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Modem space projects currently under development, such as BepiColombo for the exploration of Mer cury or Gaia for space astrometry, hâve the goal of getting high précision data about their main targets. It is then necessary to conceive several independent models in the framework of General Relativity to perform data analysis ensuring the appropriate treatment of ail effects important at the required level of accuracy.

The first part of this thesis is dedicated to the study of light propagation. We use the Time Transfer Functions (TTF) formalism to characterize the influence of gravitational light deflection on the Ranging, Doppler and astrometric observables for applications to these future projects. In order to get an appropriate gravitational description of the Solar System, we consider the hypothesis of a weak gravitational field, adopting a metric tensor valid up to the second order of the post-Minkowskian (2PM) approximation. We obtain these observables as intégrais depending on the metric tensor and its dérivatives only. This very general form is particularly adapted to numerical computation and to the test of alternative théories of gravity. We also propose several analytical applications of our results up to the 2PM order.

In the second part of this thesis, we focus on high précision astrometry in the context of the Gaia mission, scheduled for launch in late 2013. We use an original procedure to get an analytical comparison of our light propagation model with the two approaches developed for Gaia, namely the Gaia Relativity Model (GREM) and the Relativistic Astrometric Model (RAMOD). Following this validation, we use the TTF and the Gaia tetrad developed for RAMOD to simulate a sériés of astrometric observations within the Global Sphere Reconstruction (GSR) software. We compare then our results with GREM and with a complété Schwarzschild model. The study is finally completed by the reconstruction of a celestial sphere using 5 years of observations simulated with our model.

These applications to astrometry are the resuit of the collaboration between the French group at SYRTE, responsible for the TTF and the Italian one at OATO, responsible for RAMOD and GSR.

Résumé. Actuellement, les projets spatiaux en cours de développement, tel que BepiColombo pour l'exploration de Mercure ou Gaia pour l'astrométrie spatiale, ont pour objectif d'obtenir des données de très haute précision sur leur objet d'étude. Il est donc maintenant indispensable de construire plusieurs modèles indépendantes d'analyse de données dans le cadre la Relativité Générale (RG) afin d'assurer une correcte prise en compte des effets qui se manifesteront très distinctement à ce niveau de précision.

La première partie de ce manuscrit est dédiée à l'étude de la propagation des signaux électromagnétiques, par le biais du formalisme des Fonctions de Transfert de Temps, afin de caractériser les effets de courbure des rayons lumineux sur les observables de Ranging, Doppler et astrométriques de ces futurs projets. Pour décrire correcte ment le Système Solaire, nous retenons l'hypothèse des champs gravitationnels faibles et nous considérons un tenseur métrique au premier et deuxième ordres d'approximation post-Minkowskienne (PM). Nous obtenons ainsi ces observables sous la forme d'intégrales, ne dépendant que du tenseur métrique et de ses dérivées. Cette forme très générale est particulièrement adaptée pour le calcul numérique et les test des théories alternatives à la RG. Des applications analytiques sont aussi données jusqu'au deuxième ordre PM. Dans la seconde partie de ce travail, nous focalisons notre étude sur l'astrométrie de haute précision dans le contexte de la future mission Gaia qui sera lancée fin 2013. Nous confrontons donc notre modèle de propagation de la lumière avec les deux approches adoptées pour Gaia, à savoir les modèles GREM et RAMOD, par une procédure originale. Suite à cette validation analytique, nous utilisons la TTF avec la tétrade Gaia de RAMOD afin de simuler une série d'observations astrométriques dans le software GSR. Nos résultats sont comparés avec GREM et avec un modèle complet à symétrie sphérique. Le travail est complété par la reconstruction d'une sphère céleste à partir de 5 ans d'observations simulées avec notre modèle.

High précision astronomy

Since the beginning of the so called space-era, the increasing accuracy of observations and the new observational techniques (like radar ranging) hâve made it no longer necessary to justify the importance of a consistent relativistic modeling in the field of fundamental astronomy.

Nowadays, applied relativity has become one of the basic ingrédients of celestial mechanics, astrometry, time scales and time dissémination. Significant theoretical efforts hâve been necessary to follow the observational and engineering needs. The scientific community developed new théories for global and local ref erence Systems [START_REF] Damour | [END_REF] such as the Barycentric Celestial Reference System (BCRS) or the Geocentric Celestial Reference System (GCRS) as well as relativistic équations describing the translational and rotational motion of an Nbody System of arbitrary composition and shape.

A précisé treatment of light propagation also became of central importance when dealing with high-accuracy observations [Brumberg 1987, Klioner & Kopeikin 1992].

Nevertheless, it is the whole astronomy which needs to be rethought from a classical Newtonian point of view to a relativistic one. Relativistic ques tions hâve been playing an important rôle in the work of several Commis sions and Working Groups of the International Astronomical Union (IAU) for an extended period of time so that in 2006, it has been decided to establish IAU Commission 52 "Relativity in Fundamental Astronomy" (RIFAhttp://www.iau.org/science/scientific_bodies/commissions/52/ ).

Today, there are a number of open issues of both theoretical and practical character that still need the attention of astronomers, experts in gravitation and relativists.

Such issues particularly arise when dealing with modem space missions. In the following we give three examples of missions needing a systematic relativistic modeling of their observations

• Gaia [Bienayme & Turon 2002], a cornerstone mission of the European Space Agency (ESA), is meant to provide an high-accuracy 3D map of the Milky Way. Its launch will represent an epochal shift from classical to relativistic astrometry but the huge amount of data to be treated will also require massive computational capabilities;

• GAME [Gai et al. 2012], is a high-accuracy astrometry mission aiming at measuring the 7 parameter of the parameterized post-Newtonian formalism (PPN, see section 1.2.1) from space. With respect to Gaia, a more accurate relativis tic model of the astrometric observable will be needed in order to reach the required accuracy when observing near the limb of the Sun.

• BepiColombo [Benkhoff et al. 2010] will be launched in 2014 towards Mercury, where it will collect scientific data but also use its inboard instrumentation to test General Relativity (GR) [START_REF] Iess | [END_REF]] with a dedicated radio-science experiment. As other planetary missions, it requires a very précisé knowledge of its orbital motion in order to attain its goals. This requires an accurate mod eling of the Range and Doppler observables through the relativistic treatment of light propagation.

In the following, we présent in more details these missions whose data need to be treated accurately and interpreted on the basis of reliable theoretical models as we shall outline in section 1.2.

GAIA

The launch of the HIgh Précision PARallax COllecting Satellite (HIPPAR-COS [Perryman & ESA 1997]) space mission in 1989 provided the opportunity for Europe to establish its leadership in space astrometry, setting the state-of-the-art précision levels for astrometric measurements of nearby stars. For the first time, space astrometry allowed to détermine the positions, parallaxes and proper motions of 105 stars with an accuracy of some milliarcseconds (mas). The HIPPARCOS results hâve contributed immensely to a better understanding of a wide range of topics in astrophysics, such as galaxy kinematics and dynamics, and stellar physics.

Direct descendant of HIPPARCOS, Gaia [Bienayme & Turon 2002] has been accepted in 2000 as cornerstone mission of ESA space program and is now scheduled for launch for late 2013 on a Soyuz-Fregat launcher. Gaia will provide positions and velocities of a billion stars in our Galaxy and thousands of extragalactic sources of the local group, so around 1% of the stellar population of our Milky Way will be observed with the accuracy of some microarcseconds {fias) needed for answering today scientific questions. The satellite will operate in Lissajous orbits around the Earth-Sun Lagrangian point L2, scanning the sky continuously at a rate of 120 as/s (where as stands for arcseconds) over a 5 years mission, as illustrated in Fig. 1.1.

As for HIPPARCOS, Gaia results will be of capital importance in several areas of astronomy and fundamental physics. In particular, it is expected to provide :

• the physical characteristics, kinematics and distribution of a large fraction of stars in the Galaxy, thus allowing to détermine its full history;

• distances of unprecedented accuracy for ail kinds of stars, even those in rapid évolution, covering the whole Hertsprung-Russel diagram;

• a more précisé détermination of star luminosity and précisé astrometric measures providing constraints for stellar population models;

• a complété study of the luminosity function, thanks to the observation of a large amount of ail kinds of stars;

• the détermination of a large number of stellar orbits, including those of the smallest stars (brown dwarf);

• a census of binary Systems and extra-solar planets (ail large planets to 200 -500 pc from Earth) thanks to very précisé astrometric measures;

• the identification and characterization of a large number of asteroids and minor bodies in the Solar System;

• contributions to the structure, dynamics and stellar populations of local group galaxies;

• improvements in the orientation of the International Celestial Reference Frame (ICRF) thanks to better astrometric accuracy;

• the test of gravitational théories in the PPN approximation of GR, considering effects up to G/c3 in light bending.

The payload consists of a single integrated instrument that comprises three major functions by using common télescopes and a shared focal plane:

1. the Astrometric instrument (ASTRO) is devoted to star angular position measurements, providing star positions, parallaxes and proper motions;

2. the Photometric instrument provides continuous star spectra for astrophysics in the band 320-1000 nm and the ASTRO chromaticity calibration;

3. the Radial Velocity Spectrometer (RVS) provides radial velocity and high res olution spectral data in the narrow band 847-874 nm.

Each function is achieved within a dedicated area on the focal plane, which allows it to take benefit from the two viewing directions separated by a fixed (and monitored) basic angle of 106°. Thanks to this apparatus, Gaia can aim for the following accuracies:

• systematic observation of ail objects (more than a billion) brighter than mag nitude V=20;

• better than 10 fias positional accuracy for stars up to magnitude V -10, 12-25 lias at V = 15, and 100-200 fias at V = 20;

• parallax accuracy better than 1% for 20 millions of stars in our galaxy;

• constraints on relativistic parameters (see section 1.2.1) : 7 to « 5 x 10~6, /3 to 10"3 and 77 to 2.4 x 10"3; moreover, the quadrupole moment of the Sun J2, describing its flattening, should be evaluated with 10"' -10"8 précision, the GM of Jupiter (where G is the universal constant of gravitation and M is Jupiter mass) to 2.9 x 10~15AU3d~2 and the gravitational "constant" variation G/G with a précision of 3 x 10~12 years~l [START_REF] Hobbs | [END_REF], Mouret 2011].

1.1.2 GAME GAME [Gai et al. 2012], for Gamma Astrometric Measurement Experiment, is a concept of a small mission proposed to ESA for the Cosmic Vision program whose main goal is to measure from space the 7 parameter of the PPN formalism. A satellite, looking as close as possible to the Solar limb, measures the gravitational bending of light in a way similar to that followed by past experiments from the ground during solar éclipsés. This is done in order to maximize the observed effect, since the Sun is the most massive body in the Solar System. The proposed mission lifetime of two years will allow a répétition of the basic experiment to validate and improve the final accuracy of the mission results. In addition to the test of the parameter 7, thanks to its flexible observation strategy, GAME is also able to target other interesting scientific goals (in the realm of General Relativity, extrasolar Systems, etc.).

The basic idea of GAME is to measure the astrometric angle between the stars in two fields of view (FOVs) pointing symmetrically with respect to the ecliptic as illustrated in Fig. 1.2. The relativistic light deflection is estimated directly by Figure 1.2: GAME will orbit around the Earth and will observe fields respectively in conjunction and opposition to the Sun [Gai et al. 2012] measuring the same angles at two epochs: (a) with the Sun in conjunction and (b) when, after some months, our parent star is in opposition. This experiment is implemented as a small mission, with a satellite in Earth polar orbit at an altitude of 1500 km. Its payload includes a telescope observing in the visible two fields of view with a few degrees of séparation, simultaneously.

Preliminary simulations hâve shown that the expected final accuracy on 7 can reach the 10~7 level, two orders of magnitude better than actual estimâtes (i.e. the recent radio links experiment with Cassini [START_REF] Bertotti | [END_REF]).

BepiColombo

The European Space Agency (ESA) and the Japanese Aerospace Explo ration Agency (JAXA) will jointly explore Mercury with BepiColombo mis sion [Benkhoff et al. 2010], due for launch by 2014 and comprising ESA's Mercury Planetary Orbiter (MPO) and JAXA's Mercury Magnetospheric Orbiter (MMO).

From dedicated orbits, the two spacecrafts will observe the planet and its environ ment. Their scientific payload will provide the detailed information necessary to understand the origin and évolution of the planet itself and its surrounding environ ment. The scientific objectives focus on a global characterization of Mercury through the investigation of its interior, surface, exosphere and magnetosphere. In addition, testing relativistic gravity was recognized as a scientific objective of BepiColombo since the inception of the project.

Mercury is in fact the innermost and fastest orbiting planet of the Solar System so that relativistic effects on its motion are larger than for any other major Solar System body. Mercury is then a unique laboratory for probing gravity (the explanation of the anomalous periastron advance of Mercury's orbit was the first experimental success of GR), which pushed for the development of the Mercury Orbiter Radio Experiment (MORE) [START_REF] Iess | [END_REF]]. Based on the Cassini radio System which has been used

to carry out the most accurate test of General Relativity in the Solar System to date [START_REF] Bertotti | [END_REF]], MORE will carry out a navigation experiment, aiming to a précisé assessment of the orbit détermination accuracies attainable with the use of the novel instrumentation and will repeat classical tests with much improved accuracy exploring new aspects of gravitational théories.

In particular, as shown in Table 1.1, MORE should test GR and alternative théories of gravity to a level better than ICC5 by measuring the time delay and Doppler shift of radio waves and the precession of Mercury's perihelion, test the strong équivalence principle to a level better than 4 x ICC5, détermine the gravita tional oblateness of the Sun J2 to better than ICC8 and finally set improved upper limits to the time variation of the gravitational "constant" G.

Relativistic framework for high-precision data

As seen in section 1.1, modem space astronomy relies on high précision observations whose data need to be reduced and interpreted in the framework of General Relativ-Parameter Présent accuracy Gaia GAME MORE 7 2 x 10~5 5 x 10"6 10"7 -io-8 2 x 10"6 P 1 x 10"4 10"3 -io-5 10"6 2 x 10"6 7 5 x 10"4 2 x 10"3 -8 x 10"6 J2{Sun) 4 x 10~8 10"8 5 x 10"9 2 x 10"9 d(\nG) years 1) dt 9 x ÎO"13 3 x 10-12 -3 x 10-13

Table 1.1: Présent and attainable accuracies with Gaia [START_REF] Hobbs | [END_REF], Mouret 2011], GAME [Gai et al. 2012] and MORE [START_REF] Iess | [END_REF] for the relativity parameters ity (GR) [Soffel et al. 1991, Moyer 2000, Sofïel et al. 2003]. To ensure the accuracy demanded by the missions presented in section 1.1, different issues need to be considered in the analysis of their observations: in particular, the définition of the obser vation in a proper reference frame, global reference Systems allowing the comparison of observations made in each proper reference frame and a précisé modeling for the propagation of the observed signal. Each of these issues has been deeply studied in the literature: the définition of global reference Systems has been given by the IAU 2000 Resolution B 1.3 in the post-Newtonian approximation of GR [Soffel et al. 2003] while several relativistic définitions of physically adéquate local reference frames of a test observer hâve been proposed in [Bini et al. 2003[START_REF] Klioner | Physically adéquate proper reference System of a test observer and relativistic description of the GAIA attitude[END_REF]]. As mentioned above, a précisé modeling for the relativistic propagation of Electromagnetic Waves (EW) is also required. In fact, the behavior of the EW in the Solar System is intrinsically related to its space-time curvature [Misner et al. 1973, Weinberg 1972] and therefore one has to take it into account for modem astrometry.

In the following, we will briefiy présent these different aspects, illustrated in Fig. 1.3, with particular attention to the covariant définition of an observable and the most current approximations of GR used in the data analysis of space observations.

General Relativity and its approximations

Even if General Relativity is not the only theory of gravitation, it still seems to be the most simple among those successfully passing ail the observational tests. A detailed review of the modem experimental foundations of gravitational physics can be found in [Will 2006]. Here, we shall just briefiy recall the basic principle of the theory, the Einstein Equivalence Principle (EP). This principle States [Will 2006]

• that the inertial mass miner and the gravitational mass mgrav appearing on the two sides of the Newtonian gravitational law coincide. This has been tested

with a précision of \ôm\ /m < 5 x 10~13;

• that light velocity in vacuum, c, is constant in any inertial reference frame.

This has been tested at level \ôc2\ je2 < 10"21; Figure 1.3: Four parts of an astronomical event: motion of the observed object; motion of the observer; trajectory of an electromagnetic signal from the observed object to the observer; process of observation (from [Klioner 2005]).

• the local positional invariance, which can be tested by measuring the gravita-

tional red-shift Av)v -(1 + ot)c~2 AU ,
where a = 0 in GR. This too has been proven at level |ct| < 2 x 10~4.

Moreover, the theory of GR also States that "The general laws of nature are to be expressed by équations which hold good for ail Systems of coordinates that is, are covariant with respect to any substitutions whatever (generally covariant)." [Einstein 1916] It is the so-called General Covariance Principle, stating that the laws of physics hâve to be the same for ail observers. This principle is translated in mathematical terms by the use of tensorial identifies and it has important conséquences, such as the fact that space-time coordinates are no longer to be considered as intrinsic observables.

One of the conséquences of the Equivalence Principle is that gravitation can be represented by a metric tensor g^.

It is now question to explicit this metric tensor.

In GR, its évolution is determined by solving Einstein's équa tions [Misner et al. 1973] where Ris the Ricci tensor, R is the curvature scalar, G is the universal constant of gravitation, A the cosmological constant and the stress-energy tensor. Eq. (1.1) tells us how space-time geometry is determined by its energy-matter content but its solution in a general case is a complex matter. Nevertheless, for most applications within the Solar System several hypothesis and simplifications can be assumed.

Indeed, since the Solar System can be considered as a gravitational weak field, the space-time metric can be expanded as 9^Tinv T h[iv ?

(1*2)

where 77 is the fiat Minkowski metric and h is a small perturbation. Expansion (1.2) opens two main possibilities : the post-Minkowskian (PM) and the post-Newtonian (PN) approximations. The PM approximation of GR consists in supposing that the perturbation h can be expanded with respect to the universal gravitational constant G. This approximation only requires the weak field hypothesis (1.2), without limi tations on the velocity of the sources of the gravitational field. We call it generalized PM approximation when the perturbation h is represented by an infinité sériés of powers of G; in this case, the covariant components of the metric tensor can be expanded as 00 g^{x,G) = rlltw + YJGngÿ{x),(1.3)

71=1

while the contravariant components are given by = -vrrTsÿ) , (1.4a)

n-1 C> = -*r*r -E 'T $ (1 -4b) p=i
In building the PN approximation of GR, we make additional assumptions. We suppose Solar System bodies to move slowly (u2 << c2) and that they are autogravitating, so that their orbits are gravitationally bounded. The équations of Newtonian dynamics show that the square velocity of an auto-gravitating body satisfies the following relation

v 2 U - GM (1.5)
where M is the mass of the body and r the distance from its center of mass, so that u2 _ GM c2 c2r

(1.6)

Taking into account approximation (1.5), the perturbations of the space-time metric (1.2) can be expanded in sériés of 1/c as follows

hoo = -jhw + -^jhoo + ® ^(1.7a) hm = + O (1) , (1.7b) htj = IftgJ + O (1) • (1.7c)
Since G R is not the only possible theory of gravitation and other metric théo ries of gravitation exist, the so called post-Newtonian parameters hâve been introduced in order to distinguish and test these théories. The resulting formalism, the parametrized post-Newtonian (PPN) approximation [START_REF] Will | Theory and experiment in gravitational physics[END_REF]], contains around ten parameters; in particular, we can write the metric tensor g^u in the global PPN

reference System [Klioner & Soffel 2000] 

as 9oo --1 + ^w(t, x) --/3w2(t, x) + 0(c D) c c (1.8a) 90i = 2^1+3^wi(t,x) + 0(c-s) (1.8b) 9ij = Sij ^1 + w(t, x) \ + ü(c~4) (1.8c)
where w and w1 are the scalar and vector gravitational potentials while (3 and 7 are the first two PPN parameters appearing in the metric. The parameter /? is related to the non-linearity of the superposition of the gravity fields of different bodies while 7 quantifies the effect of a mass unit on space-time curvature. Both parameters are unity in GR. Moreover, we can also define the Nordtvedt parameter 77 = A(3 -7 -3, used in the tests of the EP and equal to 0 in GR.

We shall point out that the PM approximation does not make any hypothesis about the internai physics and the motion of the sources of the gravitational field, thus keeping far more general than the PN/PPN approximation. In this thesis, we hâve chosen to define ail needed quantifies within the PM approximation while further expansions within the PPN approximation will be used for selected applications in the Solar System.

IAU relativistic reference Systems

The IAU 2000 framework for relativistic modeling [Soffel et al. 2003] represents a self-consistent theoretical scheme enabling one to model any kind of astronomical observations in the PN approximation of GR. This paradigm is based on the assumption that the Solar System is the only source of weak gravitational field and that, at infinity, space-time is asymptotically fiat. It deals with a number of local and one global reference frames which are connected to each other by PN coordinate transformations. The framework has three main theoretical ingrédients. First, a theory of local reference Systems (mainly for application in the vicinity of the Earth) has been studied with the construction of the Geocentric Celestial Reference System (GCRS). Second, a PN theory of multipole expansions of a gravitational field has been performed and finally a careful investigation of the orders of magnitude of various effects has allowed to make the PN réduction formulas for time scales as simple as possible.

The local reference Systems hâve two fundamental properties:

1. The gravitational field of external bodies (Le. for the GCRS ail Solar System bodies except the Earth) is represented only in the form of a relativistic tidal potential which is at least of second order in the local spatial coordinates and coincides with the usual Newtonian tidal potential in the Newtonian limit.

2. The internai gravitational field of the subsystem (e.g. the Earth for the GCRS)

coincides with the gravitational field of a corresponding isolated source provided that the tidal influence of the external matter is neglected.

These two properties guarantee that the coordinate description of the local physical processes in the vicinity of the considered body (e.g. in the vicinity of the Earth in the case of GCRS) is as close as possible to the physical character of those pro cesses. This means, for example, that if some relativistic effect is présent in the coordinates (e.g., of a satellite of that body) the effect cannot be eliminated by selecting some other (more suitable) coordinates and therefore has physical character. constructed for a massless observer (with an index referring to a fictitious "body" of mass zéro), is suitable to describe physical phenomena in the vicinity of that ob server and, in particular, to define measurable quantities (observables) produced by that observer. The relation between this point of view and several standard ways to describe observables in GR is described by [START_REF] Klioner | Physically adéquate proper reference System of a test observer and relativistic description of the GAIA attitude[END_REF]].

Relativistic équations of motion

The analysis of high précision observations also needs an accurate knowledge of the ephemerides of ail Solar System bodies for both navigation and scientific purposes.

For this reason, ail modéra planetary ephemerides such as the JPL DE [Folkner et al. 2009], the IMCCE INPOP [Fienga et al. 2011] and the IA A RAS EPM [Pitjeva 2005] are built in a relativistic framework.

The principal relativistic effects on the dynamics of Solar System bodies can be divided in two categories [Klioner 2000] : translational and rotational motion.

The effects on the translational motion are mostly given by the so called Einstein-Infeld-Hoffmann (EIH) équations of motion of N gravitating bodies, whose gravitational fîeld can be described by their masses M.A only. We get the accélération xA = -52 -"A + \fpn{Mb + 0(c~4) , (1.9) • geodetic precession (ae 2"/cty for the lunar orbit);

• various periodic relativistic effects (important mostly for LLR and binary pul sar timing observations).

Further relativistic effects due to the rotation of the bodies (Lense-Thirring or gravitomagnetic effects) and those due to the asphericity of the gravitating bodies are mostly neglected in the construction of planetary ephemerides.

Nevertheless, an adéquate relativistic description of the rotational motion is also required for the définition of local reference Systems (for example, the GCRS). In this case, the PN équations of motion d2Si/dt2 = VN + c~2LpN + 0(c~4) , (1.10)

where S1 is the relativistic spin of the body, LlN and LlPN are the Newtonian and post-Newtonian torques, respectively [Klioner & Soffel 1998]. Again, a full post-Newtonian metric tensor is required to dérivé these équations.

The most im portant effects on Earth rotation are [Klioner et al. 2008] the geodetic precession (~1.914"/cty) and nutation (ae 153 /aas).

Moreover, some recent ephemerides such as INPOP08 [Fienga et al. 2009], also are the Christoffel symbols. One should note that this approximation only applies when the amplitude and frequency of the signal can be considered constant over its period and when the wavelength of the observed signal is smaller than the typical dimension of space-time curvature [Misner et al. 1973], which is the case of the Solar System.

In Table 1. (unit : microarcsecond -fias).

spherical shape of the massive body to the direction of the light ray: this effect weakens in 1/6 (see Fig. 1.4), where 6 is an impact parameter. The columns Ôjn (with n -2,4,6) show that one should also take into account the effects due to the asphericity of the planets: even if these effects are important at the fias précision, at least for the largest bodies of the Solar System, their influence lowers as l/b2n+l so that they need to be taken into account only for light rays grazing the perturbing bodies. The ôT* and 6r columns represent the influence of the translational and rotational motion of the bodies: one can note that even these effects hâve to be controlled when the fias accuracy is required. Finally, the ô2pn column provides the deflection due to a spherical body at the second order of the post-Newtonian approximation : this effect is still important when focusing on observations towards the Sun (which is not the case for the Gaia mission but is relevant for the GAME mission). The combined resuit of ail these effects on the celestial sphere is illustrated in Figure 1.4. During the last décades, many approaches hâve been developed to describe the trajectory of such light signais and to provide its coordinate direction, frequency shift and time of flight, defîned as the coordinate time lapse between the émission and réception events. We shall briefly enumerate the methods existing in the literature:

1. a first method is the analytical dérivation of the null-geodesic équation followed by the intégration of the trajectory of the light ray. It is the method applied by [Blanchet et al. 2001] in the weak-field approximation to détermine the time transfer in the Schwarzschild geometry up to the 1/c3 order. This method has also been used by [START_REF] Chauvineau | [END_REF] for the mission LISA in the PPN framework and by [Minazzoli & Chauvineau 2011] in the case of scalartensor théories of gravity. [Kopeikin & Schàfer 1999] analytically computed the solution up to the 1PM order for a System of arbitrary moving bodies while [Klioner & Zschocke 2010] pushed the computation up to the 2PM order in the static case. In a non-perturbative approach, we shall note that some solutions of the null-geodesic équation hâve been given for the Schwarzschild and Kerr metric [Hagihara 1931, Chandrasekhar 1983, Cadez & Kostic 2005, Fujita & Hikida 2009, Kostic 2012 4. a fourth method uses the eikonal theory in place of the intégra tion of the null-geodesic équation. This method has been developed by [Ashby & Bertotti 2010] and used for the data analysis of the Cassini mis sion.

5. the last method uses the Synge World Function instead of an explicit compu tation of the null-geodesic. The World Function introduced by [Synge 1960] is used by [Linet &;Teyssandier 2002] to compute the time transfer at the 1/c4 order in axisymmetric geometries. This approach has been then further generalized in the PM approximation by [Le Poncin-Lafitte et al. 2004].

Finally, a simpler version allowing for a direct computation of the time trans fer has been developed by [Teyssandier & Le Poncin-Lafitte 2008]. Using this method, time transfer is computed as a PM expansion in which each of the perturbation terms is an intégral of functions depending only on the metric and its dérivatives taken along the Minkowskian trajectory of the photon (the straight line between the émission and réception of the photon).

In this thesis, we will apply this last approach to describe light propagation in a curved space-time.

Relativistic observables

As anticipated in section 1.2.1, in modem théories of gravitation the laws of physics are invariant under coordinate transformations. For this reason, we can choose in which reference System we want to write our équations (for example those describing light propagation). This freedom also implies that ail coordinate quantities hâve generally speaking no physical sense and cannot be observed. A coordinate Sys tem is indeed only a mathematical tool that we choose to realize our computations and it is extremely important to focus on quantities which are invariant under a diffeomorphism.

In the end, the description of a physical System dépends both on the observer and on the chosen frame of reference. If an observer u has operational control of the instrumentation used for the measurement we shall then defîne a reference frame adapted to him. This is a set of one unit time-like vector and three unit spacelike vectors (defined up to an arbitrary spatial rotation) constituting a comoving tetrad.

In most cases, the resuit of a measurement is affected by contributions from the background curvature and from the peculiarity of the reference frame.

As long as we can neglect the influence of the curvature, we call a measurement "local"; conversely, if the curvature is strong enough with respect to the measurement's domain (the région of space-time in which a measurement takes place) , the measurement will be called "non-local". The aim of the relativistic theory of measurement [de Felice & Bini 2010] is to enable one to devise, out of the tensorial représentation of a physical System and with respect to a given frame, those scalars which describe spécifie properties of the System and which can be called "observables".

Outline

This study sets the basis of an accurate model for data analysis within a relativistic framework based on the well assessed Time Transfer Functions formalism. It has been developed under the joint supervision of a French team at Paris Observatory and an Italian team in Turin and it can be ideally separated in two parts. In chapters 2, 3 and 4, we focus on the study of light propagation in a curved spacetime and on the modeling of the observables currently used in radio-science and astrometry. In chapters 5 and 6, we apply our model to space astrometry focusing on the Gaia mission. In the following, we provide a detailed outline of our work.

In chapter 2, we study light propagation between two distinct events in space- 

--NABl + B F (i) dh$ dA + F (2) h$,dh%2) 1 _ dA + o^3) (1.13)
where the intégrais are computed along z_, the Minkowskian straight line between xa and xB and F^are explicit functions of the gravitational perturbation h and its partial dérivatives. Similarly, we compute general closed form équations also for and JC. These formulae are valid for any material content in a weak-field and are particularly adapted for numerical intégration.

Nevertheless, when dealing with a huge amount of data, numerical intégration becomes very time consuming. For this reason, in chapter 3 we provide analytical solutions of these intégrais in some simple, but widely used, cases. First, we apply our results to the Schwarzschild's geometry to provide an explicit solution for the time transfer, the direction triple and the ratio K up to the 2PM order. It allows us to check our resuit with [Teyssandier 2012] in order to validate the general for mulae presented in chapter 2. Then, we place ourselves in the PPN framework, which is allowed when dealing with space missions within the Solar System. We use the PPN metric recommended by IAU2000 to write Te/r and k% as functions of the scalar and vector gravitational potentials w and w obeying to the Poisson équa tions [Linet & Teyssandier 2002]. First, we présent the case of an isolated axisymmetric body treated in [Le Poncin-Lafitte & Teyssandier 2008] and then we focus on the solution for a System of point masses in linear uniform motion.

Chapter 4 focuses on the covariant general modeling of the observables needed in space navigation, namely the Ranging and Doppler for a moving emitter and receiver, and in astrometry, namely the angular distance between two light sources and the projection of the direction of an incident light ray on the 3 -plane of a given observer. Such an observer can be represented by a comoving tetrad that we also provide up to the 2PM order. We obtain exact relations for these observables within the TTF formalism. This means that these quantities can be explicitly determined without the knowledge of the null géodésie connecting the émission xA and réception xB events. Using the results of the previous chapters, we présent our équations in a form well adapted to numerical intégration for any weak field metric. We also présent their analytical solution in a spherically symmetric gravitational field as well as estimâtes of the relativistic correction up to 2PM for BepiColombo and GAME-like missions [Hees et al. 2013].

In chapter 5 we apply the results of the first part of this thesis to astrometry, focusing on the Gaia mission. In this context, two well-assessed relativistic models already exist: the Gaia Relativity Model (GREM) [Klioner 2003] and the Relativistic Astrometric Model (RAMOD) [de Felice et al. 2006]. Thanks to the collaboration between the French group and the Italian group responsible for RAMOD, we de-veloped an analytical comparison of the modeling for the astrometric observable between the three models. In particular, we show how the time of flight and direc tion triple of a light ray propagating between xa and Xb can be computed within GREM and RAMOD giving results équivalent to those presented for the TTF in chapter 3, at least at the approximation needed for Gaia [Bertone et al. 2013a]. This comparison provides a further validation of our formulae and it complétés a previous study about the different approaches used to model relativistic aberration in the Gaia context [Crosta & Vecchiato 2010].

In chapter 6, we apply our model to the analysis of a simulated astrometric observation. In collaboration with the italian group responsible for GSR (one of the two software in charge for the réduction of Gaia observations), we implement a "GSR-TTF" code, implementing our formulae and Gaia attitude to compute the astrometric observable. Thanks to the functionalities of GSR, we compare our re sults with those of GREM and of PPN-RAMOD (a non-perturbative model of the RAMOD family). Finally, we présent its application to the reconstruction of a small celestial sphere. for Te/r{xAi^BitA/B) as a PM expansion without computing the whole trajectory of light. Once the TTF is known, it is then possible to dérivé explicitly the ratios giving the direction triples \ki)A/B = {h/ko) a/b as well as KL = (ko) b /(ko) a-Finally, in section 2.3 we présent our procedure to directly compute these ratios within the PM approximation of GR and up to the second order as closed form intégrais Function [Synge 1960] of space-time is the two point function f1(xa,xb) defined as the intégral being taken along the null-geodesic T connecting the two events. For our purpose, the World Function has some interesting properties, 

b'n-(fa = -C dTr dx B 1 - dTr dt) -1 -1 dTr = c dx _ (kp)B " (ko)A = 1 A dTr dt B Also, noting that Ü(tA, XA, tA + cTe{tA, XA, XB),XB) = 0 , (2.7a) (2.7b) (2.7c) (2.8)
similar expressions for (kij ^and JC can be deduced for Te (tA,xA,xB). Once known explicitly, the quantities defined in Eq. ( 2.3) and Eq. (2.7) can be used to define Ranging and Doppler in space navigation and astrometric observables (which will be detailed in chapter 4). We will now focus on the détermination of the function Tr(xAltB,xB) in its PM expansion.

Post-Minkowskian time transfer and delay functions

The covariant components of the tangent vector to the null géodésie TAB at xA must ( and the set of quantifies can be obtained using the relations , and for n > 2 where it has been demonstrated by [Teyssandier & Le Poncin-Lafitte 2008] that each perturbation term Aj^can be obtained as a line intégral taken along the straight line (2.19). This resuit is particularly interesting and can be interpreted as an application of the Fermât principle [START_REF] Perlick | On Fermât's principle in general relativity. I. The general case[END_REF]] in the nth-post-Minkowskian ap proximation. It follows from Eq. (2.24) that each term of Eq. ( 2.26) can be written

A r{xA,tB,xB) = - Rab f J 0 (h00 -2N'hw + + (2.23) 2 [/ioi(z_(A)) -Njhis(z-(A))] x
n-1 »(n) ~V V " "(p) ' P=1 (2.25) (2.26) (2.27a) (2.27b)
as h^(z-(\),G) = EG'X»)(4> - XRAB-(2.29) n-1
where we can substitute Ar from eq. (2.28) and then perform a Taylor expansion

around the point 2_(À) defined by z.(X) = {x% -\Rab,z-(\))(2.30) in order to obtain the PM expansion of A), G). A straightforward calculation yields OO h^(z.(X),G) =YlGn9r{n)(z(2.31) n= 1
where the quantities g(^(z_(À), tB, xB) are given by ^i

)(z.(A),lB)aiB) =g^){z_( A)) (2.32) and 9^(n)(Z-(X)' fB,XB) 9^-W) n-1 m + ^^(^(11,(8,*,) m= 1 k= 1 dkg fils (n-m) (dx°)k (2.33) MA) for n > 2 with (-lf k\ E 6-1-fc ' jfe A^+1)(ae,tfî,a3B) , J=i (2.34)
where /i, Z2, •••, h are either positive integers or zéro (m > 1 and 1 < k < m).

Substituting for h^(z-(X),G) from Eq. (2.31) into Eq. (2.23), we get the terms of the PM expansion (2.28) of the réception time delay function Ar as

1 / A{r\xA,tB,xB) = -Rab \ 1 fl &-r\xA, tB,Xs) = ^AB j 9(i°, -2 N'ABg°ù + N'ABN'ABgl ,(2.35a) J z-{\) 9°-(2) -2 N'abS2{2) + N'abN]ab^{2) -(Z-(\),tB,XB) +2 +rf3 9°{i) Nab9{\) dA? dx1 dxi -z-{A) dx dAr -(z_{\),tB,xB) -(2-(A),tB,xB) dX (2.35b) and 1 A^(xaRbiXe) = -Rab j 9°-°("> -2 N'ab^u) + (n) -(Z-(\),tB,XB) n-1 i i r) /\(n~p) «E la» -«VU,,..., P= 1 71-1 p=i n-p-l X dA(rp) dAi"-p) n-2 dx1 dxi dAiq)dAln-p-q) +E9*4)(z-W'fB'xs) -{z-(\),tB,xB) P=1 <7=1 dxi dxJ (Z-{\),tB,XB) dX (2.35c)
for n > 3, the quantities being defined by équations (2.32) and (2.33). It should be noted that the intégral expressions occurring in Eq. (2.35) are line intégrais taken along the zeroth-order null géodésie of parametric équation x -z_(A), where z_(A) is defined by équation (2.30). Following a similar reasoning is then possible to dérivé the émission delay functions Ae.

/N

Post-Minkowskian expansion of (A'^a/b and AC

The PM expansion of the direction triple (ki)A/B and of the ratio K defined in Eq. (2.7) can in principle be obtained through an analytical dérivation of Eq. (2.13) where the terms A^are given by Eq. (2.35). This is done explicitly in [Teyssandier 2012] up to the 2PM approximation in the case of a Schwarzschild metric. In this section, we présent a general way of computing Eq. (2.7) up to 2PM

order and for any weak field metric. In particular, we develop a procedure close to the one used for the TTF in section 2.2, showing that these quantities can be also computed as intégrais of the metric and its dérivatives, the intégral being performed over a straight line joining the emitter and the receiver. Using Eq. (2.13) into Eq. (2.7), it yealds

(* b = \Nab + déB i dAr b = Nab + JC = 1 dAr 1 c dis 1 dAr c dis -î (2.36a) (2.36b) (2.36c)
The goal of this section is to présent analytical formulae for the partial dérivatives of the PM expansion of the réception delay function valid up to the 2PM approxi mation [Hees et al. 2013].

Notations and variables used

The results presented in the following sections dépend on some variables that we will define here. First of ail, the Minkowskian path between the emitter and the receiver (which is a straight line) is parametrized by A (whose values are between 0 and 1) and is given by Eq. (2.19) and Eq. ( 2.30) which it can be useful to rewrite as

z°(À) = cbB -AAEab , z(À) = xB{l -A) + \xA (2.37)
The first dérivatives of these expressions with respect to the variables xa/b are given by 4;(A)

4.i(A) 9z°(A) _XNi _ dz°(A) _ -0 ,x) -*NAB - - ZB,iW ' dx'A dzj{ A) dx\ dx\ = \5{ , and 4,(A) = = (1 -A)(5-, dx\ (2.38a) (2.38b) (2.38c)
while the second dérivatives write d2z°A d2z°z

°AA-k,{x) ~d^dÂA ~r7b(NabN>ab ~~" (2-38d)

We will use the function m and its dérivatives m>a defined from the PM expansion of the space-time metric as follows ™<i) Jz"(A)

( A) = RAB -2JVJbAS + NabKb9(! rk A)k l JW zH A) and ^'(i),a(/^) Rab -2+ rk J)k l Jtl n«(A) (2.39a) (2.
dh (n) d/i (n) 2i? AB L =cst 00 ( rkl dxkB =cst - ^ab^ab) + 2ggj -2NÏBUfàjNlAB +9{liNAB) + &nABN^B[ZNkABNlAB -5") Jz«(A) (2.40a) (2.40b)
Expansion at first PM order

Using the notations introduced in the previous section, the expression of Af1^given

in Eq. (2.35a) writes ùJp{xA,tB ,xb) = Rab $) -2NXbQTd + ^ab^S 0i (1)
Then, the dérivatives of Af1^can be easily determined as dX-l m(i)(X)d\ .

-**"( A) J0

(2.41)

These équations are équivalent to those derived in [Hees et al. 2012b]. Finally, the following relations deduced from Eq. (2.42) will be useful for the computation of the

2PM order A(r1\z(X),tB,xB) = / m(i){X/ï)dn , J o (2.43a) <9A^fl r n (z(\),tB,xB) = / m(i)>a(Xfj.)z%ti(XfjL) + /i*(1)(A/x) d[L , (2.43b) Jo L J dx{ d_AJ_ dtB (z{X),tB,xB) = X Jo î (2.43c) Expansion at second PM order /o\
The expression of Ar j given in Eq. (2.35b) can also be rewritten with our notations as

A ?\xA,tB,xB)= [ MX)+ (2.44) J 0 with 2i(A) = m(2)(A) -Af1)(2:(A),tjB,ccjB) m(i)i0(A) 2b(A) = m(2)(A) -m(i)>0(A) / m(1)(A^)d/i J o -dr(*(A)) = [Jim -/fc* $,] r (2.45a) (2.45b) m{i),c,(X^)zA,iM) + ^îi)(V) (2.45c) and I3(A) Rab 2 Rab E j=i - 3 gAr1} dxJ rl -, 2 (*(A)) Ei / ™(i),c.M)zA,jM) + ty d/i j=i Oo (2.45d)
where we hâve used the relations (2.43). We can now dérivé the expression of the partial dérivatives of Eq. (2.44) as

where the dérivatives with respect to the émission coordinates xa and réception coordinates xB can be written as follows

dl1 dx A/B = m(2),c*ZA,B,i ± h\2) ~^^(A), h, Xb) l),0c^2/£M ± h\1)fi dZ2 d) -m(1),0-(*(A)), UXA/B (2.47a) dx A/B "FN1abÇ(i) ^9(1) + (^AB^p)^Çfi(i),aRkAB)Z<A/B,i d2Ail) dA (i) zP(A) dxi i*W) + RAsg% ~ZP(A) dxlA/Bdxi (zW).
(2.47b)

and dx dïz _ ±nab dA (i) A/B J=1 dad (*(*)) -Rab 3=1 dA (i) dad (*(A)) 2 A (!) d2A dx\jBdxj :(*(*)) (2.47c)
and those with respect to the coordinate time of réception tB give dX oa!1)

-= cm(2)rcm(i)iooAf)(2(A))-m(1)i0--(z(A)) (2.47d) dd tR RABg°(l)fi Rab9(1),0 fc Ak dA (i) . Z0(A) dx* •(*(*)) + ftutfjï) - d2 A/1 . ZP(a) dtBdx* (z(A)) (2.47e) and di5 5X3 = j=i dtBdxi (2.47f)
with ail quantities being evaluated at À, the notation given above and where we obtain 92Ar1)

*1 -(«(A)) = / mm,aPzÂjzA/B,i ± h\\),oczXi + dx'A/Bdxi + ~hll),aZA/B,i±hm\^dM (2.48a) and 92aP *1 " dtBdxd = c m(i))ao(A//)^jj(A/i) + /i|1) 0(A/z) d/i . (2.48b) Chapter 2.

TTF formalism for light propagation

The relations given above can be used to compute the direction triple k{ and /C up to the 2PM order in an intégral form particularly adapted for a numerical évaluation with any metric.

Conclusions

In this chapter we presented the TTF formalism [Linet & Teyssandier 2002], a pow- These results hâve been presented in [Hees et al. 2012a] and will be summarized in [Hees et al. 2013].

In the next chapter, we will apply our results to the case of a static, spherically symmetric space time to retrieve analytical solution up to the 2PM order, which is known for this particular geometry. Moreover, we will provide the PPN expansion of our formulae as well as their solution in the gravitational field of a System of bodies in translational motion. These results will be then used in chapter 4 to define and compute the Doppler and astrometric observables.

Chapter 3

Applications at 1PN/2PM In chapter 2, we presented general équations in closed form up to the 2PM order for the coordinate time of flight of a light ray between two events xa and xb, for the direction triples (&*) at xa and xb and for the ratio K. In this chapter,

V J A/B
we présent an application of these results to a static, spherically symmetric spacetime where an analytical solution of Eqs. (2.35a)-(2.35b), (2.42) and (2.46) can be obtained at the 2PM order. Using the simplifications proposed in section 3.1, we compute Eq. (3.20) and Eq. (3.25) which are the main results of this section. By comparing these results with [Teyssandier 2012] we validate our formulation. For practical applications, we then use the metric tensor adopted in the IAU2000 (pre sented in section 1.2.2). In section 3.2.1, we provide a closed form PPN expansion of the TTF in Eq. (3.29) and of its dérivatives in Eq. (3.30). These équations allow us to choose appropriate gravitational potentials for each application. An appropriate choice of w and w, representing the scalar and vector gravitational potential respectively, allowed [Le Poncin-Lafitte & Teyssandier 2008] to provide the time transfer and tangent vectors in the field of an extended body (using Eq. (3.31)). We présent here a further application of our équations to the gravitational field of a System of point bodies in motion (using Eqs. (3.38)-(3.40)). This work on the TTF formalism shall be useful to describe light propagation in the Solar System at (and in some cases beyond) the précision needed by most space missions at présent times (see Table 1.2).

Static, spherically symmetric space-time

In this section, we consider the case of a static, spherically symmetric space-time.

With these assumptions, we use isotropie coordinates, so that the space-time metric can be written as [Stephani et al. 2009] ds2 = -A(r)c2dt2 + B{r)5ijdxldxR (3.1)

As mentioned in [Linet Sz Teyssandier 2013], the light rays of metric (3.1) are the same as the light rays of any metric ds2 conformai to Eq. (3.1). We can thus simplify the calculations by choosing ds2 -A~l(r)ds2 and consider the following metric ds2 = -c2dt2 + ^A,r} ôlldxldxJ --c2dt2 + U (r)ôijdx1 dx^.

(3.2)

A[r)
We can now perform a PM expansion of the function U(r) as

U(r) = 1 + U(1\r) + U{2\r) + ... . (3.3)
This procedure simplifies the results found in chapter 2, allowing for an explicit analytical solution of the delay function and its dérivatives up to the 2PM order.

Using Eq. (2.41), the réception delay function at the 1PM order is defined by

A {r\xA,xB) = Rab U{1\z(X))dX .
(3.4a)

Then, using Eq. (2.42) its first dérivatives can be written as

Rab "• N dA<l). , U^{rA).

-q-t(xa,Xb) = j Nab + 2 'Xb+ 4 (rA -Rab ~4) fl X d£/(1)

and saP dx /_ _ N _ Um(r,i) ,rj Rabx'b \Xai3Cb) 0 XJab T 0 B 2 Rab r1 î du(1) L z(x) dr %R + N' AB / 2 + R2ab ~(z(X))dX r1 x duw Jo *(A) (3.4b) (3.4c) (z(X))dX ,
where z(À) = |z(À)|, z(X) is given by Eq. (2.37) and where, for the sake of simplicity, we put ta = \xa\, rB = \xB\.

Also, one can show that

dA (i) m -(z(A),aes) = -tf«(z(A))-4â +A rab j nab / 2 c>2 _ 2 a 2 XB A-^VM nAB 7 B) dU(1)
'o z(Xfj) dr ,,A(A> = -ï{2Awc/<1,(z(A))^r(z(A))

-A 2y(z(A)) dv,_,^" x2 d2 w " ,2 d2 2 dx\ MA)) {rA + rb)2 -R2ab x [ra -rb)2 -R2ab and dî* dx -X2V2( z( \ ) ) [ 2r | R\b + -r%)x'B] } (3.11a) 1 r"" ..z'(A)"m, ,.,,dUm, , v,V(z(A)) 3V , (A) = -i{2(1-A)W^WA))^WA))"A 2 ^WA)) (î"a + rBf -R2ab (ta -rB)2 -RAB + k (rA + rB -RAB)RAB + (t2a -Rab -t2b)x'b ) (3.11b)
and where the dérivatives of R(z(A)) can be computed by rA

dV {z(\)) = dx'A j 0 and dV dx r(*W) = B d2Ud r2 Ô2Uî1) dr2 (z{ A/t)) MV)) Afi2zl(\n) AfJL' dU(1) MA)) z2(A/i) ^<9r (1 -X/i) fiz1 {X/i) M A/i) MM' *3(AaO_ d/ji (3.12a) z2(A/i) (z(A))23(v)J dfi.
[{rA + rB)2 ~R2ab] 2(1 + 7)777 Rab (rA + rB)2 -R2ab [ rA d+7)^s-^k 'A Z M + ^ab(xa + rB) 4(1 + 7)^-+ - (+4 + ^b)2 -RA AB (3.15a) (3.15b) | N*AB(r2 p2 _ 2 a -4(1 T 7)777 +4 [(+4 + 7T?)2 -RA AB J 2(1 + 7)777 (+4 + 7+?)2 -R2a AB Rab tb XB -NAB(rA + rB) (3.15c)
The first resuit is équivalent to the expression of the Shapiro time delay [Shapiro 1964] while the two dérivatives are in agreement with the results found in [Blanchet et al. 2001] in [Richter & Matzner 1983, Le Poncin-Lafitte et al. 2004, Ashby & Bertotti 2010] (see also [Brumberg 1987] in the case where f3 = 7 = 5 = l).

We can now compute the dérivatives of AÎ2^. As an example, we will only focus on the dérivative with respect to xlA, the other dérivative (with respect to xB) can be computed similarly. Using Eq. (3.13)-(3.14) into Eq. (3.12), one gets

straightforwardly dV dx r(*W) = 8(1 + 7)mA z3(À) (z(X) + rB)2 -X2R2A l 2 AB (z2(A) + 2z(X)rB + z(A) • "B -A R AB 2z(X)rB + z{A) • xB (3.21)
Then, replacing this resuit in Eq. (3.11a) leads to

<9X3 4(l + 7)2m2rgA flri r n 1 2 ' s A 23(A) (z(A) + rB)2 -A2i%B r# + 4rs-z(A) + 3X2(A) -A2R2AB XR AB rB + 4rsz(A) + z2(A) -A2R2AB (3.22)
which, after some lengthy but straightforward calculations, can be written as rB(l-//2) ta(1-//2).

o /1 i \2 2 8(i+7)m_ A 2 (^(A) + rB)zi{A) + z(X)RiAB (3.23) *(A) NA) + rB)2-A24]2.
rB(l -//2) ^a^b(1 + /i) (3.25b) K -Mn's) 1 + (1 +4)-(m-1-wjs + ~+ f»^) rs(l + /i)
Some algebra allows to put the last two results in the same form as the one found by [Teyssandier 2012], which is an evidence that our formalism is correct. Of course, in the case of the Schwarzschild metric the analytical dérivation of Eq. (3.19) is much more direct to get Eq. (3.25), which can also be used to check our calculation.

Nevertheless the method presented here is very efficient for numerical évaluations of the dérivatives of the TTF, necessary when using more complex metrics and for the test of alternative théories of gravity, when the intégrais are no longer analytic.

3.2

Systems of moving or extended bodies

PPN expansion of the TTF and its dérivatives

The metric recommended by the IAU2000 resolutions [Soffel et al. 2003] is expressed in the PPN framework and at 1PM order by [Klioner & Soffel 2000] This relation can be used whatever the forms of the scalar and vector potentials are. The resuit of this intégral is well-known in the case of a static point mass (see section 3.1) or in the case of an axis-symmetric static mass (see section 3.2.2).

In the case of an ensemble of moving point-masses, this intégral can be computed numerically or through a PN expansion of the potentials (see section 3.2.3).

Similarly, we can compute the dérivatives of the Time Transfer Functions. Inserting (3.28) in (2.42) and using (2.38), it yields straightforwardly

-oaP) n+Vl fl &jr = -*J0 [RAB^-wN'^l^dX (3.30a) 1 rl H--/ [(1 + 'y)wjtKlAB\ -4ARab • w,i + 2(1 + l)wl]zt3i\\ d^> c Jo y -Qj~= [RAB(l-X)w,i + wNiAB]ze(x)dX (3.30b) 1 z*1 _ J + 4(1 -X)RAB ' w,i + 2(1 + 'y)Ujl]z0(X) and fl NAB-w>t -ÔT-= K1 + 7)^,t -2(1 +7) -]z0(\)d\. (3.30c) Ot B C J o C
These formulae are valid for any scalar and vector potentials, particularly adapted for a numerical intégration and the modeling of observables for space science. If needed, the results of this section can be easily broadened by considering an extension of the IAU metric valid at the 2PM order [Minazzoli & Chauvineau 2009].

In the following, we shall recall the équations describing light propagation in the field of axisymmetric bodies and provide explicit formulae in the case of a System of bodies in translational motion.

Solution in the field of an extended body

The description of light propagation in the field of an isolated axisymmetric body has been developed within the TTF formalism as a PN expansion at the or 

(rA + rB + Rab)2 1 + 2 + 1 ~(fc • nA)2 ta 1 (r^+ rB)RAB B + 1 ~(fc • ^b)2" fc.(nA + nB) (1 + nA-nB)2 k -(k nB)nB 1 üUb 2(fe • ns)fc + [1 -3(fc nB)2] nB 2r| rA 1 + nA (3.37b)
while an expression for the multipolar terms of higher order is given show that there would be no theoretical limitation to include the quadrupole light deflection term in an astrometric model based on the TTF formalism (see chapter 6).

Solution in the field of a System of moving point bodies

We provide now explicit formulae within the TTF formalism for the case of a Sys tem point-like, slowly moving and non-rotating bodies [Bertone et al. 2013a where vp(tc) and ap{tc) are the velocity and accélération of the body P, respectively and te is some fixed moment of time [Klioner & Kopeikin 1992] that we could use to optimize our approximation. Let us study the amplitude of the two first terms of the expansion. For quasi-circular orbits, one has For the déviation angle a, one has a oc 1/6. Therefore, the relative error on the déviation angle will be of the order of 70 km/b (since 1/(6±70) ~( 1 =F 70/6) 1/6). If 6 ~3.103km (a photon grazing Mercury for instance), then the error on the déviation angle will be around 2% -which is unnecessarily big. On the contrary, if te ~tm, then c(tm -te) ~0 and the error introduced by the approximation on the trajectory is small. This means that te is chosen as the maximum approach time of the photon to the perturbing body, such that \xy(tc) -xP(tc)| b, where x7(t) is the trajectory of the photon.

In that case, the additional vp/cc~2 terms in the time transfer or déviation angle coming from the development of the trajectories of the bodies in the application of the TTF will be at the same numerical level that the terms coming from the c~3 part of the metric (also due to the motion of the perturbing bodies: c~3 « Vp/cc~2).

The last statement works for the most general case and therefore one should define te as being such that |x^(tc) -xp(tc)\ ~b, similarly to what stated in [Klioner 2003, Klioner & Peip 2003].

In the following, we shall then consider a rectilinear uniform trajectory such as 

Light direction triples

We provide here the steps to compute the tangent vector at réception event (xA,tB,XB,xp,Pp,l)-First, we need to compute the partial dérivatives of w(x,t) and w(x,t) as As far as we know, this resuit is new within the TTF approach. In chapter 6, we check our formulation with some previous results obtained in [Klioner & Kopeikin 1992] through the analytical solution of the null-geodesic équations. We shall note that, from the point of view of the astrometric data analysis, the last équation is obtained as a function of ail known quantifies (i.e. the coordinates of the observing satellite and the mass distribution in the Solar System) and of the astrometric unknown (i.e.

the source coordinates). Again, by setting f3p -0 and gp -Nab, the perturbing bodies are fixed at their position at time te and we easily retrieve the static case

proposed by [Teyssandier & Le Poncin-Lafitte 2008] in the case of an isolated deflecting body. It is also interesting to evaluate the contribution of the translational motion to light deflection using the définition given in [Teyssandier 2012] AX~\NABxkB\, (3.58)

where the light ray is considered as coming from infinity. The expression of (Jzij is then deduced from Eq. (3.57) where N -NAb and Rpa ~-Rab in this case.

Introducing the impact parameter bp and the angle a between Rpp and N we get bp = Rpssma, so that

G AX = (7+1)3E M RpB gp -(Npb gp)2 bpg2P 1 + Npb • gp + |iV x {3P \ Rpp( 1 -Npb • N) + 0(c~4, RAb) (3-59)
The logarithmic term disappears in Eq. (3.59) and can thus be neglected for sources at quasi-infinity. Moreover, numerical estimâtes of Eq. (3.59) for various deflecting Solar System bodies are in agreement with [Klioner 2003].

Conclusions

In this chapter, we illustrated the application of the general formulae presented in chapter 2 to a space-time metric well adapted to describe the impact of Solar System gravitational field according to the accuracy required for the data analysis of présent and future space experiments. The application to spherical geometry at 2PM will be summarized in [Hees et al. 2013] while the PPN application of our formulae has been first presented in [Bertone & Le Poncin-Lafitte 2012] in a general case and then specialized for bodies in translational motion in [Bertone et al. 2013a]. In chapter 4, we shall use the developments presented here to define the relativistic observables used in radio-science and astrometry while in chapters 5 and 6 our formalism will be applied in the context of the Gaia mission. In this chapter, we will présent the application of our formalism to the modeling of relativistic observables for radio-science and astrometry. First, we note that in a general case the emitter and receiver of an EM signal are in relative motion. In section 4.1, we provide an analytical and an itérative way of dealing with this problem and we retrieve the so-called Sagnac terms in Eq. (4.4). Then, we focus on the Doppler observable commonly used in radio-science, writing explicit formulae for the one-way (in Eq. (4.9)) and the multi-ways (in Eq. (4.11)) frequency shift. Concerning astrometry, we provide a formulation for two kinds of relativistic observables: the incident direction of an incoming light ray in the reference frame of an observer (at Eq. (4.15)) and the angular séparation between two light sources (at Eq. (4.17)).

Ail these quantities are expressed as functions of the metric tensor, its dérivatives and the functions T, {h)a/b and JC defined in the previous chapters as closed form intégrais. Finally, in section 4.3 we apply our formulae to provide estimâtes of the This causes difficultés in the computation of the TTF since tA is not known a priori. We présent two solutions : an analytical expansion of the émission time tA or a numerical itérative method.

Sagnac terms

The analytical procedure follows the same method as the one presented in [Petit & Wolf 2005] This is no longer a PM expansion but becomes a PN one since the TTF is expanded in terms of quantities such as vA/c, (DAb • ô)/c2 that should be small to assure the convergence of the sériés. It should be noted that for this PN expansion Af1î s considered of order G/c2. This computation can be extended to higher orders if necessary. This analytical expansion makes clearly appear what is usually referred to as Sagnac terms. While being analytical, it has the disadvantage to be valid for small velocities/accelerations only (which is not problematic in the Solar System but can be limiting in other applications like binary pulsars).

Itérative procedure

Instead of using the analytical expansion presented above, one can use an itérative procedure. This procedure is standard and can be written as with e the desired accuracy and (i) indexing the itération steps. Each step of this itérative procedure requires to evaluate the TTF. In practice, in the Solar System this procedure converges very quickly after two or three itérations. The main advantage of this procedure is that no PN expansion is done and that it is really easy to implement.

The two procedures presented in section 4.1 allow one to compute tA, the coordinate émission time of the signal emitted along the world line XA(t), from the réception coordinate time tB and the coordinate of the receiver xB. The analytical expansion (4.4) is a PN expansion of tA up to (P(l/c4) while the itérative procedure (4.5) is valid at any order.

Doppler and astrometric observables from the Time Transfer Function

In this section, we give the relativistic formulae to compute the Doppler and astro metric observables as functions of the TTF and its partial dérivatives. The expres sions presented here make no expansion of any kind and are therefore very general.

Doppler observables

The one-way frequency shift

Let us note vA/b the proper frequency at which the signal was emitted/received.

Then, the one-way frequency shift is defined by Av v one-way =^-i.

A-> B 1>A

It is well-known that the ratio vB/vA can be expressed as [Synge 1960] where the expressions of K and kf are given by Eq. ( 2 frequency shift introduced between the réception and re-emission of the signal in B, for example due to the transponder of a probe.

The computation of the multi-ways frequency shift is then straightforward: the two terms vc/vB,e and vb^/va from (4.11) are one-way frequency shifts and can be computed using (4.9). This procedure can be easily generalized if more links are needed.

Astrometric observables

The goal of astrometry is to détermine the position of celestial bodies from angular observations. We focus on two main approaches: the modeling of the direction of incidence of a light ray in a certain reference frame and the angular séparation of two light sources.

Angular direction in the observer's reference frame

One way to get a covariant définition of this astrometric observable is to use the tetrad formalism [Brumberg 1991, Misner et al. 1973, Weinberg 1972, Klioner & Kopeikin 1992], thus giving the direction of observation of an incoming light ray in a particular tetrad comoving with the observer 0&.

Let us note A^the components of this tetrad, where (a) corresponds to the tetrad index (running between 0 and 3) and fi is a normal tensor index which can where we used the properties of the null-vector k^and the fact that the metric is locally Minkowskian in the tetrad basis. The vector quantities defined by Eq. (4.14)

represent the so called "director cosines" of an observation, i.e. the cosines of the angles formed by the projection of kM on the tetrad axes (which is a relativistic observable). Using the transformation law (4.13) into Eq. (4.14), one gets A(.)/c0 + XJ{i)kj

\°0)k0 + \3(0)kj Aq) + A^kj A(0) + AJ^kj (4.15)
where kj is the direction triple defined in (2.7). This expression is consistent with the one derived in [START_REF] Klioner | Physically adéquate proper reference System of a test observer and relativistic description of the GAIA attitude[END_REF], Crosta & Vecchiato 2010 A<o> (! -î!fc) -Ho)Ni -A(0)ll Again, this expression is very general and makes no assumption on the tetrad considered or any expansion of the involved quantities.

Angular séparation of two sources Some astrometric observations measure the angular distance between two celestial bodies instead of projecting the coordinate direction of the incident light ray in the observer's reference frame as described in the previous section. This observ able can also be computed within the TTF formalism. Indeed, it was shown in [START_REF] Teyssandier | Angular distances in metric théories[END_REF]] that the angular distance </> between two in cident light ray coming from two celestial bodies and observed by a moving observer Ob can be written as (4.16)

• 20 1

(g00 + 2gokpk + gki/3k(3l) gij(k[ -h)^-kj) , (4.17) B Sm 2 " 4 (1 + (3mkm)(l + (3%)
where and (kÇj are the direction triples of the two incident light rays expressed in the global coordinates.

Applications

As an example, we use the équations presented in section 4.2 to give estimâtes of the relativistic corrections to BepiColombo and GAME-like observables. We shall work in the Schwarzschild metric due to the gravitational field of the Sun, neglecting ail other gravitational sources.

Application to BepiColombo

BepiColombo mission will reach an impressive level of accuracy on its measurments: 10cm on the Range and 10~6m/s on the Doppler [Milani étal. 2002, Iess et al. 2009]. Such an accuracy needs to model the influence of some 2PM terms coming from the Sun on light propagation [Tommei et al. 2010]. As example of how the équations presented in this paper can be applied to a real measurement, we simulate a 1 year Mercury-Earth Doppler link taking into account only the gravi tational contribution from the Sun. The Earth and Mercury orbits used here corne from the JPL ephemerides [Folkner et al. 2009] obtained using the SPICE toolkit [Acton 1996, Acton et al. 2011 

- -+ M 1 - rA(l -/i2) (1 + 7 )2m2 crArB(l + fi) Nab • vB rA( 1-M2) rB( 1-V) («b • vA -nnA • uA) vA + Rab rA(l + /i) 2(1 + 7)771 (nA vA + • va) (4.19a) c[{rA + rB)2 -R2ab\ [{jra + rb) Nab • vB -RAbvib v#]

Direction of a light ray emitted by a star and observed on Earth

A comoving kinematically nonrotating tetrad

In order to simulate an astrometric observable, one needs to specify the reference frame used for the projection of the incident direction of a light ray. As shown in section 4.2.2, this reference frame is mathematically modeled by a tetrad AÇ\, which explicitly appears in the computation of the astrometric observables (4.16).

In this paragraph, we will develop the expression of a kinematically nonrotat ing tetrad comoving with an observer in the case of a static spherically symmetric space-time described by the metric (3.1). This tetrad is called "kinematically nonro tating" in the sense that the spatial coordinates transformation between the global coordinate System and the local one does not dépend on a time dépendent orthogo nal matrix [Klioner & Soffel 1998]. This type of local coordinate System is currently used in the définition of the GCRS [Soffel et al. 2003] or in the context of the Gaia mission [START_REF] Klioner | Physically adéquate proper reference System of a test observer and relativistic description of the GAIA attitude[END_REF]].

We define da the vectors of the natural coordinate basis and e(Q) the basis vectors of the tetrad. The transformation matrix between these two basis is noted x and

(a) Since in the tetrad basis the metric is locally Minkowskian, spécial relativity applies locally. In particular, ail indexes related to the tetrad (between parenthesis) are upped and lowered using Minkowsky metric tensor, while natural coordinate basis indexes are set up and down using the metric.

We can split the transformation between the natural coordinate basis and the local comoving basis of the tetrad in two parts = Aj^A^ [Misner et al. 1973].

The first step (parametrized by A£) consists in orthogonalizing the natural coor dinate basis to obtain a local orthonormal coordinate basis static with respect to the chosen coordinate System. The second part of the transformation (parametrized by A"aj) consists in applying a Lorentz boost to this orthonormal basis to make it comoving with the observer. Quantities related to the final tetrad will be denoted with indices into parenthèses, while quantities expressed in the intermediate tetrad will be denoted with a hat.

Since the space-time metric (3.1) is diagonal, it is straightforward to orthonor- proportional to k and a second one proportional to (1 + y)2, both of them being formally of order 2PM. Nevertheless, it is known that the term proportional to (1 + y)2 can be absorbed in the 1PM term by a change of variable and it is therefore usually called "enhanced post-post-Newtonian term" (for further details about this, see [Klioner & Zschocke 2010, Teyssandier 2012]). The enhanced postpost-Newtonian term has an important contribution of the order of few mas while the 2PM contribution proportional to k has a contribution of 10 //as only even for signais grazing the Sun.

Angular distance between two stars as measured from

Earth For this application, we consider two hypothetical stars located far away from the So lar System nearly in the Earth orbital plane and we compute the angular séparation between them as measured from Earth. This représentation can be used as a very simplified model of the GAME space mission [Vecchiato et al. 2009, Gai et al. 2012].

The only gravitational interaction considered here is the one of the Sun described by the space-time metric (3.13). Relation (4.17), giving the angular séparation be tween two incident light rays, can be simplified in the case of static and spherically geometry described by the space-time metric (3.1). It can then be written as (included the so-called "enhanced post-post Newtonian" terms). The ac contribution, not exceeding some fias for signais grazing the Sun, is proportional to the k term in (3.25b).

Conclusions

In this chapter we provided general équations to define the Doppler observable used in radio-science and two kinds of astrometric observables using the results presented in chapters 2. The expressions we présent make no expansions of any kind and can therefore be applied to any space-time metric. Moreover, we presented to methods to treat the case of a relativistic observation between a moving emitter and receiver.

As an example, we also provided applications of these formulas to the simulation of high-precision observations of the kind of BepiColombo and GAME within the Schwarzschild field of the Sun up to the 2PM order. To provide a full description of the incoming direction of the light signal in the observer's reference frame, we also define a kinematically nonrotating tetrad valid at 2PM. These results hâve been presented at [Bertone et al. 2012a] and will be summarized in [Hees et al. 2013]. In the next chapters, we will focus our attention on the modeling of high-precision astrometric observations in the context of Gaia. The formulae presented in this chapter will be of capital importance in the development of the Gaia observable based on our model. This observable will be first compared to the approaches chosen for the data analysis of the Gaia mission (see chapter 5) and then implemented in the GSR software (see chapter 6).

Chapter 5

TTF model for relativistic astrometry in the context of Gaia From now on, we focus our attention on relativistic astrometry and the Gaia mission. In section 5.1, we présent the two approaches developed for the analysis of Gaia observations, namely the Gaia RElativity Model (GREM) and the Relativistic Astrometric MODel (RAMOD). In section 5.2, we présent the set-up of our astro metric observable, defined in Eq. (4.15), in the Gaia context. Finally, in section 5.3

we présent a procedure to compute the time transfer and the direction triples in GREM and RAMOD, in order to get a cross-check between the three model at the accuracy required for the Gaia mission.

The Gaia astrometric models

The data analysis of the Gaia mission (see section 1.1.1) is a complex task requiring a précisé understanding of the observation process. For this reason, two independent relativistic models hâve been developed to analyze and interpret the observations.

The first model, GREM [Klioner 2003], has been formulated according to a PPN scheme accurate to the fias level. Basically, this approach solves the light trajectory using a matching technique that links the perturbed internai solution inside the near zone of the Solar System (where the observer is located) with the assumed asymptotically fiat external one (where the source is located, at arbitrary distance).

It allows to transform the observed light ray in a suitable coordinate direction and Chapter 5. TTF model in the Gaia context to read off the aberration terms and light deflection effects, evaluated at the point of observation. This model is considered as baseline for the Gaia data réduction.

The second model, RAMOD [de Felice et al. 2004], is an astrometric model con- the curvature from the background geometry. In this section, we shall detail the définition of the Gaia astrometric observable in these two models.

GREM

GREM is actually the most complété relativistic model of light propagation and the basis for the réduction of Gaia observations. The author sets several steps for the conversion of the observed quantities into the coordinate ones, from the observed direction of light to the spatial position of the source of émission in the BCRS [Klioner 2003]. These steps and the associated vectors are illustrated in 4. the following step corrects the parallax effect due to the distance of the source.

Vector k is then converted into the barycentric direction to the source Z;

5. the final step sets a model for the proper motion of the star and the variation of l during the several years of Gaia mission.

In the following, we shall detail step 1 to présent how the Gaia observables is computed from the BCRS spatial coordinate direction of the light ray n. We define (from [Klioner 2003]) the unit "aberration free direction" n -p/\p\ and p1 -c~lxl = <7 4-c~lAxp(t) , (5.1)

with xl -dxl/dt the coordinate velocity of the photon and Axp(t) the deflection of the light ray from past null infinity. In section 5.3.1 we will présent explicit relations between p1 and the direction triple ki defined in our model.

The coordinate quantities p and n are obviously not directly observables; the observed vector towards the light source is the four-vector sa = (1, sl): defined with respect to the local inertial frame of the observer as Ag + AjpJ '

(5.4)

Adopting the IAU resolution B 1.3 [Soffel et al. 2003] for the BCRS and the CoMRS, it is then possible to explicit the transformation matrix A^and to expand Eq. ( 5.4)

to obtain the coordinate transformation between ri and s1 with 1 fias accuracy as [Klioner 2003]

s4 = -ri + c~l -2 n x (va x ri) - i 1 r n x (n x va) 2 l Vs X (n X Vg) +c -3 (vs • n)2 + (1 + 7)w(x) n x (va x n) +-K -n) v3 x (n x v3) > + 0(c 4) ,
(5.5) containing the aberrational effects up to 1/c-3 and where = dx\/dt is the coordinate velocity of the observing satellite, w(x) is the PPN gravitational potential and 7 is a PPN parameter.

RAMOD

The development of RAMOD is proceeding by évolution steps ( see Fig. is an adaptation of PPN-RAMOD to Gaia. (from [START_REF] Bucciarelli | [END_REF]])

The first version of the model, RAMOD 1, represents a non-perturbative approach to the astrometric problem with the Sun as only field source [de Felice et al. 1998].

In a Schwarzschild's spacetime, the observer is placed on a circular orbit and Among them we shall note PPN-RAMOD [Vecchiato et al. 2003], developed to test the parameters of the PPN solution of GR and currently used to describe light prop agation within the GSR data réduction software (see chapter 6), and RAMODINOl and RAMODIN02 [Bini et al. 2003] are the attitude models of the project.

Based on a fully dynamical post-Minkowskian background [Crosta 2011],

RAMOD has been solved explicitly in the 1PM static approximation [Crosta 2013] where represents the tangent vectors and ua is the four-velocity of u (see Fig. 5.3).

In this formalism, the null-geodesic équation transforms, according to the measurement protocol procedure [de Felice & Bini 2010], into a set of coupled nonlinear differential équations, called "master équations" dr 1

--t£Jh0jii --h00>o = 0 , (

(?/i",o -Vi) + +P + hkifi -hoi--hoo,fc - + hko,o -0 , 5.7a) 
where £ is a parameter along the null-geodesic.

Once solved for £a, the astrometric observable (i.e. the direction of the light ray in the reference frame of the observer) is defined by its projection on a tetrad comoving with the observer [Bini et al. 2003] as = -Vp)Eà W 7(1 -vJ*B))

(5.8) where i/a is the four-velocity of the satellite us relatively to the local barycentric observer u, 7 = -u"ua, E? is the tetrad comoving with the observer (i.e. the satellite) with the index à representing each axis of the tetrad and I^b) represents the local line-of-sight of the photon as seen by u at the moment of observation.

The satellite reference frame defining the transformation E? is obtained by suc cessive transformations of the local BCRS tetrad [Bini et al. 2003] \aà = h0aÔS+(l--)s: + O(h2). (5. 9)

In particular, the vectors of the triad (defined as the spatial part of À?) are boosted to the satellite rest-frame by means of an instantaneous Lorentz transfor mation identified by the four-velocity of the observer us with respect to the local BCRS. The boosted tetrad A|s obtained in this way represents a CoMRS , similar to the one defined in section 5.1.1. In addition, one of the axes of the System is Sun-locked, i.e. one axis points toward the Sun at any point of its Lissajous orbit around L2. The Gaia attitude frame is finally obtained by applying the following rotations to the Sun-locked frame [Crosta & Vecchiato 2010] 1. by an angle upt about the four-vector A" ^which constantly points towards the Sun (where up is the angular velocity of precession of Gaia);

2. by a fixed angle 6 about the image of the four-vector A" ^after the previous rotation (where 6 represents the Sun aspect angle of 45°-see Fig. 1.1);

3. by an angle ujrt about the image of the four-vector À" ^after the previous two rotations (where uT is the spin angular velocity).

The triad resulting from these transformations, detailed in [Crosta & Vecchiato 2010], establishes Gaia attitude triad given by Eà = 'R.i(uiTt)-R^(e)n1(upt) (5.10)

The transformations between the barycentric coordinate time and the observer's proper time complété the process.

It has been showed in [Crosta &;Vecchiato 2010] that the PN expansion of Eq. (5.10) up to the order needed at Gaia accuracy yields the équivalence with the observable defined in Eq. (5.5) for GREM.

TTF observable for Gaia

In chapter 4 we presented a general formula to compute the astrometric observable, i.e. the incoming direction of the light ray in the reference System comoving with the observer, using the knowledge of the direction triple fc» at observation coordinates in combination with a generic tetrad comoving with the observer. We used our formulation in the Schwarzschild field of the Sun with a generic kinematically nonrotating tetrad comoving with the Earth in order to compute the gravitational and aberration corrections for a sériés of observations. We now intend to apply the same formula (4.15) to model Gaia observations. For this, we need a tetrad adapted to model the motion of Gaia. Due to the generality of our model, both transformation matrix E? (defined at Eq. (5.10)) and (defined at Eq. ( 5.3)) can be used at this scope, depending on the convenience.

The interest of such observable would be double. First, it would represent an additional tool to check the models currently adopted for Gaia; second, this observ able would be based on the well-developed TTF formalism allowing for its further development beyond Gaia accuracy using the results presented in chapters 2 and 3.

Analytical comparison of the three models

The comparison of GREM and RAMOD is considered as a priority for the Gaia mis sion [Crosta & Vecchiato 2010, Crosta 2011] since they will both concur to create a TTF model in the Gaia context catalog of one billion positions, parallaxes and proper motions based on measurements of absolute astrometry. Any inconsistency in the relativistic models would then invalidate the quality and reliability of the estimâtes, hence ail related scientific output.

Despite their différences, both models aim for the reconstruction of light trajectory from the star to the observer in order to build the astrometric observable. This makes our TTF model a completely new and independent approach to the problem, particularly adapted to further cross-check the current relativistic solutions for astrometry.

In this section, we présent a procedure to cross-check the relativistic description of light propagation in GREM, RAMOD and our TTF model on the basis of their solutions for the time of flight T and direction triple ki of a light ray propagating between two points at finite distance.

GREM to compute T and ki

In section 5.1.1 we presented GREM observable (5.5). In this section we will explore the relation between pl (5.1), and hence the photon velocity xl, and the quantities defîned in our TTF model. GREM itself is based on KK92 [Klioner & Kopeikin 1992],

a séminal study describing light propagation in the field of multiple axisymmetric and rotating bodies in translational motion. We will use KK92 to validate our model of light propagation in the field of moving spherical bodies. The results of this sec tion can then easily be reduced to GREM by posing the coordinate velocity of the perturbing bodies vB = 0.

Considering only the terms relevant for our purpose and using our notation, the trajectory of the photon in KK92 can be written as where (tB,xl(tB)) are the réception coordinates, a is a normalized vector giving the unperturbed direction of light at past null infmity and the gravitational perturbation is given by where we use the définitions in Eq. (3.49)-(3.50).

The TTF formalism being designed for light propagation between two points located at finite distance, one first has to set the boundary condition (5.12)

x(xb, <?, At) = xA (5.13) in Eq. (5.11) to provide the "Crossing trajectory équation" x1 (ta) = xl(ts) -cAta1 + Axl(At:xlBlal) , (5)(6)(7)(8)(9)(10)(11)(12)(13)(14) where At -tB -t a represents the lapse of coordinate time between the émission and réception of the signal. In the following, Eqs. (5.11)-(5.14) will be used to find where we used the property cr • cr -1 and noted that Nab ' (Nab x Rx x 9p) -0.

Using Eq. (3.54) shows that Eq. (5.16) is strictly équivalent to Eq. (2.13) when the gravitational delay is given by Eq. (3.51) with 7 = 1.

Light direction triple

The relation between the tangent vectors to the null-geodesic -1

(5.17 It is then straightforward to check that Eq. (3.57) is équivalent to Eq. (5.17) when using Eq. (5.18), Eq. (5.19), Eq. (5.23), the metric tensor (3.26) and the potentials in Eq. (3.38) at réception event.

RAMOD to compute T and kt

Comparisons between RAMOD and other PM/PN light propagation models can be found in [Crosta 2011], where the author shows how RAMOD master équations recover the analytical linearized case used in [Kopeikin & Schàfer 1999] once converted in a coordinate form, while in [Crosta & Vecchiato 2010] the authors présent a study of the aberration in RAMOD and GREM. An analytical cross-check of the coordinate time of flight and direction triple has not been done yet with the TTF. We perform it in the static case, i.e. in the case of a fully analytical solution of RAMOD3 [Crosta 2013, Bini et al. 2013], where space-time is described by the (5.30)

Finally, substituting for AC from Eq. (5.29) and Eq. (5.30) into Eq. ( 5.26) we retrieve the Shapiro term of Eq. (3.51) with (3p -0.

Light direction triple

The relation between the tangent vectors ki of the TTF formalism and the local lineof-sight t is obtained by expanding Eq. (5.6) with the metric (5.24) and Eq. (5.25),

so that kl 3 1 u°k0 ~Ll 1 -2^00 + 0(c~a) - k{ 3 G A4 p c2 ^rP(()_ + 0(c~3).
(5.31) Substituting for t from Eq. (5.27) into Eq. (5.31) and using Eq. (5.29)-(5.30), the reader can easily retrieve Eq. (3.57) with (3P -0.

Conclusions

In this chapter we presented the relativistic models developed for the analysis of Gaia observations, namely GREM and RAMOD. We also described the procedure to follow to apply the astrometric observable defined in Eq. (4.15) to the spécifie case of the Gaia mission. We conclude that both Gaia tetrads used in the GREM and RAMOD approaches would be suitable for our model. Then, we studied the rela tions between the solution proposed by the three models for the coordinate direction of the observed light ray. In particular, we provide a procedure to relate them by computing the time of flight T and the direction triple k{ in GREM and RAMOD and then comparing the results to Eq. (2.13) and Eq. (2.36). The outcome of this comparison shows that the three models are équivalent at the accuracy required for Gaia. These results are summarized in [Bertone et al. 2013a] and hâve been presented at [Bertone et al. 2013b]. This study, developed during the time spent with the group of "fundamental astronomy" of the Astrophysical Observatory of Torino, also allowed me to interact in the final phase of the development of RAMOD3, preparing for its implémentation to the réduction of Gaia observations and opening the road to possible future collaborations.

Chapter 6

Implémentation for the réduction We illustrated in chapter 5 the équivalence of our astrometric observable with GREM and RAMOD approaches at the accuracy required by the Gaia mission. In section 6.1, we présent the infrastructure in place for the data treatment of the Gaia mission, focusing on the astrometric solution which shall provide a new, more accurate stellar catalog at the end of the 5 years nominal mission. Two main pipelines hâve been developed for this scope: the Astrometric Global Itérative Solution (AGIS)

and its vérification counterpart Global Sphere Reconstruction (GSR). In section 6.2 we présent our contribution on the GSR software developed at the Astrophysical Observatory of Torino. Using the tools provided by the Gaia Data Processing and Analysis Consortium (DPAC), we implemented our model for the Gaia observable in the GSR software and compared our results with those of GREM and RAMOD.

Finally, we use our model to write the linearized observation équations to be solved in the astrometric solution and give some preliminary results of its application to a sériés of simulated observations.

Réduction pipelines of GAIA's observations

The Gaia space mission presented in section 1.1.1 will perform absolute astrometry, aiming at the définition of a global astrometric reference frame at visual wavelengths.

In a certain sense, this is more like the définition of a unit of measure rather than a pure measurement of a certain quantity. It is for this reason that, within this procedure, it will be very difficult to identify possible errors in the measurements or Chapter 6. Software implémentation for astrometry in the data réduction process leading to the définition of the final catalog. Moreover, because of its size and complexity, it will be nowadays nearly impossible to produce a vérification catalog at comparable accuracies by means of ground-based measurements.

Gaia inherits many ideas from its "parent" mission HIPPARCOS whose goal was also to produce a catalogue of absolute positions. Therefore, HIPPARCOS has faced the same kind of problems as above, but at a much smaller scale because of its lower précision and the much smaller size of its catalog. The data réduction process in HIPPARCOS was carried out by two consortia, FAST and NDAC, which operated independently on the same data. Their two results were then compared and appropriately merged in order to obtain the final catalogue. This idéal solu tion cannot be applied to the case of Gaia. Due to the size of the problem and to the connection between the different kind of data (astrometric, photometric, spectroscopic), the data réduction task is much demanding both in terms of resources and manpower. To retain as much as possible the HIPPARCOS approach, without requiring excessive resources, the Gaia Data Processing and Analysis Consortium (DPAC) [START_REF] Mignard | [END_REF] decided to replicate some of the most délicate tasks in the so-called Astrometric Vérification Unit (AVU) [START_REF] Abbas | [END_REF]].

One of these concerns the core task of the Gaia mission, i.e. the solution of the Global Astrometric Sphere, providing the materialization of the astrometric reference frame for the Gaia catalog which will constitute the main outcome of the mission. For this task the main solution process, the Astrometric Global Itéra tive Solution (AGIS), and its vérification counterpart Global Sphere Reconstruc tion (GSR) will run in parallel on the main Gaia data réduction pipeline. While AGIS puts its efforts in maximizing the number of objects of the reduced sphere, GSR focuses on a fully itérative implémentation of the astrometric sphere solu tion with well-defined stopping conditions and based on an independent astrometric model [Vecchiato et al. 2012].

AGIS

The sphere reconstruction consists in the least-squares solution of a large System of linearized équations where each équation corresponds to an observation. One member contains the measurement, the known term, while the other is function of the unknowns to be estimated. These include the astrometric parameters (at least for the subset of stars representing the reference frame), the satellite atti tude (in order to hâve the accurate celestial pointing of the instruments at each epoch) and the géométrie instrument calibration (necessary to convert the pixel measurements on the CDD into angular directions). In addition, one can solve some global parameters, such as the PPN 7 which appears in each équation of the System [Lindegren et al. 2012].

The main pipeline process for the reconstruction of the global sphere is called AGIS (Astrometric Global Itérative Solution) and takes its name after the itérative parameters in the rectangular boxes along the middle. [Lindegren et al. 2012] method used to solve the System of équations. It consists in treating each type of parameter (astrometric, attitude, calibration and global) separately : when one of them is solved, the others are fixed at their previous estimation to compute the known terms ; then the following parameter is solved using the new estimations and the process is iterated until convergence is reached. This approach makes the code easy to parallelize, which is helpful and maybe necessary to solve a System of équations of such a size. As prescribed by the Gaia DPAC, AGIS is entirely written in the object-oriented Java programming language [O' Mullane et al. 2011]. Each of these parameters relies on a spécifie mathematical formulation, as we présent in the following.

• Reference System -both light propagation and the orbit of Gaia, as well as the motion of stars, Solar System and extragalactic bodies are en tirely modeled in the Barycentric Celestial Reference System (BCRS) whose spatial axes are aligned with the International Celestial Reference Frame (ICRF [Feissel & Mignard 1998]) and whose associated time coordinate is the barycentric coordinate time (TCB). To describe the attitude of Gaia and the direction of light as observed by Gaia, one also defines the Centre-of-Mass Ref erence System (CoMRS). This is a celestial reference System comoving with the satellite, originated at its center of mass, kinematically nonrotating and with the proper time of Gaia (G.T.) as coordinate time [START_REF] Klioner | Physically adéquate proper reference System of a test observer and relativistic description of the GAIA attitude[END_REF]];

• Astrometric model -is the procedure for calculating the proper direction to a source at any time in terms of its astrometric parameters. tegrate" (TDI) scanning mode and the sélection rules on the basis of star brightness [Lindegren et al. 2012].

The input of AGIS shall be a set of pre-processed data from the GAIA telemetry including up to 108 stars. To verify its results, a counterpart to AGIS has been set in the AVU subsystem : it is the Global Sphere Reconstruction (GSR).

GSR

The basic requirement of a fully itérative solution for the Global Sphere Reconstruc tion (GSR) [Vecchiato et al. 2012] was adopted to hâve a rigorously defined set of stopping conditions for the solution algorithm, as well as the opportunity to compute the full variance-covariance matrix of the System of équations. Such an approach was potentially more demanding from the computational point of view and could not be adapted to the simple structure of an embarrassingly parallel algorithm. For these reasons, GSR was originally designed to operate on a sélection of 107 stars chosen from the AGIS dataset. However, recent developments in the algorithm implémen tation and in the available hardware [Bandieramonte et al. 2012] made it possible to overcome this limitation so that, in its présent form, GSR is able to reduce the same number of objects than AGIS.

In order to keep the two réductions as independent as possible, GSR implements its own astrometric model, based on the définition of an abscissa-based observ able including the relativistic modeling of both light propagation and the satel lite attitude. The first one is taken from the RAMOD project described in sec tion 5.1.2. The actual version, GSR1+, implements an extended version of PPN-RAMOD [Vecchiato et al. 2003] based on the Schwarzschild metric to describe light propagation. As a conséquence, ail observations too close to the Earth or the giant planets hâve to be rejected to respect the accuracy required by GAIA. The next version of the software, in préparation, will implement the fully accurate RAMOD3 model, overcoming the limitations of GSR1. On the other hand, the attitude of the satellite is realized by the reference System co-moving with Gaia described in [Crosta & Vecchiato 2010] and adapted to the PPN-Schwarzschild metric. Instead of a block-iterative procedure, GSR uses a new parallelized version of the least squares (LSQR) algorithm designed by [Paige & Saunders 1982]. Based on a conjugate-gradient for solving sparse Systems of linear équations, it allows GSR to solve ail the unknowns in a single itération. The general algorithm of GSR data réduction is illustrated in Fig. 6.2.

The results of the two pipelines shall be compared using a sériés of tests (mainly based on the Spherical Harmonies décomposition in its Scalar and Vectorial forms and the Infinité Overlapping Circle -IOC -test) each sensitive to a particular kind of problem. If everything behaves as expected, ail tests will give the same resuit, while in case of problems they will allow the user to identify and isolate those coming from one or more sets of observations.

In the following, we présent the development of a version of GSR modifîed to implement the TTF for the définition of the astrometric observable, thus allowing for a more accurate description of light propagation within the Solar System.

GSR-TTF

The final step of this work is to simulate an astrometric observation made by Gaia using the director cosines we defined in chapter 4 within the TTF formalism. To do it, we implement our model in the GSR software developed at Turin Observatory and we use it to generate a sériés of simulated observations. A brief overview of our activity on the GSR code is given in Fig. 6.2. We mainly focused on the compu tation of the Gaia observable and on writing the linearized observation équations necessary to evaluate the astrometric coordinates of the observed star from a sériés of observations. The resuit is a "GSR-TTF" code, still in a preliminary phase but already well integrated, adapted to give indications for the further development of the GSR code and useful to investigate the results of AGIS and GSR.

Before presenting the details of the implémentation of our model in GSR, a brief overview of the astrometric problem for Gaia and how it is treated in the software is necessary. The input of the code are packets, each containing a single observation characterized by : the coordinate time of observation (necessary to get Gaia State vector and the planetary ephemerides), the catalog coordinates of the observed source and ail quantities used in the solution of the astrometric problem, which we are going to detail in the following. The values contained in the packet are then updated by the processing of the observation.

As shown in Fig. 6.3, each point of the celestial sphere can be fixed in the reference System of the Gaia spacecraft by three direction cosines np) = (cos <a, cos/3, cos £).

From a geometrical point of view, Gaia will measure the abscissa of such a point, FOV is about 0.3°, the abscissae range is fixed in the intervals 53.25 ± 0.15 degrees for f+ and 103.25±0.15 degrees for /_. Therefore, one of Eq. (6.1a) is enough to dé termine a univocal correspondence between the value of (f> and that of the direction cosines. The usual choice is cos </>, so that the direction cosines with respect to the x and z axes are sufficient to completely détermine the observation. The abscissa is generally expressed as function of the astrometric parameters (a*, <5*, ru*, fia*Tô*)

and of the satellite attitude. The latter has to be considered unknown since the satellite attitude cannot be determined by other independent measures at the accuracy required by the mission. For a similar reason Eq. ( 6.1a) also dépends on a set of instrument parameters {q} to provide a sort of long-term calibration. Moreover, when working within the PPN formalism, one should add the parameter 7 to the unknowns of Eq. (6.1a). A better détermination of 7, which measures the amount of curvature induced by the mass-energy on space-time, shall be one of the important scientific contributions of Gaia. As conséquence, each of the Gaia observations can be resumed to a non-linear function of these four classes of unknown included in a suitable model of the abscissa <f> coscf) = JF^a*,(5*,tï7+,/rQ*,^,a(1-7),4j),...,Ci,C2, ...,7) . (6.2)

The Gaia mission will perform several billions of observations during its operation years, resulting in a very large System of équations (up to 1010 x 108 in the case of Gaia).

Solving such a big System of non linear équations is not feasible, so the observa where the unknown are the corrections 5x to the starting catalog values while the dérivatives of T are the coefficients of the System matrix. The known-terms are then represented by the left-hand side of Eq. ( 6.3) as sin (ficalci.fiobs ficalc) 5 (b-4) where (f)0bs represents the observed abscissa and formally includes the measurement errors so that it can be written 4>0bs = (f>true + A0, while 0ca;c is the computed value given by arccos(7r) at the starting point of the linearization (generally speaking, the value contained in the astrometric catalog).

The resulting System of équations is quite sparse since each observation refers to a single star among the millions considered in the reconstruction problem (and then only to its astrometric parameters). A similar reasoning is valid for the attitude and calibration parameters, while 7 is a global parameter in the sense that it appears in each équation of the System. The number of observations being far larger than the number of unknown parameters, the System is over-determined and can be solved by a least-squares procedure. given by n^= (a,/3,7) (from [Vecchiato et al. 2012])

The final goal of the entire procedure is then to get better estimâtes of ail the intervening parameters but for that, we first need to provide an accurate model of the director cosines of the observation. The GSR software is built so that the director cosines are provided using the RAMOD model (more precisely, the version actually implemented is PPN-RAMOD [Vecchiato et al. 2003]). Since the software is built in a modular structure, it is nevertheless possible to use other models to treat light propagation, the aberration corrections, etc.

In particular, we implemented Eq. (4.16) to compute the director cosines at the accuracy required by the Gaia mission using our model : we populated the équation using a PN expansion of the direction triple ki (similarly to what shown in section 3.2.3) and the RAMOD tetrad (5.10) for the transformation from the BCRS to the CoMRS of Gaia. We used the director cosines rqq so defined to build the abscissae </>, necessary to write the so called known-terms at the left-hand side of Eq. ( 6.3). Then, we compared our results to those obtained using the GREM and PPN-RAMOD models on the same data-set of observations. Once the abscissae hâve been validated, it is necessary to compute the partial dérivatives appearing at the right-hand-side of Eq. ( 6.3), constituting the coefficient of the linearized observation équations to be used to solve the celestial sphere.

These steps required to modify the following sections of the GSR code, keeping as much as possible its original structure in order to take advantage of the many functionalities already implemented. For each processed packet, the following steps are computed DataTakersSeqTest.java Charges the observations packets and launches the anal ysis routines;

BeforeCoeffDataTaker.java Calls, for each observation, the routines defining ail needed quantities for the computation of the the astrometric observable;

CommonTermsRod.java Defines ail needed vectors (star-observer, perturbing body-observer, ...) and tensors (tetrad components, metric, ...) and computes the director cosines n(q and the abscissae (f) as well as the coefficients of the linearized équations;

KnownTermsDataTaker.java Calls, for each observation, the routine computing the known-terms (6.4);

KnownTermsExtract.java Defines <p0bS and 4>Caic> computes the knownterms (6.4) and updates the information in the packet;

CoefFDataTaker.java Calls, for each observation, the routine computing the coef ficients of the linearized équations and populates the coefficients vector in the packet;

CoeffExtract.java Computes the coefficients of the linearized observation équa tion (6.3);

AfterCoeffDataTaker.java Reads and checks the values of ail coefficients stocked in the packet.

In the following sections, we will detail the procedure followed to implement the astrometric model presented in this thesis into the GSR software as well as the tests performed on our results. First, we will use our model to compute the observation abscissa (6.1a) and we will compare our results to those of RAMOD and GREM.

Chapter 6.

Software implémentation for astrometry

This will allow us to validate our implémentation and explore the residual différences between the different models. Once this first phase is fulfilled, we will focus on the implémentation of the linearized observation équation (6.3) and on testing the procedure of reconstruction of the celestial sphere. This preliminary study should give a global overview of how our model can be applied to the complex task of Processing the observations of an astrometric space mission.

Simulation of the observation abscissae

As presented above, the implémentation of our observable in GSR concerns the development of both sides of Eq. ( 6.3). In this section we will focus on building and testing the known terms (6.4).

Let us show the procedure followed to build the abscissa (j) using our astrometric model. First we need to define the director cosines appearing in Eq. (6.1a) using

Eq. (4.15) taken at the observation point xB

X°(i) + X\i)'kJ ^(0) + tfo)k3 (6.5)
where we shall choose the direction triple k{ (defming the barycentric direction of light) and the tetrad (z.e. the transformation matrix to the reference System comoving with the observer) according to the accuracy required by the Gaia mission.

Concerning light deflection, for most observation we shall consider the PN gravitational potentials of ail Solar System bodies (see Table 1.2). Moreover, it has been shown in [Klioner 2003] and confirmed by our study in section 3. First, we launch a simulation over one day of observations using the three models to generate the abscissae 0. The results are illustrated in Fig. 6.4 and Fig. 6.5

(produced using the GaiaTools library provided by the Gaia DPAC), where the models are compared one to each other. The numbers on the left axis hâve a double meaning: they mark (1) the différence in fias between the two models -represented by the red plot -and (2) the distance in degrees/10 between a given planet and the observation -the blue, green and yellow plot representing Jupiter, Satura and Mars, respectively. In particular, the periodic oscillation of the distance planet-observation illustrated in the plots is due to the Gaia scanning law (see section 1.1.1) setting a rotation period of approximately 6 h. Let us analyze each comparison, noting that we can generally separate the observations in "near" and "far" from the planets with respect to the maximum impact parameter to get 1 fias gravitational deflection:

• (PPN-)RAMOD vs TTF -we observe huge différences (up to 500 fias, the y-axis is limited to ±20 fias to help a better visualization) for the obser vations near Jupiter. This is expected since PPN-RAMOD is based on a "parametrized" Schwarzschild model of the Solar System, while our TTF model includes the contribution of ail major Solar System bodies. On the other hand, since both models implement the same description for the observer, the com parison shows no différences for most of the observations "far" from the planets.

• TTF vs GREM -both the modelings of light propagation and the aberration caused by the motion of the observer are different. Nevertheless, in chapter 5

we showed the équivalence between our approach and GREM, so that we would expect not to observe sensible différences in the plot. Indeed, the différence between the abscissae is confined in the interval ±2.5 fias but (1) the shape of the plot far from the planets suggests the presence of a systematic discrepancy in the description of the aberration in the two models or codes; (2) the sudden shift corresponding to the maximum approach to Jupiter suggests an erroneous treatment of the satellite attitude.

• RAMOD vs GREM -we observe the combined effects of a different treatment of gravitational light deflection (near Jupiter) and aberration (far from the planets). One can see how our TTF model can be of help to decorrelate the two effects, especially near Solar System bodies, where the différences due to light deflection cover the rest of the signal.

Once the basic structure of the signal on one day of observations is understood, it is interesting to observe a simulation over 50 days. In Fig. 6.6 we still represent in red the différence between the abscissae computed by the three models and with other colors the angular distance between some planets and the observation. The modulation in the distance of the planets reflects the combination of Gaia attitude and with the relative orbital motion of the Earth and other Solar System planets.

One can note that for almost ail observations, the différence between the abscissae computed by G REM and our model is less than 2.5 fias, well below the required accuracy of around 10 fias-, however, the same systematic discrepancy observed over one day is still présent. This effect is probably related to a slightly different implémentation of the aberration effect in the two approaches (let us remember that our model implements the RAMOD approach to describe the observer) and it opens interesting questions: a preliminary study is presented in Appendix B but further analysis are in progress with the GSR team in Turin. On the other hand, we can observe that the différences between the abscissae of RAMOD and our model, 

Towards the celestial sphere reconstruction

The validation of the abscissae computed with our model presented in section 6.2.1 has two goals: evaluating its accuracy in the spécifie case of the Gaia mission and setting the basis for the computation of the linearized observation équations and the reconstruction of a celestial sphere. First, let us make clear what do we intend by "reconstruction of the celestial sphere". The main goal of the Gaia mission is to improve the quality of the stellar catalogs for the coordinates, parallaxes and proper motions of the observed stars. This will be done by comparing Gaia ob servations to simulated observations built using the catalog data and a theoretical model of the observation: minimizing the différence between the real and simulated observation will provide better estimâtes of the astrometric parameters. For this scope, we use Eq. ( 6.3), containing at its left-hand-side the différence between the measured and simulated observations and at its right-hand-side the sensitivity of the observable with respect to each parameter we want to estimate. Since the problem is largely over-determined (Gaia will provide around 700 observations for each star [START_REF] Mignard | [END_REF]) a least-square solution will be used.

Nevertheless, (1) by now we hâve no observational data from Gaia (it will be launched in late 2013), (2) even after launch, we will not know the "real" star pa rameters but only the approximation contained in the actual catalogs. We should then find a way to test our models and procedures. One solution is to simulate both the "real" and "simulated" observation from stellar catalogs : to produce the "real" observations cos 4>0bs, we will first add some noise to the catalog data (in order to simulate the measuring error), while the simulated observations cos 4>caic will be produced after adding a constant error to the catalog. If our procedure is well conceived, it should be able to retrieve the initial catalog value.

At this preliminary phase of the implémentation, we content ourselves of estimâting the astrometric coordinates a* and <5* so that ail other parameters are assumed to be known and we consider the following simplified version of Eq. ( 6.3) sin (f)calc^^P The partial dérivatives of the direction triple appearing in Eq. (6.12) are given by (6.15a) (6.15b)

The problem of solving Eq. (6.10) for a given star can be put in the form b -Ox , (6.16) where x = (AEa*, ££*) is the unknown vector that we want to estimate, b contains the known-terms (6.4) for each observation of the star and O is the coefficient matrix of size (number of observations x number of unknowns). The goal of the least squares solution is then to minimize the "error" |Ox -b\. The standard method to solve this problem [Meyer 2001], and the one we will use here, is to rewrite Eq. (6.16) as 0T0x = 0Tb and then, if the matrix 0T0 is invertible, to solve as x = (0T0)~l0Tb. (6.17)

The astrometric solution we performed is a solution of this équation for 200 stars along the whole mission period of 5 years. We used a data-set elaborated by the Gaia Coordination Unit 2 (CU2) responsible for data simulation, in order to produce 1. the measured abscissa cos <p0bs with a white Gaussian noise of a -2 mas previously added to the astrometric coordinates a;* and 5*;

2. the computed abscissa cos 4>caic after having corrected the catalog values of a constant value of A a* = 100 mas and AS* = 50 mas.

The final goal of the procedure is to retrieve as much as possible the catalog values a* and 6* for the 200 treated stars. In Fig. 6.9 we illustrate the results of the least squares (6.17 The problem treated in GSR is much more complex since it includes the esti mation of global ( 7) and time-dependent (i.e. the attitude) parameters preventing from treating the observation of each star as separate problems. For this reason, solving the full version of this problem would require more powerful machines and a more complex algorithm. Nevertheless, this preliminary analysis is sufficient to get an overview of how our model could be applied to such a problem.

Conclusions

In this chapter, we applied the astrometric model developed in the thesis to a set of Gaia simulated observations. Thanks to the collaboration with the GSR team in Torino, we implemented our équations into the GSR Java code to compute the observation abscissae at the accuracy required by the Gaia mission: we populated the The proposai also mentioned some secondary goals including high précision orbit détermination by the improvement of the relativistic Doppler modeling. It is worth noting that ail the primary goals and some secondary goals of the proposai hâve been completed in the nominal three years duration of the Ph.D. thesis.

Relativistic light propagation and observables

In the first part of this thesis, we focused on the development of explicit formulae to describe relativistic light propagation up to 2PM. Then, we used these formulae to build a relativistic model of the observables required for the data analysis of modem high-precision space missions.

Comparison to the Gaia models

To ensure a correct interprétation of Gaia observations, two parallel relativistic models hâve been developed, GREM and RAMOD. A good knowledge of the relations between the quantities defined in the two models is then mandatory and a compari son effort is already in place, focusing on the modeling of the astrometric observable and the aberration [Crosta & Vecchiato 2010].

We contributed to this study by establishing an original procedure to crosscheck our results on the gravitational deflection of light with those of the Gaia models.

Concerning GREM, we compared our model to its séminal study [Klioner & Kopeikin 1992] considering the case of gravitational sources in translational motion. Our study shows that the three models are consistent at the accuracy level required by Gaia. Finally, an unexpected outcome of this analysis was an alternative coordinate form of RAMOD3 solution, potentially better suited for the implémentation in the current version of the GSR software.

GSR-TTF

Once validated, the astrometric observable developed in this thesis can be applied to a tetrad comoving with Gaia to get an accurate model of its observations. The collaboration with the GSR team, responsible for the vérification of the astrometric core processing, allowed us to implement our model into the GSR Java code and to compare our results to those of PPN-RAMOD and GREM using the tools provided by the Gaia DPAC. This first validation of our results opened the way to the compu tation of the linearized observation équations necessary to estimate the astrometric parameters from a set of simulated observations.

The main interest of such a study was to prove the applicability of our model to a complex matter like the treatment of Gaia observations and to provide the GSR team with an additional tool to check the final phases of development of the code as presented in the Gaia REMAT# 12 meeting in July 2013.

Open questions and perspectives

The results of this thesis naturally bring up some interesting openings. First, the cross-check procedure presented in chapter 5 includes most, but not ail, of the grav itational contributions to light deflection required at Gaia accuracy. This procedure should then be extended to include ail effects actually treated by the GREM model, including the gravitational deflection due to the quadrupole moment of Solar System bodies.

Moreover, an analytical solution of RAMOD4 is under development at Turin

Observatory, extending the previous version of the model to a non-vorticity free environment. A study by [Crosta 2011] shows that additional terms appear with respect to the standard PN/PM approaches to gravitational light propagation. It Chapter 7.

Conclusions and perspectives would be then interesting to explore the impact of the strict measurement protocol followed by RAMOD by comparing this new solution to GREM and to our model.

Then, the development of our model up to 2PM allowed us to retrieve the so called second order "enhanced terms" [Klioner & Zschocke 2010]. Recently [Linet & Teyssandier 2013] developed a new procedure to compute the light travel time up to the 3PM order, highlighting the presence of supplementary "enhanced terms". It would be then of interest to extend our formulation up to 3PM

and to provide an estimation of the influence of these terms on the radio-science and astrometric observables.

In the context of Gaia, the improvement of GSR-TTF is a perspective work by itself. In particular, the further analysis of the mismodeling effects put in evidence by our preliminary comparison to GREM and the implémentation of the quadrupole terms in the software is a short term priority.

On a larger perspective, a ray tracing model called GYOTO has been devel

oped by [START_REF] Vincent | [END_REF]] at Paris Observatory. Finding a common basis for a comparison of the two models would be a first step towards further collaborations. 
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 11 Figure 1.1: Scanning principle of Gaia: The constant spin rate of 60"/s corresponds to one révolution (great-circle scans) in six hours. The angle between the slowly precessing spin axis and the Sun is maintained at an aspect angle of 45°. The basic angle is between the two fields of view is constant at 106.5°. (Figure courtesy: Karen O'Flaherty, ESA)

  From the point of view of Newtonian physics. The coordinate grid in the background symbolizes a global inertial reference System. (b) From the point of view of relativistic physics. The grid of curved coordinates in the background symbolizes the chosen rela tivistic reference System.

  It should be noted that although only one local reference System -GCRS-is explicitly defined by the IAU 2000 framework, it foresees GCRS-like local reference Systems for each Solar System body for which the local physics (e.g. the structure of the grav itational field and the theory of rotational motion) should be precisely formulated. For example, the modeling of Lunar Laser Ranging (LLR) data requires a local Selenocentric Celestial Reference System [Kopeikin & Xie 2010]. Recent projects aimed at précisé modeling of the rotational motions of Mercury and Mars will hâve to use the corresponding reference System for Mercury and Mars, respectively. Ail these local Systems are defined by the same formulae as those given in the IAU 2000 framework for the GCRS, but with an index referring to the corresponding body. Moreover, a local reference System defined by the same IAU 2000 formulae, but

  include a relativistic time scale transformation. The idea is to provide positions and velocities of Solar System celestial objects, as well as time ephemerides relating the Terrestrial time-scale (TT) and the time argument of INPOP, the so-called barycentric dynamical time (TDB), based on the définition adopted by the Interna tional Astronomical Union in 2006. This makes INPOP08 a 4D ephemeris and fully suitable for building Gaia timescale [Le Poncin-Lafitte 2010]. 1.2.4 Relativistic light propagation Observations of ail space missions presented in section 1.1 are based on time delay, frequency shift or angular measurements of an EW. In the approximation of optical geometry this EW is described from a theoretical point of view by a light ray propagating along a null-geodesic path, i.e. a curbe obeying the équations -+ r^kak» = o , fc% = o, (î.ii) where kM = dx^/dX is a vector tangent to the light ray, A being an affine parameter and r?7 = \dafl {d-y9nP + dpgw ~d»9i37) (1-12)

  2 we présent the angular déviation of a light ray grazing the main bodies of the Solar System. The column Ôpn represents the contribution of

Figure 1 . 4 :

 14 Figure 1.4: Magnitude of light deflection due to solar System planets at some fixed moment of time as distributed on the celestial sphere shown from three sides. The larger the deflection the darker is the area. Although the deflection from each planet monotonically falls off with the angular distance from the planet, vectorial character of the deflection leads to a complicated distribution of the magnitude when several planets corne into play. The solid lines are lines of constant déclination (from [Klioner 2012]).

  time xa = (ctA,XA) and Xb = (cts^XB) relied by a null-geodesic curve Tab parametrized by a parameter A and located at finite distance from the origin of the coordinates. We use the Time Transfer Functions formalism, developed at Paris Observatory, to write two functions %(tB,XA,xs) and Te(tA,XA,XB) describing the coordinate time of flight ts -of a light signal between these events as a PM expansion; it has been shown that deriving these quantities gives the direction triple ray at xa and ce#, respectively as well as the ratio dX of its time components at boundaries /C -. (&o JA Using the properties of the TTF, we compute a general closed-form formula for (&o )b the direction triple up to the 2PM order as K

(

  Le. function of a metric tensor and its dérivatives only) taken along the straight Minkowskian line between xa and xbexistence of a unique light ray T connecting two events xa -[etAi &a) and xb = (cts,XB) in a spacetime described by a given metric g^u. We dénoté by A the unique affine parameter along T parametrized by the curve xa which fulfills the boundary conditions À (xb) = 1 and à(xa) = 0. The Synge World

  to this équation is as challenging as the détermination of the null géodésie équations. However, this task is easier in the weak field approximation.Let us write the metric tensor as follows 9l±v xA,tB,xB)/c is of the order of h^u.We call it the réception time delay function.Our problem is then to détermine Ar(xA,tB,xB). Follow ing [Teyssandier & Le Poncin-Lafitte 2008], we shall replace xa by a variable x and \xB -x\ consider tB and xB as fixed parameters. Inserting %{x,tB,xB) ,xB) = hm(x_) -2Nlh0l{x_) + NlNJhij(x_) + 2 h0i(x_) -Njhij(x.) dAr(x: tB, xB) dAr(x, tB, xB) dAr(x,tB,xB) a free variable, we consider the case where x is varying along the straight segment joining Xa and xB . Then we get N = NAB, (2.18) where NaB = ;--while we define x = z_(A) and Rab Z-{\) -xB -\RaBNaB 0 < A < 1 .

  3Ar(z~^>.' tB'XBl where £_(À) is the point-event <9Ar(;z_(À), tB, xB) <9Ar(;z_(A), tB, xB) quite convenient to obtain the general PM expansion of the réception delay function.We define the PM expansion of the contravariant components of the metric as gT = rT + hT ,

  erful tool giving direct access to the coordinate time of flight and frequency shift of a photon between two points and to the tangent vectors to its null-geodesic at point-events xa and xb-We showed how these quantities hâve been derived by[Teyssandier & Le Poncin-Lafitte 2008] within the PM approximation using the properties of the time transfer function Te/r{tA/B-,xA,xB)-Finally, we presented a very general way of deriving the direction triple (Ïz^a/b and the ratio K, up to the 2PM order as intégrais of the metric and its dérivatives along the Minkowskian straight line between xa and xb-This closed form expansion is valid for any weak field space-time metric and is particularly adapted for a numerical intégration.

  metric tensor from Eq. (3.2) into Eq. (2.44), the 2PM order of the réception delay function is given by A^2)(aeA,aeB) = Rab U^2\z(X)) + Xz(X) d\, (3.6) where we defined X3(X) = 2X3(X)/Rab-Using Eq. (3.5), one then gets Îîbe useful to note the following relations z2-HiB-rl = X[r\-R\B-rl (3.8a) 4R2zBrl -(z2 -R2B -r%? = -A2 (rA + rB)2 -R2AB (rA -rBf -R?AB (3.8b) 

  geometry To illustrate the previous results, let us consider the Schwarzschild-like metric whose PM expansion in isotropie coordinates is ds2 = (-1 + 2--2/3-+ ...^c2dt2+ (l + 2y-+ -c--+ ...^ôijdx'ldxJ, (3.13) GM/c2, /3 and 7 are the usual PPN parameters, £ is a post-post-Newtonian parameter and +... means that terms of order O (G3) are neglected (/3 = 7 = £ -1 in GR). The function U(r) appearing in (3.2) can be written as 7) -/3 + |e. Introducing Uir) from Eq. (3.14) into Eq. (3.4

Finally

  , one needs to compute the intégral corresponding to the second term of the right hand side (r.h.s.) of Eq. (3.10a)-fi2 V rA(l-/i2) 'rrB(l-/i2)) r2 rB(l -/i2) * Substituting from Eq. (3.19), Eq. (3.23) and Eq. (3.24) into Eq. (3.10a)

  1 -2-, g0i = 2(1 + 7)-and gi3 = 5i3 \1 + 27-J , (3.26) where w and w1 are the scalar and vector potentials, respectively. Computing the inverse of the previous metric, one gets 500 = -1 + 2^, 3") = 2(1 + 7)^-and (l -27-) . (3.27) Since the PM expansion of our équations naturally includes the PN approximation, it is then straightforward to compute ra(A), m(i),a(A) and h(A) from Eqs. (2.39-2.40) use relations (2.13) and (2.41) to compute the TTF within the PPN framework as Tt(xai 7b, xb) -ts -tA RaB Rab 'l ^(1 + 7)w -2(1 + 7) NAb w Jz+A) d\ + G(G2). (3.29)

  der 1/c2 by[Le Poncin-Lafitte & Teyssandier 2008]. Space-time is then stationary[Stephani étal. 2009], so that Ar{xA,xB) = Ae(xA,xB) = A(xa,xb), the center of mass O of the perturbing body is taken as the origin of the quasi-Cartesian coordinates x1 and the axis of symmetry is chosen as the a;3-axis. Let us also assume that the smallest sphere centered on O and containing the body has a radius equal to the équatorial radius re of the body and that the segment joining xA and xB is outside this sphere.At any point x such that r > re, the gravitational potentials w and w are then given by the multipole expan-sion[Thorne 1980, Kopeikin 1997, Linet & Teyssandier 2002] the unit vector along the rr3-axis, the Pn are the Legendre polynomials, M is the mass of the body and the coefficients Jn are the mass multipole momentsEq. (3.29) as a sériés of Jn and write (3.32) T(xa, xB) --Rab + Am(xa, xB) + Aj (xA, xB) , c ' n=2 (3.33) where Am is the coordinate time delay due to the monopolar part of the gravitational potential (3.31) and Ajn are its multipolars components. Using Eq. (3.29) with Eq. (3.31) and integrating along the curve (2.30) gives the well-known Shapiro time delay [Shapiro 1964] Am(xa,xb) = , ,sgm. (7 + 1)--ln f E4 + Pb + Rab \rA + rB -Rab J (3.34a)the quadrupole term Aj2 as in[Linet h Teyssandier 2002] Aj2(xa,xb) 

  in[Le Poncin-Lafitte & Teyssandier 2008].The contribution of the mass multipole moments to the deflection of light has to be taken into account in astrometric missions of high précision such as Gaia for light rays grazing the deflecting body (see Fig.1.2 and discussion in[Klioner 2003, Le Poncin-Lafitte & Teyssandier 2008]). It shall then be included in an astrometric model aiming at interpreting Gaia's observations. In this sense, Eqs. (3.34)-(3.37)

  the mass of the Sun, RPs the distance between the perturbing body and the Sun and £p = ^&P, ep the orbital eccentricity of body P. Let us consider can reasonably neglect the accélération terms.Regarding the choice of te the simplest choice would seem to set te = tp since in classical astrometric applications we only hâve direct access to the réception time tp-Unfortunately, this choice would lead to unnecessarily big errors in some practical cases, as we show in the following. Let us imagine that the réception is done on a remote satellite at 109 km from the perturbing body.If te is defined such that te = tp, one has c(tm -te) ~109 km, where tm is the time when the photon is at its closest distance to the perturbing body. Therefore, neglecting the accélération term in the expansion one would hâve an error of 70 km on the impact parameter 6 of the trajectory of the light beam.

  Indeed, one can compute the angular error introduced by the assumption te = tp on the modeling of a light signal grazing Jupiter as Jupiter mass, Jupiter Schwarzschild radius is approximately 2.8 meters, 6 is Jupiter équatorial radius for a grazing photon and Ab = 70km is the error on the impact parameter. Then A a ~16 /ias, well above the desired précision for the model. The same computation for Satura and Mars gives respectively 15 fias and 0.2 fias.

  xP(t) = xP(tc) + c(t -tc)/3p + Axp,(3.44) where /3p = vp(tc)/c and Axp is some typical error made on the position of the perturbing body due to the linear approximation chosen for its trajectory and below the desired accuracy of our model.In the next sections, we présent the development of the TTF and direction triple with the gravitational potential (3.38). A similar reasoning would allow to compute K. Coordinate time of flight Taking into account the metric (3.26) with the potential (3.38), Eq. (3for practical reasons we set the notation Rpx = xx -xp(tc) -c{tx ~tc)(3p , (3i?p from Eqs. (3.48)-(3.49) into Eq.(3.46), one can compute the réception delay function A[^(au, tp, £Ep; Vp) as functions of a:^, xp and of the coordinate velocity up of the perturbing body. One gets Expanding gp in Eq. (3.51) it is possible to show explicitely the terms depending on 3p -0 and then gp = NAb in Eq. (3.51), we retrieve the static case given in [Le Poncin-Lafitte et al. 2004] in the case of a single gravitational source. We also applied Eq. (3.51) to the simple configuration of a signal propagating from the outer Solar System to the Earth and grazing Jupiter. Our évaluation of the impact of the orbital motion of Jupiter on the coordinate time of flight of the photon is of the order of 10 ps, in accordance to previous results [Linet & Teyssandier 2002]. A similar reasoning allows to compute the émission delay function Ae(^, cca, xb) check the formai équivalence /S^\xa, tB, xB\ vp) = A£\tA, xa, xb\ vp) stated in Eq. (2.3) when we consider Eq. (2.13). Using Eq. (3the values "PB" or "PA", into Eq. (3.51) and after some algebra, it is straightforward to show its équivalence with Eq. (3.53).

  Eq. (2.7a) and Eq. (3.30) with the metric (3.26) and the gravitational potential (3.38) and (3.55), we compute the light direction triple ~NAB + (7+ 1)"2 J I Rab92p (RABppitc) -R\b9P + (wPB-N'ABRPB-pP(tc))1~X] (3 and gp describe the deflection due to the dynamics of the System.The explicit computation of the intégrais appearing in the r.h.s. of Eq. (3.56) may be obtained by taking into account the boundary conditions set in Eq. (3.50).After some algebra, we get an explicit expression for the light direction triple in the case of multiple deflecting bodies in uniform motion as (^)p ~~Nab1 + (7 + l)^â

  1PM and 2PM relativistic corrections to the observables of BepiColombo and of GAME-like missions in the Schwarzschild gravitational field of the Sun.4.1 Moving emitter and receiver Let us consider two observers OA and Ob located at points A and B. The second observer Ob receives an electromagnetic signal from Oa-This signal is received at the coordinate time tB and at the position Xb and it was emitted at time tA and at the position xA-The coordinate time of flight of a photon between Oa and Ob in the case of a fix emitter and receiver has been computed in Eq. (2.13) and Eq. (2.35). It can then be used to compute two physical quantities (see[Bertone et al. 2012b] and references therein) used in radio-science:• the Ranging, describing the distance between probe and ground station, is defined by adding to the coordinate time of flight (times c, the speed of light) the corrections accounting for the tropospheric and ionospheric delay, the Process ing time of the signal, etc... Since the study of the atmospheric or electronic delay on an EW is far from the goals of this thesis, in the following we shall only focus on the définition of the TTF (2.3) in the general case of a moving emitter / receiver.• the Doppler, related to the radial velocity of the probe with respect to the Earth, represents the frequency shift of the signal between Oa and Ob and, for practical applications, it is obtained by differentiating two successive measurements of the time of flight of the signal. We shall detail the Doppler observable in section 4.2.1. In realistic cases, neither the emitter nor the receiver of the electromagnetic signal are static in space-time. Instead, they are following the trajectories xA{t) and xB(t), parametrized by the coordinate time t. In this case, relation (2.3) becomes implicit since xa dépends on tA tB ~tA = %(xA{tA),tB,XB(tB)) -+ 1ar(xA(tA),tB,XB(tB)).

  . The idea is to expand the position of the emitter xA(tA) = xA + [tA -tB)vA + \{tA -tBfâA + ~(tA -tBfbA + • • (4.2) where the tilde refers to quantities evaluated at t = tB) so that xA -xA{tB), tA = Tr(xA(tA),tB,xB(tB)), Dab = xB{tB) -xA(tB and DAB = \Dab\-An itérative solution of the last équation gives /

  B = (dx^/ds)a/b is the four-velocity of the observers A or B. &A/B ki ko of the null tangent vectors kA and kB at the point of émission xa and at the point of réception xb, respectively. Terms appearing in the right hand side of Eq. (4

  be lowered and raised by use of the metric. The fact that the basis vectors of the tetrad are orthonormal implies d) ~~rl{oî){fi) (4-12) The components of the tetrad allow us to transform the coordinates of the wave vector from the global coordinate frame to the tetrad frame with k(a) = A (a) M 5 (4.13)where kM are the components of the wave vector in the global frame while /qa) are the components of the same vector in the tetrad basis. The projection of the light ray in the tetrad frame is given by the normalization

  Figure 4.1: First and second PM contributions to the Range and the Doppler for a 1 year Mercury-Earth radio-science link. The peaks correspond to different conjunctions between the Earth, the Sun and Mercury.

  Figure 4.2: Différence between the standard formulation of the Range/Doppler used in radio-science modeling (4.20) and the exact 2PM expression (3.20). The peaks correspond to conjunctions of Earth, Sun and Mercury.

  consists then in a Lorentz boost of the previous tetrad in order to make it comoving with the observer. We will note the four-velocity of the ob server (expressed in the global coordinate System) by ua = dxa/ds. This velocity can also be expressed in terms of coordinates related to the intermediate tetrad ûa = dxa/ds = = (^y/A(r)u°, y/B(r)ul^j. Finally, the coordinate velocity of 1 dx* the observer will be denoted by pl ---. The same quantity expressed in the 26) is the exact expression of a kinematically nonrotating tetrad in a static, spherically symmetric space-time and it can be expanded to 2PM order if necessary using Eqs. (3.13)-(3.14).

Chapter 4 .

 4 Figure 4.3 represents the 1PM and 2PM contributions to a and Ô as well as the total deflection angle. As one can see from relation (3.25b) and Eq. (4.16), the 2PM correction to the angular measurement dépends on two terms: a first term
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 44 Figure 4.3: Contributions to the observed direction of an incident light ray coming from a star over one year of observations from the Earth. The central peak corre sponds to the Earth, Sun, star conjunction. Left: contributions expressed for the right ascension and déclination in the tetrad (see relation (4.27)) -Right: contri bution to the total angular deflection. The 2PM contribution is the total formai 2PM contribution of around 3 mas (included the so-called "enhanced post-post Newtonian" terms). The k contribution of around 10 fias is the due to the terms proportional to k in (3.25b).

  ceived to solve the inverse ray-tracing problem in a general relativistic framework not constrained by a priori approximations and according to the precepts of measurement in GR [de Felice &; Bini 2010]. The full development to the fias level imposes to consider the retarded distance effects introduced by the motion of the Solar Sys tem bodies. The RAMOD full solution requires the intégration of a set of differential équations, which allows the light trajectory to be traced back to the initial position of the star and which naturally entangles the contribution of the aberration and of

Fig. 5 .

 5 Fig. 5.1 and described hereafter:
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 51 Figure 5.1: Five principal vectors used in the GREM model : s,n,cr, k and l.

  2004]), comoving with the satellite. Then, to deduce s from the coordinate light direction p we need to compute the infinitésimal transformation Ap defined by the relation dXa = A%dxe .

  5.2 ) since the project was launched in 1998 by a group of Italian astronomers from the Observatory of Turin and the University of Padua.

Figure 5 . 2 :

 52 Figure 5.2: RAMOD identifies a family of astrometric models with increasing accuracies. The attitude models belonging to the project are called RAMODINOl and RAM0DIN02. The présent relativistic model implemented in GSR (see chapter 6)

  the light sources are supposed to be at space infinity. Its first évolution, RAMOD2 [de Felice et al. 2001], takes into account the parallax and proper mo tion of stars, supposed at finite distance, by setting different boundary con ditions to the model. The current évolution of the project is represented by RAMOD3 [de Felice et al. 2004], based on a perturbative approach of Minkowski space-time. Sources of the field are the planets and major bodies of the Solar System, with their position fixed at the closest approach with the photon. The influence of the quadrupole moment of the major planets would also be taken into account. The aim of the model would be the accuracy of the fias level on the star positioning, sufficient for the réduction of Gaia's data. The next step is RAMOD4, whose aim is to describe light propagation in a System with non-null vorticity [de Felice et al. 2006]. Several extensions hâve been explored by the authors.

  needed for GSR. RAMOD always relies on measurable quantifies with respect to a local barycentric observer along the light ray[de Felice et al. 2004]. The unknown is the local line-of-sight, quoted la in RAMOD and measured by the fiducial observer u

Figure 5 . 3 :

 53 Figure 5.3: The light trajectory, identified by the 4-vector k, propagates in spacetime until it is intercepted by the Gaia-like satellite at observation time t0 = At each point on the trajectory, the light signal strikes the locally barycentric observer u which identifies, in its instantaneous rest space (light gray), the local line of sight i. The surfaces S(t) such that t = const do not in general coincide with the local rest space of u. [de Felice et al. 2006]

  the équivalence between KK92 and TTF for the coordinate time of flight and the n) is of order 0(c~n). Substituting for At from Eq. (5.15) into Eq. (5.14) and identifying terms of the same order, we

  photon velocity x1 used in KK92 is obtained by noting thatc

  -is obtained by deriving the photon trajectory in Eq. (5.11) c with respect to coordinate time. Its application at (tB,xB) is of order 0(c n). Substituting for cr from Eq. (5.20) into Eq. (5.14) and identifying ail terms of the same order, we

  rp(() = x{Q -Xp{tc) is the distance between the positions of the photon ae(C) = Xb -Ç,FLab and of the deflecting body Xp{tc) while 7 is a PPN parameter. Coordinate time of flight The computation of the coordinate time of flight At can be obtained within RAMOD by considering the time component of the fiducial observer u [de Felice et al. 2006] b -(a and we used définitions (3.49)-(3.50) with (3p -0. We need now an explicit expression for AC-First, we rewrite Eq. (18) of [Crosta 2013Rpb -Nab(Rpb • NAB). Then, using the relation dB • NAB -0 and the normalisation condition Ia£a = ga^a^= 1 on Eq. (5.27), we obtain = l-h00\B + O(c-i) is of order 0(c 2). Substituting for AC from Eq. (5.29) into Eq. (5.28) and identifying the terms of the same order, we get straightforwardly = cAY.MpX'a p RpB 4-Nab • Rpb Rpa + Nab Rpa
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 61 Figure 6.1: Schematic représentation of the main éléments of the astrometric data analysis. In the shaded area is the mathematical model that allows to calculate the position of the stellar image for any given set of model parameters. To the right are the processes that fit this model to the observed CCD data by adjusting the

  It involves taking into account the proper motion of the source, gravitational light deflection by Solar System bodies and Lorentz transformations to the co-moving frame of the observer. This whole procedure is based on GREM (outlined in Section 5.1.1 and detailed in [Klioner 2003]); • Attitude model -provides the instantaneous orientation of the Gaia instrument in the B CRS as specified by the Nominal Scanning Law (NSL [de Bruijne et al. 2010]) in terms of a finite number of attitude parame ters; • Géométrie instrument model -defines the relation between the layout of the CCDs and the field angles. It dépends on the physical geometry of each CCD, its position and alignment in the focal place and on the conventions adopted for the optical System. It should include the chosen "Time, Delay and In-

  i.e. the angle 0 between the z-axis of the spacecraft and the projection of the point in the x -y plane. This angle is related to the director cosines by section 1.1.1, Gaia spacecraft has two fields of view (FOV) called /+ and /_ whose pointing directions are separated by a fixed base angle of 106.5°andwhich are symmetric with respect to the z-axis. Since the angular amplitude of each
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 63 Figure 6.3: Fundamental angles in the Gaia reference frame E&. The two Fields of View (FOV) directions are indicated by /+ and /_ while the measured abscissa is

  2.3, that computing the positions of the gravitating bodies at the retarded moment of time tc = tB -c 1 \xB -xP{tB)| + 0(c 2) , (6.6) where tB is the coordinate time of observation and xp(tB) is the position of body P aX tB, allows us to neglect the effects due to the velocities of the bodies. Then, we effectively use a constant value xB -xp(tc) in our computations so that the metric tensor writes g^v = r\^v + xB -xp(tc) -ARabNab-For this preliminary study, we neglect the multipole terms appearing in Eq. (3.31) since their implémentation in the code would be quite cumbersome and their influence would be observable only for observationsgrazing the giant planets (1 fias at 152" from Jupiter). Finally, the direction triple to be used in Eq. (6.5) is (remembering Eqs. (3tetrad, the simplest choice is to use Eq. (5.10), presented in[Crosta & Vecchiato 2010] and already used in GSR. This complétés the implé mentation in GSR of an abscissa 0 based on our model. We shall now compare our results to those of PPN-RAMOD (actually implemented in GSR) and of GREM (the model implemented in AGIS).

  exclusively related to gravitational light deflection, are concentrated around the conjunction with the planets (making it necessary to reject approximately 1/3 of the observations over the considered period). The observations far from the planets are as expected less "noisy", which confîrms the origin of the discrepancies with GREM results. Another possible visualization of these results is an histogram illustrating the number of observations for which different models produce abscissae with a given différence. In Fig.6.7 we show that, for the vast majority of the observations, the différence between the abscissae produced by our model are less then 1 -2 fias away from what expected by GREM. As comparison, in Fig.6.8 we show the same histogram for the PPN-RAMOD model actually implemented in GSR (always with respect to GREM). The number of abscissae differing for more than 2 fias (and up to 450 fias) is far larger, confirming the necessity for a more complété model to reach the level of accuracy required by Gaia. Nevertheless, further investigations are needed to completely understand the influence of the accuracy on the single measurement when such models are used in the framework of a more complex problem such as the reconstruction of the celestial sphere.
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 646 Figure 6.4: Différence between the abscissae resulting from our TTF model and the GREM (top) and PPN-RAMOD (bottom) models. The numbers on the left axis hâve a double meaning: they mark (1) the différence in fias between the two models -represented by the red plot -and (2) the distance in degrees/10 between a given planet and the observation -the blue, green and yellow plot representing Jupiter, Saturn and Mars, respectively. The y-axis is limited to ±20 fias to help a better visualization.

Figure 6 . 6 :

 66 Figure 6.6: Différence between the abscissae resulting from the GREM (top) and PPN-RAMOD (bottom) models. The numbers on the left axis hâve a double meaning: they mark (1) the différence in fias between the two models -represented by the red plot -and (2) the distance in degrees/10 between a given planet and the observation -the blue, green and yellow plot representing Jupiter, Saturn and Mars, respectively. The y-axis is limited to ±20 fias to help a better visualization.
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 67 Figure 6.7: Histogram of the abscissae différence between the TTF and GREM models. The vast majority of the observations show différences in the interval of 1 -2 fias, well below the accuracy required by Gaia.

Figure 6 . 8 :

 68 Figure 6.8: Histogram of the abscissae différence between the PPN-RAMOD and GREM models. The splitting emphasize the number of observations within ±10//as and with différences of more than 10fias. The chart being reasonably symmetric, only the négative values side is shown.

  /da* and dT/dô* can be computed analytically since the function T = cos dcaïc, defined by Eq. (6.1a), is known. We get deosep _ dv (cos ^(î) ) [ cosT/ygcos^d^cos^g)take the values a* or ô* and d cos ^(î) £p) dv kj ( £(°0) + El(0) kt) + ( + Efa k3 ) El{0) dv kt dv cos 'ip = dv (£(0> + E',oT (6.12) (0)'

  that the incoming direction n can be expressed in terms of right ascension and déclination as in Eq. (4.27), we shall write da*xlA -(-pa sin a cos 5, rA cos a cos S, 0) , ds"xlA -{-rA cos a sin ô, -rA sin a sin ô, rA cos ô) .

  Figure 6.9: Histogram of LSQR residuals (post-fit values minus initial catalog values) on the astrometric coordinates. Initial values: measure error a -2 mas, catalog error a = 100 mas -ô = 50 mas. After one itération the residuals hâve improved of a factor ~10, depending on the number of observations for a given star.

Figure

  Figure 6.10: Left: Frequency of observations as function of celestial coordinates due to Gaia scanning law (blue ~50 -yellow « 200) -Right: Astrometric residuals after one itération as function of the number of observations for the star (a* residuals in red -a* residuals in green)

Figure B. 2 :

 2 Figure B.2: Différence between the abscissae resulting from the old GREM model (here called GASS) and PPN-RAMOD (Top) and the TTF (Bottom) models. The numbers on the left axis hâve a double meaning : they mark the différence in lias between the two models, represented by the red curve; they mark the distance in degrees/10 between a given planet and the observation -the blue curve represents Jupiter, the green Saturn and the yellow represents Mars. The peaks far from Jupiter were confused with errors due to the gravitational deflection of some planet not included in the PPN-RAMOD model. After comparison with our model, it became clear that this was a mismodeling in the software implémentation.

Table 1

 1 

.2: Relativistic deffection of light grazing Solar System bodies

[Klioner 2003] 

  These relations hold for any couple of points (xA,xB) connected by a null géodésie. Substituting now Eq. (2.4) into Eq. (2.6), we get the following rela tions[Le Poncin-Lafitte et al. 2004] between the ratio of the covariant components of the tangent vectors to the géodésie and Tr

	and differentiating this équation with respect to xlBl tB and xlA, one obtains
			dfl(xA, xB) dTr(xA: tB,xB) dxlB dtA	dü{xA, xB) B dx	0,	(2.1) (2.6a)
		diï(xA,xB) dtA	1 -	dTr(xA:tB:XB) dt B	dtB dü(xA:xB) = Q	(2.6b)
			d<à(xA,xB) dTr(xA,tB,xB)	dtt(xA,xB)
			dt, 'A		dx1 v*A	+	dx1 kj^a	= 0	(2.6c)
	i) two points xa and xb are linked by a light ray if and only if
						ü(xA,xB) = 0			(2.2)
	so that Çî(x,xb) is the équation of the light cône C(xb) at xb-If £1(xa,xb) is
	explicitly known, it is then possible to détermine the travel time ts -ta of a
	photon connecting the two points as a function of their coordinates. It must
	be pointed out, however, that solving the équation	xa, ts, Xb) -0 for tA
	yields two distinct solutions tA and tA since the time-like curve x -xb cuts
	the light cône C(xb) at two points x\ and xA, x\ being in the future of xA. If
	we consider xa to be the point of émission of the photon and if xb is its point
	of réception, we are only concerned by the solution tA. A similar reasoning can
	be stated for the solution with respect to ts and for the light cône Q(xa,oc)-
	For the sake of compactness, we will from now on use the notations tA = tA
	and tB = t%.								
	Indeed,	it	is	possible	to	defîne	two	Time	Transfer	Func-
	tions [Linet & Teyssandier 2002]				
			tB	U -7)(xA ,		•Xb'} -*7é(U> X^^^Xb')	(2.3)
	depending on the instant of réception ts or émission tA of the signal and called
	the réception and the émission Time Transfer Function, respectively. Explicit
	expressions of these functions are different except in a stationary space-time in
	which the coordinate System is chosen so that the metric does not dépend on
	x°-et. In this case, we get Tr(xA,tB,XB) = Te(tA,XA,XB) -T(xa,xb)-
				(dxa \			fdxa\	
	ii) the vectors {ka)A = ( --\ dX J A	and (ka)B = --I tangent to the géodésie T \ dX J B
	at xa and xb, respectively are given by			
							and				(2.4)
	From property i) it follows straightforwardly that		
			S"ï(t£ -		c%(xa,tB^Xs),	ts>XB) = 0	(2.5)

  2.19) Using Eq. (2.15) and Eq. (2.19), the réception delay function is then governed by

	the differential équation			
	dAr(z_(\),tB,xB)	RAB		
	dX	2	W(z-(\),tB,xB) ,	(2.20)
	with the boundary condition			
	Ar(z_(0),tB,xB) = 0 ,	(2.21)
	which follows from the boundary condition Ar(xB, tB, xB) = 0 and from Eq. (2.19).
	As a conséquence, we hâve			
	AT(z_(\),tB,xB) =	J W(z_(\'),tB,xB)d\' .	(2.22)

Using now Eq. (2.16) and noting that Z-( 1) = xA, we can get from Eq. (2.22) the integral-differential équation

  It is then possible to expand the réception delay function as a sériés of ascending powers of the Newtonian gravitational constant G

	oo		
	Ar(ae, tB,xB, G) =	GnA(rn\x, tB, xB) ,	(2.28)
	n= 1		

  at the first PM approximation. The computation at the

	2PM order is more cumbersome. Substituting for U(r) from Eq. (3.14) into Eq. (3.6),
	one gets							
			A[2) = RABKm2 [		f X3(X)dX	(3.16)
						Jo z IM	^Jo
	where Z3(À) is given by Eq. (3.7) as			
			x =		4(1 + 7)2m2rB		
			31 j		Z{X) [(^(A) + rB)2 -X2R2ab]
				(z(X) + rB)2 = -4(l+7)2m2ô A_	(3.17)
	nce y (À) is determined from Eq. (3.9) as			
		y(A) = _2(1 + 7)m^=				(3.18)
	Replacing this expression in Eq. (3.16) and integrating, one gets
			Af\xA,xB) = m2-^-	AC arccos fi	(1+7)2	(3.19)
						rArH	V1 -A*2	1	fl
	with fi -(nA.nB) and nA/B = xA/BfrA/B. The TTF is obtained up to 2PM when
	one substitutes for Ar from Eqs. (3.15) and (3.19) into Eq. (2.13). We get
		%(xA, tB,xB) -tB -tA -	Rab (7 + 1 )m ^/ rA + rB + RAB \ c c \rA + rB -Rab)
					m2RAB	ac arccos fi	(I + 7)2
										(3.20)
					crArB	y/l -/i2	1 + M
	We	recover	a	resuit	previously	derived	by	different	approaches

  can then express the incoming direction of the light ray in terms of the réception delay fonction and its dérivatives[Bertone & Le Poncin-Lafitte 2012] as

]. Using the relation (2.36), one nW =

  ]. Substituting for the metric, Ar and its dérivatives from Eq. (3.13), Eq. (3.15), Eq. (3.19) and Eq. (3.25), respectively into Eq. (4.9) one can write the expression of the Doppler around a spherical mass

	vb		2-+ 2/32# _ §/33b£ ta r rA 2 r\
	va			
	with			
	Qa	Nab Va	2(1 + 7)777	[{rA + rB)NAB vA + RABnA vA]
			c[{rA + rBf -R2a AB.
		nm	arccos fi	RabUa VA	Rab^b • VA
				Nab vA
		crArB	yi-M2	
			Rab	
	and			
	Qb			

Time[day] 

Infrastructure (workflow) Figure 6.2: Schematic représentation of GSR architecture [Vecchiato et al. 2012].

During this thesis, we focused on the first two scientific modules, namely "compute Coeff&KT" and "Find solution". In particular, we first computed a "calculated observable" (f)caic using our formula (4.16) with the RAMOD tetrad (5.10) and compared it with a "nominal" observed value (j)0bs computed using the GREM model.

The resuit of (j)0bs -(f)caic provided an indication of the accuracy of our model in the Gaia context. Then, we focused on writing the linearized observation équa tions sin 4>d(f) = -JT |£|piôp\ where pl are the unknowns to be determined by a least-squares procedure in the "Find solution" part. Conclusions and perspectives

Relativistic light propagation up to 2PM

We founded our study on the mathematical formalism of the Time Transfer Function, which models the coordinate time of flight of an EM wave propagating between two events xa and xq A key-point of this formalism are the relations providing /C and ki (the ratios of the covariant components of the tangent vectors to the light ray) once the Time Transfer function is explicitly known.

Our contribution is the construction of these ratios, fundamental in the modeling of relativistic observables, within the post-Minkowskian approximation of GR as closed form intégrais, i.e. as function of a metric tensor and its dérivatives only, taken along the straight Minkowskian line between xa and xb-The main interests of such general formulae is the opportunity of solving them both analytically or numerically for any weak field metric, which has also applications for testing alternative metric théories of gravity.

We developed our formalism up to the second post-Minkowskian order to be able to account for the so called "enhanced terms" [Klioner 2003]. We applied then our formulae to a 2PM Schwarzschild metric in order to analytically retrieve the solution presented by [Teyssandier 2012], thus validating our general formulation.

Closed form équations of relativistic observables

Based on our closed form formulae for T, K, and ki, we built a relativistic modeling for the Range and Doppler observables used in radio-science as well as for the angular séparation between two light sources and the incident direction of an incoming light ray, which are the basic ingrédients of any astrometric measurement.

We expressed these modelings using general formulae that we apply then to several interesting examples. Within the Schwarzschild field of the Sun, we provided estimâtes of the 1PM and 2PM relativistic corrections on the Doppler effect for BepiColombo. Similarly, in a GAME-like configuration, we developed a 2PM kinematically nonrotating tetrad and provided estimâtes of the relativistic contributions to simulated astrometric observations. We then provided an estimate of the effect of the second order "enhanced terms" on radio-science and astrometric observables. 

GSR-TTF: additional analysis

In this appendix, we présent the results of some preliminary analysis made possible by the implémentation of our TTF model in the GSR software.

B.l Retarded times for gravitational potentials

In chapter 5, we illustrated that, in order to neglect the orbital motion of the sources of the gravitational field in our model, we should take their ephemerides at the retarded time corresponding to their maximum approach with the photon as in [Klioner 2003]. This time te can be computed as 

B.2 Early contributions of GSR-TTF

The first abscissae comparison we made between our model and GREM followed the guidelines used for the tests of PPN-RAMOD. The peaks of ~20 fias in the top plot (PPN-RAMOD vs GREM) could be due to the différence between the gravitational field considered in GREM (a System of extended bodies corresponding to Solar System planets and the Sun) and PPN-RAMOD (the spherically symmetric field of the Sun). The comparison with our model clearly shows that this is not possible, since the main différences appear "far" from the planets. Further analysis solicited by this finding showed that we were using an out-dated version of GREM for our analysis. The comparison with the current version of GREM in Fig. B.l, indeed does not show these peaks but it shows an unexpected bias and unexpected discontinuities needing further analysis. Ail these effects would hâve not been observed without the contribution of GSR-TTF.