
HAL Id: tel-02094844
https://hal.science/tel-02094844

Submitted on 10 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An energetic approach to safety in robotic manipulation
Lucas Joseph

To cite this version:
Lucas Joseph. An energetic approach to safety in robotic manipulation. Robotics [cs.RO]. Sorbonne
Université, 2018. English. �NNT : �. �tel-02094844�

https://hal.science/tel-02094844
https://hal.archives-ouvertes.fr

THÈSE

présentée pour obtenir

le titre de docteur délivré par Sorbonne Université

École doctorale: Sciences Mécaniques, Acoustique, Électronique et Robotique de Paris

par

Lucas Joseph

An energetic approach to safety in robotic
manipulation

Soutenue publiquement le 7 Décembre 2018 devant le jury composé de:

Pascal MORIN Professeur des Universités à Sorbonne Université Président du Jury
Andrea CHERUBINI Maître de Conférences au LIRMM - HDR Rapporteur
Bernard BAYLE Professeur des Université à Télécom Physique Strasbourg Rapporteur
Guillaume MOREL Professeur des Universités à Sorbonne Université Directeur de thèse
Vincent PADOIS Maître de Conférences à Sorbonne Université - HDR Encadrant
Serge MULLER Chief Scientist Women’s Health, GE Healthcare Encadrant

Institut des Systèmes Intelligents et de Robotique (ISIR)
Pyramide Tour 55, 4 place Jussieu

UMR CNRS 7222, Paris, France

Abstract

Collaborative robots offer new possibilities to use robots in workspaces shared with hu-

mans. These robots can interact with their environment and assist human beings in their

task in a safer way compared to standard industrial ones. They are required to be fast,

precise, and efficient during the accomplishment of their tasks. However, their strength

can make them dangerous tools around people. Therefore, to ensure safety they are often

used in a sub-optimal way.

The aim of this work is to ensure the safety of a human interacting with a robot

performing a set of tasks. It is more specifically focused on the case of undesired contact

with the robot. An undesired contact can either come from an impact between the

robot and an obstacle or from the robot pushing the obstacle against a fixed object.

This work shows that in both cases the dangerousness of the robot can be linked to the

robot variation of kinetic energy. These robots are also submitted to a set of constraints

coming either from their intrinsic design or from the environment. When a human enters

in the robot workspace, the robot environment becomes partially unknown. The robot

should be able to adapt to its environment and reactively compute a safe control solution

satisfying its constraints while performing its tasks in an optimal way.

To that aim, this work formulates the control problem as a constrained optimization

one and solves it using Linear Quadratic Programming. The robot variation of kinetic

energy is constrained within the quadratic programming problem. This constraint pre-

vents the robot from reaching a dangerous amount of kinetic energy. It also indirectly

prevents the robot from exerting too much forces when in contact with an obstacle. This

work also shows that it is possible to use the robot redundancy to minimize its perceived

mass in the direction of an obstacle. This indirectly reduces its kinetic energy for a given

task.

The proposed controller is implemented on a 7 dof serial robotic manipulator. This

work, realised in collaboration with General Electric Healthcare, features several exper-

iments with this controller in the context of medical imaging. Using external sensors it

is shown that it is possible to realise tasks in an optimal way while limiting the robot

dangerousness in case of an undesired contact.

Keywords: Human/Robot Interaction, Safety, Linear Quadratic Programming, Re-

dundant Robots, Kinetic Energy, Undesired Contact

Contents

Abstract i

1 Introduction and applicative context 1
1.1 Robots in medical applications . 5
1.2 Towards autonomous robots in a shared workspace for medical applications 8
1.3 Characterization of a robot dangerousness 9

1.3.1 The Abbreviated Injury Scale . 9
1.3.2 Definition of safety indicators . 10
1.3.3 Defining limits . 13

1.4 Safety by design . 15
1.5 Safety by mean of control . 17

1.5.1 Pre-collision methods . 17
1.5.2 Post-collision methods . 18

1.6 Proposed contribution . 20
1.7 Structure of this manuscript . 22
1.8 Related publications . 22

2 Development of a control architecture for safety 25
2.1 Control problem resolution methods . 27

2.1.1 Explicit inversion methods . 27
2.1.2 Constrained Convex Optimization Methods 30

2.1.2.1 Multi-tasking . 31
2.1.2.2 Problem resolution . 33

2.2 Task definition . 34
2.2.1 Task planning . 35
2.2.2 Task servoing . 35
2.2.3 Task expression . 36

2.3 Constraints in quadratic programming . 37
2.3.1 Intrinsic constraints . 38
2.3.2 Constraints related to safety . 40

2.3.2.1 Constraint on the robot workspace 40

i

ii Contents

2.3.2.2 Expression of a kinetic energy constraint 42
2.3.2.3 Generalisation for any point of interest 46

2.4 Redundancy and quadratic programming 46
2.4.1 The regularisation task in convex optimization methods 47
2.4.2 Torque minimization task . 47
2.4.3 Gravity compensation task . 48
2.4.4 Posture task . 48
2.4.5 Using redundancy to improve safety 49

2.4.5.1 The robot perceived mass 49
2.4.5.2 Robot null-space motion 50
2.4.5.3 Finding the perceived mass global minimum 51
2.4.5.4 Local perceived mass minimization in the direction of an

obstacle . 53

3 Experimental setup description and applicative context 57
3.1 Application to the defined context . 57

3.1.1 Positioning task . 58
3.1.2 Pointing task . 59

3.1.2.1 Orientation of the laser frame 59
3.1.2.2 Positioning of the X-ray source projection point 60

3.1.3 General control scheme . 63
3.2 The KUKA LWR4+ . 64
3.3 Task validation . 65

3.3.1 Positioning error . 65
3.3.2 Pointing error . 65

3.4 Constraints validation . 66
3.4.1 Force measurements . 67
3.4.2 Energy measurements . 67

3.5 Vision system . 70
3.6 Software and communication . 71

4 Experimental results 73
4.1 Tasks validation . 73

4.1.1 Nominal case . 74
4.1.2 On-line trajectory definition . 75

4.2 Kinetic energy constraint validation . 77
4.2.1 Model based kinetic energy computation validation 77
4.2.2 Kinetic energy limit . 79

4.2.2.1 Transient contact . 80
4.2.2.2 Quasi static contact . 82

4.2.3 The interesting properties of the pointing task 84
4.3 The regularisation task . 86

Contents iii

4.3.1 Torque regularisation task . 86
4.3.2 Gravity regularisation task . 86
4.3.3 Equivalent mass minimization . 88

4.3.3.1 Global optimization vs local optimization 89
4.3.3.2 Reactive mass minimization with obstacles 90

5 Conclusion 93
5.1 Contributions . 94
5.2 Limitations and perspectives . 95

References . 97

Appendices 107

A Laser calibration 109
A.1 Determination of the laser beam projection axis 109
A.2 Determination of the laser source position offset 111
A.3 Determination of the quadrant-photodiode position 112

List of Figures

1.1 (A) Robots in an assembly line working in a workspace delimited by cages.
The environment is perfectly known and every motion can be determined
off-line. (B) An imaging robot evolving in an operating room. Motions
are restrained and humans are constantly moving around the robot. If
the robot has to update its trajectories on-line it must account for the
environment. 2

1.2 (A) The Mako robot, a co-manipulated robot for surgical interventions. (B)
The Da Vinci telemanipulated robot. (C) The Cyberknife, a medical de-
vice dedicated to radiotherapy. (D) The GEHC Discovery XR656 that can
realise Digital Tomosynthesis procedures. 6

1.3 (A) Scheme of an X-ray scanner and the resulting X-ray image. It is
difficult to discriminate overlapping tissues. (B) Representation of Digital
Tomosynthesis procedure. 7

1.4 (A) Quasi-static contact: the robot crushes a human body part against
a fixed object. (B) Transient contact: the robot enters in contact with a
human body part for a short amount of time. The body part can recoil
from the contact. 10

1.5 (A) Experimental setup designed to apply efforts on a human body. Ex-
erted forces are linked to human pain threshold. (B) Schematic represen-
tation of the relation between the maximal force applicable on a human
body and its corresponding stiffness. 14

2.1 General control scheme . 26
2.2 Joint configuration inducing self motion 51
2.3 a. Equivalent mass projected in the y-direction as a function of the robot

third joint position. b. Configuration corresponding to the minimal per-
ceived mass in the y-direction. c. Configuration corresponding to the
maximal perceived mass in the y-direction. 52

3.1 An illustration depicting the parameters required for the definition of the
pointing task. This illustration also shows that the pointing task cannot
be planned off-line because an error when positioning the X-ray source
will lead to an error when pointing towards the target point XT 59

3.2 Representation of the general control scheme used for the experiments in
Chapter 4 . 63

3.3 The Kuka LWR4+ robot . 64
3.4 Setup for tasks validation . 66
3.5 Device for measuring the energy transferred by a robot during an impact.

The elongation of the spring is measured by an encoder to determine the
potential energy accumulated when an impact occurs 68

v

vi List of Figures

3.6 Geometric view of the platform . 69
3.7 Scene observed by the RGBD cameras (extracted from [Meguenani et al.,

2017]) . 71

4.1 Evolution of (a.) the pointing error, (b.) the positioning error when
performing a motion in the nominal case 74

4.2 Redefinition of the robot desired position on-line. A new desired Cartesian
position is computed reactively to stay away from an obstacle. 76

4.3 Measure of the dissipated kinetic energy during an impact with the plat-
form. (a.) Comparison between the current kinetic energy and the po-
tential energy recorded by the platform. (b.) Force measured by the ATI
sensor in the y-direction. The vertical black line represent the instant
when a collision has been detected corresponding to a threshold of the
measured force of 0.2 N . 78

4.4 Evolution of (a.) the pointing error, (b.) the positioning error, (c.) the
current kinetic energy (blue line), elimc (red), the provisional kinetic energy
ec,k+1 (dashed). 79

4.5 Energy dissipation during a transient contact recorded by the platform.
(a.) Comparison with the provisional kinetic energy, the current kinetic
energy and the potential energy recorded by the platform. (b.) Force
measured by the ATI sensor in the y direction. The vertical black lines
represents the instant when a collision has been detected corresponding
to a threshold of the measured force of 0.2 N 81

4.6 Physical interaction with the robot. An operator restrains the robot mo-
tion along its y-axis. 81

4.7 Evolution of (a.) the pointing error, (b.) the positioning error, (c.) the
current kinetic energy (blue line), elimc (red), the provisional kinetic energy
ec,k+1 (dashed). The grey areas represent the interaction phase with a
human. 83

4.8 Evolution of (a.) the pointing error, (b.) the positioning error, (c.) the
current kinetic energy (blue line), elimc (red), the provisional kinetic energy
ec,k+1 (dashed) and (d.) the contact wrench (blue) and its limit (red). The
grey areas represent the interaction phase with the measuring system. . . 84

4.9 Evolution of the positioning task, the pointing task and the kinetic energy
constraints while following a rectangle-shaped trajectory. The grey area
represents the interaction phase with the robot. 85

4.10 Evolution of (a.) the joint torque, (b.) the joint configuration and (c.) the
positioning error for a regularisation minimizing the joint torques. The
grey areas represent the interaction phase with a human. 87

4.11 Evolution of (a.) the joint torque, (b.) the joint configuration and (c.)
the positioning error for a regularisation minimizing the gravity induce
torques. The grey areas represent the interaction phase with a human. . . 88

4.12 Comparison between the theoretical minimal perceived mass (in black),
the one obtained using the impedance regularization task (in blue) and
the one using the local minimization scheme 89

List of Figures vii

4.13 Reconfiguration of the robot to minimize its perceived mass in the direc-
tion of an obstacle. When the obstacle moves around the fixed robot, the
perceived mass variates a lot. When the reconfiguration is set to minimize
the perceived mass in the direction of the obstacle, the perceived mass
greatly diminish. 91

A.1 Schematic presentation of the laser source positions and laser spot posi-
tions relatively to the robot base in the (O, (a,k0)) plane. ks is the laser
source real projection axis that needs to be calibrated 110

Chapter 1

Introduction and applicative context

Standard industrial robots are used to realise specific tasks requiring high repeata-

bility and good accuracy. Untiredness and payload capacity are examples of the many

advantages that such systems exhibit as compared to humans. The most standard and

efficient way to obtain precise positioning and trajectory tracking is to implement stiff

position control. Indeed, the high control gains used in such an approach provide robust-

ness to disturbances. When a stiff robot enters in contact with its environment, most

of its mechanical energy is transmitted to the environment. This can lead to potential

danger for a human operator working nearby and not anticipating the movement of the

robot. In 1987, a study by B. Jiang and C. Gainer analysed the causes of robot injuries

in several developed countries [Jiang and Gainer, 1987]. The results of the study showed

that most accidents could have been avoided if proper safety measures had been enforced

during the robot implementation.

A common safety measure to prevent contact is to impose a strict separation between

the robot and the human. This separation can be done by putting the robot in a fence or

using any sensor able to detect the intrusion of humans in the robot workspace. Figure

1.1A depicts a typical situation where robots working in an assembly line are put in a

cage, preventing any contact with humans. The opening of the cage triggers a complete

shut-down of the robot, and power is restored in the actuators only when the robot

workspace is freed or when the cage is closed.

When a robot is placed in a cage, its surrounding environment can be perfectly

determined. Hence, it is possible to compute off-line trajectories that achieve tasks

optimally while avoiding obstacles around the robot [Hart et al., 1968]. This problem

1

2 Introduction and applicative context

Source: BMW Launches i3 Electric Car Production. Getty
images

(A)

Source: Day on the Job: Operating Room. the Official United
States Air Force Website

(B)

Figure 1.1: (A) Robots in an assembly line working in a workspace delimited by cages.
The environment is perfectly known and every motion can be determined off-line. (B)
An imaging robot evolving in an operating room. Motions are restrained and humans
are constantly moving around the robot. If the robot has to update its trajectories

on-line it must account for the environment.

has seen many contributions over the years [Lavalle, 1998], [Fox et al., 1997] and is

commonly used in factories.

This separation is an efficient way to ensure safety as it prevents any possible contact

with the robot. However, there are applications which can benefit from a close collabo-

ration between a human and a robot. Indeed, on one hand, robots physical capacities,

i.e. their precision, untiredness and capacity to lift heavy loads are far superior to the

ones of humans. On the other hand, humans are able to adapt to unknown situations

and realise abstract tasks. Extensive work in the field of collaborative robotics has been

conducted to combine the strengths of robots to the ones of humans. Dedicated actuation

technologies [Albu-Schäffer et al., 2007], [Bicchi and Tonietti, 2004] and state-of-the-art

control solutions [De Luca et al., 2006] are employed to allow interactions with these

robots. However, opening the robot workspace to humans and having an environment

constantly evolving brings new control challenges, especially in terms of safety.

By opening the workspace, the environment surrounding the robot becomes partially

unknown and off-line trajectory planning techniques can no longer be used alone to ensure

safety. An example of such a situation is depicted in Figure 1.1B where an imaging robot

is evolving in an operating room. The robot evolves in a cluttered environment with

moving humans and medical equipment and should avoid entering in contact with them.

This implicitly limits the robot motions to account for the surrounding environment.

Removing the separation between robots and humans requires to reactively1 consider

1In this document, a robot reactivity refers to is ability to respond in real-time to a change in the
environment.

3

the environment surrounding the robot to decide future motions. This can be to avoid

obstacles, such as humans or objects or to adapt its trajectories to new inputs in the

scene (new goal, new user input, etc.). However, the updated desired motions should

not push the robot towards a state that it cannot reach. It should also avoid pushing

the robot towards a state from which it will inevitably end-up in such an unreachable

state [Rubrecht et al., 2012]. While this statement can seem evident, in practice, this is

not easy to implement. It requires to reactively account for the robot dynamics and for

its actuation limits when computing its future motions. These limits can be regarded

as constraints to be satisfied at all time. Constraints are expressed to avoid pushing the

robot towards a non-achievable state or to forbid some robotic behaviours.

Overall, when controlling a robot in an open environment, three key points should

be considered:

Reactivity: A robot should reactively account for new information provided by the

environment to adapt its behaviour.

Performance: A robot should optimally achieve its tasks.

Constraint compliance: A robot should always be able to satisfy any set of ex-

plicit constraints.

Safety: A robot should not be dangerous towards its environment.

Table 1.1 details different robot contexts and analyses their characteristics in terms

of performance, reactivity, constraint compliance and safety. Three main contexts arise:

robots operating in a workspace that is physically separated from the human, robots

being hand guided and robots operating autonomously in a workspace shared with a

human with possible contact (desired or not). The robot performances are divided into

the following three categories:

• Tracking, which is the ability to correctly follow a desired trajectory.

• Transparency, which is the ability not to resist a human voluntarily moving the

robot.

• Flexibility, which is the simplicity to reuse a robot to perform a different task in a

different context.

As detailed previously, for robots working in a separated workspace, safety is ensured

by fences placed around the robot. The environment is supposed to be perfectly known

Control
context

Characteristics Reactivity Constraint compliance Performance Safety Applications
Necessity to adapt on-line

to its environment?

Is the robot satisfying

its constraints?
Tracking Transparency Flexibility

Is the robot safe

for its environment ?

Separated

workspace

−−

Fixed environment

Pre-planned trajectory

++

Validated off-line

++

Optimal

−−
Stiffly

actuated

− ++

Physical separation between

the human and the robot

- Assembly

- Deburring

- Painting

Hand

guided

∅

Intrinsic

+

Only position limits.

Slow motions far from

the dynamic limits

∅
Follows human

motions

++

Intrinsic

+ +

End-effector motions intrinsically

safe but undesired

contact can happen

- Co-manipulation

- Task learning

by demonstration

- Inspection

Shared

workspace

++ ?

Constraints should be verified

reactively

?

As good as possible

+ + ?

To be ensured reactively

- Medical robotics

- Shared assembly

- Cobotics

+ : Condition satisfied with some restrictions ++ : Condition satisfied

− : Condition satisfied with some difficulties −− : Condition not satisfied

? : No concrete answer yet ∅ : Not concerned

Table 1.1: Different robot contexts and a quantitative analyse of their characteristics in terms of reactivity, constraint compliance, performance
and safety.

1.1. Robots in medical applications 5

so that no reactivity is required. As such, constraint compliance and optimal trajectory

can be handled off-line. Stiff robots ensure a good trajectory tracking at the cost of

transparency.

Hand guided robots are physically guided by an operator. They are usually grabbed

by their end-effector and follow the motions imposed by the operator in Cartesian space

[Poquet et al., 2015]. When a robot has more degrees of freedom than the ones required

to perform the task, they are called redundant. Given a desired Cartesian pose, it means

that there exists an infinite number of combination of articular configurations leading to

a specific pose of the robot. If these inner motions are not monitored, undesired contact

with the environment can occur. That is why hand guided robots are intrinsically safe

when considering the motion of their end-effector as they only follow the human motions

and yet, they can be dangerous because of their inner motions. In the hand guided

context, the constraint compliance problem is alleviated by the fact that a robot moved

by hand performs slow motions that do not go beyond the limited dynamics of the robot.

In practice only the position limits of each joint are monitored.

When a robot can move autonomously in a workspace shared with human operators,

it is required to ensure the safety of people around it. Ensuring safety includes avoiding

collisions but also ensuring that any kind of contact with a human is not dangerous, re-

gardless of the tasks to achieve. It thus requires to constantly adapt the robot behaviour.

Table 1.1 shows that having a robot operating in such a shared workspace requires to

optimally realise its tasks, and to re-plan on-line according to its evolving environment,

all while satisfying its constraints. The resolution of such problem is still an active topic.

This work is focused on the expression of a generic control architecture to realise tasks

defined on-line while satisfying the robot constraints and ensuring safety. This control

solution is applied for the specific context of X-ray medical imaging. This chapter first

presents different medical applications and relates them to the control contexts exposed

in 1.1. It then details the applicative context of this work and presents solutions to

ensure safety that can be found in the literature.

1.1 Robots in medical applications

Robots used in medical applications always share their workspace with medical equip-

ment, care takers and, at least, a patient. This section presents different applications

where robots are used to improve a medical procedure. It analyses these applications

from the perspective of the typology given in table 1.1.

6 Introduction and applicative context

(A) (B)

(C) (D)

Figure 1.2: (A) The Mako robot, a co-manipulated robot for surgical interven-
tions. (B) The Da Vinci telemanipulated robot. (C) The Cyberknife, a medical device
dedicated to radiotherapy. (D) The GEHC Discovery XR656 that can realise Digital

Tomosynthesis procedures.

Hand guided robots are often used in surgical robotics. They hold tools and follow

the surgeon motions during the procedure. The Surgicobot [Riwan et al., 2011] and the

Mako robot2 presented in Figure 1.2A are two co-manipulated robots performing bone

milling. They create virtual walls to prevent the surgeon from entering in specific areas

with its milling tool [Jakopec et al., 2003]. The Da Vinci robot3, depicted in Figure

1.2B, is a tele-manipulated robot used for mini-invasive surgery. A surgeon operates a

multi-arm robot from a remote console. The robot is able to perform precise motions

suited for operations that require accurate positioning of a tool. Although these robots

perform slow motions at the end-effector level, inner motions of the robotic arms can

be problematic. Self-collision between two arms can happen but also collisions with the

medical staff. In practice, these motions can be bothersome and should be dealt with.

However, this is out of the scope of this work.

The Cyberknife4 is a robotised system consisting in an X-ray source mounted on

2www.stryker.com/us/en/joint-replacement/systems/mako-robotic-arm-assisted-surgery.
html

3www.intuitivesurgical.com/products/davinci_surgical_system/
4www.accuray.com/cyberknife/

www.stryker.com/us/en/joint-replacement/systems/mako-robotic-arm-assisted-surgery.html
www.stryker.com/us/en/joint-replacement/systems/mako-robotic-arm-assisted-surgery.html
www.intuitivesurgical.com/products/davinci_surgical_system/
www.accuray.com/cyberknife/

1.1. Robots in medical applications 7

(A) (B)

Figure 1.3: (A) Scheme of an X-ray scanner and the resulting X-ray image. It is dif-
ficult to discriminate overlapping tissues. (B) Representation of Digital Tomosynthesis

procedure.

an industrial robotic manipulator and moving around a table on which a patient is

located (Figure 1.2C). The robot is used for radiotherapy, a procedure dedicated to the

removal of cancerous cells via the emission of X-rays. This procedure irradiates at a

high dose cancerous cells while sparing the surrounding healthy ones. To this end, the

robot is positioned at different places around the patient to shoot X-rays. All the X-ray

beams intersect at the same concurrent point allowing sending high doses of radiation

to cancerous cells while avoiding irradiating healthy ones. Radiation therapy requires

to precisely position the robot around the patient and hold that position during the

radiation. Fiducial gold markers detected by X-ray images associated with infra-red

cameras can be used to detect the small motions induced by human breathing [Schweikard

et al., 2004]. The radiotherapy X-rays are only shot when the tumour is located in a

predefined window. Preoperative data are acquired to locate the tumour and the patient

is fixed on the table to restrain any motion. The robot trajectories can thus be computed

off-line assuming that the environment is invariant. This allows having robots working

in a shared workspace using control strategies similar to the one of robots working in a

separated workspace.

X-ray medical imaging procedures also use robots to hold an X-ray source. X-rays

consist in an electromagnetic radiation possessing penetration properties that can be

used to image the inside of a body. When X-rays cross an anatomical structure, a part

of the radiation is absorbed by the tissues and the rest goes through the structure. As

depicted in Figure 1.3A, an X-ray detector gathers the remaining light and gives a 2D

image of the level of absorption of the different objects crossed by the X-rays. Stan-

dard X-ray imaging cannot be used for tissues located deeply in the body, such as brain

8 Introduction and applicative context

cells. Indeed, when tissues overlap, their superposition makes it difficult to differentiate

different elements in the resulting X-ray image. To overcome this drawback, some proce-

dures propose to take several images at different positions and use image reconstruction

algorithms to obtain a 3D representation of the observed object as depicted in Figure

1.3B. Digital Tomosynthesis (DT) is a procedure relying on such a process. DT uses a

robotic arm to move the X-ray generator around the patient. The procedure requires

a precise knowledge of the X-ray source position for the reconstruction algorithm. To

avoid reconstruction artefacts induced by human motion, the procedure should be as

fast as possible. Considering that the environment is still, the X-ray source follows a

pre-planned trajectory satisfying the systems constraints. In such a situation, the robot

is stiffly actuated, and safety is ensured through collision detection sensors. The GEHC

Discovery XR6565 in Figure 1.2D is a commercially available example of a DT system.

The robots presented in this section are representative of the medical devices com-

mercially available. They are either hand guided robot performing precise surgical pro-

cedures, or robotic manipulators carrying heavy tools around a patient. In the latter

case, it can be noted that although these robots are used in a context where they share

their environment with humans, it is assumed that the environment is fixed and their

trajectories are computed off-line. This eases the control problem, particularly in terms

of constraint compliance but prevents any reactive behaviour.

1.2 Towards autonomous robots in a shared workspace for

medical applications

A robot that can adapt its trajectory on-line according to a higher level decision scheme

is of great interest. For instance, Digital Tomosynthesis is an application that could be

improved by redefining the position of the X-ray source reactively. It has been shown

that image quality could be improved by adapting the trajectory of the X-ray source

according to images taken previously [Haque et al., 2013] or [Stayman and Siewerdsen,

2013]. Defining new X-ray source positions on-line requires accounting dynamically for

the robot constraints such as its actuation limits but also the constraints related to the

patient safety. Indeed, the robot is evolving in an open environment with a patient next

to it, and undesired contacts between the two could happen.

This practical example features problems that apply to any autonomous robot shar-

ing its workspace with a human. The ability to define trajectories and generate motions

suitable to ensure on-line the safety of the robot and its environment are prerequisites
5www.gehealthcare.com/en/products/categories/radiography/fixed_rad_systems/discovery_

xr656_plus

www.gehealthcare.com/en/products/categories/radiography/fixed_rad_systems/discovery_xr656_plus
www.gehealthcare.com/en/products/categories/radiography/fixed_rad_systems/discovery_xr656_plus

1.3. Characterization of a robot dangerousness 9

to the use of robots in a shared workspace. To define safe robot motions, one must first

determine the potential hazards that can occur when a robot is performing its tasks.

This is the topic of the next section.

1.3 Characterization of a robot dangerousness

This section presents different indicators of safety that are used in the literature and

shows how they can be linked to the robot control variables. A special focus is put

on the dangerousness of a robot interacting with a human. A qualitative measure of

human injury is first presented and is used in a second part to characterise quantitative

indicators of robot dangerousness.

1.3.1 The Abbreviated Injury Scale

The human pain being highly subjective, it cannot be used to characterise a robot dan-

gerousness. On the other hand, the results of an injury (bruises, open wounds, ...) can

be observed on the human body. The Abbreviated Injury Scale (AIS) is a coding system

that classifies and describes the severity of an injury based on anatomical observations. It

defines the location of the injury (head, neck, thorax, ...), the type of anatomic structure

concerned (vessel, nerves, organs, ...) and the level of severity of the injury on a scale

between 1 and 6. Each level is associated with a corresponding probability of death.

AIS Severity Type of injury Death prob (%)
1 Minor Superficial 0
2 Moderate Recoverable 1-2
3 Serious Possibly recoverable 8-10
4 Severe Not fully recoverable without care 5-50
5 Critical Not fully recoverable with care 5-50
6 Maximum Fatal 100

Table 1.2: AIS Code

Table 1.3.1 depicts the code representing the degree of severity of an injury. An AIS

of 1 corresponds to a minor injury with a probability of death of 0% and will result in a

superficial injury such as a bruise. An AIS of 6 corresponds to a fatal injury leading to

death.

The AIS scale was first introduced in the automotive field to describe the danger-

ousness of a car crash [States, 1969]. It has been used in robotics to characterize the

dangerousness of a collision between a robot and a human [Haddadin et al., 2008b],

[Oberer et al., 2006].

10 Introduction and applicative context

Images extracted from [ISO/TS-15066, 2016]

(A) (B)

Figure 1.4: (A) Quasi-static contact: the robot crushes a human body part against
a fixed object. (B) Transient contact: the robot enters in contact with a human body

part for a short amount of time. The body part can recoil from the contact.

1.3.2 Definition of safety indicators

During an unwanted physical interaction between a robot and a human operator, contact

can be divided into two types:

• Quasi-static contact: A constrained contact where the operator body is clamped

between a moving part of the robot and another fixed or moving part of the envi-

ronment as depicted in Figure 1.4A. In this situation, the static contact between

the robot on the body part can lead to bones and tissues crushing.

• Transient contact: A brief unconstrained contact between the robot and an op-

erator. The operator can recoil or retract from the moving part of the robot as

depicted in Figure 1.4B. The high dynamics of the robot motion can cause contu-

sions, internal bleeding and even broken bones in such type of contact.

Considering such undesired physical interaction situations, the literature proposes

different indicators to measure the dangerousness of a robot. The head being one of the

weakest point of the human anatomy, much attention has been given to measure the

dangerousness relatively to this part of the body. The most used criterion is the Head

Impact Criterion introduced by J. Versace [Versace, 1971]. Originally used in car crash

tests, this indicator for severe head injury measures the acceleration of the head over a

time period. The HIC is formulated as

HIC = max∆t

{
∆t
(

1
∆t

∫ t2
t1
‖āhead‖2dt

) 5
2

}
≤ 650 (SI), (1.1)

with āhead the head acceleration, ∆t the time lapse between t1, the starting time

of the collision and t2, the stop time of the measurement. ∆t is limited to a specific

1.3. Characterization of a robot dangerousness 11

value between 3 and 36 ms. S. Haddadin et al. show that when the movements of the

head are not constrained, standard industrial robotic manipulators (such as the Kuka

KR5006) do not exceed the HIC limit for severe injury [Haddadin et al., 2008b]. It means

that the collision by itself is not life-threatening according to the Head injury criterion.

However, the contact can induce other injuries such as bone fractures or internal damages

that are not considered by this criterion. Though interesting this measure is not really

adapted for the type of contact considered here. Indeed, during car crashes, the head

acceleration is due to the sudden stop of the car, while during a collision with a robot, this

acceleration is directly linked to the contact between the robot and the head. According

to the tool that is being carried, i.e. sharp or with round edges, manufactured in soft or

stiff materials, the results of this contact will be more or less dangerous.

For the evaluation of the dangerousness of a collision between a robot and a chest,

several injury indexes are proposed, such as the Rib Deflection Criteria (RDB), the

Compression Criterion [Haddadin et al., 2007] or the Viscous Criteria (VC) [Oberer et al.,

2007]. VC relates the chest compression to its velocity of deformation. S. Haddadin et

al. also performed impacts experiments with an object whose motions are constrained

and cannot slip during contact [Haddadin et al., 2008a]. The robot follows a pre-planned

trajectory at a velocity of 0.6m/s and an object is placed along the trajectory. The forces

exerted at the moment of impact are recorded and compared to anatomical thresholds,

the Compression Criteria and the Viscous Criteria. It is shown that the efforts applied

by a robot can be dangerous for the human and might lead to the crushing of body parts.

While all these indicators are representative of the severity of an injury caused by a

robot, they use post-collision information and cannot be used in a control loop to ensure

safety. To ensure safety at the control level, safety indicators must be defined relatively

to physical quantities that can be monitored on-line.

The severity of a human injury caused by a robot depends on the human mass, its

velocity, the protections that are used, etc. However, few assumptions can be made on a

human state before the impact. On the other hand, a robot state can be precisely known

at each control instant, from the mass of each link to its velocity and to the type of object

that it carries. This information can be used to determine the robot dangerousness.

M. Wassink and S. Stramigioli propose to formalize the human/robot impact in

terms of kinetic energy along the normal surface of contact [Wassink and Stramigioli,

2007]. The end-effector kinetic energy in the operational space is

ec =
1

2
vTΛ(q)v, (1.2)

6www.kuka.com/en-gb/products/robotics-systems/industrial-robots/kr-500-fortec

www.kuka.com/en-gb/products/robotics-systems/industrial-robots/kr-500-fortec

12 Introduction and applicative context

with v ∈ R6, the robot twist expressed at some point of interest and Λ(q) ∈ R6×6 the

robot operational-space inertia matrix, which depends on the robot joint configuration

q ∈ Rn, with n, the number of degrees-of-freedom of the robot. Λ(q) describes the

inertial properties of the end-effector at the operational point. Λ(q) is related to the

joint-space inertia matrix, M(q) ∈ Rn×n through the relation

Λ(q) =
(
J(q)M−1(q)JT (q)

)−1
. (1.3)

For the specific task of positioning the robot end-effector in 3D space, only the terms

associated with the linear velocity at the end-effector in the Jacobian, Jlin(q), should be

considered. In his work [Khatib, 1995], O. Khatib defines a robot effective mass, mu(q),

perceived at the operational point along an arbitrary direction u as

mu(q) = uT
(
Jlin(q)M−1(q)JTlin(q)

)−1
u (1.4)

mu
7 can also be interpreted as the perceived mass8 at the end-effector in response

to the application of a force along u. The kinetic energy along the surface normal to

contact, u, becomes

ec,u =
1

2
muv

2
u (1.5)

with vu the end-effector velocity along the direction u. ec,u represents the energy

that would be transferred from the robot (considered rigid) to the operator in case of

collision and can be directly linked to safety.

Another way to characterize the safety of a robotic solution is to measure the contact

impulse force along a direction u, f̂u. This force represents the product of the average

force and the time it is exerted. In his work, I.D. Walker [Walker, 1994] defines this

impulse force just after the collision as

f̂u = − (1 + e)muvu (1.6)

with e, a restitution coefficient equal to 0 when contact is purely plastic, i.e. all

the energy is transferred, and 1 for a purely elastic collision, i.e. there is no transfer of

energy.
7It can be noted that if Jlin(q)M

−1(q)JT
lin(q) is not full-rank, i.e. if the robot is in a singular

configuration, mu(q) becomes infinite which can be interpreted as pushing against a wall.
8This term can also be referred in the literature as the robot equivalent mass or reflected mass.

1.3. Characterization of a robot dangerousness 13

Equations (1.5) and (1.6) explicitly map the robot velocity, its mass and the colliding

objects properties to the energy and impact forces during collision. During quasi-static

contact, the force exerted by the robot on a human body part is directly linked to the

torques generated by the actuators. These torques must also be monitored to limit

dangerousness. Therefore, the energy of the robot and the exerted forces are good

indicators of its dangerousness. Limits should be associated to these indicators to propose

a control architecture ensuring safety.

1.3.3 Defining limits

ISO technical specification 15066 on collaborative robot safety is available to help man-

ufacturers ensuring safety with their equipment [ISO/TS-15066, 2016]. In this specifica-

tion, safety in collaborative applications can be provided through four methods: safety-

rated monitored stop, hand-guiding, speed and separation monitoring, and power and

force limiting. The first method consists in stopping the robot when an operator enters

its workspace. This method is similar to the one used for robot in a separated workspace

as depicted in Table 1.1. It is suited when the robot performs tasks that require few

human operations (such as changing the robot tool). The second method corresponds

to the one described in Table 1.1 and discussed in the introduction of this chapter. The

third one consists in monitoring the robot velocity depending on the distance from the

operator. The closer the operator is, the slower the robot moves. The last method con-

sists in limiting the robot power and force during its motion. In this last method, the

specification proposes to define a maximum permissible pressure and force that can be

applied on different parts of the human body. These forces are determined using the

equipment depicted in Figure 1.5A; which applies forces on different parts of a human

body. The force limits correspond either to an injury level below AIS 1 [BGIA, 2011] or

to “a sensation corresponding to the onset of pain“. While this definition is rather vague,

it can still be used to define a threshold on the force applicable on different body parts.

From this measure it can be noted that the weakest part of the human body is the face

and more specifically the masticatory muscle which can only hold a maximal tangential

force of 65 N. The thighs and knees are the strongest and can withstand a force of 220

N. Similar quantities are provided for the maximum permissible pressure that can be

exerted. These limits can be used to define the robot maximal applicable force/pressure

during quasi-static contact.

Based on these maximal applicable forces, it is possible to estimate the maximum

energy that can be transferred to a body part. ISO specification 15066 proposes to model

human body parts as masses attached to a spring. The spring stiffness, k, is related to the

proportion of soft tissues in the concerned body part. It assumes a fully inelastic contact

14 Introduction and applicative context

(A)

Source: Institut für Arbeitsschutz der Deutschen
Gesetzlichen Unfallversicherung

Stress (N)

Strain (m)

k = f
∆x

fmax

Proportional limit

(B)

Figure 1.5: (A) Experimental setup designed to apply efforts on a human body.
Exerted forces are linked to human pain threshold. (B) Schematic representation of the
relation between the maximal force applicable on a human body and its corresponding

stiffness.

situation, i.e. all the kinetic energy is transferred to the body part. This corresponds to

a worst-case situation. The norm assumes that the deformation of the concerned body

part is elastic and satisfies Hook’s Law, i.e. the stress is directly proportional to the

strain (see Figure 1.5B). The resulting maximal energy that can be dissipated during a

transient contact is determined by:

ec =
f2
max

2k
(1.7)

where fmax is the force defined for quasi-static contact. ISO specification 15066 also

provides the stiffness of different body parts. The face is still the weakest part of the

human body during transient contact and can only withstand 0.11 J while the pelvis

can absorb up to 2.6 J .

The robot kinetic energy and the force exerted by the robot are two safety indicators

that can be used to control a robot dangerousness. From a design point of view, it is

possible to create a robotic architecture reducing the energy dissipated at the impact.

From a control point of view, it is also possible to develop special control methods to

reduce a robot dangerousness in the pre-collision and in the post-collision phase. These

solutions are presented separately in the two following sections.

1.4. Safety by design 15

1.4 Safety by design

Safety being related to the robot energy during transient contact, a key to reduce the

dangerousness of a robot is to reduce the mass of its moving parts. This has been a

priority on collaborative robot design for the last decade and has led to new robots such

as the DLR LightWeight Robot [Albu-Schäffer et al., 2007]. With light materials and

Harmonic Drive transmission, this robot has a mass/payload ratio close to 1 similarly

to that of a human arm. It can lift loads of up to 7 kg with a repeatability of 0.1 mm.

A new version, the KUKA LWR IIWA9, is now available for industrial applications and

features properties similar to the LWR 4+.

Most industrial robots have one actuator per joint. For serial manipulators, it re-

quires placing bulkier actuators at the robot base to be able to move the remaining axes

and their respective actuators. Another way to reduce the moving parts mass is to re-

locate these actuators at the base of the system. The Barrett WAM10 is an example of

a cable-actuated robot proposing such a design. Featuring a good repeatability, these

robots have lighter links than standard robots. The actuated cables allow motions that

are more silent compared to standard robots. However, they present flexibility that will

deteriorate the robot precision depending on the payload that is being carried.

According to the Equation (1.6), another solution to reduce the dangerousness of

the contact is to modify its coefficient of restitution, e. To do so, a special skin around

the robot can be used to absorb a part of the impact. This has been done by K. Suita

et al. [Suita et al., 1995] and J. J. Park et al. [Park et al., 2011]. These skins can be

enhanced by embedding proximity sensors into them. The Aura cobot from Comau11 or

the skin from Fogale Robotics12 propose such technology. However, these solutions only

allow reducing contact dangerousness at a certain level.

Once a collision has occurred and kinetic energy has been transferred, the wrenches

applied to the human body shall be limited. To do so, it is possible to improve the

compliance of the robot. Passive compliance approaches consist in creating mechanical

devices with built-in mechanical compliance. A first approach is to use a remote centre

compliance (RCC) device which is attached between the last joint and the end-effector

and is composed of 6 springs [Drake, 1977]. This device is composed of springs allowing a

certain degree of compliance in the task. Initially intended for manufacturing tasks such

as pegging [Watson, 1976], this device has been proposed to detect collisions [Bright and

9www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
10www.barrett.com/wam-arm/
11www.comau.com/EN/Pages/our_competences/robotics/Automation%20Products/Aura_test.aspx
12www.fogale-robotics.com/

www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
www.barrett.com/wam-arm/
www.comau.com/EN/Pages/our_competences/robotics/Automation%20Products/Aura_test.aspx
www.fogale-robotics.com/

16 Introduction and applicative context

Deubler, 1999]. However, these devices do not account for contact with other parts of

the robot and are highly dependent on the robot tasks.

These drawbacks led to more sophisticated actuator architectures such as the vari-

able stiffness actuators presented by A. Bicchi and G. Tonietti [Bicchi and Tonietti, 2004].

Such systems use common actuators associated with springs [Vanderborght et al., 2006].

They can be used to mimic the antagonist behaviour of human muscles to realize actu-

ators with variable stiffness [Koganezawa, 2005], [Wolf and Albu-Schäffer, 2013]. G.A.

Pratt and M.M. Williamson propose a series-elastic actuator featuring a spring between

an axis gear and the output of its actuator [Pratt and Williamson, 1995]. The springs

are used to filter out the high-frequency motion of the mechanism, allowing for a more

stable force controller robot. They also protect against shock load but increase the joint

flexibility. These actuators are used in the Baxter robot13. Similarly, in the work of

L. Esteveny et al. , a one degree of freedom system is actuated using a combination of

pulleys, a spring and a linear actuator [Esteveny et al., 2014]. The system is statically

balanced by the spring. It is indirectly actuated by acting on the spring elongation using

the linear actuator, allowing to have a back-drivable system that can limit the interaction

forces between the robot and the environment. It can also accurately track a trajectory

while in contact.

D. Shin et al. propose a hybrid actuation solution called Distributed Macro-Mini

(DM2) actuation using two actuators for each axis [Shin et al., 2010]. Trajectory tracking

or gravity compensation tasks which have low time-varying properties are handled by a

heavy actuator located at the robot base and using cable transmission. Smaller actuators

are used for disturbance rejection by generating high frequencies and are located on each

axis. Such design allows the relocation of actuators and reduces the robot mass but

imply a more complex control architecture. A good overview of such enhanced actuators

is exposed in [Vanderborght et al., 2013].

Though promising, DM2 or variable stiffness actuators are still in an active research

state and are not yet ready for the market. While these technologies have the potential

to reduce the dangerousness of a robot during contact, the variable stiffness actuator

solution requires sophisticated mechatronics and complex control schemes [Albu-Schäffer

et al., 2010] and will probably not apply soon to applications where cost-effectiveness is

an issue.

This work is intended for applications using currently available robots in the market.

Since safety in an open environment cannot be entirely solved through design, the next

section details different control techniques to improve a robot safety by control.

13http://sdk.rethinkrobotics.com/wiki/Arms

http://sdk.rethinkrobotics.com/wiki/Arms

1.5. Safety by mean of control 17

1.5 Safety by mean of control

From a control point of view, safety measures can be applied before and after the oc-

currence of a contact. Pre-collision methods provide solutions to avoid obstacles and

compute commands preventing the robot from being dangerous. Post-collision methods

propose to detect and react to an undesired interaction with the robot. These two phases

are important in ensuring safety when sharing workspace with a robot.

1.5.1 Pre-collision methods

To prevent collision between a human and a robot, obstacle avoidance techniques have

been developed. A popular approach, first introduced by O. Khatib [Khatib, 1986],

consists in using potential fields. In this method, a virtual repulsive field is created

around an obstacle. This field acts on the robot to push it away from the obstacle.

This approach is popular as it offers a simple way to realise obstacle avoidance at a low

computational cost. It is used in many robotic applications such as in [Flacco et al.,

2014]. Usually, the obstacle is surrounded by an envelope that is larger than its real

dimensions. This is a safety margin used to take into account any eventual measure

imprecision in the obstacle geometry. This envelope restrains the robot motion leading

to suboptimal control solution towards the task when the robot is near an obstacle.

Furthermore, in cluttered environment this method shows some instabilities [Ren et al.,

2006]. Obstacle avoidance techniques are highly dependent on the system detecting the

obstacles. In industrial environments, the use of these systems is complex because of the

environment (light, dust accumulation, ...) and the disposition of objects in the facility

that constantly changes and can cause sensors obstructions. Ideally redundant sensors

placed at different locations should be used, but this solution is expansive. Furthermore,

in an unknown environment that is constantly evolving such as in Figure 1.1B, it is

not possible to guarantee that no contact can happen. Consequently, control solutions

ensuring safety in case of contact must be defined.

If a contact cannot be avoided, it is still possible to actuate a robot in a way that

complies with ISO specification 15066 on robot safety. B. Matthias and T. Reisinger pro-

pose examples on how to implement this specification for different applications [Matthias

and Reisinger, 2016]. The proposed approach is to reduce the robot maximal velocity

and maximal torque to respect the recommended safety limits. Once again, if the task

is known in advance, it is possible to define robot motions satisfying ISO specification

15066 recommendations. However, if the robot tasks are constantly redefined, the only

way to comply with ISO 15066 recommendations with this method is to reduce the overall

actuation capacities of the robot at the expense of the task tracking performances.

18 Introduction and applicative context

For a more optimal use of the robot capacities, one can use external measuring

devices to record the position of an obstacle in the robot environment. The behaviour of

the robot is adapted using this information. Safety zones can be implemented as in [Vogel

et al., 2013] and used to stop the robot [Cherubini et al., 2013] or to reduce the robot

velocity [Lasota et al., 2014]. Similarly, pre-collision safety can be ensured by computing

a set of control inputs that respect a threshold on some safety markers. H. Jochen and A.

Zelinsky propose to compute a set of torque commands that respect a limit on the impact

force as expressed Equation (1.6) [Jochen and Zelinsky, 2003]. In M. Laffranchi et al. ,

[Laffranchi et al., 2009], a single axis system adapts its reference trajectory to prevent

the accumulation of energy during contact. These solutions do prevent the robot from

being dangerous during an undesired interaction with a human. However, the methods

used to lower the robot performances does not guarantee an optimal achievement of the

desired tasks. In the work of A. Meguenani et al. , the control problem is expressed as an

optimization one that is subject to a constraint on the robot kinetic energy [Meguenani

et al., 2015]. It finds an optimal solution to the realisation of the robot tasks without

generating more kinetic energy than a defined limit.

Once the robot has entered in collision with an obstacle, control solutions should

prevent the robot from applying dangerous forces on the obstacle. This is the topic of

the next section.

1.5.2 Post-collision methods

Collision detection algorithms have been developed using the robot theoretical torques

required to perform a task and comparing them with the applied ones [Yamada et al.,

1997]. The difference gives an estimation of the interaction with the environment and

even information such as the direction of the collision [De Luca and Ferrajoli, 2008]. To

have a good knowledge of the interaction forces applied on the robot, many contributions

focus on torque sensing robots [Albu-Schäffer et al., 2007]. N. Briquet-Kerestedjian et

al. propose to use a Kalman filter to improve collision detection by removing characterized

uncertainties coming either from an imperfect robot model or from quantification noises

[Briquet-Kerestedjian et al., 2017]. The interested reader can refer to [Haddadin et al.,

2017] for a detailed survey on detection, isolation and identification of collisions with a

robot. Once a collision is detected, several reactions can be used, from a simple stop, to

gravity compensation or motion in the direction opposite to the contact [De Luca et al.,

2006].

If the robot must carry on its task after a collision, impedance control can be used

to prevent the robot from exerting dangerous forces when a contact occurred. First

1.5. Safety by mean of control 19

introduced by N. Hogan, [Hogan, 1984], impedance control implements a mass-spring-

damper behaviour between a target position and the actual position of the robot. This

relation is expressed as

f = M∆v̇ +Kp∆x+Kd∆v, (1.8)

where M , Kp and Kd are positive definite matrices representing the controller vir-

tual Cartesian inertia, stiffness and damping. A deviation of the robot current position

towards this target position is related to a control force f . A stiffly actuated robot can

be assimilated to a stiff spring: small errors will generate strong torques to correct the

positioning error. On the contrary a soft impedance control will allow large position

error before imposing important torques.

Stiffness coefficients must be set according to the task and a trade off must be made

between a soft, imprecise but safe robot and a stiff, precise but possibly dangerous robot.

A major drawback of this approach is that a lack of stiffness, added to model imperfec-

tions (such as dry friction at the joint level), leads to a positioning error affecting the

general precision. To overcome such drawbacks, one can increase the controller gains at

the expense of safety. Variable impedance control proposes to adapt these coefficients

on-line depending on the interaction with the environment. G. Raiola et al. propose to

adapt these gains reactively to limit the robot power and kinetic energy [Raiola et al.,

2018]. However, variable impedance control can lead to instabilities. Indeed, K. Kro-

nander et al. show that modifying the robot stiffness on-line can lead to internal energy

production leading to a loss of stability [Kronander and Billard, 2016]. Using energy

tank techniques, B. Hannaford et al. show that it is possible to prevent the production of

energy inside the controller and ensure stability [Hannaford and Jee-Hwan, 2000]. This

is the approach proposed in [Raiola et al., 2018]. However, a technique able to modify

online the impedance gains in an optimal way to be both precise and safe when required

is yet to be found.

When a contact is established, energy is virtually accumulated in the robot con-

troller. This energy results in a force pushing in the direction of the desired position.

In the case of a spring-damper impedance controller, this energy is conservative and can

be assimilated to a potential energy driving the robot towards its desired position. In

Meguenani et al. , the forces pulling the robot are derived from this potential energy and

linked to the robot torques exerted by the actuators [Meguenani et al., 2017]. By con-

straining this energy, using an optimization control scheme, Meguenani et al. optimally

restrain the robot from exerting dangerous forces while tracking a trajectory.

20 Introduction and applicative context

All the proposed solutions can improve the overall safety of a robotic solution. How-

ever, they only handle contact from either the transient or the quasi-static contact case

or induce suboptimal tracking performances. To ensure safety these algorithms rely on

some assumptions about the environment (robot in contact or in free motion). As such,

these solutions require collision detection algorithms and a switching between two com-

mand modes. This switching can introduce discontinuities in the control law inducing

unpredictable and potentially dangerous robotic behaviour. Dedicated control solutions

such as energy tanks control approaches can be used to ensure stability but lead to

sub-optimal tracking solutions [Ferraguti et al., 2013].

1.6 Proposed contribution

When robots can perform autonomous tasks in an open environment, safety has to be

dealt with. If contact cannot be avoided, one must find control solutions to prevent

dangerous interactions with a human. It has been seen that during quasi-static contact

with a human, the wrenches applied by the robot must be below a limit to avoid severe

injury. Similarly, during transient contact, one must monitor the robot kinetic energy. A

safe control solution should be able to handle both cases of contact. It should also avoid

switching between different command modes to avoid discontinuities when the nature of

contact changes between a motion in free space and a motion in a constrained space.

The work energy theorem states that the work done by all the forces acting on an

object equals the change in kinetic energy of this object. For a system moving from point

A to point B:

∆eA→Bc =

∫ B

A
fdu(t), (1.9)

where ∆ec is the system variation of kinetic energy, du(t) defines the trajectory from

point A to point B and f represents the forces acting on the system.

This variation of kinetic energy can be used as a safety indicator. It can be used

to characterize the dangerousness of a robot generating too much kinetic energy while

in free motion or applying too much efforts while in contact. This indicator should be

minimized to ensure that the robot is as safe as possible. It should also be constrained

to stay within a safe limit.

If the robot velocity is fixed by the application, the only way to minimize its variation

of kinetic energy is to minimize its perceived mass. This perceived mass is linked to the

robot configuration as detailed in Section 1.3.2. Using a redundant robot, it is thus

1.6. Proposed contribution 21

possible to find a configuration inducing the lowest perceived mass in the direction of an

obstacle. However, this does not guarantee that this energy stays below a defined safe

limit.

Expressing the variation of kinetic energy as a constraint is an efficient way to prevent

the robot from developing a dangerous amount of energy during its motion. This requires,

from a control point of view, to define a control architecture suitable to optimally achieve

the desired task while satisfying the constraints.

This thesis treats these two aspects which can be summarized as:

• Minimize the robot perceived mass to reduce the energy at the impact and limit

the impact forces

• Constrain the robot variation of kinetic energy to both ensure safety during tran-

sient and quasi-static contact.

This work aims at developing control strategies suitable for any robotic application.

To that extent, the proposed contribution is developed for a generic robotic manipulator

moving in an environment shared with humans. It proposes contributions to alleviate

remaining problems in the third row of Table 1.1. A control architecture that computes

control solutions complying with the robot constraints and ensuring an optimal trajectory

tracking is developed. A kinetic energy constraint is specifically designed to comply with

ISO specification 15066. To this end, the control problem is expressed as an optimization

one. The Mathematics used to define the control problem are developed for generic tasks

and constraints. Digital Tomosynthesis is used as a concrete application example of the

proposed controller. In this application, the robot must perform two main tasks:

• A positioning task ensuring that the robot follows a trajectory in 3D space to per-

form the DT procedure. This trajectory can be either defined off-line or reactively

computed and adapted on-line.

• A pointing task which keeps the robot pointing towards a fixed point related to

the centre of the X-ray imaging detector at all time.

The problem formulation is generalized for any fixed base serial redundant robot and

control solutions are proposed to advantageously use the degree of freedom left to realise

secondary tasks related to safety.

22 Introduction and applicative context

1.7 Structure of this manuscript

This manuscript exposes a control framework that is able to ensure that a robot is not

dangerous in case of an undesired contact with a human. The aim of this framework

is to realise tasks at best while satisfying a set of constraints. Two common families of

problem resolution methods can be used for the realisation of tasks under constraints:

Explicit Inversion Methods (EIM) and Quadratic Programming (QP). They are described

in the first part of Chapter 2 and the second method is selected for the rest of this work.

The second part of Chapter 2 thoroughly details the expression of tasks and constraints

inside the QP formulation. In particular, it details the expression of the kinetic energy

variation in Equation (1.9) as a constraint. Quadratic programming features solutions to

use the robot redundancy to realise secondary tasks. This secondary task, that must not

interfere with the main tasks, can be the definition a desired joint configuration to reach.

Using this property, it is possible to find a configuration minimizing the robot perceived

mass. Each aspect of the problem formulation is detailed and used in the specific context

of Digital Tomosynthesis.

Several experiments are then conducted on a KUKA LWR4+ robot are then de-

scribed. The experimental setup is described in Chapter 3. External sensors are used

to validate the tasks and the correct constraint enforcement. The description of the

real-time control architecture is also given.

Chapter 4 presents several experiments realised with the robot and the external

sensors. It provides several experiments realised in the context of Digital Tomosynthesis

to show the interesting properties of the presented control solution. This chapter also

features several experiments showing that by using the robot redundancy it is possible to

reduce its perceived mass in the direction of an obstacle and thus reduce its dangerousness

towards this obstacle.

Chapter 5 concludes this work by summarizing the contributions that are presented

in this document. It then provides some research perspectives that could be carried out

in the field of safety using the tools developed in this work.

1.8 Related publications

Part of the work presented in this manuscript has been published in ICRA 2018:

[Joseph et al.,2018a] Joseph, L., Padois, V., and Morel, G. (2018). Towards X-

ray medical imaging with robots in the open: safety without compromising performances.

1.8. Related publications 23

IEEE International Conference on Robotics and Automation (ICRA). https: // hal.

archives-ouvertes. fr/ hal-01614508/ en

Another contribution is in press for ISER 2018:

[Joseph et al.,2018b] Joseph, L., Padois, V., and Morel, G. Experimental validation

of an energy constraint for a safer collaboration with robots. International Symposium on

Experimental Robotics (ISER). Manuscript in press https: // hal. archives-ouvertes.

fr/ hal-01883995/ en

https://hal.archives-ouvertes.fr/hal-01614508/en
https://hal.archives-ouvertes.fr/hal-01614508/en
https://hal.archives-ouvertes.fr/hal-01883995/en
https://hal.archives-ouvertes.fr/hal-01883995/en

Chapter 2

Development of a control

architecture for safety

Table 1.1 presents different robotic applications requiring the robot to realise all sorts

of tasks. The realisation of these tasks requires to send some desired control inputs to

the robot actuators. These control inputs are either expressed as desired joint positions,

velocities, or force/torques. Independently of the control inputs, a robot is subject to

the laws of physics. These laws are summarised by the equation of motion which relates

the external forces acting on a robot to its joint acceleration. For a fixed based robot

with n degrees of freedom (dof) this equation can be written

M(q)q̈ + g(q) + n(q, q̇) + f(q, q̇, ...) = τ −
N∑
i=1

JTCi
ωi. (2.1)

q, q̇, q̈ ∈ Rn respectively represent the joint position, velocity and acceleration.

M(q) ∈ Rn×n represents the joint-space inertia matrix, g(q) ∈ Rn corresponds to the

gravity induced joint torque, n(q, q̇) ∈ Rn represents the joint torque induced by Cori-

olis/Centrifugal effects and f(q, q̇, ...) ∈ Rn represents the joint torque induced by other

forces such as dry friction. τ ∈ Rn is the joint actuation torque vector. Considering N

contact points with the robot, JCi represents the contact Jacobian at the point i and ωi
is the contact wrench exerted by the environment on the robot.

Equation (2.1) only describes the unconstrained robot dynamic. Indeed, the robot

is also subject to intrinsic physical constraints including:

25

26 Development of a control architecture for safety

Task
Servoing

Problem
Resolution
(Section 2.1)

Control
input

Robot

Robot
state

Model

Constraints
(Section 2.3)

Task 1
...

Task n

Task definition (Section 2.2)

Control problem

Figure 2.1: General control scheme

• joint position limits

qmin ≤ q ≤ qmax, (2.2)

• joint velocity limits

q̇min ≤ q̇ ≤ q̇max, (2.3)

• joint torque limits

τmin ≤ τ ≤ τmax. (2.4)

These limits are usually given by the robot manufacturer. Control inputs leading

to a violation of these constraints will not be feasible by the robot and should be for-

bidden. It must also be forbidden to send control inputs leading to a dangerous robot

behaviour. Hence, the safety indicator presented in Chapter 1 should also be considered

as a constraint.

A control problem can thus be defined as: find a continuous sequence of control

inputs allowing the robot to go from an initial pose to a goal pose, satisfying the robot

equation of motion and the constraints. It can be noted that from a trajectory generation

point of view, it is possible to find, a priori, a trajectory satisfying this problem. However,

due to model uncertainties, it is always necessary to use feedback to reject disturbances

induced by modelling errors. The control problem thus requires both the computation

of a feasible trajectory and the computation of a suitable control input to track this

trajectory. The second operation is called task servoing.

Figure 2.1 depicts a generic control architecture to solve the proposed control prob-

lem. This architecture translates tasks either defined off-line or reactively updated into

2.1. Control problem resolution methods 27

control inputs satisfying the robot constraints. The model of the robot is used to deter-

mine the dynamic terms in the robot equation of motion. These terms are used for the

task servoing and the expression of the constraints.

This chapter first details the mathematical tools that can be used to solve the control

problem. It then details the expression of the tasks and the constraints for any fixed

based serial robot. Through this chapter, special attention is paid to the improvement

of the robot safety towards its environment using the described tools.

2.1 Control problem resolution methods

Let’s consider a n degrees of freedom robot realising a task in the operational space and

controlled at the joint velocity level. Its desired operational twist, expressed at some

point of interest (usually the end-effector), v∗, is linked to its joint velocity through the

Jacobian J(q). The control problem can thus be expressed as

find q̇ such that v∗ = J(q)q̇ (2.5)

while respecting a set of constraints such as the ones described in Equations (2.2) to

(2.3).

Control problem resolution methods are used to determine the optimal control input

to Problem (2.5). Two families of methods exist for the resolution of this problem:

Explicit Inversion Methods and Constrained optimization methods. The first class of

methods is based on linear algebra and the explicit inversion of the robot Jacobian

to deal with constraints in a passive (clamping) or active (avoidance) way using some

heuristics. The second expresses the problem as an optimization one.

2.1.1 Explicit inversion methods

Explicit inversion methods propose to inverse the robot Jacobian to determine an ade-

quate control input to solve the problem presented in (2.5). When the task to achieve

requires n dof, J(q) ∈ Rn×n can be inverted with a unique solution if rank(J(q)) = n.

However, if the task requires m dof with m < n, the inversion of J(q) ∈ Rm×n yields an

infinity of solutions. A solution to the problem can be written

q̇c = J(q)+v∗, (2.6)

28 Development of a control architecture for safety

where q̇c ∈ Rn is the commanded joint velocity and J(q)+ is the Moore-Penrose

inverse of J(q) [Penrose, 1955]. This pseudoinverse gives the minimum norm to v∗ =

J(q)q̇ in the least square sense. This solution does not account for the robot constraints

yet.

When the robot is redundant relatively to its task (m < n), there remains some

unused degrees of freedom. A. Liegeois proposes to use advantageously this property to

perform secondary tasks [Liégeois, 1977]. Given the defined problem in (2.5), A. Liegeois

proposes the following solution

q̇c = J+v∗ +
(
In − J+J

)
q̇0 (2.7)

where (In − J+J)1 is a projector on the Jacobian kernel, with In ∈ Rn×n the identity

matrix, and q̇0 ∈ Rn, an arbitrary joint velocity vector. By selecting a suitable q̇0, it is

possible to perform a second task in the null-space of the first one. This way, objectives

are strictly hierarchised and a low-level objective is carried out as long as it does not

interfere with objectives of higher level. In his work, Liegeois proposes an algorithm to

keep the robot away from its joint limits by defining a secondary task expressed as a

gradient descent of the joint configuration and projected into the null-space of the main

task Jacobian [Liégeois, 1977].

An extension of the null-space projector approach is developed in [Siciliano and

Slotine, 1991] and generalizes the idea for multiple tasks. The multitask problem consists

in finding the joint velocity, q̇c, satisfying


v1
∗

...

vi
∗


︸ ︷︷ ︸

v∗
(i)

=


J1
...

Ji


︸ ︷︷ ︸

J(i)

q̇ (2.8)

for the ith first tasks. v∗i ∈ Rm and Ji ∈ Rm×n are respectively the desired opera-

tional velocity and the Jacobian associated to the ith task. J(i) ∈ Rm×in is an extended

Jacobian. By recursively projecting lower level tasks in the Jacobian kernel of the previ-

ous ones (with higher priority), a strictly hierarchised control solution can be formulated

as

q̇ci = q̇ci−1 + (JiPi−1)+
(
vi − Jiq̇i−1

)
(2.9)

1For the sake of clarity the dependence to q is omitted.

2.1. Control problem resolution methods 29

with Pi = (In − J+
(i)J(i)) and q̇c1 = J+

1 v1.

The formulation in Equation (2.9) has been used to hierarchise several tasks with a

strict priority order. O. Stasse et al. use a gradient descent method to define a secondary

task to avoid self-collisions on a humanoid robot in real time [Stasse et al., 2008]. Flacco et

al. propose a control architecture where three tasks are strictly hierarchised and executed

by a redundant manipulator [Flacco et al., 2014]. Similarly, O. Khatib uses potential

fields [Khatib, 1986] to avoid obstacles or joint boundaries. Potential field methods allow

formulating the task and the constraint related tasks at the same level. However, they do

not guarantee the respect of the constraints. Another approach, proposed by J. Baillieul,

extends the main task Jacobian by adding auxiliary tasks so that the Jacobian becomes

a square invertible matrix [Baillieul, J, 1985]. This technique is well suited to avoid

singularities but cannot be easily translated to other type of constraints. Some drawbacks

of the mentioned explicit inversion methods are that conflict may arise between different

tasks and most importantly, not every constraint can be projected into the null-space

of the main task Jacobian. Indeed, the number of constraints (joint limits, obstacles to

avoid, etc.) is potentially higher than the number of available degrees of freedom. In

such a situation, the null-space of the previous tasks is potentially empty, and constraints

cannot be enforced.

A. Maciejewski and C. Klein propose instead to project the main task into the null-

space of the Jacobians of constraints related tasks [Maciejewski and Klein, 1985]. This

way, it ensures that constraints are satisfied priorly to the realisation of the main tasks.

Again, if the number of constraints, nc, is too large (nc ≥ m), the null-space of the

Jacobians of constraints related tasks is empty and the robot won’t be able to perform

its main tasks. However, not every constraint related task needs to be activated at

the same time. Based on this observation, constraints activation techniques have been

developed. By only activating the tasks critical to the satisfaction of each constraint,

it is possible to leave some degrees of freedom for the main tasks. To avoid conflicts

between tasks, one needs to introduce passive avoidance techniques. Rather than trying

to move away from constraints, passive avoidance techniques prevent motions towards

the constraints.

Based on these two concepts, P. Baercloacher and R. Boulic propose an algorithm to

iteratively perform a whole model inversion satisfying joint position constraints [Baer-

locher and Boulic, 2004]. If a joint must go beyond its boundary for the correct achieve-

ment of the task, it is clamped to its boundary. A new model inversion is then performed

without accounting for the clamped joints until a solution that does not require more

joint clamping is found. While interesting, this algorithm can lead to sub-optimal so-

lutions (see Chapter 3 in the thesis of S. Rubrecht [Rubrecht, 2011]) and can only be

30 Development of a control architecture for safety

applied for joint position constraints. In the work of F. Flacco, an algorithm is proposed

to account for the robot dynamic and constrains the joint position, velocity and accel-

eration [Flacco et al., 2012]. The proposed approach scales the task to be performed

to satisfy the constraints. This approach has been extended to find an optimal joint

velocity command satisfying the constraints in [Flacco, 2013].

A major drawback of these explicit inversion methods arises from the inability to

express constraints as inequalities. Constraints are thus taken as equalities that are

activated based on some heuristic methods that do not always guarantee the optimality

of the solution. Furthermore, these methods cannot be easily extended to any type of

constraint.

2.1.2 Constrained Convex Optimization Methods

The problem expressed in (2.5) can also be seen as the resolution of an optimization prob-

lem seeking a solution minimizing the norm of J(q)q̇− v∗ and satisfying the constraints

expressed in Equations (2.2) to (2.3). The general form of an optimization problem is

minimize f(x)

subject to h(x) ≤ 0
(2.10)

where f(x) ∈ Rn → R is called an objective function to be minimized according

to the optimization variable x = (x1, ..., xn) ∈ Rn. The optimization can be sub-

ject to inequality constraints expressed as a function of the optimization variable in

h(x) ∈ Rn → Rnc , with nc the number of constraints. An optimal solution to the opti-

mization problem has the smallest objective value among the set of solutions satisfying

the constraints.

In a general form, the objective function associated with problem (2.5) can be written

as f(x) = ‖Ex− f‖2
2
with ‖·‖

2
the Euclidean norm. In the specific case of Problem (2.5),

E = J , x = q̇ and f = v∗. This function is convex and can be written in a quadratic

form

‖Ex− f‖2
2

= (Ex− f)T (Ex− f)

= xTETEx− 2fTEx+ fTf

=
1

2
xTHx+ gTx+ r

(2.11)

2.1. Control problem resolution methods 31

with H ∈ Rn×n and g ∈ Rn respectively the Hessian matrix and the gradient vector

of the objective function and r a scalar. Linear quadratic programming is a branch of

optimization for which the objective function is quadratic and the constraint functions

are affine. Linear quadratic programming methods seek the optimal solution, xopt, to

the following problem

xopt = arg min
x

1
2x

THx+ gTx+ r

s.t. lb ≤ Ax ≤ ub
Cx = d.

(2.12)

The constraint functions are divided in equality and inequality constraints with A

and C the corresponding constraint matrices and lb and ub respectively the inequality

constraint lower and upper bound and d a vector associated to the equality constraint.

If the objective function is convex, i.e.

f(αx+ βy) ≤ αf(x) + βf(y) (2.13)

for all x,y ∈ Rn and all α, β ∈ R+ with α+ β = 1, a local minimum of the function

is also its global minimum. This property eases the problem resolution and reduces com-

putation time. Problem (2.5) can thus be solved using quadratic programming methods.

2.1.2.1 Multi-tasking

Constrained convex optimization methods also allow the simultaneous realisation of sev-

eral tasks. In order to avoid interferences between different tasks, task prioritization

strategies can be used.

Hierarchical prioritization Hierarchical prioritization strategies are used to strictly

determine the level of importance of a task with relation to others. As presented in

Algorithm 1, the solution of a task of higher level is used in the equality constraint of

the following optimization problem.

This hierarchization can be applied for any number, nt, of tasks. It ensures that the

solutions of the lower level tasks do not interfere with the tasks of higher level. However,

if the previous tasks use every degree of freedom available, the tasks of lower level will

not be achieved. When a robot has to realise several tasks over time, the priority of

each task may vary depending on the context situation. Strict hierarchical prioritization

32 Development of a control architecture for safety

Algorithm 1: Hierarchical task prioritization

1. Compute the optimal solution for the main task

xopt = arg min
x,v

‖v‖2
2

s.t. lb ≤ Ax ≤ ub
Cx = d

v = E0x− f0.

2. Store vopt0 , the result of the first optimization.
3. Use the results of the former optimization in the equality constraint of the
next task optimization

for i = 1...nt xopt = arg min
x,v

‖v‖2
2

lb ≤ Ax ≤ ub
Cx = d

s.t. vopt0 = E0x− f0
...

vopti−1 = Ei−1x− fi−1

v = Eix− fi
Store vopti , the result of the ith optimization.

return xopt

makes it complicated to address this transition of tasks priorities. Instead, one can use

soft priorities to alleviate this problem.

Weighted prioritization In weighted prioritization, each task is represented as a

weighted norm. The QP formulation is the sum of the weighted tasks such that

xopt = arg min
x

nt∑
i=1
‖Eix− f i‖

2

Wi

s.t. lb ≤ Ax ≤ ub
Cx = d.

(2.14)

whereWi is a weighting matrix for the ith task. The weights are used to define a soft

hierarchization of task importance towards each other. This does not ensure that tasks

do not interfere with one another, but by adapting the weights it is possible to smoothly

transition between different tasks.

Hybrid prioritization Hybrid hierarchization schemes can be used to combine the

benefits of both methods. An approach to continuously transition a priority between

hierarchical and weighted prioritization using scalar values is proposed in the work of

2.1. Control problem resolution methods 33

[Liu et al., 2016]. This approach provides an interesting technique to switch between two

strategies but is computationally more expensive.

2.1.2.2 Problem resolution

Quadratic programming problems cannot be solved analytically. Iterative methods must

be used to find an optimal solution satisfying the defined constraints. Interior point

methods (also referred to as barrier methods) express the problem as an unconstrained

optimization one, where constraints are expressed as objective functions. Problem (2.12)

is rewritten as

xopt = arg min
x

f(x) +
nc∑
i=1

αi(x)

s.t. Cx = d.

(2.15)

with

αi(x) =

0 if Aix− bi < 0

∞ if Aix− bi > 0
(2.16)

Where nc is the number of constraints, Ai and bi are respectively the constraint

matrix and the associated limit for the ith constraint. When a solution gets close to a

constraint, αi(x) gets a more penalizing weight. This prevents the solution from going

beyond the bound. Because α(x) is not convex, it is approximated using log functions

such that αi(x) = − log(Aix− bi). When Aix is close to bi, αi gets close to∞. Interior-

point methods work well for small problems with a good approximation accuracy.

It can be noted that when a constraint is reached (or activated), a subset of the

solution to the optimization problem lies on this constraint. The problem can thus be

rewritten as an optimization problem with equality constraints where only the activated

constraints are considered. The challenge is then to discover which constraint is acti-

vated using as few operations as possible. This is the topic of active-set methods. For

more detailed information on convex problem optimization resolution methods, the in-

terested reader can refer to [Boyd and Vandenberghe, 2004]. Quadratic programming

problem resolution is still an active research topic. New quadratic programming solvers

are developed regularly. Some recent ones include qpOASES2 [Ferreau et al., 2014] and

2qpOASES quadratic programming Online Active Set Strategy: www.qpOASES.org/

www.qpOASES.org/

34 Development of a control architecture for safety

OSQP3 [Stellato et al., 2017]. These new solvers are developed to increase the resolution

performances in terms of speed to find a solution, ratio of problems solved, etc.

Until recently, these algorithms were not fast enough to solve complex problems in

real time. B. Faverjon and P. Tournassoud proposed an obstacle avoidance algorithm

using convex optimization where the distance to the closest obstacle is set as a constraint

[Faverjon and Tournassoud, 1987]. Rather than generating a control input inducing a

motion in the opposite direction to the obstacle, this obstacle avoidance technique pro-

poses to prevent motions in the direction of this obstacle. Due to computation capacities

limits at the time, this optimization was performed off-line to avoid collisions with a

known environment. A. Kapoor et al. use a convex optimization scheme where con-

straints are used to define virtual fixtures that the robot must not cross [Kapoor et al.,

2006]. The control loop in these experiments has a periodicity of 30 ms which is sufficient

for position control. For torque controlled robots, a smaller control loop periodicity is

required to account for the robot dynamic [Khosla, 1987]. The recent improvements in

the field of optimization and the progress in computing capacities of recent computers

now allows solving problems under the millisecond for robotic manipulators [Meguenani

et al., 2017] as well as humanoid robots [Kuindersma et al., 2014].

Quadratic programming methods have interesting properties that makes them suit-

able to deal with multiple tasks while strictly enforcing constraints. Through this work,

the control problem is formulated as a quadratic programming one. The remaining of

this chapter details the construction of this problem. Each step in the definition of the

problem is explained for a generic n dof manipulator and the contributions to safety are

outlined.

2.2 Task definition

Table 1.1 presents different application cases for a robot. In each application a robot

must realise a specific task that can be expressed in terms of a position to reach, a force

to exert, etc. Problem (2.5) illustrates the elements that are required for the expression

of a robot task: the knowledge of the robot current state (q, q̇) and the definition of a

desired state to reach (qdes, q̇des). The robot desired motion is defined by a task planner

and is tracked using servoing techniques and linked to a desired state using the robot

model. This section details the expression of common robot tasks in an optimization

scheme.

3OSQP An Operator Splitting Solver for Quadratic Programs: www.osqp.org/

www.osqp.org/

2.2. Task definition 35

2.2.1 Task planning

In this document, task planning consists in the definition of a trajectory to follow in

order to realise a task. This trajectory is defined by a path to go from an initial position

to a goal position and a timing law. Depending on the nature of the task, the path can be

expressed either in the Cartesian space or in the joint configuration space ([Khatib and

Siciliano, 2008] Chapter 6). The timing law depends on the task specification (maximal

velocity, stop at a specific location, etc.). Different techniques exist to define a trajectory.

A straightforward solution to define a timing law consists in using the maximal allowed

acceleration and deceleration to perform the motion. This led to the definition of s-

curves motions [Nguyen et al., 2008] where the motion profile is defined as a polynomial

function. Rapidly exploring random trees techniques can be used to compute a collision-

free trajectory [Lavalle, 1998]. Bounds on the robot joint acceleration and velocity can

also be taken into account [Kunz and Stilman, 2012]. Trajectory generation can also

be considered as an optimization problem seeking a collision free path under actuation

constraints. As such several trajectory planners have been proposed in the literature

such as [Ratliff et al., 2009] or in [Kalakrishnan et al., 2011].

2.2.2 Task servoing

Task servoing techniques are used to track the trajectory determined during tasks plan-

ning. It aims at rejecting the disturbances induced by errors in the robot model that

would prevent the correct following of the trajectory. A common task servoing technique

relies on a proportional–integral–derivative (PID) controller which is defined as

ξ∗ = Kpe+Kdė+Ki

∫ t

t0

edτ + ξdes (2.17)

where Kp, Kd and Ki are respectively the proportional, derivative and integral gains

of the controller. ξ∗ is the controlled acceleration, ξdes is a desired acceleration term

(also called feed-forward term), e and ė represent the current pose error and its deriva-

tive. They are not explicitly defined as they are representation dependant. If the task

is expressed in the joint space then ξ∗ = q̈∗ and e =
(
qdes − q

)
with qdes ∈ Rn the

joint position to reach obtained from the trajectory generation algorithm. If the task is

expressed in the operational space then ξ∗ = v̇∗ and e =
(
Xdes −X

) 4. X ∈ SO(3)×R3

and Xdes ∈ SO(3)×R3 respectively represent the robot current and desired end-effector

position and orientation in the operational space. The robot orientation representation

4In R3, a − b represents the difference between a and b ∈ R3. In SO(3) it represents the rotation
axis necessary to rotate from a to b ∈ SO(3)

36 Development of a control architecture for safety

is not unique. This orientation can be represented using rotation matrices, a sequence of

rotations around independent angles (Euler angles, roll-pitch-yaw angles) or unit quater-

nions. Quaternion representation is often preferred since it removes the representation

singularities inherent to angle representations and for its computational efficiency. In

the remaining of this document, the unit quaternions are used to represent the robot

orientation.

The feed-forward term, ξdes, represents the theoretical acceleration that is required

to correctly perform the task. In practice, the robot model is subject to uncertainties and

the PID controller corrects the possible modelling errors. To that extent, the proportional

and derivative terms act as a virtual-spring damper. Kp and Kd respectively represent

the stiffness and damping of the controller. The farther the robot is from its desired

position, the more acceleration the controller will require to correct the error. The

integral term is used to correct the accumulation of errors and cancel any static error.

PID controllers are designed to correct small errors. However, when interacting with

the robot, the tracking errors with the desired robot position may greatly increase. This

is why in practice, the integral term must be treated carefully when physical interaction

with the robot can happen. Indeed, at each time step, the integral term computes more

important accelerations to reject the perturbation. If the desired acceleration reaches a

dangerous level, the robot may apply important wrenches to correct the tracking errors.

If the contact breaks, the commanded acceleration can be important and the release of

energy can also be dangerous. One way to prevent such behaviour is to saturate the

integral term using anti-windup techniques [Bohn and Atherton, 1995].

2.2.3 Task expression

Equation (2.11) describes the generic formulation of a task. This task can be expressed

according to different control variables such as the robot joint acceleration or torque.

Acceleration task An acceleration task relates the robot joint accelerations to the

derivative of a twist attached to the system expressed either in the Cartesian space or in

joint space. In a general form, this task can be written as

T (ξ) = ‖ξ∗ − ξ‖2
2

=
∥∥∥ξ∗ − (J̇(q, q̇)q̇ + J(q)q̈

)∥∥∥2

2

.
(2.18)

2.3. Constraints in quadratic programming 37

J(q) and J̇(q, q̇) are built accordingly to the space chosen considered for ξ: in the

Cartesian space, J(q) is the robot natural Jacobian expressed at some point of interest,

in the articular space J(q) is the identity matrix.

From Equation (2.18), it can be seen that the objective function is expressed linearly

with respect to the control variable q̈ and can thus be used in a quadratic programming

formulation.

Torque task When working in collaboration with a robot, one may need to control

the interactions between the robot and its environment. In this case, expressing the task

with relation to the commanded torque is recommended. A torque task can be described

as an acceleration task accounting for the robot equation of motion (Equation (2.1)).

Two methods exist to express the robot task relatively to its joint torques.

The first method uses the properties of the optimization formulation to define an

equality constraint including the equation of motion. In the operational space, the QP

problem is formulated as

τ opt = arg min
τ ,q̈

∥∥∥v̇∗ − (J(q)q̈ + J̇(q, q̇)q̇
)∥∥∥2

2

s.t. M(q)q̈ + n (q, q̇) + g(q) = τ

(2.19)

This ensures that the solution found by the QP solver satisfies the equation of motion.

The result of the optimization, q̈opt ∈ Rn, is then used in the equation of motion to find

the optimal torque, τ opt ∈ Rn, to actuate the robot.

Another approach is to directly express the task as a function of the joint torque

such that

T (τ) =
∥∥∥ξ̇∗ − J(q)M−1(q) (τ − n (q, q̇)− g(q))− J̇(q, q̇)q̇

∥∥∥2

2

. (2.20)

The two formulations are equivalent and lead to the same result. The first formula-

tion may however increase the computation time as it introduces an additional constraint

and an additional optimization variable.

2.3 Constraints in quadratic programming

The robot is subject to a certain set of constraints imposed by design or by the law

of physics. Constraints are physical limitations that cannot be violated. The equation

38 Development of a control architecture for safety

of motion is an example of an equality constraint imposed on the robot. Joint actua-

tion limits (see Equation (2.2) to (2.4)) are intrinsic inequality constraints applied on

the robot. It is also possible to consider the robot dangerousness as a constraint. As

presented in Section 1.6, the robot variation of kinetic energy can be used to define a

robot dangerousness. By expressing this variation of energy as a function of the robot

actuation torque, it is possible to constrain the solution computed by the QP solver so

that the robot does not reach a dangerous amount of energy.

This section describes the expression of different constraints acting on a n dof robot

inside a quadratic programming problem. The second part of this section is focused

on the expression of a constraint preventing the robot from being dangerous in case of

unwanted contact.

2.3.1 Intrinsic constraints

The robot intrinsic constraints should always be taken into account to determine com-

mands that are feasible by the robot. This section provides the expression of the three

intrinsic constraints mentioned in Equations (2.2) to (2.4).

Torque limits The torque limits are directly linked to the control variable. The ex-

pression of the corresponding constraint is straightforward:

τmin ≤ τ k+1 ≤ τmax. (2.21)

τ k+1 ∈ Rn represents the torque solution found by the QP solver at the next discrete

time step k + 1. τmin and τmax ∈ Rn are torque actuation limits imposed by the

actuators.

According to the formulation of the quadratic programming problem presented in

Equation (2.12), the torque constraint can be formulated as

lbτ ≤ Aτk+1
τ ≤ ubτ (2.22)

with Aτ = In,

lbτ = τmin,

ubτ = τmax.

Joint velocity limits The actuators joint velocity limits are defined as

2.3. Constraints in quadratic programming 39

q̇min ≤ q̇k+1(τ) ≤ q̇max; (2.23)

with q̇k+1 ∈ Rn the robot joint velocity at the next control time step, q̇min and

q̇max ∈ Rn the joint velocity limits. To express q̇k+1 as a function of τ , it must be

described in its discrete form using a first order Taylor expansion

q̇k+1(τ) = q̇k + q̈k(τ)dt. (2.24)

With dt an integration time sufficiently small to validate the Taylor expansion. Us-

ing the equation of motion the inequality constraint can be linked to the optimization

variable, τ , such that

q̇min ≤ q̇k +M−1
k (τ − gk − nk) dt ≤ q̇max. (2.25)

For the sake of clarity, Mk = M(qk), gk = g(qk) and nk = n(qk). Equation (2.25)

can finally be written in the form

lbq̇ ≤ Aq̇τ k+1 ≤ ubq̇ (2.26)

with Aq̇ = M−1
k ,

lbq̇ =
q̇min − q̇k

dt
+M−1

k (gk + nk) ,

ubq̇ =
q̇max − q̇k

dt
+M−1

k (gk + nk) .

Joint position limits The joint limits are defined as

qmin ≤ qk+1(τ) ≤ qmax. (2.27)

With qk+1 ∈ Rn the robot joint position at the next control time step, qmin and

qmax ∈ Rn the joint position limits. Using a second order Taylor expansion and the

equation of motion, this constraint can also be expressed as a function of τ such that

qk+1 = qk + q̇kdt+
dt2

2
M−1
k (τ − gk − nk) . (2.28)

40 Development of a control architecture for safety

Equation (2.28) can also be written in the form

lbq ≤ Aqτ k+1 ≤ ubq (2.29)

with Aq = M−1
k ,

lbq =
2

dt2
(
qmin − qk − q̇kdt

)
+M−1

k (gk + nk) ,

ubq =
2

dt2
(qmax − qk − q̇kdt) +M−1

k (gk + nk) .

The choice of the integration time step, dt, in Equation (2.25) and (2.28) is not a

trivial question. This integration time can be associated to a horizon of time before the

system “sees” the bound on the constraints. If dt is too small, the robot will have less

time to react. For example, if a robot goes close to a joint limit too fast, a small dt

will mean that it will have to use important braking torques to avoid the constraints.

This can lead to jerk inputs that are not feasible by the actuators. Larger value will

tend to produce more conservative torques that does not allow using the full acceleration

capacities of the robot. This is because the deceleration capacities of the robot are not

taken into account in the constraint formulation [Rubrecht et al., 2010]. In his work,

A. Meguenani proposes algorithms to determine the correct integration time according

to the deceleration capabilities of each joint [Meguenani, 2018]. While efficient, these

algorithms are computationally expensive and only work in joint space.

2.3.2 Constraints related to safety

Apart from intrinsic constraints, a robot can also be subject to other constraints related

to its environment. Safety should be considered as a constraint that must be strictly

respected. This section details different constraint formulations intended to improve an

operator safety in the vicinity of a robot.

2.3.2.1 Constraint on the robot workspace

In a first attempt to prevent collisions between a robot and its environment, one can

prevent the robot from entering in specific areas of the operational space. The imple-

mentation of a virtual fixture inside a QP solver is experimented in [Kapoor et al., 2006]

and yields promising results. Usually virtual fixtures are expressed as tasks with a spring-

damper implementation that pushes the robot away from the fixtures boundaries [Joly

2.3. Constraints in quadratic programming 41

and Andriot, 1995]. The expression of the constraint does not implement such spring-

damper behaviour. Instead, the QP solver computes solutions that keep the robot inside

the boundaries.

Let us consider a robot where motions are restrained to a specific workspace. Its

limits are included between Xmin and Xmax ∈ R3. A constraint on the robot Cartesian

position is expressed as

Xmin ≤Xk+1(τ) ≤Xmax. (2.30)

With Xk+1 ∈ R3, the end-effector position in the operational space at the next

control time step. This constraint must be expressed as a function of the joint torques.

Using a Taylor expansion one can state that

Xk+1(τ) = Xk + vkdt+
1

2
v̇k(τ)dt2. (2.31)

Using the equation of motion of the robot and the derivative of v = J q̇, it is possible

to link the robot Cartesian position with the joint torques and express the constraint as

Xmin ≤Xk + Jkq̇kdt+
dt2

2

(
J̇kq̇k + JkM

−1
k (τ − gk − nk)

)
≤Xmax (2.32)

Finally, this constraint can be put in the form

lbX ≤ AXτ k+1 ≤ ubX (2.33)

with AX = JkM
−1
k

lbX =
2

dt2
(
Xmin −Xk − Jkq̇kdt

)
− J̇kq̇k + JkM

−1
k (nk + gk)

ubX =
2

dt2
(Xmax −Xk − Jkq̇kdt)− J̇kq̇k + JkM

−1
k (nk + gk)

This constraint can be used to dynamically constrain the robot workspace. Consider

a human working close to the robot with its position being recorded reactively. The

position of the virtual wall can be set to follow the human motions. This constraint

will force the quadratic programming solver to find torque inputs keeping the robot at

42 Development of a control architecture for safety

a safe distance from the operator. If no solution is found, an emergency stop signal can

be triggered to stop the robot before a collision occurs. The distance between the robot

and the wall can be computed accounting for the deceleration capabilities of the robot

to ensure that when the emergency stop is triggered the robot inertia does not pull the

robot towards the human.

2.3.2.2 Expression of a kinetic energy constraint

As stated in Section 1.3, safety for the environment of the robot requires a limitation of

its kinetic energy. Indeed, this energy would, for example, have to be dissipated in case

of an impact through deformation (and potentially damage) of the robot/environment

pair while in contact. Assuming that there are two bodies colliding, the dissipated energy

during collision is a function of both bodies mass and velocity. However, little information

is available about the obstacle colliding with the robot. On the other hand, the kinetic

energy of the robot effector at time t can be written

ec (t) =
1

2
vT (t) Λ (q (t))v (t) (2.34)

Given v̇c(t) the controlled acceleration, the velocity of the end-effector at time t+T

can be written

v (t+ T) = v(t) +

∫ t+T

t
v̇c(t)dt. (2.35)

Considering a discrete time controller of control period ∆t such that T = n∆t and

t = k∆t, Equation (2.35) can be written in its discrete form

vk+n = vk +
k+n−1∑
i=k

v̇ci∆t. (2.36)

The variation of kinetic energy between the time tk and tk + T can thus be written

in the following discrete form

∆ec = ec,k+n − ec,k
= 1

2v
T
k+nΛk+nvk+n − 1

2v
T
k Λkvk

= 1
2

(
vk +

k+n−1∑
i=k

v̇ci∆t

)T
Λk+n

(
vk +

k+n−1∑
i=k

v̇ci∆t

)
− 1

2v
T
k Λkvk

(2.37)

2.3. Constraints in quadratic programming 43

Assuming that the modification of the robot configuration between the control in-

stants k and k+ n is small enough, the variation of the robot operational inertia can be

neglected (Λk+n ≈ Λk) and Equation (2.37) can be rewritten

∆ec ≈
(
vk∆t+

1

2

k+n−1∑
i=k

v̇ci∆t
2

)T
Λk

k+n−1∑
i=k

v̇ci . (2.38)

Note that,
(
vk∆t+ 1

2

∑k+n−1
i=k v̇ci∆t

2
)

represents the expected variation of opera-

tional position of the end-effector given the controlled acceleration trajectory v̇ck→k+n

over the control window [k; k + n] and an initial state {Xk;vk}, where Xk ∈ R6 is

the end effector position at time k. This pose variation is noted ∆xk→k+n. On the

other hand, Λk
∑k+n−1

i=k v̇ci represents the sum of the equivalent control wrenches over

the control window [k; k + n]. This sum can be written
∑k+n−1

i=k f ci where f ci = Λkv̇
c
i .

Equation (2.38) thus represents an approximation of the work energy theorem introduced

in Equation (1.9) over the control window [k; k + n] with ∆ec = ∆xk→k+n
∑k+n−1

i=k f ci .

At the next time step, Equation (2.38) leads to

ec,k+1(τ) = ec,k +

(
vk∆t+

1

2
v̇ck(τ)∆t2

)T
Λkv̇

c
k(τ). (2.39)

This expression of the kinetic energy is quadratic with relation to τ . Optimization

problems featuring quadratic constraint functions are called quadratically constrained

quadratic program (QCQP). In practice QCQP problem are NP-hard and thus compu-

tationally more expensive to solve than linear quadratic programming problems which

are solvable in polynomial time. Since this constraint involves safety and should be

solved in real-time, a solution to express this constraint linearly with relation to the con-

trol torque is preferred. It can be noted that in practice, v̇ck will not be actually reached

on the real system and the expected acceleration is rather v̇∗k. This desired acceleration

is known at instant k and ∆xk→k+n can be interpreted as the expected pose variation

that would be induced if this acceleration is actually achieved.

This leads to a modified expression of the kinetic energy at the next time step:

ec,k+1(τ) = ec,k +

(
vk∆t+

1

2
v̇∗k∆t

2

)T
Λkv̇

c
k(τ). (2.40)

Equation (2.40) shows the possibility to express the kinetic energy at the next time

step as a function of the control torque using the equation of motion:

44 Development of a control architecture for safety

ec,k+1(τ) = ec,k +

(
vk∆t+

1

2
v̇∗k∆t

2

)T
Λk

(
JkM

−1
k (τ − nk − gk) + J̇kq̇k

)
. (2.41)

The safety constraint is then expressed as

ec,k+1(τ) ≤ elimc . (2.42)

which can be written as

lbec ≤ Aecτ k+1 ≤ ubec (2.43)

with Aec = ∆xTk ΛkJkM
−1
k

lbec = 0

ubec = elimc − ec,k + ∆xTk Λk

(
J̇kq̇k − JkM−1

k (gk + nk)
)

Equation (2.43) is linear with respect to the control torque and can be inserted

inside a quadratic programming problem. The remaining of this section depicts how this

constraint can be used in the transient and quasi-static contact cases.

Transient contact The formulation of the kinetic energy constraint in Equation (2.43)

can be directly used to limit the energy that can be dissipated during a transient contact.

elimc can be fixed according to the limits recommended by ISO TS 15066 considering the

human body parts that can enter in contact with the robot.

Quasi-static contact During quasi-static contact, when contact is established, at

instant k = k0, Equation (2.40) can be written

ec,k0+1(τ) = ec,k0 +

(
vk0∆t+

1

2
v̇∗k0∆t2

)T
Λk0 v̇

c
k0(τ). (2.44)

Since the robot is pushing against an immobile obstacle, vk0 = 0 m/s and ec,k0 = 0 J.

Equation 2.44 can be simplified such that

ec,k0+1(τ) =
1

2

(
v̇∗k0∆t2

)T
f ck0(τ) (2.45)

2.3. Constraints in quadratic programming 45

with f ck0 = Λk0 v̇
c
k0 the robot pushing force at the instant k0. Equation (2.45) states

that the efforts applied by the robot during a quasi-static contact are a function of its

kinetic energy and the operational acceleration obtained from the PID controller.

As long as the perturbation remains, the PID controller integrates the error between

the current robot position and the desired one. As v̇∗k increases, ec,k+1 in Equation (2.45)

also increases until it reaches the constraint at instant k = k1 (with k1 ≥ k0) and

ec,k1+1(τ) = elimc =
1

2

(
v̇∗k1+1∆t2

)T
f ck1(τ). (2.46)

Even though the robot kinetic energy limit is reached, the PID controller keeps on

integrating the tracking error resulting from the interaction. As mentioned in Section

2.2.2, the output of the PID controller is saturated. Therefore, after a certain time k = k2

(with k2 ≥ k1), the desired robot acceleration will reach a limit, v̇∗,sat, so that

ec,k2+1(τ) = elimc =
1

2

(
v̇∗,sat∆t2

)T
f ck2(τ). (2.47)

elimc being defined by the transient contact case and knowing the PID saturation,

v̇∗,sat, one can compute an integration period ∆t to indirectly limit the wrenches applied

by the robot so that f ck2 = f lim. From Equation (2.47), ∆t can be chosen so that

∆t =

√
2elimc

(v̇∗,sat)Tf lim
. (2.48)

f lim can for example be chosen based on the maximum applicable efforts for different

body parts recommended by ISO Norm 15066. The choice of ∆t is highly dependent

on the choice of the PID saturation v̇∗,sat. This saturation term is defined during the

tuning of the PID controller. However, there is no straightforward solution to select a

specific saturation value. This saturation is related to the maximal Cartesian acceleration

achievable by the robot. This Cartesian acceleration is usually not given by the robot

manufacturer and must be estimated. Another solution is to consider a saturation related

to the maximal torque achievable by the robot actuators. This raises some stability issues

that can be dealt with as presented in [Alvarez-Ramirez et al., 2008] but involves a

variable saturation and thus a variable ∆t. This analysis on the robot kinetic energy can

help to choose a saturation value. Indeed, v̇∗,sat should not be set too low, otherwise the

PID saturation might occur before the robot kinetic energy limit is reached (k2 ≤ k1)).

In such case, the kinetic energy constraint will never be activated and the robot will be

sub-optimally used.

46 Development of a control architecture for safety

By choosing an adequate saturation value, the integration period, ∆t, can be defined

according to Equation (2.48) so that the kinetic energy constraint restrains the robot

from exerting a force greater than f lim from the instant k2 and until the contact is

released.

2.3.2.3 Generalisation for any point of interest

The formulation of the kinetic energy constraint is expressed at the robot end-effector

since it is usually the point yielding the most kinetic energy. However, one may want to

constrain the kinetic energy of any point of the robot. For a 7 dof robot the elbow joint

can also yield an important amount of energy that can be dangerous in case of unwanted

contact. One may also want to constrain the kinetic energy of the closest point to an

obstacle. Several points could also be constrained at the same time, although it would

require more computation time for the quadratic programming solver.

To that extent, Equation (2.39) can be extended to any point on the robot such that

ec,k+1
∣∣p = ec,k

∣∣p +

(
vk
∣∣p∆t+

1

2
v̇ck
∣∣p∆t2

)T
Λkv̇

c
k
∣∣p, (2.49)

where the ∣∣p represents a point on the robot. The relationship between Equation

(2.49) and the optimization variable is still quadratic with relation to τ . Since the desired

acceleration, v̇∗k, is expressed at the control point, the simplifications realised in Equation

(2.40) cannot be used. This situation has not been studied in this work.

2.4 Redundancy and quadratic programming

A robot that possess more degrees of freedom than the ones required to execute a task

is said to be redundant with relation to the task. It means that there is an infinity of

solutions to accomplish the task. This is an interesting property which enhances the

mobility of the robot, allowing it to reach objects in cluttered environments or to realise

secondary tasks. However, from a control point of view, a redundant robot presents

many challenges. Choosing a specific configuration yielding an interesting additional

robot behaviour is not always simple.

This section proposes solutions to control redundancy using quadratic programming

methods. It details some possible implementations and presents a control solution mini-

mizing the robot perceived mass. As a reminder, this mass is linked to the robot kinetic

energy (see Equation (1.5)) and to the force exerted by the robot at the moment of

2.4. Redundancy and quadratic programming 47

impact (see Equation (1.6)). Minimizing it can reduce the robot dangerousness during

a contact.

2.4.1 The regularisation task in convex optimization methods

A way to determine a unique control input for a robot that is redundant relatively to its

tasks is to add a task requiring every available degree of freedom. This task is called a

regularization task and is noted R(x). This regularisation can be realised automatically

by the quadratic solver or implemented to perform specific secondary tasks. This task

should not influence the results of the main tasks. To that extent, the two hierarchization

techniques presented in Section 2.1.2.1 can be used. In a weighted prioritization strategy,

the QP formulation becomes

xopt = arg min
x

nt∑
i=1
‖Eix− f i‖

2

Wi
+ ‖E0x− f0‖

2

W0

s.t.
Ax ≤ b
Cx = d

.
(2.50)

With R(x) = ‖E0x− f0‖
2

W0
, the regularization task, E0 ∈ Rn, f0 ∈ Rn and W0 =

εIn×n, with ε � 1 a sufficiently small weight so that the regularization task does not

interfere with the main tasks.

The next section details some possible implementation of the regularization task for

a torque controlled robot.

2.4.2 Torque minimization task

The simplest regularization task consists in minimizing the optimization variable. For a

torque controlled robot the regularization task becomes

R(τ) = ‖τ‖2
W0
. (2.51)

When seeking a solution for this problem, the QP solver will find the torque solution

minimizing the overall joint torques.

48 Development of a control architecture for safety

2.4.3 Gravity compensation task

The previous regularization task prevents physical interaction with the robot. There is

a single configuration realizing the task while minimizing the joint torques. Hence, it

is not possible to take advantage of the additional degrees of freedom of the robot to

physically interact with it. This can be interesting for example to keep the servoing of a

point while performing motion in the null-space of the main task Jacobian by physically

manipulating the robot. Such interaction can be useful in applications where the robot is

sharing its workspace with a human (see Table 1.1). To enable such type of interaction,

another regularization task can be written as

R(τ) = ‖τ − g(q)‖2
W0
. (2.52)

This regularization function minimizes the difference between the computed torque

and the gravity induced external torque. It results that the combination of joints that

does not contribute to the resolution of the main tasks are compensating for gravity.

2.4.4 Posture task

When using a robotic manipulator, one may want to keep the robot in a reference posi-

tion. From the operator point of view, this can ease the prediction of the robot internal

motion. A regularization task can be added to implement a spring-damper behaviour at

the joint torque level5 that keeps the robot towards a desired joint configuration. At the

torque level, the servoing of this configuration can be expressed using a proportional-

derivative controller such that

τ ∗ = Kp

(
qdes − q

)
−Kdq̇ (2.53)

with τ ∗ ∈ Rn a desired torque pushing the robot towards the desired joint configu-

ration qdes.

The regularisation task is then expressed as

R(τ) = ‖τ − τ ∗‖2
W0
. (2.54)

5A PD controller at the acceleration level could also be defined. However, it would require to use
the robot equation of motion to transform this acceleration in terms of torques. This requires to use the
robot model which can feature small errors and lead to imprecisions that can be avoided by expressing
the controller at the torque level.

2.4. Redundancy and quadratic programming 49

2.4.5 Using redundancy to improve safety

In this work, special considerations are taken to use a robot redundancy to modulate

its perceived mass in a specific direction. This mass is directly linked to the robot

kinetic energy transferred during an impact. Minimizing it should thus improve the

robot safety. If the robot motions are planned off-line, it is possible to compute off-line

a set of configurations minimizing the robot perceived mass in the direction of motion.

However, if the robot motions are updated on-line or if there are obstacles in the robot

environment, it may be better to compute on-line new configurations minimizing the

robot perceived mass. Furthermore, if a human is present in the robot environment,

minimizing the transferred kinetic energy between the robot and human requires to

minimize the perceived mass in the direction of the human rather than in the direction

of motion.

This section first recalls the definition of a robot perceived mass and its link with the

robot configuration. The computation of the robot null-space motion is then presented

and exemplified on specific cases. An algorithm to find the perceived mass global min-

imum off-line using only the robot model and its trajectory is first proposed. A second

algorithm to find a local minimum of this perceived mass on-line is then developed. Us-

ing external sensors detecting obstacles in the environment, this algorithm can be used

to reactively minimize the robot perceived mass in the direction of the closest obstacle.

2.4.5.1 The robot perceived mass

As explained in Section 1.3.2, the robot kinetic energy is a function of its velocity and

of its perceived mass. As a reminder, the mass perceived at the tip of the end-effector

and projected in a direction u is expressed as

mu(q) = uT
(
Jlin(q)M−1(q)JTlin(q)

)−1
u. (2.55)

It can be noted that this mass is a function of the joint configuration. I.D. Walker

analyses the influence of the robot configuration on the impulsive forces generated by a

collision [Walker, 1994]. It links the robot perceived mass to these impulsive forces and

proposes an impact ellipsoid to select the robot configuration yielding the less impact

forces. In the work of V. Padois et al. , a gradient descent algorithm is proposed to find

a robot configuration minimizing its perceived mass and results show the reduction of

the impact forces [Padois et al., 2004]. N. Mansfeld et al. propose to realise a gradient

descent to minimize a robot perceived mass projected in the direction of motion and

50 Development of a control architecture for safety

use it in a safe velocity controller [Mansfeld et al., 2017]. These papers use analytical

inversion methods that project the solution in the null-space of the Jacobian of the robot

main task.

The robot perceived mass is directly linked to the robot kinetic energy. As such,

there exist a specific robot configuration yielding the minimum kinetic energy. Using the

techniques developed in the previously stated works it is then possible to advantageously

use robot redundancy to reduce the dangerousness of a robot during a transient contact.

2.4.5.2 Robot null-space motion

Let us consider a n dof robot performing a m dimensional task. To find the joint

configurations that do not change the end-effector position, one can compute the null-

space base matrix Z(q) ∈ Rr×n of J(q) ∈ Rm×n, i.e. such that J(q)Z(q)T = 0m×r, with

r = n −m. If J(q) is full rank and not singular, it is possible to linearly combine the

columns of J(q) to build a matrix J ′(q) = [Jm(q) Jr(q)]. Jm(q) ∈ Rm×m is composed

of m independent columns and is thus locally invertible and Jr(q) ∈ Rm×r is composed

of the remaining columns of J ′(q) that are not included in Jm(q). The null-space base

matrix can similarly be decomposed in Z ′(q) = [Zm(q) Zr(q)], with Zm ∈ Rr×m and

Zr ∈ Rr×r to be determined. The condition J(q)Z(q)T = 0m×r can be equivalently

written J ′(q)Z ′(q)T = 0m×r and developed such that

Jm(q)Zm(q)T + Jr(q)Zr(q)T = 0m×r. (2.56)

A straightforward, solution to Equation (2.56), proposed in [Zghal et al., 1990],

consists in choosing Zr(q) = Ir×r so that

Z(q) = [−Jr(q)TJm(q)−T Ir×r] (2.57)

However, there exists an infinity of solution to Equation (2.56). Y. C. Chen and I.

D. Walker propose to weight Z(q) with the determinant of Jm(q) leading to a second

expression

Z(q) = [−Jr(q)Tadj(Jm(q))T det(Jm(q))Ir×r] (2.58)

where adj(Jm(q)) is the adjoint matrix6 of Jm(q) [Chen and Walker, 1993].

6The adjoint of a square matrix is the transpose of its cofactor matrix

2.4. Redundancy and quadratic programming 51

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

−2

0

2

Time(s)

Jo
in
t
co
nfi

gu
ra
ti
on

(r
ad

)

q1
q2
q3
q4
q5
q6
q7

Figure 2.2: Joint configuration inducing self motion

For a positioning task requiring the servoing of the robot position and orientation,

a 7 dof robot has 1 degree of freedom available. Hence, Z(q) becomes a vector, denoted

z(q). In his book, C. Ott proposes an analytical solution to compute its corresponding

null-space velocity vector

zi(q) = (−1)n+1det(Ji(q)) (2.59)

where Ji(q) is J(q) with the ith column omitted [Ott, 2008]. Note that this formula

only stands when the degree of redundancy is one. The joint configuration that does not

induce a modification of the end-effector position in the operational space, qns ∈ Rn, can
then be computed by integrating z(q) over time starting from an initial position, q0, at

the time t0

qns(t) = q0 +

∫ t

t0

z(qns(t))dt. (2.60)

This integration can be performed until one of the joints has performed a full rotation.

With Equation (2.60), it is possible to find every joint configuration keeping the end-

effector at the same operational position. These configurations are presented in Figure

2.2. It can be observed that both q3 and q5 perform a full rotation during this integration.

2.4.5.3 Finding the perceived mass global minimum

It is possible to compute the global minimum of the robot perceived mass projected in

a direction from Equation (2.55) and (2.60). Using Equation (2.55), the perceived mass

projected along u as a function of q3 is plotted in Figure 2.3 a. It shows the evolution of

52 Development of a control architecture for safety

−π −π
2

0 π
2

π

2.5

3

3.5

-0.74 1.64

2.24

3.77

3rd joint position (rad)

E
qu

iv
al

en
t

m
as

s
(k

g)

y

x

y

x

a.

b. c.

Figure 2.3: a. Equivalent mass projected in the y-direction as a function of the robot
third joint position. b. Configuration corresponding to the minimal perceived mass in
the y-direction. c. Configuration corresponding to the maximal perceived mass in the

y-direction.

the perceived mass of a 16 kg KUKA LWR4+ robot during self-motion in the y direction.

The red curve corresponds to the configurations that are outside of the joint position

limits and cannot be reached by the robot. According to the robot configuration, the

perceived mass ranges from 2.24 kg (configuration represented in Figure 2.3 b.) to 3.77

kg (configuration represented in Figure 2.3 c.). It represents a mass reduction of 30%

and a similar reduction of the kinetic energy during the impact.

Due to the nature of the computation of qns(t) it is not possible to obtain an ana-

lytical formulation of mu(q). In a first attempt to improve safety, a global minimum of

the perceived mass can be determined in the direction of motion. By choosing a small

integration step, dt, it is possible to obtain a good knowledge of the evolution of the

perceived mass and to pick the configuration corresponding to its minimum. However,

finding this configuration cannot be done on-line.

Applying this method off-line on k waypoints along a trajectory gives a good ap-

proximation of the configurations to impose along the trajectory to minimize the robot

perceived mass along the direction of motion. These configurations can be stored in an

array, Qminns , and associated to an array storing the robot Cartesian position along the

2.4. Redundancy and quadratic programming 53

trajectory, Xdes
arr . Given the robot current Cartesian position, an algorithm determines

the closest Cartesian position belonging to the trajectory and picks the corresponding

configuration minimizing the robot perceived mass along the trajectory. This configura-

tion is then set in the regularization task as a goal configuration, qdesns , to reach. This

whole process is presented in Algorithm 2.

Algorithm 2: Algorithm to determine the global minimum of the robot
perceived mass in the direction of motion

Offline
for i points on the trajectory do

Given Xdes
arr(i), compute Qminns (i) using Equations (2.55) and (2.60)

end
return Xdes

arr , Qminns

Online
Get the current end-effector position X
Xmin = Xdes

arr(0)
for i points on the trajectory do

if ‖Xdes
arr(i)−X‖ ≤Xmin then

Xmin = Xdes
arr

imin = i
end

end
return qdesns = Qminns (imin)

2.4.5.4 Local perceived mass minimization in the direction of an obstacle

The global minimum computed in the previous section can be interesting if there is

no mean to know the position of an obstacle in real-time. The robot kinetic energy is

maximal in the direction of motion and as such, the safest approach is to reduce the

perceived mass in this direction. However, for applications in a shared workspace as

presented in Table 1.1, the robot motions may be updated on-line. In such case, the

previous method will give suboptimal results. If the presence of an obstacle can be

detected, it is wiser to minimize the perceived mass in its direction. For a simple motion

along a line, Algorithm 2 takes several minutes to compute every joint configuration

along the trajectory and select, for each way-point, the configuration minimizing the

robot perceived mass in a direction. If a new configuration must be defined in real-time,

it might be better to look for a local minimum of the robot perceived mass. This is the

goal of this subsection.

∇mu(q) represents the gradient of the perceived mass at a given time such that

54 Development of a control architecture for safety

∇mu(q) =
∂mu
∂q

(2.61)

∇mu(q) provides a local estimation of the shape of mu(q). Gradient descent al-

gorithms can be used to determine the configuration leading to a local minimum of

mu. Starting from the current robot configuration, this algorithm moves along the curve

mu(q) by taking steps proportional to the negative direction of ∇mu(q). The efficiency

of this technique depends on the selected step size. A step too small may increase the

number of iterations required to find the optimum solution. A big step size value may

induce oscillating behaviours near the optimal solution. Line-search algorithms can be

used to determine a correct step size. A new joint configuration in the null-space of

the main task Jacobian, qns(k+ 1), is determined iteratively through a gradient descent

algorithm such that

qns(k + 1) = qns(k)− α
(
In − J(q)+J(q)

)T ∇mu(q)∆t. (2.62)

k is a discrete time step, α < 1 is a step size. (In − J(q)+J(q)) is a projector on the

end-effector Jacobian null-space. This projector ensures that the configuration obtained

through the gradient descent does not influence the position of the end-effector. The

step size is determined using the Armijo-Wolfe line search algorithm [Wolfe, 1969]. The

gradient descent is stopped either when the new solution does not change the previous

one by more than a defined threshold ε, i.e. when ‖qns(k + 1) − qns(k)‖ < ε or if it

reaches a maximum iteration step, kmax. The computation time of one iteration of this

algorithm is constant. kmax can thus be defined to ensure that the algorithm does not

take more time than the control loop periodicity to find a solution. Overall, the algorithm

used to determine qns(k + 1) is detailed in Algorithm 3.

Algorithm 3: Algorithm to determine the local minimum of the robot per-

ceived mass in the direction u

qns(0) = q(t);

while k < kmax or ‖qns(k + 1)− qns(k)‖ > ε do
J+(qns) = J(qns)

T
(
J(qns)J(qns)

T
)−1;

∇mu(qns(k)) = ∂mu(qns)
∂qns

;

compute α;

qns(k + 1) = qns(k)− α (In − J+(qns)J(qns))
T ∇mu(qns(k))∆t;

k = k + 1;
end

return qdesns = qns(k + 1)

2.4. Redundancy and quadratic programming 55

To enforce a joint configuration, a regularization torque, τmu is defined such that

τmu = kp(q
des
ns − q)− kdq̇ (2.63)

with kp and kd some proportional and derivative gains. The regularisation task is

then expressed as in Equation (2.4.4). Finally, the regularisation task is written as a

function of the joint torque as:

R(τ) = ‖τ − τmu‖
2

W0
. (2.64)

Experimental results are shown in Chapter 4.

Conclusion

This chapter details the formulation of a quadratic programming problem for the control

of a robotic manipulator. It details the expression of the robot tasks and its constraints.

In this work, the robot variation of kinetic energy is expressed as a constraint. This

ensures at any time that the robot cannot use more energy than a defined limit. During

transient contact it ensures that the amount of kinetic energy that can be transferred

between the robot and a human body part is not dangerous. Through some assumptions,

this constraint also allows to limit the wrenches that can be exerted by the robot during

quasi-static contact.

A robot perceived mass in a specific direction depends on the inertial properties of

each link and on their configuration in 3D space. This mass is directly linked to the

robot kinetic energy and thus its dangerousness. Consequently, reducing this perceived

mass provides a solution to reduce the robot dangerousness. Since the inertial properties

of a robot joints are defined by design, this mass can only be reduced by acting on the

robot configuration. Using optimization algorithms, it is possible to find a configuration

minimizing this perceived mass. By controlling the robot redundancy through the regu-

larization task, this work proposes to minimize the robot perceived mass in the direction

of an obstacle.

The contributions proposed in this chapter are tested in simulation then implemented

on a KUKA LWR4+ robot. The next chapter details the experimental setup necessary

to validate the proposed approach.

Chapter 3

Experimental setup description and

applicative context

The controller presented in Chapter 2 has been implemented on an industrial robot

with the tomosynthesis application in mind. This application requires to dynamically

position an X-ray source in 3D space while pointing towards a target. Safety is of

great importance as the X-ray source moves around a patient. Further, whatever the

application, moving the X-ray source very slowly so as to ensure safety can increase the

duration of the procedure up to a value that would not be acceptable for medico-economic

constraints. Therefore, there is a need for moving "as fast as possible" while ensuring

safety. This chapter first details the expression of the tasks for the specific context of

tomosynthesis. In a second part, it presents the sensors used and developed at ISIR to

validate the controller.

3.1 Application to the defined context

In the context of 3D X-ray imaging, the robot must realise two tasks:

• positioning the X-ray generator in 3D space,

• pointing towards a target (the X-ray detector).

This section details the expression of these tasks according to the robot control

variable: the joint torques. In the remaining of this manuscript, a frame attached to a

point i is denominated Fi. This frame consists in an origin, denotedXi = (xi, yi, zi) and

57

58 Experimental setup description and applicative context

three orthonormal vectors forming a basis of SO(3) denoted Ri = (ii, ji,ki). Frames

are expressed relatively to the robot fixed base frame F0 (X0, (i0, j0,k0)), with X0 =

(0, 0, 0), i0 = (1, 0, 0), j0 = (0, 1, 0) and k0 = (0, 0, 1), represented in Figure 3.1. This

robot base is attached to a plane, Π, determined by the point X0 and the normal vector

k0.

In this work, tasks are expressed in terms of a controlled Cartesian space acceleration

v̇∗ ∈ R6, where v ∈ R6 is a twist expressed relatively to F0. This twist can be decomposed

in a linear part and an angular part, respectively ν ∈ R3 and ω ∈ R3 such that

v =

(
ν

ω

)
. (3.1)

3.1.1 Positioning task

The X-ray source is attached to the robot end-effector. A frame Fs (Xs, (is, js,ks)) is

attached to the X-ray source (where photons are emitted), with ks the main direction

of the X-ray beam. The positioning task is expressed as the servoing of the robot X-ray

source position in the 3D space, Xs ∈ R3, to a desired position, Xdes
s ∈ R3. Thus,

positioning the robot in 3D space only requires to consider the linear part of vs, the X-

ray source twist. A PID controller is used to control the X-ray source desired Cartesian

position and is defined as

ν̇∗s = Kpeν +Kdėν +Ki

∫ t

t0

eνdτ + ν̇dess (3.2)

with eν =
(
Xs −Xdes

s

)
, the tracking error, ėν =

(
νs − νdess

)
and ν̇dess a feed forward

term. Xdes
s ,νdess and ν̇dess are provided online by a trajectory generator and supposed not

known in advance. This is realistic in a context where the trajectory would be adapted

online at instant k based on the X-ray images taken at instant k − 1, k − 2, . . . , k − n.

The positioning task can thus be written

Tpositioning(τ) =
∥∥∥ν∗s − JlinM−1 (τ − n− g)− J̇linq̇

∥∥∥2

2

(3.3)

where Jlin ∈ R3×n represents the Jacobian associated with the linear velocity of the

laser frame.

3.1. Application to the defined context 59

XT

Π

i0

j0

k0

X0

Xp

Xs

ks

l

Xdes
s

kdess
kdess

Planned
end-effector
position

Effective
end-effector
position

Figure 3.1: An illustration depicting the parameters required for the definition of the
pointing task. This illustration also shows that the pointing task cannot be planned
off-line because an error when positioning the X-ray source will lead to an error when

pointing towards the target point XT .

3.1.2 Pointing task

In the context of this work, a pointing task is considered. The robot must point towards a

target, the X-ray detector centre, denotedXT , at all time. As depicted in Figure 3.1, the

pointing task could be defined as a desired orientation ensuring that XT ∈ (Xdes
s ,ks).

However, in that case, any discrepancy between Xdes
s and Xs would lead to a pointing

error even if ks = kdess . It means that the pointing task cannot be defined off-line and

should instead be defined on-line, with respect to the current position of the end-effector.

By doing so, an indirect priority is given to the pointing task over the positioning task.

This is justified by the applicative context of this work. Two methods can be used to

determine this pointing task.

3.1.2.1 Orientation of the laser frame

The pointing task can be defined as the servoing of the robot end-effector orientation.

This orientation keeps the X-ray source centred on the target. The target point is T, its

position is XT ∈ R3.

BecauseXs can differ fromXdes
s (due to real-time obstacle avoidance, for example),

the desired value for ks is not computed off-line as kdess = XT−Xdes
s

‖XT−Xdes
s ‖ . Rather, it is

computed on-line as: kdess = XT−Xs

‖XT−Xs‖ .

60 Experimental setup description and applicative context

The orientation error, eω, is then computed as the geodesic rotation from the current

ks to the desired kdess such that

eω =


θu with

u = ks×kdess

‖ks×kdess ‖

θ = asin(‖ks×k
des
s ‖

‖ks‖‖kdess ‖)
if ks 6= kdess

0 otherwise

(3.4)

The servoing of the pointing task is thus expressed as

ω̇∗s = Kpeω +Kdėω +Ki

∫ t

t0

eωdτ. (3.5)

The positioning task can thus be written

Tpointing(τ) =
∥∥∥ω∗s − JangM−1 (τ − n− g)− J̇angq̇

∥∥∥2

2

(3.6)

where Jang ∈ R3×n represents the Jacobian associated with the angular velocity of

the laser frame.

3.1.2.2 Positioning of the X-ray source projection point

The pointing task can also be defined as the servoing of the intersection point between

the X-ray beam and the detector plane, denoted Xp ∈ R3 (represented in Figure 3.1),

and the position of the detector centre. To define a PID controller for the servoing of

this task, one must determine the position and the velocity of this intersection point.

The determination of these two quantities is based on the work of [Vitrani, 2006].

Intersection point position Throughout this section the notation
−−−−→
XiXj represents

the geometric vector going from the point Xi to the point Xj . The distance between

the point Xs and Xp is equal to l such that
−−−−→
XsXp = lks. Furthermore, we assume

(without loss of generality) that

−−−−→
X0Xp · k0 = 0 (3.7)

Where the symbol "·" corresponds to a scalar product. Given that
−−−−→
X0Xp =

−−−−→
X0Xs+

−−−−→
XsXp, it can be deduced that

3.1. Application to the defined context 61

 l = −
−−−−→
X0Xs·k0
ks·k0−−−−→

X0Xp =
−−−−→
X0Xs −

−−−−→
X0Xs·k0
ks·k0 · ks

if ks · k0 6= 0 (3.8)

The computation of the position of the intersection point
−−−−→
X0Xp is valid if ks ·k0 6= 0,

meaning that the orientation of the end-effector should not be co-linear to the plane Π.

It also requires this scalar product to be negative to have the X-ray beam projected in

the correct direction.

Intersection point velocity This intersection point velocity is also required for the

PID controller formulation.

The velocity of the intersection point relatively to the robot base, νp ∈ R3, is

νp∣∣∣F0

=
d
−−−−→
X0Xs

dt
∣∣∣F0

+
d
−−−−→
XsXp

dt
∣∣∣F0

= νs +
d
−−−−→
XsXp

dt
∣∣∣F0

(3.9)

The velocity of Xp relatively to Xs in the referential Fs is expressed as

d
−−−−→
XsXp

dt
∣∣∣F0

=
d
−−−−→
XsXp

dt
∣∣∣Fs + ωs ×

−−−−→
XsXp

= l̇ks + ωs × lks.

(3.10)

The symbol × corresponds to a cross product. It can be noted that νp ·k0 = 0 which

corresponds to the fact that Xp belongs to plane Π which is normal to k0. Replacing

this term in Equation (3.9) leads to

νp∣∣∣F0

· k0 = νs · k0 + l̇ks · k0 + ωs × lks · k0 = 0. (3.11)

l̇ can be extracted from Equation (3.11) and replaced in Equation (3.10) and (3.9)

such that

62 Experimental setup description and applicative context

νp = νs −
ks · νs · k0 + ks · ωs × ks · k0

ks · k0
+ ωs × ks

=
ks · k0 · νs − ks · νs · k0 − ks · ωs × ks · k0 + ·ks · k0 · ωs × ks

ks · k0
.

(3.12)

To simplify this equation, the following relation between cross and scalar product

can be used:

a× (b× c) = (a · c) · b− (a · b) · c.

Using this relation, the velocity of the projection point can be expressed according

to known quantities and is equal to

νp =
1

ks · k0
ks × ((νs + ωs × lks)× k0) (3.13)

The servoing of the pointing task is then defined as

ν̇∗p = Kpe+Kdė+Ki

∫ t

t0

edτ (3.14)

with e = (Xp −XT) the pointing task error and ė = (νT − νp), νT the velocity

of the target point. In the considered applicative context, the X-ray detector is still and

this target velocity is null.

Equation (3.13) can be rewritten using the parameter dependant Jacobian, J ′, such

that vp = J ′vs and

vp = J ′J q̇ (3.15)

The pointing task can thus be written

Tpointing(τ) =
∥∥ν̇∗p − ν̇p∥∥2

2

=
∥∥∥ν̇∗p − Jp,linM−1 (τ − n− g)− J̇p,linq̇

∥∥∥2

2

(3.16)

with Jp = J ′J and J̇p its derivative.

The two presented pointing tasks (Equation (3.6) and Equation (3.16)yield a similar

robot behaviour. In the remaining of this work, the latter expression will be used.

3.1. Application to the defined context 63

3.1.3 General control scheme

Figure 3.2 summarizes the control scheme used for the pointing task. The first part on

the left defines the different goals related to the robot tasks. In the specific context of

this work, it defines the desired position of the X-ray source, Xdes
s (t), and the target

position, Xdes
T (t). A function computes the position and velocity of the projection of the

laser beam on the Π plane according to the robot current state. This information is given

to a PID controller computing the instantaneous operational space acceleration, ν∗p and

ν∗p, required to reach the respective goals. Using the robot model, it is possible to define

the objective functions as a quadratic programming problem. Based on this model,

the different constraints and the regularisation term are also defined. The quadratic

programming problem is defined and solved at each time step and generates an optimal

solution to the objective functions satisfying the constraints. This solution is expressed

as a torque command which is sent to the robot.

The controller presented in Chapter 2 has been implemented in C++ and tested on a

redundant robot, the KUKA LWR 4+. It has been tested in simulation beforehand using

a dynamic simulator (Gazebo [Koenig and Howard, 2004]). Several experiments have

been conducted to verify that the robot kinetic energy stays under a certain limit and that

the forces in quasi-static contact do not reach a dangerous level. The remaining of this

chapter describes the experimental setup used to validate the controller. External sensors

Laser spot
kinematics

PID
Controller

+
feedforward

Xdes
T (t) PID

Controller

Xdes
s (t)

QP-based
computed torque

ν̇∗s

ν̇∗p

Constraints

Model

ν̇s, ν̇p Aτ ≤ b

τ opt

Instantaneous operational
space acceleration

Constraint compliant Computed
torque through optimization

1 ms

Positioning

Pointing

νsXs

vs

Xs

sensory
feedback

Robot

Xp
νp

Regularisation

Figure 3.2: Representation of the general control scheme used for the experiments in
Chapter 4

.

64 Experimental setup description and applicative context

Figure 3.3: The Kuka LWR4+ robot

are used and a platform is designed to validate the energetic aspect of the proposed

controller.

3.2 The KUKA LWR4+

The controller depicted in Figure 3.2 has been implemented on a KUKA Light Weight

Robot (LWR) 4 +, shown in Figure 3.3. This 7 degrees of freedom robot has been

specifically designed for human robot interactions [Albu-Schäffer et al., 2007]. Unlike

standard industrial robots, the LWR4+ features a payload of 7 Kg for a weight of 16 Kg.

Each axis uses a harmonic drives transmission featuring a high coefficient of reduction

but also a significant articular flexibility.

This robot features torque sensors placed at the end of each gearbox which provide

information on the forces applied on the robot. Using this information, the robot can

interact with its environment and can detect human/robot interactions [Haddadin et al.,

2011] and be used in comanipulation tasks [Ficuciello et al., 2016]. This robot is suited

to be used in collaborative tasks and has been used for manufacturing tasks [Cherubini

et al., 2016] but also in medical applications [Chatelain et al., 2017].

This robot is dedicated to research facilities and a more recent version has been

put on the market: the LWR IIWA1. A version of this robot is certified for medical

applications [IEC, 2017]. The proposed framework has been partially implemented on

this industrial version at General Electric Healthcare, but the results are not shown in

this manuscript.

1www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa

www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa

3.3. Task validation 65

3.3 Task validation

In the proposed context, the robot must both track a Cartesian trajectory (Equation

(3.3)) and point toward a fixed point (Equation (3.16)). This section details the definition

of both task errors and how they are recorded during experiments. For safety reasons,

an X-ray generator could not be placed on the robot at this stage of the project. Instead,

a laser is attached on the robot to simulate the X-ray beam centre.

3.3.1 Positioning error

The positioning error is defined as the Euclidean distance between Xs and Xdes
s

εpos = ‖Xs −Xdes
s ‖. (3.17)

The measure of the positioning error relies on the robot encoders and its geometric

model parameters. Magneto-resistive encoders are placed on the motors sides, before the

gearboxes. A study has been conducted at ISIR to validate that the position recorded

by the KUKA encoder reflects the end-effector position despite flexibility or backlash.

To that aim, an external measuring system has been used to record the position of each

axis relatively to the robot base. It resulted that the precision of the robot was correct

without charge with an error inferior to 0.2 mm. When the robot is lifting a load of 5 kg,

the error rises up to 3 mm. This is caused by the gearbox and the structure flexibility. To

alleviate this issue, it is possible to estimate the robot joint flexibility and to compensate

for it at the control level [Jubien et al., 2014]. In the context of this work, the robot is

not lifting any load. The positioning error is thus considered as reliable.

3.3.2 Pointing error

The beam emitted by an X-ray source is often represented by a cone. In this work, it is

considered that this cone has a revolution axis starting from the position of the laser and

intersecting Plane Π. The pointing error is defined as the Euclidean distance between

Xp and XT .

εpoint = ‖Xp −XT ‖. (3.18)

To get a physical representation of Xp, a laser is attached to the LWR4+ end-

effector. Thus, Xp represents the laser projection on the plane Π. To measure the laser

66 Experimental setup description and applicative context

Laser

F/T sensor

PSD

K-cube

Figure 3.4: Setup for tasks validation

beam position, a tetra-lateral Position Sensitive Device (PSD) is used2. It consists in

a Positive Intrinsic Negative (PIN) diode with a resistive layer. When photons hits the

sensing area, a change in local resistance occurs and produces a flow of electrons. The

current is then gathered by electrodes placed at the corner of the sensor. The measure

of the intensity of each electrode gives information regarding the laser spot localization

on the sensor in both x and y direction. The sensor resolution depends on the laser

intensity and can be as low as 0.75 µm. The sensor range is 9 mm in each direction.

The sensor signals are gathered by a Thorlabs K-cube3 and retrieved via UART serial

communication.

A calibration of the laser relatively to the robot end-effector is required to correctly

control the beam position. The steps to follow in order to correctly perform the calibra-

tion of the laser and the PSD sensor positions are detailed in Appendix A. The overall

setup for task validation is depicted in Figure 3.4.

3.4 Constraints validation

This work proposes a control scheme imposing constraints on the robot. These con-

straints are linked to the robot dangerousness. This section presents the sensors that are

2www.thorlabs.com/thorproduct.cfm?partnumber=PDP90A
3www.thorlabs.com/thorproduct.cfm?partnumber=KPA101

www.thorlabs.com/thorproduct.cfm?partnumber=PDP90A
www.thorlabs.com/thorproduct.cfm?partnumber=KPA101

3.4. Constraints validation 67

used to validate the correct enforcement of these constraints.

3.4.1 Force measurements

The proposed work requires a quantification of the efforts exerted by the robot during

quasi-static contact. To do so an ATI Gamma sensor4 (FTN GAMMA SI-130-10) is

used. This force sensor can measure up to ±130 N in the x and y directions and ±400 N

in the z direction. This sensor is well suited to assess the respect of the ISO Norm 15066

on quasi-static contact considering the range of efforts to be applied (from 65 N for the

face to 220 N for the knees). This sensor, represented in Figure 3.4, is mounted on a

rigid structure so that the force exerted by the robot during collision are recorded along

the z direction.

3.4.2 Energy measurements

An external device was designed at ISIR to quantify the energy transferred from the robot

to an obstacle during transient contact. This device, depicted in Figure 3.5, measures

the potential energy stored in a spring when a contact occurs. Assuming that the robot

kinetic energy is transferred to the platform and that the friction effects are negligible,

this potential energy is equal to the kinetic energy transferred by the robot.

The platform consists in a rigid fixed base on which a rotating beam is mounted.

A spring with stiffness k is attached on one side of the beam. A rubber band is used

to preload the spring. The robot enters in collision at the other extremity of the beam.

Ball bearings are used to reduce friction at best. A 13-bit encoder is placed at the centre

of rotation of the structure and a micro-controller queries its position at 500 Hz and

transmits the information via a serial port. The resulting elongation, ∆x, of the spring

is obtained using geometric relations.

A schematic view of this platform is depicted in Figure 3.6. To compute the elonga-

tion of the spring, the following variables are defined:

• b: the distance between the spring fixation point on the beam and the encoder

centre.

• c: the nominal length of the spring

• l: the spring length after contact

• θ: the pivot angle after contact (measured by the encoder)
4www.ati-ia.com/pt-BR/products/ft/ft_models.aspx?id=Gamma

www.ati-ia.com/pt-BR/products/ft/ft_models.aspx?id=Gamma

68 Experimental setup description and applicative context

Figure 3.5: Device for measuring the energy transferred by a robot during an impact.
The elongation of the spring is measured by an encoder to determine the potential

energy accumulated when an impact occurs

It results that ∆x = l − c. Using the cosine formula, the spring elongation after

contact can be determined such that:

l2 = b2 + d2 − 2bdcos(φ+ θ). (3.19)

with d =
√
b2 + c2 and φ = arctan

(
c
b

)
. The elongation of the spring ∆x is thus

equal to

∆x(θ) =
√
b2 + d2 − 2bdcos(φ+ θ)− c. (3.20)

The resulting potential energy stored in the spring, ep, after an impact is

ep =
1

2
k∆x2. (3.21)

In the developed platform, the spring stiffness is measured beforehand using a mi-

crometric table and a dynamometer with a 0.05N resolution. It resulted a measured

stiffness of 738 N/m. The distance b is equal to 0.236 m. The spring is preloaded to

3.4. Constraints validation 69

b

c

θ

Robot contact
surface

l

d

φ

Figure 3.6: Geometric view of the platform

ensure that it elongates as soon as the contact occurs. To do so a rubber band with a

negligible stiffness is used. The spring nominal length is measured with a calliper and

is equal to 0.1005 m. The encoder used is an AMT 102 13-bit encoder. The platform is

made modular so that the energy can be measured with different robot configurations.

To that aim, aluminium profiles are used so that the whole platform can move along the

i0j0 plane. Using beams with different size, the robot can also collide with the platform

at different heights. This platform is used in Section 4.2 to validate the kinetic energy

constraints expressed in Equation (2.49).

The instant of collision must be precisely known to be able to compare the robot

kinetic energy at the instant of impact with the energy dissipated in the collision plat-

form. One could set the instant of collision as the instant where a rising edge of the

collision platform encoder signal is observed. However, since the collision platform is

communicating via a serial port, the informations given by the platform encoder are not

synchronised with the information given by the robot. At the instant of collision, the

inertial forces acting on the robot keep on pushing it in the direction of motion. To

indirectly detect the instant of contact, one could record the forces acting on the robot

and detect a peak force at the instant of collision. To that aim, during the experiments,

the 6th axis of the robot will enter in collision with the platform and an ATI F/T sensor,

placed at the robot end-effector (see Figure 3.5), will record the inertial forces acting on

the robot.

70 Experimental setup description and applicative context

3.5 Vision system

The torque sensors used in the LWR4+ provide information on the occurrence of a

collision. However, by nature they fail to anticipate contact. External sensors able to

detect the position of objects around the robot are required to avoid obstacles or to

adapt its behaviour around obstacles.

In this work RGBD cameras (one Kinect 2 and two Xtions) are used to measure at

30 Hz the position of an obstacle in the robot environment. The process described in

the following is implemented in an open source C++5 code. An algorithm removes the

robot from the depth image using its forward kinematics model. Depth images of the

scene are acquired to have knowledge of the background. Any object entering the field

of the camera becomes a potential obstacle. Obstacles are then clustered in point-clouds

and only the closest object to the robot is considered. This process allows using several

RGBD cameras for the detection of obstacles. By placing these cameras at different

location it is possible to reduce the obstruction phenomenon caused by the robot or

objects placed in the scene. Figure 3.7 depicts the global setup with 3 RGBD cameras.

To simplify the distance computation time, the closest cluster is inserted in an elliptic

cylinder. The revolution axis of the cylinder is located at the barycentre of the cluster.

The furthest point on the cluster on each axis defines the radiuses of the ellipse. The

position of the closest point is then used to determine the distance between the robot and

the closest obstacle. This position is also used to determine the direction of the closest

obstacle towards the robot. This information is then used for different experiments

presented in Chapter 4.

It should be noted that these RGBD cameras are rarely used in industrial environ-

ments. This is because they are sensitive to light intensity, dust, etc. and thus do not

fulfil the requirements set by ISO TS 13849 on safety-related parts of control systems

[ISO/TS-13849, 2015]. To obtain information about the proximity of an obstacle to the

robot, one can use safety laser scanners. These devices use a laser technology to measure

the distance to an obstacle and fulfil the requirements set by ISO 13849. However, these

solutions come at a much higher cost. The simplest ones, such as the SICK sensor S3006,

project a laser on a plane. Only the distance between an object intersecting this plane is

recorded. Thus, the information gathered by the device is less rich than with a RGBD

sensor that can record the position of objects inside a given volume.

5www.github.com/kuka-isir/kinects_human_tracking
6www.sick.com/us/en/opto-electronic-protective-devices/safety-laser-scanners/

s3000-professional/c/g187229

www.github.com/kuka-isir/kinects_human_tracking
www.sick.com/us/en/opto-electronic-protective-devices/safety-laser-scanners/s3000-professional/c/g187229
www.sick.com/us/en/opto-electronic-protective-devices/safety-laser-scanners/s3000-professional/c/g187229

3.6. Software and communication 71

Figure 3.7: Scene observed by the RGBD cameras (extracted from [Meguenani et al.,
2017])

3.6 Software and communication

The proposed controller is intended to work on a torque controlled robot. In order to be

able to use the robot full dynamics, its is required to be able to receive the robot state and

send torque commands at 1 kHz. To that aim, an advanced software architecture is used.

Sensors data are acquired by separate micro-controllers then published as ROS topics.

The QP problem is solved using a state-of-the-art solver: qpOASES [Ferreau et al., 2014].

The control framework is implemented as a C++ OROCOS component [Bruyninckx,

2002] inside a generic software architecture developed at ISIR for robot manipulators7.

This architecture allows to either simulate the robot using Gazebo [Koenig and Howard,

2004] or to send commands to the robot using the KUKA Fast Research Interface (FRI)

[Schreiber et al., 2010]. These commands are sent via a PC running on a Xenomai

kernel8 using the RTnet communication library9 to ensure minimum jitter during real-

time Ethernet communication with the robot.

Conclusion

The work presented in this manuscript has been entirely tested on a KUKA LWR4+

robot. With the tomosynthesis applicative context in mind, it uses a state-of-the-art
7www.github.com/kuka-isir/rtt_lwr
8www.xenomai.org
9www.rtnet.org/

www.github.com/kuka-isir/rtt_lwr
www.xenomai.org
www.rtnet.org/

72 Experimental setup description and applicative context

quadratic programming solver on a real-time enabled computer to send torque commands

to a KUKA robot at 1 kHz. Several sensors are used to measure both the correct

achievement of the defined tasks and the correct enforcement of the constraints. A

specific platform has been designed to measure the energy dissipated by the robot during

an impact. This setup is used in the next chapter for several experiments on the proposed

control architecture.

Chapter 4

Experimental results

Chapter 2 exposes several contributions to improve the safety around a robot sharing

its workspace with a human operator, especially in the event of an undesired collision.

In this chapter, the proposed control architecture and methodology are implemented on

a KUKA LWR4+ robot. The correct tasks realisation are validated using the external

sensors described in Chapter 3. The corresponding results are presented in Section

4.1. Section 4.2 introduces the results related to the correct constraints enforcement in

various scenarios involving contact with the robot. Finally, Section 4.3 presents several

regularization tasks to control the robot redundancy. This section demonstrates the

effectiveness of the regularization task minimizing the robot perceived mass.

4.1 Tasks validation

Robots are used for the realisation of high-level objectives. In this work these objectives

are the positioning of the X-ray generator and the pointing towards an X-ray detector.

This section provides experimental results to verify that the tasks expressed in the pro-

posed control architecture are correctly performed. The regularization task used for these

experiments is set to compensate for gravity (see Equation (2.52)). The robot behaviour

resulting from this regularisation task can be observed in Section 4.3.1.

The first experiment validates the expression of the tasks with a trajectory computed

off-line. In a second experiment, the reference position is updated on-line using the

distance between an obstacle and the robot to demonstrate that the tasks can be redefined

reactively. The setup depicted in Figure 3.4 is used for the validation.

73

74 Experimental results

0 0.5 1 1.5 2 2.5 3
0

1

2

3
a.

Time (s)

P
oi

nt
in

g
er

ro
r

(m
m

)

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4 b.

Time (s)

P
os

it
io

ni
ng

er
ro

r
(m

m
)

Figure 4.1: Evolution of (a.) the pointing error, (b.) the positioning error when
performing a motion in the nominal case

4.1.1 Nominal case

During the experiments, the robot performs a standard motion to obtain a 3D image

using X-rays. To do so it moves along a line from (0.5,-0.2,0.4) m to (0.5,0.2,0.4) m

in F0 while pointing at a target located at (0.5,0.0,0.013) m. A trajectory is created

with the KDL library [Smits, 2018] with a timing law constituted of a trapezoidal ve-

locity profile with a maximum velocity of 0.25 m/s and a maximal acceleration of 1

m/s2. The trajectory is defined offline with an initial configuration chosen so that

the robot does not go close to its intrinsic constraints and the kinetic energy con-

straint is not activated. The PID controller gains are tuned using the Ziegler–Nichols

method [Ziegler and Nichols, 1942]. The gains used in these experiments are: Kp =

diag(2280, 2280, 2080, 4000, 4000, 4000)s−2,Kd = diag(47, 47, 20, 45.4, 45.4, 45.4)s−1 and

Ki = diag(6, 6, 6, 25, 25, 25)s−3

A video associated with this experiment is available here (first part). Figure 4.1

shows a typical result of this experiment. During the motion, the mean positioning error

is 3.5 mm and the average pointing error is 2.20 mm. To stress the importance of a

stiff PID control for the pointing task, it should be noted that, at a height of 0.4 m, an

orientation error of 1◦ around the x or y-axis induces a pointing error of 7 mm. The

remaining errors that can be observed in Figure 4.1 are the result of friction effects at

each axis that are not satisfactorily compensated. This can be explained by the fact that

the torque commands sent via the KUKA FRI are not the torques actually sent to the

robot actuators. Indeed, KUKA internally uses a low-level torque control loop about

which little information is publicly available and which may induce some errors with

the torque computed by the quadratic programming solver. Furthermore, these friction

effects could probably be reduced by tuning the integral term more aggressively but at

the risk of losing stability.

https://youtu.be/Ly989XBrAzE

4.1. Tasks validation 75

These results show the correct implementation of the PID controllers inside the

quadratic programming problem for both tasks. The expression of the pointing task

depending on the position of the laser (see Equation (3.16)) is correctly performed and

yields tracking results that are satisfying for the considered applicative context.

4.1.2 On-line trajectory definition

In the context of this work, the robot must adapt its trajectory in real-time. The proposed

architecture is well suited for such application where new inputs can be taken into account

every millisecond. To assess the ability to perform motions defined on-line, this section

proposes to redefine the robot trajectory according to an on-line input: the position of

an obstacle in the robot environment. This implementation can be interpreted as an

obstacle avoidance implementation. While rudimentary, it shows the versatility of the

proposed solution.

At each time step, the localization of an obstacle in the robot environment is observed

using three RGBD cameras as described in Section 3.5. If the distance, d, between

the obstacle and the robot is less than a defined limit, dlim, a new desired position is

computed to keep the robot at a safe distance. Let uobs ∈ R3 be a unit vector representing

the direction of the obstacle towards the robot. Xgoal
s is a goal, fixed position, to reach.

Algorithm 4 details the computation of the robot new desired position according to the

distance to an obstacle.

Algorithm 4: On-line definition of the end-effector desired position

Compute the direction to the obstacle, uobs
if d ≤ dlim then

Xdes
s = Xgoal

s + (dlim − d)uobs

else
Xdes

s = Xgoal
s

end

return Xdes
s

For this experiment, the robot is required to stay at a fixed point. A human moves

close to the robot and is considered as an obstacle in Algorithm 4. A safe distance

dlim = 0.4 m is enforced.

Figure 4.2 depicts the results of this experiment. When the human is out of the

detection range, the distance, d, is null and both the pointing and the positioning task

errors are stable with a mean positioning error of 0.4mm and a mean pointing error of 0.7

mm. When the human reaches the safe distance limit, a new desired position is defined

76 Experimental results

0

0.5

1

1.5

2
Out of

detection
zone

Out of
detection

zoneDistance
to

obstacle
(m)

−0.2

0

0.2

0.4

0.6

0.8

Xdes
s

(m)

x
y

0 2 4 6 8 10 12 14 16 18 20 22
0

2

4

6

Time (s)

Error
(mm)

Positioning error
Pointing error

dlim

Figure 4.2: Redefinition of the robot desired position on-line. A new desired Cartesian
position is computed reactively to stay away from an obstacle.

to keep the robot away from the obstacle. It can be seen that this on-line redefinition

of the desired position successfully keeps the robot at a safe distance. The positioning

and pointing errors are slightly affected by this perturbation but with a magnitude

similar to the previous experiment where the robot was following a trajectory. The

mean positioning error is 3.0 mm and the mean pointing error is 1.23 mm. It should

be noted that at some point the robot might reach its joint limits. In such case, the

defined obstacle avoidance task will not be correctly achieved. If one wants a strict

distance between the robot and the human, obstacle avoidance should be formulated as

a constraint (using for example the formulation presented in Equation (2.33)).

These experiments show the correct definition of the tasks in Section 3.1. The PID

controller formulation ensures a good tracking of both the positioning and the pointing

tasks. Furthermore, the robot desired state can be redefined on-line, according to a

4.2. Kinetic energy constraint validation 77

higher level decision scheme. The next section is focused on the evaluation of the kinetic

energy constraint.

4.2 Kinetic energy constraint validation

This section features several experiments showing the interesting properties of the kinetic

energy constraint. These experiments validate the correct enforcement of the constraint

when a collision occurs and show experimental results during a transient and a quasi-

static contact.

4.2.1 Model based kinetic energy computation validation

The equation of motion is important to express constraints as functions of the control

variable, τ . This equation highly depends on the model used by the robot. When the

equation of motion is used in the description of the robot tasks, the PID controller

corrects the small errors of the dynamic model and the velocity kinematics. However,

the expression of the kinetic energy constraint requires a precise model of the robot. To

validate that the model used for the robot is precise enough, the platform described in

Section 3.4.2 is used.

During this experiment, the robot moves along a straight line with a target position

located behind the platform. The trajectory is defined so that the robot 6th axis enters

in collision with the collision device (see Figure 3.5). The contact is detected when the

ATI sensor, placed at the robot end-effector, records a force superior to 0.2 N. When a

contact is detected, the positioning task is cancelled so that only the regularization task

remains, leaving the robot in gravity compensation mode. This is to ensure that the PID

controller does not integrate the error resulting from the collision and thus injects more

energy in the platform.

Figure 4.3.a. compares the energy of the robot and the energy stored in the spring

when a collision occurs. The orange curve represents the average kinetic energy of the

robot during the experiment over 10 trials. The blue curve represents the average poten-

tial energy stored in the spring. In dark is the force recorded by the ATI sensor along the

y-axis. Overall, the robot average kinetic energy at the instant of contact is 0.516 J . The

average potential energy stored in the spring rises up to 0.528 J . It results a mean error

of 3.17 % and a standard deviation of 0.012 J between the model based kinetic energy

and the measurement of the platform. This experiment thus validates the model-based

computation of the kinetic energy.

78 Experimental results

0

0.1

0.2

0.3

0.4

0.5

0.6
a.

E
ne

rg
y

(J
)

ec,k
ep

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
b.

Time (s)

Fo
rc

e
(N

)

fy

Figure 4.3: Measure of the dissipated kinetic energy during an impact with the
platform. (a.) Comparison between the current kinetic energy and the potential energy
recorded by the platform. (b.) Force measured by the ATI sensor in the y-direction. The
vertical black line represent the instant when a collision has been detected corresponding

to a threshold of the measured force of 0.2 N

Mean (J) SD (J)
Robot 0.1938 0.0078

Platform 0.1993 0.0077
Error 0.0055 (2.84%) 0.0021

Table 4.1: Mean energy and standard deviation of the measure for a velocity of
30 cm/s

Mean (J) SD (J)
Robot 0.5156 0.0102

Platform 0.5285 0.0083
Error 0.0129 (3.17%) 0.0105

Table 4.2: Mean energy and standard deviation of the measure for a velocity of
50 cm/s

4.2. Kinetic energy constraint validation 79

0

1

2

3
P
oi

nt
in

g
er

ro
r

(m
m

)

0 2 4 6 8 10 12
0

20

40

60

80

Time (s)

P
os

it
io

ni
ng

er
ro

r
(m

m
)

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

Time (s)
K

in
et

ic
en

er
gy

(J
)

ec
elimc
ec,k+1

a.

b.

c.

Figure 4.4: Evolution of (a.) the pointing error, (b.) the positioning error, (c.)
the current kinetic energy (blue line), elimc (red), the provisional kinetic energy ec,k+1

(dashed).

Tables 4.1 and 4.2 show the results of the measures over 10 trials for different veloc-

ities. The repeatability of the platform is good and the measured errors are sufficiently

small to validate the robot model.

4.2.2 Kinetic energy limit

In the following experiments, the kinetic energy constraint is activated. The robot be-

haviour as well as the correct task realisation are observed. The same conditions as in

Section 4.1 are used in this experiment. The robot is moving back and forth along the

j0-direction. The first motion is realised with a kinetic energy limit far above the kinetic

energy required to perform the motion (0.5 J). For the second motion, the kinetic energy

limit is set to 0.15 J .

A video associated with this experiment is available here. Figure 4.4 shows the results

of this experiment. The first part of this experiment actually corresponds to the results

of the first experiment displayed in Figure 4.1. It can be seen that during steady state,

the pointing error is below 1 mm. When elimc is set to 0.15 J , the available kinetic energy

https://youtu.be/Ly989XBrAzE

80 Experimental results

is insufficient to correctly follow the trajectory. Indeed, the torque computed by the QP

solver must induce a provisional kinetic energy ec,k+1 (dashed in Figure 4.4c.) that does

not go beyond elimc . This phenomenon can be observed at around 5 s in Figure 4.4c.

Consequently, the optimal solution implies a slower motion which results in a positioning

error of up to 80 mm with relation to the planned trajectory. However, the expression

of the pointing task as a function of the current robot position allows maintaining the

pointing error similar to the one in the nominal conditions.

4.2.2.1 Transient contact

In this section the robot behaviour is analysed during a transient contact with the kinetic

energy constraint activated. In a first experiment, the robot enters in collision with the

energy measuring device designed at ISIR (see Section 3.4.2). The energy dissipated in

this device is compared to the robot kinetic energy at the instant of contact. In a second

experiment, a human enters in contact with the robot for a short period of time.

Collision with the platform In this first experiment, the robot enters in contact

with the collision platform. Figure 4.5 depicts the kinetic energy that is transferred from

the robot to the platform when the kinetic energy constraint is activated.

The kinetic energy limit is set to 0.2 J , below the 0.4 J required to correctly execute

the task. The horizon time step ∆t is set to 15 ms. Once again, the experiments are

realised 10 times. The red curve in Figure 4.5a. represents the kinetic energy limit,

elimc . The green curve represents the average predicted kinetic energy computed with the

robot dynamic model. It is the energy, expressed in Equation (2.40), that is constrained

inside the QP solver. The orange curve represents the robot average kinetic energy at

the current control instant. The blue curve is the potential energy stored in the platform

spring. Figure 4.5b. represents the average force recorded by the ATI sensor in the

y-direction. Once again, the contact is detected when the ATI sensor records a force

superior to 0.2 N in the y direction. The predicted energy being expressed relatively to a

horizon of time ∆t, it represents the energy that the robot would have in that horizon of

time. The QP solver finds a torque solution ensuring that this predicted kinetic energy

never exceeds the limit, elimc . Consequently, the resulting real kinetic energy is inferior

to the predicted one. When the collision occurs, this current kinetic energy is on average

equal to 0.172 J . The potential energy stored in the spring after impact rises up to

0.170 J. Over 10 trials, the standard deviation of the error is 0.002 J .

This experiment shows that it is possible to constrain the robot kinetic energy to

prevent a dangerous transfer of energy in case of transient contact with the robot. The

4.2. Kinetic energy constraint validation 81

0

0.1

0.2

0.3

a.

E
ne

rg
y

(J
)

ec,k
ep
ec,k+1

elimc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
−0.5

0

0.5

b.

Time (s)

Fo
rc

e
(N

)

fy

Figure 4.5: Energy dissipation during a transient contact recorded by the platform.
(a.) Comparison with the provisional kinetic energy, the current kinetic energy and
the potential energy recorded by the platform. (b.) Force measured by the ATI sensor
in the y direction. The vertical black lines represents the instant when a collision has

been detected corresponding to a threshold of the measured force of 0.2 N

Figure 4.6: Physical interaction with the robot. An operator restrains the robot
motion along its y-axis.

actual robot kinetic energy is always smaller than the defined limit. This is because the

constraint is formulated in terms of a predicted energy. However, this can be seen as a

safety margin. The next experiment is now focused on a contact with a human while the

robot is performing its tasks.

82 Experimental results

Collision with a human In this second experiment, the robot performs a back and

forth motion while pointing towards a fix target. The regularisation task is set to min-

imize the gravity induced torques. At some point, a human operator is preventing the

robot from moving for a brief period as shown in Figure 4.6, the contact is then released.

Figure 4.7 depicts the results of this experiment. A video associated with this experiment

is available here

It can be observed that when the robot is disturbed and almost stopped, the current

kinetic energy becomes null while the provisional kinetic energy quickly reaches the

defined limit, elimc . This is because the integral term in the PID controller accumulates

the tracking error and computes a desired Cartesian acceleration, v̇∗s, aiming at rejecting

the perturbation. This acceleration is used in the constraint developed in Equation (2.41)

to determine the robot provisional kinetic energy, ec,k+1, in ∆t seconds. The formulation

of this constraint inside the QP ensures that the kinetic energy limit is never crossed.

It has been checked during the experiment that the kinetic energy constraint reaches its

limit before saturation of the PID controller. The interaction with the human induces a

trajectory tracking error of up to 145 mm and a small pointing error of around 3 mm.

Furthermore, the energy constraint prevents the transformation of the accumulated error

in the PID controller into a control torque that would result in a sudden release of energy.

As a matter of fact, it can be observed that the provisional kinetic energy (dashed in

Figure 4.7c.) stays at the limit even after contact breaks. This allows a safer interaction.

The system then reduces its error until accomplishment of the trajectory tracking task

with a safe amount of energy.

This experiment shows the interesting characteristics of the proposed solution with

a robotic behaviour providing a meaningful protection against sudden release of energy

when contact breaks. It shows the interesting properties of expressing the pointing task

as a function of the positioning task. Indeed, when the robot is stopped by the operator, if

the pointing task was defined through the same trajectory generator as for the positioning

task, then it would have led to an incorrect orientation towards the target. By reactively

taking into account the position of the robot, the pointing task keeps the laser spot close

to the defined the target.

4.2.2.2 Quasi static contact

When the robot hits a fixed obstacle, the applied contact wrench must not exceed a limit

specified by the ISO TS 15066. To assess that the kinetic energy constraint can also be

used to indirectly limit the contact wrench, the ATI sensor recording forces and torques,

is mounted on a girder that is placed on the robot trajectory. In this experiment, the

https://youtu.be/X8YoUoyr7Hw

4.2. Kinetic energy constraint validation 83

0

1

2

3

P
oi

nt
in

g
er

ro
r

(m
m

)

0 1 2 3 4

0

50

100

150

Time (s)

P
os

it
io

ni
ng

er
ro

r
(m

m
)

0 1 2 3 4

0

0.2

0.4

0.6

0.8

Time (s)
K

in
et

ic
en

er
gy

(J
)

ec
elimc
ec,k+1

a.

b.

c.

Figure 4.7: Evolution of (a.) the pointing error, (b.) the positioning error, (c.)
the current kinetic energy (blue line), elimc (red), the provisional kinetic energy ec,k+1

(dashed). The grey areas represent the interaction phase with a human.

robot is required to follow a straight line with a goal position beyond the ATI sensor.

Figure 4.8 shows the results of this experiment for a defined limit, f lim, of 70 N . A

video associated with this experiment is available here.

When contact occurs, a similar behaviour as the one in the previous experiment

can be observed only this time the disturbance is constant and against a fixed obstacle.

The force applied by the robot when contact is established can be observed in Figure

4.8d.. Once the controller energy reaches its limit and v̇∗k reaches its saturation, there is a

stabilization of the applied efforts to a value slightly above the limit (72 N). The observed

overshoot at the instant of contact is a consequence of the energy dissipated during the

impact and is unavoidable, even if the amount of energy to be dissipated is monitored.

The 2 N error that can be observed during steady state is due to the imperfect model of

the robot and to the approximations made in the equations developed in Section 2.3.2.2.

Once contact is established, the positioning error rises to important values of more than

140 mm. Once again, during the disturbance, the pointing task is not affected by the

constraint and keeps being fulfilled.

https://youtu.be/kGdyWzbfJz8

84 Experimental results

0

1

2

3

4
P
oi

nt
in

g
er

ro
r

(m
m

)

0 1 2 3 4 5

0

50

100

150

Time (s)

P
os

it
io

ni
ng

er
ro

r
(m

m
)

0

0.2

0.4

0.6

0.8

K
in

et
ic

en
er

gy
(J

)

ec
elimc
ec,k+1

0 1 2 3 4 5

0

20

40

60

80

100

Time (s)

A
pp

lie
d

fo
rc

e
(N

)

fati

f c,lim

a.

b.

c.

d.

Figure 4.8: Evolution of (a.) the pointing error, (b.) the positioning error, (c.)
the current kinetic energy (blue line), elimc (red), the provisional kinetic energy ec,k+1

(dashed) and (d.) the contact wrench (blue) and its limit (red). The grey areas represent
the interaction phase with the measuring system.

4.2.3 The interesting properties of the pointing task

From the results presented previously one could argue that pointing towards a fixed target

makes it easy for the robot to keep a small pointing error especially when it is stopped

(either by hand or by the ATI sensor). However, the definition of the pointing task as

a function of the robot current position yields interesting robot behaviours. Another

experiment, not related to the applicative context has been conducted where the robot

end-effector is now required to follow a rectangle-shaped trajectory. The target follows

the same trajectory on the table plane. In the following experiment the robot must track

the desired trajectory will point towards the moving target. At some point a human

prevents the robot from moving in the j0-direction by pushing the end-effector with its

hand.

A video associated with this experiment is available here. Figure 4.9 depicts the

results of this experiment. The end-effector position is depicted in the top left corner.

The desired end-effector position is represented in blue, the current position during the

https://youtu.be/bG3bQ2AbPTY

4.2. Kinetic energy constraint validation 85

0.4 0.45 0.5 0.55 0.6

−0.2

−0.1

0

0.1

x (m)

y
(m

)

End-effector position

0.4 0.45 0.5 0.55 0.6

−0.2

−0.1

0

0.1

x (m)

y
(m

)

Laser position

Desired
Current
During
perturbation

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

0.3

Time (s)

K
in
et
ic

en
er
gy

(J
)

ec
elimc
ec,k+1

Perturbation

Figure 4.9: Evolution of the positioning task, the pointing task and the kinetic energy
constraints while following a rectangle-shaped trajectory. The grey area represents the

interaction phase with the robot.

motion is represented in red and the robot position during the perturbation is represented

in black. The target position and the theoretical laser position are plotted in the top right

corner. This theoretical position is obtained by projecting the end-effector orientation

along the z-axis onto the detector plan. The last plot depicts the evolution of the robot

kinetic energy (in blue), its predicted kinetic energy (in black) and its kinetic energy

limit (in red).

The results are similar to the experiments in Section 4.2.2.1 only this time the

pointing task behaves differently. Without the perturbation, the mean positioning error

is 2.1 mm during the motion with a peak error of 3.7 mm. The mean pointing error

is 2.0 mm. When the perturbation arises, the robot is not able to correctly follow

the positioning task. It results a peak error of 167 mm. However, the pointing task

is still performed correctly with a mean error of 2.2 mm and a peak error of 5.7 mm

occurring during the release of the disturbance. This is thanks to the formulation of the

pointing task according to the robot position and not according to some pre-planned

trajectory. Once again, from the kinetic energy point of view it can be seen that the

robot is prevented from spending an amount of energy superior to 0.25 J . At some

point it can be seen that while the robot is pushed by the human, it performs motions

along the x-axis. This is because the system follows the trajectory at best and is not

restrained from moving along its x-axis. When the perturbation disappears, the robot is

86 Experimental results

free to move and reduces its error until it successfully tracks back the desired trajectory.

Once again, although the robot controller is formulated as a PID, it cannot spend more

than 0.25 J to reduce the tracking error, even when there is a direct contact with a

human operator. When contact breaks, the kinetic energy constraint formulated inside

the quadratic programming problem prevents a dangerous release of energy when trying

to reduce the tracking error.

4.3 The regularisation task

When dealing with redundant robots, the regularisation task in a quadratic programming

problem can be used to ensure the convergence of the solution towards a desired goal.

This regularisation task can have a concrete influence on the robot behaviour. The

previous experiments use the same regularisation task set to compensate for the gravity

induced torque. However, other regularisation tasks can be defined to control a robot

redundancy. This section presents two additional regularisation tasks, one minimizing

the robot joint torque and one minimizing the robot perceived mass in a direction.

4.3.1 Torque regularisation task

The regularisation tasks minimizing the torque is given in Equation (2.51). For a given

Cartesian position, only one robot configuration yields a minimum torque control input.

Therefore, when an interaction occurs with the robot, the quadratic programming solver

computes torque solutions to keep the robot at a specific configuration. In this exper-

iment, the robot is required to keep a constant Cartesian position. A human interacts

with the robot. The results of this experiment can be observed in Figure 4.10. The in-

teraction phase is represented by the grey area in the figure. It results a robot behaviour

where the robot is stiffly fighting against the perturbation to stay at a desired configura-

tion. During the interaction, a small positioning error (≤1.5 mm) can be observed. This

error comes from the human interaction and could be reduced up to a certain amount

by increasing the PID controller gains.

4.3.2 Gravity regularisation task

The previous regularization task can be compared to the gravity torque compensation

regularization task. As a reminder, this regularisation task, expressed in Equation (2.52),

minimizes the difference between the computed torque and the gravity induced external

torque. The robot is required to keep the same Cartesian position as in the previous

4.3. The regularisation task 87

−20

−10

0

10

20 a.
Jo

in
t
to
rq
ue

(N
m
)

τ1
τ2
τ3
τ4
τ5
τ6
τ7

−2

−1

0

1

2 b.

Jo
in
t
co
nfi

gu
ra
ti
on

(r
ad

) q1
q2
q3
q4
q5
q6
q7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2 c.

Time(s)

P
os
it
io
ni
ng

er
ro
r
(m

m
)

Figure 4.10: Evolution of (a.) the joint torque, (b.) the joint configuration and (c.)
the positioning error for a regularisation minimizing the joint torques. The grey areas

represent the interaction phase with a human.

experiment. Figure 4.11 shows the results of this regularization task. It can be seen

that during physical interaction, the robot joints configuration changes to adapt to this

interaction while maintaining the end-effector position at the same point. It results a

motion in the null-space that is determined by the operator when physically interacting

with the robot. Such behaviour can be interesting in co-manipulation task or when

working in a shared workspace with the robot (see Table 1.1). It can be noted that noise

is introduced at the joint torque level when using this regularization task. This noise is

introduced when accounting for the induced gravity g(q), which depends on the noisy

signal coming from the robot encoders. However, this noise does not affect the joint

configuration and is not strong enough to be felt by the operator.

88 Experimental results

−5

0

5

a.
Jo

in
t
to
rq
ue

(N
m
)

τ1
τ2
τ3
τ4
τ5
τ6
τ7

−2

−1

0

1

2 b.

Jo
in
t
co
nfi

gu
ra
ti
on

(r
ad

) q1
q2
q3
q4
q5
q6
q7

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5 c.

Time(s)

P
os
it
io
ni
ng

er
ro
r
(m

m
)

Figure 4.11: Evolution of (a.) the joint torque, (b.) the joint configuration and (c.)
the positioning error for a regularisation minimizing the gravity induce torques. The

grey areas represent the interaction phase with a human.

4.3.3 Equivalent mass minimization

As detailed in Section 2.4.5, the robot configuration can be advantageously used when

controlling a redundant robot to minimize the perceived mass in a specific direction.

Different experiments are conducted to determine if the local minimization can indeed

influence the robot perceived mass. To that extent, the results of the local minimiza-

tion algorithm proposed in Section 2.4.5.4 are compared with the results of the global

minimization algorithm proposed in Section 2.4.5.3. In a second part the perceived mass

minimization is performed in the direction of an obstacle rather than in the direction of

4.3. The regularisation task 89

0 2 4 6 8 10 12
2.51

2.52

2.53

2.54

2.55

Time (s)

Perceived
mass
(kg)

Global min
Local min
True min

0 2 4 6 8 10 12
2.51

2.52

2.53

2.54

2.55

Figure 4.12: Comparison between the theoretical minimal perceived mass (in black),
the one obtained using the impedance regularization task (in blue) and the one using

the local minimization scheme

motion. This is to see if this minimization can be performed reactively while obstacles

are moving around the robot.

4.3.3.1 Global optimization vs local optimization

The objective of this section is to compare the results of the global and local perceived

mass minimization algorithms through the regularization task. To that extent, the robot

follows a trajectory along a line and the perceived mass is minimized in the direction of

motion. The results of both algorithms are compared to the theoretical perceived mass

minimum along the trajectory.

The trajectory is sampled every 1 mm. The regularisation tasks are expressed at

the torque level as

R(τ) = ‖τmu − τ‖
2

2
(4.1)

with τmu = kp(q
des
ns − q)− kdq̇.

The resulting perceived mass in the direction of motion induced by these regulariza-

tion tasks is presented in Figure 4.12. The black curve represents the theoretical global

minimum of the perceived mass in the direction of motion computed off-line according

to Algorithm 2. For the blue curve, qdesns is obtained using the on-line part of Algorithm

2. For the red curve, qdesns is determined on-line using Algorithm 3.

90 Experimental results

Using a maximum number of iterations, kmax, of 6, the on-line local minimization

algorithm (Algorithm 3) can be used in the 1 kHz control loop. It can be observed

that both on-line algorithms give sensibly the same results. It means that the local

minimization algorithm is fast enough to find a local minimum. However, it can be

observed that the two regularisation tasks induce a robot perceived mass slightly different

(< 1%) compared to the theoretical mass found off-line by Algorithm 2 (in black). This

is probably due to the definition of the controller gains kp and kd and frictions in the

axes which do not allow to perfectly reach the desired configuration qdesns .

Both algorithms can be used to minimize the robot perceived mass in the direction

of motion in real-time. However, one should keep in mind that Algorithm 3 only gives

a local minimum solution. It can also be noted that this algorithm does not account

for the robot configuration limits when computing the desired configurations to reach.

However, this is not an issue in this work since these limits are expressed as constraint

in the QP problem. In the work of N. Mansfeld, an algorithm is used to prevent the

solution of the algorithm to go beyond these limits [Mansfeld et al., 2017].

4.3.3.2 Reactive mass minimization with obstacles

Minimizing the mass in the direction of motion is the best approach if no information

is available from the environment. However, if it is possible to know the position of an

obstacle, it should be preferred to minimize the perceived mass in its direction. Indeed,

it is the kinetic energy in the direction of the obstacle that should be minimized. In this

experiment, the position of an obstacle is obtained using an RGBD sensor as described

in section 3.5. This position is directly linked to the robot position to compute the

direction in which the algorithm should minimize the perceived mass. Algorithm 3 is

used to determine the robot perceived mass in the direction of the closest obstacle. The

robot holds its position during the whole experiment. In the first part of the experiment,

a simple regularization task, set to compensate for gravity is used. An obstacle moves

around the robot and the projected mass in the direction of this obstacle is plotted.

In the second part of the experiment, the regularization task set to minimize the robot

perceived mass in the direction of the obstacle is used. Along the whole experiment, the

positioning and pointing errors are plotted to show the influence of the regularization

towards the main tasks.

Figure 4.13 depicts the results of this experiment. During the first part of the

experiment, the robot perceived mass ranges between 2.6 kg and 4.3 kg. The pointing and

positioning errors are correctly tracked and stable. In the second part of the experiment,

it can be seen that for the same motions of the obstacle, the robot perceived mass in

4.3. The regularisation task 91

2.5

3

3.5

4

4.5
switching

regularization

task

Projected
mass (kg)

−2

0

2

Obstacle
position (m)

x
y

0 5 10 15 20 25 30 35 40 45 50 55 60

0

1

2

3

Time (s)

Error (mm)

Positioning error
Pointing error

Figure 4.13: Reconfiguration of the robot to minimize its perceived mass in the
direction of an obstacle. When the obstacle moves around the fixed robot, the perceived
mass variates a lot. When the reconfiguration is set to minimize the perceived mass in

the direction of the obstacle, the perceived mass greatly diminish.

the direction of the obstacle ranges between 2.5 kg and 2.8 kg which is an improvement

of up to 38%. The positioning and pointing tasks are slightly disturbed by the robot

reconfiguration. This is due in part to the regularization gains which do not allow to

correctly reach the desired configuration qdesns . Overall the error never goes beyond 2 mm

which is acceptable for the application.

The regularisation task can thus be used to minimize the robot perceived mass.

Using external sensors it is possible to minimize the perceived mass in the direction of

the closest obstacle. If a contact occurs, it is the direction where the most kinetic energy

will be transferred between the robot and the obstacle.

92 Experimental results

Conclusion

From these experiments it can be seen that the QP-based computed torque controller

guarantees to find an optimal control solution without compromising safety. Tasks are

correctly performed as long as the control variable satisfies the constraints. Both the

theoretical derivation and the experimental results allow pointing out a few remarkable

features of the approach.

• The controller exploits PID control with gains that are tuned independently of the

safety constraint. Namely, one may choose high gains to maximize the positioning

precision; since the controller accounts for safety constraints at its lowest level,

using high PID gains will never result in releasing high energy when unexpectedly

colliding with an obstacle.

• When a contact has been established with an unexpected obstacle, the wrench is

limited to a maximal constant value, independent of the obstacle position. In other

words, up to the controller bandwidth, the robot exhibits a null impedance and

can be moved without adding extra force.

• The approach requires no more specific controller tuning than those of the PID

compensators.

• This implementation of safety constraints does not require any collision detection

algorithm nor any switching between different control modes.

• A natural property of the QP solver approach is to ensure constraints priority over

tasks. A task requiring too much kinetic energy is degraded (the desired value is

not followed any more) while the other tasks continue to be correctly fulfilled. As a

practical result, it is experimentally demonstrated that the pointing task towards

the target was always fulfilled even when an obstacle prevented the robot from

being able to bring the end-effector at its desired value.

The QP formulation of the problem also allows accounting for the robot redundancy.

Different regularisation tasks have been used to minimize the joint torques induced by

gravity or to minimize the robot perceived mass in a direction. In the first case, the

robot realises its main tasks optimally and it is possible to physically interact with it

to perform inner motions. In the latter case, this gives the ability to reduce the robot

dangerousness in the direction of an obstacle by reducing the kinetic energy that can

be transferred in case of transient contact. The experimental results obtained in this

chapter showed the ability to use this concept in real time on a 7 dof robot.

The next chapter concludes this work and presents research perspectives.

Chapter 5

Conclusion

Robots are being used in a growing number of applications. Still, there are applica-

tive contexts where the lack of safety with respect to their environment prevents them

from being used. This is mainly the case when robots share their workspace with human

beings. When robots have to perform autonomous motions in an unknown environment,

they must consider several key aspects presented in Table 1.1 which are:

• the respect of constraints imposed either by the laws of physics or by the environ-

ment,

• the optimal achievement of their tasks,

• ensure, at each control instant, that the robot is not dangerous towards its envi-

ronment.

These key aspects are closely linked. In fact, in a reactive environment, it is not

possible to consider one of these aspects without considering the others.

Safety is the most important point for the development of more autonomous robotic

applications. The robotic field has seen many contributions to obstacle avoidance or

to detection and reaction to a collision. However, the design of a robust control solu-

tion ensuring, at each time step, that an undesired contact with a robot would not be

dangerous, is yet to be proposed and used in concrete applications. To that aim, the

ISO TS 15066 proposes to define safety limits characterizing a robot dangerousness. It

divides contact in two classes: transient contact and quasi-static contact. The first type

of contact corresponds to an impact between a moving robot and a still human. The

93

94 Conclusion

dangerousness of such contact comes from the transfer of energy between the two bod-

ies. The second type of contact corresponds to a robot crushing some part of the body

against a fix obstacle. The dangerousness of this second type of contact comes from the

forces exerted by the robot on a human body part.

5.1 Contributions

In this work, a robot variation of kinetic energy is used as a unified indicator of its

dangerousness. This variation of energy links both the forces exerted by the robot and

the kinetic energy that it displays when actuated. To improve the safety of people

evolving in the robot environment, this work proposes to both minimize this energy and

constrain it to a safe limit. This work is based on the fact that a robot kinetic energy is

a function of the inertial properties of each body constituting the robot and its velocity.

For redundant robots, one can find a joint configuration minimizing the robot inertial

properties in some direction. If the robot velocity is specified by the task, minimizing the

robot mass is the only way to minimize its kinetic energy through control. To constrain

the robot kinetic energy, specific control methods must be used.

To implement these features, the proposed controller is expressed as a quadratic

programming optimization. The solution of the optimization problem gives the optimal

control input to realise the tasks while satisfying the specified constraints. Safety is thus

expressed as a constraint within the quadratic programming problem. Furthermore, it

is possible to define second priority tasks inside a quadratic programming problem. One

can thus define a task using the robot redundancy to minimize its mass in a specific

direction.

The theoretical aspects of this controller are treated in Chapter 2 and tested on a

KUKA LWR4+ robot in Chapter 4. Even though this controller can be applied for any

robot tasks, this work considers a specific applicative context: 3D X-ray imaging. In this

context, the robot tasks consist in positioning the robot in 3D space and pointing towards

a target. Using the external sensors presented in Chapter 3, the experiments realised

in this work show the ability to correctly perform tasks while satisfying the constraints.

It is also shown that the control scheme does not depend on the trajectory generation

algorithm. Therefore, new robot positions can be defined on-line based on the presence

of objects in the robot workspace.

In the second part of Chapter 4, the kinetic energy constraint is evaluated on several

experiments. The quadratic programming solver is able to find control solutions keeping

the robot kinetic energy under a specified threshold. An external platform is designed to

5.2. Limitations and perspectives 95

measure the actual energy dissipated during contact. The results given by the platform

show that the robot kinetic energy is indeed constrained to a defined (safe) limit. Exper-

iments are also conducted with a human physically interacting with the robot. When a

transient contact is initiated, the controller constrains the robot kinetic energy so that it

does not release a dangerous amount of energy both during contact and when the contact

is released. Furthermore, during quasi-static contact, the constraint provides a way to

limit the wrenches applied by the robot without doing force control or using external

sensors. In both cases contact, collision detection algorithms are not necessary to ensure

that the robot adapts its behaviour.

In the last part of Chapter 4, the robot redundancy is used to minimize its perceived

mass in the direction of an obstacle. Using local optimization techniques, the experiments

show that it is possible to find in real-time a configuration minimizing the robot perceived

mass in the direction of an obstacle. The direction of the obstacle can be recorded on-line

by a RGBD sensor. It is thus possible to dynamically reduce the robot kinetic energy to

a minimal value without modifying the main task objectives in terms of precision and

speed.

Referring to Table 1.1, the quadratic programming based controller ensures the op-

timal realisation of a set of given tasks, either defined off-line or update on-line, while

satisfying the robot constraints. Combining the kinetic energy constraint and the mass

minimization algorithm, the controller developed in this work offers a new way to im-

prove robot safety in a shared workspace. The kinetic energy constraint is an additional

layer of safety taking action after the servoing phase. This safety layer ensures that the

robot task does not use more kinetic energy than the defined limits. This limit can be

adapted on-line and defined using safety recommendation given by international norms.

5.2 Limitations and perspectives

The control approach proposed in this work yields interesting properties. However, it re-

lies on numerous assumptions that could be more thoroughly explored. During transient

contact, the kinetic energy transferred between the robot and the colliding object must

be constrained. In the proposed controller, the current kinetic energy constraint volun-

tarily omits to consider the kinetic energy of the colliding object. This is because it can

be difficult to determine the relative mass and velocity of this obstacle. Consequently,

the proposed approach underestimates the kinetic energy that should be constrained

from the robot side to ensure a safe collision. In the case of a human obstacle, one could

try to estimate the mass of the body part entering in collision, using for example the

mean value according to some reference data e.g. [Dumas et al., 2007]. The speed of the

96 Conclusion

human can be obtained using external sensors such as the RGBD cameras used in this

work. These estimations would induce a more restrictive but safer energetic constraint.

The expression of the kinetic energy constraint should be independent of the PID

controller tuning. In our proposed approach this is not entirely the case as the variable

∆t depends on the gain and the saturation limits of the PID controller. Expressing the

constraint in its quadratic form would alleviate this problem. However, from a compu-

tation point of view, the problem would not be solvable at 1 kHz with the optimization

softwares and the computation hardware that are currently available.

The minimization of the robot perceived mass yields interesting results. However,

it suffers the common limitation of local minimization, i.e. the possible convergence

towards a local minimum. This minimization can also lead to configurations that are

not optimal for the robot motions. For example the minimum could be close to joint

limits. Since the controller constrains the joint position, this is not much of an issue.

However, being close to the joint limits is not always recommended and can result to

unpractical robotic configurations. Other criterion such as the robot manipulability

should be considered when defining a desired robot configuration. However, this requires

to establish a heuristic trade-off to regulate the relative importance of each criterion. In

this case this could have an impact on the robot energy and thus on its dangerousness.

During the experimental trials, the controller showed a stable behaviour. However,

no stability analysis has been performed yet. Even though no formal demonstration

has been realised, this work can be linked to passivity through its approach on energy.

Indeed, a system is said to be passive if and only if the energy entering the system is

greater than the energy going out [Hannaford and Ryu, 2002]. Passivity is a sufficient

condition for stability. The energy entering the system being constrained in this work,

one could therefore use passivity methods to demonstrate its stability.

Bibliography

Albu-Schäffer, A., ., Haddadin, S., Ott, C., Stemmer, A., Wimböck, T., and Hirzinger,

G. (2007). The DLR lightweight robot: design and control concepts for robots in

human environments. Industrial Robot: An International Journal, 34(5):376–385.

4 citations page 2, 15, 18, and 64

Albu-Schäffer, A., Wolf, S., Eiberger, O., Sami, H., Petit, F., and Chalon, M. (2010).

Dynamic Modelling and Control of Variable Stiffness Actuators. In IEEE International

Conference on Robotics and Automation, pages 2155–2162. Cited page 16

Alvarez-Ramirez, J., Santibañez, V., and Campa, R. (2008). Stability of robot manip-

ulators under saturated PID compensation. IEEE Transactions on Control Systems

Technology, 16(6):1333–1341. Cited page 45

Baerlocher, P. and Boulic, R. (2004). An inverse kinematics architecture enforcing

an arbitrary number of strict priority levels. The Visual Computer, 20(6):402–417.

Cited page 29

Baillieul, J (1985). Kinematic programming alternatives for redundant manipula-

tors. In IEEE International Conference on Robotics and Automation, pages 722–728.

Cited page 29

BGIA (2011). BG / BGIA risk assessment recommendations according to machinery

directive Design of workplaces with collaborative robots. Technical Report February,

Institute for Occupational Safety and Health of the German Social Accident Insurance.

Cited page 13

Bicchi, A. and Tonietti, G. (2004). Fast and "soft-arm" tactics. IEEE Robotics and

Automation Magazine, 11(2):22–33. 2 citations page 2 and 16

Bohn, C. and Atherton, D. P. (1995). An Analysis Package Comparing PID Anti-Windup

Strategies. IEEE Control Systems, 15(2):34–40. Cited page 36

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University

Press. Cited page 33

97

Bibliography Bibliography

Bright, G. and Deubler, C. (1999). Design and Implementation of an Intelligent Re-

mote Centre Compliance (IRCC) as a Means of Intelligent Position Feedback for a

Construction Robot. In ISARC, pages 719–723. Cited page 15

Briquet-Kerestedjian, N., Makarov, M., Grossard, M., and Rodriguez-Ayerbe, P. (2017).

Stochastic observer design for robot impact detection based on inverse dynamic model

under uncertainties. In IFAC 2017 - 20th World Congress of the International Feder-

ation of Automatic Control, Toulouse, France. Cited page 18

Bruyninckx, H. (2002). OROCOS: design and implementation of a robot control software

framework. In IEEE International Conference on Robotics and Automation - Tutorial.

Cited page 71

Chatelain, P., Krupa, A., and Navab, N. (2017). Confidence-Driven Control of an Ultra-

sound Probe. IEEE Transactions on Robotics, 33(6):1410–1424. Cited page 64

Chen, Y. C. and Walker, I. D. (1993). A consistent null-space based approach to inverse

kinematics of redundant robots. In IEEE International Conference on Robotics and

Automation, pages 374–381. Cited page 50

Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., and Fraisse, P. (2016). Collabora-

tive manufacturing with physical human–robot interaction. Robotics and Computer-

Integrated Manufacturing, 40:1 – 13. Cited page 64

Cherubini, A., Passama, R., Meline, A., Crosnier, A., and Fraisse, P. (2013). Multimodal

control for human-robot cooperation. In IEEE International Conference on Intelligent

Robots and Systems, pages 2202–2207. Cited page 18

De Luca, A., Albu-Schaffer, A., Haddadin, S., and Hirzinger, G. (2006). Collision

Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 1623–

1630. 2 citations page 2 and 18

De Luca, A. and Ferrajoli, L. (2008). Exploiting robot redundancy in collision detection

and reaction. In 2008 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pages 3299–3305. Cited page 18

Drake, S. (1977). Using Compliance in Lieu of Sensory Feedback for Automatic Assembly.

PhD thesis, MIT. Cited page 15

Dumas, R., Cheze, L., and Verriest, J.-P. (2007). Adjustments to mcconville et al. and

young et al. body segment inertial parameters. Journal of biomechanics, 40:543–53.

Cited page 95

Bibliography 99

Esteveny, L., Barbe, L., and Bayle, B. (2014). A novel actuation technology for safe

physical human-robot interactions. In IEEE International Conference on Robotics

and Automation, pages 5032–5037. Cited page 16

Faverjon, B. and Tournassoud, P. (1987). A local based approach for path planning

of manipulators with a high number of degrees of freedom. In IEEE International

Conference on Robotics and Automation. Cited page 34

Ferraguti, F., Secchi, C., and Fantuzzi, C. (2013). A tank-based approach to impedance

control with variable stiffness. In International Conference on Robotics and Automa-

tion, pages 4948–4953. Cited page 20

Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., and Diehl, M. (2014). qpOASES:

a parametric active-set algorithm for quadratic programming. Mathematical Program-

ming Computation, 6(4):327–363. 2 citations page 33 and 71

Ficuciello, F., Villani, L., and Siciliano, B. (2016). Impedance Control of Redundant Ma-

nipulators for Safe Human-Robot Collaboration. Acta Polytechnica Hungarica Journal

of Applied Sciences, 13(1):223–238. Cited page 64

Flacco, F. (2013). Optimal Redundancy Resolution with Task Scaling under Hard

Bounds in the Robot Joint Space. In IEEE International Conference on Robotics

and Automation, pages 3969–3975. Cited page 30

Flacco, F., Kroeger, T., De Luca, A., and Khatib, O. (2014). A Depth Space Approach for

Evaluating Distance to Objects. Journal of Intelligent & Robotic Systems, 80(1):7–22.

2 citations page 17 and 29

Flacco, F., Luca, A. D., and Khatib, O. (2012). Motion Control of Redundant Robots un-

der Joint Constraints: Saturation in the Null Space. In IEEE International Conference

on Robotics and Automation. Cited page 30

Fox, D., Burgard, W., and Thrun, S. (1997). The dynamic window approach to collision

avoidance. IEEE Robotics and Automation Magazine, 4(1):23–33. Cited page 2

Haddadin, S., Albu-Schäffer, A., Frommberger, M., and Hirzinger, G. (2008a). The role of

the robot mass and velocity in physical human-robot interaction - Part II: Constrained

blunt impacts. In IEEE International Conference on Robotics and Automation, pages

1339–1345. Cited page 11

Haddadin, S., Albu-Schäffer, A., and Hirzinger, G. (2008b). The role of the robot mass

and velocity in physical human-robot interaction - Part I: Non-constrained blunt im-

pacts. In IEEE International Conference on Robotics and Automation, pages 1331–

1338. 2 citations page 9 and 11

Bibliography Bibliography

Haddadin, S., De Luca, A., and Albu-Schäffer, A. (2017). Robot collisions: A survey on

detection, isolation, and identification. IEEE Transactions on Robotics, 33(6):1292–

1312. Cited page 18

Haddadin, S., Schaffer, A., and Hirzinger, G. (2007). Safety Evaluation of Physical

Human-Robot Interaction via Crash-Testing. In Robotics: Science and Systems Con-

ference (RSS 2007), pages 395–407. Cited page 11

Haddadin, S., Suppa, M., Fuchs, S., Bodenmueller, T., Albu-Schäffer, A., and

Hirzinger, G. (2011). Towards the robotic co-worker. Robotics Research, 70:261–282.

Cited page 64

Hannaford, B. and Jee-Hwan, R. (2000). Time Domain Passivity Control of Haptic

Interfaces. IEEE Transactions on Robotics and Automation, 18(1):1–39. Cited page 19

Hannaford, B. and Ryu, J.-H. (2002). Time Domain Passivity Control of Haptic Inter-

faces. Transactions on Robotics and Automation, 18(1):1–10. Cited page 96

Haque, M. A., Ahmad, M. O., Swamy, M. N. S., Hasan, M. K., and Lee, S. Y. (2013).

Adaptive projection selection for computed tomography. IEEE Transactions on Image

Processing, 22(12):5085–5095. Cited page 8

Hart, P. E., Nilsson, N. J., and Raphael, B. (1968). A Formal Basis for the Heuristic

Determination of Minimum Cost Paths. IEEE Transactions of systems science and

cybernetics, 4(2):100–107. Cited page 1

Hogan, N. (1984). Impedance Control : An Approach to Manipulation. In American

Control Conference. Cited page 19

IEC (2017). Lbr iiwa med test certificate. https://www.kuka.com/-/

media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/

lbr-med-cb-test-certificate.pdf. Cited page 64

ISO/TS-13849 (2015). Safety of machinery – Safety-related parts of control systems.

International Organization for Standardization, Geneva, Switzerland. Cited page 70

ISO/TS-15066 (2016). Robots and robotic devices - Collaborative robots. International

Organization for Standardization, Geneva, Switzerland. 2 citations page 10 and 13

Jakopec, M., Rodriguez, F., Harris, S. J., Gomes, P., Cobb, J., and Davies, B. L. (2003).

The Hands-On Orthopaedic Robot “ Acrobot ”: Early Clinical Trials of Total Knee

Replacement Surgery. IEEE Transactions on Robotics and Automation, 19(5):902–911.

Cited page 6

https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/lbr-med-cb-test-certificate.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/lbr-med-cb-test-certificate.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/9cb8e311bfd744b4b0eab25ca883f6d3/lbr-med-cb-test-certificate.pdf

Bibliography 101

Jiang, B. C. and Gainer, C. A. (1987). A cause-and-effect analysis of robot accidents.

Journal of Occupational Accidents, 9(1):27–45. Cited page 1

Jochen, H. and Zelinsky, A. (2003). Quantitative Safety Guarantees for Physical Human

– Robot Interaction. The International Journal of Robotics Research, 22(7):479–504.

Cited page 18

Joly, L. D. and Andriot, C. (1995). Imposing motion constraints to a force reflecting

telerobot through real-time simulation of a virtual mechanism. In Proceedings - IEEE

International Conference on Robotics and Automation, pages 357–362. Cited page 40

Jubien, A., Gautier, M., and Janot, A. (2014). Dynamic identification of the Kuka

LightWeight robot: Comparison between actual and confidential Kuka’s parameters.

IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM,

pages 483–488. Cited page 65

Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., and Schaal, S. (2011). STOMP:

Stochastic trajectory optimization for motion planning. In IEEE International Con-

ference on Robotics and Automation, pages 4569–4574. Cited page 35

Kapoor, A., Li, M., and Taylor, R. H. (2006). Constrained Control for Surgical Assistant

Robots. In International Conference on Robotics and Automation, pages 231–236.

2 citations page 34 and 40

Khatib, O. (1986). Real time obstacle avoidance for manipulators and mobile

robots. In IEEE International Journal of Robotics and Research, pages 90–98.

2 citations page 17 and 29

Khatib, O. (1995). Inertial properties in robotic manipulation: An object-level frame-

work. International Journal of Robotics and Research, 14(1):19–36. Cited page 12

Khatib, O. and Siciliano, B. (2008). Springer handbook of robotics. Springer.

Cited page 35

Khosla, P. (1987). Choosing sampling rates for robot control. In Proceedings. 1987 IEEE

International Conference on Robotics and Automation. Cited page 34

Koenig, N. and Howard, A. (2004). Design and use paradigms for gazebo, an open-source

multi-robot simulator. In IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 2149–2154. 2 citations page 63 and 71

Koganezawa, K. (2005). Mechanical stiffness control for antagonistically driven joints.

In 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

1544–1551. Cited page 16

Bibliography Bibliography

Kronander, K. and Billard, A. (2016). Stability Considerations for Variable Impedance

Control. IEEE Transactions on Robotics, 32(5):1298–1305. Cited page 19

Kuindersma, S., Permenter, F., and Tedrake, R. (2014). An efficiently solvable quadratic

program for stabilizing dynamic locomotion. In IEEE International Conference on

Robotics and Automation, pages 2589–2594. Cited page 34

Kunz, T. and Stilman, M. (2012). Time-Optimal Trajectory Generation for Path Fol-

lowing with Bounded Acceleration and Velocity. In Robotics: Science and Systems,

pages 1–7. Cited page 35

Laffranchi, M., Tsagarakis, N. G., and Caldwell, D. G. (2009). Safe human robot inter-

action via energy regulation control. In 2009 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 35–41. Cited page 18

Lasota, P. A., Rossano, G. F., and Shah, J. A. (2014). Toward safe close-proximity

human-robot interaction with standard industrial robots. In IEEE International Con-

ference on Automation Science and Engineering, pages 339–344. Cited page 18

Lavalle, S. M. (1998). Rapidly-exploring random trees: A new tool for path

planning. Technical report, Computer Science Dept., Iowa State University.

2 citations page 2 and 35

Liégeois, A. (1977). Automatic Supervisory Control of the Configuration and Behavior

of Multibody Mechanisms. IEEE Transactions on Systems, Man, and Cybernetics,

7(12):868–871. Cited page 28

Liu, M., Tan, Y., and Paddois, V. (2016). Generalized hierarchical control. Autonomous

Robots, 40(1):17–31. Cited page 33

Maciejewski, A. and Klein, C. (1985). Obstacle Avoidance for Kinematically Redundant

Manipulators in Dynamically Varying Environments. The International Journal of

Robotics Research, 4(3):109–117. Cited page 29

Mansfeld, N., Djellab, B., Rald, J., Beck, F., Ott, C., and Haddadin, S. (2017). Improv-

ing the Performance of Biomechanically Safe Velocity Control for Redundant Robots

through Reflected Mass Minimization. In IEEE International Conference on Intelligent

Robots and Systems, pages 5390–5397. 2 citations page 50 and 90

Matthias, B. and Reisinger, T. (2016). Example Application of ISO / TS 15066 to a

Collaborative Assembly Scenario Summary / Abstract. In International Conference

in Competitive Manufacturing, pages 88–92. Cited page 17

Meguenani, A. (2018). Safe Control of Robotic Manipulators in Dynamic Contexts. PhD

thesis, Sorbonnes Universitée. Cited page 40

Bibliography 103

Meguenani, A., Paddois, V., Da Silva, J., Hoarau, A., and Bidaud, P. (2017). Energy-

based control for safe human-robot physical interactions. In International Symposium

on Experimental Robotics, pages 809–818. 4 citations page vi, 19, 34, and 71

Meguenani, A., Padois, V., and Bidaud, P. (2015). Control of robots sharing their

workspace with humans: An energetic approach to safety. In IEEE International

Conference on Intelligent Robots and Systems, pages 4678–4684. Cited page 18

Nguyen, K. D., Ng, T. C., and Chen, I. M. (2008). On Algorithms for Planning S-Curve

Motion Profiles. International Journal of Advanced Robotic Systems, 5(1):99–106.

Cited page 35

Oberer, S., Malosio, M., and Schraft, R. D. (2006). Investigation of robot human impact.

In International Symposium on Robotics, volume 1956, page 87. Cited page 9

Oberer, S., Schraft, R. D., and Ipa, F. (2007). Robot-Dummy Crash Tests for Robot

Safety Assessment. In IEEE International Conference on Robotics and Automation,

pages 2934–2939. Cited page 11

Ott, C. (2008). Cartesian Impedance Control: The Rigid Body Case, pages 29–44.

Springer Berlin Heidelberg, Berlin, Heidelberg. Cited page 51

Padois, V., Chiron, P., and Fourquet, J.-Y. (2004). Controlling dynamic contact transi-

tion for nonholonomic mobile manipulators. In International Conference on Intelligent

Robots and Systems, pages 3817–3822. Cited page 49

Park, J. J., Haddadin, S., Song, J. B., and Albu-Sch??ffer, A. (2011). Designing optimally

safe robot surface properties for minimizing the stress characteristics of Human-Robot

collisions. In IEEE International Conference on Robotics and Automation, pages 5413–

5420. Cited page 15

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proceedings of the

Cambridge Philosophical Society, 51(3):406–413. Cited page 28

Poquet, C., Mozer, P., Vitrani, M. A., and Morel, G. (2015). An endorectal ultra-

sound probe comanipulator with hybrid actuation combining brakes and motors.

IEEE/ASME Transactions on Mechatronics, 20(1):186–196. Cited page 5

Pratt, G. and Williamson, M. (1995). Series elastic actuators. In International Confer-

ence on Intelligent Robots and Systems, volume 1, pages 399–406. Cited page 16

Raiola, G., Cardenas, C. A., Tadele, T. S., de Vries, T., and Stramigioli, S. (2018). De-

velopment of a safety- and energy-aware impedance controller for collaborative robots.

In IEEE Robotics and Automation Letters, pages 1237–1244. Cited page 19

Bibliography Bibliography

Ratliff, N., Zucker, M., Bagnell, J. A., and Srinivasa, S. (2009). CHOMP: Gradient op-

timization techniques for efficient motion planning. In IEEE International Conference

on Robotics and Automation, pages 489–494. Cited page 35

Ren, J., McIsaac, K. A., and Patel, R. V. (2006). Modified Newton’s method applied

to potential field-based navigation for mobile robots. IEEE Transactions on Robotics,

22(2):384–391. Cited page 17

Riwan, A., Giudicelli, B., Taha, F., Lazennec, J.-Y., Sahbani, A. andKilian, P., Jabbour,

Z., VanRhijn, J., Louveau, F., Morel, G., Francoise, V., Armand, D., and Lavallée, S.

(2011). Surgicobot project: Robotic assistant for spine surgery. IRBM Ingéniérie et

recherche Biomédicale, 32(2):130–136. Cited page 6

Rubrecht, S. (2011). Contributions à la commande de robots sous contraintes. PhD

thesis. Cited page 29

Rubrecht, S., Paddois, V., Bidaud, P., and De Broissia, M. (2010). Constraints compli-

ant control: Constraints compatibility and the displaced configuration approach. In

IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 677–

684. Cited page 40

Rubrecht, S., Padois, V., Bidaud, P., De Broissia, M., and Da Silva Simoes, M. (2012).

Motion safety and constraints compatibility for multibody robots. Autonomous Robots,

32(3):333–349. Cited page 3

Schreiber, G., Stemmer, A., and Bischoff, R. (2010). The fast research interface for the

kuka lightweight robot. Cited page 71

Schweikard, A., Shiomi, H., and Adler, J. (2004). Respiration tracking in radiosurgery.

Medical Physics, 31(10):2738–2741. Cited page 7

Shin, D., Sardellitti, I., Park, Y.-L., Khatib, O., and Cutkosky, M. (2010). Design and

control of a bio-inspired human-friendly robot. The International Journal of Robotics

Research, 29(5):571–584. Cited page 16

Siciliano, B. and Slotine, J.-J. (1991). A general framework for managing multiple tasks

in highly redundant robotic systems. In Advanced Robotics ’Robots in Unstructured

Environments’, pages 1211–1216. Cited page 28

Smits, R. (2018). KDL: Kinematics and Dynamics Library. http://www.orocos.org/

kdl. Cited page 74

Stasse, O., Escande, A., Mansard, N., Miossec, S., Evrard, P., and Kheddar, A. (2008).

Real-Time (Self)-Collision Avoidance Task on a HRP-2 Humanoid Robot. In IEEE In-

ternational Conference on Robotics and Automation, pages 3200–3205. Cited page 29

http://www.orocos.org/kdl
http://www.orocos.org/kdl

Bibliography 105

States, J. D. (1969). The abbreviated and the comprehensive research injury scales. SAE

Transactions, 78(4):2625–2634. Cited page 9

Stayman, J. W. and Siewerdsen, J. H. (2013). Task-Based Trajectories in Iteratively

Reconstructed Interventional Cone-Beam CT. In International Meeting on Fully Three-

Dimensional Image Reconstruction in Radiology and Nuclear Medicine, pages 257–260.

Cited page 8

Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2017). OSQP: An

operator splitting solver for quadratic programs. ArXiv e-prints. Cited page 34

Suita, K., Yamada, Y., Tsuchida, N., Imai, K., Ikeda, H., and Sugimoto, N. (1995). A

failure-to-safety "Kyozon" system with simple contact detection and stop capabilities

for safe human-autonomous robot coexistence. In IEEE International Conference on

Robotics and Automation, pages 3089–3096. Cited page 15

Vanderborght, B., Bicchi, A., Burdet, E., Caldwell, D. G., Carloni, R., Catalano, M.,

Eiberger, O., Friedl, W., Ganesh, G., Garabini, M., Grebenstein, M., Grioli, G., Had-

dadin, S., Hoppner, H., Jafari, A., Laffranchi, M., Lefeber, D., Petit, F., Stramigioli, S.,

Tsagarakis, N., Damme, M. V., Ham, R. V., Visser, L. C., and Wolf, S. (2013). Variable

impedance actuators: A review. Robotics and Autonomous Systems, 61(12):1601–1614.

Cited page 16

Vanderborght, B., Verrelst, B., Ham, R. V., Damme, M. V., Lefeber, D., Duran, B. M. Y.,

and Beyl, P. (2006). Exploiting natural dynamics to reduce energy consumption by

controlling the compliance of soft actuators. The International Journal of Robotics

Research, 25(4):343–358. Cited page 16

Versace, J. (1971). A review of the severity index. In SAE Technical Paper. SAE Inter-

national. Cited page 10

Vitrani, M. (2006). Asservissement visuel à partir d’images échographiques. Application

à la chirurgie intra-cardiaque. These, Université Pierre et Marie Curie, Paris 6, ISIR.

Cited page 60

Vogel, C., Walter, C., and Elkmann, N. (2013). A projection-based sensor system for safe

physical human-robot collaboration. In IEEE International Conference on Intelligent

Robots and Systems, pages 5359–5364. Cited page 18

Walker, I. D. (1994). Impact Configurations and Measures for Kinematically Redundant

and Multiple Armed Robot Systems. IEEE Transactions on Robotics and Automation,

10(5):670–683. 2 citations page 12 and 49

Bibliography Bibliography

Wassink, M. and Stramigioli, S. (2007). Towards a novel safety norm for domes-

tic robotics. In IEEE International Conference on Intelligent Robots and Systems.

Cited page 11

Watson, P. C. (1976). Remote center compliance system. Cited page 15

Wolf, S. and Albu-Schäffer, A. (2013). Towards a Robust Variable Stiffness Actuator. In

IEEE International Conference on Intelligent Robots and Systems, pages 5410–5417.

Cited page 16

Wolfe, P. (1969). Convergence conditions for ascent methods. SIAM Review, 11(2):226–

235. Cited page 54

Yamada, Y., Hirasawa, Y., Huang, S., Umetani, Y., and Suita, K. (1997). Human-

robot contact in the safeguarding space. IEEE/ASME Transactions on Mechatronics,

2(4):230–236. Cited page 18

Zghal, H., Dubey, R., and Euler, J. (1990). Efficient gradient projection optimization for

manipulators with multiple degrees of redundancy. In IEEE International Conference

on Robotics and Automation, pages 1006–1011. Cited page 50

Ziegler, J. G. and Nichols, N. B. (1942). Optimum settings for automatic controllers.

Transaction of the A.S.M.E, 64(1):759–765. Cited page 74

Appendices

107

Appendix A

Laser calibration

To measure the robot pointing error as defined in Equation (3.18), a laser module

is mounted on the robot end-effector. A frame, Fs (Xs, (is, js,ks)) is attached to the

laser module, with ks the direction of the laser beam and Xs = (xs, ys, zs). The light

emitted by the laser intersects with a quadrant photodiode surface on which a frame

Fd (Xd, (i0, j0,k0)) is attached, with Xd = (xd, yd, zd) the centre of the photodiode

detecting surface. This device records the position of the laser spot on its detection

surface. The accurate position of this quadrant photodiode relatively to the robot base

frame, as well as the transformation from the end-effector frame to the laser frame are

two key elements in the determination of the pointing error. This appendix details the

steps to follow to perform the calibrations necessary to determine this information.

A.1 Determination of the laser beam projection axis

A frame, F0, is attached to the robot base with F0 (X0, (i0, j0,k0)) withX0 = (x0, y0, z0)

and k0 the axis normal to the detector plane. A frame, Fee (Xee, (iee, jee,kee)) is at-

tached to the robot end-effector. The aim of this section is to determine ks with relation

to k0. To do so, the rotation matrix, R(θ,u) ∈ SO(3), describing the orientation of ks
with relation to kee is computed. This rotation matrix can be described as a rotation by

angle θ about an axis in the direction u. A frame, Fd, is attached to the robot base. This

position is undetermined at the beginning of the calibration. Only relative positions of

the laser spot with relation to the detector sensor are used in this first step.

As an initial guess, the orientation of ks is supposed to be the same as kee. The

robot end-effector is positioned such that kee × k0 = 0. The laser source is positioned

109

110 Laser calibration

(xs,ys,h1)

p1p2

(xs,ys,h2)

h

d

θ

ks

ks

kee

k0

a u
O

Figure A.1: Schematic presentation of the laser source positions and laser spot posi-
tions relatively to the robot base in the (O, (a,k0)) plane. ks is the laser source real

projection axis that needs to be calibrated

at a random point in Cartesian space: (xs, ys, h1) above the laser detector. The position

of the laser spot on the detector plane, p1(xp1 , yp1), is recorded. Without modifying the

laser frame orientation, the laser source is moved along k0 to a position (xs, ys, h2). The

distance between h1 and h2 is called h. The new position of the laser spot, p2(xp2 , pl2)

is recorded. With this information, it is possible to compute the axis of rotation u, and

the rotation angle θ necessary to transform kee to ks.

If the robot is not moving along ks, the laser spot moves along a line passing through

the points p1 and p2 along the robot base. The distance between these two points is called

d and the direction vector of the line passing through these points is called a. Figure A.1

depicts the position of the end-effector and the laser beam during this experiment in the

(O, (a,k0)) plane with O (xee, yee, zd). To describe the relative orientation of ks with

relation to kee, one must perform a rotation, R(θ,u) along the axis

u =
a× k0

‖a× k0‖
, (A.1)

with a rotation angle

θ = atan
d

h
. (A.2)

The new laser direction ks is

A.2. Determination of the laser source position offset 111

ks = R(θ,u)ks. (A.3)

Due to error in the measures, the determination of u and θ may not give a correct

rotation matrix. To verify if ks is the correct laser source direction, one can perform a

motion along ks. The laser spot should not be moving. If this is not the case, ks is used

as the new laser direction and the first step is repeated. When the distance between p1

and p2 is sufficiently small, this step of the calibration procedure is done.

Algorithm 5 sums up the operations to perform to calibrate the projection axis.

Algorithm 5: Algorithm to determine the laser projection axis from the

robot position and the laser spot relative position.

(is, js,ks) = (iee, jee,kee)

Position the robot laser frame parallel to its base frame

while ‖p1 − p2‖ > ε do
Gather two points on the detector surface, p1 and p2, at different laser

source height h1 and h2, with the same laser orientation

a = p1−p2
‖p1−p2‖

θ = atan‖p1−p2‖h

u = a×k0
‖a×k0‖ ,

Compute the rotation matrix R(u, θ)

ks = R(u, θ)ks

end

return ks

This operation must be carefully performed as an error in the laser orientation will

result in a large projection error. For example, a laser source located at 0.6 m from the

detector plane with a 1◦ orientation error will project a laser spot at 10 mm from the

desired position.

A.2 Determination of the laser source position offset

Once the laser projection axis has been determined, the position of the laser source,

Xs(xs, ys, zs), relatively to the end-effector, Xee(xee, yee, zee) must be calibrated. Since

it is supposed that the laser beam projects light along a line in the ks direction, the

position zs is not relevant here as it does not influence where the laser beam is projected.

The laser frame is positioned so that ks × k0 = 0. The robot then realises a rotation

about the ks-axis. If the first step in Section A.1 has been correctly performed and there

112 Laser calibration

is an offset in the laser source position, the projection of the laser beam should form a

circle on the quadrant photodiode plane. The data gathered will be subject to noise,

regardless of the acquisition method. A circle must be fitted with the obtained data.

Given a set of measured (x,y) pairs, a method minimizing the sums of squared radial

deviation is used1. This method gives an estimated position of the circle centre, noted

(xc, yc), on the photodiode plane.

Without moving the robot from its current position Xs, the projection of the laser

spot should be on the circle. Given that the detector position relatively to the robot

base is still unknown, let us note (xp, yp), the position of the laser spot relatively to the

circle centre. The corrected laser source position is

Xs =


xs

ys

zs

+


xc − xp
yc − yp

0

 (A.4)

Once again, this step should be repeated several times to obtain a good estimation

of the laser frame position. This step is completed once the laser spot is located on the

centre of the circle and the laser spot does not move when performing a rotation about

the laser projection axis.

A.3 Determination of the quadrant-photodiode position

The last step of this calibration procedure requires to determine the quadrant-photodiode

position relatively to the robot base. Indeed, the servoing of the pointing task requires

to define a target position. This position should be ideally the centre of the quadrant-

photodiode detection surface, Xd (xd, yd, zd). The laser being correctly calibrated, it can

now be used to determine the detector position.

The next step supposes that the detector surface is parallel to the robot base. The

determination of the position of xt and yt requires to position the laser frame so that

ks×k0 = 0. Pointing the laser towards the centre of the detector directly gives (xd, yd) =

(xs, ys).

The next step consists in pointing the laser toward the detector and to record the

position and orientation of the laser frame and the position of the laser spot relatively

to the robot base. The parametric equation of a line passing through (xs, ys, zs) along

the vector ks = (a, b, c) is

1https://fr.mathworks.com/matlabcentral/fileexchange/5557-circle-fit

https://fr.mathworks.com/matlabcentral/fileexchange/5557-circle-fit

A.3. Determination of the quadrant-photodiode position 113


x = xs + ta (A.5a)

y = ys + tb (A.5b)

z = zs + tc (A.5c)

with t a scalar parameter.

The quadrant photodiode records the position of the laser spot xp and yp relatively

to the centre of its detection surface. These positions are used in Equations (A.5a) and

(A.5b) and yields tx =
xp−xs
a and ty =

yp−ys
b . Ideally tx should be equal to ty but due

to uncertainty in the measure it might not be the case. To minimize the error, it is best

to choose t̄ =
tx+ty

2 . Using t̄ in Equation (A.5c) yields

zd = zs + t̄c. (A.6)

For better results it is recommended to perform this step for different positions of

the laser source to get a mean value of zd.

Once this step is realised, the laser frame is correctly determined and the position

of the laser detector relatively to the robot base is acquired.

	Abstract
	1 Introduction and applicative context
	1.1 Robots in medical applications
	1.2 Towards autonomous robots in a shared workspace for medical applications
	1.3 Characterization of a robot dangerousness
	1.3.1 The Abbreviated Injury Scale
	1.3.2 Definition of safety indicators
	1.3.3 Defining limits

	1.4 Safety by design
	1.5 Safety by mean of control
	1.5.1 Pre-collision methods
	1.5.2 Post-collision methods

	1.6 Proposed contribution
	1.7 Structure of this manuscript
	1.8 Related publications

	2 Development of a control architecture for safety
	2.1 Control problem resolution methods
	2.1.1 Explicit inversion methods
	2.1.2 Constrained Convex Optimization Methods
	2.1.2.1 Multi-tasking
	2.1.2.2 Problem resolution

	2.2 Task definition
	2.2.1 Task planning
	2.2.2 Task servoing
	2.2.3 Task expression

	2.3 Constraints in quadratic programming
	2.3.1 Intrinsic constraints
	2.3.2 Constraints related to safety
	2.3.2.1 Constraint on the robot workspace
	2.3.2.2 Expression of a kinetic energy constraint
	2.3.2.3 Generalisation for any point of interest

	2.4 Redundancy and quadratic programming
	2.4.1 The regularisation task in convex optimization methods
	2.4.2 Torque minimization task
	2.4.3 Gravity compensation task
	2.4.4 Posture task
	2.4.5 Using redundancy to improve safety
	2.4.5.1 The robot perceived mass
	2.4.5.2 Robot null-space motion
	2.4.5.3 Finding the perceived mass global minimum
	2.4.5.4 Local perceived mass minimization in the direction of an obstacle

	3 Experimental setup description and applicative context
	3.1 Application to the defined context
	3.1.1 Positioning task
	3.1.2 Pointing task
	3.1.2.1 Orientation of the laser frame
	3.1.2.2 Positioning of the X-ray source projection point

	3.1.3 General control scheme

	3.2 The KUKA LWR4+
	3.3 Task validation
	3.3.1 Positioning error
	3.3.2 Pointing error

	3.4 Constraints validation
	3.4.1 Force measurements
	3.4.2 Energy measurements

	3.5 Vision system
	3.6 Software and communication

	4 Experimental results
	4.1 Tasks validation
	4.1.1 Nominal case
	4.1.2 On-line trajectory definition

	4.2 Kinetic energy constraint validation
	4.2.1 Model based kinetic energy computation validation
	4.2.2 Kinetic energy limit
	4.2.2.1 Transient contact
	4.2.2.2 Quasi static contact

	4.2.3 The interesting properties of the pointing task

	4.3 The regularisation task
	4.3.1 Torque regularisation task
	4.3.2 Gravity regularisation task
	4.3.3 Equivalent mass minimization
	4.3.3.1 Global optimization vs local optimization
	4.3.3.2 Reactive mass minimization with obstacles

	5 Conclusion
	5.1 Contributions
	5.2 Limitations and perspectives
	References

	Appendices
	A Laser calibration
	A.1 Determination of the laser beam projection axis
	A.2 Determination of the laser source position offset
	A.3 Determination of the quadrant-photodiode position

