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Je souhaite commencer par remercier tous ceux qui m'ont permis de mener ce travail jusqu'à son terme. En premier lieu, je voudrais témoigner ma reconnaissance à mon directeur de thèse, Jacques Laskar, dont la puissance intellectuelle et l'exigence ont inspiré et guidé mes efforts. Je souhaite remercier également les membres de l'IMCCE et de l'équipe ASD pour leur accueil et les discussions toujours fructueuses que j'ai pu engager avec eux. En particulier, je remercie spécialement Philippe Robutel pour sa disponibilité et ses conseils scientifiques qui m'ont toujours été bénéfiques. Je remercie également Mickaël Gastineau pour son aide précieuse dans la résolution des problèmes techniques qui accompagnent toujours un tel travail, et Agnès Patu pour sa relecture de mon manuscrit. Les doctorants de l'IMCCE, du SYRTE et du LERMA, et notamment Petr, Yannick, Lucia et Wassila, ont beaucoup contribué à faire de l'Observatoire un cadre de travail agréable, et je leur suis très reconnaissant pour leur soutien et leur amitié quotidiens. Je tiens enfin à remercier mes parents et mes amis pour leur présence chaleureuse autour de moi, et à remercier tout particulièrement Julia pour sa patience : à moi maintenant de prendre le relais ! 1.1 La diversité des systèmes planétaires extrasolaires lement et qui sont appelées Super-Terres. Malgré ce nom, nous sommes cependant ignorants quant à l'aspect de ces planètes, dont notre Système solaire ne possède aucun exemplaire : la planète qui vient immédiatement après la Terre dans l'ordre des masses du Système Solaire est Uranus, avec ses 14.5 masses terrestres. Ces Super-Terres se retrouvent également dans des situations orbitales extrêmes. Ainsi, CoRoT-Exo-7 b et ses 4.8 masses terrestres orbite-t-elle seulement à 0.017 UA, 100 fois plus proche de son étoile que la Terre et 23 fois plus proche que Mercure. Au niveau de son orbite, qu'elle met 20 heures à parcourir, elle est exposée à des températures de l'ordre de 1000°C. Mercure, par comparaison, subit sur sa face exposée au Soleil des températures d'environ 420°C. Le fait qu'aucune planète n'ait été découverte en-dessous de quelques masses terrestres est dû aux limitations techniques et aux biais des méthodes de détection actuelles. De même, le fait que des planètes soient découvertes principalement sur des orbites de courtes périodes est dû à un biais observationnel, mais également à une limite intrinsèque : l'exploration n'a débuté qu'en 1995, et si l'on veut observer une période orbitale complète, les 15 ans qui se sont écoulés depuis correspondent à un demi-grand axe maximal observable de 6 UA pour une étoile d'une masse solaire. Malgré tout, l'existence même de ces systèmes soulève de nombreuses questions. En ce qui concerne la formation des planètes par exemple, peut-on dire que les mêmes processus ont été à l'oeuvre dans la formation d'un Jupiter chaud et dans la formation de « notre » Jupiter? Et si ces deux planètes se sont formées de la même manière, à la même distance de leur étoile, quel mécanisme de migration les a amenées sur des orbites si différentes3? Les excentricités des planètes extrasolaires ont également suscité la surprise (voir figure 1.2) : alors que la planète la plus excentrique du Système Solaire est Mercure, avec e = 0.2, les excentricités des planètes extrasolaires montent jusqu'à plus que 0.9 (la médiane se situant actuellement à 0.15 et la moyenne à 0.22). Si la plupart des planètes proches de leur étoile ont une excentricité faible, en accord avec les théories de circularisation par effets de marées, une grande proportion garde une excentricité non négligeable, dont il faut alors expliquer la valeur. Un exemple extrême est fourni par HD 80606 b dont nous parlerons dans la dernière partie de ce travail : sa période de 111 jours et son excentricité de 0.93 en font un objet dont l'existence autour d'une étoile âgée d'environ 7.5 milliards d'années soulève de nombreuses questions : en effet, les théories de formation planétaire favorisent un scénario dans lequel les planètes se forment après leur étoile hôte sur des orbites quasi-circulaires dans un disque de matière résiduelle. De nombreuses hypothèses ont été avancées pour expliquer ces grandes excentricités, mais aucune ne suffit à elle seule pour rendre compte de l'aspect de la figure 1.2. Tremaine et Zakamska (2004) fournissent une liste de mécanismes possibles pour créer des fortes excentri cités planétaires : interactions avec le disque de gaz protoplanétaire, rencontres proches entre 3. Papaloizou et Terquem (2006) présentent une revue des théories de formation et de migration planétaire et de leurs implications dans les systèmes extrasolaires. Chapitre 1 Introduction Masse Séparation K Jupiter 1 MJup 1.0 UA 28.4 m.s-1 Jupiter 1 MJup 5.0 UA 12.7 m.s-1 Neptune 3.5 MJup 0.1 UA 4.8 m.s-1 Neptune 3.5 MJup 1.0 UA 1.5 m.s-1 Super-Terre 5 M0 0.1 UA 1.4 m.s-1 Super-Terre 5 M0 1.0 UA 0.45 m.s-1 Terre 1 Me 1.0 UA 9 cm.s-1

Table 1.1: Amplitude I< du signal de vitesses radiales dans des situations types. par Struve (1952)), même si la forte progression de la précision instrumentale fait constamment reculer les limites de détection. Du fait des effets concurrents de l'activité stellaire que nous avons mentionnés plus haut, la méthode des vitesses radiales est également biaisée en faveur d'étoiles peu actives. Le tableau 1.1 donne l'amplitude du signal de vitesses radiales dans un certain nombre de situations types. L'instrument le plus prolifique en détections actuellement, le spectrographe HARPS, permet d'atteindre une précision sur les vitesses radiales de l'ordre de lm.s-1. Nous avons tracé sur la figure 1.1 trois lignes correspondant aux limites de détection à deux précisions de 10m.s-1, lm.s-1 et 10cm.s-1, autour d'une étoile de type solaire. La prochaine génération d'instruments, comme ESPRESSO qui sera installé au VLT, devrait atteindre la précision de

10cm.s-1 correspondant à un signal comparable à celui de la Terre sur le Soleil.

La méthode des vitesses radiales est actuellement la méthode qui a produit le plus grand nombre de résultats : au moment de l'écriture de ce travail, 378 planètes sur 405 sont obser vables grâce à cette méthode.

Quelques aspects de la dynamique des systèmes planétaires extrasolaires

Cette thèse expose des méthodes analytiques pour étudier la dynamique de systèmes de corps soumis principalement à leurs interactions gravitationnelles mutuelles. Elle a été motivée par la grande diversité des propriétés et des comportements exhibés par les systèmes planétaires extrasolaires dont le nombre ne cesse d'augmenter depuis la première détection en 1995 [START_REF] Mayor | A Jupiter-mass companion to a solar-typestar[END_REF]. Cependant, les méthodes présentées ici peuvent également s'appliquer à l'étude de systèmes stellaires multiples, ou encore à l'étude des populations d'étoiles autour des objets compacts qui se trouvent au centre des galaxies.

L'accent est mis sur les modèles séculaires qui permettent une simplification des équations ainsi qu'une accélération considérable des temps de calcul. Ce dernier facteur s'avère critique lorsqu'il faut explorer un ensemble important de conditions initiales, par exemple dans le cadre de la détermination d'un ajustement optimal des paramètres d'un modèle à des données observationnelles. La première partie de ce travail est consacrée à un modèle semi-séculaire qui permet de traiter le cas d'un système où l'un des corps est beaucoup plus proche du corps central que les autres corps du système. Elle donne une illustration de cette méthode en l'appliquant au système multiplanétaire autour de p Arae. Cette première partie permet également d'introduire le formalisme vectoriel qui est utilisé dans le reste de la thèse.

La deuxième partie de ce travail est consacrée à l'étude du mécanisme de Kozai (Kozai, 1962;Lidov, 1962). Kozai a étudié le mouvement d'une particule sans masse autour d'un corps central, sous l'effet de la perturbation d'un troisième corps éloigné. Ce problème est intégrable et donne lieu sous certaines conditions à un échange cyclique entre l'inclinaison et l'excentricité de la particule sans masse. Le problème reste intégrable si la particule a une masse non nulle (Harrington, 1969;Lidov et Ziglin, 1976;Ferrer et Osacar, 1994). Le problème de Kozai est donc un cas limite de celui de Harrington. Il existe cependant un autre cas limite qui correspond au mouvement d'une particule sans masse autour d'une binaire. Ce cas a été exploré par Palacian et al. (2006), et la deuxième partie du présent travail s'attache à en développer un modèle simple qui puisse être utilisé pour expliquer des résultats comme ceux de Verrier et Evans (2008, 2009).

La dernière partie de cette thèse s'intéresse à l'ajout d'interactions supplémentaires dans des systèmes dominés par le mécanisme de Kozai. Les forces de marées et la précession relativiste du périhélie sont notamment prises en compte et donnent lieu à un mécanisme connu sous le nom de cycles de Kozai avec dissipation de marée. Un modèle de ce phénomène est dérivé et appliqué au cas de HD 80606b, qui est la planète extrasolaire la plus excentrique qui ait été découverte avec e = 0.93 [START_REF] Naef | HD 80606 b, a planet on an extremely elongated orbit[END_REF]. v

Aspects of the dynamics of extrasolar planetary Systems

This doctoral thesis présents analytical methods to study the dynamics of Systems of bodies under their mutual gravitational interactions. It is motivated by the great diversity of properties and behaviors exhibited by extrasolar planetary Systems. The number of these Systems is steadily growing since the first détection of an extrasolar planet in 1995 [START_REF] Mayor | A Jupiter-mass companion to a solar-typestar[END_REF]. However, the methods which we présent here can also apply in other contexts such as the study of multiple stellar Systems or the study of stellar populations around compact objects in the galactic center.

We widely use secular models because they allow a simplification in the équations as well as a considérable speed-up in numerical computations. This last aspect is critical when a large set of initial conditions must be explored, for instance when fitting the parameters of a model to observational data. The first part of this thesis dérivés a semi-secular model which is adapted to the study of a System where one of the bodies is much doser to the central body than the other ones. This model is illustrated on the multi-planetary System around //, Arae. The vectorial formalism used throughout this doctoral work is also introduced in the first part.

The second part of this thesis studies the Kozai mechanism (Kozai, 1962;Lidov, 1962).

Kozai studied the motion of a massless particle around a central body, under the perturbation of a distant third body. This problem is intégrable and gives rise under spécifie conditions to a periodic exchange between the eccentricity and the inclination of the massless particle. The problem is still intégrable if the particle has a non-zero mass (Harrington, 1969;Lidov et Ziglin, 1976;Ferrer et Osacar, 1994). As such, Kozai's problem is a limit case of Harrington's problem.

There is however another limit case corresponding to the motion of a massless particle around a binary. This case was explored by Palacian et al. (2006) and the second part of the présent work gives a simple model of it which can be used to explain results such as those obtained by Verrier et Evans (2008, 2009).

Chapitre 1 Introduction

Depuis la découverte de la première planète extrasolaire en 1995 autour de l'étoile1 51 Peg [START_REF] Mayor | A Jupiter-mass companion to a solar-typestar[END_REF], on connaît maintenant plus de 400 nouvelles planètes2. Depuis le début de ce travail en 2006, ce nombre a plus que doublé. De même, depuis la découverte du premier système extrasolaire multiplanétaire autour de v Andromedae par [START_REF] Butler | Evidence for Multiple Companions to v Andromedae[END_REF], on dénombre aujourd'hui 42 systèmes multiplanétaires.

La question de savoir si notre système solaire est un représentant « moyen » de l'ensemble des systèmes planétaires ou, au contraire, s'il fait figure d'exception, commence à pouvoir être explorée de manière scientifique.

Les premiers systèmes détectés ont tout de suite manifesté des propriétés si étranges et si différentes par comparaison avec notre système solaire que ce dernier semblait faire figure d'exception. Ainsi, la toute première planète extrasolaire détectée, 51 Peg b, possède la moitié de la masse de Jupiter, mais orbite autour de son étoile hôte à une distance de 0.052 UA, soit une distance 100 fois moindre que la distance Soleil-Jupiter! Elle accomplit ainsi une révolution autour de son étoile en seulement 4.23 jours.

Pour l'instant, les statistiques disponibles ne permettent pas encore de répondre à la ques tion de la spécificité du système solaire car elles sont entachées de biais dûs aux méthodes de détection. De plus, les informations que nous possédons sur ces nouvelles planètes sont fragmentaires et ne permettent pas encore de véritablement caractériser ces planètes : ainsi pour une planète possédant la même masse que Jupiter, nous ne sommes pas encore en mesure d'affirmer qu'elle a les mêmes caractéristiques physiques ou la même apparence. Malgré tout, il est maintenant clair que les systèmes planétaires ne sont pas tous calqués sur notre modèle.

La nouveauté et la diversité des propriétés orbitales des planètes extrasolaires découvertes jusqu'à présent ont fourni un nouveau souffle à l'étude dynamique des systèmes planétaires.

1. Les premiers objets de masses planétaires hors du Système Solaire ont été détectés autour du pulsar PSR 1257+12 [START_REF] Rasio | A observational test for the existence of a planetary System orbiting PSR1257 + 12[END_REF]. Les conditions autour d'un tel objet placent cependant ces planètes dans une catégorie différente des planètes orbitant autour d'une étoile.

2. Le site http://exoplanet.eu fournit un recensement des candidats planétaires mis à jour régulièrement. a (AU) Figure 1.1: Masses des planètes extrasolaires en fonction de leur demi-grand axe. Les deux lignes pointillées correspondent à des amplitudes de vitesses radiales pour une étoile d'une masse solaire de 10m.s-1, lm.s~] et 10cm.s-1. La Terre (E), Jupiter (J), Saturne (S) et Neptune (N) ont été rajoutées à l'ensemble des planètes extrasolaires.

La diversité des systèmes planétaires extrasolaires

Les masses des planètes extrasolaires découvertes s'étalent dans un spectre très large (voir figure 1.1). Ainsi, HD 43848 b avec ses 25 masses de Jupiter est-elle aujourd'hui l'objet le plus massif découvert. Il appartient ainsi à un groupe d'objets dont la nature relève plus de la naine brune que d'une véritable planète.

Les premières planètes détectées ont été des planètes géantes, mais les distances orbitales auxquelles elles ont été trouvées ont été très surprenantes. Ainsi, nous avons déjà mentionné 51 Peg b et son orbite de 4.23 jours. Ces planètes ont été nommées Jupiter chauds, du fait des températures extrêmes qui régnent si près de leur étoile hôte et qui contrastent avec le froid des régions extérieures du Système Solaire où nous avions l'habitude d'imaginer les planètes géantes. Avec l'amélioration des techniques observationnelles, nous constatons depuis peu que les régions très proches des étoiles hôtes abritent également des objets moins massifs, dont la masse est de l'ordre de 10 à 20 masses terrestres, baptisés Neptunes chauds.

La planète la moins massive observée, Gl 581 e, « pèse » 0.006 masses de Jupiter, soit environ 2 masses terrestres. Elle appartient à une population de planètes qui émerge actuel-Figure 1.2: Excentricités des planètes extrasolaires en fonction de leur demi-grand axe.

Mercure (M), la Terre (E), Jupiter (J), Saturne (S), et Neptune (N) ont été ajoutées aux planètes extrasolaires.

planètes voire évolution collisionnelle violente, résonances entre planètes, interactions séculaires avec un compagnon planétaire ou stellaire distant (comme par exemple le mécanisme de Lidov-Kozai), propagation de perturbations dues à des passages d'étoiles proches vers l'intérieur des systèmes planétaires ou encore mécanismes de formation planétaire rapide intervenant en même temps que la formation stellaire [START_REF] Papaloizou | Dynamical relaxation and massive extrasolar planets[END_REF].

Une des propriétés les plus élusives des systèmes extrasolaires aujourd'hui est l'inclinaison des planètes. Ceci est dû à la méthode principale de détection, dite des vitesses radiales, qui n'a pas accès à cette propriété directement. D'autres méthodes de détection permettent toutefois de déterminer les inclinaisons planétaires, et il semble que la diversité et la différence par rapport au Système Solaire soit tout aussi grande dans ce domaine. Ainsi, par observation du transit spectroscopique (effet Rossiter-Mc Laughlin), il a été découvert que la planète HAT-P7 b évolue autour de son étoile hôte sur une orbite inclinée d'au moins 86°par rapport à l'axe de rotation de son étoile hôte [START_REF] Winn | HAT-P-7 : A Rétrogradé or Polar Orbit, and a Third Body[END_REF]. Dans les systèmes multiplanétaires, les inclinaisons peuvent également être contraintes par analyse de la stabilité dynamique du système (Couetdic et al., 2009, par exemple).

1.2 Méthodes de détection 1.2.1 Vitesses Radiales La première méthode, dite méthode des vitesses radiales, proposée très tôt [START_REF] Struve | Proposai for a project of high-precision stellar radial velocity work[END_REF], mesure le déplacement des raies d'un spectre stellaire dû à la vitesse du centre de masse de l'étoile dans la direction d'observation (effet Doppler lumineux). Cette vitesse radiale peutêtre attribuée à de nombreuses causes : activité, sismologie stellaire, mais aussi perturbation gravitationnelle due à un compagnon planétaire. Dans ce dernier cas, l'amplitude K de la perturbation est une fonction de la masse du corps perturbateur mp, de sa distance à son étoile hôte, ou de manière équivalente de sa période orbitale P, ainsi que de son excentricité e et de son inclinaison i qui est conventionnellement comptée par les observateurs depuis le plan du ciel (ainsi un système vu par la tranche est-il incliné à 90°) : /27rG\1/3 sin 1 ~\ P J (M, + mpyp ;

L'observation répétée d'une source permet d'obtenir la période ainsi que l'amplitude du signal. La forme du signal donne accès à l'excentricité de l'orbite du compagnon planétaire.

Reste l'inclinaison, qui est inaccessible par l'utilisation exclusive de la technique des vitesses radiales. Ainsi, seule une masse minimale mp sin i peut-être obtenue par cette méthode.

L'expression de l'amplitude K montre que la méthode des vitesses radiales possède un biais de détection en faveur des fortes masses et des faibles périodes (ce biais était déjà mentionné

Transits photométriques

Lorsqu'une planète passe devant son étoile hôte, la luminosité apparente de l'étoile baisse pendant la durée du passage (ou transit). Cette méthode est la deuxième en terme de nombre de candidats planétaires observés : 63 des 405 planètes détectées ont un transit observable. La durée du transit ainsi que la forme de la courbe de lumière fournissent des renseignements sur l'objet qui occulte l'étoile, notamment le rapport du rayon planétaire au rayon stellaire [START_REF] Rauer | The Transit Method[END_REF]. Elle contraint également fortement l'inclinaison planétaire par rapport au plan du ciel.

Cette méthode est également biaisée en faveur des grosses planètes (cette fois en termes de rayon et non de masse) qui orbitent près de leur étoile. Ainsi, une planète de la taille de Jupiter passant devant une étoile de type solaire causerait une baisse de luminosité relative de quelques pourcents, tandis qu'un objet de la taille de la Terre ne causerait qu'une baisse de quelques dix-millièmes (voir tableau 1.2). La première planète détectée grâce à la méthode des transits, OGLE-TR-56 b, orbite ainsi à 0.029 UA de son étoile, soit une période orbitale de seulement 29 heures [START_REF] Konacki | An extrasolar planet that transits the disk of its parent star[END_REF]4. Une des contraintes principales de la détermination précise des durées des transits planétaires réside dans la rotation de notre propre planète, qui limite la durée des observations : si un transit est plus long qu'une nuit d'observation, il devient nécessaire de disposer de sources d'observation multiples pour déterminer la durée du transit.

De plus, la méthode des transits est très dépendante de l'orientation du plan de l'orbite de la planète par rapport au plan du ciel : la planète ne peut occulter son étoile hôte que si son inclinaison orbitale est très faible par rapport à la ligne de visée. La probabilité géométrique pour qu'un système contenant une planète de rayon Rv, orbitant autour de son étoile avec un demi-grand axe a, présente un transit observable a été évaluée par [START_REF] Charbonneau | When Extrasolar Planets Transit Their Parent Stars[END_REF] :

1AU R* + Rp 1 + e cos(7r/2 -uj) 

Transit spectroscopique

Cette technique illustre la forte complémentarité entre les observations de vitesses radiales et celles de transits photométriques. Lorsqu'une planète passe devant le disque de son étoile, le signal de vitesses radiales est altéré par l'effet Rossiter-Mac Laughlin [START_REF] Gaudi | Prospects for the Characterization and Confirmation of Transiting Exoplanets via the Rossiter-McLaughlin Effect[END_REF].

La forme de la courbe de vitesses radiales pendant la durée du transit donne alors accès à l'angle entre l'axe de rotation de l'étoile et l'axe de l'orbite planétaire. C'est grâce à cette méthode que l'on a découvert que l'alignement entre ces deux axes n'est pas la norme. Ainsi, l'orbite HD 80606 b que nous avons déjà mentionnée pour sa très forte excentricité, est-elle inclinée d'environ 50°par rapport à l'axe de rotation de son étoile. De même, nous avons déjà mentionné HAT-P7 b et son orbite quasiment polaire [START_REF] Winn | HAT-P-7 : A Rétrogradé or Polar Orbit, and a Third Body[END_REF].

4. Le transit d'une planète extrasolaire déjà détectée par la méthode des vitesses radiales avait été observé dès 2000 pour HD 209458b [START_REF] Charbonneau | Détection of Planetary Transits Across a Sun-like Star[END_REF]. 

Microlentilles gravitationnelles

La troisième méthode de détection utilise un phénomène relativiste de déflection de la lumière, les lentilles gravitationnelles [START_REF] Beaulieu | Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing[END_REF] de manière astucieuse l'interféromètre qui sert de système de guidage au téléscope spatial Hubble [START_REF] Benedict | A Mass for the Extrasolar Planet Gliese 876b Determined from Hubble Space Telescope Fine Guidance Sensor 3 Astrometry and High-Precision Radial Velocities[END_REF], atteignent la précision de lmas.

Cette technique est donc actuellement limitée par la précision disponible, mais l'envoi pro chain de la mission astrométrique Gaia devrait fournir des détections planétaires. Une mission interférométrique américaine dédiée, SIM, est également à l'étude.

1. Les équations moyennes présentées dans la première partie font intervenir un corps moyennisé en présence d'un système planétaire non moyennisé, dans un formalisme vectoriel inspiré de Boué et Laskar (2006). Dans la deuxième partie de ce travail, nous utilisons ce formalisme pour explorer le problème des trois corps séculaire et quadripolaire, où tous les mouvements orbitaux sont cette fois moyennisés. Le problème séculaire quadripolaire fournit un moyen d'échanger l'excentricité du corps intérieur avec l'inclinaison mutuelle entre le corps intérieur et le corps extérieur. Le mécanisme de Lidov-Kozai (Lidov, 1962;Kozai, 1962), qui est sa Nous replaçons le mécanisme de Lidov-Kozai dans le cadre du problème quadripolaire séculaire général, et nous détaillons le cas restreint complémentaire où le corps extérieur est sans masse, exploré par Palacian et al. (2006). Nous développons un modèle simple du problème restreint extérieur que nous appliquons à des travaux sur un disque de débris autour de la binaire HD 98800, suggérant une population de particules stables à forte excentricité (Verrier et Evans, 2008, 2009).

La dernière partie de ce travail s'intéresse à un scénario d'évolution planétaire nommé migration de Kozai, qui associe le mécanisme de Lidov-Kozai aux effets de marées levés par l'étoile hôte sur la planète, et réciproquement. Un tel scénario a été proposé pour expliquer l'état actuel du système HD 80606 b avec sa très forte excentricité [START_REF] Wu | Planet Migration and Binary Companions : The Case of HD 80606b[END_REF][START_REF] Fabrycky | Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction[END_REF]. Nous dérivons un modèle de ce mécanisme et discutons des différentes hypothèses qui le sous-tendent, notamment en ce qui concerne la modélisation des Cependant, dès lors que l'on considère des systèmes contenant plus de trois corps, les interactions mutuelles entre corps peuvent être déterminantes dans l'évolution du système.

Prendre en compte ces interactions mutuelles dans l'ajustement des données observationnelles nécessite alors de réaliser des intégrations du modèle planétaire à chaque pas de la procédure d'ajustement afin de vérifier sa capacité à reproduire les observations. Ces intégrations sont très coûteuses en temps de calcul, notamment lorsqu'une des planètes proposées possède une courte période.

De plus, Poincaré (1892) a démontré que l'évolution d'un système contenant 3 corps ou plus peut être chaotique. Laskar (1989[START_REF] Laskar | The chaotic motion of the solar System -A numerical estimate of the size of the chaotic zones[END_REF] In this paper, we study a planetary System composed of a central star and n planets revolving around it. We suppose that the innermost planet is much doser to the central star than the other n -1 ones, or equivalently that its orbital period is much smaller. The ever-growing list of discovered extrasolar planetary Systems provides us with such Systems. Good examples, which feature more than two planets, can be found for instance around /z Arae (Pepe et al. 2007) or Gliese 876 (Rivera et al. 2005). Another motivation for this work is the study of stars orbiting a binary black hole in highly eccentric orbits (Gillessen et al. 2009;Mikkola and Merritt 2008).

The analysis of the global dynamics of planetary Systems allows to search for dynamical features such as possible stable résonant islands. These islands can give constraints on the planetary éléments based on dynamical stability (Correia et al. 2005). However, the parameter space grows rapidly with the number of planets, and the computations can as such be quite lengthy. In this context, when a fast planet has a low influence on the other planets, it can be ignored to speed up the computations (Pepe et al. 2007). Other time-critical phases occur for instance in the fitting process of extrasolar planetary orbits in multiple Systems hosting a hot Jupiter.

We take advantage of both the closeness of the inner planet and its fast orbital motion when compared to the other planets of the System, and dérivé a first order averaged interaction between this planet and the outer ones. The averaging removes the inner planet's short orbital period from the System, and makes it possible to base numerical intégrations on a larger time step.

We used as a starting point the secular perturbation théories based on an expansion with respect to the semi-major axes of the planets rather than on their eccentricities and inclina tions. The second order or quadrupolar expansion was developed for a three-body System by Kozai (1962). After expanding the perturbing function in the three-body problem to the second order in the semi-major axes, Kozai averaged it over the orbital motions of ail the bodies, yielding a fully secular model. The theory was later extended to the third or octupolar order (Marchai 1990;Krymolowski and Mazeh 1999;Ford et al. 2000;Lee and Peale 2003). These models are ail for three-body Systems, and they are ail fully secular; that is, they are averaged over the orbital motions of ail the bodies. However, in the présent work,

the averaging is only performed on the innermost planet.

In Sect. 2, we dérivé a quadrupolar expansion for the central planet. We average it over the inner planet's orbital motion and then over its argument of perihelion using the géomét rie approach of Boué and Laskar (2006). This additional averaging over the argument of perihelion allows us to get expressions for the Hamiltonian and the équations of motion that preserve the angular momentum which are very convenient to integrate numerically. We also provide in the appendix more general équations that are not averaged over the perihelion, and that can be used in cases of stronger secular interactions. Finally, we dérivé équations of motion for this partially averaged n-body System. The lowest orbital period is now that of the second innermost planet. It allows us to largely increase the time step in the numerical intégration in the same way as if we had ignored the inner planet, while still retaining its average interaction with the outer planets.

In Sect. 3, we use these results to analyze the dynamical stability of the /i Arae plane tary System. We compare our method to the full intégration of the System and to two usual simplifications, where we either suppress the inner planet, or add its mass to the central star.

For ii Arae the mass of the inner planet is one order of magnitude below the other planetary masses. Nevertheless, the inner planet has a significant effect on the dynamics of the outer ones for highly inclined orbits. We then run the same tests on a System based on the [i Arae

System where we increase the inner planet's mass by an order of magnitude, bringing it in line with its other companions. In this case, the averaged équations still provide a very good approximation although the effect of the inner planet becomes large.

2 Averaged planetary équations

Dérivation of the Hamiltonian

In this section, we dérivé planetary équations which will be averaged over the mean anomaly of the innermost planet. We follow the vectorial method used in (Boué and Laskar 2006).
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Averaging on the motion of a fast revolving body

Let us consider n planets orbiting a central star. We index the star and the planets such that the star has index 0 and the planets hâve an increasing index with respect to their semi major axis. The innermost planet has index 1. We dénoté the barycentric coordinates and momenta as (u/, ü/)o^/^«. In barycentric coordinates, the (n + l)-body problem has the traditional

Hamiltonian: »= Z O^i^n 2m i c Z mtm j (2.1)
Since we assume that the innermost planet is much doser to the central star than the other ones (|uj -uol <?C |u/t -uo| for k ^2), the outer planets will interact with the barycenter of the inner planet and the star rather than with both bodies individually. For the outer planets, we thus change to canonical heliocentric coordinates (Laskar and Robutel 1995) centered on the barycenter of the inner planet and the central star. For the inner planet, we use its position relatively to the central star. The linear canonical change of variables is given by: n r0 = u0; fp = ^Û£ = 0;

k=o n ri=ui-uo; fi =üi +(1 -i)^üt = $üj -(1 -<$)üp; (2.2) k-2 rk = uk -(<5u0 + (1 -<$)ui); rk = ük for k ^2;
where 8 = mp/(mp + m\). In these coordinates, we separate the terms involving the inner planet, and the Hamiltonian becomes: In this expression, Mi = G(mo + /ni); fix 1 = m0 1 + m{ 1 ;

(2.3)

(2.4)

(2.5) lik -G(mp + m i + mk); fik = (mo + m i ) + mk for k ^2.

As said before, r\ <?C rk for k ^2. We thus use the following second order expansions:

2 mp m p |rk + (l-5)rj| rk (rk • ri \ r 4 ) " |rk - , " r " .. s2 / /_ _ \2 ..2 \ 1 ; (2.6) (2.7)
Since m\8 -mp(l -8) = 0 and /np(l -5)2 + m\82 = fi\, the above two terms add 

2fi\ ri t(- èv2* VkPk ^+ Z 2 <^k<k%n fk h/ mkmk> --, ) i |rk-rk/|_ H\,k (rit-ri)2 V rl (2.9a) (2.9b) (2.9c) (2.9d)
Ki is the Keplerian Hamiltonian of the inner planet. H" is the n-body Hamiltonian of the n -1 outer planets orbiting around the barycenter of the star and the inner planet, written in canonical heliocentric coordinates. Each of the H\,k represents the quadrupolar interaction between the inner planet and the k-th planet. We now average H over the mean anomaly M\ of the fast planet, assuming that the orbital motion of the inner planet is not résonant with those of the outer planets.

Ki is simply equal to -fX\P\/2a\, where a\ is the semi-major axis of the rapid body's orbit, and Hn does not dépend on the motion of the inner planet. In order to treat the Hi>k for k ^2, we introduce 3 unit vectors (i, j, k) bound to the orbit of the inner planet. The vector i is colinear to the direction of perhelion, k is colinear to the angular momentum, and j = k A i. We can then average each term appearing in H\ k as in (Boué and Laskar 2006):

((rkx\Ÿ)Mx = -af (rl -(rk k)2) + a]e] ^2(r* • i)2 -~(rk • j)2^; (2. (rfu=(!+f«?) • 10) (2.11) Thus: lu \ nPlmk 2 Arl (1 -3e\) -3 (r* k)2 T 3e' (¥-t) (2.12)
To simplify even further, we average over the argument of perihelion of the fast planet. By doing this, we suppose that the value of the eccentricity of the inner planet is a near-constant.

In Appendix Appendix, we also provide équations of motion that are not averaged over the argument of perihelion of the fast planet. These équations can be used in case of stronger secular interactions leading to variations of the inner planet's eccentricity.

We hâve ((r* • i))ffll = 0 and by symmetry ((

r* i)2)^= ((rk -j)2)W|. As (r* • i)2 + (jk • j)2 + (rk • k)2 = r2, we obtain: ((r* • i>2Ll = fa ~(rk k>2)-
The above interaction term thus becomes:

lu \ mk (\ 0 (rA: k)2 \ .tU , 3 2\
(H\,k) = ~ci-j I 1 -3--J-I, with a = G-j-^1 + -ex J.

(2.13)
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We can now write the fully averaged Hamiltonian as:

This Hamiltonian is composed of three terms. The first one is the n-body Hamiltonian involving the n -1 outer planets orbiting around the barycenter of the central star and of the inner planet, written in canonical heliocentric coordinates. The second one is the Keplerian energy of the fast planet, and is a constant that can be dropped from the Hamiltonian. The third one contains the average interaction between the inner planet and the outer ones. Finally,

(//>«,.«, = H" + ÿi//u) = H" -a y ^( 1 -3(r* ,k) ). (2.15) 2Kk \ rk )
Remark The Hamiltonian can be further averaged over the argument of node of the inner planet. Let us call (eA, ey, ez) a fixed direct orthonormal base that we use as a global reference frame. Then, k = sin /1 sin £21 ex -sin /1 cos OE i e^, + cos i\ez, and:

((k-r*)2)^= -[sin2i'ir^+(2-3sin2/i)(rjt-ez)2].
(2.16)

The Hamiltonian, fully averaged over ail the orbital angles of the inner planet, becomes:

(H)Mi.au.ai = H» ~a --sin2»'^(2J7)

After this averaging, the inner planet's inclination becomes constant. When the outer plan ets are nearly coplanar in the (ex, e-y) plane, the scalar products (r* • ez) can be neglected. In this situation, the inner planet can be seen as a ring lying in a fixed plane around the barycen ter of the central star and the inner planet. The coupling constant a(l -(3/2) sin2 i\) takes into account the inclination and the eccentricity of the inner planet as is done for instance by (Quinn et al. 1991) in their analysis of the influence of the Earth-Moon System on the Solar System.

However, in a System with non-negligible mutual inclinations, the Hamiltonian (2.17) dépends explicitly on the direction ez, and thus the total angular momentum of the System is not preserved. For this reason, we prefer to use the Hamiltonian (2.15) which préserves the total angular momentum, and is still easily integrated as will be shown in Sect. 2.3.

Equations of motion

When we average over the variables M\ and co\, their conjugate variables a\ and e\ become Calling L\ = f5\y]iJL\a\(\ -e\) the norm of the angular momentum of the fast body, we get the following matrix (Boué and Laskar 2006):

H-£*O -id"-i 0 0 0 B(y) = 0 -kz/L i ky/Lx 0 0 kz/Li 0 -kx/L\ ~ky/L J kx/L{ 0
The équations of motion are thus:

h = V~rk(H)=V~rkHn- h = -Vrk(/y> = -Vrk//" -Vrk(//ik); k = -Ll-Vk(H) A k = ± Z V*<//u> A k. 2<k (2.19) (2.20)

Intégration scheme for the averaged équations

The averaged équations are not intégrable. In order to integrate them numerically, we split them in smaller pièces which are individually intégrable. Following Eq. ( 2.15), we can split (H) into the n -1 following parts: the first one is Hn, and the n -2 other are the {H\<k)

where 2 < k < n. The équations of motion generated by each of the (H\^)

are obtained with (2.20) as:

taken separately h = Vfk = 0;

(2.21a)

r* = -Vrk (Hl tk) = -3a-^2(r* • k)k + ^1 -5-1 , , 6a mr k = -V* //u. Ak = - ^(r*-k)r*Ak. Tl L\ rk r*Y, (2.21b) (2.21c)
For a given k, the above équations are intégrable. Indeed, under these équations, the positions remain constant. Using Eq. (2.21c), it can be easily shown that yk constant. Therefore, we can rewrite Eq. (2.21b) and (2.21c) as:

= (r^-.k) is also ~r' = "3"7jT (2*k + (' -5^)r'); (2.22) k = Qk-Ak rk (2.23) with 6a mk &k = 4~Yk- Ti r\ (2.24)
Equation 2.23 is the équation of a rotation around the direction rk/rk with angular frequency Qk. The solution vector k can then be used to integrate Eq. (2.22) in which the only non-constant quantity is k. Indeed, if we call TZrk ( 9) the rotation of angle 9 around the direction rk, we hâve between times t and t' = t + At:

*£) Springer -/ -a mk

rk = rk -3a- rk "^(k' &k -k)AH k' = Tlrk(S2kAt) k.
(2.27)

Since the unit angular momentum of the inner planet k is not a canonical variable, we do not hâve here a full symplectic scheme. However, we can still use the same ideas that lead to these integrators to combine the flows of the different parts of the System. We use the SABA4 scheme (Laskar and Robutel 200l)which we modify totake into account the {H\<k)

contributions.

The n-body Hamiltonian H" is the sum of n -1 decoupled Keplerian terms which are inté grable, and of a perturbing function which dépends on the positions and on the momenta. The (2.29)

The positions remain constant under the équations of motion derived from (H\), so the matrix T is constant. It is also symmetric. Following Tremaine et al. (2009), it can be identified with the inverse of the inertia tensor of the n -1 outer planets seen as point masses mk with positions rk. We can then solve Eq.(2.29) to obtain the motion of k by diagonalizing T and using the method described by [START_REF] Landau | t. 1 de Course of Theoretical Physics[END_REF] for the asymmetrical top.

Since the équations derived from {H 1) for the momenta are identical to (2.21b), the only time-dependent quantity in the right hand side is k, and the momenta can be calculated using a quadrature. However, the expression of k contains elliptic functions which must then be integrated to obtain the momenta. Moreover, the précision achieved by splitting (H\) into smaller and more easily intégrable (H\<k) parts was largely sufficient for our purpose.

3 Application to the stability analysis of the fi Arae planetary System

The équations derived in the previous section allow us to eliminate the short period terms associated with the inner body's orbital motion. The timescale of the évolution of k is of the <£) Springer same order as the secular frequencies of the inner planet, which are usually much smaller than the orbital frequencies of the outer planets. We are thus able to take into account the average interaction of the inner planet for nearly the same computing cost as if we had simply ignored it.

A good example is given by the /z Arae System (Pepe et al. 2007) which features 4 planets2 Specifically, the initial conditions were the same as those published by Pepe et al. (2007), except for aci = 0.92123 AU (instead of 0.9210 AU) and it, = 85°(instead of 90°).

We used the S AB A4 symplectic integrator (Laskar and Robutel 2001), which we modified to include the averaged perturbation of the central planet as shown in the previous section.

After 40kyr, which correspond roughly to 40000 orbits of /z Arae d, the relative différ ence between the trajectories obtained through the averaged intégration and through the full intégration amount to 0.08% on the semi-major axis, 0.4% on the eccentricity, and 0.01% on the inclination. The mean longitude suffers from a small linear trend due to the model différence between the full and the averaged équations. This trend can be subtracted using Kepler's third law to obtain the resuit shown in Fig. 2. Specifically, we added 1.48 x 10-5 days to the period of /z Arae d in the initial conditions of the averaged intégration in order to cancel the linear trend in mean longitude. After 40kyr, the différence in mean longitude between both models amounts to a few 10~3 radians.

We also performed an intégration where we ignored the inner planet, but added its mass to the mass of the central star. In this case, we had to add 0.117 days to the orbital period of yz Arae d in order to subtract the linear trend observed in the mean longitude of /x Arae d. This is a much larger correction than in the averaged intégration. The maximum relative différences seen in the orbital éléments of /z Arae d rise to 1 % on the semi-major axis and 1 % on the inclination, when compared to the full System over the same 40kyr period. The secular frequency of the perihelion is significantly greater in the three-planet System, and the argument of perihelion gains a full period over the four-planet intégration within approximately 40kyr.

The différence in eccentricity between both intégrations thus reaches the full value of the eccentricity after about 20kyr. In their stability analysis of the System, Pepe et al. (2007) had simply chosen to ignore the central planet /x Arae c because of both its proximity to the star and its low mass (one order of magnitude below the other planetary masses). We computed again some dynamical maps of the System for four different approaches:

-a full-system map, with a time step of 2.10"3yr adapted to the fast planet, /x Arae c;

-a full-system map using averaged équations for the inner planet, with a time step of 2.10~2yr adapted to the second fastest planet, /x Arae d;

-a three-planet map similar to that computed by Pepe et al. (2007), with the same time step of 2.10~2yr;

-another three-planet map where the inner planet is ignored but its mass is added to the central star's mass, again with a time step of 2.10"2yr.

Following Pepe et al. (2007), /x Arae d is the least constrained planet (after /x Arae e for which there is still insufficient data). We thus performed 50kyr intégrations for dif ferent eccentricities and semi-major axes of /x Arae d in the ranges 0 ^ej ^0.3 and 0.910AU ^a(i ^0.930AU, with steps of 0.003 in ex and 0.0002 AU in aci.

The stability index is computed using frequency analysis [START_REF] Laskar | Frequency analysis for multi-dimensional Systems. Global dynamics and diffusion[END_REF]. Two détermina tions of the mean motion of \x Arae d are obtained during the first half (0-25 kyr) and then the second half (25-50kyr) of the intégration. The différence between the two values is a measure of the chaotic diffusion of the trajectory. It should be close to zéro for a regular solution, while high values correspond to strongly chaotic motions. The output maps are shown in Fig. 3 for a planar configuration. Ail four methods produce very similar results. We thus confirm that the suppression of the innermost planet in (Pepe et al. 2007) is relevant. This is mainly due to the fact that this planet has both a short orbital period and a mass one order of magnitude below that of the other planets in the System. Because of the time step used, the three-planet maps and the averaged map were obtained 10 times faster than the full-system map.

Similarly, we tested our code with mutually inclined planets. The conventions for obser vations are that the plane of the sky has zéro inclination, and that the observed Systems are in an orthogonal plane. In this situation, the mutual inclination between two planets of indices i and j is I,j = £2, -Qj. We thus performed 5 kyr intégrations for different semimajor axes and arguments of node of /x Arae d in the ranges 0.910A U ^aci ^0.95 IA U and -180°^Qci ^180°with steps of 0.0004 AU in aj and 1°in Qj. Again, we tried a full four-planet System, a three-planet System where the inner planet is ignored, another three-planet System where the mass of the inner planet is added to the central star's mass, and a System using the averaged équations.

The results can be seen in Fig. 4. The inner planet now has a significant effect on the dynamics of the System. Indeed, in the two three-planet frequency maps, there are two stable zones around ax = 0.943 AU and £2(i = ±135°. In the full and in the averaged map, these zones are destabilized by the inner planet. For the spatial case, it is thus insufficient to consider only the zero-order contribution of the inner planet by adding its mass to the central star.

A /x Arae inspired System with a significantly massive inner planet

In order to test a case for which the effect of the fast planet is even larger, we performed the same analyses on a fictional System we obtained from /x Arae by multiplying the inner Springer We provided a set of hybrid équations for a System of n planets orbiting around a central star, which are averaged on the motion of the fastest planet. This allows us to choose a much larger time step when performing numerical intégrations. We applied them to the /t-Arae System in which the ratio of the two fastest periods exceeds 30. The averaged équations yield results that agréé with a full intégration. In the fi Arae planar case, the influence of the inner planet is very small as stated in (Pepe et al. 2007). However, for a mutually inclined System, the three-planet approximation is no longer satisfactory while the averaged model remains close to the full System. The zero-order contribution of the inner planet, which is obtained by ignoring the inner planet but still adding its mass to the central star, does not provide better results. We also looked at a modified /x-Arae System where the inner perturbing body is ten times as massive as in the original System. In this case, ignoring the inner planet is not ^Springer Averaging on the motion of a fast revolving body possible anymore even in the planar case. Even though the inner planet is massive, there is no improvement when we consider only its zero-order contribution. The averaged équations produce results that are very close to those obtained through a full intégration, while lowering the computing time by an order of magnitude.

This set of équations could also be used in other phases of the study of extrasolar planetary Systems. It could for instance be used in fitting algorithms to account for the interaction of fast planets instead of simply ignoring them. In some occasions of strong secular interaction with the inner body, it may be necessary to avoid averaging over the argument of perihelion of the inner planet. (1-34-3

(r* • k)' + 3<?i (<¥-¥)] (A.l)
To dérivé équations of motion, we first rewrite the interaction term using the angular momentum divided by the constant f5\y/fi\a\ noted K. and the Laplace vector noted X.
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Averaging on the motion of a fast revolving body That is:

JC = J 1 -ejk; J = e\i.
The Hamiltonian is written with these new variables as:

H = Hn-G 2 <jfc o * 4r,3 1 -6J2 -3
(IC r*):

+ 15

(+-rk):

(A. 2) (A.3) (A.4)
As calculated for instance in (Boué and Laskar 2006;Trentaine et al. 2009), the Poisson brackets of the coordinates of K. and J are given by: {Ki

,Kj) = -g-p=/Ct; -= ydlV/ZitiT ICk-, {1Ci,Tj} = - ySiVÂtîtiî :2*.
The équations of motion are thus:

h = Vf//; ' Vn«; T* i = !- ^1 v/mTôÎ /C = - 1 (/C A VX// + J A VKH)\ R , =(IA Vj//+/CA VkH).
Pi JÏÏÏâ\y '

When expanded (leaving out the gradients of Hn):

r* = Vft//";

(i-6i2h (Lidov, 1962;Kozai, 1962). Lidov s'y est intéressé dans son étude de la stabilité orbitale des satellites artificiels, notamment ceux qui étaient destinés à orbiter autour de la Lune sous la perturbation de la Terre (le programme soviétique Luna), et a illustré de manière dramatique le destin d'une Lune en orbite polaire autour de la Terre, qui serait vouée à s'y écraser en une cinquantaine de révolutions [START_REF] Béletski | Essais sur le mouvement des corps cosmiques[END_REF]. Kozai, quant à lui, a abordé le problème des astéroïdes sous les influences du Soleil et de Jupiter. Enfin, [START_REF] Kinoshita | Analytical Solution of the Kozai Résonance and its Application[END_REF][START_REF] Ogilvie | Lorsque l'inclinaison initiale est suffisante pour provoquer la migration, les caractéristiques de l'évolution initiale avant la suppression des cycles de Lidov-Kozai sont communes à tous les types d'intégrations que nous avons conduits : la vitesse de rotation planétaire se synchronise rapidement avec sa vitesse angulaire orbitale instantanée au périastre (un mécanisme que Hut (1981) a nommé pseudo-synchronisation) ; à mesure que le demi-grand axe diminue, l'amplitude des cycles de Kozai diminue également jusqu'à s'annuler dans un état d'excentricité maximale[END_REF] fournissent une description analytique complète du problème séculaire et quadripolaire restreint intérieur.

Comme nous allons le voir plus bas, le mécanisme de Lidov-Kozai permet d'exciter l'excen tricité du corps intérieur sans masse. De nombreux auteurs [START_REF] Mazeh | The High Eccentricity of the Planet Orbiting 16 Cygni B[END_REF][START_REF] Innanen | The Kozai Mechanism and the Stability of Planetary Orbits in Binary Star Systems[END_REF]Holman et al., 1997, par exemple) ont par conséquent suggéré ce mécanisme comme une origine possible des excentricités élevées de nombreuses planètes extrasolaires. Rappelons ici qu'il ne peut pas être considéré comme le seul responsable de ces excentricités (voir le chapitre 1). Il est en revanche particulièrement approprié dans les systèmes d'étoiles doubles, lorsque la planète orbite autour de l'une des composantes de la binaire. (ff) = 1 Gm2 a\ 16 (1 -e2)3/2 a2 ((2 -f 3ei)(3cos2«i 1) + 15ej(l -cos2 Zi) cos 2o;]^. (3.7) On peut maintenant voir qu'à l'ordre quadripolaire, le hamiltonien est indépendant du noeud est présentée ici avec l'explication des travaux de Verrier et Evans (2008, 2009) Nous considérons donc dans la première partie de l'article une particule sans masse en orbite autour d'une binaire de masse totale A40i. de niasse réduite (3\, et de moyen mouvement n\.

On repère l'une des composantes de la binaire par rapport à l'autre avec le vecteur r1( et la particule par rapport au centre de masse de la binaire avec le vecteur r2.

Le Hamiltonien de la particule est développé à l'ordre quadripolaire dans le rapport ri/r2, et ensuite moyennisé sur les deux anomalies moyennes de la binaire et de la particule, M\ et M2, en utilisant les mêmes techniques issues de Boué et Laskar (2006) qu'au chapitre précédent.

En notant (i,j,k) le trièdre associé à l'orbite de la binaire de sorte que i pointe dans la direction du périastre, et k soit colinéaire au moment cinétique de la binaire, et en notant w le vecteur unitaire colinéaire au moment cinétique de la particule, on obtient le Hamiltonien et les équations du mouvement suivantes (respectivement équations 2.9 et 2.15 de l'article) : Nous utilisons ces résultats afin d'expliquer des travaux de Verrier et Evans (2008, 2009).

(H) = OlGi ~-(k-w)2 ei(4(i ' w)2 (j • w)2) (3.12) W -a (k • w)(k A w) -ej(4(i • w)(i A w) -(j • w)(j A w))
Ces auteurs simulent l'évolution d'un nuage de débris dans le système stellaire quadruple HD We provide a simple analytical framework using a vcctorial formalism for these situations.

We also look at the évolution of these high-inclination equilibria in the non-restricted case.

Key words: methods: analytical -methods: (V-body simulations -celestial mechanicsplanetary Systems.

INTRODUCTION

As it is known, the secular three-body problem after node réduction has two degrees of freedom (e. g. [START_REF] Poincaré | Leçons de mécanique céleste[END_REF]Malige, Robutel & Laskar 2002). However, due to what Lidov & Ziglin (1976) called a happy coincidence, this problem is intégrable when it is expanded up to the order of 2 in the ratio of semimajor axes, i.e. at the quadrupolar approximation. Indeed, the argument of perihelion of the outer body does not explicitly appear in the quadrupolar expansion of the secular problem, thus giving one more intégral of motion linked to the eccentricity of the outer body.

The limiting case where the inner body has no mass has been extensively studied (Kozai 1962;Lidov 1962;Kinoshita & Nakai 2007). We will call this problem the inner restricted problem, while the converse case where the two inner bodies are massive and the outer body is massless will be called the outer restricted prob lem. In the inner restricted case, the conservation of the normal component of the angular momentum enables the inner particle to periodically exchange its eccentricity with inclination (the so-called Lidov-Kozai mechanism). The inner restricted model is well suited when the inner body has a small mass with respect to the other two.

However, when looking at higher mass ratios, for example in triple star Systems, this is no longer justified.

Since the Hamiltonian of the quadrupolar problem of three masses is very similar to that of the inner restricted problem when it is written in elliptic variables, the study of the massive problem has mainly focused on the dynamics of the two inner bodies (Harrington 1969;Lidov & Ziglin 1976;Ferrer & Osacar 1994). These previous *E-mail: farago@imcce.fr (FF); laskar@imcce.fr (JL) works completely classified the different dynamical régimes and bifurcations, using the équations of motion of the inner binary.

There is, however, another limit case to the massive problem, which is the outer restricted problem. Palaciân et al. (2006) hâve studied this case and discussed the existence and stability of equi libria in the non-averaged System using the framework of KAM1 theory. We give here a very simple model of the outer restricted case which provides an alternate formulation of these previous results and is directly usable in an astronomical context. We also fully describe the possible motions of the bodies and give an analytical expression of their frequencies. We use this model to explain the results of Verrier & Evans (2008, 2009), who find populations of particles at very high inclinations around one of the components of the double-binary star HD 98800, which are stable even under the perturbation of the other component. We then look at the quadrupolar problem of three masses from the perspective of the outer restricted problem and show how the inner and outer restricted cases are related to the general case. Vectorial methods as developed by Boué & Laskar (2006, 2009) and Trentaine, Tourna & Namouni (2009) are extremely well suited for this approach.

2 SECULAR OUTER RESTRICTED PROBLEM

Dérivation of the Hamiltonian

We consider here the case of a massless particle orbiting a central binary object. We do not restrict ourselves with respect to inclina tions or eccentricities. The components of the binary hâve masses F. Farago and J. Laskar We now suppose that r\ <^r2 and expand the Hamiltonian to the order of 2 in r\/r2.

(f\

G/W0,\ G Pi ATi-ri)2 2 V 2 r2 J 2 r\ ~2 1 r2 J
The first term is the Keplerian energy of the particle interacting with the binary, seen as a point mass Mq\. It is equal to -GMo\/2ci2, where a2 is the semimajor axis of the particle.

Since we are interested in the secular behaviour of the particle, we average this quadrupolar Hamiltonian over the mean anomalies of the binary (M\) and of the particle (M2). In order to do this, we first introduce four unit vcctors: (i, j, k) are bound to the orbit of the binary, remain constant and will provide a natural reference frame and tu is bound to the orbit of the particle and will vary. More precisely, i points in the direction of the perihelion of the binary, k is collinear to the angular momentum of the binary and j = k A i ; the last vector tu is collinear to the angular momentum of the massless particle.

We can then compute the following averaged quantities, where quantifies indexed with 1 relate to the binary, quantities with index 2 relate to the particle and u is an arbitrary fixed vector (see e. l + le'

(2.4)

<(r.-r2)2>Mi = ^[rf-(*r2)2] + [4(i r2Ÿ -(j r2)2] ; \rl) m, fl2(l-e2)3/' (2.5) (2.6) / (r2 m)2 \ u2 -(U) • H)2 \ 'I / m2 _ 2a{ (l -c2)3/2 ( } The substitution of these expressions in (2.3) yields GM,, 3 Gfiia2 M'-Ml 2n2 8fl23(l-c2)3/2 x { (e3 --)+(* • tu)2 -e2[4(i • tu)2 -(j iu)2]| (2-8)
Since the particle has no mass, the only variable élément of the binary is its mean anomaly Mt. After averaging over this angle, it is no longer présent in the Hamiltonian. After averaging over the mean anomaly of the particle, its semimajor axis a2 becomes constant. Moreover, w = sin i2 sin S22 i -sin i2 cos £22 j + cos i2 k, so the argument of pericentre co2 of the particle does not appear in the averaged Hamiltonian. Hence, at the quadrupolar order, the conjugate momentum associated to oe2, i.e. the norm of the angular momentum of the particle G2 = y/GA4(m«2(1 -e\), is constant.

Therefore, the eccentricity e2 of the particle is constant. This fact is a feature of the quadrupolar expansion, not a property of the restricted problem. As such it remains true when the outer body has a non-zero mass (see Section 3). This is the happy coincidence that Lidov & Ziglin (1976) noted. Finally, only one degree of freedom remains, related to the couple (i2, OE2).

If we drop the constant ternis in (2.8), and introduce the mean motion /i] of the binary into the Hamiltonian (n2«3 = GA40|), we get the following expression2 (see also équation 10 in Palaciân et al. (2.12) 0 1/

We also give the expression of the Hamiltonian using the incli nation and the node of the particle:

(H) = [2cos2 i2 -e2 sin2 i2 (3 -5 cos 2S22)].

(2.13)

Equations of motion

As discussed in Boué & Laskar (2006), the équations of motion for w are simply obtained by vu = -VW{H) aw.

(2.14)

G2

After computing the gradient, we find w --a {(& • w)(k a tu) -e2[4(i • w)(i a tu) -(j w)(j a tu)]}.

(2.15)

If we note x -(i tu), y -(j tu), and z = (k tu), we get the following System for (*, y, z):

x = a (l -e2) yz\ (2. The scalar product (k w) = cos i2 remains constant, and the nodes of the orbit of the particle simply precess around the angular momentum of the binary, with a constant precession rate:

" • - , «i £2 = -a cos (2 = --ni - «2 7/2 COS (2 M 01 (1 (2.24)
This precession is équivalent to the precession generated by the quadrupolar potential of a circular and homogeneous ring of mass fi\ and of radius ai following an idea which can be traced back to When the binary is elliptic, the situation changes and cannot be explained any longer by the quadrupolar torque of a circular ring.

If we substitute z2 in (2.20) using (2.19), we get

(1 +4e])x2+ (1 ~e])y2 = 1 -h > 0, (2.25) jc2 + y2 + z2=l.

(2.26)

The intersections of the energy surfaces and the normalized an gular momentum sphère of the particle can thus be scen as the intersections of elliptic cylinders with the unit sphère. For a given value of the energy h, the extremity of the unit angular momentum vector of the particle w will move on the intersection of the corresponding cylinder with the unit sphère. Figs 1 (a) and (c) show these intersections for different values of the energy as dotted lines drawn on the unit sphère, in two situations where the binary has an eccentricity of 0.5 and 0.2, respectively. The three axes correspond to the scalar products x, y and z that are defined in Section 2.2.

There are four visible kinds of trajectories: closed trajectories around the two pôles of the sphère (jc, y, z) = (0,0, ± 1) and closed trajectories around the points (x, y, z) = (±1, 0, 0).

When the extremity of the angular momentum of the particle w follows a trajectory around the north pôle, it means that it precesses around the angular momentum of the binary k with an inclination 3 The next non-zero term of the Hamiltonian which is the fourth order in (a i/ap plays an important part in the circular case as has been discussed in detail by Palaciân & Yanguas (2006).
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Figure 1. Intersections of the energy surfaces and the unit angular mo mentum sphere (a) and its projection in the (x, y) plane (b) for e\ = 0.5.

Intersections of the energy surfaces and the unit angular momentum sphere (c) and its projection in the (x, y) plane (d) for e\ -0.2.

that is strictly inferior to 90°: in this case, the orbital motion of the particle is prograde relatively to the orbital motion of the binary.

When the extremity of the angular momentum of the particle w follows a trajectory around the south pôle, it means that it precesses around the opposite of the angular momentum of the binary, -k, with an inclination that is strictly superior to 90°: in this case, the orbital motion of the particle is rétrogradé relatively to the orbital motion of the binary.

When the extremity of the angular momentum of the particle w follows a trajectory around one of the two points (x, y, z) = (±1, 0, 0), it precesses around the direction of the perihelion of the binary or the opposite of this direction. In this case, the inclination oscillâtes around ±90°.

Frequencies

The frequencies of these motions can be found analytically. Indeed, using équation (2.25), we see that x and y are on ellipses or arcs of ellipses bounded by the unit circle (Figs lb and d show, respectively, the cases where e\ = 0.5 and 0.2). Thus, there is an angle <p such that l-/i 1 +4e

J cos 0, (2.27) The constant k2 is positive because of relation (2.21). The value k2 -1 defines a limit between two dynamical régimes. If k2 < 1, or equivalently if h > e\, 4> never vanishes and the projection of tu on the orbital plane of the binary ntoves along the full ellipse (2.25). In this case, w precesses around the angular momentum of the binary, k. If z > 0, the mutual inclination of the two orbits is always less than 90" so the orbital motion of the particle is prograde; conversely, if z < 0 the mutual inclination of the two orbits is always superior to 90" so the orbital motion of the particle is rétrogradé.

If A:2 > 1 (or h < e\) then <t> vanishes for <t>o = ±arcsin(l/A), changes its sign (which is accompanied by a change of sign in the z variable) and the angle <p librates between -0O and ±0O-Thus, the projection of w on the orbital plane of the binary is bounded by the unit circle to stay on an arc of ellipse (2.25). In this case, w precesses around the direction of perihelion of the binary, so that both the inclination and the node of the particle librate around ±90".

In both cases, the period of the motion can be calculated with a simple quadrature using équation (2.30):

16 Mo, /r/2 \7/2 K(k2)(l-e2)2 3n> P' W sj{\-e]) {h+4e2)'

where K(k2) is the elliptic intégral of the first kind defined by

K(k2) rn/2 d<t> ^y/1 -k2 sin2 0 f<h dcf> ® y/1 -k2 sin2 <f > if k2 < 1 if k2 > 1 (2.33)
The last case where k2 = 1 (or li -e2) corresponds to the trajectories that separate the previous two types. They link the points (x, y, z) = (0, ±1, 0), and the associated period is infinité. In the pro jection on the (x, y) plane, these séparatrices form the ellipse which is tangent to the unit circle. Since ail trajectories that are inside this ellipse correspond to the precession of w around k, the width AXscp of the separating ellipse in the (x, y) plane gives an indication on the proportion of such trajectories. Using équation (2.27) and the fact that h = e2 on the separatrix, we get A*scp = 2\jTTÂe2' (234)

Therefore, when the inner binary is circular, this width is equal to 2, the full width of the unit circle, and the only possible motion is precession of tu around ±fc. When the eccentricity of the binary increases, the width of the separatrix decreases to zéro, which is a limit case since it can only be reached for a value of the binary's eccentricity equal to 1. The precession motions of tu around ±* thus become prédominant when the eccentricity of the binary grows.

Comparison with numerical studios

In Verrier & Evans (2009), the authors investigate a family of particles at high inclinations around the binary HD 98800 Ba-Bb, which remain stable even under the perturbation of an outer third stellar companion. They isolate a nodal precession imposed by the inner bi nary as the stabilizing mechanism working against the destabilizing Kozai perturbations of the outer companion. They run simulations of test particles orbiting the binary HD 98800 Ba-Bb using nonsecular équations. They observe the libration islands around i 2 = ±90°and OE2 = ±90" that we discussed in the previous section.

As they show their results in the (i2 cos£22> h sin£22) plane, we plotted the energy levels of the outer restricted Hamiltonian using these sanie coordinates for an easier comparison. Verrier and Evans note no apparent structure in the dynamics of the (e2, co2) couple apart from the circulation of the perihelion. This is in agreement with the fact that the particle's eccentricity is constant at the quadrupolar approximation.

The authors also suggest that the projection of the angular mo mentum of test particles along the line of apses of the binary may be an intégral of motion. From the results of the previous section, it is straightforward to see that the projection x of the angular mo mentum of test particles along the line of apses of the binary is not constant. It varies with an amplitude that decreases to 0 when the inclination of the particle approaches ±90°, which can be misleading when looking at numerical results for highly inclined particles.

However, the norm of the angular momentum of the test particles is an intégral of the secular motion.

Finally, the authors give a power-law fit of the period of the libra tion of the node with respect to three parameters: the eccentricity of the binary; the ratio of the semimajor axes «2/01 and the mass ratio of the binary, 8. Their power law is fitted using particles with fixed inclinations (85°). They give in their équation (5):

T ocej-u<r08 ^.

(2.35)

By rewriting the mass dependences of équation (2.32), we get the following analytical dependence with respect to the mass ratio and Figure 3. Dependence of the period (2.32) with respect to the eccentricity of the binary, in normalized units. The full line corresponds to the calculated period, while the dashed line corresponds to the power-law fil given by Verrier & Evans (2009). We used a least-squares method to fit the relative position of the two curves.

the semimajor axis of the binary:

/ \35
Tcx(^j [5(1-5)]-'.

(2.36)

These two exponents compare very well with the fitted power law, in spite of the différences between the two models. The dependency with respect to e\ is rather complex in équation (2.32), and it is best compared in Fig. 3.

The grid of initial conditions for the particles in Verrier & Evans (2009) extends, however, from 3 to 10 au for a binary séparation of 1 au, so the quadrupolar approximation may not be sufficient to fully describe the motion of the particles with the lowest semimajor axes. In particular, Verrier and Evans State that some low-inclination particles show large eccentricity variations and even instability. This could be due to a low initial semimajor axis and to résonances that are eliminated in our secular model by the averaging over the mean anomalies.

PROBLEM OF THREE MASSIVE BODIES

As we already stated, the quadrupolar secular three-body problem is still intégrable when ail the bodies hâve positive masses. As such, it is possible to show how the outer restricted problem we discussed in the previous section relates to the general case, and to the inner restricted case studied by Kozai (1962) and Lidov (1962). We will first express the Hamiltonian of the secular quadrupolar problem using the saine vectorial method as in the previous section in order to focus on the relative movements of the orbits. In their studies of the secular quadrupolar problem, Lidov & Ziglin (1976) and Ferrer & Osacar (1994) hâve shown that this problem dépends on two parameters. We will then point out which régions of parameter space are topologically équivalent to the outer restricted case, and which régions correspond to the inner restricted case, in order to show the continuity that exists between both situations.
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Hamiltonian

Let us consider three masses m0, ni\ and ma, this time with mj2 / 0.

We note the barycentric coordinates and impulsions («, , m,),=o,i.2-As in the previous section, we suppose that the two bodies of indices 0 and 1 form a binary and that the distance of the third body to this binary is much larger than the séparation of the binary. We still note 5 = m0/(m0 + m\). We first perform a canonical change of Using the fact that ri «r2, we expand the Hamiltonian to the order of 2 in r{/r2 as in the previous section:

H = 2£, V\P\ \ ( f\ U2P2 n J \2p2 r2 -G P\>n2 2r3 3^-rî (3.5)
The first two ternis are Keplerian energies and are equal, respectively, to -u\P\/2(i\ and -[iiPil2a2, where a\ and a2 are the semimajor axes of the inner and the outer body in our System of coordinates.

We now average over the two mean anomalies M\ and M2 in order to get the secular part of the Hamiltonian. We will define four unit vectors which are analogous to the four vectors we used in the first section: (i'i, j\, k\) are tied to the orbit of the inner binary, i'i points in the direction of the perihelion of the inner binary, k\ points in the direction of its angular momentum and j\ = kt Aij.

The last vector k2 is collinear to the angular momentum of the outer body. In this section, the vectors tied to the orbit of the inner binary will no longer hâve fixed directions.

Using the same averaging formulae as in the previous section and using the fact that (i|

• k2)2 + (ji • ^i)2 + (^i • k2)2 = *2 = 1, we can write: Mi/3i U2P2 3 Gm2P\ a\ 2a, 2n2 &(i-elŸ'2o32 x + 2e2+ (1 -e\) (*, k2)2-5e}{ix k2)2 . (3.6)
After averaging over the two mean anomalies, the semimajor axes are constant. There are thus four degrees of freedom in the System, associated to the two eccentricities and the two inclinations. As we explained in the previous section, the argument of perihelion of the outer body does not appear in the quadrupolar expansion, and thus the norm of the angular momentum of the outer body, G2 = P2 \/m2«2(1 -e\), is constant. This implies that its eccentricity e2 is constant. Using the réduction of the nodes would leave only one degree of freedom in the reduced Hamiltonian, associated to F. Farago and J. Laskar the couple (e\, o)\). The full réduction of the Hamiltonian and its expression in elliptical variables is the approach that has been used widely, since it yields a very similar Hamiltonian function as in the inner restricted problem (Harrington 1969;Lidov & Ziglin 1976;Ferrer & Osacar 1994).

We want, however, to look at the motion of the nodes, or equivalently the motion of the vector k2 in the moving frame (i'i, j\, kt) of the orbit of the second body.

In order to easily compute the équations of motion, we introduce two veclors associatcd to the orbit of the binary that are collinear to ii and k\, and include in their norm the eccentricity of the binary, x = a (l -e2t) yz + a -F \[\^-ë\y{2 -5a2), (3.15) A, v ÿ = -a' (l -F 4e2) x z yjzrëf ^e') (2~5x2ï + 5e'z^' [START_REF]Concluons en remarquant que les modèles numériques de dissipation dans les planètes géantes et les étoiles, qui se basent sur des modèles hydrodynamiques et impliquent les inter actions entre l'excitation de marée et les modes propres du corps, aboutissent à une relation très complexe entre la fréquence d'excitation et la dissipation[END_REF](4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16) 4 We use the following convention, where p, are momenta and q, positions:

(/'*) = -!£!£)

5 ejjk = +1 if (i, y, k) is an even permutation of (1, 2, 3), €ÿt --1 is the permutation is odd and = 0 in ail other cases.

C / 2 , ,G2 5el z = 5a e,xy + a r ^Ayz,

Ai sJ 1 -e\ (3.17) èi = or'-5e, J1 -e]xy.

A1 v (3.18) The équations for a, y and z contain two terms: the first one is identical to the outer restricted System and the second one includes the motion of the reference frame (11, j 1, k] ) induced by the interac tion with the third body. Note that when A1 is very large compared to G2 so that we can assume that G2/A1 is equal to zéro, which corresponds to the case where m2 <SC m0 and m 1, the above System is identical to the outer restricted System (2.16)-(2.18).

The conservation of the total angular momentum C = Gt + G2 introduces the two main parameters of the problem. Indeed, A] (1 -e]) + G\ + 2A, sj\ -e}G2z = C2. (3.19) We note y = C/A\, y2 -G2/A\. The above expression of the norm of the total angular momentum can be rewritten as a seconddegree équation giving y/l -e2 as a function of z using the two parameters y and y2:

(1 -e,)2 + 2y2zsj 1 -e2 + y2 -y2 = 0.

(3.20)

The Hamiltonian can then be rewritten as

{H) = --a'A,y2 [z2 + e2 (2 -z2 -5a2)] . ( 3 

.21)

The inequalities -1 ^z ^1 and 0 < ei < 1 give the boundaries of the parameter space and the range of possible values of e\ for any given couple of parameters6 (y, y2): ly-nKi. [START_REF]Concluons en remarquant que les modèles numériques de dissipation dans les planètes géantes et les étoiles, qui se basent sur des modèles hydrodynamiques et impliquent les inter actions entre l'excitation de marée et les modes propres du corps, aboutissent à une relation très complexe entre la fréquence d'excitation et la dissipation[END_REF](4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21)(22) \r -Z2I ^\/l -e] < min[y + y2, 1]. (3.23) With these notations, the outer restricted problem of Section 2 corresponds to the limit where y2 = 0, and in this case ei = \J\ -y2 is constant as we saw. Note that when y2 > y, we hâve G2 > C, so this part of the parameter space contains only rétrogradé motions. Our aim in this paper is to show the continuity between the outer restricted case we studied in Section 2 and the inner restricted case that was investigated by Kozai (1962) and Lidov (1962). Both these problems lie in the région of parameter space where y > y2 so we will restrict our study to this case.7

In our case where y > y2, there is only one acceptable root to équation (3.20), which is 1/1 -= -Yiz + \J{Yiz)2 + y2 -y22. (3.24) This relation implies that e\ is a growing function of z. Note that z = cosi2, where i2 is the inclination of the outer body in the reference frame of the inner binary. As such, coplanar prograde 6 The left part of the second inequality is strict if y = y2.

7 The other half of the parameter space (y ^y2) corresponds to rétrogradé motions which are of less physical interest and much more technical to study using our approach, in particular because équation (3.20) does not hâve a unique solution in this case. The interested reader will find a complété discussion of this case in Lidov & Ziglin (1976) and Ferrer & Osacar ( 1994).

motions (z = 1) will always occur for the maximal value of the eccentricity of the inner binary:

ei.max = y/\ -(Y -n)2. (3.25) Conversely, low eccentricities for the binary will be associated to lower values of z, and thus higher inclinations. Relation (3.23) implies that the inner binary can only hâve a circular motion if y + y2 ^1. In this case, coplanar rétrogradé motion (z = -1) is not allowed, and the lowest value of z is y2 -y2 -1 ,,, In région O of Fig. 4, the parameter y2 = G2/A1 is small (less than 1/2). This is the case in particular when the mass ratio m2/m 1 is small. Moreover, y2 + 3y\ < 1. The phase space is topologically équivalent to the outer restricted problem of Section 2. The north pôle which corresponds to coplanar prograde motion with maximal eccentricity for the binary is linearly stable. There are two additional stable fixed points E± in the plane y = 0 (see Section A4).

Zo = COS I2,max = Z - ( 3 
They belong to the same family as the fixed points y = z = 0, x -± 1 of the outer restricted problem that are responsible for the stable high-inclination orbits observed by Verrier & Evans (2009). When y + Y2 ^1, the south pôle which corresponds to coplanar rétrogradé motion with minimal eccentricity for the binary is also linearly sta séparâtes the zone where there can be coplanar rétrogradé motion associated to a minimum eccentricity for the inner binary that is strictly higher than 0 (below the dotted line) and the zone where the inner binary can be circular but the inclination is bounded (see Section A2). In zone O, the problem is topologically équivalent to the outer restricted problem. In zones I and I', it is topologically équivalent to the inner restricted problem, with zone I being équivalent to situations above the critical inclination and zone I' being équivalent to situations under the critical inclination. The letters af correspond to the values of the parameters used to plot the corresponding panels in Figs 5 and6.

topologically équivalent to the inner restricted problem studied by Lidov (1962) and Kozai (1962). In the inner restricted case, there is a critical value of the inclination (cos ('2 = V3/5) under which a circular inner binary is always linearly stable, and above which a circular inner binary is always linearly unstable, giving rise to Kozai cycles.

In région I of Fig. 4, the dynamical régime is topologically équiv alent to the inner restricted problem in the case where the inclination is superior to the critical value. The limit trajectory z = Zo which corresponds to a circular inner binary becomes linearly unstable.

However, the north pôle and the two fixed points E± are still stable.

In the inner restricted phase space, when the inclination is superior to the critical value, there are two possible behaviours for the periastron of the inner particle: it can either circulate or librate around ±90°. In our représentation, the circulation case corresponds to trajectories around the north pôle, and the libration islands correspond to the two fixed points E±. This is shown in panels (d) and (e) in Figs 5 and 6.

In région F of Fig. 4, the dynamical régime is topologically équivalent to the inner restricted problem in the case where the inclination is inferior to the critical value. Only one stable fixed point remains, on the north pôle of the sphere, associated to prograde coplanar motion. This is shown in panel (0 in Figs 5 and6.

In both régions I and F, the parameter y2 = G2/A) can take higher values. This is in particular true when the mass ratio m2/m \ increases. F. Farago and J. Laskar The curve between régions I and I' is linked to the critical incli nation that is defined in the inner restricted case. Indeed, along that curve, given by équation (A 10), we hâve the following limits when y -> 00:

1 t X 1 & t si X (3.28)
When G2 is very large compared to G\, we can make the following first-order expansion:

g2-c ri y = A1 (3.29) G2 -\Jg\ + G2 + 2(G2 -G]) A, (3.30) _ G2-G2(l +(G2 G,)/G2) A, (3.31) ^(G2-G|) A1G2 (3.32)
% -zj1 -ej. (3.33) As such, we see that along the border between régions I and F, when y and y2 both tend to infinity, we hâve the relation

Recall that z = cos j2, where /'2 is the inclination of the outer orbit in the reference frame of the inner orbit. Thus, the inclination of the inner orbit relatively to the outer orbit is r 1 = -/2, and the above équation becomes: (3.35) This relation is precisely the one giving the critical value of the normal component of the angular momentum of the inner body in the inner restricted problem.

CONCLUSION

We first studied the case of a massless particle orbiting a binary at a long distance, and, in the secular and quadrupolar approximations, gave a full analytical description of the motion along with the ex pression of the period of the secular motion. When the inner binary is circular, only nodal precession takes place. However, when the binary is elliptic, libration islands appear at high inclinations, and these islands grow bigger when the eccentricity of the binary rises. Verrier & Evans (2008, 2009) observe a similar nodal libration in their study of the stability of particle populations in the quadruple stellar System HD 98800, and we showed that the analytical framework that we derived for the outer restricted problem is well suited to explain the results of Verrier and Evans.

The quadrupolar secular three-body problem is still intégrable when ail the bodies hâve positive masses (Harrington 1969;Lidov & Ziglin 1976;Ferrer & Osacar 1994). Using a vectorial formalism as (Boué & Laskar 2006, 2009;Tremaine et al. 2009), we looked at this problem from the point of view of the outer restricted case. We showed how the outer restricted problem relates to the general case, and to the inner restricted case studied by Kozai (1962) and Lidov (1962): when the mass of the outer body is small enough compared to the mass of the inner body, the general case behaves similarly to the outer restricted problem. When the mass of the outer body increases enough, the general case behaves like the inner restricted problem. We gave an expression of the boundary between these two régimes.

The outer restricted problem and its generalization to the nonrestricted case provide an interesting starting point in the study of circumbinary planetary Systems, such as the one discovered recently around the eclipsing sdB+M System HW Virginis (Lee et al. 2009).

In this System, the inner binary is very tight with a period of 2.8 h, while the proposed planetary companions hâve periods of 9. Comme nous l'avons déjà souligné, les propriétés orbitales des planètes extrasolaires sont souvent étonnantes comparées à celles des planètes du système solaire, notamment en ce qui concerne leurs demi-grands axes et leurs excentricités.

La planète HD 80606b, dont la masse minimale initialement publiée était de 3.9Mjup [START_REF] Naef | HD 80606 b, a planet on an extremely elongated orbit[END_REF], possède l'excentricité la plus forte de toutes les planètes actuellement : e = 0.93. Elle orbite son étoile hôte, de type solaire, avec une période de 111.8 jours, soit à une distance d'environ 0.45 UA. La séparation entre la planète et l'étoile au niveau du périastre est donc seulement de 0.033 UA, soit environ 7 rayons solaires! Notons que pour cette configuration, la limite de Roche, c'est-à-dire la distance étoile-planète en-dessous de laquelle la planète serait détruite par la marée stellaire, est de 6.4 105 km, soit moins de un rayon solaire : une telle planète peut donc bien survivre à des interactions aussi intenses avec son étoile.

HD 80606 b a de plus bénéficié d'observations de différentes natures : initialement détectée par la méthode des vitesses radiales [START_REF] Naef | HD 80606 b, a planet on an extremely elongated orbit[END_REF], son transit secondaire (c'est-à-dire son passage derrière son étoile hôte) a ensuite été observé grâce au satellite infrarouge Spitzer [START_REF] Laughlin | Rapid heating of the atmosphère of an extrasolar planet[END_REF], et enfin son transit principal a été observé en Février 2009 [START_REF] Moutou | Photometric and spectroscopic détection ofthe primary transit of the 111-day-period planet HD 80 606 b[END_REF]. Le nombre des observations a confirmé la forte excentricité de HD 80606 b, et la diversité des techniques a donné accès a de nombreux paramètres du système : ainsi, on connaît maintenant la vraie masse de la planète, 3.94MJup, son rayon de 1.02977jup. Surtout, l'observation du transit spectroscopique a révélé un non-alignement estimé à 50°entre l'axe 1. HD 20782b a été anoncée avec une excentricité de 0.97 [START_REF] Jones | High-eccentricity planets from the Anglo-Australian Planet Search[END_REF], mais une analyse plus récente excluant certains points extrêmes donne une valeur de 0.57 [START_REF] O'toole | Sélection functions in doppler planet searches[END_REF].

de rotation de l'étoile hôte et l'orbite de la planète [START_REF] Pont | Spin-orbit misalignment in the HD 80606planetary System[END_REF].

La question de savoir si un tel système peut se former comme tel est particulièrement ardue. Les modèles actuels de formation dans les disques proto-planétaires prévoient en effet un état en fin de formation où la rotation propre planétaire, la rotation propre stellaire et l'orbite planétaire sont toutes alignées, et l'orbite planétaire est faiblement excentrique. C'est pourquoi de nombreux travaux se sont plutôt portés vers des scénarios où la planète est formée à une distance plus grande de l'étoile, et amenée par la suite à sa situation actuelle grâce à une interaction supplémentaire.

Cependant, le modèle dominant de migration planétaire est basé sur l'interaction entre la planète naissante et le disque de gaz dans lequel elle se forme (Goldreich et Tremaine, 1980;[START_REF] Papaloizou | Planet formation and migration[END_REF]. Même si ce mécanisme peut exciter l'excentricité de la planète, l'efficacité d'une telle excitation ne commence à se faire sentir que pour des planètes très massives (Ad > 10 -20Mjup) (Papaloizou et al., 2001).

L'étoile HD 80606 possède en revanche un compagnon lointain, HD 80607, qui est de même type spectral. La contamination lumineuse mutuelle entre ces deux sources donne lieu à une forte incertitude dans les données Hipparcos concernant leur position relative, mais une distance projetée entre 1000 et 2000 UA est communément admise [START_REF] Naef | HD 80606 b, a planet on an extremely elongated orbit[END_REF].

Comme nous l'avons vu dans les chapitres précédents, un tel compagnon lointain peut exciter l'excentricité de la planète par l'intermédiaire du mécanisme de Lidov-Kozai, pourvu que l'orbite de la planète et celle du compagnon lointain soient initialement non coplanaires.

On peut alors envisager un scénario dans lequel la planète se forme à distance de l'étoile hôte HD 80606, à environ 5 AU par analogie avec le système Soleil -Jupiter. Si l'orbite initiale de la planète est suffisamment inclinée par rapport à celle du compagnon lointain, l'excentricité planétaire peut alors monter suffisamment haut grâce au mécanisme de Lidov-Kozai, et donc la distance au périastre peut être assez petite pour que les interactions de marées soient très fortes à chaque passage au périastre.

La dissipation qui intervient alors lors des passages au périastre à chaque maximum d'ex centricité du cycle de Kozai diminue progressivement le demi-grand axe planétaire. Lorsque le demi-grand axe planétaire décroît, les périodes associées aux autres interactions, et notam ment la précession du périastre planétaire due à la relativité générale, deviennent plus courtes que la période associée aux cycles de Kozai. On s'attend donc à ce que l'efficacité des cycles de Kozai diminue à chaque maximum d'excentricité, et à ce que les cycles s'arrêtent dans un état où la planète possède une excentricité élevée et une orbite moins inclinée par rapport à l'orbite du compagnon lointain que dans l'état initial.

Les deux étoiles sont beaucoup plus massives que la planète, et le demi-grand axe du compagnon lointain est beaucoup plus grand que celui de la planète. On s'attend donc à ce que leurs propriétés orbitales et rotationnelles soient beaucoup moins modifiées que celles de la planète au cours de l'évolution du système. Si le processus de formation planétaire conduit à un état initial où les moments cinétiques rotationnels de la planète et de l'étoile HD 80606 sont alignés avec le moment cinétique orbital de la planète, on doit pouvoir observer à la fin Ces équations ont été replacées dans un contexte planétaire par [START_REF] Mardling | Calculating the Tidal, Spin, and Dynamical Evolution of Extrasolar Planetary Systems[END_REF], et utilisées par [START_REF] Wu | Planet Migration and Binary Companions : The Case of HD 80606b[END_REF] et [START_REF] Fabrycky | Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction[END_REF] pour modéliser l'évolution de HD 80606b. Plus récemment, [START_REF] Barker | On the tidal évolution of Hot Jupiters on inclined orbits[END_REF] y ont ajouté un effet de freinage magnétique qui ne sera pas évoqué ici.

But de notre modélisation

Nous redérivons ici un ensemble d'équations analogue à ceux utilisés dans les travaux précédents de Wu et Murray (2003) et [START_REF] Fabrycky | Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction[END_REF] pour modéliser le mou vement séculaire d'une planète dans un système binaire. Dans le but de retrouver dans un premier temps les résultats des travaux précédents, on prend en compte les mêmes effets que ces deux articles, à savoir :

-L'interaction quadripolaire entre l'étoile lointaine et la planète proche (Kozai);

-La marée levée sur la planète par l'étoile proche et la précession ainsi que la dissipation qui en résultent ;

-La marée levée sur l'étoile proche par la planète;

-La précession du périhélie de la planète causée par le terme relativiste le plus significatif;

-Les précessions du périhélie et de l'axe de rotation de la planète dues à l'aplatissement de la planète;

-Les précessions du périhélie de l'orbite planétaire et de l'axe de rotation de l'étoile dues à l'aplatissement de l'étoile.

Un des points critiques de ce modèle est la façon dont on représente le mécanisme de dissipation de l'énergie dû à la marée à l'intérieur des corps étendus. Nous adopterons la méthode de [START_REF] Mignard | The évolution of the lunar orbit revisited[END_REF], reprise notamment par Néron de Surgy et [START_REF] Néron De Surgy | On the long term évolution of the spin of the Earth[END_REF] et [START_REF] Correia | Long-term évolution of the spin of Venus : I. theory[END_REF]. Cette approche consiste à considérer que la réponse d'un corps étendu au potentiel de marée d'un perturbateur est linéaire et retardée d'un temps At petit, puis à développer le potentiel résultant au premier ordre en A t. Les travaux de Eggleton et al.

(1998) sur lesquels sont basées les études existantes sur HD 80606b [START_REF] Wu | Planet Migration and Binary Companions : The Case of HD 80606b[END_REF][START_REF] Fabrycky | Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction[END_REF], aboutissent au même modèle par un autre moyen : ils supposent que la variation de l'énergie totale du corps étendu (orbitale et rotationnelle) est directement proportionnelle à la variation de forme du corps, représentée à l'ordre le plus bas par la variation du tenseur d'inertie quadripolaire. Leur approche conduit également à un temps de réponse constant pour la marée (Eggleton et al., 1998, section 3).

Cette hypothèse simplificatrice correspond à un modèle de marée d'équilibre, un régime dans lequel l'évolution orbitale se fait suffisamment lentement pour que les déformations des corps étendus correspondent à chaque instant à des déformations statiques. Afin d'obtenir un modèle de dissipation plus réaliste, il faut intégrer les équations de l'hydrodynamique à l'intérieur des corps et les coupler avec l'évolution orbitale du système afin d'obtenir un modèle de marée dynamique. La mise en oeuvre numérique de ces modèles les limite pour l'instant à des situations très particulières : typiquement avec un perturbateur qui évolue sur une orbite circulaire dans le plan de l'équateur rotationnel du corps étendu, et en faisant des hypothèses simplificatrices sur la rotation différentielle du corps déformé [START_REF] Terquem | On the Tidal Interaction of a Solar-Type Star with an Orbiting Companion : Excitation of g-Mode Oscillation and Orbital Evolution[END_REF][START_REF] Ogilvie | Tidal Dissipation in Rotating Giant Planets[END_REF][START_REF] Wu | Origin of Tidal Dissipation in Jupiter. II. The Value of Q[END_REF][START_REF] Ogilvie | Lorsque l'inclinaison initiale est suffisante pour provoquer la migration, les caractéristiques de l'évolution initiale avant la suppression des cycles de Lidov-Kozai sont communes à tous les types d'intégrations que nous avons conduits : la vitesse de rotation planétaire se synchronise rapidement avec sa vitesse angulaire orbitale instantanée au périastre (un mécanisme que Hut (1981) a nommé pseudo-synchronisation) ; à mesure que le demi-grand axe diminue, l'amplitude des cycles de Kozai diminue également jusqu'à s'annuler dans un état d'excentricité maximale[END_REF][START_REF] Goodman | Dynamical Tides in Rotating Planets and Stars[END_REF]. L'évolution orbitale complexe qui est supposée à l'oeuvre dans le système HD 80606, notamment du fait de la forte excentricité de la planète et du non-alignement entre son moment cinétique orbital et l'axe de rotation stellaire, fait de ce système un candidat particulièrement difficile pour les modèles de marée dynamique.

Nous essayerons néanmoins de clarifier les conditions initiales des études précédentes sur HD 80606 afin de proposer une façon d'approfondir et de raffiner le modèle existant. Si l'on suppose de plus que le perturbateur est loin par rapport au rayon de la primaire noté Rq, on peut ne garder que le premier terme de ce développement, à savoir :

Mri.r') Le potentiel Ut est une harmonique sphérique de degré 2 : pour satisfaire l'équation de Laplace dans le vide, il doit donc être proportionnel à r'-2"1 en dehors de la primaire :

Ut(Yi,Y') oc P2(y'-Yi/r',ri)/r'3. Par continuité entre les expressions à l'intérieur et à l'extérieur de la primaire, on obtient le coefficient de proportionnalité, et on peut écrire le potentiel à l'extérieur de la primaire [START_REF] Kaula | Tidal Dissipation by Solid Friction and the Resulting Orbital Evolution[END_REF][START_REF] Mignard | The évolution of the lunar orbit revisited[END_REF][START_REF] Néron De Surgy | On the long term évolution of the spin of the Earth[END_REF] : 3. Si l'on développe le potentiel de marée de manière à faire apparaître les combinaisons des angles du problème, on peut introduire des retards différents pour chaque combinaison linéaire -ou de manière équivalente chaque fréquence. Ici, nous suivons [START_REF] Mignard | The évolution of the lunar orbit revisited[END_REF] et Néron de Surgy et [START_REF] Néron De Surgy | On the long term évolution of the spin of the Earth[END_REF] en supposant que tous ces retards sont égaux. Pour une discussion détaillée, voir [START_REF] Kaula | Tidal Dissipation by Solid Friction and the Resulting Orbital Evolution[END_REF][START_REF] Efroimsky | Tidal torques : a critical review of some techniques[END_REF].

C~^7n v» \ UAyi,y') = -k2 o--1--- P2 
Uttr(ri(t), r') = Ut [ri(t) + (At)0(u>0 A r1 (t) -vi(t)),r'] . (4.12)

Si l'on développe maintenant l'expression (4.12) au premier ordre dans le retard de marée, à l'aide de (4.10), on obtient l'expression suivante pour le potentiel de marée, que l'on notera désormais Ut [START_REF] Mignard | The évolution of the lunar orbit revisited[END_REF][START_REF] Néron De Surgy | On the long term évolution of the spin of the Earth[END_REF][START_REF] Correia | Long-term évolution of the spin of Venus : I. theory[END_REF] : .(-i) (4.20) 

Ut(t 1j 1*0 - ^2,0

Aplatissement rotationnel

La rotation propre d'un corps solide le déforme selon les mêmes principes que ceux qui ont été exposés pour les marées : le potentiel centrifuge lié à la rotation propre engendre une réponse de la part du corps en rotation, et une première approximation consiste à traiter cette réponse de manière linéaire en utilisant à nouveau le nombre de Love A~2,o [START_REF] Love | A Treatise on the Mathematical Theory of Elasticity[END_REF]Alexander, 1973;[START_REF] Yoder | Astrometric and Geodetic Properties of Earth and the Solar System[END_REF].

On considère que l'état de rotation du corps étendu est la rotation solide. Dans ce cas, la déformation consiste en un bourrelet orthogonal au vecteur rotation u>0 du corps. On comptera donc dans ce paragraphe les colatitudes 6' à partir du pôle rotationnel de la primaire (figure 4.2 b). Notons que les colatitudes définies dans le paragraphe précédent ne coïncident avec celles du présent paragraphe que dans le cas où l'axe de rotation de la primaire est colinéaire au moment cinétique orbital du perturbateur.

Avec ces conventions, le potentiel dû à la rotation à l'intérieur de la primaire est donné en un point repéré par rapport au centre du corps par le vecteur r' et par la colatitude 6', par le (ti

) V / Kozai C' ) Kozai i0*2) Kozai a'-Ÿ-[(/C, • k2)/Ci A k2 -5(J, • k2)J, A k2] , Al a'^[2Ki A J, + (/C, • k2)J! A k2 -5(1, k2)£i A k2] Ai -A> (^0 Kozai - 3 /aA7/2 A i L | ra2 4 Va2/ rao + nii ( 1 -e2)2 V m0 + mi (4.81) (4.82) (4.83) (4.84)
Notons que l'emploi du Hamiltonien non restreint à la différence de [START_REF] Eggleton | Orbital Evolution in Binary and Triple Stars, with an Application to SS Lacertae[END_REF][START_REF] Wu | Planet Migration and Binary Companions : The Case of HD 80606b[END_REF][START_REF] Fabrycky | Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction[END_REF] Ainsi, les deux étoiles ont pour masses mo = m,2 = 1.1 MQ et la planète a une masse 7771 = 7.5 1O~3M0 ae 7.5Mjup. Le rayon de l'étoile hôte est pris égal au rayon solaire tel que donné dans [START_REF] Yoder | Astrometric and Geodetic Properties of Earth and the Solar System[END_REF], soit Ro -696000 km, et le rayon planétaire est pris à peu près égal au rayon de Jupiter, soit Ri = 72000 km. De même, les facteurs géométriques qui interviennent dans les moments d'inertie, soit rg -I/mR2, ont reçu des valeurs proches de celles qu'on peut trouver dans [START_REF] Yoder | Astrometric and Geodetic Properties of Earth and the Solar System[END_REF] Les périodes de rotation propre initiales de la planète et de l'étoile sont encore une fois prises comparables aux valeurs de Jupiter et du Soleil, à 0.5 jour et 20 jours respectivement.

Les obliquités initiales de l'étoile et de la planète par rapport à l'orbite planétaire sont de 0°e n accord avec l'hypothèse de formation de l'étoile et de la planète dans un même disque. En ce qui concerne Q0 ou (A£)0, il semble qu'il n'y ait pas de valeur de référence en l'état actuel des connaissances. Les valeurs utilisées par [START_REF] Wu | Planet Migration and Binary Companions : The Case of HD 80606b[END_REF][START_REF] Fabrycky | Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction[END_REF] semblent choisies de manière à ce que l'efficacité de la dissipation dans l'étoile soit au moins un ordre de grandeur au dessus de la dissipation dans la planète6. Nous adopterons la même démarche dans nos choix de paramètres.

En nous basant sur les paragraphes précédents, nous avons donc conduit trois types de simulations :

1. Un premier type utilisant des valeurs de Q constantes pour la planète et l'étoile afin d'illustrer les conséquences d'un tel choix.

2. Un deuxième type utilisant des At constants déduits des valeurs de (Fabrycky et Tre maine, 2007), soit : (At)i = 2 10~6 an et (At)0 = 3 10~9 an.

5. Dans [START_REF] Fabrycky | Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction[END_REF], la quantité k\ est égale à la moitié du nombre de Love &2 que nous avons utilisé dans ce travail. ou l'introduction d'effets supplémentaires pour ralentir le déclin de l'excentricité planétaire.

Lors des passages très proches au périhélie, on se rapproche de la limite de 5 rayons stellaires proposée par [START_REF] Mathis | Tidal dynamics of extended bodies in planetary Systems and multiple stars[END_REF], en-dessous de laquelle ils suggèrent de prendre en compte les interactions mutuelles entre les termes de déformation quadripolaire de l'étoile et de la planète. De même, la planète subit des chocs thermiques au moment des passages au périastre [START_REF] Laughlin | Rapid heating of the atmosphère of an extrasolar planet[END_REF] 

  constant. Let us dénoté y the vector of ail remaining variables (r*, r*)/t^2 and k. With £?(y) the matrix of their mutual Poisson brackets,1 the general form of the équation of motion is:

  Keplerian terms are the A step. The perturbing function is split in two terms B\ (rk) + Bj{Ÿk) which are intégrable separately. We modify the B step by adding into it the (H\tk) contribu tions and symmetrizing the resuit as follows(Laskar and Robutel 2001): exp(TLzO = ^L*, .c*LK»> ...^<"1.2) . exL»i eïL(H\,2> ...e*L("i.«) (2.28) Remark In fact, the sum of the (H 1*) terms, (H\) -'s actually intégrable.Indeed, we can rewrite the équation of motion for k that is derived from (H\) by summing Eqs. (2.21c) over the integer k:

  around a 1 .08Mq star. The inner planet, /z Arae c (mc = 0.03321 Mjup), revolves around the central star in 9.6days, whereas the second closest planet, /z Arae d (m(i = 0.5219Mjup), has an orbital period of 310.5days. /z Arae d is near a 2:1 mean motion résonance with /z Arae b (nib = 1.676Mjup), which orbits at 643.25 days. Lastly, /z Arae e (me = 1.814Mjup) has a very loosely determined period of 4205.8 ± 758.9 days.3.1 Comparison between averaged trajectories and full intégrationsBefore computing the dynamical maps of the System, we first validated the averaged équa tions by comparing individual planetary trajectories in the System. The planet on which most différences are seen is the second innermost planet, /z Arae d. In Fig.1, we show the semi-major axis, eccentricity, and inclination of /z Arae d in the full System with initial conditions that both allow for a mutual inclination between the planets in the System, and ensure a regular trajectory. Indeed, if initial conditions lead to a chaotic trajectory, the dif férence between the averaged model and the full System expectedly diverges after a short time.

  Fig. 1 Trajectory of fj. Arae d for a 4-planet intégration over 40 kyr based on initial conditions that pro vide a regular trajectory. For each orbital element, the différence between the full intégration and an average intégration is shown below the corresponding graph

  Fig. 3 Frequency maps of the /z Arae System for different values of the semi-major axis of n Arae d (on the x axis) and of its eccentricity (on the y axis), a: averaged System, time step 0.02yr; b: full System, time step 0.002 yr; c: 3-planet System, time step 0.02 yr; d: 3-planet System with the mass of the inner planet added to the central star's mass, time step 0.02 yr. The numerical color scale goes from the most stable trajectories(stability index ^-4) to the least stable trajectories (stability index ^2). The black contours correspond to the iso-x2 lines of the fit provided byPepe et al. (2007) 

Fig. 4

 4 Fig. 4 Frequency inaps of the fi Arae System for different values of the semi-major axis of 11 Arae d (on the x axis) and of its argument of node (on the y axis), a: averaged System, time step 0.02yr; b: full System, time step 0.002 yr; c: 3-planet System, time step 0.02 yr; d: 3-planet System with the mass of the inner planet added to the central star's mass, time step 0.02 yr. The numerical color scale goes from the most stable trajectories (stability index ^-6) to the least stable trajectories (stability index ^2)

  Fig. 5Frequency maps of a n Arae inspired System with the innermost planet 10 times as massive as in the actual System. On the x axis is the semi-major axis of the second innermost planet, on the y axis its eccentricity. a: averaged System, time step 0.02yr; b: full System, time step 0.002yr; c: 3-planet System, time step 0.02 yr; d: 3-planet System with the mass of the inner planet added to the central star's mass, time step 0.02yr. The numerical color scale goes from the most stable trajectories (stability index -4) to the least stable trajectories (stability index ^2)

Fig. 6

 6 Fig.6Frequency maps of a n Arae inspired System with the innermost planet 10 times as massive as in the actual System. On the x axis is the semi-major axis of the second innermost planet, on the y axis its argument of node. a: averaged System, lime step 0.02yr; b: full System, time step 0.002 yr; c: 3-planet System, lime step 0.02 yr; d: 3-planet System with the mass of the inner planet added to the central star's mass, time step 0.02 yr.The numcrical color scale goes front the rnost stable trajectories (stability index ^-6) to the least stable trajectories (stability index ^2)

(

  3.1.1 Hamiltonien et intégrale de Lidov-KozaiDans cette section, on repère deux des corps, d'indice 1 et 2, par rapport au troisième auquel on assigne l'indice 0. On suppose de plus que le corps d'indice 1 est le corps intérieur sans masse. Dans le référentiel barycentrique, les positions des trois corps sont notées (uj)î=0,i,2. et on note ri = Uj -u0 et u2 = u2 -u0. On utilise de plus les variables de Delaunay associées pour le corps intérieur (Ai, G\, Mi, u\, Ct\), ainsi que l'anomalie moyenne du corps extérieur, M2. Le problème étant restreint, les propriétés géométriques et l'orientation de l'orbite du corps extérieur ne varient pas, seule son anomalie moyenne évolue, selon M2 = n2t, avec r\\o?2 -G(m0 + ra2). De manière générale, le hamiltonien de la particule s'écrit donc : H = H(AuG1,HuMliuutoi;M2) . (3.1) Si l'on moyennise les deux angles M\ et M2 pour obtenir un hamiltonien séculaire, Ai devient constant et l'on a 1 extérieur est sur une orbite circulaire, le problème possède une symétrie de révolution autour de la normale au plan orbital du corps extérieur. Par conséquent, le noeud ne doit pas apparaître dans l'expression (3.2). Le seul angle dont dépend le hamiltonien du corps intérieur est alors le périhélie lüi, et le problème est donc intégrable. De plus, H\ est constant et on a l'intégrale première dite de Lidov-Kozai : A41, À/2 * 1. On omettra par la suite les indices M\ et M2 dans la notation (H) où le corps extérieur a une orbite circulaire, ce résultat est tout à fait général et ne nécessite aucun développement du hamiltonien, ni aucune hypothèse sur les paramètres orbitaux du corps intérieur. Le fait que ^soit constant est à la base du mécanisme de Lidov-Kozai : l'excentricité e\ varie sous l'effet de la dynamique du périhélie uj\, seul angle restant dans le hamiltonien, et entraîne l'inclinaison au travers de Légalité (3.3). Cette égalité crée une relation décroissante entre excentricité et inclinaison, si bien que pour une valeur donnée de {jj, les états circulaires sont maximalement inclinés (zi,max -Acos^)) et réciproquement,les états coplanaires sont maximalement elliptiques (ei)max = ^1 -\j\).Le cas où le corps extérieur a une orbite elliptique ne présente plus la symétrie de révolution qui existe dans le cas circulaire, et exige un développement du hamiltonien pour restreindre le nombre de degrés de liberté du système. Le hamiltonien s'écrit de manière classique : dans le cas où r\ <C r2, on peut développer le hamiltonien au deuxième ordre en r\jr2. En écrivant que r2/2 -Gm0/ri = -Gm0/2ai on a : on moyennise sur les deux anomalies moyennes M\ et M2, et que l'on retire les parties constantes, il reste après introduction des vecteurs (i*, j^, kj)j=ii2 liés aux orbites de la particule et du corps extérieur comme décrit dans le chapitre précédent : orbite du corps extérieur est fixe, on peut choisir les vecteurs (Î2,j2>k2) comme repère dans lequel définir les angles d'orientation de l'orbite du corps intérieur. On a dans ce cas (ii • k2)2 = (sinz! sincui)2 et (ki -k2)2 = cos2 ilM En remplaçant ces valeurs dans l'équation(3.6), et après quelques manipulations algébriques élémentaires, on obtient (voir[START_REF] Kinoshita | Analytical Solution of the Kozai Résonance and its Application[END_REF], équation 3, à ceci près qu'ils utilisent un hamiltonien de signe opposé) :

3. 1 . 2

 12 Equilibres du problème restreint intérieur Afin d'étudier les équilibres du problème restreint intérieur, nous réécrivons le hamiltonien (3.7) en fonction de rp = yl -ej -Gi/Ai, en tenant compte du fait que cos2zi = bi/hi niveau d'un point d'équilibre, ces deux variations s'annulent. L'équation d'évolution de 7]i s'annule tout d'abord si cos2 i\ = 1, soit i\ -0 ou n. Dans ce cas, la relation (3.3) implique que Tji =b\. En remplaçant cette égalité dans la relation ù\ -0, on obtient que : 'égalité n'ayant lieu que dans la situation dégénérée où ^= 0. Dans le cas général, il n'y a donc pas d'équilibre fixe pour cos2 i\ -1, mais une trajectoire périodique où l'excentricité 3.2 Article inclus : High-inclination orbits in the secular quadrupolar three-body problem Après ce rappel général sur le fonctionnement du problème quadripolaire restreint intérieur et du mécanisme de Lidov-Kozai, nous nous intéressons dans l'article présenté ici au problème quadripolaire restreint extérieur. Il correspond au cas d'un corps sans masse orbitant loin d'un système de deux corps massifs, et possède des applications dans l'étude de halos de débris, qui

  Hamiltonien ainsi que le fait que w soit de norme 1 fournissent deux relations indépendantes entre les trois composantes de w, et le système est par conséquent intégrable. Dans la partie 2.4 nous exposons les six points fixes du mouvement de w, qui correspondent à w = ±i, dbj, ou ±k. Les deux points fixes correspondant à ±j sont instables alors que les quatre autres sont stables. Il peut donc y avoir deux types de précession du moment cinétique w de la particule : une précession à faible inclinaison pour les orbites directes (autour de k) ou rétrogrades (autour de -k) avec un régime de circulation pour le noeud de la particule ü2( ou bien une précession à forte inclinaison autour de dbi correspondant à un régime de libration du noeud de la particule autour de ±90°. Les périodes de ces précessions sont calculées dans la partie 2.4une quantité directement liée au Hamiltonien et T[li) est une expression faisant intervenir des fonctions elliptiques (voir l'article pour plus de détails).

  98800. Ils obtiennent le résultat surprenant qu'une population de particules est stable à forte inclinaison autour de la binaire Ba-Bb, malgré la perturbation destructrice du compagnon stellaire A (lui-même double). Dans une étude plus approfondie, ils isolent le mécanisme stabilisateur comme étant une précession nodale imposée par la binaire Ba-Bb sur les particules. Le modèle séculaire du problème restreint extérieur que nous présentons dans l'article permet de reproduire fidèlement les résultats des simulations numériques non séculaires de Verrier et Evans. La figure 3.1 montre ainsi côte à côte les résultats des intégrations numériques de Verrier et Evans pour dix particules test autour d'une binaire d'excentricité e\ -0.79 (à gauche), et les lignes de niveau du Hamiltonien séculaire (3.12) pour la même valeur de l'excentricité de la binaire. Les axes de ces deux figures correspondent aux coordonnées (z2 cos fl2,z2 sin OE2) construites à partir de l'inclinaison et du noeud de la particule test. De la même manière, la figure 3.2 montre le bon accord entre d'une part un ajustement de la période de précession des particules que Verrier et Evans obtiennent à partir de leurs données simulées avec un modèle non-séculaire; et d'autre part la courbe qui résulte de l'expression analytique (3.15) obtenue grâce au modèle séculaire.Dans la dernière partie de l'article, nous décrivons comment les deux problèmes séculaires restreints intérieur et extérieur se positionnent dans le cadre du problème séculaire et quadripolaire non restreint. Ce problème a été traité intégralement parLidov et Ziglin (1976), igure 3.1: A gauche : Simulation numérique issuede Verrier et Evans (2009), utilisant un modèle non séculaire. A droite : contours du Hamiltonien séculaire (3.12), pour la même valeur de l'excentricité de la binaire intérieure (ei = 0.79). Les deux figures utilisent comme coordonnées le couple (z2 cos F22, ^2 sin f22).
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 32 Figure 3.2: Dépendance de la période de libration des particules en fonction de l'excentri cité de la binaire intérieure. Les pointillés correspondent à l'ajustement que Verrier et Evans obtiennent à partir de leurs données simulées avec un modèle non-séculaire. La courbe pleine correspond à l'expression analytique (3.15) obtenue dans le cadre du modèle séculaire.

  m() and/m, the binary's total massis.Moi = m0+m\ and itsreduced mass is p\ = m0m,/(m0 + «:). The two massive components hâve barycentric positions h0 and U\. We also dénoté 5 = m0/Mo\ and r\ =u\ -h0, andr2 is the position oftheouterparticlerelatively to the barycentre of the inner binary. Using these notations, r2 is the canonical momentum associated to the position of the massless particle, r2. Since u0 = -(1 -AE)/r and U\ = Sri,
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 2 Figure 2. Energy levels of the Hamiltonian (2.8) in the (i 2 cos ^2. < 2 sin Qi) plane for values of the eccentricity of the binary e\ = 0 (a), e\ =0.1 (b), ci = 0.79 (c), e\ = 0.9 (d).

  Fig. 2 shows these levels for different values of the eccentricity. The panel (c) in particular uses the same value for the eccentricity of the binary (e\ = 0.79) as figs 4 and 5 of Verrier & Evans (2009).

  ' + m\\fi2x = (mi0 + mii)-' d-Mi,1,/^= G(mi0 + Mlj) and U-2 -G(mî0 + Ml) + MI2).

  ail the constant ternis in équation(3.6) and use the above vectors, we get W«l.»f2=--[21?+ (AC, *2)2-5(I, -*2)2],(3.8) where and .Moi, n \ are defined as in Section 2.3.2 Equations of motionThe components of /Ci, Zi and k2 hâve the following Poisson brackf)\^/JTFF and €ÿk is the Levi-Civita symbol.5The équations of motion for the three vectors are thus look at the motion of the vector k2 in the moving frame (/1, j 1, k 1 ) of the orbit of the second body, we use asBoué & Laskar (2006) the above System to dérivé équations for x = (k2 i \ ), y = (k2 j\), z = {k2 k\) and et. Indeed, x = (k2 -Ii)/|I,|, z -(k2 /Ci)/|/Ci|, e\ = \1\ | and y is obtained using the identity x2 -F y2 + z2 = 1:

  , we briefly dérivé in the framework of the présent study the fixed points of the System and the boundaries of the dynamical régimes in parameter space that are given inFerrer & Osacar (1994). The fixed points are named as follow: the north pôle is called N and the south pôle 5; linearly stable fixed points are named E, as elliptic and linearly unstable points are named H, as hyperbolic; finally, signs are placed as indices to refer to the symmetry of the problem with respect to the two planes x = 0 and y = 0. There are three dynamical régimes in the région of parameter space we study.

YFigure 4 .

 4 Figure 4. Parameter space. The dark grey areas are excluded by équa tion (3.22), the light grey area corresponds to the part of parameter space corresponding to y2 Jï y which we do not study. The dotted line y + y 2=1

  FigurcS. Trajectories in the (»2 cos Q2, <2 sin fi2) plane for different values of the parameters. See Section 3.3 for a detailed discussion and Appendix A for calculations, a: (y, y2) -(0.8, 0) outer restricted case with e\ = 0.6. b:(y, y2) = (0.8, 0.25). c: y = 0.8, y2 = (1/3)(1 -y2), d: (y, y2) = (0.8, 0.4). e: (y, y2) = (1.08, 0.4). f: (y, y2) = (1.28, 0.4).

Figure 6 .

 6 Figure 6. Trajectories on the unit angular momentum sphere for different values of the parameters. See Section 3.3 for a detailed discussion and Appendix A for calculations, a: (y, y2) = (0.8, 0) outer restricted case with e 1 = 0.6. b: (y, y2) = (0.8, 0.25). c : y = 0.8, y\ = (1/3)(1 -y2), d: (y, y2) = (0.8, 0.4). e: (y, y2) = (1.08, 0.4). f: (y, y2) = (1.28, 0.4).

  1 and 15.8 years, so the quadrupolar expansion is fully justified. Another field of application of the outer restricted problem is the study of the motion of stars orbiling around binary black holes(Mikkola & Merritt 2008; Gillessen et al. 2009; Merritt, cas de HD 80606b 

  de l'évolution orbitale de la planète un non-alignement entre l'axe de rotation stellaire et le moment cinétique orbital planétaire. Un tel non-alignement a été observé lors de la récente campagne d'observation du transit principal de la planète en Février 2009, grâce à la mesure du transit spectroscopique et à l'analyse de l'effet Rossiter-McLaughlin[START_REF] Gaudi | Prospects for the Characterization and Confirmation of Transiting Exoplanets via the Rossiter-McLaughlin Effect[END_REF] :[START_REF] Pont | Spin-orbit misalignment in the HD 80606planetary System[END_REF] donnent un angle de 50°environ entre la normale à l'orbite de la planète et l'axe de rotation de l'étoile.Comme les interactions de marées dépendent de la séparation r entre les deux corps qui interagissent comme 1/r6, la distance atteinte au péricentre est un paramètre particulièrement sensible dans ce scénario d'évolution. Or, la distance au péricentre dépend de l'excentricité de la planète, et donc par l'intermédiaire de l'intégrale de Lidov-Kozai, de l'inclinaison initiale de l'orbite planétaire par rapport à l'orbite du compagnon lointain. Les simulations présentées plus loin montreront en effet qu'il faut une inclinaison initiale très importante, supérieure à 85°, pour produire une évolution compatible avec les propriétés actuelles de HD 80606b sur une durée de l'ordre de l'âge des deux étoiles HD 80606 et HD 80607, estimé à 7.5 milliards d'années environ[START_REF] Saffe | On the âges of exoplanet host stars[END_REF].Ce type de scénario est appelé dans la littérature Kozai migration ou Kozai cycles with tidal friction (KCTF) ce qui se traduit simplement en cycles de Kozai avec dissipation de marées ou encore migration de Kozai.[START_REF] Harrington | Dynamical évolution of triple stars[END_REF] a d'abord suggéré ce mécanisme comme un facteur d'évolution important pour les étoiles triples. Eggleton et al. (1998), puis Eggleton et Kiseleva-Eggleton (2001) ont développé un ensemble d'équations séculaires pour modéliser l'évolution à long terme d'une étoile binaire sous l'effet des marées levées par chaque composant sur son compagnon, les couples exercés sur les bourrelets rotationnels des deux étoiles, la précession relativiste du périhélie, ainsi que l'action sur l'orbite de la binaire d'un troisième compagnon stellaire lointain.
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 41 Figure 4.1: Coordonnées barycentriques (u0,ul5u') de la primaire, du perturbateur et du point de calcul de l'intégration de marées, et coordonnées relatives à la primaire (rl5r').

  marée (4.10) correspond à une primaire parfaitement élastique, qui réagit instantanément aux déformations causées par la marée du perturbateur m\. L'inélasticité de la primaire se traduit par la dissipation de l'énergie orbitale à l'intérieur de la primaire, ainsi que par un retard (At)0 dans la déformation3. Ce temps de retard est un petit paramètre qui permet d'effectuer un développement au premier ordre. Pendant cet intervalle de temps, la primaire tourne donc d'un angle cj0(At)o (son vecteur rotation instantanée est noté u>0)-De plus, le perturbateur m\ se déplace à la vitesse vi = ri. Le point de calcul du potentiel quant à lui ne change pas. Suivant[START_REF] Mignard | The évolution of the lunar orbit revisited[END_REF], Néron de Surgy et[START_REF] Néron De Surgy | On the long term évolution of the spin of the Earth[END_REF][START_REF] Correia | Long-term évolution of the spin of Venus : I. theory[END_REF], on considère donc que le potentiel de marée est donné par l'expression retardée suivante : ^t,r(ri(t),r') -Ut [ri(t -(At)0) + (At)0u>0 A Y^t -(At)0),r'

  plus Ut = Ut,o + Ut,i, où les indices font référence à l'ordre en (At)0.Forces de marée S'il se trouve un corps de masse m' à la position r', la force subie par ce corps due à la marée levée sur le corps étendu par le corps perturbateur est :--m/Vr/?77'(ri, r7) -Fj^o A Fj^i .(4.14)Ici, FT,o et FT;i correspondent respectivement à Ut,o et Ut,i-Si on suppose après le calcul du gradient que le corps qui subit la force due à la marée levée sur le corps étendu est le perturbateur mi lui-même, on obtient :

Figure 4

 4 Figure 4.2: a : Convention de latitude pour le calcul de la déformation de marée à partir de la normale à l'orbite du perturbateur, b : Convention de latitude pour le calcul de la déformation rotationnelle à partir du pôle rotationnel de la primaire.

  pour Jupiter et le Soleil, soit : rg^-0.25 et -0.08. Le nombre de Love planétaire possède également une valeur comparable à Jupiter, soit : fc2,i = 0.5. Le nombre de Love stellaire utilisé est issu de (Eggleton et al., 1998; Eggleton et Kiseleva-Eggleton, 2001)4, où il est déterminé pour un polytrope de degré 3 représentant 4. Notons que ces articles utilisent des notations qui entrent en conflit avec les nôtres : ainsi le nombre de Love divisé par 2 est-il noté Q ! une étoile comme étant égal à k2,o = 0.028.
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 43 Figure 4.3: De haut en bas et de gauche à droite : demi-grand axe planétaire; excentricité planétaire; distance au périhélie planétaire; superposition de la période de rotation propre de l'étoile (tirets) et de la planète (trait plein); obliquité de l'axe stellaire par rapport à l'orbite planétaire; inclinaison de l'orbite planétaire par rapport à l'orbite du compagnon lointain.L'inclinaison initiale planétaire de 85.6°et les excentricités supérieures à 0.9 qui en résultent sont malgré tout insuffisantes pour provoquer la migration, illustrant la grande sensibilité du mécanisme par rapport à la valeur initiale de l'inclinaison.

Fabrycky

  [START_REF] Fabrycky | Shrinking Binary and Planetary Orbits by Kozai Cycles with Tidal Friction[END_REF] choisissent un « temps de viscosité » qu'ils relient au facteur de qualité par leur équation (A 10)5. Cette équation indique que leur facteur Q est proportionnel à la période planétaire, donc Q oc l/n\. En utilisant l'analogie avec l'oscillateur forcé (4

  de temps de viscositéde Fabrycky et Tremaine (2007) de 10~3 années pour la planète et 50 ans pour l'étoile, et en se plaçant à une distance initiale de 5 UA pour la planète, soit une fréquence orbitale ni = 0.56 rd.an~\ le facteur Q qu'on peut déduire de leur équation (A 10) pour la planète est Qi = 7105 et pour l'étoile de Q0 = 3 108. On en déduit d'après (4.90) à la même fréquence : (At)\ = 2 10"6 an et (At)0 = 3 10"9 an. Wu et Murray (2003) choisissent explicitement pour le facteur Q planétaire une valeur de Qi = 3 105 et pour le facteur Q stellaire une valeur de Q0 = 106. Même si le modèle qu'ils utilisent est identique à celui de Fabrycky et Tremaine (2007), la dépendance qu'ils utilisent pour Q par rapport à la fréquence d'excitation est très peu claire. Nous utiliserons donc leurs valeurs pour comparer leurs résultats à une simulation à Q constant. Par comparaison, Goldreich et Soter (1966) calculent pour Jupiter QJup ^105 en utili sant l'argument que lo ne pourrait pas exister depuis 4.5 milliards d'années avec une valeur inférieure, dans un modèle où Qjup est constant. En calculant (A£)i à partir de cette dernière valeur, mais cette fois à la fréquence de lo (1.77 jours soit environ 1300 rd.an~]), on obtient (At)i » 2 10~9 an.
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 44 Figure 4.4: Simulation basée sur un modèle où les valeurs des facteurs de qualités planétaire et stellaire sont constants et égaux à Q\ = 3 105 et Q0 = 106. Après une période initiale pendant laquelle les cycles de Kozai sont progressivement atténués, l'excentricité se fixe à son niveau maximal puis décroît lentement. Cette décroissance lente est caractéristique du modèle à Q constant. De haut en bas et de gauche à droite : demi-grand axe planétaire; excentricité planétaire; distance au périhélie planétaire; superposition de la période de rotation propre de l'étoile (tirets) et de la planète (trait plein); obliquité de l'axe stellaire par rapport à l'orbite planétaire; inclinaison de l'orbite planétaire par rapport à l'orbite du compagnon lointain.
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 4647 Figure 4.5: Modèle à A t constants pour la planète et pour l'étoile, dont les paramètres sont repris de Fabrycky et Tremaine (2007). La décroissance de l'excentricité planétaire est extrêmement rapide une fois les cycles de Kozai éteints. Les quantités tracées sont les mêmes que sur la figure 4.4.
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 48 Figure 4.8: De haut en bas sont représentées les évolutions au cours de la simulation de la figure 4.7 des quantités J2,r, J2,t, et log10 J2)T/J2vR. Dans la colonne de gauche se trouvent les quantités relatives à l'étoile, et dans celle de droite les quantités de la planète.

Table 1 .

 1 2: Propriétés des transits des planètes du système solaire. Issu de la description de la mission Kepler, lancée le 6 mars 2009 http://kepler.nasa.gov/sci/basis/character.html.

	Chapitre 1 Introduction				
		Période		Durée du	Profondeur	Probabilité
	Planète	(ans)	a (AU)	Transit (hr)	du Transit (%)	géométrique (%)
	Mercure	0.241	0.39	8.1	0.0012	1.19
	Venus	0.615	0.72	11.0	0.0076	0.65
	Terre	1.000	1.00	13.0	0.0084	0.47
	Mars	1.880	1.52	16.0	0.0024	0.31
	Jupiter	11.86	5.20	29.6	1.01	0.089
	Saturne	29.5	9.5	40.1	0.75	0.049
	Uranus	84.0	19.2	57.0	0.135	0.024
	Neptune	164.8	30.1	71.3	0.127	0.015

  UA du Soleil, vu depuis une distance de 10 pc est de l'ordre de 500//as, et de 0.33/xas pour la Terre à 1 UA. Par comparaison, le mouvement propre typique d'une étoile a une amplitude angulaire de l'ordre de 500mas, soit trois ordres de grandeur au-dessus du déplacement dû à Jupiter. De plus, les meilleures observations actuelles, utilisant

	gravitationnelle.
	1.2.4 Observation directe donnée par la relation :
	L'observation directe des planètes extrasolaires est la méthode qui permettrait d'obtenir Mp a
	le plus d'informations sur ces objets. Elle donnerait accès à une détermination orbitale très W*D '

). Lorsqu'un système planétaire passe devant un objet du fond du ciel, il crée une lentille gravitionnelle dont la signature photométrique peut-être analysée pour obtenir la configuration du système occulteur. Là en core, il s'agit d'une méthode qui repose sur des campagnes d'observation très importantes afin d'obtenir un nombre de détections satisfaisant : la probabilité d'un tel événement est en effet de l'ordre de 10~6.

De plus, contrairement aux transits qui sont appelés à se reproduire de manière périodique, les occultations donnant lieu à des lentilles gravitationnelles impliquent un objet occulteur et un objet occulté qui sont très distants l'un de l'autre et donc indépendants : il s'agit donc d'événements uniques et la probabilité de réobserver un même système une deuxième fois est très faible. Cette méthode cependant possède un certain nombre d'avantages par rapport aux deux précédentes : elle n'a pas de biais sur la distance des étoiles hôtes ni sur leur type spectral.

Elle est surtout moins biaisée en faveur des planètes massives et proches de leur étoile. Elle a donc un fort potentiel pour établir des statistiques fiables sur les planètes extrasolaires.

Aujourd'hui, 10 candidats planétaires ont été détectés grâce à des événements de lentille précise, et la possibilité d'isoler la lumière planétaire de la lumière stellaire permettrait de déterminer la composition de l'atmosphère planétaire par spectroscopie. Le principal obstacle Wavelength (jum) Figure 1.3: Flux d'une étoile de type solaire (température effective de 6000K, rayon de 700 000 km) à 5 pc, et flux d'une planète géante analogue à Jupiter (rayon de 70 000 km et albédo géométrique de 1) orbitant son étoile à une distance de 5.2 AU. Les différentes courbes pour la planète correspondent à des âges différents. Les deux corps sont modélisés par des corps noirs simples. Issu de (Stam et al., 2004). à cette méthode n'est pas la séparation angulaire entre la planète et son étoile qui est largement à la portée des télescopes actuels pour des étoiles assez proches. Pour les étoiles de type solaire, cet obstacle est le très fort contraste entre le flux lumineux stellaire et celui de la planète : le rapport des deux flux atteint dans le domaine visible une dizaine d'ordres de grandeur (voir figure 1.3). La solution à ce problème est d'utiliser un coronographe afin de bloquer la lumière de l'étoile. Cependant, la forte diffraction de la lumière stellaire par le coronographe pollue les zones proches de l'étoile et ne permet en l'état actuel que de déterminer des planètes loin de leur étoile. Ainsi Fomalhaut b, observée grâce au télescope spatial Hubble en 2008 (Kalas et al., 2008), est-elle une planète géante orbitant à une distance projetée de 115 UA, et le chiffre approximatif de 40 UA est avancé pour son demi-grand axe. 1.2.5 Astrométrie Là où la méthode des vitesses radiales consiste à mesurer le déplacement d'une étoile le long de la ligne de visée par effet Doppler, la méthode astrométrique propose d'observer le déplacement des étoiles dans le plan du ciel. L'amplitude angulaire 6 d'un tel mouvement est où Mp et M* sont les masses planétaire et stellaire, a le demi-grand axe planétaire et D la distance de l'étoile par rapport à l'observateur.

Figure 1.4: Première image directe d'une planète extrasolaire autour de Fomalhaut b, d'environ 3Mjup, à une distance projetée de 115 au, d'excentricité e=0.11. La zone noire correspond à la partie de l'image bloquée par le coronographe et le halo lumineux est dû à la diffraction de la lumière stellaire par le coronographe. Issu de (Kalas et al., 2008).

1.3 Plan de ce travail La principale limitation de cette technique réside dans la forte précision requise : le déplacement angulaire causé par Jupiter à 5

  se traduit simplement en période orbitale pour la planète.

	Lorsque des corps supplémentaires sont présents, et que l'interaction entre ces corps est
	suffisamment faible (du fait de grandes distances mutuelles par exemple), on peut chercher
	Chapitre 2 à ajuster les observations à un modèle dans lequel chaque planète interagit uniquement avec
	l'étoile hôte. Cela revient à considérer que le signal observationnel est une somme algébrique de
	signaux keplériens indépendants et à identifier chaque fréquence du signal total à une planète,
	Moyennisation dans un système
	multiplanétaire
	Les premiers systèmes planétaires extrasolaires découverts, et la grande majorité de ceux
	2.1 Stabilité et détermination des paramètres des
	systèmes planétaires extrasolaires multiples
	2.1.1 Généralités
	Lorsque deux corps (une étoile et une planète par exemple) sont seuls à interagir gravi-

effets de marées et d'aplatissement rotationnel. qu'on connaît aujourd'hui, ne contiennent qu'une seule planète en orbite autour de son étoile hôte. Cependant, depuis la découverte par Butler et al. (1999) de trois compagnons planétaires autour de v Andromedae, 42 systèmes planétaires multiples ont été détectés. Parmi eux, 55 Cancri possède le plus grand nombre de planètes, avec 5 compagnons détectés. L'identification correcte du nombre des planètes dans ces systèmes ainsi que de leurs paramètres orbitaux soulève des difficultés spécifiques que l'on ne rencontre pas dans les systèmes n'abritant qu'une planète. Les méthodes d'ajustement de données observationnelles et d'analyse des systèmes extra solaires multiples sont, de plus, souvent très gourmandes en ressources de calcul. Après avoir introduit le sujet et présenté un exemple typique, nous proposons dans ce chapitre un moyen de réduire les temps de calcul caractéristiques des études menées sur les systèmes multiples dans le cas où le système possède une planète dont la période de révolution orbitale est beaucoup plus courte que celles des autres planètes du système. tationnellement, la dynamique qui résulte de leur interaction est particulièrement simple : la forme elliptique et l'orientation de leurs orbites sont constantes, et seul un angle orbital change. Ainsi, ces systèmes sont toujours stables en l'absence de perturbations extérieures, et peuvent exister indéfiniment dans des conditions idéales. Dans ce cas, l'ajustement d'un modèle orbital aux observations est assez simple techniquement puisque la période du signal observé ce qui reste techniquement simple et rapide.

  Stabilité et détermination des paramètres des systèmes planétaires extrasolaires multiples keplérien négligeant les interactions mutuelles entre les deux planètes. Ce modèle est fortement instable, et la planète extérieure est éjectée en 5000 ans.

	Chapitre 2 Moyennisation dans un système multiplanétaire a two indépendant Kepterian modcl (S3) 3-body dynamical model (S4) 2.2 Article inclus : Averaging on the motion revolving body. Application to the stability de la planète rapide autour de l'étoile hôte, en un second terme Hn qui décrit le système des fast of a n -1 planètes extérieures interagissant entre elles et avec l'étoile hôte, et enfin en une somme de termes décrivant les interactions individuelles de chaque planète extérieure avec la planète période de 9.6 jours, tandis que la seconde planète la plus rapide possède une période de 310.5 jours. 2.1 Sur le panneau a, à droite, on voit une intégration du système avec pour conditions initiales planetary System rapide, à l'ordre quadripolaire. Nous comparons notre modèle moyen à trois autres méthodes d'intégration : une première
	les paramètres du meilleur ajustement aux données pour un modèle newtonien, qui prend en intégration classique incluant les quatre planètes; une intégration dans laquelle on a simple
	compte les interactions mutuelles entre les planètes. Ce modèle est plus stable que le précédent, Nous moyennisons alors le Hamiltonien (2.1) sur l'anomalie moyenne M\ de la planète ment enlevé la planète intérieure rapide; une intégration dans laquelle on a ajouté la masse
	mais d'après Correia et al. (2005) la planète extérieure est éjectée après environ 40000 ans. * *0 Dans le cas où le système planétaire étudié possède une planète dont la période orbitale est rapide, en utilisant la méthode vectorielle de Boué et Laskar (2006). Celle-ci fait apparaître de la planète rapide à la masse de l'étoile. Nous avons testé ces méthodes dans un système
	C. tz Ç beaucoup plus courte que les autres, cette période courte dicte le pas de temps des intégrations trois vecteurs unitaires (i, j, k) liés à l'orbite de la planète intérieure comme suit : i pointe coplanaire ainsi que dans un système où la planète intérieure est initialement inclinée par rap 100 100
	É Ces deux exemples montrent la nécessité d'effectuer une analyse de stabilité complémentaire S utilisées pour tester l'ajustement des données observationnelles ou pour analyser la stabilité dans la direction du périastre, k est colinéaire au moment cinétique orbital et j complète les port aux planètes extérieures. Enfin, comme la planète intérieure dans le système n Arae a
	à l'ajustement des données, indépendamment de la sophistication du modèle utilisé pour ajuster du système. deux précédents pour former une base orthonormale directe. Le Hamiltonien moyennisé sur une masse qui est un ordre de grandeur en-dessous des autres masses planétaires, nous avons
	les données. Une carte de stabilité du système est présentée sur la figure 2.2b. Elle montre Mi est alors (équation A.l de l'article) : également mené l'intégralité des tests dans un système fictif où nous avons multiplié par 10
	le niveau de stabilité du système en fonction des conditions initiales de demi-grand axe et Dans le travail inclus ci-après, nous décrivons une méthode pour moyenniser le mouvement la masse de la planète intérieure.
	de longitude du périhélie de la planète extérieure, calculé par analyse en fréquence (Laskar, d'une planète très rapide par rapport aux autres planètes d'un même système de façon ana
	1993) : les gris clairs sont moins stables que les gris sombres. Par-dessus la carte de stabilité, lytique. La période orbitale de cette planète rapide n'est alors plus le facteur limitant du pas La figure 2.3 de l'article, qui reproduit la figure 6 de l'article, illustre la comparaison entre
	des lignes noires représentent les niveaux de capacité du modèle à reproduire les données observationnelles. constant, qui est une quantité mesurant la d'intégration, ce qui permet des gains de temps conséquents. Les équations du mouvement moyennisé sont présentées dans un formalisme vectoriel inspiré de Boué et Laskar (2006). (V)Mt = A rri k 2 (1 -3e?) -3^-^+ 3e? (2.2) les quatre méthodes dans le cadre du système fictif qui possède une planète intérieure massive, H01 rk en présence d'inclinaisons mutuelles entre les planètes. Les quatre panneaux présentent des
	cartes de stabilité calculées en fonction du demi-grand axe de la seconde planète la plus proche
	Sur cette figure, on voit clairement que le meilleur ajustement possible, situé au minimum de >/? et marqué par un point rouge, est dans une région instable de l'espace des paramètres. Cependant, une zone stable se trouve à proximité -dans le cas particulier de HD 202206, cette zone correspond à la résonance de moyen mouvement 5 : 1 entre les deux planètes. Correia et al. (2005) proposent donc de choisir un système dont les paramètres se trouvent dans la zone stable, tout en restant le plus proche possible du meilleur ajustement. Les conditions tiflie (ycars) La méthode proposée exploite le fait que la planète qui orbite rapidement autour de l'étoile est de manière équivalente la planète la plus proche de l'étoile. Ainsi, on peut développer la partie du Hamiltonien qui décrit les interactions entre la planète rapide et le reste du système en fonction du rapport des distances, en s'arrêtant dans notre cas au second ordre, ou ordre quadripolaire. de l'étoile (sur l'axe des abscisses), et de l'argument de son noeud (sur l'axe des ordonnées). Dans le cas où les interactions séculaires entre la planète intérieure et les planètes extérieures Le panneau (a) montre la carte obtenue à partir de équations moyennes, et le panneau (b) sont faibles, l'excentricité de la planète intérieure peut être supposée constante, et on peut celle qui résulte d'une intégration complète du système. Le panneau (c) et le panneau (d) alors simplifier encore les termes d'interaction en les moyennisant à nouveau sur l'argument correspondent à des modèles à trois planètes; dans le modèle (c) on a simplement enlevé la du périhélie de la planète intérieure. Le Hamiltonien résultant est alors (équation 2.15 de planète intérieure, tandis que dans le modèle (d) on a rajouté sa masse à l'étoile hôte. l'article) : 100 100
	initiales de ce système sont repérées par un point jaune. On repère la planète rapide par rapport à l'étoile hôte avec le vecteur ri, et les autres On constate que les équations moyennes reproduisent fidèlement la forme de la carte obtenue
	Le panneau c, enfin, présente le demi-grand axe et l'excentricité des deux planètes au cours d'une intégration à très long terme du système issu des conditions initiales stables repérées en planètes plus lointaines par rapport au barycentre de l'étoile hôte et de la planète rapide avec les vecteurs (rj)j=2,n I on complète ces variables de position avec des variables d'impulsion pour = Hn + £ (Hhk) = ~«E ^(1 -3-^) , par intégration complète, tout en utilisant environ 10 fois moins de temps de calcul. Les autres méthodes simplificatrices ne sont pas suffisantes dès que la planète intérieure est massive ou (2.3) les n planètes, (fî)i=i,n. de sorte que l'on ait un ensemble de 2n variables canoniques (voir 2^fc 'k \ 1k / que le système n'est pas coplanaire. Elles fonctionnent cependant assez bien lorsque la masse
	jaune sur le panneau b, et illustre la stabilité du système proposé sur 5 milliards d'années. équations 2.2 dans l'article). Le Hamiltonien du système, développé à l'ordre quadripolaire dans les rapports ri/r*, est donné par (équations 2.9a-d dans l'article)1 : avec a = G-1 (l + -e?) . de la planète intérieure est petite et que le système est coplanaire (voir figure 3 de l'article). (2.4) -100 -100
	qui est une condition nécessaire de son existence. l o n g i t u d e o f p e r i h e l i u m H -Ki -f Hn + ^H\^, avec : 2 _ r? /Xi A Ki -6 -4-2 d'intégration numérique inspiré de celui des intégrateurs symplectiques. Les sections 2.2 et 2.3 (2.1a) 0 2 (2.1b) Ce Hamiltonien a de nombreux avantages pour l'intégration de systèmes extrasolaires. D'une part, il ne suppose aucune restriction dans la valeur des excentricités ni des inclinai sons planétaires. D'autre part, les termes d'interaction donnent lieu à des équations du mouvement qui sont intégrables explicitement, ce qui permet leur utilisation dans un schéma 0.92 0.93 0.94 0.95 0.92 0.93 0.94 0.95 ( d e g ) 1 Introduction
	FIGURE 2.2: Importance de l'analyse de stabilité pour les systèmes multiplanétaires extrasolaires : l'exemple de HD 202206 (Correia et al., 2005). Panneau a, gauche : Intégration des conditions ini rfc-rfc/ -G (2.1c) de l'article développent en détail ces considérations. Figure 2.3: Cartes de stabilité pour un système inspiré de p Arae, dans lequel on a multiplié ^=e(|--)+ e 2^k 'k / 2^k<k'^n rao + nrt\ fk -rk' par 10 la masse de la planète intérieure. L'axe des abscisses correspond au demi-grand axe Notons ici que lorsque les interactions séculaires entre la planète rapide et les autres planètes 2.1.2 Un exemple de caractérisation tiales issues du meilleur ajustement d'un modèle sans interactions entre planètes. Panneau a, droite : Pimk ne sont plus négligeables, il faut utiliser le Hamiltonien (2.2). Les équations du mouvement de la seconde planète la plus proche de l'étoile, et l'axe des ordonnées à l'argument du noeud
	Intégration des conditions initiales issues du meilleur ajustement d'un modèle avec interactions mu H l,k --G 2rl (2-ld) issues des termes d'interaction entre la planète rapide et les autres planètes ne sont alors plus de cette même planète, a : équations moyennes; b : système complet à quatre planètes; c :
	La figure 2.2 présente l'exemple du système HD 202206 au moment de la publication de sa tuelles. Panneau b : Carte de stabilité du système autour du meilleur ajustement, en fonction du intégrables simplement, et il faut utiliser un intégrateur numérique traditionnel. système sans planète intérieure; d : système dans lequel la masse de la planète intérieure a
	rouge pour la planète intérieure et vert pour la planète extérieure) dans une intégration prenant pour conditions initiales les paramètres du meilleur ajustement aux données, pour un modèle 2.4 et 2.5. prête particulièrement bien à cette méthode : la planète la plus proche de l'étoile possède une solution stable proposée. Panneau c : Intégration à long terme de la solution stable proposée. 1. Les masses réduites fa et les constantes gravitationnelles //,; sont définies dans l'article aux équations de présenter à l'analyse de la stabilité du système /i Arae qui contient 4 planètes et qui se l'ajustement. En rouge : position approximative du meilleur ajustement; en jaune : position de la a, à gauche, on voit l'évolution du demi-grand axe et de l'excentricité des deux planètes (en stables que les gris clairs. Les courbes représentent les niveaux de yfx*, qui mesure la qualité de Dans la dernière partie de l'article, nous appliquons les équations moyennes que nous venons On a ainsi découpé le Hamiltonien en un premier terme keplérien K\ qui décrit le mouvement seconde planète (Correia et al., 2005), afin d'illustrer ce qui vient d'être décrit. Sur le panneau demi-grand axe et de la longitude du périhélie de la planète extérieure. Les gris sombres sont plus été rajouté à la masse de l'étoile centrale.

a déterminé que les planètes intérieures du Système Solaire ont un tel comportement chaotique. Récemment,

[START_REF] Laskar | Existence of collisional trajectories of Mercury Mars and Venus with the Earth[END_REF] 

ont évalué à environ 1% la probabilité que l'excentricité de Mercure prenne une valeur élevée dans quelques milliards d'années, ouvrant la possibilité à des trajectoires collisionnelles entre les planètes intérieures.

Or, les modèles de formation planétaire prévoient que les planètes se forment peu de temps après leur étoile hôte. Lorsque l'on observe aujourd'hui un signal indiquant la présence d'un système planétaire extrasolaire autour d'une étoile âgée de plusieurs milliards d'années, il faut donc s'assurer que le modèle de système proposé soit dynamiquement stable sur une durée comparable. Pour ce faire, il faut réaliser un grand nombre d'intégrations avec des conditions initiales différentes prises au voisinage de l'ajustement qu'on souhaite tester, pour ensuite leur appliquer des outils de mesure de stabilité. Souvent, le modèle optimal issu de la procédure d'ajustement n'est pas stable, et il faut modifier légèrement ses paramètres pour obtenir un système un peu moins bon dans sa reproduction des observations, mais qui possède la stabilité

  Using resuit (2.26) in Eq. (2.22), we obtain the full solution of the équations generated by {H\,k) for a given k. Between times t and t', if we note for ail variables x(t') -x' and

	Averaging on the motion of a fast revolving body
		k(r')	= TZrk(QkAt)-k(ty,	(2.25)
	t'		
	/	1 rk &k n k(rMr = ---a (k(f') -k(O) + Ar --. , Yk rz-rk rk	(2.26)

x(t) = x, we hâve:

  The équations presented in Appendix A can provide a way of treating
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  de la particule, et que par conséquent ^est encore conservé à cet ordre de développement, alors même qu'il n'y a plus de symétrie de révolution par rapport à la normale au plan de l'orbite extérieure. Cependant, pour un système où le corps extérieur est elliptique, n'est plus une intégrale première dès lors qu'on pousse le développement du hamiltonien un ordre plus loin en ri/r2. Il s'agit donc d'une coïncidence heureuse comme le disent Lidov et Ziglin (1976), et qui se rencontre sous d'autres formes dans la version complète et la version restreinte extérieure du problème quadripolaire séculaire, comme nous le verrons dans la section 3.2. Lorsque ^est positif, l'inclinaison du corps intérieur reste toujours comprise entre 0 et 7t/2, la borne supérieure étant exclue. De même, lorsque ï)i est négatif, l'inclinaison du corps intérieur reste toujours entre n/2 et 7r, la valeur de n/2 étant ici aussi exclue. En revanche, lorsque ^= 0, le problème est dégénéré car cette égalité implique ei = 1 ou «i = tt/2. L'étude des orbites polaires dans le problème restreint intérieur doit donc incorporer des termes d'interaction supplémentaires pour lever cette dégénérescence. De bons candidats sont par exemple le terme suivant dans le développement multipolaire du potentiel, l'inclusion d'un terme d'aplatissement pour le corps central, ou encore l'inclusion d'un terme dû à la relativité générale. Béletski (1986) cite une étude de Lidov sur les satellites d'Uranus dans laquelle il mentionne ce problème et utilise l'aplatissement d'Uranus pour le résoudre. Delsate et al.

(2010, à paraître) mènent une étude détaillée de cette situation, adaptée au cas d'un satellite artificiel en orbite quasi-polaire autour de Mercure. L'influence de la relativité générale enfin, est abordée par

[START_REF] Migaszewski | Relativistic Lidov-Kozai résonance in binaries[END_REF]

.

  , mais aussi potentiellement dans l'étude des objets lointains du système Solaire, des orbites stellaires autour de trous noirs binaires, ou l'étude de systèmes planétaires autour d'étoiles binaires. Un tel système a été découvert cette année autour de HW Virginis(Lee et al., 2009), mais ses paramètres orbitaux sont encore très imprécis. Il est composé de deux corps de 19.2Mjup et 8.5Mjup, de périodes orbitales respectives 5767 et 3321 jours, alors que la binaire HW Virginis a une période de 2.8 heures.

Le problème quadripolaire restreint extérieur a été étudié par

Palaciân et al. (2006) 

et

Palacian et Yanguas (2006)

, qui ont déterminé les points fixes du problème séculaire pour reconstruire des familles d'orbites périodiques du problème non séculaire. Nous ne regardons ici que le problème séculaire, et nous en proposons une description complète simple dans le formalisme vectoriel que nous utilisons tout au long de ce travail, et qui est utilisable directement dans un cadre astronomique.

  par le perturbateur mlf mais également sous l'effet de sa propre rotation. Lorsque ces deux effets sont suffisamment faibles, on peut les calculer séparément et négliger leurs interactions éventuelles. On ne va calculer que les effets d'ordre le plus bas, et considérer que la primaire reste symétrique de révolution.

	Le potentiel gravitationnel d'un corps non-sphérique mais symétrique de révolution et de
	rayon moyen R0, à une distance r' de son centre et en un point dont la colatitude est 6', est
	donné par :						
							(4.17)
	De ce développement, nous ne garderons que le terme d'ordre 2	
							(4.18)
	A cet ordre, la déformation de la primaire est entièrement caractérisée par le coefficient J2
	et par son orientation, c'est-à-dire la direction de l'origine des colatitudes.	
	Aplatissement dû à la marée				
	Pour calculer le	dû à la marée, on se place dans la situation idéalisée où le perturbateur
	reste fixe par rapport au corps étendu. La marée consiste alors en un bourrelet dirigé vers le
	perturbateur, et son potentiel est décrit par l'expression instantanée (4.10). On comptera donc
	les colatitudes 0' dans ce paragraphe à partir de la normale à la direction du perturbateur (voir
	figure 4.2 a). Dans cette situation, on a r' • Yi/r'.r\ = sinO1. Or, P2{cos9') + P2(sm6') =
	1/2, et donc l'égalité entre la dépendance angulaire du potentiel de marée instantané et la
	T, 0 dépendance angulaire du potentiel gravitationnel de la planète s'écrit : ~OAC2,0 g rl GmlRl	(4.15)
			n				
	* T, 1	-	-3(At)o&2,o	Gm{Rl r8 '1	2	n ' V1 tt-Ti + ri A cu0 + vi	(4.16) (4.19)
	4.2.2 Aplatissement On trouve ainsi à l'ordre le plus bas :				
	La primaire étendue m0 peut se déformer non-seulement sous l'effet de la marée levée sur

elle

  La partie purement radiale ne contribue pas à l'aplatissement du solide. En revanche, le second terme est une harmonique sphérique d'ordre deux dans l'intérieur de la primaire. La réponse de la primaire dans son intérieur consiste en une harmonique de même ordre qui lui est proportionnelle(Love, 1927, paragraphe 179), Interactions de marées séculaires La force subie par la planète lorsqu'elle lève une marée sur l'étoile est donnée par les expressions (4.15) et (4.16). De même, la force subie par l'étoile lorsqu'elle lève une marée Ainsi, d'après le principe des actions réciproques, la planète subit une force opposée et d'égale magnitude, si bien que la force de marée totale subie par la planète est : unitaire colinéaire au vecteur de Laplace de l'orbite de la planète, lq est un vecteur unitaire colinéaire au moment cinétique orbital de la planète et que ji = ki A q.Le résultat est donné par une somme de deux termes correspondant respectivement aux marées levées par la planète sur l'étoile, et aux marées levées par l'étoile sur la planète. Les deux termes ont la même forme, il suffit d'échanger les indices dans les quantités m, k2, At, R,u). 'interaction de marée instaure des transferts entre le moment cinétique orbital du pertur bateur et le moment cinétique du corps étendu sur lequel la marée est levée, si bien que le moment cinétique total est conservé. En notant /0 et I\ les moments d'inertie de l'étoile cen trale et de la planète par rapport à leur axe de rotation, et en se plaçant dans l'approximation gyroscopique où le moment cinétique rotationnel est colinéaire au vecteur rotation, on peut Ici encore, un terme est dû à la marée levée sur l'étoile par la planète et un autre est dû à la marée levée sur la planète par l'étoile. Pour ce dernier on a après moyennisation :

		(îi)marée = viPï (ilr0))+dtl))	(4-44)
	fc2,o-^r'2P2(cos(?') Enfin, la variation séculaire du demi-grand axe planétaire s'obtient en moyennisant la relation (4.22)
	sur la planète est : (4.35). Comme pour le vecteur de Laplace et le moment cinétique, la dissipation dans l'étoile
	finalement récapituler l'action des termes séculaires de marée par : et la dissipation dans la planète contribuent chacune pour un terme :
	La continuité au niveau de la surface de la primaire entre cette réponse interne et l'expression Le terme d'évolution du moment cinétique orbital dû à la marée levée par l'étoile sur la planète
	du potentiel (4.18) valable à l'extérieur de la primaire permet alors d'écrire : est :
	p(->o) * T,0	^8 m Ai (£i) . \ / maree GmlR\ = A, (iclr0)) + Ai (xAA 6fc24(Ai)V.Aat(l-e"f)f^r a, ^(1 + 15e,/2 + 45ef/8 + 5e?/16)	(4.29) (4.39) lo i • KL\ ni
	p(~>0) * T, 1 6M»\ _	^^-J2,rP2 (cos 6') = &2,0 ixo -3(Ai)ifc2, GmlR\ (-ri) • (-Vi) o ^8 ' 1 3(Ai)ife2,i GmlR\ af(l -' ef)9/2 A) (^o)marée = -a A (^1 ) marée O î -yr -i < 1 II 1 + 31ef/2 + 255ef/8 + 185e5/16 + 25e?/64\ (cos <9' ) . (-rj) + (-rO Au, + (-Vi) 1 -e\	(4.23) (4.30) (4.40) (4.41) (4.45)
	On en déduit finalement la valeur du coefficient J2,r (Dermott et al., 1988; Yoder, 1995) : G + ie>+ àe0 (u)i 'i])ii + G + ïe"+ée»){u>i •ji)ji Il faut maintenant appliquer la même procédure de moyennisation sur M\ à l'équation à-') = 6A)2,o(A4)0 GmlRl LOq • /Cl n\( (1 + 15e?/2 + 45et/8 + 5e5/16) MiAai(l " e?)13/2 ni
	t ^2 ,r -0^2,07^-h O O 777-0 Importance relative des deux effets T, 0 p(~>1) -* T, 0 p(-»o) * T, 0 i p(-+i) p(">o) T, 1 -* T, 1 * T, 1 1 + 15^/2 + 45ef/8 + 5e?/16 (1 -e -ni -(1 -f-3e^3e1/8)(cj1 • kj) 1 k^) > (4.36) (4.24) (4.31) (4.32) cinétique), on trouve : o)\ _ îM<"i/J|3/1'2,iGm.[j/?i> 1 + 31e?/2 + 255e,/8 + 185e?/16 + 25ef/64 ~ef \^l) marée + ( CL (4.46) (4.47) (4.34). IMltf ii a? 4.3.2 Effets séculaires de l'aplatissement rotationnel des corps
	Rappelons tout d'abord qu'en général, le plan orbital du perturbateur n'est pas nécessairement confondu avec l'équateur rotationnel de la primaire, même si c'est le cas à la fin de l'évolution du système et lorsque l'équilibre est atteint (Hut, 1981). On peut cependant comparer J2R 5(1 + 3ef/2 + ëj/8) . ji -(A«)i (1 + 3e j/2 + e,/8) (wi • ii)k. 2(1 -e?)5 Jl v ;l 2(1 -ef)5 La force subie par la planète du fait de l'aplatissement rotationnel de l'étoile est donnée par force : 3(At)iA;2,iGfm^f f af(l -ef)9/2 l -9(Ai), (1 + 15e,/4 + 15e,/8 + 5e?/64)ni 111 + + eJ/8 (1 _e2)13/2 18 (1 ~ei) l'expression (4.28). De même, la force subie par l'étoile du fait de l'aplatissement rotationnel (u>i 2\5 de la planète est :
	et J2)t pour estimer leur importance relative : Gi -ri A (FTi0 + Frti) -Tt -(|e? + te?) (u>i • ii)ii +	ki)kj +	(4.33) (4.42)
	t/2, t Le vecteur de Laplace, qu'on a déjà appelé X\ varie selon l'équation : 3Guii (1/2 + 9e,/4 + 5e?/16)u>i -1 + 15ef/2 + 45e,/8 + 5eî'/16 (1 -e?)3/2 En substituant Ji et /Ci et en écrivant que ji = (/Ci A Ji)/(e\yj\ -ef), on obtient : «iki (4.37) -rao/^i 2rf 2(u>! • (-ri))wi + (p -5^' (~ri) (4.48)
		J2,R	^0rl
	HiPiii -(Ft,o + Ft>i) AGi + D'après le principe des actions réciproques, la planète subit une force opposée et d'égale A T? • (4-34)
	Le cas de HD 80606 que nous souhaitons modéliser ici fait interagir une planète d'environ On substitue maintenant I\ = eiii et K\ = J\ -efk, = Gi/A] : u->o)\ _ niPi3k2,\GmQRâ magnitude, si bien que la force totale subie par la planète dûe à l'aplatissement des deux corps /ii« w est : ï Enfin, la partie dissipative de la force de marée crée une variation de l'énergie orbitale E\ 3.9Mjup avec une étoile de type solaire (Naef et al., 2001). Si l'on prend pour les autres paramètres des valeurs typiques du système Soleil -Jupiter, en plaçant initialement la planète à 5 unités astronomiques de son étoile, on trouve les rapports suivants : ~) ss4.1(n8, (-:) ss 4.10~7 . (4.26) R/ planète V 2,/?/ étoile de la planète, et donc de son demi-grand axe. L'expression E\ = -ii\f3i/2a\ implique une variation du demi-grand axe selon à\ja\ -soit : 2 n2 âi = -[(Ft,o + ft.O-vj] . (4.35) A1P1 Ai (K,[--G°(î-e2)9/2 ' {("V2 + ei/4)(^i -îi)îi -(1/2 + 9e^/4 + 5ei/16)a)i -W2 ±MI±±4/16)(UI.Ki) _ 1 + 5(1 -f-3ef/2 + éi/S) (1 + 3ef/2 + ef/8) (/Ci AJi)-(At)i 2(1 -ef)11/2 v 1 17 v 71 (wi-Xi)/C, 2(1 -ef)11/2 /(I + 15ef/4 + 15ef/8 + 5e?/64 )m Fp = F^r1' -F<r0) (4.49) 11 1 + 3ef/2 + ef/8 -9(At); (1 _e2)13/2 18 (wj (1 -ef)11/2 L'évolution résultante du moment cinétique orbital et du vecteur de Laplace de la planète + «j/8 + fel/iy) Kl] (4.38) (1-e?) (1 -ei)2 est donnée par :
	Afin d'obtenir les évolutions séculaires du moment cinétique, du vecteur de Laplace et Le terme analogue dû à la marée levée sur l'étoile par la planète,^) est présenté
	Le terme analogue dû à la marée levée par la planète sur l'étoile, Ai Gi -r i A F p -T p ;	est donné (4.50)
	dans la table récapitulative 4.2, équation (4.70). Eifâii -FpAGi + /3iriArp.	(4.51)

Ainsi, aussi bien pour l'étoile que pour la planète, on peut négliger la déformation due à la marée par rapport à celle qui est due à la rotation, au moins dans la configuration initiale.

4.3.1

Le moment cinétique orbital de la planète, noté Gi varie sous l'effet du couple de cette du demi-grand axe, on moyennise maintenant les trois équations précédentes par rapport à l'anomalie moyenne M\ de la planète. On considère comme précédemment que ii est un vecteur En utilisant la relation Wj = (uq • ii)ii + (uq * ji)ji + (aq • ki)ki pour éliminer le terme (uq • ji)ji (ceci afin de se limiter aux deux directions du vecteur de Laplace et du moment Ldans la table récapitulative 4.1, comme la somme d'un terme instantané (4.62) et d'un terme retardé (4.63). La variation totale du vecteur de Laplace est alors donnée par :

Table 4

 4 

		.2: Contributions à l'évolution des moments cinétiques.
	Marée levée par le corps d'indice 0 sur le corps d'indice 1	
	Terme retardé :					
	3(At)ik2,iGmlRl af(l -e?)9/2	-+ -e?) (Wl • Xi)îi -(-+ -e? + --eî J «i
	1 -+ -e? + -e4 3 2 1 4 2 ' 4"1 T 16'V (1 -e?) (* + 2 6 (^i • /Ci)	2	45 4	16	n i (1-e?)2.	/Ci (4.69)
	Marée levée par le corps d'indice 1 sur le corps d'indice 0	
	Terme retardé :					
	3{At)ok2fiGm\RQ f [3 a?( 1-e?)9/2 2 + 4Cl 1	. (wo • Ti)Ti -( -+ -ej + -e1 _ .1 9 9 5 4
			(w0 • /Ci)	15		45	ni
	~H-rCi +	16	7^!T	-(l+2-eî + -eï + 16e]	(1 -e?P	K.\>(4.70)
	Influence du bourrelet rotationnel du corps d'indice 1		
	*2*	[("i '	' ki)ji " ("i ' Ji)(wi ' ki)ii]	(4.71)
	Influence du bourrelet rotationnel du corps d'indice 0		
	*2°a?(l"-dj)3/2 ^'J°' il^a,°' kl^' " (^o-ji)K ki)ii]	(4.72)
	Influence du compagnon lointain d'indice 2a		
	g'G2 [(/Ci • k2)JCi A k2 -5{h • k2)h A k2]			(4.73)
	Evolution des moments cinétiques orbitaux et rotationnels
	Aj (/C,)= (4.69) + (4.70) + (4.71) + (4.72) + (4.73)	(4.74)
	(G2) = -(4.73)						(4.75)
	h (ûi) = -(4.69) -(4.71)					(4.76)
	Ip (h>0) = -(4.70) -(4.72)					(4.77)
	a a' est défini par (4.84)					

Table 4 .

 4 3: Contributions à l'évolution du demi-grand axe planétaire. Marée levée par le corps d'indice 0 sur le corps d'indice 1

	Terme retardé :			
	(Ai):	ek^GmîRl -e?)13/2	n i	r/ A +Tei + _8ei + Ï6ei)(u'I'/Cl) 15 2 45 4 5 6\
				, , ~11 + Ye'+ "s-®1 + 31 2 255 ,	185 16	25 8 6l + 64ei	n i 1-ef	(4.78)
	Marée levée par le corps d'indice 1 sur le corps d'indice 0
	Terme retardé :				
	/A,V (Af)oMû|(l-eî)^ni 1 + "yei + 6^2,0^x771? jRg	) (wo • ^i)
					31	255	185	25	n i
				"	1 + "AT^l 4 2 ~1 ' 8 1-1 ' 16 6Ï + 64e' A-	(4 79)
	Evolution du demi-grand axe planétaire	
	(ài) = (4.78) + (4.79)				(4.80)

Pour rappel, les équations qui en résultent sont :

  , permet d'envisager des situations où le corps extérieur est sensible aux perturbations du couple intérieur. Dans le cas de HD 80606, où le compagnon stellaire lointain possède un très grand demi-grand axe, le modèle restreint est toutefois suffisant.On intègre ici la précession du périhélie planétaire à l'ordre relativiste le plus bas. Elle n'agit que sur le vecteur de Laplace, et est donnée par le terme suivant(Lestrade et Bretagnon, 

	1982; Tourna et al., 2009, par exemple) :				
	Gr 777-0	n i		
	relat	C2 O-i (1	_ e2)3/2	/Ci A	(4.85)
	4.3.5 Modèle complet				
	Les tables 4.1, 4.2 et 4.3 présentent les équations du modèle complet. Du fait de la conser
	vation du moment cinétique total, il n'est pas nécessaire d'inclure l'équation sur le moment
	cinétique du compagnon lointain (4.75), mais nous l'intégrons néanmoins.	
	Nous simulons numériquement l'évolution des 5 vecteurs	et du scalaire
	ai grâce à un programme que nous avons écrit en Fortran, basé sur un intégrateur Dopri
	d'ordre 8 écrit par l'équipe ASD (Hairer et al., 1987).		
	4.4 Résultats et discussion			
	4.4.1 Paramètres physiques et orbitaux utilisés	
	Nous effectuons des simulations numériques du modèle présenté dans les sections précédentes
	dans un contexte proche de celui de HD 80606. Afin de pouvoir comparer nos résultats avec
	ceux de Wu et Murray (2003) et Fabrycky et Tremaine (2007), nous utilisons les mêmes
	paramètres qu'eux.				

  'inclinaison initiale joue ici un rôle important car à travers l'intégralede Lidov-Kozai yj1 -e? cosi\, c'est d'elle que dépend l'excentricité maximale atteinte par la planète, et donc la distance de passage au périhélie, critique pour l'intensité des interactions de marée. La figure 4.3 montre ainsi un cas où l'inclinaison initiale était insuffisante pour produire une évolution significative sur 5 milliards d'années, malgré des excentricités atteintes de plus de une planète ou une étoile est un système mécanique complexe, et modéliser sa déformation sous l'effet de contraintes qui dépendent de multiples fréquences éventuellement changeantes est un problème qui reste ouvert. Notamment, il n'est pas clair de savoir si la dissipation des modes sismiques propres, qui sont des modes libres du corps, suit les mêmes lois que la dissipation des modes excités par un perturbateur[START_REF] Greenberg | Frequency Dependence of Tidal q[END_REF].

	On place initialement la planète à 5 UA de son étoile, et l'étoile lointaine à 1000 UA. Les
	périhélies initiaux n'ont pas d'influence notable sur l'évolution et on les fixe donc à 0. On
	assigne une excentricité de e2 = 0.5 au compagnon lointain, mais elle n'apparaît que dans
	le facteur numérique a' (4.84). On assigne également une excentricité initiale de e\ = 0.1 à
	l'orbite planétaire.
			t (Gyr)
	LO	
	^-
	CO	-
	C\J	-
		t (Gyr)	t (Gyr)
	le paragraphe suivant.
	4.4.2 Facteur de qualité
	Les paramètres les moins bien connus dans le système que nous intégrons sont par conséquent
	(At)i et (A£)o, qui représentent la dissipation intérieure à la planète et à l'étoile centrale.
	Par analogie avec l'oscillateur harmonique forcé (Alexander, 1973), l'usage est de quantifier
	la dissipation en utilisant non pas un décalage temporel, mais un facteur de qualité Q.

L0.9. L'inclinaison initiale nécessaire pour produire une migration de Kozai dépend également des paramètres physiques des corps, notamment des décalages de marée (A£)i et (At)0. De manière générale, dans les simulations que nous avons faites, une inclinaison supérieure à 86°é tait nécessaire pour produire la migration. La détermination des paramètres (At)i est la plus problématique, et nous l'abordons dans Définition Un corps comme Rappelons que pour un oscillateur harmonique de fréquence propre u>0, soumis à un forçage périodique sinusoïdal de fréquence cjf et d'amplitude Af, en présence d'un frottement représenté

  qui sont susceptibles d'avoir une influence sur les paramètres physiques et donc sur l'orbite de la planète. Nous avons également fait la supposition que les aplatissements dus aux marées étaient négligeables par rapport aux aplatissements rotationnels. La figure 4.8 montre les valeurs des J2 rotationnels et de marée données par les équations (4.24) et (4.20), ainsi que le rapport ^2,t/^2,ae (4.25), pour chacun des deux corps, dans la simulation qui est montrée figure 4.7.Au début de l'évolution, lorsque le demi-grand axe est encore suffisamment grand, ce rapport est négligeable. Cependant, une fois que les cycles de Kozai sont totalement annulés et que le demi-grand axe diminue fortement, la déformation due à la marée devient rapidement comparable à celle qui est due à la rotation. Un modèle prenant en compte cette déformation semble souhaitable pour rendre compte de manière plus fidèle de ce qui se passe durant cette phase.Il semble finalement que le modèle de migration de Kozai proposé ici soit, dans sa première phase, c'est-à-dire avant l'extinction totale des cycles de Kozai, assez robuste et conforme aux hypothèses que nous avons faites. Cette évolution mène à un état de forte excentricité et d'inclinaison relative entre l'axe de rotation stellaire et l'orbite planétaire qui correspond aux observations actuelles du système HD 80606. Cependant, une fois les cycles de Kozai totale ment arrêtés, le comportement du système dépend fortement du modèle de marée adopté, et les déformations dues à la marée ne peuvent vraisemblablement plus être négligées.

	t (Gyr)	t (Gyr)
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et donc l'inclinaison sont fixes et le périhélie circule.La variation de 771 s'annule aussi lorsque 811120;! = 0, soit cos2o;i = +1 = 0 ou 7r) ou cos2o;i = -1 (ijj\ = ±7t/2). Si cos2cji = +1, l'annulation de la variation du périhélie implique 771 = 0, soit e\ -1. Cette situation est en-dehors du cadre que nous avons choisi, dans lequel les corps ont des orbites elliptiques.En revanche, lorsque cos 2ui = -1, on trouve que l'équation û\ -0 peut avoir une solution dès lors que jjx ^yj3/5.Lidov (1962) etKozai (1962) ont montré que le point fixe qui apparaît dans ce cas est elliptique et correspond donc à un régime de libration du périhélie autour de cüi = ±7r/2. En utilisant la relation (3.3), on peut donc dire que ce régime de libration apparaît lorsque l'on étudie des situations dans lesquelles l'inclinaison de l'orbite du corps intérieur est supérieure à Acos^/3/5 ~39.23°. Lorsque ^> yj3/5, le périhélie du corps intérieur circule pour toutes les conditions initiales. La variation de 771 (3.9) s'annule enfin également lorsque 771 = 1, soit ei = 0. Dans ce cas, le périhélie de l'orbite est mal défini, et il faut utiliser d'autres variables pour étudier le problème. L'article présenté dans la section 3.2 propose d'étudier le problème du point de vue de la dynamique du noeud et de l'inclinaison plutôt que du point de vue de l'excentricité et du périhélie. Il montre que pour le problème non restreint, dans le domaine de l'espace des paramètres qui correspond à une dynamique topologiquement équivalente au problème de Lidov-Kozai, les trajectoires d'excentricité nulle et donc d'inclinaison maximale ont un noeud qui circule lorsque la dynamique est équivalente au problème restreint de Lidov-Kozai au dessus de la valeur critique ^= yj3/5. Dans ce cas, la trajectoire périodique associée à un corps intérieur en orbite circulaire est stable.En revanche, dans le domaine où la dynamique est équivalente à celle du problème de Lidov-Kozai au dessous de la valeur critique \}x = yj3/5, un régime de libration du noeud apparaît.Dans ce cas, les trajectoires associées à un corps intérieur en orbite circulaire sont instables, et une trajectoire ayant une excentricité faible et une inclinaison supérieure à 39.23°pour conditions initiales va voir son excentricité osciller avec une amplitude non négligeable.
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moment cinétique orbital de la planète ainsi que les moments cinétiques rotationnels de l'étoile et de la planète sont alignés, mais où l'orbite planétaire est inclinée par rapport au compagnon stellaire lointain, vers un état à forte excentricité et petit demi-grand axe comparable à celui de HD 80606 b telle qu'elle est observée aujourd'hui. La migration de Kozai permet également d'expliquer l'origine du non-alignement entre l'axe de rotation stellaire et l'orbite planétaire comme un signe résiduel de l'inclinaison initiale du système au moment de sa formation.L'évolution des systèmes que nous avons simulés semble suivre les mêmes mécanismes dans sa première phase d'atténuation des cycles de Kozai. Rappelons que la limite de Roche pour la planète HD 80606 b est inférieure au rayon solaire, et que dans les évolutions que nous avons présentées, la distance au périhélie peut atteindre 3.lRo, mais reste supérieure à la limite de Roche. Cependant, une fois les cycles de Kozai arrêtés, l'évolution du système dépend fortement du modèle de marée choisi, et notamment de la façon dont est modélisée la dissipation dans la planète comme dans l'étoile, aussi bien en ce qui concerne l'amplitude de la dissipation que sa dépendance dans la fréquence excitatrice.Une forte décroissance de l'excentricité à ce moment semble suggérer que nous serions très privilégiés de pouvoir observer le système HD 80606 dans son état actuel. Cela semble indiquer la nécessité d'une meilleure modélisation des mécanismes de marée et d'aplatissement
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APPENDIX A: FIXEDPOINTS AND BIFURCATIONS

The fixed points and boundaries presented in Section 3.3 hâve already been studied by Lidov & Ziglin (1976) and Ferrer & Osacar (1994). We briefly présent here their dérivation in the framework of the présent formalism. With the notations of Section 3, we will limit ourselves to y > y2.

Al Pôles of the sphere, x = y =0

This case corresponds to case 1 in section 5 of Ferrer & Osacar (1994). Note that their sphere is constructed using the eccentricity and perihelion of the inner binary, and is thus different from our angular momentum sphere.

For ail values of the parameters in the domain we study, the north pôle z = 1, which corresponds to coplanar prograde motion, is a fixed point of the System. The associated eccentricity of the inner binary is

It is the maximal value of the eccentricity. This fixed point is always linearly stable. It is noted N in Figs 5 and 6. Fig. 5 shows the fines of equal energy in the (i2 cos OE2, h sin £22) plane, and Fig. 6 shows these fines plotted on the sphere of unit angular momentum of the outer body k\= 1.

When y + y2 < 1 (under the dotted fine in Fig. 4), the south pôle z = -1 (noted S in the following figures), which corresponds to coplanar rétrogradé motion, is also a linearly stable fixed point of the System. The eccentricity of the inner binary is minimal and equal to:

Note that in this région of parameter space the inner binary cannot be circular.

When y + y2 ^1 (above the dotted line in Fig. 4), the minimal eccentricity of the binary is 0 as deduced from (3.23). The south pôle z = -1 does not correspond to a real value of the eccentricity in this case. This limit, however, is not a bifurcation strictly speaking.

When Crossing it, the stable south pôle of the sphere is replaced by a stable trajectory at maximal inclination.

A2 Circular trajectories for the inner binary

In the région of parameter space where circular trajectories exist for the binary (above the dotted fine in figure 4), the value of z which corresponds to such trajectories is minimal and equal to y2 -ri -i zo = (A3)

The équations of motion on the small circle of the sphere z -Zo

(A7) F. Farago and J. Laskar

The right-hand sides of équations (A4) and (A5) vanish for a certain value of x equal to .2 y2 + 3y^-i 0 iok22

(A8)

The curve y2 + 7>y\ -1 séparâtes in Fig. 4 the régions noted O and 1. We can distinguish three cases.

(i) y2 + 3yj < 1. In région O of Fig. 4, x^< 0 so there is no fixed point on the circle z = zo-As such, this circle is a trajectory for which the inner binary is circular and the outer orbit precesses at a fixed inclination given by /2.max = arccos zo-Moreover, this trajectory is linearly stable.

(ii) y2 + 3y\ = 1. There are two fixed points on the circle z -Zo at the coordinates (x -0, y = ±\J 1 -z(2,).

(iii) y2 + 3y2 > 1. In this case, we must also check that yl = 1 -jc" -zl ^0. The limit case where there is equality yields

This boundary limits the régions I and l'in Fig. 4. When solving the above équation for y\ and selecting only the relevant solution satisfying y > y2, y + y2 ^1, weobtain a solution that corresponds to équation (44) in section 5.2 of Ferrer & Osacar (1994) and can

be written using our notations as

In région I, > 0 so there are four fixed points on the circle z = z0, at the coordinates (±jc0> ±yo)-They are noted H±±, in panels (d)

and (e) of Figs 5 and 6. Moreover, the trajectories that correspond to circular binaries are unstable in this zone. In région F, however, y\ Vy2 + lYi

We thus hâve two symmetric fixed points in the plane x -0.

They are noted H± in Figs 5 and 6. For these fixed points to exist, the associated eccentricity must be a real number. As such, their domain of existence is the région noted O in Fig. 4. This is case 2.1 in section 5 of Ferrer & Osacar (1994).

These two fixed points are linearly unstable in their domain of existence. Note that in the outer restricted problem (y2 = 0) these fixed points are simply x = z = 0, y = ±l.

A4 The y = 0 plane When y = 0, the only non-trivial équation we must solve is y = 0.

Here again, we look for another fixed point than x = y -0, thus we hâve to solve

Substituting 1 -z2 in place of x2 and then \J \ -e\ in place of z using (3.20), we get

This équation is the same as équation number 40 in Ferrer & Osacar (1994). In our région of parameter space, there is at most one root which satisfies to the constraint (3.23). The curve separating the zone where there is one solution and the zone where there is no solution corresponds to the case where the limit value e\ = 0 is a solution, and coincides with the boundary between régions I and V in Fig. 4 which is given by équation (A10).

When there is a solution, the value of e\ can be translated into a value of z using (3.20). Since y -0, we get two values of x = ±Vl -z2, and there are thus two symmetric fixed points on the sphere, which are both linearly stable. They are noted E± in Figs 5

and 6. When y2 = 0, these fixed points become simply y = z = 0, x = ± 1, which are responsible of the stable orbits at high inclination as discussed in the previous sections.

This paper has been typeset from a TpX/h>'lj;X file prepared by the author.

Force due à l'aplatissement rotationnel

Le bourrelet rotationnel quadripolaire crée une force en plus du terme Newtonien. Dans le cas rotationnel, l'angle 0' qui apparaît dans l'expression du potentiel (4.18) est comme nous l'avons dit l'angle entre la direction du vecteur rotation de la primaire et la direction du point où l'on évalue le potentiel. En tenant compte de cela et de l'expression (4.24), le potentiel dû à l'aplatissement rotationnel en un point r' est donné par : En moyennisant les deux équations d'évolution du moment cinétique (4.50) et du vecteur de Laplace (4.51) sur l'anomalie moyenne de la planète on trouve pour les termes dus respec tivement à l'aplatissement de l'étoile et à celui de la planète :