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Résumé

Cette thèse traite de la métamodélisation (ou émulation) par proessus gaussien de deux odes

ouplés. Le terme � deux odes ouplés � désigne ii un système de deux odes haînés : la

sortie du premier ode est une des entrées du seond ode.

Les deux odes sont oûteux. A�n de réaliser une analyse de sensibilité de la sortie du ode

ouplé, on herhe à onstruire un métamodèle de ette sortie à partir d'un faible nombre

d'observations. Trois types d'observations du système existent : elles de la haîne omplète,

elles du premier ode uniquement, elles du seond ode uniquement. Le métamodèle obtenu

doit être préis dans les zones les plus probables de l'espae d'entrée.

Les métamodèles sont obtenus par krigeage universel, ave une approhe bayésienne.

Dans un premier temps, le as sans information intermédiaire, ave sortie salaire, est traité.

Une méthode innovante de dé�nition de la fontion de la moyenne du proessus gaussien, basée

sur le ouplage de deux polyn�mes, est proposée. Ensuite le as ave information intermédiaire

est traité. Un préditeur basé sur le ouplage des préditeurs gaussiens assoiés aux deux odes

est proposé. Des méthodes pour évaluer rapidement la moyenne et la variane du préditeur

obtenu sont proposées. Les résultats obtenus pour le as salaire sont ensuite étendus au

as où les deux odes sont à sortie de grande dimension. Pour e faire, une méthode de

rédution de dimension e�ae de la variable intermédiaire de grande dimension est proposée

pour failiter la régression par proessus gaussien du deuxième ode. Les méthodes proposées

sont appliquées sur des exemples numériques.

Mots-lés

Codes numériques emboîtés, odes ouplés, odes haînés, régression par proessus gaussien,

métamodélisation, variable fontionnelle, rédution de dimension, Stepwise Unertainty Re-

dution, plans d'expérienes séquentiels.

Abstrat

This thesis deals with the Gaussian proess regression of two nested odes. The term "nested

odes" refers to a system of two hained omputer odes: the output of the �rst ode is one

of the inputs of the seond ode.

The two odes are omputationally expensive. In order to perform a sensitivity analysis, we

aim at emulating the output of the nested ode from a small number of observations.

Three types of observations of the system exist: those of the hained ode, those of the �rst

ode only and those of the seond ode only. The surrogate model has to be aurate on the

most likely regions of the input domain of the nested ode.

In this work, the surrogate models are onstruted using the Universal Kriging framework,

with a Bayesian approah.

First, the ase when there is no information about the intermediary variable (the output of the

�rst ode) is addressed. An innovative parametrization of the mean funtion of the Gaussian

proess modeling the nested ode is proposed. It is based on the oupling of two polynomials.

Then, the ase with intermediary observations is addressed. A stohasti preditor based on

the oupling of the preditors assoiated with the two odes is proposed. Methods aiming

at omputing quikly the mean and the variane of this preditor are proposed. Finally, the

methods obtained for the ase of odes with salar outputs are extended to the ase of odes

with high dimensional vetorial outputs.

We propose an e�ient dimension redution method of the high dimensional vetorial input

of the seond ode in order to failitate the Gaussian proess regression of this ode.
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All the proposed methods are applied to numerial examples.

Keywords

Nested omputer odes, Gaussian proess regression, surrogate modeling, funtional variable,

dimension redution, Stepwise Unertainty Redution, sequential designs.
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Résumé long en français

Cette thèse présente de nouveaux développements pour la métamodélisation de odes oûteux

haînés, où la sortie du premier ode est une des entrées du ode suivant. Cette on�guration

et sa généralisation à plus que deux odes sont fréquemment renontrées en pratique. Mais

la onstrution de métamodèles adaptés à ette on�guration a été peu étudiée jusqu'ii.

Ce manusrit ontient trois ontributions nouvelles par rapport à l'état de l'art, détaillées dans

les hapitres 3 à 5. La première ontribution onerne la régression par proessus gaussien

ave une fontion de moyenne dé�nie par une polyn�me. Une nouvelle méthode de dé�nition

de la tendane polynomiale, basée sur la omposition de deux polyn�mes, est proposée. Dans

e as de �gure, la variable intermédiaire entre les deux odes n'est pas onnue.

La seonde ontribution suppose la onnaissane de la variable intermédiaire et traite de

l'enrihissement du plan d'expérienes en vue de la régression par proessus gaussien de la

sortie de la haîne de deux odes. Le hoix d'une nouvelle observation soulève plusieurs

questions. Tout d'abord pour un ode donné, il faut hoisir les variables d'entrée de la

nouvelle observation. Ensuite, omme il y a deux odes, la question se pose également (si ela

est possible) de hoisir auquel des deux odes ajouter une nouvelle observation.

La troisième ontribution traite le as de deux odes à sortie de très grande dimension (par

exemple des fontions du temps). Dans ette on�guration, le seond ode a une sortie,

mais également une entrée fontionnelle. Une méthode de rédution de dimension de l'entrée

fontionnelle adaptée à e as est alors proposée. Les ritères d'enrihissement proposés

préédemment sont ombinés ave ette méthode de rédution de dimension a�n de les étendre

au as de deux odes à sortie fontionnelle. Les méthodes proposées sont ensuite appliquées à

un as test industriel modélisant l'explosion d'une harge dans une uve sphérique. Ce as test

est assoié à un ouplage entre un ode de détonique et un ode de dynamique des strutures.

Les paragraphes qui suivent présentent plus en détails la struture du manusrit.

Le premier hapitre passe en revue l'état de l'art onernant la métamodélisation d'un unique

ode à entrée et sortie de faibles dimensions. Une brève présentation de la régression linéaire

et du haos polynomial est faite, ainsi que de méthodes de régularisation omme LASSO ou

LARS. Le reste du hapitre est dédié à la régression par proessus gaussien (GP) ou krigeage.

Après un rappel des bases de la régression par proessus gaussien, omme le hoix de la

fontion de ovariane, le krigeage universel dans un adre bayésien est présenté. Ensuite, les

ritères pour plans d'expérienes pour la régression par proessus gaussien et l'optimisation

bayésienne sont passés en revue. Le hapitre se onlut sur une brève partie onernant

l'analyse de sensibilité, en partiulier les méthodes basées sur une déomposition de la variane

(indies de Sobol).

Le deuxième hapitre passe en revue les méthodes pour la régression par proessus gaussien

d'un ode à entrée et/ou sortie dé�nie omme une fontion disrétisée du temps. L'attention

se onentre ii sur la rédution de la dimension de l'entrée ou de la sortie. Conernant la

rédution de la dimension de l'entrée, ertaines méthodes ne prennent en ompte que l'entrée

fontionnelle, tandis que d'autres ont pour objetif la rédution de la dimension de l'entrée

de manière adaptée à la sortie. Ces dernières sont tout partiulièrement adaptées pour le

système haîné onsidéré dans e travail. Conernant la sortie fontionnelle, deux approhes

sont possibles. La première onsiste à projeter la sortie fontionnelle sur une base de dimension

réduite. La seonde repose sur l'utilisation d'une ovariane tensorisée, où l'indie de la sortie
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fontionnelle (omme par exemple le temps) est onsidéré omme une des entrées du modèle.

Le troisième hapitre ontient la première ontribution de ette thèse : la onstrution d'une

fontion de moyenne du proessus gaussien par ouplage de deux polyn�mes. Cette approhe

intègre l'information que l'on a a priori sur la struture haînée des deux odes, mais sans

observations ni onnaissane de la struture de la variable intermédiaire. Dans e as, la on-

�guration est prohe d'une régression par proessus gaussien lassique, ave des observations

des entrées et sortie de la haîne de odes. La spéi�ité de la méthode repose sur l'utilisation

de l'information que l'on a sur ette struture haînée. La dé�nition de la fontion de moyenne

omprend une première étape de omposition de deux polyn�mes, puis une seonde étape de

linéarisation de ette omposition. Cette linéarisation permet de limiter l'impat d'une erreur

d'estimation des paramètres de haun des deux polyn�mes. Ensuite le préditeur de la sortie

de la haîne de ode est onstruit en utilisant le krigeage universel dans un adre bayésien.

Par ailleurs, la struture proposée pour la tendane polynomiale o�re une grande �exibilité,

puisque les ordres totaux de haun des deux polyn�mes, mais aussi la dimension de la sortie

du premier polyn�me, peuvent être optimisés. Cependant, ette �exibilité néessite la réso-

lution d'un problème d'optimisation omplexe ar non onvexe. Une approhe heuristique,

basée sur une minimisation alternée par rapport aux variables, est proposée pour résoudre e

problème d'optimisation. Par ailleurs, un ritère basé sur l'erreur Leave One Out (LOO) est

utilisé pour aratériser la performane de prédition du préditeur gaussien. Ce ritère est

utilisé pour hoisir la ombinaison de valeurs la plus performante pour les ordres totaux des

deux polyn�mes et la dimension de la sortie du premier polyn�me.

Le quatrième hapitre ontient la deuxième ontribution de ette thèse : la métamodélisation

de deux odes haînés lorsque des observations de la variable intermédiaire sont disponibles.

Le préditeur proposé est basé sur un ouplage de préditeurs gaussiens de haun des deux

odes. Le hapitre propose en partiulier deux ritères d'enrihissement du plan d'expérienes.

Ces ritères reposent sur une minimisation de la variane de prédition intégrée (IMSE). La

variane de prédition doit don être évaluée en un très grand nombre de points. Le premier

ritère orrespond au as où les deux odes ne peuvent pas être appelés de manière séparée.

Le seond orrespond au as où les odes peuvent être lanés de manière séparée. Dans e

as, on peut hoisir lequel des deux odes appeler, en retenant elui qui maximise la rédution

de la variane de prédition intégrée par unité de temps de alul pour une évaluation du

ode. Une di�ulté majeure liée à ette approhe tient au fait que le ouplage de deux

préditeurs gaussiens n'est pas gaussien. La variane de prédition doit don être évaluée

en utilisant des méthodes de quadrature ou Monte Carlo. A�n de résoudre es di�ultés

numériques, deux méthodes pour une évaluation rapide de la variane de prédition sont

proposées. Dans le premier as, si le proessus gaussien assoié au seond ode a une fontion

de ovariane gaussienne et une tendane polynomiale, alors la variane peut être évaluée de

manière analytique. Dans le as où es onditions ne sont pas valables, une autre approhe

reposant sur la linéarisation du ouplage des deux préditeurs peut être utilisée. Les méthodes

proposées sont ensuite appliquées sur deux exemples numériques : un premier analytique et

un seond portant sur la trajetoire balistique d'un projetile onique. Les résultats obtenus

montrent l'intérêt de prendre en ompte les observations de la variable intermédiaire et de

pouvoir appeler de manière séparée haun des deux odes.

Le inquième hapitre ontient les ontributions �nales de ette thèse et onerne la mé-

tamodélisation par proessus gaussien de deux odes haînés à sortie fontionnelle (de très

grande dimension). La ontribution majeure de e hapitre est une méthode de rédution de

l'entrée fontionnelle d'un modèle linéaire, qui est adaptée à la sortie de e modèle linéaire.
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Cette méthode de rédution de dimension est ombinée à une approximation de la sortie

du seond ode, qui est linéaire par rapport à l'entrée fontionnelle du seond ode (qui est

également la sortie du premier ode). Le modèle linéaire proposé est en fait un �ltre ausal,

paramétré par un petit nombre de variables qui peuvent être estimées à partir d'un faible

nombre d'observations.

Cette ombinaison d'une approximation linéaire et d'une rédution de dimension adaptée à

e modèle linéaire permet de réduire la dimension de l'entrée fontionnelle du seond ode de

manière adaptée à la prédition de la sortie de e ode.

Grâe à ette rédution de dimension, haun des deux odes peut être assoié à un proes-

sus gaussien ave un veteur d'entrées de faible dimension. Deux préditeurs gaussiens sont

obtenus en utilisant une ovariane tensorisée pour prendre en ompte le aratère multidi-

mensionnel des sorties des fontions onsidérées. Les préditeurs sont ensuite ouplés et le

ouplage est linéarisé. Cei permet d'obtenir un préditeur gaussien de la sortie fontionnelle

de la haîne de deux odes. La moyenne et la variane du préditeur peuvent alors être éval-

uées de manière analytique, et don très rapide. Les ritères d'enrihissement proposés dans

le hapitre préédent sont ensuite adaptés au as de deux odes ouplés à sortie fontionnelle.

En�n, les méthodes proposées sont mises en appliation sur le as test industriel qui a motivé

ette thèse, à savoir le ouplage d'un ode de détonique ave un ode de dynamique des stru-

tures. Les sorties de haun des odes sont des fontions disrétisées du temps. Les résultats

obtenus montrent l'intérêt de prendre en ompte les observations de la variable intermédiaire,

par rapport à une simple régression par proessus gaussien de la sortie de la haîne de odes

en fontion des entrées.
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Context

Surrogate modeling for the sensitivity analysis of two nested omputer odes

This thesis is motivated by an appliation ase. This appliation ase is the oupling of two

omputationally ostly omputer odes. The �rst ode is a detonation ode and the seond

ode is a strutural dynamis ode. The two odes have funtional (i.e. high dimensional

vetorial) outputs and the funtional output of the �rst ode is one of the inputs of the

seond ode.

If we aim at performing design and erti�ation studies of suh a system, the evaluation of the

output of the system at a large number of input points is often neessary. This is espeially

true when methods like sensitivity analysis, risk analysis or optimization are performed.

In this work we aim at performing a sensitivity analysis of the system mentioned above.

Given the omputational ost of the two odes, the �rst objetive is to build an emulator,

or a surrogate model, of the output of the two nested odes. This surrogate model will be

onstruted from a small set of observations of the two odes. The number of observations

annot be very high beause of the omputational osts of the odes.

As the role of simulation is inreasing, the surrogate modeling of high-ost odes generates

growing interest. However, the existing methods are generally applied to a single ode or

onsider a system of odes as a single ode.

In this work, the framework of the Gaussian proess regression for the surrogate modeling

of omputer odes is onsidered. In this framework, the output of a ode is onsidered to

be the realization of a Gaussian proess. The framework used for the Gaussian proess

regression is the Universal Kriging framework and a Bayesian approah is utilized. If some

not very restritive assumptions on the prior distribution of the Gaussian proess are ful�lled,

a Gaussian preditor of the ode an be obtained by omputing the posterior distribution of

the Gaussian proess given the observations of the ode output.

Moreover, the existing methods for the surrogate modeling of odes generally onsider the

ase of odes with low dimensional vetorial inputs. If a ode has a funtional input, the

dimension of the funtional input is often redued thanks to a projetion. The hoie of the

optimal method of dimension redution of the funtional input for the surrogate modeling of

the output remains a researh topi.

Contributions of the thesis

This thesis makes ontributions to the surrogate modeling of two nested odes with salar or

funtional outputs. These ontributions aim at solving the following di�ulties of the studied

system:

• there are two odes,

• the odes are oupled by a funtional intermediary variable,

• the seond ode has a funtional input.

First, the ase of two nested odes with salar outputs is investigated. The onsidered system

is then:

x1 →

x2

y1(x1)

ց
ր y

nest

(x
nest

) := y2(y1(x1),x2), (0.0.1)

with x1 ∈ R
d1

and x2 ∈ R
d2

the low dimensional vetorial inputs of the two odes, y1 ∈ R

and y2 ∈ R the output of the two odes, and d1 and d2 two integers.

x
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In a �rst step, the ase where there are no observations of the intermediary variable y1 (x1)
is onsidered. An innovative parametrization of the mean funtion of the Gaussian proess

is proposed. This parametrization is based on the oupling of polynomials and enables to

improve the predition auray ompared to a lassial onstant or polynomial mean funtion.

Then the ase where observations of the intermediary variable are available is onsidered.

A stohasti preditor of the nested ode is obtained by oupling the Gaussian preditors of

the two odes. Suh an approah enables to take into aount all the types of observations:

observations of the nested ode, of the �rst ode only and of the seond ode only. The

preditor is non-Gaussian but its moments an be omputed using Monte Carlo methods.

Then we de�ne sequential design riteria whih aim at improving the predition auray of the

proposed preditor. The riteria are based on a redution of the integrated predition variane

beause the preditor has to be aurate on the most probable areas of the input domain for

the sensitivity analysis. Finally, two adaptations of the proposed preditor are developed

in order to evaluate the predition variane and thus the proposed sequential design riteria

quikly. The �rst adaptation is alled "analyti" and the seond one "linearized". They both

enable to ompute the mean and the variane of the proposed preditor in losed forms. The

"linearized" method leads also to a Gaussian preditor of the nested ode. Moreover, the

interest of taking into aount the intermediary observations is shown.

Finally, the ase of two nested ode with funtional outputs is investigated. The onsidered

system is then:

x1 →

x2

y1(x1)

ց
ր y

nest

(x
nest

) := y2(y1(x1),x2), (0.0.2)

with y1 ∈ R
Nt

and y2 ∈ R
Nt

the output of the two odes when they are funtional, Nt ≫ 1
denoting the number of disretization steps of the funtional outputs.

The seond ode has a funtional input and the existing methods of Gaussian proess regres-

sion generally onsider low dimensional vetorial inputs. The Gaussian proess regression of

the seond ode requires therefore the redution of the dimension of this funtional input.

We propose a dimension redution of the funtional input of a ode whih is suited for the

predition of the funtional output of this ode. This dimension redution method is based

on a two-step approah. First, the output of the seond ode is approximated by a linear

ausal �lter. This linear model has a sparse struture, whih is de�ned by only Nt variables.

These variables an be estimated from a small set of observations of the funtional input and

output of the seond ode. The seond step is the use of a proposed projetion basis whih is

adapted to a linear model. The ombination of these two steps enables to obtain a dimension

redution of the funtional input of the seond ode, whih:

• is adapted to the output of this ode

• an be estimated from a small set of observations,

• does not require the knowledge of the derivatives of the output of the ode,

One the dimension of the funtional intermediary variable has been e�iently redued, the

previously de�ned linearized method is adapted to the ase of two nested odes with funtional

outputs. A Gaussian preditor of the funtional output of the nested ode, with analyti mean

and variane, is obtained. Finally, the previously de�ned sequential design riteria are adapted

to the ase of two nested odes with funtional outputs.
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Outline of the manusript

The thesis has two parts.

Part I provides a review of the state of the art for the surrogate modeling of omputer odes.

In Chapter 1, we review methods for the surrogate modeling of a single ode with low dimen-

sional vetorial inputs and a salar output.

Setion 1.1 desribes the surrogate modeling of a single ode by Linear Regression.

Setion 1.2 fouses on the surrogate modeling of a ode by Polynomial Chaos Expansion.

Setion 1.3 reviews the existing methods for the seletion of the regressors in the framework

of Linear Regression.

Setion 1.4 provides a review of the Gaussian proess regression framework for the surrogate

modeling of a single ode with low dimensional vetorial inputs and a salar output.

Setion 1.5 presents a review of the design of experiments for an aurate surrogate model on

the whole input domain of a ode with low dimensional vetorial inputs and a salar output.

Setion 1.6 fouses on the sensitivity analysis of the output of a ode, or a quantity assoiated

with it, with respet to the inputs of the ode.

In Chapter 2, we review methods for the surrogate modeling of a single ode with a funtional

output, low dimensional vetorial inputs and possibly a funtional input.

Setion 2.1 is devoted to the existing methods for the dimension redution of a funtional

variable.

Setion 2.2 reviews the existing methods for the Gaussian proess regression of a ode with

low dimensional vetorial inputs and a funtional output.

Part II details our ontributions to the onstrution of a surrogate model of two nested odes

with salar or funtional outputs.

In Chapter 3, we fous on the ase where the two odes have salar outputs and no obser-

vations of the intermediary variable are available. We propose to de�ne the mean funtion

of the Gaussian proess modeling the nested ode as a oupling of two polynomials. This

parametrization is based on the oupling of two polynomials. We show how this parametriza-

tion an improve the predition auray of the Gaussian preditor ompared to the ase

where the mean funtion is de�ned by polynomials.

In Chapter 4 we fous on the ase where the two odes have salar outputs and observations of

the intermediary variable are available. We propose a stohasti preditor of the nested ode

based on the oupling of the Gaussian preditors of the two odes. This stohasti preditor is

non-Gaussian but its mean and variane an be evaluated using Monte Carlo methods. This

preditor an take into aount all the possible observations: those of the nested ode, those

of the �rst ode and those of the seond ode. Then sequential design riteria are proposed.

These design riteria aim at improving the predition auray on the whole input domain of

the nested ode. One of the riteria an also take into aount the di�erene of omputational

osts between the two odes. Finally, we propose two adaptations of the previously proposed

preditor of the nested ode in order to aelerate the omputation of the mean and the

variane of the preditor. They both enable to ompute the predition mean and variane

in losed forms. In addition, the proposed linearized preditor of the nested ode enables to

obtain a Gaussian preditor of the nested ode with onditioned mean and variane funtions

in losed forms.
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The appliation of the proposed methods to numerial examples shows the interest of taking

into aount the intermediary observations.

In Chapter 5 we fous on the ase of the oupling of two odes with funtional outputs. We

�rst propose an e�ient dimension redution of the funtional input of the seond ode. This

dimension redution is based on a linear projetion of the funtional input of the seond ode.

The proposed projetion basis an be estimated from a small set of observations of the seond

ode and does not require the knowledge of the derivatives of the ode.

We also extend the linearized preditor of the nested ode proposed in Chapter 4 to the ase

of two nested odes with salar output. This extension relies on the dimension redution of

the funtional output and a tensorized struture of the Gaussian proess modeling the ode.

By tensorized struture we mean a separation between the index of the output and the inputs.

The sequential design riteria are also adapted to the ase of two nested odes with funtional

outputs.

The proposed methods are applied to numerial examples. The results show again the interest

of taking appropriately into aount the intermediary observations.

The preditor obtained at the end of the sequential enrihment of the initial design is used in

order to perform a sensitivity analysis of a salar quantity of interest based on the funtional

output of the nested ode.
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Notations

Ordinal variables

n number of observations

d dimension of an input variable

p number of funtions of a basis of funtion in the ase of Universal Kriging

Nt dimension of the time-varying output of a ode

ard(A) number of elements of the set A

Matrix, vetors and salar

x a salar

x a vetor

xi or (x)i the i-th entry of the vetor x

X a matrix

(X)ij the entry at line i and row j of the matrix X

(X)·i the vetor of the entries of the i-th olumn of the matrix X

(X)i· the vetor of the entries of the i-th row of the matrix X

XT
transpose of the matrix X

diag (x) diagonal matrix with diagonal x

diag (X) vetor orresponding to the diagonal of the matrix X

Tr (X) trae of the matrix X

ov (x,y) ovariane between x and y

xv
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Probabilisti notations

d
= equality in distribution

E [·] Mean of a random quantity

V [·] Variane of a random quantity

N (m,K) multivariate normal distribution with mean m and ovariane matrix

K

GP (m (·) , C (·, ·)) one-dimensional Gaussian proess with mean funtion m and ovari-

ane funtion C

GP (m (·) ,C (·, ·)) multidimensional Gaussian proess with vetor-valued mean funtion

m and matrix-valued ovariane funtion C

Norms and salar produts

(·, ·)X salar produt in the spae of square integrable real-valued funtions

on X, suh that (y, z)X :=
∫
X
y(x)z(x)dx

‖·‖
X

norm in the spae of square integrable real-valued funtions on X, suh

that ‖y‖2
X
:= (y, y)X

‖·‖F Frobenius norm

‖·‖1 L1 norm, suh that ‖x‖1 =
d∑

i=1
|xi|

‖·‖ L2 norm, suh that ‖x‖2 =
√

d∑
i=1

x2i

xvi



Part I

State of the art for the surrogate

modeling of omputer odes

1





The role of simulation for the design and the erti�ation of omplex systems is inreasing.

However, methods like unertainty propagation, sensitivity analysis or optimization require

the evaluation of the output of the ode at a huge number of input points. If the omputational

ost of the omputer ode is high, and only a small number of observations of its output is

available, the use of a surrogate model is neessary. In this part we review some existing

methods for the surrogate modeling of omputer odes.

This part inludes two hapters. The �rst one is devoted to the surrogate modeling of a

omputer ode with salar (i.e. low dimensional vetorial) inputs and output. The seond one

fouses on the surrogate modeling with Gaussian proess regression of a ode with funtional

(i.e. high dimensional vetorial) input and/or output.
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Chapter 1

Surrogate modeling of a single ode

with salar inputs and output

In this hapter we onsider a model of the form x 7→ y (x), x ∈ X ⊂ R
d
, d a positive integer,

and µX is a probability measure on the spae omprising X and a σ-algebra over X. The

following setions detail the state of the art for the surrogate modeling of y from a set of n
observations of the input and the output of the ode. These observations are denoted by:

Xobs =




x(1)

.

.

.

x(n)


 , (1.0.1)

and

yobs =
(
y(1) = y

(
x(1)

)
, . . . , y(n) = y

(
x(n)

))
, (1.0.2)

where Xobs

is a (n× d)-dimensional matrix and yobs is a n-dimensional vetor.

The �rst setion is devoted to linear regression. The seond one deals with the use of Poly-

nomial Chaos Expansion as a surrogate model. The third one fouses on the methods for the

seletion of regressors in regression models. The fourth one presents the Gaussian proess

regression for the surrogate modeling of a omputer ode. Finally, the last setion reviews

some existing designs of experiments whih are adapted for the aquisition of knowledge of

the omputer ode or the sequential improvement of a surrogate model.

1.1 Linear regression

Generalized additive models are a very ommon tool for the emulation of a response surfae

[Hastie and Tibshirani, 1990℄. It is the projetion of the output y on a basis of funtions

hi, 1 ≤ i ≤ p, p a positive integer, of the inputs x. The emulator an be written in the form:

ŷ (x) = h (x)T β, (1.1.1)

where h (x) and β are in R
p
. The funtions of the basis an be polynomials, with Polynomial

Chaos Expansion as a partiular ase, wavelets, trigonometri funtions...

Note that simple linear regression an be regarded as a partiular ase of the generalized

additive models, with a basis of funtions omprising only the ovariates: h (x) = x.

The regression oe�ients β an be estimated from a set of n observations of the inputs and

the output of the ode Xobs

and yobs through the minimization of the quadrati loss funtion:

β̂ = argmin
β∈Rp

n∑

i=1

(
y
(
x(i)
)
− h

(
x(i)
)T

β

)2

. (1.1.2)

5



1.2. POLYNOMIAL CHAOS EXPANSION

If we denote:

H =




h
(
x(1)

)T
.

.

.

h
(
x(n)

)T


 , (1.1.3)

then the least squares estimate of the regression oe�ients an be written:

β̂ = H+yobs, (1.1.4)

where H+
is the pseudo-inverse of H. If n ≥ p and H is of rank p, then HTH is invertible

and H+ =
(
HTH

)−1
HT

. By de�nition, H is a (n× p)-dimensional matrix.

However, matrix

(
HTH

)
is not always invertible. The number of observations an be smaller

than the number of regression oe�ients (p ≤ n) or the funtions of the basis an be or-

related aording to the probability measure µX, whih means that the olumns of H are

orrelated, thus reduing the rank of matrix H .

The matrix

(
HTH

)
is more likely to be inverted if the basis funtions are deorrelated with

respet to the probability measure µX of the inputs, as performed with Polynomial Chaos

Expansion. Another possible approah is the use of a regularization term for the inversion

of the matrix, or the seletion of the most in�uening regressors. The two following setions

detail these two approahes.

1.2 Polynomial Chaos Expansion

Polynomial Chaos expansion an be used to emulate a model response y with inputs x.

Besides, the probability measure µX assoiated with x is a produt measure. Therefore, the

omponents of the input vetor are independent. It has been applied by Ghanem and Spanos

[1990℄ to stohasti �nite elements methods. Polynomial Chaos expansion an be seen as the

projetion of the model output y on a polynomial basis whih depends on the distribution of

the model inputs x. The polynomials are orthonormal with respet to the distribution of x.

The model response an therefore be expanded as:

y (x) =
∑

α∈Nd

βαΦα (x) , (1.2.1)

with βα ∈ R and Φα orthonormal multidimensional polynomials, whih means:

∫

X

Φα (x) Φγ (x) dµX (x) = δαγ , (1.2.2)

with δαγ denoting the Kroneker delta.

In pratie, the expansion of Eq. (1.2.1) an be trunated in order to obtain a surrogate

model of the model response. If we denote by A ⊂ N
d
the trunated set of indies, by βA the

vetor gathering the βα,α ∈ A and by ΦA the vetor gathering the seleted polynomials, this

surrogate model is de�ned as:

ŷ (x) = ΦA (x)T βA. (1.2.3)

Note that the trunation is generally de�ned by an upper bound r on the total order of

the polynomials, whih means A = {α ∈ N
d, ‖α‖1 ≤ r}. The total order r an be hosen

adaptively aording to a target preision, with an estimation of the error thanks to a ross-

validation riterion [Blatman and Sudret, 2010, 2011℄.

A oe�ient βα is de�ned as the projetion of the model response on funtion Φα:

βα =

∫

X

y (x)Φα (x) dµX (x) . (1.2.4)

6



1.2. POLYNOMIAL CHAOS EXPANSION

Distribution Density Orthonormal basis

Uniform

1

2
1[−1,1] (x)

Pk (x)√
2k + 1

, with Pk Legendre polynomial

Gaussian

1√
2π

exp

(
−x2

2

)
Hk (x)√

k!
, with Hk Hermite polynomial

Gamma

xa

Γ (a+ 1)
exp (−x)1x>0

Lk (x)

Γ (k + a+ 1)
, with Lk Laguerre polynomial

Table 1.1: Classial univariate polynomial families used for Polynomial Chaos Expansion.

The integral an be estimated using Monte-Carlo methods, quadrature rules [Ghioel and

Ghanem, 2002℄ or stohasti olloation methods [Xiu, 2009℄.

The oe�ients an also be estimated by least squares regression [Blatman and Sudret, 2010,

2011℄ from a set of n observations:

β̂A = argmin
βA∈R

ard(A)

n∑

i=1

(
y(i) −ΦA

(
x(i)
)T

βA

)2

. (1.2.5)

Note that if the observations are drawn aording to the distribution of the inputs, the meta-

model will be more aurate in the high-probability regions of the input domain.

The usual one-dimensional polynomial families used for Polynomial Chaos Expansion, whih

are hosen aording to the distribution of the one-dimensional variable x, are given in Table

1.1.

Furthermore, the inputs an be transformed using an isoprobabilisti transformation, suh

as the Nataf or the Rosenblatt transformations [Nataf, 1962; Rosenblatt, 1952; Lebrun and

Dutfoy, 2009℄. Suh transformations map x to a d-dimensional standard Gaussian variable

ξ (i.e. d independent standard Gaussian variables). Then a Polynomial Chaos Expansion

an be performed using Hermite polynomials [Blatman and Sudret, 2011℄. The expansion

beomes:

y (x) =
∑

α∈Nd

βαHα (T (x)) , (1.2.6)

where Hα =
d∏

i=1
Hαi

and

βα =

∫

T (X)
y
(
T−1 (ξ)

)
Hα (ξ)

d∏

i=1

ϕ (ξi) dξ. (1.2.7)

Here, T : x 7→ ξ is the isoprobabilisti transformation and T−1
its inverse, Hα are Hermite

polynomials, and ϕ the standard univariate Gaussian probability density funtion.

Thanks to this isoprobabilisti transformation, the Polynomial Chaos Expansion of a omputer

ode with dependent inputs an be performed.

7



1.3. METHODS FOR THE SELECTION OF THE REGRESSORS OF A LINEAR MODEL

1.3 Methods for the seletion of the regressors of a linear model

In this setion we review the existing methods for the seletion of the most in�uential regressors

for linear regression or Polynomial Chaos Expansion. The methods are presented in the

hronologial order of their appearane. Two approahes an be distinguished: the �rst one

selets the regressors whih are the most in�uential. The seond one minimizes the oe�ients

assoiated with the least in�uential regressors.

1.3.1 Stepwise and all-subsets regressions

Stepwise regression aims at seleting the regressors whih improve the predition auray the

most. There are three main approahes to perform this seletion: forward seletion, bakward

elimination and bidiretional elimination.

In the forward method, the set of the seleted regressors is empty at the initial step. Then, at

eah step, one adds the regressor whih best improves the predition auray of the regression

model. The addition ontinues until a stopping riterion is reahed.

On the ontrary, with the bakward elimination, a huge number of regressors are seleted at

the initial step. Then the regressors whih ontribute the least to the predition auray are

removed step by step from the regression model.

Efroymson [1960℄ introdued an approah ombining forward seletion and bakward elimi-

nation. At eah step of the forward seletion, the interest of removing one of the previous

seleted regressors is studied.

However, stepwise regression is known as being greedy and quite unstable [Hesterberg et al.,

2008℄.

In parallel, all-subsets regression has been introdued by Furnival and Wilson [1974℄. It relies

on the evaluation of the auray of all the regression models based on all the subsets of the

set of regressors. Even though exhaustive, this approah an be omputationally expensive,

espeially when the number of regressors is high.

1.3.2 Ridge regression

Introdued by Hoerl and Kennard [1970℄, ridge regression is based on a penalization of the

oe�ients of the regressors. This penalization an be seen as a regularization of the regression

problem. The oe�ients obtained with the ridge regression are the solutions of the following

optimization problem:

β̂
ridge

= argmin
β∈Rp

n∑

i=1

(
y
(
x(i)
)
− h

(
x(i)
)T

β

)2

+ δ ‖β‖22 , (1.3.1)

with δ a non-negative real-valued onstant.

This leads to the normal equation:

(
HTH + δIp

)
β̂
ridge

= HTyobs. (1.3.2)

Pratially, the optimal value of δ an be estimated thanks to a Cross validation riterion.

The absolute value of the oe�ients dereases as δ inreases. When δ = 0, the result is the
same as the one of ordinary least squares. If δ > 0 then the matrix

(
HTH + δIp

)
is positive

de�nite and thus invertible.

The ridge regression an be seen as a partiular ase of the Tikhonov regularization [Tikhonov

8



1.3. METHODS FOR THE SELECTION OF THE REGRESSORS OF A LINEAR MODEL

and Arsenin, 1977℄, whih is de�ned as follows:

β̂
Tikhonov

= argmin
β∈Rp

n∑

i=1

(
y
(
x(i)
)
− h

(
x(i)
)T

β

)2

+ ‖Γβ‖2 , (1.3.3)

with Γ a d× d-dimensional matrix.

If Γ
T
Γ is positive de�nite, this problem has the following expliit solution:

β̂
Tikhonov

=
(
HTH + Γ

T
Γ
)−1

HTyobs. (1.3.4)

Note that if Γ is de�ned suh that Γ
T
Γ is positive de�nite, then the matrix HTH + Γ

T
Γ is

an invertible matrix.

1.3.3 LASSO

The Least Absolute Shrinkage and Seletion Operator (LASSO) method has been introdued

by Tibshirani [1989℄. It relies on a L1-penalization of the estimation of β, whih an be

written:

β̂
LASSO

= argmin
β∈Rp

n∑

i=1

(
y
(
x(i)
)
− h

(
x(i)
)T

β

)2

+ δ ‖β‖1 , (1.3.5)

with δ a non-negative onstant.

The higher δ is, the more zero oe�ients there are and the sparser the regression model is.

1.3.4 Forward stagewise regression

Hastie et al. [2001℄ have introdued the forward stagewise regression. Although di�erent from

LASSO, it yields similar results. The proedure an be de�ned by the following algorithm:

• Initialize with R = yobs and βi = 0, i ∈ {1, . . . , p}, then repeat until no regressor is

orrelated with R:

� Find i ∈ {1, . . . , p} suh that hi

(
Xobs

)
is the most orrelated with R,

� Update βi = βi + ǫi, ǫi = ǫ sign
(
or

(
hi

(
Xobs

)
,R
))
,

� Update R = R− ǫihi

(
Xobs

)
,

where, by abuse of notation hi

(
Xobs

)
=
(
hi

(
x(1)

)
, . . . ,hi

(
x(n)

))
. In pratie, ǫ is set to a

small value, like ǫ = 0.01. In general, this approah is more reliable than the lassial stepwise

regression.

1.3.5 Least Angle Regression

Introdued by Efron et al. [2004℄, Least Angle Regression (LAR) is similar to the forward

stagewise regression, given that it selets the regressor hi

(
Xobs

)
whih is the most orrelated

with the urrent residual R. However, the omputation of the value of βi is di�erent. Instead
of being slightly modi�ed, the value of βi is hosen suh that the orrelation between the

new residual R − βihi

(
Xobs

)
and its most orrelated regressor hj

(
Xobs

)
is equal to the

orrelation between R − βihi

(
Xobs

)
and hi

(
Xobs

)
. This method an also be seen as an

intermediate method between forward regression and forward stagewise regression.

9
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1.3.5.1 The algorithm

Least Angle Regression (LAR) is assoiated with the following algorithm:

1. Initialize with R = yobs and βi = 0, i ∈ {1, . . . , p}.

2. Find i ∈ {1, . . . , p} suh that hi

(
Xobs

)
is the most orrelated with R.

3. Move βi from 0 toward its least squares oe�ient, until another regressor hj

(
Xobs

)

has as muh orrelation with R− βihi

(
Xobs

)
as hi

(
Xobs

)
.

4. Move jointly (βi, βj) in the diretion de�ned by their joint least squares oe�ient of the

urrent residual on

(
hi

(
Xobs

)
,hj

(
Xobs

))
, until some regressor hk

(
Xobs

)
is as muh

orrelated with the urrent residual.

5. Continue until min (p, n− 1) regressors have been retained.

1.3.5.2 LASSO an be seen as spei� ase of LAR

Efron et al. [2004℄ and Hastie et al. [2007℄ have shown that a slightly modi�ed LAR algorithm

an provide the entire paths of the LASSO oe�ients as the δ oe�ient inreases. This

modi�ed algorithm is de�ned as follows:

• Run the LAR algorithm from step 1 to 4,

• If a non-zero oe�ient ahieves zero, remove the assoiated regressor from the linear model

and reompute the joint least squares diretion,

• Continue until min (p, n− 1) regressors have been retained.

In the same way, a modi�ed LAR algorithm an be used to perform a forward stagewise

regression in the ase of ǫ → 0 [Hastie et al., 2007℄. Note that the label LARS generally refers

to this modi�ed LAR algorithm (where S refers to Stagewise or LASSO).

1.3.5.3 Hybrid LARS

Introdued by Efron et al. [2004℄, hybrid LARS is derived from the original LARS (referring

to the original LAR or LASSO here). This modi�ed algorithm omprises a LAR step whih

enables to selet the regressors. The next step is the estimation by ordinary least squares of

the oe�ients assoiated with the seleted regressors.

Hybrid LARS relies on a separation between the hoie of the regressors and the estimation

of the linear model.

It enables to inrease the auray of the linear model ompared to the original LARS.

Relaxed LASSO [Meinshausen et al., 2007℄ is an extension of the LARS-based LASSO algo-

rithm. The �rst step is the same as for hybrid LARS. The ordinary least squares estimation

of the oe�ients at the seond step is replaed by a LASSO estimation with a small penalty.

In this approah, for the seleted regressors at a given step of the LARS algorithm, one

performs LASSO with a small penalty oe�ient δ, suh that no regressor is eliminated.

Hybrid LASSO is a partiular ase of this algorithm, with δ = 0.

10



1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

1.3.6 Dantzig seletor

The Dantzig seletor of Candes and Tao [2007℄ is based on the resolution of the following

optimization problem:

βDantzig = argmin
β∈Rp

∥∥HT
(
yobs −Hβ

)∥∥
∞

subjet to ‖β‖1 ≤ t, (1.3.6)

with t ∈ R
+

In the same way as LARS, the Dantzig seletor sets some oe�ients to zero, thus seleting

some regressors.

However, Efron et al. [2004℄ and Meinshausen et al. [2007℄ have shown that the linear model

obtained with LASSO is as aurate as or more aurate than the one obtained with the

Dantzig seletor.

Note that a DASSO (DAntzig Seletor with Sequential Optimization) algorithm has been

proposed by James et al. [2008℄ in order to ompute in one step the whole path of the Dantzig

seletor.

1.3.7 Conlusions

In this setion, methods whih enable to selet the regressors of a linear model have been

reviewed. Suh approahes are partiularly useful when the number of observations n is small

ompared to the number of possible regressors p of the linear model.

1.4 Gaussian proess regression or Kriging

This setion is devoted to the surrogate modeling of a omputer ode by Gaussian Proess

Regression.

Gaussian proess regression is widely used in omputer experiments [Saks et al., 1989; Santner

et al., 2003; Rasmussen and Williams, 2006℄. In the Gaussian proess regression framework,

the output y of the ode an be seen as a realization of a Gaussian proess.

In the remainder of the setion, we �rst outline the multidimensional Gaussian distribution

and the de�nition of a Gaussian proess. Then the Gaussian proess regression framework

for a known ovariane funtion is presented. Finally, the estimation of the hyperparameters

of parametri ovariane funtions is desribed.

1.4.1 Gaussian proesses

1.4.1.1 Multidimensional (multivariate) Gaussian distribution

A random vetor u = (u1, . . . , un) , n ≥ 1, is a Gaussian vetor if the following equivalent

assumptions are veri�ed:

• for any a ∈ R
n
, aTu has a Gaussian distribution,

• the harateristi funtion of u is of the form v 7→ exp

(
ivTm− 1

2
vTKv

)
with m a

n-dimensional vetor and K a (n× n)-dimensional matrix, whih is symmetri and

positive de�nite.

If these assumptions are veri�ed, we have u ∼ N (m,K) with m = E [u] and K = ov (u).

11



1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

1.4.1.2 Gaussian proesses

A random proess assoiates to any value of x a random variable Y (x). A random proess is a

Gaussian proess if its �nite-dimensional distributions are Gaussian distributions. A Gaussian

proess Y is haraterized by its mean and ovariane funtions. The mean funtion is de�ned

by:

m (x) = E [Y (x)] . (1.4.1)

The ovariane funtion is de�ned by:

C
(
x,x′

)
= ov

(
Y (x) , Y

(
x′
))

, (1.4.2)

x′
in X.

A Gaussian proess is said to be stationary if, for all x(1), . . . ,x(n)
in X and h ∈ R

d
suh that

x(1)+h, . . . ,x(n)+h are still in X, the multidimensional distribution of the Gaussian proess

Y at x(1), . . . ,x(n)
is the same as the one at x(1) + h, . . . ,x(n) + h.

It follows that a ovariane funtion is said to be stationary, if, for all x,x′,x+h,x′+h ∈ X,

one has:

C
(
x+ h,x′ + h

)
= C

(
x,x′

)
= C

(
x− x′,0

)
. (1.4.3)

Finally, a Gaussian proess is stationary if and only if its mean funtion is onstant and its

ovariane funtion is stationary.

The next setion outlines some lassial parametri families of stationary ovariane funtions

and their properties. For a more detailed review of ovariane funtions, the interested reader

may refer to Abrahamsen [1997℄ and Rasmussen and Williams [2006℄.

1.4.1.3 Parametri families of stationary ovariane funtions

Typial parametri families of ovariane funtions are of the form:

C
(
x,x′

)
= σ2Kℓ

(
x− x′

)
(1.4.4)

where Kℓ is a orrelation funtion parametrized by the vetor of orrelation lengths ℓ ∈
(0,+∞)d, and σ2 ∈ (0,+∞) is a variane parameter.

The following paragraphs present some lassial stationary orrelation funtions Kℓ.

The nugget orrelation funtion

The nugget orrelation funtion is de�ned by:

Kℓ

(
x− x′

)
= δx=x′ , (1.4.5)

where δ denotes the Kroneker delta. Note that this ovariane funtion does not depend on

any orrelation length.

By onstrution, the observations of a Gaussian proess with a nugget orrelation funtion

are not orrelated and onsequently independent and identially distributed.

Figure 1.1 presents an example of a path of the entered Gaussian proess with the nugget or-

relation funtion and a unit variane σ2
. The trajetory is very rough and all the observations

are independent of eah other.
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Figure 1.1: An example of a path of the entered Gaussian proess with the nugget orrelation

funtion and a unit variane σ2
.

The squared exponential orrelation funtion

The squared exponential (or Gaussian) orrelation funtion is de�ned by:

Kℓ

(
x− x′

)
= exp

(
−dℓ

(
x− x′

)2)
, (1.4.6)

where dℓ (x− x′) =

√√√√
d∑

i=1

(
xi − x′i

ℓi

)2

. The trajetories of a Gaussian proess with a squared

exponential orrelation funtion are in�nitely di�erentiable. This ovariane funtion is widely

used in Kriging models. However, the assumption of in�nite di�erentiability may be unrealisti

[Stein, 1999℄.

Figure 1.2 presents the squared-exponential orrelation funtion and an example of a path of

the entered Gaussian proess with a squared-exponential orrelation funtion, a unit variane

σ2
, and the following orrelation lengths: ℓ ∈ {0.05, 0.1, 0.2}. It an be seen that the shorter

the orrelation length is, the faster the orrelation funtion dereases. Besides, the path varies

more if the orrelation length is short. Finally, note that the trajetories are very smooth, in

agreement with their in�nite di�erentiability.

The Matérn orrelation funtion

The multi-dimensional Matérn kernel an be de�ned as:

Kℓ

(
x− x′

)
=

1

Γ (ν) 2ν−1

(
2
√
νdℓ

(
x− x′

))ν
Kν

(
2
√
νdℓ

(
x− x′

))
, (1.4.7)

with Γ (·) the gamma funtion, Kν a modi�ed Bessel funtion [Abramowitz and Stegun, 1965℄

and ν ≥ 1

2
the smoothness hyperparameter.

Note that as ν → ∞, the Matérn kernel tends to the squared exponential orrelation funtion.

Besides, when ν = k+
1

2
, k ∈ N, the Matérn kernel has a simpler form. In partiular, we have:

• if ν =
1

2
:

Kℓ

(
x− x′

)
= exp

(
−dℓ

(
x− x′

))
, (1.4.8)

this kernel is also known as the exponential kernel,
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Figure 1.2: On the left �gure: plot of the squared-exponential orrelation funtion. On the

right plot: an example of a path of the entered Gaussian proesses with a squared-exponential

orrelation funtion Kℓ, ℓ ∈ {0.05, 0.1, 0.2} and a unit variane.

• if ν =
3

2
:

Kℓ

(
x− x′

)
=
(
1 +

√
3 dℓ

(
x− x′

))
exp

(
−
√
3 dℓ

(
x− x′

))
, (1.4.9)

• if ν =
5

2
:

Kℓ

(
x− x′

)
=

(
1 +

√
5 dℓ

(
x− x′

)
+

5

3
dℓ
(
x− x′

)2
)
exp

(
−
√
5 dℓ

(
x− x′

))
.

(1.4.10)

Figure 1.3 presents the exponential orrelation funtion and an example of a path of the

entered Gaussian proesses with an exponential orrelation funtion, a unit variane σ2
and

the following orrelation lengths: ℓ ∈ {0.05, 0.1, 0.2}. The trajetories are not di�erentiable.
Figure 1.4 presents the Matérn

3

2
orrelation funtion and examples of a path of the entered

Gaussian proesses with a Matérn

3

2
orrelation funtion, a unit variane σ2

, and the following

orrelation lengths: ℓ ∈ {0.05, 0.1, 0.2}. The trajetories are not very smooth, but smoother

than with the exponential orrelation funtion.

Figure 1.5 presents the Matérn

5

2
orrelation funtion and an example of a path of the entered

Gaussian proesses with a Matérn

5

2
orrelation funtion, a unit variane σ2

, and the following

orrelation lengths: ℓ ∈ {0.05, 0.1, 0.2}. The trajetories are relatively smooth.

It an be seen on Figures 1.2 to 1.5 that the shorter the orrelation length is, the faster the

orrelation funtion dereases. Besides, the path varies more if the orrelation length is short.

Figure 1.6 presents the Matérn orrelation funtion and examples of a path of the entered

Gaussian proesses with a Matérn orrelation funtion, a orrelation length equal to 0.5, a

unit variane σ2
, and the following values of the smoothness parameter: ν ∈ {1

2
,
3

2
,
5

2
,∞}.

It an be seen that the smoothness parameter strongly impats the form of the orrelation

funtion. Besides, the higher ν is, the smoother the paths are.
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Figure 1.3: On the left �gure: plot of the exponential orrelation funtion. On the right

plot: an example of paths of the entered Gaussian proesses with an exponential orrelation

funtion Kℓ, ℓ ∈ {0.05, 0.1, 0.2} and a unit variane.
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Figure 1.4: On the left �gure: plot of the Matérn

3

2
orrelation funtion. On the right plot:

an example of a path of the entered Gaussian proesses with a Matérn

3

2
orrelation funtion

Kℓ, a unit variane and ℓ ∈ {0.05, 0.1, 0.2}.
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Figure 1.5: On the left �gure: plot of the Matérn

5

2
orrelation funtion. On the right plot:

examples of a path of the entered Gaussian proesses with a Matérn

5

2
orrelation funtion

Kℓ, a unit variane and ℓ ∈ {0.05, 0.1, 0.2}.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

PSfrag replaements

h

K
ℓ
(h
)

(a) Correlation funtion

0.0 0.2 0.4 0.6 0.8 1.0

−1.0

−0.5

0.0

0.5

1.0

PSfrag replaements

x

y
(x
)

(b) Trajetories

PSfrag replaements

Smoothness parameter

1/2
3/2
5/2
∞

Smoothness parameter ν

Figure 1.6: On the left �gure: plot of the Matérn orrelation funtion for di�erent values of

the smoothness parameter ν. On the right plot: an example of a path of the entered Gaussian

proesses with a Matérn orrelation funtion Kℓ, the following values of the smoothness

parameter ν ∈ {1
2
,
3
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,
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,∞}, a orrelation length ℓ equal to 0.5 and a unit variane σ2
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The power exponential orrelation funtion

The power exponential orrelation kernel is de�ned by:

Kℓ

(
x− x′

)
= exp

(
−

d∑

i=1

(
xi − x′i

ℓi

)p
)
, (1.4.11)

p ∈ (0, 2], with the partiular ase of p = 2 orresponding to the squared exponential orrela-

tion funtion.

Finally, note that the multidimensional orrelation funtions an also be de�ned as a produt

of univariate orrelation funtions:

Kℓ

(
x− x′

)
=

d∏

i=1

Kℓi

(
xi − x′i

)
, (1.4.12)

where the Kℓi may belong to di�erent families of orrelation funtions.

1.4.1.4 The relationship between the ovariane funtion and the mean square

regularity

In this setion, we onsider a entered Gaussian proess Y with ovariane funtion C. Some

properties onerning the mean square regularity of a entered Gaussian proess and its

relationship with the ovariane funtion are reviewed.

A zero-mean Gaussian proess Y is mean square ontinuous if and only if its ovariane fun-

tion is ontinuous at eah pair (x,x), x ∈ X. Besides, if a ovariane funtion is ontinuous

at eah pair (x,x), x ∈ X, then it is ontinuous on X× X [Baho, 2013b℄.

If one de�nes the following notation:

ov

(
∂Y (x)

∂xi
,
∂Y (x′)

∂x′i

)
=

∂2C

∂xi∂x
′
i

(
x,x′

)
, (1.4.13)

the derivative

∂

∂xi1
. . .

∂

∂xik
Y , with {i1, . . . , ik} a subset of {1, . . . , d}, exists in the mean

square sense and is a Gaussian proess if the derivative funtion

∂2

∂xi1∂x
′
i1

. . .
∂2

∂xik∂x
′
ik

C exists

and is �nite.

In the ase of a Gaussian proess Y with stationary ovariane funtion C, the three following
assumptions are a onsequene of the previous assumptions:

1. the Fourier transform Ĉ of C is suh that:

∫

R

ω2kĈ (ω) dω < +∞,

2. the ovariane funtion C of Y is 2k times di�erentiable,

3. Y is k times mean square di�erentiable.
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1.4.2 Ordinary, simple and universal Kriging

The term Kriging [Matheron and Blondel, 1962℄ refers to the predition of the value of a

random �eld at unobserved points of this random �eld. In this work, we assume that the

random �eld is a Gaussian proess.

In the framework of Kriging, three ases an be distinguished aording to di�erent assump-

tions on the mean funtion:

• Simple Kriging orresponds to the ase where the mean funtion is known. Then, thanks

to the subtration of this known mean, the Gaussian proess an be assumed to be

entered.

• Ordinary Kriging orresponds to the ase where the mean funtion is assumed to be on-

stant and unknown.

• Universal Kriging orresponds to the ase where the mean funtion is unknown and of

the form m (x) = h (x)T β, where h (x) de�nes a p-dimensional basis of funtions and

β ∈ R
p
a vetor of unknown oe�ients.

Note that, if the ovariane funtion of the Gaussian proess is onsidered as being stationary,

the use of a non-stationary mean funtion (universal Kriging) an make this assumption of

stationarity of the ovariane funtion more likely.

In the following paragraphs, we review the preditors obtained by the omputation of the

onditioned mean and variane of the Gaussian proess in the frameworks of simple, ordinary

and universal Kriging. At this stage, the ovariane funtion of the Gaussian proess is

assumed to be known. Besides, we onsider a Bayesian framework [Robert, 2007; Santner

et al., 2003℄.

The following notations will be used. The prior distribution of the Gaussian proess Y an

be denoted by:

Y (·) |m,C ∼ GP (m (·) , C (·, ·)) , (1.4.14)

and the posterior distribution of the Gaussian proess Y by:

Y (·) |yobs,m,C ∼ GP (mc (·) , Cc (·, ·)) . (1.4.15)

1.4.2.1 Simple Kriging

Simple Kriging orresponds to the ase of a Gaussian proess with known mean. For the sake

of simpliity, this mean is assumed to be set at zero, thanks to the subtration of the known

mean of the Gaussian Proess. Thus, one has:

m (x) = 0, (1.4.16)

and:

Y (·) |C ∼ GP (0, C (·, ·)) . (1.4.17)

In suh a ase, the onditioned distribution of the Gaussian proess is still Gaussian, with

onditioned mean and variane whih are given by:

mc (x) = C
(
x,Xobs

)
C
(
Xobs,Xobs

)−1
yobs, (1.4.18)

and

Cc
(
x,x′

)
= C

(
x,x′

)
− C

(
x,Xobs

)
C
(
Xobs,Xobs

)−1
C
(
Xobs,x

)
, (1.4.19)
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1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

where Xobs

is de�ned by Eq. (1.0.1) and C
(
x,Xobs

)
is a n-dimensional vetor and

C
(
Xobs,Xobs

)
is a (n× n)-dimensional matrix, so that:

(
C
(
x,Xobs

))
i
= C

(
x,x(i)

)
, (1.4.20)

and (
C
(
Xobs,Xobs

))
ij
= C

(
x(i),x(j)

)
. (1.4.21)

1.4.2.2 Ordinary Kriging

Ordinary Kriging an be regarded as a spei� ase of Universal Kriging, with onstant mean

β ∈ R to be determined:

m (x) = β. (1.4.22)

Therefore, in the ase of Ordinary Kriging, one has:

Y (·) |β,C ∼ GP (β,C (·, ·)) . (1.4.23)

We onsider a Bayesian framework and we have no a priori information about β. The prior
distribution of β is therefore assumed to be an improper uniform distribution on R. In suh

a framework, the onditioned distribution of the Gaussian proess is still Gaussian, with the

following onditioned mean and variane funtions:

mc (x) = β̂ + C
(
x,Xobs

)
C
(
Xobs,Xobs

)−1
(
y (x)− β̂

)
, (1.4.24)

and

Cc (x,x′) = C (x,x′)− C
(
x,Xobs

)
C
(
Xobs,Xobs

)−1
C
(
Xobs,x

)
+

u (x)
(
1

TC
(
Xobs,Xobs

)−1
1

)−1
u (x′) ,

(1.4.25)

where

u (x) = 1− 1

TC
(
Xobs,Xobs

)−1
C
(
Xobs,x

)
, (1.4.26)

β̂ =
(
1

TC
(
Xobs,Xobs

)−1
1

)−1
1

TC
(
Xobs,Xobs

)−1
yobs, (1.4.27)

and:

1 =




1
.

.

.

1


 . (1.4.28)

1.4.2.3 Universal Kriging

In the ase of Universal Kriging, the mean funtion of the Gaussian proess is de�ned as

follows:

m (x) = h (x)T β, (1.4.29)

with β a vetor of unknown parameters.

Therefore, in the ase of Universal Kriging, the prior distribution of the Gaussian proess is:

Y (·) |h,β, C ∼ GP

(
h (·)T β, C (·, ·)

)
. (1.4.30)
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1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

If we assume that β follows an improper uniform distribution on R
p
and that the ovariane

funtion is known, then the onditional distribution of the Gaussian proess is still Gaus-

sian and its onditioned mean and ovariane funtions an be omputed analytially. The

onditioned mean and variane of the Gaussian proess an be written:

mc (x) = h (x)T β̂ + C
(
x,Xobs

)
C
(
Xobs,Xobs

)−1
(
yobs −Hβ̂

)
, (1.4.31)

and

Cc (x,x′) = C (x,x′)− C
(
x,Xobs

)
C
(
Xobs,Xobs

)−1
C
(
Xobs,x

)
+

u (x)T
(
HTC

(
Xobs,Xobs

)−1
H
)−1

u (x′) ,
(1.4.32)

where

u (x) = h (x)−HTC
(
Xobs,Xobs

)−1
C
(
Xobs,x

)
, (1.4.33)

and:

β̂ =
(
HTC

(
Xobs,Xobs

)−1
H
)−1

HTC
(
Xobs,Xobs

)−1
yobs. (1.4.34)

Besides, the posterior distribution of the parameters β is Gaussian with mean β̂ and ovari-

ane:

Rβ =
(
HTC

(
Xobs,Xobs

)−1
H
)−1

. (1.4.35)

Note that the lassial linear regression leads to the same results as Universal Kriging with a

nugget ovariane funtion. A nugget ovariane funtion is de�ned by C (x,x′) = σ2δx=x′
,

with δ denoting the Kroneker delta.

1.4.3 Estimation of a parametri ovariane funtion

The previous setion has detailed the properties of a Gaussian proess and has presented some

parametri families of ovariane funtion and the onditioned distribution of the Gaussian

proess for several assumptions on the mean funtion of the proess and a known ovariane

funtion.

In this setion, we review some methods of estimation of the hyperparameters of the ovariane

funtion, when the ovariane funtion belongs to a known parametri family.

There are two main approahes for the plug-in estimation of the ovariane hyperparameters

ℓ and σ2
. The �rst one is based on the maximization of the likelihood of the observations

given the hyperparameters. The seond one is based on the minimization of the Leave One

Out Mean Square Error for the estimation of ℓ and on the Leave One Out Predition Variane

for the estimation of σ2
. Alternatively, a full Bayesian approah an be used [Robert, 2007℄.

But, in suh a ase the posterior distribution of the Gaussian proess is no longer Gaussian.

1.4.3.1 Maximum Likelihood Estimation

By de�nition of the prior distribution of the Gaussian proess modeling the ode, one an

write:

yobs | β, ℓ, σ2 ∼ N
(
Hβ, σ2Kℓ

(
Xobs,Xobs

))
, (1.4.36)

with Kℓ suh that C (x,x′) = σ2Kℓ (x,x
′).

The log-likelihood of the observations an therefore be written as a funtion of ℓ, σ2
and β:

L
(
β, ℓ, σ2

)
= −1

2
ln |σ2Rℓ| −

1

2

1

σ2

(
yobs −Hβ

)T
R−1

ℓ

(
yobs −Hβ

)
, (1.4.37)
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1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

with Rℓ = Kℓ

(
Xobs,Xobs

)
.

The derivatives of L
(
β, ℓ, σ2

)
with respet to β and σ2

are de�ned as follows:

∂L
∂β

(
β, ℓ, σ2

)
=

1

2

1

σ2
HTR−1

ℓ

(
yobs −Hβ

)
, (1.4.38)

∂L
∂σ2

(
β, ℓ, σ2

)
= − n

2σ2
+

1

2

1

σ4

(
yobs −Hβ

)T
R−1

ℓ

(
yobs −Hβ

)
. (1.4.39)

From Eqs. (1.4.38) and (1.4.39), it an be inferred that the maximization of the log-likelihood

riterion L
(
β, ℓ, σ2

)
with respet to σ2

and β an be solved expliitly. Finally, the Maximum

Likelihood estimates of ℓ, σ2
and β are:

βML (ℓ) =
(
HTR−1

ℓ H
)−1

HTR−1
ℓ yobs, (1.4.40)

σ2
ML (ℓ) =

1

n

(
yobs −HβML

)T
R−1

ℓ

(
yobs −HβML

)
, (1.4.41)

ℓML = argmin
ℓ∈Rd

ln |σ2
ML (ℓ)Rℓ| (1.4.42)

1.4.3.2 Restrited Maximum Likelihood Estimation

Restrited Maximum Likelihood Estimation (REML) enables to estimate the hyperparameters

of the ovariane funtion and the parameters β independently. This method is partiularly

appropriate if the prior distribution of β is not a uniform improper distribution. It is based

on the left null spae of matrix H . This null spae an be assoiated with a ((n− p)× n)-
dimensional matrix W , suh that WH = 0. If one introdues wobs = Wyobs, one has:

wobs ∼ N
(
0, σ2WRℓW

T
)
. (1.4.43)

The Restrited Maximum Likelihood an thus be written:

LREML
(
ℓ, σ2

)
= −1

2
ln |σ2WRℓW

T | − 1

2

1

σ2

(
wobs

)T (
WRℓW

T
)−1

wobs, (1.4.44)

and does not depend on the parameters β.

1.4.3.3 Cross Validation Estimation

Following Dubrule [1983℄ and Baho [2013b℄, the orrelation length of the ovariane funtion

an be estimated by minimizing the Leave One Out Mean Square error. The Leave One Out

estimate of the orrelation length ℓ is given by:

ℓLOO = argmin
ℓ

MSELOO, (1.4.45)

with

MSELOO =

n∑

i=1

[(
yobs

)
i
−mc

−i,ℓ

(
x(i)
)]2

, (1.4.46)

mc
−i,ℓ

(
x(i)
)
= E

[
Y
(
x(i)
)
|
(
yobs

)
−i

, ℓ
]
and

(
yobs

)
−i

denoting all the observations exept the

i-th observation.
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The variane hyperparameter σ2
an be estimated by setting the value of the Leave-One-Out

predition error to 1. The Leave-One-Out predition error is de�ned by:

1

n

n∑

i=1

((
yobs

)
i
−mc

−i,ℓLOO

(
x(i)
))2

σ2Kc
−i,ℓLOO

(
x(i)
) , (1.4.47)

with σ2Kc
−i,ℓLOO

(
x(i)
)
= V

[
Y
(
x(i)
)
|
(
yobs

)
−i

, ℓLOO, σ
2
]
.

Thus, the predition variane estimate is:

σ2
LOO =

1

n

n∑

i=1

((
yobs

)
i
−mc

−i,ℓLOO

(
x(i)
))2

Kc
−i,ℓLOO

(
x(i)
) . (1.4.48)

Moreover, the two riteria an be evaluated using matrix forms:

MSELOO =
1

n

(
yobs

)T
R̃

−
ℓ diag

(
R̃

−
ℓ

)−2
R̃

−
ℓ y

obs, (1.4.49)

and:

σ2
LOO =

1

n

(
yobs

)T
R̃

−
ℓ diag

(
R̃

−
ℓ

)−1
R̃

−
ℓ y

obs, (1.4.50)

with R̃
−
ℓ = R−1

ℓ − R−1
ℓ H

(
HTR−1

ℓ H
)−1

HTR−1
ℓ in the Universal Kriging framework, and

R̃
−
ℓ = R−1

ℓ in the simple Kriging framework.

1.5 Design of experiments

From the previous setions it an be inferred that, by onstrution, the auray of the linear

model, in the ase of a linear regression, or of the Gaussian proess, in the ase of Kriging,

depends on the hoie of the observations. In the following setion, we fous on the design of

experiments, that is to say the hoie of the observations of the ode.

1.5.1 Spae-�lling designs

In this setion we fous on spae-�lling designs. Suh designs are adapted to the ase of inputs

with a uniform distribution on the unit hyperube [0, 1]d. Note that if the inputs have a non-
uniform distribution, an isoprobabilisti transformation an be used to make them uniformly

distributed over [0, 1]d.

1.5.1.1 LHS designs

Introdued by MKay et al. [1979℄, Latin Hyperube sampling enables to obtain a sample

whose marginals are uniform. If one onsiders the unit hyperube [0, 1]d, a sample of n points

is generated by �rst dividing eah of the d axes of the input domain into n parts. Thus, the

unit hyperube is divided into nd
parts and the n observations are drawn uniformly into a

seletion of n of these small hyperubes. As mentioned above, the n small hyperubes are

hosen suh that the projetion onto eah axis leads to exatly n di�erent boxes. Figure 1.7

shows an example of a Latin Hyperube Design.

However, if the projetions of a Latin Hyperube design on the marginals are uniformly

distributed, the projetions of higher dimension are not neessarily uniformly distributed.

Two distane-based riteria [Johnson et al., 1990℄ an be used to haraterize the spae-�lling

properties of a design of experiments:
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1.5. DESIGN OF EXPERIMENTS

Figure 1.7: An example of Latin Hyperube Design. The observations are drawn in the grey

ells.

• the maximin riterion maximizes the Eulidean distane between two points of the design:

Xobs

maximinLHS = argmax
X

obs∈Xn

min
i 6= j

1 ≤ i, j ≤ n

∥∥∥
(
Xobs

)
i
−
(
Xobs

)
j

∥∥∥ , (1.5.1)

• the minimax riterion minimizes the distane between any points of X and the design:

Xobs

minimaxLHS = argmin
X

obs∈Xn

max
x∈X

max
1 ≤ i ≤ n

∥∥x−
(
Xobs

)
i

∥∥ . (1.5.2)

These riteria an be used in order to sample LHS designs whih have good spae-�lling

properties.

1.5.1.2 Quasi-random designs

Low disrepany sequenes like Sobol sequenes an also be utilized to ensure good spae-�lling

properties of the design. The notion of disrepany has been introdued by Niederreiter [1978℄

and is a measure of the divergene between a set of observations and the uniform distribution.

If the de�nition set is the unit hyperube [0, 1]d, then the disrepany is de�ned by:

D
(
Xobs

)
= sup

a,b∈[0,1]d,a<b

∣∣∣∣∣∣∣∣∣

ard

(
{x ∈ Xobs|x ∈

d∏
i=1

[ai, bi)}
)

n
−

d∏

i=1

(bi − ai)

∣∣∣∣∣∣∣∣∣
, (1.5.3)

with ard (Ω) denoting the number of elements of the �nite set Ω.

Low-disrepany sequenes [Niederreiter, 1978℄ are also known as quasi-random designs. They

are de�ned suh that the disrepany of the sequene tends to zero when the size of the

sequene tends to in�nity. The low-disrepany sequenes have a smaller disrepany than a

uniform Monte Carlo sample, thus overing better the unit hyperube.

The best-known low-disrepany sequenes are the Van der Corput [Van der Corput, 1935℄,

Halton [Halton, 1964℄, Sobol [Sobol, 1967℄, Faure and Hammersley [Hammersley, 1964℄ se-

quenes.

Spae-�lling designs an also be de�ned for the ase of a non-hyperube domain (see Perrin
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and Cannamela [2017℄ for example).

If there is no a priori information about the basis of funtions in the linear regression ase

or about the ovariane funtion in the Gaussian proess regression ase, then spae-�lling

designs are very appropriate to aquire a knowledge of the omputer ode. One some in-

formation is available, riterion-based designs an be used. The following setion details

riterion-based designs whih are suited for linear regression and Gaussian proess regression.

1.5.2 Criterion-based designs

In this setion we fous on the optimal designs whih an be used when some information

about the model is available. The two �rst setions fous on the riteria whih are suited for

linear regression and Gaussian proess regression. The third setion presents the sequential

designs, that is to say the enrihment of an initial design (whih an be empty) aording to

a riterion.

1.5.2.1 Designs for linear regression

Elfving [1952℄ introdued optimal designs for linear regression, with riteria suh as D-

optimality. Sine then, many other riteria, and algorithms of onstrution of the optimal

designs have been proposed [Kiefer and Wolfowitz, 1959; Kiefer, 1961; Fedorov, 1972; Wu and

Wynn, 1978; Cook and Nahtsheim, 1980; Fedorov and Hakl, 1997; Molhanov and Zuyev,

2002℄. Suh designs aim generally at minimizing or maximizing a riterion assoiated with

the variane of the estimation of the regression oe�ients β.

Aording to Eq. (1.4.35), with a nugget ovariane of variane σ2
, the ovariane matrix of

the posterior distribution of the parameters is given by:

ov (β) = σ2
(
h
(
Xobs

)
h
(
Xobs

)T)−1
, (1.5.4)

where, by abuse of notation, h
(
Xobs

)
is a (p× n)-dimensional matrix de�ned by:

h
(
Xobs

)
=
[
h
(
x(1)

)
; · · · ;h

(
x(n)

)]
. (1.5.5)

Note that the inverse of the ovariane matrix of the parameters is also known as the infor-

mation matrix.

Several riterion-based designs an be used for linear regression:

• The D-optimal riterion aims at maximizing the determinant of the inverse of the ovariane

matrix:

Xobs

D = argmax
X

obs∈Xn

det

(
h
(
Xobs

)
h
(
Xobs

)T)
, (1.5.6)

• The A-optimal riterion aims at minimizing the trae of the ovariane matrix:

Xobs

A = argmin
X

obs∈Xn

Tr

((
h
(
Xobs

)
h
(
Xobs

)T)−1
)
. (1.5.7)

1.5.2.2 Designs for Gaussian proess regression

In the ase of the Gaussian proess regression, the design an aim either at improving the

estimation of the parameters β of the mean funtion or at improving the predition auray

of the posterior distribution of the Gaussian proess.
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In the �rst ase, a D-optimal riterion an be used. In the Gaussian proess regression

framework, this riterion is de�ned as:

Xobs

D = argmax
X

obs∈Xn

det

(
h
(
Xobs

)
C
(
Xobs,Xobs

)−1
h
(
Xobs

)T)
. (1.5.8)

If the aim is the improvement of the predition auray, the following riterion, generally

referred as I-optimal design, an be used:

Xobs

I = argmin
X

obs∈Xn

∫

X

V
[
Y (x) |yobs

]
dµX (x) . (1.5.9)

Note that it an be inferred from Eqs. (1.4.19), (1.4.25) and (1.4.32) that V
[
Y (x) |yobs

]

depends only on Xobs

and the ovariane funtion C. By abuse of notation, the previous

riterion an be rewritten:

Xobs

I = argmin
X

obs∈Xn

∫

X

V
[
Y (x) |Xobs

]
dµX (x) . (1.5.10)

The integral

∫

X

V
[
Y (x) |Xobs

]
dµX (x) is de�ned as the Integrated Mean Square Error (IMSE)

[Saks et al., 1989℄.

However, the hoie of a riterion-based design may pose some di�ulties:

• if a disrete searh is performed, the number of possible ombinations an be very high:(
n
N

)
, where N is the number of andidates of the searh set.

• in the ase of a Gaussian proess, the ovariane funtion an be unknown or not preisely

known at the beginning.

In those ases, sequential designs an be used. In the ase of Gaussian proess regression an

initial design drawn aording to µX an be used for the initial estimation of the ovariane

funtion hyperparameters. Then the hyperparameters of the ovariane funtion an be re-

estimated at eah step of the sequential design.

The stohasti properties of the Gaussian proess regression are useful for the de�nition of

sequential designs. Saks et al. [1989℄ proposed a sequential design based on the division of

the input domain into boxes. The new point is added in the box with the largest ontribution

to the urrent IMSE.

Vazquez and Bet [2009℄ and Bet et al. [2012℄ proposed a Stepwise Unertainty Redution

strategy [Geman and Jedynak, 1996℄ based on a sequential enrihment of the design whih

is adapted to the estimation of a probability of failure, using a Kriging metamodel and a

Bayesian framework.

Suh a Stepwise Unertainty Redution approah is based on the hoie of a new observation

point that improves the most a given riterion at the next step.

Bates et al. [1996℄, then Piheny et al. [2010℄ proposed a sequential design whih is based on

the integrated predition variane (or Integrated Mean Square Error, IMSE) riterion. The

assoiated riterion an be written in the form:

x
new

= argmin
x
∗∈X

∫

X

V
[
Y (x) |Xobs,x∗

]
dµX (x) , (1.5.11)

where, by abuse of notation, V
[
Y (x) |Xobs,x∗

]
= V

[
Y (x) |yobs, y (x∗)

]
. Suh a notation

an be used, beause, for a given ovariane funtion C, the onditioned variane Cc (x,x′)
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does not depend on the observations of the output (see Eqs. (1.4.25), (1.4.19) and (1.4.32)

for further details).

The above-mentioned design riteria aim at improving the auray of the surrogate model,

of the posterior distribution of the parameters or of the estimation of a probability of failure.

They are all based on the minimization or maximization of a riterion assoiated with the

variane of the estimator of the quantity of interest.

In the next setion, we present the E�ient Global Optimization (EGO) algorithm. This is a

widely used algorithm whih adds to the design a new point whih is in the most likely region

of a minimum of the funtion y.

1.5.3 Gaussian proesses for pointwise global optimization

Jones et al. [1998℄ proposed a sequential design aiming at �nding the global minimum of an

expensive to evaluate funtion (or omputer ode). The E�ient Global Optimization algo-

rithm is based on a Gaussian proess emulator of the expensive funtion and takes advantage

of the stohasti property of the Gaussian preditor to determine whih new point to add.

The riterion is based on an Improvement funtion de�ned as:

I (x) |yobs = max

(
min

(
yobs

)
− Y (x) |yobs, 0

)
. (1.5.12)

The new observation point minimizes the Expeted Improvement (EI):

EI (x) = E
[
I (x) |yobs

]

=
(
min

(
yobs

)
− µc (x)

)
Φ

(
min

(
yobs

)
− µc (x)

σc (x)

)
+ σc (x)ϕ

(
min

(
yobs

)
− µc (x)

σc (x)

)
,

(1.5.13)

with ϕ the standard Gaussian probability density funtion and Φ the standard Gaussian u-

mulative distribution funtion. The new observation point x
new

is therefore hosen aording

to the following riterion:

x
new

= argmax
x∈X

EI (x) . (1.5.14)

EGO is a ompromise between exploration and exploitation.

1.6 Sensitivity analysis

The sensitivity analysis aims at estimating the importane of the in�uene of the inputs of a

ode over the output of the ode or over a quantity of interest assoiated with it. By abuse

of notation, this quantity of interest will be denoted by y in the remainder of this setion.

The sensitivity analysis methods an be divided into two groups:

• the loal sensitivity analysis studies the in�uene of small variations of the input parameters

over a quantity of interest assoiated with the output of the ode,

• the global sensitivity analysis quanti�es the in�uene of the inputs over a quantity of

interest assoiated with the output of the ode by onsidering the variations of the

inputs on the whole input domain.
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The interested reader an refer to Saltelli et al. [2000℄ for further details on both groups. In

what follows, we will fous on global sensitivity analysis.

Among the methods of global sensitivity analysis, two types of approahes an be distin-

guished:

• regression-based methods, whih are based on the linear regression of the quantity of inter-

est with respet to the inputs. It is worth notiing that suh an approah is not adapted

to the ase of a signi�antly nonlinear mapping between the inputs and the quantity of

interest [Saltelli and Sobol, 1995℄.

• variane-based methods, whih are based on the deomposition of the variane of the

quantity of interest with respet to the inputs. This deomposition of variane is also

known as ANOVA (Analysis of Variane) [Fisher, 1925℄. In partiular, the Sobol indies

[Sobol, 1993℄ belong to this ategory.

In the remainder of the setion, we fous on the Sobol indies.

If the variane of the funtion of interest y is �nite and the inputs x are independent, then

the funtion of interest an be deomposed into �rst-order e�ets and interations [Hoe�ding,

1948℄ :

y (x) = f0 +
d∑

i=1

fi (xi) +
∑

1≤i<j≤d

fi,j (xi, xj) + · · ·+ f1,...,d (x) . (1.6.1)

The unique deomposition of y of the form of Eq. (1.6.1) whih veri�es

ov (fi1,...,is (xi1 , . . . , xis) , fj1,...,jt (xj1 , . . . , xjt)) = 0, (1.6.2)

with {i1, . . . , is} ∈ N
s, 1 ≤ i1 < · · · < is ≤ d, s ∈ {1, . . . , d} ; {j1, . . . , jt} ∈ N

t, 1 ≤ j1 <
· · · < jt ≤ d, t ∈ {1, . . . , d} and {i1, . . . , is} 6= {j1, . . . , jt}, is de�ned by [Sobol, 1993℄ :

f0 = E [y (x)]

fi (xi) = E [y (x) |xi]− f0

fi,j (xi, xj) = E [y (x) |xi, xj ]− fi (xi)− fj (xj)− f0

. . .

(1.6.3)

Given the unorrelation of the terms of Eq. (1.6.3), the variane of y (x) an thus be deom-

posed as follows:

V [y (x)] =

d∑

i=1

V [fi (xi)] +
∑

1≤i<j≤d

V [fi,j (xi, xj)] + · · ·+ V [f1,...,d (x)] , (1.6.4)

with the fi, fi,j . . . de�ned by Eq. (1.6.3).

The Sobol sensitivity index [Sobol, 1993℄ orresponding to the subset of input variables

{xi1 , . . . , xis}, is de�ned as:

Si1,...,is =
V [E [y (x) |xi1 , . . . , xis ]]

V [y (x)]
. (1.6.5)

It follows that:

1 =

d∑

i=1

Si +
∑

1≤i<j≤d

Si,j + · · ·+ S1,...,d. (1.6.6)
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The �rst-order Sobol indies are often used to evaluate the individual e�et of xi on y. They
are de�ned as:

Si =
V [E [y (x) |xi]]

V [y (x)]
. (1.6.7)

Moreover, a total sensitivity index [Homma and Saltelli, 1996℄ an be de�ned in order to

evaluate the whole ontribution of the variable xi to the variane of the quantity of interest.

These total sensitivity indies an be written:

Ti =
∑

{i1,...,is}⊂Ωi

Si1,...,is , (1.6.8)

where Ωi denotes the set of all the subsets of {1, . . . , d} ontaining i. These indies an also

be written:

Ti = 1− V [E [y (x) |x−i]]

V [y (x)]
, (1.6.9)

where x−i denotes the vetor x exept its i-th omponent .

In pratie, the omputation of the Sobol indies is performed using Monte Carlo methods

[Sobol, 1993℄. This omputation requires the evaluation of the quantity of interest y at a

large number of inputs points. If the omputer ode assoiated with this quantity of interest

is omputationally ostly, then the use of a surrogate model of the ode beomes neessary

[Oakley and O'Hagan, 2004; Le Gratiet, 2013℄.
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Chapter 2

Gaussian proess regression of a ode

with a funtional input or output

In this hapter, we review several existing methods for the Gaussian proess regression of a

omputer ode with a funtional input and/or a funtional output. By funtional variable, we

mean high dimensional vetorial variable. The funtional variable is onsidered to be indexed

by the time. The number of indies will be denoted by Nt ∈ N in the remainder of this

doument.

When aiming at performing a Gaussian proess regression of a omputer ode with a funtional

input, a ommonly used approah is to �rst redue the dimension of the funtional input

thanks to a projetion tehnique and then to onstrut a preditor whih is a funtion of the

projetion oe�ients.

When aiming at performing a Gaussian proess regression of the funtional output of a om-

puter ode with funtional output and low dimensional vetorial inputs, two approahes exist.

The �rst one is based on the projetion of the output and the independent Gaussian proess

regression of the projeted variables. The seond one onsiders the whole funtional output

thanks to a tensorized struture of the ovariane funtion of the Gaussian proess modeling

the ode.

This hapter inludes therefore two parts. The �rst one is devoted to the dimension redution

of a funtional variable whih an be the input or he output of a ode. The seond one fouses

on the Gaussian proess regression of the funtional output of a ode with salar inputs.

2.1 Dimension redution of a funtional variable

When dealing with funtional variables, dimension redution tehniques are often used. In this

setion, we present some existing methods for the dimension redution of a funtional vari-

able. All the reviewed methods are based on a linear transformation of the funtional variable.

The funtional variable is denoted by xt. Moreover xt ∈ Xt ⊂ R
Nt
, with Nt ≫ 1, and is

assoiated with the probability measure µXt .

In the onsidered framework, a set of n observations of the Nt-dimensional vetorial variable

xt is available. The observations are independently drawn aording to µXt and are entered

and gathered in a (Nt × n)-dimensional matrix Xobs

t :

Xobs

t =
(
x
(1)
t − xt

obs; . . . ;x
(n)
t − xt

obs

)
, (2.1.1)
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2.1. DIMENSION REDUCTION OF A FUNCTIONAL VARIABLE

where

xt
obs =

1

n

n∑

i=1

x
(i)
t . (2.1.2)

Based on this set of observations and for a given dimension of the projetion spae m, the goal

is to �nd the best m-dimensional set of Nt-dimensional vetors {fα, α ∈ {1, . . . ,m}}, and
the assoiated real-valued funtions xt 7→ βα (xt), whih are de�ned on Xt. The formalism

assoiated with the dimension redution of the funtional variable xt is thus:

xt ≈ xt
obs +

m∑

α=1

fαβα (xt) . (2.1.3)

Besides, in the remainder of the setion we will onsider two types of dimension redution

methods. The �rst type onsiders the funtional variable only. Suh an approah is adapted

to the dimension redution of the funtional output of a ode, but an also be used for a

funtional input. The seond type redues the dimension of a funtional input xt of a ode

adequately with respet to the output of the ode yxt
(xt).

In this work, we will onsider only dimension redutions based on a linear transformation of

xt and the projetion bases are always estimated from the observations.

Note that when onsidering a ode with a funtional input, a ridge approximation [Pinkus,

2015; Constantine et al., 2014℄ an be obtained thanks to the projetion of the funtional

input. Suh a ridge approximation an be written in the form:

yxt
(xt) ≈ gm

(
Bobs

m

(
xt − xt

obs

))
, (2.1.4)

where Bobs

m is a (m×Nt)-dimensional matrix, gm is a funtion de�ned on R
m
, whose output

has the same dimension as yxt
(xt), and xt

obs

is de�ned by Eq. (2.1.2).

In the remainder of the setion, we review some methods of dimension redution of the two

types mentioned above:

1. projetion of the funtional variable whih is adapted to the funtional variable only,

2. projetion of the funtional variable whih is adapted to a dependent variable.

2.1.1 Methods of dimension redution based on the funtional variable

only

When onsidering only the funtional variable and no dependent variable, two types of proje-

tion methods an be distinguished. The �rst type is based on the projetion of the funtional

variable on a basis of a priori known funtions. The seond one, the Prinipal Components

Analysis, relies on the estimation of a projetion basis from a set of available observations.

These methods an be applied to the ase of a funtional input or a funtional output.

The remainder of this setion reviews these two types of approahes.

2.1.1.1 Methods based on the projetion on a basis of existing funtions

In the ase of a basis of existing funtions, the vetors fα of Eq. (2.1.3) are the disretized

versions of funtions of time.

The funtions an be polynomials, wavelets [Meyer and Salinger, 1995℄, splines [Hastie et al.,

2001℄, sine and osine funtions...
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A set of funtions of the basis of size m an be hosen thanks to one of the seletion riteria

desribed in Setion 1.3. The subset Am denotes the indies of the funtions whih have been

kept after the seletion proedure.

Moreover, the oe�ients βα (xt) of Eq. (2.1.3), α ∈ Am an be estimated by solving the

following optimization problem:

β (xt) = argmin
β∈Rm

∥∥xt − xt
obs − Fmβ

∥∥2 , (2.1.5)

where Fm is a (Nt ×m)-dimensional matrix gathering the fα, α ∈ Am and β (xt) is a m-

dimensional vetor whih gathers the βα (xt), α ∈ Am.

Consequently, β is an a�ne funtion of xt.

The Prinipal Component Analysis, introdued by Pearson [1901℄, is a widely used dimension

redution method. It is also known as the Karhunen-Loève expansion [Loève, 1955℄. It is

based on the eigendeomposition of the ovariane matrix of the funtional variable. The

ovariane matrix ov (xt) an be estimated from the set of observations of the funtional

variable Xobs

t , where Xobs

t is de�ned by Eq. (2.1.1). This estimate of the ovariane matrix

is thus given by:

Robs

xt
=

1

n− 1
Xobs

t

(
Xobs

t

)T
. (2.1.6)

The projetion basis is then de�ned by the eigenvetors of the ovariane matrix Robs

xt
. In

other words, if the eigendeomposition of Robs

xt
is denoted by:

Robs

xt
= V ΛV T , (2.1.7)

where the diagonal of Λ gathers the positive dereasing eigenvalues of Robs

xt
, the m �rst

projeted variables are V T
mxt, with V m gathering the m �rst olumns of V .

Note that the auray of the approximation Robs

xt
of the ovariane matrix ov (xt) and thus

the one of the projetion basis, depend on the available observations of the funtional variable.

It is also worth notiing that the Prinipal Component Analysis an also be used in ombi-

nation with a ridge approximation. In suh a ase, the matrix Bobs

m of Eq. (2.1.4) is equal to

V T
m.

2.1.2 Methods of dimension redution of a funtional variable whih are

adapted to a dependent variable

In this setion, we fous on linear transformations aiming at reduing the dimension of the

funtional input of a ode, suh that the projeted variable is adapted to the output of the

ode.

The two parts of this setion present two methods of dimension redution: the �rst one

is based on Partial Least Squares [Wold, 1966℄ and the seond one is based on the Ative

Subspaes method [Russi, 2010℄.

2.1.2.1 Partial Least Squares

Introdued byWold [1966℄, Partial Least Squares aim at reduing the dimension of a funtional

variable xt by taking into aount a dependent variable whih an be a salar variable yxt

or a funtional variable yxt
. In our framework, this dependent variable is the output of the

ode, whereas xt is the input. The projetion basis is determined from the ovariane matrix

between the funtional variable xt and the dependent variable. In this way, the funtional

input an be projeted on a basis whih is adapted to the output.
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If a set of observations of the output of the ode is available, and is denoted by:

Y obs

xt
=
(
yxt

(
x
(1)
t

)
; . . . ;yxt

(
x
(n)
t

))
, (2.1.8)

where Y obs

xt
is a (Ny × n)-dimensional matrix, Ny is the dimension of the output of yxt

, then

the ovariane matrix ov

(
xt,yxt

)
an be approximated by:

Robs

xt,yxt
=

1

n− 1
Xobs

t

(
Y obs

xt
− yxt

obs

)T
, (2.1.9)

where

yxt

obs =
1

n

n∑

i=1

yxt

(
x
(i)
t

)
. (2.1.10)

Following Höskuldsson [1988℄, if the singular value deomposition of the ovariane matrix

between the funtional variable and the dependent variable is denoted by:

Robs

xt,yxt
= UDV T , (2.1.11)

where the diagonal of D gathers the positive singular values in dereasing order, then the m
�rst projeted variables of the funtional input whih are adapted to the output of the ode

are given by UT
mxt, with Um gathering the m �rst olumns of U .

If we refer to the ridge approximation of Eq. (2.1.4), then, in the ase of Partial Least Squares,

Bobs

m = UT
m.

Note that the auray of the estimation of the ovariane matrix ov

(
xt,yxt

)
and thus the

one of the projetion basis depend on the number of observations of the funtional variable

and its dependent variable.

Finally, Nanty et al. [2017℄ have studied ridge approximations based on the onditioned mean

of a Gaussian proess (also known as Kriging of Gaussian proess regression, see setion 1.4

for further details) indexed by the projetion of the funtional input. They have ompared

the predition auray with a projetion based on Prinipal Components Analysis or on

Partial Least Squares. It is shown that, in many ases, the predition auray of the ridge

approximation is better with a dimension redution based on Partial Least Squares than on

Prinipal Components Analysis.

2.1.2.2 Ative Subspaes

Introdued by Russi [2010℄, the Ative Subspae refers to the projetion of the funtional

input on an "Ative Subspae", estimated from the observations of the derivatives of the

output of the ode with respet to the funtional input xt. Using the formalism introdued

by Constantine et al. [2014℄ for Ny = 1, if the set of n observations of the derivatives is

denoted by:

∇yobsxt
=
(
∇yxt

(
x
(1)
t

)
; . . . ;∇yxt

(
x
(n)
t

))
, (2.1.12)

where ∇yobsxt
is a (Nt × n)-dimensional matrix, then the projetion basis is given by the

eigenvetors of the (Nt ×Nt)-dimensional matrix ∇yobsxt

(
∇yobsxt

)T
. In other words, if one

denotes by:

∇yobsxt

(
∇yobsxt

)T
= WλW T

(2.1.13)
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the eigendeomposition of the matrix ∇yobsxt

(
∇yobsxt

)T
, where the diagonal of λ gathers the

eigenvalues in dereasing order, then the m-dimensional vetor of projetion oe�ients of the

funtional input xt is given by W T
mxt where Wm gathers the m �rst olumns of the matrix

W .

If a ridge approximation is performed, the projetion matrix Bobs

m , de�ned by Eq. (2.1.4) is

suh that Bobs

m = Wm.

Zahm et al. ompare the ridge approximation of yxt
for the ase of Ny > 1 with a projetion

of the funtional input based either on Prinipal Components Analysis (also alled Karhunen-

Loève expansion) or on Ative Subspaes.

The Ative Subspae, given by the projetor Pm, is omputed from the following matrix:

1

n

n∑

i=1

∇yxt

(
x
(i)
t

)T
∇yxt

(
x
(i)
t

)
(2.1.14)

with ∇yxt

(
x
(i)
t

)
the (Nt ×Ny)-dimensional matrix of the derivatives at x

(i)
t .

The studied ridge approximation of yxt
(xt) is of the form E

[
yxt

(Pmxt + P c
mXt) |xt

]
, where

Pm is a projetor from R
Nt

to R
m
, P c

m its omplement, and Xt is Nt-dimensional vetor with

probability measure µXt . The authors onlude that Ative Subspaes an yield more e�etive

dimension redution for the ridge approximation than Prinipal Components Analysis. They

also observe that, if there is no low dimensional struture in the input-output map, then a

dimension redution based on the ovariane of the input only (PCA) is more e�ient.

This setion has been devoted to the dimension redution of a funtional variable, whih an

be the input or the output of a omputer ode. In the next setion, we fous on the Gaussian

proess regression of the funtional output of a omputer ode. The notations used will be

similar to those of Chapter 1.

2.2 Gaussian proess predition of a omputer ode with a

funtional output

In this setion, we onsider a omputer ode with low dimensional vetorial inputs and a

funtional output, that is to say, of the form x 7→ y (x), x ∈ X ⊂ R
d
and y ∈ R

Nt , Nt ≫ 1.
Moreover, µX is a probability measure assoiated with x.

The following setions detail the state of the art for the Gaussian proess regression of y

from a set of n observations of the input and the output of the ode. These observations are

denoted by:

Xobs =




x(1)

.

.

.

x(n)


 , (2.2.1)

and

Y obs =
(
y(1) = y

(
x(1)

)
; . . . ;y(n) = y

(
x(n)

))
, (2.2.2)

where Xobs

is a (n× d)-dimensional matrix and Y obs

is a (Nt × n)-dimensional matrix.

The �rst subsetion of this setion fouses on the Gaussian proess predition of a funtional

output thanks to the projetion of this output on a basis. The seond subsetion is devoted

to the Gaussian proess regression of the whole funtional output of the ode.
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2.2.1 Projetion of the funtional output on a basis

Bayarri et al. [2007℄ proposed to use a wavelet deomposition as a basis representation of the

funtional output. A thresholding proedure is performed in order to redue the size of the set

of the projetion funtions while obtaining an aurate projetion. Then independent Gaus-

sian preditors of eah of the oe�ients of the retained projetion funtions are onstruted.

Higdon et al. [2008℄ proposed to build a Gaussian proess emulator of the funtional output of

a ode through a Prinipal Component Analysis of the funtional output. First, a Prinipal

Component Analysis of the funtional output is performed. A number m of the projeted

variables is hosen suh that these m omponents represent 99% of the total variane of the

output. If yobs is the empirial mean of the observations of the output of the ode:

yobs =
1

n

n∑

i=1

y(i), (2.2.3)

where the y(i)
are de�ned in Eq. (2.2.2), then the funtional output of the ode an be

approximated by:

y (x) ≈ yobs + V mω (x) , (2.2.4)

with V m a (Nt ×m)-dimensional matrix, whose olumns are the m �rst eigenvetors of the

empirial ovariane matrix ov

(
Y obs

)
and ω a m-dimensional funtion giving the projetion

oe�ients.

The observations of the funtion giving the projetion oe�ients are given by:

ωobs = V T
m

(
Y obs − yobs

)
, (2.2.5)

and ωobs

is a (m× n)-dimensional matrix.

Note that, by onstrution, ω is expeted to be a zero-mean m-dimensional vetor.

The omponents of the funtion ω are treated as being independent and a preditor of eah

omponent is onstruted using the simple Kriging framework:

ωi (·) ∼ GP (0, Cωi
(·, ·)) , (2.2.6)

with Cωi
a ovariane funtion, and 1 ≤ i ≤ m.

The posterior preditor of the i-th omponent of funtion ω is given by:

ωi (·) |ωobs

i ∼ GP

(
µc
ωi
(·) , Cc

ωi
(·, ·)

)
, (2.2.7)

where ωobs

i orresponds to the i-th line of ωobs

, and:

µc
ωi
(x) = Cc

ωi

(
x,xobs

)
Cc
ωi

(
xobs,Xobs

)−1
ωobs

i , (2.2.8)

and:

Cc
ωi

(
x,x′

)
= Cωi

(
x,x′

)
− Cωi

(
x,Xobs

)
Cωi

(
Xobs,Xobs

)−1
Cωi

(
Xobs,x′

)
, (2.2.9)

where Cωi

(
Xobs,Xobs

)
is a (n× n)-dimensional matrix suh that

Cωi

(
Xobs,Xobs

)
kl
= Cωi

(
x(k),x(l)

)
, (2.2.10)

and Cωi

(
x,Xobs

)
is a n-dimensional vetor suh that:

Cωi

(
x,Xobs

)
k
= Cωi

(
x,x(k)

)
. (2.2.11)
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The multivariate preditor of ω is therefore de�ned by:

ω (·) |ωobs ∼ GP (µc
ω (·) ,Cc

ω (·, ·)) , (2.2.12)

where:

(µc
ω (x))i = µc

ωi
(x) (2.2.13)

and: (
Cc

ω

(
x,x′

))
ij
= Cc

ωi

(
x,x′

)
δi=j . (2.2.14)

Finally, a preditor of y is given by:

y (·) |Y obs ∼ GP

(
yobs + V mµc

ω (·) ,V mCc
ω (·, ·)V T

m

)
. (2.2.15)

Perrin [2018℄ mentions that if the projetion basis is estimated from a small set of observations,

its estimation may be not very aurate. The auray of the predition of the funtional

output using the method desribed above an thus su�er from this lak of auray of the

projetion basis.

2.2.2 Gaussian proess regression of the whole funtional output

Another possible approah for the Gaussian proess regression of a funtional output is to

hoose an appropriate struture of the ovariane funtion of the Gaussian proess. Suh an

approah enables to emulate the whole funtional output of a ode.

Williams et al. [2006℄ proposed to treat the index of the funtional input as one of the inputs

of the model. The ovariane funtion of the Gaussian proess depends on the inputs of the

ode and on the index of the funtional output. The output an therefore be treated as a

univariate output, indexed by an index input. A power exponential ovariane funtion is

used, suh that the ovariane funtion has a tensorized struture between the index (time)

and the other inputs.

Rougier [2008℄ and Conti et al. [2009℄ have used a tensorized struture for the mean and

ovariane funtions of the proess. In this framework, the funtional output of the ode y

an be seen as a Gaussian proess Y with the following properties:

Y (·) |M ,Rt, C ∼ GP (Mh (·) ,Rt ⊗ C (·, ·)) , (2.2.16)

with M a (Nt × p)-dimensional matrix, h a vetor of p basis funtions, Rt a (Nt ×Nt)-
dimensional ovariane matrix and C a ovariane funtion, and ⊗ denoting the Kroneker

produt.

In this framework, if M has a uninformative prior distribution given by the uniform distri-

bution on the spae of the real-valued (Nt × p)-dimensional matries, then the distribution of

M given the observations is Gaussian, with the following mean:

M̂ = E
[
M |yobs,Rt, C

]

= E
[
M |yobs, C

]

= yobs
(
Robs

)−1 (
Hobs

)T (
Hobs

(
Robs

)−1 (
Hobs

)T)−1
,

(2.2.17)

where Robs

is a (n× n)-dimensional matrix suh that:

(
Robs

)
kl
= C

(
x(k),x(l)

)
, (2.2.18)
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and Hobs

is a (p× n)-dimensional matrix whose j-th olumn is given by h
(
x(j)

)
.

From Eq. (2.2.16), it an be inferred that:

Y obs|M ,Rt, C ∼ N
(
MHobs,Rt ⊗Robs

)
. (2.2.19)

Therefore, the matrix Rt an be estimated by maximizing the likelihood of the observations,

as proposed in Perrin [2018℄:

R̂t =
1

n

(
Y obs − M̂Hobs

) (
Robs

)−1
(
Y obs − M̂Hobs

)T
. (2.2.20)

Finally, in the Universal Kriging framework, with an improper uniform prior for M , the

onditioned distribution of Y is given by:

Y c (·) := Y (·) |Y obs, C ∼ GP

(
µc (·) , R̂t ⊗ Cc (·, ·)

)
, (2.2.21)

where:

µc (x) = M̂h (x) +
[
Y obs − M̂Hobs

] (
Robs

)−1
C
(
Xobs,x

)
,

Cc
(
x,x

′

)
= C

(
x,x

′

)
− C

(
x,Xobs

) (
Robs

)−1
C
(
Xobs,x

′

)

+u (x)T
(
Hobs

(
Robs

)−1 (
Hobs

)T)−1
u
(
x

′

)
,

u (x) = h (x)−Hobs

(
Robs

)−1
C
(
Xobs,x

)
,

(2.2.22)

and C
(
x,Xobs

)
is a n-dimensional vetor, suh that:

C
(
x,Xobs

)
k
= C

(
x,x(k)

)
. (2.2.23)
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Chapter 3

Nested polynomial trends for the

improvement of Gaussian preditors

In this hapter, we fous on the ase of two nested odes with salar outputs. Moreover, there

are no observations of the intermediary variable. We therefore onsider the following system:

x1 →

x2

y1(x1)

ց
ր y

nest

(x
nest

) := y2(y1(x1),x2), (3.0.1)

where x1, x2 and x
nest

are low dimensional vetors and y1, y2 and y
nest

are salars. This

system beomes therefore:

x = (x1,x2) → y (x) := y2(y1(x1),x2). (3.0.2)

The work presented in this hapter has been published in [Perrin et al., 2017℄. The framework

of Gaussian proess regression is onsidered (see Chapter 1 for further details). An innovative

parametrization of the mean funtion of the Gaussian proess, based on the omposition of

two polynomials, is proposed.

3.1 Introdution

The numerial ost of many odes to simulate omplex physial systems is very high. In

order to perform sensitivity analyses, unertainty quanti�ation or reliability studies, these

omputer models have therefore to be replaed by surrogate models, that is to say by fast

and inexpensive mathematial funtions. Within the omputational siene ommunity, when

the maximal available information is a �nite set of ode evaluations, the most widely used

surrogate models are the generalized polynomial haos expansion (PCE) [Ghanem and Spanos,

1990, 2003; Soize and Ghanem, 2004; Das et al., 2009; Le Maître and Knio, 2010; Arnst et al.,

2010; Perrin et al., 2012℄ and the Gaussian proess regression (GPR), or Kriging (see Saks

et al. [1989℄; Oakley and O'Hagan [2002℄; Rasmussen and Williams [2006℄).

On the one hand, the main idea of PCE is to expand the ode output, whih is denoted by

y in the following, onto an appropriate basis made of orthonormal multivariate polynomials,

whih are related to the distribution of the ode input variables. As the number of unknown

expansion oe�ients usually grows exponentially with the number of input parameters, the

relevane of these approahes strongly depends on their ability to selet the most relevant

basis funtions. To this end, several penalization tehniques, suh as the ℓ1-minimization

[Tibshirani, 1989; Jakeman et al., 2015℄ and the least Angle Regression (LAR) methods [Hastie

et al., 2002; Efron et al., 2004; Blatman and Sudret, 2011℄, have been introdued to selet
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polynomial basis sets that lead to more aurate PCE than would have been obtained if the

basis is a priori �xed. Taking advantage of the tensor-produt struture of the multivariate

polynomial basis, separated representations, suh as low-rank approximations [Nouy, 2010;

Konakli and Sudret, 2016℄, have alternatively been proposed to develop surrogate models with

polynomial funtions in highly-ompressed formats.

On the other hand, the GPR is based on the assumption that the ode output is a partiular

realization of a Gaussian stohasti proess, Y . This hypothesis, whih was �rst introdued

in time series analysis [Parzen, 1962℄ and in optimization [Kushner, 1964℄, is widely used

as it allows dealing with the onditional probability and expetation, while leading to very

interesting results in terms of omputer ode predition. Hene, ontrary to the PCE, the

GPR is not assoiated with an a priori projetion basis, but requires the introdution of the

mean and the ovariane funtions of Y . In pratie, we observe that the role of the mean

funtion of Y on the predition dereases when the number of ode evaluations inreases. This

explains that in appliations where many ode evaluations are available, good GPR-based

surrogate models an be obtained using onstant or linear trends for the mean funtion. On

the ontrary, when the number of ode evaluations is small ompared to the omplexity of

y, it an be very useful to optimize it. In that ase, searhing the mean funtion of Y as

a well-hosen sum of polynomial funtions an indeed strongly improve the relevane of the

assoiated GPR. In partiular, the authors refer to [Joseph et al., 2008℄ and [Kersaudy et al.,

2015℄ for an illustration of the interest of using variable seletion tehniques to optimize this

polynomial representation of the mean funtion of Y .

Following these works, the idea of this part is to propose an alternative parametrization of

the mean funtion of Y , whih is partiularly adapted to the ase when the number of ode

evaluations is small ompared to the omplexity of y. Instead of searhing sparse polynomial

approximations, we look for high dimensional polynomial approximations that are hara-

terized by a small number of parameters. In other words, if we want to model a omplex

ode response with a very limited number of ode evaluations, we believe that it an be more

e�ient to use omplex but approximated models than simple but fully optimized models.

We thus propose to onsider the omposition of two polynomials for the mean funtion of

Y . Indeed, the omposition of two polynomial funtions is still a polynomial funtion, but

of muh higher order. In partiular, suh a formalism an be used to model separately a

transformation of eah ode input and the dependene struture between them.

The main di�ulty onerning this spei� representation is the identi�ation of the param-

eters of the two ombined polynomials. Indeed, by omposing two polynomial funtions that

are linear with respet to their parameters, we get a strongly non-linear representation, whih

is likely to be very sensitive to small hanges in the parameters' values. In addition, distint

values for these parameters an lead to the same nested representation, whih does not help

for the identi�ation. To avoid suh redundanies, minimal nested parametrizations are intro-

dued, and we show to what extent integrating this nested struture in the Gaussian proess

formalism an inrease the robustness of the results, make easier the error ontrol, and limit

as muh as possible over-�tting.

The outline of this hapter is as follows. First, Setion 3.2 presents the theoretial framework

for the de�nition of a Gaussian-proess regression with a linear polynomial trend. Then, the

nested polynomial trends we propose are detailed in Setion 3.3. At last, the e�ieny of the

method is illustrated on a series of analyti examples in Setion 3.4.
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3.2 Gaussian proess preditors

3.2.1 General framework

For d ≥ 1, let L2(X,R) be the spae of square integrable funtions on any ompat subset

X of R
d
, with values in R, equipped with the inner produt (·, ·)

X
, and the assoiated norm

‖·‖
X
, suh that for all u and v in L2(X,R),

(u, v)
X
:=

∫

X

u(x)v(x)dx, ‖u‖2
X
:= (u, u)

X
. (3.2.1)

If X is not ompat, it is possible to introdue a weighted L2 spae.

Let S be a physial system, whose response depends on a d-dimensional input vetor x =
(x1, . . . , xd), and whose performane an be evaluated from the omputation of a quantity of

interest, y(x). Funtion y is a deterministi mapping that is assumed to be an element of

L2(X,R). In this hapter, we suppose that the maximal available information about y is a

set of n ode evaluations at the points {x(1), . . . ,x(n)} in X. Given this information, we are

interested in the identi�ation of the best preditor ŷ of y.
In that ontext, the Gaussian proess regression (GPR), or Kriging, plays a major role [Saks

et al., 1989; Oakley and O'Hagan, 2002; Santner et al., 2003; Rasmussen and Williams, 2006℄.

It is indeed able to provide a predition of y(x), whih is optimal in the lass of the linear

preditors of y, and whose preision an be a posteriori quanti�ed. Suh a method onsiders

funtion y as a sample path of a real-valued Gaussian stohasti proess Y . Let µ and C be

respetively the mean and the ovariane funtions of Y :

Y (·) ∼ GP (µ (·) , C (·, ·)) . (3.2.2)

Besides, a set of observations of y is available. These observations are gathered in a n-
dimensional vetor:

yobs =
(
y(1) = y(x(1)), . . . , y(n) = y(x(n))

)
, (3.2.3)

suh that P( · | yobs) and E
[
· | yobs

]
denote the onditional probability and onditional

mathematial expetation respetively.

Therefore, gathering in the vetor µ and in the matrix R the evaluations of µ and C at the

available points, suh that:





µ :=
(
µ(x(1)), . . . , µ(x(n))

)
,

Rij := C(x(i),x(j)), 1 ≤ i, j ≤ n,
(3.2.4)

it an be shown [O'Hagan, 1978℄ that if matrix R is invertible, then:

Y (·) | µ,C,yobs ∼ GP (µc (·) , Cc (·, ·)) , (3.2.5)

where, for all x,x′
in X:





µc(x) := µ(x) + r(x)TR−1 (y − µ) ,

Cc(x,x′) := C(x,x′)− r(x)TR−1r(x′),

r(x) :=
(
C(x,x(1)), . . . , C(x,x(n))

)
.

(3.2.6)

Under this formalism, also known as simple Kriging (see Setion 1.4), the best predition of y
in an unobserved point x is given by the mean value of (Y (x) | yobs), µc(x), whereas Cc(x,x)
quanti�es the trust we an put in that predition.
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In pratie, it appears that R may not be invertible due to numerial reasons. This an

generally be overome by adding a small nugget to the ovariane matrix and optimizing with

respet to it too (see [Gramay and Lee, 2012℄).

3.2.2 Choie of the ovariane funtion

Without information about the regularity of y, funtion C is generally hosen in general

parametri families. In this hapter, funtion C is supposed to be an element of the Matern-

5/2 lass, suh that for all x,x′
in X:

C(x,x′) := σ2
d∏

i=1

(1 +
√
5hi + 5h2i /3) exp(−

√
5hi), hi = |xi − x′i|/ℓi. (3.2.7)

Hene, ovariane funtion C is haraterized by a vetor of hyper-parameters, Θ := (σ, ℓ1, . . . , ℓd),
whose values also have to be onditioned by yobs. More details about other usual parametri

expressions for C an be found in Santner et al. [2003℄. A full Bayesian approah would then

require the introdution of a prior distribution for this vetor, and the use of sampling teh-

niques (suh as Monte Carlo Markov Chains [Rubinstein and Kroese, 2008℄) to approximate

the posterior distribution of (Y | yobs) [Handok and Stein, 1993; Kennedy and O'Hagan,

2001; Bilionis et al., 2013℄. In this hapter, we will adopt an alternative approah, whih

onsists in onditioning all the results by the maximum likelihood estimate of the ovariane

parameters. This method, whih is generally alled plug-in approah, has been used in many

papers for the de�nition of Gaussian proess-based preditors, as it presents a good ompro-

mise between omplexity, e�ieny, and errors ontrol [Bihon et al., 2008; Bet et al., 2012℄.

In that ase, expliit formula an be derived to evaluate the relevane of the GPR-based

metamodel from a ross validation proedure [Dubrule, 1983℄.

3.2.3 Choie of the mean funtion

In the same way as for the ovariane funtion, the mean funtion of Y is supposed to

be parametrized by a p-dimensional vetor β. In the general ase, the omputation of

E
[
Y (x) | yobs

]
is not diret, but if:

• ovariane funtion C is known,

• µ is linear with respet to β, that is to say it exists a p-dimensional vetor-valued

funtion h suh that µ(x) = h(x)Tβ,

• β is uniformly distributed on R
p
(improper prior distribution),

then a Universal Kriging preditor an be de�ned (see Setion 1.4 for further details):

Y (·) | C,yobs ∼ GP (µc (·) , Cc (·, ·)) , (3.2.8)





µc(x) := h(x)T β̂ + r(x)TR−1
(
yobs −Hβ̂

)
,

Cc(x,x′) := C(x,x′)− r(x)TR−1r(x′) + u(x)T (HTR−1H)−1u(x′),

β̂ := (HTR−1H)−1HTR−1yobs,

u(x) := HTR−1r(x)− h(x),

H ij := fj(x
(i)), 1 ≤ j ≤ p, 1 ≤ i ≤ n,

(3.2.9)
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where the term u(x)T (HTR−1H)−1u(x′) an be interpreted as the predition unertainty

that is due to the estimation of β. Under these assumptions, the best predition of y(x) is
now given by µc

. The last thing that an be done to minimize ‖y − µc‖
X
is working on the

hoie of h.

Without information about y, polynomials are generally hosen for h. Indeed, the set

{mα, α ∈ N
d}, with

mα(x) := xα1
1 × · · · × xαd

d , x ∈ X, (3.2.10)

de�nes a basis of L2(X,R). For a given value of p, haraterizing h amounts at identifying

the best p-dimensional subset of {mα, α ∈ N
d} to minimize ‖y − µc‖

X
.

In pratie, this optimization problem over a very vast spae is replaed by an optimization

over a �nite dimensional subset of {mα, α ∈ N
d}. Di�erent trunation shemes have been

proposed to hoose suh a relevant subset, whih are mostly based on the assumption that

the most in�uential elements of {mα, α ∈ N
d} orrespond to the elements of lowest total

polynomial order. Denoting by r the maximal polynomial order of the projetion basis, we

an introdue:

P(r, d) := {mα | α ∈ N
d,

d∑

i=1

|αi| ≤ r}. (3.2.11)

By onstrution, it an be notied that the ardinal C(r, d) of P(r, d) inreases exponentially
with respet to r and d:

C(r, d) = (d+ r)!/(d! × r!). (3.2.12)

For p ≤ C(r, d), vetor h an �nally be searhed using a penalization tehnique, suh as the

Least Angle Regression (LAR) method [Hastie et al., 2002; Efron et al., 2004; Blatman and

Sudret, 2011℄, whih allows disregarding insigni�ant terms. Suh an approah will be referred

as "LAR+UK" approah in the following.

3.3 Nested polynomial trends for Gaussian proess preditors

As presented in Introdution, we are interested in identifying the best preditor of y in any

unobserved point x in X, when the maximal information is a �xed number of ode evaluations.

Instead of onsidering sparse representations for the parametrization of the mean funtion in

the GPR formalism, this setion proposes to fous on nested polynomial representations.

First, the notations and the motivations for this new parametrization are presented. Then,

it is explained why and how it is integrated in the GPR formalism. Finally, a method to a

posteriori evaluate the projetion error is introdued.

3.3.1 Nested polynomial representations

Using the notations given by Eqs. (3.2.11) and (3.2.12), for p2, p1, d2 in N
∗
, let m(p2,u2)

and

m(p1,u1)
be the vetor-valued funtions that gather all the elements of P(p2, u2) and P(p1, u1)

respetively, and let C(p2, u2) and C(p1, u1) be their respetive dimensions. The elements of

these two vetors are sorted in an inreasing total polynomial order. In partiular, it omes:

m
(p2,u2)
1 = m

(p1,u1)
1 = 1, (3.3.1)
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where u1 = d.

Hene, for all (u2 × C(p1, u1))-dimensional matrix A and all C(p2, u2)-dimensional vetor β2,

the mapping

x 7→ Am(p1,u1)(x) (3.3.2)

is a funtion with values in R
u2
, and the mapping

x 7→ m(p2,u2)(Am(p1,u1)(x))Tβ2 (3.3.3)

de�nes a nested polynomial representation. For u1 = d > 1, suh a representation allows

us to model separately the dependene struture between the di�erent input parameters,

whih is haraterized by p2 and u2, and the individual ations of eah input parameter,

whih are haraterized by the polynomial order p1 (onsidering di�erent values of p1 for eah
input ould eventually be done to optimize suh a two-sale modeling). Hene, analyzing the

optimal values of p2, u2 and p1 an bring information about the struture of y. For instane,
if p2 = 1 and u2 = d, then y is just an additive model, up to a transformation of its input

parameters. In the same manner, a value of p1 stritly greater than 1 tends to say that the

relation between x and y is multi-sale.

Another interesting property of this nested struture omes from the fat that, for all x in

R
d
:

m(p2,u2)(Am(p1,u1)(x))Tβ2 =
∑

0≤|α1|+···+|αu2 |≤p2

(β2)(α1,...,αu2)
×

u2∏

i=1




C(p1,u1)∑

k=1

Aikm
(p1,u1)
k (x)




αi

,

=
∑

0≤|α̃1|+···+|α̃u1 |≤p2×p1

xα̃1
1 × · · · × x

α̃u1
u1 c̃α̃(A,β2;u2),

(3.3.4)

where c̃α̃(A,β2;u2) is the projetion oe�ient of m(p2,u2)(Am(p1,u1)(x))Tβ2 on xα̃1
1 × · · · ×

x
α̃u1
u1 . Hene, funtion x 7→ m(p2,u2)(Am(p1,u1)(x))Tβ2 is in Span{P(p2 × p1, u1)}, while

being haraterized by only C(p2, u2) + u2 ×C(p1, u1) parameters. Thus, by hoosing u2 suh
that the ratio (C(p2, u2) + u2 ×C(p1, u1))/C(p2 × p1, u1) is small, it is possible to parametrize

polynomial families with very high ardinality, with only a redued number of parameters.

Suh a parametrization is however redundant, in the sense that several distint values of A

and β2 lead to the same nested representations. From Eq. (3.3.4), it an be seen that some

of these redundanies an be avoided by imposing that:





Ai1 = 0,

C(p1,u1)∑

k=1

A2
ik = 1,

1 ≤ i ≤ u2. (3.3.5)

For �xed values of p2 and p1, it is lear that ratio (C(p2, u2)+u2×C(p1, u1))/C(p2 × p1, u1) is
minimal when u2 = 1. However, onsidering higher values of u2 strongly inreases the �exibil-
ity of the nested representation to approximate funtion y. In this hapter, as a ompromise

between �exibility and minimal parametrization, for all 2 ≤ k ≤ C(p1, u1), we thus propose to
�x to zero all the omponents of (A1k, . . . ,Au2k) but one. This means that eah omponent

of vetor m(p1,u1)(x) is used only one in the onstrution of Am(p1,u1)(x), and that only

#Coe�(p1, p2, u1, u2) = C(p2, u2) + (C(p1, u1) − 1) − u2 independent parameters have to be
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Values of d C(p2 × p1, u1) #Coe�(p1, p2, u1, u2 = 1) #Coe�(p1, p2, u1, u2 = d)

1 10 6 6

2 55 12 17

5 2002 58 106

10 92378 288 561

20 10015005 1773 3521

Table 3.1: Comparison between the dimension of the projetion set, C(p2 × p1, u1), and the

number of independent parameters to haraterize the assoiated projetion oe�ients in

the proposed nested approah, #Coe�(p1, p2, u1, u2) = C(p2, u2) + (C(p1, u1) − 1) − u2, for
p1 = p2 = 3, u1 ∈ {1, 2, 5, 10, 20} and u2 ∈ {1, d}.

�xed to span a C(p2×p1, u1)-dimensional projetion set. As it an be seen in Table 3.1 and as

it will be shown in Setion 3.4, this assumption is indeed very attrative in terms of dimension

redution while being partiularly interesting for the modeling of omplex phenomena with

very limited information.

To simplify the notations of the next setions, these C(p1, u1) − 1 non-zero oe�ients of A

are supposed to be gathered in a vetor β1, and we introdue the matries P (p1,u1)(x) suh
that for all x ∈ X:

P (p1,u1)(x)β1 := Am(p1,u1)(x). (3.3.6)

For given values of β1 and β2, we then denote by µ(·;β1,β2) the following nested represen-

tation:

µ(x;β1,β2) := m(p2,u2)(P (p1,u1)(x)β1)
Tβ2, x ∈ X. (3.3.7)

Finally, for given values of u2, p2, p1, the most appropriate nested representation to ap-

proximate funtion y is given by µ(·;β∗
1,β

∗
2), where (β∗

1,β
∗
2) is the solution of the following

optimization problem:

(β∗
1,β

∗
2) := arg min

(β1,β2)∈S
∗

‖y − µ(·;β1,β2)‖2X , (3.3.8)

and the admissible searhing set, S∗
, is a subset of R

C(p1,u1)−1 × R
C(p2,u2)

that takes into

aount the onstraints on β1 de�ned by Eqs. (3.3.5) and (3.3.6).

Three main di�ulties arise from the optimization problem de�ned by Eq. (3.3.8). First, as

the maximal information about y is a n-dimensional set of evaluations, for given values of

β1 and β2, the norm ‖y − µ(·;β1,β2)‖2X has to be approximated. If the evaluation points

{x(1), . . . ,x(n)} are (more or less) uniformly distributed on X, a (rather) good estimation of

this norm is given by its least squares approximation,

1

n

n∑

i=1

(
y(x(i))− µ(x(i);β1,β2)

)2
=

1

n

∥∥yobs −M(β1)β2

∥∥2 , (3.3.9)

where the vetor yobs is de�ned by Eq. (3.2.3), and M(β1) is a (n × C(p2, u2))-dimensional

matrix suh that:

(M(β1))nk = m
(p2,u2)
k (P (p1,u1)(x(n))β1), 1 ≤ n ≤ n, 1 ≤ k ≤ C(p2, u2). (3.3.10)
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Notiing that for all (β1,β2) in S∗
,

∥∥∥yobs −M(β1)
(
M(β1)

TM(β1)
)−1

M(β1)
Tyobs

∥∥∥
2
≤
∥∥yobs −M(β1)β2

∥∥2 , (3.3.11)

the solutions, β∗
1 and β∗

2, of the minimization problem de�ned by Eq. (3.3.8) an respetively

be approximated by the vetors βLS

1 and βLS

2 (βLS

1 ), with:





βLS

1 = arg min
β1∈S

∗

β1

∥∥yobs −M(β1)β
LS

2 (β1)
∥∥2 ,

βLS

2 (β1) =
(
M(β1)

TM (β1)
)−1

M(β1)
Tyobs,

(3.3.12)

where S∗
β1

is a subset of R
C(p1,u1)−1

that also takes into aount the onstraints on β1 de�ned

by Eqs. (3.3.5) and (3.3.6).

The seond di�ulty omes from the fat that the minimization of the funtion

β1 7→
∥∥yobs −M(β1)β

LS

2 (β1)
∥∥2

an be omplex. This is due to the fat that this mapping

is strongly non-linear, leading to a strongly non-onvex problem. For high values of p2, p1
and u2, even if non-onvex optimization algorithms suh as simulated annealing or simplex

algorithms [Brent, 1973℄ are used, there is no guarantee that the global minimum an be found

in a reasonable omputational time.

At last, there is a risk that

∥∥yobs −M(βLS

1 )βLS

2 (βLS

1 )
∥∥2 /n strongly underestimates∥∥y − µ(·;βLS

1 ,βLS

2 (βLS

1 ))
∥∥2
X
, as the same information is used twie: one for the optimization

and one for the error estimation. To avoid suh an over-�tting, lassial Leave-One-Out

(LOO) tehniques (see Miller [1974℄; Blatman and Sudret [2011℄; Perrin et al. [2014℄) have to

be introdued to get a relevant approximation of

∥∥y − µ(·;βLS

1 ,βLS

2 (βLS

1 ))
∥∥2
X
.

3.3.2 Coupling nested representations and Gaussian proesses

One vetor βLS

1 has been identi�ed from the solving of Eq. (3.3.12), the notion of on�dene

intervals for the predition of y(x) at an unobserved point x an be found bak by assuming

that y is a partiular realization of a Gaussian stohasti proess, whose statistial properties

are given by:

Y (·) ∼ GP

(
µ
(
·;βLS

1 ,βLS

2 (βLS

1 )
)
, C
(
·, ·; Θ̂LS

))
, (3.3.13)

where Θ̂
LS

gathers the d + 1 parameters of the Matern-5/2 ovariane C de�ned by Eq.

(3.2.7), whih are solution of the following log-likelihood maximization problem:

Θ̂
LS

= argmax
Θ∈(0,+∞)d+1

− 1

2

[
n log (2π) + log(det(R(Θ)))+

(yobs −M(βLS

1 )βLS

2 (βLS

1 ))TR(Θ)−1(yobs −M (βLS

1 )βLS

2 (βLS

1 ))

]
.

(3.3.14)

Suh a naive oupling is nevertheless sub-optimal, as the values of β1 and Θ are optimized

separately: the nested struture does not take advantage of the Bayesian formalism, and

reiproally. Instead of suh a two-steps approah, we propose in this hapter to diretly

adopt a Bayesian formalism for the estimation of β1 and Θ. In the plug-in formalism, this

means that the statistial properties of Y are now given by:

Y (·) ∼ GP

(
µ
(
·; β̂1, β̂2

)
, C
(
·, ·; Θ̂

))
, (3.3.15)
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where (β̂1, β̂2, Θ̂) is the solution of the following log-likelihood maximization problem:

(β̂1, β̂2, Θ̂1) = argmax
(β1,β2,Θ)∈Sadm

− 1

2

[
n log (2π) + log(det(R(Θ)))

+(yobs −M(β1)β2)
TR(Θ)−1(yobs −M (β1)β2)

]
,

(3.3.16)

where the admissible searhing set, Sadm

, is a subset of R
C(p1,u1)−1 × R

C(p2,u2) × R
d+1

but is

not trivial, as it �rst takes into aount the onstraints on β1 de�ned by Eqs. (3.3.5) and

(3.3.6), but also guarantees that R(Θ) and M(β1)
TR(Θ)−1M(β1) are invertible.

For all (β1,β2,Θ) belonging to the admissible set, Sadm

, we denote by L the funtion suh

that:

L(β1,β2,Θ) = log(det(R(Θ))) + (yobs −M (β1)β2)
TR(Θ)−1(yobs −M(β1)β2). (3.3.17)

It is interesting to notie that, in the same manner as in Setion 3.3.1,

L(β1,β
LS

2 (β1,Θ),Θ) ≤ L(β1,β2,Θ), (3.3.18)

βLS

2 (β1,Θ) :=
(
M (β1)

TR(Θ)−1M(β1)
)−1

M(β1)
TR(Θ)yobs. (3.3.19)

It omes:





(β̂1, Θ̂1) = arg min
(β1,Θ)

L(β1,Θ),

β̂2 =
(
M(β̂1)

TR(Θ̂)−1M(β̂1)
)−1

M (β̂1)
TR(Θ̂)yobs,

(3.3.20)

where:

L(β1,Θ) := L(β1,β
LS

2 (β1,Θ),Θ). (3.3.21)

Funtion (β1,Θ) 7→ L(β1,Θ) being strongly non-regular and non-onvex, it is proposed to

work iteratively on the values of β1 and Θ. Two reasons motivate this separation. First, the

ations of β1 and Θ on L(β1,Θ) being very di�erent, dividing the optimization problem tends

to regularize the mappings on whih the minimization is arried out. Seond, by reduing eah

searhing set, eah minimization is made easier. Therefore, for a given onvergene tolerane

ε, Algorithm 1 is introdued for the minimization of L. The onvergene of suh an iterative

algorithm to the global minimum of L is of ourse not guaranteed, but it appeared on a series

of numerial examples that it allowed us to identify good approximations of (β̂1, Θ̂) at a

reasonable omputational ost. As the minimization problem de�ned by Eq. (3.3.20) is not

onvex, better approximations of β̂1 an be obtained by repeating several times Algorithm 1,

with random initialization of vetors (β1)0 in S∗
β1
.

3.3.3 Linearization of the nested polynomial trend

Even for small values of p2, p1 and u2, the quantity L(β1,Θ) is sensitive to small hanges in

the values of β1 and Θ, whih makes the solving of the optimization problem de�ned by Eq.

(3.3.20) di�ult. In that ontext, it an be interesting to linearize the nested polynomial trend

around the solutions given by Algorithm 1, β̂1 and β̂2, and then work on the ompensations

(β1 − β̂1) and (β2 − β̂2) that ould make the predition of funtion y better. In the viinity

of β̂1 and β̂2, for all x in X, it omes:

µ(x;β1,β2) ≈
(
h1(x; β̂1, β̂2),h2(x; β̂1)

)T
(β1 − β̂1,β2), (3.3.22)
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1 Initialization: L1 = 0, L2 = +∞, β∗
1 = (β1)0 ∈ S∗

β1
;

2 while |L2 − L1| > ε do
3 L1 = L2 ;

4 Θ
∗ = argmaxΘ L(β∗

1,Θ) ;
5 β∗

1 = argmaxβ1
L(β1,Θ

∗) ;
6 L2 = min(L2,L(β∗

1,Θ
∗)) ;

7 end

8 β̂1 ≈ β∗
1, Θ̂ ≈ Θ

∗
.

Algorithm 1: Iterative minimization of funtion L.

h1(x; β̂1, β̂2) = P (p1,u1)(x)TD(P (p1,u1)(x)β̂1)
T β̂2, (3.3.23)

h2(x; β̂1) = m(p2,u2)(P (p1,u1)(x)β̂1), (3.3.24)

(D(z))kj :=
∂m

(p2,u2)
k

∂zj
(z), 1 ≤ j ≤ u2, 1 ≤ k ≤ C(p2, u2), z ∈ R

u2 . (3.3.25)

Now, let us denote by β := (β1− β̂1,β2) the new vetor of parameters we need to determine,

and by h :=
(
h1(·; β̂1, β̂2),h2(·; β̂1)

)
the new set of projetion funtions. Conditioned by

the values of β̂1, β̂2 and Θ̂, the formalism introdued in Setion 3.2.3 is found bak:

Y (·) ∼ GP

(
h (·)T β, C (·, ·)

)
, (3.3.26)

suh that the distribution of (Y | yobs) an be alulated analytially. Its mean value an

diretly be used to predit the values of y, and its ovariane funtion an allow us to quantify

the on�dene we an put in these preditions.

We underline at least two advantages for the linearization. First, the distribution of (Y | yobs)
will be less dependent on the onvergene properties of Algorithm 1, whih are not easy to

ontrol. Seondly, as the ovariane funtion of (Y | yobs) integrates the unertainty assoiated
with the least squares estimation of β, that is to say the unertainty assoiated with the

estimation of β1 and β2 in the viinity of β̂1 and β̂2, the on�dene intervals assoiated with

these preditions are expeted to be more adapted.

3.3.4 Error evaluation

Aording to the previous Setions and to Eq. (3.2.9), for given values of trunation param-

eters p2, p1 and u2, we propose to use the deterministi funtion ŷnest(x), suh that:

ŷnest(x) = h(x; β̂1, Θ̂)T β̂(β̂1, Θ̂)+r(x; Θ̂)TR(Θ̂)−1
(
yobs −H(β̂1, Θ̂)β̂(β̂1, Θ̂)

)
, (3.3.27)

β̂(β̂1, Θ̂) := (H(β̂1, Θ̂)TR(Θ̂)−1H(β̂1, Θ̂))−1H(β̂1, Θ̂)TR(Θ̂)−1yobs, (3.3.28)

to predit the value of y(x) for all x in X, where:

• vetors β̂1 and Θ̂ are the solutions of the optimization problem given by Eq. (3.3.20),

under the additional ondition that the matrix H(β̂1, Θ̂)TR(Θ̂)−1H(β̂1, Θ̂) is invert-
ible,
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• vetor yobs is de�ned by Eq. (3.2.3),

• the funtion x 7→ h(x; β̂1, Θ̂) gathers the most in�uential terms of the vetor-valued

funtion

(
h1(·; β̂1,β

LS

2 (β̂1, Θ̂)),h2(·; β̂1)
)
, whih have been identi�ed from a LAR pro-

edure,

• H(β̂1, Θ̂) := [h(x(1); β̂1, Θ̂) · · · h(x(n); β̂1, Θ̂)] is the matrix that gathers the evalua-

tions of h(·; β̂1, Θ̂) at the available ode evaluations,

• and for all 1 ≤ i, j ≤ n, R(Θ̂)ij = C(x(i),x(j)) and ri(x; Θ̂) = C(x,x(i)), with C the

Matern-5/2 ovariane funtion of parameters Θ̂.

In the same manner as in Setion 3.2, when funtion y is only known through a limited

number of evaluations, lassial Leave-One-Out (LOO) tehniques have to be introdued to

approximate the relevane of suh a preditor:

∥∥y − ŷnest
∥∥2
L2

≈ ǫ2
LOO

:=
1

n

n∑

i=1

(
y(x(i))− ŷnest−i (x(i))

)2
, (3.3.29)

where, for all 1 ≤ i ≤ n, the funtion ŷnest−i has been onstruted in the same manner as ŷnest,

but using the n− 1 evaluations of the ode in {x(1), . . . ,x(i−1),x(i+1), . . . ,x(n)} only.

In order to redue the omputational ost assoiated with the evaluation of ǫ2
LOO

, it is inter-

esting to notie (see Dubrule [1983℄ for further details) that, for all 1 ≤ i ≤ n:

y(x(i))− ŷnest−i (x(i)) =
(Ĉ(β̂1, Θ̂)yobs)i

Ĉ(β̂1, Θ̂)ii
, (3.3.30)

Ĉ(β̂1, Θ̂) = R(Θ̂)−1−
R(Θ̂)−1H

(
β̂1, Θ̂

)(
H(β̂1, Θ̂)TR(Θ̂)−1H(β̂1, Θ̂)

)−1
H
(
β̂1, Θ̂

)T
R(Θ̂)−1.

(3.3.31)

LOO error ǫ2
LOO

an then be approximated by:

ǫ2
LOO

≈ ǫ̂2
LOO

:=
1

n

n∑

i=1

ê2i , ê2i :=

[
(Ĉ(β̂1, Θ̂)yobs)i

Ĉ(β̂1, Θ̂)ii

]2
. (3.3.32)

Suh an approximation is however onditioned by the values of β̂1 and Θ̂, whih are omputed

using all the ode evaluations. In order to be more preise, it an be notied that for all β1,

Θ, 1 ≤ i ≤ n:

L(β1,Θ) = L−i(β1,Θ) +
(C̃(β1,Θ)yobs)2i

C̃(β1,Θ)ii
, (3.3.33)

C̃(β1,Θ) = R(Θ)−1{I −M (β1)(M (β1)
TR(Θ)−1M(β1))

−1M(β1)
TR(Θ)−1}, (3.3.34)

where I is the identity matrix and L−i (β1,Θ) is the evaluation of funtion L(β1,Θ) based
on the n − 1 evaluations of the ode in {x(1), . . . ,x(i−1),x(i+1), . . . ,x(n)} only. Hene, in

the optimization proess leading us to the identi�ation of β̂1 and Θ̂, let {((β1)i ,Θi), 1 ≤
i ≤ n

test

} be the n
test

values of β1 and Θ, in whih funtion L has been evaluated. With a
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very limited additional omputational ost, we an then de�ne, for all 1 ≤ i ≤ n, the LOO

evaluations of β̂1 and Θ̂, whih are denoted by

(
β̂1

)
−i

and Θ̂−i respetively, and whih are

given by:

((
β̂1

)
−i

, Θ̂−i

)
= arg min

(β1,Θ)∈{((β1)i,Θi), 1≤i≤n
test

}
L−i(β1,Θ). (3.3.35)

Finally, we an introdue error ǫ̃
LOO

, suh that:

∥∥y − ŷnest
∥∥2
L2

≈ ǫ̃2
LOO

:=
1

n

n∑

i=1

ẽ2i , ẽ2i :=




(
Ĉ

((
β̂1

)
−i

, Θ̂−i

)
yobs

)

i

Ĉ

((
β̂1

)
−i

, Θ̂−i

)

ii




2

. (3.3.36)

3.3.5 Convergene analysis

All the developments presented in Setions 3.3.1 and 3.3.2 are onditioned by the values of

three trunation parameters, p2, p1 and u2, whih have to be identi�ed from a onvergene

analysis. As presented in Setion 3.3.1, we remind that the roles of p2, p1 and u2 in the

modeling of y are di�erent. Whereas p2 and u2 are assoiated with the modeling of the

dependeny struture between the input parameters, p1 is assoiated with the individual

transformation of eah input. As a onsequene, p1 is strongly dependent on the dimension

of vetor β1, whih parametrizes these individual transformations. On the ontrary, this

dimension of β1, whih is equal to C(p1, u1) − 1 − u2, does not depend on p2, but depends
only linearly on u2. Hene, inreasing the values of p2 and u2 does not really inrease the

dimension of the searh set for the identi�ation of β̂1, but makes the relation between β1

and L(β1,Θ) muh more omplex.

For the hoie of u2, p2 and p1, maximal values umax2 , pmax2 and qmax are a priori hosen.

In this hapter, sine we want to redue the number of parameters on whih the polynomial

trend is based, only values of u2 that are lower than d are onsidered: umax2 = d. Finally, the
optimal value of (u2, p1, p2) is the one that gives the minimum LOO error among all these

tested ombinations of values:

(u⋆2, p
⋆
1, p

⋆
2) := argmin

1 ≤ u2 ≤ d,

1 ≤ p2 ≤ pmax2 ,

1 ≤ p1 ≤ pmax1

ǫ̃2
LOO

(u2, p1, p2), (3.3.37)

where error ǫ̃2
LOO

is de�ned by Eq. (3.3.32).

3.4 Appliations

To illustrate the advantages of the nested struture presented in Setion 3.3 for the modeling

of the quantity of interest y, this setion introdues a series of analyti examples, whih are

sorted with respet to the input set dimension, d. In eah ase, the proposed approah is

ompared to the "LAR+UK" approah, whih has been desribed in Setion 3.2. For eah

funtion y, let ŷnest and ŷLAR+UK be the best approximations of y we an get from the

available information, when onsidering a nested polynomial trend and a simple polynomial

trend, respetively. Let ε2
NEST

and ε2
LAR+UK

be the assoiated normalized errors, suh that:

ε2
NEST

=
∥∥y − ŷnest

∥∥2
X
/ ‖g‖2

X
, (3.4.1)
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ε2
LAR+UK

=
∥∥y − ŷLAR+UK

∥∥2
X
/ ‖g‖2

X
. (3.4.2)

When dealing with a simple polynomial trend, it is reminded that the only trunation param-

eter that needs to be identi�ed is the maximal total polynomial order, whih will be denoted

in the following by pLAR+UK for the sake of larity. On the ontrary, three trunation param-

eters have to be identi�ed for the nested polynomial trends: p2, u2 and p1. As a onsequene,
the required omputational time to identify ŷnest an be muh higher than the one required

to identify ŷLAR+UK.

3.4.1 d = 1

In this part, we suppose that d = 1, and we �x X = [−1, 1]. Three analyti expressions for y
are then proposed:

• ase 1: y(x) = P2 ◦ P1(x),

• ase 2: y(x) = sin((x+ 1)3),

• ase 3: y(x) = sin(20x) cos(2x),

where, for all x in [−1, 1]:





P1(x) =

5∑

i=1

c
(1)
i xi−1, c(1) =

(0,−0.03, 0.5,−0.4,−0.5)√
0.032 + 0.52 + 0.42 + 0.52

,

P2(x) =

5∑

i=1

c
(2)
i xi−1, c(2) = (−0.1, 0.2, 0.7,−0.2,−0.2).

(3.4.3)

The two �rst examples are based on hained odes. The third example is introdued to show

that this nested struture for the mean an also be interesting for non-hained odes when

few ode evaluations are available.

For eah ase, Figure 3.1 ompares the evolution of the errors ε2
NEST

and ε2
LAR+UK

with

respet to n, the number of available evaluations of y. For eah value of n, onvergene
analyses have been performed for both methods. The maximal values for the trunation

parameters assoiated were �xed suh that:

0 ≤ pLAR+UK ≤ 20, 0 ≤ p1, p2 ≤ 10, u2 = 1. (3.4.4)

For the three appliations, these onvergene analyses lead us to relatively high values for

these trunation parameters (p1 ≥ 4, p2 ≥ 4). As underlined in Setion 3.3.1, this an be

explained by the ability of the proposed nested struture to parametrize polynomial families

with very high ardinality with only few parameters. This is partiularly e�ient when n is

small ompared to the number of osillations of y.

In addition, Figure 3.2 ompares the two approahes in terms of predition for given values

of n. In these �gures we notie that the proposed method is partiularly adapted to the ases

when y presents a nested struture or is osillating. This is partiularly true when n is small

ompared to the omplexity of y.
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(a) y(x) = P2 ◦ P1(x)
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(b) y(x) = sin((x+ 1)3)

10 15 20 25 30

0.2

0.4

0.6

0.8

1

PSfrag replaements

n

n

o

r

m

a

l

i

z

e

d

e

r

r

o

r

() y(x) = sin(20x) cos(2x)

Figure 3.1: Evolution of the normalized L2
errors with respet to n, the number of ode

evaluations. To be more representative, for eah value of n, the LAR+UK and the proposed

approahes have been repeated 10 times on randomly hosen learning sets. The urves or-

respond to the mean value of the errors assoiated with these 10 repetitions. Solid blak

line: evolution of the error assoiated with the LAR+UK approah, ε2
LAR+UK

. Red dotted

line: evolution of the error assoiated with the proposed approah, ε2
NEST

. The vertial bar

indiates moreover the value of n on whih the results of Figure 3.2 are foused.
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(f) Proposed method with (p2, u2, p1) =
(6, 1, 7)

Figure 3.2: E�ieny of the proposed method to predit in an unobserved point the value

of y(x) = P2 ◦ P1(x) with n = 15 (�rst row), y(x) = sin((x + 1)3) with n = 11 (seond

row) and y(x) = sin(20x) cos(2x) with n = 20 (third row). In eah �gure, the blak solid

line is the evolution of the quantity of interest, y, with respet to x, the blue points are the
positions of the available observations of y, the red dotted line is the predition of y based on

an optimized LAR+UK approah (left olumn) or based on the proposed approah assoiated

with optimized values of p2, u2 and p1 (right olumn). The grey areas orrespond to the 95%
on�dene region for the predition.
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3.4.2 d > 1

The idea of this setion is to show that the tendenies that were notied in the one-dimensional

ases are found bak when onsidering multidimensional input spaes. To this end, let us

onsider the three following expressions of y, whih an also be seen as partiular hained

odes, and the assoiated maximal values for the onvergene analyses:

• Case 1: d = 2, 0 ≤ pLAR+UK ≤ 20, 0 ≤ p2 ≤ 6, 0 ≤ p1 ≤ 10, 1 ≤ u2 ≤ d.

g :

{
[−1, 1]2

x

→
7→

[−1, 1]
g2D(x) = (1− x21) cos(7x1)× (1− x22) sin(5x2)

. (3.4.5)

• Case 2 (the Ishigami funtion): d = 3, 0 ≤ pLAR+UK ≤ 20, 0 ≤ p2 ≤ 3, 0 ≤ p1 ≤ 10,
1 ≤ u2 ≤ d.

g :

{
[−π, π]3

x = (x1, x2, x3)
→
7→

R

g3D(x) = sin(x1) + 7 sin(x2)
2 + 0.1x43 sin(x1)

. (3.4.6)

• Case 3: d = 6, 0 ≤ pLAR+UK ≤ 10, 0 ≤ p2 ≤ 3, 0 ≤ p1 ≤ 10, 1 ≤ u2 ≤ d.

g :

{
[−1, 1]6

x

→
7→

R

g6D(x) = g(1) ◦ g(2)(x),
(3.4.7)

g(1)(z) = 0.1 cos

(
6∑

i=1

zi

)
+

6∑

i=1

z2i , z ∈ R
6, (3.4.8)

g(2)(x) = (cos(πx1 + 1), cos(πx2 + 2), . . . , cos(πx6 + 6)) . (3.4.9)

In the same manner as in Setion 3.4.1, Figure 3.3 ompares the evolution of errors ε2
NEST

and

ε2
LAR+UK

with respet to n. As for the one-dimensional ases, it an be notied in these �gures

that, for the studied examples, introduing a nested struture for the polynomial trend an

allow us to make the L2
error derease by several orders of magnitude, espeially when n is

low. Moreover, these �gures emphasize the interest of optimizing the values of the trunation

parameter u2 when dealing with multidimensional input spaes.

Note that for these examples, there is no information about the struture of the nested ode.

Adding some information about the relation between the inputs ould be very useful to avoid

testing too many values of p1, p2 and u2.
As explained in Setion 3.3.1, the values of p2, p1 and u2 that were obtained from the on-

vergene analyses an give many information about the unknown struture of the quantity of

interest. For the �rst example, the values p2 = 2, u2 = 2 and p1 > 2 were most of the time

hosen, whih is oherent with the fat that g2D(x1, x2) is just the produt of two funtions

that depend on x1 and x2 only. Hene, a partiular attention has to be paid to the modeling

of eah input, rather than to the modeling of the dependene struture.

In the same manner, for the seond example, most of the onvergene analyses lead us to

u2 = 3 and p2 < p1, whih also shows that the modeling of eah input seems to be more

important than the haraterization of the relation between these modi�ed inputs.

At last, for the third quantity of interest, whih is a highly osillating funtion in dimension

d = 6, the onvergene analyses seemed to enourage the values of p2 and p1 that lead to
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Figure 3.3: Evolution of the normalized L2
errors with respet to n, the number of ode

evaluations. To be more representative, for eah value of n, the LAR+UK and the proposed

approahes have been repeated 10 times on randomly hosen learning sets. The urves or-

respond to the values of the 25% (thin line), the 50% (thik line) and the 75% (thin line)

quantiles of the errors assoiated with these 10 repetitions. Solid blak line: evolution of the

error assoiated with the LAR+UK approah, ε2
LAR+UK

. Blue dotted line: evolution of the

error assoiated with the proposed approah, ε2
NEST

, with u2 = 1. Red dashed line: evolution

of the error assoiated with the proposed approah, ε2
NEST

, with 1 ≤ u2 ≤ d.

the highest produt p1 × p2 (before over-�tting). This means that, for this example, it is

interesting to approximate quantity of interest y by a omplex polynomial representation

that is haraterized by a small number of parameters.

3.4.3 Relevane of the LOO error

As presented in Setion 3.3, when the maximal information about y is a set of ode evaluations,
the error

∥∥y − ŷnest
∥∥
X
an be evaluated by its LOO approximation, ε

LOO

. In order to redue

the omputational ost assoiated with the evaluation of ε
LOO

, two alternative estimations of

error

∥∥y − ŷnest
∥∥
X
, ε̂

LOO

and ε̃
LOO

, have been proposed. In order to underline the relevane

of these two LOO errors, Figure 3.4 ompares these three errors in the ase when n = 100
and y is the Ishigami funtion, whose expression is given by Eq. (3.4.6) (the same kinds

of results would have been obtained for other values of n and other expressions of y). In

this �gure, it an thus be notied that both approximations ε̂
LOO

and ε̃
LOO

are very lose

to

∥∥y − ŷnest
∥∥
X
. In general, the approximation ε̃

LOO

is more onservative, in the sense that
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(b) Case 2: ε̃
LOO

Figure 3.4: Comparisons between error

∥∥y − ŷnest
∥∥
X
and its LOO approximations ε̂

LOO

and

ε̃
LOO

for the modeling of the Ishigami funtion from n = 100 ode evaluations, for u2 = d,
1 ≤ p2 ≤ 4 and 1 ≤ p1 ≤ 5. Red squares: the true values of

∥∥Y − ŷnest
∥∥
X
. Blak irles: the

approximated values. In eah ase, the box-plots orrespond to the distributions of (ê2n, 1 ≤
i ≤ n) and (ẽ2n, 1 ≤ i ≤ n), whose expressions are given by Eqs. (3.3.32) and (3.3.36).

it is less likely that it underestimates

∥∥y − ŷnest
∥∥
X
. However, as explained in Setion 3.3,

introduing a linearization around β̂1 redues the risk of being too dependent on β̂1, whih

explains the fat that only small di�erenes an be notied between ε̂
LOO

and ε̃
LOO

.
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3.5 Conlusions

One of the main objetives of this part was to propose an alternative parametrization of the

polynomial trends for the Gaussian proess regression. This parametrization, whih is based

on the omposition of two polynomials, allows us to span high dimensional polynomial spaes

with a redued number of parameters. Hene, it has been shown on a series of examples

that this approah an be very useful, espeially when onfronted to the modeling of omplex

funtions with very little information.

In partiular, this approah an allow us to �nd bak (or take into aount) a potential nested

struture of the ode.

However, identifying relevant values for these parameters is not easy. In this hapter, these

parameters are identi�ed from a two-steps approah. First, their maximum-likelihood esti-

mates are searhed from the resolution of the optimization problem. An iterative algorithm

has been proposed to approximate the solutions of this problem. Then, a linearization around

these values is arried out, in order to �nd bak the usual formalism of GPR, and to minimize

the sensitivity of the results to these values.

In spite of all these adaptations, when the input dimension beomes high (d > 10), and
when a lot of ode evaluations are available (n > 100d), it appears that the value of p1 is

often equal to 1. Suh a value for p1 orresponds to the "LAR+UK" on�guration, whih

would mean that, in that ase, the nested struture is not neessary. This an be due to the

fat that the onsidered quantity of interest does not present a nested struture, or to the

fat that the numerial omplexity of the optimization problems assoiated with the nested

representation is too high. Inreasing the robustness of the proposed iterative algorithm, as

well as proposing more e�ient methods to solve the introdued optimization problems are

thus possible extensions of the present hapter.

Trying to inrease the sparsity of the proposed nested representation ould also be a good

idea, espeially to enable the proposed method to deal with systems with higher values of

d. Coupling the proposed nested representation to dediated penalization tehniques seems

promising for future work.
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Chapter 4

Gaussian proess regression of two

nested odes with salar output

In this hapter, we fous on the ase of two nested odes with salar outputs. We now

assume that observations of the intermediary variable are available. We therefore onsider

the following system:

x1 →

x2

y1(x1)

ց
ր y

nest

(x
nest

) := y2(y1(x1),x2), (4.0.1)

where x1, x2 and x
nest

are low dimensional vetors and y1, y2 and y
nest

are salars.

The work presented in this hapter has been published in Marque-Puheu et al. [2018℄. The

framework of the Gaussian proess regression is onsidered (see Chapter 1 for further details).

We propose an innovative Gaussian proess based sequential design for the ase of two nested

ode with salar outputs.

4.1 Introdution

Thanks to omputing power inrease, the erti�ation and the design of omplex systems rely

more and more on simulation. To this end, preditive odes are needed, whih have generally

to be evaluated at a large number of input points. When the omputational ost of these odes

is high, surrogate models are introdued to emulate their responses. A lot of industrial issues

involve multi-physis phenomena, whih an be assoiated with a series of omputer odes.

However, when these ode networks are used for optimization, unertainty quanti�ation, or

risk analysis purposes, they are generally onsidered a single ode. In that ase, all the inputs

haraterizing the system of interest are gathered in a single input vetor, and little attention

is paid to the potential intermediate results. When trying to emulate suh ode networks, this

is learly sub-optimal, as muh information is lost in the statistial learning, so that too many

evaluations of eah ode are likely to be required to get a satisfying predition preision.

In this hapter, we fous on the ase of two nested omputer odes, where the output of

the �rst ode is one of the inputs of the seond ode. We assume that these two omputer

odes are deterministi, but expensive to evaluate. To predit the value of this nested ode at

an unobserved point, a Bayesian formalism [Robert, 2007℄ is adopted in the following. Eah

omputer ode is a priori modeled by a Gaussian proess, and the idea is to identify the

posterior distribution of the ombination of these two proesses given a limited number of

evaluations of the two odes. The Gaussian proess hypothesis is widely used in omputer

experiments ([Saks et al., 1989; Santner et al., 2003; Rasmussen and Williams, 2006; Kennedy

and O'Hagan, 2000, 2001; Berger et al., 2001; Paulo, 2005; Kleijnen, 2017℄), as it allows a very
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good trade-o� between error ontrol, omplexity, and e�ieny. The two main issues of this

approah, also alled Kriging, onern the hoie of the statistial properties of the Gaussian

proesses that are used, and the hoie of the points where to evaluate the odes. When a

single omputer ode is onsidered, several methods exist to add one new point or a bath

of new points sequentially to an already existing Design of Experiments. Depending on the

purpose, optimization or reonstrution of the objetive funtion on its whole input set, the

riteria are based on the mean, variane or ovariane of the preditor ([Saks et al., 1989;

Santner et al., 2003; Bet et al., 2012; Ehard et al., 2011; Chevalier et al., 2014℄). Given

that our aim is to predit the output of the nested ode on its whole input set, sequential

designs based on a redution of the integrated predition variane (IMSE) are an appropriate

hoie. In the ase of a single ode, the variane expression an be expliitly derived under

mild restritive onditions on the mean and the ovariane of the prior Gaussian distribution.

The adaptation of these seletion riteria to the ase of two nested odes is not diret. Indeed,

the ombination of two Gaussian proesses is not Gaussian, so that the predition variane

is muh more ompliated to estimate. The hallenges posed by the omposition of two

Gaussian proesses have been studied in the Deep Gaussian proesses literature and the

proposed methods are based on the Monte-Carlo omputation of the likelihood of the nested

Gaussian proesses [Perdikaris et al., 2017℄ or on the omputation of a lower bound of this

likelihood [Damianou and Lawrene, 2013℄. The omposition of Gaussian proesses an also

be used in the multi-�delity framework [Perdikaris et al., 2017℄. This framework enables to

use several levels of onvergene of a simulator (for example in a �nite element model a oarse

mesh orresponds to the low �delity simulator and the �ner mesh orresponds to the high-

�delity simulator) and therefore to have a trade-o� between auray and omputation time

[Kennedy and O'Hagan, 2000; Le Gratiet, 2013; Le Gratiet and Garnier, 2014; Piheny and

Ginsbourger, 2013; Tuo et al., 2014℄.

Moreover, if the two odes an be launhed separately, the seletion riterion has also to

indiate whih one of the two odes to launh. The sequential designs are based on the

predition variane, whih has to be omputed at a large number of points. To redue the

omputational ost assoiated with these omputations, we propose several adaptations of

the Gaussian Proess formalism to the nested ase. These adaptations make it possible to

ompute the two �rst statistial moments of the nested ode output preditor exatly or

quikly. Then, original sequential seletion riteria are introdued, whih try to exploit as

muh as possible the nested struture of the studied odes. In partiular, these riteria are

able to integrate the fat that the omputational osts assoiated with the evaluation of eah

ode an be di�erent.

The outline of this hapter is the following. Setion 4.2 presents the theoretial framework

of the Gaussian proess-based surrogate models, its generalization to the nested ase, and

introdues two seletion riteria based on the predition variane to redue the predition

unertainty sequentially. Setion 4.3 introdues a series of simpli�ations to allow a quik

omputation of the predition variane. In Setion 4.4, the presented methods are applied to

two examples.

The tehnial proofs of the results presented in the following setions are given in Setion 4.6.

4.2 Surrogate modeling for two nested omputer odes

4.2.1 General framework

Let S be a system whih is haraterized by a vetor of input parameters, x
nest

∈ X
nest

. Let

y
nest

: X
nest

→ R be a deterministi mapping that is used to analyze the studied system. In

this hapter, we fous on the ase where the funtion x
nest

7→ y
nest

(x
nest

) an be modeled by
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two nested odes. Two quantities of interest, y1 and y2, are thus introdued to haraterize

these two odes, whih are supposed to be two real-valued ontinuous funtions on their

respetive de�nition domains X1 and R × X2. Given these two funtions, the nested ode is

de�ned as follows:

x1 ∈ X1 →

x2 ∈ X2

y1(x1) ∈ R

ց
ր y

nest

(x
nest

) := y2(y1(x1),x2) ∈ R, (4.2.1)

where x
nest

:= (x1,x2) ∈ X
nest

= X1 ×X2. The sets X1 and X2 are moreover supposed to be

two ompat subsets of R
d1
and R

d2
respetively, where d1 and d2 are two positive integers. In

theory, the de�nition domains may be unbounded, but the redution to ompat sets enables

the square integrability of y
nest

on X
nest

. If they are unbounded, it is possible to introdue

weighted L2 spaes.

Given a limited number of evaluations of y1 and y2, the objetive is to aurately predit y
nest

on the whole input set.

4.2.2 Gaussian proess-based surrogate models

4.2.2.1 Bakground

The Gaussian proess regression (GPR), or Kriging, is a tehnique that is widely used to

replae an expensive omputer ode by a surrogate model, that is to say a fast to evaluate

mathematial funtion. The GPR is based on the assumption that the two ode outputs, y1
and y2, an be seen as the sample paths of two stohasti proesses, Y1 and Y2, whih are

supposed to be Gaussian for the sake of tratability:

Yi (·) ∼ GP (µi (·) , Ci (·, ·)) , i ∈ {1, 2}, (4.2.2)

where for all 1 ≤ i ≤ 2, µi and Ci denote respetively the mean and the ovariane funtions

of Yi.

Let X
obs

1 :=
(
x̄
(1)
1 = x

(1)
1 , . . . , x̄

(n1)
1 = x

(n1)
1

)
be a (n1 × d1)-dimensional matrix that gath-

ers n1 elements of X1 and X
obs

2 :=
(
x̄
(1)
2 =

(
ϕ
(1)
1 ,x

(1)
2

)
, . . . , x̄

(n2)
2 = (ϕ

(n2)
1 ,x

(n2)
2 )

)
be a

(n2 × d2)-dimensional matrix that gathers n2 elements of R× X2. Denoting by

yobs1 := (y1(x
(1)
1 ), . . . , y1(x

(n1)
1 )), and yobs2 := (y2(ϕ

(1)
1 ,x

(1)
2 ), . . . , y2(ϕ

(n2)
1 ,x

(n2)
2 )), (4.2.3)

the vetors that gather the evaluations of y1 and y2 at these points, it an be shown that:

Y c
i (·) := Yi (·) | yobsi ∼ GP (µc

i (·) , Cc
i (·, ·)) , (4.2.4)

and the detailed expressions of the onditioned mean funtions, µc
i , and the onditioned

ovariane funtions, Cc
i are presented in Eqs. (4.2.11) and (4.2.13) for the "Universal Kriging"

framework. For further details on these expressions in other frameworks, the interested reader

may refer to Setion 1.4.

The relevane of the Gaussian proess preditor strongly depends on the de�nitions of µi

and Ci. When the only information about yi is a �nite set of evaluations, these funtions

are generally hosen in general parametri families. In this hapter, funtions Ci are hosen

in the squared exponential and Matérn-5/2 lasses (see Setion 1.4 for further details about

lassial parametri expressions for Ci).

The squared exponential lass de�nes a parametri family of ovariane funtions that an be

written in the form:

Ki

(
x̄i, x̄

′

i

)
= exp

(
−d
(
x̄i, x̄

′

i

)2)
, (4.2.5)
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where:

x̄i :=

{
x1 if i = 1,

(ϕ1,x2) if i = 2,
(4.2.6)

and d
(
x̄i, x̄

′

i

)
=
∥∥∥diag (ℓi)−1

(
x̄i − x̄

′

i

)∥∥∥, diag (ℓi) denotes a square matrix whose diagonal is

equal to the vetor ℓi of orrelation lengths.

Regarding the Matérn kernel, we onsider the radial Matérn kernel, obtained by substituting

the (weighted) Eulidean distane into the 1-dimensional Matérn kernel, and not the ten-

sor produt kernel obtained by multipliation of 1-dimensional kernels. So, the ovariane

funtions of the Matérn

5

2
lass an be written in the form:

Ki

(
x̄i, x̄

′

i

)
=

(
1 +

√
5d
(
x̄i, x̄

′

i

)
+

5

3
d
(
x̄i, x̄

′

i

)2)
exp

(
−
√
5d
(
x̄i, x̄

′

i

))
. (4.2.7)

Linear representations are onsidered for the mean funtions:

µi (·) = hi (·)T βi, (4.2.8)

where hi is a given pi-dimensional vetor of funtions (see Chapter 3 for further details on

the hoie of the basis funtions). In the following, the framework of the "Universal Kriging"

is adopted, whih onsists in:

• assuming an (improper) uniform distribution for βi,

• onditioning all the results by an estimator of the hyper-parameters that haraterize

the ovariane funtions Ci (obtained by ross-validation, as explained below),

• integrating over βi the onditioned distribution of Yi.

In that ase, the distribution of Y c
i , whih is de�ned by Eq. (4.2.4), is Gaussian, and its

statistial moments an expliitly be derived (see Saks et al. [1989℄; Bihon et al. [2008℄;

Helbert et al. [2009℄; Bet et al. [2012℄; Perrin et al. [2017℄).

If we denote the posterior mean of β̂i by:

β̂i :=

[
hi

(
X

obs

i

)(
Ci

(
X

obs

i ,X
obs

i

))−1
hi

(
X

obs

i

)T ]−1

hi

(
X

obs

i

)(
Ci

(
X

obs

i ,X
obs

i

))−1
yobsi ,

(4.2.9)

where hi

(
X

obs

i

)
is a (pi × ni)-dimensional matrix, whose j-th olumn is hi

(
x̄
(j)
i

)
, and

Ci

(
X

obs

i ,X
obs

i

)
is a (ni × ni)-dimensional matrix, suh that:

(
Ci

(
X

obs

i ,X
obs

i

))
jk

= Ci

(
x̄
(j)
i , x̄

(k)
i

)
, (4.2.10)

then the posterior predition mean and variane an be written:

µc
i (x̄i) = hi (x̄i)

T β̂i + Ci

(
x̄i,X

obs

i

)(
Ci

(
X

obs

i ,X
obs

i

))−1
[
yobsi − hi

(
X

obs

i

)T
β̂i

]
,

(4.2.11)

and:

(σc
i (x̄i))

2 = Cc
i (x̄i, x̄i) , (4.2.12)
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Cc
i

(
x̄i, x̄

′

i

)
= Ci

(
x̄i, x̄

′

i

)
− Ci

(
x̄i,X

obs

i

)(
Ci

(
X

obs

i ,X
obs

i

))−1
Ci

(
X

obs

i , x̄
′

i

)

+

[
hi (x̄i)

T − Ci

(
x̄i,X

obs

i

)(
Ci

(
X

obs

i ,X
obs

i

))−1
hi

(
X

obs

i

)T]

[
hi

(
X

obs

i

)(
Ci

(
X

obs

i ,X
obs

i

))−1
hi

(
X

obs

i

)T ]−1

[
hi

(
x̄

′

i

)
− hi

(
X

obs

i

)(
Ci

(
X

obs

i ,X
obs

i

))−1
Ci

(
X

obs

i , x̄
′

i

)]
,

(4.2.13)

where Ci

(
x̄i,X

obs

i

)
is a ni-dimensional vetor and

(
Ci

(
x̄i,X

obs

i

))
k
= Ci

(
x̄i, x̄

(k)
i

)
.

In this hapter, the hyperparameters of the ovariane funtions (see Setion 1.4) are estimated

for eah set of observations by maximizing the Leave-One-Out log preditive probability (see

Rasmussen and Williams [2006℄, Chapter 5, and Baho [2013a,b℄).

4.2.2.2 Coupling the surrogate models of the two odes

Aording to Eq. (4.2.1), the nested ode, x
nest

7→ y
nest

(x
nest

), an thus be seen as a partiular
realization of the onditioned proess Y c

nest

, so that for all (x1,x2) ∈ X1 × X2,

Y c
nest

(x1,x2) := Y c
2 (Y

c
1 (x1),x2). (4.2.14)

Under this Gaussian formalism, the best predition of y
nest

at any unobserved point x
nest

=
(x1,x2) in X1 × X2 is given by the mean value of Y c

nest

(x1,x2), whereas its variane an be

used to haraterize the on�dene in the predition. As explained in Setion 4.1, there is no

reason for Y c
nest

to be Gaussian, but aording to Proposition 4.2.1, the �rst- and seond-order

moments at a given input point an be obtained by omputing two one-dimensional integrals

with respet to a Gaussian measure.

Proposition 4.2.1. For all (x1,x2) ∈ X1 × X2, if ξ ∼ N (0, 1), then:

E [Y c
nest

(x1,x2)] = E [µc
2(µ

c
1(x1) + σc

1(x1)ξ,x2)] , (4.2.15)

E

[
(Y c

nest

(x1,x2))
2
]
= E

[
{µc

2(µ
c
1(x1) + σc

1(x1)ξ,x2)}2

+ {σc
2(µ

c
1(x1) + σc

1(x1)ξ,x2)}2

]
. (4.2.16)

The proof of this Proposition an be found in Setion 4.6.

The omputation of these moments an be done by quadrature rules or by Monte-Carlo

methods ([Baker, 1977℄). However, the omputation time an be expensive, espeially if the

moments have to be omputed at a large number of points.

Note that the proposed preditor for y
nest

an be built using observations of y1 or y2 alone

and not only observations of y
nest

. It an take into aount the partial information. If the two

odes an be launhed separately, this property will be partiularly useful for the sequential

enrihment of the initial design of experiments, sine the variane of Y c
nest

an be redued by

evaluating y1 or y2 alone.
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4.2.3 Sequential designs for the improvement of Gaussian proess predi-

tors

The relevane of the preditor Y c
nest

strongly depends on the spae �lling properties of the

sets gathering the inputs of the available observations of y1 and y2, whih are generally

alled Designs of Experiments (DoE). Spae-�lling Latin hyperube sampling (LHS) or quasi-

Monte-Carlo sampling are generally hosen to de�ne suh a priori DoE ([Fang and Lin, 2003;

Fang et al., 2006; Perrin and Cannamela, 2017℄). The relevane of the preditor an then be

improved by adding new points to an already existing DoE, as the higher the values of n1 and

n2, the more hane there is for ‖E [Y c
nest

]− y
nest

‖2
X
nest

to be small.

In the ase of a single ode, the existing seletion riteria are based on the predition variane

[Saks et al., 1989; Santner et al., 2003; Bet et al., 2012; Gramay and Lian, 2012℄, the

predition mean [Hu and Ludkovski, 2017℄ or both [Ehard et al., 2011℄ or the ovariane

between the observations [Saks et al., 1989; Santner et al., 2003℄ and depend on the goal of

the experiments: optimization, or reonstrution of the objetive funtion on its whole input

domain.

In this hapter the objetive is to predit the output of the nested ode on its whole in-

put domain. So, a stepwise unertainty redution (SUR) [Chevalier et al., 2014℄ strategy is

adopted in order to de�ne riteria to add a new point. The proposed riteria are based on a

minimization of the IMSE (integral of the predition variane over the input domain) or on

a maximization of the redution of IMSE per unit of omputational time. Some riteria that

enable to take into aount the di�erent osts of several omputer odes exist, for example in

the multi-�delity framework [Stroh et al., 2017℄ or multi-objetive onstraints [Perrin, 2016℄,

but their adaptation to the ase of two nested odes is not diret.

The use of IMSE is simpli�ed by some properties of the Gaussian proesses. Indeed, if Z is a

Gaussian proess that is indexed by x in X, the variane of the onditioned random variable

Z(x) | Z(xnew), where x and xnew are any elements of X, does not depend on the (unknown)

value of Z(xnew). So, this variane an be denoted by abuse of notation V [Z(x) | xnew]. To
minimize the global unertainty over Z at a redued omputational ost, a natural approah

would onsist in searhing the value of xnew so that

∫

X

V [Z(x) | xnew] dx (4.2.17)

is minimal (under the ondition that this integral exists).

In the nested ase, we also have to hoose to whih ode to add a new observation point. To

this end, let τ1 and τ2 be the numerial osts (in CPU time for instane) that are assoiated

with the evaluations of y1 and y2 respetively. For the sake of simpliity, we assume that

these numerial osts are independent on the value of the input parameters, and that they

are a priori known. Two seletion riteria are eventually proposed to optimize the relevane

of the preditor of the nested ode output sequentially. To simplify the reading, the following

notation is proposed:

(x̃i, X̃i) :=





(x∗
1,X1) if i = 1,

((ϕ∗
1,x

∗
2) , µ

c
1 (X1)× X2) if i = 2,

((x∗
1,x

∗
2),X1 × X2) if i = 3,

(4.2.18)

where x∗
1 ∈ X1, ϕ

∗
1 ∈ µc

1 (X1) and x∗
2 ∈ X2 and we denote by V(Y c

nest

(x
nest

)|x̃i) the variane of
Y c
nest

(x
nest

) under the hypothesis that the ode(s) orresponding to the new point x̃i is (are)

evaluated at this point (in pratie, we remind that these ode evaluations are not required
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for the estimation of this variane). This variane an be de�ned by:

V(Y c
nest

(x
nest

)|x̃i) :=

{
V(Y2 (Y1 (x1) ,x2) |yobs1 ,yobs2 , yi (x̃i)), i ∈ {1, 2},
V(Y2 (Y1 (x1) ,x2) |yobs1 ,yobs2 , y

nest

(x̃i)), i = 3,
(4.2.19)

with x
nest

:= (x1,x2).

• First, the hained I-optimal riterion selets the best point in X1 × X2 to minimize the

integrated variane of the preditor of the nested ode:

x̃new3 = argmin
x̃3∈X̃3

∫

X
nest

V(Y c
nest

(x
nest

)|x̃3)dxnest. (4.2.20)

Suh a riterion is a priori adapted to the ase where it is not possible to run indepen-

dently the odes 1 and 2.

• Seondly, the best I-optimal riterion selets the best among the andidates in X1 and

X2 in order to maximize the derease per unit of omputational ost of the integrated

predition variane of the nested ode:

(inew, x̃newinew) = argmax
x̃i∈X̃i, i∈{1,2}

1

τi
×
∫

X
nest

[V (Y c
nest

(x
nest

))− V (Y c
nest

(x
nest

)|x̃i)] dxnest.

(4.2.21)

In that ase, the di�erene in the omputational osts is taken into aount, and a

linear expeted improvement per unit of omputational ost is assumed for the sake of

simpliity.

For eah new observation of the �rst ode, the hyperparameters of the ovariane funtion

C1 are re-estimated. In the same way, for eah new observation of the seond ode, the

hyperparameters of the ovariane funtion C2 are re-estimated.

An initial set of observations is neessary to estimate the hyperparameters of the ovariane

funtions C1 and C2 and therefore to ompute the predition variane and the proposed

sequential design riteria. This initial set will be hosen as a maximin LHS design on X
nest

.

4.3 Fast omputation of the variane of the preditor of the

nested ode

As explained in Setion 4.2.3, hoosing the position of the new point requires to ompute the

value of Var(Y c
nest

(x
nest

)|x̃i) for eah potential value of x̃i in X̃i and for a grid or a sample

of x
nest

used in a quadrature formula or an empirial average to approximate the integral in

x
nest

of Eqs. (4.2.21) and (4.2.20).

For a given x
nest

, the variane is theoretially given by Eqs. (4.2.15) and (4.2.16). If a quadra-

ture rule or a Monte Carlo approah is used to approximate the variane, then the optimization

proedure beomes prohibitively expensive from the omputational point of view. To irum-

vent this problem, we present in this setion several approahes to make the omputation of

Var(Y c
nest

(x
nest

)|x̃i) expliit, and therefore extremely fast to ompute.
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4.3.1 Expliit derivation of the two �rst statistial moments of the predi-

tor

Lemma 4.3.1. If X ∼ N (µ, σ2) and g (x, a, b, c) := xa exp
(
bx+ cx2

)
, (a, b, c) ∈ N × R

2
,

then, under the ondition that 1 − 2cσ2 > 0, the mean of g (X, a, b, c) an be omputed ana-

lytially, and its expression is given by Eq. (4.6.1).

Lemma 4.3.2. If g (x, a, b, c) := xa exp
(
bx+ cx2

)
, (a, b, c) ∈ N× R

2
, then

g (x, ai, bi, ci) g (x, aj , bj , cj) = g (x, ai + aj , bi + bj, ci + cj) , (4.3.1)

where (ai, bi, ci) ∈ N× R
2
and (aj , bj , cj) ∈ N×R

2
.

Proposition 4.3.1. Using the notations of the Universal Kriging framework that is introdued

in Setion 4.2.2, if:

1. for 1 ≤ k ≤ p2 the mean funtion (h2)k is of the form:

(h2 (ϕ1,x2)k = mk(x2) ϕ
ak
1 , (4.3.2)

where mk is a deterministi funtion from X2 to R and ak ∈ N,

2. the ovariane funtion C2 is squared exponential, i.e. an element of the squared expo-

nential lass,

then the onditional moments of order 1 and 2 of Y c
nest

(x1,x2), whih are de�ned by Eqs.

(4.2.15) and (4.2.16) an be alulated analytially using Lemmas 4.3.1 and 4.3.2. Moreover,

the expression of the �rst order moment is given by Eqs. (4.6.5) and (4.6.1) and the one of

the seond order moment is given by Eqs. (4.6.8) and (4.6.1).

The proof of this Proposition an be found in Setion 4.6.

In other words, if the prior of the Gaussian proess modeling the funtion y2 has a trend

whih is a polynomial of ϕ1, with oe�ients as funtions of x2, and a ovariane funtion

of the squared exponential lass, then the moments of order 1 and 2 of the oupling of the

preditors of the two odes an be omputed expliitly.

In partiular, if the proess assoiated with y2 has a onstant or zero mean and a squared

exponential (i.e. Gaussian) ovariane, then the mean and the variane of the oupling of the

preditors of y1 and y2 an be omputed analytially.

However, the use of a squared exponential ovariane funtion is based on the assumption of

in�nite di�erentiability of the seond ode. This assumption is not neessarily veri�ed.

Besides, the method annot be applied to the ase of more than two odes. Indeed, in the

ase of three odes, the oupling of the Gaussian preditors of the two �rst odes is no longer

Gaussian. Even if the Gaussian proess modeling the third ode has a squared exponential

ovariane and a polynomial trend with respet to the output of the seond ode, the analytial

method annot be applied beause the preditor of the output of the hain of the two �rst

odes is not Gaussian.
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4.3.2 Linearized approah

In the ases where the onditions for Proposition 4.3.1 are not ful�lled (or if more than two

odes are onsidered), another approah is proposed in this setion, whih is based on a

linearization of the proess modeling the nested ode. Indeed, for i ∈ {1, 2}, let εci be the

Gaussian proess so that:

Y c
i = µc

i + εci . (4.3.3)

By onstrution, εci is the residual predition unertainty one Yi has been onditioned by ni

evaluations of yi. We remind that the two Gaussian proesses Yi are statistially independent,

so Y c
i and therefore εci are statistially independent. Under the ondition that n1 is large

enough for Y c
1 being a reliable statistial model for y1, then εc1 is small.

Proposition 4.3.2. If:

1. the preditor of a nested omputer ode an be written Y c
nest

(x1,x2) := Y c
2 (Y

c
1 (x1),x2),

where Y c
i are independent Gaussian proesses whih an be written as Y c

i = µc
i + εci ,

where εci ∼ GP (0, Cc
i ) , i ∈ {1, 2},

2. and εc1 is small enough for the linearization to be valid,

then the preditor of the nested omputer ode an be de�ned as a Gaussian proess with the

following mean and ovariane funtions:

µc
nest

(x1,x2) = µc
2(µ

c
1(x1),x2),

Cc
nest

((x1,x2), (x
′
1,x

′
2)) = Cc

2((µ
c
1(x1),x2), (µ

c
1(x

′
1),x

′
2))

+
∂µc

2

∂ϕ1
(µc

1(x1),x2)
∂µc

2

∂ϕ1
(µc

1(x
′
1),x

′
2)C

c
1(x1,x

′
1),

(4.3.4)

where µc
i , i ∈ 1, 2 is given by Eq. (4.2.11) and Cc

i , i ∈ 1, 2 is given by Eq. (4.2.13) and

∂µc
2

∂ϕ1
(µc

1(x1),x2) is given by Eq. (4.6.13).

It an also be written that Y c
nest

= µc
nest

+ εc
nest

, with:

εc
nest

(x1,x2) =
∂µc

2

∂ϕ1
(µc

1(x1),x2)ε
c
1(x1) + εc2(µ

c
1(x1),x2). (4.3.5)

The proof of this Proposition an be found in Setion 4.6.

Corollary 4.3.3. In the framework of Universal Kriging for Y c
1 and Y c

2 with expliit basis

funtions hi and ovariane funtions Ci, i ∈ {1, 2}, if the derivatives

∂h2

∂ϕ1
(ϕ1,x2) and

∂C2

∂ϕ1

(
(ϕ1,x2) ,X

obs

2

)
an be omputed expliitly, then the preditor of the nested omputer

ode an be de�ned, thanks to a linearization, as a Gaussian proess with expliit mean and

ovariane funtions. In partiular, if the ovariane funtion C2 is in the Matérn

5

2
or squared

exponential lasses, the derivative

∂C2

∂ϕ1

(
(ϕ1,x2) ,X

obs

2

)
an be omputed analytially, and the

assoiated expressions are given in Eqs. (4.6.18) and (4.6.21).

The proof of this Corollary an be found in Setion 4.6.

Corollary 4.3.4. Aording to Eqs. (4.3.5), (4.2.21) and (4.2.20), if the preditor of the

nested ode is obtained with the linearized method, then, thanks to the independene between

εc1 and εc2, the seletion riteria of the sequential designs an be written:
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• for the hained I-optimal design:

(
xnew

1 ,xnew

2

)
= argmin

(x∗

1
,x∗

2)∈X1×X2

∫

X
nest

(
∂µc

2

∂ϕ1
(µc

1(x1),x2)

)2

V [εc1(x1)|x∗
1] dx1dx2,

+

∫

X
nest

V [εc2(µ
c
1(x1),x2)|µc

1(x
∗
1),x

∗
2] dx1dx2,

(4.3.6)

where

∂µc
2

∂ϕ1
(µc

1(x1),x2) is given by Eq. (4.6.13),

• for the best I-optimal design:

(inew,xnew

i ) = argmax
x̃i∈X̃i, i∈{1,2}

1

τi
Vi (x̃i) , (4.3.7)

where:

V1 (x̃1) =

∫

X
nest

(
∂µc

2

∂ϕ1
(µc

1(x1),x2)

)2

(V [εc1(x1)]− V [εc1(x1)|x̃1]) dx1dx2, (4.3.8)

V2 (x̃2) =

∫

X
nest

(V [εc2(µ
c
1(x1),x2)]− V [εc2(µ

c
1(x1),x2)|x̃2]) dx1dx2. (4.3.9)

The proof of this Corollary an be found in Setion 4.6.

Hene, thanks to the proposed linearization, and the fat that the onditional distribution of a

Gaussian proess is still Gaussian with updated �rst and seond order moments, the variane

of Y c
nest

(x
nest

) and the one of Y c
nest

(x
nest

)|x̃i an be expliitly omputed for all (x
nest

, x̃i) in
X
nest

× X̃i. Under the ondition that the linearization is valid, this approah an be applied

to on�gurations with more than two nested odes.

However, it an be inferred from equation (4.3.4) that the variane depends on yobs1 through

µc
1 and yobs2 through µc

2. To irumvent this problem for the omputation of the forward

variane in the sequential designs, we assume that for a andidate x̃1, µc
1 orresponds to

E
[
Y1|yobs1

]
and by abuse of notation, that (σc

1)
2 = Cc

1 orresponds to V

[
Y1|Xobs

1 , x̃1

]
. In the

same way, for a andidate x̃2, we assume that µc
2 orresponds to E

[
Y2|yobs2

]
and by abuse of

notation, that (σc
2)

2 = Cc
2 orresponds to V

[
Y2|Xobs

2 , x̃2

]
. So, by doing this, we suppose that

the estimate of yi (x̃i) an be replaed by its predition mean E
[
Yi (x̃i) |yobsi

]
, in aordane

with the Kriging Believer strategy proposed in Ginsbourger et al. [2010℄.

4.4 Appliations

In this setion, the proposed methods are applied to two examples: an analytial one-

dimensional one and a multidimensional one.

In partiular, the linearized method of Proposition 4.3.2 is ompared with the analytial

method of Proposition 4.3.1 in terms of predition auray.

The linearized method is ompared with the so-alled "blind box" method. The blind box

method orresponds to the ase where the nested omputer ode is onsidered as a single

omputer ode. In that ase, only the inputs x
nest

and the output y
nest

are taken into aount

and a Gaussian proess regression of this equivalent omputer ode is done. The intermediary

information ϕ1 is not taken into aount. The Gaussian proess Ybb an therefore be de�ned

as follows (see also Perrin et al. [2017℄):

68



4.4. APPLICATIONS

Ybb (·) ∼ GP
(
hbb (·)T βbb, Cbb (·, ·)

)
, (4.4.1)

where

hbb (x1,x2) =

(
∂h2

∂ϕ1

(
h1 (x1)

T β∗
1,x2

)T
β∗
2h1 (x1) ,h2

(
h1 (x1)

T β∗
1,x2

))
, (4.4.2)

βbb = (β1 − β∗
1,β2) , (4.4.3)

(β∗
1,β

∗
2) = argmin

(β1,β2)

n∑

i=1

[
y2

(
y1

(
x
(i)
1

)
,x

(i)
2

)
− h2

(
h1

(
x
(i)
1

)T
β1,x

(i)
2

)T

β2

]2
, (4.4.4)

n = n1 = n2 and Cbb is a stationary ovariane funtion hosen in a parametri family and

de�ned on X
nest

× X
nest

. In order to make the omparison between the blind box and the

other methods easier, the mean funtion is de�ned as a linearization of the oupling of the

mean funtions used in the linearized method.

Finally, the performanes of the sequential designs are ompared with a spae �lling design

(maximin LHS) on X
nest

.

4.4.1 Charateristis of the examples

4.4.1.1 Analytial example

In the analytial example, the properties of the mean funtions of the Gaussian proesses and

of the odes are:

h1 (x1) =




1

x1

x21


 , β1 =




−2
0.25
0.0625


 , y1 (x1) = h1 (x1)

T β1 − 0.25 cos (2πx1) , (4.4.5)

h2 (ϕ1) =




1

ϕ1

ϕ2
1

ϕ3
1


 , β2 =




6
−5
−2
1


 , y2 (ϕ1) = h2 (ϕ1)

T β2 − 0.25 cos (2πϕ1) , (4.4.6)

where x1 ∈ [−7, 7]. In this example X2 = ∅.

In the analytial example, the ovariane funtions are squared exponential (i.e. Gaussian).

This implies that the Gaussian proesses assoiated with the odes are mean square in�nitely

di�erentiable. This enables to apply Proposition 4.3.1 and Proposition 4.3.2 to this example.

4.4.1.2 Hydrodynami example

In this example, the oupling of two omputer odes is onsidered. The objetive is to deter-

mine the impat point of a onial projetile.

The �rst ode omputes the drag oe�ient of a one divided by the height of the one.

Its inputs are the height and the half-angle of the one, so the dimension of x1 is 2 and

x1 ∈
[ π
36

,
π

4

]
× [0.2, 2].

The seond ode omputes the range of the ballisti trajetory of a one. Its inputs are

the output of the �rst ode, assoiated with ϕ1, and the initial veloity and angle of the
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(b) Code 2: range of a ballisti trajetory
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y2

(x2)1

Figure 4.1: Hydrodynami example: Inputs and outputs of the two odes.

ballisti trajetory of the one, gathered in x2. The dimension of x2 is therefore 2 and

x2 ∈ [1500, 3000] ×
[
π

12
,
7π

36

]
.

Figure 4.1 illustrates the two odes inputs and outputs.

Figure 4.2 presents, for eah ode, the satter plots of the variations of the output with respet

to the most sensitive omponents of their inputs. The inputs orrespond to a set of 20 points

drawn aording to a maximin LHS design on X
nest

. These �gures enable to propose a basis

of funtions for the prior mean of the proesses assoiated with the two odes.

For the �rst ode, the satter plots highlight a linear variation with respet to (x1)1 and a

multipliative inverse variation with respet to (x1)2, so the proposed basis funtions are:

h1 (x1) =

(
1 , (x1)1 ,

1

(x1)2

)T

. (4.4.7)

For the seond ode, only a multipliative inverse variation with respet to ϕ1 is evident, so

the proposed basis funtions are:

h2 (ϕ1,x2) =

(
1

max (ϕ1, ϕ1
min

)
, 1 , 1

)T

. (4.4.8)

The denominator has a lower bound ϕ1
min

in order to avoid any inversion problem around

zero. ϕ1
min

is set to the small arbitrary value 0.1.

The image plot 4.2() represents the UK predition mean of the �rst ode, obtained with the

proposed basis funtions. The predited value of y1 for the maximum value of (x1)1 and the

minimum value of (x1)2 is high ompared with the values of the observations. So, the �rst

ode has been evaluated at this input point and gives the value of 3.4, whih is onsistent with

the predition. This illustrates the relevane of the proposed basis, that is used to extrapolate

the predition at a point with no observations around. The image plot 4.2(e) represents the
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Figure 4.2: Hydrodynami example: variation of the outputs y1 and y2 of the two odes with
respet to the most sensitive omponents of their inputs x1 and x2 for a set of 20 input

points drawn aording to a maximin LHS design on X
nest

. The image plots present the UK

predition (onditional mean of the GP) of y1 and y2 for the same set of observations.
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UK predition mean of the seond ode, obtained with the proposed basis at a value of 0.5
for ϕ1.

In the hydrodynami example, the ovariane funtions are in the Matérn

5
2 lass. This

enables to perform the linearization of Proposition 4.3.2 and Corollary 4.3.3.

In both examples, the ovariane funtions inlude a non-zero nugget term (see Gramay and

Lee [2012℄ for further details), that means that they an be written as:

Ci

(
x̄i, x̄

′

i

)
= σ2

i

[
Ki

(
x̄i, x̄

′

i

)
+ gδ

x̄i=x̄
′

i

]
, (4.4.9)

where σi ∈ R+, Ki is hosen in a parametri family (squared exponential or Matérn

5
2), g is

the nugget term whose value is 10−6
, and δ is the Kroneker delta funtion. This non-zero

nugget term is used for reasons of numerial stability.

4.4.2 Predition performane for a given set of observations

A set of validation observations is available. Let x
(1)
nest

. . .x
(N

test

)
nest

be N
test

elements of X
nest

.

Denoting by y
nest

(
x
(1)
nest

)
. . . y

nest

(
x
(N

test

)
nest

)
the evaluations of the nested ode at these points,

the performane riterion of the nested preditor mean, also alled error on the mean an be

de�ned as:

Error on the mean =

N
test∑

i=1

(
y
nest

(
x
(i)
nest

)
− ŷ

nest

(
x
(i)
nest

))2

N
test∑
i=1

(
y
nest

(
x
(i)
nest

)
− 1

N
test

N
test∑

j=1
y
nest

(
x
(j)
nest

))2 , (4.4.10)

where ŷ
nest

denotes a predition of the nested ode, whih an be obtained with the analytial,

linearized or blind-box method.

For both examples, the validation set of 150 points is drawn aording to a maximin LHS on

X
nest

.

Figure 4.3 presents, for the analytial example, an example of the predition mean and 95%
predition interval omputed with the linearized and the blind box methods. The two pre-

ditors are built with the same set of 20 observation points drawn aording to a maximin

LHS design on X
nest

. It an be seen that, with the blind box method, the magnitude of the

predition interval is the same aross the input domain and depends only on the distane to

the observation points. The predition interval is too big in the area with small variations

and too small in the area with larger variations. On the ontrary, taking into aount the in-

termediary observations (with the linearized method here) enables to better take into aount

the non-stationarity of the variations of the nested ode output.

Figure 4.4 presents the error on the mean with the blind box and the linearized methods for

both examples, and the analytial method for the analytial example. For all methods, the

preditors are built with the same learning sets drawn aording to maximin LHS designs on

X
nest

of inreasing size.

The left �gure, orresponding to the analytial example, shows the similar auraies of the

predition means omputed with the analytial and linearized methods proposed in Proposi-

tion 4.3.1 and Proposition 4.3.2.
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Figure 4.3: Analytial example: Preditors of the nested ode obtained with the linearized

and the blind box methods. The set of 20 observations is drawn aording to a maximin LHS

on X
nest

. Atual values shown by a ontinuous line, the predition mean by a dotted line and

the 95% predition interval by a grey area.
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Figure 4.4: Comparison of the predition mean auray for the blind box and the linearized

(Proposition 4.3.2) methods, and, in the ase of a squared exponential ovariane funtion,

the analytial method (Proposition 4.3.1). The urves orrespond to the median of 50 draws

of maximin LHS designs on X1 ×X2 of inreasing size.
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For both examples, the preision of the predition mean is better with the linearized method

than with the blind box method, showing the interest of taking into aount the intermediary

information.

The results show that the analytial and linearized methods lead to the same predition mean

auray. As a reminder, the analytial method requires the in�nite di�erentiability of the

seond ode. This assumption is orret for the analytial example but not neessarily for

the hydrodynami example. The linearized method requires the predition error of the �rst

ode to be small enough for the linearization to be valid. Sine the predition error of the

�rst ode an be redued thanks to a sequential enrihment of the initial design, the required

assumption of the analytial method is stronger than the one of the linearized method.

Consequently, the linearized method will be used in the remainder of the numerial applia-

tions.

4.4.3 Performanes of the sequential designs

Figure 4.5 shows an example of the predition mean and 95% predition interval of the

preditors Y c
1 , Y

c
2 and Y c

nest

. The preditors Y c
1 and Y c

2 are not built with the same number

of observations, so the preditor Y c
nest

is built with a di�erent number of observations of the

odes 1 and 2. The fat that the number of observations of the two odes an be di�erent will

be useful for the sequential designs. Moreover, the estimation of the predition variane of

the nested ode is aurate, and that will also be useful for the hoie of the new observation

point in the sequential designs.

4.4.3.1 With idential omputational osts for both odes

Figure 4.6 presents the error on the mean of the linearized preditor for the proposed sequential

designs and for maximin LHS designs of inreasing size. The initial designs of the sequential

strategies are the same maximin LHS designs on X
nest

with 10 points for the analytial example

and 20 points for the hydrodynami example. That is why the initial point of the three urves

is the same on both line plots. The osts of the two odes are onsidered to be the same, that

is to say τ1 = τ2 = 1. The �gure shows the relevane of the proposed sequential designs for

improving the predition mean of the linearized nested preditor, ompared with the maximin

LHS designs on X
nest

.

In the analytial example, the best I-optimal sequential design enables to obtain the most

aurate predition mean at a given omputational ost. In the hydrodynami example, in

the �rst 10 iterations, the best I-optimal design outperforms the hained I-optimal design.

After this initial stage, the best I-optimal design alls alternately ode 1 and ode 2 and

beomes equivalent to the hained I-optimal design.

Figure 4.7 shows to whih of the two odes the new observations points are added for the best

I-optimal sequential design. In both examples, new observation points of the �rst ode are

�rst added.

It seems that the unertainty propagated from the �rst ode into the seond ode is predom-

inant at the beginning. The best I-optimal sequential design aims therefore at reduing this

unertainty by �rst adding new observation points of the �rst ode. Then new observations

of both odes are added.
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Figure 4.5: Analytial example: an example of the preditors Y c
1 , Y

c
2 and Y c

nest

. The blak

line represents the real values of y1, y2 and y
nest

, the grey area, the 95% predition interval

and the grey dotted line, the predition mean. The mean and predition interval of Y c
nest

are

omputed thanks to the linearized method. The vertial lines of the two top plots represent

the observations of the two odes, whih are drawn aording to LHS designs on X1 and

µc
1 (X1) of sizes 7 and 8. The number of observations is not the same for both odes.
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Figure 4.6: Comparison of the predition mean auray of the linearized preditor with the

maximin LHS design on X
nest

and the sequential designs, for both examples. In the hydro-

dynami example, the two urves representing the sequential designs are almost superposed.

The initial designs are the same for the three urves, with a size of 10 points for the analytial
example and 20 points for the hydrodynamial example. The draw of the maximin LHS de-

sign on X
nest

is repeated 50 times and the urves present the median of the assoiated results.

The osts of the two odes are assumed to be the same.
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Figure 4.7: Comparison of the number of evaluations of eah ode in the ase of a sequential

best I-optimal design applied to both examples. The urves orrespond to the median of 50
draws of the initial design. The osts of the two odes are assumed to be the same.
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Figure 4.8: Performanes of the best I-optimal sequential design in terms of predition mean

auray with di�erent omputational osts for the two odes. 1:2 ↔ τ1 = 1 and τ2 = 2, 2:1
↔ τ1 = 2 and τ2 = 1. The urves orrespond to the median of 50 draws of the initial maximin

LHS design on X
nest

. The initial designs are the same for the two urves orresponding to eah

example and ontain 15 observations and 30 observations on both odes for the analytial and

the hydrodynamial example.

4.4.3.2 With di�erent omputational osts

Figure 4.8 shows the predition mean auray with the best I-optimal sequential design when

the osts of the two odes are di�erent. Two ases are presented. The �rst one orresponds

to the ase where the ost assoiated with the �rst ode is twie the one assoiated with the

seond ode, that is to say τ1 = 2 and τ2 = 1, the seond one orresponds to the ase where

the ost assoiated with the seond ode is twie the one assoiated with the �rst ode, that

is to say τ1 = 1 and τ2 = 2.
It an be seen that for both examples, the predition auray at a given total omputational

ost is better when the ost of the �rst ode is lower, that is to say when more observation

points of the �rst ode an be added for the same omputational budget. These results are

onsistent with those of Figure 4.7.
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4.5 Conlusions

In this hapter the formalism of Universal Kriging is adapted to the ase of two nested

omputer odes.

Two methods to ompute quikly the mean and variane of the nested ode preditor have

been proposed. The �rst one, alled "analytial" omputes the exat value of the two �rst

moments of the preditor. But it annot be applied to the oupling of more than two odes.

The seond one, alled "linearized", enables to obtain a Gaussian preditor of the nested ode,

with mean and variane that an be instantly omputed. The approah ould be generalized

to the oupling of more than two odes.

Both proposed methods take into aount the intermediary information, that is to say the

output of the �rst ode. A omparison with the referene method, alled "blind box", is made.

In this method a Gaussian proess regression of the blok of the two odes is made without

onsidering the intermediary observations. The numerial examples illustrate the interest of

taking into aount the intermediary information in terms of predition mean auray.

Moreover, two sequential designs are proposed in order to improve the predition auray of

the nested preditor. The �rst one, the "hained" I-optimal sequential design, orresponds

to the ase where the two odes annot be launhed separately. The seond one, the "best"

I-optimal sequential design, allows to hoose to whih of the two odes to add a new observa-

tion point and to take into aount the di�erent omputational osts of the two odes.

The numerial appliations show the interest of the sequential designs ompared with a spae-

�lling design (maximin LHS). Furthermore, they illustrate the advantage, in terms of predi-

tion mean auray, of hoosing to whih ode to add a new observation point ompared with

simply adding new observation points of the nested ode. The results show an ampli�ation

of the unertainties in the hain of odes, leading to the addition of observation points of the

�rst ode �rstly in the best I-optimal sequential design. It an be assumed that this should

be similar with the oupling of more than two odes. In other words, the unertainty of the

beginning of the hain should be redued as a priority.
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4.6 Proofs

4.6.1 Proof of Proposition 4.2.1

Aording to Eq (4.2.4), one an write:

Y c
i (xi)

d
= µc

i (xi) + σc
i (xi) ξi, ξi ∼ N (0, 1), i ∈ {1, 2},

where ξ1 and ξ2 are independent aording to the independene of the initial proesses Y1 and

Y2 and the fat that Y c
i := Yi|yobsi .

Therefore, the proess modeling the nested ode an be written:

Y c
nest

(x1,x2) = Y c
2 (Y

c
1 (x1),x2)

= µc
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2) + σc
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2) ξ2.

Given the independene of ξ1 and ξ2 and the fat that E (ξ2) = 0, it an be inferred that the

�rst moment of Y c
nest

an be written:

E (Y c
nest

(x1,x2)) = E (µc
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2)) .

By noting that:

•

(Y c
nest

(x1,x2))
2 = (Y c

2 (Y
c
1 (x1),x2))

2

= (µc
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2) + σc
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2) ξ2)
2

= (µc
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2))
2 + (σc

2 (µ
c
1 (x1) + σc

1 (x1) ξ1,x2))
2 ξ22

+2µc
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2) σ
c
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2) ξ2,

• ξ1 and ξ2 are independent,

• E (ξ2) = 0 and E
(
ξ22
)
= 1,

the seond moment of Y c
nest

an be written:

E

(
(Y c

nest

(x1,x2))
2
)
= E

[
(µc

2 (µ
c
1 (x1) + σc

1 (x1) ξ1,x2))
2

+(σc
2 (µ

c
1 (x1) + σc

1 (x1) ξ1,x2))
2

]
.

4.6.2 Proof of Lemma 4.3.1

If X ∼ N (µ, σ2) and g (x, a, b, c) := xa exp
[
bx+ cx2

]
, then the mean of g (x, a, b, c) is equal

to:

E [g (X, a, b, c)] =

∫

R

g (x, a, b, c)
1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)
dx.
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It follows that:

E [g (X, a, b, c)] =

∫

R

xa exp
(
bx+ cx2

) 1

σ
√
2π

exp

(
−1

2

(
x− µ

σ

)2
)
dx

= exp

(
− 1

2σ2

((
σ2b+ µ

)2

2cσ2 − 1
+ µ2

))

×
∫

R

xa
1

σ
√
2π

exp

(
−1

2

1− 2cσ2

σ2

(
x− σ2b+ µ

1− 2cσ2

)2
)
dx

= exp

(
− 1

2σ2

((
σ2b+ µ

)2

2cσ2 − 1
+ µ2

))
1√

1− 2cσ2
E
[
Xa

g

]
,

where Xg ∼ N
(

σ2b+ µ

1− 2cσ2
,

σ2

1− 2cσ2

)
, under the ondition that 1− 2cσ2 > 0.

Moreover, for Y ∼ N
(
µY , σ

2
Y

)
, any moment of order k, k ∈ N, of Y an be omputed

analytially ([Papoulis and Pillai, 2002℄):

E

[
Y k
]
=

⌊k
2
⌋∑

i=0

(
k

2i

)
µk−2i
Y

(2i)!

2ii!
σ2i
Y .

Hene, given that all the moments of a Gaussian variable an be omputed analytially, the

mean E [g (X, a, b, c)] an be omputed analytially, and its expression is:

E [g (X, a, b, c)] = exp

(
− 1

2σ2

((
σ2b+ µ

)2

2cσ2 − 1
+ µ2

))
1√

1− 2cσ2

×
⌊a
2
⌋∑

i=0

(
a

2i

)(
σ2b+ µ

1− 2cσ2

)a−2i
(2i)!

2ii!

(
σ2

1− 2cσ2

)i

.

(4.6.1)

4.6.3 Proof of Lemma 4.3.2

One has:

g (x, ai, bi, ci) g (x, aj , bj, cj) = xaixaj exp
(
bix+ cix

2 + bjx+ cjx
2
)

= xai+aj exp
(
(bi + bj)x+ (ci + cj)x

2
)

= g (x, ai + aj, bi + bj , ci + cj) .
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4.6.4 Proof of Proposition 4.3.1

First moment

In the framework of Universal Kriging, aording to equation (4.2.11) the onditional mean

funtion of the proess modeling the seond ode an be written:

µc
2 (ϕ1,x2) = h2 (ϕ1,x2)

T β̂2 + C2

(
(ϕ1,x2) , x̄

obs

2

)
vc

=
p2∑
i=1

(h2 (ϕ1,x2))i

(
β̂2

)
i
+

n2∑
i=1

C2

(
(ϕ1,x2) ,

(
ϕ
(i)
1 ,x

(i)
2

))
(vc)i

= (1) + (2),

(4.6.2)

where ϕ1 ∼ N
(
µc
1, (σ

c
1)

2
)
, and

vc =
(
C2

(
X

obs

2 ,X
obs

2

))−1
[
yobs2 − h2

(
X

obs

2

)T
β̂2

]
. (4.6.3)

Aording to the assumptions of Proposition 4.3.1 the i-th, i ∈ {1, . . . , p2}, omponent of

basis funtion h2 an be written:

(h2 (ϕ1,x2))i = mi(x2) g (ϕ1, ai, 0, 0) ,

with mi deterministi funtions and g (x, a, b, c) := xa exp
(
bx+ cx2

)
, (a, b, c) ∈ N× R

2
.

In the same way, the ovariane funtion C2 is in the squared exponential lass, so aording

to Eq. (4.2.5), it an be written:

C2

(
(ϕ1,x2) ,

(
ϕ

′

1,x
′

2

))
= σ2

2k

(
ϕ1 − ϕ′

1

ℓϕ1

) d2∏

i=1

k

(
(x2)i − (x′

2)i
ℓi

)
,

with k : x 7→ exp
(
−x2

)
. So, one an write that:

C2

(
(ϕ1,x2) ,

(
ϕ

′

1,x
′

2

))
= k

(
ϕ1 − ϕ′

1

ℓϕ1

)
ℓ (x2 − x′

2) ,

= exp

(
−
(
ϕ′
1

ℓϕ1

)2
)
g

(
ϕ1, 0,

2ϕ′
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)
ℓ (x2 − x′

2) ,

where ℓ is a deterministi funtion de�ned by:

ℓ
(
x2 − x′

2

)
= σ2

2

d2∏

i=1

exp

(
−
(
(x2)i − (x′

2)i
ℓi

)2
)
, (4.6.4)

with ℓi, 1 ≤ i ≤ d2 the orrelation lengths assoiated with x2.

So, the terms (1) and (2) of the equation (4.6.2) an be written:

(1) =
p2∑
i=1

g (ϕ1, ai, 0, 0) mi(x2)
(
β̂2

)
i
,

(2) =
n2∑
i=1

(vc)i ℓ
(
x2 − x

(i)
2

)
exp


−

(
ϕ
(i)
1

ℓϕ1

)2

 g

(
ϕ1, 0,

2ϕ
(i)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)
.
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Given that mi and ℓ are deterministi funtions, β̂2, vc, x
(i)
2 and x2 are deterministi vetors,

and the ϕ
(i)
1 are deterministi real numbers, one has:

E [(1)] =

p2∑

i=1

E [g (ϕ1, ai, 0, 0)] mi(x2)
(
β̂2

)
i
,

E [(2)] =

n2∑

i=1

(vc)i ℓ
(
x2 − x

(i)
2

)
exp


−

(
ϕ
(i)
1

ℓϕ1

)2

E

[
g

(
ϕ1, 0,

2ϕ
(i)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)]
.

Aording to Lemma 4.3.1, and the fat that 1 − 2

(−1

ℓ2ϕ1

)
(σc

1)
2 > 0, the means E [(1)] and

E [(2)] an be alulated analytially, and onsequently, the mean E [µc
2 (ϕ1,x2)] an be al-

ulated analytially, and its expression is:

E [µc
2 (ϕ1,x2)] =

p2∑
i=1

E [g (ϕ1, ai, 0, 0)] mi(x2)
(
β̂2

)
i

+
n2∑
i=1

(vc)i ℓ
(
x2 − x

(i)
2

)
exp


−

(
ϕ
(i)
1

ℓϕ1

)2

E

[
g

(
ϕ1, 0,

2ϕ
(i)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)]
,

(4.6.5)

where vc is de�ned by Eq. (4.6.3), ℓ (x2 − x′
2) is de�ned by Eq. (4.6.4), ℓϕ1 is the orrelation

length assoiated with ϕ1 and β̂2 is given by Eq. (4.2.9).

Seond moment

From Eq. (4.2.11), (4.2.13) and (4.6.3), one has:

µc
2 (ϕ1,x2) = h2 (ϕ1,x2)

T β̂2 + C2

(
(ϕ1,x2) ,X

obs

2

)
vc,

and:

(σc
2 (ϕ1,x2))

2 = C2 ((ϕ1,x2) , (ϕ1,x2))− C2

(
(ϕ1,x2) ,X

obs

2

) (
Robs

2

)−1
C2

(
X

obs

2 , (ϕ1,x2)
)
+

[
h2 (ϕ1,x2)

T − C2

(
(ϕ1,x2) ,X

obs

2

) (
Robs

2

)−1
h2

(
X

obs

2

)T] [
h2

(
X

obs

2

) (
Robs

2

)−1
h2

(
X

obs

2

)T]−1

[
h2 (ϕ1,x2)− h2

(
X

obs

2

) (
Robs

2

)−1
C2

(
X

obs

2 , (ϕ1,x2)
)]

,

where Robs

2 = C2

(
X

obs

2 ,X
obs

2

)
.

Hene, it an be written that:

(µc
2 (ϕ1,x2))

2 + (σc
2 (ϕ1,x2))

2 = σ2
2 + h2 (ϕ1,x2)

T Ahh2 (ϕ1,x2)︸ ︷︷ ︸
(1)

+C2

(
(ϕ1,x2) , x̄

obs

2

)
Ac C2

(
x̄obs2 , (ϕ1,x2)

)
︸ ︷︷ ︸

(2)

+C2

(
(ϕ1,x2) , x̄

obs

2

)
Ach h2 (ϕ1,x2)︸ ︷︷ ︸

(3)

,

(4.6.6)
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where:

Ah = β̂2β̂
T

2 +

(
h2

(
X

obs

2

) (
Robs

2

)−1
h2

(
X

obs

2

)T)−1

,

Ac = vcv
T
c −

(
Robs

2

)−1
+
(
Robs

2

)−1
h2

(
X

obs

2

)T [
h2

(
X

obs

2

) (
Robs

2

)−1
h2

(
X

obs

2

)T]−1

h2

(
X

obs

2

) (
Robs

2

)−1
,

Ach = 2vcβ̂
T

2 − 2
(
Robs

2

)−1
h2

(
X

obs

2

)T [
h2

(
X

obs

2

) (
Robs

2

)−1
h2

(
X

obs

2

)T]−1

.

(4.6.7)

Aording to the assumptions of Proposition 4.3.1 and to lemma 4.3.2, the terms (1), (2) and
(3) of the equation (4.6.6) an be rewritten:

(1) =

p2∑

i=1

p2∑

j=1

(Ah)ij (h2 (ϕ1,x2))i (h2 (ϕ1,x2))j

=

p2∑

i=1

p2∑

j=1

(Ah)ij mi (x2)mj (x2) g (ϕ1, ai, 0, 0) g (ϕ1, aj , 0, 0)

=

p2∑

i=1

p2∑

j=1

(Ah)ij mi (x2)mj (x2) g (ϕ1, ai + aj , 0, 0) ,

(2) =

n2∑

i=1

n2∑

j=1

(Ac)ij C2

(
(ϕ1,x2) ,

(
ϕ
(i)
1 ,x

(i)
2

))
C2

(
(ϕ1,x2) ,

(
ϕ
(j)
1 ,x

(j)
2

))

=

n2∑

i=1

n2∑

j=1

(Ac)ij ℓ
(
x2 − x

(i)
2

)
ℓ
(
x2 − x

(j)
2

)
exp


−

(
ϕ
(i)
1

)2
+
(
ϕ
(j)
1

)2

ℓ2ϕ1




×g

(
ϕ1, 0,

2ϕ
(i)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)
g

(
ϕ1, 0,

2ϕ
(j)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)

=

n2∑

i=1

n2∑

j=1

(Ac)ij ℓ
(
x2 − x

(i)
2

)
ℓ
(
x2 − x

(j)
2

)
exp


−

(
ϕ
(i)
1

)2
+
(
ϕ
(j)
1

)2

ℓ2ϕ1




×g

(
ϕ1, 0, 2

ϕ
(i)
1 + ϕ

(j)
1

ℓ2ϕ1

,
−2

ℓ2ϕ1

)
,

(3) =

n2∑

i=1

p2∑

j=1

(Ach)ij C2

(
(ϕ1,x2) ,

(
ϕ
(i)
1 ,x

(i)
2

))
(h2 (ϕ1,x2))j

=

n2∑

i=1

p2∑

j=1

(Ach)ij ℓ
(
x2 − x

(i)
2

)
exp


−

(
ϕ
(i)
1

ℓϕ1

)2

mj (x2) g

(
ϕ1, 0,

2ϕ
(i)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)

×g (ϕ1, aj , 0, 0)

=

n2∑

i=1

p2∑

j=1

(Ach)ij ℓ
(
x2 − x

(i)
2

)
exp


−

(
ϕ
(i)
1

ℓϕ1

)2

mj (x2) g

(
ϕ1, aj ,

2ϕ
(i)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)
.
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Given that mi and ℓ are deterministi funtions, x2 and x
(i)
2 are deterministi vetors, Ah,

Ac and Ach deterministi matries, and ϕ
(i)
1 and ℓϕ1 are deterministi real numbers, one an

write:

E [(1)] =

p2∑

i=1

p2∑

j=1

(Ah)ij mi (x2)mj (x2)E [g (ϕ1, ai + aj , 0, 0)] ,

E [(2)] =

n2∑

i=1

n2∑

j=1

(Ac)ij ℓ
(
x2 − x

(i)
2

)
ℓ
(
x2 − x

(j)
2

)
exp


−

(
ϕ
(i)
1

)2
+
(
ϕ
(j)
1

)2

ℓ2ϕ1




E

[
g

(
ϕ1, 0, 2

ϕ
(i)
1 + ϕ

(j)
1

ℓ2ϕ1

,
−2

ℓ2ϕ1

)]
,

E [(3)] =

n2∑

i=1

p2∑

j=1

(Ach)ij ℓ
(
x2 − x

(i)
2

)
exp


−

(
ϕ
(i)
1

ℓϕ1

)2

mj (x2)E

[
g

(
ϕ1, aj ,

2ϕ
(i)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)]
.

Hene, aording to the lemma 4.3.1, the mean E [(1)] an be omputed analytially. In the

same way, aording to the lemma 4.3.1, and the fat that 1 − 4

(−1

ℓ2ϕ1

)
(σc

1)
2 > 0 and 1 −

2

(−1

ℓ2ϕ1

)
(σc

1)
2 > 0, the means E [(2)] and E [(3)] an be alulated analytially. Consequently,

the mean E

[
(µc

2 (ϕ1,x2))
2 + (σc

2 (ϕ1,x2))
2
]
an be alulated analytially, and its expression

is:

E

[
(µc

2 (ϕ1,x2))
2 + (σc

2 (ϕ1,x2))
2
]
= σ2

2 +

p2∑

i=1

p2∑

j=1

(Ah)ij mi (x2)mj (x2)E [g (ϕ1, ai + aj, 0, 0)]

+

n2∑

i=1

n2∑

j=1

(Ac)ij ℓ
(
x2 − x

(i)
2

)
ℓ
(
x2 − x

(j)
2

)
exp


−

(
ϕ
(i)
1

)2
+
(
ϕ
(j)
1

)2

ℓ2ϕ1




×E

[
g

(
ϕ1, 0, 2

ϕ
(i)
1 + ϕ

(j)
1

ℓ2ϕ1

,
−2

ℓ2ϕ1

)]

+

n2∑

i=1

p2∑

j=1

(Ach)ij ℓ
(
x2 − x

(i)
2

)
mj (x2) exp


−

(
ϕ
(i)
1

ℓϕ1

)2

E

[
g

(
ϕ1, aj ,

2ϕ
(i)
1

ℓ2ϕ1

,
−1

ℓ2ϕ1

)]
,

(4.6.8)

where Ah, Ac and Ach are de�ned in Eq. (4.6.7), vc is de�ned in Eq. (4.6.3), ℓ (x2 − x′
2) is

de�ned by Eq. (4.6.4), ℓϕ1 is the orrelation length assoiated with ϕ1 and β̂2 is given by Eq.

(4.2.9).

From the two previous paragraphs and Proposition 4.2.1, it an be inferred that, if verifying

the assumptions of Proposition 4.3.1, then the �rst and the seond moments of Y c
nest

(x1,x2)
an be alulated analytially.
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4.6.5 Proof of Proposition 4.3.2

If Y c
nest

(x1,x2) = Y c
2 (Y

c
1 (x1),x2) where Y c

i = µc
i + εci , ε

c
i ∼ GP (0, Cc

i ) , i ∈ {1, 2}, then if εc1
is small enough, the proess Y c

nest

(x1,x2) an be linearized:

Y c
nest

(x1,x2) = µc
2(µ

c
1(x1) + εc1(x1),x2) + εc2(µ

c
1(x1) + εc1(x1),x2),

≈ µc
2(µ

c
1(x1),x2) +

∂µc
2

∂ϕ1
(µc

1(x1),x2)ε
c
1(x1) + εc2(µ

c
1(x1),x2).

So, one an write:

Y c
nest

(x1,x2) ≈ µc
nest

(x1,x2) + εc
nest

(µc
1(x1),x2), (4.6.9)

with

µc
nest

(x1,x2) = µc
2(µ

c
1(x1),x2), (4.6.10)

and

εc
nest

=
∂µc

2

∂ϕ1
(µc

1(x1),x2)ε
c
1(x1) + εc2(µ

c
1(x1),x2). (4.6.11)

εc1 and εc2 are independent entered Gaussian proesses, so εc
nest

is a entered Gaussian proess,

whose ovariane funtion, Cc
nest

, is given by:

Cc
nest

((x1,x2), (x
′
1,x

′
2)) = Cc

2((µ
c
1(x1),x2), (µ

c
1(x

′
1),x

′
2))

+
∂µc

2

∂ϕ1
((µc

1(x1),x2))
∂µc

2

∂ϕ1

(
(µc

1(x
′
1),x

′
2)
)
Cc
1(x1,x

′
1).

(4.6.12)

From Eqs (4.6.9), (4.6.10), (4.6.11) and (4.6.12), it an be inferred that the preditor of the

nested ode an be de�ned as a Gaussian proess with mean funtion µc
nest

de�ned by Eq.

(4.6.10), and ovariane funtion Cc
nest

de�ned by Eq. (4.6.12).

Moreover, it follows from Eq. (4.2.11) that:

∂µc
2

∂ϕ1
(ϕ1,x2) =

(
∂h2

∂ϕ1
(ϕ1,x2)

)T

β̂2

+
∂Cc

2

∂ϕ1

(
(ϕ1,x2) ,X

obs

2

)(
C2

(
X

obs

2 ,X
obs

2

))−1
[
yobs2 − h2

(
X

obs

2

)T
β̂2

]
.

(4.6.13)

4.6.6 Proof of Corollary 4.3.3

Expliit mean

Aording to Eq. (4.2.11), if hi and Ci an be omputed expliitly, then µc
i an be omputed

expliitly. Therefore, aording to Eq. (4.3.4), the mean of the Gaussian linearized preditor

an be omputed expliitly.

Expliit variane

Aording to Eq. (4.2.13), if hi and Ci an be omputed expliitly, then Cc
i an be omputed

expliitly.

Aording to Eq. (4.6.13), if h2, C2 and the derivatives

∂h2

∂ϕ1
(ϕ1,x2) and

∂C2

∂ϕ1

(
(ϕ1,x2) ,X

obs

2

)
an be omputed expliitly, then the derivative of µc

2 with respet to

ϕ1 an be omputed expliitly.
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Therefore, aording to Eq. (4.3.4), the variane of the Gaussian linearized preditor an be

omputed expliitly.

Hene it follows that, if hi and Ci and the derivatives

∂h2

∂ϕ1
(ϕ1,x2) and

∂C2

∂ϕ1

(
(ϕ1,x2) ,X

obs

2

)
an be omputed expliitly, then the mean and the variane of the

Gaussian linearized preditor of the nested ode an be omputed expliitly.

Moreover, the derivative

∂C2

∂ϕ1

(
(ϕ1,x2) ,X

obs

2

)
an be omputed expliitly if C2 is in the

squared exponential or the Matérn

5

2
lass, and the assoiated expliit formulas are given in

what follows.

Matérn

5

2
lass

If one denotes by:

δ = d
(
(ϕ1,x2) ,

(
ϕ

′

1,x
′

2

))

=

√√√√√
(
ϕ1 − ϕ

′

1

)2

ℓ2ϕ1

+

d2∑

i=1

((x2)i − (x2)i)
2

ℓ2i
,

(4.6.14)

then, aording to Eq. (4.2.7), the Matérn kernel an be rewritten:

K 5
2
(δ) =

(
1 +

√
5δ +

5

3
δ2
)
exp

(
−
√
5δ
)
. (4.6.15)

Moreover, one has:

∂δ

∂ϕ1
=

ϕ1 − ϕ
′

1

ℓ2ϕ1

1

δ
, (4.6.16)

and

∂K 5
2

∂δ
(δ) = exp

(
−
√
5δ
) [

−
√
5

(
1 +

√
5δ +

5

3
δ2
)
+

√
5 +

10

3
δ

]

= exp
(
−
√
5δ
) [

−5δ −
√
5
5

3
δ2 +

10

3
δ

]

= −5

3
δ
(
1 +

√
5δ
)
exp

(
−
√
5δ
)
,

(4.6.17)

By noting that in the ase of a Matérn

5

2
kernel:

∂C2

∂ϕ1
=

∂K 5
2

∂δ

∂δ

∂ϕ1
,

the derivative of C2 with respet to ϕ1 is:

∂C2

∂ϕ1

(
(ϕ1,x2) ,

(
ϕ

′

1,x
′

2

))
= −5

3

ϕ1 − ϕ
′

1

ℓ2ϕ1

[
1 +

√
5 d
(
(ϕ1,x2) ,

(
ϕ

′

1,x
′

2

))]

exp
[
−
√
5 d
(
(ϕ1,x2) ,

(
ϕ

′

1,x
′

2

))]
.

(4.6.18)
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Squared exponential lass

Aording to Eq. (4.2.5), the squared exponential kernel an be rewritten:

K
Gauss

(δ) = exp
(
−δ2

)
. (4.6.19)

Hene, we have:

∂K
Gauss

∂δ
(δ) = −2δ exp

(
−δ2

)
. (4.6.20)

By noting that, in the ase of a squared exponential kernel:

∂C2

∂ϕ1
=

∂K
Gauss

∂δ

∂δ

∂ϕ1
,

the derivative of C2 with respet to ϕ1 is:

∂C2

∂ϕ1

(
(ϕ1,x2) ,

(
ϕ

′

1,x
′

2

))
= −2

ϕ1 − ϕ
′

1

ℓ2ϕ1

exp

[
−d
(
(ϕ1,x2) ,

(
ϕ

′

1,x
′

2

))2]
. (4.6.21)

87



4.6. PROOFS

88



Chapter 5

Gaussian proess regression of two

nested odes with funtional outputs

In this hapter, we fous on the ase of two nested odes with high dimensional vetorial

outputs. Moreover, we assume that observations of the intermediary variable are available.

We therefore onsider the following system:

x1 →

x2

y1(x1)

ց
ր y

nest

(x
nest

) := y2(y1(x1),x2), (5.0.1)

where x1, x2 and x
nest

are low dimensional vetors and y1, y2 and y
nest

are high dimensional

vetors.

The work presented in this hapter will be published in the near future. An innovative dimen-

sion redution method of the intermediary high dimensional vetorial variable is presented.

Moreover, a Gaussian preditor of y
nest

, whih takes into aount the intermediary observa-

tions of y1, is proposed.

5.1 Introdution

The role of simulation for the design and the erti�ation of omplex systems is inreasing.

The design and the erti�ation of omplex systems involve methods like risk analysis or

sensitivity analysis [Sobol, 2001℄. However, suh methods require the evaluation of the output

of the studied system at a large number of input points. Therefore, if the omputer odes are

ostly, the use of surrogate models beomes neessary.

In this hapter we fous on a hain of two odes with funtional outputs, whih are funtions

of time. By funtional output, we mean high dimensional vetorial output and not in�nite

dimensional output [Pinski et al., 2015℄. The funtional output of the �rst ode is one of the

inputs of the seond ode. Several hallenges are posed by suh an appliation:

• there are two odes,

• the two odes are omputationally expensive, with di�erent omputational osts,

• the seond ode has a funtional input and a funtional output,

• the two odes are oupled by a funtional variable.
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We want to perform a sensitivity analysis of the nested ode output with respet to its inputs.

Given the high omputational ost of the odes, our �rst objetive is to emulate the nested

ode output.

In the same manner as in the previous hapters (see Chapters 3 and 4), we fous on the

Gaussian Proess regression for the onstrution of this emulator. However, the existing

works on Gaussian proess regression generally deal with a single ode or regard a hain or a

network of odes as a single ode. Besides, Chapter 4 only treats the ase of two nested odes

whih are oupled by a salar intermediary variable.

Regarding the Gaussian proess surrogate modeling of a ode with a funtional output,

the existing works generally deal with low dimensional vetorial inputs. Two approahes exist.

The �rst one is based on a dimension redution of the funtional output (through a Prinipal

Components Analysis for example) and the independent surrogate modeling of the projeted

omponents [Friker et al., 2013; Higdon et al., 2008℄. The seond one is based on a tensorized

(Kroneker) struture of the ovariane funtion of the Gaussian proess modeling the ode,

whih means a separation between the time (or the indies of the funtional output) and

the other inputs [Hung et al., 2015; Rougier, 2008; Williams et al., 2006; Conti et al., 2009;

Conti and O'Hagan, 2010℄. Following Perrin [2018℄, the seond approah will be hosen in

this hapter.

Besides, onerning the Gaussian proess surrogate modeling of a ode with a funtional

input, the existing approahes generally rely on a projetion of the funtional input on a

basis and onsider a salar output. The projetion an be based on Partial Least Squares

[Nanty et al., 2017℄ or Ative Subspaes [Russi, 2010; Constantine et al., 2014℄. However, the

�rst approah annot take into aount additional information about the ode, like ausality.

Indeed, in this hapter, the seond ode is ausal, whih means that the output at a given time

depends only on the funtional input at previous times. The seond approah requires the

knowledge of the derivatives of the ode's output, but this information is not always available.

In this hapter, we propose a method for the dimension redution of the funtional input of

a ode whih is adapted to the output of the ode. The proposed method enables to take

into aount additional information about the ode, like ausality, and does not require the

knowledge of the derivatives of the ode.

The ontributions of this hapter are the following. First, we propose a method for the

dimension redution of the funtional input of a ode whih is adapted to the output of the

ode. It does not require the knowledge of the derivatives of the ode and an take into aount

additional information about the ode, like ausality. Seond, we propose an extension of the

work presented in Chapter 4 to the ase of two odes oupled by a funtional intermediary

variable. The proposed method enables to obtain a preditor of the nested ode whih an

take into aount observations of the funtional intermediary variable or observations of one

of the two odes only. Moreover, the obtained preditor of the nested ode is Gaussian with

fast to ompute onditioned mean and variane. Finally, we propose sequential design riteria

[Jones et al., 1998; Piheny et al., 2010; Bet et al., 2012℄ whih are suited for the improvement

of the auray of the preditor of two nested odes with a funtional intermediary variable.

In partiular, the nested struture of the odes is exploited by adding observations of one or

the other ode.

The proposed dimension redution method is presented in Setion 5.2 and ompared to other

existing dimension redution tehniques. Setion 5.3 details the hosen approah for the

surrogate modeling of a ode with low dimensional vetorial inputs and a funtional output.

Setion 5.4 ontains the desription of the Gaussian proess prediting the nested ode output

and the assoiated sequential designs. Finally, the methods are applied to a numerial example

90



5.2. DIMENSION REDUCTION OF THE FUNCTIONAL INPUT OF A CODE

in Setion 5.5.

Note that the proofs of the results presented in the remainder of this hapter are given in

Setion 5.8.

5.2 Dimension redution of the funtional input of a ode

In this setion, we study the dimension redution of the funtional input of a ode with

funtional input and output. First, some existing methods are outlined. Then a dimension

redution tehnique based on a linear model between the funtional input and output of the

ode is proposed.

In this hapter, the following additional notation will be used:

• Xc = INt −X where INt denotes the identity matrix and X is a (Nt ×Nt)-dimensional

matrix.

5.2.1 Formalism

In this hapter, a system S, haraterized by low dimensional vetorial inputs x
nest

∈ X
nest

,

is onsidered. The output of the system is a time varying funtion and it is numerially

represented by a very high dimensional vetor. If we denote by Nt the dimension of the vetor,

the output of the system an be assoiated with the deterministi funtion y
nest

: X
nest

→ R
Nt
.

Moreover, we fous on the ase where the deterministi funtion y
nest

an be broken down

into two nested omputer odes with funtional outputs, whih are haraterized by the

deterministi funtions y1 : X1 → R
Nt

and y2 : RNt × X2 → R
Nt
. The nested ode an

therefore be de�ned as follows:

x1 →

x2

y1(x1)

ց
ր y

nest

(x
nest

) := y2(y1(x1),x2), (5.2.1)

where x
nest

:= (x1,x2) ∈ X
nest

= X1 × X2, X1 and X2 are subsets of R
d1

and R
d2
, and d1

and d2 are two non-negative integers. Besides, we denote by µX1 the probability measure

assoiated with X1 and µX2 the probability measure assoiated with X2.

The two odes are omputationally expensive. Sine we want to perform a sensitivity analysis

of the nested ode output with respet to its inputs, we aim therefore at onstruting an

emulator of the output of the nested ode, whih has to be aurate on the most likely regions

of the input domain.

Besides, a set of n observations of the nested ode is available. The observations of the inputs

are drawn aording to µX1 × µX2 . The sets of observations of the inputs and output of the

�rst ode are denoted by:

X init

1 :=
(
x
(1)
1 , . . . ,x

(n)
1

)
,

Y init

1 :=
(
y
(1)
1 = y1

(
x
(1)
1

)
; . . . ;y

(n)
1 = y1

(
x
(n)
1

))
,

(5.2.2)

where X init

1 is a (n× d1)-dimensional matrix and Y init

1 is a (Nt × n)-dimensional matrix. The

observations X init

1 are independently drawn aording to µX1 .

The sets of observations of the inputs and output of the seond ode are denoted by:

X init

2 :=
(
x
(1)
2 , . . . ,x

(n)
2

)
,

Y init

2 :=
(
y
(1)
2 = y2

(
y
(1)
1 ,x

(1)
2

)
; . . . ;y

(n)
2 = y2

(
y
(n)
1 ,x

(n)
2

))
,

(5.2.3)
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where X init

2 is a (n× d2)-dimensional matrix and Y init

2 is a (Nt × n)-dimensional matrix. The

observations X init

2 are independently drawn aording to µX2 .

As mentioned in 5.1, several hallenges are raised by the objetive of emulating the studied

system. One of these hallenges is the Gaussian proess regression of the seond ode, whih

has a funtional input and a funtional output. Moreover, the derivatives of the ode's output

are unknown and few observations are available ompared to the dimension of the funtional

variables. Given that the existing methods for the surrogate modeling of a ode with a

funtional output are generally suited for the ase of low dimensional vetorial inputs, our

�rst objetive is to redue the dimension of the funtional input of the seond ode in order

to perform a Gaussian proess regression of this ode.

As explained in Chapter 2, two methods of dimension redution oupled with a Gaussian

proess regression are ommonly used. The �rst one is based on Partial Least Squares (see

Nanty et al. [2017℄ and Setion 2.1) and the seond one is based on Ative Subspaes (see

[Constantine et al., 2014℄ and Setion 2.1). The �rst one annot easily take into aount

additional information about the ode, like ausality. The seond one requires the knowledge

of the �rst order derivatives of the output of the ode, whih are, in our ase, not available.

Thanks to the dimension redution of the funtional input of the seond ode, the surrogate

modeling of this ode an be performed using an existing framework for the surrogate modeling

of a ode with low dimensional vetorial inputs and a funtional output (see Conti et al. [2009℄

and Setion 2.2).

In this setion, we �rst outline the formerly introdued dimension redution tehniques, then

we propose an innovative method for the dimension redution of a funtional input whih is

adapted to the output. It is based on a linear approximation of this output. In other words,

we aim at estimating a (Nt ×Nt)-dimensional matrix Z, with rankm ≪ Nt, whih minimizes:

∫

X1×X2

‖y2 (y1 (x1) ,x2)− y2 (y1 +Z (y1 (x1)− y1) ,x2)‖2 dµX1 (x1) dµX2 (x2) , (5.2.4)

where y1 =

∫

X1

y1 (x1) dµX1 (x1).

5.2.2 Dimension redution of the funtional input only

The Prinipal Components Analysis (PCA) (see Jakson [2003℄ and Setion 2.1) is widely used

for dimension redution. With this method, the dimension redution of the high-dimensional

variable is based on the eigendeomposition of its ovariane matrix.

This dimension redution method takes into aount only the funtional input of the ode.

In our framework, the output of the �rst ode is also the funtional input of the seond ode.

The ovariane matrix whih has to be omputed is thus ov (y1). It an be estimated from

the set of n observations of the funtional output y1 of the �rst ode:

RY init

1
=

1

n− 1

n∑

i=1

(
y
(i)
1 − Y init

1

)(
y
(i)
1 − Y init

1

)T
, (5.2.5)

where y
(i)
1 are introdued in Eq. (5.2.2), and

Y init

1 =
1

n

n∑

i=1

y
(i)
1 (5.2.6)

is the mean trajetory of the observations of y1.
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However, given the high omputational ost of the �rst ode, few observations are available.

The number of observations n is therefore small ompared to the number of disretization steps

Nt. The estimate of the (Nt ×Nt)-dimensional ovariane matrix with the n observations may

be not very aurate. We propose therefore another way to estimate the ovariane matrix of

the funtional output of the �rst ode.

Indeed, if a preditor of the �rst ode output is available, then, following the Kriging Believer

approah of Ginsbourger et al. [2010℄, the ovariane matrix an be estimated from the pre-

dited output at a large number N1 of input points independently drawn aording to µX1 .

The preditor an be onstruted from the set of n observations of the �rst ode: X init

1 and

Y init

1 .

This estimate an be written:

Rµ1
=

1

N1 − 1

N1∑

i=1

(
µ
(i)
1 − µ1

)(
µ
(i)
1 − µ1

)T
, (5.2.7)

where µ
(i)
1 = µ1

(
x̃
(i)
1

)
is the mean of a Gaussian proess emulator of y1 at input site x̃

(i)
1 .

The input points {x̃(i)
1 , 1 ≤ i ≤ N1} are independently drawn aording to µX1 and

µ1 =
1

N1

N1∑

i=1

µ
(i)
1 (5.2.8)

is the mean trajetory of the assoiated predited trajetories.

The estimation of the ovariane matrix from an inreased number of paths ompared to

the initial set of observations enables to inrease the rank of the estimator of the ovariane

matrix. We observed on a series of test ases (see Setion 5.5.2) that this proedure ould

lead to projetion bases whih are more aurate.

5.2.3 Partial Least Squares regression

Partial Least Squares regression was introdued by Wold [1966℄ (see Setion 2.1) and an be

used for the redution of the dimension of a high dimensional input of a ode by taking into

aount the ovariane between the high dimensional input and the output. As mentioned in

Höskuldsson [1988℄, the projetion basis an be de�ned using the singular value deomposition

of the ovariane matrix between the inputs and the output. In other words, if we denote by

U
(
Ry1y2

)
the matrix whose olumns gather the left-singular vetors of Ry1y2

= ov (y1,y2)
, then the projetion basis is de�ned by the olumns of U

(
Ry1y2

)
. By onstrution, this

projetion basis is adapted to the output of the ode.

Finally, the m �rst projeted variables are given by Um

(
Ry1y2

)T
y1 where Um

(
Ry1y2

)
gath-

ers the m left-singular vetors whih are assoiated with the m largest singular values of

Ry1y2
.

Note that the ovariane matrix between y1 and y2 an be estimated from the set of available

observations:

RY init

1 Y init

2
=

1

n− 1

n∑

i=1

(
y
(i)
1 − Y init

1

)(
y
(i)
2 − Y init

2

)T
, (5.2.9)

where y
(i)
2 are introdued in Eq. (5.2.3) and Y init

2 =
1

n

n∑
i=1

y
(i)
2 is the mean trajetory of the

observations of y2.
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5.2.4 Proposition of a linear model-based dimension redution of the fun-

tional input

In this setion, we propose a method for the dimension redution of the funtional input of a

ode whih:

1. is adapted to the surrogate modeling of the output of the ode,

2. does not require the knowledge of the derivatives of the output,

3. an take into aount additional information about the ode, like ausality.

This dimension redution is based on an approximation of the output of the seond ode

whih is linear with respet to the funtional input.

First, we propose a dimension redution method whih is adapted to a linear model. Then

we propose an approximation of the output of a ausal system by a linear model whih is

haraterized by a small number of parameters.

The following Proposition provides a projetion basis of the funtional input of a linear model,

whih is adapted to output of the model. The ase of a linear model is onsidered and a

dimension redution whih is adapted to the linear model is proposed.

Proposition 5.2.1. If one onsiders:

1. a linear model of the form Axt with A a (Nt ×Nt)-dimensional matrix and xt a zero-

mean Nt-dimensional vetor,

2. a set of Nx observations of xt {x(i)
t , 1 ≤ i ≤ Nx}, whih are gathered in the (Nt ×Nx)-

dimensional matrix Xt,

then the m-rank matrix Z∗
whih minimizes

Nx∑
i=1

∥∥∥Ax
(i)
t −AZx

(i)
t

∥∥∥
2
with respet to Z, is given

by:

Z∗ =
(
ATA

)− 1
2 UmDmV T

m

(
X tX

T
t

)− 1
2 , (5.2.10)

where

(
XtX

T
t

)− 1
2
is the pseudo-inverse of

(
XtX

T
t

) 1
2
,

(
ATA

)− 1
2
is the pseudo-inverse of

(
ATA

) 1
2
, UDV T

is the singular-value deomposition of

(
ATA

) 1
2
(
XtX

T
t

) 1
2
, Um and V m

gather the m �rst olumns of matries U and V , and Dm is a diagonal matrix, whose diagonal

gathers the m highest singular values.

The proof of this Proposition is given in Setion 5.8.

In what follows, we fous on the ase where we approximate the output of the seond ode

with a linear model with respet to its funtional input in order to redue the dimension of

the funtional input aording to the method of Proposition 5.2.1. This linear model is of the

form L (a)y1 where:

L (a) =




a1

a2 a1 0

.

.

.

.

.

.

.

.

.

aNt . . . a2 a1


 , (5.2.11)

and a := (a1, . . . , aNt). Suh a form orresponds to a linear ausal model or �lter. By noting

that L (a)y1 = L (y1)a, an estimation of a an be obtained from the observations:

a∗ = argmin
a∈RNt

n∑

i=1

∥∥∥y(i)
2 − L

(
y
(i)
1

)
a
∥∥∥
2
, (5.2.12)
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where the observations y
(i)
1 are introdued in Eq. (5.2.2) and the observations y

(i)
2 are intro-

dued in Eq. (5.2.3). The vetor a∗
an be estimated from a set of observations of the seond

ode:

a∗ =

(
n∑

i=1

L
(
y
(i)
1

)T
L
(
y
(i)
1

))+ n∑

i=1

L
(
y
(i)
1

)T
y
(i)
2 , (5.2.13)

where

(
n∑

i=1
L
(
y
(i)
1

)T
L
(
y
(i)
1

))+

is the pseudo-inverse of

n∑
i=1

L
(
y
(i)
1

)T
L
(
y
(i)
1

)
.

This linear ausal model is therefore haraterized by a Nt-dimensional vetor only. The

number of parameters to be estimated has been redued from N2
t with a lassial linear

model to Nt with this ausal linear model.

In what follows, we aim at ombining the linear model approximation and the projetion with

a m-rank matrix of Proposition 5.2.1. Suh an approah is similar to Partial Least Squares

regression, beause the dimension redution of the input is adapted to the output. However,

unlike Partial Least Squares Regression, the proposed approah an take into aount the

sparse struture of the linear model of Eq. (5.2.11). Consequently, we propose a two-step

approah: �rst a linear model with a sparse struture is estimated, then a dimension redu-

tion adapted to this linear model is performed. Thus, if A∗ = L (a∗) denotes the matrix

haraterizing the approximated linear model, then, based on Proposition 5.2.1, we an de�ne

the projetion matrix as follows:

Π̂m = V T
mR

− 1
2

µ1
, (5.2.14)

where Rµ1
is de�ned by Eq. (5.2.7), R

− 1
2

µ1
is the pseudo-inverse of R

1
2
µ1

and V m gathers the

m right-singular vetors orresponding to the m highest singular values of

(
(A∗)T A∗

) 1
2
R

1
2
µ1
.

From the previous paragraphs, we an de�ne three funtions of dimension redution rm of the

funtional input of the seond ode:

• for the Prinipal Component Analysis:

rm (y1) = Qm

(
Rµ1

)T
(y1 − µ1) , (5.2.15)

where Qm

(
Rµ1

)
is the (Nt ×m)-dimensional matrix gathering the eigenvetors assoi-

ated with the m highest eigenvalues of Rµ1
, de�ned by Eq. (5.2.7), and µ1 is de�ned

by Eq. (5.2.8),

• for the Partial Least Squares regression:

rm (y1) = Um

(
RY init

1 Y init

2

)T (
y1 − Y init

1

)
, (5.2.16)

where Um

(
RY init

1 Y init

2

)
is the (Nt ×m)-dimensional matrix gathering the left-singular

vetors assoiated with the m highest singular values of RY init

1 Y init

2
, de�ned by Eq.

(5.2.9), and Y init

1 is de�ned by Eq. (5.2.6),

• for the proposed dimension redution method:

rm (y1) = Π̂m (y1 − µ1) , (5.2.17)

with Π̂m de�ned by Eq. (5.2.14).
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The optimal size m of the projetion basis an be estimated using a stepwise forward seletion

riterion (see Setion 1.3 for further details) when onstruting the preditor of the seond

ode.

Besides, it is worth noting that, when omputing the singular values of matries of rank less

than n (the number of observations), only the n �rst singular values (eigenvalues for the

symmetri matries) are non-zero.

In this hapter, we adopt a Gaussian proess regression framework. Thanks to the dimension

redution of the funtional input of the seond ode, the seond ode an be assoiated with

a Gaussian proess whih has a low dimensional vetorial input omprising the projetion of

the funtional input and the inputs x2, and has a funtional output. In the next setion,

we will de�ne the properties of the Gaussian proesses modeling odes with low dimensional

vetorial inputs and a funtional output.

5.3 Gaussian proess regression with low dimensional inputs

and a funtional output

As mentioned above, the surrogate modeling will be performed using the Gaussian proesses

framework proposed in Conti et al. [2009℄ (see Setion 2.2 for further details). The Gaussian

proesses modeling the odes have therefore a tensorized struture, whih means that there is

a separation between the time (or the indies of the funtional output) and the other inputs,

thanks to a Kroneker struture of the ovariane funtion and a spei� struture of the

mean funtion.

As mentioned in the introdution of this hapter, we onsider the following system:

x1 →

x2

y1

ց
ր y2, (5.3.1)

and we aim at emulating (x1,x2) 7→ y2.

In order to ahieve this objetive, we propose the following system of Gaussian proesses:

x1
Y 3−→

x2

ρ := rm (y1)

Y 2

ց
ր

y2, (5.3.2)

and

x1
Y 1−→ y1 (5.3.3)

where rm : RNt 7→ R
m
denotes the projetion funtion of the funtional input of the seond

ode on its redued basis of size m, and Y 1, Y 2 and Y 3 are Gaussian proesses.

The Gaussian proess Y 1 : X1 → R
Nt

will be used for the estimation of the projetion basis

(preisely for the estimation of the ovariane matrix of y1), and for one of the sequential

designs. For further details, the reader an refer to the de�nition of the sequential design

riteria in Setion 5.4.2.

The Gaussian proess Y 3 an be used for the emulation of the funtion x1 7→ rm (y1 (x1)).

The output of the seond ode an be emulated thanks to the Gaussian proess Y 2 : Rm ×
X2 → R

Nt
, whih is indexed by (ρ,x2) ∈ R

m × X2.
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Note that if two outputs of the �rst ode y1 (x1) and y1 (x
′
1) have the same image under rm,

then their predited values under Y 2 are the same, but they an be di�erent under y2.

Note that the oupling of the Gaussian preditors based on the Gaussian proesses Y 3 and

Y 2 will be useful for the predition of the funtion (x1,x2) 7→ y2 (y1 (x1) ,x2), suh that

Y 2 (Y 3 (x1) ,x2) approximates y2 (y1 (x1) ,x2).

To harmonize the notations, we de�ne:

x̄i =

{
x1, if i = 1 or i = 3,
(ρ,x2) , if i = 2,

(5.3.4)

y3 = rm (y1) , (5.3.5)

and

Xi =

{
X1, if i = 1 or i = 3,
R
m × X2, if i = 2.

(5.3.6)

Following Conti et al. [2009℄ (see also Setion 2.2) and its generalization of Universal Kriging

to the multi-output ase, a funtional output yi, i ∈ {1, 2, 3}, an be modeled by a realization

of a Gaussian proess Y i, whose a priori distribution is:

Y i (·) |M i,Rti , Ci ∼ GP (M ihi (·) ,Rti ⊗ Ci (·, ·)) , (5.3.7)

where Y i (x̄i) := (Y i (x̄i, t1) , . . . ,Y i (x̄i, tNt)), M i is a (Nt × pi)-dimensional matrix to be

determined, hi is a vetor of pi basis funtions, Rti is a (Nt ×Nt)-dimensional symmetri non

negative de�nite matrix, to be determined, and Ci is a ovariane funtion on Xi × Xi.

Moreover, a set of observations of the inputs and outputs of the two odes is available. In this

hapter, we onsider the ase where an initial design is drawn aording to the distribution of

the inputs of the nested ode, i.e. µX1 ×µX2 . Then this initial design is sequentially enrihed.

The riteria used for the sequential designs will be de�ned in the following.

The set of n1 observations of the inputs and the funtional output of the �rst ode are denoted

by:

Xobs

1 :=
(
x
(1)
1 , . . . ,x

(n1)
1

)
,

Y obs

1 :=
(
y
(1)
1 = y1

(
x
(1)
1

)
; . . . ;y

(n1)
1 = y1

(
x
(n1)
1

))
,

(5.3.8)

where X
obs

1 is a (n1 × d1)-dimensional matrix, and Y obs

1 a (Nt × n1)-dimensional matrix,

In the same way, the sets of n2 observations of the inputs and the output of the seond ode

are denoted by:

Φ
obs

1 :=
(
ϕ

(1)
1 ; . . . ;ϕ

(n2)
1

)
,

P obs :=
(
ρ(1) = rm

(
ϕ

(1)
1

)
, . . . ,ρ(n2) = rm

(
ϕ

(n2)
1

))
,

Xobs

2 :=
(
x
(1)
2 , . . . ,x

(n2)
2

)
,

Y obs

2 :=
(
y
(1)
2 = y2

(
ϕ

(1)
1 ,x

(1)
2

)
; . . . ;y

(n2)
2 = y2

(
ϕ

(n2)
1 ,x

(n2)
2

))
,

(5.3.9)

where Xobs

2 is a (n2 × d2)-dimensional matrix, P obs

is a (n2 ×m)-dimensional matrix and

Φ
obs

1 and Y obs

1 are (Nt × n2)-dimensional matries. Note that ϕ1 an be the output of the

�rst ode or a predition of the output of the �rst ode.
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Note that at the initial stage, we have:

Xobs

1 = X init

1 ,

Y obs

1 = Y init

1 ,

Φ
obs

1 = Y init

1 ,

Xobs

2 = X init

2 ,

Y obs

2 = Y init

2 ,

(5.3.10)

where X init

1 , Y init

1 are de�ned by Eq. (5.2.2) and X init

2 , Y init

2 are de�ned by Eq. (5.2.3).

Then, the design of experiments an be enrihed thanks to sequential designs and the number

of observations of the two odes an be di�erent.

We an therefore introdue the following notations for the observations of the three studied

funtions:

X
obs

i :=





Xobs

1 , if i = 1 or i = 3,

((
ρ(1),x

(1)
2

)
, . . . ,

(
ρ(n2),x

(n2)
2

))
, if i = 2.

(5.3.11)

Furthermore, the observations of y3 an be de�ned as:

Y obs

3 :=
(
rm

(
y1

(
x
(1)
1

))
, . . . , rm

(
y1

(
x
(n1)
1

)))
, (5.3.12)

where Y obs

3 is a (Nt × n1)-dimensional matrix.

If the prior distribution of M i is an improper uniform distribution on the spae of the

(Nt × pi)-dimensional real-valued matries, the posterior distribution of M i given the ob-

servations is Gaussian, with the following mean:

M̂ i = E
[
M i|Y obs

i ,Rti , Ci

]

= E
[
M i|Y obs

i , Ci

]

= Y obs

i

(
Robs

i

)−1 (
Hobs

i

)T (
Hobs

i

(
Robs

i

)−1 (
Hobs

i

)T)−1
,

(5.3.13)

where Robs

i is a (ni × ni)-dimensional matrix suh that:

(
Robs

i

)
kl
= Ci

(
x̄
(k)
i , x̄

(l)
i

)
, (5.3.14)

where x̄
(k)
i denotes the k-th observation of X

obs

i and Hobs

i is a (ni × pi)-dimensional matrix

whose j-th line is given by hi

(
x̄
(j)
i

)
.

Moreover, one has:

Y obs

i |M i,Rti , Ci ∼ N
(
M iH

obs

i ,Rti ⊗Robs

i

)
. (5.3.15)

Therefore, the matrix Rti an be estimated by maximizing the likelihood of the observations,

as proposed in Perrin [2018℄ (see Setion 2.2 for further details). The estimator is thus:

R̂ti = Rti

(
Y obs

i

)
=

1

ni

(
Y obs

i − M̂ iH
obs

i

) (
Robs

i

)−1
(
Y obs

i − M̂ iH
obs

i

)T
. (5.3.16)

Finally, in the Universal Kriging framework, the onditional distribution of Y i given the

observations is:

Y c
i := Y i|Y obs

i , Ci ∼ GP

(
µc
i , R̂ti ⊗ Cc

i

)
, (5.3.17)
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with:

µc
i (x̄i) = M̂ ihi (x̄i) +

[
Y obs

i − M̂ iH
obs

i

] (
Robs

i

)−1
C
(
X

obs

i , x̄i

)
,

Cc
i

(
x̄i, x̄

′

i

)
= Ci

(
x̄i, x̄

′

i

)
− Ci

(
x̄i,X

obs

i

) (
Robs

i

)−1
Ci

(
X

obs

i , x̄
′

i

)

+ui (x̄i)
T
(
Hobs

i

(
Robs

i

)−1 (
Hobs

i

)T)−1
ui

(
x̄

′

i

)
,

ui (x̄i) = hi (x̄i)−Hobs

i

(
Robs

i

)−1
Ci

(
X

obs

i , x̄i

)
.

(5.3.18)

The predition variane of the funtional output at input x̄i is thus de�ned by:

(σc
i )

2 (x̄i) := diag

(
V
[
Y i (x̄i) |Y obs

i

])
, (5.3.19)

This predition variane an also be written:

(σc
i)

2 (x̄i) = diag

(
R̂ti

(
Y obs

i

))
Cc
i (x̄i, x̄i) ,

= diag

(
R̂ti

(
Y obs

i

))
vi

(
x̄i;X

obs

i

)
,

(5.3.20)

where vi

(
x̄i;X

obs

i

)
= Cc

i (x̄i, x̄i).

Finally, the orrelation funtions Ci are hosen in the parametri family of the Matérn

5

2
orrelation funtions. Sine our objetive is to obtain an aurate predition mean, the

orrelation lengths of the orrelation funtion are estimated by minimizing a Cross Validation

riterion [Dubrule, 1983℄:

ℓ̂i = argmin
ℓi∈Rdi

Tr

(
Y obs

i R−
i (ℓi) diag

(
R−

i (ℓi)
)−2

R−
i (ℓi)

(
Y obs

i

)T)
,

= argmin
ℓi∈Rdi

∥∥∥Y obs

i R−
i (ℓi)diag

(
R−

i (ℓi)
)−1
∥∥∥
2

F
,

(5.3.21)

where:

R−
i (ℓi) =

(
Robs

i (ℓi)
)−1

+
(
Robs

i (ℓi)
)−1 (

Hobs

i

)T (
Hobs

i

(
Robs

i (ℓi)
)−1 (

Hobs

i

)T)−1
Hobs

i

(
Robs

i (ℓi)
)−1

,

(5.3.22)

and Robs

i (ℓi) is based on Eq. (5.3.14) and takes into aount the fat that Ci depends on the

orrelation length ℓi.

Thanks to this matrix-form riterion, the orrelation lengths of the orrelation funtions an

be estimated quikly.

As for the orrelation lengths, the size of the projetion basis assoiated with rm an be hosen

aording to a Cross Validation riterion (see Eq. (5.3.21)) of the form:

m∗ = argmin
m∈{1,...,n}

∥∥∥Y obs

2 R−
2 (m) diag

(
R−

2 (m)
)−1
∥∥∥
2

F
, (5.3.23)

where:

R−
2 (m) =

(
Robs

2 (m)
)−1

+
(
Robs

2 (m)
)−1 (

Hobs

2 (m)
)T

(
Hobs

2 (m)
(
Robs

2 (m)
)−1 (

Hobs

2 (m)
)T)−1

Hobs

2 (m)
(
Robs

2 (m)
)−1

,

(5.3.24)
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where Robs

2 (m) is a (n× n)-dimensional matrix and Hobs

2 (m) is a (p2 × n)-dimensional ma-

trix, suh that:

(
Robs

2 (m)
)
ij
= C2

((
rm

(
ϕ
(i)
1

)
,x

(i)
2

)
,
(
rm

(
ϕ
(j)
1

)
,x

(j)
2

))
, (5.3.25)

and (
Hobs

2 (m)
)
·i
= h2

((
rm

(
ϕ
(i)
1

)
,x

(i)
2

))
. (5.3.26)

It is also worth noting that the hyperparameters of the orrelation funtion C2 have to be

re-estimated for eah value of m. These omputations an be speeded up using the riterion

of Eq. (5.3.21).

From Eq. (5.3.17), it follows that the auray of the Gaussian posterior preditor depends

on the hoie of the set of observations Y obs

i . Consequently, the preditor an be improved

by hoosing an appropriate design.

When one aims at improving the predition auray of a given quantity of interest, a design

riterion based on the integrated predition variane of the quantity of interest is generally

used (see Setion 1.5). However, the omputation of suh a design riterion in one step an

be umbersome, beause of the high number of possible sets. Indeed, if a disrete searh is

performed, the number of possible ombinations is

(Ni

ni

)
, where Ni is the number of andidates.

Moreover, the ovariane funtion of the Gaussian proess is generally not known at the initial

stage and has to be estimated from an initial set of observations of the odes assoiated to

the Gaussian proesses. Then this initial design an be enrihed thanks to sequential design

riteria or Stepwise Unertainty Redution methods [Bet et al., 2012; Piheny et al., 2010℄.

Besides, the hyperparameters of the orrelation funtion Ci of the Gaussian proess an be

re-estimated at eah step from the new set of observations.

Following Bates et al. [1996℄ and Piheny et al. [2010℄, a riterion based on the redution of

the integrated predition variane an be used. Based on Eq. (5.3.19), this riterion an be

written:

x̄new
i = argmin

x̄
∗

i∈Xi

∫

Xi

Tr

(
V
[
Y i (x̄i) |Y obs

i ,yi (x̄
∗
i )
])

j
dµ

Xi
(x̄i) , (5.3.27)

where

µ
Xi

:=





µX1 , if i = 1 or i = 3,

µρ × µX2 , if i = 2,
(5.3.28)

with µρ denoting the probability measure over R
m
assoiated with the distribution of rm (y1 (x1))

under µX1 . This probability measure is unknown, beause the distribution of y1 (x1) under
µX1 is not known. However, draws aording to µρ an be obtained by drawing independent

points aording to µX1 and then onsidering the image of these points under µc
3, whih is

de�ned by Eq. (5.3.18).

Note that yi (x̄
∗
i ) is not known. In order to ompute the design riterion, a Kriging Believer

approah [Ginsbourger et al., 2010℄ an be used, as mentioned in the following proposition.

Moreover, the Proposition is based on the simpli�ations presented in the Lemma 1.

Lemma 1. One has:

E
[
M i|{Y obs

i ,Y i (x̄
∗
i ) = µc

i (x̄
∗
i )}, Ci

]
= E

[
M i|Y obs

i , Ci

]
. (5.3.29)

and

Rti

(
Y obs

i ,µc
i (x̄

∗
i )
)
=

ni

ni + 1
Rti

(
Y obs

i

)
, (5.3.30)
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where Rti

(
Y obs

i

)
is de�ned by Eq. (5.3.16)

The proof of this lemma an be found in Setion 5.8.

Proposition 5.3.1. In the Kriging Believer framework of Ginsbourger et al. [2010℄, the ri-

terion of Eq. (5.3.27) an be written:

x̄new
i = argmin

x̄
∗

i∈Xi

∫

Xi

vi

(
x̄i;X

obs

i , x̄∗
i

)
dµ

Xi
(x̄i) , (5.3.31)

where vi

(
x̄i;X

obs

i , x̄∗
i

)
is de�ned by Eq. (5.3.20), with X

obs

i de�ned by Eq. (5.3.11).

The proof of this Proposition is in Setion 5.8.

Besides, the integral an be omputed using a Monte-Carlo method. Independent points

x̄i are drawn aording to µ
Xi
, the funtion vi

(
x̄i;X

obs

i , x̄∗
i

)
is omputed at these points

and �nally an estimate of the integral is obtained by omputing the empirial mean of these

omputed outputs of vi.
Now that a preditor of all the studied funtions an be de�ned, we will study the surrogate

modeling of the nested ode.

5.4 Surrogate modeling of the nested ode

In this setion, we propose a preditor of the nested ode whih an take into aount all the

available observations. This preditor is obtained through the oupling of preditors of the

two nested odes. We also de�ne sequential design riteria aiming at improving the predition

auray of the output of the nested ode. Moreover, an adaptation of the oupling of the

preditors is proposed, in order to obtain a Gaussian preditor of the output of the nested

ode.

5.4.1 A Gaussian preditor of the nested ode thanks to a linearization of

the oupling of two preditors

In the previous setion, two Gaussian preditors were obtained:

• Y c
2 : R

m × R
d2 → R

Nt
,

• Y c
3 : R

d1 → R
m
.

We therefore propose the following preditor of (x1,x2) 7→ y2 (y1 (x1) ,x2):

Y c
nest

(x1,x2) := Y c
2 (Y

c
3 (x1) ,x2) . (5.4.1)

with Y c
2 and Y c

3 de�ned by Eq. (5.3.17).

Proposition 5.4.1. For all (x1,x2) ∈ X1 × X2, if ξ ∼ N
(
0, R̂t3

)
, then:

E [Y c
nest

(x1,x2)] = E
[
µc
2(µ

c
3(x1) + σc

x3
(x1)ξ,x2)

]
, (5.4.2)

E

[
Y c

nest

(x1,x2) (Y
c
nest

(x1,x2))
T
]
= E

[
µc
2(µ

c
1(x1) + σc

x1
(x1)ξ,x2) µ

c
2(µ

c
1(x1) + σc

x1
(x1)ξ,x2)

T

+ {σc
x2
(µc

1(x1) + σc
x1
(x1)ξ,x2)}2R̂t2

]
,

(5.4.3)

where σc
x1
(x1) =

√
Cc
1(x1,x1) and σc

x2
(x2) =

√
Cc
2(x2,x2).
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The proof of this Proposition is in Setion 5.8.

Note that the omputation of the two �rst moments of the oupling of the preditors involves

the omputation of two m-dimensional integrals. This omputation an be performed using

Monte-Carlo methods [Baker, 1977℄ or quadrature rules. However, the omputation of these

integrals an be omputationally expensive. We therefore develop an adaptation of the lin-

earized method proposed in Setion 4.3 to the ase where the outputs of the odes are two

time-varying funtions. This enables to obtain a Gaussian preditor of the nested ode with

onditioned mean and variane whih an be omputed quikly.

Proposition 5.4.2. If

1. Y c
i = µc

i + εci denotes a preditor of yi for i ∈ {2, 3} and εci (·) ∼ GP

(
0, R̂tiC

c
i (·, ·)

)
,

where µc
i and Cc

i are de�ned in Eq. (5.3.18) and R̂ti in Eq. (5.3.16).

2. the magnitude of the predition error εc3 of the preditor assoiated with the �rst ode

enables the linearization,

then a Gaussian preditor of the nested ode an be obtained, and its mean and ovariane

funtions are de�ned as follows:

µc
nest

(x1,x2) = µc
2 (µ

c
3 (x1) ,x2) , (5.4.4)

Cc
nest

(
(x1,x2) ,

(
x

′

1,x
′

2

))
= R̂t2C

c
2

(
(µc

3 (x1) ,x2) ,
(
µc
3

(
x

′

1

)
,x

′

2

))

+
∂µc

2

∂ρ
(µc

3 (x1) ,x2) R̂t3

(
∂µc

2

∂ρ

(
µc
3

(
x

′

1

)
,x

′

2

))T

Cc
3

(
x1,x

′

1

)
.

(5.4.5)

The preditor obtained an also be written in the form Y c
nest

:= µc
nest

+ εc
nest

, where:

εc
nest

(x1,x2) =
∂µc

2

∂ρ
(µc

3 (x1) ,x2) ε
c
3 (x1) + εc2 (µ

c
3 (x1) ,x2) . (5.4.6)

The proof of this Proposition is in Setion 5.8.

The preditor obtained is therefore Gaussian and an take into aount a di�erent number of

observations for eah ode. It is based on all the possible types of observations.

Note that the smaller Cc
3, the more valid the linearization. Moreover, sine the linearization

is performed using the onditioned proess Y c
3, the norm of Cc

3 is more likely to be small.

Besides, the norm of Cc
3 an be redued by an appropriate enrihment of the set of observations

of the �rst ode.

5.4.2 Sequential designs

In the previous setion, we have proposed a method to onstrut a Gaussian proess emulator

of the nested ode for a given set of observations of the two odes. By onstrution, the

auray of this preditor depends on the set of observations of the two odes. A way to

improve the predition auray is an appropriate hoie of the set of observations.

As for the ase of a single ode (see Setion 5.3), sequential design riteria or Stepwise Un-

ertainty Redution [Bet et al., 2012; Piheny et al., 2010℄ methods are hosen.
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Sine we want to perform a sensitivity analysis of the nested ode output with respet to its

inputs, the design should lead to an aurate predition mean on the most likely regions of

the input domain of the nested ode. The design riteria are therefore based on the integrated

predition variane [Saks et al., 1989; Santner et al., 2003℄.

The two proposed design riteria are a generalization of Eq. (5.3.31) to the ase of two

nested odes. They are also an adaptation of those proposed in Setion 4.2 to the ase of

two odes with funtional outputs. The riteria of Setion 4.2 were de�ned for the ase of

two nested odes with salar outputs. They are based on the minimization of the integrated

predition variane. One of the riteria orresponds to the ase where the two odes an be

launhed separately, the other one orresponds to the ase where they annot be launhed

separately. It is worth noting that the previously proposed preditor of the nested ode an

take into aount a di�erent number of observations for the two odes, whih enables to de�ne

a sequential design riterion whih hooses the best andidate among the two odes and takes

into aount the omputational osts of the odes.

De�nition 1. In the ase of two nested odes with funtional outputs, two seletion riteria

based on the minimization of the integrated predition variane an be de�ned:

• the Chained I-optimal riterion, whih selets the andidate in X
nest

whih minimizes the

integrated predition variane given this andidate:

(xnew
1 ,xnew

2 ) = argmin
(x∗

1,x
∗

2)∈Xnest

∫

X1×X2

(Tr
(
R̂t2

)
v2

(
(µc

3 (x1) ,x2) ;X
obs

2 , (µc
3 (x

∗
1) ,x

∗
2)
)
+

Tr

(
∂µc

2

∂ρ
(µc

3 (x1) ,x2) R̂t3

(
∂µc

2

∂ρ
(µc

3 (x1) ,x2)

)T
)
v3

(
x1;X

obs

1 ,x∗
1

)
)dµX1 (x1) dµX2 (x2) ,

(5.4.7)

where R̂ti i ∈ {2, 3} is de�ned by Eq. (5.3.16), and vi is de�ned by Eq. (5.8.4),

• the Best I-optimal riterion, whih selets the andidate among the two odes whih maxi-

mizes the redution of the integrated predition variane per unit of omputational ost

given this andidate:

(inew,xnew
inew) = argmin

(i,x̃i)∈{1,2}×X̃i

1

τi
Vi (x̃i) , (5.4.8)

with τi denoting the omputational ost of the ode i, and:

V1 (x̃1) :=

∫

X1×X2

Tr

(
∂µc

2

∂ρ
(µc

3 (x1) ,x2) R̂t3

(
∂µc

2

∂ρ
(µc

3 (x1) ,x2)

)T
)

(
v3

(
x1;X

obs

1

)
− v3

(
x1;X

obs

1 , x̃1

))
dµX1 (x1) dµX2 (x2) ,

(5.4.9)

V2 (x̃2) :=

∫

X1×X2

(
v2

(
(µc

3 (x1) ,x2) ;X
obs

2

)
− v2

(
(µc

3 (x1) ,x2) ;X
obs

2 , (µc
3 (x

∗
1) ,x

∗
2)
))

Tr

(
R̂t2

)
dµX1 (x1) dµX2 (x2) ,

(5.4.10)

and:

{x̃i, X̃i} =





{x∗
1,X1}, if i = 1,

{(x∗
1,x

∗
2) , X1 × X2}, if i = 2.

(5.4.11)

Moreover, if a andidate x̃2 = (x∗
1,x

∗
2) is hosen, the seond ode will be evaluated at

(µc
1 (x

∗
1) ,x

∗
2).
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Note that the Best I-optimal riterion is based on the assumption that the integrated predi-

tion variane dereases linearly at eah step.

Both riteria imply a multidimensional integration and optimization on X1 or X1 × X2. The

integration is omputed using the empirial average of a Monte-Carlo draw. The optimization

is performed on a �nite set of andidates drawn aording to the probability measure of µX1

or µX1×X2 . The fat that the predition variane has a losed-form expression, and is thus fast

to evaluate, is an advantage for the omputation of the riteria, beause they both require a

high number of evaluations of the predition variane.

The estimation of the projetion basis, of the hyperparameters of the ovariane funtions

Ci, i ∈ {1, 2, 3}, of the funtional ovariane matries R̂ti , i ∈ {1, 2, 3}, and of the onditioned
mean funtions µc

i , i ∈ {1, 2, 3}, require an initial design of experiments. One again, sine

we aim at prediting the nested ode output on the most likely regions of the input domain

X
nest

and we have no a priori information, an initial set of observations is drawn aording

to the probability measure µX1 × µX2 .

The projetion basis assoiated with rm is estimated from the initial set of observations. The

dimension m of the projetion of the funtional input of the seond ode is hosen aording

to the riterion of Eq. (5.3.23).

The hyperparameters of the orrelation funtion C3 are estimated from the initial design and

when a new observation of the �rst ode is added. The hyperparameters of the orrelation

funtions C1 and C2 are estimated from the initial design and when a new observation of the

seond ode is added. The hyperparameters are estimated thanks to the Cross-Validation

riterion of Eq. (5.3.21).

5.5 First numerial example

In this setion, we apply the proposed methods to a numerial example.

5.5.1 Desription of the numerial example

The �rst numerial example is the oupling of two odes: a detonation ode and a damped

osillator. The seond ode has a losed-form expression and is thus very fast to evaluate.

The �rst ode is a quik and simpli�ed version of a detonation ode.

The two odes of this appliation ase are therefore fast to evaluate, whih enables to repeat

the draws and the validation of the proposed methods, thus quantifying their performane.

However, their features are representative of the features of the appliation ase whih moti-

vates this thesis:

• low dimensional vetorial input and funtional output for the �rst ode,

• low dimensional vetorial and funtional inputs and funtional output for the seond ode,

• the funtional input of the seond ode is the output of the �rst ode,

• the funtional output of the �rst ode an be non-smooth.

The inputs of the �rst ode have a uniform distribution on X1, with:

X1 = [0.01, 0.02] × [−1, 1]3 . (5.5.1)
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Figure 5.1: First numerial example: Output of the �rst ode for �ve di�erent values of x1

in the time domain and for the twenty �rst frequenies in the frequeny domain, estimated

from a set of 200 observations of y1.

The variable (x1)1 orresponds to the radius of the explosive harge, (x1)2 to a temporal

dilatation parameter, (x1)3 to a shok magnitude parameter and (x1)4 to an attenuation

parameter.

Figure 5.1(a) shows several trajetories of the funtional output of the �rst ode. The tra-

jetories have a similar shape, but their magnitudes an vary onsiderably depending on the

inputs of the ode, x1.

Figure 5.1(b) shows the output of the �rst ode in the frequeny domain. The highest mag-

nitudes orrespond to the lowest frequenies.

The seond ode is a damped osillator, whih is de�ned by the following seond order linear

di�erential equation:

ÿ2 + 2 (x2)1 ((x2)2 + ω0) ẏ2 + ((x2)2 + ω0)
2 y2 = y1.

This damped osillator is haraterized by an angular frequeny ω0. Considering the spetral

density of Figure 5.1(b), three frequenies are studied: the �rst one with a high density (1),
a seond one with an intermediate density (4) and a third one with a low density (10). Con-
sequently, we have ω0 ∈ {2π, 8π, 20π}. These three values of ω0 orrespond to qualitatively

di�erent relationships between the two odes.

The inputs of the seond ode have a uniform distribution on X2, with:

X2 = [0, 0.2] × [−0.1, 0.1] . (5.5.2)

Consequently, the de�nition domain of the nested ode is:

X
nest

= [0.01, 0.02] × [−1, 1]3 × [0, 0.2] × [−0.1, 0.1] . (5.5.3)
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Moreover, the basis funtions of the mean funtion of the Gaussian proesses are de�ned as

follows:

hi (x̄i) = (1, x̄i) . (5.5.4)

Note that an inrease of the order of the polynomials does not yield more aurate predition.

Figure 5.2 shows several trajetories of the output of the seond ode for the three studied

frequenies. For a given frequeny, the trajetories have a similar shape, but their magnitudes

vary depending on the inputs of the ode.

5.5.2 Dimension redution of the funtional input of the seond ode

In this setion we study the previously mentioned dimension redution methods of the fun-

tional input of the seond ode.

Figure 5.3 ompares the error of the estimation of the ovariane matrix of the output of the

�rst ode with an estimation from the observations only (see Eq. (5.2.5)) or from the mean of

a Kriging preditor onstruted using the observations (see Eq. (5.2.7)). The estimation error

is given by

∥∥∥R̂−Ry1

∥∥∥
2

F
where Ry1

is the referene ovariane matrix and R̂ the estimation

of the ovariane matrix. The referene ovariane matrix is estimated from 103 observations
of the output of the �rst ode. The �gure shows that the estimation with the preditor of the

�rst ode is more aurate than the estimation from the small set of observations.

Given that

n∑
i=1

L
(
y
(i)
1

)T
L
(
y
(i)
1

)
is not always invertible, the estimation of the vetor a given

by Eq. (5.2.13) is not always numerially stable. In what follows, we study two methods of

regularization of this matrix in order to invert it. In the ase of a regularization, the estimate

of a∗
given by Eq. (5.2.13) an be rewritten:

a∗ = a
(
D,Y obs

1 ,Y obs

2

)
=

(
n∑

i=1

L
(
y
(i)
1

)T
L
(
y
(i)
1

)
+D

)−1 n∑

i=1

L
(
y
(i)
1

)T
y
(i)
2 , (5.5.5)

with D a positive-de�nite (Nt ×Nt)-dimensional matrix. Consequently, the following opti-

mization problem is solved:

a∗ = argmin
a∈RNt

n∑

i=1

∥∥∥y(i)
2 − L

(
y
(i)
1

)
a
∥∥∥
2
+
∥∥∥D 1

2a
∥∥∥
2
. (5.5.6)

Two parametri forms are studied for the de�nition of the matrix D:

D = δINt , δ ∈ R+, (5.5.7)

and:

D = diag

(
β0 + β1

(
1

Nt
,
2

Nt
, . . . ,

Nt − 1

Nt
, 1

))
, β0 ∈ R+, β1 ∈ R+. (5.5.8)

This seond inreasing regularization is proposed beause the onsidered system is a damped

system, and thus i 7→ ai is a dereasing funtion.

By noting that L (a)y1 = L (y1)a, the parameters δ, β0 and β1 an be estimated with Cross

Validation riteria of the form:

argmin
δ∈R+

n∑

i=1

∥∥∥y(i)
2 − L

(
y
(i)
1

)
a
(
δINt ,

(
Y obs

1

)
−i

,
(
Y obs

2

)
−i

)∥∥∥
2
, (5.5.9)
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Figure 5.2: First numerial example: Output of the nested ode for �ve values of (x1,x2) and
three values of ω0.
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Figure 5.3: First numerial example: Boxplots of the estimation error of the ovariane

matrix of the output of the �rst ode. The estimation error is given by

∥∥∥R̂−Ry1

∥∥∥
2

F
where

Ry1
is the referene ovariane matrix and R̂ the estimation of the ovariane matrix. The

referene ovariane matrix is estimated from 103 observations of the �rst ode output. The

ovariane matries have been estimated either from the observations (see Eq. (5.2.5))(grey)

or from the mean of a Gaussian preditor onstruted from the observations (see Eq. (5.2.7))

(blak). The designs of inreasing size ontain observations whih are independently drawn

aording to µX1 .
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and:

argmin
β0,β1∈R2

+

n∑

i=1

∥∥∥∥y
(i)
2 − L

(
y
(i)
1

)
a

(
diag

(
β0 + β1

(
1

Nt
, . . . , 1

))
,
(
Y obs

1

)
−i

,
(
Y obs

2

)
−i

)∥∥∥∥
2

,

(5.5.10)

with

(
Y obs

1

)
−i

and

(
Y obs

2

)
−i

denoting the observations of the funtional input and output of

the seond ode, exept the i-th.

Figure 5.4 shows the error

‖y2 − L (a∗)y1‖2
‖y2 − ȳ2‖2

of the linear sparse model ompared to the

output of the ode y2. The two regularization methods of Eqs. (5.5.7) and (5.5.8) are

studied. The linear regularization of Eq. (5.5.8) leads to the most aurate predition of the

linear model.

Given that the regularization matrix D of Eq. (5.5.8) leads to the most aurate linear model

of y2, this regularization matrix will be hosen for the estimation of a in the remainder of the

numerial examples. Indeed, the more aurate the linear model is, the more aurate the

projetion basis based on this linear model will be (see Proposition 5.2.1).

We assume that a set of N validation points of the odes is available. The predition errors

of the seond ode and the nested ode an thus be de�ned as:

∆2 =

N∑
i=1

∥∥∥y2

(
ϕ

(val,i)
1 ,x

(val,i)
2

)
− µc

2

(
rm

(
ϕ

(val,i)
1

)
,x

(val,i)
2

)∥∥∥
2

N∑
i=1

∥∥∥∥∥y2

(
ϕ

(val,i)
1 ,x

(val,i)
2

)
− 1

N2

N∑
j=1

y2

(
ϕ

(val,j)
1 ,x

(val,j)
2

)∥∥∥∥∥

2

,

(5.5.11)

and

∆
nest

=

N∑
i=1

∥∥∥y
nest

(
x
(val,i)
nest

)
− µc

nest

(
x
(val,i)
nest

)∥∥∥
2

N∑
i=1

∥∥∥∥∥ynest
(
x
(val,i)
nest

)
− 1

N

N∑
j=1

y
nest

(
x
(val,j)
nest

)∥∥∥∥∥

2

,

(5.5.12)

where x
(val,j)
nest

=
(
x
(val,j)
1 ,x

(val,j)
2

)
and ϕ

(val,j)
1 = y1

(
x
(val,j)
1

)
. The observations of the inputs

{x(val,j)
nest

, 1 ≤ j ≤ N} are independently drawn aording to µX1 × µX2 .

Figure 5.5 shows the predition error ∆2 (de�ned by Eq. (5.5.11)) of the Gaussian preditor

Y c
2 of the seond ode. Three projetion funtions rm are studied (see Eqs. (5.2.15), (5.2.16)

and (5.2.17)). The �rst one is based on a Prinipal Components Analysis performed using the

ovariane matrix de�ned by Eq. (5.2.5). The seond one is based on Partial Least Squares

Regression. The third one is based on the matrix Z∗
of Proposition 5.2.1 with a linear model

of the form L (a)y1 and a estimated from Eq. (5.5.5) with the regularization matrix of Eq.

(5.5.8). Two ases are onsidered: in the �rst ase, the projetion bases are estimated from

a large set of 103 observations of the funtional input and output of the seond ode; in the

seond ase, the projetion bases are estimated from the observations used for the onstrution

of the preditor.

In both ases, the dimension redution of Proposition 5.2.1 based on the linear model of the

form L (a)y1 leads to the most aurate predition.

Besides, the auray of the predition with the dimension redutions based on PCA and on

Proposition 5.2.1 with the linear model of the form L (a)y1 is quite the same if the projetion

basis is estimated from a small number of observations or from a high number of observations.
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Figure 5.4: First numerial example: Boxplots of the error δ2 =
‖y2 − L (a∗)y1‖2

‖y2 − ȳ2‖2
depending

on the regularization matrix used for the estimation of a: the one de�ned in Eq. (5.5.7)

(blak) or the one de�ned in Eq. (5.5.8) (grey). The estimation of a∗
from draws aording

to µX1 × µX2 of inreasing size is repeated 20 times.
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Thanks to the inrease of the rank of the ovariane matrix of y1 with a preditor of the �rst

ode and the sparse struture of the linear model, these two projetion bases an be estimated

aurately with a relatively small number of observations.

The projetion basis based on Partial Least Squares is muh more sensitive to the derease

in the number of observations from whih it is estimated.

Finally, the size of the projetion bases is estimated with the Leave One Out riterion of Eq.

(5.3.23).

Figure 5.6 shows the size of the bases estimated with the Cross-Validation riterion of Eq.

(5.3.23) for the three studied dimension redution methods presented in Figure 5.5. The size

of the projetion basis varies less and is generally smaller with the dimension redution of

Proposition 5.2.1 with a linear model of the form L (a∗)y1 and a∗
given by Eqs. (5.5.5) and

(5.5.8).

In the remainder of the setion, the dimension redution of the funtional intermediary vari-

able will be performed using the method de�ned in Proposition 5.2.1. A linear model of the

form L (a)y1 will be onsidered, and a will be estimated using Eqs. (5.5.5) and (5.5.8). In-

deed, this method leads to the most aurate linear approximation of y2. The more aurate

the linear model is, the more appropriate the dimension redution based on this linear model

will be.

Following the results of Figure 5.6, the following values of m are onsidered:

m =





4, if ω0 = 2π,
7, if ω0 = 8π,
6− 7, if ω0 = 20π.

(5.5.13)

The ovariane matrix of the funtional input of the seond ode will be omputed using a

preditor of the output of the �rst ode, as de�ned in Eq. (5.2.7). Finally, the size m of the

projetion basis is estimated with the Cross-Validation riterion of Eq. (5.3.23).

5.5.3 Predition of the nested ode

One the dimension of the funtional intermediary variable has been e�iently redued, we

an study the surrogate modeling of the nested ode. We �rst de�ne the referene method

whih orresponds to the ase where the nested ode is onsidered to be a single ode.

This referene method is alled "blind-box". With this method, a surrogate model of x
nest

7→
y
nest

is onstruted using the formalism of Setion 5.3. This blind-box method annot take

into aount the intermediary observations of the nested ode.

The "linearized" method refers to the onstrution of the preditor of the nested ode proposed

in Proposition 5.4.2.

Figure 5.7 ompares the predition error ∆
nest

(see Eq. (5.5.12)) for preditors of the nested

ode onstruted with the linearized and the blind-box methods. The predition auray is

better with the linearized method.

Figure 5.8 shows the predition error ∆
nest

(see Eq. (5.5.12)) along the sequential designs

of De�nition 1. A referene orresponding to the ase of the blind-box preditor with an

I-optimal sequential design (see Eq. (5.3.31) and Proposition 5.3.1) is also shown. All the

sequential designs have the same initial designs drawn aording to µX1 × µX2 .

It an be seen that both proposed sequential designs with the linearized preditor enable to

obtain a better predition auray than the blind-box preditor with an I-optimal design.
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Figure 5.5: First numerial example: Predition error of the output of the seond ode

∆2 (see Eq. (5.5.11)) in log sale. The observations are independently drawn aording to

µX1 × µX2 and the designs are of inreasing size. Three types of projetion funtions rm are

onsidered. The �rst one is based on Prinipal Components Analysis (light grey), the seond

one is based on PLS regression (mid-grey) and the third one is based on the projetion of

Proposition 5.2.1 with a linear model of the form L (a∗)y1 where a∗
is given by Eqs. (5.5.5)

and (5.5.8) (blak). The size of the projetion basis is estimated with the Leave One Out

riterion of Eq. (5.3.23). The referene bases are omputed from a set of 1000 observations of

the funtional input and output of the seond ode. The estimated bases are estimated from

the observations of the designs.
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Figure 5.6: First numerial example: Sizes of the projetion bases estimated with the Leave

One Out riterion of Eq. (5.3.23). The observations are independently drawn aording to

µX1 × µX2 and the designs are of inreasing size. Three types of projetion funtions rm are

onsidered. The �rst one is based on Prinipal Components Analysis (light grey), the seond

one is based on PLS regression (mid-grey) and the third one is based on the projetion of

Proposition 5.2.1 with a linear model of the form L (a∗)y1 where a∗
is given by Eqs. (5.5.5)

and (5.5.8) (blak). The study has been restrited to 1 ≤ m ≤ 10. The referene bases are

omputed from a set of 1000 observations of the funtional input and output of the seond

ode. The estimated bases are estimated from the observations of the designs.
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Figure 5.7: First numerial example: Boxplots of the predition error ∆
nest

(see Eq. (5.5.12))

for the linearized (blak) and the blind-box (grey) preditors. The observations are drawn

aording to µX1 × µX2 and the designs are of inreasing size. The draws are repeated 20
times. The dimension redution of the intermediary variable is performed using the method

of Proposition 5.2.1 and a linear approximation of the form L (a∗)y1 where a∗
is given by

Eqs. (5.5.5) and (5.5.8).

114



5.5. FIRST NUMERICAL EXAMPLE

Furthermore, the best I-optimal riterion leads to an improved predition auray ompared

to the Chained I-optimal design. Note that with the Best I-optimal riterion, the number of

ode evaluations of the two odes an be di�erent.

Figure 5.9 shows the distribution of the number of ode evaluations of the two odes along

the Best I-optimal sequential design. The �rst new observation points are observations of the

�rst ode. However, the distribution of the number of observations of the two odes an vary

a lot depending on the angular frequeny of the osillator of the seond ode.

For the angular frequeny equal to 2π, there are more evaluations of the �rst ode. For the

angular frequeny equal to 8π, the number of evaluations is almost the same for both odes.

For the angular frequeny equal to 20π, the number of evaluations is almost the same for both

odes at the beginning, then the number of observations of the seond ode inreases faster

than those of the �rst ode.

Finally, Figure 5.10 shows the predition auray along the proposed sequential designs for

di�erent omputational osts of the two odes. The total ost of the two odes is the same,

but three ases are onsidered for the distribution of the ost between the odes. Only the

angular frequeny ω0 = 2π of the osillator of the seond ode is onsidered, beause a very

di�erent number of observations of the odes 1 and 2 has been observed in Figure 5.9. On

the three �gures are presented the predition errors ∆
nest

(see Eq. (5.5.12)) for the Chained

I-optimal design and the Best I-optimal design. The predition error of the Chained I-optimal

design is the same on all the �gures, beause the total ost of the two odes is the same. On

the ontrary, the predition error with the Best I-optimal design depends on the distribution

of the osts between the two odes. The lower the ost of the �rst ode is, the lower the

predition error is. These results are in aordane with those of Figure 5.9, whih show that

the new observations are mostly added to the �rst ode.

One an aurate preditor of the nested ode has been obtained at the end of the sequential

design (Best I-optimal), the preditor an be used in order to perform a sensitivity analysis

(see Setion 1.6). A Kriging Believer [Piheny et al., 2010℄ approah will be used, whih

means that y
nest

will be replaed by µc
nest

for the omputation of the Sobol indies for the

�rst Prinipal Component of y
nest

.

5.5.4 Sensitivity analysis

Figure 5.11 presents the �rst-order and total Sobol indies (see Setion 1.6 for further details)

for the �rst Prinipal Component of the output of the nested ode. The �gures show that

the �rst-order index is very lose to the total index. The �rst-order e�ets are therefore more

important than the interation e�ets. This means that an approximation of the form:

f0 +

d1+d2∑

i=1

fi ((xnest)i) , (5.5.14)

with fi de�ned by Eq. (1.6.3), an provide a good approximation of the �rst Prinipal

Component of y
nest

. Besides, the indies of the �rst input of the �rst ode are very high

ompared to those of the other inputs. The radius of the explosive harge is thus a very

sensitive input for the �rst Prinipal Component of the output of the ode.
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Figure 5.8: First numerial example: Error of the nested ode predition along the sequential

designs, in log sale. The initial designs are 40-points designs, drawn aording to µX1 × µX2

and are the same for the three series. The draw of the initial design is repeated 20 times.

The solid lines represent the median and the two-dashed lines represent the �rst and the third

quartiles. The three series orrespond to the blind-box preditor with an I-optimal design

(mid-grey), the linearized preditor with a Chained I-optimal design (light grey) and with a

Best I-optimal design (blak). The omputational ost of both odes is the same: τ1 = τ2.
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Figure 5.9: First numerial example: Boxplots of the number of evaluations of the �rst ode

(blak) and the seond ode (grey) along the Best I-optimal sequential design.
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Figure 5.10: First numerial example: Error of the nested ode predition along the sequential

designs, in log sale. The initial designs are 40-points designs, drawn aording to µX1 × µX2

and are the same for the three series. The draw of the initial design is repeated 20 times.

The solid lines represent the median and the two-dashed lines represent the �rst and the third

quartiles. On eah plot, the two series orrespond to the linearized preditor with a Chained

I-optimal design (blak) and with a Best I-optimal design (light grey). Three ases are studied

for the omputational osts of the odes:

τ1
τ2

=
1

2
,

τ1
τ2

= 1, and
τ1
τ2

= 2. The total ost of the

two odes is the same in the three ases. The angular frequeny of the seond ode is 1× 2π.
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Figure 5.11: First numerial example: Sobol indies of the �rst Prinipal Component of the

nested ode output: �rst-order index in grey and total index in blak. The points are drawn

aording to a Best I-optimal design of total ost 180 and an initial design drawn aording

to µX1 × µX2 of ost 80.
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(a) Tank (b) First ode () Seond ode

Figure 5.12: Seond numerial example: Images from Defaux and Evrard [2014℄. The left-

hand plot shows the tank. The middle plot shows the output of the �rst ode, with the

detonation produts in white and red. The right-hand plot shows the output of the seond

ode, the Von Mises stress at a given time at the inner surfae of the tank. The areas in green

are under stress and those in blue are not under stress.

5.6 Seond numerial example

5.6.1 Desription of the numerial example

This seond study orresponds to the motivating industrial problem. We aim at performing a

sensitivity analysis of the output of a hain of two omputer odes with respet to its inputs.

The two odes model the explosion of an explosive harge into the spherial tank presented

in Figure 5.12.

This �rst ode is an Eulerian 2-dimensional ode, whih simulates the burn of the explosive

harge, the internal gas dynamis and the shok wave propagation. Its inputs are the same

than those of the �rst ode of the �rst test ase. The seond ode provides the mehanial

response of the tank through the von Mises stress test at the inner surfae of the tank.

The spherial tank is presented in on the left-hand plot of Figure 5.12. The output of the �rst

ode is shown on the middle plot of Figure 5.12. The right-hand plot of Figure 5.12 shows

the seond ode output.

In this work, in order to redue the omputational ost of a ode evaluation, we use a 1-

dimensional approximation of the �rst ode, by onsidering that the explosion and the tank

are spherially symmetri. The output of the �rst ode orresponds here to the spherially

symmetri time-varying shok-wave.

In the same way, a 2-dimensional approximation of the seond ode is onsidered. The ap-

proximation is based on an axisymmetry of the mehanial response of the tank. Then the

maximum value of the Von Mises stress over the surfae (in fat a urve) for eah time step is

onsidered. The time-varying output of the seond ode is therefore this time-varying maximal

value.

Moreover, the elasti limits of the tank and the tap have been set to an arti�ially high value

in order to obtain unsaturated output trajetories.

The omponents of x2 are independent and of dimension 4. Table 5.1 presents the input

variables of the seond ode and their distributions.
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Input name Desription and unit Distribution of the input 95% on�dene interval

(x2)1 Internal radius of the tank (m) N
(
0.72, 0.0052

)
[0.71, 0.73]

(x2)2 Thikness (m) N
(
0.073, 0.00152

)
[0.07, 0.076]

(x2)3 Young modulus of the tank (Pa) N
(
2.1 1011,

(
2.1 1010

)2)
[1.69, 2.51] × 1011

(x2)4 Young modulus of the tap (Pa) N
(
2.1 1011,

(
2.1 1010

)2)
[1.69, 2.51] × 1011

Table 5.1: Input parameters of the seond ode in the seond numerial example. All variables

are independent.
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Figure 5.13: Seond numerial example: Example of trajetories of the output of the nested

ode for �ve values of (x1,x2).

Figure 5.13 shows some trajetories of the output of the nested ode for this seond numerial

example. The trajetories have very similar shapes and are overall growing with time.

5.6.2 Results of the numerial example

Figure 5.14 shows the predition auray for the output of the nested ode along sequential

designs. Three ases are presented. The �rst one is based on the blind-box preditor with an I-

optimal enrihment (see Proposition 5.3.1), the other two are based on the linearized preditor

of Proposition 5.4.2 with the two sequential design riteria of De�nition 1. The results show

that the linearized preditor is more aurate than the blind box preditor. These results

illustrate the interest of taking into aount the intermediary observations of the nested ode.

One an aurate preditor of the nested ode has been obtained at the end of the sequential

design (Best I-optimal with linearized preditor), the preditor an be used in order to perform

a sensitivity analysis (see Setion 1.6). A Kriging Believer approah [Piheny et al., 2010℄ will

be used, whih means that y
nest

will be replaed by µc
nest

for the omputation of the Sobol
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Figure 5.14: Seond numerial example: Predition error∆
nest

(see Eq. (5.5.12)), in log sale,

for the nested ode along the sequential designs: I-optimal sequential design with the blind-

box preditor (solid line), Chained I-optimal sequential design with the linearized preditor

(dashed line), Best I-optimal sequential design with the linearized (dotted line) preditor.

The initial design of 50 points on X
nest

is drawn aording to µX1 × µX2 .

indies of the maximum value of the high dimensional vetorial output y
nest

.

Figure 5.15 shows the Sobol indies of the maximum value of the temporal output of the

nested ode with respet to the inputs of the nested ode. The �rst-order and total indies

are very lose. This means that the �rst-order e�ets are important and the interations

almost negligible (see Setion 1.6 for further details). Besides, the indies assoiated with the

inputs x2 of the seond ode are very low ompared to those assoiated with the �rst ode.

The index assoiated with (x1)1 (radius of the explosive harge) is espeially high ompared

to those of all the other inputs. The seond most in�uent input is the shok magnitude

parameter (x1)3.
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Figure 5.15: Seond numerial example: Sobol indies (�rst-order in grey and total in blak)

of the maximum value of the funtional output of the nested ode. The indies are estimated

with a preditor onstruted from the set of observations at the end of the Best I-optimal

sequential design.

5.7 Conlusions

In this hapter, we have foused on a system of two nested odes with funtional outputs.

The funtional output of the �rst ode is one of the inputs of the seond ode. The objetive

was to onstrut a surrogate model of the output of the nested ode in order to perform

analyses for the design and the erti�ation of the studied system (like sensitivity analysis,

risk analysis or optimization).

The surrogate models are onstruted in the framework of Universal Kriging. However, the

existing Gaussian proess preditors for odes with a funtional output generally onsider low

dimensional vetorial inputs.

Our �rst objetive was therefore to redue the dimension of the funtional input of the seond

ode in order to use a surrogate model of the seond ode whih has a low dimensional vetorial

input.

We have therefore developed a method to redue the dimension of the funtional input of a

ode whih is adapted to the output of this ode. This method of dimension redution is

a two-step approah. First the output of the ode is approximated by a linear ausal �lter

with respet to the funtional input of the seond ode. This linear model has a very sparse

struture and an be aurately estimated from a small number of observations. Then a

dimension redution based on this linear model is performed.

This method of dimension redution is partiularly useful when the number of observations

is small ompared to the number of disretization steps of the funtional variables.

This appropriate dimension redution of the funtional input of the seond ode enables to

onstrut a more relevant Gaussian preditor of the seond ode, ompared to other dimension

redution tehniques suh as Prinipal Components Analysis or Partial Least Squares.

We have also seen that a well-hosen regularization an lead to a better estimation of the

sparse linear model used for the proposed dimension redution.

Furthermore, we have extended the framework proposed in Chapter 4 for the predition of the
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output of a hain of two odes with salar outputs to the predition of the funtional output

of a hain of two odes with funtional outputs.

Finally, we have adapted two sequential design riteria whih enable to improve the predition

auray of the nested ode and to take into aount the di�erene in the omputational osts

of the two odes.

The results obtained demonstrate the interest of taking into aount the intermediary obser-

vations. Moreover, the seletion riterion whih enables to hoose whih ode to launh leads

to a more aurate predition of the nested ode.
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5.8 Proofs

5.8.1 Proof of Proposition 5.2.1

We aim at �nding a m-rank matrix Z∗
suh that:

Z∗ = argmin
Z∈MNt×Nt

Nx∑

i=1

∥∥∥Ax
(i)
t −AZx

(i)
t

∥∥∥
2

with Z a m-rank matrix and x
(i)
t the i-th observation of the funtional input.

The previous equation an be rewritten:

Z∗ = argmin
Z∈MNt×Nt

Nx∑
i=1

∥∥∥Ax
(i)
t −AZx

(i)
t

∥∥∥
2
,

= argmin
Z∈MNt×Nt

Tr

(
(AX t −AZX t)

T (AXt −AZX t)
)
,

= argmin
Z∈MNt×Nt

Tr

(
(AZcXt)

T (AZcXt)
)
,

= argmin
Z∈MNt×Nt

Tr

(
XT

t (Zc)T ATAZcXt

)
,

= argmin
Z∈MNt×Nt

Tr

(
(Zc)T ATAZcXtX

T
t

)
,

= argmin
Z∈MNt×Nt

Tr

((
X tX

T
t

) 1
2 (Zc)T ATAZc

(
XtX

T
t

) 1
2

)
,

= argmin
Z∈MNt×Nt

Tr

((
X tX

T
t

) 1
2 (Zc)T

(
ATA

) 1
2
(
ATA

) 1
2 Zc

(
XtX

T
t

) 1
2

)
,

= argmin
Z∈MNt×Nt

Tr

(((
ATA

) 1
2 Zc

(
XtX

T
t

) 1
2

)T (
ATA

) 1
2 Zc

(
X tX

T
t

) 1
2

)
,

= argmin
Z∈MNt×Nt

∥∥∥∥
(
ATA

) 1
2 Zc

(
XtX

T
t

) 1
2

∥∥∥∥
2

F

,

= argmin
Z∈MNt×Nt

∥∥∥∥
(
ATA

) 1
2
(
XtX

T
t

) 1
2 −

(
ATA

) 1
2 Z

(
XtX

T
t

) 1
2

∥∥∥∥
2

F

,

where ‖·‖2F denotes the Frobenius norm.

In Ekart and Young [1936℄, it is shown that the matrix Qm of rank m whih minimizes∥∥∥∥
(
ATA

) 1
2
(
XtX

T
t

) 1
2 −Qm

∥∥∥∥
2

F

is given by the m �rst singular-values of the singular-value

deomposition of

(
ATA

) 1
2
(
XtX

T
t

) 1
2
. If we denote by UDV T

the singular-value deompo-

sition of

(
ATA

) 1
2
(
XtX

T
t

) 1
2
with D gathering the singular values in dereasing order, then

we have Qm = UmDmV T
m where Um and V m gather the m �rst olumns of U and V and

Dm ontain the m �rst lines and olumns of D. It an therefore be inferred that:

(
ATA

) 1
2 Z∗

(
XtX

T
t

) 1
2 = UmDmV T

m.

Hene, we have:

Z∗ =
(
ATA

)− 1
2 UmDmV T

m

(
XtX

T
t

)− 1
2 .

Finally, the m-dimensional projetion of xt whih is optimal for the linear model is obtained

by multiplying xt by a m×Nt matrix Π de�ned by:

Π = V T
m

(
XtX

T
t

)− 1
2 .
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5.8.2 Proof of Lemma 1

5.8.2.1 First equation

From Eq. (5.3.13), it follows that:

E
[
M i|{Y obs

i ,Y i (x̄
∗
i ) = µc

i (x̄
∗
i )}, Ci

]
= Y

obs,new

i

(
R
obs,new

i

)−1 (
H

obs,new

i

)T
(
H

obs,new

i

(
R
obs,new

i

)−1 (
H

obs,new

i

)T)−1

,

where

Y
obs,new

i =
(
Y obs

i , µc
i (x̄

∗
i )
)
,

H
obs,new

i =
(
Hobs

i , hi (x̄
∗
i )
)
,

(5.8.1)

and

R
obs,new

i =


 R

obs,new

i C
(
X

obs

i , x̄∗
i

)

C
(
x̄∗
i ,X

obs

i

)
1

.




Using the Shur omplement formulae, one gets:

(
R
obs,new

i

)−1
=

(
Q11 Q12

Q21 Q22
,

)
(5.8.2)

where

Q11 =
(
Robs

i

)−1
+Q22
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)−1
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)
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) (
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(5.8.3)

Q22 ∈ R, and:

vi (x̄
∗
i ) =

(
Robs

i

)−1
C
(
X

obs

i , x̄∗
i

)
(5.8.4)

From the previous equations, one has:
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(5.8.5)
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In the same way, one has:

Y
obs,new

i

(
R
obs,new

i

)−1 (
H

obs,new

i

)T

= Y obs

i Q11

(
Hobs

i

)T
+ µc

i (x̄
∗
i )Q21

(
Hobs

i

)T
+ Y obs

i Q12hi (x̄
∗
i )

T + µc
i (x̄

∗
i )Q22hi (x̄

∗
i )

T

= Y obs

i

(
Robs

i

)−1 (
Hobs

i

)T
+Q22

(
Y obs

i vi (x̄
∗
i ) vi (x̄

∗
i )

T
(
Hobs

i

)T − µc
i (x̄

∗
i )vi (x̄

∗
i )

T
(
Hobs

i

)T

−Y obs

i vi (x̄
∗
i )hi (x̄

∗
i )

T + µc
i (x̄

∗
i )hi (x̄

∗
i )

T
)

= Y obs

i

(
Robs

i

)−1 (
Hobs

i

)T
+Q22

(
µc
i (x̄

∗
i )− Y obs

i vi (x̄
∗
i )
) (

hi (x̄
∗
i )−

(
Hobs

i

)
vi (x̄

∗
i )
)T

= Y obs

i

(
Robs

i

)−1 (
Hobs

i

)T
+Q22

(
µc
i (x̄

∗
i )− Y obs

i vi (x̄
∗
i )
)
ui (x̄

∗
i )

T .

From Eq. (5.3.18), it follows that:
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is de�ned by Eq. (5.3.13).

Therefore, one has:
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From Eq. (5.8.5) it follows that:
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Thus, one an onlude from the previous equation and Eq. (5.3.13):
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Seond equation

From Eq. (5.3.16) it follows that:

Rti

(
Y obs

i ,µc
i (x̄

∗
i )
)
=

1

ni + 1

(
Y
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i − M̂ iH
obs,new

i

)(
R
obs,new

i

)−1 (
Y

obs,new

i − M̂ iH
obs,new

i

)T
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(5.8.6)

From Eq. (5.8.1), one has:

Y
obs,new

i − M̂ iH
obs,new

i =
(
Y obs

i − M̂ iH
obs

i , µc
i (x̄

∗
i )− M̂ ihi (x̄

∗
i )
)
. (5.8.7)

From Eq. (5.3.18), one gets:

µc
i (x̄

∗
i )− M̂ ihi (x̄

∗
i ) =

(
Y obs

i − M̂ iH
obs

i

)
vi (x̄

∗
i ) ,
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where vi (x̄
∗
i ) is de�ned by Eq. (5.8.4).

Therefore, Eq. (5.8.7) beomes:

Y
obs,new

i − M̂ iH
obs,new

i =
(
Y obs

i − M̂ iH
obs

i

)
(Ini

, vi (x̄
∗
i )) .

Eq. (5.8.6) an thus be rewritten:
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(
Y obs

i ,µc
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∗
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)
=

1
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i
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(5.8.8)

Besides, one has:

(Ini
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∗
i ))
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R
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, vi (x̄
∗
i ))

(
Q11 Q12

Q21 Q22
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)

= (Q11 + vi (x̄
∗
i )Q21 , Q12 + vi (x̄

∗
i )Q22)

=
((

Robs

i

)−1
, 0ni

)

One an infer that:
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(
Q11 Q12
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∗
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T

)
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(
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One an onlude from Eq. (5.8.8) that:

Rti

(
Y obs

i ,µc
i (x̄

∗
i )
)
=

ni

ni + 1
Rti

(
Y obs

i

)
.

5.8.3 Proof of Proposition 5.3.1

From Eq. (5.3.20) it follows that the riterion an be rewritten:

x̄new
i = argmin

x̄
∗

i∈Xi

∫

Xi
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(
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(
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i ,yi (x̄
∗
i )
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(
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i

)
dµ

Xi
(x̄i) . (5.8.9)

Moreover, based on Lemma 1:

x̄new
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∗

i∈Xi

∫
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Tr

(
Rti

(
Y obs

i
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(
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i

)
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Xi
(x̄i) . (5.8.10)

By noting that Tr

(
Rti

(
Y obs

i

))
does not depends on x̄i and x̄∗

i , the riterion an �nally be

written:

x̄new
i = argmin

x̄
∗

i∈Xi

∫

Xi

vi

(
x̄i|Xobs

i , x̄∗
i

)
dµ

Xi
(x̄i) . (5.8.11)
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5.8.4 Proof of Proposition 5.4.1

By de�nition (see Eq. (5.4.1)) and given the independene of Y 2 and Y 3, one has:

Y c
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d
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2 (µ
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(
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)
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N
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)
.

This implies:
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c
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beause ξ2 and ξ3 are independent and E [ξ2] = 0.

Besides, one has:

Y c
nest

(x1,x2)Y
c
nest

(x1,x2)
T = µc

2 (µ
c
3 (x1) + ξ3σ

c
x3 (x1) ,x2)µ

c
2 (µ

c
3 (x1) + ξ3σ

c
x3 (x1) ,x2)

T

+(σc
2 (µ

c
3 (x1) + ξ3σ

c
x3 (x1) ,x2))

2 ξ2ξ
T
2

+σc
2 (µ

c
3 (x1) + ξ3σ

c
x3 (x1) ,x2) ξ2µ

c
2 (µ

c
3 (x1) + ξ3σ

c
x3 (x1) ,x2)

T

+σc
2 (µ

c
3 (x1) + ξ3σ

c
x3 (x1) ,x2)µ

c
2 (µ

c
3 (x1) + ξ3σ

c
x3 (x1) ,x2) ξ

T
2 .

Given that ξ2 and ξ3 are independent, E [ξ2] = 0 and E
[
ξ2ξ

T
2

]
= R̂t2 , one has:

E
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5.8.5 Proof of Proposition 5.4.2

By de�nition (see Eq. (5.4.1)), one has:

Y c
nest

(x1,x2)
d
= µc

2 (µ
c
3 (x1) + ξ3σ

c
x3 (x1) ,x2) + ξ2σ

c
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where ξ2 ∼ N
(
0, R̂t2

)
and ξ3 ∼ N

(
0, R̂t3

)
.

If σc
x3 (x1) is small enough, then the previous equation an be linearized with respet to

σc
x3 (x1). Thus, one has:
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Thanks to the fat that ξ2 and ξ3 are independent Gaussian proesses, a Gaussian preditor

of the nested ode an be obtained from the previous equation. Furthermore, this Gaussian

proess has the following mean funtion:

µc
nest

(x1,x2) = µc
2 (µ

c
3 (x1) ,x2) , (5.8.12)

and its ovariane funtion is:
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Conlusions

This work was motivated by an appliation ase. This appliation ase is the oupling of two

omputationally expensive odes. The �rst ode is a detonation ode and the seond ode is

a strutural dynamis ode. The two odes have funtional (i.e. high dimensional vetorial)

outputs. One of the inputs of the seond ode is the funtional output of the �rst ode. The

objetive was to perform design and erti�ation studies on this system.

The methods used for the design and the erti�ation, like sensitivity analysis, risk analysis

or optimization, require a large number of evaluations of the output of the onsidered system.

Considering the high omputational ost of the odes, it is in pratie impossible to apply

these methods diretly to the real odes. In this work, we were partiularly interested in

performing a sensitivity analysis of the output of the nested ode with respet to its inputs.

The objetive of this work was therefore to onstrut a preditor of the output of the system

from a small set of observations, whih is aurate on the most likely regions of the input

domain of the nested ode.

Several di�ulties were raised by the surrogate modeling of the onsidered system:

• There are two odes.

• The two odes are ostly, and therefore there will be a few observations available.

• The seond ode has funtional input and output.

This thesis made ontributions to help ahieve the initially set objetive.

The framework of Gaussian proess regression, more preisely Universal Kriging in a Bayesian

framework, was used.

In a �rst step, the ase of two nested odes with salar outputs and no intermediary obser-

vations was onsidered. An original parametrization of the mean funtion of the Gaussian

proess modeling the nested ode was proposed. This parametrization onsists of the oupling

of two polynomials. It yields a better predition auray than a lassial Universal Kriging

preditor with a polynomial mean funtion.

In a seond step, the ase of two nested odes with salar outputs and observations of the

intermediary variable was onsidered. A stohasti preditor of the nested ode output based

on the oupling of Gaussian preditors of the two odes was proposed. The preditor an

be onstruted from all the types of observations available: those of the nested ode, those

of the �rst ode and those of the seond ode. The preditor is non-Gaussian and its mean

and variane have to be evaluated with Monte Carlo methods. Furthermore, we proposed

two sequential design riteria whih aim at improving the auray of the preditor on the

whole input domain. One of the riteria an take aount of the di�erene between the

omputational osts of the two odes.

The two sequential design riteria requiring a large number of evaluations of the predition

variane, two adaptations of the preditor were proposed for aelerating the omputation of

the predition variane. The �rst adaptation an lead to losed forms of the mean and the

variane of the preditor, if the output is assumed to be in�nitely di�erentiable. The seond
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one was obtained by proposing a linearization of the oupling of the preditors of the two

odes. The preditor of the nested ode is then Gaussian with mean and variane funtions

in losed forms.

In a third and �nal step, the ase of two nested odes with funtional outputs and observations

of the intermediary variable was onsidered. An original dimension redution of the funtional

input of the seond ode was proposed. It is based on the approximation of the output of the

seond ode by a linear ausal �lter and on the projetion of the funtional input on a basis

whih is adapted to the linear approximation.

Thanks to this dimension redution an e�ient preditor of the seond ode is obtained.

Then, similarly to the ase of salar outputs, we proposed a Gaussian preditor of the nested

ode based on the linearization of the oupling the Gaussian preditors assoiated with the

two odes. Finally, the previously de�ned sequential design riteria were adapted to the ase

of odes with funtional outputs.

In this thesis, we foused on the surrogate modeling of two nested odes. The study of the

surrogate modeling for the oupling of more than two odes or of more omplex networks

of omputer odes is a promising topi. In a non-ringed network, several other relationships

between the odes an be found. There an be hains of more than two odes. The output

of two di�erent odes an be the inputs of a third ode. Besides the ase of ringed network

ould also be studied. Finally, the ase of two nested odes with a funtional output for the

�rst ode and a salar output for the seond ode ould be studied.

From a pratial point of view, the use of parallel omputing for the omputation of the

sequential design riteria with Monte Carlo methods ould be useful, espeially when the

dimension of the input domain is high and the number of Monte Carlo draws too. This ould

be applied to the ase of a one-by-one sequential enrihment of the design. For the ase of a

bath enrihment, with the addition of k > 1 new observations at eah step, the number of

possible ombinations an be very high, whih an lead to a high omputational burden. The

number of possible ombinations inreases signi�antly when the number of andidates and k
inrease. Moreover, the number of andidates is generally higher when the dimension of the

inputs is high.

Besides, if we note that the inversion of the ovariane matrix of the observations an be

expensive when the number of observations is high, it ould be interesting to study the possible

ombination between the proposed linearized preditor and the nested Kriging approah of

Rullière et al. [2018℄ in order to extend the results obtained to the ase of a high number of

observations.

The study of optimization strategies for nested odes ould also be of great interest. Note

that the Expeted Improvement riterion presented in Setion 1.5 is adapted to the ase of

a omputer ode with a salar output (the quantity to optimize) and its adaptation to the

ase of a funtional output is not diret. If the salar riterion to be optimized is obtained

by a linear transformation of the output, then, thanks to the Gaussianity of the proposed

preditor, an enrihment based on the Expeted Improvement ould be performed.
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