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Résumé

Cette these traite de la métamodélisation (ou émulation) par processus gaussien de deux codes
couplés. Le terme « deux codes couplés » désigne ici un systéme de deux codes chainés : la
sortie du premier code est une des entrées du second code.

Les deux codes sont cotteux. Afin de réaliser une analyse de sensibilité de la sortie du code
couplé, on cherche & construire un métamodéle de cette sortie & partir d’'un faible nombre
d’observations. Trois types d’observations du systéme existent : celles de la chaine compléte,
celles du premier code uniquement, celles du second code uniquement. Le métamodéle obtenu
doit étre précis dans les zones les plus probables de I'espace d’entrée.

Les métamodéles sont obtenus par krigeage universel, avec une approche bayésienne.

Dans un premier temps, le cas sans information intermédiaire, avec sortie scalaire, est traité.
Une méthode innovante de définition de la fonction de la moyenne du processus gaussien, basée
sur le couplage de deux polynomes, est proposée. Ensuite le cas avec information intermédiaire
est traité. Un prédicteur basé sur le couplage des prédicteurs gaussiens associés aux deux codes
est proposé. Des méthodes pour évaluer rapidement la moyenne et la variance du prédicteur
obtenu sont proposées. Les résultats obtenus pour le cas scalaire sont ensuite étendus au
cas ou les deux codes sont & sortie de grande dimension. Pour ce faire, une méthode de
réduction de dimension efficace de la variable intermédiaire de grande dimension est proposée
pour faciliter la régression par processus gaussien du deuxiéme code. Les méthodes proposées
sont appliquées sur des exemples numériques.

Mots-clés

Codes numériques emboités, codes couplés, codes chainés, régression par processus gaussien,
métamodélisation, variable fonctionnelle, réduction de dimension, Stepwise Uncertainty Re-
duction, plans d’expériences séquentiels.

Abstract

This thesis deals with the Gaussian process regression of two nested codes. The term "nested
codes" refers to a system of two chained computer codes: the output of the first code is one
of the inputs of the second code.

The two codes are computationally expensive. In order to perform a sensitivity analysis, we
aim at emulating the output of the nested code from a small number of observations.

Three types of observations of the system exist: those of the chained code, those of the first
code only and those of the second code only. The surrogate model has to be accurate on the
most likely regions of the input domain of the nested code.

In this work, the surrogate models are constructed using the Universal Kriging framework,
with a Bayesian approach.

First, the case when there is no information about the intermediary variable (the output of the
first code) is addressed. An innovative parametrization of the mean function of the Gaussian
process modeling the nested code is proposed. It is based on the coupling of two polynomials.
Then, the case with intermediary observations is addressed. A stochastic predictor based on
the coupling of the predictors associated with the two codes is proposed. Methods aiming
at computing quickly the mean and the variance of this predictor are proposed. Finally, the
methods obtained for the case of codes with scalar outputs are extended to the case of codes
with high dimensional vectorial outputs.

We propose an efficient dimension reduction method of the high dimensional vectorial input
of the second code in order to facilitate the Gaussian process regression of this code.
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All the proposed methods are applied to numerical examples.

Keywords

Nested computer codes, Gaussian process regression, surrogate modeling, functional variable,
dimension reduction, Stepwise Uncertainty Reduction, sequential designs.
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Résumé long en francgais

Cette these présente de nouveaux développements pour la métamodélisation de codes cotiteux
chainés, ou la sortie du premier code est une des entrées du code suivant. Cette configuration
et sa généralisation & plus que deux codes sont fréquemment rencontrées en pratique. Mais
la construction de métamodeéles adaptés & cette configuration a été peu étudiée jusqu’ici.

Ce manuscrit contient trois contributions nouvelles par rapport & I’état de I’art, détaillées dans
les chapitres 3 a 5. La premiére contribution concerne la régression par processus gaussien
avec une fonction de moyenne définie par une polynéme. Une nouvelle méthode de définition
de la tendance polynomiale, basée sur la composition de deux polynémes, est proposée. Dans
ce cas de figure, la variable intermédiaire entre les deux codes n’est pas connue.

La seconde contribution suppose la connaissance de la variable intermédiaire et traite de
I’enrichissement du plan d’expériences en vue de la régression par processus gaussien de la
sortie de la chaine de deux codes. Le choix d’une nouvelle observation souléve plusieurs
questions. Tout d’abord pour un code donné, il faut choisir les variables d’entrée de la
nouvelle observation. Ensuite, comme il y a deux codes, la question se pose également (si cela
est possible) de choisir auquel des deux codes ajouter une nouvelle observation.

La troisiéme contribution traite le cas de deux codes a sortie de trés grande dimension (par
exemple des fonctions du temps). Dans cette configuration, le second code a une sortie,
mais également une entrée fonctionnelle. Une méthode de réduction de dimension de I’entrée
fonctionnelle adaptée & ce cas est alors proposée. Les critéres d’enrichissement proposés
précédemment sont combinés avec cette méthode de réduction de dimension afin de les étendre
au cas de deux codes & sortie fonctionnelle. Les méthodes proposées sont ensuite appliquées a
un cas test industriel modélisant ’explosion d’une charge dans une cuve sphérique. Ce cas test
est associé & un couplage entre un code de détonique et un code de dynamique des structures.

Les paragraphes qui suivent présentent plus en détails la structure du manuscrit.

Le premier chapitre passe en revue I'état de ’art concernant la métamodélisation d’un unique
code & entrée et sortie de faibles dimensions. Une bréve présentation de la régression linéaire
et du chaos polynomial est faite, ainsi que de méthodes de régularisation comme LASSO ou
LARS. Le reste du chapitre est dédié a la régression par processus gaussien (GP) ou krigeage.
Apreés un rappel des bases de la régression par processus gaussien, comme le choix de la
fonction de covariance, le krigeage universel dans un cadre bayésien est présenté. Ensuite, les
critéres pour plans d’expériences pour la régression par processus gaussien et I'optimisation
bayésienne sont passés en revue. Le chapitre se conclut sur une bréve partie concernant
I’analyse de sensibilité, en particulier les méthodes basées sur une décomposition de la variance
(indices de Sobol).

Le deuxiéme chapitre passe en revue les méthodes pour la régression par processus gaussien
d’un code & entrée et/ou sortie définie comme une fonction discrétisée du temps. L’attention
se concentre ici sur la réduction de la dimension de I’entrée ou de la sortie. Concernant la
réduction de la dimension de ’entrée, certaines méthodes ne prennent en compte que ’entrée
fonctionnelle, tandis que d’autres ont pour objectif la réduction de la dimension de ’entrée
de maniére adaptée a la sortie. Ces derniéres sont tout particuliérement adaptées pour le
systéme chainé considéré dans ce travail. Concernant la sortie fonctionnelle, deux approches
sont possibles. La premiére consiste & projeter la sortie fonctionnelle sur une base de dimension
réduite. La seconde repose sur 'utilisation d’une covariance tensorisée, ou 'indice de la sortie
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fonctionnelle (comme par exemple le temps) est considéré comme une des entrées du modéle.

Le troisiéme chapitre contient la premiére contribution de cette thése : la construction d’une
fonction de moyenne du processus gaussien par couplage de deux polynémes. Cette approche
intégre l'information que l'on a a priori sur la structure chainée des deux codes, mais sans
observations ni connaissance de la structure de la variable intermédiaire. Dans ce cas, la con-
figuration est proche d’une régression par processus gaussien classique, avec des observations
des entrées et sortie de la chaine de codes. La spécificité de la méthode repose sur I'utilisation
de I'information que I’on a sur cette structure chainée. La définition de la fonction de moyenne
comprend une premiére étape de composition de deux polynoémes, puis une seconde étape de
linéarisation de cette composition. Cette linéarisation permet de limiter I'impact d’une erreur
d’estimation des parameétres de chacun des deux polynémes. Ensuite le prédicteur de la sortie
de la chaine de code est construit en utilisant le krigeage universel dans un cadre bayésien.
Par ailleurs, la structure proposée pour la tendance polynomiale offre une grande flexibilité,
puisque les ordres totaux de chacun des deux polynomes, mais aussi la dimension de la sortie
du premier polynéme, peuvent étre optimisés. Cependant, cette flexibilité nécessite la réso-
lution d’un probléme d’optimisation complexe car non convexe. Une approche heuristique,
basée sur une minimisation alternée par rapport aux variables, est proposée pour résoudre ce
probléme d’optimisation. Par ailleurs, un critére basé sur l'erreur Leave One Out (LOO) est
utilisé pour caractériser la performance de prédiction du prédicteur gaussien. Ce critére est
utilisé pour choisir la combinaison de valeurs la plus performante pour les ordres totaux des
deux polyndmes et la dimension de la sortie du premier polynome.

Le quatriéme chapitre contient la deuxiéme contribution de cette thése : la métamodélisation
de deux codes chainés lorsque des observations de la variable intermédiaire sont disponibles.
Le prédicteur proposé est basé sur un couplage de prédicteurs gaussiens de chacun des deux
codes. Le chapitre propose en particulier deux critéres d’enrichissement du plan d’expériences.
Ces critéres reposent sur une minimisation de la variance de prédiction intégrée (IMSE). La
variance de prédiction doit donc étre évaluée en un trés grand nombre de points. Le premier
critére correspond au cas ou les deux codes ne peuvent pas étre appelés de maniére séparée.
Le second correspond au cas ou les codes peuvent étre lancés de maniére séparée. Dans ce
cas, on peut choisir lequel des deux codes appeler, en retenant celui qui maximise la réduction
de la variance de prédiction intégrée par unité de temps de calcul pour une évaluation du
code. Une difficulté majeure liée & cette approche tient au fait que le couplage de deux
prédicteurs gaussiens n’est pas gaussien. La variance de prédiction doit donc étre évaluée
en utilisant des méthodes de quadrature ou Monte Carlo. Afin de résoudre ces difficultés
numériques, deux méthodes pour une évaluation rapide de la variance de prédiction sont
proposées. Dans le premier cas, si le processus gaussien associé au second code a une fonction
de covariance gaussienne et une tendance polynomiale, alors la variance peut étre évaluée de
maniére analytique. Dans le cas ol ces conditions ne sont pas valables, une autre approche
reposant sur la linéarisation du couplage des deux prédicteurs peut étre utilisée. Les méthodes
proposées sont ensuite appliquées sur deux exemples numériques : un premier analytique et
un second portant sur la trajectoire balistique d’un projectile conique. Les résultats obtenus
montrent 'intérét de prendre en compte les observations de la variable intermédiaire et de
pouvoir appeler de maniére séparée chacun des deux codes.

Le cinquiéme chapitre contient les contributions finales de cette thése et concerne la mé-
tamodélisation par processus gaussien de deux codes chainés a sortie fonctionnelle (de trés
grande dimension). La contribution majeure de ce chapitre est une méthode de réduction de

I’entrée fonctionnelle d’'un modéle linéaire, qui est adaptée a la sortie de ce modéle linéaire.
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Cette méthode de réduction de dimension est combinée & une approximation de la sortie
du second code, qui est linéaire par rapport a l'entrée fonctionnelle du second code (qui est
également la sortie du premier code). Le modele linéaire proposé est en fait un filtre causal,
paramétré par un petit nombre de variables qui peuvent étre estimées & partir d’un faible
nombre d’observations.

Cette combinaison d’une approximation linéaire et d’une réduction de dimension adaptée a
ce modele linéaire permet de réduire la dimension de I’entrée fonctionnelle du second code de
maniére adaptée & la prédiction de la sortie de ce code.

Gréce & cette réduction de dimension, chacun des deux codes peut étre associé a un proces-
sus gaussien avec un vecteur d’entrées de faible dimension. Deux prédicteurs gaussiens sont
obtenus en utilisant une covariance tensorisée pour prendre en compte le caractére multidi-
mensionnel des sorties des fonctions considérées. Les prédicteurs sont ensuite couplés et le
couplage est linéarisé. Ceci permet d’obtenir un prédicteur gaussien de la sortie fonctionnelle
de la chaine de deux codes. La moyenne et la variance du prédicteur peuvent alors étre éval-
uées de maniére analytique, et donc trés rapide. Les critéres d’enrichissement proposés dans
le chapitre précédent sont ensuite adaptés au cas de deux codes couplés a sortie fonctionnelle.
Enfin, les méthodes proposées sont mises en application sur le cas test industriel qui a motivé
cette thése, & savoir le couplage d’un code de détonique avec un code de dynamique des struc-
tures. Les sorties de chacun des codes sont des fonctions discrétisées du temps. Les résultats
obtenus montrent 'intérét de prendre en compte les observations de la variable intermédiaire,
par rapport & une simple régression par processus gaussien de la sortie de la chaine de codes
en fonction des entrées.
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Context

Surrogate modeling for the sensitivity analysis of two nested computer codes

This thesis is motivated by an application case. This application case is the coupling of two
computationally costly computer codes. The first code is a detonation code and the second
code is a structural dynamics code. The two codes have functional (i.e. high dimensional
vectorial) outputs and the functional output of the first code is one of the inputs of the
second code.

If we aim at performing design and certification studies of such a system, the evaluation of the
output of the system at a large number of input points is often necessary. This is especially
true when methods like sensitivity analysis, risk analysis or optimization are performed.

In this work we aim at performing a sensitivity analysis of the system mentioned above.
Given the computational cost of the two codes, the first objective is to build an emulator,
or a surrogate model, of the output of the two nested codes. This surrogate model will be
constructed from a small set of observations of the two codes. The number of observations
cannot be very high because of the computational costs of the codes.

As the role of simulation is increasing, the surrogate modeling of high-cost codes generates
growing interest. However, the existing methods are generally applied to a single code or
consider a system of codes as a single code.

In this work, the framework of the Gaussian process regression for the surrogate modeling
of computer codes is considered. In this framework, the output of a code is considered to
be the realization of a Gaussian process. The framework used for the Gaussian process
regression is the Universal Kriging framework and a Bayesian approach is utilized. If some
not very restrictive assumptions on the prior distribution of the Gaussian process are fulfilled,
a Gaussian predictor of the code can be obtained by computing the posterior distribution of
the Gaussian process given the observations of the code output.

Moreover, the existing methods for the surrogate modeling of codes generally consider the
case of codes with low dimensional vectorial inputs. If a code has a functional input, the
dimension of the functional input is often reduced thanks to a projection. The choice of the
optimal method of dimension reduction of the functional input for the surrogate modeling of
the output remains a research topic.

Contributions of the thesis

This thesis makes contributions to the surrogate modeling of two nested codes with scalar or
functional outputs. These contributions aim at solving the following difficulties of the studied
system:

e there are two codes,
e the codes are coupled by a functional intermediary variable,

e the second code has a functional input.

First, the case of two nested codes with scalar outputs is investigated. The considered system
is then:

o \
Ve ynest(mnest) = y?(yl (wl)a :132), (0-0-1)
z1 —  yi(z1)

with £1 € R4 and x5 € R% the low dimensional vectorial inputs of the two codes, y; € R
and yo € R the output of the two codes, and d; and ds two integers.
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In a first step, the case where there are no observations of the intermediary variable y; (1)
is considered. An innovative parametrization of the mean function of the Gaussian process
is proposed. This parametrization is based on the coupling of polynomials and enables to
improve the prediction accuracy compared to a classical constant or polynomial mean function.

Then the case where observations of the intermediary variable are available is considered.

A stochastic predictor of the nested code is obtained by coupling the Gaussian predictors of
the two codes. Such an approach enables to take into account all the types of observations:
observations of the nested code, of the first code only and of the second code only. The
predictor is non-Gaussian but its moments can be computed using Monte Carlo methods.
Then we define sequential design criteria which aim at improving the prediction accuracy of the
proposed predictor. The criteria are based on a reduction of the integrated prediction variance
because the predictor has to be accurate on the most probable areas of the input domain for
the sensitivity analysis. Finally, two adaptations of the proposed predictor are developed
in order to evaluate the prediction variance and thus the proposed sequential design criteria
quickly. The first adaptation is called "analytic" and the second one "linearized". They both
enable to compute the mean and the variance of the proposed predictor in closed forms. The
"linearized" method leads also to a Gaussian predictor of the nested code. Moreover, the
interest of taking into account the intermediary observations is shown.

Finally, the case of two nested code with functional outputs is investigated. The considered
system is then:

T2
ynest(mHeSt) = yg(yl(ml),$2), (002)
1 —  yi(z1)

with y; € RV and y, € R™M the output of the two codes when they are functional, N; > 1
denoting the number of discretization steps of the functional outputs.

The second code has a functional input and the existing methods of Gaussian process regres-
sion generally consider low dimensional vectorial inputs. The Gaussian process regression of
the second code requires therefore the reduction of the dimension of this functional input.
We propose a dimension reduction of the functional input of a code which is suited for the
prediction of the functional output of this code. This dimension reduction method is based
on a two-step approach. First, the output of the second code is approximated by a linear
causal filter. This linear model has a sparse structure, which is defined by only NV; variables.
These variables can be estimated from a small set of observations of the functional input and
output of the second code. The second step is the use of a proposed projection basis which is
adapted to a linear model. The combination of these two steps enables to obtain a dimension
reduction of the functional input of the second code, which:

e is adapted to the output of this code
e can be estimated from a small set of observations,
e does not require the knowledge of the derivatives of the output of the code,

Once the dimension of the functional intermediary variable has been efficiently reduced, the
previously defined linearized method is adapted to the case of two nested codes with functional
outputs. A Gaussian predictor of the functional output of the nested code, with analytic mean
and variance, is obtained. Finally, the previously defined sequential design criteria are adapted
to the case of two nested codes with functional outputs.
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Outline of the manuscript

The thesis has two parts.
Part [ provides a review of the state of the art for the surrogate modeling of computer codes.

In Chapter [1], we review methods for the surrogate modeling of a single code with low dimen-
sional vectorial inputs and a scalar output.

Section [[.T] describes the surrogate modeling of a single code by Linear Regression.

Section focuses on the surrogate modeling of a code by Polynomial Chaos Expansion.
Section [[3] reviews the existing methods for the selection of the regressors in the framework
of Linear Regression.

Section [[4] provides a review of the Gaussian process regression framework for the surrogate
modeling of a single code with low dimensional vectorial inputs and a scalar output.

Section presents a review of the design of experiments for an accurate surrogate model on
the whole input domain of a code with low dimensional vectorial inputs and a scalar output.
Section [L6l focuses on the sensitivity analysis of the output of a code, or a quantity associated
with it, with respect to the inputs of the code.

In Chapter 2 we review methods for the surrogate modeling of a single code with a functional
output, low dimensional vectorial inputs and possibly a functional input.

Section 2.1] is devoted to the existing methods for the dimension reduction of a functional
variable.

Section reviews the existing methods for the Gaussian process regression of a code with
low dimensional vectorial inputs and a functional output.

Part [T details our contributions to the construction of a surrogate model of two nested codes
with scalar or functional outputs.

In Chapter Bl we focus on the case where the two codes have scalar outputs and no obser-
vations of the intermediary variable are available. We propose to define the mean function
of the Gaussian process modeling the nested code as a coupling of two polynomials. This
parametrization is based on the coupling of two polynomials. We show how this parametriza-
tion can improve the prediction accuracy of the Gaussian predictor compared to the case
where the mean function is defined by polynomials.

In Chapter [ we focus on the case where the two codes have scalar outputs and observations of
the intermediary variable are available. We propose a stochastic predictor of the nested code
based on the coupling of the Gaussian predictors of the two codes. This stochastic predictor is
non-Gaussian but its mean and variance can be evaluated using Monte Carlo methods. This
predictor can take into account all the possible observations: those of the nested code, those
of the first code and those of the second code. Then sequential design criteria are proposed.
These design criteria aim at improving the prediction accuracy on the whole input domain of
the nested code. One of the criteria can also take into account the difference of computational
costs between the two codes. Finally, we propose two adaptations of the previously proposed
predictor of the nested code in order to accelerate the computation of the mean and the
variance of the predictor. They both enable to compute the prediction mean and variance
in closed forms. In addition, the proposed linearized predictor of the nested code enables to
obtain a Gaussian predictor of the nested code with conditioned mean and variance functions
in closed forms.
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The application of the proposed methods to numerical examples shows the interest of taking
into account the intermediary observations.

In Chapter ?? we focus on the case of the coupling of two codes with functional outputs. We
first propose an efficient dimension reduction of the functional input of the second code. This
dimension reduction is based on a linear projection of the functional input of the second code.
The proposed projection basis can be estimated from a small set of observations of the second
code and does not require the knowledge of the derivatives of the code.

We also extend the linearized predictor of the nested code proposed in Chapter @ to the case
of two nested codes with scalar output. This extension relies on the dimension reduction of
the functional output and a tensorized structure of the Gaussian process modeling the code.
By tensorized structure we mean a separation between the index of the output and the inputs.
The sequential design criteria are also adapted to the case of two nested codes with functional
outputs.

The proposed methods are applied to numerical examples. The results show again the interest
of taking appropriately into account the intermediary observations.

The predictor obtained at the end of the sequential enrichment of the initial design is used in
order to perform a sensitivity analysis of a scalar quantity of interest based on the functional
output of the nested code.
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Notations

Ordinal variables

n number of observations

d dimension of an input variable

D number of functions of a basis of function in the case of Universal Kriging
Ny dimension of the time-varying output of a code

card(A) number of elements of the set A

Matrix, vectors and scalar

T a scalar

x a vector

x; or (x), the i-th entry of the vector x

X a matrix

(X)) the entry at line ¢ and row j of the matrix X

(X), the vector of the entries of the i-th column of the matrix X
(X),. the vector of the entries of the i-th row of the matrix X
xT transpose of the matrix X

diag (x) diagonal matrix with diagonal x

diag (X))  vector corresponding to the diagonal of the matrix X
Tr (X) trace of the matrix X

cov (x,y) covariance between x and y
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Probabilistic notations

4 equality in distribution

E[] Mean of a random quantity

V] Variance of a random quantity

N (m, K) multivariate normal distribution with mean m and covariance matrix
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Part 1

State of the art for the surrogate
modeling of computer codes






The role of simulation for the design and the certification of complex systems is increasing.
However, methods like uncertainty propagation, sensitivity analysis or optimization require
the evaluation of the output of the code at a huge number of input points. If the computational
cost of the computer code is high, and only a small number of observations of its output is
available, the use of a surrogate model is necessary. In this part we review some existing
methods for the surrogate modeling of computer codes.

This part includes two chapters. The first one is devoted to the surrogate modeling of a
computer code with scalar (i.e. low dimensional vectorial) inputs and output. The second one
focuses on the surrogate modeling with Gaussian process regression of a code with functional
(i.e. high dimensional vectorial) input and/or output.






Chapter 1

Surrogate modeling of a single code
with scalar inputs and output

In this chapter we consider a model of the form « — y (x), z € X C R?, d a positive integer,
and px is a probability measure on the space comprising X and a c-algebra over X. The
following sections detail the state of the art for the surrogate modeling of y from a set of n
observations of the input and the output of the code. These observations are denoted by:

2z
X0bs — : , (1.0.1)

and
yobs = <y(1) =y (:c(l)) sy =y <:c("))) ) (1.0.2)

obs is a m-dimensional vector.

where X° is a (n x d)-dimensional matrix and y
The first section is devoted to linear regression. The second one deals with the use of Poly-
nomial Chaos Expansion as a surrogate model. The third one focuses on the methods for the
selection of regressors in regression models. The fourth one presents the Gaussian process
regression for the surrogate modeling of a computer code. Finally, the last section reviews
some existing designs of experiments which are adapted for the acquisition of knowledge of
the computer code or the sequential improvement of a surrogate model.

1.1 Linear regression

Generalized additive models are a very common tool for the emulation of a response surface
[Hastie and Tibshirani, 1990]. It is the projection of the output y on a basis of functions
hi, 1 <i < p, pa positive integer, of the inputs . The emulator can be written in the form:

j(z) =h(x)" B, (1.1.1)
where h () and 3 are in RP. The functions of the basis can be polynomials, with Polynomial
Chaos Expansion as a particular case, wavelets, trigonometric functions...

Note that simple linear regression can be regarded as a particular case of the generalized
additive models, with a basis of functions comprising only the covariates: h () = x.

The regression coefficients 3 can be estimated from a set of n observations of the inputs and
the output of the code X°P% and y°" through the minimization of the quadratic loss function:

B= argminzn: <y (x(i)) —h <m(i))Tg>2 ) (1.1.2)
1=1

BERP
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1.2. POLYNOMIAL CHAOS EXPANSION

If we denote:
h (m(l))T
H = : , (1.1.3)
h ()"
then the least squares estimate of the regression coefficients can be written:

B =H"y"™ (1.1.4)

where H7 is the pseudo-inverse of H. If n > p and H is of rank p, then H” H is invertible
and HT = (HTH)i1 HT. By definition, H is a (n x p)-dimensional matrix.

However, matrix (H TH ) is not always invertible. The number of observations can be smaller
than the number of regression coefficients (p < n) or the functions of the basis can be cor-
related according to the probability measure ux, which means that the columns of H are
correlated, thus reducing the rank of matrix H.

The matrix (H TH ) is more likely to be inverted if the basis functions are decorrelated with
respect to the probability measure ux of the inputs, as performed with Polynomial Chaos
Expansion. Another possible approach is the use of a regularization term for the inversion
of the matrix, or the selection of the most influencing regressors. The two following sections
detail these two approaches.

1.2 Polynomial Chaos Expansion

Polynomial Chaos expansion can be used to emulate a model response y with inputs .
Besides, the probability measure ux associated with x is a product measure. Therefore, the
components of the input vector are independent. It has been applied by mamam]_s_p_amsj

| to stochastic finite elements methods. Polynomial Chaos expansion can be seen as the
projection of the model output y on a polynomial basis which depends on the distribution of
the model inputs @. The polynomials are orthonormal with respect to the distribution of .
The model response can therefore be expanded as:

y(@) = BaPal(z), (1.2.1)

acNd

with B € R and ®, orthonormal multidimensional polynomials, which means:

/X Do () Dy (2) diix (%) = Sarrs (1.2.2)

with dq~ denoting the Kronecker delta.

In practice, the expansion of Eq. ([.2I]) can be truncated in order to obtain a surrogate
model of the model response. If we denote by A C N? the truncated set of indices, by 3, the
vector gathering the B, € A and by ®, the vector gathering the selected polynomials, this
surrogate model is defined as:

7(x) =24 (2)" B, (1.2.3)
Note that the truncation is generally defined by an upper bound r on the total order of

the polynomials, which means A = {a € N, ||a||; < r}. The total order 7 can be chosen
adaptively according to a target precision, with an estimation of the error thanks to a cross-

validation criterion [Blatman and Sudret, 2010, 2011].

A coefficient , is defined as the projection of the model response on function ®4:

ﬁa:/xy(w) Do () dpx () - (1.2.4)

6



1.2. POLYNOMIAL CHAOS EXPANSION

Distribution Density ‘ Orthonormal basis ‘
) 1 Py (x) ) )
Uniform =1 T —————, with P, Legendre polynomial
5L (@) ‘ T % Leg poly

1 .%'2 Hk (.%')

Gaussian exp | —— , with Hy, Hermite polynomial
o OXP < 5 > = ! poly
@ L

Gamma ﬁ exp (—z) 1z>0 I’(%(;l—l)’ with L Laguerre polynomial

Table 1.1: Classical univariate polynomial families used for Polynomial Chaos Expansion.

The integral can be estimated using Monte-Carlo methods, quadrature rules [Ghiocel and
Ghanem, lZQO_j] or stochastic collocation methods “Xm| lZD_QQ]
The coefficients can also be estimated by least squares regression ﬂBlaIma.n_a.nd_Sudr_eﬂ 2010,

-] from a set of n observations:

2
B, = argmin ( Dy <m(i))TﬁA> . (1.2.5)

Ba eRad(

Note that if the observations are drawn according to the distribution of the inputs, the meta-
model will be more accurate in the high-probability regions of the input domain.

The usual one-dimensional polynomial families used for Polynomial Chaos Expansion, which
are chosen according to the distribution of the one-dimensional variable x, are given in Table
1

Furthermore, the inputs can be transformed using an isoprobabilistic transformation, such
as the Nataf or the Rosenblatt transformations [Nataf., [1962; Rosenblatt. 1952: Lebrun and
Dutfoy, lZD_QQ] Such transformations map @ to a d-dimensional standard Gaussian variable
¢ (i.e. d independent standard Gaussian variables). Then a Polynomial Chaos Expansion

can be performed using Hermite polynomials |[Blatman and S]]dreﬂ, 2011]. The expansion

becomes:

acNd

d
where Ho = [ Hq, and
i=1

d

_ -1 .
o = /T INOENC) I BOES (1.2.7)

i=1

Here, T : « — £ is the isoprobabilistic transformation and T~! its inverse, Ho are Hermite
polynomials, and ¢ the standard univariate Gaussian probability density function.

Thanks to this isoprobabilistic transformation, the Polynomial Chaos Expansion of a computer
code with dependent inputs can be performed.



1.3. METHODS FOR THE SELECTION OF THE REGRESSORS OF A LINEAR MODEL

1.3 Methods for the selection of the regressors of a linear model

In this section we review the existing methods for the selection of the most influential regressors
for linear regression or Polynomial Chaos Expansion. The methods are presented in the
chronological order of their appearance. Two approaches can be distinguished: the first one
selects the regressors which are the most influential. The second one minimizes the coefficients

associated with the least influential regressors.

1.3.1 Stepwise and all-subsets regressions

Stepwise regression aims at selecting the regressors which improve the prediction accuracy the
most. There are three main approaches to perform this selection: forward selection, backward

elimination and bidirectional elimination.

In the forward method, the set of the selected regressors is empty at the initial step. Then, at
each step, one adds the regressor which best improves the prediction accuracy of the regression

model. The addition continues until a stopping criterion is reached.

On the contrary, with the backward elimination, a huge number of regressors are selected at
the initial step. Then the regressors which contribute the least to the prediction accuracy are

removed step by step from the regression model.

Efroymson ﬂl9_6_d] introduced an approach combining forward selection and backward elimi-
nation. At each step of the forward selection, the interest of removing one of the previous

selected regressors is studied.

However, stepwise regression is known as being greedy and quite unstable |[Hesterberg et alJ,

2004)].

In parallel, all-subsets regression has been introduced by [Furnival and Wilson 1924]. It relies
on the evaluation of the accuracy of all the regression models based on all the subsets of the
set of regressors. Even though exhaustive, this approach can be computationally expensive,

especially when the number of regressors is high.

1.3.2 Ridge regression

Introduced by Hoerl and Kennard ﬂ19_7_d], ridge regression is based on a penalization of the

coefficients of the regressors. This penalization can be seen as a regularization of the regression
problem. The coefficients obtained with the ridge regression are the solutions of the following

optimization problem:

2

B = argmin 3 (3 (+0) ~ () 8) 5112,

PERY i

with § a non-negative real-valued constant.
This leads to the normal equation:

~ridge

(HTH+5IP) B _ HTyObS.

Practically, the optimal value of § can be estimated thanks to a Cross validation criterion.
The absolute value of the coefficients decreases as d increases. When § = 0, the result is the
same as the one of ordinary least squares. If § > 0 then the matrix (HTH + 5Ip) is positive

definite and thus invertible.

The ridge regression can be seen as a particular case of the Tikhonov regularization [Tikhonov

8
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and Arsenin, ], which is defined as follows:

B rgnin 3 CICORE <w“>)%)2 +TB)?, (133)

PERP 1

with I' a d x d-dimensional matrix.
If ITT is positive definite, this problem has the following explicit solution:

~Tikhonov

— (HTH +17T) " H y. (1.3.4)

Note that if T' is defined such that I''T is positive definite, then the matrix H? H + T''T is
an invertible matrix.

1.3.3 LASSO

The Least Absolute Shrinkage and Selection Operator (LASSO) method has been introduced
by Tibshirani ﬂl%ﬂ] It relies on a Li-penalization of the estimation of 3, which can be

written:

" 2
B —agin Y-y () 1 (20) )+ 5181, (135)

PER” =

with ¢ a non-negative constant.
The higher ¢ is, the more zero coefficients there are and the sparser the regression model is.

1.3.4 Forward stagewise regression

Hastie et al. HZD_Q]J] have introduced the forward stagewise regression. Although different from
LASSO, it yields similar results. The procedure can be defined by the following algorithm:

e Initialize with R = y° and 8; = 0, i € {1,...,p}, then repeat until no regressor is
correlated with R:

— Find i € {1,...,p} such that h; (XObS) is the most correlated with R,
— Update B; = 5; + €;, €; = € sign (cor (hi (XObS) ,R)),
— Update R = R — ¢;h; (X°),
where, by abuse of notation h; (XObS) = (hi (a:(l)) ooy hy (w("))). In practice, € is set to a

small value, like € = 0.01. In general, this approach is more reliable than the classical stepwise
regression.

1.3.5 Least Angle Regression

Introduced by [Efron et all [2004], Least Angle Regression (LAR) is similar to the forward
stagewise regression, given that it selects the regressor h; (X Obs) which is the most correlated
with the current residual R. However, the computation of the value of 3; is different. Instead
of being slightly modified, the value of ; is chosen such that the correlation between the
new residual R — 3;h; (X Obs) and its most correlated regressor h; (X Obs) is equal to the
correlation between R — B;h; (X Obs) and h; (X Obs). This method can also be seen as an
intermediate method between forward regression and forward stagewise regression.

9
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1.3.5.1 The algorithm

Least Angle Regression (LAR) is associated with the following algorithm:
1. Initialize with R = y°™ and 8; =0, i € {1,...,p}.

2. Find i € {1,...,p} such that h; (XObS) is the most correlated with R.

3. Move 3; from 0 toward its least squares coefficient, until another regressor h; (X Obs)

has as much correlation with R — 5;h; (XObS) as h; (XObS).

4. Move jointly (8;, 8;) in the direction defined by their joint least squares coefficient of the
current residual on (hl- (X Obs) b (X Obs)), until some regressor hy (X Obs) is as much

correlated with the current residual.

5. Continue until min (p,n — 1) regressors have been retained.

1.3.5.2 LASSO can be seen as specific case of LAR

Efron et al. [2004] and Hastie et all [2007] have shown that a slightly modified LAR algorithm
can provide the entire paths of the LASSO coefficients as the § coefficient increases. This

modified algorithm is defined as follows:

e Run the LAR algorithm from step 1 to 4,

e If a non-zero coefficient achieves zero, remove the associated regressor from the linear model

and recompute the joint least squares direction,

e Continue until min (p,n — 1) regressors have been retained.

In the same way, a modified LAR algorithm can be used to perform a forward stagewise
regression in the case of € — 0 [Hastie et all, |201)_ﬂ] Note that the label LARS generally refers

to this modified LAR algorithm (where S refers to Stagewise or LASSO).

1.3.5.3 Hybrid LARS

Introduced by [Efron et all [2004], hybrid LARS is derived from the original LARS (referring
to the original LAR or LASSO here). This modified algorithm comprises a LAR step which
enables to select the regressors. The next step is the estimation by ordinary least squares of

the coefficients associated with the selected regressors.

Hybrid LARS relies on a separation between the choice of the regressors and the estimation

of the linear model.
It enables to increase the accuracy of the linear model compared to the original LARS.

Relaxed LASSO [Meinshansen et all, 2007] is an extension of the LARS-based LASSO algo-
rithm. The first step is the same as for hybrid LARS. The ordinary least squares estimation
of the coefficients at the second step is replaced by a LASSO estimation with a small penalty.

In this approach, for the selected regressors at a given step of the LARS algorithm, one
performs LASSO with a small penalty coefficient §, such that no regressor is eliminated.

Hybrid LASSO is a particular case of this algorithm, with § = 0.

10
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1.3.6 Dantzig selector
The Dantzig selector of [Candes and Tao ﬂlOll’ﬂ] is based on the resolution of the following

optimization problem:

BDa,ntzig — argmin HHT (yobs _ H,B) H
BERP

subject to |8, <t, (1.3.6)

o0

with t € RT

In the same way as LARS, the Dantzig selector sets some coefficients to zero, thus selecting
some regressors.

However, [Efron et all [2004] and Meinshausen et al! [2007] have shown that the linear model
obtained with LASSO is as accurate as or more accurate than the one obtained with the
Dantzig selector.

Note that a DASSO (DAntzig Selector with Sequential Optimization) algorithm has been
proposed byLLamsﬁ_aﬂ ﬂﬂlOﬁ] in order to compute in one step the whole path of the Dantzig
selector.

1.3.7 Conclusions

In this section, methods which enable to select the regressors of a linear model have been
reviewed. Such approaches are particularly useful when the number of observations n is small
compared to the number of possible regressors p of the linear model.

1.4 Gaussian process regression or Kriging

This section is devoted to the surrogate modeling of a computer code by Gaussian Process
Regression.

Gaussian process regression is widely used in computer experiments [Sacks et all, 1989; Santner
et al., lZD_Qj; illi , lZD_Qd] In the Gaussian process regression framework,
the output y of the code can be seen as a realization of a Gaussian process.

In the remainder of the section, we first outline the multidimensional Gaussian distribution
and the definition of a Gaussian process. Then the Gaussian process regression framework
for a known covariance function is presented. Finally, the estimation of the hyperparameters
of parametric covariance functions is described.

1.4.1 Gaussian processes
1.4.1.1 Multidimensional (multivariate) Gaussian distribution

A random vector u = (ui,...,u,), n > 1, is a Gaussian vector if the following equivalent
assumptions are verified:

e for any a € R", a’u has a Gaussian distribution,

1
e the characteristic function of w is of the form v — exp <i'UTm — §’UTK’U> with m a

n-dimensional vector and K a (n x n)-dimensional matrix, which is symmetric and
positive definite.

If these assumptions are verified, we have u ~ N (m, K) with m = E [u] and K = cov (u).

11
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1.4.1.2 Gaussian processes

A random process associates to any value of  a random variable Y (). A random process is a
Gaussian process if its finite-dimensional distributions are Gaussian distributions. A Gaussian
process Y is characterized by its mean and covariance functions. The mean function is defined
by:

m(x) =E[Y (x)]. (1.4.1)

The covariance function is defined by:

C(z,2') =cov (Y (z),Y (2)), (1.4.2)
' in X.
A Gaussian process is said to be stationary if, for all ¥, ..., 2™ in X and h € R? such that
M +h, ..., 2™ + h are still in X, the multidimensional distribution of the Gaussian process

Y at 2, ... 2™ is the same as the one at V) + h,....z(™ + h.
It follows that a covariance function is said to be stationary, if, for all z, ',z + h, ' + h € X,
one has:

C(x+h,x' +h)=C(z,2)=C(x—2',0). (1.4.3)

Finally, a Gaussian process is stationary if and only if its mean function is constant and its
covariance function is stationary.

The next section outlines some classical parametric families of stationary covariance functions
and their properties. For a more detailed review of covariance functions, the interested reader

may refer to |Abrahamsen [1997] and Rasmussen and Williams [2006].

1.4.1.3 Parametric families of stationary covariance functions

Typical parametric families of covariance functions are of the form:
C(z,a') = o’ Ky (x — ') (1.4.4)

where Kjp is a correlation function parametrized by the vector of correlation lengths £ €
(0,4+00)¢, and o2 € (0, +0c0) is a variance parameter.
The following paragraphs present some classical stationary correlation functions Kp.

The nugget correlation function
The nugget correlation function is defined by:

Ky (a: — a:') = Op—u’s (1.4.5)

where ¢ denotes the Kronecker delta. Note that this covariance function does not depend on
any correlation length.

By construction, the observations of a Gaussian process with a nugget correlation function
are not correlated and consequently independent and identically distributed.

Figure [Tl presents an example of a path of the centered Gaussian process with the nugget cor-
relation function and a unit variance o2. The trajectory is very rough and all the observations
are independent of each other.

12
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00 02 04 06 08 1.0
€T

Figure 1.1: An example of a path of the centered Gaussian process with the nugget correlation

function and a unit variance o2.

The squared exponential correlation function
The squared exponential (or Gaussian) correlation function is defined by:

K, (:c — a:’) = exp <—dg (:c — a:’)2> , (1.4.6)

d I\ 2

T; —

where dg (x — ') = E < : 7 Z) . The trajectories of a Gaussian process with a squared
i=1 ¢

exponential correlation function are infinitely differentiable. This covariance function is widely

used in Kriging models. However, the assumption of infinite differentiability may be unrealistic
[Stein, [1999].

Figure presents the squared-exponential correlation function and an example of a path of
the centered Gaussian process with a squared-exponential correlation function, a unit variance
o2, and the following correlation lengths: ¢ € {0.05,0.1,0.2}. It can be seen that the shorter
the correlation length is, the faster the correlation function decreases. Besides, the path varies
more if the correlation length is short. Finally, note that the trajectories are very smooth, in
agreement with their infinite differentiability.

The Matérn correlation function
The multi-dimensional Matérn kernel can be defined as:

W (2vide ( — ') K, (2Vwde (z — '), (L4T)

Ky (ac — a:/) =
with ' (+) the gamma function, K, a modified Bessel function [Abramowitz and Stegun, 1965

1
and v > 3 the smoothness hyperparameter.

Note that as v — oo, the Matérn kernel tends to the squared exponential correlation function.

1
Besides, when v = k+ 3’ k € N, the Matérn kernel has a simpler form. In particular, we have:

o if vy=—:
2
Ke(x—a') =exp (—de (x—a')), (1.4.8)

this kernel is also known as the exponential kernel,
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Figure 1.2: On the left figure: plot of the squared-exponential correlation function. On the
right plot: an example of a path of the centered Gaussian processes with a squared-exponential
correlation function Ky, ¢ € {0.05,0.1,0.2} and a unit variance.

o if v=

K, (ac - a:/) = (1 +3 dy (a: — m')) exp <—\/§ dyg (ac — m')) , (1.4.9)

o if v=

Ky (a:—a:') = <1+\/5dg (a:—a:') —i—g dg (a:—a:')2> exp <—\/g dp (w—w')).
(1.4.10)

Figure [[3] presents the exponential correlation function and an example of a path of the
centered Gaussian processes with an exponential correlation function, a unit variance 0% and
the following correlation lengths: ¢ € {0.05,0.1,0.2}. The trajectories are not differentiable.

Figure [[L4 presents the Matérn 3 correlation function and examples of a path of the centered

Gaussian processes with a Matérn 3 correlation function, a unit variance o2, and the following

correlation lengths: ¢ € {0.05,0.1,0.2}. The trajectories are not very smooth, but smoother
than with the exponential correlation function.

5
Figure LD presents the Matérn 3 correlation function and an example of a path of the centered

Gaussian processes with a Matérn — correlation function, a unit variance o2, and the following

correlation lengths: ¢ € {0.05,0.1,0.2}. The trajectories are relatively smooth.
It can be seen on Figures to that the shorter the correlation length is, the faster the
correlation function decreases. Besides, the path varies more if the correlation length is short.

Figure presents the Matérn correlation function and examples of a path of the centered
Gaussian processes with a Matérn correlation function, a correlation length equal to 0.5, a

unit variance o2, and the following values of the smoothness parameter: v € {=, 3’3 oo}

It can be seen that the smoothness parameter strongly impacts the form of the correlation
function. Besides, the higher v is, the smoother the paths are.

14



1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

1.0 {4
. 2 -
0.8 1 1 4
=06 ol ¥
= ﬁ/o e
~ - SHE .
0.4 1 S Vool Correlation length ¢
0.05
0.2 - -2 - .:’ - 01
0.2
0-0 1 T T T T .-\.----..\ _3 L T T T T T T
00 02 04 06 08 1.0 00 02 04 06 08 1.0
h x
(a) Correlation function (b) Trajectories

Figure 1.3: On the left figure: plot of the exponential correlation function. On the right
plot: an example of paths of the centered Gaussian processes with an exponential correlation
function Ky, ¢ € {0.05,0.1,0.2} and a unit variance.
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(a) Correlation function (b) Trajectories

3
Figure 1.4: On the left figure: plot of the Matérn 3 correlation function. On the right plot:

3
an example of a path of the centered Gaussian processes with a Matérn 3 correlation function
Ky, a unit variance and ¢ € {0.05,0.1,0.2}.
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5
Figure 1.5: On the left figure: plot of the Matérn 3 correlation function. On the right plot:

. . 5 . .
examples of a path of the centered Gaussian processes with a Matérn 3 correlation function
Ky, a unit variance and ¢ € {0.05,0.1,0.2}.
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Figure 1.6: On the left figure: plot of the Matérn correlation function for different values of
the smoothness parameter v. On the right plot: an example of a path of the centered Gaussian

processes with a Matérn correlation function Ky, the following values of the smoothness

135
parameter v € {5, 29’ oo}, a correlation length ¢ equal to 0.5 and a unit variance o2.
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The power exponential correlation function
The power exponential correlation kernel is defined by:

Ko (z —a') = exp (-Zd: <x€—x’>p> (1.4.11)

=1

p € (0,2], with the particular case of p = 2 corresponding to the squared exponential correla-
tion function.

Finally, note that the multidimensional correlation functions can also be defined as a product
of univariate correlation functions:

d
Ko (o —a') = [[ Ko, (i — ), (1.4.12)
i=1
where the Ky, may belong to different families of correlation functions.

1.4.1.4 The relationship between the covariance function and the mean square
regularity

In this section, we consider a centered Gaussian process Y with covariance function C. Some
properties concerning the mean square regularity of a centered Gaussian process and its
relationship with the covariance function are reviewed.

A zero-mean Gaussian process Y is mean square continuous if and only if its covariance func-
tion is continuous at each pair (x,x), € X. Besides, if a covariance function is continuous

at each pair (z,x), € X, then it is continuous on X x X |[Bachod, 2013H].

If one defines the following notation:

Y (z) 9Y (z) 82C
< oz 0 o)~ dwae &%) (1.4.13)
o 0 0 ) ‘ ‘ o
the derivative ...=—Y, with {i1,...,ix} a subset of {1,...,d}, exists in the mean

H? H?
Oy, Ox O, O
k

i

C exists

square sense and is a Gaussian process if the derivative function

and is finite.

In the case of a Gaussian process Y with stationary covariance function C', the three following
assumptions are a consequence of the previous assumptions:

1. the Fourier transform C of C is such that:

/ w?C (w) dw < +00,
R

2. the covariance function C' of Y is 2k times differentiable,

3. Y is k times mean square differentiable.
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1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

1.4.2 Ordinary, simple and universal Kriging

The term Kriging [Matheron and Blondel, 1962] refers to the prediction of the value of a

random field at unobserved points of this random field. In this work, we assume that the
random field is a Gaussian process.

In the framework of Kriging, three cases can be distinguished according to different assump-
tions on the mean function:

e Simple Kriging corresponds to the case where the mean function is known. Then, thanks
to the subtraction of this known mean, the Gaussian process can be assumed to be
centered.

e Ordinary Kriging corresponds to the case where the mean function is assumed to be con-
stant and unknown.

e Universal Kriging corresponds to the case where the mean function is unknown and of
the form m (x) = h (z)” B, where h (x) defines a p-dimensional basis of functions and
B € RP a vector of unknown coefficients.

Note that, if the covariance function of the Gaussian process is considered as being stationary,
the use of a non-stationary mean function (universal Kriging) can make this assumption of
stationarity of the covariance function more likely.

In the following paragraphs, we review the predictors obtained by the computation of the
conditioned mean and variance of the Gaussian process in the frameworks of simple, ordinary
and universal Kriging. At this stage, the covariance function of the Gaussian process is
assumed to be known. Besides, we consider a Bayesian framework Robera, W; Santner
et al., mOj]

The following notations will be used. The prior distribution of the Gaussian process Y can
be denoted by:

Y ()|m,C~GP(m(),C(,-)), (1.4.14)

and the posterior distribution of the Gaussian process Y by:

Y (1) |y, m,C ~ GP (m°(-),C¢(-,-)). (1.4.15)

1.4.2.1 Simple Kriging

Simple Kriging corresponds to the case of a Gaussian process with known mean. For the sake
of simplicity, this mean is assumed to be set at zero, thanks to the subtraction of the known
mean of the Gaussian Process. Thus, one has:

m(x) =0, (1.4.16)

and:
Y ()|C~GP(0,C (). (1.4.17)

In such a case, the conditioned distribution of the Gaussian process is still Gaussian, with
conditioned mean and variance which are given by:

me (x) = C (z, XOP) € (X5, X0P5) " yobs, (1.4.18)

and
C (z,@') = C (x,2) — C (z, X°P) C (X°%, X°%) ™ € (X% z), (1.4.19)
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1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

where X° is defined by Eq. (L0.1) and C (z, X Obs) is a n-dimensional vector and
C (XOIDS7 XObS) is a (n x n)-dimensional matrix, so that:

(C (2, X)), = C (2,2), (1.4.20)

and
(C (x°, x°)), = € (2, 20)) . (1.4.21)

ij

1.4.2.2 Ordinary Kriging

Ordinary Kriging can be regarded as a specific case of Universal Kriging, with constant mean
8 € R to be determined:

m(x) = p. (1.4.22)

Therefore, in the case of Ordinary Kriging, one has:

We consider a Bayesian framework and we have no a priori information about . The prior
distribution of 3 is therefore assumed to be an improper uniform distribution on R. In such
a framework, the conditioned distribution of the Gaussian process is still Gaussian, with the
following conditioned mean and variance functions:

me (x) = B + C (2, X°) € (X, X°0s) (y (z) - B) , (1.4.24)
and
Ce (:E, :E/) = C (:E, :E/) - C (:E, Xobs) C ()(obs,)(obs)*1 C (Xobs’ :E) +
IR (1.4.25)
u (x) (]1TC (Xobs, XObs) ]l) u(x'),
where
w(x) =1-17C (X%, X°) 7 ¢ (X ) , (1.4.26)
B\ — <]].TC (XObS, XObS)_l ]]_)71 ]].TC (XObS, XObS)_l yObS, (1427)
and:
1
1=1]:1. (1.4.28)
1

1.4.2.3 Universal Kriging

In the case of Universal Kriging, the mean function of the Gaussian process is defined as
follows:

m (@) =h(z)" B, (1.4.29)

with B a vector of unknown parameters.
Therefore, in the case of Universal Kriging, the prior distribution of the Gaussian process is:

Y () |h,B,C ~ GP (h () B,C (., -)) . (1.4.30)
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1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

If we assume that 8 follows an improper uniform distribution on R? and that the covariance
function is known, then the conditional distribution of the Gaussian process is still Gaus-
sian and its conditioned mean and covariance functions can be computed analytically. The
conditioned mean and variance of the Gaussian process can be written:

me (z) = h(x)T B+ C (z, X°%) C (X°5, x0P5) ™ (yObS - HZ%) , (1.4.31)
and
Ce(z,2')= C(z,2')—C(z,X)C (XOIDS,XO]DS)_1 C (X ) +
RN (1.4.32)
w(x)” <HTC’ (Xx°bs, x0Ps) H) u(x'),
where )
u(z) =h(z) - H C (X X)) C(X,z), (1.4.33)
and: .
B _ (HTC (Xobs7Xobs)*1 H) HTC (Xobs’ )(obs)*1 yobs. (1-4-34)

Besides, the posterior distribution of the parameters 3 is Gaussian with mean B and covari-
ance:

Rg = (HTC (x°bs, xobs) ™ H> - (1.4.35)

Note that the classical linear regression leads to the same results as Universal Kriging with a
nugget covariance function. A nugget covariance function is defined by C (z, Z') = 0%64—s,
with d denoting the Kronecker delta.

1.4.3 Estimation of a parametric covariance function

The previous section has detailed the properties of a Gaussian process and has presented some
parametric families of covariance function and the conditioned distribution of the Gaussian
process for several assumptions on the mean function of the process and a known covariance
function.

In this section, we review some methods of estimation of the hyperparameters of the covariance
function, when the covariance function belongs to a known parametric family.

There are two main approaches for the plug-in estimation of the covariance hyperparameters
£ and o2. The first one is based on the maximization of the likelihood of the observations
given the hyperparameters. The second one is based on the minimization of the Leave One
Out Mean Square Error for the estimation of £ and on the Leave One Out Prediction Variance
for the estimation of o2. Alternatively, a full Bayesian approach can be used m, ]
But, in such a case the posterior distribution of the Gaussian process is no longer Gaussian.

1.4.3.1 Maximum Likelihood Estimation

By definition of the prior distribution of the Gaussian process modeling the code, one can
write:

Y | B,€,0° ~ N (HB,0* K¢ (X, X)), (1.4.36)
with Ky such that C (z,z') = 02Ky (z, ).
The log-likelihood of the observations can therefore be written as a function of £, ¢ and 3:
1
-2

L(B,L,0%) = —% In|o?Ry| — %U (y°"s — Hﬁ)TR,;1 (y°™* — HB), (1.4.37)
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1.4. GAUSSIAN PROCESS REGRESSION OR KRIGING

with Ry = Ky (X8, X°0).

The derivatives of £ (,B,E, 02) with respect to 3 and o2 are defined as follows:

oL 11 Lo
28 (8.:£,0%) =5 H' R, (y** - HB), (1.4.38)
oL 11 1 obs
S (B.4,0%) = 5+ 5= (™ — HB) R, (v~ HB). (1.4.39)

From Eqgs. (L438) and (L4.39)), it can be inferred that the maximization of the log-likelihood
criterion £ (B, L, 02) with respect to o2 and 3 can be solved explicitly. Finally, the Maximum
Likelihood estimates of £, 02 and 3 are:

B (0) = (HTR;'H) ' H' R, 'y, (1.4.40)
1 T
i () =~ (y™ = HBy) Ry (y™ — HBypp), (1.4.41)
Ly, = argminln [o3,; (£) Ry| (1.4.42)
£€R?

1.4.3.2 Restricted Maximum Likelihood Estimation

Restricted Maximum Likelihood Estimation (REML) enables to estimate the hyperparameters
of the covariance function and the parameters 8 independently. This method is particularly
appropriate if the prior distribution of 3 is not a uniform improper distribution. It is based
on the left null space of matrix H. This null space can be associated with a ((n — p) X n)-
dimensional matrix W, such that W H = 0. If one introduces w°"® = Wy°PS, one has:

w ~ NV (0,°WRWT). (1.4.43)

The Restricted Maximum Likelihood can thus be written:

[REML (E, 02) _ _% ln|a2WReWT| _ %% (,wobs)T (WRgWT)_l w°s, (1.4.44)

and does not depend on the parameters 3.

1.4.3.3 Cross Validation Estimation

Following [Dubrule [1983] and [Bachod [2013h], the correlation length of the covariance function
can be estimated by minimizing the Leave One Out Mean Square error. The Leave One Out
estimate of the correlation length £ is given by:

Lroo = argmin MSE; o0, (1.4.45)
£

with

N () —me o (2@)] 4
MSEro0 ;{(yo S)Z m727e<:c ﬂ , (1.4.46)

me, , (:c(i)) =E [Y (:c(i)) ] (yObS)_Z. ,4 and (yObS)_i denoting all the observations except the
i-th observation.
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1.5. DESIGN OF EXPERIMENTS

The variance hyperparameter o2 can be estimated by setting the value of the Leave-One-Out

prediction error to 1. The Leave-One-Out prediction error is defined by:

N2
Ly (%), = %4 4,00 (29)) )
[ UQKiilLoo (m(i)) ,
with 02K, o (20) = V [V (20) | (), £100,0%)
Thus, the prediction variance estimate is:
2
b .
200 = - 2"3 <(y0 )i =M itn00 (“"(Z))> (1.4.48)
LOO —_— N . X
" =1 Ki’i,eLoo (w(Z))
Moreover, the two criteria can be evaluated using matrix forms:
1 - SN2 .
MSEpo0 = — (y°*)" Ry diag <R£) Ry y°™, (1.4.49)
n
and: 1 .
o0 = - (yObS)T}};diag <}~3;) R, y°, (1.4.50)

with R, = R,' — R;'"H (H"R;'H) ™' H' R} in the Universal Kriging framework, and
RZ = R;l in the simple Kriging framework.

1.5 Design of experiments

From the previous sections it can be inferred that, by construction, the accuracy of the linear
model, in the case of a linear regression, or of the Gaussian process, in the case of Kriging,
depends on the choice of the observations. In the following section, we focus on the design of
experiments, that is to say the choice of the observations of the code.

1.5.1 Space-filling designs

In this section we focus on space-filling designs. Such designs are adapted to the case of inputs
with a uniform distribution on the unit hypercube [0, 1]d. Note that if the inputs have a non-
uniform distribution, an isoprobabilistic transformation can be used to make them uniformly
distributed over [0,1]%.

1.5.1.1 LHS designs

Introduced by |MQK&;L€J;_al.| “l})ld], Latin Hypercube sampling enables to obtain a sample
whose marginals are uniform. If one considers the unit hypercube |0, 1]d, a sample of n points

is generated by first dividing each of the d axes of the input domain into n parts. Thus, the
unit hypercube is divided into n parts and the n observations are drawn uniformly into a
selection of n of these small hypercubes. As mentioned above, the n small hypercubes are
chosen such that the projection onto each axis leads to exactly n different boxes. Figure [[.7
shows an example of a Latin Hypercube Design.

However, if the projections of a Latin Hypercube design on the marginals are uniformly
distributed, the projections of higher dimension are not necessarily uniformly distributed.
Two distance-based criteria [Johnson ef. all, |L9_9ﬂ] can be used to characterize the space-filling
properties of a design of experiments:
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Figure 1.7: An example of Latin Hypercube Design. The observations are drawn in the grey
cells.

e the maximin criterion maximizes the Euclidean distance between two points of the design:

X iminLHs = ATgMAX  min H (x°b), — (X Obs)j , (1.5.1)
XObSEXn ) 7& j
1<i,j<n

e the minimax criterion minimizes the distance between any points of X and the design:

Xobs

O mimarLIS = Argmin max max ||z — (XObS) IE (1.5.2)

Xobsexn z€X 1 S 7 S n ¢

These criteria can be used in order to sample LHS designs which have good space-filling
properties.

1.5.1.2 Quasi-random designs

Low discrepancy sequences like Sobol sequences can also be utilized to ensure good space-filling
properties of the design. The notion of discrepancy has been introduced by Niederreiter ﬂl9_7ﬂ]
and is a measure of the divergence between a set of observations and the uniform distribution.
If the definition set is the unit hypercube [0, 1]d, then the discrepancy is defined by:

card <{w € Xz e ﬁ [ai,bi)}> d
D(X) = sup =1 ~[[®:i-a)|. (153)

a,be[0,1]% a<b n i1

with card () denoting the number of elements of the finite set .

Low-discrepancy sequences Niederreiteﬂ, |L9_7_g] are also known as quasi-random designs. They
are defined such that the discrepancy of the sequence tends to zero when the size of the
sequence tends to infinity. The low-discrepancy sequences have a smaller discrepancy than a
uniform Monte Carlo sample, thus covering better the unit hypercube.

The best-known low-discrepancy sequences are the Van der Corput [Van der QIQrmlﬂ, |L9§ﬂ],
Halton ﬂm, |, Sobol ) |, Faure and Hammersley ,|1,9_6_4]] se-
quences.

Space-filling designs can also be defined for the case of a non-hypercube domain (see Perrin
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and Cannamela M] for example).

If there is no a priori information about the basis of functions in the linear regression case
or about the covariance function in the Gaussian process regression case, then space-filling
designs are very appropriate to acquire a knowledge of the computer code. Once some in-
formation is available, criterion-based designs can be used. The following section details
criterion-based designs which are suited for linear regression and Gaussian process regression.

1.5.2 Criterion-based designs

In this section we focus on the optimal designs which can be used when some information
about the model is available. The two first sections focus on the criteria which are suited for
linear regression and Gaussian process regression. The third section presents the sequential
designs, that is to say the enrichment of an initial design (which can be empty) according to
a criterion.

1.5.2.1 Designs for linear regression

Elfving ﬂ@] introduced optimal designs for linear regression, with criteria such as D-
optimality. Since then, many other criteria, and algorithms of construction of the optimal
designs have been proposed [Kiefer and Wolfowitz. 1959; Kiefex. [1961; [Fedorov. |1972;_ Wu and
Wynn, ; im, |L9B_d; Fedorov_and Hackl, |L9_9_Z|; ‘MQLQb_aMLa.nd_Zuﬂ,
@] Such designs aim generally at minimizing or maximizing a criterion associated with
the variance of the estimation of the regression coefficients 3.

According to Eq. (L437), with a nugget covariance of variance o2, the covariance matrix of
the posterior distribution of the parameters is given by:

~1
cov (B) = o (h (X™) h(X*™)") (1.5.4)
where, by abuse of notation, h (X Obs) is a (p x n)-dimensional matrix defined by:

h (X°%) = [h <m(1)) ... :h (aﬂ"))} . (1.5.5)

Note that the inverse of the covariance matrix of the parameters is also known as the infor-
mation matrix.
Several criterion-based designs can be used for linear regression:

e The D-optimal criterion aims at maximizing the determinant of the inverse of the covariance
matrix:

T
X" = argmax det (b (X) b (X*)"), (1.5.6)
XobseX'fL
e The A-optimal criterion aims at minimizing the trace of the covariance matrix:

X = argmin Tr ((h (X°) b (XO‘DS)T)1> . (1.5.7)

Xobs exn

1.5.2.2 Designs for Gaussian process regression

In the case of the Gaussian process regression, the design can aim either at improving the
estimation of the parameters 3 of the mean function or at improving the prediction accuracy
of the posterior distribution of the Gaussian process.
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1.5. DESIGN OF EXPERIMENTS

In the first case, a D-optimal criterion can be used. In the Gaussian process regression
framework, this criterion is defined as:

X%)S = argmax det (h (XObS) C (X‘)bS,XObS)71 h (XObS)T> . (1.5.8)
XobseX'n/

If the aim is the improvement of the prediction accuracy, the following criterion, generally
referred as I-optimal design, can be used:

X9 — argmin /X VY () |y°*] dux (z) . (1.5.9)

Xobs exn

Note that it can be inferred from Egs. ([Z19), ([LZ25) and ([432) that V[V (x) [y°>]
depends only on X° and the covariance function C. By abuse of notation, the previous

criterion can be rewritten:

X9 = argmin / VY (2) | X ] dux () . (1.5.10)
X

Xobs exmn

The integral / VY (x) |X°bs] dux () is defined as the Integrated Mean Square Error (IMSE)

[Sacks et all, [1989].

However, the choice of a criterion-based design may pose some difficulties:

e if a discrete search is performed, the number of possible combinations can be very high:
(K/), where A is the number of candidates of the search set.

e in the case of a Gaussian process, the covariance function can be unknown or not precisely
known at the beginning.

In those cases, sequential designs can be used. In the case of Gaussian process regression an
initial design drawn according to pux can be used for the initial estimation of the covariance
function hyperparameters. Then the hyperparameters of the covariance function can be re-
estimated at each step of the sequential design.

The stochastic properties of the Gaussian process regression are useful for the definition of
sequential designs. Sacks et all ﬂl%ﬂ] proposed a sequential design based on the division of
the input domain into boxes. The new point is added in the box with the largest contribution
to the current IMSE.

Vazquez and Bect “20_(19] and Bect et al ﬂZQ].ﬂ] proposed a Stepwise Uncertainty Reduction
strategy “Gmammiﬂmﬁ, |L9_9_d] based on a sequential enrichment of the design which
is adapted to the estimation of a probability of failure, using a Kriging metamodel and a
Bayesian framework.

Such a Stepwise Uncertainty Reduction approach is based on the choice of a new observation
point that improves the most a given criterion at the next step.

Bates et al. ﬂl9_9_d], then MML&H ﬂlOLd] proposed a sequential design which is based on
the integrated prediction variance (or Integrated Mean Square Error, IMSE) criterion. The
associated criterion can be written in the form:

Tnew = argmin / VY (x) ]X‘)bs,a:*] dux (x) , (1.5.11)
z*eX X

where, by abuse of notation, V [Y () \XObs,a:*] = V[V (x) |y°*,y (z*)]. Such a notation
can be used, because, for a given covariance function C, the conditioned variance C° (x,x’)
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does not depend on the observations of the output (see Eqs. ([425), (L419) and (L4.32)
for further details).

The above-mentioned design criteria aim at improving the accuracy of the surrogate model,
of the posterior distribution of the parameters or of the estimation of a probability of failure.
They are all based on the minimization or maximization of a criterion associated with the
variance of the estimator of the quantity of interest.

In the next section, we present the Efficient Global Optimization (EGO) algorithm. This is a
widely used algorithm which adds to the design a new point which is in the most likely region
of a minimum of the function y.

1.5.3 Gaussian processes for pointwise global optimization

Jones et al. ﬂL9_9ﬁ] proposed a sequential design aiming at finding the global minimum of an
expensive to evaluate function (or computer code). The Efficient Global Optimization algo-
rithm is based on a Gaussian process emulator of the expensive function and takes advantage
of the stochastic property of the Gaussian predictor to determine which new point to add.
The criterion is based on an Improvement function defined as:

I (z) |y° = max (min (y°*) - Y (z) [y°™,0) . (1.5.12)
The new observation point minimizes the Expected Improvement (EI):

El(z) = E[I(x)|y°™]

C (ot (b5 e min (y**) —p(@)) | . min (y°*) — p° (x)
= (min (y°") — (m))@( o () ) +o (m)gp( > (@)
(1.5.13)
with ¢ the standard Gaussian probability density function and ® the standard Gaussian cu-
mulative distribution function. The new observation point @pey is therefore chosen according
to the following criterion:

ZTpew = argmax FI (x). (1.5.14)
z€X

EGO is a compromise between exploration and exploitation.

1.6 Sensitivity analysis

The sensitivity analysis aims at estimating the importance of the influence of the inputs of a
code over the output of the code or over a quantity of interest associated with it. By abuse
of notation, this quantity of interest will be denoted by ¥ in the remainder of this section.
The sensitivity analysis methods can be divided into two groups:

e the local sensitivity analysis studies the influence of small variations of the input parameters
over a quantity of interest associated with the output of the code,

e the global sensitivity analysis quantifies the influence of the inputs over a quantity of
interest associated with the output of the code by considering the variations of the
inputs on the whole input domain.
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The interested reader can refer to Saltelli et all ﬂlOlld] for further details on both groups. In
what follows, we will focus on global sensitivity analysis.

Among the methods of global sensitivity analysis, two types of approaches can be distin-
guished:

e regression-based methods, which are based on the linear regression of the quantity of inter-
est with respect to the inputs. It is worth noticing that such an approach is not adapted
to the case of a significantly nonlinear mapping between the inputs and the quantity of

interest [Saltelli and Sobol, 1995).

e variance-based methods, which are based on the decomposition of the variance of the
quantity of interest with respect to the inputs. This decomposition of variance is also
known as ANOVA (Analysis of Variance) m, M] In particular, the Sobol indices
“@, ] belong to this category.

In the remainder of the section, we focus on the Sobol indices.
If the variance of the function of interest y is finite and the inputs x are independent, then
the function of interest can be decomposed into first-order effects and interactions ,

M] :
d
y(@) =fot+ > filw)+ Y. fij@iz)++ fia(@). (1.6.1)
=1

1<i<j<d

The unique decomposition of y of the form of Eq. (LG which verifies
cov (fir,.is (@irs oo xiy) s finge @y, 25,)) =0, (1.6.2)

with {i1,...,is} e N°, 1 <43 <--- <13 <d,se{l,...,d}; {j1,... eN 1<]1<
< g <d,ted{l,...,d} and {il,...,is}#{jl,...,jt} is defined by

fo= Efy(z)]
fi(xi) = Ely(z)|z] — fo (16.3)
fij (@i, x;) = Ely(x) |z, x5] — fi (xi) — fi (x5) — fo

Given the uncorrelation of the terms of Eq. (LG.3]), the variance of y (x) can thus be decom-
posed as follows:

d
Viy @] =Y VI[fi)l+ Y. Vifijmiz)l+ -+ V[ a(@), (1.6.4)
i=1 1<i<j<d
with the f;, f; ;... defined by Eq. (L6.3).
The Sobol sensitivity index ) | | corresponding to the subset of input variables
{i,,..., i}, is defined as:
VE[y @)z, .., zi,]]
Siy,is = e 1.6.5
= V@) (169)

It follows that:

1—ZS+ > St + 8, (1.6.6)

1<i<j<d
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The first-order Sobol indices are often used to evaluate the individual effect of x; on y. They
are defined as:

(1.6.7)
Moreover, a total sensitivity index |[Homma and Saltelli, |L9_9_d] can be defined in order to

evaluate the whole contribution of the variable x; to the variance of the quantity of interest.
These total sensitivity indices can be written:

T, = Z St ooiss (1.6.8)

{’il,...,is}CQi

where €2; denotes the set of all the subsets of {1,...,d} containing 7. These indices can also
be written:

VIE[y () |z
Viy ()]
where x_; denotes the vector & except its ¢-th component .

T=1-

(1.6.9)

In practice, the computation of the Sobol indices is performed using Monte Carlo methods
N@Pﬂ @] This computation requires the evaluation of the quantity of interest y at a
large number of inputs points. If the computer code associated with this quantity of interest
is computationally costly, then the use of a surrogate model of the code becomes necessary

|Oakley and O’Hagarl, 2004; [Le Gratiet, 2013].

7
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Chapter 2

(Gaussian process regression of a code
with a functional input or output

In this chapter, we review several existing methods for the Gaussian process regression of a
computer code with a functional input and/or a functional output. By functional variable, we
mean high dimensional vectorial variable. The functional variable is considered to be indexed
by the time. The number of indices will be denoted by N; € N in the remainder of this
document.

When aiming at performing a Gaussian process regression of a computer code with a functional
input, a commonly used approach is to first reduce the dimension of the functional input
thanks to a projection technique and then to construct a predictor which is a function of the
projection coefficients.

When aiming at performing a Gaussian process regression of the functional output of a com-
puter code with functional output and low dimensional vectorial inputs, two approaches exist.
The first one is based on the projection of the output and the independent Gaussian process
regression of the projected variables. The second one considers the whole functional output
thanks to a tensorized structure of the covariance function of the Gaussian process modeling
the code.

This chapter includes therefore two parts. The first one is devoted to the dimension reduction
of a functional variable which can be the input or he output of a code. The second one focuses
on the Gaussian process regression of the functional output of a code with scalar inputs.

2.1 Dimension reduction of a functional variable

When dealing with functional variables, dimension reduction techniques are often used. In this
section, we present some existing methods for the dimension reduction of a functional vari-
able. All the reviewed methods are based on a linear transformation of the functional variable.

The functional variable is denoted by x;. Moreover &, € X, C R with N; > 1, and is
associated with the probability measure ux,.

In the considered framework, a set of n observations of the N;-dimensional vectorial variable
xy is available. The observations are independently drawn according to ux, and are centered
and gathered in a (N; x n)-dimensional matrix X 9b:

)

X?bs _ (chl) - CC_tObS’ o ;mgn) _ m_t0b3> , (2.1.1)
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where

I~
~obs _ — 1)
T = ;:1 x; . (2.1.2)

Based on this set of observations and for a given dimension of the projection space m, the goal
is to find the best m-dimensional set of N;-dimensional vectors {f,,a € {1,...,m}}, and
the associated real-valued functions x; — B, (@), which are defined on X;. The formalism
associated with the dimension reduction of the functional variable x; is thus:

T AT+ foba (@) (2.1.3)
a=1

Besides, in the remainder of the section we will consider two types of dimension reduction
methods. The first type considers the functional variable only. Such an approach is adapted
to the dimension reduction of the functional output of a code, but can also be used for a
functional input. The second type reduces the dimension of a functional input x; of a code
adequately with respect to the output of the code y,, (x¢).

In this work, we will consider only dimension reductions based on a linear transformation of
x; and the projection bases are always estimated from the observations.

Note that when considering a code with a functional input, a ridge approximation ,
2015; |Constantine et all, lZQlA]] can be obtained thanks to the projection of the functional

input. Such a ridge approximation can be written in the form:

Yo, (@) ~ g,y (BY® (0 — T°™)) (2.1.4)

where BO is a (m x N;)-dimensional matrix, g,, is a function defined on R™, whose output
has the same dimension as y,, (), and Z;°™ is defined by Eq. (ZI12).

In the remainder of the section, we review some methods of dimension reduction of the two
types mentioned above:

1. projection of the functional variable which is adapted to the functional variable only,

2. projection of the functional variable which is adapted to a dependent variable.

2.1.1 Methods of dimension reduction based on the functional variable
only

When considering only the functional variable and no dependent variable, two types of projec-
tion methods can be distinguished. The first type is based on the projection of the functional
variable on a basis of a priori known functions. The second one, the Principal Components
Analysis, relies on the estimation of a projection basis from a set of available observations.
These methods can be applied to the case of a functional input or a functional output.

The remainder of this section reviews these two types of approaches.

2.1.1.1 Methods based on the projection on a basis of existing functions

In the case of a basis of existing functions, the vectors f, of Eq. (23] are the discretized
versions of functions of time.

The functions can be polynomials, wavelets [Meyer and Salinggﬂ, |L9_9ﬂ], splines ,

M], sine and cosine functions...
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A set of functions of the basis of size m can be chosen thanks to one of the selection criteria
described in Section [[L3l The subset A,,, denotes the indices of the functions which have been
kept after the selection procedure.

Moreover, the coefficients f, (z:) of Eq. ([2I13), o € A, can be estimated by solving the
following optimization problem:

B () = argmin ”mt —zobs — m,BH (2.1.5)
BER™

where F,, is a (N; x m)-dimensional matrix gathering the f,,a € A,, and B (x;) is a m-
dimensional vector which gathers the 3, (x¢), o € A,

Consequently, 3 is an affine function of x;.

The Principal Component Analysis, introduced bym M] is a widely used dimension
reduction method. It is also known as the Karhunen-Loéve expansion @ ] It is
based on the eigendecomposition of the covariance matrix of the functional variable. The
covariance matrix cov () can be estimated from the set of observations of the functional
variable X 9%, where X9 is defined by Eq. (ZLI). This estimate of the covariance matrix
is thus given by:

1 T
b b b
Ry = — X7 (X¢™) . (2.1.6)
The projection basis is then defined by the eigenvectors of the covariance matrix RObS. In
other words, if the eigendecomposition of R‘)bS is denoted by:

RY® =VAVT, (2.1.7)

where the diagonal of A gathers the positive decreasing eigenvalues of Romlzs, the m first
projected variables are V%wt, with V,,, gathering the m first columns of V.
Note that the accuracy of the approximation R‘;}t’s of the covariance matrix cov (a;) and thus

the one of the projection basis, depend on the available observations of the functional variable.

It is also worth noticing that the Principal Component Analysis can also be used in combi-
nation with a ridge approximation. In such a case, the matrix B°> of Eq. (ZI14) is equal to
L%

2.1.2 Methods of dimension reduction of a functional variable which are
adapted to a dependent variable

In this section, we focus on linear transformations aiming at reducing the dimension of the
functional input of a code, such that the projected variable is adapted to the output of the
code.

The two parts of this section present two methods of dimension reduction: the first one
is based on Partial Least Squares m, ] and the second one is based on the Active
Subspaces method m, |.

2.1.2.1 Partial Least Squares

Introduced byw M], Partial Least Squares aim at reducing the dimension of a functional
variable x; by taking into account a dependent variable which can be a scalar variable yg,
or a functional variable y, . In our framework, this dependent variable is the output of the
code, whereas x; is the input. The projection basis is determined from the covariance matrix
between the functional variable x; and the dependent variable. In this way, the functional
input can be projected on a basis which is adapted to the output.
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If a set of observations of the output of the code is available, and is denoted by:
1
Yomlzs = (ywt <w§ )) T (mgn))) , (2.1.8)

where Y;’CES is a (N, x n)-dimensional matrix, N, is the dimension of the output of y,,, then
the covariance matrix cov (a:t, Yo t) can be approximated by:

1 T
oy, = X0 (YRR -7 (2.1.9)
where
1< :
T ==Y, (). (2.1.10)
=1

Following Hoskuldsson [1988], if the singular value decomposition of the covariance matrix
between the functional variable and the dependent variable is denoted by:

b T
Romt?ywt =UDV~", (2.1.11)
where the diagonal of D gathers the positive singular values in decreasing order, then the m
first projected variables of the functional input which are adapted to the output of the code
are given by UL x;, with U,,, gathering the m first columns of U.

If we refer to the ridge approximation of Eq. ([2.I1.4]), then, in the case of Partial Least Squares,
Bobs _ UT

m m*
Note that the accuracy of the estimation of the covariance matrix cov (a:t, ymt) and thus the
one of the projection basis depend on the number of observations of the functional variable
and its dependent variable.

Finally, Mam_aﬂ ﬂZQlIl] have studied ridge approximations based on the conditioned mean
of a Gaussian process (also known as Kriging of Gaussian process regression, see section [[4]
for further details) indexed by the projection of the functional input. They have compared
the prediction accuracy with a projection based on Principal Components Analysis or on
Partial Least Squares. It is shown that, in many cases, the prediction accuracy of the ridge
approximation is better with a dimension reduction based on Partial Least Squares than on
Principal Components Analysis.

2.1.2.2 Active Subspaces

Introduced by Russi M], the Active Subspace refers to the projection of the functional
input on an "Active Subspace", estimated from the observations of the derivatives of the
output of the code with respect to the functional input «;. Using the formalism introduced

by |Constantine et all | for Ny, = 1, if the set of n observations of the derivatives is
denoted by:
obs __ @Y. . (n)

Ve, = (Ve (2; ). s Vg, (T , (2.1.12)
where Vyg,'gs is a (N¢ x n)-dimensional matrix, then the projection basis is given by the
eigenvectors of the (INV; x N;)-dimensional matrix Vygft’s (VygES)T. In other words, if one
denotes by:

vy (V)" = waw” (2.1.13)
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the eigendecomposition of the matrix Vyowlzs (VyowES)T, where the diagonal of A gathers the
eigenvalues in decreasing order, then the m-dimensional vector of projection coefficients of the
functional input @x; is given by W:'n;a:t where W, gathers the m first columns of the matrix

w.

If a ridge approximation is performed, the projection matrix B‘;}L)S, defined by Eq. (2.I14) is
such that B> = W,,.

Zahm et al. compare the ridge approximation of y,, for the case of N, > 1 with a projection
of the functional input based either on Principal Components Analysis (also called Karhunen-
Loéve expansion) or on Active Subspaces.

The Active Subspace, given by the projector P,,, is computed from the following matrix:

% ZZ"; Va, (mmT Vy,, (1) (2.1.14)

with Vy,, (wﬁ”) the (N; x Ny)-dimensional matrix of the derivatives at azy).

The studied ridge approximation of y,, (¢) is of the form E [y, (Pna: + P& Xy) ||, where
P, is a projector from Rt to R™, P¢ its complement, and X is /V¢;-dimensional vector with
probability measure pux,. The authors conclude that Active Subspaces can yield more effective
dimension reduction for the ridge approximation than Principal Components Analysis. They
also observe that, if there is no low dimensional structure in the input-output map, then a
dimension reduction based on the covariance of the input only (PCA) is more efficient.

This section has been devoted to the dimension reduction of a functional variable, which can
be the input or the output of a computer code. In the next section, we focus on the Gaussian
process regression of the functional output of a computer code. The notations used will be
similar to those of Chapter [II

2.2 Gaussian process prediction of a computer code with a
functional output

In this section, we consider a computer code with low dimensional vectorial inputs and a
functional output, that is to say, of the form x — y (x), ¢ € X C R? and y € RM, N; > 1.
Moreover, px is a probability measure associated with .
The following sections detail the state of the art for the Gaussian process regression of y
from a set of n observations of the input and the output of the code. These observations are
denoted by:

ey

X0bs — S I (2.2.1)
(™

yrobs _ <y(1> —y <w<1>) iy =y (w("))) , (2.2.2)

where X° is a (n x d)-dimensional matrix and Y° is a (N; x n)-dimensional matrix.

and

The first subsection of this section focuses on the Gaussian process prediction of a functional
output thanks to the projection of this output on a basis. The second subsection is devoted
to the Gaussian process regression of the whole functional output of the code.
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2.2.1 Projection of the functional output on a basis

Bayarri et al. ﬂl)ﬂ_ﬂ] proposed to use a wavelet decomposition as a basis representation of the
functional output. A thresholding procedure is performed in order to reduce the size of the set
of the projection functions while obtaining an accurate projection. Then independent Gaus-
sian predictors of each of the coefficients of the retained projection functions are constructed.

Higdon et al. M] proposed to build a Gaussian process emulator of the functional output of
a code through a Principal Component Analysis of the functional output. First, a Principal
Component Analysis of the functional output is performed. A number m of the projected
variables is chosen such that these m components represent 99% of the total variance of the
output. If °Ps is the empirical mean of the observations of the output of the code:

— 1
yobs — E Zy(1)7 (2.2.3)
i=1

where the y(®) are defined in Eq. (222), then the functional output of the code can be
approximated by:
y(x) =~y + V,w(x), (2.2.4)

with V,;, a (Ny x m)-dimensional matrix, whose columns are the m first eigenvectors of the
empirical covariance matrix cov (YObs) and w a m-dimensional function giving the projection
coefficients.

The observations of the function giving the projection coefficients are given by:

wobs _ ng (YObS _ yobs) , (2.2.5)

and w° is a (m x n)-dimensional matrix.

Note that, by construction, w is expected to be a zero-mean m-dimensional vector.

The components of the function w are treated as being independent and a predictor of each
component is constructed using the simple Kriging framework:

w; (+) ~ GP (0, Cu, (- ) (2.2.6)

with C,, a covariance function, and 1 <7 < m.
The posterior predictor of the i-th component of function w is given by:

Wi () ‘w?bs ~ GP (/’Ltcuz () 7051 (7 )) ) (227)
where w?bs corresponds to the i-th line of w°P%, and:
s, () = CF, (a:,a:ObS) Cs, (:I:OIDS,XO]DS)f1 WO (2.2.8)
and:
C. (m,@') = Cy, (z, @) — Cl, (m, X% O, (X0, XOP) TH 0y (X5 2), (22.9)
where C,,, (X°, XObS) is a (n x n)-dimensional matrix such that
Cl, (X%, XO%) = C,, <m(k), a:(l)) , (2.2.10)
and C,, (z, X Obs) is a n-dimensional vector such that:
., (m, X%, = C,, <a: a:(k)> . (2.2.11)
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The multivariate predictor of w is therefore defined by:
w (-) | ~ GP (u, (1), C () (2.2.12)
where:
(15 (2)); = g, () (2.2.13)
and:
(CS (m,m’))ij =C¢, (z, @) 0,—;. (2.2.14)
Finally, a predictor of y is given by:
y ()Y ~GP <y°bs + Vi, (), Vi GG (50) Vﬁ) : (2.2.15)

Perrin M] mentions that if the projection basis is estimated from a small set of observations,
its estimation may be not very accurate. The accuracy of the prediction of the functional
output using the method described above can thus suffer from this lack of accuracy of the
projection basis.

2.2.2 Gaussian process regression of the whole functional output

Another possible approach for the Gaussian process regression of a functional output is to
choose an appropriate structure of the covariance function of the Gaussian process. Such an
approach enables to emulate the whole functional output of a code.

Williams et al. M] proposed to treat the index of the functional input as one of the inputs
of the model. The covariance function of the Gaussian process depends on the inputs of the
code and on the index of the functional output. The output can therefore be treated as a
univariate output, indexed by an index input. A power exponential covariance function is
used, such that the covariance function has a tensorized structure between the index (time)
and the other inputs.

Rougier ﬂl)ﬂﬁ] and [Conti_et_all ﬂl)ﬂ_d] have used a tensorized structure for the mean and
covariance functions of the process. In this framework, the functional output of the code y
can be seen as a Gaussian process Y with the following properties:

Y ()|M,R;,C ~GP (Mh(-),R,®C(-,-), (2.2.16)

with M a (N; x p)-dimensional matrix, h a vector of p basis functions, R; a (N; x Ny)-
dimensional covariance matrix and C' a covariance function, and ® denoting the Kronecker
product.

In this framework, if M has a uninformative prior distribution given by the uniform distri-
bution on the space of the real-valued (NN x p)-dimensional matrices, then the distribution of
M given the observations is Gaussian, with the following mean:

M =E[My*s, R;,C]
=E [M|y°>,C] (2.2.17)
— yobs (RObS)_l (Hobs)T (Hobs (RObS)_l (I_Iobs)T)i1

where R°™ is a (n x n)-dimensional matrix such that:
(R™),, = C (2®,20), (2.2.18)
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and H° is a (p x n)-dimensional matrix whose j-th column is given by h (:c(j)).
From Eq. (2.2.16)), it can be inferred that:
Y°|M,R;,C ~ N (MH" R, ® R*™). (2.2.19)

Therefore, the matrix R; can be estimated by maximizing the likelihood of the observations,
as proposed in [Perrin [2018]:

= 1
t = —

R <Y°bs - ]\/7IH°bS> (R) ™ (YObS - J\?HO'@S)T. (2.2.20)

n

Finally, in the Universal Kriging framework, with an improper uniform prior for M, the
conditioned distribution of Y is given by:

YO() =Y ()Y, C ~ GP (,ﬁ (), Ry Ce (-, -)) , (2.2.21)
where:
P’C ($) — ]/\Zh ($) + [Yobs _ ]/\ZHobs} (RObS)_l C (Xobs,$) ’

ce (ac,x/> = C <a:,ac/) — O (z, X°) (R‘)bs)71 C (X‘)bs,a:/>

B (2.2.22)
+u (CC)T <H0bs (Robs)*1 (Hobs)T) u <CC/) ’
u(x) = h(x)— H (R‘)bs)_1 C (X, z),
and C (:1:, X Obs) is a n-dimensional vector, such that:
C (z, X)), =C <ac ac(k)> : (2.2.23)
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Chapter 3

Nested polynomial trends for the
improvement of Gaussian predictors

In this chapter, we focus on the case of two nested codes with scalar outputs. Moreover, there
are no observations of the intermediary variable. We therefore consider the following system:

o \
/{ ynest(mnest) = y2(y1(w1)7w2)7 (3'0'1)
T — yl(wl)

where @1, o and x,e; are low dimensional vectors and w1, yo and ynest are scalars. This
system becomes therefore:

Tr = (Zl?l,fbg) — y(.’.l}) = yg(y1($1),fb2). (302)

The work presented in this chapter has been published in ﬂ&m_aﬂ, Q(Lﬂ] The framework
of Gaussian process regression is considered (see Chapter [Il for further details). An innovative
parametrization of the mean function of the Gaussian process, based on the composition of
two polynomials, is proposed.

3.1 Introduction

The numerical cost of many codes to simulate complex physical systems is very high. In
order to perform sensitivity analyses, uncertainty quantification or reliability studies, these
computer models have therefore to be replaced by surrogate models, that is to say by fast
and inexpensive mathematical functions. Within the computational science community, when
the maximal available information is a finite set of code evaluations, the most widely used

surrogate models are the generalized polynomial chaos expansion (PCE) |[Ghanem and Spanos,
1990, |_OD3 Soize and Ghaner, 2004; Das et all, 2009; Le Maitre and Kmd 2010; |Arnst et all,
2010

,_[ lZQ]_ﬂ] and the Gaussian process regression (GPR), or Kriging (see Sacks
et al. m 12002); Rasmussen and Williams [2006])

On the one hand, the main idea of PCE is to expand the code output, which is denoted by
y in the following, onto an appropriate basis made of orthonormal multivariate polynomials,
which are related to the distribution of the code input variables. As the number of unknown
expansion coefficients usually grows exponentially with the number of input parameters, the
relevance of these approaches strongly depends on their ability to select the most relevant
basis functions. To this end, several penalization techniques, such as the ¢;-minimization

Tibshirani. 1989; Jakeman et al..2015] and the least Angle Regression (LAR) methods [Hastie
et al., m@, Elallman_a.mLSudr_e_d l21111|] have been introduced to select
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polynomial basis sets that lead to more accurate PCE than would have been obtained if the
basis is a priori fixed. Taking advantage of the tensor-product structure of the multivariate
polynomial basis, separated representations, such as low-rank approximations ﬂm -

hﬁznakh_and_&idr_e_d lZQld] have alternatively been proposed to develop surrogate models with
polynomial functions in highly-compressed formats.

On the other hand, the GPR is based on the assumption that the code output is a particular
realization of a Gaussian stochastic process, Y. This hypothesis, which was first introduced
in time series analysis m, @5} and in optimization “&_Em, M], is widely used
as it allows dealing with the conditional probability and expectation, while leading to very
interesting results in terms of computer code prediction. Hence, contrary to the PCE, the
GPR is not associated with an a priori projection basis, but requires the introduction of the
mean and the covariance functions of Y. In practice, we observe that the role of the mean
function of Y on the prediction decreases when the number of code evaluations increases. This
explains that in applications where many code evaluations are available, good GPR-based
surrogate models can be obtained using constant or linear trends for the mean function. On
the contrary, when the number of code evaluations is small compared to the complexity of
1y, it can be very useful to optimize it. In that case, searching the mean function of Y as
a well-chosen sum of polynomial functions can indeed strongly improve the relevance of the
associated GPR. In particular, the authors refer to | and ﬂKQtaaudgLe_t_alJ,
-] for an illustration of the interest of using variable selectlon techniques to optimize this
polynomial representation of the mean function of Y.

Following these works, the idea of this part is to propose an alternative parametrization of
the mean function of Y, which is particularly adapted to the case when the number of code
evaluations is small compared to the complexity of y. Instead of searching sparse polynomial
approximations, we look for high dimensional polynomial approximations that are charac-
terized by a small number of parameters. In other words, if we want to model a complex
code response with a very limited number of code evaluations, we believe that it can be more
efficient to use complex but approximated models than simple but fully optimized models.
We thus propose to consider the composition of two polynomials for the mean function of
Y. Indeed, the composition of two polynomial functions is still a polynomial function, but
of much higher order. In particular, such a formalism can be used to model separately a
transformation of each code input and the dependence structure between them.

The main difficulty concerning this specific representation is the identification of the param-
eters of the two combined polynomials. Indeed, by composing two polynomial functions that
are linear with respect to their parameters, we get a strongly non-linear representation, which
is likely to be very sensitive to small changes in the parameters’ values. In addition, distinct
values for these parameters can lead to the same nested representation, which does not help
for the identification. To avoid such redundancies, minimal nested parametrizations are intro-
duced, and we show to what extent integrating this nested structure in the Gaussian process
formalism can increase the robustness of the results, make easier the error control, and limit
as much as possible over-fitting.

The outline of this chapter is as follows. First, Section presents the theoretical framework
for the definition of a Gaussian-process regression with a linear polynomial trend. Then, the
nested polynomial trends we propose are detailed in Section B3l At last, the efficiency of the
method is illustrated on a series of analytic examples in Section 3.4l
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3.2 Gaussian process predictors

3.2.1 General framework

For d > 1, let L?(X,R) be the space of square integrable functions on any compact subset
X of R, with values in R, equipped with the inner product (-,-)y, and the associated norm
|-l%, such that for all u and v in L*(X,R),

(u,v)g == /Xu(a:)v(a:)dm, lull% = (u,u)x . (3.2.1)

If X is not compact, it is possible to introduce a weighted Lo space.

Let S be a physical system, whose response depends on a d-dimensional input vector & =
(x1,...,2q), and whose performance can be evaluated from the computation of a quantity of
interest, y(x). Function y is a deterministic mapping that is assumed to be an element of
L?(X,R). In this chapter, we suppose that the maximal available information about y is a
set of n code evaluations at the points {z(),... 2™} in X. Given this information, we are
interested in the identification of the best predictor ¥ of y.

In that context, the Gaussian process regression (GPR), or Kriging, plays a major role [Sacks
et al., |1989; Qakley and O’Hagan, 2002; Santner et all, 2003; Rasmussen and Williams, Qﬂ)_d]
It is indeed able to provide a prediction of y(x), which is optimal in the class of the linear
predictors of y, and whose precision can be a posteriori quantified. Such a method considers
function y as a sample path of a real-valued Gaussian stochastic process Y. Let u and C' be
respectively the mean and the covariance functions of Y:

Y() ~ GP(u(),C (). (3.2.2)

Besides, a set of observations of y is available. These observations are gathered in a n-
dimensional vector:

o — (y(n — y(@W),. ..y = y(mw)) , (3.2.3)

such that P( - | y°) and E[ - | y°*] denote the conditional probability and conditional
mathematical expectation respectively.

Therefore, gathering in the vector u and in the matrix R the evaluations of p and C' at the
available points, such that:

m= <M($(1))7 e 7,“(33(”))) )

' ' (3.2.4)
Ry :=C(a",a), 1<i,j<n,
it can be shown ﬂm, @] that if matrix R is invertible, then:
Y () [ Coy®™ ~ GP (i (), C° (), (3.2.5)

where, for all x,z’ in X:
(@) = p(@) +r(@) R (y — ),
Oz, ') = C(z,2') —r(z) R 'r(z'), (3.2.6)
r(x) = <C’(m,m(1)), e ,C(m,m("))) .

Under this formalism, also known as simple Kriging (see Section [L4]), the best prediction of y
in an unobserved point x is given by the mean value of (Y (x) | y°), u¢(x), whereas C¢(x, )
quantifies the trust we can put in that prediction.
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In practice, it appears that R may not be invertible due to numerical reasons. This can
generally be overcome by adding a small nugget to the covariance matrix and optimizing with

respect to it too (see [Gramacy and Lee,

3.2.2 Choice of the covariance function

Without information about the regularity of y, function C' is generally chosen in general
parametric families. In this chapter, function C' is supposed to be an element of the Matern-
5/2 class, such that for all z, 2" in X:

d

C(x,x') := o H(l +V/5hi + 5h?/3) exp(—V5hs),  hy = |z; — x| /4;. (3.2.7)
i=1
Hence, covariance function C' is characterized by a vector of hyper-parameters, ® := (o, ¢1,...,43),

whose values also have to be conditioned by y°. More details about other usual parametric
expressions for C' can be found in Santner et al) HZO_Qﬂ] A full Bayesian approach would then
require the introduction of a prior distribution for this vector, and the use of sampling tech-
niques (such as Monte Carlo Markov Chains “Bu.bm.s_tﬂn_a.nd_KrQ%A lZD_(L‘j] to approximate
the posterior distribution of (Y | ¥°™) |[Handcock an , [1993; [Kenn nd O'H
2001; Bilionis e, all, lZQlj] In this chapter, we will adopt an alternative approach, Wthh
consists in conditioning all the results by the maximum likelihood estimate of the covariance
parameters. This method, which is generally called plug-in approach, has been used in many
papers for the definition of Gaussian process-based predictors, as it presents a good compro-
mise between complexity, efficiency, and errors control “Bj_(;hgn_eLaJ.J, lZQOQ; |B.QCI£L&1J, lZQ].d]
In that case, explicit formula can be derived to evaluate the relevance of the GPR-based
metamodel from a cross validation procedure ﬂm, ]

3.2.3 Choice of the mean function

In the same way as for the covariance function, the mean function of Y is supposed to
be parametrized by a p-dimensional vector 3. In the general case, the computation of
E [Y () | y°>] is not direct, but if:

e covariance function C' is known,

e 1 is linear with respect to 3, that is to say it exists a p-dimensional vector-valued
function h such that u(x) = h(x)? 3,

e (3 is uniformly distributed on RP (improper prior distribution),
then a Universal Kriging predictor can be defined (see Section [[L4] for further details):

Y() ’C7y0bs ~ GP(MC(')7CC('7'))7 (3'2'8)

p*(@) = h(@)"B +r(2) R~ (v — HB).

C(z,2') = C(x,2') —r(z)" R 'r(2) + (@) (H R H)  u(z),

B — (HTRle) 1gTR1 obs (3.2.9)
u(z) = H' R 'r(x) — h(zx),

Hy = fi(@"), 1<j<p 1<i<n,

42



3.3. NESTED POLYNOMIAL TRENDS FOR GAUSSIAN PROCESS PREDICTORS

where the term w(z)” (HT R~ H) 'u(x’) can be interpreted as the prediction uncertainty

that is due to the estimation of 3. Under these assumptions, the best prediction of y(x) is
now given by p¢. The last thing that can be done to minimize ||y — u¢||x is working on the
choice of h.

Without information about gy, polynomials are generally chosen for h. Indeed, the set
{Mma, a € N9}, with

ma(x) == 2{* x - x 3!, xeX, (3.2.10)

defines a basis of L?(X,R). For a given value of p, characterizing h amounts at identifying
the best p-dimensional subset of {mq, o € N} to minimize ||y — p°||y.

In practice, this optimization problem over a very vast space is replaced by an optimization
over a finite dimensional subset of {mq, a € N?}. Different truncation schemes have been
proposed to choose such a relevant subset, which are mostly based on the assumption that
the most influential elements of {mq, o € N?} correspond to the elements of lowest total
polynomial order. Denoting by r the maximal polynomial order of the projection basis, we
can introduce:

d
P(r,d) i={ma | @ € N%, > | <7} (3.2.11)
i=1
By construction, it can be noticed that the cardinal C(r,d) of P(r,d) increases exponentially
with respect to r and d:

Cr,d) = (d+r)!/(d! x ). (3.2.12)

For p < C(r,d), vector h can finally be searched using a penalization technique, such as the
Least Angle Regression (LAR) method [Hastie et alJ lZD_Qd; |Efmn_eL_alJ lZD_QéII; Blatman and
Sudret, QOH], which allows disregarding insignificant terms. Such an approach will be referred
as "LAR+UK" approach in the following.

3.3 Nested polynomial trends for Gaussian process predictors

As presented in Introduction, we are interested in identifying the best predictor of y in any
unobserved point x in X, when the maximal information is a fixed number of code evaluations.
Instead of considering sparse representations for the parametrization of the mean function in
the GPR formalism, this section proposes to focus on nested polynomial representations.
First, the notations and the motivations for this new parametrization are presented. Then,
it is explained why and how it is integrated in the GPR formalism. Finally, a method to a
posterior: evaluate the projection error is introduced.

3.3.1 Nested polynomial representations

Using the notations given by Eqs. (ZII) and FZIZ), for py,p1,ds in N*, let m®2%2) and
m(P1:41) he the vector-valued functions that gather all the elements of P(p2,u2) and P(p1,u1)
respectively, and let C(pq, uz) and C(p1,u;) be their respective dimensions. The elements of
these two vectors are sorted in an increasing total polynomial order. In particular, it comes:

mP2e) () g (3.3.1)
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where w1 = d.
Hence, for all (ug x C(p1,u1))-dimensional matrix A and all C(ps, ug)-dimensional vector 3,
the mapping

x — AmPri) () (3.3.2)

is a function with values in R%2, and the mapping

z — mP2w) (Am P ()T 3, (3.3.3)

defines a nested polynomial representation. For u; = d > 1, such a representation allows
us to model separately the dependence structure between the different input parameters,
which is characterized by ps and ug, and the individual actions of each input parameter,
which are characterized by the polynomial order p; (considering different values of p; for each
input could eventually be done to optimize such a two-scale modeling). Hence, analyzing the
optimal values of ps, us and p; can bring information about the structure of y. For instance,
if po = 1 and us = d, then y is just an additive model, up to a transformation of its input
parameters. In the same manner, a value of p; strictly greater than 1 tends to say that the
relation between x and y is multi-scale.

Another interesting property of this nested structure comes from the fact that, for all « in

RY:
u2 C(pl,m) i
m ) (AmC @) By = 3 (B < I 2D Awm @)
0<]a[+-+|ouy |<p2 i=1 \ k=1
- Do kX! (A Baa),

0<]a [+ +|au, |[<p2xp1

(3.3.4)

where ¢5(A, By; us) is the projection coefficient of m(P2:42)(Am®P14) (x))T 3, on x‘fl X e X

Tyit. Hence, function & — m®2%2)(Am®1w) ()T 8, is in Span{P(ps x pi,u;)}, while
being characterized by only C(p2, u2) +ug x C(p1,u1) parameters. Thus, by choosing ug such
that the ratio (C(p2, u2) +u2 x C(p1,u1))/C(p2 X p1,u1) is small, it is possible to parametrize
polynomial families with very high cardinality, with only a reduced number of parameters.
Such a parametrization is however redundant, in the sense that several distinct values of A
and 3, lead to the same nested representations. From Eq. ([3.3.4), it can be seen that some
of these redundancies can be avoided by imposing that:

A'il = 07

C(p1,u1) 1<i< us. (3.3.5)

2 >1>
Z Azk - 5
k=1

For fixed values of ps and py, it is clear that ratio (C(p2,us) 4+ uz x C(p1,u1))/C(p2 X p1,u1) is
minimal when us = 1. However, considering higher values of uy strongly increases the flexibil-
ity of the nested representation to approximate function y. In this chapter, as a compromise
between flexibility and minimal parametrization, for all 2 < k < C(py,u1), we thus propose to
fix to zero all the components of (Aig,..., Ay,k) but one. This means that each component
of vector m®1¥1)(z) is used only once in the construction of Am®1¥) (), and that only
#Coeff(p1, p2, u1,u2) = C(p2,uz) + (C(p1,u1) — 1) — ug independent parameters have to be
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‘ Values of d H C(p2 X p1,u1) ‘ #Coef(p1, p2, ug,ug = 1) ‘ #Coeff(p1, p2, ut, ug = d) ‘

1 10 6 6

2 95 12 17
b) 2002 o8 106
10 92378 288 061
20 10015005 1773 3521

Table 3.1: Comparison between the dimension of the projection set, C(p2 X p1,u1), and the
number of independent parameters to characterize the associated projection coefficients in
the proposed nested approach, #Coeff(p1, pa, ur,us) = C(p2,u2) + (C(p1,u1) — 1) — ug, for
p1=p2=3,u € {1,2,5, 10, 20} and uy € {1,d}.

fixed to span a C(p2 X p1,u1)-dimensional projection set. As it can be seen in Table 3.l and as
it will be shown in Section B4l this assumption is indeed very attractive in terms of dimension
reduction while being particularly interesting for the modeling of complex phenomena with
very limited information.

To simplify the notations of the next sections, these C(p1,u1) — 1 non-zero coefficients of A
are supposed to be gathered in a vector 3;, and we introduce the matrices P(pl’ul)(m) such
that for all x € X:

PEru) ()8, = Am®1)(g). (3.3.6)

For given values of 3, and 3,, we then denote by p(-; 3;,35) the following nested represen-
tation:

p(@i By, By) i= mP) (P (@)8,)T8,, @ € X, (337)

Finally, for given values of us, p2, p1, the most appropriate nested representation to ap-
proximate function y is given by wu(-; 37, 85), where (87, 35) is the solution of the following
optimization problem:

* * : 2
, = ar min — u(; By, , 3.3.8
(81, 83) g 5, min . ly — (5 B, Ba) Ik (3.3.8)
and the admissible searching set, &*, is a subset of RC(P1u1)=1 s RC(P2u2) that takes into
account the constraints on 3; defined by Eqs. (B.3.3) and (3.3.0).

Three main difficulties arise from the optimization problem defined by Eq. (8:3.8). First, as
the maximal information about y is a n-dimensional set of evaluations, for given values of
B, and B,, the norm ||y — ILL(';B17,82)H§§ has to be approximated. If the evaluation points
{x® ... 2™} are (more or less) uniformly distributed on X, a (rather) good estimation of
this norm is given by its least squares approximation,

2

%; (1) — i1, 82)) = 9™ ~ MBS (3.3.9)

where the vector y°" is defined by Eq. ([23), and M(8,) is a (n x C(pz, us))-dimensional
matrix such that:

(M(B)))ni = mP?" (PP ()3 )), 1 <n<n, 1<k<C(ps,us). (3.3.10)
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Noticing that for all (8,,3,) in S*,

|

the solutions, 37 and 33, of the minimization problem defined by Eq. (8:3.8]) can respectively
be approximated by the vectors B-° and B5°(8Y%), with:

’yObS - M(ﬁl) (M(ﬁl)TM(ﬁl))il M(ﬁl)TyObS i < H’yObs - M(ﬁl)ﬁQH27 (3.3.11)

. 2
19 =arg_min [ly™ — M(81)85°(6,)]]".
B1€S}, (3.3.12)

5(81) = (M(B)"M(8,) " M(8y)Ty™,

where Sj is a subset of RE@1u1)=1 that also takes into account the constraints on @, defined

by Eqs. (333) and (335).

The second difficulty comes from the fact that the minimization of the function

B — Hy"bs - M(3,) %s(ﬂl)‘f can be complex. This is due to the fact that this mapping
is strongly non-linear, leading to a strongly non-convex problem. For high values of ps, p;
and usg, even if non-convex optimization algorithms such as simulated annealing or simplex
algorithms , ] are used, there is no guarantee that the global minimum can be found

in a reasonable computational time.

At last, there is a risk that HyObs — M(BY)3855( IfS)H2 /n strongly underestimates

Hy — (s Ifs, Igs(ﬁlfs))‘ «» as the same information is used twice: once for the optimization
and once for the error estimation. To avoid such an over-fitting, classical Leave-One-Out

(LOO) techniques (see Millex [1974]; Blatman and Sudret [2011]; Perrin et all [2014]) have to

be introduced to get a relevant approximation of ||y — u(+; LS 35S (,BIfS))Hi

3.3.2 Coupling nested representations and Gaussian processes

Once vector 375 has been identified from the solving of Eq. ([312), the notion of confidence
intervals for the prediction of y(x) at an unobserved point & can be found back by assuming
that y is a particular realization of a Gaussian stochastic process, whose statistical properties
are given by:

V() ~ GP (u (185, 85581 0 (-,:8"7)), (3.3.13)

~LS
where ®  gathers the d + 1 parameters of the Matern-5/2 covariance C' defined by Eq.
B277), which are solution of the following log-likelihood maximization problem:

LS 1 nlog (27) + log(det(R(®)))+
® = argmax — -

0e(0,+o0)tt 2 [ (y°* — M(B1°)85°(B1°) " R(©) ! (y°* — M (81°)B5°( %s))]
(3.3.14)
Such a naive coupling is nevertheless sub-optimal, as the values of 3; and @ are optimized
separately: the nested structure does not take advantage of the Bayesian formalism, and
reciprocally. Instead of such a two-steps approach, we propose in this chapter to directly
adopt a Bayesian formalism for the estimation of 3; and ®. In the plug-in formalism, this
means that the statistical properties of Y are now given by:

Y ()~ GP (u (-;,@1732> ,C ( -;@>> , (3.3.15)
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where (,@1, By, (:)) is the solution of the following log-likelihood maximization problem:

(B1,B5,01) = argmax 1 nlog (2m) + log(det(R(©)))
e Brpse)esm 2 | +(y°" — M(81)8,) " R(©) 1 (y°" — M (B8,)8,) |’

(3.3.16)
where the admissible searching set, S2™  is a subset of REP1:u1)~1 5 RCP2,u2) » RAFL Byt is
not trivial, as it first takes into account the constraints on 3, defined by Egs. (B.3.5]) and
(33.8)), but also guarantees that R(®) and M (8,)T R(®)~'M(3,) are invertible.

For all (B;, 3, ®) belonging to the admissible set, S*™, we denote by L the function such
that:

L(By, By, ©) = log(det(R(O))) + (y°** — M (8,)B,)" R(©) ' (y*™ — M(B,)B,). (3.3.17)

It is interesting to notice that, in the same manner as in Section B.3.1]

L(B1,85°(81,0),0) < L(B,, 82, 0), (3.3.18)
15(81,0) := (M(8,)TR(©)'M(8,)) " M(B,)"R(©)y°". (3.3.19)
It comes:
(B1:©1) = arg min £(B,,0), -
B, = (M(B)"R®)'M(B,))  M(B,)" RO,
where:
L(By,0) = L(By, 158(1317@)7@)- (3.3.21)

Function (8;,0) — L(B;,0®) being strongly non-regular and non-convex, it is proposed to
work iteratively on the values of 3; and ®. Two reasons motivate this separation. First, the
actions of B, and ® on £(3;, ®) being very different, dividing the optimization problem tends
to regularize the mappings on which the minimization is carried out. Second, by reducing each
searching set, each minimization is made easier. Therefore, for a given convergence tolerance
e, Algorithm [l is introduced for the minimization of £. The convergence of such an iterative
algorithm to the global minimum of L is of course not guaranteed, but it appeared on a series
of numerical examples that it allowed us to identify good approximations of (Bl,(:)) at a
reasonable computational cost. As the minimization problem defined by Eq. (83:20) is not
convex, better approximations of ,Bl can be obtained by repeating several times Algorithm [I]
with random initialization of vectors (8;), in Sj -

3.3.3 Linearization of the nested polynomial trend

Even for small values of py, p1 and ug, the quantity £(3,,®) is sensitive to small changes in
the values of 3, and ®, which makes the solving of the optimization problem defined by Eq.
B3:20) difficult. In that context, it can be interesting to linearize the nested polynomial trend
around the solutions given by Algorithm [I 3; and 3,, and then work on the compensations
(B — Bl) and (85 — Bz) that could make the prediction of function y better. In the vicinity
of B, and 3, for all x in X, it comes:

p(x; By, By) = (hl(CC;Bth)ahZ(w;Bﬂ)T By — 31752)7 (3.3.22)
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[

Initialization: L; =0, Ly = 400, 8] = (B1), € SEI :
while |Ly — L1| > € do
Ly =1Ly
®* = argmaxe L(37,0) ;
B1 = argmaxg, L(8,,07) ;
Ly = min(Ly, L(B],0%)) ;
end
Bl ~ BT) @ ~ O
Algorithm 1: Iterative minimization of function L.

® N o Uk~ W N

hi(w; By, By) = PP ()" D(PP ) (2)3,) By, (3.3.23)
ho(a; B,) = mP>2) (PP (a),), (3.3.24)
8m(p27u2)
(D(2))y,; = #(z), 1<j<uy, 1<k<C(p,ug), z€R™, (3.3.25)
J

Now, let us denote by 3 := (8, — Bl, (B5) the new vector of parameters we need to determine,
and by h := <h1(';Bl,Bz),h2(';B1)) the new set of projection functions. Conditioned by

the values of Bl, BQ and (:), the formalism introduced in Section B.2.3]is found back:

Y() ~ GP <h(-)Tﬂ,C(-,-)>, (3.3.26)

such that the distribution of (Y | y°®) can be calculated analytically. Its mean value can
directly be used to predict the values of y, and its covariance function can allow us to quantify
the confidence we can put in these predictions.

We underline at least two advantages for the linearization. First, the distribution of (Y | y°)
will be less dependent on the convergence properties of Algorithm [Il, which are not easy to
control. Secondly, as the covariance function of (Y | y°P%) integrates the uncertainty associated
with the least squares estimation of 3, that is to say the uncertainty associated with the
estimation of 3; and 3, in the vicinity of 61 and ,82, the confidence intervals associated with
these predictions are expected to be more adapted.

3.3.4 Error evaluation

According to the previous Sections and to Eq. (32.9), for given values of truncation param-
eters po, p1 and ug, we propose to use the deterministic function 7%**(x), such that:

§"(2) = h(z: B, ©)"B(B,, ©)+r(x: ©) R(©) ™" (y™* — H(B,,0)B(8,,8)), (3.327)

B(B,.©) = (H(B,,©)"R(©) 'H(B,,0)) 'H(5,,0)"R(©) 'y,  (33.28)
to predict the value of y(x) for all  in X, where:

e vectors 51 and © are the solutions of the optimization problem given by Eq. (3.3.20),
under the additional condition that the matrix H(Bl, )z R((-)) 1H(,61, ) is invert-
ible,
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e vector y°% is defined by Eq. (3.2.3),

e the function x — h(x; Bl, (:)) gathers the most influential terms of the vector-valued
function <h1(-; Bl, %S(Bl, (:))), ha(:; Bl)>, which have been identified from a LAR pro-
cedure,

° H(Bl,(:)) ::A[h(A:c(l);Bl, @) h(:c(");,@l, (:))] is the matrix that gathers the evalua-
tions of h(-;3,,©) at the available code evaluations,

e and for all 1 <i,j < n, R((:))Z-j = C(z®, 20)) and ri(ac;(:)) = O(x, ™), with C the

~

Matern-5/2 covariance function of parameters ©.

In the same manner as in Section B.2] when function y is only known through a limited
number of evaluations, classical Leave-One-Out (LOO) techniques have to be introduced to
approximate the relevance of such a predictor:

n
~nest |12 1 i NS
Iy =71, = oo = 1 32 (vl -7 (3329
i=1
where, for all 1 < i < n, the function §"%" has been constructed in the same manner as 7"*",

but using the n — 1 evaluations of the code in {&™) ... 20D g0+ 201} only.

In order to reduce the computational cost associated with the evaluation of E%oo: it is inter-
esting to notice (see [Dubruld [1983] for further details) that, for all 1 < i < n:

y(x(i)) _ @\EE;S‘E($(Z')) _ (C(IBD )yObS)i (3.3.30)

(3.3.31)
LOO error € 5, can then be approximated by:

1 — C(3,,0
€t00 ~ &o0 = " e, o= [(C(@ﬁ&;@():))
1

2
obs
Yo)i
i=1 [

] . (3.3.32)

Such an approximation is however conditioned by the values of Bl and (:), which are computed
using all the code evaluations. In order to be more precise, it can be noticed that for all 8,
O, 1<i1<n:

(5(?17 @)yobs)?
C(B1,9)i

L(B,0) =L_i(B,,0) + : (3.3.33)

C(B,,0) = R(©)" I - M(B,)(M(B,)"R(©)'M(3,))"'M(3,)"R(©)}, (3.3.34)

where I is the identity matrix and £_; (3;,©®) is the evaluation of function £(3;,®) based
on the n — 1 evaluations of the code in {&() ... 20D 0+ 21 only. Hence, in
the optimization process leading us to the identification of Bl and ©, let {((B1);,05), 1 <
i < Ngest } be the nyeqr values of B; and O, in which function £ has been evaluated. With a

49



3.4. APPLICATIONS

very limited additional computational cost, we can then define, for all 1 < i < n, the LOO

evaluations of 3; and ©, which are denoted by (,@1> ~and ©_; respectively, and which are
—17

given by:

3,) 0] =ar min £_:(By,0). 3.3.35
<(ﬂ1>—i ) B (81,0810, 1<i<nie) (6:.©) ( )

Finally, we can introduce error €100, such that:

2
n 6« 2 ,@71, obs
~nest [[2 ~2 1 ~2 . ( <<B1>Z > y >z
HL2 ~ '
C

Hy -y ~ ELOO = E 6Z” 6i =

3.3.5 Convergence analysis

All the developments presented in Sections B.3.1] and are conditioned by the values of
three truncation parameters, po, p; and uo, which have to be identified from a convergence
analysis. As presented in Section B3] we remind that the roles of ps, p; and wgy in the
modeling of y are different. Whereas py and wuy are associated with the modeling of the
dependency structure between the input parameters, p; is associated with the individual
transformation of each input. As a consequence, pp is strongly dependent on the dimension
of vector B, which parametrizes these individual transformations. On the contrary, this
dimension of B, which is equal to C(p1,u1) — 1 — ug, does not depend on psy, but depends
only linearly on uo. Hence, increasing the values of po and us does not really increase the
dimension of the search set for the identification of ,@1, but makes the relation between 3,
and £(8;,®) much more complex.

For the choice of uy, p2 and p;, maximal values uy®*, po*** and ¢ are a priori chosen.
In this chapter, since we want to reduce the number of parameters on which the polynomial
trend is based, only values of uy that are lower than d are considered: uy*®* = d. Finally, the
optimal value of (ug,p1,p2) is the one that gives the minimum LOO error among all these
tested combinations of values:

X max

(u3, pT,p5) = argmin €00 (uz, p1,p2), (3.3.37)
1<uz <d,
1 < p2 < pP?x,
1 <p1 <p"®*

where error €2 is defined by Eq. (3.3.32).

3.4 Applications

To illustrate the advantages of the nested structure presented in Section B.3] for the modeling
of the quantity of interest y, this section introduces a series of analytic examples, which are
sorted with respect to the input set dimension, d. In each case, the proposed approach is
compared to the "LAR+UK" approach, which has been described in Section For each
function y, let g™t and g“*F+UK be the best approximations of y we can get from the
available information, when considering a nested polynomial trend and a simple polynomial
trend, respectively. Let sZNEST and 6% AR, UK De the associated normalized errors, such that:

kst = |ly = 7|5/ l9ll% (3.4.1)
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arsvk = |y = TARUENL /gl (3.4.2)

When dealing with a simple polynomial trend, it is reminded that the only truncation param-
eter that needs to be identified is the maximal total polynomial order, which will be denoted
in the following by p“*R+UK for the sake of clarity. On the contrary, three truncation param-
eters have to be identified for the nested polynomial trends: ps, us and p;. As a consequence,

the required computational time to identify 7"®' can be much higher than the one required

to identify gtARTUK,

34.1 d=1

In this part, we suppose that d = 1, and we fix X = [—1,1]. Three analytic expressions for y
are then proposed:

e case 1: y(z) = Py o Py(x),
e case 2: y(x) =sin((z +1)3),

e case 3: y(z) = sin(20x) cos(2x),

where, for all z in [—1,1]:

5
1) i (0,—0.03,0.5, —0.4, —0.5)
Pl(fﬂ)zz%() el = 2 2 2 2
v0.032 4 0.52 +0.42 4 0.5

(3.4.3)

The two first examples are based on chained codes. The third example is introduced to show
that this nested structure for the mean can also be interesting for non-chained codes when
few code evaluations are available.

For each case, Figure B compares the evolution of the errors 52NEST and 6% AR UK With
respect to n, the number of available evaluations of y. For each value of n, convergence
analyses have been performed for both methods. The maximal values for the truncation
parameters associated were fixed such that:

0 < pMARTUK <90, 0 < p1,pa <10, ug = 1. (3.4.4)

For the three applications, these convergence analyses lead us to relatively high values for
these truncation parameters (p; > 4, po > 4). As underlined in Section B3Il this can be
explained by the ability of the proposed nested structure to parametrize polynomial families
with very high cardinality with only few parameters. This is particularly efficient when n is
small compared to the number of oscillations of y.

In addition, Figure compares the two approaches in terms of prediction for given values
of n. In these figures we notice that the proposed method is particularly adapted to the cases
when y presents a nested structure or is oscillating. This is particularly true when n is small
compared to the complexity of y.
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—_
—_

0.8 0.8
206 £0.6]
T4 f04
R 2
0.2/ 0.2
15
(a) y(z) = P2 o Pi(x) (b) y(z) = sin((z + 1)*)

normalized error

10 15 20 25 30

(c) y(z) = sin(20z) cos(2z)

Figure 3.1: Evolution of the normalized L? errors with respect to n, the number of code
evaluations. To be more representative, for each value of n, the LAR+UK and the proposed
approaches have been repeated 10 times on randomly chosen learning sets. The curves cor-
respond to the mean value of the errors associated with these 10 repetitions. Solid black
line: evolution of the error associated with the LAR+UK approach, 6% AR uk- Red dotted
line: evolution of the error associated with the proposed approach, sQNEST. The vertical bar
indicates moreover the value of n on which the results of Figure are focused.
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0.5 1

(b) Proposed method with (p2,uz,p1) =

-1 -0.5 0 0.5 1 -1
X
(a) LAR+UK
(4,1,4)
1 1
0.5 0.5
= 0 S,
—0.5 ~05
_1 1
-1 -0.5 0 0.5 1 -1
X
(¢) LAR+UK
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T

(d) Proposed method with (p2,u2,p1) =

(e) LAR+UK

(6,1,7)

0.5 1

Ko

(f) Proposed method with (p2,u2,p1) =

Figure 3.2: Efficiency of the proposed method to predict in an unobserved point the value

of y(x) = Py o Pi(z) with n = 15 (first row), y(z) =

sin((z + 1)3) with n = 11 (second

row) and y(z) = sin(20z) cos(2z) with n = 20 (third row). In each figure, the black solid
line is the evolution of the quantity of interest, y, with respect to x, the blue points are the
positions of the available observations of y, the red dotted line is the prediction of y based on
an optimized LAR+UK approach (left column) or based on the proposed approach associated
with optimized values of ps, us and p; (right column). The grey areas correspond to the 95%

confidence region for the prediction.
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342 d>1

The idea of this section is to show that the tendencies that were noticed in the one-dimensional
cases are found back when considering multidimensional input spaces. To this end, let us
consider the three following expressions of y, which can also be seen as particular chained
codes, and the associated maximal values for the convergence analyses:

e Case 1: d=2,0 < pMARTUK <90 0 < py <6,0<p; <10,1<wuy <d.

LR = [—1,1]
9: { z o @) = (1—2)cos(Tey) x (1 — 22)sin(5a) O
e Case 2 (the Ishigami function): d = 3, 0 < pPARTUK <90, 0 < py < 3,0 < p; < 10,
) [, )3 — R (3.4.6)
I z= (z1,m2,73) — ¢3P(x) = sin(z1) + Tsin(x2)? + 0.125 sin(zy) o

e Case 3: d=16,0 < pMARTUK <10, 0 <py <3,0<p; <10, 1 <wuy <d.

-1 = R
g'{ r  — ¢Pz) = g1 og®(a), (8:4.7)

6 6
g (z) = 0.1cos ( zi> +) 22, zeRS, (3.4.8)
=1 =1

g? (x) = (cos(may + 1), cos(may +2), ..., cos(mzg + 6)) . (3.4.9)

In the same manner as in Section B.41] Figure B3 compares the evolution of errors e%gqr and
5% AR UK With respect to n. As for the one-dimensional cases, it can be noticed in these figures
that, for the studied examples, introducing a nested structure for the polynomial trend can
allow us to make the L? error decrease by several orders of magnitude, especially when n is
low. Moreover, these figures emphasize the interest of optimizing the values of the truncation
parameter uo when dealing with multidimensional input spaces.

Note that for these examples, there is no information about the structure of the nested code.
Adding some information about the relation between the inputs could be very useful to avoid
testing too many values of py, po and us.

As explained in Section B.3.1], the values of po, p1 and us that were obtained from the con-
vergence analyses can give many information about the unknown structure of the quantity of
interest. For the first example, the values po = 2, us = 2 and p; > 2 were most of the time
chosen, which is coherent with the fact that ¢?(zy,z2) is just the product of two functions
that depend on x; and x2 only. Hence, a particular attention has to be paid to the modeling
of each input, rather than to the modeling of the dependence structure.

In the same manner, for the second example, most of the convergence analyses lead us to
ug = 3 and ps < pi, which also shows that the modeling of each input seems to be more
important than the characterization of the relation between these modified inputs.

At last, for the third quantity of interest, which is a highly oscillating function in dimension
d = 6, the convergence analyses seemed to encourage the values of ps and p; that lead to
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error

Figure 3.3: Evolution of the normalized L? errors with respect to n, the number of code
evaluations. To be more representative, for each value of n, the LAR+UK and the proposed
approaches have been repeated 10 times on randomly chosen learning sets. The curves cor-
respond to the values of the 25% (thin line), the 50% (thick line) and the 75% (thin line)
quantiles of the errors associated with these 10 repetitions. Solid black line: evolution of the
error associated with the LAR+UK approach, 5% Ar+UK- Blue dotted line: evolution of the
error associated with the proposed approach, 62NEST, with us = 1. Red dashed line: evolution
of the error associated with the proposed approach, 52NEST, with 1 < wus < d.

the highest product p; x py (before over-fitting). This means that, for this example, it is
interesting to approximate quantity of interest y by a complex polynomial representation
that is characterized by a small number of parameters.

3.4.3 Relevance of the LOO error

As presented in Section B3] when the maximal information about ¥ is a set of code evaluations,
the error Hy — ﬂne“HX can be evaluated by its LOO approximation, €,00. In order to reduce
the computational cost associated with the evaluation of 1,00, two alternative estimations of
error Hy — ﬂneStHX, €Loo and €100, have been proposed. In order to underline the relevance
of these two LOO errors, Figure B.4] compares these three errors in the case when n = 100
and y is the Ishigami function, whose expression is given by Eq. ([B46) (the same kinds
of results would have been obtained for other values of n and other expressions of y). In
this figure, it can thus be noticed that both approximations 1,00 and er,00 are very close
to Hy — ﬂneStHX. In general, the approximation 1,00 is more conservative, in the sense that

5%)



3.4. APPLICATIONS

errors

errors

L

o+

(

111) (112) (113) (114) (115) (2‘,1) (212) (213) (214) (215) (311) (312) (313) (314) (315) (4‘,1) (4‘,2) (413) (414) (415)

Values of p; — po

(a) Case 1: groo

[RE—

L

"

E

.

L

L I o+

t

Figure 3.4: Comparisons between error Hy — ﬂneStHX and its LOO approximations r,0o and
er,oo for the modeling of the Ishigami function from n = 100 code evaluations, for us = d,
1 <ps <4 and 1 <p; <5. Red squares: the true values of HY — ﬂneStHX. Black circles: the
approximated values. In each case, the box-plots correspond to the distributions of (€2, 1 <
i <n)and (€2, 1 <i < n), whose expressions are given by Eqs. (33.32) and (3:3.36).

it is less likely that it underestimates Hy — ﬂneStHX. However, as explained in Section B3]

introducing a linearization around Bl reduces the risk of being too dependent on Bl, which

(111) (112) (113) (114) (115) (2‘,1) (212) (2,3) (214) (215) (311) (312) (313) (314) (315) (4‘,1) (4‘,2) (413) (4,4) (415)

Values of p; — po

(b) Case 2: €100

explains the fact that only small differences can be noticed between &1,00 and €r,00.
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3.5 Conclusions

One of the main objectives of this part was to propose an alternative parametrization of the
polynomial trends for the Gaussian process regression. This parametrization, which is based
on the composition of two polynomials, allows us to span high dimensional polynomial spaces
with a reduced number of parameters. Hence, it has been shown on a series of examples
that this approach can be very useful, especially when confronted to the modeling of complex
functions with very little information.

In particular, this approach can allow us to find back (or take into account) a potential nested
structure of the code.

However, identifying relevant values for these parameters is not easy. In this chapter, these
parameters are identified from a two-steps approach. First, their maximum-likelihood esti-
mates are searched from the resolution of the optimization problem. An iterative algorithm
has been proposed to approximate the solutions of this problem. Then, a linearization around
these values is carried out, in order to find back the usual formalism of GPR, and to minimize
the sensitivity of the results to these values.

In spite of all these adaptations, when the input dimension becomes high (d > 10), and
when a lot of code evaluations are available (n > 100d), it appears that the value of p; is
often equal to 1. Such a value for p; corresponds to the "LAR+UK" configuration, which
would mean that, in that case, the nested structure is not necessary. This can be due to the
fact that the considered quantity of interest does not present a nested structure, or to the
fact that the numerical complexity of the optimization problems associated with the nested
representation is too high. Increasing the robustness of the proposed iterative algorithm, as
well as proposing more efficient methods to solve the introduced optimization problems are
thus possible extensions of the present chapter.

Trying to increase the sparsity of the proposed nested representation could also be a good
idea, especially to enable the proposed method to deal with systems with higher values of
d. Coupling the proposed nested representation to dedicated penalization techniques seems
promising for future work.
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Chapter 4

(zaussian process regression of two
nested codes with scalar output

In this chapter, we focus on the case of two nested codes with scalar outputs. We now
assume that observations of the intermediary variable are available. We therefore consider
the following system:

T2
ynest(mnest) = yZ(yl (wl)a 5132)7 (4-0-1)
x1 —  yi(x1)

where ®1, T2 and xpeg are low dimensional vectors and yi, yo and ynest are scalars.

The work presented in this chapter has been published in Marque-Pucheu et all ﬂZng] The
framework of the Gaussian process regression is considered (see Chapter [l for further details).
We propose an innovative Gaussian process based sequential design for the case of two nested
code with scalar outputs.

4.1 Introduction

Thanks to computing power increase, the certification and the design of complex systems rely
more and more on simulation. To this end, predictive codes are needed, which have generally
to be evaluated at a large number of input points. When the computational cost of these codes
is high, surrogate models are introduced to emulate their responses. A lot of industrial issues
involve multi-physics phenomena, which can be associated with a series of computer codes.
However, when these code networks are used for optimization, uncertainty quantification, or
risk analysis purposes, they are generally considered a single code. In that case, all the inputs
characterizing the system of interest are gathered in a single input vector, and little attention
is paid to the potential intermediate results. When trying to emulate such code networks, this
is clearly sub-optimal, as much information is lost in the statistical learning, so that too many
evaluations of each code are likely to be required to get a satisfying prediction precision.

In this chapter, we focus on the case of two nested computer codes, where the output of
the first code is one of the inputs of the second code. We assume that these two computer
codes are deterministic, but expensive to evaluate. To predict the value of this nested code at
an unobserved point, a Bayesian formalism m, EIPE] is adopted in the following. Each
computer code is a prior:t modeled by a Gaussian process, and the idea is to identify the
posterior distribution of the combination of these two processes given a limited number of
evaluations of the two codes. The Gaussian process hypothesis is widely used in computer
experiments (mck“ et alJ, |198d; Santner et alJ, 2003: [Rasmussen and Williams] mo_d Kennedy

and O’Hagan, , 2001 Berger et all, 2001 ,12003; Kleijne ,M]), as it allows a very
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good trade-off between error control, complexity, and efficiency. The two main issues of this
approach, also called Kriging, concern the choice of the statistical properties of the Gaussian
processes that are used, and the choice of the points where to evaluate the codes. When a
single computer code is considered, several methods exist to add one new point or a batch
of new points sequentially to an already existing Design of Experiments. Depending on the
purpose, optimization or reconstruction of the objective function on its whole input set, the
criteria are based on the mean, variance or covariance of the predictor ( I[S_agks_eLaJ.J, le;
Santner et all, 2003; Bect et all, 2012; [Echard et all, 2011; (Chevalier et all, 2014]). Given
that our aim is to predict the output of the nested code on its whole input set, sequential
designs based on a reduction of the integrated prediction variance (IMSE) are an appropriate
choice. In the case of a single code, the variance expression can be explicitly derived under
mild restrictive conditions on the mean and the covariance of the prior Gaussian distribution.
The adaptation of these selection criteria to the case of two nested codes is not direct. Indeed,
the combination of two Gaussian processes is not Gaussian, so that the prediction variance
is much more complicated to estimate. The challenges posed by the composition of two
Gaussian processes have been studied in the Deep Gaussian processes literature and the
proposed methods are based on the Monte-Carlo computation of the likelihood of the nested
Gaussian processes I‘Retﬁikamﬁ_alj, l21111|] or on the computation of a lower bound of this
likelihood [Damian nd Lawren ,QM] The composition of Gaussian processes can also
be used in the multi-fidelity framework [Perdikaris et all, 2017]. This framework enables to
use several levels of convergence of a simulator (for example in a finite element model a coarse
mesh corresponds to the low fidelity simulator and the finer mesh corresponds to the high-
fidelity simulator) and therefore to have a trade-off between accuracy and computation time
: Picheny and

Ginsbourger, ‘
Moreover, if the two codes can be launched separately, the selection criterion has also to
indicate which one of the two codes to launch. The sequential designs are based on the
prediction variance, which has to be computed at a large number of points. To reduce the
computational cost associated with these computations, we propose several adaptations of
the Gaussian Process formalism to the nested case. These adaptations make it possible to
compute the two first statistical moments of the nested code output predictor exactly or
quickly. Then, original sequential selection criteria are introduced, which try to exploit as
much as possible the nested structure of the studied codes. In particular, these criteria are
able to integrate the fact that the computational costs associated with the evaluation of each
code can be different.

The outline of this chapter is the following. Section presents the theoretical framework
of the Gaussian process-based surrogate models, its generalization to the nested case, and
introduces two selection criteria based on the prediction variance to reduce the prediction
uncertainty sequentially. Section 3] introduces a series of simplifications to allow a quick
computation of the prediction variance. In Section [£.4] the presented methods are applied to
two examples.

The technical proofs of the results presented in the following sections are given in Section [4.6

4.2 Surrogate modeling for two nested computer codes

4.2.1 General framework

Let S be a system which is characterized by a vector of input parameters, @pest € Xpest. Let
Unest : Xnest — R be a deterministic mapping that is used to analyze the studied system. In
this chapter, we focus on the case where the function @pegt — Ynest (€nest) can be modeled by
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4.2. SURROGATE MODELING FOR TWO NESTED COMPUTER CODES

two nested codes. Two quantities of interest, y; and yo, are thus introduced to characterize
these two codes, which are supposed to be two real-valued continuous functions on their
respective definition domains X; and R x Xs. Given these two functions, the nested code is
defined as follows:

xo € Xy

Ve ynest(mnest) = y?(yl (wl)a wZ) e R, (4-2-1)
il EXl — y1($1) eR

where @pegt 1= (21, 2) € Xpest = X1 X Xg. The sets X; and Xy are moreover supposed to be

two compact subsets of R% and R respectively, where d; and ds are two positive integers. In

theory, the definition domains may be unbounded, but the reduction to compact sets enables

the square integrability of ynest on Xpest- If they are unbounded, it is possible to introduce

weighted Lo spaces.

Given a limited number of evaluations of y; and ys, the objective is to accurately predict ynest

on the whole input set.

4.2.2 Gaussian process-based surrogate models
4.2.2.1 Background

The Gaussian process regression (GPR), or Kriging, is a technique that is widely used to
replace an expensive computer code by a surrogate model, that is to say a fast to evaluate
mathematical function. The GPR is based on the assumption that the two code outputs, y;
and y2, can be seen as the sample paths of two stochastic processes, Y7 and Ys, which are
supposed to be Gaussian for the sake of tractability:

Yi() ~GP (ki (1), Ci(+0)), i€ {1,2}, (4.2.2)
where for all 1 <14 <2, u; and C; denote respectively the mean and the covariance functions
of Y;.

Let Ycl)bs = <§3§1) = azgl), . ,:f:gnl) = azgnl) be a (n1 x di)-dimensional matrix that gath-

ers n; elements of X; and X3 = (:f:gl) = ((pgl),w§1)> L E) = (cpgm),a:gM))) be a

(ng X dg)-dimensional matrix that gathers no elements of R x Xy. Denoting by

3™ = (i), (™)), and Y8 = (ya(ef 2)), el 25?)), (4.2.3)

the vectors that gather the evaluations of y; and y» at these points, it can be shown that:

YE() =Y () [y ~ GP (5 (). CF (), (4.2.4)

(2 (2

and the detailed expressions of the conditioned mean functions, pf, and the conditioned
covariance functions, Cf are presented in Eqs. (£211)) and (@213)) for the "Universal Kriging"
framework. For further details on these expressions in other frameworks, the interested reader
may refer to Section [[4]

The relevance of the Gaussian process predictor strongly depends on the definitions of u;
and C;. When the only information about y; is a finite set of evaluations, these functions
are generally chosen in general parametric families. In this chapter, functions C; are chosen
in the squared exponential and Matérn-5/2 classes (see Section [[4] for further details about
classical parametric expressions for C;).

The squared exponential class defines a parametric family of covariance functions that can be

written in the form: ,
K; (@ @) = exp <—d <@ i;) > , (4.2.5)
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4.2. SURROGATE MODELING FOR TWO NESTED COMPUTER CODES

where:
ifi=1
Zio=d NI (4.2.6)
(p1,5) if i =2,
and d (ml, > = ‘ diag (£;)" (a‘:z - a’c;> , diag (£;) denotes a square matrix whose diagonal is

equal to the vector £; of correlation lengths.

Regarding the Matérn kernel, we consider the radial Matérn kernel, obtained by substituting
the (weighted) Euclidean distance into the 1-dimensional Matérn kernel, and not the ten-
sor product kernel obtained by multiplication of 1-dimensional kernels. So, the covariance

5
functions of the Matérn 3 class can be written in the form:

K (i) = (14 V5 (202)) + 3a (0020) Yoo (~VBa (mial)) . (42

Linear representations are considered for the mean functions:

pi () =hi ()7 B, (4.2.8)
where h; is a given p;-dimensional vector of functions (see Chapter [ for further details on

the choice of the basis functions). In the following, the framework of the "Universal Kriging"
is adopted, which consists in:

e assuming an (improper) uniform distribution for 3;,

e conditioning all the results by an estimator of the hyper-parameters that characterize
the covariance functions C; (obtained by cross-validation, as explained below),

e integrating over B, the conditioned distribution of Y;.

In that case, the distribution of Y, which is defined by Eq. (@24, is Gaussian, and its
statistical moments can explicitly be derived (see Sacks et all [1989]; |Bl£;hQn_eL_a.lJ 12008];
Helbert et all [2009]; Bect et all [2 LOQ],L(ML&J 12017]).

If we denote the posterior mean of 3; by:

B, = [hi (X7 (o (X7 X)) <Y§’b5>T] Th (X7 (o (xP. X)) 7wt
(4.2.9)

where h; (79]08) is a (p; X n;)-dimensional matrix, whose j-th column is h; <§:§j)), and

C (XObS XObS) is a (n; x n;)-dimensional matrix, such that:

(C <X°bs XObS)>]k - C’Z< 28 “‘”), (4.2.10)

then the posterior prediction mean and variance can be written:

1 (&) = hi ()" B; + C; <fi77?bs> <Cz' <7?bsa7?bs>)il [y?bs — h; (Y?bS)T@-] :
(4.2.11)
and:

(0F ()% = Cf (4, ®1), (4.2.12)
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o) = (o) o) (X))
e e ) (e () M (5

() e (2 ) (5]

<

1) (57 o (7 7))

where C; <xl,_0bs) is a n;-dimensional vector and (CZ- (a‘ci,f?bs» =C; (a:z, (k)).

7

In this chapter, the hyperparameters of the covariance functions (see Section [[.4]) are estimated
for each set of observations by maximizing the Leave- One Out lo Jﬂg predictive probability (see

Rasmussen and Williams [2006], Chapter 5, and Bachod

4.2.2.2 Coupling the surrogate models of the two codes

According to Eq. ([£2.1)), the nested code, Znest > Ynest (€nest ), can thus be seen as a particular

realization of the conditioned process Y%y, so that for all (z1,x2) € X; x Xg,

Ynest(ml’m2) - Yéc(ch(ml)amﬂ- (4.2.14)

Under this Gaussian formalism, the best prediction of ynest at any unobserved point @nest =
(x1,22) in X; x Xy is given by the mean value of VS (x1,2), whereas its variance can be
used to characterize the confidence in the prediction. As explained in Section [.1], there is no
reason for Y, to be Gaussian, but according to Proposition £.2.1], the first- and second-order
moments at a given input point can be obtained by computing two one-dimensional integrals
with respect to a Gaussian measure.

Proposition 4.2.1. For all (z1,x3) € X1 x Xy, if £ ~ N(0,1), then:

E [Ynest(wlv mQ)] E [Mg(/i{i (ml) + Uf(ml)fa (Eg)] ) (4215)

{15 (s (1) + of (1)€, 22)}?

4.9.
T {050 (@) + o5 (@1)E, 22)) (4210

2
E [(Ynest(mhm?)) ] =E
The proof of this Proposition can be found in Section [4.6]

The computation of these moments can be done by quadrature rules or by Monte-Carlo
methods (m, |). However, the computation time can be expensive, especially if the
moments have to be computed at a large number of points.

Note that the proposed predictor for ynest can be built using observations of y; or ys alone
and not only observations of ynegt- It can take into account the partial information. If the two
codes can be launched separately, this property will be particularly useful for the sequential
enrichment of the initial design of experiments, since the variance of Y can be reduced by
evaluating y; or y» alone.

nes
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4.2.3 Sequential designs for the improvement of Gaussian process predic-
tors

The relevance of the predictor Y5 strongly depends on the space filling properties of the
sets gathering the inputs of the available observations of y; and yo, which are generally
called Designs of Experiments (DoE). Space-filling Latin hypercube sampling (LHS) or quasi-
Monte-Carlo sampling are generally chosen to define such a priori DoE ( ,121103,
Fang et al J, |_01)ﬂ, Perrin and (}annamelal, |_O_ﬂ] . The relevance of the predictor can then be

improved by adding new points to an already existing DoE, as the higher the values of n; and
na, the more chance there is for ||E [V %] — ynest\&nest to be small.

In the case of a single code, the existing selection criteria are based on the prediction variance

ﬂS_aLuLaJ |_9§_9 [S_amgeLeI_aJ LODj &sj_em_aﬂ 2012: |Gramacy and L12n| 201 j] the

prediction mean “Hu_andlud]ﬁm&kﬂ lZQlIl] or both “Eﬁ;b.aLd_eLalJ 2011] or the covariance
between the observations ﬂS_ag_s_ej_aJ, |_9§_d, Santner et al J, LQOj] and depend on the goal of

the experiments: optimization, or reconstruction of the objective function on its whole input
domain.

In this chapter the objective is to predict the output of the nested code on its whole in-
put domain. So, a stepwise uncertainty reduction (SUR) “ChJALaliJuI_aH, QM] strategy is
adopted in order to define criteria to add a new point. The proposed criteria are based on a
minimization of the IMSE (integral of the prediction variance over the input domain) or on
a maximization of the reduction of IMSE per unit of computational time. Some criteria that
enable to take into account the different costs of several computer codes exist, for exam Ie
the multi-fidelity framework ﬂSImeL_aJ |_O_ﬂ] or multi-objective constraints P rri

but their adaptation to the case of two nested codes is not direct.

The use of IMSE is simplified by some properties of the Gaussian processes. Indeed, if Z is a
Gaussian process that is indexed by « in X, the variance of the conditioned random variable
Z(x) | Z(x"*"), where & and "®" are any elements of X, does not depend on the (unknown)
value of Z(x™®"). So, this variance can be denoted by abuse of notation V[Z(x) | ""]. To
minimize the global uncertainty over Z at a reduced computational cost, a natural approach
would consist in searching the value of ™" so that

/ V(Z(@) | 2" do (4.2.17)
X
is minimal (under the condition that this integral exists).

In the nested case, we also have to choose to which code to add a new observation point. To
this end, let 73 and 75 be the numerical costs (in CPU time for instance) that are associated
with the evaluations of y; and ¥y respectively. For the sake of simplicity, we assume that
these numerical costs are independent on the value of the input parameters, and that they
are a priori known. Two selection criteria are eventually proposed to optimize the relevance
of the predictor of the nested code output sequentially. To simplify the reading, the following
notation is proposed:

(x],Xq) ifi =1,
(@5, X;) := { (05, &5), S (X1) x X) if i = 2, (4.2.18)
(], x5), Xy x Xo) if i = 3,

where 7 € Xy, ¢] € uf (X1) and x4 € Xy and we denote by V(Y S (Znest)|Z;) the variance of
YC o (@nest) under the hypothesis that the code(s) corresponding to the new point x; is (are)

evaluated at this point (in practice, we remind that these code evaluations are not required
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for the estimation of this variance). This variance can be defined by:

V(Yncest (mnest) ’%z) =

{V(YQ (Vi (1), @) |95, 458, wi (@), @ € {1,2}, (4.2.19)

V(Y2 (Y1 (1), 22) Y™, Y%, Ynest (F4)), @ = 3,

with @pest = (1, x2).

e First, the chained I-optimal criterion selects the best point in X; X Xs to minimize the
integrated variance of the predictor of the nested code:

FheW argn}in/ V(Yiest (Tnest )| T3) dTnest - (4.2.20)
z3€X3 Xhnest

Such a criterion is a priori adapted to the case where it is not possible to run indepen-
dently the codes 1 and 2.

e Secondly, the best I-optimal criterion selects the best among the candidates in X; and
Xo in order to maximize the decrease per unit of computational cost of the integrated
prediction variance of the nested code:

new ~ 1 -

(", T ) = argmax — /X [V (Yot (@nest)) — V (Viest (Znest ) |T4)] dnest -
z,€X;, iE{LQ} t nest

(4.2.21)

In that case, the difference in the computational costs is taken into account, and a
linear expected improvement per unit of computational cost is assumed for the sake of
simplicity.

For each new observation of the first code, the hyperparameters of the covariance function
C: are re-estimated. In the same way, for each new observation of the second code, the
hyperparameters of the covariance function Cs are re-estimated.

An initial set of observations is necessary to estimate the hyperparameters of the covariance
functions C; and C5 and therefore to compute the prediction variance and the proposed
sequential design criteria. This initial set will be chosen as a maximin LHS design on Xjeg.

4.3 Fast computation of the variance of the predictor of the
nested code

As explained in Section 23] choosing the position of the new point requires to compute the
value of Var(Y%q (Tnest)|®;) for each potential value of z; in X; and for a grid or a sample
of xpegt used in a quadrature formula or an empirical average to approximate the integral in
Tnest Of Egs. (£221) and ([A2:20)).

For a given @y, the variance is theoretically given by Eqs. (£2.15]) and (£2.16)). If a quadra-
ture rule or a Monte Carlo approach is used to approximate the variance, then the optimization
procedure becomes prohibitively expensive from the computational point of view. To circum-
vent this problem, we present in this section several approaches to make the computation of
Var (Yl (Tnest)|Zi) explicit, and therefore extremely fast to compute.
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4.3.1 Explicit derivation of the two first statistical moments of the predic-
tor

Lemma 4.3.1. If X ~ N(p,0?) and g(x,a,b,c) := x%exp (bx+cx2), (a,b,c) € N x R,
then, under the condition that 1 — 2co® > 0, the mean of g (X, a,b,c) can be computed ana-
lytically, and its expression is given by Eq. ([L6.]).

Lemma 4.3.2. If g(z,a,b,c) := x%exp (bx + ch) , (a,b,¢) € N x R?, then
g(x,a:,bi,¢) g(x,a5,b;,¢j) = g(x,a; + aj,bi +bj,ci +¢j), (4.3.1)

where (a;,b;,c;) € N x R? and (a;,bj,c;) € N x R2.

Proposition 4.3.1. Using the notations of the Universal Kriging framework that is introduced

in Section [{.2.2, if:
1. for 1 <k < py the mean function (ha), is of the form:
(ha (o1, 25), = mu(x2) ©1*, (4.3.2)
where my 1s a deterministic function from Xo to R and a € N,

2. the covariance function Cy is squared exponential, i.e. an element of the squared expo-
nential class,

then the conditional moments of order 1 and 2 of Y. (1, x2), which are defined by Egs.

@215) and @E2T6) can be calculated analytically using Lemmas[{.3-1] and [{.3.2. Moreover,
the expression of the first order moment is given by Eqs. ([L63) and ([EEI) and the one of

the second order moment is given by Eqs. (A.6.8)) and (4.6.1]).

The proof of this Proposition can be found in Section [4.6]

In other words, if the prior of the Gaussian process modeling the function y, has a trend
which is a polynomial of 1, with coefficients as functions of x5, and a covariance function
of the squared exponential class, then the moments of order 1 and 2 of the coupling of the
predictors of the two codes can be computed explicitly.

In particular, if the process associated with yo has a constant or zero mean and a squared
exponential (i.e. Gaussian) covariance, then the mean and the variance of the coupling of the
predictors of y; and yo can be computed analytically.

However, the use of a squared exponential covariance function is based on the assumption of
infinite differentiability of the second code. This assumption is not necessarily verified.
Besides, the method cannot be applied to the case of more than two codes. Indeed, in the
case of three codes, the coupling of the Gaussian predictors of the two first codes is no longer
Gaussian. Even if the Gaussian process modeling the third code has a squared exponential
covariance and a polynomial trend with respect to the output of the second code, the analytical
method cannot be applied because the predictor of the output of the chain of the two first
codes is not Gaussian.
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4.3.2 Linearized approach

In the cases where the conditions for Proposition .3.1] are not fulfilled (or if more than two
codes are considered), another approach is proposed in this section, which is based on a
linearization of the process modeling the nested code. Indeed, for i € {1,2}, let £ be the
Gaussian process so that:

Y = pi + €5 (4.3.3)

By construction, €5 is the residual prediction uncertainty once Y; has been conditioned by n;
evaluations of y;. We remind that the two Gaussian processes Y; are statistically independent,
so Y;° and therefore € are statistically independent. Under the condition that n; is large
enough for Y;° being a reliable statistical model for y;, then € is small.

Proposition 4.3.2. If:

1. the predictor of a nested computer code can be written Y, (1, x2) := Y5 (Y%(x1), z2),
where Y, are independent Gaussian processes which can be written as Y = u$ + €5,
where €§ ~ GP(0,C¢), 1 € {1,2},

2. and €5 1s small enough for the linearization to be valid,

then the predictor of the nested computer code can be defined as a Gaussian process with the
following mean and covariance functions:

,u%est (:131, mQ) - Mg(ﬂi(w1)7 m2)7
Crczest((mh m2)7 (mllv wIQ)) = C;((M?(ml)v :132), (Mi: (mll)7 mIQ)) (4.3.4)

[

c % c / / [& /
+8 ) (pi(z1), $2)3(p1 (pf(x), 25)Ci (1, x7),

where p§, i € 1,2 is given by Eq. (AZII) and Cf, i € 1,2 is given by Eq. (E2I3) and

a C
S (1 (@), wa) s given by Fg. [LEID).
¥1

It can also be written that Y\, = 119 es + Enests With:

ops
Jp1

Emest (T1,T2) = =—= (i (x1), T2)eT (21) + €5(pi (1), T2). (4.3.5)

The proof of this Proposition can be found in Section [Z.6]

Corollary 4.3.3. In the framework of Universal Kriging for Y and Yy with explicit basis

h
functions h; and covariance functions C;, i € {1,2}, if the derivatives 6—2(301,332) and
$1

00,
1

code can be defined, thanks to a linearization, as a Gaussian process with ezxplicit mean and

(((pl,azg) ,7;“) can be computed explicitly, then the predictor of the nested computer

covariance functions. In particular, if the covariance function Cy is in the Matérn 3 or squared

oC: -
exponential classes, the derivative 8—2 <(<p1, x2) ,X;bs) can be computed analytically, and the
Y1

associated expressions are given in Eqs. [L6.I8) and ([E621).
The proof of this Corollary can be found in Section

Corollary 4.3.4. According to Eqs. (£35), (A221)) and (E220), if the predictor of the
nested code is obtained with the linearized method, then, thanks to the independence between

e{ and €5, the selection criteria of the sequential designs can be written:
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e for the chained I-optimal design:

ous ?
(xhew phew) = (as aig)rélsign . /X <8Z? (pi (1), $2)> V[ef(z1)|27] dz1das,
xy,To 1 X A2 nest

T /X V [ (16 (1), )| (), 3] dee decs,

(4.3.6)
where 222 (u§(x1), x2) is given by Eq. (A613),
1
o for the best I-optimal design:
1
(" x") = argmax —V;(&;), (4.3.7)
;i€§§i, ie{l,?}Ti
where:
~, aug C ? (& (&) ~,
Vi (@) = 9or (Wi(@1),w2) | (V[ef(w1)] — Vel (1)|21]) dwrdas, (4.3.8)
Xnest
Va2 (Z2) = / (V[e3(pi(@1), ®2)] — V[e5(p] (1), ®2)|®2]) dowy das. (4.3.9)
Xnest

The proof of this Corollary can be found in Section

Hence, thanks to the proposed linearization, and the fact that the conditional distribution of a
Gaussian process is still Gaussian with updated first and second order moments, the variance
of Y& (@nest) and the one of Y (@nest)|T; can be explicitly computed for all (@pest, ;) in
Xpest X X;. Under the condition that the linearization is valid, this approach can be applied
to configurations with more than two nested codes.

However, it can be inferred from equation (Z3.4) that the variance depends on y$®® through
p$ and yS$™ through u§. To circumvent this problem for the computation of the forward

variance in the sequential designs, we assume that for a candidate x;, pu§ corresponds to
E [Y1|y$"] and by abuse of notation, that (6€)? = C§ corresponds to V {Yﬂf‘;bs, 531]. In the

same way, for a candidate &2, we assume that S corresponds to E [Ya|ySP®] and by abuse of
Yy Mo Y2 y
—>0bs

notation, that (05)2 = (¥ corresponds to V [Y2|X2 ,502} . So, by doing this, we suppose that

obs

the estimate of y; (Z;) can be replaced by its prediction mean E [Y; (Z;) |yS

1
with the Kriging Believer strategy proposed in |Ginshourger et all 2(!1(“.

] , in accordance

4.4 Applications

In this section, the proposed methods are applied to two examples: an analytical one-
dimensional one and a multidimensional one.

In particular, the linearized method of Proposition is compared with the analytical
method of Proposition A3 in terms of prediction accuracy.

The linearized method is compared with the so-called "blind box" method. The blind box
method corresponds to the case where the nested computer code is considered as a single
computer code. In that case, only the inputs xpeq; and the output ynesy are taken into account
and a Gaussian process regression of this equivalent computer code is done. The intermediary
information 7 is not taken into account. The Gaussian process Yy, can therefore be defined

as follows (see also [Perrin et al! [2017]):
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Vi () ~ GP (B () By Cin (7)) (4.4.1)
where
by (21, 2) = <% <h1 (z1)T B’f,ac2>T,3§h1 (%1) , ha (h1 (21)" ,C-T{,acg)) . (4.4.2)
¥1
By = (B1 — B1,B2) , (4.4.3)
S o MY 0 N 0\ al]
(87, 85) —a(l;’glrgj)n; [yg <y1 <a:1 ),mg )—h2 <h1 (wl ) By, ) ﬁ2] o (4.4.4)

n = ny = ng and Cp, is a stationary covariance function chosen in a parametric family and
defined on Xjest X Xpest- In order to make the comparison between the blind box and the
other methods easier, the mean function is defined as a linearization of the coupling of the
mean functions used in the linearized method.

Finally, the performances of the sequential designs are compared with a space filling design
(maximin LHS) on Xjegt.

4.4.1 Characteristics of the examples

4.4.1.1 Analytical example

In the analytical example, the properties of the mean functions of the Gaussian processes and
of the codes are:

1 —2
hi(z1)=| a1 |, Bi=| 025 |, (1) =hi(x1)" By —0.25c0s (2mz1), (4.4.5)
2 0.0625
1
1 6
1 -5 T
hs (p1) = 2 | Ba=1| 5 | Y2 (¢1) = ha (p1)” By — 0.25cos (2me1), (4.4.6)
1
o} 1

where z1 € [—7,7]. In this example X = 0).

In the analytical example, the covariance functions are squared exponential (i.e. Gaussian).
This implies that the Gaussian processes associated with the codes are mean square infinitely
differentiable. This enables to apply Proposition 31 and Proposition 32 to this example.

4.4.1.2 Hydrodynamic example
In this example, the coupling of two computer codes is considered. The objective is to deter-

mine the impact point of a conical projectile.

The first code computes the drag coefficient of a cone divided by the height of the cone.
Its inputs are the height and the half-angle of the cone, so the dimension of x; is 2 and

™ T
—, = 0.2,2|.
w1€[3674i|x[ 7]

The second code computes the range of the ballistic trajectory of a cone. Its inputs are
the output of the first code, associated with ¢;, and the initial velocity and angle of the
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(a) Code 1: drag coefficient / height of the (b) Code 2: range of a ballistic trajectory

cone

Figure 4.1: Hydrodynamic example: Inputs and outputs of the two codes.

ballistic trajectory of the cone, gathered in @5. The dimension of xs is therefore 2 and
T

€ [1500,3000] X |—, —|.
@2 € [1500, 3000 [12’ 36]
Figure 1] illustrates the two codes inputs and outputs.
Figure[d.2] presents, for each code, the scatter plots of the variations of the output with respect
to the most sensitive components of their inputs. The inputs correspond to a set of 20 points
drawn according to a maximin LHS design on Xeq. These figures enable to propose a basis
of functions for the prior mean of the processes associated with the two codes.
For the first code, the scatter plots highlight a linear variation with respect to (1), and a
multiplicative inverse variation with respect to (x1),, so the proposed basis functions are:

T
hy (1) = <1, (1), | L)) . (4.4.7)

(x1

For the second code, only a multiplicative inverse variation with respect to ¢ is evident, so
the proposed basis functions are:

ho (01, 2) = (% 1 1>T. (4.4.8)

max (¢1, 1,

The denominator has a lower bound ¢y, in order to avoid any inversion problem around
zero. 1 is set to the small arbitrary value 0.1.

The image plot represents the UK prediction mean of the first code, obtained with the
proposed basis functions. The predicted value of y; for the maximum value of (x;); and the
minimum value of (), is high compared with the values of the observations. So, the first
code has been evaluated at this input point and gives the value of 3.4, which is consistent with
the prediction. This illustrates the relevance of the proposed basis, that is used to extrapolate

the prediction at a point with no observations around. The image plot [4.2(e)| represents the
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Figure 4.2: Hydrodynamic example: variation of the outputs y; and yo of the two codes with
respect to the most sensitive components of their inputs x; and xo for a set of 20 input
points drawn according to a maximin LHS design on Xpeg. The image plots present the UK
prediction (conditional mean of the GP) of y; and yo for the same set of observations.
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UK prediction mean of the second code, obtained with the proposed basis at a value of 0.5
for 1.

In the hydrodynamic example, the covariance functions are in the Matérn % class. This
enables to perform the linearization of Proposition [£.3.2] and Corollary 4.3.3]

In both examples, the covariance functions include a non-zero nugget term (see Gramacy and
Lee [2012] for further details), that means that they can be written as:

C; <i:z@) = o7 [KZ <§:z§:2> + 95@:@;} : (4.4.9)

where o; € Ry, K; is chosen in a parametric family (squared exponential or Matérn %), g is
the nugget term whose value is 107¢, and § is the Kronecker delta function. This non-zero
nugget term is used for reasons of numerical stability.

4.4.2 Prediction performance for a given set of observations

(1) (Ntest)

A set of validation observations is available. Let x be Niest elements of Xest.
Denoting by ynest <a:r(11e)st> « - Unest <a:r(f§st§“)) the evaluations of the nested code at these points,

nest * * mnes‘c

the performance criterion of the nested predictor mean, also called error on the mean can be
defined as:

4 (e () — e (o))

2
Ntest . 1 Ntest .

2 (ynest (wr(fgst) - K Zl Ynest (wr(lje)st)>
= est j=

where Jnest denotes a prediction of the nested code, which can be obtained with the analytical,
linearized or blind-box method.

Error on the mean =

(4.4.10)

For both examples, the validation set of 150 points is drawn according to a maximin LHS on
Xnest-

Figure 43| presents, for the analytical example, an example of the prediction mean and 95%
prediction interval computed with the linearized and the blind box methods. The two pre-
dictors are built with the same set of 20 observation points drawn according to a maximin
LHS design on Xpest. It can be seen that, with the blind box method, the magnitude of the
prediction interval is the same across the input domain and depends only on the distance to
the observation points. The prediction interval is too big in the area with small variations
and too small in the area with larger variations. On the contrary, taking into account the in-
termediary observations (with the linearized method here) enables to better take into account
the non-stationarity of the variations of the nested code output.

Figure 4] presents the error on the mean with the blind box and the linearized methods for
both examples, and the analytical method for the analytical example. For all methods, the
predictors are built with the same learning sets drawn according to maximin LHS designs on
Xhest Of increasing size.

The left figure, corresponding to the analytical example, shows the similar accuracies of the
prediction means computed with the analytical and linearized methods proposed in Proposi-
tion .3.1] and Proposition
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(a) Linearized method (b) Blind box method

Figure 4.3: Analytical example: Predictors of the nested code obtained with the linearized
and the blind box methods. The set of 20 observations is drawn according to a maximin LHS
on Xpegt- Actual values shown by a continuous line, the prediction mean by a dotted line and
the 95% prediction interval by a grey area.
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(a) Analytical: squared exponential covariance (b) Hydrodynamic example: Matérn 2 covariance

Figure 4.4: Comparison of the prediction mean accuracy for the blind box and the linearized
(Proposition .3.2) methods, and, in the case of a squared exponential covariance function,
the analytical method (Proposition L3.1]). The curves correspond to the median of 50 draws
of maximin LHS designs on X; x Xy of increasing size.
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For both examples, the precision of the prediction mean is better with the linearized method
than with the blind box method, showing the interest of taking into account the intermediary
information.

The results show that the analytical and linearized methods lead to the same prediction mean
accuracy. As a reminder, the analytical method requires the infinite differentiability of the
second code. This assumption is correct for the analytical example but not necessarily for
the hydrodynamic example. The linearized method requires the prediction error of the first
code to be small enough for the linearization to be valid. Since the prediction error of the
first code can be reduced thanks to a sequential enrichment of the initial design, the required
assumption of the analytical method is stronger than the one of the linearized method.
Consequently, the linearized method will be used in the remainder of the numerical applica-
tions.

4.4.3 Performances of the sequential designs

Figure shows an example of the prediction mean and 95% prediction interval of the
predictors Y{°, Y5 and Y, . The predictors Y;° and Yy are not built with the same number
of observations, so the predictor Y, is built with a different number of observations of the
codes 1 and 2. The fact that the number of observations of the two codes can be different will
be useful for the sequential designs. Moreover, the estimation of the prediction variance of
the nested code is accurate, and that will also be useful for the choice of the new observation

point in the sequential designs.

4.4.3.1 W.ith identical computational costs for both codes

Figure[d6lpresents the error on the mean of the linearized predictor for the proposed sequential
designs and for maximin LHS designs of increasing size. The initial designs of the sequential
strategies are the same maximin LHS designs on Xyt with 10 points for the analytical example
and 20 points for the hydrodynamic example. That is why the initial point of the three curves
is the same on both line plots. The costs of the two codes are considered to be the same, that
is to say 71 = 7o = 1. The figure shows the relevance of the proposed sequential designs for
improving the prediction mean of the linearized nested predictor, compared with the maximin
LHS designs on Xpegt-

In the analytical example, the best [-optimal sequential design enables to obtain the most
accurate prediction mean at a given computational cost. In the hydrodynamic example, in
the first 10 iterations, the best I-optimal design outperforms the chained I-optimal design.
After this initial stage, the best I-optimal design calls alternately code 1 and code 2 and
becomes equivalent to the chained I-optimal design.

Figure [47] shows to which of the two codes the new observations points are added for the best
I-optimal sequential design. In both examples, new observation points of the first code are
first added.

It seems that the uncertainty propagated from the first code into the second code is predom-
inant at the beginning. The best [-optimal sequential design aims therefore at reducing this

uncertainty by first adding new observation points of the first code. Then new observations
of both codes are added.
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5 4 2 0 2 4 6
Lnest

(c¢) Nested code

Figure 4.5: Analytical example: an example of the predictors Y, Y5 and Y,G. The black
line represents the real values of y1, y2 and ynest, the grey area, the 95% prediction interval
and the grey dotted line, the prediction mean. The mean and prediction interval of Y are
computed thanks to the linearized method. The vertical lines of the two top plots represent
the observations of the two codes, which are drawn according to LHS designs on X; and

1§ (Xy) of sizes 7 and 8. The number of observations is not the same for both codes.
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Figure 4.6: Comparison of the prediction mean accuracy of the linearized predictor with the
maximin LHS design on X and the sequential designs, for both examples. In the hydro-
dynamic example, the two curves representing the sequential designs are almost superposed.
The initial designs are the same for the three curves, with a size of 10 points for the analytical
example and 20 points for the hydrodynamical example. The draw of the maximin LHS de-
sign on Xjegt is repeated 50 times and the curves present the median of the associated results.
The costs of the two codes are assumed to be the same.
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Figure 4.7: Comparison of the number of evaluations of each code in the case of a sequential
best I-optimal design applied to both examples. The curves correspond to the median of 50
draws of the initial design. The costs of the two codes are assumed to be the same.
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Figure 4.8: Performances of the best I-optimal sequential design in terms of prediction mean
accuracy with different computational costs for the two codes. 1:2 <> 71 = 1 and » = 2, 2:1
< 7 =2 and 7o = 1. The curves correspond to the median of 50 draws of the initial maximin
LHS design on Xjest. The initial designs are the same for the two curves corresponding to each

example and contain 15 observations and 30 observations on both codes for the analytical and
the hydrodynamical example.

4.4.3.2 With different computational costs

Figure @8 shows the prediction mean accuracy with the best I-optimal sequential design when
the costs of the two codes are different. Two cases are presented. The first one corresponds
to the case where the cost associated with the first code is twice the one associated with the
second code, that is to say 7 = 2 and 7 = 1, the second one corresponds to the case where
the cost associated with the second code is twice the one associated with the first code, that
is to say 71 = 1 and 7 = 2.

It can be seen that for both examples, the prediction accuracy at a given total computational
cost is better when the cost of the first code is lower, that is to say when more observation
points of the first code can be added for the same computational budget. These results are
consistent with those of Figure [4.7]
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4.5 Conclusions

In this chapter the formalism of Universal Kriging is adapted to the case of two nested
computer codes.

Two methods to compute quickly the mean and variance of the nested code predictor have
been proposed. The first one, called "analytical" computes the exact value of the two first
moments of the predictor. But it cannot be applied to the coupling of more than two codes.
The second one, called "linearized", enables to obtain a Gaussian predictor of the nested code,
with mean and variance that can be instantly computed. The approach could be generalized
to the coupling of more than two codes.

Both proposed methods take into account the intermediary information, that is to say the
output of the first code. A comparison with the reference method, called "blind box", is made.
In this method a Gaussian process regression of the block of the two codes is made without
considering the intermediary observations. The numerical examples illustrate the interest of
taking into account the intermediary information in terms of prediction mean accuracy.

Moreover, two sequential designs are proposed in order to improve the prediction accuracy of
the nested predictor. The first one, the "chained" I-optimal sequential design, corresponds
to the case where the two codes cannot be launched separately. The second one, the "best"
I-optimal sequential design, allows to choose to which of the two codes to add a new observa-
tion point and to take into account the different computational costs of the two codes.

The numerical applications show the interest of the sequential designs compared with a space-
filling design (maximin LHS). Furthermore, they illustrate the advantage, in terms of predic-
tion mean accuracy, of choosing to which code to add a new observation point compared with
simply adding new observation points of the nested code. The results show an amplification
of the uncertainties in the chain of codes, leading to the addition of observation points of the
first code firstly in the best I-optimal sequential design. It can be assumed that this should
be similar with the coupling of more than two codes. In other words, the uncertainty of the
beginning of the chain should be reduced as a priority.
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4.6 Proofs
4.6.1 Proof of Proposition [4.2.7]
According to Eq (£24), one can write:
YE (i) £ i (i) + 0 (@) &, &~ N(0,1), i € {1,2},
where &1 and & are independent according to the independence of the initial processes Y; and
Y2 and the fact that Y := Y;|yobs.

Therefore, the process modeling the nested code can be written:
Ynest(xla :Eg) = Yéc(yic($1)’ x2)
15
Given the independence of ¢; and & and the fact that E (£2) = 0, it can be inferred that the
first moment of Y, can be written:

E (Yiest (21, 22)) = E (5 (65 (z1) + 07 (x1) §1,22)) -

By noting that:

(erest(:Blvm?))z = (YZC(Y16($1)7CCQ )2
. = (4§ (1§ (1) + 0f (1) &1, @2) + 05 (1S (1) + 0F (®1) &1, ®2) &)°
= (4§ (1§ (1) + 0f (1) &1, 22))? + (05 (1S (1) + 05 (T1) &1, 2))° 63

o
+2u5 (1] (21) + of (21) &1, T2) 05 (1] (21) + 0f (T1) &1, T2) E2,!

e ¢ and &5 are independent,

E (&) =0and E (63) =1,

the second moment of Y,¢

st can be written:

(1 (1§ (1) + 0 (@1) &1, T2))

E Ynest Iy, T ? =E
(Vs (@1, 22))?) (05 (u (1) 4 0f (1) 61, 22"

4.6.2 Proof of Lemma [4.3.1]

If X ~N(u,0?) and g (x,a,b,c) == x%exp [bx + ch], then the mean of g (x,a,b,c) is equal

to:
E[g(X,a,b,c)]:/Rg(m,a,b,c) m/_exp< E <x;”>2> dz.
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It follows that:

Eg(X,a,b,c)] = /Rxaexp (bx + ca®) —— exp <—% (””"“‘)2> dx

oV 2

2
1 [ (c®b+p) )
N exp(—ﬁ< 2c02 — 1 Tt
1

11— 2co? o2b+ 1\’ .
——exp|——z——— (20— —— x
Pl7e7 52 1— 2co?

_ 1 (U2b+'u’)2 2 1 a
- eXP(‘@( 2c0% —1 s \/1—2002E[Xg]’

a’b+ o?
1—2co?’ 1 —2co?
Moreover, for Y ~ N (uy,02), any moment of order k, k € N, of Y can be computed
analytically ([Papoulis and Pillai, 2002]):

where Xy ~ N < > , under the condition that 1 — 2co? > 0.

15]

k _9: (20)! o

}rk: o k—2i 21

E{ } & <2¢>“Y 2ii1 7Y
1=

[ME

Hence, given that all the moments of a Gaussian variable can be computed analytically, the
mean E[g (X, a,b,c)] can be computed analytically, and its expression is:

L@\ 1
Elg(X,a,b,c)] = exp (‘ﬁ (m*“ V1—2co?

. 4 4 (4.6.1)
" 2 ra o2+ pu \ (27)! o? ’
2 \2i ) \ 1= 2c02 26l \1—2c02)

4.6.3 Proof of Lemma

One has:

g (x,ai,bi,¢) g (x,a4,b5,¢5) = x%x% exp (bix +er?+ bjx + le“2)
= 2%T% exp ((b; + bj)z + (¢; + ¢j)a?)

= g(:v,al-—kaj,bi—{—bj,ci—l—cj).
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4.6.4 Proof of Proposition 4.3.1]
First moment

In the framework of Universal Kriging, according to equation (£ZI1)) the conditional mean
function of the process modeling the second code can be written:

ps (1, ®9) = ha (g, $2)T By + C2 ((801, Ty) ’a—cgbs) Ve

= 5o, (8:),+ 350 (t0rma). (4l 0)) o), (462

= (1) +(2),

where o1 ~ N (,uﬁ, (0%)2), and

= (e (X X)) e (337) By (4.6.3

According to the assumptions of Proposition 3] the i-th, i € {1,...,p2}, component of
basis function hs can be written:

(ha (¢1,22))i = mi(x2) g (¢1,a:,0,0),

with m; deterministic functions and g (z,a, b, c) := x*exp (bx + cxz) , (a,b,c) € N x R2,
In the same way, the covariance function Cs is in the squared exponential class, so according
to Eq. (£23), it can be written:

Cy (o1 @2), (91,23) ) = o3k (%) Hk (mﬁi@éw ’

%1

with &k : x — exp (—xz). So, one can write that:

’ ’ Y1 — QDI

02 ((@1,$2),<g01,$2)> :k< / 1>€($2_$,2)’
1
2 /
o1 > ( 20} —1) ,
=exp | — <— g{¢1,0 l(zo — ),
( Ly, > éal E?Ol

where £ is a deterministic function defined by:

_ $/ . 2
l(xo — o) = 03 Hexp ( <%) ) , (4.6.4)

with ¢;,1 < i < ds the correlation lengths associated with xs.

So, the terms (1) and (2) of the equation (£.6.2) can be written:

= L olera0.0) miz) (B) .

(i) 2 (i)
& i @ 201" —1
()= 3 (ve)it (@~ af)) exp —( ) g<¢1, o 7)

1 1
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(4)

Given that m; and ¢ are deterministic functions, 3,, v, 5’ and x3 are deterministic vectors,

(4)

and the ;' are deterministic real numbers, one has:

= piE [g (gpl,ai, 0,0)] m@($2) <IB2>Z >
i=1

(@)
2077 -1
g |10, —— .
( [ f)]

1
According to Lemma 3] and the fact that 1 — 2 (62 > (6$)* > 0, the means E[(1)] and

na , (i)
)] =Y (ve) £ (@2 — a8 )exp | - (fl ) E

i=1 ¥1

E[(2)] can be calculated analytically, and consequently, the mean E [u§ (¢4, x,)] can be cal-
culated analytically, and its expression is:

Bl (o @)l = 3 Elo(01.0:.0.0)] mi(e) (By),

(@) ()
22 N0 [~ 2017 —1
+Z:21 (vc)ig ($2 $2 > €Xp <£ ) E [g (@1,05 Eil ) Eil )

1

(4.6.5)

where v, is defined by Eq. [@63)), £ (x2 — ) is defined by Eq. ([@6.4), {,, is the correlation
length associated with 1 and BQ is given by Eq. (£.2.9).

Second moment

From Eq. (211)), @213 and (£6.3), one has:
c T35 —>obs
13 (@1, ®2) = ha (p1,%2)" By + C2 <(801,962) , X ) Ve,

and:

obs

(05 (p1,22))% = Ca (101, 3) , (91, ®5)) — Ca ((901,962) 0bs> (R3™) "' <X2 (%Dlaxz)) +

o or.)” = G (01,2 5) (1) o (x) [ () ey (3]
(s (prom) — R (X57) (B5™) " C2 (X5 (e1.20)) |
where RSY = (ngs ngs).

Hence, it can be written that:

(15 (1, ®5))" + (05 (01, 25)) = 03 + ha (@1, 22)" Apha (o1, )
(1)
+Cs ((p1,22) , B3™) A Ca (23, (1, @,))
)
+C ((p1,®2) , B%) Aep b (91, T),
3)

(4.6.6)
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Ap = BQBQT + <h2 <X;bs> (Rng)’ ho (ngs)T>1,

obs -

e ) () () o (287 () (327)
hy (X57) (B5™)

A = 2’Uc,/3\§ -2 (Rgbs) ho (ngs) [hz (th)bs> (Rgbs) Ry <X(2)bs>T} -1
(4.6.7)

According to the assumptions of Proposition 231l and to lemma E32] the terms (1), (2) and
(3) of the equation (AG.6) can be rewritten:

P2 P2

(1) = ZZ (Ap) zg (h2 (p1,23)); (h2 (@175'32))
szl ]pzl
= Z Z (Ah)ij my ($2) my (562) g (Qpla Qg 0’ 0) g (301, aj, 0, 0)
z;l jngl
= Z Z (Ah)ij mg ($2) myj (562) g (Qpla a; + aj, 0, 0) )
i=1 j=1
n2 N2 . .
(2) = ZZ (Ac)ij Cso ((801,3’32), (@5”@5”)) Cy ((Spbxz) <¢§J),w§”)>
i=1 j=1
() ()
o p17) T
= ZZ( <x2—wg>€< >exp —<1)€2<1)
i=1 j=1 P1
(J 1
xg (@1, )9 <801, ,@ ZQ )
() ()
o p17) Ty
= ZZ(AC)ij€<sc2—ar:;))E(;cz—a:(]))exp AT 7 < ! )
i=1 j=1
(@) ©)
0,28 1A ’—2> ,
Xg (SDI %1 %1
nz p2
(3)= 3D (A, G (o1 2a), (6),28))) (B (1, 22),
i=1 1
2 0 A\ 20 1
= ZZ (Acp)i; ¢ (3’32 — )eXP - (f; ) mj (x2) g (@1,0, ﬁ, E)
i=1 j=1
Xg(ng,(lj,0,0)
ny p2 A () 2 @ _
= > D (Aa)yt (JJZ - mg)) exp ( (51 ) ) mj (z2) g (@17% 2;1 gzl> :
i=1 j=1 w1 L
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Given that m; and ¢ are deterministic functions, x5 and :cgl) are deterministic vectors, Ay,

A, and A, deterministic matrices, and cpgl) and £,, are deterministic real numbers, one can

write:
p2 P2

E[(1)] =Y (An);;mi (w2) my (22) E [g (¢1,ai + a;,0,0)],

i=1 j=1

ij

(i) ()
w1t =2
glw,,0,2————— — ||,
( Z, f)]

ny na () %
E[(2)] :ZZ (Ac),,g<m2_$;i)>£<w2_ng)> exp _<‘P1 ) + <‘P1 )

E

ny p2 i)\ 2 0]

i P 20,7 —1

B(3) =30 (Aan)y ¢ (w2~ af ) exp | - (&1) e [g (wl’aj’ , @)] |
i=1 j=1 1 !

Hence, according to the lemma [31] the mean E [(1)] can be computed analytically. In the

-1
same way, according to the lemma [£.3.1] and the fact that 1 — 4 (ﬁ) (6$)? > 0 and 1 —
1

-1

2 <@> (6€)? > 0, the means E [(2)] and E [(3)] can be calculated analytically. Consequently,
1

the mean E [(,ug (o1, 29)) + (05 (0y, 322))2] can be calculated analytically, and its expression

is:

B [(15 (01, 22))* + (05 (1, 22))%] = 03 + 30 (An)yy mi (wa) mj (w2) Elg (1,5 + a1,0,0)]
i=1 j=1

BN ) 4 (o)’
+Z2 22 (Ac); ¢ <$2 - xé“) ¢ <$2 - mgj)) exp | — (% ) + <(P1] )

2
i=1 j=1 E‘Pl
() (4)
T
g\ ¥, 07 2801 EZ L] ) EZ
o1 1
nz p2

A (i) 2 0, 1
S (o) mwmem (- () V2o (s 20 2]
1

i=1 j=1 #1 #1

xE

(4.6.8)
where Ay, A. and A, are defined in Eq. ([£6.7), v, is defined in Eq. [@E3)), ¢ (x2 — x}) is
defined by Eq. (#6.4), £, is the correlation length associated with ¢ and 3, is given by Eq.

E2.9).

From the two previous paragraphs and Proposition [£2.7] it can be inferred that, if verifying
the assumptions of Proposition 3], then the first and the second moments of Y (21, x2)
can be calculated analytically.
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4.6.5 Proof of Proposition [4.3.2

If Vi (1, x2) = Y5 (Y (1), T2) where Y© = puf + &5, € ~ GP (0,CY), i € {1,2}, then if £
is small enough, the process Y5 (€1, @2) can be linearized:

Yiest (1, ®2) = p5(pi(x1) + €1 (1), ®2) + e5(pi(x1) + €1(21), ®2),

aus

~ ps (i (1), ©2) + &pi (15 (1), 22)e] (21) + €5 (i (1), 22).
So, one can write:

Vitest (T1, T2) A Hiest (1, T2) + Epest (11 (21), T2), (4.6.9)
with

Pest (1, T2) = ps(pi(T1), 22), (4.6.10)

and 140

ECest = 8—2(#?(331),902)6?(901) + €5 (15 (@1), @2). (4.6.11)

C

e{ and €5 are independent centered Gaussian processes, S0 £§

. is a centered Gaussian process,

whose covariance function, Cf;, is given by:
Crest ((T1, T2), (wlla wIZ)) = C3((p1(1), z2), (:ui(mll)a wIZ))
s . oM ., (4.6.12)

A (w5 (1), 22)) 9or ((ui(a1), x5)) Cf (@1, 7).

From Eqs (4.6.9), (4.6.10), (4.6.11) and (4.6.12)), it can be inferred that the predictor of the
nested code can be defined as a Gaussian process with mean function uf. defined by Eq.

(£6.10), and covariance function Cf. defined by Eq. (£6.12).

Moreover, it follows from Eq. ([A2IT) that:

A <8h2 )T -
» L =\ a3 » L
dor (o1 2) 9o (o1 2) B

5o (o 27) (o (27327 e (7))

4.6.6 Proof of Corollary [4.3.3
Explicit mean

According to Eq. (@2.11), if h; and C; can be computed explicitly, then p§ can be computed
explicitly. Therefore, according to Eq. (A3.4]), the mean of the Gaussian linearized predictor
can be computed explicitly.

Explicit variance
According to Eq. ([#213)), if h; and C; can be computed explicitly, then Cf can be computed
explicitly.
oh
According to Eq. ([L6.13)), if he, Cy and the derivatives 8—2 (p1,22) and
Y1

00,
Op1

1 can be computed explicitly.

(((pl, x2) ,ngs> can be computed explicitly, then the derivative of u§ with respect to

85



4.6. PROOFS

Therefore, according to Eq. (£34), the variance of the Gaussian linearized predictor can be
computed explicitly.

Hence it follows that, if h; and C; and the derivatives % (¢1,x2) and
¥1

00,
1

Gaussian linearized predictor of the nested code can be computed explicitly.

(((pl,azg) ,ngs> can be computed explicitly, then the mean and the variance of the

aC: —
Moreover, the derivative 8—2 <(<P1,332) , X 3b5> can be computed explicitly if Co is in the
¥1

squared exponential or the Matérn 3 class, and the associated explicit formulas are given in

what follows.

5
Matérn 3 class

If one denotes by:

0= d <(801,$2), (90/1,3’3/2))

< _ ,)2 da ) (4.6.14)
_ Y1 ((w2); — (2);)
- 02 + Z 02 ’

¥1 i=1 ?
then, according to Eq. (£2.7), the Matérn kernel can be rewritten:

5
Ks (5) = (1 + V50 + 552> exp (-JE&) . (4.6.15)

Moreover, one has:

0 _o1—pl (4.6.16)

8301 B fal 5’

and

3 (6) = exp(—v58) [-VH <1 + V56 + 252> V- 1_??5}
exp (=VA0) | =5 - ‘/5252 + 1_305} (4.6.17)

— _25 (1 + \/56) exp (—\/55) )

5
By noting that in the case of a Matérn 3 kernel:

ac, OKs ps

6@01 B 8(5 agpl,

the derivative of Cy with respect to ¢y is:
802 / / 5 Y1 — SDI ’ /
((er@). (dhoar)) = 35 1+ VB d((e12). (v1:0)))
1

D1
exp [—\/5 d ((9017332) ) (<P,1733/2>>] .
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Squared exponential class

According to Eq. (£2.3]), the squared exponential kernel can be rewritten:

KGauss (0) = exp (—52) .
Hence, we have:

0K, Gauss
19l

By noting that, in the case of a squared exponential kernel:

302 8KGauss a6
dp1 95 D¢y’

(6) = —25 exp (—67) .

the derivative of Cs with respect to ¢y is:

00,
Op1
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<(<P175'32) ) (@1753,2» = —2% exp [—d ((9017332) ) <<P,1733
1

(4.6.19)
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Conclusions

This work was motivated by an application case. This application case is the coupling of two
computationally expensive codes. The first code is a detonation code and the second code is
a structural dynamics code. The two codes have functional (i.e. high dimensional vectorial)
outputs. One of the inputs of the second code is the functional output of the first code. The
objective was to perform design and certification studies on this system.

The methods used for the design and the certification, like sensitivity analysis, risk analysis
or optimization, require a large number of evaluations of the output of the considered system.
Considering the high computational cost of the codes, it is in practice impossible to apply
these methods directly to the real codes. In this work, we were particularly interested in
performing a sensitivity analysis of the output of the nested code with respect to its inputs.
The objective of this work was therefore to construct a predictor of the output of the system
from a small set of observations, which is accurate on the most likely regions of the input
domain of the nested code.

Several difficulties were raised by the surrogate modeling of the considered system:

e There are two codes.
e The two codes are costly, and therefore there will be a few observations available.

e The second code has functional input and output.

This thesis made contributions to help achieve the initially set objective.

The framework of Gaussian process regression, more precisely Universal Kriging in a Bayesian
framework, was used.

In a first step, the case of two nested codes with scalar outputs and no intermediary obser-
vations was considered. An original parametrization of the mean function of the Gaussian
process modeling the nested code was proposed. This parametrization consists of the coupling
of two polynomials. It yields a better prediction accuracy than a classical Universal Kriging
predictor with a polynomial mean function.

In a second step, the case of two nested codes with scalar outputs and observations of the
intermediary variable was considered. A stochastic predictor of the nested code output based
on the coupling of Gaussian predictors of the two codes was proposed. The predictor can
be constructed from all the types of observations available: those of the nested code, those
of the first code and those of the second code. The predictor is non-Gaussian and its mean
and variance have to be evaluated with Monte Carlo methods. Furthermore, we proposed
two sequential design criteria which aim at improving the accuracy of the predictor on the
whole input domain. One of the criteria can take account of the difference between the
computational costs of the two codes.

The two sequential design criteria requiring a large number of evaluations of the prediction
variance, two adaptations of the predictor were proposed for accelerating the computation of
the prediction variance. The first adaptation can lead to closed forms of the mean and the
variance of the predictor, if the output is assumed to be infinitely differentiable. The second
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one was obtained by proposing a linearization of the coupling of the predictors of the two
codes. The predictor of the nested code is then Gaussian with mean and variance functions
in closed forms.

In a third and final step, the case of two nested codes with functional outputs and observations
of the intermediary variable was considered. An original dimension reduction of the functional
input of the second code was proposed. It is based on the approximation of the output of the
second code by a linear causal filter and on the projection of the functional input on a basis
which is adapted to the linear approximation.

Thanks to this dimension reduction an efficient predictor of the second code is obtained.
Then, similarly to the case of scalar outputs, we proposed a Gaussian predictor of the nested
code based on the linearization of the coupling the Gaussian predictors associated with the
two codes. Finally, the previously defined sequential design criteria were adapted to the case
of codes with functional outputs.

In this thesis, we focused on the surrogate modeling of two nested codes. The study of the
surrogate modeling for the coupling of more than two codes or of more complex networks
of computer codes is a promising topic. In a non-ringed network, several other relationships
between the codes can be found. There can be chains of more than two codes. The output
of two different codes can be the inputs of a third code. Besides the case of ringed network
could also be studied. Finally, the case of two nested codes with a functional output for the
first code and a scalar output for the second code could be studied.

From a practical point of view, the use of parallel computing for the computation of the
sequential design criteria with Monte Carlo methods could be useful, especially when the
dimension of the input domain is high and the number of Monte Carlo draws too. This could
be applied to the case of a one-by-one sequential enrichment of the design. For the case of a
batch enrichment, with the addition of £ > 1 new observations at each step, the number of
possible combinations can be very high, which can lead to a high computational burden. The
number of possible combinations increases significantly when the number of candidates and &
increase. Moreover, the number of candidates is generally higher when the dimension of the
inputs is high.

Besides, if we note that the inversion of the covariance matrix of the observations can be
expensive when the number of observations is high, it could be interesting to study the possible
combination between the proposed linearized predictor and the nested Kriging approach of
Rullicre ef. al! [2018] in order to extend the results obtained to the case of a high number of
observations.

The study of optimization strategies for nested codes could also be of great interest. Note
that the Expected Improvement criterion presented in Section is adapted to the case of
a computer code with a scalar output (the quantity to optimize) and its adaptation to the
case of a functional output is not direct. If the scalar criterion to be optimized is obtained
by a linear transformation of the output, then, thanks to the Gaussianity of the proposed
predictor, an enrichment based on the Expected Improvement could be performed.
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