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Rotation à long terme des planètes, application au basculement d'Uranus

Uranus est une planète singulière en raison de la forte inclinaison de son axe de rotation. L'origine de cette propriété constitue même l'un des problèmes majeurs concernant le système solaire. Jusqu'à aujourd'hui, aucune explication qui ait été donnée n'est parfaitement satisfaisante. L'hypothèse la plus communément admise suppose qu'une collision géante a eu lieu à la fin de la formation de la planète. Cependant, les satellites réguliers d'Uranus se situent dans le plan équatorial de la planète, et la collision ne permet pas d'expliquer le basculement de leur orbite. C'est dans ce cadre que se place cette thèse, le but étant d'étudier les mécanismes possibles de basculement sans collision de l'axe d'Uranus. Pour commencer, nous retraçons l'histoire du système solaire depuis sa formation afin d'en extraire les moments où le basculement a pu se produire. Ensuite, nous évaluons la vitesse limite supérieure à laquelle Uranus peut pivoter tout en conservant ses satellites dans plan équatorial. A partir de là, nous présentons deux études différentes sur les évolutions possibles de l'axe d'Uranus, chacune correspondant à une époque distincte de l'histoire du système solaire. La première se réfère au moment où les planètes évoluent dans un disque de planétésimaux, et la seconde se rapporte à la migration tardive. Dans ce deuxième cas, Uranus est effectivement susceptible de basculer sans l'aide d'une collision géante. Cette étude s'appuie sur des résultats généraux liés à l'évolution des corps rigides. Le premier concerne le problème lunaire dont le but est de connaître l'effet d'un satellite sur le mouvement de précession de sa planète. Auparavant, seuls deux cas asymptotiques étaient résolus. A partir de techniques de moyennisation et grâce à une approche vectorielle, l'effet a pu être déterminer quelque soit la distance du satellite. De plus, cette approche très générale fournit une solution qui n'est pas spécifique au problème lunaire, mais qui s'applique aussi directement à l'étude des mouvements de rotation de deux corps rigides en interaction gravitationnelle tels que les astéroïdes binaires. Enfin, certains outils développés pour l'étude d'Uranus ont été appliqués au cas de Saturne. Cela a apporté de nouvelles contraintes sur la migration tardive. En particulier, la vitesse de migration de Neptune devait être suffisamment lente pour que l'axe de Saturne puisse atteindre son inclinaison actuelle. mots-clés : précession, nutation, corps rigide, astéroïdes binaires, Uranus, Saturne, migration plané taire, méthode analytique, méthode numérique Long term rotation of planets, application to Uranus tilting Uranus is a spécial planet because of the large inclination of its spin-axis. The origin of this property is 011e of the great unanswered questions about the Solar System. It is sometimes believed that it is due to a great collision with a protoplanet at the end of the planetary formation. However, regular satellites are orbiting in the équatorial plane of the planet and this mechanism fails to explain the tilt of tlieir orbit. This is at this point that this PhD thesis starts. The aim is to find a collisionless scénario for the tilt of Uranus. In this work, we review the history of the Solar System silice its birth in order to see when the tilt could hâve occurred. Then, we evaluate the maximal rate at which Uranus could tilt sucli that the satellites remain in the équatorial plane. Two different periods in the history of the Solar System appear to be good candidates for the tilt. The first one corresponds to the period when the planets were evolving in a planetesimal disk, and the second one is related to the late migration. In the second case, Uranus can actually tilt without any giant collision. This study is based on general results on the évolution of rigid bodies. The first relates to the lunar problem whose goal is to know the effect of a satellite on the precession motion of its planet. Previously, only two asymptotic cases were solved. From averaging techniques and using a vectorial approach, the effect can be evaluated regardless of the distance of the satellite. Moreover, such a general approach provides a solution that is not unique to the lunar problem. It applies also directly to the study of the rotation of two rigid bodies in gravitational interaction such as binary asteroids. Finally, some tools developed for Uranus hâve been applied to Saturn case. This has brought new constraints on the late migration. In particular, the migration speed of Neptune should hâve been slow enough so that Saturn's axis could reach its current inclination. keywords: precession, nutation, rigid body, binary asteroids, Uranus, Saturn, planetary migration, analytical method, numerical method qui a été proposée indépendamment par le philosophe [START_REF] Kant | Tidal Dissipation by Solid Friction and the Resulting Orbital Evolution[END_REF] et le scientifique Laplace (1796) reste encore aujourd'hui la plus populaire. Selon ce scénario, les planètes se sont formées dans un disque de gaz et de poussière en rotation autour du soleil naissant. Originellement, cette hypothèse a été faite pour expliquer les orbites progrades et quasiment coplanaires de toutes les planètes. Aujourd'hui de tels disques, appelés disques protoplanétaires, ont été observés autour d'étoiles jeunes par le télescope spatial Hubble (Fig. 1.1). Ces observations directes permettent en plus de contraindre les modèles de formation planétaire par l'analyse de la composition du disque, sa température et sa durée de vie. En particulier, le temps caractéristique de survie des disques circumstellaires autour des étoiles jeunes est de 10 millions d'années environ [START_REF] Meyer | IAU Symposium[END_REF], ce qui signifie que les planètes se forment pendant ce même laps de temps.

Formation des planètes

Selon le modèle communément accepté, le disque protoplanétaire se forme en même temps que l'étoile par contraction d'un nuage interstellaire. Ensuite, la matière solide sédimente vers le plan médian du disque. Durant ce processus, les grains de poussière s'agglomèrent pour former des objets dont la taille est de l'ordre du centimètre ou du mètre. Lors de l'étape suivante, encore mal com prise, des planétésimaux acquièrent une taille de l'ordre de plusieurs centaines de mètre. Après cela, l'accrétion de ces planétésimaux engendre les embryons de planètes. Si ces embryons ont une masse suffisante, alors ils capturent une grande quantité de gaz et deviennent une planète géante. Dans le cas contraire, le résultat est une planète rocheuse [START_REF] Pollack | Formation of the Giant Planets by Concurrent Accretion of Solids and Gas[END_REF].

Effets du disque de gaz

Pendant leur phase de formation, les planètes évoluent dans un disque de gaz. [START_REF] Goldreich | The excitation of density waves at the Lindblad and corotation résonances by an external potential[END_REF] ont étudié l'interaction entre une protoplanète et un disque protoplanétaire et ont constaté que la protoplanète subit une force qui tend à la faire spiraler vers son étoile. Depuis, de nombreuses planètes extrasolaires ont été détectées à moins de 0.1 U A de leur étoile. Certaines font plusieurs masses de Jupiter et n'ont pu se former à cette distance. Ces observations confirment donc le mécanisme de migration. Un tel scénario a dû se produire dans notre système solaire aussi, mais il a dû être stoppé ou même inversé car Jupiter et Saturne se situent à plus de 5 U A du soleil. Depuis les travaux précurseurs de Goldreich & Tremaine (1979) 'dell, 1996).

sur la migration, notamment pour trouver des moyens de la ralentir. Il s'avère que ce phénomène est relativement sensible aux conditions qui régnent dans le disque, et que le sens de migration peut effectivement être inversé [START_REF] Ôpik | Interplanetary encounters -Close-range gravitational interactions[END_REF]. Pour le système solaire, l'arrêt de la migration est certainement dû à une capture en résonance 3:2 de moyen mouvement entre Jupiter et Saturne [START_REF] Masset | Reversing type II migration : résonance trapping of a lighter giant protoplanet[END_REF]Morbidelli & Crida, 2007). Pour la suite (voir section 4.1), il est important de noter que le disque de gaz amortit très fortement les inclinaisons des orbites [START_REF] Lubow | Secular Interactions between Inclined Planets and a Gaseous Disk[END_REF][START_REF] Tanaka | Tliree-dimensional Interaction between a Planet and an Isothermal Gaseous Disk. II. Eccentricity Waves and Bending Waves[END_REF].

1.1.4 Effets du disque de planétésimaux L'évolution du système solaire, une fois que le disque de gaz est dissipé, est ce que tente de décrire le modèle de Nice (Gomes et al., 2005;Morbidelli et al., 2005;Tsiganis et al., 2005). Selon Ce modèle est contraint par de nombreux faits observationnels telles que : le bombardement tardif (Gomes et al., 2005) qui fixe le début de la migration à -3.85 milliard d'années (Fig. 1.2) ; les excentricités actuelles des planètes, notamment celles de Jupiter et de Saturne qui ne s'expliquent que si l'une de ces deux planètes a subit une rencontre proche avec Uranus ou Neptune (Morbidelli et al., 2009) ; la distribution en demi-grand axe des astéroïdes dans la ceinture principale (Minton [START_REF] Koeberl | Impact Processes on the Early Earth[END_REF].

Neptune (Murray-Clay & Chiang, 2005) qui fournissent des contraintes sur la vitesse de migration des planètes ; enfin, l'orientation actuelle de l'axe de rotation de Saturne qui contraint à la fois la vitesse de migration et l'augmentation de l'inclinaison de Neptune (Boué et al., 2009). De plus, ce scénario permet d'expliquer l'origine des Troyens de Jupiter ainsi que la grande diversité de leurs excentricités et inclinaisons (Morbidelli et al., 2005), et aussi la présence des satellites irréguliers autour des planètes géantes [START_REF] Nesvornÿ | Capture of Irregular Satellites during Plane tary Encounters[END_REF].

Dans les articles fondateurs du modèle de Nice (Gomes et al., 2005;Morbidelli et al., 2005;Tsiganis et al., 2005), les conditions initiales des planètes étaient plus ou moins arbitraires. Depuis, Morbidelli et al. (2007) ont montré qn'initialement les planètes étaient certainement toutes en résonance de moyen mouvement suite à la migration dans le disque de gaz. De plus, cette migration ne permet qu'un petit nombre de configurations résonantes dont certaines deviennent rapidement instables lorsque le gaz est dissipé. Cela fournit donc une contrainte supplémentaire au modèle de Nice.

Stabilité des orbites aujourd'hui

Après la phase de migration, le système solaire externe est très semblable à celui d'aujourd'hui.

En effet, l'étude de l'évolution à long terme de notre système planétaire ne montre un comportement chaotique significatif que pour les planètes internes [START_REF] Laskar | Chaotic diffusion in the Solar System[END_REF]. Celles-ci présentent des variations de leur inclinaison et excentricité similaires à une marche aléatoire ce qui peut engendrer d'éventuelles collisions dans le future [START_REF] Laskar | Existence of collisional trajectories of Mercury, Mars and Venus witli the Earth[END_REF]. En revanche, l'analyse des paramètres orbitaux des planètes géantes montre que leur évolution est essentiellement quasi-périodique. La stabilité des fréquences séculaires de ces mouvements est telle que les variations sur 100 millions d'années ne dépassent pas 0.2% (Laskar et al., 2004b). On peut donc considérer qu'il n'y a pas eu d'évolution significative du système solaire externe depuis la fin de la migration. figure est adaptée de [START_REF] Harris | Dynamical constraints on the formation and évolution of planetary bodies[END_REF].

suivant : la planète en formation est en orbite circulaire autour du soleil. Toute particule située sur une orbite interne (de demi-grand axe inférieur à celui de la planète) doit se trouver à l'aphélie pour être capturée par la planète. Or c'est à l'aphélie que la vitesse est la plus faible donc vue de la planète, la particule recule et apporte une composante positive au moment cinétique. Inversement, une parti cule en orbite externe (de demi-grand axe supérieur à celui de la planète) doit se trouver au périhélie pour être capturée par la planète. Comme la vitesse est maximale au périhélie, vue de la planète, la particule avance. Elle fournit donc aussi une composante positive au moment cinétique.

1.2.4

Uranus : une planète singulière Uranus, qui a été découverte par William Herschel en 1781 [START_REF] Herschel | A Letter from William Herschel[END_REF], possède une obliquité proche de 98 deg. L'orientation singulière de son axe de rotation a été suspectée peu de temps après sa découverte grâce à l'observation de ses satellites, bien avant les premières mesures de sa rotation. En effet, [START_REF] Herschel | An Account of the Discovery of Two Satellites Revolving Round the Georgian Planet. By William Herschel[END_REF] annonce que les orbites des deux satellites qu'il vient de découvrir (Titania et Obéron) font un angle considérable avec l'écliptique. L'année suivante, il fournit la première valeur de cette inclinaison : 99°39'53", 9 [START_REF] Herschel | On the Georgian Planet and Its Satellites[END_REF]. Dès lors, les astronomes soupçonnent l'axe d'Uranus d'être incliné de la même façon. Ensuite, les mesures de l'aplatissement de la planète ont été dans le même sens (pour une revue, voir [START_REF] See | Preliminary Researches on the Diameters of the Planets Neptune and Uranus[END_REF]. Notamment, l'ellipticité observée de la figure d'Uranus varie suivant les dates d'observation jusqu'à s'annuler les moments où le pôle des orbites des satellites est dans l'axe de la Terre. Cela signifie qu'Uranus est aplatie et que les satellites orbitent dans son plan équatorial. De plus, l'aplatissement doit engendrer un mouvement séculaire des orbites des satellites. L'absence de ce mouvement est un argument supplémentaire pour dire que ces orbites sont peu inclinées par rapport à l'équateur. Les premières tentatives de mesure de la rotation d'Uranus, quant à elles, ont été effectuées plus tard par spectroscopie [START_REF] Lowell | Spectroscopic discovery of the rotation period of Uranus[END_REF][START_REF] Slipher | Détection of the rotation of Uranus[END_REF], puis par photométrie [START_REF] Campbell | Variability of Uranus[END_REF]. Cependant ces mesures étaient peu précises à cause des mouvements atmosphériques à la surface de la planète. Il faut attendre le survol d'Uranus par la sonde Voyager 2 en 1986 pour avoir enfin une valeur précise de la période de rotation de la planète, 6 CHAPITRE 1. HISTOIRE DU SYSTÈME SOLAIRE à savoir 17.24h (Desch et al., 1986).

Sur l'origine de la forte obliquité d'Uranus

Comme nous l'avons vu plus haut, les planètes géantes se forment préférentiellement avec une obliquité proche de zéro. Mais alors, comment expliquer le basculement de 97 deg de l'axe d'Uranus ?

Plusieurs scénarios ont été avancés dans les dernières décennies pour tenter de résoudre ce problème.

Nous les exposons ici dans un ordre arbitraire.

1.3.1 Basculement du système solaire Tremaine (1991) a étudié la façon dont évoluerait le système solaire s'il était soumis à un couple extérieur. En particulier, Tremaine (1991) a montré qu'un couple, engendré par une distribution de masse (disons à symétrie axiale pour simplifier) située au delà du système solaire et dont l'axe de symétrie basculerait de 90 deg en 0.5 million d'années environ, pourrait faire basculer les orbites de toutes les planètes. Il suffit pour cela que la masse perturbatrice divisée par le cube de sa distance au soleil soit de l'ordre de 1O"7M0 • U A-3. Car dans ce cas la précession des orbites engendrée par le perturbateur est plus rapide que l'évolution du perturbateur et les planètes restent dans son plan de symétrie.

Les évolutions des axes de rotation des planètes sont aussi déterminées par leur vitesse de préces sion comparée au temps caractéristique d'évolution de la perturbation. Toutes les planètes internes jusqu'à Jupiter précessent suffisamment rapidement pour garder une obliquité nulle. En revanche, Saturne, Uranus et Neptune, précessant moins vite, sont plus sujettes à voir leur obliquité augmenter.

Aujourd'hui, les obliquités actuelles de Jupiter, Saturne, Uranus et Neptune sont respectivement de 3 deg, 27 deg, 97 deg et 28 deg. Ainsi, ce mécanisme donne des résultats compatibles avec les observa tions. Tremaine (1991) envisage alors qu'un tel événement a pu se produire durant les dernières étapes de la formation des planètes. Le couple extérieur serait dû à une asymétrie du nuage de gaz dans lequel le système solaire se serait formé. Cependant Tremaine (1991) montre que l'axe de rotation du soleil est très faiblement lié au plan des orbites des planètes : son axe précesse trop lentement.

Or, l'axe du soleil n'est aujourd'hui incliné que de 7 deg. Pour résoudre cette difficulté, Tremaine (1991) suppose que le soleil continue à accréter de la matière pendant la phase de basculement. Mais alors dans ce cas, on peut objecter que les planètes aussi doivent accréter de la matière pendant cette phase. C'est justement à la fin de leur formation que les planètes gazeuses acquièrent la quasi totalité de leur atmosphère par un processus d'emballement [START_REF] Pollack | Formation of the Giant Planets by Concurrent Accretion of Solids and Gas[END_REF]. Ainsi, même avec cette perturbation extérieure, les planètes gazeuses devrait se former avec une faible obliquité, étant donné que c'est leur atmosphère massive qui contient l'essentiel de leur moment cinétique. D'ailleurs, l'origine de l'obliquité de Saturne est maintenant comprise et repose sur un autre mécanisme (Ward & Hamilton, 2004;Boué et al., 2009). Concernant Uranus et Neptune qui sont essentiellement des planètes de glace, le mécanisme de Tremaine (1991) tient toujours.

Décroissance orbitale d'un satellite rétrograde

Le scénario envisagé par [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] est le suivant : un satellite initialement en orbite rétrograde échange du moment cinétique avec sa planète par effet de marée et la fait basculer avant de se briser. Ses hypothèses sont : (1) le système constitué de la planète et de son satellite est isolé;

(2) le moment cinétique de rotation du satellite est négligeable devant celui de son orbite Lu et celui de la planète Lw ; (3) la période de rotation de la planète à la fin du basculement est égale à celle qu'avait la planète avant de basculer. Seule la direction de son axe a changé ; (4) la planète bascule de 98 deg. Dans son étude, [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] n'évoque pas l'effet de l'aplatissement de la planète qui est pourtant prépondérant sur celui de la marée. Cependant cela ne change pas les résultats car l'aplatissement a pour seul effet de faire tourner Ln et L^à la même vitesse autour du moment cinétique total L, les trois vecteurs restent donc toujours coplanaires et les équations d'évolution sont inchangées dans ce repère tournant. [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] a montré que comme dans le cas plan (inclinaisons nulles) traité par Counselman (1973), il existe une masse de satellite critique ms = mc séparant deux types d'évolution possible.

Cette masse critique est une fonction de la masse et du moment d'inertie de la planète. Pour Uranus, [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] Comme ce satellite n'est pas observé autour d'Uranus, [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] en déduit que le satellite doit être plus massif que mc. Cependant, il ne peut pas être beaucoup plus massif car il doit rester léger vis-à-vis d'Uranus pour que son moment cinétique de rotation reste faible devant les autres (2eme hypothèse). Partant de ms = rac, [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] [START_REF] Kubo-Oka | Graduai increase in the obliquity of Uranus due to tidal inter action with a hypothetical rétrogradé satellite[END_REF] ont obtenu mc = 0.0095My au heu de mc = 0.03Mu trouvé par [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF].

Les contraintes fournies par [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] ne sont a priori pas suffisantes pour savoir si le basculement peut avoir lieu. En particulier, [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] n'a pas vérifié si le basculement pouvait avoir lieu en un temps inférieur à l'âge du système solaire. Pour répondre à cette question, il est nécessaire de se donner un modèle de marée. Or, pour l'instant, il n'existe pas de modèle qui fasse l'unanimité (voir la section 2.3 ainsi que [START_REF] Efroimsky | Tidal torques : a critical review of some techniques[END_REF][START_REF] Greenberg | Frequency Dependence of Tidal q[END_REF]). [START_REF] Kubo-Oka | Graduai increase in the obliquity of Uranus due to tidal inter action with a hypothetical rétrogradé satellite[END_REF] ont effectué une application numérique en supposant que le déphasage temporel At = 0.8s reste constant tout au long de l'évolution (ce qui correspond à un facteur de qualité actuel Q = 5 x 103). Par ce critère, [START_REF] Kubo-Oka | Graduai increase in the obliquity of Uranus due to tidal inter action with a hypothetical rétrogradé satellite[END_REF] ont trouvé une nouvelle contrainte : ms > 0.012 Mu-Cette valeur doit être prise avec précaution sachant qu'elle dépend du paramètre A t qui est mal connu et du modèle utilisé.

Dans tous les cas, le satellite doit avoir une masse supérieure à environ 1% de celle d'Uranus. Et ce satellite doit migrer d'une orbite externe à celle d'Obéron jusqu'à la surface d'Uranus. Les satellites actuels d'Uranus n'ont donc pas pu survivre à un tel mécanisme. [START_REF] Greenberg | Outcomes of tidal évolution for orbits with arbitrary inclination[END_REF] propose que les satellites réguliers se sont formés à partir des fragments de ce gros satellite.

La grande collision

La troisième possibilité est la plus communément admise. 11 s'agit de l'impact géant [START_REF] Safronov | Sizes of the largest bodies falling onto the planets during their formation[END_REF]Korycansky et al., 1990;[START_REF] Brunini | A possible constraint to Uranus' great collision[END_REF][START_REF] Parisi | Constraints to Uranus' Great Collision-II[END_REF][START_REF] Brunini | Constraints to Uranus' Great Collision III : The Origin of the Outer Satellites[END_REF][START_REF] Parisi | Constraints to Uranus' great collision IV. The origin of Prospero[END_REF]. L'idce est qu'une protoplanète de la masse de la Terre a pu percuter Uranus pour la faire basculer. Brunini et Parisi ont d'abord cherché à expliquer l'absence de satellite irrégulier autour d'Uranus par l'intermédiaire de la grande collision. Ensuite, de tels satellites ont été découverts et ils ont montré que ces satellites ne pouvaient pas exister au moment de la collision. Ils ont dû être capturés plus tard. Cela est en accord avec le scénario de capture des satellites irréguliers lors de la migration planétaire dans le disque de planétésimaux [START_REF] Nesvornÿ | Capture of Irregular Satellites during Plane tary Encounters[END_REF]. Cependant, le problème principal posé par l'impact géant est l'existence de satellites réguliers possédant une inclinaison très faible par rapport à l'équateur d'Uranus. Certains travaux montrent qu'il est possible de former ces satellites à partir des éjectas [START_REF] Slattery | Giant impacts on a primitive Uranus[END_REF]. Mais alors que sont devenus les satellites qui CHAPITRE 1. HISTOIRE DU SYSTÈME SOLAIRE ont été créés avant? D'autres travaux, en revanche, montrent ou affirme le contraire (Korycansky et al., 1990;Mosqueira & Estrada, 2003a). Korycansky et al. (1990) ont montré que suite à l'impact, soit aucune matière n'est éjectée, soit de la matière est éjectée mais alors Uranus perd toute son atmosphère. Comme Uranus possède une atmosphère aujourd'hui, aucune matière n'a dû être éjectée selon ce modèle. D'un autre côté, si les satellites réguliers existaient avant la collision alors il faut trouver un mécanisme susceptible de les faire basculer de 97 deg comme Uranus. Comme nous le verrons plus tard (section 2.3), cela ne peut pas être l'interaction de marée.

Rencontres proches

Enfin, Brunini (2006a) a considéré la possibilité de basculer Uranus lors des rencontres proches qui ont pu se produire entre les planètes géantes lors de la migration. De cette manière, Brunini expliquait les obliquités de toutes les planètes externes. Cependant, Brunini s'est ensuite rétracté à cause d'un problème de calcul de l'obliquité dans son programme (Brunini, 2006b). De plus, Lee et al. (2007) ont montré que lors d'une rencontre proche les planètes ne peuvent pas basculer de façon significative. La raison est que les rencontres proches sont trop rapides comparées au temps caractéristique d'évolution des axes de rotation.

Conclusion

Il est fort probable qu'Uranus se soit formé avec une obliquité proche de zéro. Comme son axe de rotation actuel est incliné de 97 deg, Uranus a dû basculer entre le moment de sa formation et aujour d'hui. L'hypothèse de la grande collision explique difficilement la présence de satellites réguliers qui orbitent dans le plan de l'équateur. Le basculement est donc plus probablement séculaire. Cependant, dans l'état actuel du système solaire, l'obliquité d'Uranus est très stable. Le basculement a donc dû se faire à un moment où le système solaire était différent. La phase pendant laquelle le disque de gaz était présent est encore mal contrainte, toutefois il raisonnable de penser que les inclinaisons des orbites devaient être très faibles. Cela inhibe les interactions spin-orbite. Il reste alors la période qui débute au moment où le gaz est dissipé et qui se termine à la fin de la migration dans le disque de planétésimaux incluse.

Chapitre 2

Contraintes des satellites réguliers sur la vitesse de basculement Dans ce chapitre, nous allons calculer la limite inférieure de la durée du basculement d'Uranus imposée par ses satellites réguliers. Dans une première partie, nous allons reprendre la démarche de Kinoshita (1993). Ensuite, par une analyse plus fine, nous montrerons que la limite de Kinoshita (1993) peut être réduite d'un facteur 75 environ. Enfin, nous étudierons l'effet de la marée sur la limite obtenue.

Modèle de Kinoshita

Il est admis que les satellites réguliers des planètes géantes se forment dans un disque protosatellite qui correspond aussi au disque d'accrétion de la planète (Mosqueira & Estrada, 2003a,b). Cela permet d'expliquer entre autre la faible inclinaison équatoriale de l'orbite de ces satellites. Cependant, si l'obliquité de la planète varie trop rapidement alors ces satellites réguliers ne peuvent pas suivre et leur inclinaison augmente. La valeur actuelle des inclinaisons des satellites d'Uranus fournit donc une limite sur sa vitesse de basculement. Kinoshita (1993) a précisément étudié le mouvement de l'orbite d'un satellite dû à l'évolution séculaire de l'obliquité de sa planète. avec xq = è/y. On en déduit la trajectoire de la projection de n dans le plan de l'équateur

/ \2 2 2% 2 (x -xof + y = 1 H h Xq. V (2.9)
Il s'agit de l'équation du cercle centré sur (a:o, 0) et dont le rayon est égal à la racine carrée du membre de droite. Le rayon dépend de la valeur du hamiltonien. Cette valeur s'obtient à partir des conditions initiales. A t -0, le satellite est dans le plan de l'équateur donc n est confondu avec K, ce qui signifie que x = y = 0. On en déduit que le cercle passe par l'origine et que H = -tj/2. La figure 2.2 donne l'évolution de la projection de n sur le plan de l'équateur de la planète. ^Sat -2xo = Tprec/(2St). On retrouve en particulier la contrainte forte de Kinoshita (1993) (2.19) 

Nouvelle contrainte

Les équations du mouvement (2.12) que nous avons obtenues durant la phase de basculement (2.24) où l'intégrale est effectuée sur une période de précession, est un invariant adiabatique et varie peu pendant le basculement [START_REF] Henrard | Capture into résonance -an extension of the use of adiabatic invariants[END_REF]. Or, avant le début du basculement, le satellite reste dans le plan de l'équateur donc x = y = 0 et J xdy = 0. Ensuite, à la fin du basculement, l'axe de l'orbite du satellite n décrit un cercle centré sur l'origine. L'invariant adiabatique vaut donc I = ttR2 où R est le rayon du cercle. Si l'évolution est adiabatique, il y a conservation de l'invariant durant le basculement donc le rayon final est nul (en fait très petit), dans le cas contraire, R dépend de l'évolution de la vitesse. Ainsi, la contrainte sur la vitesse de basculement est une contrainte d'adiabaticité.

L'évolution choisie par Kinoshita (1993) est discontinue au début du basculement (à t = 0), et à la fin du basculement (à t = <5j). C'est justement à ces deux moments que l'invariant adiabatique change. A t -0, celui-ci passe de 0 à nxy, puis à t = ôt, il passe de 7t.Tq à 7tR2 avec 0 < R < 2xo. (2.28)

On remarque que pour n -0, on retrouve la fonction discontinue utilisée par Kinoshita (1993). 

(P!)2 2ô2p+1 2n [(2p + l)!]2 (4ô)2p+2 (p!)2 2 2 ' sin nô Q2P{2Ô) COS7TÔ Q2p+l(2ô) Qn (^) (n-l)/2 n k-0 1 (n -2k)2 (2.29) (2.30)
Pour ô -y 0, toutes ces expressions tendent vers 7t/2. Mais pour \Z\ supérieur ou de l'ordre de 1, l'analyse faite ici n'est pas valide. L'approximation I = pt n'est pas vérifiée. Comme nous nous intéressons à des inclinaisons finales de l'ordre de 0.1 deg, cela ne pose pas de problème. On vérifie que \Zo(ôt)\ correspond bien à la solution (2.17) trouvée pour le modèle de Kinoshita (1993), avec (Goldreich, 1965a). Des observations récentes de la migration des satellites galiléens donnent Q = (3.56 ± 0.66) x 104 [START_REF] Lainey | Strong tidal dissipation in Io and Jupiter from astrometric observations[END_REF], valeur calculée à la fréquence d'excitation de lo). Or, une étude de la viscosité dans l'atmosphère de Jupiter donne un facteur de dissipation Q ~2 x 1014 [START_REF] Goldreich | Turbulent viscosity and Jupiter's tidal Q[END_REF].

Suite aux observations de Jupiter chauds, des planètes extrasolaires de masse comparable à celle de Jupiter mais situées très près de leur étoile, l'étude de la dissipation par effet de marée a connu un regain d'intérêt (par ex. [START_REF] Ogilvie | Tidal Dissipation in Rotating Giant Planets[END_REF]Wu, 2005;[START_REF] Goodman | Dynamical Tides in Rotating Planets and Stars[END_REF]. Malheureu sement, ces études se heurtent à des problèmes numériques, dus par exemple à la très faible viscosité de l'atmosphère de ces planètes [START_REF] Ogilvie | Tidal Dissipation in Rotating Giant Planets[END_REF]Wu, 2005), et à des problèmes de modélisation, comme l'effet du noyau central sur la dynamique de l'atmosphère (Wu, 2005;[START_REF] Goodman | Dynamical Tides in Rotating Planets and Stars[END_REF]. Les facteurs de dissipation obtenus restent supérieurs à ~107.

Il semble donc qu'il y ait une contradiction entre ce qui est déduit des observations astronomiques et la modélisation de l'atmosphère de Jupiter. Pourtant, [START_REF] Dermott | Tidal dissipation in the solid cores of the major planets[END_REF] or les valeurs de [START_REF] Dermott | Tidal dissipation in the solid cores of the major planets[END_REF] (2.42) 
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Pour modéliser l'amortissement dans la déformation de la planète, la prescription qui est utilisée est de rajouter un déphasage eimpq dans chacun des termes de l'équation (2.44). On obtient alors A partir de là, il y a essentiellement deux approches qui permettent de simplifier les calculs. La première consiste à supposer les QimPq indépendants des fréquences d'excitation (+ïmpq• Cela revient à dire que les déphasages temporels Atimpq varient comme l'inverse des fréquences [START_REF] Gerstenkorn | Über Gezeitenreibung beirn Zweikôrperproblem. Mit 4 Textabbildungen[END_REF][START_REF] Macdonald | Tidal Friction[END_REF]Kaula, 1964). L'autre approche consiste à supposer que ce sont les déphasages Atimpq cfih sont constants [START_REF] Singer | The origin of the Moon and geophysical conséquences[END_REF][START_REF] Mignard | The évolution of the lunar orbit revisited. I[END_REF] Pour calculer l'intégrale (3.1), on se place dans un repère fixe (i,j,fe) défini de telle sorte que le disque et l'orbite de la planète sont dans le plan (i, j). On note 9 et 9' les angles respectifs que font les vecteurs r et r' par rapport à i. Nous avons alors dans la base (i,jf,fc) (Laskar, 2005b), il y a une coquille dans l'expression des coefficients de Laplace (Eq. 7). Il manque un facteur 1/2 devant le membre de gauche.
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Interaction solide-point

Nous venons de calculer le hamiltonien séculaire Tis qui décrit l'évolution de l'axe d'une planète soumise à l'effet d'un disque de matière. Nous rappelons maintenant l'expression du hamiltonien séculaire décrivant le mouvement de précession d'une planète soumise à l'interaction gravitationnelle du soleil seul. Notons Rq ce hamiltonien. Il s'écrit (par ex. Boué & Laskar, 2006, eq. 44) où wiq est la masse du soleil. ?nd p\pI m0 p\ -p\ </2(Pi) -Bf,M) .

(3.22)

Le coefficient k, décrit la contribution du disque au mouvement de précession de l'axe.

Regardons maintenant comment ce paramètre k varie en fonction des données du problème. [START_REF] Cartan | Cours de calcul différentiel[END_REF]. Dans cette expression, A(x) = à{x)y/]Lx avec p = Çm$. En substituant l'expression du hamiltonien dans l'équation du mouvement, avec Yo = E(0) les conditions initiales. Cela permet entre autre d'obtenir la décomposition en fré quence du mouvement de précession orbital de la planète qui nous intéresse, à savoir Uranus.

on obtient 1 \ . G f°°à(x)â{x')^fx\ [ , ] , «X)=1W)L ^^C3wMc(ae)-ç(ae)Jdae G [Xâ(x)â(x') f x' + i A / \ [ v '-~--C3 A(x)

Résultat

Dans ce paragraphe, nous allons appliquer la méthode présentée ci-dessus avec des valeurs de paramètres correspondant au système solaire. Les demi-grands axes des quatre planètes géantes, ainsi que les rayons interne et externe du disque de planétésimaux, ont été choisis de sorte à reproduire les conditions initiales de la simulation de Gomes et al. (2005). Le choix des conditions initiales pour les inclinaisons est plus difficile. En effet, la migration en phase gazeuse, qui précède l'époque que l'on étudie, a tendance à atténuer les inclinaisons [START_REF] Lubow | Secular Interactions between Inclined Planets and a Gaseous Disk[END_REF][START_REF] Tanaka | Tliree-dimensional Interaction between a Planet and an Isothermal Gaseous Disk. II. Eccentricity Waves and Bending Waves[END_REF]. Or, en Les variables (ip,X) sont conjuguées l'une de l'autre, et le hamiltonien qui décrit leur évolution est [START_REF] Kinoshita | Theory of the rotation of the rigid earth[END_REF]Laskar & Robutel, 1993;[START_REF] Néron De Surgy | On the long tenu évolution of the spin of the Eartli[END_REF])

U = -X2 -2C(t)X + y/l -X2[A(t) sin if> + B(t) cosip], (3.80) avec m = m = 2(<i + pC) yjl -p2 -q2 ' 2(p -qC) (3.81) yjl -p2 -q2 ' C{t) = qp-pq.
Les grandeurs p et q sont les parties réelle et imaginaire de la variable complexe définie dans la section précédente q + \p = sin ^exp(ifi).

(3.82)

Les équations d'évolution de l'axe de la planète déduites de TL sont

dTL = V 1 -Xz(-Acosi/j + AEsin^J, (3.83) X - -y/l -X2(-A cos + Bs'm.'ip), oip i> = =aX-2C dX \/l-X2 (Ashi'ifj + Bcosip).
Les quantités A(t), B{t) et C{t) se calculent à partir du spectre de l'évolution orbitale. Nous Ce hamiltonien est celui de la toupie de Colombo (Colombo, 1966). Comme le système ne contient qu'un seul degré de liberté, il est intégrable. Les orbites sont données par (TL,)t('ip'^X') = Cte. Les Nous allons maintenant calculer la taille de la zone de libration. Le hamiltonien (3.92) est une fonction paire de 0'. Cela explique pourquoi les orbites X'(0') représentées figure 3.8 sont symétriques par rapport à 0' = 0. On en déduit aussi que la dérivée de X' par rapport à 0' s'annule en 0' = 0. La largeur de l'île de résonance se calcule donc en 0' = 0. Notons Ti\ la valeur du hamiltonien au niveau des séparatrices. Les valeurs minimale et maximale de X' sur les séparatrices sont alors données par 

équations du mouvement sont = 2n/1 -X'Mfcj/* X' ip' = aX' + vk -2-j===Akuk cos ipf.
K = | X'2 + vkX' + 2A -X'2. ( 3 

Système complet

Maintenant, on oublie les moyennisations, et on considère le hamiltonien complet. Au vue de ce qui vient d'être fait, le système complet est une superposition d'îles de résonance centrées en X^= -v^ja.

Le nombre d'îles de résonance est égal au nombre de fréquences orbitales inférieures à la constante de précession en valeur absolue.

Pour déterminer qualitativement les possibilités d'évolution de l'axe de la planète, nous allons utiliser le critère de [START_REF] Chirikov | A universal instability of many-dimensional oscillators Systems[END_REF]. Si l'espacement entre les îles est supérieur à leur taille, alors celles-ci sont séparées par des zones de circulation dans lesquelles l'obliquité ne varie pas séculairement.

En revanche, si la taille des îles est supérieure à leur espacement, c'est-à-dire si les séparatrices de deux îles se croisent, alors il se crée une zone chaotique dans laquelle l'obliquité est susceptible de diffuser. Ce critère est approximatif car entre les îles principales, il se crée des résonances secondaires qui engendrent du chaos plus rapidement que ce qui est donné par le critère de Chirikov. Pour avoir une idée de l'effet des résonances secondaires sur la disparition de la zone de circulation entre deux îles principales, nous avons utilisé le résultat de l'étude numérique d'un pendule simple perturbé dont Comme cette équation n'est pas intégrable dans le cas général, nous n'allons pas chercher à la résoudre.

A la place, nous allons chercher une majoration de l'obliquité à tout instant. Tant que cette obliquité hypothèse 3. En dehors de la zone de déflexion, la planète n'a aucun effet sur l'évolution de la particule qui suit alors une orbite képlérienne autour du soleil.

A ces trois hypothèses, [START_REF] Greenberg | Outcomes of planetary close encounters -A systematic comparison of méthodologies[END_REF] en rajoutent une autre qui est implicite dans le travail d 'Ôpik (1976) hypothèse lb. Les parties asymptotiques de la trajectoire hyperbolique de la particule autour de la planète sont contenues dans la sphère d'influence de la planète, c'est-à-dire là où l'approximation à deux corps est valide.

En comparant avec des intégrations numériques du problème à trois corps, [START_REF] Greenberg | Outcomes of planetary close encounters -A systematic comparison of méthodologies[END_REF] ont montré que le modèle d 'Ôpik (1976) avec rd la distance de la rencontre au soleil. Cela correspond au rayon de Hill à un facteur 3 -1/3 près [START_REF] Henon | Sériés expansion for encounter-type solutions of Hill's problem[END_REF][START_REF] Gladman | Dynamics of Systems of two close planets[END_REF]. Cette expression donne 0.54 UA et 0.62 UA respectivement 

Conclusion

Si les rencontres proches 11e permettent pas de modifier directement l'obliquité des planètes, elles peuvent néanmoins augmenter leurs inclinaisons. C'est une fois que les inclinaisons sont élevées que les interactions séculaires deviennent importantes et que les obliquités peuvent évoluées significative ment. Finalement, les rencontres proches ont quand-même un effet indirect sur le comportement des obliquités.

Scénario de basculement sans collision

A partir de toutes les contraintes qui ont été obtenues jusqu'ici, nous allons maintenant présenter un nouveau scénario de basculement d'Uranus sans collision étayé par des simulations numériques.

Cette section est la traduction française de l'article [START_REF] Boué | A collisionless scénario for Uranus tilting[END_REF] que nous avons reporté à la section suivante (pages 66 à 69). final obliquity (degrees) 

INTRODUCTION

Today, Uranus' obliquity (97°) is essentially stable. This is duc to the regularity of its orbital motion and to the slow precession motion of Uranus' axis compared to the secular frequencies of the solar System (Laskar & Robutel 1993). It is sometimes believed that a great collision with an Earthsized protoplanet could be the reason of Uranus' large obliquity.

But this straightforward scénario hardly explains the presence of regular satellites orbiting Uranus in its équatorial plane (Korycansky et al. 1990). However, the presence of satellites around a planet can increase its precession rate by a large amount depending on their mass and orbital parameters (Tremaine 1991;Goldreich 1966;Ward 1973;Boue & Laskar 2006).

For example, with a satellite of mass m = 0.01 Mv, where

Mu is the mass of Uranus, the increase can reach a factor of 1000 (Figure 1). The maximal effect is obtained for a satellite located at about 50 Uranian radii, which is actually in the région where a satellite has been predicted by some formation models (Mosqueira & Estrada 2003a, 2003b;Estrada & Mosqueira 2006). For comparison, the most distant regular satellite of Uranus is Oberon, whose mass is 3.45 x 10"2 * * 5 Mu and distance from Uranus' barycenter is 23 Uranian radii (Laskar & Jacobson 1987). The interactions between spin-axes and secular motions of the planets are also strengthened when orbital inclinations are high. Such conditions could be met during the planetary migration. Indeed, in the Nice scénario (Tsiganis et al. 2005), Jupiter and/or Saturn should hâve undergone close encounters with the ice giants to reach their présent eccentricities (Morbidelli et al. 2009). These close encounters can raise the inclinations. Moreover, the additional satellite can be ejected during one of these encounters. We therefore propose that Uranus had an additional satellite and its spin-axis was tilted during the planetary migration.

NUMERICAL EXPERIMENT

The construction of such a scénario for Uranus tilting can be described in four steps.

First, we simulated the Nice model (Tsiganis et al. 2005). We integrated 10,000 migrations of the giant planets over 10 Myr.

For these simulations, Then, out of the 5142 simulations that survived without éjec tion or planet collision, we selected those where the planet final order is the same as in the solar System. We obtained 1995 different intégrations. As the tilt requircs high inclination, we kept only the simulations where Uranus' inclination increases beyond a given threshold. We set this threshold to 17°which limits the number of simulations to 31. Among these simula tions, we rejected those where the closest encounter between Uranus and any other planet is doser than 50 Uranian radii.

With our criterion, we finally selected 17 simulations. One of them is displayed in Figures 2(a) and (b). We call it the référencé simulation.

In a third step, we computed the maximal effect of an ad ditional satellite on Uranus' obliquity in any orbital évolution with the same semimajor axis, eccentricity, and inclination as in the référencé simulation, regardless of the conjugated angles.

For that, we used the expression of the effective precession con stant as a funclion of the satellite orbital parameters (Boué & Laskar 2006). Then, we computed the maximal tilt given Uranus orbital évolution (Boué et al. 2009). In the calculations, the satel lite is at 50 Uranian radii in both circular and eccentric orbits. where My is the mass of Uranus (Boué & Laskar 2006). For this calculation, the semimajor axis and the eccentricity of Uranus are set to the current values, and the satellite is assumed to hâve a circular orbit. Ail inclinations as well as the obliquity are set to 0. Finally, we integrated the évolution of Uranus' spin-axis and the additional satellite in the 17 selected simulations.

Calculations of the évolution of Uranus' spin-axis take into account the gravitational torques exerted by the Sun, by the additional satellite, and by ail the other giant planets. For each of the 17 planet migrations, we performed 100 intégrations vary ing the initial semimajor axis of the satellite by a small amount (15 m). The final obliquity distribution is given in Figure 3.

In 644 cases, the obliquity does not exceed 10°because the satellite is ejected at the first encounter before the increase of the inclinations. But, if the satellite survives the first encounter, as in 62% of the cases, then the obliquity can reach large values.

Among the intégrations in which the satellite is ejected before the end of the migration, there is a final obliquity larger than 60°in 220 cases and an obliquity larger than 90°in 37 cases.

DYNAMICS OF THE TILT

Here we explain the évolution of Uranus' spin-axis during the tilt presented in Figure 2. The smooth évolution of the obliquity during the tilt (Figure 4(b)) suggests that it is due to a résonance.

In the following, we show that the tilt actually occurs during a 1:1 spin-orbit résonance between the precession of Uranus' axis and the régression of the node of its orbit. The obliquity e is measured relative to the invariant plane orthogonal to the total orbital angular momentum at the end of the simulation ( 10 Myr). Traditionally, it is defined relative to the orbital plane, but as the inclination rises to high values it is préférable to use the invariant plane in order to avoid artificial évolution of the spin-axis. At the end of the référencé simulation, Uranus' orbital inclination is very small ((L0024) and the différence between the two définitions is sufficiently small to bc ncglected.

Let (i, j, k) be a base frame such that the x-y plane coincidcs with this invariant plane. We note w, Uranus' spin-axis, and n, the normal of its orbit. The obliquity e is thus defined by cos € = k • w. Let (f)a and 0,, be the angles measured positively 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 t (Myr) from the référencé direction i to the projections of w and n into the x-y plane, respectively. The évolution of 0 = <pa -0,, -n is not steady but describes plateaus during the tilt (Figure 4(a),

phases II, and IV+V). This confions the 1:1 résonance between the precession of Uranus' axis and the régression of the node of its orbit.

In order to hâve a full understanding of the tilt, we now give the équations of motion that will allow us to describe the spatial évolution of the spin-axis displayed in Figure 4 intégrations of Uranus spin-axis with an additional satellite: 100 per each of the 17 selected migrations. In black, the cases where the satellite is ejected; in gray, the cases where the satellite still orbits Uranus after 2 Myr (the end of the intégrations with a satellite). The first bin has been truncated for a better visualization, its value is 644 (black) + 8 (gray). Aniong the simulations with éjection of the satellite, there is a final obliquity larger than 60°(resp. 90°) in 220 cases (resp. 37 cases).

Hamiltonian describing lhe spin-axis évolution reads

H =--(il w)2 -v(k w). (1) 
In this frame k is constant, whereas n varies due to the évolution of the inclination. We hâve In phase //, the variable xj/ remains close to -tï/2

(Figure 4(a)), there is thus a 1:1 spin-orbit résonance. In that case, the angular velocity coz in Equations ( 5) and ( 6) is negligible and it remains only the rotation around the first axis In phase III, the angle i/s evolves (Figure 4 During phase IV, the angle ij/ is stable for a second time.

[i « 0 j ÿ » -coxz (7) 
The spin-axis is thus once again captured in résonance and the In phase VI, the résonance is once again broken (Figure 4 After the tilt, the satellite is ejected. The precession constant a decreases by a factor close to 1000, which gives coz ae y and cox ^0. The équations of motion (Equations ( 5)) thus show that the spin-axis precesses around the third axis at the angular velocity v. The obliquity remains constant as one can see in Additionally, we solve the problem of the missing satellite around Uranus (Mosqueira & Estrada 2003a, 2003b). Although satellite formation théories are not at the stage that they can constrain the final mass of the satellites, we acknowledge that the satellite we hâve introduced may be too massive.

Nevertheless, a less massive satellite of only 0.001 Mu can still be sufficient to tilt Uranus if the planetary migration timescale is larger than the one used here (see Figure 5). Several recent studies actually suggest such a longer migration timescale triaxial bodies (Maciejewski 1995) or in the simpler case where the central body is spherical (Abul'naga and Barkin 1979; Wang et al. 1991). General motions were stndied numerically on a typical binary asteroid System, called 1999 KW4, (Fahnestock and Scheeres 2008). In BL09, the long term évolution is solved in same manner as in BL06.

Two different problems

The two Systems hâve a different number of bodies. Their évolutions are tlius not described by the same set of variables. That is why it is necessary to start the study of the two problems separately. Nevertheless, the chosen coordinates are similar. In both cases, we use a vectorial approach that makes the équations easy to manipulate (see Milankovich 1939).

The lunar problem

In the lunar problem, we analyze a three body System with a central star, an axisymmetric oblate planet and a satellite whose masses are respectively mo, m\ and The moments of inertia of the rigid planet are A in the equator and C > A along the figure axis. In this System, we represent the position of the bodies with Jacobi coordinates (see figure 1) and the planet orientation by its figure axis K and its angular momentum G. We do not use the gyroscopic approximation, we thus allow the two vectors not to be merged.

The solid-solid problem

In this System, the two bodies are triaxial with the respective moments of inertia A\ < B\ < C\ and A2 V B2 "Ti T!2 and the respective masses m\ and 777-2-The relative position of their barycenter is given by the position vector r, and their orientations by the vectors of their principal bases (Ii,Ji,Ki) and (I2,J2,K2), Gwenaël Boue, Jacques Laskar: Spin axis évolution of interacting bodies 3

where their tensors of inertia are diagonal, and their angular momentums Gi and g2.

3 Similarities

Averaging

The évolution of these two Systems is assumed to be regular and not résonant. Both problcms hâve a priori 9 degrees of freedom: 3 per orbit, and 3 per rigid body. In the lunar problem, there are the orbit of the satellite around the planet, the orbit of the planet-satellite barycenter around the central star, and the rigid planet. In the solid-solid problem, there are the relative orbit, and the two bodies. But, because of the total angular momentum conservation, the motions are combinations of only 8 fundamental modes with their respective fundamental frequency.

These modes can hâve very different periods. The proper rotation of the rigid bodies and the mean motions are very fast compare to the slow évolution of the angular momentum of the orbital planes and the rigid bodies. As we are only interested in the secular motion of the angular momentums, we average the équa tions of motion over the fast angles. The precession of the periapses hâve a long period too. We could hâve set the eccentricity to zéro to simplify the problems, but we prefer to average over the longitude the periapses too. We thus keep the problem more general with non zéro eccentricity.

Average équations

In this section, we skip the calculations of the full Hamiltonians (before averaging)

that are spécifie for each problem. Details can be found in BL06 and BL09. After averaging, the remaining variables are the angular momentums.

In the lunar problem, these are the angular momentum of the two orbits Gi and G2 and of the planet G. In the solid-solid case, these are the angular momentum of the orbit G and of the two bodies Gi and G2.

The équations of motion of these vectors are of the same kind and read

G = VGiJs A G, G! = Vc^AGn G2 = VG2iJsAG2,
where Hs is the secular Hamiltonian of the System (see e. Hs --\vx2 --by2 --cz2 4-dxyz --ex4 --fyA -^gx2?/2, (3.4)

where the coefficients a, b, c, D, c, f and g are explicit functions of the physical and orbital parameters. The only différence between the two Systems is that the coefficients 0, c, f and g vanish in the lunar problem.

A common resolution

Since the Hamiltonians and the équations of motion of the two problems are équiv alent, the resolution and the solutions are also identical. We recall here the method we hâve employed in our two papers.

First intégrais

In the secular problem, the variables are the three unit vectors w, wq and w2

along the angular momentums of the orbits and of the solid bodies. We thus hâve 9 unknowns. As these are unit vectors, we hâve three first intégrais corresponding to their norms. We hâve three other first intégrais coming from the total angular momentum conservation and a last one given by the total energy conservation. We thus hâve 9 unknowns and only 7 first intégrais. We need one more first intégral to solve the équations trivially.

Reduced problem

As the secular Hamiltonian cannot be solved directly in a trivial manner, we consider the following reduced problem. Instead of looking at the motion of the vectors w, wj and W2, we focus on the évolution of their dot products x, y, z.

Prom the équations of motion (3.1-3.3), it is easy to get the équations describing the évolution of x, y, z in terms of x, y and z. More over, the reduced problem contains only 3 unknowns and 2 first intégrais. Indeed, we still hâve the total energy conservation (3.4), and the total angular momentum conservation gives 7/3x + cryy + a/3z = K = Cst.

(4-1)

The reduced problem is thus intégrable, the orbit of (x, y, z) lies at the intersection C of the quartic Hs = Cst and the plane K = Cst.

Cassini Berlingot

The point of coordinates (x,2/, z) cannot describe the full intersection C. Indeed,

x, y and z are dot products of the unit vectors w, wj and w2 and cannot hâve Fig. 2. The surface v2(x,y,z) = 0. As v2 > 0, the allowed space is the interior of the Cassini berlingot shaped volume.

absolute values grcater than 1. Even more, the square of the volume v defined by the three vectors w, wj and W2 is given by the Gram déterminant and tliis quantity is necessarily positive. The surface in (ae, y, z) defined by v2 = 0 is represented in figure 2. We call this surface the Cassini berlingot after the name of a frencli hard candy with the saine shape. We attributed this surface to Cassini because it contains the fixed points for which the volume defined by the three angular momentums vanishes. This means that the three vectors are in the same plane, as in the Cassini states (Colombo 1966;Peale 1969;Ward et al. 1975; BL06; BL09). Outside of the Cassini berlingot, we hâve v2(x,y,z) < 0 which is impossible, thus the évolution of (x, y, z) is confined inside the Cassini berlingot.

Periodic motion

In most astronomical problems, the orbit of (x,z/, z) crosses the Cassini berlingot.

In BL06 and BL09, we show that in this case, the point (x,y,z) do periodic returns inside the Cassini berlingot and bounces on the surface. Such a trajcctory is depicted in figure 3. Let T be the period of (x(t):y(t), z(t)) and v -2n/T be its frequency. Title : will be set by the publisher Fig. 3. The shaded area corresponds to the région where v2 > 0, inside the Cassini berlingot.

The orbit intersects the Cassini berlingot at the points r+ and r_. The System do periodic returns between these two intersection points.

Global solution

Saying that x, y and z are T-periodic functions of time, it is possible to rewrite the équations of motion (3.1-3.3) in terni of the matrix W = (w,wi,w2) on the form of a linear System of first order with periodic coefficients. In BL06 and BL09, we show that the solution can be expressed on the form W(t) = Tl(t)W{t), (4.3)

where W(t) is periodic with period T, and 7Z(t) is a uniform rotation around the total angular momentum.

The global solution lias thus 2 frequencies, one corresponding to the uniform rotation that can be referred to as a global precession of the three vectors, we designate it as fl, and the other corresponding to the periodic motion of (x,y:z)

that can be referred to as a nutation motion.

Solutions expressed in tenus of quadratures can be calculated, but it remains tedious. It is neverthcless done in BLOG. However, in both papers, we give spécifie analytical approximations that are well suited for astronomical problems.

Solutions

In order to clieck the reliability of our studies, we also compare our analytical results with numerical intégration of the full Systems, i.e. without averaging. We show here a few results for the two problems: the value of the precession rate in the lunar problem and the trajectories of the unit vectors in the solid-solid problem.

The lunar problem

We hâve seen that the secular évolution of this System contains only two fundamental frequencies. The precession frequency fl and the nutation frequency u. Figure 4 shows the évolution of the precession frequency as a function of the dis tance of the satellite in the case of the Earth-Moon System. This figure depicts the continuity of the precession rate between the two previously known asymptotic approximations and the good agreement between the numerical intégration and our analytical approximation of the secular évolution.

The solid-solid problem

For this System, we look at the trajectories of the unit vectors w, wi, W2-We took in a rotating frame with the precession frequency so as to cancel the precession and emphasize the nutation motion. The numerical outputs are tliick because of the high frequencies appearing in the full System. But after a low pass filter, the agreement between the numerical intégration and the analytical approximation is very good.

Conclusion

The lunar problem and the solid-solid problem are a priori two non-integrable different problems. Nevertheless, we show here that after proper averaging, tlieir secular évolution can be treated with the saine formalism and integrated exactly.

This resuit can be extended to any three vector problem which corresponds to a System with three angular momentums. There are three kinds of such Systems:

the two Systems presented here and the four body problem made of point masses only.

Introduction

We are considering here a rclatively simple System composed of a central star, a planet orbiting the star, and a satellite orbiting the planet. We increase the complexity of the problem by considering that our planet is a solid non-spherical body. The most obvious System of this kind is the Sun-Earth-Moon Sys tem, but some triple star Systems will fit in our study as well.

We focus here on the precessional motion of the spin axis of the planet, and in a lesser degree on the precessional motion of the orbital plane of the satellite and of the planet.

The computation of the precession of the spin axis of a planet in presence of a distant satellite is well known (see Murray, 1983). In this approximation, the precession torque, and thus the precession frequency, increases as 1/r3 when the distance r of the satellite to the planet dccreases. It is thus clear that these formulas are no longer valid for a close satellite.

The understanding of the contribution of a close satellite was first motivated by the study of the martian satellites, Phobos and Deimos. Goldreich (1965) that a close satellite will follow the planet with a nearly con stant inclination to the equator. This work was followed by the contributions of Kinoshita (1993) who analyzed the motion of the uranian satellites under the secular change of the obliquity of the planet, and [START_REF] Efroimsky | Long-term évolution of orbits about a precessing oblate planet. 1. The case of uniform precession[END_REF] who consider non-uniform precessions.

In his beautiful study of the lunar orbit, Goldreich (1966) extcnded his work to the Sun-Earth-Moon System, but assumed that the planet orbit is fixed and circular orbits for both satellite and planet. This work was extended by Tourna and Wisdom (1994a) using a non-averaged Hamiltonian, and équations of motion expressed in the mobile frame linked to the planet.

Explicit analytical expressions for the contribution of a close satellite to the precessional motion of a planet were derived by Ward (1975), using the équations of Goldreich (1966), with zéro eccentricities, zéro inclinations, and the gyroscopic ap proximation (i.e., one assumes that the axis of rotation is the axis of figure of the planet). These computations were improved by Tremaine (1991) who considered the inclinations, and corrected the mass factors of Goldreich (1966).

In Section 2, we consider the general problem with an oblate planet and a satellite. Contrarily to many of the previous study, we do not make the gyroscopic approximation, thus allowing for an axis of figure different from the axis of rotation. Nev-crtheless, in the présent work, we simplify the équations of motion by averaging over the rotational motion of the planet, providing some precession (and nutation) équations that can be used in a very general setting.

In a second stage (Section 3), we dérivé the secular équations that are obtained by averaging over the orbital motion of the satellite and the planet, and over the argument of pcrihelion of the satellite. We obtain a set of secular équations that describe in a closed way, the évolution of the spin of the planet, the orbital plane of the planet, and the orbital plane of the satellite in a very general setting.

We then demonstrate that, quite surprisingly, this differential System of order 9 with 7 intégrais is intégrable, and can be decomposed as a relative periodic motion (the nutation) and a general precessional motion. The two periods can be derived by quadratures. We obtain thus some general formulas (although not explicit) that provide the precession formulas for the axis of the planet, in ail cases, for a distant or a close satellite, but also in the intermediate régime where none of the previous approxi mations is valid (Section 4). In this section, we also demonstrate that after averaging over the nutation motion, the pôle of the spin axis, the pôle of the satellite orbit, and the pôle of the planet orbit remain coplanar with the total angular momentum (Sec tion 4.3). This is in some sense a generalization of the Cassini Laws.

After some discussion of numerical examples (Section 5), in Section 6, we proceed to an additional approximation that allows to obtain a completely explicit solution of this problem, for arbitrary values of the eccentricities, inclination, and semimajor axis of the planet and satellite, whenever the averaging is possible. We can then compare this approximation with our rigorous expression, and with the results of non-averaged nu merical intégrations in different settings. In particular, we use as a test model a lunar motion where the Moon distance to the Earth is varied from the surface of the Earth to some limit dis tance where, due to the solar perturbation, the Moon escapes, and no longer remains a satellite of the Earth. We make also comparison of our results with the classical computation in the case of a distant satellite, and the previous expressions of Ward (1975) andTrcmaine (1991), for close satellites (Section 7).

Fundamental équations

We are considering here a three-body problem with a cen tral star, an oblate planet, and a satellite orbiting the planet, with respective barycentric coordinates uo,ui,U2 and masses mo,m\,m2 The full Hamiltonian of this problem can be ex près sed as

7I = Hn + He + Hi, (1) 
where is the Hamiltonian of thrce mass points, Hg describes the free rigid body motion and /// contains the gravitational interaction between the bulge and the other two mass points. In such a satellite problem, the orbital Hamiltonian is naturally expressed in Jacobi coordinates,

where 8 = + w2)• With this choice, r<) = uo is the barycentric position vector of the Sun, ri the position vector of the planet-satellite barycenter relative to the Sun, and r2 the position vector of the satellite relative to the planet (Fig. 1 ). The symplectic structure is preserved using the conjugate momen (5)

The Hamiltonian of the free motion of a rigid body is

//£ = -rGr1G, ( 6 
)
where G is the angular momentum of the rigid body and T ils ineitia tensor. Let (/, J, K) be the principal frame where X is diagonal [X = diag(A, B, C)]. For sake of clarity, we présent here the case of an axisymmetric planet (A = B). The general case can be treated in the same way providing some additional averaging, and will be outlined in Section 2.6. In the présent case, we hâve then, X-1

/1 /A 0 0 \ I 0 1 /A 0 V 0 0 \/C/ ( K) which gives G1 / 1 1 \ (K G) 2â + [c ~â) r (7) (8) 
where A and C are the moments of inertia of the planet. 

I 0 0 0 0 -Kl K2 0 0 0 1 o ~K2 K i 0 0 -Kl K2 0 -Gi G2 0 0 >5 0 1 G 3 0 -G ] V -K2 K1 0 1 C5 N) C5 o (10) 
And the équations of motion are

r = VfW, K = VgTf a K, F=-Vr7f, G = VkHaK + VGn a G. (11) 
Now, the advantage of taking K and G as coordinates to deline the orientation of the rigid body is obvious: the study can be done in a heliocentric frame and équations in K and G look like équations of precession.

First simplification

We hâve assumed that the rigid body is axisymmetric. This is why I and J do not appear in the équations of motion (11).

Bccause of this symmetry, the rotational angle of the planet / (see Fig. 2) will not appear as well in the Hamiltonian. It is easy to vcrify that G K is constant and thus any function h (G • K) in the Hamiltonian will not contribute to the équations of motion (11). 

As a conséquence, VgR and G are collinear and the équa tion of motion for (K, G) in (11) simplifies to

K = G/A A K, G -2(u\ AT)ui A K + 2(U2 • K)u2 A K. ( 16 
)
2.3. Averaging

The vector K precesses around the unit vector w = G/G with nearly the rotation rate of the planet G/A. The unit vector n = w A K/||w A K ||, is thus rotating in the orthogonal plane to w (Fig. 2). We want now to average over this fast motion. If we use Andoyer variables (G, H, L, g, h, l) (Fig. 2), in Eq. ( 16), K do not dépend on / and we hâve 1 With position (qi) and associated momentum (/>;), we define the Poisson bracket as {/, g} = £/ ^-££ fë.

2 The Levi-Civita symbol is zéro if two indices i, j, k are equal, and is the signature of the permutation (i, j, k) otherwise.

K (G, H, L, g, li) = (cos J) w + (sin J)n A w with cos J -L/G.

(

) (18) 17 
In the fixed référencé frame (i, j, k), the coordinates of w are ( si n/si n/z \ -sin/cos/z j (19) cos / / with cos I -H/G. Moreover, only n dépends on the fast angle g with an averaged value

(n)s = 0. ( 20 
)
In order to average Rb over g, we write in matrix form, for

i = 1,2, (m K)2 = 'ujK'Km. ( 21 
)
Ail terms of degree 1 in n will average to 0. Using ( 17), and after a circular permutation in the triple product, we hâve ((u, K)2)^= (u,-w)2cos2 7 + ((n (w A u,))2)g sin2 7. ( 22)

We thus need to compute the average {n'n)g. In the intermediary basis (w, w', w"), we hâve We can now gather the parts of the Hamiltonian that will drive the évolution of the orbital variables (r, r) and spin axis (w). From now on, we will call spin axis the axis of the rotational angular momentum of the planet, with unit vector w.

We hâve W(w,w',w") and thus ( 0

I cos g V sin g (23) (n'n)s=X-(ld-w'w). (24) 
The w'w part will cancel and remains only

((u,-K)2) = (u,-• w)2 cos2 J + -(u,-A w)2 sin2 J R 2 = -sin2 J + (u,-• w)2 ^1 --sin2 7^. ( 25 
)
The averaged Hamiltonian (Rb) g is thus

w-b)g = + Y, 2"sin2 J /= 1,2 + (u, • w)2^l -^sin27^. ( 26 
)
As (Rb)g does not dépend on g and /, G and L are con stant, and so is 7, as cos 7 = L/G. As in Section 2.1, we hâve {wj, Wj} = -ejjbWk/G, and the équations in w become thus

w = -Vtf(?{)sAw, ( 27 
) Lr that is 2 -3 sin2 7 , , W= ((ui • w)Ui A W + (U2 • w)U2 A w) . ( 28 
)
Remark. We hâve not proceeded here to the gyroscopic ap proximation that consists to assume that the axis of figure (K)

is the saine as the angular momentum axis (w), but we hâve simply averaged the Hamiltonian over the fast rotation angle g.

Although for a fast rotating (and non-rigid) planet, the angle 7 is small (7 = 10"7 radians for the Earth), we prefer the présent while U] TIÀ2 T Moi is a perturbation of this Keplerian problem.

R(r, r, w) = Ro + U\ + U2 + Uo\ with 0/ f2 r2 11 \ ^2 Pt) --T-T-+ - 2/?i 2ft r\ r2 /XiyS] Çmom 1 (rt»()zzz2
We will now average the Hamiltonian over the mean anomalies of the orbital motion of the planet and the satellite, using the relations detailed in Appendix A. We will use also the ortho normal basis (W), Wj, w',') and (w2, w^, w"), where w' is in the direction of the perihelion of the orbit defined by r, , and w,-is the unit vector in the direction of the orbital angular momen tum Gj = ^ri A r,-. By averaging over the mean anomaly M2

of the satellite motion, we hâve (Ui)m2 -C\ni2 la2( \ -e2ŸP

(1 -3(w • w2)2).

(34) In the expansion of Uq\ in terms of p = r2/r\ and 8, we will neglect ail terms of order higher than p2. We will thus neglect terms of order 8p2,82 p2, We hâve thus In the computation of (Uo\)m\,m2 (see Appendix A), ail the terms of order 8 are in fact of order at least e\628 p. These terms are usually very small, but in order to allow for large eccentricities, we will average over the argument of perihelion of the (41)

We will also average over the argument of perihelion (02 of the satellite. We hâve

(<wl • W2) L = ((W1 • W2) L = -(w> • W2)") (42)
that will describe the évolution of (w, wi, W2)

Rs =-^(w-W])2--(w-w2)2-~(w1 -w2)2 with 3Ci mo tfjVl -é\Ÿ12' _ 3Cim2 a\{ \ -<?2)3/2' 3ÇmoP2aj / 3 2 C~4af(l -e\ŸI2 V +2^2 2.6. Non-axisymmetric case (A ^B) (44) (45)
For sake of simplicity, we hâve presented above the case of an axisymmctric planet (A -B). In fact, the general case can be treated in the same way if we average also over the Andoyer rotational angle I. Indeed, for any unit vector u, the potential generated at r = ru by the solid body is

V = -^[(B + C-2A) + 3(A-B)(u • JY -3(C -A)(u • K)2],
with the average over /, g sin2 J t(' 

(u w)2 / 3 2 \ + ^(-sm2y-l). ( 46 
W = (Wi W)W] A W (W2 • w)W2 A W, y r c ci W] = (W2 • Wi)W2 A W] (w • Wi)w A W], P P b c W2 = (W W2)W A W2 (W] • W2)W] A W2. ( 51 
)
a a

These équations express the fact that each angular momentum is precessing in space around the other two. This System of équations is a priori of order 9 but we will show that it is in fact intégrable.

Intégrais

We hâve the intégrais

IM| = 1, ||wi|| = l, ||w2|| = l, -a(w • wj)2 -b(w • W2)2 -c(\V] • W2)2 = 2KS, y\\ + /?W] + »W2 = Wo = Cte, (52) 
Fig. 3. The surface v2(x, y, z) = 0. As u2 ^0, the allowed space is the interior of this berlingot shaped volume.

Réduction

The general case ( 51) is more difficult, and in order to re duce the order of the differential System, we will consider the relative position of the vectors w, wj, W2, and forget about their absolute position in space. More precisely, let

x = ww 1, y -w-W2, z = W]-W2, ( 57 
)
where Wo is the total angular momentum of the System. We hâve 7 indcpendent intégrais in our System of order 9. We are thus missing one intégral for a complété intégration of the Sys tem.

Single planet case

When there is no satellite, Eqs. where the expression of u is given by the Gram déterminant

(60) = 1 -x2 -y2 -z2 + 2xyz. 1 x y x 1 z y z 1
We still hâve the two intégrais ax2 + by2 + cz2 --2'HS, ypx + yay + f3az = K, ( 61)

w = i2()W() a w, wi = I2()W() A wi, ( 55 
)
where Wo = Wq/|| Wo|| is the unit vector in the direction of the total angular momentum Wo, and the second being easily obtaincd as 2K = W2. -(y2 + P2 + a2). The motion in (x,y,z) is thus intégrable, and limited to the interior of the berlingot3 shaped surface 6 determined by u2(a', y, z) = 0 (Fig. 3). We can also notice thaï Remark, In the same way, the System ( 51) is also trivially inté grable when the planet is rcduced to a point mass.

A berlingot is a famous tetrahcdron hard candy with rounded edges. It can be noticcd that thc line of initial condition with direc tion vector ( 1 /ora, 1 //5b, 1 /yc) is a line of fixed points for lhe differential System (59).

Intégration

The motion in lhe (x, y, z) space evolves on elliptic curves, the motion will evolve on an ellipse in the (x, y, z) space, that remains included in Iï(n y^2)-We hâve thus a lower bound for v2 (v2 > vfi > 0, with U() > 0), and, with a positive orientation for our initial conditions (w, wj, W2), the volume v is bounded from below (v > vq > 0). The time / is a monotonie function of r and r goes to infinity as t goes to infinity. The motion in the (X, Y, Z) space is a circle described uniformly with r with period Tz. In the Qc, y, z) space, the motion will thus be on an ellipse with the same period Tr. The motion with respect to time will still be periodic, but with a period T given by dr = udr.

(64)

The System (59) can then be written as is obtained through and, as for y, z, we hâve x(t + T) = x(r -f Tt) -x(r) -x(t).

These solutions, with non-vanishing volume will be called spé cial solutions. Among them, we hâve the singular solution for which x -y = z = 0 at the origin. This solution is a fixed point in the (jc, y, z) space, and we hâve for ail time v = 1. In this so lution, the three angular momentum vectors w, w\, W2 remain orthogonal for ail time, and ail torques vanish.

One can also notice that for these spécial solutions, the aver With M -{x, y, z), we hâve

1 d M - ( 69 
)
As dM/dr is a tangent vector to the trajectory, one can see that, for a point on the berlingot B (i.e., v -0), v = 0 is équiv alent to thc tangency of the trajectory with the berlingot B.

Spécial solutions

It is easy to see that the sphere AE([) yj ,2) centered on the origin, with radius >/3/2, is included in the interior of the berlingot B. From the expression of the intégral of energy (61), one can deduces that for any initial condition (x, y, z) inside a

General solutions

In fact, in most cases of astronomical importance, the an gular momentum vectors are far from orthogonal, and planar configuration will occur, with a cancellation of the volume v.

We will call these solutions the general solutions. In such a so lution, an orbit of the équations in r, starting from inside B, will intersect B in positive time at r+, and in négative time at r_ (Fig. 4). Starting at r = 0 (and t -0) and with a positive 

v = 0, v = 0. ( 84 
)
Pq is thus a fixed point. We will call these critical orbits 'Cassini

States' (Colombo, 1966;Peale, 1969;Ward, 1975), where the three vectors w, wj, W2 remain in a plane that precess in time.

On the other hand, an orbit starting with initial condition in side (strictly) B will thus never reach the surface B with v = 0.

Indeed, in the tangency case, we hâve û(A+) = 0, and thus v2(r) = 0((r-r+)2) ( 85)

and the intégral is divergent. This is expected, as the tangency point is an equilibrium. It cannot be reached in finite time.

The motion of (x, y, z) is periodic in t, with period T In the vicinity of r+, as u(r+) = 0, we hâve (79)

In the variables V = (X, Y, Z), r, the motion is a simple ro tation around Si (66) with angular velocity to -||J2||. We hâve thus V(T) = Si A Vo .

H sm<r>r to (86) from which we obtain easily (a-, y, z) and v2. x(t), y(r), z(r) are of degree 1 in cos(a>r) and sin(cur). Thus v2(r) is a poly nomial expression of total degree 3 in cos(&>r), sin(<wr), 

v2(t) = 2v -(£)(r-r+), ( 80 
) dr with £ e ]r, r+[, that is, as dr = vdt, v2(t) = 2 -p (A)(r -r+), (81) 
) 87 
The solutions of v2(r) = 0 are obtained by the resolution of the polynomial équation of degree 6 in 0 = sin(a>r)

(«0 + «10 + «202 + O303)2 = (l -tp2)[bo + b\tp + bjtp2]2. ( 88 
)
For cach real solution 00 of (88) in the interval [-1,+1],

r,^= arcsin(0o)/&; or rq" -(n -arcsin(0o))/a> will be a so lution of ir(r) = 0. In the non-tangency case, r_ will be the largest négative solution, while r-f is the smallest positive so lution. The period T (and to = 2n/T) can then be computed through (78).

Proposition 1. W(t ) is periodic with period T. W(t + nT) = TZ(t + nT)W(t).

(103)

Computation ofthe precession period by quadratures

In the previous section, we hâve seen that the precession period can be obtained by numerical intégration of the full Eqs. ( 51), but we will dérivé also here some formulas for the direct computation of the precession period. Let Wo = ||Wo|| and wo = Wo/ Wo be a unit vector along the total angular momentum Wo-With

P = W Wo, ( 104 
)
the projection S of w on the plane orthogonal to wq will be S -w -/;W(). We hâve also from (51

) w2 = -(a2jc2 + b2 y2 + 2abxyz -(eue2 + by2)2). ( 114 
)
With these expressions, Eq. ( 111) can be written on the form 92 -&(x, y, z).

(

) 115 
The sign of 9 (s^) can be determined through (106). Indeed 9 is a function of (w, W], W2), but its sign can only change when 0=0, that is from (111), when w2(l -p2) = p2.

(

) 116 
This équation is a polynomial équation in (jc, y, z), of valuation 2 and total degree 6 in (jc, y, z), and total degree 2 in z. It dé termines an algebraic surface S of the (jc, y, z) space and thus 9 is obtained by quadrature 0(0-0(0) = J ej@(x,y,z)dt. ( 117) o

The computation of 9j is obtained by the intégration of the above expression over a full period T. As in the discussion of Section 3.4, one has to be careful for the change of signs of 9.

Symmetry in the loop

It is now possible to prove a more précisé resuit on the periodic loops generated by w, wj, W2 in the precessing frame.

Proposition 2. In the frame rotating uniformly with the preces sion period, the three vectors w, W], W2 describe periodic loops C, C\, £2 that are ail symmetric with respect to the same plane S containing wo.

Conséquence. Let us call V,'P\,T>2 the averages of w, wj, W2 over the nutation angle. V, V\, V2 are respectively the pôles of the spin axis, the pôle of the planet orbit, and the pôle of satellite orbit. Due to the symmetry of the orbits, the three pôles V, V\, V2 remain in the symmetry plane S containing wq, and precessing uniformly around wo. Each vector w, wi, W2 nutales around its pôle, respectively V, V],V2-Proof. We will consider uniquely w, the other cases being similar. We consider here a general solution (Section 3.4.3). We choose here the origin of time in r+ which corresponds to a spin vector w+. At t = -T/2, the orbit in the (jc,y,z) space is in T-, corresponding to w = w_. In the (jc, y, z) space, the orbit describes an elliptic arc (r_,r+) over the time interval [-T/2, 0], and the same arc in the reverse way (t+, r_) over [0, T/2) (Fig. 4). Moreover, as the motion is a pure rotation in the scaled (X, Y, Z) coordinates (Section 3.4), over the in terval [-T/2, T/2], the orbit of M -(x, y, z) is even, that is

M(-t) = M(t).
Next, we can remark that as the differcntial System (51) is polynomial, the solutions w, w\, W2 are analytical in time /, and so will be the coordinate angle 0(0 of w. On the other hand, we hâve the following lemma.

Lemma. Let f (t) be an analytic function over an interval [ -A, A], such that f2 = g, where g(t) is even over [ -A, A]

(A >0). Tlien f (t) is either odd or even. If f (0) f^O, f {t) is even.
The proof is easily obtained with analytic continuation. the same in the rotating frame with the precession period. In this rotating frame, the periodic loop generated by w is thus symmetric with respect to the plane (wo, w+).

Moreover, at / = 0 (r+), the volume v is null, and thus wo, w, wj, W2 are coplanar. In the rotating frame, ail three orbits generated by wr, wj, W2 are thus symmetrical with respect to the same plane (wo, w+).

The only case when Q(t) is odd, occurs when 0(0) = 0. As u(0) = 0, we hâve p(0) =0( 113) and w(0) = 0(111). In the same way, we will hâve wi (0) = W2(0) = 0, and the vector fïeld This is a spécial Cassini State (Section 3.4.4) where the pre cession frequency is zéro.

Description of the solutions

In order to better visualize the solutions, we hâve plotted in Fig. 6 the projections of the three vectors (w, wj, W2) in the plane (1, j). More precisely, as we know the general form of the solution [Eq. ( 99)], we hâve plotted this projection in a framework in rotation with the computed precession period T'.

According to [Eq. ( 99)], we thus obtain the projection of W(t) in the fixed référencé plane (1, j). We thus cxpect to obtain for each vector (w, w\, W2), a periodic smooth curve. In ail our ex amples, the curves described by (w, W|,W2) are in fact very close to circles. It should be noted that in Fig. 6, we hâve plolted the output of the non averaged équations [Eq. ( 31)]. This is intentional as this allows to check at the same time the relevance of the averaging made in Section 2.5. This explains why instead of exactly thin loops, we hâve thick lines, which occurs for the contribution of the orbital short period terms.

In these examples, we hâve taken a fictitious Moon around the Earth. The Earth-Moon distance is then varied from a very close position (up to 2 Earth radius) to 100 Earth radius, close to the distance where the Moon is no longer a satellite of the Earth.

In ail cases, the pôle of the orbit of the planet wj is very close to the origin, as W] is very close to the constant angular momentum vector Wo. The vectors w and W2 describe circles with varying center position and radius.

Far solutions

When the Moon is far from the Earth (as it is at présent), in the precessing rotating frame, w is nearly fixed and W2 is circulating around the pôle of the orbit, that is around the origin (Fig. 6f). In this case, the obliquity of the planet and the inclina tion of the Moon on the ecliptic are nearly constant. The orbit of the Moon is precessing uniformly around the pôle of the eclip tic with the fast period T (18.6 years for the présent Moon).

In fact there is still a small variation of the obliquity, with the same period T, but with a very small amplitude (about 9 arcsec for the présent Moon). This motion is the principal term in This plane is often called the Laplace plane of the satellite. It should be noted that the pôle of the Laplace plane with this dé finition will precess around the total angular momentum with the slow precession period.

Close solutions

When the Moon is very close to the planet (Figs. 6a and6b),

The satellite precession and the planet nutation are both roughly around the same pôle, and the inclination of the satellite on the planet equator is nearly constant [Fig. 7(c3)].

General case

In the general case (Fig. 6), the planet nutation occurs around the nutation pôle, the satellite orbit precesses around the Laplacian pôle that is different from the nutation pôle and from the ecliptic pôle, but ail three pôles precess slowly with the same frequency around the total angular momentum.

In the solution of the averaged équations (51), for any dis tance of the satellite from the planet, the general motion of the planet orbit, of the satellite orbit, and of the planet rotation can be described as follows (with the notations of Section 4.3).

The planet orbit precesses around a planetary pôle V\ (usually with very small amplitude). The satellite orbit precesses around a satellite pôle V2 [that can be called the Laplacian pôle (see [START_REF] Burns | Satellites[END_REF]]. The axis of rotation of the planet nutates around the rotational pôle V, ail with the same period T, usually called the period of precession of the satellite, but here we will reserve the name precession for the long period, and we will call this short period the nutation period. This motion is periodic (each axis described a closed loop with period T). In addition, ail three pôles V, V\, V2 precess uniformly with the same period (that we will call the precession period) around the total angular momentum of the System Wq.

Analytical approximation

In Section 4, we hâve obtained the complété solution of the averaged équations ( 51), but although these solutions can be computed by quadrature, they are not explicit. Nevertheless, the rigorous expression (99) allows us to give a general descrip tion of the solutions, valid in ail cases. In the présent section, we will make some additional approximations in order to pro vide an explicit form of the solutions. More precisely, as we realize that the periodic loops generated by VV(f) in ( 99) are very close to circular uniform motion, we will search for approximate solutions expressed on the form of a composition of periodic terms. For simplicity, we will assume here that x, y, z are positive. Olher cases, as for Neptune-Triton (y < 0, z < 0), can be treated in the same way.

Equations

As the angular momentum of the System is essentially contained in the orbital motion of the planet, we will consider that wi ~wo. ( 119)

With a fixed rcfcrence frame (/, j, k) with k = wo, we will thus hâve w, (120) and as x -w wi, z = W] W2, let the coordinates of w and W2 in this basis be

As we are considering now the projections of w, W2 in the (1, j) plane, we will use complex coordinates in this plane. Let M is thus a real matrix with periodic coefficients of period T. As we are not searching for the exact solution of the problem, we will make here a crude approximation by averaging this matrix over the fast period T. We will even replace the three varying quantities x, y, z by some averaged quantities

x,ÿ,z. The matrix M is then transformed into a real matrix M with constant coefficients

M = M(x, ÿ, z), (125) 
and the solution of ( 123 We hâve thus always two distinct eigenvalues f2, and Q + v (we consider here that Q is the slow precession frequency and u, the nutation frequency), with

Q = T 4-\/~Â 2 V = -yJ~Â.
After diagonalization, we obtain two eigenmodes

3 _ rei wt+<t>) ( 3 ' = seî«n+v)t+<P+4>) (129) (130) 
where r, s, 0,0 arc real numbers. A basis of eigenvector is then

(ei, e2), with (131) 
and

a^+ bÿz + ytt nx + bÿz + y(C + v) biÿ ' bxÿ
The solution in 3,32 becomes 3 = ei(^+<*>)(r + se/(w+0))( 32 = ednt+0) (Àr + À/se/(w+^),

where r, s, À, P are real numbers. Moreover, it is easy to show that k > 0, X' < 0. This results from the diagonalization of a general 2x2 matrix (M,;) with real coefficients and positive product of the antidiagonal terms (M12M21 > 0). We should notice here that 3 and 32 hâve the same phase O in the preces sion motion, and opposite phase 0 and 0 + n for the nutation motion. We obtain here thus an additional general resuit.

Proposition 3. Within the présent approximations (1 19), (125), the pôle of precession of the axis and the pôle of precession of the satellite orbit (the Laplace pôle of the satellite) are always aligned with the totcd angular momentum, and on the saine side of the totcd angular momentum. 

Parameters of the solution

As we know the general form of the solution (133), we can compute now the averaged quantities x, ÿ, z. From the défini tion of 3,32> we hâve

X = yj\ ~l3l2- Z = \/• -l32|2, y = ^(332 + 332) + *z- 034)
As it would be unnecessary complicated to obtain explicit av eraged values over the fasl period v in the complété expression of the frequencies (129), and in the sake of simplicity, here we will average under the radical (that is average x2, z2 instead of x, z) over the fast frequency v. One thus obtain

X = y/\ -t2 -S2, z -s/1 -X2v2 -X'2s2, y -Xx2 + X's2 + xz. (135) 

Initial conditions

With équations (129), (132), and (135), the solutions (133) dépend only on the four real numbers r, s, <P, 0. At the origin of time (t -0), we hâve 3o = e'0(t + se'ÿ), 320 = e,0(A.r + X'se'<t>).

(

) 136 
This System is solved easily as

-"/<*> _ À/3() ~320 se/(<*>+0) _ À3() ~320 137 X'-X ' X -X'
The computation oï X,X' requires to know the averaged val ues Je, ÿ, z, but can easily be donc by itération, starting with the initial values, that is, for the first itération X -x(t =0), ÿ = y(t= 0),

Z = z(t = 0). (138) 
In ail our computations, a single itération after this first try with the initial conditions was sufficient. The computation of the precession frequency in the Earth-Moon System was provided in Fig. 5. With the analytical ap proximation (128), we hâve also computed the évolution of the radius and location of the precession circlcs of Fig. 6 with re spect to the Earth-Moon distance (Fig. 8). Il should be stressed that this computation is made with a fictitious Moon with initial obliquity and precession equal to the présent one. In particular, we hâve not attempted here to follow a realistic évolution of the Earth-Moon System under tidal évolution as in (Goldreich, 1966;Tourna and Wisdom, 1994b).

We hâve applicd the computation of the precession motion for a variety of examples in the Solar System (Tables 4 and2).

In each case, only the System Sun-planet-satellite is taken into account, without trying to take into account mutual perturba tions, or accumulated effects of multiple satellites. These exam ples are used to compare the results of the numerical intégration of the averaged équations (51 ) (Table 2) to the results obtained using either the exact solution of Section 4, the quadrature for mulas of Section 4.2, or the approximate solutions computed with the explicit formulas of Section 6.

The numerical intégrations are performed only over a few (about 20) nutation periods. The precession frequency is then determined by itération with great accuracy, searching for a uniform rotating frame where the motion is peri odic (sec Section 4). The nutation frequency and amplitudes ,4(t), ^4(s), *4(A.r), .4(À's) are then determined using frequency analysis (Laskar, 1990(Laskar, , 2005)). The results are displayed in Ta ble 2 together with the frequencies obtained by quadrature. We can verify that the quadrature formulas (Section 4.2) give virtually identical results as the numerical intégration.

In Table 4 are displayed the results obtained with our an alytical approximate formulas (129). It can be seen that these explicit formulas provide in a simple way both the frequencies and amplitude of the terms in most situations. We hâve not at tempted (although it should be possible to do it following the fines of Section 6) to dérivé approximate formulas for Uranus satellites, when the obliquity of the planet is very large, and thus the projection on the plane of the orbit questionable.

Remark. It should be noted that although in our approximate formulas (129) the solutions are given with a single periodic term, the nutation motion in the rotating frame with precession frequency is not exactly a pure rotation but a more general pe riodic motion. It can thus be decomposed into several periodic terms with frequencies that are harmonies of the nutation fre- Notes. In each case, the System Sun-planet-satellite is considered. Qq is the planet precession rate in absence of satellite. £2C and vc are the precession and nutation frequencies computed by quadrature, while Q and v are the same quantifies obtained numerically using frequency analysis (Laskar, 1990(Laskar, , 2005)). _4(t) and A(s)

are the precession and nutation amplitude for the axis of the planet, .4(iU) and A(X's) are the same quantities for the satellite orbit. These quantities are obtained numerically through frequency analysis. A(Àt) is thus the inclination of the Laplace pôle of the satellite with respect to the pôle of the orbit of the planet.

Table 3 Quasiperiodic décomposition of the motion of the projection of the Earth quency. The amplitude of these harmonies arc usually small compared with the main periodic terni. As an example, the qua siperiodic décomposition of the motion of the Earth spin axis in the Sun-Earth-Moon System is given in Table 3.

Comparison with previous work

The complété solutions we hâve derived here in Sec tions 4 and 6 arc different from the previous approximations of Goldreich (1966), Ward (1975) or more recently of (Tremaine, 1991). Nevertheless, starting from Eqs. (51), we can recover the already known approximations in a more general setting, as we consider non-zero inclinations, and the constants a, b, c are computed with non-zero eccentricity (45), without the gyroscopic approximation (32), and in the non-axisymmetric case (Section 2.6). In ail the following approximations, W] is still considered as constant as it is very close to the unit vector of the total angular momentum, w». We recover here the classical formula, the only novelty here being the treatment of the gyroscopic approximation (32).

Precession of a planet with a satellite Notes. In each case, the System Sun-planet-satellite is considered. is the planet precession rate in absence of satellite. Qa and va are the precession and nutation frequencies computed with the approximatc fomiulas ( 129). .A(r) and ,4(s) are the precession and nutation amplitude for the axis of the planet, .4(7.r) and *4(A.'s)

are the same quantities for the satellite orbit. ,4(>.r) is thus the inclination of the Laplace pôle of the satellite with respect to the pôle of the orbit of the planet.

Close satellite

The most advanced previous computation of the precession rate for a close satellite was obtained by Tremaine (1991), bascd on the équations of Goldrcich (1966). In this case, With the expression of T (127) and A (128), we hâve ob tained in Section 6.1 the approximate expressions for the pre cession (S2) and nutation (u) frequencies [Eq. ( 129)]. Thcse formulas are valid for any value of the planet-satellite distance.

In the above approximations of close or far satellite, these ex pressions will simplify as follow. 

Here again, we hâve a slight différence from formula (151) that remains very small for small values of the angles 0 and 02. This is due to the approximations that were performed in Section 6.1, where we hâve averaged the matrix M. Doing this, we hâve exchanged the order of operation and averaging. This was necessary in order to obtain some simple expressions, valid for ail values of the satellite-planet distance. As an example, if one average x2 over the nutation angle, one obtains

[x2) = -sin2 0 + -+ -cos2 0^cos2 6\ ( 157) while (x)2 = cos2 0 cos2 0]. (158) 
It should be noted that these two quantities become very close when either 0 or 6\ is small. Indced 

In the case of a far satellite, x, z will be nearly constant, and the average value of y over the nutation angle will be (y)=xz.

The precession frequency then becomes fi%~y^(l + fl4 (163)

that is here again, very close, but different from the classical formula (143).

Conclusions

In this work, we hâve obtained a very general framework for the évolution of the spin axis of a planet with a satellite.

The équations hâve been derived with minimal approximations.

In particular, we do not require the planet to be axisymmetric (Section 2.6). We do not perform neither the usual gyroscopic approximation, but we average over the rotational period of the planet (Section 2). The precession équations (28) that we obtain are rigorously derived, and can be used for précisé solutions of the évolution of the axis of the planets (Laskar et al., 2004a(Laskar et al., , 2004b)). In this case, Eqs. ( 28) can be immediately generalized to the perturbation of multiple bodies.

For fast satellites, or for the analysis of the System évolu tion over very long time, averaging over the orbital motion is required (Section 2.5). As we also average the équations over the argument of perihelion of the satellite, the averaging is per formed without expansion in term of the elliptical éléments, and can thus be used for large values of the eccentricity of the planet or satellite (45). Although these secular équations (51) can be developed for a large number of interacting bodies, we hâve concentrated in the présent work on the case of a single planet orbiting the Sun with a single satellite (it can be noted that al though here we choose a non-spherical planet, the same study applies to a non-spherical satellite). It is then remarkable that the System of Eqs. ( 51) representing the évolution of the spin axis of the planet, the orbital plane of the planet and the satel lite plane is intégrable, although the explicit intégration is not trivial (Section 3).

We believe that this intégrable System should be used to clarify the terminology for satellite motions. In particular, we hâve demonstrated that lhere are only two frequencies in this System: a slow frequency £2 that we called the precession frequency and a fast frequency v that we called the nutation frequency. In the frame precessing uniformly with the preces sion frequency £2, the nutation motion is periodic. Moreover, if we dénoté V,V\,V2 the averages of w, wj,W2 over the nu tation angle, then, for a general solution (Section 3.4.3), the planet orbit nutates around V\, the satellite orbit nutates around V2 and the axis of rotation of the planet (or more precisely its angular momentum), nutates around the rotational pôle V, ail with the same nutation frequency v. Additionally, ail three pôles V, V\, V2 are coplanar with the total angular momentum Wo and precess uniformly around Wo with the precession fre quency £2 (Section 4.3, Proposition 2). Finally, in the rotating frame with £2, the plane Wo, V, V\, 7^2 is a symmetry plane for the periodic orbits of w, wi, W2.

We hâve provided here a quadrature procedure that allows to compute cxactly (up to numerical accuracy) the precession and nutation frequency of the secular System (51) for ail val ues of the planet satellite distance. Alternatively, the rigorous treatment of Section 4 shows that these frequencies can also be obtained numerically by the numerical intégration of the System (51) over a single cycle of the nutation period, the nu tation period being computed through the quadrature procedure of Section 3.4.

We hâve unified the computation of the precession frequency of a planet, with some approximate formulas (Section 6) that can be used in a large varicty of cases, and for ail values of the planet satellite distance. In particular, these formulas are valid in the intermediate région, when none of the previously known formulas for far or close satellites (Goldreich, 1966;Tremaine, 1991) are valid. Our formulas provide also the am-plitude of the nutation and precession ternis with good accuracy (Table 4). Nevcrtheless, in the asymptotic case of a very far or very close satellite, our formulas differs slightly from the known formulas, as we had to average over the nutation frequency in the computation process. We thus expect that the formula of Tremaine (1991) remains more précisé in this as ymptotic case. One should note that the theoretical results of Section 4 probably allow a more explicit dérivation of this for mula than in the original paper of Tremaine (1991). Using our formalism, it was also simple to improve the formula of Goldreich and Tremaine as our dérivation does not assume the gyroscopic approximation, is valid for non-axisymmetric planct, and takes into account the contribution of the satellite eccentricity.

More important than the précisé computation of the contri bution of the precession frequency due to a satellite, we think that the full description of ail cases of interactions provided by Section 4 and Fig. 6 will be of spécial interest for the understanding of the satellites orbits and planet spin évolution over long time intervals.

/3 A /, = det(M)G~72. 32 = f2ue'> + (/xr + fi'sei<vt+*)).

Appendix C. Approximations in 3D

We give hcrc a more detailed version of Section 6.1. Let us consider a reference frame with the total angular momentum unit vector wq as third axis, and with coordinates 

v = -v/T2-4P 5ei[(S2+v)t+0+ct>\
where À, P, /x, /x' are real numbers. The solutions are then 3 = tue** + ei(n,+<p)(x + se/(v,+^)))

Moreover, y% + p%\ -f «32 = 0, as it is the projection of W(> on a plane orthogonal to JVo. This implies that its constant terni (yÇ + PÇi +aÇ2)ue'^is also null, and as yÇ + PÇ 1 +or£2 = Wo, we hâve necessarily u = 0. The solutions are thus 3 = e/(tfH-*)(t + se/(w+*))j 3! = ei(a,+0)(kt + Psei(v,+4>)), 32 = ^+*)(/ir + /xV(w+^)).

In this approximation, the three axis (w, wj, w2) describc circular motion with nutation frequency v around the three pôles (V, V\, VT) that precess uniformly with precession frequency Q around the total angular momentum Wq. As in the general Proposition 2 (Section 4.3), the three pôles (V, V\, 7^2) remains always coplanar with Wo-

Introduction

We consider here two rigid bodies orbiting each other. The main purpose of this work is to détermine the long term évolu tion of their spin orientation and to a lower extent, the orientation of the orbital plane. Examples of such Systems are binary asteroids or a planet with a massive satellite.

If the two bodies are spherical, then the translational and the rotational motions are independent (e.g. Duboshin, 1958). In that case, the orbit is purely Kepierian and the proper rotation of the bodies are uniform. General problems with triaxial bodies are more complicated, and usually non-integrable. Even formai expansions of the gravitational potential or the proof of their convergence can be an issue (Borderies, 1978;Paul. 1988;Tricarico, 2008). In some cases, especially for slow rotations close to low order spin-orbit résonances, the spin évolution of rigid bodies of irregular shape can be strongly chaotic [START_REF] Wisdom | The chaotic rotation of Hyperion[END_REF][START_REF] Wisdom | Rotational dynamics of irregularly shaped natural satellites[END_REF]), but we will not consider this situation in the présent paper where we focus on regular and quasiperiodic motions.

Stationary solutions of spin évolution are known in the case of a triaxial satellite orbiting a central spherical planet (Abul'naga and Barkin, 1979). In their paper, Abul'naga and Barkin used canonical coordinates, based on the Euler angles, to set the orientation of the satellite. On the contrary, in 1991, Wang et al. also studied relative equilibria but with a vectorial approach that enabled them to ana-* Corresponding author.

E-mail address: boue@imcce.fr (G. Boué lyze easily the stability of those solutions. For a review of different formalisms that can be used in rigid body problems, see Borisov and Mamaev (2005).

The vectorial approach turned out to be also powerful for the study of relative equilibria of two triaxial bodies orbiting each other (Maciejewski, 1995). General motions of this problem were studied by Fahnestock and Scheeres (2008) in the case of the typical binary asteroid System called 1999 KW4. For that, the authors expanded the gravitational potential up to the second order only.

In this approximation, there is no direct interaction between the orientation of the two bodies. Ashenberg gave in 2007 the expres sion of the gravitational potential expanded up to the fourth order but did not study the solutions.

In Boué and Laskar (2006) we gave a new method to study the long term évolution of solid body orientations in the case of a star-planet-satellite problem where only the planet is assumed to be rigid. This method used a similar vectorial approach as Wang et al. (1991), plus some averaging over the fast angles. We showed that the secular évolution of this System is intégrable and provided the general solution.

In the présent paper, we show that the problem of two triax ial bodies orbiting each other is very similar to the star-planetsatellite problem and thus can be treated in the same way.

In Section 2, we compute the Hamiltonian governing the évo lution of two interacting rigid bodies. The gravitational potential is expanded up to the fourth order and averaged over fast angles.

The resulting secular Hamiltonian is a function of three vectors only: the orbital angular momentum and the angular momenta of the two bodies.

In a next step (Section 3), we show that the secular problem is intégrable but not trivially (i.e. it cannot be reduced to a scalar first order differential équation that can be integrated by quadra ture). The general solution is the product of a uniform rotation of the three vectors (global precession around the total angular momentum) by a periodic motion (nutation). We prove also that in a frame rotating with the precession frequency, the nutation loops described by the three vectors are ail symmetric with respect to a same plane containing the total angular momentum. We then dérivé analytical approximations of the two frequencies of the sec ular problem with their amplitudes. These formulas need averaged quantifies that can be computed recursively. However we found that the first itération already gives satisfactory results.

In Section 5, we consider the general case of a n-body System of rigid bodies in gravitational interaction, and we demonstrate that the regular quasiperiodic solutions of these Systems can, in a similar way, be decomposed into a uniform precession, and a quasiperiodic motion in the precessing frame.

Finally, we compare our results with those of Fahnestock and Scheeres (2008) on the typical binary asteroid System 1999 KW4.

We show that their analytical expression of the precession fre quency corresponds to the simple case of a point mass orbiting an oblate body treated in Boué and Laskar (2006). We then integrate numerically from the full Hamiltonian, an example of a doubly asynchronous System where the Fahnestock and Scheeres (2008) expression of the precession frequency does not apply. We compare the results with the output of the averaged Hamiltonian and with our numerical approximation and show that they are in good agreement.

Fundamental équations

We are considering a two rigid body problem in which the in teraction is purely gravitational with no dissipative effects. Let mi and m2 be the masses of the two solids. Hereafter the mass m2 is called the satellite or the secondary and the mass mi the primary. It should be stressed that this notation does not imply any constraint on the ratio of the masses which can even be equal to one.

The configuration of the System is described by the position vector r of the satellite barycenter relative to the primary barycenter and their orientation expressed in an invariant reference frame.

The orientations are given by the coordinates of the principal axes (Ii,and (I2,h' K2) in which the two inertia tensors, respectively X\ and X2, of the primary and of the secondary are diagonal \X\ = diag(Ai, Bi, Ci) and X2 = diag(A2, B2, C2)].

The Hamiltonian of this problem can be split into

H = Ht + He + Hi, ( 1 
)
where Hp is the Hamiltonian of the free translation of the re duced point mass fi = m^m2/(tri] +m2), HE describes the free rigid rotation of the two bodies and H, contains the gravitational inter action.

The Hamiltonian of the free point mass is

(2)

where r = fir is the conjugate momentum of r.

Let G i and G2 be respectively the angular momentum of the primary and of the satellite. The Hamiltonian of the free rotation is 'GiZf'G, tG2X~'c2 2 + 2

(3)

where the superscript 1 in 'x or 'A dénotés the transpose of any vector x or matrix A. It can be expressed in terms of the principal bases of the two bodies as follows

(G2 /2)2 (C2-j2)2 (C2 • K2)2 2A2 2B2 2C2 '
The interaction between the two solid bodies is the following double intégral H, = -ff Sdm'dm2 .

(5)

+ rj-r,!where ri and r2 are respectively computed relative to the pri mary and satellite barycenters (cf. Fig. 1) and describe the two volumes. This part of the Hamiltonian can be expanded in terms of Legendre polynomials and will be written as a function of (r, li, Ji, Ki, J2, J2, K2) in Section 2.3.

Equations of motion

The full Hamiltonian is written in the non-canonical coordi nates (r, f, /1, ii, Ki, Ci, I2, J2, K2, G2). Thus, although the components (r, r) keep the standard symplectic structure (/1, J !, Ki, Ci) on the one hand and (/2, i2, K2, C2) on the other hand possess the Euler-Poisson structure which leads to the following équations of motion (Borisov and Mamaev, 2005) r =VfW, N-Vr?l, G = V,W x / + S/jU x J + VkH x K + Vcft x G, / = VCT( x /, J = VCH x J, K = VcHxK.

We choose these non-canonical coordinates instead of symplectic ones because of the simplicity of the resulting équations which already resemble équations of precession.

First simplification

In the previous paragraphs, the Hamiltonian contains the three vectors of the principal frame (I, J, K) of each body. Nevertheless, only two vectors per solid are necessary insofar as the third can be expressed as the wedge product of the other two. We choose to keep I and K.

The Hamiltonian of the free rotation of the two rigid bodies can be rewritten as follows

C1 + C2 + ( 1 . 1 N \ (G, I1)2 2B, 2 B2 Ui B^, / 2 + (£ 1 ï (C, K,)2 / 1 1 \(C2-I2)2 \A2 B2) 2 BtJ 2 + (À 1 A (C2K2)2 b2J 2 + 5(/li -2B, +C,)(82-C2) m i (5Z2 + -Y2 -35P2 + 5Q2 -5R2) (u • K2r -20[(B,-/l1)(u-I1)I1+(81-C1)(ulf,)Ki] x [(B2 -A2)(u • J2)/2 + (B2 -C2)(u 1<2)K2] + -rn2[(X, + y1-6R,)(u/,)4 + (Z, + Y, -6P,)(uK,)4 + 2(Y, -3Pi+3Q, -3Ri)(u /i)2(u-Ki)2] + -mi[(X2 + y2-6R2)(u-l2)4 + (z2 + y2 -6p2)(u • k2)4 + 2(Y2 -3P2 + 3Q2 -3R2)(u • J2)2(u • K2)2] + 35[(B, -Ai)(u /,)2 + (Bi -COOi-K,)2] x [(B2 -A2)(u • /2)2 + (B2 -C2)(u • K2)2] ( 14 
)
The full Hamiltonian ( 7), ( 2), ( 12), ( 13) and ( 14) together with the équations of motion (cf. Section 2.1) enable the intégration of the System. The évolution of this System contains fast motions like the rotation of each body around their axis or the orbital révolu tion. In comparison, the two spin axes as well as the orientation of the orbital plane undergo secular évolutions. In the following, fast motions are averaged in the purpose of studying the long term évolution only.

Averaging

In this section, we average the Hamiltonian independently over ail fast angles: proper rotations and orbital motion. Although this method is strictly valid for non-resonant cases only, we will show (in Section 6) an application to a typical primary-asynchronous, secondary-synchronous binary asteroid System where the motion is regular. The method still gives very acceptable results. In the following, we forget the subscripts 1 and 2 whenever we consider any of the two bodies without distinction.

To average over proper rotations, Andoyer variables (G, H,L, g,h,l) as described in Fig. 2 are well suited. In a first step, the dependency of the full Hamiltonian on /1 and l2 is removed by averaging over /] and l2. We hâve

1 = cos l\ sin/ J 0 / (15) (n.n'.K)
where n is defined in Fig. 2 and ri = K x n. The vectors n, ri and l( are independent of /, thus

</>/ = 0; 1 Pl)l = -(ld-KtK)- <(s./)V-[s2-(s.i02]2, ( 16 
)
where s is again any vector. After this averaging, the Hamiltonian of the free rotation becomes 

3 2 A 1 ( J 1_\ (C2 • l<2)2 2 \c2 A'2J (17) 
f( 4)) '/ /(,,l2 In a next step, the averaging over the angle g is performed. This corresponds to the averaging of K around w= G/G (cf. Fig. 2). Indeed, in the general case the angular momentum G is not aligned with the axis of maximum inertia K, which is implicitly assumed in the gyroscopic approximation. Instead, if there is an angle J between these two vectors then

(sin J si ng \ -sin J cos g J , ( 22 
) COS J ! (N, ,U] ,w)
where N| is defined in Fig. 2 

the second intégral being simply derived from 2K = ||W0||2 -(y2 + fi2 +a2). The motion in (x, y,z) is thus intégrable and the solution evolves in the intersection of the quartic Hs = Cte and the plane K =Cte.2 Moreover, the évolution is limited to the interior of the v2(x, y, z) = 0 surface that will be henceforth called the Cassini berlingot3 as in Boué and Laskar (2006) (cf. Fig. 3). Outside this surface we would hâve v2 < 0 which is not possible (see Boué and Laskar, 2006).

Shape of the quartic surface

The constraint Hs = Cte defines a quartic surface Q in (x, y, z).

Quartic surfaces can hâve very different shapes, nevertheless setting z' = z -°xy. one obtains -2HS = ox2 + by2 + cz' 2 4--x4 + ^y4 + ^0 -y^x2y2 (39) Fig. 3. The surface v2(x, y,z) = 0. As v2 ^0, the allowed space is the interior of this Cassini berlingot shaped volume.

which is a biquadratic. The new surface Q' defined by ( 39) is thus symmetric in x, y and z!. In (x2,y2,z') the surface Q' can be either an ellipsoid, a paraboloid or a hyperboloid depending on the sign of If S > 0 then it is an ellipsoid and x, y, z' and thus z are bounded.

In the other case, Q' is either an elliptic paraboloid if S -0 or a hyperboloid of one or two sheets depending on the value of Hs if S < 0. Thus, x, y, z are unbounded.

From the définition of the coefficients ci-0 (29), 5 can be rewritten in the following form <5=^-^k\m^m2V\V'2 -k\C\C2 .

(41)

Using the définition of the coefficients C and V ( 25) and ( 21), we get «=(y)Wi

x q^1 -5sin2 h + -sin4;i) X 1 -5sin2 J2 +fsin<j2) - ) O*!5"'2-'2). ( 42 
)
where q is a positive parameter related to the shapes of the rigid bodies /lVm\V\m2V2

"={-9)^cr-

Let us look to the range of the possible values of q in the case of homogeneous ellipsoids. We hâve the relation between V and C given by Eqs. ( 9)

15 X> = - 7m C2 + -(B-A)2 O 108 (44) 
In the whole paper, Cfe means any constant value.

A berlingot is a famous tetrahedron hard candy with rounded edges.

The lowest value of q is thus obtained for A = B, i.e. for axisymmetric bodies. In that case, qmm = 25/9. Conversely, the largest value of q is attained when (B -A)2 is maximal, thus when B -C 7Zp(t) is thus a constant matrix Tir-Now, let us dénoté 7Z(t) the rotation of axis Wq and angle tOp/T (i.e. TZ(T) = TZp). We hâve Proposition 1. The complété solution W(t) can be expressed on the form

W(t) = TZ(t)W(t), (53) 
where VV(t) is periodic with period T, and 7Z(t) a uniform rotation of axis IVo and angle tOp/T. The motion has two periods: the (usually) short period T and the precession period

Properties of the solution

A more précisé resuit on the periodic loops can be proved. But before, one needs to write the instantaneous precession speed as a function of (x, y, z).

The sign of 0 can be determined through (58). Indeed 0 is a func tion of (w, W1W2), but its sign can only change when 0 = 0, that is from (61), when w2(W2) = C2. ( 66)

Equation ( 65) thus gives the instantaneous precession rate of w as a function of x, y, z. Same results can easily be obtained for the other two vectors Wi and w2.

Symmetry of the nutation

It is now possible to prove a more précisé resuit on the periodic loops generated by w, Wi and w2 in the precessing frame. This is the same resuit as in Boué and Laskar (2006) that was given for a three body problem with only one rigid body.

Proposition 2. In the frame rotating uniformly with the precession pe riod, the three vectors w, wlr w2 describe periodic loops C, C\, £2 that are ail symmetric with respect to the same plane S containing wq.

Instantaneous precession rate

Let us write the time dérivative of the precession angle of w as a function of (x, y, z). The expressions for the other vectors can be obtained in the same way. The following approach is highly inspired by Boué and Laskar (2006). We set Wo = || IVo II the norm of the total angular momentum and wo = W0/W0 its direction vector. With

Conséquence. Let us call V, V\, V2 the averages of w, wi, w2 over the nutation angle. V, V\, Vj are respectively the pôle of the orbit, the pôle of the spin of the primary and the pôle of the spin of the secondary. Due to the symmetry of the loops, the three pôles V, V\ and V2 remain in the symmetry plane S containing Wo. and precessing uniformly around wo. Each vector w, wi, w2

nutates around its pôle, respectively V, V\, V2.

C =w-w0,

the projection L of w on the plane orthogonal to wo is

L = w -Çwo. (56) 
Assuming w ^wo. we get Ç < 1. With L = ||L||, the expression of L gives Proof. As in Boué and Laskar (2006), we will consider uniquely w, the other cases being similar. We consider here a general solution,

for which the orbit of (x, y, z) crosses the Cassini berlingot (Fig. 5).

We choose the origin of time in r+ which corresponds to an orbital angular momentum w+. Let a be the arc length described by M = Thus <7 is a function of (x, y, z) and has the sign of v. For t < 0, the orbit in the (x, y, z) describes the arc (r_,r+), thus a decreases from ct_ down to o+ = 0, and v < 0. Conversely, for f > 0 the orbit describes the same arc in the reverse way (r+, r_), hence v > 0. As x, y, z are functions of the arc length o, we can write

-F(a), if t < 0, +F(cr), if t > 0, (69) 
where F(ar) = |v|-//(x, y, z). We condude that a and thus M = (x, y, z) are even, that is M(-t) = M(t).

The rest of the proof is identical to the one of Boué and Laskar (2006). We recall it for completeness. From ( 65)

02(t) -&(x, y, z), (70) 
we deduce that 02(t) is even. Moreover, as the differential System (33) is polynomial, the solutions w, wi, w2 are analytical in time t, and so will be the coordinate angle 0(t) of w. The lemma of Boué and Laskar (2006) thus implies that 0(t) is odd or even. If 0(t) is even on [-T/2, T/2], for ail h e [0, T/2], we hâve 0(h) -0(0) = 0(0) -6(-h). As the cosine Ç of the angle from w and wo (55) dépends only on x, y (62), we hâve Ç(h) -Ç(-h), and w (h) and w (-h) are symmetrical with respect to the (w0,w+) plane. It will still be the same in the rotating frame with the precession period.

In this rotating frame, the periodic loop generated by w is thus symmetric with respect to the plane (wo,w+).

Moreover, at t = 0 (r+), the volume v is null, and thus wo, w, wi, W2 are coplanar. In the rotating frame, ail three orbits gener ated by w, wi, W2 are thus symmetrical with respect to the same plane (wo, w+).

The only case where 0(0 is odd, occurs when 0(0) = 0. As v(0) = 0, we hâve f (0) = 0 (63) and w = 0 (61 ). In the same way, we hâve wi(0) = w2(0) =0, and the vector field (33) vanishes at t = 0. The three vectors w, wj, W2 are thus stationary and copla nar.

This is a spécial Cassini State where the precession frequency is zéro.

Computation of the two periods

The nutation period and the precession period are two key parameters of the problem since the global solution is the product of these two motions (53). Let us see how the values can be derived.

The three dot products (x(t), y(t), z(t)) are T-periodic where T is the nutation period. This period can thus be calculated from the expression of (x(t), y(t), z(t)). Given the two first intégrais (35), it is possible to express x(t), y(t), and z(t) in the form of an intégral as in Boué and Laskar (2006). Nevertheless the energy conserva tion only gives an implicit relation between those variables and the computation remains tedious. For this reason, we give here an algorithm that enables to compute the two frequencies in a simple way using the numerical intégration of the secular équations (33).

The method leads to an arbitrary high précision since it nécessi tâtes the intégration over one nutation period only.

We assume that at to = 0, the initial volume v (36) is not zéro, and let x (for example) be the variable with the largest variation rate, x(to). Using the method of [START_REF] Hénon | On the numerical computation of Poincaré maps[END_REF], we search for the first time t > to when (x(t),x(t)) = (x(t0),x(to)). We integrate the System (33) until The évolution of the projections on the complex plane orthogonal to Wq

3 = £ + '0, 31 =£1+1771, li =£2 + 1772, ( 77 
)
is obtained from the secular équations (33), and yields to and (p,q,s) are defined in (34). M is a real matrix with periodic coefficients. As it is not possible to obtain a simple analytical so lution of this System, we make a crude approximation. Hereafter we replace the matrix M by the constant matrix M obtained by substituting (x, y, z) by their average M = M(x, ÿ, z).

(80)

The solution of ( 78) is thus straightforward. It is easy to verify that (f, fi, f2) is an eigenvector of M with eigenvalue 0. The other eigenvalues are then the solutions of

We then change the time variable to x and integrate X2 -TÀ + P = 0, 

In this approximation, the three axes (w, Wi,w2) describe circular motions with nutation frequency v around the three pôles ÇP,V\,V2) that precess uniformly with precession frequency Q around the total angular momentum Wo-As it was previously said, the three pôles {V,V\,V2) remain always coplanar with VV0.

Initial conditions

The preceding section shows that the solutions (87) dépend only on four real numbers t, s, 0 and <p. At the origin of time (f = 0) we can choose two vectors, for instance 30 = e10 (r + se1^) and 310 = e,0(Xr + X'se'4')

from which we dérivé tel» = ^0-310 and tf = *30-i,0

x'-x x -x'

The computation of X and X' requires the knowledge of the averaged values x, ÿ and z, but it can easily be done by itération, starting with the initial values, that is, for the first itération x = x(t = 0), ÿ = y(t = 0), z = z(t = 0). ( 90)

In our computations, we found that one itération after this first try with the initial conditions was sufïïcient to obtain a satisfactory approximation for the frequency amplitudes and phases of the solution (see Tables 4,7, 8).

Second order expansion

The secular équations ( 33 

Global precession of a n-body System

The whole previous study has been made with a Hamiltonian expanded up to the fourth degree in R/r ((2), ( 7), ( 12), ( 13) and ( 14)) P = HT + HE + Hj0) + Hj2) + H,(4). ( 91 We hâve seen that the secular motion of a two solid body System can, as in Boué and Laskar (2006), be decomposed in a uniform precession of angular motion Q, and a periodic motion of frequency v. In fact, this can be extended to a very general System of n solid bodies in gravitational interaction. The following resuit, which is of very broad application, is a conséquence of the gen eral angular momentum réduction in case of regular, quasiperiodic, motion.

Proposition 3. Let S be a System of n + 1 bodies of mass m, (i = 0,..., n) in gravitational interaction, with ns solid bodies among them (ns ^n + 1). Then, in a reference frame centered on one of the bod ies, and for a regular quasiperiodic solution of S, there exist a constant precession rate ^2, such that any vector Z e (r,-, Ij, J j, Kj, Gy, i = 1,., n; j -\ ,,ns} has a temporal évolution that can be decom posed as

Z(t) = 7Z3(T2t)Z{v)(t), (101) 
where TZ3(T2t) is a uniform precession around the total angular momen tum W0 with constant rate Q, and where Z(v)(t) can be expressed in term of quasiperiodic sériés of 3(n + ns) -2 frequencies (vi<). We will call f2 the global precession rate of the System S.

Proof. Let us consider a general System of n + 1 bodies of mass m, (i = 0,.... n) in gravitational interaction, with ns solid bodies among them (ns < n + 1 ). This is a 3(n + 1 +ns) degree of freedom (DOF) System. Due to the translation invariance of the System, it can be reduced to N = 3(n + ns) DOF using the coordinates centered on one of the bodies (the one of mass mo for example). This heliocentric réduction can be made in canonical form, preserving the Flamiltonian structure of the équations (see Laskar and Robutel, 1995).

The full Hamiltonian of the System, as expressed in ( 1) is then a function of the vectors (r,lj, J j, Kj.Gj), i = n; j = 1, ...,ns, that dépends uniquely of the scalar products of thè ses vectors. Moreover, the total angular momentum IVo ( 35) is conserved.

This System, as for the usual réduction of the node, can be re duced to a System of N -2 degrees of freedom. A first réduction to N -1 DOF can be achieved by using a reference frame (i, j, k) such that k is collinear with IVo and k lVo is positive. This partial réduction is based uniquely on the fixed direction of the angu lar momentum (Malige et al., 2002). With this reference frame, ail quasiperiodic solutions of the System can be expressed in term of only N -1 fundamental frequencies.

In this fixed (i,j,k) reference frame, we can use canonical coordinates that are well adapted for both the orbital and ro- évolution is given by -= ^r(Ai. n, Mi,cOi,0'i¥VLj, Gj, H'j, lj, gj, h'j). ( 105)

Thus Ô\ (t) is also a quasiperiodic expression depending on the N -2 frequencies v^.

-=^a(fc)exp(i(k, v)t),

where (k) is a (N -2) multi index. Let £2 -ct(O) be the constant term of this sériés. We hâve then -= ^+ X! "00 exP('(fe' v)t) where /(v,)(t) is a (N -2)-periodic function with frequencies (1^).

The original vectors X,. Yj can then be expressed as

Xi -1Z3(0\)Xi -'R.3(Ç2t)'R.3(f(V)(t))Xi -7Z3(S2t)X-v\ Yj = 7l3(0,)Ÿj = 7l3(ï2t)7l3 (f(v) (t)) Ÿj -1Z3(f2t) ÿjv), (109) 
where X-v), Ÿ(p can be expressed in term of (N -2)-periodic function with frequencies (\>k). This ends the proof of the proposi tion.

Conséquence. A conséquence of this resuit is that for a quasiperi odic solution of the general two body problem that we are considering here (n = 1, ns -2), the components of any vectors r, r, lj, J j, 1< j, Gj, should express as quasiperiodic functions of the precessing frequency £2 and of 7 frequencies vk, k -1 7, the precession frequency £2 appearing in ail terms with coefficient 1.

This is actually what is observed on some examples in the next section (Tables 5 and6). One should note that the same results hold for the three body problem studied in Boué and Laskar (2006) (with n = 2, ns = 1 ).

It is also useful to remark that the value of £2 is independent of the Vk, i.e. any commensurable relation between £2 and the Vk has no effect on the dynamics of the System, in the sense that it will not affect the regularity of the solutions. On the other hand, in the case of a single Vk frequency (as for the secular System), a rational ratio £2/v will lead to a periodic solution in the fixed reference frame (i, j, k). We prefer here to speak of géométrie résonance instead of dynamical résonance, as there is no coupling between the two degrees of freedom of frequency £2 and v.

Application

In this section we compare our rigorous results on the averaged System and our analytical approximations of the solutions of the same System with the intégration of the full Hamiltonian (2), ( 7), ( 12), ( 13) and ( 14) on two different binary Systems / and II (see Tables 1 and2). The physical and orbital parameters of the System II are those of the binary Asteroid 1999 KW4 studied in Fahnestock and Scheeres (2008). We choose this System in order to compare our results with Fahnestock and Scheeres (2008). In this case, the rotation of the satellite is taken to be synchronous.

As our analytical results were obtained assuming the satellite rota tion asynchronous, we create a System I from the System II where 5 As the Hamiltonian 7-L (Eqs. (1), ( 2), ( 7), ( 12)-( 14)) is analytical in the an gles (Mi,ù>t,0[,lj,gj,hj). the convergence of f<v)(t) = £(k) exp(i(k, v)t) is ensured if we assume that the frequencies ( 14) satisfy a Diophantine condition of the form |(k, i>)| > k/|k|r, for |k| = |ki | H 1-|kiv-2|. k > 0, r > 0. This will be the case for a KAM quasiperiodic solution (see Chierchia, 2008). the rotation of the secondary has been sped up by a factor 3. Since the orbit is circular and the initial rotation axes aligned with the axes of maximum inertia, the System II is highly degenerated. To get a more general System where ail the fundamental frequencies will actually exist, we changed the initial Andoyer angles and the eccentricity. But then, because of its strong triaxiality, the évolu tion of the satellite orientation becomes chaotic [START_REF] Wisdom | Rotational dynamics of irregularly shaped natural satellites[END_REF].

As here, we are concerned only by regular behaviors, we thus decreased the satellite triaxiality and increased the semi-major axis in order to obtain a generic example of regular solution.

6.1. Numerical experiments 6.1.1. Frequency analysis

The quasiperiodic décomposition of our numerical intégrations was obtained using the frequency analysis developed by Laskar (Laskar, 1988(Laskar, , 2005)). As our Systems contain a large range of fre quencies going from 0.07 to 109 radday-1, we decided to run twice each intégration with two different output time steps h -0.1 days and h' = 0.1001 days. These two time steps do not fulfilled the Nyquist condition for the largest frequency. Nevertheless, it is possible to recover the true value uo of the frequency using the following trick (Laskar, 2005). For a real x, let dénoté [x] the real such that 

k ----Uv' -v)h' -[v'h' -v/i]). (112) 
h' -hy '

System I-Doubly asynchronous case

Full Hamiltonian We integrated the System / over a time span of 2 000 days and performed a frequency analysis as described above.

This System contains a priori 9 degrees of freedom. Three coordinates for the orientation of each body and three coordinates for the orbit. But there is a relation between ail these coordinates given by the conservation of the total angular momentum. There are thus only 8 degrees of freedom. Hence the System contains 8 fundamental frequencies (cf. Table 3).

These frequencies can be divided into four main categories:

(1) the secular frequencies containing the precession £2 and the nutation v; (2) the orbital frequencies with the periapse preces sion rate co and the mean motion n; (3) the frequencies of the primary g] and /1 associated respectively to the Andoyer angles gi and h; (4) the same frequencies for the secondary g2 and î2.

Table 5 displays the frequency décomposition in the form £Ajexpi(Vjt + <Pj) of the motion of 3, 31 and 32 (77), the pro jections of w, W] and w2 on the complex plane orthogonal to IVo.

The second column shows that ail the frequencies are combina tions of the 8 fundamental frequencies.

Moreover, we verify our proposition saying that in a frame rotating uniformly with the precession rate £2, the System loses one degree of freedom, see Section 5. Indeed, the frequency £2 appears in ail the terms with the same order 1.

- Frequency analysis of the doubly asynchronous System I. Columns 3 to 5 correspond to the frequency analysis performed on the numerical intégration of the averaged Hamiltonian (28), superscript (a). Columns 6 to 8 contain the secular terms of the frequency décompositions computed on the output of the full intégration, superscript (/).

Columns 9 to 11 are the results of the analytical approximations ( 83) and ( 89), superscript (c). The two last columns of Table 7 give the complex amplitudes of the secular motion obtained with the analytical approximation of Section 4. As in this approximation, the nutation is assumed to be a uniform rotation, there are only two terms in the description of the secular motion. Nevertheless, we see that this approximation is also in good agreement with the intégration of the full Hamilto nian and of the averaged Hamiltonian.

Var. i Af <pf i A\f) Vif) i <PÏ> (") (deg) (") (deg) (") (deg) 
In Table 4 are given the values of the secular frequencies for Systems I and II, obtained either from the intégration of the full Hamiltonian, from the intégration of the averaged Hamiltonian, or with the analytical approximations (83). The precession rates are in agreement within 0.3% and the nutation frequencies within 5%.

Fig. 6 represents the trajectories of the unit vectors on the plane orthogonal to the total angular momentum Wo. In the top panel, the frame is fixed, it thus corresponds to W(t), see Section 3.2. We see that the évolutions of w in red and wi in green are dominated by the precession: their orbits are quasi-circular, whereas the orbit of W2 in blue contains a large nutation as it can be checked in the frequency analysis Table 5. The bottom panel shows the same orbits but in a frame rotating with the precession rate i?, it cor responds to W(t). It emphasizes the nutation loops. Zooms on the nutation of the orbit and of the primary are plotted on the bottom right. The solid curves are the output of the averaged Hamilto nian. The analytical approximations cannot be distinguished from the averaged output. These averaged solutions are good approxi mations of the motion of w and w2 but the agreement does not seem to be as good for wi. Indeed, Table 5 shows that high fre quencies hâve larger amplitudes than the secular nutation.

Because of this amplitude issue for wi in Fig. 6, we decided to filter our full intégration with a low-pass filter to see if we could get back the averaged intégration. In this scope, we reintegrated the full Hamiltonian over a time span of 20 days with an output time step of 30 min. We then filtered the output with a cutoff fre quency equal to 4 rad/day. The filtered trajectories are displayed in Fig. 7. The nutation amplitude of wi is now well retrieved. After a small change in the initial conditions that corresponds to a decrease of only 3.6" of the initial obliquity of the primary in the averaged Hamiltonian, we get back the filtered full Hamiltonian (see Fig. 8).

System II-Asynchronous-synchronous case

For this second experiment, we took the same initial con ditions as Fahnestock and Scheeres (2008) (Table 6). The pri mary has an asynchronous rotation whereas the secondary rotâtes synchronously. The différence between our study and study of Fahnestock and Scheeres (2008) is that we expanded the Hamil tonian up to the fourth order in R/r where R is the radius of one body and r the distance between them. We performed the x quasi-componcnt (dcg.)

x quasi-component (dcg.) Table 6 présents the frequency analysis performed on this Sys tem. The resuit of Section 5 is still valid, in a frame rotating with the precession rate, the System loses one degree of freedom. We confirm that this resuit does not dépend on the résonances in the reduced problem.

The averaged Hamiltonian and the analytical approximation were not specifically written for such a résonant case. Regardless of this fact, the results of the averaged Hamiltonian and of the an alytical approximation applied to this System are summarized in Fahnestock and Scheeres (2008) expanded the Hamiltonian up to the second order in R/r. They find that motions of binary asteroids such as 1999 KW4 are combinations of four modes with their respective fundamental frequency. The first and fastest mode cor responds to the rotation of the primary around its axis. The second mode coincides with the orbital motion which has the same period as the rotation of the secondary around its axis. The third mode is said to be an excitation of the satellite's free precession dynamics and has a period of =«188 h. The corresponding frequency would be «0.802 rad/day. The last mode is identified as the precession motion.

Our results generally agréé with the analysis of Fahnestock and Scheeres. Nevertheless, several frequencies are missing in their analysis, probably because of the degeneracy of their ini tial conditions. As the initial eccentricity is close to 0, and the angular momenta along the axes of maximum inertia, the first ternis in the frequency décompositions are combinations of cà + n which corresponds to their orbital frequency. and of +/i which corresponds to their rotation of the primary, see Table 6. On the other hand, we do not find their third mode of frequency «0.802 rad/day.

Solid-point interaction

Fahnestock and Scheeres found also that the spin axis of the primary and the orbital plane precess at the same rate. They derived an analytical expression for this precession rate, see their Eq. ( 76). Their resuit corresponds in fact to the solution of the sin gle planet case that is already described in Boué and Laskar (2006) and which does not require the more elaborated formalism developed here. Indeed, as they expanded the potential up to the second order only, they canceled the effect of the orientation of the sec ondary on the precession of the primary (c = 0 = c = f = g = 0).

Moreover, as they fixed the orientation of the secondary with the orbit, the secondary does not influence the orbit (y = (w w2) = 1).

We recall here the dérivation of this frequency as given in Boué and Laskar (2006). With the assumption of a point mass satellite, the Hamiltonian becomes R --2*2, (113) with x = (w • Wi) and (117)

Both vectors w, Wi thus precess uniformly around the total an gular momentum direction wo with constant precession rate £?o-

The correspondence with the notations of Eq. ( 76) of Fahnestock and Scheeres ( 2008) is

s/E y 2 a7/2(l -e2)2 x = cos((5 -i-i), (/i -feq)(l --sin2 J^j, l+Zl + 2Ix = P2 P sin(<5 + i) (118) 
to a lesser extent with the more spécifie case of 1999 KW4, which is in 1:1 spin-orbit résonance. In a further work, we could consider in a more précisé way the possible résonances. In that case, some of the averagings need to be done in a different way, probably leading to less symmetrical, more complex, expressions. The main goal reached by the présent paper was to search, in this apparently difficult problem of two solid bodies in interaction, what was the most simple relevant underlying structure. One can now add possible additional effects, as tidal dissipation, and still consider the problem with the présent setting. We thus expect that the results presented here will be helpful for the understanding of the general évolution of binary asteroids, or other problems of astronomical interest.

In the élaboration of this paper, we came across the very gen eral resuit given in our Proposition 3 which applies to any System of n massive bodies (point masses or not) in gravitational inter action. This property of the motion States that the general regular quasiperiodic motions with N independent frequencies can be decomposed into a uniform rotation around the total angular mo mentum, which we call the global precession, and in this rotation frame, a quasiperiodic motion with N -1 frequencies, independent of the global precession frequency.

C.3. Computation of (Xmyn/r(> forl^m + n + 2

In averaging computations we meet intégrais in the form (r st)kl

• • • (r • Sj)ki \ r' / (135) 
These intégrais can be computed from

ixmyn\ 1 1 \ r' / " a'!(l -e2)'1"3/2 27r 2n x J cosm usin" v(l+ecosv)h"2dv o = ah(l -e2)h-3/2 ( 2k )-/n-m+fcek' ( 136 
)
where h =1 -m -n and Jn m defined as previously. This intégral is null whenever n is odd.

INTRODUCTION

It is now well accepted that the solar System was more com pact after the protoplanetary gas disk dissipated. Then planets migrated due to interactions with the primordial planetesimal belt. The Nice model (Gomes et al. 2005;Tsiganis et al. 2005;Morbidelli et al. 2005) gives a unified scénario of this planetary migration, but it is still not fully constrained. For example, the Nice model allowed two possible classes of late évolution [START_REF] Nesvornÿ | Capture of Irregular Satellites during Plane tary Encounters[END_REF]. In the first one, called "class MA," Nep and from the distribution of the main asteroid belt on the other (Minton & Malhotra 2009). They both assumed an MA mi gration type without long-term évolution of eccentricities and inclinations. The former obtained a migration timescale r between 1 and 10 Myr, and the latter found r < 0.5 Myr.

In this Letter, we aim al giving new constraints bascd on Saturn tilting (Ward & Hamilton 2004;Hamilton & Ward 2004).

According to Ward and Hamilton, Satum's large obliquity, e = 26?73919 (Helled et al. 2009), is due to a résonance capture between its spin axis and Neptune's orbit. Given the large uncertainties on Saturn's precession rate -(X'75 ± 0721 yr"1 (Ward & Hamilton 2004), the more accurate régression of Neptune's orbit plane 5g = -07692 yr-1 (Laskar et al. 2004) is indeed included in the errorbars. Ward & Hamilton (2004) assume that today the two frequencies are cqual. In their scénario, the norm of the frequency of Neptune's ascending node was initially larger, and then it captured Satum's spin axis as it decreased due to Neptune's migration and/or the dissipation of the planetesimal disk (Ward & Canup 2006). In their numerical model, they took a quasiperiodic model of the solar System and forced an exponential évolution of the frequency 5g. Here, we

show that Saturn can tilt in both migration classes, and that it gives a lower limit on the migration timescale. This limit dépends on Neptune's initial inclination.

A recent paper by Helled et al. (2009) Saturn's precession rate -077542 ± 0/0002 yr-1 that is incom patible with a résonance with 5g. We show that with this value, Saturn can still evolve to its current State but that it is very unlikely. We discuss this resuit in our conclusion. where the v* (sorted with increasing amplitudes /*) are com binations of the fundamental frequencies gj, sj (Laskar 1990).

For Saturn, v2 = 5g = -0/692 yr~' and p = 0/064. As the other ternis hâve only very weak effects on the behavior of Sat um's spin axis (Hamilton & Ward 2004), one can retain this single terni in the orbital precession, which makes the problem intégrable (Colombo 1966;Henrard & Murigande 1987). preccssion rate. Two of them, -0774 ± 077 yr-1 [START_REF] French | Geometry of the Saturn System from the 3 July 1989 occultation of 28 SGR and Voyager observations[END_REF] and -0775 ± 0721 yr"1 (Ward & Hamilton 2004), are compatible with a libration in zone 2, whereas the third one, -077542 ±070002 yr-1 (Helled et al. 2009), constrains Satum's axis to circulate in zone 1. In the following, we study these two cases. In Case I, we use the precession constant given by Helled et al. (2009), and in Case II we set a such that -a cosc = ïg = -07692 yr-1. In our numerical intégrations detailed below, we lake into account the dependences of a in Saturn's semimajor axis and eccentricity.

ORBITAL EVOLUTION

We integrate the secular équations of motion derived from the Hamiltonian of Laskar & Robutel (1995) written up to degrce 4 in inclinations and eccentricities. In order to fit to the présent value of 5g (Laskar et al. 2004), a small constant offset àsg = -0700342 yr-1 is added in the model. This offset was obtained by frequency analysis (Laskar 1990) of our analytical model (Table 1 ). For the class "MA," we consider only the last 3 AU migration of Neptune. When Neptune was doser to the Sun, the frequency sg was too large to hâve any effect on Satum's axis. Migration is simulated by an additional force leading to Malhotra (2009) and it is in agreement with the full intégra tion of Tsiganis et al. (2005). In the same way, for the class "DE" we apply an external force that gives a long-term expo nential évolution of Neptune eccentricity starting at eç, -0.3 and finishing at its current value. For both classes, we did inté grations with constant Neptune inclination, and others with an exponential damping with the same r. For each value of r, an intégration in the past is donc to obtain initial conditions for the orbital coordinates. Satum's initial obliquity is then set to €o= 1.5°.

We now look at the effect of the dissipation of the remaining primordial planetesimal belt. Following a suggestion of A. We discuss the implications of these results in the conclusion.

In Case II, Saturn's spin axis is presently in résonance with Neptune's ascending node. In that case, planet migration must be slow enough for the capture to occur, but if it is too slow, then the évolution becomes adiabatic and the libration amplitude is too small (less than 31°; Figure 2, Ile). This latter constraint disappears if the precapture obliquity is larger than 4?5 (Ward & Hamilton 2004). We performed 2100 intégrations for each of the two migration types MA and DE, r going front 10 to 600 Myr every 10 Myr and i/r between 0°and 350°every 10°.

The results are summarized in Figure 3 In ail these intégrations, Neptune's inclination does not undergo long-term évolution. However, the amplitude h of Saturn orbital quasiperiodic motion (2) is proportional to Neptune inclination.

In Section 5, we show that the higher the inclination amplitude is, the faster a planet can be tilted. We thus studied the minimum timescale, for which Satum's axis ends in zone 2 with a libration amplitude larger than 31°, as a function of Neptune's initial Bold curves are results of numerical intégrations. Thin curves were obtained by the algorithm described at the end of Section 5.

rmin decreases rapidly to ^20 Myr when Neptune's initial inclination increases to 4°and then it decreases slowly down to 7 Myr when Neptune's inclination goes to 10°.

FASTEST TILTING

In this section, we compute analytically the minimal time required to tilt a planet as a function of its inclination I(t). Wc

give also an algorithm to check whether Saturn can be tilted or not for a given migration.

We call Q the inclination of a planet equator relative to the invariant plane. As Saturn current inclination is small relative to its obliquity e, the two angles 0 and e are similar. Let O and Q be the longitude of the ascending node of the equator and of the orbit in the invariant plane. We hâve 
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  Figure 1.1 -Images directes de disques protoplanétaires observés dans la nébuleuse d'Orion par le télescope spatial Hubble, NASA (McCaughrean & O'dell, 1996).

  ce modèle, la configuration planétaire est initialement plus compact, les orbites sont circulaires et de faible inclinaison. Au delà de la dernière planète, subsiste un disque de planétésimaux qui n'ont pas pu s'agglomérer. Dans ce système compact, Jupiter et Saturne traversent une ou plusieurs résonances en moyen mouvement suite aux interactions avec les planétésimaux. Cela déstabilise fortement les orbites, un grand nombre de planétésimaux balaient le système solaire, des rencontres proches entre planètes ont certainement excité leur inclinaisons et excentricités, et il est même possible qu'Uranus et Neptune aient interverti leur position. Après cette évolution rapide, les planètes externes ont continué à migrer lentement vers leur positions actuelles, leurs inclinaisons et excentricités se sont amorties.

Figure 1

 1 Figure 1.2 -Taux d'accrétion de la Lune en fonction du temps. La courbe épaisse représente l'évo lution extrapolée jusqu'à l'origine du système solaire. L'âge des bassins des impacts majeurs sont indiqués. La bande grise marque l'âge de la Lune obtenue par radiométrie. La courbe en tiret re présente le pic d'accrétion correspondant au bombardement tardif (Late Heavy Bombardment en anglais). Cette figure est adaptée de[START_REF] Koeberl | Impact Processes on the Early Earth[END_REF].

  Figure 1.3 -Géométrie du flux de particules accrétants sur une planète dans un repère centré sur le Soleil (S), et dans un repère lié à la planète. Toutes les particules, venant d'une orbite interne ou d'une orbite externe, apportent une composante positive au moment cinétique de la planète. Cette

  Figure 2.1 -(a) Type d'évolution de la vitesse de basculement utilisé par Kinoshita (1993) pour contraindre la durée du basculement. A partir de t = 0 le basculement commence, il s'effectue à vitesse constante (ê = 7r/(2<^)), puis s'arrête à t = St. (b) Autre type d'évolution considérée dans la section 2.2. il s'agit d'une évolution gausienne d'écart type r. (c) Evolution triangulaire, (d) Evolution sinusoïdale de la forme Bn sinn(7ri/^) tracée pour n -5.

  due au satellite Obéron qui impose une durée de basculement d'au moins 1 million d'années. De façon plus

Figure 2

 2 Figure 2.5 -Exemple d'évolution des distances entre la projection du pôle de l'orbite du satellite sur le plan de l'équateur et l'origine à la fin du basculement \Zn(ôt)\, avec n -5. Cette distance présente des oscillations et s'annule périodiquement à partir d'une certaine valeur de S. Son enveloppe env5(è*) est représentée en tiret.

  dépendent sensiblement des rayons des noyaux qui ne sont pas connus pour ces planètes. Ces arguments ne permettent pas de dire si la dissipation dans le noyau est négligeable ou non. L'origine de la dissipation est donc mal comprise, tout comme la dépendance du facteur de qualité Q par rapport à la fréquence d'excitation. 2.3.2 Dépendance du facteur de dissipation Q Pour comprendre le problème de la dépendance du facteur Q en fonction de la fréquence d'exci tation, rappelons la façon dont est modélisée la marée. Considérons une planète de masse m et de rayon R autour de laquelle orbite un satellite de masse m* situé en r* par rapport au centre de la planète. Le potentiel gravitationnel calculé en un point R de la surface de la planète s'écrit U(R,rt) = Uo(R,r;) + W(R,r*sla constante de gravitation. Uo(R,r*s) est le potentiel principal créé par la planète et le satellite, et W(R, r*) est une perturbation. Le dernier terme dans l'expression de W(R,rl) est dû à l'accélération d'entraînement engendré par le mouvement du centre de la planète. Dans la suite, on ne s'intéresse qu'au potentiel W(R, r*). Traditionnellement, ce potentiel est développé en puissance de (R/r*) à l'aide de polynômes de Legendre Pi sous la forme W(R,r'a) = jriW,(R,rî), W,(R,r'al'angle entre R et r*. Ensuite, les Wi(R,r*) sont exprimés en fonctions des paramètres orbitaux du satellite a*, e*, z*, M*, eu* et D* qui sont respectivement le demi-grand axe, l'excentri cité, l'inclinaison équatoriale, l'anomalie moyenne, l'argument du périastre et la longitude du noeud ascendant. L'expression de Wi fait aussi apparaître la longitude À et la latitude 4> du point R ainsi que le temps sidéral 0* qui mesure la rotation de la planète. Cela donne Wi(R,r*s) =le symbole de Kronecker qui vaut 1 si i = j et 0 sinon, et où Fimp et Gipq sont des fonctions connues. L'angle ^impq est défini

  (l-2p)û>: + (l-2p + q)MZ + m(Q*s -©*).(2.48) Ainsi, chaque terme du développement du potentiel (2.45) possède une fréquence cof q et un dé phasage qui lui sont associés. Le facteur de dissipation est défini comme l'inverse de la tangente du déphasage angulaire. Comme il y a a priori un déphasage différent pour chaque terme du développe ment, il y donc aussi un facteur de dissipation différent pour chaque terme ®lmpq

(

  6' -0 et où Rs(9) est la matrice de rotation d'angle 0 autour de k. Nous introduisons cette matrice afin de simplifier les calculs à venir. Le hamiltonien s'écrit alors r/r' varie de p2 = r/R2 à p\ = r/R\, et 6 -6' -6 de 0 à 27r. Nous avons utilisé md = 7T(j(i?2 ~-R?)-Pour l'intégration sur 9, on utilise la définition des coefficients de Laplace (e.g.remplacer le dénominateur dans l'expression de Af par une série d'exponentielles com plexes plus facilement intégrables. Ici, l'indice s des coefficients de Laplace vaut 5/2. Les éléments de la matrice s'expriment aussi en fonction des mêmes exponentielles p -cosê) =-~(e1® -e"*®) + L (e2ié -e"2i") .

  11) et (3.20) sont très similaires, le hamiltonien total décrivant l'évolution de l'axe de la planète dans le système étoile-planète-disque s'écrit simplement Ht = (l + K)no (

  des calculs, il reste à écrire (A'b/aj)2 sous la forme Aj2(l + p\ -2po cos(0--Oj)). En effet, cette forme est classique et se décompose facilement en coefficients de Laplace. Ensuite, il suffira de moyenner sur la longitude des corps pour avoir l'effet séculaire. Posons p = ai/dj et pb -Tb/dj, de ce binôme vaut (1 + p% + p2)2 -^p2 Il est strictement supérieur à (1 -p2)2 pour pb 7^0, donc est strictement positif. L'équation (3.54) possède deux racines réelles Po + p2b+p2±VD). (3.55) Les deux solutions sont positives et inverses l'une de l'autre. Il y a donc toujours une racine comprise entre 0 et 1. C'est cette racine que l'on choisie (celle avec le signe moins). Ensuite, on choisit Ao = -Ly/p/po-(3.57) se moyenne en utilisant exactement la même démarche que pour l'interaction solide-disque (section 3.1.1, page 26). La moyenne s'effectue d'abord sur Oj qui varie linéairement avec le temps. Ao sont donnés par (3.55) et (3.56). Pour la moyenne sur la longitude 0{ du corps iInteractions utilisées pour la modélisation de l'évolution de n planètes et d'un disque de p planétésimaux autour du soleil. l'évolution séculaire de n corps interagissant entre eux par l'intermédiaire d'un potentiel lissé est donc (à une constante près) de la section précédente, le hamiltonien s'écrit aussi (à une constante près) n" = CaA /ç.ç. + ç.ç. _ ç.£ p) donné par (3.60). Dans le cas où le paramètre de lissage est nul, on retrouve le hamiltonien (précédente, nous avons écrit les hamiltoniens d'évolution séculaire d'un ensemble fini de corps en interaction newtonienne (3.28), ou soumis à un potentiel lissé (3.65). Nous allons maintenant utiliser une combinaison de ces deux hamiltoniens pour modéliser l'évolution du système solaire entre les deux phases de migration. Nous négligerons l'effet des planètes intérieures. Notre système est constitué uniquement des quatre planètes géantes, sur des orbites rapprochées, entourées d'un disque de planétésimaux. 3.3.1 Modélisation Pour étudier l'évolution de leur système, un ensemble d'étoiles autour d'un trou noir, Tourna et al. (2009) ont modélisé les interactions étoiles-trou noir par un potentiel newtonien et les interactions des étoiles entre elles par un potentiel lissé. Nous allons utiliser la même approche. Nous supposerons que l'évolution du système est bien décrite par les interactions résumées dans la table 3.1, c'est-à-dire où seul le potentiel d'interaction entre les planétésimaux est lissé. Le hamiltonien du système constitué de n planètes et p planétésimaux s(0Cfc + Ci Ck -CiÙ -CkCk) (3.66) où les indices de 1 à n font référence aux planètes et les indices den-j-1 à n + p font référence aux planétésimaux. La première somme décrit les interactions planète-planète ; la deuxième, les interactions planétésimal-planétésimal ; et la troisième, les interactions entre les planètes et les planétésimaux. Le disque de planétésimaux est divisé en p couronnes de masse mk, k = n + l,...,n + p et délimitées par les rayons rk et rk+\ avec rk = R\ + (k -n -1)---. (3.67) P Pour rappel, R\ et i?2 sont respectivement les rayons interne et externe du disque. Les masses sont choisies de sorte à ce que la densité surfacique o soit constante mk = fJTT(r2k+1 -r2k)Le demi-grand axe ak de la couronne k est choisi de façon à ce que le moment cinétique calculé avec cette valeur et la masse mk soit effectivement le moment cinétique de la couronne sont égales, mais la seconde, bien que plus compliquée, est plus stable numéri quement dans le cas où la différence entre rk+\ et rk est petite. Les équations du mouvement engendrées par le hamiltonien (3n + 1,... ,n + p. Il s'agit des équations du problème linéarisé, elles peuvent s'écrire sous une forme matricielle. Soit Y = *(£i,... ,£n+p), on a Ÿ = i MY, (3.74) avec AA la matrice à coefficients réels donnée par les équations (3.72) et (3.73). L'étude qui a été effectuée dans le cas continu concernant les contraintes sur les valeurs propres s'applique ici aussi.

  Figure 3.5 -Spectre du mouvement de précession de l'orbite d'Uranus pour différentes discrétisations du disque. Les cinq grands cercles vides correspondent au cas où le disque est représenté par une seule couronne. Les autres symboles correspondent à p -200 (cercles pleins), p = 500 (carrés vides) et p = 1000 (losanges noirs). Seuls les 30 termes de plus grande amplitude sont représentés, les termes suivants se situent à des fréquences \v\ > 70"/an avec une amplitude descendant jusqu'à quelque 10"30 dans le cas p = 1000. Il est important de noter que le spectre n'est pas continu, chaque point représente un terme de la décomposition en fréquence du mouvement.

  Figure 3.7 -Effet de la longueur de lissage sur le spectre du mouvement de l'orbite d'Uranus pour p = 500: ri, -0 (cercles gris), rb = 0.01 U A (losanges vides), = 0.1 U A (carrés noirs) et rb = 0.2 UA (croix). Tous les termes d'amplitude supérieure à 10~9 ont été représentés.

  cos {vkt + ipk), et p = ^Ak sin {ykt + <pk), où il n'y a pas de résonance, la partie temporelle du hamiltonien oscille rapidement. En moyennant, on obtient W)t = §-^2-(3.87) Dans ce cas, le hamiltonien se résout simplement, l'obliquité reste constante et l'angle de précession croît linéairement avec le temps X(t) = Xo et ip(t) = ipo + aXot. (3.88) Supposons maintenant que le système soit résonant, c'est-à-dire qu'il existe une valeur de k telle que ip' = ip T vkt + ipk varie lentement par rapport à ip. Effectuons alors un changement de variable canonique. Soit G{}p,X'\i) la fonction génératrice permettant de passer des variables (Vh^Q aux variables (?//, X'que X = X'. Comme il s'agit d'une transformation dépendante du temps, il faut ajouter au hamiltonien dS/dt. Celui-ci devient W = -V2 + i/*X' + 2v/1 -X*Akvk cos/ + 2v/l -E AjVj cos[ÿ + (vj -Vk)t+ipj -Vh]-(3.91) jAk Supposons que les fréquences soient suffisamment éloignées les unes des autres, la partie temporelle est alors à nouveau une fonction qui oscille rapidement, et on peut effectuer une nouvelle

X

  Figure 3.8 -Espace des phases du problème de la toupie de Colombo. Le centre de l'île de résonance correspond à l'état de Cassini numéro 2, et le point fixe instable à l'extrémité des séparatrices, l'état de Cassini numéro 4. L'état de Cassini numéro 1 ne se distingue pas sur cette figure, il est très proche de 0' = ±7r, X' = 1. Les paramètres utilisés pour cette figure sont Vkjot = -0.89 et = 5.6 x 10"4.

  .96) En se limitant au premier ordre en A*., on peut réécrire cette équation sous la forme -X12 + ukX' -n'i+ (3.97) On s'est alors ramené à une équation polynomiale du second degré en X'. Les racines sont plus qu'à calculer la valeur du hamiltonien au niveau des séparatrices. Au premier ordre en Afc, elle est donnée par TiA ae X'm). En utilisant l'expression du hamiltonien (3.92)rappel, pour qu'il y ait résonance, il faut que soit négatif. Dans notre approximation, il faut aussi que v^ja soit inférieur à 1. Les racines carrées sont donc bien positives. L'application de la formule (3.101) au cas de la figure 3.8 donne Ax> ~0.085, ce qui est effectivement la largeur de l'île de résonance.

  Figure3.9 -Localisation des îles de résonance en fonction de la constante de précession a. Les régions foncées donnent les positions et les largeurs des zones de libration dans la variable e = ArccosX (Eq. 3.99, 3.101). Les régions gris clairs modélisent l'apparition de résonances secondaires entre les zones de libration principales. Le recouvrement de deux régions grisées marque l'apparition possible de chaos permettant à l'obliquité de diffuser. Les 9 intervalles blancs sont les excursions observées numériquement sur 600 millions d'années pour différentes conditions initiales. Les évolutions de l'obliquité sont en fait confinées dans les régions gris foncées. Le spectre utilisé pour cette figure a été calculé avec 500 couronnes et sans lissage.

Figure 4 . 1 -

 41 Figure 4.1 -Le pôle de la planète w (a), et celui de l'orbite n (b) sont repérés par rapport à un plan invariant associé au repère (i, j, k). Les angles ip et e sont respectivement la longitude et l'obliquité de l'axe de la planète. Les angles fl et i sont respectivement la longitude et l'inclinaison du plan orbital de la planète.

  l'évolution de l'inclinaison finale en fonction de la distance minimale d'approche (Fig. 4.5). Les directions 0\ et 62 des vitesses des deux planètes (Fig. 4.3b) étant données, la figure 4.5 montre que l'inclinaison finale passe par un maximum pouvant dépasser 20deg pour rm < 0.02 UA puis décroît lentement vers des valeurs allant de 1 à 5deg environ pour rm = 0.2 UA. Pour 62 = -0\ variant de 0 à 45deg, l'inclinaison finale après une rencontre proche avec Jupiter peut atteindre des valeurs allant de 8deg à 13.5 deg lorsque rm = 0.05 UA. A cette même distance minimale, l'inclinaison varie entre 4.5 deg et 10 deg après une rencontre avec Saturne. Ces valeurs ont un sens si l'effet du soleil peut être négligé. Les tailles typiques des sphères d'influences de Jupiter et de Saturne s

Figure 4

 4 Figure 4.5 -Inclinaison maximale d'Uranus suite à une rencontre proche avec Jupiter (J) ou Saturne (S), en fonction de la distance minimale d'approche rm. Les différentes courbes correspondent à différentes orientations des vecteurs vitesses des deux planètes dans le plan de référence: 62 --ô\ varie de 0 à 45deg tous les 5deg (de la courbe la plus foncée à la courbe la plus claire). Les courbes correspondant à 62 = 0, 10 et 45deg sont indiquées dans la figure associée à Jupiter. L'inclinaison initiale est supposée nulle. Les paramètres utilisés pour cette figure sont <12 = 14 UA quelque soit la rencontre; a\ -5.35 UA et = 5.4 UA soit v = 3.5 km • s-1 pour la rencontre avec Jupiter; aq = 8.5 UA et rd = 9 UA soit v -1.9 km • s-1 pour la rencontre avec Saturne. Pour information, les tailles typiques Ar des zones d'influences sont de 0.54 UA et 0.62 UA respectivement pour Jupiter et Saturne.

  Figure 4.6 -Constante de précession effective d'Uranus en fonction de la distance d'un satellite additionnel de masse m = 0.01 Mjj (a), m = 0.005Mjj (b) et m -0.001 Mjj (c), où Mjj est la masse d'Uranus (Boue & Laskar, 2006). Pour ce graphe, le demi-grand et l'excentricité d'Uranus sont fixés à leur valeur actuelle et le satellite est placé sur une orbite circulaire. Toutes les inclinaisons sont mises à 0.

Figure 4

 4 Figure 4.7 -Comparaison entre évolution orbitale et accroissement de l'obliquité, a, b, Exemple d'évolution orbitale des planètes géantes pendant la phase de migration sur 2 millions d'années, (a) demi-grand axe a, distance héliocentrique minimale q et maximale Q. (b) Inclinaison d'Uranus. c, Obliquité maximale que peut atteindre Uranus calculée avec l'équation (4.17) et les paramètres orbitaux a, e et i des sous figures a et b. Dans ces calculs, l'effet d'un satellite additionnel situé à 50 rayons d'Uranus est implicitement pris en compte dans la constante de précession. Nous avons considéré 3 masses de satellites différentes: 10~4M[/, 10~aMjj et 10~2Mjj, avec Mjj la masse d'Uranus. Pour chaque masse, l'excentricité du satellite est fixée à 0 (limite inférieure des zones sombres) puis à 0.5 (limite supérieure), d, Résultat d'une simulation avec un satellite de masse m = 0.01 M\j intégré numériquement (courbe noire). Le satellite est éjecté par une rencontre proche avec Saturne à t = 380 mille ans. Une fois que le satellite est éjecté, l'obliquité reste constante et stable (courbe grise). Dans cette figure, l'obliquité est mesurée par rapport au plan fixe perpendiculaire au moment cinétique orbital total à la fin de la simulation.

Figure 4

 4 Figure 4.8 -Distribution des obliquités finales d'Uranus. C'est le résultat de 1 700 intégrations de l'axe d'Uranus avec un satellite: 100 pour chacune des 17 migrations sélectionnées. En noir, les cas où le satellite est éjecté; au dessus, en gris, les cas où le satellite continue à orbiter autour d'Uranus après 2 millions d'années (la fin des intégrations avec un satellite). La première barre de l'histogramme a été tronquée pour une meilleure visualisation, elle monte à 644 (noir) + 8 (gris). Parmi les simulations avec éjection du satellite, l'obliquité finale monte au delà de 60deg (resp. 90deg) dans 220 cas (resp. 37 cas).

X

  Figure 4.10 -Transition entre la phase IV et la phase V. a, Modèle simple de l'évolution de l'axe de rotation avec x = A(cosuj(t -to) -1) + x'o, et y = -Asinu)(t -to) -B(t -to) + yo. Nous avons utilisé A -0.042, B = 41 x 10~6/an, lü = 4.2 x 10"3rad/an, to = 340.4 x 10'3 ans, xo = 0.0155 et y0 -0.013. b, Evolution de l'argument de la projection de l'axe sur le plan x-y. La courbe grise est le résultat de l'intégration numérique et la noire correspond au modèle simple.

Figure 4 .

 4 Figure 4.11 -Contraintes sur la migration et sur la masse du satellite, a, Borne inférieure de la durée nécessaire pour basculer Uranus de 97 deg en fonction de l'inclinaison de son orbite pour différentes constantes de précession(Boué et al., 2009). b, Constante de précession d'Uranus en fonction de son demi-grand axe pour différentes masses de satellite en orbite circulaire(Boué & Laskar, 2006). Dans le cas où l'orbite d'Uranus est excentrique, le demi-grand axe au doit être remplacé par au J1 -efj.Par exemple, si durant la phase de migration l'inclinaison d'Uranus reste au dessus de 10 deg pendant au moins 1 milliard d'années, alors une constante de précession égale à 5"/an peut être suffisant pour basculer Uranus (a). Une telle constante de précession peut être atteinte avec un satellite de masse 0.001 Mu si au J1 -éjj est inférieur à 10 UA durant la période de forte inclinaison (b).

  and xe = r,-= r/10 as inLee et al. (2007). a, e, and i are respectively the semimajor axis, the eccentricity, and the inclination of the giant planets; / is the time and Sa is the différence between the initial semimajor axis of a planet and its current one. The initial semimajor axis of Jupiter was set to 5.45 AU. The initial semimajor axes of the other planets were obtained randomly with a uniform distribution. The initial semimajor axis of Saturn was varied in the range 8.38-8.48 AU.The initial order of the ice giants was modified compared to the current solar System: the initial semimajor axis of Neptune was varied in the range 9.9-12 AU and the initial semimajor axis of Uranus was varied in the range 13.4-17.1 AU. The terrestrial planets are not taken into account in this study.

Figure 1 .

 1 Figure 1. Uranus precession frequency in the presence of a heavy satellite. Uranus effective precession constant as a function of the distance of an additional satellite of mass m = 0.01 My (a), m = 0.005 My (b), and ni = 0.001 My (c),

Figure 2

 2 Figure 2(c) shows the maximal obliquity that lias been reached in these simulations. The évolution shows clearly that the tilt can only occur when the inclination is high. In the présent case, a satellite with m = 0.01 My is still necessary for the obliquity to reach 97°.

Figure 2 .

 2 Figure 2. Comparison between orbital évolution and obliquity increase. (a, b) Example of orbital évolution of the giant planets during the planetary migration over 2 Myr. (a) Semimajor axis, minimum, and maximum heliocentric distances, (b) Uranus inclination, (c) Maximal tilt starting from zéro obliquity for any orbital évolution with the same semimajor axis, eccentricity, and inclination as Uranus in panels (a) and (b).In this calculation (see Figure5), the effect of an additional satellite at 50 Uranian radii is implicitly taken into account in the precession constant. We considered three different masses for the satellite: 10"4 My, 10"3 My, and 0.01 My, where My is the mass of Uranus. For each mass, the satellite eccentricity is set to 0 (lower boundary) and 0.5 (upper boundary). (d) Results of a numerical intégration with a satellite of mass m = 0.01 My (black curve). The satellite is ejected by a close encounter with Satum at t = 0.38 Myr. Once the satellite is ejected, the obliquity remains constant (gray curve). In these plots, the obliquity is measured relative to the fixed plane orthogonal to the final total orbital angular momentum.

Figure 3 .

 3 Figure 3. Distribution of Uranus final obliquity. This is the resuit of 1700

Figure 4 .

 4 Figure 4. Details on Uranus tilting. (a) Evolution of the résonant angle \J/ = <\>a -4>v -n, where <\>a and (f>v are angles measured positively from a reference direction to the projection of Uranus' spin-axis w and Uranus' orbit pôle « into thex-y plane, respectively. (b) Evolution of Uranus' obliquity relative to the invariant plane, (c) Evolution of Uranus' orbital inclination, (d) Evolution of Uranus' spin-axis. The coordinates are x -sin 6 cos \J/, y = sin e sin \j/, and z -cose. The thin black circles in the x-y plane, that correspond to the thin black fines in the x-z plane and in the y-z plane, represent the locations where the obliquity is 45°(inner circle) and 90°(outer circle). Uranus tilting is characterized by three résonant phases labeled //, and IV+V separated by non-resonant évolutions labeled I, III, and VI. (A color version of this figure is available in the online journal.)

U » 0

 0 )xy. As the axis w describes an arc of a circle in the y-z plane (Figure 4(d)), the third component z decreases, and thus the obliquity e increases (Figure 4(b)).

Figure 5 .

 5 Figure 5. Constraints on the migration and on the mass of the satellite, (a) Lower boundary on the time required to tilt Uranus by 91°as a function of the inclination of its orbit for different precession constants (Boué et al. 2(X)9).(b) Uranus' precession constant as a function of its semimajor axis for different masses of the satellite in circular orbit(Boué & Laskar 2006). In case of eccentric orbit of the planet, the semimajor axis au should be replaced by ciuyj 1 -For example, if during the planetary migration, Uranus' inclination remains above 10°at least 1 Myr, then the precession constant should be larger or equal to 5" yr~' to tilt Uranus (a). Such a precession constant can be reached with a satellite of mass m = 0.001 Mu if au J1 -ejj is less than 10 AU during the period of large inclination (b). rotation in the x-y plane dominâtes (Figure 4(d)) x ~cozy ÿ % -a>zx (8) z^0, and the obliquity e is almost stationary (Figure 4(b)).

  équations of motion are Equations (7). The axis thus describes an arc of a circle in they-z plane(Figure 4(d)). This time, it starts with y > 0 and z < 1 (i/s & 7t/2) and goes toward y = 0 and z = 1. As z increases, the obliquity decreases (Figure4(b)). The orbital inclination i is similar in phase //, and IV (Figure4(c)), so is the angular velocity cox.When the spin-axis crosses the x-z plane, the angle \js jumps from 7i/2 to -n/2 and the System enters in phase V(Figure4(a)).The évolution is similar to the one of phase //. The spin-axis describes an arc of a circle in the y-z plane on the y < 0 side(Figure 4(d)). The obliquity increases(Figure 4(b)). However, as the inclination is higher than in phase II (18°, see Figure4(c)), the angular velocity cox is larger and the obliquity evolves faster (Figure 4(b)).

  (a)), the angular velocity oex becomes negligible with respect to &>z. The spin-axis describes an arc of a circle in the xy plane (Figure 4(d)), and the obliquity remains constant (Figure 4(b)).

  Figure 2.
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  Fig. 1. Jacobi coordinates in the lunar problem. O is the barycenter of the full System, ri is the postion vector of the planet-satellite barycenter relative to the star mo, and r2 is the position vector of the satellite barycenter relative to the planet barycenter.

  g. Borisov and Mamaev 2005). We thus hâve G • G = Gi • Gi = G2 • G2 = 0 which means that the norms 7 = ||G||, /? = 110,11 and Ct = ||G2 | are constant. It is thus possible to follow the évolution directly in ternis of the unit vectors along these angular momentums w = G/11G11, wi -Gi/||Gi|| and w2 = G2/||G2||. équations of évolution of the vectors are the same, but the secular Hamiltonians of the two Systems hâve the same form. Indeed, let x = w • wj, y = w • W2 and 2 = wj • W2, the two secular Hamiltonians read

Fig. 4 .

 4 Fig. 4. Different precession frequency computations for the Erath-Moon System as a function of the distance of the Moon. (c) and (d) are classical computations in the approximation of a far (respectivley close) satellite, (a) and (b) are computed with approximated analytical formulas either directly or after one itération. The crosses cor respond to numerical experiments with the complété Sun-Earth-Moon problem, without averaging.

Fig. 5 .

 5 Fig. 5. Output of a numerical intégration of the full solid-solid problem. Projection of the unit vectors w, wi, and W2, respectively in red, green and blue, on the invariant plane, (a) the représentation is done in a fixed référencé frame. (b) it is done in a rotating frame with the precession frequency, we thus see the nutation motion only. Because of the small nutation amplitudes, the trajectories of w and wi are zoomed in the right small panels. The superposed curves are analytical approximations. The thickness of the nutation is due to the high frequencies. (c) the numerical output is filtered with a low pass fîlter. (d) a small correction of 3.6" on wj was done on the initial conditions to match the numerical outputs with the analytical approximations.

Fig. 1 .

 1 Fig. 1. Jacobi coordinates.

  Ç(m\ + M2), fi\ -Mi2/«o/(M)2 + mo), fil = m\ni2/(m \ +/H2) are the reduced masses with M\2 = m\ + ni2, and roi,ro2 are the modulus of the position vectors roi,ro2 from the Sun to the planet and satellite, expressed as roi =n-<$r2, r02 = ri +(1 -8)r2.

  written in terms of non-canonical coordinates (r, r, K, G). The équations of motion are ÿ = W,y} = ~B(y)VyH, where y is any kind of coordinate and B (y) the matrix of Poisson brackets {y,-, >';}' F°r the components of and r*, the standard symplectic structure holds, {r^, rkj} = -8jj.For (K, G), the Euler-Poisson structure holds, {Ki, Kj} = 0, {Ki,Gj} = -sijkKk and {G/, Gy} = -sijkGk(Borisov and Mamaev, 2005; see alsoDullin, 2004).2 Ail other fundanientalPoisson brackets are identically equal to zéro. B(r, r, K,

Fig. 2 .

 2 Fig.2. Définition of Andoyer's coordinates. (i, j, k) is a fixed reference frame, and (7, J, K) the reference frame of the principal axis of inertia of the solid body. The Andoyer action variables are (G, H -G k, L -G K) with the associated angles (g, h, l)(Andoyer, 1923).

  satellite oe2. If we notice that (ï*2) Mj.uti -® (37) then we see that ail terms in 8 disappear from (Uq\) and we are then left with {Uo\

  easy to show that the only change induced in the averaged équations (28) is to replace (C -A) by (C -A/2 -B/2) in the expression of ui and U2 [Eq. (15)]. In the same way, the only change in the secular Hamiltonian T-Ls (44) will be to replace 44) dépends only on the unit vectors (w, wj, w2) of the rotational angular momentum of the planet G, and of the orbital angular momentum G\, G? of the planet and of the satellite. The équations of motion can be derived easily as in Section 2.1

  , in the averaged Hamiltonian, the semimajor axis of the planet and satellite arc constant, as well as their eccentricity, while their orbital plane will precess and change its inclination. If we do not consider the constant terms in the averaged Hamiltonian, we are left with a Hamiltonian T-LsG

  a function of only (a, y, z).

  intersections of the ellipsoid of energy with the plane of angular momentum (61). Indced, with a change of scale and a change of time, we can actually integrate this System.

  reduced the problem to a simple rotation around the fixed vector $?, with angular velocity co = ||i?||.Remark. In the new variables, with V = (X, Y, Z)expressed in terms of r. If the volume v = (w, wi, w?) does not vanish, the relation with the usual time /

  age volume u -(w, xv\, W2) is not zéro. Indeed for the présent choicc of orientation,

  Fig. 4. The shaded area correspond to the région where v2 > 0, inside the berlin got B. The orbit in r intersects the berlingot B in r+ and r_.

  x, y, z) is a point in the vicinity of A+, different from A+ (the intersection point of the orbit with B). We hâve thus, in the vicinity of r+, ir(r) ^2ü(A+)(r -r+), (82) where û(A+) ^0. Thus v(z) & v/2û(A+)(r -r+), and thus the above intégral converges. The point A+ is thus reached in finite time. ir(r) = oq + a\ sin(&»r) + 02 sin2(<wr) + <33 sin3(&jr) -cos((t>r)[/?o + b\ sin(cur) + £>2 sin2(a>r)]. (

Moreover

  Fig. 5. Different precession frequency computations, (c) is the classical com putation in the approximation of a far satellite, while (d) correspond to the close satellite approximation (Tremaine, 1991). These formulas are no longer valid for a close (respectively far) satellite, or in the intermediary région (between 10 and 20 /?£ for the Earth-Moon System), (a) and (b) are computed with the formula ( 129) of the présent paper, using either the raw initial condi tions of the intégration (a), or the averaging obtained after a first itération (b) [Eq. (135)]. The crosses correspond to numerical experiments with the com plété Sun-Earth-Moon problem, without averaging.

( 51 )

 51 vanished at t = 0. The three vectors w, wi, W2 are thus stationary and coplanar.

  the nutation that was discovered observationally by Bradley in 1748 and computed by d'Alembert in 1749 [see the introduc tion of Chapronl-Touzé and Souchay of d'Alembert complété work (D'Alembert, 1749) for a detailed account of these disis doser (Fig. 6e), the amplitude of the nu tation of the Earth axis becomes much larger. The precession of the plane of the orbit of the Moon is no longer centered around the pôle of the ecliptic, and the inclination of the Moon with re spect to the ecliptic is not constant. But as the pôle of the Moon orbit still describes a circle, the inclination remains constant with respect to a plane orthogonal to the center of this circle.

Fig. 6 .

 6 Fig.6. Precession for different Earth-Moon distances, starting with 3 R g (a); 7 R g (b); 9 R g (c); 10 R g (d); 14 R g (e); 60.1 R g (f). The last one corresponding to the actual Earth-Moon distance (expressed in Earth radius). The projection of the pôles w (red), \V| (green), W2 (blue) are plotted in the (i,j) plane in a rotating frame with the precession frequency f2. Scales are in radians. The pôle of the planet orbit (wj, in green) almost coincide with the origin, while the pôle of the planet w and the pôle of the satellite orbit Wj describe a large variety of configurations, smoothly evolving from a configuration where the axis of the planet and the pôle of the satellite are concentric (a), to the présent configuration (f).

Fig. 7 .

 7 Fig. 7. Evolution of the obliquity of the Earth («|, «2, <13), inclination of the orbit of the Moon with respect to the ecliptic (b\, bj. b$ ), and with respect to the equator (cj, q, C3), for different Earth-Moon semimajor axis. The solution (1) (al, bl, cl) correspond to the actual Earth-Moon System [Fig. 6(0], while the Earth-Moon distance is about 10 /?£ [Fig. 6(d)] in (a2, b2, c2), and about 4 R/; in (a2, b2, c2). This lattercase is similar to [Fig. 6(a)].

  ) becomes straightforward. Let T and D be the trace and déterminant of M. The eigenvalues of M

Fig. 8 .

 8 Fig. 8. The approximate analytical solutions for the évolution of the planet axis and satellite orbit are expressed with only two periodic ternis (133). The val ues of the different involved radius are given here in terni of the Earth-Moon distance (in Earth radius) with the correspondence: Àr (a); -X's (b); t (c); s (d).

  spin axis (3) in the orthogonal plane to the total angular momentum Wo li = X>i exp/(u,t +0,frequencies Vj given by frequency analysis are easily recognized as integer multiples of the main nutation frequency v (colurnn 2).

  wj W2 is constant and W2 precesses uniformly around W] (Fig.60with angle \fs and frequency v + F2 = -cz/a. We hâve thus in a base with third vector wi (y/\ -Z2 COST{ /

b

  ïï> a and b c. Following Tremaine, one can see easily from Eqs. (51) that the total angular momcntum of the planetsatellite System G = G + Gi is ncarly constant with norm G = yjy1 + a2 + 2yay. We hâve then with this approximation, (-I + !co^)+c(-i + icos^).

  is thus nearly constant, and the two vectors w and W2 thus precess around G with the same nutation frequency v Figs. 6a and 6b, where w and W2 pre cess on concentric circles with opposite nutation phases. The computation of the precession frequency can then be treated as previously in Section 7.1. Indeed, from (51 )] -w = (yx + az)/G, cos02 = W2 • w= (yy + a)/G. (148) 7.3. Comparison with our analytical expressions

  differs from (146) by the factor cos0i. In the same way, if as stated in Section 6.1, one replace the variables x and z by their averaged value over the nutation angle in

Fig. 2 .

 2 Fig. 2. Définition of Andoyer's coordinates. (i, j, k) is a fixed référencé frame, and (I, J. K) the référencé frame of the principal axis of inertia of the solid body. The Andoyer action variables are (G, H = G k, L = G K) with the associated angles (g,h,l: Andoyer, 1923).

  and U| = wx Nj. The vectors Ni, Ui and w are independent of g, so {K)g -(COS _/)w; [KtK)s = -(sin2 j)ld+(^\ --sin2 J^w'w; + 3sin2 j[ 1 --sin2 J^js2(s w)2 + ^sin4 Js4, (23) The problem has 9 degrees of freedom, the coordinates of G, Ci and G2, and Eqs. (33)-(34) are non-linear. At first glance the resolution is difficult. There are 7 the total angular momentum. Thus one misses one constant of motion to integrate the problem by quadrature. The next section shows how to solve the relative motion of the three vectors that contains enough constants of motion. 3.7. Relative solution In the previous section, we hâve shown that the number of first intégrais is not large enough to solve the full problem. But the number of degrees of freedom can be decreased by considering only the relative distance between the vectors. These distances are given by the dot products x = wwi, y = w • w2 and z = W] • w2. From Eqs. (33), one can dérivé the new équations of motion (36) where v = (w x W] ) • w2 is the volume defined by the 3 vectors. It can be expressed in terms of x, y and z through the Gram déter + cz2 -20xyz + -x4 + -y4 + gx2y2 = -2HS, yfix + ayy+ afiz = K,

  ) can be written on the form 02 = 6>(x, y, z).

  y,z) = 0 if and only if ap = flq = y s. This condition corre sponds to a fixed point of the System. Else /(x, y, z) is strictly positive.

(

  we give an analytical approximation of the sec ular évolution. So far, only general features of the solutions hâve been obtained. Here analytical approximations of the two frequen cies that appear in the problem as well as their amplitudes are computed. The two frequencies being the global precession and the nutation.In an invariant frame where the third axis is aligned with the direction wq of the total angular momentum, we can write m

  xo. The latter équation cornes from (65) and will provide the rotation angle of the vectors over one nutation period (knowing the initial angle 0(to)). We thus hâve the nutation period t = T and 9T = 0(T) -9(t0). The precession period is simply given by T' = -T. X', pt and pi' are real numbers. The solutions are then 3 = eue'* + ei(i2t+<p)(r + sei(w+^), 3, = fuie'* + ei(S7t+0)(Xt + X'sei(vt+<fi)), 32 -C2iie'^+ el(f?t+<p) (piv + pi'se'(vt+^)).(86)Moreover, yi + fii\ + aii = 0 as it is the projection of IVo on a plane orthogonal to W0. This implies that the constant term (yÇ + fit;i +af2)ue'^is also null. As yt; + fit;i + afr -Wq, we hâve necessarily u = 0. The solutions are thus 3 = ei(fit+*>(r + se'(vt+*>), 31 =e,^t+*,(Àr-fÀ'sei(v,+4,)), 32 = é(nt+0) (pcx + n'se^+V).

  fi and a are still the angular momentum of the orbit, of the rotation of the primary and of the rotation of the secondary respectively. In that case, the matrix M giving the évolution of the projection of the three vectors 3the same trick as in Eq. (80), that is we replace the matrix M by the constant matrix MM = M(x,ÿ,z),(97)where (x, y, z) hâve been substituted by their average. The vector Ci-te) is still an eigenvector for the eigenvalue 0. The charac-

)

  When the body-body interactions are neglected, we can restrict the analysis to the second degree in R/r.

  tational motions. Namely, we shall use the Andoyer coordinates for the solid bodies (L.G. H.l.g.h) (Fig.2), and the équivalent Delaunay coordinates for the orbital motions (A = yS^/ÿiZâ, T = As/1 -e2, 0 = r cosi, M.co.O) where (a,e,i, M.co.O) are the usual elliptical éléments (semi-major axis, eccentricity, inclination of the orbit with respect to the (i, j) plane, mean anomaly, argu ment of periapse, longitude of the ascending node). For any given body of mass mt, i ^0, /S, = mom,/(mo + m,) is the reduced mass, and fij -G(mo + m,) the related gravitational constant. For any X, e {r,, rf; i = l n}, or Yj e {Ij, J j, K j, G f j = l,...,ns}, one can then write Xi=7Z3(Oi) X'i(Ai,ri,0i,Mi,u)iy, Yj = TZ3(hj)Y,j(Lj, Gj, Hj, lj, gj).(102)Let us now select one angle among the 0,, hj (01 for example)and perform the usual symplectic linear change of variable (1) dépends only on the scalar products ofXi and Yj, it can be as well expressed in term of scalar of the new variables (103), one can see that the coordinate 0\ is now ignorable with an associated con stant action being the modulus of the total angular momentum (0J = || WoII )-The number of DOF of the System, expressed in the new coordinates(A,, TJ, &[, Mj, a>i,0[, Lj, Gj, lj, gj, h'.) is now N -2, with one constant parameter, &\. Let us now consider a quasiperiodic solution of the above N -2 DOF System. Ail vec tors Xj, Ÿj will be expressed in term of quasiperiodic functions on N -2 independent frequencies vk (k = 1 N -2). Finally, 0\

  The second column confirms our analytical resuit saying that the averaged motion contains only 2 fundamental frequencies: the precession £2 and the nutation v; and that in a frame rotating with the precession frequency, only the nutation remains. The columns 4, 5 and 7, 8 show the strong agreement between the secular approach and the full intégration. Even low amplitude terms such as Q +2v, albeit at the 57th position in the décomposition of w in the full intégration, are recovered with good amplitude and phase in the regular System.

Fig. 6 .

 6 Fig.6. Quasi-projection of the pôles w (red), wq (green), w2 (blue) on the plane perpendicular to the total angular momentum Wo, in a fixed référencé frame (top panel) and in a frame rotating with the precession period (bottom panels). The two little figures on the bottom right are zooms on the nutation motion of the orbit (top) and of the primary axis (bottom). The initial conditions and parameters are those of the System /. The vectors w, wi and w2 hâve been integrated with the full Hamiltonian. In the right panels, the output of the averaged Hamiltonian has been superposed: w in cyan, wj in pink and w2 in orange.same frequency analysis as with System I. We get also 8 fundamental frequencies. Because the résonance, the frequencies associated to the secondary are not g2 and î2 anymore since they are in that case combinations of the other 6 fundamental fre quencies. The two new frequencies correspond to the horizon-

Fig. 7 .

 7 Fig. 7. Same as the top panel of Fig. 6. The output of the full Hamiltonian, integrated over 20 days with an output step of 30 min, has been filtered with a low-pass filter with a cutoff frequency equal to 4 rad/day.

Fig. 8 .

 8 Fig. 8. Same as Fig. 7. The initial obliquity of the primary in the averaged Hamilto nian has been decreased by 3.6".

  tune is scattered to 22-25 AU and reaches its final orbit by slowly migrating over more than 5 AU. In the second class, labeled "DE," Neptune is placed to its current orbital distance with large eccentricity « 0.3 and then slowly circularizes. Besides, the Nice model does not constrain inclinations, and the timescale of this late évolution is uncertain. Nevertheless, constraints on the migration timescale were obtained from the distribution of the Kuiper belt on the one hand(Murray-Clay & Chiang 2005), 

  2. SPIN AXIS EVOLUTIONHere we recall the équations of motion of a planet axis and give the current dynamical State of Satum's spin axis. The évolution of the spin axis w of a planet in a fixed référencé fraine (i, j, k), where k is the direction of the total orbital angular momentum'(nx, ny, nz) is the normal to the orbit, and a is the precession constant. Without planetary perturbations, n is fixed and the spin axis w precesses uniformly around n with constant obliquity cos e = n w. However, in a multiplanetary System, n evolves due to secular interactions. The long-term évolution of n can be approximated by a quasiperiodic expression nx+iny = J2heiiVkt+<Pk\(2) k

Figure 1 .

 1 Figure 1. Projection of the spin axis w (5) in the orbital frame (in abscissae sine cos Vf, in ordinate sinesin^). (a) Case I with a = 0'.,845 yr-1 (Helled et al. 2009). (b) Case II with or = 07775 yr"1 (Ward & Hamilton 2004). Cassini State 3 corresponds to a rétrogradé rotation of Satum and is not represented in these figures. The current position of Satum's spin axis is represented by a large filled circle. The small filled circles are Cassini States and the curves are energy contours. The bold curve is the separatrix that delineates the libration area in gray.

  Aa = +0.1, -0.3, -1.3, -3 AU respeclively for Jupiter, Saturn, Uranus, and Neptune. It is scaled fromMinton & 

Figure 2 .

 2 Figure 2. Results for the MA type migration. Projection of Satum's spin axis on the invariant plane in a frame rotating at Neptune régression frequency (in abscisse sin 9 cos(cf> -Q), in ordinate sin 9 sin(0 -Q)) (see Equation (9)). The filled circle represents its current position. Subfigures la, Ib, and le, Case I with r = 180 Myr and xfr = I08?674. 108(675469, 108(675 475. Subfigures lia, Ilb, and Ile, Case II with r = 20. 200, 300 Myr and xj/ = 03. (Figure 2, la, Ib, le). Thus assuming an équiprobable initial phase, the probability to find Saturn in its current State through this mechanism is less than 3 x 10~x for any of the three selected r. With a DE migration type, the widths of the initial longitude intervals are identical. The only changes are in the values of the migration timescale r leading to the large obliquity circulation State: r € {150, 260, 290, 310, 320} Myr.

  , MA type in gray and DE type in black. Probabilities are now significant and reach 1 for a few timescales. We see clear lower limits, r ^90 Myr (resp. t ^170 Myr) for the MA (resp. DE) migration type. The différence in the results between the two Nice model classes cornes mainly from the different dependcnce of the semimajor axis and the eccentricity on Neptune's régression frequency.

Figure 3 .Figure 4 .

 34 Figure 3. Probability that Saturn librates in zone 2 with an amplitude larger than 31°as a function of the migration timescale r in Case 11. MA migration type in gray and DE migration type in black.

  de l'axe d'Uranus par rapport au pôle de son orbite est Lun des problèmes majeurs concernant le système solaire. Les modèles de formation prédisent que les planètes se forment avec une très faible obliquité et aucun des scénarios envisagés pour basculer la planète n'est parfaite ment satisfaisant (voir chapitre 1). En particulier, la présence de satellites réguliers orbitant près du plan équatorial de la planète suggère que le basculement n'a pas eu lieu de façon quasi-instantanée comme sous l'effet d'une collision, mais qu'il a duré bien plus longtemps, au moins 1 million d'an nées selonKinoshita (1993). Une étude plus poussée m'a cependant permis de montrer que la valeur obtenue par Kinoshita était de loin très surestimée. Une modélisation plus réaliste du basculement donne en effet une contrainte de 13,000 ans seulement (voir chapitre 2). Ces résultats ne font pas intervenir les effets de marée. Mais ces derniers ne permettent pas de ramener les satellites vers le plan de l'équateur. Cela est indépendant du facteur de dissipation dans Uranus (section 2.3).Selon les modèles de formation des systèmes planétaires, une fois que les planètes sont formées, le disque de gaz dans lequel elles évoluaient est dissipé par le vent stellaire. Il ne reste alors plus que des planètes isolées entourées d'un disque de planétésimaux. Pour le système solaire, cette configuration a duré environ 600 millions d'années. Dans le chapitre 3, nous avons étudié la possibilité qu'Uranus ait basculé durant cette période. Nous avons tout d'abord vérifié que le disque de planétésimaux n'avait aucun effet significatif sur la vitesse de précession de l'axe d'Uranus. Dans un second temps, nous avons modélisé l'évolution séculaire d'un disque et calculé son effet sur la décomposition en fréquence du mouvement de précession de l'orbite d'Uranus. En particulier, nous avons trouvé que la partie basse fréquence du spectre, celle où des résonances avec l'axe d'Uranus sont susceptibles d'apparaître, dépend peu de la discrétisation du disque. Nous avons ensuite montré que les valeurs de l'obliquité, pour lesquels des résonances spin-orbites sont possibles, sont trop espacées les unes des autres pour que l'obliquité puisse diffuser et croître de façon importante. L'étape suivante dans l'histoire du système solaire est décrite par le modèle de Nice. Jupiter et Saturne traversent des résonances de moyen mouvement, cela a pour effet de déstabiliser les orbites des planétésimaux et de faire migrer Uranus et Neptune vers l'extérieur. Dans le chapitre 4, nous détaillons le scénario que nous avons envisagé permettant de faire basculer Uranus durant cette période. Tout d'abord nous définissons les contraintes que doit suivre l'inclinaison de l'orbite pour que le basculement soit possible. Ensuite, nous montrons qu'il est possible que l'inclinaison d'Uranus ait augmenté significativement suite à des rencontres proches avec Jupiter où Saturne, de telles rencontres étant prédites par ailleurs pour expliquer les excentricités actuelles des planètes géantes. Enfin, nous montrons que sous l'hypothèse qu'Uranus ait eu un satellite supplémentaire dans le passé et que l'inclinaison d'Uranus ait été élevée durant la phase de migration, alors le basculement a pu se faire.Dans ce scénario, le satellite est éjecté par une rencontre proche à la fin du basculement. L'avantage de scénario est qu'il résout en même temps le problème du satellite manquant soulevé par un modèle de formation de satellites. Pour l'instant, le satellite utilisé est relativement massif comparé à ce que 125 donne les modèles de formation. Il serait donc intéressant de poursuivre l'étude et de déterminer les paramètres de la migration qui permettent le basculement avec un satellite moins massif. Une direction possible de recherche est suggérée par le travail que nous avons effectué sur l'origine de l'obliquité de Saturne (section 5.4) ainsi que par d'autres travaux indépendants. Ceux-ci prédisent en effet que la migration a été plus lente que ce que nous avons utilisé pour Uranus.Ce travail s'appuie sur les résultats que nous avons obtenus sur le problème lunaire (section 5.2). Il s'agit de l'étude du mouvement de précession d'une planète avec un satellite. Nous avons notamment obtenu les solutions exactes du problème séculaire de ce système à trois corps. Auparavant, seuls les cas asymptotiques étaient connus. Pour cela, nous avons utilisé une technique de moyennisation qui nous a permis, en plus, de s'affranchir de l'approximation gyroscopique. Aussi, la résolution a été gran dement simplifiée par l'utilisation d'une approche vectorielle. Enfin, les équations d'évolution n'ont été développées qu'en demi-grand axe, elles sont donc valables pour toute inclinaison et excentricité.L'avantage de la méthode qui a été suivie est qu'elle fournit des résultats généraux indépendants de la forme exacte du hamiltonien. En particulier, elle s'adapte directement au problème rotationnel de deux corps rigides en interaction (section 5.3). A partir de ce travail sur les systèmes binaires, et grâce à l'analyse en fréquence, il nous a été possible d'obtenir un résultat général sur le problème des n corps que nous avons énoncé sous la forme d'un théorème (voir la sous-section 5.3.5). Cette partie analytique peut encore être étendue de deux façons différentes. La première consiste à généraliser l'approche vectorielle des systèmes séculaires aux cas résonants, ce qui n'a pas été fait ici. Cela aurait des applications pour l'étude des systèmes d'astéroïdes binaires, la majorité d'entre eux étant en ro tation synchrone. Cela fournirait aussi de précieux outils pour l'étude des systèmes multi-planétaires extrasolaires, dont un grand nombre est en résonance de moyen mouvement. La deuxième extension possible est la prise en compte de la non-rigidité des corps étudiés comme les déformations par effets de marée ou les modèles de structure interne multi-couche.
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  trouve mc -0.03Mjy, où Mu est la masse d'Uranus. Pour ms > rac, il n'existe qu'un seul point fixe vers lequel toutes les trajectoires convergent. A ce point, le demi-grand axe du satellite est nul ce qui signifie que le satellite plonge dans la planète. Pour ms < mc, il existe trois points fixes, deux stables et un instable. Partant d'une inclinaison initiale de 98deg entre l'axe de la planète et le moment cinétique total, le seul point d'équilibre atteignable est celui où le moment cinétique orbital du satellite est non nul et donc où le satellite reste en orbite autour de la planète.

Table 2 .

 2 1 -Valeur des périodes de précession Tprec et des inclinaisons zsat actuelles des principaux satellites proches d'Uranus. Dans la dernière colonne se trouve la durée minimale de basculement pour que les inclinaisons soient au maximum ce qu'elles sont aujourd'hui d'après le modèle de(Kinoshita, 

	1993).			
	satellite	Tprec	^Sat	
		(années)	(degrés)	(années)
	Miranda	18.9	4.22	129
	Ariel	73.3	0.31	6 771
	Umbriel	233.2	0.36	18 557
	Titania	1315.0	0.10	376 712
	Obéron	3 634.2	0.10	1041 116
	statistique, nous pouvons étudier la probabilité pour que les 5 principaux satellites d'Uranus aient

des inclinaisons inférieures où égales à leur valeur actuelle en fonction de ôt Celle-ci est obtenue à partir de l'équation (2.19) et est représentée figure (2.3). La figure montre qu'en dessous de 1 million d'années la probabilité décroît rapidement. Pour ôt = 105 ans, elle descend à quelques chances sur 104. 2.1.3 Conclusion D'après le modèle de Kinoshita (1993), il semble qu'il ne soit pas possible de basculer Uranus plus rapidement qu'en 1 million d'années car alors les satellites auraient une inclinaison plus élevée que celle observée. Cependant, la méthode de Kinoshita (1993) n'explique pas pourquoi il faut une vitesse si lente. Pour mieux comprendre le résultat, nous allons reprendre le problème sous un autre point de vue.

Table 3 .

 3 2 -Table des paramètres et conditions initiales utilisés: les masses m, les demi-grand axes a, les inclinaisons i et les longitudes des noeuds fl. La masse du disque correspond à 35 niasses terrestres. Le demi-grand axe d'Uranus est choisi plus grand que celui de Neptune contrairement à la configuration actuelle. Les inclinaisons sont données par rapport au plan invariant.

	objet	m	a	i	n
		(1024 kg)	UA	(deg)	(deg)
	soleil	1989.1 x 106	-	-	-
	Jupiter	1898.600	5.45	0.030	-152.3
	Saturne	568.460	8.18	0.095	18.6
	Neptune	102.430	11.50	0.075	87.0
	Uranus	86.832	14.20	0.100	-155.7
	disque	209.076	15.50 -34.00	0.000	0.0

Notamment, les valeurs propres de A4 sont réelles. Il s'agit des fréquences séculaires du système. Soit P la matrice de passage qui rend la matrice A4 diagonale, c'est-à-dire telle que V = PA4P-1 (3.75) soit diagonale, et posons Y* = PY. Dans les variables étoilées, les équations du mouvement deviennent Ÿ* = iVY\ (3.76) ce qui s'intégre simplement car V est diagonale. En notant k = 1,... ,n + p les éléments de la diagonale de V, la solution s'écrit, pour tout k entre letn + p, CM = a(0)eil,'i. (3.77) En revenant aux variables de départ, cela donne Y(t) = p-lèvtPYQ, (3.78)

  Conclusion L'étude faite ici montre qu'il est plus facile de basculer une planète (i.e. le basculement peut être plus rapide) lorsque l'inclinaison orbitale de cette planète est élevée. Par exemple, Uranus dont la période de précession à obliquité nulle vaut 29 millions d'années, ne peut pas basculer en moins de 2.4 milliards d'années (80 x 29 millions d'années) si l'inclinaison de son orbite reste inférieure à 1 degré. De plus, il faut noter que la contrainte porte sur l'obliquité maximale qui n'est atteinte que si la précession de l'orbite reste en résonance avec l'axe. Donc en pratique, le temps nécessaire pour le basculement est strictement supérieur à cette valeur. De cette façon, on voit que l'inclinaison joue un un terme résonant existe dans la décomposition en fréquences du mouvement orbital d'Uranus, alors il est une combinaison d'ordre élevé des fréquences principales, et son amplitude est faible. Il semble très peu probable qu'une résonance que l'on n'observe plus aujourd'hui ait duré plus de 2.4 milliards d'années avec une amplitude d'au moins 1 degré. Si le basculement est séculaire, alors soit l'inclinaison, soit la constante de précession, soit les deux, étaient plus élevées dans le passé, par exemple pendant la phase de migration.

	rôle fondamental.												
	Les trois périodes principales de précession orbitale dans le système solaire, 1.87 x 106 ans, 431 x 103
	ans et 49.2 x 103 ans, sont beaucoup plus courtes que les 29 millions d'années pour l'axe d'Uranus.
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	Figure 4.2 -Obliquité maximale en fonction du temps pour différentes valeurs de l'inclinaison.
	4.2	Effet des rencontres proches sur l'inclinaison	
				de77? ~df	A Tj7r|cosem sin 2i |	(3 + v/T+W)3/2 (1 + x/1 + 8/î2V72'	
	4.2.1	Modèle d'Ôpik										
														-i + vTTW
										Ah				X2	Ah	(4.13)
	L'étude des variations de / à h fixé montre / définie sur [-1,1] atteint toujours son maximum en X2-terme ù(em,z) est très petit devant 1 et l'équation (4.17) devient
	En ce point, f(x2) vaut											
	,, . -^ae -cos em sin 2i. 1 (3 + Vl + 8 d£ 2 f(X2) = sTwrW Dans cette équation, la valeur absolue est omise car par hypothèse em est très petit et on se place (4-18) v ;	(4.14)
	En injectant ce résultat dans (4.8), on obtient dans le cas où l'inclinaison ne dépasse pas 45 deg. D'après cette équation, la pente à l'origine est
	approximativement égale à l'inclinaison. C'est effectivement ce que l'on observe dans la figure 4.2.
	d cos e Au voisinage de em = n/2 en revanche, ou plus exactement lorsque \em -7t/2| <C i, le terme h(em,i) v/2 (3 + Vl + 8/i2)3/2
	d e devient arbitrairement grand et (4.17) s'écrit <	16	cosesinesin 2i\	(1 +VT+W)V2'	(4.15)
						rn ~d£		1 -sin em sin2 i.					(4.19)
				d cos em	y/2		.	.		. (3 + \/l + 8/i2)3/2
					TT-= -cos €m sin £m sm 2i\ de !6'	--, (1 + \/l + 8/i2)1/2	(4.16)

On en déduit alors que l'évolution de l'obliquité maximale em est donnée par é/(27r) représente le temps en période de précession à obliquité nulle. Ces évolutions ont été obtenues en intégrant l'équation (4.17) pour des inclinaisons constantes valant 1 deg (a), lOdeg (b) et 40deg (c). On peut noter les échelles de temps très différentes d'une figure à l'autre. Pour le visualiser, les trois évolutions ont été tracées à chaque fois dans chacune des sous-figures. avec h = h(em,i). Ou de façon équivalente (4.17) La dépendance en £ dans le second membre se fait par l'intermédiaire de l'inclinaison orbitale i. La figure 4.2 montre les évolutions de l'obliquité maximale pour différentes valeurs de l'inclinai son supposée constante. Lorsque l'inclinaison est faible, de l'ordre de 1 degré, l'évolution maximale présente un palier vers em = 90 deg. Il faut alors au minimum environ 80 périodes de précession pour atteindre l'obliquité actuelle d'Uranus. En revanche, plus l'inclinaison augmente, plus le palier diminue, et plus la pente augmente. Pour i -10 deg, il ne faut plus que 4 périodes de précession. Pour i = 40 deg, il est même possible que la planète bascule en moins d'une période de précession si la longitude de l'orbite varie de façon optimale.

Ces différents comportements se comprennent à partir de l'équation d'évolution (4.17). En effet, au début de l'évolution, lorsque l'obliquité est faible, ou plus exactement lorsque em <C |7r/2 -z|, le La pente est donc approximativement égale à i2/2, ce qui explique le plateau d'autant plus prononcé que l'inclinaison est faible. 4.1.3 Si Comme nous l'avons vu à la section 1.3.4, Brunini (2006a,b) a cherché à expliquer l'origine de la forte obliquité d'Uranus à partir de rencontres proches qui ont pu se produire dans une phase précoce de l'histoire du système solaire. Mais suite à la rétractation de Brunini, Lee et al. (2007) ont montré que les rencontres proches entre planètes ne permettent pas de modifier de façon significative leur obliquité. Cela est dû à la très lente évolution des axes de rotation des planètes comparée à la durée des rencontres proches. Cependant, les rencontres proches peuvent avoir agi de manière indirecte sur le basculement d'Uranus. En effet, nous avons vu dans la section 4.1 qu'il est nécessaire qu'une planète ait une forte inclinaison pour que le basculement puisse avoir lieu rapidement. Nous allons voir ici que les rencontres proches permettent d'engendrer de fortes inclinaisons. L'évolution des paramètres orbitaux suite à une rencontre proche a été étudiée par Opik (1976). Le système considéré était composé d'un corps central, comme le soleil, d'une planète et d'une particule qui ne modifie pas l'orbite de la planète et dont on suit l'évolution. La méthode d'Ôpik (1976) repose sur trois hypothèses qui sont hypothèse 1. La rencontre est bien modélisée par un problème à deux corps. Durant cette phase, l'effet du corps central peut être négligé.

hypothèse 2. Cette hypothèse concerne le calcul de la vitesse de la particule au minimum de distance avec la planète. Pour cela, il faut considérer un corps évoluant sur une orbite képlérienne non perturbée, de même excentricité que celle de la particule, mais orientée de sorte à intersecter l'orbite de la planète. La vitesse cherchée est alors celle du corps au point d'intersection de son orbite avec celle de la planète.

  donne de bons résultats dés lors que l'orbite de la particule croise celle de la planète avec un angle non nul. Inversement, si les orbites sont tangentes alors la seconde hypothèse est mise en défaut. La raison invoquée par[START_REF] Greenberg | Outcomes of planetary close encounters -A systematic comparison of méthodologies[END_REF] est qu'il y a de nombreuses orientations de l'orbite qui amènent à une intersection avec la planète et par suite, la vitesse de la particule au minimum d'approche est mal déterminée. Sinon, dans le cas d'une faible vitesse d'approche, la particule reste un moment à l'endroit où l'interaction du soleil est comparable à celle de la planète, et l'hypothèse trois n'est pas vérifiée. Mais[START_REF] Greenberg | Outcomes of planetary close encounters -A systematic comparison of méthodologies[END_REF] montrent que la déflexion se modélise toujours bien avec un problème à deux corps. Il faut alors pouvoir prendre en compte les effets à distance pour savoir d'où vient la particule qui va subir la rencontre proche.
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	Les vecteurs vitesses de chaque planète après la rencontre proche se déduisent de
	4.2.2	Système étudié		Vo = VG H v\ -VG ~1JI\ + 1712 m2 , , mi	V . v', ,	(4.29)
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	Le problème que l'on étudie ici est proche de celui d'Ôpik (1976). La différence est que la particule Figure 4.3 -Configuration du système autour de la rencontre proche. Deux planètes, sur des orbites Ce qui donne pour la seconde planète, celle qui nous intéresse,
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		rrij + m2 avec [i -G(m 1 + 7722). De ces deux égalités, on obtient m\ + m2	m\ + m2	m\ + m2
		v = (v2 cos 02 -v\ cos 0\ )i + (v2 sin 02 -v\ sin 6\)j
							=•	(4.31)	(4.23) (4.36)
		4.2.3	Déflexion			
		4.2.5	Variation d'inclinaison
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	que fait I avec i. A partir des coordonnées de v (4.23), 011 déduit de la rencontre proche Si le plan de déflexion est confondu avec le plan de référence (7 = 0), alors l'inclinaison 11'est pas
	1. les vitesses v\ et V2 sont colinéaires au plan de référence (par rapport auquel les inclinaisons V2 cos 02 -v\ COS 6\ v2 sin 62 -v\ sin 0\ modifiée. En revanche, si 7 -7t/2 alors la troisième composante de v'2 est maximale. Nous nous
	sont mesurées), placerons dans ce cas pour faire les applications numériques. Pour 7 = 7t/2, l'inclinaison finale devient cos x = sm x = v	(4.24)
	2. les normes v\ et V2 des vitesses sont données par (4.21). O11 note 7 l'inclinaison du plan de diffusion, i.e. cos 7 = k K. Soit ip l'angle de diffusion, la formule v sin p tan i'2 -(4.33)
	Il s'agit bien évidemment d'une approximation, mais étant données les limites du modèle d'Ôpik de Rutherford (1911) s'écrit V\ COS 6\ ( 1 -COS p) + V2 cos 02 (Pm + cos V?)
	(1976), nous ne chercherons pas à aller plus loin. Cela rendrait la lecture plus compliquées pour un résultat pas signifîcativement différent. V5 tan -2 Ç(mi + m2) bv2 avec pm -1712/1711.	(4.25)
	Soient tq et vq la position et la vitesse du barycentre des deux planètes par rapport au soleil. On définit le repère (i,j, k) tel que i soit selon -tq et tel que k soit aligné avec rc A vq-Le vecteur avec b le paramètre d'impact. O11 note v' la vitesse relative à la sortie de la rencontre proche. Ses 4.2.4 Distance minimale d'approche
	j est donné par j = k Ai. Par hypothèse, les coordonnées des vecteurs v\ et V2 dans la base (i,j, k) coordonnées dans le repère (/, J, K) sont L'angle de diffusion p est exprimé en fonction du paramètre d'impact b (4.25). Il est intéressant
	sont							
					v\-v\	/ cos 6\ V 0 sin 0\	v	-	0 (cos02\ si n 62 , /	(4.22)	(4.26)
									52	53

est remplacée par une autre planète. En effet, notre système est composé du soleil de masse ttiq et de deux planètes de masse m\ et m2, respectivement Jupiter ou Saturne, et Uranus. La principale difficulté avec le modèle d

'Ôpik (1976) 

est, comme nous l'avons vu, la détermination des conditions initiales pour le calcul de la trajectoire hyperbolique qui engendre la déflexion. Par conséquent, nous ne chercherons pas à déterminer de façon précise ces conditions initiales à partir des trajectoires des deux planètes. Notons le demi-grand axe de la planète k et -G(mo + îtSi les orbites sont képlériennes alors les normes des vitesses se déduisent de l'expression de l'énergie Dans la suite, rd est la distance de la rencontre proche par rapport au soleil (Fig. 4.3). A la rencontre proche, on a donc ri -r2 -r^. Comme les masses des planètes sont très faibles devant celle du soleil, fi\ ae /±2-D'après (4.21), c'est donc la planète qui a le plus grand demi-grand axe qui a la vitesse la plus grande (ici la planète de masse 7712). Pour la suite des calculs, nous supposerons qu'au moment elliptiques de demi-grands axes a\ et a2 subbissent une rencontre proche lorsqu'elle passe à une distance du Soleil S. A cet instant, leurs vitesses respectives sont v\ et v2 (a). Pour chacune des planètes, le vecteur vitesse v& correspondant est repéré par un angle Ok (b). avec 6\ et 02 deux angles pouvant varier de -7r/2 à 7t/2. Au delà de cet intervalle, les planètes auraient un mouvement rétrograde, ce qui est exclu ici. O11 en déduit l'expression de la vitesse du barycentre vg et la vitesse relative v = V2 -v\ Soit (/, J, K) le repère tel que I soit dans la direction de v et telle que (/, J) soit le plan dans lequel s'effectue la déflexion (Fig. 4.4). Par construction, I est dans le plan (i, j). On note x l'angle Pour obtenir cette expression, les cosinus et sinus de T angle x ont été remplacés par leur définition (4.24). La norme de la vitesse relative v qui intervient dans cette expression s'écrit V -\Jv\ + v\ -2v\V2 cos(02 -9l). L'inclinaison après la rencontre proche est donnée par tani^de l'exprimer en fonction de la distance minimale d'approche rm. Celle-ci se déduit de la conservation du moment cinétique et de l'énergie. En effet, la conservation du moment cinétique donne pbv = prmvm, 54 (4.34) Figure 4.4 -Orientation du plan de déflexion par rapport au plan de référence (a). Le soleil se situe dans la direction j et le vecteur vitesse relative v est initialement aligné avec I. L'angle x est l'angle entre i et I. Le plan (/, J) où se fait la déflexion est incliné d'un angle 7 par rapport au plan de référence. Evolution de la vitesse relative dans le plan de diffusion (b). La vitesse relative initiale notée v est parallèle au vecteur I. Après la déflexion d'angle </?, la vitesse finale est notée v'. avec fi = mim2/(mi +7712). Le membre de gauche est l'expression du moment cinétique "à l'infini". Le membre de droite, l'expression au rayon minimal et à la vitesse maximale. D'autre part, la conservation de l'énergie permet d'A partir des expressions (4.25), (4.33) et (4.36), il est possible de paramétrer l'inclinaison i'2 et la distance minimale d'approche rm par l'angle de diffusion <p. C'est ce qui a été utilisé pour tracer

  Cela est donc trop court pour le basculement. De plus, il est probable que le satellite est été éjecté bien avant la fin de la migration, au moment où les rencontres proches étaient plus nombreuses. Par suite, nous avons supposé que l'inclinaison d'Uranus avait due être élevée durant le basculement. Le basculement a eu lieu en plus de 2 200 ans qui est le temps nécessaire pour que les satellites réguliers restent dans le plan de l'équateur (voir la conclusion de la section 2.2).

	4.3.2	Simulations numériques			
	Pour vérifier si le scénario que l'on vient de décrire est réalisable, nous l'avons simulé numérique
	ment. Pour cela, nous avons procédé en quatre étapes.		
	Dans un premier temps, nous avons simulé le modèle de Nice (Tsiganis et al., 2005). Plus exac
	tement, nous avons intégré 10 000 migrations des planètes géantes sur 10 millions d'années. En plus
	des interactions newtoniennes entre les planètes et avec le soleil, nous avons ajouté les lois d'évolution
	suivantes			
		da/dt --exp(-t/r)		
		de/dt = -e/(2re)			(4'38)
		0	0.2 0.4 0.6 0.8	1	1.2 1.4 1.6 1.8	2
			t (Myr)
	été placé à 50 rayons d'Uranus sur des orbites circulaire, puis excentrique. La figure 4.7c montre
	les résultats obtenus. En particulier, l'obliquité maximale ne croît de façon significative que lorsque
	l'inclinaison orbitale est élevée. Par ailleurs, pour cette simulation, un basculement de 97 deg ne peut
	pas avoir lieu si la masse du satellite est inférieure à 0.01 Mjj. Avec un satellite de masse m = 0.001 Mjj
	l'obliquité finale reste inférieure à 70 deg, et pour un satellite de masse m -10elle ne dépasse
	Cela est compatible avec le résultat que nous avons obtenu précédemment, section 4.2. Cependant, pas 45 deg.
	différents travaux suggèrent que la migration a pu durer plus longtemps (Murray-Clay & Chiang, Enfin, nous avons intégré l'évolution de l'axe d'Uranus et d'un satellite supplémentaire de masse
	2005; Boué et al., 2009; Lykawka et al., 2009), ce qui réduit les contraintes sur la niasse du satellite 77i = 0.01 Mu dans les 17 simulations sélectionnées. Les calculs de l'évolution de l'axe d'Uranus

et/ou l'inclinaison d'Uranus. Le scénario est donc le suivant : Uranus possédait initialement un gros satellite. Pendant la phase de migration planétaire, l'inclinaison d'Uranus a augmenté significativement. L'interaction spin-orbite étant renforcée, le basculement s'est effectué rapidement avant qu'une rencontre proche n'éjecte ce gros satellite. Une fois le satellite éjecté, la fréquence de précession d'Uranus a chuté et l'obliquité s'est stabilisée. di/dt = -i/(2,Ti) avec r = 2x 10e* ans et re = r* = r/10 (Lee et al., 2007). a, e et i sont respectivement les demi-grands axes, excentricités et inclinaisons des planètes géantes ; t est le temps et 6a est la différence entre le demi-grand axe initial d'une planète et sa valeur actuelle. Le demi-grand axe initial de Jupiter est fixé à 5.45 UA. Les demi-grands axes des autres planètes sont obtenus aléatoirement suivant des lois de distribution uniformes. Celui de Saturne est compris entre 8.38 et 8.48 UA. L'ordre initial des deux planètes de glaces est inversé par rapport à l'état actuel du système solaire : Neptune est placé entre 9.9 et 12 UA alors que le demi-grand axe d'Uranus est choisi entre 13.4 et 17.1 UA. Les planètes telluriques ne sont pas prises en compte. Ensuite, sur les 5 142 simulations qui ont survécu sans éjection de planètes, ni collision, nous avons sélectionné celles qui se sont terminées avec les planètes dans le même ordre que dans le système solaire actuel. Nous avons ainsi obtenu 1 995 intégrations différentes. Comme le basculement nécessite une forte inclinaison, nous n'avons gardé que les simulations dans lesquelles l'inclinaison d'Uranus dépasse un certain seuil. Nous avons fixé ce seuil à 17 deg, ce qui limite le nombre de simulations à 31. Parmi celles-ci, nous avons rejeté celles dont les rencontres proches avec Uranus se faisaient à moins de 50 rayons d'Uranus de façon à éviter qu'Obéron soit éjecté trop facilement. Avec ce critère, nous avons finalement sélectionné 17 simulations. L'une d'entre elles est représentée dans la figure 4.7a, 4.7b. Nous l'appelons simulation de référence. Dans une troisième étape, nous avons calculé l'effet maximal d'un satellite additionnel sur l'obli quité d'Uranus à partir des paramètres orbitaux a, e et i obtenus dans la simulation de référence.

L'effet du satellite supplémentaire est implicitement pris en compte dans la constante de précession

(Boué & Laskar, 2006)

. La formule (4.17) est celle qui a été utilisée pour ce calcul. Le satellite a prennent en compte le couple gravitationnel exercé par le soleil, par le satellite et par toutes les autres planètes. Pour chacune des 17 migrations planétaires, nous avons effectué 100 intégrations en variant le demi-grand axe initial du satellite de 15 mètres à chaque fois. La distribution des obliquités

Table 1

 1 Precession rate for a single planet with no satellite given by Eq. (56)

	Planet	("/yr)
	Earth	-15.948799
	Mars	-7.581155
	Jupiter	-0.908216
	Satum	-0.189667
	Uranus	0.001102
	Neptune	-0.001652
	6.4. Numerical applications	

Table 4

 4 Approximate solution for various satellites using the analytical formulas of Section 6.1
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Table 1

 1 Physical and orbital parameters of a fictitious doubly asynchronous binary System: m is the mass, A, B and C are the moments of inertia divided the mass, w is the rotation rate, h, /, g, J and / are the Andoyer angles of the two solid bodies as defined in Fig.2.Physical and orbital parameters of the binary Asteroids 1999 KW4 given byFahnestock and Scheeres (2008): m is the mass, A. B and C are the moments of inertia divided the mass, w is the rotation rate, h, 1, g, J and / are the Andoyer angles of the two solid bodies as defined in Fig.2.

		System /			Orbit
		Primary	Secondary		
	m (1012 kg)	2.5	0.15	a (km)	2.75
	A (km2)	0.17	0.0165	X (deg)	0.0
	B (km2)	0.18	0.017	e	0.035
	C (km2)	0.19	0.025	<0 (deg)	0.0
	w (°/day)	3125.34	1500	i(deg)	0.0
	h (deg)	100.82	-110.0	S2 (deg)	0.0
	/ (deg)	10.74	5.0		
	g (deg)	112.03	-180.0		
	J (deg)	3.0	5.0		
	1(deg)	90.0	90.0		
	Table 2				
		System II			Orbit
		Primary	Secondary		
	m (1012 kg)	2.353	0.135	a (km)	2.5405
	A (km2)	0.1648	0.01608	X (deg)	0.0
	B (km2)	0.1726	0.02374	e	0.0
	C (km2)	0.1959	0.02799	(O (deg)	0.0
	w (°/day)	3125.34	498.09	i(deg)	0.0
	h (deg)	117.04	0.0	n (deg)	

Table 3

 3 Fundamental frequencies of the two Systems. Q and v are the precession and nuta tion frequencies respectively. co and n correspond to the precession of the periastre and the mean motion. g\ and îi on the one hand, and g2 and h on the other hand, are associated to the Andoyer angles. \j/2 and 62 are the horizontal and vertical li bration frequencies in the résonant System II.Secular frequencies. Comparison between the intégration of the full Hamiltonian, the intégration of the averaged Hamiltonian and the analytical approximations.

	Frequency	Value (rad/day)	
		System I		System II
	n	-0.0312		-0.0713
	V	-0.9788		-4.7488
	ü)	0.0681		-0.0902
	n	8.0052		9.0503
	g 1	58.9763		63.3416
	h	-4.4062		-8.7218
	82	39.9703		-
	h	-13.9042		-
	h	-		7.5914
	02	-		4.1475
	Table 4			
	System	Type	n	V
			(rad/day)	(rad/day)
	Syst. 1	Full	-0.0312	-0.9788
		Averaged	-0.0310	-1.1276
		Calculation	-0.0310	-1.1091
	Syst. Il	Full	-0.0713	-4.7488
		Averaged	-0.0710	-3.5982
		Calculation	-0.0710	-3.5629
	where			

Table 6

 6 Same as Table5for the System //.

	Var.	i		Vf	a\!)	<
				(radyr-1)	n	(deg)
	W	1	fi	-0.0713	27979.553	-153.15
		2	£2 -f-2(0 4* 2n	17.8490	111.214	-26.81
		3	£2 + v	-4.8201	4.421	-160.28
		4	£2 + 2co -f* 2n -21] -2g]	-91.3906	3.320	-39.33
		5	n -n	-9.1216	2.847	25.69
		6	fi + 21] + 2gi	109.1682	2.779	-140.63
		7	£2 + n	8.9790	2.678	-151.99
		8	fi + 2u> + 3n	26.8993	2.201	154.37
		9	fi + ÿ2	7.5201	1.295	-152.20
		10	fi -\)/2	-7.6627	1.117	25.96
		11	fi + 2co +n	8.7986	1.066	-27.97
		12	fi -v + 2a> + 2n	22.5978	0.942	-19.67
		13	£2 -j-2(0 + 2fl +	25.4404	0.828	155.16
		14	fi -2w-2n	-17.9916	0.490	-99.49
		15	fi + (0 + n -62	4.7413	0.376	-163.33
		16	fi + 2(0 + 2n -\j/2	10.2575	0.280	-27.75
		17	£2 + (0 -O2	-4.3090	0.237	-164.49
		18	fi -v + 2co-n	-4.5532	0.170	156.75
		19	fi -v + 2co	4.4971	0.161	157.74
		20	fi + v + n	4.2302	0.143	20.77
	W|	1	fi	-0.0713	8008.982	26.85
		2	£2 + 2to 4" 2n	17.8490	32.172	153.19
		3	fi -2a) -2n + 21] + 2g]	91.2480	0.939	93.03
		4	fi -n	-9.1216	0.796	-154.31
		5	£2 + n	8.9790	0.794	28.01
		6	£2 + 21] + 2gj	109.1682	0.780	39.37
		7	fi + 2(0 +3n	26.8993	0.636	-25.64
		8	fi -ÿ2	-7.6627	0.325	-154.10
		9	fi + ir2	7.5201	0.324	27.80
		10	£2 4" 2co 4-n	8.7986	0.301	152.03
		11	fi -2(0 -2n	-17.9916	0.243	-99.49
		12	£2 4" 2co 4* 2n 4* V^2	25.4404	0.232	-25.86
		13	£2 4" 2(0 + 2n -\jf2	10.2575	0.093	152.25
		14	£2 -2(0 -3n 4-21] 4-2gi	82.1976	0.031	-88.11
		15	n + v	-4.8201	0.030	19.72
		16	fi + 4a> + 4n -21] -2g]	-73.4703	0.029	87.00
		17	fi + 2(0	-0.2517	0.024	-29.13
		18	£2 4" 2(0 4~2n -21] -2g]	-91.3906	0.023	140.67
		19	fi + n -]/r2	1.3876	0.020	-152.96
		20	£2 -n 4"	-1.5302	0.020	26.63
	w2	1	n	-0.0713	28848.685	-153.15
		2	£2 + v	-4.8201	924.226	19.72
		3	£2 -V 4" 2(0 4" 2n	22.5978	196.275	160.33
		4	£2 4" 2(0 4" 2n	17.8490	81.967	-26.85
		5	£2 + (o + n -O2	4.7413	77.510	16.67
		6	fi + v + n	4.2302	55.301	-159.15
		7	£2 + (o -O2	-4.3090	47.469	15.51
		8	fi -v + 2(0 -n	-4.5532	34.386	-23.16
		9	fi -v + 2(o	4.4971	33.518	-22.15
		10	fi + V -]/r2	-12.4116	30.128	18.77
		11	£2 + (o+ n+ 62	13.0363	29.773	-16.63
		12	fi-t2	-7.6627	29.524	-151.52
		13	£2 + co + @2	3.9860	26.699	162.21
		14	fi + v-n	-13.8705	26.395	-161.45
		15	£2 + co -n 4-02	-5.0643	19.869	-18.95
		16	£2 + v + \fs2	2.7713	19.196	20.64
		17	£2 4" co + n -\ff2 4-02	5.4449	18.432	162.43
		18	£2 + v + 2 n	13.2805	13.450	22.33
		19	fi -v + 2a> + 2n -	15.0063	12.645	159.39
		20	fi + (0 + n-]//2-62	-2.8501	12.132	-164.27
	lar terms were extracted from the analysis of the full intégration.

Table 7

 7 

Table 8 .

 8 It is remarkable that the first two amplitudes of each vector are in good agreement with the full intégration. Nevertheless, the third amplitude of W2 is wrong by a factor 3. The values of these secular frequencies are given at the bottom of Table4. The

	use of the averaged Hamiltonian or of the analytical approxima
	tions leads to an error on the precession rate equal to 1% and on
	the nutation rate equal to 24%.
	6.2. Comparison with Fahnestock and Scheeres (2008)
	6.2.1. Numerical results

Table 8

 8 Same as Table7for the System II corresponding to the 1999 KW4 binary asteroids.

	Var.		i	A(°'		I	<f)	<p\f>	i	4°(	
				n	(deg)		(")	(deg)		")	(deg)
	W	n	i	27916.13	-152.96	1	27979.55	-153.15	1	27916.04	-152.96
		£2 "h V	2	4.65	-152.96	3	4.42	-160.28	2	4.72	-152.96
		n -v	3	0.02	27.04						
	W|	Q	1	7991.22	27.04	1	8008.98	26.85	1	7991.22	27.04
		£2 -j-v	2	0.04	27.04	15	0.03	19.72	2	0.04	27.04
	w2	n	1	28903.02	-152.96	1	28848.69	-153.15	1	28922.58	-152.96
		n + v	2	987.12	27.04	2	924.23	18.39	2	1001.81	27.04
		n -v	3	4.87	-152.96	53	1.48	-146.03			
		f2 -f* 2v	4	0.01	27.04						

Table 1

 1 Secular Frequencies Associated with the Precession of the Ascending Nodes

	Frequency	Laskar et al. (2004)	Secular intégration
	•*5	-0.000	-0.000
	*6	-26.348	-26.569
	*7	-2.993	-2.996
	*8	-0.692	-0.689

& Malhotra, 2009), et la distribution angulaire des objets trans-neptuniens en résonance 2 : 1 avec

(3.2)

(3.6) 

(3.13) 

& Hamilton, 2004; Hamilton & Ward, 2004) ont montré qu'actuellement les fréquences de précession de l'axe de Saturne et du pôle de l'orbite de Neptune sont voisines. L'incertitude sur la vitesse de précession de l'axe de Saturne due à la mauvaise connaissance du moment d'inertie de la planète est telle que l'égalité entre les deux fréquences est possible. S'il est curieux que Saturne ait une obliquité aussi élevée que 27 deg, il est encore plus exceptionnel que les deux fréquences de précession soient si proches par hasard. Ward & Hamilton proposent alors que la configuration actuelle du système Saturne -Neptune résulte d'une capture en résonance. Selon leur modèle, Saturne s'est formée avec une obliquité nulle et, soit l'une des fréquences de précession, soit les deux ont évolué et ont fait basculer Saturne. L'orientation de l'axe de Saturne fournit alors une contrainte sur la vitesse à laquelle ces fréquences ont varié. Or ces fréquences sont liées aux paramètres orbitaux des deux planètes et ceux-ci ont évolué durant la phase de migration dans le disque de planétésimaux (voir section 1.1.4).En supposant que le basculement a eu lieu durant cette phase, il est alors possible de contraindre la vitesse de migration, en particulier celle de Neptune. Nous avons aussi testé les possibilités de basculement dans le cas où le moment d'inertie de Saturne est trop élevé pour qu'il y ait résonance aujourd'hui. Une telle valeur a été obtenue récemment parHelled et al. (2009). Nous avons montré que si le basculement s'est effectué durant la phase de migration telle qu'elle est décrite par le modèle de Nice(Tsiganis et al., 2005), alors les deux mouvements de précession doivent être en résonance aujourd'hui. Cela exclut la valeur du moment d'inertie obtenu parHelled et al. (2009). De plus, en considérant une évolution exponentielle des demi-grands axes, inclinaisons et excentricités, nous avons montré que le temps caractéristique de ces évolutions a dû être supérieur à environ 7 millions

= £ + *'»?, 32 = £2 + ^2,(122)
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In[START_REF] Ashenberg | Mutual gravitational potential and torque of solid bodies via inertia intégrais[END_REF], there is a misprint in the expression of V^J, Eq. (20). The coefficient -3Ç//(4r5) in Eq. (14) of the current paper corresponds to a coefficient -G/(8R5) in Ashenberg's notations whereas it is written -G/(5R5) in Ashenberg(2007).

In Boué and Laskar (2006), we hâve incorrectly stated that the averaged differ ential System (51) could be written as VV = WB where B = rrU is a matrix depending only on (x,y,z). In fact the correct expression is VV = vr'WA InBoué and Laskar (2006), the proof following Eq. (51) has to be modified. This is done in the présent paper. The results remain identical.
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Abstract. We consider here two different general problems: a three body problem with one solid body, or a two body problem with two interacting solids. This can be respectively a Sun-planet-satellite problem or a binary System of non spherical bodies. We demonstrate that after adéquate averaging, these problems can be reduced to non triv ial intégrable problems for which we provide the complété solutions.

These results should be useful for the understanding of the long time évolution of planetary and satellites spin axis, and thus for the search of dynamical constraints on the évolution of the Solar System.

Introduction

We highlight the équivalence of two apparently different problems treated in (Boué andLaskar 2006, 2009) (hereafter BL06 and BL09). We call them respectively the lunar problem and the solid-solid problem. The lunar problem is the study of a three body System composed of a central star, a planet orbiting the star, and a satellite. In this System, the planet is described as a rigid body and our main focus is the évolution of its spin axis. In a lower extend, we also look at the motion of the orbital plane of the satellite and of the planet. In the solid-solid problem, we analyze the évolution of the spin axis of two rigid bodies orbiting each other and the motion of their orbital plane.

The precession of a planet with a satellite lias been studied since d'Alembert and Lagrange in case of the Earth-Moon System. Then follows many improvements (e.g. Goldreich 1965Goldreich , 1966;;Ward 1975;Tremaine 1991;Kinoshita 1993). But only the asymptotic solutions corresponding to a far or a close satellite were known. In BL06, the secular évolution of such Systems was solved in ail cases.

The solid-solid body interaction is a complex problem. Analytical studies focus mainly on the expansion of the gravitational potential (Borderies 1978;Paul 1988;Tricarico 2008). A few others give only stationary solutions in the case of two Indeed, as for ail /, 7Z(t + /') = lZ{t)lZ(t'),

We assume here that the vectors (w, wj, W2) are non-planar (v^O). Let W be the matrix (w, wj, W2) and V the Gram ma trix of the basis (w, wj, W2)

Using the expression of the vector product in the basis (w, wi,W2) (see Appendix B), one can transform the System (51 ) as

where

The complété solution W(/) can thus be expressed on the form = (99)

where VV(/) is periodic with period T, and 7Z(t) a rotation of axis Wo and angle t6j/T. The motion has thus two periods: the (usually) short period T and the precession period

is a matrix depending only on (a, y, z). Indeed ( 0

As (a, y, z) are periodic functions of period 

The three unit vectors w, vb, vb, defined as the column veclors of VV(/) hâve thus an averaged volume equal to zéro over one period T. As these vectors describc loops of period T, this resuit can be interpreted by stating that the origin and center of the three loops generated by w, W|, and vb are nearly coplanar. We hâve indeed demonstrated that the averaged value ((w, W|, vb)> is null, and not that the déterminant of the aver aged vectors ((w), (wj), (vb)) is null, which is the condition stating that the centers of the loops generated by w, W|, vb are coplanar with the origin. We will see in Section 4.3 that this is indeed the case. where X and y are the coordinates of a point on a Keplerian orbit in the référencé frame (i, j, k) with i in the direction of periapse, and (/, j) the orbital plane. We hâve then Let £ be a vector space of dimension 3 over E. Let Bo = (e\,e2,e?,) be an orthonormal basis of E, and B = (f \. f 2' f 3) a general basis of E. Let u, v be two vectors with coordinates in B. Let M be the matrix of the coordinates of (/],/?, f A in the basis B(). Let G = 'MM be the Gram matrix of the scalar products (/,-, f j). Then 

VV(/

Gravitational potential

The distance between the two bodies is assumed to be large in comparison to their size. Thus, in the expression of the grav itational potential (5), p, -||ri||/||r|| and p2 = ||r2||/||r|| are two small parameters. It can then be expanded in terms of Legendre polynomials (see Appendix A). As it is shown below (Eq. ( 13)), the expansion up to the second order does not contain any interac tion due to the relative orientation of the bodies. We thus choose to expand the gravitational potential up to the fourth order. In the computation appear intégrais such as f r2dm, or /rjr, dm,-, i = 1,2 which can be expressed in terms of moments of inertia J rfrjr, dm,--(V, + R, + P,)/d + (X, -Y, + Q, -P,)/'/,

where s is any vector and i = 1,2.

With these results, the expansion of the potential gives the zeroth order term

where pt -Q(m^+ m2). This is the well-known gravitational inter action between two point masses. The second order terms expres sion is classical and given by

with Id being the identity matrix in R3. But higher degree inté grais such as f rf dm, also appear. To compute these intégrais, one needs more information about the bodies. However, moments of inertia are already hardly known, at least for satellites. It is thus not relevant to add new unconstrained parameters. But such inté grais of inertia can be expressed as functions of A,, B,, C, assuming that the bodies are homogeneous ellipsoids. Indeed, let (x,, y,, z,-) be the coordinates in the principal frame of a running point of the body i, and /p,q,r:i = /xPyfZjdm,-be its intégrais of inertia.

Because of the three symmetry planes of homogeneous ellipsoids, /p q r;i vanishes whenever one of p, q, r is odd. Thus ail the third order intégrais of inertia cancel, and the only non-zero fourth or der intégrais of inertia are (see Appendix B) /*'dm,= 2^(-Ai + e,+C,)2;

/y>, = 2 §^M|-Bl+Ci)2:

In search of generality, we now forget the assumption of homo geneous ellipsoids. We only keep the symmetry plane hypothesis that cancels odd intégrais. Setting

x, = j f xf dm,.

the intégrais appearing in the expansion of the gravitational po tential become

where u = r/r is the direction vector of r. As mentioned before, this expression does not contain body-body interactions but only spin-orbit ones such as (u K])2 or (u • K2)2. The fourth order terms expression is given in ( 14). In contrast to the second order terms, among the fourth order terms there are direct interactions between the two orientations such as (K\ K2)2. A similar expres sion was published recently in [START_REF] Ashenberg | Mutual gravitational potential and torque of solid bodies via inertia intégrais[END_REF]. Although more terms are présent in Ashenberg's paper because we hâve made here the additional assumption of symmetry of the rigid bodies, we could compare our expression successfully with the one of Ashenberg, except for a différence in a coefficient that may corne from a misprint in Ashenberg's paper.1

) (U K, J rf dm, = X, + V, + Z, + 2P, + 2Q, + 2R,; j (s r,)4 dm, = y,s4 + (X, + y, -6R, ) (s • /,)4 where s is any vector. After averaging ovcr gi and g2, the conjugated momenta Ci and C2 become constant. The averaged Euler

Hamiltonian which dépends only on Ci and G2 {Me)/.g

is now a constant and can be ignored. In this expression. A' is still the harmonie mean of A and B (18). The only change in the interaction is the substitution of C and V in ( 19)-( 20) by C' = (l--sin2jjc, sin4 J^jv ( 25)

and (K\,K2) by (wi,w2). For fast rotating non-rigid bodies, the angle J is assumed to be very small as a resuit of internai dissipa tion (J ~1CT7 radians for the Earth). In that case, the gyroscopic approximation J = 0 is a good approximation since the correction obtained after averaging over fast angles is in 0(sin2 J). Nevertheless, for slow rotating triaxial asteroids, the angle J may be large and the gyroscopic approximation may not be valid.

In a third step the Hamiltonian is averaged over the orbital mo tion. First over the mean anomaly M, and then over the longitude of periapse a>. The first average is computed using the formulas of Appendix C and for the second one, we hâve similar équations as

V'= ^1 

The secular Hamiltonian Hs ( 28) is similar to the one obtained in Boué and Laskar (2006) although its expression is slightly more complicated. The différence with Boué and Laskar (2006) is that the secular Hamiltonian is not anymore the équation of an ellipsoid in (x,y,z). A few results in Boué and Laskar (2006) were proved for this spécial surface. We recall here the main steps of the dérivation of the solutions adapted to the new surface defîned by the current secular Hamiltonian.

The Hamiltonian Hs is only a function of the angular momenta (G, Ci, G2). The équations of motion of these quantifies are From the expression of the secular Hamiltonian (28), we get and A = 0. that is. in the limiting case where the bodies are extremely thin rods. In this second case. ijmAX = 25/4. So. for homogeneous ellipsoids, r) is constrained between r/min and ??max.

Fig. 4 shows the domains where the surface Q' is an ellipsoid (£) or a hyperboloid (7-f) as a function of the angles J1 and J2.

The two sets of curve correspond to r) -i)mjn and r] = i)max. As 5 is a function of sin2 J1 and sin2 J2, the figure can be extended up to 180 degrees applying axial symmetry around the axis Ji =90

degrees and J2 = 90 degrees.

Description of the solutions

In Boué and Laskar (2006), we show that when the surface Q is an ellipsoid then the évolution of (x, y, z) présents two kinds of solutions. We hâve called spécial solutions the solutions where cé' is totally included in the Cassini berlingot B. This means that the vectors w, W] and w2 are never collinear. This happens only when the three vectors are almost orthogonal. The second class of solutions are the general solutions, more frequent in astronomical problems. for which ^crosses the Cassini berlingot (Fig. 5). In that case M = (x, y.z) does periodic returns inside the Cassini berlingot up to its surface and the volume v defined by the three vectors w, wi and w2 is conserved over one period. In both cases, solutions are periodic.

There are also spécial cases that happen when the orbit of (x, y.z) is tangent to the Cassini berlingot. At the tangency there is indeed a fixed point. In that State, the three vectors remain in a plane that precesses in time. It is called a Cassini State (Colombo, 1966;Peale, 1969;Ward, 1975;Boué and Laskar, 2006). If an initial condition is chosen along such spécial orbits but strictly outside the fixed point, then the System cannot reach the stationary point in finite time and it is the only case where x, y, z are not periodic.

Here, we hâve the same results except when the quartic Q is unbounded. In that case, we cannot hâve spécial solutions.

Global solution

Knowing that x, y, z are periodic functions of time, it is possible to get general features of the global motion. For that, let us rewrite the secular équations (33) in a new form so as to obtain a linear differential System with periodic coefficients.

Let us assume as in Boué and Laskar (2006) that the vec tors (w, w],w2) are not coplanar (v ^0). Let W be the matrix (w, wt,w2) and V the Gram matrix of the basis (w, wi,w2)

Using the expression of the wedge product in the basis (w, wi,w2) Boué and Laskar, 2006), the équations of mo tion ( 33) can be written in the following form

Here we correct a mistake4 in the démonstration of the Propo sition 1, given in Section 4 in Boué and Laskar (2006) (see the erratum, Boué and Laskar, 2008).

In ( 46), vV-1 and A are matrices depending only on (x,y.z)

that are periodic functions of period T. Indeed Remark. The factor (1 -(3/2) sin2 Ji) is not in Fahnestock and Scheeres (2008) because Fahnestock and Scheeres (2008) assumes that the primary angular momentum is aligned with its figure axis (J, = 0). This is not the case in this paper where we do not require this simplification.

Conclusions

We hâve shown here that the general framework developed in Boué and Laskar (2006) applies as well to the problem of two rigid bodies orbiting each other. This formalism enables us to obtain the long term évolution of the spin axis of the two bodies as well as the évolution of the orientation of the orbital plane. The two bod ies can be very general, with strong triaxiality, and their rotation vector is not necessary aligned with their axis of maximum inertia.

The gravitational potential is expanded up to the fourth order so as to keep the direct interaction between the orientation of the two bodies, and as in Boué and Laskar (2006), the évolution of their spin axis is obtained after a suitable averaging.

We found that the secular évolution is composed of two periodic motions: a global precession of the three angular momenta and nutation loops. As in Boué and Laskar (2006), the nutation loops are symmetric with respect to a plane containing the total angular momentum and precessing with the global precession fre quency. We gave analytical approximations of these frequencies.

We performed a frequency analysis (Laskar, 1988(Laskar, , 2005) ) on a numerical intégration of the full Hamiltonian. We chose the typical binary asteroid System 1999 KW4 already analyzed in Fahnestock and Scheeres (2008). We retrieved the precession and the nutation motions predicted by the secular Hamiltonian and estimated by the analytical approximations. On a non-resonant System, derived from 1999 KW4, the secular solution, and the analytical results agréé extremely well with the full solution. This is still the case

The gravitational interaction between two solid bodies is given by ( 5) /y gdm,dm2

JJ l|r + r2-ri||

The expansion of this potential in Legendre polynomials leads to the following intégrais

where ail linear terms in ri or r2 hâve been omitted since these two vectors are expressed relative to the barycenter of the respec tive body and their intégral vanishes. In Section 2.3, an additional hypothesis is made on the mass distribution of each body that sim plifies the potential. They are supposed to be symmetrical relative to the planes perpendicular to the principal axes of inertia. As a conséquence, the intégral of any odd power of ri or r2 cancels. where X and y are the coordinates of a point on a Keplerian orbit in the reference frame (i, j, k) with i and k respectively in the direction of periapse and angular momentum.

CT. Intermediate intégrais

In the following, we handle intégrais such as Wallis intégrais.

We recall their expression. Let The last equality cornes from Jn m -Jm n.

C.2. Computation of (l/rn) forn^2

From these results, we can write where y = tan 0 tan / can vary from 0 to infinity depending on the value of the obliquity. We now choose Q that maximizes this time dcrivative as a function of / and 9. Doing so, we ensure that it is not possible to hâve a faster évolution of the equator 

After some calculus, it can be shown that 0max is an increasing function of tan/. Thus, if the only constraint on the orbit inclination amplitude is an upper limit /max < 7r/2, the fastest évolution is obtained for I = /max. In two asymptotic cases, the expressions of 0max are simpler. For I <£ \n/2 -9\ or Using the approximation for small angles \y\ <$C 1 (14), the minimum time /mjn required to bring 9 from 0 to 0encj at constant where A and (p are, respectively, the libration amplitude and a phase, and cuiib is the libration amplitude given by Hamilton & Ward (2004) For a given migration, Saturn's axis can tilt if and only if there exist A and 0 such that 0 ^0max (14 and 17) dur ing ail the évolution. Replacing 9 by 66 in (14 and 18), one obtains a criterion that dépends only on orbital parameters.

We applied this criterion on the Systems studied in Section 4.

For each value of Neptune's initial inclination, we integrated once the System with a given r. Then, we rescaled the dériva tives 0 for different value of r until the criterion is verifted.

The resulting values of rm[n are displayed in Figure (4, thin curves).

CONCLUSIONS

First of ail, we see that the Helled et al. (2009) precession constant is incompatible with the Ward & Hamilton (2004) scé nario. This is a robust resuit. Helled et al. (2009) obtained Sat urn's precession constant from an empirical modcl of its internai structure. They used Satum mass, radius, and gravitational co efficients J2, J4, and J(, to fit a density profile represented by a sixth-degree polynomial. From this density profile they derived the normalized axial moment of inertia y directly related to the precession constant. Our resu Its suggest, rather, considering y as an additional independent parameter to better constrain Sat um's interior. If Satum is actually in libration in zone 2 then 0.2257 < y < 0.2438 (Ward & Hamilton 2004).

Assuming the Hamilton & Ward (2004) precession constant, Satum's spin axis is likely to evolve toward a libration in zone 2 whatever the migration class is as long as the timescale r is sufficiently large. We found a strong dependence between the minimum timescale rmjn and Neptune's inclination. Thus, an external constraint on the speed limit of Neptune migration may also constrain its inclination. For instance, the upper boundary obtained by Murray-Clay & Chiang (2005) is r ^10 Myr.

In that case, our results show that under the hypothesis of Section 3, the initial inclination of Neptune's orbit must hâve been larger than 7°. On the other side, in ail our studied cases, the minimum timescale must be at least greater than 7 Myr, whereas Minton & Malhotra (2009) found r < 0.5 Myr.

This contradiction may be raised if one considère different évolution laws for the semimajor axes, eccentricities, and/or inclinations. In that scope, we hâve given in Section 5 an algorithm to know if Saturn can be tilted for any migration law.