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"Chaque progrès donne un nouvel espoir, suspendu à la solution d'une nouvelle difficulté.

Le dossier n'est jamais clos. " Lévi-Strauss (Claude) Les caractéristiques dynamiques de la convection turbulente dans les étoiles restent encore mal connues malgré de nombreuses contraintes observationnelles disponibles dans le cas du Soleil, ainsi que le développement de nombreuses simulations numériques. La sismologie basée sur la mesure non pas des fréquences mais des amplitudes des modes propres de la cavité stellaire peut apporter des informations sur les propriétés du milieu stellaire turbulent. En effet, les ondes acoustiques solaires sont connues pour être excitées de manière stochastique par les mouvements turbulents dans la région convective la plus externe.

C'est au développement théorique de ce type d'approche que je me suis intéressé dans la première partie de travail de thèse. Dans le cas du Soleil, j'ai étudié l'influence des structures cohérentes que constituent les panaches turbulents sur les amplitudes des modes. Un développe ment théorique, prenant en compte le caractère turbulent des panaches, m'a permis de montrer que 30% de l'énergie injectée dans les modes est lié à la présence des panaches. Cette amélioration de la modélisation des amplitudes permet de reproduire les observations solaires dans les barres d'erreur actuelles. du Soleil. Néanmoins, l'efficacité de ce transport dépend fortement du flux d'onde émis à la base de la zone convective, or l'estimation de ce flux demeure assez simplifiée. C'est pourquoi, j'ai proposé un mécanisme de génération de ces ondes lié à la pénétration des panaches dans la zone radiative. Je montre que les ondes ainsi générées permettent d'extraire le moment cinétique dans le soleil sur une échelle de temps de l'ordre du million d'années. 

Introduction et contexte général

Les étoiles sont des systèmes physiques dont la description fait appel à une grande diversité de processus physiques qui se produisent sur des échelles, tant spatiales que temporelles, aussi bien microscopiques que macroscopiques. Les conditions extrêmes que l'on rencontre dans ces objets en font des laboratoires sans équivalent sur Terre, l'étude des processus physiques qui s'y déroulent fournit alors une occasion unique d'y accéder.

En première approximation les étoiles sont décrites comme étant en équilibre hydrostatique, c'est à dire que le gradient de pression compense la gravité. Elles sont considérées sans rotation, à symétrie sphérique. Leur évolution résulte de processus énergétiques se produisant dans les couches profondes de l'étoile. L'énergie fournie par la combustion nucléaire à l'intérieur peut être transportée des régions centrales vers la surface par trois grandes classes de mécanismes : les transports conductif, radiatif et convectif. Le premier est un transport d'énergie qui s'effectue par les collisions aléatoires des particules dans le plasma stellaire. Dans les étoiles de séquence principale1 les conditions de température et de densité sont telles que ce mode de transport est négligeable. Ceci n'est plus vrai dans le coeur des étoiles évoluées, dans lesquelles les électrons ne suivent plus une distribution de Boltzmann mais de Fermi-Dirac car le gaz d'électron devient dégénéré.

Les deux modes de transport dominant restent les transports radiatif et convectif. Le premier est lié au transport par les photons alors que le second est un transport d'énergie par les éléments de matière. Dans les étoiles de séquence principale, on distingue deux classes d'étoile, les étoiles de faible masse qui ont un coeur radiatif surmonté d'une région convective externe et les étoiles massives présentant un coeur convectif et des régions externes essentiellement radiatives.

En ce qui concerne les étoiles de faible masse, l'essentiel de l'énergie est transportée par le flux radiatif dans le centre de l'étoile. Néanmoins, vers les couches les plus externes la température diminue et le plasma devient de plus en plus opaque au rayonnement, ce qui rend le transport par les pilotons inefficace. Dès lors, la convection prend le relais et par des échanges macroscopiques de chaleur permet de transporter l'énergie vers la surface de l'étoile. Le cas des étoiles massives est différent. L'existence d'un coeur convectif est lié aux réactions nucléaires dans ces étoiles.

Contrairement aux étoiles de faible masse, l'intense production d'énergie est très localisée au centre des étoiles, ce qui créé un important gradient de température. En d'autres termes la production d'énergie est localement très importante et le flux radiatif n'est plus en mesure, à lui seul, d'assurer le transport d'énergie.

Séquence principale : phase de fusion de l'hydrogène dans les régions centrales.

Introduction et contexte général

La description des processus de transport à commencer par la convection dans les étoiles est un élément clef de la modélisation stellaire. Les processus hydrodynamiques, telle que la convection, sont difficiles à modéliser et peu contraints.

1.1

La convection stellaire 1.1.1 Approche classique, la théorie de la longueur de mélange Classiquement, la représentation de la convection repose sur des considérations énergétiques ; c'est à dire que l'on considère la convection comme étant un mécanisme de transport d'énergie lié à un mouvement de matière. En effet, on peut se représenter ce processus comme un échange de chaleur entre un élément de matière "chaud", i.e. en provenance d'une région plus chaude, moins dense et un élément "froid", plus dense, qui pour le premier monte alors que le second descend. L'échange de chaleur se produit car l'élément chaud transmet son excès de chaleur au milieu environnant. Dans cet échange, il faut un élément moteur qui permette les mouvements de matière, la force d'Archimède. En effet, comme le montre la figure 1.1, les éléments chauds présentent une densité inférieure au milieu environnant, la force d'Archimède permet à celui-ci de monter et inversement pour l'élément de matière froid.

Cette représentation de la convection, fondée sur des arguments énergétiques, a donné nais sance à une formulation phénoménologique de la convection, la théorie de la longueur de mélange.

Elle fait l'analogie avec la théorie cinétique des gaz, c'est à dire que les vecteurs sont des "par ticules" macroscopiques, des éléments de fluide, qui transportent leur excès de chaleur sur une distance caractéristique. Cette représentation, malgré son aspect rudimentaire, permet de rendre compte de l'essentiel c'est à dire le flux d'énergie transporté. En effet, l'évolution stellaire en première approximation ne nécessite pas une description précise de la convection mais requiert principalement la connaissance du gradient de température. Si l'on ne s'intéresse qu'à cette quan tité cette formulation est suffisante pour reproduire grossièrement les caractéristiques globales des étoiles, température effective, rayon, masse... Ce type d'approche, phénoménologique, fut premièrement introduit par Prandtl (1925) puis adapté à la convection dans les étoiles par Bôhm-Vitense (1958). Depuis, son utilisation s'est largement répandue et est employée dans tous les codes d'évolution stellaire.

L'objectif principal de cette formulation est de déterminer le flux convectif moyen. Pour cela il est nécessaire de supposer que l'énergie est transportée par un élément de taille unique A, une "bulle", qui accélère sur une distance i. L'expression du flux convectif est alors Fc = pCpVÔT (1.1) avec p la densité, v la vitesse radiale de la bulle et 6T la différence entre la température de la bulle et du milieu environnant au moment où la bulle perd son identité et dépose son excès de chaleur.

La bulle est alors accélérée par la force d'Archimède, puis se dissout dans le milieu ambiant après avoir parcouru la distance i, la longueur de mélange. Ainsi, l'énergie cinétique de la bulle sera égale au travail de la force d'Archimède -pv2 + J ôpgdz = 0 (1.2) avec p la densité, z la coordonnée radiale, ôp la différence de densité entre la bulle et le milieu Il est ensuite nécessaire de supposer qu'il y a un équilibre de pression entre la bulle et le milieu environnant, ce qui permet d'écrire pour un gaz parfait Sp _ _ÔT P ~T (1.3) où l'on a négligé la contribution du poids moléculaire moyen pour simplifier l'exposé. En ef fectuant un développement de Taylor au premier ordre, on peut également écrire, en utilisant l'équilibre hydrostatique ÔT V~7 \ _ =(y-Va)_ (1.4) où Hp est la hauteur de pression, V = q }" p est le gradient de température du milieu ambiant et Va celui de la bulle.

En utilisant Eq. (1.2), Eq. (1.4) et Eq. (1.1), on obtient alors Fc = pcpT^H~p (V -Va)3/2 (Jp) (1.5) 1. Introduction et contexte général avec Wad le gradient adiabatique. La convection sera efficace quand Tconv > 1, ce qui est le cas dans le soleil hormis dans la partie la plus superficielle de la zone convective. En effet, juste en dessous de la photosphère la densité décroît très fortement et le transport convectif devient moins efficace. Afin de compenser cette effet, la vitesse convective croît fortement dans cette région qui est dite superadiabatique (V > Va£f).

1.1.2 Insuffisances de la MLT Donc la théorie de la longueur de mélange permet d'obtenir assez simplement l'expression du flux convectif moyen. Néanmoins, cette formulation pose de sérieux problèmes -elle repose sur l'approximation de Boussinesq, qui suppose que le milieu est incompressible, isotrope et stationnaire.

-l'Eq. (1.5) permet de constater qu'il est nécessaire de spécifier un paramètre libre, la lon gueur de mélange (A). Le choix de la longueur de mélange est problématique. Si celle-ci est calibrée pour reproduire des données observationnelles, on peut alors douter de son caractère universel. De plus, ce paramètre étant calibré il compense d'autres erreurs dans la modélisation stellaire.

-plusieurs simplifications sont utilisées. Par exemple la MLT ne considère qu'une seule échelle de tourbillons ou "blobs" transportant le flux convectif. Ceci est d'autant plus probléma tique que la convection est turbulente et que la turbulence est un problème multiéchelle.

Ce ne sont que quelques éléments des problèmes posés par la théorie de la longueur de mélange.

Pour une discussion plus détaillée on pourra se référer à [START_REF] Kupka | Model Atmosphères and Spectrum Synthesis[END_REF] ainsi qu'à Canuto (1996).

Pour tenter de pailler à ces faiblesses, de nombreuses variantes ont été proposées. On pourra citer les théories dépendantes du temps (par exemple Gough 1977), les variantes qui prennent en compte le caractère non-local de la convection (par exemple [START_REF] Spiegel | [END_REF]) ou encore les "FST" (Full Spectral Turbulence) qui sont des modélisations qui cherchent à prendre en compte un spectre d'énergie plus réaliste, c'est à dire sans se limiter à la seule longueur de mélange (Canuto 2008). 

2000)

R a agATd3 VK, (1.7) avec a le coefficient de dilatation thermique, g l'accélération de la gravité, AT la différence de température sur une hauteur d, v la viscosité et k la diffusivité thermique. Rogers, http ://pmc.ucsc.edu/ trogers/research.htm

Lorsque le nombre de Rayleigh est supérieur à une valeur critique, qui est de l'ordre de 700, l'instabilité convective démarre. Pour des valeurs beaucoup plus importantes, la convection devient alors turbulente, ce qui est largement le cas dans le soleil où le nombre de Rayleigh peut excéder 1023 dans les couches superficielles du Soleil, mais il peut aussi atteindre jusqu'à 1020 dans les océans (Niemela et al. 2000).

Le nombre de Reynolds

Le nombre de Reynolds est le rapport entre les forces d'inertie et visqueuses. Il a pour expression Re = ~ (1.8) avec U la vitesse caractéristique du milieu, L l'échelle caractéristique et v la viscosité. Donc plus le nombre de Reynolds sera important, plus le milieu sera turbulent.

Dans le cas solaire, on estime ce rapport en considérant que l'échelle d'un granule à la surface est de L -1 Mm avec une viscosité de v ae 1cm2 s"1. Si l'on considère alors que la vitesse caractéristique est de l'ordre du kilomètre, on trouve Re ~1014 ce qui confirme que l'on est dans un régime très turbulent. Une estimation de l'échelle de dissipation (d) est alors d ae LRe 3//4 ae 1 cm, ce qui signifie que le rapport de l'échelle d'injection (L) sur l'échelle de dissipation est de l'ordre de 108.

Le nombre de Péclet

Le nombre de Péclet mesure le rapport entre l'inertie et la diffusivité radiative, il s'écrit On trouve des valeurs allant de Pe ~103 en haut de la zone convective et Pe ae 107 en bas de la zone convective. Cela signifie que la dynamique domine sur la thermique dans toute la région convective.

Ce nombre sans dimension est très important dans le problème de la pénétration convective.

En effet, les éléments convectifs qui pénètrent dans la région radiative du soleil ont un nombre de Péclet élevé. Ces éléments seront donc très fortement freinés par la force d'Archimède tandis qu'il n'auront pas le temps de s'ajuster thermiquement avec le milieu ambiant. Cela explique que la région de pénétration inférieure est très faible dans le soleil. Au contraire, dans le cas d'un faible nombre de Péclet un élément convectif s'ajusterait très rapidement thermiquement et continuerait de pénétrer dans la région radiative sous l'effet de son inertie, c'est l'overshoot (Zahn 1991).

Le nombre de Prandtl De même, le nombre de Prandtl, que l'on définit comme le rapport de la diffusion de la quantité de mouvement à la diffusivité thermique Pr = -(1.10) K, varie entre 10"10 à 10"3 dans la région convective solaire. Par comparaison, expérimentalement il est possible de le faire varier de 10~2 dans le mercure à 103 dans les huiles très visqueuses.

Dans les milieux naturels il varie de 1 près du noyau terrestre à 1023 dans le manteau.

1.1.4 Anisotropie de la convection turbulente : les panaches La convection turbulente présente des structures cohérentes descendantes, les panaches2. Ces derniers sont plus turbulents que le milieu environnant et transportent l'essentiel de l'énergie cinétique, tandis que le flux d'enthalpie est transporté par les flots montants (Rieutord & Zahn 1995). Les panaches étant turbulents, une partie du fluide ambiant va être entraînée par ces structures, ce phénomène est décrit avec l'hypothèse d'entraînement qui suppose que le flot radial de matière est proportionnel à la vitesse du panache tel que ve=aU (1.11) où U est la vitesse verticale du panache, ve la vitesse du flot de matière et a la constante d'entraînement qui semble avoir une valeur assez universelle (Turner 1986).

Ainsi, les panaches sont des structures que l'on retrouve dans de nombreuses configurations.

Dans la suite, nous nous intéresserons plus particulièrement à la convection dans les océans et dans les intérieurs stellaires. Je montrerai qu'il y a de nombreuses similarités dans ces deux systèmes physiques.

Panaches dans les océans

Dans les océans, la formation de panaches est un phénomène localisé (voir figure 1.3) qui se produit sous certaines conditions climatiques. En effet, il peut arriver que la thermocline, qui est une couche de transition thermique séparant les couches océaniques superficielles et profondes, disparaisse sous l'action combinée de la météorologie et de la circulation générale3.

Ainsi, les couches profondes ne sont plus isolées des effets météorologiques et cela donne alors lieu à l'apparition de zones convectives sous l'action des fluctuations de densité à l'interface océanatmosphère qui créé un forçage via la force d'Archimède. Le forçage induit alors l'apparition de convection sous la surface des océans sur des échelles qui sont de l'ordre de 100 km. Ces structures sont très turbulentes avec des vitesses qui sont de l'ordre de quelques centimètres par seconde pour des échelles caractéristiques de l'ordre du kilomètre. Ainsi, si l'on considère une viscosité cinématique de l'ordre de 10~6ra2 s-1 on trouve des nombres de Reynolds de l'ordre de 108. De plus, on notera que le nombre de Peclet comme dans le cas du Soleil est très supérieur à l'unité et plus précisément de l'ordre de 100.

La dynamique des panaches peut alors être décrite essentiellement par trois phases, la pre mière est appelée "le préconditionement", la convection étant établie, il se forme des panaches dont la taille caractéristique est de 1 km. Ces derniers vont pénétrer profondément donnant lieu à la phase de convection profonde avec des vitesses qui sont de quelques centimètres par secondes.

Dans le même temps il va se produire des échanges de flux latéralement avec le flot ambiant conduisant à une restratification du milieu sur des échelles de temps variant de quelques heures à quelques jours. La figure 1.3 propose une représentation schématique de la phase de convection profonde. Ce type de processus est très proche du cas stellaire, une zone de convection forcée par la surface et des panaches qui pénètrent profondément dans la zone stablement stratifiée.

On aura recours à la modélisation des panaches développée pour les océans dans le chapitre sur les ondes internes (Chapitre 15). (en haut) à la base de la zone convective. Crédit : Rieutord & Zahn (1995) Panaches dans les régions convectives stellaires Dans le cas stellaire, l'existence des panaches a été mise en évidence numériquement (Cattaneo et al (1991), Stein & Nordlund (1989)). Plus récemment il a été possible, grâce à la sismologie, de mettre en évidence de telles structures dans les couches supérieures du Soleil. La figure 1.4 permet de visualiser la région convective qui nous préoccupe ici et le champ de vitesse dans la partie la plus externe de la région convective. On identifie deux flots qui correspondent pour le flot descendant (les panaches) à des températures plus faibles que la moyenne et inversement pour le flot montant. Enfin, on remarque que le flot montant occupe une surface plus importante tout au moins dans la partie la plus profonde dénotant ainsi une asymétrie entre flots montant et descendant. Afin de comprendre ce qui se produit, considérons le flot montant qui arrive au niveau de la photosphère alors :

-Le milieu devient stable au regard du critère de Schwarschild3 4, il n'y a donc plus de mou vement vertical, autre que celui lié à l'inertie.

-Les pertes radiatives deviennent dominantes et le flot se refroidit rapidement. D'un point de vue dynamique, il y a deux régimes asymptotiques :

-Une phase de chute libre, jusqu'à ce que la turbulence devienne importante au sein du 3La circulation générale ou thermohaline est une circulation d'eau océanique globale (à l'échelle planétaire) qui est régie par les variations de température et de salinité.

4le milieu sera convectivement stable si V > \7ad et instable dans le cas inverse.

panache (via le travail de la force d'Archimède).

-Quand la turbulence est importante, on atteint un second régime ; le flot est contrôlé par l'entraînement. C'est à dire que la turbulence au sein du panache accrète de la matière extérieure.

Pendant la phase transitoire entre les deux régimes, il y a coalescence de panaches qui engendre de plus grandes structures.

Comme nous venons de le voir, les panaches sont des structures communes aux océans et aux étoiles mais aussi à beaucoup d'autres systèmes physiques dans lesquels existe un régime de convection turbulente. Se posent alors plusieurs questions ;

-Comment obtenir des contraintes observationnelles sur les propriétés de la convection tur bulente ?

-Est-il possible de mettre en évidence l'impact des panaches sur les régions convectives ?

La sismologie stellaire peut apporter des réponses et en particulier l'étude des amplitudes des oscillations comme nous allons le voir.

1.2

Les oscillations de type solaire Evans & Michard (1962) et Leighton et al. (1962) observent dès 1962 des variations pério diques de vitesse à la surface du Soleil qu'ils attribuent aux mouvements turbulents de la surface solaire. L'amplitude de ces fluctuations est très faible, de quelques centimètres par seconde en terme de vitesse. Il faudra attendre les travaux de Ulrich (1970) et Leibacher & Stein (1971) pour identifier ces fluctuations solaires comme des oscillations associées aux modes propres globaux de la cavité solaire.

La cavité solaire

Les oscillations solaires sont la manifestation de l'excitation des ondes stationnaires dans la cavité résonnante que constitue l'étoile et dont la période du mode d'amplitude maximale est de l'ordre de 5 min. Dans la cavité solaire, on peut distinguer deux types d'oscillation :

Les modes de pression (modes p)

Les modes p sont des modes de nature essentiellement acoustique dont la force de rappel dominante est le gradient des fluctuations de pression, laquelle est associée une fréquence carac téristique Se, la fréquence de Lamb (Unno et al. 1989) définie par ,2_e(e+ iys 'l -^2 (1.12) avec cs la vitesse du son, r le rayon de la couche considérée et t le degré angulaire. ^provient de la projection des oscillations sur les harmoniques sphériques qui est une base adaptée à la symétrie sphérique (Unno et al. 1989). Il définit le nombre de noeuds sur la sphère et est lié au nombre d'onde horizontal par kh ->/£(£ + l)/r.

Se définit la fréquence de la réponse du milieu, à une perturbation de pression, l'oscillation. On comprend alors que les perturbations acoustiques peuvent se propager lorsque leurs fréquences sont supérieures à la fréquence de Lamb, i.e. eu > Se. Ainsi, les modes acoustiques ont des fréquences qui vont approximativement de 500/rHz à 5.5 mHz pour le Soleil comme le montre la figure 1.5 (cadre de gauche).

Les limites des cavités résonnantes sont liées à l'augmentation de la température et donc de la vitesse du son dans le centre (réfraction) et à une chute brutale de densité à la surface (réflexion). La cavité résonnante des modes acoustiques dépend du nombre d'onde horizontal.

Les modes radiaux (é = 0) auront donc une cavité s'étendant jusqu'au centre de l'étoile alors que les modes de plus haut degré angulaire seront confinés vers les couches extérieures. Remarquons que les modes sont évanescents à l'extérieur de leur cavité résonnante, c'est à dire pour Se > lu, car la période du mode est plus longue que l'échelle de temps sur laquelle la force de rappel agit.

Les modes de gravité (modes g) L'autre type de mode, les modes de gravité, sont des oscillations dont la force de rappel dominante est la force d'Archimède. Cette force agit avec une fréquence caractéristique qui est la fréquence de Brunt-Vaisala définie par N2 = g f 1 dlnp d lnp\ dr ) (1.13) /'Al avec g l'accélération de la gravité, ad , p la pression et p la densité.

Dans les régions stablement stratifiées, N2 > 0 alors que dans les régions convectives N2 < 0.

La cavité des modes de gravité se situe alors dans la région radiative du Soleil (voir figure 1.5), car ces modes sont évanescents dans la région convective. Afin de déterminer si ce mécanisme est efficace, l'approche consiste à étudier la stabilité des modes solaires. Les premiers travaux (Ando &;Osaki 1975;Goldreich & Keeley 1977a;Antia et al. 1982) qui n'incluaient dans cette analyse que les effets des pertes radiatives ont montré que la majorité des modes sont instables5, à l'exception de modes de haut degré (voir figure 1.6).

Néanmoins, en incluant les effets de la viscosité turbulente ainsi que l'interaction convectionpulsation, les modes acoustiques sont stables (par exemple Goldreich & Keeley 1977a;Balmforth 1992b).

Un autre mécanisme est donc à l'oeuvre pour les modes de type solaire.

Excitation par la convection turbulente La seconde hypothèse émise fut que les modes de type solaire sont excités par la convection turbulente. En effet, il est connu depuis longtemps que la turbulence émet un flux acoustique sous l'action du tenseur de Reynolds [START_REF] Lighthill | [END_REF]. Dans le Soleil, cela a été proposé dès la découverte des oscillations par Stein & Leibacher (1974) qui ont suggéré un mécanisme similaire à celui décrit par [START_REF] Lighthill | [END_REF] quelques années auparavant dans le cas d'un milieu stratifié (Stein 1967).

Ensuite, Goldreich & Keeley (1977a,b) ont montré dans une série d'articles que les modes pouvaient être stabilisés en incluant l'effet de la perturbation du flux convectif ainsi que l'effet de viscosité turbulente. Cette étude fût l'une des premières qui proposa une estimation quantitative de l'amplitude des modes solaires excités par la convection turbulente.

Plus tard, Balmforth (1992a) utilise une modélisation de la convection dépendante du temps basée sur une formulation non-locale de la longueur de mélange. Il montra que les modes de basse fréquence sont stables et proposa une modélisation des taux d'excitation des modes solaires par la convection turbulente. Les résultats obtenus sont trouvés en accord avec les observations au prix d'ajustement de nombreux paramètres.

Enfin, citons les travaux théoriques de Samadi & Goupil (2001). Il s'agit d'une généralisation du formalisme de Goldreich & Keeley (1977b) qui permet d'implémenter différentes descriptions de la turbulence dans le calcul. Les auteurs ont montré que, en plus du forçage par le tenseur de Reynolds, un terme entropique excite aussi les modes. Cette contribution se distingue de celle proposée par Goldreich et al. (1994) qui résulte des fluctuations lagrangiennes d'entropie, alors que la contribution introduite par Samadi & Goupil (2001) résulte de l'advection des fluctuations eulériennes d'entropie. A l'aide de simulations numériques 3D, Samadi et al. (2003a) ont été les premiers à reproduire les observations solaires sans ajustement aux données en contraignant les propriétés de la convection par l'utilisation de simulations numériques 3D. Notons les travaux 5z.e. excités par «-mécanisme.

de Chaplin et al. (2005) qui proposent une modélisation de l'excitation des modes, largement inspirée de Samadi & Goupil (2001), mais qui doivent du fait de leur choix pour la description de la turbulence ajuster leur résultats par un facteur de l'ordre de 20 pour reproduire les observations. Dans ce qui suit, nous détaillerons le modèle théorique de Samadi & Goupil (2001).

Problématique

La problématique de cette thèse est alors d'étudier les processus physiques à l'origine de l'excitation de ces oscillations en modélisant leurs amplitudes dans le cas solaire. 

Organisation de la thèse

Cette thèse s'articule autour de quatre objectifs qui font l'objet chacun d'une partie distincte.

La première concerne les amplitudes des modes radiaux solaires.

En effet, je m'intéresserai dans un premier temps à l'asymétrie de la zone convective solaire induite par la présence de panaches turbulents. Ces structures que l'on retrouve dans un grand nombre de milieux convectifs sont cohérentes, très turbulentes et ont une influence importante sur les régions convectives. Quel est l'impact de ces dernières sur l'amplitude des modes de type solaire ? peuvent-elles être négligées ? Je répondrai alors à ces questions dans la première partie de ce travail.

L'étape suivante a été d'étendre la modélisation de l'excitation aux modes non-radiaux. Cela m'a permis d'étudier l'excitation des modes acoustiques de hauts degrés qui sont confinés dans les couches les plus externes du soleil. Mais cela a permis aussi de m'intéresser aux modes de gravité solaire. La détection de ces modes est devenu un objectif majeur des héliosismologistes qui déploient des efforts considérables afin d'obtenir des contraintes sur le coeur du Soleil. Néanmoins, la détection des modes g solaires reste controversée. Dans la seconde partie de ce manuscrit je chercherai à mieux comprendre les mécanismes d'excitation et d'amortissement de ces modes.

Ainsi, je serai en mesure de proposer une estimation de leurs amplitudes mais aussi d'expliquer les désaccords entre les estimations des travaux antérieurs.

La troisième partie de cette thèse se focalisera sur les étoiles autres que le Soleil. En m'ap puyant sur les données observationnelles obtenues par le satellite COROT, je chercherai à dé terminer si des modes peuvent être excités stochastiquement par la convection turbulente de manière assez efficace pour être détectables dans les pulsateurs classiques. Ces étoiles variables puisent déjà sur des modes excités par des instabilités thermiques liées au comportement de l'opacité avec la température (k-mécanisme). La cohabitation entre ces deux types de mode se rait alors une première et fournirait d'importantes contraintes sur ces étoiles puisque chacun des deux types de modes nous renseignent sur des régions différentes de l'étoile.

Outre les manifestations de surface, la convection turbulente solaire a aussi des impacts plus profondément dans le soleil. En effet, le bas de la zone convective produit des ondes progressives, 6rappelons que en terme de luminosité, les amplitudes des modes solaires sont de l'ordre de 3 ppm.

1. Introduction et contexte général les ondes internes de gravité, engendrées par les mouvements turbulents mais aussi par la péné tration des panaches dans la zone radiative solaire. Ces ondes ont la propriété de transporter du moment cinétique et elles sont invoquées pour expliquer le profil de rotation de la zone radiative. Charbonnel & Talon (2005a) ont ainsi montré que ces ondes sont effectivement capables de rigidifier le profil de rotation solaire, mais aussi d'expliquer les anomalies d'abondance de lithium que l'on observe dans certaines étoiles de type solaire. Le flux d'onde émis par les régions convectives est un ingrédient essentiel qui reste encore mal compris et dont l'estimation reste sujette à de nombreuses incertitudes. J'ai donc cherché à estimer le flux d'onde émis à la base de la zone convective solaire par la pénétration des panaches dans la région radiative. La prescription établie est ensuite appliquée au problème du transport de moment cinétique.

Première partie

Effet de l'anisotropie de la convection turbulente sur les amplitudes des à la surface qui est de 1 Mm et l'échelle de dissipation qui est 1 cm. Ainsi, le nombre de points d'une simulation 3D doit être au moins de ce qui est aujourd'hui hors d'atteinte avec les moyens de calculs actuel.

Les LES (Large Eddy Simulation)

Les simulations de type LES (Large Eddy Simulations) ont alors été développées afin de rendre compte de la dynamique des plus grandes échelles, et cela soit en utilisant des simulations globales (Miesch et al. 2008) ou locales (Stein & Nordlund 1998) On obtient alors le système d'équations suivant pour un fluide auto-gravitant, à savoir l'équa tion de la conservation de la masse, du mouvement et de l'énergie dtp + di (pui) = 0 (2.1) 1 = ~diP -pgi + pdkcrik ds pT-= -di Fi + ajdj Vi + Pdk vk + e (2.3) avec i = {1, 2, 3} qui désigne les composantes, d la dérivée lagrangienne, d la dérivée eulérienne, Oij le tenseur des contraintes, p la densité, ü le champs de vitesse, p la pression, T la température, g le champs de gravité, s l'entropie, p la viscosité moléculaire, e représente une source extérieure d'énergie et F le flux radiatif.

Dans la suite, j'établis les équations régissant la convection turbulente. Pour cela, il est possible de faire plusieurs approximations -on négligera l'effet de la viscosité afin de simplifier l'exposé, ceci permet d'écrire = -PSij -on utilisera l'approximation de diffusion, i.e. une loi de Fourier Fi = -K d{T -Enfin, on fera l'hypothèse de Boussinesq. Cette dernière consiste à négliger les variations de masse volumique à l'exception du terme d'Archimède. On pourra trouver un exposé détaillé dans Spiegel & Veronis (1960).

Perturbation des équations

On définit alors les quantités liées à l'équilibre hydrostatique (po,po, Tq) ainsi que les écarts à ce dernier P = Po+P T = Tq + T p = p0 + p (2.4) avec l'équation de l'équilibre hydrostatique et d'énergie en l'absence de mouvement <hvo = -pag, (2.5) e + Kd^To = 0 (2.6) où K est la diffusivité thermique. En utilisant Eq. (2.5) et Eq. (2.4) dans Eq. (2.2) on obtient alors avec, dans l'approximation de Boussinesq (Spiegel Sz Veronis 1960) pf p --aT, avec a le coef ficient de dilatation thermique.

On effectue des manipulations analogues sur l'équation de conservation de l'entropie (Eq. (2.3)).

En partant de Eq. (2.3), on utilise l'approximation de diffusion, et la relation thermodynamique suivante Tds = CpdT --(2.8) P avec cp la capacité calorifique à pression constante.

On obtient alors

PoCp (dt + Ujdj) T = (dt + Ujdj)p + Kd^T -m (pogi + cppodjT0) (2.9)

On remarquera que le dernier terme de Eq. ( 2.9) est nul dans l'approximation d'une atmosphère isentropique.

Les quantités T,p et U{ sont des grandeurs qui "contiennent" à la fois un champ moyen ainsi que des fluctuations liées à la convection turbulente. Afin d'obtenir des équations pour chacune de ces composantes, il est d'abord nécessaire de définir une moyenne d'ensemble. Il y a principalement deux approches possibles qui seront choisies en fonction du problème à résoudre.

La première consiste à pondérer la moyenne par la densité, si on considère une quantité X on a alors < pX' >= 0 < X' 0 (2.10) Cette approche est très utile pour aller au-delà de l'approximation de Boussinesq. En effet, dans le cas où l'on cherche à résoudre les équations dans le cas compressible, l'utilisation de Eq. (2.10) simplifie beaucoup les équations (voir par exemple Canuto 1997; [START_REF] Deng | [END_REF]). Néanmoins, ici l'approximation de Boussinesq simplifie l'exposé, ceci permet d'utiliser une moyenne plus "traditionnelle" qui est X=<X>+X' < X' >= 0 (2.11) Nous allons utiliser les équations Eq. (2.7) et Eq. ( 2.9) afin de mettre en évidence les équations le terme en dp/dt dans Eq. ( 2.9) a été négligé car c'est un terme d'ordre 2 en nombre de Mach. Le nombre de Mach, définit comme le rapport entre vitesse du fluide et vitesse du son, est inférieur à l'unité dans les intérieur stellaire et en particulier dans le Soleil, ce qui justifie l'approximation.

2.2.3

Fermeture au premier ordre Les équations Eq. (2.14) à Eq. ( 2.17) nous permettent alors d'obtenir la dynamique des champs moyens U et 0 ainsi que celle des fluctuations. On doit cependant spécifier les moments d'ordre deux qui sont le flux convectif pcp < VjO > ainsi que le tenseur de Reynolds < V{Vj > (dont la partie diagonale correspond à la pression turbulente pt = p <v {Vi >).

A ce stade, on peut faire une hypothèse, que l'on pourra nommer d'ordre zéro. Il s'agit d'une approximation de type longueur de mélange qui a été introduite initialement par Prandtl (1925), on suppose < ViVj >= ut (djVi + diVj) (2.19) où ut est la viscosité turbulente que l'on définit comme La fermeture la plus utilisée est l'approximation du gradient. Elle repose sur l'idée que les moments d'ordre trois sont une combinaison linéaire des gradients des moments d'ordre deux.

Soit par exemple < UiUjUfc >OC (TimdmTjk "b Tjm^m^ik "b 'Tkmdm'J'ij) (2.24) avec Tij =< U{Uj >. Dans cet exemple, le coefficient de proportionalité dépend de paramètres, on pourra se référer à [START_REF] Speziale | A review of Reynolds stress models for turbulent shear flows[END_REF] ou encore Mellor & Yamada (1982) pour plus de détails.

L'Eq. ( 2.21) permet de prendre en compte le caractère non-local du problème, car par exemple le terme dk < ViVjVk > décrit le transport des flux (le moment d'ordre deux). Hors, dans bien des applications le caractère non-local de la convection turbulente est un aspect qui ne peut être négligé. La démonstration en a été faite, par exemple, par Kupka & Montgomery (2002) qui ont montré que dans une étoile de type A, dans laquelle deux zones convectives coexistent l'une correspondant à l'ionisation de l'Hélium et l'autre de l'Hydrogène, ces deux régions sont dynamiquement liées alors qu'elle ne le sont pas thermiquement.

Ce type d'approximation a été particulièrement utilisé en physique de l'atmosphère (Canuto 1992;Mironov 2008), néanmoins il pose des problèmes par exemple dans les couches limites car il ne donne pas le bon signe du moment d'ordre trois. Ce chapitre a donné lieu à un article publié dans A&A : A closure model with plumes. I. The solar convection Belkacem, K. ; Samadi, R. ; Goupil, M. J. ; Kupka, F. 2006, A&A, 460, 173 On pourra donc trouver tous les détails ainsi que les démonstrations dans cet article qui est reproduit à la fin de ce chapitre.

Dans le chapitre précédent, j'ai montré que la modélisation de la convection turbulente né cessite de déterminer des moments impliquant les fluctuations de vitesse et de température. -Enfin, après z = 0.5 Mm on trouve une région quasi-adiabatique (V -Vacj) ~0. C'est une région qui est plus simple à modéliser car le profil de température est connu (V ~Vad).

La région d'excitation se situe principalement entre z = -0.2 Mm et z = 2 Mm.

3.1 L'Approximation Quasi-Normale (QNA)

Un modèle de fermeture couramment utilisé la "QNA" (quasi normal approximation) qui historiquement fut proposée par Millionshchikov (1941) et [START_REF] Chou | On an extension of Reynolds' method of finding apparent stress and the nature of turbulence[END_REF] indépendemment (Lesieur 1997). -Dans la zone convective quasi-adiabatique (z > 0.5 Mm), les fonctions de distributions présentent une forte asymétrie qui est relativement constante et il en va de même pour les kurtosis qui 's'éloigne de la valeur 3 (prédite par la QNA).

-Enfin dans la zone intermédiaire, la zone superadiabatique, la situation est complexe sur tout en terme de température. En particulier, les facteurs d'aymétrie deviennent nuis mais les facteurs d'aplatissement restent éloignés de trois. 

Les modèles à deux flots

Les modèles à deux flots permettent de prendre en compte explicitement l'effet de la présence de flots ascendants et descendants sur les produits de corrélation à un point. En effet, ces deux flots introduisent une contribution supplémentaire sur les moyennes car ces dernières ne sont plus centrées lorsque les moyennes des deux flots diffèrent. De tels modèles ont été récemment améliorés par Gryanik & Hartmann (2002, GH2002) dont le but était de prendre en compte le fait que les fluctuations de température et de vitesse verticale ne sont pas obligatoirement corrélées.

Dans un premier temps, nous expliciterons les équations du modèle à deux flots "classique" pour ensuite aborder les améliorations proposées par Gryanik & Hartmann (2002). Va(1 ~a) 

tu'V > = Swcrw < w'9' > < w'0'2 > = Sqctq < w'9' > <w'4 > " (1 + Sl)<T* < O'4 > = (1 + Sq)(Jq < w'3e' > = (1 + Sl)crl < w'9' > < w'e'3 > -(1 + < w'9' > (3.15)
<jw et ae sont les écarts-types des fluctuations de vitesse verticale et de température.

Les facteurs d'asymétrie obtenus en Eq. (3.15) ne font intervenir que le facteur a, ils ne font aucun cas des processus turbulents ayant lieu au sein des flots montants et descendants.

Les limites asymptotiques

Analysons les limites asymptotiques du système d'équations Eq. (3.15). Le plus simple est de considérer le cas où Sw, Se -> 0 car on doit retrouver alors des moments compatibles avec la QNA. Dans cette limite :

-Les moments d'ordre trois deviennent nuis.

-Les moments d'ordre 4 posent un problème. En effet, on devrait obtenir par exemple pour le moment d'ordre 4 : < w14 >= 3 cr^, or dans les expressions Eq. (3.15) il manque le facteur Pour résumer, on peut distinguer deux processus qui expliquent un facteur d'asymétrie non nul -La présence des panaches, donc l'asymétrie des flots (traité par GH2002).

-La turbulence au sein des flots montants et descendants (non traité par GH2002).

De plus, rien ne permet d'affirmer que les flots montant et descendant présentent les mêmes caractéristiques, par exemple la pression turbulente n'est pas la même. Cette autre asymétrie doit pouvoir être prise en compte par un modèle plus réaliste.

Modèle de fermeture avec panaches

Dans ce chapitre, on cherche une modélisation de < w'A > dans la zone quasi-adiabatique.

La démarche est la suivante; j'établis un modèle à deux flots généralisé, qui va au-delà de l'approximation classique (Eq. (3.9)) et l'on cherche les approximations adaptées au problème qui nous intéresse. J'utilise pour cela le modèle de panache de Rieutord & Zahn (1995). Cela permettra d'établir un modèle de fermeture prenant en compte les panaches (le MFP). Enfin, je compare les résultats à la simulation numérique 3D. -On néglige les moments du flot montant (< w12 >, < w''f >).

-En ce qui concerne le flot descendant, le moment d'ordre 3 est négligé < >. In the uppermost part of the solar convective zone, turbulent entropy fluctuations and motions of eddies drive acoustic oscil lations. 3D numerical simulations of the stellar turbulent outer layers hâve been used to compute the excitation rates of solarlike oscillation modes (Nordlund & Stein 2001). As an alterna tive approach, semi-analytical modelling can provide an understanding of the physical processes involved in the excitation of p modes: in this case, it is indeed rather easy to isolate the dif ferent physical mechanisms at work in the excitation process and to assess their effects. Various semi-analytical approaches hâve been developed by several authors (Goldreich & Keeley 1977;Goldreich et al. 1994;Balmforth 1992;Samadi & Goupil 2001); they differ from each other by the nature of the assumed exci tation sources, by the assumed simplifications and approxima tions, and also by the way the turbulent convection is described (see the review by Stein et al. 2004). Among the different theoretical approaches, that of Samadi & Goupil (2001) includes a detailed treatment of turbulent convection, which enables us to investigate different assumptions about turbulent convection in the outer layers of stars (Samadi et al. 2005). In this approach, the analytical expression for the acoustic power supplied to the Lesieur 1997) and was first introduced by Millionshchikov (1941). The QNA is rather simple and convenient to implement. However, Ogura (1963) has shown that such a closure could lead to part of the kinetic energy spectrum becoming négative. In this paper, we confirm the results of Kupka & Robinson (2006, hereafter KR2006), namely that this approximation indeed provides a poor description of the physical processes involved in solar turbulent convection.

(r,z) = V(z) exp(-r2/b2) bp{r) z) = Ap(z) exp(-r2/b2) ôh(r,z) = A h(z) exp(-r2/b2) ( 3 
Mass flux models (e.g., Randall et al. 1992;Abdella & McFarlane 1997) clearly miss some important physical effects présent in convective flows. Gryanik & Hartmann (2002) and Gryanik et al. (2005) studied the asymptotic limits of TFM which led the authors to propose an interpolation between the QNA and the limit of large skewness provided by the TFM. This new parametrization permits a much better description of the FOM for convection in the atmosphère of the Earth (GH2002). We show that for their parametrization to be applicable to the case of solar convection, a more realistic estimate for the skewnesses of velocity and tem pérature fluctuations is required than that provided by the TFM itself (Sect. 2).

The parametrization of GH2002 requires the knowledge of the skewnesses and second-order moments to compute FOM.

These hâve to be provided either by measurements, by another model, or by numerical simulations. In the présent paper we do not aim to construct a complété model to compute these quan tifies, which is the goal of the Reynolds stress approach (e.g., Canuto 1992;Canuto & Dubovikov 1998). Rather, we aim to analyze the shortcomings of the TFM and suggest improvements using numerical simulations of solar convection as a guideline.

The conclusions drawn from this analysis are used to dérivé a model for fourth-order moments in terms of second-order mo ments that can be used in computations of solar p-mode excita tion rates.

To proceed with the latter, we developed a formulation of the TFM that takes the effects of turbulence in each flow into account. This generalized TFM model (hereafter GTFM) is useful for both the superadiabatic and adiabatic outer solar layers. This formulation can actually be applied in other contexts than just the excitation of solar p modes as long as the convective System is composed of two flows.

The GTFM is more general and realistic than the TFM, but it requires the knowledge of additional properties of both the tur bulent upwards and downwards flows. We choose to détermine these properties by means of a plume model. Turbulent plumes are created at the upper boundary of the convection zone, where radiative cooling becomes dominant and where the flow reaches the stable atmosphère. In this région the updrafts become cooler and stop their ascent. This cooler flow is more dense than its environment and it triggers the formation of turbulent plumes (Stein & Nordlund 1998). As shown by Rieutord & Zahn (1995), these structures drive the dynamics of the flow; hence, to con struct a closure model, we study the plume dynamics developed by Rieutord & Zahn (1995, hereafter RZ95). This makes it possi ble to build a closure model with plumes (CMP), which is valid in the solar quasi-adiabatic convective région. In a companion paper (Belkacem et al. 2006, hereafter Paper II), we generalize this one-point corrélation model to a two-points corrélation model and calculate the power injected into solar p modes.

The paper is organised as follows: Sect. 2 introduces the TFM. Its validity is then tested with a 3D numerical simula tion of the uppermost part of the solar convection région. In Sect. 3, we extend the TFM formulation (GTFM) in order to take into account turbulent properties of both upward and downward flows. We next investigate the asymptotic limits of the GTFM. In Any averaged turbulent quantity 0 can be split into two parts, one associated with the updrafts and the other with the downdrafts:

<0> = a(<p) u + (1 -a)<0> d, (1) 
where () dénotés ensemble spatial (in the horizontal plane) and time averages. (0)u and (0)d are the averages for the upflow and downflow, respectively. a and 1 -a are the mean fractional area occupied by the updrafts and downdrafts, respectively (Randall et al. 1992;Gryanik & Hartmann 2002;Canuto & Dubovikov 1998).

Fluctuating quantities defined as 0' = 0 -(0) can be rigourously written as: (0'} = a (0/)u + (1 -à) (0')d, where the subscripts u and d are meant for upflow and downflow, re spectively. For vertical velocity fluctuations w', one then writes:

W) = a (w')u + (1 -a) (w')d. (2) 
GH2002 propose to make the same décomposition for tempéra ture fluctuations (d'y, thus, hot and cold régions are considered separately. This step was motivated by the observation that for the case of atmospheric boundary layer the characteristic hori zontal scales of velocity and température fluctations are differ ent from each other and by the fact that the plain mass flux av erage Eq. ( 1) violâtes certain symmetries between velocity and température fluctations. Indeed, hot and cold régions do not necessarily coincide with updrafts and downdrafts, respectively.

Hence, a second quantity (b), the mean fractional area occupied by warm drafts, is introduced, and in most cases, a t b (thus the name TFM). Then,

(6') = b(d')h + (\~b)(e')c. (3) 
Furthermore, the TFM defines the velocity fluctuations inside the upflow (w'u) and downflow (u/,), respectively, as:

w'u = wu-(w) and w'd = -(w). ( 4)

Similarly, for the température fluctuations inside hot (é?^) and cold (0j) régions, respectively, one has d'h = 6h-(e) and 9'c=ec-( 9).

(

) 5 
The quantities wu, w^, $h, and 6C are the averages of veloc ity and température, respectively, over ail updrafts (u;u), down drafts (ma), hot (0h) drafts, and cold (9C) drafts. Clearly, averages of the four fluctuating quantities in Eqs. ( 4) and ( 5) do not vanish because the average of a quantity over the whole flow differs from the average over one single (up or down, hot or cold) draft.

It is expected that the différences between the updrafts and downdrafts lead to a probability distribution function (PDF) that is no longer symmetric with respect to vanishing velocities and température différences. As the third-order moments «il»'3) and (0'3)) vanish when the PDF is symmetric, their values provide a measure for the déviation from a symmetric PDF. The skewnesses are defined as:

(w'3) " O'/1)'111 and S g

(O'3) <6/'2>3/2' [START_REF] Belkacem | A closure model with plumes. II. Application to the stochastic excitation of solar p modes[END_REF] respectively, for the vertical velocity and température fluctua tions. In order to compute expressions for higher order mo ments in terms of velocity and température fluctuations, Eqs. ( 4) and ( 5), GH2002 followed Randall et al. (1992), using an additional simplifying approximation, i.e., <0"> « <*>", (7) where 0 = Wnà,^c)-This approximation neglects the contri butions of flucutations within the up-and downdrafts and différ ences in température and velocity between the individual drafts.

Given this approximation and the known second-order mo ments, the TFM provides third-order moments as follows (see

GH2002): <u/V> = S W(w,2)l/2(iv'd') (8) 
(w'd'2) = Sg(e,2yi2(w'e')

and FOMs as:

<i»'4) = (l + S2JW2}2 (e'i) = (\+s20){(f2)2 (9) <u>'3e'> = (i + s3) (w'2) (w'ff) {w'ff3) = (\+S20) (ff2){w'ff).
The skewnesses Sw and S g (Eq. ( 6 

(GH2002; see also Randall et al. 1992, for the case of Sw).

In the following we consider only vertical-velocity moments.

Assuming S ^= S g = 0 in Eq. ( 9) gives:

<u/4> = (w'2)2. ( 11 
)
Such a resuit is not consistent with a quasi-normal (Gaussian) PDF. Indeed, when u/ follows a normal distribution, then (Lesieur 1997):

SW = S0 = 0 and (w'4) = 3(w'2)2. ( 12 
)
GH2002 found that the two-scale mass-flux average, Eqs. ( 8)-(10), underestimates both skewness and fourthorder moments as measured by aircraft data for planetary boundary layer convection (see their Figs. 4 and7). To account for the omitted contributions from fluctuations within and be tween the up-and downdrafts, they suggested generalizing the TFM by building the fourth-order moments as an interpolation between two asymptotic régimes:

-Sw = 0, assuming the quasi-normal approximation (QNA) limit that is valid for a Gaussian PDF, and -Sw » 1, the large skewness limit (GH2002 code (Stein & Nordlund 1998). Two simulations with different spatial grids were considered: 253x253x 163and 125x 125x82.

Averages and moments of the velocity and température fluctuations were computed in a two-stage process:

a is given as the number of grid points per layer with upwards directed vertical velocity divided by the total number of points in that layer. The instantaneous value of b is obtained in a similar manner, comparing the température at a given point in a layer with its horizontal average. Moments related to updrafts were obtained from horizontal averaging, using only those grid points at which vertical velocity was directed upwards at the given instant in time, and likewise, quantities related to downdrafts were obtained from horizontal averaging using only those grid points at which vertical velocity was directed downwards. In a second step, time averages were performed over a sufficiently long period of time such that averages no longer depended on the intégration time beyond a few percent.

-Calculation of the skewnesses: computations of the mean fractional area of the upflow (a) and downflow (1 -a), as well those of the warm (b) and cold (1 -b) drafts from the numer ical 3D simulations (Fig. 1), show that the upper part of the solar convection zone can be divided into three parts: the sta ble atmosphère, the superadiabatic zone, and the quasi-adiabatic zone. In the convectively stable atmosphère (z < 0 Mm, where z = 0 is approximately at the bottom of the photosphère and Z = -0.5 Mm is the uppermost boundary of the simulation), there are no asymmetric motions. In the superadiabatic zone (0 < z < 0.5 Mm), from the top downwards, the departure from symmetry for the flows strongly increases (Fig. 1), and the skewnesses, Sw and S g, significantly differ from zéro (Fig. 2).

Hence, one must expect a non-negligible departure from the QNA, which is explained by radiative cooling creating turbulent plumes. In the quasi-adiabatic zone, plumes hâve already been formed and no additional asymmetry is therefore created. Hence, Z the asymmetry remains large and constant (a ^b « 0.7) and the skewnesses show a constant departure from Sw = Sg = 0.

The last two régions are of interest in this work because both show a departure from the quasi-normal PDF in terms of fluctuating vertical velocity and température. The comparison of the above numerical results with the results from the classical TFM (Eq. ( 9)) and the TFM model (Fig. 2) shows that Eq. ( 10) fails to reproduce the behaviour of the skewnesses from the 3D sim ulation (as was also found by Gryanik & Hartmann 2002 for convection in the atmosphère of the Earth, see their Fig. 4).

-Detailed comparison of a fourth-order moment: the GH2002 interpolation relation Eq. ( 14) combined with the TFM relation for skewness, Eq. ( 10), shows only a slight improvement of the QNA description for the FOM (w'4), when compared to the numerical resuit (Fig. 3).

To conclude, it seems that a physical process is missing in the quasi-adiabatic convective zone. To explain such a disagreement between the numerical results and the TFM, we must corne back to its main approximation (see Eq. ( 7)). For n = 2, Eq. ( 7) yields:

<u/2>-(u/>2 ^0 <0,2> -(6')2 « 0. ( 14 
)
Hence, the TFM assumes that the variances of the fluctuations of vertical velocity and température within and among individual drafts vanish, and the detailed turbulent nature of the flows themselves does not hâve to be taken into account. In order to compensate for the shortcoming of Eq. ( 9) and thus the conséquences of the approximation Eq. ( 7) on the model prédictions, Gryanik & Hartmann (2002) proposed a more general interpolation z (Mm) Fig. 2. The skewnesses Sw (on the top) and S g (on the bottom) are plot ted versus the depth (z). Solid Unes represent direct calculation from the 3D numerical simulation (Eq. ( 6)) and dashed lines represent the skewnesses calculated using the TFM model (Eq. ( 10)).

Fig. 3. Fourth-order moment «w'4)) as a function of depth (z) normalized to the FOM, as calculated directly from the simulation. The solid line dénotes the moment calculated using Eq. ( 14) with Sw taken di rectly from the simulation; the dashed line shows the resuit if Sw is instead taken from Eq. (10), as in the TFM case; and the dotted line is the QNA (Eq. ( 26)). Equations ( 14) and (26) involve second-order moments that are computed using the numerical simulation.

relation (Eq. ( 14)) that uses Eq. ( 9) only for one of two asymptotic limits.

As seen above, Eq. ( 10) fails to describe the numerical re sults. The question therefore is whether the interpolated relation (Eq. ( 14)) is still valid, provided a correct value for the skewness is used. Hence, we assess the validity of Eq. ( 14) by inserting the value of S w directly given by the 3D numerical resuit. The resuit is shown in Fig. 3 as well. This is the model that Gryanik & Hartmann (2002) proposed to be used instead of the TFM itself and its associated relation for the skewnesses, Eq. ( 10). We obtain an accurate description of the FOM (w'4) in the quasiadiabatic région, but not in the superadiabatic zone, where the interpolated relation does not seem well adapted (cf. KR2006

for a more detailed discussion).

3. The generalized two-scale mass-flux model Here we remove the approximation of Eq. ( 7) and instead consider the exact expression:

(w'n) = a(w'n)u + (1 -a)(w'")d. ( 15 
)
Our main idea is to separate the effect of the skewness introduced by the presence of two flows from the effect of the turbu lence that occurs in each individual flow. We note that in a geophysical context Siebesma & Cuijpers (1995) and Petersen et al. (1999) studied the transport properties of classical mass-flux models that also involved a séparation of large-scale and turbu lent components. Here, we start from the more recent viewpoint of the TFM by Gryanik & Hartmann (2002) and Gryanik et al. (2005), which takes into account that updrafts and downdrafts are not strictly correlated with hot and cold drafts, respectively.

As a first step we define the intrinsic fluctuations within one of the flows as:

w'j = wj-(w)j,

where j = {u,d}. They are fluctuations with vanishing averages.

To express w'j in terms of w'j (Eq. ( 4)), we write: w'j = w'j + <w)j -(w).

(
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Applying the décomposition of Eq. ( 1) to (w) in the above 

because (w)u > 0 and (w)t\ < 0.

Inserting Eq. ( 18) into Eq. ( 15) for n = 2,3 yields:

(w,2> = a( 1 -a) ôw2 + a(w'2)u + ( 1 -a){w2)d (20) (w'3) = a{ 1 -a){ 1 -2a)ôwi + a(w3) u + (1 -a)(w3)ci +3a{\ -a) (w'2)u -<ù)'z>d ~,/2\ ÔW. ( 21 
)
The third-order moment (Eq. ( 21)), which is related to the skew ness (see Eq. ( 6)), is composed of four contributions:

-the first term is the expression derived by Gryanik & Hartmann (2002). It is a measure of the skewness introduced by the presence of two flows;

-the second and third terms represent the asymmetry of the PDF within each flow induced by turbulence;

-the fourth term measures the différence of the fluctuating velocity dispersion. Hence, if one of them is larger than the other, the PDF becomes asymmetric.

The description of the turbulence in individual flows that has been neglected in the TFM is included in the présent formulation through the last three terms in Eq. ( 21).

We next focus on the fourth-order moment (w'4), which is of interest in the context of stochastic excitation of solar p modes (see Paper II). Then setting n = 4 in Eq. ( 15), we hâve:

(w'4) = a( 1 -a)( 1 -3a + 3a2) ôw4 +6a(l -a)|(l -a)(w2)u + a(w2)djôw2 +4a(l -a)^(w'2)u -(û/3)dj<5a> +a(w'\+ (1 -a)(w,4)d. ( 22 
)
We stress that the TFM is recovered from the présent generalized formulation when proper fluctuations (i.e., turbulence) within and among the individual drafts are neglected, i.e., (wm) = 0.

The same décomposition can be performed in terms of tem pérature fluctuations. As the calculation is symmetrical in w',a and 6', b, we hence hâve:

(d'2)

«?/3> 6( l-ïïôé2 +b(d'\+(\ -b)(d'2)c 6(1 -6)(1 -2b)ô03 +b(6'\+ (1 -6)<0'3>c +36(1 -b) Ce'2)h -Co'2)c 69 (&4) = 6(1 -6)(1 -3b + 3b2) ôtf +66(1 -6)((1 -6)(0'3}h + 6<6'2>c) Ô62
+46 (1 -6)| (6/3>h -(6,3>cj ô6 +6(6/4>h + (1 -6) [START_REF] Belkacem | A closure model with plumes. II. Application to the stochastic excitation of solar p modes[END_REF]4)c.

(
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The next step consists of the dérivation of the cross terms (w'9'), (w,20'2), (w,20') and (w'd'2)', it is convenient to define the coefficients «uh^uc so as to take into account the four types of flow (see also GH2005):

-warm updraft, auh -cold updraft, aÜC = a -auh -warm downdraft, «dh = 6 -aüh -cold downdraft, «de = 1 -6 -auc Expressions for the third and fourth cross-correlation moments are given in Appendix A.

The generalized TFM has the advantage of isolating the skewness introduced by the two flows (as measured by S w and S g in Eq. ( 10)) from the effects of turbulence in each of the flows (as measured for instance by the two terms w'd and w'2). The GTFM allows us to take the effects of turbulence into account. We note that a small value of the kurtosis can occur only if proper fluc tuations lead to negligibly small déviations from the root mean square average. Such a flow pattern consisting of clearly defined up-and downflows as well as hot and cold areas with a kurtosis Kw ^1 can be considered as representing a quasi-laminar State.

We stress that for the quasi-laminar case, Eq. ( 9) remains exact;

thus the kurtosis becomes:

Kw = <«/4> (w'2)2 = (1 + S2V) with Sw 1 -2a V«( 1 -a) ( 24 
)
For a = 0.5, one obtains Kw = 1, which is far from the value for a Gaussian PDF {Kw -3). To take into account turbulence within the up-and downdrafts, one can use Eq. ( 14) (see Sect. 2.2) with the skewness Sw = {w'2)/(w'2)3/1 from the GTFM. In this case we obtain:

iC" = 3(l + -Sîj.

(25)

This implies that a (moderately small) non-vanishing skewness will make the value of Kw closer to three than in the quasilaminar case. In the solar case, in the quasi-isentropic zone S2 ~4 (Fig. 2), hence Kw « 3 + 4/3. In the physical picture underlying Eq. ( 14), turbulence prevents the PDF from being too far from a Gaussian one (Kw -> 3).

We notice that one important source of turbulence that can be considered responsible for at least part of the fluctuations in a draft -in addition to those created by the radiative processes on top of the convection zone -is related to shearing stresses between the up-and downdrafts. However, the investigation of the sources of turbulence is beyond the scope of the présent work.

Those mechanisms certainly play an important rôle in both the small scale velocity and the thermal fluctuations. Their study is definitely désirable in the future. One should also note that the splitting approach of the GTFM is valid and can be used for any convective System, provided that it is composed of two flows.

As it is unclosed, it must be seen as a good basis for building a closure model.

Asymptotic limits

In the following, we study the asymptotic limits of the GTFM, focusing on the fourth-order moment (w'4). The standard mass flux model is easily recovered when setting the proper moments to zéro: (w,n) = 0 in Eqs. ( 20)-( 22). The same holds for the TFM, Eqs. ( 8)-( 9), which is recovered, if in addition (d'11) = 0 in Eq. (23) (cf. Eqs. ( 7) and (8) in Gryanik & Hartmann 2002).

We now turn to the QNA limit and the limit for large skew ness, which are more interesting as they are used by Gryanik & Hartmann (2002) and Gryanik et al. (2005) in order to corroborate the interpolation formula Eq. ( 14).

The quasi-normal limit

To obtain the QNA (Eq. ( 12)), it is necessary that 5^= 0, but it is not sufficient. In fact, a vanishing skewness only shows that the PDF is symmetric, but not that the PDF is Gaussian. Further conditions are necessary:

-the moments must hâve zéro mean, which implies |(iQu| = |<u;)d| = 0 from Eqs. ( 2) and (18); -for the QNA to apply to the whole System, one must assume that the QNA is valid for each flow;

-we must also assume that a = 0.5;

-the turbulent pressure must be the same in the upflow and downflow. Otherwise the skewness (5J is different from zéro, according to Eq. ( 21), and the conséquence is an asymmetric PDF, which is not consistent with the quasi-normal assumption. So the condition (w,2)u = (û),2)d is required.

Then starting with Eq. ( 22), we find: which is the expression for the fourth order moment in the QNA.

Note that the TFM (Sect. 2) is unable to properly recover the QNA. Within the GTFM the QNA results from two terms, (w'4)u and (w'4)d, which are related to the intrinsic turbulence in each flow, but these are neglected in the TFM. This example also demonstrates that for a convective flow, the déviation of a PDF from a Gaussian one cannot be modelled by the TFM without further modifications of that model (even if a = 0.5).

3.2.2. The large skewness limit Gryanik et al. (2005) hâve shown that the TFM must be recov ered when considering a convective System with large skewness.

Then, for S w » 1, the expression for (w'4) in Eq. ( 14) becomes:

(w'4) » S2Jw'2)2. ( 27 
)
The large skewness limit physically corresponds to either a » 1 or a » 0. Indeed, it means that one of the two flows dominâtes over the other one in terms of mean fractional area in the hori zontal plane. Thus, due to conservation of mass, the mean verti cal velocity becomes large such that ôw » 1 m s-1 in the solar case (see Sect. 4, Eq. ( 41)).

In Eq. ( 22), the term proportional to ôw4, which measures the effects introduced by an asymmetric flow, dominâtes and leads to the TFM expression for the fourth-order moment (w'4):

(w'4) = a( 1 -a)(a3 + ( 1 -af^ôw4.

(28) Gryanik & Hartmann (2002) demonstrated that this expression leads to the relation:

(w'4) = (1 + S2)(w'2)2 ~S2(w'2)2 for 5 » 1, (29) 
where, as in Eq. ( 10), S = (1 -2a)/ sja ( 1 -a). The same would resuit if the exact function Sw were taken in this limit instead of its approximation, Eq. (10).

Hence, the GTFM enables us to show that the asymptotic limits used by Gryanik & Hartmann (2002) to motivate the interpolated expressions for the FOMs (Eq. ( 14)) are limiting cases for a flow that consists of a cohérent part with two components (up-and downdrafts), which themselves are subject to turbu lence (cf. the discussion of the GH2002 model in KR2006). In Sect. 2.2 we hâve shown, using the 3D numerical simulation, that this interpolation is valid provided the skewness is taken directly from the 3D simulation. This property can be understood using the GTFM, as it permits us to obtain the different ingrédi ents of the interpolation formula of Gryanik & Hartmann (2002) from Eq. ( 22) and the individual contributions to Eq. ( 22), can be analyzed using numerical simulations.

4. The closure model with plumes Section 2.2 confirmed the conclusion by KR2006 that the interpolated relations in Eq. ( 14) proposed by Gryanik & Hartmann (2002) could be adapted for the solar case provided that the skewnesses are appropriately calculated. Using the GTFM to model skewnesses, Eq. ( 21) shows that the skewness Sw, for in stance, dépends on six quantifies: ôw, (û/3)u,d, (ü'2)\i,d, and a. As shown below, some of the terms in Sw turn out to be negligible in the quasi-adiabatic convective région because plumes are more turbulent in the downflow than in the upflow (Stein & Nordlund 1998). The remaining dominant terms are modelled hereafter by a plume model (Rieutord & Zahn 1995) in the quasi-adiabatic convective région, where the CMP is valid. 21), the dominant terms remains 3a(l -a){w'2)dôw.

This justifies the assumptions that the terms involving third-order mo ments can be neglected in the quasi-adiabatic zone.

In Fig. 4, we compare the second-order moments of both flows.

These quantifies are of the same order of magnitude in the upper part, above the photosphère. From the photosphère, the ratio (û)'2)u/(ü)/2)d then sharply decreases, with increasing depth (z). Hence, contributions to the skewness (Sw), involving (w,2)u (Eqs. ( 20) and ( 21)) can be neglected in comparison with those involving (w,2)d in the quasi-adiabatic part of the convection zone. The third-order moments (û),3)d and (w,3)u can also be discarded (see Fig. 5) because their contributions are negligible.

The skewness Sw then becomes:

Sw = -2d)ôw2 -3(w2)d^ôw, ( 30 
)
where ôw is given by Eq. ( 19). Hence, only (w,2)d and ôw remain to be modelled. Similarly, the 3D calculations show that the cool medium is more turbulent than the hot one and that third-order moments for the température fluctuations can be neglected. Then the expression for Se becomes:

s" = b(\-b) ^-((1 -2 3<ê' 2>c) 66, (31) 
where the quantifies66 = (6)\ï-{6)c and (6'2)c must be modelled.

Note that in the QNA limit ôw = 0, so that for the expression Eq. ( 30), Sw = 0, and according to Eq. ( 14), (w'4) = 3 (w'2)2.

However, because we hâve assumed (w'2)u <sc (w'2)d when deriving the expression S w, rigourously speaking, S w does not tend correctly to zéro in the QNA limit. Such an expression therefore cannot be used in the case of a near QNA régime. In our case, we hâve shown in Sect. 2.2 that the medium is far from the QNA limit in the quasi-adiabatic zone, and hence the expression Eq. ( 30) can be safely used.

To proceed further, (w,2)d and (d,2)c are written in a more suitable form. We neglect <û)'2)u in Eq. (20) for {w '2), and (62)h in Eq. ( 23) for (6'2). This yields:

(u/2) = a( 1 -a) ôw2 + (1 -a)(w'2)d (6'2) = b{\ -b) ôé2 + (1 -b)(6'2)c. ( 32 
)
We then dérivé expressions for (w'2)d and (6'2)c in terms of {w'2), ôw, and (6'2), 66, respectively (see Eq. ( 32)). Inserting them into Eqs. ( 30) and (31), one then obtains:

Sw = 2 3/2 a |(1 -a){ 1 -5d)ôw2 -3<u/2>j ôw (33) and S" = 6 ((1 -6)(1 -5 S^2)) 66. ( 34 
)
We assume that the second-order moments ((u/2) and {6'2)) are known. In the présent work, they are computed from the 3D numerical simulation. In principle, they could also be taken from a convection model such as the mixing-length theory. The last step then is to détermine ôw and ôd (as well as a and b). As ôw is the différence between the mean velocities of upward and downward flows, it is possible to model it by means of a plume model.

This approach is also used to détermine ôd. We use the model of plumes developed by Rieutord & Zahn (1995). The plume is considered in an axisymmetric geometry with a Gaussian horizontal profile for the vertical velocity (uid), the fluctuations of enthalpy (ôh), and density (ôp) such that wd(r,z) = V(z) exp(-r2/b2), ôp(r,z) = Ap(z) exp(-r2/b2), and

ôh(r,z) = Ah(z) exp(-r2/b2). ( 35 
)
where bp(z) is the radius of the plume. We assume, as in RZ95, an isentropic and polytropic envelope structure, hence

P(z) = po 0z/zo)q, T(z) = T0 (z/zo), ( 36 
)
where q is the polytropic coefficient, po and To are the density and température at depth z = Zo, and zo is the reference depth that corresponds to the base of the convective région.

In Fig. 6, we show that the mean velocity of upflow and downflow in the quasi-adiabatic convection zone both obey a power law in (z/zoY-We therefore assume a power law for the mean velocity of the downflow (i.e., the plumes). Then Fig. 7. Fourth-order moment (u/4) as a function of depth z normalized to the FOM calculated directly from numerical simulations. The solid line shows (w'4) calculated using the CMP model, the dashed line is the moment as obtained from Eq. ( 14) with Eq. ( 10) for Sw, and the dotted line is the QNA, Eq. ( 26). (RZ95), where r = (-q + \)/3,/3o = 3a/(q + 2), and a = 0.083 is the entrainment constant for a Gaussian profile (Turner 1986).

F is the convective energy flux and g is the gravitational accél ération. In Table 1, we list solar values of the previously introduced parameters taken from RZ95. These values are used in the présent paper except for F, which is taken from the 3D numerical simulation (as explained below). For a monoatomic perfect gas, one has q = 3/2, hence r = -1/6. However, our 3D numerical simulations indicate a value of r closer to 0. The reason is likely that there is radiative cooling. Hence, y)T = cp/cy, where y is the polytropic index (q = l/(y -1)).

Following Rieutord & Zahn (1995), we assume that ail the convective energy flux is transported by the plume, thus

F = Lq/N, ( 39 
)
where N is the number of plumes in the shell at h = Re -z. We find N ^6 x 106 from the 3D numerical simulation. To obtain such a resuit, one has to use the relation between a and N:

a = Njrbp/47Th2, (40) 
where (a) is mean fractional area of the upfiow, h = Rq-z, and bp is the radius of a plume. (bp) and a are taken from the 3D numer ical simulation. We assume a = 0.7, as taken from Fig. 1, which

shows that the mean fractional area a is roughly constant in the quasi-adiabatic convection zone. The plume radius, bp, is estimated at the top of the simulated box, which corresponds to the photosphère.

At this stage, we hâve modeled the downdrafts, but not yet the updrafts. The 3D numerical simulations show that mean velocities of upfiow and downflow obey the same power law (Fig. 6). This can be explained as follows: from the conserva The vertical depth of the computation box is narrow in comparison with the reference depth zo> thus ôw varies only weakly with Z-Hence, we assume r = 0 in the solar case. The fourthorder moment (u/4) can then be computed by means of the interpolated relation Eq. ( 14). In Fig. 7, we show the resulting (w'4).

The CMP clearly is an improvement compared to the QNA and the TFM expression for Sw, Eq. ( 10) combined with Eq. ( 14), by at least a factor two in the quasi-adiabatic zone. The FOM in the superadiabatic zone is overestimated. Indeed, as mentioned above, the CMP is not able to describe such a zone mainly because the assumptions of Sect. 4.1 are not valid. Note that it is possible to use the same procedure to compute any other thirdand fourth-order moment.

Détermination of 66

Similarly to the procedure in the previous section, we evaluate (6,2> with the help of Eqs. ( 32) and ( 34). We therefore need to détermine 66. The température profile is more sensitive to departure from adiabaticity than the velocity profile. It is therefore not suitable to assume an isentropic envelope. Such an approxi mation can still be used in the downflow, but not for the upflow, which is far from being adiabatic due to radiative cooling. Then, for the sake of simplicity, we assume a power law to obtain 66:

66 * 660(f-)m. ( 46 
)
For z > 1 Mm in the simulated box (z = 0 Mm dénotés the photosphère), one dérivés m = -1.5, 66q ^170 K from the 3D numerical simulation. Using the power law (Eq. ( 46)) with m = -1.5, the skewness Se can be calculated using Eq. (34).

In Fig. 8, we présent the fourth-order moment (6,4) computed using the CMP, and as expected, the description of the FOM is improved. In the deeper part of the convection zone (i.e., the adiabatic région), 66 is easier to model because Eq. ( 36) can be used and the différence 66 becomes a power law. From Eqs. ( 8), ( 14), (33), and (34) ail the third-and fourth-order moments can be modelled with the CMP.

Summary: the CMP in a nutshell

In practice, one uses the CMP to compute (w'4) by means of the interpolation formula Eq. ( 14), where the second-order mo ment (w'2) is supposed to be known and where the skewness S u, is computed from Eq. ( 33). In the latter expression, ôw is determined using the plume model through Eq. ( 45) and using

Eqs. ( 37) to ( 40) with appropriate values of parameters for the case studied (in the présent paper we used the values from Table 1, which are suitable for the solar case). Here, a(z), N, bp, and other input quantities are taken from the 3D numeri cal simulation. When the CMP is used to obtain the other thirdand fourth-order moments, additional quantities hâve to be determined, namely b and m in Eq. ( 46) for Sq (see Eq. ( 34)).

Conclusions

With the help of 3D numerical simulations of the upper part of the solar convective région, we hâve shown that the QNA and the TFM fail to describe the fourth-order velocity and température corrélation moments, if merely used on their own. These results confirm KR2006 and geophysical studies (Gryanik & Hartmann 2002) and led us to generalize the TFM in order to take the effects of the turbulent properties of the up-and downflows explicitly into account (GTFM). We point out that the GTFM can be used in other contexts than the solar one as long as the convective System can be described with two turbulent flows.

One might wonder whether it is likely that the CMP and the model for p mode excitation developed in Paper II are generally applicable to solar-like stars. To answer this question requires further work, but results on important ingrédients of these models are encouraging. The case of convection in the planetary boundary layer of the atmosphère of the earth was already discussed in GH2002. Their interpolation model for FOMs has meanwhile been investigated for the case of convection in the océan [START_REF] Losch | [END_REF]) and solar granulation [START_REF] Kupka | Workshop on Interdisciplinary Aspects of Turbulence Kupka[END_REF], who also study the case of a K dwarf; preliminary results

were published in [START_REF] Kupka | Workshop on Interdisciplinary Aspects of Turbulence Kupka[END_REF]. We corroborate the latter here with simulations for solar granulation based on more realistic boundary conditions. The overall conclusion that can be drawn from these studies is that, at least away from the boundary layers of convection zones, the FOMs in purely con vective flows can be estimated according to the interpolation model by GH2002 with an accuracy typically in the range of 20% to 30%, whereas the QNA is off by a factor of two to three.

For the superadiabatic layer, the discrepancies of the QNA re main the same in any case of the same size.

We focused here on the solar case, more precisely a région that is nearly adiabatic, just below the superadiabatic zone where the acoustic modes are excited. As indicated by the 3D simula tions, the cohérent downdrafts, called plumes, are more turbulent than the upflow. In addition, we use the plume model developed by RZ95 to estimate the upward and downward mean velocities.

With these additional approximations, the GTFM yields a clo sure model, the CMP, which can be applied in the quasi-adiabatic zone (located just below the superadiabatic one). Comparisons of calculations based on the CMP with direct calculations from the 3D numerical simulations show a good agreement. Hence, the CMP provides an analytical closure for third-and fourthorder moments. These moments are expressed in a simple way and require only the knowledge of the second-order moments and the parameters of the plume model. We stress that the CMP involves four parameters: the number of plumes in the considered shell (i.e., near the photosphère), the exponent of the power law for the mean vertical velocity of plumes, the law to describe the température différence between the two flows, and the mean fractional area of the updrafts and hot drafts.

A study of the dependence of the results on these parame ters is in progress. For instance, an increase of a will imply an increase of Sw in Eq. ( 33), and hence of the fourth-order mo ment {w '4). Nevertheless, it is extremely difficult to deduce the behaviour of the System, since from Eq. (41) a variation of a changes the velocities of the flows. Instead, one could use a set of numerical simulations to study the effect of a change of the parameter a. In a companion paper, we use the CMP in a semianalytical approach to calculate the power supplied to the solar p modes. It is found that the power is quite significantly affected by the adopted closure model.

Our final aim is to apply the CMP to the study of stochastic excitation of solar-like p modes in stars other than the Sun. It will be necessary to assess the validity of the CMP approximations to extend their application to stellar conditions different from the solar case. This will also require investigating the dependence of the parameters entering the CMP, for instance, on the effective température of the star (work which is in progress). As pointed out in Sect. 4, the CMP is valid only in the quasi-adiabatic zone due to the power laws used to model the plume dynamics. This will be discussed further in the companion paper in which the présent model will be used in the superadiabatic zone in order to propose a new closure for the calculation of stellar p modes.

Finally, we note that in the présent work we do not take the effect of differential rotation and méridional circulation into account. However, recent helioseismic investigations (Schou et al. 2002;Zhao & Kosovichev 2004) hâve shown that variability of those large-scale flows gradually affects wavelength and frequencies, leading to a redistribution of the observed power spectrum (Shergelashvili & Poedts 2005;Hindman et al. 2005).

Hence, it could hâve an indirect effect on the amplitudes of p modes. Furthermore, large-scale laminar non-uniform flows can hâve a significant effect on the formation of the cohérent structures and intrinsic turbulence (Miesch et al. 2000;Brun & Toomre 2002;Rempel 2005). To what extent they can affect solar p mode amplitudes, through the closure model and the Reynolds stresses, remains to be investigated.

As explained in Sect. Application to the stochastic excitation of solar p modes. trouvera une démonstration détaillée dans Samadi & Goupil (2001) et Samadi et al. (2003b).

2Un produit de corrélation à deux points est un produit qui corréle deux quantités qui sont prises en des points et temps différents. 

Résultats

Les observations ont été obtenues avec l'instrument GOLF à bord de SOHO. GOLF est un spectromètre mesurant les vitesses dans la raie du sodium près de la photosphère (Gabriel et al. 1997) Comme nous l'avons constaté, il semble manquer de la puissance pour reproduire le maxi mum observé lorsque l'on utilise la contribution du terme de Reynolds seul. On ajoute alors la contribution du terme entropique C| (Eq. ( 4.12)). La 

Conclusion et perspectives

Dans ce chapitre, j'ai montré que le modèle de fermeture avec panaches permet de reproduire le maximum d'excitation observé. La contribution additionnelle, comparativement à la QNA, est de l'ordre de 30%, ce qui démontre que l'impact de l'asymétrie de la zone convective est impor tant. De plus, nous avons montré que l'ajout de la contribution lié aux fluctuations d'entropie est nécessaire même si elle reste relativement faible, de l'ordre de 15%. Toutefois, il reste des incertitudes concernant la modélisation ainsi que des approximations qu'il convient de discuter. Le premier terme de l'Eq. ( 4.24) est sûrement le plus délicat car les modèles de fermeture sur ce moment introduisent de nouvelles incertitudes, c'est à dire des temps caractéristiques qui sont mal contraints, on pourra se référer à la revue de Mironov (2008) pour plus de détails. Le troisième terme nous est plus familier car ce dernier est le tenseur de Reynolds, on remarque néanmoins qu'il est multiplié par le gradient de température qui devient important dans la région super adiabatique. Enfin, le dernier terme introduit des moments d'ordre trois. On pourrait être tenté de négliger ce dernier terme mais encore une fois bien que négligeable dans la région adiabatique il devient important dans la région superadiabatique.

Obtenir des observations plus précises

Aller au-delà de la modélisation dans la région quasi-adiabatique nécessite alors de prendre en compte l'équation d'énergie, de décrire les moments couplés entre fluctuations de température et de vitesses mais aussi les termes d'ordre trois.

Toutefois, les données observationnelles ne permettent pas encore de mettre en évidence de tels effets car où ils sont maximum, dans la région super-adiabatique, les barres d'erreurs restent importantes. De plus, entre différents instruments il reste des désaccords à résoudre, par exemple entre les données GONG et GOLF (Baudin et al. 2005). Il semble nécessaire de réduire ces incertitudes observationnelles ainsi que les barres d'erreurs afin d'obtenir des contraintes sur les modèles pour mieux décrire la zone super-adiabatique.

Introduction

Amplitudes of solar-like oscillations resuit from a balance be tween excitation and damping. Excitation is attributed to tur bulent motions that excite the p modes. In the uppermost part of the convection zone, entropy fluctuations and eddy motions drive oscillations. In this région, convection becomes inefficient and there is an increase of the eddy velocities and entropy fluc tuations. Solar-like oscillations are mainly excited in such a ré gion, thus a theoretical model of the excitation processes is a powerful tool in understanding the properties of the convective zones of solar-type stars. Goldreich & Keeley (1977) hâve proposed a model for the excitation process using the turbulent Reynolds stress and deduced an estimation of the power supplied to the p modes. The underestimation of the excitation rates by around a factor 103 compared to the observed solar values [START_REF] Osaki | Lecture Notes in Physics: Progress of Seismology of the Sun and Stars[END_REF]) led to alternative formulations (Goldreich & Kumar 1990;Goldreich et al. 1994). Another source of excitation was identified by Goldreich et al. (1994): the so-called entropy source term. Its contribution cannot be neglected, even though Stein & Nordlund (2001) hâve shown that excitation from the Reynolds stress remains dominant in comparison with the entropy fluctua tion source term. Samadi & Goupil (2001) propose a generalized formalism, taking the Reynolds and entropie fluctuation source terms into account. This approach allows investigation of the effects of several models of turbulence (Samadi et al. 2003b,a) by express ing the source terms as functions of the turbulent kinetic energy spectrum and the time-correlation function.

A confrontation of this model with data from the BiSON in strument (data from Chaplin et al. 1998) led to the conclusion that the theoretical prédictions were in good agreement with the observations (Samadi et al. 2003a). Nevertheless, observational data from the GOLF instrument and a study of the BiSON data indicate that some discrepancies remain between the theoretical computation and observational data. In Samadi & Goupil (2001) (see also Samadi et al. 2005), one of the main assumptions is the quasi-normal approximation (QNA), which is useful for corré lation functions of the turbulent Reynolds stress and the entropy fluctuation source terms (Samadi & Goupil 2001).

The uppermost part of the convection zone being a turbu lent convective System composed of two flows, the probability distribution function of the fluctuations of the vertical velocity and température does not follow a Gaussian law (Lesieur 1997).

Thus, the use of the QNA, which is exact for a normal distribu tion, becomes a doubtful approximation. ing of the excitation rates according to Samadi & Goupil (2001).

Only the Reynolds stress source term is corrected, mainly because it is the dominant term (Stein & Nordlund 2001;Samadi et al. 2003a). The entropy fluctuations are considered in the same way as explained in Samadi & Goupil (2001) (i.e. using the QNA approximation).

The paper is organized as follows: the theoretical model of stochastic excitation of p modes is briefly summarized in Sect. 2.

In Sect. 3, the closure model with plume (CMP) is generalized for two-point corrélation products and implemented into the formalism of Samadi & Goupil (2001). In Sect. 4, the calculation of theoretical power is explained. In Sect. 5, GOLF observational data are presented together with the dérivation of observ able quantities. A comparison between the theoretical power and heights computed as described in Sect. 4 with the corresponding observed quantities defined in Sect. 5 is performed in Sect. 6.

Section 7 is dedicated to discussions and conclusions.

A model for stochastic excitation of solar-like p modes

The theoretical model of stochastic excitation considered here is basically that of Samadi & Goupil (2001; see also Samadi et al. 2005). It takes two sources into account that drive the résonant modes of the stellar cavity. The first one is related to the Reynolds stress tensor and as such represents a mechanical source of excitation. The second one is caused by the advection of the turbulent fluctuations of entropy by the turbulent mo tions (the so-called "entropy source term") and thus represents a thermal source of excitation (Goldreich et al. 1994;Stein & Nordlund 2001).

The power fed into each mode, P, is given by (see e.g. Samadi et al. 2001):

P =-= 2j) E = p (\A\2) I ivl, (1) 
at where () dénotés the ensemble average, (|/4|2) the mean square amplitude, p the damping rate, and E the energy that is defined as

E=\ <W2> Iwl ( 2 
)
where / is the mode inertia and cuo is the oscillation eigenfrequency (see Samadi & Goupil 2001, for details).

The mean square amplitude, as explained in Samadi & Goupil (2001), is

(l A I2) = 1 8 p (Icjq)2 (c| + c|) (3) 
where and C| are the turbulent Reynolds stress and entropy contributions, respectively. Their expressions for radial modes are given by C2

'-r r2 '-'S J d3-*oPo/r J J d3x0gr J' dre' dre' / Jd3r (rfwj) d-V ((wst^(wst)2 ) (4) ( 5 
)
where w is the vertical component of the velocity, s, the turbu lent entropy fluctuation and /r(£r,w) = , where £r is the radial component of the eigenfunction, and gT a function that involves the first and second dérivatives of £r (see Eq. ( 9) of Samadi et al. 2003b). Quantities labelled with 1 and 2 dénoté two spatial and temporal positions, hence and {(wst)\ (wst)2 )

correspond to two-point fourth-order corrélation products. These corrélation products are usually approximated by expressions involving second-order products only (closure model). In Samadi & Goupil (2001), the simplest approximation was used i.e. the quasi-normal hypothesis. We study here conséquences of using a closure model doser to reality (i.e. the CMP from Paper I). Both are recalled in the next section.

3. Closure models

The quasi-normal approximation

The QNA (Lesieur 1997, Chap. VII-2) is adopted in Samadi & Goupil (2001) as a convenient means to décomposé the fourthorder velocity corrélations in terms of a product of second-order vertical velocity corrélations, that is, one uses

(UU^W^QNA = 2 (WiW2)2 + (w2)(wl) <(ws,)] (ws,)2 >QNA = (w\ W2) (s, 1 S,2> , (6) 
where s, is considered as a passive scalar.

This approximation (Eq. ( 6)) remains strictly valid for normally distributed fluctuating quantities with zéro mean. As

shown by Kraichnan (1957) in the context of turbulent flows and Stein (1967) in the solar context, the cumulant (the dévia tion from the QNA) can be large and therefore not negligible.

The CMP presented in Paper I was shown to be a significant improvement on the QNA for the one-point corrélation prod ucts. However, we need two-point corrélation products here (see Eqs. ( 4) and ( 5)). A generalization of the CMP for two-point corrélation products is therefore developed in Sect. 3.2 below.

The second-order corrélation products in Eq. ( 6) are expressed in the Fourier domain (k, u>) where k and co are the wavenumber and the frequency associated with a turbulent element (see Samadi & Goupil 2001, for details). Eq. ( 6) of the QNA with second-order corrélation products taken from the 3D simulation. The question is whether the modelling of the k dependency on the two-point corrélation function by the QNA can be used. For the sake of simplicity, we assume that the QNA can be used for the co dependency.

Fig. 1. Fourth-order corrélation function calculated in the quasiadiabatic zone directly from the 3D numerical simulation (solid line) and using the QNA approximation (Eq. ( 6); dashed Unes). The fourth-order moments are presented as a function of the corrélation lcngth (AX), and the two curves are normalized so as to emphasise only their k dependency.

The corrélation products (uu^uu^) in Fig. 1 are normalized so as to compare only the k dependency of these quantities.

In the quasi-adiabatic région, the line width at half-maximum of the QNA and the numerical product are roughly the same.

Discrepancies at high values of AX (the corrélation length) are expected to hâve a negligible influence on the corrélation prod uct. Hence, we assume that the modelling of the k dependency on the two-point corrélation product by the QNA is valid due to a small différence between the line width at half-maximum.

Hence it is legitimate to use the (k, co) dependency given by the QNA. One then needs only to correct the value of the corréla tion product at (k = 0, co = 0) (which corresponds to the one point corrélation function) with the CMP (see Paper I) for the turbulent Reynolds stress term contribution. We use the interpo lation formula of Gryanik & Hartmann (2002) for the FOM of the velocity (Paper I, Eq. ( 13))

<^?^2>cmp = (1 + <w?wf>QNA, (7) with (u^ii^QNA given by Eq. ( 6) the skewness Sw is calculated from the CMP (see Paper I for details).

In Fig. 2, calculations using Eqs. ( 6) and ( 7) are compared to the direct numerical corrélation product. The above generalization of the CMP to two-point corrélation products provides a good approximation mainly in the quasi-adiabatic région where the CMP is the more accurate one (see Paper I). The k dependence is approximatively modelled by the QNA (Fig. 1) except for large corrélation lengths (AX > 0.2 Mm), but these con tribue only negligibly to (w^wf). However, in the superadiabatic zone, the generalization of the CMP and the QNA both fail to describe the two-point corrélation function. In that zone, the température gradient is varying quickly, which is not the case in the CMP. In the plume model (Paper I) the tempéra ture gradient appears only through a polytropic law, and for sake of simplicity we assume an isentropic atmosphère. In addition, for modelling the FOM (lu4), the interpolated formula derived by Gryanik & Hartmann (2002) (Paper I, Eq. ( 13)) is not valid in the superadiabatic zone. Thus, in this zone the treatment of A X Fig. 2. Fourth-order corrélation function calculated in the superadia batic zone (at the top) and in the quasi-adiabatic zone (at the bottom) directly from the 3D numerical simulation (dotted line), using the QNA approximation (Eq. ( 6); dashed Unes) and using the CMP (Eq. ( 7); solid line).

Eqs. ( 6) and ( 7) will introduce an energy excess injected into high-frequency p modes.

Calculation of the theoretical p mode excitation rates

The rate (P) at which energy is injected per unit time into a mode is calculated according to the set of Eqs. ( 4)-( 6) when the QNA is used and Eqs. ( 4)-( 7) using the CMP (see Sect. where u2 = w2 + u2} and «/, is the horizontal velocity.

Both a and O are necessary to describe the flow because a measures the géométrie anisotropy between up and downflows while O corresponds to the measure of the velocity anisotropies.

However, these two quantities are linked because of mass con

servation. An explicit relation can be easily derived between them using the formalism developed in Paper I to obtain

0 _ a( 1 ~a)ôw2 + a(w2)u + (1 -a)(w2)<i 9 a{ 1 -à)ôw2 + a{ü2)u + (1 -a)(ü2)d
where the ~refers to the velocities of only one flow (updraft or downdraft) and ôw is defined as in Paper I. For consistency reason, a and O are provided by the 3D numerical simulation. Finally, for the quantities in point 3) the total kinetic energy contained in the turbulent kinetic spectrum, E(k), its depth dependence, and its ^-dependence are obtained directly from a 3D simulation of the uppermost part of the solar convective zone.

It was found in Samadi et al. (2003a) from 3D simulations that a Gaussian -usually used for modelling^-is inadéquate: a Lorentzian fits the frequency dependence of^best. Hence, we adopt a Lorentzian here for^.

Calculation of the power injected into the solar p modes

with the CMP

Observational data and inferring observed excitation rates

The observational data set selected here for comparison with theoretical calculations was obtained with the GOLF instrument, onboard SOFIO. GOLF (Gabriel et al. 1997) is a spectrometer measuring velocities of the photosphère integrated over the whole solar dise. Its location on the space platform yields a very good signal-to-noise ratio and also continuous observations (the actual duty cycle reaches almost 100%). This latter characteristic greatly improves the signal to noise ratio in the Fourier spectrum.

However, GOLF suffers from some technical problems, which restricts the measurements to one wing of the Na D] line instead of both wings. This results in a more difficult absolute calibration of the measured velocity and thus a possible bias (which does not exceed 20% in terms of the acoustic rate of ex citation). Characteristics of the data set used here are described in Baudin et al. (2005).

These observations correspond to two periods when GOLF was observing in the same instrumental configuration (blue wing of the Na line) with a duration of 805 and 668 days, starting on April 11, 1996 andNovember 11, 2002, respectively. The level of solar activity was different during these two periods, but the measured excitation rate shows no dependence on activity, as the increase in width compensâtes for the decrease in height of the peaks, as shown by Chaplin et al. (2000) or Jiménez-Reyes et al.

( 2003).

The GOLF results were compared to BiSON observations and are compatible with them over a wide frequency range.

A discrepancy appears at high frequency (v > 3.2 mHz). As the height and width of peaks in the Fourier spectrum are affected by the presence of noise and gaps in the data (see Chaplin et al. 2003), GOLF was chosen for the comparison model/observations. We consider only the C = 1 modes for which their properties (line-width, amplitude) are more accurately determined than the i -0 modes (see Baudin et al. 2005, for details).

In order to compare theoretical results and observational data, the mode excitation rates are inferred from the observa tions according to the relation

F0bs(wo) = 2 7T Tv M v2(u>o) (11) 
where Al = I/Çj(h) is the mode mass, h the height above the photosphère where oscillations are measured, Tv = 77/zr the mode linewidth at half maximum (in Hz), and u2 the mean square of the mode surface velocity. The last is derived from the observations according to

We use the generalized CMP for two-point corrélation functions presented in Sect. 3.2 (Eq. ( 7)) to model the Reynolds-stress source term. By replacing Eq. ( 6) with Eq. ( 7) in Eq. ( 4), the calculation of (as in Samadi & Goupil 2001) 

u2s=nHrvCohs (12)

where H is the maximum height of the mode profile in the power spectrum and C0bs the multiplicative constant factor that dépends on the observation technique (see Baudin et al. 2005).

Equation ( 12) supposes that the mode line profiles are symmetric, but it is well known that the mode profile deviates from a Lorentzian. However, Baudin et al. (2005) show that this équa tion is accurate enough for the évaluation of the mean square of the mode velocity, Eq. ( 12). On the other hand, the mode asymmetry is taken into account when determining mode line widths from observational data.

The mode mass is very sensitive to altitude at high frequency at the height h ^340 km (see Baudin et al. 2005).

As an alternative to comparing theoretical results and observational data, Chaplin et al. (2005) propose to dérivé the max imum height of the mode profile (H) from the theoretical exci tation rates and the observed mode line width according to the relation:

P 2n2MTlCob, ' (13) 
where C0bs = 2.59 for î = 1 modes.

Représentation of the excitation rates themselves (Eq. ( 11))

emphasises disagreement at high frequencies, whereas disagreement at low frequency is more apparent with a représentation using the profile height (Eq. ( 13)). Note that in the case of the observable height, only the slopes are the meaningful quantifies, as the amplitude magnitude dépends on the phase of the solar cycle when the observations were recorded.

As the maximum height H strongly dépends on the obser vation technique, one cannot compare values of H coming from two different instruments. In Fig. 6, we therefore plot the product HCobs, a quantity that is less dépendent on the observational data (but still through Al). Note that for ease of notation, HCobs is noted H in the following.

It is important to stress that the mode height (H) calculated from the theoretical excitation rates (Eq. ( 11)) dépends on the observations through the line width rv. This is why in Figs. 5and 6 error bars appear in the theoretical results. In any case, the observational data can be characterised by at least three main features that the theoretical calculations (see above) must reproduce:

1. the frequency dependence from low to medium frequencies (v < 3 mHz);

2. the maximum of amplitude at 3 mHz for H and the slope for frequencies between 3 and 4 mHz or a nearly fiat maximum between v » 3.8 mHz and 4 mHz for F;

3. the slope at very high frequencies v > 4 mHz. velocities. Thus the effect of the flow anisotropy becomes domi nant for such high-frequency modes.

At low frequencies (v < 2.5 mHz), the turbulent Reynolds stress contribution reproduces the observed power P (Fig. 3) within the observational uncertainties. As best emphasised in 13)).

Adding the entropy fluctuation contribution

To proceed further, we add the C| contribution (Eq. ( 5)). Results

for the excitation rate and the maximum height are presented in Fig. 5. The additional (positive) entropy contribution causes an overall increase in the excitation rates as shown in Fig. 5.

The theoretical modelling now reproduces the maximum of the power supplied to the modes when compared with the observational data. For the frequency behaviour of the excitation rate and height, Fig. 5 show:

At low frequency (v G [ 1.6 mHz;3 mHz]). We pointed out in Sect. 6.1 that the contribution from the Reynolds stress term can be sufficient for reproducing the GOLF data, perhaps even overestimating it. The combination of both Reynolds stress and entropy fluctuation is too large compared with the observation, and the resulting slope differs from the observational one in this frequency domain. Note however, that in Fig. 5 error bars repre sent 1er error bars (Fig. 5).

For intermediate and high frequencies (v G [3 ; 4] mHz), the Reynolds (CMP) and entropy excitation model reproduces the v variation in P. This is confirmed with the H représentation (Fig. 5 at the bottom). However from a theoretical point of view, the description of the behaviour at high frequencies (v > 4 mHz) is more complicated because these p modes are mainly excited in the superadiabatic zone, which is difficult to model properly.

On the observational side, it must be kept in mind that even data with a signal-to-noise ratio as good as GOLF lead to linewidths difficult to measure at high frequencies. 13)). Only observations near minimum solar activity hâve been used, and they correspond to the second period as explained in Sect. 5.

Discussions and conclusions

We Error bars associated with the curves are due to mode line widths which are taken from observation (see Eq. ( 13)).

3D numerical simulation (see Paper I), and the one-point fourthorder moment (vu4) was found to agréé with the simulation resuit.

The remaining departure from the numerical simulation shows that the CMP actually underestimates the FOM in the quasiadiabatic région, so correcting for this bias would resuit in an even larger overestimation of the power.

Various sources of discrepancies are likely to exist: the sép This assumption associated with the QNA has the advantage of simplifying the closure of the fourth-order moments involving the entropy fluctuations (see Eq. (3.1)). However the biases introduced by this assumption remain to be evaluated. If the biases turn out to be large, alternative models must be developed.

Perspectives

Finally, we stress that there is an additional dependency, the co efficient a, which is the mean fractional area of updraft on the horizontal plane (see Eq. ( 9)). It is a measure of the asymmetry of the flows and a small variation in its value plays a major rôle on the excitation rates. This parameter has been fixed here us ing the results of 3-D simulations. The influence of parameter a is very important, as a small variation of its value leads to an increase in power P through the skewness Sw (see Paper I). It is beyond the scope of this paper to estimate the true effect of a variation in this parameter because its value is linked to the phys ical properties of the flows through, for instance, conservation of the mass flux. Hence a consistent approach is to investigate a set of different numerical simulations.

The CMP closure model, indeed, strongly dépends on the structure of the upper convection zone, which again emphasises that the structure of this région is very important in the theoret ical prédiction of the power injected into the p modes, because the skew introduced by the asymmetry increases with the depar ture of a from the value 0.5. It is then possible to obtain physical constraints on the asymmetry of the convection zone flows.

To understand what can affect a is therefore an important is sue, and in near future it will be necessary to study the variation in a with the type of star and from a hydrodynamical point of view to détermine what the main processes that are responsible for this asymmetry. One interesting issue is the influence of a magnetic field on this parameter: as described by Weiss et al. (2002) andVogler et al. (2005), the effect of a strong magnetic field induces a réduction in the typical length scale of convec tion, as well as the structure of the flows (hence the value of à).

The study of the mean fractional area a as a function of the magnetic field intensity therefore represents an interesting per spective for characterising B from the excitation rates, at least for stars with an expectedly strong magnetic field. Ainsi, cela ouvre la perspective de l'étude des amplitudes dans les étoiles autres que le soleil.

Néanmoins, le cas présent permet de pointer la nécessité d'avoir des observations de meilleure qualité afin de pouvoir obtenir des contraintes précises. Nous verrons dans la troisième partie que cela est désormais possible avec les observations spatiales COROT.

Introduction

The star a Cen A is the most promising after the Sun for constraining the modeling of p-mode excitation by turbu lent convection. Indeed, due to its proximity and its binarity, the fundamental parameters of a Cen A (effective tem pérature, luminosity, metallicity, gravity, radius) are quite well known. For this reason this star and its companion (a Cen B) hâve been extensively studied (see for instance the most recent modeling by Miglio & Montalbân (2005) and the references therein). As pointed out by Samadi et al. (2007a), the détection of p-modes and the measurement of their amplitudes as well as their mode linewidths {i.e. lifetime), from a Cen A enable the rates at which energy is supplied to the acoustic modes for this star to be derived.

These observational constraints can then be used to check models of p-mode excitation by turbulent convection.

Such comparisons were first undertaken in the case of the Sun by various authors (see the recent review by Houdek 2006). They enable different models of stochastic excitation of acoustic modes to be tested as well as different models of turbulent convection (see eg. Samadi et al. 2006).

Among those theoretical prescriptions, we consider that one [START_REF] Samadi | Donc, la détection du maximum d'amplitude ainsi que la détermination d'une grande et petite séparation (en fréquence) permet de déterminer les paramètres globaux d'une étoile, telle que la température effective et la masse et le rayon de l'étoile. Il sera alors possible d'obtenir des contraintes fortes sur la structure interne des géantes rouges. Les chimères Enfin, j'ai montré dans le chapitre 12 que la turbulence dans les pulsateurs classiques, en particulier dans les étoiles de type /3 Cephei, peut exciter de façon efficace les mode stables. Les calculs que j'ai effectués tout récemment donnent des amplitudes qui sont de plusieurs dizaines de ppm, ce qui est à comparer avec les 3 ppm solaires. En recherchant des modes stables dans les données COROT analysées par L. Lefèvre[END_REF]Goupil (2001) with the improvements proposed by Samadi et al. (2003) and Belkacem et al. (2006b).

It was shown by Samadi et al. (2003) that the way the eddy time corrélation is modeled plays an important rôle in the efficiency of excitation. Indeed, calculations of the mode ex citation rates, CP, that use a Lorentzian eddy-time correla-Send offprint requests to: R. Samadi

Correspondence to: Reza.Samadi@obspm.fr tion function reproduce helioseismic data better than those using a Gaussian one. In addition, Belkacem et al. (2006b), in the case of the Sun, show that excitation rates computed using an adapted closure model that takes the presence of plumes into account reproduce the solar observations much better than the calculations based on the classical quasinormal approximation (Millionshchikov 1941).

An alternative theoretical model of the excitation of acoustic modes by turbulent convection proposed by Chaplin et al. (2005) differs from that by Samadi & Goupil (2001) in several ways: it does not take the driving by the (2004) and more recently updated in Kjeldsen et al. (2005).

Using a different method and data from the WIRE satellite, Fletcher et al. (2006) propose a new estimate of the aver aged mode linewidths that differ significantly from the one derived by Kjeldsen et al. (2005). Indeed, the two data sets place the mode lifetime between 2.2 days (Kjeldsen et al.

2005) and 3.9 days (Fletcher et al. 2006). A preliminary comparison with theoretical calculations obtained in the manner of Belkacem et al. (2006a) was carried out by Samadi et al. (2007a). Discrepancies be tween the excitation rates inferred from the observations and the theoretical calculations were found. We update this study here by proceeding in a similar way as in Rosenthal et al. (1999). Indeed, these authors hâve built a solar 1D model where the surface layers are taken directly from a fully compressible 3D hydrodynamical numerical model. We refer here to such a 1D model as a "patched" model. Rosenthal et al. (1999) hâve obtained a much better agreement between observed and theoretical eigenfrequencies of the Sun computed for such a "patched" 1D model than for a "standard" 1D model based on the standard mixing-length theory with no turbulent pressure included.

Following Rosenthal et al. (1999), we built such a "patched" model to dérivé adiabatic mode radial eigen-displacements (£r) and mode inertia (/). We used them to compute the mode excitation rates, which we compared with excitation rates computed using £r and I obtained with a "standard" 1D model.

The paper is organized as follows: in Sect. 2 we describe our procedure for computing the mode excitation rates for the spécifie case of a Cen A. We then describe in Sect. 3 the way the mode excitation rates are inferred from seismic observations of a Cen A. In Sect. 4, we compare theoretical calculations of CP with those inferred from the seismic data obtained for a Cen A. We compare and explain in Sect. 5 the différences between a Cen A and the Sun. Finally, Sects. 6 and 7 are devoted to the discussion and conclusions, respectively. 

Modeling the excitation of p-modes

Cl = Crr fdmSr SsM, (3) 
wo J Po where we hâve defined Sr{uj0) = J -E2(k) J du Xk(u + uj0) Xk{v) , ( 5)

SsM = J pr E(k)E3(k) J du) Xk(u + wo) Xk(u) , ( 6 
)
where fr = (d£r/dr)2, and gr is a function that involves the first and the second dérivatives of £r. Then, E(k) is the spatial turbulent kinetic energy spectrum, Es(k) the spectrum associated with the entropy fluctuations, Xk the time corrélation function of the eddies, = (dP/ds)p where s is the entropy, P the gas pressure, p the density, po the equilibrium density profile, and u)q the eigenfrequency.

Finally, Sw =< w3 > /(< w2 >)3/2 is the skew- The first 1D equilibrium model has the effective tempéra ture and the gravity of a Cen A and is built by requiring that, for the température at the bottorn of the 3D simu lation box, the 1D model has the same pressure and density as the 3D simulation (see Fig. 1). The 3D simulation is therefore used to constrain this 1D equilibrium model such that its interior structure is compatible with the sec ond 1D model described later on, in Sect. 2.3.2 (see also Fig. 1). Convection in the 1D model is described accord ing to Bôhm-Vitense (1958)'s inixing-length local theory of convection (MLT) and turbulent pressure is ignored.

Microscopie diffusion of hélium and heavy éléments are treated according to the simplified formalism of [START_REF] Michaud | Inside the Stars[END_REF]. We assume a solar abundance to be con sistent with the 3D model.

The mixing-length parameter, a, the âge, the mass (M), the initial hélium abundance (To), and the initial (Z/X)o ratio where X and Z are the hydrogen and métal mass frac tions, respectively, are fitted such that the model simultaneously reproduces the effective température of the star, its gravity, the solar composition, and the temperaturepressure relation at the bottom of the 3D simulation box.

The outer layers of this model, which matter here, then hâve the stratification given by a standard MLT model.

This model is referred to as standard hereafter.

The matching results in a -1.694. For comparison, the same matching performed for a solar 3D simulation model investigated here. We find that T changes between the two models by less than ~5%; this is much less than the uncertainties associated with the observations.

"Patched" model

To consider a more realistic description of the superadiabatic outer layers, we built a 1D global model, following Trampedach (1997, see also Samadi et al. (2007b)), in which the outer layers are replaced by the averaged 3D simulation (see Fig. 1). In the standard model, radiative transfer is gray and as sumes the Eddington approximation. In the 3D model, ra diative transfer is explicitly solved in LTE for four opacity bins (see details in Stein & Nordlund 1998).

The interior of the "patched" model is the same as in the standard model and does not include the turbulent pres sure. At the bottom of the 3D simulation box, turbulent pressure is already negligible (~0.6 % of the total pressure).

Then, neglecting it in the interior has negligible effects on the properties of the eigenfunctions considered here. This global model will be referred to as a patched model. Note that this patched model has the same total mass and a radius very close to that of the standard model, namely

R = 1.1726 Rq.
The stratifications in density of the patched and stan dard models are compared in Fig. 1. At the top of the convective région, we see that the density is lower in the patched model compared to the standard model. This is because the patched model includes turbulent pressure that provides additional support against gravity: accordingly, the patched model has lower gas pressure at a given total pressure (Ptot)-Now, since T(Ptot) is the same with and without turbulent pressure, the patched model has a lower density at a given température than the standard model.

Because the treatment of photospheric radiative trans fer is not (and in practice cannot be) identical between a 3D calculation and a 1D model in the atmosphère, small dif férences in the stratifications of the very outer layers exist between the two models as seen in Fig. 1. In any case these différences do not play any significant rôle in the quantities that matter here, such as inertia. Note that some explanations about the différences seen between the outer layers of 3D models and 1D models hâve been proposed by e.g. Nordlund & Stein (1999) and Rosenthal et al. (1999). the visibility factor of the £=0 modes observed in velocity [START_REF] Kjeldsen | [END_REF]. For the mode linewidth, T, we use the averaged values provided by Kjeldsen et al. (2005) and Fletcher et al. (2006).

Concerning mode masses, M, as discussed in Sect. 6, it is not trivial to détermine the height h where the Doppler velocities are predominantly measured. As we do not know the height représentative of the observations precisely, we evaluate the mode masses -by default -at the optical depth t 500nm -0.013, which corresponds to the depth where the potassium (K) spectral line is formed (but see Sect. 6 for a discussion). This optical depth corresponds to /i=470 km.

Neither the standard nor the patched models hâve exactly the radius and the mass expected for a Cen A (see Sect. 2.3.1). However, this inconsistency only lias a negligible effect on the mode mass M = //£2. Indeed, since the eigenmode displacement, £r, is directly proportional to R, the mode inertia / scales as R2 (see Eq. ( 2)). Accordingly, the ratio 7/£2 is almost insensitive to a small change in R. Furthermore, we checked that JVC is also insensitive to a small change in M.

Comparison between observations and modeling

We first compare theoretical calculations of T performed with eigenfunctions computed with the patched equilibrium model with those computed using the standard equilibrium model (see Sect. 2.2). However, eigenmodes computed with those two models do not hâve the same inertia and hence not the same mode masses JVC. Thus, we instead compare the ratios fP/JVt. As shown in Fig. 2, theoretical calculations that use the patched model lie well inside the observed do main of the seismic constraints. On the other hand, using the standard model leads to underestimated theoretical val ues compared to the two sets of seismic constraints.

When comparing the integrands of the product JPJVtexcitation power times mode mass -between the patched and standard equilibrium models, we find that they are quite similar. On the other hand, the mode masses JVC are quite different for the two equilibrium models in the domain 1-3 mHz where the modes are mostly excited. This is due to the turbulent pressure that is présent in the patched model and ignored in the standard model. At a given radius in the super-adiabatic région, the patched model lias a lower gas pressure and density (see Fig. 1). As a conséquence, inertia of the modes, which are confined within the super-adiabatic région where the turbulent pressure has its maximum, are less for the patched model than for the standard model; ac cordingly, the ratios T/JVC, which are inversely proportional to the squared mode mass JVC2, are about two times higher for the patched model.

In Fig. 3 Note that Samadi et al. (2007a) found a discrepancy between theoretical calculations and observations. Part of this discrepancy was due to the horizontal size of the sim ulation box being set to that of the solar simulation used in Belkacem et al. (2006b). Indeed, the kinetic energy spec trum E involved in the expression for Sr and Ss in Eqs. ( 5) and ( 6) must be normalized with respect to the horizontal Samadi R.

size of the simulation box, as done here. Furthermore, the mode inertia considered by Samadi et al. (2007a) were computed for a standard MLT model (i.e. no turbulent pressure included) instead of using a patched model as is done here.

As shown in Fig. 2, this results in an underestimation of the ratio 7 fM. by a factor of about two (see Fig. 2). For the Sun we consider the helioseismic data studied by Baudin et al. (2005). We use here solar mode masses we obtain iPmax = 15.9 ±8.0 x 1015 [J/s]. In that case this is about ~4.4 ± 2 times larger than iPmax,©-As seen in Fig. 4, the frequency where 7 peaks is ~2.4 mHz for a Cen A. For comparison, in the solar case, 7 peaks around 3.8 mHz. Clearly, the modes in a Cen A are excited at a lower frequency compared to the solar modes.

Note also that the frequency domain where the dérivation of 7 is possible from the available seismic data is much smaller for a Cen A than for the Sun. This is obviously because the quality of the seismic data is much lower for a Cen A than for the Sun. 

Différences in the characteristic properties of convection

To summarize, we find that T is significantly larger in ot Cen A than in the Sun. Furthermore, T peaks at lower et al.: . frequency. As shown below, ail these seismic différences can be attributed to différences in the characteristic properties of convection between a Cen A and the Sun.

Why y is larger for a Cen A ?

At a given layer, the power supplied to the modes by the Reynolds stress is proportional -per unit mass -to po u3 A4 where A is the characteristic eddy size and u the rms value of the velocity (see Samadi & Goupil 2001). The flux of the kinetic energy, F\^m, is proportional to pou3.

Hence, the greater F^[n or A, the greater the driving by the Reynolds stress.

The power supplied to the modes by the so-called en tropy source term is proportional -per unit mass to po u3 A4 /(ta ojq)2 where lüq is the mode frequency, ta ~A/u is the characteristic eddy turn over time, and finally fR oc Fconw/F^\n where Fconv oc wass is the convective flux and s is the rms of entropy fluctuations (see Samadi et al. 2006). The higher fR, the higher the relative contribution of the entropy source to the excitation. The driving is maximum for mode frequency (see, e.q., Samadi & Goupil 2001) tüo ~27T/ta . ( 8)

Hence, at the mode frequency ojq ~27t/ta, the higher the ratio Econv/Fkjn, the greater the relative contribution of the entropy source term to the total excitation rate.

As a summary, for both Reynolds stress and entropy contributions, the larger the characteristic scale length (A)

or the higher the kinetic energy (Fkjn), the greater the exci tation. Furthermore, the higher fR, the greater the relative contribution of the entropy source term to the excitation.

We study the différences in A, Fk;n, and !R between the Sun and a Cen A below.

Kinetic energy flux (F^-m):

The maximum in u is up to ~10 % greater in the 3D simulation associated with a Cen A than in the solar one.

However, the différences in the flux of kinetic energy, F]<jn, between the 3D simulations associated with a Cen A and the solar one are small (< 10 %). This small effect on F^m despite its cubic dependence on u is due the lower po for a layer with the same average T in the simulation for a Cen A as compared to the simulation for the Sun. The lower po in turn is a conséquence of the lower surface gravity of a Cen A compared to the Sun.

Relative contribution of the entropy source term:

We also find that s is ~25 % greater in the 3D simu lation associated with a Cen A. However, the convective flux, FConv oc w a3s, in the 3D simulation associated with a Cen A is very close to that of the solar simulation. This is not surprising since the two stars hâve almost the same effective température. Furthermore, as pointed out above, the différences in F^m between a Cen A and the Sun are small. As a conséquence fR oc Fconw/F^n does not differ between a Cen A and the Sun. This explains why the con tribution of the entropy term relative to the Reynolds stress is similar between a Cen A and the Sun.

Characteristic scale length (A) :

Figure 6 shows the kinetic energy spectrum F as a func tion of the horizontal wavenumber k and the scale length Afc = 2 7r/k for the layer where u is maximum. As seen in Fig. 6, for the 3D simulation associated with a Cen A, F is maximum at a larger scale length compared to the solar simulation. Then, the eddies hâve a larger characteristic scale length in a Cen A than in the Sun. This explains why the excitation of p-modes is significantly stronger for a Cen A than for the Sun.

Since the number of grid points is the same for both simulations, the a Cen A simulation lias a larger physical grid size, thus a smaller maximum wavenumber, and in turn the cut-off in the spectrum occurs at a lower k.

This explains the earlier drop-off of E(k) for a Cen A in Fig. 6. For that reason the high wavenumber part (beyond a k value of about 15 Mm-1, or a A^less than 0.4 Mm) should not be compared directly. On the other hand, the scaling chosen in Fig. 7 allows a direct comparison. We point out that the characteristic scale length, A, scales as the pressure scale height. Indeed, we hâve plotted in Fig. 7 the kinetic energy spectrum, E, as a function of kHp where Hp is the pressure height at the layer where u is maximum. Except at small scale lengths, we see that the fc-dependency of the spectrum is almost the same between the simulation associated with a Cen A and the solar one.

The ratio between H"cenA and Hf ( H£cenA/H© 1.38) is very close to the ratio go/ga cen A ( -1-36). This is obviously related to the fact that Hp -P/pg oc T/g. Accordingly, since T oc A4 (see above), we then hâve T/T0 CX (A/AQ)4 OC (HpcenA/H®)4 CX (<7acen a/s©)4 3.4.

For comparison, excitation rates computed for a Cen A are two times greater than in the Sun.

Why T peaks at lower frequency ?

The characteristic eddy turnover time can be estimated as the quantity r ~L^/u where L/t is the horizontal extent of the 3D model and u the velocity at a given layer. At the layer where u is maximum, we find that f, evaluated at the layer where u peaks, is larger in a Cen A (~30 minutes) than in the Sun (~23 minutes). This explains that for a Cen A T peaks at lower frequency than in the Sun (cuq ~27r/f, cf. Eq. 8). Both u and A are larger for a Cen A than for the Sun.

However, the net resuit is a larger f for a Cen A.

Interprétation

The différences in characteristics of convection between a Cen A and the Sun can be understood as follows: as seen in Sect 5.3.1, the characteristic size A is mainly controlled by Hp oc T/g (for a given composition). The surface gravity for a Cen A is ~35 % times weaker than for the Sun while the effective température is very similar to that of the Sun.

Consequently, A is larger than in the Sun. Furthermore because of the lower gravity, the density at the photosphère is lower than in the Sun. Hence, to transport the same amount of energy per unit surface area by convection, the convective cells must hâve higher speed (u).

6. Discussion

Effect of Chemical composition

The star a Cen A has an iron-to-hydrogen abundance of A more rigorous approach would be to compute an effective mode mass by appropriately weighting the dif ferent mode masses associated with the different spectral lines that contribute to the seismic measurement. To in fer accurate mode excitation rates from the seismic data of a Cen A, the mode masses représentative of the observa tion technique and the spectral lines of a Cen A must be derived. This is, however, beyond the scope of this paper.

Conclusions

Theoretical estimations for the energy supplied per unit of time by turbulent convection (T) to a Cen A acoustic modes were compared to values obtained from observations. This allows us to draw the following conclusions.

Différences with the Sun

Although a Cen A has an effective température very close to that of the Sun, we find here that the p-mode excita tion rates 7 inferred from the seismic constraints obtained for a Cen A are about two times higher than in the Sun.

These différences are attributed to the fact that the eddies in a Cen A hâve a larger characteristic size (A) than in the Sun. This is related to the weaker surface gravity of a Cen A.

Furthermore, the p-mode excitation rates for a Cen A are maximum at lower frequencies than in the Sun. This behavior is related to the eddies having a longer turnover time as a resuit of a larger A.

The seismic characteristics of the p-modes detected in a Cen A significantly differ from that of the Sun. They can therefore provide additional constraints on the model of stochastic excitation.

Inferred versus modeled excitation rates

Our modeling gives rise to excitation rates within the er rer bars associated with the observational constraints. We stress that this modeling was undertaken for a Cen A independently from the solar case, i.e. without using a for mulation fitted on the helioseismic data as is the case, for instance, for the Sun in Chaplin et al. (2005) or in the case for a Cen A in [START_REF] Houdek | Radial and Nonradial Pulsationsn as Probes of Stellar Physics[END_REF]. The seismic constraints reproduce much better (see Fig. 2) the seismic data than calculations that use eigenfunctions computed with a stan dard stellar model built with the MLT and ignoring turbu lent pressure. This is because a model that includes turbu lent pressure results in higher mode masses M than a model that ignores turbulent pressure. This can be understood as follows. Within the super-adiabatic région, a model that includes turbulent pressure provides an additional support against gravity, hence has a lower gas pressure and density (see Fig. 1) than a model that does not include turbu lent pressure. As a conséquence, mode inertia (hence mode masses) are then larger in a model that includes turbulent pressure.

These conclusion are similar to that obtained in the Sun.

Indeed, the mode masses considered by Belkacem et al.

(2006b) in the case of the Sun were obtained with a 1D model computed using the Gough (1977) non-local mixinglength formulation of convection. The model thus includes turbulent pressure. We do not observe significant différences between excitation rates obtained with this non-local model and those obtained with a "patched" solar computed as described here in the case of a Cen A. On the other hand, ex citation rates computed with mode masses obtained with a "standard" solar model (that is, with no turbulent pressure included) or with a model in which turbulent pressure is included according to the MLT significantly under-estimate the helioseismic constraints.

These results tell that one must compute mode masses from 1D models that include turbulent pressure using a 3D hydrodynamical model or using a non-local description of convection.

Need for improved data sets

As shown by Samadi et al. (2003) in the case of the Sun, However, in the case of oc Cen A, différences between theoretical calculations that use the CMP and those based on the QNA (see Fig. 3), as well as différences between calculations including driving by entropy fluctuations and those that do not include it (not shown), are of the same order as the observational uncertainties associated with the two data sets. The présent seismic constraints therefore are unable to distinguish between these assumptions.

This emphasizes the need for more accurate seismic data for a Cen A.

Conclusion de la première partie

La région convective du soleil est constituée de structures cohérentes descendantes, les pa naches. J'ai cherché à déterminer quel est l'impact de ces structures sur les amplitudes des modes acoustiques excités par la convection turbulente.

Pour cela, je me suis concentré sur les modèles de fermeture à l'ordre quatre qui apparaissent 

Introduction : les enjeux

Les modes radiaux ne sont qu'une infime partie des modes existants, on s'intéressera ici aux modes acoustiques de haut degré angulaire ainsi qu'aux modes de gravité qui sont des modes par essence non-radiaux. J'aborderai en fin de partie le problème de la rotation et de ses effets sur l'amplitude des modes non-radiaux. Plusieurs estimations théoriques ont été proposées. Gough (1985) proposa la première déter mination théorique de l'amplitude ces modes, il utilisa le "principe" d'équipartition de l'énergie, c'est à dire qu'il suppose que l'énergie cinétique du mode est égale à l'énergie du tourbillon convectif dont le temps caractéristique correspond à celui de la période du mode. Cette égalité a été démontrée par Goldreich & Keeley (1977b) dans le cas particulier des modes acoustiques et sous la condition que l'amortissement de ces ondes stationnaires soit dominé par la viscosité turbulente. Gough (1985), en utilisant cette méthode trouve une amplitude maximale pour le mode £ = 1 à v -100 /^Hz qui est de l'ordre de 0.5 mm.s-1.

Plus tard, Kumar et al. (1996) proposent une estimation théorique basée sur une modélisation développée par Goldreich et al. (1994) ainsi que sur une modélisation des taux d'amortissement (Goldreich & Kumar 1990). La figure 6.4 reproduit les prédictions théoriques obtenues par les deux travaux. Elle montre que les deux estimations sont en désaccords de plusieurs ordres de grandeurs.

Excitation par la pénétration convective

L'excitation par la convection turbulente n'est pas le seul mécanisme possible. Andersen (1996) proposa une estimation de l'amplitude des modes g excités par la pénétration convective à la base de la zone convective solaire. Les simulations utilisées sont en géométrie cartésienne à deux dimensions, dans laquelle une zone convective est localisée entre deux zones stablement stratifiées. Andersen (1996) calcula à l'aide de sa simulation numérique le facteur d'amortissement des ondes générées en bas de la zone convective, c'est à dire le rapport de leur amplitude de surface sur leur amplitude en bas de la zone convective. Il proposa alors, à l'aide d'arguments énergétiques, une estimation de l'amplitude des modes de gravité à la surface du soleil en tenant compte de ces facteurs d'atténuation. La figure 6.5 est tirée de Andersen (1996), on peut y voir deux courbes qui correspondent au cas où toute l'énergie disponible est transmise à un seul mode (courbe supérieure) ou à 1000 modes (courbes inférieure), notons que le choix du nombre de modes est arbitraire.

Fig. 6.4 -Amplitudes des modes de gravité solaires en fonction de la fréquence. En bleu on peut voir représentées les amplitudes obtenues par Kumar et al. (1996), en rouge celle de Gough (1985) et en vert est représentée la limite observationnelle obtenue grâce à l'instrument GOLF. La courbe en trait plein noir est la limite observationnelle que serait capable d'atteindre l'instrument ASTROD qui est un projet qui cherche (entre autre) à détecter les modes de gravité solaire de par leur influence gravitationnelle. Figure tirée de Burston et al. (2008).

Frequency (gHz) Fig. 6.5 -Amplitudes des modes de degré angulaire i = 6 en fonction de la fréquence tels que déterminées par Andersen (1996). La courbe supérieure est obtenue en supposant que seulement un mode est excité, alors que la courbe inférieure est obtenue en supposant que 1000 modes sont excités.

Problématique

Aucune autre estimation de l'amplitude des modes de gravité solaire n'a, à ma connaissance, été entreprise1 et les désaccords (entre les travaux cités plus hauts) restent à l'heure actuelle incompris. L'objectif de cette partie est alors triple :

-Obtenir une estimation théorique des amplitudes des modes de gravité solaires en utilisant une approche adaptée, c'est à dire un formalisme d'excitation non-radial, un formalisme décrivant les processus d'amortissement non-radial ainsi qu'une simulation numérique 3D du soleil, qui comme nous le verrons donne des informations essentielles sur les propriétés de la turbulence dans les couches profondes de la région convective.

-Expliquer les désaccords entre les différentes estimations de l'amplitude des modes g -Enfin, être capable d'évaluer le temps nécessaire à la détection de ces modes. Cette étude cherche à répondre à plusieurs questions :

Quelles sont les contributions supplémentaires qu'il convient de prendre en compte et quel est leur impact? Enfin, quels sont les domaines de validité du formalisme? On remarquera que dans la limite des modes radiaux t -0 ainsi que dans l'approximation plan-parallèle (£r/r << dt;r/dr) on retrouve l'expression obtenue par Samadi & Goupil (2001) (voir aussi Samadi et al. 2005) dans laquelle seul le premier terme de Eq. ( 7.3) subsiste. -Pour les modes de faible ordre radial n, l'effet dominant provient des contributions hori zontales dans l'Eq. ( 7.3) et non pas de l'inertie.

On peut alors en conclure que le modèle d'excitation présenté ici se réduit à celui employé pour les modes radiaux, lorsque n > 3 -4 et que l'on utilise les inerties adaptées (Eq. ( 7.15)). Néanmoins, les contributions non-radiales deviennent dominantes à basses fréquences et l'on ne peux plus se contenter de la modélisation radiale.

La contribution horizontale est de deux types : elle intervient dans les fonctions propres (£r, 60 ainsi qu'au travers des termes source. Afin de comprendre les résultats de la section précédente, étudions dans un premier temps les contributions radiales et horizontales des fonctions propres en fonction du degré i pour ensuite comprendre quelles sont les contributions dominantes dans l'Eq. ( 7.3).

Dépendance des fonctions propres au degré angulaire t

Considérons alors l'équation de continuité ainsi que la composante transverse de l'équation de mouvement pour l'oscillation et négligeons les fluctuations lagrangiennes de pression et les fluctuations du potentiel gravitationnel à la surface. Le rapport de la composante horizontale sur la composante radial du déplacement est alors (Unno et al. 1989, p.105) £/i -2 2 -^3 2 cj-i a\ avec = (7'16) où lj la fréquence du mode, R le rayon de l'étoile, et M sa masse.

Les modes acoustiques solaires sont tels que leur fréquence normalisée se situe entre o ae 10 et g ~50 [y 6 [1,[START_REF] Belkacem | Two-scale mass-flux closure models for turbulence : p-mode amplitudes in solar-like stars[END_REF] Toutes ces relations permettent alors de distinguer plusieurs groupes de termes qui inter viennent dans l'Eq. ( 7.3). ergy spectrum and the temporal-correlation function. This allowed us to investigate several possible models of turbulence (Samadi et al. 2003a,b). The results were compared with GOLF data for radial modes, and the theoretical values were found to be in good agreement with the observations (Samadi et al. 2003b).

Part of the remaining discrepancies has recently been removed by taking into account the asymmetry introduced by turbulent plumes (Belkacem et al. 2006a,b).

In this paper we take an additional step by extending the Samadi & Goupil (2001) In the Sun, high-angular-degree p modes (as high as one thousand) hâve been detected (e.g., Korzennik et al. 2004). From Modelling of the mechanisms responsible for excitating nonradial modes is useful not only for high-f acoustic modes but also for gravity modes, which are intrinsically non-radial. As for p modes, g modes are stochastically excited by turbulent convec tion; the main différence is that the dominant restoring force for g modes is buoyancy. We, however, stress that convective pénétra tion is another possible excitation mechanism for g modes (e.g. Dintrans et al. 2005). Such modes are trapped in the radiative interior of the Sun, so their détection promises doser knowledge of the deep solar interior. However, they are evanescent in the con vection zone; thus, their amplitudes at the surface are very small and their détection remains controversial. A theoretical prédic tion of their amplitudes is thus an important issue. It requires an estimation of the excitation rates but also of the damping rates.

Unlike p modes, the damping rates cannot be inferred from ob servations, and this introduces considérable uncertainties; e.g., theoretical estimâtes of the g-mode amplitudes (Gough 1985;Kumar et al. 1996) differ from each other by orders of magni tudes, as pointed out by Christensen-Dalsgaard (2002). We thus stress that the présent work focuses on the excitation ratesdamping rates are not investigated. A spécifie study of gravity modes will be considered in a fortheoming paper.

The paper is organised as follows: Sect. where excitation rates are presented. Section 6 discusses the lim itations of the model and some conclusions are formulated in Sect. 7.

General formulation

Following Paper I, we start from the perturbed momentum and continuity équation

d(Po +p\)v dt + V : (pQvv) = -Vpi +p\g0+pog\ +P\0\, (1) 
-+V.((p0+pi)!.) = 0 (2) dt where p is the density, p the pressure, and g the gravity. The subscripts 1 and 0 dénoté Eulerian perturbations and equilibrium quantities, respectively, except for velocity where the subscript 1 has been dropped for ease of notation. In the following, the velocity field is split into two contributions, namely the oscilla tion velocity (ü0Sc) and the turbulent velocity field («), such that v = üosc + u. For a given mode, the fluid displacement can be written as

where coq is the eigenfrequency, £(r) the displacement eigenfunction in the absence of turbulence, A(t) the amplitude due to the turbulent forcing, and c.c dénotés the complex conjugate.

The power ( P) injected into the modes is related to the meansquared amplitude ( (|A [2) ) by (see Paper I)

P = r,(\A\2)l <4 , (4) 
where the operator () dénotés a statistical average performed on an infinité number of independent réalisations, g is the damping rate, and / is the mode inertia.

We use the temporal WKB assumption, i.e. that A(t) is slowly varying with respect to the oscillation period, g dlnA(t)/dt «: coq (see Paper I for details). Under this assump tion, using Eq. ( 3) with Eqs. ( 1) and ( 2 ,iw{)r [START_REF] Belkacem | Two-scale mass-flux closure models for turbulence : p-mode amplitudes in solar-like stars[END_REF] where d3.v is the volume element and S = -(/, + V/z, +g,) the ex citation source terms. Temporal dérivatives appearing in Eq.( 5) are -The Reynolds stress contribution

TT = : (Pouu))' (6) 
ot ot

where u is the turbulent component of the velocity field.

-The entropy term 2v/i, = -vL^-ffs"-Vs,V We assume a stationary turbulence, therefore the source term [START_REF] Belkacem | Two-scale mass-flux closure models for turbulence : p-mode amplitudes in solar-like stars[END_REF] in Eq.( 10) is invariant to translation in to. Intégration over t0 in Eq.( 10) and using the définition of S (Eq.( 6), Eqs. ( 7) and //"*+CO d3xo J dre-1Wo7J dV

x ( (p0 UjUj V^') (p0 uium V'f'") )

where a séparation of scales is assumed, i.e. that the spa tial variation of the eigenfunctions is large compared to the typical length scale of turbulence (see Sect. 6 for a detailed discussion).

-the entropy contribution C //"*+Oû d3xo j dre'IW|,r I d3r

x((ft,V"^)|(A,V",r')2),

The fourth-order moment is then approximated assuming the quasi-normal approximation (QNA, Lesieur 1997, Chap. VII-2) as in Paper I. The QNA is a convenient means of decomposing the fourth-order velocity corrélations in terms of a product of second-order velocity corrélations; that is, one uses

<(«/«,•)(! )(«Z«m)(2)> = <(K/Ky)(D><(K/Ki»)(2)> +<(«i)(l)(W/)(2)) ((«y)(l)(«m)(2)) +<(W/)(l)(Mm)(2)) ((Uj)(l)(U/)(2)>. ( 15 
)
A better approximation is the closure model with plumes (Belkacem et al. 2006a,b) which can be adapted to the présent formalism in order to take the presence of up and downdrafts in the solar convection zone into account.

It is then possible to express the Fourier transform (FT) of the resulting second-order moments in term of the turbulent ki- where Crs is the cross-source term representing interférence between source terms. For p modes, Crs turn out to be negligible because it involves third-order corrélation products that are small and strictly vanish under the QNA assumption (Belkacem et al. 2006b).

The contribution of the Reynolds stress can thus be written as (see Appendix A. 1 ) Note that in the présent work, nonradial effects are taken only into account through Eq.( 23). A more complété descrip tion would require including anisotropic turbulence effects in Eq. ( 18), but this is beyond the scope of the présent paper.

Cl = 47r3 fdmpo R(r) SR(co0), (22) 

Entropy fluctuations contribution

The entropy source term is computed as for the Reynolds contri bution in Sect. 2.1. Then Eq. ( 13) becomes We show in this section that we recover the results of Paper I providing that:

C2 = 2n2 f d3x0a] hljSfj\oj0), (28) 
-we restrict ourselves to the radial case by setting £ = 0 (£/, = 0), and -we assume a plane-parallel atmosphère.

In the entropy source term (C^), the mode compressibility for a 

Horizontal effects on the Reynolds and entropy source terms

Finally, we can group the different terms of Eqs. ( 23) and

(31) into four sets

We dérivé asymptotic expressions for the excitation source terms (Eqs. ( 22) and ( 31)) in order to identify the major nonradial contributors to the excitation rates in the solar case. where cr is the dimensionless frequency defined by

2 cr - R3 GM( ( 45 
)
where co is the angular frequency of the mode, R the star radius, and M its mass. Frequencies of solar p modes then range between cr « 10 and cr » 50 (v g [1,[START_REF] Belkacem | Two-scale mass-flux closure models for turbulence : p-mode amplitudes in solar-like stars[END_REF] In what follows, we introduce the complex number /, which is the degree of non-adiabaticity, defined by the relation 

Hence, we always hâve \dÇr/dr\ » \Çr/r\ in the excitation ré gion (except near a node of dÇr/dr). Similar to Eq. ( 44), one can assume dÇh ,dÇr _2 'd7/d7 " '

In fact, comparing Eq. ( 50) with the numerically-computed eigenfunctions shows that it holds even better than Eq.( 44) in the excitation région.

Reynolds stress contribution:

We start by isolating non-radial effects in the range £ e [0; 500]. Note that the limit £ = 500 is justified in Sect. 6.1 by the limit of validity for the présent formalism. We investigate two cases, £ «: cr2 and £ » cr2 respectively. The condition for which £ =* cr2 is satisfied for around the / mode for £ > 50 and in the gap between the g\ and / mode, for £ < 50.

Using the set of inequalities Eqs. ( 55) to (58), for a typical frequency of 3 mHz (i.e. cr ~30), R(r) (Eq. 23) becomes for high-n modes (£ < §: cr2):

df, 2 dr (59)

Hence, for high-n acoustic modes one can use Eq. ( 59) instead of Eq. ( 23), and in terms of the excitation source term, the for malism reduces to the radial case for £ < 500 and high-n modes.

For low-n modes (£ % a2, i.e. for instance cr « 10) some additional dependency must be retained (see Eq. ( 57)). One gets R0) * j| As the divergence of the mode corresponds to the diagonal part of the tensor V : £, one can then expect that the excitation rate decreases (through the terms in d£*/dr x £/,/r in Eq. ( 60)).

However, such a decrease is compensated for by the non-radial component of the tensor (£,2 in Eq. ( 60)). Thus, for low-n p modes there is a balance between the effect of incompressibility that tends to diminish the efficiency of the excitation and the non-diagonal components of the tensor V : Ç that tend to increase it.

Entropy contribution:

Numerical investigation shows that the non-radial compo nent of the entropy source term does not affect the excitation rates significantly except for C > 1000, which is out of the validity domain of the présent formalism (see Sect. 6.1). The nonradial effects appear through the mode compressibility, L2 |Df|2

(Eq.( 33)). From Eq. ( 57) one can show that non-radial contri butions play a non-negligeable rôle for low-/t modes. However, such low-frequency modes are not enough localised in the superadiabatic zone, where the entropy source term is maximum, to be efficiently excited by this contribution.

5. Numerical estimations for a solar model

Computation of the theoretical excitation rates

In the following, we compute the excitation rates of p modes for a solar model. The rate (P) at which energy is injected into a mode per unit time is calculated according to the set of Eqs. ( 11)-( 13). The calculation thus requires knowledge of four different types of quantities:

1) Quantities related to the oscillation modes: the eigenfunctions (£.,£/,) and associated eigenfrequencies (tuo).

2) Quantities related to the spatial and time-averaged properties of the medium: the density (po), the vertical velocity (à)), the entropy ( s ), and as = dP\/ds.

3) Quantities that contain information about spatial and tempo ral corrélations of the convective fluctuations: E(k), Es(k), and Xk(u).

4) A quantity that takes anisotropy into account: O measures the anisotropy of the turbulence and is defined according to Gough (1977) (see also Paper I for details) as:

where u2 = w2 + u2 and w/, is the horizontal velocity.

To be consistent with the current assumption of isotropie turbulence, we assume <t> = 3.

Eigenfrequencies and eigenfunctions (in point 1) above) were computed using the adiabatic pulsation code OSC (Boury et al. 1975). The solar structure model used for these computations (quantities in point 2) was obtained using the stellar évolution code CES AM (Morel 1997) for the interior, and a [START_REF] Kurucz | ATLAS9 Stellar Atmosphère Programs and 2 km/s grid[END_REF] model for the atmosphère. The interior-atmosphere match point was chosen at logr = 0.1 (above the convective envelope).

The pulsation computations used the full model (interior+ at mosphère). In the interior model, we used the OPAL opacities (Iglesias & Rogers 1996) which w is computed. The O value is set to 2 in the calculation. This is not completely consistent as we assume isotropie turbu lence (i.e. O = 3). This does not, however, affect the conclu sions of the présent paper, as ail results on nonradial excitation rates are normalized to the radial ones. Note also that the equilibrium model does not include turbulent pressure. These two limitations are of small importance here as our investigation in this first work on nonradial modes remains essentially qualita tive.

Finally, for the quantities in point 3, the total kinetic energy contained in the turbulent kinetic spectrum (E(k)) is obtained following Samadi et al. (2006).

Excitation rates

The rate (P) at which energy is supplied to the modes is plotted in Fig. 1, normalized to the radial excitation rate (Prad)-It is seen that the higher the l, the more energy is supplied to the mode. This is explained by additional contributions (compared to the radial case) due to mode inertia, the spherical symmetry (departure from the plane-parallel assumption), and the contribution of horizontal excitation. Note that, as discussed in Sect. 3 (see Eq.( 41)), the departure from the plane-parallel approximation is negligible for p modes. Then, to discuss the other two contributions, one can rewrite Eq. ( 4) as

P = 8/ , £r(*)|2 > (63)
where |£r(AE)| is taken at the photosphère. Note that both terms of the product (Eq.( 63)) are independent of the normalization of the eigenfunctions. Thus, as shown by Eq.( 63), the power supplied to the modes is composed of two contributions that both dépend on t. The first is due to the mode inertia, which is defined High-£ modes présent a lower inertia despite the L2 contribu tion in Eq. ( 64) because they are confined high in the atmosphère where the density is lower than in deeper layers.

The second term of the product Eq. ( 63) dépends on the nonradial effects through the excitation source terms (Eqs. ( 31) and ( 22)). To investigate this quantity independent of the mode mass (defined as // |£r(/?)|2), we plot the ratio PI/(PI)Tadiai in Fig. 1.

One can then discuss two types of modes, namely low-n (< 3) and high-/i (>3) modes (see Fig. 1).

-For high-/7 modes, non-radial effects play a minor rôle in the excitation source terms. The dominant effect (see Fig. 1) is due to the mode inertia as discussed above.

-For lower values of /?, there is a contribution to the excitation rates due to the horizontal terms in Eq. ( 22).

Thus, contrary to high-» modes, the term ^in R(r) (Eq. ( 23))

is no longer dominant in front of the terms involving £/, for loworder modes. Turbulence then supplies more energy to the lowfrequency modes due to horizontal contributions, which explains the higher excitation rates for low-» modes as seen in Fig. 1.

We stress that there is still turbulent energy that is supplied to the modes despite their nearly divergence-free nature. For such modes, the non-diagonal part of the tensor V : £, which is related to the shear of the mode, compensâtes for and dominâtes the diagonal part, which is related to the mode compression.

Surface velocities

Another quantity of interest is the theoretical surface velocity, which can be compared to observational data. We compute the mean-squared surface velocity for each mode according to the relation (Baudin et al. 2005):

^s(^o) = P(f»o) 27rrvM (65) 
Fig. 2. Surface rms velocities of C = 0,20,50 modes calculated using

Eq. ( 65) and normalized to the maximum velocity of the radial modes (see text). Note that the damping rates are taken from GOLF (Baudin et al. 2005) and are chosen to be the same for ail angular degrees (C).

Three <x error bars derived from GOLF are plotted on the C -0 curve.

choice is motivated by the dependence of the absolute values of velocities on the convective model that is used, and it is certainly imperfect. However, its influence disappears when considering differential effects. As an indication, 3 cr error bars estimated from GOLF for the i -0 modes are plotted (see Baudin et al. 2005, for details). The différences between the radial and nonradial computations are indeed larger than the i -0 uncertainties for C > 20. For a more significant comparison, error bars for nonradial modes should be used, but they are difficult to détermine with confidence (work in progress). For C larger than 50, we do not give surface velocities; as derived, those here dépend on the assumption of approximately constant damping rate that is not confirmed for C > 50.

When available, observational data should allow us to inves tigate the two régimes that hâve been emphasised in Sect. 5.2, namely the high-and low-/? modes.

6. Discussion

The séparation of scales

The main assumption in this general formalism appears in Eq. ( 11), where it has been assumed that the spatial variation of the eigenfunctions is large compared to the typical length scale of turbulence, leading to what we call the séparation ofscales. In order to test this assumption, one must compare the oscillation wavelength to the turbulent one or, equivalently, the wavenumbers. To this end, we use the dispersion relation (see Unno et al. 1989) where M = I/£2(/?) is the mode mass, h the height above the photosphère where oscillations are measured, Tv = rj/n the mode linewidth at half maximum (in Hz), and u2 is the mean square of the mode surface velocity. Equation ( 65) involves the damping rates (p = /rrv) inferred from observational data in the solar case for low-f modes (see Baudin et al. 2005, for details). We then assume that the damping rates are roughly the same as for the t -0 modes. Such an assumption is supported for low-£ modes (C % 50) as shown by Barban et al. (2004). where N is the buoyancy frequency, S c the Lamb frequency, and kr,kh the radial and horizontal oscillation wavenumbers, respectively, and L2 = 6(C + 1).

For the turbulent wavenumber, we choose to use, as a lower limit, the convective wavenumber ^conv = 27r/Lc, where Lc is the typical convective length scale. Thus, the assumption of sépara tion of scales is fulfilled, provided kr,h /^conv I (67) r/R Fig. 3. Top: ratio of the horizontal oscillation wavenumber to the convective wavenumber (ki,/kcom), versus the normalized radius (r/R). kconv is computed using the mixing length theory such that kcom = 2n/Lc (Lc is the mixing length) and kr is computed using the dispersion relation Eq. ( 66). Note that the ratio kh/kconv is computed for a frequency of around v = 3 mHz, depending on the angular degree (C). Bottom: the same as in the top but for the ratio kr/kconv.

In Fig. 3 for a more conservative criterion, we must then multiply the ra tio ki,/kconv by a factor of five, which leads to a ratio near unity for C % 500 (see Fig. 3). Thus, for higher values of the angular degree, the separation-of-scale hypothesis becomes doubtful.

Concerning the radial component of the oscillation wavenumber, the limiting value of £ seems to be the same (i.e. t = 500). Thus, we conclude that, for modes of angular degree lower than 500 one can use the séparation of scales assump tion. For C > 500, the characteristic length of the mode becomes shorter than the characteristic length Lc of the energy bearing eddies. Those modes will then be excited by turbulent eddies with a length-scale smaller than Lc, i.e. lying in the turbulent cascade.

These eddies inject less energy into the mode than the energy bearing eddies do, since they hâve less kinetic energy. We can then expect that -at fixed frequency -they received less energy from the turbulent eddies than the low-degree modes. A theoretical development is currently underway to properly treat the case of very high € modes. Gaussian law (Lesieur 1997). Thus, the use of the quasi-normal approximation (QNA, Millionshchikov 1941), which is exact for a normal distribution, is no longer rigorously correct. A more realistic closure model has been developed in Belkacem et al. (2006a) and can be easily adapted for high-^1 modes. This alter native approach takes the existence of two flows (the up-and downdrafts) within the convection zone into account. However, the QNA is nevertheless often used for the sake of simplicity as is the case here. Note that, when using the closure model with plumes, it is no longer consistent to assume that the thirdorder velocity moments strictly vanish; however, as shown by Belkacem et al. (2006a,b), their contribution is negligible in the sense that their effect is weaker than the accuracy of the presently available observational data.

Mode inertia

We hâve shown that the excitation rates for high-f and n modes are sensitive to the variation in the mode inertia (/). The value of I dépends on the structure of the stellar model and the properties of the eigenfunctions in these external régions. Samadi et al. (2006) hâve shown that different local formulations of convec tion can change the mode inertia by a small amount. This sensitivity then affects the computed excitation rates (P). However, the changes induced in P are found to be smaller than the ac curacy to which the mode excitation rates are derived from the current observations (see Baudin et al. 2005;Belkacem et al. 2006b). Furthermore, concerning the way the modes are obtained, we hâve computed non-adiabatic eigenfunctions using the time-dependent formalism of Gabriel for convection (see Grigahcène et al. 2005). The mode inertia obtained with these non-adiabatic eigenfunctions exhibits a v dependency different from those obtained using adiabatic eigenfunctions (the approx imation adopted in the présent paper). On the other hand, the mode inertia using non-adiabatic eigenfunctions (see Houdek et al. 1999, for details) obtained according to Gough's timedependent formalism of convection (Gough 1977) shows smaller différences with the adiabatic mode inertia. Accordingly, the way the interaction of oscillation and time-dependent convection is modelled affects the eigenfunctions differently. As explained in Sect. 5.3, the formalism developed in this paper can be an efficient tool for deriving constraints on the mode inertia to distinguish between the different treatments of convection. Further work is thus needed on that issue.

Conclusions

We extended the Samadi & Goupil (2001) formalism in order to predict the amount of energy that is supplied to non-radial modes. In this paper, we focused on high-^acoustic modes with a particular emphasis on the solar case. The validity of the présent formalism is limited to values of the angular degree lower than C = 500, due to the séparation of scale assumption that is discussed above in Sect. 6.1. We hâve demonstrated that non-radial effects are due to two contributions, namely the effect of inertia that prevails for high-order modes (n > 3)

and non-radial contributions in the Reynolds source term in (see Eq. ( 22)) that dominate the radial one for low-order modes 0n < 3).

Contrary to Belkacem et al. (2006b) who used 3D simula tions to build an equilibrium model, we restricted ourselves to the use of a simple classical 1D MLT equilibrium model. Indeed, we were interested in deriving qualitative conclusions on nonradial contributions. Forthcoming quantitative studies will hâve to use more realistic equilibrium models, particularly for the con vection description, such as models including turbulent pressure (e.g. Balmforth 1992) or patched models (e.g. Rosenthal et al. 1999).

From a theoretical point of view, several improvements and extensions of the présent formalism remain to be carried out.

For instance, one must relax the assumption of the séparation of scales if one wants to model very high-f modes. Such an inves tigation (which is currently underway) should enable us to draw conclusions about the observational evidence that, beyond some value of C the energy supplied to the modes decreases with frequency (see Woodard et al. 2001, Fig. 2). Another hypothesis is the isotropie turbulence that has been assumed in the présent work as a first approximation. Such an assumption needs to be given up to get a better description of the nonradial excitation of modes by turbulent convection, which requires further theoreti cal developments.

The présent work focuses on p modes, but the formalism is valid for both p and g modes. We will address the analysis of gravity modes in a forthcoming paper.

Les modes de gravité On remarque également que le paramètre A est trouvé plus important (A = 3) que dans les si mulations numériques des régions superficielles du soleil (A = 1). Ce paramètre fût introduit par Balmforth (1992a) -Pour les modes de haute fréquence, (v > 100/iHz), les taux d'excitation augmentent avec la fréquence car l'inertie des modes diminue. Ce comportement est associé aux fonctions propres qui à mesure que la fréquence augmente sont de plus en plus confinées dans les couches superficielles du soleil.

-Aux basses fréquences, {v < 100 /iHz), les taux d'excitation P décroissent avec la fréquence.

Cela s'explique par l'existence de deux contributions dans l'expression des taux d'excitation (Eq. ( 7.2)), l'inertie et la compressibilité des modes. Ces deux contributions sont antagonistes, en effet plus les modes sont de basse fréquence, plus leurs inerties sont importantes car ces modes sont de plus en plus confinés près du coeur du soleil. L'effet de l'inertie est de réduire l'efficacité de l'excitation à mesure que l'on descend en fréquence (P oc 1 /1).

Au contraire, la compressibilité des modes est minimale pour le mode fondamental et croît pour les plus hautes fréquences (les modes p) et les plus basses fréquences (les modes g). Donc, pour les modes g asymptotiques la compressibilité compensera l'effet de l'inertie, ce qui explique la pente observée sur la figure 8.3. 

8.3.2

Comparaison avec les vitesses obtenues par Kumar et al. (1996) Ces résultats doivent être comparés aux travaux précédents que nous avons déjà discutés en partie dans le chapitre 6. Rappelons que Gough (1985) trouve un maximum en terme de vitesse qui est 0. 

8.4

Peut-on détecter les modes de gravité asymptotiques? Dziembowski (1977) et par Berthomieu & Provost (1990) dans le cas des modes de gravité asymptotiques. On utilise une loi assombrissement centre-bords proposée par Ulrich et al. (2000) pour le Soleil dans la raie du Na qui correspond à la raie observée par GOLF.

Vitesses apparente des modes g La figure 8.4.1 montre le résultat obtenu sur les vitesses évaluées à la hauteur de formation de la raie de Na. Il apparaît que les meilleurs candidats à la détection sont les modes t = 1 près de = 60 /zHz ainsi que les modes t -2 près de v -100 /iHz avec une amplitude proche de 3 mrn/s. Plusieurs questions demeurent. En particulier, nous avons évoqué dans le chapitre 6 les tra vaux de Andersen (1996) dans lesquels il étudie l'impact de la pénétration convective sur l'am plitude des modes. Autrement dit il s'agit de déterminer si la pénétration des panaches dans la région radiative peut efficacement exciter les modes de gravité. Je discute ce point dans ce qui suit en utilisant quelques ordres de grandeurs, afin de montrer qu'il ne suffit pas de se contenter d'arguments énergétiques mais qu'il faut prendre en compte la corrélation temporelle entre les panaches et les modes.

La pénétration convective peut-elle exciter les modes?

La première question qui se pose est : l'énergie cinétique liée à la pénétration convective est-elle suffisante pour exciter les modes de gravité ?

L'énergie disponible est l'énergie cinétique des panaches. Si l'on considère qu'il y a à chaque instant 1000 panaches qui pénètrent dans la région radiative du soleil (Rieutord & Zahn 1995) alors la luminosité d'énergie cinétique des panaches est donnée par Lp = 4 7r rl A pVp (8.15) avec rj, le rayon à la base de la zone convective, A ~0.1 le facteur de remplissage et Vp -500 ms-1 leur vitesse à la base de la zone convective (Montalbân & Schatzman 2000). On en déduit La difficulté provient essentiellement de la région super-adiabatique. En effet, dans cette région le temps de relaxation thermique devient du même ordre de grandeur que le temps ca ractéristique de la convection ce qui rend très difficile de distinguer entre les contributions de l'amortissement provenant des pertes radiatives ou de la perturbation du flux convectif.

Ainsi, avant d'aborder le problème de l'amplitude des modes de gravité de faible degré radial, il semble nécessaire d'établir une estimation des taux d'amortissement des modes qui ne soi pas le résultat d'un extrapolation mais d'une modélisation adaptée.

Introduction

The pioneer works of Ulrich (1970) and Leibacher k. Stein ( 1985) and Kumar et al. (1996). Gough (1985) made an order of magnitude estimate based on an assumption of equipartition of energy as proposed by Goldreich Keeley (1977b). He found a maximum velocity around 0.5 mm s-1

for an = 1 mode at u ae 100/Riz. Kumar et al. (1996) used a different approach based on the Goldreich et al.

(1994) modeling of stochastic excitation by turbulent con vection, as well as an estimating of the damping rates (Goldreich & Kumar 1991) that led to a surface velocity near 0.01 mm s-1 for the t = \ mode at v ae 100/jHz.

The results differ from each other by orders of magni tude, as pointed out by Christensen-Dalsgaard (2002b).

Such différences remain to be understood. One purpose of the présent work is to carry out a comprehensive study of both the excitation and damping rates of asymptotic g modes. Our second goal is to provide theoretical oscillation mode velocities, , as reliably as possible. Note, however, that penetrative convection is another possible excitation mechanism (Andersen 1996;Dintrans et al. 2005), but it is beyond the scope of this paper.

Damping rates are computed using the Grigahcène ( 2008), which is a generalization to non-radial modes of the formalism developed by Samadi & Goupil (2001) and Samadi et al. (2003b,a), for radial modes. As in the case of p-modes, the excitation formalism requires knowing the turbulent properties of the convection zone, but unlike p modes, the excitation of gravity modes is not concentrated towards the uppermost surface layers. One must then hâve some notion about the turbulent properties across the whole convection zone. Those properties will be inferred from a 3-D numerical simulation provided by the ASH code (Miesch et al. 2008).

The paper is organized as follows. Section 2 briefly recalls our model for the excitation by turbulent convection and describes the input from a 3D nurnerical simulation.

Section 3 explains how the damping rates are computed.

Section 4 gives our theoretical results on the surface veloc ities of asymptotic g modes and compares them with those from previous works. Section 5 provides the apparent sur face velocities, which take disk integrated effects and line formation height into account. These quantities can be directly compared with observations. We then discuss our ability to detect these modes using data from the GOLF instrument onboard SOHO as a function of the observing duration. The discussion is based on estimations of détec tion threshold and numerical simulations of power spectra.

In Sect. 6., uncertainties on the estimated theoretical and apparent velocities, due to the main uncertainties in our modeling, are discussed. Finally, conclusions are provided in Sect. 7.

Excitation by turbulent convection

The formalism we used to compute excitation rates of non- the unresolved eddy luminosity (Led) (Brun et al. 2004). We particularly emphasize the négative kinetic-energy flux that results in a larger convective flux (see text for details).

Numerical computation of theoretical excitation rates

In the following, we compute the excitation rates of g modes for a solar model. The rate (P) at which en ergy is injected into a mode per unit time is calculated according to Eq. ( 1). Eigenfrequencies and eigenfunctions are computed using the adiabatic pulsation code OSC (Boury et al. 1975). The solar structure model used for these computations is obtained with the stellar évolu tion code CESAM (Morel 1997) for the interior and a [START_REF] Kurucz | ATLAS9 Stellar Atmosphère Programs and 2 km/s grid[END_REF] convection. Thus, in the following, the rms convective ve locity is taken from the mixing-length theory, while both the spatial and temporal turbulent properties are inferred from the 3D simulation. Then, velocity from the numeri cal simulation is not used in our calculation. This choice is motivated by the rigid boundary condition at the top of the simulation that results in an unrealistic decrease in the vertical velocity for r > 0.93 Rq.

The 3D convection simulation

One way of assessing the dynamical properties of the deep solar turbulent convection zone is to exploit a high reso lution numerical simulation such as those performed with the anelastic spherical harmonie (ASH) code (Miesch et al. 2008;Brun et al. 2004). The simulation of global scale tur bulent convection used in the présent work is discussed in detail in Miesch et al. (2008). The ASH code solves the where iük is its linewidth, defined as

2kuk Wfc = A (7) (8) (9) ( 10 
)
where À is a parameter as in Balmforth (1992), the velocity uk of the eddy with wavenumber k is related to the kinetic energy spectrum E^k^) by (Stein 1967) 2k dkE(k) . ( 11) The results presented in Fig. 3 are for the depth r « 0.87?©, where excitation is dominant, and for an angular degree corresponding to the maximum of the kinetic energy spectrum (£ = 40), whose contribution is domi nant in the excitation rates. Those results do not dépend on the shell considered but instead on the wavenumber.

For very high angular degree (7 > 300) we find that Xk becomes more and more Gaussian. Nevertheless, as shown by Fig. 2, those contributions are negligible compared to large-scale ones.

The value of the parameter A is also of interest.

Contrary to the upperlayers where A = 1 (Samadi et al. 2003b), we find a higher value, A = 3, that accords with the resuit of Samadi et al. (2003b) who find that the deeper the layers, the higher this parameter. The black line corresponds to an arbitrary contour line that is the same for both panels. frequencies. This behavior corresponds to the évolution of convective éléments, i.e turbulent eddies evolve on larger time and spatial scales with depth. Thus, we conclude that high-frequency g modes are mainly excited in the upper layers, whereas low ones are excited deeper, however, the net excitation rate, Eq. ( 1), is a balance between the eigenfunction shape and the source function.

Excitation rates

Anticipating the following (see Sect. 3), we stress that modes with high angular degree will be highly damped, making their amplitudes very small; hence, we restrict our investigation to low-^degrees (£ < 4). In Fig to the excitation rate P (Eq. ( 1) and Eq. ( 3)) which are the inertia I (in Eq. ( 1)) and mode compressibility (V • £, appearing in R(r), Eq. ( 3)).

Mode inertia decreases with frequency as shown by Fig. 6 since the higher the frequency, the higher up the mode is confined in the upper layers. This then tends to decrease the efhciency of the excitation of low-frequency modes. On the other hand, mode compressibility (Fig. 6)

increases with frequency and consequently competes and dominâtes the effect of mode inertia. Mode compressibility can be estimated as

dü Yem V • £ dr r (12) 
The mode compressibility is minimum when both terms in Eq. ( 12) are of the same order. Following Belkacem et al.

( 

)
where g is the dimensionless frequency, ujq is the angular frequency of the mode, R the Sun radius, and M its mass.

According to Eq. ( 13), mode compressibility is minimum for u « 100/rHz depending on i, as shown by Fig. 6. In contrast, in the asymptotic régime (u < 100//Hz), the modes are compressible and this compressibility increases with decreasing frequency.

It is important to stress that for the asymptotic g modes, in the frequency range [20; 110] //Hz, the hor izontal contributions in Eq. ( 3) are dominant. For low-£ g modes, the dominant contributions corne, in Eq. ( 3), from the component of the mode divergence (see Eq. ( 12)).

Then the ratio of the horizontal to the vertical contribu tions to Eq. ( 1) is around a factor five, imposing the use of a non-radial formalism.

Damping rates

To compute theoretical (surface velocities) amplitudes of g modes, knowledge of the damping rates is required.

Physical input

Damping rates hâve been computed with the nonadiabatic pulsation code MAD (Dupret 2002). This code a closure parameter (see Dupret et al. 2006b, for details).

We also stress that, for low-frequency g modes, particular attention is to be paid to the solution of the energy équa tion near the center as explained in Appendix A for the t = 1 modes since those dipolar modes présent a peculiar behavior near the center that must be properly treated. explained by paying attention to the ratio Q = loq/uc, where ujq is the oscillation frequency and ujc the convective frequency, defined to be u>c = 27rA/urnit where A is the mixing length and umit the convective velocity. In the whole solar convective zone Q is higher than unity except near the surface (the superadiabatic région). However contributions of the surface layer remain small in comparison with the radiative ones for asymptotic g modes (see Fig. 7).

One can thus draw some conclusions -for high-frequency g modes (u > 110/rHz), the work intégrais and thus the damping rates are sensitive to the parameter (3 that is introduced to model the convection/pulsation interactions because the rôle of the surface layers in the work intégrais becomes impor tant. As a resuit, the results on the damping rates are questionable for high frequencies since the value of ( 3is derived from the observed p modes and that there is no evidence it can be applied safely for g modes.

-in contrast, for low-frequency g modes (u < 110/iHz), we find that the work intégrais and then the damping rates are insensitive to parameter (3. Also, we numeri- In Fig. 9, we give the theoretical damping rates 77 of gmodes of degree £ -1,2, 3, as a function of the oscillation frequency in //Hz. We see that for u < 110//Hz, 77 is a decreasing function of frequency. We find that the frequency dependence is 77 oc u;^3. To understand tins behavior, we express the intégral expression of the damping rate (see Grigahcène et al. 2005, for details) as Because of the high wavenumber for low-frequency g modes, the term in dST/dr is very high in Eq. ( 14), domi nâtes in Eq. ( 19), and is the main source of damping. This term appears as a second-order dérivative in the work inté gral, and introduces a factor /c2 (kr « yj£{£ + l)N/(uior) is the vertical local wavenumber). Thus, from Eqs. ( 19), ( 18), and ( 16) one obtains g oc uJq5/I. By using an asymptotic expansion of the eigenfunctions (Christensen-Dalsgaard 2002a), one gets / oc cOq2, which permits g oc and explains the behavior of g in Fig. 9. The argument is the same for the variation of g with the angular degree at fixed frequency becomes it cornes from the wave-number dependence /c2.

Contributions to the work intégral

Above 110//Hz, the rôle of the radiative zone in the mode damping is smaller. There, the damping rates begin to increase with frequency simply because the kinetic energy of the modes decreases faster than the mechanical work.

4. Surface velocities of g modes

Theoretical (intrinsic) velocities

We compute the mean-squared surface velocity (v2) for each mode as

vs(h) = (v(r,t) • v(r,t)^dü^(h) ( 20 
)
where h is the height in the stellar atmosphère, <> the time average. Using the expression Eq. (C.3) in appendix

C, one then has v2{h) = A2 [v2(h) + + 1 )v2h(h)] . ( 21 
)
The amplitude A2 = (1/2) (|a(t)|2) is given by (Eq. (C.6)):

A2 = P 2 g Iu)q (22)
where <> dénotés the time average, I the mode inertia, g the damping rate, and vr^{h) = u/o £r,/i(/i) with £,r(h) and ih(h) respectively the radial and horizontal displacement eigenmode components.

In this section, we consider the level of the photo sphère h = R with R the radius at the photosphère.

Figure 10 présents intrinsic values of the velocities. The behavior of the surface velocities as a function of the angular degree (£) is mainly due to the damping rates, which rapidly increase with l\ hence, at fixed frequency, the higher the angular degree, the lower the surface veloc ities. As a conséquence, amplitudes are very low for l > 3 .

At fixed £, va increases with frequency with a slope resulting from a balance between the excitation and damping rates. Nevertheless, modes of angular degree t = 1 exhibit a singular behavior, i.e. a maximum at v « 60 //Hz. This is due to the variation of the slope in the excitation rates (see Fig. 5). In terms of amplitudes, the maximum is found to be « 5 mm/s for £ = 1 at v « 60 //Hz, which corresponds to the mode with radial order |n| = 10. It is important to stress that the velocities shown in Fig. 10, are intrin sic values of the modulus that must not be confused with the apparent surface velocities (see Sect. 5), which are the values that can be compared with observed ones.

Comparison with previous estimations

The theoretical intrinsic velocities obtained in the présent work must be compared to previous estimations based on the same assumption that modes are stochastically excited by turbulent convection. Ail works cited in the next sec tions deal with intrinsic velocities, i.e. ones not corrected for visibility effects.

Estimation based on the equipartition of energy

The first estimation of g-mode amplitudes was performed by Gough (1985), who found a maximum of velocity of about 0.5 mm s-1 for the i -1 mode at v « 100//Hz. Gough (1985) used the principle of equipartition of energy, which consists in equating the mode energy (£) with the kinetic energy of résonant eddies whose lifetimes are close to the modal period. This "principle" has been theoretically justified for p modes, by Goldreich & Keeley (1977b) assuming that the modes are damped by eddy viscosity.

They found that the modal energy to be inversely proportional to the damping rate, g, and proportional to an in tégral involving the term E\ v\ A where E\ = (1/2) m\ v\ is the kinetic energy of an eddy with size A, velocity v\, and mass m\ = p A3 (see Eq. ( 46) of Goldreich & Keeley 1977b). Using a solar model, they show that the damping rates of solar p modes are dominated by turbulent viscos ity and that the damping rates are accordingly propor tional to the eddy-viscosity, that is, g oc v\ A (see Eq. ( 6)

of Goldreich & Keeley 1977a). Hence, after some simplifying manipulations, Goldreich & Keeley (1977b) found the modal energy to be (see their Eq. ( 52)) S ~0.26 E\ = 0.13 ni\ v\ .

This principle then was used by Christensen-Dalsgaard & Frandsen (1983) for p modes and Gough (1985) for solar g modes. However, as mentioned above, the resuit strongly dépends on the way the modes are damped, and for asymptotic g modes there is no evidence that this approach can be used and in particular, as shown in this work, if the damping is dominated by radiative losses.

Kumar et al. (1996)'s formalism

Another study was performed by Kumar et al. (1996),

which was motivated by a claim of g-mode détection in the solar wind (Thomson et al. 1995). Computations were performed using the Goldreich et al. (1994) formalism;

both turbulent and radiative contributions to the damp ing rates were included as derived by (Goldreich & Kumar 1991) who obtained mode lifetimes around 106yrs. This is not so far from our results (see Fig 9). Kumar et al. (1996) found that the theoretical (i.e. not corrected for visibility factors) surface velocity is around 10~2cms~1 near v -200 ^uHz for i = 1 modes. However, as shown in Sect. 3, the results for this frequency range are very sensitive to the convective flux perturbation in the damp ing rate calculations. Thus, we do not discuss the resuit obtained for those frequencies.

More interesting for our study, Kumar et al. (1996) also found very low velocities (10"2mms"1) for u < 100/rHz. This is significantly lower than what we find. However, the efficiency of the excitation strongly dépends on how the eddies and the waves are temporally-correlated. As already explained in Sect.2.1, the way the eddy-time cor rélation function is modeled is crucial since it leads to major différences between, for instance, a Gaussian and a Lorentzian modeling. The Goldreich &;Keeley (1977b) approach, from which Kumar et al. (1996)'s formulation is derived, implicitly assumes that the time-correlation be tween the eddies is Gaussian. The présent work (as ex plained in Sect. 2.1) assumes a Lorentzian for the time corrélation function which results in v -3 mm/s in amplitude for i -1 mode at v « 60/rHz (Sect. 4.1).

We performed the same computation but now assuming Xk to be Gaussian (Eq. ( 7)) and using a Kolmogorov spectrum as in Kumar et al. (1996). In that case (see Fig. 10), we find velocities of the order of 10"2mms"1 for t -1 which agréé with the resuit of Kumar et al. (1996), which is significantly lower than when assuming a Lorentzian.

Apparent surface velocities

We dénoté as disk-integrated apparent velocities the values of amplitudes that take both geometrical and limb dark- In Appendix C we follow the procedure first derived by Dziembowski (1977) and for asymptotic g modes by Berthomieu & Provost (1990). We use a quadratic linrbdarkening law following Ulrich et al. (2000) for the Sun with an angle between the rotation axis and the Equator of 83 degrees. As mentioned above, the apparent velocities are evaluated at the level h, i.e. the height above the pho tosphère where oscillations are measured. Then h is set so as to correspond to the SoHO/GOLF measurements that use the NaDl and D2 spectral lines, formed at the optical depth r = 5.10~4 (see Bruis & Rutten 1992). The results are presented in Tables 1 and2 for angular degrees £ = 1,2,3. 

Détecta bility of g modes; only a matter of time

To compare our calculated apparent velocities with ob servations, we used data from the GOLF spectrometer (Gabriel et al. 2002) onboard the SOHO platform, which performed Doppler-like measurements on the diskintegrated velocity of the Sun, using the Na D lines. We used here a sériés of 3080 days to estimate the background noise level and compare it to the apparent velocities determined in this work.

A first possible approach is to use some analytical and statistical calculations such as the ones developed by [START_REF] Beyond Appourchaux | Years of SOHO and[END_REF] (Eq. 10). Once a length of ob servation T (in units of 106s), a frequency range Au (in /rHz), and a level of confidence pdet are set, this gives the corresponding signal-to-noise ratio

~ln(T) + ln(Ai') -ln(l -pdet), ( 25 
)
where sdet is the power of the signal to be detected, and < s > the local power of the noise. This means that any peak in the frequency range Au above this ratio has a probability pdet of not being due to noise. Choosing a fre quency range of Au = 10/rHz centered on the frequency of the highest expected velocities (60/ddz) sets the back ground level at « 500 (ms-1)2/Hz. Equation ( 25) gives an amplitude of 5.2 mm s-1 for a détection with a confidence level pdet of 90% for 15 years of observation, 4.6 mms~1

for 20 years, and 3.8 mms~1 for 30 years.

However, this approach has to be repeated for each mode (with its own proper noise level) to hâve a global view of détection possibilities. To do so, we used sim ulations. Again relying on the GOLF data to estimate the noise spectrum, we simulated synthetic data including noise and g modes with the apparent velocities as above (and with random phases). Several durations of observa tion were simulated, from 10 to 30 years. A hundred sim ulations were performed in each case. The noise level is estimated locally and so is the détection level, following

Eq. ( 25), on the frequency range [30//Hz,100 /zHz]. Thus, with a confidence level of 90% and with 7 independent subsets of 10/rHz, noise is expected to show no peak above the global détection level with a probability of 48%, and to show 1 peak above the global détection level with a proba bility of 32% (and even 2 peaks in 12% of the realizations).

Table 3 lists the average (over 100 simulations) number of peaks detected above the détection level for different observation durations. These simulations were performed using amplitudes Amax assuming three different cases:

• Case 1: we assumed for Amax the apparent surface velocity amplitudes calculated above, A.

Due to uncertainties in the theoretical modeling (as discussed in Sect.6), we also assume:

• Case 2: that amplitudes are larger than the ampli tudes estimated above by 50% i.e. Amax = 1. The upper curve corresponds to the case 3 (Amax = 2A), the middle one to case 2 (Amax = 1.5A), and the lower one to case 1 (Amax = A).

dicted amplitudes cannot be overestimated by a factor of two, because in this case, the solar g modes would hâve already been detected without doubt. Case 1 sets a lower limit, because in this case, even with longer (30 years) ob servation, g modes would not be detected. Case 2 shows that if real solar amplitudes are just a few tens of percent higher than the présent estimations, then g modes could be detected no doubt after say 15 to 20 years of observa tion (to be compared to the présent status of observation:

12 years). The results are summarized in Figs. 12.

We must stress that, apart from visibility effects and height of line formation, we took no other instrumental effects on the apparent amplitude détermination into account, because they dépend on the instrument. The im pact is probably a decrease in the measured amplitudes compared to the apparent amplitudes as computed here. Table 3. Number of peaks above the détection level in the simulated power spectra versus the duration of observation in three cases. In the simulated signal, the modes are given an amplitude Amax-The 3 cases respectively correspond to Amax being the apparent amplitudes A readily stemmed from our calculation, Amax = 1.5A and Amax = 2A. The last two cases take into account that uncertainties in the modeling globally tend to underestimate the amplitudes as discussed in Sect.6.

This does not change the above conclusion for Case 1. We expect that the instrumental uncertainty is less than the theoretical uncertainties discussed in Sect. 6 below, which led to Case 2 and 3.

Discussion

In Sect. 5 above, we explained why estimâtes of gmode amplitudes obtained by previous authors differ from each other by orders of magnitude (Christensen-Dalsgaard 2002b). We propose an improved modeling based on the input of 3D numerical simulations and on a formalism that had successfully reproduced the observations for p modes (Belkacem et al. 2006). Nevertheless, several approxima tions remain, and they lead to uncertainties that can reach a factor two in the estimation of g-mode apparent velocities (overestimation). We next discuss the most important ones.

Equilibrium model: description of convection

Convection is implemented in our equilibrium models according to the classical Bôhm-Vitense mixing-length (MLT) formalism (see Samadi et al. 2006, for details). . First, we verified that a non-local description of turbu lence does not modify the convective velocities by more than a few per cent except near the uppermost part of the convection zone, which does not play any rôle here.

Second, we compared the rms velocities from the 3D nu merical simulation with MLT velocities to estimate of the uncertainties. The MLT underestimates the velocity, rel ative to the more realistic numerical simulation (far from the boundaries). Indeed, it cornes from the négative kinetic energy flux that results in a larger enthalpy flux in order to carry the solar flux to the surface. A direct conséquence is that in 3-D simulations the velocities are higher than the ones computed by MLT by a factor of about 50%.

This may in turn resuit in a possible underestimation of the amplitudes of the modes by a factor 2, when, as here,

MLT is used to estimate the velocities.

Anisotropy

The value for the velocity anisotropy, which is the ratio between the square of the vertical velocity to the square of the rms velocity parameter, <&, is derived from the MLT: its value is 2. However, this is not fully consistent since we assume, in the excitation model, isotropie turbulence (i.e. <Ê> = 3). Nevertheless, increasing the value of $ from two to three results in an increase of only 15 % in the mode sur face velocities. This is lower than the uncertainties Corning from Xk (see Sect. 6.2).

Turbulent pressure

Our solar equilibrium model does not include turbulent pressure. However, unlike p modes, low-frequency (high radial order) gravity modes, i.e. those considered in this work, are only slightly affected by turbulent pressure. The reason is that such modes are excited in the deepest layers of the convection zone, i.e. between r = 0.7 Rq and r = 0.9 Rq where turbulent pressure has little influence on the equilibrium structure since the ratio of the turbu lent pressure to the gas pressure increases with the radius.

Stochastic excitation: the rôle of the eddy-time corrélation funotion

A Gaussian function is commonly used to describe the frequency dependence of the turbulent kinetic energy spectrum, Xk > (e.g., Samadi & Goupil 2001;Chaplin et al. 2005). However, Samadi et al. (2003a) show that, for p modes, a Lorentzian function represents the re sults obtained using 3D numerical simulations better.

Furthermore, the latter function yields a theoretical modeling in accordance with observations, while using a Gaussian function fails (Samadi et al. 2003b). This led us to investigate Xk(w) for g modes. We find that differ ent choices of the functional form for Xk{&) resuit in order of magnitude différences for the mode amplitudes.

Uncertainties inhérent in the eddy-time corrélation function are related to the value of the À parameter (Sect. 2.2.1) and to the contribution of low frequency components in the 3D simulation. As a rough estimate, decreasing A from 3 to 2 leads to an increase of 20% for the surface velocity. Figure 3 shows that low-frequency components in the turbulent kinetic energy spectrum are better-fitted using a Gaussian function. However, the source of such low-frequency components remains unclear, because they can originate from rotation; in particular, it is not clear whether they must be taken into account when estimating the mode excitation rates. By removing those contributions, the resulting surface velocities decrease by around 25 %.

Mode damping: the convection-pulsation coupling

Last but not least, modeling damping rates of damped, stochastically excited modes remains one of the most challenging issues. The strong coupling between convection and oscillation in solar-like stars makes the problem difhcult and still unsolved, since ail approaches developed so far failed to reproduce the solar damping rates without the use of unconstrained free parameters (e.g., [START_REF] Dupret | qui sont fondés quant à eux sur la perturbation d'un modèle de type Reynolds stress. Tous ces modèles n'arrivent que difficilement à reproduire les taux d'amor tissement des modes acoustiques solaire et au prix d'ajustement de paramètres libres[END_REF], Houdek 2006). Such descriptions fail to correctly describe the interaction between convection and oscilla tions when both are strongly coupled, i.e. when the characteristic times associated with the convective motions are the same order of magnitude as the oscillation periods.

This explains why we do not use an extrapolation based on a fit of p mode damping rates, but instead consider a frequency domain in which the damping is dominated by radiative contributions. A reliable computation of the damping rates at higher frequencies, beyond this paper's scope, would require a sophisticated analytical or semianalytical theory of the convection-oscillation interaction, which will not be limited to the first order in the convec tive fluctuations and which will take the contribution of different spatial scales into account.

Conclusions

We performed a theoretical computation of the surface oscillation velocities of asymptotic gravity modes. This calculation requires knowing excitation rates, which were obtained as described in Belkacem et al. (2008) with input from 3D numerical simulations of the solar convec tive zone (Miesch et al. 2008). Damping rates, p , are also needed. As mentioned in Sect. 6, we restricted our investigation to the frequency domain for which p is dom inated by radiative contributions (i.e. v G [20; 110]/iHz).

For higher frequencies, the coupling between convection and oscillation becomes dominant, making the theoreti cal prédictions doubtful. For asymptotic p-modes, we find that damping rates are dominated by the modulation of the radial component of the radiative flux by the oscilla tion. In particular for the i -1 mode near ^~60 ^uHz, p is around 10~7 /iHz, then the mode life time is « 3.105yrs.

Maximum velocity amplitude at the photosphère arises for this same mode and is found at the level of 3 mm s-1 (see Fig. 11). Modes with higher values of the angular degree i présent smaller amplitudes since the damping is proportional to i2.

Amplitudes found in the présent work are orders of magnitude larger than those from previous works, which themselves showed a large dispersion between their respec tive results. In one of these previous works, the estimation was based on an equipartition principle derived from the work of Goldreich & Keeley (1977a,b) and designed for p modes. Its use for asymptotic g modes is not adapted as the damping rates of these modes are not dominated by turbulent viscosity. Kumar et al. (1996) hâve carried another investigation of g mode amplitudes, and its calcu- lation is rather close to our modeling. Most of the quanti tative disagreement with our resuit lies in the use of a dif ferent eddy-time corrélation function. Kumar et al. (1996) assumed a Gaussian function as is commonly used. Our choice relies on results from 3D simulations and is doser to a Lorenztian function.

Taking visibility factors, as well as the limb-darkening, into account we finally found that the maximum of ap parent surface velocities of asymptotic g-modes is ~3 mm s-1 for £ -1 at u « 60 /^Hz an i -2 at v ae 100 /uHz.

Due to uncertainties in the theoretical modeling, ampli tudes at maximum, i.e. for i -1 at 60 ^uHz, can range from 3 to 6 mm s-1. By performing numerical simulations of power spectra, it is shown that, with amplitudes of 6 mm s"1, the modes would hâve been already detected by the GOLF instrument, while in the case of an amplitude of 3 mm s"1 the g modes would remain undetected even with 30 years of observations. The theoretical amplitudes found in this work are then close to the actual observational limit. When detected, the amplitude détection threshold of these modes will, for instance, establish a strict upper limit to the convective velocities in the Sun. 

T = 27+3T---7+dT7d;ir-iF-<A-2)
The radial (first terni of Eq. (A.l)) and transverse parts (last term of Eq. (A.l)) of the perturbed flux diver gence are both singular at the center. But this singularity is lifted when the two terms are joined and an appropriate change of variables is carried out:

Appendix A: Energy équation near the center For the full non-adiabatic computation of p-mode damping rates, much care must be given to the solution of the energy équation near the center of the Sun for the modes of angular degree l -1. We give in Eqs. (A.l) and (A. The dimensionless complex velocity amplitude av(t) is assumed to be a slowly varying function of time for a damped stochastically excited mode (Samadi & Goupil 2001;Samadi et al. 2003b;Belkacem et al. 2008). The theoretical expression is given by

< Wt)\2 >= P ijluo (C.6)
where the power P is defined in Eq. ( 1), / is the mode inertia, rj the damping rate and < > represents a statistical average, or equivalently here a time average.

To obtain the apparent velocity from Eq. (C.l) using The angle Oo between the observer and the rotation axis is often denoted i. Intégration over the solid angle leads to :

J h(fi)(£(r) • n)dQ = Yem(Q0, $0) x (&-(r) J M2 h(fi) Pe(n)dfi + Ur) f V h(ji) (1 -/r2) (C.12)
Finally, using properties of spherical harmonies, one ob-

tains fh(n)(Ç(r) • n)dCl fh(v)dn = Yem(G 0,$o)
where we hâve defined Collecting Eq. (C.3) and Eq. (C.13), the apparent ve locity is then given by VaPP{r,t) = i a(t) uj0 Ne,m Pe{cos0o) (C.17)

x (Çr(r)ui + £/i(r)wi) ed"ot+m<j>0) + c c _ (C.18)

We assume a quadratic limb-darkening law of the form

h(n) = 1 + a X2 + c2 A2 + c3 X3 (C.19)
where X -1 -/r, ci={ 1,2,3} are the associated limbdarkening coefficients, which respective values are -0.466, -0.06 and -0.29 for the NaDl spectral line, as derived by Ulrich et al. (2000). We find that our conclusion dé pends neither on the adopted limb-darkening law nor on the limb-darkening coefficients, results in accordance with Berthomieu & Provost (1990).

Using Eq. (C.6), the rms velocity is obtained as: Comme le montre l'Eq. (9.25), la perturbation liée à la rotation est proportionnelle à 91 il est alors intéressant de se tourner vers des étoiles dont la rotation est supérieure à celle du Soleil. Considérons l'étoile #1)49933, il s'agit d'une des cibles principales de COROT, elle a été observée une fois 60 jours et une autre fois 150 jours. De plus, elle présente une vitesse de rotation plus importante que le Soleil avec une période qui est de l'ordre de 4 jours (Mosser et al. 2005, Appourchaux, 2008, sous presse). Sur la figure 9.2 on présente alors l'asymétrie calculée pour cette étoile ainsi que pour le soleil pour des modes acoustiques de degré angulaire £ = 1, qui sont observés. Malheureusement, il est très peu probable que l'on observe des modes de i plus élevés.

Ainsi, il apparaît que l'asymétrie est de l'ordre de 10% entre les amplitudes des modes prograde 2hypothèse qu'il reste à vérifier.

et rétrograde, avec le même raisonnement que précédemment seulement 5% (en ppm), ce qui malgré des observations de très grande qualité semble difficilement détectable. Néanmoins, pour les étoiles en rotation rapide il sera nécessaire d'aller au-delà de la simple approche perturbative.

Perspectives

Dans ce qui suit, on discute l'impact de l'asymétrie des amplitudes des modes sur le transport de moment angulaire. De plus, on donnera quelques éléments afin d'aller plus loin et de prendre en compte l'effet de la rotation différentielle. l'ordre de 1026 erg/s à comparer aux 1022 erg/s dans le cas solaire, ce qui en terme de fluctuations relative de luminosité est de l'ordre de quelques dizaines de ppm (Samadi et al. 2002). -La région d'ionisation est située dans une région profonde de l'étoile, où la densité est forte et l'énergie cinétique disponible liée aux mouvements convectifs est importante.
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-L'efficacité de l'excitation tient au fait que dans ces étoiles la période des modes radiaux est de l'ordre de quelques heures, ce qui correspond au temps convectif de la région du Fer.

Donc on est dans un régime qui est proche de la résonance. En résumé : On attend des oscillations de type solaire dans les étoiles de type (3 Cephei dont la masse est proche de 10 Mq. Ces oscillations se trouvent dans le domaine de fréquence 50 /uHz à 300 /iHz avec des amplitudes de l'ordre de quelques dizaines de ppm et des largeurs à mi-hauteur qui sont de quelques microHertz (r G [1 ; 5] pHz, F = 77/71-).

12.2 Une candidate au titre de Chimère : HD1806A2

Je présente dans cette section des résultats préliminaires sur une étoile de type (3 Cephei, qui a été observée par COROT sur une période de 150 jours.

12. 

Conclusion à la troisième partie

La modélisation Dans ce chapitre, j'ai exploré l'hypothèse de l'existence de modes stochastiquement excités par les régions convectives dans les étoiles massives de séquence principale. L'objectif était de déterminer si les régions convectives des étoiles massives peuvent exciter stochastiquement de façon efficace les modes et identifier dans quels types de pulsateurs on doit attendre de telles oscillations.

Les premières étoiles qui ont été étudiées sont de type SPB. Dans ces étoiles, les modes de gravité de haut degré sont instables. J'ai montré que les régions convectives superficielles ne sont pas en mesure d'exciter efficacement les modes stables. En revanche, le coeur convectif semble pouvoir injecter de l'énergie dans les modes de gravité de basse fréquence, marginalement stables.

L'amplitude de ces modes reste très faible quoique proche du seuil de détection COROT. Leur détection semble donc difficile.

Je me suis intéressé ensuite à des étoiles plus massives, de type (3 Cephei, qui montrent des modes acoustiques de bas degré radial instables. La région convective liée à l'ionisation de fer peut efficacement exciter les modes acoustiques dans ces étoiles. En particulier, l'efficacité est due à la péréquation des temps caractéristiques, c'est à dire la période des modes considérés et le temps de retournement convectif, mais aussi au flux convectif important relativement à celui des régions convectives plus externes.

Néanmoins, les incertitudes de la modélisation sont importantes, notamment les vitesses convectives et les échelles caractéristiques de la convection sont déduites actuellement de la théorie de la longueur de mélange. L'estimation des amplitudes fournit un ordre de grandeur mais ne peut être considérée comme précise. La seule façon de remédier à ce problème est le développement de simulations numériques dédiées à ces régions convectives. On pourra citer un projet de H. Ludwig, de simulation de la région convective liée au fer à l'aide du code COBOLD.

Cette simulation pourra alors nous permettre d'estimer de façon précise l'amplitude des modes de type solaire.

La candidate chimère J'ai présenté les premiers résultats concernant une étoile oscillant sur des modes instables 12. Les étoiles de type ( (Brown et al. 1989). Le profil de rotation est trouvé quasi-uniforme dans la partie supérieure de la zone radiative, comme le montre la figure 13.1 (cadre de gauche). Ces résultats ont mis en lumière les défaillances de la modélisation et cela a conduit à inclure des processus de transport de moment cinétique supplémentaires. Jusqu'alors était inclus le transport par la circulation méridienne et/ou par les instabilités hydrodynamiques.

Il fallut alors faire appel à d'autres processus de transport de moment cinétique, ceux-ci devant être suffisamment efficaces pour obtenir un profil de rotation uniforme sur un temps d'évolution mais ils doivent aussi rendre compte d'une autre contrainte ; le déficit de lithium dans les étoiles de faibles masses.

13.1.2 Le déficit de lithium dans les étoiles de faible masse

Les étoiles de type solaire présentent une abondance de surface en lithium déficitaire dans l'intervalle de température effective T G [6400; 6900], comme le montre la figure 13.1. Le lithium est un élément léger et fragile dont la combustion se produit pour des températures relativement faibles (T « 2.5 x 106K). Or, de telles températures existent très près de la base de la zone convective, ainsi l'abondance de lithium sera très sensible aux processus de mélange qui sont capables ou pas d'apporter du lithium de surface dans les couches supérieures de la zone radiative.

Les modèles avec mélange rotationel permettent de reproduire le bord chaud de la brèche du lithium (Talon & Charbonnel 1998) et le mélange rotationel suffit à expliquer les anomalies 

Les différentes hypothèses avancées

Il faut alors faire appel à d'autre processus de transport du moment cinétique qui permettent à la fois de reproduire le profil de rotation quasi-uniforme que Soleil, ainsi que les abondances en lithium des étoiles froides (T < 6900K). Beaucoup de mécanismes ont été proposés, on citera par exemple -un champ magnétique fossile confiné dans la zone radiative solaire. Cette hypothèse fût entre autre considérée par Mestel & Weiss (1987); Charbonneau & MacGregor (1993).

Les auteurs supposent l'existence d'un champ magnétique fossile qui permet d'assurer un profil de rotation uniforme. Néanmoins cette hypothèse a récemment été mise en défaut par des simulations numériques 3D (Brun & Zahn 2006). Ces dernières montrent que le champ magnétique fossile diffuse, se connecte avec la zone convective et ne permet pas d'empêcher l'extension de la tachocline1 vers les régions plus profondes, donc d'obtenir un profil de rotation uniforme.

-la création d'un champ magnétique dans la zone radiative. Spruit (2002) proposa un mé canisme de dynamo dans les zone radiatives des étoiles. Le principe est le suivant ; la composante radiale du champ magnétique va créer une forte composante toroïdale sous l'action de la rotation différentielle, cette composante devient alors instable (instabilité de Taylor, Spruit 1999) ce qui entraîne l'apparition d'une nouvelle composante radiale etc... Ma tachocline est la région de transition entre la zone convective et radiative dans laquelle il y a un gradient de la vitesse de rotation (Spiegel & Zahn 1992). En présence de rotation différentielle (H(r)), la situation est différente. La fréquence de l'onde Les ondes progrades sont amorties près de la zone convective tandis que les ondes rétrogrades le seront plus loin, ce qui va augmenter localement la rotation différentielle comme le montre la figure 13.2 (cadre de droite). Il y aura alors création d'une fine couche de cisaillement sur un temps caractéristique qui, d'après Kumar et al. (1999), est de l'ordre de quelques années. Ainsi sur des échelles de l'ordre du temps d'évolution, ces ondes permettront d'obtenir une rotation uniforme.

Problématique

Le transport de moment cinétique par les ondes internes de gravité a permis de rendre compte du profil quasi-uniforme de la rotation solaire (Talon et al. 2002), et de reproduire la brèche du lithium sur le bord froid (Charbonnel & Talon 2005b 

14.2.2

Le modèle de Garcia Lopez &;Spruit (1991) Quelques années plus tard, Garcia Lopez & Spruit (1991) Finalement, cela revient à déterminer un flux acoustique à l'interface entre zones convective et radiative. De plus, ces tourbillons étant le fruit de la turbulence dans la zone convective l'approche utilisée par Garcia Lopez & Spruit (1991) est la même que celle de Press (1981). En d'autres termes ces deux approches reviennent en fait à considérer l'excitation des ondes internes par la partie diagonale du tenseur de Reynolds, i.e. la pression turbulente1 due aux tourbillons convectifs proches de l'interface avec la zone radiative.

Garcia Lopez & Spruit (1991) Kumar et al. (1999) proposèrent un modèle d'excitation des ondes internes de gravité proche de celui développé pour les modes acoustiques solaires (Goldreich et al. 1994;Goldreich & Kumar 1990). L'idée repose encore une fois sur le fait que ces ondes internes sont générées proche de la base de la zone convective par les contraintes de Reynolds. Rappelons l'expression obtenue par Kumar et al. (1999) 

Discussion

La première chose qu'il convient de noter est la différence entre les dépendances fréquencielles des deux formulations. En effet, le modèle de Kumar et al. (1999) présente une dépendance en c<;"4-5 alors que celle de Garcia Lopez & Spruit (1991) en u;-3. Cette dernière formulation favorisera les ondes de haute fréquence par rapport à celle de Kumar et al. (1999). Ceci est due au fait que, contrairement au modèle de Kumar et al. (1999), la corrélation entre fonction d'onde et tourbillons turbulents n'est pas prise en compte.

En ce qui concerne la dépendance au degré angulaire £, les deux formulations sont très distinctes. En effet, l'Eq. ( 14.25) présente une dépendance en oc 1/T qui provient de l'expression de la vitesse de groupe. Néanmoins, l'efficacité de l'excitation dépendra de la concordance entre les échelles des tourbillons convectifs et des ondes que l'on cherche à exciter. Ceci est considéré uniquement dans la formulation de Kumar et al. (1999).

Ainsi, on peut conclure que les formalismes de Press (1981), Garcia Lopez & Spruit (1991) ou encore Zahn et al. (1997) donnent en ordre de grandeur une bonne estimation du flux d'onde mais échouent à donner une dépendance spectrale correcte. La modélisation de Kumar et al. (1999) est en ce sens plus intéressante.

Toutes ces modélisations font appel à une description de la convection turbulente en bas de la zone convective qui est modélisée par la théorie de la longueur de mélange. Cette dernière présente de nombreuses incertitudes sur l'échelle caractéristique (la longueur de mélange) ainsi que sur la vitesse de ces tourbillons. Ceci est d'autant plus problématique que les formalismes tels que celui de Kumar et al. (1999) Rogers & Glatzmaier (2005, 2006) Townsend (1965Townsend ( , 1966) ) et Stull (1976) ont proposé des mo délisations dans la contexte de l'atmosphère. Dans le contexte astrophysique on pourra citer les travaux de Montalbân (1994), Montalbân h Schatzman (1996), et Montalbân & Schatzman (2000) qui suivent l'approche de Townsend (1966). Néanmoins, ces modèles ne proposent pas une En effet, dans le cas des ondes générées par la turbulence, le spectre est le résultat de l'ex citation par une collection de tourbillons convectifs de taille et de temps de retournement très différents. Ainsi, il y aura toujours un tourbillon convectif dont le temps de retournement est proche de la période des ondes de haute fréquence.

Prenons par exemple une onde de fréquence v -2 //Hz. Cette onde ne sera que très faiblement excitée par les panaches qui ont une fréquence caractéristique de l'ordre de 0.4 //Hz. En revanche, même si le tourbillon de plus grande énergie a une fréquence de 1 //Hz, il y aura un tourbillon de la cascade énergétique qui aura une fréquence proche de 2 //Hz, excitant ainsi cette onde. Ceci explique alors la relative efficacité de l'excitation par la contrainte de Reynolds à haute fréquence. Ce mécanisme entraîne l'apparition d'une oscillation importante à la base de la zone convec tive qui est créee par les ondes de degré angulaire intermédiaire. L'ajout de la contribution de la turbulence dans la génération des ondes et par conséquent la présence de la SLO auront tendance à éliminer ces oscillations, car les ondes de degré angulaire intermédiaire seront dissipées plus rapidement. The effect of internai gravity waves (IGWs1) generated at the border of stellar convection zones on the dynamics of radiative zones has received growing attention since the pioneering work of Press (1981). While that original work was mainly concerned with particle transport, which is a second order effect, it was soon recognized that IGWs could hâve a larger impact on stellar évo lution through angular momentum redistribution (Ando 1986;Schatzman 1993;Kumar & Quataert 1997;Zahn et al. 1997).

Recently, Charbonnel & Talon (2005) showed that waves can efficiently extract angular momentum from the solar core. As pointed out by Talon (2007), an accurate estimate of the energy spectrum of IGWs at the bottom of the surface convection zone is a key feature in the description of wave-induced transport in late-type stars. This is an important task, since in the issue of the transport of angular momentum by internai waves and subsequently in the problem of the fiat rotation profile of the Sun, the most uncertain and yet crucial feature is the amount of en ergy that is converted from convection into internai waves. For instance, the time scale on which the rotation profile becomes nearly fiat under the action of waves dépends on this energy flux.

The issue of wave génération has been addressed by several authors, leading to order of magnitude estimations. The first mechanism that has been invoked is the génération of waves by turbulence at the bottom of the convection zone. In short, tur bulence inside the convective région generates an acoustic flux that tunnels into the convective zone down to the radiative ré gion. Note that, by acoustic flux, we dénoté the energy flux of gravito-acoustic waves that is defined as the product of the pres sent offprint requests to: kevin.belkacem@obspm.fr 1 the term internai gravity waves dénotés low-frequency waves also called progressive gravito-acoustic waves.

sure fluctuation and the wave velocity (Lighthill 1978). Press (1981) expressed the wave flux to be equal to the mechanical energy flux (pv3, with p the density and v the convective veloc ity) of the convection times an impédance matching coefficient {col(N2 -ça2)''2, where co is the wave frequency and N the buoyancy frequency at the top of the radiative zone. At the interface, impédance matching is maximal when co ~N, in which case ail the flux is transmitted. On the opposite, when to «: N, the matching is rather bad and the transmission to waves is small. Garcia Lopez & Spruit (1991) proposed a similar formula tion, assuming that both pressure and density fluctuations must be continuous at the interface. Then, the wave flux is estimated to correspond to the wave kinetic energy (pv2) times the verti cal component of the wave group velocity. The authors further assume that turbulent eddies are randomly distributed and obey a Kolmogorov scaling with A oc v3 (where A is the wave-length, and v the convective velocity). However, if the wave frequency is larger than the frequency of the largest eddies, the authors set the energy flux to zéro. Such a statement leads to neglect the ef fect of large scales that, even if less efficient than small scales, still supplied energy to the waves. Kumar et al. (1999) followed another approach, adapted from the modeling developed by Goldreich et al. (1994) for the solar p modes and the work of Goldreich & Kumar (1990).

Their method is based on the resolution of the inhomogeneous wave équation which was very successful in the study of solar p modes. The main advantage of this approach is that it takes into account both the spatial and temporal corrélations between turbulent eddies and waves. However, many uncertainties remain that resuit from the lack of knowledge of turbulent convection in the Sun. 3-D numerical simulations (e.g. Stein & Nordlund 1998) hâve recently provided a better understanding of the uppermost layers of the Sun, leading to a great improvement of the modeling of p-mode excitation (Samadi et al. 2007). In contrast, progressive internai waves are generated at the bottom of the convection zone where turbulent properties are still poorly described.

Excitation by turbulent convection is not the only way to generate internai waves. Penetrative convection is also thought to be an efficient mechanism to excite internai waves as it has been known for many years for geophysical flows (e.g., Stull 1976).

In the Sun, turbulent plumes are created at the upper boundary of the convection zone, where radiative cooling becomes dominant and where the flow reaches the stable atmosphère. In this région, the updrafts become cooler than their environment and stop their ascent. This cool flow is then denser than its environment and it triggers the formation of turbulent descending plumes (Stein & Nordlund 1998). When plumes fall down through the convec tion zone, they entrain the surrounding flow at their edge. It is the entrainment hypothesis, first introduced by G.I. Taylor and supported by observations in geophysical flows (for a review see Turner 1986). This leads to the formation of large-scale downwelling turbulent structures that reach the stably stratified radia tive zone below and that penetrate over some distance releasing its kinetic energy into internai waves.

Génération of internai waves by penetrative convection was first theoretically investigated by Townsend (1965Townsend ( , 1966) ) (see also Stull 1976) for atmospheric flows. In the astrophysical context, Montalbân (1994), Montalbân & Schatzman (1996), and Montalbân & Schatzman (2000), following Townsend (1966), used several models for wave excitation by plumes. These hâve then been used to study the problem of mixing of light élé ments (such as lithium) by internai waves. However, Montalbân & Schatzman (2000) considered that waves are generated solely by turbulence inside plumes and did not investigate the génér ation of waves caused by the impact of plumes on the stably stratified région. Numerical simulations of penetrative convec tion are becoming available and may give us some insight into this issue. Such simulations hâve shown IGWs excitation for a long time (Hurlburt et al. 1986(Hurlburt et al. , 1994;;Andersen 1994) but these

early studies did not provide a quantitative estimate of the am plitude of waves. More recently, Dintrans et al. (2005) proposed a quantitative investigation of both the spectrum and amplitude of gravity-waves by using projection onto the g modes of the simulation. They found that up to 40% of the total kinetic en ergy is transmitted to waves. Also, Kiraga et al. (2003) Then, in Sect. 6, the amount of angular momentum transported by waves is computed using the plume-induced wave energy flux. Conclusions are formulated in Sect. 7.

Modeling the génération of internai waves by plumes

Each plume generates a continuous spectrum of waves with a frequency u>. The total energy carried by these waves (for a given plume) leads to a wave energy flux which can be written as:

X+oo da) T(r,kh, cj)

oo where T(r,kh,(o) is the vertical energy wave-flux per unit fre quency which is given by the product of the vertical group ve locity and the mean wave energy per unit of frequency Tir, kh, cü) = Vgv(r, kh, cü) e(r, kh, cü)

where cü is the wave frequency, and kh is the horizontal component of the wave number.

Vgv = d(o/dkv is the vertical group velocity which is defined as:

,<Uy! (N2-ÜJ2)]/2 ~kh

as demonstrated by Press (1981). e represents the mean wave energy per frequency unit.

Mean wave energy per frequency unit

The mean energy carried by the waves is 

1 r+DO E=- dfpo(r) |w(r, t)\2 (4) 
The detailed expression for e is derived in Appendix B. Let us only briefly recall below the main steps of the dérivation which involves the computation of w(r, cü).

2 We define the Fourier transform such as f(o>) -J dte ,wlf(t)

Wave velocity field

The wave velocity field is assumed of the form: r w(r, t) = J-o dw0 WtüÀr, t) (7) where wWo(r, t) is the spectral velocity distribution defined by the radiative zone where it pénétrâtes over a distance L/; that defines the extent of the pénétration région. In that région, the plume slows down under the influence of buoyancy, thus generating internai waves.

where C is a constant that is set to unity, <p gives the phase of the wave and Y'(n(6,(f)) the spherical harmonic.The horizontal com ponent of the displacement is given by £/, = N/a>oÇv (Press 1981).

Thus, to estimate the momentum flux, it remains to déter mine the wave amplitude Aoeo(t) which dépends on the wave gén ération mechanism.

The plume velocity field in the stable région

As seen above, the détermination of the wave energy flux requires the calculation of the wave amplitude which itself requires the knowledge of the plume lifetime (tp) and the plume velocity profile in the stable région.

Wave amplitude

Several approaches hâve been used to model the mechanism of wave génération. The first ones were based on energetics con sidérations; they consist in equating the wave flux to the con vective flux at the bottom of the convection zone (Press 1981;Garcia Lopez & Spruit 1991). More sophisticated models were also used, based on Green functions (see Tolstoy 1973, Chap. 7) or on a Fourier treatment as proposed by Townsend (1966) and used by Montalbân & Schatzman (2000) for stars.

We will focus our attention on the effect of the pressure per turbations imposed by plumes at the top of the radiative zone.

In the pénétration région, we consider that the velocity field can be splitted into the wave u and the plume Vp components.

Turbulence inside the plumes then is neglected.

As we are interested by the frequency dependence of the wave flux, we hâve chosen to consider the forced velocity équa tion The forcing term is V : (pVnVp) reflecting the mechanism of wave génération by plumes. In the following we will consider only the radial contribution of the stress exerted by plumes on the stable stratified radiative zone (d (pVp) Idr) since to first approx imation, the plume velocity field is essentially radial (Rieutord & Zahn 1995). That is équivalent to consider the excitation by the pressure (pVj) exerted by plumes on the stably stratified layers just below the convective zone.

The inhomogeneous équation (Eq.(B.l)) is solved. The so lution provides the wave amplitude as detailed in Appendix. B.

This then permits to deduce the Fourier transform of the velocity field following Eq. ( 11).

Plume velocity profile

In this work, we adopt the plume description derived in Rieutord & Zahn (1995) (see Fig. 1).

The vertical velocity of plumes is assumed to hâve a Gaussian horizontal profile (Rieutord & Zahn 1995). At the base of the solar convection zone, plumes hâve typical velocities of the order of 500 m.s"1 (Montalbân & Schatzman 2000), that is one order of magnitude greater than the MLT velocities (50m.s-1). In the pénétration région, we assume that the hori zontal profile is maintained. In addition, we take the plume life time in the pénétration région into account following Townsend (1966) and Montalbân & Schatzman (2000) who assume the temporal dépendance to be exponential Vp(xh, r, t) = F0(^)^f2/2 e~^/2b2r,

where 2n/tOp is the plume life time, Xh is the horizontal coordinate from the center of the plume and bp, the plume radius.

Plume life-time in the pénétration région

In previous models such as the one by Garcia Lopez & Spruit (1991); Montalbân & Schatzman (2000), the typical time-scale has been assumed given by the mixing-length at the bottom of the convection zone. However, in the présent work we are in terested in the excitation of internai waves by the pénétration of convective plumes into the stably stratified région. We con sider that the typical life time of the plume inside the pénétra-tion région corresponds to the time after which such a structure becomes unstable and disappears.

As this time-scale is poorly known in the astrophysical con- where bp is the radius of the plume, Lp, its vertical size in the stably stratified région, TV, the buoyancy frequency, and or is a parameter that describes the efficiency at which the buoyancy flux smooths the buoyancy différence between the plume and its surrounding environment. From numerical experiments and ob servations, Jones (1997) found that a = 0.027. In the case of the Sun, our lack of knowledge of the pénétration région makes it difficult to estimate a. Thus, in Sect. 5, we will test the sensitivity of our model to this parameter. For instance, near the convective/radiative interface, using a = 0.027 as a default value, one obtains in the solar case vp= l/rp*0.4/iHz (15)

where we used TV = 10~4Hz, bp « 1.5109 cm as given by Montalbân & Schatzman (2000) using Rieutord & Zahn (1995) and Lp » 0.05 Hp (Basu 1997). Note that this value is smaller than the one obtained for the MLT that yields at the bottom of the convection zone vp = r"1 ~1 pHz, where the convective turn over (rc) is estimated such that rc = «c//c; the mixing-length lc and the convective velocity uc are estimated using a standard solar model as explained in Sect. 4.2.

Vertical velocity profile in the pénétration région

Following Zahn (1991), we assume that the velocity of a plume in the pénétration région is determined by a balance between advection and buoyancy. Thus, the vertical velocity profile is ^FoXp^ad ^71(l-^oy

+ vi ( 16 
)
where F0 is the total flux,Xp = {j^p)ad ~1-8 at the bottom of the convection zone, Hp is the pressure scale heigh, z = r^-r, rh the depth of the convection zone, JK the filling factor, and Vb is the plume velocity at the bottom of the convection zone.

This model overestimates the pénétration depth since it predicts an extent of the pénétration région around a pressure scale height while helioseismic measurements (Basu 1997) hâve

shown that the pénétration région is no more than 0.05 pressure scale height. We thus introduce a correction parameter y3 that is tuned to fit the observations and gives an upper limit to the péné tration région in accordance with observations. The dependancy of wave excitation on this parameter is discussed in Sect. 5.

To go further, one has to détermine the initial plume velocity.

As in the previous section, we use the model derived by Rieutord & Zahn (1995) that establishes the velocity at the bottom of the where Lq is the solar luminosity, r/, the radius of the bottom of the convection zone, and prh the density at r = ri,.

Finally, using Eq. ( 16) and Eq. ( 17) the velocity profile may be written Vï 6 Lp

Xprjl.

J\~x -ttt'o -jt r1 ^FoXpVad ^(18)

This results assumes that convective plumes impose an adiabatic stratification in the pénétration région. This is a good approxi mation since the turbulent Prandtl number v,/Kr is large.

Equation ( 18) expresses the velocity profile of a plume in the stable région. We stress that using such a formulation permits to include ail physical uncertainties of plumes into a single parameter, the filling factor J\. The latter dépends on the dynamics in the convection zone and in the following we will test its impact on the wave flux. It has a strict upper limit of JK = 0.5.

Indeed, as downwelling flows are denser than upwelling ones, one expects them to be rather more concentrated than the lat In Eq.( 19), the spatial corrélation is taken into account through the term J'"' (see Eq. ( 20)), the inertia /, and the hor izontal wave number. The first one C7]") expresses the fact that excitation will be maximum near the résonance, i.e. plumes will dominantly excite waves with horizontal length-scales that are close to the plume radius. It is équivalent to say that k/, bp « 1, thus the privileged angular degree will be ^rh!bp. For hor izontal wave numbers larger and lower than Cq, excitation will decrease and saturate because of the poor spatial matching be tween the wave and the plume. This is shown in Fig. 2, which shows that, for instance for m = 1, the function is maximum for ^= 20-25. One can also observe that with respect to the az imuthal number, this corrélation function strongly decreases and is maximum for small m and expresses the spatial matching be tween plumes and waves. The dependence of the wave-flux (!F) on the angular degree also dépends on both the group velocity and the mode inertia. The wave inertia is such that I ce i1 and kh oc C, thus the final dependence of the flux on t is T oc Consequently, T strongly decreases with the angular degree C for € > Cq.

From Eq.( 19), one can also infer the dependence on the filling factor (Jl). Let us assume that t = 1, m -0, thus |F'"|" oc cos2 (&) and The combinaison of those two équations shows that the wave flux varies as J?T1/3 and so, the lower the filling factor, the higher the wave-energy flux. The reason is that to conserve the horizon tal mass flux, a smaller filling factor produces a faster downflow.

Consequently, the plume kinetic energy increases and more en ergy is available for internai waves. 24) following Kumar et al. (1999).

Eq.( 13)) and the wave. As already mentioned in Sect. 4.1, it expresses the time-correlation between the wave period and the plume life-time. Thus, low frequency waves are efficiently excited (tu <s: cop). For large frequency waves, the kinetic energy flux becomes negligible. Indeed, the excitation process is in efficient for those waves as they instantaneously adjust to the plume time variations, which appear frozen from the wave point of view. Note that the situation is rather similar to that of stand ing waves. Solar p modes are dominantly excited by turbulent eddies with frequencies close to the mode one and excitation is small when the convective time-scale is larger than the mode pe riod. In this formulation, Kumar et al. (1999) assume a simplified description of turbulence in which the kinetic energy of the driving eddies is assumed to scale according to the Kolmogorov spectrum.

The Goldreich & Keeley (1977) approach, from which the Kumar et al. (1999) formulation is derived, also assumes that the time-correlation between eddies is Gaussian. Kumar et al.

(1999) dérivé their final expression (Eq. ( 24)) by performing an harmonie average between two asymptotic limits, namely the limit of high and low efficiency of the excitation.

-For loIùjl < 1, where u>l is the frequency of the energybearing eddy » 1 //Hz for the Sun), the efficiency of the excitation is maximum. In that case, the source term *S = v^L4/(l +(wTi,),rj no longer dépends on frequency. This régime corresponds to low-frequencies in Fig. 4 (a//2n <s:

1 //Hz).

-On the other hand, for > 1 (in the low efficiency régime), £ scales as (r^o?)-1^2 (see Goldreich & Keeley 1977;Samadi & Goupil 2001). In Fig. 4, this asymptotic régime corresponds to v » 1 //Hz. The two excitation mechanisms, namely Reynolds stresses and plumes, hâve a very different behavior in that régime. In the former, waves are generated by a collection of turbulent eddies of various fre quencies and length scales, and in the turbulent cascade, there are always eddies with the proper frequency, resulting in a smoother dépendance on the frequency a» (see Fig. 4).

Nevertheless, we stress that there is no evidence that a Gaussian time-correlation function, as used by Kumar et al. (1999), is valid. As shown by Samadi et al. (2003) for the uppermost part of the solar convection zone, the efficiency of the excitation strongly dépends on the corrélation between eddies and waves. we follow the plume description proposed by Rieutord & Zahn (1995). Values of several quantities such as the plume radius (bp), the filling factor (Ji), and the number of plumes Np must be given. However, those parameters are related to each other by the relation J[ -Nb (bp/r/,) . For instance, by multiplying by a factor five, we show that T only varies by a factor around 51/3 « 1.7. It then confions the conclusion of Sect. 4.1, that the energy wave flux (Eq. ( 19)) hardly dépends on the value of (see Fig. 5).

The velocity at the bottom of the convection zone (Vb) as well as the pénétration depth (Lp) are important but, unfortunately, they remain poorly known for stars even if, in the solar case, heliosismological data give us an upper limit of Lp. In this work, we assume that plumes penetrate in the radiative interior due to their inertia and that they are decelerated by buoyancy until their Péclet number becomes near unity so that thermal dif fusion efficiently acts. Such a picture (Zahn 1991) then gives us a velocity profile presented in Sect. 3.3. A theoretical prédiction derived by Zahn (1991) gives approximatively Lp » Hp which is an overestimation. Due to our poor knowledge of that région,

Lp is set to be 0.05 Hp, the upper limit derived by Basu (1997) based on />mode frequencies. Another key parameter of our modeling is the plume lifetime. To get some insight into this value, one has to specify the underlying physical mechanism responsible for its évolution.

Based on geophysical flows, more precisely the plumes in the océan, we assume that in the stably stratified région the plume is subject to baroclinie instabilities which create eddies that generate a latéral buoyancy flux. Thus, when buoyancy différence between the plume and its surrounding environment no longer exists, the medium is restratified, and this occurs on a time-scale tp. However, contrary to the geophysical counterpart, we hâve no direct observational data for calibrating the latéral buoyancy flux (cr in Eq. ( 14)). Multiplying the parameter a by a factor two results in a spread of the energy over a larger frequency range as well as a shift of the maximum in T, as shown by Figure 6.

We therefore conclude that two parameters in the modeling are crucial, the velocity at the bottom of the convection zone that dépends on the modeling of plumes in the convection zone as it Controls the amount of available energy for the waves, and the plume life-time that imposes the frequency dependence of the energy-wave flux.

6. Application to the transport of angular momentum: wave-mean flow interaction

We hâve used the excited spectrum presented in Sect. 4

(Eq. ( 19)) to evaluate the impact of waves generated by plumes on the évolution of angular momentum in the Sun. Let us remark here that, in principle, ail sources of IGWs should be treated together, a treatment we will differ for now. Our calculations thus only take into account waves produced by the plumes.

Waves conserve their angular momentum as long as they are not damped. The non-local nature of this transport is what makes it so efficient. In stars, the most efficient damping process is heat diffusion by photon exchange, producing an atténuation factor Fig. 7. Left: Angular momentum luminosity integrated in frequency bins of 0.1 n\\z and summed over ail values of m related to the turbulence-induced wave flux as derived by Kumar et al. (1999) and computed using Eq. ( 24). Right: The same as the left panel, except it is related to the plume-induced wave flux computed using Eq. ( 19) described in Sect. 4.2. proportional to the thermal diffusivity K, and inversely proportional to the wave frequency and wavelength. In the WKB ap proximation, the local wave amplitude should be multiplied by exp(-r/2) with zone (see their Fig. 4). This layer is referred to as a "SLO" (shear layer oscillation).

The dynamics of this layer is as follows. Let us assume that prograde and rétrogradé waves are excited with the same ampli tude. In solid body rotation, these are equally dissipated when traveling inward and hâve no impact on the distribution of angu lar momentum. In the presence of differential rotation however, the local wave frequency is modified by the Doppler shift. If the interior is rotating faster than the convection zone, the local frequency of prograde waves diminishes, which enhances their dissipation; the corresponding rétrogradé waves are then dissi pated further inside. This produces an increase of the local dif ferential rotation, and créâtes a double-peaked shear layer (see Talon et al. 2002, for details). The formation of such a layer requires a sufficient flux in waves having a frequency that is low enough to encounter a significant Doppler shift, yet whose fre quency is not so low as to prevent a too rapid damping. This occurs for high-degree waves with a frequency around 1 fj.Hz. The interaction with turbulence is also fundamental in this dynamics, a large turbulence favoring rather an asymptotic solution and a small turbulence favoring the appearance of chaos. This has been examined in details by Kim & MacGregor (2001).

In calculations made with the plume induced spectrum that is described in this paper, we observe no SLO. This is due to the lack of high-degree waves with a frequency around 1 /iHz.

(see Fig. 7). Let us recall that, adding the waves from the Kumar et al. (1999) contribution change this conclusion. Plume-induced wave flux do not produce the SLO while turbulence-induced wave flux make it possible (Talon et al. 2002). where Tir, £/,) is defined by Eq. ( 2).

The déposition of angular momentum is then given by the radial dérivative of this luminosity. The évolution of angular mo where we also included turbulent transport, which in this simu lation is assumed given by the local shear rate. The "+" sign in front of the angular momentum luminosity corresponds to a wave traveling inward (outward). Waves with a frequency significantly above 1 /rHz do not undergo a significant Doppler shift, while waves with a highdegree or much lower frequencies are damped quite rapidly (see Eq. 25). Low degree waves with a frequency around 1 ^/Hz undergo differential damping and yet are able to survive ail the way to the core, where they may deposit angular momentum.

This will occur only provided there exists a bias in damping before reaching the core between prograde and rétrogradé waves, and this will be the case in a "young Sun", where the surface is spun down. As the core contains only a tiny amount of angular momentum, it is easily spun down, leading to the formation of a slow front that propagates from the core to the surface in numerical simulations that consider only a filtered wave luminosity (Charbonnel & Talon 2005). While Talon et al. (2002) (using the GMK excitation model) suggested that the SLO played a ma jor rôle in the création of such a bias, actual calculations made with a different spectrum indicate that it is not required with the présent génération mechanism. The SLO will rather play a ma jor rôle in damping waves of an intermediate degree, that are not crucial to obtain core extraction.

We reproduced calculations for the évolution of angular mo mentum in a static solar model of Talon et al. (2002), using a "dynamical" time-scale of one year, with a few million timesteps in order to verify the efficiency of extraction with a plume induced spectrum. In Fig. 7, it can be seen that low-frequency and low-degree waves are more easily excited by plumes than by turbulence. This favors a more rapid extraction from the solar core. In our calculations, extraction is obtained on a timescale of the order of a million years (see Fig. 8). At that âge, the surface convection zone is rotating at about the same velocity as the mean interior. However, contrary to the calculations of Talon et al. (2002), large shears that hâve been created in the 

Conclusion

We demonstrate that the impact of convective plumes falling down and entering in the stably stratified radiative zone efficiently generate internai waves by supplying part of the plumes kinetic energy. We dérivé a theoretical estimation of the energy carried by internai gravity waves at the bottom of the convection zone. It is found that this energy is preferentially transferred to low-frequency (near v « 0.4//Hz) waves, and for low-angular degree (Z « 1 -5).

Applying this formalism to the problem of angular momen tum transport by waves, we find that this mechanism is efficient for extracting angular momentum from the solar core on a timescale of a million years without producing a shear layer oscil lation, in contrast with the results of Talon et al. (2002) that uses the Kumar et al. (1999) formalism. There however remains strong differential rotation in the core, when only shear turbu lence is considered. Méridional circulation would be a good can didate to reduce this differential rotation.

From a theoretical point of view, several improvements and extensions of the présent formalism hâve to be carried out. For instance, plumes are to be considered as penetrating stochastically the radiative zone. By taking the collective behavior of plumes into account, one aims to investigate the interplay between plumes since as demonstrated by Dintrans et al. (2005) interférences can be responsible for damping. In addition, tur bulence inside plumes has been neglected. This was previously taken into account in Montalbân & Schatzman (2000) in the context of the détermination of the Lithium abundance in solar-type stars. Thus, a unified description of the génération of internai waves, that reflects both the effect of the impact of plumes and turbulence (through the Reynolds stresses) inside plumes, is advisable. where we recall that the constant C is set to unity.

Using Eq. ( 13) for the plume velocity, one gets Ceci a été rendu possible par l'introduction de l'effet des panaches turbulents dans la modé lisation. Le modèle de fermeture avec panaches permet d'améliorer sensiblement les produits de corrélation qui interviennent dans la description de l'excitation des modes de type solaire. J'ai montré que l'impact des modèles de fermeture est de l'ordre de 30 % sur les taux d'excitation, et que l'utilisation du modèle de fermeture avec panaches permet désormais de reproduire les observations.

J'ai alors étendu le formalisme aux modes non-radiaux, ce qui a permis d'ouvrir de nouveau champs d'investigation à savoir l'étude des modes de haut degré angulaire, l'étude des modes de gravité ainsi que celle des modes non-axisymétriques soumis à l'influence de la rotation.

L'application aux modes de haut degré angulaire a permis de montrer que l'on ne peut se limiter au traitement précédent, adapté aux modes radiaux. Il reste à confronter cette modéli sation aux observations. De plus, il faut étendre le formalisme aux très hauts degrés angulaires (ê > 500) qui correspondent à des modes nous renseignant sur la surface très extérieure du soleil.

Pour les modes de gravité solaires, l'utilisation de simulations numériques a permis de confir-mer que la description de la fonction de corrélation temporelle entre l'oscillation et les tourbillons turbulents est essentielle. J'ai montré que celle-ci est mieux modélisée par une fonction Lorentzienne, ce qui est en contradiction avec toutes les modélisations précédentes. Ainsi, il a été possible de montrer que les amplitudes des modes g asymptotiques sont très proches du seuil observa tionnel donné par l'instrument GOLF à bord de SOHO alors que les modélisations précédentes les prédisaient très en-deçà.

Enfin, j'ai cherché à comprendre quel est l'effet de la rotation uniforme sur les amplitudes des modes de type solaire. Dans ce travail, qui est une première étape, j'ai montré que la rotation uniforme n'avait qu'une très faible influence sur les modes acoustiques et qu'il semblait difficile de la mettre en évidence observationnelllement. Néanmoins, les modes de gravité sont plus affectés par la rotation, avec en particulier une asymétrie entre les modes prograde et rétrograde qui a un impact sur le transport de moment cinétique par les modes qu'il reste à quantifier. De plus, l'étude des amplitudes a été étendue aux autres étoiles que le Soleil, avec a Cen A et avec HDA9933 qui est une étoile observée par COROT (Samadi et al., 2008, en préparation).

Les étoiles massives tout comme le soleil ont des régions convectives turbulentes susceptibles La convection n'est pas seulement responsable de l'excitation des modes solaires, elle génère aussi à sa base des ondes progressives, les ondes internes de gravité. Ces ondes transportent du moment cinétique dans la région radiative solaire et comme l'ont montré Charbonnel & Talon (2005a) ce transport permet d'expliquer le profil de rotation uniforme dans la région radiative solaire ainsi que le déficit de lithium dans les étoiles froides. Cependant, le résultat dépend fortement de la quantité d'onde émise à la base de la zone convective. Les modélisations précédentes étaient fondées sur des arguments énergétiques (Press 1981;Garcia Lopez & Spruit 1991;Zahn et al. 1997) ou bien sur une modélisation issue de celle des modes acoustiques (Kumar et al. 1999). Ces différentes prescriptions donnent des spectres très distincts les uns des autres.

Les simulations numériques montrent que ces ondes progressives sont efficacement excitées par la pénétration des panaches dans la région radiative solaire. J'ai donc développé un modèle qui montre que les ondes générées par la pénétration convective peuvent efficacement transporter le moment cinétique de façon à rigidifier le profil de rotation solaire sur une échelle de temps de l'ordre du million d'années.

Bilan

De ces travaux on retire que la modélisation de la convection turbulente, principalement par la théorie de la longueur de mélange, n'est pas suffisante pour modéliser correctement les mécanismes physiques liés à l'excitation des modes. La qualité des observations augmentant, les effets physiques auxquels on s'intéresse deviennent de plus en plus fins et dépendant des propriétés dynamiques de la convection turbulente.

En particulier, j'ai montré que les panaches ont une influence importante sur les taux d'ex citation des modes solaires, principalement par l'intermédiaire des modèles de fermeture. Ils ont aussi une influence considérable en bas de la zone convective et indirectement sur la région ra diative solaire. J'ai montré qu'ils sont susceptibles de générer des ondes internes de gravité de façon très efficace pouvant ainsi influencer fortement le profil de rotation solaire. 
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Fig. 1 . 1 -

 11 Fig. 1.1 -Schématisation de la convection entre deux plaques. La plaque inférieure est soumise à une température supérieure à celle de la plaque supérieure établissant ainsi un gradient de température. Il en résulte la mise en mouvement d'éléments de fluide qui sont représentés ici par des cercles, rouges pour celles qui sont plus chaudes que le milieu ambiant et froide pour celles plus froides.

Fig. 1 . 2 -

 12 Fig. 1.2 -Instantané d'une simulation numérique de convection turbulente 2D. Crédit : T.

  Fig. 1.3 -Figure de gauche : représentation schématique des panaches dans les océans où l'on peut voir une zone convective qui surmonte des panaches turbulents (d'après Marshall & Schott 1999). Figure de droite : localisation géographiques des sites dans lesquels ont été observés des panaches convectifs. Crédit : H. Jones (http ://puddle.mit.edu/ helen/oodc.html).

Fig. 1 . 4 -

 14 Fig. 1.4 -Figure de gauche : Observations de régions supérieures du Soleil au moyen de la sismologie, issues du MDI (Michelson Doppler Imager) embarqué sur SOHO. (http ://sohowww.nascom.nasa.gov/gallery/MDI/) Figure de droite : Représentation schématique d'un panache dans la zone convective. Il est représenté dans toute la zone convective, de la photosphère
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  'écoulement devient horizontal et comme le flot est plus dense, il se met à descendre donnant naissance aux panaches. Observationnellement, le granules représentent le flot montant plus chaud et les intergranules le flot descendant plus froid et dense. La différence de densité entre le panache et le flot montant environnant créé un travail de la force d'Archimède. Or ce travail est converti en énergie cinétique turbulente ; les panaches sont donc des structures plus turbulentes que le flot montant.

Fig. 1 . 5 -

 15 Fig. 1.5 -Figure de gauche : Diagramme schématique représentant la fréquence des modes en fonction du degré angulaire i (le degré angulaire est lié au nombre d'onde horizontal du mode kh = y/t{Z + l)/r). Crédit : Christensen-Dalsgaard (2003). Figure de droite : Diagramme de propagation des modes solaires représentant la fréquence de Brunt-Vâisala (trait plein) et la fréquence de Lamb (trait pointillé) en fonction du rayon. Les différentes courbes représentent la fréquence de Lamb à différentes valeurs du degré angulaire t. Crédit : Christensen-Dalsgaard (2003).
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 16 Fig. 1.6 -Figure de gauche : Représentation du spectre de puissance solaire. Données GOLF instrument à bord de SOHO. (http ://golfwww.medoc-ias.u-psud.fr/GR_spectra.html). Figure de droite : Diagramme u-k obtenu par Antia et al. (1982) en incluant dans le calcul de stabilité les contributions due à la convection turbulente par l'introduction de coefficients de viscosité. On peut distinguer les croix qui représentent les modes stables alors que les ronds correspondent aux modes trouvé instables. Les lignes d'isocontours correspondent aux mêmes valeurs des taux d ' amortissement.

  classique, la théorie de la longueur de mélange 2

  pour le flux convectif, le flux de moment ainsi que le flux du champ de température. Dans un premier temps, séparons les variables en un champ moyen et les Vj/Jt + xdjp -dj (Vj8-< Vj6 >)

-

  longueur caractéristique, u la vitesse rms. Cette prescription fut tout d'abord établie pour un fluide unidirectionnel et généralisée pour des configurations multidirectionnelles (par exemple, le modèle de Smagorinsky, Cebeci-Smith ou encore Baldwin-Lomax voir Speziale 1995, pour plus de details). Le problème majeur de cette prescription est qu'il est nécessaire de spécifier une longueur de mélange. Ceci est d'autant plus difficile que l'on traitera, particulièrement dans le cas stellaire, de flots très complexes qui ne peuvent en aucun cas être caractérisés par une seule échelle. La spécification d'une échelle caractéristique dans le cas stellaire ne repose pas sur des considérations physiques, elle est imposée pour reproduire les caractéristiques globales des étoiles (masse, luminosité etc...). Une telle approche pose alors un problème important, cette valeur ad hoc de la longueur de mélange en étant calibrée masque d'autres incertitudes sur la -delà d'une théorie de la longueur de mélange, les moments d'ordre deux (< v^j >, < Ovi >) ne sont plus prescrits et il faut au contraire établir les équations régissant ces deux quantités. Pour cela, simplifions le problème en nous plaçant dans le cas d'une convection turbulente sans champ moyen, c'est à dire que U = 0 et 0 -0 . De plus, on utilisera K = 0 afin d'obtenir un système d'équations plus lisible. Pour < Ovi > par exemple, on multiplie Eq. (2.17) par Vi ainsi que Eq. (2.15) par 9 et on somme avant de moyenner, pour finalement obtenir 'est pas fermé car il est nécessaire de spécifier des moments d'ordre trois (< OviVj >, < ViVjVk >, < Vj62 >).

  photosphère.-Une région de transition (région dite super-adiabatique, qui est convective) entre la zone convective adiabatique et l'atmosphère (entre z=0 Mm et z=0.5 Mm) qui correspond au maximum du gradient super-adiabatique (V -X7ad > 0). Il s'agit d'une région où la convec tion est peu efficace, et où le flux convectif devient de l'ordre de grandeur du flux radiatif.

(

  Fig. 3.1 -Figure de gauche : Facteurs d'asymétrie relatifs aux fluctuations de vitesse verticale et de température. Figure de droite : Facteurs d'aplatissement des fluctuations de vitesse verticale et de température.

  la vitesse verticale et la température, a et b sont les fractions d'aire qui concernent les zones montantes (w > 0) et chaudes (9' > 0). <>tt> <>d sont les moyennes des vitesses verticales dans les zones montantes (w > 0) et des cendantes (w < 0) respectivement. <>h, <>c sont les moyennes sur les températures des zones dites chaudes (0' > 0) et froides (6' < 0) respectivement. Ce développement est généralisé aux ordres supérieurs des fluctuations de la vitesse verticale et de la température, tel que : agit donc d'une approximation qui consiste à poser < (J)n >=< (J) >n pour toute quantité turbulente. C'est l'approximation fondamentale du modèle et l'on en voit immédiatement les limites lorsque n = 2. En effet, dans ce cas l'on trouve < 4>2 >=< (f)> 2, l'écart type est nul ce qui n'est clairement pas le cas des fluctuations que l'on étudie. En injectant la définition des fluctuations dans Eq. (3.9) on a < w,n >= a(< w >u ~< w >)n + (1 -a)(< w >d -< w >)7 En utilisant Eq. (3.7) pour < w > (même démarche pour la température) : < w,n >= a(l -a)n + (-a)n(l -a) (< w >u -< w >d) de corrélation En utilisant les relations précédentes, les facteurs d'asymétries (Eq. (3.4)) sont :

  & Hartmann (2002) proposent alors une interpolation entre ces deux limites, ainsi : que les limites asymptotiques, décrites plus haut, sont retrouvées. Notons qu'il ne s'agit pas du seul apport des auteurs, en effet ces derniers ont été les premiers à proposer de ne pas confondre les zones ascendantes avec les régions chaudes ainsi que les régions descen dantes avec les régions froides. Enfin, ce modèle à été confronté à des données atmosphériques et comme nous le verrons par la suite il améliore significativement la description des moments et particulièrement de celui d'ordre 4.3.2.3Limitations de la modélisation La première étape consiste à confronter les modèles aux simulations numériques 3D. D'un point de vue pratique, tous les moments d'ordre 2 ainsi que les coefficients a et b sont issus de la simulation numérique. Rappelons que z = 0 correspond approximativement à la photosphère.
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 32 Fig. 3.2 -Figure de gauche : moment < w/4 > normalisé par le moment numérique en fonction du rayon. La courbe en trait plein représente le moment d'ordre quatre donné par Eq. (3.18), en tirets-pointillé le modèle à deux flots classique Eq. (3.15) et en tirets la relation quasi-normale (Eq. (3.2)). Figure de droite : Facteurs d'asymétrie donnés directement par la simulation (trait plein) et par le modèle à deux flots Eq. (3.15) (pointillés).

  chapitre précédent montrent que le modèle à deux flots classique n'est pas satisfaisant. Nous avons identifié les difficultés et mis en évidence les lacunes, en particulier il a été montré que le caractère turbulent des flots devait être pris en compte. Une meilleure modélisation des facteurs d'asymétrie doit alors faire apparaître les informations supplémentaires (par rapport à GH 2002) suivantes : la pression turbulente n'est pas identique dans les deux flots, ainsi l'effet de la turbulence devra être prise en compte dans chacun des flots. De plus, les asymétries de la fonction de distribution des fluctuations de vitesse verticale et fluctuations de température propre à chaque flot devront être considérées. En effet, les moments d'ordre trois liés à chaque flot devront apparaître explicitement. Décomposition des fluctuations On ne raisonnera que sur la vitesse, car tous les résultats pourront être appliqués à la tem pérature de la même manière. Pour commencer, il faut éviter l'approximation qui est faite dès le départ dans le modèle à deux flots (GH 2002), à savoir : < w'n >« a < w' >" +(1 -a) < w' >2 (3.19) Une expression exacte est en fait : < w'n >-a < w'n >u +(1 -a) < w,n >d (3.20) Rappelons que les fluctuations < w'u > et < w'd > sont définies comme : w'u,d = wu,d-<w> (3-21) Avec cette définition, on a < w' >u,d7^0. Donc en toute rigueur on ne peut pas appliquer la QNA, valide seulement pour des fluctuations de moyenne nulle (i.e. des moments centrés). Il est alors préférable d'introduire les définitions suivantes : w'u,d = wu,d~< w >u,d (3-22) Ces définitions sont alors plus proches de ce que l'on entend habituellement par fluctuations, car < w'u^>= 0. L'équation (3.22) définit une propriété intrinsèque à un seul type de flot contrairement à la définition Eq. (3.21) On a : wud -wu,d~< w >u,d + <w>-<w> ü'u,d = wu,d-< w >u,d + <W> (3.23) On développe ensuite < w > sur les deux flots, pour obtenir : ù'u = a)6w w'd = w'd + aôw (3.24) avec ôw =< w >u -< w >d, avec < w >u et < w >d qui sont respectivement les vitesses moyennes des flots ascendant et descendant. Moment du second ordre Pour le moment d'ordre deux, on exprime < w' >U)d à l'aide des formules précédentes < w'2 >= a < (w'u + (1 -a)ôw)2 > + (1 -a) < (wd -aôw)de Eq. (3.26) correspond à celui obtenu par GH 2002, le second terme est donc une correction pondérée par le facteur de remplissage. C'est au travers de ce terme que l'on peut prendre en compte le caractère turbulent des flots car l'on peut comprendre ces termes comme étant les pressions turbulentes (à la densité moyenne près). Moment du troisième ordre Néanmoins, c'est surtout l'expression de < w'3 > qu'il convient d'obtenir et d'analyser car c'est le numérateur du facteur d'asymétrie. Après un calcul quelque peu fastidieux on obtient de < w'3 > met en lumière trois termes qui correspondent à ceux que l'on recher chait, à savoir -(/) le premier terme est le même que Gryanik & Hartmann (2002) qui mesure l'effet de l'asymétrie géométrique. -(II) les deux suivants permettent de prendre en compte l'asymétrie de la fonction de distribution de chaque flot. -(III) enfin, le troisième terme semble le plus intéressant car il représente l'asymétrie d'in tensité de la turbulence entre les deux types de flot. Moment du quatrième ordre On peut alors généraliser ce raisonnement et l'appliquer à l'ordre 4 des fluctuations de vitesse verticale et de température : . (3.28) est une décomposition exacte sur deux flots. On voit aisément que son expression est plus complexe que celle donnée par le modèle à deux flots classique en section 3.15 qui correspond seulement au premier terme de Eq. (3.28). Afin de valider notre modèle à deux flots généralisé, il convient alors de vérifier que les limites asymptotiques sont correctes et de comprendre sous quelles conditions on retrouve le modèle à deux flots classique ainsi que la relation quasi-normale. 3.3.2 Les limites asymptotiques Le modèle à deux flot classique Dans cette section, on cherche sous quelles conditions on peut retrouver le modèle à deux flots classique. Pour cela on néglige dans l'Eq. (3.26) et Eq. (3.27), comme le fait Gryanik & deux flots classique ne prend pas en compte les fluctuations propres à chaque flot mais uniquement le biais introduit par l'asymétrie géométrique. Alors en utilisant Eq. (3le modèle à deux flots classique et l'on montre ainsi que la formule du modèle à deux flots classique néglige les processus physiques au sein des flots dans l'expression du facteur d'asymétrie, c'est à dire la turbulence. Etablissons maintenant la forme asymptotique du moment d'ordre quatre (< w'4 >). En utilisant les mêmes approximations que précédement on calcule : < w'4 >= a(l -a)4 + a4(l -a) ôw4 (3.32) on retrouve l'expression du moment d'ordre quatre donné par Gryanik & Hartmann (2002). Il vient alors immédiatement l'expression du Kurtosis < w'4 >= (1 + Si) < w'2 >2 (3.33) avec Sw donné par Eq. (3.31). La relation quasi-normale Pour obtenir la QNA, il est nécessaire que le facteur d'asymétrie soit nul et pour cela trois conditions doivent être remplies 1. il faut d'abord que a = 0.5 pour ne plus avoir de biais sur les flots moyens. 2. ensuite il est nécessaire que les moments propres d'ordre 2 soient égaux dans les deux flots , il est nécessaire qu'au sein des deux flots la fonction de distribution des fluctuations de vitesse soit symétrique < w3 >=< w'} >= 0 (3.35) Ces trois conditions permettent, comme le montre l'Eq. (3.27), d'obtenir un facteur d'asymétrie nul. Néanmoins, si l'on utilise ces critères sur le moment d'ordre quatre (Eq. (3.28)) on trouve <w'4> = a( 1 -a)4 + a4(l -a) ôw4 + a < w'4 > +(1 -a) < w'4 > + 6a(l -a)^(l -a) < w'I > +a < > ^jôw2 (3.36) A ce stade, on constate qu'un facteur d'asymétrie nul est une condition nécessaire mais pas suffisante pour retrouver un moment d'ordre 4 compatible avec l'approximation quasi-normale (c'est à dire Kw = 3). On constate que la condition a = 0.5 ne suffit pas, il faut ajouter que ôw = 0. On vient donc de mettre en évidence que la présence de deux flots crée un écart à la QNA, indépendemment du fait qu'il y ait une symétrie. Ainsi, on trouve (pour a = 0.5) : < w'4 >= -< w4 > +-< w'£ > (3.37) D'après ce qui précède, il y a parfaite symétrie entre les deux flots et si on applique dans chacun d'eux la QNA (au sein de chaque flot). (3.34) permettant de conclure < w/4 >= 3 < w'2 >2 (3.39) Nous venons alors de démontrer que le modèle à deux flots généralisé permet de retrouver la QNA sous les quelques conditions ci-dessus énoncées. 3.3.3 Application à la région quasi-adiabatique solaire L'expression exacte de < w'4 > (Eq. (3.28)) quoique d'un intérêt théorique n'est pas très pratique. En effet, les moments sur les fluctuations propres ne sont pas des grandeurs aisément accessibles (< w'4 >u,d)-Ceci m'a conduit à proposer l'approche suivante 1. En utilisant l'expression 3(1 -f ^5^,) (Eq. (3.18)) avec une formule du facteur d'asymétrie (Sw) plus réaliste, on peut modéliser < w'4 > de façon satisfaisante dans la région quasiadiabatique. La figure 3.3 permet de se rendre compte qu'en utilisant un facteur d'asymétrie issue de la simulation, l'expression 3(1 + ^S^) reproduit très bien le moment d'ordre quatre. La démarche sera alors d'utiliser cette formulation et de modéliser un facteur d'asymétrie provenant du modèle à deux flots généralisé.
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 332 Fig. 3.3 -Figure de gauche : Moment d'ordre quatre obtenu directement avec la simulation numérique (< w 4 >) en trait continu en fonction de la profondeur (z, z = 0 correspond à la photosphère) et approximation du moment d'ordre 4 obtenu via la relation de Gryanik & Hartmann (2002) (3(1 ~h^S2)) dans laquelle on utilise un facteur d'asymétrie issu de la simulation numérique. Figure de droite : On présente le facteur d'asymétrie approximé par Eq. (3.40) ainsi que celui issu directement de la simulation numérique.
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 3435 Fig. 3.4 -Moment d'ordre 4 (< vu'4 >), normalisé par le moment obtenue numériquement, mo délisé par le modèle de Gryanik & Hartmann (2002) (tirets), la relation quasi-normale (pointillés) et le modèle avec panaches (trait plein).

  explicitly take the effects of updrafts and downdrafts on the corrélation products into account. The pres ence of two well-defined flow directions then introduces an additional contribution when averaging the fluctuating quantifies, since averages of fluctuating quantifies over each individual flow differ from averages over the total flow. For applications in atmospheric sciences, the mass-flux model for convection has recently been improved by Gryanik & Hartmann (2002, here after GH2002). Their motivation has been to account for the fact Article published by EDP Sciences and available at http://www.aanda.ora or http://dx.doi.ora/10.1051/0004-6361:20065369 that horizontal scales of température and velocity fluctuations are different (hence their improvements lead to a "two-scale mass-flux model" (TFM)) as well as to understand and measure the effects of the skewness of their distribution. According to GH2002, mass-flux models, which also include the TFM, underestimate the FOM by as much as 70%. Therefore, such models

Sect. 4 , 2 .

 42 we construct the CMP with the help of the RZ95 plume model. We test the validity of this model with results from the 3D simulation and show that the use of the plume model limits the validity of the CMP to the quasi-adiabatic zone. The CMP is then used to obtain analytical expressions for the third-and fourth-order moments. Section 5 is dedicated to discussions and conclusions. The two-scale mass-flux model 2.1. The model The TFM considers a convective medium composed of upward and downward flows that are horizontally averaged. The prés ence of two flows introduces the possibility of a non-zero skew ness for the moments of turbulent quantities when averages are done globally over the whole System. The TFM was developed in order to take into account this non-zero skewness.

Fig. 1 .

 1 Fig. 1. On the top, the superadiabatic gradient (V-Vad) is plotted versus the depth (z). The reference depth (z = 0 Mm) corresponds to the photo sphère. At the bottom, the mean fractional area of the upflow (a) and the warm drafts (b) are given. To calculate these quantities the upflow and downflow are separated using the sign of w' as a criterion. The same is done for the warm and cold drafts.

3. 1 .

 1 Theoretical formulation

  w)ü -(w)d = l(w>ul + Kw>dl,

(w' 4 )

 4 = a (w4)u + (1 -a)(w4)d 3/~/2\2 , 3.

Fig. 4 .Fig. 5 .

 45 Fig.4. Second-order moment of the upflow over that of the downflow ((«j'2)u/W2)d) as a function of depth, calculated directly from the simu lation. Upflow and downflow are determined according to the sign of w'.

Fig. 6 .

 6 Fig.6. Mean velocity profile of the upfiow (dashed line) and downflow (solid line) as a function of the depth. Note that the peak at z -0.1 Mm corresponds to the maximum turbulent pressure. The use of power laws limits the validity of the CMP to the quasi-adiabatic zone, as is implied by the déviation of the profiles from power laws in the superadiabatic région.

  {pw) = a(pw)u + (1 -a)(pw)d = 0.

Fig. 8 .

 8 Fig. 8. Fourth-order moment (O'4) as a function of depth z normalized to the directly numerically calculated FOM. In solid Unes the moment stems from (O'4) calculated using the CMP model, the dashed line is the moment as obtained from Eqs. (14) and (10) for S y and the dotted line is the QNA.

  donné lieu à un article publié dans A&A : A closure model with plumes. II.

  = < UiUj >< UlUm > + < UiU[ >< UjUm > + < UiUm >< UjUl >(4)[START_REF] Belkacem | Two-scale mass-flux closure models for turbulence : p-mode amplitudes in solar-like stars[END_REF][START_REF] Belkacem | A closure model with plumes. II. Application to the stochastic excitation of solar p modes[END_REF](7)(8)(9)(10)(11)(12)(13) La détermination des moments d'ordre 2 s'obtient en passant par sa transformée de Fourier : k ,w) = * 4 J dr J d?relwt~lk-r < Ui(x0,t)uj(xo + r,t + r) > (4-14) avec w la fréquence et k le vecteur d'onde. Or pour la turbulence isotrope, homogène, stationnaire et incompressible on a (Batchelor 1970) : x / . ;"\ _ w) ( j: k{kj ^(A 1cN (pijiuj, k) -47rfc2 (Sij --p~) (4.15) avec E(k,w) le spectre d'énergie cinétique. Batchelor (1970) propose une décomposition telle le spectre d'énergie turbulent pour un processus (cascade énergétique) stationnaire, et Xk(w) décrit la dynamique temporelle. Reste à déterminer ces deux dernières grandeurs, en ce qui concerne E(k) on suppose une loi d'échelle telle Kolmogorov (E oc k~5//3) ou issue des simulations 3D. En ce qui concerne Xk, la discussion est plus complexe et l'on se reportera à Samadi & Goupil (2003). 4.2.2 Le modèle de fermeture avec panaches Le modèle de fermeture que l'on a présenté dans le chapitre précédent propose d'exprimer le moment d'ordre quatre à un point. Néanmoins, comme l'on vient de le voir le modèle d'excitation nécessite de modéliser un moment d'ordre quatre à deux points. Il s'agit alors de généraliser le modèle de fermeture aux produits de corrélation à deux points. L'idée est alors de supposer que la dépendance à la longueur (AX) et au temps de corrélation (r) du produit de corrélation est celle donnée par la QNA mais que en AX = 0 et r = 0 on utilise le modèle de fermeture avec panaches. Donc le produit de corrélation à deux points < >, où west la vitesse verticale en un point 1 et 2 devient alors < w\wl >CMP= (1 + -S^) < wjw2 >QNA , (4.17) avec (wfw^QNA est le développement donné par la QNA (Eq. (4.13)). Cette approximation consiste alors à considérer une correction (1 + issue du modèle de fermeture avec panaches présenté précédemment. La figure 4.1 présente le produit de corrélation (u^u^) obtenu numéri quement et via la QNA. Les deux courbes sont normalisées de façon à mettre en évidence leur dépendance en fonction de la longueur de corrélation. On remarque alors que la QNA surestime le moment obtenu numériquement mais reste une bonne approximation pour les faibles longueurs de corrélation. Pour de plus importantes échelles de corrélations, cette approximation n'est plus valide mais la contribution des grandes valeurs de AA au moment reste faible.
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 41 Fig. 4.1 -Moment d'ordre quatre en fonction de la longueur de corrélation AX. En trait plein, le produit de corrélation est calculé directement en utilisant la simulation numérique, tandis que la courbe en pointillés représente le moment calculé en utilisant la relation quasi-normale.
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 42 Fig. 4.2 -Figure de gauche : Taux auquel l'énergie est injectée dans les modes radiaux par seconde (P) en fonction de la fréquence. Les croix représentent les données sismiques obtenues avec l'instrument GOLF (Baudin et al. 2005). La courbe en trait plein correspond au calcul théorique des taux d'excitation incluant seulement la contribution de Reynolds (Eq. (4.11)) et pour lequel on utilise le modèle de fermeture avec panache. Le trait en pointillé correspond au même calcul mais en utilisant la relation quasi-normale. Figure de droite : identique à la figure de gauche mais le trait plein correspond aux calculs théoriques comprenant les contributions du terme de Reynolds et du terme entropique et le trait en pointillés correspond à la contribution du terme de Reynolds seul. Ces deux courbes sont calculées avec le modèle de fermeture avec panaches.

  . Les observations correspondent à deux intervalles de temps d'observations avec une durée respective de 805 et 668 jours. Les figures 4.2 présentent les taux d'excitation observés avec les prédictions théoriques. La figure du cadre gauche permet de comparer le calcul théorique obtenu en utilisant à la fois le modèle de fermeture avec panaches et la relation quasi-normale pour la contribution de Reynolds. On remarque tout d'abord que le modèle de fermeture avec panaches introduit un excès de puissance comparativement à celui utilisant la QNA. Cette contribution additionnelle d'énergie est de l'ordre de 30% au maximum de fréquence, c'est à dire vers v « 3.8 mHz. En utilisant la contribution du terme de Reynolds seul, le CMP permet d'améliorer l'accord entre le modèle et les observations mais l'on peut distinguer plusieurs régions : -Aux basses fréquences (v < 2.5 mHz), la contribution du terme de Reynolds seule permet de reproduire les observations et semble même les surestimer pour les très basses fréquences. Néanmoins, notons que les barres d'erreur présentées sont à 1 cr. -Aux fréquences intermédiaires (4 > v > 3 mHz), le terme de Reynolds sous-estime les observations tout en améliorant l'accord comparativement au modèle utilisant la relation quasi-normale. Il semble qu'une contribution supplémentaire soit nécessaire, le terme entropique comme nous le verrons permettra d'expliquer ce désaccord. -A plus hautes fréquences (v > 4 mHz), la discussion devient délicate étant donné les barres d'erreur observationelles qui deviennent importantes. De plus, les modes de haute fréquence sont très sensibles à la zone super-adiabatique dans laquelle le modèle de fermeture avec panaches n'est plus valable. De plus d'un point de vue observationnel le rapport signal sur bruit devient faible et les largeurs des modes se chevauchent ce qui rend leur détermination difficile.

  figure 4.2 (cadre de droite) montre l'ajout de la contribution du terme entropique, positive, permet de reproduire le maximum des taux d'excitation observés. A basses fréquences (v 6 [1.6 mHz; 3 mHz]), les taux d'excitation théoriques, calculés avec les deux contributions, surestiment quelque peu les observations, mais les estimations théoriques restent dans les barres d'erreurs 3a.En ce qui concerne les fréquences intermédiaires et les hautes fréquences(v G [3 ; 4] mHz), la somme des deux contributions reproduit le maximum des taux d'excitation ainsi que la dépen dance fréquencielle.
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 41 Vers une modélisation adaptée à la région super-adiabatique La contribution du terme entropique (C|) qui est dominante dans la région super-adiabatique reste néanmoins difficile à modéliser. Dans le cas du Soleil cette contribution est importante pour les modes de haute fréquence qui sont plus sensibles à la région super-adiabatique. Hypothèse du scalaire passif La principale hypothèse que l'on est amené à faire est l'hypothèse du scalaire passif. Afin de modéliser pour le terme entropique le produit de corrélation < >, on utilise la relation quasi-normale < u'^u" js's" >=< u'iuvj >< s's" > + < u^s' >< u"js" > + < tqs" >< unjS1 > (4.22) L'approximation du scalaire passif implique qu'il n'y a pas de corrélation entre le champs de vitesse et d'entropie, donc à négliger les produits de corrélation < us >, où u est la vitesse et s la température. Dès lors, Eq. (4.22) se réduit à < u'u"js's" >=< u[u"j >< s's" > (4.23) Toutefois, si la simulation numérique justifie cette approximation dans la région adiabatique, la figure 3.6 montre qu'elle n'est pas valable dans la région super-adiabatique.
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 43 Fig. 4.3 -Moment < w6 > en fonction de z, w étant la fluctuation de vitesse verticale et 9 la fluctuation de température.

  Article oublished by EDP Sciences and available at http://www.aanda.org or http://dx.doi.Org/10.1051 /0004-6361:20065370In a companion paper(Belkacem et al. 2006, hereafter Paper I), we propose another approach in order to build a clo sure model that expresses fourth-order corrélation functions in terms of the second-order ones. This alternative approach consists in considering the convection zone as composed of two flows (the updrafts and downdrafts). Starting from theGryanik & Hartmann (2002) approach, we develop a generalized twoscale mass-flux model (GTFM) that takes the physical properties of each flow into account. Then a theoretical description of the plumes developed byRieutord & Zahn (1995) is used to construct the closure model with plumes (CMP). This model is valid for one-point corrélation functions and in the quasi-adiabatic zone. However, what is needed here is a closure model for two point corrélation functions. In the présent paper, we then propose a simple way to obtain this closure model to use it for calculat-

3. 2 .

 2 The closure model with plumes The closure model with plumes (see Paper I) has been established only for one-point corrélation products. Here we generalize the CMP to two-point corrélation products. We start in Fig. 1 by comparing the corrélation product (it>2a>2) calculated directly from 3D numerical simulations obtained from the Stein & Nordlund code (see Sect. 4) with those calculated using

  that are related to the oscillation modes: the eigenfunctions (£r) and associated eigenfrequencies (tuo);2) quantities that are related to the spatial and time-averaged properties of the medium: the density po, the vertical veloc ity w, the entropy s, and ors = dPo/ds\ 3) quantities that contain information about spatial and tempo ral corrélations of the convective fluctuations: E(k), E&(k), and Xkiojy, 4) quantities that take anisotropies into account: a and C>. The value of a is the mean horizontal fractional area of the updrafts (see Paper I), whereas O measures the anisotropy of turbulence and is defined according toGough ( 1977; see alsoSamadi & Goupil 2001, for details) as:

4. 1 .

 1 The solar case Calculations of the eigenfrequencies and eigenfunctions (in point 1) above) are performed as inSamadi et al. (2003b) on the basis of a 1D solar model built according toGough's (1977) nonlocal formulation of the mixing-length theory (GMLT hereafter).The spatial and time-averaged quantities in point 2) are obtained from a 3D simulation of the solar surface. The 3D sim ulations used in this work were built with Stein & Nordlund's 3D numerical code (seeStein & Nordlund 1998; Samadi et al. 2003a). Two simulations with different spatial mesh grids are considered, namely 253 x 253 x 163 and 125 x 125 x 82, in order to verify that the results are not sensitive to the spatial mesh resolution.

  + ùj, r)xk(oJ, r). (10) Equation (10) shows that the CMP causes an increase in the power injected into p modes in comparison with calculation us ing only the QNA. On the other hand, the entropy source term, Cg, is still computed using the QNA closure model (see Samadi & Goupil 2001, for details).

(

  see Fig.1ofBaudin et al. 2005), so the layer (h) where the mode mass is evaluated must be properly estimated to dérivé correct values of the excitation rates. Indeed, solar seismic observations in Doppler velocity are usually measured from a given spectral line. The layer where oscillations are measured then dépends on the height where the line is formed. The GOLF instrument uses the Na ID 1 and D 2 lines whose height of formation is estimated

Figure 3 Fig. 3 .

 33 Figure3compares the observed power P injected into solar p modes with the theoretical one computed with only the tur bulent Reynolds stress term assuming either the CMP or the QNA closure models. Figure4shows the associated heights H as computed according to Eq. (13). The comparison shows that the closure model has a significant effect on the resulting ex citation rates. Indeed, the CMP induces an increase in the energy injected into the mode by about a factor two in comparison with the QNA closure model and brings the theoretical excita tion rates doser to the observational ones. This energy increase is not uniform in terms of frequencies, due to the variation in the skewness with the depth (z) (see Paper I for details) and to the fact that the mean square velocity amplitudes of the turbulent éléments decrease with depth. Indeed, at the top of the convec tion zone where the highest frequency modes are confined, the inefficiency of the convective transport causes an increase in the

Fig. 4 ,Fig. 4 .

 44 Fig. 4, it is possible that the theoretical results are slightly overestimated, although this remains within the observational error bars. At intermediate frequencies 4 > v > 3 mHz), the turbulent Reynolds stress term is not sufficient to reproduce the observa tions, so the additional excitation coming from entropy fluctua tions is necessary. At high frequencies v > 4 mHz), Observational data seem to indicate a decrease in the power, which is not reproduced by the theoretical power.

Fig. 5 .

 5 Fig. 5. Top: rate (P) at which acoustic energy is injected into the solar radial modes as a function of frequency. Cross dots represent P computed from the Baudin et al. (2005) solar seismic data from the GOLF instrument (see Sect. 5). The curves represent theoretical values of P computed as explained in Sect. 4: the solid line represents P using both the Reynolds stress (using the CMP) and entropy source contributions. The dotted line corresponds to the calculation for the Reynolds stress term only (using the CMP). Bottom: mode height (H) calculated as explained in Sect. 5. The solid line represents H calculated with the CMP closure model, using the Reynolds stress and entropy fluctuation contributions. The dotted line represents H computed with the CMP closure model, using only the Reynolds stress contribution. Cross-dots represent GOLF data with the associated error bars. Error bars associ ated with the curves are due to mode line widths that are taken from observations (see Eq. (13)). Only observations near minimum solar ac-

Fig. 6 .

 6 Fig. 6. Mode height H calculated as explained in Sect. 5 using only the Reynolds stress contribution. Solid Unes represent H calculated with the CMP closure model and dots-line is the same except that a Gaussian is used for^. Crosses represent GOLF data with associated error bars.

  aration of scales used in the formalism that consists in assuming that the stratification and the oscillations hâve characteristic scale lengths larger than the eddies contributing to the excitation (seeSamadi & Goupil 2001, for details). The physical descrip tion of the outer layers in the 1D solar model can also play an im portant rôle directly through the velocity and indirectly through the eigenfunctions. In this paper, we useGough's (1977) nonlocal formulation of the mixing-lenght theory which shows an improvement in comparison with the local formulations in terms of the maximum of power P(Samadi et al. 2006) by about a few percent. Concerning the excitation model itself, some improvements in the modelling of Reynolds and entropy contributions that ought to be investigated are outlined below. 7.1. Turbulent Reynolds stress tensor contribution shortages At low frequencies, a possibly small overestimation of the Reynolds stress contribution can be attributed to the frequency dépendent factor (xk, see Eq. (10) in Sect. 4.1). Chaplin et al. (2005) use a Gaussian Xk whereas Samadi et al. (2003b) use a Lorentzian factor. In Fig. 6, we présent the calculation assuming a Gaussian and a Lorentzian for Xk-As shown there, the frequency-dependent factor Xk is likely between these two régimes. In the quasi-adiabatic convection zone, plumes are well-formed, and the convective System must be treated as composed of two flows (see Paper I). Hence, the upflows that are less turbulent can be modelled by a white noise (Gaussian), but downflows are turbulent creating a departure from a Gaussian.We expect this effect to cause a decrease in the theoretical power and bring it doser to the observation. A rough idea can be obtained by taking this effect into account as follows: we split the computation of the power supplied into the modes into two parts. Those parts correspond to upflow (xx-Gaussian) and to downflows (xk-Lorentzian). The resuit indicates a decrease in the power at low frequency, which brings the theoretical power doser to the observation. This is true mainly for low-frequency modes, which are less sensitive to the superadiabatic zone where plumes are formed, because this région cannot be modelled by such a simple model. This issue needs further investigation.7.2. Entropy source contribution shortagesIn the présent model, the turbulent entropy fluctuations are assumed to behave as a passive scalar, in other words, the entropy fluctuations are assumed to be advected by the turbulent velocity field without dissipation. It means that the entropy field does not hâve any effect on the velocity field.

  Au-delà du soleil : a Cen A Ce chapitre a donné lieu à un article publié accepté dans A&A : Modelling the excitation of acoustic modes in Alpha Cen A Samadi, R. ; Belkacem, K. ; Goupil, M. J. ; Dupret, M. -A. ; Kupka, F. Dans ce chapitre, je résume les résultats obtenus et l'on pourra trouver tous les détails dans cet article qui est reproduit à la fin de ce chapitre. Dans ce chapitre, nous abordons le problème de la modélisation des taux d'excitation de l'étoile a Cen A. Plusieurs questions se posent, il s'agit en premier lieu de valider la modélisation des taux d'excitation dans une étoile autre que le soleil et dans un second temps de déterminer quelles contraintes sur les régions turbulentes il est possible d'obtenir au regard des incertitudes liées aux observations disponibles 5.1 L'étoile a Cen A 5.1.1 Les contraintes observationnelles a Cen A a été modélisée par Miglio & Montalbân (2005), c'est une étoile de type solaire qui fait parti d'un système binaire. Sa température effective est de Teff ae 5810A et sa gravité de log g -4.3, ce qui est très proche du soleil (Tejj -5780K, logg = 4.43). Les amplitudes des modes acoustiques détectés dans a Cen A ont été obtenues par Butler et al. (2004) en utilisant deux spectrographes, UVES et UCLES. Cela a permis d'obtenir une estimation des largeurs moyennes des modes (Bedding et al. 2004). Plus récemment, l'analyse de la largeur des modes a été réeffectuée par Kjeldsen et al. (2005). Enfin, à partir des observations du satellite WIRE, Fletcher et al. (2006) ont eux aussi proposé une estimation des amplitudes et largeurs des modes acoustiques de a Cen A. Toutes ces estimations des paramètres des modes montrent néanmoins des différences importantes. Alors que Kjeldsen et al. (2005) trouvent une durée de vie de l'ordre de 2.2 jours, Fletcher et al. (2006) déduisent une valeur proche de 3.9 jours. On utilisera alors les amplitudes obtenues par Kjeldsen et al. (2005) ainsi que les largeurs de Kjeldsen et al. (2005) et Fletcher et al. (2006), ce qui permet d'obtenir les taux d'excitation avec une dispersion qui est liée aux incertitudes des mesures.
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 51 Fig. 5.1 -Figure de gauche : Taux d'excitation des modes solaires(les points) d'après Baudin et al. (2005) et taux d'excitation de a Cen A déduis des observations de Kjeldsen et al. (2005) et Fletcher et al. (2006). Figure de droite : Rapport des taux d'excitation sur la masse des modes (P/A4) en fonction de la fréquence. La région hachurée correspond aux observations comme expliqué dans la section 5.1.1.

  advection of the entropy fluctuations by the velocity field into account. They only use the classical quasi-normal ap proximation. More importantly, these authors clairn that a Gaussian eddy-time corrélation function reproduces one the frequency dependence of mode excitation rates in ferred from helioseismic data better than a Lorentzian one. However, they are led to introduce a factor to their model by which they multiply their formulation to reproduce the maximum of the solar mode excitation rates.A second opportunity is provided by a Cen A for testing various assumptions in the modeling of the p-mode ex citation: the amplitudes of the acoustic modes detected in a Cen A were derived byButler et al. (2004) using spectro métrie data. From those data, an estimate of the averaged mode linewidths has been first proposed byBedding et al. 

  For comparison, the averaged mode life time derived for the Sun byBedding et al. (2004) in a similar way as for a Cen A byKjeldsen et al. (2005) is about two days.Samadi et al. (2007a) inferred the p-mode excitation rates T from those sets of seismic constraints. They find that they are significantly larger than those associated with the solar p-modes. Furthermore, T peaks in the frequency domain ~2.2 -2.6 mHz, while it peaks at the frequency ^max ~3.8 mHz in the case of the Sun.Although the spectroscopic characteristics (Teff = 5810 K, log g = 4.305) of a Cen A are close to those of the Sun (Teff = 5780 K, log g -4.438), the seismic signa tures are quite different. Consequently, finding agreement between predicted and observed excitation rates would be a nontrivial resuit, providing additional support for the theory.

2. 1 .

 1 General formulationBecause the theoretical model of stochastic excitation is basically that ofSamadi & Goupil (2001; see alsoSamadi et al. 2005) with the improvements ofBelkacem et al. (2006a,b), we recall only sonie key features here. The model takes two driving sources into account. The first one is related to the Reynolds stress tensor and, as such, represents a mechanical source of excitation. The second one is caused by the advection of the turbulent fluctuations of entropy by the tur bulent motions (the so-called "entropy source term") and thus represents a thermal source of excitation(Goldreich et al. 1994; Stein & Nordlund 2001). The power fed into each radial mode, CP, is given by 3inertia, £r is the adiabatic radial mode displace ment and M the mass of the star. The expressions for Câ nd C2S are given for a radial mode with frequency ujo by c\ = Jdmpofr (l + js^o) ,

  ness and w the vertical component of the velocity (seeBelkacem et al. 2006a,b, for details). Indeed, the expres sion of Eq. (3) dépends on the closure model used to ex press the fourth-order moments involved in the theory in ternis of the second-order ones. The most commonly used closure model at the level of fourth-order moments is the quasi-normal approximation (QNA). Such an assumption leads to a vanishing skewness Sw. However, in the solar case, the déviation from the QNA stems from the presence of turbulent plumes. Taking both the effect of the skew ness introduced by the presence of two flows and the effect of turbulence onto each flow into account Belkacem et al. (2006a) thus propose a new closure model, which leads to a non-vanishing skewness, Sw, in Eq. (3). In the présent work, is then obtained directly from the 3D numerical model. Calculation of the mode excitation rates is performed essentially in the manner of Belkacem et al. (2006b) as explained in Samadi et al. (2007a) in the spécifie case of a Cen A: ail required quantifies, except the mode eigenfunctions £r and mode inertia /, are directly obtained from a 3D simulation of the outer layers of a Cen A, whose char acteristics are described in Sect. 2.2 below. The mode displacement £r and mode inertia / must be computed from a global 1D equilibrium model. We chose to study two such equilibrium models which are described in Sect. 2.3 Finally, eigenfrequencies and eigenfunctions are computed using the adiabatic pulsation code ADIPLS (Christensen-Dalsgaard & Berthomieu 1991).

  results in a = 1.899. The mass of the standard model is M = 1.012 M0 and the radius R = 1.1722 Rq. They are slightly less than expected for this star, namely M = 1.105 ± 0.007 M© and R = 1.224 ± 0.003 P© (see Miglio & Montalbân 2005). This is because we hâve assumed a so lar abundance for consistency with the 3D model. A global 1D model with the iron-to-hydrogen abundance ([Fe/H]) of a Cen A (namely [Fe/H]=0.2), would hâve the expected mass and radius of the star. Slightly different R, M and [Fe/H] values might hâve some influence on the mode excitation rates (T). To measure the effect of having an R, M and [Fe/H] different than required for a Cen A, we computed two global models. The first model has an abundance [Fe/H] =0.2 and the second has a solar abundance. Both models hâve the effective tem pérature and gravity of a Cen A. In contrast with the "stan dard" model described above, we do not match these mod els with the 3D model. The model with [Fe/H] =0.2 almost has the radius and the mass expected for a Cen A, while the second has almost the same R and M as the standard

"

  Standard" and 3D models share the same microphysics but mainly differ in the way convective motions and radia tive transfer are treated. In the 3D model convective mo tions are treated by solving the Navier-Sokes équation while in the standard model convective motions are modeled ac cording to the mixing-length model of convection and no turbulent pressure is included in the hydrostatic équation.

Fig. 1 .

 1 Fig. 1. Density as a function of the température. The solid line corresponds to the "patched" model and the dashed line to the "standard" model. The thick solid line is the part of the patched model obtained from the 3D simulation. The fdled circle shows the position of the bottom of the 3D simulation box.

3 .

 3 Inferring the excitation rates from seismic constraints Mode excitation rates are derived from seismic observations according to the relation 9(u) = 27rMr>/S0)2 (7) where M = //^(r/l) is the mode mass evaluated at the layer = R + h in the atmosphère where the mode is measured in radial velocity, R the radius at the photosphère (i.e. at T = Teff), h the height above the photosphère, T the mode full width at half maximum (in u), v(rh, v) is the rms apparent velocity amplitude of the mode at the layer rh, v = o;o/27t the mode frequency, and Sq the visibility factor of the £=0 mode. Kjeldsen et al. (2005) hâve derived the apparent am plitude velocity spectrum, v{v) of the modes detected in a Cen A. However, their spectrum corresponds to ampli tudes normalized to the mean of A=0 and 1 modes rather than to ^=0. Furthermore, they do not take the mode vis ibilités into account. Recently, Kjeldsen et al. (2008) hâve derived the (apparent) amplitudes of the modes, normalized to the £=0 modes and taking both the mode visibilities and limb-darkening effects into account. Finally, to dérivé the intrinsic mode amplitudes, we divide v(v) by Sq = 0.712,

  , we compare two sets of calculations for a patched stellar model that assumes two different prescrip tions for the eddy-time corrélation function (Xk) and two different closure models, namely the QNA and the Closure Model with Plumes (CMP hereafter) in the excitation model. The theoretical calculations based on a Lorentzian Xk and the CMP closure model lie inside the range allowed by the two sets of seismic constraints. The différences be tween calculations based on the CMP and on the QNA are found smaller than the différences between the two data sets. On the other hand, calculations based on a Gaussian Xk yields significantly underestimated values compared to the seismic constraints.
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 23 Fig. 2. Ratio of the rates 7 at which energy is injected into pmodes to mode masses (M) for a Cen A. The dashed area represents the observed domain for T/M = 2nT (v/So)2 as a function of u. This domain is defined by merging the uncertainties associated with two independently derived values of T and with the mode amplitudes v (Eq. 7). The solid (resp. dashed) line cor responds to computed excitation rates with the eigenmodes obtained using the "patched" (resp. "standard") 1D global model. Ail calculations here use the CMP and the Lorentzian function (LF) for the eddy time-correlation function Xk in Eqs. 5 and 6.

  Figure 4 compares the excitation rates, CP, inferred for a Cen A with those inferred from helioseismic measurements obtained for the Sun. For a Cen A, excitation rates are obtained from the seismic measurements as explained in Sect. 3.

  obtained with a patched model computed as for a Cen A in Sect. 2. Mode masses are evaluated for the optical depth t ex 5 10-4 since SOHO/GOLF observations are based on the Na DI and D2 spectral Unes (see Houdek 2006). We find !Pmax,o -3.5 ± 0.4 x 1015 [J/s]. The exci tation rates inferred for a Cen A with mode masses M evaluated at the optical depth associated with the potas sium line (r ~0.013) give lPmax = 8.25 ± 1.0 x 1015 [J/s].This is about 2.3 ± 0.3 times larger than Tmax,©-If mode masses are evaluated at the photosphère (h = 0, T = Teff),

Fig. 4 .

 4 Fig.4. Excitation rates 7 inferred from seismic data according to Eq. 7. Filled circles correspond to the helioseismic constraints obtained byBaudin et al. (2005). The dashed area represents the observed domain for the excitation rates derived for c* Cen A.

Fig. 5 .

 5 Fig. 5. Top: The integrand d^n/dm (Eq. 1) associated with the contribution of the Reynolds stress to the excitation is plotted as a function of the horizontally and temporally averaged température in the simulation box for the mode for which J3 is maximum. The solid line corresponds to the 3D simulation associated with a Cen A and the dashed line to the one associ ated with the Sun. Bottom: as the top panel for d'Ps/dm, the integrand associated with the contribution due to the entropy fluctuations.

Fig. 6 .

 6 Fig. 6. The kinetic energy spectrum, A, as a function of the horizontal wavenumber k (lower axis) and the scale length A*, = 2ir/k (upper axis) for the layer where u is maximum. The solid line corresponds to the 3D simulation associated with a Cen A and the dashed line to the one associated with the Sun.

1 Fig. 7 .

 17 Fig. 7. The kinetic energy spectrum, E, as a function of k Hp (lower axis) and Ak/Hp (upper axis) for the layer where u is maximum. The lines used hâve the same meaning as in Fig. 6.

6. 2 .

 2 Fig. 8. Ratio of the rates 7 at which energy is injected into the p-modes to the mode masses (M) for a Cen A. The dashed area represents the observed domain for 7/M. = 2n T(v/Sq)2 as a function of u (see Sect. 3). The solid Unes correspond to the ratio 7/JA where the excitation rates, 7, are calculated according to Eq. 1 and the mode masses, M, are evaluated at different heights h above the photosphère. The lower curve corresponds to the photosphère (h = 0) and the upper curve to the top of the atmosphère (h = 1000 km). The step in h is 200 km.

  from a Cen A then provide a clear validation of the basic underlying physical assumptions included in the theoreti cal model of stochastic excitation, at least for stars that are not too different from the Sun. 7.3. Constraints on the description of turbulence: eddy-time corrélation We find that our theoretical estimations of 7, which assume a Lorentzian eddy-time corrélation function (xk) and the CMP proposed by Belkacem et al. (2006a), lie in the ob served domain. On the other hand, when a Gaussian func tion is chosen for 7 is significantly underestimated. The comparison with the seismic data for a Cen A confirais the results for the solar case obtained by Samadi et al. (2003) that Xk significantly départs from a Gaussian. As in Samadi et al. (2003), we attribute the departure of Xk from a Gaussian to diving plumes (i.e. down-flows), which are more turbulent than granules (i.e. the up-flows). This re suit confirais that a Lorentzian function is a more adéquate description for the eddy-time corrélation than a Gaussian. 7.4. Constraints on the modeling of turbulent convection in the equilibrium stellar model Calculations involving eigenfunctions computed on the basis of a global 1D model that includes a realistic description of the outer layers of the star (taken from 3D simulations)

  contribution of the entropy fluctuations to the excitation cannot be neglected. Furthermore, recently, Belkacem et al. (2006b) hâve shown that theoretical calculations based on the CMP resuit in a better agreement with the helioseismic constraints than those based on QNA.

  dans le modèle d'excitation. Ces modèles de fermeture permettent d'exprimer les produits de corrélation d'ordre quatre en fonction de ceux d'ordre deux. Classiquement, la relation quasinormale était utilisée, mais j'ai montré que cette fermeture sous-estime de façon significative le moment d'ordre quatre. Il a alors fallu développer un modèle qui prend en compte l'effet de l'asymétrie entre flots ascendant et descendant ainsi que l'effet de la turbulence au sein de chaque flot. Il a été possible de construire un modèle de fermeture avec panaches qui améliore significativement la description du produit de corrélation d'ordre quatre. L'utilisation de ce formalisme à la modélisation des taux d'excitation des modes solaires m'a ensuite permis d'améliorer l'accord entre le modèle et les observations GOLF. Néanmoins des incertitudes subsistent avec en particulier la description de la contribution du terme entropique qui reste difficile.Les taux d'excitation de l'étoile a Cen A ont aussi été modélisés permettant ainsi de valider le formalisme, c'est à dire que l'on montre que la physique introduite dans les modèles permet de reproduire les observations. On a ainsi pu montrer que la fonction de corrélation temporelle devait être choisie Lorentzienne comme dans le Soleil. En revanche, lorsque qu'une fonction Gaussienne est utilisée les contraintes observationnelles sont signifîcativement sous-estimées. En ce qui concerne les modèles de fermeture, à savoir la relation quasi-normale ainsi que le modèle de fermeture avec panaches, il n'a pas été possible de les discriminer en raison de la faible précision des observations. La perspective de l'observation d'étoiles de type solaire par COROT va apporter la précision nécessaire et permettra d'obtenir des contraintes importantes sur la convection turbulente dans ces étoiles ainsi que d'explorer une large gamme de conditions physiques différentes qui restaient jusqu'à présent hors de portée avec les seules données solaires.
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 61 figure de gauche montre le tracé des fronts d'onde pour plusieurs modes dont celui d'un mode de haut degré angulaire qui reste confiné dans les couches supérieures. De tels modes sont réfléchis à la surface du soleil et sont réfractés à l'intérieur au point où leur fréquence (eu) est égale à la fréquence de Lamb {Se)-Comme on peut le constater sur la figure 6.1, la fréquence de Lamb croît à mesure que le degré angulaire augmente. On constate que dès t = 100, la cavité des modes acoustiques est confinée dans les régions supérieures du soleil.

Fig. 6 . 1 -

 61 Fig. 6.1 -Figure de gauche : Représentation schématique des fronts d'onde pour des modes non-radiaux. Figure de droite : Diagramme de propagation des modes solaires représentant la fréquence de Brunt-Vaisâlà (trait plein) et la fréquence de Lamb (traits pointillé) en fonction du rayon stellaire. Les différentes valeurs de la fréquences de Lamb correspondent à différentes valeurs du degré angulaire t. Ce diagramme est tirée de Christensen-Dalsgaard (2003).
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 62 Fig. 6.2 -Diagrammes fréquence (u) degré angulaire (£) d'après Rabello-Soares et al. (2006) (figure de gauche) et Mitra-Kraev et al. (2008) (figure de droite).
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 63 Effet de la rotation uniforme sur les amplitudes des modes non-radiaux Le développement d'un formalisme permettant de modéliser l'excitation des modes nonradiaux permet alors d'explorer l'effet de la rotation sur l'amplitude de ces modes. En effet, plusieurs questions se posent : l'amplitude d'un mode non axisymétrique (m / 0) est-elle la même qu'un mode axisymétrique (m = 0) ? Les modes prograde et rétrograde sont-ils excités de manière identique ?Afin de répondre à ces questions, la première étape consistera à développer le formalisme obtenu pour les modes non-radiaux en tenant compte de la contribution de la rotation. Il sera alors possible de déterminer si la rotation contribue au forçage des modes. Dans un deuxième temps l'effet de la rotation sera quantifiée et pour cela nous utiliserons une approche perturbative. Dans ce travail, préliminaire, on se limite à un profil de rotation uniforme. Néanmoins, je discuterai brièvement l'effet de la rotation différentielle.J'aborderai aussi le problème du transport de moment cinétique par les modes. En effet, la rotation permet un transport de moment par les oscillations non-adiabatiques et donc une redistribution de moment cinétique qui a des conséquences sur le profil de rotation. Dans les étoiles de faible masse, ce problème a été peu abordé. A terme, modéliser l'effet de la rotation sur les amplitudes des modes de type solaire permettra de quantifier cet effet. notera néanmoins des travaux effectués par G. Houdek et D.O. Gough mais dont je n'ai pas, à ce moment, eu l'accès.

7 . 1

 71 Taux d'excitation des modes non-radiaux : résumé du forma lisme Afin d'obtenir l'expression des taux d'excitation, l'équation du mouvement et l'équation de conservation de la masse sont linéarisées. Ensuite, le champ de vitesse est séparé en une contri bution liée à l'oscillation et une autre liée à la turbulence. On établit alors l'équation d'onde inhomogène qui permet finalement de déduire l'amplitude des modes. Afin d'obtenir l'expression finale de l'amplitude des modes, on suppose alors que la turbulence est isotrope et homogène. L'expression des taux d'excitation est donnée par (voir article pour plus de détails) P = -(C2R + Cj + CRS) . (7.1) où C\, C|, Crs sont respectivement la contribution de Reynolds, la contribution entropique et la contribution du terme de couplage entre le terme de Reynolds et le terme entropique. 7.1.1 Expression de la contribution de Reynolds La contribution du terme de Reynolds est donnée par1 C\ = 47t3 J dm po R(r) SR(u0) , ) = j Ëz(k) J du x*(w + wo) Xk(u).

  est le spectre turbulent d'énergie cinétique, Xk la fonction de corrélation temporelle, /c, lj le nombre d'onde et la fréquence associés aux tourbillons convectifs.

  détails du calcul sont donnés dans l'article qui suit ce chapitre (Annexe I).
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 71 Fig. 7.1 -Figure de gauche : Taux d'excitation des modes non-radiaux de degrés angulaire t = 50,100,300 normalisé par les taux d'excitation des modes radiaux, en fonction de la fréquence.

Figure

  Figure de droite : Produit des taux d'excitation des modes non-radiaux ( P) et de leur inertie (/), normalisés par le produit PI des modes radiaux.

De

  k) le spectre associé aux fluctuations de l'entropie.On retrouve l'expressionde Samadi & Goupil (2001), en se plaçant dans la limite des modes radiaux. Dans ce cas, la divergence du déplacement se réduit à taux d'excitation de modes acoustiques solaires de haut degré angulaire sont calculés en utilisant l'Eq. (7.2) et Eq. (7.9). Pour cela nous utilisons un modèle solaire calculé avec le code d'évolution stellaire CESAM et en utilisant la théorie classique de la longueur de mélange.Cela permet d'en déduire à la fois les taux d'excitation (P) des modes non-radiaux et (Prad) radiaux. Sur la figure 7.1 (cadre de gauche) sont présentés les taux d'excitation des modes de degré angulaire i = 50,100, 300 en fonction de la fréquence et normalisés aux taux d'excitation des modes radiaux. La première constatation est que les taux d'excitation augmentent avec i à fréquence fixée. De plus, il semble se dessiner deux domaines distincts, les hauts et bas ordres radiaux n. Afin de s'en convaincre, écrivons l'expression de P sous la forme suivante (P)| qui est calculé à la photosphère. Notons que les deux termes de l'équation précédente ont été écrits de façon à ne pas dépendre du choix de normalisation des fonctions propres. L'Eq. (7.14) permet de montrer qu'il y a deux contributions distinctes aux taux d'excitation, la première est due à l'inertie des modes qui sque peut laisser penser l'équation précédente (Eq. (7.15)), plus le degré an gulaire du mode est élevé, plus l'inertie est faible. En effet, malgré la dépendance en L2, ces modes sont de plus en plus confinés dans les couches externes du Soleil où la densité est faible. Donc, l'effet de l'inertie explique une partie de l'augmentation des taux d'excitation en fonction du degré angulaire.La seconde dépendance que l'on met en évidence est liée, comme le montre l'Eq.(7.14), aux contributions non-radiales apparaissant dans R (Eq.(7.3)). Afin de pourvoir distinguer les deux contributions, il est intéressant de tracer le produit des taux d'excitation et de l'inertie, car comme le montre l'Eq. (7.1) la quantité PI est indépendante de l'inertie. La figure7.1 (cadre de droite) montre ce produit en fonction de la fréquence, on peut tirer les conclusions suivantes -Pour les modes de haut ordre radial n, les effets non-radiaux sont négligeables et l'effet dominant provient de l'inertie.
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 727374 Fig. 7.2 -Figure de gauche : Rapport du nombre d'onde horizontal -Ljr) et du nombre d'onde caractéristique de la convection en fonction du rayon pour plusieurs valeurs de ^.Figure de droite : Rapport du nombre d'onde radial (Eq. (7.37)) et du nombre d'onde caractéristique de la convection en fonction du rayon pour plusieurs valeurs de i.

  formalism to the case of non-radial global modes. This will enable us to estimate the excitation rates for a wide variety of p and g modes excited in different types of stars. The présent model provides the energy supplied to the modes by turbulence in inner, as well as outer, stellar convective régions, provided the turbulent model appropriate for the relevant région is used. Studies of the stochastic excitation of solar radial modes(Samadi et al. 2003a,b) hâve given us access mainly to the radial properties of turbulence. The présent gen eralised formalism enables us to take the horizontal properties of turbulence into account (through the non-radial components of the Reynolds stress contribution) in the outermost part of the convective zone.

  an observational point of view,Woodard et al. (2001) found that the energy supplied to the mode increases with £, but that above Article published by EDP Sciences and available at http://www.aanda.ora or http://dx.doi.Org/10.1051/0004-6361:20077775 sortie high-£ value, which dépends on the radial order n (seeWoodard et al. 2001, Fig.2), the energy decreases with increasing i. They mention the possibility of an unmodelled mechanism of damping. Hence one of the motivations of this work is to investigate such an issue. As a first step, we develop here a theoretical model of the stochastic excitation taking the Adependence of the source ternis into account to seek a physical meaning for such a behaviour of the amplitudes.

  2 introduces the gen eral formalism, and a detailed dérivation of the Reynolds and entropy source terms is provided. In Sect. 3, we demonstrate that the formalism ofSamadi & Goupil (2001) is a spécial case and an asymptotic limit of the présent model. In Sect. 4, we use qualitative arguments to détermine the different contributions to the excitation rates and identify the dominant terms involving the angular degree ( C ). Section 5 présents the numerical results

1 From(

 1 is the turbulent Lagrangian fluctuation of the en tropy (ars = dpi/ds, ) and p\ dénotés the Eulerian pressure fluctuations.The last term in the right hand side of Eq. (7) represents the advection of entropy fluctuations by turbulent motion and, as such, is a thermal driving. Note that it was shown inBelkacem et al. (2006b) that this term is needed to reproduce the maximum in the amplitude as a function of frequency in the case of solar radial p modes. -The fluctuating gravity term dg, _ dp\g\ dt dt where g\ is the fluctuation of gravity due to the turbulent field. This contribution can be shown to be negligible and will not be considered in detail here for p modes. Several other excitation source terms appear on the right hand side of Eq. (1). However, as shown in Paper I, their contributions are negligible since they are linear in terms of turbulent fluctua tions..dV*-h-» x <(r (r, ) S(r,, r, )) (f(r2) • S*(r2, f2))>, (9) <^osc = ^(A(t)£(r)e l wl ,r + c.c.) , 1 Linear terms are defined as the product of an equilibrium quantity (3) and a fluctuating one. where subscripts 1 and 2 dénoté two spatial and temporal loca tions. To proceed further, it is convenient to define the following to are the average space-time position and r and r are related to the local turbulence. In the following, Vo is the large-scale dérivative associated with xo, Vr is the small-scale one associated with r, and the dérivative operators Vi and V2 are associated with r\ and r2, respectively. The mean-squared amplitude can be rewritten in terms of the new coordinates as -5[*o-j.'o-jDIf-S' x»+rr'o+l (10) Subscripts 1 and 2 are the values taken at the spatial and temporal positions [x0 --•£] and [x0 + -] respectively. In the excita tion région, the eddy lifetime is much smaller than the oscillation lifetime (~1 /tj) of p modes such that the intégration over r can be extended to infinity. Hence ail time intégrations over r are understood to be performed over the range ] -oo, +oo[.

  the turbulent Reynolds stress and entropy fluctuation contributions whose expressions are, respectively, -the Reynolds source term:

  netic and entropy energy spectrum (see Paper I for details) k, co) is the turbulent kinetic energy spectrum.The turbulent Reynolds term Eq.(12) takes the following general expression under the assumption of isotropie turbulence: the spherical coordinate unit vectors, (k,co) are the wavenumber and frequency associated with the turbulent eddies and turbulent kinetic energy spectrum E(k,co), which is expressed as the product E(k)xk(u) for isotropie turbulence(Lesieur 1997). The kinetic energy spectrum E(kan estimate for the vertical convective velocity and <D is a factor introduced byGough ( 1977) to take anisotropy eflFects into account. A detailed discussion of the temporal corrélation function (xk) is addressed inSamadi et al. (2003b).

  ) = f ^E(k)Es(k) !"doeXkiuQ + u)XkM

  , we use the plane-parallel approximation. It is justified (for p modes) by the fact that excitation takes place in the uppermost part of the convection zone ( r/R « 1 ). It is valid when the condition rkosc » 1 is fulfilled in the excitation région (kosc being the local wavenumber), i.eare the expressions obtained by Paper I and Samadi et al. (2005) for the radial modes in a plane-parallel geometry.

4. 1 .

 1 The £ dependence of the eigenfunctions Let us consider the équation of continuity and the transverse component of the équation of motion for the oscillations. Let us neglect the Lagrangian pressure variation and Eulerian gravitational potential variation at r = R (the surface). The ratio of the horizontal to the vertical displacement at the surface boundary is then approximately given by(Unno et al. 1989, pterms in S4 are always negligible compared to the others. At fixed frequency (cr) we hâve thus:

  the dérivatives. Under the same assumptions above, neglecting the term in (p /p)d(Sp / p) / dr in the ra dial component of the équation of motion (standard mechanical boundary condition), one gets, near the surface,

  correspond to the non-diagonal contribu tions of the tensor V : £ appearing in the Reynolds stress term because we are in the range £ » cr2 (see Eq. (57)). The radial and transverse components of the divergence of the displacement nearly cancel so that ôp/p takes its minimum values. This is due to the fact that they are nearly divergence-free, i.e.

Fig. 1 .

 1 Fig.1. Top: the rate (P) at which energy is supplied to each C,n mode for t -50,100,300 is divided by the excitation rate ( Pradiai ) obtained for the C = 0, n mode. Computation of the theoretical excitation rates is performed as explained in Sect. 5.1. Bottom: ratio P I/(P /)radiai where I is the mode inerlia.

Figure 2

 2 Figure 2 displays the surface velocities for i -0,20, and 50.Note that the surface velocities are normalized to the maximum velocity of the C -0 modes (Fo ~8.5 cm s-1 using MLT). This

  the ratios kr/kcom and ki,/kconv are plotted. Those plots focus on the uppermost part of the solar convection zone where most of the excitation takes place. The assumption of séparation of scale is valid for the horizontal component of the oscillation, since one has ki,/kcom «: 1 (for C < 500) in the région where ex citation is dominant. However, we must recall that our criterion is based on the mixing length for computing kcom. As shown bySamadi et al. (2003a) using 3D numerical simulations, the convective length scale (computed using the CESAM code, see Sect. 5.1) must be multiplied by a factor around five to repro duce the injection scale (Lc) in the superadiabatic layers. Hence,

6. 2 .

 2 The closure model A second approximation in the présent formalism is the use of a closure model. The uppermost part of the convection zone is a turbulent convective System composed of two flows (upward and downward), and the probability distribution function of the fluc tuations of the vertical velocity and température does not obey a
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 81 Fig. 8.1 -Figure de gauche : Rapport du terme source entropique (Eq. (7.8)) et du terme source de Reynolds (Eq. (7.2)) en fonction de la fréquence. Figure de droite : Intégrant cumulé (en partant de la surface) des taux d'excitation (Eq. (7.1)) en fonction du rayon normalisé au rayon solaire.

Fig. 8 . 3 -

 83 Fig. 8.3 -Taux d'excitation (P) en fonction de la fréquence pour les modes de degré angulaire £= 1,2,3.

  Fig. 8.4 -Intégrant du travail en fonction du rayon. En trait plein est représentée la contribution due à la partie radiale du flux radiatif, en pointillés la composante horizontale du flux radiatif et en tirés la contribution du couplage convection-pulsation. Notons que rapportée à la masse, la contribution du flux convectif est négligeable contrairement à ce que pourrait laisser penser la figure de gauche. Ces contributions sont représentées pour le mode #io {£ = 1) sur la figure de gauche et <732 (£ = 1) sur la figure de droite.

Fig. 8 . 5 -

 85 Fig. 8.5 -Taux d'amortissement des modes asymptotique de gravité en fonction de la fréquence, pour £ = 1,2,3.

  Fig. 8.6 -Figure de gauche : Vitesses théoriques en fonction de la fréquence, calculées avec l'Eq. (8.12), en utilisant une combinaison entre fonction Lorentzienne et Gaussienne comme ex pliqué dans la section 8.1.2 pour modéliser Xk-Figure de droite : La même figure que celle de gauche, mais calculée avec un Xk Gaussien ainsi qu'un spectre de Kolmogorov. A noter la différence d'échelle entre les deux figures.

Fig. 8

 8 Fig. 8.8 -Figure supérieure : Représentation schématique des vitesses des modes de gravité en fonction de la fréquence. On peut y voir les résultats obtenus par Kumar et al. (1996), Gough (1985) ainsi que les différentes "détections" qui ont été faites et la limite actuelle donnée par GOLF. Crédit : T. Appourchaux Figure inférieure : Nombre moyen de modes détectés dans les simulations en fonction de la durée d'observation. Les barres d'erreurs correspondent à l'écarttype obtenu et la région hachurée correspond à la région où il n'y a pas de détection.

( 1971 )

 1971 led to the identification of the solar five-minutes oscillations as global acoustic standing waves (p modes). Since then, successful works hâve determined the Sun in ternai structure from the knowledge of its oscillation fre quencies (e.g., Christensen-Dalsgaard 2004). However, p modes are not well-suited to probing the deepest inner part of the Sun. On the other hand, g modes are mainly trapped in the radiative région and are thus able to pro vide information on the properties of the central part of the Sun (r < 0.3 R®) (e-g-> Turck-Chièze et al. 2001; Send offprint requests to: K. Belkacem Correspondence to: Kevin.Belkacem@obspm.fr Christensen-Dalsgaard 2006). As g modes are evanescent in the convective région, their amplitudes are expected to be very low at the photosphère and above, where obser vations are made, making their détection is thus quite a challenge for more than 30 years. The first daims of détection of solar gravity modes began with the work of Severnyi et al. (1976) and Brookes et al. (1976). Even after more than ten years of observa tions from SOHO, there is still no consensus about détec tion of solar g modes. Most of the observational efforts hâve been focused on low-order g modes motivated by a low the granulation noise (Appourchaux et al. 2006; Elsworth et al. 2006) and by previous theoretical esti mâtes of g-mode amplitudes (e.g., Turck-Chièze et al. 2004; Kumar et al. 1996). Recently, Garcia et al. (2007) hâve investigated the low-frequency domain, with the hope of detecting high radial-order g modes. The method looked for regularities in the power spectrum, and the authors claim to detect a periodicity in accordance with what is expected from simulated power spectra. The work of Garcia et al. (2007) présent the advantage of exploring a different frequency domain [y G [25; 140]/rHz) more favorable to a reliable theoretical estimation of the g-mode amplitudes, as we will explain later on. Amplitudes of g modes, as p modes, are believed to resuit from a balance between driving and damping pro cesses in the solar convection zone. Two major processes hâve been identified as stochastically driving the réso nant modes in the stellar cavity. The first is related to the Reynolds stress tensor, the second is caused by the advection of turbulent fluctuations of entropy by turbu lent motions. Theoretical estimations based on stochas tic excitation hâve been previously obtained by Gough

  et al.(2005) formalism that is based on a non-local timedependent treatment of convection. We will show that, contrary to p modes and high frequency g modes, asymp totic g-mode (i.e low frequency) damping rates are insen sitive to the treatment of convection. This then removes most of the uncertainties in the estimated theoretical os cillation mode velocities. Consequently, we restrict our in vestigation to low-frequency gravity modes. Stochastic ex citation is modeled in the same way as inBelkacem et al. 

  radial modes was developed byBelkacem et al. (2008) who extended the work ofSamadi & Goupil (2001) developed for radial modes to non-radial modes. It takes the two sources into account that drive the résonant modes of the stellar cavity. The first is related to the Reynolds stress tensor and the second one is caused by the advection of the turbulent fluctuations of entropy by the turbulent mo tions (the "entropy source term"). Unlike for p modes, the entropy source term is negligible for g modes. We numerically verified that it is two to four orders of magnitude lower than the Reynolds stress contribution depcnding on frequency. This is explained by the entropy contribution being sensitive to second-order dérivatives of the displace ment eigenfunctions in the superadiabatic région where entropy fluctuations are localized. As the gravity modes are evanescent in the convection zone, the second dériva tives of displacement eigenfunctions are negligible and so is the entropy contribution. The excitation rate, P, then arises from the Reynolds stresses and can be written as (see Eq. (21J dw E2(k) Xk(u + W0) Xk{u) (2) where m is the local mass, po the mean density, cuo the mode angular frequency, I the mode inertia, Sk the source function, E(k) the spatial kinetic energy spectrum, \k the eddy-time corrélation function, and k the wavenumber.The term R(r) dépends on the eigenfunction, its exprès-sion is given in Eq. (23) ofBelkacem et al. (2008), iand horizontal components of the fluid displacement eigenfunction (£), and £,m represent the degree and azimuthal number of the associated spher-

Fig. 1 .

 1 Fig. 1. Luminosity flux contributions versus radius, averaged over horizontal surfaces and in time. The solid line corresponds to the enthalpy luminosity (Le), the short dashed-line to the radiative luminosity (Lr), the dotted-dashed line to the kinetic energy luminosity ( Lkin), the long-dashed line to the total luminosity (Ltot), and the dot-dashed line correspond to

  model for the atmosphère. The interioratmosphere matching point is chosen at logr = 0.1 (above the convective envelope). The pulsation compu tations use the full model (interior-b atmosphère). In the interior model, we used the OPAL opacities(Iglesias & Rogers 1996) extended to low températures with the opac ities ofAlexander &; Ferguson (1994) and the CEFF équa tion of State (Christensen-Dalsgaard & Dàppen 1992).Convection is included according to a Bohm-Vitense mixing-length (MLT) formalism (seeSamadi et al. 2006, for details), from which the convective velocity is com puted. Turbulent pressure is not included (but see discus sion in Sect.6).Apart from the eigenfunctions and the density strati fication, Eq. (1) involves both the convective velocity and the turbulent kinetic energy spectrum. To get some insight into the turbulent properties of the inner part of the solar convection zone, we chose to use results from (ASH) 3D numerical simulations. Such a choice was motivated by the uncertainties inhérent in the treatment of turbulence by the MLT. The MLT indeed only gives us an estimation of the convective flux but is not able to assess the contributions of ail scales involved in turbulent

Fig. 3 .

 3 Fig. 2. E(kh) computed as explained in Appendix. B, for three shell radii that sample the convection zone, as a function of the local horizontal wave number kh-

Figure 3

 3 Figure 3 présents the comparison between analytical time-correlation functions, computed following the set of Eqs. (7)-(ll), and Xk computed from the 3D numerical simulation. The latter is calculated as described in Appendix. B. The Lorentzian function represents the eddy-time corrélation function better than a Gaussian function in the ffequency range we are interested in (v G [20 /rHz; 110 /rHz]).The best fit is found using a sum of a Lorentzian func tion with A = 3 and a Gaussian with A = 1/3 as shown in the top panel of Fig.3. In the frequency range we are in terested in, i.e. at frequencies corresponding to the gravity modes (bottom panel of Fig.3) the fit reproduces the timecorrelation given by the 3-D numerical simulation. We also clearly see that the eddy-time corrélation function is very poorly represented by a Gaussian function, which only reproduces very low frequencies that do not significantly contribute to the excitation, then it fails and underestimates Xk by many order of magnitudes (see Sect. 4.2.2).

Fig. 4 .

 4 Fig. 4. The source function is plotted versus the spherical an gular degree (/), and the frequency for two radii: r = 0.95/?© (top panel) and r = 0.747?© (bottom panel). Bright (red) and dark (blue) tones indicate the high and low intensity of the source function, respectively. The color table is logarithmic.

2. 2 . 2 .Figure 4

 224 Figure 4 displays the source function (Sk, Eq. (1)) as a function of both the angular degree l involved in the summation Eq. (B.l) and the mode frequency. The function Sk evaluated at two levels, r = 0.957?© and r = 0.747?©, is shown in order to emphasize the dependence of Sk with the radius. Near the top of the convection zone, Sk is nonnegligible at high frequencies (u > 50/rHz) and on small scales. From top to bottom, the intensity of the source function decreases such that at the bottom, significant intensities exist only on large scales (small l values) and low

Fig. 5 .

 5 Fig.5. Rate (P) at which energy is supplied to the modes versus the frequency for modes with angular degree t = 1,2, and 3. The computation is performed as detailed in Sect. 2.1, using a Lorentzian eddy-time corrélation function.

Fig. 6 .Fig. 7 .

 67 Fig. 6. Top: Absolute value of mode compressibility for l = 1 modes versus the frequency, computed for three different layers in the convection zone. Bottom: Mode inertia versus fre quency for modes with angular degree f. = 1,2,3.

Fig. 9 .

 9 Fig. 9. Theoretical damping rates 77 of g modes of degree £ -1,2,3 as a function of the oscillation frequency in //Hz.

Fig. 8 .

 8 Fig. 8. Contributions to the work by the radial radiative flux variation (solid line), the transverse radiative flux vari ation (dotted line), and the time-dependent convection terms (dashed line), for the mode £ = 1, gio (top panel) and £ -1, g32 (bottom panel). Details are given in the text.

Figure 8

 8 Figure 8 allows us to investigate the respective rôles played by different terms in the damping of the mode. More precisely we consider two modes (£ = 1, gio, r' ~60//Hz and £ -1, g32 , v « 20//Hz) in the frequency interval of interest here and give in Fig. 8 the modulus of: -the contribution to the work by the radial part of the radiative flux divergence variations (solid line) JT" f5T\* dôLR^R dWFRr = K{[y)(14) where T is the température, Lr the radiative luminosity, R the solar radius, M the solar mass, x the normalized radius, cr the real part of the normalized frequency a = u>o/(GM/R3)1/2, and x the normalized

  ÔS are the perturbations of the density and entropy, respectively, p, T are the density and température, £ the eigenfunction, and the star dénotés the complex conjugate. Keeping only the radial contribution of the radiative flux in the energy équation (Eq. (A.l) ) because it is the dominant contribution, and neglecting the production of nuclear energy (e = 0from the dominance of the ra dial contribution of the radiative flux. In addition, in
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 12 Fig. 10. Top: Theoretical intrinsic surface velocities of gmodes of degree i = 1,2,3 as a function of the oscillation frequency in /xHz, computed as described in Sect. 4.1 using aLorentzian \k Bottom: Surface velocities of gravity modes of angular degree t = 1 and i = 2 computed using a Gaussian Xk and a Kolmogorov spectrum to reproduce the results ofKumar et al. (1996).

Figure 11

 11 Figure 11 displays the apparent velocities for modes £ = 1,2,3 and £ = m. For a given angular degree, the azimuthal order degree is chosen such that the apparent velocity is maximal. The velocities of the m = 0 modes are strongly attenuated by the visibility effects, while the m = £ modes are less sensitive to them. For £ = 1 modes, the amplitudes are divided by a factor of two with respect to the intrinsic velocities, while the £ = 2,3 mode velocities remain roughly the same. Consequently, our calculations show that both the £ = 1 and £ = 2 (m = £) are the most probable candidates for détection with amplitudes « 3 mm s-1.

5 A•

 5 Fig. 12. Simulated spectrum for an observation length of 30 years, in Case 1. The dashed line indicates the level of dé tection (see text and Eq. 25). The vertical lines indicate the frequencies of the simulated modes. Here, only one mode is above the détection level. Bottom: Average number and stan dard déviation (from the 100 realizations) of modes detected in simulations versus the length of observation for the three cases (see text). Above the hashed région (less than four peaks detected), one can consider the détection to be unambiguous.

  MLT convective velocity, u, are by far the most important contributions to mode amplitude uncer tainties because the mode surface velocities dépend on u3

  Belkacem et al.: Stochastic excitation of nonradial modes II. Are solar asymtotic gravity modes détectable?

  scheme that tends continuously towards Eq. (A.4) at the center. If not, the eigenfunctions diverge towards the cen ter; in the particular case of the solar g modes, this can lead to an overestimate of the damping rates by a factor of about 2.

Eqs

  

  is defined in Eq. (B.3), and (0o,^o) are the coordinates of the line-of-sight direction in the pulsation frame. The scalar product Eq. (C.7

2 ( 1 -

 21 Fig. 9.1 -Figure de gauche : Taux d'excitation des modes de degré angulaire £ -1 en fonction de la fréquence, pour m = 0, m --1 et m = 1. Figure de droite : Rapport Pm-i -Pm__i/Pm_o en fonction de la fréquence, pour £ -1.

  , j'ai étendu le formalisme développé au chapitre 4 afin de pouvoir étudier l'effet de la rotation. Pour cela j'ai considéré les contributions liées à la rotation dans l'équation d'onde inhomogène et on montre que celles-ci peuvent être négligées car elles sont proportionnelles au nombre de Mach à la puissance trois, alors que la contribution de Reynolds intervient à la puissance deux. La rotation a cependant un impact indirect sur les amplitudes au travers des fonctions propres intervenant dans le terme source de Reynolds. A l'aide d'une approche perturbative je montre alors que la rotation tend à dissymétriser les amplitudes entre les modes prograde et rétrograde, de façon négligeable pour les modes acoustiques et importante pour les modes de gravité. D'un point de vue observationnel, il semble très difficile de détecter de telles asymétries car ces dernières ne sont pas assez importantes, au-dessous des barres d'erreurs disponibles sur les données observationnelles aussi bien dans le Soleil que les étoiles telle que HD49933.

2 \<AFig. 11. 2 -

 22 Fig. 11.1 -Diagramme HR représentant de manière schématique les différentes régions d'insta bilité, tiré de (Christensen-Dalsgaard 2002).

  Fig. 11.3 -Figure de gauche : Taux d'excitation pour différents modèles d'étoiles de type ô Scuti en fonction de la fréquence. Les modèles de types A correspondent à Tejj = 6839 K et L -11.3 L©, ceux de type B sont les mêmes sauf que l'effet de la pression turbulente n'est pas incluse dans le modèle d'équilibre, enfin le modèle C correspond à Teff = 6650 K et L = 11.3 L©.

Figure

  Figure de droite : Diagramme HR dans lequel en retrouve les modèles présentés sur la figure de gauche, ainsi que les observations issuesde Rodriguez et al. (2000).

L

  'excitation dans ces étoiles est dominée par le terme source entropique dans les régions convectives superficielles. La détection de telles oscillations dans les étoiles de type <5-Scuti serait alors une occasion unique d'obtenir des contraintes sur ce terme source qui fait encore l'objet de débats. De plus, comme nous l'avons discuté dans le chapitre 7, la modélisation est très délicate et sujette à de nombreuses incertitudes liées au traitement des régions super-adiabatiques qui sont encore très mal modélisées.De telles étoiles n'ont toujours pas été mises en évidence, cette non détection est probablement liée à la difficulté de détecter des modes stables d'amplitude très inférieure à celle des modes instables. En effet, les premiers spectres obtenus par COROT pour des étoiles de type AE-Scuti montrent une "forêt" de pics dans une large gamme de fréquence (L.Lefèvre, 2008). Ainsi il n'est pas évident de distinguer les modes stables de ceux instables dans de telles étoiles. type SPB sont des étoiles massives, dont la masse est comprise entre 3 M© et 10 Mq qui sont sur la séquence principale. Ces étoiles puisent sur des modes de gravité de haut ordre radial tels que les modes que l'on trouve dans les étoiles de type 7 Doradus. Le mécanisme d'excitation n'est pas le même, en effet les modes des SPB sont excités par le /^-mécanisme dans la région associée à l'ionisation de fer (voir figure 11.2). Afin d'illustrer les amplitudes dans les étoiles de type SPB, j'ai choisi un modèle de 5 M© avec une métallicité de 0.02, une longueur de mélange a = 1 sur la séquence principale, à, Xc = 0.2.

Fig. 11. 4 -

 4 Fig. 11.4 -Figure de gauche : Taux d'excitation des modes de degré angulaire l = 1 en fonction de la fréquence pour un modèle de SPB de 5 M©. Figure de droite : Intégrant cumulé (à partir de la surface) normalisé, du taux d'excitation pour le mode de gravité n = 10. La région d'excitation se situe entre r = 0.05 F!© et r = 0.15 i?©, i.e. dans le coeur convectif.

5 -

 5 Fig. 11.5 -Amplitude relative (ÔL/L) en fonction de la fréquence pour des modes £ = 1 et pour trois valeurs du paramètre (3. La ligne verticale correspond à la limite entre modes stables et instables (au regard du /^-mécanisme). Les lignes horizontales correspondent au bruit de photon calculé pour une magnitude de cinq et dix.

Fig. 12. 1 -

 1 Fig. 12.1 -Figure de gauche : Taux d'excitation des modes acoustiques radiaux en fonction de la fréquence. Le mode à u pu 60/ljHz correspond au p\. Figure de droite : Fonction propres en fonction du rayon normalisé. Les traits verticaux correspondent aux délimitations de la région convective liée à l'ionisation du Fer.

Fig. 12. 2 -

 2 Fig. 12.2 -Largeur des modes acoustiques de degré angulaire t -0 en fonction de la fréquence. La largeur correspond à la largeur à mi hauteur des modes dans le spectre de Fourier, T, qui est lié aux taux d'amortissement (77) par la relation Y -rj/n.

Fig. 12. 3 -

 3 Fig. 12.3 -Amplitude relative de luminosité en fonction de la fréquence pour trois valeurs du paramètre (3. La détection apporterait une contrainte sur l'échelle d'injection au travers du paramètre (3.
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 4 Fig. 12.4 -Spectres de Fourier de la courbe de lumière obtenue par COROT pour l'étoile i/D180642 qui a été observée pendant 150 jours. La courbe en rouge représente un lissage sur 50 éléments de résolution. Trois figures du même spectre sont représentées avec des échelles diffé rentes, en haut on remarque principalement les modes instables dominants avec les harmoniques, en bas (à gauche) on aperçoit les structures larges entre les modes instables et en bas (à droite) on met en évidence la largeur de ces structures.

5 -

 5 Fig.12.5 -Spectres observés dans lesquels les pics de haute amplitude ont été retirés (voir texte). Les courbes en rouges représentent un lissage sur 50 éléments de résolution.

de type ( 3

 3 Cephei et SPB , HD 180642. Cette étoile présente aussi des structures larges dans le spectre de Fourier, dans un domaine de fréquence allant de 50 à 250/uHz. Les largeurs cor respondent à celles que l'on détermine théoriquement (cad T G [l;5]p,Hz) dans l'hypothèse de modes amortis et excités stochastiquement par la convection. De plus, ces structures se trouvent dans un domaine de fréquences qui correspond aux modes acoustiques que l'on recherche, c'est à dire au-dessus de la fréquence du mode instable dominant et en-dessous de la fréquence de coupure de cette étoile.

Fig. 13. 1 -

 1 Fig. 13.1 -Figure de gauche : profil de rotation solaire obtenu par inversion des splittings rotationels des modes acoustiques solaires. Crédit : (Kosovichev et al. 1997). Figure de droite : abondance de Lithium observée dans les étoiles de faible masse et abondances théoriques. Crédit : Charbonnel (2006).

  D(r) -Dc, Dc la rotation à la base de la zone convective, cu la fréquence dans le référentiel en corotation avec la base de la zone convective.Supposons alors que le profil de rotation initial est tel que D(r) diminue avec r, i.e. que le taux de rotation augmente vers le coeur de l'étoile. Dans ce cas de figure, au regard des équations Eq. (13.4) et Eq. (13.5) les ondes rétrogrades {g plus élevée que pour les ondes progrades) seront dissipées plus près de la zone convective que les ondes progrades. Le résultat de ce processus est alors résumé dans la figure 13.2 (cadre de gauche). Cette dernière permet de constater que le profil de rotation tend à devenir uniforme sous l'action des ondes internes qui, proche de la zone convective déposent du moment cinétique alors qu'elles en extraient dans les couches 13.2 on remarque la présence d'une discontinuité proche de la base de la zone convective. Afin de comprendre ce qui s'y déroule, concentrons-nous maintenant sur les ondes de haut degré angulaire (£). Ces ondes seront dissipées très près de la zone convective car comme le montre l'Eq. (13.4), raf3. Ces ondes sont responsables d'une oscillation à la base de la zone convective que l'on peut remarquer sur la figure 13.2 (cadre de droite).

Fig. 13. 2 -

 2 Fig. 13.2 -Figure de gauche : rotation différentielle solaire calculée à différents stades évolutifs en considérant le transport de moment cinétique par les ondes internes. Crédit : Talon et al. (2002). Figure de droite : évolution temporelle de l'oscillation de la couche de cisaillement en fonction du rayon. Crédit : Talon et al. (2002).

Finalement

  (14.20) revient à considérer le flux d'onde comme le flux d'énergie mécanique de la convection turbulente à un terme près qui est le rapport entre la fréquence de l'onde et la fréquence de Brunt-Vâisâla. On peut interpréter le terme lj/N comme un terme "d'impédance du flux", Le. si u < N une majeure partie du flux mécanique sera transmise aux ondes alors que dans le cas u << N, seulement une faible partie de l'énergie cinétique des tourbillons convectifs sera transmise dans la région radiative.
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 1 Fig. 15.1 -Figure de gauche : Instantanée d'une simulation numérique effectuée par Rogers & Glatzmaier (2005) où l'on peut voir les fluctuations de température et en particulier les fronts d'ondes dans la zone radiative. Figure de droite : Spectre de puissance en fonction de la fréquence du nombre d'onde horizontal.

Fig. 15. 2 -F

 2 Fig. 15.2 -Représentation à deux dimensions du terme de corrélation spatiale (£7™, Eq. (15.4)) en fonction du nombre azimutal (m) et du degré angulaire (ê).

Fig. 15. 3 -

 3 Fig. 15.3 -Flux d'énergie de l'onde par unité de fréquence, calculé à l'aide de l'Eq. (15.3), en fonction de la fréquence (figure de gauche) et du degré angulaire (figure de droite) pour les ondes de £ = 1 et m = 1.

Fig. 15. 5 -

 5 Fig. 15.5 -Evolution du profil de rotation solaire en fonction du rayon normalisé. Le profil initial est une marche avec un pas de 0.15 /iHz en rayon, et sont montrés les profils pour t = 105, 2 105, 4 • 105, 6 • 105 et 8 • 105years.

used a 2 -

 2 D, Cartesian, polytropic numerical simulation by adding a viscous boundary layer to absorb waves at the bottom of the sta ble radiative zone in order to avoid the appearance of normal modes of the simulation box. They found that the simulation efficiently produce internai gravity waves, and that mixing-length or convective plume parametric models underestimate the en ergy wave-flux. Later,Rogers & Glatzmaier (2005, 2006) used 2-D simulations in polar geometry of the Sun to study the wave energy spectrum generated by overshooting at the bottom of the convection zone. In contrast with previous studies cited above, they found a rather fiat energy spectrum, with a much lower en ergy input in low-frequency waves.However, these numerical simulations are not (yet) solarlike, thus the need to rely on theoretical estimâtes for wave génération. In this paper, we investigate the génération of in ternai waves by penetrative convection using a semi-analytical approach. This formulation is then used to estimate the wave en ergy flux generated at the bottom of the solar convective zone by plumes.The paper is organized as follows: Sect. 2 introduces the general formalism. Since the excited wave-flux dépends on the plume velocity field in the pénétration région, we detail it in Sect. 3. In Sect. 4, an expression for the wave-flux is derived and results of numerical computations are discussed in Sect. 5.

  ~rp J-oo where w(r, t) is the velocity field generated by the waves, po is the equilibrium density. E is the mean spécifie energy averaged over the typical plume life-time tp. Then, using the Parseval-2n/jp. Vv is the Fourier transform2 of the wave ve locity field. Consequently, we define the wave spécifie energy per frequency unit as: e(r, kh,a>) = cüp p0(r) |vv(r, w)|2

Fig. 1 .

 1 Fig. 1. Schematic représentation of a plume. It is generated at the top of the convection zone, then it falls through the convection zone down to

  text, we turn to geophysical flows and in particular, we consider deep convective plumes in the océan (see reviewMarshall & Schott 1999). There, plumes are primarily formed by downwelling convective flows. Even after convection has stopped, tur bulent plumes still exist during periods extending from several hours to days. The phase during which the plume is destroyed is called restratification. According toJones (1997), the restrat ification time-scale is imposed by the mechanism at the origin of plume destruction. The combined effects of the density gradi ent between the plume and the ambient stably stratified medium and rotation, give birth to a current around the plume. Such a thermal wind is then subject to a baroclinie instability creating geostrophic eddies that transport buoyancy laterally. This trans port then smoothes the buoyancy différence between the plume and its surrounding. Assuming that the destruction time-scale rp dépends on the interplay between buoyancy inside the plume and its flux at its latéral surface,Jones (1997) proposed a time scale given by(Appendix A.2) 

  ter. The lower limit of 04 is not so well constrained. Numerical simulations give us some due, even if they hâve low Reynolds numbers leading to the underestimation of the entrainment. In the uppermost part of the solar convection zone, 3-D numeri cal simulations (seeBelkacem et al. 2006, for details) give, in the quasi-adiabatic région, J\ % 0.3 while global 3-D numerical simulations(Miesch et al. 2008) give 04 % 0.1 at the bottom of the convection zone. 4. Plume-induced wave energy flux 4.1. Final expression of the wave flux The final expression of the wave energy flux per frequency unit is derived in Appendix B and is expressed as kTV are taken at the bottom of the pénétration région, and / = f |£|2pod3r.

Fig. 2 .

 2 Fig.2. Two dimensional représentation of the factor J''[n (Eq. (20)) as a fonction of the azimuthal order m and the angular degree L

Fig. 3 .

 3 Fig. 3. Top: Wave kinetic energy flux {T) normalized by the plumes kinetic energy at the bottom of the convection zone (JlpV^) versus frequency computed as described in Sect. 4.2, T is plolted for four l -1. Bottom: Wave kinetic energy flux ÇF) versus the angular degree {€) for a frequency v = 1 //Hz

4. 2 .

 2 Numerical computation of the wave flux at the bottom of the convection zone Our calculations were made using a calibrated solar model provided by J. Christensen-Dalsgaard 3. The maximal pénétration of plumes has been assumed to be 0.05 Hp,(Basu 1997) and the parameter/? is calculated to obtain this depth. Our reference nu merical calculation further assumes = 0.1 and vp = 0.4//Hz.At the bottom of the pénétration région, the Brunt-Vàisàlâ fre quency is Nc = 110/zHz, the density is po = 0.2 g.cm-3 and the pressure scale height, Hp = 0.08 RQ. Intégrais (19) are then computed using a simple rectangular approximation.

Figure 3

 3 Figure 3 présents the wave kinetic energy flux {T, Eq. (19)) versus frequency. The wave-energy flux decreases with fre quency, it is dominated by the interplay between the exponential behavior introduced in the plume velocity profile (see

Fig. 4 .Fig. 3 .

 43 Fig. 4. Wave kinetic energy flux (T) versus frequency computed as in Fig. 3. In solid line is plotted the plume-induced wave flux computed as previously explained and in dashed line is the turbulence-induced wave flux computed using Eq. (24) followingKumar et al. (1999).

Figure 3 1 .

 31 also shows the behavior of the wave energy flux (Eq. (19)) versus the angular degree (0-The higher the angular degree, the lower the energy flux, thus only low-£ angular de gree waves are efficiently excited by plumes. This behavior is the resuit of the interplay between several effects as detailed in Sect. 4.1. Both the effects of the wave inertia as well as the group velocity (through the term kjl) dominate over the contribution of the function J. From an energetic point of view, Fig3shows that only the low-frequency (v < 1 pHz) and low-angular-degree (C < 3 -4) waves are favored. Consequently, most of the energy is supplied to those waves i.e., with i -1, v ~0.4//Hz. Comparison with turbulence-induced waves Let us now turn to the comparison with the wave-energy flux derived byKumar et al. (1999). As mentioned in the introduction, turbulent convection can generate internai waves through the tur bulent Reynolds stresses. In Fig.4are plotted both contributions, due to the plumes and turbulent convection. It turns out that the plume-induced wave flux is dominant over the turbulenceinduced one at low frequencies (v < 1.4//Hz), while negligible for higher frequencies.We first remind the expression for the turbulence-induced wave flux derived byKumar et al. (1999) and the underlying assumptions. The energy flux per unit frequency is Tgmk & are the radial and horizontal displacement wavefunctions normalized to the energy flux in waves (seeKumar et al. 1999, for details), v^is the convective velocity, L the radial size of an energy bearing turbulent eddy, Tl ~L/\l the characteristic convective time, and /zw is the radial size of the largest eddy at depth r with characteristic frequency of oj or greater (h» = L min{ 1, (2wtl)~i }).

Fig. 5 .

 5 Fig. 5. Top:Wave-energy flux (T) versus frequency (cj) computed as explained in Sect. 4.2. Solid line corresponds to the computation of the wave flux Vb -540m.s-1, dots-dashed line is the same Vb = 486m.s-1, and dashed line with Vb = 432m.s-1. Bottom: The same as the top panel, except that the flux is computed for two values of the filling fac tor, namely 3K = 0.1 and = 0.5.

Fig. 6 .

 6 Fig. 6. Wave-energy flux (T) versus frequency (cj) computed as ex plained in Sect. 4.2 for thrce values of the plume life-time.

  cü + môQ, ôQ. =0. c -Q(r), Qc the rotational velocity of the convection zone, Q the local rotational velocity, K the thermal diffusivity, and NT the buoyancy frequency associated to the molecular gradient. Locally, the total angular momentum luminosity -Cj(r) is the sum of the contribution of ail waves ZAr) = 4nr1YJ'r(r,k") (26) (M

6. 1 .

 1 Short time-scale dynamics On the short time-scale, Talon et al. (2002) described how, using the angular momentum fluxes predicted by the Goldreich et al. (1994); Kumar et al. (1999) model, there may exist a rapid oscil lation in the angular velocity just below the surface convection

Fig. 8 .

 8 Fig. 8. Evolution of the rotation profile under the action of IGWs and shear turbulence. The initial rotation profile is a simple step of 0.15//Hz over 1% in radius. Rotation profiles at time t = 105,2-105, 4-105, 6-105 and 8 105years are displayed.

Fig

  Fig.A.l. Schematic représentation of the plume in the pénétration ré gion that is subject to a geostrophic wind (rim curreni). This current being unstable, the geostrophic eddies induce a latéral buoyancy flux that resuit in restratification of the océan.

1 . 2 .

 12 'K(ru)^does not dépend on frequency.Then, using the Residue theorem, the intégral in Eq.(B. 18) vanishes and one is left with w(r,<o) = (B. 19) Computation of \H{co)|2We then take only the radial component of the plume velocity into account following Eq. (13). Then from Eq. (BFinal expression for the mean spécifie wave energy e Using Eq.(B.21) into Eq.(B.20) and performing the change of variables xo = (r + r')/2 x\ -r-r (B.22) where xo and xj are slow and fast variables, respectively. that the horizontal dependencies coming from the eigenfunction and velocity field occur on the large scales (xq). Using Eq. (B.4), the amplitude équation becomes we assumed that the plume velocity, the density po and the buoyancy frequency N ail vary on the slow coordinate xo. Averaging over ail possible phases (0) has been performed, since the progressive waves we are interested in are defined with an arbitrary phase. B.4. Final expression for the wave energy flux Finally, we now consider Np non-interacting plumes. Introducing Eq. (B.25) and Eq.(3) into Eq. (2), one finally obtains the energy wave flux at the bottom of the dans ce manuscrit ont porté sur l'étude des amplitudes des modes de type solaire qui sont excités et amortis par la convection turbulente. Dans les deux dernières décades, les efforts en héliosismologie se sont principalement focalisés sur l'information fournie par les fréquences des modes, mais depuis peu le champ d'investigation sur les amplitudes, à savoir les mécanismes d'excitation et d'amortissement, a connu un développement rapide. Il m'incombait de valider la modélisation des taux d'excitation des modes solaires pour pou voir ensuite étudier l'excitation des modes et exploiter les informations sismiques associées dans d'autres étoiles que le Soleil. En effet, la mission spatiale COROT permet d'obtenir des mesures très précises des amplitudes et des largeurs des modes, pour différentes étoiles, ce dont on ne disposait pas dans le passé. La validation de la modélisation permet maintenant d'envisager une approche sismique, c'est à dire que les amplitudes deviennent maintenant un outil permettant de sonder les régions convectives des étoiles. En effet, au début de cette thèse il y avait des désaccords entre la modélisation et les données observationnelles pour le Soleil qui restaient à comprendre. La majeure partie de ces incertitudes a été levée, plus précisément les amplitudes théoriques pour le Soleil sont en accord avec les observations dans la limite des barres d'erreur actuelles et aller plus loin pour cette étoile nécessitera d'améliorer significativement la précision et/ou l'analyse des données.

  d'exciter des modes par un mécanisme similaire à celui qui excite les modes solaires. Je me suis intéressé aux pulsateurs classiques, en particulier les étoiles de type SPB et de type j3 Cephei.Si les amplitudes théoriques obtenues pour la première classe d'étoiles sont très proches du seuil de détection, les modes stables des (5 Cephei semblent beaucoup plus prometteurs. En effet, je montre que la région convective liée à l'ionisation du fer peut exciter très efficacement les modes acoustiques jusqu'à quelques dizaines de ppm (les amplitudes des modes solaires sont de quelques ppm). Reste alors à chercher de tels modes dans les cibles COROT et de les identifier avec certitude, ce qui est un challenge dans la mesure ou le domaine de fréquence des modes de type solaire est pollué par l'effet combiné des modes instables de très grande amplitude et les interruptions. Une candidate, LJD180642 a été identifiée. Le spectre de cette étoiles montre des modes instables de type SPB et (5 Cephei. Le spectre montre aussi des structures identifiées comme étant probablement des modes stables, ce qui reste à confirmer par des simulations numériques.

  Fig. 16.1 -Figure de gauche : Taux d'amortissement des modes acoustiques solaires en fonction de la fréquence. La courbe en trait plein correspond à la modélisation de Houdek et al.(1999) et les croix correspondent aux observations BISON(Chaplin et al. 2005) . Figurededroite : Taux d'amortissements obtenus par[START_REF] Dupret | SOHO 14 Helio-and Asteroseismology : Towards a Golden Future[END_REF] en fonction de la fréquence.Crédit :Houdek (2006) 

  Il est clair que le caractère turbulent rend le milieu beaucoup plus complexe et riche que la MLT ne peut le décrire. Le nombre de Rayleigh Le nombre de Rayleigh est une mesure du caractère instable d'un milieu. Il compare le forçage thermique et les forces dissipatives du mouvement du fluide. Il est défini comme (Niemela et al.

1.1.3 Quelques caractéristiques de la convection stellaire D'un point de vue dynamique et non plus seulement énergétique on comprend aisément que la vision précédente n'est plus pertinente et en particulier lorsque la convection est turbulente. Afin de mettre en évidence cette limitation, il est assez intéressant de comparer la représentation schématique que l'on peut se faire de la convection (figure. 1.1) avec une simulation numérique (figure. 1.2).

  On dispose en effet d'un moyen unique d'accéder aux propriétés dynamiques de la convection turbulente solaire et stellaire. Il s'agit dans un deuxième temps d'aller au-delà du cas solaire et d'étudier une large variété d'étoiles et donc de conditions physiques différentes. Pour cela, la mission spatiale COROT qui fût lancée avec succès le 21 décembre 2006 est un atout majeur. La précision de cet instrument est de l'ordre du ppm ce qui revient à considérer que l'on est capable avec COROT de rechercher des effets du même ordre que dans le Soleil6.

  On part des équations régissant la dynamique du fluide qui peuvent s'obtenir de plusieurs façons. La plus traditionnelle consiste en une approche macroscopique qui établit le bilan des forces s'exerçant sur un élément de volume (voir par exemple Rieutord 1997). Une seconde voie est possible, on peut la nommer approche hamiltonnienne. En effet, il s'agit d'établir les équations en partant d'un point de vue cinétique. Dans la pratique, on calcule les moments successifs de l'équation de Boltzmann sans second membre, soit l'équation de Vlasov (voir Kupka 2008,pour plus de détails). Ces deux méthodes sont équivalentes, néanmoins la seconde fait explicitement le lien entre la physique statistique et la mécanique des fluides proposant alors une vision plus complète du problème.

	2.2	Fermeture des équations
	2.2.1	Les équations du problème
		1. Ce type de simulation consiste

  Après avoir développé un modèle de fermeture adapté au cas solaire, qui prend en compte l'in fluence des panaches, j'appliquerai ce modèle au formalisme d'excitation des modes acoustiques radiaux afin d'en étudier l'influence.

	Chapitre 3
	Modèle de fermeture avec panaches
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	2.2.5	Fermeture au troisième ordre et au-delà
	Les moments d'ordre trois étant responsable du transport non-local, il est nécessaire de les
	modéliser correctement. Ainsi, on aura à résoudre des équations de la forme
				dt < UiUjUk >-	dm < UiUiUjUk > + ...	(2.25)
	Nous sommes alors conduit à établir un modèle de fermeture sur les moments d'ordre 4. C'est
	ce qui nous intéressera dans les chapitres suivants.
	2.3	Problématique

Dans cette partie, je chercherai à répondre à plusieurs questions dont la première est tout simplement comment obtenir un modèle de fermeture sur les moments d'ordre quatre qui soit adapté au cas stellaire? Un modèle de fermeture consiste à exprimer les moments d'ordre n en fonction de ceux d'ordre inférieur (n -1). Nous verrons dans la suite que ceux qui sont classiquement utilisés ne sont pas satisfaisants. En particulier, je montrerai que les panaches jouent un rôle important dans ces moments et qu'il est nécessaire de les prendre en compte.

  Modéliser les panaches n'est pas une chose facile, en effet il faut d'abord comprendre ce qui gouverne la dynamique de ces structures cohérentes. Nous avons vu (chapitre 1) qu'il se forme, en haut de la zone convective, des structures qui sont plus denses et froides que l'on appelle panaches et qui présentent la particularité d'être plus turbulentes que le flot montant (e.g, Cattaneo et al. Le panache est considéré comme étant axisymétrique, et on suppose que l'écoulement est autosimilaire. Cela signifie que le profil horizontal de la vitesse verticale est similaire, autrement dit si on connaît le profil en z = z\, on le connaît en z = Z2 > z\ via une homothétie. Il s'agit d'une hypothèse forte (Bonin & Rieutord 1996), car elle détermine la dynamique. En effet, il est

	3.3.4	Modèle de panache
	1991).	
	Quelques éléments du modèle de Rieutord &; Zahn (1995)

possible de montrer que cette hypothèse impose que

[START_REF] Rieutord | Une introduction la dynamique des fluides (Masson) Rieutord[END_REF]

) :

1. le rayon du panache croît linéairement avec la profondeur. 2. la solution sur la vitesse verticale est une loi de puissance, lorsque l'écoulement est contrôlé par l'entrainement. Pour aller plus loin, il est nécessaire d'imposer un profil sur la vitesse verticale, les fluctuations de densité et d'enthalpie. RZ95 ont choisi un profil gaussien, soit vz

  ).

	GH2002 hence proposed:	
	<u/4> = 3(1 + -sd (w' 2)2	
	<0' 4> = 3 |l + isjj (ff2)2	(13)
	<i»'V> = 3	+	(w'2)(w'e')
	(w'ff3) =3 (l + -53j	(O' 2) (w'0').
	Corresponding expressions for other FOMs ((w,20/2> and those
	including horizontal velocities) can be found in Gryanik et al.
	(2005, hereafter GH2005).	
	2.2. Validation with a 3D numerical simulation
	of the solar externat layers	
	We consider the uppermost part of the solar turbulent convec
	tion. Turbulent plumes are known to exist within this région
	(Cattaneo et al. 1991; Stein & Nordlund 1998). Here, we test
	the validity of the TFM using 3D numerical simulations of these
	upper solar layers. The geometry is plane-parallel with a physi-
	cal size of 6 Mm x 6 Mm x 3 Mm. The upper boundary corre
	sponds to a convectively stable atmosphère and the lower one to
	a quasi-adiabatic convection zone. The 3D simulations used in
	this work were obtained with Stein & Nordlund's 3D numerical

Table 1 .

 1 Solar values of plume model parameters (from RZ95).

	A)	~0.1
	Po	190 kg m~3
	Ad	3.9 x 1026 W
	Zo	x 108 m
	go	270 m s'2

  Quelle est la validité du formalisme développé pour les modes radiaux, peut-on se contenter de celui-ci, dans quelle gamme de fréquence et de nombre d'onde (de degré angulaire t) ?2. Le mécanisme en jeu dans l'excitation de ces modes est-il le même que pour les modes

	6.1.2	Problématique
	La problématique est triple
	1. radiaux ?
	3. Enfin, il s'agit de développer un formalisme adapté aux modes non-radiaux afin de pouvoir
		à terme contraindre à la fois les propriétés radiale et horizontale de la turbulence.
	6.2	Les modes de gravité solaire

Contrairement aux modes acoustiques, l'enjeu n'est pas encore de reproduire les observations mais plus simplement d'estimer leurs amplitudes, la détection de ces modes restant à l'heure actuelle controversée.

  La cavité de ces modes se situant dans la région radiative du Soleil, ils permettraient d'obtenir des contraintes sur les couches les plus internes du soleil ainsi que le profil de rotation dans le coeur qui ne peut être contraint avec les modes acoustiques. Comme le montre la figure 6.3, les modes acoustiques ont permis d'obtenir le profil de rotation dans tout le soleil à l'exception des régions les plus profondes. La détection de modes g permettrait alors de combler ces lacunes.Les modes de gravité solaires ne sont à l'heure actuelle pas encore détectés. Plus précisément, il n'y a pas de consensus sur leur détection. La détermination théorique de leurs amplitudes est importante car elles nous renseignent sur la durée d'observation nécessaire à atteindre pour leur détection. La cavité de tels modes se trouve dans la région radiative du soleil. Dans la région convective ils sont évanescents, c'est à dire que leur amplitude décroît exponentiellement à mesure que l'on s'éloigne de l'interface convective/radiative pour aller vers les régions convectives les plus externes. Ainsi, l'amplitude de tels modes à la surface du soleil, où l'on détecte les modes, est très atténuée ce qui rend la détection difficile malgré plus de dix ans d'observations avec SOHO.

	6.2.1	Pourquoi chercher à détecter les modes g ?

6.2.2

Excitation stochastique des modes de gravité Comme les modes acoustiques, les modes de gravité solaires peuvent être excités dans les régions convectives par les tourbillons turbulents.

  mHz). Donc la condition suivante est toujours remplie

	IÇrl » IÇfcl ,	(7.17)
	Les Eqs. (7.3) et (7.12) mettent en jeu des coefficients qui dépendent du degré angulaire, il est
	alors nécessaire d'introduire le rapport			
	L2^-^L2a~2.	(7.18)
	S r			
	et en utilisant la relation Eq. (7.16)			
	-/(-:) -(/DrV2 + 2 + (l2/<72 -2)(/r, -1)]	
	-cr2/(/ri) » 1.	
	est			
	dr 7 dr	~<7	-2	(7.21)

L'équation

(7.18) 

est alors de l'ordre de l'unité pour t ~o.

Il s'agit maintenant de se préoccuper des termes dans lesquels interviennent les dérivées des fonctions propres. Pour cela introduisons le nombre complexe / qui peut être compris comme une mesure du degré de non-adiabaticité d'un mode. Il est défini comme àp/p TiSp/p'

(7.19) 

donc pour / = 1 le mode est adiabatique. En négligeant le terme (p/p)d(ôp/p)/dr dans la composante radiale de l'équation de mouvement, on obtient près de la surface

(Unno et al. 1989

)

(7.20) 

Ce qui démontre que pour les modes acoustiques solaires |d£r/dr| |£r/r| dans la région d'ex citation, c'est à dire proche de la surface pour les modes acoustiques

(cr 6 [10; 50]

).

De la même façon que l'Eq. (

7

.16), il est possible de montrer numériquement que le rapport de la dérivée de la composante horizontale sur la dérivée de la composante radiale du déplacement

  Les termes intervenants dans Sa sont toujours négligeables devant les autres, en raison de l'in égalité |d£r/dr| ^>| £r/r|. A fréquence donnée, on a d'après les relations précédentes (Eq.(7.16),

	Eq. (7.20) et Eq. (7.21))	
			Si »S3 » S4	» S2 pour £ C cr	(7.26)
			Si >S,3 » S4	~S2 pour £ « g	(7.27)
			Si ~S3 « s2	S4 pour £ ~<j2	(7.28)
			S2 » S3 » Si	S4 pour £	g2 .	(7.29)
	Les contributions horizontales intervenant dans 52> S3 commencent à devenir dominantes pour
	£	cr2, c'est à dire dans le cas solaire £	100 -2500 (u E [10; 50]).
	7.2.3	Dépendance en £ des termes sources
		Contribution de Reynolds :	
		Commençons par regarder les contributions non-radiales dominantes pour i E [0; 500]. Le cas
	des valeurs supérieures de £ seront discutées dans la section 7.3.1.

Considérons deux limites, à savoir £ «C cr2 et £ ae cr2. Près de la fréquence du mode fon damental (mode /) pour £ > 50 et proche du mode g\ pour £ < 50, la condition £ ~cr2 est

  Notons que la figure 8.4.1 montre les modes t -m qui présentent le plus d'amplitude. Si l'on compare les vitesses que l'on a obtenues aux observations GOLF, il apparaît que les amplitudes théoriques sont très proches de la limite observationnelle vers 100 ^uHz (figure 8.8). La plus importante provient du choix de prendre la vitesse convective donnée par la théorie de la longueur de mélange. En effet, les taux d'excitation sont proportionnels à u3, avec u la vitesse convective. Ainsi, la modélisation est très sensible aux valeurs de la vitesse.Le choix a été fait de ne pas utiliser les vitesses de la simulation numérique car les conditions aux limites ont une influence non négligeable. En effet, la vitesse convective (la composante radiale) est imposée nulle à la surface dans la simulation et ceci a une influence dans la mesure où elle impose une décroissance de la vitesse près de la surface, ce qui n'est pas réaliste. 'ai abordé le problème de la détermination des amplitudes des modes de gravité dans le Soleil. Ces modes n'ayant pas encore été détectés de manière indiscutable, la problématique est quelque peu différente de celle des modes acoustiques. Il s'agit d'utiliser le formalisme développé dans le chapitre précédent afin d'évaluer l'amplitude de ces modes à la surface du Soleil.Afin d'obtenir des contraintes sur les régions convectives les plus internes du soleil, nous nous sommes servis d'une simulation numérique issue du code ASH(Miesch et al. 2008). Il fût aussi utilisé un formalisme non-radial afin d'évaluer les amortissements de ces modes(Grigahcène et al. 2005). J'ai alors obtenu les amplitudes de ces modes, qui en terme de vitesses de surface s'élèvent au maximum à 3 mm s-1. Ce résultat a été obtenu en prenant en compte les effets géométriques et d'assombrissement centre-bords, ce qui permet une comparaison aux observations GOLF. A l'aide de simulations du spectre de puissance, il fût finalement possible de conclure que les amplitudes obtenues théoriquement sont très proches de la limite observationnelle. De plus, nous avons pu expliquer les désaccords entre les modélisations précédentes et en particulier, nous avons montré que le désaccord entre notre formalisme et celui deKumar et al. (1996) provient de la fonction de corrélation temporelle, qu'ils choisissent Gaussienne, alors que la simulation numérique nous

	8.5	Conclusions et perspectives
	Incertitudes liées au calcul théorique
	Néanmoins, la comparaison entre les vitesses théoriques et les données observationnelles n'est
	pas aussi simple. D'une part, les amplitudes que nous obtenons sont sujettes à des incertitudes
	dans la modélisation. Trois cas sont ainsi étudiés, l'amplitude est choisie comme étant celle que nous prédisons
	dans la figure 8.8, A = Ao, A = 1.5 Ao et A = 2 Aq afin de rendre compte de l'incertitude de la
	modélisation. On considère qu'il y a détection lorsque au moins quatre pics apparaissent au-dessus
	du seuil de détection. Les simulations ont été effectuées pour plusieurs durées d'observations allant
	de 10 à 30 ans, avec 100 réalisations pour chacun des cas traités. Le résultat est présenté sur la
	figure 8.8 (figure inférieure).
	On peut alors conclure que le cas dans lequel nous avons multiplié les amplitudes par deux
	est au-dessus de la limite de détection pour 10 ans d'observations. Ainsi cela permet d'exclure
	que les amplitudes des modes g soient égales à deux fois ce que l'on a déterminé, car ces modes
	auraient déjà été détectés. Cela fournit une contrainte en particulier sur la valeur de la vitesse
	convective. Si les amplitudes sont 1.5 celles que l'on détermine, on devrait détecter les modes

Afin d'obtenir une estimation de l'incertitude liée à u, on a estimé la différence entre vitesse issue de la MLT et celle issue de la simulation numérique (où elle est insensible aux conditions aux limites) à près de 50%. Ainsi, il a été possible d'estimer que l'incertitude liée à la vitesse est de l'ordre d'un facteur deux. D'autres incertitudes ont également été évaluées, et il s'avère que celle sur la vitesse est la plus importante. Dès lors, il est intéressant d'évaluer nos prédictions théoriques en tenant compte de cette "barre d'erreur". 8.4.2 Spectre GOLF simulé et seuil de détection Il s'agit maintenant de comparer les résultats théoriques que nous obtenons avec les observa tions. Parmi les observations actuellement disponibles, celles de GOLF sont aujourd'hui les plus précises avec près de 12 ans d'observations continues. Des simulations ont été effectuées par F. Baudin, dans lesquelles des oscillations représentées par des sinusoïdes, avec les amplitudes obtenues théoriquement sont ajoutées au bruit généré représentatif du bruit de GOLF (voir les détails dans l'article). Le choix de sinusoïdes tient au fait que les amortissements des modes g asymptotiques sont faibles (de l'ordre de 10~4 nHz) et donc non-résolues (la résolution de GOLF est de l'ordre de 1 nHz). Donc une sinusoïde apparaîtra comme un dirac dans le spectre de Fourier. sur une durée d'observation de 15 à 20 ans. L'hypothèse A = Ao montre que même après 30 ans d'observations, il est impossible de détecter les modes de gravité individuellement. Ajoutons que nous avons recherché des modes et non un ensemble de modes ou bien comme Garcia et al. (2007) une périodicité dans le spectre, ces méthodes permettant de diminuer le seuil de détection. Ja conduit à choisir une Lorentzienne.

  On pourrait alors en conclure que les panaches peuvent aisément exciter les modes de gravité. 'après notre petit calcul être générées efficacement. D'ailleurs ce n'est pas un hasard si ce sont de telles ondes qui transportent le moment angulaire dans le soleil comme l'ont montréCharbonnel & Talon (2005a), mais nous reviendrons en détail sur ce problème dans le chapitre 14.Il s'agit maintenant d'aborder le problème des modes de gravité de haute fréquence. En effet, je me suis limité dans ce chapitre à l'étude des modes de gravité asymptotiques. La question qui se pose naturellement est pourquoi ne pas considérer aussi les modes de gravité de plus haute fréquence, d'autant plus que le bruit de granulation est plus faible à ces fréquences ? La détermination des taux d'amortissement de ces modes de plus haute fréquence est peu robuste dans la mesure où ils dépendent du couplage convection-oscillation. Or ce couplage est toujours très mal modélisé dans le Soleil, aussi bien pour ces modes g que pour les modes acoustiques. Pour ces derniers des modélisations ont été développées qui se fondent sur la longueur de mélange, mais elles dépendent de plusieurs paramètres qui sont ajustées aux observations (voir la revuede Houdek 2006). Donc déterminer les amplitudes des modes de gravité de haute

	Afin d'y répondre, il suffit de se souvenir de la relation (Eq. (4.20))	
	Mv2 = -	(8.17)
	avec A4 le mode masse défini au chapitre précédent comme le rapport de l'inertie sur le dépla 8.5.2 Les modes de gravité de haute fréquence
	cement au carré à la photosphère, P la puissance injectée dans les modes et ij le taux d'amortis
	sement.	
	Prenons alors un mode de gravité asymptotique, v ae 30 /iHz, la figure 8.5 permet de déduire
	que pour t = 1, r/ ae 5.10-12Hz. De plus, pour un tel mode on vérifie que A4 = 1034 g. Il vient
	alors que pour une vitesse de 5 mm s-1 la puissance injectée dans ce mode doit être de P ae 1022
	ergs-1. L'énergie cinétique des panaches est un réservoir largement suffisant pour exciter un tel
	mode car	
	-« 10-9	(8.18)
	L/p	
	amplitude de quelques millimètres doit être de	
	e = P x e(Wc)	(8.19)
	= 103 Lq	
	Il semble donc impossible d'exciter un mode dont la fréquence est seulement d'un facteur trente
	celle du panache.	
	alors que En résumé : Je n'exclus pas que la pénétration convective puisse exciter les modes de gravité,
	mais j'attire l'attention sur le fait que la corrélation temporelle entre l'oscillation et le panache
	Lp ~0.007 Lq doit être prise en compte car elle a une influence majeure, la fonction de corrélation temporelle (8.16)
	déterminant l'essentiel de l'efficacité de l'excitation des modes.	

Or on peut se poser la question suivante : quelle est la puissance nécessaire que l'on doit injecter dans les modes de gravité afin d'obtenir des vitesses à la surface de l'étoile de l'ordre du millimètre (qui est la limite observationnelle) ?

Néanmoins, ce n'est pas aussi simple.

Un des points essentiels dont

Andersen (1996) 

ne tient pas compte est qu'il faut considérer la cohérence temporelle entre les panaches et les modes. Car il est évident que les panaches n'exciteront pas de la même façon un mode à 10 /iHz à 100 /rHz. Se pose alors la question : Si l'on tient compte de la corrélation temporelle entre l'oscillation et la pénétration convective, l'excitation reste-t-elle aussi efficace ? Par défaut supposons alors que la fonction de cohérence temporelle, l'équivalent de la fonction Xk introduite au chapitre 4 pour l'excitation par la turbulence, est une fonction exponentielle dont le temps caractéristique est celui du panache1. Cette hypothèse n'est pas absurde car les modes qui seront les plus excités seront ceux dont la période est très proche du temps d'évolution du panache. Ce temps caractéristique choisissons-le comme étant le temps de retournement des tourbillons à la base de la zone convective (cette hypothèse est très proche du modèle de Garcia Lopez & Spruit 1991, qui sera détaillé dans le chapitre 14). Dès lors la fréquence caractéristique associée est de vc « 1 ^Hz et la puissance injectée (e) dans un mode à 30 /iHz pour qu'il ait une Notons également que l'Eq. (8.19) permet de se rendre compte rapidement que les ondes (progressives cette fois et non des modes) ayant des fréquences de l'ordre de 1 pHz pourront 1Le choix de cette fonction est arbitraire, néanmoins elle est un compromis entre une Gaussienne qui décroît très fortement avec la fréquence et une Lorentzienne qui décroît lentement dfréquence nécessite d'obtenir ces paramètres et cela revient en général à garder les mêmes que pour les modes acoustiques, donc à extrapoler les résultats obtenus pour les modes p au modes g, ce qui n'est pas satisfaisant.

  Néanmoins, le processus sera efficace seulement si le temps de relaxation thermique rth est du même ordre de grandeur ou plus long que la période de l'oscillation car le milieu ne doit pas pouvoir s'ajuster thermiquement instantanément.De plus, il est nécessaire que l'oscillation ne varie que lentement avec r dans la région d'exci tation. En effet, l'Eq. (8.11) indique que si ce n'est pas le cas le premier terme sera important et aura tendance à stabiliser le mode. Sur la figure 11.2, on constate que la région de forçage pour une étoile de type J-Scuti est celle de l'He II, c'est dans cette région que la dérivée du travail est positive. De plus, on constate également que le mode p\ est excité car sa période est égale au temps thermique, au contraire du mode p7 dont la période est inférieure au temps thermique dans la région de ionisation de l'hélium.

  variations liées aux taux d'excitation. Le mode p\ n'est pas représenté car ce mode est instable pour ce modèle. En terme de variation relative de luminosité on trouve des amplitudes qui sont, suivant la valeur de l'échelle caractéristique considérée, de l'ordre de la dizaine de ppm ce qui est au-dessus du seuil de détection de COROT.

	L'excitation est efficace mais cela ne suffit pas, car les amplitudes résultent d'un compromis entre
	les taux d'excitation et les amortissements. Il est donc nécessaire de s'intéresser à ces derniers
	12.1.2	Taux d'amortissement			
	Les taux d'amortissements sont présentés sur la figure 12.2. Les largeurs sont de quelques
	micro Hertz pour les modes de haute fréquence et plus faibles pour les modes proches du domaine
	d'instabilité. Réécrivons alors l'expression de la variation de luminosité
				(	1	dôT 1 o& | oÔT		ÔP	d&\	n99x
			L	\{dT/dr) dr	r	T	ac	p	dr )	[	}
	Dans la région d'instabilité, le terme ^domine alors que dans la région des modes stables, le
	terme (dT/dr\	est dominant. Les faibles taux d'amortissement près de uj = 60 //Hz s'expliquent
	alors par le compromis entre les deux termes. On remarque également une variation qui comme
	pour les taux d'excitation est liée aux fonctions propres.	
	12.1.3	Amplitudes						
	Le résultat du calcul des amplitudes des modes est présenté sur la figure 12.3, sur laquelle
	on retrouve les							

  2.1Le spectre COROT La figure 12.4 présente le spectre de Fourier de la courbe de lumière obtenue par COROT pour cette étoile qui montre un mode instable de très grande amplitude vers v ^60 /iHz, avec ces deux premières harmoniques (y ae 120 pHz et u ~190 p,Hz). A très basses fréquences des pics semblent très probablement correspondre à des oscillations de type S PB, cela reste à confirmer (Analyse Aerts, Briquet et coll.). Cette étoile serait alors une étoile hybride présentant des modes instables de type (3 Cephei ainsi que des modes de gravité de haut degré de type SP B. De telles étoiles ont déjà été observées, par exemple parChapellier et al. (2006). Pour le modèle de 10 M© que l'on a présenté dans la section précédente, on trouve une fréquence de coupure, définie comme le rapport vc ~cs/Hp (cs la vitesse du son et Hp l'échelle de hauteur), de u ae 280/iHz. Or les structures larges que l'on aperçoit dans le spectre observé disparaissent pour y > 250 pHz. Les modes candidats se trouvent dans le bon domaine de fréquence. Notons que le modèle que j'ai utilisé n'est pas optimisé pour cette étoile (travail en cours) et que la fréquence de coupure variera d'un modèle à l'autre.

	Les modes les plus susceptibles d'être excités stochastiquement sont de plus haute fréquence.
	Ce sont des modes acoustiques dans le domaine v G [60; 250] /iHz. Dans ce domaine de fréquence,
	la figure 12.4 montre des pics fins, qui représentent les harmoniques, les combinaisons des modes
	instables ainsi que des artefacts tels que la période orbitale mais aussi des structures plus larges
	qui sont résolues (c'est à dire que la largeur est supérieure à la résolution fréquentielle) que l'on
	peut interpréter comme des modes stables excités stochastiquement.
	Plusieurs indices semble corroborer cette interprétation
	1. La valeur que l'on trouve n'est qu'une indication.
	2. La largeur de chacune des structures est de quelques micro Hertz, T ae 3 -5 pHz ce qui est
	en accord avec les calculs non-adiabatiques qui donne des largeurs du même ordre pour le
	modèle à 10 M©.
	3. Enfin, il est difficile de donner des valeurs à ce stade mais les amplitudes sur ce spectre
	semblent être de l'ordre de la centaine de ppm vers 100 pHz et de quelques dizaines vers
	200 pHz. Cette valeur est supérieure à ce que l'on a présenté dans la figure 12.3, mais
	relativement proche au regard des incertitudes liées à la modélisation des régions convectives
	et ajoutons encore une fois que le modèle utilisé dans la section précédente n'est pas
	optimisé et très sensible au paramètre j3.
	Ces indices tendent à montrer que les structures que l'on a mis en évidence ont les propriétés
	des modes acoustiques stochastiquement excités. Un travail est en cours pour vérifier qu'elles
	ne sont pas un effet induit par les modes instables de basse fréquence qui ont des amplitudes
	beaucoup plus importantes et qui par un effet de fenêtre (cad les interruptions dans la courbe
	de lumière) peuvent créer des structures à plus haute fréquence. Ainsi, il convient de "nettoyer"
	le spectre, c'est à dire de s'affranchir des effets des modes instables qui avec l'effet combiné des
	interruptions dans la courbe de lumière pourrait créer de telles structures.
	12.2.2	Spectre nettoyé des modes instables
	Les modes instables ainsi que les pics de plus hautes amplitudes ont été enlevés du spectre

  5 Cephei Les premières analyses montrent que ces structures ne sont pas dues à l'effet combiné des modes instables et des interruptions dans la courbe de lumière. En effet, nous avons constaté qu'en retirant de façon appropriée les modes d'amplitude élevée (les modes instables) dans le spectre les structures ne sont pas affectées.Dans cette partie je m'intéresserai au problème du transport de moment cinétique dans les étoiles de faible masse et en particulier dans le Soleil. J'expliquerai comment ce transport est étroitement lié à la génération d'ondes internes de gravité émises à la base de la zone convective et j'aborderai le problème de la modélisation de la génération de ces ondes.Notons que dans ce qui suit je discuterai d'ondes et non plus de modes. En effet, par ondes je désigne des ondes progressives alors que précédemment on s'intéressait aux ondes stationnaires.

	Tous ces indices tendent à montrer que ce sont des modes stochastiquement excités, mais
	cette détection reste à confirmer avec en particulier des simulations numériques. En effet, l'ordre
	radial des modes étant faible une auto-corrélation ou encore un diagramme échelle est peu utile
	car l'on n'est pas dans un régime asymptotique. Il est alors nécessaire d'effectuer des simulations
	afin de montrer que l'on est capable de reproduire de telles structures. De plus, cette étoile est
	bien contrainte et il faudra montrer que la séparation entre les modes, est en accord avec les Introduction à la quatrième partie
	contraintes globales obtenues par ailleurs (Morel & Aerts 2007).
	HD 180642 présentant trois type d'oscillations serait donc une Chimère, la première de ce
	type pour laquelle on disposerait d'un éventail important de contraintes sismiques sur toutes les
	régions de l'étoile.
	13.1	Les enjeux
	13.1.1	Le profil de rotation dans la zones radiative solaire
	L'héliosismologie a permis d'obtenir des contraintes fortes sur le profil de rotation solaire
	en utilisant l'inversion des splittings rotationels des fréquences des modes acoustiques solaires

  Le facteur exp (-r) est un facteur d'amortissement qui prend en compte la dissipation ra diative. Son expression s'obtient en utilisant des solutions WKB avec amortissement radiatif Ayant établi ces quelques relations, il est possible de préciser quel est l'impact de la redistri bution de moment cinétique sur le profil de rotation. Pour cela, considérons deux ondes, l'une prograde (m > 0) et l'autre rétrograde (m < 0). L'équation Eq. (13.3) permet de déduire que les ondes rétrogrades transportent du moment positif alors que les ondes progrades transportent du moment négatif. Plaçons-nous d'abord dans le cas de figure où la rotation est uniforme. Dans ce cas les ondes prograde et rétrograde ont la même amplitude, la dissipation radiative sera la même pour ces deux ondes (Eq. (13.4)). Le dépôt de moment cinétique est compensé par l'extraction, ce qui conduit à un transport net nul.

	dérivées par Press (1981)
	où rji = Kk2 est l'amortissement radiatif local, kr la composante radiale du nombre d'onde, K
	la diffusivité thermique, Vgv la vitesse de groupe verticale, g = u + mQ avec m le degré azimutal
	et Q la vitesse de rotation. Enfin, N2 = N2 + N2 est la fréquence de Brunt-Vaisala, Nt est lié
	au gradient de température tandis que	est lié au gradient du poids moléculaire moyen.
	13.2.2	Dissipation différentielle et le transport de moment cinétique

  ). Néanmoins, il existe des incertitudes sur la modélisation et en particulier sur le flux d'onde généré à la base de la zone convective ainsi que sa dépendance spectrale. Le flux d'onde émis à l'interface entre zone convective et radiative conditionne le temps caractéristique sur lequel le 13. Introduction à la quatrième partie profil de rotation peut-être uniformisé, qui doit être inférieur à l'âge du Soleil. Il existe deux types de modélisation qui permettent d'évaluer le flux d'énergie d'onde à la base de la zone convective. La première est fondée sur l'hypothèse de la génération d'onde par les fluctuations de pression dans la région convective et la seconde par la pénétration convective. Les quantités ont leur signification usuelle (p, p densité et pression etc ...), le (') dénote les fluctuations eulériennes liées à l'onde et le ô les fluctuations lagrangiennes tandis que les quantités indicées par (o) concernent les grandeurs d'équilibre, v est le vecteur vitesse de l'onde. Vgv la vitesse de groupe verticale et E l'énergie propre de l'onde.

	14.2 avec p' les fluctuations de pression liées à l'onde. Press (1981) fait alors l'hypothèse que de la Les modèles de génération d'onde
	pression turbulente est égale à p', ce qui permet d'écrire
	On cherche à obtenir la composante verticale du flux d'onde. Pour cela, on définit la vitesse
	de groupe comme étant Pour établir l'équation d'énergie de l'onde, il faut alors multiplier Eq. (14.1) par v, Eq. (14.2) Pturb (14.17)
	L'essentiel des prescriptions se sont focalisées sur le premier type de modèle, que je détaillerai par p'/poc2 et Eq. (14.3) par g2 (p' -c2p') /(poc^N2) et les sommer. Après de longue manipula Vg = (14.10)
	dans le chapitre suivant. Ensuite, je proposerai un formalisme adapté à la génération d'onde par pénétration des panaches convectifs dans la région radiative. dE ~l -..dp' avec <> la moyenne dans le temps. Chapitre 14 tions, l'équation d'énergie de l'onde s'écrit alors (Unno et al. 1989) où Pturb correspond à la pression turbulente qui peut se réécrire comme
	~dt+v~w = ~<t>~dt Pour un système conservatif, via une approche Lagrangienne (voir Tolstoy 1973, p23-26), il est (14.4) Pturb -P U -P {pJc/k'c)
	possible de démontrer de façon tout à fait générale que
	Génération des ondes internes par les E est l'énergie de l'onde et Fw le flux d'onde instantané. L'expression de l'énergie de l'onde s'écrit Vg = avec u la vitesse des tourbillons convectifs donnée par la MLT, cjc et kc la fréquence et le nombre (14.11) d'onde d'un tourbillon convectif.
	fluctuations de pression " J \ 2 + 1 E= ^Po\v2 + P' POCs N peut être simplement utilisée pour déterminer le flux d'onde, mais on est capable de calculer la P' /-I 2' TiPo Po. (14.5) La vitesse de groupe est obtenue en utilisant la relation de dispersion. L'expression Eq. (14.9) ne L'impédance s'écrit d'après Press (1981)
	En utilisant la relation (Unno et al. 1989, eq. 13.45) composante verticale du flux d'onde avec la relation Zr = pY	(14.18)
	Sommaire 13.1 Les enjeux A l'aide de Eq. (14.15), on déduit alors l'expression du flux P r ipo po g kh) = Vgv E ^r avec £r la composante radiale du déplacement. On peut alors réécrire E comme avec T{u>,kh) =< Fw > -er, Dans la limite des ondes internes de basse fréquence, la vitesse de groupe s'écrit =	189 (14.12) (14.6) (14.19)
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	13.2 Le transport du moment cinétique par les ondes internes 13.2.1 Les équations du problème On reconnaît les différents termes; le premier terme de Eq. (14.7) est l'énergie cinétique alors 191 191 que les deux termes suivants désignent les énergies potentielles liées aux deux forces de rappel 14.2.1 Le modèle de Press (1981)
	13.2.2 Dissipation différentielle et le transport de moment cinétique qui sont le gradient de pression et la force d'Archimède. Le premier à s'intéresser aux ondes internes dans les étoiles fut Press (1981). Afin d'obtenir 192
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	14.1.2	Expression du flux d'onde
	Le flux d'onde (Fw) quant à lui s'écrit interest is that in which turbulent motions in a convective zone generate internai waves which
	Ew = (p + po#') v propagate into a neighboring radiatively stable région11.	(14.8)
	14.1 On se place dans l'approximation de Cowling. Cette approximation est justifiée pour des ondes Le flux d'onde et les fluctuations de pression Pour obtenir l'expression du flux d'onde dans la zone radiative, Press (1981) écrit l'énergie
	Dans ce chapitre, je me suis concentré sur la génération des ondes par les fluctuations de d'ordre radial élevé n. L'expression Eq. (14.8) se réduit alors à de l'onde comme (dans la limite « N)
	pression dans la zone convective. La première étape est de montrer que le flux d'onde est lié à Fw=p'v (14.9) E = P (14.14)
	ces fluctuations de pression. Cette expression du flux d'onde est autant valable pour une onde acoustique que de gravité.
	Ce résultat semble peu intuitif mais un coup d'oeil à l'équation (14.6) permet de remarquer avec vr la composante radiale de la vitesse de l'onde. Pour obtenir l'Eq. (14.14), il faut utiliser
	14.1.1 immédiatement que les fluctuations de pression ne sont pas liées uniquement à la compressibilité L'équation d'énergie l'Eq. (14.7) dans laquelle on néglige le terme p'/pocs et la relation entre composantes radiale et
	L'objet de cette partie est de déterminer l'expression du flux d'onde gravito-acoustique et son (p') mais aussi au déplacement vertical induit par la stratification {N2^r/g). Ainsi, on comprend horizontale de la vitesse vh = (N/u)vr avec £r = vr/co
	lien avec les fluctuations de pression. Pour cela on écrit les équations perturbées de conservation mieux pourquoi Eq. (14.9) (aussi appelée flux acoustique ou intensité acoustique (Lighthill 1978)) L'Eq. (14.12) et Eq. (14.14) permettent alors d'écrire
	est tout à fait générale quelque soit la force de rappel dominante (pour \po<f>'\ « \p'|). du moment, de la masse ainsi que l'équation d'état adiabatique (Unno et al. 1989) Dans la suite, on s'intéressera alors aux modèles d'excitation des ondes internes qui reposent T -{N2 P -eu2)1/2 (14.15)
	dv sur le forçage par les fluctuations de pression dans la zone convective, i.e. la génération du flux kh
	Po~dt + acoustique par la turbulence via le tenseur de Reynolds. Le forçage dans la zone convective est + + ~0 (14.1) Il reste alors à obtenir vr. Pour cela on définit l'impédance comme le rapport entre l'amplitude
	dv' -+ u Vp0 + c2v • Vpo -0 Ce flux d'onde généré dans la région convective va ensuite être transmis à la région radiative par (14.2) possible car même en l'absence de force d'Archimède, d'après l'Eq. (14.6), il y a un flux d'onde. des fluctuations de pression à celle de la vitesse, i.e.
	d (p' -c2pr) dt effet tunnel (on pourra trouver une discussion de l'effet tunnel des ondes internes dans Sutherland --v • Vp0 + c2v V/30 = 0 & Yewchuk 2004). V', (14.3) P' r -z, (14.16)

une estimation de la vitesse de l'onde et donc de son amplitude, il prend en compte l'effet de la transition entre zone convective et radiative. En effet, on considère que les fluctuations de pression proviennent de la zone convective générant ainsi un flux acoustique qui se propage dans la zone stablement stratifiée. On retiendra alors la citation de

Press (1981) 

: "A case of particular

  ont entrepris d'évaluer le taux de génération d'ondes internes de gravité à la base de la zone convective afin d'étudier, commePress (1981), le mélange induit par le cisaillement engendré par les ondes internes. Nous allons voir que même si l'approche semble différente elle est en fait très similaire. Alors quePress (1981) 

	suppose explicitement que les ondes internes sont générées par les fluctuations de pression dans
	la zone convective, Garcia Lopez & Spruit (1991) considère la perturbation de l'interface zone
	convective/radiative par les tourbillons convectifs. L'auteur suppose alors qu'il y a continuité de
	la pression et de la densité donc de la vitesse, alors	
	v(\)aeu(\)	(14.21)
	avec u la vitesse des tourbillons et v celle de l'onde.	

  considère que les tourbillons suivent une distribution spatiale de Kolmogorov, caractéristique des milieux turbulents. On notera aussi que le caractère incohérent des tourbillons turbulents est pris en compte. En effet, ces derniers ne sont pas en phase et donc ils ne participent pas tous de la même façon à l'excitation des ondes internes. Ainsi, le flux d'onde devra être corrigé des décalages de phase entre les différents tourbillons, le théorème central limite permet d'écrire que l'écart-type de la somme de variables aléatoires (nommons-les X) est l'écart-type de X divisé par la racine du nombre de variables aléatoires. Cela permet de indice c qui dénote la base de la zone convective et ic le degré angulaire correspondant à l'échelle horizontale des plus grands tourbillons convectifs.Zahn et al. (1997) montrent que l'Eq. (14.24) devient valable dans la limite où l'on considère que coc « Nc qui sont respecti

	vement la fréquence des plus grands tourbillons convectifs et la fréquence de Brunt-Vàisâlà à
	l'interface zone convective/radiative.	
	14.2.4	Le modèle de Kumar et al. (1999)
	faire l'approximation	
			1
		^incohérent ~T/ô ucoherent	(14.22)
			nl!z
	avec n le nombre de tourbillons, n = À^/ A2, avec Ah la composante horizontale de la longueur
	d'onde et A la taille des tourbillons convectifs. Toutes ces considérations permettent d'écrire le
	flux d'énergie dans les ondes comme étant	
		p (N2 -ü;2)1//2 A4cu4
		2^N2	ÂT	(14.23)
	l'Eq. (14.23) devient	
		'FçXp(jj)V/3	(14.24)
	qui est l'expression obtenue par Press (1981) (cf Eq. (14.20)).
	supposent que l'excitation est négligeable pour des échelles supérieures. En terme d'excitation
	cela revient à négliger le régime inefficace, c'est à dire que l'on néglige les contributions des
	tourbillons ayant une fréquence plus petite que celle de l'onde.
	14.2.3	Le modèle de Zahn et al. (1997)
	Le flux d'onde doit être la somme de toutes les contributions fréquencielles. Cette générali
	sation a été proposée par Zahn et al. (1997). Les auteurs, ont repris le modèle de Garcia Lopez
	& Spruit (1991) afin d'en déduire un flux d'énergie de l'onde qui est la superposition de toutes
	les contributions spectrales, pour obtenir	
			1	fuc	3 1
		Tzt (v, kh) =	Nr trWr V LU J	(14.25)

avec A et Ah la longueur d'onde des tourbillons et la longueur d'onde horizontale de l'onde, respectivement. Cette relation est très proche de celle

de Press (1981)

. En effet si on se place dans la limite des faibles fréquences et que l'on fait l'approximation A « A*, alors on trouve que

Garcia Lopez & Spruit (1991) 

introduisent une fréquence de coupure qui correspond à la fréquence des plus grands tourbillons convectifs. Cette limite correspond au fait que le spectre de Kolmogorov n'est justifié que pour les échelles qui participent à la cascade énergétique. Pour les plus grandes échelles, qui correspondent au régime inertiel le spectre est tout à fait différent.

Ainsi,

Garcia Lopez & Spruit (1991) 

par cette fréquence de coupure font l'hypothèse que l'échelle d'injection correspond à l'échelle donnée par la théorie de la longueur de mélange. De plus ils 1 C'est pourquoi je n'ai pas choisi de considérer cette approche comme une modélisation de la pénétration convective avec l'

  , le flux d'énergie de l'onde, par unité de fréquence, est donné par

	14.3.	Discussion			201
	3. Enfin, le troisième terme		
			7Z = exp	2 1(1 + 1) ^2r2	(14.29)
		résulte de la corrélation horizontale entre les tourbillons et l'onde. L'argument de l'expo
		nentielle est h^k^. Lorsque la taille des tourbillons est inférieure ou égale à la longueur
		d'onde horizontale de l'onde, l'excitation est efficace {hukh « 1). Quand la taille des
		tourbillons est supérieure à la longueur d'onde horizontale, le régime devient inefficace.
					2
			LO	
		Fgmk (^,<*0	47T		+	+ 1)
			x exp	2 t{i +1) 2r2	u3L4 1 + {VTL) 2 ~i ru '	(14.26)
	Intéressons-nous alors aux termes intervenants dans Eq. (14.26)
	1. Le premier terme est		
				2
			Z,(r)		+ *(*+1)	(14.27)
		L'excitation des ondes est représentée par le produit de corrélation entre les oscillations et
		les tourbillons turbulents. Ce produit de corrélation peut ensuite être simplifié en supposant
		qu'il y a une séparation d'échelle spatiale radialement entre ces deux composantes, qui
		permet de séparer les termes liés à l'onde et à la turbulence dans l'Eq. (14.26). Eq. (14.27)
		résulte de l'intégration de | V : £|2 sur l'angle solide, que l'on retrouve dans notre formalisme.
	2. Le second terme est la fonction source	
					?.3 T 4
			Sw(r) =	;	-u	(14-28)
					1 + (LOTL) 2
		Kumar et al. (1999) considèrent un spectre de Kolmogorov. Le formalisme suppose égale
		ment que la corrélation temporelle entre les tourbillons convectifs et l'onde est Gaussienne.
		Enfin, l'expression finale (Eq. (14.28)) est obtenue en effectuant une moyenne harmonique
		entre deux limites asymptotiques. La première correspond au régime d'excitation efficace
		uj/lol << 1, où col est la fréquence des tourbillons convectif. Pour ce régime, l'excitation

où Çv et £/j sont les composantes radiales et horizontales de la fonction d'onde, v la vitesse convective, L l'échelle radiale des plus grands tourbillons convectifs, tl ~L/u le temps convectif, u la vitesse convective, et hu est l'échelle radiale des plus grands tourbillons convectifs en r avec une fréquence caractéristique lu.

est maximale, la fonction source devient indépendante de la fréquence (S = u3L4). A l'in verse, dès lors que la fréquence de l'onde est supérieure à celle des plus grands tourbillons convectifs on se trouve dans un régime inefficace (lo/lol » 1) et l'on trouve que S est proportionnel à (rxu;)-15/2

(Goldreich & Keeley 1977b; Samadi & Goupil 2001)

.

  présentent une forte dépendance en ces paramètres(voir Eq. (14.26)). approche plus quantitative en utilisant des simulations cartésiennes à deux dimensions et polytropiques. La difficulté dans ces simulations est l'apparition d'ondes stationnaires liées aux conditions aux bords des simulations. Afin d'y remédier,Kiraga et al. (2003) ont introduit une couche visqueuse permettant d'amortir artificiellement les ondes et évitant ainsi aux modes propres de s'établir. Ils ont alors pu comparer le flux d'onde émis à la base de la zone convective avec celui prédit par les modèles tels que celui deGarcia Lopez & Spruit (1991) ou Montalbân &; Schatzman (1996). Le résultat est que la simulation numérique 2D prédit un flux d'onde bien supérieur à celui des modèles par un facteur allant de dix à cent.Le désaccord est attribué aux incertitudes liées aux modèles paramétriques, qui reposent soit sur la théorie de la longueur de mélange soit sur le modèle de panachede Rieutord &; Zahn (1995). Néanmoins,Kiraga et al. (2005) ont montré en comparant des simulations numériques 2D et 3D que les désaccords disparaissent avec les simulations 3D et ils trouvent un accord avec les modèles paramétriques, tout au moins en ordre de grandeur.Dintrans et al. (2005) effectuèrent une simulation numérique dans une boîte cartésienne, proche de celle deKiraga et al. (2003). Contrairement à ces derniers,Dintrans et al. (2005) n'ajoutent pas de viscosité artificielle pour éviter l'apparition de modes mais utilisent une pro jection sur les modes propres de la boîte afin d'obtenir une quantification du flux d'onde généré.

Cette méthode permet de suivre l'amplitude d'un mode donné dans le temps et de pouvoir en déduire quel est l'événement, la pénétration d'un élément convectif, à son origine. Néanmoins, ces simulations numériques sont encore très loin d'être représentatives du Soleil et les résultats obtenus ne sont que difficilement extrapolables quantitativement au Soleil. 15.1.2 Vers une stratification réaliste

  où vpl est le temps de vie d'un panache dans la région de pénétration, Xh la coordonnée hori zontale depuis le centre du panache, bp son rayon qui est donné par le modèlede Rieutord & Zahn (1995), et Vq la composante radiale de la vitesse au centre du panache.Temps de vie du panache dans la région radiative Le problème le plus délicat est relatif au temps de vie d'un panache. Généralement ce temps caractéristique est donné par la théorie de la longueur de mélange au bas de la zone convective(Garcia Lopez & Spruit 1991; Montalbân & Schatzman 2000). Cependant, le temps de retourne ment des tourbillons à la base de la zone convective ne définit pas sur quel temps caractéristique un panache va évoluer dans la région radiative. Afin d'aller plus loin, je me suis tourné vers la géophysique et en particulier le problème des panaches dans les océans. Comme je l'ai déjà mentionné dans la section 1.1.4, les panaches peuvent se former dans les océans sous certaines conditions climatiques. En particulier, Jones (1997) a montré qu'après la phase de pénétration le milieu se restratifie sur une échelle de temps rv. Sous l'effet combiné du gradient de densité entre le panache et le milieu ambiant, ainsi que de la rotation il apparaît un courant autour du panache. Ce dernier est alors instable et il se produit alors un échange entre le panache et le milieu ambiant qui tend à restratifier le panache. En adaptant ce modèle au cas solaire, nous avons montré que le temps caractéristique est donné par (le détail du modèle deJones (1997) Ce modèle permet alors d'obtenir le profil de vitesse verticale dans la zone radiative. La vitesse à la base de la zone convective est choisie comme étant celle donnée par le modèlede Rieutord & Zahn (1995). La taille de la région de pénétration est surestimée par cette modélisation. J'ai donc introduit un paramètre permettant de retrouver la distance de pénétration, en fait la limite supérieure, telle que obtenue parBasu (1997) à l'aide de données sismiques, i.e. Lp = 0.05 Hp avec Hp l'échelle de pression à la base de la zone convective.

	est présenté dans l'annexe A de l'article)
		up -l/rp « 0.4 //Hz	(15.2)
	15.2.1	Le modèle de panache
	Le modèle suppose que les panaches pénètrent dans la région radiative et transmettent une
	partie de leur énergie cinétique aux ondes internes. Le but est donc de déterminer quelle est la
	part de l'énergie transmise ainsi que sa distribution spectrale.
	15.2.2	Expression du flux d'onde à la base de la zone convective
	Profil de vitesse du panache
	La détermination du flux d'onde nécessite de spécifier la vitesse des panaches dans la région Une fois spécifié le profil de la vitesse des panaches dans la région de pénétration, il est
	stablement stratifiée, la zone radiative. Pour cela j'ai adopté le modèle de panache de Rieutord possible de déterminer l'expression du flux d'onde émis à la base de la zone convective. Pour
	cela, il faut résoudre l'équation d'onde dans laquelle le forçage est du à la pression exercée

description spectrale du flux d'onde émis à la base de la zone convective. Dans ce chapitre, j'établis un modèle de flux d'onde émis à la base de la région convective par la pénétration des panaches dans la région radiative. Je décrirai tout d'abord le spectre d'onde, sa dépendance fréquencielle ainsi que sa dépendance au degré angulaire. Je discuterai ensuite l'impact de ce flux d'onde sur le transport de moment angulaire dans le Soleil. & Zahn (1995) déjà présenté dans le chapitre 3. Cela permet d'obtenir la vitesse des panaches à la base de la zone convective, mais il reste à définir cette vitesse dans la région de pénétration. Pour cela, on suppose le profil suivant = Vo^e-^2 e-xï/2»2p, (15.1) Cela permet alors de spécifier l'échelle de temps sur laquelle le panache évolue dans la région de pénétration. Il reste à définir Vq qui apparaît dans l'Eq. (15.1). Evolution de la vitesse du panache dans la région de pénétration Considérons le travail de Zahn (1991) qui donne la vitesse moyenne d'un panache dans la région convective. Les panaches pénètrent dans la région radiative sous l'effet de leur inertie, mais ils sont également freinés par la force d'Archimède jusqu'à ce que leur nombre de Péclet soit proche de l'unité et qu'ils se mettent à l'équilibre thermique avec le milieu environnant. par les panaches sur la zone radiative. J'ai pris en compte le fait que nous avons à traiter un spectre continu d'onde et non plus des ondes monochromatiques. De plus, aucune hypothèse de séparation d'échelle temporelle n'est faite, ce qui permet de déterminer le spectre du flux d'onde de façon précise. L'expression finale du flux d'onde est alors (une démonstration est proposée

  'objectif de cette partie est d'appliquer le modèle développé dans les parties précédentes au problème du transport de moment cinétique. En particulier, on a cherché à vérifier que le flux d'onde généré par les panaches peut efficacement transporter du moment cinétique et déterminer sur quelle échelle de temps il peut rigidifier le profil de rotation. Les calculs numériques ont été effectués par S. Talon, avec un code adapté de celui utilisé dansTalon et al. (2002).

	15.3	Transport de moment cinétique
	15.3.1	Lien entre flux d'onde et flux de moment cinétique
	Rappelons le lien entre le flux de moment cinétique et le flux d'onde, Eq. (13.3)
		kh) =	kh) exP (~r(r))	(15.7)
		z' Cü	
	avec t qui est donné par l'Eq. (13.4).	
	panaches.	
	15.3.3	Evolution sur des temps longs	
	Le calcul de transport de moment angulaire est alors effectué sur une échelle de temps de
	l'ordre du million d'année. L'efficacité de la génération d'onde par la pénétration des panaches
	étant importante, il est nécessaire de faire ce calcul avec un faible pas de temps ce qui allonge
	énormément le temps de calcul.	
	On trouve que les ondes de bas degré angulaire extraient le moment cinétique dans le coeur
	de l'étoile sur une échelle de temps de l'ordre du million d'années (voir figure 15.5). Le biais dans
	l'amortissement des ondes prograde et rétrograde rend ce mécanisme efficace malgré l'absence
	de SLO.		

L

Les questions qui se posent sont : quel est l'impact du flux de moment cinétique induit par la pénétration des panaches dans la région radiative. Ce spectre produit t-il une SLO ? peut-il sur un temps suffisamment court uniformiser le profil de rotation solaire ? 15.3.2

Evolution du profil de rotation sur des temps courts

Kumar et al. (1999)

,

Talon et al. (2002) 

ont montré l'existence d'une couche oscillante (décrite dans la section 13.2.3), la SLO (Shear Layer Oscillation) qui évolue sur une échelle de temps de l'ordre de l'année.

Cette oscillation est créée par les ondes de haut degré angulaire qui sont dissipées très près de la zone convective. Or la figure 15.3 montre que ces ondes de haut i sont très peu efficacement générées par la pénétration convective des panaches. On comprend alors que ce mécanisme de génération des ondes ne produit pas de SLO.

D'après les calculs

de Talon et al. (2002)

, la SLO joue le rôle de filtre et va favoriser l'extraction de moment cinétique (section 13.2.3). Malgré l'absence de cette oscillation, un transport de moment cinétique subsiste lorsque l'on considère la génération d'ondes par la pénétration des

Dans une seconde partie, j'ai étendu le formalisme d'excitation aux modes non-radiaux. Cette généralisation a permis d'étudier les modes acoustiques de degré angulaire élevé ainsi que les modes de gravité solaires. J'ai ainsi établi une estimation théorique de l'amplitude des modes de gravité à la surface du Soleil en utilisant ce formalisme d'excitation généralisé et une estima tion théorique des amortissements. Le résultat montre que ces modes présentent une amplitude de l'ordre de quelques millimètres par seconde à la surface du Soleil. Ils devraient donc être détectables après 15-20 ans d'observation avec SOHO dans le meilleur des cas.La mission spatiale COROT, qui fût lancée avec succès le 27 décembre 2006, ouvre un nou veau champ à l'étude de la convection turbulente dans les étoiles avec un seuil de détection de l'ordre de la micromagnitude permettant la détection des oscillations de type solaire dans les étoiles massives. Dans ce contexte, une troisième partie de mon travail a été consacrée aux os cillations de type solaire dans les pulsateurs classiques. Ce sont des étoiles qui puisent sur des modes auto-excités par des instabilités thermiques liées au comportement de l'opacité avec la température (modes instables). En particulier, j'ai montré que des modes excités stochastiquement par les régions convectives des (3 Cephei peuvent cohabiter avec les modes instables et que leurs amplitudes théoriques pouvaient atteindre quelques dizaines de micromagnitudes, c'est à dire au-dessus du seuil de détection de COROT. Quelque étoiles sont connues pour être des hy brides, oscillant sur des modes de gravité d'ordre radial élevé ainsi que sur des modes acoustiques de basse fréquence. La détection de modes acoustiques de haute fréquence dans de telles étoiles ferait des objets pour lesquels on disposerait de contraintes en provenance de presque tout le domaine de fréquence du spectre.Dans une dernière partie, j'ai abordé le problème de la génération des ondes internes à la base de l'enveloppe convective des étoiles de type solaire. Ces ondes transportent du moment cinétique. Cela permet d'expliquer le profil de la rotation solaire uniforme dans la zone radiative

à résoudre les équations de Navier-Stokes pour les échelles les plus grandes et à modéliser les plus petites soit en utilisant une prescription soit en ajoutant une viscosité artificielle afin de dissiper l'énergie qui cascade des grandes vers les petites échelles.En utilisant ce type d'approche, beaucoup d'études locales ont été faites se focalisant sur les couches externes des étoiles et particulièrement du soleil (par exempleStein & Nordlund 1998; Weiss et al. 2002; Vôgler et al. 2005). Ces dernières cherchaient principalement à obtenir une simulation la plus réaliste possible afin d'obtenir des résultats quantitatifs.Par ailleurs les simulations globales, qui utilisent l'approximation anélastiques, cherchent à obtenir une représentation globale et réaliste du Soleil(Rogers & Glatzmaier 2006; Miesch et al. 2008). Ce type d'approche est extrêmement coûteuse en terme de temps de calcul et reste très difficile à analyser tant la quantité de données est importante. Néanmoins, elle constitue un outil très puissant pour comprendre les mécanismes physiques en jeu dans les étoiles, tel que le rôle du champ magnétique ou encore de la rotation (par exempleBrun et al. 2004;Brun & Zahn 2006).En proposant un degré de réalisme que les modèles analytiques ou semi-analytiques ne peuvent atteindre, les simulations numériques tentent de reproduire au mieux la réalité. Néan moins, un modèle analytique présente la possibilité de mettre en lumière les mécanismes domi nants. De plus, faire évoluer un modèle 3D sur de grandes échelles de temps ainsi que pour un large spectre d'étoiles reste aujourd'hui hors de portée.2.1.2 Les modélisations semi-analytiquesLe modèle de convection le plus couramment utilisé en évolution stellaire est la théorie de la longueur de mélange, ainsi que ses variantes déjà discutées succinctement dans la section 1.1.1.Il s'agit d'un approche phénoménologique qui permet d'estimer principalement le flux convectif.Pour aller au-delà de la théorie de la longueur de mélange, d'autres modélisations ont été proposées et dont certaines consistent à moyenner les équations de Navier-Stokes. Initialement, Osborne Reynolds proposa cette méthode afin de pourvoir étudier l'effet du champ turbulent sur le flot moyen. Cette approche fut ensuite largement utilisée en physique de l'atmosphère ainsi que dans l'étude de la turbulence en laboratoire[START_REF] Speziale | A review of Reynolds stress models for turbulent shear flows[END_REF]. Dans ce qui suit, j'aborderai le problème via cette approche semi-analytique qui permettra de pointer les difficultés et approxi mations du problème de la modélisation de la convection turbulente, en particulier je mettrai en évidence l'importance du problème de la fermeture des équations.:Par simulation globale, resp. locale, on désigne des simulations qui rendent compte de toute la zone convective solaire, resp. d'une toute petite région.

Modèle de fermeture avec panaches

Note that, régions where the work decreases outwards hâve a damping effect on the mode, or a driving effect when it increases outwards.

Génération des ondes internes par la pénétration convective
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Online Material

Deuxième partie

Les modes non-radiaux de type solaire where the spherical harmonies (T/>(5,0)) are normalized according to r dn J 4^^Km = 1 (A. 3) with Q being the solid angle (dQ = sin SdQdcp).

The large-scale gradient V0 appearing in Eqs. ( 13) and ( 14) for instance is given, in the local spherical coordinates, by where the double dot dénotés the tensor product.

We now consider the covariant (a^a0,^) and the contravariant (ar, ag, a^) natural base coordinates where the eigen function can be expanded: £ = ikek = qkak k = [r,9,0}.

(A.8)

The natural and physical coordinates are related to each other by ei = -p=ah (A.9)

Vfei

where gij is the metric tensor in spherical coordinates (see Table 6. dx' 1 J da1 dx'

= ai ai \ -)-qjrLai aP (A.l 1) where YJpi is the Christoffel three-index Symbol of the second kind (Korn & Korn 1968). According to Eqs. (A.l 1) and (A.9), bij (Eq. (A.7)) can be written as bij = _J l(\i y/lOugjjl \dx'

Vp rji (A.12) To proceed, one has to express Eq. (A. 12) in terms of the phys ical coordinates (Çk). With the help of Eqs. (A.8) and (A.9), we The contribution of the Reynolds stress can thus be written as

where we hâve defined dm = Anrpodr, and f ^f hb b-(T'Jlm+TU"1

Because TIJ,m = T2'ml, it is easy to show that R{r'k) Bh""« (r7""+ (A. 16) (A.17)

where Bjj = (1/2)(bjj + bji).

Using the expression Eq. (A.6) for Tljlm, we write We assume isotropie turbulence, hence the k components satisfy r kjk; r kl J dn' ir = 5» J dn' p with ôij as the Kronecker Symbol for i, j = r, 6,0. Then we obtain = 2{â-(y where we hâve defined

)) .

To dérivé R\, /?2, and R3, the following relations hâve been used where again L2 = C{C + 1).

We next integrate Eq.( 28) over dQ/4^, the solid angle associated with the eigenfunctions £. One obtains, with the help of Eq. (A.42) and according to Eq. (A.41), f£f m*h'iT" = where (H is the anisotropy factor introduced in Paper I that in the current assumption (isotropie turbulence) is equal to 4/3. In We start from Eq. ( 28), and to proceed further in the dérivation of the entropy fluctuation source term, one has to compute J dQk hij Tij . (A.39)

Then, £ and k are expanded in spherical coorindates (ar, ae, a<p).

We assume an isotropie turbulence; as a conséquence, the quan tifies krko, krkÿ, kekep vanish when integrated over £2*. One next obtains J dQk hij Tij = 2n'H (hrr + heo + hH) (A.40) where TH is the anisotropy factor introduced in Paper I, which in the current assumption (isotropie turbulence) is equal to 4/3.

Assuming that û-s = as(r), we hâve, according to Eq. (A.4), is chosen such that J dny,,m(0,0)U',m'(0,0) = Su'Sw (B.4) where dQ, = sin 9d9d(f).

The kinetic energy spectrum that is averaged over time and the solid angle is defined following Samadi et al. This assumption is justified when the turbulent Mach number is low. This is the case in most parts of the convective zone except at the top of convective région.

The mean kinetic energy spectrum, E(l, r), vérifiés the

where u(r) is the root mean square velocity at the radius r.

Following Samadi et al. (2003a), we also define a ki seconds that permits us to get \k at very low frequencies.

In practice, E(l) is derived from Eq. (B.5) and is directly implemented into Eq. ( 1), while Xk{v) inferred from the simulation is computed using Eqs. (B.9) and (B.5).

By using E(l) from the numerical simulation, we as sume a planparallel approximation (E(k)dk = E(l)dl)

since the maximum of the kinetic energy spectrum occurs on scales ranging between l ~20 and / ~40.

Appendix C: Vïsibïlity factors

Visibility factors hâve been computed first by Dziembowski (1977). Berthomieu & Provost (1990) studied the case of g modes which, for convenience, we recall below in our own notation. We dénoté the spherical coordinate System in the observer's frame by (r, 9,0) where r = 0 corresponds to the center of the star and the 9 = 0 axis coincides with the observer's direction. At a surface point (r, 9,0), the unit vector directed toward the observer is n = cos 9 er -sin^e#. The apparent surface velocity is obtained as

where v(r,t) is the intrinsic mode velocity and h{/i) the limb-darkening function, which is normalized such that:

To first order in linearized quantities in Eq. (C.l), the effect of the distorted surface is neglected, and df2 = R2 sin #d#d0 is the solid angle around the direction of the observer n with R the stellar radius.

For slow rotation, the oscillation velocity can be de- Il y aura donc génération de champ magnétique qui est susceptible, via le tenseur des contraintes magnétiques, de transporter du moment cinétique et donc rendre le profil de rotation uniforme (Eggenberger et al. 2005). Cette hypothèse a été récemment remise en question par Zahn et al. (2007) qui à l'aide de simulations numériques ne trouvent aucun signe du processus dynamo proposé par Spruit (2002).

-les ondes internes de gravité peuvent aussi transporter du moment cinétique et ce sera l'objet de cette partie.

Le transport du moment cinétique par les ondes internes

Le rôle des ondes internes de gravité dans les étoiles a été initialement mis en lumière par Press (1981). L'auteur montre par exemple que les ondes internes peuvent créer de la turbulence qui résulte du cisaillement induit par la variation de la vitesse horizontale des ondes avec le rayon. Montalbân & Schatzman (1996) reprennent alors l'idée de Press (1981) In most locations, the océan surface layer (the thermocline) is stably stratified. However, in a few spécial régions, convection occurs leading to the formation of plumes driven by intense cooling at the sea-surface. They hâve horizontal scales smaller than one kilometer and vertical downward velocities around a few centimeters per second. Note that these structures are tur bulent, and as in the Sun, as they descend in the deep océan, they grow (laterally) under the action of entrainment. When con vection stops, the phase during which the plume is destroyed is called restratification. The mechanism responsible for this phase is thought to be as follows; a thermal wind, created by the buoy ancy différence between the plume and its surrounding environ ment, is subject to baroclinie instability creating geostrophic ed dies that transport buoyancy laterally. Jones (1997) supports this modeling by performing numerical simulation as well as using observational data (see also Marshall & Schott 1999, for a re view).

A.2. Plume restratification in the Sun

In the case of the Sun, the above latéral buoyancy différence ex- where v is the molecular (or radiative) viscosity, must be small. This is certainly the case in the Sun, owing to its quite small viscosity. However, the tachocline is a turbulent région and one has to estimate the turbulent viscous forces by substituting v by the turbulent viscosity v,. This turbulent viscosity can be caused by the local shear, rendered unsta ble by thermal diffusivity. In that case, we expect to hâve v, ^106cm2.s-1, and hence, the Ekamn number remains small.

3. Finally, the ratio of the vertical to the horizontal scale must be negligible. For solar plumes of radius, bp (see Sect. where the intégration constant is determined by assuming that the intégration of u over the depth vanishes (see Jones 1997, for details). Jones (1997) showed that this thermal wind is subject to a baroclinie instability when the deformation Rossby length-scale is smaller than the plume radius-the deformation Rossby lengthscale is the length scale at which rotational effects become as important as buoyancy effects in the évolution of the flow about some disturbance. It is defined such as [START_REF] Pedlosky | Geophysical fluid dynamics[END_REF] f\ Po

Ld -r IS Lp Then, LD Lp «: bp, and Lq being smaller than the plume radius bp, the plume is then subject to a baroclinie instability where n is the unit vector of the latéral surface.

A.2.1. RHSof Eq. (A.10)

In the right hand side (RHS) of Eq. (A.10), the buoyancy flux may be approximated by vb n = a ôb uz=q. (A. 11) where a stands for the efficiency of the buoyancy flux and uz=o taken from Eq. (A.8). Note that for the sake of simplicity, the corrélation product vb is set to be proportional to the thermal velocity u at the top of the radiative zone. Thus, using Eq. (A.7) in Eq. (A.l 1) and integrating the RHS of A.10, we obtain 1 r~h -a nIl2" -2/rbp -----vb • ndz--, (A.12)

nbpLp Jo 3 bp

where we hâve used p -Lp and for sake of simplicity Nb/f~1.

A.2.2. LHSof Eq. (A.10)

We now evaluate the left hand side of Eq. (A. 12)

where we used Eq. (A.7), and 6bs is the buoyancy in the surrounding medium, that is assumed stationary. where AWo is the wave velocity amplitude, u is related to the spectral velocity distribution defined in Eq. ( 7) by h>Wo = u/coq. (A.9) avec gij les composantes du tenseur métrique en coordonnée sphérique (see Table 6. On exprime alors Eq. (A.12) en terme de coordonnées physique (£fc). Avec Eq. (A.8) et Eq. (A.9), on relie les coordonnées covariantes qi avec les contravariantes 9j (B.17)