
HAL Id: tel-02093465
https://hal.science/tel-02093465

Submitted on 9 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Nonconvex Alternating Direction Optimization for
Graphs: Inference and Learning

Ð.Khuê Lê-Huu

To cite this version:
Ð.Khuê Lê-Huu. Nonconvex Alternating Direction Optimization for Graphs: Inference and Learning.
Computer Vision and Pattern Recognition [cs.CV]. CentraleSupélec, Université Paris-Saclay, 2019.
English. �NNT : �. �tel-02093465�

https://hal.science/tel-02093465
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LC
00

5

Nonconvex Alternating Direction
Optimization for Graphs: Inference

and Learning

Thèse de doctorat de l’Université Paris-Saclay
préparée à CentraleSupélec

École doctorale n∘580 Sciences et technologies de l’information et de
la communication (STIC)

Spécialité : Traitement du signal et des images

Thèse présentée et soutenue à Paris, le 4 février 2019, par

Lê-Huu, D. Khuê

Composition du jury :

Isabelle Bloch
Professeur, Télécom ParisTech, Université Paris-Saclay Présidente
Florence Forbes
Directrice de Recherche, Inria Grenoble Rhône-Alpes Rapporteur
Nikos Komodakis
Professeur, École des Ponts ParisTech Rapporteur
Ramin Zabih
Professeur, Cornell University & Google Examinateur
Karteek Alahari
Chargé de Recherche, HDR, Inria Grenoble Rhône-Alpes Examinateur
Dimitris Samaras
Professeur, Stony Brook University Invité
Nikos Paragios
Professeur, CentraleSupélec, Université Paris-Saclay Directeur de thèse

To my parents, my sister, and my wife.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor,
Prof. Nikos Paragios, for many things. I still remember the day when I came from
afar to meet him for the first time in his office and said: “I would like to be your PhD
student!”. I was at the time a young student impressed by his scientific achievements.
Now looking back, my courage on that day was quite unusual, but it is still something
I am proud of. Nikos then gave me the chance to prove myself via the MVA MSc pro-
gram of CentraleSupélec, which I completed with success and then officially became
his PhD student. I have always been grateful to him for giving me this opportunity.
One thing I particularly like being Nikos’ student was the freedom to choose research
topics and the autonomy to follow those directions. This did not work sometimes for
a student like me who is disorganized and who likes jumping randomly between ideas.
Fortunately, he was there to guide and push me when it was needed. I would like to
thank him again for his support, patience, and many pieces of advice over the last four
years. And last, but not least, my wife and I would like to thank Nikos for allowing
her to come with me in my office to study during my third year, and for his caring,
advice and encouragement when she was applying to a graduate program in France.

I am extremely grateful to the members of my PhD committee, Profs. Ramin Zabih,
Florence Forbes, Isabelle Bloch, Dimitris Samaras, Nikos Komodakis, and Karteek
Alahari, for generously offering their time and support. Prof. Forbes and Prof. Ko-
modakis spent their precious time reading the manuscript and giving encouraging re-
views. Prof. Bloch kindly helped me a lot in the preparation of the defense at Télécom
ParisTech. Prof. Zabih and Prof. Samaras were very supportive and always happy to
help, despite their extreme time constraints. Prof. Alahari was always kind to provide
support and encouragement. I must thank my advisor, Prof. Paragios, for making a
great effort to invite such a distinguished committee, and for spending a lot of time on
the organization of the defense. I would like to thank again all committee members for
their insightful comments and questions during the defense. Their valuable feedback
has not only helped me to improve the manuscript but also inspired me to further
extend my work in different directions.

During my PhD, I had the opportunity to discuss with and to learn from many
respected researchers. I would like to thank Profs. Jean-Christophe Pesquet, Iasonas
Kokkinos, Matthew Blashko, Pawan Kumar, Dimitris Samaras, and Minh Hoai for
the valuable discussions I had with them. I very much appreciate the support of
Prof. Samaras and Prof. Hoai during my two-month visit at the Computer Vision
Laboratory of Stony Brook University. I would also like to thank Prof. Paul-Henry
Cournède for chairing my mid-term defense.

A lot of administrative paperwork happened during my PhD, both at Centrale-
Supélec and Inria. A huge thank to our team managers Natalia Leclercq, Jana Dutrey,
and Alexandra Merlin for their valuable help on this time-consuming matter, so that I
could focus on my research. In particular, Jana provided me with consistent assistance

iii

iv acknowledgements

over the last few months during the preparation of my defense. I also gratefully ac-
knowledge the help of Prof. Gilles Duc and Anne Batalie on paperwork issues related
to the doctoral school.

Many thanks to all my friends and colleagues at the Center for Visual Computing
for the wonderful time we spent together (in alphabetical order): Alp, Enzo, Eu-
gene, Evgenios, Hari, Jiaqian, Maria, Marie-Caroline, Maxim, Mihir, Puneet, Rafael,
Siddhartha, Stavros, Stefan, and Wacha. Thank you Maxim for kindly helping me to
correct my French writing on multiple occasions. Special thanks to Maria, Siddhartha,
and especially Mihir for their technical support related to our computing servers. Spe-
cial thanks also to Marie-Caroline for kindly helping me multiple times on various
things, such as turning on my lab desktop after a power outage, or bringing back doc-
uments that I needed urgently, while I was not able to come to the lab. Thanks also
to Vu Nguyen, Tan Nhat Le, and other members of the Stony Brook Computer Vision
Lab for their help during my visit there.

Several months before my graduation, I became a full-time researcher at Qopius
Technology, a computer vision startup based in Paris. I would like to thank my CEOs
Antonin Bertin and Roy Moussa for being supportive and flexible with my working
hours so that I could smoothly complete the administrative procedure required for
the defense. I must also thank my friend and colleague Victor Journé for his help
on translating the abstract of this thesis into French. All possible remaining errors,
however, are due to my deficiency. Thanks also to all my colleagues at Qopius for their
encouragement during the preparation of the defense.

For me this thesis is the result of a long journey, started upon my arrival in France
more than a decade ago. Therefore, I would like to take this opportunity to express
my appreciation to the people and organizations who have helped and supported me
since my early days in France. Foremost, I would like to extend my deepest gratitude
to Prof. Jean Trần Thanh Vân and his wife, Prof. Lê Kim Ngọc, for bringing me to
France and for taking care of me from the first day until now. They are two such great
persons that I admire the most, and what they have done for me and for my country
cannot be described in just a few words. I am also grateful to Prof. Đỗ Trinh Huệ for
putting his trust in me and for his encouragement over the years. I am deeply indebted
to Prof. Odon Vallet and his Vallet Foundation for generously offering me multiple
scholarships for my undergraduate studies. During this time I also received financial
support from the Region of Centre Val de Loire, the City of Blois, and my school ENIVL
(known as INSA Centre Val de Loire since 2012). My first days in France would have
been much more difficult without the help and support that I received from faculty
members and classmates at ENIVL. I would like to thank them all again. In particular,
I would like to express my special thanks to the following persons for their consistent
help and caring over the years: Profs. Jérôme Fortineau, Romuald Boné, Pascal Trân,
and faculty members Béatrice Trombetta, Nadège Courbois, Karine Goux-Brunet. I
have been lucky to meet and become friends with very kind French families, whose
support cannot be overestimated: Didier and Yvette Chaux; Pierre and Nicole Louis;
Frédéric and Hélène Herlin; and especially, Hugues, Isabelle and Solène Vassal. Finally,
I cannot end this paragraph without mentioning the following Vietnamese persons in
Blois, who helped me a lot and who always made me feel at home: bà Yến, bác Hùng
o Hương, bác Bảo bác Hẹ, and their families.

v

I would like to acknowledge the encouragement from my Vietnamese friends in
France: cô Thao, chị Bê, Tuân, Lu, anh Tiến Anh bé Ly, anh Song chị Linh, anh em
Kchan. Especially helpful to me during this time were my “nhà Blois” brothers and
sisters who shared with me a lot of good and bad moments: Long, Rô Thuý, Tâm Chi,
Cơ, Thuỷ, Linh, Minh, Thọ Linh, Tú Chi, Hải, Lâm Phương, Hảo, Phúc, Nhật. My
special thanks go to Cơ and Hảo for their help during the preparation of the defense.

Over the years, I have luckily received tremendous love and support from Vietnam.
I would like to thank all the people, relatives, teachers, and friends who cared about
me. Special thanks to the following persons whom I consider to be family: bác Hoà
cô Phương, bác Tùng o Nga, thầy Từ, chị Trang anh Tiến, anh Phương chị Hiền, and
my best friends: Thoại, Cu Em, Trà Ngân, Trùm, Hào.

My family in Vietnam has always supported and nurtured me. I would like to
thank my grandmothers, uncles, aunts, and cousins: Mệ Nội và Mệ Ngoại, gia đình
bác Thuỳ bác Hiền, gia đình chú Tí, gia đình cậu Quốc dì Hoa, gia đình cậu Bi mợ
Truyền, gia đình anh Phú, Luna của cậu; và Bà Ngoại, ba Quang mẹ Thảo và Bin, gia
đình cậu Nguyên, gia đình mợ Mượn, cùng toàn thể gia đình bên ngoại.

Finally, I would like to dedicate this thesis to the most important persons in my
life. To my parents, who have sacrificed all their life for me and my sister. To my
sister, who loves me unconditionally. And to my wife Phương Hằng, who pours her
life into mine. No words can describe how much I love them.

Paris, January 2019
Lê-Huu, D. Khuê

Abstract

This thesis presents our contributions to inference and learning of graph-based models
in computer vision.

First, we propose a novel class of decomposition algorithms for solving graph and
hypergraph matching based on the nonconvex alternating direction method of multi-
pliers (ADMM). These algorithms are computationally efficient and highly paralleliz-
able. Furthermore, they are also very general and can be applied to arbitrary energy
functions as well as arbitrary assignment constraints. Experiments show that they
outperform existing state-of-the-art methods on popular benchmarks.

Second, we propose a nonconvex continuous relaxation of maximum a posteri-
ori (MAP) inference in discrete Markov random fields (MRFs). We show that this
relaxation is tight for arbitrary MRFs. This allows us to apply continuous optimiza-
tion techniques to solve the original discrete problem without loss in accuracy after
rounding. We study two popular gradient-based methods, and further propose a more
effective solution using nonconvex ADMM. Experiments on different real-world prob-
lems demonstrate that the proposed ADMM compares favorably with state-of-the-art
algorithms in different settings.

Finally, we propose a method for learning the parameters of these graph-based
models from training data, based on nonconvex ADMM. This method consists of view-
ing ADMM iterations as a sequence of differentiable operations, which allows efficient
computation of the gradient of the training loss with respect to the model parameters,
enabling efficient training using stochastic gradient descent. At the end we obtain a
unified framework for inference and learning with nonconvex ADMM. Thanks to its
flexibility, this framework also allows training jointly end-to-end a graph-based model
with another model such as a neural network, thus combining the strengths of both.
We present experiments on a popular semantic segmentation dataset, demonstrating
the effectiveness of our method.

vii

Résumé

Cette thèse présente nos contributions à l’inférence et l’apprentissage des modèles
graphiques en vision artificielle.

Tout d’abord, nous proposons une nouvelle classe d’algorithmes de décomposition
pour résoudre le problème d’appariement de graphes et d’hypergraphes, s’appuyant sur
l’algorithme des directions alternées (ADMM) non convexe. Ces algorithmes sont effi-
caces en terme de calcul et sont hautement parallélisables. En outre, ils sont également
très généraux et peuvent être appliqués à des fonctionnelles d’énergie arbitraires ainsi
qu’à des contraintes de correspondance arbitraires. Les expériences montrent qu’ils
surpassent les méthodes de pointe existantes sur des benchmarks populaires.

Ensuite, nous proposons une relaxation continue non convexe pour le problème
d’estimation du maximum a posteriori (MAP) dans les champs aléatoires de Mar-
kov (MRFs). Nous démontrons que cette relaxation est serrée, c’est-à-dire qu’elle est
équivalente au problème original. Cela nous permet d’appliquer des méthodes d’optimi-
sation continue pour résoudre le problème initial discret sans perte de précision après
arrondissement. Nous étudions deux méthodes de gradient populaires, et proposons en
outre une solution plus efficace utilisant l’ADMM non convexe. Les expériences sur
plusieurs problèmes réels démontrent que notre algorithme prend l’avantage sur ceux
de pointe, dans différentes configurations.

Finalement, nous proposons une méthode d’apprentissage des paramètres de ces
modèles graphiques avec des données d’entraînement, basée sur l’ADMM non convexe.
Cette méthode consiste à visualiser les itérations de l’ADMM comme une séquence
d’opérations différenciables, ce qui permet de calculer efficacement le gradient de la
perte d’apprentissage par rapport aux paramètres du modèle. L’apprentissage peut
alors utiliser une descente de gradient stochastique. Nous obtenons donc un frame-
work unifié pour l’inférence et l’apprentissage avec l’ADMM non-convexe. Grâce à sa
flexibilité, ce framework permet également d’entraîner conjointement de-bout-en-bout
un modèle graphique avec un autre modèle, tel qu’un réseau de neurones, combinant
ainsi les avantages des deux. Nous présentons des expériences sur un jeu de données
de segmentation sémantique populaire, démontrant l’efficacité de notre méthode.

ix

Contents

Acknowledgements iii

Abstract vii

Résumé ix

Contents xi

List of Figures xv

List of Tables xvii

List of Algorithms xvii

1 Introduction 1

2 Inference in Markov Random Fields 5
2.1 Foundation of Markov random fields 5

2.1.1 Local independence and distribution factorization 5
2.1.2 Factor graphs 8

2.2 MAP inference and energy minimization 10
2.3 Methods for MAP inference in discrete MRFs 11

2.3.1 Message passing methods 11
2.3.2 Move making methods 11
2.3.3 Combinatorial methods 12
2.3.4 Convex relaxation methods 12

3 Graph and Hypergraph Matching 13
3.1 Feature correspondence and graph matching 13
3.2 Linear algebra reformulations 15

3.2.1 Review of tensors 16
3.2.2 Reformulation of graph matching 17

3.3 Methods for graph and hypergraph matching 18

4 Alternating Direction Method of Multipliers 21
4.1 Classical alternating direction method of multipliers 21

4.1.1 Motivation and algorithm 21
4.1.2 Convergence 24

4.2 Beyond two-block, separable and convex problems 26
4.2.1 Multi-block problems 26
4.2.2 Nonseparable problems 27
4.2.3 Nonconvex problems 27

xi

xii contents

4.3 Other extensions and variations 29
4.3.1 Adaptive penalty parameter 29
4.3.2 Over-relaxation 30
4.3.3 More general augmenting terms 31
4.3.4 Proximal ADMM 31

5 Alternating Direction Graph Matching 33
5.1 Context and motivation 33
5.2 General decomposition framework for graph matching 34
5.3 Two ADGM algorithms 38

5.3.1 Two simple decompositions 38
5.3.2 Update steps and resulted algorithms 39
5.3.3 More details on solving the subproblems 42
5.3.4 ADGM for solving the linear assignment problem 42
5.3.5 Convergent ADGM with adaptive penalty 43

5.4 Experiments 44
5.4.1 House and Hotel dataset 45
5.4.2 Cars and Motorbikes dataset 48

5.5 Conclusion 51

6 Nonconvex Continuous Relaxation of MAP Inference 53
6.1 Introduction 53
6.2 Notation and problem reformulation 54
6.3 Tight continuous relaxation of MAP inference 56
6.4 Solving the tight continuous relaxation 58

6.4.1 Gradient methods 58
6.4.2 Alternating direction method of multipliers 60

6.5 Convergence analysis 64
6.6 Experiments 66
6.7 Conclusion 69

7 Deep Parameter Learning of Graph-Based Models 71
7.1 Introduction 71
7.2 Empirical risk minimization and stochastic gradient descent 73
7.3 Implicit differentiation and unrolled optimization 75
7.4 General framework for ADMM gradient computation 77

7.4.1 Unrolled ADMM and its computational graph 77
7.4.2 Forward-mode differentiation 79
7.4.3 Reverse-mode differentiation 79
7.4.4 Forward mode or reverse mode? 81

7.5 ADMM for graph-based models: curse of differentiability 82
7.6 Bregman ADMM: towards differentiable updates 83

7.6.1 Introduction to Bregman ADMM 84
7.6.2 Differentiable Bregman ADMM for graph-based models 84
7.6.3 Gradient computation for Bregman ADMM 87

7.7 Application: dense CRFs for semantic segmentation 91
7.7.1 Semantic segmentation and dense CRFs 91
7.7.2 Experiments 93

contents xiii

8 Discussion & Conclusion 99

A Theoretical Proofs and Additional Experimental Results for
Chapter 5 101
A.1 Proofs of theoretical results 101

A.1.1 Proof of Equations (5.35), (5.36) and (5.38) 101
A.1.2 Proof of Lemma 5.1 103

A.2 Additional experimental results 103
A.2.1 House and Hotel dataset 104
A.2.2 Cars and Motorbikes 105

B Theoretical Proofs and Additional Details for Chapter 6 107
B.1 Proofs of theoretical results 107

B.1.1 Proof of Equation (6.41) 107
B.1.2 Proof of Equations (6.45)–(6.47) 108
B.1.3 Proof of Proposition 6.2 108
B.1.4 Proof of Proposition 6.3 109
B.1.5 Proof of Proposition 6.4 111

B.2 More details on the implemented methods 112
B.2.1 Convex QP relaxation 112
B.2.2 ADMM 113

B.3 Detailed experimental results 114

C Theoretical Proofs and Additional Details for Chapter 7 119
C.1 Proofs of theoretical results 119

C.1.1 Proof of non-differentiability of standard ADMM
updates 119

C.1.2 Proof of Equations (7.94) and (7.95) 120
C.2 Detailed experimental results 120

Bibliography 121

List of Figures

1.1 An example of graph-based representations for images. 1
2.1 Examples of probabilistic graphical models over four random

variables. 6
2.2 A simple Bayesian network. 7
2.3 Examples showing that factor graphs are more flexible. 9
2.4 A conditional random field with observed variables 𝑌1,𝑌2 and

unobserved variables 𝑋1,𝑋2. 10
3.1 An illustration of finding correspondences between two sets of

features. 14
3.2 An illustration of graph-based feature correspondence. 15
3.3 An illustration of hypergraph-based feature correspondence. 16
4.1 Comparison of recent convergence analyses of ADMM for nonconvex

objectives. 29
5.1 The residual 𝑟(𝑘) per iteration of ADGM. 43
5.2 Results on the House sequence using Pairwise Model B. 47
5.3 Qualitative results on the House sequence using Pairwise Model B. 47
5.4 Results on the House sequence using Third-order Model. 48
5.5 Results on the Cars and Motorbikes dataset using Pairwise Model

C. 49
5.6 Qualitative results on Motorbikes using Pairwise Model C. 50
5.7 Results on the Cars and Motorbikes dataset using Third-order

Model. 50
5.8 Qualitative results on Cars using Third-order Model. 50
6.1 Resulted disparity maps and energy values using second-order MRFs for

the cones scene of the Middlebury stereo dataset. 69
7.1 Computational graph illustrating ADMM iterations. 78
7.2 Differentiability of ADMM updates: comparison between the

Kullback-Leibler divergence and the standard Euclidean distance. 86
7.3 Computational graph illustrating ADMM iterations with intermediate

nodes. 88
7.4 Examples of semantic segmentation. 91
7.5 Illustration of a single network composed of a pixel-wise classifier and a

conditional random field. 93
7.6 Loss value and pixel accuracy per training epoch of AFCN alone versus

AFCN+ADCRF. 95
7.7 Mean energy values of mean-field inference versus alternating direction

inference. 95
7.8 Qualitative results on the Pascal VOC 2012 test set. 97
A.1 Results on the Hotel sequence using Pairwise Model B. 104
A.2 Running time on the House sequence using Pairwise Model B. 104
A.3 Running time on the Hotel sequence using Pairwise Model B. 104

xv

xvi list of figures

A.4 Running time on the House sequence using Third-order Model. 105
A.5 Results on the Hotel sequence using Third-order Model. 105
A.6 Running time on the Hotel sequence using Third-order Model. 105
A.7 Results on the Cars and Motorbikes dataset using Pairwise Model

B. 106

List of Tables

2.1 An example of local independence and distribution factorization of
Bayesian networks and Markov random fields. 8

4.1 A summary of sufficient conditions for nonconvex multi-block ADMM
to be convergent. 30

5.1 Results on the House and Hotel sequences using Pairwise Model A. 46
6.1 List of models used for evaluation. 67
6.2 Results on pairwise inpainting models. 68
6.3 Results on pairwise matching and stereo models. 68
6.4 Results on higher-order models. 69
7.1 Bregman divergence generated from some convex functions. 84
7.2 Accuracy of the models on the Pascal VOC 2012 segmentation

dataset. 96
C.1 Per-class accuracy of the models on the Pascal VOC 2012 test set. 120

List of Algorithms

4.1 ADMM for solving two-block problems. 23
4.2 ADMM for solving multi-block problems. 26
5.1 General ADGM algorithm for solving 𝐷th-order graph matching. 38
5.2 Instantiations of ADGM for solving 𝐷th-order graph matching. 41
6.1 Block coordinate descent for solving (rlx). 57
6.2 Projected gradient descent for solving (rlx). 58
6.3 Frank-Wolfe algorithm for solving (rlx). 59
6.4 ADMM with general decomposition (6.30) for solving (rlx). 63
7.1 Stochastic gradient descent for empirical risk minimization. 74
7.2 Sketch of general ADMM for solving energy minimization. 78
7.3 ADMM with forward-mode differentiation. 80
7.4 ADMM with reverse-mode differentiation. 81
7.5 Bregman ADMM for pairwise MAP inference with reverse-mode

differentiation. 90

xvii

1
Introduction

Over the last decades, graph-based representations have become a ubiquitous tool for
solving a wide range of problems in computer vision and pattern recognition. One of the
main reasons for this success is that such representations are very natural and powerful
for modeling structural and contextual relationships, which are essential in many visual
perception tasks, from low-level (e.g. segmentation, denoising, filtering, etc.) to high-
level vision (e.g. object recognition, scene understanding, pattern matching, etc.). For
example, to model an image at the low-level, one can use a graph whose nodes are
the image pixels and whose edges represent the neighbor relationships between them
(as illustrated in Figure 1.1); or at the high-level, an object in that image can be
represented by a graph whose nodes are object parts and whose edges represent the
connections between these parts.

(a) An image with 4 × 4 pixels. (b) 4-connected graph. (c) 8-connected graph.

figure 1.1 An example of graph-based representations for images. The left figure is an illustra-
tion of an image with 4×4 pixels. For different vision tasks such as segmentation or denoising,
one can model this image using a graph where the nodes represent the pixels and the edges
represent the neighboring relationships between them. The middle and the right figures show
two different usual neighboring systems.

Perhaps the most popular and dominant graph-based representation in computer
vision to date is Markov random fields (MRFs), a special class of probabilistic graphical
models. In a few words, an MRF is a model that uses an undirected graph to compactly
encode a family of joint probability distributions, where the graph nodes represent the
corresponding random variables, and the graph structure represents the probabilistic
interactions between these variables. With suitable modeling, many computer vision
tasks can be reduced to solving the so-called maximum a posteriori (MAP) inference
problem over the underlying joint distributions, which consists of finding the most
likely joint assignment to the random variables. MAP inference can be reformulated
as minimizing a function, called the energy of the given MRF. Therefore, this problem

1

2 chapter 1. introduction

is also referred to as MRF energy minimization in the literature. In this thesis, we use
“MAP inference” and “energy minimization” interchangeably.

The very first application of MRFs in computer vision and image processing was
proposed in the seminal paper by [Geman and Geman, 1987] for image denoising and
restoration. Nevertheless, MRFs only really took off more than a decade later, when a
very significant progress was achieved in [Boykov et al., 1999] for efficiently (and ap-
proximately) minimizing a special class of energy functions. Indeed, the major difficulty
with MRF energy minimization for vision applications lies in the enormous computa-
tional costs. Theoretically, this problem is known to be NP-hard for general energy
functions [Shimony, 1994]. In practice, worse still, problem sizes in computer vision are
typically very large, which makes energy minimization further intractable. The method
proposed in [Boykov et al., 1999], based on graph cuts, can efficiently produce a solu-
tion within a known approximation bound of the global optimum. Although it can only
be applied to a certain class of functions1, this class is general enough to include a wide
range of models arising in many vision applications. However, it remains a special class
after all, and thus, has a major limitation in terms of modeling capability. With a more
general energy function, the corresponding MRF has more expressive power, but at the
same time, it is more difficult to be optimized. As a consequence, finding novel efficient
optimization methods for more general MRFs have become a very active research topic
over the last two decades. Many MRF optimization methods have been proposed in
the literature and can be roughly grouped into two classes:2 (a) methods that stay in
the discrete domain, such as move making and belief propagation [Boykov et al., 2001,
Yedidia et al., 2005, Komodakis et al., 2008, Fix et al., 2011], and (b) methods that
move into the continuous domain by solving convex relaxations such as quadratic
programming relaxations [Ravikumar and Lafferty, 2006], semi-definite programming
relaxations [Olsson et al., 2007], or most prominently linear programming (LP) re-
laxations [Wainwright et al., 2005, Kolmogorov, 2006, Globerson and Jaakkola, 2008,
Komodakis et al., 2011], etc. On one hand, discrete methods tackle directly the origi-
nal problem, which is very challenging because of its combinatorial nature, thus many
of them are only applicable to certain classes of the energy. Convex relaxation meth-
ods, on the other hand, can be applied to minimizing general energy functions; in
addition, they allow us to benefit from the tremendous convex optimization litera-
ture. Thanks to the convexity, these relaxations can be solved exactly in polynomial
time, but they often only produce real-valued solutions that, after a rounding step,
can reduce significantly the accuracy if they are not tight.

Another major graph-based representation is graph matching, used primarily for
solving the correspondence problem. Finding correspondences between two sets of ob-
jects (e.g. feature points, object parts, etc.) is a fundamental problem that has a wide
range of applications in computer vision and pattern recognition. Examples include
depth estimation, 3D reconstruction, object detection, shape matching, image registra-
tion, etc. This problem plays a pivotal role in computer vision, and as a consequence,
graph matching is of fundamental importance. The general idea of solving the corre-

1The method proposed in [Boykov et al., 1999] is called 𝛼-expansion and can be applied to min-
imizing energy functions whose second-degree terms, called pairwise potentials, are a metric, i.e. a
function 𝑓(𝛼,𝛽) satisfying three conditions: (a) 𝑓(𝛼,𝛽) = 𝑓(𝛽,𝛼) ≥ 0, (b) 𝑓(𝛼,𝛽) = 0 if and only if
𝛼 = 𝛽, and (c) 𝑓(𝛼,𝛽) ≤ 𝑓(𝛼,𝛾) + 𝑓(𝛾,𝛽) for any 𝛼,𝛽,𝛾 in the label (or state) space. The relevant
definitions will be presented in Chapter 2.

2We discuss these methods later in Chapter 2, with a more detailed classification.

3

spondence problem via graph matching is to associate each set of objects an attributed
graph, where the node attributes describe local characteristics while the edge ones de-
scribe structural or contextual relationships. The matching task seeks to minimize an
objective function that represents the differences between the corresponding nodes as
well as the corresponding edges. For a better modeling capability, the edges can be
generalized to be subsets of more than two nodes, called hyperedges, and in this case
the problem is called hypergraph matching or higher-order matching (as such, pairwise
matching refers to matching regular graphs). In its general form, the objective function
in graph matching is very similar to the one in MRF optimization, and is also called the
energy. In graph matching, however, the constraints on the assignments can be more
complex than in MRFs: depending on the application, a node from one set can have one
or many correspondences in the other, which should be taken into account properly.
When the energy is of second degree and the assignment obeys the one-to-one con-
straint, graph matching becomes the quadratic assignment problem (QAP), which is a
very difficult combinatorial problem. It is known that the QAP is not only NP-hard but
also NP-hard to approximate [Burkard et al., 1998]. Moreover, it is also practically in-
tractable: problems with sizes larger than 20 are already considered to be “large-scale”
in the combinatorial optimization literature [Burkard et al., 1998]. With the typically-
large problem sizes in computer vision, it is even more challenging as most of existing
combinatorial methods become impractical. This hard problem has been an active
research topic in the computer vision field over the last two decades. Some of the most
prominent works include [Gold and Rangarajan, 1996, Leordeanu and Hebert, 2005,
Cour et al., 2007, Leordeanu et al., 2009, Cho et al., 2010], etc. for solving pairwise
graph matching, and [Zass and Shashua, 2008, Duchenne et al., 2011, Lee et al., 2011,
Nguyen et al., 2015], etc. for solving hypergraph matching. These methods all have
their limitations: some only work for certain degrees of the energy (e.g. lower than
fourth), some only work for certain types of assignments (e.g. one-to-one), some only
work for non-negative energies, etc.

In recent years the field has seen an enormous increase in availability of data and
computing power, and consequently, in problem sizes. This is the case not only in
computer vision but also in machine learning, pattern recognition and other compu-
tational fields. As a result, there has been a need for algorithms that can be run in a
parallel and distributed manner, so that large-scale problems can be efficiently solved
by effectively exploiting the available computing resources. One of the most promi-
nent approaches is to apply decomposition methods in optimization. Decomposition is
a general approach to solving a problem by breaking it up into smaller ones that can
be efficiently addressed separately (and possibly in parallel), and then reassembling
the results towards a globally consistent solution of the original non-decomposed prob-
lem [Bertsekas, 1999]. In computer vision, decomposition methods have been applied
to solving graph related problems such as MAP inference and graph matching, us-
ing dual decomposition [Komodakis et al., 2011, Torresani et al., 2013] or alternating
direction method of multipliers (ADMM) [Martins et al., 2015]. The main idea is to
decompose the original complex graph into simpler subgraphs and then reassembling
the solutions on these subgraphs using different mechanisms. Both dual decomposi-
tion and ADMM originate from duality theory in convex optimization and thus they
share some similarities, but ADMM has better convergence properties, both theoret-
ically and practically. Originally introduced more than 40 years ago independently
by [Glowinski and Marroco, 1975] and [Gabay and Mercier, 1975], ADMM has only

4 chapter 1. introduction

recently started to gain popularity in the machine learning and computer vision fields
after the publication of an influential paper by [Boyd et al., 2011], showing that the
method is indeed very flexible and powerful for solving large-scale problems.

In view of the above observations, in this thesis, we make three major contributions.
First, we propose a novel class of decomposition algorithms for solving graph and

hypergraph matching based on nonconvex ADMM. Not only these methods are com-
putationally efficient and achieve state-of-the-art accuracy on popular benchmarks,
they are also very general: they work with arbitrary energy functions (of any degrees
and any types), and with any assignment constraints (one-to-one, many-to-many, and
the like), thus overcoming all the aforementioned limitations of existing methods.

Second, we propose a nonconvex continuous relaxation of MAP inference in discrete
MRFs. We show that this relaxation is tight for arbitrary MRFs. Therefore, solving
the new continuous relaxation is equivalent to solving the original discrete problem,
which opens the door to applications of continuous optimization methods. We study
two gradient-based methods, and further propose a more effective solution using a
multilinear decomposition framework based on ADMM. Experiments on different real-
world problems demonstrate that the proposed ADMM compares favorably with state-
of-the-art algorithms in different settings.

Finally, we propose a method for learning the parameters of these graph-based
models from training data, based on nonconvex ADMM. This method consists of view-
ing ADMM iterations as a sequence of differentiable operations, which allows efficient
computation of the gradient of the training loss with respect to the model parameters,
enabling efficient training using stochastic gradient descent. At the end we obtain a
unified framework for inference and learning with nonconvex ADMM. Thanks to its
flexibility, this framework also allows training jointly end-to-end a graph-based model
with another model such as a neural network, thus combining the strengths of both.
We present experiments on a popular semantic segmentation dataset, demonstrating
the effectiveness of our method.

We start the thesis by three review chapters, which provide the mathematical back-
ground on the three key subjects of the thesis: MAP inference in MRFs in Chapter 2,
graph and hypergraph matching in Chapter 3, and ADMM in Chapter 4. Our ma-
jor contributions are then presented in the subsequent chapters. We present our novel
graph matching framework in Chapter 5. Our proposed nonconvex relaxation for MAP
inference, together with its resolution, is presented in Chapter 6. A unified framework
for inference and learning with nonconvex ADMM is presented in Chapter 7. Finally,
we discuss and conclude the thesis in the last chapter.

2
Inference in Markov Random Fields

In this chapter, we review Markov random fields and the problem of maximum a
posteriori (MAP) inference in these models. We start by presenting the mathematical
foundation of MRFs, and then review popular methods for solving MAP inference.

2.1 foundation of markov random fields
Markov random fields (MRFs) are a special class of a more general paradigm called
probabilistic graphical models, or graphical models for short. Although general graphical
models are not the focus of the thesis, we find them to be essential to understand
the mathematical foundation of MRFs. Therefore, in this section we give a brief
introduction to them. For a more in-depth and complete presentation, we refer to the
excellent book of [Koller and Friedman, 2009].

A probabilistic graphical model is a graph-based representation that can compactly
encode a family of complex probability distributions over a high-dimensional space. In
this representation, the graph nodes represent the corresponding random variables,
and the graph structure represent probabilistic interactions (i.e. dependencies or inde-
pendencies) between them. Depending on the type of the underlying graph, graphical
models can be divided into two main classes: models using directed acyclic1 graphs
are called Bayesian networks (or directed graphical models), and those using undi-
rected graphs are called Markov networks or Markov random fields (or undirected
graphical models). Directed graphs are useful for expressing causal relationships be-
tween random variables, whereas undirected graphs are more suitable for expressing
soft constraints between them. Examples of these models are given in Figure 2.1.

As we will see next, the two classes of graphical models have different ways to
express independencies as well as to represent the underlying joint distribution.

2.1.1 Local independence and distribution factorization
To keep the presentation simple, let us restrict ourselves to the case of discrete random
variables, i.e. those having a countable2 number of possible outcomes. For a (discrete)
random variable 𝑋, let 𝑝(𝑥) denote the probability mass function of the distribution
over 𝑋, i.e. 𝑝(𝑥) = Pr(𝑋 = 𝑥) ∀𝑥. Similar notation is used for joint or conditional
distributions. Let us remind that for random variables 𝑋,𝑌 and 𝑍, we say that 𝑋

1There is no probabilistic graphical model defined on directed cyclic graphs.
2The term countable means either finite or countably infinite.

5

6 chapter 2. inference in markov random fields

𝑋1 𝑋2

𝑋3 𝑋4

(a) A Bayesian network.

𝑋1 𝑋2

𝑋3 𝑋4

(b) A Markov random field.

figure 2.1 Examples of probabilistic graphical models over four random variables 𝑋1,𝑋2,𝑋3
and 𝑋4. Directed graphs are useful for expressing causal relationships between these random
variables, whereas undirected graphs are more suitable for expressing soft constraints between
them.

and 𝑌 are (conditionally) independent given 𝑍, denoted 𝑋 ⟂⟂ 𝑌 ∣ 𝑍, if

Pr(𝑋 = 𝑥,𝑌 = 𝑦 ∣ 𝑍 = 𝑧) = Pr(𝑋 = 𝑥 ∣ 𝑍 = 𝑧) Pr(𝑌 = 𝑦 ∣ 𝑍 = 𝑧) ∀𝑥, 𝑦, 𝑧. (2.1)

Note that the above can be written simply as 𝑝(𝑥, 𝑦 ∣ 𝑧) = 𝑝(𝑥 ∣ 𝑧)𝑝(𝑦 ∣ 𝑧), using our
aforementioned notation.

Now consider the joint distribution 𝑝(X) = 𝑝(𝑋1,𝑋2,… ,𝑋𝑛) and let G be a graph
with 𝑛 nodes representing 𝑋1,𝑋2,… ,𝑋𝑛.

Bayesian networks

Suppose that G is directed and acyclic, then a Bayesian network associated with G
encodes the following local independencies:

𝑋𝑖 ⟂⟂ XND𝑖
∣ XP𝑖

∀𝑖, (2.2)

where ND𝑖 and P𝑖 denotes respectively the set of non-descendants and the set of
parents of node 𝑖 in G. In other words, the local independencies state that each node is
conditionally independent of its non-descendants given its parents. As such, the graph
structure can be seen as an independency map of the nodes.

The local independencies (2.2) can lead to a nice factorization of the joint distri-
bution over the variables. Indeed, if 𝑝(X) satisfies (2.2) then it can be written as

𝑝(x) =
𝑛

∏
𝑖=1

𝑝(𝑥𝑖|xP𝑖
) ∀x. (2.3)

We say that 𝑝(X) factorizes according to G.
To see why (2.2) implies (2.3), let us consider for example a very simple Bayesian

network of three nodes as shown in Figure 2.2. Clearly, according to (2.2), this network
encodes the following local independency: 𝑋3 ⟂⟂ 𝑋1 ∣ 𝑋2. By the chain rule we have:

𝑝(𝑥1,𝑥2,𝑥3) = 𝑝(𝑥1)𝑝(𝑥2 ∣ 𝑥1)𝑝(𝑥3 ∣ 𝑥1,𝑥2). (2.4)

2.1. foundation of markov random fields 7

𝑋1 𝑋2 𝑋3

figure 2.2 A simple Bayesian network. This network encodes the local independency 𝑋3 ⟂⟂
𝑋1 ∣ 𝑋2.

Since 𝑋3 ⟂⟂ 𝑋1 ∣ 𝑋2 we have 𝑝(𝑥3 ∣ 𝑥1,𝑥2) = 𝑝(𝑥3 ∣ 𝑥2) and thus (2.4) becomes

𝑝(𝑥1,𝑥2,𝑥3) = 𝑝(𝑥1)𝑝(𝑥2 ∣ 𝑥1)𝑝(𝑥3 ∣ 𝑥2), (2.5)

which is exactly (2.3) for the considered graph. The idea for a general graph is similar.

In fact, local independence and distribution factorization have an even tighter con-
nection: a distribution factorizes over a directed acyclic graph G if and only if the
local independencies encoded by G hold in that distribution. A proof can be found
in [Koller and Friedman, 2009], together with more details on other types of indepen-
dence that a Bayesian network can encode.

Markov random fields

Suppose that G is undirected, then a Markov random field associated with G encodes
the following local independencies:

𝑋𝑖 ⟂⟂ XV\{𝑖∪N𝑖} ∣ XN𝑖
∀𝑖, (2.6)

where N𝑖 denotes the set of neighboring nodes of 𝑖, and V \ {𝑖 ∪ N𝑖} denotes the set of
nodes other than 𝑖 and its neighbors. The above local independencies state that each
node is independent of the rest of the nodes in the graph, given its neighbors. As a
result, the set of neighbors of a node is also called the Markov blanket of that node.

Denote by C the set of cliques of G (a clique is a subset of fully connected nodes),
then we say that 𝑝(X) factorizes according to G if and only if 𝑝(x) can be written as

𝑝(x) = 1
𝑍 ∏

𝐶∈C
𝜓𝐶(x𝐶) ∀x, (2.7)

where 𝜓𝐶 is a non-negative function of the variables x𝐶 = (𝑥𝑖)𝑖∈𝐶 in the clique 𝐶, and
𝑍 = ∑x ∏𝐶∈C 𝜓𝐶(x𝐶) is a normalization term so that the left-hand side of (2.7) is
a valid probability distribution. The term 𝑍 is called partition function and (𝜓𝐶)𝐶∈C
are called potential functions. For a clique 𝐶, if its size |𝐶| is, respectively, 1 or 2 or
> 2, then 𝜓𝐶 is called, respectively, unary (or singleton) or pairwise or higher-order
potential.

Similar to Bayesian networks, conditional independence and distribution factoriza-
tion in Markov random fields are also highly related: a positive distribution factorizes
over an undirected graph G if and only if the local independencies encoded by G hold
in that distribution. We refer to [Koller and Friedman, 2009] for a proof.

8 chapter 2. inference in markov random fields

An example

An example of local independence and distribution factorization of Bayesian networks
and Markov random fields is given in Figure 2.1.

Bayesian network Markov random field

𝑋1 𝑋2

𝑋3 𝑋4

𝑋1 𝑋2

𝑋3 𝑋4

𝑋1 ⟂⟂ 𝑋2
𝑋4 ⟂⟂ 𝑋1 ∣ 𝑋2,𝑋3

𝑋1 ⟂⟂ 𝑋2,𝑋4 ∣ 𝑋3
(𝑋2 ⟂⟂ 𝑋1 ∣ 𝑋3,𝑋4; 𝑋4 ⟂⟂ 𝑋1 ∣ 𝑋2,𝑋3)

𝑝(𝑥1,𝑥2,𝑥3,𝑥4) = 𝑝(𝑥1)𝑝(𝑥2)×
× 𝑝(𝑥3|𝑥1,𝑥2)𝑝(𝑥4|𝑥2,𝑥3)

𝑝(𝑥1,𝑥2,𝑥3,𝑥4) = 1
𝑍 𝜓1(𝑥1)𝜓2(𝑥2)×

× 𝜓3(𝑥3)𝜓4(𝑥4)𝜓13(𝑥1,𝑥3)
× 𝜓23(𝑥2,𝑥3)𝜓24(𝑥2,𝑥4)𝜓34(𝑥3,𝑥4)
× 𝜓234(𝑥2,𝑥3,𝑥4)

table 2.1An example of local independence and distribution factorization of Bayesian networks
and Markov random fields. Conditional independencies displayed between parentheses are
redundant and can be inferred from the others.

General observations

As we have seen, graphical models are useful because of their representation power.
First, using a single graph structure, a graphical model can express all (conditional)
independencies among a large set of random variables. Second, the same graphical
model can also express the joint probability distribution over these random variables
in a very compact form that is a factorization of local terms over smaller subsets of
variables. We have also seen that these two points (i.e. conditional independence and
distribution factorization) actually have a very tight connection.

2.1.2 Factor graphs

The factorization (2.7) may be cumbersome if one would like to model interactions over
only a subset of cliques (instead of all cliques). For example, consider the following
two joint distributions:

𝑝(𝑥1,𝑥2,𝑥3,𝑥4) = 1
𝑍 𝜓12(𝑥1,𝑥2)𝜓13(𝑥1,𝑥3)𝜓14(𝑥1,𝑥4)𝜓23(𝑥2,𝑥3)𝜓34(𝑥3,𝑥4), (2.8)

𝑝(𝑥1,𝑥2,𝑥3,𝑥4) = 1
𝑍 𝜓123(𝑥1,𝑥2,𝑥3)𝜓134(𝑥1,𝑥3,𝑥4). (2.9)

2.1. foundation of markov random fields 9

To model each of these distributions using graphical models, one needs the same graph
in Figure 2.3a. However, according (2.7), the factorization of this graph is

𝑝(𝑥1,𝑥2,𝑥3,𝑥4) = 1
𝑍 𝜓1(𝑥1)𝜓2(𝑥2)𝜓3(𝑥3)𝜓4(𝑥4)𝜓12(𝑥1,𝑥2)𝜓13(𝑥1,𝑥3)×

× 𝜓14(𝑥1,𝑥4)𝜓23(𝑥2,𝑥3)𝜓34(𝑥3,𝑥4)𝜓123(𝑥1,𝑥2,𝑥3)𝜓134(𝑥1,𝑥3,𝑥4). (2.10)

Therefore, one will have to explicitly set some local terms in the above to 1 to ob-
tain (2.8) or (2.9).

𝑋1 𝑋2

𝑋3𝑋4

(a) The factorization according to this graph may be cumbersome:
𝑝(x) = 1

𝑍 𝜓1(𝑥1)𝜓2(𝑥2)𝜓3(𝑥3)𝜓4(𝑥4)𝜓12(𝑥1,𝑥2)𝜓13(𝑥1,𝑥3)𝜓14(𝑥1,𝑥4)×
× 𝜓23(𝑥2,𝑥3)𝜓34(𝑥3,𝑥4)𝜓123(𝑥1,𝑥2,𝑥3)𝜓134(𝑥1,𝑥3,𝑥4).

𝑋1 𝑋2

𝑋3𝑋4

(b) Factorization according to factors:
𝑝(x) = 1

𝑍 𝜓12(𝑥1,𝑥2)𝜓13(𝑥1,𝑥3)×
× 𝜓14(𝑥1,𝑥4)𝜓23(𝑥2,𝑥3)𝜓34(𝑥3,𝑥4).

𝑋1 𝑋2

𝑋3𝑋4

(c) Factorization according to factors:
𝑝(x) = 1

𝑍 𝜓123(𝑥1,𝑥2,𝑥3)𝜓134(𝑥1,𝑥3,𝑥4).

figure 2.3 Examples showing that factor graphs are more flexible. Suppose that we want
to model only pairwise interactions as in (b) without factor graphs, then we need the graph
shown in (a), which also contains cliques of sizes 1 and 3, thus we will need to explicitly set
their corresponding potentials to 1. The same inconvenience applies if we want to model only
triple-wise interactions as in (c).

To overcome this inconvenience, [Kschischang et al., 2001] introduced factor graphs.
In addition to variable nodes (denoted by ovals:), a factor graph also contains factor
nodes (denoted by squares:), each is connected to a subset of variable nodes to ex-
plicitly define a factor over those variables (this subset is thus called the neighborhood
of that factor node). A factor graph encodes a family of distributions of the form

𝑝(x) = 1
𝑍 ∏

𝐹∈F
𝜓𝐹 (xN (𝐹)) ∀x, (2.11)

where F is the set of factor nodes, and N (𝐹) denotes the neighborhood of 𝐹 . Examples

10 chapter 2. inference in markov random fields

𝑌1 𝑌2

𝑋2𝑋1

figure 2.4 A conditional random field with observed variables 𝑌1,𝑌2 and unobserved
variables 𝑋1,𝑋2. The factorization according to this factor graph is 𝑝(x ∣ y) =
1
𝑍 𝜓11(𝑥1; 𝑦1)𝜓22(𝑥2; 𝑦2)𝜓12(𝑥1,𝑥2).

of factor graphs for (2.8) and (2.9) are given in Figures 2.3b and 2.3c, respectively.

Conditional random fields

So far we have described an MRF as encoding a joint distribution. In practice, it is
often the case that we can have access to some variables Y of the model, called observed
variables. In this case, we are actually modeling a conditional distribution 𝑝(X ∣ Y)
and the corresponding MRF is generally called conditional random field (CRF). As for
general MRFs, the factorization of CRFs can be easily expressed using factor graphs.
An example is given in Figure 2.4.

2.2 map inference and energy minimization
Finding the maximum a posteriori (MAP) configuration is a fundamental inference
problem in undirected graphical models. This problem is described as follows.

Let x ∈ X = X1 × ⋯ × X𝑛 denote an assignment to 𝑛 discrete random variables
𝑋1,… ,𝑋𝑛 where each variable 𝑋𝑖 takes values in a finite set of states (or labels) X𝑖.
Let G be a graph of 𝑛 nodes with the set of cliques C. Consider an MRF representing a
joint distribution 𝑝(X) ∶= 𝑝(𝑋1,… ,𝑋𝑛) that factorizes according to G, i.e. 𝑝(⋅) takes
the form:

𝑝(x) = 1
𝑍 ∏

𝐶∈C
𝜓𝐶(x𝐶) ∀x ∈ X . (2.12)

The MAP inference problem consists of finding the most likely assignment to the
variables, i.e.:

x∗ ∈ argmax
x∈X

𝑝(x) = argmax
x∈X

∏
𝐶∈C

𝜓𝐶(x𝐶). (2.13)

For each clique 𝐶, let X𝐶 = ∏𝑖∈𝐶 X𝑖 be the set of its joint configurations and define

𝑓𝐶(x𝐶) = − log 𝜓𝐶(x𝐶) ∀x𝐶 ∈ X𝐶. (2.14)

It is straightforward that the MAP inference problem (2.13) is equivalent to minimizing
the following function, called the energy of the MRF:

𝑒(x) = ∑
𝐶∈C

𝑓𝐶(x𝐶). (2.15)

2.3. methods for map inference in discrete mrfs 11

Therefore, MAP inference is also often referred to as MRF energy minimization or
MRF optimization in the computer vision literature. This problem is known to be
NP-hard in general [Shimony, 1994].

MAP inference has a wide range of applications in many fields. In particular, dis-
crete MRFs have been ubiquitous in the computer vision field over the last decades
thanks to their ability to model soft contextual constraints between random variables,
which are extremely suitable for image or scene modeling in which usually involve inter-
actions between a subset of pixels or scene components. We refer to [Wang et al., 2013]
for a survey on MRF modeling, inference and learning in computer vision.

2.3 methods for map inference in discrete mrfs
MAP inference in discrete MRFs has been constantly attracting a significant amount
of research over the last decades. Because of the NP-hardness, various approximate
methods have been proposed and can be roughly grouped into four classes: message
passing, move making, combinatorial, and convex relaxation. Later in Chapter 6 we will
introduce a fifth class: nonconvex relaxation, which is one of the main contributions of
the thesis.

Let us briefly review some of the most prominent methods in each class. We refer
to [Kappes et al., 2015] for a recent comparative study of these methods on a wide
variety of problems.

2.3.1 Message passing methods
The idea of message passing is to iteratively improve the labeling by passing local
messages between neighboring nodes. The first algorithm of this class was proposed
in [Pearl, 1982], called belief propagation (BP), for inference on Bayesian trees, in which
the messages are the beliefs about the local configuration. The first generalization of
BP is loopy belief propagation (LBP) [Frey and MacKay, 1997], which consists of BP
in graphs with loops. LBP does not provide a guarantee on the convergence and on
the quality of the solution. Recent generalizations of BP include tree-reweighted mes-
sage passing (TRW) [Wainwright et al., 2005], which approximates the energy function
based on a convex combination of trees and then maximizes a lower bound on the en-
ergy. However, the algorithm is not guaranteed to increase this bound and thus may
not converge. Later, [Kolmogorov, 2006] developed a modification of this algorithm,
called sequential tree-reweighted message passing (TRW-S), in which the lower bound
is guaranteed not to decrease at each iteration, thus ensuring convergence.

2.3.2 Move making methods
These methods apply a sequence of minimizations over subsets of the label space,
iteratively improving the current labeling. Each such minimization step is called
a move. In move making methods, the energy is decreased after each move un-
til convergence. These include graph-cut based methods such as 𝛼-expansion and
𝛼𝛽-swap [Boykov et al., 2001] for submodular, metric or semi-metric energy func-
tions; quadratic pseudo-boolean optimization (QPBO) [Rother et al., 2007] for non-
submodular energy functions. A nice generalization of 𝛼-expansion was proposed

12 chapter 2. inference in markov random fields

in [Komodakis et al., 2008], called fast primal-dual (FastPD), which optimizes both
the MRF optimization problem and its dual at each iteration, leading to a significant
speed up. Recently, [Fix et al., 2014] generalized FastPD to higher-order MRFs.

2.3.3 Combinatorial methods
These methods view the problem as a combinatorial problem or an integer linear
program and solve it exactly using combinatorial techniques such as branch-and-bound
or branch-and-cut. They produce exact integer solutions but are usually intractable
for large models. Recent work include [Kappes et al., 2011, Otten and Dechter, 2012,
Hendrik Kappes et al., 2013, Savchynskyy et al., 2013, Kappes et al., 2016], etc.

2.3.4 Convex relaxation methods
These methods approximate the original labeling problem based on different relax-
ations and then use convex optimization techniques to solve the relaxed problem.
The most popular class of these methods is linear programming (LP) relaxation. Some
aforementioned work such as TRW [Wainwright et al., 2005], TRW-S [Kolmogorov, 2006]
and FastPD [Komodakis et al., 2008] can also be considered to belong to this class,
since they are based on LP relaxation.

An important line of work in this class is based on the dual decomposition framework
(c.f . Section 4.1.1), first applied to MRFs by [Komodakis et al., 2011]. Dual decom-
position consists of decomposing the original large and hard problem into a number of
subproblems that are much easier to solve. In the original dual decomposition algo-
rithm, [Komodakis et al., 2011] used projected subgradient method to update the dual
objective at each iteration. Later, [Kappes et al., 2012] proposed to do that using bun-
dle method, which was shown to perform better. Both methods are guaranteed to con-
verge to the global optimum of the LP relaxation. However, they provide a very slow
rate of convergence, namely 𝑂(1/𝜖2) time complexity for an 𝜖-accurate solution. This is
mainly caused by the non-smoothness of the dual objective. Therefore, several authors
proposed different smoothing based solutions to obtain better rates of convergence.
These include [Martins et al., 2015, Jojic et al., 2010, Savchynskyy et al., 2011], etc.

Finally, other more complex convex relaxations have also been proposed, including
the quadratic programming relaxation [Ravikumar and Lafferty, 2006] and second or-
der cone programming relaxation [Waki et al., 2006]. These more sophisticated meth-
ods, however, provide worse approximations than the simple LP relaxation, as shown
in [Kumar et al., 2009].

3
Graph and Hypergraph Matching

3.1 feature correspondence and graph matching

The task of finding correspondences between two sets of features is a fundamental
problem and has a wide range of applications in computer vision and pattern recogni-
tion.

Let V1 and V2 be two sets of feature points. The correspondence (or matching)
between them can then be represented by a matrix, called assignment matrix, X ∈
{0, 1}|V1|×|V2| with elements (𝑋𝑖1𝑖2

)𝑖1∈V1,𝑖2∈V2
, where each row corresponds to a point in

V1 and each column corresponds to a point in V2. If a point 𝑖1 ∈ V1 is a correspondence
of a point 𝑖2 ∈ V2 (or alternatively we can say 𝑖1 and 𝑖2 are matched) then 𝑋𝑖1𝑖2

= 1,
otherwise 𝑋𝑖1𝑖2

= 0. For example, the following matrix

X =

𝑖2 𝑗2 𝑘2 𝑙2 𝑚2

⎛⎜⎜⎜
⎝

⎞⎟⎟⎟
⎠

1 0 0 0 0 𝑖1
0 0 1 0 0 𝑗1
0 1 0 0 0 𝑘1
0 0 0 0 1 𝑙1

(3.1)

represents the following correspondences: 𝑖1 ↔ 𝑖2, 𝑗1 ↔ 𝑘2, 𝑘1 ↔ 𝑗2 and 𝑙1 ↔ 𝑚2.
Depending on the application, the assignment matrix can obey different constraints.

For example, if one feature point can only have exactly one correspondence (in this
case |V1| and |V2| is supposed to be equal), then the sum of each row or each column
of X must be 1, and we call this one-to-one matching. If any point can have one or no
correspondence (this is the case for example when |V1| ≠ |V2|), then the sum of each
row or each column of X must be less than or equal to 1, and we call this one-to-(at
most)-one matching. If one point can have multiple correspondences then we do not
need any constraints on the row or the column of X, and we call this one-to-many
matching. Obviously one can model any kind of similar configurations (e.g. mixtures
of the above). A configuration that is often used in practice — when the numbers of
feature points are different, e.g. |V1| < |V2|, and one wants to obtain the maximum
number of one-to-one correspondences — is to have the sum of each row equal to 1
and the sum of each column less than or equal to 1, i.e. X ∈ M, defined by

M = {X ∈ {0, 1}|V1|×|V2| ∣
∑𝑖2∈V2

𝑋𝑖1𝑖2
= 1 ∀𝑖1 ∈ V1

∑𝑖1∈V1
𝑋𝑖1𝑖2

≤ 1 ∀𝑖2 ∈ V2
} . (3.2)

13

14 chapter 3. graph and hypergraph matching

𝐼1

𝑖1
𝑗1

𝑘1
𝑙1 𝐼2

𝑖2

𝑗2

𝑘2
𝑙2

𝑚2

𝑑(𝑖1, 𝑖2)

𝑑(𝑖1, 𝑗2)

the ‘cost’ of matching 𝑖1 and 𝑖2

figure 3.1 An illustration of finding correspondences between two sets of features. This task
can be solved by minimizing the total dissimilarity between all matched points. One can think
of paying some ‘cost’ 𝑑(𝑖1, 𝑖2) whenever matching a pair of features (𝑖1, 𝑖2). This cost usually
represents the dissimilarity between 𝑖1 and 𝑖2, e.g. difference in colors. Finding one-to-one
correspondence can then be reduced to solving a linear assignment problem.

This is also called one-to-one matching. Without loss of generality, in the sequel we
suppose X ∈ M and will refer to this as the one-to-one constraint.

Suppose that for each pair of feature points (𝑖1, 𝑖2) we can compute some dissimi-
larity measure 𝑑(𝑖1, 𝑖2) between them (based on their local characteristics for example).
Naturally, one may think about finding (one-to-one) correspondences as maximizing
the total similarity between the matched points, i.e. solving

min ∑
𝑖1∈V1

∑
𝑖2∈V2

𝑑(𝑖1, 𝑖2)𝑋𝑖1𝑖2
s.t. X ∈ M. (3.3)

The dissimilarity measure 𝑑(𝑖1, 𝑖2) can be seen as the “cost” of matching 𝑖1 and 𝑖2,
and the problem becomes minimizing the total matching cost (c.f . Figure (3.1)). This
problem is known as the linear assignment problem (LAP), and can be solved exactly
in polynomial time using e.g. the Hungarian algorithm [Kuhn, 1955] and its variants.

A major issue with the formulation (3.3) is that it does not take into account
any possible structural information or spatial relationship between the features. This
kind of information is in fact extremely useful when the dissimilarity measure in (3.3)
is not reliable enough (which is the case e.g. when the local characteristics of the
feature points are not discriminative enough and contain ambiguities). A solution
to this is graph matching. The general idea is to associate each set of features an
attributed graph, where the node attributes describe local characteristics, while the
edge attributes describe structural relationships. Then, the matching task seeks to
minimize an objective function that contains not only the dissimilarity between nodes,
but also between edges. Suppose that the corresponding graphs are G1 = (V1, E1)
and G2 = (V2, E2) and for any pair of edges 𝑖1𝑗1 ∈ E1, 𝑖2𝑗2 ∈ E2 we can compute
a dissimilarity measure 𝑑(𝑖1𝑗1, 𝑖2𝑗2) (e.g. difference in lengths or angles), then graph
matching consists of solving the following optimization problem:

min ∑
𝑖1∈V1

∑
𝑖2∈V2

𝑑(𝑖1, 𝑖2)𝑋𝑖1𝑖2
+ ∑

𝑖1𝑗1∈E1

∑
𝑖2𝑗2∈E2

𝑑(𝑖1𝑗1, 𝑖2𝑗2)𝑋𝑖1𝑖2
𝑋𝑗1𝑗2

,

s.t. X ∈ M.
(3.4)

3.2. linear algebra reformulations 15

𝑖1
𝑗1

𝑘1
𝑙1

𝑖2
𝑗2

𝑘2

𝑙2

𝑚2

𝑑(𝑖1𝑗1, 𝑖2𝑗2)

figure 3.2 An illustration of graph-based feature correspondence. Each set of features is
associated to a graph that represents the geometric or structural relationships between them.
The objective cost now contains not only the dissimilarity between graph nodes, but also
between graph edges.

This problem can be seen as the quadratic assignment problem (QAP) in general form,
known as Lawler’s QAP [Lawler, 1963], which is NP-complete [Sahni and Gonzalez, 1976,
Burkard et al., 1998]. In the computer vision literature, the objective in (3.4) is called
the energy function, and the dissimilarities 𝑑(𝑖1, 𝑗2) and 𝑑(𝑖1𝑗1, 𝑖2𝑗2) are called unary
and pairwise potentials, respectively.

A straightforward extension of the above approach is to use hypergraphs instead of
regular graphs. An edge in a hypergraph, also called a hyperedge, may contain more
than two nodes. For example, if we use hypergraphs of degree 3, i.e. each edge contains
at most 3 nodes, then similarly to the previous cases, the matching problem can be
formulated as:

min {unary} + {pairwise} + ∑
𝑖1𝑗1𝑘1∈E1

∑
𝑖2𝑗2𝑘2∈E2

𝑑(𝑖1𝑗1𝑘1, 𝑖2𝑗2𝑘2)𝑋𝑖1𝑖2
𝑋𝑗1𝑗2

𝑋𝑘1𝑘2
,

s.t. X ∈ M,
(3.5)

where {unary} + {pairwise} is the same as in (3.4). The last sum in the above formu-
lation is usually called the higher-order terms (and more specifically in this case, the
third-order ones). As such, hypergraph matching is also often referred to as higher-
order matching, whereas regular graph matching is called pairwise matching. In this
thesis, we often refer to both as simply graph matching and when necessary, we specify
it to be pairwise or higher-order.

Clearly, higher-order matching models have more expressive power than pairwise
models, and thus they can better incorporate structural information to achieve more
accurate matching results. We refer to [Duchenne et al., 2011] for a more detailed
discussion on this matter.

3.2 linear algebra reformulations
For further convenience, let us reformulate graph matching using linear algebra nota-
tions. These formulations are widely used in the computer vision literature.

16 chapter 3. graph and hypergraph matching

𝑖1
𝑗1

𝑘1
𝑙1

𝑖2
𝑗2

𝑘2

𝑙2

𝑚2

𝑑(𝑖1𝑗1𝑘2, 𝑖2𝑗2𝑘2)

figure 3.3 An illustration of hypergraph-based feature correspondence. In addition to graph
nodes and edges, one can go a step further and include the dissimilarity between subsets of
nodes, called hyperedges, into the cost function. Hyperedges can better incorporate structural
information than regular edges.

3.2.1 Review of tensors
A real-valued 𝐷th-order tensor F is a multidimensional array belonging to R𝑛1×𝑛2×⋯×𝑛𝐷

(where 𝑛1,𝑛2,… ,𝑛𝐷 are positive integers). Each dimension of F is called a mode. The
elements of F are denoted by 𝐹𝑖1𝑖2…𝑖𝐷

where 𝑖𝑑 is the index along the mode 𝑑.
We call the multilinear form associated to a tensor F a function 𝐹 ∶ R𝑛1 × R𝑛2 ×

⋯ × R𝑛𝐷 → R defined by

𝐹(x1,… ,x𝐷) =
𝑛1

∑
𝑖1=1

⋯
𝑛𝐷

∑
𝑖𝐷=1

𝐹𝑖1𝑖2…𝑖𝐷
𝑥1

𝑖1
𝑥2

𝑖2
⋯ 𝑥𝐷

𝑖𝐷
, (3.6)

where x𝑑 = (𝑥𝑑
1,𝑥𝑑

2,… ,𝑥𝑑
𝑛𝑑

) ∈ R𝑛𝑑 for 𝑑 = 1, 2,… ,𝐷.
A tensor can be multiplied by a vector at a specific mode. Let v = (𝑣1, 𝑣2,… , 𝑣𝑛𝑑

)
be an 𝑛𝑑 dimensional vector. The mode-𝑑 product of F and v, denoted F ⨂𝑑 v, is a
(𝐷 − 1)th-order tensor G of dimensions 𝑛1 × ⋯ × 𝑛𝑑−1 × 𝑛𝑑+1 × ⋯ × 𝑛𝐷 defined by

𝐺𝑖1…𝑖𝑑−1𝑖𝑑+1…𝑖𝐷
=

𝑛𝑑

∑
𝑖𝑑=1

𝐹𝑖1…𝑖𝑑…𝑖𝐷
𝑣𝑖𝑑

∀𝑖[1,𝐷]\𝑑. (3.7)

The multiplication is only valid if v has the same dimension as the mode 𝑑 of F.
The product of a tensor and multiple vectors (at multiple modes) is defined as

the consecutive product of the tensor and each vector (at the corresponding mode).
The order of the multiplied vectors does not matter. For example, the product of a
4th-order tensor F ∈ R𝑛1×𝑛2×𝑛3×𝑛4 and two vectors u ∈ R𝑛2 ,v ∈ R𝑛4 at the modes 2
and 4 (respectively) is an 𝑛1 × 𝑛3 tensor G = F ⨂2 u ⨂4 v = F ⨂4 v ⨂2 u, where

𝐺𝑖1𝑖3
=

𝑛2

∑
𝑖2=1

𝑛4

∑
𝑖4=1

𝐹𝑖1𝑖2𝑖3𝑖4
𝑢𝑖2

𝑣𝑖4
∀𝑖1, 𝑖3. (3.8)

Let us consider for convenience the notation F ⨂I M to denote the product of F
with the set of vectors M, at the modes specified by the set of indices I with |I| = |M|.

3.2. linear algebra reformulations 17

Since the order of the vectors and the modes must agree, M and I are supposed to
be ordered sets. By convention, F ⨂I M = F if M = ∅. Using this notation, the
product in the previous example becomes

G = F ⨂
{2,4}

{u,v} = F ⨂
{4,2}

{v,u} . (3.9)

Let us also consider the notation ⨂𝑏
𝑑=𝑎 to denote a sequence of products from

mode 𝑎 to mode 𝑏:

F
𝑏

⨂
𝑑=𝑎

x𝑑 = F ⊗𝑎 x𝑎 ⊗𝑎+1 x𝑎+1 ⋯ ⊗𝑏 x𝑏. (3.10)

By convention, F ⨂𝑏
𝑑=𝑎 x𝑑 = F if 𝑎 > 𝑏. Using this notation, it is straightforward to

see that the multilinear form (3.6) can be re-written as

𝐹(x1,x2,… ,x𝐷) = F ⊗1 x1 ⊗2 x2 ⋯ ⊗𝐷 x𝐷 = F
𝐷

⨂
𝑑=1

x𝑑. (3.11)

3.2.2 Reformulation of graph matching

Let 𝑛1 = |V1|,𝑛2 = |V2| and 𝑛 = 𝑛1𝑛2. For an 𝑛1 × 𝑛2 matrix V, let vec(V) ∈ R𝑛

denote its row-wise vectorized replica; and inversely for a vector v ∈ R𝑛 let mat(v)
denote its corresponding 𝑛1×𝑛2 reshaped matrix. We should note that while reshaping
a vector to a matrix requires specifying the dimensions, we use mat(⋅) exclusively for
𝑛1 × 𝑛2 matrices.

Now for an assignment matrix X ∈ {0, 1}𝑛1×𝑛2 , let x = vec(X) ∈ {0, 1}𝑛, called
the assignment vector. Clearly, each assignment 𝑖1 ↔ 𝑖2 corresponds to an index 𝑖 in
x, where 1 ≤ 𝑖 ≤ 𝑛.

Consider the 3rd-order potentials 𝑑(𝑖1𝑗1𝑘1, 𝑖2𝑗2𝑘2) in (3.5). It is straightforward
that these terms can be represented by a 3rd-order tensor F3 of dimensions 𝑛 × 𝑛 × 𝑛
with elements 𝐹𝑖𝑗𝑘 = 𝑑(𝑖1𝑗1𝑘1, 𝑖2𝑗2𝑘2) where 𝑖, 𝑗, 𝑘 correspond to the assignments 𝑖1 ↔
𝑖2, 𝑗1 ↔ 𝑗2, 𝑘1 ↔ 𝑘2, respectively. Therefore, the 3rd-order terms in (3.5) can be
expressed as

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝐹𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘. (3.12)

We should note that some elements of F3 must be set to zeros if they do not appear
in (3.5) (e.g. 𝐹𝑖𝑖𝑘 or 𝐹𝑖𝑘𝑖). Clearly, according to (3.6) and (3.11) we have

𝑛
∑
𝑖=1

𝑛
∑
𝑗=1

𝑛
∑
𝑘=1

𝐹𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 = 𝐹 3(x,x,x) = F3 ⊗1 x ⊗2 x ⊗3 x, (3.13)

where 𝐹 3(⋅, ⋅, ⋅) is the multilinear form of the tensor F3.
More generally, the 𝑑th-order potentials can be represented by a 𝑑th-order tensor

18 chapter 3. graph and hypergraph matching

F𝑑. Therefore, the 3rd (or higher) order graph matching can be reformulated as

min 𝐸(x) ∶= F1 ⊗1 x + F2 ⊗1 x ⊗2 x + F3 ⊗1 x ⊗2 x ⊗3 x + … ,

s.t. mat(x) ∈ M,
(3.14)

where the dots contain possible potential terms of higher degrees.
For the special case of pairwise matching, tensor is not needed and so we can get a

more familiar expression. Indeed, since F1 is a vector and F2 is a matrix, for pairwise
matching the energy in (3.14) becomes

𝐸(x) = F1 • x + F2x • x. (3.15)

For more convenience let us denote u ∶= F1 to be the unary potential vector and
P ∶= F2 to be the pairwise potential matrix. Pairwise graph matching can then be
reformulated as

min u⊤x + x⊤Px,
s.t. mat(x) ∈ M,

(3.16)

Since x is binary, we have 𝑢𝑖𝑥𝑖 = 𝑢𝑖𝑥𝑖𝑥𝑖 ∀𝑖 and thus we obtain the following alternative
formulation:

min x⊤Mx,
s.t. mat(x) ∈ M,

(3.17)

where
M = P + diag(u). (3.18)

The potential matrix M represents the dissimilarity between the correspondences.
Equivalently one can choose M to represent the similarity, and replace the above
minimization by maximization, then M is called the affinity matrix and the objective
function is called the score.

3.3 methods for graph and hypergraph matching
Graph matching has been an active research topic in the computer vision field for
the past decades. In this section, we review the most prominent methods in recent
literature.

In the recent literature, [Gold and Rangarajan, 1996] proposed a graduated assign-
ment algorithm to iteratively solve a series of convex approximations to the matching
problem. In [Leordeanu and Hebert, 2005], a spectral matching based on the rank-
1 approximation of the affinity matrix was introduced, which was later improved
in [Cour et al., 2007] by incorporating affine constraints towards a tighter relaxation.
In [Leordeanu et al., 2009], an integer projected fixed point algorithm that solves a se-
quence of first-order Taylor approximations using Hungarian method [Kuhn, 1955] was
proposed, while in [Torresani et al., 2013] the dual of the matching problem was consid-
ered to obtain a lower-bound on the energy, via dual decomposition. In [Cho et al., 2010],
a reweighted random walk variant was used to address graph matching, while a convex-
concave relaxation was proposed in [Zhou and De la Torre, 2012] based on the fac-
torization of the affinity matrix into smaller ones. Their inspiration was the path-
following approach [Zaslavskiy et al., 2009] exploiting a more restricted formulation,

3.3. methods for graph and hypergraph matching 19

known as Koopmans-Beckmann’s QAP [Koopmans and Beckmann, 1957]. More re-
cently, [Cho et al., 2014] proposed a max-pooling strategy within the graph matching
framework that is very robust to outliers.

Over the last few years, researchers have proposed higher-order graph matching
models to better incorporate structural similarities and achieve more accurate results
than pairwise matching [Zass and Shashua, 2008, Duchenne et al., 2011]. For solv-
ing such high-order models, [Zass and Shashua, 2008] viewed the matching problem
as a probabilistic model that is solved using an iterative successive projection algo-
rithm. The extension of pairwise methods to deal with higher-order potentials was
also considered like for example in [Duchenne et al., 2011] through a tensor match-
ing (extended from [Leordeanu and Hebert, 2005]), or in [Zeng et al., 2010] through a
third-order dual decomposition algorithm (originating from [Torresani et al., 2013]), or
in [Lee et al., 2011] through a high-order reweighted random walk matching (extension
of [Cho et al., 2010]). Recently, [Nguyen et al., 2015] developed a block coordinate as-
cent algorithm for solving third-order graph matching. They lifted the third-order
problem to a fourth-order one which, after a convexification step, is solved by a se-
quence of linear or quadratic assignment problems.

4
Alternating Direction Method of Multipliers

In this chapter, we review the alternating direction method of multipliers (ADMM). We
start by introducing the classical ADMM, which is for solving convex, separable, two-
block problems. Then we give a presentation of different generalizations and extensions
of ADMM.

4.1 classical alternating direction method of multipliers

4.1.1 Motivation and algorithm
Consider the following convex optimization problem:

min 𝑓(x) + 𝑔(z)
s.t. Ax + Bz = c,

(4.1)

with variables x ∈ R𝑛 and z ∈ R𝑚, where A ∈ R𝑝×𝑛,B ∈ R𝑝×𝑚, c ∈ R𝑝 and 𝑓 ∶ R𝑛 →
R ∪ {+∞} , 𝑔 ∶ R𝑚 → R ∪ {+∞} are (extended) real-valued convex functions.

The Lagrangian of (4.1) is defined by

𝐿(x, z,y) = 𝑓(x) + 𝑔(z) + y⊤(Ax + Bz − c), (4.2)

and the dual function is
ℎ(y) = min

x∈R𝑛,z∈R𝑚
𝐿(x, z,y), (4.3)

where y ∈ R𝑝 is called the dual variable (or alternatively the Lagrangian multiplier),
x and z are called the primal variables. The corresponding so-called dual problem is

max
y∈R𝑝

ℎ(y). (4.4)

Since our problem (4.1) is convex, duality theory1 tells us that the maximum value
of (4.4) and the minimum value of (4.1) coincide (under the trivial assumption that
there exist x ∈ R𝑛 and z ∈ R𝑚 such that Ax + Bz = c, i.e. problem (4.1) is feasible).
In addition, if y∗ is an optimal solution to (4.4) then an optimal solution to (4.1) can
be recovered by

(x∗, z∗) = argmin
(x,z)∈R𝑛×R𝑚

𝐿(x, z,y∗). (4.5)

1See e.g. Chapter 5 of [Boyd and Vandenberghe, 2004].

21

22 chapter 4. alternating direction method of multipliers

Therefore, one natural way to solve (4.1) is to solve (4.4) instead. Since the latter is
an unconstrained optimization problem, it can be solved using e.g. the usual gradient
ascent method if ℎ is differentiable, which consists of updating y ← y + 𝛼∇ℎ(y). It is
straightforward to prove that if (x(y), z(y)) — here we view x and z as functions of y
— is an optimal solution to (4.3) then ∇ℎ(y) = Ax(y)+Bz(y)−c. Therefore, we can
deduce that the gradient ascent algorithm for solving (4.4) consists of the following
updates:

(x(𝑘+1), z(𝑘+1)) ← argmin
(x,z)∈R𝑛×R𝑚

𝐿(x, z,y(𝑘)), (4.6)

y(𝑘+1) ← y(𝑘) + 𝛼(𝑘) (Ax(𝑘+1) + Bz(𝑘+1) − c) , (4.7)

where 𝑘 is the iteration counter and 𝛼(𝑘) > 0 is the step-size. If ℎ is non-differentiable,
then the quantity Ax(y) + Bz(y) − c now becomes the negative of a subgradient2 of
−ℎ at y, so the above iterates are still valid for solving (4.4) and are known as the
subgradient method [Shor et al., 1985] (though we should note that unlike in gradient
ascent, the update (4.7) may not increase the value of ℎ at each iteration; however, the
algorithm is still guaranteed to converge to an optimal solution with suitable choices
of 𝛼(𝑘)).

We have described a technique to reduce the original problem (4.1) to solving its
dual problem (4.4) via subgradient method (or via gradient ascent if the dual function
is differentiable). This technique is known as the dual subgradient method (respectively
dual ascent method). Now consider the update step (4.6). From (4.2) it is clear that
the optimization problem in (4.6) can be re-written as

min
x∈R𝑛

{𝑓(x) + ⟨y(𝑘),Ax⟩} + min
z∈R𝑚

{𝑔(z) + ⟨y(𝑘),Bz⟩} , (4.8)

which can be solved separately (and in parallel) with respect to x and z. We have thus
reduced (4.1) to solving a series of smaller and independent subproblems as in (4.8).
This is clearly possible only if the objective function in (4.1) is separable. In this case,
we refer to the dual subgradient (or dual ascent) method as dual decomposition.

A major drawback of the above approach for solving (4.1) is that the dual function
is often not differentiable, and thus one has to use dual subgradient instead of dual
ascent, which results in very slow convergence. Indeed, to achieve an 𝜖-approximate
solution, dual subgradient requires O(1/𝜖2) iterations while dual ascent requires only
O(1/𝜖) iterations [Shor et al., 1985, Nesterov, 2013]. A solution to overcome this is to
view (4.1) in the following equivalent form:

min 𝑓(x) + 𝑔(z) + 𝜌
2‖Ax + Bz − c‖2

2,

s.t. Ax + Bz = c,
(4.9)

where 𝜌 > 0 is called the penalty parameter. The Lagrangian of this problem is

𝐿𝜌(x, z,y) = 𝑓(x) + 𝑔(z) + y⊤(Ax + Bz − c) + 𝜌
2‖Ax + Bz − c‖2

2, (4.10)

2A vector s is called a subgradient of a function ℎ at u if and only if ℎ(v) ≥ ℎ(u) + s⊤(v − u) ∀v.
We write s ∈ 𝜕ℎ(u), where 𝜕ℎ(u) is the subdifferential of ℎ at u, i.e. the set of all subgradients of ℎ
at u. If ℎ is convex and differentiable then 𝜕ℎ = {∇ℎ}.

4.1. classical alternating direction method of multipliers 23

which is also called the augmented Lagrangian of (4.1). The associated dual function
now becomes

ℎ𝜌(y) = min
x∈R𝑛,z∈R𝑚

𝐿𝜌(x, z,y). (4.11)

The benefit of adding a penalty term is that ℎ𝜌(y) can be shown to be differentiable
under mild conditions [Boyd et al., 2011]. We can now apply dual ascent to solve (4.9)
(and thus (4.1)), where we use 𝜌 as a constant step-size:

(x(𝑘+1), z(𝑘+1)) ← argmin
(x,z)∈R𝑛×R𝑚

𝐿𝜌(x, z,y(𝑘)), (4.12)

y(𝑘+1) ← y(𝑘) + 𝜌 (Ax(𝑘+1) + Bz(𝑘+1) − c) . (4.13)

This is known as the method of multipliers for solving (4.1).
Now let us have a closer look at the update step (4.12). As the objective function

in (4.9) is not separable (unlike (4.1)), this step cannot be decomposed into smaller
subproblems like (4.8). This is a serious issue because solving (4.12) can be very
expensive in practice for large-scale problems. Fortunately, it turns out that for (4.12),
instead of minimizing jointly with respect to x and z, one can do that alternatively
over each variable:

x(𝑘+1) ← argmin
x

𝐿𝜌(x, z(𝑘),y(𝑘)), (4.14)

z(𝑘+1) ← argmin
z

𝐿𝜌(x(𝑘+1), z,y(𝑘)), (4.15)

and yet the algorithm is still guaranteed to converge, and at a good rate. This is called
the alternating direction method of multipliers (ADMM), presented in a more complete
form in Algorithm 4.1.

algorithm 4.1 ADMM for solving two-block problems.
1: Initialization: 𝑘 ← 0, x(0) ∈ R𝑛, z(0) ∈ R𝑚 and y(0) ∈ R𝑝.
2: Update x:

x(𝑘+1) ← argmin
x

𝐿𝜌(x, z(𝑘),y(𝑘)). (4.16)

3: Update z:
z(𝑘+1) ← argmin

z
𝐿𝜌(x(𝑘+1), z,y(𝑘)). (4.17)

4: Update y:
y(𝑘+1) ← y(𝑘) + 𝜌(Ax(𝑘+1) + Bz(𝑘+1) − c). (4.18)

Let 𝑘 ← 𝑘 + 1 and go to Step 2.

Originally proposed by [Glowinski and Marroco, 1975] and [Gabay and Mercier, 1975],
ADMM has recently attracted a lot of attention from the machine learning and com-
puter vision fields thanks to its excellent performance and flexibility, especially on
large-scale problems. We refer to [Boyd et al., 2011] for historical notes and refer-
ences on ADMM, as well as for a review on ADMM for distributed optimization and
statistical learning.

24 chapter 4. alternating direction method of multipliers

ADMM for variables under set constraints

In the previous formulation, the functions 𝑓 and 𝑔 are allowed to be non-differentiable
and to take the +∞ value, so that (4.1) can also cover problems with set constraints,
which is often the case in practice. Indeed, consider the following problem:

min 𝑓(x) + 𝑔(z)
s.t. Ax + Bz = c,

x ∈ X , z ∈ Z,

(4.19)

where X ⊆ R𝑛,Z ⊆ R𝑚 are closed convex sets.
Let 𝛿S(⋅) denote the indicator function of the set S, i.e.

𝛿S(𝑠) = {0 if 𝑠 ∈ S,
+∞ otherwise. (4.20)

Denote 𝑓0(x) ∶= 𝑓(x) + 𝛿X (x) and 𝑔0(z) ∶= 𝑔(z) + 𝛿Z(z), then clearly (4.19) is reduced
to (4.1) with objective function 𝑓0(x) + 𝑔0(z).

4.1.2 Convergence
In this section we present some basic, yet very general, convergence results of ADMM
(Algorithm 4.1) for solving (4.1). In [Boyd et al., 2011], ADMM was shown to converge
under the following two assumptions.

Assumption 4.1. The functions 𝑓 and 𝑔 are closed, proper, and convex.

Assumption 4.2. The unaugmented Lagrangian 𝐿0 has a saddle point.

The second assumption means that there exist (x∗, z∗,y∗) such that

𝐿0(x∗, z∗,y) ≤ 𝐿0(x∗, z∗,y∗) ≤ 𝐿0(x, z,y∗). (4.21)

It is straightforward to see that (4.21) is equivalent — given that 𝑓 and 𝑔 are convex —
to the following so-called Karush–Kuhn–Tucker (KKT) conditions for problem (4.1):

c = Ax∗ + Bz∗, (4.22)
𝟎 ∈ 𝜕𝑓(x∗) + A⊤y∗, (4.23)
𝟎 ∈ 𝜕𝑔(z∗) + B⊤y∗, (4.24)

where we recall that 𝜕ℎ(u) denotes the subdifferential of a function ℎ at u. Note
that since (4.1) is convex, the above KKT conditions are necessary and sufficient for
(x∗, z∗,y∗) to be a primal-dual optimum. Therefore, Assumption 4.2 basically means
that problem (4.1) has a primal-dual optimal solution.

Regarding Assumption 4.1, [Boyd et al., 2011] stated that it ensures the solvabil-
ity3 for the subproblems (4.16) and (4.17) at every iteration. This is not correct,

3An optimization problem is said to be solvable if it is feasible, bounded below and its optimal
value can be attained. As an example, the convex program min { 1

𝑥 ∣ 𝑥 ≥ 1} is feasible and bounded
below, but not solvable.

4.1. classical alternating direction method of multipliers 25

however, as pointed out by [Chen et al., 2017]. Indeed, they gave a counter-example
of a convex problem satisfying both Assumptions 4.1 and 4.2, but for which the sub-
problems (4.16) and (4.17) are not solvable. This implies that the convergence analysis
in [Boyd et al., 2011] is erroneous. According to [Chen et al., 2017], the following ad-
ditional assumption is needed.

Assumption 4.3. The subproblems of ADMM, i.e. (4.16) and (4.17), are solvable and
have non-empty bounded solution sets.

We are now ready to state the main convergence results of ADMM.

Theorem 4.1. Under Assumptions 4.1, 4.2 and 4.3, the iterates of ADMM (Algo-
rithm 4.1) for solving problem (4.1) satisfy the following:

(a) 𝑓(x(𝑘)) + 𝑔(z(𝑘)) converges to the optimal value of (4.1).

(b) y(𝑘) converges to an optimal solution to the dual problem (4.4).

(c) r(𝑘) ∶= Ax(𝑘) + Bz(𝑘) − c, called the residual, converges to 𝟎.

(d) Any limit point4 (x∗, z∗,y∗) of the sequence (x(𝑘), z(𝑘),y(𝑘)) is a solution to the
the KKT system (4.22)–(4.24), i.e. (x∗, z∗,y∗) is a primal-dual optimal solution
to (4.1). In addition, Ax(𝑘) converges to Ax∗ and Bz(𝑘) converges to Bz∗.

(e) The rate of convergence of all the above points is at least O(1/
√

𝑘).

A proof of (a), (b), (c) can be found in e.g. [Boyd et al., 2011] or [Chen et al., 2017],
and a proof of (d) can be found in [Chen et al., 2017]. It should be noted that the
above convergence results also hold for a generalized variant of ADMM, where the
y-update step (4.18) is replaced by

y(𝑘+1) ← y(𝑘) + 𝛼𝜌(Ax(𝑘+1) + Bz(𝑘+1) − c), (4.25)

where 𝛼 ∈ (0, 1+
√

5
2) is called the step-size.

Regarding the rate of convergence (e), a proof and addition results can be found
in e.g. [Wang and Banerjee, 2013, He and Yuan, 2015, Davis and Yin, 2016]. Without
further assumptions, [Davis and Yin, 2016] proved that the O(1/

√
𝑘) rate of conver-

gence is actually tight. One can also obtain an O(1/𝑘) rate in the ergodic sense (i.e.
taking a convex combination of all the iterates). If further assumptions hold, e.g.
strong convexity or Lipschitz differentiability, then better rates of convergence (e.g.
linear) can be obtained. We refer to e.g. [Deng and Yin, 2016, Hong and Luo, 2017,
Giselsson, 2017] and references therein for more details.

4A vector u is a limit point of a sequence (u(𝑘)) if there exists a subsequence of (u(𝑘)) that converges
to u. A limit point is also called an accumulation point ou a cluster point. Note that the sequence
may be divergent and may have multiple limit points. When it is convergent, u becomes its limit (and
of course its only limit point).

26 chapter 4. alternating direction method of multipliers

4.2 beyond two-block, separable and convex problems

4.2.1 Multi-block problems

A natural and straightforward extension of ADMM can be applied to solving problems
with more than two blocks of variables:

min 𝑓1(x1) + 𝑓2(x2) + ⋯ + 𝑓𝐷(x𝐷)
s.t. A1x1 + A2x2 + ⋯ + A𝐷x𝐷 = c,

(4.26)

where c ∈ R𝑝 and ∀𝑑 = 1, 2,… ,𝐷 ∶ x𝑑 ∈ R𝑛𝑑 ,A𝑑 ∈ R𝑝×𝑛𝑑 and 𝑓𝑑 ∶ R𝑛𝑑 → R ∪ {+∞}
are extended real-valued functions. The augmented Lagrangian for this problem is

𝐿𝜌(x1,… ,x𝐷,y) =
𝐷

∑
𝑑=1

𝑓𝑑(x𝑑) + y⊤ (
𝐷

∑
𝑑=1

A𝑑x𝑑 − c) + 𝜌
2∥

𝐷
∑
𝑑=1

A𝑑x𝑑 − c∥
2

2
, (4.27)

and the corresponding ADMM algorithm is presented in Algorithm 4.2.

algorithm 4.2 ADMM for solving multi-block problems.

1: Initialization: 𝑘 ← 0, x(0)
𝑑 ∈ R𝑛𝑑 for 𝑑 = 1,… ,𝐷, and y(0) ∈ R𝑝.

2: For 𝑑 = 1, 2,… ,𝐷, update x(𝑘+1)
𝑑 as

x(𝑘+1)
𝑑 ← argmin

x𝑑
𝐿𝜌(x(𝑘+1)

[1,𝑑−1],x𝑑,x
(𝑘)
[𝑑+1,𝐷],y(𝑘)). (4.28)

3: Update y(𝑘+1) as

y(𝑘+1) ← y(𝑘) + 𝜌 (
𝐷

∑
𝑑=1

A𝑑x(𝑘+1)
𝑑 − c) . (4.29)

Let 𝑘 ← 𝑘 + 1 and go to Step 2.

Unlike for two-block problems, the convexity of the objective functions (𝑓𝑑)𝐷
𝑑=1

is not sufficient to ensure convergence of ADMM. Indeed, [Chen et al., 2016] gave a
concrete example of a three-block problem for which ADMM is guaranteed to diverge
for any penalty 𝜌 > 0 and any starting point in a continuously dense half-space of
dimension 3.

With further assumptions, convergence of ADMM for multi-block problems can be
guaranteed. For example, for three-block problems, [Chen et al., 2016] showed that
ADMM is convergent for any 𝜌 > 0 if two of the coefficient matrices A1,A2,A3 are
orthogonal, i.e. either A⊤

1 A2 = 𝟎 or A⊤
2 A3 = 𝟎 or A⊤

1 A3 = 𝟎. Moreover, in this case,
ADMM achieves a worst-case O(1/𝑘) rate of convergence in the ergodic sense.

In the case of (𝑓𝑑)𝐷
𝑑=1 being strongly convex with parameters (𝜎𝑑)𝐷

𝑑=1 (respec-
tively), [Han and Yuan, 2012] showed that ADMM is convergent if the penalty param-
eter 𝜌 satisfies

0 < 𝜌 < min
1≤𝑑≤𝐷

2𝜎𝑑
3(𝐷 − 1)‖A𝑑‖2 . (4.30)

4.2. beyond two-block, separable and convex problems 27

Similar results were proposed by [Lin et al., 2015] for the case where only (𝐷 − 1)
functions among (𝑓𝑑)𝐷

𝑑=1 are strongly convex. They also provided an ergodic rate of
convergence of O(1/𝑘), and a non-ergodic rate of convergence of 𝑜(1/𝑘). Note that a
condition on 𝜌 (such as the above) is necessary, as shown by [Chen et al., 2016]. In
fact, they gave an example of strongly convex functions for which ADMM is divergent
for a certain value of 𝜌.

4.2.2 Nonseparable problems
So far we have mentioned only problems with a separable objective, i.e. a sum of
independent terms over each block of variables. A direct extension of problem (4.26)
to nonseparable case is the following:

min ℎ(x1,x2,… ,x𝐷) + 𝑓1(x1) + 𝑓2(x2) + ⋯ + 𝑓𝐷(x𝐷)
s.t. A1x1 + A2x2 + ⋯ + A𝐷x𝐷 = c,

(4.31)

where the notations and conditions are the same as in (4.26), except that we have
added a coupling term ℎ(x1,… ,x𝐷) to the objective. Here ℎ(x1,… ,x𝐷) is supposed
to be convex jointly with respect to (x𝑑)𝐷

𝑑=1. We refer to Section 4.2.3 for a discussion
on the general nonseparable and nonconvex case.

The standard ADMM algorithm for solving (4.31) is the same as Algorithm 4.2,
except that the Lagrangian 𝐿𝜌(x1,… ,x𝐷,y) now contains ℎ(x1,… ,x𝐷) in addition
to (4.27). The introduction of this coupling term makes it really difficult to ana-
lyze the convergence of ADMM, even for two-block problems, i.e. 𝐷 = 2. As a
result, many authors tend to study different extensions of ADMM instead. For ex-
ample, [Hong et al., 2014] and [Cui et al., 2015] studied the convergence of an exten-
sion of ADMM, called majorization-minimization ADMM, where at each x-update
step (4.28), the nonseparable term ℎ(x1,… ,x𝐷) is replaced by its upper-bound ap-
proximations. Another extension of ADMM, called proximal ADMM, was also studied
by e.g. [Gao and Zhang, 2017] (for two-block problems) and [Chen et al., 2015] (for ℎ
being a quadratic function). In proximal ADMM, a proximal term is added to the
right-hand side of the x-update step (4.28) of the standard ADMM. We will discuss
these kinds of extension for ADMM in more detail in Section 4.3.

4.2.3 Nonconvex problems
While ADMM was originally designed for solving convex problems, it has recently been
applied to solve a wide range of nonconvex problems with excellent performance (see
e.g. [Hong et al., 2016] and references therein). Therefore, studying the behavior of
nonconvex ADMM has become an important research topic. Due to the hardness of
the nonconvexity, the amount of published work on analyzing the convergence of the
nonconvex standard ADMM is quite limited compared to the convex case. We present
such analyses in the subsections below.

Separable two-block case

The problem of interest here is (4.1) without the convexity assumption. The standard
ADMM for this problem is the same as Algorithm 4.1. We should note that the

28 chapter 4. alternating direction method of multipliers

subproblems (4.16) and (4.17) are possibly no longer convex. Therefore, for ADMM
to be meaningful in this case, we implicitly assume that its subproblems can be solved
to global optimality (idem for the multi-block case in Section 4.2.3).

For the special case of the problem where the matrix B is identity, [Li and Pong, 2015]
proposed an extension of ADMM where a proximal term based on a Bregman diver-
gence5 is added to the z-update step. This proximal term can be discarded to obtain
the standard ADMM. They proved that the iterates of this algorithm converge to a
primal-dual stationary point, under the assumptions that the functions 𝑓 and 𝑔 are
semi-algebraic, 𝑔 is twice continuously differentiable (hence ∇𝑔 is Lipschitz continu-
ous) with uniformly bounded Hessian, A⊤A ⪰ 𝜇I for some 𝜇 > 0, and the penalty
parameter 𝜌 is larger than a certain value. Later, [Guo et al., 2017] proved similar
results but with weaker assumptions: 𝑔 only needs to be Lipschitz differentiable and
no constraint on its Hessian is needed.

For the general case, [Gonçalves et al., 2017] studied the convergence of another
proximal ADMM (in which the proximal terms can be discarded, when B is invert-
ible, to obtain the standard ADMM). They proved that this algorithm is convergent
under even weaker assumptions compared to [Guo et al., 2017]. However, when re-
ducing to standard ADMM for B being identity, their range for 𝜌 is worse than that
of [Guo et al., 2017]. Very recently, [Themelis and Patrinos, 2017] presented an analy-
sis for a nonconvex ADMM with over-relaxation, which includes the standard ADMM
as a special case (c.f . Section 4.3.2 for details on over-relaxed ADMM). Their results
are perhaps the strongest compared to the previous work: they proved the convergence
of ADMM under weaker assumptions, yet with a better range of the penalty parameter
𝜌. In Figure 4.1, we compare the ranges of 𝜌 obtained by all the above analyses for
the standard ADMM applied to the special case of the problem where A is full rank
and B is identity.

Multi-block case

This general case concerns the problems (4.26) (for multiple blocks), or (4.31) (for
multiple and nonseparable blocks), except that the convexity assumption is removed.
Obviously the standard ADMM for these problems is the same as Algorithm 4.2, for
which we assume that the subproblems (4.28) can be solved to global optimality.

Since analyzing the standard ADMM is hard, some authors chose to deal with dif-
ferent variants. For example, [Wang et al., 2015a] studied the convergence of a proxi-
mal ADMM based on a Bregman divergence for three-block separable objectives. For
the general problem (4.31) (without convexity), [Jiang et al., 2016] studied another
proximal ADMM based on norms with respect to matrices. They show that the algo-
rithm converges to an approximate 𝜖-stationary solution for a certain range of penalty
parameters, under the assumptions that ℎ and 𝑓𝐷 are Lipschitz differentiable.

[Hong et al., 2016] studied the standard ADMM for the consensus and sharing
problems, which are special cases of (4.31). The proved that the algorithm converges
to a stationary point for a large enough penalty parameter, under the assumptions
that 𝐷 − 1 functions in the objective are convex (but possibly nonsmooth), and the
other is nonconvex but Lipschitz differentiable.

5We discuss in more detail this kind of extension in Section 4.3.

4.3. other extensions and variations 29

−1 −0.5 0 0.5 1

1
4𝐿

1
2𝐿

3
4𝐿

1
𝐿

value of 𝜎
𝐿

va
lu

e
of

1 𝜌

[Themelis and Patrinos, 2017]
[Li and Pong, 2015, Hong et al., 2016]
[Guo et al., 2017]
[Gonçalves et al., 2017]

figure 4.1 Comparison of recent convergence analyses of ADMM for nonconvex objectives.
This plot shows the supremum of the inverse of the penalty parameter, i.e. 1

𝜌 , for which the
standard ADMM is convergent for solving the special case of (4.1) without convexity where
A is full rank and B is identity, under the assumption that 𝑔 is Lipschitz differentiable.
Let 𝐿 denote the corresponding Lipschitz constant, then there exists 𝜎 ∈ [−𝐿,𝐿] such that
𝜎‖z − t‖2 ≤ ⟨∇𝑔(z) − ∇𝑔(t), z − t⟩ ≤ 𝐿‖z − t‖2 ∀z, t ∈ R𝑚. The parameter 𝜎 is called the
convexity constant of 𝑔 (if 𝜎 = 0 then 𝑔 is convex, if 𝜎 > 0 then 𝑔 is strongly convex, and
if 𝜎 < 0 then 𝑔 is not convex but 𝑔(⋅) − 𝜎

2 ‖⋅‖2 is). Intuitively, the higher 𝜎 is, the easier the
problem is and thus we should expect a larger range of 𝜌 for which ADMM is convergent.
This is the case for most of the analyses, as shown in the figure. Note that the range pro-
vided by [Themelis and Patrinos, 2017] is tight, i.e. no better range can be obtained. Figure
reproduced from [Themelis and Patrinos, 2017] with permission.

Perhaps the current most prominent convergence analysis of standard ADMM for
nonseparable multi-block problems is due to [Wang et al., 2015b]. Under a number of
assumptions (including Lipschitz differentiability), they showed that ADMM converges
to a stationary point of (4.31). We give a brief summary of their results in Table 4.1.

4.3 other extensions and variations
Many extensions and variations of ADMM have been explored in the literature. In this
section, we briefly survey some of these variants. A similar treatment can be found
in [Boyd et al., 2011], though the references therein are more dated.

4.3.1 Adaptive penalty parameter

A standard extensions is to use different penalty parameter 𝜌(𝑘) at each iteration, which
can accelerate the convergence and make the algorithm less dependent on the initial
parameter.

The most popular adaptive scheme is residual balancing, due to [He et al., 2000]

30 chapter 4. alternating direction method of multipliers

table 4.1 A summary of sufficient conditions for ADMM to be convergent for solving (4.31)
without convexity, according to the analysis of [Wang et al., 2015b]. The penalty parameter 𝜌
is implicitly chosen to be large enough. There are two scenarios considered: first, if only part
of the objective function is Lipschitz differentiable, then the nonseparable term and the last
separable term have to be so, and further assumptions on the other terms are required (Scenario
1 below); second, if the objective is Lipschitz differentiable then no further assumptions on it
is required (Scenario 2 below). It should be noted that in Scenario 1, the nonseparable term
does not contain the last block, and the functions 𝑓0,… , 𝑓𝐷−1 are not required to exist. We
refer to [Wang et al., 2015b] for further details.

Scenario 1 Scenario 2

objective
ℎ(x1,… ,x𝐷−1) + ∑𝐷

𝑑=1 𝑓𝐷(x𝐷)

The objective
is Lipschitz
differentiable

coercive over ∑𝐷
𝑑=1 A𝑑x𝑑 = 𝟎

ℎ, 𝑓𝐷 Lipschitz differentiable
Scenario 1a Scenario 1b

𝑓1 lower semi-continuous 𝜕𝑓1 bounded in any bounded set
(𝑓𝑑)𝐷−1

𝑑=2 restricted prox-regular piecewise linear

(A𝑑)𝐷
𝑑=1 Feasibility: Im([A1 … A𝐷−1]) ⊆ Im(A𝐷)

solution to each ADMM subproblem is unique and is Lipschitz w.r.t. the input

and [Wang and Liao, 2001]:

𝜌(𝑘+1) =
⎧{
⎨{⎩

𝛼𝜌(𝑘) if ‖r(𝑘)‖2 > 𝜇‖s(𝑘)‖2,

𝜌(𝑘)/𝛽 if ‖s(𝑘)‖2 > 𝜇‖r(𝑘)‖2,

𝜌(𝑘) otherwise,
(4.32)

where 𝜇 > 1,𝛼 > 1 and 𝛽 > 1 are parameters. The idea behind this is to keep a
balance between the norms of the primal and dual residuals (so that they are always
within a factor 𝜇 of one another). Since the algorithm converges only if both of them
converge to zero, keeping them decrease together can accelerate the convergence.

More recently, [Xu et al., 2017] proposed a spectral adaptive scheme, motivated
by the dual formulation of ADMM (called the Douglas-Rachdord splitting algorithm).
They showed that their scheme outperforms residual balancing on a variety of prob-
lems.

4.3.2 Over-relaxation

In the z-update (4.17) and the y-update (4.18), the quantity Ax(𝑘+1) can be replaced
with 𝛼(𝑘)Ax(𝑘+1) − (1 − 𝛼(𝑘))(Bz𝑘 − c), i.e. these steps become:

z(𝑘+1) ← argmin
z

{𝑔(z) + ⟨y(𝑘),Bz − c⟩ + 𝜌
2∥t(𝑘+1) + Bz − c∥2

2} , (4.33)

y(𝑘+1) ← y(𝑘) + 𝜌(t(𝑘+1) + Bz(𝑘+1) − c), (4.34)

where
t(𝑘+1) = 𝛼(𝑘)Ax(𝑘+1) − (1 − 𝛼(𝑘))(Bz𝑘 − c). (4.35)

4.3. other extensions and variations 31

The parameter 𝛼(𝑘) > 0 is called relaxation parameter.
Over-relaxed ADMM with 𝛼(𝑘) > 1 has been shown to converge faster than non-

relaxed ADMM on different practical problems (see e.g. [Eckstein and Bertsekas, 1992]
and [Eckstein, 1994]). Its theoretical convergence for convex problems was analyzed by
e.g. [Nishihara et al., 2015], and by e.g. [Themelis and Patrinos, 2017] for nonconvex
ones.

4.3.3 More general augmenting terms
The ℓ2 norm in the augmented Lagrangian (4.10) (or (4.27) for multiple blocks) can
be replaced by a more general distance function, for example:

𝐿M(x, z,y) = 𝑓(x) + 𝑔(z) + y⊤(Ax + Bz − c) + 1
2‖Ax + Bz − c‖2

M, (4.36)

where ‖u‖M denotes the Mahalanobis norm, defined by ‖u‖M = √⟨u,Mu⟩ where M
is a positive definite matrix. When M = 𝜌I then the above becomes the usual ℓ2
augmented Lagrangian. Even more generally, at each iteration of ADMM, the matrix
M can be allowed to vary, i.e. taking a value M(𝑘). The convergence of such algorithm
was analyzed in e.g. [He et al., 2002].

The Mahalanobis norm is a special case of an even more general distance function
called the Bregman divergence [Bregman, 1967, Censor and Zenios, 1997]. The Breg-
man divergence induced by a continuously differentiable and strictly convex function
𝜙 is defined by

𝐷𝜙(x,y) = 𝜙(x) − 𝜙(y) − ⟨∇𝜙(y),x − y⟩ . (4.37)

Since 𝜙 is convex we have 𝐷𝜙(x,y) ≥ 0 ∀x,y and equality occurs if and only if
x = y. As an example, the ℓ2-norm is the Bregman divergence induced by the function
𝜙(x) ∶= ‖x‖2

2. Bregman ADMM was analyzed in e.g. [Wang and Banerjee, 2014].

4.3.4 Proximal ADMM
This is another popular variant of ADMM, in which a proximal term is added to each
subproblem:

x(𝑘+1)
𝑑 = argmin

x𝑑
{𝐿𝜌(x(𝑘+1)

[1,𝑑−1],x𝑑,x
(𝑘)
[𝑑+1,𝐷],y(𝑘)) + 𝛥𝑑(x,x(𝑘)

𝑑)} , (4.38)

where 𝛥𝑑(⋅, ⋅) is some distance function. This distance function can be e.g. the Eu-
clidean distance (i.e. ℓ2 norm), matrix based norm, or Bregman divergence. In addi-
tion, the augmented Lagrangian in the above update can also be replaced by a more
general augmented term, as discussed previously in Section 4.3.3.

The convergence of proximal ADMM was studied by e.g. [Wang and Banerjee, 2014,
Deng and Yin, 2016] for convex problems, and more recently by e.g. [Li and Pong, 2015,
Wang et al., 2015a, Guo et al., 2017, Gonçalves et al., 2017] for nonconvex problems.

5
Alternating Direction Graph Matching

This chapter presents our first major contribution. We introduce a graph matching
method that can account for constraints of arbitrary order, with arbitrary potential
functions. Unlike previous decomposition approaches that rely on the graph struc-
tures, we introduce a decomposition of the matching constraints. Graph matching is
then reformulated as a non-convex non-separable optimization problem that can be
split into smaller and much-easier-to-solve subproblems, by means of ADMM. The
proposed framework is modular, scalable, and can be instantiated into different vari-
ants. Two instantiations are studied exploring pairwise and higher-order constraints.
Experimental results on widely adopted benchmarks involving synthetic and real ex-
amples demonstrate that the proposed solutions outperform existing pairwise graph
matching methods, and competitive with the state of the art in higher-order settings.
A preliminary version of this work was published in [Lê-Huu and Paragios, 2017].

5.1 context and motivation
The proposed method is motivated by two main factors: 1) the recent rise of decom-
position methods in computer vision, and 2) the limitations of current state-of-the-art
graph matching methods.

Decomposition is a general approach to solving a problem by breaking it up into
smaller ones that can be efficiently addressed separately, and then reassembling the
results towards a globally consistent solution of the original non-decomposed prob-
lem [Bertsekas, 1999]. In computer vision, decomposition methods such as dual decom-
position and ADMM have been applied to optimizing MRFs [Komodakis et al., 2011,
Martins et al., 2015] and to solving graph/hypergraph matching [Torresani et al., 2013,
Zeng et al., 2010]. The main idea is to decompose the original complex graph into
simpler subgraphs and then reassembling the solutions on these subgraphs using dif-
ferent mechanisms. While in MRF inference, this concept has been proven to be
flexible and powerful, that is far from being the case in graph matching, due to the
hardness of the one-to-one constraints (c.f . Chapter 3). Indeed, to deal with these
constraints, [Torresani et al., 2013] for example adopted a strategy that creates sub-
problems that are also smaller graph matching problems, which are computationally
highly challenging. Moreover, subgradient method has been used to impose consen-
sus, which is known to have slow rate of convergence [Bertsekas, 1999]. Therefore,
dual decomposition is a very slow method and works for a limited set of energy
models often associated with small sizes and low to medium geometric connectivi-
ties [Torresani et al., 2013].

33

34 chapter 5. alternating direction graph matching

On the other hand, different methods for graph matching have been recently pro-
posed with excellent performance. The current state-of-the-art method is a block
coordinate ascent algorithm proposed by [Nguyen et al., 2015]. Despite the impres-
sive performance, this method has two limitations: (a) it cannot be applied to graph
matching of arbitrary order other than third and fourth, and (b) it cannot deal with
graph matching where occlusion is allowed on both sides, nor with one-to-many or
many-to-many matching.

In this work, we propose a novel class of decomposition algorithms that can over-
come all the aforementioned limitations. These methods work with arbitrary potentials
of any order and with any matching constraints (one-to-one, one-to-many, or else). Yet,
they are also very computationally efficient.

5.2 general decomposition framework for graph matching
In this section, we introduce a general decomposition framework for graph matching,
by means of ADMM.

First, let us recall some notations and formulations from Chapter 3 (Section 3.2.2).
The solution of graph matching is represented by an assignment matrix X ∈ {0, 1}𝑛1×𝑛2 ,
where 𝑛1,𝑛2 are the numbers of nodes of the graphs. Depending on application, X
may obey different matching constraints. For example, the following set represents the
common one-to-(at most)-one constraints:

Mone-to-one = {X ∈ {0, 1}𝑛1×𝑛2 ∣ sum of each row of X is ≤ 1
sum of each column of X is ≤ 1 } . (5.1)

If no occlusion is allowed then “≤ 1” is replaced by “= 1”. Let M denote general
matching constraints whose type will be specified or understood from the context.
We will be working mostly with the row-wise vectorized replica of X, which is the
assignment vector x = vec(X) ∈ R𝑛, where 𝑛 = 𝑛1𝑛2. Instead of writing mat(x) ∈ M
to represent the matching constraints, we write x ∈ X where

X = {x ∈ R𝑛1×𝑛2 ∣ mat(x) ∈ M} . (5.2)

General graph matching can then be formulated as follows.

Problem 5.1 (𝐷th-order graph matching). Minimize

𝐹 1(x) + 𝐹 2(x,x) + ⋯ + 𝐹 𝐷(x,x,… ,x) (5.3)

subject to x ∈ X , where 𝐹 𝑑 (𝑑 = 1,… ,𝐷) is the multilinear form of a tensor F𝑑

representing the 𝑑th-order potentials, defined by:

𝐹 𝑑(x1,… ,x𝑑) =
𝑛1

∑
𝑖1=1

⋯
𝑛𝑑

∑
𝑖𝑑=1

𝐹𝑖1𝑖2…𝑖𝑑
𝑥1

𝑖1
𝑥2

𝑖2
⋯ 𝑥𝑑

𝑖𝑑
, (5.4)

where x𝑗 = (𝑥𝑗
1,𝑥𝑗

2,… ,𝑥𝑗
𝑛𝑗) ∈ R𝑛𝑗 for 𝑗 = 1, 2,… , 𝑑.

Next, we propose a decomposition framework for solving the continuous relaxation

5.2. general decomposition framework for graph matching 35

of Problem 5.1, i.e. minimizing (5.3) subject to x ∈ X , where X is the same as X
except that the binary constraint is replaced by 0 ≤ x ≤ 1. For example, the relaxed
one-to-one constraints are represented by

Xone-to-one = {x ∈ [0, 1]𝑛1×𝑛2 ∣ sum of each row of mat(x) is ≤ 1
sum of each column of mat(𝑥) is ≤ 1 } . (5.5)

Once a continuous solution has been found, it can be converted to a discrete one using
e.g. the Hungarian method [Kuhn, 1955].

As discussed previously in Section 5.1, the one-to-one constraint makes the problem
hard to solve. To deal with these constraints, [Torresani et al., 2013] adopted a strategy
that creates subproblems that are also smaller graph matching problems, which are
computationally highly challenging. In our proposed framework, we do not rely on
the structure of the graphs but instead, on the nature of the variables. In fact, the
idea is to decompose the assignment vector x (by means of Lagrangian relaxation)
into different variables where each variable obeys weaker constraints (that are easier
to handle). For example, instead of dealing with the assignment vector x ∈ X , we can
represent it by two vectors x1 and x2, where the sum of each row of mat(x1) is ≤ 1
and the sum of each column of mat(x2) is ≤ 1, and we constrain these two vectors to
be equal. More generally, we can decompose x into as many vectors as we want, and in
any manner, the only condition is that the set of constraints imposed on these vectors
must be equivalent to x1 = x2 = ⋯ = x𝑝 ∈ X where 𝑝 is the number of vectors. As
for the objective function (5.3), there is also an infinite number of ways to re-write
it under the new variables x1,x2,… ,x𝑝. The only condition is that the re-written
objective function must be equal to the original one when x1 = x2 = ⋯ = x𝑝 = x. For
example, if 𝑝 = 𝐷 then one can re-write (5.3) as

𝐹 1(x1) + 𝐹 2(x1,x2) + ⋯ + 𝐹 𝐷(x1,x2,… ,x𝐷). (5.6)

Each combination of (a) such a variable decomposition and (b) such a way of re-writing
the objective function will yield a different Lagrangian relaxation and thus, produce a
different algorithm. Since there are virtually infinite of such combinations, the number
of algorithms one can design from them is also unlimited, not to mention the different
choices of the reassembly mechanism, such as subgradient methods [Shor et al., 1985],
cutting plane methods [Bertsekas, 1999], ADMM (Chapter 4), or others. We call the
class of algorithms that are based on ADMM Alternating Direction Graph Match-
ing (ADGM) algorithms. A major advantage of ADMM over the other mechanisms
is that its subproblems involve only one block of variables, regardless of the form the
objective function.

As an illustration of ADGM, we present below a particular example. Nevertheless,
this example is still general enough to include an infinite number of special cases.
Indeed, it is straightforward to see that the continuous relaxation of Problem 5.1 is
equivalent to the following problem.

Problem 5.2 (Decomposed graph matching). Minimize

𝐹 1(x1) + 𝐹 2(x1,x2) + ⋯ + 𝐹 𝐷(x1,x2,… ,x𝐷) (5.7)

36 chapter 5. alternating direction graph matching

subject to

A1x1 + A2x2 + ⋯ + A𝐷x𝐷 = 0, (5.8)
x𝑑 ∈ X𝑑 ∀ 1 ≤ 𝑑 ≤ 𝐷, (5.9)

where (A𝑑)1≤𝑑≤𝐷 are 𝑚 × 𝑛 matrices, defined in such a way that (5.8) is equivalent to
x1 = x2 = ⋯ = x𝐷, and (X𝑑)1≤𝑑≤𝐷 are closed convex subsets of R𝑛 satisfying

X1 ∩ X2 ∩ ⋯ ∩ X𝐷 = X . (5.10)

We have decomposed x into 𝐷 vectors (x1,x2,… ,x𝐷). This formulation allows
direct application of ADMM.

The augmented Lagrangian of Problem 5.2 is given by

𝐿𝜌(x1,… ,x𝐷,y) =
𝐷

∑
𝑑=1

𝐹 𝑑(x1,… ,x𝑑) + y⊤ (
𝐷

∑
𝑑=1

A𝑑x𝑑) + 𝜌
2∥

𝐷
∑
𝑑=1

A𝑑x𝑑∥
2

2
. (5.11)

Recall from Chapter 4 that standard ADMM solves Problem 5.2 by iterating:

1. For 𝑑 = 1, 2,… ,𝐷, update x𝑑:

x(𝑘+1)
𝑑 = argmin

x∈X𝑑

𝐿𝜌(x(𝑘+1)
1 ,… ,x(𝑘+1)

𝑑−1 ,x,x(𝑘)
𝑑+1,… ,x(𝑘)

𝐷 ,y(𝑘)). (5.12)

2. Update y:

y(𝑘+1) = y(𝑘) + 𝜌 (
𝐷

∑
𝑑=1

A𝑑x(𝑘+1)
𝑑) . (5.13)

The algorithm converges if the following residual converges to 0 as 𝑘 → ∞:

𝑟(𝑘) = ∥
𝐷

∑
𝑑=1

A𝑑x(𝑘)
𝑑 ∥

2

2
+

𝐷
∑
𝑑=1

∥A𝑑x(𝑘)
𝑑 − A𝑑x(𝑘−1)

𝑑 ∥
2

2
. (5.14)

We will discuss the convergence of ADMM for graph matching later in Section 5.3.5.
The y-update step (5.13) and the computation of the residual (5.14) is trivial. Let

us focus on the x-update step (5.12), i.e. the so-called subproblems. In this step, all
variable blocks are fixed except one. It can be observed that the objective function (5.7)
is linear with respect to each variable block. Therefore, (5.12) involves a sum of a linear
function and a penalty term.

Indeed, from equation (3.11) (page 17) we have

𝐹 𝑖(x(𝑘+1)
[1,𝑑−1],x,x

(𝑘)
[𝑑+1,𝑖]) = F 𝑖

𝑑−1
⨂
𝑗=1

x(𝑘+1)
𝑗 ⊗𝑑 x

𝑖
⨂

𝑙=𝑑+1
x(𝑘)

𝑙 . (5.15)

As a reminder, the ⨂ notation is defined in equation (3.10) (page 17). We have also
used the notation x[𝑎,𝑏] to denote (x𝑎,x𝑎+1,… ,x𝑏) (by convention, if 𝑎 > 𝑏 then x[𝑎,𝑏]

5.2. general decomposition framework for graph matching 37

is ignored). Regrouping the above equation we get:

𝐷
∑
𝑖=𝑑

𝐹 𝑖(x(𝑘+1)
[1,𝑑−1],x,x

(𝑘)
[𝑑+1,𝑖]) =

𝐷
∑
𝑖=𝑑

(F 𝑖
𝑑−1
⨂
𝑗=1

x(𝑘+1)
𝑗 ⊗𝑑 x

𝑖
⨂

𝑙=𝑑+1
x(𝑘)

𝑙) (5.16)

= (
𝐷

∑
𝑖=𝑑

F 𝑖
𝑑−1
⨂
𝑗=1

x(𝑘+1)
𝑗

𝑖
⨂

𝑙=𝑑+1
x(𝑘)

𝑙) • x, (5.17)

which is clearly a linear function with respect to x:

𝐷
∑
𝑖=𝑑

𝐹 𝑖(x(𝑘+1)
[1,𝑑−1],x,x

(𝑘)
[𝑑+1,𝑖]) = p(𝑘)

𝑑 • x, (5.18)

where

p(𝑘)
𝑑 =

𝐷
∑
𝑖=𝑑

F 𝑖
𝑑−1
⨂
𝑗=1

x(𝑘+1)
𝑗

𝑖
⨂

𝑙=𝑑+1
x(𝑘)

𝑙 . (5.19)

Now, let cst(x) denote a term that does not depend on x and define

s(𝑘)
𝑑 =

𝑑−1
∑
𝑖=1

A𝑖x
(𝑘+1)
𝑖 +

𝐷
∑

𝑗=𝑑+1
A𝑗x

(𝑘)
𝑗 . (5.20)

The augmented Lagrangian (5.11) becomes

𝐿𝜌(x(𝑘+1)
[1,𝑑−1],x,x

(𝑘)
[𝑑+1,𝐷],y(𝑘)) = p(𝑘)

𝑑 •x+y(𝑘) •(A𝑑x + s(𝑘)
𝑑)+ 𝜌

2∥A𝑑x + s(𝑘)
𝑑 ∥

2

2
+cst(x).

(5.21)

Therefore, it is straightforward to see that the subproblems (5.12) are reduced to
minimizing quadratic functions over convex sets:

x(𝑘+1)
𝑑 = argmin

x∈X𝑑

{1
2x⊤A⊤

𝑑 A𝑑x + (A⊤
𝑑 s(𝑘)

𝑑 + 1
𝜌(A⊤

𝑑 y(𝑘) + p(𝑘)
𝑑)) • x} . (5.22)

The resulted algorithm is summarized in Algorithm 5.1. We should note that this
algorithm is very general and can have an infinite number of instantiations. Indeed,
each choice of (A𝑑)1≤𝑑≤𝐷 and (X𝑑)1≤𝑑≤𝐷 in (5.8) and (5.9) — called a decomposition
— leads to a different algorithm. The only condition for a decomposition to be valid
is that the following equivalence holds:

A1x1 + A2x2 + ⋯ + A𝐷x𝐷 = 0
x𝑑 ∈ X𝑑 ∀ 1 ≤ 𝑑 ≤ 𝐷 } ⟺ x1 = x2 = ⋯ = x𝐷 ∈ X . (5.23)

38 chapter 5. alternating direction graph matching

For example, if 𝐷 = 3 then the following decomposition is valid:

x1 = 1
2(x2 + x3) (5.24)

x2 = 1
3(x1 + 2x3) (5.25)

x1 ∈ X ,x2 ∈ X ,x3 ∈ X , (5.26)

which corresponds to

A1 = [I
−1

3I
] , A2 = [−1

3I
I

] , A3 = [−1
2I

−2
3I

] . (5.27)

With suitable choices of (A𝑑)1≤𝑑≤𝐷 and (X𝑑)1≤𝑑≤𝐷, one can obtain very simple and
efficient instantiations of this algorithm. An in-depth analysis of different decomposi-
tions would be an interesting direction for future work. In the scope of this chapter,
we present, analyze, and evaluate two such instantiations.

algorithm 5.1 General ADGM algorithm for solving 𝐷th-order graph matching.
1: Choose (A𝑑)1≤𝑑≤𝐷 and (X𝑑)1≤𝑑≤𝐷 satisfying the conditions stated in Problem 5.2.
2: Initialization: 𝑘 ← 0, y(0)

𝑑 ← 0 and x(0)
𝑑 ∈ X𝑑 for 𝑑 = 1, 2,… ,𝐷.

3: for 𝑑 = 1, 2,… ,𝐷 do
4: Compute s(𝑘)

𝑑 and p(𝑘)
𝑑 according to (5.20) and (5.19).

5: Update

x(𝑘+1)
𝑑 ← argmin

x∈X𝑑

{1
2x⊤A⊤

𝑑 A𝑑x + (A⊤
𝑑 s(𝑘)

𝑑 + 1
𝜌(A⊤

𝑑 y(𝑘) + p(𝑘)
𝑑)) • x} .

6: end for
7: Update

y(𝑘+1) = y(𝑘) + 𝜌 (
𝐷

∑
𝑑=1

A𝑑x(𝑘+1)
𝑑) .

8: Compute the residual 𝑟(𝑘+1) according to (5.14). If it is smaller than some threshold
𝜖, then discretize x1 and return. Otherwise, let 𝑘 ← 𝑘 + 1 and go to Step 3.

5.3 two adgm algorithms
We have introduced a general framework for solving graph matching, where the as-
signment vector x is decomposed into 𝐷 vectors (x1,x2,… ,x𝐷). In this section, we
present two instantiations of this framework.

5.3.1 Two simple decompositions
First, to impose x1 = x2 = ⋯ = x𝐷, one can choose (A𝑑)1≤𝑑≤𝐷 such that

x1 = x2, x1 = x3,… , x1 = x𝐷, (5.28)

5.3. two adgm algorithms 39

or alternatively
x1 = x2, x2 = x3,… , x𝐷−1 = x𝐷. (5.29)

It is easily seen that the above two sets of constraints can be both expressed under
the general form (5.8). Each choice leads to a different algorithm. Let ADGM1 and
ADGM2 denote the algorithms obtained from respectively (5.28) and (5.29).

To further impose that ⋂𝐷
𝑑=1 X𝑑 = X , one can make the trivial choice X𝑑 = X ∀𝑑.

However, if X is complex, e.g. in the case of one-to-one matching, then ADMM sub-
problems (5.22) may be difficult to solve. A better choice is to use (relaxed) supersets
of X . For example, one can choose (X𝑑)1≤𝑑≤𝐷 to take values in one of the following
two sets, such that both of them are taken at least once:

Xr = {x | sum of each row of mat(x) is ≤ 1} , (5.30)
Xc = {x | sum of each column of mat(x) is ≤ 1} . (5.31)

Again, if no occlusion is allowed then “≤ 1” is replaced by “= 1”. If one-to-many
or many-to-many matching is allowed, then these inequality constraints are removed
accordingly. In either case, Xr and Xc are closed and convex. Clearly, since Xr∩Xc = X ,
condition (5.10) is satisfied.

5.3.2 Update steps and resulted algorithms
Next, we show how the subproblems (5.22) can be greatly simplified for ADGM1 and
ADGM2. Indeed, plugging (5.28) and (5.29) into (5.8), we will show that (5.22) are
reduced to

x(𝑘+1)
𝑑 = argmin

x∈X𝑑

‖x − c𝑑‖2
2, (5.32)

where (c𝑑)1≤𝑑≤𝐷 are defined as follows:

• For ADGM1:

c1 = 1
𝐷 − 1 (

𝐷
∑
𝑑=2

x(𝑘)
𝑑 − 1

𝜌
𝐷

∑
𝑑=2

y(𝑘)
𝑑 − 1

𝜌
𝐷

∑
𝑑=1

F𝑑
𝑑

⨂
𝑖=2

x(𝑘)
𝑖) , (5.33)

c𝑑 = x(𝑘+1)
1 + 1

𝜌y(𝑘)
𝑑 − 1

𝜌 (
𝐷

∑
𝑖=𝑑

F 𝑖
𝑑−1
⨂
𝑖=1

x(𝑘+1)
𝑖

𝑖
⨂

𝑗=𝑑+1
x(𝑘)

𝑗) , 2 ≤ 𝑑 ≤ 𝐷, (5.34)

• For ADGM2:

c1 = x(𝑘)
2 − 1

𝜌y(𝑘)
2 − 1

𝜌
𝐷

∑
𝑑=1

F𝑑
𝑑

⨂
𝑖=2

x(𝑘)
𝑖 , (5.35)

c𝐷 = x(𝑘+1)
𝐷−1 + 1

𝜌y(𝑘)
𝐷 − 1

𝜌F
𝐷

𝐷−1
⨂
𝑖=1

x(𝑘+1)
𝑖 , (5.36)

c𝑑 = 1
2(x(𝑘+1)

𝑑−1 + x(𝑘)
𝑑+1) + 1

2𝜌(y(𝑘)
𝑑 − y(𝑘)

𝑑+1) (5.37)

− 1
2𝜌

𝐷
∑
𝑖=𝑑

F 𝑖
𝑑−1
⨂
𝑖=1

x(𝑘+1)
𝑖

𝑖
⨂

𝑗=𝑑+1
x(𝑘)

𝑗 , 2 ≤ 𝑑 ≤ 𝐷 − 1. (5.38)

40 chapter 5. alternating direction graph matching

In the above equations, y𝑑 denotes the (𝑑 −1)th block of the multiplier vector y, which
will become clear in the sequel.

We detail the calculation for ADGM1 and refer the reader to Appendix A.1.1 for
ADGM2. Indeed, (5.28) can be written in the following form:

⎡
⎢⎢
⎣

x1
x1
⋮

x1

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

−x2
0
⋮
0

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

0
−x3

⋮
0

⎤
⎥⎥
⎦

+ ⋯ +
⎡
⎢⎢
⎣

0
0
⋮

−x𝐷

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

0
0
⋮
0

⎤
⎥⎥
⎦
, (5.39)

which can be in turn re-written as A1x1 + A2x2 + ⋯ + A𝐷x𝐷 = 0 where A𝑑 is the
𝑑th (block) column of the following (𝐷 − 1) × 𝐷 block matrix A whose blocks are
𝑛 × 𝑛, and as a consequence, y is also a (𝐷 − 1) × 1 block vector where each block is
an 𝑛-dimensional vector:

A =
⎡
⎢⎢
⎣

I −I 0 ⋯ 0
I 0 −I ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
I 0 0 ⋯ −I

⎤
⎥⎥
⎦
, y =

⎡
⎢⎢
⎣

y2
y3
⋮

y𝐷

⎤
⎥⎥
⎦

. (5.40)

From (5.20) we easily have

s(𝑘)
1 =

⎡
⎢⎢⎢
⎣

−x(𝑘)
2

−x(𝑘)
3

⋮
−x(𝑘)

𝐷

⎤
⎥⎥⎥
⎦

and s(𝑘)
𝑑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(𝑘+1)
1

⋮
x(𝑘+1)

1
x(𝑘+1)

1
x(𝑘+1)

1
⋮

x(𝑘+1)
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(𝑘+1)
2

⋮
x(𝑘+1)

𝑑−1
0

x(𝑘)
𝑑+1
⋮

x(𝑘)
𝐷

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 2 ≤ 𝑑 ≤ 𝐷. (5.41)

Next we compute the vectors (c𝑑)1≤𝑑≤𝐷.

Consider 𝑑 = 1. Since A1 = [I I ⋯ I]⊤ we have

A⊤
1 A1 = (𝐷 − 1)I, A⊤

1 s(𝑘)
1 = −

𝐷
∑
𝑑=2

x(𝑘)
𝑑 , A⊤

1 y(𝑘) =
𝐷

∑
𝑑=2

y(𝑘)
𝑑 . (5.42)

Plugging these into (5.22), the quadratic function therein becomes

1
2(𝐷 − 1)‖x‖2

2 + (−
𝐷

∑
𝑑=2

x(𝑘)
𝑑 + 1

𝜌
𝐷

∑
𝑑=2

y(𝑘)
𝑑 + 1

𝜌p(𝑘)
1) • x. (5.43)

Clearly, minimizing this quantity over X1 is equivalent to solving (5.32) for 𝑑 = 1,
where c1 is defined by (5.33).

Now consider 𝑑 ≥ 2. Since

A𝑑 = [0 ⋯ 0 −I 0 ⋯ 0]⊤
, (5.44)

5.3. two adgm algorithms 41

where the −I block is at the (𝑑 − 1)th position, we have

A⊤
𝑑 A𝑑 = I, A⊤

𝑑 s(𝑘)
𝑑 = −x(𝑘+1)

1 , A⊤
𝑑 y(𝑘) = −y(𝑘)

𝑑 . (5.45)

Plugging these into (5.22), it becomes

1
2‖x‖2

2 + (−x(𝑘+1)
1 − 1

𝜌y(𝑘)
𝑑 + 1

𝜌p(𝑘)
𝑑) • x. (5.46)

Minimizing this quantity over X𝑑 is equivalent to solving (5.32), where c𝑑 is defined
by (5.34).

We have showed that the x-update steps (5.12) (or equivalently (5.22)) are reduced
to the projections (5.32), where (c𝑑)1≤𝑑≤𝐷 are defined by (5.33)–(5.34) for ADGM1
and by (5.35)–(5.38) for ADGM2. For the y-update (5.13), it can be seen from (5.28)
and (5.29) that this step is reduced to:

y(𝑘+1)
𝑑 = y(𝑘)

𝑑 + 𝜌 (x(𝑘+1)
1 − x(𝑘+1)

𝑑) for ADGM1, (5.47)

y(𝑘+1)
𝑑 = y(𝑘)

𝑑 + 𝜌 (x(𝑘+1)
𝑑−1 − x(𝑘+1)

𝑑) for ADGM2. (5.48)

The residual (5.14) is also given accordingly:

𝑟(𝑘+1) =
𝐷

∑
𝑑=2

∥x(𝑘+1)
1 − x(𝑘+1)

𝑑 ∥
2

2
+

𝐷
∑
𝑑=1

∥x(𝑘+1)
𝑑 − x(𝑘)

𝑑 ∥
2

2
for ADGM1, (5.49)

𝑟(𝑘+1) =
𝐷

∑
𝑑=2

∥x(𝑘+1)
𝑑 − x(𝑘+1)

𝑑−1 ∥
2

2
+

𝐷
∑
𝑑=1

∥x(𝑘+1)
𝑑 − x(𝑘)

𝑑 ∥
2

2
for ADGM2. (5.50)

The two resulted algorithms are summarized in Algorithm 5.2.

algorithm 5.2 Instantiations of ADGM for solving 𝐷th-order graph matching.
1: Choose (X𝑑)1≤𝑑≤𝐷. For one-to-one matching these can take values in {Xr,Xc},

defined by (5.30) and (5.31), such that both Xr and Xc are taken at least once.
2: Initialization: 𝑘 ← 0, y(0)

𝑑 ← 0 and x(0)
𝑑 ∈ X𝑑 for 𝑑 = 1,… ,𝐷.

3: for 𝑑 = 1, 2,… ,𝐷 do
4: Compute c𝑑 according to (5.33)–(5.38).
5: Update x(𝑘+1)

𝑑 ← argminx∈X𝑑
‖x − c𝑑‖2

2.
6: end for
7: for 𝑑 = 2, 3,… ,𝐷 do
8: Update y(𝑘+1)

𝑑 according to (5.47)–(5.48).
9: end for

10: Compute the residual 𝑟(𝑘+1) according to (5.49)–(5.50). If it is smaller than some
threshold 𝜖, then discretize x1 and return. Otherwise, let 𝑘 ← 𝑘 + 1 and go to
Step 3.

Remark. When 𝐷 = 2 the two algorithms are identical.

42 chapter 5. alternating direction graph matching

5.3.3 More details on solving the subproblems
We have seen how the subproblems in the two presented ADGM algorithms can be
reduced to the projections (5.32). We haven’t seen, however, how to solve these pro-
jections. Recall that X𝑑 is equal to either Xr or Xc, defined by (5.30) and (5.31), i.e.
either the sum of each row of x is ≤ 1, or the sum of each column of x is ≤ 1 (or “= 1”
in case of no occlusion). Therefore, the above projections are reduced to independent
projections of each row or column of x, which can be solved using the following lemma.

Lemma 5.1. Let 𝑑 be a positive integer and c = (𝑐1, 𝑐2,… , 𝑐𝑑) be a real-valued constant
vector. Consider the problem of minimizing

‖u − c‖2
2 (5.51)

with respect to u ∈ R𝑑, subject to one of the following sets of constraints:

(a) u ≥ 0 and 1⊤u = 1.

(b) u ≥ 0 and 1⊤u ≤ 1.

An optimal solution u∗ to each of the above two cases is given as follows:

(a) Let a = (𝑎1, 𝑎2,… , 𝑎𝑑) be a decreasing permutation of c via a permutation function
𝜎, i.e. 𝑎𝑖 = 𝑐𝜎(𝑖) and 𝑎1 ≥ 𝑎2 ≥ ⋯ ≥ 𝑎𝑑. Denote

𝜆𝑘 = 1
𝑘 (∑

1≤𝑖≤𝑘
 𝑎𝑖 − 1) ∀𝑘 ∈ Z, 1 ≤ 𝑘 ≤ 𝑑. (5.52)

Then there exists 𝑘∗ ∈ Z, 1 ≤ 𝑘∗ ≤ 𝑑, such that 𝑎𝑘∗ > 𝜆𝑘∗ ≥ 𝑎𝑘∗+1. An optimal
solution u∗ = (𝑢∗

1,𝑢∗
2,… ,𝑢∗

𝑑) is given by:

𝑢∗
𝜎(𝑖) = {𝑎𝑖 − 𝜆𝑘∗ if 1 ≤ 𝑖 ≤ 𝑘∗,

0 if 𝑘∗ < 𝑖 ≤ 𝑑. (5.53)

(b) Let u0 = max(c,0). We have:

• If 1⊤u0 ≤ 1 then u∗ = u0.
• Otherwise, any optimal solution u∗ must satisfy 1⊤u∗ = 1. Thus, the problem

is reduced to the previous case, and as a consequence, u∗ is given by (5.53).

Part (a) is the well-known projection onto a simplex, and part (b) can be easily
reduced to part (a). A proof of this lemma can be found in Appendix A.1.2. In our
implementation, we used the algorithm introduced in [Condat, 2016] for this simplex
projection task.

5.3.4 ADGM for solving the linear assignment problem
Recall that ADGM1 imposes x1 = x𝑑 ∀ 2 ≤ 𝑑 ≤ 𝐷 and ADGM2 imposes x𝑑−1 =
x𝑑 ∀ 2 ≤ 𝑑 ≤ 𝐷. Clearly, these constraints are only valid for 𝐷 ≥ 2 and when 𝐷 = 2

5.3. two adgm algorithms 43

these two sets of constraints become the same, i.e. ADGM1 and ADGM2 are identical.
For completeness, we briefly consider the case 𝐷 = 1, which is the well-known linear
assignment problem.

This problem can be seen as a special case of pairwise graph matching where the
pairwise potentials are zeros. It can be reformulated as minimizing 𝐹 1(x1) subject
to x1 = x2 and x1 ∈ X1,x2 ∈ X2 (we can choose for example X1 = Xr and X2 =
Xc). Since the objective function is convex and separable, ADGM is guaranteed to
produce a global optimum to the continuous relaxation of the matching problem (c.f .
Chapter 4). However, it is well-known that this continuous relaxation is just equivalent
to the original discrete problem (see e.g. [Schrijver, 2002, Chapter 18]). Therefore,
we conclude that ADGM also produces a global optimum to the linear assignment
problem.

5.3.5 Convergent ADGM with adaptive penalty
Note that the objective function in Problem 5.2 is neither separable nor convex in
general. Convergence of ADMM for this type of functions is unknown (c.f . Chapter 4).
Indeed, our algorithms do not always converge, especially for small values of the penalty
parameter 𝜌 (an example is given in Figure 5.1).

0 20 40 60 80 100
0

50

100

150

200

 = 1

 = 5

 = 10

 = 20

 Adapt.

figure 5.1 The residual 𝑟(𝑘) per iteration of ADGM. Adaptive parameters: 𝑇1 = 20,𝑇2 =
5,𝛽 = 𝜌0 = 2.0 (c.f . Section 5.3.5). Run on a third-order Motorbike matching with 15 outliers
(c.f . Section 5.4.2 for data and model description).

We observed that when 𝜌 is large, ADGM algorithms are likely to converge. How-
ever, we also noticed that small 𝜌 often (but not always) achieves better objective
values. Motivated by these observations, we propose the following adaptive scheme
that we find to work very well in practice:

1. Starting from a small initial value 𝜌0, the algorithm runs for 𝑇1 iterations to
stabilize.

2. After that, if no improvement of the residual 𝑟(𝑘) is made every 𝑇2 iterations,
then we increase 𝜌 by a factor 𝛽 and continue.

The intuition behind this scheme is simple: we hope to reach a good objective value
with a small 𝜌, but if this leads to slow (or no) convergence, then we increase 𝜌 to put

44 chapter 5. alternating direction graph matching

more penalty on the consensus of the decomposed variables and that would result in
faster convergence.

Using this scheme, we observe that our algorithms always converge in practice. In
the experiments, we set 𝑇1 = 300,𝑇2 = 50,𝛽 = 2 and 𝜌0 = 𝑛

1000 .

5.4 experiments
We adopt the adaptive scheme presented in Section 5.3.5 to the ADGM1 and ADGM2
algorithms presented in Section 5.3. In pairwise settings, however, since these two
algorithms are identical, we denote them simply ADGM. We compare ADGM and
ADGM1/ADGM2 to the following state-of-the-art methods.

Pairwise methods:

• Spectral Matching with Affine Constraint (SMAC) [Cour et al., 2007].

• Integer Projected Fixed Point (IPFP) [Leordeanu et al., 2009].

• Reweighted Random Walk Matching (RRWM) [Cho et al., 2010].

• Dual Decomposition (DD) [Torresani et al., 2013].

• Max-Pooling Matching (MPM) [Cho et al., 2014].

Higher-order methods:

• Probabilistic Graph Matching (PGM) [Zass and Shashua, 2008].

• Tensor Matching (TM) [Duchenne et al., 2011].

• Reweighted Random Walk Hypergraph Matching (RRWHM) [Lee et al., 2011].

• Block Coordinate Ascent Graph Matching (BCAGM) [Nguyen et al., 2015].

We should note that DD is only used in the experiments using the same energy models
presented in [Torresani et al., 2013]. For the other experiments, DD is excluded due to
the prohibitive execution time. In addition, as suggested in [Leordeanu et al., 2009], we
use the solution returned by Spectral Matching (SM) [Leordeanu and Hebert, 2005] as
initialization for IPFP. For BCAGM, we use MPM as subroutine because it was shown
in [Nguyen et al., 2015] (and again by our experiments) that this variant of BCAGM
(denoted by “BCAGM+MP” in [Nguyen et al., 2015]) outperforms the other variants
thanks to the effectiveness of MPM. Since there is no ambiguity, in the sequel we
denote this variant “BCAGM” for short.

We should also note that, while we formulated the graph matching as a minimiza-
tion problem, most of the above listed methods are maximization solvers and many
models/objective functions in previous work were designed to be maximized. For ease
of comparison, ADGM is also converted to a maximization solver by letting it mini-
mize the additive inverse of the objective function, and the results reported in this
section are for the maximization setting (i.e. higher objective values are better).

5.4. experiments 45

In addition, for ease of comparison across different models, in the plots we show a nor-
malized quantity of the objective value, which is the ratio between it and the objective
value of the ground-truth matching. Furthermore, in some experiments we also use
pairwise minimization models, such as the one from [Torresani et al., 2013], which we
convert to maximization problems as follows: after building the affinity matrix M from
the (minimization) potentials, the new (maximization) affinity matrix is computed by
max(M)−M where max(M) denotes the greatest element of M. Note that one cannot
simply take −M because some of the methods only work for non-negative potentials.

We present experimental results on two commonly used datasets. For each dataset,
we evaluate the methods on different well-defined energy models. For a fair comparison,
most of the experiments are reproduced from previous work, and we only introduce
a new model when existing ones produce unsatisfactory results. Finally, to keep the
presentation clear we only show the most representative results and leave additional
ones to Appendix A.2.

5.4.1 House and Hotel dataset
The CMU House and Hotel sequences1 have been widely used in previous work for
evaluating graph matching algorithms. It consists of 111 frames of a synthetic house
and 101 frames of a synthetic hotel. Each frame in these sequences is manually labeled
with 30 feature points.

Pairwise Model A

In this experiment we match all possible pairs of images in each sequence, with all
30 points (i.e. no outlier). A Delaunay triangulation is performed for these 30 points
to obtain the graph edges. The unary terms are the distances between the Shape
Context descriptors [Belongie et al., 2002]. The pairwise terms when matching (𝑖1, 𝑗1)
to (𝑖2, 𝑗2) are

F2
𝑖𝑗 = 𝜂 exp (𝛿2/𝜎2

𝑙) + (1 − 𝜂) exp (𝛼2/𝜎2
𝑎) − 1 (5.54)

where 𝜂,𝜎𝑙,𝜎𝑎 are some weight and scaling constants and 𝛿,𝛼 are computed from
𝑑1 = ‖ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖1𝑗1‖ and 𝑑2 = ‖ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖2𝑗2‖ as

𝛿 = |𝑑1 − 𝑑2|
𝑑1 + 𝑑2

, 𝛼 = arccos (
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖1𝑗1
𝑑1

⋅
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖2𝑗2
𝑑2

) . (5.55)

This experiment is reproduced from [Torresani et al., 2013] using their publicly avail-
able energy model files2. It should be noted that in this model, the unary poten-
tials are subtracted by a large number to prevent occlusion. We refer the reader
to [Torresani et al., 2013] for further details.

For ease of comparison with the results reported in [Torresani et al., 2013], here we
also report the performance of each algorithm in terms of overall percentage of mis-
matches and frequency of reaching the global optimum. Results are given in Table 5.1.
One can observe that DD and ADGM always reached the global optima, but ADGM
did it hundreds times faster. Even the recent methods RRWM and MPM performed

1http://vasc.ri.cmu.edu/idb/html/motion/index.html
2http://www.cs.dartmouth.edu/~lorenzo/Papers/tkr_pami13_data.zip.

http://vasc.ri.cmu.edu/idb/html/motion/index.html
http://www.cs.dartmouth.edu/~lorenzo/Papers/tkr_pami13_data.zip

46 chapter 5. alternating direction graph matching

table 5.1 Results on the House and Hotel sequences using Pairwise Model A.

Methods Error (%) Global optimum (%) Time (s)

House

MPM 42.32 0 0.02
RRWM 90.51 0 0.01
IPFP 87.30 0 0.02
SMAC 81.11 0 0.18
DD 0 100 14.20
ADGM 0 100 0.03

Hotel

MPM 21.49 44.80 0.02
RRWM 85.05 0 0.01
IPFP 85.37 0 0.02
SMAC 71.33 0 0.18
DD 0.19 100 13.57
ADGM 0.19 100 0.02

poorly on this model (only MPM produced acceptable results). Also, we notice a dra-
matic decrease in performance of SMAC and IPFP compared to the results reported
in [Torresani et al., 2013]. We should note that the above potentials, containing both
positive and negative values, are defined for a minimization problem. It was unclear
how those maximization solvers were used in [Torresani et al., 2013]. For the reader
to be able to reproduce the results, we make our software publicly available.

Pairwise Model B

In this experiment, we match all possible pairs of the sequence with the baseline (i.e.
the separation between frames, e.g. the baseline between frame 5 and frame 105 is 100)
varying from 10 to 100 by intervals of 10. For each pair, we match 10, 20 and 30 points
in the first image to 30 points in the second image. We set the unary terms to 0 and
compute the pairwise terms as

F2
𝑖𝑗 = exp (−∣‖ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖1𝑗1‖ − ‖ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖2𝑗2‖∣/𝜎2) , (5.56)

where 𝜎2 = 2500. It should be noted that the above pairwise terms are computed for
every pair (𝑖1, 𝑗1) and (𝑖2, 𝑗2), i.e. the graphs are fully connected. This experiment has
been performed on the House sequence in previous work, including [Cho et al., 2010]
and [Nguyen et al., 2015].

We report the averaged normalized objective value (i.e. matching score) and the
averaged accuracy for each algorithm in Figure 5.2 for the House sequence. Qualitative
results are shown in Figure 5.3. Overall, one can observe that ADGM performed best
in terms of both objective value and accuracy.

We also performed the same experiments for the Hotel sequence and observed
similar results. The reader is referred to Appendix A.2.1, Figure A.1 for more details,
including the running time for each algorithm.

5.4. experiments 47

20 40 60 80 100

Baseline

0.99

0.995

1
M

a
tc

h
in

g
 S

c
o

re

MPM
RRWM
IPFP
SMAC
ADGM

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

MPM
RRWM
IPFP
SMAC
ADGM

(a) 30 vs. 30 points

20 40 60 80 100

Baseline

0.95

1

1.05

M
a

tc
h

in
g

 S
c
o

re

MPM
RRWM
IPFP
SMAC
ADGM

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

MPM
RRWM
IPFP
SMAC
ADGM

(b) 20 vs. 30 points

20 40 60 80 100

Baseline

0.9

1

1.1

M
a

tc
h

in
g

 S
c
o

re

MPM
RRWM
IPFP
SMAC
ADGM

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

MPM
RRWM
IPFP
SMAC
ADGM

(c) 10 vs. 30 points

figure 5.2 Results on the House sequence using Pairwise Model B.

(a) 20 vs. 30 points (10 outliers) (b) MPM 15/20 (352.4927)

(c) RRWM 15/20 (352.4927) (d) IPFP 5/20 (316.9299)

(e) SMAC 12/20 (315.0426) (f) ADGM 18/20 (353.3569)

figure 5.3 Qualitative results on the House sequence using Pairwise Model B. The number
of correct matches and the objective values are displayed. Ground-truth objective value is
343.1515. (Best viewed in color.)

Third-order Model

This experiment has the same settings as the previous one, but here we use a third-
order model. We set the unary and pairwise terms to 0 and compute the potentials
when matching two triples of points (𝑖1, 𝑗1, 𝑘1) and (𝑖2, 𝑗2, 𝑘2) as

F3
𝑖𝑗𝑘 = exp (−∥𝑓𝑖1𝑗1𝑘1

− 𝑓𝑖2𝑗2𝑘2
∥2
2
/𝛾) , (5.57)

48 chapter 5. alternating direction graph matching

where 𝑓𝑖𝑗𝑘 is a feature vector composed of the angles of the triangle (𝑖, 𝑗, 𝑘), and 𝛾 is
the mean of all squared distances. This model was proposed in [Duchenne et al., 2011].

We report the results for the House sequence in Figure 5.4, and refer the reader to
Appendix A.2.1 for the Hotel sequence. One can observe that ADGM1 and ADGM2
achieved quite similar performance, both were competitive with BCAGM while out-
performed all the other methods.

20 40 60 80 100

Baseline

0.6

0.7

0.8

0.9

1

M
a

tc
h

in
g

 S
c
o

re

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(a) 30 vs. 30 points

20 40 60 80 100

Baseline

0.5

0.6

0.7

0.8

0.9

1

M
a

tc
h

in
g

 S
c
o

re
HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(b) 20 vs. 30 points

20 40 60 80 100

Baseline

0.2

0.4

0.6

0.8

1

1.2

1.4

M
a

tc
h

in
g

 S
c
o

re

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(c) 10 vs. 30 points

figure 5.4 Results on the House sequence using Third-order Model.

5.4.2 Cars and Motorbikes dataset

The Cars and Motorbikes dataset was introduced in [Leordeanu et al., 2012] and has
been used in previous work for evaluating graph matching algorithms. It consists of 30
pairs of car images and 20 pairs of motorbike images with different shapes, view-points
and scales. Each pair contains both inliers (chosen manually) and outliers (chosen
randomly). For each pair of images in this dataset, we keep all inliers in both images
and randomly add outliers to the second image.

The first experiment that we performed was applying Pairwise Model B (c.f . Sec-
tion 5.4.1). However, we obtained unsatisfactory matching results, as shown in Ap-
pendix A.2.2, Figure A.7. Therefore, inspired by the model in [Torresani et al., 2013],
we propose below a new model that is very simple yet very suited to matching real-
world images.

Pairwise Model C

We set the unary terms to 0 and compute the pairwise terms as

F2
𝑖𝑗 = 𝜂𝛿 + (1 − 𝜂)1 − cos 𝛼

2 , (5.58)

5.4. experiments 49

0 10 20 30 40

Outliers

0.2

0.4

0.6

0.8

1
M

a
tc

h
in

g
 S

c
o
re

MPM
RRWM
IPFP
SMAC
ADGM

0 10 20 30 40

Outliers

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

MPM
RRWM
IPFP
SMAC
ADGM

0 10 20 30 40

Outliers

2

4

6

8

10

12

R
u
n
n
in

g
 T

im
e

MPM
RRWM
IPFP
SMAC
ADGM

(a) Cars

0 10 20 30 40

Outliers

0.2

0.4

0.6

0.8

1

M
a
tc

h
in

g
 S

c
o
re

MPM
RRWM
IPFP
SMAC
ADGM

0 10 20 30 40

Outliers

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

MPM
RRWM
IPFP
SMAC
ADGM

0 10 20 30 40

Outliers

2

4

6

8

10

R
u
n
n
in

g
 T

im
e

MPM
RRWM
IPFP
SMAC
ADGM

(b) Motorbikes

figure 5.5 Results on the Cars and Motorbikes dataset using Pairwise Model C.

where 𝜂 ∈ [0, 1] is a weight constant and 𝛿,𝛼 are computed from 𝑑1 = ‖ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖1𝑗1‖ and
𝑑2 = ‖ ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖2𝑗2‖ as

𝛿 = |𝑑1 − 𝑑2|
𝑑1 + 𝑑2

, cos 𝛼 =
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖1𝑗1
𝑑1

⋅
⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖2𝑗2
𝑑2

. (5.59)

Intuitively, F2
𝑖𝑗 computes the geometric agreement between ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖1𝑗1 and ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗𝑖2𝑗2, in terms of

both length and direction.
The above potentials measure the dissimilarity between the edges, as thus the

corresponding graph matching problem is a minimization one. Pairwise potentials
based on both length and angle were previously proposed in [Leordeanu et al., 2012,
Torresani et al., 2013] and [Zhou and De la Torre, 2012]. However, ours are the sim-
plest to compute. In this experiment, we set 𝜂 = 0.5.

As we observed that this model is quite robust to outliers, we allowed the number
of outliers to vary from 0 to 40 for every image pair. We report the average objective
value and average matching accuracy for each method in Figure 5.5. Qualitative results
are also given in Figure 5.6. One can observe that ADGM completely outperformed
all the other methods.

Third-order Model

We use the same third-order model as in the House and Hotel experiments, and we
allow the number of outliers to vary from 0 to 16, by intervals of 2.

Quantitative results are reported in Figure 5.7 and qualitative results are given in
Figure 5.8. ADGM performed also very well on this dataset. On Cars, both ADGM1
and ADGM2 achieved better objective values than BCAGM in 7/9 cases. On Mo-
torbikes, ADGM1 beat BCAGM in 5/9 cases and had equivalent performance in 1/9
cases; ADGM2 beat BCAGM in 8/9 cases. Overall, one can conclude that ADGM

50 chapter 5. alternating direction graph matching

(a) 46 vs. 66 points (b) MPM 13/46 (966.23) (c) RRWM 6/46 (988.09)

(d) IPFP 35/46 (1038.40) (e) SMAC 11/46 (1028.80) (f) ADGM 46/46 (1043.07)

figure 5.6 Qualitative results on Motorbikes using Pairwise Model C. The number of
correct matches and the objective values are displayed. Ground-truth objective value is 1043.07.
(Best viewed in color.)

0 5 10 15

Outliers

0.4

0.6

0.8

1

1.2

M
a

tc
h

in
g

 S
c
o

re

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

0 5 10 15

Outliers

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

0 5 10 15

Outliers

10

20

30

40

R
u

n
n

in
g

 T
im

e

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(a) Cars

0 5 10 15

Outliers

0.4

0.6

0.8

1

M
a

tc
h

in
g

 S
c
o

re

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

0 5 10 15

Outliers

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

0 5 10 15

Outliers

5

10

15

20

25

R
u

n
n

in
g

 T
im

e

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(b) Motorbikes

figure 5.7 Results on the Cars and Motorbikes dataset using Third-order Model.

(a) 25 pts vs 36 pts (9 outliers) (b) PGM 4/25 (337.8194) (c) RRWHM 3/25 (1409.832)

(d) BCAGM 15/25 (1713.487) (e) ADGM1 25/25
(2161.5354)

(f) ADGM2 25/25
(2161.5354)

figure 5.8 Qualitative results on Cars using Third-order Model. The number of correct
matches and the objective values are displayed. Ground-truth objective value is 2161.5354.
(Best viewed in color.)

algorithms produced the best performance.

5.5. conclusion 51

5.5 conclusion
We have presented Alternating Direction Graph Matching (ADGM), a general decom-
position framework for solving graph and hypergraph matching. This framework is
very flexible, includes an infinite number of particular cases, and can be applied to
models of arbitrary order with arbitrary potentials. Two examples of ADGM were
implemented and evaluated. The results demonstrated that they outperform existing
pairwise methods and competitive with the state-of-the-art higher-order methods.

6
Nonconvex Continuous Relaxation of MAP

Inference

In this chapter, we study a nonconvex continuous relaxation of MAP inference in
discrete Markov random fields (MRFs). We show that for arbitrary MRFs, this re-
laxation is tight, and a discrete stationary point of it can be easily reached by a
simple block coordinate descent algorithm. In addition, we study the resolution of
this relaxation using popular gradient methods, and further propose a more effec-
tive solution using a multilinear decomposition framework based on the alternating
direction method of multipliers (ADMM). Experiments on many real-world problems
demonstrate that the proposed ADMM significantly outperforms other nonconvex re-
laxation based methods, and compares favorably with state-of-the-art MRF optimiza-
tion algorithms in different settings. A preliminary version of this work was published
in [Lê-Huu and Paragios, 2018].

6.1 introduction
We have seen in Chapter 2 that MAP inference methods can be grouped into 4 classes:
message passing, move making, combinatorial, and convex relaxation. Viewing from a
higher level, these methods can also be grouped into two bigger classes: (a) methods
that stay in the discrete domain, or (b) methods that move into the continuous domain
by solving convex relaxations.

While convex relaxations allow us to benefit from the tremendous convex optimiza-
tion literature, and can be solved exactly in polynomial time, they often only produce
real-valued solutions that need a further rounding step to be converted into integer
ones, which can reduce significantly the accuracy if the relaxations are not tight. On
the contrary, discrete methods tackle directly the original problem, but due to its
combinatorial nature, this is a very challenging task.

In this chapter, we consider a different approach. We present a nonconvex con-
tinuous relaxation to the MAP inference problem for arbitrary (pairwise or higher-
order) discrete MRFs. Based on a block coordinate descent (BCD) rounding scheme
that is guaranteed not to increase the energy over continuous solutions, we show
that this nonconvex relaxation is tight and is actually equivalent to the original dis-
crete problem. It should be noted that the same relaxation was previously discussed
in [Ravikumar and Lafferty, 2006] but only for pairwise MRFs and, more importantly,
was not directly solved. The significance of this (QP) nonconvex relaxation has re-

53

54 chapter 6. nonconvex continuous relaxation of map inference

mained purely theoretical since then. In this paper, we demonstrate it to be of great
practical significance as well. In addition to establishing theoretical properties of this
nonconvex relaxation for arbitrary MRFs based on BCD, we study popular generic
optimization methods such as projected gradient descent [Bertsekas, 1999] and Frank-
Wolfe algorithm [Frank and Wolfe, 1956] for solving it. These methods, however, are
empirically shown to suffer greatly from the trivial hardness of nonconvex optimization:
getting stuck in bad local minima. To overcome this difficulty, we propose a multilin-
ear decomposition solultion based on the alternating direction method of multipliers
(ADMM). Experiments on different real-world problems show that the proposed non-
convex based approach can outperform many of the previously mentioned methods in
different settings.

The remainder of this chapter is organized as follows. First, we present the nec-
essary mathematical notation and formulation for our approach in Section 6.2. Next,
in Section 6.3, we introduce the nonconvex continuous relaxation of MAP inference,
and prove that it is tight. The resolution of this relaxation using gradient methods
and ADMM are presented in Section 6.4, while a theoretical convergence analysis for
these methods are given in Section 6.5. Section 6.6 presents experimental validation
and comparison with state-of-the-art methods. Finally, the last section concludes the
chapter.

6.2 notation and problem reformulation

Let G be a graph of 𝑛 nodes with the set of cliques C. We have seen in Chapter 2 that
the MAP inference problem of an MRF that factorizes according to G is equivalent to
minimizing the following MRF energy:

𝑒(s) = ∑
𝐶∈C

𝑓𝐶(s𝐶), (6.1)

where 𝑓𝐶 is the log potential function of the clique 𝐶 ∈ C. The 𝑛 underlying random
variables 𝑆1,𝑆2,… ,𝑆𝑛 are supposed to take values in finite sets of labels (or states)
S1,S2,… ,S𝑛, respectively. The variable s𝐶 ∈ S𝐶 ∶= ⨉𝑖∈𝐶 𝑆𝑖 denotes a joint label
assigned to the nodes in 𝐶, and the variable s ∈ S ∶= S1 ×S2 × ⋯ ×S𝑛 denotes a joint
label assigned to all nodes. Here we have decided to use the variable name s instead
of x (as in Chapter 2) because we would like to reserve x as the variables for our main
optimization problems in this chapter.

It is often convenient to rewrite the energy (6.1) using the indicator functions of
labels assigned to each node. Let V ⊂ C denote the set of nodes of the graph G. For
each 𝑖 ∈ V, let 𝑥𝑖 ∶ S𝑖 → {0, 1} be a function defined by

𝑥𝑖(𝑠) = {1 if the node 𝑖 takes the label 𝑠 ∈ S𝑖,

0 otherwise. (6.2)

It is easily seen that minimizing 𝑒(s) over S is equivalent to the following problem,

6.2. notation and problem reformulation 55

where we have rewritten 𝑒(s) as a function of {𝑥𝑖(⋅)}𝑖∈V :

min 𝐸(x) ∶= ∑
𝐶∈C

∑
s𝐶∈S𝐶

𝑓𝐶(s𝐶) ∏
𝑖∈𝐶

𝑥𝑖(𝑠𝑖),

s.t. ∑
𝑠∈S𝑖

𝑥𝑖(𝑠) = 1 ∀𝑖 ∈ V,

𝑥𝑖(𝑠) ∈ {0, 1} ∀𝑠 ∈ S𝑖,∀𝑖 ∈ V.

(6.3)

In the standard LP relaxation [Wainwright et al., 2005], the product ∏𝑖∈𝐶 𝑥𝑖(𝑠𝑖)
in (6.3) is replaced with new variables 𝑥𝐶(s𝐶), seen as the indicator function of the
joint label assigned to the clique 𝐶, and the following local consistency constraints are
added:

∑
𝑠𝐶\𝑖

𝑥𝐶(s𝐶) = 𝑥𝑖(𝑠𝑖) ∀𝑖 ∈ 𝐶,∀𝑠𝑖 ∈ S𝑖. (6.4)

In this work, we consider (6.3) but under a different formulation using tensors, just for
later convenience. The reader is referred to Section 3.2.1 for tensor-related notation.

For any node 𝑖, let x𝑖 = (𝑥𝑖(𝑠))𝑠∈S𝑖
be the vector composed of all possible values of

𝑥𝑖(𝑠). For a clique 𝐶 = (𝑖1, 𝑖2,… , 𝑖𝛼), the potential function 𝑓𝐶(𝑠1, 𝑠2,… , 𝑠𝛼), where
𝑠𝑑 ∈ S𝑖𝑑

∀1 ≤ 𝑑 ≤ 𝛼, has 𝛼 indices and thus can be seen as an 𝛼th-order tensor of
dimensions ∣S𝑖1

∣ × ∣S𝑖2
∣ × ⋯ × ∣S𝑖𝛼

∣. Let F𝐶 denote this tensor. Recall that the energy
term corresponding to 𝐶 in (6.3) is

∑
𝑠1,𝑠2,…,𝑠𝛼

𝑓𝐶(𝑠1, 𝑠2,… , 𝑠𝛼)𝑥𝑖1
(𝑠1)𝑥𝑖2

(𝑠2) ⋯ 𝑥𝑖𝛼
(𝑠𝛼), (6.5)

which is clearly F𝐶 ⨂{1,2,…,𝛼} {x𝑖1
,x𝑖2

,… ,x𝑖𝛼
}. For clarity purpose, we omit the

index set and write simply F𝐶 ⨂ {x𝑖1
,x𝑖2

,… ,x𝑖𝛼
}, or equivalently F𝐶 ⨂ {x𝑖}𝑖∈𝐶,

with the assumption that each vector is multiplied at the right mode (which is the
same as its position in the clique). Therefore, the energy in (6.3) becomes

𝐸(x) = ∑
𝐶∈C

F𝐶 ⨂ {x𝑖}𝑖∈𝐶 . (6.6)

Problem (6.3) can then be rewritten as

min 𝐸(x)
s.t. x ∈ X ∶= {x ∣ 1⊤x𝑖 = 1,x𝑖 ∈ {0, 1}|S𝑖| ∀𝑖 ∈ V} . (mrf)

In the next section, we study a continuous relaxation of this problem.

56 chapter 6. nonconvex continuous relaxation of map inference

6.3 tight continuous relaxation of map inference
By simply relaxing the constraints x𝑖 ∈ {0, 1}|S𝑖| in (mrf) to x𝑖 ≥ 0, we obtain the
following nonconvex relaxation:

min 𝐸(x)
s.t. x ∈ X ∶= {x ∣ 1⊤x𝑖 = 1,x𝑖 ≥ 0 ∀𝑖 ∈ V} . (rlx)

A clear advantage of this relaxation over the LP relaxation is its compactness.
Indeed, if all nodes have the same number of labels 𝑆, then the number of variables
and number of constraints of this relaxation are respectively |V|𝑆 and |V|, while for
the LP relaxation these numbers are respectively O(|C|𝑆𝐷) and O(|C|𝑆𝐷), where 𝐷 is
the degree of the MRF.

In this section some interesting properties of (rlx) are presented. In particular,
we prove that this relaxation is tight and show how to obtain a discrete stationary
point for it. Let us first propose a simple BCD algorithm to solve (rlx). Relaxation
tightness and other properties follow naturally.

Let 𝑛 = |V| be the number of nodes. The vector x can be seen as an 𝑛-block
vector, where each block corresponds to each node: x = (x1,x2,… ,x𝑛). Starting from
an initial solution, BCD solves (rlx) by iteratively optimizing 𝐸 over x𝑖 while fixing
all the other blocks. Note that our subsequent analysis is still valid for other variants
of BCD, such as updating in a random order, or using subgraphs such as trees (instead
of single nodes) as update blocks. To keep the presentation simple, however, we choose
to update in the deterministic order 𝑖 = 1, 2,… ,𝑛. Each update step consists of solving

x(𝑘+1)
𝑖 ∈ argmin

1⊤x𝑖=1,x𝑖≥0
𝐸(x(𝑘+1)

[1,𝑖−1],x𝑖,x
(𝑘)
[𝑖+1,𝑛]). (6.7)

From (6.6) it is clear that for the cliques that do not contain the node 𝑖, their
corresponding energy terms are independent of x𝑖. Thus, if C(𝑖) denotes the set of
cliques containing 𝑖, then

𝐸(x) = ∑
𝐶∈C(𝑖)

F𝐶 ⨂ {x𝑗}𝑗∈𝐶 + cst(x𝑖) (6.8)

= c⊤
𝑖 x𝑖 + cst(x𝑖), (6.9)

where cst(x𝑖) is a term that does not depend on x𝑖, and

c𝑖 = ∑
𝐶∈C(𝑖)

F𝐶 ⨂ {x𝑗}𝑗∈𝐶\𝑖 ∀𝑖 ∈ V. (6.10)

The update (6.7) becomes minimizing c⊤
𝑖 x𝑖, which can be solved using the following

straightforward lemma.

Lemma 6.1. Let c = (𝑐1,… , 𝑐𝑝) ∈ R𝑝, 𝛼 = argmin𝛽 𝑐𝛽. The problem min1⊤u=1,u≥0 c⊤u
has an optimal solution u∗ = (𝑢∗

1,… ,𝑢∗
𝑝) defined by 𝑢∗

𝛼 = 1 and 𝑢∗
𝛽 = 0 ∀𝛽 ≠ 𝛼.

According to this lemma, we can solve (6.7) as follows: compute c𝑖 using (6.10),

6.3. tight continuous relaxation of map inference 57

find the position 𝑠 of its smallest element, set 𝑥𝑖(𝑠) = 1 and 𝑥𝑖(𝑟) = 0 ∀𝑟 ≠ 𝑠. Clearly,
the solution x𝑖 returned by this update step is discrete. It is easily seen that this
update is equivalent to assigning the node 𝑖 with the following label:

𝑠𝑖 = argmin
𝑠∈S𝑖

∑
𝐶∈C(𝑖)

∑
𝑠𝐶\𝑖∈S𝐶\𝑖

𝑓𝐶(𝑠𝐶\𝑖, 𝑠) ∏
𝑗∈𝐶\𝑖

𝑥𝑗(𝑠𝑗). (6.11)

A sketch of the BCD algorithm is given in Algorithm 6.1.

algorithm 6.1 Block coordinate descent for solving (rlx).
1: Initialization: 𝑘 ← 0, x(0) ∈ X .
2: for 𝑖 = 1, 2,… ,𝑛 do
3: Update x(𝑘+1)

𝑖 as a (discrete) solution to (6.7).
4: If x(𝑘)

𝑖 is also a discrete solution to (6.7), then set x(𝑘+1)
𝑖 ← x(𝑘)

𝑖 .
5: end for
6: Let 𝑘 ← 𝑘 + 1 and go to Step 2 until x(𝑘+1) = x(𝑘).

Remark. Starting from a discrete solution (or starting from the second outer itera-
tion), BCD is equivalent to Iterated Conditional Modes (ICM) [Besag, 1986]. Note,
however, that BCD is designed to solve the continuous problem (rlx), whereas ICM
solves directly the discrete problem (mrf).

We have the following convergence result for BCD.

Proposition 6.1. For any initial solution x(0), BCD (Algorithm 6.1) converges to a
discrete fixed point.

Proof. Clearly, BCD stops when there is no strict descent of the energy. Since the
solution at each iteration is discrete and the number of nodes as well as the number of
labels are finite, BCD must stop after a finite number of iterations. Suppose that this
number is 𝑘: 𝐸(x(𝑘+1)) = 𝐸(x(𝑘)). At each inner iteration (i.e. Step 2 in Algorithm 6.1),
the label of a node is changed to a new label only if the new label can produce strictly
lower energy. Therefore, the labeling of x(𝑘+1) and x(𝑘) must be the same because they
have the same energy, which implies x(𝑘+1) = x(𝑘), i.e. x(𝑘) is a fixed point.

We will see in Section 6.5 that the fixed point produced by BCD is also a stationary
point of (rlx). Next we state and prove the main result of this section.

Theorem 6.1. The continuous relaxation (rlx) is tight.

Proof. Since 𝐸(x) is continuous and both X and X are closed, according to the Weier-
strass extreme value theorem, both (mrf) and (rlx) must attain a (global) minimum,
which we denote by xmrf and xrlx, respectively. Obviously 𝐸(xrlx) ≤ 𝐸(xmrf). Now
let x∗ be the solution of BCD with initialization x(0) = xrlx. On the one hand, since
BCD is a descent algorithm, we have 𝐸(x∗) ≤ 𝐸(xrlx). On the other hand, since the
solution returned by BCD is discrete, we have x∗ ∈ X , yielding 𝐸(xmrf) ≤ 𝐸(x∗).
Putting it all together, we get 𝐸(x∗) ≤ 𝐸(xrlx) ≤ 𝐸(xmrf) ≤ 𝐸(x∗), which implies
𝐸(xrlx) = 𝐸(xmrf), i.e. (rlx) is tight.

58 chapter 6. nonconvex continuous relaxation of map inference

Remark. The above proof is still valid if BCD performs only the first outer itera-
tion. This means that one can obtain xmrf from xrlx (both have the same energy) in
polynomial time, i.e. (rlx) and (mrf) can be seen as equivalent. This result was pre-
viously presented in [Ravikumar and Lafferty, 2006] for pairwise MRFs, here we have
extended it to arbitrary MRFs.

While BCD is guaranteed to reach a discrete stationary point of (rlx), there is no
guarantee on the quality of such point. In practice, as shown later in the experiments,
the performance of BCD compares poorly with state-of-the-art MRF optimization
methods. In fact, the key challenge in nonconvex optimization is that there might be
many local minima, and as a consequence, algorithms can easily get trapped in bad
ones, even from multiple initializations.

In the next section, we study the resolution of (rlx) using more sophisticated
methods, where we come up with a multilinear decomposition ADMM that can reach
very good local minima (many times even the global ones) on different real-world
models.

6.4 solving the tight continuous relaxation
Since the MRF energy (6.6) is differentiable, it is worth investigating whether gradient
methods can effectively optimize it. We present two such methods in Section 6.4.1.
Then our proposed ADMM based algorithm is presented in Section 6.4.2. We provide
a convergence analysis for all methods in Section 6.5.

6.4.1 Gradient methods

Projected gradient descent (PGD) and Frank-Wolfe algorithm (FW) are among the
most popular methods for solving constrained optimization. We refer to [Bertsekas, 1999]
for an excellent presentation of these methods. Here we briefly describe how to use
them to solve (rlx).

algorithm 6.2 Projected gradient descent for solving (rlx).
1: Initialization: 𝑘 ← 0, x(0) ∈ X .
2: Compute 𝛽(𝑘) and find the projection

s(𝑘) ← argmin
s∈X

∥x(𝑘) − 𝛽(𝑘)∇𝐸(x(𝑘)) − s∥2
2. (6.12)

3: Compute 𝛼(𝑘) and update

x(𝑘+1) ← x(𝑘) + 𝛼(𝑘)(s(𝑘) − x(𝑘)). (6.13)

Let 𝑘 ← 𝑘 + 1 and go to Step 2.

The general steps are sketched in Algorithms 6.2 and 6.3. We discuss how to solve
the subproblems (6.12) and (6.14), and how to update the step-sizes 𝛼(𝑘) and 𝛽(𝑘).

6.4. solving the tight continuous relaxation 59

algorithm 6.3 Frank-Wolfe algorithm for solving (rlx).
1: Initialization: 𝑘 ← 0, x(0) ∈ X .
2: Find

s(𝑘) ← argmin
s∈X

s⊤∇𝐸(x(𝑘)). (6.14)

3: Compute 𝛼(𝑘) and update

x(𝑘+1) ← x(𝑘) + 𝛼(𝑘)(s(𝑘) − x(𝑘)). (6.15)

Let 𝑘 ← 𝑘 + 1 and go to Step 2.

Solving the subproblems

Clearly, in the PGD subproblem (6.12), s(𝑘) is the projection of x(𝑘) − 𝛽(𝑘)∇𝐸(x(𝑘))
onto X , defined in (rlx) as X ∶= {x ∣ 1⊤x𝑖 = 1,x𝑖 ≥ 0 ∀𝑖 ∈ V}. Since the constraint
on one node is independent of another, the above projection is reduced to indepen-
dent projections onto the simplex {x𝑖 | 1⊤x𝑖 = 1,x𝑖 ≥ 0} for each node 𝑖. We have
seen in Chapter 5 (Section 5.3) how to solve these simplex projections. Again in our
implementation we used the fast algorithm introduced in [Condat, 2016] for this task.
As we will see later in Section 6.4.2, similar subproblems arise again when applying
ADMM to solve (rlx).

Similar reasoning applies to the FW subproblem (6.14), which can also be reduced
to solving independently problems on each node:

s(𝑘)
𝑖 = argmin

1⊤s𝑖=1,s𝑖≥0
s⊤

𝑖
𝜕𝐸(x(𝑘))

𝜕x𝑖
∀𝑖 ∈ V, (6.16)

The above is similar to the BCD update step (6.7) and thus can also be solved using
Lemma 6.1.

Updating the step-sizes

The step-sizes 𝛼(𝑘) and 𝛽(𝑘) can follow different update rules [Bertsekas, 1999]. The
most straightforward is the diminishing rule, which has for example:

𝛼(𝑘) = 1, 𝛽(𝑘) = 1√
𝑘 + 1 for PGD, (6.17)

𝛼(𝑘) = 2
𝑘 + 2 for FW. (6.18)

However, in practice, these step-sizes often lead to slow convergence.1 A better alter-
native is the following line-search:

𝛼(𝑘) = argmin
0≤𝛼≤1

𝐸 (x(𝑘) + 𝛼r(𝑘)) , (6.19)

1Indeed, we implemented different step-size update rules such as diminishing or Armijo ones.
However, we found that these rules do not work as well as line-search (the diminishing rule converges
slowly while the search in the Armijo rule is expensive). We refer to [Bertsekas, 1999, Chapter 2] for
further details on these rules.

60 chapter 6. nonconvex continuous relaxation of map inference

where r(𝑘) = s(𝑘) − x(𝑘). For PGD 𝛽(𝑘) is implicitly set to 1.
Clearly, the term 𝐸 (x(𝑘) + 𝛼r(𝑘)) is a 𝐷th-degree polynomial of 𝛼 (recall that 𝐷 is

the degree of the MRF), which we denote 𝑝(𝛼). If we can determine the coefficients of
𝑝(𝛼), then (6.19) can be solved efficiently. In particular, if 𝐷 ≤ 3 then (6.19) has simple
closed-form solutions (since the derivative of a 3rd-order polynomial is a 2nd-order one,
which has simple closed-form solutions). For 𝐷 > 3 we find that it is efficient enough
to perform an exhaustive search over the interval [0, 1] (with some increment value 𝛿)
to find the best value of 𝛼. In our implementation we used 𝛿 = 0.0001.

Now let us describe how to find the coefficients of 𝑝(𝛼).
For pairwise MRFs (i.e. 𝐷 = 2), the energy is

𝐸pairwise(x) = ∑
𝑖∈V

F⊤
𝑖 x𝑖 + ∑

𝑖𝑗∈E
x⊤

𝑖 F𝑖𝑗x𝑗, (6.20)

where E is the set of edges, and thus

𝑝(𝛼) = 𝐸pairwise(x + 𝛼r) = ∑
𝑖∈V

F⊤
𝑖 (x𝑖 + 𝛼r𝑖) + ∑

𝑖𝑗∈E
(x𝑖 + 𝛼r𝑖)⊤F𝑖𝑗(x𝑗 + 𝛼r𝑗) (6.21)

= 𝐴𝛼2 + 𝐵𝛼 + 𝐶, (6.22)

where

𝐴 = ∑
𝑖𝑗∈E

r⊤
𝑖 F𝑖𝑗r𝑗 (6.23)

𝐵 = ∑
𝑖∈V

F⊤
𝑖 r𝑖 + ∑

𝑖𝑗∈E
(x⊤

𝑖 F𝑖𝑗r𝑗 + r⊤
𝑖 F𝑖𝑗x𝑗) (6.24)

𝐶 = 𝐸pairwise(x). (6.25)

For higher-order MRFs, the analytical expressions of the polynomial coefficients
are very complicated. Instead, we can find them numerically as follows. Since 𝑝(𝛼)
is a 𝐷th-degree polynomial, it has 𝐷 + 1 coefficients, where the constant coefficient is
already known:

𝑝(0) = 𝐸(x(𝑘)). (6.26)

It remains 𝐷 unknown coefficients, which can be computed if we have 𝐷 equations.
Indeed, if we evaluate 𝑝(𝛼) at 𝐷 different random values of 𝛼 (which must be different
from 0), then we obtain 𝐷 linear equations whose variables are the coefficients of 𝑝(𝛼).
Solving this system of linear equations we get the values of these coefficients. This
procedure requires 𝐷 evaluations of the energy 𝐸 (x(𝑘) + 𝛼r(𝑘)), but we find that it is
efficient enough in practice.

6.4.2 Alternating direction method of multipliers

In this section, we will apply ADMM to solve (rlx). The idea is the same as the
ADGM algorithms presented in Chapter 5. However, to make ADMM efficient and
effective for MAP inference, we add the following important practical contributions:
(1) We formulate the problem using individual potential tensors at each clique (in-
stead of a single large tensor as in ADGM), which allows a better exploitation of the

6.4. solving the tight continuous relaxation 61

problem structure, as computational quantities at each node can be cached based on
its neighboring nodes, yielding significant speed-ups; (2) We discuss how to choose the
decomposed constraint sets that result in the best accuracy for MAP inference (note
that the constraint sets for graph matching are different). In addition, we present a
convergence analysis for the proposed method in Section 6.5.

For the reader to quickly get the idea, let us start with an example of a second-
order2 MRF:

𝐸second(x) = ∑
𝑖∈V

F𝑖 ⨂ x𝑖 + ∑
𝑖𝑗∈C

F𝑖𝑗 ⨂ {x𝑖,x𝑗} + ∑
𝑖𝑗𝑘∈C

F𝑖𝑗𝑘 ⨂ {x𝑖,x𝑗,x𝑘} . (6.27)

Instead of dealing directly with this high degree polynomial, which is highly challeng-
ing, the idea is to decompose x into different variables that can be handled separately
using Lagrangian relaxation. To this end, consider the following multilinear function:

𝐹second(x,y, z) = ∑
𝑖∈V

F𝑖 ⨂ x𝑖 + ∑
𝑖𝑗∈C

F𝑖𝑗 ⨂ {x𝑖,y𝑗} + ∑
𝑖𝑗𝑘∈C

F𝑖𝑗𝑘 ⨂ {x𝑖,y𝑗, z𝑘} .

(6.28)
Clearly, 𝐸second(x) = 𝐹second(x,x,x). Thus, minimizing 𝐸(x) is equivalent to mini-
mizing 𝐹second(x,y, z) under the constraints x = y = z, which can be relaxed using
Lagrangian based method such as ADMM.

Back to our general problem (rlx). Let 𝐷 denote the maximum clique size of the
corresponding MRF. Using the same idea as above for decomposing x into 𝐷 vectors
x1,x2,… ,x𝐷, let us define

𝐹(x1,… ,x𝐷) =
𝐷

∑
𝑑=1

∑
𝑖1…𝑖𝑑∈C

F𝑖1…𝑖𝑑
⨂ {x1

𝑖1
,… ,x𝑑

𝑖𝑑
} . (6.29)

Clearly, the energy (6.6) becomes 𝐸(x) = 𝐹(x,x,… ,x). It is straightforward to see
that (rlx) is equivalent to:

min 𝐹(x1,x2,… ,x𝐷)
s.t. A1x1 + ⋯ + A𝐷x𝐷 = 0,

x𝑑 ∈ X 𝑑, 𝑑 = 1,… ,𝐷,

(6.30)

where A1,… ,A𝐷 are constant matrices such that

A1x1 + ⋯ + A𝐷x𝐷 = 0 ⟺ x1 = ⋯ = x𝐷, (6.31)

and X 1,… ,X𝐷 are closed convex sets satisfying

X 1 ∩ X 2 ∩ ⋯ ∩ X𝐷 = X . (6.32)

Note that the linear constraint in (6.30) is a general way to enforce x1 = ⋯ = x𝐷 and
it has an infinite number of particular instances. For example, with suitable choices
of (A𝑑)1≤𝑑≤𝐷, this linear constraint can become either one of the following sets of

2Note that pairwise MRFs are also called first-order ones.

62 chapter 6. nonconvex continuous relaxation of map inference

constraints:

(cyclic) x𝑑−1 = x𝑑, 𝑑 = 2,… ,𝐷, (6.33)
(star) x1 = x𝑑, 𝑑 = 2,… ,𝐷, (6.34)
(symmetric) x𝑑 = (x1 + ⋯ + x𝐷)/𝐷 ∀𝑑. (6.35)

We call such an instance a decomposition, and each decomposition will lead to a dif-
ferent algorithm.

The augmented Lagrangian of (6.30) is defined by:

𝐿𝜌(x1,… ,x𝐷,y) = 𝐹(x1,… ,x𝐷) + y⊤ (
𝐷

∑
𝑑=1

A𝑑x𝑑) + 𝜌
2∥

𝐷
∑
𝑑=1

A𝑑x𝑑∥
2

2
. (6.36)

Recall that standard ADMM (Chapter 4) solves (6.30) by iterating:

1. For 𝑑 = 1, 2,… ,𝐷: update x𝑑(𝑘+1) as a solution of

min
x𝑑∈X𝑑

𝐿𝜌(x[1,𝑑−1](𝑘+1)
,x𝑑,x[𝑑+1,𝐷](𝑘)

,y(𝑘)). (6.37)

2. Update y:

y(𝑘+1) = y(𝑘) + 𝜌 (
𝐷

∑
𝑑=1

A𝑑x𝑑(𝑘+1)) . (6.38)

The algorithm converges if the following residual converges to 0 as 𝑘 → +∞:

𝑟(𝑘) = ∥
𝐷

∑
𝑑=1

A𝑑x𝑑(𝑘)∥
2

2
+

𝐷
∑
𝑑=1

∥x𝑑(𝑘) − x𝑑(𝑘−1)∥
2

2
. (6.39)

We show how to solve the x update step (6.37) (the y update (6.38) is trivial).
Updating x𝑑 consists of minimizing the augmented Lagrangian (6.36) with respect to
the 𝑑th block while fixing the other blocks.

Since 𝐹(x1,… ,x𝐷) is linear with respect to each block x𝑑 (c.f . (6.29)), it must
have the form

𝐹(x[1,𝑑−1],x𝑑,x[𝑑+1,𝐷]) = ⟨p𝑑,x𝑑⟩ + cst(xd), (6.40)

where cst(xd) is a term that does not depend on x𝑑. Indeed, it can be shown (detailed
in the appendix) that p𝑑 = (p𝑑

1,… ,p𝑑
𝑛) where

p𝑑
𝑖 =

𝐷
∑
𝛼=𝑑

⎛⎜
⎝

∑
𝑖1…𝑖𝑑−1𝑖𝑖𝑑+1…𝑖𝛼∈C

F𝑖1𝑖2…𝑖𝛼
⨂ {x1

𝑖1
,… ,x𝑑−1

𝑖𝑑−1
,x𝑑+1

𝑖𝑑+1
,… ,x𝛼

𝑖𝛼
} ⎞⎟

⎠
∀𝑖 ∈ V.

(6.41)
While the expression of p𝑑

𝑖 looks complicated, its intuition is simple: for a given node
𝑖 and a degree 𝑑, we search for all cliques satisfying two conditions: (a) their sizes are
bigger than or equal to 𝑑, and (b) the node 𝑖 is at the 𝑑th position of these cliques;
then for each clique, we multiply its potential tensor with all its nodes except node 𝑖,
and sum all these products together.

6.4. solving the tight continuous relaxation 63

Denote

s𝑑 =
𝑑−1
∑
𝑐=1

A𝑐x𝑐 +
𝐷

∑
𝑐=𝑑+1

A𝑐x𝑐. (6.42)

Plugging (6.40) and (6.42) into (6.36) we get:

𝐿𝜌(x1,… ,x𝐷,y) = 𝜌
2∥A𝑑x𝑑∥2

2 + (p𝑑 + A𝑑⊤y + 𝜌A𝑑⊤s𝑑)⊤ x𝑑 + cst(xd). (6.43)

Therefore, the x update (6.37) becomes minimizing the quadratic function (6.43) (with
respect to x𝑑) over X 𝑑. With suitable decompositions, this problem can have a much
simpler form and can be efficiently solved. For example, if we choose the cyclic de-
composition (6.33), then this step is reduced to finding the projection of a vector onto
X 𝑑:

x𝑑(𝑘+1) = argmin
x𝑑∈X𝑑

∥x𝑑 − c𝑑(𝑘)∥
2

2
, (6.44)

where (c𝑑)1≤𝑑≤𝐷 are defined as follows (c.f . appendix):

c1(𝑘) = x2(𝑘) − 1
𝜌 (y2(𝑘) + p1(𝑘)) , (6.45)

c𝑑(𝑘) = 1
2 (x𝑑−1(𝑘+1) + x𝑑+1(𝑘)) + 1

2𝜌 (y𝑑(𝑘) − y𝑑+1(𝑘) − p𝑑(𝑘)) , 2 ≤ 𝑑 ≤ 𝐷 − 1, (6.46)

c𝐷(𝑘) = x𝐷−1(𝑘+1) + 1
𝜌 (y𝐷(𝑘) + p𝐷(𝑘)) . (6.47)

Here the multiplier y is the concatenation of (𝐷−1) vectors (y𝑑)2≤𝑑≤𝐷, corresponding
to (𝐷 − 1) constraints in (6.33).

Similar results can be obtained for other specific decompositions such as star (6.34)
and symmetric (6.35) as well. We refer to Appendix B.2.2 for more details. As we ob-
served very similar performance among these decompositions, only cyclic was included
for evaluation (Section 6.6).

The ADMM procedure are sketched in Algorithm 6.4.

algorithm 6.4 ADMM with general decomposition (6.30) for solving (rlx).

1: Initialization: 𝑘 ← 0, y(0) ← 0 and x𝑑(0) ∈ X 𝑑 for 𝑑 = 1,… ,𝐷.
2: for 𝑑 = 1, 2,… ,𝐷 do
3: Update x𝑑(𝑘+1) by solving (6.37) (i.e. minimizing (6.43) over X 𝑑).
4: end for
5: Update y(𝑘+1) using (6.38). Let 𝑘 ← 𝑘 + 1 and go to Step 2.

In practice, we found that the penalty parameter 𝜌 and the constraint sets (X 𝑑)1≤𝑑≤𝐷
can greatly affect the convergence as well as the solution quality of ADMM. Let us
address these together with other practical considerations.

Adaptive penalty We observed that small 𝜌 leads to slower convergence but often
better energy, and inversely for large 𝜌. To obtain a good trade-off, we use the same
adaptive scheme presented in Chapter 5 (Section 5.3.5): initialize 𝜌 at a small value 𝜌0
and run for 𝐼1 iterations, after that if no improvement of the residual 𝑟(𝑘) is achieved

64 chapter 6. nonconvex continuous relaxation of map inference

every 𝐼2 iterations, then we increase 𝜌 by a factor 𝛽. In addition, we stop increasing 𝜌
after it reaches some value 𝜌max, so that the convergence properties presented in the
next section still apply. In the experiments, we normalize all the potentials to [−1, 1]
and set 𝐼1 = 500, 𝐼2 = 500,𝛽 = 1.2, 𝜌0 = 0.001, 𝜌max = 100.

Constraint sets A trivial choice of (X 𝑑)1≤𝑑≤𝐷 that satisfies (6.32) is X 𝑑 = X ∀𝑑.
Then, (6.44) becomes projections onto the simplex {x𝑖 | 1⊤x𝑖 = 1,x𝑖 ≥ 0} for each
node 𝑖, which can be solved using e.g. the method introduced in [Condat, 2016]. How-
ever, we found that this choice often produces poor quality solutions, despite converging
quickly. The reason is that constraining all x𝑑

𝑖 to belong to a simplex will make them
reach consensus faster, but without being allowed to vary more freely, they tend to by-
pass good solutions. The idea is to use looser constraint sets, e.g. X+ ∶= {x | x ≥ 0},
for which (6.44) becomes simply x𝑑(𝑘+1) = max(c𝑑(𝑘)

, 0). We found that leaving only
one set as X yields the best accuracy. Therefore, in our implementation we set X 1 = X
and X 𝑑 = X+ ∀𝑑 ≥ 2.

Parallelization Since there is no dependency among the nodes in the constraint sets,
the projection (6.44) is clearly reduced to independent projections at each node. More-
over, at each iteration, the expensive computation (6.41) of p𝑑

𝑖 can also be performed
in parallel for all nodes. Therefore, the proposed ADMM is highly parallelizable.

Caching Significant speed-ups can be achieved by avoiding re-computation of un-
changed quantities. From (6.41) it is seen that p𝑑

𝑖 only depends on the decomposed
variables at the neighbors of 𝑖. Thus, if these variables have not changed from the last
iteration, then there is no need to recompute p𝑑

𝑖 in the current iteration. Similarly,
the projection (6.44) for x𝑑

𝑖 can be omitted if c𝑑
𝑖 is unchanged (c.f . (6.45)–(6.47)).

6.5 convergence analysis
In this section, we establish some convergence results for the presented methods. Since
the proofs of these results are rather long, they are given in Appendix B.

Definition 1 (Stationary point). Let 𝑓 ∶ R𝑑 → R be a continuously differentiable
function over a closed convex set M. A point u∗ is called a stationary point of the
problem minu∈M 𝑓(u) if and only if it satisfies

∇𝑓(u∗)⊤(u − u∗) ≥ 0 ∀u ∈ M. (6.48)

Note that (6.48) is a necessary condition for a point u∗ to be a local optimum. This
is a basic result and a proof can be found in e.g. [Bertsekas, 1999, Chapter 2].

Proposition 6.2. Let {x(𝑘)} be a sequence generated by BCD, PGD or FW (Algo-
rithms 6.1, 6.2 or 6.3) with line-search (6.19). Then every limit point3 of {x(𝑘)} is
stationary.

Proof. See Appendix B.1.3.
3A vector x is a limit point of a sequence {x(𝑘)} if there exists a subsequence of {x(𝑘)} that

converges to x.

6.5. convergence analysis 65

Next, we give a convergence result for ADMM.

Definition 2 (Karush-Kuhn-Tucker (KKT) conditions). A point (x∗1,x∗2,… ,x∗𝐷,y∗)
is said to be a KKT point of Problem (6.30) if it satisfies the following KKT conditions:

x∗𝑑 ∈ X 𝑑, 𝑑 = 1,… ,𝐷, (6.49)
A1x∗1 + ⋯ + A𝐷x∗𝐷 = 0, (6.50)
x∗𝑑 ∈ argmin

x𝑑∈X𝑑
{𝐹(x∗[1,𝑑−1],x𝑑,x∗[𝑑+1,𝐷]) + y∗⊤A𝑑x𝑑} . (6.51)

Note that (6.50) is equivalent to x∗1 = x∗2 = ⋯ = x∗𝐷 (because of (6.31)). There-
fore, any KKT point of (6.30) must have the form (x∗,… ,x∗,y∗) for some vector x∗

and y∗.

Proposition 6.3. Let {(x1(𝑘)
,… ,x𝐷(𝑘)

,y(𝑘))} be a sequence generated by ADMM (Al-
gorithm 6.4). Assume that the residual 𝑟(𝑘) (6.39) converges to 0, then any limit point
of this sequence is a KKT point of (6.30).

Proof. See Appendix B.1.4.

We should note that this result is only partial, since we need the assumption that
𝑟(𝑘) converges to 0. In practice, we found that this assumption always holds if 𝜌
is large enough. Unlike gradient methods, convergence of ADMM for the kind of
Problem (6.30) (which is at the same time multi-block, non-separable and highly non-
convex) is less known and is a current active research topic (c.f . Chapter 4). For
example, global convergence of ADMM for nonconvex nonsmooth functions is estab-
lished in [Wang et al., 2015b], but under numerous assumptions that are not applicable
to our case, as presented in Section 4.2.3, Table 4.1.

So far for ADMM we have talked about solution to (6.30) only and not to (rlx).
In fact, we have the following result.

Proposition 6.4. If (x∗,x∗,… ,x∗,y∗) is a KKT point of (6.30) then x∗ is a stationary
point of (rlx).

Proof. See Appendix B.1.5.

An interesting relation of the solutions returned by the methods is the following.
We say a method A can improve further a method B if we use the returned solution
by B as initialization for A and A will output a better solution.

Proposition 6.5. At convergence:

1. BCD, PGD and FW cannot improve further each other.

2. BCD, PGD and FW cannot improve further ADMM. The inverse is not neces-
sarily true.

Proof. It is straightforward to see that the first point follows from the fact that so-
lutions of BCD, PGD and FW are stationary, and the second point follows from
Proposition 6.4.

66 chapter 6. nonconvex continuous relaxation of map inference

In practice, we observed that ADMM can often improve further the other methods.

6.6 experiments
In this section we evaluate our proposed nonconvex relaxation algorithms:

• Block Coordinate Descent (BCD.

• Projected Gradient Descent (PGD).

• Frank-Wolfe algorithm (FW).

• Nonconvex Alternating Direction Method of Multipliers (ADMM) with cyclic
decomposition.

We compare them with the following state-of-the-art methods.

Pairwise methods:

• 𝛼-Expansion (𝛼-Exp) [Boykov et al., 2001].

• Fast Primal-Dual (FastPD) [Komodakis et al., 2008].

• Convex QP Relaxation (CQP) [Ravikumar and Lafferty, 2006].

• Sequential Tree Reweighted Message Passing (TRWS) [Kolmogorov, 2006].

Higher-order methods:

• Tree Reweighted Belief Propagation (TRBP) [Wainwright et al., 2005].

• Alternating Direction Dual Decomposition (ADDD) [Martins et al., 2015].

• Bundle Dual Decomposition4 (BUNDLE) [Kappes et al., 2012].

• Max-Product Linear Programming (MPLP) [Globerson and Jaakkola, 2008] and
its extension (MPLP-C) [Sontag et al., 2012].

• Order reduction and 𝛼-expansion (𝛼-Fusion) [Fix et al., 2011], which can be
seen as an extension of 𝛼-expansion to higher-order.

• Sequential Reweighted Message Passing (SRMP) [Kolmogorov, 2015], which is
a direct generalization of TRWS to higher-order.

The software for most methods are obtained via either the popular OpenGM li-
brary [Andres et al., 2012] or from the corresponding authors’ websites, except for
CQP [Ravikumar and Lafferty, 2006] we use our implementation as no code is pub-
licly available (c.f . Appendix B.2.1 for implementation details).

4Subgradient dual decomposition [Komodakis et al., 2011] is excluded as we found that its perfor-
mance was generally worse than bundle dual decomposition.

6.6. experiments 67

For BCD, PGD and FW, we run for 5 different initializations (solution of the unary
potentials plus 4 other completely random) and pick the best one. For ADMM, we
use a single homogeneous initial solution: 𝑥𝑖(𝑠) = 1

|S𝑖|∀𝑠 ∈ S𝑖 (we find that ADMM is
quite insensitive to initialization). For these methods, BCD is used as a final rounding
step. We should note that BCD cannot improve further the solution according to
Proposition 6.5.

table 6.1 List of models used for evaluation.

Model No.∗ |V|∗∗ 𝑆† 𝐷‡ Structure Function
Inpainting 4 14400 4 2 grid-N4/N8 Potts
Matching 4 ∼20 ∼20 2 full/sparse general
1st stereo 3 ∼100000 16-60 2 grid-N4 TL/TS
Segmentation 10 1024 4 4 grid-N4 g-Potts
2nd stereo 4 ∼25000 14 3 grid-N4 general

∗,∗∗,†,‡: number of instances, variables, labels, and MRF degree

The methods are evaluated on several real-world vision tasks: image inpainting,
feature matching, image segmentation and stereo reconstruction. All methods are in-
cluded whenever applicable, except when there are duplicates in pairwise settings where
a pairwise algorithm and its higher-order generalization can be both applied, we include
only the pairwise version as it is better optimized. A summary of the models are given
in Table 6.1. Except for higher-order stereo, these models were previously considered
in a recent benchmark for evaluating MRF optimization methods [Kappes et al., 2015],
and their model files are publicly available5. For higher-order stereo, we replicate the
model presented in [Woodford et al., 2009], where the disparity map is encouraged
to be piecewise smooth using a second-order prior, and the labels are obtained from
14 pre-generated piecewise-planar proposals. We apply this model to 4 image pairs
(art, cones, teddy, venus) from the Middlebury dataset [Scharstein and Szeliski, 2003]
(at half resolution, due to the high inference time). We refer to [Kappes et al., 2015]
and [Woodford et al., 2009] for further details.

The experiments were carried out on a 64-bit Linux machine with a 3.4GHz pro-
cessor and 32GB of memory. A time limit of 1 hour was set for all methods. In
Tables 6.2, 6.3 and 6.4, we report the runtime6, the energy value of the final inte-
ger solution as well as the lower bound if available, averaged over all instances of a
particular model. The detailed results are given in Appendix B.3.

In general, ADMM significantly outperforms BCD, PGD, FW and is the only
nonconvex relaxation method that compares favorably with the other methods. In
particular, it outperforms TRBP, ADDD, BUNDLE, MPLP, MPLP-C and CQP on
all models (except MPLP-C on matching), and outperforms FastPD, 𝛼-Exp/𝛼-Fusion
and TRWS on small or medium sized models (i.e. other than stereo).

On image inpainting (Table 6.2), ADMM produces the lowest energies on all in-
stances, while being relatively fast. Surprisingly TRWS performs poorly on these
models, even worse than BCD, PGD and FW.

5http://hciweb2.iwr.uni-heidelberg.de/opengm/index.php?l0=benchmark
6For a fair comparison, we used the single-thread version of ADMM.

http://hciweb2.iwr.uni-heidelberg.de/opengm/index.php?l0=benchmark

68 chapter 6. nonconvex continuous relaxation of map inference

table 6.2 Results on pairwise inpainting models.

Inpainting N4 (2 instances) Inpainting N8 (2 instances)
algorithm time (s) value bound time (s) value bound
𝛼-Exp 0.02 454.35 −∞ 0.78 465.02 −∞
FastPD 0.03 454.75 294.89 0.15 465.02 136.28
TRBP 23.45 480.27 −∞ 64.00 495.80 −∞
ADDD 15.87 483.41 443.71 35.78 605.14 450.95
MPLP 55.32 497.16 411.94 844.97 468.97 453.55
MPLP-C 1867.20 468.88 448.03 2272.39 479.54 454.35
BUNDLE 36.18 455.25 448.23 111.74 465.26 455.43
TRWS 1.37 490.48 448.09 16.23 500.09 453.96
CQP 1.92 1399.51 −∞ 11.62 1178.91 −∞
BCD 0.11 485.88 −∞ 0.29 481.95 −∞
FW 1.10 488.23 −∞ 5.94 489.82 −∞
PGD 0.81 489.80 −∞ 5.19 489.82 −∞
ADMM 9.84 454.35 −∞ 40.64 464.76 −∞

table 6.3 Results on pairwise matching and stereo models.

Feature matching (4 instances) Pairwise stereo (3 instances)
algorithm time (s) value bound time (s) value bound
𝛼-Exp −∗ −∗ −∗ 14.75 1617196.00 −∞
FastPD −∗ −∗ −∗ 7.14 1614255.00 301059.33
TRBP 0.00 1.05 × 1011 −∞ 2544.12 1664504.33 −∞
ADDD 3.16 1.05 × 1011 16.35 −∗∗ −∗∗ −∗∗

MPLP 0.47 0.65 × 1011 15.16 −∗∗ −∗∗ −∗∗

MPLP-C 6.04 21.22 21.22 −∗∗ −∗∗ −∗∗

BUNDLE 2.33 0.10 × 1011 14.47 2039.47 1664707.67 1583742.13
TRWS 0.05 64.19 15.22 421.20 1587961.67 1584746.58
CQP 0.08 127.01 −∞ 3602.01 11408446.00 −∞
BCD 0.00 84.86 −∞ 10.82 7022189.00 −∞
FW 20.10 66.71 −∞ 1989.12 6162418.00 −∞
PGD 13.21 58.52 −∞ 1509.49 5209092.33 −∞
ADMM 0.31 75.12 −∞ 2377.66 1624106.00 −∞

∗Method not applicable
∗∗Prohibitive execution time (time limit not working) or prohibitive memory consumption

The feature matching model (Table 6.3) is a typical example showing that the
standard LP relaxation can be very loose. All methods solving its dual produce very
poor results (despite reaching relatively good lower bounds). They are largely outper-
formed by TRWS and nonconvex relaxation methods (BCD, PGD, FW, ADMM). On
this problem, MPLP-C reaches the global optimum for all instances.

On image segmentation (Table 6.4), SRMP performs exceptionally well, producing
the global optimum for all instances while being very fast. ADMM is only slightly
outperformed by SRMP in terms of energy value, while both clearly outperform the

6.7. conclusion 69

table 6.4 Results on higher-order models.

Segmentation (10 instances) Second-order stereo (4 instances)
algorithm time (s) value bound time (s) value bound
𝛼-Fusion 0.05 1587.13 −∞ 50.03 14035.91 −∞
TRBP 18.20 1900.84 −∞ 3675.90 14087.40 −∞
ADDD 6.36 3400.81 1400.33 4474.83 14226.93 13752.73
MPLP 9.68 4000.44 1400.30 −∗ −∗ −∗

MPLP-C 3496.50 4000.41 1400.35 −∗ −∗ −∗

BUNDLE 101.56 4007.73 1392.01 3813.84 15221.19 13321.96
SRMP 0.13 1400.57 1400.57 3603.41 13914.82 13900.87
BCD 0.14 12518.59 −∞ 59.59 14397.22 −∞
FW 21.23 5805.17 −∞ 1749.19 14272.54 −∞
PGD 51.04 5513.02 −∞ 3664.92 14543.65 −∞
ADMM 97.37 1400.68 −∞ 3662.13 14068.53 −∞

∗Prohibitive execution time (time limit not working)

other methods.
On large scale models such as stereo (Tables 6.3 and 6.4), TRWS/SRMP perform

best in terms of energy value, followed by move making algorithms (FastPD, 𝛼-Exp/𝛼-
Fusion) and ADMM. An example of estimated disparity maps is given in Figure 6.1.

An interesting observation is that CQP performs worse than nonconvex methods
on all models (and worst overall), which means simply solving the QP relaxation in a
straightforward manner is already better than adding a sophisticated convexification
step, as done in [Ravikumar and Lafferty, 2006].

(a) Ground-truth (b) 𝛼-Fusion
(18582.85)

(c) TRBP (18640.25) (d) AD3 (18763.13) (e) BUNDLE
(20055.65)

(f) SRMP (18433.01) (g) BCD (18926.70) (h) FW (18776.26) (i) PGD (19060.17) (j) ADMM (18590.87)

figure 6.1 Resulted disparity maps and energy values using second-order MRFs for the cones
scene of the Middlebury stereo dataset [Scharstein and Szeliski, 2003].

6.7 conclusion
We have presented a tight nonconvex continuous relaxation for the problem of MAP
inference and studied four different methods for solving it: block coordinate descent,
projected gradient descent, Frank-Wolfe algorithm, and ADMM. Due to the high non-

70 chapter 6. nonconvex continuous relaxation of map inference

convexity, it is very challenging to obtain good solutions to this relaxation, as shown
by the performance of the first three methods. The latter, however, outperforms many
existing methods and thus demonstrates that directly solving the nonconvex relax-
ation can lead to very accurate results. These methods are memory efficient, thanks
to the small number of variables and constraints (as discussed in Section 6.3). On
top of that, the proposed ADMM algorithm is also highly parallelizable (as discussed
in Section 6.4.2), which is not the case for methods like TRWS or SRMP. Therefore,
ADMM is also suitable for distributed or real-time applications on GPUs.

7
Deep Parameter Learning of Graph-Based Models

7.1 introduction

We have seen that two major graph-based problems in computer vision — MAP infer-
ence and graph matching — can be both expressed as energy minimization:

x∗ = argmin
x∈X

𝐸(x), (7.1)

where X is a set representing structural constraints on x. A more explicit formulation
is the following:

x∗(I; 𝜃𝜃𝜃) = argmin
x∈X

𝐸(x, I; 𝜃𝜃𝜃), (7.2)

where I represents the input (e.g. an image or a set of extracted features) and 𝜃𝜃𝜃 is
the parameter of the model. More generally, problems of the form (7.2) are called
structured prediction, which, by definition, aims to find an output x that best fits
an input I where x obeys some structural constraints. In MAP inference or graph
matching, 𝜃𝜃𝜃 is specifically the so-called potentials.

In previous chapters, we have proposed methods for solving (7.2) — for MAP
inference and graph matching — based on nonconvex ADMM. In all the experiments
that we have seen, the parameters 𝜃𝜃𝜃 were computed using hand-crafted formulas. In
this chapter, we propose a method to learn them from training data, taking advantage
of the proposed nonconvex ADMM inference framework.

Due to the popularity of graph-based models, there is a large body of literature
on learning parameters of these models, especially for probabilistic graphical models
(including MRFs and CRFs). We refer to [Koller and Friedman, 2009, Chapters 16–
20] and [Nowozin et al., 2011] for in-depth reviews. The focus of this chapter will
be on gradient-based learning which has become ubiquitous in machine learning and
computer vision due to the wide spread adoption of deep neural networks over the
last few years. Thanks to its flexibility, gradient-based learning allows combinations of
different trainable models into single ones that can be trained in an end-to-end manner.
An example of such combinations is between a convolutional neural network (CNN)
and a CRF, as shown later in this chapter.

The core idea behind our method is to view ADMM as a sequence of simple
differentiable operations, through which gradients can propagate (either forward or
backward). Unrolling an optimization algorithm as a sequence of elementary dif-
ferentiable operations and training using gradient back-propagation was proposed

71

72 chapter 7. deep parameter learning of graph-based models

in [Ross et al., 2011, Stoyanov et al., 2011] and [Domke, 2011] where the underlying
inference algorithms are based on belief propagation. Later, [Domke, 2012] intro-
duced similar ideas for end-to-end training of generic gradient-based inference algo-
rithms such as gradient descent, heavy-ball or L-BFGS. These ideas have been ap-
plied to recent work such as deep energy models [Brakel et al., 2013], structured pre-
diction energy networks [Belanger et al., 2017], and dense conditional random fields
(CRFs) [Krähenbühl and Koltun, 2013]. In particular, the training framework pro-
posed by [Krähenbühl and Koltun, 2013] for mean-field inference was later deployed
in [Zheng et al., 2015] for training a combination of a CNN and a dense CRF. This
combined model can be seen as a recurrent neural network (RNN), which allows au-
tomatic gradient computation when implementing using popular neural network li-
braries. It should be noted that the exact idea of viewing a graphical model as an RNN
and using automatic differentiation was previously discussed in [Stoyanov et al., 2011]
for belief propagation. Prior to that, the idea of unrolling message passing algo-
rithms as simpler operations that can be performed within a CNN were introduced
in [Tatikonda and Jordan, 2002].

In this chapter, we apply similar ideas for learning parameters of graph-based
models, where nonconvex ADMM is used for inference. It turns out, however, that
the nonconvex ADMM algorithms that we proposed in Chapters 5 and 6 lead to
non-differentiable updates, which makes gradient-based learning invalid. To over-
come this issue, we propose a modification to those algorithms by using a differ-
ent penalty function that is carefully chosen so that ADMM updates become dif-
ferentiable. This is also our major contribution in this work. The resulted learn-
ing framework is very general and allows training jointly graph-based models and
other ones such as neural networks. Experiments on an semantic image segmentation
dataset show that our method achieves superior results to mean-field inference based
method [Krähenbühl and Koltun, 2013, Zheng et al., 2015].

In the next section, we give an introduction to empirical risk minimization by
stochastic gradient descent, an extremely popular learning method that our frame-
work is based on; we explain why it is necessary to compute derivatives involving the
optimal solution of the prediction problem (7.2). In Section 7.3 we present implicit
differentiation — a classical method for computing these derivatives — and discuss
its fundamental limitations that motivate the idea of unrolled optimization, a better
method for the task. Next, in Section 7.4 we show how to apply this idea to obtain a
general theoretical framework for gradient computation when ADMM is used for infer-
ence. In Section 7.5, we argue that the nonconvex ADMM methods that we proposed
in Chapters 5 and 6 are not applicable since they do not satisfy the differentiability as-
sumption of the general framework. Therefore, in Section 7.6 we propose a solution to
overcome this issue. Finally, in Section 7.7 we present an application of the proposed
framework for semantic image segmentation, together with experimental results.

Notation

Before proceeding, for convenience let us recall some notations and introduce some
new ones.

Recall that in MAP inference we consider a graph G = (V, E) and a set of labels
S, while in graph matching we have two graphs G1 = (V1, E1) and G2 = (V2, E2).

7.2. empirical risk minimization and stochastic gradient descent 73

In both cases the solution to our prediction problem can be represented by a binary
assignment matrix X whose dimensions are respectively |V| × |S| or |V1| × |V2|. In this
chapter, we use the MAP inference notations for both cases (i.e. for graph matching:
V1 = V,V2 = S and X has additional constraints on its columns).

The main variable that we will be using is the assignment vector x ∶= vec(X), a
vectorized replica of X. The vector x can be seen as a block vector where the 𝑖th block
corresponds to the 𝑖th row in X, which is also the assignment vector at the node 𝑖:
x𝑖 = (𝑋𝑖𝑠)𝑠∈S . The dimension of x is 𝑛 ∶= |V||S|.

We write X = mat(x) to indicate that X is a |V| × |S| reshaped version of x. The
mat operator is defined exclusively for vectors of dimension 𝑛. If v ∈ R𝑛 and V =
mat(v) then an index 𝑎 in v corresponds to an assignment 𝑖 → 𝑠 where 𝑖 ∈ V, 𝑠 ∈ S ,
i.e. 𝑣𝑎 = 𝑉𝑖𝑠.

We use interchangeably v⊤w and v • w to denote the dot product of two vectors v
and w. The element-wise product of two matrices A and B is denoted by A ⊙ B.

7.2 empirical risk minimization and stochastic gradient de-
scent
Suppose that we are given a dataset {(I1, x̂1), (I2, x̂2),… , (I𝑚, x̂𝑚)} and a loss function
𝐿(x, x̂) that measures the difference between the predicted output x and the true
output x̂. We are interested in finding the value of 𝜃𝜃𝜃 that minimizes the following
quantity, called the empirical risk [Vapnik, 1992]:

𝑅(𝜃𝜃𝜃) = 1
𝑚

𝑚
∑
𝑖=1

𝐿(x∗(I𝑖; 𝜃𝜃𝜃), x̂𝑖). (7.3)

To prevent overfitting, in practice, it is often preferred to minimize the sum of the em-
pirical risk and a term 𝜆𝛺(𝜃𝜃𝜃) called the regularizer, where 𝜆 ∈ R+ is the regularization
coefficient that controls the relative importance between the two terms. The simplest
and perhaps most commonly used regularizer is given by the squared ℓ2-norm of the
parameters:

𝛺(𝜃𝜃𝜃) = 1
2‖𝜃𝜃𝜃‖2

2. (7.4)

This is known as weight decay in the machine learning literature. To simplify the
presentation, we omit the regularizer because it does not interfere directly with the
derivation of the results.

A natural solution to empirical risk minimization is gradient descent, which consists
of the following update steps:

𝜃𝜃𝜃(𝑘+1) ← 𝜃𝜃𝜃(𝑘) − 𝛼(𝑘)∇𝜃𝜃𝜃𝑅(𝜃𝜃𝜃(𝑘)), (7.5)

where 𝑘 is the iteration counter and 𝛼(𝑘) is called the step size. In machine learning,
𝛼(𝑘) is usually called the learning rate. As a reminder, we have previously seen two
variants of gradient descent in Section 6.4.1. In the sequel, we omit the iteration
counter 𝑘 for clarity purpose.

74 chapter 7. deep parameter learning of graph-based models

Obviously gradient descent is only possible if 𝑅(𝜃𝜃𝜃) is differentiable and the gradient
∇𝜃𝜃𝜃𝑅(𝜃𝜃𝜃) can be evaluated at each step. In practice, 𝑅(𝜃𝜃𝜃) is often non-differentiable but
only sub-differentiable. In that case we can still perform the above update step by
replacing the gradient by a subgradient and the resulted method is called subgradient
method (c.f . Section 4.1.1). For now, to simplify the presentation, let us assume that
𝑅(𝜃𝜃𝜃) is differentiable (and later, we will discuss considerations for non-differentiable
case when it is necessary).

According to (7.3), ∇𝜃𝜃𝜃𝑅(𝜃𝜃𝜃) can be computed as

∇𝜃𝜃𝜃𝑅(𝜃𝜃𝜃) = 1
𝑚

𝑚
∑
𝑖=1

∇𝜃𝜃𝜃𝐿(x∗(I𝑖; 𝜃𝜃𝜃), x̂𝑖). (7.6)

Clearly, this requires computing the gradient of the loss function for all training exam-
ples at each iteration. If the number of examples 𝑚 is very large (e.g. billions), the time
to take a single gradient step becomes prohibitively long, even if ∇𝜃𝜃𝜃𝐿(x∗(I𝑖; 𝜃𝜃𝜃), x̂𝑖) can
be computed efficiently. A solution to this is stochastic gradient descent. Instead
of computing ∇𝜃𝜃𝜃𝑅(𝜃𝜃𝜃) exactly, the idea is to compute at each iteration an estimate
of it using a minibatch of training examples {(I1,x1), (I2, x̂2),… , (I𝑚′

, x̂𝑚′)}, where
𝑚′ ≪ 𝑚:

g = 1
𝑚′

𝑚′

∑
𝑖=1

∇𝜃𝜃𝜃𝐿(x∗(I𝑖; 𝜃𝜃𝜃), x̂𝑖), (7.7)

and then perform the update (7.5) with g in place of ∇𝜃𝜃𝜃𝑅(𝜃𝜃𝜃). A sketch of this algorithm
is presented in Algorithm 7.1.

algorithm 7.1 Stochastic gradient descent for empirical risk minimization.
1: Initialize the parameters 𝜃𝜃𝜃(0) and the learning rate 𝛼(0) > 0.
2: for 𝑘 = 0, 1, 2,… do
3: Sample a minibatch of training examples {(I1,x1), (I2, x̂2),… , (I𝑚′

,x𝑚′)}.
4: Choose a learning rate 𝛼(𝑘).
5: Compute an estimate of the gradient

g ← 1
𝑚′

𝑚′

∑
𝑖=1

∇𝜃𝜃𝜃𝐿(x∗(I𝑖; 𝜃𝜃𝜃), x̂𝑖),

6: Update 𝜃𝜃𝜃(𝑘+1) ← 𝜃𝜃𝜃(𝑘) − 𝛼(𝑘)g.
7: end for

Stochastic gradient descent and its variants are extremely popular in machine
learning, especially in deep learning. An overview of these algorithms can be found
in [Goodfellow et al., 2016]. The convergence of stochastic gradient descent — in the
sense that the expectation of the gradient norms cannot stay bounded away from zero
— can hold under several assumptions, such as the objective function (𝑅(𝜃𝜃𝜃) in our case)
being continuously differentiable, its gradient being Lipschitz continuous, the learning
rates following a diminishing scheme, and some others. We refer to [Bottou et al., 2018]
for a theoretical and practical analysis of this algorithm for large-scale machine learn-
ing.

7.3. implicit differentiation and unrolled optimization 75

An important problem remains:

How do we compute the loss gradient ∇𝜃𝜃𝜃𝐿(x∗(I; 𝜃𝜃𝜃), x̂)?

Obviously this requires x∗(I; 𝜃𝜃𝜃) to be evaluated, i.e. one has to solve the energy min-
imization problem (7.2). In previous chapters we have proposed methods for this
inference task based on nonconvex ADMM. In this chapter, we present a method
for efficiently computing the loss gradient ∇𝜃𝜃𝜃𝐿(x∗(I; 𝜃𝜃𝜃), x̂) when ADMM is the solver
for (7.2), so that we can have a unified framework for inference and learning.

In the remainder of this chapter, for clarity let us omit the input I and the ground-
truth prediction x̂ since they are not directly involved in the derivation. The symbol
I is then reserved for the identity matrix whose dimension is understood from the
context.

7.3 implicit differentiation and unrolled optimization
First, we argue that the loss gradient ∇𝜃𝜃𝜃𝐿(x∗(𝜃𝜃𝜃)) can be easily computed in some
cases, regardless of the method used for solving (7.2). For example, consider the case
where the corresponding structured prediction task is an unconstrained optimization
problem, i.e. X = R𝑛:

x∗(𝜃𝜃𝜃) = argmin
x∈R𝑛

𝐸(x; 𝜃𝜃𝜃). (7.8)

A typical example is the Gaussian MRF, which encodes a Gaussian distribution of the
form

𝑝(x) = 1
𝑍 exp (−𝐸(x; 𝜃𝜃𝜃)) , with 𝐸(x; 𝜃𝜃𝜃) = 1

2x⊤P(𝜃𝜃𝜃)x + u(𝜃𝜃𝜃)⊤x, (7.9)

where P is a positive definite matrix for any parameter 𝜃𝜃𝜃.
The optimality condition for (7.8) reads:

𝜕𝐸(x∗(𝜃𝜃𝜃);𝜃𝜃𝜃)
𝜕x = 0. (7.10)

Taking derivative with respect to 𝜃𝜃𝜃 of both sides, and applying the chain rule, we
obtain

0 = d
d𝜃𝜃𝜃

𝜕𝐸(x∗(𝜃𝜃𝜃);𝜃𝜃𝜃)
𝜕x = dx∗(𝜃𝜃𝜃)

d𝜃𝜃𝜃
𝜕2𝐸(x∗(𝜃𝜃𝜃);𝜃𝜃𝜃)

𝜕x2 + 𝜕2𝐸(x∗(𝜃𝜃𝜃);𝜃𝜃𝜃)
𝜕𝜃𝜃𝜃𝜕x . (7.11)

Assume that the Hessian matrix of 𝐸 (with respect to x) is invertible — this is clearly
the case for a Gaussian MRF —, the last equation yields

dx∗(𝜃𝜃𝜃)
d𝜃𝜃𝜃 = −𝜕2𝐸(x∗(𝜃𝜃𝜃);𝜃𝜃𝜃)

𝜕𝜃𝜃𝜃𝜕x (𝜕2𝐸(x∗(𝜃𝜃𝜃);𝜃𝜃𝜃)
𝜕x2)

−1
. (7.12)

Therefore, we have

∇𝜃𝜃𝜃𝐿(x∗(𝜃𝜃𝜃)) = dx∗(𝜃𝜃𝜃)
d𝜃𝜃𝜃

𝜕𝐿(x∗(𝜃𝜃𝜃))
𝜕x

= −𝜕2𝐸(x∗(𝜃𝜃𝜃);𝜃𝜃𝜃)
𝜕𝜃𝜃𝜃𝜕x (𝜕2𝐸(x∗(𝜃𝜃𝜃);𝜃𝜃𝜃)

𝜕x2)
−1 𝜕𝐿(x∗(𝜃𝜃𝜃))

𝜕x . (7.13)

76 chapter 7. deep parameter learning of graph-based models

Clearly, this result gives us a straightforward way to compute the loss gradient: first
solve (7.8) to obtain x∗(𝜃𝜃𝜃); then compute the above second-order derivatives and eval-
uate them at x∗(𝜃𝜃𝜃); finally solve a linear system of the form v = A−1b to compute
∇𝜃𝜃𝜃𝐿(x∗(𝜃𝜃𝜃)) according to (7.13).

The above approach was proposed in [Faugeras, 1993] for analyzing uncertainty
in recovering 3D geometry, in [Tappen et al., 2007] for learning Gaussian CRFs, and
was further discussed in [Domke, 2012]. For the more general case of constrained
minimization (i.e. (7.2)), it is still possible to compute ∇𝜃𝜃𝜃𝐿(x∗(𝜃𝜃𝜃)) based on KKT
conditions, under further assumptions (see e.g. [Gould et al., 2016]). Note that in the
above theoretical derivation, it is assumed that the energy minimization (7.8) and the
linear system (7.13) are solved exactly. Tolerances in one of these quantities can lead
to very inaccurate gradient. Worse still, if the energy is nonconvex then it is generally
impossible to solve (7.8) to global optimality.

To overcome the above limitations, [Domke, 2012] proposed a method called back-
optimization, which consists of defining the loss in terms of the results of an incomplete
optimization:

x∗(𝜃𝜃𝜃) = opt-alg 𝐸(x; 𝜃𝜃𝜃), (7.14)

where opt-alg denotes an operator that runs a given optimization algorithm for a spec-
ified number of iterations. For example, if the corresponding optimization algorithm
is gradient descent consisting of updates

x(𝑘+1) = x(𝑘) − 𝛼∇x𝐸(x(𝑘); 𝜃𝜃𝜃), (7.15)

then one can define x∗ as the output of the algorithm after 𝑁 iterations, i.e. x∗ = x(𝑁).
Using the chain rule, one can compute 𝜕𝐿

𝜕x(𝑘) for all 𝑘 using the following recursion:

𝜕𝐿
𝜕x(𝑘) = 𝜕x(𝑘+1)

𝜕x(𝑘)
𝜕𝐿

𝜕x(𝑘+1) . (7.16)

The name back-optimization comes from this recursion where we start from 𝜕𝐿
𝜕x(𝑁) and

arrive at 𝜕𝐿
𝜕x(1) . Finally ∇𝜃𝜃𝜃𝐿(x∗(𝜃𝜃𝜃)) can be computed using the chain rule again:

𝜕𝐿
𝜕𝜃𝜃𝜃 =

𝑁
∑
𝑘=1

𝜕x(𝑘)

𝜕𝜃𝜃𝜃
𝜕𝐿

𝜕x(𝑘) . (7.17)

The above idea can be applied to different optimization algorithms. In addition to
gradient descent, [Domke, 2012] also studied second-order methods such as heavy-ball
and L-BFGS, while [Krähenbühl and Koltun, 2013] for example applied it to mean-
field inference in dense CRFs. In the next section, we present a general gradient
computation framework for ADMM based on this idea. We unroll the algorithm with
a fixed number of iterations to obtain a sequence of differentiable operations, and re-
cursively compute derivatives using two different methods: forward-mode and reverse-
mode differentiations (back-optimization in [Domke, 2012] is the latter). Actually, the
general ideas of these two methods are the basis of automatic differentiation (also
known as autodiff), a small but established field with applications in machine learning
and other areas such as computational fluid dynamics, engineering design optimiza-
tion, etc. (see e.g. [Baydin et al., 2018]). We compare and discuss the origin of these

7.4. general framework for admm gradient computation 77

two methods in Section 7.4.4.

7.4 general framework for admm gradient computation

7.4.1 Unrolled ADMM and its computational graph
First of all, we observe that there exist three functions 𝑓 , 𝑔,ℎ and three constant
matrices/vector A,B, c such that the energy minimization problem (7.2) can be written
under the following form, using a latent variable z:

min
x,z

𝑓(x; 𝜃𝜃𝜃) + 𝑔(z; 𝜃𝜃𝜃) + ℎ(x, z; 𝜃𝜃𝜃),

s.t. Ax + Bz = c.
(7.18)

As an example, it is straightforward to see that (7.2) is equivalent to:

min
x,z

𝛿X (x) + 𝛿X (z) + 𝐸 (x + z
2 ;𝜃𝜃𝜃) ,

s.t. x = z,
(7.19)

where we recall that 𝛿X (⋅) denotes the indicator function of the set X . Each choice of
(𝑓 , 𝑔,ℎ,A,B, c) leads to a different formulation of (7.2) that we call a decomposition. In
previous chapters we have seen different decompositions for MAP inference and graph
matching that can leverage the effectiveness of nonconvex ADMM. In this section, for
generality let us consider the decomposition (7.18).

Recall that ADMM solves (7.18) by iterating:

x(𝑘+1) = argmin
x

𝐿𝜌(x, z(𝑘),y(𝑘); 𝜃𝜃𝜃), (7.20)

z(𝑘+1) = argmin
z

𝐿𝜌(x(𝑘+1), z,y(𝑘); 𝜃𝜃𝜃), (7.21)

y(𝑘+1) = y(𝑘) + 𝜌 (Ax(𝑘+1) + Bz(𝑘+1) − c) , (7.22)

where 𝐿𝜌 is the augmented Lagrangian:

𝐿𝜌(x, z,y; 𝜃𝜃𝜃) = 𝑓(x; 𝜃𝜃𝜃) + 𝑔(z; 𝜃𝜃𝜃) + ℎ(x, z; 𝜃𝜃𝜃) + y⊤(Ax + Bz − c) + 𝜌
2‖Ax + Bz − c‖2

2.
(7.23)

Denote

𝐹𝑥(z,y; 𝜃𝜃𝜃) = argmin
x

𝐿𝜌(x, z,y; 𝜃𝜃𝜃), (7.24)

𝐹𝑧(x,y; 𝜃𝜃𝜃) = argmin
z

𝐿𝜌(x, z,y; 𝜃𝜃𝜃). (7.25)

The above ADMM iterations become (7.26), (7.27), (7.28) as shown in Algorithm 7.2.
These updates are represented by the computational graph in Figure 7.1.

Let us introduce an important assumption.

Assumption 7.1. The functions 𝐹𝑥 and 𝐹𝑧 in (7.24) and (7.25) are differentiable
and their gradients, namely ∇𝐹𝑥 ∶= (𝜕𝐹𝑥

𝜕z , 𝜕𝐹𝑥
𝜕y , 𝜕𝐹𝑥

𝜕𝜃𝜃𝜃) and ∇𝐹𝑧 ∶= (𝜕𝐹𝑧
𝜕x , 𝜕𝐹𝑧

𝜕y , 𝜕𝐹𝑧
𝜕𝜃𝜃𝜃), are

78 chapter 7. deep parameter learning of graph-based models

algorithm 7.2 Sketch of general ADMM for solving energy minimization.
1: Initialize z0,y0.
2: for 𝑘 = 0, 1,… ,𝑁 − 1 do

x(𝑘+1)← 𝐹𝑥(z(𝑘),y(𝑘); 𝜃𝜃𝜃), (7.26)
z(𝑘+1)← 𝐹𝑧(x(𝑘+1),y(𝑘); 𝜃𝜃𝜃), (7.27)
y(𝑘+1)← y(𝑘) + 𝜌(Ax(𝑘+1) + Bz(𝑘+1) − c). (7.28)

3: end for
4: Return the loss 𝐿(x(𝑁)).

z(0)

y(0)

x(1)

𝜃𝜃𝜃

z(1)

y(1)

x(2)

𝜃𝜃𝜃𝜃𝜃𝜃

z(2)

y(2)

x(3)

𝜃𝜃𝜃𝜃𝜃𝜃

z(3)

y(3)

x(4)

𝜃𝜃𝜃𝜃𝜃𝜃

𝐿

figure 7.1Computational graph illustrating ADMM for 4 iterations. Best viewed in color. The
colors blue, red and green correspond respectively to the updates (7.26), (7.27) and (7.28)
in Algorithm 7.2.

known.

Known gradients ∇𝐹𝑥 and ∇𝐹𝑧 can be achieved e.g. when 𝐹𝑥 and 𝐹𝑧 have analytic
forms, i.e. when the minimization problems in the x and z update steps have closed-
form solutions. If this is not the case then it is still possible to compute ∇𝐹𝑥 and ∇𝐹𝑧
based on optimality conditions of (7.24) and (7.25) (under further assumptions). We
refer to [Gould et al., 2016] for a discussion on differentiating the argmin operator.

In the next sections we present two methods for computing ∇𝜃𝜃𝜃𝐿(x∗(𝜃𝜃𝜃)), under
Assumption 7.1. We apply the same ideas of forward and backward modes in automatic
differentiation [Baydin et al., 2018]. Since the ADMM iterates x(𝑘), z(𝑘) are defined
directly by 𝐹𝑥,𝐹𝑧:

x(𝑘+1) = 𝐹𝑥(z(𝑘),y(𝑘),𝜃𝜃𝜃), (7.29)
z(𝑘+1) = 𝐹𝑧(x(𝑘+1),y(𝑘),𝜃𝜃𝜃), (7.30)

we denote these gradients, evaluated at the previous iterates, using the derivatives of
the current iterates. For example, we write 𝜕x(𝑘+1)

𝜕z(𝑘) to denote ∇z𝐹𝑥(z(𝑘),y(𝑘),𝜃𝜃𝜃).

7.4. general framework for admm gradient computation 79

7.4.2 Forward-mode differentiation
Consider a computational graph of nodes (v𝑖)𝑖∈V in addition to an input node 𝜃𝜃𝜃.
Applying the derivative chain rule we have

dv𝑖
d𝜃𝜃𝜃 = ∑

𝑗∈Pa(𝑖)

dv𝑗
d𝜃𝜃𝜃

𝜕v𝑖
𝜕v𝑗

, (7.31)

where Pa(𝑖) denotes the set of indices of the parents of v𝑖.
For any vector v, denote

.v ∶= dv
d𝜃𝜃𝜃 . (7.32)

Applying (7.31) in turn for the nodes x(𝑘+1), z(𝑘+1) and y(𝑘+1) of the computational
graph in Figure 7.1 we have:

.x(𝑘+1) = .z(𝑘) 𝜕x(𝑘+1)

𝜕z(𝑘) + .y(𝑘) 𝜕x(𝑘+1)

𝜕y(𝑘) + 𝜕x(𝑘+1)

𝜕𝜃𝜃𝜃 , (7.33)

.z(𝑘+1) = .x(𝑘+1) 𝜕z(𝑘+1)

𝜕x(𝑘+1) + .y(𝑘) 𝜕z(𝑘+1)

𝜕y(𝑘) + 𝜕z(𝑘+1)

𝜕𝜃𝜃𝜃 , (7.34)

.y(𝑘+1) = .y(𝑘) 𝜕y(𝑘+1)

𝜕y(𝑘) + .x(𝑘+1) 𝜕y(𝑘+1)

𝜕x(𝑘+1) + .z(𝑘+1) 𝜕y(𝑘+1)

𝜕z(𝑘+1) ,

= .y(𝑘) + 𝜌 .x(𝑘+1)A⊤ + 𝜌.z(𝑘+1)B⊤, (7.35)

where in (7.33) and (7.34) we have implicitly used
.
𝜃𝜃𝜃 = I (identity matrix), and in (7.35)

we have used

𝜕y(𝑘+1)

𝜕x(𝑘+1) = 𝜌A⊤,
𝜕y(𝑘+1)

𝜕z(𝑘+1) = 𝜌B⊤,
𝜕y(𝑘+1)

𝜕y(𝑘) = I ∀𝑘 ≥ 0, (7.36)

which follow from (7.28). Let us recall that the partial derivatives in (7.33) and (7.34)
are known, according to Assumption 7.1.

Clearly, the equations (7.33)–(7.35) say that (.x(𝑘+1)
,
.z(𝑘+1)

,
.y(𝑘+1)) can be com-

puted from (.x(𝑘)
,
.z(𝑘)

,
.y(𝑘)), which implies that (.x(𝑁)

,
.z(𝑁)

,
.y(𝑁)) can be computed

recursively from (.x(0)
,
.z(0)

,
.y(0)).

Algorithm 7.3 shows how ADMM and its forward differentiation can be put together
to compute the loss and its gradient.

7.4.3 Reverse-mode differentiation
For a general computational graph with output 𝐿, the derivative of 𝐿 with respect to
any node v𝑖 satisfies the following identity, according to the chain rule:

𝜕𝐿
𝜕v𝑖

= ∑
𝑗∈Ch(𝑖)

𝜕v𝑗
𝜕v𝑖

𝜕𝐿
𝜕v𝑗

, (7.43)

where Ch(𝑖) denotes the set of indices of the children of v𝑖.

80 chapter 7. deep parameter learning of graph-based models

algorithm 7.3 ADMM with forward-mode differentiation.

1: Initialize z0,y0 and set .z(0) = 0, .y(0) = 0.
2: for 𝑘 = 0, 1,… ,𝑁 − 1 do

x(𝑘+1)← 𝐹𝑥(z(𝑘),y(𝑘); 𝜃𝜃𝜃), (7.37)
.x(𝑘+1)← .z(𝑘) 𝜕x(𝑘+1)

𝜕z(𝑘) + .y(𝑘) 𝜕x(𝑘+1)

𝜕y(𝑘) + 𝜕x(𝑘+1)

𝜕𝜃𝜃𝜃 , (7.38)

z(𝑘+1)← 𝐹𝑧(x(𝑘+1),y(𝑘); 𝜃𝜃𝜃), (7.39)
.z(𝑘+1)← .x(𝑘+1) 𝜕z(𝑘+1)

𝜕x(𝑘+1) + .y(𝑘) 𝜕z(𝑘+1)

𝜕y(𝑘) + 𝜕z(𝑘+1)

𝜕𝜃𝜃𝜃 , (7.40)

y(𝑘+1)← y(𝑘) + 𝜌(Ax(𝑘+1) + Bz(𝑘+1) − c), (7.41)
.y(𝑘+1)← .y(𝑘) + 𝜌 .x(𝑘+1)A⊤ + 𝜌.z(𝑘+1)B⊤. (7.42)

3: end for
4: Return the loss 𝐿 ∶= 𝐿(x(𝑁)) and its gradient ∇𝜃𝜃𝜃𝐿 ∶= .x(𝑁).

For convenience, denote
v ∶= 𝜕𝐿

𝜕v , (7.44)

which is also called the adjoint vector of v [Griewank, 2010]. Clearly our goal is to
compute 𝜃𝜃𝜃.

Applying (7.43) for the node 𝜃𝜃𝜃 (c.f . the computational graph in Figure 7.1):

𝜃𝜃𝜃 = 𝜕x(𝑁)

𝜕𝜃𝜃𝜃 x(𝑁) +
𝑁−1
∑
𝑘=1

(𝜕z(𝑘)

𝜕𝜃𝜃𝜃 z(𝑘) + 𝜕x(𝑘)

𝜕𝜃𝜃𝜃 x(𝑘)) . (7.45)

Applying (7.43) in turn for the nodes x(𝑘), y(𝑘) and z(𝑘) we have:

x(𝑘) = 𝜕z(𝑘)

𝜕x(𝑘) z(𝑘) + 𝜕y(𝑘)

𝜕x(𝑘) y(𝑘), (7.46)

y(𝑘) = 𝜕y(𝑘+1)

𝜕y(𝑘) y(𝑘+1) + 𝜕x(𝑘+1)

𝜕y(𝑘) x(𝑘+1) + 𝜕z(𝑘+1)

𝜕y(𝑘) z(𝑘+1), (7.47)

z(𝑘) = 𝜕x(𝑘+1)

𝜕z(𝑘) x(𝑘+1) + 𝜕y(𝑘)

𝜕z(𝑘) y(𝑘). (7.48)

Plugging (7.36) into the above equations we get:

x(𝑘) = 𝜕z(𝑘)

𝜕x(𝑘) z(𝑘) + 𝜌A⊤y(𝑘), (7.49)

y(𝑘) = y(𝑘+1) + 𝜕x(𝑘+1)

𝜕y(𝑘) x(𝑘+1) + 𝜕z(𝑘+1)

𝜕y(𝑘) z(𝑘+1), (7.50)

z(𝑘) = 𝜕x(𝑘+1)

𝜕z(𝑘) x(𝑘+1) + 𝜌B⊤y(𝑘). (7.51)

Similarly to the forward mode, here we have three recursive equations but in the

7.4. general framework for admm gradient computation 81

reverse direction. When going backward, the order of execution of these equations is
important since the derivative at a node can only be evaluated given the derivatives
at all of its children.

Algorithm 7.4 shows how ADMM and its reverse differentiation can be put together
to compute the loss and its gradient.

algorithm 7.4 ADMM with reverse-mode differentiation.
Forward pass:

1: Run Algorithm 7.2 to compute the loss 𝐿(x(𝑁)). Store ∇𝐹𝑥(z(𝑘),y(𝑘),𝜃𝜃𝜃) and
∇𝐹𝑧(x(𝑘+1),y(𝑘),𝜃𝜃𝜃) in the memory for all 𝑘.

Reverse pass:
1: Initialization:

x(𝑁) ← 𝜕𝐿
𝜕x(𝑁) , (7.52)

y(𝑁−1) ← 𝜕x(𝑁)

𝜕y(𝑁−1) x(𝑁), (7.53)

𝜃𝜃𝜃 ← 𝜕x(𝑁)

𝜕𝜃𝜃𝜃 x(𝑁). (7.54)

2: for 𝑘 = (𝑁 − 1), (𝑁 − 2),… , 1 do

z(𝑘) ← 𝜕x(𝑘+1)

𝜕z(𝑘) x(𝑘+1) + 𝜌B⊤y(𝑘), (7.55)

x(𝑘) ← 𝜕z(𝑘)

𝜕x(𝑘) z(𝑘) + 𝜌A⊤y(𝑘), (7.56)

y(𝑘−1) ← y(𝑘) + 𝜕x(𝑘)

𝜕y(𝑘−1) x(𝑘) + 𝜕z(𝑘)

𝜕y(𝑘−1) z(𝑘), (7.57)

𝜃𝜃𝜃 ← 𝜃𝜃𝜃 + 𝜕z(𝑘)

𝜕𝜃𝜃𝜃 z(𝑘) + 𝜕x(𝑘)

𝜕𝜃𝜃𝜃 x(𝑘) (7.58)

3: end for
4: Return the loss 𝐿 ∶= 𝐿(x(𝑁)) and its gradient ∇𝜃𝜃𝜃𝐿 ∶= 𝜃𝜃𝜃.

7.4.4 Forward mode or reverse mode?
First, we observe that both methods perform the same operations needed to compute
the output 𝐿 (i.e. no derivative is involved) in the forward direction. In addition, when
traversing the computational graph, both have to compute the Jacobian matrix 𝜕v𝑗

𝜕v𝑖
for

every edge 𝑖 → 𝑗. The difference is that the forward mode computes in addition 𝜕v𝑖
𝜕𝜃𝜃𝜃 ,

while the reverse mode compute 𝜕𝐿
𝜕v𝑖

, for (almost) every node 𝑖. Suppose that 𝜃𝜃𝜃 ∈ R𝑝

and v𝑖 ∈ R𝑛𝑖 ∀𝑖. For each edge 𝑖 → 𝑗, the forward mode performs a multiplication
between two Jacobian matrices of dimensions R𝑝×𝑛𝑖 and R𝑛𝑖×𝑛𝑗 (according to (7.31)),
while the reverse mode performs only a multiplication of an R𝑛𝑖×𝑛𝑗 Jacobian matrix
and an R𝑛𝑗 vector (according to (7.43)). Therefore, it is clear that the reverse mode
is more efficient in terms of computation operations. In contrast, the forward mode
is more efficient in terms of memory consumption, because in the reverse mode, the

82 chapter 7. deep parameter learning of graph-based models

Jacobian matrices 𝜕v𝑗
𝜕v𝑖

have to be computed during the forward pass and to be stored
in the memory, awaiting for the reverse pass (c.f . Algorithm 7.4).

The above observations also hold for a general computational graph. In partic-
ular, if the dimensions of the input and output of a graph are respectively 𝑛in and
𝑛out, then the reverse mode is much more efficient if 𝑛in ≫ 𝑛out, and vice-versa.
This is a well-known result in automatic differentiation (see e.g. [Griewank, 2010,
Baydin et al., 2018] for in-depth analysis and discussion). The training task in ma-
chine learning often involves the gradient of a scalar-valued objective with respect
to a large number of parameters, which is the reason why reverse-mode differentia-
tion is very popular in this field (although under different names until only recently).
Perhaps its best known special case in machine learning is the back-propagation algo-
rithm [LeCun et al., 1989] for training neural networks. Today it is widely known that
reverse-mode differentiation was first introduced in [Linnainmaa, 1970].

7.5 admm for graph-based models: curse of differentiability

In the previous section we have presented a general theoretical framework for structured
prediction and learning with ADMM, in which we made a fundamental assumption on
the differentiability of the x and z updates (c.f . Assumption 7.1). Unfortunately
this assumption does not always hold in general. In this section, we will make this
clear by trying applying the above framework to the methods that we have proposed
in Chapters 5 and 6 for solving graph matching and MAP inference. Let us consider
pairwise models for simplicity in the presentation. All results, however, can be trivially
extended to higher-order models.

First, let us give a brief reminder from the previous chapters on how we solved
the inference problem in question. Instead of solving the original discrete problem, we
consider its continuous relaxation, which can be formulated as follows for (pairwise)
MAP inference or graph matching:

min 𝐸(x) = u⊤x + 1
2x⊤Px,

s.t. x ∈ X ,
(7.59)

where u and P represent the unary and pairwise potentials of the model (P has zero
diagonal), and X is the corresponding (relaxed) constraint set. Note that P and u are
functions of the parameter 𝜃𝜃𝜃, which we do not express explicitly for simplicity. The
constraint set is different between MAP inference and graph matching:

XMAP = {x ∣ 1⊤x𝑖 = 1,x𝑖 ≥ 0 ∀𝑖 ∈ V} , (7.60)

XGM = {x ≥ 0 ∣ mat(x) obeys matching constraints } . (7.61)

Here “matching constraints” can be any of one-to-one, one-to-many, or many-to-many
constraints, etc.

Recall that in our proposed nonconvex ADMM inference method, we reformulate

7.6. bregman admm: towards differentiable updates 83

the above problem as:
min u⊤x + 1

2x⊤Pz,

s.t. x = z,
x ∈ X1, z ∈ X2,

(7.62)

where X1 and X2 are closed convex sets satisfying X1 ∩ X2 = X .
The augmented Lagrangian is given by

𝐿𝜌(x, z,y) = u⊤x + 1
2x⊤Pz + y⊤(x − z) + 𝜌

2‖x − z‖2
2, (7.63)

and the corresponding ADMM updates are:

x(𝑘+1) = argmin
x∈X1

{(u + 1
2Pz(𝑘) + y(𝑘)) • x + 𝜌

2∥x − z(𝑘)∥2
2} , (7.64)

z(𝑘+1) = argmin
z∈X2

{(1
2P⊤x(𝑘+1) − y(𝑘)) • z + 𝜌

2∥z − x(𝑘+1)∥2
2} , (7.65)

y(𝑘+1) = y(𝑘) + 𝜌 (x(𝑘+1) − z(𝑘+1)) . (7.66)

Our focus is on (7.64) and (7.65). It is easily seen that these steps can be reduced to
the following projections:

x(𝑘+1) = argmin
x∈X1

∥x − v(𝑘+1)∥2
2, (7.67)

z(𝑘+1) = argmin
z∈X2

∥z − w(𝑘+1)∥2
2, (7.68)

where

v(𝑘+1) = z(𝑘) − 1
𝜌 (y(𝑘) + u + 1

2Pz(𝑘)) , (7.69)

w(𝑘+1) = x(𝑘+1) − 1
𝜌 (−y(𝑘) + 1

2Px(𝑘+1)) . (7.70)

We have seen in Chapters 5 and 6 that the projections (7.67) and (7.68) can be solved
using Lemma 5.1 (page 42). From the results obtained by this lemma, we observe that
x(𝑘+1) and z(𝑘+1) are non-differentiable, despite having closed form solutions. Indeed,
we give a proof of this result in Appendix C.1.1 (and a graphical illustration is presented
later in Figure 7.2a). As a result, Assumption 7.1 is violated and therefore, we cannot
apply the presented gradient computation framework.

In the next section, we propose a solution to overcome this issue.

7.6 bregman admm: towards differentiable updates
We have seen briefly in Chapter 4 (Section 4.3.3) a generalization of ADMM called
Bregman ADMM, which consists of replacing the ℓ2-norm penalty term in the aug-
mented Lagrangian by a more general distance function. The ℓ2-norm penalty, as
shown in the previous section, leads to projections onto convex sets, which make the x

84 chapter 7. deep parameter learning of graph-based models

and z updates non-differentiable. A natural idea arises: if we are not restricted to the
type of penalty functions, then possibly we can find one such that the ADMM updates
become differentiable. It turns out that this idea is indeed valid.

7.6.1 Introduction to Bregman ADMM

Definition 3 ([Bregman, 1967, Censor and Zenios, 1997]). The Bregman divergence
induced by a continuously differentiable and strictly convex function 𝜙 is defined by

𝐷𝜙(x,y) = 𝜙(x) − 𝜙(y) − ⟨∇𝜙(y),x − y⟩ . (7.71)

Since 𝜙 is strictly convex, it is clear that 𝐷𝜙(x,y) ≥ 0 ∀x,y and equality occurs
if and only if x = y. Examples of Bregman divergence generated from some convex
functions are given in Table 7.1.

table 7.1 Bregman divergence generated from some convex functions.

Domain 𝜙(x) 𝐷𝜙(x,y) Name

R𝑛 ‖x‖2
2 ‖x − y‖2

2 Euclidean distance
R𝑛 x⊤Mx (x − y)⊤M(x − y) Mahalanobis distance
simplex ∑𝑛

𝑖=1 𝑥𝑖 log 𝑥𝑖 ∑𝑛
𝑖=1 𝑥𝑖 log (𝑥𝑖

𝑦𝑖
) Kullback-Leibler divergence

R𝑛
+ ∑𝑛

𝑖=1 𝑥𝑖 log 𝑥𝑖 ∑𝑛
𝑖=1 (𝑥𝑖 log (𝑥𝑖

𝑦𝑖
) − 𝑥𝑖 + 𝑦𝑖) Generalized KL-divergence

Naturally one may think about defining a new augmented Lagrangian based on
Bregman divergence, i.e.

𝐿𝜙
𝜌(x, z,y) = 𝑓(x) + 𝑔(z) + ℎ(x, z) + y⊤(Ax + Bz − c) + 𝜌𝐷𝜙(c − Ax,Bz), (7.72)

and then perform the same updates as in regular ADMM. However, since the Breg-
man divergence is not necessarily convex with respect to the second argument, the
z-update might not be solved exactly to global optimum. A simple solution is to
switch the order of the variables alternatingly: the x-update uses 𝐷𝜙(Bz, c − Ax)
while the z-update uses 𝐷𝜙(c−Ax,Bz). The resulted algorithm is known as Bregman
ADMM [Wang and Banerjee, 2014].

7.6.2 Differentiable Bregman ADMM for graph-based models

Now applying to (7.62), the corresponding Bregman ADMM updates read:

x(𝑘+1) = argmin
x∈X1

{u⊤x + 1
2x • Pz(𝑘) + y(𝑘) • (x − z(𝑘)) + 𝜌𝐷𝜙(x, z(𝑘))} , (7.73)

z(𝑘+1) = argmin
z∈X2

{1
2x(𝑘+1) • Pz + y(𝑘) • (x(𝑘+1) − z) + 𝜌𝐷𝜙(z,x(𝑘+1))} , (7.74)

y(𝑘+1) = y(𝑘) + 𝜌(x(𝑘+1) − z(𝑘+1)), (7.75)

7.6. bregman admm: towards differentiable updates 85

which can be simplified as:

x(𝑘+1) = argmin
x∈X1

{(u + 1
2Pz(𝑘) + y(𝑘)) • x + 𝜌𝐷𝜙(x, z(𝑘))} , (7.76)

z(𝑘+1) = argmin
z∈X2

{(1
2P⊤x(𝑘+1) − y(𝑘)) • z + 𝜌𝐷𝜙(z,x(𝑘+1))} , (7.77)

y(𝑘+1) = y(𝑘) + 𝜌 (x(𝑘+1) − z(𝑘+1)) . (7.78)

As one may observe, the only difference compared to regular ADMM updates (7.64)–
(7.66) is that here we have used the Bregman divergence penalty terms 𝐷𝜙(x, z(𝑘)) and
𝐷𝜙(z,x(𝑘+1)) instead of the ℓ2-norm.

Now the most important question is: How to choose the function 𝜙 such that
the argmin operators in (7.76) and (7.77) are differentiable? Below we give such an
example of 𝜙. The analysis of different Bregman divergences would be an interesting
research direction that we leave for future work.

Consider the function 𝜙 ∶ R𝑛
+ → R defined by

𝜙(x) =
𝑛

∑
𝑖=1

𝑥𝑖 log 𝑥𝑖. (7.79)

With simple calculations we obtain the Bregman divergence induced by 𝜙:

𝐷𝜙(x,y) =
𝑛

∑
𝑖=1

(𝑥𝑖 log (𝑥𝑖
𝑦𝑖

) − 𝑥𝑖 + 𝑦𝑖) . (7.80)

The functions (7.79) and (7.80) are respectively known as the negative entropy and the
(generalized) Kullback-Leibler divergence [Kullback and Leibler, 1951] (c.f . Table 7.1).
The latter is usually denoted 𝐷KL, so we adapt this notation in the sequel.

With the KL divergence, the updates (7.76) and (7.77) are indeed differentiable for
the choices that we made on the decomposed sets X1 and X2 in Chapter 5 (for graph
matching) and Chapter 6 (for MAP inference). This is clear thanks to the following
lemma.

Lemma 7.1. Let 𝛼𝛼𝛼 ∈ R𝑝
+,𝛽𝛽𝛽 ∈ R𝑝 be constant vectors. The optimal solution w∗ of

min
w∈W

{𝐷KL(w,𝛼𝛼𝛼) − 𝛽𝛽𝛽⊤w} (7.81)

is given by the following.

1. For W = {w ∈ R𝑝 ∣ w ≥ 0,1⊤w = 1}:

𝑤∗
𝑖 = 𝛼𝑖 exp(𝛽𝑖)

∑𝑝
𝑗=1 𝛼𝑗 exp(𝛽𝑗)

∀1 ≤ 𝑖 ≤ 𝑝. (7.82)

2. For W = R𝑝
+:

𝑤∗
𝑖 = 𝛼𝑖 exp(𝛽𝑖 − 1) ∀1 ≤ 𝑖 ≤ 𝑝. (7.83)

86 chapter 7. deep parameter learning of graph-based models

An illustration comparing the differentiability of ADMM updates based on the
Kullback-Leibler divergence and the standard Euclidean distance is given Figure 7.2.

−1

0

1−1
−0.5

0
0.5

1

0

0.5

1

𝛽1

𝛽2

𝑤
∗ 1(

𝛽𝛽 𝛽)

(𝑤∗
1,𝑤∗

2) = argmin
w∈R2+

1⊤w=1

{0.5‖w − 1‖2
2 − 𝛽𝛽𝛽⊤w}

(a) Using Euclidean distance.

−1

0

1−1
−0.5

0
0.5

1

0.5

𝛽1

𝛽2

𝑤
∗ 1(

𝛽𝛽 𝛽)
(𝑤∗

1,𝑤∗
2) = argmin

w∈R2+
1⊤w=1

{𝐷KL(w,1) − 𝛽𝛽𝛽⊤w}

(b) Using Kullback-Leibler divergence.

figure 7.2 Differentiability of ADMM updates: comparison between the Kullback-Leibler di-
vergence and the standard Euclidean distance. On the right-hand side we show an example
of the first case of Lemma 7.1 (c.f . (7.82)) in two dimensions for the particular case where
𝛼𝛼𝛼 = 1. On the left-hand side, we show the same results but replacing the Kullback-Leibler
divergence by the Euclidean distance (c.f . Appendix C.1.1). One can observe that using the
Kullback-Leibler divergence, the obtained solution is smooth, which is not the case when using
the Euclidean distance.

As an example, consider the MAP inference problem with the following decompo-
sition of the constraint sets:

X1 = {x ∈ R𝑛 ∣ x ≥ 0, sum of each row of mat(x) is 1 } , (7.84)

X2 = {x ∈ R𝑛 ∣ x ≥ 0} . (7.85)

Recall that mat(x) denotes a reshaped version of x that represents the corresponding
assignment matrix. In this case, mat(x) is a |V| × |S| matrix, where V and S denote
the set of nodes and the set of labels, and each row of mat(x) corresponds to a node
in the MRF.
Denote

v(𝑘+1) = −1
𝜌 (u + 1

2Pz(𝑘) + y(𝑘)) , (7.86)

w(𝑘+1) = −1
𝜌 (1

2P⊤x(𝑘+1) − y(𝑘)) , (7.87)

then (7.76) and (7.77) become

x(𝑘+1) = argmin
x∈X1

{𝐷KL(x, z(𝑘)) − v(𝑘+1) • x} , (7.88)

z(𝑘+1) = argmin
z∈X2

{𝐷KL(z,x(𝑘+1)) − w(𝑘+1) • z} . (7.89)

7.6. bregman admm: towards differentiable updates 87

It is easy to see that the minimization problem in (7.88) can be decomposed into
subproblems at each row of mat(x) whose solutions follow the first case in Lemma 7.1
(i.e. (7.82)), which is

𝑋(𝑘+1)
𝑖𝑠 =

𝑍(𝑘)
𝑖𝑠 exp(𝑉 (𝑘+1)

𝑖𝑠)
∑𝑡∈S 𝑍(𝑘)

𝑖𝑡 exp(𝑉 (𝑘+1)
𝑖𝑡)

∀𝑠 ∈ S,∀𝑖 ∈ V, (7.90)

where we have denoted X = mat(x),Z = mat(z) and V = mat(v).
For (7.89), again using the second case (since z ∈ X2 = R𝑛

+) of Lemma 7.1, we obtain

𝑧(𝑘+1)
𝑖 = 𝑥(𝑘+1)

𝑖 exp(𝑤(𝑘+1)
𝑖 − 1), ∀1 ≤ 𝑖 ≤ 𝑛. (7.91)

Thanks to the use of the KL divergence, we have reduced the ADMM updates (7.76)–
(7.77) to (7.91)–(7.90), which have analytic forms and are clearly differentiable. Hence,
the conditions stated in Assumption 7.1 are satisfied and thus we can apply the gra-
dient computation framework presented in Section 7.4. It should be noted that these
results are also valid for higher-order models. Recall from Chapters 5 and 6 that
the energy in these models can be written as a multi-linear function over decomposing
blocks of variables, thus each update step of Bregman ADMM will consist of minimiz-
ing a sum of a KL divergence term and a linear term over one block of variables (while
the other blocks are fixed), which is the same as (7.88) or (7.89).

7.6.3 Gradient computation for Bregman ADMM
Let us recall that the gradients

(𝜕x(𝑘+1)

𝜕z(𝑘) ,
𝜕x(𝑘+1)

𝜕y(𝑘) ,
𝜕x(𝑘+1)

𝜕𝜃𝜃𝜃) and (𝜕z(𝑘+1)

𝜕x(𝑘+1) ,
𝜕z(𝑘+1)

𝜕y(𝑘) ,
𝜕z(𝑘+1)

𝜕𝜃𝜃𝜃) (7.92)

are necessary to run Algorithm 7.3 (forward mode) or Algorithm 7.4 (reverse mode) to
compute the loss gradient ∇𝜃𝜃𝜃𝐿. In principle, one can plug (7.86) and (7.87) into (7.90)
and (7.91) to obtain analytic expressions of x(𝑘+1) (as a function of z(𝑘),y(𝑘),𝜃𝜃𝜃) and
z(𝑘+1) (as a function of x(𝑘+1),y(𝑘),𝜃𝜃𝜃), which would result in analytic expressions of the
derivatives in (7.92). In practice, however, these expressions may be very cumbersome
and not easy to be implemented efficiently. The idea is to break down these complicated
update steps into simpler operations in which it is much easier to compute derivatives.
In the previous section we have seen that the x update (7.76) is the composition
of (7.86) and (7.90), and the z update (7.77) is the composition of (7.87) and (7.91).
Therefore, it is natural to introduce intermediate nodes v (7.86) and w (7.87) into
our computational graph, as shown in Figure 7.3. Obviously one can further break
down these operations into even smaller ones, e.g. (7.90) can be seen as a series of
exponentiation, multiplication, addition and division. This is indeed the core idea
behind automatic differentiation (see e.g. [Baydin et al., 2018]) where every node of
the corresponding computational graph represents an elementary arithmetic operation
or function. For our presentation, we decide not to go for finer grained level because
of two reasons:1 (1) we would like to keep our computational graph not too complex,

1In our experiments presented in Section 7.7.2, however, we take advantage of automatic differen-
tiation implemented by deep learning libraries.

88 chapter 7. deep parameter learning of graph-based models

and (2) the current level already allows efficient and vectorized computation of the
derivatives, as shown in the following.

z(0)

y(0)

x(1)

v(1)

z(1)

y(1)

w(1)

x(2)

v(2)

z(2)

y(2)

w(2)

x(3)

v(3)

z(3)

y(3)

w(3)

x(4)

v(4)

𝐿

figure 7.3 Computational graph illustrating ADMM for 4 iterations. Compared to the graph
in Figure 7.1, here we have added intermediate nodes v(𝑘) and w(𝑘), defined by (7.86) and (7.87)
for pairwise MAP inference or graph matching. A dashed circle represent a node that takes
the parameter 𝜃𝜃𝜃 as input, e.g. v means 𝜃𝜃𝜃 v . For clarity, we have not presented 𝜃𝜃𝜃
explicitly.

In both forward-mode and reverse-mode differentiations (c.f . Sections 7.4.2 and 7.4.3,
respectively), we need to compute the partial derivatives of every node with respect
to its parents. For our KL-divergence Bregman ADMM, based on the computational
graph in Figure 7.3, we can compute these derivatives as below. Without ambiguity,
we omit the iteration counter 𝑘.

Derivatives of x(𝑘+1) with respect to z(𝑘) and v(𝑘+1)

Denote e = exp(v) (element-wise), E = mat(e), f = z ⊙ e and

𝑆𝑖 = ∑
𝑡∈S

𝑍𝑖𝑡𝐸𝑖𝑡 = ∑
𝑡∈S

𝑍𝑖𝑡 exp(𝑉𝑖𝑡) = 1⊤(z𝑖 ⊙ e𝑖) ∀𝑖 ∈ V. (7.93)

The Jacobian matrices 𝜕x
𝜕z and 𝜕x

𝜕v are block diagonal matrices whose diagonal blocks
are respectively:

𝜕x𝑖
𝜕z𝑖

= 1
𝑆2

𝑖
(𝑆𝑖diag(e𝑖) − e𝑖e⊤

𝑖 diag(z𝑖)) ∀𝑖 ∈ V, (7.94)

𝜕x𝑖
𝜕v𝑖

= 1
𝑆2

𝑖
(𝑆𝑖diag(f𝑖) − f𝑖f⊤

𝑖) ∀𝑖 ∈ V. (7.95)

A proof can be found in Appendix C.1.2. In practice, one should compute 𝜕x
𝜕z first and

then update 𝜕x
𝜕v using

𝜕x𝑖
𝜕v𝑖

= diag(z𝑖)
𝜕x𝑖
𝜕z𝑖

∀𝑖 ∈ V. (7.96)

7.6. bregman admm: towards differentiable updates 89

Derivatives of z(𝑘+1) with respect to x(𝑘+1) and w(𝑘+1)

From (7.91) it is straightforward that

𝜕z
𝜕x = diag(exp(w − 1)), 𝜕z

𝜕w = diag(x ⊙ exp(w − 1)). (7.97)

Derivatives of v(𝑘+1) with respect to z(𝑘),y(𝑘) and 𝜃𝜃𝜃
From (7.86):

𝜕v
𝜕z = − 1

2𝜌P⊤,
𝜕v
𝜕y = −1

𝜌I, 𝜕v
𝜕𝜃𝜃𝜃 = −1

𝜌 (𝜕u
𝜕𝜃𝜃𝜃 + 1

2
𝜕P
𝜕𝜃𝜃𝜃 z) . (7.98)

If the parameters are independent between unary and pairwise potentials (which is
usually the case), e.g. 𝜃𝜃𝜃 ∶= (𝜃𝜃𝜃𝑢,𝜃𝜃𝜃𝑝),u ∶= u(𝜃𝜃𝜃𝑢),P ∶= P(𝜃𝜃𝜃𝑝), then

𝜕v
𝜕𝜃𝜃𝜃𝑢

= −1
𝜌

𝜕u
𝜕𝜃𝜃𝜃𝑢

,
𝜕v
𝜕𝜃𝜃𝜃𝑝

= − 1
2𝜌

𝜕P
𝜕𝜃𝜃𝜃𝑝

z. (7.99)

As an example, in the semantic segmentation application presented in Section 7.7, we
will see that the unary potentials u are obtained from a CNN and each element of the
pairwise potentials P are defined by a linear combination of Gaussian kernels. In this
case, 𝜃𝜃𝜃𝑢 represents the set of weights of the CNN and 𝜃𝜃𝜃𝑝 represents the parameters of
the Gaussian kernels as well as their coefficients.

Derivatives of w(𝑘+1) with respect to x(𝑘+1),y(𝑘) and 𝜃𝜃𝜃
From (7.87):

𝜕w
𝜕x = − 1

2𝜌P,
𝜕w
𝜕y = 1

𝜌I, 𝜕w
𝜕𝜃𝜃𝜃 = − 1

2𝜌
𝜕P⊤

𝜕𝜃𝜃𝜃 x. (7.100)

Similarly to the previous case, if 𝜃𝜃𝜃 are decomposed into unary and pairwise parameters
(𝜃𝜃𝜃𝑢,𝜃𝜃𝜃𝑝) then

𝜕w
𝜕𝜃𝜃𝜃𝑢

= 0, 𝜕v
𝜕𝜃𝜃𝜃𝑝

= − 1
2𝜌

𝜕P⊤

𝜕𝜃𝜃𝜃𝑝
x. (7.101)

Derivatives of y(𝑘+1) with respect to y(𝑘),x(𝑘+1) and z(𝑘+1)

From (7.78):
𝜕y(𝑘+1)

𝜕y(𝑘) = I, 𝜕y
𝜕x = 𝜌I, 𝜕y

𝜕z = −𝜌I, (7.102)

where in the first equation we have kept the iteration counter to distinguish between
y(𝑘+1) and y(𝑘).

Finally, we present a complete Bregman ADMM algorithm for solving pairwise
MAP inference with reverse-mode differentiation in Algorithm 7.5. Forward-mode dif-
ferentiation can be derived in a straightforward manner, but as argued in Section 7.4.4,
reverse-mode is more efficient for our training problem since the output of our compu-
tational graph is a scalar while the dimensions of the inputs are large.

90 chapter 7. deep parameter learning of graph-based models

algorithm 7.5 Bregman ADMM for pairwise MAP inference with reverse-mode differ-
entiation, corresponding to the computational graph in Figure 7.3.
Forward pass:

1: Initialize z0,y0.
2: for 𝑘 = 0, 1,… ,𝑁 − 1 do
3: Compute v(𝑘+1) using (7.86).
4: Compute and store in the memory 𝜕v(𝑘+1)

𝜕z(𝑘) , 𝜕v(𝑘+1)

𝜕y(𝑘) , 𝜕v(𝑘+1)
𝜕𝜃𝜃𝜃 using (7.98).

5: Compute x(𝑘+1) using (7.90).
6: Compute and store in the memory 𝜕x(𝑘+1)

𝜕z(𝑘) , 𝜕x(𝑘+1)

𝜕v(𝑘+1) using (7.94) and (7.95).
7: Compute w(𝑘+1) using (7.87).
8: Compute and store in the memory 𝜕w(𝑘+1)

𝜕x(𝑘+1) ,
𝜕w(𝑘+1)

𝜕y(𝑘) , 𝜕w(𝑘+1)
𝜕𝜃𝜃𝜃 using (7.100).

9: Compute z(𝑘+1) using (7.91).
10: Compute and store in the memory 𝜕z(𝑘+1)

𝜕x(𝑘+1) ,
𝜕z(𝑘+1)

𝜕w(𝑘+1) using (7.97).
11: Compute y(𝑘+1) using (7.78).
12: end for
13: Compute the loss 𝐿(x(𝑁)) and its derivative 𝜕𝐿

𝜕x(𝑁) .
Reverse pass:

1: Initialization:

x(𝑁) ← 𝜕𝐿
𝜕x(𝑁) , v(𝑁) ← 𝜕x(𝑁)

𝜕v(𝑁) x(𝑁), y(𝑁−1) ← −1
𝜌v(𝑁), 𝜃𝜃𝜃 ← 𝜕v(𝑁)

𝜕𝜃𝜃𝜃 v(𝑁).

2: for 𝑘 = (𝑛 − 1), (𝑛 − 2),… , 1 do

z(𝑘) ← 𝜕x(𝑘+1)

𝜕z(𝑘) x(𝑘+1) − 1
2𝜌P⊤v(𝑘+1) − 𝜌y(𝑘), (7.103)

w(𝑘) ← 𝜕z(𝑘)

𝜕w(𝑘) z(𝑘), (7.104)

𝜃𝜃𝜃 ← 𝜃𝜃𝜃 + 𝜕w(𝑘)

𝜕𝜃𝜃𝜃 w(𝑘), (7.105)

x(𝑘) ← 𝜕z(𝑘)

𝜕x(𝑘) z(𝑘) − 1
2𝜌Pw(𝑘) + 𝜌y(𝑘), (7.106)

v(𝑘) ← 𝜕x(𝑘)

𝜕v(𝑘) v(𝑘), (7.107)

𝜃𝜃𝜃 ← 𝜃𝜃𝜃 + 𝜕v(𝑘)

𝜕𝜃𝜃𝜃 v(𝑘), (7.108)

y(𝑘−1) ← y(𝑘) − 1
𝜌v(𝑘) + 1

𝜌w(𝑘). (7.109)

3: end for
4: Return ∇𝜃𝜃𝜃𝐿 ∶= 𝜃𝜃𝜃.

7.7. application: dense crfs for semantic segmentation 91

7.7 application: dense crfs for semantic segmentation

7.7.1 Semantic segmentation and dense CRFs

(a) person, car, horse and background. (b) person, bicycle and background.

figure 7.4 Semantic segmentation consists of assigning each image pixel to an object class.
Images and annotations taken from the Pascal VOC 2012 dataset [Everingham et al., 2010].
Best viewed in color.

Semantic segmentation consists of assigning each image pixel to an object class
(c.f . Figure 7.4). This problem can be easily modeled by MAP inference on a CRF,
where each node corresponds to a pixel on the image, and each label corresponds to
an object class.

Indeed, consider a graph G = (V, E) defined over an image where each node in V
corresponds to a pixel. Let S be the set of labels (i.e. object classes in our case). With
suitable potential functions, the segmentation problem can be reduced to minimizing
a CRF energy:

min
s∈S |V |

𝑒(s) = ∑
𝑖∈V

𝜓𝑖(𝑠𝑖) + ∑
𝑖𝑗∈E

𝜓𝑖𝑗(𝑠𝑖, 𝑠𝑗), (7.110)

where s = (𝑠𝑖)𝑖∈V denotes the joint labeling of all pixels. As usual, we re-write the
above problem using indicator functions:

min 𝐸(x) = ∑
𝑖∈V

∑
𝑠∈S

𝜓𝑖(𝑠)𝑥𝑖(𝑠) + ∑
𝑖𝑗∈E

∑
𝑠∈S

∑
𝑡∈S

𝜓𝑖𝑗(𝑠, 𝑡)𝑥𝑖(𝑠)𝑥𝑗(𝑡),

s.t. ∑
𝑠∈S

𝑥𝑖(𝑠) = 1 ∀𝑖 ∈ V,

𝑥𝑖(𝑠) ∈ {0, 1} ∀𝑠 ∈ S,∀𝑖 ∈ V.

(7.111)

The continuous relaxation of this problem (i.e. when 𝑥𝑖(𝑠) ∈ {0, 1} is replaced by
𝑥𝑖(𝑠) ≥ 0) can be re-written in using vector notation as:

min 𝐸(x) = u⊤x + 1
2x⊤Px,

s.t. 1⊤x𝑖 = 1 ∀𝑖 ∈ V,
x𝑖 ≥ 0 ∀𝑖 ∈ V,

(7.112)

where u and P represent the potentials, u ∈ R𝑛,𝑛 = |V||S|,P ∈ R𝑛×𝑛 .

92 chapter 7. deep parameter learning of graph-based models

The unary potentials of this model can be obtained from some pixel-level clas-
sifier such as 𝑘-means clustering, Gaussian mixture model, or a neural network for
example. The edges and their potentials should be defined in such a way that pix-
els of the same object tend to have the same label. The connectivities between the
nodes are often defined over neighboring ones only (i.e. P is very sparse) since high
connectivities imply high computational cost. This, however, limits the expressive
power of the model since two distant pixels might have a strong effect on each other,
yet this relationship is not taken into account by a sparse model. To overcome this
issue, [Krähenbühl and Koltun, 2011] proposed in their influential work a dense (or
fully connected) CRF with Gaussian pairwise potentials that take the form

𝜓𝑖𝑗(𝑠, 𝑡) =
𝐶

∑
𝑐=1

𝜇𝑐(𝑠, 𝑡)𝑘𝑐(f𝑖, f𝑗), (7.113)

where 𝑘𝑐(f𝑖, f𝑗) = exp (−1
2(f𝑖 − f𝑗)⊤𝛴𝛴𝛴−1(f𝑖 − f𝑗)) is a Gaussian kernel and 𝜇𝑐 is called a

compatibility function. A simple compatibility function is the Potts model: 𝜇𝑐(𝑠, 𝑡) =
𝑤𝑐1[𝑠≠𝑡]. For image segmentation, [Krähenbühl and Koltun, 2011] proposed a contrast-
sensitive two-kernel potential function:

𝜓𝑖𝑗(𝑠, 𝑡) = 𝜇1(𝑠, 𝑡) exp ⎛⎜
⎝

−
∥𝑝𝑖 − 𝑝𝑗∥

2
2

2𝜃2𝛼
−

∥𝐼𝑖 − 𝐼𝑗∥
2
2

2𝜃2
𝛽

⎞⎟
⎠

+ 𝜇2(𝑠, 𝑡) exp ⎛⎜
⎝

−
∥𝑝𝑖 − 𝑝𝑗∥

2
2

2𝜃2𝛾
⎞⎟
⎠

,

(7.114)
where 𝑝𝑖, 𝑝𝑗 denotes the positions and 𝐼𝑖, 𝐼𝑗 the colors of the pixels 𝑖, 𝑗 respectively.

To minimize the CRF energy with these Gaussian potentials, the corresponding
authors used a mean field approximation to the CRF distribution. They showed that
a mean field update of all variables in a dense CRF can be performed very efficiently
using Gaussian filtering in the feature space. The resulted algorithm is very efficient
and is able to capture fine edge details while also catering for long range dependencies.
We refer to [Krähenbühl and Koltun, 2011] for further details.

Since the publication of [Krähenbühl and Koltun, 2011], mean field dense CRFs
have been used as a post-processing step for pixel-level classifiers such as deep CNNs
and consistently yielded state-of-the-art results (see e.g. [Chen et al., 2014]). In these
works, the parameters of the pixel-level classifier and of the CRF were learned sepa-
rately, which might be suboptimal because the two models are unaware of each other
during training. To address this issue, [Krähenbühl and Koltun, 2013] — inspired
by [Domke, 2012] — proposed a method for training jointly the pixel-level classifier
and the CRF in an end-to-end manner using unrolled optimization (mean field) and
reverse-mode differentiation (c.f . Section 7.4). The experiments therein showed a
substantial improvement over training separately a CRF and a TextonBoost classi-
fier [Shotton et al., 2009]. Later, [Zheng et al., 2015] applied the same idea but with a
fully convolutional neural network classifier [Long et al., 2015] and achieved state-of-
the-art results at the time of publication.

Our work presented in this section can be considered to be in the same line of
work of [Krähenbühl and Koltun, 2013] and [Zheng et al., 2015], in the sense that all
works use an unrolled optimization algorithm for minimizing the CRF energy, enabling
back-propagation of the gradient through the CRF, which allows training it jointly and

7.7. application: dense crfs for semantic segmentation 93

end-to-end with a pixel-level classifier. An illustration of this idea is given in Figure 7.5.
The major difference between our work and the others is that we use Bregman ADMM
to optimize the CRF (c.f . Section 7.6.2), whereas they used mean field inference. The
experiments in the next section show that our method achieve better results.

pixel-wise
classifier CRF

figure 7.5 Illustration of a single network composed of a pixel-wise classifier and a CRF for
semantic image segmentation. The output of the pixel-wise classifier is fed into the CRF as its
unary potentials. If CRF inference consists of a sequence of differentiable operations, then this
combined network can be trained jointly in an end-to-end manner using back-propagation (or
reverse-mode differentiation). This idea was introduced in [Krähenbühl and Koltun, 2013].

7.7.2 Experiments
We performed experiments on the Pascal VOC 2012 dataset [Everingham et al., 2010],
a commonly used benchmark for comparing semantic segmentation algorithms.

Dataset

As a standard practice, we augmented the Pascal VOC 2012 dataset with images
from the dataset of [Hariharan et al., 2014]. Our training set contains in total 11685
images, which consists of the training ones from Pascal VOC 2012 (1464 images), plus
the training and validation ones from [Hariharan et al., 2014]. After removing the
overlap between Pascal VOC 2012 validation images and our training set, we were left
with 346 images from the original Pascal VOC 2012 validation set. The methods were
also evaluated on the Pascal VOC 2012 test set (1457 images) whose annotations are
not publicly available.

Models

Our model consists of a CNN, followed by a dense CRF (c.f . Figure 7.5). For the CNN
part, following [Zheng et al., 2015], we used the fully convolutional network (FCN)
architecture of [Long et al., 2015]. In addition, we considered also an improved version
of this network introduced in [Chen et al., 2014] that uses ‘atrous’ convolution. Let us
denote this atrous version AFCN. For the CRF part, we used the CRF layer proposed
by [Zheng et al., 2015], which is a stack of mean field iterations. On the other hand,
our proposed CRF layer is a stack of Bregman ADMM iterations. Let us denote

94 chapter 7. deep parameter learning of graph-based models

these models respectively mean field CRF (MFCRF) and alternating direction CRF
(ADCRF). Our main goal is to compare ADCRF against MFCRF.

Implementation details

We implemented our model on top of the publicly available code of [Zheng et al., 2015]2
and [Monteiro et al., 2018]3, which are based on the popular deep learning library
Keras [Chollet et al., 2015]. All models were trained on an NVIDIA GeForce GTX
1080 Ti, with image sizes 500 × 500 and batch size 4.

We first trained the CNN part to convergence (that is when overfitting starts to
occur). Using a learning rate of 10−5, this training took about 25 epochs.4 Then
we used this trained model as initialization for training end-to-end the CNN+CRF
network using the same learning rate of 10−5. Following [Zheng et al., 2015], we set
the number of CRF iterations to 5. For ADCRF we set the penalty parameter 𝜌 to
1.0. The CRF compatibility parameters are initialized using the Potts model, and the
CRF kernel parameters are obtained from [Zheng et al., 2015].

Results

First, as an important validation step, we demonstrate that our ADCRF layer can
effectively back-propagate the loss gradient, allowing successful end-to-end training.
Indeed, we present in Figure 7.6 the loss value and the pixel accuracy5 per train-
ing epoch of AFCN alone versus AFCN+ADCRF. In this experiment, we trained
AFCN+ADCRF using as initialization the parameters of AFCN trained for 25 epochs
(this can be understood as training AFCN for 25 epochs then plugging in the CRF and
continue training). One can observe that the loss in AFCN+ADCRF consistently de-
creases, which confirms that gradient based learning through ADCRF was successful.
Moreover, one can also observe a dramatic improvement obtained by adding ADCRF,
in both training and validation loss as well as accuracy, compared to continuing train-
ing AFCN alone.

Second, let us recall that the original motivation of using nonconvex ADMM was
because of its great inference performance, in terms of energy minimization. We per-
formed an experiment to validate this claim as well. We compare the energy values
produced by mean-field versus ADMM on the 1456 images of the Pascal VOC 2012
test set, using the trained AFCN+MFCRF model. This means that the training phase
used mean-field while in the inference phase we use both mean-field and ADMM for
comparison. Note that here we have given an advantage to mean-field. The obtained
results are given in Figure 7.7. One can observe that ADMM clearly outperformed
mean-field in terms of continuous energy minimization. After rounding to obtain dis-
crete solutions, ADMM with any initialization can outperform mean-field given enough
iterations. In particular, when the output of the CNN, normalized to [−1, 1], is used
for initialization, ADMM always achieves lower discrete energy values than mean-field
(with the same number of iterations). In our experiments we used this initialization.

2https://github.com/sadeepj/crfasrnn_keras
3https://github.com/MiguelMonteiro/permutohedral_lattice
4An epoch is a complete pass through the entire training set.
5Pixel accuracy represents the percentage of pixels that are correctly classified.

https://github.com/sadeepj/crfasrnn_keras
https://github.com/MiguelMonteiro/permutohedral_lattice

7.7. application: dense crfs for semantic segmentation 95

0 10 20 30 40 50

0.3

0.4

0.5

0.6

0.7 AFCN
ADCRF
training
validation

(a) Loss per training epoch.

0 10 20 30 40 50

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

AFCN
ADCRF
training
validation

(b) Pixel accuracy per training epoch.

figure 7.6 Loss value and pixel accuracy per training epoch of AFCN alone versus
AFCN+ADCRF. The AFCN alone network achieved the best accuracy on the validation set
at epoch 25. We used the trained AFCN parameters obtained at this epoch as initialization for
training AFCN+ADCRF. One can observe a dramatic improvement obtained adding ADCRF,
compared to continuing training AFCN alone.

5 10 15 20

−2.4400

−2.4200

−2.4000

−2.3800

−2.3600

⋅106

MF
AD-ones
AD-softmax
AD-unaries
AD-unaries-normalized
continuous
discrete

(a) Mean energy per iteration.

6 8 10 12 14 16 18 20

−2.4442

−2.4440

−2.4438

−2.4436

⋅106

MF
AD-ones
AD-softmax
AD-unaries
AD-unaries-normalized
continuous
discrete

(b) Zoomed version of the plot on the left.

figure 7.7 Mean energy values of mean-field inference versus alternating direction inference
on the 1456 images of the Pascal VOC 2012 test set, using a trained AFCN+MFCRF network.
Results for ADCRF are presented for different initializations. The right hand-side graph is
a zoomed version of the left hand-side one. It is observed that ADMM clearly outperformed
mean-field inference in terms of continuous energy minimization. After rounding to obtain
discrete solutions, ADMM with any initialization can outperform mean-field given enough
iterations. When the normalized output of the CNN is used for initialization, ADMM always
achieves lower discrete energy than mean-field with the same number of iterations.

Finally, we report the accuracy, in terms of the mean intersection over union
(mIOU) score, of the models on the validation set and the test set in Table 7.2. The
detailed results for each object class are presented in Appendix C.

While the number of CRF iterations was set to 5 for training, it was observed
in [Zheng et al., 2015] that setting this value to 10 for inference yields better re-
sults. Since mean-field generally converges within 10 iterations (as observed previ-

96 chapter 7. deep parameter learning of graph-based models

table 7.2 Accuracy of the models on the Pascal VOC 2012 segmentation dataset.

Model Validation mIOU Test mIOU
FCN 64.3724 67.0110
FCN+MFCRF 66.2431 68.9902
FCN+ADCRF10 66.6076 70.1612
FCN+ADCRF50 66.7832 70.3331
AFCN 65.0996 67.7054
AFCN+MFCRF 68.2995 70.5693
AFCN+ADCRF10 70.0467 70.9005
AFCN+ADCRF50 70.2820 71.0304

ously by [Krähenbühl and Koltun, 2013, Zheng et al., 2015] and again by our results
in Figure 7.7), setting the number of CRF iterations to a higher value will not yield
significant improvement. On the contrary, as Figure 7.7 indicates, ADMM only con-
verges after a much higher number of iterations. Therefore, in Table 7.2 we also report
the results for 10 and 50 ADCRF iterations.

We have a number of observations. First, adding a CRF layer clearly improved
the accuracy over plain CNN. Second, ADCRF outperformed MFCRF, both on the
validation and the test sets. Third, ADCRF with 50 iterations produced the best
results. To some extent, the fact that ADMM does not converge after 10 iterations
(yet it is still better than MFCRF) is not a bad thing, because it leaves the user with a
larger range of trade-off between accuracy and computational time. It should be noted
that we do not have such choice with MFCRF.

We conclude this section with some qualitative results in Figure 7.8.

7.7. application: dense crfs for semantic segmentation 97

figure 7.8Qualitative results on the Pascal VOC 2012 test set. From left to right: input image,
FCN, FCN + MFCRF (10 iterations), FCN + ADCRF (10 iterations), FCN + ADCRF (50
iterations).

8
Discussion & Conclusion

In this thesis, we have presented our contributions to graph-based representations in
computer vision, in terms of both inference and learning.

First, we proposed Alternating Direction Graph Matching (ADGM), a novel decom-
position framework for solving graph and hypergraph matching based on nonconvex
ADMM. This framework is very general and includes an infinite number of algorithms
that can be applied to models with arbitrary potential functions as well as arbitrary
matching constraints. We implemented two instantiations of this framework and eval-
uated them against existing methods on popular datasets. The results showed that
our algorithms achieved state-of-the-art performance.

Second, we proposed a nonconvex continuous relaxation of MAP inference in ar-
bitrary Markov random fields. This relaxation was shown to be tight, i.e. equivalent
to the original discrete problem. For solving this continuous relaxation, we presented
solutions using two popular gradient-based methods, and further introduced a more
effective solution by nonconvex ADMM. Experiments on different real-world prob-
lems demonstrate that the proposed ADMM compares favorably with state-of-the-art
algorithms in different settings.

Third, we proposed a method for learning the parameters of these graph-based
models from training data, based on nonconvex ADMM. This method consists of view-
ing ADMM iterations as a sequence of differentiable operations, which allows efficient
computation of the gradient of the training loss with respect to the model parameters,
enabling efficient training using stochastic gradient descent. We presented experiments
on a popular semantic segmentation dataset, which demonstrated that our method has
better performance than the current state-of-the-art mean-field based algorithm.

A number of questions and a fair amount of research remain open for future work.
The proposed ADMM frameworks can have infinitely many instantiations (i.e.

many decompositions), as discussed in Sections 5.2 and 6.4.2. A natural question arises:
What is the best decomposition? There is probably no single best decomposition for
all problems, but for a specific one there might be decompositions that are better than
others.

Unlike for convex problems, the solution quality as well as the convergence speed
of nonconvex ADMM are very sensitive to the parameters, especially the penalty 𝜌, as
discussed in Sections 5.3.5 and 6.4.2. What are the best values for these parameters?
The theoretical convergence of the proposed algorithms also needs to be completed.

The proposed nonconvex continuous relaxation of MAP inference is provably tight,

99

100 chapter 8. discussion & conclusion

as shown in Section 6.3. Does it hold for the continuous relaxation of graph matching?
In the learning framework presented in Chapter 7, the penalty parameter 𝜌 is fixed

(and set to 1.0 in the experiments). What would be the best value of 𝜌? It’s also
worth investigating whether allowing 𝜌 to change between iterations (as done for the
inference tasks in Chapters 5 and 6) could yield better results.

Also in Chapter 7, we only gave an example of penalty functions that allow differ-
entiable ADMM updates, which is the Kullback-Leibler divergence. It’s worth finding
and evaluating other penalty functions as well.

These are interesting research directions that we would like to follow in the future.

A
Theoretical Proofs and Additional Experimental

Results for Chapter 5

We give proofs of the theoretical results presented in Chapter 5 in Section A.1. Addi-
tional experimental results are provided in Section A.2.

A.1 proofs of theoretical results

A.1.1 Proof of Equations (5.35), (5.36) and (5.38)

We showed in Section 5.3 how the subproblems in ADGM1 algorithm can be reduced
to (5.32) where (c𝑑)1≤𝑑≤𝐷 are defined by (5.33) and (5.34). In this appendix, we
show how the subproblems in ADGM2 can be reduced to (5.32) where (c𝑑)1≤𝑑≤𝐷 are
defined by (5.35) (5.36) and (5.38).

Recall that in ADGM2, we chose (A𝑑)1≤𝑑≤𝐷 such that

x1 = x2, x2 = x3,… , x𝐷−1 = x𝐷, (A.1)

which can be written in matrix form as follows:

⎡
⎢
⎢
⎢
⎣

x1
0
0
⋮
0

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

−x2
x2
0
⋮
0

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0
−x3
x3
⋮
0

⎤
⎥
⎥
⎥
⎦

+ ⋯ +
⎡
⎢
⎢
⎢
⎣

0
0
⋮
0

−x𝐷

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0
0
⋮
0
0

⎤
⎥
⎥
⎥
⎦

. (A.2)

The above can be in turn re-written as A1x1 + A2x2 + ⋯ + A𝐷x𝐷 = 0 where A𝑑 is
chosen to be the 𝑑th (block) column of the following (𝐷 − 1) × 𝐷 block matrix A and
y is also a (𝐷 − 1) × 1 block vector:

A =
⎡
⎢
⎢
⎢
⎣

I −I
I −I

I ⋱
⋱ −I

I −I

⎤
⎥
⎥
⎥
⎦

, y =
⎡
⎢⎢
⎣

y2
y3
⋮

y𝐷

⎤
⎥⎥
⎦

. (A.3)

101

102 appendix a. theoretical proofs and additional experimental results for chapter 5

From (5.20) we easily have

s(𝑘)
1 =

⎡
⎢
⎢
⎢
⎢
⎣

0 − x(𝑘)
2

x(𝑘)
2 − x(𝑘)

3
x(𝑘)

3 − x(𝑘)
4

⋮
x(𝑘)

𝐷−1 − x(𝑘)
𝐷

⎤
⎥
⎥
⎥
⎥
⎦

, s(𝑘)
𝐷 =

⎡
⎢
⎢
⎢
⎢
⎣

x(𝑘+1)
1 − x(𝑘+1)

2
x(𝑘+1)

2 − x(𝑘+1)
2

⋮
x(𝑘+1)

𝐷−2 − x(𝑘+1)
𝐷−1

x(𝑘+1)
𝐷−1 − 0

⎤
⎥
⎥
⎥
⎥
⎦

(A.4)

and

s(𝑘)
𝑑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(𝑘+1)
1 − x(𝑘+1)

2
⋮

x(𝑘+1)
𝑑−2 − x(𝑘+1)

𝑑−1
x(𝑘+1)

𝑑−1 − 0
0 − x(𝑘)

𝑑+1
x(𝑘)

𝑑+1 − x(𝑘)
𝑑+2

⋮
x(𝑘)

𝐷−1 − x(𝑘)
𝐷

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∀2 ≤ 𝑑 ≤ 𝐷 − 1. (A.5)

Now we compute the vectors (c𝑑)1≤𝑑≤𝐷.

• For 𝑑 = 1: Since A1 = [I 0 ⋯ 0]⊤ we have

A⊤
1 A1 = I, (A.6)

A⊤
1 s(𝑘)

1 = −x(𝑘)
2 , (A.7)

A⊤
1 y(𝑘) = y(𝑘)

2 . (A.8)

Plugging these into (5.22), it becomes

1
2‖x‖2

2 + (−x(𝑘)
2 + 1

𝜌y(𝑘)
2 + 1

𝜌p(𝑘)
1)

⊤
x. (A.9)

Clearly, minimizing this quantity over M1 is equivalent to solving (5.32) for
𝑑 = 1, where c1 is defined by (5.35).

• For 𝑑 = 𝐷: Since A𝐷 = [0 ⋯ 0 −I]⊤ we have

A⊤
𝐷A𝐷 = I, (A.10)

A⊤
𝐷s(𝑘)

𝐷 = −x(𝑘+1)
𝐷−1 , (A.11)

A⊤
𝐷y(𝑘) = −y(𝑘)

𝐷 . (A.12)

Plugging these into (5.22), it becomes

1
2‖x‖2

2 + (−x(𝑘)
𝐷−1 − 1

𝜌y(𝑘)
𝐷 + 1

𝜌p(𝑘)
𝐷)

⊤
x. (A.13)

Minimizing this quantity over M𝐷 is equivalent to solving (5.32) for 𝑑 = 𝐷,
where c𝐷 is defined by (5.36).

a.2. additional experimental results 103

• For 2 ≤ 𝑑 ≤ 𝐷 − 1: Since (the below non-zero blocks are at the (𝑑 − 1)-th and
𝑑-th positions)

A𝑑 = [0 ⋯ 0 −I I 0 ⋯ 0]⊤

we have

A⊤
𝑑 A𝑑 = 2I,

A⊤
𝑑 s(𝑘)

𝑑 = −x(𝑘+1)
𝑑−1 − x(𝑘)

𝑑+1,

A⊤
𝑑 y(𝑘) = −y(𝑘)

𝑑 + y(𝑘)
𝑑+1.

Plugging these into (5.22), it becomes

‖x‖2
2 + (−x(𝑘+1)

𝑑−1 − x(𝑘)
𝑑+1 − 1

𝜌(y(𝑘)
𝑑 − y(𝑘)

𝑑+1) + 1
𝜌p(𝑘)

𝑑)
⊤

x. (A.14)

Minimizing this quantity over M𝑑 is equivalent to solving (5.32), where c𝑑 is
defined by (5.38).

A.1.2 Proof of Lemma 5.1

For part (a), see for example [Condat, 2016]. For part (b), the corresponding KKT
conditions are:

u ≥ 0, (A.15)
1⊤u ≤ 1, (A.16)

𝜇𝜇𝜇 ≥ 0, (A.17)
𝜈 ≥ 0, (A.18)

𝜇𝑖𝑢𝑖 = 0 ∀1 ≤ 𝑖 ≤ 𝑑, (A.19)
𝜈(1⊤u − 1) = 0, (A.20)

𝑢𝑖 − 𝑐𝑖 + 𝜈 − 𝜇𝑖 = 0 ∀1 ≤ 𝑖 ≤ 𝑑. (A.21)

If 𝜈 = 0 then from (A.15), (A.17), (A.19) and (A.21) we have

𝑢𝑖 ≥ 0 ∀𝑖, (A.22)
𝑢𝑖 − 𝑐𝑖 = 𝜇𝑖 ≥ 0 ∀𝑖, (A.23)

𝑢𝑖(𝑢𝑖 − 𝑐𝑖) = 0 ∀𝑖, (A.24)

which yields u = u0 where u0 = max(c,0). Thus, if 1⊤u ≤ 1 then u0 is the optimal
solution. Otherwise, 𝜈 must be different from 0. In this case, from (A.20), any optimal
solution must satisfy 1⊤u = 1 and thus, the problem is reduced to part (a).

A.2 additional experimental results
In this section, we provide additional experimental results, including the running time
for each algorithm.

104 appendix a. theoretical proofs and additional experimental results for chapter 5

A.2.1 House and Hotel dataset

In Section 5.4.1 we presented the results on the House sequence for Pairwise Model
B. Results for the Hotel sequence are given in Figure A.1 below. We also report the
running time for these experiments in Figure A.2 and Figure A.3.

20 40 60 80 100

Baseline

0.92

0.94

0.96

0.98

1

M
a

tc
h

in
g

 S
c
o

re

MPM
RRWM
IPFP
SMAC
ADGM

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

MPM
RRWM
IPFP
SMAC
ADGM

(a) 30 vs. 30 points

20 40 60 80 100

Baseline

0.7

0.8

0.9

1

1.1

1.2

M
a

tc
h

in
g

 S
c
o

re

MPM
RRWM
IPFP
SMAC
ADGM

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

MPM
RRWM
IPFP
SMAC
ADGM

(b) Hotel: 20 vs. 30 points

20 40 60 80 100

Baseline

0.6

0.7

0.8

0.9

1

1.1

M
a

tc
h

in
g

 S
c
o

re

MPM
RRWM
IPFP
SMAC
ADGM

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

MPM
RRWM
IPFP
SMAC
ADGM

(c) Hotel: 10 vs. 30 points

figure a.1 Results on the Hotel sequence using Pairwise Model B.

20 40 60 80 100

Baseline

2

4

6

R
u

n
n

in
g

 T
im

e

MPM
RRWM
IPFP
SMAC
ADGM

(a) 30 vs. 30 points

20 40 60 80 100

Baseline

1

2

3

R
u

n
n

in
g

 T
im

e

MPM
RRWM
IPFP
SMAC
ADGM

(b) 20 vs. 30 points

20 40 60 80 100

Baseline

0.5

1

1.5

2

R
u

n
n

in
g

 T
im

e

MPM
RRWM
IPFP
SMAC
ADGM

(c) 20 vs. 30 points

figure a.2 Running time on the House sequence using Pairwise Model B.

20 40 60 80 100

Baseline

0

1

2

3

4

5

R
u

n
n

in
g

 T
im

e

MPM
RRWM
IPFP
SMAC
ADGM

(a) 30 vs. 30 points

20 40 60 80 100

Baseline

1

2

3

4

R
u

n
n

in
g

 T
im

e

MPM
RRWM
IPFP
SMAC
ADGM

(b) 30 vs. 30 points

20 40 60 80 100

Baseline

0.2

0.4

0.6

R
u

n
n

in
g

 T
im

e

MPM
RRWM
IPFP
SMAC
ADGM

(c) 30 vs. 30 points

figure a.3 Running time on the Hotel sequence using Pairwise Model B.

a.2. additional experimental results 105

20 40 60 80 100

Baseline

1

2

3

4

5
R

u
n

n
in

g
 T

im
e

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(a) 20 vs. 30 points

20 40 60 80 100

Baseline

1

2

3

4

5

R
u

n
n

in
g

 T
im

e

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(b) 20 vs. 30 points

20 40 60 80 100

Baseline

0

0.5

1

1.5

2

2.5

R
u

n
n

in
g

 T
im

e

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(c) 10 vs. 30 points

figure a.4 Running time on the House sequence using Third-order Model.

20 40 60 80 100

Baseline

0.2

0.4

0.6

0.8

1

M
a

tc
h

in
g

 S
c
o

re

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(a) 30 vs. 30 points

20 40 60 80 100

Baseline

0.2

0.4

0.6

0.8

1

1.2

M
a

tc
h

in
g

 S
c
o

re

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(b) 20 vs. 30 points

20 40 60 80 100

Baseline

0

0.5

1

1.5

2

2.5

M
a

tc
h

in
g

 S
c
o

re

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

20 40 60 80 100

Baseline

0

0.2

0.4

0.6

0.8

1

A
c
c
u

ra
c
y

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(c) 10 vs. 30 points

figure a.5 Results on the Hotel sequence using Third-order Model.

20 40 60 80 100

Baseline

0

1

2

3

R
u

n
n

in
g

 T
im

e

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(a) Hotel: 10 pts vs 30 pts

20 40 60 80 100

Baseline

0

2

4

6

8

R
u

n
n

in
g

 T
im

e

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(b) Hotel: 20 pts vs 30 pts

20 40 60 80 100

Baseline

0

5

10

15

20

R
u

n
n

in
g

 T
im

e

HGM

TM

RRWHM

BCAGM

ADGM1

ADGM2

(c) Hotel: 30 pts vs 30 pts

figure a.6 Running time on the Hotel sequence using Third-order Model.

A.2.2 Cars and Motorbikes
We stated in Section 5.4.2 that using Pairwise Model B (described in Section 5.4.1),
the obtained results are unsatisfactory. Indeed, one can observe from Figure A.7 that
the obtained matching accuracy is very low, even though ADGM always achieved
the best objective values that are higher than the ground-truth ones. One
can conclude that this pairwise model is not suited for this dataset.

106 appendix a. theoretical proofs and additional experimental results for chapter 5

0 10 20 30 40

Outliers

0.7

0.8

0.9

1

1.1

1.2

M
a
tc

h
in

g
 S

c
o
re

MPM
RRWM
IPFP
SMAC
ADGM

0 10 20 30 40

Outliers

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

MPM
RRWM
IPFP
SMAC
ADGM

0 10 20 30 40

Outliers

10

20

30

40

50

R
u
n
n
in

g
 T

im
e

MPM
RRWM
IPFP
SMAC
ADGM

(a) Cars

0 10 20 30 40

Outliers

0.8

0.9

1

1.1

1.2

M
a
tc

h
in

g
 S

c
o
re

MPM
RRWM
IPFP
SMAC
ADGM

0 10 20 30 40

Outliers

0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

MPM
RRWM
IPFP
SMAC
ADGM

0 10 20 30 40

Outliers

10

20

30

40

R
u
n
n
in

g
 T

im
e

MPM
RRWM
IPFP
SMAC
ADGM

(b) Motorbikes

figure a.7 Results on the Cars and Motorbikes dataset using Pairwise Model B, defined
in Section 5.4.1. ADGM always achieved the best objective values that are higher than the
ground-truth ones. However, the obtained accuracy is still very low. One can conclude that
Pairwise Model B is not suited for this dataset.

B
Theoretical Proofs and Additional Details for

Chapter 6

B.1 proofs of theoretical results

B.1.1 Proof of Equation (6.41)

Recall from (6.29) that

𝐹(x1,… ,x𝐷) =
𝐷

∑
𝛼=1

∑
𝑖1…𝑖𝛼∈C

F𝑖1…𝑖𝛼
⨂ {x1

𝑖1
,… ,x𝛼

𝑖𝛼
} , (B.1)

Clearly, the terms corresponding to any 𝛼 < 𝑑 do not involve x𝑑. Thus, we can rewrite
the above as

𝐹(x1,… ,x𝐷) = cst(xd) +
𝐷

∑
𝛼=𝑑

∑
𝑖1…𝑖𝛼∈C

F𝑖1…𝑖𝛼
⨂ {x1

𝑖1
,… ,x𝛼

𝑖𝛼
} . (B.2)

We will show that the last double sum can be written as ∑𝑖∈V ⟨p𝑑
𝑖 ,x𝑑

𝑖 ⟩, where p𝑑
𝑖 is

given by (6.41). The idea is to regroup, for each node 𝑖, all terms that contain x𝑖.
Indeed, for a given 𝑑 we have the identity:

∑
𝑖1𝑖2…𝑖𝛼∈C

= ∑
𝑖𝑑∈V

∑
𝑖1…𝑖𝑑−1𝑖𝑑𝑖𝑑+1…𝑖𝛼∈C

. (B.3)

Therefore, the double sum in (B.2) becomes

𝐷
∑
𝛼=𝑑

∑
𝑖𝑑∈V

∑
𝑖1…𝑖𝑑−1𝑖𝑑𝑖𝑑+1…𝑖𝛼∈C

F𝑖1…𝑖𝛼
⨂ {x1

𝑖1
,… ,x𝛼

𝑖𝛼
} . (B.4)

Rearranging the first and second sums we obtain

∑
𝑖𝑑∈V

𝐷
∑
𝛼=𝑑

∑
𝑖1…𝑖𝑑−1𝑖𝑑𝑖𝑑+1…𝑖𝛼∈C

F𝑖1…𝑖𝛼
⨂ {x1

𝑖1
,… ,x𝛼

𝑖𝛼
} . (B.5)

107

108 appendix b. theoretical proofs and additional details for chapter 6

With the change of variable 𝑖 ← 𝑖𝑑 this becomes

∑
𝑖∈V

𝐷
∑
𝛼=𝑑

∑
𝑖1…𝑖𝑑−1𝑖𝑖𝑑+1…𝑖𝛼∈C

F𝑖1…𝑖𝛼
⨂ {x1

𝑖1
,… ,x𝛼

𝑖𝛼
} . (B.6)

Now by factoring out x𝑑
𝑖 for each 𝑖 ∈ V the above becomes

∑
𝑖∈V

⎛⎜
⎝

𝐷
∑
𝛼=𝑑

∑
𝑖1…𝑖𝑑−1𝑖𝑖𝑑+1…𝑖𝛼∈C

F𝑖1𝑖2…𝑖𝛼
⨂ {x1

𝑖1
,… ,x𝑑−1

𝑖𝑑−1
,x𝑑+1

𝑖𝑑+1
,… ,x𝛼

𝑖𝛼
} ⎞⎟

⎠

⊤

x𝑑
𝑖 , (B.7)

which is ∑𝑖∈V ⟨p𝑑
𝑖 ,x𝑑

𝑖 ⟩, where p𝑑
𝑖 is given by (6.41), QED.

B.1.2 Proof of Equations (6.45)–(6.47)
See Appendix B.2.2, page 113 on the details of ADMM.

B.1.3 Proof of Proposition 6.2
For PGD and FW, the result holds for general continuously differentiable function 𝐸(⋅)
and closed convex set X . We refer to [Bertsekas, 1999] (Sections 2.2.2 and 2.3.2) for a
proof. Below we give a proof for BCD.

In Proposition 6.1 we have shown that BCD reaches a discrete fixed point x(𝑘)

after a finite number of iterations 𝑘. Now, we show that this fixed point is stationary.
Define 𝛥𝑖 = {u ∈ R|S𝑖| ∶ u ≥ 0,1⊤u = 1} ∀𝑖 ∈ V and let x∗ = x(𝑘+1) = x(𝑘). At the
last 𝑖th inner iteration (6.7) we have:

𝐸(x(𝑘+1)
[1,𝑖−1],x𝑖,x

(𝑘)
[𝑖+1,𝑛]) ≥ 𝐸(x(𝑘+1)

[1,𝑖−1],x
(𝑘+1)
𝑖 ,x(𝑘)

[𝑖+1,𝑛]) (B.8)

for all x𝑖 ∈ 𝛥𝑖, which is

𝐸(x∗
[1,𝑖−1],x𝑖,x∗

[𝑖+1,𝑛]) ≥ 𝐸(x∗
[1,𝑖−1],x∗

𝑖 ,x∗
[𝑖+1,𝑛]) (B.9)

for all x𝑖 ∈ 𝛥𝑖. Define for each 𝑖 the function

𝐸∗
𝑖 (x𝑖) = 𝐸(x∗

1,… ,x∗
𝑖−1,x𝑖,x∗

𝑖+1,… ,x∗
𝑛). (B.10)

Obviously 𝐸∗
𝑖 (x𝑖) is continuously differentiable as it is linear. Since x∗

𝑖 is a minimizer
of 𝐸∗

𝑖 (x𝑖) over 𝛥𝑖, which is closed and convex, according to (6.48) (which is a necessary
optimality condition) we have ∇𝐸∗

𝑖 (x∗
𝑖)⊤(x𝑖 − x∗

𝑖) ≥ 0 ∀x𝑖 ∈ 𝛥𝑖. Notice that

∇𝐸(x∗) = ⎡
⎢
⎣

𝜕𝐸(x∗)
𝜕x1
⋮

𝜕𝐸(x∗)
𝜕x𝑛

⎤
⎥
⎦

= ⎡⎢
⎣

∇𝐸∗
1(x∗

1)
⋮

∇𝐸∗
𝑛(x∗

𝑛)
⎤⎥
⎦
, (B.11)

we have
∇𝐸(x∗)⊤(x − x∗) =

𝑛
∑
𝑖=1

∇𝐸∗
𝑖 (x∗

𝑖)⊤(x𝑖 − x∗
𝑖). (B.12)

b.1. proofs of theoretical results 109

Since each term in the last sum is non-negative, we have ∇𝐸(x∗)⊤(x−x∗) ≥ 0 ∀x ∈ X ,
i.e. x∗ is stationary.

B.1.4 Proof of Proposition 6.3

By Definition 2, a point (x1,… ,x𝐷,y) is a KKT of (6.30) if and only if it has the form
(x∗,… ,x∗,y∗) (where x∗ ∈ X) and at the same time satisfies

x∗𝑑 ∈ argmin
x𝑑∈X𝑑

{𝐹(x∗,… ,x∗,x𝑑,x∗,… ,x∗) + y∗⊤A𝑑x𝑑} (B.13)

for all 𝑑, which is equivalent to

(𝜕𝐹
𝜕x𝑑 (x∗,… ,x∗) + A𝑑⊤y∗)

⊤
(x𝑑 − x∗) ≥ 0 ∀x𝑑 ∈ X 𝑑,∀𝑑. (B.14)

The equivalence (“⇔”) follows from the fact that the objective function (with respect
to x𝑑) in (B.13) is convex. This is a well-known result in convex analysis, which
we refer to Bertsekas, Dimitri P., Angelia Nedi, and Asuman E. Ozdaglar. Convex
analysis and optimization.” (2003) (Proposition 4.7.2) for a proof. Note that from the
necessary optimality condition (6.48) we can only have the “⇒” direction.

We need to prove that the sequence {(x1(𝑘)
,… ,x𝐷(𝑘)

,y(𝑘))} generated by ADMM
satisfies the above conditions (under the assumption that the residual 𝑟(𝑘) converges
to 0).

Let (x∗1,x∗2,… ,x∗𝐷,y∗) be a limit point of {(x1(𝑘)
,… ,x𝐷(𝑘)

,y(𝑘))} (thus x∗𝑑 ∈
X 𝑑 ∀𝑑 since (X 𝑑)1≤𝑑≤𝐷 are closed), and define a subsequence that converges to this
limit point by {(x1(𝑙)

,… ,x𝐷(𝑙)
,y(𝑙))}, 𝑙 ∈ L ⊂ N where L denotes the set of indices of

this subsequence. We have

lim
𝑙→+∞

𝑙∈L
(x1(𝑙)

,… ,x𝐷(𝑙)
,y(𝑙)) = (x∗1,x∗2,… ,x∗𝐷,y∗). (B.15)

Since the residual 𝑟(𝑘) (6.39) converges to 0, we have

lim
𝑙→+∞

𝑙∈L
(

𝐷
∑
𝑑=1

A𝑑x𝑑(𝑙)) = 0, (B.16)

lim
𝑙→+∞

𝑙∈L
(x𝑑(𝑙+1) − x𝑑(𝑙)) = 0 ∀𝑑. (B.17)

On the one hand, combining (B.15) and (B.17) we get

lim
𝑙→+∞

𝑙∈L
(x1(𝑙+1)

,… ,x𝐷(𝑙+1)
,y(𝑙+1)) = (x∗1,x∗2,… ,x∗𝐷,y∗). (B.18)

(Note that the above is different from (B.15) because 𝑙+1 might not belong to L.) On
the other hand, combining (B.15) and (B.16) we get

𝐷
∑
𝑑=1

A𝑑x∗𝑑 = 0, (B.19)

110 appendix b. theoretical proofs and additional details for chapter 6

which is, according to (6.31), equivalent to

x∗1 = x∗2 = ⋯ = x∗𝐷. (B.20)

Let x∗ ∈ X denote the value of these vectors. From (B.15) and (B.18) we have

lim
𝑙→+∞

𝑙∈L
x𝑑(𝑙) = lim

𝑙→+∞
𝑙∈L

x𝑑(𝑙+1) = x∗ ∀𝑑, (B.21)

lim
𝑙→+∞

𝑙∈L
y(𝑙) = lim

𝑙→+∞
𝑙∈L

y(𝑙+1) = y∗. (B.22)

It only remains to prove that (x∗,… ,x∗,y∗) satisfies (B.14). Let us denote for
convenience

z(𝑘)
𝑑 = (x[1,𝑑](𝑘+1)

,x[𝑑+1,𝐷](𝑘)) ∀𝑑. (B.23)

According to (6.48), the x update (6.37) implies

(𝜕𝐿𝜌
𝜕x𝑑 (z(𝑘)

𝑑 ,y(𝑘)))
⊤

(x𝑑 − x𝑑(𝑘+1)) ≥ 0 ∀x𝑑 ∈ X 𝑑,∀𝑑,∀𝑘. (B.24)

Since 𝐿𝜌 (6.36) is continuously differentiable, applying (B.21) and (B.22) we obtain

lim
𝑙→+∞𝑙∈L

𝜕𝐿𝜌
𝜕x𝑑 (z(𝑙)

𝑑 ,y(𝑙)) = 𝜕𝐿𝜌
𝜕x𝑑 (x∗,… ,x∗,y∗) ∀𝑑. (B.25)

Let 𝑘 = 𝑙 in (B.24) and take the limit of that inequality, taking into account (B.21)
and (B.25), we get

(𝜕𝐿𝜌
𝜕x𝑑 (x∗,… ,x∗,y∗))

⊤
(x𝑑 − x∗) ≥ 0 ∀x𝑑 ∈ X 𝑑,∀𝑑. (B.26)

From the definition of 𝐿𝜌 (6.36) we have

𝜕𝐿𝜌
𝜕x𝑑 (x∗,… ,x∗,y∗) = 𝜕𝐹

𝜕x𝑑 (x∗,… ,x∗) + A𝑑⊤y∗ + 𝜌A𝑑⊤ (
𝐷

∑
𝑑=1

A𝑑x∗)

= 𝜕𝐹
𝜕x𝑑 (x∗,… ,x∗) + A𝑑⊤y∗. (B.27)

Note that the last equality follows from (6.31). Plugging the above into the last
inequality we obtain

(𝜕𝐹
𝜕x𝑑 (x∗,… ,x∗) + A𝑑⊤y∗)

⊤
(x𝑑 − x∗) ≥ 0 ∀x𝑑 ∈ X 𝑑,∀𝑑, (B.28)

which is exactly (B.14), and this completes the proof.

b.1. proofs of theoretical results 111

B.1.5 Proof of Proposition 6.4

Let (x∗,… ,x∗,y∗) be a KKT point of (6.30). We have seen in the previous proof that

(𝜕𝐹
𝜕x𝑑 (x∗,… ,x∗) + A𝑑⊤y∗)

⊤
(x𝑑 − x∗) ≥ 0 ∀x𝑑 ∈ X 𝑑,∀𝑑. (B.29)

According to (6.40):
𝜕𝐹
𝜕x𝑑 (x1,… ,x𝐷) = p𝑑, (B.30)

where p𝑑 is defined by (6.41). Now let p∗𝑑 be the value of p𝑑 where (x1,… ,x𝐷) is
replaced by (x∗,… ,x∗), i.e. p∗𝑑 = (p∗𝑑

1 ,… ,p∗𝑑
𝑛) where

p∗𝑑
𝑖 =

𝐷
∑
𝛼=𝑑

⎛⎜
⎝

∑
𝑖1…𝑖𝑑−1𝑖𝑖𝑑+1…𝑖𝛼∈C

F𝑖1𝑖2…𝑖𝛼
⨂ {x∗

𝑖1
,… ,x∗

𝑖𝑑−1
,x∗

𝑖𝑑+1
,… ,x∗

𝑖𝛼
} ⎞⎟

⎠
∀𝑖 ∈ V.

(B.31)
Notice that 𝜕𝐹

𝜕x𝑑 (x∗,… ,x∗) = p∗𝑑, (B.29) becomes

(p∗𝑑 + A𝑑⊤y∗)⊤ (x𝑑 − x∗) ≥ 0 ∀x𝑑 ∈ X 𝑑,∀𝑑. (B.32)

According to (6.32) we have X ⊆ X 𝑑 and therefore the above inequality implies

(p∗𝑑 + A𝑑⊤y∗)⊤ (x − x∗) ≥ 0 ∀x ∈ X ,∀𝑑. (B.33)

Summing this inequality for all 𝑑 we get

(
𝐷

∑
𝑑=1

p∗𝑑)
⊤

(x − x∗) + y∗⊤ (
𝐷

∑
𝑑=1

A𝑑) (x − x∗) ≥ 0 ∀x ∈ X . (B.34)

Yet, according to (6.31) we have ∑𝐷
𝑑=1 A𝑑x = ∑𝐷

𝑑=1 A𝑑x∗ = 0. Therefore, the second
term in the above inequality is 0, yielding

(
𝐷

∑
𝑑=1

p∗𝑑)
⊤

(x − x∗) ≥ 0 ∀x ∈ X . (B.35)

Now if we can prove that
𝐷

∑
𝑑=1

p∗𝑑 = ∇𝐸(x∗), (B.36)

then we have ∇𝐸(x∗)⊤(x − x∗) ≥ 0 ∀x ∈ X and thus according to Definition 1, x∗ is
a stationary point of (rlx).

Let us now prove (B.36). Indeed, we can rewrite (B.31) as

p∗𝑑
𝑖 =

𝐷
∑
𝛼=𝑑

⎛⎜⎜⎜
⎝

∑
𝐶∈C

𝐶=(𝑖1…𝑖𝑑−1𝑖𝑖𝑑+1…𝑖𝛼)

F𝐶 ⨂ {x∗
𝑗}𝑗∈𝐶\𝑖

⎞⎟⎟⎟
⎠

∀𝑖 ∈ V. (B.37)

112 appendix b. theoretical proofs and additional details for chapter 6

Therefore,

𝐷
∑
𝑑=1

p∗𝑑
𝑖 =

𝐷
∑
𝑑=1

𝐷
∑
𝛼=𝑑

∑
𝐶∈C

𝐶=(𝑖1…𝑖𝑑−1𝑖𝑖𝑑+1…𝑖𝛼)

F𝐶 ⨂ {x∗
𝑗}𝑗∈𝐶\𝑖 ∀𝑖 ∈ V. (B.38)

Let’s take a closer look at this triple sum. The double sum

𝐷
∑
𝛼=𝑑

∑
𝐶∈C

𝐶=(𝑖1…𝑖𝑑−1𝑖𝑖𝑑+1…𝑖𝛼)

basically means iterating through all cliques whose sizes are ≥ 𝑑 and whose 𝑑th node is 𝑖.
Obviously the condition “sizes ≥ 𝑑” is redundant here, thus the above means iterating
through all cliques whose 𝑑th node is 𝑖. Combined with ∑𝐷

𝑑=1, the above triple sum
means for each size 𝑑, iterating through all cliques whose 𝑑th node is 𝑖, which is clearly
equivalent to iterating through all cliques that contain 𝑖. Therefore, (B.38) can be
rewritten more compactly as

𝐷
∑
𝑑=1

p∗𝑑
𝑖 = ∑

𝐶∈C(𝑖)
F𝐶 ⨂ {x∗

𝑗}𝑗∈𝐶\𝑖 ∀𝑖 ∈ V, (B.39)

where C(𝑖) is the set of cliques that contain the node 𝑖. Recall from (6.10) that the
last expression is actually 𝜕𝐸(x∗)

𝜕x𝑖 , i.e.

𝐷
∑
𝑑=1

p∗𝑑
𝑖 = 𝜕𝐸(x∗)

𝜕x𝑖 ∀𝑖 ∈ V, (B.40)

or equivalently
𝐷

∑
𝑑=1

p∗𝑑 = ∇𝐸(x∗), (B.41)

which is (B.36), and this completes the proof.

B.2 more details on the implemented methods

B.2.1 Convex QP relaxation

This relaxation was presented in [Ravikumar and Lafferty, 2006] for pairwise MRFs (6.20).
Define:

𝑑𝑖(𝑠) = ∑
𝑗∈N (𝑖)

∑
𝑡∈S𝑗

1
2∣𝑓𝑖𝑗(𝑠, 𝑡)∣. (B.42)

Denote d𝑖 = (𝑑𝑖(𝑠))𝑠∈S𝑖
and D𝑖 = diag(d𝑖), the diagonal matrix composed by d𝑖. The

convex QP relaxation energy is given by

𝐸cqp(x) = 𝐸pairwise(x) − ∑
𝑖∈V

d⊤
𝑖 x𝑖 + ∑

𝑖∈V
x⊤

𝑖 D𝑖x𝑖. (B.43)

b.2. more details on the implemented methods 113

This convex energy can be minimized using different methods. Here we propose to
solve it using Frank-Wolfe algorithm, which has the guarantee to reach the global
optimum.

Similarly to the previous nonconvex Frank-Wolfe algorithm, the update step (6.14)
can be solved using Lemma 6.1, and the line-search has closed-form solutions:

𝐸cqp(x + 𝛼r) = 𝐸pairwise(x + 𝛼r) − ∑
𝑖∈V

d⊤
𝑖 (x𝑖 + 𝛼r𝑖) + ∑

𝑖∈V
(x𝑖 + 𝛼r𝑖)⊤D𝑖(x𝑖 + 𝛼r𝑖)

= 𝐴′𝛼2 + 𝐵′𝛼 + 𝐶′, (B.44)

where

𝐴′ = 𝐴 + ∑
𝑖∈V

r⊤
𝑖 D𝑖r𝑖 (B.45)

𝐵′ = 𝐵 + ∑
𝑖∈V

(−d⊤
𝑖 r𝑖 + r⊤

𝑖 D𝑖x𝑖 + x⊤
𝑖 D𝑖r𝑖) (B.46)

𝐶′ = 𝐶 + ∑
𝑖∈V

(−d⊤
𝑖 x𝑖 + x⊤

𝑖 D𝑖x𝑖) . (B.47)

B.2.2 ADMM

In this section, we give more details on the instantiation of ADMM into different
decompositions. As we have seen in Section 6.4.2, there is an infinite number of such
decompositions. Some examples include:

(cyclic) x𝑑−1 = x𝑑, 𝑑 = 2,… ,𝐷, (B.48)
(star) x1 = x𝑑, 𝑑 = 2,… ,𝐷, (B.49)
(symmetric) x𝑑 = (x1 + ⋯ + x𝐷)/𝐷 ∀𝑑. (B.50)

Let us consider for example the cyclic decomposition. We obtain the following problem,
equivalent to (rlx):

min 𝐹(x1,x2,… ,x𝐷)
s.t. x𝑑−1 = x𝑑, 𝑑 = 2,… ,𝐷,

x𝑑 ∈ X 𝑑, 𝑑 = 1,… ,𝐷,

(B.51)

where X 1,… ,X𝐷 are closed convex sets satisfying X 1 ∩ X 2 ∩ ⋯ ∩ X𝐷 = X , and 𝐹 is
defined by (6.29).

The augmented Lagrangian of this problem is:

𝐿𝜌(x1,… ,x𝐷,y) = 𝐹(x1,… ,x𝐷) +
𝐷

∑
𝑑=2

⟨y𝑑,x𝑑−1 − x𝑑⟩ + 𝜌
2

𝐷
∑
𝑑=2

∥x𝑑−1 − x𝑑∥2
2, (B.52)

where y = (y2,… ,y𝐷). The y update (6.38) becomes

y𝑑(𝑘+1) = y𝑑(𝑘) + 𝜌 (x𝑑−1(𝑘+1) − x𝑑(𝑘+1)) . (B.53)

Consider the x update (6.37). Plugging (6.40) into (B.52), expanding and regrouping,

114 appendix b. theoretical proofs and additional details for chapter 6

we obtain that 𝐿𝜌(x1,… ,x𝐷,y) is equal to each of the following expressions:

𝜌
2∥x1∥2

2 − ⟨x1, 𝜌x2 − y2 − p1⟩ + cst(x1), (B.54)

𝜌∥x𝑑∥2
2 − ⟨x𝑑, 𝜌x𝑑−1 + 𝜌x𝑑+1 + y𝑑 − y𝑑+1 − p𝑑⟩ + cst(x𝑑) (2 ≤ 𝑑 ≤ 𝐷 − 1),

(B.55)
𝜌
2∥x𝐷∥2

2 − ⟨x𝐷, 𝜌x𝐷−1 + y𝐷 − p𝐷⟩ + cst(x𝐷). (B.56)

From this, it is straightforward to see that the x update (6.37) is reduced to (6.44)
where (c𝑑)1≤𝑑≤𝐷 are defined by (6.45), (6.46) and (6.47).

It is straightforward to obtain similar results for the other decompositions.

B.3 detailed experimental results
In Section 6.6 we presented the results averaged over all problem instances. We provide
below the details for every single instance.

table b.1 Inpainting N4.

inpainting-n4 FastPD 𝛼-Exp TRBP ADDD MPLP MPLP-C TRWS BUNDLE
triplepoint4-plain-ring-inverse value 424.90 424.12 475.95 482.23 508.94 453.17 496.37 425.90

bound 205.21 -Inf -Inf 402.83 339.29 411.48 411.59 411.87
runtime 0.03 0.02 33.04 28.59 1.75 3615.97 2.15 44.41

triplepoint4-plain-ring value 484.59 484.59 484.59 484.59 485.38 484.59 484.59 484.59
bound 384.57 -Inf -Inf 484.59 484.58 484.59 484.59 484.59
runtime 0.03 0.02 13.85 3.15 108.89 118.43 0.59 27.96

mean energy 454.75 454.35 480.27 483.41 497.16 468.88 467.70 455.25
mean bound 294.89 -Inf -Inf 443.71 411.94 448.03 448.09 448.23
mean runtime 0.03 0.02 23.45 15.87 55.32 1867.20 1.37 36.18
best value 50.00 100.00 50.00 50.00 0.00 50.00 50.00 50.00
best bound 0.00 0.00 0.00 50.00 0.00 0.00 50.00 50.00
verified opt 0.00 0.00 0.00 50.00 0.00 0.00 50.00 0.00

table b.2 Inpainting N4.

inpainting-n4 CQP ADMM BCD FW PGD
triplepoint4-plain-ring-inverse value 2256.45 424.12 443.18 443.18 444.75

bound -Inf -Inf -Inf -Inf -Inf
runtime 2.60 7.69 0.11 1.05 0.77

triplepoint4-plain-ring value 542.57 484.59 528.57 533.29 534.86
bound -Inf -Inf -Inf -Inf -Inf
runtime 1.24 12.00 0.11 1.15 0.85

mean energy 490.09 454.35 485.88 488.23 489.80
mean bound -Inf -Inf -Inf -Inf -Inf
mean runtime 1.92 9.84 0.11 1.10 0.81
best value 0.00 100.00 0.00 0.00 0.00
best bound 0.00 0.00 0.00 0.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00

table b.3 Inpainting N8.

inpainting-n8 𝛼-Exp FastPD TRBP ADDD MPLP MPLP-C BUNDLE TRWS
triplepoint4-plain-ring-inverse value 434.84 434.84 496.40 714.42 442.42 463.88 435.32 504.97

bound -Inf 0.00 -Inf 406.71 412.37 413.49 415.83 413.20
runtime 0.90 0.19 97.95 57.01 1107.98 3660.44 112.91 16.09

triplepoint4-plain-ring value 495.20 495.20 495.20 495.85 495.52 495.20 495.20 495.20
bound -Inf 272.56 -Inf 495.18 494.72 495.20 495.04 494.71
runtime 0.67 0.11 30.04 14.56 581.96 884.34 110.56 16.37

mean energy 465.02 465.02 494.02 605.14 468.83 469.78 465.26 466.80
mean bound -Inf 136.28 -Inf 450.95 453.55 454.35 455.43 453.96
mean runtime 0.78 0.15 64.00 35.78 844.97 2272.39 111.74 16.23

b.3. detailed experimental results 115

inpainting-n8 𝛼-Exp FastPD TRBP ADDD MPLP MPLP-C BUNDLE TRWS
best value 50.00 50.00 50.00 0.00 0.00 50.00 50.00 50.00
best bound 0.00 0.00 0.00 0.00 0.00 50.00 50.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

table b.4 Inpainting N8.

inpainting-n8 CQP ADMM BCD FW PGD
triplepoint4-plain-ring-inverse value 1819.57 434.32 438.95 446.19 446.19

bound -Inf -Inf -Inf -Inf -Inf
runtime 20.78 38.71 0.31 6.33 6.55

triplepoint4-plain-ring value 538.25 495.20 524.94 533.45 533.45
bound -Inf -Inf -Inf -Inf -Inf
runtime 2.46 42.57 0.28 5.55 3.83

mean energy 489.82 464.76 481.95 489.82 489.82
mean bound -Inf -Inf -Inf -Inf -Inf
mean runtime 11.62 40.64 0.29 5.94 5.19
best value 0.00 100.00 0.00 0.00 0.00
best bound 0.00 0.00 0.00 0.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00

table b.5 Feature matching.

matching TRBP ADDD MPLP MPLP-C BUNDLE TRWS
matching0 value 60000000075.71 200000000047.27 90000000059.69 19.36 58.64 61.05

bound -Inf 11.56 10.96 19.36 11.27 11.02
runtime 0.00 2.45 0.22 8.02 1.09 0.04

matching1 value 170000000090.50 70000000031.36 50000000030.34 23.58 10000000021.89 102.20
bound -Inf 20.13 18.47 23.58 17.48 18.52
runtime 0.00 3.82 0.52 4.52 2.70 0.04

matching2 value 110000000096.00 20000000026.59 30000000025.18 26.08 20000000043.93 51.59
bound -Inf 22.97 21.07 26.08 19.87 21.18
runtime 0.00 4.12 0.94 8.25 3.56 0.12

matching3 value 80000000066.03 130000000051.70 90000000051.81 15.86 10000000042.82 41.92
bound -Inf 10.72 10.15 15.86 9.25 10.14
runtime 0.00 2.25 0.21 3.36 1.96 0.01

mean energy 97500000064.52 105000000039.23 65000000041.76 21.22 10000000041.82 63.52
mean bound -Inf 16.35 15.16 21.22 14.47 15.22
mean runtime 0.00 3.16 0.47 6.04 2.33 0.05
best value 0.00 0.00 0.00 100.00 0.00 0.00
best bound 0.00 0.00 0.00 100.00 0.00 0.00
verified opt 0.00 0.00 0.00 100.00 0.00 0.00

table b.6 Feature matching.

matching BCD FW PGD CQP ADMM
matching0 value 43.61 56.10 49.45 118.90 42.09

bound -Inf -Inf -Inf -Inf -Inf
runtime 0.00 0.19 8.08 0.06 0.02

matching1 value 118.00 77.31 79.01 138.99 107.31
bound -Inf -Inf -Inf -Inf -Inf
runtime 0.00 23.66 21.36 0.10 0.94

matching2 value 139.74 89.46 62.40 156.46 107.41
bound -Inf -Inf -Inf -Inf -Inf
runtime 0.00 55.74 19.28 0.08 0.26

matching3 value 38.09 43.98 43.21 93.67 43.69
bound -Inf -Inf -Inf -Inf -Inf
runtime 0.00 0.81 4.11 0.07 0.02

mean energy 84.86 66.71 58.52 127.01 75.12
mean bound -Inf -Inf -Inf -Inf -Inf
mean runtime 0.00 20.10 13.21 0.08 0.31
best value 0.00 0.00 0.00 0.00 0.00
best bound 0.00 0.00 0.00 0.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00

table b.7 Pairwise stereo.

mrf-stereo FastPD 𝛼-Exp TRBP ADDD MPLP MPLP-C TRWS
ted-gm value 1344017.00 1343176.00 1460166.00 NaN NaN NaN 1346202.00

bound 395613.00 -Inf -Inf NaN NaN NaN 1337092.22
runtime 14.94 29.75 3616.74 NaN NaN NaN 391.34

116 appendix b. theoretical proofs and additional details for chapter 6

mrf-stereo FastPD 𝛼-Exp TRBP ADDD MPLP MPLP-C TRWS
tsu-gm value 370825.00 370255.00 411157.00 455874.00 369304.00 369865.00 369279.00

bound 31900.00 -Inf -Inf 299780.16 367001.47 366988.29 369217.58
runtime 1.72 3.64 1985.50 1066.79 4781.02 4212.26 393.76

ven-gm value 3127923.00 3138157.00 3122190.00 NaN NaN NaN 3048404.00
bound 475665.00 -Inf -Inf NaN NaN NaN 3047929.95
runtime 4.76 10.87 2030.13 NaN NaN NaN 478.49

mean energy 1614255.00 1617196.00 1664504.33 NaN NaN NaN 1587596.67
mean bound 301059.33 -Inf -Inf NaN NaN NaN 1584746.58
mean runtime 7.14 14.75 2544.12 NaN NaN NaN 421.20
best value 0.00 33.33 0.00 0.00 0.00 0.00 33.33
best bound 0.00 0.00 0.00 0.00 0.00 0.00 66.67
verified opt 0.00 0.00 0.00 0.00 0.00 0.00 0.00

table b.8 Pairwise stereo.

mrf-stereo CQP ADMM BCD FW PGD BUNDLE
ted-gm value 4195611.00 1373030.00 3436281.00 3020579.00 2694493.00 1563172.00

bound -Inf -Inf -Inf -Inf -Inf 1334223.01
runtime 3602.97 3628.80 15.64 1740.10 2109.65 3530.00

tsu-gm value 3621062.00 375954.00 2722934.00 2352499.00 2114223.00 369218.00
bound -Inf -Inf -Inf -Inf -Inf 369218.00
runtime 3600.79 807.70 5.33 622.64 120.38 670.81

ven-gm value 26408665.00 3123334.00 14907352.00 13114176.00 10818561.00 3061733.00
bound -Inf -Inf -Inf -Inf -Inf 3047785.37
runtime 3602.28 2696.49 11.48 3604.63 2298.42 1917.58

mean energy 11408446.00 1624106.00 7022189.00 6162418.00 5209092.33 1664707.67
mean bound -Inf -Inf -Inf -Inf -Inf 1583742.13
mean runtime 3602.01 2377.66 10.82 1989.12 1509.49 2039.47
best value 0.00 0.00 0.00 0.00 0.00 33.33
best bound 0.00 0.00 0.00 0.00 0.00 33.33
verified opt 0.00 0.00 0.00 0.00 0.00 0.00

table b.9 Segmentation.

inclusion 𝛼-Fusion TRBP ADDD MPLP MPLP-C BUNDLE SRMP ADMM
modelH-1-0.8-0.2 value 1595.06 1416.07 2416.58 3416.08 5415.89 5427.91 1415.94 1415.94

bound -Inf -Inf 1415.71 1415.70 1415.71 1406.09 1415.94 -Inf
runtime 0.06 21.93 10.52 12.17 3843.79 99.77 0.11 106.70

modelH-10-0.8-0.2 value 1590.97 1416.80 3415.92 5415.13 4415.43 5422.47 1416.10 1416.24
bound -Inf -Inf 1415.68 1415.62 1415.70 1404.47 1416.10 -Inf
runtime 0.05 22.66 1.20 12.03 3797.40 91.16 0.13 85.46

modelH-2-0.8-0.2 value 1603.85 1423.42 4423.49 6422.84 3423.03 5436.16 1422.89 1422.89
bound -Inf -Inf 1422.79 1422.78 1422.79 1411.56 1422.89 -Inf
runtime 0.05 21.34 10.00 6.67 4051.20 101.83 0.11 113.24

modelH-3-0.8-0.2 value 1596.11 1381.14 1381.14 1381.14 1381.14 4389.78 1381.14 1381.19
bound -Inf -Inf 1381.14 1381.14 1381.14 1371.29 1381.14 -Inf
runtime 0.06 8.02 4.50 7.79 8.84 112.52 0.11 63.51

modelH-4-0.8-0.2 value 1595.12 1427.56 5427.63 5426.48 3427.27 2432.97 1427.17 1427.17
bound -Inf -Inf 1426.58 1426.56 1426.58 1416.80 1427.17 -Inf
runtime 0.04 21.18 9.40 8.29 3892.65 116.38 0.13 125.01

modelH-5-0.8-0.2 value 1566.58 3383.89 6383.61 4383.52 6382.77 4390.47 1383.69 1383.77
bound -Inf -Inf 1383.25 1383.23 1383.30 1371.94 1383.69 -Inf
runtime 0.04 21.05 8.45 5.44 3902.54 112.86 0.18 99.08

modelH-6-0.8-0.2 value 1588.33 2402.30 2402.17 2402.60 5401.70 3406.27 1402.34 1402.60
bound -Inf -Inf 1402.01 1401.77 1402.01 1393.05 1402.34 -Inf
runtime 0.03 20.80 2.69 22.61 3778.21 101.74 0.11 126.40

modelH-7-0.8-0.2 value 1583.36 1403.61 3403.70 5402.97 5403.24 6418.08 1403.25 1403.69
bound -Inf -Inf 1403.08 1403.07 1403.08 1391.87 1403.25 -Inf
runtime 0.04 20.80 2.50 11.98 4124.95 103.95 0.15 94.36

modelH-8-0.8-0.2 value 1574.64 3368.65 3368.65 3368.66 1368.55 1368.33 1368.33 1368.33
bound -Inf -Inf 1368.29 1368.29 1368.33 1368.23 1368.33 -Inf
runtime 0.05 20.66 11.21 5.09 3740.80 92.39 0.15 86.69

modelH-9-0.8-0.2 value 1577.25 1385.00 1385.23 2385.04 3385.06 1384.86 1384.86 1384.95
bound -Inf -Inf 1384.82 1384.82 1384.82 1384.81 1384.86 -Inf
runtime 0.03 3.61 3.15 4.75 3824.62 82.98 0.11 73.29

mean energy 1587.13 1441.43 1694.72 3300.67 2800.54 4007.73 1400.57 1400.68
mean bound -Inf -Inf 1400.33 1400.30 1400.35 1392.01 1400.57 -Inf
mean runtime 0.05 18.20 6.36 9.68 3496.50 101.56 0.13 97.37
best value 0.00 10.00 10.00 10.00 10.00 20.00 100.00 40.00
best bound 0.00 0.00 10.00 0.00 0.00 0.00 100.00 0.00
verified opt 0.00 0.00 10.00 0.00 0.00 0.00 100.00 0.00

b.3. detailed experimental results 117

table b.10 Segmentation.

inclusion BCD FW PGD
modelH-1-0.8-0.2 value 12435.37 7419.38 7421.24

bound -Inf -Inf -Inf
runtime 0.14 44.22 67.47

modelH-10-0.8-0.2 value 15446.57 7427.81 5424.26
bound -Inf -Inf -Inf
runtime 0.14 2.76 16.90

modelH-2-0.8-0.2 value 10430.00 5425.92 5425.74
bound -Inf -Inf -Inf
runtime 0.14 11.55 57.53

modelH-3-0.8-0.2 value 15397.00 1382.80 1382.23
bound -Inf -Inf -Inf
runtime 0.14 20.57 19.35

modelH-4-0.8-0.2 value 15447.30 4427.73 4427.66
bound -Inf -Inf -Inf
runtime 0.13 8.25 109.47

modelH-5-0.8-0.2 value 9391.02 6385.98 6385.44
bound -Inf -Inf -Inf
runtime 0.13 6.26 32.41

modelH-6-0.8-0.2 value 13420.27 5407.69 3403.83
bound -Inf -Inf -Inf
runtime 0.14 36.05 24.21

modelH-7-0.8-0.2 value 11438.71 10411.17 11498.09
bound -Inf -Inf -Inf
runtime 0.13 18.45 72.97

modelH-8-0.8-0.2 value 14385.72 6376.91 6375.75
bound -Inf -Inf -Inf
runtime 0.14 35.24 80.66

modelH-9-0.8-0.2 value 7393.92 3386.31 3385.93
bound -Inf -Inf -Inf
runtime 0.14 28.90 29.45

mean energy 12518.59 5805.17 5513.02
mean bound -Inf -Inf -Inf
mean runtime 0.14 21.23 51.04
best value 0.00 0.00 0.00
best bound 0.00 0.00 0.00
verified opt 0.00 0.00 0.00

table b.11 Second-order stereo.

stereo 𝛼-Fusion TRBP ADDD MPLP MPLP-C BUNDLE SRMP ADMM
art_small value 13262.49 13336.35 13543.70 NaN NaN 15105.28 13091.20 13297.79

bound -Inf -Inf 12925.76 NaN NaN 12178.62 13069.30 -Inf
runtime 50.99 3744.91 3096.10 NaN NaN 3845.89 3603.89 3710.92

cones_small value 18582.85 18640.25 18763.13 NaN NaN 20055.65 18433.01 18590.87
bound -Inf -Inf 18334.00 NaN NaN 17724.56 18414.29 -Inf
runtime 48.89 3660.77 7506.15 NaN NaN 3814.74 3603.11 3659.15

teddy_small value 14653.53 14680.21 14804.46 NaN NaN 15733.15 14528.74 14715.83
bound -Inf -Inf 14374.12 NaN NaN 13981.71 14518.03 -Inf
runtime 50.99 3670.35 3535.79 NaN NaN 3820.05 3603.49 3620.84

venus_small value 9644.78 9692.80 9796.44 NaN NaN 9990.68 9606.34 9669.62
bound -Inf -Inf 9377.05 NaN NaN 9402.97 9601.86 -Inf
runtime 49.24 3627.58 3761.29 NaN NaN 3774.66 3603.14 3657.60

mean energy 14035.91 14087.40 14226.93 NaN NaN 15221.19 13914.82 14068.53
mean bound -Inf -Inf 13752.73 NaN NaN 13321.96 13900.87 -Inf
mean runtime 50.03 3675.90 4474.83 NaN NaN 3813.84 3603.41 3662.13
best value 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
best bound 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
verified opt 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

table b.12 Second-order stereo.

stereo BCD FW PGD
art_small value 13896.67 13696.50 13929.06

bound -Inf -Inf -Inf
runtime 60.63 1407.07 3648.00

cones_small value 18926.70 18776.26 19060.17
bound -Inf -Inf -Inf
runtime 57.40 2111.63 3669.24

teddy_small value 14998.31 14891.12 15193.23
bound -Inf -Inf -Inf
runtime 60.08 1626.66 3671.59

118 appendix b. theoretical proofs and additional details for chapter 6

stereo BCD FW PGD
venus_small value 9767.21 9726.27 9992.13

bound -Inf -Inf -Inf
runtime 60.27 1851.40 3670.82

mean energy 14397.22 14272.54 14543.65
mean bound -Inf -Inf -Inf
mean runtime 59.59 1749.19 3664.92
best value 0.00 0.00 0.00
best bound 0.00 0.00 0.00
verified opt 0.00 0.00 0.00

C
Theoretical Proofs and Additional Details for

Chapter 7

C.1 proofs of theoretical results

C.1.1 Proof of non-differentiability of standard ADMM updates
In Section 7.5, we claimed that the ADMM updates (7.67) and (7.68) are generally
non-differentiable. We have seen in Chapters 5 and 6 that, for MAP inference or
one-to-one graph matching, these updates are reduced to projections onto probability
simplices. To prove our claim, it suffices to consider the two-dimensional case. We will
show that the following function is non-differentiable (with respect to 𝛽𝛽𝛽):

w∗(𝛽𝛽𝛽) ∶= argmin
w∈R2

+
1⊤w=1

‖w − 𝛽𝛽𝛽‖2
2. (C.1)

Denote w = (𝑤1,𝑤2) and 𝛽𝛽𝛽 = (𝛽1,𝛽2). Notice that 𝑤2 = 1 − 𝑤1, we can reduce the
above minimization problem to a single-variable one with respect to 𝑤1:

min
0≤𝑤1≤1

{(𝑤1 − 𝛽1)2 + (1 − 𝑤1 − 𝛽2)2} . (C.2)

The above is a convex quadratic function. It is straightforward to find its global
minimum over [0, 1]:

𝑤∗
1 =

⎧{
⎨{⎩

0 if 𝛽1 − 𝛽2 < −1,
1
2(𝛽1 − 𝛽2 + 1) if − 1 ≤ 𝛽1 − 𝛽2 ≤ 1,
1 if 1 < 𝛽1 − 𝛽2.

(C.3)

Therefore, the optimal solution to (C.1) is given by w∗ = (𝑤∗
1,𝑤∗

2), with 𝑤∗
2 = 1 − 𝑤∗

1.
Clearly, 𝑤∗

1 is non-differentiable. More specifically, it is not differentiable at points 𝛽𝛽𝛽
that satisfy |𝛽1 − 𝛽2| = 1. We conclude that w∗ is non-differentiable.

Remark. In Figure 7.2a on page 86, we plotted the following function:

w∗(𝛽𝛽𝛽) = argmin
w∈R2

+
1⊤w=1

{1
2‖w − 1‖2

2 − 𝛽𝛽𝛽⊤w} . (C.4)

One can easily reduce (C.4) to (C.1) and then use (C.3) to verify that their solutions

119

120 appendix c. theoretical proofs and additional details for chapter 7

are identical.

C.1.2 Proof of Equations (7.94) and (7.95)
Rewrite (7.90) as

𝑋𝑖𝑠 = 𝑍𝑖𝑠𝐸𝑖𝑠
𝑆𝑖

∀𝑖 ∈ V,∀𝑠 ∈ S. (C.5)

It is straightforward to see that:

𝜕𝑋𝑖𝑠
𝜕𝑍𝑖𝑠

= 𝐸𝑖𝑠(𝑆𝑖 − 𝑍𝑖𝑠𝐸𝑖𝑠)
𝑆2

𝑖
∀𝑖 ∈ V,∀𝑠 ∈ S, (C.6)

𝜕𝑋𝑖𝑠
𝜕𝑍𝑖𝑡

= −𝑍𝑖𝑠𝐸𝑖𝑠𝐸𝑖𝑡
𝑆2

𝑖
∀𝑖 ∈ V,∀𝑠, 𝑡 ∈ S, 𝑠 ≠ 𝑡, (C.7)

𝜕𝑋𝑖𝑠
𝜕𝑍𝑗𝑡

= 0 ∀𝑖, 𝑗 ∈ V, 𝑖 ≠ 𝑗,∀𝑠, 𝑡 ∈ S, (C.8)

𝜕𝑋𝑖𝑠
𝜕𝑉𝑖𝑠

= 𝐸𝑖𝑠𝑍𝑖𝑠(𝑆𝑖 − 𝐸𝑖𝑠𝑍𝑖𝑠)
𝑆2

𝑖
∀𝑖 ∈ V,∀𝑠 ∈ S, (C.9)

𝜕𝑋𝑖𝑠
𝜕𝑉𝑖𝑡

= −𝐸𝑖𝑠𝐸𝑖𝑡𝑍𝑖𝑠𝑍𝑖𝑡
𝑆2

𝑖
∀𝑖 ∈ V,∀𝑠, 𝑡 ∈ S, 𝑠 ≠ 𝑡, (C.10)

𝜕𝑋𝑖𝑠
𝜕𝑉𝑗𝑡

= 0 ∀𝑖, 𝑗 ∈ V, 𝑖 ≠ 𝑗,∀𝑠, 𝑡 ∈ S. (C.11)

Therefore, it is clearly that the Jacobian matrices 𝜕x
𝜕z and 𝜕x

𝜕v are block diagonal ma-
trices whose diagonal blocks are given by (7.94) and (7.95), respectively.

C.2 detailed experimental results
We provide in Table C.1 the detailed results for the experiments presented in Sec-
tion 7.7.2.

table c.1 Per-class accuracy of the models on the Pascal VOC 2012 test set.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FCN 78.1 34.1 76.5 54.6 64.4 84.3 76.9 79.2 30.1 72.7 53.3 73.8 74.2 76.4 79.1 47.7 76.1 48.7 73.5 61.6
MFCRF 81.6 35.5 79.9 56.7 66.2 86.0 79.1 81.6 30.6 75.3 54.0 76.7 76.3 77.8 80.8 49.8 79.3 50.0 75.5 63.6
ADCRF10 81.7 35.6 81.1 58.4 67.8 86.8 79.7 82.4 31.1 77.1 56.5 79.4 80.1 76.8 80.9 52.1 82.4 48.4 77.2 65.2
ADCRF50 82.0 35.7 81.4 58.5 68.0 86.9 79.9 82.6 31.2 77.3 56.6 79.6 80.2 76.9 81.1 52.3 82.7 48.5 77.4 65.3
A-FCN 79.8 36.4 77.6 55.0 63.9 84.6 76.9 80.7 28.3 72.5 53.6 75.6 74.1 79.3 78.6 55.2 75.4 50.1 72.1 60.0
MFCRF 87.0 37.3 77.8 60.6 66.3 88.2 82.8 84.1 31.1 77.0 56.4 79.5 79.2 83.5 80.7 56.4 78.2 43.8 76.5 62.7
ADCRF10 85.6 37.6 80.0 60.0 66.9 88.3 80.8 84.4 30.1 77.3 54.9 79.5 78.2 83.4 79.6 57.2 78.7 54.5 76.3 62.9
ADCRF50 85.8 37.7 80.2 60.0 67.0 88.4 80.9 84.5 30.3 77.4 55.0 79.7 78.4 83.5 79.7 57.3 78.9 54.8 76.4 63.0

Bibliography

[Andres et al., 2012] Andres, B., Beier, T., and Kappes, J. (2012). OpenGM: A C++
library for discrete graphical models. CoRR, abs/1206.0111. 66

[Baydin et al., 2018] Baydin, A. G., Pearlmutter, B. A., Radul, A. A., and Siskind,
J. M. (2018). Automatic differentiation in machine learning: a survey. Journal of
Machine Learning Research, 18(153):1–43. 76, 78, 82, 87

[Belanger et al., 2017] Belanger, D., Yang, B., and McCallum, A. (2017). End-to-end
learning for structured prediction energy networks. arXiv preprint arXiv:1703.05667.
72

[Belongie et al., 2002] Belongie, S., Malik, J., and Puzicha, J. (2002). Shape matching
and object recognition using shape contexts. IEEE transactions on pattern analysis
and machine intelligence, 24(4):509–522. 45

[Bertsekas, 1999] Bertsekas, D. P. (1999). Nonlinear programming. Athena scientific
Belmont. 3, 33, 35, 54, 58, 59, 64, 108

[Besag, 1986] Besag, J. (1986). On the statistical analysis of dirty pictures. Journal
of the Royal Statistical Society. Series B (Methodological), pages 259–302. 57

[Bottou et al., 2018] Bottou, L., Curtis, F. E., and Nocedal, J. (2018). Optimization
methods for large-scale machine learning. SIAM Review, 60(2):223–311. 74

[Boyd et al., 2011] Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine Learning, 3(1):1–122.
4, 23, 24, 25, 29

[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex opti-
mization. Cambridge university press. 21

[Boykov et al., 1999] Boykov, Y., Veksler, O., and Zabih, R. (1999). Fast approximate
energy minimization via graph cuts. In Computer Vision, 1999. The Proceedings of
the Seventh IEEE International Conference on, volume 1, pages 377–384. IEEE. 2

[Boykov et al., 2001] Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate
energy minimization via graph cuts. IEEE Transactions on pattern analysis and
machine intelligence, 23(11):1222–1239. 2, 11, 66

[Brakel et al., 2013] Brakel, P., Stroobandt, D., and Schrauwen, B. (2013). Training
energy-based models for time-series imputation. The Journal of Machine Learning
Research, 14(1):2771–2797. 72

121

122 bibliography

[Bregman, 1967] Bregman, L. M. (1967). The relaxation method of finding the com-
mon point of convex sets and its application to the solution of problems in con-
vex programming. USSR computational mathematics and mathematical physics,
7(3):200–217. 31, 84

[Burkard et al., 1998] Burkard, R. E., Cela, E., Pardalos, P. M., and Pitsoulis, L. S.
(1998). The quadratic assignment problem. In Handbook of combinatorial optimiza-
tion, pages 1713–1809. Springer. 3, 15

[Censor and Zenios, 1997] Censor, Y. and Zenios, S. A. (1997). Parallel optimization:
Theory, algorithms, and applications. Oxford University Press on Demand. 31, 84

[Chen et al., 2016] Chen, C., He, B., Ye, Y., and Yuan, X. (2016). The direct extension
of admm for multi-block convex minimization problems is not necessarily convergent.
Mathematical Programming, 155(1-2):57–79. 26, 27

[Chen et al., 2015] Chen, C., Li, M., Liu, X., and Ye, Y. (2015). Extended admm and
bcd for nonseparable convex minimization models with quadratic coupling terms:
convergence analysis and insights. Mathematical Programming, pages 1–41. 27

[Chen et al., 2017] Chen, L., Sun, D., and Toh, K.-C. (2017). A note on the conver-
gence of admm for linearly constrained convex optimization problems. Computa-
tional Optimization and Applications, 66(2):327–343. 25

[Chen et al., 2014] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and Yuille,
A. L. (2014). Semantic image segmentation with deep convolutional nets and fully
connected crfs. arXiv preprint arXiv:1412.7062. 92, 93

[Cho et al., 2010] Cho, M., Lee, J., and Lee, K. M. (2010). Reweighted random walks
for graph matching. In Computer Vision–ECCV 2010, pages 492–505. Springer. 3,
18, 19, 44, 46

[Cho et al., 2014] Cho, M., Sun, J., Duchenne, O., and Ponce, J. (2014). Finding
matches in a haystack: A max-pooling strategy for graph matching in the presence
of outliers. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2083–2090. 19, 44

[Chollet et al., 2015] Chollet, F. et al. (2015). Keras. https://keras.io. 94

[Condat, 2016] Condat, L. (2016). Fast projection onto the simplex and the ℓ1 ball.
Mathematical Programming, 158(1-2):575–585. 42, 59, 64, 103

[Cour et al., 2007] Cour, T., Srinivasan, P., and Shi, J. (2007). Balanced graph match-
ing. Advances in Neural Information Processing Systems, 19:313. 3, 18, 44

[Cui et al., 2015] Cui, Y., Li, X., Sun, D., and Toh, K.-C. (2015). On the conver-
gence properties of a majorized admm for linearly constrained convex optimization
problems with coupled objective functions. arXiv preprint arXiv:1502.00098. 27

[Davis and Yin, 2016] Davis, D. and Yin, W. (2016). Convergence rate analysis of
several splitting schemes. In Splitting Methods in Communication, Imaging, Science,
and Engineering, pages 115–163. Springer. 25

https://keras.io

bibliography 123

[Deng and Yin, 2016] Deng, W. and Yin, W. (2016). On the global and linear con-
vergence of the generalized alternating direction method of multipliers. Journal of
Scientific Computing, 66(3):889–916. 25, 31

[Domke, 2011] Domke, J. (2011). Parameter learning with truncated message-passing.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,
pages 2937–2943. IEEE. 72

[Domke, 2012] Domke, J. (2012). Generic methods for optimization-based modeling.
In Artificial Intelligence and Statistics, pages 318–326. 72, 76, 92

[Duchenne et al., 2011] Duchenne, O., Bach, F., Kweon, I.-S., and Ponce, J. (2011).
A tensor-based algorithm for high-order graph matching. IEEE transactions on
pattern analysis and machine intelligence, 33(12):2383–2395. 3, 15, 19, 44, 48

[Eckstein, 1994] Eckstein, J. (1994). Parallel alternating direction multiplier decom-
position of convex programs. Journal of Optimization Theory and Applications,
80(1):39–62. 31

[Eckstein and Bertsekas, 1992] Eckstein, J. and Bertsekas, D. P. (1992). On the
douglas—rachford splitting method and the proximal point algorithm for maximal
monotone operators. Mathematical Programming, 55(1-3):293–318. 31

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. (2010). The pascal visual object classes (voc) challenge. Inter-
national journal of computer vision, 88(2):303–338. 91, 93

[Faugeras, 1993] Faugeras, O. (1993). Three-dimensional computer vision: a geometric
viewpoint. MIT Press. 76

[Fix et al., 2011] Fix, A., Gruber, A., Boros, E., and Zabih, R. (2011). A graph cut
algorithm for higher-order markov random fields. In 2011 International Conference
on Computer Vision, pages 1020–1027. IEEE. 2, 66

[Fix et al., 2014] Fix, A., Wang, C., and Zabih, R. (2014). A primal-dual algorithm
for higher-order multilabel markov random fields. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1138–1145. 12

[Frank and Wolfe, 1956] Frank, M. and Wolfe, P. (1956). An algorithm for quadratic
programming. Naval Research Logistics (NRL), 3(1-2):95–110. 54

[Frey and MacKay, 1997] Frey, B. J. and MacKay, D. J. C. (1997). A revolution: Belief
propagation in graphs with cycles. In In Neural Information Processing Systems,
pages 479–485. MIT Press. 11

[Gabay and Mercier, 1975] Gabay, D. and Mercier, B. (1975). A dual algorithm for
the solution of non linear variational problems via finite element approximation.
Institut de recherche d’informatique et d’automatique. 3, 23

[Gao and Zhang, 2017] Gao, X. and Zhang, S.-Z. (2017). First-order algorithms for
convex optimization with nonseparable objective and coupled constraints. Journal
of the Operations Research Society of China, 5(2):131–159. 27

124 bibliography

[Geman and Geman, 1987] Geman, S. and Geman, D. (1987). Stochastic relaxation,
gibbs distributions, and the bayesian restoration of images. In Readings in Computer
Vision, pages 564–584. Elsevier. 2

[Giselsson, 2017] Giselsson, P. (2017). Tight global linear convergence rate bounds
for douglas–rachford splitting. Journal of Fixed Point Theory and Applications,
19(4):2241–2270. 25

[Globerson and Jaakkola, 2008] Globerson, A. and Jaakkola, T. S. (2008). Fixing
max-product: Convergent message passing algorithms for map lp-relaxations. In
Advances in neural information processing systems, pages 553–560. 2, 66

[Glowinski and Marroco, 1975] Glowinski, R. and Marroco, A. (1975). Sur
l’approximation, par éléments finis d’ordre un, et la résolution, par pénalisation-
dualité d’une classe de problèmes de dirichlet non linéaires. Revue française
d’automatique, informatique, recherche opérationnelle. Analyse numérique,
9(R2):41–76. 3, 23

[Gold and Rangarajan, 1996] Gold, S. and Rangarajan, A. (1996). A graduated as-
signment algorithm for graph matching. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 18(4):377–388. 3, 18

[Gonçalves et al., 2017] Gonçalves, M. L., Melo, J. G., and Monteiro, R. D. (2017).
Convergence rate bounds for a proximal admm with over-relaxation stepsize pa-
rameter for solving nonconvex linearly constrained problems. arXiv preprint
arXiv:1702.01850. 28, 29, 31

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. 74

[Gould et al., 2016] Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz, R. S.,
and Guo, E. (2016). On differentiating parameterized argmin and argmax problems
with application to bi-level optimization. arXiv preprint arXiv:1607.05447. 76, 78

[Griewank, 2010] Griewank, A. (2010). Who invented the reverse mode of differenti-
ation? Documenta Mathematica. 80, 82

[Guo et al., 2017] Guo, K., Han, D., and Wu, T.-T. (2017). Convergence of alternat-
ing direction method for minimizing sum of two nonconvex functions with linear
constraints. International Journal of Computer Mathematics, 94(8):1653–1669. 28,
29, 31

[Han and Yuan, 2012] Han, D. and Yuan, X. (2012). A note on the alternating di-
rection method of multipliers. Journal of Optimization Theory and Applications,
155(1):227–238. 26

[Hariharan et al., 2014] Hariharan, B., Arbeláez, P., Girshick, R., and Malik, J.
(2014). Simultaneous detection and segmentation. In European Conference on
Computer Vision, pages 297–312. Springer. 93

[He et al., 2002] He, B., Liao, L.-Z., Han, D., and Yang, H. (2002). A new inexact
alternating directions method for monotone variational inequalities. Mathematical
Programming, 92(1):103–118. 31

bibliography 125

[He et al., 2000] He, B., Yang, H., and Wang, S. (2000). Alternating direction method
with self-adaptive penalty parameters for monotone variational inequalities. Journal
of Optimization Theory and applications, 106(2):337–356. 29

[He and Yuan, 2015] He, B. and Yuan, X. (2015). On non-ergodic convergence rate
of douglas–rachford alternating direction method of multipliers. Numerische Math-
ematik, 130(3):567–577. 25

[Hendrik Kappes et al., 2013] Hendrik Kappes, J., Speth, M., Reinelt, G., and
Schnorr, C. (2013). Towards efficient and exact map-inference for large scale dis-
crete computer vision problems via combinatorial optimization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1752–1758.
12

[Hong et al., 2014] Hong, M., Chang, T.-H., Wang, X., Razaviyayn, M., Ma, S., and
Luo, Z.-Q. (2014). A block successive upper bound minimization method of multi-
pliers for linearly constrained convex optimization. arXiv preprint arXiv:1401.7079.
27

[Hong and Luo, 2017] Hong, M. and Luo, Z.-Q. (2017). On the linear convergence of
the alternating direction method of multipliers. Mathematical Programming, 162(1-
2):165–199. 25

[Hong et al., 2016] Hong, M., Luo, Z.-Q., and Razaviyayn, M. (2016). Convergence
analysis of alternating direction method of multipliers for a family of nonconvex
problems. SIAM Journal on Optimization, 26(1):337–364. 27, 28, 29

[Jiang et al., 2016] Jiang, B., Lin, T., Ma, S., and Zhang, S. (2016). Structured non-
convex and nonsmooth optimization: algorithms and iteration complexity analysis.
arXiv preprint arXiv:1605.02408. 28

[Jojic et al., 2010] Jojic, V., Gould, S., and Koller, D. (2010). Accelerated dual de-
composition for map inference. In Proceedings of the 27th International Conference
on Machine Learning (ICML-10), pages 503–510. 12

[Kappes et al., 2015] Kappes, J. H., Andres, B., Hamprecht, F. A., Schnörr, C.,
Nowozin, S., Batra, D., Kim, S., Kausler, B. X., Kröger, T., Lellmann, J., Ko-
modakis, N., Savchynskyy, B., and Rother, C. (2015). A comparative study of
modern inference techniques for structured discrete energy minimization problems.
International Journal of Computer Vision, pages 1–30. 11, 67

[Kappes et al., 2012] Kappes, J. H., Savchynskyy, B., and Schnörr, C. (2012). A bun-
dle approach to efficient map-inference by lagrangian relaxation. In Computer Vi-
sion and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1688–1695.
IEEE. 12, 66

[Kappes et al., 2011] Kappes, J. H., Speth, M., Andres, B., Reinelt, G., and Schn, C.
(2011). Globally optimal image partitioning by multicuts. In International Workshop
on Energy Minimization Methods in Computer Vision and Pattern Recognition,
pages 31–44. Springer. 12

126 bibliography

[Kappes et al., 2016] Kappes, J. H., Speth, M., Reinelt, G., and Schnörr, C. (2016).
Higher-order segmentation via multicuts. Computer Vision and Image Understand-
ing, 143:104–119. 12

[Koller and Friedman, 2009] Koller, D. and Friedman, N. (2009). Probabilistic Graph-
ical Models: Principles and Techniques - Adaptive Computation and Machine Learn-
ing. The MIT Press. 5, 7, 71

[Kolmogorov, 2006] Kolmogorov, V. (2006). Convergent tree-reweighted message pass-
ing for energy minimization. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(10):1568–1583. 2, 11, 12, 66

[Kolmogorov, 2015] Kolmogorov, V. (2015). A new look at reweighted message pass-
ing. IEEE transactions on pattern analysis and machine intelligence, 37(5):919–930.
66

[Komodakis et al., 2011] Komodakis, N., Paragios, N., and Tziritas, G. (2011). Mrf
energy minimization and beyond via dual decomposition. IEEE transactions on
pattern analysis and machine intelligence, 33(3):531–552. 2, 3, 12, 33, 66

[Komodakis et al., 2008] Komodakis, N., Tziritas, G., and Paragios, N. (2008). Perfor-
mance vs computational efficiency for optimizing single and dynamic mrfs: Setting
the state of the art with primal-dual strategies. Computer Vision and Image Un-
derstanding, 112(1):14–29. 2, 12, 66

[Koopmans and Beckmann, 1957] Koopmans, T. C. and Beckmann, M. (1957). As-
signment problems and the location of economic activities. Econometrica: journal
of the Econometric Society, pages 53–76. 19

[Krähenbühl and Koltun, 2011] Krähenbühl, P. and Koltun, V. (2011). Efficient in-
ference in fully connected crfs with gaussian edge potentials. In Advances in neural
information processing systems, pages 109–117. 92

[Krähenbühl and Koltun, 2013] Krähenbühl, P. and Koltun, V. (2013). Parameter
learning and convergent inference for dense random fields. In International Confer-
ence on Machine Learning, pages 513–521. 72, 76, 92, 93, 96

[Kschischang et al., 2001] Kschischang, F. R., Frey, B. J., and Loeliger, H.-A. (2001).
Factor graphs and the sum-product algorithm. IEEE Transactions on information
theory, 47(2):498–519. 9

[Kuhn, 1955] Kuhn, H. W. (1955). The hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97. 14, 18, 35

[Kullback and Leibler, 1951] Kullback, S. and Leibler, R. A. (1951). On information
and sufficiency. The annals of mathematical statistics, 22(1):79–86. 85

[Kumar et al., 2009] Kumar, M. P., Kolmogorov, V., and Torr, P. H. S. (2009). An
analysis of convex relaxations for map estimation of discrete mrfs. J. Mach. Learn.
Res., 10:71–106. 12

[Lawler, 1963] Lawler, E. L. (1963). The quadratic assignment problem. Management
science, 9(4):586–599. 15

bibliography 127

[Lê-Huu and Paragios, 2017] Lê-Huu, D. K. and Paragios, N. (2017). Alternating di-
rection graph matching. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4914–4922. 33

[Lê-Huu and Paragios, 2018] Lê-Huu, D. K. and Paragios, N. (2018). Continuous re-
laxation of map inference: A nonconvex perspective. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). 53

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,
R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to hand-
written zip code recognition. Neural computation, 1(4):541–551. 82

[Lee et al., 2011] Lee, J., Cho, M., and Lee, K. M. (2011). Hyper-graph matching via
reweighted random walks. In Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 1633–1640. IEEE. 3, 19, 44

[Leordeanu and Hebert, 2005] Leordeanu, M. and Hebert, M. (2005). A spectral tech-
nique for correspondence problems using pairwise constraints. In Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference on, volume 2, pages 1482–
1489. IEEE. 3, 18, 19, 44

[Leordeanu et al., 2009] Leordeanu, M., Hebert, M., and Sukthankar, R. (2009). An
integer projected fixed point method for graph matching and map inference. In
Advances in neural information processing systems, pages 1114–1122. 3, 18, 44

[Leordeanu et al., 2012] Leordeanu, M., Sukthankar, R., and Hebert, M. (2012). Un-
supervised learning for graph matching. International journal of computer vision,
96(1):28–45. 48, 49

[Li and Pong, 2015] Li, G. and Pong, T. K. (2015). Global convergence of splitting
methods for nonconvex composite optimization. SIAM Journal on Optimization,
25(4):2434–2460. 28, 29, 31

[Lin et al., 2015] Lin, T.-Y., Ma, S.-Q., and Zhang, S.-Z. (2015). On the sublinear
convergence rate of multi-block admm. Journal of the Operations Research Society
of China, 3(3):251–274. 27

[Linnainmaa, 1970] Linnainmaa, S. (1970). The representation of the cumulative
rounding error of an algorithm as a taylor expansion of the local rounding errors.
Master’s Thesis (in Finnish), Univ. Helsinki, pages 6–7. 82

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431–3440. 92, 93

[Martins et al., 2015] Martins, A. F., Figueiredo, M. A., Aguiar, P. M., Smith, N. A.,
and Xing, E. P. (2015). Ad3: Alternating directions dual decomposition for map
inference in graphical models. Journal of Machine Learning Research, 16:495–545.
3, 12, 33, 66

[Monteiro et al., 2018] Monteiro, M., Figueiredo, M. A., and Oliveira, A. L. (2018).
Conditional random fields as recurrent neural networks for 3d medical imaging seg-
mentation. arXiv preprint arXiv:1807.07464. 94

128 bibliography

[Nesterov, 2013] Nesterov, Y. (2013). Introductory lectures on convex optimization: A
basic course, volume 87. Springer Science & Business Media. 22

[Nguyen et al., 2015] Nguyen, Q., Gautier, A., and Hein, M. (2015). A flexible tensor
block coordinate ascent scheme for hypergraph matching. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5270–5278. 3, 19,
34, 44, 46

[Nishihara et al., 2015] Nishihara, R., Lessard, L., Recht, B., Packard, A., and Jor-
dan, M. I. (2015). A general analysis of the convergence of admm. arXiv preprint
arXiv:1502.02009. 31

[Nowozin et al., 2011] Nowozin, S., Lampert, C. H., et al. (2011). Structured learning
and prediction in computer vision. Foundations and Trends® in Computer Graphics
and Vision, 6(3–4):185–365. 71

[Olsson et al., 2007] Olsson, C., Eriksson, A. P., and Kahl, F. (2007). Solving large
scale binary quadratic problems: Spectral methods vs. semidefinite programming.
In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference
on, pages 1–8. IEEE. 2

[Otten and Dechter, 2012] Otten, L. and Dechter, R. (2012). Anytime and/or depth-
first search for combinatorial optimization. AI Communications, 25(3):211–227. 12

[Pearl, 1982] Pearl, J. (1982). Reverend bayes on inference engines: A distributed
hierarchical approach. In Proceedings of the Second AAAI Conference on Artificial
Intelligence, AAAI’82, pages 133–136. AAAI Press. 11

[Ravikumar and Lafferty, 2006] Ravikumar, P. and Lafferty, J. (2006). Quadratic pro-
gramming relaxations for metric labeling and markov random field map estimation.
In Proceedings of the 23rd international conference on Machine learning, pages 737–
744. ACM. 2, 12, 53, 58, 66, 69, 112

[Ross et al., 2011] Ross, S., Munoz, D., Hebert, M., and Bagnell, J. A. (2011). Learn-
ing message-passing inference machines for structured prediction. In Computer Vi-
sion and Pattern Recognition (CVPR), 2011 IEEE Conference on, pages 2737–2744.
IEEE. 72

[Rother et al., 2007] Rother, C., Kolmogorov, V., Lempitsky, V., and Szummer, M.
(2007). Optimizing binary mrfs via extended roof duality. In Computer Vision and
Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE. 11

[Sahni and Gonzalez, 1976] Sahni, S. and Gonzalez, T. (1976). P-complete approxi-
mation problems. Journal of the ACM (JACM), 23(3):555–565. 15

[Savchynskyy et al., 2013] Savchynskyy, B., Kappes, J. H., Swoboda, P., and Schnörr,
C. (2013). Global map-optimality by shrinking the combinatorial search area with
convex relaxation. In Advances in Neural Information Processing Systems, pages
1950–1958. 12

[Savchynskyy et al., 2011] Savchynskyy, B., Schmidt, S., Kappes, J., and Schnorr, C.
(2011). A study of nesterov’s scheme for lagrangian decomposition and map labeling.

bibliography 129

In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,
pages 1817–1823. IEEE. 12

[Scharstein and Szeliski, 2003] Scharstein, D. and Szeliski, R. (2003). High-accuracy
stereo depth maps using structured light. In Computer Vision and Pattern Recog-
nition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, volume 1,
pages I–I. IEEE. 67, 69

[Schrijver, 2002] Schrijver, A. (2002). Combinatorial optimization: polyhedra and ef-
ficiency, volume 24. Springer Science & Business Media. 43

[Shimony, 1994] Shimony, S. E. (1994). Finding maps for belief networks is np-hard.
Artificial Intelligence, 68(2):399–410. 2, 11

[Shor et al., 1985] Shor, N., Kiwiel, K., and Ruszcaynski, A. (1985). Minimization
methods for non-differentiable functions. Springer-Verlag New York, Inc. 22, 35

[Shotton et al., 2009] Shotton, J., Winn, J., Rother, C., and Criminisi, A. (2009). Tex-
tonboost for image understanding: Multi-class object recognition and segmentation
by jointly modeling texture, layout, and context. International Journal of Computer
Vision, 81(1):2–23. 92

[Sontag et al., 2012] Sontag, D., Li, Y., et al. (2012). Efficiently searching for frus-
trated cycles in map inference. In 28th Conference on Uncertainty in Artificial
Intelligence, UAI 2012. 66

[Stoyanov et al., 2011] Stoyanov, V., Ropson, A., and Eisner, J. (2011). Empirical risk
minimization of graphical model parameters given approximate inference, decoding,
and model structure. In Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, pages 725–733. 72

[Tappen et al., 2007] Tappen, M. F., Liu, C., Adelson, E. H., and Freeman, W. T.
(2007). Learning gaussian conditional random fields for low-level vision. In 2007
IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8. IEEE.
76

[Tatikonda and Jordan, 2002] Tatikonda, S. C. and Jordan, M. I. (2002). Loopy belief
propagation and gibbs measures. In Proceedings of the Eighteenth conference on
Uncertainty in artificial intelligence, pages 493–500. Morgan Kaufmann Publishers
Inc. 72

[Themelis and Patrinos, 2017] Themelis, A. and Patrinos, P. (2017). Douglas-
Rachford splitting and ADMM for nonconvex optimization: tight convergence re-
sults. ArXiv e-prints. 28, 29, 31

[Torresani et al., 2013] Torresani, L., Kolmogorov, V., and Rother, C. (2013). A dual
decomposition approach to feature correspondence. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 35(2):259–271. 3, 18, 19, 33, 35, 44, 45, 46, 48,
49

[Vapnik, 1992] Vapnik, V. (1992). Principles of risk minimization for learning theory.
In Advances in neural information processing systems, pages 831–838. 73

130 bibliography

[Wainwright et al., 2005] Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S.
(2005). Map estimation via agreement on trees: message-passing and linear pro-
gramming. IEEE transactions on information theory, 51(11):3697–3717. 2, 11, 12,
55, 66

[Waki et al., 2006] Waki, H., Kim, S., Kojima, M., and Muramatsu, M. (2006). Sums
of squares and semidefinite program relaxations for polynomial optimization prob-
lems with structured sparsity. SIAM Journal on Optimization, 17(1):218–242. 12

[Wang et al., 2013] Wang, C., Komodakis, N., and Paragios, N. (2013). Markov ran-
dom field modeling, inference & learning in computer vision & image understanding:
A survey. Computer Vision and Image Understanding, 117(11):1610–1627. 11

[Wang et al., 2015a] Wang, F., Cao, W., and Xu, Z. (2015a). Convergence of
multi-block bregman admm for nonconvex composite problems. arXiv preprint
arXiv:1505.03063. 28, 31

[Wang and Banerjee, 2013] Wang, H. and Banerjee, A. (2013). Online alternating
direction method (longer version). arXiv preprint arXiv:1306.3721. 25

[Wang and Banerjee, 2014] Wang, H. and Banerjee, A. (2014). Bregman alternating
direction method of multipliers. In Advances in Neural Information Processing
Systems, pages 2816–2824. 31, 84

[Wang and Liao, 2001] Wang, S. and Liao, L. (2001). Decomposition method with a
variable parameter for a class of monotone variational inequality problems. Journal
of optimization theory and applications, 109(2):415–429. 30

[Wang et al., 2015b] Wang, Y., Yin, W., and Zeng, J. (2015b). Global convergence of
admm in nonconvex nonsmooth optimization. arXiv preprint arXiv:1511.06324. 29,
30, 65

[Woodford et al., 2009] Woodford, O., Torr, P., Reid, I., and Fitzgibbon, A. (2009).
Global stereo reconstruction under second-order smoothness priors. IEEE transac-
tions on pattern analysis and machine intelligence, 31(12):2115–2128. 67

[Xu et al., 2017] Xu, Z., Figueiredo, M. A., Yuan, X., Studer, C., and Goldstein, T.
(2017). Adaptive relaxed admm: Convergence theory and practical implementation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7389–7398. 30

[Yedidia et al., 2005] Yedidia, J. S., Freeman, W. T., and Weiss, Y. (2005). Construct-
ing free-energy approximations and generalized belief propagation algorithms. IEEE
Transactions on Information Theory, 51(7):2282–2312. 2

[Zaslavskiy et al., 2009] Zaslavskiy, M., Bach, F., and Vert, J.-P. (2009). A path fol-
lowing algorithm for the graph matching problem. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(12):2227–2242. 18

[Zass and Shashua, 2008] Zass, R. and Shashua, A. (2008). Probabilistic graph and
hypergraph matching. In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8. IEEE. 3, 19, 44

bibliography 131

[Zeng et al., 2010] Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., and Paragios,
N. (2010). Dense non-rigid surface registration using high-order graph matching.
In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 382–389. IEEE. 19, 33

[Zheng et al., 2015] Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su,
Z., Du, D., Huang, C., and Torr, P. H. (2015). Conditional random fields as recurrent
neural networks. In Proceedings of the IEEE international conference on computer
vision, pages 1529–1537. 72, 92, 93, 94, 95, 96

[Zhou and De la Torre, 2012] Zhou, F. and De la Torre, F. (2012). Factorized graph
matching. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Con-
ference on, pages 127–134. IEEE. 18, 49

Université Paris-Saclay
Espace Technologique – Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 – 91190 Saint-Aubin, France

Title Nonconvex Alternating Direction Optimization for Graphs: Inference and Learning.

Keywords ADMM, graph matching, Markov random fields, graphical models, inference, learning.

Abstract This thesis presents our contributions to
inference and learning of graph-based models in com-
puter vision. First, we propose a novel class of decom-
position algorithms for solving graph and hypergraph
matching based on the nonconvex alternating direction
method of multipliers (ADMM). These algorithms are
computationally efficient and highly parallelizable. Fur-
thermore, they are also very general and can be ap-
plied to arbitrary energy functions as well as arbitrary
assignment constraints. Experiments show that they
outperform existing state-of-the-art methods on popu-
lar benchmarks. Second, we propose a nonconvex con-
tinuous relaxation of maximum a posteriori (MAP) in-
ference in discrete Markov random fields (MRFs). We
show that this relaxation is tight for arbitrary MRFs.
This allows us to apply continuous optimization tech-
niques to solve the original discrete problem without
loss in accuracy after rounding. We study two popular
gradient-based methods, and further propose a more ef-

fective solution using nonconvex ADMM. Experiments
on different real-world problems demonstrate that the
proposed ADMM compares favorably with state-of-the-
art algorithms in different settings. Finally, we propose
a method for learning the parameters of these graph-
based models from training data, based on nonconvex
ADMM. This method consists of viewing ADMM iter-
ations as a sequence of differentiable operations, which
allows efficient computation of the gradient of the train-
ing loss with respect to the model parameters, enabling
efficient training using stochastic gradient descent. At
the end we obtain a unified framework for inference and
learning with nonconvex ADMM. Thanks to its flexi-
bility, this framework also allows training jointly end-
to-end a graph-based model with another model such
as a neural network, thus combining the strengths of
both. We present experiments on a popular semantic
segmentation dataset, demonstrating the effectiveness
of our method.

Titre L’algorithme des directions alternées non convexe pour graphes : inférence et apprentis-
sage.

Mots clés directions alternées, appariement de graphs, champ aléatoire de Markov, modèles graphiques,
inférence, apprentissage.

Résumé Cette thèse présente nos contributions à
l’inférence et l’apprentissage des modèles graphiques
en vision artificielle. Tout d’abord, nous proposons une
nouvelle classe d’algorithmes de décomposition pour ré-
soudre le problème d’appariement de graphes et d’hy-
pergraphes, s’appuyant sur l’algorithme des directions
alternées (ADMM) non convexe. Ces algorithmes sont
efficaces en terme de calcul et sont hautement paral-
lélisables. En outre, ils sont également très généraux
et peuvent être appliqués à des fonctionnelles d’éner-
gie arbitraires ainsi qu’à des contraintes de correspon-
dance arbitraires. Les expériences montrent qu’ils sur-
passent les méthodes de pointe existantes sur des bench-
marks populaires. Ensuite, nous proposons une relaxa-
tion continue non convexe pour le problème d’estima-
tion du maximum a posteriori (MAP) dans les champs
aléatoires de Markov (MRFs). Nous démontrons que
cette relaxation est serrée, c’est-à-dire qu’elle est équi-
valente au problème original. Cela nous permet d’ap-
pliquer des méthodes d’optimisation continue pour ré-
soudre le problème initial discret sans perte de précision
après arrondissement. Nous étudions deux méthodes de

gradient populaires, et proposons en outre une solution
plus efficace utilisant l’ADMM non convexe. Les expé-
riences sur plusieurs problèmes réels démontrent que
notre algorithme prend l’avantage sur ceux de pointe,
dans différentes configurations. Finalement, nous pro-
posons une méthode d’apprentissage des paramètres de
ces modèles graphiques avec des données d’entraîne-
ment, basée sur l’ADMM non convexe. Cette méthode
consiste à visualiser les itérations de l’ADMM comme
une séquence d’opérations différenciables, ce qui per-
met de calculer efficacement le gradient de la perte
d’apprentissage par rapport aux paramètres du modèle.
L’apprentissage peut alors utiliser une descente de gra-
dient stochastique. Nous obtenons donc un framework
unifié pour l’inférence et l’apprentissage avec l’ADMM
non-convexe. Grâce à sa flexibilité, ce framework per-
met également d’entraîner conjointement de-bout-en-
bout un modèle graphique avec un autre modèle, tel
qu’un réseau de neurones, combinant ainsi les avantages
des deux. Nous présentons des expériences sur un jeu
de données de segmentation sémantique populaire, dé-
montrant l’efficacité de notre méthode.

	Acknowledgements
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Inference in Markov Random Fields
	Foundation of Markov random fields
	Local independence and distribution factorization
	Factor graphs

	MAP inference and energy minimization
	Methods for MAP inference in discrete MRFs
	Message passing methods
	Move making methods
	Combinatorial methods
	Convex relaxation methods

	Graph and Hypergraph Matching
	Feature correspondence and graph matching
	Linear algebra reformulations
	Review of tensors
	Reformulation of graph matching

	Methods for graph and hypergraph matching

	Alternating Direction Method of Multipliers
	Classical alternating direction method of multipliers
	Motivation and algorithm
	Convergence

	Beyond two-block, separable and convex problems
	Multi-block problems
	Nonseparable problems
	Nonconvex problems

	Other extensions and variations
	Adaptive penalty parameter
	Over-relaxation
	More general augmenting terms
	Proximal ADMM

	Alternating Direction Graph Matching
	Context and motivation
	General decomposition framework for graph matching
	Two ADGM algorithms
	Two simple decompositions
	Update steps and resulted algorithms
	More details on solving the subproblems
	ADGM for solving the linear assignment problem
	Convergent ADGM with adaptive penalty

	Experiments
	House and Hotel dataset
	Cars and Motorbikes dataset

	Conclusion

	Nonconvex Continuous Relaxation of MAP Inference
	Introduction
	Notation and problem reformulation
	Tight continuous relaxation of MAP inference
	Solving the tight continuous relaxation
	Gradient methods
	Alternating direction method of multipliers

	Convergence analysis
	Experiments
	Conclusion

	Deep Parameter Learning of Graph-Based Models
	Introduction
	Empirical risk minimization and stochastic gradient descent
	Implicit differentiation and unrolled optimization
	General framework for ADMM gradient computation
	Unrolled ADMM and its computational graph
	Forward-mode differentiation
	Reverse-mode differentiation
	Forward mode or reverse mode?

	ADMM for graph-based models: curse of differentiability
	Bregman ADMM: towards differentiable updates
	Introduction to Bregman ADMM
	Differentiable Bregman ADMM for graph-based models
	Gradient computation for Bregman ADMM

	Application: dense CRFs for semantic segmentation
	Semantic segmentation and dense CRFs
	Experiments

	Discussion & Conclusion
	Theoretical Proofs and Additional Experimental Results for Chapter 5
	Proofs of theoretical results
	Proof of Equations (5.35), (5.36) and (5.38)
	Proof of Lemma 5.1

	Additional experimental results
	House and Hotel dataset
	Cars and Motorbikes

	Theoretical Proofs and Additional Details for Chapter 6
	Proofs of theoretical results
	Proof of Equation (6.41)
	Proof of Equations (6.45)–(6.47)
	Proof of Proposition 6.2
	Proof of Proposition 6.3
	Proof of Proposition 6.4

	More details on the implemented methods
	Convex QP relaxation
	ADMM

	Detailed experimental results

	Theoretical Proofs and Additional Details for Chapter 7
	Proofs of theoretical results
	Proof of non-differentiability of standard ADMM updates
	Proof of Equations (7.94) and (7.95)

	Detailed experimental results

	Bibliography

