This thesis deals with exact classical solutions which arise in gravity and supergravity and play an enormous rôle in modem cosmology and studies of gravity/gauge correspondence. Our research mainly focuses on generating solu tions and studies obtained solutions in a cosmological context.

For a D-dimensional gravitational model with a sigma-model source term, defined on a product of Einstein manifolds, the exact solutions of general type are generated using sigma model approach. The solutions are defined up to solutions of géodésie équations corresponding to a sigma-model target space.

The solutions are obtained in the following cases 1) wlien ail factor spaces are Ricci-fiat; 2) when one factor space has nonzero scalar curvature and other are Ricci-fiat. For the first case we show that the solutions can describe the accelerated expansion of the Universe. A subclass of spherically-symmetric solutions is studied. We formulate and prove the "no-hair theorem" for black holes.

Next we apply the considered sigma-model approach to a 4D generalized model (the AWE model) of Brans-Dicke gravity with scalar fields nonuniversally coupled to gravity. This model was introduced by J.-M. Alimi and A. Fiizfa for a unified description of dark matter (DM) and dark energy (DE) based on a relaxation of the weak équivalence principle on large-scales. New solutions for the model are found in terms of elliptic functions. We show that for certain parameters the solutions can be expressed in terms of exponential functions and describe the accelerated expansion.

We also study cosmological type solutions of supergravity origin: F-and 5-branes. Using the sigma-model formalism generalized Melvin's solutions related to semi-simple Lie algebras are obtained. A subslass of S-brane solutions corresponding to Lie algebras rank 3 is singled out, for which there exists a time interval where an accelerated expansion of a 3-dimensional subspace is compat ible with a small enough value of the variation of the gravitational constant. of three M branes are studied.

The explicit formulae for computing the amounts of preserved supersymmetries for triple M-brane configurations are obtained. Certain examples of the supersymmetric. configurations containing such factor-spaces as K3, CJ/Z2, a four dimensional pp-wave manifold and the twodimensional pseudo-Euclidean manifold Rl:1/Z2 are presented. We show that the replacement of the fiat manifold with trivial topology by a Ricci-fiat mani fold of a fiat manifold with non trivial topology reduces the number of preserved supersymmeties. We also présent configurations where the number of preserved supersymmetries dépends on the orientation of the brane worldvolume.

Cette these porte sur l'etude des solutions classiques exactes qui se pré sentent dans la gravite et la supergravite et jouent un rôle considérable dans la cosmologie moderne et les etudes de la correspondance Jauge/Gravite. Notre 

INTRODUCTION

Today, the known fundamental interactions are gravitation, electromagnetism, strong nuclear, and the weak nuclear forces. At energies of order 100

GeV ail known phenomena can be account by the standard model. At higher energies the interactions of the standard model: electromagnetism, strong and the weak interactions can be unified into a grand unified theory. Finally, at energies of the order of the Plank energy Mpc2 = {ch/G)l^2c2 ~1019 GeV the theory must be modified. At this energy the gravitâtional interactions become strong and cannot be neglected. The one of the biggest challenges in theoretical physics today is how to combine the elaborate structure of quantum field theory and the standard model with Einstein's theory of gravity -general relativity.

There are various problems that arise when one attempts to combine gen eral relativity and quantum field theory. The field theorist would point to the breakdown of renormalizability -the fact that short-distance singularities be come so severe that the usual methods for dealing with them no longer work. A relativist might point to a different set of problems including the issue of how to understand the causal structure of space-time when the metric has quantummechanical fluctuations. There are also a host of problems associated to black holes such as the fundamental origin of their thermodynamic properties and an apparent loss of quantum cohérence.

From the other side the most topical problems in cosmology now are dark energy and dark matter. Dark matter is a type of matter hypothesized to account for a large part of the total mass in the universe. Evidence for dark matter in the universe is available from a wide range of observational data. On the scale of galactic halos, the observed flatness of the rotation curves of spiral galaxies is a clear indicator for dark matter [1]. There is also evidence for dark matter in elliptical galaxies, as well as clusters of galaxies coming from the X-ray observations of these objects. Also, direct evidence has been obtained through the study of gravitational lenses. For a more complété discussion see [2]. On the theoretical side, we predict the presence of dark matter because 1) it is a strong prédiction of most inflation models (and there is at présent no good alternative to inflation) and 2) our current understanding of galaxy formation requires substantial amounts of dark matter to account for the growth of density fluctuations. One can also make a strong case for the existence of non-baryonic dark matter in particular. The récurrent problem with baryonic dark matter is that not only is it very difficult to hide baryons, but given the amount of dark matter required on large scales, there is a direct conflict with primordial nucleosynthesis if ail of the dark matter is baryonic. In addition to being stable (or at least very long lived), the dark matter should be both electrically and color neutral. Indeed, there are very strong constraints, forbidding the existence of stable or long lived particles which are not color and electrically neutral as these would become bound with normal matter forming anomalously heavy isotopes.

Unfortunately, there are no viable candidates for dark matter in the Standard Model. As baryons and neutrinos hâve been excluded, one is forced to go beyond the Standard Model.

Recent observational data [3]- [8] indicates that the Uni verse is présent ly dominated by a hypothetical form of energy called Dark Energy (DE). Its grav itational action is to drive the current cosmic accélération by mimicking a fluid of puzzling négative pressure acting on cosmological scales. The ultimate explanation of the physical origin of DE is often thought of as the bridge between microphysics and gravitation. The widespread interprétation of DE based on the cosmological constant A constitutes an acknowledged example of an intimate link between cosmology and particle physics. In fact, A, introduced by Einstein himself as a Mach principle-inspired term [START_REF] Einstein | Cosmological Considérations on the General Theory of Relativity[END_REF], is currently interpreted as a nonvanishing vacuum energy. Although a huge and still unexplained fine-tuning is still required to reduce drastically the theoretical expectation of the cosmologi cal constant value [START_REF] Weinberg | The cosmological constant problem[END_REF], nevertheless, it enters the description of the dark sector within the so-called concordance model ACDM together with the cold dark matter CDM. Furthermore, this model faces a triple coincidence problem: why do we live in an almost fiat Universe (Qt = 1) with roughly the same amount of baryons, DM and DE today (fU = 0.04 « Qdm = 0.2 « Qde -0.76)?

More specifically, how could the vacuum energy be precisely of the same order of magnitude of other présent cosmological components? Instead, the measured amount of DE suggests that it is ruled by some cosmological mechanism such as quintessence or generalized additional fluid components [11] whose origin has to be found in high-energy physics. However, one can expect [12] that the difficulties encountered in trying to overcome the coincidence issues and the related problems in high-energy physics and gravitation will remain as long as DE will be regarded as an additional component independent of baryons and DM.

To solve the denoted problems it is necessary to revise the general rel ativity and make required modifications. The simplest generalizations of Einstein's theory of gravity are scalar-tensor théories, in which in addition to the metric (the tensor field of rank 2) the gravitation interaction is mediated by a scalar field. Historically the origin motivation for scalar-tensor théories was the hope of reconciling general relativity with Mach's principle. Under this principle the gravitational constant should be a function of the mass distribution in the universe and, hence, it can be replaced by a scalar field <j)(x). Nowadays the scalar-tensor théories are candidates for explaining the dark sector of cosmology and/or inflation.

The Brans-Dicke theory is an example of the theory of such type. As well as general relativity the Brans-Dicke theory is a metric theory of gravitation, the action in the Jordan frame reads (i) h where g is the déterminant of the metric, yj^gcftx is the four-dimensional volume form, (j> is the scalar field, £m is the matter term or matter Lagrangian and uj is a parameter called the Brans-Dicke coupling constant.

The Brans-Dicke theory satisfies the Einstein équivalence principle. Dicke often pointed out that we need to distinguish two forms:

• WEP. One form asserts that ail bodies at the saine spacetime point in a

given gravitational field will undergo the same accélération. We will refer to this as the "weak" équivalence principle, WEP. As it stands, this does not exclude possible effects of gravity other than accélération.

• SEP. A stronger statement, which actually is important to Einstein's general relativistic theory of gravity, is that the only influence of gravity is through the metric, and can thus (apart from tidal effects) be locally, approximately transformed away, by going to an appropriately accelerated reference frame. This is the "strong,; principle, SEP.

Using the framework of scalar tensor théories one can construct a generalized Brans-Dicke theory, where in the dark sector new long-ranged interactions are introduced. The interesting point here is that these novel interactions in the sector makes only the mass of the invisible particles varying which constitutes a violation of the WEP. If the WEP does not apply to an invisible sector, then the SEP, that includes the WEP and extends it to gravitational binding energies, also does not hold anymore. It is indeed clear that the gravitational energy of mass-varying invisible matter particles do not weigh in the same way than the gravitational energy of ordinary matter particles with constant masses. Therefore, in a mixture of ordinary matter and mass-varying invisible matter, like the large-scale Universe, one should expect to observe an inescapable violation of the SEP. In papers [176,177] a hypothesis was proposed, under which the WEP do not applied to the invisible sector (an abnormally weighting energy).

An alternative way to solve the problems in gravity theory are those supergravity théories. Supergravity is a supersymmetric theory of gravity, or a theory of local supersymmetry [START_REF] Freedman | Progress toward a theory of supergravity[END_REF] 1 It involves the graviton described by Ein stein gravity (general relativity), and extra matter, in particular a fermionic partner of the graviton called the gravitino. By itself, Einstein gravity is nonrenormalizable, so its quantization is one of the most important problems of modem theoretical physics. Supersymmetry is known to aleviate some of the UV divergences of quantum field theory, via cancellations between bosonic and fermionic loops, hence the UV divergences of quantum gravity become milder in supergravity. In fact, by going to an even larger theory, string theory, the nonrenormalizability issue of quantum gravity is resolved, at least order by order in perturbation theory. At energies low compared to the string energy scale (but still very large compared to accelerator energies), string theory becomes supergravity, so supergravity is important also as an effective theory for string theory. Ail possible supergravity théories are classified in [START_REF] Nahm | Supersymmetries and their représentations[END_REF].

Supergravity as well as scalar tensor théories of gravity can be considered as genereralization of the Einstein's theory of general relativity. However, these théories hâve one more common feature -a scalar field, which can be associated with a dilaton.

The late 1960's and early 1970's saw the birth of quantum dual models, which eventually led to string theory and later superstring theory, [START_REF] Green | Superstring Field Theory[END_REF][START_REF] Green | Superstring Theory[END_REF]. These theoretical models quite naturally lead to a scalar field referred to as a "dilaton."

This field couples directly to the trace of the two-dimensional string stress tensor.

This coupling breaks the Weyl conformai symmetry of the string. The dilaton turns out to be what is needed to balance the quantum anomalies of this tensor by way of beta functionals of this tensor. In this analysis, the Einstein équations for the enveloping spacetime metric are "derived" as the beta functions.

Start with a string action as a natural generalization of a point particle action. Given a background metric, gap, an obvious choice is Si = J d2a^\h\hahdaX"dbXVgap(Xc), 13 (2) with internai coordinate area d2cr, internai string metric, hab: a, b... -1,2, and a' a tension related coupling parameter. Comparing Si to a relativistic point particle action, we see the need for an intrinsic surface metric, hab for the string that is not présent for point particle. Now, assume that the derived physics should be independent of the internai parameterization, that is the choice of string metric. However, any two-dimensional metric is conformally fiat hab = cprjab, where ï]ab is constant.

In addition to Si, other ternis hâve been proposed s2 = -J d2aVW (3) where <î> is the dilaton scalar field.

Classically tins terni breaks the conformai invariance. However, perhaps surprisingly, it is precisely this term which can restore conformai invariance after quantization. The Einstein-like équations read Rafi -24>;a;£ = 0,

4<Ea4>a -4<h:^+ R = 0.

(5)

The "dérivation" of the Einstein équations from string theory was one of the attractive features of string theory. Conformai invariance is restored only if

Einstein-like équations are satisfied. Now, without regard for their string theory origins, field équations can be derived from an "effective action,"

S J dDXe~^{R -4$ Q$-a) = 0. ( 6 
)
This action is nothing but a spécial case of the vacuum scalar-tensor one, (1), with -2<h = ln </>, and u = 1. While the motivation and physics of the scalar field in the classical, pre-quantum, scalar-tensor théories is vastly different from the dilaton scalar field, it is difficult not to notice the close parallel between the universally coupled scalar of the old scalar-tensor théories and the new dilaton.

The central rôle in studies of gravity théories plays classical exact so lutions. Obvious examples are the Schwarzschild and Kerr solutions for black holes, the Friedmann solutions for cosmology, and the plane wave solutions which resolved some of the controversies about the existence of gravitational radiation.

Studies of spécial solutions stimulated questions relevant to more general situa tions, and even after the formulation of a conjecture about a general situation, newly discovered solutions can play a significant rôle in verifying or modifying the conjecture. The cosmic censorship conjecture assuming that "singularises forming in a realistic gravitational collapse are hidden inside horizons" is a good illustration.

Most of the available solutions hâve some exact continuons symmetries which preserve the metric. The corresponding group of motions is characterized by the number and properties of its Killing vectors satisfying the Killing équation (C^g)ap = Ça:/3 + £#« = 0 (£ is the Lie dérivative) and by the nature (spacelike, timelike or null) of the group orbits. For example, axisymmetric, stationary fields possess two commuting Killing vectors, of which one is timelike.

Orbits of the axial Killing vector are closed spacelike curves of finite length, which vanishes at the axis of symmetry. In cvlindrical symmetry, there exist two spacelike commuting Killing vectors. In both cases, the vectors generate a 2-dimensional Abelian group. The 2-dimensional group orbits are timelike in the stationary case and spacelike in the cylindrical symmetry.

If a timelike Ça is hypersurface-orthogonal, Ça = À<F,a for some scalar functions À, <L, the spacetime is static. In coordinates with f = dt, the metric is g = -e2Udt2 + e~2U^fikdx1 dxk, (7) where [/, 7^do not dépend on t. In vacuum, U satisfies the potential équation U:" = 0, the covariant dérivatives (denoted by :) are w.r.t. the 3-dimensional metric 7^.

There are 4-dimensional spacetimes of constant curvature with TIW = 0:

the Minkowski, de Sitter, and anti de Sitter spacetimes. They admit the same number of independent Killing vectors, but interprétations of the corresponding symmetries differ for each spacetime.

In cosmology, we are interested in groups whose régions of transitivity (points can be carried into one another by symmetry operations) are 3dimensional spacelike hypersurfaces (homogeneous but anisotropic models of the Universe). The 3-dimensional simply transitive groups G% were classified by Bianchi in according to the possible distinct sets of structure constants. There are nine types: Bianchi I to Bianchi IX models. The line element of the Bianchi universes can be expressed in the form g = -dt2 + (8) where the time-independent 1-forms uj2 = E%dxa satisfy the relations doja = -\C%cüJb A a/, C%c are the structure constants.

The standard Friedmann-Lemaitre-Robertson-Walker (FLRW) models ad mit in addition an isotropy group SO(3) at each point. They can be represented by the metric + r2(d62 + sin2 Odp2)^ [START_REF] Einstein | Cosmological Considérations on the General Theory of Relativity[END_REF] in which a(£), the scale factor, is determined by matter, the curvature index k = -1,0,+1, the 3-dimensional spaces t = const hâve a constant curvature

K = k/a2; r G [0,1] for closed (k = +1) universe, r G [0, oo) in open k -0,-1 universes.
Cosmological type solutions dépend on only one coordinate. Studies of them are important for understanding dynamics of the Universe and engineering self-consistent inflationary models. A transition to a radial coordinate yields to possibility of deriving a spherically symmetric solution.

In the case of supergravity théories, imposing the requirement that some part of the original theory's supersymmetry be left unbroken leads to the g = -dt2 + [a(t)]2 class of p-brane solutions [START_REF] Hughes | Supermembranes[END_REF]. The action of supergravity théories contains antisymmetric-tensor gauge field strengths of diverse ranks, which play an essential rôle in supporting the p-brane solutions [START_REF] Stelle | Lectures on supergravity p-branes[END_REF].

For simplicity it is required isotropie in the directions "transverse" to the translationally-symmetric ones. An ansatz for the spacetime metric that respects the (Poincaré)d x SO(D -d) symmetry is ds2 = eA^dx^dxuryw + e2B^dymdynômn, [START_REF] Weinberg | The cosmological constant problem[END_REF] where r = y/ymym is the isotropie radial coordinate in the transverse space.

Since the metric components dépend only on r, translational invariance in the worldvolume directions xfi and SO(D -d) symmetry in the transverse directions yrn is guaranteed.

A spécial class of p-branes are called Dirichlet p-branes (or D-branes for short) [START_REF] Hughes | Supermembranes[END_REF]. The name dérivés from the boundary conditions assigned to the ends of open strings. The description of D-branes as a place where open strings can end leads to a simple picture of their dynamics [START_REF] Polchinski | Dirichlet-Branes and Ramond-Ramond Charges[END_REF]. For weak string coupling this enables the use of perturbation theory to study non-perturbative phenomena [START_REF] Maldacena | The large N limit of superconformai field théo ries and supergravity[END_REF]- [START_REF] Akhmedov | Correspondence between supersymmetric Yang-Mills and supergravity théories[END_REF] D-branes hâve found many interesting applications. One of the most remarkable of these concerns the study of black holes. Specifically, D-brane tech-niques can be used to count the quantum microstates associated to classical black hole configurations and to show that in suitable limits the entropy (defined by S = log N, where N is the number of quantum States the System can be in) agréés with the Bekenstein-Hawking prédiction: 1/4 the area of the event horizon [START_REF] Akhmedov | Black Hole Thermodynamics from the point of view of Superstring Theory, înt[END_REF].

There are p-branes wliich saturate a 'Bogomolny'i bound' [START_REF] Prasad | Exact classical solution for £t Hooft monopole and the Julia-Zee dyon[END_REF] derived from the SUS Y algebra which takes the form \T\ > \Z\, (11) where T is the tension of a brane, and Z is the central charge. They typically preserve half the supersymmetry of the background spacetime and correspond to so called BPS-states protected from quantum corrections thanks to the preserved supersymmetry.

It follows that for the duality symmetries of the parent théories to be valid they must also apply to the effective actions and BPS spectra. Here we consider a cosmological type ansatz for the metric and fields" n g = we2l^du 0 du + e2f6 ^g\

(1.6) ^tpa = 1Pa{u), (1.7) 22 (1.5) 
"scalar where w = ±1, i = 1,..., n.

The metric is defined on the manifold M = R* x Mi x ... x Mn, (

where R* = (u-,u+) and anv factor space Mi is a dj-dimensional Einstein (for more general setup) in [START_REF] Ivashchuk | Sigma-model for the generalized com posite p-branes[END_REF]. We note that here hab{g>) can be interpreted as a scalar part of the total target space metric.

When ail Mi hâve finite volumes the substitution of (1.6) and (1. Equations (1.15) can be rewritten in a équivalent form (1.22) j? -w£ie~2/3<+27°= 0, (

i -1,,n. Theseexpressions may be obtained from (1.15) by using the inverse matrix (G^) = (Gij)~1:

ôij 1 G13 = -+ (1.24) di 2 -D
and the followine: relations for 'U^Wectors:

\ki uf] = -ôf + = = , di ij,k= 1,..., n.
In what follows we will use the following formulae

(u^k\u^) = G^uf^uf^= - 1, j dk (1.25) (1.26) k = 1,..., n.
Hence the problem of finding the cosmological type solutions for the model (1.2) (with u being harmonie variable) is reduced to solving the équations of motion for the Lagrangians Lp and with the energy constraint (1.22) imposed.

Geodesics for a flat metric h.

For the constant hab((p) = hab eqs. (1.16) read ëa = 0, (1.27) or, equivalently,

V?" = v"M + ^g, (1.28) 
where and are intégration constants, a = 1

The energy for scalar fields (1.21) takes the form

Ev = (L29)

More examples of géodésie solutions will be given in Section 4.

Cosmological-type solutions

In this section we deal with certain examples of cosmological type solutions with the metric and "scalar fields" from (1.6) and (1.7), respectively. Intégration of the équations (1.31) yields

/3' = v'u + Pq, 7o = 52di (v*u + Pü) > (1-32) i=1
where the parameters vl and /3g are intégration constants and the energy

(1.19) takes the form Eff = -GijVV, (1.33) 
where the minisuperspace metric Gjj is given by (1.11).

The metric reads In what follows we use a parameter (1.37)

n E = E(v) = i=1
to classify the solutions.

Non-special Kasner-like solutions.

We shall first consider the non-special case when £(u) ^0.

Let us define a "synchronous" variable

1 n T = lËMiexp [£Tiu + v j=1
obeying e2l0^du2 = dr2.

We introduce new parameters:

(1.38) Let £<p = 0. For Milne-type sets of parameters, i.e. when di = 1 and a1 = 1 for some i (a? = 0 for ail j ^i) the metric is regular, when either (i) gh) = -wdy1 0 dy\ Mi -R (-oo < y1 < +oo), or (ii) g® -wdÿ 0 dy\ Mj is The "synchronous,: variable is proportional to u (r = el0u).

al = vl/Yl(v), (1.39) i 
Hence, we obtained a restriction for the energy < 0. For = 0 ail vl = 0 and we are led to a static Ricci-flat solution.

This possibility occurs if the target space metric h is not positive-definite (e.g. there are phantom scalar fields for flat h). The solutions of such type with one (phantom) scalar field were considered in space Mi may be considered as describing our space. In both cases there exist subclasses of solutions describing accelerated expansion of our space.

Indeed, for Kasner-like solutions with w = -1 one could make a replace ment t 1-y To -t where tq is a constant (corresponding to the so-called "big rip"). For such replacement the scale factor of M\ reads ai(r) = ci(r0 -t)'"

(1.52) ci > 0. For ai < 0 we get an accelerated expansion of "our space" M\.

Analogous considération may be carried out for spécial (steady state) so lutions. For w = -1, d\ = 3 and v1 > 0 we get an accelerated expansion of (1.55) (1.56) where /3q, v'1, are constants obeying

n n V1 = ^2 v' d-i. A) = ^2 Pôdi (1.57) The function / is following Bsinh(y/C(u -wq)), \Çi(di-l)|1/2(u-u0), B sin(y/-C(u -wo)), B cosh(\fC(u -wq)), C > 0, wÇi > 0; C = 0, W& > 0; C < 0, > 0; C > 0, w£i < 0.
where Ug and C are constants and For 70 we get

B = Ti(rfi-i)i V ici (1.58) (1.59) 7o = Z?1 -ln l/l- (1.60)
The energy intégral of motion Ep corresponding to reads (see Ap- ^(E ^')2+E= (^Ei) -> 0.

(1.

In a spécial case of one (non-fantom) scalar field (fin = 1) and w = -1 this solution was obtained earlier in [168,169], see also [170]. The solutions with several scalar fields and constant hab were presented in [127,128]. We note that four-dimensional solutions with one scalar field (and electromagnetic one) were obtained earlier in [172].

Examples of géodésie solutions

In this section we consider three examples of solutions to géodésie équa tions corresponding to the metric fi that may be used for the cosmological type solutions above.

1.4.1. Two-dimensional sphere.

Let fi be a metric on a two-dimensional sphere S2 fi = d6 (g) dO + sin2 9dip 0 (1.67) where 0 < (f < 2iï and 0 < 0 < tt. The simplest solution to géodésie équations (1.16) for the metric reads ip -uju, 0 = 0, (1.68) where uo is constant. Here = \uj2. The general solution to géodésie 

k = 1,-1. 1.76) 
Another constant of intégration is the energy Eî In this section we study a subclass of spherically symmetric solutions with the metric (1.62) and "scalar fields" obeying (1.16) and (1.63). Here g1 is a canonical metric on the sphere Sdl and

w = l, Çi = di-1, (1.81) 
where d\ > 1.

Here we assume C > 0. Then the governing function looks like

/ = -sinh (/lu) (1.82) V where P- = = (1.83)
For simplicity, we put uq = 0 and /3q = 0 for ail i.

By introducing a new radial

variable R = R(u) exp [-2 /Mu] = 1 2/i R'1'-1 F (R) = F, with (1.84) 
R> R0 = (2/i)1/(<i|"1), the solution for the metric can be rewritten as follows Proof. For = j-the proposition is trivial. Let us consider the case A = j--e.^> 0. We prove the proposition by the method of Lagrange In what follows we are interested in the case of non-zero gravitational mass, i.e. we put a2 7^0. (1.114)

The Proposition 4 may be considered as a restricted version of the "no-hair" theorem for the metric (1.88). For the case of the positive-definite sigma model metric hab(<p) (be. when e^> 0) it was proved for more general assumptions in [185] (see Theorem 5 therein). In this chapter we hâve considered a D-dimensional model of gravity with non-linear "scalar fields" governed by a sigma model action (as a matter source).

The model is defined on the product manifold M, which contains n Einstein factor spaces Mi,... Mn.

We hâve obtained general cosmological type solutions corresponding to the fleld équations in two cases: when either ail factor spaces are Ricci-flat or when only one factor space, Mi, has nonzero scalar curvature. The solutions are defined up to solutions of géodésie équations corresponding to the sigma model target space. We hâve considered several examples of sigma models, e.g. with S2 and dS2 target spaces. It is shown that for certain parameters cosmological solutions may describe an accelerated expansion of 3-dimensional factor space.

Here we hâve also studied a subclass of spherically symmetric solutions with sinh-behaviour of the governing function / from (1.58). We hâve proved a restricted version of the "no-hair theorem" (Proposition 4) when the scalar energy parameter obeys restriction (1.108) and ail factor space metrics g\ i = 3,..., n, liave Euclidean signatures. We hâve found for d\ = 2 a subclass of latent solitonic solutions generalizing those from ref. [188].

An open problem here is to generalize the "non-hair" theorem for the case of ail types of the governing function / and ail values of the energy parameter e^p as it was done recently for D = 4 case (with one scalar field) in [189]. As it is known one can describe the matter content with either the fluid or scalar field approaches. In [177] the cosmological évolution was studied in a fiat FLRW background using a fluid description for the matter and the AWE sectors. It is shown that the late-time accelerated expansion may take place in the Jordan frame as well as there is an opportunity for building an inflation mechanism.

In this chapter, we continue our investigations of tire AWE model and aim to obtain explicit solutions for it. As distinct from previous works [176,177] assuming exponential couplings (mutually inverse) to gravity, we describe the matter and the invisible sector by scalar fields, which can be both ordinary or phantom ones. The complexity having scalar fields make difficultés for finding exact solutions. Nevertheless, in the Einstein frame it can be shown that under the cosmological ansatz for required solutions the gravitational équations are trivial and scalar fields équations correspond to géodésie équations on the target space of a nonlinear sigma-model [?, [START_REF] Ivashchuk | Sigma-model for the generalized com posite p-branes[END_REF]120,154,157]. We show that using the sigma-model approach yields an effective one-component Lagrangian with a potential, which is a Higgs-like one in the case of reciprocal exponential coupling functions. Scalar models with Higgs-potentials related to string field theory hâve been studied recently in [START_REF] Ya | Friedmann cosmol ogy with nonpositive-definite Higgs potentials[END_REF]195]. We also présent exact solutions in elliptic functions for tins case of the coupling functions. In gravity théories cosmological solutions in elliptic functions hâve been appeared in works [START_REF] Dyadichev | Non-Abelian Born-Infeld cosmology[END_REF]-[62].

The chapter is arranged as follows. In the next section, we describe the model of the generalized tensor-scalar gravity both in the Jordan and the Ein stein frames. In Sect. 3 assuming the fiat FLRW background we solve the Einstein équations and show that the scalar field équations are équivalent to the équations of motions for a sigma-model. We also présent solutions in quadratures for scalar fields with arbitrary coupling functions. In Sect. 4 we fix the coupling functions as reciprocal exponents and dérivé for various sets of parameters. In Sect.5 the solutions for the scale factor in the Jordan frame are presented and using numerical calculations we study its behavior. The conclusions are given in Sec.6.

The chapter is based on the paper J. M. Alimi, A. A. Golubtsova and V. Reverdy, Cosmological solutions of generalized Brans-Dicke gravity, to be published. where G is the "bare" gravitational constant, g^v is the Jordan-frame metric coupling universally to ordinary matter, g is the déterminant of the metric g^, R is the scalar curvature build upon g^U) 4> is a scalar degree-of-freedom, ojdd(^) where Am,a(p) > 0 are the nonminimal coupling functions. Doing so, the action J éxy/^geiAl^g^d^md^m -J dix^/^g£2Al(ifi)gta'dlli)adI/'ilja, where (g^u) is the metric with the signature (-, +, +, +). The action is similar to those of chameleon scalar fields [START_REF] Khoury | Chameleon cosmology[END_REF][START_REF] Brax | Detecting clark energy in orbit: The cosmological chameleon[END_REF] (without the self-interaction potential).

The Einstein équations for the action (2.4) read as follows R,w --g^daifd01^+ + e2T,<")].

(2.5)

The stress-energy tensors for the ordinary and abnormallv weighting sectors read T/(™) = 2A'!;n(<p)dllipmdt/4>m -A^^g^daiprnd^m, (

T$ = 2Al{tp)d"'ipad"ipa ~Al^g^da^ad^a-(2.7)

The field équation for <p can be written the following form ( (2.30)

The detailed solutions for the model (2.4), and hence its dynamics, dépend on the exact solution for the scalar field p which is defined by the certain form of the potential V in the similar way of the constitutive coupling function A{p) in [177].

Solutions in elliptic functions

Let us now specify the coupling functions Am = A-1 = ek"V, (2.31) where km is the coupling strength constant to the gravitational scalar. Now the metric h (2.16) defined on the target space M can be written as follows h = dp®dp + £\e2km<pdipm 0 dipm + £2é~2kvntpd^>a 0 dipa.

(2.32)

The form of coupling functions (2.31) is motivated by two features. First, in [190] We can easily recognize in Eq. (2.35) the équation of motion to the Higgs scalar field considered as inflanton [START_REF] Bezrukov | The Standard Model Higgs boson as the inflaton[END_REF], [START_REF] Barvinsky | Inflation scé nario via the Standard Model Higgs boson and LHC[END_REF].

Thus, the case of the exponential coupling functions (2.31) gives rise to the quartric polynomial for the integrand (2.35) and the solution for <p can be obtained in the terms of elliptic functions [81,194]. Depending on sets of the parameters a, b and c, the roots of the polynomial define the following five cases of the solutions.

( where the modulus k = -

x/X2^2

The corresponded coupling functions are given by A",{p) = Aal{<p)

pAsn i/|a|(A2 + p2)r, k A2 + p2 -p2sn2 y|o|(A2 + p2)r, k (2.48) 
The choice of the parameters a, b and c corresponds to the case with a phantom scalar field for the matter sector (êi = -1) and a scalar field with usual kinetic term for the AWE-sector (£2 = +1)-The energy of the scalar field tp can be both positive and négative.

(ni)

Here b can be both positive of négative as in the previous case, the parameters a and c obey the condition a > 0, c < 0.

(2.49)

The where en ( y/a(X2 + p2)r, k ] is the Jacobi's elliptic cosine function with the mod- (2.57)

(2.58) (2.59) 
(2.60)

(2.61)
where sc k) is the Jacobi's elliptic function which can be written as the ration of the elliptic sine function to the elliptic cosine function, the modulus

The coupling functions are given by ArnW) = Kl{tf) = psc(voAr, k).(2.62)

Due to (2.56) the matter and awe-sectors are described by the phantom fields 'ipm, ipa (£i = -1, £2 = -1), correspondingly, and the energy of the field <p is positive (E^> 0). As in the previous case both and 'ipa are phantom fields (ei = -1, 82 = -1), however, the energy of the gravitational scalar is négative (E^< 0).

Thus, ail generic solutions are of oscillating type. The effective frequency of oscillations is determined by the rate of growth of the argument.

Back to the Jordan frame

We remind that the observable quantity are not directly obtained in the Einstein frame as the physical units are universally scaled with Am((p). Therefore, one has to find out the behavior of the scale factor in the Jordan frame.

Under eq.( 2 

à(t)jF = Am (J5-1(t)) clef . ( 2.78) 
Each coupling function Am is expressed in ternis of elliptic functions and on the account of simplicity of the third case one can obtain an approximate solution for the scale factor in the Jordan frame with a dependence on t.

The elliptic cosine function can be represented in terms of hyperbolic func tions as [81] cn(w, k) To verify the numerical results we compute the energy under the for mula (2.26) with the potential given by (2.27) using relations (2.54)-(2.55). Since

Ey is the constant of motion the numerical value should be close the chosen one.

From Fig. 3 it is clear the relative error is of order 10"5 (only for the case when krn = 0.13 the order of the relative error is 10"'*) and hence the numerical results are valid. Depending on signs of kinetic ternis of the scalar fields there are five cases of solutions for the scalar fields in elliptic functions. Under conformai transforma tions the five cases of solutions for the dilaton yield to the five various forms of the scale factor in the Jordan frame. Since the couplings are represented in combinations of elliptic functions to dérivé a dependence on the Jordan time turns out to be difficult. However, we hâve obtained an approximate solution in terms of exponential functions for the scale factor with a dependence on the Jordan time, when the matter sector is described by a scalar field with an or-dinary kinetic term and a phantom scalar field corresponds to the AWE-sector.

The approximate solution is defined for the spécial case of the parameters: a small value of the scalar charge Cm of the scalar field describing the ordinary matter and a sufficiently large value of the scalar charge Ca related to the dark sector. With the help of numerical methods we hâve illustrated the behavior of the scale factor in the Jordan frame.

The exponential solution embraces the multivalued Lambert W-function, wliich defines the behavior of the scale factor. Open problems here is to analyze the scale factor dependence with respect to a branch of the Lambert function.

Studying of this case is of interest in a context of the inflationary scénario and hence includes estimations of the expansion rate of the universe and the number of e-folds. In addition, a natural extension of the work is retracing of the dynamics for other four cases of the scale factor using numerical calculations. We note that the generalization of the AWE model for an anisotropic anzats of the metric may be interesting for the further considération in connection with oscillatory cosmological model. In this case there is its own scale factor for each spacetime direction. The trivial example of anisotropic solutions is the Kasner metric.

A detailed analysis of an inhomogeneous generalization of the Kasner solution lead to the discovery the mixmaster model [65]- [70]. The mixmaster universe In this chapter we deal with a spécial supergravity generalization of the sphere surrounding the monopole. A magnetic fluxtube, in contrast, is characterized by the intégral of F over the transverse plane. The much-studied p-branes of string theory are the generalizations of magnetic monopoles to higher rank field strengths and dimensions. The présent work concerns the much less-studied generalizations of magnetic fluxtubes to higher rank and dimensions, which are referred to as fluxbranes or Fp-branes.

The classic example of a fluxbrane with gravity is the Melvin universe [112],

which is a Fl-brane in 3 + 1 Einstein-Maxwell gravity (and can be embedded in string theory). The solution is B here is the magnetic field strength along the axis r = 0. The total magnetic flux is This is finite, so magnetic flux is in a sense confined by gravity. At large r, the orbits of ip become small and the transverse space resembles the surface of a teardrop with an infinité tail (see, pic. For the Lie algebra D4 we find the following set of polynomials -+ -PXPlP^Zh + -è~^zP\PlPlP1 Lie algebras that may be of interest for certain applications of Toda chains.

We hâve conjectured (without proof) certain relations between polynomi als belonging to different sériés of classical Lie algebras. These relations tells us that the most important is the calculation of Dn+i-polynomials, since ail other polynomials (e.g. An-,Bn-and Cn-ones) may be obtained from the polynomials for Dn+i-sériés by using certain réduction formulas.

As it was noted, the solution uncler considération for w = -1 is a cosmological one. The study of this and/or some other similar cosmological solution governed by fluxbrane polynomials, e.g. in connection with the problem of ac célération, will be a subject of a forthcoming research. In this chapter, we study the variation of G using a multidimensional gravitational model with an arbitrary number of dimensions, m Abelian gauge 2-form fields and l scalar fields. The 2-form fields contribute to 0-branes. Thus we hâve the multidimensional model with m 0-branes. Our exact solutions are governed by polynomials Hs corresponding to rank-3 Lie algebras. We aim to show that for this case there is an interval of the synchronous time r where (F3)2 = Ffa m2 Fjv, n29m' n' = 1,

We consider the manifold M = (0, +oo) x Mi x M2, (

where Mi is a one-dimensional manifold (say S1 or R) and M2 is a (D-2)dimensional Ricci-flat manifold.

General solutions.

In what follows the subspace M\ will support ail forms As. Let us consider a family of exact solutions to the field équations corresponding to the action (4.1)

and depending on one variable p. These solutions are defined on the manifold Here we put the matrix (Ass,)=(2(Us,Us')/(Us',Ua'))(

to be coinciding with the Cartan matrix for a simple Lie algebra Q of rank m.

If we remember tire integrality condition for a root System and compare it with (4.11), we will notice a close correspondence between £/s-vectors and roots.

According to a conjecture suggested in [119,166] solutions to eqs. ( Let us single out a spécial class of exact solutions corresponding to rank-3

Lie algebras A3, B3 and C3.

The Cartan matrix corresponding to Lie algebras rank 3 reads

^2-1 0 \ A = - 1 2 -h 0 1 to 2 y 
where here and in the sequel h = (1,2,1), ** = (1,1,

for the Lie algebras A3, B3 and C3, respectively.

Due to (4.11) and (4.14), we get K, = K2 = hK3, (

/C2

denoting K\ = K2 = K and K% = Kwe get K = -K'.

k2

Here we put K < 0 and use a spécial choice of Ps-parameters:

Ps = nsP, (4.17) 
P^O, where the integers ns are components of a twice dual Weyl vector in the basis of simple co-roots:

(ni, n2, n3) = (3,4,3), (6,10,6), (

for the Lie algebras A3, Bs and C3 respectively. Then due to relations (4.8) and (4.17) we obtain Ql = -P-(

The governing functions in this case hâve the following form Hs = (1 + Pi2)"* = Xn% (4.20)

where

X = 1 + (4. 21 
)
and t is time variable.

For general form of polynomials Hs corresponding to the Lie algebras A3, Bs, Cs see Appendix A.

The solutions read dt®dt + X 2Dt2d4> <8> d(j> + g2 j, (

exp(<pa) = xBiXPBPPBP°, (

F1 = -QiXm~2nHdt A d<f>, (

F2 = -Q2Xn'~2n2+k'n3tdtA d<p, ( The relations (4.24)-(4.26) mean that the only nonzero components of the electromagnetic field tensor are i7)* = -Fyt = 2A"2 )t.

F:i = -QzXk2n2~2nHdt A d<p, 4.25) 
We also note that the charge density parameters Qs obey the following relations (see (4.16) for the Lie algebras A3, R3 and C3, respectively.

Solutions with accélération

In what follows we use a "synchronous" time variable r = r(t) :

t dt [ ( 4. 30)

Recall that P < 0, K < 0 and hence A < 0. Consider two intervals of parameter A:

(i) A < -1, (4.31) 
(ii) -1 < A < 0. (4.32) 
(A spécial case A = -1 will be investigated in other section.)

In both cases after integrating we get Gauss's hypergeometric functions.

We note that in case (i), the function r = r(t) monotonically increases from 0 to +00, for t G (0,£i), where t\ = |F|-1/2, while in case (ii) it is monotonically increases from 0 to a finite value r\ = r(ti). 

for r -> ri -0, where v < 0, due to -1 < A < 0.

Thus, we get an asymptotic accelerated expansion of the 3D subspace K ] in both cases (i) and (n), and <23 ->• +00.

It may be verified that the accelerated expansion takes place for ail r > 0,

(see [143,145]). The function G(r) monotonically decreases from Tc>o to Go = G(tq) for r £ (0, To) and monotonically increases from Go to +oo for r £ (to,ti). Here fi = +oo for the case (i) and fi = T\ for the case (ii) (see Fig. 5 and Fig. 6).

We should consider only solutions with the accelerated expansion of our The solutions under considération with P < 0, one-dimensional M\ and 3D subspace R* take place when the configuration of 2-form fields, the matrix (hap) and the dilatonic coupling vectors Aa, obey the relations (4.9), (4.10)

and Ks < 0. This is possible when (hap) is not positive-definite, otherwise ail Ks > 0. Thus, there should be at least one scalar field with a négative kinetic terni (i.e., a phantom scalar field). The function r = r(t) is monotonically increasing from 0 to +00 for t G (0, ti),

where t\ = |P|-1/2.

The solutions are defined on the manifold get for approximate values of ô: 6"^> 6^> ô(^that means that the variation strong coupling limit À2 -» +00, a = 1,2, 3, due to the relations (4.48).

Solutions with asymptotically exponential accélération

We deal here with a spécial case of the solutions (4.22) -(4.24) when the In the factor-space M2 = R3 x (Sfl)n~4 we single out "our" three- We hâve considérée! a family of exact cosmological solutions in the multidimensional model with scalar and Abelian gauge fields. We hâve singled out the solutions corresponding to rank-3 Lie algebras.

Here, as for electric S-brane solutions [143], we hâve found that there exists a time interval where accelerated expansion of our 3-dimensional space is compatible with a small enough value of G/G obeying the experimental bounds.

This interval contains a point of minimum of the function G(r) denoted as tq.

It was shown there should be at least one scalar field with négative kinetic term to ensure an accelerated expansion of 3D space.

We hâve analvzed the spécial solutions with three phantom scalar fields for the Lie algebras 3. In the vicinity of the point 7o the time variation of G(t) (calculated in the linear approximation) decreases in the sequence of Lie algebras A3, C3 and B,\. A generalization of this resuit to the case of nn-forms will be a subject of a separate publication. Among these solutions an example of solutions with exponential dépen dance of the scale factor a,3 (w.r.t. sinchronous time variable) was presented.

Introduction

The developments of [START_REF] Bagger | Modeling multiple M2's[END_REF][START_REF] Gustavsson | Algebraic structures on parallel M2-branes[END_REF][START_REF] Aharony | N=6 supercon formai Chern-Simons-matter théories, M2-branes and their gravity duals[END_REF] hâve led to a renewed interest in various aspects of supergravity. Classical BPS configurations of intersecting branes play an essential rôle in studies of non-perturbative superstring and M-theories as well as in establishing and proving new supergravity/gauge correspondences.

Non-maximally supersymmetric solutions are important in many applications of superstring dualities. Various intersections of M-branes in 11-dimensional supergravity [START_REF] Cremmer | Supergravity theory in 11 dimensions[END_REF] provide a unified viewpoint, because a large class of solutions describing brane intersections can be obtained by dimensional réduction and duality transformations.

In the basic M2-and M5-brane solutions, preserving half of the supersymmetries [START_REF] Duff | Multimembrane solutions of D = 11 supergravity[END_REF][START_REF] Güven | Black p-brane Solutions of D=ll Supergravity Theory[END_REF], the worldvolumes hâve been taken to be fiat pseudo-Euclidean spaces R1;*: (k = 2,5) and the transverse spaces hâve been taken to be fiat Euclidean ones Rr (r = 8,5). Nevertheless, the brane configurations defined on the spacetimes with more complicated geometry involved are of interest [START_REF] Smith | Intersecting brane solutions in string and M-theory, topical review[END_REF][START_REF] Ivashchuk | Exact solutions in multidimensional gravity with antisymmetric forms, topical review[END_REF].

First examples of M2-brane solutions, partially preserving the supersymmetry, with Ricci-fiat 8-dimensional transverse spaces and the fiat brane world volumes R1,2 hâve been obtained in [START_REF] Duff | Supermembranes with Fewer Supersymmetries[END_REF] and [START_REF] Gauntlett | Hyper-Kàhler manifolds and multiply intersecting branes[END_REF]. The supersymmetric M5-brane solutions with the fiat transverse spaces R8 and Ricci-fiat 6-dimensional brane worldvolumes hâve been found in [START_REF] Brecher | Ricci-Fiat Branes[END_REF], [START_REF] Kava | New brane solutions from Killing spinor équations[END_REF] and [START_REF] Figueroa-O'farrill | More Ricci-flat branes[END_REF]. In [100] explicit formulae for fractional numbers of supersymmetries for M2-and M 5-brane solutions hâve been derived.

In this chapter, we study triple orthogonal intersections of composite Mbranes defined on the manifold of the form M = Mo x Mi x ... x Mn, 86 (5.1) where ail factor spaces Mi are Ricci-flat manifolds. It should be noted that the study of the fiat case of the factor spaces was undertaken in a variety of works [START_REF] Tseytlin | Harmonie superpositions of M-branes[END_REF]- [START_REF] Gauntlett | On supersymmetric solutions in D = 11 supergravity on product of Ricci-fiat spaces[END_REF]. In [START_REF] Bergshoeff | Multiple Intersections of D-branes and M-branes[END_REF] the classification of supersymmetric M-brane configurations on the product manifold with the factor spaces Mi = M.ki was presented. According to this work the amount of preserved supersymmetries is given by N = 2~k with k = 1,2,3,4,5.

(5.2)

However, the relation (5.2) is not well justified if M-brane configurations are taken into considération on the product of Ricci-fiat manifolds (5.1). In this case the fractional number of supersymmetries J\f dépends upon several numbers of chiral parallel (i.e. covariantly constant) spinors on certain factor spaces Mi and brane sign factors cs, which define the orientations of brane worldvolumes.

For clarity, we remind that the metric for orthogonally intersecting Mbranes is split into several parts: the common world volume, the relative trans verse space and the totally transverse one. The classification of possible factor spaces contained in worldvolumes and transverse spaces and admitting paral lel spinors can be given in terms of the holonomy groups, see [START_REF] Brecher | Ricci-Fiat Branes[END_REF], [START_REF] Figueroa-O'farrill | More Ricci-flat branes[END_REF], 

Generalized Killing spinor équations

The bosonic action in 11-dimensional supergravity is given by A AF AF, (

where F = dA = -~F^pQRdzN A dzp A dz® A dzR where g{) = g^iv(x)dx/x (g dxu is a metric on the (oriented) spin manifold Mo and g1 = g* . (yj)dy'j,'i (g dÿ-1 is a metric on the (oriented) spin manifold M;, n % -1,..., n. We dénoté dv -dimM^, v -0,..., n; ^dv -11.

i/=0

The manifold (5.5) allows a frame such that the metric g -gMNdxM 

In (5.15)-(5.16) (rj^b ) is a diagonal signature matrix for the metric g1, equipped by a set of (local) frame vectors with components e^a/m/, l = 0,... ,n. We put det (e(i)a'"") > 0, (5.17) l = 0,..., n, i.e. for any l the oriented set of d/-beins e^ai has the orientation compatible with the orientation of the manifold M/.

Henceforth the following notation for the volume d{-form on the manifolds (M*, g1) is used n = A dyf (5.18) for i = 1,... ,n.

In this paper we continue our investigations of composite M-brane solu tions [START_REF] Ivashchuk | Sigma-model for the generalized com posite p-branes[END_REF] (with standard intersection rules) defined on the product of (n + 1) dimension of the real linear space of parallel Majorana spinors obeying (5.21) and (5.22).

Triple M-brane configurations

In this section we deduce relations for fractional numbers of supersymmetries preserved bv triple M-brane configurations defined on the product manifold (5.1).

M2 n M2 D M2

Let us consider the configuration of three electric 2-branes intersecting over a point. The configuration whicli is defined on the manifold For each figure we dénoté by x a coordinate corresponding to a worldvol ume direction and every direction transverse to the brane by -.

M0 x Mi x M2 x M3 x M4, (5.29 
The solution is given by g = H^H^Hfig0 + fffV + H^g2 + H^g2 + H^H;1 (5.30) F = C\dHïl A ri A r4 + A r2 A r4 + c^dH^1 A r3 A r4, (5.31) where c\ = c\ = c\ = 1; H\, #2, H3 are harmonie functions on (Mo, g0), metrics g\ i = 0,1, 2, 3,4, are Ricci-fiat (the last four metrics are fiat). The metrics g\ i = 0,1, 2, 3, hâve Euclidean signatures and the metric g4 has the signature (-).

Here we put M4 = R, p4 = -dt 0 dt (r,4 = dt). The brane sets are I\ = {1,4}, h = {2,4} and J3 = {3,4}.

Using the rules of décomposition for T-matrices on product spaces from

[106] the set of T-matrices can be represented in the following form

/pûo 'T (o) 0 12 0 I2 0 I2 0 1, f(0) 0 ht 0 I2 0 I2 0 1, îf(0) 0 ÛD 0 pû.2 X(2) 0 I2 0 1, f(0) 0 f(l) 0 f(2) 0 r<3) 0 1, f(0) 0 f(l) 0 f(2) 0 f(3) 0 1)
where are 4x4 gamma matrices corresponding to Mo: (no(l),7io(-1)) is either (2,0) or (0,2) depending on the choice of the spin structure. The completion of C2/Z2 is the orbifold C2/Z2.

M5 fl M5 fl M5

According to the classification of M-brane configurations which is presented in [START_REF] Bergshoeff | Multiple Intersections of D-branes and M-branes[END_REF] there are three possible intersections of three magnetic branes depending on the position of the branes in the bulk space.

(i)

The first case of the solution describing three intersecting M5-branes is defined on the manifold of the form M0 x M\ x M2 x Ms x M4, (5.49) where do = 1, d\ = d2 = ds = 2, d4 = 4. The configuration is given in Figure 2. Here and in what follows *0 is tire Hodge operator on (Afo,p°).

Using the rules of décomposition from [106] one can write T-matrices in the following form (r9 where cf = c| = c § = 1; H2, M3 are harmonie fonctions on (Mo,#0).

(1 0 f(i) 0 f(2) 0 f(3) 0 r(4), 1 0 ifa1 u (b 0 f(2) 0 f(3) 0 f(4), 1 0 I2 0 pfl2 X(2) 0 r(3) 0 f(4), 1 0 I2 0 I2 0 ifa3 U (3) 0 f(4),
The metrics g\ i = 0,1,2,3, hâve Euclidean signatures and the metric g4 has the signature (-,+). The branes sets are I\ = {2,3,4}, I2 = {1,3,4}, /3 = {1,2,4}.

The gamma matrices can be split in the following form pa0 1 (0) The corresponding field strength is F = Ci(*odHi) A r2 A r3 A r4 + c2(*0dM2) A ri A r3 A r5 + c3(*odif3) A ri A r2 A r6, (5.88) where cf = C2 = C3 = 1; idi, #2, #3 are harmonie functions on (Mo,#0). The metrics #*,z = 0,l,2,3,4,5,6, hâve Euclidean signatures and the metric g7 has According to the classification from [START_REF] Bergshoeff | Multiple Intersections of D-branes and M-branes[END_REF] there are two possible configura tions for the intersection of one M2-brane and two M5-branes.

0 f(U 0 f(2) 0 f(3) 0 f(4), 12 0 T) 0 f(2) 0 f(3) 0 f(4), 12 0 I2 0 ifa'2 U (2) 0 f(3) 0 f(4),
(i)

The first configuration M2 fl M5 fl M5 is defined on the manifold

Mo x Mi x M2 x M3 x M4 x M5, (5.120) 
where do = d2 = = d4 = = 2 and di = 1 and describes a M2-brane intersecting each of the two M5-branes over a string with the A/5-branes intersecting over a 3-brane (see Fig. 6). The solution for the intersection of an electric M2-brane and two magnetic M5-branes is given by g = H11,3H22/3Hl/3{g°+Hr1g1+H^g2+H^g3+H^H^gi+H1-1H^H^g5}, The configuration is given in Fig. 7.

- As in the case with two M2-branes and one A75-brane we put (f^) = /S ((71,772,0-3) and hence T(q) = il2.

-- - - --- x x x : #1 Mo Mi M2 M3 A/4 M5 Mo

CHAPTER 6. CONCLUSIONS

In this thesis, we obtained exact solutions for models arising in théories of gravity and supergravity in space-time dimensions D > 3 and studied their several applications in cosmology. This study has taken the form of both purely theoretical and "applied" investigation (to the extent to which modem supergravity theory may be applied). On the theoretical side we considered the sigma-model approach of génération of exact solutions (chapters 2 and 3) and derived the explicit relations for computing of amount supersymmetries preserved by triple M-brane solutions in 11-dimensional AT = 1 supergravity (chaper 6); on the applied side we studied an application of solutions obtained in chapters 2, 3, 5 to the problem of accelerated expansion (chapters 3,5), variation of gravitational constant (chapter 5) and a possible description for black holes (chaper 2).

In chapter 1, we hâve demonstrated that the solutions for the gravitational model with a nonlinear sigma-model source defined on a product manifold of The program for computing the polynomials corresponding to both classical and exceptional Lie algebras (6?2, F4 and Eq) hâve been written. We hâve conjectured certain relations between polynomials belonging to different sériés of classical Lie algebras.

In chapter 4, using fluxbrane solutions obtained in chapter 4 we hâve singled out 5-brane cosmological type solutions related to simple Lie algebras of rank 3. The solutions possess a final singularity, called the "Big Rip". We hâve found out that for the solutions there exists a time interval where an accelerated expansion of a 3-dimensional subspace is compatible with a small enough value of the variation of the gravitational constant. However, we hâve shown that to provide an accelerated expansion at least one of scalar fields must hâve a kinetic term with a wrong sign. We hâve also get a subclass of the solutions with the asymptotic exponential behavior of the scale factor corresponding to the 3-dimensional subspace. the simple tensor products of those in Mo are M\. Note also in this case that the chirality operator in the total space is <73 0 1 x 1.

Thus starting from splitting a factor space Mn from the product (C.5) and using a respective relation from (C.7) for a combination of dimensions, one can obtain the searching set of gamma-matrices .

C.2. Diagonalization of operators

Here we outline a proposition on simultaneous diagonalization of a set of linear idempotent operators arising in the décomposition of gamma matrices for some cases of product spaces. This proposition is a spécial case of the so-called "2~fc-splitting" theorem from [100].

Proposition.

Let Bi,..., Bk : V -* V be a set of linear operators defined on the vector space V = C2 0 . 

  recherche se concentre principalement sur la génération des solutions et d'etudes les solutions obtenues dans un contexte cosmologique. Pour un modèle gravi tationnel D-dimensionnelle avec un modèle sigma terme source, definie sur un produit de variétés d'Einstein, les solutions exactes de type general sont generees en utilisant l'approche modèle sigma non-lineaire. Les solutions sont definies a des solutions d'équations geodesiques correspondant a l'espace-cible du modèle sigma. Les solutions sont obtenues dans les cas suivants 1) tous les espaces sont variétés Ricci-plates, 2) un espace (un espace quotient) a courbure scalaire non nul et les autres variétés sont Ricci-plates. Pour le premier cas, nous montrons que les solutions peuvent décrire l'expansion acceleree de l'Univers. Une sousclasse de solutions a symétrie spherique est étudié. Nous formulons et prouvons le "theoreme de calvitie" pour les trous noirs. Ensuite, nous appliquons la méthode considérée du modèle sigma comme un 4D modèle généralisé de la Brans-Dicke théorie (le modèle AWE) des champs scalaires nonuniversally couples a la gravite. Ce modèle a ete introduit par J.-M. Alimi et A. Fuzfa pour une description unifiée de la matière noire (DM) et l'energie noire (DE) base sur une detente du principe d'equivalence faible sur de grandes echelles. Les nouvelles solutions pour le modèle sont trouvées en termes des fonctions elliptiques. Nous montrons que pour certains paramétrés les solutions peuvent etre exprimées en termes des fonctions exponentielles et décrivent l'expansion acceleree. Nous aussi étudions des solutions de type cosmologique, qui ont une orig ine supergravitationnel: F-et S-branes. En utilisant le formalisme du modèle sigma les solutions de Melvin généralisées lies aux algebres de Lie semi-simples sont obtenus. A sous-classe de S-branes correspondantes aux algebres de Lie de rang 3 est choisi, pour cette sous-classe il existe un intervalle de temps ou une petite valeur assez de la variation de la constante gravitationnelle. Enfin, les intersections orthogonales de trois M-branes sont étudiés pour la supergravite AT = 1 a 11 dimensions. Les formules explicites pour le calcul de supersymetries preservees pour les configurations des triple M-branes sont obtenus. Certains exemples de configurations supersymetriques contenant les espaces K3, une 4D pp-onde et une variété pseudo-euclidienne R1*1 /Z2 sont présentes. Nous montrons que le remplacement de la variété plate avec topologie triviale par une variété Ricci-plate ou une variété plate avec une topologie non triviale réduit le nombre des supersymeties preservees. Nous aussi présentons des configurations ou le nombre de supersymetries preservees dépend de l'orientation de la brane world volume.

  For the basic class of p-brane solutions, an ansatz (Poincaré)d x SO(D -d) symmetry is required. One may view the sought-for solutions as fiat d -p + 1 dimensional hyperplanes embedded in the ambient D-dimensional spacetime; these hyperplanes may in turn be viewed as the historiés, or worldvolumes, of p-dimensional spatial surfaces. Accordingly, let the spacetime coordinates be split into two ranges: xM = (aT, yw), where aT (fi -0,1,..., p = d-1) are coordinates adapted to the (Poincaré)^isométries on the worldvolume and where yrn m = d1..., D -1 are the coordinates "transverse" to the worldvolume.

  ... ,n.To find solutions for the équations (1.3)-(1.4) seems to be complicated due to the non-linear structure of the Einstein équations and intricacy having scalar fields. However it may be shown that the field équations for the model (1.2) with the metric and "scalar fields" from (1.6) and (1.7) are équivalent to the Lagrange équations corresponding to the Lagrangian of the one-dimensional (n + Z)-component modified cr-model L = -Ar-'IGijFP + MvOtfVl -VU. . Here and in what follows A = For the constant hab(ip) = hab the réduction to the sigma model was proved
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 241 is the volume of Mi, i -1,..., n.The relation(1.13) can be derived using the following expression for thescalar curvature R = -we"2' (270 -2707 + 7o + J!d' (&) ) + Y ' ' -%*], (L14) i=1 i=lwhere R[gl\ = Cidi is the scalar curvature corresponding to the Mjmanifold.To obtain (1.13) from (1.2) (for compact M*) one should extract the to tal dérivative term in (1.14) which is cancelled by the York-Gibbons-Hawking boundary term. We write the Lagrange équations for (1.10) and then put N = 1, or equivalently 7 = 70, i.e. when u is a harmonie variable, as in [172]. We get n Gijfo + w ^Çjdj(-ôj T dj)e 2 J +2 ' ,() -0, équations (1.15) are nothing else but Lagrange équations corre sponding to the Lagrangian h = \gvPP -v( 15), the équations (1.16) are Lagrange équations corresponding to the Lagrangian L<p = ^hab(<p)<pa'Pb (1-20) with the energy intégral of motion Ev = -M^VV6-(1.21) Equations (1.16) are équivalent to géodésie équations corresponding to the metric h. The relation (4.53) is the energy constraint E -Ep + Ey -0, coming from dL/dAf = 0 (for A/" = 1).
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 31 Solutions with n Ricci-fiat spaces Here we focus on the solutions for the case when ail factor spaces Mi are Ricci-flat: Ricisl = 0. (1.30) i = 1,..., n. Due to (1.30) the potential is equal to zéro and the équations of motion (1.23) for P1 now become

  fields" obey eqs. (1.16) with the energy constraint Ep = ^hai((fi)ipa(fib = -iGÿvV. (1.35) In a spécial case of one (non-fantom) scalar field (fin = 1) and w --1 this solution was obtainecl in [167]. For solutions with several scalar fields and constant fia& see [127,128]. The scalar curvature for the metric (1.34) reads (see (1.14))R[g\ = -w (GijvV) e~2l°.(1.36) 

  "Scalar fields" are solutions to équations of motion (see(1.16)) of motion for eqs.(1.42).In(1.41) Ci are constants | S) 1°'' exp Po-a'YPodj 3=1(1.46) i = 1,... ,n, obeying JJcf = \T,(v)\. 1=1 Fiat h. For the spécial case of a fiat target space metric hab(ip) = h"), we get <Pa = o%, lnr + £g,(1.47) where (p^are constants, a = 1,..., l, and = ^haba"abr (1.48)The scalar curvature(1.36) reads in this case R[g] = 2wSipr~2. (1.49) It diverges for r -> +0 if ^0. Hence ail solutions with ^0 are singular.

a

  circle of length L* (0 < y1 < L{) and = 2n (i.e. when the cône singularity is absent). For = 0 the solutions with non-Milne-type sets of the Kasner parameters are singular (at least) if the Riemann tensor squared for metrics g' obeys: mi i i i Pi qi \ ni ] > some Q. (For d» = 1,2,3 = 0, e.g. 0 for di = 2,3.) This is valid since the Riemann tensor squared for the metric g is divergent at r = +0 in this case, see [174]. Spécial (steady State) solutions. Now we consider the spécial case when £(u) = 0. Due to (1.35) scale factor v -e70 are constants.

  [167]. (They are called as steady State solutions, see [167].) Solutions with accélération. Let d\ = 3 and M\ = R3. The factor

3-dimensional factor space M\. 1 . 3 . 2 .

 132 Solutions with one curved Einstein space and n -1 Ricci fiat spaces Here we put i.e. the first space (Mi, g1) is an Einstein space of non-zero scalar curvature where -f3l + 70 = u^/37, and u:p = -6] + d*. The Lagrange équations corresponding to the Lagrangian (1.54) are integrated in Appendix. The solution reads Ric^1] = Çig1, & / 0, Ric[p'] = 0, i > 1 (1.53) and other spaces (Mi, g1) are Ricci-fiat.The Lagrangian(1.18) reads in this case -t-ln l/l + vlu + Pl, f$l -vlu + /? §, i> 1.

1

 1 [START_REF] Kechkin | Ehlers-Harrison-Type Transforma tions in Dilaton-Axion Gravity[END_REF],(1.56) and(1.60) we are led to the relation for the metric s Here the constraints (1.57) on /3g, should be kept in mind and the function / is defined in(1.58).Relations(1.57) are équivalent to the following ones (
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 1431 équations may be obtained by a proper isometry 50(3)-transformation of the solution from (1.68). Here and in what follows the first relation in (1.68) should be understoocl as modulo 2n. 1.4.2. Two-dimensional de Sitter space. Now we put h to be a metric on a two-dimensional de Sitter space dS2 h = -d\ 0 d\ T cosh2 \dp 0 dp, (1.69) where 0 < p < 2tt and -oo < x < +oo. (For a review on the de Sitter space see [173].) There are three basic solutions to géodésie équations (1.16) in this case tp v and m are constants. For the energy we hâve = -uj2, --v2 and 0, for space-like, time-like and null geodesics, respectively. The general solution to géodésie équations may be obtained by a proper isometry 50(1, 2)transformation of the solutions from (1.70) -(1.72). The space with diagonal metric h. Here we consider a diagonal metric (dp + E £kAl((p)dipk ® dïpk k=1 where £o = ±1, = il (A: > 0) and ail Ak(p) > 0 are smooth functions. The Lagrange function for the non-linear sigma model is given by k=1 Equations of motion for cyclic variables ipk (1.74) (1.75) yield the following intégrais of motion ekA\(tp)i>k = A4, (
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 1177 which due to(1.76) reads E<p = l[eo<^2 + ^2ekMj:Ak2(tp)}. (1.78) k=1 This relation implies the following quadrature which implicitly defines the function p = p(u). Another quadratures just following from (1.76) ipk-ipg= / duskMkAk2(u), (1.80) Juo which complété the intégration of the géodésie équations for the metric (1.73). For Ak(ip) = exp (À<£>), À 7^0, the metric (1.73) may describe either a part of de Sitter space (if £0 = -1, £k = F k > 0) or a part of anti-de Sitter space (if e?! = -1 er -1, r ^1). The case l = 3 is of interest in connection with the so-called AWE hypothesis [176,177] (based on Damour-Gibbons-Gudlach approach [178]) aimed to describe the dark sector of the Universe. In [175] a fourdimensional de Sitter sigma model coupled to Einstein gravity (e.g. describing the current accélération of the Universe) was studied. 1.5. Spherically symmetric solutions

  we assign a metric for the time direction putting down M2 = R and -dt 0 dt. Then the metric (1.86) reads g = -Fa2dt ®dt+ + + J2 F* 9*, (1.88) ^=3 where due to (1.64), (1.66) the constants b and a* satisfy the relations (see (1.83) and (1.87)) fields" (pa = tpa(R) obey the équations of motions -(F^R^hU^)^) +lF(R)Rd^hab^)dd are équivalent to eqs. (1.16) (see (1.84)). These équations are nothing more than Euler-Lagrange équations for the action < -î -\ /*«*>£& » Thus we hâve obtained a family of spherically symmetric solutions to field équations with a sigma model source which are given by relations (1.88) -(1.91).These solutions are defined up to solutions to "scalar fields équations"(1.92) which are in fact the géodésie équations for the metric h (1.16) rewritten in the invariable. Example: the case of constant hai). Let us consider a spécial case when habi^) = hab are constants. It follows from (1.28) and (1.84) that </ = lgaln F{R) + rt, (1.94) where qa = and <£ § are intégration constants, a = 1,..., /. For the energy parameter we get from (1.29) e<p = habqaqb. (1.95) Due to Hilbert-Einstein field équations (1.3) (with Tmn from (1.4)) we get the following relation for the scalar curvature R[9] = 9MNRmn = 9mi^TMn/( 1 ~D/2) = gM1^hah{^)dM^adN^-(1-96) MN MN ; which implies (for the solution under considération) R[g] = Fl~d ipa dtph dR dR = eipJi2R-2dlF-l-b. (1.97) Due to (1.96) the Hilbert-Einstein équations (1.3) can be rewritten in an équivalent form Rmn = hab{^)dM^PadN^pb • (1is defined by (1.91) and obeys the inequality following from (1.90) e, < (1.100) Proposition 1. For ail a$ and e^obeying (1.90) il/ w ^I{dï -1)(D -dx -1) j~di |bo(a)| < y/ -y/^-V (1.101) Maximum and minimum of the function bo(a) are attained at the points a+ and a-, respectively, where a± = (a±^) a±' j = ±\l syri -(L102) for z = 2,... ,n.

  multipliers. We introduce a new variable À called a Lagrange multiplier, and study the Lagrange function defined by b0(a, A) = bo(a) -A(Q(a) -

  for i = 2,..., n. The substitution of (1.107) into relation (1.105) gives us two points of extremum of the function bo(a) on the (n -2)-dimensional ellipsoid <2(a) = A which are given by relations (1.102). The point a+ is the point of maximum and a_ is the point minimum. We get the inequality &o(&-) < 5o(a) < 6o(a+) coinciding with (1.101). The proposition is proved. the scalar curvature R[g] for the metric (1.86) with parameters 5, a* obeying (1.89) and (1.90) is divergent at R = Rq + 0, i.e. R[^] -y Too for R -^Rq-(1.109) Proof. It follows from the Proposition 2 and the first inequality for the energy parameter in (1.108) that Ma)| < ^(1.110) -1 -b ---(-d\ + bo) < 0. d\ -1 40 (lui) and hence (d\ > 1) Using the relation for the scalar curvature (1.97), the inequality (1.111) and 7^0 we get the divergence of R[g] for R -> Rq. This complétés the proof of the proposition. Now we consider the spécial case e^= 0. In this case the stress-energy tensor for <p vanishes and the metric g is Ricci-flat, i.e. Rmn[o\ -0-Thus we are led to a vacuum solution from [183] which was considered in [174]. Recently the solution from [183] was intensively studied in [184].

Proposition 3 .

 3 Let g be a metric(1.88) with the parameters b, a* obeying(1.89),(1.90), e<^= 0 and 02 ^0. Let the Riemann tensor squared for any metric g1, i -3, ...,n, obey a self-boundedness condition h = RminiPiqiRmnipiqi[gi} > Q,(1.112) for some Ci. Then for ail sets a = (02,an) 7^(1,0,..., 0) the Riemann tensor squared for the metric (1.88) is divergent at R = Ro + 0, i.e. RmnpqRMNPQ [9} +00 for R Rq. (1.113) The Proposition 3 is a spécial case of the Proposition 6 from [174]. The Propositions 2 and 3 may be summarized as the following proposition. We note that the condition (1.112) is satisfied for any metric g1 of Euclidean signature since ï[ > 0 in this case. It is valid also for any g1 of dimension dk = 1 and for any Ricci-flat g1 of dimension d[ = 2,3 since in ail these cases the Riemann tensor of g1 is zéro and hence R = 0. Proposition 4. Let g be a metric (1.88) with the parameters b, ai obeying (1.89), (1.90), a2 / 0 and (1.108). Let the Riemann tensor squared for any metric g1, i = 3, ...,n, obey a self-boundedness condition (1.112). Then the regular horizon of the metric (1.88) at R -Rq takes place if and only if 0-2 1 -O;} -... -0ji -0.

For

  the set of parameters from (1.114) we get where gr = -Fdt <S> dt + F~ldR ® dR + R2g1 is the metric of the (2 + d\)d imensional Tangherlini black hole solution [179]. Remark. Let ail hab be constant. Then the relation = 0 reads as field solutions (1.94). For the positive-or negative-definite matrix hab we get qa = 0 for ail a. If the matrix (hab) is a semi-definite one, i.e. it lias a signature then there exist solutions Lpa (1.94) with two or more nonzero qa. However these solutions are singular on a horizon. The only regular solutions are trivial ones (pa = </? §• So, we do not obtain non-trivial "scalar hairs" in the case of constant hab-Analogous situations takes place for the dS2 sigma model solution with = 0 (see (1.72)): = arctan(^ç ln F (R)), X = arcsinh(-glnF(i?)) with q = -m/p, ^0. These solutions are also singular at the horizon. The PPN parameters for d\ = 2. Let us consider the case d\ = 2. The pure gravitational solution (without scalar fields) was obtained in cite [180] and generalized to the scalar-vacuum case (with one scalar field) in [181], see also [182]. The calculations of PPN parameters for a 4-dimensional part of the metric (1.88) with ^0 n (1.115) habqaqb = 0, where the scalar charges qa appeared previously for the scalar gd^give us the following relations [186,187] (see also [188]) we are led to a subclass of solutions with /? = 7 = 1 for the 4-dimensional metric (1.116). The solution of such type were called in [188] (for pure gravity) as latent solitons [188]. The four-dimensional section of the latent soliton metric gives the same PPN parameters f3 = 1 and 7 = 1 as the Schwarzschildian metric does, i.e. gravitational experiments lead to the same results for g^and for the metric of the Schwarzschild solution.1.6. Summary
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 1 IntroductionScalar fields play an enormous rôle in studies of gravity, understanding dynamics of the Universe and the physical nature of its dark sector. First, various unified models of field théories predict the existence of scalar partners to the tensor gravity of General Relativity. The simplest generalizations of Einstein's theory of gravity, in which in addition to the metric the gravitation interaction is mediated by a scalar field, are those of scalar-tensor théories. Second, recent observational evidence[3]-[8] indicates that the Universe is presently dominated by a component dubbed dark energy. One of the approaches to account dark energy is to introduce the cosmological constant in the framework of general relativity. However a huge and still unexplained fine-tuning of the cosmological constant value[START_REF] Weinberg | The cosmological constant problem[END_REF] lias not been understood yet. Another widespread interpré dark energy based on a relaxation of the weak équivalence principle on largescales[START_REF] Brans | Mach's Principle and a Relativistic Theory of Gravitation[END_REF]-[START_REF] Serna | Constraints on the Scalar-Tensor théories of gravitation from Primordial Nucleosynthesis[END_REF].The model contains three different sectors: gravitation, described by the metric and a fundamental Brans-Dicke field, the visible matter (baryons, pho tons, etc.) and the invisible sector, constituted by an abnormally weighting energy. The AWE hypothesis assumes that invisible sector expériences the background spacetime with a different gravitational strength than ordinary matter, which is formulated in terms of the nonuniversality of the couplings to gravity for the visible and invisible sectors. The idea of a violation of the équivalence principle for the particular case of DM appeared prior to the numerous évi dence for cosmic accélération and the advent of DE. Several models based on microphysics hâve been considered to achieve such a mass-variât ion for DM in particular[START_REF] Farrar | Interacting Dark Matter and Dark Energy[END_REF]-[START_REF] Huey | A cosmologi cal mechanism for stabilizing moduli[END_REF].
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 2 The generalized Brans-Dicke gravity We start by considering the action in the Jordan frame of the generalized Brans-Dicke theory introduced in [176,177]

  is the Brans-Dicke coupling function while are the fundamental fields entering the physical description of the matter and abnormally weighting sectors, respectively, £i = ±1 dénotés the sign of the kinetic term for the scalar fields: £i = +1 corresponds to a usual scalar field with positive kinetic energy and £i = -1 to a phantom field, i-1,2. It should be noted that the matter action Sm does not explicitly dépend on scalar field 4>, so the local laws of physics are those of spécial relativity. The presence of the non-minimal coupling M(<Ê>) in the sector Sa represents a mass-variation.To find solutions for the model (2.1) looks to be complicated due to the admixture of scalar and tensor degrees of freedom. Consequently, it is convenient to rewrite the action in the so-called Einstein frame where the tensorial giw and scalar degrees of freedom separate into a metric g^u and a scalar field (p. The Jordan frame and the Einstein frame are related by the conformai transformation Q^lu -
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 21 in the Einstein frame takes the form s = JdAXsf=g{R[g\ -2giwdtlifid^-(2.4)

3 .

 3 the trace of stress-energy tensor of sector i = m, a and a?; = d(f are the scalar coupling strengths to the ordinary and abnormally weighting matter, respectively.The field équations for the scalar fields ipm and îpa read (A2m(tp)g>1''y/=gdvipm) The sigma model formalism Here we consider a fiat Friedman-Lemaître-Robertson-Walker spacetime as a background ds2 -g^dx^dx" = -c2dt2 + c? {t)ôijdxl dx?(2.12)Due to having coupling functions Arn and Aa, to obtain solutions for the model (2.4) (especially solutions to scalar field équations) seems difficult. However, under the assumption that the metric is given by (2.12) and the scalar fields dépend on only a single (time) coordinate, the Einstein équations (2.5) become trivial and the scalar field équations (2.10)-(2.11) reduce to the équations of motion for a géodésie curve for the 3-component nonlinear cr-model. To show this we rewrite the Lagrangian corresponding to the action (2.4). Representing the set of scalar fields as a sigma-model source term one obtains L and the matrix (hAB), A = 1, 2,3, reads hAs = diag (l, SiA2m, £2A2a) .

20 ) 51 (

 2051 Here and in what follows À = -. Now it is clear, that équations(2.20) are the dr Lagrange équations corresponding to the following Lagrangian Lsl = hABàAàD (2.21) with the energy intégral of motion Esl = hABàAàD (2.22) for the nonlinear sigma-model with the metric (2.16) and coordinates aA G IR'5, A = 1,2,3, (2.14) on the target space A4 = We note that for the constant Hab(y?) = Hab the réduction to the sigma model was proved (for more general setup) in [84]. The variables crA, A = 2,3, are cyclic and the corresponding équations of Ca are constants of intégration, which are usually interpreted as scalar charges. Using (2.25) the Lagrangian (2.21) can be represented in the following formK = \ (v2 -v(<p)),where the potential is given by V(<p) = El çl Ai(<p) solutions for the scalar field p.Thus, we corne to the effective one-component model with a massive scalar field. In the case of arbitrary coupling functions Am and Aa, the exact solutions for p, ipm, ïpa are given by quadratures (2.29) and -

(2. 40 )

 40 where F(u, k) is the elliptical intégral of the first kind of argument u and modulus /c, To is the constant of intégration.The conditions (2.36) correspond to the scalar fields and with ordinary kinetic terms (e,-= +1, i = 1,2) and the positive energy E^. To write the solution for the scalar field ip one needs to find the inverse function to the elliptic intégral in (2.40), that is the Jacobi elliptic function and the solution to the scalar field p looks like <p , fc is the elliptic sine function with the modulus k =The coupling functions can be presented now as follows Am(v?) = A,,we consider the parameters a < 0, c > 0 and b is arbitrary.The roots of the polynomial are defined by |a|(A2 + p2)r, k A2 + p2 -p2sn2 ^/|a|(A2 + p2)r, k P(2.47) 

  Arn(p) -Aa (p) = X en ( y/a(A2 + p2)r, k(2.55) The solutions (2.54)-(2.55) correspond to the model with the usual scalar field ipm (due to £\ = +1) and the phantom one ïpa (due to e<i = -1). The scalar field energy can be both positive and négative.

  ln (psc(V^Àr, /c) , Km.

  + tq). yj(z2 -p2)(z2 -À2)Using the elliptic intégrais of the first kind one cornes the scalar field p is given by 1 / /p2sn2(v/âÀr, k) -X2\ ^km. n \ \j sn2 (y/â\r, k)

( 2 .

 2 55) has been performed and illustrâtes the analytical solution for the scale factor with a dependence on the Jordan time t. The behaviors of the scale factor with a dependence on the Jordan/logarithmic times in the Jordan frame are présented in Fig.l and Fig.2, respectively.

Figure 2 . 1 .

 21 Figure 2.1. The behavior of the scale factor â(t) for certain cases of the paraineters is shown.

2. 6 .

 6 ConclusionsIn this chapter, we hâve considered the 4-dimensional model of the generalized Brans-Dicke theory. The description of the ordinary and the awe-sectors of the matter content are given in terms of scalar fields non-universally coupled to gravitation via the conformai functions Am((p) and Aa(<p). The kinetic terms of these fields can hâve both positive and négative signs.In the Einstein frame we hâve presented the considered action as a model with a sigma-model source term of the scalar fields. Assuming the fiat FLRW background we hâve shown that the Einstein équations in this frame are trivial.At the same time, the scalar field équations correspond to géodésie équations on the target space of the sigma-model decoupled from gravitation. We hâve reduced the sigma-model to the one component Lagrangian with the potential and found the solutions for arbitrary coupling functions. The solutions for the scalar fields describing the visible and invisible sectors are defined by the solution for the dilaton if and the form of the coupling functions. We hâve considered the case when the couplings are given by reciprocal exponential functions. The choice of the coupling functions yield to a Higgs-like équation for the dilaton.

Figure 2 . 2 .Figure 2 . 3 .

 2223 Figure 2.2. The behavior of the scale factor in the Jordan frame with a dependence on

  is a homogeneous, diagonal, cosmological model whose homogeneity group is the only simple group in three dimensions, namely, £0(3) (or its complexified version £0(2,1)). It turns out that the general behaviour to the gravitational field équations in the vicinity of the initial cosmological singularity discovered by Belinskii, Khalatnikov and Lifshitz is, essentially, an inhomogeneous gener alization of this £0(3) cosmological model in which each spatial point behaves as an "oscillatory mixmaster universe" with independent characteristics. CHAPTER 3. FLUX-BRANE SOLUTIONS 3.1. OverView
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 313 Figure 3.1. The Melvin Universe

1 +

 1 P4Z + -P2P/±ZŜ etting P4 = +0, we get a triple of polynomials (H\, H2, P3) for the Lie algebras A3 = sl(4). For P3 = P4 we obtain a set of polynomials (Pi, P2, P3) for the Lie algebras P3 = so(7).The ^-polynomials for Pi = P3 give us a pair of C2 = sp(2)-polynomials (Pi, H2) [166]. (For Pi = P3 = P4 we obtain ^-polynomials from [166].) This prescription could be generalized to higlier ranks by using the follow ing Conjecture: i) the set of 7Ln-polynomials is given by the first n polynomials for the Lie algebra Dn+i when Pn+i = +0; ii) the set of Pn-polynomials coincides with the first n polynomials for the Lie algebra Dn+i when Pn = Pn+1; iii) the set of Cm+i-polynomials coincides with the first m + 1 polynomials for the Lie algebra A2TO+i when the following relations are imposed: P\ = P2m+u P2 = P2m, •••, Pm = Pm+2-An analytical proof of this conjecture will be a subject of a separate work.3.4. Conclusions We hâve presented a multidimensional generalization of the Melvin's so lution for an arbitrary simple Lie algebra Q. The solution is governed by a set of n fluxbrane polynomials. We hâve written a program for calculating of these polynomials for the classical sériés of Lie algebras. The set of polynomials corre spondis to the Lie algebra D4 is obtained. The polynomials considered above define spécial solutions to open Toda chain équations corresponding to simple

4. 1 .

 1 IntroductionOne of the challenging problems of modem physics and cosmology is that of possible time-, location-, and scale-dependent variations of the fundamental physical constants, in particular, of Newton's gravitational constant G. According to the observational data the variation of G is admissible at the level of less 10~l2yr~l and there exists a necessity in further theoretical and experimental developments of this problem. At présent multidimensional cosmological models witli diverse matter sources are widely used as a theoretical framework for describing possible time variations of fundamental physical constants, e.g. the gravitational constant 6?, see [137]-[145] and references therein. This chapter is devoted to the investigation of an accelerated expansion of our 3-dimensional space in presence of the variation of the effective 4-dimensional gravitational constant. Here we use the approach proposed in the papers [141]-[144]. In [143], multidimensional exact S-brane solutions with the intersection rules for branes corresponding to rank-2 Lie algebras were discussed. It was shown that there exists an interval of the synchronous time r where the scale factor of our 3-dimensional space exhibits an accelerated expansion according to the observational data [147,148] while the relative variation of the effective 4dimensional gravitational constant is small enough with the Hubble parameter, see [149]-[152] and references therein.

  H2ha^D~2)^< wdp 0 dp + ^JJ H~2hs^jp2d(j) 0 dÿ + g2 >, (4-Q' (fi J pdp A (4.5) s = 1,m, where w = ±1; g1 = d<j>®d(j) is a metric on M\ and g2 is a Ricci-flat metric on M2.Functions H8(z) > 0 with z = p2, are defined on the interval (0, +00) and obey the non linear differential équations dz V Ho dz s'=1 with the following boundary conditions imposed

  , ...,ra, with (haP) = (hap)~l and Af = ha^Asp. The Us-vectors and the scalar products were specified in [130 132].

  (governed by the Cartan matrix (Assf)) are polynomials: ') = (A^)"1. The integers ns are components of the twice dual Weyl vector in the basis of simple co-roots [133,134]. It should be also noted that the set of polynomials Hs defines a spécial solution to the open Toda chain équations corresponding to a simple Lie algebra Q [120]. These solutions are spécial cases of more general solutions from [119]. The solutions under considération may be verified just by the substitution into the équations of motion corresponding to (4.1). It may be also obtained as a spécial case of the fluxbrane (for w -+1, M\ = S1) and 5-brane (w = -1) solutions from [119] and [133], respectively.4.2.2. Solutions for Lie algebras of rank 3.

The solutions ( 4 .

 4 22)-(4.26) are defined on the manifold M = (0,ti) x Mi x M2. (4.33) Here we put M\ = S1 and M2 = R3 x (Sl)n~\ (4.34) where the subpace R'5 is our 3-dimensional space with the scale factor a3 = XA. 78 (4.35) For the first branch (i) we get an asymptotical relation CL'] rKJ const r1', to (4.31), v > 1. For the second branch (H) we obtain a,3 ~const (ri -r)",

Figure 3 and

 3 Figure 3 and Figure 4 show a behavior of the function az(t) and its asymp totic forms.

Figure 4 . 1 .

 41 Figure 4.1. The scale factor as{t) and Figure 4.2. The scale factor as(t) and its asymptotic form, for A < -1 its asymptotic form, for -1 < A < 0

80 ( 4 Figure 4 . 3 .

 80443 Figure 4.3. The plot of the gravitation Figure 4.4. The plot of the gravitation constant G(t), for A < -1 constant G(t), for -1 < A < 0

4. 4 .

 4 Example: a model with three phantom fîelds Let us consider the following example of the cosmological solutions: l = 3, (ha@) = -(Sap), w = -1, i.e. there are three phantom scalar fields. Using (4.9), (4.10) and (4.16) we get that the coupling vectors obey the following relations: A2 -Ai -À2 -1 + 2 -D ~^^3 -1 + ÿZTf) ~(40 and K' = -K, k\ = 1,2,1, -1,1,2 for algebras A3, B3 and ki C3, respectively. It was verified (i.e. by the use of Mathematica) that the matrix D > 5), is positive definite for ail K <0 and Lu JL/ hence the set of vectors obeying (4.48), (4.49) does exist. Thereby (ASAs>) is the Gramian matrix. Now we compare the A parameters corresponding to different Lie algebras A3, and C3, when the parameter K is fixed. We get from the définition (4" K(D-2)' (2) ~K(D-2)' (3) " 2K{D-2)' for Lie algebras A3, #3 and C3, respectively. Hence, l-4(i) I < 1-4(3) | < 1-4(2) (4.53) Due to tire relation (4.47) for the dimensionless parameter of the relative variation of G calculating in the leading approximation when (r -tq) is small, we of G (calculated near ro) decreases in the sequence of Lie algebras A3, C3 and £3, but the allowed interval A r = r -ro ( obeying |h| < 0.001) increases in the sequence of Lie algebras A3, C3 and B3. This effect could be strengthen (even drastically) when \K\\ becomes larger. We note that for \K\ -> +00 we get a parameter A = -1. As in the previous section we hâve three scalar "phantom" fields and the dimension is arbitrary.In this case the relations for the vector couplings (4.48)-(4.49) remain unchanged. Due to A = -1 the synchronous time variable r -r(t) is defined by the relation:

F

  a (D-2)-dimensional Ricci-flat factor-space. Using the variable r we can vvrite the solutions in ternis of the synchronous time variable: g = -dr ® dr + X2<-D Y2dy ® dy + X 2g2, p" = (nl'V, + n2^2a + V> F1 = -QiXn2~2n,+1Ydr A dy, F2 = -Q2Xn'-2n2+k'ns+1YdT A dy, parameters Qs satisfy (4.19) , s = 1,2,3. Due to (4.52) K(D -2) = (-10, -28, -35/2) for Lie algebras A3 , £3 and C3, respectively.
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 64844 Hence our three-dimensional space expands exponentially and a -> +00 as r -> +00.Now, let us consider the variation of G. Using the mechanism examined earlier we get the approximate relation for dimensionless variation of G ô « 10Ro(t -Tq).

  [101] and references therein. While for intersections of two M-branes, as well as for the case of single M2-and M5-branes, one can use the results obtained in works [102], [103], finding non-trivial examples for triple M-brane configura tions is complicated by increasing dominance of low-dimensional fiat manifolds (of dimensions 1, 2 and 3) among factor spaces. The purpose of this work is to fînd out the relations for the amounts of pre served supersymmetries for triple Af-brane configurations defined on the prod uct of Ricci-flat manifolds. The cases of one and two M-branes were considered in [100] and [101], respectively. Here we deal with non-localized composite brane solutions with a vanishing contribution from the Chern-Simons term. However this may be a starting point for future considering localized brane solutions, which are of interest in view of possible applications by using the gravity/gauge correspondence [107], The structure of the chapter is as follows. In section 2 we présent a set up, main définitions and notations. Here we use Propositions 1 and 2 from the previous work [101] which reduce the solutions to generalized Killing équations to a search of parallel (i.e. covariantly constant) spinors on the product manifold (5.1) obeying tlrree algebraic équations. These équations dépend upon a brane configuration and brane sign factors. In section 3 we find relations for fractional numbers of preserved supersymmetries for triple M-brane solutions: Af5flM5n M5, M2 D M2 fl M5 and M2 fl M5 H M5. For a completeness we start here by considering three electric branes M2 fl M2 fl M2 which was performed earlier in [101]. The chapter is based on the paper A.A. Golubtsova and V.D. Ivashchuk, Triple M-brane configurations and pre served supersymmetries, Nucl. Phys. B, Volume 872, Issue 3, Pages 289-312 (2013).
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 4885 is the 4-form field strength of the 3-form potential A.The solutions to the équations of motion for the model (5.3) are defined on the (oriented) warped product spin manifold of the form M = Mq x Mi x ... x Mn

(

  M, AT = 0,..., 10) can be represented in the following form gMN = VABeAMeB rjAB = rjAB = (5.7) where eA = eAMdxM is the diagonalizing 11-bein, ï]a -±1; A, B = 0,..., 10. (Here ga = ~1 only for one value of the index A.) The required backgrounds must admit 32-component the Majoranaspinors £ such that the supersymmetry variation of the gravitino field ôïpM vanishes, i.e. covariant dérivative, TA are 32 x 32 gamma matrices in an orthonormal frame satisfying the Clifford algebra relations the spin connection and ujabm = Vac^Cbm = ~ujbam• (See also the approach of Alekseevsky et al. [104]). In (5.8) Bm is a matrix-valued covector field induced by the 4-form field strength F bm = ~(rMrNrrrQrR -m$rpr«rq fnpqr, (5.11) where Tm are world gamma matrices obeying rMrv + rMrN = ^9mn^s2, with rM = eAMta-(5.12) It should be noted that for any manifold M/ with the metric g1 one considers ki x ki T-matrices with ki = 2^/2^obeying p«/ -pbi 1 (O1 (0 + f^f"' = 2ri^a'b'lkr (5.13) Here we use alternative double-number notations for indices: aj = lj,..., (dj)j, where dj is the dimension of the manifold My, j = 0,... ,n. The local frame co-vectors are chosen in the following form where (eAM) = diag (eV°>V efe^, ..., ... ,n, and the signature matrix (tjad) in (5-7) can be written down in the components (Vab) = diag (r) §\ ,..., .

  ) with do = 4, d\ = d2 = d3 = 2 and d4 -1, can be presented as in Fig.l.

Figure 5 . 1 .

 51 Figure 5.1. M2flM2nM2-intersection over a point. Mo is the totally transverse

  (x) <g> r/i(yi) ® 772(7/2) ® 773(2/3) <g> 774(2/4),(5.37) where % = Vo(x) is a 4-component spinor on Mu, rj, = >s a 2-component spinor on Mi, i = 1,2, 3, and 774 = 774(2/4) is a 1-component spinor on M4.

Figure 5 . 2 .

 52 Figure 5.2. M5 H M5 H M5-intersection over a 3-brane. M0 is the totally

Figure 5 . 3 .

 53 Figure 5.3. The pairwise intersection of three M5-branes over 3-branes. Mo is

Figure 5 . 4 .

 54 Figure 5.4. The pairwise intersection of three Af5-branes over 3-branes. Mo

Figure 5 . 6 .

 56 Figure 5.6. Af2 H M5 fl M5-intersection. Mo is the totally transverse space,

  A T\ A T5 + c2(*odid2) A ri A T3 + c^odH^) A ri A r2,(5.122) where cf = C2 = C3 = 1; F/}, if2, F/3 are harmonie functions defined on (Mo,#0). The metrics g\ i = 0,1, 2,3,4, hâve Euclidean signatures and the metric g5 has the signature ( -,+). The branes sets are I\ = {1,5}, /2 -{2,4,5} and J3 = {3,4,5}. {a} Then for M5 = R1'1 one gets J\f = 1/8. {b} While in the case of M5 = /Z2, we find J\f = 1/16 for any choice of brane sign factors.(ü)The second possible intersection of M2-brane and two Af5-branes is defined on the manifold M0 x Mi x M2 x M3 x M4 x M5 x M6,(5.136) where do = 3, di = d2 -d4 = cfe = do = 1, d3 = 3.

Figure 5 . 7 .

 57 Figure 5.7. M2 fl M5 D M5-intersection: the M2-brane intersect each of the

  Einstein factor-spaces in the arbitrary dimension D are defined by géodésie équations on the target space of the sigma-model. The model can describe bosonic truncated sectors of 3 < D < 10 supergravity théories. For D = 3 the Lagrangians of such types are generic ones when dimensional réductions of supergravity models are studied. At the same time, in the case of 4 dimensions one may consider the model as a model of generalized Brans-Dicke theory in the Einstein frame. We hâve obtained general cosmological type solutions in cases: i) when ail factor spaces are Ricci-flat, ii) when one factor space is an Einstein manifold with non-zero scalar curvature and other factor spaces are Ricci-flat.It was shown that the obtained solutions with certain parameters can describe the accelerated expansion of our space. From the cosmological type solutions with D > 4 we hâve derived a subclass of the spherically symmetric solutions defined on the product of several Ricci-flat spaces and the manifold Sdl with the dimension d\ > 1. We hâve formulated and proved a "ho-hair" theorem. Under defined on a product of Ricci-flat manifolds taking into account form fields, which are multidimensional generalizations of electromagnetic fields. With an appropriate choice of D, ranks of the forms and dilaton couplings the action can describe the bosonic sector of a supergravity theory (without the Chern-Simons term). We hâve obtained generalized Melvin's type (fluxbrane) solutions related to simple Lie algebras. The solutions are defined by polynomial functions, which represent solutions of Toda chains with certain boundary conditions imposed.

Finally, in chapter 5 2 .

 52 we hâve studied solutions of 11-dimenstional super gravity, triple orthogonal intersections of composite M-branes, defined on a prod uct manifold of Ricci-flat spaces. The first configuration with three electric branes M2 fl M2 fl M2 lias been studied earlier in [Ivashchuk, IJGMMP, 2012], while six others ones: M2 fl M2 fl M5, M2 fl M5 H M5 (two configurations) and M5 fl M5 fl M5 (three configurations) hâve been considered here for the first time. We hâve obtained explicit formulae for computing the amounts of pre-l + Pji + -PîPjJ2 + (iPiP2P> + jjffPap + Ip,pjp,)p M--'-1 -'ïkp'P2p-+îc5râP'pi,p?Computing polynomial functionsHere we présent a listing of the program (written in Maple), for testing the hypothesis about the polynommial structure of fluxbrane master functions[119] The polynomials are solutions of the differential équations (??), which are équivalent to Toda chains with imposed boundary conditions (??). Fluxbrane and S-brane solutions are defined by these polynomials and studied in Chapters

  =Matrix(S,S): > AlgLie:=proc(algn,S,CartA :=Matrix(S,S)) local i,mu,nu; i := 0; mu := 0; nu:=0; mu := S-l; > equal := Vector[row](1 .. S): > for i to S do equal[i]:= diff(z*(diff(H[i],z))/H[i],z)-P[i,1]*(product(c[i,m], m = 1..S)) end do: > simequal := Vector[row](1 .. S): > newequal := Vector[row](1 .. S): > for i to S do simequal[i] := simplify(combine(value(equal[i]), power)) end do: > for i to S do newequal[i] := numer(simequal[i]) end do: > maxcoeff := Vector[row](1 .. S): > for i to S do maxcoeff[i] := degree(newequal[i], z) end do: > coefflist := table(): > for i to S do for c from 0 to maxcoeff[i] do coefflist [i, c] := coeff(newequal[i], z, c) =0 end do end do: > Sys := convert(coefflist, list) : > sol := solve(Sys): > trans := {seq(seq(P[i,j] = P[i,j], i = 1..S), j = l..maxel)}: > sol := simplify(map2(subs, trans, sol)): > PI := map2(subs, sol, evalm(P)): > for i to S do H[i]:= l+add(Pl[i,k]*z~k, k = l..n[i]) end do;

1

 1 ... Ak : V -> V be bijective operators obeying the following rela-Then there exists a basis of 2k vectors in V, 'ip£u....£k, S\= ±1, which are eigenvectors of Bf. Bifa £l,...,£k ~E\ 5. proof of the theorem in [100], the operator A\ defines an isomorphism between vector eigen-spaces and V[.. (ail other indices j / i, are coinciding). Hence the basis may be found as follows. First we find a non-zero "ground-state,; vector = ip satisfying where £i,..., = ±1. Here -ly is identity operator on V. Let us consider three examples of the operators B2, .B3, which appeared in Section 3 (in the cases of intersections Af5 Pi M5 H Mb (iii), M2 D M2 fl Mb and M2 H Mb H Mb (ii)). 0 12 0 a3, B2 = cr2 0 03 0 cri, 53 = 12 0 (73 0 12, (C.

  Thus, in this case one can find solutions to the géodésie équations (2.20). Second, it was shown in [177] that the cosmic accélération in the Jordan frame requires inverse proportionality of Arn

	and Aa. It should be noted that the exponential coupling functions yield us to the
	target space with the négative curvature R = -2/q;,(see, Appendix A), that is
	typical in supergravity théories, where scalar manifolds are generally negatively
	curved and noncompact.	For example, when at least one of parameters £*,
	i = 1,2, is equal to -1, the metric (2.32) describes a part of anti-de Sitter space
	AdS3 = 50(2,2)/50(l,2).		
	z = ekm'p, a = -£2/4	=	= -£i	(2.34)

it was proved the target space Ai = (E3, h) with the metric (2.32) is a homogeneous space isomorphic to the coset space G/H, where G is the isometry group of A4 and H is the isotropy subgroup of G.

The quadrature (2.29) takes the form now It worth noting that a replacement ip = (p + ipo with <po = ln (B/A) yields to the sinh-Gordon équation, which is well known in quantum field theory

[191] 

and présents the simplest intégrable model of the affine Toda field theory, based on

  .2) the scale factors in the Jordan and the Einstein frames are related

				(2,5,
	However, the relations (2.71)-(2.75) express the dépendance of the scale
	factors on the Einstein time. The time variable in the Jordan frame is related
	in the following way to the time variable in the Einstein frame as follows
		àJF = An^EF,		(2.70)
		dt = Amdt.		(2.76)
	where âjp is the scale factor in the Jordan frame. Thus, we hâve five cases of
	the solutions.1 To find out a dependence of the scale factor àjF on t one lias to integrate (2.76)
	(a) Using the relation for the coupling function (2.42) from the case (i) (Sec.4), t -to = f Am(t')dt' -B(t) (2.77)
	one gets		
	a jf =	a0Xp[3Ho{t -t0) + 1]1/3	2.71)
	À2 -À2sn2 y/\â\X ln (t/to), k	2on2 + pz sn	y/\â\\\n(t/t0),k
	(b) Due to (2.48), the scale factor in the Jordan frame corresponding to the case
	(ii) (Sec.4) reads		
	a0pA[3i70(^-to) + l]1/3sn y|a|(A2 + p2) ln (t/to), k
	àjF			(2.72)
		X2 + p2 -p2 sn2 y|a (A2	+
	(c) Taking into account the relation (2.55) one obtains for the third case (Sec.4)
	a0X[3Ho{t -to) + 1]1/3 ajF = -/ . =	r*	, 7o\ (2.73)
		en ^>/a(A2 + p2) ln (t/t0), kj
	(d) Due to (2.62) the scale factor corresponding to the case (iv) (Sec.4) can be
	written as follows		
	àjF = aop[3Ho(t -to) + l]1/3sc(v/âAln (t/to),k).	(2.74)

1Here we lise the time variable t. which is related with r as ln (t/to) -r.

(e) Finally, for the fifth case with (2.69) (Sec.4), we hâve Jto and substitute the inverse function to B(t), which expresses the dépendance t(t)j into

(2.70) 

  13) Schwarzschild-(anti-)de Sitter space-times: Analytical solutions and applications Phys. Rev. D 78, 024035 (2008) 61. I. Ya. Arefeva, E.V. Piskovskiy, and I.V. Volovich, Rolling in the Higgs Model and the Elliptic Functions, Theor.Math.Phys., 172, 1001-1016

	60. Eva	Hackmann	and	Claus	Làmmerzahl,	Géodésie	équation	in
	(2012); arXiv:1202.4395v2			
	62. Jennie	D'Ambroise	and	Floyd	L.	Williams,	A	dynamic	cor-
	respondence	between	Bose-Einstein	condensâtes	and	Fried-
	mann Lemaître-Robertson Walker and Bianchi I cosmology with a
	cosmological constant J. Math. Phys. 51, 062501 (2010); arXiv: 1007.4237
	[math-ph]				Biîp		-ip	(C.9)
	for ail î and afterwards we put			
										(C.10)

tation of dark energy is that of quintessence, which is described by a scalar field minimally coupled to Einstein gravity rolling down some self-interaction potential[START_REF] Ratra | Cosmological conséquences of a rolling homogeneous scalar field[END_REF][START_REF] Caldwell | Cosmological Imprint of an Energy Component with General Equation of State[END_REF]. To take into account the région where the équation of State is less than u = -1, the model with a phantom scalar field (i.e. with a négative kinetic energy), an extension of the quintessence model, was suggested in[START_REF] Caldwell | A Phantom Menace? Cosmological Conséquences of a Dark Energy Component with Super-Negative Equation of State[END_REF]. Variety of works in scalar-tensor gravity are devoted to a search of an alternate explanation of dark energy[19]. The common feature of these théories is the violation of the strong équivalence principle. An additional interest in scalar-tensor théories arises from various inflationary scénarios of the early universe[START_REF] La | Extended inflationary cosmology[END_REF]-[START_REF] Faraoni | Generalized slow-roll inflation[END_REF]. Recently gravitational models with the Higgs-potential attached much attention[START_REF] Garcia-Bellido | Higgs-Dilaton cosmology: Are there extra relativistic species?[END_REF]-[START_REF] Barvinsky | Inflation scé nario via the Standard Model Higgs boson and LHC[END_REF].In papers[176,177] the AWE Hypothesis within the framework of the generalized Brans-Dicke theory was proposed. The original motivation for studying this type of models is related to a unified description of dark matter and

{b} If M4 = ]Ri;1/Z2 with 77,4(1) = 1 and ri4(-1) = 0, we get J\f = -for 8

spaces) in IIA-, IIB-and other (d < 10) supergravitational models using dimensional réductions and duality transformations. Another problem of interest may be related to a search of "pseudo-supersymmetric" brane solutions[108] defined on a product of Ricci-flat manifolds by using a possible generalization of the approach from [100.101].
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(Ass') = (2 Bss'/Bg's') (3.13) is the Cartan matrix for a simple Lie algebra Q of rank n.

It may be shown that if the matrix (hap) has an Euclidean signature and l > n, there exists a set of co-vectors Ai,An obeying (3.13). Thus the solution is valid at least when l > n and the matrix (hap) is a positive-definite.

The solution under considération may be verified just by substitution into the équations of motion corresponding to (3.5). It may be also obtained as a spécial case of the fluxbrane (for w = +1, M\ = S1) and S'-brane (w = -1)

solutions from [119] and [166], respectively.

If w = +1 and the (Ricci-fiat) metric #2 has a pseudo-Euclidean signature, we get a multidimensional generalization of the Melvin's solution [?]. Recall that the Melvin's solution corresponds to n = 1, M\ -S1 (0 < cj) < 27r), M2 = M2, g2 = -dt®dt + dt;®d£> and Q = A\. For w = -1 and g2 of Euclidean signature we obtain a cosmological solution with a horizon (as p = +0) if M\ = M (-00 < (j) < +00).

Polynomial master functions

Here we présent polynomials corresponding to the Lie algebra D4 -so (8).

These polynomials were obtained using a program written in Maple. The program is given in the Appendix (it was described in [120]).

an accelerated expansion of "our" 3-dimensional space co-exists with a small enough value of G, like in [143]. But we also intend to show that the accelerated expansion is possible in the presence of "phantom" scalar fields in the model.

The chapter is organized as follows. In Section 2, we consider the multidimensional gravitational model and exact solutions. We also single out solutions corresponding to rank-3 Lie algebras in Section 2. In Section 3, the solutions are examined for the presence of an accelerated expansion if there is a small variation of the gravitational constant. In Section 4, a spécial configuration with three phantom fields is considered and the expressions for the dimensionless variation of G corresponding to the rank-3 Lie algebras are présent. Section 5 is devoted to the investigation of the solutions with asymptotically exponential accelerated expansion of 3-dimensional space and Section 6 is a conclusion.

The chapter is based on the papers A. A. Golubtsova, On Multidimensional Cosmological Solutions with Scalar In the next section we calculate the fractional numbers N of unbroken supersymmetries (SUSY) for ail triple M-brane configurations. Here we consider generic solutions to Eqs. (5.8) in the form (5.19). For any configuration we hâve J\f -N/32, (5.28) where N is the dimension of the linear space of solutions to algebraic équations (5.21) and (5.22). (For spécial non-generic choices of harmonie functions Hs the real fractional numbers Af of unbroken SUSY may be higher than those given by (5.28)).

Remark. In this paper as in [101] we put for simplicity e(z) € C'î2.

The imposing of the Majorana condition will give the sanie number N for the The operators corresponding to M2-branes are given by f Thus, the number of linear independent solutions given by (5.45)- (5.46) reads N = 32J\f = n0(cic2c3) ^ni(2cci)722(2cc2)n3(2cc3), c=± 1

where rij(c^) is the number of chiral parallel spinors on Afy, j = 0,1, 2, 3; see (5.42) and (5.43).

Examples.

Let Mi = M2 = M3 = R2. The manifold R2 has one parallel spinor of chirality (+z) and one -of chirality (-i), hence ail Tij(ic) = 1, j = 1,2,3, c = dtl, and one gets from (5.47) Af = -n0(cic2c3).

(5.48) lo It is worth noting that the chirality of the spinor ï]q on the manifold Mq is defined by the product of the brane sign constants ci, c2, c3.

{a} For Mo = R4 we hâve n0(c) = 2 and hence J\T -1/8 for ail values of q, z = 1,2,3.

{b} Consider the case of the curved transverse space. Let Mq = JT3, K3 = Cy2, which is a 4-dimensional Ricci-flat Kàhler manifold with the holonomy group SU(2) = Sp( 1). The K3 surface has two parallel spinors of the same chirality. We put no(l) = 2 and no(-1) = 0. Then we get J\f = 1/8 Then for spinorial covariant dérivatives we get relations (5.38).

The operators corresponding to the M5-branes read f[s] = flofl2f22fl3f23 = 1 (g f(i) g 12 (g I2 g f(4) (5.57) Eqs. (5.61) hâve the following solutions

The number of linear independent solutions given by (5.62), (5.63) and (5.64)

where rij(cj) is the number of chiral parallel spinors on Mj, j = 1, 2, 3,4.

Examples.

Let Mq = R and Mi -M2 = M3 = R2. Then ail n?-(c) = 1, j = 1, 2,3, with c = ±i, and hence we get from (5.65) {c} The same resuit takes place when (M4, gA) is a 4-dimensional Ricci-fiat ppwave space from [START_REF] Figueroa-O'farrill | More Ricci-flat branes[END_REF] with the holonomy group H = R2 (see [105]). In this case (n4(z), n4(-i)) = (1,1) and J\f = 1/16.

(ü)

The second possible configuration of three M5-branes is the pairwise in tersection over 3-branes defined on the manifold of the form

where

Here are 2x2 gamma matrices corresponding to M*, i = 0,1, 2, 3,4.

One can write down the gamma matrices corresponding to Mo as = (ai, (72, (73) and hence f(0) = tl2.

(5.73)

Here we put r] = r]0(x) 0 771(2/1) 0 772(2/2) 0) 773(7/3) 0 774(2/4), (

where

The factorization relations (5.38) are valid for spinorial covariant dériva tives where The number of linear independent solutions is belongs to V = C2 <g> C2 <g) C2; Xi> X21X3 are "auxiliary" 2-dimensional spinors.

We remincl that auxiliary spinors appear when the dimension of the spinorial space 2^D//21 corresponding to the product manifold M is not equal to the product of dimensions of spinorial spaces 2^^corresponding to factor spaces Mi (or, equivalently, when the integer part [D j2] is not equal to the sum of integer parts [d\j2]). The simplest example of the product manifold with two factor spaces of odd dimensions d\ and û?2 was considered in [106]. In this case the auxiliary spinor is two-dimensional one.

Here the covariant dérivatives act on 77 as

(5-94

A», = DÜl = dmi, i = 1,2,3,4,5,6. Let the gamma matrices corresponding to the 3-dimensional manifold M7 be chosen as follows = (icq, <72, [START_REF] Saffin | Fluxbranes from p-branes[END_REF], and hence f(7) = -12.

Then the solutions to SUSY équations (5. where n3 is the number of parallel spinors on Mj, j = 0, 7.

Examples.

{a} For Mo = IR2 and Mj = R1'2 we get from (5.103) J\f = 1/8 in agreement with [START_REF] Bergshoeff | Multiple Intersections of D-branes and M-branes[END_REF].

{b} If we put M7 = (Rl*1 IZ2) x R instead of the 3-dimensional analogue of Minkowski space M7 = R1,2 one obtains N = 1/16. This resuit does not dépend upon the brane sign factors.

M2 DM2 DM5

Let us consider the composite configuration of two electric branes each intersecting M5-brane over a string with the two strings intersecting over a point. M2 D M2 H M5-solution is defined on the manifold

where do = 3, d\ = d<2 = -d$ = do = 1 and d3 = 3.

The intersection is given in Fig. 5. The gamma matrices may be chosen in the following form (5.116)

The gamma matrices corresponding to Mo can be chosen in the form (f^) = (cr!, cr2, cr3) and hence f(0) = il2.

Under the proposition from Appendix A there exists a basis of eigenvectors 'ip£l£2£:i in V with e\ = ±1, e2 -±1, £3 = ±1, satisfying (5.100).

The solutions to generalized Killing équations (5.8) corresponding to the field configuration from (5.105), (5.106) are given by the following monomial solutions £ = i^r1/(,i^2"1/(,Tr;71/12^ü(^)®m®7/2®^3(y3)^)7?4®î75®^)®>^£1;£2,£35 (5.117) where 770 (ae) and 773(2/3) are parallel spinors defined on Mo and M3, respectively, rji is a constant 1-dimensional spinor on M?;, i = 1,2,

Using the relations (5. Thus, the number of linear independent solutions is

e4=±l, e5=±l (5.135) where rij(cj) is the number of chiral parallel spinors on Mj, j = 0, 2, 3,4, 5.

Examples. The number of linear independent solutions given by (5.144)-(5.145) can be computed as follows N = 32J\T = n0n3, (5.146) where no and ns are numbers of parallel spinors on the manifolds M0 and M3, respectively.

Let

Example.

Here the onlv example we hâve is the trivial one: Mo = M2 = with N = 1/8 in agreement with [START_REF] Bergshoeff | Multiple Intersections of D-branes and M-branes[END_REF]. An open problem here is to analyze spécial solutions with certain ,:nearhorizon" harmonie functions Hs for which the unbroken numbers of supersymme tries might be larger then the numbers J\f obtained here for generic Hs-functions.

In this case one should deal with Freund-Rubin-type solutions with composite M-branes, see [109] and references. therein. Such partially supersymmetric so lutions will lead to certain relations which contain numbers of (chiral) Killing spinors on certain Einstein factor spaces. This may be of interest in a context of the AdS/CFT approach, its generalizations and applications [107].

this theorem the spherically symmetric solutions with the energy parameter for scalar fields obeying > e^0, e^0 < 0 and certain restrictions for the Riemann tensor squared for each factor-space metric hâve the regular horizon only when the scalar fields are constant. In other worlds, the black holes do not hâve non-trivial scalar hairs. We hâve also found generic soliton solutions with the post-newtonian parameters for a 4-dimensional part of the metric coinciding with Schwarzschild ones.

In chapter 2, we hâve studied a 4-dimensional model of the generalized The approximate analytic solution in terms of hyperbolic functions has been found when the ordinary matter is described by a scalar field with a normal kinetic term, the awe-sector is given by a phantom field and the energy E^is positive. For certain parameters the solution can describe an accelerated expan sion. However, it is yet to be studied if the number of e-foldings is enough to provide the inflationary stage. 

where Gy is a non-degenerate symmetric matrix (e.g. given by (1.11)).

The Lagrange équations corresponding to the model (A.l) read (in a con- where q = (A.6) and hence it is given by relations (A.7) and (A.8).

The Proposition IA is proved.

Let us introduce a dual vector u = (uj): Ui = GjjW. Then we get u(/3) = Uift = {b,/3), (u,u) = GijUiUj = (b, b), where (Gïj) = (Gy)"1, and the solution For the energy (A. 12) we obtain from (??), (??) In this appendix we give a brief scheme for decomposing of gamma-matrices.

Let the manifold can be represented as a direct product of two factor-spaces

where respective dimensions no and n\ add up to D no + n\ = D. There are four cases that arise, namely (no, ni) = (even,odd), (odd,even), (even,even) and

(odd,odd). We dénoté gamma-matrices, corresponding to the factor-space Mo by rS}, ao = lo,..., no and to M\ by ai = 11?..., ni, then the gammamatrices TA, A = (0,1), defined on the manifold (A.2) can be represented in the following form (even,odd) :

(fy = ( fSS)®l.f«»®î(i)).

(odd,even) :

(fy = ( ® f(1). i ® ffo).