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Abstract

The minor bodies of the Solar System are the remnants of the primordial
planetesimal population. Their investigation can hence help us to improve
our knowledge about the environment conditions in the solar nebula, and to
understand the thermal and physical processes that took place in the early
phases of the Solar System.

During my PhD, I focused on the physical characterization of the asteroids
(2867) Steins and (21) Lutetia, targets of the ESA-Rosetta space mission, and
of the minor bodies of the outer Solar System (Centaurs and Trans-Neptunian
Objects, TNOs).

The knowledge of the physical properties of asteroids to be visited by
spacecrafts is fundamental to optimize the observing procedure during the
mission, and to plan specific observations of the most interesting regions
of the asteroid surface. Moreover, the comparison of the results obtained
from the Earth and those obtained in situ will provide the ground truth for
standard ground-based investigations of the asteroids which will be never
reached by a space mission.

In the framework of my research I hence performed a ground-based in-
vestigation of Steins and Lutetia, carrying out visible photometric and spec-
troscopic observations of these two bodies using the Telescopio Nazionale
Galileo (TNG, La Palma, Spain). From the reduction, the analysis, and the
interpretation of the obtained data, I improved the physical knowledge of
both the objects prior to the Rosetta fly-by.

As for the outer minor bodies, their science is very young (after Pluto,
the first object having a trans-Neptunian orbit was found only in 1992), and
there is still a lack of fundamental data about them. Nowadays they probably
represent the most investigated objects in planetary research, since these
minor bodies accreted at large heliocentric distances: they contain the most
pristine material presently available for our studies, and preserve records of
the processes occurred during the early history of the Solar System.
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In this thesis I present the results I obtained as part of a Large Pro-
gramme performed at the European Southern Observatory (ESO, Chile) on
Centaurs and Trans-Neptunian Objects: I carried out four of the several ob-
serving runs, I reduced and analysed visible and near-infrared photometric
and spectroscopic data, I contributed to the interpretation of the obtained
spectra using radiative transfer models, and, in particular, I took in charge
the analysis and interpretation of the visible and near-infrared photometric
dataset (color indices and light curves). On the basis of the obtained colors,
I derived the taxonomic classification of the observed TNOs and Centaurs,
and I performed a statistical analysis using also the whole available liter-
ature looking for correlations between taxonomy and dynamics. From the
interpretation of the light curves I gathered information about the rotation,
shape and density of the objects under analysis, and I investigated the den-
sity statistics of the small bodies of the outer Solar System combining these
new results with literature data. -

This thesis is structured in four main chapters.

The first chapter presents an overview of the minor bodies of the Solar
System. It deals with their dynamical classification and physical character-
ization, describing in particular the observing techniques (photometry and
reflectance spectroscopy) which have been adopted to develop my PhD re-
search.

The second chapter describes the procedures I adopted to acquire and re-
duce the visible and near-infrared, photometric and spectroscopic data anal-
ysed in the framework of the present work.

In the third chapter I present the results obtained from the investigation
of the surface of the asteroid targets of the Rosetta mission, (2867) Steins
and (21) Lutetia. For Steins, the information retrieved on its size, shape and
rotation are also discussed.

The fourth chapter deals with the results I obtained within the ESO Large
Programme on Centaurs and Trans-Neptunian Objects, from the analysis of
their spectra, photometric color indices, and light curves.

Keywords: Solar System — Asteroids — Steins — Lutetia — Space mission —
Rosetta — Trans-Neptunian Objects — Centaurs — Photometry — Spectroscopy



Résumé

Les petits corps du Systeme Solaire sont les vestiges des planétésimaux
du disque primordial. Leur étude peut donc améliorer notre connaissance des
conditions présentes dans la nébuleuse solaire, et des processus thermiques
et physiques qui ont eu lieu pendant les premieres phases de vie du Systeme
Solaire.

Pendant mon doctorat, je me suis concentré sur la caractérisation physique
des astéroides (2867) Steins et (21) Lutetia, cibles de la mission spatiale
ESA-ROSETTA, et des petits corps du Systeme Solaire externe : Centau-
res et Objets transneptuniens (TNOs, acronyme anglais de Trans-Neptunian
Objects).

La connaissance des propriétés physiques des astéroides qui doivent étre
visités par des sondes est fondamentale que ce soit pour optimiser la procédure
d’observation pendant la mission, ou bien pour planifier des observations
spécifiques des régions les plus intéressantes de la surface de l'astéroide. De
plus, la comparaison des résultats obtenus de la Terre et ceux obtenus “in
situ”, fournira I’étalonnage (ground truth) pour les données sol des astéroides
qui ne seront jamais atteints par une mission spatiale.

J’ai donc effectué des observations photométriques et spectroscopiques
dans le domaine du visible de Steins et Lutetia, en utilisant le Telescopio
Nazionale Galileo (TNG, La Palma, Espagne). A la suite de la réduction,
I’analyse, et l'interprétation des données obtenues, j'ai amélioré la connais-

sance physique des deux objets avant le survol de Rosetta.

Pour ce qui concerne les petits corps du Systeme Solaire externe, leur
étude est relativement récent (apres Pluton, le premier objet ayant une orbite
transneptunienne a été trouvé seulement en 1992) et le manque de données
fondamentales demeure. De nos jours ils représentent un sujet d’actualité de
la recherche planétaire, puisque ces petits corps se sont accretés aux grandes
distances héliocentriques : ils contiennent le matériel le plus vierge actuelle-
ment disponible pour nos études, et conservent des informations sur les pro-
cessus qui ont eu lieu pendant la premiere partie de la vie du Systeme Solaire.
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Dans cette these je présente les résultats que j’ai obtenu en partecipant a
un programme d’observation conduit a ’Observatoire européen austral (Eu-
ropean Southern Observatory, ESO, Chili) sur les Objets transneptuniens
et les Centaures : j’ai effectué des observations, j’ai réduit et analysé des
données photométriques et spectroscopiques dans les domaines du visible et
de l'infrarouge proche, j’ai participé a l'interprétation des spectres obtenus
en utilisant des modeles de transfert radiatif et, particulierement, j’ai pris
la responsabilité de ’analyse et l'interprétation de ’ensemble des données
photométriques (indices de couleur et courbes de lumiére). J’ai obtenu la
classification taxonomique des objets observés sur la base des couleurs pho-
tométriques, et j’ai fait une analyse statistique utilisant la littérature dispo-
nible, & la recherce de corrélations entre la taxonomie et la dynamique. A
la suite de l'interprétation des courbes de lumiere, j'ai rassemblé des infor-
mations sur la rotation, la forme, et la densité des objets analysés, et j’ai
etudié la statistique de densité des petits corps du Systeme Solaire externe
en combinant ces nouveaux résultats avec des données de littérature.

Cette these est structurée en quatre chapitres principaux. Le premier
chapitre présente une vue d’ensemble des petits corps du Systéme Solaire,
avec leur classification dynamique et leur caractérisation physique, décrivant
en particulier les techniques d’observation (la photométrie et la spectroscopie
de réflectance) utilisées pour développer mes recherches.

Le deuxieme chapitre décrit les procédures que j’ai utilisées pour acquérir
et réduire les données photométriques et spectroscopiques, dans les domaines
du visible et de l'infrarouge proche, analysées dans le cadre mon doctorat.

Dans le troisieme chapitre je présente les résultats obtenus de ’étude de
la surface des astéroides cibles de la mission Rosetta, (2867) Steins et (21)
Lutetia. Pour Steins, les informations obtenues sur sa taille, forme, et rotation
sont aussi discutées.

Le quatrieme chapitre traite avec les résultats que j’ai obtenu sur les Cen-
taures et les Objets transneptuniens, de I’analyse de leurs spectres, indices
de couleur, et courbes de lumiere.

Mots clés : Systeme Solaire — Astéroides — Steins — Lutetia — Mission
spatiale — Rosetta — Objets transneptuniens — Centaures — Photométrie —
Spectroscopie
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Chapter 1

The minor bodies of the Solar
System

The study of the minor bodies allows us to cast light on the origin and
early evolution of the Solar System, since, according to the most generally
accepted theory (Safronov 1979), they represent the “vestiges” of the left-
over planetesimals from the early accretional phases of the proto-planetary
disk. Even though minor bodies have been affected by thermal, dynamical,
and collisional evolution, they contain a record of the initial conditions that
existed in the solar nebula some 4.6 Gy ago. Thus, interpreting their present-
day physical and orbital properties can tell us a lot about the compositional
gradient of the nebula and the processes which governed the first phases of
the Solar System at different heliocentric distances.

According to the most recent theories, commonly labeled as “Nice model”
(Gomes et al. 2005; Morbidelli et al. 2005; Tsiganis et al. 2005), the current
distribution of minor bodies is largely due to planetary migration occurred
in the early history of the Solar System. Within this model, the four gi-
ant planets (Jupiter, Saturn, Uranus and Neptune) were originally found on
near-circular orbits between ~ 5.5 and ~ 17 AU. Following the interactions
with the planetesimals in a dense disk originally extended from the orbit of
the outermost planet to some 35 AU, Saturn, Uranus and Neptune moved
outwards, Jupiter moved slightly inward, while the outer primordial disk was
almost entirely scattered, losing ~ 99% of its mass and producing the various
populations of objects nowadays observable in the Solar System.

Moreover, during their history minor bodies have been subject to differ-
ent transport mechanisms, as collisions, close approaches (mutual or with
planets), and orbital resonances. The latter can lead to either long term
stabilization of the orbits or be the cause of their destabilization, and are
in general classified as secular resonances and mean motion resonances (e.g.,
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Froeschle & Morbidelli 1994; Nesvorny & Morbidelli 1998). A mean motion
orbital resonance occurs when two bodies (in this case, the minor body and
a giant planet) have periods of revolution that are a simple integer ratio of
each other (hereafter I adopt the convention that the p:q resonance denotes
the resonance of p orbits of the inner object to q orbits of the outer ob-
ject). A secular resonance occurs when the precession rate of the perihelion
or ascending node of the minor body coincides with that of a giant planet.

Minor planets are divided into “groups” based on their current orbital
and physical properties.

1.1 Dynamical classification

e Trans-Neptunian Objects (TINOs): after Pluto’s discovery, the
first object having an orbit that is completely trans-Neptunian was
found in September 1992 (Jewitt et al. 1992; Jewitt & Luu 1993).
Nowadays more than 1350 Trans-Neptunian Objects are known, and
their investigation represents one of the most outstanding topics in
contemporary planetary science, since these distant and icy bodies are
considered to be the remnants of the planetesimals in the outer Solar
System and to retain the most pristine (least altered) material that can
presently be observed.

From a dynamical point of view, they are in turn classified as (Gladman
et al. 2008, see Fig. 1.1):

Resonant objects: they lie in the about twenty identified mean motion
resonances with Neptune, the most populated being the 3:2 resonance
(a = 39.4 AU) which hosts Pluto among other bodies (“Plutinos”).

Scatter(ing/ed) Disk Objects (SDOs): Gladman et al. (2008) consider
SDOs as those objects that are currently scattering actively off Nep-
tune, without any assumption about their origin. With this nomencla-
ture they exist down to a = 30 AU. At very large a (~ 2000 AU), where
external influences become important, the inner Oort cloud begins.

Detached objects: the term “detached”, adopted from Delsanti & Jewitt
(2006), indicates that these objects are essentially unaffected by the
gravitational influence of Neptune, but not so far away that external
influences are important to their current dynamics (a ~ 2000 AU).
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Figure 1.1 — Schematic illustration (not in scale) of the nomenclature for the
outer minor bodies. From Gladman et al. (2008).

According to Gladman et al. (2008) they are nonscattering TNOs with
large eccentricities (e > 0.24).

Classical objects: they are the remaining nonresonant, nonscattering,
low-e TNOs. Gladman et al. (2008) divide this classical belt into an
inner classical belt (a < 39.4 AU, nonresonant), an outer classical belt
(a > 48.4 AU, nonresonant, and e < 0.24), and a main classical belt (or
Cubewanos, after the first such object that was discovered, 1992 QB;).
Even if the current situation is not sufficiently clear to draw an arbi-
trary division, as stated by Gladman et al. (2008), many authors refer
to two distinct populations in the classical belt based on orbital incli-
nation (Levison & Stern 2001; Brown 2001): dynamically “hot” (high-
inclination) objects, and dynamic