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Abstract.Modem space projects currently under development, such as BepiColombo for the exploration of Mer

cury or Gaia for space astrometry, hâve the goal of getting high précision data about their main targets. It is

then necessary to conceive several independent models in the framework of General Relativity to perform data

analysis ensuring the appropriate treatment of ail effects important at the required level of accuracy.

The first part of this thesis is dedicated to the study of light propagation. We use the Time Transfer Functions

(TTF) formalism to characterize the influence of gravitational light deflection on the Ranging, Doppler and
astrometric observables for applications to these future projects. In order to get an appropriate gravitational

description of the Solar System, we consider the hypothesis of a weak gravitational field, adopting a metric tensor

valid up to the second order of the post-Minkowskian (2PM) approximation. We obtain these observables as
intégrais depending on the metric tensor and its dérivatives only. This very general form is particularly adapted

to numerical computation and to the test of alternative théories of gravity. We also propose several analytical

applications of our results up to the 2PM order.

In the second part of this thesis, we focus on high précision astrometry in the context of the Gaia mission,

scheduled for launch in late 2013. We use an original procedure to get an analytical comparison of our light

propagation model with the two approaches developed for Gaia, namely the Gaia Relativity Model (GREM) and
the Relativistic Astrometric Model (RAMOD). Following this validation, we use the TTF and the Gaia tetrad
developed for RAMOD to simulate a sériés of astrometric observations within the Global Sphere Reconstruction

(GSR) software. We compare then our results with GREM and with a complété Schwarzschild model. The study
is finally completed by the reconstruction of a celestial sphere using 5 years of observations simulated with our
model.

These applications to astrometry are the resuit of the collaboration between the French group at SYRTE, respon-

sible for the TTF and the Italian one at OATO, responsible for RAMOD and GSR.

Résumé. Actuellement, les projets spatiaux en cours de développement, tel que BepiColombo pour l’exploration

de Mercure ou Gaia pour l’astrométrie spatiale, ont pour objectif d’obtenir des données de très haute précision sur

leur objet d’étude. Il est donc maintenant indispensable de construire plusieurs modèles indépendantes d’analyse

de données dans le cadre la Relativité Générale (RG) afin d’assurer une correcte prise en compte des effets qui se
manifesteront très distinctement à ce niveau de précision.

La première partie de ce manuscrit est dédiée à l’étude de la propagation des signaux électromagnétiques, par le

biais du formalisme des Fonctions de Transfert de Temps, afin de caractériser les effets de courbure des rayons

lumineux sur les observables de Ranging, Doppler et astrométriques de ces futurs projets. Pour décrire correcte

ment le Système Solaire, nous retenons l’hypothèse des champs gravitationnels faibles et nous considérons un

tenseur métrique au premier et deuxième ordres d’approximation post-Minkowskienne (PM). Nous obtenons ainsi
ces observables sous la forme d’intégrales, ne dépendant que du tenseur métrique et de ses dérivées. Cette forme

très générale est particulièrement adaptée pour le calcul numérique et les test des théories alternatives à la RG.

Des applications analytiques sont aussi données jusqu’au deuxième ordre PM.

Dans la seconde partie de ce travail, nous focalisons notre étude sur l’astrométrie de haute précision dans le

contexte de la future mission Gaia qui sera lancée fin 2013. Nous confrontons donc notre modèle de propagation

de la lumière avec les deux approches adoptées pour Gaia, à savoir les modèles GREM et RAMOD, par une

procédure originale. Suite à cette validation analytique, nous utilisons la TTF avec la tétrade Gaia de RAMOD

afin de simuler une série d’observations astrométriques dans le software GSR. Nos résultats sont comparés avec

GREM et avec un modèle complet à symétrie sphérique. Le travail est complété par la reconstruction d’une

sphère céleste à partir de 5 ans d’observations simulées avec notre modèle.

Ces applications à l’astrométrie sont issus de la collaboration entre le groupe parisien du SYRTE responsable de

la TTF et celui turinois de OATO responsable pour RAMOD et GSR.

Sintesi. I progetti spaziali attualmente in sviluppo, corne BepiColombo per l’esplorazione di Mercurio o Gaia

per l’astrometria spaziale, hanno corne obiettivo l’acquisizione di misure ad alta precisione sul loro oggetto di
studio. È dunque indispensabile sviluppare più modelli indipendenti per l’analisi dati nell’ambito délia Relativité
Generale (RG), al fine di tener conto di effetti che risultano decisivi a questo livello di precisione.
La prima parte di questa tesi è dedicata allô studio délia propagazione dei segnali elettro-magnetici per mezzo del

formalismo delle ”Funzioni di Trasferimento di Tempo” (TTF): il fine perseguito è la caratterizzazione degli effetti
délia curvatura dei raggi luminosi sulle osservabili Ranging, Doppler e astrometriche di questi futuri progetti.

Per descrivere correttamente il Sistema Solare, ci si porrà dunque nell’ipotesi di campo gravitazionale debole

e si considérera un tensore metrico al primo e secondo ordine dell’approssimazione post-Minkowskiana (PM).
Le osservabili cosi ottenute saranno fornite sotto forma di integrali dipendenti dal solo tensore metrico e dalle

sue derivate: questa forma molto generale è particolarmente adatta per il calcolo numerico ed i test delle teorie

alternative alla RG. Delle applicazioni analitiche saranno inoltre fornite fino al secondo ordine PM.

Nella seconda parte di questo lavoro, concentriamo il nostro studio suH’astrometria di alta precisione nell’ambito

délia futura missione Gaia, il cui lancio è previsto per fine 2013. Ci proponiamo, per mezzo di una nuova procedura,

di confrontare il nostro modello di propagazione délia luce ai due approcci utilizzati per Gaia, chiamati GREM e

RAMOD. Questa verifica analitica ci permette di combinare il nostro modello TTF con la tetrade Gaia di RAMOD

con l’obiettivo per simulare cosi una sérié di osservazioni astrometriche nel software GSR. Presentiamo i risultati

del confronte di questo modello con GREM e PPN-RAMOD (una versione a simmetria sferica dell’omonimo

modello). Questo studio è finalizzato con la ricostruzione di una sfera celeste a partire da 5 anni di osservazioni
simulate con il nostro modello.

Queste applicazioni all’astrometria sono il risultato délia collaborazione tra il gruppo parigino del SYRTE respon-

sabile délia TTF e quello torinese di OATO responsabile di RAMOD e GSR.
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Notation and conventions

Throughout this work, c is the speed of light in vacuum and G is the Newtonian

gravitational constant. The Lorentzian metric of space-time V4 is denoted by g. We

adopt the signature (— +++). We suppose that space-time is covered by some global

coordinate System xa = (x°,x), with x° = et and x — (xl), centered on the Solar
System barycenter. Greek indices run from 0 to 3 and Latin indices from 1 to 3. Any

ordered triple is denoted by a bold letter. In order to distinguish the triples built

with the space-like contravariant components of a vector from the ones built with

covariant components, we systematically use the notation a — (a1, a2, a3) = (a1) and

b = (&i, 62, h) — (h). Considering two such quantities a and b we use a b to dénoté

albi (Einstein convention on repeated indices is used). The quantity |a| stands for
the ordinary Euclidean norm of a. For any quantity f(xx), /;Q dénotés the partial
dérivative of / with respect to xa. The indices in parenthèses characterize the order

of perturbation. They are set up or down, depending on the convenience.
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Introduction
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1.2.5 Relativistic observables 17

1.3 Outline 18

1.1 High précision astronomy

Since the beginning of the so called space-era, the increasing accuracy of observations

and the new observational techniques (like radar ranging) hâve made it no longer

necessary to justify the importance of a consistent relativistic modeling in the field

of fundamental astronomy.

Nowadays, applied relativity has become one of the basic ingrédients of celes-

tial mechanics, astrometry, time scales and time dissémination. Significant the-

oretical efforts hâve been necessary to follow the observational and engineering

needs. The scientific community developed new théories for global and local ref

erence Systems [Damour et al 1991] such as the Barycentric Celestial Reference
System (BCRS) or the Geocentric Celestial Reference System (GCRS) as well as
relativistic équations describing the translational and rotational motion of an N-

body System of arbitrary composition and shape. A précisé treatment of light

propagation also became of central importance when dealing with high-accuracy

observations [Brumberg 1987, Klioner & Kopeikin 1992].
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Nevertheless, it is the whole astronomy which needs to be rethought from

a classical Newtonian point of view to a relativistic one. Relativistic ques

tions hâve been playing an important rôle in the work of several Commis

sions and Working Groups of the International Astronomical Union (IAU) for
an extended period of time so that in 2006, it has been decided to es-

tablish IAU Commission 52 ”Relativity in Fundamental Astronomy” (RIFA -

http://www.iau.org/science/scientific_bodies/commissions/52/ ).
Today, there are a number of open issues of both theoretical and practical charac-

ter that still need the attention of astronomers, experts in gravitation and relativists.

Such issues particularly arise when dealing with modem space missions. In the fol-

lowing we give three examples of missions needing a systematic relativistic modeling
of their observations

• Gaia [Bienayme & Turon 2002], a cornerstone mission of the European Space

Agency (ESA), is meant to provide an high-accuracy 3D map of the Milky
Way. Its launch will represent an epochal shift from classical to relativistic

astrometry but the huge amount of data to be treated will also require massive

computational capabilities;

• GAME [Gai et al. 2012], is a high-accuracy astrometry mission aiming at mea-
suring the 7 parameter of the parameterized post-Newtonian formalism (PPN,

see section 1.2.1) from space. With respect to Gaia, a more accurate relativis
tic model of the astrometric observable will be needed in order to reach the

required accuracy when observing near the limb of the Sun.

• BepiColombo [Benkhoff et al. 2010] will be launched in 2014 towards Mercury,
where it will collect scientific data but also use its inboard instrumentation to

test General Relativity (GR) [Iess et al. 2009] with a dedicated radio-science
experiment. As other planetary missions, it requires a very précisé knowledge

of its orbital motion in order to attain its goals. This requires an accurate mod

eling of the Range and Doppler observables through the relativistic treatment

of light propagation.

In the following, we présent in more details these missions whose data need to

be treated accurately and interpreted on the basis of reliable theoretical models as
we shall outline in section 1.2.

1.1.1 GAIA

The launch of the HIgh Précision PARallax COllecting Satellite (HIPPAR-

COS [Perryman & ESA 1997]) space mission in 1989 provided the opportunity for
Europe to establish its leadership in space astrometry, setting the state-of-the-art

précision levels for astrometric measurements of nearby stars. For the first time,

space astrometry allowed to détermine the positions, parallaxes and proper motions

of 105 stars with an accuracy of some milliarcseconds (mas). The HIPPARCOS
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results hâve contributed immensely to a better understanding of a wide range of

topics in astrophysics, such as galaxy kinematics and dynamics, and stellar physics.

Direct descendant of HIPPARCOS, Gaia [Bienayme & Turon 2002] has been ac-
cepted in 2000 as cornerstone mission of ESA space program and is now scheduled

for launch for late 2013 on a Soyuz-Fregat launcher. Gaia will provide positions

and velocities of a billion stars in our Galaxy and thousands of extragalactic sources

of the local group, so around 1% of the stellar population of our Milky Way will

be observed with the accuracy of some microarcseconds {fias) needed for answering

today scientific questions. The satellite will operate in Lissajous orbits around the

Earth-Sun Lagrangian point L2, scanning the sky continuously at a rate of 120 as/s
(where as stands for arcseconds) over a 5 years mission, as illustrated in Fig. 1.1.

As for HIPPARCOS, Gaia results will be of capital importance in several areas

of astronomy and fundamental physics. In particular, it is expected to provide :

• the physical characteristics, kinematics and distribution of a large fraction of

stars in the Galaxy, thus allowing to détermine its full history;

• distances of unprecedented accuracy for ail kinds of stars, even those in rapid

évolution, covering the whole Hertsprung-Russel diagram;

• a more précisé détermination of star luminosity and précisé astrometric mea-

sures providing constraints for stellar population models;

• a complété study of the luminosity function, thanks to the observation of a

large amount of ail kinds of stars;

• the détermination of a large number of stellar orbits, including those of the

smallest stars (brown dwarf);

• a census of binary Systems and extra-solar planets (ail large planets to 200 —

500 pc from Earth) thanks to very précisé astrometric measures;

• the identification and characterization of a large number of asteroids and minor

bodies in the Solar System;

• contributions to the structure, dynamics and stellar populations of local group

galaxies;

• improvements in the orientation of the International Celestial Reference Frame

(ICRF) thanks to better astrometric accuracy;

• the test of gravitational théories in the PPN approximation of GR, considering

effects up to G/c3 in light bending.

The payload consists of a single integrated instrument that comprises three major

functions by using common télescopes and a shared focal plane:
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1. the Astrometric instrument (ASTRO) is devoted to star angular position mea-

surements, providing star positions, parallaxes and proper motions;

2. the Photometric instrument provides continuous star spectra for astrophysics

in the band 320-1000 nm and the ASTRO chromaticity calibration;

3. the Radial Velocity Spectrometer (RVS) provides radial velocity and high res

olution spectral data in the narrow band 847-874 nm.

Each function is achieved within a dedicated area on the focal plane, which allows it

to take benefit from the two viewing directions separated by a fixed (and monitored)
basic angle of 106°.

Figure 1.1: Scanning principle of Gaia: The constant spin rate of 60”/s corresponds

to one révolution (great-circle scans) in six hours. The angle between the slowly
precessing spin axis and the Sun is maintained at an aspect angle of 45°. The basic

angle is between the two fields of view is constant at 106.5°. (Figure courtesy: Karen

O’Flaherty, ESA)

Thanks to this apparatus, Gaia can aim for the following accuracies:

• systematic observation of ail objects (more than a billion) brighter than mag

nitude V=20;
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• better than 10 fias positional accuracy for stars up to magnitude V — 10,

12-25 lias at V = 15, and 100-200 fias at V = 20;

• parallax accuracy better than 1% for 20 millions of stars in our galaxy;

• constraints on relativistic parameters (see section 1.2.1) : 7 to « 5 x 10~6,
/3 to 10“3 and 77 to 2.4 x 10“3; moreover, the quadrupole moment of the Sun

J2, describing its flattening, should be evaluated with 10"' — 10“8 précision,

the GM of Jupiter (where G is the universal constant of gravitation and M is
Jupiter mass) to 2.9 x 10~15AU3d~2 and the gravitational "constant” variation
G/G with a précision of 3 x 10~12 years~l [Hobbs et al. 2010, Mouret 2011].

1.1.2 GAME

GAME [Gai et al. 2012], for Gamma Astrometric Measurement Experiment, is a
concept of a small mission proposed to ESA for the Cosmic Vision program whose

main goal is to measure from space the 7 parameter of the PPN formalism. A

satellite, looking as close as possible to the Solar limb, measures the gravitational

bending of light in a way similar to that followed by past experiments from the

ground during solar éclipsés. This is done in order to maximize the observed effect,

since the Sun is the most massive body in the Solar System. The proposed mission

lifetime of two years will allow a répétition of the basic experiment to validate

and improve the final accuracy of the mission results. In addition to the test of

the parameter 7, thanks to its flexible observation strategy, GAME is also able to

target other interesting scientific goals (in the realm of General Relativity, extrasolar

Systems, etc.).

The basic idea of GAME is to measure the astrometric angle between the stars

in two fields of view (FOVs) pointing symmetrically with respect to the ecliptic

as illustrated in Fig. 1.2. The relativistic light deflection is estimated directly by

Figure 1.2: GAME will orbit around the Earth and will observe fields respectively

in conjunction and opposition to the Sun [Gai et al. 2012]

measuring the same angles at two epochs: (a) with the Sun in conjunction and
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(b) when, after some months, our parent star is in opposition. This experiment is

implemented as a small mission, with a satellite in Earth polar orbit at an altitude

of 1500 km. Its payload includes a telescope observing in the visible two fields of

view with a few degrees of séparation, simultaneously.

Preliminary simulations hâve shown that the expected final accuracy on 7 can

reach the 10~7 level, two orders of magnitude better than actual estimâtes (i.e. the
recent radio links experiment with Cassini [Bertotti et al. 2003]).

1.1.3 BepiColombo

The European Space Agency (ESA) and the Japanese Aerospace Explo

ration Agency (JAXA) will jointly explore Mercury with BepiColombo mis

sion [Benkhoff et al. 2010], due for launch by 2014 and comprising ESA’s Mercury
Planetary Orbiter (MPO) and JAXA’s Mercury Magnetospheric Orbiter (MMO).
From dedicated orbits, the two spacecrafts will observe the planet and its environ

ment. Their scientific payload will provide the detailed information necessary to

understand the origin and évolution of the planet itself and its surrounding environ

ment. The scientific objectives focus on a global characterization of Mercury through

the investigation of its interior, surface, exosphere and magnetosphere. In addition,

testing relativistic gravity was recognized as a scientific objective of BepiColombo

since the inception of the project.

Mercury is in fact the innermost and fastest orbiting planet of the Solar System so

that relativistic effects on its motion are larger than for any other major Solar System

body. Mercury is then a unique laboratory for probing gravity (the explanation of the

anomalous periastron advance of Mercury’s orbit was the first experimental success

of GR), which pushed for the development of the Mercury Orbiter Radio Experiment

(MORE) [Iess et al. 2009]. Based on the Cassini radio System which has been used
to carry out the most accurate test of General Relativity in the Solar System to

date [Bertotti et al. 2003], MORE will carry out a navigation experiment, aiming
to a précisé assessment of the orbit détermination accuracies attainable with the

use of the novel instrumentation and will repeat classical tests with much improved

accuracy exploring new aspects of gravitational théories.

In particular, as shown in Table 1.1, MORE should test GR and alternative

théories of gravity to a level better than ICC5 by measuring the time delay and

Doppler shift of radio waves and the precession of Mercury’s perihelion, test the

strong équivalence principle to a level better than 4 x ICC5, détermine the gravita
tional oblateness of the Sun J2 to better than ICC8 and finally set improved upper

limits to the time variation of the gravitational "constant” G.

1.2 Relativistic framework for high-precision data

As seen in section 1.1, modem space astronomy relies on high précision observations

whose data need to be reduced and interpreted in the framework of General Relativ-
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Parameter Présent accuracy Gaia GAME MORE

7 2 x 10~5 5 x 10“6 10"7 - io-8 2 x 10“6

P 1 x 10"4 10"3 - io-5 10"6 2 x 10"6

7 5 x 10“4 2 x 10“3 - 8 x 10“6

J2{Sun) 4 x 10~8 10"8 5 x 10“9 2 x 10"9

d(\nG)
years 1)

dt
9 x ÎO"13 3 x 10-12 - 3 x 10-13

Table 1.1: Présent and attainable accuracies with Gaia [Hobbs et al. 2010,

Mouret 2011], GAME [Gai et al. 2012] and MORE [Iess et al. 2009] for the rela-
tivity parameters

ity (GR) [Soffel et al. 1991, Moyer 2000, Sofïel et al. 2003]. To ensure the accuracy
demanded by the missions presented in section 1.1, different issues need to be con-

sidered in the analysis of their observations: in particular, the définition of the obser

vation in a proper reference frame, global reference Systems allowing the comparison

of observations made in each proper reference frame and a précisé modeling for the

propagation of the observed signal. Each of these issues has been deeply studied in

the literature: the définition of global reference Systems has been given by the IAU

2000 Resolution B 1.3 in the post-Newtonian approximation of GR [Soffel et al. 2003]
while several relativistic définitions of physically adéquate local reference frames of

a test observer hâve been proposed in [Bini et al. 2003, Klioner 2004]. As mentioned
above, a précisé modeling for the relativistic propagation of Electromagnetic Waves

(EW) is also required. In fact, the behavior of the EW in the Solar System is intrin-
sically related to its space-time curvature [Misner et al. 1973, Weinberg 1972] and
therefore one has to take it into account for modem astrometry.

In the following, we will briefiy présent these different aspects, illustrated in

Fig. 1.3, with particular attention to the covariant définition of an observable and the

most current approximations of GR used in the data analysis of space observations.

1.2.1 General Relativity and its approximations

Even if General Relativity is not the only theory of gravitation, it still seems to

be the most simple among those successfully passing ail the observational tests. A

detailed review of the modem experimental foundations of gravitational physics can

be found in [Will 2006]. Here, we shall just briefiy recall the basic principle of the
theory, the Einstein Equivalence Principle (EP). This principle States [Will 2006]

• that the inertial mass miner and the gravitational mass mgrav appearing on the
two sides of the Newtonian gravitational law coincide. This has been tested

with a précision of \ôm\ /m < 5 x 10~13;

• that light velocity in vacuum, c, is constant in any inertial reference frame.

This has been tested at level \ôc2\ je2 < 10“21;
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(a) From the point of view of Newtonian
physics. The coordinate grid in the back-

ground symbolizes a global inertial reference

System.

(b) From the point of view of relativistic

physics. The grid of curved coordinates in

the background symbolizes the chosen rela

tivistic reference System.

Figure 1.3: Four parts of an astronomical event: motion of the observed object;

motion of the observer; trajectory of an electromagnetic signal from the observed

object to the observer; process of observation (from [Klioner 2005]).

• the local positional invariance, which can be tested by measuring the gravita-
tional red-shift

Av)v — (1 + ot)c~2AU ,

where a = 0 in GR. This too has been proven at level |ct| < 2 x 10~4.

Moreover, the theory of GR also States that

”The general laws of nature are to be expressed by équations which hold

good for ail Systems of coordinates that is, are covariant with respect to

any substitutions whatever (generally covariant).” [Einstein 1916]

It is the so-called General Covariance Principle, stating that the laws of physics hâve

to be the same for ail observers. This principle is translated in mathematical terms

by the use of tensorial identifies and it has important conséquences, such as the fact

that space-time coordinates are no longer to be considered as intrinsic observables.

One of the conséquences of the Equivalence Principle is that gravitation can

be represented by a metric tensor g^. It is now question to explicit this
metric tensor. In GR, its évolution is determined by solving Einstein’s équa

tions [Misner et al. 1973]
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where Ris the Ricci tensor, R is the curvature scalar, G is the universal constant of

gravitation, A the cosmological constant and the stress-energy tensor. Eq. (1.1)

tells us how space-time geometry is determined by its energy-matter content but its

solution in a general case is a complex matter. Nevertheless, for most applications

within the Solar System several hypothesis and simplifications can be assumed.

Indeed, since the Solar System can be considered as a gravitational weak field,

the space-time metric can be expanded as

9^ Tinv T h[iv ? (1*2)

where 77 is the fiat Minkowski metric and h is a small perturbation. Expansion (1.2)

opens two main possibilities : the post-Minkowskian (PM) and the post-Newtonian

(PN) approximations. The PM approximation of GR consists in supposing that the
perturbation h can be expanded with respect to the universal gravitational constant

G. This approximation only requires the weak field hypothesis (1.2), without limi

tations on the velocity of the sources of the gravitational field. We call it generalized

PM approximation when the perturbation h is represented by an infinité sériés of

powers of G; in this case, the covariant components of the metric tensor can be

expanded as

00

g^{x,G) = rlltw + YJGngÿ{x),(1.3)
71=1

while the contravariant components are given by

= -vrrTsÿ) , (1.4a)

n—1

C> = -*r*r - E ’T$ (1 -4b)
p=i

In building the PN approximation of GR, we make additional assumptions. We

suppose Solar System bodies to move slowly (u2 << c2) and that they are auto-
gravitating, so that their orbits are gravitationally bounded. The équations of New-

tonian dynamics show that the square velocity of an auto-gravitating body satisfies

the following relation

v
2 U —

GM
(1.5)

where M is the mass of the body and r the distance from its center of mass, so that

u2 _ GM
c2 c2r

(1.6)
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Taking into account approximation (1.5), the perturbations of the space-time

metric (1.2) can be expanded in sériés of 1/c as follows

hoo = -jhw + -^jhoo + ® ^ (1.7a)

hm = + O (1) , (1.7b)
htj = IftgJ + O (1) • (1.7c)

Since G R is not the only possible theory of gravitation and other metric théo

ries of gravitation exist, the so called post-Newtonian parameters hâve been intro-

duced in order to distinguish and test these théories. The resulting formalism, the

parametrized post-Newtonian (PPN) approximation [Will 1993], contains around

ten parameters; in particular, we can write the metric tensor g^u in the global PPN
reference System [Klioner & Soffel 2000] as

9oo - -1 + ^w(t, x) - —/3w2(t, x) + 0(c D)
c c

(1.8a)

90i = 2^1+3^wi(t,x) + 0(c-s) (1.8b)

9ij = Sij ^1 + w(t, x) \ + ü(c~4) (1.8c)

where w and w1 are the scalar and vector gravitational potentials while (3 and 7 are

the first two PPN parameters appearing in the metric. The parameter /? is related

to the non-linearity of the superposition of the gravity fields of different bodies while

7 quantifies the effect of a mass unit on space-time curvature. Both parameters are

unity in GR. Moreover, we can also define the Nordtvedt parameter 77 = A(3 — 7 — 3,

used in the tests of the EP and equal to 0 in GR.

We shall point out that the PM approximation does not make any hypothesis

about the internai physics and the motion of the sources of the gravitational field,

thus keeping far more general than the PN/PPN approximation. In this thesis, we
hâve chosen to define ail needed quantifies within the PM approximation while fur-

ther expansions within the PPN approximation will be used for selected applications

in the Solar System.

1.2.2 IAU relativistic reference Systems

The IAU 2000 framework for relativistic modeling [Soffel et al. 2003] represents a
self-consistent theoretical scheme enabling one to model any kind of astronomical

observations in the PN approximation of GR. This paradigm is based on the as-

sumption that the Solar System is the only source of weak gravitational field and

that, at infinity, space-time is asymptotically fiat. It deals with a number of local

and one global reference frames which are connected to each other by PN coordi-

nate transformations. The framework has three main theoretical ingrédients. First,
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a theory of local reference Systems (mainly for application in the vicinity of the

Earth) has been studied with the construction of the Geocentric Celestial Reference

System (GCRS). Second, a PN theory of multipole expansions of a gravitational field

has been performed and finally a careful investigation of the orders of magnitude
of various effects has allowed to make the PN réduction formulas for time scales as

simple as possible.

The local reference Systems hâve two fundamental properties:

1. The gravitational field of external bodies (Le. for the GCRS ail Solar System

bodies except the Earth) is represented only in the form of a relativistic tidal

potential which is at least of second order in the local spatial coordinates and

coincides with the usual Newtonian tidal potential in the Newtonian limit.

2. The internai gravitational field of the subsystem (e.g. the Earth for the GCRS)
coincides with the gravitational field of a corresponding isolated source pro-

vided that the tidal influence of the external matter is neglected.

These two properties guarantee that the coordinate description of the local phys-

ical processes in the vicinity of the considered body (e.g. in the vicinity of the Earth

in the case of GCRS) is as close as possible to the physical character of those pro
cesses. This means, for example, that if some relativistic effect is présent in the

coordinates (e.g., of a satellite of that body) the effect cannot be eliminated by se-

lecting some other (more suitable) coordinates and therefore has physical character.

It should be noted that although only one local reference System -GCRS- is explicitly

defined by the IAU 2000 framework, it foresees GCRS-like local reference Systems for

each Solar System body for which the local physics (e.g. the structure of the grav

itational field and the theory of rotational motion) should be precisely formulated.

For example, the modeling of Lunar Laser Ranging (LLR) data requires a local

Selenocentric Celestial Reference System [Kopeikin & Xie 2010]. Recent projects

aimed at précisé modeling of the rotational motions of Mercury and Mars will hâve

to use the corresponding reference System for Mercury and Mars, respectively. Ail

these local Systems are defined by the same formulae as those given in the IAU 2000

framework for the GCRS, but with an index referring to the corresponding body.

Moreover, a local reference System defined by the same IAU 2000 formulae, but

constructed for a massless observer (with an index referring to a fictitious ”body”

of mass zéro), is suitable to describe physical phenomena in the vicinity of that ob

server and, in particular, to define measurable quantities (observables) produced by
that observer. The relation between this point of view and several standard ways to

describe observables in GR is described by [Klioner 2004].

1.2.3 Relativistic équations of motion

The analysis of high précision observations also needs an accurate knowledge of

the ephemerides of ail Solar System bodies for both navigation and scientific

purposes. For this reason, ail modéra planetary ephemerides such as the JPL
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DE [Folkner et al. 2009], the IMCCE INPOP [Fienga et al. 2011] and the IAA RAS
EPM [Pitjeva 2005] are built in a relativistic framework.

The principal relativistic effects on the dynamics of Solar System bodies can be

divided in two categories [Klioner 2000] : translational and rotational motion.

The effects on the translational motion are mostly given by the so called Einstein-

Infeld-Hoffmann (EIH) équations of motion of N gravitating bodies, whose gravita-
tional fîeld can be described by their masses M.A only. We get the accélération

xA = -52 —“A + \fpn{Mb+ 0(c~4) , (1.9)
É*a \*a-xb\ c2

where we define xA/b the coordinates of body A/B, Fp^ representing the post-
Newtonian perturbation to the Newtonian orbital motion and xp the coordinate

velocity of body B. In order to dérivé FPN, we need to know ail terms contained in

the metric tensor (1.2). The main détectable effects represented by FPn are

• perihelion shifts ( ~ 43”/cty for Mercury, ~ 10” jcty for Icarus, ... );

• geodetic precession (æ 2”/cty for the lunar orbit);

• various periodic relativistic effects (important mostly for LLR and binary pul

sar timing observations).

Further relativistic effects due to the rotation of the bodies (Lense-Thirring or grav-

itomagnetic effects) and those due to the asphericity of the gravitating bodies are

mostly neglected in the construction of planetary ephemerides.

Nevertheless, an adéquate relativistic description of the rotational motion is also

required for the définition of local reference Systems (for example, the GCRS). In

this case, the PN équations of motion

d2Si/dt2 = VN + c~2LpN + 0(c~4) , (1.10)

where S1 is the relativistic spin of the body, LlN and LlPN are the Newtonian and

post-Newtonian torques, respectively [Klioner & Soffel 1998]. Again, a full post-
Newtonian metric tensor is required to dérivé these équations. The most im

portant effects on Earth rotation are [Klioner et al. 2008] the geodetic precession
(~ 1.914”/cty) and nutation (æ 153 /aas).

Moreover, some recent ephemerides such as INPOP08 [Fienga et al. 2009], also
include a relativistic time scale transformation. The idea is to provide positions

and velocities of Solar System celestial objects, as well as time ephemerides relat-

ing the Terrestrial time-scale (TT) and the time argument of INPOP, the so-called

barycentric dynamical time (TDB), based on the définition adopted by the Interna
tional Astronomical Union in 2006. This makes INPOP08 a 4D ephemeris and fully

suitable for building Gaia timescale [Le Poncin-Lafitte 2010].
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1.2.4 Relativistic light propagation

Observations of ail space missions presented in section 1.1 are based on time delay,

frequency shift or angular measurements of an EW. In the approximation of opti-

cal geometry this EW is described from a theoretical point of view by a light ray

propagating along a null-geodesic path, i.e. a curbe obeying the équations

— + r^kak» = o , fc% = o, (î.ii)

where kM = dx^/dX is a vector tangent to the light ray, A being an affine parameter
and

r?7 = \dafl {d-y9nP + dpgw ~ d»9i37) (1-12)
are the Christoffel symbols. One should note that this approximation only applies

when the amplitude and frequency of the signal can be considered constant over its

period and when the wavelength of the observed signal is smaller than the typical

dimension of space-time curvature [Misner et al. 1973], which is the case of the Solar
System.

In Table 1.2 we présent the angular déviation of a light ray grazing the main

bodies of the Solar System. The column Ôpn represents the contribution of the

gravitational body Ôpn ôj2 J6 ÔR Ôp* &2PN

Sun 1.75 106 ~1 0.7 0.1 11

Mercury 83 — — — — — —

Venus 493 — — — — — —

Earth 574 0.6 — — — — —

Moon 26 — — — — — —

Mars 116 0.2 — — — — —

Jupiter 16270 240 10 ~1 0.2 0.8 —

Saturn 5780 95 6 — — 0.2 —

Uranus 2080 8 — — — — —

Neptune 2533 10 — — —

Table 1.2: Relativistic deffection of light grazing Solar System bodies [Klioner 2003]
(unit : microarcsecond - fias).

spherical shape of the massive body to the direction of the light ray: this effect

weakens in 1/6 (see Fig. 1.4), where 6 is an impact parameter. The columns Ôjn
(with n — 2,4,6) show that one should also take into account the effects due to the
asphericity of the planets: even if these effects are important at the fias précision,
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at least for the largest bodies of the Solar System, their influence lowers as l/b2n+l
so that they need to be taken into account only for light rays grazing the perturbing

bodies. The ôT* and 6r columns represent the influence of the translational and
rotational motion of the bodies: one can note that even these effects hâve to be

controlled when the fias accuracy is required. Finally, the ô2pn column provides

the deflection due to a spherical body at the second order of the post-Newtonian

approximation : this effect is still important when focusing on observations towards

the Sun (which is not the case for the Gaia mission but is relevant for the GAME

mission). The combined resuit of ail these effects on the celestial sphere is illustrated

in Figure 1.4.

Figure 1.4: Magnitude of light deflection due to solar System planets at some fixed

moment of time as distributed on the celestial sphere shown from three sides. The

larger the deflection the darker is the area. Although the deflection from each

planet monotonically falls off with the angular distance from the planet, vectorial

character of the deflection leads to a complicated distribution of the magnitude when

several planets corne into play. The solid lines are lines of constant déclination (from

[Klioner 2012]).

During the last décades, many approaches hâve been developed to describe the

trajectory of such light signais and to provide its coordinate direction, frequency shift

and time of flight, defîned as the coordinate time lapse between the émission and

réception events. We shall briefly enumerate the methods existing in the literature:

1. a first method is the analytical dérivation of the null-geodesic équation followed

by the intégration of the trajectory of the light ray. It is the method applied

by [Blanchet et al. 2001] in the weak-field approximation to détermine the time
transfer in the Schwarzschild geometry up to the 1/c3 order. This method
has also been used by [Chauvineau et al. 2005] for the mission LISA in the
PPN framework and by [Minazzoli & Chauvineau 2011] in the case of scalar-
tensor théories of gravity. [Kopeikin & Schàfer 1999] analytically computed
the solution up to the 1PM order for a System of arbitrary moving bodies

while [Klioner & Zschocke 2010] pushed the computation up to the 2PM order
in the static case. In a non-perturbative approach, we shall note that some
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solutions of the null-geodesic équation hâve been given for the Schwarzschild

and Kerr metric [Hagihara 1931, Chandrasekhar 1983, Cadez & Kostic 2005,
Fujita & Hikida 2009, Kostic 2012].

2. another method, developed by [de Felice et al. 2004], analytically solves a set
of so called master équations representing a projection of the null-geodesic

équation in the frame of a local barycentric observer, following the spéci

fications of the relativistic theory of measurement [de Felice & Clarke 1992,
de Felice & Bini 2010].

3. the third method consists in a purely numerical intégration of the géodésie

équations using the ”shooting method” to solve the boundary problem. This

method, developed by [San Miguel 2007] is general and can be applied to any
metric.

4. a fourth method uses the eikonal theory in place of the intégra

tion of the null-geodesic équation. This method has been developed

by [Ashby & Bertotti 2010] and used for the data analysis of the Cassini mis
sion.

5. the last method uses the Synge World Function instead of an explicit compu

tation of the null-geodesic. The World Function introduced by [Synge 1960]

is used by [Linet &; Teyssandier 2002] to compute the time transfer at the
1/c4 order in axisymmetric geometries. This approach has been then fur-
ther generalized in the PM approximation by [Le Poncin-Lafitte et al. 2004].
Finally, a simpler version allowing for a direct computation of the time trans

fer has been developed by [Teyssandier & Le Poncin-Lafitte 2008]. Using this
method, time transfer is computed as a PM expansion in which each of the

perturbation terms is an intégral of functions depending only on the metric

and its dérivatives taken along the Minkowskian trajectory of the photon (the

straight line between the émission and réception of the photon).

In this thesis, we will apply this last approach to describe light propagation in a

curved space-time.

1.2.5 Relativistic observables

As anticipated in section 1.2.1, in modem théories of gravitation the laws of physics

are invariant under coordinate transformations. For this reason, we can choose in

which reference System we want to write our équations (for example those describ-

ing light propagation). This freedom also implies that ail coordinate quantities hâve

generally speaking no physical sense and cannot be observed. A coordinate Sys

tem is indeed only a mathematical tool that we choose to realize our computations

and it is extremely important to focus on quantities which are invariant under a

diffeomorphism.



18 Chapter 1. Introduction

In the end, the description of a physical System dépends both on the observer

and on the chosen frame of reference. If an observer u has operational control of the

instrumentation used for the measurement we shall then defîne a reference frame

adapted to him. This is a set of one unit time-like vector and three unit space-

like vectors (defined up to an arbitrary spatial rotation) constituting a comoving
tetrad. In most cases, the resuit of a measurement is affected by contributions

from the background curvature and from the peculiarity of the reference frame.

As long as we can neglect the influence of the curvature, we call a measurement

"local”; conversely, if the curvature is strong enough with respect to the measure-

ment’s domain (the région of space-time in which a measurement takes place) ,
the measurement will be called "non-local”. The aim of the relativistic theory of

measurement [de Felice & Bini 2010] is to enable one to devise, out of the tenso-
rial représentation of a physical System and with respect to a given frame, those

scalars which describe spécifie properties of the System and which can be called
"observables”.

1.3 Outline

This study sets the basis of an accurate model for data analysis within a relativistic
framework based on the well assessed Time Transfer Functions formalism. It has

been developed under the joint supervision of a French team at Paris Observatory

and an Italian team in Turin and it can be ideally separated in two parts. In

chapters 2, 3 and 4, we focus on the study of light propagation in a curved space-

time and on the modeling of the observables currently used in radio-science and

astrometry. In chapters 5 and 6, we apply our model to space astrometry focusing

on the Gaia mission. In the following, we provide a detailed outline of our work.

In chapter 2, we study light propagation between two distinct events in space-

time xa = (ctA,XA) and Xb = (cts^XB) relied by a null-geodesic curve Tab
parametrized by a parameter A and located at finite distance from the origin of

the coordinates. We use the Time Transfer Functions formalism, developed at Paris

Observatory, to write two functions %(tB,XA,xs) and Te(tA,XA,XB) describing the
coordinate time of flight ts — of a light signal between these events as a PM

expansion; it has been shown that deriving these quantities gives the direction triple

( ki ) = — , ratio of the spatial and temporal components of the tangent
V J A/B ko A/B

dx^
vector ka = gan to the light ray at xa and ce#, respectively as well as the ratio

dX

of its time components at boundaries /C — .
(&o JA

Using the properties of the TTF, we compute a general closed-form formula for

(&o )b
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the direction triple up to the 2PM order as

K — —NABl +
B

F(i) dh$ dA + F(2) h$,dh%2) 1 _ dA + o^3)
(1.13)

where the intégrais are computed along z_, the Minkowskian straight line between

xa and xB and F^ are explicit functions of the gravitational perturbation h and
its partial dérivatives. Similarly, we compute general closed form équations also for

and JC. These formulae are valid for any material content in a weak-field and

are particularly adapted for numerical intégration.

Nevertheless, when dealing with a huge amount of data, numerical intégration

becomes very time consuming. For this reason, in chapter 3 we provide analytical

solutions of these intégrais in some simple, but widely used, cases. First, we apply

our results to the Schwarzschild’s geometry to provide an explicit solution for the

time transfer, the direction triple and the ratio K up to the 2PM order. It allows

us to check our resuit with [Teyssandier 2012] in order to validate the general for
mulae presented in chapter 2. Then, we place ourselves in the PPN framework,

which is allowed when dealing with space missions within the Solar System. We

use the PPN metric recommended by IAU2000 to write Te/r and k% as functions of
the scalar and vector gravitational potentials w and w obeying to the Poisson équa

tions [Linet & Teyssandier 2002]. First, we présent the case of an isolated axisym-
metric body treated in [Le Poncin-Lafitte & Teyssandier 2008] and then we focus
on the solution for a System of point masses in linear uniform motion.

Chapter 4 focuses on the covariant general modeling of the observables needed

in space navigation, namely the Ranging and Doppler for a moving emitter and

receiver, and in astrometry, namely the angular distance between two light sources

and the projection of the direction of an incident light ray on the 3 — plane of a given

observer. Such an observer can be represented by a comoving tetrad that we also

provide up to the 2PM order. We obtain exact relations for these observables within

the TTF formalism. This means that these quantities can be explicitly determined

without the knowledge of the null géodésie connecting the émission xA and réception

xB events. Using the results of the previous chapters, we présent our équations in

a form well adapted to numerical intégration for any weak field metric. We also

présent their analytical solution in a spherically symmetric gravitational field as

well as estimâtes of the relativistic correction up to 2PM for BepiColombo and

GAME-like missions [Hees et al. 2013].

In chapter 5 we apply the results of the first part of this thesis to astrometry,

focusing on the Gaia mission. In this context, two well-assessed relativistic models

already exist: the Gaia Relativity Model (GREM) [Klioner 2003] and the Relativistic
Astrometric Model (RAMOD) [de Felice et al. 2006]. Thanks to the collaboration
between the French group and the Italian group responsible for RAMOD, we de-
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veloped an analytical comparison of the modeling for the astrometric observable

between the three models. In particular, we show how the time of flight and direc

tion triple of a light ray propagating between xa and Xb can be computed within

GREM and RAMOD giving results équivalent to those presented for the TTF in

chapter 3, at least at the approximation needed for Gaia [Bertone et al. 2013a]. This
comparison provides a further validation of our formulae and it complétés a previ-

ous study about the different approaches used to model relativistic aberration in the

Gaia context [Crosta & Vecchiato 2010].

In chapter 6, we apply our model to the analysis of a simulated astrometric

observation. In collaboration with the italian group responsible for GSR (one of

the two software in charge for the réduction of Gaia observations), we implement

a ”GSR-TTF” code, implementing our formulae and Gaia attitude to compute the

astrometric observable. Thanks to the functionalities of GSR, we compare our re

sults with those of GREM and of PPN-RAMOD (a non-perturbative model of the

RAMOD family). Finally, we présent its application to the reconstruction of a small

celestial sphere.
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A large part of this work is based on the mathematical formal

ism of the Time Transfer Functions (TTF) [Linet & Teyssandier 2002,
Le Poncin-Lafitte et al. 2004, Teyssandier & Le Poncin-Lafitte 2008]. In sec
tion 2.1, we define the émission and réception Time Transfer Functions

'Te/ri.%Ai %Bi ^a/b)i giving the coordinate time of flight of a photon between xa and
xb and we présent the relations to get the ratios of the covariant components of

the tangent vectors ka = dxa/d\ to the light ray at xa and xb- In section 2.2, we
recall that in the weak field approximation it is possible to get explicit équations

for Te/r{xAi^BitA/B) as a PM expansion without computing the whole trajectory
of light. Once the TTF is known, it is then possible to dérivé explicitly the ratios

giving the direction triples \ki)A/B = {h/ko)a/b as well as KL = (ko) b /(ko)a- Fi-
nally, in section 2.3 we présent our procedure to directly compute these ratios within

the PM approximation of GR and up to the second order as closed form intégrais

(Le. function of a metric tensor and its dérivatives only) taken along the straight
Minkowskian line between xa and xb-

2.1 Synge World Function and direction of a light

ray

We suppose the existence of a unique light ray T connecting two events xa —

[etAi &a) and xb = (cts,XB) in a spacetime described by a given metric g^u. We
dénoté by A the unique affine parameter along T parametrized by the curve xa

which fulfills the boundary conditions À (xb) = 1 and à(xa) = 0. The Synge World
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Function [Synge 1960] of space-time is the two point function f1(xa,xb) defined as

the intégral being taken along the null-geodesic T connecting the two events. For

our purpose, the World Function has some interesting properties,

i) two points xa and xb are linked by a light ray if and only if

so that Çî(x,xb) is the équation of the light cône C(xb) at xb- If £1(xa,xb) is
explicitly known, it is then possible to détermine the travel time ts — ta of a

photon connecting the two points as a function of their coordinates. It must

be pointed out, however, that solving the équation xa, ts, Xb) — 0 for tA

yields two distinct solutions tA and tA since the time-like curve x — xb cuts

the light cône C(xb) at two points x\ and xA, x\ being in the future of xA. If
we consider xa to be the point of émission of the photon and if xb is its point

of réception, we are only concerned by the solution tA. A similar reasoning can
be stated for the solution with respect to ts and for the light cône Q(xa,oc)-

For the sake of compactness, we will from now on use the notations tA = tA
and tB = t%.

Indeed, it is possible to defîne two Time Transfer Func-

tions [Linet & Teyssandier 2002]

depending on the instant of réception ts or émission tA of the signal and called

the réception and the émission Time Transfer Function, respectively. Explicit

expressions of these functions are different except in a stationary space-time in

which the coordinate System is chosen so that the metric does not dépend on

x° — et. In this case, we get Tr(xA,tB,XB) = Te(tA,XA,XB) — T(xa,xb)-

(dxa \ fdxa\
ii) the vectors {ka)A = ( —— and (ka)B = —— I tangent to the géodésie T

\ dX J A \ dX J B
at xa and xb, respectively are given by

(2.1)

ü(xA,xB) = 0 (2.2)

tB U — 7)(xA , •Xb'}— *7é(U> X^^^Xb') (2.3)

and (2.4)

From property i) it follows straightforwardly that

S"ï(t£ — c%(xa,tB^Xs), ts>XB) = 0 (2.5)
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and differentiating this équation with respect to xlBl tB and xlA, one obtains

0,
dfl(xA, xB) dTr(xA: tB,xB) dü{xA, xB)

1 -

dxlB

dTr(xA:tB:XB)

dtA

diï(xA,xB)

dtA

d<à(xA,xB) dTr(xA,tB,xB)

dx
B

dtB

dü(xA:xB) = Q

dt, dx1
+

dtB

dtt(xA,xB)
dx1

= 0

(2.6a)

(2.6b)

(2.6c)
'A v*A kj^a

These relations hold for any couple of points (xA,xB) connected by a null
géodésie. Substituting now Eq. (2.4) into Eq. (2.6), we get the following rela

tions [Le Poncin-Lafitte et al. 2004] between the ratio of the covariant components
of the tangent vectors to the géodésie and Tr

b'n- (fa = —C

dTr

dx
B

1 -
dTr

dt)

-1 -1

dTr
= c

dx

_ (kp)B

“ (ko)A
= 1

A

dTr

dtB

Also, noting that

Ü(tA, XA, tA + cTe{tA, XA, XB),XB) = 0 ,

(2.7a)

(2.7b)

(2.7c)

(2.8)

similar expressions for (kij ^ and JC can be deduced for Te(tA,xA,xB). Once
known explicitly, the quantities defined in Eq. (2.3) and Eq. (2.7) can be used to

define Ranging and Doppler in space navigation and astrometric observables (which

will be detailed in chapter 4). We will now focus on the détermination of the function

Tr(xAltB,xB) in its PM expansion.

2.2 Post-Minkowskian time transfer and delay

functions

The covariant components of the tangent vector to the null géodésie TAB at xA must

satisfy the isotropie conditions

(g^KK)XA = o . (2.9)

Dividing this équation side by side by [(ko)A]2 , and then taking équa
tion (2.7b) into account yields the following partial differential équa

tion [Teyssandier & Le Poncin-Lafitte 2008]

dTr
0i/^0
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Obtaining a solution to this équation is as challenging as the détermination of the

null géodésie équations. However, this task is easier in the weak field approximation.
Let us write the metric tensor as follows

9l±v — Vfiiy + hflV J (2.11)

with =diag( — 1, +1, +1, +1) a Minkowskian background and a perturbation

admitting the following general PM expansion

CO

V = EG"^”)- (2-12)
71=1

Considering Eq. (2.11), the réception Time Transfer Function can then be ex-

panded as
x N _ RaB , Ar(xA,tB,XB) /010^

Tr{XAitB,XB) T , (2.13)
c c

where

RaB — \xB — xa\ (2-14)

and Ar(xA,tB,xB)/c is of the order of h^u. We call it the réception time
delay function. Our problem is then to détermine Ar(xA,tB,xB). Follow

ing [Teyssandier & Le Poncin-Lafitte 2008], we shall replace xa by a variable x and
\xB — x\

consider tB and xB as fixed parameters. Inserting %{x,tB,xB) = b

Ar{x,tB,xB)

c
into équation (2.10), it yealds now

2N
• dAr(x,tB,xB)

dxl
W(x,tBixB), (2.15)

«X/ , \ • • i
where N = and W(x,tB,xB) is given by

\xB — x\

,00 \ OATiuOilW{x,tB,xB) = hm(x_) - 2Nlh0l{x_) + NlNJhij(x_) + 2 h0i(x_) - Njhij(x.)

dAr(x: tB, xB) dAr(x, tB, xB)dAr(x,tB,xB) t
X _ r

dxl dxl
rfJ + hlJ(xJ)

being the point-event defined by

x- = (x°B - \xB - x\ - Ar(x, tB, xB),x) .

dxJ
(2.16)

(2.17)

Since x is a free variable, we consider the case where x is varying along the straight

segment joining Xa and xB . Then we get

N = NAB, (2.18)

where NaB = ;—— while we define x = z_(A) and
Rab

Z-{\) — xB — \RaBNaB 0 < A < 1 . (2.19)
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Using Eq. (2.15) and Eq. (2.19), the réception delay function is then governed by
the differential équation

dAr(z_(\),tB,xB)
dX

with the boundary condition

RAB

2
W(z-(\),tB,xB) , (2.20)

Ar(z_(0),tB,xB) = 0 , (2.21)

which follows from the boundary condition Ar(xB, tB, xB) = 0 and from Eq. (2.19).
As a conséquence, we hâve

AT(z_(\),tB,xB) = J W(z_(\'),tB,xB)d\' . (2.22)
Using now Eq. (2.16) and noting that Z-( 1) = xA, we can get from Eq. (2.22) the
integral-differential équation

Ar{xA,tB,xB) = -
Rab f

J 0
(h00 - 2N'hw + + (2.23)

2 [/ioi(z_(A)) - Njhis(z-(A))] x 3Ar(z~^>.’ tB’XBl

where £_(À) is the point-event

<9Ar(;z_(À), tB, xB) <9Ar(;z_(A), tB, xB)
dxl dxi

dX! ,

z-W= (x°B - XRab - Ar^_(A),ts,ccB),2-(A)^ . (2.24)
This resuit is quite convenient to obtain the general PM expansion of the réception

delay function.

We define the PM expansion of the contravariant components of the metric as

gT = rT + hT ,

where
oo

=

n—1

and the set of quantifies can be obtained using the relations

,

and for n > 2
n—1

»(n) ~ V V " "(p) '
P=1

(2.25)

(2.26)

(2.27a)

(2.27b)
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It is then possible to expand the réception delay function as a sériés of ascending

powers of the Newtonian gravitational constant G

oo

Ar(æ, tB,xB, G) = GnA(rn\x, tB, xB) , (2.28)
n= 1

where it has been demonstrated by [Teyssandier & Le Poncin-Lafitte 2008] that each
perturbation term Aj^ can be obtained as a line intégral taken along the straight
line (2.19). This resuit is particularly interesting and can be interpreted as an

application of the Fermât principle [Perlick 1990] in the nth-post-Minkowskian ap
proximation. It follows from Eq. (2.24) that each term of Eq. (2.26) can be written
as

h^(z-(\),G) = EG’X»)(4> - XRAB-(2.29)
n—1

where we can substitute Ar from eq. (2.28) and then perform a Taylor expansion

around the point 2_(À) defined by

z.(X) = {x% -\Rab,z-(\))(2.30)

in order to obtain the PM expansion of A), G). A straightforward calculation
yields

OO

h^(z.(X),G) =YlGn9r{n)(z(2.31)
n= 1

where the quantities g(^(z_(À), tB, xB) are given by

^i)(z.(A),lB)aiB) =g^){z_(A)) (2.32)

and

9^(n)(Z-(X)’ fB,XB) 9^-W)
n—1 m

+ ^^(^(11,(8,*,)
m= 1 k= 1

dkgfils

(n—m)

(dx°)k
(2.33)

MA)

for n > 2 with

(-lf
k\

E
6-1—fc

‘ jfe

A^+1)(æ,tfî,a3B) ,
J=i

(2.34)

where /i, Z2, •••, h are either positive integers or zéro (m > 1 and 1 < k < m).
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Substituting for h^(z-(X),G) from Eq. (2.31) into Eq. (2.23), we get the terms
of the PM expansion (2.28) of the réception time delay function Ar as

1 /
A{r\xA,tB,xB) = -Rab \

1 fl

&-r\xA, tB,Xs) = ^AB j

9(i°, - 2 N'ABg°ù+ N'ABN’ABgl,(2.35a)
J z-{\)

9°-(2) - 2 N'abS2{2)+ N'abN]ab^{2)
- (Z-(\),tB,XB)

+2

+rf3

9°{i) Nab9{\)

dA?
dx1 dxi

- z-{A) dx

dA^
r-(z_{\),tB,xB)

- (2-(A),tB,xB)

dX (2.35b)

and

1

A^(xaRbiXe) = -Rab j 9°-°(„> - 2 N'ab^u)+ (n)
- (Z-(\),tB,XB)

n— 1 i i r) /\(n~p)

«E la» - «VU,,...,
P= 1

71—1

p=i

n—p—l

X

dA(rp) dAi"-p) n—2

dx1 dxi

dAiq)dAln-p-q)

+E9*4)(z-W'fB’xs)
- {z-(\),tB,xB) P=1

<7=1
dxi dxJ

(Z-{\),tB,XB)

dX (2.35c)

for n > 3, the quantities being defined by équations (2.32) and (2.33). It should

be noted that the intégral expressions occurring in Eq. (2.35) are line intégrais taken

along the zeroth-order null géodésie of parametric équation x — z_(A), where z_(A)

is defined by équation (2.30). Following a similar reasoning is then possible to dérivé
the émission delay functions Ae.

/N

2.3 Post-Minkowskian expansion of (A'^a/b and AC

The PM expansion of the direction triple (ki)A/B and of the ratio K defined
in Eq. (2.7) can in principle be obtained through an analytical dérivation of
Eq. (2.13) where the terms A^ are given by Eq. (2.35). This is done explicitly
in [Teyssandier 2012] up to the 2PM approximation in the case of a Schwarzschild
metric. In this section, we présent a general way of computing Eq. (2.7) up to 2PM

order and for any weak field metric. In particular, we develop a procedure close

to the one used for the TTF in section 2.2, showing that these quantities can be

also computed as intégrais of the metric and its dérivatives, the intégral being per-

formed over a straight line joining the emitter and the receiver. Using Eq. (2.13)



28 Chapter 2. TTF formalism for light propagation

into Eq. (2.7), it yealds

(* b = \Nab + déB
i dAr

b = Nab +

JC =
1 dAr

1
c dis

1 dAr

c dis

-î

(2.36a)

(2.36b)

(2.36c)

The goal of this section is to présent analytical formulae for the partial dérivatives

of the PM expansion of the réception delay function valid up to the 2PM approxi

mation [Hees et al. 2013].

Notations and variables used

The results presented in the following sections dépend on some variables that we

will define here. First of ail, the Minkowskian path between the emitter and the

receiver (which is a straight line) is parametrized by A (whose values are between 0

and 1) and is given by Eq. (2.19) and Eq. (2.30) which it can be useful to rewrite as

z°(À) = cbB - AÆab , z(À) = xB{l — A) + \xA (2.37)

The first dérivatives of these expressions with respect to the variables xa/b are given
by

4;(A)

4.i(A)

9z°(A) _XNi _ dz°(A) _ -0 ,x)
— *NAB — — ZB,iW ’

dx'A

dzj{A)
dx\

dx\

= \5{ ,

and

4,(A) = = (1 — A)(5- ,
dx\

(2.38a)

(2.38b)

(2.38c)

while the second dérivatives write

d2z° A d2z°

z°AA-k,{x)~ d^dÂA ~ r7b(NabN>ab ~ ~ “ (2-38d)
We will use the function m and its dérivatives m>a defined from the PM expansion

of the space-time metric as follows

™<i)( A) =
RAB

- 2JVJbAS + NabKb9(!
rk A)k l JW

zHA)

and

^'(i),a(/^)
Rab

-2+
rk J)k l Jtl

n«(A)

(2.39a)

(2.39b)
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being defined by Eqs. (2.11)-(2.27). Finally, we shall also define the functions

h1 and hlk as

and

fyojW =
dm(«)j dmb).i

dx\
=cst

dx
B =cst

hik
n(n)

NabJ^j + 2-2$,^ + N*N‘N\BgfajJH ik JfeZ

Jz“(A)

dh
(n)

d/i
(n)

2i?AB L

=cst

00 ( rkl

dxkB
=cst

- ^ab^ab)+ 2ggj - 2NÏBUfàjNlAB

+9{liNAB) + &nABN^B[ZNkABNlAB - 5“)
Jz«(A)

(2.40a)

(2.40b)

Expansion at first PM order

Using the notations introduced in the previous section, the expression of Af1^ given
in Eq. (2.35a) writes

ùJp{xA,tB ,xb) =
Rab

$) - 2NXbQTd + ^ab^S0i

(1)

Then, the dérivatives of Af1^ can be easily determined as

dX—l m(i)(X)d\ .
-**“(A) J0

(2.41)

These équations are équivalent to those derived in [Hees et al. 2012b]. Finally, the
following relations deduced from Eq. (2.42) will be useful for the computation of the
2PM order

A(r1\z(X),tB,xB) = / m(i){X/ï)dn ,
Jo

(2.43a)

<9A^ fl r n
(z(\),tB,xB) = / m(i)>a(Xfj.)z%ti(XfjL) + /i*(1)(A/x) d[L , (2.43b)

Jo L Jdx{

d_AJ_
dtB

(z{X),tB,xB) = X
Jo

î

(2.43c)
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Expansion at second PM order

/o\

The expression of Ar j given in Eq. (2.35b) can also be rewritten with our notations
as

A ?\xA,tB,xB)= [ MX)+(2.44)
J0

with

2i(A) = m(2)(A) - Af1)(2:(A),tjB,ccjB) m(i)i0(A)

2b(A) =

m(2)(A) - m(i)>0(A) / m(1)(A^)d/i
Jo

-dr(*(A))

= [Jim -/fc* $,] r

(2.45a)

(2.45b)

m{i),c,(X^)zA,iM) + ^îi)(V)

(2.45c)

and

I3(A)
Rab

2

Rab

E
j=i -

3

gAr1}
dxJ

rl

-, 2

(*(A))

Ei / ™(i),c.M)zA,jM) + tyd/i
j=i Oo

(2.45d)

where we hâve used the relations (2.43). We can now dérivé the expression of the

partial dérivatives of Eq. (2.44) as
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where the dérivatives with respect to the émission coordinates xa and réception

coordinates xB can be written as follows

dl1

dx
A/B

= m(2),c*ZA,B,i ± h\2) ~ ^^(A), h, Xb) l),0c^2/£M ± h\1)fi

dZ2

d)

-m(1),0—(*(A)),
UXA/B

(2.47a)

dx
A/B

“FN1abÇ(i) ^ 9(1) + (^AB^p)^ Çfi(i),aRkAB)Z<A/B,i

d2Ail)

dA(i)

zP(A) dxi
i*W)

+ RAsg% ~
ZP(A) dxlA/Bdxi

(zW). (2.47b)

and

dx
dïz _ ±nab dA (i)

A/B J=1
dad

(*(*))

—Rab ^
3=1

dA(i)

dad
(*(A))

2 A (!)d2A

dx\jBdxj
:(*(*)) (2.47c)

and those with respect to the coordinate time of réception tB give

dX oa!1)
— = cm(2)rcm(i)iooAf)(2(A))-m(1)i0—-(z(A))

(2.47d)

d^
dtR

RABg°(l)fi Rab9(1),0fc Ak
dA (i)

. Z0(A) dx*
•(*(*))

+ ftutfjï) -
d2A/1

. ZP(a) dtBdx*
(z(A)) (2.47e)

and

di5
5X3 =

j=i
dtBdxi

(2.47f)

with ail quantities being evaluated at À, the notation given above and where we
obtain

92Ar1) *1

-(«(A)) = / mm,aPzÂjzA/B,i± h\\),oczXi+
dx'A/Bdxi

+ ~hll),aZA/B,i±hm\^dM (2.48a)

and

92aP *1 „

dtBdxd = c m(i))ao(A//)^jj(A/i) + /i|1) 0(A/z) d/i . (2.48b)
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The relations given above can be used to compute the direction triple k{ and /C up

to the 2PM order in an intégral form particularly adapted for a numerical évaluation

with any metric.

2.4 Conclusions

In this chapter we presented the TTF formalism [Linet & Teyssandier 2002], a pow-
erful tool giving direct access to the coordinate time of flight and frequency shift

of a photon between two points and to the tangent vectors to its null-geodesic

at point-events xa and xb- We showed how these quantities hâve been derived

by [Teyssandier & Le Poncin-Lafitte 2008] within the PM approximation using the

properties of the time transfer function Te/r{tA/B-,xA,xB)- Finally, we presented a

very general way of deriving the direction triple (Ïz^a/b and the ratio K, up to the
2PM order as intégrais of the metric and its dérivatives along the Minkowskian

straight line between xa and xb- This closed form expansion is valid for any

weak field space-time metric and is particularly adapted for a numerical intégration.

These results hâve been presented in [Hees et al. 2012a] and will be summarized

in [Hees et al. 2013].
In the next chapter, we will apply our results to the case of a static, spherically

symmetric space time to retrieve analytical solution up to the 2PM order, which is

known for this particular geometry. Moreover, we will provide the PPN expansion of

our formulae as well as their solution in the gravitational field of a System of bodies

in translational motion. These results will be then used in chapter 4 to define and

compute the Doppler and astrometric observables.
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In chapter 2, we presented general équations in closed form up to the 2PM order

for the coordinate time of flight of a light ray between two events xa and xb, for

the direction triples (&*) at xa and xb and for the ratio K. In this chapter,
V J A/B

we présent an application of these results to a static, spherically symmetric space-

time where an analytical solution of Eqs. (2.35a)-(2.35b), (2.42) and (2.46) can be

obtained at the 2PM order. Using the simplifications proposed in section 3.1, we

compute Eq. (3.20) and Eq. (3.25) which are the main results of this section. By
comparing these results with [Teyssandier 2012] we validate our formulation. For

practical applications, we then use the metric tensor adopted in the IAU2000 (pre

sented in section 1.2.2). In section 3.2.1, we provide a closed form PPN expansion of

the TTF in Eq. (3.29) and of its dérivatives in Eq. (3.30). These équations allow us
to choose appropriate gravitational potentials for each application. An appropriate

choice of w and w, representing the scalar and vector gravitational potential respec-

tively, allowed [Le Poncin-Lafitte & Teyssandier 2008] to provide the time transfer
and tangent vectors in the field of an extended body (using Eq. (3.31)). We présent

here a further application of our équations to the gravitational field of a System of

point bodies in motion (using Eqs. (3.38)-(3.40)). This work on the TTF formalism

shall be useful to describe light propagation in the Solar System at (and in some

cases beyond) the précision needed by most space missions at présent times (see

Table 1.2).
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3.1 Static, spherically symmetric space-time

In this section, we consider the case of a static, spherically symmetric space-time.

With these assumptions, we use isotropie coordinates, so that the space-time metric

can be written as [Stephani et al. 2009]

ds2 = —A(r)c2dt2 + B{r)5ijdxldxR (3.1)

As mentioned in [Linet Sz Teyssandier 2013], the light rays of metric (3.1) are the

same as the light rays of any metric ds2 conformai to Eq. (3.1). We can thus simplify
the calculations by choosing ds2 — A~l(r)ds2 and consider the following metric

ds2 = —c2dt2 + ^A,r} ôlldxldxJ — —c2dt2 + U (r)ôijdx1dx^. (3.2)
A[r)

We can now perform a PM expansion of the function U(r) as

U(r) = 1 + U(1\r) + U{2\r) + ... . (3.3)

This procedure simplifies the results found in chapter 2, allowing for an explicit

analytical solution of the delay function and its dérivatives up to the 2PM order.

Using Eq. (2.41), the réception delay function at the 1PM order is defined by

A{r\xA,xB) =
Rab

U{1\z(X))dX . (3.4a)

Then, using Eq. (2.42) its first dérivatives can be written as

Rab „• NdA<l). , U^{rA).
-q-t(xa,Xb) = j Nab + 2 'Xb+ 4 (rA - Rab ~ 4)

fl X d£/(1)

and

saP
dx

/_ _ N _ Um(r,i) ,rj Rabx'b
\Xai3Cb) 0 XJab T 0

B
2

Rab

r1 î du(1)

L z(x) dr

%R +
N'

AB / 2
+ R2ab ~

(z(X))dX

r1 x duw

Jo *(A)

(3.4b)

(3.4c)

(z(X))dX ,

where z(À) = |z(À)|, z(X) is given by Eq. (2.37) and where, for the sake of simplicity,

we put

ta = \xa\, rB = \xB\.

Also, one can show that

dA (i)
m

—(z(A),æs) = -tf«(z(A))-4â

+A rab j nab / 2 c>2 _ 2 a
2 XB A- ^ VM nAB 7 B)

dU(1)

'o z(Xfj) dr

(3.5)

du .
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Substituting for the metric tensor from Eq. (3.2) into Eq. (2.44), the 2PM order of

the réception delay function is given by

A^2)(æA,æB) =
Rab

U^2\z(X)) + Xz(X) d\, (3.6)

where we defined X3(X) = 2X3(X)/Rab- Using Eq. (3.5), one then gets

Îî(A) =
3=1 L

d&?\z(\))
dxJ

i 2

lr|B .1)' (3.7)

where it can be useful to note the following relations

z2-HiB-rl = X[r\-R\B-rl (3.8a)

4R2zBrl - (z2 - R2B - r%? = -A2 (rA + rB)2 - R2AB (rA - rBf - R?AB (3.8b)

and where we pose

IJ, dU^r1 n BU(1)
V(z(A)) = / ——and RzB = \xB - z(X)\ .

Jo Z\XN drz(\n) dr

From Eq. (2.46), the dérivatives of Aj2^ are then given by

(3.9)

dA (2) N
AB

dx1 R
A?) +

RAB

AB

Xzi(X) dU®
2 J0 L z(\) dr

dX*

(z(A)) + â?:(A) dX (3.10a)

and

dA (2) N

dxlB Rab
ab ^(2) _|_ Rab A)) + #i(A)

with

dl3

z(\)

dUm

dr dx
B

dX , (3.10b)

,,A(A> = -ï{2Awc/<1,(z(A))^r(z(A))
-A

2y(z(A)) dv,_,^ „ x2 d2 w „ ,2 d2
2 dx\

MA)) {rA + rb)2 — R2ab x [ra - rb)2 - R2ab

and

dî*

dx

—X2V2(z(\))[2r| R\b+ - r%)x‘B] } (3.11a)

1 r„„ ..z‘(A)„m, ,.,,dUm, , v,V(z(A)) 3V ,
(A) = -i{2(1-A)W^ WA))^WA))"A 2 ^WA))

(î"a + rBf - R2ab (ta - rB)2 - RAB +

k (rA + rB — RAB)RAB + (t2a — Rab — t2b)x'b ) (3.11b)
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and where the dérivatives of R(z(A)) can be computed by

dV
{z(\)) =

dx'A j 0

and

dV

dx
r(*W) =
B

d2U^

dr2

Ô2Uî1)

dr2

(z{A/t))

MV))

Afi2zl(\n)
AfJL‘

dU(1)
MA))

z2(A/i) ^ <9r

(1 — X/i) fiz1 {X/i)

MA/i)

MM'
*3(AaO_

d/ji (3.12a)

z2(A/i)

(z(A))23(v)J dfi. (3.12b)

3.1.1 Application to Schwarzschild geometry

To illustrate the previous results, let us consider the Schwarzschild-like metric whose

PM expansion in isotropie coordinates is

ds2 = (—1 + 2— — 2/3— + ...^ c2dt2+ (l + 2y— + -c—- + ...^ ôijdx'ldxJ, (3.13)
V r rz J \ r 2 rz J

where m — GM/c2, /3 and 7 are the usual PPN parameters, £ is a post-post-
Newtonian parameter and +... means that terms of order O(G3) are neglected
(/3 = 7 = £ — 1 in GR). The function U(r) appearing in (3.2) can be written as

9

777 777

U{r) = 1 + 2(1 + 7)— + 2k-j + ... , (3.14)

where k =2(1 + 7) — /3 + |e. Introducing Uir) from Eq. (3.14) into Eq. (3.4) leads
to

ôaP_
dx\

dA

dx]

(i)

pl /

Rab( 1 + l)m J = (7 + l)m ln (
m

-(i + 7)—nab +
rA

Rab i , 3Va
-7^^ + —— (rA

TA + Tb + Rab\

TA + rB- RAB )

AB ~ r!)AB (Jl d2 „2
il

-4(1 + 7)777.

rA [{rA + rB)2 ~ R2ab]

2(1 + 7)777 Rab

(rA + rB)2 - R2ab [ rA

d+7)^s-^k
'A Z

M + ^ab(xa + rB)

4(1 + 7)^ - + -

(+4 + ^b)2 - RAAB

(3.15a)

(3.15b)

| N*AB(r2 p2 _ 2 a -4(1 T 7)777

+4 [(+4 + 7T?)2 - RAAB J

2(1 + 7)777

(+4 + 7+?)2 - R2aAB

Rab

tb
XB - NAB(rA + rB) (3.15c)
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The first resuit is équivalent to the expression of the Shapiro time de-

lay [Shapiro 1964] while the two dérivatives are in agreement with the results found

in [Blanchet et al. 2001] at the first PM approximation. The computation at the
2PM order is more cumbersome. Substituting for U(r) from Eq. (3.14) into Eq. (3.6),

one gets

A[2) = RABKm2 [ f X3(X)dX (3.16)
Jo z IM ^ Jo

where Z3(À) is given by Eq. (3.7) as

x = 4(1 + 7)2m2rB
31 j Z{X) [(^(A) + rB)2 - X2R2ab]

= -4(l+7)2m2^

once y(À) is determined from Eq. (3.9) as

y(A) = _2(1 + 7)m^ = (3.18)

Replacing this expression in Eq. (3.16) and integrating, one gets

A_
(z(X) + rB)2

(3.17)

Af\xA,xB) = m2—^-
rArH

AC arccos fi

V1 - A*2

(1+7)2

1 fl
(3.19)

with fi — (nA.nB) and nA/B = xA/BfrA/B. The TTF is obtained up to 2PM when
one substitutes for Ar from Eqs. (3.15) and (3.19) into Eq. (2.13). We get

%(xA, tB,xB) — tB — tA —

m2RAB

crArB

Rab (7 + 1 )m ^ / rA + rB + RAB \
c c \rA + rB - Rab)

ac arccos fi (I + 7)2

y/l - /i2 1 + M
(3.20)

We recover a resuit previously derived by different approaches

in [Richter & Matzner 1983, Le Poncin-Lafitte et al. 2004, Ashby & Bertotti 2010]
(see also [Brumberg 1987] in the case where f3 = 7 = 5 = l).

We can now compute the dérivatives of AÎ2^. As an example, we will only
focus on the dérivative with respect to xlA, the other dérivative (with respect to

xB) can be computed similarly. Using Eq. (3.13)-(3.14) into Eq. (3.12), one gets
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straightforwardly

dV

dx
r(*W) =

8(1 + 7)mA

z3(À) (z(X) + rB)2 - X2R2A
l 2

AB

(z2(A) + 2z(X)rB + z(A) • "B

-AR
AB 2z(X)rB + z{A) • xB (3.21)

Then, replacing this resuit in Eq. (3.11a) leads to

<9X3 4(l + 7)2m2rgA
flri r n 1 2 ' s

A 23(A) (z(A) + rB)2 - A2i%B
r# + 4rs-z(A) + 3X2(A) - A2R2AB

XR
AB rB + 4rsz(A) + z2(A) - A2R2AB (3.22)

which, after some lengthy but straightforward calculations, can be written as

o /1 i \2 2 ^
8(i+7)m_ A

2 (^(A) + rB)zi{A) + z(X)RiAB
(3.23)

*(A) NA) + rB)2-A24]2.
Finally, one needs to compute the intégral corresponding to the second term of the

right hand side (r.h.s.) of Eq. (3.10a), namely

RAB Az*(A) dUW
2 Jo l ZW dr

«A»
2 AzZ(A)

dX = —2K,RABm2 I —7TT^-dA
'o ^4(A)

(3.24)

k rrr arccos /i Æab^a Æab^b
T l1'

rArB^/l -fi2 V rA(l-/i2) 'rrB(l-/i2)) r2 rB(l -/i2) *

Substituting from Eq. (3.19), Eq. (3.23) and Eq. (3.24) into Eq. (3.10a), one gets

k m2RAB

ÔAP) nm I arccos fi

dxA rArB 1 yj 1 /i,2
yyi ^AB^a ^AB^B

rA(l-/72) ^rB(l-/x2) (3.25a)

7-a(1 ~ /i2) î"at*b(1 + A4)

Rab

Ta{ 1 + aO
(™a + nlB)

.(2)
A similar reasoning for leads to

5A(2) ~~2b m I arccos \i

dxlB rArB y ^/1 - fR _

Rab

TV fi RABnlB , _ RaB^a
iVAB — „ . .9 \ ' M;

rB(l-//2) ta(1-//2).

rB(l - //2) ^a^b(1 + /i)

(3.25b)

K - Mn’s) 1 + (1 +4)-(m-1-wjs +~+f»^)
rs(l + /i)
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Some algebra allows to put the last two results in the same form as the one found by

[Teyssandier 2012], which is an evidence that our formalism is correct. Of course,

in the case of the Schwarzschild metric the analytical dérivation of Eq. (3.19) is

much more direct to get Eq. (3.25), which can also be used to check our calculation.

Nevertheless the method presented here is very efficient for numerical évaluations of

the dérivatives of the TTF, necessary when using more complex metrics and for the

test of alternative théories of gravity, when the intégrais are no longer analytic.

3.2 Systems of moving or extended bodies

3.2.1 PPN expansion of the TTF and its dérivatives

The metric recommended by the IAU2000 resolutions [Soffel et al. 2003] is expressed

in the PPN framework and at 1PM order by [Klioner & Soffel 2000]

w wl / W \

9oo = -1 - 2— , g0i = 2(1 + 7)— and gi3 = 5i3 \1 + 27—J , (3.26)

where w and w1 are the scalar and vector potentials, respectively. Computing the

inverse of the previous metric, one gets

500 = —1 + 2^ , 3“) = 2(1 + 7)^- and (l - 27-) . (3.27)
Since the PM expansion of our équations naturally includes the PN approximation,

it is then straightforward to compute ra(A), m(i),a(A) and h(A) from Eqs. (2.39-2.40)
as

and

m(i)(A)

m(i),a(A)

Rab

c2

Rab

(1 + 7)w - 2(1 + 7):
NAr w

J^(à)

(1 +7)w>a - 2(1 + 7)
NaB • W,a

J.+ (À)

(3.28a)

(3.28b)

w w
k "

~(1 + 7)~5Nab + 2(1 + 7)“+
'(A)

(3.28c)

We can now use relations (2.13) and (2.41) to compute the TTF within the PPN
framework as

Tt(xai 7b, xb) — ts — tA

RaB Rab
’l ^

(1 + 7)w - 2(1 + 7)
NAb w

Jz+A)
d\ + G(G2). (3.29)
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This relation can be used whatever the forms of the scalar and vector potentials

are. The resuit of this intégral is well-known in the case of a static point mass

(see section 3.1) or in the case of an axis-symmetric static mass (see section 3.2.2).
In the case of an ensemble of moving point-masses, this intégral can be computed

numerically or through a PN expansion of the potentials (see section 3.2.3).

Similarly, we can compute the dérivatives of the Time Transfer Functions. In-

serting (3.28) in (2.42) and using (2.38), it yields straightforwardly

-oaP) n+Vl fl

&jr = -*J0 [RAB^-wN'^l^dX (3.30a)
1 rl

H—- / [(1 + 'y)wjtKlAB\ — 4ARab • w,i + 2(1 + l)wl]zt3i\\ d^ >
c Jo y

-Qj~ = [RAB(l-X)w,i + wNiAB]ze(x)dX(3.30b)
1 z*1

_ J + 4(1 — X)RAB ' w,i + 2(1 + 'y)Ujl]z0(X)
and

fl NAB-w>t
-ÔT- = K1 + 7)^,t - 2(1 +7) -]z0(\)d\. (3.30c)

OtB C J o C

These formulae are valid for any scalar and vector potentials, particularly adapted for

a numerical intégration and the modeling of observables for space science. If needed,

the results of this section can be easily broadened by considering an extension of the

IAU metric valid at the 2PM order [Minazzoli & Chauvineau 2009].
In the following, we shall recall the équations describing light propagation in the

field of axisymmetric bodies and provide explicit formulae in the case of a System of
bodies in translational motion.

3.2.2 Solution in the field of an extended body

The description of light propagation in the field of an isolated axisymmetric body

has been developed within the TTF formalism as a PN expansion at the or

der 1/c2 by [Le Poncin-Lafitte & Teyssandier 2008]. Space-time is then station-
ary [Stephani étal. 2009], so that Ar{xA,xB) = Ae(xA,xB) = A(xa,xb), the
center of mass O of the perturbing body is taken as the origin of the quasi-

Cartesian coordinates x1 and the axis of symmetry is chosen as the a;3-axis. Let
us also assume that the smallest sphere centered on O and containing the body

has a radius equal to the équatorial radius re of the body and that the segment

joining xA and xB is outside this sphere. At any point x such that r > re,

the gravitational potentials w and w are then given by the multipole expan-
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sion [Thorne 1980, Kopeikin 1997, Linet & Teyssandier 2002]

w =

GM

r

1

71=2

and w = 0 , (3.31)

where k dénotés the unit vector along the rr3-axis, the Pn are the Legendre poly-
nomials, M is the mass of the body and the coefficients Jn are the mass multipole

moments. Putting

xA , xB
nA = — and nB = — ,

rA rB

one can expand Eq. (3.29) as a sériés of Jn and write

(3.32)

T(xa, xB) — -Rab + Am(xa, xB) + Aj (xA, xB) ,
c '

n=2

(3.33)

where Am is the coordinate time delay due to the monopolar part of the gravitational

potential (3.31) and Ajn are its multipolars components. Using Eq. (3.29) with
Eq. (3.31) and integrating along the curve (2.30) gives the well-known Shapiro time

delay [Shapiro 1964]

Am(xa,xb) =
, ,sgm.
(7 + 1)—-ln

f E4 + Pb + Rab

\rA + rB — Rab J (3.34a)

the quadrupole term Aj2 as in [Linet h Teyssandier 2002]

Aj2(xa,xb)
7+1 GM J2 r\ Rab 1 - (k.nA)2 1 - (k.nB)2

2 c3 rArB 1 + nA.nB rA rB

fJ_ + [ik.(nA + nB)\2
\rA rBJ 1 + nA.nB (3.34b)

and the Ajn terms presented explicitly in [Le Poncin-Lafitte & Teyssandier 2008].

The multipolar expansion of the direction triples at xA and xB is given by the

analytical dérivation of Eq. (3.33) with the delay functions (3.34). On these basis,

one can rewrite Eq. (2.7a) as

(fc)5 = ~Nab + nf{xA,xB), (3.35)

where K,f(xA,xB) is given by the multipole expansion

OO

k?(xa,xb) = (k?)m(xa,xb) + '^2(K,?)jn(xAixB).
71=2

(3.36)
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Then, one can dérivé the monopolar and quadrupolar terms of the direction triple

from Eq. (3.34)

(k?)m(xa,xb) = (7+ 1)
GM 1

c2rB 1 + nA-nB

Rab
nB (i + ^Anab

L rA \ ta) J
, (3.37a)

(k?)j2(xa,xb) = (7+ 1)
12

k • (nA + nB)

nB — NAB

(rA + rB - RAb)3

nB — NAB

(rA + rB- Rab)2

nB + Nab

(rA + rB + Rab)3

nB + NAb

(rA + rB + Rab)2

1

+ 2

+

1 ~ (fc • nA)2

ta

1 (r^ + rB)RAB

B

+ 1 ~ (fc • ^b)2"

fc.(nA + nB)

(1 + nA- nB)2

k — (k nB)nB
1 üUb 2(fe • ns)fc + [1 - 3(fc nB)2] nB

2r| rA 1 + nA
(3.37b)

while an expression for the multipolar terms of higher order is given

in [Le Poncin-Lafitte & Teyssandier 2008].

The contribution of the mass multipole moments to the deflection of light has

to be taken into account in astrometric missions of high précision such as Gaia for

light rays grazing the deflecting body (see Fig. 1.2 and discussion in [Klioner 2003,

Le Poncin-Lafitte & Teyssandier 2008]). It shall then be included in an astrometric
model aiming at interpreting Gaia’s observations. In this sense, Eqs. (3.34)-(3.37)
show that there would be no theoretical limitation to include the quadrupole light

deflection term in an astrometric model based on the TTF formalism (see chapter 6).

3.2.3 Solution in the field of a System of moving point bodies

We provide now explicit formulae within the TTF formalism for the case of a Sys

tem point-like, slowly moving and non-rotating bodies [Bertone et al. 2013a]. This
System can be represented by the metric (3.26) where we consider for the scalar and

vector gravitational potentials

GM

wp{x't)=^^ô) and (3.38)
P v-,-, P' nP\z,x)

with Mp the mass of the perturbing body P and Rp = \Rp\, with Rp(t,x) being
defined as

Rp(t,x) = x — xpit) , (3.39)

where Xp(t) is the coordinate position of the perturbing body P. We shall consider

in the following a PN expansion of the trajectory of the perturbing bodies xp,

namely
Vp C2(t — tc)2CLp

Xp(t) = Xp(tC) + c(t - tc) 1-
c

+
2

(3.40)
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where vp(tc) and ap{tc) are the velocity and accélération of the body P, respec-
tively and te is some fixed moment of time [Klioner & Kopeikin 1992] that we could
use to optimize our approximation. Let us study the amplitude of the two first terms

of the expansion. For quasi-circular orbits, one has

vP
< y/ëp

GMs

c2 R
and

PS

dp
< £p

GMS

c2 R2PS
(3.41)

where Ms is the mass of the Sun, RPs the distance between the perturbing body

and the Sun and £p = ^ &P, ep the orbital eccentricity of body P. Let us consider
1 - eP

the circular case £p = 1. We know that

case where Rps = 108 km. Then one has

GM,

vP
10' and

dp

1.5 /cm, let us then consider the

- 1.5 1(r16km~l , (3.42)

so that one can reasonably neglect the accélération terms.

Regarding the choice of te the simplest choice would seem to set te = tp since in

classical astrometric applications we only hâve direct access to the réception time tp-

Unfortunately, this choice would lead to unnecessarily big errors in some practical

cases, as we show in the following. Let us imagine that the réception is done on a

remote satellite at 109 km from the perturbing body.

If te is defined such that te = tp, one has c(tm — te) ~ 109 km, where tm is the
time when the photon is at its closest distance to the perturbing body. Therefore,

taking into account Eq. (3.42), one has

o(tm /'C') Vp_
C

~ 10°km and
c2{tm ~ tcf

2
~ 70km ,

meaning that by neglecting the accélération term in the expansion one would hâve

an error of 70 km on the impact parameter 6 of the trajectory of the light beam.

For the déviation angle a, one has a oc 1/6. Therefore, the relative error on the

déviation angle will be of the order of 70 km/b (since 1/(6±70) ~ ( 1 =F 70/6) 1/6). If

6 ~ 3.103km (a photon grazing Mercury for instance), then the error on the déviation
angle will be around 2% - which is unnecessarily big.

Indeed, one can compute the angular error introduced by the assumption te = tp

on the modeling of a light signal grazing Jupiter as

Aa — —
AGMj

c2b2
A6, (3.43)

where Mj is Jupiter mass, Jupiter Schwarzschild radius is approximately 2.8 meters,

6 is Jupiter équatorial radius for a grazing photon and Ab = 70km is the error on

the impact parameter. Then Aa ~ 16 /ias, well above the desired précision for the

model. The same computation for Satura and Mars gives respectively 15 fias and

0.2 fias.



44 Chapter 3. Applications at 1PN/2PM approximation

On the contrary, if te ~ tm, then c(tm — te) ~ 0 and the error introduced

by the approximation on the trajectory is small. This means that te is chosen

as the maximum approach time of the photon to the perturbing body, such that

\xy(tc) - xP(tc)| b, where x7(t) is the trajectory of the photon.
In that case, the additional vp/cc~2 terms in the time transfer or déviation angle

coming from the development of the trajectories of the bodies in the application of

the TTF will be at the same numerical level that the terms coming from the c~3

part of the metric (also due to the motion of the perturbing bodies: c~3 « Vp/cc~2).

The last statement works for the most general case and therefore one should

define te as being such that |x^(tc) — xp(tc)\ ~ b, similarly to what stated in
[Klioner 2003, Klioner & Peip 2003].

In the following, we shall then consider a rectilinear uniform trajectory such as

xP(t) = xP(tc) + c(t - tc)/3p + Axp, (3.44)

where /3p = vp(tc)/c and Axp is some typical error made on the position of the
perturbing body due to the linear approximation chosen for its trajectory and below

the desired accuracy of our model.

In the next sections, we présent the development of the TTF and direction triple

with the gravitational potential (3.38). A similar reasoning would allow to compute
K.

Coordinate time of flight

Taking into account the metric (3.26) with the potential (3.38), Eq. (3.29) writes

(3.45)

Rp(t, X)_ za(A)
d\ , (3.46)

%(xa, tp^xp] vp) = -Rab + A^(x^, tp, xp] vp) .
c

At the chosen approximation, we get

Q ^ H
A^(xaRbiXp^vp) = (7 + 1 )Rab— yz 9p \

c P J0

where the intégration path z°_(À) is given by Eq. (2.37) and where we define

gP = NAp — (3p (3.47)

Using Eq. (3.44), we then expand Eq. (3.39) as follows

KP(Z°(A),z_(A)) = RPB - XRABgP + 0(RP Axp) , (3.48)

where for practical reasons we set the notation

Rpx = xx — xp(tc) - c{tx ~ tc)(3p , (3.49)
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R
with Rpx = \Rpx\ and Npx = v . Noting the boundary conditions

Rpx

RP{0) = , (3.50a)

jRp(1) — i?pp — RabÇp = , (3.50b)

iîpp — .Rp^ = gpRab , (3.50c)

and substituting for i?p from Eqs. (3.48)-(3.49) into Eq.(3.46), one can compute
the réception delay function A[^(au, tp, £Ep; Vp) as functions of a:^, xp and of the
coordinate velocity up of the perturbing body. One gets

Expanding gp in Eq. (3.51) it is possible to show explicitely the terms depending

on (3p as

^\xaRb,xb\vp)
< , i\G a a fi ( RpA ~ Rpa ' NAB \
(7+D^E^{

( Rpa — RpA • NAB \

(3.52)

+/3p(£c) AE u ln +

RpB

\ RpB — RpB • NAB J

NabRpb Rpa — NabRpa

Rpb — Rpb • Nab Rpa — Rpa • NdAB

By setting (3p — 0 and then gp = NAb in Eq. (3.51), we retrieve the static case given

in [Le Poncin-Lafitte et al. 2004] in the case of a single gravitational source. We also
applied Eq. (3.51) to the simple configuration of a signal propagating from the outer

Solar System to the Earth and grazing Jupiter. Our évaluation of the impact of

the orbital motion of Jupiter on the coordinate time of flight of the photon is of

the order of 10 ps, in accordance to previous results [Linet & Teyssandier 2002]. A
similar reasoning allows to compute the émission delay function Ae(^, cca, xb) as

G

AxA, xB] vP) = (7 + 1)— ^2 mp9p ln
gpRpb + Rpb • gp

gpRpa + Rpa • gp
(3.53)

Finally, we check the formai équivalence /S^\xa, tB, xB\ vp) = A£\tA, xa, xb\ vp)
stated in Eq. (2.3) when we consider Eq. (2.13). Using Eq. (3.50) and the relation

R
2

AB g2PR2x ~ (gp • Rx)2 R2ABg2pR2x (rab gp • Rx)2

R2paRpb ~ {Rpa * Rpb)2 > (3.54)

with X taking the values "PB” or ”PA”, into Eq. (3.51) and after some algebra, it

is straightforward to show its équivalence with Eq. (3.53).
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Light direction triples

We provide here the steps to compute the tangent vector at réception event

(xA,tB,XB,xp,Pp,l)- First, we need to compute the partial dérivatives

of w(x,t) and w(x,t) as

w
( 4\ 2KA Rp • (3P (te)
(x, i),0 = — 2. MP R3 W (x, t)j = -G E MpSç- (3.55a)

p p

and

w
2G ^ Rp • (3p(tc) K A (O KKU)

= —7^3 Vp > wj= • (3-55b)

Then, using Eq. (2.7a) and Eq. (3.30) with the metric (3.26) and the gravitational

potential (3.38) and (3.55), we compute the light direction triple

~NAB + (7+ 1)“2 J I Rab92p (RABppitc) - R\b9P
+ (wPB-N'ABRPB-pP(tc))1~X]1 - A

#pWJ i?p(A)
dA ,

A-A2

(3.56)

where the terms (3 and gp describe the deflection due to the dynamics of the System.

The explicit computation of the intégrais appearing in the r.h.s. of Eq. (3.56)

may be obtained by taking into account the boundary conditions set in Eq. (3.50).

After some algebra, we get an explicit expression for the light direction triple in the

case of multiple deflecting bodies in uniform motion as

(^)p ~ ~Nab1 + (7 + l)^â S
RabRpb

A4 p

R2pb92p - (Rpb • gp)2
(3.57)

x (RpB - Nab^J {R2PB ~ RPARPB ~ RabRpB ' {3p{tcŸj

—R2pbRab92p

+RlPBgp RpbRpa ~ RpB + RabRpb Qp

+(3p(tc)RpB (RpA — Rpb){RpB Nab) + RpbRab

^{tc)-NABl(3p(tc)-NAB^ Rpb + Rpb • NaB
+(7+u* E m* n p„.+

Rpa + NAB

+d(c-4) .
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As far as we know, this resuit is new within the TTF approach. In chapter 6, we check

our formulation with some previous results obtained in [Klioner & Kopeikin 1992]

through the analytical solution of the null-geodesic équations. We shall note that,

from the point of view of the astrometric data analysis, the last équation is obtained

as a function of ail known quantifies (i.e. the coordinates of the observing satellite

and the mass distribution in the Solar System) and of the astrometric unknown (i.e.

the source coordinates). Again, by setting f3p — 0 and gp — Nab, the perturbing

bodies are fixed at their position at time te and we easily retrieve the static case

proposed by [Teyssandier & Le Poncin-Lafitte 2008] in the case of an isolated de-
flecting body. It is also interesting to evaluate the contribution of the translational

motion to light deflection using the définition given in [Teyssandier 2012]

AX~\NABxkB\, (3.58)

where the light ray is considered as coming from infinity. The expression of (Jzij
is then deduced from Eq. (3.57) where N — NAb and Rpa ~ —Rab in this case.

Introducing the impact parameter bp and the angle a between Rpp and N we get

bp = Rpssma, so that

G

AX = (7+1)3E
M

RpB gp — (Npb gp)2
bpg2P 1 + Npb • gp

+ |iV x {3P \ Rpp( 1 — Npb • N) + 0(c~4, RAb) (3-59)

The logarithmic term disappears in Eq. (3.59) and can thus be neglected for sources

at quasi-infinity. Moreover, numerical estimâtes of Eq. (3.59) for various deflecting

Solar System bodies are in agreement with [Klioner 2003].

3.3 Conclusions

In this chapter, we illustrated the application of the general formulae presented in

chapter 2 to a space-time metric well adapted to describe the impact of Solar System

gravitational field according to the accuracy required for the data analysis of présent

and future space experiments. The application to spherical geometry at 2PM will

be summarized in [Hees et al. 2013] while the PPN application of our formulae has
been first presented in [Bertone & Le Poncin-Lafitte 2012] in a general case and then

specialized for bodies in translational motion in [Bertone et al. 2013a]. In chapter 4,
we shall use the developments presented here to define the relativistic observables

used in radio-science and astrometry while in chapters 5 and 6 our formalism will

be applied in the context of the Gaia mission.
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In this chapter, we will présent the application of our formalism to the modeling

of relativistic observables for radio-science and astrometry. First, we note that in

a general case the emitter and receiver of an EM signal are in relative motion. In

section 4.1, we provide an analytical and an itérative way of dealing with this problem

and we retrieve the so-called Sagnac terms in Eq. (4.4). Then, we focus on the

Doppler observable commonly used in radio-science, writing explicit formulae for the

one-way (in Eq. (4.9)) and the multi-ways (in Eq. (4.11)) frequency shift. Concerning
astrometry, we provide a formulation for two kinds of relativistic observables: the

incident direction of an incoming light ray in the reference frame of an observer (at

Eq. (4.15)) and the angular séparation between two light sources (at Eq. (4.17)).
Ail these quantities are expressed as functions of the metric tensor, its dérivatives

and the functions T, {h)a/b and JC defined in the previous chapters as closed form
intégrais. Finally, in section 4.3 we apply our formulae to provide estimâtes of the

1PM and 2PM relativistic corrections to the observables of BepiColombo and of

GAME-like missions in the Schwarzschild gravitational field of the Sun.
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4.1 Moving emitter and receiver

Let us consider two observers OA and Ob located at points A and B. The second

observer Ob receives an electromagnetic signal from Oa- This signal is received at

the coordinate time tB and at the position Xb and it was emitted at time tA and at

the position xA-

The coordinate time of flight of a photon between Oa and Ob in the case of a fix

emitter and receiver has been computed in Eq. (2.13) and Eq. (2.35). It can then be

used to compute two physical quantities (see [Bertone et al. 2012b] and references
therein) used in radio-science:

• the Ranging, describing the distance between probe and ground station, is de-

fined by adding to the coordinate time of flight (times c, the speed of light) the

corrections accounting for the tropospheric and ionospheric delay, the Process

ing time of the signal, etc... Since the study of the atmospheric or electronic

delay on an EW is far from the goals of this thesis, in the following we shall

only focus on the définition of the TTF (2.3) in the general case of a moving

emitter/receiver.

• the Doppler, related to the radial velocity of the probe with respect to the

Earth, represents the frequency shift of the signal between Oa and Ob and,

for practical applications, it is obtained by differentiating two successive mea-

surements of the time of flight of the signal. We shall detail the Doppler
observable in section 4.2.1.

In realistic cases, neither the emitter nor the receiver of the electromagnetic signal

are static in space-time. Instead, they are following the trajectories xA{t) and xB(t),

parametrized by the coordinate time t. In this case, relation (2.3) becomes implicit

since xa dépends on tA

tB ~tA = %(xA{tA),tB,XB(tB)) - + 1ar(xA(tA),tB,XB(tB)).
(4.1)

This causes difficultés in the computation of the TTF since tA is not known a

priori. We présent two solutions : an analytical expansion of the émission time tA
or a numerical itérative method.

4.1.1 Sagnac terms

The analytical procedure follows the same method as the one presented in

[Petit & Wolf 2005]. The idea is to expand the position of the emitter

xA(tA) = xA + [tA - tB)vA + \{tA - tBfâA + ~(tA - tBfbA + • • (4.2)
where the tilde refers to quantities evaluated at t = tB) so that xA — xA{tB),

vA = vA{tB) =
dxA

dt
àA — aA{tB) —

tB

d xA

dt2
and bA = bA{tB) =

tB

d3x,

dt3
tB
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Introducing expansion (4.2) in Eq.(4.1) leads to

St = £*S. + St^àA + St2

cDAB 2cDab
v\ — Ùa - Dab —

Va • Dab

DAB

St3

2cDAb

1 r n ~ v\vA • Dab {va • DAB){àA • DAb)
-bA Dab - vA • aA + m

AB

+
(va Dab)"

+ -Ar(xA,tB,xB)
St dAT(xA,tB,xB)

dxl

St2
+—

c

ldAr{xA,tB,xB) d2Ar(xA,tB,xB) „• .
dx1

CL a +

dx\dx\
vaVJa + ... , (4.3)

where St = tB - tA =Tr(xA(tA),tB,xB(tB)), Dab = xB{tB) - xA(tB and DAB =

\Dab\- An itérative solution of the last équation gives

/-r/ /, \ , /. \\ DAB Va‘DAB
Tr{XA(tA),tB,xB(tB)) = +

DAB

2 c3
v\ +

va DAb

DAB

(Va DAb){v2a — àa • Dab) + ~^D2ABbA • Dab
1

1 ~

~2 Dabva • cla

— àa • Dab

1

+ -Ar(xA,tB,xB) -
Dab dAr(xA,tB,xB)

dx1

va • Dab

c2DAB

Ar(xA,tBjxB) + 0(l/c5) (4.4)

This is no longer a PM expansion but becomes a PN one since the TTF is expanded

in terms of quantities such as vA/c, (DAb • ô)/c2 that should be small to assure
the convergence of the sériés. It should be noted that for this PN expansion Af1^
is considered of order G/c2. This computation can be extended to higher orders if
necessary. This analytical expansion makes clearly appear what is usually referred

to as Sagnac terms. While being analytical, it has the disadvantage to be valid for

small velocities/accelerations only (which is not problematic in the Solar System but

can be limiting in other applications like binary pulsars).

4.1.2 Itérative procedure

Instead of using the analytical expansion presented above, one can use an itérative

procedure. This procedure is standard and can be written as
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Start: AO) _
lA ~ tB ~ dTr(xA{tB),tB^XB(tB)) (4.5a)

Loop:
j-b+i)
bA = tB - %(xA($),tB,xB(tB)) (4.5b)

End: when
+

1 c-+- < e (4.5c)

with e the desired accuracy and (i) indexing the itération steps. Each step of this

itérative procedure requires to evaluate the TTF. In practice, in the Solar System this

procedure converges very quickly after two or three itérations. The main advantage

of this procedure is that no PN expansion is done and that it is really easy to

implement.

The two procedures presented in section 4.1 allow one to compute tA, the co-

ordinate émission time of the signal emitted along the world line XA(t), from the

réception coordinate time tB and the coordinate of the receiver xB. The analytical

expansion (4.4) is a PN expansion of tA up to (P(l/c4) while the itérative procedure
(4.5) is valid at any order.

4.2 Doppler and astrometric observables from the

Time Transfer Function

In this section, we give the relativistic formulae to compute the Doppler and astro

metric observables as functions of the TTF and its partial dérivatives. The expres

sions presented here make no expansion of any kind and are therefore very general.

4.2.1 Doppler observables

The one-way frequency shift

Let us note vA/b the proper frequency at which the signal was emitted/received.
Then, the one-way frequency shift is defined by

Av

v

one-way

=^-i.
A—> B 1>A

It is well-known that the ratio vB/vA can be expressed as [Synge 1960]

(4.6)

7/ I?B
VB _ UBK\i k* UBu°R + ulB ( ki

va UAkv k0 u°d -I- u\ ( ki
B = 1 + ^Bki

1 + frAkf

dr

dt

dtA

dtB

dt

dr
(4.7)
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where u^A,B = (dx^/ds)a/b is the four-velocity of the observers A or B. &A/B ~
ki

ko

of the null tangent vectors kA and kB at the point of émission xa and at the point
of réception xb, respectively. Terms appearing in the right hand side of Eq. (4.7)

can be expressed as

^ are the ratiosdx\/B kE (
——— is their coordinate velocity, while K, = and ki = (

CLL A/q y

U
0 _

A/B — 900 + 2g0i(3l + ÇijP1^\a/b and
dtA

dtB

1 + Æ

1 + Pa

(4.S)

where the expressions of K and kf are given by Eq. (2.36). It is then straight-
forward to define the one-way frequency shift (4.6) as a function of Ae/r and their

partial dérivatives. Substituting for and /C from Eq. (2.36) into Eq. (4.8)

and inserting it in relation (4.7), one gets the exact expression [Teyssandier 2009,
Hees et al. 2012b]

t'a _ iffoo + 2go# + gÿpfid2 ^ 1 nabPb
va isoo + 2 + gijpH 1 - BfiA +

Multi-ways frequency shift

In this section, we consider a multi-ways frequency shift. For example, let us suppose

that the signal is emitted by an observer Oa, transmitted by an observer Ob and

then received by an observer Oc (which can eventually be Oa)- The frequency shift
is then defined as for the one-way

Ai/ _ vç
” c ~

where the ratio vq/va can be expanded as follows

(4.10)

Vc VC s VB,r (A 1lN
— = àvB—- , (4.11)
Va VB,e VA

with i/B,r the proper frequency received by the observer Ob and vB,e the proper

frequency emitted by the same observer. The factor ôvB = —— stands for any
VB,r

frequency shift introduced between the réception and re-emission of the signal in B,

for example due to the transponder of a probe.

The computation of the multi-ways frequency shift is then straightforward: the

two terms vc/vB,e and vb^/va from (4.11) are one-way frequency shifts and can be
computed using (4.9). This procedure can be easily generalized if more links are
needed.
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4.2.2 Astrometric observables

The goal of astrometry is to détermine the position of celestial bodies from angular

observations. We focus on two main approaches: the modeling of the direction of

incidence of a light ray in a certain reference frame and the angular séparation of

two light sources.

Angular direction in the observer’s reference frame

One way to get a covariant définition of this astrometric observable is to

use the tetrad formalism [Brumberg 1991, Misner et al. 1973, Weinberg 1972,
Klioner & Kopeikin 1992], thus giving the direction of observation of an incoming
light ray in a particular tetrad comoving with the observer 0&.

Let us note A^ the components of this tetrad, where (a) corresponds to the
tetrad index (running between 0 and 3) and fi is a normal tensor index which can
be lowered and raised by use of the metric. The fact that the basis vectors of the

tetrad are orthonormal implies

d) ~~ rl{oî){fi) (4-12)

The components of the tetrad allow us to transform the coordinates of the wave

vector from the global coordinate frame to the tetrad frame with

k(a) = A (a) M 5 (4.13)

where kM are the components of the wave vector in the global frame while /qa) are
the components of the same vector in the tetrad basis. The projection of the light

ray in the tetrad frame is given by the normalization

_ h®
y/8jkkWk(k) &(0) k(o)’

(4.14)

where we used the properties of the null-vector k^ and the fact that the metric is
locally Minkowskian in the tetrad basis. The vector quantities defined by Eq. (4.14)

represent the so called ”director cosines” of an observation, i.e. the cosines of the

angles formed by the projection of kM on the tetrad axes (which is a relativistic
observable). Using the transformation law (4.13) into Eq. (4.14), one gets

A(.)/c0 + XJ{i)kj

\°0)k0 + \3(0)kj

Aq) + A^kj

A(0) + AJ^kj
(4.15)

where kj is the direction triple defined in (2.7). This expression is consistent with the
one derived in [Klioner 2004, Crosta & Vecchiato 2010]. Using the relation (2.36),
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one can then express the incoming direction of the light ray in terms of the réception

delay fonction and its dérivatives [Bertone & Le Poncin-Lafitte 2012] as

nW =

A<o> (! - î!fc) - Ho)Ni - A(0)ll
Again, this expression is very general and makes no assumption on the tetrad con-

sidered or any expansion of the involved quantities.

Angular séparation of two sources

Some astrometric observations measure the angular distance between two celestial

bodies instead of projecting the coordinate direction of the incident light ray in

the observer’s reference frame as described in the previous section. This observ

able can also be computed within the TTF formalism. Indeed, it was shown in

[Teyssandier & Le Poncin-Lafitte 2006] that the angular distance </> between two in
cident light ray coming from two celestial bodies and observed by a moving observer

Ob can be written as

(4.16)

• 20 1 (g00 + 2gokpk + gki/3k(3l) gij(k[ - h)^ - kj)
, (4.17)

B

Sm 2 “ 4 (1 + (3mkm)(l + (3%)

where and (kÇj are the direction triples of the two incident light rays
expressed in the global coordinates.

4.3 Applications

As an example, we use the équations presented in section 4.2 to give estimâtes of the

relativistic corrections to BepiColombo and GAME-like observables. We shall work

in the Schwarzschild metric due to the gravitational field of the Sun, neglecting ail

other gravitational sources.

4.3.1 Application to BepiColombo

BepiColombo mission will reach an impressive level of accuracy on its measur-

ments: 10cm on the Range and 10~6m/s on the Doppler [Milani étal. 2002,
Iess et al. 2009]. Such an accuracy needs to model the influence of some 2PM terms
coming from the Sun on light propagation [Tommei et al. 2010]. As example of how
the équations presented in this paper can be applied to a real measurement, we

simulate a 1 year Mercury-Earth Doppler link taking into account only the gravi

tational contribution from the Sun. The Earth and Mercury orbits used here corne

from the JPL ephemerides [Folkner et al. 2009] obtained using the SPICE toolkit
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[Acton 1996, Acton et al. 2011]. Substituting for the metric, Ar and its dérivatives
from Eq. (3.13), Eq. (3.15), Eq. (3.19) and Eq. (3.25), respectively into Eq. (4.9)
one can write the expression of the Doppler around a spherical mass

vb

va

2— + 2/32# _ §/33b£
ta r rA 2 r\

with

Qa

and

Qb

Nab Va 2(1 + 7)777

c[{rA + rBf - R2a
[{rA + rB)NAB vA + RABnA vA]

AB.

nm

crArB

arccos fi

yi-M2

Rab

RabUa VA Rab^b • VA
Nab vA — — + M

1 -

rA(l - /i2)

(1 + 7)2m2

crArB(l + fi)

Nab • vB

rA( 1-M2) rB(1-V)

(«b • vA - nnA • uA)

vA +
Rab

rA(l + /i)

2(1 + 7)771

(nA vA + • va) (4.19a)

c[{rA + rB)2 - R2ab\
[{jra + rb) Nab • vB — RAbvib v#]

K777

crArB

arccos /a

V1”^2

Rab

RABnB • vB Rab^a vB
Nab vB H — - /i

rB(l -//2)

(1 4- 7)2ra2

crArB(l + /i)

rs(l — M2) ^a(1~/^2)

(nA • - [inB • vb)

ATAb • vB —
Rab

rB(l + ii)
(nA -vB + nB- vB) (4.19b)

We use relation (3.20) and Eq. (4.18)-(4.19) to estimate the order of magnitude
of the first and second PM contribution to the Mercury-Earth Range and Doppler

represented in Figure 4.1. The different peaks correspond to Solar conjunctions

in the geometry of the observation. Moreover, we would like to stress the fact

that the expression of the time transfer used in the standard modeling of radio-

science measurements (see for example [Moyer 2000]) is only an approximation of
the relation (3.20) and can be written as

TA + rB + Rab + (1 + l)m\

rA + rB - Rab + (1 + 7)m) '
(4.20)

A comparison of Range and Doppler simulations obtained using expressions based

on the approximation (4.20) and on expression (3.20), complété at the 2PM order, is

m \ ± , Rab , (7 + 1)™,
Tr{xA, tB,xB) = tB-tA = 1 ln
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Time [day]

Figure 4.1: First and second PM contributions to the Range and the Doppler for

a 1 year Mercury-Earth radio-science link. The peaks correspond to different con-

junctions between the Earth, the Sun and Mercury.

illustrated in Fig. 4.2 to quantify the accuracy of the standard radio-science model-

ing. The order of magnitude of the error committed by using the simplified formula

(4.20) instead of the complété 2PM formula (3.20) is just below BepiColombo ac

curacy. Nevertheless, future space missions are going to aim at increasing the level

of accuracy on radioscience measurements so that the current modeling will hâve to

be improved to include the full 2PM correction on light propagation.

4.3.2 Direction of a light ray emitted by a star and observed

on Earth

A comoving kinematically nonrotating tetrad

In order to simulate an astrometric observable, one needs to specify the reference

frame used for the projection of the incident direction of a light ray. As shown in

section 4.2.2, this reference frame is mathematically modeled by a tetrad AÇ\, which
explicitly appears in the computation of the astrometric observables (4.16).

In this paragraph, we will develop the expression of a kinematically nonrotat

ing tetrad comoving with an observer in the case of a static spherically symmetric

space-time described by the metric (3.1). This tetrad is called "kinematically nonro

tating” in the sense that the spatial coordinates transformation between the global

coordinate System and the local one does not dépend on a time dépendent orthogo

nal matrix [Klioner & Soffel 1998]. This type of local coordinate System is currently
used in the définition of the GCRS [Soffel et al. 2003] or in the context of the Gaia

mission [Klioner 2004].

We define da the vectors of the natural coordinate basis and e(Q) the basis vectors
of the tetrad. The transformation matrix between these two basis is noted x and

(a)



58 Chapter 4. Observables up to the 2PM order

-0.01
0)

ro

cc -0.02

ç
b

-0.03

E

r 1.5

0.5

-'V'- ^t j::W y:::

v i

50 100 150 200

Time [day]

250 300 350

Figure 4.2: Différence between the standard formulation of the Range/Doppler used

in radio-science modeling (4.20) and the exact 2PM expression (3.20). The peaks
correspond to conjunctions of Earth, Sun and Mercury.

it is defined by

e{a) = . (4.21)

The great advantage of such a basis is that the tetrad is locally orthonormal, so

that the metric is locally Minkowskian. This transformation physically corresponds

to a change of basis in the tangent space of the differential variety. From the point

of view of the metric, we can easily show the link between the g^v of the natural
coordinate basis and rj(a)(p) in the tetrad basis using Eq. (4.21) as

,fl{oî)(p) = d{e{a)i e(/3)) = = ~ • (4.22)

Since in the tetrad basis the metric is locally Minkowskian, spécial relativity applies

locally. In particular, ail indexes related to the tetrad (between parenthesis) are

upped and lowered using Minkowsky metric tensor, while natural coordinate basis

indexes are set up and down using the metric.

We can split the transformation between the natural coordinate basis and the

local comoving basis of the tetrad in two parts = Aj^A^ [Misner et al. 1973].
The first step (parametrized by A£) consists in orthogonalizing the natural coor
dinate basis to obtain a local orthonormal coordinate basis static with respect to

the chosen coordinate System. The second part of the transformation (parametrized

by A"aj) consists in applying a Lorentz boost to this orthonormal basis to make it
comoving with the observer. Quantities related to the final tetrad will be denoted
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with indices into parenthèses, while quantities expressed in the intermediate tetrad
will be denoted with a hat.

Since the space-time metric (3.1) is diagonal, it is straightforward to orthonor-
malize the basis

1

VA(r)
Â1 = Â? = 0

0 i
U =

bi

\fW)'
(4.23)

The second step consists then in a Lorentz boost of the previous tetrad in order

to make it comoving with the observer. We will note the four-velocity of the ob

server (expressed in the global coordinate System) by ua = dxa/ds. This velocity
can also be expressed in terms of coordinates related to the intermediate tetrad

ûa = dxa/ds = = (^y/A(r)u°, y/B(r)ul^j. Finally, the coordinate velocity of
1 dx*

the observer will be denoted by pl — ——. The same quantity expressed in the
c dt

i- i • m 1 dxl B(r)
intermediate tetrad is p = = * /

c dt V A(y)
Pl. The second matrix transformation

is thus simply provided by a standard Lorentz transformation matrix whose inverse

is provided by

A(0> = 7

with

A° _ a* —
A(p - A(o) - -w

7 = [1-0
-1/2

Ab) ” ôij +
Y

= 1-
B(r) p2
A{r)

Y

7 + 1

-1/2

(4.24)

(4.25)

Combining Eq. (4.23) and Eq. (4.24) we get

A
o

(0)

Ao

0)

7 = 1
\MM y/A(r) - B(r)02 ’

(4.26a)

7/â*

y/B(r) VA(r) ~ B{r)(32 ’
(4.26b)

7/dJ IB(r)
yjA(r) y A(r) y/A(r) - B(r)(b2 ’

àjj + = ôjj y/B(r)Pi0i
y/B(r) y/B{r) y/A2{r) — A(r)B(r)P2 + Air) — B(r)P2

(4.26c)

,(4.26d)

Eq. (4.26) is the exact expression of a kinematically nonrotating tetrad in a static,

spherically symmetric space-time and it can be expanded to 2PM order if necessary

using Eqs. (3.13)-(3.14).
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Application: incident light ray emitted from a star observed on Earth

As a further example, we consider a hypothetical star located far away from the

Solar System and nearly in the Earth orbital plane. We compute the incident di

rection of the light ray emitted by this star and observed on Earth. The reference

frame used to project the incident direction is given by a comoving kinematically

nonrotating tetrad. The only gravitational interaction considered here is the one of

the Sun described by the metric (3.13). The incident direction of the light ray can

be computed using Eq. (3.15c) and Eq. (3.25b) into Eq. (4.16), and the expression of

the tetrad (4.26). The incident direction of the light ray with respect to the tetrad

is denoted by and can be parametrized by two angles a and <5, usually called

right ascension and déclination

77b) = (cos a cos 5, sin a cos 5, sin S) . (4.27)

Figure 4.3 represents the 1PM and 2PM contributions to a and Ô as well as the

total deflection angle. As one can see from relation (3.25b) and Eq. (4.16), the

2PM correction to the angular measurement dépends on two terms: a first term

proportional to k and a second one proportional to (1 + y)2, both of them be-
ing formally of order 2PM. Nevertheless, it is known that the term proportional

to (1 + y)2 can be absorbed in the 1PM term by a change of variable and it is
therefore usually called ”enhanced post-post-Newtonian term” (for further details

about this, see [Klioner & Zschocke 2010, Teyssandier 2012]). The enhanced post-
post-Newtonian term has an important contribution of the order of few mas while

the 2PM contribution proportional to k has a contribution of 10 //as only even for

signais grazing the Sun.

4.3.3 Angular distance between two stars as measured from

Earth

For this application, we consider two hypothetical stars located far away from the So

lar System nearly in the Earth orbital plane and we compute the angular séparation

between them as measured from Earth. This représentation can be used as a very

simplified model of the GAME space mission [Vecchiato et al. 2009, Gai et al. 2012].
The only gravitational interaction considered here is the one of the Sun described

by the space-time metric (3.13). Relation (4.17), giving the angular séparation be
tween two incident light rays, can be simplified in the case of static and spherically

geometry described by the space-time metric (3.1). It can then be written as

1

4

(A(rB) - B{rB)P2) 1 k' - k\2

B(rB)( 1 + (3mkm)(l + PlH)
(4.28)

where and (k'j'j are the components of the direction triple of the two incident
light rays expressed in global coordinates that can be computed using Eq. (2.7) with

Eq. (3.15c) , A(r) and B(r) are the functions parametrizing the metric (3.1) and
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Figure 4.3: Contributions to the observed direction of an incident light ray coming

from a star over one year of observations from the Earth. The central peak corre

sponds to the Earth, Sun, star conjunction. Left: contributions expressed for the

right ascension and déclination in the tetrad (see relation (4.27)) - Right: contri
bution to the total angular deflection. The 2PM contribution is the total formai

2PM contribution of around 3 mas (included the so-called ”enhanced post-post

Newtonian” terms). The k contribution of around 10 fias is the due to the terms

proportional to k in (3.25b).

/3l = vl/c is the coordinate velocity of the observer. We apply the last expression

in a Schwarzschild geometry. The functions A{r) and B(r) are then given by (3.13)
and the ki are determined by (2.36), once we consider Eq. (3.15c). Figure 4.4

represents the évolution of the angular séparation (4.28) with respect to time and
the contribution of the 1 and 2 PM corrections. As for the direction of the incident

light ray (see previous section), the 2PM correction to the angular measurement
dépends on two terms: a first term proportional to k and a second one proportional

to (1 + y)2. In this case too, the so called enhanced post-post-Newtonian term has
an important contribution of the order of few mas for signais grazing the Sun, while

the 2PM contribution proportional to k has a contribution of 10 //as only.
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Figure 4.4: Contributions to the angular séparation between two incident light rays

coming from two stars as observed from Earth over one year. The central peak

in the relativistic corrections correspond to the Earth, Sun, star conjunction. The
2PM contribution is the total formai second order contribution of around 10 mas

(included the so-called ”enhanced post-post Newtonian” terms). The ac contribution,

not exceeding some fias for signais grazing the Sun, is proportional to the k term in

(3.25b).
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4.4 Conclusions

In this chapter we provided general équations to define the Doppler observable used

in radio-science and two kinds of astrometric observables using the results presented

in chapters 2. The expressions we présent make no expansions of any kind and can

therefore be applied to any space-time metric. Moreover, we presented to methods

to treat the case of a relativistic observation between a moving emitter and receiver.

As an example, we also provided applications of these formulas to the simulation

of high-precision observations of the kind of BepiColombo and GAME within the

Schwarzschild field of the Sun up to the 2PM order. To provide a full description of

the incoming direction of the light signal in the observer’s reference frame, we also

define a kinematically nonrotating tetrad valid at 2PM. These results hâve been

presented at [Bertone et al. 2012a] and will be summarized in [Hees et al. 2013]. In
the next chapters, we will focus our attention on the modeling of high-precision

astrometric observations in the context of Gaia. The formulae presented in this

chapter will be of capital importance in the development of the Gaia observable

based on our model. This observable will be first compared to the approaches chosen

for the data analysis of the Gaia mission (see chapter 5) and then implemented in

the GSR software (see chapter 6).
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From now on, we focus our attention on relativistic astrometry and the Gaia

mission. In section 5.1, we présent the two approaches developed for the analysis of

Gaia observations, namely the Gaia RElativity Model (GREM) and the Relativistic

Astrometric MODel (RAMOD). In section 5.2, we présent the set-up of our astro

metric observable, defined in Eq. (4.15), in the Gaia context. Finally, in section 5.3
we présent a procedure to compute the time transfer and the direction triples in

GREM and RAMOD, in order to get a cross-check between the three model at the

accuracy required for the Gaia mission.

5.1 The Gaia astrometric models

The data analysis of the Gaia mission (see section 1.1.1) is a complex task requiring
a précisé understanding of the observation process. For this reason, two independent

relativistic models hâve been developed to analyze and interpret the observations.

The first model, GREM [Klioner 2003], has been formulated according to a PPN
scheme accurate to the fias level. Basically, this approach solves the light trajectory

using a matching technique that links the perturbed internai solution inside the

near zone of the Solar System (where the observer is located) with the assumed

asymptotically fiat external one (where the source is located, at arbitrary distance).
It allows to transform the observed light ray in a suitable coordinate direction and



66 Chapter 5. TTF model in the Gaia context

to read off the aberration terms and light deflection effects, evaluated at the point
of observation. This model is considered as baseline for the Gaia data réduction.

The second model, RAMOD [de Felice et al. 2004], is an astrometric model con-
ceived to solve the inverse ray-tracing problem in a general relativistic framework not

constrained by a priori approximations and according to the precepts of measure-

ment in GR [de Felice &; Bini 2010]. The full development to the fias level imposes
to consider the retarded distance effects introduced by the motion of the Solar Sys

tem bodies. The RAMOD full solution requires the intégration of a set of differential

équations, which allows the light trajectory to be traced back to the initial position

of the star and which naturally entangles the contribution of the aberration and of

the curvature from the background geometry. In this section, we shall detail the
définition of the Gaia astrometric observable in these two models.

5.1.1 GREM

GREM is actually the most complété relativistic model of light propagation and

the basis for the réduction of Gaia observations. The author sets several steps

for the conversion of the observed quantities into the coordinate ones, from the

observed direction of light to the spatial position of the source of émission in the

BCRS [Klioner 2003]. These steps and the associated vectors are illustrated in
Fig. 5.1 and described hereafter:

1. the aberration due to the motion of the observing satellite is subtracted from

the observed direction s of the star which is converted into the barycentric

direction n at observation coordinates;

2. the gravitational influence of Solar System bodies is taken into account. The

deflecting bodies are considered to be in linear uniform motion during the

propagation of the photon through the Solar System while the influence of the

quadrupole moment of the giant planets is computed at the moment of the

closest approach of the photon to the planet. Resulting from this, vector n

is transformed in cr, representing the direction of the light ray at past null

infinity, t —>• — oo;

3. nevertheless, since the source is at finite distance from the observer, one should

solve the boundary problem relating cr to the coordinate direction fc, going

from the star to the observer;

4. the following step corrects the parallax effect due to the distance of the source.

Vector k is then converted into the barycentric direction to the source Z;

5. the final step sets a model for the proper motion of the star and the variation

of l during the several years of Gaia mission.

In the following, we shall detail step 1 to présent how the Gaia observables is

computed from the BCRS spatial coordinate direction of the light ray n. We define
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Figure 5.1: Five principal vectors used in the GREM model : s,n,cr, k and l.

(from [Klioner 2003])

the unit "aberration free direction" n — p/\p\ and

p1 — c~lxl = <7 4- c~lAxp(t) , (5.1)

with xl — dxl/dt the coordinate velocity of the photon and Axp(t) the deflection of
the light ray from past null infinity. In section 5.3.1 we will présent explicit relations

between p1 and the direction triple ki defined in our model.

The coordinate quantities p and n are obviously not directly observables; the

observed vector towards the light source is the four-vector sa = (1, sl): defined with

respect to the local inertial frame of the observer as

dXl

dX°
(5.2)

where Xa are the coordinates in the Center-of-Mass Reference System

(CoMRS [Klioner 2004]), comoving with the satellite. Then, to deduce s from the

coordinate light direction p we need to compute the infinitésimal transformation Ap
defined by the relation

dXa = A%dxe . (5.3)
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Combining Eqs.(5.2)-(5.3) it is then straightforward to write

K + Ay

Ag + AjpJ '
(5.4)

Adopting the IAU resolution B 1.3 [Soffel et al. 2003] for the BCRS and the CoMRS,

it is then possible to explicit the transformation matrix A^ and to expand Eq. (5.4)
to obtain the coordinate transformation between ri and s1 with 1 fias accuracy

as [Klioner 2003]

s4 = —ri + c~l

-2

n x (va x ri)

- i 1 r

n x (n x va) 2 lVs X (n X Vg)

+c
-3 (vs • n)2 + (1 + 7)w(x) n x (va x n)

+-K - n) v3 x (n x v3) > + 0(c 4) , (5.5)

containing the aberrational effects up to 1/c-3 and where = dx\/dt is the coordi-
nate velocity of the observing satellite, w(x) is the PPN gravitational potential and

7 is a PPN parameter.

5.1.2 RAMOD

The development of RAMOD is proceeding by évolution steps ( see Fig. 5.2 ) since

the project was launched in 1998 by a group of Italian astronomers from the Obser-

vatory of Turin and the University of Padua.

Figure 5.2: RAMOD identifies a family of astrometric models with increasing accu-

racies. The attitude models belonging to the project are called RAMODINOl and

RAM0DIN02. The présent relativistic model implemented in GSR (see chapter 6)

is an adaptation of PPN-RAMOD to Gaia. (from [Bucciarelli et al. 2005])

The first version of the model, RAMOD 1, represents a non-perturbative approach

to the astrometric problem with the Sun as only field source [de Felice et al. 1998].
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In a Schwarzschild’s spacetime, the observer is placed on a circular orbit and

the light sources are supposed to be at space infinity. Its first évolution,

RAMOD2 [de Felice et al. 2001], takes into account the parallax and proper mo
tion of stars, supposed at finite distance, by setting different boundary con

ditions to the model. The current évolution of the project is represented by

RAMOD3 [de Felice et al. 2004], based on a perturbative approach of Minkowski
space-time. Sources of the field are the planets and major bodies of the Solar

System, with their position fixed at the closest approach with the photon. The

influence of the quadrupole moment of the major planets would also be taken

into account. The aim of the model would be the accuracy of the fias level on

the star positioning, sufficient for the réduction of Gaia’s data. The next step is

RAMOD4, whose aim is to describe light propagation in a System with non-null vor-

ticity [de Felice et al. 2006]. Several extensions hâve been explored by the authors.
Among them we shall note PPN-RAMOD [Vecchiato et al. 2003], developed to test
the parameters of the PPN solution of GR and currently used to describe light prop

agation within the GSR data réduction software (see chapter 6), and RAMODINOl

and RAMODIN02 [Bini et al. 2003] are the attitude models of the project.
Based on a fully dynamical post-Minkowskian background [Crosta 2011],

RAMOD has been solved explicitly in the 1PM static approximation [Crosta 2013]
needed for GSR. RAMOD always relies on measurable quantifies with respect to a

local barycentric observer along the light ray [de Felice et al. 2004]. The unknown is
the local line-of-sight, quoted la in RAMOD and measured by the fiducial observer
u along the null-geodesic

r =
ka

upkP
(5.6)

where represents the tangent vectors and ua is the four-velocity of u (see Fig. 5.3).
In this formalism, the null-geodesic équation transforms, according to the measure-

ment protocol procedure [de Felice & Bini 2010], into a set of coupled nonlinear
differential équations, called "master équations”

dr 1
— - t£Jh0jii - -h00>o = 0 , (5.7a)

(?/i„,o - Vi) +
+P + hkifi — hoi— — hoo,fc — + hko,o — 0 , (5.7b)

where £ is a parameter along the null-geodesic.

Once solved for £a, the astrometric observable (i.e. the direction of the light

ray in the reference frame of the observer) is defined by its projection on a tetrad

comoving with the observer [Bini et al. 2003] as

= -Vp)Eà
W 7(1 - vJ*B))

(5.8)
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Figure 5.3: The light trajectory, identified by the 4-vector k, propagates in space-

time until it is intercepted by the Gaia-like satellite at observation time t0 = At

each point on the trajectory, the light signal strikes the locally barycentric observer

u which identifies, in its instantaneous rest space (light gray), the local line of sight

i. The surfaces S(t) such that t = const do not in general coincide with the local

rest space of u. [de Felice et al. 2006]

where i/a is the four-velocity of the satellite us relatively to the local barycentric

observer u, 7 = —u“ua, E? is the tetrad comoving with the observer (i.e. the
satellite) with the index à representing each axis of the tetrad and I^b) represents
the local line-of-sight of the photon as seen by u at the moment of observation.

The satellite reference frame defining the transformation E? is obtained by suc
cessive transformations of the local BCRS tetrad [Bini et al. 2003]

\aà = h0aÔS+(l-—)s: + O(h2).(5.9)
In particular, the vectors of the triad (defined as the spatial part of À?) are
boosted to the satellite rest-frame by means of an instantaneous Lorentz transfor

mation identified by the four-velocity of the observer us with respect to the local

BCRS. The boosted tetrad A|s obtained in this way represents a CoMRS , similar
to the one defined in section 5.1.1. In addition, one of the axes of the System is

Sun-locked, i.e. one axis points toward the Sun at any point of its Lissajous orbit

around L2. The Gaia attitude frame is finally obtained by applying the following
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rotations to the Sun-locked frame [Crosta & Vecchiato 2010]

1. by an angle upt about the four-vector A" ^ which constantly points towards
the Sun (where up is the angular velocity of precession of Gaia);

2. by a fixed angle 6 about the image of the four-vector A“ ^ after the previous
rotation (where 6 represents the Sun aspect angle of 45° - see Fig. 1.1);

3. by an angle ujrt about the image of the four-vector À" ^ after the previous two
rotations (where uT is the spin angular velocity).

The triad resulting from these transformations, detailed

in [Crosta & Vecchiato 2010], establishes Gaia attitude triad given by

Eà = 'R.i(uiTt)-R^(e)n1(upt) (5.10)

The transformations between the barycentric coordinate time and the observer’s

proper time complété the process.

It has been showed in [Crosta &; Vecchiato 2010] that the PN expansion of
Eq. (5.10) up to the order needed at Gaia accuracy yields the équivalence with

the observable defined in Eq. (5.5) for GREM.

5.2 TTF observable for Gaia

In chapter 4 we presented a general formula to compute the astrometric observable,

i.e. the incoming direction of the light ray in the reference System comoving with the

observer, using the knowledge of the direction triple fc» at observation coordinates

in combination with a generic tetrad comoving with the observer. We used our

formulation in the Schwarzschild field of the Sun with a generic kinematically non-

rotating tetrad comoving with the Earth in order to compute the gravitational and

aberration corrections for a sériés of observations. We now intend to apply the same

formula (4.15) to model Gaia observations. For this, we need a tetrad adapted to
model the motion of Gaia. Due to the generality of our model, both transformation

matrix E? (defined at Eq. (5.10)) and (defined at Eq. (5.3)) can be used at this
scope, depending on the convenience.

The interest of such observable would be double. First, it would represent an

additional tool to check the models currently adopted for Gaia; second, this observ

able would be based on the well-developed TTF formalism allowing for its further

development beyond Gaia accuracy using the results presented in chapters 2 and 3.

5.3 Analytical comparison of the three models

The comparison of GREM and RAMOD is considered as a priority for the Gaia mis

sion [Crosta & Vecchiato 2010, Crosta 2011] since they will both concur to create a
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catalog of one billion positions, parallaxes and proper motions based on measure-

ments of absolute astrometry. Any inconsistency in the relativistic models would

then invalidate the quality and reliability of the estimâtes, hence ail related scientific

output.

Despite their différences, both models aim for the reconstruction of light trajec-

tory from the star to the observer in order to build the astrometric observable. This

makes our TTF model a completely new and independent approach to the prob-

lem, particularly adapted to further cross-check the current relativistic solutions for

astrometry.

In this section, we présent a procedure to cross-check the relativistic description

of light propagation in GREM, RAMOD and our TTF model on the basis of their

solutions for the time of flight T and direction triple ki of a light ray propagating

between two points at finite distance.

5.3.1 GREM to compute T and ki

In section 5.1.1 we presented GREM observable (5.5). In this section we will explore

the relation between pl (5.1), and hence the photon velocity xl, and the quantities de-
fîned in our TTF model. GREM itself is based on KK92 [Klioner & Kopeikin 1992],
a séminal study describing light propagation in the field of multiple axisymmetric

and rotating bodies in translational motion. We will use KK92 to validate our model

of light propagation in the field of moving spherical bodies. The results of this sec

tion can then easily be reduced to GREM by posing the coordinate velocity of the

perturbing bodies vB = 0.

Considering only the terms relevant for our purpose and using our notation, the

trajectory of the photon in KK92 can be written as

where (tB,xl(tB)) are the réception coordinates, a is a normalized vector giving the
unperturbed direction of light at past null infmity and the gravitational perturbation

is given by

where we use the définitions in Eq. (3.49)-(3.50).

The TTF formalism being designed for light propagation between two points

located at finite distance, one first has to set the boundary condition

x*(t) = xl(tB) + cal(t - tB) + Axl(t, x\ tB, xlB) (5.11)

gp RP(t) + gpRpjt)' (tr x RP(t) x gP)'

gp Rpp + gpRpB _ gpRp(t) — gp Rp(t)

(5.12)

x(xb, <?, At) = xA (5.13)
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in Eq. (5.11) to provide the "Crossing trajectory équation”

x1 (ta) = xl(ts) — cAta1 + Axl(At:xlBlal) , (5-14)

where At — tB — ta represents the lapse of coordinate time between the émission

and réception of the signal. In the following, Eqs. (5.11)-(5.14) will be used to find

the équivalence between KK92 and TTF for the coordinate time of flight and the

tangent vectors.

Coordinate time of flight

Let us state the formai development

At = At{j) , (5.15)
i

where At(n) is of order 0(c~n). Substituting for At from Eq. (5.15) into Eq. (5.14)
and identifying terms of the same order, we get

Ai _ RAB
At(l) - c ) (5.16a)

At(2) = Nab • Ax(At,xlB,al) (5.16b)

= —— A4p (gp • Nab) hi
c p

gP • Rpa + gpRpA

gP • RpB + gpRpB.
5

where we used the property cr • cr — 1 and noted that Nab ' (Nab x Rx x 9p) — 0.

Using Eq. (3.54) shows that Eq. (5.16) is strictly équivalent to Eq. (2.13) when the

gravitational delay is given by Eq. (3.51) with 7 = 1.

Light direction triple

The relation between the tangent vectors to the null-geodesic

x1

photon velocity x1 used in KK92 is obtained by noting that —
c

follows that

k» =
dxM

and the
. d\

dxl/d\ kl

dx°/d\ k°

h.
kx

k0

x1

gijkJ + gQlk°
gook0 + goik1

{goi + gijkJ) (goo + goik1)

— 2hoo<71 — (ôij + (il(j^)hoj + 0(c 4) .

-1

(5.17)
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X

The computation of — is obtained by deriving the photon trajectory in Eq. (5.11)
c

with respect to coordinate time. Its application at (tB,xB) gives

*B i ,
— <7 -\

C C
(5.18)

where Ax1 represents the gravitational perturbation to the photon direction

AxlB _ 2G ^ gp ( j (iVag x Rpa x 9p)1\
c ~pRpb\9p gpRps-gp-RpB J '

Let us State the formai development

a = ^(i) i
i

(5.19)

(5.20)

where erp) is of order 0(c n). Substituting for cr from Eq. (5.20) into Eq. (5.14) and
identifying ail terms of the same order, we get

ah

ah)

rrÀ

Rab
= N

AB i

1

RAB
\ôij Ax3(At,xjB,a3) ,

(5.21a)

(5.21b)

where we used the property uV* = 1. Using Eq. (3.54) and after some algebra, we

get the following relation

(cr x Rpa x gPy

gpRpA — (gp • Rpa)

(<t x RPB x gp)1

gpRpB — (gp • Rpb)

gp(cr x RPB x gP)1

R-paR2pb ~ (Rpa Rpb)2

(5.22)

[Rpa — Rpb — gpRAB\

Substituting for Axl from Eq. (5.12) into Eq. (5.21) and using the relation given in

Eq. (5.22), we obtain

a = N
AB

2G \ A4p

c2 “ Rab

(NAB X Rpb X gp)1

g2pRpB ~ (gp ' Rpb\
(gpRpA — gpRpB — g2pRAB)

, ( jl AT iAT i j ! (gpRpB - gp Rpb
+(gp - Nab NAB3gJp) ln —— —

\gprtpA — gp -ttpA
+ 0(c~4) . (5.23)

It is then straightforward to check that Eq. (3.57) is équivalent to Eq. (5.17) when

using Eq. (5.18), Eq. (5.19), Eq. (5.23), the metric tensor (3.26) and the potentials

in Eq. (3.38) at réception event.
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5.3.2 RAMOD to compute T and kt

Comparisons between RAMOD and other PM/PN light propagation models can

be found in [Crosta 2011], where the author shows how RAMOD master équations

recover the analytical linearized case used in [Kopeikin & Schàfer 1999] once con-
verted in a coordinate form, while in [Crosta & Vecchiato 2010] the authors présent
a study of the aberration in RAMOD and GREM. An analytical cross-check of

the coordinate time of flight and direction triple has not been done yet with the

TTF. We perform it in the static case, i.e. in the case of a fully analytical solution

of RAMOD3 [Crosta 2013, Bini et al. 2013], where space-time is described by the
gravitational perturbation

ko —
2MP

c2 p rp(C)
hOi = 0 , Kj = 7 ko (5.24)

and where rp(() = x{Q — Xp{tc) is the distance between the positions of the photon

æ(C) = Xb — Ç,FLab and of the deflecting body Xp{tc) while 7 is a PPN parameter.

Coordinate time of flight

The computation of the coordinate time of flight At can be obtained within RAMOD

by considering the time component of the fiducial observer u [de Felice et al. 2006]

«° s cjtt = J + A50 + 0(c-4) . (5.25)

Inserting Eq. (5.24) into Eq. (5.25) and integrating between the émission Ca and the

réception (5, we get

cAt d( + 0(c-4)

Ac+-E^ln
p

RpB + NaB Rpb

Rpa + NaB • Rpa
+ 0(c-4) , (5.26)

where AC — (b — (a and we used définitions (3.49)-(3.50) with (3p — 0. We need now

an explicit expression for AC- First, we rewrite Eq. (18) of [Crosta 2013] following
our notation as

t
x

B
AC

f NABk 1 ln Nab Rpb + Rpb 1

l 2 _ Nab • Rpa + Rpa . Rpb_

.4
4 L

Nab • Rpb Rpb — Rpa

Rpb AC
+ O (c-4) , (5.27)
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with ds = Rpb — Nab(Rpb • NAB). Then, using the relation dB • NAB — 0 and
the normalisation condition Ia£a = ga^a^ = 1 on Eq. (5.27), we obtain

= l-h00\B + O(c-i) = ^ + ^J2Mp (5'2S)
RaB ln (NAB Rpb) + Rpb Rab )
AC2 ln _(Nab • Rpa) + Rpa_ RpbAC J

Following Eq. (5.26), we assume that AC admits a PN expansion

AC = Rab + AC(2> + 0(c~3) , (5.29)

where A£(2) is of order 0(c 2). Substituting for AC from Eq. (5.29) into Eq. (5.28)
and identifying the terms of the same order, we get straightforwardly

= cAY.MpX'a
p

RpB 4- Nab • Rpb

Rpa + Nab Rpa
(5.30)

Finally, substituting for AC from Eq. (5.29) and Eq. (5.30) into Eq. (5.26) we retrieve

the Shapiro term of Eq. (3.51) with (3p — 0.

Light direction triple

The relation between the tangent vectors ki of the TTF formalism and the local line-

of-sight t is obtained by expanding Eq. (5.6) with the metric (5.24) and Eq. (5.25),
so that

kl 3 1

u°k0 ~ Ll 1 — 2^00 + 0(c~a)

— k{
3G A4 p

c2 ^rP(()_ + 0(c~3). (5.31)

Substituting for t from Eq. (5.27) into Eq. (5.31) and using Eq. (5.29)-(5.30), the

reader can easily retrieve Eq. (3.57) with (3P — 0.

5.4 Conclusions

In this chapter we presented the relativistic models developed for the analysis of

Gaia observations, namely GREM and RAMOD. We also described the procedure

to follow to apply the astrometric observable defined in Eq. (4.15) to the spécifie case
of the Gaia mission. We conclude that both Gaia tetrads used in the GREM and

RAMOD approaches would be suitable for our model. Then, we studied the rela

tions between the solution proposed by the three models for the coordinate direction
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of the observed light ray. In particular, we provide a procedure to relate them by

computing the time of flight T and the direction triple k{ in GREM and RAMOD

and then comparing the results to Eq. (2.13) and Eq. (2.36). The outcome of this
comparison shows that the three models are équivalent at the accuracy required for

Gaia. These results are summarized in [Bertone et al. 2013a] and hâve been pre-
sented at [Bertone et al. 2013b]. This study, developed during the time spent with

the group of ”fundamental astronomy” of the Astrophysical Observatory of Torino,

also allowed me to interact in the final phase of the development of RAMOD3,

preparing for its implémentation to the réduction of Gaia observations and opening

the road to possible future collaborations.
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We illustrated in chapter 5 the équivalence of our astrometric observable with

GREM and RAMOD approaches at the accuracy required by the Gaia mission. In

section 6.1, we présent the infrastructure in place for the data treatment of the Gaia

mission, focusing on the astrometric solution which shall provide a new, more accu-

rate stellar catalog at the end of the 5 years nominal mission. Two main pipelines

hâve been developed for this scope: the Astrometric Global Itérative Solution (AGIS)

and its vérification counterpart Global Sphere Reconstruction (GSR). In section 6.2

we présent our contribution on the GSR software developed at the Astrophysical

Observatory of Torino. Using the tools provided by the Gaia Data Processing and

Analysis Consortium (DPAC), we implemented our model for the Gaia observable
in the GSR software and compared our results with those of GREM and RAMOD.

Finally, we use our model to write the linearized observation équations to be solved

in the astrometric solution and give some preliminary results of its application to a
sériés of simulated observations.

6.1 Réduction pipelines of GAIA’s observations

The Gaia space mission presented in section 1.1.1 will perform absolute astrometry,

aiming at the définition of a global astrometric reference frame at visual wavelengths.

In a certain sense, this is more like the définition of a unit of measure rather than

a pure measurement of a certain quantity. It is for this reason that, within this

procedure, it will be very difficult to identify possible errors in the measurements or
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in the data réduction process leading to the définition of the final catalog. More-

over, because of its size and complexity, it will be nowadays nearly impossible to

produce a vérification catalog at comparable accuracies by means of ground-based
measurements.

Gaia inherits many ideas from its "parent” mission HIPPARCOS whose goal

was also to produce a catalogue of absolute positions. Therefore, HIPPARCOS has

faced the same kind of problems as above, but at a much smaller scale because of

its lower précision and the much smaller size of its catalog. The data réduction

process in HIPPARCOS was carried out by two consortia, FAST and NDAC, which

operated independently on the same data. Their two results were then compared

and appropriately merged in order to obtain the final catalogue. This idéal solu

tion cannot be applied to the case of Gaia. Due to the size of the problem and to

the connection between the different kind of data (astrometric, photometric, spec-

troscopic), the data réduction task is much demanding both in terms of resources

and manpower. To retain as much as possible the HIPPARCOS approach, without

requiring excessive resources, the Gaia Data Processing and Analysis Consortium

(DPAC) [Mignard et al. 2008] decided to replicate some of the most délicate tasks
in the so-called Astrometric Vérification Unit (AVU) [Abbas et al. 2011].

One of these concerns the core task of the Gaia mission, i.e. the solution of

the Global Astrometric Sphere, providing the materialization of the astrometric ref-

erence frame for the Gaia catalog which will constitute the main outcome of the

mission. For this task the main solution process, the Astrometric Global Itéra

tive Solution (AGIS), and its vérification counterpart Global Sphere Reconstruc

tion (GSR) will run in parallel on the main Gaia data réduction pipeline. While

AGIS puts its efforts in maximizing the number of objects of the reduced sphere,

GSR focuses on a fully itérative implémentation of the astrometric sphere solu

tion with well-defined stopping conditions and based on an independent astrometric

model [Vecchiato et al. 2012].

6.1.1 AGIS

The sphere reconstruction consists in the least-squares solution of a large System

of linearized équations where each équation corresponds to an observation. One

member contains the measurement, the known term, while the other is function

of the unknowns to be estimated. These include the astrometric parameters (at

least for the subset of stars representing the reference frame), the satellite atti

tude (in order to hâve the accurate celestial pointing of the instruments at each

epoch) and the géométrie instrument calibration (necessary to convert the pixel

measurements on the CDD into angular directions). In addition, one can solve
some global parameters, such as the PPN 7 which appears in each équation of the

System [Lindegren et al. 2012].

The main pipeline process for the reconstruction of the global sphere is called

AGIS (Astrometric Global Itérative Solution) and takes its name after the itérative
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Figure 6.1: Schematic représentation of the main éléments of the astrometric data

analysis. In the shaded area is the mathematical model that allows to calculate the

position of the stellar image for any given set of model parameters. To the right

are the processes that fit this model to the observed CCD data by adjusting the

parameters in the rectangular boxes along the middle. [Lindegren et al. 2012]

method used to solve the System of équations. It consists in treating each type of

parameter (astrometric, attitude, calibration and global) separately : when one of
them is solved, the others are fixed at their previous estimation to compute the

known terms ; then the following parameter is solved using the new estimations

and the process is iterated until convergence is reached. This approach makes the

code easy to parallelize, which is helpful and maybe necessary to solve a System of

équations of such a size. As prescribed by the Gaia DPAC, AGIS is entirely written

in the object-oriented Java programming language [O’Mullane et al. 2011]. Each of
these parameters relies on a spécifie mathematical formulation, as we présent in the

following.

• Reference System - both light propagation and the orbit of Gaia, as well

as the motion of stars, Solar System and extragalactic bodies are en

tirely modeled in the Barycentric Celestial Reference System (BCRS) whose

spatial axes are aligned with the International Celestial Reference Frame

(ICRF [Feissel & Mignard 1998]) and whose associated time coordinate is the
barycentric coordinate time (TCB). To describe the attitude of Gaia and the

direction of light as observed by Gaia, one also defines the Centre-of-Mass Ref

erence System (CoMRS). This is a celestial reference System comoving with

the satellite, originated at its center of mass, kinematically nonrotating and

with the proper time of Gaia (G.T.) as coordinate time [Klioner 2004];
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• Astrometric model - is the procedure for calculating the proper direction to a

source at any time in terms of its astrometric parameters. It involves taking

into account the proper motion of the source, gravitational light deflection by

Solar System bodies and Lorentz transformations to the co-moving frame of the

observer. This whole procedure is based on GREM (outlined in Section 5.1.1

and detailed in [Klioner 2003]);

• Attitude model - provides the instantaneous orientation of the Gaia

instrument in the B CRS as specified by the Nominal Scanning Law

(NSL [de Bruijne et al. 2010]) in terms of a finite number of attitude parame

ters;

• Géométrie instrument model - defines the relation between the layout of the

CCDs and the field angles. It dépends on the physical geometry of each CCD,

its position and alignment in the focal place and on the conventions adopted

for the optical System. It should include the chosen "Time, Delay and In-

tegrate” (TDI) scanning mode and the sélection rules on the basis of star

brightness [Lindegren et al. 2012].

The input of AGIS shall be a set of pre-processed data from the GAIA telemetry

including up to 108 stars. To verify its results, a counterpart to AGIS has been set

in the AVU subsystem : it is the Global Sphere Reconstruction (GSR).

6.1.2 GSR

The basic requirement of a fully itérative solution for the Global Sphere Reconstruc

tion (GSR) [Vecchiato et al. 2012] was adopted to hâve a rigorously defined set of
stopping conditions for the solution algorithm, as well as the opportunity to compute

the full variance-covariance matrix of the System of équations. Such an approach was

potentially more demanding from the computational point of view and could not be

adapted to the simple structure of an embarrassingly parallel algorithm. For these

reasons, GSR was originally designed to operate on a sélection of 107 stars chosen
from the AGIS dataset. However, recent developments in the algorithm implémen

tation and in the available hardware [Bandieramonte et al. 2012] made it possible
to overcome this limitation so that, in its présent form, GSR is able to reduce the

same number of objects than AGIS.

In order to keep the two réductions as independent as possible, GSR implements

its own astrometric model, based on the définition of an abscissa-based observ

able including the relativistic modeling of both light propagation and the satel

lite attitude. The first one is taken from the RAMOD project described in sec

tion 5.1.2. The actual version, GSR1+, implements an extended version of PPN-

RAMOD [Vecchiato et al. 2003] based on the Schwarzschild metric to describe light
propagation. As a conséquence, ail observations too close to the Earth or the giant

planets hâve to be rejected to respect the accuracy required by GAIA. The next
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version of the software, in préparation, will implement the fully accurate RAMOD3

model, overcoming the limitations of GSR1. On the other hand, the attitude of

the satellite is realized by the reference System co-moving with Gaia described

in [Crosta & Vecchiato 2010] and adapted to the PPN-Schwarzschild metric. In-
stead of a block-iterative procedure, GSR uses a new parallelized version of the

least squares (LSQR) algorithm designed by [Paige & Saunders 1982]. Based on a
conjugate-gradient for solving sparse Systems of linear équations, it allows GSR to

solve ail the unknowns in a single itération. The general algorithm of GSR data

réduction is illustrated in Fig. 6.2.

The results of the two pipelines shall be compared using a sériés of tests (mainly

based on the Spherical Harmonies décomposition in its Scalar and Vectorial forms

and the Infinité Overlapping Circle - IOC - test) each sensitive to a particular kind

of problem. If everything behaves as expected, ail tests will give the same resuit,

while in case of problems they will allow the user to identify and isolate those coming
from one or more sets of observations.

In the following, we présent the development of a version of GSR modifîed to

implement the TTF for the définition of the astrometric observable, thus allowing

for a more accurate description of light propagation within the Solar System.

6.2 GSR-TTF

The final step of this work is to simulate an astrometric observation made by Gaia

using the director cosines we defined in chapter 4 within the TTF formalism. To do

it, we implement our model in the GSR software developed at Turin Observatory

and we use it to generate a sériés of simulated observations. A brief overview of our

activity on the GSR code is given in Fig. 6.2. We mainly focused on the compu

tation of the Gaia observable and on writing the linearized observation équations

necessary to evaluate the astrometric coordinates of the observed star from a sériés

of observations. The resuit is a ”GSR-TTF” code, still in a preliminary phase but

already well integrated, adapted to give indications for the further development of

the GSR code and useful to investigate the results of AGIS and GSR.

Before presenting the details of the implémentation of our model in GSR, a

brief overview of the astrometric problem for Gaia and how it is treated in the

software is necessary. The input of the code are packets, each containing a single

observation characterized by : the coordinate time of observation (necessary to get

Gaia State vector and the planetary ephemerides), the catalog coordinates of the

observed source and ail quantities used in the solution of the astrometric problem,

which we are going to detail in the following. The values contained in the packet

are then updated by the processing of the observation.

As shown in Fig. 6.3, each point of the celestial sphere can be fixed in the reference

System of the Gaia spacecraft by three direction cosines np) = (cos <a, cos/3, cos £).
From a geometrical point of view, Gaia will measure the abscissa of such a point,
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Figure 6.2: Schematic représentation of GSR architecture [Vecchiato et al. 2012].
During this thesis, we focused on the first two scientific modules, namely ”com-

pute Coeff&KT” and ”Find solution”. In particular, we first computed a ”calculated

observable” (f)caic using our formula (4.16) with the RAMOD tetrad (5.10) and com-
pared it with a "nominal” observed value (j)0bs computed using the GREM model.

The resuit of (j)0bs — (f)caic provided an indication of the accuracy of our model in

the Gaia context. Then, we focused on writing the linearized observation équa

tions sin 4>d(f) = — JT |£|piôp\ where pl are the unknowns to be determined by a
least-squares procedure in the ”Find solution” part.
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i.e. the angle 0 between the z-axis of the spacecraft and the projection of the point

in the x — y plane. This angle is related to the director cosines by the following
relations

COS 4> =
n(i)

(6.1a)

A - "(3) ’
sin (f> =

n(2)
(6.1b)

V1-"®

As illustrated in section 1.1.1, Gaia spacecraft has two fields of view (FOV) called

/+ and /_ whose pointing directions are separated by a fixed base angle of 106.5° and

which are symmetric with respect to the z-axis. Since the angular amplitude of each

FOV is about 0.3°, the abscissae range is fixed in the intervals 53.25 ± 0.15 degrees

for f+ and 103.25±0.15 degrees for /_. Therefore, one of Eq. (6.1a) is enough to dé
termine a univocal correspondence between the value of (f> and that of the direction

cosines. The usual choice is cos </>, so that the direction cosines with respect to the

x and z axes are sufficient to completely détermine the observation. The abscissa

is generally expressed as function of the astrometric parameters (a*, <5*, ru*, fia*Tô*)
and of the satellite attitude. The latter has to be considered unknown since the

satellite attitude cannot be determined by other independent measures at the accu-

racy required by the mission. For a similar reason Eq. (6.1a) also dépends on a set

of instrument parameters {q} to provide a sort of long-term calibration. Moreover,
when working within the PPN formalism, one should add the parameter 7 to the

unknowns of Eq. (6.1a). A better détermination of 7, which measures the amount of
curvature induced by the mass-energy on space-time, shall be one of the important

scientific contributions of Gaia. As conséquence, each of the Gaia observations can
be resumed to a non-linear function of these four classes of unknown included in a

suitable model of the abscissa <f>

coscf) = JF^a*,(5*,tï7+,/rQ*,^,a(1-7),4j),...,Ci,C2, ...,7) . (6.2)

The Gaia mission will perform several billions of observations during its operation

years, resulting in a very large System of équations (up to 1010 x 108 in the case of
Gaia).

Solving such a big System of non linear équations is not feasible, so the observa

tion équations (6.2) are linearized about a convenient starting point, i.e. the current

best available estimate of the required unknowns. The problem is then converted in

a very big System of linear équations

dT. _ dT
lâ.OÛ!* H

da,

+E

dôt

„ dT . .
<5.OÔ* ± — rô.Otzr* ±

OW%

dT

13
da)

U) 'a.=(i)

ç tj) dT. . dT.
5ai +^T^\^5Ci+T^1 +

— sin 0d</> (6.3)
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where the unknown are the corrections 5x to the starting catalog values while the

dérivatives of T are the coefficients of the System matrix. The known-terms are then

represented by the left-hand side of Eq. (6.3) as

sin (ficalci.fiobs ficalc) 5 (b-4)

where (f)0bs represents the observed abscissa and formally includes the measurement

errors so that it can be written 4>0bs = (f>true + A0, while 0ca;c is the computed value

given by arccos(7r) at the starting point of the linearization (generally speaking, the

value contained in the astrometric catalog).

The resulting System of équations is quite sparse since each observation refers to

a single star among the millions considered in the reconstruction problem (and then

only to its astrometric parameters). A similar reasoning is valid for the attitude and

calibration parameters, while 7 is a global parameter in the sense that it appears in

each équation of the System. The number of observations being far larger than the

number of unknown parameters, the System is over-determined and can be solved

by a least-squares procedure.

Figure 6.3: Fundamental angles in the Gaia reference frame E&. The two Fields of

View (FOV) directions are indicated by /+ and /_ while the measured abscissa is

given by n^ = (a,/3,7) (from [Vecchiato et al. 2012])

The final goal of the entire procedure is then to get better estimâtes of ail the

intervening parameters but for that, we first need to provide an accurate model
of the director cosines of the observation. The GSR software is built so that the

director cosines are provided using the RAMOD model (more precisely, the version

actually implemented is PPN-RAMOD [Vecchiato et al. 2003]). Since the software
is built in a modular structure, it is nevertheless possible to use other models to

treat light propagation, the aberration corrections, etc.
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In particular, we implemented Eq. (4.16) to compute the director cosines at
the accuracy required by the Gaia mission using our model : we populated the

équation using a PN expansion of the direction triple ki (similarly to what shown in
section 3.2.3) and the RAMOD tetrad (5.10) for the transformation from the BCRS

to the CoMRS of Gaia. We used the director cosines rqq so defined to build the
abscissae </>, necessary to write the so called known-terms at the left-hand side of

Eq. (6.3). Then, we compared our results to those obtained using the GREM and
PPN-RAMOD models on the same data-set of observations. Once the abscissae hâve

been validated, it is necessary to compute the partial dérivatives appearing at the

right-hand-side of Eq. (6.3), constituting the coefficient of the linearized observation

équations to be used to solve the celestial sphere.

These steps required to modify the following sections of the GSR code, keeping

as much as possible its original structure in order to take advantage of the many

functionalities already implemented. For each processed packet, the following steps

are computed

DataTakersSeqTest.java Charges the observations packets and launches the anal

ysis routines;

BeforeCoeffDataTaker.java Calls, for each observation, the routines defining ail

needed quantities for the computation of the the astrometric observable;

CommonTermsRod.java Defines ail needed vectors (star-observer, perturbing

body-observer, ...) and tensors (tetrad components, metric, ...) and com-

putes the director cosines n(q and the abscissae (f) as well as the coefficients of
the linearized équations;

KnownTermsDataTaker.java Calls, for each observation, the routine computing

the known-terms (6.4);

KnownTermsExtract.java Defines <p0bS and 4>Caic> computes the known-

terms (6.4) and updates the information in the packet;

CoefFDataTaker.java Calls, for each observation, the routine computing the coef

ficients of the linearized équations and populates the coefficients vector in the

packet;

CoeffExtract.java Computes the coefficients of the linearized observation équa

tion (6.3);

AfterCoeffDataTaker.java Reads and checks the values of ail coefficients stocked

in the packet.

In the following sections, we will detail the procedure followed to implement the

astrometric model presented in this thesis into the GSR software as well as the tests

performed on our results. First, we will use our model to compute the observation

abscissa (6.1a) and we will compare our results to those of RAMOD and GREM.
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This will allow us to validate our implémentation and explore the residual différences

between the different models. Once this first phase is fulfilled, we will focus on

the implémentation of the linearized observation équation (6.3) and on testing the
procedure of reconstruction of the celestial sphere. This preliminary study should

give a global overview of how our model can be applied to the complex task of

Processing the observations of an astrometric space mission.

6.2.1 Simulation of the observation abscissae

As presented above, the implémentation of our observable in GSR concerns the

development of both sides of Eq. (6.3). In this section we will focus on building and

testing the known terms (6.4).

Let us show the procedure followed to build the abscissa (j) using our astrometric

model. First we need to define the director cosines appearing in Eq. (6.1a) using

Eq. (4.15) taken at the observation point xB

X°(i) + X\i)'kJ
^(0) + tfo)k3

(6.5)

where we shall choose the direction triple k{ (defming the barycentric direction of

light) and the tetrad (z.e. the transformation matrix to the reference System

comoving with the observer) according to the accuracy required by the Gaia mission.

Concerning light deflection, for most observation we shall consider the PN grav-

itational potentials of ail Solar System bodies (see Table 1.2). Moreover, it has been

shown in [Klioner 2003] and confirmed by our study in section 3.2.3, that computing
the positions of the gravitating bodies at the retarded moment of time

tc = tB - c 1 \xB - xP{tB)| + 0(c 2) , (6.6)

where tB is the coordinate time of observation and xp(tB) is the position of body P

aX tB, allows us to neglect the effects due to the velocities of the bodies. Then, we

effectively use a constant value xB — xp(tc) in our computations so that the metric

tensor writes g^v = r\^v + with

^oo
2 G Mp

c2 ^ rP{tc) ’ h,Qi 0 , hij fiij 'Y h00 , (6.7)

where rp = xB — xp(tc) — ARabNab- For this preliminary study, we neglect the

multipole terms appearing in Eq. (3.31) since their implémentation in the code would
be quite cumbersome and their influence would be observable only for observations

grazing the giant planets (1 fias at 152” from Jupiter). Finally, the direction triple

to be used in Eq. (6.5) is (remembering Eqs. (3.35)-(3.37a))

(k?)(xA,xB) = NlAB-h + l)E
GM j 1

C2RpB 1 + Npa • NpB

—-npb - U + 'j Nab
ÏÏPA \ ttPA J

X (6.8)
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where we used

Rpx = xx — xP(tc),

Rpx = \Rpx\, Npx =
RPX

Rpx

Rab = xp — xa, Rab = \RAB NAB =
Rab

Rab

(6.9a)

(6.9b)

(6.9c)

Concerning the Gaia tetrad, the simplest choice is to use Eq. (5.10), presented

in [Crosta & Vecchiato 2010] and already used in GSR. This complétés the implé
mentation in GSR of an abscissa 0 based on our model. We shall now compare

our results to those of PPN-RAMOD (actually implemented in GSR) and of GREM

(the model implemented in AGIS).
First, we launch a simulation over one day of observations using the three models

to generate the abscissae 0. The results are illustrated in Fig. 6.4 and Fig. 6.5

(produced using the GaiaTools library provided by the Gaia DPAC), where the
models are compared one to each other. The numbers on the left axis hâve a double

meaning: they mark (1) the différence in fias between the two models - represented

by the red plot - and (2) the distance in degrees/10 between a given planet and the

observation - the blue, green and yellow plot representing Jupiter, Satura and Mars,

respectively. In particular, the periodic oscillation of the distance planet-observation

illustrated in the plots is due to the Gaia scanning law (see section 1.1.1) setting a

rotation period of approximately 6 h. Let us analyze each comparison, noting that

we can generally separate the observations in ”near” and ”far” from the planets with

respect to the maximum impact parameter to get 1 fias gravitational deflection:

• (PPN-)RAMOD vs TTF - we observe huge différences (up to 500 fias, the

y-axis is limited to ±20 fias to help a better visualization) for the obser
vations near Jupiter. This is expected since PPN-RAMOD is based on a

”parametrized” Schwarzschild model of the Solar System, while our TTF model

includes the contribution of ail major Solar System bodies. On the other hand,

since both models implement the same description for the observer, the com

parison shows no différences for most of the observations ”far” from the planets.

• TTF vs GREM - both the modelings of light propagation and the aberration

caused by the motion of the observer are different. Nevertheless, in chapter 5

we showed the équivalence between our approach and GREM, so that we would

expect not to observe sensible différences in the plot. Indeed, the différence

between the abscissae is confined in the interval ±2.5 fias but (1) the shape of

the plot far from the planets suggests the presence of a systematic discrepancy

in the description of the aberration in the two models or codes; (2) the sudden

shift corresponding to the maximum approach to Jupiter suggests an erroneous
treatment of the satellite attitude.

• RAMOD vs GREM - we observe the combined effects of a different treatment

of gravitational light deflection (near Jupiter) and aberration (far from the
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planets). One can see how our TTF model can be of help to decorrelate the

two effects, especially near Solar System bodies, where the différences due to

light deflection cover the rest of the signal.

Once the basic structure of the signal on one day of observations is understood,

it is interesting to observe a simulation over 50 days. In Fig. 6.6 we still represent

in red the différence between the abscissae computed by the three models and with

other colors the angular distance between some planets and the observation. The

modulation in the distance of the planets reflects the combination of Gaia attitude

and with the relative orbital motion of the Earth and other Solar System planets.

One can note that for almost ail observations, the différence between the abscissae

computed by G REM and our model is less than 2.5 fias, well below the required

accuracy of around 10 fias-, however, the same systematic discrepancy observed

over one day is still présent. This effect is probably related to a slightly different

implémentation of the aberration effect in the two approaches (let us remember

that our model implements the RAMOD approach to describe the observer) and it

opens interesting questions: a preliminary study is presented in Appendix B but

further analysis are in progress with the GSR team in Turin. On the other hand, we

can observe that the différences between the abscissae of RAMOD and our model,

exclusively related to gravitational light deflection, are concentrated around the

conjunction with the planets (making it necessary to reject approximately 1/3 of the

observations over the considered period). The observations far from the planets are

as expected less ”noisy”, which confîrms the origin of the discrepancies with GREM

results. Another possible visualization of these results is an histogram illustrating

the number of observations for which different models produce abscissae with a given

différence. In Fig. 6.7 we show that, for the vast majority of the observations, the

différence between the abscissae produced by our model are less then 1 — 2 fias

away from what expected by GREM. As comparison, in Fig. 6.8 we show the same

histogram for the PPN-RAMOD model actually implemented in GSR (always with

respect to GREM). The number of abscissae differing for more than 2 fias (and up to

450 fias) is far larger, confirming the necessity for a more complété model to reach the
level of accuracy required by Gaia. Nevertheless, further investigations are needed

to completely understand the influence of the accuracy on the single measurement

when such models are used in the framework of a more complex problem such as

the reconstruction of the celestial sphere.
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Figure 6.4: Différence between the abscissae resulting from our TTF model and

the GREM (top) and PPN-RAMOD (bottom) models. The numbers on the left

axis hâve a double meaning: they mark (1) the différence in fias between the two

models - represented by the red plot - and (2) the distance in degrees/10 between
a given planet and the observation - the blue, green and yellow plot representing

Jupiter, Saturn and Mars, respectively. The y-axis is limited to ±20 fias to help a
better visualization.
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RAMOD VS GREM frm

time [secl

| — RAMOD-CREM fov2 — Jupter dlsi Saturn dlst Mars dist |

Figure 6.5: Différence between the abscissae resulting from the GREM and PPN-

RAMOD models. The numbers on the left axis hâve a double meaning: they mark

(1) the différence in fias between the two models - represented by the red plot -

and (2) the distance in degrees/10 between a given planet and the observation - the
blue, green and yellow plot representing Jupiter, Saturn and Mars, respectively. The

y-axis is limited to ±20 fias to help a better visualization.
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Figure 6.6: Différence between the abscissae resulting from the GREM (top) and

PPN-RAMOD (bottom) models. The numbers on the left axis hâve a double

meaning: they mark (1) the différence in fias between the two models - represented

by the red plot - and (2) the distance in degrees/10 between a given planet and the

observation - the blue, green and yellow plot representing Jupiter, Saturn and Mars,

respectively. The y-axis is limited to ±20 fias to help a better visualization.
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KT histo

KT (muas)

Figure 6.7: Histogram of the abscissae différence between the TTF and GREM

models. The vast majority of the observations show différences in the interval of

1 — 2 fias, well below the accuracy required by Gaia.

Figure 6.8: Histogram of the abscissae différence between the PPN-RAMOD and

GREM models. The splitting emphasize the number of observations within ±10//as

and with différences of more than 10fias. The chart being reasonably symmetric,

only the négative values side is shown.
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6.2.2 Towards the celestial sphere reconstruction

The validation of the abscissae computed with our model presented in section 6.2.1

has two goals: evaluating its accuracy in the spécifie case of the Gaia mission and

setting the basis for the computation of the linearized observation équations and

the reconstruction of a celestial sphere. First, let us make clear what do we intend

by "reconstruction of the celestial sphere”. The main goal of the Gaia mission is

to improve the quality of the stellar catalogs for the coordinates, parallaxes and

proper motions of the observed stars. This will be done by comparing Gaia ob

servations to simulated observations built using the catalog data and a theoretical

model of the observation: minimizing the différence between the real and simulated

observation will provide better estimâtes of the astrometric parameters. For this

scope, we use Eq. (6.3), containing at its left-hand-side the différence between the
measured and simulated observations and at its right-hand-side the sensitivity of

the observable with respect to each parameter we want to estimate. Since the prob-

lem is largely over-determined (Gaia will provide around 700 observations for each

star [Mignard et al. 2008]) a least-square solution will be used.

Nevertheless, (1) by now we hâve no observational data from Gaia (it will be

launched in late 2013), (2) even after launch, we will not know the "real” star pa

rameters but only the approximation contained in the actual catalogs. We should

then find a way to test our models and procedures. One solution is to simulate

both the "real” and ”simulated” observation from stellar catalogs : to produce the

”real” observations cos 4>0bs, we will first add some noise to the catalog data (in or-

der to simulate the measuring error), while the simulated observations cos 4>caic will

be produced after adding a constant error to the catalog. If our procedure is well

conceived, it should be able to retrieve the initial catalog value.

At this preliminary phase of the implémentation, we content ourselves of estimât-

ing the astrometric coordinates a* and <5* so that ail other parameters are assumed

to be known and we consider the following simplified version of Eq. (6.3)

sin (f)calc^^P
dT

da*

f dT
°a* TT

do*
66. (6.10)

The coefficients dT/da* and dT/dô* can be computed analytically since the function
T = cos dcaïc, defined by Eq. (6.1a), is known. We get

deosep _ dv (cos ^(î) ) [ cosT/ygcos^d^cos^g))
dv — cos2 ^(3) (1 — cos2 ?/;(3))3/2

where v can take the values a* or ô* and

d cos ^(î) £p) dv kj ( £(°0) + El(0) kt) + ( + Efa k3 ) El{0) dv kt
dv cos 'ip = —

dv (£(0> + E‘,oT
(6.12)

(0)'
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The partial dérivatives of the direction triple appearing in Eq. (6.12) are given by

— - ddv ~ °vJNab (7 + !)
GM, 1 dvNpA Npb

X n\b^--n
Rpa

AB

~dvN\B

1 +

1 +

RPB

Rpa

Rpb\

+
N\

c2 Rpb 1 + Npa • Npb 1 + NpA • Npp

RpaOvRab — RabOvRpa

dvRpA 1

PB

Rpa

Rpa
+ N\bRpb-

Rpa
(6.13)

where we used the définitions (6.9) and

(NAb x dvxA x NabY
dvNAB —

dvRAB =

dvRpA —

dvNpA Npb =

Rab

Rab • dxA

Rab

Rpa ' 9vxa

Wa ’
Rpb

RpbRpa
dyXA „ Rpa ' dvxA

Rpa

(6.14a)

(6.14b)

(6.14c)

(6.14d)

Finally, remembering that the incoming direction n can be expressed in terms of

right ascension and déclination as in Eq. (4.27), we shall write

da*xlA — (—pa sin a cos 5, rA cos a cos S, 0) ,

ds„xlA — {—rA cos a sin ô, — rA sin a sin ô, rA cos ô) .

(6.15a)

(6.15b)

The problem of solving Eq. (6.10) for a given star can be put in the form

b — Ox , (6.16)

where x = (Æa*, ££*) is the unknown vector that we want to estimate, b contains the

known-terms (6.4) for each observation of the star and O is the coefficient matrix of

size (number of observations x number of unknowns). The goal of the least squares

solution is then to minimize the ”error” |Ox — b\. The standard method to solve

this problem [Meyer 2001], and the one we will use here, is to rewrite Eq. (6.16) as
0T0x = 0Tb and then, if the matrix 0T0 is invertible, to solve as

x = (0T0)~l0Tb. (6.17)

The astrometric solution we performed is a solution of this équation for 200 stars

along the whole mission period of 5 years. We used a data-set elaborated by the

Gaia Coordination Unit 2 (CU2) responsible for data simulation, in order to produce

1. the measured abscissa cos <p0bs with a white Gaussian noise of a — 2 mas

previously added to the astrometric coordinates a;* and 5*;
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2. the computed abscissa cos 4>caic after having corrected the catalog values of a

constant value of Aa* = 100 mas and AS* = 50 mas.

The final goal of the procedure is to retrieve as much as possible the catalog values

a* and 6* for the 200 treated stars. In Fig. 6.9 we illustrate the results of the least

squares (6.17) solution: for most stars we improve our initial solution for a* and
6* by two orders of magnitude. The efficiency of the least-squares solution dépends

on the number of observations N0bs for a given star as its square root y/N0bs, which

dépends on the Gaia nominal scanning law (see Fig. 6.10). As expected, stars with

æ 150 observations show an improvement double than stars with « 40 observations,

as illustrated in Fig. 6.10.

</)

co

<Ü
-Q

E

Histogram of LSQR residuals
(measure error 0.002 as, catalog error a : 0.1 as - 8 : 0.05 as)

Residuals (arcsec) Residuals (arcsec)

Figure 6.9: Histogram of LSQR residuals (post-fit values minus initial catalog values)
on the astrometric coordinates. Initial values: measure error a — 2 mas, catalog

error a = 100 mas - ô = 50 mas. After one itération the residuals hâve improved of

a factor ~ 10, depending on the number of observations for a given star.

The problem treated in GSR is much more complex since it includes the esti

mation of global (7) and time-dependent (i.e. the attitude) parameters preventing
from treating the observation of each star as separate problems. For this reason,

solving the full version of this problem would require more powerful machines and a

more complex algorithm. Nevertheless, this preliminary analysis is sufficient to get

an overview of how our model could be applied to such a problem.

6.3 Conclusions

In this chapter, we applied the astrometric model developed in the thesis to a set
of Gaia simulated observations. Thanks to the collaboration with the GSR team

in Torino, we implemented our équations into the GSR Java code to compute the

observation abscissae at the accuracy required by the Gaia mission: we populated the
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Figure 6.10: Left: Frequency of observations as function of celestial coordinates

due to Gaia scanning law (blue ~ 50 - yellow « 200) - Right: Astrometric residuals

after one itération as function of the number of observations for the star (a* residuals

in red - a* residuals in green)

équation using a PN expansion of the direction triple /q (similarly to what shown in

section 3.2.3) and the RAMOD tetrad (5.10) for the transformation from the BCRS
to the CoMRS of Gaia. We used this model to check the reliability of our results in

a real Gaia configuration by comparing them with those of PPN-RAMOD (already

implemented in GSR) and GREM (taken as reference model) using the GaiaTools

library provided by the Gaia DPAC. Once the model was implemented and tested,

we could use it to assist the GSR team in detecting and analyzing possible différences

in the data treatment with respect to AGIS: some interesting results hâve arisen,

requiring further analysis. These preliminary results hâve been presented at the

GAIA REMAT #12 Meeting in July 2013. Finally, our model of the observation

abscissa has been applied to the reconstruction of a small celestial sphere. This

required to compute and implement in the code the linearized équations of our

observable and a least-squares procedure. The preliminary results presented in this

chapter are a first step in building a full software for the réduction of astrometric
observations based on our TTF model.
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This thesis is the resuit of a Vinci fellowship proposai to the French-Italian

University based on a project in five steps:

1. the theoretical development of a model of astrometric observable;

2. this model shall be based on the Time Transfer Functions formalism to account

for gravitational light deflection by Solar System bodies;

3. the adaptation of the model to the satellite attitude tetrad developed within

the RAMOD project;

4. the development of a software implementing steps 1 and 2;

5. the simulation, from an existing star catalog and the nominal satellite orbit,
of a set of observations.

The proposai also mentioned some secondary goals including high précision orbit

détermination by the improvement of the relativistic Doppler modeling. It is worth

noting that ail the primary goals and some secondary goals of the proposai hâve

been completed in the nominal three years duration of the Ph.D. thesis.

7.1 Relativistic light propagation and observables

In the first part of this thesis, we focused on the development of explicit formulae to

describe relativistic light propagation up to 2PM. Then, we used these formulae to

build a relativistic model of the observables required for the data analysis of modem

high-precision space missions.
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Relativistic light propagation up to 2PM

We founded our study on the mathematical formalism of the Time Transfer Function,

which models the coordinate time of flight of an EM wave propagating between two

events xa and xq A key-point of this formalism are the relations providing /C and

ki (the ratios of the covariant components of the tangent vectors to the light ray)
once the Time Transfer function is explicitly known.

Our contribution is the construction of these ratios, fundamental in the modeling

of relativistic observables, within the post-Minkowskian approximation of GR as

closed form intégrais, i.e. as function of a metric tensor and its dérivatives only, taken

along the straight Minkowskian line between xa and xb- The main interests of such

general formulae is the opportunity of solving them both analytically or numerically

for any weak field metric, which has also applications for testing alternative metric

théories of gravity.

We developed our formalism up to the second post-Minkowskian order to be able

to account for the so called ”enhanced terms” [Klioner 2003]. We applied then our
formulae to a 2PM Schwarzschild metric in order to analytically retrieve the solution

presented by [Teyssandier 2012], thus validating our general formulation.

Closed form équations of relativistic observables

Based on our closed form formulae for T, K, and ki, we built a relativistic modeling

for the Range and Doppler observables used in radio-science as well as for the angular

séparation between two light sources and the incident direction of an incoming light

ray, which are the basic ingrédients of any astrometric measurement.

We expressed these modelings using general formulae that we apply then to sev-

eral interesting examples. Within the Schwarzschild field of the Sun, we provided

estimâtes of the 1PM and 2PM relativistic corrections on the Doppler effect for

BepiColombo. Similarly, in a GAME-like configuration, we developed a 2PM kine-

matically nonrotating tetrad and provided estimâtes of the relativistic contributions

to simulated astrometric observations. We then provided an estimate of the effect
of the second order ”enhanced terms” on radio-science and astrometric observables.

7.2 Application to the Gaia fias astrometry

One of the main goals of this work was to apply our theoretical formulation to the

Gaia mission, developing a model of Gaia observations to be implemented in the

GSR data réduction software. Nevertheless, to provide our model with solid bases,

we first needed to validate it analytically by comparing to the relativistic models

developed for Gaia.
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Comparison to the Gaia models

To ensure a correct interprétation of Gaia observations, two parallel relativistic mod-

els hâve been developed, GREM and RAMOD. A good knowledge of the relations

between the quantities defined in the two models is then mandatory and a compari

son effort is already in place, focusing on the modeling of the astrometric observable

and the aberration [Crosta & Vecchiato 2010].

We contributed to this study by establishing an original procedure to cross-

check our results on the gravitational deflection of light with those of the

Gaia models. Concerning GREM, we compared our model to its séminal

study [Klioner & Kopeikin 1992] considering the case of gravitational sources in
translational motion. Our study shows that the three models are consistent at the

accuracy level required by Gaia. Finally, an unexpected outcome of this analysis

was an alternative coordinate form of RAMOD3 solution, potentially better suited

for the implémentation in the current version of the GSR software.

GSR-TTF

Once validated, the astrometric observable developed in this thesis can be applied

to a tetrad comoving with Gaia to get an accurate model of its observations. The

collaboration with the GSR team, responsible for the vérification of the astrometric

core processing, allowed us to implement our model into the GSR Java code and to

compare our results to those of PPN-RAMOD and GREM using the tools provided

by the Gaia DPAC. This first validation of our results opened the way to the compu

tation of the linearized observation équations necessary to estimate the astrometric

parameters from a set of simulated observations.

The main interest of such a study was to prove the applicability of our model to

a complex matter like the treatment of Gaia observations and to provide the GSR

team with an additional tool to check the final phases of development of the code

as presented in the Gaia REMAT# 12 meeting in July 2013.

7.3 Open questions and perspectives

The results of this thesis naturally bring up some interesting openings. First, the

cross-check procedure presented in chapter 5 includes most, but not ail, of the grav

itational contributions to light deflection required at Gaia accuracy. This procedure

should then be extended to include ail effects actually treated by the GREM model,

including the gravitational deflection due to the quadrupole moment of Solar System
bodies.

Moreover, an analytical solution of RAMOD4 is under development at Turin

Observatory, extending the previous version of the model to a non-vorticity free

environment. A study by [Crosta 2011] shows that additional terms appear with
respect to the standard PN/PM approaches to gravitational light propagation. It
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would be then interesting to explore the impact of the strict measurement protocol

followed by RAMOD by comparing this new solution to GREM and to our model.

Then, the development of our model up to 2PM allowed us to retrieve

the so called second order ”enhanced terms” [Klioner & Zschocke 2010]. Re-
cently [Linet & Teyssandier 2013] developed a new procedure to compute the light
travel time up to the 3PM order, highlighting the presence of supplementary ”en-

hanced terms”. It would be then of interest to extend our formulation up to 3PM

and to provide an estimation of the influence of these terms on the radio-science and
astrometric observables.

In the context of Gaia, the improvement of GSR-TTF is a perspective work by

itself. In particular, the further analysis of the mismodeling effects put in evidence

by our preliminary comparison to GREM and the implémentation of the quadrupole

terms in the software is a short term priority.

On a larger perspective, a ray tracing model called GYOTO has been devel

oped by [Vincent et al. 2011] at Paris Observatory. Finding a common basis for a
comparison of the two models would be a first step towards further collaborations.
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GSR-TTF: additional analysis

In this appendix, we présent the results of some preliminary analysis made possible

by the implémentation of our TTF model in the GSR software.

B.l Retarded times for gravitational potentials

In chapter 5, we illustrated that, in order to neglect the orbital motion of the

sources of the gravitational field in our model, we should take their ephemerides

at the retarded time corresponding to their maximum approach with the photon as

in [Klioner 2003]. This time te can be computed as

te = ts ~ c 1 |xp — xp(tp)| + 0(c 2), (B.l)

where tp is the coordinate time of observation and xp(tp) is the position of per-
turbing body P at tp. Then, we effectively use a constant position xp = Xp{tc)

for the deflecting bodies in our computations. Fig. B.l illustrâtes the différence be-

tween implementing the gravitational potentials with respect to the body position

at observation time tp or at retarded time te- In the first case (no retarded time)
the différence between GREM and our model for observations almost in conjunction

with Jupiter can be more than 200 fias, also adding noise to the rest of the plot.

B.2 Early contributions of GSR-TTF

The first abscissae comparison we made between our model and GREM followed

the guidelines used for the tests of PPN-RAMOD. Fig. B.2 illustrâtes the results of

these first TTF vs GREM analysis and the same comparison with PPN-RAMOD.

The peaks of ~ 20 fias in the top plot (PPN-RAMOD vs GREM) could be due

to the différence between the gravitational field considered in GREM (a System of

extended bodies corresponding to Solar System planets and the Sun) and PPN-

RAMOD (the spherically symmetric field of the Sun). The comparison with our
model clearly shows that this is not possible, since the main différences appear ”far”

from the planets. Further analysis solicited by this finding showed that we were

using an out-dated version of GREM for our analysis. The comparison with the

current version of GREM in Fig. B.l, indeed does not show these peaks but it shows

an unexpected bias and unexpected discontinuities needing further analysis. Ail
these effects would hâve not been observed without the contribution of GSR-TTF.
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Figure B.l: Différence between the abscissae resulting from our TTF model -with

(top) and without (bottom) retarded potentials- and the GREM. The numbers on

the left axis hâve a double meaning: they mark (1) the différence in fias between the

two models - represented by the red plot - and (2) the distance in degrees/10 between

a given planet and the observation - the blue, green and yellow plot representing

Jupiter, Saturn and Mars, respectively.
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Figure B.2: Différence between the abscissae resulting from the old GREM model

(here called GASS) and PPN-RAMOD (Top) and the TTF (Bottom) models. The
numbers on the left axis hâve a double meaning : they mark the différence in lias

between the two models, represented by the red curve; they mark the distance in

degrees/10 between a given planet and the observation - the blue curve represents
Jupiter, the green Saturn and the yellow represents Mars. The peaks far from

Jupiter were confused with errors due to the gravitational deflection of some planet

not included in the PPN-RAMOD model. After comparison with our model, it

became clear that this was a mismodeling in the software implémentation.
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