. More precisely, let us consider a latitude-and longitude-dependent surface load a(0, A) expressed in kg/m2. This surface load can be decomposed as follows on a basis of spherical harmonie functions:

where:

+oo l <*(<!>< A) = XTZ (aï'mYlCm{<t>, A) + A)) 1=0 m=0
(1.17)

-Y* and Yt% are spherical harmonie functions here defined by: -the crf7m's and <r^m's are the spherical harmonie coefficients of the load.

According to [START_REF] Farrell | Deformation of the earth by surface loads[END_REF]'s theory, the deformation of the solid Earth's surface induced by such a load a(cf), A) can be written: [START_REF] Montgomery | Introduction to linear régression anal ysis[END_REF] where:
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-dE(<f>, A), dN((f), A), dU(<j>, À) respectively dénoté the East, North and vertical displacements (in m) of the Earth's surface point located at latitude (f) and longitude A;

-h\ and l\ are respectively the radial and tangential load Love numbers of degree l, which, for degree 1, dépend on the frame in which the Earth's surface deformations should be expressed [START_REF] Blewitt | Self-consistency in reference frames, geocenter définition, and sur face loading of the solid Earth[END_REF];

-pe dénotés the mean Earth density expressed in kg/m3.

On the other hand, it can be shown by surface intégration [START_REF] Trupin | Effect of melting glaciers on the Earth's rotation and gravitational field: 1965-1984[END_REF][START_REF] Lavallée | Geocenter motions from GPS: a unified observation model[END_REF] -Xfii Yr-, Zr dénoté the coordinates of the same station in some long-term linear frame, propagated at the epoch of the quasi-instantaneous frame;

-the coordinate différences X -Xr, Y -YR, Z -ZR constitute the inverted deformation field, in which long-term deformations due to e.g. plate tectonic motion and post-glacial rebound are supposedly removed, so that only nonlinear deformations assumed to be loading-induced remain;

-tx,tY,tz are three translation parameters between the quasi-instantaneous frame and the long-term frame. Their estimation ensures that the remaining deforma tions are expressed in a CF-centred frame, which is why CF-consistent degree-1 load Love numbers are used in the observation équations;

-rx,rY,rz are three rotation parameters between the quasi-instantaneous frame and the long-term frame representing the différence between the conventional orientations of both frames;

-4> and À dénoté the latitude and longitude of the station;

-sin A cos A 0 -sin cf) cos À -sin (j) sin A cos <t> is the rotation matrix from the geo COS (j) cos À cos (j) sin A sin cf) centric frame to the station topocentric (East, North, Up) frame;

-Imax is the truncation degree up to which the surface load coefficients are estimated;

-the estimated degree-1 load coefficients can converted into geo center motion using Eq. 1.23.

Unified approach

Both previously presented geocenter estimation approaches make use of distinct in formation. The information used in the network shift approach is the realization of CM stemming from the satellite motion équations. On the other hand, this informa tion is cancelled in the degree-1 deformation approach because of the estimation of "nuisance" translation parameters. The degree-1 deformation approach thus entirely relies on independent information, i.e. non-translational deformations. The main différence with the degree-1 deformation observation équations is that no translation parameters are estimated, so that the realization of CM by orbit dynamics is conserved and that loading deformations are modelled in a supposedly CM-centred frame, which is why CM-consistent degree-1 load Love numbers are used.

Current status

The geodetic estimation of geocenter motion, especially of its annual part, has considerably improved in the past few years. The basic degree-1 deformation approach described in Sect. 1.3.2 has in particular evolved towards global inversion approaches that incorporate GRACE and océan bottom pressure data in addition to GPS-sensed crust deformations [START_REF] Davis | Climate-driven defor mation of the solid earth from GRACE and GPS[END_REF][START_REF] Wu | Seasonal and interannual global surface mass variations from multisatellite geodetic data[END_REF][START_REF] Jansen | The impact of GRACE, GPS and OBP data on estimâtes of global mass redistribution[END_REF][START_REF] Rietbroek | Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS data[END_REF] and the annual geocenter motions obtained from such recent global inversions are now in excellent agreement [START_REF] Ries | Annual geocenter motion from space geodesy and models[END_REF].

The annual geocenter motion estimated from SLR solutions using the network shift approach is also in good agreement with global inversion results, although the latest SLR-only-derived amplitudes of the X and Z annual geocenter signais are consistently larger than global-inversion-derived amplitudes [START_REF] Ries | Annual geocenter motion from space geodesy and models[END_REF]. But, according to [START_REF] Wu | Direct détermination of geocenter motion by combining SLR, VLBI, GNSS, and DORIS time sériés[END_REF], this last point of disagreement is understood -it would be due to the uneven distribution of SLR stations and the subséquent network effect in the SLR network shift results -and can be resolved by the sequential adjustment of SLR frames with VLBI, GNSS and DORIS frames, as presented by Wu et al. (2012a).

The fact that two independent methods agréé tends to prove that the annual geocenter motion is now correctly observed, so that a conventional annual geocenter motion model could soon be adopted by the IERS. This also opens bright perspectives for the observation of possible sub-annual and/or inter-annual geocenter motions.

On the other hand, the situation is not as bright as regards the network shift estimation of geocenter motion from DORIS and GNSS solutions. Although DORIS-derived geocenter time sériés recently benefited from tremendous improvements (Gobinddass et al., 2009a,b), they remain much noisier than SLR-derived time sériés and affected by systematic errors, especially in the Z component [START_REF] Collilieux | Impact of loading effects on détermination of the International Terrestrial Reference Frame[END_REF]Altamimi et al., 2011;[START_REF] Valette | IDS contribution to ITRF2008[END_REF]. GNSS as well hâve so far not proven able to reliably observe geocenter motion with the network shift approach (see Sect. 2.4 and Collilieux et al., 2011) although they benefit from many more satellites and a much denser tracking network than SLR. In other words, the realization of CM by orbit dynamics is not as reliable in GNSS and DORIS solutions as in SLR solutions and that is why neither DORIS nor GNSS did contribute to defining the origin of ITRF2008.

Today's challenges for the ITRF

As mentioned in Sect. 1.1, the availability of a Terrestrial Reference Frame is fundamental for a wide range of scientific and civilian applications. One of these appli cations with particular high stakes is the observation of sea level change caused by climate change, which is also today's most demanding application in terms of TRF accuracy. [START_REF] Blewitt | Geodetic observations and global reference frame contributions to understanding sea-level rise and variability[END_REF] assessed the TRF requirement for the observation of sea level change to an accuracy level of 1 mm and a stability level of 0.1 mm/yr.

These levels are now one of the fundamental objectives of the GGOS initiative [START_REF] Gross | Integrated scientific and sociétal user requirements and functional spécifications for the GGOS[END_REF]. However, the accuracy and stability of the ITRF2008 are likely still about one order of magnitude larger than these requirements. In particular, external évaluations of the origin of ITRF2008 assessed its stability to a level of 0.5 mm/yr [START_REF] Wu | Accuracy of the International Terrestrial Reference Frame origin and Earth expan sion[END_REF][START_REF] Collilieux | External évaluation of the Terrestrial Reference Frame: report of the task force of the IAG sub-commission 1.2[END_REF] or even 0.9 mm/yr along the Z axis [START_REF] Argus | Uncertainty in the velocity between the mass center and sur face of Earth[END_REF]. Given the discrepancy between the terrestrial scales given by VLBI and SLR, the accuracy of the ITRF2008 scale is believed not to be better than 1.2 ppb (8 mm; Altamimi et al., 2011), while its stability is believed to be at the order of 0.2 to 0.3 mm/yr [START_REF] Wu | Accuracy of the International Terrestrial Reference Frame origin and Earth expan sion[END_REF]Collilieux and Schmid, 2012;[START_REF] Collilieux | External évaluation of the Terrestrial Reference Frame: report of the task force of the IAG sub-commission 1.2[END_REF]. In order to meet the GGOS requirements, efforts therefore need to be undertaken at different levels.

It is first widely accepted that the ground geodetic infrastructure needs to be improved. -the systematic errors affecting GNSS station position estimâtes (Sect. 2.2),

-the détermination of the terrestrial scale with GNSS (Sect. 2.3),

-the détermination of geocenter motion with GNSS (Sect. 2.4).

GNSS contribution to the ITRF

This first section is intended to provide insight into the concrète nature of the GNSS contribution to the ITRF. The various GNSS currently operating or developing, their Pseudo-ranges are biased, among other error sources, by the satellite and station clock errors, hence the prefix "pseudo". Once corrected for different errors, their précision is roughly at the order of 1 m. A phase pseudo-range is a measure (con verted into a distance) of the phase différence of a GNSS signal between its émission by a satellite and its réception by a station. Like code pseudo-ranges, phase pseudoranges are affected by several error sources, including the satellite and station clock errors. But phase pseudo-ranges are additionally ambiguous by an integer number of cycles. They are however much more précisé than code pseudo-ranges (roughly at the order of 1 cm) and thus constitute the basis of the IGS AC analyses.

One of the error sources affecting phase pseudo-ranges is the ionospheric refraction of GNSS signais. However, the advance of the GNSS signal phases due to ionospheric refraction is frequency-dependent, so that if phase pseudo-ranges are measured by a station for two signais with different frequencies, it is possible to cancel (at least at first order) the ionosphere-induced error by forming a linear combination of both phase pseudo-ranges. The IGS ACs thus use either undifferenced ionosphere-free linear combinations of Ll-and L2-based phase pseudo-ranges, or double différences of such ionosphere-free linear combinations as observations in their GPS and GLONASS analyses.

GPS undifferenced observation équation

The observation équation for a GPS un differenced ionosphere-free phase pseudo-range (L3) k measured by a station A; on a satellite i can be written as follows:

(T3 Yk -p\ + côtk -côt1 + Tl + \nlk + \ô(f)k -A ô(j)1 + (t-modYk + (eerr)fc (2-1)
where:

-p\ is the géométrie station-satellite distance;

-ôtk and ôt1 are respectively the unknown station and satellite clock errors;

-Tlk is the error due to the tropospheric refraction of the GNSS signal (tropospheric delay);

-A is the wavelength of the ionosphere-free linear combination (approximately 11 cm);

-n\ is the so-called phase cycle ambiguity;

-ôcft and ô(j)i are respectively station and satellite biases known as uncalibrated phase delays (UPD; [START_REF] Ge | Resolution of GPS carrier-phase ambiguities in Précisé Point Positioning (PPP) with daily observations[END_REF];

-{f-mod)l groups a number of different modelled effects such as the phase wind-up bias, the station and satellite antenna phase center corrections, the second and third order ionospheric effects, relativistic effects...

-{tcrrYk groups ail remaining, non-modelled errors.

GPS double-differenced observation équation

In their analyses, SOme IGS ACs do not directly use undifferenced ionosphere-free phase pseudo-ranges as observations, but rather double différences between the ionosphere-free phase pseudo-ranges observed at the same time by pairs of stations on pairs of satellites. The observation équation for such a GPS double-differenced observation involving the stations A;, l and the satellites i, j can be written:

U*)S - (22) 
= Pki + Tkl + + (emod)kl + ieerr)ki

where each term in the second line is the double-difference of the corresponding term in Eq. 2.1. An obvious advantage of forming double-differenced observations is that both station and satellite clock errors and uncalibrated phase delays are cancelled.

Station-satellite distance parameterization The géométrie distance p\ can itself be expressed, at a given time t, as:

Pi(t) = Il X\t -r) -Q(t)R(t)W(t)(X« + MT*(t))|| (2.3)
where:

-t dénotés the signal travel time;

-Xl{i, -t) are the satellite coordinates, in the GCRS, at time t -r;

-Q(t), R(t) and W(t) are the three rotation matrices that describe the transfor mation from the ITRS to the GCRS (see Sect. 1.1.5) and dépend on unknown EOPs;

-Xj* + ÔXk(t) represents the station coordinates in the ITRS as the sum of conventionally modelled corrections ôXk(t) (see Sect. 1.1.2) and of unknown regularized coordinates X£.

The partial dérivatives of phase pseudo-ranges with respect to station coordinates and EOPs can be straightforwardly obtained from Eq. 2.3. Computing their partial dérivatives with respect to the satellite orbit parameters is more complicated.

The orbit of a satellite is indeed not represented by an explicit time-dependent function like station coordinates, but rather as the solution of a differential motion équation:

r X^t) = al(t,X'(t),X'(t),pl,...,p!n) l X*(to ) = X'0 (2.4) { X'(t0) = X'Q
where the function a1 is the sum of conventionally modelled accélérations (e.g. gravitational accélérations, Earth-reflected radiation pressure, antenna thrust) and of empirical accélérations depending on unknown parameters p\,... ,plm. The satellite orbit parameters estimated by an IGS AC consist of the satellite initial position XJ, the satellite initial velocity Xq and those empirical parameters p\t... ,plm. The partial dérivatives of Xl(t) (hence of p\[t) and of (L3)J.) with respect to the satel lite orbit parameters are obtained by numerically integrating so-called variational équations (see, e.g., [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF].

To parameterize empirical satellite accélérations, most IGS ACs use variants of the Extended CODE Orbit Model (ECOM; [START_REF] Beutler | Extended orbit modeling techniques at the CODE processing center of the International GPS Service for geodynamics (IGS): theory and initial results[END_REF][START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF]. -e and a respectively dénoté the élévation and the azimuth of the satellite above the station;

-the zénith hydrostatic delay Dhz is computed a priori from surface pressure data or numerical weather models;

-the zénith wet delay Dwz is a priori unknown. It is usually parameterized, for each station, as a step function or a continuous piecewise linear function with a time step of one or two hours;

-the North/South and East/West tropospheric gradients GE and GE are the sums of a priori modelled gradients and of additional unknown gradient param eters usually parameterized, for each station, as daily linear functions;

-the hydrostatic and wet mapping functions, mh(e) and mw(e), that map the zénith tropospheric delay to the observation élévation, should either be the Vienna Mapping Functions (VMF1; Boehm et al., 2006b) or the Global Mapping Functions (GMF; Boehm et al., 2006a);

-the gradient mapping function mg(e) is given by [START_REF] Chen | Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data[END_REF].

Handling phase cycle ambiguities Due to the ionosphere-free linear combination, the phase cycle ambiguity nk of an ionosphere-free phase pseudo-range is not an integer.

It can nevertheless be expressed as a linear combination of two integers: the phase cycle ambiguities of the L1 and L2 phase pseudo-ranges. L1 and L2 ambiguities lrThe D axis is the normal to the satellite solar panels, i.e. the satellite-Sun direction. Y is the rotation axis of the satellite solar panels. B complétés the right-handed System.

remain constant during the pass of each satellite over each station as long as no loss of signal lock (cycle slip) occurs. In case of such cycle slips, several L1 and L2 ambiguities need to be considered for the same satellite pass.

The positive impact of ambiguity fixing (i.e. the fixation of L1 and L2 ambiguities to integer values so that the ionosphere-free ambiguities nlk are known and do not hâve to be estimated as unknown parameters) in global GNSS analyses has long been recognized. In their analyses, the IGS ACs thus strive to fix as many ambiguities as possible. However, due to the presence of station and satellite uncalibrated phase delays, ambiguity fixing cannot be performed at the level of undifferenced phase pseudo-ranges. The IGS ACs using double-differenced observations are not affected by this issue and can directly fix double-differenced ambiguities. On the other hand, the IGS ACs using undifferenced observations need to introduce the ambiguity fixing information as relative constraints between undifferenced ambiguities.

With modem geodetic receivers and ambiguity fixation techniques, ACs are nowadays able to fix about 90% of the double-differenced ambiguities in a GPS analysis.

As discussed below, the situation is more complicated with GLONASS.

Clock and UPD parameterization Clock errors are currently estimated by the IGS ACs using undifferenced observations as epoch-wise parameters for each station and each satellite. Uncalibrated phase delays are currently not estimated and become as a matter of fact part of the estimated station and satellite clock offsets.

By looking at Eq. 2.1, it is clear that adding one constant offset to the clock offsets of ail stations and ail satellites has virtually no impact on a set of GNSS observations. In other words, it is important to bring ail station and satellite docks to a common time reference, but the choice of this reference is of no importance. As a conséquence, if epoch-wise clock offsets are estimated for ail stations and ail satellite in a GNSS analysis, then one singularity arises at each observation epoch. These Finally note that, due to their large numbers, station and satellite clock offsets are usually reduced (see Sect. B.3.1) by the IGS ACs using undifferenced observations.

Global GPS data analysis: summary Table 2.1 summarizes ail the parameters esti mated and the constraints applied in a simulated undifferenced GPS-only analysis.

To obtain the numerical values in Table 2.1, we assumed:

-an élévation cut-ofF angle of 10°(i.e. ail observations made below an élévation of 10°were not considered);

-a nominal constellation of 24 GPS satellites;

-a fictive network of 100 well-distributed stations;

-5 empirical orbit parameters per satellite (D0, Y0, B0, Bc and Bs)\ -a parameterization of tropospheric zénith wet delays as step functions with one hour time steps;

-a parameterization of tropospheric gradients as linear functions over the day; -no cycle slip (i.e. only one ambiguity per pass);

-ail double-differenced ambiguities fixed;

-the orientation and DUT1 singularities (see Sect. 1.2.2) respectively cancelled by no-net-rotation constraints and by fixing DUT1 to its a priori value. 

GLONASS specificities

As mentioned in Sect. 2.1.1, the exact frequencies of the L1 and L2 signais broadcast by the GLONASS satellites are slightly different for each satellite (except that pairs antipodal GLONASS satellites use the same frequencies).

Since it is frequency-dependent, the uncalibrated phase delay of a GLONASS receiver can therefore not be represented by a single term 6(pk as in the GPS case. Consequently, when GLONASS double-differenced observations are formed, the receiver UPDs do not cancel, which prevents a straightforward fixation of double-differenced

GLONASS ambiguities to integer values.

There exist GLONASS ambiguity resolution techniques that involve the estima tion of so-called inter-frequency biases (one parameter per station and GLONASS frequency channel). Another (lazier) solution consists in simply not attempting to fix GLONASS ambiguities and estimating them as floats.

GNSS contribution to the ITRF2008 and ITRF2013

In 2008, eleven ACs (Table 2.2) reanalyzed the full history of GPS data collected by the IGS tracking network back to 1994 using the latest models and methodology available at that time. This unprecedented effort, known as first IGS reprocessing campaign or reprol (see http://acc.igs.org/reprocess.htral), constituted the basis of the GNSS contribution to the ITRF2008. Major quality improvements from the operational IGS products used for the previous ITRF2005 to the reprol products were noted by, e.g., [START_REF] Griffiths | Assessment of the orbits from the first IGS reprocessing campaign[END_REF] and Collilieux et al. (2011). The IGS is currently undertaking a second reprocessing campaign (repro2) that will provide the IGS input to the ITRF2013. Apart from covering a longer period and involving less ACs, repro2 will differ from reprol in the following respects: -Updated models and conventions will be used (see a list at http://acc.igs.

org/reprocess2.html).

-Like in their operational analyses since GPS week 1702 (IGS Mail 6613), the ACs will provide daily instead of weekly SINEX files.

-Some of the participating ACs will provide combined GPS-GLONASS solutions, whereas ail AC contributions to reprol were GPS-only solutions.

A primordial contribution to the ITRF

The GNSS contribution to the ITRF is fundamental in several respects. First of ail, GNSS are by far the cheapest and most widespread technique via which a vast majority of users access the ITRF, either by positioning a GNSS receiver relatively to ITRF GNSS stations, or by absolute Précisé Point Positioning (PPP) using ITRFconsistent satellite orbits and docks. A first primordial rôle of GNSS is thus that they allow the ITRF dissémination.

Besides that, GNSS also play a primordial rôle in the élaboration of the ITRF, as the link between the three other techniques. Most of the co-location sites in the ITRF2008 are indeed composed of one VLBI, SLR or DORIS station and of one GNSS station. If the 137 local ties involving GNSS stations had not been used, the ITRF2008 would thus hâve relied on only 8 VLBI-SLR, 10 VLBI-DORIS and 10 SLR-DORIS ties (Altamimi et al., 2011).

The définition of the ITRF orientation (and its continuity between the successive ITRF realizations) is also ensured by GNSS. The no-net-rotation and no-net-rotationrate constraints used to define the ITRF orientation are indeed applied via a subset of high quality GNSS stations.

Except for DUT1 to which they are insensitive and LOD of which they give biased estimâtes [START_REF] Ray | Measurements of length of day using the Global Positioning System[END_REF][START_REF] Ray | A quasi-optimal, consistent approach for combination of UT1 and LOD[END_REF], GNSS are additionally the major contributing technique to the ITRF EOPs. According to the ITRF2008 inter-technique weighting, the GPSderived pôle coordinates used in the ITRF2008 combination were for instance more than ten times more précisé than the pôle coordinates from any of the three other techniques (Altamimi et al., 2011).

Finally, GNSS also provide more précisé station coordinates than any of the three other techniques. As an example, Fig. 2.1 shows residual times sériés from the ITRF2008 technique-specific long-term stacking for four co-located stations (one of each technique). In the East and North components, the residual time sériés of the GPS station (shown in red) are clearly much less scattered than those of the three other stations. In the Up component, the preeminence of GPS is less pronounced (in particular over SLR), but still noticeable. Considering in addition that they hâve the denser network of stations, GNSS thus clearly hâve a particularly robust contribution to the terrestrial part of the ITRF.

However, GNSS-derived station coordinates are known to be affected by various systematic errors, so that even if the contribution of GNSS to the ITRF is fundamental, it remains perfectible. Moreover, as mentioned in Sect. 1.2.6, GNSS did not contribute to defining the origin, neither the scale of ITRF2008: the origin and terrestrial scale information stemming from the input GPS solutions was indeed not considered reliable enough. For now, GNSS alone could thus not suffice to completely define a Terrestrial Reference Frame. The next sections of this chapter will describe in more detail the above mentioned issues and their current understanding.

Systematic errors in GNSS station position estimâtes

In this section, various known sources of systematic errors in GNSS-derived station coordinates are first reviewed (Sect. 2.2.1). The conséquences of these systematic errors on the ITRF and on the geophysical interprétation of GNSS station position time sériés are then discussed in Sect. 2.2.2. Sect. 2.2.3 finally summarizes the results from a study of the IGS SINEX combination residuals (i.e. of the discrepancies between station positions estimated by the various IGS ACs) presented at the IGS Workshop 2012 (Rebischung et al., 2012). 

Sources

Tide mis-modelling Errors in the modelling of Earth tides, océan tidal loading deformations or EOP tidal variations can introduce artificial signais at various tidal periods in GPS station position time sériés. Moreover, tide modelling errors, combined with either the repeat period of the GPS constellation or the usual 24 hour period used to process GPS data, can potentially resuit into aliased periodic signais in GPS station position time sériés, in particular at near annual and near semi-annual periods [START_REF] Penna | Aliased tidal signatures in continuous GPS height time sériés[END_REF][START_REF] Watson | Impact of solid Earth tide models on GPS coordinate and tropospheric time sériés[END_REF][START_REF] King | Subdaily signais in GPS obser vations and their effect at semiannual and annual periods[END_REF]. Ray et al. activity. These slowly varying errors may in particular be responsible for biases in the estimated velocities of GPS stations. The second-order ionospheric effects will be taken into account in the IGS repro2 campaign. However, small residual systematic errors will hâve to be expected due to ignoring the third-order ionospheric effects [START_REF] Petrie | HigherâÂRorder ionospheric effects on the GPS reference frame and velocities[END_REF] and to imperfections of the second-order ionospheric corrections [START_REF] Garcia-Fernandez | Intercomparison of approaches for modeling second order ionospheric corrections using GNSS measurements[END_REF].

Orbit mis-modelling There exist several évidences that imperfectly modelling the GNSS satellite orbits is responsible for systematic errors in GNSS-derived terrestrial frames. For instance, by improving the orbit modelling employed at the CODE AC, [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF] could eliminate a ~7 cm bias that was previously affecting the Y component of the origin of the CODE terrestrial frames. More recently, Rodriguez- [START_REF] Rodriguez-Solano | Impact of Earth radiation pressure on GPS position estimâtes[END_REF] showed that not modelling the Earth-reflected radiation pressure acting on GPS satellites was responsible for millimetric periodic errors in GPS station position estimâtes. But the main evidence that GPS station position estimâtes are contaminated by mis-modelling of the GPS satellite orbits résides in the so-called draconitic signais found in GPS station position time sériés.

In the stacked periodogram of GPS station position time sériés, [START_REF] Ray | Anomalous harmonies in the spectra of GPS position estimâtes[END_REF] indeed observed spurious spectral peaks at harmonies of the GPS draconitic year (i.e. the period at which the orientation of the GPS constellation with respect to the Sun repeats, approximately 351.4 d), that no geophysical process could explain.

Systematic errors at harmonies of the GPS draconitic year were later found in other GPS-derived geodetic products such as EOPs (Ray et al., 2011), satellite orbits [START_REF] Griffiths | Sub-daily alias and draconitic errors in the IGS orbits[END_REF] and satellite phase center offsets [START_REF] Schmid | Génération of a consistent absolute phase-center correction model for GPS receiver and satellite antennas[END_REF]. Ray Similarly, not using accurate surface pressure data to compute a priori zénith hydrostatic delays can lead to biases and spurious annual variations in GNSS station height estimâtes [START_REF] Tregoning | Impact of a priori zénith hydrostatic delay errors on GPS estimâtes of station heights and zénith total delays[END_REF]. However, with the current State of troposphère modelling, station height biases and annual variations are expected not to exceed 1 mm [START_REF] Steigenberger | Comparison of GMF/GPT with VMF1/ECMWF and implications for atmospheric loading[END_REF].

Multipath Following [START_REF] Elôsegui | Geodesy using the Global Positioning System: the effects of signal scattering on estimâtes of site position[END_REF], [START_REF] King | Long GPS coordinate time sériés: multipath and geometry effects[END_REF] The set of antenna calibrations currently employed by the IGS (igs08.atx) groups calibrations from two different categories: calibrations obtained using a robot rotating and tilting the antenna [START_REF] Wübbena | A new approach for field calibration of absolute antenna phase center variations[END_REF] and field calibrations relative to a reference antenna then converted into absolute calibrations [START_REF] Rothacher | Comparison of absolute and relative antenna phase center vari ations[END_REF]. Some IGS stations are additionally equipped with antennas covered by radomes for which no calibration is available. In such a case, the effect of the radome on PCCs is ignored and the calibration of the antenna without radome is used. igs08.atx contains type mean calibrations, i.e. averages of the individual calibrations of several antennas of the same type.

Position biases due to mis-modelling of GNSS antenna PCCs are expected to be the smallest in case of robot-calibrated antennas. However, by comparatively using igs08.atx type mean calibrations and individual antenna calibrations, Baire et al.

(2013) obtained vertical position offsets reaching up to 10 mm and horizontal position offsets up to 4 mm. Even with robot calibrations, significant biases thus appear to affect the station positions derived by the IGS, due to using type mean calibrations.

The use of antenna-specific calibrations, when available, could help in reducing those biases, but would likely not solve the problem entirely. By comparatively using antenna-specific calibrations from different facilities, [START_REF] Baire | Influence of different GPS receiver antenna calibration models on geodetic positioning[END_REF] indeed still obtained a vertical position offset of 5 mm.

Other instrumental effects [START_REF] Ray | IERS analysis campaign to investigate motions of the geocenter[END_REF] noticed that the observed seasonal displace ments of several IGS stations was seriously altered by changes of the station receivers.

Along the same Unes, he observed striking corrélations between the position time sé riés and various data quality metrics of several IGS stations. These observations imply that part of the observed GPS station displacements hâve an instrumental basis, although the underlying instrumental mechanisms are mostly unknown.

Implications

Biases While constant biases in GNSS station position estimâtes are of no con séquences for geophysical applications, they are a serious issue in the ITRF inter technique combination as they limit the accuracy with which local ties can be introduced. Among the error sources listed in Sect. 2.2.1, multipath and PCC mismodelling are likely the main contributors to such biases nowadays, with potential effects of several millimétrés.

By inspecting the ITRF2008 local tie residuals, Altamimi et al. (2011) thus suspected large discrepancies found at several co-location sites to be due to noncalibrated radomes covering the GNSS antennas. The IGS therefore undertook a campaign to measure the position biases due to non-calibrated radomes at several co-located GNSS stations (Romero et al., 2013). The radomes of these stations were removed for several months and then put back in their initial positions. We Velocity errors GNSS station velocities are of direct interest to the observation of long-term geophysical processes such as tectonic motions and post-glacial rebound, but also serve to correct vertical land motions at tide gauges in order to observe sea-level rise [START_REF] Wôppelmann | Geocentric sea-level trend estimâtes from GPS analyses at relevant tide gauges world-wide[END_REF]. As sea-level rises at rates of a few mm/yr, this latter application requires especially précisé vertical GNSS station velocities.

If averaged over sufïiciently long time spans, the seasonal and sub-seasonal sig nais found in GNSS station time sériés cause negligible velocity biases [START_REF] Blewitt | Effect of annual signais on geodetic velocity[END_REF]. Slowly varying spurious signais induced by ignoring higher-order ionospheric effects must hâve been responsible for vertical velocity biases of a few tenths of mm [START_REF] Petrie | HigherâÂRorder ionospheric effects on the GPS reference frame and velocities[END_REF]. But the residual velocity biases due to ionosphère mis-modelling should become negligible as the second-order ionospheric effects become conventionally modelled. Nowadays, instrumental effects must therefore likely be expected as the main cause of velocity biases, via at least three possible mechanisms:

-trends in the impact of multipath on station positions due to the time-evolution of the satellite constellations [START_REF] King | Long GPS coordinate time sériés: multipath and geometry effects[END_REF];

-the non-detection of small offsets due to, e.g., equipment changes in GNSS station position time sériés [START_REF] Williams | Olfsets in Global Positioning System time sériés[END_REF];

-the progressive quality dégradation of the data acquired by some stations because of antenna and/or receiver ageing.

Spurious seasonal signais GNSS station position time sériés, conveniently expressed in a given TRF, are expected to reflect geophysical ground motions. Apart from the long-term motions induced by plate tectonics and post-glacial rebound and from the conventionally modelled tides and océan tide loading deformations, the main global source of crustal deformations is the permanent redistribution of masses within the océans, atmosphère and continental hydrology (i.e. non-tidal loading deformations).

Ignoring GNSS stations affected by post-seismic relaxation, de-trended GNSS sta tion position time sériés are thus expected to mainly reflect such non-tidal loading deformations.

Various authors hâve compared de-trended GPS station position time sériés with geophysical loading deformation models [START_REF] Van Dam | Atmospheric pressure loading effects on Global Positioning System coordinate déterminations[END_REF][START_REF] Van Dam | Crustal displacements due to continental water loading[END_REF][START_REF] Dong | Anatomy of apparent seasonal variations from GPS-derived site position time sériés[END_REF][START_REF] Collilieux | Impact of loading effects on détermination of the International Terrestrial Reference Frame[END_REF]van Dam et al., 2012;[START_REF] Collilieux | Strategies to mitigate aliasing of loading signais while estimating GPS frame parameters[END_REF] or with loading deformation models derived from GRACE gravity fields [START_REF] Davis | Climate-driven defor mation of the solid earth from GRACE and GPS[END_REF][START_REF] Van Dam | A comparison of annual vertical crustal dis placements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe[END_REF][START_REF] Tregoning | Detecting hydrologie deformation using GRACE and GPS[END_REF][START_REF] Tesmer | Vertical deformations from homogeneously processed GRACE and global GPS long-term sériés[END_REF]. Ail found that loading deformation models were able to reduce the global scatter of GPS time sériés to some extent, but could not explain ail of the non-linear variations seen in GPS time sériés. Ray et al. (2011) recently repeated such a comparison using the GPS A significant gap thus remains to be bridged between GPS time sériés and loading deformation models.

Other sources of "real" GPS station displacements first contribute to this gap, including:

-the thermal expansion of bedrock and GPS monuments [START_REF] Dong | Anatomy of apparent seasonal variations from GPS-derived site position time sériés[END_REF][START_REF] Yan | Contributions of thermal ex pansion of monuments and nearby bedrock to observed GPS height changes[END_REF]; -local loading effects not captured by the geophysical loading models nor by GRACE due to, e.g., water level variations in lakes or water tables [START_REF] Meertens | Investigation of non-tectonic signais at GPS stations[END_REF];

-non-loading geophysical processes such as clay swelling [START_REF] Nahmani | Hydrological deformation induced by the West African monsoon: comparison of GPS, GRACE and loading models[END_REF] or poroelastic effects in sédiments [START_REF] Meertens | Investigation of non-tectonic signais at GPS stations[END_REF].

But "apparent" seasonal displacements induced by the error sources listed in Sect. 2.2.1 most certainly contribute to a large extent to the GPS-loading gap and thus limit the interprétation of observed GPS station seasonal displacements in terms of geo physical ground motions. Moreover, such spurious seasonal signais will become an issue for the ITRF as it evolves towards more complicated time représentations of station coordinates.

Analysis of the IGS SINEX combination residuals

The IGS contribution to the ITRF is obtained by combining the solutions derived by different ACs with different analysis strategies (Sect. 1.2.3 and 2.1.3). The primary aim of this combination is to form weighted averaged products that potentially maximize the benefits from the AC solutions while minimizing their weaknesses. But it also allows an intrinsic inter-comparison of the AC solutions that offers valuable insight into the impact of the various AC analysis strategies on their solutions (Re-bischung and Garayt, 2013). In the residuals of the IGS SINEX combinations (i.e.

the différences between the AC and IGS combined station positions), common geophysical signais should indeed cancel out, leaving only analysis-related effects for investigation (i.e. différences in the modelling, sélection or weighting of observations, metadata errors or différences in the impact of common modelling errors).

In 2012, a detailed study of the IGS SINEX combination residuals was initiated (Rebischung et al., 2012). Similarly to what [START_REF] Ray | IERS analysis campaign to investigate motions of the geocenter[END_REF] -How large are AC-specific analysis artefacts compared to the GPS-loading gap?

-How much are the draconitic signais found in GPS station position time sériés dépendent on the analysis strategy?

A frequency analysis of the igb combination residuals was thus performed for each AC, station and component using a modified version of the FAMOUS software [START_REF] Mignard | Ap parent dock variations of the Block IIF-1 (SVN62) GPS satellite[END_REF][START_REF] Collilieux | Analyse des séries temporelles de positions des stations de géodésie spatiale : application au Repère International de Référence Terrestre (ITRF)[END_REF]. Statistically significant frequencies were extracted from each of the sériés and identified, when possible, to the annual frequency, the semi-annual frequency or to a harmonie of the GPS draconitic frequency. Amplitude/phase maps of the extracted signais were finally drawn for each AC, component and frequency this may be due to the fact that JPL uses disjoint station networks from one week to the next, so that the JPL residual time sériés are especially sparse and that their frequency analysis is subject to caution. In other words, it seems that the spurious draconitic signais found in the AC station position time sériés are induced by common modelling errors, while AC specificities play again a secondary rôle. The NGS exception is spécifie to the second draconitic harmonie and remains unexplained.

In summary, it appears that the impact of the various analysis strategies used by the IGS ACs is secondary compared to both the GPS-loading gap and the draconitic signais found in GPS station position time sériés. This situation is quite unfortunate as it implies that ail ACs hâve somehow converged to common modelling errors, while AC-specific modelling errors could hâve been much easier to track down.

GNSS and the terrestrial scale

The fundamental issue concerning the détermination of the terrestrial scale with GNSS was first documented by [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF] and [START_REF] Zhu | Satellite antenna phase center offsets and scale errors in GPS solutions[END_REF]. They indeed demonstrated that GNSS observations were weakly sensitive to the mean of the radial component of the GNSS satellite antenna phase center offsets (z-PCOs) because of corrélations with satellite clock offsets, zénith wet delays and station heights. (The mechanism of these corrélations will be detailed in Sect. 4.2.) [START_REF] Zhu | Satellite antenna phase center offsets and scale errors in GPS solutions[END_REF] showed in particular that a mean error Sz (in m) of the satellite z-PCOs would induce a net scale change of the GNSS-derived terrestrial frames by approximately ôs = 7.8 ôz (in ppb).

The second aspect of the problem is that pre-launch antenna calibrations are not available for any of the GPS and GLONASS satellites launched so far. The "true" mean of the satellite z-PCOs is thus unknown and can hardly be estimated from GNSS observations. Current GNSS are therefore considered unable to provide reliable intrinsic terrestrial scale information. On the contrary, the IGS currently relies on the ITRF scale to détermine conventional GPS and GLONASS satellite z-PCOs (Rebischung et al., 2012;Ray et al., 2013). In their analyses, the IGS ACs then fix or tightly constrain the satellite z-PCOs to their conventional IGS values, so that, unless these constraints are removed, the scales of the IGS AC solutions are in turn conventionally determined. GPS satellite z-PCOs were included, were first recovered using Eq. 1.9. The normal équations were then inverted using no-net-rotation constraints only, while letting free both the satellite z-PCOs and the terrestrial scale. Seven transformation parameters were finally iteratively estimated between each of the obtained solutions and the ITRF2008.

The intrinsic scale factors of the gfl solutions are not only globally more scattered than the SLR scale factors, but also show significant long-term biases and trends.

A particularly pronounced semi-annual signal is also visible, much too large to be attributed to some network effect (i.e. the aliasing of loading deformations into the estimated scale parameters). What rather happens is that, when the satellite z-PCOs are let free, (unidentified) modelling errors tend to spread into the weakly determined terrestrial scale. It appears anyway justified not to use such intrinsic GPS scale information in the définition of the ITRF scale.

GNSS and geocenter motion

As highlighted in Sect. 1.3, several approaches can be used to estimate geocenter motion from GNSS observations. We will focus in this section on the realization of CM via the GNSS satellite orbit dynamics only (i.e. on the network shift approach), as it is the way by which GNSS could potentially contribute to defining the ITRF origin.

Current status

GPS network shift estimations of geocenter motion hâve been carried out by several authors for more than twenty years (e.g. [START_REF] Vigue | Précisé détermination of Earth's center of mass using measurements from the Global Positioning System[END_REF][START_REF] Ray | IERS analysis campaign to investigate motions of the geocenter[END_REF][START_REF] Heflin | Comparison of a GPSdefined global reference frame with ITRF2000[END_REF][START_REF] Dong | Origin of the International Terrestrial Reference Frame[END_REF][START_REF] Collilieux | Effect of the satel lite laser ranging network distribution on geocenter motion estimation[END_REF]Collilieux et al., 2011). But seasonal signais are rather consistent in phase with each other.) As illustrated in Fig. 2.13, this behaviour may be partly explained by the interférence of annual signais with spurious draconitic signais with a near annual period of ~351.4 days. However, the simultaneous fit of annual and draconitic signais to the AC Z translation time sériés did not allow to uncover reliable annual signais (Fig. 2.12 (Z)). At least two possible reasons could explain this fact. First, the annual signais présent in the AC Z translation time sériés might actually not correspond to "real" geocenter motion.

But it is also possible that the AC Z translation time sériés contain non-stationary draconitic errors that would prevent a reliable isolation of the underlying annual signais.

Finally, similarly as in the Z component, the seasonal signais of the IGS AC X translation time sériés are alternatively in phase and out-of-phase with the SLR seasonal signal. But the most striking feature in Fig. 2.9 is the small amplitude of the IGS AC seasonal signais compared to SLR. This can also be observed in This behaviour might again be explained by an overall destructive interférence of annual signais with spurious draconitic signais during the considered period. The simultaneous fit of annual and draconitic signais to the AC X translation time sériés indeed enabled to uncover realistic annual signais for some ACs (COD, NGS, GFZ; see Fig. 2.12 (X)). However, the possibility of non-stationary draconitic errors prevents a definitive interprétation of this resuit.

In summary, the network shift estimation of geocenter motion with GPS currently remains prone to significant errors, from sub-seasonal to secular time scales, and thus far from competing with SLR geocenter motion estimation. In the X and Z components, the main annual component of geocenter motion can in particular not be retrieved from GPS network shift estimâtes. As shown by [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF], the situation is even much worse with GLONASS-only or combined GPS+GLONASS network shift estimâtes. These observations explain why the origin information stemming from GNSS solutions has so far not been considered reliable enough to contribute to the définition of the ITRF origin. 

An unresolved issue

As they benefit from many more satellites and a much denser tracking network than SLR, the fact that GNSS are still far from competing with SLR for the network shift estimation of geocenter motion may seem rather counterintuitive. Moreover, until recently, no précisé corrélation mechanism had been described which could hâve explained a weak sensitivity of GNSS to geocenter motion. When this thesis started, the question of why GNSS were performing so poorly, compared to SLR, through the network shift approach was thus remaining unresolved.

Observations had nevertheless been made by several authors that the modelling of the GNSS satellite orbits had a particular importance for GNSS geocenter motion estimâtes. Firstly, the parameterization of the empirical accélérations set up to account for the non-modelled forces acting on GPS satellites was shown to be of great influence by [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF] and, more recently, [START_REF] Herring | Analysis impacts on gps reference frame realizations[END_REF]. By fixing 

Summary

Although the contribution of GNSS to the ITRF is fundamental in several respects (Sect. 2.1.4), it is nevertheless subject to potential improvements in various areas. A progressive rebuilding of the IGS network with stable monuments and low-multipath, individually calibrated antennas would first be highly désirable. This would likely be the most effective way to mitigate the biases affecting GNSS station position estimâtes and would also allow a partial réduction of spurious trends and seasonal signais. However, this objective does not only appear practically unattainable in the near term, but would also not concern the historical IGS network and data.

Instrumental errors will therefore likely remain an important limiting factor in the GNSS contribution to at least the few next ITRF realizations.

A second area of potential improvements for the contribution of GNSS to the ITRF is the global modelling of GNSS observations. In this respect, a primordial objective is the understanding and mitigation of the draconitic errors found in GNSS station position estimâtes, which will likely require important progress in the modelling of GNSS satellite orbit dynamics. But progress in other global modelling aspects (tidal effects, ionosphère, troposphère) remain necessary as well.

The work done during this thesis falls within a last objective: improving the détermination of the terrestrial scale and of geocenter motion with GNSS, so that they could eventually contribute to defining the ITRF scale and origin. The weak ability of current GNSS to détermine the terrestrial scale is well understood (Sect. 2.3 and 4.2). But, as will be detailed in 5.1, there nevertheless exist prospects for a future contribution of GNSS to defining the ITRF scale, or at least its scale rate.

On the other hand, the poor performance of GNSS in determining geocenter motion through the network shift approach was remaining unresolved when this thesis started (Sect. 2.4.2). In view of a future possible contribution of GNSS to defining the ITRF origin, a first necessary step was therefore to understand why GNSS geocenter motion estimâtes were so unreliable. This question is actually the main thread of the next chapters.

Chapter 3

Mathematical tools and development s

This chapter présents the mathematical concepts that were used and developed during this thesis so as to investigate the poor performance of GNSS for determining geocenter motion with the network shift approach. In Sect. 3.1, the notion of collinearity in least-squares régression is first introduced as well as several possible approaches for diagnosing collinearity issues. In Sect. 3.2, we introduce the notion of implicit parameters that will be used to represent quantifies which are, like geocenter coordinates in GNSS data analyses, not explicitly estimated as model parameters, but nevertheless implicitly realized through the model parameters (i.e. through station coordinates).

Sect. 3.3 présents a generalized collinearity diagnosis, adapted to several peculiarities of geodetic data analyses, which will be applied to different problems in the next chapter. Sect. 3.4 finally discusses the question of whether using double-differenced observations rather than undifferenced observations in global GNSS analyses has an impact or not on collinearity issues and their diagnosis.

Collinearity in generalized least-squares régression

Throughout this section, the linear régression model l = Ax + v will be considered, where:

-I is a vector of n observations associated with a given covariance matrix Qi = p-1.

-x a vector of p unknown parameters;

-A = dl/dx is the so-called design matrix;

-Ax is the vector of observations predicted by the parameters x (model prédic tion); -v is a vector of unknown observational and model errors (residuals). where 6 is the angle between the observation vector l and the model space Im(A).

We refer the reader to Sect. B.l for a less abrupt dérivation of these results.

Conditioning and parameter scaling

When A is of full rank but N is however close to singularity, small perturbations in the observations may cause relatively large variations in the estimated parameters:

the least-squares régression is ill-conditioned. The closeness of N to singularity can be measured by its condition number k(N), i.e. the ratio of its largest to its smallest singular value.

Because N is symmetric, the idéal case k(N) = 1 is achieved only when: i.e. that even if the scaling by D is not optimal, it is not far from being optimal. But the main justification for this particular scaling is that it isolâtes the second possible source for ill-conditioning: collinearity.

N = kl & Vt, Ni'i = ll^ll2 = k

Introduction to collinearity

When the design matrix A is rank déficient and the normal matrix N is consequently singular, there exists one or more linear dependencies among the columns of A. One or more linear combinations of the model parameters do not influence the predicted observations. In other words, the régression model does not provide information about spécifie linear combinations of parameters, which can therefore not be inferred from the observations. This situation, well-known in geodetic problems, will be referred to as perfect collinearity. For instance, in a global GNSS data analysis, any net rotation of the station network can be compensated by variations of the EOPs without any impact on the observations (Sect. 1.2.2). Three independent linear combinations of station positions and EOPs are thus not estimable. The design matrix A and the normal matrix N hâve three orientation singularities.

More subtly, the columns of A may be, not exactly, but nearly linearly dépendent, a situation known as collinearity or multicollinearity. In such a case, spécifie linear combinations of parameters hâve only few influence on the observations and may therefore hardly be inferred from them. The harm caused by collinearity to the estimability of spécifie linear combinations of parameters is thus described as follows by [START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF] Collinearity is not a concern for the first step: it does not affect how well the model predicts the observations, i.e. the coefficient of détermination R2. But collinearity may become an issue during the second step, when attempting to separate the contri bution of each parameter to the predicted observations. If linear quasi-dependencies exist among the columns of A, the basis they form indeed tends to be squashed, so that the décomposition of the predicted observations onto this basis becomes an illposed problem. Collinearity can in fact be geometrically defined as a severe departure of the basis formed by the columns of the scaled design matrix A from orthogonality [START_REF] Farrar | Multicollinearity in régression analysis: the problem revisited[END_REF] or as its closeness to singularity [START_REF] Haitovsky | Multicollinearity in régression analysis: comment[END_REF]. For the same purpose, [START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF] prefer using the condition number k{N) which ranges from 1 when the columns of  form an orthonormal basis to infinity as N approaches singularity. An indicative scale relating k(N) to the severity of collinearity issues is thus given by Montgomery et al. ( 2012), but it is likely not suited to problems with thousands of parameters like GNSS data analyses.

Global measures of collinearity such as det(iV) and k(N) may in fact be useful to compare the relative level of collinearity between different problems, but seem hardly interprétable in an absolute sense. Moreover, they do not provide information about the causes of potential collinearity issues, i.e. about which linear quasi-dependencies may exist among the columns of A. -V is an orthogonal matrix whose columns are the eigenvectors of TV;

-A = diag(Ai,..., Xp) is the diagonal matrix whose éléments are the eigenvalues of TV.

In the idéal case where the columns of A form an orthonormal basis of Im(A), ail eigenvalues of N are equal to 1. On the other hand, when N approaches singularity, at least one of its eigenvalues approaches zéro, and the corresponding eigenvector(s)

indicate linear combination (s) of the columns of A which is (are) nearly dépendent.

Note that the arithmetic mean of the Aj's is 1 in any case. Each eigenvector associated with such a large condition index corresponds to a hardly estimable linear combination of parameters, potential source of collinearity issues.

An absolute scale for condition indices is proposed by [START_REF] Belsley | A guide to using the collinearity diagnostics[END_REF] who notes that "the relative strengths of the scaled condition indices are determined by their approximate position along the progression 1, 3, 10, 30, 100, 300, 1000, and so on."

From his expérience, if the largest condition indices are below 10, then "collinearity is not really a major problem" while if the largest condition indices are in the range 30-100, then "there are collinearity problems". He finally considers the range 1000-3000 as "immense". But again, such an absolute scale might not be very well suited to huge problems like GNSS data analyses.

Another suggestion from [START_REF] Belsley | A guide to using the collinearity diagnostics[END_REF], applicable to any problem, is to plot the 

Collinearity diagnosis for a spécifie parameter

The singular value décomposition of TV is an indubitably precious tool to diagnose and understand collinearity issues and its application to GNSS data analyses would certainly be rich of lessons. However, it is unfortunately hardly applicable to realistic GNSS data analyses with several ten thousand parameters. Moreover, as any parameter is generally involved in several eigenvectors of TV, [START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF]'s procedure does not appear as the most appropriate tool for the particular purpose of understanding whether and why the estimation of a particular parameter may be affected by collinearity issues. This subsection therefore introduces a collinearity diagnosis applicable to spécifie parameters of interest. This will be the basis for the generalized collinearity diagnosis developed in Sect. 3.3 and used in Chapter 4.

Signature of a parameter Each column A{ -dl/dxt of A is a vector of the model space, which represents the impact on the observations predicted by the model of a unit variation of the ith parameter xt. It can be thought as the signal which characterizes the influence of xt on the observations. In the following, A{ will thus be called the signature of Xi on the observations. Décomposition of A* Each parameter X{ can also be associated with a particular hyperplane of the model space. Let e* = <^)2, •••> ^i,P]T (vector with ail zéro éléments, except a unit ith element) be the coordinates of ae* in the canonical basis of the parameter space Rp. And let Ki be any p x p -1 matrix whose columns form a basis of Ker(ef) = {x G W/efx = 0}. One could choose for instance:

Ki • • • t f'i-li • • • • > ^p\ (3.9)
Under the assumption that A is of full rank, Im(AK%) is a p-1 dimensional subspace tends to infinity (9t -> 0; Kj -A 1) when Al tends to lie in Im(AKi) and tends to be indistinguishable from the other parameters. Vx thus measures the degree of collinearity of x% with ail other parameters.

VIFs are a widespread tool for diagnosing whether the estimation of spécifie pa rameters may be harmed by collinearity (see, e.g., [START_REF] Farrar | Multicollinearity in régression analysis: the problem revisited[END_REF][START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF][START_REF] Draper | Applied régression analysis, 3rd edn[END_REF][START_REF] Montgomery | Introduction to linear régression anal ysis[END_REF]. The term "variance inflation factor", introduced by [START_REF] Marquardt | Generalized inverses, ridge régression, biased linear estimation and nonlinear estimation[END_REF], dérivés from the fact that the variance of a parameter xx obeys the relation:

var(aei) = Qix = -- (3.
12)

The first factor, 1/TV^, would be the variance of xx if ail other parameters were known and held fixed. G is thus the factor by which the simultaneous estimation of the other parameters inflates the variance of Xi. Eq. 3.12 can be demonstrated by noting that:

, _ < Ai, Af > _ < Ah A,-Avi> ' IIAI|||A"|| IIAIIIIA-^II (3.13)
Replacing A1' by its expression in Eq. 3.10 leads to:

COS#i = (3.14)
which is équivalent to Eq. 3.12.

Let us mention another interprétation of VIFs. Noting that ||A;||2 -Niti and that, according to Eq. 3.10, ||Af||2 = 1 /Qiti, Eq. 3.12 can indeed be rewritten as:

Vi = <VQUi = MT (3.15)
The numerator in Eq. Like for other measures of collinearity, the questions arise again of what are large and what are small VIFs. Numerical thresholds may be found in the literature, commonly seen values being 5 and 10 (see, e.g., [START_REF] Montgomery | Introduction to linear régression anal ysis[END_REF]. However, as pointed out by [START_REF] Smith | A critique of some ridge régression methods[END_REF] or [START_REF] Belsley | Assessing the presence of harmful collinearity and other forms of weak data through a test for signal-to-noise[END_REF], VIFs are in fact not interprétable in an absolute sense. For instance, a parameter may be satisfactorily estimated if, even despite a strong collinearity with the other parameters (large VIF), its proper influence on the observations remains significantly larger than the observation and model errors. What eventually matters to the estimability of some parameter is how its variance var(ccj) = Q%i = 1/||A^||2 compares to the required level of précision. The fact nevertheless remains that:

-if the estimation of some parameter is manifestly subject to errors, -if its variance is near or larger than the required level of précision, -and if it has a large VIF (i.e. if its variance is large because of a strong collinearity with the other parameters), then collinearity constributes to the poor estimability of this parameter.

Even if VIFs hâve no absolute meaning, it can be useful to make relative comparisons between, e.g., the VIFs obtained for the same parameter with different analysis settings. For such relative comparisons, it should be noted that, because of their quotient nature, VIFs should be considered as varying on a logarithmic scale rather than on a linear scale. Finally note that, for the ease of interprétation, numerical VIF Qi,i (3.17) so that the coordinates Hi of Ajx in the basis formed by the columns of A are:

-i T Ri &i Qi,i
Ql,i Qi-l,z q Qi+l,i Qp,i

QiÀ ' ' Qiti ' ' QÛi_

(3.18)

Corrélation coefficients

A common practice in the field of global geodetic analyses is the analysis of pairwise corrélation coefficients between the estimated parameters (see, e.g., Gobinddass et al., 2009b;[START_REF] Rodriguez-Solano | Adjustable box-wing model for solar radiation pressure impacting GPS satellites[END_REF][START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF][START_REF] Haines | Recent advances in realizing the Terrestrial Reference System from GPS[END_REF].

This subsection aims at replacing this practice in the framework of collinearity and presenting some of its shortcomings. But let us first point out that the notion of corrélation coefficients can hâve two different meanings.

In the terminology of [START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF], the corrélation matrix of the estimated parameters is the scaled normal matrix N. In this case, the corrélation coefficient between two parameters X{ and Xj is:

'1,3 Nij= N, y/NiiNjj < Aj, Aj > = cos 0 I A* Il II A h3 (3.19)
where dénotés the angle between the signatures Ai and A3 of both parameters.

While IqjI's close to 1 clearly indicate pairs of redundant parameters, low |cîj|'s do

not imply the absence of collinearity issues, for problematic linear quasi-dependencies generally involve more than two parameters1. The ci:J coefficients are therefore in adéquate for diagnosing and understanding potential collinearity issues.

4A limit case is obtained when the scaled parameter signatures (A)i <i<p tend to form a p -1-simplex. In this case, the problem tends to perfect collinearity while ail c^j's stay as low as l/(p -1).

On the other hand, in the geodetic community, the corrélation coefficient between Xi and Xj is rather usually defined from the éléments of the parameter covariance matrix Q by: c?.

COv(X{, Xj) Qi,3 y/vdx(xïÿvâr{xj ) yjQi,îQj,:

(3.20)

From Eq. 3.10, it can be shown that:

<aia*> K1KII COS d\j (3.21)
which allows a géométrie interprétation of é[3 as the cosine of the angle between the proper signatures of ae, and Xj.

As shown by [START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF], if the columns of A tend to be linearly dé pendent, then the cfj coefficients between ail parameters more or less involved in linear quasi-dependencies tend to ±1. Large |c? -|'s are thus an indication of potential collinearity issues. However, as a strong linear quasi-dependency may contaminate the whole corrélation matrix, the c? 's are not well suited to understand the causes of potential collinearity issues.

Implicit parameters

In global geodetic analyses, some physically meaningful quantities may not be explicitly estimated as model parameters, but nevertheless implicitly realized through the model parameters. For instance, the net translations between a quasi-instantaneous 

GNSS

Définitions

Implicit parameter Let us define an implicit parameter as a quantity y with respect to which the partial dérivatives of the explicit model parameters x are a known vector A = dx/dy of Rp. As an example, consider the implicit parameter y corresponding to the X coordinate of CM in a global GNSS analysis, i.e. to an X origin shift from the a priori terrestrial frame to the estimated terrestrial frame. In this case, dx A = -= [1,0,0,1,0,0,.. .,1,0,0, 0, 0,0, 0,...,0f Independence of two implicit parameters Two implicit parameters y and 2: respectively characterized by dx/dy = A and dx/dz = n will be said independent if

AT/x = 0, i.e. if A and /x are orthogonal in the parameter space Rp. Orthogonality in the parameter space may be thought in terms of degrees of freedom allowed within the model. For example, two explicit parameters x{ and x:) are clearly allowed to vary independently from each other within the model: ej e3 = 0. On the other hand, a quantity like Xi+Xj cannot vary independently from X{\ e[(e^Te,) ^0. More generally, A 7 /x = 0 means that the implicit parameters y and z can vary independently from each other within the model.

Estimating implicit parameters in a non-constrained problem

This goal of this subsection is to introduce a method to estimate the values and uncertainties of implicit parameters. For simplicity, it is first assumed in this sub section that A is of full rank, so that N is invertible (N~l = Q) and that no particular constraints are required to estimate the explicit model parameters x. In this case, a unique set x -Qb of explicit model parameters satisfies the normal équation Nx = b and has Q as covariance matrix. The case where constraints are additionally considered will be separately discussed in Sect. 3.2.3.

Recommended approach Let us consider a vector y = [yi,..., yq\ of q implicit parameters characterized by the partial dérivatives:

dx dx dyi'" dyq (3.23)
For instance, y could consist of the coordinates of CM in the ITRF, while x would be the parameters estimated in a hypothetical full-rank global GNSS analysis. In this example, the partial dérivative matrix would be:

A = [J3,I3,13,.. , h, 0,0,0,0,, 0JT (3.24) N v '' ^^ŝ tation coordinates other parameters

Provided that A is of full rank (i.e. that there is no redundancy between the yi s), y can be associated with a g-dimensional subspace of the parameter space Im(A) = {x G M.p/x = Ay}. This subspace spans the variations of the model pa rameters x that are fully explainable by some set y of implicit parameters. On the other hand, its orthogonal complément, Im(A)x = Ker(A7 ), spans the variations of the model parameters x that are independent from any of the yS s. In the above example, Im(A) spans net translations of the station network, while Ker(A7) spans where k dénotés a vector of q Lagrange multipliers.

As proven below, a unique set y of implicit parameters satisfies Eq. 3.27. y and its covariance matrix Qÿ can be expressed in function of the estimated model According to Eq. B. 17, the solution of Eq. 3.31 can be expressed as:

x = K(KTNK)~lKT{b-NAy) (3.32)

where K dénotés any matrix whose columns form a basis of Ker(A7 ). Since N is assumed of full rank, Qy oc (A^A)-1 (3.39)

Treating the explicit model parameters x as pseudo-observations is the approach traditionally used when inferring, for instance, the coordinates of CM or surface load coefficients from the results of a global GNSS analysis. There is however no consen sus on the questions of whether the covariance matrix Q of the model parameters should be considered or not, and why. On one hand, [START_REF] Lavallée | Geocenter motions from GPS: a unified observation model[END_REF] State that the full covariance matrix Q needs to be considered in their unified geocenter motion estimation approach (Sect. 1.3.3). But on the other hand, considering the full covariance matrix Q in the network shift approach leads to unrealistic results (Rebischung et al., 2012), so that an identity weight matrix is generally used.

We believe in fact that the traditional approach of treating the explicit model parameters x as pseudo-observations is misleading. When the covariance matrix of the model parameters is considered, the results from the traditional approach (Eq. 3.36 and 3.37) can indeed easily be identified to those who would be obtained, directly from the observations Z, via the régression model: In this case, the traditional approach is therefore équivalent to estimating the im plicit parameters y directly from the observations, after having fixed ail independent variations of the (non-reduced) model parameters to their a priori values. In the example given above, the coordinates of CM and their uncertainties obtained from Eq. 3.36 and 3.37 can thus be thought as resulting from a global GNSS analysis in which non-translational network distortions and (non-reduced) non-station-position parameters would hâve been fixed to their a priori values. This interprétation illus trâtes why we think that the traditional way of inferring implicit parameters using Eq. 3.36 and 3.37 is misleading.

In contrast, our recommended approach cornes down to estimating the implicit parameters y from the observations, simultaneously with independent variations x' of the model parameters. In the example, the coordinates of CM and their uncertainties obtained from Eq. 3.28 and 3.29 can thus be thought as resulting from a global GNSS analysis in which they would hâve been estimated together with non-translational network distortions and ail other non-station-position parameters.

Finally, an interprétation may hardly be given to the traditional approach when the covariance matrix of the model parameters is discarded (Eq. 3.38 and 3.39), except that it is a wrong way to obtain a correct resuit. The implicit parameters obtained from Eq. 3.38 are indeed the same as obtained with our recommended approach (Eq. 3.28). However, the covariance matrix from Eq. 3.39 has obviously little meaning, as it does not dépend at ail on the uncertainty of the explicit model parameters.

Estimating implicit parameters in a constrained problem

In this subsection, the approach introduced in Sect. 3.2.2 for estimating the values and uncertainties of implicit parameters is extended to the case where constraints are imposed on the parameters, in order to supplément possible rank deficiencies of A and TV, or for any other purpose. Like previously, our proposed method is based on the décomposition of the explicit model parameters x into:

x = A y + x', with x' G Ker(A7 ) (3.42)

which leads to the re-parameterized observation équations: l = AAy + Ax' + v (3.43)

But we will now consider that x' is subject to the additional constraint CTx' = 0, where C dénotés a p x c full-rank matrix. It will be assumed that C properly suppléments the possible rank deficiencies of A and TV, i.e. that rank ([A7 C]) = p.

C could for instance correspond to no-net-rotation constraints in a global GNSS analysis. We will finally assume that [A C] is of full rank, i.e. that there is no redundancy between the considered implicit parameters and the applied constraints.

Considering this additional constraint leads into:

" A7'TVA ATN 0 0 "

TVA N A C 0 AT 0 0 0 CT 0 0
where k' dénotés a vector of c Lagrange multipliers. As proven below, Eq. The question of how to make a meaningful choice of W (or equivalently M) is unfortunately not fully addressed by Sillard and Boucher (2001). They recommend using W = AT, but without clear justification. W -N is also the choice made by [START_REF] Blewitt | GPS data processing methodology: from theory to applications[END_REF] for the particular purpose of removing artificial reference frame définition from GPS solution covariance matrices. But Sillard and Boucher (2001) also mention that choosing W = I leads to interesting properties. Some light can be shed on this question by identifying the choice of W -I with our recommended approach to estimate the values and uncertainties of implicit pa rameters with Eq. 3.28 and 3.29 (i.e. simultaneously with independent variations of the model parameters). On the other hand, the choice of W = N can be identified with Eq. 3.36 and 3.37, i.e. with the so-called traditional approach to estimate implicit parameters, in which independent variations of the (non-reduced) model pa rameters are fixed. In other words, if the choice W = I is made for estimating the reference System effect of a terrestrial frame, then the corrélations between datum parameters, network geometry and ail non-station-position parameters are kept into considération. On the other hand, choosing W = N discards these corrélations and results in a tighter, meaningless estimate of the datum définition.

A generalized collinearity diagnosis

In this section, the method introduced in Sect. 3.1.5 for diagnosing the collinearity of spécifie parameters is generalized so as to handle several peculiarities of geodetic data analyses. In Sect. 3.3.1, it is first extended to implicit parameters in the case where A is of full rank and no constraints are imposed on the model parameters.

Sect. 3.3.2 provides a further generalization to the case where constraints are applied.

In Sect. 3.3.3, a practical method to perform such generalized collinearity diagnoses is finally exposed.

Generalization to implicit parameters

This goal of this subsection is to extend the collinearity diagnosis introduced in Sect. 3.1.5 to implicit parameters. For simplicity, it is first assumed in this subsection that A and N are of full rank and that no constraints are imposed on the parameters.

The case where constraints are additionally considered will be separately discussed in Sect. 3.3.2.

Let us consider an implicit parameter y characterized by the partial dérivatives dx/dy = À. Similarly as in Sect. 3.2.2, our developments are based on the décom position of the explicit model parameters x into:

x = \y + x', with x' G Ker(A7 ) (3.60) where x' represents parameter variations independent of y.

Signature of an implicit parameter

The impact of a unit variation of y on the obser vations predicted by the model will be called the signature of y on the observations.

It can be expressed as: Décomposition of Sy Let Ky dénoté any p x p -1 matrix whose columns form a basis of Ker(A7 ). Provided that A is of full rank, Im(AKy) is a p -1-dimensional subspace (hyperplane) of the model space Im(A) which spans the signatures of ail parameter variations independent of y. Let us now décomposé the signature Sy of y into the sum of its orthogonal projection SJ onto Im (AKy) and of its orthogonal projection SJ onto ImfAXy)1. SJ, as it lies in Im(AKy), is strictly collinear with the signatures of parameter variations independent of y. The estimation of y can therefore only rely on SJ, which will be called the proper signature of y. As proven below, SJ can be expressed as:

SPy = (3-62)
Proof. Since A is assumed of full rank, proposition A.6 implies that rank(Ai<ri,) = rank(fCy) -p -1.

The columns of AKy therefore form a basis of the p -1-dimensional subspace \m(AKy). According to proposition A. 16, the matrix form of the orthogonal projection onto Im(AKy)1-is thus: One can also show that, if a régression of Sy on the columns of AKy was made, the obtained coefficient of détermination would be R2y = cos2 9y.

The variance inflation factor Vy of an implicit parameter y can be defined from 9y

or Rl by:

V --= y sin2 9y 1 -R2

Inserting Eq. 3.63 into Eq. 3.64 leads to a formula from which Vy can be practically computed when disposing of the normal matrix N and of its inverse Q:

T/ (XT NX)(\TQ\) The interprétation of such generalized VIFs remains unchanged. Vy = 1 when Sy is orthogonal to Im(AKy), i.e. when y is uncorrelated with any independent parameter variation. On the other hand, Vy tends to infinity when Sy tends to lie in Im(AKy) and y tends to be indistinguishable from independent parameter variations. Note that VXJ also remains interprétable as a "variance inflation factor".

According to Eq. 3.29, the variance of y, when simultaneously estimated with in dependent parameter variations, is indeed (A7 QA)/(ATA)2. On the other hand, if ail independent parameter variations were known and held fixed, the variance of y would be 1/(A7 2VA). Let us finally mention that Vy can still be interpreted as the ratio of the squared norm of the signature of y on the observations to the squared norm of its proper signature (Vy = ||5y ||2/||*SfJ||2).

Coordinates of SJ Like the coordinates of A" in the basis formed by the columns of A can enlighten why a parameter Xi may be hardly distinguishable from the other parameters, the coordinates of Sy in this basis can similarly explain why an implicit parameter y may be hardly distinguishable from independent parameter variations.

These coordinates can now be interpreted as dx/dz where z is the implicit parameter independent of y whose signature Sz -Sy most closely matches Sy. One can also show that, if a régression of Sy>c on the columns of AKy^c was made, the obtained coefficient of détermination would be Ry c = cos2 9y^c.

In case where constraints are imposed on the parameters, the variance inflation factor Vy^c of an implicit parameter y can be defined from Like previously, VyiC = 1 means that y is uncorrelated with any independent parameter variation allowed by the constraints. On the other hand, VViC tends to infinity when Sy tends to lie in Im(AKy^c) and y tends to be indistinguishable from indepen dent parameter variations allowed by the constraints. VVtC also remains interprétable as a "variance inflation factor". In case where constraints are applied, the variance of y, when simultaneously estimated with independent parameter variations, is indeed (XrN\ -\TNKyJK'^cNK,hC)~1 K'!j rNX) according to Eq. 3.45. On the other hand, if ail independent parameter variations were known and held fixed, the variance of y would be l/(ATiVA). VV)C can finally still be interpreted as the ratio of the squared norm of the signature of y on the observations to the squared norm of its proper signature (VyiC = \\SyW2/\\S^C\\2).

Coordinates of Sy According to Eq. 3.68, Sic = sy-Sic = AKy,c{KlcNKy,c)-lKlcN\ (3.72)

The vector nv,c = Ky^KlcNKyJ-'K(3.73) can therefore be interpreted as dx/dz where z is the implicit parameter independent of y and allowed by the constraints whose signature Sz = Sy most closely matches Sy. It can therefore explain why y may be hardly distinguishable from independent parameter variations allowed by the constraints.

Practical collinearity diagnosis

As a matrix KViC is generally not available, Eq. 3.71 and 3.73 are of no practical use.

A practical method to perform collinearity diagnoses in case where constraints are applied is therefore exposed in this subsection.

Computing yy,c Given an implicit parameter y such that dx/dy -A, finding the parameter variation \iy^c independent of y and allowed by the constraints whose signature most closely matches Sy = AA clearly cornes to solving the following (3.74)

According to Sect. B.2.2, this problem can be solved through the following constrained normal équation:

1 0 1 NX " \T 0 0 k - 0 1 0 H O O k' 0
where k and k' dénoté c + 1 Lagrange multipliers. Eq. B. 17 indeed confirais that the solution of Eq. 3.75 is nothing but:

My,c = KyJKlcNKy,c)-'KlrN\ (3.76)

Solving Eq. 3.75 thus constitutes the first step of our practical collinearity diagnosis.

Note that to avoid computing TV A, the variable change 7 = A -/x can be made, leading to:

N AC" 7 0 A7 0 0 k - A7 A _CT 0 0 k' CTX (3.77)
Computing VViC Once fiytC has been obtained, the second step of our practical collinearity diagnosis is the computation of the variance inflation factor VV)C of y.

This step requires the availability of the design matrix A. From A, A, and //yjC, the signature Sy = AA and the proper signature SJC = A(A -iiy^c) of y can be computed. Vy,c can then be obtained by:

Note that the quantities l/||£y|| and 1/||5'JC|| are of interest as well. According to Eq. 3.45, 1/||S'J C|| is nothing but the formai error of the implicit parameter y. On the other hand, l/HSyH would be the formai error of y in case where ail independent parameter variations were known and held fixed.

Impact of double-differencing

As mentioned in Sect. 2.1.2, some Analysis Centers of the IGS make use of doubledifferenced GNSS observations while other process undifferenced observations. In the next chapter, we will consider undifferenced observations only, because of their simpler géométrie interprétation. The collinearity diagnosis developed above could nevertheless be performed in double-differenced analyses and would lead to differ ent variance inflation factors than in undifferenced analyses. We therefore deem important to explain how the results of collinearity diagnoses performed in doubledifferenced analyses and undifferenced analyses relate to each other. This section starts by demonstrating that, under certain conditions, processing double-differenced observations is équivalent to reducing clock parameters from an undifferenced System (Sect. 3.4.1). A relationship between "undifferenced VIFs" and "double-differenced

VIFs" is then derived and discussed in Sect. 3.4.2. The first condition (DA2 = 0) is "naturally" fulfilled by any double-differencing operator. The second condition (linear independence of the double différences) was already assumed, otherwise, the covariance matrix of the double-differenced observa tions would not be invertible. Only the last condition remains to be met. It basically means that, under both previous conditions, D should hâve the maximal possible size, i.e. that as many independent double différences as possible should be formed.

In conclusion, when a maximal set of independent double-differenced observations is used, processing double-differenced observations leads to the same normal équa tion as reducing clock parameters from the full undifferenced normal équation. Under these conditions, processing double-differenced observations therefore leads to identi cal values and uncertainties for ail non-clock parameters as processing undifferenced observations.

Relationship between undifferenced and double-differenced VIFs

Consider, in a global undifferenced GNSS analysis, an implicit parameter y characterized by the partial dérivatives dx/dy = À. Assume that the parameters x are organized in the same way as in Sect. 3.4.1, and suppose that À has the form:

(3.87)

This hypothesis concretely requires that y be independent of any clock parameter.

For the simplicity of the démonstration, finally suppose that the design matrix A is of full rank so that the normal matrix N can be inverted into Q = N~l. The squared norm of the signature of y on the undifferenced observations is:

||Sy||2 = \\AX\\2 = (3.88)
On the other hand, the squared norm of the proper signature of y is, according to In other words, double-differencing the observations has no impact on the squared norm of the proper signature of y, i.e. on the variance of y when estimated simultaneously with independent parameter variations. This is a particular conséquence of the équivalence between the double-differenced and undifferenced approaches proven in Sect. 3.4.1.

Let us finally compare the VIFs obtained for y in the undifferenced case (Vy = ISyPl ') and in the double-differenced case (Vy4 = ||5yid|

to Eq. 3.96 and Eq. 3.99, the ratio between both VIFs is:

V, y,d }y,d V, < 1
). According

(3.100)

The left term in Eq. 3.100 represents a réduction of the collinearity of y with the other parameters in the double-differenced case, which naturally stems from the fact that a double-differenced System has less parameters than an undifferenced System.

On the other hand, the right term in Eq. 3.100 represents, as discussed above, a loss of sensitivity to y due to double-differencing the observations. As proven in Sect. 3.4.1, processing double-differenced rather than undifferenced observations has in the end no impact on the values and uncertainties of the estimated parameters.

One can therefore conclude that the formation of double différences has the apparent advantage of reducing collinearity among parameters, but that this advantage is in fact strictly offset by a réduction of the sensitivity of the observations.

Eq. 3.100 can in particular be used to quantify the sensitivity réduction to geocenter coordinates qualitatively observed by [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] when forming double-differences. This sensitivity réduction can equivalently be thought in terms of collinearity of the geocenter coordinates with satellite and station clock parameters.

As already mentioned, we will prefer undifferenced observations in the following for their simpler géométrie interprétation and thus adopt the latter point of view.

Chapter 4

Terrestrial scale and geocenter détermination with GNSS: the collinearity perspective

In this chapter, the problems of determining the terrestrial scale and geocenter motion with GNSS are examined from the perspective of collinearity. The weak ability of current GNSS to détermine the terrestrial scale is already well understood (Sect. 2.3).

On the other hand, the question of why the network shift estimation of geocenter motion with GNSS performs so poorly was remaining unresolved when this thesis started (Sect. 2.4.2). The main purpose of this chapter is actually to answer this question by means of the tools developed in Chapter 3.

As an introduction to this chapter, the singular value décomposition of a GNSS- In order to give a concrète interprétation of these seven loosely determined linear combinations, each of the eigenvectors associated with the seven smallest eigenvalues was regressed onto normalized rotations, translations and scale offset of the station network. The 6th eigenvector is for instance shown in Fig. 4.2 (in blue), together with the corresponding régression results (in green) and régression residuals (in red).

derived
The régression coefficients obtained for each of the seven eigenvectors, as well as the coefficients of détermination R2 of the seven régressions are given in Table 4.1. 

Simulation

Using the options listed in Table 4.2, a sériés of 207289 station-satellite range ob servations l was simulated and a design matrix A including the parameters listed in Table 4. Except satellite z-PCOs, the list of parameters in Table 4.3 is the minimal common set of parameters freely estimated by a majority of IGS ACs. It could in fact be the list of parameters set up by a slightly sub-standard AC. The collinearity diagnoses exposed in the following will be based on this particular sub-standard list of param eters. But note that the estimation of additional parameters (e.g. satellite velocity puises, additional empirical accélérations, but also unfixed phase cycle ambiguities)

by the real ACs can only increase collinearity issues.

The satellite z-PCOs are usually set up, but tightly constrained by the IGS ACs.

In the simulations of this section, they are however freely estimated for the particular purpose of studying their collinearity with the terrestrial scale.

Except the fictive station network and constellation, the options listed in Table 4.2 could also be those used by an IGS AC. The choice of a perfectly distributed network and constellation was made in order to avoid that the obtained results be perturbed by some "network effect". But additional simulations with real network and constellation will also be performed for comparison in Sect. 4.2.4. The influence of the cut-off angle and of the observation weighting will similarly be investigated through additional simulations in Sect. 4.2.4.

Besides the design matrix A, a minimal constraint matrix C was also set up, including:

-three no-net-rotation constraints on the station network, in order to compensate the orientation singularities of A (Sect. 1.2.2);

-one constraint on the DUT1 offset, in order to compensate its perfect corrélation with the satellite orbit parameters (Sect. 1.2.2);

-288 epoch-wise zero-mean constraints on ail (station and satellite) clock offsets, The VIF obtained for the terrestrial scale in this simulation (i.e. \\Sy||2/||<S^C||2) was in fact 3069.7 (y/l -1/VIF = 99.984%), far beyond the commonly seen thresholds of 5 (89.443%) and 10 (94.868%). If the terrestrial scale had been estimated from the simulated observations, independently of any other parameter variation, its formai error (i.e. 1/||S^||) would hâve been 0.0057 ppb (0.036 mm). But the simultaneous estimation of independent parameter variations made the actual formai error of the terrestrial scale (i.e. l/||SJiC||) as large as 0.3152 ppb (2.010 mm). Note that this formai error should be interpreted with extreme caution as it is based, not only on the settings described in Sect. 4.2.2, but also on the assumption that the observa tions are statistically independent and hâve normally distributed errors. It does not account for the temporal corrélations that exist between GNSS observations, neither for systematic observation and modelling errors, and should therefore be considered as a very optimistic lower bound of the actual scale uncertainty of a GNSS frame derived with the settings described in Sect. 4.2.2.

In summary, the strong corrélation already observed by [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF] and [START_REF] Zhu | Satellite antenna phase center offsets and scale errors in GPS solutions[END_REF] between the terrestrial scale on one hand, satellite z-PCOs, ZWDs and clock offsets on the other, was evidenced by means of our generalized collinearity diagnosis. As long as satellite z-PCOs are estimated, this severe collinearity results, to paraphrase [START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF], in a situation in which the systematic influence of the terrestrial scale on GNSS observations is swamped by observation and modelling errors. In other words, this severe collinearity explains why the intrinsic scale of GNSS solutions, such as illustrated in Fig. 2.6, appears unreliable and, consequently, why GNSS hâve so far not contributed to defining the ITRF scale.

Complementary simulations

Cut-off angle and observation weighting The collinearity diagnosis described in Sect. The mechanism described in Sect. 4.2.3 holds in fact for any network and constelnetwork and of the constellation does thus not seem to hâve a significant impact on the collinearity of the terrestrial scale with the other parameters.

Multi-GNSS

The impact of considering multiple GNSS constellations on the GNSS terrestrial scale détermination was then investigated through a simulation in which a second constellation of 27 Galileo-like satellites (a = 23222 km, e = 0, i = 56°) equally spread over 3 orbital planes was included. Ail of the 100 considered stations were assumed to be multi-GNSS stations, i.e. to provide observations for ail GPS and Galileo satellites in view. The list of simulated parameters was the same as in Table 4.3, except that orbit parameters, clock offsets and z-PCOs were estimated for ail 51 considered satellites, instead of only the 24 GPS-like satellites.

The VIF obtained for the terrestrial scale was 2520.0 (99.980%), i.e. about 1.2 times smaller than in the GPS-only case. This slight collinearity réduction can be explained as follows. Due to the slightly different radii of the GPS and Galileo orbits, the partial dérivatives of the GPS and Galileo satellite z-PCOs ( y/l -a\ cos2 e/a2) are themselves slightly different. On the other hand, the station ZWDs are jointly determined from GPS and Galileo observations. Reproducing the terrestrial scale signature (-aEôs sin e) with the partial dérivatives of clock offsets, ZWDs and satel lite z-PCOs thus cornes down to finding five coefficients (ai)i<i<5 such that both following functions simultaneously best match -aEôs sine:

Because the coefficient is common to both functions, this problem is slightly harder to solve than the corresponding single-GNSS problem, which explains the slight collinearity réduction observed for the terrestrial scale.

Fixed satellite z-PCOs Another simulation was finally run, with the same options as described in Sect. 4.2.2, except that the satellite z-PCOs were held fixed. The VIF obtained for the terrestrial scale was in this case 47.3 (98.938%) and its formai The impact of a positive Z geocenter shift is basically to shorten the observations made when the satellite is in the Northern hemisphere and to lengthen the observa- tions made when the satellite is in the Southern hemisphere. That is why, at first order, the signature the Z geocenter coordinate follows the opposite of the satellite Z coordinate. For a circular orbit, this results in a sinusoid with an amplitude Ôtsini, where i dénotés the inclination of the satellite orbit.
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The "width" of the blue sinusoid in Fig. 4.6 stems from the fact that, at a given epoch, observations are made on the same satellite by several stations under different angles, and are thus slightly differently affected by the geocenter shift. This width mainly dépends on the radius of the satellite orbit, but also of the employed cut-off angle.

With slight anticipation over Sect. 4.5, let us mention that the epoch mean sig nature shown in magenta in Fig. 4.6 can be strictly reproduced by variations of the satellite clock offsets and is therefore unobservable in a standard GNSS analysis. The détermination of the Z geocenter coordinate with GNSS can consequently only rely on the différence between its signature and this epoch mean signature (i.e. on the sig nal around the magenta line in Fig. 4.6). This second order signature is represented in Fig. 4.7 from the points of view of five particular stations.

Signatures of the X and Y geocenter coordinates

Similarly, the impact of a positive X geocenter shift is to shorten the observations made on satellites lying in the positive X hemisphere of the terrestrial frame and to lengthen the observations made on satellites lying in the négative X hemisphere.

At first order, the signature of a positive X geocenter shift on the observations of a particular satellite thus follows the opposite of the satellite X coordinate in the terrestrial frame. For a circular orbit, this results in the product of two sinusoids, one at the satellite révolution period, the other at the Earth rotation period. The signature of a 1 cm variation of the X geocenter coordinate on the set of observations described in Sect. 4.2.2 is represented in Fig. 4.8 from the point of view of a particular satellite. Like for the Z geocenter coordinate, the epoch mean signature shown in magenta in Fig. 4.8 can be strictly reproduced by variations of the satellite clock offsets and is therefore unobservable in a standard GNSS analysis. The détermination of the X geocenter coordinate with GNSS can consequently only rely on the différence between its signature and this epoch mean signature (i.e. on the signal around the magenta line in Fig. 4.8). This second order signature is represented in Fig. 4.9 from the points of view of seven particular stations.

The signature of the Y geocenter coordinate on station-satellite ranges is similar in ail respects to the signature of the X geocenter coordinate. 

Collinearity diagnosis of the SLR geocenter détermination

The generalized collinearity diagnosis developed in Sect. 3.3 is applied in this section to the SLR geocenter détermination problem. This interlude will help in understanding why the SLR technique is much more able to retrieve geocenter motion than GNSS. Sect. 4.4.1 first details the settings that were used to simulate a global SLR analysis. The collinearity of the geocenter coordinates with the other parameters set up in global SLR analyses is then studied in Sect. 4.4.2 and Sect. 4.4.3.

Simulation

A sériés of 9896 station-satellite range observations l was simulated with the op tions listed in Table 4.2, except that a constellation of two LAGEOS-like satellites (a = 12200 km, e = 0, i\ = 110°, z2 = 53°) was used. A design matrix A was set up, including the parameters listed in Table 4.5. The considered empirical ac célérations were constant along-track accélérations and once-per-revolution periodic accélérations in the along-track and cross-track directions: 50> Sc, S," Wc and Ws in the notations of [START_REF] Rodriguez-Solano | Adjustable box-wing model for solar radiation pressure impacting GPS satellites[END_REF]. The main différences with the GNSS case is that neither clock offsets nor tropospheric parameters needed to be set up.

Finally, a minimal constraint matrix C was built, including three no-net-rotation constraints on the station network and one constraint on the DUT1 offset. The choice of a perfectly distributed network of 100 stations providing observa tions at a 5 min rate is rather unrealistic for an SLR simulation. But like in the GNSS case, this choice avoids that the obtained results be perturbed by some net work effect. This will also facilitate the comparison with the GNSS results obtained in Sect. 4.5.

The choice of a 24 h data span is also questionable, as seven day data batches are usually processed in SLR. 24 h data batches were used for comparison with GNSS.

But the results of additional simulations using seven day data batches will also be presented in Sect. 4.4.2 and Sect. 4.4.3.

Collinearity diagnosis of the X and Y geocenter coordinates

The implicit parameter y corresponding to a variation St -1 cm of the X geocenter coordinate, i.e. characterized by dx A = -= [<ft,0,0,...,gt,0;q, 0,0,0,0,...,0f (4.4) station coordinates other parameters was then considered. Given the design matrix A, the observation weight matrix Pi, the constraint matrix C described above and A, Eq. 3.75 was set up and solved. This led to the linear combination c of the estimated parameters, independent of any X translation of the station network and allowed by the constraints, whose signature most closely matches Sy -AA. The VIF of the X geocenter coordinate was then computed using Eq. 3.78. The obtained value was 1.82 (67.040%), which clearly indicates the absence of collinearity issues. This resuit is illustrated in Fig. 4.10, where it is shown that the signature of the X geocenter coordinate on the observations made on a particular LAGEOS-like satellite and the corresponding proper signature hâve similar magnitudes. In other words, the signature of the X geocenter coordinate could hardly be reproduced by independent parameter variations.

The same experiment was repeated for the Y geocenter coordinate. An even lower VIF of 1.22 (42.799%) was obtained. Additional simulations were carried out using a seven day data batch. The obtained VIFs were respectively 1.04 (20.553%) and 1.04 (19.115%) for the X and Y geocenter coordinates. In conclusion, the détermination of the X and Y geocenter coordinates with SLR does manifestly not suffer from collinearity issues. 

Collinearity diagnosis of the Z geocenter coordinate

For the Z coordinate of the geocenter and a 24 h data batch, a larger VIF of 9.03 (94.298%) was obtained. This resuit is illustrated in Fig. 4.11: the proper signa ture of the Z geocenter coordinate is clearly smaller than its signature. The first order sinusoidal signal could in particular be reproduced by independent parameter variations.

Those independent parameter variations, i.e. fxytCi turned out to be mainly composed of variations of the satellite initial State vectors. We therefore investigated how variations of the satellite initial State vectors could hâve reproduced the first order sinusoidal signature of the Z geocenter coordinate. It is straightforwardly seen that this first order signature can be reproduced by a periodic variation of the orbit radius with:

-an amplitude of ôtsini, -its maximum when the satellite reaches the southernmost point of its orbit, -its minimum when the satellite reaches the northernmost point of its orbit.

Starting from a circular orbit, such a periodic variation of the orbit radius can in fact simply be obtained through a slight "ellipticization". Let us arbitrarily place the perigee of the starting circular orbit at uj = 7t/2 (i.e. at its northernmost point)

and consider the perturbed orbit with an eccentricity Se = Stsmi/a. The radial différence between both orbits is, at first order in Se:

Sr --aSe cos v --St sin i cos v (4-5)

where v dénotés the satellite true anomaly. It clearly meets the requirements listed above.

In summary, the first order signature of the Z geocenter coordinate can be reproduced, in case of circular orbits, by variations of the satellite osculating éléments, or equivalently by variations of their initial State vectors. The parameter variation fiy:C obtained from our simulation was indeed corresponding to such ellipticizations of both LAGEOS orbits. It is worth mentioning that this problem is not restricted to circular orbits. Appendix D shows that the first order signature of the Z geocen ter coordinate can similarly be reproduced by variations of the satellite osculating éléments in case of elliptical orbits.

The same experiment was repeated with a seven day data batch. The VIF ob tained for the Z geocenter coordinate was 8.60 (94.009%), only slightly lower than for the 24 h case. The mechanism described above, which explains the collinearity of the Z geocenter coordinate with the satellite osculating éléments, holds in fact for any data batch and orbital arc lengths. In addition to the uneven distribution of the SLR network, this slight collinearity issue may partly explain why the Z component of SLR-derived geocenter motion is of lower quality than its X and Y components (see, e.g., Fig. 4 in Altamimi et al., 2011). 

Collinearity diagnosis of the X and Y geocenter coordinates

A sériés of 207289 station-satellite range observations l was simulated using the options listed in Table 4.2, and a design matrix including the parameters listed in Table 4.3 except satellite z-PCOs was set up. The implicit parameter y corresponding to a 1 cm variation of the X geocenter coordinate was considered and Eq. 3.75 was solved. The obtained VIF was 2355.6 (99.979%). As illustrated from the point of view of a satellite in Fig. 4.12 and from the point of view of a station in Fig. 4.13, the proper signature S%c of the X geocenter coordinate is indeed smaller than its signature Sy by almost two orders of magnitude. If the X geocenter coordinate had been estimated from the simulated observations, independently of any other parameter variation, its formai error (i.e. l/||Sy||) would hâve been 0.038 mm. But the simultaneous estimation of independent parameter variations made its actual formai error (i.e. 1/||SJC||) as large as 2.129 mm.

We then examined the independent parameter variations /xy c by which the sig The same experiment was repeated for the Y geocenter coordinate. The obtained VIF was 2353.1 (99.979%). While the formai error of the Y geocenter coordinate would hâve been 0.038 mm if estimated independently of any other parameter vari ation, its actual formai error was 1.850 mm. The independent parameter variation liy^c whose signature most closely matches that of the Y geocenter coordinate is similar to the one obtained for the X geocenter coordinate. In particular, the obtained network distortion pattern resembles the deformation pattern associated with the surface load coefficient af lm

In conclusion, the X and Y coordinates of the geocenter are hardly distinguishable from independent variations of the parameters estimated in a standard GNSS analy sis. Their epoch mean signatures can indeed be strictly reproduced by variations of the satellite clock parameters, while their second order signatures can be reproduced to a great extent by ail station-related parameters. The détermination of the X and Y geocenter coordinates with GNSS can therefore only rely on tiny proper signatures (of the order of a few tenths of millimeters for 1 cm geocenter shifts). Note that the VIFs and formai errors obtained for the X and Y geocenter coordinates are of the same order as those obtained for the terrestrial scale in Sect. 4.2.

Collinearity diagnosis of the Z geocenter coordinate

Using a fictive network of 100 stations and a fictive constellation of 24 satellites, a VIF of 3157.3 (99.984%) was obtained for the Z geocenter coordinate. While its formai error would hâve been 0.038 mm if estimated independently of any other parameter variation, its actual formai error was 2.129 mm. The examination of \iy,c revealed that both the clock offsets (like for the X and Y geocenter coordinates) and the initial State vector of each satellite (like in the SLR case) "combined their strengths" to reproduce the main part of the signature of the Z geocenter coordinate. Like for the X and Y coordinates, the remaining second order signature could be largely absorbed by variations of the station-related parameters, leaving a proper signature of the order of a few tenths of millimeters. The part of ny,c corresponding to station coordinate variations resembles the deformation pattern associated the surface load coefficient a({0.

As will be shown in Sect. 4.5.4, the larger VIFs of the Z geocenter coordinate compared to those of the X and Y geocenter coordinates stem from a particular rôle played by the estimated satellite empirical accélérations. The VIF and formai error obtained for the Z geocenter coordinate are of the same order as those obtained in Sect. 4.2 for the terrestrial scale. This concretely means that, in a standard GNSS analysis, the Z geocenter coordinate is as weakly determined as is the terrestrial scale when satellite z-PCOs are estimated.

Complementary simulations

Cut-off angle and observation weighting For completeness, the VIFs of the three geocenter coordinates were computed for different cut-off angles and observation weighting functions. Results are summarized in Table 4.6. Like for the terrestrial scale, using higher cut-off angles or downweighting low-elevation observations has the effect of increasing collinearity issues. With reasonable cut-off angles and observation weighting functions, the VIFs obtained for the geocenter coordinate are roughly of the same order as those obtained for the terrestrial scale in Sect. 4.2. 

Float ambiguities

If not fixed to integer values, but estimated as unknown parameters, phase cycle ambiguities constitute a large set of additional parameters which may further increase the collinearity of the geocenter coordinates in a global GNSS analysis. Ambiguities indeed correspond to constant biases per pass of each satellite over each station, and may therefore clearly contribute to masking the second order geocenter signatures shown in Fig. 4.7 and 4.9.

In order to assess the impact of not fixing phase cycle ambiguities, simulations

were run in which one float ambiguity was estimated per pass of each satellite over each station (4129 additional parameters in total). The other simulation options were as described in Sect. 4.2.2, except that satellite z-PCOs were not estimated.

The VIFs obtained for the X, Y and Z geocenter coordinates were respectively 4462.1 (99.989%), 4310.6 (99.989%) and 13995.1 (99.996%), i.e. 1.9, 1.8 and 4.4 times larger than in the case where ail ambiguities were assumed to be fixed. Exacerbated systematic errors are thus to be expected in GNSS geocenter motion estimâtes, and especially their Z component, in case where phase cycle ambiguities are not fixed.

An illustration of the impact of ambiguity fixation on the Z component of actual GPS geocenter motion estimâtes can in fact be found in [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF]. In the early part of his figure 5.7 (b), when GPS ambiguities were not fixed, a strong artificial periodic signal with an amplitude of about 20 cm is visible. This spurious signal then vanished as soon as ambiguity fixation was introduced in the processing.

As evoked in Sect. 2.1.2, fixing phase cycle ambiguities to integer values in a GLONASS analysis is a complicated task. In his GLONASS analyses, [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] could for instance fix less than 50% of ambiguities to integer values, against 90%

for GPS. In addition to larger modelling deficiencies than in the case of GPS, the fact that a large fraction of GLONASS ambiguities cannot be fixed may thus partly contribute to the poorer quality of GLONASS-derived geocenter motion estimâtes observed by [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF].

Multi-GNSS

The impact of considering multiple GNSS constellations was finally investigated through simulations in which 27 Galileo-like satellites were considered in addition to the previous 24 GPS-like satellites. The VIFs obtained for the x, Y and Z geocenter coordinates were respectively 1386.5 (99.964%), 1403.8 (99.964%) and 2460.5 (99.980%), i.e. 1.7, 1.7 and 1.3 times smaller than in the GPS-only case.

Similarly to the mechanism described for the terrestrial scale in Sect. 4.2.4, this slight collinearity réduction is due to the combination of both following facts.

-Due to the slightly different radii of the GPS and Galileo orbits, the second order signatures of the geocenter coordinates (i.e. parts of their signatures that are distinguishable from the satellite clock offsets) on GPS and Galileo observations are slightly different.

-Ail station-related parameters are common to both GNSS and are therefore less able to reproduce the second order signatures of geocenter coordinates in the multi-GNSS case than in the single-GNSS case. The purpose here was to assess the individual and combined contributions of the five usually estimated ECOM parameters to the collinearity of the Z geocenter coor- The results in Table 4.7 were however obtained with a particular configuration of the orbital planes with respect to the Sun. The f3s angles (élévations of the Sun above the orbital planes) were in this case ranging from -30°to 68°. Another sériés of simulations was thus run using a configuration considered by [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] as a worst case scénario. A constellation of 24 GLONASS-like satellites (a = 25520

km, e = 0, i = 65°) equally spread over three orbital planes was used. The (3S angles were respectively 87°, -15°and -15°for the three orbital planes. Results are summarized in Table 4.8. The VIF of the Z geocenter coordinate is this time increased by a factor of about 1.9 when estimating the five ECOM parameters. Like previously, this collinearity increase can be explained by the simultaneous estimation of only three ECOM parameters: D0, Bc and Bs.

These experiments demonstrate that:

-the Z geocenter coordinate is highly collinear with the other parameters of a global GNSS analysis, even when no ECOM parameter is estimated;

-estimating the five usual ECOM parameters further increases this collinearity, but to a very moderate extent;

-this further increase is attributable to the simultaneous estimation of D0, Bc and Bs, while the estimation of D0 alone causes a marginal increase of collinearity.

From these observations, we think it justified to conclude, in opposition with Meindl 2013), that the estimation of the ECOM parameters, and especially of D0 alone, does not play a prédominant rôle in the insensitivity of GNSS to the Z component of geocenter motion.

A last experiment was carried out to consolidate this view. The parameters esti mated in GNSS analyses, but not in SLR analyses were grouped into three categories:

-the five usually estimated ECOM parameters ("ECOM" in Table 4.9), -tropospheric parameters (ZWDs and tropospheric gradients; "tropo" in Table 4.9), -station and satellite clock offsets ("docks" in Table 4.9).

And different simulations were run to assess the individual and combined contribu tions of these parameter categories to the collinearity of the three geocenter coordinates. The obtained VIFs are summarized in Table 4.9.

The GNSS parameter category with the largest individual impact is the clock offset category: a hypothetical GNSS that could dispense with the estimation of clock offsets would most certainly allow an accurate détermination of geocenter motion.

The combination of clock offsets with tropospheric parameters has a devastating effect. It concretely makes the second order signatures shown in Fig. 4.7 and Fig. 4.9 quasi-unobservable. In case of the Z geocenter coordinate, estimating the five ECOM parameters has an additional, but relatively small impact. That is why we assert that the inability of GNSS, as opposed to SLR, to properly sense the Z component of geocenter motion is mostly due to the simultaneous estimation of clock offsets and tropospheric parameters. For the X and Y components of geocenter motion, this inability is quasi-entirely due to the simultaneous estimation of clock offsets and tropospheric parameters. The conclusion of Sect. 4.5.4 contradicts the one drawn by [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF], according to whom the inability of GNSS to properly sense the Z component of geocenter motion stems from the corrélation between the Z geocenter coordinate and the ECOM D0 parameters. This subsection therefore gives a critical review of [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF]'s arguments.

The reasoning of [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] relies on two main arguments. The first one can be summarized as follows. According to the orbital perturbation theory, a constant cross-track accélération W0 has the effect of translating the satellite orbit orthogonally to the orbital plane. Consequently, -if ail satellites of a GNSS were lying on a single orbital plane, -if the Sun was standing perpendicular to this orbital plane (/3S = 90°so that Do = W0),

-and if the Earth was not rotating, then a new singularity would appear in the analysis of such GNSS data. Under these conditions, a mean variation of the D0 parameters (causing a common translation of ail satellite orbits) could indeed be strictly compensated by a translation of the station network. This is undeniable. However:

-The Earth rotâtes, so that a translation of the orbital plane is actually not compensable by a translation of the station network. [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] nevertheless note that, even if the Earth rotâtes, a strong corrélation remains between the mean of the D0 parameters and the Z geocenter coordinate in the case of a single orbital plane (-91.2% for j3s -90°, a value which actually also dépends on the inclination of the orbital plane).

-This corrélation decreases very rapidly with (5S (only -54.4% for j3s = 80°). It therefore seems that, even with two orbital planes and (3S = 90°for one of both, the overall corrélation between the D0 parameters and the geocenter Z coordinate should not be particularly problematic.

The second argument of [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] -/3^is the élévation of the Sun above the orbital plane k,

-n dénotés the mean motion of the satellites. [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] justify Eq. 4.6 by the fact that a variation ôD0 has the effect, among others, of translating the orbit of a satellite by ôD0 sin/3s/(n2 cos?') along the Z axis. From Eq. 4.6, they conclude that the geocenter différences ôz between their two solution sériés are "explained by the différences of the [Z)0] parameters in both solution sériés".

We were however unable to reproduce [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF]'s resuit. We introduced for instance artificial 1 cm Z geocenter shifts into two simulated solutions that were only differing by the employed cut-off angles (0°in the first, 10°in the second). The obtained right-hand sides of Eq. 4.6 were respectively 2.3 mm and 5.3 mm, both far from 1 cm, and also very different from each other. Repeating the same experiment with one year of real daily solutions provided by ESA led to right-hand sides that were rather constant (mean: 4.6 mm; standard déviation: 1.0 mm), but again far from 1 cm. We therefore think that Eq. 4.6 does probably only hold for the particular analysis settings used by [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF].

In fact, the point where the reasoning of [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] fails is that their ôz geocenter différences are not explained by the ÔD0 variations. On the contrary, these ôDq variations are only one particular conséquence of the introduction of the ôz geocenter shifts (i.e. of the application or not of no-net-Z-translation constraints).

Introducing an artificial Z geocenter shift into a solution admittedly induces varia tions of the D0 parameters. But ail other parameter categories are affected as well.

With given analysis settings, formulas like Eq. 4.6 could in fact be derived for any parameter category like, e.g., tropospheric gradients. But each would only give a partial view of the problem.

Summary

The generalized collinearity diagnosis developed in Sect. 3.3 was applied in Sect. 4.5.1 and 4.5.2 to the problem of determining geocenter coordinates in a standard single-GNSS global analysis. The fact, already evidenced in Sect. 4.1, that the three geocen ter coordinates correspond to quasi-singularities in such a global GNSS analysis was confirmed their huge VIFs. With reasonable analysis settings, the VIFs and formai errors obtained for the three geocenter coordinates are roughly of the same order as those obtained for the terrestrial scale in Sect. 4.2.3. One can therefore consider that, in a standard single-GNSS analysis, the three geocenter coordinates are as weakly determined as is the terrestrial scale when satellite z-PCOs are estimated.

The various tests performed in Sect. 4.5.4 proved that, among the parameters of a GNSS analysis, two spécifie categories quasi-fully explain the insensitivity of GNSS to the X and Y geocenter coordinates: epoch-wise clock offsets and tropospheric parameters. These two parameter categories also explain most of the insensitivity of GNSS to the Z geocenter coordinate, which is in addition slightly amplified by the simultaneous estimation of three ECOM parameters: D0, Bc and Bs. We therefore conclude that the inability of GNSS, as opposed to SLR, to properly sense geocenter motion, including its Z component, is mainly due to the simultaneous estimation of clock offsets and tropospheric parameters.

This collinearity diagnosis explains why the translation time sériés derived from IGS AC solutions are far from reflecting a realistic geocenter motion (Sect. 2.4.1).

To paraphrase [START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF] The mechanisms at the origin of this extreme collinearity were also detailed. In other words, the question of why current GNSS are quasi-insensitive to the terres trial scale and to geocenter motion has been answered. The conséquence of this quasi-insensitivity is that intrinsic GNSS estimâtes of the terrestrial scale (Sect. 2.3) and of geocenter motion (Sect. 2.4.1) are currently extremely sensitive to modelling errors and therefore not reliable enough to allow a contribution of GNSS to the définition of the ITRF scale and origin. In this last chapter, several prospects are investigated, that could improve the détermination of the terrestrial scale (Sect. 5.1) and of geocenter motion (Sect. 5.2) with GNSS, and therefore lead to future potential contributions of GNSS to the définition of the ITRF scale and origin.

Prospects for a contribution of GNSS to the ITRF scale

When the satellite z-PCOs are estimated in a global GNSS analysis, a quasi-singularity arises due to a quasi-perfect corrélation between terrestrial scale, ZWDs, station and satellite clock offsets and satellite z-PCOs (Sect. 4.2.3). On the other hand, when the satellite z-PCOs are fixed, this quasi-singularity vanishes and the terrestrial scale becomes in particular well determined (Sect. 4.2.4). It was therefore concluded in Sect. 4.2 that, if the z-PCOs of the GNSS satellites were known (independently of any conventional TRF scale), then GNSS could most likely contribute to defining the ITRF scale. In Sect. 5.1.1 and Sect. 5.1.2, two paths are thus considered that could lead to such an absolute calibration of the GNSS satellite z-PCOs, hence to a future contribution of GNSS to the ITRF scale définition.

But, before such absolute z-PCO calibrations become available, the long-term stability of the GNSS satellite z-PCOs might already be used for a GNSS contribution to the ITRF scale rate. This is the topic of Sect. 5.1.3.

z-PCO calibrations relative to a reference GNSS satellite

Pre-launch antenna calibrations are unfortunately not available for any GNSS satel lite launched so far. However, [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF] noted that, if the z-PCO of one single GNSS satellite was known, then the z-PCOs of the other GNSS satellites may be determined relative to this reference satellite:

We conclude that it is not feasible to accurately solve for the satellite antenna offsets in an absolute sense due to the corrélation with the terrestrial scale, the tropospheric delays, the receiver antenna phase center offsets, and elevation-dependent variations. However, we are able to solve for these offsets in a relative way, e.g., by adopting a spécifie value for a single satellite. The offsets of the other satellites may then be determined relative to this adopted value.

Via such relative calibrations, the availability of a pre-launch calibration for a single GNSS satellite might consequently be enough to allow a GNSS contribution to the ITRF scale.

The goal of this subsection is to demonstrate the feasibility of the relative z-PCO calibrations suggested by [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF]. From the reprocessed weekly solutions of the GFZ AC (gfl ), two different sets of GPS satellite z-PCOs are therefore derived and compared. The first set is obtained in a similar way as the conventional IGS z-PCO values, i.e., relative to the ITRF2008 scale. On the other hand, the second set is derived under the assumption that one particular satellite has a known, i.e.

pre-launch calibrated, z-PCO.

z-PCO estimation relative to the ITRF2008 scale From the gfl SINEX solutions of the period 1998.0-2008.0, a first set of GPS satellite z-PCOs was derived as follows.

The original, non-constrained weekly normal équations were first recovered using Eq. 1.9. The weekly normal équations were then inverted under no-net-rotation, no-net-scale and no-net-translation constraints with respect to the ITRF2008. Nonet-scale constraints were applied in order to remove the quasi-perfect corrélation that would otherwise exist between the terrestrial scale and the mean of the satellite z-PCOs (see Sect. 2.3 and 4.2). This allows to obtain robust estimâtes of the satellite z-PCOs, which however conventionally rely on the ITRF2008 scale. The choice to additionally apply non-mandatory no-net-translation constraints was made in accor dance with Collilieux and Schmid (2012), who observed that they had a positive impact on the détermination of the satellite z-PCOs.

From the obtained solutions, weekly estimâtes of the satellite z-PCOs were extracted, as well as their covariance matrices. Those weekly estimâtes were finally rigorously stacked into long-term z-PCO estimâtes. Except for the last step, this procedure is the same that was used to generate the conventional z-PCO values, consistent with the ITRF2008 scale, currently in use within the IGS.

For the record, the différences between the obtained z-PCO estimâtes and their conventional IGS values (mean: 1.7 cm; standard déviation: 1.6 cm) are shown in z-PCO estimation relative to a reference satellite From the same set of weekly gfl SINEX solutions, a second set of satellite z-PCOs was derived as follows. The weekly unconstrained normal équations were this time inverted under no-net-rotation and no-net-translation constraints only. From the obtained solutions, weekly estimâtes of the satellite z-PCOs were extracted, as well as their covariance matrices. Because no-net-scale constraints were not applied, these weekly z-PCO estimâtes were independent of any conventional TRF scale. However, due to their quasi-perfect cor rélation with the terrestrial scale, the means of these weekly z-PCO estimâtes were unreliably determined.

Like previously, the obtained weekly z-PCO estimâtes were then stacked into long-term z-PCO estimâtes. But during this stacking, the z-PCO of one particular reference satellite was fixed (Satellite Vehicle Number G061), so as to simulate rela tive calibrations of the other satellites to a hypothetical ground-calibrated satellite.

Moreover, weekly mean z-PCO bias parameters were additionally estimated in order to discard information about the unreliably determined weekly z-PCO means.

Comparison Fig. 5.2 shows the différences between the long-term z-PCO estimâtes thus obtained relative to G061 and those previously obtained relative to the ITRF2008 scale. These différences hâve a mean of 0.3 mm, which, according to [START_REF] Zhu | Satellite antenna phase center offsets and scale errors in GPS solutions[END_REF], corresponds to a negligible terrestrial scale bias of about 0.002 ppb (0.015 mm). They hâve a standard déviation of 1.2 mm and ail lie between ±4 mm around their mean.

According to Cardellach et al. (2007), this millimetric scatter is also of negligible conséquence for the terrestrial frame. By assuming that the z-PCO of a particular satellite was known, we were thus able to calibrate the other satellites, independently of any conventional TRF scale, with negligible différences compared with the calibrations obtained relative to the ITRF2008 scale. The vertical grey line marks the limit of 156 weekly estimâtes (i.e. 3 years). The solid red line indicates the mean of the z-PCO différences of satellites with more than 156 weekly estimâtes.

The dashed red lines are 1.5 mm above and below this mean.

- Choice of the reference satellite The différences shown in Fig. 5.2 and Fig. 5.3 were however obtained after a particular reference satellite (G061) was arbitrarily chosen.

To assess the impact of choosing different reference satellites, the previous steps were repeated with each available satellite successively taken as reference satellite. The mean and standard déviation of the différences between the long-term z-PCO esti mâtes obtained relative to each satellite and those obtained relative to the ITRF2008 scale were thus computed. It turned out that the scatter of those z-PCO différences was independent of the chosen reference satellite. (This scatter seems in fact mostly linked to the overall number of weekly z-PCO estimâtes available per satellite.)

On the other hand, as illustrated in Fig. 5.4, the mean of those z-PCO différences is dépendent on the chosen reference satellite, and seems more specifically linked to the data span available for the chosen reference satellite. In particular, if any satellite with more than 3 years of data is taken as reference satellite, then the obtained mean z-PCO différence systematically lies within ±2 mm, corresponding to a terrestrial scale bias within ±0.1 mm.

Summary

With the experiments carried out in this section, it was demonstrated that calibrations of the GPS satellite z-PCOs relative to a reference satellite could reproduce calibrations relative to a given TRF scale at the level of a few mm. Provided that at least 3 years of data are available for the chosen reference satellite, the mean bias observed between both sets of calibrations was below 2 mm, corresponding to a terrestrial scale bias below 0.1 mm.

In the hypothetical scénario where a pre-launch calibration becomes available for some future GPS satellite, the relative calibration method described above could be used to obtain absolute (i.e. independent of any conventional TRF scale) z-PCO calibrations for ail GPS satellites. Subsequently fixing those absolute satellite z-PCOs in GPS data analyses would allow an absolute détermination of the terrestrial scale by GPS, with a better précision than SLR (see Sect. 4.2). The accuracy of this hypothetical absolute détermination of the terrestrial scale by GPS is however hard to assess, as it dépends on multiple factors. The maximum expected bias of 0.1 mm after 3 years of flight of the reference satellite is only one particular aspect of this problem. It does not take into account possible systematic errors that would hâve cancelled in the z-PCO différences studied above, nor a possible error in the prelaunch calibration of the reference satellite. In this scénario, GPS would nevertheless become at least candidate to the définition of the ITRF scale, and may help in resolving the discrepancy between the SLR and VLBI estimâtes of the terrestrial scale (Altamimi et al., 2011).

In the tests carried out and the conclusions drawn in this section, a single GNSS, namely GPS, was considered. The question was not addressed whether cross-GNSS relative z-PCO calibrations would be feasible, i.e. whether, for instance, a groundcalibrated GLONASS or Galileo satellite would allow relative calibrations of the GPS satellites. Experiments similar to the GPS-only tests described above were in fact carried out using combined GPS+GLONASS solutions. But because no homogeneous, long enough GPS+GLONASS dataset was available, any definitive conclusion could not be reached. The question of cross-GNSS relative z-PCO calibrations thus remains open for the moment, but may be answered soon, by means of the AC solutions from the second IGS reprocessing campaign. -the fact that the satellite z-PCOs are equal to reference values (at some given date);

-the time invariability of the satellite z-PCOs.

If the terrestrial frames resulting from such GNSS analyses are stacked into a longterm linear frame (such as done for the ITRF computation -see Sect. 1.2.4), each of these two pièces of information will impact particular aspects of the long-term stacked frame. In particular, the scale of the long-term stacked frame will be controlled by the adopted reference z-PCO values, while the scale rate of the long-term stacked frame will be controlled by the assumed time invariability of the satellite z-PCOs.

In their contribution to the ITRF2013, the IGS ACs will fix the satellite z-PCOs to conventional values. The scale rate of the long-term GNSS frame that will enter the ITRF2013 computation will thus be controlled by the assumed time invariability of the satellite z-PCOs. Depending on the actual validity of this assumption, a contribution of GNSS to the définition of the ITRF2013 scale rate may therefore be considered.

This possibility of a GNSS contribution to the ITRF scale rate définition was in fact studied by Collilieux and Schmid (2012) From Collilieux and Schmid (2012)'s study, it can be concluded that the IGS AC contributions to ITRF2008 allow a détermination of the terrestrial scale rate, based on the z-PCO time invariability assumption, with a précision of about 0.25 mm/yr.

A similar analysis will be conducted over the IGS AC contributions to ITRF2013.

Depending on the obtained précision estimate of the intrinsic GNSS scale rate, and on its agreement with the SLR and VLBI scale rates, a contribution of GNSS to the définition of the ITRF2013 scale rate could actually be considered.

5.2

Prospects for improving the geocenter détermination with

GNSS

The collinearity diagnosis performed in Sect. 4.5 clarified why GNSS could so far not contribute to define the ITRF origin. The three components of the origin of GNSSderived terrestrial frames are indeed quasi-perfectly correlated (collinear) with the other parameters set up in standard GNSS analyses. The détermination of geocenter motion with GNSS is thus a nearly singular problem, which explains why GNSS geocenter motion estimâtes hâve so far been unreliable and particularly sensitive to modelling errors (Sect. 2.4.1). In view of a reliable observation of geocenter motion with GNSS and a future possible contribution of GNSS to the ITRF origin, two complementary paths can consequently be considered: the réduction of collinearity issues and the mitigation of modelling errors.

To reduce the collinearity of the geocenter coordinates in GNSS analyses, two different paths can again be considered:

-the inclusion of additional decorrelating observations;

-a réduction of the number of parameters to estimate, or equivalently, the addi tion of constraints on some estimated parameters.

As regards the first path, two possibilities are examined in the following, namely the joint analysis of observations from several GNSS (Sect. 5. Finally, besides the réduction of collinearity issues, improvements of the geocen-ter détermination with GNSS could also be expected from a réduction of modelling errors. From the fact that the IGS AC translation time sériés contain strong spurious signais at harmonies of the GPS draconitic year (Sect. 2.4.1), and from various experiments showing that changes in orbit modelling hâve significant impacts on GPS-derived geocenter motion (see Sect. 2.4.2 and, e.g., Springer, 2000;[START_REF] Hugentobler | Identification and mitigation of GNSS errors[END_REF][START_REF] Herring | Analysis impacts on gps reference frame realizations[END_REF][START_REF] Rodriguez-Solano | Impact of Earth radiation pressure on GPS position estimâtes[END_REF][START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF], it seems clear that orbit modelling deficiencies are a major source of geocenter contam ination. Sect. 5.2.4 will therefore discuss several prospects towards orbit modelling improvements.

Multi-GNSS geocenter détermination

As shown in Sect. 4.5.3, the collinearity of the three geocenter coordinates is slightly reduced when observations from several GNSS are simultaneously analysed, rather than observations from a single GNSS. One could therefore expect better geocenter motion estimâtes from multi-GNSS analyses than from GPS-only analyses. For the time being, this is however not the case.

At présent, only two fully deployed GNSS indeed allow the estimation of geo center motion time sériés: GPS and GLONASS. A comparative study of GPS-only, GLONASS-only and combined GPS+GLONASS geocenter estimâtes can be found in [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] and [START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF]. In the X and Y components, their GPS and GLONASS geocenter time sériés are quite consistent, although the GLONASS time sériés are clearly noisier. Hardly any différence can be observed between the com bined GPS+GLONASS and the GPS-only time sériés. In the Z component however, the GLONASS-only geocenter time sériés is of much lower quality than the GPS-only time sériés and contains in particular a strong spurious periodic signal with an am plitude of about 20 cm. The combined GPS+GLONASS time sériés is close to the GPS-only time sériés, but nevertheless shows traces of the spurious GLONASS signal.

In summary, the overall effect of adding GLONASS observations is a dégradation of the GPS-only geocenter estimâtes, rather than the expected improvement.

The much lower quality of Meindl (2011) 's GLONASS-only geocenter estimâtes is likely due for a large part to larger (orbit) modelling errors than in the GPS case. In their combined GPS+GLONASS analyses, the gain in collinearity compared to the GPS-only case was thus probably offset by the introduction of those larger GLONASS modelling errors, resulting in an overall dégradation of the geocen ter estimation. An actual improvement over GPS-only geocenter estimâtes via the inclusion of GLONASS observations would in fact likely require that the GLONASS satellite orbits are modelled with a similar précision as the GPS orbits, which is still far from being the case [START_REF] Rodriguez-Solano | Reducing the draconitic errors in GNSS geodetic products[END_REF].

For the moment, it is hardly assessable whether the inclusion of Galileo obser vations will improve or dégradé GPS-only geocenter estimâtes. It will first dépend on the précision with which the Galileo satellite orbits can be modelled when the full Galileo constellation is deployed. But, even if a similar précision as for the GPS orbits is reached, the slight collinearity réduction resulting from the inclusion of Galileo observations may still not be enough to obtain reliable GNSS geocenter motion estimâtes.

Inclusion of LEO observations

In ail the preceding, only observations collected by ground GNSS stations hâve been considered. However, many LEO satellites are equipped with GNSS antennas. This subsection therefore investigates how the simultaneous analysis of GNSS observations collected by ground stations and LEO satellites may reduce the collinearity of the geocenter coordinates in a global GNSS analysis.

Several simulations were thus run in which GNSS observations collected by a GRACE-like satellite (a = 6811.5 km, e -0, i -89°) were considered. In addition to the parameters listed in Table 4.3 (except the GNSS satellite z-PCOs), an initial State In a first round of simulations, the GRACE observations were given the same weight as the ground observations, i.e. an a priori sigma of 1 cm. The VIFs obtained for the three geocenter coordinates were 137.7 (99.636%), 138.5 (99.638%) and 1853.4 (99.973%), i.e. 17.1, 17.0 and 1.7 times smaller than in the case where no GRACE observations were used. Like in the case where no GRACE observations were used, the epoch mean signatures of the three geocenter coordinates on the ground obser vations (magenta fines in Fig. 4.6 and 4.8) could be reproduced by variations of the GNSS satellite dock offsets. These variations of the GNSS satellite dock offsets how ever had undesirable impacts on the GRACE observations. In case of the X and Y geocenter coordinates, these side effects could hardly be accommodated by variations of the GRACE parameters. The inclusion of GRACE observations thus enabled a partial decorrelation of the X and Y geocenter coordinates from the GNSS satellite dock offsets. On the other hand, in case of the Z geocenter coordinate, the undesir able impact of the GNSS satellite dock offset variations on the GRACE observations could be accommodated to a great extent by variations of the GRACE parameters, which is why the collinearity of the Z geocenter coordinate was much less reduced.

In a second run of simulations, the GRACE observations were given an a priori sigma of 1 mm, while an a priori sigma of 1 cm was kept for the ground observa tions. The VIFs obtained for the three geocenter coordinates were 23.4 (97.843%), [START_REF] Montgomery | Introduction to linear régression anal ysis[END_REF].8 (97.780%) and 220.7 (99.773%), i.e. 100.7, 103.2 and 14.3 times smaller than in the case where no GRACE observations were used. Compared to the previous simulations, a greater importance was given to the minimization of any undesirable impact on the heavily weighted GRACE observations. The collinearity between the three geocenter coordinates and the GNSS satellite clock offsets was thus further re duced. Further collinearity réductions were similarly observed in simulations where observations collected by several LEO satellites were considered.

In conclusion, depending on their relative weight to the ground observations, the inclusion of LEO observations in a global GNSS analysis can lead to a drastic collinearity réduction for the three geocenter coordinates, hence to a potentially improved détermination of geocenter motion with GNSS. 

Satellite clock modelling

The passive hydrogen maser of the Galileo validation satellite GIOVE-B and the latest génération of rubidium docks of the GPS Block IIF satellites hâve both demonstrated unprecedented stability (Montenbruck et al., 2012b). The stability of these The stability of a clock over a specified time interval r is usually measured by its Allan déviation cry(r). For r up to several thousands of seconds, the Allan déviations of the new génération Galileo and GPS satellite clocks approximately vary as l/y/r.

The stability spécification for GIOVE-B's passive hydrogen maser was for instance IC)~12/y/r. Ground tests demonstrated a stability of 6 x 10~13/y/r. However, the actual in-flight stability of GIOVE-B's passive hydrogen maser is rather at the order of 1.5 x 10-12/v^ (Montenbruck et al., 2012b). The rubidium clock of the GPS IIF satellite G062 shows a comparable in-flight stability level (Montenbruck et al., 2012a).

Assuming a given stability cr/y/r for a satellite clock is équivalent to assuming that the satellite epoch-wise clock offsets are normally distributed with a standard déviation a. This assumption can be introduced into a GNSS analysis via simple weighted pseudo-observations (constraints) on the epoch-wise satellite clock offsets [START_REF] Hugentobler | Modeling of the GIOVE-B clock as a tool for studying radiation pressure models[END_REF][START_REF] Hackel | Galileo orbit détermination using combined GNSS and SLR observations[END_REF]. We will use this approach in the following simulations, with different <r's and different numbers of stable satellite clocks.

When several stable clocks are simultaneously considered, it is however necessary to account for relative frequency biases between them (i.e. for their inaccuracy). This will be done in the following simulations by freely estimating one bias and one rate for ail but one of the considered stable clocks.

Before coming to the simulation results, it should finally be noted that at least two stable satellite clocks need to be simultaneously considered. Ail other simulation options were as described in Sect. 4.2.2 except that satellite z-PCOs were not estimated. (99.809%), 285.2 (99.825%) and 954.9 (99.948%), i.e. 9.0, 8. 

Periodic clock variations

In the preceding simulations, it was implicitly assumed that the Allan déviations of the satellite docks were varying as 1/ yfr for r up to one day. The analysis of actual estimâtes of GIOVE-B's or G062's clock offsets however reveals that this assumption is only valid for r up to about 2000 s [START_REF] Hugentobler | Modeling of the GIOVE-B clock as a tool for studying radiation pressure models[END_REF]Montenbruck et al., 2012b,a;[START_REF] Hackel | Galileo orbit détermination using combined GNSS and SLR observations[END_REF]. The Allan déviations of such GIOVE-B or G062 clock estimâtes then show a pronounced bump, approximately centered around r = 20000 s, caused by periodic variations of the clock estimâtes (mainly once-per-revolution and twice-per-revolution variations with amplitudes of several cm).

According to Montenbruck et al. (2012a), three mechanisms could be at the origin of these apparent periodic clock variations:

-coupling with orbit détermination uncertainties, via the strong corrélation between clock offsets and the satellite radial position;

-frequency variations of the clock oscillator, induced, e.g., by température vari ations;

-line bias variations, induced, e.g., by température variations.

As evidenced by [START_REF] Svehla | Complété relativistic modelling of the GIOVE-B dock parameters and its impact on POD, track-track ambiguity resolution and précisé timing[END_REF] by means of SLR observations, the apparent peri odic clock variations of GIOVE-B appear mostly induced by orbit modelling errors.

Additional temperature-induced variations can however not be ruled out. On the other hand, as regards G062, the availability of triple-frequency observations allowed Montenbruck et al. (2012a) to unambiguously evidence temperature-induced line bias variations.

Apparent clock variations induced by orbit modelling errors, such as observed for GIOVE-B, can provide insight into the underlying orbit modelling deficiencies and thus help in overcoming them [START_REF] Svehla | 10 years of précisé geometrical positioning in space -Geometrical model of solar radiation pressure based on high-performing docks onboard Galileo[END_REF]. One can therefore expect that such orbit-induced apparent clock variations will eventually vanish as progress is made in orbit modelling. On the other hand, "real" temperature-induced (frequency and/or line bias) clock variations cannot be modelled a priori without a detailed knowledge of the internai structure and thermal characteristics of the satellites.

As such detailed knowledge is not publicly available, temperature-induced periodic clock variations will likely need to be accounted for empirically in future global GNSS analyses, e.g. by freely estimating once-per-revolution and twice-per-revolution clock variations. In a last run of simulations, we therefore investigated how the estimation of such parameters would impact the collinearity of the geocenter coordinates. Like previously, ail 24 considered GPS-like satellites were assumed to be equipped with stable docks. Ail epoch-wise satellite clock offsets were constrained with a = 1CT12 s.

Clock biases, clock rates and once-per-revolution clock variations were additionally estimated for ail but one satellites. (The impact of estimating or not twice-perrevolution clock variations on the collinearity of the geocenter coordinates was found to be negligible.)

The VIFs thus obtained for the three geocenter coordinates were s, then a drastic collinearity réduction could be achieved and would likely lead to compétitive GNSS geocenter motion estimâtes. This could be the case of the future Galileo constellation, whose satellites will carry similar passive hydrogen masers as GIOVE-B. However, if once-per-revolution clock variations need to be estimated in order to account for non-modelled thermal effects, then stable satellite docks do not allow any significant collinearity réduction for the Z geocenter coordinate.

Orbit modelling improvements

As mentioned in the introduction of Sect. 5.2, improvements of the geocenter dé termination with GNSS can be expected, not only from a réduction of collinearity issues, but also from a mitigation of orbit modelling errors, which are likely the main contributor to systematic errors in current GNSS geocenter motion estimâtes. This subsection therefore gives an overview of several prospects towards orbit modelling improvements.

Systematic errors in GNSS satellite orbits are currently mostly due to mis-modelling of the non-gravitational forces acting on GNSS satellites: Earth radiation pressure, thermal re-radiation, antenna thrust and, above ail, direct solar radiation pressure.

Several évidences, like:

-the systematic Sun-dependent patterns observed by [START_REF] Urschl | Contribution of SLR tracking data to GNSS orbit détermination[END_REF] A priori solar radiation pressure modelling The second possible way in view of an improved considération of non-gravitational forces in global GNSS analyses would be to dispose of accurate a priori models of these forces. Analytical solar radiation pressure models hâve been developed for the GLONASS-IIv [START_REF] Ziebart | Analytical solar radiation pressure modelling for GLONASS using a pixel array[END_REF] and GPS-IIR [START_REF] Ziebart | GPS Block IIR non-conservative force modeling: computation and implications[END_REF] satellites, by computing the effects of the solar photon flux on a computer simulation of the spacecraft structures using ray-tracing algorithms. Analytical models now also exist for the GPS-IIA and GLONASS-IIM satellites and additionally account for Earth radiation pressure, thermal re-radiation and antenna thrust [START_REF] Ziebart | Singular spectrum analysis for modeling seasonal signais from GPS time sériés[END_REF]. Their accuracy is however limited by the ignorance of the actual optical and thermal properties of the satellite materials, and it is currently unsure whether such analytical models will eventually reach the accuracy required for précisé GNSS orbit détermination.

Accelerometers

Finally, a last possible prospect towards improvements of the GNSS satellite orbits would be to measure the non-conservative forces acting on GNSS satel lites rather than imperfectly modelling them. Equipping future GNSS satellites with 3-dimensional accelerometers would in fact likely be the best way to improve GNSS orbits. This might moreover help in understanding and mitigating orbit modelling deficiencies for current unequipped satellites.

Conclusion

Although fundamental in several respects, the GNSS contribution to the ITRF re mains subject to various potential improvements. In particular, the origin and scale information stemming from global GNSS solutions has so far not been considered reliable enough to contribute to the définition of the ITRF origin and scale. In view of a possible future contribution of GNSS to the ITRF origin and scale, a first necessary step was to provide a detailed understanding of the weak ability of GNSS to détermine the terrestrial scale and geocenter motion. This was actually the core purpose of this thesis.

The fundamental issue concerning the détermination of the terrestrial scale with GNSS had in fact already been identified by [START_REF] Springer | Modeling and validating orbits and docks using the Global Positioning System. Geodàtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodàtischen Kommission[END_REF] and [START_REF] Zhu | Satellite antenna phase center offsets and scale errors in GPS solutions[END_REF].

In global GNSS analyses, there indeed exists a quasi-perfect corrélation between the terrestrial scale, the satellite z-PCOs, the zénith wet delays and the station and satellite clock offsets. Since pre-launch antenna calibrations are not available for any of the GNSS satellites launched so far, this quasi-perfect corrélation prevents a reliable estimation of the terrestrial scale with GNSS apart from conventional satellite z-PCOs.

On the other hand, the weak ability of GNSS to détermine geocenter motion through the network shift approach was remaining unresolved when this thesis started.

In order to gain insight into this question, we addressed it from the perspective of Once the weak ability of GNSS to détermine the terrestrial scale and geocenter motion was understood, several prospects were investigated, that could lead to a possible future contribution of GNSS to the définition of the ITRF scale and origin.

The entire terrestrial scale issue could be solved if z-PCO calibrations, independent of any conventional terrestrial scale, were available for one or more GNSS satellites.

This could be the case if the ground antenna calibrations of one or more Galileo satellites were made publicly available. Another possibility would consist in calibrating the GNSS satellite antennas with respect to reference LEO satellites [START_REF] Haines | One-centimeter orbit détermination for Jason-1: new GPS-based strategies[END_REF]. This method is however currently prone to large systematic errors that remain to be understood and mitigated.

Before absolute z-PCO calibrations become available, the long-term stability of the GNSS satellite z-PCOs may however already be used for a GNSS contribution to the ITRF scale rate. By assuming the time invariability of the GPS satellite z-PCOs, Collilieux and Schmid (2012) indeed showed that the IGS AC contributions Besides the réduction of collinearity issues, improvements of the geocenter dé termination with GNSS can also be expected from improvements in the modelling of the GNSS satellite orbits, and especially of the non-gravitational forces acting on GNSS satellites. In this respect, alternative orbit parameterizations or accurate analytical modelling of non-gravitational forces might eventually help in leading to compétitive GNSS geocenter estimâtes. But the best way to overcome the difïicult modelling of non-gravitational forces would likely be to equip future GNSS satellites with 3-dimensional accelerometers.

Several possible paths thus exist towards a reliable observation of geocenter motion with GNSS. At the moment, it is however hardly predictable whether any of these paths will succeed, which path(s) will possibly succeed and in how much time. One can nevertheless anticipate that GNSS will likely not become able to complément SLR for the définition of the ITRF origin in the near term. Abstract 2678 presented at EGU General Assembly 2012, Vienna, Austria, 23-27 Apr.

Proof. A and B axe two full-rank matrices such that Im(A) and Ker(BT) are two complementary subspaces of Kn, so that proposition A. 10 first ensures the invertibility of B1 A.

Let us now consider the linear application p : x <-» A(BTA)~1BTx. It is obvious that p is idempotent, that Im(p) C Im(A) and that Ker(p) C Ker(JB/). Consequently, dim(Im(p)) < dim(Im(A)) and dim(Ker(p)) < dim(Ker(Pr)) = n -dim(Im(A)). But according to proposition A.4, dim(Im(p)) + dim(Ker(p)) = n, so that the above inclusions are necessarily equalities. p is idempotent, Im(p) = Im(A) = E and Ker(p) = Ker(jB/ ) = F. p is therefore the projection onto E parallelly to F. Proposition A. 15. Let A be any matrix whose columns form a basis of E. In Mn equipped with the standard dot product, the matrix form of the orthogonal projection onto E is A(Â1 A)~lAr.

Proof. According to proposition A.4, Ker(Ay ) is the orthogonal complément of Im(A) = E in Mn equipped with the standard dot product. A is thus a full rank matrix such that Ker( AT) is the orthogonal complément of E. Proposition A. 13 complétés the proof.

Proposition A. 16. Let A be any matrix whose columns form a basis of E. In Rn equipped with the dot product < x, y >= xl Py, P being an n x n symmetric positive definite matrix, the matrix form of the orthogonal projection onto E is A(ATPA)~1ATP.

Proof. Ker(A7 P) is trivially included in the orthogonal complément of Im(A) = E. According to proposi tion A.6, rank(A7 P) = rank(A), so that dim(Ker(ArP)) = dim(Ker(AT)) = n -dim(Im(A)). Ker(A rP) is therefore the orthogonal complément of E, and A7 P is of full rank. Proposition A. 13 complétés the proof.

A.3 Other useful propositions

Proposition A.17 In many geodetic problems, the design matrix A is not of full rank, so that the normal matrix N is not invertible and that the normal équation B.5 has an infinité number of solutions. The singularities inhérent to the data analysis of the four geodetic techniques contributing to the ITRF are for instance discussed in Sect. 1.2.1. So as to supplément the rank deficiencies of A and N and thus obtain a unique set of best fitting parameters, a common practice in geodesy is the application of constraints.

Constraints can generically be defined as linear relationships that should be satisfied by the estimated parameters2 * *: CTx = 0 (B.7

)
where C7 is a c x p full-rank matrix whose fines define c linear relationships among the parameters, i.e. c constraints.

Constraints can concretely be applied in two different ways in a generalized leastsquares régression. These two ways are distinguished in the two next subsections.

Spécial cases of constraints are discussed in the following subsections.

B.2.1 Constraints as pseudo-observations

The first way of applying constraints in a generalized least-squares problem is to introduce them as pseudo-observations associated with a c x c weight matrix Pc.

2The particular choice of 0 as second member of Eq. B.7 in fact corresponds to the application of constraints with respect to the a priori parameters xq. Provided that C7 is of full rank, it is always possible to get back to this case by choosing appropriate a priori parameters.

It can be solved with the method of Lagrange multipliers (hereafter denoted by A) through the auxiliary problem: In case of minimal constraints, the pseudo-observation and the condition équa tion methods thus lead to the same set of estimated parameters, but with differ ent covariance matrices.

One can moreover note that, when the weights of the pseudo-observations tend to infinity, the covariance matrix obtained with the pseudo observation method (Eq. B.19) tends to the covariance matrix obtained with the condition équation method (Eq. B. 18). That is why it can be said that condition équations are équivalent to pseudo-observations with infinité weights.

It is also worth noting that the parameters estimated with minimal constraints satisfy the non-constrained normal équation, i.e. that Nxc = b. That is why minimal constraints can be said to be non-distorting constraints. 

B.2.4 Removing unreported minimal constraints

In their SINEX files, some Analysis Centers provide minimally constrained solutions without providing information about which exact constraints they applied. It is thus impossible to recover the AC non-constrained normal équation in the standard way (i.e. using Eq. 1.9). As described below, there however exists a trick to remove such unreported minimal constraints.

Suppose that an AC solved the minimally constrained normal équation: taking Cl = (A1 A)~lAT as constraint matrix. By nullifying spécifie fines of the matrix A, it is also possible to apply the desired constraints via a spécifie subset of stations only. Note, finally, that in case of a long-term linear frame made of station positions and velocities, no-net-rotation-rate, no-net-translation-rate and nonet-scale-rate constraints can additionally be defined. They respectively take exactly the same form as no-net-rotation, no-net-translation and no-net-scale constraints except that they apply to station velocities.

B.3 Réduction and fixation of parameters

In huge least-squares problems with thousands of parameters, such as GNSS data analysis, not ail parameters may be of interest. A well-known method to reduce the size of such problems is called réduction of the nuisance parameters and basically consists in a block-inversion of the normal matrix. Reducing nuisance parameters does not affect the estimated values of the parameters of interest, neither their co variance matrix, as the reduced parameters are still implicitly présent in the reduced normal équation.

Another way to get rid of certain parameters is to simply fix them to their a priori values, i.e. to remove the corresponding fines and columns from the normal matrix.

Unlike parameter réduction, the fixation of some parameters generally changes the This equality does not strictly hold in real observation conditions. But the epoch

  ty and rz are the rotation angles around the X, Y and Z axes respectively.

  These parameters are usually represented by continuous piecewise linear functions (daily offsets at midnight) or by discontinuous piecewise linear functions (daily offsets at noon and daily rates). Daily EOP estimâtes derived from geodetic observations are regularly published by the IERS.

  Z1 dénoté the coordinates of a particular station in the input solution i (in m); -Xe, Ve, Zc dénoté the coordinates of the same station in the combined solution; -xlp, yp, DUT1\ xlp, ÿLp, LOD1 dénoté EOP estimâtes in the input solution i (in rad and rad/d); -xp, yp, DUT1e, xp, ÿp, LODc dénoté the corresponding combined EOPs; -tx, tlY, tlz, d\ rlx, rly, rlz dénoté seven optional transformation parameters4 (three translations, one scale factor and three rotations in m, unitless and in rad respectively) between the terrestrial frame realized by the input solution i and the combined terrestrial frame; -f -1.00273781191135448 is the conventional rate of advance of the Earth Rotation Angle ERA with respect to UT1.These observation équations can be put in the following matrix form: dx1/dxc is a matrix of ones and zéros which associâtes each parameter in xl to the corresponding combined parameter in xc\ 4The second and last condition for the équivalence with the combination of normal équations is that only the transformation parameters corresponding to singularities of the technique are estimated (e.g. rotations only for the satellite techniques; rotations and translations for VLBI). It is nevertheless possible to set up additional transforma tion parameters both in the combination of normal équations and in the combination of solutions, with still équivalent resuit s.

  m are respectively called spherical harmonie degree and order;

  The empirical parameters p\,..., plm are in this case the amplitudes of constant and once-per-révolution periodic accélérations along the axes D, Y and B of a satellite-Sun oriented frame1. With this parameterization, the empirical accélération acting on a satellite can be written: ûbcom(w) = (Do + Dc cos(w) + Dssm(u)) eD + (Yo + Yccos(u) + Ys sin(it)) ey (2.5) + (B0 + Bccos(u) + Bssin(u)) eB where u dénotés the satellite's argument of latitude. Note that a majority of IGS ACs only estimâtes a subset of five ECOM parameters: D0, T0, D0, Bc and Bs. Tropospheric delay parameterization The IERS Conventions (Petit and Luzum, 2010) recommend that the tropospheric delay affecting a GNSS observation be modelled as follows: Tlk = mh(e)Dhz -f mw(e)Dwz + mg(e) (GN cos (a) + GE sin(a

  singularities are usually cancelled by either choosing one particular station clock as time reference, or by imposing epoch-wise constraints on the mean of ail estimated clock offsets.

  use the generalized least-squares estimation method (Sect. B.l), while some others use sequential adjustment methods.ACs using undifferenced observations usually assume that they are independent and thus use diagonal ob servation weight matrices. Undifferenced observations are generally given elevationdependent weights (e.g. proportional to sin(e) or sin2(e)). ACs using double-differenced observations should in principle propagate the (diagonal) covariance matrix of undifferenced observations to their chosen set of double-differenced observations so as to obtain the corresponding weight matrix.

  The eleven ACs contributing to reprol performed weekly GPS-only analyses over the period 1994-2008, that resulted in weekly SINEX files including station coordinate, EOPs and, for some ACs, satellite antenna phase center offset estimâtes. The AC SINEX files were combined on a weekly basis into so-called igl SINEX files by Remi Ferland at NRCan (IGS Mail 6136). Those, supplemented with operational combined SINEX files over the period 2008-2009.5, constituted the IGS contribution to ITRF2008.

Figure 2 . 1

 21 Figure 2.1 Examples of residual times sériés from the ITRF2008 technique-specific long-term stacking for one station of each technique. The four selected stations axe ail co-located at the Hartebeesthoek Radio Astronomy Observatory (South Africa). The DORIS, SLR and VLBI sériés are respectively shifted by -50, -100 and -150 mm.

( 2013 )

 2013 evidenced fortnightly signais in most recent IGS station position time sériés, indicating that tide modelling errors are currently still contaminating GNSS station position estimâtes.Higher order ionospheric effects Following[START_REF] Kedar | The effect of the second order GPS ionospheric correction on receiver positions[END_REF] and Hernândez-Pajares et al. (2007), Petrie et al. (2010) investigated the impact of higher order ionospheric effects on GPS station position estimâtes. They demonstrate that ignoring the sec ond and third order ionospheric effects is primarily responsible for spurious global Z translations of the GPS-derived terrestrial frames, with amplitudes reaching ~10 mm during periods of maximal solar activity. But spurious distortions of the station network are also induced at the order of ~1 mm during periods of maximal solar

  et al. (2008) proposed two possible mechanisms that could explain these draconitic errors: long-period satellite orbit modelling errors and/or the aliasing of stationspecific errors (e.g. antenna mis-calibration or multipath) repeating with the satellite constellation geometry. The geographical cohérence of the draconitic errors observed in GPS station position time sériés seems to imply a main orbit-related origin, but smaller local contributions exist as well, as evidenced in the differential position time sériés between pairs of nearby stationsRay et al. (2011). The prédominance of an orbital origin tends to be confirmed by the results of Rodriguez-Solano et al.(2014) who achieved a significant réduction of the draconitic errors in various geodetic Products with an improved modelling of satellite dynamics.Troposphère mis-modellingImperfections in the modelling of tropospheric delays of the GNSS observations may also be responsible for systematic errors in GNSS sta tion position estimâtes. For instance, the non-estimation of horizontal tropospheric gradients is known to cause global North-South distortions of GNSS-derived terrestrial frames due to the équatorial tropospheric bulge (MacMillan and Ma, 1997).

  investigated the effect of not modelling multipath (i.e. the réception of reflected signais by GPS antennas) on GPS station position estimâtes. They demonstrate that multipath may be responsible of station-specific height biases up to 7 mm, but also of height velocity biases up to 2.6 mm/yr and of aliased periodic signais at harmonies of the GPS draconitic year.PCC mis-modelling Mis-modelling the phase center corrections (PCCs) of GNSS station antennas is, like multipath, another possible source of biases and aliased periodic errors in GNSS station position estimâtes. Biases induced by PCC mismodelling can be evidenced by using different antenna calibration models. For in stance, when the IGS switched from the igs05.atx set of antenna calibrations to the igs08.atx set (IGS Mail 6355),Rebischung et al. (2012) assessed the impact of the calibration switch on individual IGS station positions. The obtained position offsets reached up to 4 mm, 3 mm and 11 mm in the East, North and Up components respectively. Such offsets do of course not give access to the actual biases in the estimated station positions, but they constitute at least a démonstration that such biases exist and are far from negligible.

  investigated different time sériés of station positions estimated around the radome experiment periods, but this analysis was unfortunately mostly inconclusive. Only two radome-induced biases could indeed be evidenced: a vertical bias of about 13 mm at the TSKB station (Tsukuba, Japan) and an East bias of about 5 mm at the MDOl station (Mc Donald Observatory, Texas, USA). Additional short baseline analyses are planned and may help in better determining the radome-induced posi tion biases. But more generally, an effective réduction of the GNSS station position biases could only be expected from a progressive rebuilding of the IGS network with low multipath, individually calibrated antennas.

  Figure 2.2 IGS SINEX combination residual time sériés of three selected ACs (GFZ, GT1, PDI) for the height component of station VENE. The GT1 and PDI residual time sériés are respectively shifted by -40 mm and -80 mm for clarity. The residuals, represented by color dots, are extracted from the weekly igb combinations. The vertical grey line corresponds to an antenna change on Feb 1, 2001. The solid color lines were obtained by Vondrak-filtering the residual time sériés with a cut-off frequency of 3 cpy, separately before and after the 2001 antenna change.

Figure 2 .

 2 Figure 2.4 Amplitude/phase maps of the annual signais extracted from the height residual time sériés of eight selected ACs, as well as from the igb-load height time sériés. Amplitudes and phases correspond to the model Acos((t -2000.0) -0), with t in décimal year, and are respectively represented by the size and color of the dots.

Fig. 2

 2 Fig. 2.4 shows for instance maps of the annual signais extracted from the height

Figure 2 .

 2 Figure 2.5 Amplitude/phase maps of the second draconitic harmonie signais extracted from the East residual time sériés of eight selected ACs, as well as from the igb-load East time sériés.Amplitudes and phases correspond to the model Acos((t -2000.0) -0), with t in décimal year, and are respectively represented by the size and color of the dots.

Fig. 2

 2 Fig. 2.5 similarly shows maps of the second draconitic harmonie signais extracted from the East residual time sériés of eight selected ACs, as well as from the igb-load

  Figure 2.6 Cyan dots: Scale factors estimated between the weekly gfl solutions processed as described in the text and the ITRF2008. Grey dots: Scale factors estimated between the SLR input solutions to the ITRF2008 and the ITRF2008, shifted by -15 mm. The solid lines were obtained by Vondrak-filtering each of the scale factor time sériés with a cut-off frequency of 3 cpy.

  although tremendous improvements hâve been achieved during that time, GPS geo center motion estimâtes are still far from competing with SLR ones. By analysing the translation time sériés between reprocessed weekly solutions from four IGS ACs and a preliminary version of ITRF2008,Collilieux et al. (2011) indeed found significant long-term biases with respect to the SLR translations, as well AC-dependent trends in the Z component. Moreover, the annual signais présent in the X and Z components of the IGS AC translation time sériés were in poor agreement with SLR.In 2012, a deeper analysis of the IGS AC geocenter motion estimâtes was conducted(Rebischung et al., 2012). The inputs of this study were the reprocessed weekly solutions of seven selected ACs for the period 1998.0-2008.0, supplemented with their operational solutions for the period 2008.0-2011.3. When necessary, nonconstrained normal équations were first recovered from the original AC solutions and inverted under no-net-rotation constraints. A long-term stacking was then performed for each AC as described in Sect. 1.2.4. Finally, three rotation and three transla tion parameters were iteratively estimated between each weekly AC solution and the corresponding long-term solution. The obtained translations correspond to network shift estimâtes of non-linear geocenter motion (Sect. 1.3.1). Note that AC-specific, well-distributed station sub-networks were used so as to mitigate potential network effects.As an example, Fig. 2.7 compares the translation time sériés derived from the GPS solutions of the ESA AC with SLR geocenter motion estimâtes from Altamimi et al. (2012). While the GPS and SLR translation time sériés hâve comparable high-frequency scatter levels, the GPS translations show much stronger sub-annual signais, especially in the Z component. A frequency analysis of the time sériés indeed reveals the presence of unexpected spectral peaks at various harmonies of the GPS draconitic year (see Fig. 2.8). As can be seen in Fig. C.1-C.6, this situation is not spécifie to the ESA AC, although the draconitic harmonie spectral peaks hâve various amplitudes in the translation time sériés of the different ACs.As non-linear geocenter motion is expected to mostly consist of an annual signal, a question raised byRebischung et al. (2012) was the following: despite the spurious sub-annual draconitic signais présent in the IGS AC translation time sériés, do the underlying seasonal signais constitute reasonable estimâtes of annual geocen ter motion? To answer this question, the IGS AC translation time sériés were first Vondrak-filtered with a cut-off frequency of 1.25 cpy, so as to retain their seasonal (and lower frequency) part only, and compared to similarly smoothed SLR trans lation time sériés (Fig.2.9-2.11). Periodic signais at the annual and semi-annual frequencies and at the seven first harmonies of the GPS draconitic year were then simultaneously fitted to each of the AC translation time sériés. The amplitudes and phases of the extracted annual signais were finally compared to reasonable estimâtes of annual geocenter motion selected byRies (2011) (Fig. 2.12).As regards the Y component of geocenter motion, the annual signais of ail IGS AC translation time sériés show a remarkably good agreement in phase with each other, with SLR (Fig.2.10) and with Ries (2011)'s sélection (Fig.2.12 (Y)). The amplitudes of the IGS AC annual signais are however quite disparate, ranging from 2 to 5 mm. The situation is notably different for the Z component of geocenter motion. The seasonal signais found in the AC Z translation time sériés indeed show long-term amplitude variations as well as progressive phase shifts with respect to the SLR seasonal signal (Fig. 2.11). (Note that, except JPL and EMR since 2006, the AC

Fig

  Fig. C.4 where a lack of spectral power is visible for ail ACs at the animal frequency.

  Figure 2.7 Cyan dots: Translations derived from the weekly ESA solutions. Grey dote: SLR-derived translations from Altamimi et al. (2012) shifted by -20 mm, -20 mm and -40 mm respectively for the X, Y and Z components. The solid lines were obtained by Vondrak-filtering each of the translation time sériés with a cut-off frequency of 3 cpy.

  Figure 2.10 Y translation time sériés derived from the reprocessed solutions of seven IGS ACs, Vondrak-filtered with a cut-off frequency of 1.25 cpy and shifted by multiples of 15 mm. The background grey lines correspond to the similarly filtered SLR Y translation time sériés from Altamimi et al. (2012).

  Figure 2.11 Z translation time sériés derived from the reprocessed solutions of seven IGS ACs, Vondrak-filtered with a cut-ofF frequency of 1.25 cpy and shifted by multiples of 15 mm. The background grey lines correspond to the similarly filtered SLR Z translation time sériés from Altamimi et al. (2012).

  Figure 2.12 Amplitude/phase diagrams of the annual signais extracted from the IGS AC translation time sériés (blue dots) and of Ries (2011)'s sélection of reasonable annual geocenter motion estimâtes (yellow stars).

  some of the usually set up empirical accélération parameters, they indeed observed a clear dégradation of GPS geocenter motion estimâtes, especially via a ~7 cm bias in the Y component and a ~4 cm spurious seasonal signal in the Z component. On the other hand, by setting up empirical accélération parameters usually not considered, Meindl et al. (2013) obtained an even stronger dégradation of GPS Z geocenter motion estimâtes.Secondly, besides the empirical parameterization of satellite orbits, the a priori modelling of non-gravitational forces acting on GPS satellites was also shown to influ ence GPS geocenter estimâtes. In the différences between GPS Z geocenter estimâtes obtained using different a priori solar radiation pressure models,[START_REF] Hugentobler | Identification and mitigation of GNSS errors[END_REF] thus observed clear patterns repeating at the period of the GPS draconitic year. The a priori modelling of Earth-reflected radiation pressure was similarly shown to hâve a millimetric influence on GPS geocenter estimâtes[START_REF] Rodriguez-Solano | Impact of Earth radiation pressure on GPS position estimâtes[END_REF].Ail these observations point to a particularly high sensitivity of GNSS geocenter motion estimâtes to orbit modelling deficiencies. But the cause of this sensitivity had so far remained unclear.[START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] recently attempted to shed light on this question. On the basis of orbit perturbation theory considérations, they incriminated corrélations between the Z geocenter coordinates and particular empirical accéléra tion parameters set up by most IGS ACs. But, as will be explained in Sect. 4.5, we find[START_REF] Meindl | Combined analysis of observations from different global navigation satellite Systems. Geodâtisch-geophysikalische Arbeiten in der Schweiz, Schweizerischen Geodâtischen Kommission[END_REF] 's conclusions questionable.

  Specifying a weight matrix Pi for the observations corresponds to the choice of a particular metric in the observation space Mn, i.e. of an inner product < 1,1' >= V Pil' and of the associated norm ||Z|| = y/l1 PR. Let E dénoté the Hilbert obser vation space Mn equipped with this metric. The row space of the design matrix, Im(A) = {Ax,x e Mp}, is a subspace of E which spans ail possible model prédic tions. It will therefore be called the model space.The objective of generalized least-squares régression is to minimize the norm ||u[| = ||Z -Ax|| of the residual vector. It is achieved when the vector of pre dicted observations Ax is the orthogonal projection of the observation vector l onto the model space Im(A). This condition leads to the well-known normal équation: Pi A is called the normal matrix and b = ArPil. Unless stated otherwise, A will be assumed of full rank in this section. Under this condition, N is invertible and the normal équation has a unique solution:x = N~lb = (AT PiA)~l Ar Ptl (3.2)The covariance matrix of the estimated parameters is in this case the inverse of the normal matrix Q = N~l. The goodness of fit can be measured by the coefficient of

  . when the columns of A form an orthogonal basis of the model space Im(A) and ail hâve the same norm. N can thus be ill-conditioned for two non-exclusive reasons: either because the columns of A hâve disparate norms (scaling problem), or because they are far from being orthogonal to each other (collinearity problem). The first possible reason for ill-conditioning can be circumvented by solving for an auxiliary set of scaled parameters x such that x\ -||Aillas* = y^V^-cc*. In matrix notations, x = D lx where D dénotés the diagonal matrix with éléments Di i -1 /y/Nij. This leads to the design matrix  = AD whose columns ail hâve unit norms, and to the scaled normal équation Nx = 6, where N -DND has the form of a corrélation matrix and b -Db.In terms of condition number, this particular scaling of the parameters may not be optimal: there may exist other matrices D in the set Vp of ail non-singular p x p diagonal matrices such that k(DND) < k(N). Nevertheless, a theorem by van

  : "The essential harm due to collinearity arises from the fact that a collinear relation can readily resuit in a situation in which some of the observed systematic influence of the explanatory variables on the response variable is swamped by the model's random error term -or in the familiar terminology of electrical engineering, the signal is swamped by the noise. It is intuitively clear that, under these circumstances, estimation can be hindered." In other words, if the influence of some linear combination of parameters is actually below the level of observation and model errors, its estimation is likely to be unreliable. For better insight, let us introduce a géométrie interprétation of collinearity. The resolution of a least-squares problem can be conceptually decomposed into two steps: -finding the best-fitting model prédiction Ax by projecting the observations l onto the model space Im(A) (Fig. B. 1); -finding the parameters x that predict the projected observations Ax, i.e. decomposing the projected observations onto the basis of Im(A) formed by the columns of A (Fig. 3.1).

Fig. 3 .

 3 Fig. 3.1 gives an illustration of this géométrie interprétation in the simplest pos sible case of a two-parameter régression. In the left part of the figure, both columns of A are orthogonal: there exists no linear dependency between Ai and A2. On the other hand, the angle between Ai and A2 has been decreased in the right part of the figure, so that Ai and A2 become very approximately collinear (Ai -A2 is relatively close to zéro). The conséquence of this poorer geometry on the détermination of the model parameters aq and x2 is nevertheless visible: with the same uncertainty on the predicted observations, the error bars of the parameters are clearly longer in the right case. Fig. 3.1 thus points out another conséquence of collinearity. The exis tence of linear quasi-dependencies among the columns of A does not only hinder the

  1det(iV) is in fact the Gram déterminant of  in E. 2Let (Ai)1<j<p dénoté the singular values of N. As N is positive-semidefinite, each A, is positive or zéro, so that: 0 < det(7V)1/P = (nAi)1/p < £A;/p = trace(JV)/p = 1 3.1.4[START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF]'s procedure When possible, the singular value décomposition of the scaled normal matrix N can be a useful tool to diagnose and understand collinearity issues. N, as a symmetric positive-semidefinite matrix, can indeed be decomposed into N -VAV'1, where:

  [START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF] therefore proposed a procedure based on the singular value décomposition of N for diagnosing potential collinearity issues. The first step of Belsley et al. (1980) 's procedure consists in identifying potentially harmful linear quasi-dependencies among the columns of A by means of the condition indices: the largest eigenvalue of N. Linear quasi-dependencies among the columns of A are indeed indicated by large condition indices (small eigenvalues).

  progression of the condition indices. If a gap of several orders of magnitude can be observed near the end of this progression, it is likely to indicate a séparation between the really problematic eigenvectors and the others. But if the progression of the condition indices is wholly smooth, it becomes of course much more difficult to isolate nearly dépendent eigenvectors.After having identified potentially harmful linear quasi-dependencies among the columns of A, the second step in[START_REF] Belsley | Régression diagnostics: Identifying influential data and sources of collinearity[END_REF]'s procedure is to assess how they may dégradé the estimation of each individual model parameter. For that purpose, the variance of each scaled parameter is decomposed into a sum of components, each associated with one of the eigenvectors of TV. The covariance matrix of the scaled parameters is indeed Q = TV-1 = VA-1VT, so that the variance of Xi can be of var(cèi) associated with the kth eigenvector of TV. If a large proportion of var(aej) is associated with one or more eigenvectors previously identified as problematic, it is indication that the estimation of Xi may be degraded by collinearity issues.

(

  Figure 3.2 Décomposition of the signature of ae3 in a 3-parameter problem. Im(AK:i) is the plane containing A\ and A2. A3 is the orthogonal projection of A3 onto this plane. A3 is the orthogonal projection of A3 onto the line orthogonal to this plane. i93 is the angle between A3 and this plane.

  3.15 is the squared norm of the signature of x{ on the ob servations, i.e. of the signal on which the estimation of x\ would rely if ail other parameters were held fixed. On the other hand, the denominator in Eq. 3.15 is the squared norm of the proper signature of cc*, i.e. of the signal on which the estimation of Xi actually relies. Vi thus measures how the magnitude of the signal on which the estimation of xt relies is reduced because of the simultaneous estimation of the other parameters.

  values will always be accompanied, in the rest of the thesis, by bracketed , this quantity is indeed interprétable in the same way as a corrélation COSfl^^. §J^etimes called multiple corrélation coefficient between Xi and the other parameters.Coordinates of AfWhen analysing the collinearity of x\ with the other parameters, not only the values of 0*, and V* are of interest, but also the coordinates of A" in the basis formed by the columns of A. If xt has a large VIF (small 0*), AJ* is indeed a linear combination of Ai,..., A;_i, Ai+i,... Av which closely matches A*.In other words, the coordinates of A" in the basis formed by the columns of A are the coefficients of a linear combination of X\,..., xi-1, ae*+i, ...xv which is almost indistinguishable from x%. The coordinates of Af are thus the answer to the question of why Xi may be hardly estimable.

  non-translational network distortions and variations of the non-station-position pa rameters. The décomposition of the parameter space into Im(A)©Ker(A7 ) allows a unique décomposition of the explicit model parameters x into: x = A y + x', with x' G Ker(AT) (3.25) In Eq. 3.25, the explicit model parameters x are thus split into a part A y explained by a set y of implicit parameters y and another part x\ independent of any of the considered implicit parameters. This décomposition of the explicit model parameters allows to rewrite the obser vation équations l = Ax + v as: l = AAy + Ax' + v (3.26) Eq. 3.26 defines a re-parameterized model with y and x' as unknown parameters, while the fact that x' G Ker(AT) can be translated into the condition équation ATx' = 0. According to Sect. B.2.2, the solution of this re-parameterized problem can be obtained from the following constrained normal équation:

  28 and 3.29 provide a practical way to infer the values and uncertainties of implicit parameters from the values and uncertainties of the explicit model param eters. Note that, if these équations are used for the trivial purpose of inferring the value and uncertainty of an explicit model parameter from x (i.e. with A = e*), it leads to the expected results Xi and Qx i. But recall that these équations are only valid when A and N are of full rank and no constraints are considered.Proof. A block-decomposition of Eq. 3.27 leads to:

  of x' into Eq. 3.30 leads, after simplification, to the following reduced normal équation: ArA(ArQAy1ArAy = ATA(ATQA)~1 A1 Qb = Ar A(Ar QA)~1 Ar x (3.34) which clearly has as solution the values of y and Qÿ given in Eq. 3.28 and 3.29.Traditional approachThe method described above, based on a re-parameterization of the explicit model parameters x into Ay + x' with x' e Ker(AT), constitutes our recommended approach for estimating the values and uncertainties of implicit parameters y. However, another commonly employed approach consists in treating the explicit model parameters x as pseudo-observations and estimating y via a leastsquares régression based on the model: scaled by a variance factor function of the régression residuals.However, the covariance matrix of the model parameters is sometimes discarded, in which case the estimated implicit parameters and their covariance matrix are: y = (AT A)-1 AT x (3.38)

  3.44 admits a unique set yc of implicit parameters as solution. If K dénotés any matrix whose columns form a basis of Ker([A C]T), then yc and its covariance matrix Qyc can be expressed as: matrix K is generally not available, Eq. 3.45 and 3.46 are of no practical use. To practically estimate the values and uncertainties of implicit parameters in to extend the normal équation 3are used, the full normal équation 3.44 needs in fact to be solved. Alternatively, one could also solve the following équation: -(/ -A(A7 A) 1A^) C. It can indeed be shown that yc and Qÿc can be inferred from the solution (xc>, Qxc,) of Eq. 3.47 by: is assumed of full rank, the solution of Eq. 3.51 can be expressed, according to Eq. B. 17, as: x = K(KTNK)-lKT(b-NAy) (3.52) where K dénotés any matrix whose columns form a basis of Ker([A C)T). Inserting this expression of x' into Eq. 3.50 leads to the following reduced normal équation: (atNA -ATNK(KTNK)~lKTNA) y = A1 b -Ar N K (KrNK)~1 Kr b (3.53) which has as solution the values of yc and Qÿc given in Eq. 3.45 and 3.46. 3.2.4 Link with Sillard and Boucher (2001)'s reference System effect The décomposition of the model parameters x into Ay + x\ with x' G Ker(AT), used in the previous subsections is somehow arbitrary as it dépends on the choice of a particular direct complementary subspace of Im(A), in this case, Ker(A7). The particular choice of Ker(AT) was in fact made in accordance with the notion of independence between implicit parameters defined in Sect. 3.2.1. But in principle, any direct complementary subspace A4 of Im(A) could allow a unique décomposition of the model parameters x into: x = AyM + x'M , with x'M G A4 (3.54) and thus lead to a spécifie estimate ym of the implicit parameters y. In case where no constraints are considered, this estimate can be expressed as: any matrix whose columns form a basis of AiL. Sillard and Boucher (2001) propose a different, but équivalent view of the same problem: they associate the various possible décompositions of x with different metrics of Rp. Each p x p symmetric positive definite matrix W indeed defines a scalar product < ae, x' >w-&1 W x' in Rp, from which a particular notion of independence (i.e. orthogonality) between implicit parameters can be derived. Each W thus allows a unique décomposition of the model parameters x into: x = Ayw + xw , with ATWx'w = 0 (3.57) In case where no constraints are considered, this décomposition of the model param eters leads to a spécifie estimate yw = {AtWA)-1AtWx (3.58) of the implicit parameters y and to the associated covariance matrix Qyw = {ATWAy1ATWQWA{ATWA)-ï (3.59) Sillard and Boucher (2001)'s developments were made for the particular purpose of assessing the uncertainty of the origin, scale and orientation (i.e. the reference Systemeffect or datum définition) of terrestrial frames derived from space geodesy obser vations. They therefore consider as implicit parameters y differential translations, scale factor and rotations and estimate their uncertainties using Eq. 3.59.

  thought as the signal which characterizes the influence of y on the obser vations.

  n = / -AKy [{AKy)TPLAKvyl (AKy)1'Pt = I ~AKy(Ky NKy)~1 KyATPi Therefore, Sy = n Sy = UAX = AX -AKy(K^NKy)~lKlNXSince N is assumed of full rank, Ky(Ky NKy)~lKy can be replaced, according to proposition A.19, by Q -QX(X' QX)~lX1 Q in the previous équation, which leads after simplification to the expression of S% given in Eq. 3.62.VIF of an implicit parameter Let 9y dénoté the angle between the signature Sy of y and the hyperplane Im(AKy). Using Eq. 3.62, it can be shown that:

  e* in the preceding developments leads back to the équations of Sect. 3.1.5, which proves that this extension of VIFs to implicit parameters encompasses usual VIFs.

  coordinates piy of Sy in the basis formed by the columns of A are: , the generalized collinearity diagnosis developed in Sect. 3.3.1 is further extended to the case where constraints are imposed on the parameters, in order to supplément possible rank deficiencies of A and N, or for any other purpose. Like in Sect. 3.2.3, we will now assume that the parameter variations independent of y are subject to the constraint CTx' = 0, where the p x c matrix C is of full rank and properly suppléments the possible rank deficiencies of A and N. It will also be assumed that À ^Im(C'), i.e. that rank ([A C}) = c + 1. Décomposition of Sy Let KVtC dénoté any matrix whose columns form a basis of Ker([À C]r). Im(AKytC) is a subspace of the model space Im(A) which spans the signatures of ail parameter variations independent of y and allowed by the constraints. Like previously, the signature Sy of y can be decomposed into the sum of its orthogonal projection SyC onto Im(AKy^c) and of its orthogonal projection S%,C onto lm(AKy^)1. Sy C is indistinguishable from the signatures of parameter variations independent of y and allowed by the constraints. The estimation of y can therefore only rely on its proper signature S?c. As proven below, S%c can be expressed as: S£c = AA -AKyiC(Ky CNKytC)~1 K^CN\ (3.68) Proof. Since rank([A C]) = c + 1, dim(Ker([À C]r)) = p -c -1. Ky,c, whose columns form a basis of Ker([A C]T) is therefore a p x (p -c -1) matrix. Moreover, the columns of the p x p matrix A C Ky<c] form a basis of Rp. The hypothesis that C properly suppléments the rank deficiencies of A is équivalent to rank. The n x (p -c -1) matrix AKVyC is therefore necessarily of full rank itself. In other words, the columns of AKViC form a basis of In\(AKy,c). According to proposition A.16, the matrix form of the orthogonal projection onto lm(AKyiC)± is thus: n = /-AKy,c [{AKy,c)r PlAKy^' (AKy^Pt = I ~AKV}C(Ky'CNKy,c)~lKy>cArPi Therefore, S£c = nsy,c = nAA = AA -AKytC(KlcNKy>c)~lk£cN\Variance inflation factor Let 9y^c dénoté the angle between the signature Sy of y and the hyperplane Im(AKy^c). Using Eq. 3.68, it can be shown that:

  of double-differencing and clock parameter réduction Clock parameter réduction Consider a global GNSS analysis based on undifferenced observations l and suppose that the model parameters are organized in such a way that x7 = [x{ x\ ] where x2 groups the station and satellite clock parameters and X\ ail other parameters. The design matrix A can be accordingly split into two column blocks: A = [Ai A2\, and the full normal équation can be block-decomposed into: observations ld are obtained from the un differenced observations l by the application of a rid x n "differencing operator" D: ld -Dl. According to the variance propagation law, the covariance matrix of the double-differenced observations is: Qid -DQiD7 . Note that using Pu = Qz 1 as a weight matrix for the double-differenced observations requires that D be of full rank, i.e. that the double différences be linearly independent. The double-differenced observation équations can be written as: interest of double differencing résides in the fact that double differenced observations are insensitive to the clock parameters x2. Mathematically, this means that the partial dérivatives dld/dx2 = DA2 = 0 so that the observation équations simplify to: ld = DAiXi + Dv (3.83) The corresponding design matrix is Ad = DAi, and the double-differenced normal équation can be written as NdX\ = bd with: Nd = AÏQjfAi = AjDT(DQ,DT). 3.80 and 3.81 with Eq. 3.84 and 3.85, it is clear that if Pi -PiA2(Al A2)-1 A2 Pi = D1 (DQtD1 )~1D, then the clock parameter réduction and the double differencing approaches lead to identical normal équations. According to proposition A. 19, this condition is fulfilled when the columns of DT form a basis of Ker(A^), i.e. if:

  a set of nd independent double-differenced observations ld -Dl is formed. The weight matrix of the double-differenced observations: Pu = Qü1 = (3.91) induces the norm \\ld\\d = y/ïdPiJd in the space of double-differenced observationsRnd. The signature of y on the double-differenced observations is: (A2)-L = Ker(Aj). Eq. 3.93 can consequently be re-written as: represents a loss of sensitivity to y due to double-differencing the observations. If ail independent parameter variations were known and held fixed, the estimation of y from double-differenced observations would thus lead to a larger variance (l/||Syid||^) than its estimation from undifferenced observations (l/||Sy||2).If we still assume, for the simplicity of the démonstration, that A is of full rank, then the normal matrix Nd of the double-differenced System can be inverted into Qd -Nd . According to Eq. 3.62, the squared norm of the proper signature of y on the double-differenced observations can thus be expressed as:

  2.3). However, satellite z-PCOs were intentionally left free of constraints in this experiment, with the purpose of studying how GPS can intrinsically détermine the terrestrial scale. An SVD of the reduced normal matrix was then performed. The progression of the obtained singular values is shown in Fig. 4.1. Let us recall that eigenvectors associated with large singular values correspond to well determined linear combinations of parameters (here station coordinates), while eigenvectors associated with small singular values correspond to loosely determined linear combinations of parameters. As visible in the right part of Fig. 4.1, the progression of the obtained singular values shows a clear gap between the 7th and 8th singular values. The first three singular values can in fact be considered as numerically zéro. The next four singular values lie between 346.6 and 793.3, while the 8th singular value is 11768.6, i.e. almost 15 times larger than the previous one. This gap in the progression of the singular values translates the fact that seven linear combinations of the estimated station coordi nates (i.e. the eigenvectors associated with the seven smallest singular values) are especially loosely determined.

Figure 4 . 1

 41 Figure 4.1 Left: Singular values of the reduced normal matrix described in the text, sorted in ascending order. Right: Zoom on the 50 smallest singular values.

Figure 4 . 2

 42 Figure 4.2 Blue: 6th eigenvector of the reduced normal matrix described in the text. Green: Resuit of the régression of this eigenvector onto normalized rotations, translations and scale offset of the station network. Red: Residuals of the régression.

  terrestrial scale on station-satellite ranges In a global geodetic analysis represented by the linear régression model l = Ax + v, let us consider the implicit parameter y corresponding to a variation ôs = 1 ppb of the terrestrial scale. The partial dérivatives of the explicit model parameters with respect to y are: Dx A = -5-= fe[...,Xi,yi,zi,...,o,o,o,q..a change of the geocentric radius (height) of any station by ôr ãpjôs ~6.4 mm, where cle dénotés the mean Earth radius. The impact of such a height change on any station-satellite range observation l made at an élévation angle e is 81 = -AErsine ~-üeSs sine. If Z consists of station-satellite (pseudo-)range observations, then the éléments of the signature Sy = AX of a unit terrestrial scale change on l are nothing but such SVs.

  3 was set up. The considered satellite empirical accélérations are the five ECOM parameters estimated by most of the IGS Analysis Centers: D0, Y0, B0, Bc and Bs (Sect. 2.1.2). The considered EOPs are the pôle coordinates xp and yp at noon, their rates xp and ÿpi the DUT1 offset at noon and the length of day LOD. Note that simple mapping functions hâve been used for ZWDs (1/sine) and tropospheric gradients (from Chen and Herring, 1997).

Figure 4 . 3

 43 Figure 4.3 Blue: Signature Sy of a 1 ppb terrestrial scale change, plotted as a function of the observation élévation angle (-cieÔs sin e). Red: Sum of the impacts of the obtained clock, ZWD and z-PCO mean variations (130.40 + 0.39/ sine -137.37^/1 -a% cos2 e/a2).

  4.2.3 was repeated with different cut-off angles and observation weighting functions. The obtained VIFs are given in Table 4.4. The collinearity of the terrestrial scale with the other parameters clearly increases when higher cut-off angles are used. This translates the fact that the more the signature of the terrestrial scale change (-a^AEssine; blue curve in Fig. 4.3) is truncated, the more accurately it can be matched by linear combinations of the partial dérivatives of clock offsets, z-PCOs and ZWDs. Downweighting low élévation observations similarly increases the collinearity of the terrestrial scale with the other parameters.

  error 0.0391 ppb (0.250 mm). When the satellite z-PCOs are not estimated, clock offsets and ZWDs become much less able to reproduce the signature of a terrestrial scale change. The collinearity of the terrestrial scale with the other parameters is thus greatly reduced. The impact of this collinearity réduction on actual GPS terrestrial scale estimâtes is illustrated in Fig. 4.5. The time sériés shown in blue in Fig. 4.5 is the same as in Fig. 2.6 and represents the scale factors estimated between weekly GPS solutions obtained without constraining the satellite z-PCOs and the ITRF2008, i.e. intrinsic lation. As long as satellite z-PCOs are estimated, the distribution of the station (4.2) GPS terrestrial scale estimâtes. The time sériés shown in black in Fig. 4.5 is also the same as in Fig. 2.6 and represents scale factors estimated between weekly SLR solu tions and the ITRF2008. Finally, the time sériés shown in red in Fig. 4.5 represents scale factors estimated between weekly GPS solutions in which the satellite z-PCOs were fixed to conventional values and the ITRF2008.

Figure 4 . 5

 45 Figure 4.5 Cyan dots: Scale factors estimated between the weekly gfl solutions processed as described in Sect. 2.3 and the ITRF2008. Orange dots: Scale factors estimated between the weekly gfl solutions processed as described in Sect. 2.3 -except that satellite z-PCOs were fixed to conventional values -and the ITRF2008, shifted by -15 mm. Grey dots: Scale factors estimated between the SLR input solutions to the ITRF2008 and the ITRF2008, shifted by -30 mm. The solid lines were obtained by Vondrak-filtering each of the time sériés with a cut-off frequency of 3 cpy-

Figure 4 . 6

 46 Figure 4.6 Signature of a 1 cm variation of the Z geocenter coordinate on simulated observations made on a particular GPS-like satellite by the whole station network. Each blue dot represents an element of Sy. The magenta line corresponds to an epoch mean signature.

  Figure 4.7 Signature of a 1 cm variation of the Z geocenter coordinate on simulated observations made by five particular stations. An epoch mean signature was first removed for each satellite.

Figure 4 . 8

 48 Figure 4.8 Signature of a 1 cm variation of the X geocenter coordinate on simulated observations made on a particular GPS-like satellite by the whole station network. Each blue dot represents an element of Sy. The magenta line corresponds to an epoch mean signature.

  Figure 4.9 Signature of a 1 cm variation of the X geocenter coordinate on simulated observations made by seven particular stations. An epoch mean signature was first removed for each satellite.

Figure 4 .

 4 Figure 4.10 Blue: Signature of a 1 cm variation of the X geocenter coordinate on simulated observations made on a particular LAGEOS-like satellite. Each blue dot represents an element of Sy = A\. Green: Corresponding proper signature. Each green dot represents an element of Si,c = A{ A-/iy,c).

  Figure 4.11 Blue: Signature of a 1 cm variation of the Z geocenter coordinate on simulated observations made on a particular LAGEOS-like satellite. Each blue dot represents an element of Sy = AX. Green: Corresponding proper signature. Each green dot represents an element of Slc = A(\-»y,c).

  the GNSS geocenter détermina tion The collinearity diagnosis developed in Sect. 3.3 is eventually applied in this section to the GNSS geocenter détermination problem. The collinearity of the three geocenter coordinates with the other parameters of a standard single-GNSS global analysis is investigated in Sect. 4.5.1 and Sect. 4.5.2. The results of some complementary experiments are then presented in Sect. 4.5.3. Sect. 4.5.4 studies in detail the rôle played by the satellite empirical accélérations estimated by most IGS ACs in the collinearity of the geocenter coordinates. Since our results concerning this rôle enter in contradiction with conclusions drawn by Meindl et al. (2013), a critical review of their arguments is given in Sect. 4.5.5. Sect. 4.5.6 finally summarizes the results obtained in this section.

  Figure 4.12 Blue: Signature of a 1 cm variation of the X geocenter coordinate on simulated observations made on a particular GPS-like satellite. Each blue dot represents an element of Sy = AA. Green: Corresponding proper signature. Each green dot represents an element of Sy.c = A(X -

  .(2013), on the basis of orbital perturbation considérations, concluded that the estimation of constant empirical accélérations in the Sun-satellite direc tions (i.e. the D0 parameter of the ECOM model) was an important limiting factor in the détermination of the Z geocenter coordinate with GNSS. To investigate the rôle effectively played by the ECOM parameters in the collinearity of the Z geocen ter coordinate, a sériés of simulations was run in which different subsets of ECOM parameters were estimated. The results are summarized in Table4.7.

  relies on the comparison of two sériés of GNSS solutions obtained with and without constraining the Z geocenter coordi nate, i.e. with and without introducing artificial ôz geocenter shifts. They observed that the variations of the estimated D0 parameters in response to the introduction of ôz geocenter shifts were approximately obeying: the number of orbital planes, -SDk0 is the mean variation of the D0 parameters observed for the satellites of plane k,

Fig. 5

 5 Fig. 5.1. Those différences are mostly due to the facts that: -the conventional IGS values were obtained by averaging weekly z-PCO estimâtes derived from the solutions of five different ACs, whereas only the gfl solutions were used here;-the conventional IGS values were obtained using a longer data span(1994.0- 2010.0).They are however irrelevant to the présent discussion.

  Figure 5.2 Différences between the long-term z-PCO estimâtes derived from the gfl solutions (a) relative to G061 and (b) relative to the ITRF2008 scale

Figure 5 . 4

 54 Figure 5.4 Means of the différences between the long-term z-PCO estimâtes obtained relative to each satellite and those obtained relative to the ITRF2008 scale, plotted in function of the number of weekly z-PCO estimâtes available for the chosen reference satellite. Each blue cross corresponds to the choice of a particular reference satellite. The vertical grey line marks the limit of 156 weekly estimâtes (i.e. 3 years). The dashed red Unes mark the limits of ±2 mm.

  calibrations relative to a reference LEO satellite An alternative strategy to obtain z-PCO calibrations of the GPS satellites independently of any conventional TRF scale was proposed by[START_REF] Haines | One-centimeter orbit détermination for Jason-1: new GPS-based strategies[END_REF]. They used the GPS data collected by different low Earth orbiting (LEO) satellites equipped with ground-calibrated, low-multipath GPS antennas to estimate antenna phase center corrections for the GPS satellites.[START_REF] Haines | A GPS-based Terrestrial Reference Frame from a combination of terrestrial and orbiter data[END_REF] then used such LEO-based calibrations of the GPS satellites to compute long-term GPS terrestrial frames. The scales of these frames however showed large biases with respect to the ITRF2008 (-18 mm using TOPEX-based phase center corrections; +17 mm using GRACEbased phase center corrections), indicating that their mean LEO-based GPS satellite z-PCOs were affected by significant errors.Unlike the calibrations relative to a hypothetical reference GNSS satellite evoked in Sect. 5.1.1, LEO-based calibrations of the GNSS satellites hâve the advantage of being readily feasible and thus deserve considération. However, the large mean z-PCO errors observed in[START_REF] Haines | A GPS-based Terrestrial Reference Frame from a combination of terrestrial and orbiter data[END_REF] 's results will hâve to be understood and mitigated before LEO-based calibrations can allow a GNSS contribution to the ITRF scale définition.5.1.3 Contribution of GNSS to the ITRF scale rateWhen the satellite z-PCOs are fixed in a time sériés of GNSS analyses, two different pièces of information are in fact introduced:

  vector, empirical accélérations and epoch-wise dock offsets were estimated for the GRACE-like satellite. The considered empirical accélérations were, following Rang et al. (2006), constant along-track accélérations and once-per-revolution periodic accélérations in the along-track and cross-track directions (S0, Sc, Ss, Wc and Ws in the notations of Rodriguez-Solano et al. (2012)), each estimated once per orbital révolution.

  Haines et al. (2011) actually compared geocenter motion time sériés derived from global GPS analyses including (a) ground observations only and (b) additional GPS observations collected by GRACE. They noted a bénéficiai impact of the inclusion of GRACE observations on the three components of geocenter motion, via an overall noise decrease and a dramatic réduction of the draconitic errors in their Z geocenter time sériés. But, even with GRACE observations included, Haines et al. (2011)'s geocenter time sériés were still showing some disagreement with SLR-derived and global-inversion-derived geocenter motion estimâtes (under-estimation of the annual signais in the X and Z components; presence of residual draconitic errors in the Z component). For the moment, the question remains open whether giving more weight to the GRACE observations or including more LEO observations would allow GNSS to eventually provide compétitive geocenter estimâtes.

  new génération docks opens the way for modelling satellite docks by other means than non-constrained epoch-wise offsets, hence for an increased robustness of global GNSS analyses.[START_REF] Hugentobler | Modeling of the GIOVE-B clock as a tool for studying radiation pressure models[END_REF] and[START_REF] Hackel | Galileo orbit détermination using combined GNSS and SLR observations[END_REF] showed for in stance that constraining the clock offsets of the GIOVE-B satellite towards a linear model could improve its orbit détermination. In this subsection, we investigate how such modelling of the satellite clocks may reduce the collinearity of the geocenter coordinates in global GNSS analyses.

Fig. 5 .

 5 Fig. 5.5 shows the VIFs of the three geocenter coordinates thus obtained for dif ferent assumed clock stabilities (i.e. different cr's). For a down to 3 x 1CT10 s, the clock constraints hâve no impact on the collinearity of the geocenter coordinates. Tighter and tighter clock constraints resuit in a progressive collinearity decrease, until asymptotic VIFs are reached. Interestingly, these asymptotic VIFs are almost

Fig. 5 .

 5 Fig. 5.6 shows the VIFs of the three geocenter coordinates thus obtained for dif ferent assumed clock stabilities (i.e. different cr's). The overall pattern is similar as in Fig. 5.5, although a steeper collinearity decrease and much lower asymptotic VIFs can be observed. The asymptotic VIFs of the three geocenter coordinates are in this case practically reached for o = 3 x 1CT12 s. Their respective values are 22.0 (97.697%), 22.2 (97.724%) and 82.3 (99.390%), i.e. 107.0, 106.0 and 38.4 times smaller than without clock constraints. By sufficiently constraining the satellite clock offsets of a whole GNSS constellation towards a linear model, a drastic collinearity réduction could thus be achieved for the three geocenter coordinates.

  in SLR range residuals to GPS orbits, -similar patterns observed by Svehla et al. (2013) in the apparent clock variations of GIOVE-B, indeed indicate that neither the a priori modelling of solar radiation pressure by the IGS ACs, nor the empirical orbit parameters they set up are able to completely account for the effects of solar radiation pressure. In view of an improved considéra tion of the non-gravitational forces, and especially solar radiation pressure, in global GNSS analyses, three different ways can be considered. Alternative orbit parameterizations A first possible way would be the estimation by the IGS ACs of empirical orbit parameters more able to account for the effects of non-gravitational forces than those currently estimated. In this respect, Rodriguez-Solano et al. (2012) proposed to estimate the optical properties of simple satellite boxwing models, together with additional empirical parameters, rather than the purely empirical accélérations of the ECOM model. This alternative parameterization of the GNSS satellite orbits, based on the physical interaction between solar radiation pressure and the satellite's surfaces, shows a comparable performance as the ECOM parameterization in terms of orbit overlap and prédiction errors. However, systematic différences can be observed between the orbits derived with each parameterization. Rodriguez-Solano et al. (2014) then studied the impact of this alternative param eterization on various GNSS-derived geodetic parameters and in particular geocenter motion. Compared to the ECOM parameterization, they observed a drastic reduc-tion of the draconitic errors in the Z component of geocenter motion. The expected annual signais are however surprisingly not detected in their improved geocenter time sériés. For the time being, the possibility that alternative orbit parameterizations may lead to compétitive GNSS geocenter estimâtes thus remains to be demonstrated.

  collinearity among the parameters of a least-squares régression. Several peculiarities of global GNSS analyses required particular mathematical developments. A generalized collinearity diagnosis was therefore developed, based on the notion of variance inflation factor. It allows to assess and explain the collinearity of any explicit or implicit parameter of a generalized least-squares problem in presence of constraints. This generalized collinearity diagnosis was then applied to the SLR geocenter dé termination problem. It turned out that the détermination of the X and Y geocenter coordinates with SLR does not suffer from any collinearity issue. On the other hand, the Z geocenter coordinate has a VIF of about 9 in our simulated SLR analyses due to corrélations with the satellite osculating éléments. In addition to the uneven distribution of the SLR network, this slight collinearity issue may partly explain why the Z component of SLR-derived geocenter motion is of lower quality than its X and Y components.On the other hand, ail three geocenter coordinates were shown to be highly collinear with the other parameters set up in global GNSS analyses. This severe collinearity explains why the three components of their origin correspond to quasisingularities of GNSS-derived terrestrial frames and why standard GNSS analyses are hardly sensitive to geocenter motion. Among the parameters set up in GNSS analyses, two spécifie categories quasi-fully explain the severe collinearity of the geo center coordinates: epoch-wise clock offsets and tropospheric parameters. One can therefore conclude that the inability of GNSS, as opposed to SLR, to properly sense geocenter motion is due to the simultaneous estimation of epoch-wise clock offsets and tropospheric parameters.

  to ITRF2008 could provide intrinsic estimâtes of the terrestrial scale rate with a précision of about 0.25 mm/yr. The way for a contribution of GNSS to defining the scale rate of the next ITRF2013 is thus open.In view of an improved détermination of geocenter motion with GNSS and a pos sible future contribution of GNSS to the ITRF origin, two complementary paths can finally be considered. The first one would be to improve the sensitivity of GNSS analyses to the geocenter coordinates by reducing their collinearity. In this respect, a first promising way is the simultaneous analysis of GNSS data collected by ground stations and LEO satellites. The inclusion of LEO observations in global GNSS analyses indeed allows a decorrelation of the geocenter coordinates from the GNSS satellite clock offsets. This method does however not yet provide compétitive geocenter estimâtes.A second promising way toward reducing the collinearity of the geocenter coordinates in GNSS analyses is the modelling of satellite clock offsets by other means than non-constrained epoch-wise clock offsets. Such clock modelling is already possible for spécifie satellites equipped with latest génération docks (G062, GIOVE-B) and will become feasible for the whole future Galileo constellation. Non-modelled onceper-revolution clock variations (e.g. due to thermal effects) may however prevent any significant collinearity réduction for the Z geocenter coordinate in this way.
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  Figure B.l Generalized least-squares régression as an orthogonal projection onto Im(A)

  function in Eq. B. 14 with respect to x and A leads to the following normal équation extended with condition équations: that C is of full rank and that rank([A7 C]) = p, i.e. that the introduced constraints are not redundant and properly supplément the rank deficiencies of A, the extended normal matrix is invertible (see proof below) so that the extended normal équation B. 15 has a unique solution: any matrix whose columns form a basis of Ker(CT). It is shown below that the solution of the extended normal équation B. 15 can be expressed as: matrix Qt = PJ-1 of the observations to the estimated parameters xc using Eq. B.17 leads to the following expression of their covariance matrix: Qc = B (BtNB) ^Bt (B.18) It can finally be shown that the p x p upper-left block of the inverse of the ex tended normal matrix can be identified with Qc, which gives practical access to the covariance matrix of the estimated parameters. Proof of the above assertions. The condition that rank([ArC]) = p is équivalent to Im(Ar)+ Im(C) = Rp. According to corollary A.9, Im(iV) = Im(Ar). Therefore, Im(iV) + Im(C') = Rp and rank ([AT C]) = p. Let B dénoté any pxp -c matrix whose columns form a basis of Ker(C/ ). According to proposition A.11, Im(C') and Im(NB) are direct complementary subspaces of Rp. Their respective orthogonal compléments, In^C)-1 = Ker(CT) = Im(B) and lm(NB)± = Ker(B1 N) are therefore direct complementary subspaces of IRP as well. One can consequently define the orthogonal projection onto Im(iE?) parallelly to Ker(By N). According to proposition A.13, the matrix form of this projection is: B(BTNB)~l B7 N. If D dénotés any matrix whose columns form a basis of Ker(BrN), the complementary projection onto Ker(BrN) parallelly to Im(B) = Ker(C/) can be expressed as D{C' D)~1CI. Both projections sum up to the are introduced as pseudo-observations, the expression of Qc given in Eq. Bthis expression of Qc with the right-hand side b of the constrained normal équation B. 10 and noting that, since the columns of D lie in Ker(AT) = Ker(A), DTb = DTA1 Ptl -0, one gets the following expression of the estimated parameters in case where minimal constraints are introduced as pseudo-observations: xc = B (B1 N B)"' (B.20)

  Proof. According to corollary A.12, Im(iV) and Im(C) are direct complementary subspaces of Rp. One can consequently define the projection onto Im(lV) parallelly to Im(C) = Ker(B7). Since Im(7V) = Im(iV.B), the p -c columns of NB form a basis of Im(lV), so that the matrix form of this projection is NB(B1 NB)~] B1. b -A1 Pil G Im (A1 ) = Im(iV). b is therefore equal to its own projection onto Im(JV) parallelly to Im(C): b = NB(BrNB)~1B1 b = Nxc. Let us finally give a géométrie interprétation of minimal constraints illustrated in Fig. B.2. The non-constrained normal équation Nx = b is in fact the équation of a c-dimensional affine subspace of Wp parallel to Ker(lV). The constraint équa tion CTx -0 additionally imposes that the estimated parameters lie in the p -cdimensional subspace Ker(CT). The solution xc of the constrained normal équation is the unique intersection between the affine subspace Nx = b and Ker(C7 ).

(

  its SINEX file the a priori parameters x0, the estimated parameters x and their covariance matrix Q = (TV + CPcCT)~l. By inverting Q, it is possible to recover the constrained normal matrix Ntot = N + CPcCT'. But without knowing the normal matrix of constraints CPcCT, it is a priori not possible to recover the non-constrained normal matrix TV.Suppose now that the theoretical singularises of TV are known so that a matrix D can be built whose columns form a basis of Ker(TV). The non-constrained normal matrix TV can in this case actually be recovered, without knowing the normal matrix of constraints, by: D is of full rank and Ntot is syxnmetric positive definite, corollary A.8 fîrst ensures the invertibility of DTNtotD. Let us now expand Ntot into N + CPcCT in the right-hand side of Eq. B.22.Since the columns of D lie in Ker(iV), DN = 0, so that: Ntot -NtotD(DrNtotD)-1 DrNtot = N + CPcCT -CPcCTD(DrCPcCTD)~lDTCPcCT(B.23) According to corollary A. 12, Im(C') and Im(7V) = Ker{D1 ) axe direct complementary subspaces of Rp. Proposition A.10 therefore ensures the invertibility of DTC and CTD. The third term in Eq. B.23 thus simplifies to -CPcCl and cancels with the second term. This proves Eq. B.22.

  -scale constraints There may finally be some spécial cases in which the scale of the estimated frame should be the same as that of the a priori frame. This is done by taking C1 -(A] As)~lAl as constraint matrix where As has the following form: = PC Y0\ Z^j,, X$, Y0k, Zk]T (B.28)It is possible to simultaneously impose several of the previous constraints, by grouping the corresponding matrices Ar, At and As into a single matrix A and

Figure C. 2 Y

 2 Figure C.2 Y translation time sériés derived from the reprocessed solutions of seven IGS ACs as well as from reprocessed SLR solutions, shifted by multiples of 20 mm. The dots represent weekly translation estimâtes. The solid lines were obtained by Vondrak-filtering each of the sériés with a cut-off frequency of 3 cpy.

Figure C. 6

 6 Figure C.6 Lomb-Scargle periodograms of the Z translation time sériés shown in Fig. C.3, shifted by powers of 10'^mm2. The background grey lines correspond to the SLR Z translation time sériés. For better legibility, the periodograms were computed over a 4 times oversampled frequency set and boxcar smoothed over 5 adjacent frequencies.

Table 1 .

 1 1 Main geophysical deformations affecting the Earth's crust

	Type	Time scale

Table 2

 2 

	Type	Count	Number
	Obs. Total		207289
	Station coordinates	3 per station	300
	EOPs	6	6

.1 Numbers of observations, parameters, constraints and degrees of freedom in a simulated undifferenced GPS analysis en Satellite orbit parameters (6 + 5) per satellite

Table 2 .

 2 2 IGS Analysis Centers having contributed to reprol

	Operational	Reprol	Description	Country
	acronym	acronym		
	cod	col	Center for Orbit Détermination in Europe	Switzerland
	emr	eml	Natural Resources Canada	Canada
	esa	esl	European Space Operation Centre	Germany
	gfz	gfl	GeoForschungZentrum	Germany
		gtl	GeoForschungZentrum -TIGA contribution	Germany
	jpl	jpl	Jet Propulsion Laboratory	USA
	mit	mil	Massachusetts Institute of Technology	USA
	ngs	ngl	National Geodetic Survey	USA
		pdl	Potsdam-Dresden Reprocessing	Germany
	sio	sil	Scripps Institution of Oceanography	USA
		ull	Université de la Rochelle	France

  observed in position time sériés, instrumental effects could first be observed in the IGS SINEX combination residual time sériés of several stations. A first extreme case is the VENE station (Venezia, Italy; see Fig. 2.2), for which large AC-specific height biases were observed

until the station's antenna was changed in 2001. Before this change, a metallic ring was in fact mounted around the antenna, which probably caused spurious phase center variations. Another interesting case is the MCM4 station (McMurdo, Antarctica; see Fig. 2.3). Again, AC-specific height biases can be observed. The fact that changes in the AC biases correspond to changes of the station's equipment tends to indicate an instrumental origin. Moreover, changes in the seasonal signais présent in the AC residual time sériés appear likely due to changes of the station's multipath behaviour. Both these examples show that instrumental effects can hâve noticeably different impacts on the station positions estimated by the various IGS ACs. A more detailed analysis of the instrumental effects in the IGS SINEX combination residuals nevertheless remains to be done.

  class. A similar analysis was repeated and similar maps were drawn for the set of load-corrected IGS position time sériés used byRay et al. (2011) (see Sect. 2.2.1), hereafter denoted as igb-load time sériés.

  terrestrial frame is first presented in Sect. 4.1. The weak sensitivity of GNSS to terrestrial scale and geocenter is thus evidenced. In Sect. 4.2, the generalized collinearity diagnosis developed in Sect. 3.3 is then applied to the GNSS terrestrial scale détermination problem. The next three sections are devoted to understand the

	4.1	Singular value décomposition of a GPS terrestrial frame
	In Sect. 3.1.4, Belsley et al. (1980)'s procedure to diagnose and understand potential
	collinearity issues, based on the singular value décomposition (SVD) of the normal
	matrix, was described. This procedure is unfortunately hardly applicable to realistic
	global GNSS analyses, as they involve several ten thousand parameters. SVDs can
	however be performed for reduced normal matrices from global GNSS analyses. As
	they do not involve ail estimated parameters, such reduced SVDs cannot help in
	understanding the causes of potential collinearity issues, but they nevertheless turn
	out to be instructive. This section therefore présents and discusses the results of the
	SVD of such a reduced normal matrix.
	poor performance of the GNSS geocenter détermination. In Sect. 4.3, the signatures
	of the geocenter coordinates on station-satellite range observations are first described
	in detail. In Sect. 4.4 and Sect. 4.5, the generalized collinearity diagnosis developed
	in Sect. 3.3 is then respectively applied to the geocenter détermination with SLR and
	GNSS.

As a starting point, a normal matrix provided by ESA was used, resulting from the analysis of GPS data collected by 150 stations on July 11, 2008. Ail parameters except station coordinates were reduced from this normal matrix. Except satellite z-PCOs, ail reduced parameters had previously been constrained in the same way as in ESA's operational analyses. In ESA's operational analyses, satellite z-PCOs are usually tightly constrained to conventional IGS values, so that the scales of the obtained terrestrial frames are in turn conventionally determined (see Sect.

Table 4 .

 4 1 Régression coefficients and coefficients of détermination R2 obtained from the régression of the seven first eigenvectors of the reduced normal matrix described in the text onto normalized rotations, translations and scale offset of the station network.More interestingly, the next four eigenvectors quasi-perfectly correspond to linear combinations of rotations, translations and scale offset of the station network. This concretely means the origin and the scale of the station network are more loosely determined by the observations than any other distortion of the station network. One could conclude without much exaggeration that the origin and the scale of the sta tion network correspond to quasi-singularities of GNSS data analyses. Once again, the reason why the terrestrial scale corresponds to a quasi-singularity in GNSS data analyses (in case where satellite z-PCOs are left free) is well understood (Sect. 2.3).

		RX	RY	RZ	TX	TY	TZ	SC	R2
	lst eigenvector	0.99	0.07	0.02	0.00	0.00	0.00	0.00	1.0000
	2nd eigenvector	-0.06	1.00	0.03	0.00	0.00	0.00	0.00	1.0000
	3rd eigenvector	0.05	-0.07	1.00	0.00	0.00	0.00	0.00	1.0000
	4th eigenvector	0.02	-0.03	-0.00	-0.09	0.03	-0.74	-0.50	0.9960
	5th eigenvector	0.05	0.13	-0.03	-0.28	0.26	0.68	-0.80	0.9943
	6th eigenvector	0.23	0.09	-0.06	-0.43	0.87	-0.20	0.36	0.9871
	7th eigenvector	0.16	-0.28	-0.01	0.91	0.50	0.03	-0.20	0.9908
	Unsurprisingly, the three first eigenvectors, associated with numerically zéro eigen-
	values, correspond to pure rotations of the station network. This simply illustrâtes

On the other hand, the reason why the origin of the station network similarly corre sponds to quasi-singularities had so far remained unclear (Sect. 2.4.2). In the next sections, light will be shed on this question by means the generalized collinearity diagnosis developed in Chapter 3.

Note that the existence of four quasi-singularities corresponding to the origin and the scale of the station network are not spécifie to ESA's normal matrices, but can be evidenced in the SINEX solutions of ail IGS ACs that include satellite phase center offsets. Also note that, if the satellite z-PCOs are tightly constrained, then three quasi-singularities corresponding to the origin of the station network remain in the

Table 4

 4 

	.2 Simulation options
	Aspect	Option
	Station network	Fictive network of 100 well-distributed stations
	Satellite constellation	24 GPS-like satellites equally spread over 6 orbital planes

Table 4

 4 

	.3 List of simulated parameters	
	Type	Count	Number
	Station coordinates	3 per station	300
	Zénithal wet delays (ZWDs)	1 per station and hour	2400
	Tropospheric gradients	2 per station	200
	Station clock offsets	1 per station and epoch	28800
	Satellite initial State vectors	6 per satellite	144
	Satellite empirical accélérations	5 per satellite	120
	Satellite clock offsets	1 per satellite and epoch	6912
	Satellite z-PCOs	1 per satellite	24
	EOPs	6	6

Table 4 .

 4 4 VIFs obtained for the terrestrial scale with different cut-off angles and observation weighting functions. The other simulation options were as described in Sect. 4.2.2.

	Weighting		Cut-off angle	
	function	0°5°10°20°1	
		85.7 (99.415%)	704.7 (99.929%)	3069.7 (99.984%)	46512.7 (99.999%)
	sin e	316.3 (99.842%)	1519.0 (99.967%)	5200.4 (99.990%)	58905.2 (99.999%)
	sin2 e	1463.2 (99.966%)	3649.1 (99.986%)	9600.7 (99.995%)	79274.9 (99.999%)
	Real network and constellation	The experiment described in Sect. 4.2.3 was repeated
	with a real network of 150 stations and a real constellation of 30 GPS satellites (both
	extracted from a solution provided by ES A for July 11, 2008), ail other simulation
	options being kept unchanged. The obtained VIF was 3115.1 (99.984%), just slightly

above the VIF obtained with perfectly distributed station network and constellation.

Table 4

 4 

	.5 List of simulated parameters	
	Type	Count	Number
	Station coordinates	3 per station	300
	Satellite initial State vectors	6 per satellite	12
	Satellite empirical accélérations	5 per satellite	10
	EOPs	6	6

Table 4 .

 4 6 VIFs obtained for the three geocenter coordinates with different cut-off angles and

	observation weighting functions. The other simulation options were as described in Sect. 4.2.2,
	except that satellite z-PCOs were not estimated.
				Cut-off angle
		0°5°10°20°X	
		: 450.1 (99.889%)	X: 1066.9 (99.953%) X: 2355.6 (99.979%) X: 12409.1 (99.996%)
	1	X: 452.3 (99.889%)	X: 1069.3 (99.953%) X: 2353.1 (99.979%) X: 12431.8 (99.996%)
		Z: 932.3 (99.946%)	Z: 1673.5 (99.970%) Z: 3157.3 (99.984%) Z: 13884.9 (99.996%)
		X: 654.7 (99.924%)	X: 1273.9 (99.961%) X: 2643.1 (99.981%) X: 13507.6 (99.996%)
	sine X: 654.7 (99.924%)	X: 1278.5 (99.961%) X: 2644.8 (99.981%) X: 13520.2 (99.996%)
		Z: 1306.5 (99.962%) Z: 2022.4 (99.975%) Z: 3583.8 (99.986%) Z: 15133.2 (99.997%)
		X: 1126.1 (99.956%) X: 1944.7 (99.974%) X: 3582.3 (99.986%) X: 16115.0 (99.997%)
	sin2 e X: 1123.0 (99.955%) X: 1951.5 (99.974%) X: 3585.3 (99.986%) X: 16118.0 (99.997%)
		Z: 2026.1 (99.975%) X: 2942.4 (99.983%) Z: 4815.1 (99.990%) Z: 18123.9 (99.997%)
	Real network and constellation	Another round of simulations was run using a real
	network of 150 stations and a real constellation of 30 GPS satellites (both extracted
	from a solution provided by ES A for July 11, 2008), ail other simulation options being
	kept unchanged. The VIFs obtained for the X, Y and Z geocenter coordinates were
	respectively 2233.2 (99.978%), 2431.5 (99.979%) and 3585.2 (99.986%), i.e. at the

same level as the VIFs obtained with perfectly distributed network and constellation.

Table 4 .

 4 7 VIFs obtained for the Z geocenter coordinate when estimating different subsets of It is clear that, when individually estimated, each of these five parameters, in particular D0, has little impact. When the five parameters are simultaneously es timated, the VIF of the Z geocenter coordinate increases from about 2550 (99.980%) to 3157.3 (99.984%). This increase by a factor of about 1.2 can in fact be quasi-fully explained by the simultaneous estimation of three of the five parameters: D0, Bc and Bs. It is nevertheless rather minor.

	ECOM parameters. The other simulation options were as described in Sect. 4.2.2, except that
	satellite z-PCOs were not estimated.
	ECOM parameters	VIF	y/l -1/VIF
	None	2556.6	99.980%
	D0	2558.2	99.980%
	Y0	2556.8	99.980%
	B0	2560.7	99.980%
	Bc, Bs	2609.9	99.981%
	Do, Bc, Bs	3147.8	99.984%
	Do, Yo, Bq, Bc, Bs	3157.3	99.984%
	dinate.		

Table 4 .

 4 8 VIFs obtained for the Z geocenter coordinate when estimating different subsets of ECOM parameters and using the GLONASS-like constellation described in the text. The other

	simulation options were as described in Sect. 4.2.2, except that satellite z-PCOs were not
	estimated.		
	ECOM parameters	VIF	y/1 -1/VIF
	None	2577.1	99.981%
	Do	2813.5	99.982%
	Y0	2577.9	99.981%
	Bo	2586.9	99.981%
	Bc, Bs	2616.6	99.981%
	Do, Bc, Bs	4776.6	99.989%
	Dq, Yo, Bq, Bc, Bs	4802.7	99.990%
	et al. (		

Table 4 .

 4 9 VIFs obtained for the three geocenter coordinates when estimating different subsets of

	GNSS-specific parameters. The other simulation options were as described in Sect. 4.2.2, except
	that satellite z-PCOs were not estimated.
	GNSS parameters	Axis	VIF	y/1 ~1/VIF
			X	1.0	16.263%
	None		Y	1.0	16.523%
			Z	33.4	98.489%
			X	4.0	86.529%
	ECOM		Y	4.0	86.504%
			Z	44.5	98.869%
			X	2.4	76.094%
	tropo		Y	2.4	76.085%
			Z	36.4	98.617%
			X	675.6	99.926%
	docks		Y	679.8	99.926%
			Z	770.2	99.935%
			X	6.6	92.051%
	ECOM, tropo	Y	6.6	92.067%
			Z	55.8	99.101%
			X	718.1	99.930%
	ECOM, docks	Y	719.3	99.930%
			Z	1304.9	99.962%
			X	2296.9	99.978%
	tropo, docks	Y	2293.5	99.978%
			Z	2556.6	99.980%
			X	2355.6	99.979%
	ECOM, tropo, docks	Y	2353.1	99.979%
			Z	3157.3	99.984%
	4.5.5	Comments to Meindl et al. (2013)

  , the extreme collinearity of the three geocenter coordinates with the other parameters of a GNSS analysis indeed results in a situa tion in which the systematic influence of geocenter motion on GNSS observations is swamped by observation and modelling errors. A different problem, not answered by this collinearity diagnosis, is to understand what the IGS AC translation time sériés do actually reflect, i.e. what are the modelling deficiencies which contaminate GNSS , the weak sensitivity of current GNSS to the terrestrial scale and to geocenter motion was explained by means of the generalized collinearity diagnosis developed in Chapter 3. In both cases, this weak sensitivity results from situations of extreme collinearity with the other parameters set up in global GNSS analyses.

	Chapter 5
	Perspectives
	geocenter motion estimâtes.
	In Chapter 4

  from a reverse perspective. From the reprocessed solutions of five IGS ACs, they derived time sériés of satellite z-PCO estimâtes, relatively to various TRFs obtained from ITRF2008 by only changing its scale rate. They then searched the scale rate offsets with respect to ITRF2008 for which the resulting satellite z-PCO estimâtes were as constant as possible over time,

	Collilieux and Schmid (2012) globally optimized the time invariability of their
	z-PCO time sériés over an ensemble of several satellites. But their optimized z-
	PCO time sériés nevertheless showed residual satellite-specific trends, with a scatter
	of about 5 mm/yr. This scatter can be considered as an estimate of the préci
	sion with which the z-PCO time invariability assumption is actually met. It corre
	sponds to a précision of about 0.25 mm/yr for the intrinsic GPS terrestrial scale rate,
	which is quite consistent with the scatter of the AC scale rate offsets with respect to
	ITRF2008.

i.e. for which the z-PCO time invariability assumption was best met. Those offsets represent intrinsic GPS scale rate estimâtes with respect to ITRF2008, based on the z-PCO time invariability assumption. Depending on the considered AC, the obtained offsets were ranging from -0.27 mm/yr to -0.06 mm/yr, consistently doser to the SLR scale rate offset with respect to ITRF2008 (-0.15 mm/yr) than to the VLBI scale rate offset (+0.15 mm/yr).
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in order to compensate the time reference singularities of A (Sect. 2.1.2).

Collinearity diagnosis

Given the design matrix A, the observation weight matrix Pi, the constraint matrix C and the partial dérivatives A = dx/dy described above, Eq. 3.75 was set up and solved. Its solution nyiC represents the linear combination of the estimated parameters, independent of any scale change of the station network and allowed by the constraints, whose signature most closely matches Sy. This independent variation of the estimated parameters turned out to be mainly composed of:

-a mean variation of the satellite z-PCOs by 137.37 mm, plus small satellitespecific z-PCO variations below 0.19 mm, -a mean variation of the satellite clock offsets by -105.16 mm (-350.78 ps), plus small satellite-and epoch-specific variations below 0.23 mm (0.75 ps),

-a mean variation of the station clock offsets by 25.24 mm (84.19 ps), plus small station-and epoch-specific variations below 0.37 mm (1.24 ps), -a mean variation of the ZWDs by 0.39 mm, plus small station-and hour-specific variations below 0.11 mm.

Ail other estimated parameters (EOPs, station coordinates, tropospheric gradients and satellite orbit parameters) were not found to significantly contribute to [iy c.

The obtained mean variation of the satellite and station clock offsets has for effect to lengthen the predicted observations by 25.24+ 105.16 = 130.40 mm. The impact of the obtained mean ZWD variation is to lengthen any observation made at an élévation e by 0.39/sine mm. Finally, according to Cardellach et al. (2007), the impact of the obtained mean z-PCO variation is to shorten any observation made at

an élévation e by -137.37-^/1 -a2E cos2 e/a2 mm. The sum of these three effects is compared in Fig. 4.3 with the signature Sy of a 1 ppb terrestrial scale change. There is a réduction by almost 2 orders of magnitude from the signature to the proper signature of the terrestrial scale change, which also points to a severe collinearity is sue.

Appendix A Some linear algebra

A.l Images, ranks and kernels of real matrices

Let A G A4m,n(M) be an m x n matrix of real numbers.

-The image of A is the set of ail possible linear combinations of its row vectors, i.e. {Ax, x G Mn}. It is a linear subspace of Mm and will be denoted Im(A).

-The rank of A is the dimension of its row space: rank (A) = dim(Im(A)).

-The kernel of A is the set of ail possible vectors x G Mn such that Ax = 0. It is a linear subspace of Wl and will be denoted Ker(A).

Let us recall some basic properties of the images, ranks and kernels of real matrices.

Proposition A.l. VA G rank(A) < min (m, n). A is said to be of full rank if rank( A) = min (m, n). Otherwise, A is said to be rank déficient.

Proposition A.2. VA G .Mn,n(M), A is invertible if and only if rank(A) = n, i.e.

A is of full rank. Let us now introduce some more properties used in the following.

Proposition A.7. Let A be any m x n real matrix and P be any n x n symmetric positive-semidefinite matrix such that rank(PA) = rank(A). Then rank(ATPA) = rank(A).

Proof. As a symmetric positive-semidefinite matrix, P has a unique symmetric positive-semidefinite square root \fP. Using proposition A.5 twice leads to the following inequalities:

The hypothesis that rank(PA) = rank( A) therefore implies that rank(\/PA) = rank( A), so that, according

Corollary A.8. Let A be any m x n real matrix and P be any n x n symmetric positive definite matrix. Then rank(Âl PA) = rank(A).

Proof. As a symmetric positive definite matrix, P is invertible, hence of rank n. Proposition A.6 therefore implies that rank(PA) = rank(A). Proposition A. 7 complétés the proof.

Corollary A.9. Let A be any m x n real matrix and P be any n x n symmetric positive semidefinite matrix such that rank(PA) = rank(A). Then Im(ATPA) -Im(AT).

Proof. Im(ArPA) is trivially included in Im(Ar). But according to proposition A.6, both these subspaces hâve the same dimension. They are therefore equal.

Proposition A. 10. Let A and B be two nxp matrices of rank p with p < n. Then

ATB is invertible if and only if:

-rank{A) = rank(B) -p;

-Im(B) and Ker(A' ) are direct complementary subspaces of MTl.

Proof. Let first suppose that the p x p matrix A7 B is invertible, i.e. of rank p. Proposition A.5 implies that rank(A) = rank(P) = p, i.e. that dim(Im(P)) -p and dim(Ker(A/)) = n -p. Now, let x € Im(B) nKer(AT). There exists y £ Rn such that x -By. But as x G Ker(Ar), ATx = ATBy = 0. And since ArB is invertible, y and x are necessarily 0. The dimensions of Im(P) and Ker(A7 ) sum up to n and their intersection is restricted to {0}. They are therefore direct complementary subspaces of Rn.

Let us now suppose that rank(A) = rank(P) = p and that Im(P) and Ker(Ar) are direct comple mentary subspaces of Rn. The intersection of these two subspaces is restricted to {0}. Consequently, Vae G Im(P), A7 x = 0 if and only if x = 0. Now, let y G Rp. By lies in Im(P) so that A7 By -0 if and only if By = 0. And, as P is of full rank, ATBy = 0 if and only if y = 0. This last statement means that Ker(A7 B) = {0}, i.e. that A7 P is of full rank and hence invertible. Proof. Corollary A. 12 is a particular case of proposition A. 11. The only additional thing to be proven is that Im(NB) = Im(N). The inclusion lm(NB) C Im(lV) is trivial. There just remains to prove that both subspaces hâve the same dimension. According to proposition A.11, dim(Im(iVJB)) = dim(Ker(Cr)).

But under the hypothèses of corollary A.12, dim(Ker(C7 )) = p -c = rank(lV), so that dim(Im(ATS)) = dim(Im(lV)).

A. 2 Projections

Let E and F be two direct complementary subspaces of Rn. For ail x G Mn, there exist a unique pair (y, z) G E x F such that x = y + z. The linear application that associâtes, to each x, the corresponding y is called projection onto E parallelly to F. The complementary application that associâtes, to each x, the corresponding 2:

is the projection onto F parallelly to E. Both complementary projections obviously sum up to the identity application. If Rn is equipped with some dot product, the orthogonal projection onto E is defined as the projection onto E parallelly to its orthogonal complément.

Let us give some properties of projections.

Proposition A. 13. A linear application p is the projection onto E parallelly to F if and only if p is idempotent, Im(p) -E and Ker{p) = F.

Proof. From the définition above, it is obvious that, if p is the projection onto E parallelly to F, then p is idempotent, Im(p) = E and Ker(p) = F. Let us now suppose that p is idempotent, Im(p) = E and Ker(p) = E. Im(p) = E means that, Vcc G F, there exists y in Rn such that x = p(y). The fact that p is idempotent then implies that p(x) = p(.p(y)) = p(y) = x, so that, Vx G F, p(x) = x.

Consider now any x G Rn and its unique décomposition into x = y + z with (y, z) G E x F. The linearity of p implies that p(x) = p(y) + p(z). As z G F = Ker(p), p(z) = 0, and as y E E, p(y) -y, so that p(x) = y. This proves that p is the projection onto F parallelly to F.

Proposition A. 14. Let A be any matrix whose columns form a basis of E and B a full rank matrix such that Ker(BT) -F. Then, the matrix form of the projection onto E parallelly to F is A(BTA)~lBT.

And since the déterminant of a triangular block matrix is the product of the déterminants of its diagonal blocks, det(M) = det(A)det(£> -CA~lB)

As M and A are invertible, their déterminants are both different from zéro, so that the déterminant of D -CA-1 B is necessarily also different from zéro and that D -CA~lB is invertible.

To complété the proof, form the product of M with the expression of M-1 given above. It simplifies to I. Then:

M -MA(ATMA)~lATM = B{BtM~1B)~1Bt

Proof. The columns of R = [AB] form a basis of Rn. R is therefore invertible and its inverse can be expressed as:

To prove this expression of R~', right-multiply it with R. As A1 B = 0 and B1 A = 0, this product simplifies to I. Forming the other product, RR-1, leads to:

The product:

is itself invertible. Using the matrix block inversion formula (A. 17), the right-bottom block X of (R1 MR)-1 can be expressed as:

On the other hand:

{RT MR)-1 = R-1M-1{R~1)t so that another expression of the right-bottom block of (RTMR)-1 is: Parameter régression consists in inferring a set of optimal (best fitting) parameters from the observations l. There exists various régression methods associated with different optimality criteria. We consider here the generalized least-squares régression method which is widely used in the geodetic community.

In generalized least-squares régression, it is assumed that the observations hâve a known covariance matrix Qt. Pi = QZ"1 is called the weight matrix of the ob servations. Specifying a weight matrix for the observations corresponds to the choice of a particular metric1 in the observation space Mn, i.e. of an inner product < 1,1' >-lTPil' and of the associated norm ||Z|| = y/lTPtl. Let us call E the Hilbert observation space Mn equipped with this metric.

The generalized least-squares criterion to find best fitting parameters x is the lrThe choice of this particular metric may seem arbitrary. But Pi is in fact an optimal weight matrix in the sense that it leads to a minimum parameter variance [START_REF] Dermanis | Geodetic linear estimation techniques and the norm choice problem[END_REF]. We hâve thus shown that the product of the extended normal matrix with R is I. The extended normal matrix is thus invertible. Multiplying the expression of its inverse R given above with the right-hand side of the extended normal équation leads to the expression of xc given in Eq. B. 17. From the expression of R given above, it is finally clear its upper-left block can be identified with the covariance matrix Qc of the estimated paxameters.

B.2.3 Minimal constraints

The c x p constraint matrix CT is said to define minimal constraints when rank([A7 C]) = p and c = p -rank(A) = dim(Ker(A)). In other words, minimal constraints properly supplément the rank deficiencies of A with as few constraints as possible, i.e. a number of constraints c equal to the number of singularities of A.

Like any constraints, minimal constraints can be introduced as pseudo-observations or as condition équations.

Let B still dénoté a matrix whose columns form a basis of Ker(CT). In case where minimal constraints are introduced as condition équations, the expressions of the estimated parameters xc and of their covariance matrix Qc given in Eq. B. 17 According to corollary A. 12, Ker (B1 N) = Ker(TV) in case of minimal constraints.

Consequently, if D dénotés a matrix whose columns form a basis of Ker (B1 N), the columns of D lie in Ker(lV) so that ND = 0. In case where minimal constraints No-net-translation constraints Similarly, nullifying the differential translations be tween x and x0 can be done by taking CT = (.AjAt)~lAj as constraint matrix,

where the matrix At of station coordinate / translation partial dérivatives has the values of the other parameters as well as their covariance matrix, as the subséquent model does not allow implicit variations of the fixed parameters.

This section reviews the mathematical formulations of parameter réduction and fixation and gives géométrie interprétations of both operations. An inequality is finally given between the parameter covariance matrix obtained after réduction of some parameters and the parameter covariance matrix obtained after fixation of the same parameters.

For the sake of simplicity, it is assumed in this section that the design matrix A is of full rank, so that the normal matrix N is symmetric positive definite and no constraints are required. However, the results presented in this section can easily be extended to the case where A and N hâve rank deficiencies supplemented by (not necessarily minimal) constraints. To give a more concrète interprétation of this inequality, let q = XTx\ be any non-zero linear combination of the parameters x\. The variance of q obtained in the réduction case is of = X1 Q, A, while its variance in the fixation case is a} = \T

We hâve af -a) = AT(Qr -Q,)\ = ATQ12<3221Q21A > 0 (B.37) so that any non-zero linear combination of the parameters x\ has a larger variance in the réduction case than in the fixation case. This inequality applies in particular to the variances of each individual parameter in Xp Informally, one could say that in the réduction case, the reduced System "remembers" the uncertainties of the pre-eliminated parameters x2 and their corrélations with aq, which contribute together to the total uncertainty of X\. On the other hand, this additional source of uncertainty is "forgotten" in the fixation case, as can be readily seen in Eq. B.35.

Appendix C

Geocenter motion estimâtes from the 

IGS Analysis Centres