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As Winnie the Pooh famouslv said, A day without a friend is like a pot without a single drop of honey left inside. I would like to thank my friends (those who reeognized themselves in the lines before and those who will recognize themselves in those lines), for being what. tliey are. Whenever we The last, connected line (which for r < 0.85 is also a "last connected fieldline" is a thick black line) 

3.7

The température accross the wliole domain. Note that the température is in arbitrary units since P0 is an arbitrary intégration constant in Eq. 2.30

3.8

The plasma beta is dropping fast as one gets close to the star.

3.9 Q for the semi-analytical solution and it.s évolution to its Once again, we start from the same initial setup, wliich we except. is an educated guess for a solution wit.h a dead zone.

On the top panel we hâve density and fieldlines as well, on the bottom panel absolute value of the poloidal velocit.y . . . Chapter Abstract Tlie goal of this tliesis is t.o study models of static magnetospheres in collimated outflows from Young Stellar Objetcs. This requires to introduce first the general context of such a study, by giving an outlook of the current astrophysical paradigm on star formation, which is the formation of protostellar cores in molecular clouds by gravitational collapse, which is governed by the interplay of gravitation, magnetic fields and hydrodynamics, and to describe how collimated outflows -or 'jets' are part of this tlieory. The choice we made is to introduce the reader in this framework by starting with an outlook of this very general topic witliin Astrophysics, which is the tlieory and observations of Young Stellar Objects, and then to discuss observations and tlieory of jets. Afterwards, in subséquent, chapters, we will discuss the particular models we studied in order to gain insight. into these phenomena.

Stellar variability. T Tauri variables as

Young Stellar Objects

T Tauri stars as young stars

Once, the variability of a star was considered to be something unusual.

Stars were considered to be part of the Arist.otelean supralunar realm, to which was attached the notion of perfectness, or interchangeably, the lack of change. This view was prévalent prior to the advent. of modem science at the beginning of t.he 17th century. The first star to be described with certaintv as variable is o Ceti. Although possibly previously identified as a nova, its periodic variability was discovered by Johannes Holwarda in 1638, and in 1642 Johannes Hevelius named it "Mira," meaning "The Wonderful," (Hoffleit, 1997) possibly imprinting in this name his fascination for the fact that some stars undergo changes. Nowadays, it is clear that, in some sense, every star is variable: stars and their vicinity undergo évolution, and some of the most beautiful physical théories liave been employed in answering the question of where do stars corne from, what they are, and where do t.hey go. Also, it became clear that the star Mira is part of a class of variable stars in a latter stage of their évolution an oscillating red giant stars a class of stars named "Mira-type," after the first discovered of their kind. Similarly, a class of variable stars discovered by Alfred H. Joy in 1945, is named after the star that Joy identified as their prototype the variable star T Tauri. What Joy pointed out as being characteristic for T Tauri stars (TTS) is their low luminosity, rapid irregular variations in the lightcurve, spectral type between F5 and G5, spectra with émission lines blue-shifted with respect to the absoption lines, and their association with dark or bright nebulae (Joy, 1945). Later, V. Ambartsumian identified TTS as Young Stellar Objects (YSOs), i.e. pre-main sequence stars, whose luminosity is due to gravitational contraction, an identification that will prove riglit (e.g. [START_REF] Ray | [END_REF], and références therein).

The described activity and peculiarities of TTS are nowadays explained by the presence of accretion disk, outflows sucli as stellar winds and highly collimated jets, and magnetic phenomena.

Interstellar clouds and T Tauri stars

As mentioned, TTS are observed close to nebulae, whicli are known to be cold molecular clouds, composée! mainly of molecular hvdrogen. H2 is a homonuclear molécule with no permanent dipole moment and hence is not interacting with electromagnetic radiation. As the gas is optically thin at these densit.ies, H2 is not directly observable. Instead, its density is inferred Moleeular Clouds [START_REF] Ray | [END_REF]. Among tliem, the Taurus-Auriga (GMC), Ophiucus (SMC) and Orion (GMC) star-forming régions are studied in greater detail than otliers. [START_REF] Hartmann | Accretion processes in star formation[END_REF].

Gravitational collapse of a young star

Stars form in gravitationally bound overdense régions in tliese clouds, which can be clumps or prest.ellar cores (commonly called also "compact sources"). Once the compact source form, various mechanisms may prevent the gravitational collapse that. will finally lead to the formation of a star. From theoretical point of view, the maximal mass of a sphere in hydrostatic equilibrium is

Mbe -O.GG (T/10K) {Pth/{3 x 10^kBcm~3K) } 1/2 M0 (1.1)
and is c.alled the Bonnort-Ebert mass (T being the température in Kelvin, Pth the thermal pressure and kB Boltzman's constant). The Bonnort-Ebert.

mass' order of magnitude is 1M0 for typical clouds and is comparable to the Jeans mass (and respectively, the radius of the Bonnort-Ebert sphere is comparable to the Jeans length: RBE = 0.486i?j, which is the critical mass above which clouds are subject. to fragmentation (McKee <C Ostriker, 2007, and référencés therein.) When the gravitational collapse st.arts, the number density of the newly formed core is ncore = 10~2°g.cm~3 (for the Sun, n0 = lg.cm-3). Mat.erial spread at. lly will collapse to a core wit.h a diameter of 1 Mkm, and during that phase its température will rise from 102K to 106K [START_REF] Ray | [END_REF], and référencés therein).

The mass of a core may exceed the Bonnort-Ebert mass, but gravitational collapse may st.ill be stopped, and various factors are to be t. The gravitational collapse, when ail the envelope is falling onto the star, continues until n -10~2g.cm~3 a second core is formed and hydrogen is ionised [START_REF] Ray | [END_REF].

At this moment, 1% of the mass is in the core, and the ot.her part is in the envelope. The star starts to accrete its spherical envelope: it's now a Class 0 protostar.

As mentioned, the peculiar activity of a TTS is partly attributed to the presence of an accret.ion disk. Observational evidence for the presence of accretion disks around YSOs are the observed excess in the infrared and millimeter émission and the fact that the red-shifted part of the émission lines is blocked. On theoretical grounds, the formation of an accretion disk is explained by considering the fact that rotation breaks the spherical symmetry of the cloud, thus material coming from sufficiently large distances in the surrounding nebula at the equat.or from below will hâve opposite momentum flux witli respect to material coming from above; tliis will lead to the formation of a sliock at the equator. Gas passing trough this shock will see its entropy increases, hence it will loose kinetic energy, i.e. the infalling gas particles will stay close to the equator, forming a thin disk [START_REF] Hartmann | Accretion processes in star formation[END_REF], and référencés therein).

Once a significant part of the envelope is accreted in the Class 0 phase, with the accretion rate being highly variable witli respect to time, and outflow in the form of a massive wind and jets develop.This is observable, for instance, through the doppler-shifted CO rotationnal line émission [START_REF] Ray | [END_REF], and référencés therein). Class 0 objects are optically invisible, but observable at far-infrared and millimeter wavelengths [START_REF] Ray | [END_REF], and réf érencés therein). Embedded phase lasts at. most lMyr, wliich requires an accretion rate of 10~6Moyr-1, close to the accretion rate during the runaway collapse of Shu (1977). This implies luminosities of the order of 7L0, liigher than the typically observed IL©. The most plausible solution to this problem is that the accretion rate during the embedded phase is not steady, and that a significant portion of the mass is accreted during episodic bursts, such as those observed in FU Ori stars.

Recent physical models including such behaviour can be found in Dun- do form, and second, that the TTS rot.ate at only 10% of their break-up speed. (Bouvier, 1900[START_REF] Edwards | Protostars & Planets[END_REF], Vogel&Kuhi, 1981) This 'angular momentum puzzle' is still an open issue in theory of star formation. It, is well established that, bodies in different stages of their évo lution hâve different angular momenta. This quant.ity is indeed measured in observations. As discussed in Belloche (2013), the spécifie angular mo mentum J/M for dense cores in molecular clouds is J/M -io21~22 cm2s-1 [START_REF] Goodman | [END_REF], a pre-main sequenee star lias J/M -1016-17 cm2s-1 [START_REF] Mathieu | Proc. IAUS[END_REF], and the Sun has a J/M = 1015cm2s-1 (Pinto étal., 2011). This brings out. the question to quantifv, as much as possible, observationnaly and theoretically, the meehanisms responsible for this loss of angular momentum during star formation. We will not focus in tliis brief outlook on the possible precessions of jets.

Jets propagate along the axis of symmetrv of the accret.ion disk, and their angles of precession do not exceed 5°on 10 vr timescale. (Cabrit, 2007) Numerical simulations of precessing jets are carried out bv Cerqueira de

Gouveia Dal Pino (2004). According to [START_REF] Cabrit | Protostellar Jets in Context[END_REF], the thurst for tliis mass low mav require a net energy deposit of 0.3Lacc, but due to losses related to dissipation and waves divergence, much more needs to be injected at the base of the wind.

Dynamics of the collimation 0 cs

The opening angle of a ballistic hydrodynamic flow is tan -= -which cor-2 Vj responds, for a température of 104K and typical jet velocities of 300 km s-1 to an full opening angle 0 ae 4°, which is comparable to observations. (Cabrit, 2007[START_REF] Ferreira | Protostellar Jets in Context[END_REF] For example, Perrin k Graliam (2007) report an opening angle of 9°, for average radial outflow velocity of 100 km s-1, again consistent for a ballistic hydrodynamic flow with température of 104K (cs = 9.1 km s-1).

The collimation and éjection speeds vary not, only with âge, but also with the masses of the outfiows. We indeed expect that there should be a dif férence between fully convective T Tauri stars and more massive stars with fullv radiative interiors. The magnetic fields, driving the outfiows, are much smaller in the case of massive YSOs, and as Shepherd étal. (1998) report, jets from high-mass YSOs are much less collimated with opening angles of 30°-60°. An order-of-magnitude différence in t.he collimation factors (defined as t.he ratio between t.he widt.h of t.he outflow to t.he distance t.o the driving source) is reported by Beuther et al. (2002), who give collimation factors of 1 2 for high mass outflows, while low mass sources hâve outflows with collimation factors of up to 10.

Molecular outflows observations, bot.h from low-and high-mass YSO, most.lv CO t.racing molecular hydrogen, show that. there is a mass-velocity relation, wliich could also be used to compare different observations and is relevant to radiative jets simulations. Explicit.ly written this relation is a power law:

--oc u~7 with 7 from 1 to 3, but up to 10 in some cases, wit.h the steeper dv slopes at. high velocities. This slope st.eepens wit.h the mass and the energv of the flow. (Arce et al., 200G, and référencés therein)

1.2.6

The jet launching zone However, the complex morphologv of the observed outfiows could not be explained solely by stellar winds or disk winds. As Lee et al. (2000Lee et al. ( , 2001Lee et al. ( , 2002) ) point out, t.here is evidence that tliere is a superposition of two components: a stellar jet and a disk wind. In the optical, the forbidden émission lines profiles of TTS show two velocity components: high-velocity, identified as a stellar jet and low-velocity, identified as a disk-wind.

Finally, a third class of models consider possible periodic éjections, due to the interaction of the magnetosphere of an YSO witli the unmagnetized accretion disk. This could be eitlier the X-wind of Shu et al. (1988), [START_REF] Cai | Protostellar Jets in Context[END_REF], the similar 'ReX', for 'Reconnection X-wind' of Ferreira, Pelletier, Appl (2000) or the magnetospheric éjections, described by [START_REF] Zanni | Protostellar Jets in Context[END_REF].

The need of MHD in order to adequatly describe jet launcliing and colli mation is also well-established. We will remind the basic arguments for the need of MHD for the study of collimated outfiows, and for a more detailed discussion the reader is referred to lectures by Cabrit, (2007) and Tsinganos (2007).

One obsolète hypothesis on the collimation of out.flows is that an isotropie stellar wind is confined by an a-disk thermal pressure. Barrai &Canto (1981) show that even if this mechanism can produce collimated outfiows in the équatorial plane, wliere the accretion disk is présent, the opening angle of the emerging fiow above the accretion disk will be far too large for the fiow to be considered as a jet. Then, this argument could be ext.ended, and As we discussed in §1.2.6, the jets are launched at smaller scales, thus wit.h the advent of the ALMA telescope, wit.h its maximal resolution of 5 miliarcseconds, hence « 0.7AU at the Taurus-Auriga distance, (Belloche, 2013) t.hese régions will be resolved. 

Chapter Abstract

The goal of this chapter is to list. the fundamental équations of Magnetohydrodynamics, which is the mathematical framework within which jets of Young Stellar Objects are studied. As it, is well known, proving the ex istence of globallv-regular, exact solutions of the Navier-Stokes équations, even without introducing electromagnetic fields, is a formidable, unsolved problem in Mathematics. However, in some simple cases, when svmmetry considérations and approximations simplify the problem, analvtical, or semi-analytical solutions exist. In this work, we give a brief présentation of the approaches, used in order to address the problem of studying jets of YSOs, which consists in making the corresponding hypothesis and ap proximations in resolving the set of équations of idéal MHD. Bv this we mean that we will remind which conserved quantities exist in the case of stationary, axisymmetric outfiows, and then we will discuss the self-similar hypothesis, allowing, bv physically plausible symmetrv considérations, to reduce the set of partial difterential équations of MHD to a set of ordinary differental équations. Finally, we will discuss a self-similar ansâtz, used in order to obtain, by a proper intégration of the difterential équation result.ing from the self-similar hypothesis, the values of the relevant physical quan tities density, pressure, magnetic and velocity fields. Meanwhile, we also discuss the velocities at which waves propagate in a MHD System. This is useful, for instance, if we want to know if a given point within the System under considération is infiuenced by a given boundary condition.

On the idéal MHD approach for jets of YSOs

As we discussed in the previous chapter, magnetic fields are supposed to play a dominant rôle in the évolution of Young Stellar Objects. Hence, in order to correctly describe the évolution of matter around an YSO, we need to studv the coupling of matter with the magnetic field. In this work, we will operat.e in the framework of idéal MHD, which means that we are studving the fiow of an perfectly condicting, highly collisionnal inviscid fiuid, with negligible viscosity, and on scales mucli bigger than the typical scales involved in the problem. In the case of low densifies, the strong coupling of the magnetic field to matter ensure the validity of the MHD approximation. Moreover, in MHD we operat.e with the important basic paramet.ers such as the température T, pressure P, density p, magnetic field B and velocity field V, which are quantifies that could be deduced bv observations of jets of YSOs. We will indeed make a concise vérification that we could operat.e in the framework of idéal MHD, which concretelv means that we will check that the typical lengt.hs for the Systems we are studving (jets of YSOs) are mucli larger (a) than the collisional mean free pat.h of the part.icles, which in its turn is mucli larger than (b) the Debye length. We will verify that (c) the mean collision interval is mucli longer than the ion gyration time and the électron gyration finie, and finally (d)

we will remind the values of elect.rical, thermal conductivity and viscosity in such astrophysical plasmas. The discussion that follows will be similar A"-/iS5"6'VJ (=")

For the same parameters as we used to compute the other lengths, tliis yeilds \q of the order of a cm, much smaller than the mean free path of Coulomb scat.tering.

(c) In the simplest approach, the gyrofrequency of a single particle of Tliis has to be compared to the mean collision time, which expression is given in (a):

T tI -« 1.75 B-» 1, (2,7) 
Te U if we take the same parameters as above and a magnetic field B 1 kG. Therefore the Larmor radius rL <C \ei.

(d) As Tsinganos (2007) reminds, the thermal conductivitv is very high X ~G x 108gcm"1s"1, the electrical conductivity is comparable to that of excellent conductors like copper (cocu ~1016s-1), and the viscosity (p « 0.1gcm~1s"1) negligible.

In conclusion, witli this arguments together, we can argue that the idéal MHD approximation is a good approximation for the description of the overall behaviour of stellar outfiows.

Conservation of mass, momentum, energy and the induction équation

The set of équations of idéal MHD consists of 8 équations, whicli is required to obtain a solution giving the 8 MHD quantifies, namely density, velocity, magnetic field, and pressure, which in usual notation are written p, V, B , and P, respectively. Those équations are:

| + V.(PV) = 0 A + (V • V)V + i Ab X (V x B) + -VP = -V3> dt p 47T p E-+ V VP + rPV V = A ot - V X (v X B) = 0 dt K ' (2.8) (2.9) (2.10) (2.11)
where H -A is the energy équation source term, representing the volumét rie energ\r gain/loss terms, T is the gravitational potential of the central object (T = -QM.fr), where Ai is the mass of the central object, and the gravitational constant G = 6.67259 x 10"8cm3g"1s"2. Units are usually expressed in CGS System.

The first équation is the mass conservation équation, relying the time dérivative of density with the spatial dérivative of the linear momentum.

The second équation is the momentum équation, relying time dérivative of momentum with the energy flux. The third équation is the energy con servation, on which RHS we hâve the heating/cooling term. Finally, the last équation in this set is the induction équation, governing the coupling between the velocity and the magnetic held. This form appears to be useful for writing down the discrétisation of these équations, in order to attempt a numerical resolution of the set of équations. For more details on this last point, the reader is referred to Mignone étal. ( 2007), wliere is presented the PLUTO code that we will be using in this work to carry out numerical simulations.

Magnetohydrodynamic waves

If we want to study how a particular point in the interior of our MHD System is affected by another point, or a boundarv, we sliould know if the information had time the to travel between the two régions in question. In order to know this, we sliould know at which velocity a perturbation will travel across the System. In a pure hydrodynamical syst.em, perturbations travel at the Sound speed:

The picture is a bit more complicated in magnetized fluids. In order to find modes of propagation of waves in MHD Systems (called Magnetosonic modes), we sliould look for plane-wave solutions of Eqs. (2.8-2.11), i.e. so lutions oc eî(k'r-wt), wliere k is the wave vector; r the position vector and lu the wave frequency. A detailed dérivations of eigenequations of these modes in given in most MHD textbooks (e.g., Blandford k. Thorne, 2012), so we will directly remind the dispersion relations for the different modes.

A characteristic speed in MHD Systems is the Alfvén speed:

(2.12) B (2.13) which is the speed of magnetosonic waves, propagating along the magnetic fieldlines. The full dispersions relations for the magnetosonic modes are:

Note that 0 is the angle between the wave vector k and the unperturbed magnetic field B, and sliould not. be confused wit.h 6, which is the polar angle in the spherical coordinate svstem.

One magnetosonic mode, described by Eq. (2.13) is the Alfvén mode, called also Intermediate mode. As it can be seen in Eq. (2.13), this mode does not propagate in directions perpendicular to the magnetic field. In the limiting case of a wave propagating purely in the direction of B, longitudinal oscil lations of the perturbation propagate with the Alfvén speed. The magnetic field tension (B2/27r) acts as a restoring force. This mode does not induce any pressure or density fluctuations.

The dispersion relations of the two otlier magnetosonic modes are given in Eq. (2.15). The mode with the minus sign in Eq. (2.15) is called the slow magnetosonic mode and the one with the plus sign: fast magnetosonic mode. Tliose modes induce a combination of magnetic pressure, magnetic tension and gas pressure fluctuations. As it can be seen from Eq. (2.15), the fast magnetosonic wave is fastest when the perturbation is propagating in direction perpendicular to the magnetic fieldlines. In this case, the fast mode can be seen as analogous to transverse sound waves, which propagate Fast magnetosonic mode Slow magnetosonic mode The three magnetosonic modes are plotted on Fig. 2.1. Wliat will be rel evant to discussions in subséquent chapters is the fact that the fast mag netosonic waves are the fastest waves. Moreover, this mode is the only mode that can propagate information in directions, perpendicular to the magnetic fieldlines. Hence, the maximal speed at which information can propagate in MHD Systems along the fiow/magnetic fieldlines is the fast magnetosonic speed plus the bulk velocity of the flow, and simply the fast magnetosonic speed for information propagating in direction perpendicular to the fiow/magnetic fieldlines. Wliat, we will note is that tliere is no way for information to propagate upstream if tlie flow is superfast (i.e. which bulk velocity is great.er tlian the local fast speed.)

Conserved quantities for steady-state and axisymmetric solutions

After the very general discussions we liad in the two previous sections, we remind that we are int.erested in the theoretical modelling of jets. Before discussing any particular model, we will point out tliat in idéal MHD, under quite general assumptions, which are stationarity and axisymmetry, Tsinganos (1981) shows that several quantities are conserved along fieldlines. A direct conséquence of the 'flux freezing' of idéal MHD is the fact that the magnetic flux is conserved along a fieldline. This conserved quantity, which is the mass-to-magnetic flux ratio, is noted T 4: (2.18)

The combination of Eqs. (2.16) and (2.17) gives the velocity field:

B V = T_4(q')- (-wf2(ü:)0, (2.19) 47rp
which expression is a généralisation of the Ferrarolaw (1937).

Tlius, next to the origin, the second term in the expression will be negligible compared to the first term: the field will be practicallv radial. On long The poloidal plane distances, the second term will dominate the first one: the held will be practically toroidal and will encompass the flow. Equivalently, this could be seen as magnetic stress hoop and material stress collimating the flow.

The study of tliose quantifies will be of physical importance. Verifving that these quantifies are conservée! along heldlines will ensure that the steady State is reached. The interplay of tliose quantifies will enable us to quantify the angular momentum extraction process. The quantity r, wliich expression is:

is the constant rate of transport of angular momentum across a unit flux tube [START_REF] Mestel | Stellar magnetism[END_REF]).

2.5

The self-similar model This function G(R) is related (a) to the expansion factor F -F (R), which définition we will give, and (b) to the magnetic lever arm for the given heldline, which expression we are also going to give now:

(a) The function F (R.) is the 'expansion factor' of a given heldline:

For constant F (R) -2, i.e. G (R) -const., we hâve purely cylindrical fieldlines (ail perpendicular to the equator) and F (R) -0, i.e.

G (R) oc R corresponds to a purely radial wind solution. Hence, F (R) and G (R) hâve geometrical meaning.

(b) If we introduce the magnetic lever arm vaa for the given heldline, we

hâve (2.23) whieh allows us to discuss the physical meaning of tlie involved quan tifies. G {R), which is the ratio of the cylindrical distance to the magnetic lever arm: As we noted, M2(R) is a priori unknown function, it will be insert.ed in the équations, which will be solved for M(R) and the otlier key functions.

G(R) = -. ( 2 
In a similar way, a full ansâtz, describing the otlier quantifies, could be constructed. We are not going to discuss this in detail, the interested reader is referred to Sauty & Tsinganos (1994). In terms of the key fonctions, the three components of velocity liave the following expressions: (2.28)

_ K A G2-M2 P.sm9 * ~vms (2.29) A key fonction, not introduced to this moment, is the dimensionless ra dial pressure distribution 11(7?), participating in the expression for the gas pressure: P -.P*(IÏ(1 + kql) + n0), (2.30) where the dimensionmess parameter k describes the departure from spherical symmetry for the pressure P. Finally, the expressions of the three components of the magnetic field are: 

Br = ^-cos 9, (2.31) 
)
where Q is the gravitational constant and M is the mass of the central object and P0 is an arbitrary constant. In this framework, à and k are déviations from spherical symmetry for the densitv and pressure, respectively; À is the strength of the magnetic torque at the Alfvén radius R*, and v is the strength of the gravitational potential.

The approach is called semi-analytical, because once the ODEs, representing the force balance on a fieldline, are rewritten in terms of the key functions, the solution is not given in terms of known analytical functions, but is determined numerically, wliich is done in Sauty et al. (2011). A propagation scale plot of this solution could be seen on Fig. 3.1.

The ODE in question, describing the force balance along a given fieldline is called the transfield équation, studied for a first, time by Grad k Rubin (1958) and Shafranov (1966), hence also named Grad-Shafranov équation.

In a nutshell, the physical meaning of this is that we hâve the same physics on ail fieldlines. Once we résolve the transfield équation for one fieldline, we can applv a scaled-up version of the solution on any other fieldline, following the 'recipe' wliich is Eq. (2.21). This is why the approach is called 'self-similar.' (2011), in particular to détermine whether it is structurally stable or not.

First, in this chapter, we make use for a first time of the PLUTO code, whicli is a numerical code for modelling of 2. From now on, we will call this solution "Cylindrical analvtical stellar out flow" -CASO and the numerical setup we will use, except if the contrary is specified, will correspond to this particular set of parameters. An outlook of this solution at. large (propagation) scales can be found on Figure 3.1.

The first goal of this work is to study the stability of this part.icular solution on small scales, i.e. at several stellar radii, where the jet collimation and initial accélération take place.

The that interests us. Thus, we a posteriori verify that the central région is causallv disconnec.ted from the outer boundary. We hâve also an a priori argument that information from the outer boundary cannot travel to the central source. First, close to the axis, the flow is vertical and information cannot travel upstream a superfast flow. In order to verify that the flow is superfast, we plot the sonie speed (ca, Eq. 2.12) and the Alfvén speed (va)

close to the axis on Figure 3.2. To plot cs, we first plot P as a function p ( dP\ and then take the centered dérivative . Then, we could also plot the \dpj fast speed, according to Eq. 2.15, but as could also be seen on Fig. 3 This is because of singularities of the type -in the transfield équation.

In order to integrate the transfield équation, some regularity conditions, selecting only solutions passing smoothly through the Alfvén point, sliould be imposed. We are not going to enter into the detail of this intégration, to the directions of symmetry (0) and self-similaritv (6), i.e. along r. Those svmmetries are supposed to dérivé the semi-analytical solution, but the selfsimilarity condition is relaxed in the numerical setup. But as we are going to show, the MHD quantities keep their initial distribution, a fortiori the self-similar condition should also be kept, so interesting us only in waves propagating along r in the previous analysis will be justified a priori.

3.3

Topological stablity of the solutions [START_REF] Matsakos | [END_REF]Matsakos et al. ( , 2009) ) hâve found that a large number of self-similar solutions, obtained by varying the free parameters in the solutions above, are "topologically stable" at large (propagation) scales. This means that when we initialize a MHD simulation box with the solution above as an initial condition, and we let a MHD code compute the time évolution of this initial condition, the eiglit MHD physical quantities might keep or not their initial distribution, but from the initial distribution the quantities converge to a steady state. This corresponds to the discussed notion of topological stability.

Time units

To describe the time évolution, we will prefer to express the time in units of Alfvén Crossing time, i.e. the time needed for a cliaracteristic to cross an Alfvén distance close to the base of the fiow. This time could be related to the disk rotation time (by reminding the définition of v in eq. 2.34):

As the starred quantities are taken to be unitv at the reference radius /?*, by replacing the constants with their numerical values in Eq. (3.1) we obtain We stress tliat we prefer to express time in units of the Alfvén Crossing time, since the CASO solution is a thermally driven outfiow and not a magnetocentrifugically driven disk wind.

Heating distribution

By writing the expressions for the density (Eq. 2.26) and pressure (Eq. We are not going to t.ry to disentangle contributions to this heating func tion from physicallv plausible arguments, and we will instead sav that the heating distribution used in these models is the one needed to maintain this geometry and this geometrv is close to the observed geometry of the fiow.

The goal of this study will not be to understand the nature of this heating, but to understand relevant phvsics in the context of this geometry. A cor rect t.reatment should compute contributions from processes like thermal conduction in the atmosphère (starting from the important input of beat at the base), heating from damping of waves from the sub-photospheric convection, (Decampli, 1981), and to compute the radiative transfer of energy in the wind by the radiation from the central source. Moreover,

Matt &: Pudritz (2005) argue that lieat could be deposited by accretion.

In numerical simulations, we are going to set up inital and boundary con ditions for ail MHD quantifies coming from the semi-analytical solution and in addition to that wre will a priori impose the heating function and release the constraints on the MHD quantities. We will prove that this configuration is stable. This CASO solution lias the disadvantage (as we will explain in §4.1.2) of having non-zero velocit.ies in the closed fieldlines région (which we call 'dead zone' or 'magnetosphere' in green on Figure 3.3), and we will modify this in Chapter 4. To solve t.he équations of idéal MHD, we make use of the PLUTO code [START_REF] Mignone | [END_REF]. We perform a 2.5 dimensionnai simulation, winch means that the toroidal vector components of V and B remain axisymmetric; second order time intégration is achieved by a Runge-Kutta method and we also use a linear interpolation in space. The computationally efficient Lax-Friedrich solver is used, but switching to less diffusive Riemann solvers does not introduce any significant change to the solution. The V • B = 0 requirement is enforced with an eight-wave MHD algorithm.

Initialization of the simulation

Naturally, we use spherical coordinates, which allows us to take advantage of the natural grid cell accumulation near the surface of the central object (i.e. the inner boundary of our simulation box), which allows for our simu lation to achieve better resolution near tins inner boundary, where the jet launching région, which is of particular interest, is situated.

In t.his scénario, when we initialize the simulation box with the semianalytical solution, wliat we expect for t.his initial condition is to be an "educated guess" of the final state. We anticipate such a beliaviour because t.hese solutions were semi-analyticallv obtained with reasonable approxima- 

Outcome of the simulation

As the initial setup evolves for a sufficently long time (until t = 50£* = 8.45tKeP), we notice that the flow globally goes to a steady State, but not everywhere. In order to understand the stability of the solution, we plot, in Appendix A the relative différences between the final and initial State of ail MHD quantifies. We will also discuss the quantifies, supposed to be conserved, as well as the quantifies r, the torque, and the plasma (d parameter, whicli will lielp us understand the impact of releasing the stationarity constraint in the problem. Equations 2.1G, 2.17, 2.18, respectively for 4/^, Q and L, are conserved quantifies in the case of stationary, axisymmetric flows. Although we are not under the hypothèses of a stationary flow, since the problem is now time-dependant, we find instructive to plot those quan tifies and to try to quantify the departure from stationarity in the different parts of the outflow. We remind that in the case of the semi-analytical solution, the lines of equal 4',4, Q and L are parallel to the fieldlines, and because of the existence of those conserved quantifies the stationary semianalytical solutions were derived.

Mass-to-magnetic flux ratio 'f/q

First, we conclude that the stellar wind part of the outflow, for which description the model is specifically constructed, is going to a steady State.

The T a contours in tliis région of the flow are practically parallel to those of the initial setup; sucli is also the case of the disk wind.

Different is the case of the interface région, which fieldlines we plot.t.ed in Fig. 3.6. As it is shown on Fig. 3.6, fieldlines rooted between zu = r -0.841r* and w = r = r* on the equat.or pratically merge as we go further from the central driving source. So, matt.er, ejected from tliis région on the equator, goes in a verv small flux tube. We argue that this does not affect the stability of the solution for this reason. Also, we should note that the value of VA is very sensitive to changes in the value of the magnetic field, since the magnetic field is in the denominator of Ty4 and is much smaller than the numerator. Therefore, other conserved quantifies as L, showing less sensitive behaviour in this zone, might be more relevant to describe it.

The X-point itself is forced to keep its position, since those fines cannot reconnect because of the fact that we are under the hypothèses of idéal MHD (up to numerical diffusivity). Even if we are in idéal MHD, we cannot escape from numerical magnetic diffusivity. Including physical magnetic diffusivity is out of the scope of this work, but as Fendt (2009) suggests, magnetic diffusivity might be included in the study of idéal MHD svstems.

Such a diffusivity should be enough in order to allow reconnection, and to gain better insight into the effeets of the X-point within the framework of these models. But this diffusivity should be kept small, in order to keep the quasi-ideal MHD treatment of the problem, i.e. not to modifv the dvnamics of the System, and most importantlv, collimation of the outfiow.

Spécifie angular momentum L and torque

We note that the angular momentum L is very close to the initial angu lar momentum distribution (Fig. 3.10). This quantity is of important in our problem since it lias direct conséquence on observable quantifies, as discussed in §1.2.8. The fact that the contours of L are parallel to the fieldlines, except, in a small zone near the X-point, confions our conclu sion, coming first from the fact that the MHD quantifies are not showing important différences, lience the solution is topologically stable on these scales, and second, the fact that and Q show sensitive behaviours in the interface région shows that it might be a région of transient phenomena. A similar interface région is observed in the recent simulations of [START_REF] Zanni | Protostellar Jets in Context[END_REF]Ferreira (2013).

Related to the angular momentum is the torque r, which expression is given in Eq. 2.20 and which we plot in Fig. 3.11. This quantity is of central importance for this study, since the main physical effect of winds is to ensure angular momentum extraction and the torque quantifies tliis process and the aforementionned graph gives some interesting point of view on the numerical solution. When we plot the torque for the semi-analytical initial condition, we see that in this model, the torques of the disk wind, the stellar wind and the magnetosphere are comparable. The différence between the axial fieldline, carrying the smallest torque, and the typical torque values of the disk wind is less than one order of magnitude. Nevertheless, wliat is interesting to note, is that the closed fieldlines in the magnetosphere hâve the biggest torque. This torque does not. extract angular momentum from the star, since the matter moving along those fieldlines stays in the magnetosphere and is not taken away. Nevertheless, liere is probably the biggest différence between the semi-analytical solution and the numerical solution that we obtain in the final State. In the final State of the torque (red fines on Fig. 3.11), we see that the fieldlines wit.li the biggest torque are now on the other side of the X-point, in the interface région discussed on Fig. 3.6, instead of being trapped in the closed magnetosphere. As we discussed for Fig. 3.6, ail the outflow from oo -r -0.85r* (the X-point)

and w = r -r* tends towards the flow on the last connected line, on the interface betwTeen the disk wind and the stellar wind. We tentatively conclude that because of this resuit of the simulation, this région might be important for angular momentum extraction.

H, plasma fi and T

The other intégral, Q, plot.ted on Fig. 3.9. We hâve also plotted the contours of the plasma /3 parameter, on Fig. 3.8. Again, this is another parameter hinting for the stablity of the solution. In the disk wind and stellar wind zones of the solution, the value of the /3 field is close to its initial one. In the interface région, the plasma is diverging from its initial value, showing again that the semi-analytical solution is topologically stable almost everywhere, except. in this région. Also, we plotted ln/3, on Fig. 3.8, where it could be seen that in the very close vicinity of the star, the magnetic pres sure is mucli bigger than the kinetic pressure, what is needed for magnetic braking to operate. The variations of orders of magnitude show how fast actually the ratio thermal/magnetic pressure is dropping. In the régions with low beta, the magnetic pressure is dominant and the plasma, ejected from the star is in forced corotation with the star. The particles are lience having a larger angular momentum than what should hâve an uncharged particle in the gravitational field of the star. Once the particle passes in the région with liigh /3/low magnetic pressure, the inertia of the plasma parti cle is much bigger and it carries with it. the magnetic field, and also takes awav the angular momentum it extracted from the star before reaching the isorotation radius. This phenomenon of 'magnetic braking' was described for a first time in the séminal of paper Schatzman (19G2).

P

We are also plotted the température T = -in the wliole domain (Fig.

3.7).

In the framework of this model, in Eq. 2.30, we note that we hâve the arbitrary constant Po allowing us to callibrate the température in such a way that it matches the observations. This cornes from the faet that what participâtes in the force balance is the pressure gradient. We can hence add any scalar constant to the wliole pressure field. We use P0 -50P*, which ensures 0 pressure gradient at the outer part of the domain (B = 340) and normalizes the P to 1 at R -1 on the axis. What results is that the ratio of the température at the edge of the jet and température at the center is approximatelv 5 times.

T (in arbitrary units) In /3 = ln { P/ (87rBp) | 

Chapter Abstract

The goal of this chapter is to describe the approach we used in order to obtain a solution of a stellar outflow with a static magnetosphere -a 'dead zone'. First, we discuss why the matter in the magnetosphere should be in static equilibrium and how this is treated in an inconsistent way in the CASO solution, presented in the previous chapter. We also discuss obser vations of clouds, around some stars, confined in stellar-sized closed loops.

Then we describe the procedure, we followed in order to obtain such solu tions, namely modifying the CASO solution, by introducing a static magne tosphere, and discussing the implications of this on other MHD quantities.

Finally, we discuss the outcome of the simulation, by describing the stated the simulation box converged to, and discussing the physical implications of this resuit, notably how the structure of the dead zone corresponds better to the observations than the original, non-static magnetosphere of the CASO solution.

4.1

Introducing a self-consistent dead zone is the wav the magnetosphere is treated. The magnetosphere is the région of the out.flow, wliere botli ends of the magnetic fieldlines are rooted in the star, i.e. the fieldlines are closed. Hence, matter flowing along the closed magnetic fieldlines, emanating from the star in a given point in the magnetosphere, will at some point reacli the equator. Tliere it will meet. a plasma flow coming from the Southern hemisphere. Plasma c.oming from above and from below the equator will hâve momentum fiuxes both perpendicular to the equator, but in opposite directions. We remind that we are in régime of low plasma /?(/?= |P/(87rBj)|). Hence the magnetic energy density will still be much larger than the thermal, so plasma flows with opposite momentum fiuxes, constrained to follow the magnetic field lines, will be stopped in this collision, i.e. the big magnetic pressure is holding the gas in hydrostatic equilibrium. (Decampli, 1981) In a very general c.ontext, the condition J3 <C 1 ensures that a static plasma remains stable (in the case /I > 1 a static plasma would collapse.) Moreover, once in magneto-hvdrostatic equilibrium, the flow will remain in this state, such anv perturbation of the magnetic fieldlines will generate a per turbation of the magnetic pressure that will compensate anv perturbation in the thermal pressure, as explained in Mestel (1968). Flows with static magnetospheres hâve been investigated bv Tsinganos & Low (1989), and for the first. time numerically, in the approximation of an isothermal flow, by Pneuman&Kopp (1971). The séminal paper of Keppens & Goedbloed (1999) investigated models with static zones in polytropic outflows.

In this and the next chapter, we will be investigating flows with static magnetospheres (dead zones), by modifying the solution presented in the previous chapter. Hence, we will introduce a static magnetosphere in this solution, which lias non-polvt.ropic heating function (starting from the one in § 3.5, but accordingly modified, see next paragraph). In the modified solution, the equator in the magnetosphere will no longer be a sink for matter, which is rather unphysical.

A point not explored in this work, but for which a perspective is opened by introducing a self-consistent magnetosphere, is to include accret.ion in the simulation box, in part.icular by adding accretion columns in this région. and the terminal speed is V* = lOSkms-1 (for the notations refer to Table 2.1). In the case of the CASO solution, the magnetosphere terminâtes at the equator at a distance w -r -7.97r0, while Donati et al. (2008) point out that the magnetosphere of BP Tau extends to 4r0. This point will be relevant in a subséquent discussion.

4.1.4

Constructing a self-consistent solution with no mass flux through the equator

We will attempt to obtain a numerical solution, by modifying the existent solution by suppressing accordingly the mass flux through the equator by replacing the poloidal velocity field with a null field.

Tliere is no reason for this modified field to be solution of the idéal MHD équations. Nevertheless, we suppose tliat this configuration will be close to a solution, and we will initialize a simulation box with a null poloidal velocity field and velocity field ident.ical to the CASO solution outside the dead zone. Our exceptation is tliat the simulation box will relax to a steadv stat-e with a two-component, corona (corona with 'wind' zone outside the magnetosphere and a 'dead' zone in the magnetosphere.) An analogical procedure is followed in Keppens&Goedbloed (1999), who obtain 2.5D solutions for polytropical models of stellar wind with a dead zone. The différence with our problem is tliat we hâve a non-polvtropic heating function and the different geomet.ry of the fiow. Imposing Vp = 0 lias several conséquences for other MHD quantifies and we are going to discuss this in the next subsection.

Introducing self-consistent boundaries

Setting Vr -0 and Vq = 0, and as we still except stationary (-• = 0) and axisymmetric (--= 0), for the projection along d> of Eq. 2.9, we hâve:

^+ (V V)V + -B x (V X B) + -VP + vA <p = 0 (4.1)
wliere is the unit vect.or in the azimut liai direction. The Lorentz force B x (V x B) will be noted FL. Since the gravity lias no component along (j) and J-* = 0, the first, forth and fiftli term in the bracket. are évidently equal to zéro. We are left with

(V-V)V + -Fl| -0 = 0 P (4.2)
Now, let us look at the ((V • V)V) • </> term:

((v • v)v) 4>=\vr OVt^dVt dr r d6 V* W* , V* V^VrV^Veoet (0) (4.3) rsin($) dcj) r r
The first, second, forth and fiftli term of the équation sliould be equal to zéro because of the static condition of the dead zone. The third term sliould be equal to zéro because of axisymmetry. Henc.e, we are left. with the condition that for a static magnetosphere, we need a zéro component of the Lorentz force along 4>. Otherwise, as could be sliown by reversing Eq. 4.2 for (Fl)# ^0, and taking into account the exact expression in Eq. 4.3, this component will accelerate matter in the dead zone. Hence, we need L# = 0. The équation Hence, if we want to keep the Vp = 0 in the dead zone, preventing the Lorentz force to accelerate the matter in the poloidal place, we sliould impose for the toroidal magnetic field component B$ = 0, as an initial and boundarv condition in the dead zone. Moreover, in order to prevent a toroidal magnetic field to form, we should also impose the physically (4.4) developped in spherical coordinat-es is (4.5)

Ckapter 4. Cold dead zone plausible condition to bave a magnetospliere in solid rotation with its liost star, whicli will be consistent with the observations of quiescent prominences in stellar coronae, as discussed in §4.1.3. Setting Vp -0 lias also conséquences on the heating équation (Eq. 2.10), whieh LHS terms vanish because of the stat.ionarity, axisymmetry, and static magnetospliere con ditions, and the équation reduces to H -A = 0, in wliicli H -A is the source term in the heating équation (Eq. 2.10). Thus, to reach a steady State, the heating must, be exactly balanced by a beat loss process (H = A).

Physically, when the plasma is static in the dead zone, we are not able to transport beat eitlier. In otlier words, in the heating balance participate the mechanical energy flux, the conductive flux and the radiative losses.

In order to keep H -A = 0 we suppose that ail mechanical energv input should be radiated away. Conductive cooling is rejected for a mechanism, assuring the heat/loss balance, since the quasi-isothermal structure of the stellar coronae, it its vanishing thermal gradient, prohibits beat conduction.

Until now, we discussed the implications of setting a static zone in rotation with its host star, starting from the Vp = 0 condition and the resulting = 0, H -A = 0 and V# in solid rotation. Tins is wliat makes the dead zone self-consistent. We set up otlier MHD quantities, such as density and pressure, to their theoretical values as if tliere was no dead zone, excepting this to be an educated guess for their final steady State, wliich will be obtained once they relax in a stationary State. On Fig. 4.1 we plot several quantities at t = 0.

Initial and boundary conditions, heating

Regarding the simulation box, we are going to use the same mesli as the one described in §3.2, wliich we used for the CASO solution. Regarding the boundaries, we will suppress mass flux in the dead zone, and we will modify magnetic field, rotation and heating according to the discussion in the previous section. This means that the heating will be suppressed in Globally, the disk wind remains at its place, so does the stellar wind. Several fieldlines on the interface between the disk wind and the dead zone open up; as we continue to t.reat the part of the boundarv where they are rooted as a dead zone (zéro mass flux), the density along the fieldlines previously in the dead zone drops. The final State could be divided in four régions, according to whether or not the initial condition is maintained and how. The first région is the wind zone. We conclude that, globally, the stellar wind, as well as the disk wind, keep their initial topology and are not affected, in any significant. way, by the introduction of a dead zone.

Second, the initial condition is not maintained ail over the dead zone, but only in a helmet-shaped part of it. In the tliird part of the field, outside the helmet but within the initial dead zone, the initially closed fieldlines open up and matter is accelerated along them. The extension of those fieldlines outside the dead zone is asymptotically tending towards the last connected line, thus on the interface between the stellar wind and the disk wind. As Probably the most. important feat.ure of tliis simulation is the fact that the zone witli closed fieldlines lias smaller ext.ent than in the initial setup.

Indeed, if we look at the bottom panel of Fig. 4.4, we see that fieldlines, -ln(Bd,), t = 4.0 We are also interested in seeing how the spécifie angular momentum (Fig. Tliis helmet-shaped structure, which is similar to the structures observed in the solar corona in large closed loops, might be modified bv the presence of an accretion disk, which we are not exploring in this work.

Physical implications

There are two important conclusions that could be drawn on the outcome of this simulation. First, the extent and the shape of the dead zone varv significantly for the given physical conditions. Let us remind that for the particular set of parameters in Table 3. Now, as we discussed, the last connected line is not. the one with a magnetic flux of aout,i = 0.9885, but aout,2 = 1.1411 (\k0ut,i = 1-0073 and ^out,2 = 1.1601). Straightforwardly, the ratio of braking times Tbrake,i/^brake,2 of two winds, with two different values for aout, but with the same phvsical characteristics of the central object, is: Hence, even if the big dead zone of the CASO solution and the smaller selfconsistent one are rooted at different 8 at the inner boundary, the braking time is not significantly smaller than in the previous model. That supports the conclusion that the smaller dead zone is not significantly changing the overall properties of the solution, but nevertheless its size is in better ac cordance with the observations. (4.9) Hence -^brake.2 -0.9974 X 7"brake,l ~^brake.l As we saw in the discussion so far, the magnetosphere is shrinking between the initial and the final stage of the simulation. This change in sliape and extent could be easily understood as conséquence of the the null poloidal speed that we impose at the beginning of the simulation. Indeed there is no reason to suppose that the magnetosphere should keep its initial shape. Its sliape is governed by the force balance. Thus, by suppressing the polidal velocitv in the magnetosphere, we are suppressing the inertial t.erms in the momentum équation (Eq. 2.9), and those terms are directed gradient is always opposite to the pressure gradient ( a = ), this force is indeed replacing the suppressed intertial terms.

P

The way the pressure balance is modified is by clianging the heating funct.ion, wliicli is the source term of the energv équation (Eq. 2.11.) This solution, wliere the heating is turned off in the magnetosphere, could be compared to the solution in the next. chapter, wliere the magnetosphere is heated. In the case of the heated solution, an even bigger pressure gradient is indeed created and the magnetosphere shrinks less.

Modifications needed

Tliere remains an inconsistency in the solution we presented so far. Hence, we are going to turn off the heating only in the helmet-shaped part of the fiow and we are going to suppress the mass flux only in that helmet-shaped part of the flow. In practice, the magnetosphere of the semianalytical solution was starting at #iim = 41.7°, and for t = 4.0 this angle increased to to 6\im -54.9°, hence we are going to suppress the mass flux only for 6 > 54.9°. Also, we are going to turn off the heating for the fieldline, for which \B</,\ -0.01 B* and ail the fieldlines below. At t -12.0, we will hâve a new magnetosphere. What. we observe is that this time, some ieldlines will close and the extent and size of the magnetosphere will slightly increase, but will not attain the initial value. Hence, at. t = 12.0, we are going t.o readjust again heat.ing, so that the whole magnetosphere is lieated, and we will readjust the mass flux, whicli will be suppressed now from d\im -50.417°. We will re-run the simulation until t = 15.0 and we will fincl a new sliape of the dead zone and a new #iim = 52.98°, but the variation will be less important as compared to the previous st.ep. With this approach, we are improving, or training the model at each step. The évolution of the last connected line, determining the size of the magnetosphere, is shown on Fig. 4.13 and the évolution of <9iim is summarized in Table 4.1

By following this recipe, we are able to decrease the size of the zone wliicli is not self-consistent, with each step, until we hâve a solution with an inconsistent part so small, that we could confidentlv say that the whole solution we liave obtained is actually self-consistent. For illustration, on 

Chapter Abstract

The goal of this short chapter is to investigate the hypothesis under which the heating flux in the dead zone is not null. By using the same heating function as the one used in Chapter 3, we find a solution with a dead zone, which is larger than the Cold dead zone solution of Chapter 4, but still with no mass flux through the equator. In ail cases, the heating function, used to ensure the topological stablity of the solution is not imposed a priori, but emerges as a conséquence of the construction of the model, under the hy pothesis of self-similarity. Assuming a non-zero heat function is équivalent to considering that physical processes, responsible for heating/cooling in the wind are not exactly balanced. Including a full heating is a limit case, but nevertheless shows that a self-consistent dead zone could also be constructed in this case, enabling to study the influence of different, heatings on such outflows.

Initial and boundary conditions for the simulation

The initial conditions for this simulation will be the same as tliose used in the Cold dead zone solution of Chapter 4. We are plot.ting this initial condition on Figures 5.1 Regarding the simulation box, we will again i)e using the same mesli, as t.he one used for the simulations in Cliapters 3 and 4, described in §3.2.

5.2

Outcome of the simulation: description the stellar wind is carrying a slightly bigger angular momentum than the stellar wind of the CAS O solution. Indeed, we see that the last connected line is at slightly bigger 0 than at t = 0, but as we showed in the Cold dead zone case, this is not affecting mucli the angular momentum flux. We are also going to plot, as in the case of the Cold dead zone solution, the torque r throughout the simulation (Fig. 5.9). We again see that the contours of equal r are not significantly different, in the stellar wind région, than the torque of the CASO solution. We are going to conclude that this stellar wind is braking the star the same manner as the stellar wind of the CASO solution. 

Conclusion

The goal of this thesis was to gain insight, in the physical properties YSO jets with self-consistent, magnetospheres. We basée! this work on previously obt.ained semi-analytical solutions, providing the geometrical framework needed to studv YSO jets, and used the semi-analytical solutions as initial conditions of a numerical simulation box. This solution, on whicli we extensively discussed in Chapter 3, is obtained under reasonnable hypothèses, and was proven, in this work, to be topologically stable. This means that when introduced in a MHD simulation, ail quantifies converged to a steadv, stationnary state. The importance of this finding is that by proving that we hâve a stable, from MHD point of view solution, we could discuss on the physical meaning of the potentiallv observable quantifies. The question of the stability was not trivial, because in order to ensure that the eight MHD quantifies, in the form they were written under the self-similar hypothesis, are solutions of the équations of idéal MHD we ought to employ a nonpolytropic heating function. We hâve shown that the three main parts of the solution: the stellar wind component, the disk wind component and the magnetosphere with closed fieldlines are structurally stable, that they keep their positions and properties, but that we sliould proc.eed with caution when discussing the interface région between the stellar and the disk wind.

In Chapters 4 and 5, we hâve explored two different ways of modifving the semi-analytical solution. This was needed in order to obtain numerical solutions, accounting for a self-consistent magnetosphere, which we defined as a magnetosphere witli no mass flux through the equator, and bv accounting for the conséquences of sucli a constraint, imposed by the équations of idéal MHD. The employed method is an illustration of the potential of the combination of analytical and numerical methods for the study of the astrophysical problem. The mixed approach consists of using the semi-analytical solution, which topological stability we tested, but by simply suppressing the mass flux along the closed magnetic fieldlines.

This initial condition was then evolved with the numerical tool, which is the PLUTO code. We proved that even with the modifications we int.roduced, the stellar wind component is topologicallv stable, and also the disk wind component. In the case of the non heated magnetosphere, which we introduced in Chapter 4, we liave found that initially closed fieldlines, anchored close to the stellar wind open up, hence decreasing the extent of the dead zone as seen from the stellar surface, and that tliose Unes pinch the magnetosphere, decreasing significantly it.s size, and giving it a part.icular helmet-type structure. We argue that this smaller magnetosphere is in bet.t.er agreement with the observations that the unmodified semi-analytical solution, as the modified solution predicts a magnetosphere with a typical size t.wice as smaller as the unmodified solution for the same strengt.h of the stellar magnetic field. We présentée! another solution, in which the stel lar and the disk wind are again topologically stable, and in which the size of the self-consistent magnetosphere is practicallv the same as the initial one. This is achieved by rest.oring the non-polvtropic heat.ing in this zone.

By this, we argue, we could model magnetospheres with different, sizes for the same magnetic field. The non heated magnetosphere corresponds to a case where ail the processes, contribut.ing to heat.ing balance out tliose wlio contribute to cooling, and in the case of the heat.ed dead zone where the heating is mucli larger than the cooling. Proving that in both cases we liave topologically stable, self-consistent magnetospheres, wliich intro duction is not dramatically clianging the semi-anaytical solution, and hence astrophysical conclusions are appropriate. This is also a liint that in future, 
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 7 in Varna, Sofia, Belite brezi, Paris, Bures, Barcelona, Boston, (and this is only where we gatlier, because we literally live ail over the world,) or we go to several of those places, I clierish every moment spent with you and I feel privileged. You and my familv are, as Pooli said it in such a beautiful wav, the lioney of my davs. Nothing would bave been possible witliout my family. My mother Vania and my aunt Nadka. Wlienever Fm living 2065 km or 7560 km from home, I feel them caring about me. But nothing rejoyces me more than seeing tliem at home. Finally and most importantly, I would like to thank my brother Dimitar who continually inspires me. As every time I was asking myself "Muji es sein?", the answer invariable was "Es mufisein!", what kind of a serions older brother is not finishing what he lias started? velocity (see Eqs. 2.13 and 2.15) polar plot (Friedrich diagram). The direction of t.lie magnetic fielcl B and the wave vector k, as well t.he angle between them, 0 are also plotted. In tins sample plot, cs = va/2 and va = 1 3.1 On the top panel, densitv in the poloidal plane normalized to the density at. the Alfvén radius for the solution in Sauty et al. (2011), wliich set of free parameters is given in Table 3.1; On the bottom panel, lines of equal poloidal velocity (grev lines, numbers show the velocity on the corresponding line, normalized to the Alfvén speed). Two kinds of fieldlines are visible on tins plots.First, fieldlines anchored to the star (for the stellar wind) and second, fieldlines anchored to the disk. Tliose are "disk-wind"-like outflow. Distances are normal ized to the Alfvén radius 3.2 Comparison of the sonie and Alfvén speed witli the radial velocity, 3.3 Fieldlines and density contours for the CASO solution. The bottom panel is a zoom of the top panel, showing closed fieldlines (in green). Fieldlines in blue are rooted in the star, and describe the stellar wind and fieldlines in red are anchored in the disk, describing an outflow from the disk.

  4'!a, for t -0.0 and t = 50. Ot* 3.6 On the top panel: Contour plot of a, eacli value labelizing a fieldline; on the bottom panel: Zoom of the top panel plot, but only contours between a = 0.9885 (the last connected line) and a -1.0 (passing through the reference radius and towards which the last connected line asymptotically tends) are sliown
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 357 figure is a zoom of the top figure. We see the green fieldlines, describing the new sliape of the dead zone, hâve a cliaracteristic lielmet sliape. The initial position of the last connected line is plotted for clarity 4.5 The poloidal velocity remains Vp = 0 in the dead zone as it is initialized; in a région along the opened fieldlines the poloidal velocity also drops 4.6 In the helmet-shaped région with closed fieldlines (green fieldlines on 4.4 the flow remains in solid rotation and satisfies = 0; tins makes the flow in this zone self-consistent, as explained in §4.1.5 4.7 Density contour plot in the dead zone. Matt.er is accumulated near the equator 4.8 The total angular momentum L throughout the simulation . 4.9 The spécifie angular momentum L throughout the simulation 4.10 The plasma fi throughout the simulation 4.11 The torque r throughout the simulation 4.12 The heating function H -A corresponding to the helmetshaped magnetosphere
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 52 On the top panel the toroidal component of the magnetic field and on the bottom panel rotationnal velocity 5.3 The quantifies, plotted on Figure 5.1, are sliown at. their final stat.e. Note the sliape of the last. closed fieldline. It will define the size of the self-consistent dead zone, as in the Cold dead zone solution 5.4 The same quantifies as Figure 5.2 and are plotted liere. We note the characteristic sliape of the zone, in wliich -0 and Vfj, corresponds to solid rotation, wliich lias the same sliape as the form of the last closed fieldline on Fig. 5.3 ... Relative change in density on the éjection scale A.2 Relative change in density on the propagation scale A.3 Relative change in pressure on the éjection scale A.4 Relative change in pressure on the propagation scale A.5 Relative change in radial magnetic field on the éjection scale A.6 Relative change in radial magnetic field on the propagation scale A.7 Relative change in longitudinal magnetic field on the éjection scale A.8 Relative change in longitudinal magnetic field on the propa gation scale A.9 Relative change in toroidal magnetic field on the éjection scale A. 10 Relative change in toroidal magnetic field on the propagation protostellar classes ....

  Clumps are sites of formation of young stellar clusters, such as the Trapezium cluster at the heart of the Orion nebula. Cores are sites of formation of individual stars or small multiple Systems (Ray, 2007, and references therein). Another interesting feature of the interstellar medium is tliat. it is structured in filaments. It, seems to be ubiquitous as revealed by the Herschel Space Observatory (Molinari et ai, 2010), and clumps and cores appear along these filaments. Tliis may mean tliat the moleeular clouds first collapse in filaments before forming compact sources (Molinari et ai, 2010).

  is formed, the protostar enters a new phase, in which it accretes both from its envelope and disk, with the presence of an outflow.It's called a Class I protostar. Such objects are still optically invisible, but scattered light could be seen in the surrounding nebula[START_REF] Ray | [END_REF], and référencés therein). The phase corresponding to Class 0 and I together is sometimes called "embedded phase." The embedded phase should last up to lMyr, according to theoretical models by Contopoulos & Sauty (2001), Dunliam & Vorobyov (2012). Evans étal. (2009) argue that embedded phase lifetime is 0.44Myr, by counting Class 0 and I sources in the "cores to disks" (c2d) Spitzer spect-roscopic survev and comparing their number to the number of Class II sources (based on the assumption that the lifetime of Class II sources is taken to be 2Myr). Class 0 and I sources ignite deuterium and the energy output from deuterium ignition is balanc.ing the gravitational contraction.This is analoguous to the equilibrium between gravitational contraction and hydrogen burning of a main sequence star. T Tauri stars hâve been identified to hâve luminosities corresponding to wliat is predicted for YSOs burning only deuterium, who follow an evolutionnary track on tlie HR diagram called "birthline", or "Hayaslii track", situated above tlie main sequence.(Stahler, 1908) Once tlie main accretion phase is over, tlie stars stops burning deuterium, and starts burning hydrogen: it lias become a zero-aged main-sequence star (ZAMS). As we already said, Class I stars accrete from their envelopes, but most importantly, from an accretion disk, wliich feature does not exist in Class 0 sources. An important thing to say is that tlie important part of the mass is already accreted; tlie mass of the envelope Mend <C Mstar, as opposed to Class 0 sources.1.1.6.1The luminosity problem of the embedded (Class 0 & I) phase A significant shortcoming of the standard model is the luminosity problem.
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 262 Extent of the jet launching zone Different sizes of the jet-lauching zone put constraints on different outflow scenarii. For instance, different sizes of the jet launching zone could rule out different disk wind scenarii. (Ferreira, Dougados, & Cabrit, 2006) The size of this zone could be deduced by two ways. B y measuring jet expansion witli respect t.o distance from the central source, and then extrapolating back from the resolved area back to the central source, Hartigan, Edwards, &; Pierson (2004) found that the jet of HN Tau originate in less tlian 5.5 AU from the source. The second way of determining the extent of the zone is to deduce it from rotation. As derived by Pelletier & Pudrit.z (1992), there is a direct link between the accretion and mass loss rates/total angular momentum and the ratio of the magnetic lever arm to the footprint radius of the wind, velocity gradients across the axis, observed by Bac-Ma.cc ' ^0 ' ciotti et al. (2000) are indeed interpreted as rotation (see §1.2.8 for discus sion), Anderson et al. (2003) deduce wq < 3 AU for the ext.ernal part of the collimated jet of DG Tau. 1.2.7 Future observations of the jet-launching zone The main difficulty on the observation of the jet lauching zone cornes from the fact that central sources are often heavily embedded, lience we do not hâve a clear line of sight to the base of the jet. Besides this fact, the angular resolution needed to observe the jet launching is very liigli. At its most suitable working configuration, at wavelenght À = 7mm and at the most ext.ended ant.enna configuration, the synthesized beam of the VLA observatory (équivalent of point spread function for radio observations) is 40 miliarcseconds, whicli corresponds, if we look at the Taurus-Auriga or Ophiucus molecular cloud complexes (d ae 140pc), to the size of the orbit of Jupiter (ae 5AU) (Wilner&Lay, 2000). The HST/adaptive optics seeing corresponds to a linear size of 125AU in the Taurus-Auriga complex.

  ZcJBcharge Ze and mass mx in a uniform magnetic field B is ujq -.mxcWe hâve, for ions (wit.li mass Amp) and électrons, respectively:

Figure 2 . 1 :

 21 Figure 2.1: Magnetosonic waves phase velocity (see Eqs. 2.13 and 2.15) polar plot (Friedrich diagram). The direction of the magnetic field B and the wave vector k, as well the angle between them, 0 are also plotted. In this sample plot, cs = va/2 and va -1.

  a given line we hâve a given value of T,4, which could be used to label the fieldline. The two otlier conserved quantities are the field angular velocity n(a) =zu ÿaBA 4îtp J ' and the total spécifie angular momentum (2.17) L(a) -zu (y -*) .

  the origin Polar angle; 0 = 0 at the axis At (r*,0 = 0) the Alfvén surface crosses the axis Dimensionless distance One stellar radius (r<7, z) The Alfvén radius. R* = 9.29i?o Dimensioneless cylindrical distance; ru = (r/i?*) sin(0) Cylindrical heiglit

  functions F (R) and G (R) are a priori unknown functions and will be determined once the équations are integrated. Rewriting the ODE, resulting from the séparation of variables, in t.erms of these functions, makes it easier to integrate. They are usually called 'key functions'. Another key function, which will allow us to compute densitv, once the équations are integrated, is the Alfvénic Mach number, i.e. the ratio of the poloidal velocity to the local Alfvén velocity: . (2.25) for p, and by making self-consistent hypothesis for the form of Vp and Bp, Sauty &; Tsinganos (1994) write densitv in the following form: P = P'-jÇpi1 + In this équation, as intuitively could be understood by mass conservation reasoning, density is inversely proportionnai to the square of the Alfvén Mach number. The term in the parenthèses is function of a only, lience it describes how the density varies from one fieldline to another. This variation is more or less pronounced if the constant free parameter ô is bigger or smaller. For 5 = 0 we hâve a density function depending only on R.. For bigger S we liave bigger déviations from spherical symmetry.

  this chapter is to study the solution, derived in Sauty et al.
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 31 solution with a particular set of parametersSauty et al. (2011) obtain a particular solution for a jet-like outflow. The interest of this solution is that it is modelling cTTS with low mass accretion rates. Those stars exhibits 'micro-jets', which means that the outflow is not emanating from the disk or is weaklv connected. As a conséquence, they hâve much lower mass loss rates. Those observée! by Agra-Amboage et al. (2009), Gomez de Castro Sz Verdugo (2001), St-Onge & Bastien (2008) hâve typical M ~10~9Moyr~1). The solution, obtained by Sauty et al. (2011), which stability we are testing liere, fits particularly well the case of the micro-jet of RY Tau.

For

  particular set of free parameters used inSauty et al. (2011) andGlobus (2011) are shown in Table3.1. This particular CASO solution is adapted to study the stellar wind: that component of the jet whicli is ejected by the star itself; and the mechanism bv wliich the star accelerates matter along the fieldlines is thermally driven pressure gradient. This only corresponds to a star with low mass loss rate, because for liigli mass loss rates an unphysically high thermal input is needed for accelerate an important amount. of matter.(Decampli, 1981, Sauty et al., 2011) The question of the t.opological stability is not selfevident, since the flow is not polytropic (seeSauty & Tsinganos (1994),Sauty et al. (2011)). This is self-consistent with the goal of the study: as we investigate a thermally-driven stellar outflow, emploving a non-polvtropic heating funct.ion is essential, as explained in §3.5.3.2 Initial and boundary conditions for the time-dependant simulationIn order to study the solution in the close vicinity of the star, where the initial accélération and éjection take place, we set up a 2D simula tions setup, we follow procedures, similar to t.liose inGracia et al. (2006) the boundary condi-and Matsakoset al. (2008, 2009). On the inner boundary of the box, which is close to the stellar surface, we initialize a stellar wind outflow, given bv the semi-analytical model of Sauty et al. (2011). We apply the same procedure on the equator. For the axis, we clioose the 'axisymmetric' boundary treatment of PLUTO. Now, a problem arises on the outer boundary. We might use the 'outflow' boundary condition in PLUTO, which copies the value of the last cell in the ghost zone for a given ra dial direction, i.e. it is a zero-gradient boundary condition. Tliis is problematic, since tliis zero-gradient might generate artificial currents. Linear extrapolation of the values of the last cells might generate a similar prob lem. The solution we adopt is to drastically increase the size of the box, 7T R e [0.2 : 2],0 e 0 °T. , in order to be i^R e [0.2 : 340], 6 6 sure that waves, coming out of the surface R -2 quit definitely tliis région and that waves, generated downstream, particulary in the outer bound ary at R = 340, will not propagate back to the central part. Tliis cannot happen, because, as we will discuss in tliis section, the outflow is alreadv superfast. in tliis région, and perturbations cannot travel upstream a superfast flow. One particular feature of the simulation box we set up is that as we want to keep the numerical resolution liigli in the région R, G [0:2), we set up a mesli witli 384 pixels, equispaced in the région R e [0:2], and 128 pixels of streched, logarithmic grid in the région R, G [2 : 340). Hence, we conjecture that we can set up any boundary condition at R = 340, and information from tliis boundary will hâve no time to propagate back to the central source. In order to verify the last affirmation, we plot, in Appendix A for tliis solution, the changes in ail eight MHD quantifies between the final and the initial state. What we see in Appendix A is that the final State is different from the initial state on isolated régions far from the région (R. G [0.2 : 2]

  but the point, relevant to this discussion is as those Heyvaerts & Norman regularity conditions (1989) are imposed at the Alfvén point, so we prétend that the plot of the sonie speed on Fig.3.2 in the vicinity of the Alfvén point sliould be the actual sonie speed. This cannot be affirmed for points far from the Alfvén point.However, unlike slow and Alfvén waves, the fast waves can also propagate in directions, perpendicular to the magnetic field (e.g., see the Friedrich diagram on Fig.2.1). We again conjecture that fast waves, generated at the outer boundary close to the equator, hâve no time to propagate back to the central part, because of the size of the box. In the previous discussions, we discussed waves, propagating along the radial direction, which means, wlien we are close to the axis, and parallel to the equator, wlien we are close to the equator. As Tsinganos et al. (1996) discuss, MHD waves preserving the symétries of the System sliould hâve velocity components perpedicular

(3. 1 )Figure 3 . 2 :

 132 Figure 3.2: Comparison of the sonie and Alfvén speed witli the radial vélo city.
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 303334 Figure 3.3: Fieldlines and density contours for the CASO solution.The bottom panel is a zoom of the top panel, showing closed fieldlines (in green). Fieldlines in blue are rooted in the star, and describe the stellar wind and fieldlines in red are anchored in the disk, describing an outflow from the disk. The last connected line (which for r < 0.85 is also a "last connected fieldline" is a thick black line).
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 36 Study of the solution close to the inner boundary (central object) The magnet.ic topology of the Cylindrical Analytical Stellar Outflow (CASO) contains three distinct régions. First, a polar région with open fieldlines, rooted at the star, second, a disk région with open fieldlines, rooted in the disk, and tliird, a région with closed fieldlines, with both footprints are rooted in the star. Matter is ejected from the disk in the "disk wind"-like région and from the star, both in the stellar wind région and the closed-line région. Tliese three zones meet and the "X-point," wliere the last closed fieldline crosses the equator. This line is connected, at the X-point, with the "last connected line", which is the common interface of the three ré gions: the two open lines régions (the one with the topology of a stellar wind and the other with a topology of a disk wind) and the otlier with closed field lines (see Figure 3.3).

  As our ultimate goal is to understand the physical characteristics of outflows with sucli topologies, the question of what is the topological stability of tliese solutions is of crucial importance. In a fashion similar to Matsakos et al. (2008) and Matsakos et al. (2000), we test the stability of this analytical solution by setting it up as an initial condition in a time-dependent MHD simulation.
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 3536 Figure 3.5: Contour plot of T,4, for t = 0.0 and t = 50.OC
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 37 Figure 3.7: The température accross the whole domain. Note that the température is in arbitrary units since Pq is an arbitrary intégration constant in Eq. 2.30.
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 383950310311 Figure 3.8: The plasma beta is dropping fast as one gets close to the star.
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 11 Need for a more précisé study of the close vicinity of the star As discussed in the previous chapter, semi-analytical solutions obtained by Sauty & Tsinganos (1994) hâve been found to be topologicallv stable at propagation scales by Matsakos et al. (2008). In the previous chapter wre discussed the t.opological stability of a particular analytical solution, obtained in Sauty ci al. (2011). The main différence is t.liat here we are studying the close vicinity of the star, wliere the accretion-ejection connec tion takes place. Unlike the studies of the propagation scales, we résolve the magnetosphere: a zone wliere both footprints of the magnetic field lines are rooted to the star. 4.1.2 Inconsistency of the analytical solution: why the magnetosphere should be in static equilibrium An inconsistency of the analytical solution, relevant to the current work,

1

 1 The case of AB Dor Indications for the presence of dead zones around stars corne from X-ray, UV and radio observations. First indications that some stars hâve prominences (hosted by closed magnetic loops) corne in the early 1980s with UV observations ofSchroeder (1983). Later, observations of Algol by Whiteet al. (1986) also suggest the presence of large, hot, closed loop struc tures around the variable star. We will focus on a well-studied case, the variable star AB Dor (=HD 36705). Collier Cameron (1988) explain the anomalously low rising times of X-rav fiares of AB Dor with gas, trapped in large, hot, closed loop structures in the stellar corona, liosting quies cent prominences. Collier Cameron & Robinson (1989a,b) make an exten sive study of AB Dor, observing the variable star in Ha. Tlieir observa tions show prominence-like clouds of mainly neutral hydrogen, spreading between 3 and 9 stellar radii, orbiting in forced corotation with the star. They conclude that most, probably closed magnetic loops are the confining agent for tliese clouds. These slingshots of plasma in suspension over the stellar surface are, the observations again show, of stellar size. Col lier Cameron & Robinson (1989a,b) attribute the absopt.ion spect.ra of qui escent stellar-sized prominences. For a review of the observations of stars hosting stellar sized prominences the reader is referred to the article Col lier Cameron (1996). Ferreira Sz Mendoza-Briceno (1997) point out that such stellar-sized loops do not hâve solar counterparts. In the case of the Sun, closed loops hâve much smaller sizes. This lack of counterpart is a reason, they argue, that more convincing evidence for the existence of such loops should be provided. According to Mestel (2012), and references therein Stix (2004) and Dwivedi (2003), higli émission régions in X-ray of the Sun and late-type young stars are associated with wind zones, whether coronal liole régions are associated with wind zones. 4.1.3.2 The case of BP Tau BP Tau is a classical T Tauri star (cTTS). Spectropolarimetric observations with the ESPaDOnS instrument at the CFHT and NARVAL instrument at TEL, carried out by Donati et al. (2008), reveal the existence of a 1.2kG dipole and 1.6kG octupole. The dipole field is a slithlv tilt.ed, strong axisvmmetric poloidal field. They also conclude that the magnetosphere of BP Tau extends to 4 stellar radii. Sauty et al. (2011) discuss some similarities between the CAS O solution and the structure of the magnetic field around BP Tau. The CASO solution lias B* = 1.82kG, which roughly corresponds to the value of strength of the dipole of BP Tau. The Alfvén point is situated at no -B = 9.29r0,
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 414243 Figure 4.1: Initial setup for the 'wind' and 'dead' zone configuration. The top panel shows the geometry of the magnetic field (magnetic field lines in the stellar wind arc in red, disk wind fieldlines are in bine and magnetosphere fieldlines are in grey) and density contours (in grey). The bottom panel shows the magnitude of the poloidal velocity, identical to the analytical solution in the wind zone and set up to zéro in the dead zone.
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 45 For the otlier 7 MHD quantities, the relative différences between the initial and the final State are given in Appendix B (LHS for the first part of the simulation, 0.0 < t < 4.0, and RHS for the second part of the simulation, 4.0 < t < 20.0). We see that the initial configuration for these quantities is maintained not in the wliole dead zone, but only in a helmetshaped part of it. The fieldlines of the initial dead zone from the side of the axis open up and matter is accelerated along them. As a conséquence, the vicinity of the last connected line is emptied.
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 4445 Figure 4.4: Wind and dead zone configuration throughout a poloidal cross-section; fieldlines and densitv contours. The bottom figure is a zoom of the top figure. We see the green fieldlines, describing the new shape of the dead zone, hâve a characteristic lielmet shape. The initial position of the last connected line is plotted for clarity.
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 46 Figure 4.6: In the helmet-shaped région with closed fieldlines (green fieldlines on 4.4 the flow remains in solid rotation and satisfies B$ = 0; this makes the flow in this zone self-consistent, as explained in §4.1.5
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 47 Figure 4.7: Density contour plot in the dead zone. Matter is accumulated near the equator.
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 9 Fig. B.3, a bigger pressure in the dead zone. In the self-consistent part of the dead zone with the lielmet form, we hâve mutual increase of pressure and drop of densitv. Tliis means that the resulting dead zone is with liigher température than the surrounding flow. As we can see on Fig. 4.5, depicting the velocity field in the final state, the static condition is maintained in the dead zone. The requirements, derived in 4.1.5, for a self-consistent dead zone, are maintained in the helmet-shaped part of the dead zone, as could be deduced from the fact that in tliis helmet-shaped part of the dead zone, the relative changes in B$ and V# (Figures B.9 and B. 15) are null.

  1, gives a fiow with magnetic field strength at the surface B0 ae l.lkG, (Sauty et al., 2011) compatible with the observed dipole of BP Tau Z?BpTau = l-2kG of Donati et al. (2008). However, the CASO solution predicts a radius of the dead zone of ~7.5 stellar radii, wliile Donati et al. (2008) report a size of the dead zone of ~4 stellar radii. We conclude that witliin the framework of the discussed models, outflows with inconsistent magnetosphere (the CASO solution, having a mass flux through the equator), predict twice as large dead zone than the observed one. When we modify the solution, in order to introduce a static magnetosphere, the self-consistent dead zone is approximately lialf the size than the initial condition. Hence, the dead zone we obt.ained, delimited by the last connect.ed line on Fig. 4.4 is corresponding better to the observations than the dead zone of the semi-analytieal solution. Next, as we said, the last connectée! fieldline is not rooted at 0 = 42°at the inner boundary, but at 6 -47°. Sauty et al. (2011) predict a braking time for such a System The braking time being comput.ed by the following formula: (Sauty et a/., '-^out \/l 4 Aûout with k the dimensionless inertial constant of the star, and Tout
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 4849410411 Figure 4.8: The total angular momentum L throughout the simulation

  outwards. Hence, by suppressing tliem, the force balance changes, and inwards directed terms of the momentum équation, that were previously balanced by the then suppressed inertial terms, will tend to slirink the magnetosphere. The new balance is achieved wdien a pressure gradient, capable of stopping this shrinking, develops. Indeed, a close inspection of Fig.B.3 shows that in the reshaped magnetosphere, close to the inner boundary, the pressure lias increased by « 5% and just outside the lielmetshaped magnetosphere the pressure lias dropped by « 10%. Hence, the pressure gradient in that région is steeper tlian the semi-analytical solution and is directed inwards. As the accélération, resulting from the pressure VP'
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 4412413 Fig. 4.14 is plotted the poloidal velocity magnitude, and as we can see Vp = 0 only in the helmet-shaped région. On Fig. 4.15 is plotted the density, so we can compare the density of the final model and the density of the solution with a static, self-consistent helmet-shaped magnetosphere.
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 4144 Figure 4.14: Poloidal velocity magnitude during the simulation
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 25152 Figure 5.1: Once again, we start froin the saine initial setup, wliich we except is an educated guess for a solution with a dead zone. On the top panel we hâve density and fieldlines as well, on the bottom panel absolute value of the poloidal velocity
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 5535455 Figure 5.3: The quantities, plotted on Figure 5.1, are shown at their final state. Note the shape of the last closed fieldline. It will define the size of the self-consistent dead zone, as in the Cold dead zone solution
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 5657559 Figure 5.6: The plasma f3 throughout the simulation
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 23456748112256178910 Figure A.l: Relative change in density on the éjection scale

  from the density of "tracer" molécules, which abundances are supposed to liave fixed values. Different 'tracer' molécules are used to track H2, allowing the density of the moleeular gas to be measured with different précisions,

	such as CO and SO.	State-of-the-art instruments such as those on the
	Herschel Space Observatory, which mission recently ended, observe more
	robust tracers, such as HF (Sonnentrucker étal., 2010). Apart, H2, CO, SO
	and HF, various other compounds are présent in cold moleeular clouds,
	such as NH3, Polycvclic aromatic hvdrocarbons (PAHs) and most notably,
	dust. Dust accounts for only 1% of the cloud mass, but is responsible for

the optical thickness of the cloud. The size of dust part.icles hâve long been an open question. Their size lias been determined recently by observing the scattered light of close objects at certain wavelenghts: tliey were found to scatt.er mostly light at 3.6/im (phenomenon called "cloudshine" or "coreshine", for denser régions), which could be done by dust particles tliat liave typical sizes of 1 gm (Paganiet al., 2010). More than 4 000 Giant Moleeular Clouds (GMCs) are found in the Milky Way galaxy, with much more Small

  are supposed to be ionised by cosmic ravs, and they interact with neut.rals by friction. Depending on the balance of friction and magnetic forces, ions may be allowed to leak out, and the bulk of the cloud, contained in the neutrals, allowed to collapse. Tins process is called ambipolar diffusion, described for the first, time byMestel & Spitzer (195G). The dy-

	1.1.4	Evolutionnary sense of protostellar classes
	1.1.5	Class 0

aken into account. The ISM is observed to be turbulent, wit.h turbulent motions being somet.imes supersonic. Observations of spectral lines of molécules such as CO show that tlieir broadness varies on the observational scale, as expected from Kolmogorov's turbulent spectrum. Second, tliere is observational évi dence for the presence of magnet.ic fields in the ISM such as the polarization of millimet.er émission by aligned dust. grains. Tlieir strengths vary from few //G to fewr mG (Rav, 2007, and référencés therein). Cores that hâve the Bonnort.-Ebert. mass, but. are supportée! by magnet.ic pressure are called sub-crit.ical. And tliird, this balance may be modified by rotation. The Cold neut.ral medium (CNM) component of the ISM is supposed to be subcritical or at. most critical, t.lius the magnet.ic fields are able to stop the collapse at first. The quant.ative contribution of the gradient, of magnet.ic pressure t.o the force balance is dépendant, on the density structure of the core, hence observational evidence is not conclusive. (McKee & Ostriker, 2007 and references therein). Meanwhile, magnetic fields act directly only on ionised particles, and ionisation ratio of tlie ISM is quite low: 10"6. Particles namics of the magnetic field during the gravitational collapse remain an open question, with one of the classic problems of the theorv of star for mation being the fact, that the ISM is stronglv magnetized, and a star is w^eakly magnetized (McKee & Ostriker, 2007).

  , thermally driven collimated stellar winds. As discussed in §3.5, tlie heating needed for the thermal drive could corne eitlier from dissipation of Alfvén waves, produced in the convection zone, could be changed bv radia tive transfer, or as Matt&Pudritz (2005) suggest, could be deposited by

1.2.6.1 Jet launching mechanism

The disk launching mechanism is unclear, but there is a consensus on the fact. that magnetic forces are at the base of the éjection mechanism, together wit.h thermal and centrifugal forces of the star-disk svst.em. (Arce et al., 2006, Ferreira, Dougados, & Cabrit., 2006, Kônigl & Pudritz, 2000, Shu et al., 2000) The canonical model of Blandford & Payne (1982) int.roduces the idea of a magneto-centrifugically driven disk wind. It. consists of considering a disk, with magnetic fieldlines, wliich could be seen as 'wires,' root.ed in t.he disk. Because of t.he rotation of t.he wliole star-disk syst.em, part.icles, seen as 'beads', are const.rained to move along the almost vertical (but. inclined) magnetic fieldlines, and are ejected by the disk. This 'bead-ona-wire' analogy is a popular way to explain the launching mechanism of disk winds. This mechanism lias its General-Relativistic generalizations, aiming to explain activity of active galat.ic nuclei. A plethora of papers, discussing or developping this model are published since then, e.g.: Con-topoulos&Lovelace (1994), Ferreira (1997), Salmeron, Kdnigl & Wardle (2011), Tzeferacos et al. (2009). Anot.lier models, as Sauty &; Tsinganos (1994), discuss, among other modelsaccretion.

  Moreover, as Beuther et al. (2002) point out, high-angular resolution observations are needed in order to disentangle the outflow contribution in the overall émission of the observed object. from the émission of the central source. , but that the observed velocity gradient is due to the interaction of the jet with the surrounding gas. With the advent, of high-resolution instruments as ALMA, we sliould be able to firmlv verify or reject daims for jet rotation.(Belloche, 2013) 
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In order to constrain better the jet-launching mechanism, more detailed and high-resolution observations of jet rotation near the central driving source, are still needed. Rotation at propagation scales (2x 103-104AU) is observed by

Davis et al. (2000)

, but this does not put much constraint on the jet rotation, because the velocity field is 'contaminated' by strong interaction wit.h the environment. It still provides some valuable information on jet physics. Rotation of outfiows is also reported in high-mass YSOs, Herbig Ae/Be stars, as reported by

Klaassen et al. (2013)

, who detect a rotating disk wind in the Herbig Ae star HD 163296. Doppler-sliift. spectral observations of rotation in low-mass YSO jets need, first, high spectral resolution, and second, sliould disentangle effect.s, due to rotation, from other svst.emics, relative orbital motion, effects, induced on the spectrum by physical processes such as magnetospheric accret.ion

[START_REF] Edwards | [END_REF]

, among others. In the earlv 2000s, Baceiott.i et al. (2002) reported for a first time détection, wit.h the STIS instrument, of the HST, of velocity gradient, across the jet axis in the first 110AU from the central driving source. Later, those findings where confirmed by Colley et al. (2004). If this gradient is effectivelv caused by jet rotation, it result.s in toroidal velocit.ies of DG Tau fall in the range 6 -15km s-1, which result.s in angular moment.a by far t.oo large to be considered are produced by X-winds. Moreover, Coffev et al. (2004) show tliat. some of the jets, like the jet of RW Aur, are counter-rotat.ing wit.h respect to their accretion disks. Cai (2008) argue that this questions the interprétation of this velocity gradient as t.rue rotation. On the theoretical side, Sauty et al. (2012) argue that counter-rotation of jets is possible in MHD. Moreover, this fiip of toroidal velocity, they argue, miglit be due to post-ejection shocks, as proposed by Fendt (2011). Soker (2005) claim that the Bacciotti et al. (2002) and Coffey et al. (2004) papers do not detect rotation
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1: Coordinate variables description

  Sauty et al. (1999Sauty et al. ( , 2002Sauty et al. ( , 2004a,b),b),Sauty et al. (2011)), on which this work heavily relies. In part.icular, tlie solution we are going to study in t.he next chapter, and modifv in susequent. chapt.ers, is first presented in Sauty et al. self-similar approach consists of supposing that there exist a solution of separable coordinates of the idéal MHD équations (Eqs. 2.8-2.11 in this text), which are alreadv simplified bv the assumptions of stationarity and axisymmetry. If we suppose that the magnetic flux varies witli colatitude as a dipolar field, i.e. ~sin2(#), where 9 is the polar angle (the notations we adopt for the various coordinates are described in Table2.1), and some a priori unknown radial function G(R), we could write it in the separable

	(2011).

Sauty, Tsinganos, Trussoni et alii study models of non-relativistic flows from young stellar objects in a sériés of papers (Tsinganos & Sauty (1992a), (2.20) Tsinganos & Saut.y (1992b), Sauty & Tsinganos (1994), Trussoni et al. (1997), The form:

  5 dimensions time-dependant MHD Systems. Using a 2.5D approach means tliat the time evolution/fiuxes in the MHD simulation box are computed in 2D, and the third component is deduced from conservation arguments. In this chapter, we implement, the solution of Sauty et al. (2011), and set it up as an initial condition in our MHD simulation box. We find tliat this solution is topologically stable and that, globallv, the eight MHD quantities keep tlieir initial distributions.Finally we plot several quantities of physical interest and discuss the results

of the simulation.

Table 3 .

 3 1: Numerical values of the free parameters of Sauty et al. (2011), corresponding to the ansàtz in §2.5.

  In order to detect. changes, we will be invest.igat.ing the relative différences for ail MHD quantifies between t.he final and t.he initial st.at.e, which will enlighten us how t.he final st.eady state differs from t.he initial educat.ed guess. This is done for t.his model in Appendix A, and in subséquent appendices for t.he other models.

		VA
	t = 0	1 = 50
	Différences between t.he initial setup and final st.at.e are liardly visible to the
	naked eve, so in Appendix A, we plotted the relative différences between
	t.he initial and the final st.ates for ail eiglit. MHD quantifies.

tions, and we expect them to relax to a final st.eadv state, which will not differ significantlv from the initial one. Our goal is to verifv t.his. We indeed obt.ain a final state very close to the initial one, and we pursue the simulation unt.il relaxing to a st.eady state.

  Indeed, some fieldlines open up, as previouslv discussed, but the boundary condi tions we set are fixed in time. Mass flux is suppressed on ail fieldlines tliat were closed at t = 0.0, no matter if t.hey open up during the simulation or not. Allowing a mass flux on those lines means that we should also turn on the heating that we suppressed, because we wanted to suppress the velocit.ies in tins région. Hence we need to restore the heating, if we want to restore the mass flux along those fieldlines.

One possibility in order to décidé whether or not to put a mass flux from the inner boundary and to turn on the heating is to détermine if the fieldline is open or closed. But trace the fieldlines, at each timestep, is computationallv prohibitive. The criterion we are going to use in order to décidé if we are in the helmet-shaped self-consistent, magnetosphere, in which we hâve to suppress mass flux and turn off heating, or outside it, is whether or not we are in the région that is in solid rotation and with no toroidal magnetic field component. As we discussed so far, inside the helmet-shaped magnetosphere those requirements are fulfilled and they are not fulfilled outside it.

Table 4 .

 4 1: Evolution of #iim during the consecutive readjustments

	t	#lim
	0.0	41.7°4
	.0	54.9°9
	.00	50.43°1
	4.00	50.10°2
	0.00	50.17°f

  of the final solutionAs we can see from figure5.3, t.he final state in this 'heated dead zone' solu tion is not. signifieantly different from the cold dead zone one. As expected, matt.er is accelerat.ed in the whole dead zone, but typical velocities are quite small and tend to zéro towards the equator. Once again, the stellar wind component is not sensiblv modified; the disk wind component. is more dis-This last connected line lias the same shape as the zone of the toroidal magnetic field, which is kept to 0 by the t.ime évolution, and the zone in which t.he solid rotation is maint.ained during the simulation (see Fig.5.3). The différence with t.he previous case is that matt.er is not. accumulated near the equator. This t.ime, several fieldlines rooted on t.he star open up, but. this t.ime t.liose are fieldlines root.ed in a much smaller area on the inner boundary.As we hâve done it. for t.he previous cases, we are plotting t.he relative changes in ail eight. MHD quant.it.ies (see Appendix C). First, the pressure distribution (C.3) is almost. ident.ical t.o the initial distribution. This is not a surprise, since the lieating/cooling term H -A in the energy équa tion(2.11) is computed in order to satisfy tliis équation. Let us hâve a look on the density distribution on Fig.C.l. The density in the heated dead zone solution is basically dropping bv a factor of 2. Again, as in the Cold dead zone solution, tliis magnetosphere is hotter than the surrounding wind. Besides the fact that here the magnetosphere is dynamical, another important différence between tliis solution and the Cold dead zone solution is that jere, the self-consistent dead zone is not varying much in size and extent, i.e. the last closed fieldline is rooted approximately at the same angle at the inner boundary and the shape of the last closed fieldline is almost identical to that of the initial condition.

torded. The initial dead zone is reshaped again, but this t.ime it. lias a final shape which is much doser to the initial one. This solution is similar to the cold dead zone one in an important aspect: the self-consistent. set.up, but this case with a dynamical magnetosphere, but st.ill wit.h no mass flux t.lirougli the equator, solid rotation and vanishing toroidal component of the magnetic field. Indeed, on Fig.

5

.3, we see in green the closed fieldlines of this solution. Note the spécifie form of the last. connected line of this solution, which is almost coincidental to the last connected line of the CASO solution, used for initial condition.

t.he existence of an ext.ernal pressure agent, above the a-disk, collimating the fiow, could be speculated. This could be either a thermal pressure of the ambient medium or external magnetic, pressure. Bot.h mechanisms require by far too large thermal energy density, or far too large magnetic fields, failing to match the observations. The self-collimation of jets, i.e. the collimation of the out.flow by the YSO's own magnetic field, appear to be the process requiring physically plausible values for the magnetic field. In the case of equipartit.ion of energy at the flow base, the magnetic fields needed to achieve self-collimation are of the order of « 200mG, orders of magnitude smaller than an external collimating magnetic field. A magnetic field, producing collimation, could be nearly isotropie near the stellar surface. In the régime of low plasma /3, the material coming out of the star will travel along magnetic fieldlines (the inert.ia of the fluid will not be sufficient, to deform the fieldlines and the magnetic field will keep its near-to-vacuum configuration), unt.il it reaches the Alfvén surface, where poloidal velocity equals the Alfvén speed. Beyond the Alfvén surface, the kinetic fluid energy start.s to dominat.e the magnetic energy density. As a resuit, the inert.ia of t.he fluid deforms the shape of the magnetic field lines. A st.rong B<p is generated, and strong hoop stresses as a resuit., exert.ing a confining force t.owards the axis, collimat.e the magnetic flux surfaces. However, as Mestel (2012) points out, it. is not correct to t.hink as the magnetic hoop stresses collimating alone t.he flow, act.ually the flow is collimated by t.he joint, action of magnetic hoop stresses and material stresses. The particularitv of t.he self-collimation we just. desc.ribed is that.this process, as we mentionned, needs orders of magnitude smaller magnetic field. This is because B$ collimates t.he out.flow, and not ext.ernal magnetic pressure in the poloidal plane.(Arce et al., 200G, Cabrit, 2007, Ferreira, 2007, Tsinganos, 2007) To measure t.he magnetic. field, Zeeman split.t.ing measures are commonlv used. (Hartigan, 2009) Magnetic fields tend t.o remain helical at. jet propa gation scales, as reported by Chrysostomou, Lucas, & Hough (2007) for the case of HH 135-136.
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