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École Doctorale 184 – Mathématiques et Informatique
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pour leur accompagnement pendant ces trois ans. Mais je voudrais les remercier davantage, ainsi que
Thierry Gallouet, pour leur soutien et leur confiance pendant les années encore plus difficiles qui ont
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Résumé

Dans cette thèse on développe et analyse des schémas numériques de projection pour les écoulements
réactifs. La discrétisation en espace est effectuée sur des maillages décalés, et elle utilise soit le schéma
Marker-And-Cell (MAC) pour des maillages rectangulaires soit une approximation non-conforme des
éléments finis pour des maillages génériques quadrangulaires, hexaédrales ou simpliciaux.

La première partie de la thèse aborde la partie purement hydrodynamique du problème et propose
un schéma numérique pour les équations de Navier-Stokes compressible. Pour le bilan de l’énergie,
l’équation de conservation de l’énergie interne est discrétisée, ce qui garantit que celle-ci reste positive;
cette relation contient un terme de correction numérique, qui permet au schéma de calculer la bonne
vitesse des chocs dans la limite d’Euler. On montre que le schéma possède au moins une solution, et
que dans tous les cas les propriétés de stabilité du problème continu sont préservées, indépendamment
du pas d’espace et de temps. De plus, le schéma dégénère vers le schéma de projection usuel dans la
limite des faibles nombres de Mach. Des test numériques confirment son bon comportement dans la
limite non-visqueux incompressible ainsi que dans la limite d’Euler.

On s’intéresse ensuite au calcul des écoulements compressible réactifs pour des fluides partiellement
prémélangés. La discrétisation est basée sur un modèle qui utilise une localisation explicite du front
de flamme à travers une équation différentielle du type level-set, souvent appelée dans ce contexte
équation G, couplée avec un système de lois de conservation (espèces chimiques, quantité de mou-
vement, énergie). On démontre que l’algorithme présenté possède au moins une solution et préserve
les bornes physiques des inconnues; de plus on montre que toute suite de solutions approchées du
système de lois de conservation converge (à une sous-suite près) vers une solution faible du problème
continu. Dans le cas non-visqueux et pour des termes de réaction de plus en plus raides, le modèle
doit dégénérer vers un modèle pour lequel la solution du problème de Riemann est établie. Les tests
numériques effectués confirment que c’est bien le cas. Plusieurs discrétisation de l’opérateur convectif
sont proposées afin de diminuer la diffusion numérique et améliorer la précision du schéma.

La dernière partie de cette thèse est consacrée à l’approximation de solutions d’un système de lois
de conservation qui, modélise l’écoulement réactif généré par la combustion de poussières, à faible
nombre de Mach et en une dimension d’espace. Ce modèle comporte des termes de diffusion massique
assez génériques, dont les coefficients de diffusion dépendent de la composition locale du mélange, et qui
sont différents pour chaque espèce chimique. L’algorithme préserve par construction les propriétés de
stabilité du problème continu, notamment la positivité des fractions massiques des espèces chimiques,
le fait que leur somme est égale à l’unité et la non-décroissance de la température étant donné une
réaction chimique exothermique.



Abstract

In this thesis we develop and analyze fractional step numerical schemes for reactive flows. The
space discretization is staggered, using either the Marker-And Cell (MAC) scheme for structured grids,
or a nonconforming low-order finite element approximation for general quadrangular, hexahedral or
simplicial meshes.

The first part of the thesis deals with the purely hydrodynamical part of the problem and proposes
a numerical scheme for the compressible Navier-Stokes equations. For the energy balance equation, the
scheme uses a discrete form of the conservation of the internal energy, which ensures that this latter
variable remains positive; this relation includes a numerical corrective term, to allow the scheme to
compute correct shock solutions in the Euler limit. The scheme is shown to have at least one solution,
and to preserve the stability properties of the continuous problem irrespectively of the space and time
steps. In addition, it naturally boils down to a usual projection scheme in the limit of vanishing Mach
numbers. Numerical tests confirm its potentialities, both in the viscous incompressible and Euler
limits.

Then we turn to the computation of partially premixed compressible reactive flows. The discretiza-
tion is based on a model that uses an explicit localization of the flame brush location by a level-set-like
partial differential equation often referred to as the G-equation, coupled with the system of balance
laws (chemical species, momentum, energy). The algorithm presented here is shown to possess at
least one solution that preserves the physical bounds of the unknowns; furthermore, any sequence of
approximate solutions to the discretized system of balance laws is shown to tend (up to a subsequence)
to a weak solution of the continuous problem. In the inviscid case, the model should boil down, as
the stiffness of reaction term increases, to a model for which a closed form of the solution of Riemann
problems is available. Numerical tests are performed to show that this is indeed the case. Various
discretizations of the convection operators are proposed in order to diminish the numerical diffusion
which, especially in this case, affects the convergence speed of the scheme.

The last part or the thesis is devoted to the approximation of solutions to a system of balance
equations which models the low Mach number one- dimensional reactive flow generated by the com-
bustion of a dust suspension. This model features rather general diffusion terms, with, in particular,
mass diffusion coefficients that depend on the local composition and differ from one chemical species to
another. The algorithm preserves by construction the stability properties of the continuous problem,
namely the positivity of the chemical species mass fractions, the fact that they sum up to one, and
the non-decrease of the temperature, provided that the chemical reaction is exothermic.
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Chapter 0

Overview

The release of reactive gases, generally hydrogen, may occur during various accident scenarios in
process industries as, more specifically, in nuclear facilities. For instance, high pressure hydrogen is
used for cooling some devices of the tertiary circuit of Pressurized Water Reactors (PWRs), and con-
sequences of a leak has to be assessed in safety studies. Severe accidents leading to the heating of the
core of the reactor (possibly up to fusion) also generate large hydrogen releases (and, to some extent,
of carbon monoxide) by oxydation of the structures of the primary circuit; as shown in the Fukushima
accident, the risk of an explosion is present. Besides, several processes in the nuclear industry in-
volve the manipulation or generation of fine dusts (about ten microns of characteristic diameter), the
explosion of which may not be excluded: this is the case for graphite/gas reactors decommissioning
activities, or during plasma reaction in the ITER torus (were explosion may occur in case of leakage
of the torus wall, maintained to very low pressure in operating conditions, leading to a violent air
ingress in the torus, dust resuspension and generation of a high temperature air/hydrogen/dust mix-
ture). Consequently, it is crucial for the safety assessment of the facilities to be able to simulate the
consequences of an explosion, essentially to check the capability of structures to prevent the release
of radioactive materials in the surrounding environment. To this purpose, the Institut de Radio-
protection et de Sûreté Nucléaire (IRSN) is developping an in-house computational tool for reactive
gases/dusts dispersion, deflagration and blast wave propagation, named P2REMICS. Works presented
here are part of this project.

The P2REMICS software (together with other applications such as the more mature ISIS code,
devoted to fire simulations) relies on a C++ library of components for fluid flow simulation, named
CALIF3S, which may be seen as a generic CFD solver. Because of the wide range of applications,
CALIF3S incorporates numerical schemes for all flow regimes, from incompressible (or variable density
low Mach number) to compressible flows, involving shock phenomena. These schemes are designed in
a way to share as much as possible the same techniques, for obvious man-effort optimization purposes:
the space discretization is the same, and relies on a staggered arrangement of the unknowns; for pollu-
tant dispersion (low Mach number flow) and deflagration (compressible flow), the time discretization
technique is based on a pressure correction strategy. Moreover, in some applications, the whole range
of Mach numbers is encountered in the same simulation, so the scheme used for compressible flows is
required to keep its accuracy in the low Mach number limit.

The work presented in this thesis is a contribution to the construction and assessment of CALIF3S
algorithms:

– We first develop a novel pressure correction scheme for the solution of the compressible Navier-
Stokes equations, whose essential characteristics are the preservation of the stability properties of
the continuous problem (conservation of the integral of the total energy over the computational
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domain, positivity of the density and the internal energy), the accuracy in the Euler limit and
the fact that the scheme boils down to a standard projection algorithm when the Mach number
tends to zero.

– Then we propose a physical model for the simulation of deflagrations, which computes the limit of
the burnt zone by solving a transport equation for the characteristic function of this area (similar
to the balance relation called ”G-equation” in the combustion litterature), and we extend the
above-mentioned pressure correction scheme to this situation, inserting this building brick in
a fractional step time-marching algorithm. Here also, the physical range of the unknowns is
preserved by construction. The consistency of the scheme is not obvious, since we solve a
discrete balance equation for the internal energy (or, equivalently, the so-called sensible enthalpy)
and, due to the staggered space discretization, no conservative discrete total energy equation
can be recovered. This issue was already tackled in previous works, but turns to be even more
complicated here due to the considered time-splitting strategy, which leads to a decoupled specific
time-discretization of the chemical species mass balances; the consistency is nevertheless proven.
The accuracy of the scheme is then shown to dramatically depend on the space discretization
of the chemical species mass balance, by numerically testing first and (formally) second order
approximations of the convection operator.

– Finally, we turn to the modelling of dust explosions, focussing on two aspects: first, we develop
a scheme for the standard form of the reactive flow governing equations (i.e. with standard
reaction terms, without any a priori prediction of the location of the burnt zone), check on one-
dimensional computations that the solution indeed takes the form of the progression of a flame
brush and assess the consistency of the results obtained with the above-mentionned G-equation-
like approach; second, for laminar flames, the diffusion of chemical species strongly differs from
one species to another (the dust is supposed not to diffuse at all), thus a careful design of the
diffusion operators and of the associated discretization is required.

This introductive chapter is intended to provide an overview of this work, which is developped
further in Chapters 1, 2, 3, each of them corresponding to one item of the previous list. Each of these
chapters is the object of a publication, either already published [30] or in preparation [23, 31]. The
structure of the present chapter is as follows: in Section 0.1 we present, in a generic way, the space
discretization used in the three following chapters. Each further Section (0.2, 0.3, 0.4) is devoted to
one of the following chapters of the thesis, outlining the mathematical model, the developed numerical
scheme and the main obtained results.

0.1 Meshes and unknowns

Let the computational domain Ω be an open polygonal subset of Rd, 1 ≤ d ≤ 3, with boundary ∂Ω
and let M be a decomposition of Ω, supposed to be regular in the usual sense of the finite element
literature (e.g. [10]). The cells may be:

– for a general domain Ω, either convex quadrilaterals (d = 2) or hexahedra (d = 3) or simplices,
both type of cells being possibly combined in a same mesh,

– for a domain the boundaries of which are hyperplanes normal to a coordinate axis, rectangles
(d = 2) or rectangular parallelepipeds (d = 3) (the faces of which, of course, are then also
necessarily normal to a coordinate axis).

By E and E(K) we denote the set of all faces σ of the mesh and of the element K ∈ M respectively.
The set of faces included in the boundary of Ω is denoted by Eext and the set of internal edges (i.e.
E \ Eext) is denoted by Eint; a face σ ∈ Eint separating the cells K and L is denoted by σ = K|L. The
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outward normal vector to a face σ of K is denoted by nK,σ. For K ∈ M and σ ∈ E , we denote by
|K| the measure of K and by |σ| the (d − 1)-measure of the face σ. For any K ∈ M and σ ∈ E(K),
we denote by dK,σ the Euclidean distance between the center xK of the mesh and the edge σ. For
any σ ∈ E , we define dσ = dK,σ + dL,σ, if σ ∈ Eint and dσ = dK,σ if σ ∈ Eext. The size of the mesh is

denoted by h. For 1 ≤ i ≤ d, we denote by E(i) ⊂ E and E(i)
ext ⊂ Eext the subset of the faces of E and

Eext respectively, which are perpendicular to the ith unit vector of the canonical basis of Rd.

The space discretization is staggered, using either the Marker-And Cell (MAC) scheme [39, 38], or
nonconforming low-order finite element approximations, namely the Rannacher and Turek (RT) ele-
ment [69] for quadrilateral or hexahedric meshes, or the lowest degree Crouzeix-Raviart (CR) element
[14] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the scalar variables (pressure, density
etc.) are associated to the cells of the mesh M and, for a scalar variable x, are denoted by:

{
xK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity (i.e. the discrete velocity unknowns).

– Rannacher-Turek or Crouzeix-Raviart discretizations: the degrees of freedom for the veloc-
ity components are located at the center of the faces of the mesh, and we choose the version of
the element where they represent the average of the velocity through a face. The set of degrees
of freedom reads:

{uσ, σ ∈ E}, of components {uσ,i, σ ∈ E , 1 ≤ i ≤ d}.

– MAC discretization: the degrees of freedom for the ith component of the velocity are defined
at the centre of the faces of E(i), so the whole set of discrete velocity unknowns reads:

{
uσ,i, σ ∈ E(i), 1 ≤ i ≤ d

}
.

For the definition of the schemes, we need a dual mesh which is defined as follows.

– Rannacher-Turek orCrouzeix-Raviart discretizations: for the RT or CR discretizations, the
dual mesh is the same for all the velocity components. When K ∈ M is a simplex, a rectangle
or a cuboid, for σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex the mass
center of K (see Figure 1). We thus obtain a partition of K in m sub-volumes, where m is the
number of faces of the mesh, each sub-volume having the same measure |DK,σ| = |K|/m. We
extend this definition to general quadrangles and hexahedra, by supposing that we have built
a partition still of equal-volume sub-cells, and with the same connectivities; note that this is
of course always possible, but that such a volume DK,σ may be no longer a cone; indeed, if
K is far from a parallelogram, it may not be possible to build a cone having σ as basis, the
opposite vertex lying in K and a volume equal to |K|/m. The volume DK,σ is referred to as the
half-diamond cell associated to K and σ.
For σ ∈ Eint, σ = K|L, we now define the diamond cell Dσ associated to σ by Dσ = DK,σ∪DL,σ;
for an external face σ ∈ Eext ∩ E(K), Dσ is just the same volume as DK,σ.

– MAC discretization: for the MAC scheme, the dual mesh depends on the component of the
velocity. For each component, the MAC dual mesh only differs from the RT or CR dual mesh
by the choice of the half-diamond cell, which, for K ∈ M and σ ∈ E(K), is now the rectangle
or rectangular parallelepiped of basis σ and of measure |DK,σ| = |K|/2.
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Figure 1: Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

We denote by |Dσ| the measure of the dual cell Dσ, and by ε = Dσ|Dσ′ the dual face separating
two diamond cells Dσ and Dσ′ .

In order to be able to write a unique expression of the discrete equations for both MAC and

CR/RT schemes, we introduce the set of faces E(i)
S associated with the degrees of freedom of each

component of the velocity (S stands for “scheme”). Note that the notations that follow are adopted
to homogeneous Neumann boundary condition and small modifications need to be made for other
boundary conditions.

E(i)
S =

∣∣∣∣∣
E(i) \ E(i)

ext for the MAC scheme,

E \ E(i)
ext for the CR or RT schemes.

Similarly, we unify the notation for the set of dual faces for both schemes by defining:

Ē(i)
S =

∣∣∣∣∣
Ē(i) \ Ē(i)

ext for the MAC scheme,

Ē \ Ē(i)
ext for the CR or RT schemes,

where the symbol ˜ refers to the dual mesh; for instance, Ē(i) is thus the set of faces of the dual mesh

associated with the ith component of the velocity, and Ē(i)
ext stands for the subset of these dual faces

included in the boundary. Note that, for the MAC scheme, the faces of Ē(i) are perpendicular to a
unit vector of the canonical basis of Rd, but not necessarily to the ith one.

The time interval [0, T ] is uniformly split into N ∈ N
∗ sub-intervals, with length δt and so that

T = δtN .

0.2 An unconditionally stable numerical scheme for the compress-

ible Navier-Stokes equations

It seems natural, before tackling the more complex problem of reactive flows, that one should first
have a robust numerical solver for non-reactive flows. Moreover, this solver may be used to calculate
the concentrations of the different gases before the ignition. This is the subject of Chapter 1; in this
section, a short description of this solver and of its properties.
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As already mentioned, the proposed algorithm is based on staggered finite-volume space discretiza-
tion; it is combined, to some extent, with finite-elements for some diffusion operators, whereas convec-
tion operators are clearly of finite-volume type. A fractional step strategy is implemented; it involves a
prediction step for a tentative velocity followed by an elliptic pressure correction step. These steps are
both implicit-in-time, to avoid any restriction of the time step other than the one imposed for accuracy
reasons. This kind of approach has its roots in the late sixties, when the first attempts to build ”all flow
velocity” schemes [37, 38] were realized, based on the famous MAC scheme, introduced some years ear-
lier [39]. These seminal papers have been the starting point for the development of numerous schemes
with similar strategies to decouple the momentum balance equation (in a prediction step) from the
mass and energy balance (correction step(s)); resulting algorithms may be iterative (prediction and
correction are repeated up to obtain a fixed point, which corresponds to the/a solution of the backward
Euler scheme for the coupled system – this is the spirit of the SIMPLE algorithm and its (numerous)
variants) or, as here, non-iterative (the prediction step is followed by the correction step, and the time-
step is over). The litterature on this topic is vast [7, 46, 47, 77, 48, 62, 4, 83, 13, 75, 80, 79, 76, 78, 53]
(this list is restricted to staggered discretizations and certainly non-exhaustive). The risk when us-
ing a non-iterative pressure correction algorithm is to lose stability; we prove here an unconditional
(i.e. independent of the time and space step) stability result and, to the best of our knowledge, this
constitutes the first rigorous stability proof for such algorithms in the framework of the compressible
Navier-Stokes equations.

One salient feature of the proposed scheme is that the energy balance balance rather than the total
energy balance; the scheme is thus a discretization of a non-conservative form of the equations. This
presents two advantages: first, for staggered discretizations, the total energy is a composite quantity,
in the sense that it mixes cell and face variables, and its definition is not straighforward; second, the
solved discrete internal energy balance ensures by construction the positivity of this variable, which
is essential for the scheme stability. The counterpart is that the scheme is not natively consistent
in the inviscid limit, i.e. for Euler equations: a correction term must be introduced in the discrete
energy balance to ensure a correct capture of shock solutions. Roughly speaking, this term is the
analogue of the dissipation term induced by viscosity in the Navier-Stokes case, but here associated to
the numerical dissipation introduced in the momentum balance. Its derivation requires to establish a
discrete kinetic energy balance equation from the discrete momentum balance; this is possible thanks
to a careful (and specific) design of the velocity convection operator. This issue is already discussed in
recent previous works [1, 20, 42], and we only develop here some qualitative aspects of this correction
term.

Another feature of the scheme is that the numerical viscosity necessary for stabilization in highly
convective cases is obtained by an upwinding of the convection operators with respect to the material
velocity only, in opposition to what occurs with schemes based on Riemann solvers, in the spirit of
AUSM or the so-called flux-splitting schemes [72, 58, 84, 57, 74]. Besides, Riemann solvers technology is
not easy to implement neither in time-implicit schemes nor for staggered discretizations, and getting rid
of the necessity to calculate exact or approximate Riemann problems solutions, facilitates the extension
to more general hyperbolic systems, as performed in the following sections. This point is essential
for the accuracy of the scheme for low Mach number flows, which is often lost because the numerical
diffusion scales as the celerity of the fastest waves and not as the material velocity only. One way to
tackle the low Mach number regime is to modify the solvers issued from the hyperbolic mainstream;
this is a rather intricate task, and has been the subject of several works (see [36, 35, 34, 16, 8, 9]). Here,
we take the opposite route, since we rather extend a solver natively designed for incompressible flows,
or for the asymptotic model of low Mach number flows [61]; consequently, we observe that, formally,
our algorithm boils down to the original incompressible scheme when the Mach number tends to zero
(see [43] for a rigorous proof in the barotropic case). As a counterpart, the solver’s accuracy and
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stability in the Euler limit must be carefully investigated, and our numerical experiments are, in
their majority, dedicated to this case; the numerical results, together with recently derived entropy
estimates [21], confort the accuracy and the reliability of the proposed scheme.

0.2.1 Governing equations

The mathematical model reads:

∂tρ+ div(ρu) = 0, (1a)

∂t(ρu) + div(ρu⊗ u) +∇p− div(τ (u)) = 0, (1b)

∂t(ρe) + div(ρeu)− div(q) + pdiv(u) = τ (u) : ∇u. (1c)

E =
1

2
|u|2 + e, (1d)

p = ℘(ρ, e), (1e)

where t stands for the time, ρ, u, p, E and e are the density, velocity, pressure, total energy and
internal energy in the flow, τ (u) stands for the shear stress tensor, q stands for the heat diffusion
flux, and the function ℘ is the equation of state (EOS), which satisfies by hypothesis ℘(·, 0) = 0 and
℘(0, ·) = 0 This allows to extend ℘ by continuity to R

2 (without change of notation):

p = ℘(ρ, e), with ℘(ρ, e) = 0 whenever ρ ≤ 0 or e ≤ 0. (2)

The problem is supposed to be posed over Ω × [0, T ], where Ω is an open bounded connected
subset of Rd, d ≤ 3 and [0, T ] is a finite time interval. This system must be supplemented by suitable
boundary conditions, initial conditions and closure relations for the diffusion terms.

The closure relations for τ (u) and q are given by:

τ (u) = µ(∇u+∇
tu)− 2µ

3
divuI, q = −λ∇e, (3)

where λ and µ are two non-negative parameters. Consequently, the shear stress tensor satisfies:

τ (u) : ∇u ≥ 0, (4)

for any velocity field.

For the sake of simplicity, we assume that the velocity is prescribed to zero on the whole boundary
∂Ω, and that the system is adiabatic:

u = 0, q · n = 0 on ∂Ω. (5)

0.2.2 The algorithm

The fractional step algorithm considered here consists in the two following steps:

Pressure gradient scaling step:

∀σ ∈ Eint, (∇p)n+1
σ =

( ρnDσ

ρn−1
Dσ

)1/2
(∇pn)σ . (6a)
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Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt

(
ρnDσ

ũn+1
σ,i − ρn−1

Dσ
unσ,i

)
+ div(ρnũn+1

i un)σ − divτ (ũn+1)σ,i + (∇p)n+1
σ,i = 0. (6b)

Correction step – Solve for pn+1, en+1, ρn+1 and un+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) + (∇pn+1)σ,i − (∇p)n+1
σ,i = 0, (6c)

∀K ∈ M,
1

δt
(ρn+1

K − ρnK) + div(ρn+1un+1)K = 0 (6d)

∀K ∈ M,

1

δt
(ρn+1

K en+1
K − ρnKe

n
K) + div(ρn+1en+1un+1)K + pn+1

K (div(un+1))K

−λ (∆en+1)K =
(
τ (ũn+1) : ∇ũn+1

)
K
+ Sn+1

K ,
(6e)

∀K ∈ M, ρn+1
K = ̺

(
en+1
K , pn+1

K

)
. (6f)

Let us now give a little more details on the discrete terms appearing in the scheme (6). We begin
with the discrete mass balance equation (6d) and the convection term, which reads:

div(ρu)K =
1

|K|
∑

σ∈E(K)

FK,σ.

The quantity FK,σ stands for the mass flux across σ outward K. By the impermeability boundary
condition, it vanishes on external faces and is given on internal faces by:

∀σ ∈ Eint, σ = K|L, FK,σ = |σ| ρσ uK,σ, (7)

where uK,σ is an approximation of the normal velocity to the face σ outward K. This latter quantity
is defined by:

uK,σ =

∣∣∣∣∣
uσ,i nK,σ · e(i) for σ ∈ E(i) in the MAC case,

uσ · nK,σ in the CR and RT cases,
(8)

where e(i) denotes the i-th vector of the orthonormal basis of Rd. The density at the face σ = K|L is
approximated by the upwind technique, i.e. ρσ = ρK if uK,σ ≥ 0 and ρσ = ρL otherwise.

We now turn to the discrete momentum balance (6b), where the convection terms are approximated
by a finite volume technique over the dual cells:

div(ρũiu)σ = div
(
ũi(ρu)

)
σ
=

1

|Dσ|
∑

ε∈Ē(Dσ)

Fσ,εũε,i,

where Fσ,ε stands for a mass flux through the dual face ε, and ũε,i is a centered approximation of
the ith component of the velocity ũ on ε. The density ρDσ

ot the dual cell is obtained by a weighted
average of the density in the neighbor cells:

for σ ∈ Eint, σ = K|L, |Dσ| ρDσ
= |DK,σ| ρK + |DL,σ| ρL,

for an external face of a cell K, ρDσ
= ρK .

(9)
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The mass fluxes (Fσ,ε)ε∈E(Dσ) are evaluated as linear combinations, with constant coefficients, of the
primal mass fluxes at the neighboring faces, in such a way that the following discrete mass balance
over the dual cells is implied by the discrete mass balance (6d):

∀σ ∈ E , for 0 ≤ n < N,
|Dσ |
δt

(ρn+1
Dσ

− ρnDσ
) +

∑

ε∈E(Dσ)

Fn+1
σ,ε = 0. (10)

In the rescaling step for the pressure gradient (6a) and in the correction equation (6c), the term
(∇p)σ,i stands for the i

th component of the discrete pressure gradient at the face σ, which is built as
the transpose operator to the natural divergence:

for σ = K|L ∈ Eint, (∇p)σ,i =
|σ|
|Dσ |

(pL − pK) nK,σ · e(i). (11)

This pressure gradient is only defined at the internal faces since, thanks to the impermeability bound-
ary conditions, no momentum balance equation is written at the external faces. The quantity (∇p)σ,i
in (6a) is not, in the general case, discrete gradient.

In (6e), to guarantee the positivity of the internal energy, we define the convection operator by:

div(ρeu)K = div
(
e (ρu)

)
K

=
1

|K|
∑

σ∈E(K)

FK,σeσ, (12)

with, for σ = K|L ∈ Eint, eσ = eK if FK,σ ≥ 0 and eσ = eL otherwise. The divergence of the velocity,
(divu)K , is discretized as follows:

for K ∈ M, (divu)K =
1

|K|
∑

σ∈E(K)

|σ| uK,σ, (13)

and, as announced, this definition implies that the discrete gradient and divergence operators are dual
with respect to the L2 inner product:

∑

K∈M

|K| pK (divu)K +

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| uσ,i (∇p)σ,i = 0. (14)

The term SK is necessary to obtain a consistent scheme in the Euler case [40] and is defined in the
next section.

The viscous diffusion term divτ (ũ)σ,i of the momentum balance equation (6b) and the viscous
dissipation term (τ (ũ) : ∇ũ)K of the internal energy balance equation (6e) are detailed in Chapter 1.
They are defined so as to satisfy the following two constraints:

(i) non-negativity of the dissipation:

∀K ∈ M, (τ (ũ) : ∇ũ)K ≥ 0; (15)

(ii) consistency of the diffusion and the dissipation, in the following sense:

−
d∑

i=1

∑

σ∈E
(i)
S

|Dσ | divτ (ũ)σ,i uσ,i =
∑

K∈M

|K| (τ (ũ) : ∇ũ)K , (16)

i.e. the discrete analogue of the identity

∫

Ω
divτ (u) · u = −

∫

Ω
τ (u) : ∇u.
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For meshes satisfying the usual orthogonality condition, the heat diffusion term is approximated
thanks to the usual two-point approximation of the fluxes [19]:

∀K ∈ M, −λ (∆e)K = λ
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL). (17)

With this definition, the discrete Laplace operator is monotone, in the following sense:

∀ (eK)K∈M ⊂ R,
∑

K∈M

−λ(∆e)K (−e−K) ≥ 0, (18)

where e+K = max(eK , 0) and e−K = −min(eK , 0). This property is necessary to ensure that the
positivity of the internal energy is preserved by the sceme.

0.2.3 Properties of the scheme

We summarize here the main properties of the scheme. The first one concerns a discrete kinetic energy
balance satisfied by any solution of the scheme, which is necessary so that the solutions of the scheme
satisfy a discrete analogue of the overall balance (i.e. integrated over the computational domain) of
the total energy balance equation.

Lemma 0.2.1 (Discrete kinetic energy balance, [40]).

A solution to the scheme (6) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E(i)
S and 0 ≤ n ≤ N −1:

1

2

|Dσ|
δt

[
ρnDσ

(un+1
σ,i )2 − ρn−1

Dσ
(unσ,i)

2
]
+

1

2

∑

ε∈Ē(Dσ)

Fn
σ,ε ũ

n+1
σ,i ũn+1

σ′,i

+ |Dσ| (∇pn+1)σ,i u
n+1
σ,i − |Dσ|divτ (ũn+1)σ,i ũ

n+1
σ,i + Pn+1

σ,i − Pn
σ,i = −Rn+1

σ,i , (19)

where

Pn+1
σ,i =

δt |σ|2
2|Dσ |

1

ρnDσ

(pn+1
L − pn+1

K )2, Rn+1
σ,i =

1

2

|Dσ|
δt

ρn−1
Dσ

(
ũn+1
σ,i − unσ,i

)2
. (20)

The residual terms Rn+1
σ,i may be seen as a numerical dissipation generated by the upwinding

in time of the scheme (i.e. the use of a backward time discretization). For viscous flows, it may be
anticipated that these terms tend to zero when the space and time steps tend to zero. On the opposite,
it is not the case when dealing with Euler equations, where they may subsist as measures borne by
the shocks. Since, in this context, the scheme needs to be consistent with the total energy balance,
this dissipation has to be compensated in the internal energy balance; this is done by the corrective
terms SK in (6e), which we are now in position to define:

∀K ∈ M, Sn+1
K =

d∑

i=1

Sn+1
K,i , with Sn+1

K,i =
1

2
ρn−1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|
δt

(
ũn+1
σ,i − unσ,i

)2
. (21)

Thanks to the definition (9) of the density on the duals cells, this relation results from a distribution
of the residual terms associated to a face to its (one or two) adjacent cells. Therefore, we get:

∑

K∈M

Sn+1
K =

d∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i . (22)
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A theoretical justification of this process is provided in [40], where it is shown in the 1D case that, if the
scheme is stable and converges to a limit, this limit indeed satisfies the weak form of the total energy
balance. On the contrary, without corrective terms, the scheme is observed in numerical experiments
to yield wrong shock solutions, which do not satisfy the Rankine-Hugoniot conditions.

As announced earlier, the discretization used, guarantees the positivity of the internal energy, a
result which is stated below.

Lemma 0.2.2 (Positivity of the internal energy).
Let us suppose that the discrete heat diffusion operator satisfies the monotonicity property (18), and
that the equation of state satisfies (2). Let n be such that 0 ≤ n ≤ N − 1, and let us suppose that
en > 0 (i.e. enK > 0,∀K ∈ M). Then a solution to the scheme (6) satisfies en+1 > 0.

The aformentioned discrete total energy equation is obtained by summation of the integrals over the
mesh of the discrete internal energy (6e) and the discrete kinetic energy (19) equations and summing
them up. Then, thanks to the relation (21) that holds between the remainder terms, the integral of
the total energy over the mesh is shown to be conserved.

Theorem 0.2.1 (Unconditional stability of the scheme)
Let us suppose that the discrete heat diffusion operator satisfies the monotonicity property (18), that
the equation of state satisfies (2), and that the initial conditions for ρ and e are positive. Then, for
0 ≤ n ≤ N − 1, a solution to the scheme (6) satisfies ρn+1 > 0, en+1 > 0 and the following estimate:

∑

K∈M

|K| ρn+1
K en+1

K +
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρnDσ
(un+1

σ,i )2 +
δt2

2
‖pn+1‖2ρn,M

≤
∑

K∈M

|K| ρnKenK +
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ | ρn−1
Dσ

(unσ,i)
2 +

δt2

2
‖pn‖2ρn−1,M (23)

where, for any discrete pressure q and density ρ,

‖q‖2ρ,M =
∑

σ=K|L∈Eint

1

ρDσ

|σ|2
|Dσ|

(qL − qK)2.

Given the above estimates, the scheme (6) admits at least one solution.

0.2.4 Numerical results

We present here two numerical tests that confirm the potentialities of the scheme:

– In the Euler limit, any sequence of solutions of the scheme converges to a weak solution of the
problem (which satisfies the Rankine-Hugoniot conditions), thus the scheme calculates shocks
that travel a the correct speed.

– At low Mach numbers, the scheme boils down to a stable scheme for the Navier-Stokes equations.

0.2.4.1 Behavior in the Euler limit

We address a two-dimensional Riemann problem introduced in [71]. The computational domain is
Ω = (−0.5, 0.5)2 and the initial data consists in four constant states, in each of the four sub-squares of
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Figure 2: 2D Riemann problem – Isolines of the density in the domain.

Ω obtained by splitting it along the lines joining the mid-points of each segment of the boundary (i.e.
in Ω1,1 = (−0.5, 0)× (0, 0.5), Ω1,2 = (0, 0.5)2, Ω2,1 = (−0.5, 0)2 and Ω2,2 = (0, 0.5)× (−0.5, 0)). These
constant states are chosen in such a way that each associated one-dimensional Riemann problem (i.e.
each one-dimensional problem obtained by picking as left and right initial state the values of ρ, p in
two adjacent sub-squares, together with the velocity component normal to the line separating these
sub-squares) has for solution a single wave. The four constant states chosen here are:

Ω1,1 : ρ = 1, p = 1, u =

[
0.7276

0

]
Ω1,2 : ρ = 0.5313, p = 0.4, u =

[
0
0

]

Ω2,1 : ρ = 0.8, p = 1, u =

[
0
0

]
Ω2,2 : ρ = 1, p = 1, u =

[
0

0.7276

]

This configuration is referred to as the configuration 12 in [71]. Two shocks develop, the first one at
the interface of Ω1,1 and Ω1,2 and the second one at the interface of Ω2,2 and Ω1,2; they move toward
the right and the top of the domain, respectively. The other two interfaces (separating Ω2,1 from Ω1,2

and Ω2,2) do not move with time, and the tangential velocity is different on both sides of the interface;
such an interface is called in [71] a slip line, and corresponds to a (steady) contact discontinuity of the
system.

Results obtained with the MAC variant of the scheme, a 1000 × 1000 uniform grid, δt = 2.5 10−4

and an artificial viscosity fixed to µ = 510−5 are shown in Figure 2. They are in good agreement
with reference solutions (e.g. [71, 56, 51]). A more elaborate discussion of the results may be found
in Chapter 1

0.2.4.2 Behavior in low Mach number flows

We now turn to the Navier-Stokes equations, and investigate the accuracy of the scheme in the
quasi-incompressible limit. To this purpose, we consider a benchmark problem for (incompressible)
Navier-Stokes solvers from [70]. The problem is two-dimensionnal, and consists in a flow between two
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Figure 3: Low Mach flow past a cylinder – Geometry.

parallel plates past a cylindrical obstacle. The geometry of the problem is described in Figure 3. The
fluid enters the domain on the left boundary, with an imposed velocity profile:

u =
(
4umy

H − y

H
, 0

)t
,

where H = 0.41 is the height of the channel and um = 1.5; the velocity is prescribed to zero at the
other boundaries except for the right-hand side, where we use a Neuman boundary condition:

(τ (u)− p I) n = −pext n,

where pext stands for a given external pressure. The initial pressure and pext are set both to 105, and
the initial density is ρ = 1. With these values, the sound speed c = (γp/ρ)1/2 is c ≃ 370, so the
characteristic Mach number is close to 0.003. The viscosity is µ = 0.001, so the Reynolds number,
defined as Re = ρūD/µ, where D = 0.1 is the diameter of the cylinder and ū = 2ux(0, H/2)/3, is
equal to 100.

A “coarse version“ of the meshes used for the presented computation is sketched in Figure 4; real
meshes are considerably refined with respect to this one, by diminishing the discretization step along
the characteristic lines (the boundaries and the concentric circles around the cylinder). In all the
computations, we set the time step to δt = 5 · 10−4s.

Figure 4: A “coarse version“ of the mesh.

We observe in our computations the usual vortex-shedding phenomenon, well-known for incom-
pressible flows (the so-called Von-Karmann alley), and the pressure and density show very small
variations in space (the difference between the maximum and minimum value for the pressure and the
density in the domain is in the range of 2 and 3.10−5 respectively). To assess in a quantitative way the
accuracy of the results, several characteristic flow quantities have been computed (cf. Table 1 below),
which indicate that the present algorithm seems as accurate as the incompressible pressure-correction
solver based on the same space discretization studied in [5].

12



Mesh Space unks cd,max cl,max St

m2 64840 3.4937 0.9141 0.2850
m3 215545 3.2887 0.9891 0.2955

m4 381119 3.2614 1.0062 0.2972

m5 531301 3.2365 1.0148 0.2976

Reference range 3.22- 3.24 0.99 - 1.01 0.295 - 0.305

Table 1: Characteristic flow quantities.

0.3 A model and a numerical scheme for partially premixed com-

bustion

The second chapter deals with a model and a numerical scheme for partially premixed reactive flows.
Existing models use a level-set-like partial differential equation, called in this context the G-equationto
localize the flame brush location and separate the domain in a burnt and an unburnt subdomain; its
unknown, the ”color function”, is the function G. This equation is coupled with the system of balance
laws (chemical species, momentum, energy). The chemical mass fractions at any instant are calculated
as a function of their initial values and the value of the function G, supposing an infinately fast chemical
reaction; this model is called hereafter the asymptotic model. Unfortunately, it is impossible to take
into account the mass diffusion in this class of models. Thus, we propose a more general model, the
relaxed model, which includes balance equations for the chemical mass fractions. The information
from the G function is integrated in the reactive source terms, which are present in the chemical mass
fraction balance equations.

A numerical scheme is proposed for the solution of the model, whose solutions satisfy the stability
properties of the continuous problem, irrespectively of the space and time steps if only implicit variants
of the scalar convection operators are used or under a CFL condition the material velocity otherwise.
We show that, under stability assumptions, any sequence of approximate solutions of the discretized
system of balance laws converges (up to a subsequence) to a weak solution of the continuous problem.
Furthermore, we show numerically that, ignoring the mass diffusion, the numerical solution of the
proposed model converges to a solution of the asymptotic model [50] (developped in the next section),
when the flame thickness and time and space steps tend to zero.

0.3.1 Governing equations

For the sake of simplicity, only four chemical species are supposed to be present in the flow, namely
the fuel (denoted by F ), the oxydant (O), the product (P ) of the reaction, and a neutral gas (N). A
one-step irreversible total chemical reaction is considered, which is written:

νFF + νOO +N → νPP +N,

where νF , νO and νP are the molar stoichiometric coefficients of the reaction. We denote by I the set
I = {F,O,N,P} and the set of mass fractions of the chemical species in the flow reads {yi, i ∈ I}
(i.e. {yF , yO, yN , yP}).

The domain over which the problem is posed is a bounded domain Ω of Rd, d ∈ {1, 2, 3} and a
finite time interval [0, T ]. We suppose homogeneous Neumann boundary conditions for the velocity u:

u · n = 0 a.e. on ∂Ω, (24)
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where ∂Ω stands for boundary of Ω and n its outward normal vector.

The ”asymptotic” model – We define the auxiliary unknowns {ỹi, i ∈ I} as the result of the
(inert) transport by the flow of the initial state, which means that the {ỹi, i ∈ I} are the solutions to
the following system of equations:

∂t(ρỹi) + div(ρỹiu) = 0, ỹi(x, 0) = yi,0(x) for i ∈ I, (25)

where ρ stands for the fluid density and yi,0(x) is the initial mass fraction of the chemical species i
in the flow. The initial conditions are supposed to verify

∑
i∈I yi,0 = 1 everywhere in Ω, and this

property is assumed to be valid for any t ∈ [0, T ], which is equivalent with the mixture mass balance,
given below. The level-set function G is supposed to obey the following equation:

∂t(ρG) + div(ρGu) + ρuuf |∇G| = 0, (26)

associated to the initial conditions G = 0 at the location where the flame starts and G = 1 elsewhere.
The quantity ρu is a constant density, which, from a physical point of view, stands for a characteristic
value for the unburnt gases density. The chemical mass fractions are now computed as:

∣∣∣∣∣∣

if G > 0.5, yi = ỹi for i ∈ I,

if G ≤ 0.5, yF = νFWF z̃
+, yO = νOWOz̃

−, yN = ỹN , with z̃ =
1

νFWF
ỹF − 1

νOWO
ỹ0.

(27)

In these relations, z̃+ and z̃− stand for the positive and negative part of z̃, respectively, i.e. z̃+ =
max(z̃, 0) and z̃− = −min(z̃, 0), and, for i ∈ I, Wi is the molar mass of the chemical species i. The
physical meaning of Relation (27) is that the chemical reaction is supposed to be infinitely fast, and
thus that the flow composition is stuck to the chemical equilibrium composition in the so-called burnt
zone, which explains why the model is called ”asymptotic”. The product mass fraction is given by
yP = 1− (yF + yO + yN ). The flow is governed by the Euler equations:

∂tρ+ div(ρu) = 0, (28a)

∂t(ρui) + div(ρuiu) + ∂ip = 0, i = 1, d, (28b)

∂t(ρE) + div(ρEu) + div(pu) = 0, (28c)

p = (γ − 1) ρes, E =
1

2
|u|2 + es +

∑

i∈I

yi∆h
0
f,i, (28d)

where p stands for the pressure, E for the total energy, es for the so-called sensible energy and, for
i ∈ I, ∆h0f,i is the formation enthalpy of the chemical species i. The equation of state (28d) supposes
that the fluid is a perfect mixture of ideal gases, with the same iso-pressure to iso-volume specific heat
ratio γ > 1.

The ”relaxed” model – This model retains the original form of the reactive flows governing equa-
tions, with a transport/reaction equation for all the chemical species mass fractions, and the value of
G controls the reaction rates ω̇: ω̇ is set to zero when G ≥ 0.5, and takes non-zero (and possibly large)
values otherwise. The unknowns {yi, i ∈ I} are thus now solution to the following balance equations:

∂t(ρyi) + div(ρyiu) = ω̇i, yi(x, 0) = yi,0(x) for i ∈ I, (29)

where the reactive term ω̇i is given by:

ω̇i = ζi νiWi ω̇, ω̇ =
1

ε
η(yF , yO) (G− 0.5)−, η(yF , yO) = min(

yF
νFWF

,
yO

νOWO
), (30)
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with ζF = ζO = −1, ζF = 1 and ζN = 0. The parameter ε defines the stiffness of the chemical reaction
terms and is supposed to be proportional to the flame thickness. Note that, since νFWF + νOW0 =
νPWP , we have

∑
i∈I ω̇i = 0, which, summing on i ∈ I the species mass balance, allows to recover the

equivalence between the mass balance and the fact that
∑

i∈I yi = 1. The cut-off function η(yF , yO)
vanishes in the absence of fuel or oxydant and prevents the chemical species mass fractions to take
negative values (and, equivalently, values greater than 1, since their sum is 1).

0.3.2 The algorithm

For the resolution of the model equations, we define the variable z as follows:

z =
yF + s(1− yO)

1 + s
, s =

νFWF

νOWO

Note that, combining the fuel and the oxydant mass balance equations, the variable z satisfies a
homogeneous equation; for this reason, we replace the oxydant mass balance equation by the balance
equation for z (since, given the values of z and yF , we may deduce yO). The fractional step algorithm
for the relaxed model reads:

Reactive step:

∀K ∈ M :

Flame position indicator computation – Solve for Gn+1:

1

δt
(ρnKG

n+1
K − ρn−1

K Gn
K) + div(ρnGkun)K + (ρnuu

n
f |∇G|)K = 0. (31a)

Reduced variable computation – Solve for zn+1:

1

δt
(ρnKz

n+1
K − ρn−1

K znK) + div(ρnzkun)K = 0. (31b)

Neutral gas mass fraction computation – Solve for yn+1
N :

1

δt

[
ρnK(yN )n+1

K − ρn−1
K (yN )nK

]
+ div(ρnykNun)K = 0. (31c)

Fuel mass fraction computation – Solve for yn+1
F :

1

δt

[
ρnK(yF )

n+1
K − ρn−1

K (yF )
n
K

]
+ div(ρnyn+1

F un)K = (ω̇F )
n+1
K . (31d)

Oxydant mass fraction computation – (yO)
n+1
K = 1 +

1

s
(yF )

n+1
K − zn+1

K (1 + 1
s ). (31e)

Product mass fraction computation – (yP )
n+1
K = 1− (yF )

n+1
K − (yO)

n+1
K − (yN )n+1

K . (31f)
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Euler step:

Pressure gradient scaling step – Solve for (∇̃p)n+1:

∀σ ∈ E , (∇̃p)n+1
σ =

( ρnDσ

ρn−1
Dσ

)1/2
(∇p)nσ. (32a)

Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt
(ρnDσ

ũn+1
σ,i − ρn−1

Dσ
unσ,i) + div(ρnũn+1

i un)σ + (∇̃p)n+1
σ,i = 0. (32b)

Correction step – Solve for ρn+1, pn+1 and un+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) + (∇p)n+1
σ,i − (∇̃p)n+1

σ,i = 0, (32c)

∀K ∈ M,
1

δt
(ρn+1

K − ρnK) + div(ρu)n+1
K = 0, (32d)

∀K ∈ M,
1

δt

[
ρn+1
K (hs)

n+1
K − ρnK (hs)

n
K

]
+ div(ρhsu)

n+1
K

− 1

δt
(pn+1

K − pnK)−
(
u ·∇p

)n+1

K
= (ω̇θ)

n+1
K + Sn+1

K ,
(32e)

∀K ∈ M, pn+1
K =

γ − 1

γ
(hs)

n+1
K ρn+1

K . (32f)

Two equations from the continuous relaxed model have been replaced by the discretized form of
three equivalent – at least formally at the continuous level – equations. The first one is the total energy
equation (28c), that has been replaced by the sensible enthalpy, hs, balance equation (cf. Chapter 2):

∂t(ρhs) + div(ρhsu)− ∂tp− u ·∇p = ω̇θ,

where ω̇θ =
∑

i∈I ∆h
0
f,iω̇. The second one is the product mass balance equation, which is replaced by

the algebraic relation
∑

i∈I yi = 1 that holds both in the continuous and at the discrete level.

Many of the discrete operators have already been defined in Section 0.2, we will focus here on the
rest of the operators.

The discrete convection operator of any discrete field x defined on the primal cell is given by

div(ρxu)K = div
(
x(ρu)

)
K

=
1

|K|
∑

σ∈E(K)

FK,σxσ,

where xσ is an approximation of the unknown x on the edge σ. This approximation is either implicit
(k = n + 1 in relations (32a)–(31f)) with the classical upwind choice either an explicit (k = n)
reconstruction of xσ (cf. Chapter 2).

The sensible enthalpy equation is discretised in such a way that the present enthalpy formulation
is strictly equivalent to the internal energy formulation of the energy balance equation used in 0.2.
Consequently, the term −

(
u ·∇p

)
K

reads:

−
(
u ·∇p

)
K

=
1

|K|
∑

σ∈E(K)

|σ|uK,σ (pK − pσ),
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where pσ is the upwind approximation of p at the face σ with respect to uK,σ. The reaction heat,
(ω̇θ)K , is written in the following way:

(ω̇θ)K = −
d∑

i=1

∆h0f,i (ω̇i)K =
(
νF WF ∆h0f,F + νOWO ∆h0f,O − νP WP ∆h0f,P

)
ω̇K .

The reaction term is approximated as follows:

ω̇n+1
K = η

(
(yF )

n+1
K , (yO)

n+1
K

)
(0.5 −Gn+1

K )−.

At the continuous level, the last term of equation (31a) may be written:

ρu uf |∇G| = a ·∇G = div(Ga)−Gdiv(a), with a = ρu uf
∇G

|∇G| .

Using an upwind finite volume discretization of both divergence terms in this relation, we get:

|K| (ρnu unf |∇G|)K =
∑

σ∈E(K)

|σ| (G̃n+1
σ −Gn+1

K )an
σ · nK,σ,

where G̃n+1
σ stands for the upwind approximation of Gn+1 on σ with respect to an · nK,σ. As for the

chemical species mass balances, we also use an explicit variant, with a less diffusive discretization.
The flame velocity on σ, an

σ, is evaluated as

an
σ = (ρu uf )

n
σ

(∇G)nσ
|(∇G)nσ |

,

where (ρu uf )
n
σ stands for an approximation of the product ρu uf on the face σ at tn (this product is

often constant in applications), and the gradient of G on σ = K|L is computed as:

(∇G)σ =
1

|K ∪ L|
[ ∑

σ′∈E(K)

|σ′| Ĝσ′ nK,σ′ +
∑

σ′∈E(L)

|σ′| Ĝσ′ nL,σ′

]
,

with Ĝσ′ a second order approximation of G at the barycenter of the face σ′ (cf. Chapter 4, [73]).

0.3.3 Scheme properties

For any given family (xnK)K∈M ∈ R
M, where R

M is a shorthand for Rcard(M) and n ∈ N, n ≤ N , we
introduce the following notations:

x = max
K∈M

x0K , x = min
K∈M

x0K .

When no ambiguity arises, the notation xn will be used to refer to the family (xnK)K∈M. For example
xn > 1, means ∀K ∈ M, xnK > 1.

The first two results concern the positivity of the density and the sensible energy (given that the
chemical reaction is exothermic).

Lemma 0.3.1 (cf. [25]).
Let us suppose (32d) holds for any n ∈ N, n ≤ N − 1, with ρn > 0. Then the linear system (32d)
admits a unique solution that satisfies ρn+1 > 0.
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Lemma 0.3.2 (Positivity of the sensible energy, cf. [30]).
Let us suppose es > 0 and ω̇n

θ ≥ 0 for n ∈ N, n ≤ N − 1. Then a solution to (31)-(32) satisfies for any
n ∈ N, n ≤ N − 1 and K ∈ M, (es)

n
K > 0.

Formally, for the continuous problem, taking the inner product of the momentum balance equation
yields, after some partial derivatives combinations and using the mass balance, the so called kinetic
energy balance:

1

2
∂t(ρ|u|2) +

1

2
div(ρ|u|2u) = u ·

[
∂t(ρu) + div(ρu⊗ u)

]
= −u ·∇p.

Moreover, by replacing hs = es+p/ρ (where es is the sensible energy) in the sensible enthalpy equation,
we obtain a sensible energy equation:

∂t(ρe) + div(ρeu) + pdiv(u) = 0.

Finally, multiplying each of the mass fraction balance equations by the formation enthalpy of the
corresponding chemical species, gives rise to the reactive energy balance equation:

∂t

[
ρ
(∑

i∈I

∆h0f,iyi
)]

+ div
[
ρ
(∑

i∈I

∆h0f,iyi
)
u
]
=

∑

i∈I

∆h0f,iω̇i = −ω̇θ.

We show that a discrete equivalent for this computation, and thus for these relations, may be derived
for the proposed scheme. Moreover, summing these three energy balance equations and integrating in
space (i.e. summing over K ∈ M), we show that the integral of the discrete total energy balance of
the system, is conserved over time.

Lemma 0.3.3 (Total energy conservation, cf. [30]).
Let us suppose that e0s, ρ

0 and ρ−1 are positive. Then, a solution to (31)-(32) satisfies ρn+1 > 0,
en+1 > 0 and the following stability result:

En = E0,

where,

∀n ∈ N, n ≤ N − 1, En =
∑

K∈M

|K|(ρe)nK +
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ|(unσ,i)2 + δt2
∑

σ∈Eint

|Dσ |
ρn−1
Dσ

|(∇p)nσ|2,

(ρe)nK = ρnK(es)
n
K + ρnK

∑

i∈I

∆h0f,i(yi)
n
K .

The physical bounds of the unknowns, as imposed by the continuous model, are preserved; namely,
the chemical mass fractions that are given by linear equations (no reactive term) stay between their
initial maxima (and minima).

Lemma 0.3.4.
Let us suppose that (32d) holds for any n ∈ N, n ≤ N−1, with ρn > 0. Then, for any n ∈ N, n ≤ N−1
and K ∈ M, the linear systems (31b) and (31c) admit unique solutions satisfying zn+1 ∈ [z, z] and
(yN )n+1 ∈ [yN , yN ] respectively.

The chemical mass fractions that are given by non linear equations, are shown to stay positive,
and thanks the definition of the reactive rates (such that the right hand sides of the chemical fraction
balance equations vanish when summed up), guaranteeing that the some of the chemical species is
equal to one, each one of them is bounded above by one (sharper bounds may be derived, but we let
the reader refer to Chapter 2 for more details).
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Lemma 0.3.5.
Let us suppose that (32d) holds for any n ∈ N, n ≤ N − 1, with ρ > 0. Let

(
(yi)

0
K

)
i∈I,K∈M

∈ R
4M

be given and such that
∑

i∈I(yi)
0
K = 1 for any K ∈ M. Then, for any n ∈ N, n ≤ N − 1 and K ∈ M,∑

i∈I(yi)
n+1
K = 1 and the linear systems corresponding to the chemical mass fractions admit at least

one solution satisfying yn+1
F ∈ [0, yF ], y

n+1
O ∈ [0, yO] and y

n+1
P ∈ [yP , 1].

The last two results show the capacity of the scheme to deal with discontinuities. The first result
states its behaviour in contact discontinuities.

Lemma 0.3.6 (Contact discontinuities).
Let us suppose the initial velocity and the initial pressure constant, u0 = u and p0 = p and that the
chemical reaction terms vanish. Then, there exists a solution to the scheme (31)-(32), satisfying, for
any n ∈ N, n ≤ N , un = u and pn = p.

The fact that, by construction of the scheme, we may derive the discrete equivalent of the total
internal energy balance equation by simple algebraic manipulations, is crucial for the final result of
this section, which states that under some stability hypothesis, any sequence of discrete solutions
converges to a weak solution of the system of conservation laws, thus verifying the Rankine-Hugoniot
conditions and calculating shocks that travel with the correct velocities. Before stating the result, let
us introduce some notations.

Let SM(Ω × [0, T )) be the space of piecewise constant functions in K × [tn, tn+1), for any n ∈
N, n ≤ N and K ∈ M. For any function ψ ∈ C∞

c (Ω × [0, T )), its interpolate in SM(Ω × [0, T )) is
defined by

ψM(x, t) =
∑

n∈N

∑

K∈M

ψn
K χK×[tn,tn+1)(x, t),

where ψn
K = 1/|K|

∫
Kψ(x, t

n) and χP is the characteristic function of the set P . To any discrete

family, (fnK)n∈N, n≤N
K∈M , the following fuction of SM(Ω × [0, T )) is naturally associated:

fM(x, t) =
∑

n∈N

∑

K∈M

fnK χK×[tn,tn+1)(x, t).

From here on, a function or a discrete family indexed by M will refer to the corresponding function
of SM(Ω× [0, T )). For any gM, the discrete L1([0, T ); BV(Ω)) and L1(Ω;BV([0, T ))) norms read:

‖gM‖BVx =
∑

n∈N

δt
∑

σ=K|L

|σ||gnK − gnL|, ‖gM‖BVt =
∑

K∈M

|K|
∑

n∈N

|gn+1
K − gnK |.

The space of piecewise constant functions in Dσ × [tn, tn+1), for any n ∈ N, n ≤ N and σ ∈ E , is
denoted by SD(Ω× [0, T )). It is defined in the same way as SM(Ω× [0, T )), but the interpolates here
are defined by the mean value of the function over the primal edges, instead of the mean value over
the primal the dual cell. Thus, for any regular function ψ, its interpolate in SD(Ω× [0, T )) is defined
by

ψD =
∑

n∈N

∑

σ∈Eint

ψn
σ χDσ×[tn,tn+1)(x, t),

where ψn
σ = 1/|σ|

∫
σψ(x, t

n). To any discrete family (fnσ )
n∈N, n≤N
σ∈E , the following function of SD(Ω ×

[0, T )) is naturally associated:

fD =
∑

n∈N

∑

σ∈E

fnσ χDσ×[tn,tn+1)(x, t).
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From here on, a function or discrete family indexed by D, will refer to the corresponding function of
SD(Ω × [0, T )). For any gD ∈ SD(Ω × [0, T )), its discrete L1([0, T ); BV0(Ω)) and L1(Ω;BV([0, T )))
norms read, respectively:

‖gD‖BVx =
∑

n∈N

δt
∑

ǫ=Dσ |Dσ′

|ǫ||gnσ′ − gnσ |, ‖gD‖BVt =
∑

σ∈E

|Dσ|
∑

n∈N

|gn+1
σ − gnσ′ |.

Theorem 0.3.1 (Consistency)
Let Ω ⊂ R

d be an open bounded domain and suppose initial conditions satisfying:

(ρ0, p0, h0s,u
0) ∈ (L∞(Ω)× BV(Ω)× L∞(Ω)× L∞(Ω)d).

Let (M(m), δt(m))m∈N, n≤N be a sequence of discretizations in space and time, such that both the size of
the mesh, h(m), and the time step, δt(m), tend to zero when m→ ∞. Let (ρM, pM, (hs)M,uD, ũD)(m)

be the corresponding sequence of solutions. Suppose that this sequence verifies the following assertions:

(i) The sequence is uniformly bounded in L∞(Ω × [0, T ))5, i.e. there exists C ∈ R such that, for
m ∈ N, n ≤ N ,

max
{
ρnK , p

n
K , (hs)

n
K

}
≤ C, ∀K ∈ M(m) and max

{
|un

σ|, |ũn
σ|
}
≤ C, ∀σ ∈ E(m).

(ii) The sequence satisfies the following BV-stability assumption,

lim
m→∞

(h+δt)
[
‖ρM‖BVx+‖pM‖BVx+‖(hs)M‖BVx+‖uD‖BVx+‖uD‖BVt+‖ũD‖BVx+‖ũD‖BVt

]
= 0.

(iii) The sequence converges in Lp(Ω×[0, T ))3+d, for 1 ≤ p <∞, to (ρ̄, p̄, h̄s, ū, ¯̃u) ∈ Lp(Ω×[0, T ))3+2d.

Then, ¯̃u = ū and (ρ̄, p̄, h̄s, ū) satisfies the weak formulation of the system of balance laws (28).

0.3.4 Numerical results

As mentioned at the introduction of this section, at the continuous level, the boundedness of the
chemical mass fractions formally implies that, when ε → 0, the relaxed model converges to the
asymptotic one.

A closed form of the solution of the Riemann problem for the asymptotic model is available [2].
In order to perform numerical tests, a Riemann problem with initial conditions such that the analytic
solution has the profile presented in Figure 5 is chosen. The selected configuration imposes zero
amplitude for the contact discontinuity and the left non linear wave, thus the solution consists of
three different constant states: W∗

R,W
∗∗ and WR.

x

W

Precursor shock

Reactive shock

CD

NL wave
W⋆

R

W⋆⋆

W⋆

L

WR

WL

Figure 5: The analytic solution of the numerical test configuration.
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The numerical tests performed aim at checking the convergence of the scheme to such a solution,
which in fact results from two different properties: the convergence of the relaxed model to the
asymptotic one when ε tends to zero, and the convergence of the scheme towards a numerical solution
for vanishing time and space steps. To this purpose, we choose ε proportional to the space step and
make it tend to zero, with a constant CFL number.

In a first tentative, an upwind approximation for the chemistry unknowns on the faces of the
convection terms was used. The expected convergence is indeed observed, but the rate of convergence is
poor. This seems to be due to the numerical diffusion of the upwind scheme; first, the scheme artificially
introduces unburnt reactive masses (numerical diffusion in the chemical mass fraction equations) to the
burnt zone and second, it fails to create the sharp interface which separates the burnt and the unburnt
zone (numerical diffusion of the G-equation). As a result, the chemical reaction now artificially takes
place also in what should be the burnt zone, supposed to be in chemical equilibrium (and governed by
the corresponding equation of state). As expected in such a case, the results should be significantly
improved with the use of a less diffusive scheme for the chemical species balance equations. This
is why two different bound-preserving schemes (a MUSCL and an anti-diffusive (AD) scheme based
on [17]), where used for the discretization of the convection operators of the chemistry part of the
algorithm. The numerical results were significantly improved and our hypothesis seems to be verified:
the less diffusive the scheme is, the faster the algorithm converges.
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Figure 6: Comparison of the solutions obtained with the upwind, MUSCL and anti-diffusive scheme
– From top to bottom, fuel mass fraction, velocity, pressure and density at t =, as a function of the
space variable. Results obtained with a regular mesh composed of n = 500 cells.
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0.4 A model and a numerical scheme to compute laminar flames in

dust suspensions

In this last chapter we adress a model for the combustion of dust suspensions. The model is dedicated
to the simulation of laminar flames, for which a one-dimensional representation, supposing a low Mach
number flow, is sufficient. Particular care has to be paid to the formulation of the diffusion fluxes,
since they determine the structure of the flame; in particular, the mass diffusion coefficients depend on
the local composition of the mixture, and differ from one chemical species to another. Consequently,
(standard) simplifications performed to derive the model will yield chemical species balance equations
which preserve the positivity of the mass fractions and the fact that their sum is equal to 1, but do not
satisfy a maximum principle (i.e. non-physical local accumulation of a species can not be excluded).
On the opposite, the energy balance equation does satisfy a maximum principle so, provided that the
chemical reaction is exothermic, the minimal temperature cannot decrease. We develop a fractional
step finite volume scheme for the solution of a model that uses a rather general simplification for
the mass diffusion coefficients, we show that it has at least one solution and such that any possible
solution satisfies the above-mentionned physical bounds. Finally, make a comparison between the
results obtained with the scheme from this chapter and the scheme proposed for the relaxed model,
presented in Section 0.3.

0.4.1 Governing equations

As in the previous chapter, a one-step irreversible total chemical reaction is considered, which is
written:

νFF + νOO +N → νPP +N,

where νF , νO and νP are the molar stoichiometric coefficients of the reaction. We denote by I the set
I = {F,O,N,P} and the set of mass fractions of the chemical species in the flow reads {yi, i ∈ I}
(i.e. {yF , yO, yN , yP }). We also denote Ig (resp. Is) the set of the species that contsitute the gaseous
(resp. solid) phase of the mixture, i.e. {O,N,P} (resp. {F}).

The flow is supposed to be governed by the balance equations modelling a variable density flow
in the asymptotic limit of low Mach number flows [61], namely the mass balance of the chemical
species and of the mixture, the enthalpy balance, and the momentum balance equations. For a one-
dimensional flow, the velocity may be seen as the solution of the mass balance equation, and the
momentum balance yields the dynamic pressure. Since this latter unknown does not appear in the
other equations, its computation is of poor interest, and the momentum balance equation may be
disregarded.

Except of this aspect, the equations in this section are written in the usual multi-dimensional form.
The computational domain is denoted by Ω, and its boundary ∂Ω is supposed to be split in an inflow
part ∂ΩI (where the flow enters the domain, i.e. u · n∂Ω ≤ 0, with u the flow velocity and n∂Ω the
normal vector to ∂Ω outward Ω) and an outflow one ∂ΩO (where the flow leaves the domain, i.e.
u ·n∂Ω ≥ 0) of positive (d− 1)-measure, with ∂Ω = ∂ΩI ∪ ∂ΩO and ∂ΩI ∩ ∂ΩO = ∅. The problem is
supposed to be posed over the time interval [0, T ].
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The model reads:

∂tρ+ div(ρu) = 0, (33a)

∂t(ρyi) + div(ρyiu) + div(ji) = ω̇i, for i ∈ I, (33b)

∑

i∈I

cp,i

[
∂t(ρyiθ) + div(ρyiθu) + div(θji)

]
− div(λ∇θ) = ω̇θ, (33c)

ρ =
1

Rθ

Pth

∑

i∈Ig

yi
Wi

+
∑

i∈Is

yi
ρi

. (33d)

Apart from the quantities already defined in the previous section, θ is the temperature, λ the heat
diffusion coefficient, R the ideal gas constant, Pth the constant-in-time thermodynamic pressure, ji the
mass diffusion flux, cp,i the specific heat, Wi the molar weight and ρi the density of the i-th chemical
species.

Equation (33c) is equivalent to the sensible enthalpy equation discretized in Section 0.3. Actually,
the main difference between the two models – apart from the aformentioned mass diffusion – is that
here, we do not perform an explicit flame front localization through the phase indicator function G,
and the reactive source terms follow an Arrhenius equation. We opt for this latter approach, since we
would like to switch to large scale models for the turbulence, where, practically, a G-function approach
is impossible because of the complexity of the flame front structure.

Turning to the diffusion fluxes, since the size of the particles is large compared to the molecular
Brownian motion ranges, we suppose that the diffusion of dust vanishes, so the diffusion phenomena
only occur in the gas phase. We define the gas mass fraction as yg =

∑
i∈Ig

yi and, for i ∈ Ig, the
mass fraction of the species i in the gas phase as ỹi = yi/yg. A general expression of the diffusion
fluxes read:

for i ∈ Is, ji = 0 ; for i ∈ Ig, ji = −ρ
∑

j∈Ig

Di,j∇ỹj,

where the coefficients (Di,j)i,j∈Ig depend on the local mixture concentration (i.e. on the mass fractions
(ỹi)i∈Ig themselves). However, using a full tensor D and computing its coefficients is cost-consuming,
and, moreover, the complete data necessary to their accurate computation is usually not available.
This tensor is thus generally approximated. For instance, a ”quasi-diagonal” approximation to this
purpose for pure gaseous mixtures reads:

for i ∈ Ig, ji = jei + ỹiJ , jei = −ρDi
Wi

W
∇x̃i,

where x̃i stands for the molar mass fraction of the component i, so

x̃i = ỹi
W

Wi
, with

1

W
=

∑

i∈Ig

ỹi
Wi

. (34)

The quantity W is the so-called gaseous mixture molar mass. Complemented by the following expres-
sion for the mass diffusion coefficients, Di:

for i ∈ Ig, Di =
1− ỹi

∑

j∈Ig, j 6=i

x̃j
Dji

,
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this formula is known as the Hirschfelder and Curtiss approximation (cf. [28, 45] and [68, pp. 14-15]).
The term ỹi J is a correction term added to ensure that

∑
j∈I jj =

∑
j∈Ig

jj = 0, and so a suitable

expression for J reads J = −∑
j∈Ig

jej (note that, by definition,
∑

i∈Ig
ỹi = 1).

The diffusion operator defined above is only positivity-preserving, since its divergence is not zero
in the general case. This means that, because of the approximation made for the diffusion tensor,
chemical fractions may locally exceed their initial and boundary values, which is of course unphysical
(within the framework of the present model, where a possible drift of the particles with respect to the
bulk flow velocity is not taken into account).

0.4.2 The algorithm

We implement a fractional-step algorithm, which consists in four steps, and reads, supposing that
ρn−1, ρn, (yi)

n
i∈I , θ

n and un are known:

Reactive step:

∀K ∈ M :

Reduced variable computation – Solve for zn+1:

1

δt
(ρnKz

n+1
K − ρn−1

K znK) + div(ρnzkun)K = 0. (35a)

Neutral gas mass fraction computation – Solve for yn+1
N :

1

δt

[
ρnK(yN )n+1

K − ρn−1
K (yN )nK

]
+ div(ρnykNun)K = 0. (35b)

Fuel mass fraction computation – Solve for yn+1
F :

1

δt

[
ρnK(yF )

n+1
K − ρn−1

K (yF )
n
K

]
+ div(ρnyn+1

F un)K = (ω̇F )
n+1
K . (35c)

Oxydant mass fraction computation – (yO)
n+1
K = 1 +

1

s
(yF )

n+1
K − zn+1

K (1 + 1
s ). (35d)

Product mass fraction computation – (yP )
n+1
K = 1− (yF )

n+1
K − (yO)

n+1
K − (yN )n+1

K . (35e)

Hydrodynamics step:

Energy balance – Solve for θn+1:

∀K ∈ M,
∑

i∈I

cp,i

[ 1

δt

[
ρnK(yi)

n+1
K θn+1

K − ρn−1
K (yi)

n
Kθ

n
K

]
+ div

[
ρnyn+1

i θn+1un
]
K

(36a)

+ div
[
θn+1jni

]
K

]
− div(λ∇θn+1)K = (ω̇θ)

n+1
K .

Equation of state – ρn+1
K = ̺

(
θn+1
K , ((yi)

n+1
K )i∈I

)
, for K ∈ M. (36b)

Mass balance – Solve for un+1:

∀K ∈ M,
1

δt

[
ρn+1
K − ρnK

]
+ div

[
ρn+1un+1

]
K

= 0. (36c)

The balance equation of the oxydant mass fraction has been replaced by a balance equation in
the reduced variable z, which is a linear combination of the fuel and oxydant mass fraction balance
equations, establish in order to solve for an equation without reactive source term. The mass balance
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equation for the product has been replaced by the simple algebraic relation (35e), which is shown to
hold in the discrete level.

For the convection fluxes, we use a nested structure that implies a discrete maximum principle. In
the mass balance equation, let

div[ρu]K =
1

|K|
∑

σ∈E(K)

FK,σ.

We use this flux to define the convection fluxes in the species mass balance equations:

div[ρyiu]K =
1

|K|
∑

σ∈E(K)

FK,σ(yi)
up
σ ,

where (yi)
up
σ stands for the upwind approximation of yi on the face σ with respect to FK,σ. Similarly,

let the convection and diffusion fluxes in this equation be written as:

div[ρyiu]K + div[ji]K =
1

|K|
∑

σ∈E(K)

GK,σ,

where, for short, we skip the index i for the flux GK,σ. Then, in the energy mass balance,

div[ρyiθu]K + div[θji]K =
1

|K|
∑

σ∈E(K)

GK,σθ
up
σ ,

where θupσ stands for the upwind approximation of θ on the face σ with respect to GK,σ. The mass
flux through the face σ reads:

FK,σ = ρσuK,σ

where uK,σ stands for the value of the velocity oriented outward K and ρσ stands for any reasonable
approximation of ρ on σ; here, we choose a centered approximation: ρσ = 1

2(ρK + ρL) for σ = K|L.
The discrete heat diffusion term in the enthalpy energy balance reads:

−div[λ∇θn+1]K =
∑

σ=K|L

HK,σ, with HK,σ = λσ(θK − θL),

where λσ stands for an approximation of the diffusion coefficient λ on σ.

The guiding line for the discretisation of the mass diffusion fluxes is that, as in the continuous
case, the sum of the mass diffusion fluxes should vanish, so that the chemical fractions sum up to 1.
The details of this discretization are given in Chapter 3.

0.4.3 Scheme properties

The following proposition summarizes the theoretical results for the solutions of the scheme: in ac-
cordance with the continuous model; the chemical mass fractions stay in the interval [0, 1] and they
sum up to 1, the temperature is non-decreasing (given an exothermic reaction and a sufficiently small
time step) and the density stays positive.

Proposition 0.4.1 (Stability) Let the so-called CFL-number be defined by:

CFLn = max
i∈I

max
K∈M

δt

|K| ρn−1
K (yi)K

∑

σ=K|L

1

dσ

1

2
(ρKDi

1

(yg)K
+ ρLDi

1

(yg)L
) + (qi)

+
K,σ +

1

(yg)
up/q
σ

q+K,σ,

where, for short, the time-dependent quantities without time exponent are taken at tn (cf. Chapter
3 for the exact definitions of the quantities qi and q). Then, under the condition CFLn ≤ 1 for any
0 ≤ n < N , there exists a solution to (35)-(36) satisfying the following stability results:
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(i) for i ∈ I, (yi)n+1 ∈ [0, 1] and
∑

i∈I

(yi)
n+1 = 1;

(ii) θn+1 ≥ θ;

(iii) 0 < ρn+1 ≤ max
{Pth

Rθ
Wi, for i ∈ Ig ; ρi, for i ∈ Is

}
.

0.4.4 Numerical results

The following computations are performed with MATLAB. In Chapter 3, they are compared with
computations performed by the open-source CALIF3S software developped at IRSN [6] for the relaxed
model of Section 0.3.

Data is chosen in order to check the scheme properties (i.e. to avoid unrealistic simplifications, as,
for instance, a same specific heat diffusion coefficient for all the chemical species), and to be in the
range of practical applications. The mixture is initially at rest, homogeneous and with an uniform
temperature:

(yF )0 = (yO)0 = 0.4, (yN )0 = 0.2, (yP )0 = 0, θ0 = 300◦K.

The reaction rate is given by the following Arrhenius law:

ω̇K = 104 yF yO e−900/θ. (37)

The molar masses of the chemical species are considered to be equal to 20 g/mol for all the species,
so the combustion reaction reads F + O +N −→ 2P +N , and the initial atmosphere composition is
stoichiometric. The binary mass diffusion coefficients are

DNO = 0.25 ∗ 10−5, DNP = 0.5 ∗ 10−5, and DOP = 10−5.

The temperature diffusion coefficient is λ = 0.005, the specific heat coefficients (J/(KgK)) are cp,N =
3. 103, cp,F = 1. 103, cp,O = 2. 103 and cp,P = 4. 103 and the formation enthalpies (J/Kg) are ∆h0f,N =

3. 106, ∆h0f,F = 1. 106, ∆h0f,O = −2. 106 and ∆h0f,P = −4. 106 (so the reaction is exothermic). The

fuel density is equal to 100Kg/m3, and the density of the gaseous atmosphere is given by the ideal
gases law.

Flame profiles obtained with the Hirschfelder and Curtiss diffusion coefficients – We
present here results where the mass diffusion coefficients are calculated by the Hirschfelder and Curtis
approximation. To initiate the transient, the reaction ignition is forced at the left part of the domain;
then, the flame brush propagates to the right, while the solution progressively tends to a progressive
wave (i.e. the translation at a constant speed of a constant profile). This establishment is quite long
(for present computations, the final time is t = 2 s), and to capture this phenomena with a reasonable
number of cells, we use a mobile frame attached to the flame front (or, equivalently, we impose a
constant inlet flow rate of fresh gases at the right-hand section of the domain). However, the velocity
of the flame front is influenced by the mesh, so the frame velocity (or the inlet flowrate) depends on the
number of cells; to compare the established profiles, we thus have performed an abscissa translation
up to obtain solutions as close as possible.

Obtained results with various meshes are plotted on Figures 7 and 8. First, we observe that
numerical convergence (at least for an engineering point of view) is obtained for the coarsest mesh
except for the velocity, which, unfortunately, is an important quantity, since the plane flame laminar
velocity is a parameter often used to characterize the mixture, for instance to compute the turbulent
flame velocity in the so-called TFC (for Turbulent Flame velocity Closure) deflagration mdels [85, 59].
For the velocity in the fresh gases, we obtain 3.343 cm/s, 3.017 cm/s 2.931 cm/s and 2.862 cm/s for
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n = 500, n = 1000, n = 2000 and n = 4000 cells respectively, which suggests a first order convergence
of this parameter, since the difference between two successive meshes roughly varies as the space
step (of the coarsest or finest one, equivalently). Second, as expected, the expression of the mass
diffusion operator produces, with the chosen binary diffusion coefficients, rather large (up to around
25% locally) unphysical variations of the inert gases mass fractions, which should remain constant in
space and time. The temperature is larger in the burnt zone than in the fresh one (the reaction is
exothermic); however, we observe a small temperature decrease on the upstream side (i.e. near the
fresh zone) of the flame brush, which is not unconsistant with the theoretical study.

0.5 Perspectives

Starting from the Navier-Stokes equations and moving to reactive flows, during this work several
models have been studied and suitable numerical schemes have been proposed, in order to deal with
compressible reactive flows. Concerning the solvers for compressible Navier-Stokes equations already
implemented, two points would definitely need further investigation:

(i) The development of higher order schemes – At the present point, only first-order upwind-
ing (linear) schemes are implemented for convection operators in the mass and internal energy
balance, in the pressure correction step, which generates excessive smoothing of contact discon-
tinuities. In addition, using schemes of at least second order is a prerequisite for Large Eddy
Simulation (LES, see below). The essential difficulty to implement second order (and thus nec-
essarily non-linear for positivity preservation) schemes lies in the fact that the mass and energy
balance equations are implicit in time. A possible way to avoid costly iterations, possibly leading
to a lack of robustness of the solver, would be to try a defect-correction strategy [52], eventually
associated to a Multi-dimensional Optimal Order Detection (MOOD) strategy [11].

(ii) Non-conforming mesh refinement – Non-conforming mesh refinement is already imple-
mented in the CALIF3S software, and convection operators have been derived to this purpose
[67, 55]. However, the properties of the implemented diffusion term remains to be investigated,
and the whole scheme would deserve a careful assessment, both in the viscous and inviscid cases.

In addition, extension to models dealing with turbulence for compressible flows is planned in a
near future, both for Reynolds-Averaged (RANS) and Large Eddy Simulation (LES) formulations:

(i) RANS models – In RANS models, the turbulent kinetic energy appears in the balance equa-
tions of the momentum, the internal energy and in the equation of state as an additional pressure.
This aspect is often neglected for the low Mach number flows (and may be neglected without loss
of information for the incompressible flows). However, this is not possible when the compress-
ibility effects are important (or, in other words, when the Mach number is close to the unity).
This is a motivation for future works, that is to say, to extend the current schemes in order to
be able to take into account the additional terms refered above. Two steps are in perspective:

– The first one, purely algorithmic, consists in extending the current pressure correction
scheme to the two-pressure model while preserving its stability properties. The outcome of
this step is a solver capable of calculating viscous flows.

– For the weak viscous case, the model may be seen as a perturbation of a hyperbolic system.
This latter is a difficult problem, because the balance equation for the turbulent energy is
non-conservative, which makes the definition of a weak formulation of the problem [3] and
its numerical resolution very intricate (extension of the Rankine-Hugoniot conditions and
a scheme that respects them, what permits to calculate correct shock positions).
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(i) LES models – A LES model for compressible flows is given in Appendix A. To develop the
associated solver, two routes may be followed: extending an already available explicit solver
for Euler equations [27] or the present pressure correction scheme. Choosing an explicit scheme
makes the implementation of non-linear convection operators easy, but the price to pay is that the
explicit treatment of viscous terms may lead to stringent time-step restrictions (to this respect,
note however that, in LES formulations, the viscosity scales as the space step). With the pressure
correction scheme, as already mentioned, the implementation of higher-order convection schemes
is difficult. For both solvers, the issue of second order time discretization must be addressed.
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Figure 7: Results obtained with the Hirschfelder and Curtiss formula for the diffusion coefficients –
From the top to the bottom, fuel, oxydant, product and neutral gas mass fractions obtained with 500
(green), 1000 (blue), 2000 (red) and 4000 (orange) cells.
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Figure 8: Results obtained with the Hirschfelder and Curtiss formula for the diffusion coefficients –
From the top to the bottom, temperature, density and velocity obtained with 500 (green), 1000 (blue),
2000 (red) and 4000 (orange) cells.
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Chapter 1

An unconditionally stable staggered

pressure correction scheme for the

compressible Navier-Stokes equations

Abstract

In this paper we present a pressure correction scheme for the compressible Navier-Stokes equations.
The space discretization is staggered, using either the Marker-And-Cell (MAC) scheme for structured
grids, or a nonconforming low-order finite element approximation for general quandrangular, hexa-
hedral or simplicial meshes. For the energy balance equation, the scheme uses a discrete form of
the conservation of the internal energy, which ensures that this latter variable remains positive; this
relation includes a numerical corrective term, to allow the scheme to compute correct shock solutions
in the Euler limit. The scheme is shown to have at least one solution, and to preserve the stability
properties of the continuous problem, irrespectively of the space and time steps. In addition, it nat-
urally boils down to a usual projection scheme in the limit of vanishing Mach numbers. Numerical
tests confirm its potentialities, both in the viscous incompressible and Euler limits.

1.1 Introduction

We build in this paper a numerical scheme for the solution of the compressible Navier-Stokes equations:

∂tρ+ div(ρu) = 0, (1.1a)

∂t(ρu) + div(ρu⊗ u) +∇p− div(τ (u)) = 0, (1.1b)

∂t(ρE) + div(ρE u) + div(pu) + div(q) = div(τ (u) · u), (1.1c)

E =
1

2
|u|2 + e, (1.1d)

p = ℘(ρ, e). (1.1e)

where t stands for the time, ρ, u, p, E and e are the density, velocity, pressure, total energy and
internal energy in the flow, τ (u) stands for the shear stress tensor, q stands for the heat diffusion
flux, and the function ℘ is the equation of state (EOS). The problem is supposed to be posed over
Ω × (0, T ), where Ω is an open bounded connected subset of Rd, d ≤ 3 and (0, T ) is a finite time
interval. This system must be supplemented by suitable boundary conditions, initial conditions and
closure relations for the diffusion terms.
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For the sake of simplicity, we assume in this paper that the velocity is prescribed to zero on the
whole boundary ∂Ω, and that the system is adiabatic:

u = 0, q · n = 0 on ∂Ω. (1.2)

However, the modifications of the scheme and of the theoretical arguments to deal with more general
boundary conditions are given in remarks, when useful. Suitable initial conditions must be provided
for ρ, e and u:

ρ(x, 0) = ρ0(x), e(x, 0) = e0(x), u(x, 0) = u0(x), with ρ0 > 0, e0 > 0. (1.3)

Finally, the closure relations for τ (u) and q are given by:

τ (u) = µ(∇u+∇
tu)− 2µ

3
divuI, q = −λ∇e, (1.4)

where I denotes the identity matrix and λ, µ ∈ L∞(Ω) are such that there exists λ > 0 and µ > 0
such that λ ≥ λ a.e. and µ ≥ µ a.e.. Consequently, the shear stress tensor satisfies:

τ (u) : ∇u ≥ 0, ∀u ∈ R
d, (1.5)

Replacing the total energy E by its expression (1.1d) in (1.1c) and developing some terms, we
obtain:

∂t(ρe) + div(ρeu) + p divu+ div(q)

+
1

2
∂t(ρ |u|2) +

1

2
div(ρ |u|2 u) + u ·∇p− div(τ (u)) · u = τ (u) : ∇u. (1.6)

Thanks to the mass balance equation (1.1a), we get formally, for any function z:

∂t(ρz) + div(ρzu) = ρ ∂tz + ρu ·∇z.

Using this identity twice and then the momentum balance equation (1.1b), we have for 1 ≤ i ≤ 3:

1

2
∂t(ρu

2
i ) +

1

2
div(ρu2iu) = ρui∂tui + ρuiu ·∇ui =

ui
[
ρ∂tui + ρu ·∇ui

]
= ui

[
∂t(ρui) + div(ρuiu)

]
= −ui ∂ip+ ui div(τ (u))i,

so, summing for i = 1 to d:

1

2
∂t(ρ |u|2) +

1

2
div(ρ |u|2 u) = u ·

[
∂t(ρu) + div(ρu⊗ u)

]
= −u ·∇p+ div(τ (u)) · u.

Using this last relation in the total energy equation (1.6) yields the internal energy balance:

∂t(ρe) + div(ρeu)− div(q) + p div(u) = τ (u) : ∇u. (1.7)

Since we assume that the initial condition for ρ is positive, the mass balance (1.1a) implies that the
density ρ remains non-negative. Let us now suppose that the equation of state (1.1e) is such that
℘(·, 0) = 0 and ℘(0, ·) = 0, which allows to extend ℘ by continuity to R

2 (without change of notation):

p = ℘(ρ, e), with ℘(ρ, e) = 0 whenever ρ ≤ 0 or e ≤ 0. (1.8)

Equation (1.7) then implies (thanks to (1.5)) that the internal energy e remains non-negative (at least
formally).
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Integrating now (1.1c) over Ω yields:

d

dt

∫

Ω

(1
2
ρ |u|2 + ρe

)
dx = 0, (1.9)

and, since ρ ≥ 0 and e ≥ 0, this inequality provides a stability estimate for the system.

In this paper, we propose and study a pressure correction scheme based on staggered-in-space
discretizations (low order non-conforming finite elements or MAC scheme), solving the internal energy
balance (1.7) instead of the total energy conservation equation (1.1d). As a consequence of these
choices, this algorithm naturally boils down to a standard projection method in the vanishing Mach
number (i.e. incompressible) asymptotic limit. We are able to prove, for this scheme, the same stability
properties as in the continuous case: the approximate density and internal energy are non-negative
(in fact, for discrete solutions, positive) and a discrete analogue to Relation (1.9) is derived. As a
consequence of these properties, we are also able to prove the existence of a solution of the scheme.

This algorithm was already introduced in [40], for the Euler equations only, and its consistency
(in the Lax-Wendroff sense) was proven in [40] in one space dimension. We complement this work
here in several directions: we extend the scheme to the Navier-Stokes equations, prove the positivity
of the internal energy and the existence of a solution to the scheme (while these properties are only
claimed in [40]), provide some implementation details and some qualitative properties of the scheme
(in particular, clarify its behaviour at contact discontinuities) and present two and three-dimensional
numerical experiments, including a test to assess the behaviour in the low Mach number limit.

The fractional step strategy that we consider here involves an elliptic pressure correction step; this
strategy has been used for compressible flows to obtain algorithms which are not limited by stringent
stability conditions (such as CFL conditions based on the celerity of the fastest waves) since the late
sixties, when first attempts were done to build ”all flow velocity” schemes [37, 38]; these algorithms
may be seen as an extension to the compressible case of the celebrated MAC scheme, introduced
some years before [39]. These seminal papers have been the starting point for the development of
numerous schemes falling in the class of pressure correction algorithms (possibly iterative, in the
spirit of the SIMPLE method), some of them based on staggered finite volume space discretizations
[7, 46, 47, 77, 48, 62, 4, 83, 13, 75, 80, 79, 76, 78, 53]; a bibliography extended to the schemes using
other space discretizations may be found in [40]. To the best of our knowledge, the present paper
provides the first rigorous stability proof for such algorithms in the framework of the Navier-Stokes
equations. A key ingredient is the possibility to work with the internal energy balance to ensure the
positivity of this quantity, without losing the consistency with the conservative equations (including
the total energy balance) in the Euler case. Note also that, for the MAC scheme, a careful design of
the viscous dissipation term is necessary to satisfy a discrete analogue of (1.5) (Section 1.3.2). Finally,
the stability of the scheme also relies on the possibility to derive a local discrete kinetic energy balance,
for which a rescaling step of the pressure gradient was introduced in [40]. Note also that the scheme
proposed in this work implements a staggered finite-volume approach for first order terms (known for
its efficiency) while being able to cope with unstructured meshes.

This paper is structured as follows. We first describe the space discretization (Section 1.2), then the
scheme (Section 1.3). Section 1.4 is devoted to the proof of stability and existence of discrete solutions.
Numerical tests are presented in Section 1.5. Since the scaling of the pressure gradient allowing to
derive a discrete kinetic energy balance may be extended to other discretizations, we present the
essential arguments for its design in a time-discrete (and space-continuous) setting in Appendix 1.A.
The behaviour of the scheme on contact discontinuities of the Euler equations is adressed in Appendix
1.B. Finally, in Appendix 1.C, we provide some details about the numerical solution of the nonlinear
algebraic system associated to the pressure correction step; we also discuss the issue of spurious
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pressure boundary conditions which are known to be inherent to the pressure correction time-splitting
technique.

1.2 Meshes and unknowns

Let M be a decomposition of the domain Ω, supposed to be regular in the usual sense of the finite
element literature (e.g. [10]). The cells may be:

- for a general domain Ω, either convex quadrilaterals (d = 2) or hexahedra (d = 3) or simplices,
both types of cells being possibly combined in a same mesh in two space dimensions,

- for a domain whose boundaries are hyperplanes normal to a coordinate axis, rectangles (d = 2)
or rectangular parallelepipeds (d = 3) (the faces of which, of course, are then also necessarily
normal to a coordinate axis).

By E and E(K) we denote the set of all (d − 1)-faces σ of the mesh and of the element K ∈ M
respectively. The set of faces included in the boundary of Ω is denoted by Eext and the set of internal
faces (i.e. E \ Eext) is denoted by Eint. A face σ ∈ Eint separating the cells K and L is denoted by
σ = K|L. The outward normal vector to a face σ of K is denoted by nK,σ. For 1 ≤ i ≤ d, we denote

by E(i), E(i)
int and E(i)

ext the subset of the faces of E , Eint and Eext respectively which are perpendicular to
the ith unit vector of the canonical basis of Rd. For K ∈ M and σ ∈ E , we denote by |K| the measure
of K and by |σ| the (d− 1)-measure of the face σ.

The space discretization is staggered, using either the Marker-And Cell (MAC) scheme [39, 38],
or nonconforming low-order finite element approximations, namely the Rannacher and Turek (RT)
element [69] for quadrilateral or hexahedral meshes, or the lowest degree Crouzeix-Raviart (CR)
element [14] for simplicial meshes.

For all these space discretizations, the degrees of freedom for the pressure, the density and the
internal energy (i.e. the discrete pressure, density and internal energy unknowns) are associated to
the cells of the mesh M, and are denoted by:

{
pK , ρK , eK , K ∈ M

}
.

Let us then turn to the degrees of freedom for the velocity.

- Rannacher-Turek or Crouzeix-Raviart discretizations – The discrete velocity unknowns are
located at the center of the faces of the mesh, and we choose the version of the element where
they represent the average of the velocity through a face. The Dirichlet boundary conditions
are taken into account by setting the velocity unknowns associated to an external face to zero,
so the set of discrete velocity unknowns reads:

{uσ,i, σ ∈ Eint, 1 ≤ i ≤ d}.

- MAC discretization – The degrees of freedom for the ith component of the velocity are located
at the centre of the faces σ ∈ E(i), so the whole set of discrete velocity unknowns reads:

{
uσ,i, σ ∈ E(i)

int, 1 ≤ i ≤ d
}
.

Hence there are d unknowns per face of the primal mesh in the case of the CR-RT scheme, namely
the d components of the velocity, while there is only one unknown per face of the primal mesh in the
case of the MAC scheme, namely the normal component of the velocity.

We now introduce a dual mesh, for the finite volume approximation of the time derivative and
convection terms in the momentum balance equation.
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Figure 1.1: Primal and dual meshes for the Rannacher-Turek and Crouzeix-Raviart elements.

- Rannacher-Turek or Crouzeix-Raviart discretizations – For the RT or CR discretizations,
the dual mesh is the same for all the velocity components. When K ∈ M is a simplex, a
rectangle or a cuboid, for σ ∈ E(K), we define DK,σ as the cone with basis σ and with vertex
the mass center of K (see Figure 1.1). We thus obtain a partition of K in m sub-volumes, where
m is the number of faces of the cell, each sub-volume having the same measure |DK,σ| = |K|/m.
We extend this definition to general quadrangles and hexahedra, by supposing that we have
built a partition still of equal-volume sub-cells, and with the same connectivities. The volume
DK,σ is referred to as the half-diamond cell associated to K and σ. For σ ∈ Eint, σ = K|L, we
now define the diamond cell Dσ associated to σ by Dσ = DK,σ ∪DL,σ.

- MAC discretization – For the MAC scheme, the dual mesh depends on the component of the
velocity. For each component, the MAC dual mesh only differs from the RT or CR dual mesh
by the choice of the half-diamond cell, which, for K ∈ M and σ ∈ E(K), is now the rectangle or
rectangular parallelepiped of basis σ and of measure |DK,σ| = |K|/2 (see Figures 1.2 and 1.3).

We denote by |Dσ| the measure (area of volume) of the dual cell Dσ, and by ε = Dσ|Dσ′ the face
separating two diamond cells Dσ and Dσ′ . The set of the (dual) faces of Dσ is denoted by Ē(Dσ).

Finally, in order to be able to write a unique expression of the discrete equations for both MAC

and CR/RT schemes, we introduce the set of faces E(i)
S associated to the degrees of freedom of the ith

component of the velocity (S stands for “scheme”):

E(i)
S =

∣∣∣∣∣
E(i)
int for the MAC scheme,

Eint for the CR or RT schemes.

In addition, for the definition of the discrete diffusion terms in the momentum balance equation
(1.1b) and in the internal energy equation (1.7), we need to distinguish two classes of meshes: the so-
called super-admissible meshes, and the others, referred to as general meshes. In the present particular
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framework, super-admissible meshes are obtained under the following condition:

∣∣∣∣∣∣∣∣∣

Each cell K of the mesh is either:

- a rectangle (d = 2) or a rectangular parallelepiped (d = 3); in
this case, we denote by xK the mass center of K;

- a simplex, the circumcenter xK of which is located inside K.

(1.10)

This condition implies that, for each neighboring control volumes K and L, the segment [xK , xL] is
orthogonal to the face K|L separating K from L, even when, in two space dimensions, one cell is a
rectangle and the other one a triangle (we recall that, in three space dimensions, the two types of cells
cannot be mixed). For each internal face σ = K|L, we denote by dσ the distance d(xK , xL).

Definition (Impermeability and Neumann boundary conditions). If the velocity is not prescribed to
zero at the boundary, the space discretization is adapted as follows:

- if u ·n = 0 is the only condition imposed on the boundary, the degrees of freedom do not change
for the MAC scheme, but the velocity unknowns corresponding to the tangential component(s)
of the velocity must be added for the RT and CR discretizations. We thus first need a definition
of the dual cell at a boundary face σ ∈ Eext; denoting by K the adjacent cell, we take for Dσ

the same volume as DK,σ. Next, we must extend E(i)
S . This can be done in a straightforward

way if the boundary is always normal to a vector of the canonical basis of R
d; then we get

E(i)
S = E \ E(i)

ext. This is the situation that we will consider here. The extension to the general
case is just technical: a change of unknown must be done to make the velocity in the direction
normal to each external face appear as a degree of freedom.

- when the velocity is free at a boundary face σ, this face must be treated in the definition of E(i)
S

as an internal face, and the associated dual cell is defined as previously.

1.3 The pressure correction scheme

1.3.1 The algorithm

Let us consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), which we suppose
uniform. Let δt = tn+1− tn for n = 0, 1, . . . , N − 1 be the constant time step. The pressure correction
scheme considered here consists in the two following steps:

Pressure gradient scaling step:

∀σ ∈ Eint, ∇σ(p
n+1) =

( ρnDσ

ρn−1
Dσ

)1/2
∇σ(p

n). (1.11a)

Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt

(
ρnDσ

ũn+1
σ,i − ρn−1

Dσ
unσ,i

)
+ divσ(ρ

nũn+1
i un)− divσ,i τ (ũ

n+1) +∇σ,i(p
n+1) = 0. (1.11b)
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Correction step – Solve for pn+1, en+1, ρn+1 and un+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) +∇σ,i(p
n+1)−∇σ,i(p

n+1) = 0, (1.11c)

∀K ∈ M,
1

δt
(ρn+1

K − ρnK) + divK(ρn+1un+1) = 0, (1.11d)

∀K ∈ M,

1

δt
(ρn+1

K en+1
K − ρnKe

n
K) + divK(ρn+1en+1un+1) + pn+1

K divK(un+1)

−λ (∆en+1)K =
(
τ (ũn+1) : ∇ũn+1

)
K
+ Sn+1

K ,
(1.11e)

∀K ∈ M, ρn+1
K = ̺

(
en+1
K , pn+1

K

)
. (1.11f)

The first step is a pressure gradient scaling step which is introduced in order to recover a discrete
kinetic energy inequality (see Appendix 1.A). The second step is a classical semi-implicit solution of
the momentum balance equation to obtain a tentative velocity field. The third step is a nonlinear
pressure correction step, which couples the mass balance equation with the internal energy balance
equation. However expensive, this coupling seems to be the price to pay to obtain an unconditional
stability property (see Section 1.4.1, and [64, 65] for a discussion on this issue). In addition, in the
Euler case, it also allows the scheme to keep the velocity and pressure constant across (1D) contact
discontinuities (see Appendix 1.B). The last equation of this step is the equation of state, which is
recast here as ρ = ̺(e, p) (instead of p = ℘(ρ, e)) because, at the algebraic level, the density is first
eliminated from the system, this latter is solved for en+1 and pn+1, and ρn+1 is finally given by (1.11f)
(see Appendix 1.C for the solution process).

We now give the expression of each term of this algorithm, except for the diffusion and dissipation
terms, which are defined in sections 1.3.2 and 1.3.3 below. The space discretization follows a specific
order, which is explained on Flow chart 1.1. We begin with the discrete mass balance equation (1.11d).
The convection term in this relation reads:

div(ρu)K =
1

|K|
∑

σ∈E(K)

FK,σ,

where FK,σ stands for the mass flux across σ outward K. By the impermeability boundary conditions,
it vanishes on external faces and is given on internal faces by:

∀σ ∈ Eint, σ = K|L, FK,σ = |σ| ρσ uK,σ, (1.12)

where uK,σ is an approximation of the normal velocity to the face σ outward K. This latter quantity
is defined by:

uK,σ =

∣∣∣∣∣
uσ,i nK,σ · e(i) for σ ∈ E(i) in the MAC case,

uσ · nK,σ in the CR and RT cases,
(1.13)

where e(i) denotes the i-th vector of the orthonormal basis of Rd. The density at the face σ = K|L is
approximated by the upwind technique, i.e. ρσ = ρK if uK,σ ≥ 0 and ρσ = ρL otherwise.

We now turn to the discrete momentum balance (1.11b). For both the MAC and the RT-CR
discretizations, the time derivative and convection terms are approximated in (1.11b) by a finite

38



(i) (For the mass balance) Define the mass flux at each primal face:

divK(ρu) =
1

|K|
∑

σ∈E(K)

FK,σ, FK,σ = |σ| ρσ uK,σ,

uK,σ =normal velocity, ρσ =upwind density (ensures the positivity of the density).

(ii) From this primal mass flux,

(a) (For the momentum balance) Define the density at the faces ρDσ
and the mass fluxes

through the dual faces Fσ,ε in such a way that a mass balance holds on dual cells, and
define the flux of the ith velocity component through a dual face by Fσ,εuε,i, with uε,i
centered (yields a discrete kinetic energy balance);

(b) (For the internal energy balance) Define the energy flux through each primal face by
FK,σ eσ, with eσ =upwind energy (yields a maximum-principle-preserving convection op-
erator);

(c) (For the internal energy balance) Define the velocity divergence (just set ρ equal to 1
in the expression of divK(ρu)), and the pressure gradient by transposition (yields a total
energy estimate).

Flow chart 1.1: Process for the construction of the space discretization of the hyperbolic part of the
system of partial differential equations (i.e. Euler equations, written in non-conservative form using
the internal energy balance). This process must be combined with a time stepping strategy which,
in practice, may be of pressure correction type (present paper, to ensure unconditional stability) or
explicit (cf. [40]).

volume technique over the dual cells, so that the convection term reads:

divσ(ρũiu) = divσ
(
ũi(ρu)

)
=

1

|Dσ|
∑

ε∈Ē(Dσ)

Fσ,εũε,i,

where Fσ,ε stands for a mass flux through the dual face ε outward Dσ, and ũε,i is a centered approxi-
mation of the ith component of the velocity ũ on ε. The density at the dual cell ρDσ

is obtained by a
weighted average of the density in the neighbouring cells:

for σ ∈ Eint, σ = K|L, |Dσ| ρDσ
= |DK,σ| ρK + |DL,σ| ρL,

for an external face of a cell K, ρDσ
= ρK .

(1.14)

The mass fluxes (Fσ,ε)ε∈E(Dσ) are evaluated as linear combinations, with constant coefficients, of the
primal mass fluxes at the neighboring faces, in such a way that the following discrete mass balance
over the dual cells is implied by the discrete mass balance (1.11d):

∀σ ∈ E , for 0 ≤ n < N,
|Dσ |
δt

(ρn+1
Dσ

− ρnDσ
) +

∑

ε∈E(Dσ)

Fn+1
σ,ε = 0. (1.15)

This relation is critical to derive a discrete kinetic energy balance (see Section 1.4.1 below). The
computation of the dual mass fluxes Fσ,ε is such that the flux through a dual face lying on the boundary,
which is then also a primal face, is the same as the primal flux, that is zero. This computation yields
the expression (1.14) for the densities, and some linear combination of the primal fluxes for the dual
fluxes [24, 40, 41]. Since the mass balance is not yet solved at the velocity prediction stage, the
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densities and dual fluxes have to be built from the mass balance at the previous time step: hence the
backward time shift for the densities in the time-derivative term.

In the rescaling step for the pressure gradient (1.11a) and in the correction equation (1.11c), the
term ∇σ,i(p) stands for the ith component of the discrete pressure gradient at the face σ, which is
built as the transposed operator to the natural divergence (see Equations (1.18) and (1.19) below):

for σ = K|L ∈ Eint, ∇σ,i(p) =
|σ|
|Dσ |

(pL − pK) nK,σ · e(i). (1.16)

This pressure gradient is only defined at internal faces since, thanks to the impermeability boundary
conditions, no momentum balance equation is written at the external faces. The quantity ∇σ,i(p) in
(1.11a) is obtained by a simple rescaling of the pressure gradient, which is needed to obtain a discrete
kinetic energy balance (see Section 1.4.1 and Appendix 1.A). Note that ∇(p) is not a discrete gradient,
in the sense that there does not exist in the general case a discrete pressure p such that ∇(p) = ∇(p).

Equation (1.11e) is a finite-volume approximation of the internal energy balance over the primal
cell K. To ensure the positivity of the convection operator, the convection flux is defined as the
product of the mass flux with an upwind approximation of the internal energy [54]:

divK(ρeu) = divK
(
e (ρu)

)
=

1

|K|
∑

σ∈E(K)

FK,σeσ, (1.17)

with, for σ = K|L ∈ Eint, eσ = eK if FK,σ ≥ 0 and eσ = eL otherwise. The divergence of the velocity,
divK(u), is discretized as follows:

for K ∈ M, divK(u) =
1

|K|
∑

σ∈E(K)

|σ| uK,σ, (1.18)

and, as announced, this definition implies that the discrete gradient and divergence operators are dual
with respect to the L2 inner product:

∑

K∈M

|K| pK divK(u) +

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| uσ,i ∇σ,i(p) = 0. (1.19)

The term SK at the right-hand side of (1.11e) is necessary to obtain a consistent scheme in the Euler
case [40]; its purpose is to compensate some numerical dissipation terms appearing in the discrete
kinetic energy balance equation, which may not tend to 0 as the mesh and time step tend to 0. Its
expression is derived in Section 1.4.1.

Definition (Outflow or Neuman boundary conditions). When the normal velocity is not prescribed to
zero at the boundary face σ ∈ E(K), we suppose that the flow leaves the domain (i.e. uK,σ ≥ 0), so
the definition (1.12) of FK,σ remains unchanged (and ρσ = ρK). The face σ is also an external dual
face of the diamond cell Dσ, and the above mentioned construction procedure of the dual mass fluxes
yields Fσ,ε = FK,σ; at this face, we set ũε,i = ũσ,i. The expression (1.18) of the discrete divergence of
the velocity still holds, but now takes into account a (possibly) non-zero normal velocity uK,σ at the
external face σ. Therefore, the gradient-divergence duality property becomes:

∑

K∈M

|K| pK divK(u) +

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| uσ,i ∇σ,i(p) =
∑

σ∈Eext

−|σ| pext
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where pext stands for the external pressure involved in the Neumann boundary condition, and we have
supposed that the Neumann boundary condition is applied on the whole boundary (otherwise, the
sum at the right-hand side should be restricted to the faces included in the part of ∂Ω where Neumann
boundary conditions are prescribed). We thus obtain the following definition of the gradient on the
external face σ adjacent to the cell K:

∇σ,i(p
n+1) =

|σ|
|Dσ |

(pext − pn+1
K ) nK,σ · e(i).

Finally, the definition of the internal energy flux (1.17) remains unchanged (and eσ = eK).

In order to obtain a stability estimate, the dual mass balance (1.15) has to be satisfied when
performing the first velocity prediction step, and this complicates the initialization of the scheme.
The initial approximations for ρ, e and u are given by the average of the initial conditions ρ0, e0 and
u0 on the primal and dual cells respectively:

∀K ∈ M, ρ
(−1)
K =

1

|K|

∫

K
ρ0(x) dx, e0K =

1

|K|

∫

K
e0(x) dx,

for 1 ≤ i ≤ d, ∀σ ∈ E(i)
S , u0σ,i =

1

|Dσ |

∫

Dσ

(u0(x))i dx.

(1.20)

Then the discrete mass balance (1.11d), written for n = −1, is solved for ρ0, and the initial pressure
is given by the equation of state (1.1e).

1.3.2 The viscous diffusion and dissipation term

The aim of this section is to define the viscous diffusion term divσ,i τ (ũ) of the momentum balance
equation (1.11b) and the viscous dissipation term (τ (ũ) : ∇ũ)K of the internal energy balance equa-
tion. Besides usual numerical consistency considerations, we would like these quantities to satisfy the
two following constraints:

(i) non-negativity of the dissipation:

∀K ∈ M, (τ (ũ) : ∇ũ)K ≥ 0; (1.21)

(ii) consistency of the diffusion and the dissipation, in the following sense:

−
d∑

i=1

∑

σ∈E
(i)
S

|Dσ| divσ,i τ (ũ) uσ,i =
∑

K∈M

|K| (τ (ũ) : ∇ũ)K , (1.22)

i.e. the discrete analogue of the identity

∫

Ω
divτ (u) · u = −

∫

Ω
τ (u) : ∇u.

Since the discretization of the diffusion term is different for the RT or CR discretization, on one side,
and for the MAC scheme, on the other side, we deal with these two cases separately.

1.3.2.1 Unstructured meshes, CR-RT discretization.

For the RT or CR discretization, we use the usual finite element discretization of the viscous term:

− divσ,i τ (ũ) = − 1

|Dσ|
∑

K∈M

∫

K
τ (ũ) : ∇ϕ(i)

σ dx, (1.23)
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where ϕ
(i)
σ stands for the vector-valued finite element shape function associated to the ith component

of the velocity and to the face σ; by definition of the RT or CR finite elements, this shape function
reads ϕσe

(i), where ϕσ is the real-valued function of the approximation space whose mean value is 1
over σ and 0 over the other faces of the mesh.

The dissipation term is given by:

(τ (ũ) : ∇ũ)K =
1

|K|

∫

K
τ (ũ) : ∇ũdx. (1.24)

The non-negativity of this term is a classical result, which is a consequence of the following elementary
computation. By symmetry,

τ (ũ) : ∇ũ = µ (∇ũ+∇
tũ) : ∇ũ−2µ

3
div(ũ) I : ∇ũ = µ

(
(∇ũ+∇

tũ) : (∇ũ+∇
tũ)−2

3
(divũ)2

)
.

This expression is thus the sum of the squares of the off-diagonal entries of ∇ũ + ∇
tũ and of the

following quantity

2µ

3

(
3

3∑

i=1

(∂iui)
2 −

( 3∑

i=1

∂iui
)2)

,

which is non-negative.

Finally, by a simple reordering of the sums,

−
d∑

i=1

∑

σ∈E
(i)
S

|Dσ| divσ,i τ (ũ) uσ,i

=

d∑

i=1

∑

σ∈E
(i)
S

uσ,i
∑

K∈M

∫

K
τ (ũ) : ∇ϕ(i)

σ dx =
∑

K∈M

∫

K
τ (ũ) : ∇

( d∑

i=1

∑

σ∈E
(i)
S

uσ,iϕ
(i)
σ

)
dx

=
∑

K∈M

∫

K
τ (ũ) : ∇ũdx =

∑

K∈M

|K| (τ (ũ) : ∇ũ)K ,

that is (1.22).

1.3.2.2 MAC scheme

For the MAC scheme, the strategy used to build the viscous diffusion and dissipation terms is to mimic
the computation performed in the previous section. Hence, we first need to define the (discrete) partial
derivatives of the discrete velocities a.e in Ω, and then a finite volume analogue of the shape functions.
With these ingredients, expressions (1.23) and (1.24) still make sense, and their consequences (namely
Relations (1.21) and (1.22)) hold.

The arguments presented in this section were already used in [24], but with a rather different
approach and notations; they are detailed here in the present framework.

The two-dimensional case - Since we have to deal with differential quotient formula on structured
grids, we use the standard notations in this context given on Figures 1.2 and 1.3. For the sake of
clarity, we first concentrate on the inner cells; the cells neighbouring the boundary and the boundary
conditions are dealt with later.

The discrete partial derivatives of the velocity are defined as follows (see Figures 1.4 and 1.5):
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Figure 1.2: Unknown and dual cell for the x-component of the velocity, notations for staggered
discretizations.

– Let the primal cells be denoted by Ki,j = (xi−1/2, xi+1/2) × (yj−1/2, yj+1/2). The derivatives

involved in the divergence, ∂Mx ux and ∂My uy, are defined over the primal cell by, ∀x ∈ Ki,j :

∂Mx ux(x) =
ux
i+ 1

2
,j
− ux

i− 1
2
,j

hxi
, ∂My uy(x) =

uy
i,j+ 1

2

− uy
i,j− 1

2

hyj
. (1.25)

– For the other derivatives, we introduce a fourth mesh which is vertex-centred, and we denote
by Kxy the generic cell of this new mesh, with Kxy

i− 1
2
,j− 1

2

= (xi−1, xi) × (yj−1, yj). Then, ∀x ∈
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Figure 1.3: Unknowns and dual cell for the y-component of the velocity, notations for staggered
discretizations (continued).
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Figure 1.4: Discrete partial derivatives of the x-component of the velocity
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Figure 1.5: Discrete partial derivatives of the y-component of the velocity

Kxy

i− 1
2
,j− 1

2

:

∂My ux(x) =
ux
i− 1

2
,j
− ux

i− 1
2
,j−1

hy
j− 1

2

, ∂Mx uy(x) =
uy
i,j− 1

2

− uy
i−1,j− 1

2

hx
i− 1

2

. (1.26)

We are now in position to define the discrete stress tensor of ũ by:

(µ∇)Mũ =

[
µxx ∂

M
x ũx µxy ∂

M
y ũx

µyx ∂
M
x ũy µyy ∂

M
y ũy

]
, (µ div)M(ũ) = µxx ∂

M
x ũx + µyy ∂

M
y ũy,

τM(ũ) = (µ∇)Mũ+
(
(µ∇M)ũ

)t − 2

3
(µ div)Mũ I,

where µxx, µxy, µyx and µyy are approximations of the viscosity field on the various meshes; here, we
choose to use the same piecewise constant fields for µxx and µyy (respectively µxy and µyx), with the
same mesh as their associated partial derivatives, namely the primal cells (respectively the vertex-
centred cells). The value of µxx and µyy over Ki,j (respectively µxy and µyx over Kxy

i− 1
2
,j− 1

2

) is denoted

by µi,j (respectively µi− 1
2
,j− 1

2
).

We now introduce the ”finite-volume shape functions” for the components of the velocity. Let us
denote by Ix ⊂ N

2 (resp. Iy ⊂ N
2) the set of pairs (i, j) which are admissible in the sense that xi− 1

2
,j

(resp. xi,j− 1
2
) is the mass center of a vertical (resp. horizontal) face of the mesh. For (i, j) ∈ Ix, we

denote by ϕx,(i− 1
2
,j) the shape function associated to the degree of freedom of the x-component of the

velocity located at xi− 1
2
,j; this discrete function is defined by:

(ϕx,(i− 1
2
,j))x

k− 1
2
,ℓ
= δik δ

j
ℓ , ∀(k, ℓ) ∈ Ix and (ϕx,(i− 1

2
,j))y

k,ℓ− 1
2

= 0, ∀(k, ℓ) ∈ Iy.
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Similarly, for (i, j) ∈ Iy, we denote by ϕy,(i,j− 1
2
) the shape function associated to the degree of freedom

for the y-component of the velocity located at xi,j− 1
2
, which is defined by

(ϕy,(i,j− 1
2
))x

k− 1
2
,ℓ
= 0, ∀(k, ℓ) ∈ Ix and (ϕy,(i,j− 1

2
))y
k,ℓ− 1

2

= δik δ
j
ℓ , ∀(k, ℓ) ∈ Iy.

Then, the viscous diffusion and dissipation terms are defined by the following analogues of (1.23) and
(1.24):

∀(i, j) ∈ Ix, −(divτ (ũ))x
i− 1

2
,j
=

1

|Kx
i− 1

2
,j
|

∫

Ω
τM(ũ) : ∇Mϕx,(i− 1

2
,j) dx,

∀(i, j) ∈ Iy, −(divτ (ũ))y
i,j− 1

2

=
1

|Ky

i,j− 1
2

|

∫

Ω
τM(ũ) : ∇Mϕy,(i,j− 1

2
) dx,

(1.27)

and:

(τ (ũ) : ∇ũ)K =
1

|K|

∫

K
τM(ũ) : ∇Mũdx. (1.28)

As a consequence of these definitions, as announced, the constraints (1.21) and (1.22) are satisfied.
Let us now check that the definition (1.27) coincides with the usual definition of the viscous diffusion
term for the MAC scheme. To this purpose, we consider the equation corresponding to the (i − 1

2 , j)
unknown for the x-component of the velocity. The shape function associated to this equation is
ϕx,(i− 1

2
,j) and its non-zero partial derivatives are ∂Mx ϕx,(i− 1

2
,j) and ∂My ϕx,(i− 1

2
,j):

∂Mx ϕx,(i− 1
2
,j) =

∣∣∣∣∣∣∣∣∣∣∣∣

1

hxi−1

over Ki−1,j ,

−1

hxi
over Ki,j,

0 elsewhere,

∂My ϕx,(i− 1
2
,j) =

∣∣∣∣∣∣∣∣∣∣∣∣

1

hy
j− 1

2

over Kxy

i− 1
2
,j− 1

2

,

−1

hy
j+ 1

2

over Kxy

i− 1
2
,j+ 1

2

,

0 elsewhere.

The corresponding entries of the discrete stress tensor of ũ (recall that, at the continuous level, this
tensor is defined by τ xx(ũ) = 4

3 µ∂xũ
x − 2

3 µ∂yũ
y and τ xy = µ(∂yũ

x + ∂xũ
x)) read over Ki−1+ε,j, with

ε = 0 and ε = 1:

τM(ũ)xxi−1+ε,j =
4

3
µi−1+ε,j

ũx
i− 1

2
+ε,j

− ũx
i− 3

2
+ε,j

hxi−1+ε

− 2

3
µi−1+ε,j

ũy
i+ε,j+ 1

2

− ũy
i+ε,j− 1

2

hyj
,

and, over Kxy

i− 1
2
,j− 1

2
+ε

, still with ε = 0 and ε = 1:

τM(ũ)xy
i− 1

2
,j− 1

2
+ε

= µi− 1
2
,j− 1

2
+ε

[ ũx
i− 1

2
,j+ε

− ũx
i− 1

2
,j−1+ε

hy
j− 1

2
+ε

+
ũy
i−1,j− 1

2
+ε

− ũy
i,j− 1

2
+ε

hx
i− 1

2

]
.

We thus get: ∫

Ω
τM(ũ)xx ∂Mx ϕx,(i− 1

2
,j) dx = Fi,j − Fi−1,j ,

where, for ε = 0 and ε = 1, Fi−1+ε,j = hyj τM(ũ)xxi−1+ε,j, which is the usual viscous diffusion flux
across the face σxi−1+ε,j (see Figure 1.2). Similarly,

∫

Ω
τM(ũ)xy ∂My ϕx,(i− 1

2
,j) dx = Fi− 1

2
,j+ 1

2
− Fi− 1

2
,j− 1

2
,
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: Kxy

i− 1
2
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2

∂My ux(x) =
ux
i− 1

2
,j
− ux

i− 1
2
,ext

hy
j− 1
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xi− 3
2

xi− 1
2

xi+ 1
2

yj− 1
2

yj+ 1
2

yj+ 3
2

ux
i− 1

2
,j

ux
i− 3

2
,j

ux
i+ 1

2
,j

ux
i− 1

2
,j+1

hxi

hy
j− 1

2

Figure 1.6: Boundary conditions, x-component of the velocity

where, for ε = 0 and ε = 1, Fi− 1
2
,j− 1

2
+ε = hxi−1/2 τM(ũ)xy

i− 1
2
,j− 1

2
+ε

, which is the usual expression of the

MAC viscous flux across the face σx
i− 1

2
,j− 1

2
+ε

(once again defined on Figure 1.2). The same arguments

apply for the y-component of the momentum balance equation.

Let us now show how to extend these definitions up to the boundary and how to deal with Dirichlet
boundary conditions. Modification of the above material is necessary only for the definition of a ”twice-
staggered cell” Kxy associated to a vertex lying on the boundary, and for one of the discrete partial
derivatives on this cell: ∂My ux near an horizontal boundary and ∂Mx uy near a vertical boundary. Let us
deal for instance with the first case, using the notations of Figure 1.6. Roughly speaking, everything is
done as if we were supposing that there is an additional horizontal stripe of mesh at the boundary, with
zero height and where the x-velocity is set at the prescribed value, let us say ux

i− 1
2
,ext

(which is zero

in case of homogeneous Dirichlet boundary conditions). Therefore, Kxy

i− 1
2
,j− 1

2

= (xi−1, xi)× (yj− 1
2
, yj),

hy
j− 1

2

= hyj/2 and

∂My ux(x) =
ux
i− 1

2
,j
− ux

i− 1
2
,ext

hy
j− 1

2

, ∀x ∈ Kxy

i− 1
2
,j− 1

2

.

The other partial derivative ∂Mx uy defined on Kxy

i− 1
2
,j− 1

2

is computed with its usual expression, but

using the prescribed value for uy
i−1,j− 1

2

and uy
i,j− 1

2

; this derivative vanishes in case of homogeneous

boundary conditions (in fact, as soon as the prescribed value for uy does not depend on x). For the
computation of the partial derivative of the shape functions, the external value is always zero (which
is consistent with the fact that a test function for an elliptic boundary value problem is supposed to
vanish on the boundary).

Definition (Neumann or perfect slip boundary conditions). In the case of Neumann or perfect slip
boundary condition, the quantity at the boundary is supposed to be the same as in the domain (i.e.,
for the example chosen above, ux

i− 1
2
,ext

= ux
i− 1

2
,j
). If the considered Neumann boundary condition

involves a non-zero shear surface force, this latter must be added at the righ-hand side of the balance
equation.

The three-dimensional case – Extending the computations of the preceding section to three space
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: Kxy

i+ 1
2
,j+ 1

2
,k

xi+ 1
2

yj+ 1
2

zk− 1
2

zk+ 1
2

Figure 1.7: The xy-staggered cell Kxy

i+ 1
2
,j+ 1

2
,k
, used in the definition of ∂My ux, ∂Mx uy, and τM(u)x,y =

τM(u)y,x.

dimensions yields the following construction.

– First, define three new meshes, which are ”edge-centred”: Kxy

i+ 1
2
,j+ 1

2
,k

is staggered from the

primal mesh Ki,j,k in the x and y direction (so Kxy

i+ 1
2
,j+ 1

2
,k
= (xi, xi+1)×(yi, yj+1)×(zk− 1

2
, zk+ 1

2
),

see Figure 1.7), Kxz
i+ 1

2
,j,k+ 1

2

in the x and z direction, and Kyz

i,j+ 1
2
,k+ 1

2

in the y and z direction.

– The partial derivatives of the velocity components are then defined as piecewise constant func-
tions, the value of which is obtained by natural finite differences:

- for ∂Mx ux, ∂My uy and ∂Mz uz, on the primal mesh,

- for ∂My ux and ∂Mx uy on the cells (Kxy

i+ 1
2
,j+ 1

2
,k
),

- for ∂Mz ux and ∂Mx uz on the cells (Kxz
i+ 1

2
,j,k+ 1

2

),

- for ∂My uz and ∂Mz uy on the cells (Kyz

i,j+ 1
2
,k+ 1

2

).

– Then, define four families of values for the viscosity field, µ, µxy, µxz and µyz, associated to the
primal and the three edge-centred meshes respectively.

– The shear stress tensor is obtained by the extension of (1.27) to d = 3, and the dissipation term
is given by (1.28).

1.3.3 The heat diffusion term

The discretization of the diffusion term depends on whether the mesh is super-admissible (in the sense
of Section 1.2, Condition (1.10)) or not. In the first case, we use the usual finite volume scheme based
on a two-point approximation of the fluxes [19]:

∀K ∈ M, −λ (∆e)K = λ
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL). (1.29)

Note that, in this relation, no flux is computed on the external faces, which is consistent with homo-
geneous Neumann boundary conditions. In the second case, we use the so-called SUSHI scheme, in
the variant described in [67, Section 3.1] for general meshes.
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For a ∈ R, let us denote by a+ and a− the positive and negative part of a respectively, i.e.
a+ = max(a, 0) and a− = −min(a, 0), so a+ ≥ 0, a− ≥ 0 and a = a+ − a−. For the scheme to ensure
the positivity of the internal energy, we need the Laplace operator to be monotone, in the following
sense:

∀ (eK)K∈M ⊂ R,
∑

K∈M

−λ (∆e)K (−e−K) ≥ 0. (1.30)

Lemma 1.3.1.
The finite volume scheme based on the two-point approximation of the fluxes (1.29) satisfies the
property (1.30).

Proof. Let (eK)K∈M ⊂ R be given. Then, by definition and then reordering the sums:

∑

K∈M

−λ (∆e)K (−e−K) =
∑

K∈M

(−e−K)
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL)

=
∑

σ=K|L∈Eint

|σ|
dσ

(eK − eL) (e
−
L − e−K),

and the conclusion follows by remarking that the function s 7→ s− is non-increasing.

Definition (Two-points flux discrete Laplace operator with Dirichlet boundary conditions). In case of
Dirichlet boundary conditions, the definition (1.29) of the discrete Laplace operator must be changed
to:

−(∆e)K =
∑

σ=K|L∈E(K)

|σ|
dσ

(eK − eL) +
∑

σ∈E(K)∩Eext

|σ|
dσ

(eK − eσ,D),

where eσ,D stands for the prescribed value for e on the face σ, and, for an external face, dσ stands for
the distance between σ and xK . Let us suppose that eσ,D ≥ 0. The additional terms (compared to
the Neumann case) in the expression of

∑
K∈M−λ (∆e)K (−e−K) read:

λ
∑

σ∈Eext , σ∈E(K)

|σ|
dσ

(eK − eσ,D)(−e−K),

and this sum is non-negative, since, by definition of the negative part of a real number, both products
eK (−e−K) and −eσ,D (−e−K) are non-negative. The two-point fluxes discrete Laplace operator thus still
satisfies the assumption (1.30) in case of Dirichlet boundary conditions.

Unfortunately, the fact that the discrete Laplace operator obtained by the SUSCHI scheme satisfies
(1.30) is wrong on general meshes; this restricts the applicability of the following analysis to super-
admissible meshes or to the Euler equations. As a matter of fact, however, this seems unavoidable
that the stability of the scheme be conditioned to the fact that internal energy remains non-negative,
and thus that the diffusion operator is monotone; circumventing this problem will require to build a
discrete Laplace operator satisfying a maximum principle, which is still an active subject of research
(and, of course, out of the scope of the present paper).
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1.4 Properties of the scheme

1.4.1 A priori estimates

The following lemma is an easy extension of [40, Lemma 3.11], to cope with diffusion terms (while [40]
only deals with Euler equations). Its proof follows, at the discrete level, the computation performed
in Appendix 1.A, which clarifies the effects of the pressure gradient scaling step.

Lemma 1.4.1 (Discrete kinetic energy balance).

A solution to the scheme (1.11) satisfies the following equality, for 1 ≤ i ≤ d, σ ∈ E(i)
S and 0 ≤ n ≤

N − 1:

1

2

|Dσ|
δt

[
ρnDσ

(un+1
σ,i )2 − ρn−1

Dσ
(unσ,i)

2
]
+

1

2

∑

ε∈Ē(Dσ)

Fn
σ,ε ũ

n+1
σ,i ũn+1

σ′,i

+ |Dσ| ∇σ,i(p
n+1) un+1

σ,i − |Dσ|divσ,i τ (ũn+1) ũn+1
σ,i + Pn+1

σ,i − Pn
σ,i = −Rn+1

σ,i , (1.31)

where

Pn+1
σ,i =

δt |σ|2
2|Dσ |

1

ρnDσ

(pn+1
L − pn+1

K )2, Rn+1
σ,i =

1

2

|Dσ|
δt

ρn−1
Dσ

(
ũn+1
σ,i − unσ,i

)2
. (1.32)

The residual terms Rn+1
σ,i may be seen as a numerical dissipation generated by the upwinding

in time of the scheme (i.e. the use of a backward time discretization). For viscous flows, it may be
anticipated that these terms tend to zero when the space and time steps tend to zero. On the opposite,
it is not the case when dealing with Euler equations, where they may subsist as measures borne by the
shocks (see Remark 1.4.1 below). Since, in this context, the scheme needs to be consistent with the
total energy balance, this dissipation (as the usual physical viscous dissipation) has to be compensated
in the internal energy balance; this is done by the corrective terms SK in (1.11e), which we are now
in position to define:

∀K ∈ M, Sn+1
K =

d∑

i=1

Sn+1
K,i , with Sn+1

K,i =
1

2
ρn−1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|
δt

(
ũn+1
σ,i − unσ,i

)2
. (1.33)

Thanks to the definition (1.14) of the density on the duals cells, this relation results from a distribution
of the residual terms associated to a face to its (one or two) adjacent cells. Therefore, we get:

∑

K∈M

Sn+1
K =

d∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i . (1.34)

A theoretical justification of this process is provided in [40], where it is shown in the 1D case that,
if the scheme is stable and converges to a limit, this limit indeed satisfies the weak form of the total
energy balance (1.1c). Note however that the scheme does not provide a conservative discretization of
the (conservative) total energy balance. Indeed, the discrete kinetic energy balance(s) and the internal
energy balance are not posed on the same mesh: precisely speaking, the kinetic energy is the sum
of the terms 1

2ρu
2
i , for 1 ≤ i ≤ d, and the discrete balance equation (1.31) for each of these terms is

posed on the mesh associated to the ith velocity component (that is d different meshes for the MAC
scheme, and a single mesh for the RT-CR discretization), while the internal energy balance is posed
on the primal mesh. To the best of our knowledge, these d+1 relations cannot be combined to obtain
a consistent discrete analogue of the total energy balance. This latter equation is only obtained in
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the weak sense at the limit of vanishing time and space steps. A similar algorithm was developed
for co-located discretization in [44], in which case the discrete kinetic energy inequality and internal
energy equation are written on the same mesh, so that local conservation of the total energy can be
ensured. Note that for both types of discretizations (staggered or colocated), without corrective terms,
the scheme is observed in numerical experiments to yield wrong shock solutions, which do not satisfy
the Rankine-Hugoniot conditions.

Definition (Behaviour of the remainderR (or the corrective term S)). Let us consider a one-dimensional
problem posed over Ω = (0, 1) and t ∈ (0, 1), and let u be a discrete function increasing with x and
such that, for x ∈ (0, 1), u(x, t) = 0 for t ∈ (0, T0(x)), u(x, t) = 1 for t ∈ (T1(x), 1) and u(x, .) affine
in the interval (T0(x), T1(x)). We suppose in addition that the number of time steps in the interval
(T0(x), T1(x)) does not depend on x, and is equal to N . This situation is obtained, for instance, when
u is a travelling-in-time piecewise-affine profile (with T0(x) = x0 + c t and T1(x) = x1 + c t, c being
the travelling velocity). In these conditions, for σ ∈ E , the difference un+1

σ − unσ is, up to side effects,
equal to 1/N for N time steps and to zero for the other ones, so we get, for the space-time L1-norm
of R or S:

N−1∑

n=0

∑

σ∈E

δt Rn+1
σ =

N−1∑

n=0

∑

K∈M

δt Sn+1
K ∼ |Ω| N 1

N2
=

|Ω|
N
.

Let us now make this computation for a sequence of more and more refined meshes. We then have
two situations: either N is bounded, and the L1-norm of R or S does not vanish, or N tends to +∞
when h tends to zero. These two situations seem to be encountered in the computations [40]:

– Shocks appear to be captured in a finite number of cells, for any space step, and so, when h
tends to zero, R and S tend to measures borne by the shocks (the L1-norm remains constant
while the measure of the support tends to zero); consequently, for solutions combining only
shocks, one may expect a near-to-one order of convergence in L1-norm. This behaviour may
be explained by the fact that the flow is compressive, and the convection counterbalances the
numerical diffusion.

– On the contrary, the scheme is much more diffusive at contact discontinuities; if we suppose
a diffusion induced by the upwinding, with a velocity which remains constant at the contact
discontinuity (so the diffusion is also constant, and of range h), we may anticipate a smearing of
the solution jump over a distance scaling like h1/2. In this case, R and S tend to zero. Moreover,
the first order convergence is lost: the order is reduced to approximately 1/2 (still in L1-norm)
in numerical experiments.

We now turn to the positivity of the scalar variables. The positivity of the density is a consequence
of the upwind discretization of the mass balance equation [26, Lemma 2.1]. To prove that the internal
energy remains positive, we need a preliminary lemma, which we now state. Let ψ a regular real
function. Then, at the continuous level, the following computation holds (formally), using twice the
mass balance equation:

ψ′(e)
(
∂t(ρe) + div(ρeu)

)
= ρψ′(e)

(
∂te+ u ·∇e

)

= ρ
(
∂t
(
ψ(e)

)
+ u ·∇

(
ψ(e)

))
= ∂t

(
ρψ(e)

)
+ div

(
ρψ(e)u

)
.

Thus, integrating over the domain Ω and using the boundary conditions:

∫

Ω
ψ′(e)

(
∂t(ρe) + div(ρeu)

)
dx =

d

dt

∫

Ω
ρψ(e) dx.
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The following lemma states a discrete analogue of this identity, which holds only for convex func-
tions ψ, because of the diffusion generated by the upwinding of the convection term. Its proofs is a
straightforward consequence of [40, Lemma A.2],

Lemma 1.4.2.
Let ψ, R −→ R, be a continuously differentiable convex function. A solution to the scheme (1.11)
satisfies the following inequality:

∑

K∈M

|K| ψ′(en+1
K )

[ 1

δt
(ρn+1

K en+1
K − ρnKe

n
K) + divK(ρn+1en+1un+1)

]

≥ 1

2

∑

K∈M

|K|
δt

[
ρn+1
K ψ(en+1

K )− ρnK ψ(enK)
]
. (1.35)

We are now in position to state and prove the following result.

Lemma 1.4.3 (Positivity of the internal energy).
Let us suppose that the discrete heat diffusion operator satisfies the monotonicity property (1.30),
and that the equation of state satisfies (1.8). Let n be such that 0 ≤ n ≤ N − 1, and let us suppose
that en > 0 (i.e. enK > 0, ∀K ∈ M). Then a solution to the scheme (1.11) satisfies en+1 > 0.

Proof. Let us multiply the discrete internal energy equation (1.11e) by −|K| (en+1
K )− and sum over

K ∈ M. We obtain T1 + T2 + T3 = T4 with:

T1 =
∑

K∈M

−|K| (en+1
K )−

[ 1

δt
(ρn+1

K en+1
K − ρnKe

n
K) + divK(ρn+1en+1un+1)

]
,

T2 =
∑

K∈M

−|K| (en+1
K )− pn+1

K divK(un+1),

T3 =
∑

K∈M

λ |K| (en+1
K )− (∆en+1)K ,

T4 =
∑

K∈M

−|K| (en+1
K )−

[(
τ (ũn+1) : ∇ũn+1

)
K
+ Sn+1

K

]
.

Thanks to Lemma 1.4.2 applied with the continuously differentiable convex function ψ(s) = (s−)2/2,
we have for the term T1, since e

n ≥ 0:

T1 ≥
1

2

∑

K∈M

|K|
δt

[
ρn+1
K

(
(en+1

K )−
)2 − ρnK

(
(enK)−

)2]
=

1

2

∑

K∈M

|K|
δt
ρn+1
K

(
(en+1

K )−
)2
.

Thanks to Assumption (1.8), we have T2 = 0, since, when (en+1
K )− 6= 0, en+1

K ≤ 0 and so the pressure
satisfies pn+1

K = ℘(ρn+1
K , en+1

K ) = 0. The relation (1.30) yields T3 ≥ 0. Finally, by construction, the
viscous dissipation term and Sn+1

K are non-negative, so T4 ≤ 0. Gathering all the terms, we obtain:

∑

K∈M

|K|
δt
ρn+1
K

(
(en+1

K )−
)2 ≤ 0,
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which shows that (en+1
K )− = 0, for all K ∈ M, and thus en+1 ≥ 0. Let us now consider a cell K such

that en+1
K = 0. The internal energy balance on K reads:

− 1

δt
ρnKe

n
K −

∑

σ=K|L

(FK,σ)
−en+1

L − λ
∑

σ=K|L

|σ|
dσ
en+1
L =

(
τ (ũn+1) : ∇ũn+1

)
K
+ Sn+1

K .

The first term at the left-hand side is by assumption negative, the other terms are non-positive and
the right-hand side is non-negative, which raises a contradiction. This concludes the proof.

Finally, we obtain the following estimate, which is a discrete analogue of the conservation of the
total energy.

Theorem 1.4.1 (Unconditional stability of the scheme)
Let us suppose that the discrete heat diffusion operator satisfies the monotonicity property (1.30),
that the equation of state satisfies (1.8), and that the initial conditions for ρ and e are positive. Then,
for 0 ≤ n ≤ N − 1, a solution to the scheme (1.11) satisfies ρn+1 > 0, en+1 > 0 and the following
estimate:

∑

K∈M

|K| ρn+1
K en+1

K +
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ| ρnDσ
(un+1

σ,i )2 +
δt2

2
|pn+1|2ρn,M

≤
∑

K∈M

|K| ρnKenK +
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ | ρn−1
Dσ

(unσ,i)
2 +

δt2

2
|pn|2ρn−1,M (1.36)

where, for any discrete pressure q and density ρ,

|q|2ρ,M =
∑

σ=K|L∈Eint

1

ρDσ

|σ|2
|Dσ|

(qL − qK)2.

Proof. Since the initial condition for ρ and e are assumed to be positive, by induction, the positivity
of the density is ensured by the upwind discretization of the scheme, and the positivity of the internal
energy follows from Lemma 1.4.3. Summing the discrete internal energy equation (1.11e) over the
cells K ∈ M, we obtain, by conservativity of the diffusion fluxes:

∑

K∈M

|K|
δt

[
ρn+1
K en+1

K − ρnK enK
]
+

∑

K∈M

|K| pn+1
K divK(un+1)

=
∑

K∈M

|K| (τ (ũn+1) : ∇ũn+1)K + Sn+1
K .

On the other hand, summing over the edges and the components i the equation of discrete kinetic
energy balance (1.31) yields, by conservativity of the convection flux of the kinetic energy:

1

2

d∑

i=1

∑

σ∈E
(i)
S

[ |Dσ |
δt

(
ρnDσ

(un+1
σ,i )2 − ρn−1

Dσ
(unσ,i)

2
)
+ |Dσ | ∇σ,i(p

n+1) un+1
σ,i + Pn+1

σ,i − Pn
σ,i

]

=

d∑

i=1

∑

σ∈E
(i)
S

[
|Dσ |divσ,i τ (ũn+1) ũn+1

σ,i −Rn+1
σ,i

]
.
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Summing these two relations and using the ∇− div duality property (1.19), the consistency property
(1.22) of the viscous diffusion and dissipation terms, the fact that the residual term in the kinetic
energy balance and the corrective term in the internal energy equation are designed to compensate
themselves (Equation (1.34)) and the definition (1.32) of Pn+1

σ,i concludes the proof.

1.4.2 Existence of a discrete solution

We recall the following theorem, which is a consequence of the topological degree theory (see e.g.
[18]), and which is a very powerful tool for the proof of existence of a solution to non-linear systems
arising from the discretization of non-linear partial differential equations.

Theorem 1.4.2 (Application of the topological degree, finite dimensional case)
Let V be a finite dimensional vector space on R, ‖.‖ a norm on V , let f be a continuous function
from V to V and let R > 0. Let us assume that there exists a continuous function F : V × [0, 1] → V
satisfying:

(i) F(., 1) = f ,

(ii) ∀α ∈ [0, 1], if v ∈ V is such that F(v, α) = 0 then v ∈ BR = {v ∈ V ; ‖v‖ < R},
(iii) the topological degree of F(., 0) with respect to 0 and to BR is equal to d0 6= 0.

Then the topological degree of F(., 1) with respect to 0 and to BR is also equal to d0 6= 0; consequently,
there exists at least a solution v ∈ BR such that f(v) = 0.

Theorem 1.4.3

Under the assumptions of Theorem 1.4.1, there exists a solution to the scheme (1.11).

Proof. Let us begin with the velocity prediction step. The step is a linear system of unknown ũ and,
applying Lemma 1.4.2 with ψ(s) = s2 to each component of the velocity yields:

1

2

d∑

i=1

∑

σ∈E
(i)
S

[ |Dσ |
δt

ρnDσ
(ũn+1

σ,i )2 − |Dσ| divσ,i τ (ũn+1) ũn+1
σ,i

]

≤
d∑

i=1

∑

σ∈E
(i)
S

[
|Dσ| ρn−1

Dσ
(unσ,i)

2 − |Dσ| ∇σ,i(p
n+1) ũn+1

σ,i .
]

Since ρn > 0 and the sum associated to the viscous diffusion (which is equal, by construction, to the
integral of the viscous dissipation over the domain) is non-negative, this relation yields an estimate
for ũn+1 by the Young’s inequality. The system thus has one and only one solution.

Let us now define M ∈ N and X ∈ R
M by:

M =

d∑

i=1

card(E(i)
S ) + 2card(M), X =

(
(un+1

σ,i )
σ∈E

(i)
S

, 1≤i≤d
, (ρn+1

K )K∈M, (ρn+1
K en+1

K )K∈M

)
.

Let F : RM × [0, 1] −→ R
M be the continuous function defined by

F(X,α) =
(
(Fu

σ,i)σ∈E(i)
S

, 1≤i≤d
, (Fρ

K)K∈M, (Fe
K)K∈M

)
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with:

∀σ ∈ E(i)
S , 1 ≤ i ≤ d, Fu

σ,i =
1

δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) + α ∇σ,i(p
n+1)−∇σ,i(p

n+1),

∀K ∈ M, Fρ
K =

1

δt
(ρn+1

K − ρnK) + αdivK(ρn+1un+1),

∀K ∈ M, Fe
K =

1

δt
(ρn+1

K en+1
K − ρnKe

n
K)−

(
τ (ũn+1) : ∇ũn+1

)
K
− Sn+1

K

+ α
[
divK(ρn+1en+1un+1) + pn+1

K divK(un+1)− λ (∆en+1)K

]
,

where, ∀K ∈ M, pn+1
K = ℘

(
ρn+1
K , en+1

K

)
. The system of equations F(X, 1) = 0 corresponds to the

correction step. The functionX 7→ F(X, 0) is linear (note that ρn, ũn+1, ∇(pn+1) and Sn+1 are known
quantities) and one to one. In addition, the positivity of ρn+1 and en+1 solution to F(X,α) = 0 is
preserved for α ∈ [0, 1], by the same arguments as for the scheme itself (cf. Theorem 1.4.1). By
conservativity of the convection fluxes, the equation:

∑

K∈M

|K|Fρ
K = 0

⇔
∑

K∈M

|K|
δt

(ρn+1
K − ρnK) = 0,

yields a uniform (with respect to α) bound for ρn+1 (for any norm, since we are in finite dimension).
Let us now consider the equation:

d∑

i=1

∑

σ∈E
(i)
S

Dσu
n+1
σ,i Fu

σ,i +
∑

K∈M

|K|Fe
K = 0

⇔
d∑

i=1

∑

σ∈E
(i)
S

Dσu
n+1
σ,i

[ 1
δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) + α
(
∇σ,i(p

n+1)−∇σ,i(p
n+1)

)]

+
∑

K∈M

|K|
[ 1
δt
(ρn+1

K en+1
K − ρnKe

n
K)−

(
τ (ũn+1) : ∇(ũn+1)

)
K
− Sn+1

K

+α
(
divK(ρn+1en+1un+1) + pn+1

K divK(un+1)− λ(∆en+1)K
)]

= 0.

Thanks to the conservativity of the diffusion and convection fluxes,

∑

K∈M

|K|divK(ρn+1en+1un+1) =
∑

K∈M

|K|λ(∆en+1)K = 0,

the ∇-div duality argument (1.19) reads:

∑

K∈M

|K| pn+1
K divK(un+1) +

d∑

i=1

∑

σ∈E
(i)
S

|Dσ|un+1
σ,i ∇σ,i(p

n+1) = 0,

and since, as mentioned above, ρn, ũn+1, ∇(pn+1) and Sn+1 are known quantities, we rewrite the last
relation:

Dσ

δt

d∑

i=1

∑

σ∈E
(i)
S

un+1
σ,i

[
ρnDσ

(un+1
σ,i − ũn+1

σ,i )
]
+

|K|
δt

∑

K∈M

ρn+1
K en+1

K ≤ C,
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where the bound C only depends on known quantities (and is independent of α). Invoking the identity
2a(a− b) = a2 + (a− b)2 − b2, we obtain:

Dσ

2δt

d∑

i=1

∑

σ∈E
(i)
S

ρnDσ
(un+1

σ,i )2 +
|K|
δt

∑

K∈M

ρn+1
K en+1

K ≤ C ′,

where C ′ is still a constant that only depends on known quantities and independent of α. Since ρn+1

and en+1 are positive and ρn+1 bounded, we thus get a uniform bound on un+1 and thus on X. Hence
Theorem 1.4.2 applies (with V = RM and ‖.‖ the uniform norm), and the correction step admits at
least one solution. This concludes the proof.

1.5 Numerical tests

We present in this section numerical tests, to assess the behaviour of the scheme. We begin with
a convergence study, on a two-dimensional analytical solution (Section 1.5.1). Then we address the
limiting cases which the scheme should be able to cope with, namely the computation of high speed
inviscid flows and of low Mach number viscous flows. Consequently, sections 1.5.2, 1.5.3 and 1.5.4 are
dedicated to classical benchmarks for Euler solvers, while we compute in the first part of Section 1.5.5
an (almost) incompressible flow around a cylinder. Since the three first Euler tests are performed with
the MAC space discretization, we continue this study in the remaining of Section 1.5.5 by computing
a high speed viscous flow on a general geometry (with the Rannacher-Turek space discretization),
obtained by keeping the same domain as in the previous incompressible case and decreasing the
pressure range (and thus the range of the speed of sound) up to get a supersonic flow. Finally, we
address a three dimensional inviscid case in Section 1.5.6.

For all the following test-cases, the fluid is supposed to obey the equation of state:

p = (γ − 1) ρ e, with γ = 1.4.

Computations are performed with the software component library CALIF3S, developed at IRSN [6].

1.5.1 A convergence study

In this section, we compare the numerical results obtained by implementing the above algorithm
in CALIF3S with an analytical solution. This latter is built as follows: we first derive an exact
analytical solution to stationary Euler equations, by extending to compressible flows the classical
test for incompressible flows often referred to as the ”standing-vortex” problem; then the diffusion
in the momentum balance equation and in the energy balance, and the viscous dissipation in this
latter equation are dealt with by a compensation at the right-hand side; finally, the problem is made
unstationary by a time translation (i.e., given a constant vector field a, the density ρ, the internal
energy e and the velocity v are deduced from the steady state solution ρ̂, ê and v̂ by ρ(x, t) = ρ̂(x−at),
e(x, t) = ê(x − at) and v(x, t) = v̂(x− at) + a; the change of variable x = x̂− at is also performed
on the right hand sides).

By construction, the velocity field is divergence-free, without consequence on the convergence study
(this specificity is not seen by the scheme whose solution is not discretely divergence-free); in addition,
letting the sound speed tend to infinity (i.e. the Mach number tend to zero), we obtain a problem
which tends to an incompressible flow problem. This allows us to check the behaviour of the scheme in
the zero Mach number limit. We therefore address four problems: Euler or Navier-Stokes equations,
for a Mach number in the range of unity and in the range of 10−3.
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Steady solution to the Euler equations – As in the standing-vortex problem, we search for
a velocity perpendicular to the position vector x = (x, y), with a magnitude only depending on the
radius:

u(x) =

[
u1
u2

]
= f(ξ)

[
−y
x

]
,

where ξ = |x|2 = (x2 + y2)2. Since this velocity field is divergence-free, we have, for i = 1, 2,

div(ρuiu) = u ·∇(ρui) = ρu ·∇ui + uiu ·∇ρ.

Choosing ρ = ̺(ξ), we observe that

div(ρu) = u ·∇ρ = 0,

and the mass balance equation is thus satisfied. In addition, div(ρuiu) = ρu · ∇ui, and an easy
computation yields:

ρ

[
u ·∇u1
u ·∇u2

]
= −̺(ξ) f(ξ)2

[
x
y

]

Let us now suppose that the pressure reads p = g(ξ). We thus have:

∇p = 2g′(ξ)

[
x
y

]
.

The momentum balance equation is therefore satisfied provided that

g′ =
1

2
ρf2, so g(ξ) = p0 +

1

2

∫ ξ

0
̺(s) f(s)2 ds,

with p0 a given pressure. Finally, the equation of state yields e = p/((γ − 1)ρ), thus e is a function of
ξ only, and we have:

div(ρeu) + p divu = u ·∇(ρe) + p divu,

and both terms vanish since ∇(ρe) is normal to u and divu = 0, which shows that the energy balance
is satisfied.

Numerical tests – We choose for f and ̺ the following functions:

f(ξ) =

∣∣∣∣∣
40 ξ2 (1− ξ)2 if ξ ≤ 1

0 otherwise
, ̺ = 1 + f,

so the vortex is local (i.e. of finite spatial extension) and both functions are in H2(Ω). The center
of the vortex is initially located at x0 = (0, 0)t, the translation velocity a is set to a = (1, 1)t and
Ω = (−1.5, 2.5)2. The range of variation of each unknown is ρ ∈ [1, 3.5], vi ∈ [−0.8, 2.8] for i = 1, 2
and p ∈ [p0, p0 + 3.93]. The final time is t = 1, and the solution is constant over the boundary
all over the computational interval, and thus may be fixed to this value if the diffusion is taken into
account (for the Euler equations, the normal velocity is set to zero, and so are all the convection fluxes;
since the pressure gradient operator is built as the transposed of the divergence, it vanishes on the
boundaries). The considered meshes are n×n grids, with n ∈ {80, 160, 320, 640, 1280}, and the time
step is δt = 0.01×80/n, so the CFL number is constant, and close to 2 (with a CFL number related to
the material velocity only, defined by CFL=(ρ|u| δt)/h). The space discretization is performed with
the MAC scheme.

Two tests are performed or the full Navier-Stokes equations with diffusion coefficients equal to
µ = 0.1 and λ = 0.1 γ: in the first one, p0 = 10, so the celerity of sound waves is close to 4 and
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the maximum Mach number is close to 0.75; in the second one, p0 = 105, so the Mach number is
everywhere lower than 0.01.

Then we turn to the Euler equations, still with p0 = 10 and p0 = 105. For these two tests, a
numerical viscosity µh is added to compensate the fact that we use a centered discretization in the
convection term of the momentum balance equation. The quantity µh scales as the space step and is
taken equal to µ = 0.01 ∗ 80/n, so close to (ρ|u|)maxh/50 where (ρ|u|)max stands for the maximum
value of the quantity ρ|u|; this value has to be compared with the range of the numerical viscosity
which would be induced by an upwind discretization, which reads ρ|u|h/2. Since this diffusion is
a numerical artefact, no compensating term is added at the right hand side of the momentum and
energy balance (contrary to what is done in the Navier-Stokes case). The transport of the internal
energy is performed with an upwind discretization, so no stabilization has to be added (i.e. λ = 0).

On Figure 1.8, we plot the difference between the computed and the analytical solution at t = 1,
as a function of the time and space step. This difference is evaluated in discrete L2-norm, defined for
both a regular and a discrete function ξ by:

||ξ|| =
( ∑

K∈M

|K| ξ(xK)2
)1/2

,

where, for K ∈ M, xK stands for the mass center of K. There errors are normalized with respect to
the error found for n = 80. We observe a very similar convergence for the two considered values of the
Mach number, both in the Navier-Stokes and Euler case. For diffusive cases, the order of convergence
is close to one; it is slightly lower (close to 0.8) without diffusion.

1.5.2 The Mach 3 facing step

We begin with a classical benchmark popularized in [81]. The computational domain is Ω = Ω \ S,
where Ω = (0, 3) × (0, 1) and S = (0.6, 3) × (0, 0.2), and the computation time interval is (0, 0.25).
The flow enters the domain through the left boundary {0} × (0, 1) with a velocity corresponding to
Mach= 3: 


ρ
u

p


(

(0, x2)
t, t

)
=




1.4
(3, 0)t

1


 , ∀x2 ∈ (0, 1), ∀t ∈ (0, 0.25).

The initial data is the same as the inflow conditions:


ρ
u

p


 (x, 0) =




1.4
(3, 0)t

1


 , ∀x ∈ Ω.

At the right boundary {3} × (0, 1), the flow should be free, since it leaves the domain at a velocity
greater than the sound speed. However, at the discrete level, an external pressure pext is needed to
evaluate the pressure gradient on the boundary faces; it is taken here at the same value as the pressure
at the entrance of the domain, so pext = 1; we discuss later on the effects of this numerical artefact.
An impermeability and perfect slip condition (i.e. u · n = 0, with n the unit outward normal on ∂Ω,
and τ (n) · t = 0 for any vector t such that t · n = 0) is prescribed on the rest of the boundary. At
t = 0, a shock is generated by this boundary condition at the flow-facing step, and then moves upflow,
and reaches and reflects on the upper and lower horizontal boundaries of the domain.

We display on Figure 1.9 the results obtained with the MAC space discretization, with a mesh built
from a 1200×400 uniform grid, by removing the cells included in S. The time step is δt = h/4 = 0.001,
which corresponds to a CFL number in the range of unity with respect to the celerity of the fastest
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Figure 1.8: Numerical errors in the Navier-Stokes (plots (a) and (b)) and Euler cases (plots (c) and
(d)), for a Mach number in the range of unity (plots (a) and (c)) or lower than 0.01 (plots (b) and
(d)).

wave (u1+ c = 4 at the inlet boundary, where c stands for the speed of sound). The artificial viscosity
is set to µ = 0.001, which roughly corresponds to a fifth of the numerical viscosity introduced by the
classical upwinding µupw ≃ ρ |u|h/2 of the convection term.

At first glance, the results are comparable to those presented in the recent literature [12, 33, 82, 11].
As could be expected, the stability of the scheme seems to be paid by a greater diffusion: some authors
observe a Kelvin-Helmholtz instability at the contact discontinuity line issued from the Mach triple
point (whose occurrence, even in the absence of any shear-stress, is plausible, since the slip line is
unstable) which does not appear here, and we also obtain a spurious Mach reflection at the bottom
boundary, probably caused by perturbations issued from the step corner. One way to circumvent this
problem would be to use (nonconforming) local mesh refinement; the development of such a scheme
is underway.

Pressure correction schemes are known to generate spurious boundary conditions for the pressure,
which, for the discretization used here, are implicit in the pressure elliptic operator in the correction
step (see [15, Section 2.3] for a discussion on this topic, with the same space discretization as here
but for the toy problem of the time-dependent incompressible Stokes equations, and Appendix 1.C of
the present paper). For a free outlet boundary (as for a Neuman condition), the artificial boundary
condition is a non-homogeneous Dirichlet boundary condition for the pressure, with the prescribed
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Figure 1.9: Mach 3 step – From top to bottom: density, pressure, enthalpy (H = e + p/ρ), first and
second component of the velocity at t = 4, obtained with h = 2.5 × 10−3, δt = 10−3 and µ = 10−3.
The variation intervals of the unknowns are ρ ∈ [0.235, 6.4], p ∈ [0.216, 12.04], H ∈ [2.46, 8.11],
u1 ∈ [0., 3.046], and u2 ∈ [−0.92, 1.82].
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value pext corresponding to the external pressure used in the gradient approximation at the boundary
faces. This boundary condition may be observed on Figure 1.9 to generate a very narrow boundary
layer near the outlet section, but without any effect in the remainder of the domain. A similar
behaviour was already observed for a similar scheme in the case of barotropic flows [49, Section 4].

1.5.3 The double Mach reflection

We now consider the classical test case (e.g. [33]) of a Mach=10 shock in air (γ = 1.4) impinging a
wall with a 60◦ angle. The right state (pre-shock) initial conditions correspond to a fluid at rest and
the left state is given by the Rankine-Hugoniot conditions, supposing that the velocity of the shock is
ω = 10 (while the speed of sound in the pre-shock state is c = 1, hence the denomination ”Mach=10
shock”): 


ρL
uL

pL


 =




8

8.25 (
√
3/2, 1/2)t

116.5


 ,



ρR
uR

pR


 =




1.4
(0, 0)t

1


 .

The computational domain is Ω = (0, 4) × (0, 1). The reflecting wall lies at the bottom of the
domain and starts at x1 = 1/6, i.e. impermeability and free slip boundary conditions are enforced on
∂Ωr = (1/6, 4)×{0} and outflow boundary conditions are prescribed at ∂Ωo = (0, 1/6)×{0}. At t = 0,
the shock impinges the reflecting wall (at x1 = 1/6), so the fluid is in the left state for x1 ≤ 1/6+x2/

√
3

and in the right state in the rest of the domain. Then, in the zones of Ω which are not perturbed by
the reflections, the shock moves with a velocity equal to ω (

√
3/2,−1/2)t. The external pressure at

the outflow boundary ∂Ωo is thus prescribed throughout the transient state to pL = 116.5. On the top
of the domain (0, 4) × {1}, the boundary condition is consistent to the undisturbed shock wave, thus
the unknowns ρ, u and p are prescribed to the left state values for x1 ≤ 1/6 + 1/

√
3 + (2 ∗ ω/

√
3) t

and to the right state values on the other part of the boundary. Finally, on {4} × (0, 1), the velocity
is prescribed to uR = (0, 0)t.

We plot on Figure 1.11 the results obtained with the MAC scheme, for t = 0.2 with a 1600 × 400
grid (consisting of square cells) and a time step δt = h/100. The artificial viscosity is µ = 0.01 (to be
compared, for instance, with ρL |uL|h/2 = 0.0825). Once again, the results are comparable to those
presented in the recent literature (e.g. [33]).

∂Ωr∂Ωo

left state

right state

shock position
at t = 0.2

Figure 1.10: Double Mach reflection – Geometry and initial conditions.
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Figure 1.11: Double Mach reflection – From top left to bottom right: density, pressure, enthalpy (H)
and first and second component of the velocity at t = 0.2, obtained with h = 2.5 10−3, δt = 2.5 10−5

and µ = 0.01. The variation ranges of the unknowns are ρ ∈ [1.4, 22.4], p ∈ [1, 559], H ∈ [2.5, 87.8],
u1 ∈ [−1.74, 15.9], and u2 ∈ [−5.53, 1.74]. A right part of the domain, where the solution is constant,
is not drawn.
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1.5.4 A two-dimensional Riemann problem

We address in this section a two-dimensional Riemann problem introduced in [71]. The computational
domain is Ω = (−0.5, 0.5)2 and the initial data consists in four constant states, in each of the four
sub-squares of Ω obtained by splitting it along the lines joining the mid-points of each segment of the
boundary (i.e. in Ω1,1 = (−0.5, 0) × (0, 0.5), Ω1,2 = (0, 0.5)2, Ω2,1 = (−0.5, 0)2 and Ω2,2 = (0, 0.5) ×
(−0.5, 0)). These constant states are chosen in such a way that each associated one-dimensional
Riemann problem (i.e. each one-dimensional problem obtained by picking as left and right initial
state the values of ρ, p in two adjacent sub-squares, together with the velocity component normal to
the line separating these sub-squares) has for solution a single wave. The four constant states chosen
here are:

Ω1,1 : ρ = 1, p = 1, u =

[
0.7276

0

]
Ω1,2 : ρ = 0.5313, p = 0.4, u =

[
0
0

]

Ω2,1 : ρ = 0.8, p = 1, u =

[
0
0

]
Ω2,2 : ρ = 1, p = 1, u =

[
0

0.7276

]

This configuration is referred to as the configuration 12 in [71]. Two shocks develop, the first one at
the interface of Ω1,1 and Ω1,2 and the second one at the interface of Ω2,2 and Ω1,2; they move toward
the right and the top of the domain, respectively. The other two interfaces (separating Ω2,1 from Ω1,2

and Ω2,2) do not move with time, and the tangential velocity is different on both sides of the interface;
such an interface is called in [71] a slip line, and corresponds to a (steady) contact discontinuity of the
system.

Results obtained with the MAC variant of the scheme, a 1000 × 1000 uniform grid, δt = 2.5 10−4

and an artificial viscosity fixed to µ = 510−5 are shown on Figures 1.12 and 1.13. They are in
good agreement with reference solutions (e.g. [71, 56, 51]). However, the used stabilization technique,
namely adding a physical-like artificial diffusion term, generates shear-stress instabilities along the
slip lines, as zoomed in Figure 1.13. This seems to be unavoidable, and more elaborate techniques
are necessary to avoid this phenomenon. Note however that the solution is not destabilized (in
particular, we do not observe the generation of spurious pressure waves polluting the solution in the
whole domain). In addition, the problem of computing accurately a standing slip line may look rather
academic, since actual difficulties appear when the slip line moves, i.e. when the (constant across
the line) normal component of the velocity is not zero; up to our knowledge, avoiding significant
perturbation of the solution in this latter case indeed remains a challenging issue for numerical Euler
solvers (see Appendix 1.B).
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Figure 1.12: 2D Riemann problem – Isolines of the density in the domain, and zoom at the center and
the upper right corner of the domain.
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Figure 1.13: 2D Riemann problem – Isolines of the density along the horizontal slip line.
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Figure 1.14: Low Mach flow past a cylinder – Geometry.

1.5.5 Navier-Stokes flows past a cylinder

We turn now to the Navier-Stokes equations, and first investigate the accuracy of the scheme in the
quasi-incompressible limit. To this purpose, we consider a problem addressed as a benchmark for
(incompressible) Navier-Stokes solvers in [70]. The problem is two-dimensionnal, and consists in a
flow between two parallel plates past a cylindrical obstacle. The geometry of the problem is described
in Figure 1.14. The fluid enters the domain on the left boundary, with an imposed velocity profile:

u =
(
4umy

H − y

H
, 0

)t
,

where H = 0.41 is the height of the channel and um = 1.5; the velocity is prescribed to zero at the
other boundaries except for the right-hand side, where we use a Neuman boundary condition:

(τ (u)− p I) n = −pext n,

where pext stands for a given external pressure. The initial pressure and pext are set both to 105, and
the initial density is ρ = 1. With these values, the sound speed c = (γp/ρ)1/2 is c ≃ 370, so the
characteristic Mach number is close to 0.003. The viscosity is µ = 0.001, so the Reynolds number,
defined as Re = ρūD/µ, where D = 0.1 is the diameter of the cylinder and ū = 2ux(0, H/2)/3, is
equal to 100.

A “coarse version“ of the meshes used for the presented computation is sketched in Figure 1.15;
real meshes are considerably refined with respect to this one, by diminishing the discretization step
along the characteristic lines (the boundaries and the concentric circles around the cylinder). In all
the computations, we set the time step to δt = 5 · 10−4s.
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Figure 1.15: A “coarse version“ of the mesh.

We observe in our computations the usual vortex-shedding phenomenon, well-known for incom-
pressible flows (the so-called Von-Karmann alley), and the pressure and density show very small
variations in space (the difference between the maximum and minimum value for the pressure and the
density in the domain is in the range of 2 and 3.10−5 respectively). To assess in a quantitative way the
accuracy of the results, we compute some characteristic flow quantities. The drag and lift coefficients,
denoted by cd and cl respectively, are given by

cd =
2Fd

ρū2D
, cl =

2Fl

ρū2D
,

where Fd and Fl are the drag and lift forces respectively:

Fd =

∫

D
(µ
∂ut
∂n

ny − pnx) dγ, , Fl =

∫

D
(−µ∂ut

∂n
nx − pny) dγ.

with D the disk surface, n = (nx, ny)
t its outward normal vector and ut the velocity in the direction

tangent to the disk, i.e. collinear to t = (ny,−nx)t. In Table 1.2 below, we denote by cd,max and cl,max

the maximum absolute values of these coefficients. The Strouhal number is defined as St = Df/ū,
where f is the frequency of separation, calculated directly from the period of Fl. We gather in
Table 1.2 the obtained values for these parameters for different meshes, together with their plausible
range derived from the set of the contributions to the benchmark [70]. Values entering this reference
interval are typeset in bold. The present algorithm seems as accurate as the incompressible pressure-
correction solver based on the same space discretization studied in [5].

Mesh Space unks cd,max cl,max St

m2 64840 3.4937 0.9141 0.2850
m3 215545 3.2887 0.9891 0.2955

m4 381119 3.2614 1.0062 0.2972

m5 531301 3.2365 1.0148 0.2976

Reference range 3.22- 3.24 0.99 - 1.01 0.295 - 0.305

Table 1.2: Characteristic flow quantities.

We now turn to a compressible version of this test, with a high characteristic Mach number, close
to Ma=

√
10. To this purpose, we set the initial pressure and the external pressure pext at the value

γ /10 ρ, so that the sound speed is now given by c2 = 0.1. In this case, since the heating on the
surface of the cylinder is important, we prescribe the internal energy at its inlet value at the surface
of the disk, and fix the thermal conductivity of the fluid to λ = 10−3. To avoid to complicate the
flow structure near the domain boundaries, we impose an impermeability and perfect slip condition at
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Figure 1.16: Mach=10 flow past a cylinder – Top: iso-lines of pressure near the disk (p ∈
(0.0713, 0.957)) at t = 5; bottom: still pressure iso-lines but on the whole computational domain, and
restricted to the interval (0.0713, 0.2)) (so the areas left in white on the figure correspond to zones
where p > 0.2).

the upper and lower boundaries and the inlet velocity is prescribed to a constant in space (and time)
value u = (1, 0)t. The time step is δt = 10−4. The rest of the configuration is unchanged, and the
initial values are still the same as the inlet values.

Results obtained at t = 5 with a mesh of about 106 cells are shown on Figures 1.16 and 1.17. We
observe a strong shock upstream the disk, with a Mach reflection at the upper and lower boundaries.
Subsequent (downstream) reflections yield ”X-structures” for the pressure field; they are progressively
damped, both by the physical viscosity and (probably) by the scheme diffusion. As in the Euler case,
the artificial boundary conditions imposed by the pressure correction technique to the pressure at the
outlet section spoil the flow only on a narrow (numerical) boundary layer.
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Figure 1.17: Mach=10 flow past a cylinder – From top to bottom: internal energy, density, x-
component of velocity, y-component of velocity at t = 5. The variation ranges of the unknowns
are e ∈ [0.178, 0.536], ρ ∈ [0.804, 12.23], u1 ∈ [−0.11, 1], and the value u1 = 0 corresponds to the
fourth iso-line starting from the center of the vortex attached to the cylinder, u2 ∈ [−0.326, 0.327].
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1.5.6 Interaction of a shock and a cube

To conclude this section, we turn to a three-dimensional problem, which consists in the interaction of
a shock wave and a cube. We consider the same pure shock wave as for the double Mach reflection
problem, which now travels in the x1-direction:



ρL
uL

pL


 =




8
8.25 (1, 0, 0)t

116.5


 ,



ρR
uR

pR


 =




1.4
(0, 0, 0)t

1


 ,

and (ρ,u, p) = (ρL,uL, pL) (resp. (ρ,u, p) = (ρR,uR, pR)) for x1 ≤ −1.3 (resp. x1 ≥ −1.3). The
obstacle is the cube (−1, 1)3. Since the problem presents two symmetry planes, defined by x2 = 0
and x3 = 0 respectively, the chosen computational domain is Ω = (−3, 5) × (0, 4) × (0, 4). The cells
are cubes of edges 0.02 long, which leads to a 400 × 200 × 200 uniform grid from which the cells
corresponding to the interior of the obstacle have been removed; the mesh finally includes 15 750 000
control volumes. The final time is T = 0.6 (remember that, in absence of obstacle, the shock speed is
equal to 10, so the front location at the final time should be the plane x1 = 4.7), and the chosen time
step is δt = 0.0005, which corresponds to a CFL number close to 1/3 with respect to the maximum
wave celerity in the left state (c ≃ 4.5). The MAC scheme is used for the space discretization, and the
convection operator in the momentum balance equation is centered and stabilized with an artificial
viscosity µ = 0.5 (lower than the diffusion entailed by the classical upwinding ρ |u|h/2 of this term,
which is greater than 1 locally in space and time during the computation).

The obtained pressure field is shown on Figures 1.18 and 1.19. A strong reflection is observed on
the obstacle: the maximum pressure rises to p ≃ 900 at the first reflections, and then progressively
decreases to p ≃ 500. Then the pressure wave overpasses the obstacle, and a ”shock-against-shock”
recomposition is observed at a time close to t = 0.45 (first illustration on Figure 1.18) at the intersection
of the symmetry planes, which leads to a maximum pressure close to the pressure observed on the
left face of the obstacle, i.e. p ≃ 500; the pressure field at t = 0.456 on the plane x1 = 2 (so at a
distance of 1 after the obstacle) is shown on Figure 1.19. This recomposition leads to an irregular
Mach reflection, which clearly appears later (second illustration on Figure 1.18, t = 0.6).

Since this test is representative of industrial applications, we give now some information about the
numerical resolution. The computation is performed in parallel (the CALIF3S software uses PETSc
primitives) on an infiniband linux cluster and involves 60 Intel Xeon X5660 2.8GHz processors, for
about 14 hours of restitution time. The solution of the linear system for the prediction step is performed
with a GMRES algorithm, preconditioned on each subdomain by ILU0; the solution of the system
takes about 1.5 hours (cumulated over the 1200 time steps), for about 47 106 unknowns (the degrees
of freedom of the 3 components of the velocity, which are coupled in the same system, to allow the
discretization of the viscous tensor under its general form, used here only for stabilization purposes).
The correction step is solved by a Newton algorithm (see Appendix 1.C), which converges in 4 to 5
iterations. Each internal system is solved by the same GMRES solver as in the prediction step, with
now about 30 106 unknowns (pressure and internal energy degrees of freedom), for a cumulated time
close to 3.3 hours. The rest of the CPU time (about 8 hours) is used for the assembling of these
systems.
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Figure 1.18: Interaction between a shock and a cube – Pressure on the symmetry planes x=20 and
x3 = 0 at times t = 0.456 (top) and t = 0.6 (bottom).
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Figure 1.19: Interaction between a shock and a cube – Pressure at t = 0.456 on the plane x1 = 2.
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Appendix

1.A Pressure correction methods and kinetic energy balance

When applying a pressure correction method to the computation of a variable density flow, a specific
treatment of the pressure is necessary to obtain a kinetic energy identity. To this purpose, an ad hoc
technique was introduced in [32] and, to our knowledge, it is still today the only work on this topic.
We propose here a different method, and briefly compare it with the algorithm described in [32].

To present the difficulty which we face, let us work in the time semi-discrete formalism, and let us
denote by ∇pn+1 the pressure gradient used in the velocity prediction step, postponing its definition
for a while. Let us also denote by C(ũn+1) the convection operator for the velocity, and let us suppose
that this operator satisfies an identity of the form:

C(ũn+1) · ũn+1 =
1

2 δt

[
ρm+1|ũn+1|2 − ρm|un|2

]
+
1

2
div(|ũn+1|2 qℓ) +Rn+1, (1.37)

where ℓ and m stand for time indices depending on n and qℓ stands for an approximation of the mass
flux, and with Rn+1 ≥ 0. In the present paper, we have:

C(ũn+1) =
1

δt
(ρnũn+1 − ρn−1un) + div(ρnũn+1 ⊗ un),

and Relation (1.37) is satisfied with m = n− 1 and q = ρu, ℓ = n. Other choices for the convection
operator are possible [32, 60, 63]. With the above notations, the velocity prediction step reads:

C(ũn+1)− div
(
τ (ũn+1)

)
+∇pn+1 = 0. (1.38)

Our aim here is to obtain a discrete equivalent of the kinetic energy balance, which we recall:

1

2
∂t(ρ |u|2) +

1

2
div(ρ |u|2 u)− div(τ (u)) · u+∇p · u = 0. (1.39)

This relation is obtained by taking the inner product of the momentum balance equation by the
velocity. Thus, let us take the inner product of (1.38) by ũn+1. Using (1.37), we get:

1

2 δt

[
ρm+1|ũn+1|2 − ρm|un|2

]
+
1

2
div(|ũn+1|2 qℓ)

− div
(
τ (ũn+1)

)
· ũn+1 +∇pn+1 · ũn+1 = −Rn+1. (1.40)

This relation is not a discrete analogue of (1.39), since the first two terms cannot be interpreted as a
discrete time derivative, due to the presence in the first term of |ũn+1|2 instead of |un+1|2. Hence, we
now turn to the correction step, and write the velocity correction equation as:

1

δt
ρm+1un+1 +∇pn+1 =

1

δt
ρm+1ũn+1 +∇pn+1.
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Let us multiply this relation by [δt/(2ρm+1)]1/2 and square the resulting equation, to obtain:

1

2δt
ρm+1|un+1|2 +∇pn+1 · un+1 +

δt

2ρm+1
|∇pn+1|2

=
1

2δt
ρm+1|ũn+1|2 +∇pn+1 · ũn+1 +

δt

2ρm+1
|∇pn+1|2.

Adding this relation with (1.40), we get:

1

2 δt

[
ρm+1|un+1|2 − ρm|un|2

]
+
1

2
div(|ũn+1|2 qℓ)

− div
(
τ (ũn+1)

)
· ũn+1 +∇pn+1 · un+1 = −Rn+1 −Rn+1

∇
. (1.41)

with:

Rn+1
∇

=
δt

2ρm+1
|∇pn+1|2 − δt

2ρm+1
|∇pn+1|2.

Equation (1.41) is now a discrete analogue to (1.39). However, it is interesting to recast Rn+1
∇

as a
difference of the same quantity at two different time levels, for at least two reasons:

– first, summing (1.41) in time, we obtain in this case a stability estimate.

– Second, if Relation (1.41) is multiplied by a regular test function, lest us say ϕn+1, and, once
again, summed in time, a discrete integration by parts in time makes δt times the (discrete) time
derivative of ϕ appear. The factor δt is decisive to prove that the corresponding sum, i.e. the
sum over n of Rn+1

∇
ϕn+1, tends to zero, even for an irregular (shock) solution. No counterpart

of the remainder term Rn+1
∇

thus needs to be introduced in the internal energy balance in the
case of the Euler equations.

To reach this goal, we thus need to have:

δt

2ρm+1
|∇pn+1|2 = δt

2ρm
|∇pn|2

which yields the following definition for ∇pn+1:

∇pn+1 =
[ρm+1

ρm

]1/2
∇pn. (1.42)

Note that this quantity is not necessarily the (discrete) gradient of a discrete pressure field (hence,
the notation ∇p instead of ∇p).

Finally, we thus only need to multiply the beginning-of-step pressure gradient by a factor (hopefully
known, which is the case here with m = n− 1), which almost leaves unchanged the count of algebraic
operations associated to a time step.

On the contrary, the method proposed in [32] consists in solving for pn+1 the following elliptic
problem:

div
[ 1

ρm+1
∇pn+1

]
= div

[ 1

(ρm+1 ρm)1/2
∇pn

]
. (1.43)

By more intricate arguments than for (1.42) (especially for the issue of the introduction of corrective
terms in the internal balance energy), it may be shown that (1.43) provides the same benefits as
(1.42). In addition, in one space dimension, both relations yields the same corrected gradient (i.e.
∇pn+1 = ∇pn+1).
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1.B Behaviour of the scheme on contact discontinuities

In this section, we check the ability of the proposed scheme to deal with contact discontinuities without
generating numerical perturbations. We forget boundary conditions, or, in other words, suppose that
Ω = R

d, 1 ≤ d ≤ 3.

In 1D, this just amounts to check that the scheme is able to propagate a discontinuity for ρ and e
while keeping the velocity and the pressure constant. Let us thus suppose that, at the time level n,
un and pn are constant, let us say un ≡ ū and pn ≡ p̄, and let us examine the consequences of this
assumption in the scheme (1.11):

- Since the pressure gradient ∇pn vanishes, so does ∇pn+1;

- Thanks to the fact that the convection operator in the momentum balance equation (1.11b)
vanishes for constant advected fields ũn+1 (or, in other words, thanks to the fact that the mass
balance over dual cells (1.15) holds), we obtain that ũn+1 ≡ ū. In addition, the expression (1.32)
of the remainder terms (Rn+1

σ ) shows that they vanish, and so do the corrective terms (Sn+1
K )

(see Equation (1.33)).

- Let us now suppose that the equation of state is such that the product ρe is a function of the
pressure only:

ρe = f(p). (1.44)

Typical exampled of such a situation are perfect gases (p = (γ − 1) ρe) or stiffen gases (p =
(γ − 1) ρe + γp∞, with p∞ a fixed positive constant). Then it is easy to see the pn+1 ≡ p̄
and un+1 ≡ ū satisfy Equations (1.11c) and (1.11e). Equation (1.11d) can then be seen as a
transport equation (since un+1 is constant) and yields ρn+1 while the equation of state yields
en+1.

This shows that the pressure and velocity remain constant through contact discontinuities, provided
that the assumption (1.44) holds.

Let us now turn to the two-dimensional case. The preceding reasoning still holds for the specific
solutions where u and p are constant and ρ and e are transported. We now consider the contact
discontinuity wave (specific to the two-dimensional case) which consists of the transport of one com-
ponent of the velocity, let us say u · t, by a velocity field constant in the direction n, with n · t = 0.
For instance, such a situation is obtained for the initial data:

ρ0 = 1, p0 = 1, u =

[
1
5

]
on (−∞, 0)× R and u =

[
1
−5

]
on (0,+∞)× R.

By similar arguments as previously, we would obtain that u1 ≡ 1, ρ ≡ 1 and p ≡ 1 while u2 is a
solution of a transport equation given by the second component of the momentum balance, provided
that the corrective terms (Sn

K) identically vanish. Unfortunately, the discrete kinetic energy balance is
not exactly satisfied (see the expression (1.32) of the remainder terms), the terms (Sn

K) are not equal
to zero, and we cannot expect the constant solution for ρ, p (and e) and u1 to be preserved. This may
be observed on Figure 1.B.1, where we plot the solution obtained with Ω = (−0.5, 0.5) × (−0.5, 0.5),
a mesh consisting of 3 horizontal stripes of n = 500, n = 1000 and n = 2000 cells, at t = 0.12. The
equation of state is:

p = (γ − 1) ρe, γ = 1.4,

so that the constant sound speed satisfies c2 = 1.4. The time step is set to δt = 1/(4n) (the CFL
number is therefore close to 1/2), and the artificial viscosity is set to µ = 1/(40n) (so 20 times lower
than the viscosity which would be generated by an upwind discretization of the velocity convection
term). As shown by the profile for u2, this diffusion is sufficient to damp most of the oscillations
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which should be generated by the transport of a discontinuity by a centered convection operator.
Numerically, we observe a strong heating at the contact discontinuity, which leads to a strong decrease
of the density, and subsequent perturbations on the pressure and the horizontal velocity (recall that
these quantities are constant in the continuous solution). The difference between the numerical and
the exact solutions seems to be only bounded in the L∞-norm (in fact, for ρ and e only) and to tend
to zero in L1 (and therefore in Lp, for any finite p).

To the best of our knowledge, the observed behaviour is common to all Euler solvers. Moreover,
the previous analysis shows that, to avoid perturbations, the scheme should satisfy an exact discrete
kinetic balance (i.e. without remainder term). As soon as ρ is constant, this can be achieved by
switching from a backward Euler to a Crank-Nicolson time discretization of the momentum balance
and setting to zero the artificial viscosity [5]; however, it is of little interest, since the second component
of the velocity then suffers from numerical oscillations and, essentially, since ρ varies across a contact
discontinuity in the general case. For our scheme, a solution could be also to arbitrarily set the
corrective terms (Sn

K) to zero, since they are probably not necessary at contact discontinuities to the
consistency of the scheme (indeed, contrary to what happens at shocks, they are expected to tend
to zero in L1 as the mesh and time steps tend to 0, see Remark 1.4.1); however, this would require
to be able to distinguish dynamically (i.e. in view of the results, during the computation) a contact
discontinuity from a shock, which does not seems to be an easy task.

1.C Numerical solution of the correction step

First case: Euler equations, ρe = f(p) – When the equation of state is such that the product ρe
is a function of the pressure only, and in the absence of heat diffusion (i.e. λ = 0), the correction step
may be solved in two decoupled substeps:

- First step - From Equation (1.11c), the end-of-step velocity may be written as a function of the
end-of-step pressure (and of known quantities). Inserting this expression in the internal energy
balance (1.11e) yields a discrete nonlinear parabolic problem for the pressure only, which thus
allows to compute pn+1. Then, (1.11c) gives un+1.

- Second step - The mass balance (1.11d) is now a linear problem for ρn+1 (or 1/en+1), and the
equation of state finally yields en+1 (or ρn+1).

Let us now write the discrete parabolic problem for the pressure as:

∀K ∈ M,
|K|
δt

[
f(pn+1

K )− f(pnK)
]
+

∑

σ∈E(K)

Gn+1
K,σ = Sn+1

K . (1.45)

We are now going to give the expression of each of the terms of this equation. From (1.11c), we get:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S , un+1

σ,i = ũn+1
σ,i − δt

ρnDσ

∇σ,i(p
n+1) +

δt

ρnDσ

∇σ,i(p
n+1).

Considering only the normal component of the velocity at the face and using the definition (1.16) of
the discrete gradient, we get:

∀σ = K|L ∈ Eint, un+1
K,σ = ũn+1

K,σ +
δt |σ|
ρnDσ

|Dσ |
(pn+1

K − pn+1
L )− δt |σ|

(ρnDσ
)1/2(ρn−1

Dσ
)1/2 |Dσ|

(pnK − pnL),

where, to define ũn+1
K,σ , we adopt the same convention for ũ as for u, i.e. Relation (1.13). When

the normal velocity is prescribed to zero at the external faces, so is the pressure gradient, and thus
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Figure 1.B.1: Slip contact discontinuity – Results for h = 1/500, h = 1/1000 and h = 1/2000, along
a line parallel to the x-axis. Internal energy (top-left), density (top-right), pressure (middle-left),
x-velocity (middle-right) and y-velocity (bottom).

un+1
K,σ = 0. Let us denote by ṽn+1

K,σ the known part of the right-hand side in the previous relation, i.e.:

∀σ = K|L ∈ Eint, ṽn+1
K,σ = ũn+1

K,σ − δt |σ|
(ρnDσ

)1/2(ρn−1
Dσ

)1/2 |Dσ|
(pnK − pnL).

Using this relation in (1.11e), we get:

∀σ = K|L ∈ Eint, Gn+1
K,σ = (Gn+1

K,σ )conv + (Gn+1
K,σ )diff , with

(Gn+1
K,σ )conv = |σ| f(pn+1

σ ) ṽn+1
K,σ , (Gn+1

K,σ )diff =
δt |σ|2
ρnDσ

|Dσ |
[
f(pn+1

σ ) + pn+1
K

]
(pn+1

K − pn+1
L ),
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where pn+1
σ stands for the upwind value of pn+1 with respect to un+1

K,σ . On the external faces, still with

impermeability conditions, Gn+1
K,σ = 0. This nonlinear problem is solved by a quasi-Newton iteration,

and the upwinding of pn+1 is performed with respect to the normal velocity at the previous Newton
iteration, which does not seem to pose any problem of convergence. The system (1.45) may be seen as
a discrete parabolic problem, with a discrete convection-diffusion operator the diffusion part of which
obeys a Neumann boundary condition (since the flux (Gn+1

K,σ )diff is zero at the external faces). Note

that this problem is not conservative (the ”diffusion coefficient” is proportional to f(pn+1
σ ) + pn+1

K on
one side of the face and to f(pn+1

σ ) + pn+1
L on the other side), which is a consequence of the fact that

the internal energy balance itself is non-conservative.

When the normal velocity is free at some external face σ, the predicted velocity and the pressure
gradient at σ no longer vanishes, and we get, denoting by K the cell adjacent to σ:

Gn+1
K,σ =

δt |σ|2
ρnDσ

|Dσ|
[
f(pn+1

K ) + pn+1
K

]
(pn+1

K − pext) + f(pn+1
K )ṽn+1

K,σ ,

where we have supposed that the flow leaves the domain, so the upwind value for pn+1 at σ is pn+1
K ,

and pext stands for the external pressure used to approximate the gradient at the face. The discrete
diffusion operator for p thus now incorporates an implicit Dirichlet boundary condition on σ.

General case – In the general case, the above-mentioned decoupling of equations in the correction
step is not possible, and we use a procedure which is more standard in pressure correction algorithms:
as previously, from Equation (1.11c), the end-of-step velocity is written as a function of the end-of-step
pressure (and of known quantities), but this expression is now inserted in the mass balance (1.11d),
to produce an equation which once again looks like a discrete nonlinear parabolic problem for the
pressure, but unfortunately still involves the internal energy, through the computation of the density
thanks to the equation of state; then this equation is solved simultaneously with the internal energy
balance (1.11e), by a coupled Newton iteration.

This algorithm seems rather robust, and has been used for all the tests of this paper; it typically
converged in five or less iterations. However, switching to the decoupled version sometimes proved
useful (in the sense that it allowed significantly greater time steps) in industrial cases, combining
stiff shocks with a space grid resolution limited by the computing time; for instance, this was done to
compute a jet generated by a leak through a wall separating a low pressure (some Pa) large containment
from the outside atmosphere (”loss-of-vacuum” accident scenario in the ITER facility). Note that,
as soon as the equation of state gives ρe as a function of p only, using the decoupled solution may
be done, at the price to postpone the treatment of the diffusion in the internal energy balance to an
additional step of the algorithm.
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Chapter 2

A staggered pressure correction

numerical scheme to compute a

travelling reactive interface between

two compressible media

Abstract

We address in this paper a model often used for the simulation of turbulent deflagrations in
industrial applications. The flow is governed by the Euler equations for a variable composition mixture
and the combustion modelling is based on a phenomenological approach: the flame propagation is
represented by the transport of the characteristic function of the burnt zone, where the chemical
reaction is complete; outside of this zone, the atmosphere remains in its fresh state. Numerically, we
approximate this problem by a penalization-like approach, i.e. using a finite conversion rate with a
characteristic time tending to zero with the space and time seps. The numerical scheme works on
staggered, possibly unstructured, meshes. The time-marching algorithm is of segregated type, and
consists in solving in a first step the chemical species mass balances and then, in a second step, mass,
momentum and energy balances. For this latter stage of the algorithm, we use a pressure correction
technique. The scheme is shown to satisfy the same stability properties as the continuous problem:
the chemical species mass fractions are kept in the [0, 1] interval, the density and the sensible internal
energy stay positive and the integral over the computational domain of a discrete total energy is
conserved. In addition, supposing for a while that the chemical rate is finite, the scheme is proved to
be weakly consistant, in the Lax-Wendroff sense. Finally, we observe numerically that the penalization
procedure converges, i.e. that making the chemical time scale tend to zero allow to converge to the
solution of the target (infinitely fast chemistry) continuous problem. Tests also evidence that the
scheme accuracy dramatically depends on the discretization of the convection operator in the chemical
species mass balances.

2.1 Problem position

We study in this paper a numerical scheme for the computation of large scale turbulent deflagrations
occurring in a partially premixed atmosphere. In usual situations, such a physical phenomena is driven
by the progress in the atmosphere of shell-shaped thin zone, where the chemical reaction occurs and
which thus separates the burnt area from fresh gases; this zone is called the flame brush. The onset
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of the chemical reaction is due to the temperature elevation, so the displacement of the flame brush
is driven by the heat transfers inside and in the neighbouring of this zone. Modelling of deflagrations
still remains a challenge, since the flame brush has a very complex structure (sometimes presented as
fractal in the literature), due to by thermo-convective instabilities or turbulence [68, 66]. Whatever the
modelling strategy may be, the problem thus needs a multiscale approach, since the local flame brush
structure is out of reach of the computations aimed at simulating the flow dynamics at the observation
scale, i.e. the whole reactive atmosphere scale. A possible way to completely circumvent this problem
is to perform an explicit computation of the flame brush location, solving a transport-like equation
for a characteristic function of the burnt zone; such an approach transfers the modelling difficulty to
the evaluation of the flame brush velocity, by an adequate closure relation, and the resulting model is
generally referred to as a Turbulent Flame velocity Closure (TFC) model [85]. The transport equation
for burnt zone is called in this context the G-equation, its unknown (the characteristic function) being
denoted by G [66]. Such a modelling is implemented in the in-house software P2REMICS (for Partially
PREMIxed Combustion Solver) developped, on the basis of the software components library CALIF3S
(for Components Adaptative Library For Fluid Flow Simulations, see [6]) at the French Institut de
Radioprotection et Sûreté Nucléaire (IRSN) for safety evaluation purposes; this is the context of the
work presented in the present paper.

Usually, TFC models applies to perfectly premixed flows (i.e. flows with constant initial composi-
tion), and the chemical state of the flow is governed by the value of G only: G ∈ [0, 1], for G ≥ 0.5,
the mixture is supposed to be in its fresh (initial) state and G < 0.5 is supposed to correspond to the
burnt state; in both cases, the composition of the fuel is known (to the initial value in the fresh zones,
and to the state resulting from a complete chemical reaction in the burnt one).

However, for partially premixed turbulent flows (i.e. flows with non-constant initial composition),
the situation is more complex, since the composition of the mixture can no more be deduced from the
value of G.An extension for this situation, in the inviscid case, is proposed in [2]. The line followed to
formulate this model is to write transport equations for the chemical species initially present in the
flow, as if no chemical reaction occured, and then to compute the actual composition in the burnt
zone (i.e. the part of the physical space where G < 0.5) as the chemical equilibrium composition, thus
supposing an infinitely fast reaction. This model is referred to in the following as the ”asymptotic
model”, and is recalled in the first part of Section 2.2.

We propose here an alternate extension, which consists in keeping the classical reactive formulation
of the chemical species mass balance, but evaluating the reaction term as a function of G: it is set to
zero in the fresh zone (G ≥ 0.5), and to a finite (but possibly large) value in the burnt zone (G < 0.5).
This model is referred to as the ”relaxed model”; it is in fact more general, as it may be readily
extended to cope with diffusion terms, while the ”asymptotic model” does not (for this purpose, a
balance for the actual mass fractions is necessary). We then build a numerical scheme, based on a
staggered discretization of the unknowns, for the solution of the relaxed model; this algorithm is of
fractional step type, and employs a pressure correction technique for hydrodynamics. It enjoys the
same stability properties as the continuous model: positivity of the density and the internal energy,
conservation of the total energy, chemical species mass fractions lying in the interval [0, 1]. In addition,
its is shown to be weakly consistent with the continuous problem (in the Lax-Wendroff sense). This
algorithm is an extension to the reactive case of the numerical scheme for compressibe Navier-Stokes
equations described and tested in [30].

Making the reaction term stiffer and stiffer, the relaxed model should boil down to the asymptotic
one, for which a closed form of the solution of Riemann problems is available. We perform numerical
tests to check this property, which confort this assumption. In addition, we observe that the accuracy
of the scheme (for this kind of application) dramatically depends on the numerical diffusion introduced
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by the scheme in the mass balance equation for the chemical species, comparing the results for three
approximation of the convection operator in these equations: the standard upwind scheme, a MUSCL-
like scheme introduced in [67] and a first ordre scheme designed to reduce diffusion proposed in [17].

The presentation is structured as follows. We first introduce the asymptotic and the relaxed models
in Section 2.2. Then we give an overview of the content of this paper in Section 2.3, writing the scheme
in the time semi-discrete setting and stating its stability and consistency property. The fully discrete
setting is given in two steps, first describing the space discretization (Section 2.4) and then the scheme
itself (Section 2.5). Section 2.6 is devoted to the stability and consistency analysis. Finally, numerical
experiments are presented in Section 2.7.

2.2 The physical models

We begin with the description of the asymptotic model introduced in [2] and then turn to the relaxed
model proposed in the present work.

The asymptotic model - For the sake of simplicity, only four chemical species are supposed
to be present in the flow, namely the fuel (denoted by F ), the oxydant (O), the product (P ) of the
reaction, and a neutral gas (N). A one-step irreversible total chemical reaction is considered, which
is written:

νFF + νOO +N → νPP +N,

where νF , νO and νP are the molar stoichiometric coefficients of the reaction. We denote by I the
set of the subscripts used to refer to the chemical species in the flow, so I = {F,O,N,P} and the set
of mass fractions of the chemical species in the flow reads {yi, i ∈ I} (i.e. {yF , yO, yN , yP}). We
now define the auxiliary unknowns {ỹi, i ∈ I} as the result of the (inert) transport by the flow of the
initial state, which means that the {ỹi, i ∈ I} are the solutions to the following system of equation:

∂t(ρỹi) + div(ρỹiu) = 0, ỹi(x, 0) = yi,0(x) for i ∈ I, (2.1)

where ρ stands for the fluid density, u for the velocity, and yi,0(x) is the initial mass fraction of the
chemical species i in the flow. These equations are supposed to be posed over a bounded domain
Ω of Rd, d ∈ {1, 2, 3} and a finite time interval (0, T ). The initial conditions are supposed to verify∑

i∈I yi,0 = 1 everywhere in Ω, and this property is assumed to be valid for any t ∈ (0, T ), which is
equivalent with the mixture mass balance, given below. The characteristic function G is supposed to
obey the following equation:

∂t(ρG) + div(ρGu) + ρuuf |∇G| = 0, (2.2)

associated to the initial conditions G = 0 at the location where the flame starts and G = 1 elsewhere.
The quantity ρu is a constant density, which, from a physical point of view, stands for a characteristic
value for the unburnt gases density. The chemical mass fractions are now computed as:

∣∣∣∣∣∣

if G > 0.5, yi = ỹi for i ∈ I,

if G ≤ 0.5, yF = νFWF z̃
+, yO = νOWO z̃

−, yN = ỹN , with z̃ =
1

νFWF
ỹF − 1

νOWO
ỹ0.

(2.3)

In these relation, z̃+ and z̃− stand for the positive and negative part of z̃, respectively, i.e. z̃+ =
max(z̃, 0) and z̃− = −min(z̃, 0), and, for i ∈ I, Wi is the molar mass of the chemical species i. The
physical meaning of Relation (2.3) is that the chemical reaction is supposed to be infinitely fast, and
thus that the flow composition is stuck to the chemical equilibrium composition in the so-called burnt
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zone, which explains why the model is qualified of ”asymptotic”. The product mass fraction is given
by yP = 1− (yF + yO + yN ). The flow is governed by the Euler equations:

∂tρ+ div(ρu) = 0, (2.4a)

∂t(ρui) + div(ρuiu) + ∂ip = 0, i = 1, d, (2.4b)

∂t(ρE) + div(ρEu) + div(pu) = 0, (2.4c)

p = (γ − 1) ρes, E =
1

2
|u|2 + es +

∑

i∈I

yi∆h
0
f,i (2.4d)

where p stands for the pressure, E for the total energy, es for the so-called sensible energy and, for
i ∈ I, ∆h0f,i is the formation enthalpy of the chemical species i. The equation of state (2.4d) supposes
that the fluid is a perfect mixture of ideal gases, with the same iso-pressure to iso-volume specific heat
ratio γ > 1. This set of equations is complemented by homogeneous Neumann boundary conditions
for the velocity:

u · n = 0 a.e. on ∂Ω, (2.5)

where ∂Ω stands for boundary of Ω and n its outward normal vector.

The ”relaxed” model – This model retains the original form of the reactive flows governing
equations, with a transport/reaction equation for all the chemical species mass fractions, and the
value of G controls the reaction rates ω̇: ω̇ is set to zero when G ≥ 0.5, and takes non-zero (and
possibly large) values otherwise. The unknowns {yi, i ∈ I} are thus now solution to the following
balance equations:

∂t(ρyi) + div(ρyiu) = ω̇i, ỹi(x, 0) = yi,0(x) for i ∈ I, (2.6)

where the reactive term ω̇i is given by:

ω̇i =
1

ε
ζi νiWi ω̇, ω̇ = η(yF , yO) (G− 0.5)−, η(yF , yO) = min(

yF
νFWF

,
yO

νOWO
), (2.7)

with ζF = ζO = −1, ζF = 1 and ζN = 0. Note that, since νFWF + νOW0 = νPWP , we have∑
i∈I ω̇i = 0, which, summing on i ∈ I the species mass balance, allows to recover the equivalence

between the mass balance the fact that
∑

i∈I yi = 1. The factor η(yF , yO) is a cutt-off function, which
prevents the chemical species mas fractions to take negative values (and, equivalently, values greater
than 1, since their sum is 1).

The rest of the model is left unchanged.

2.3 General description of the scheme and main results

Instead of the total energy balance equation, the scheme solves a balance equation for the sensible
enthalpy, defined by hs = es + p/ρ. Let us now derive this equation. The first step is to establish the
kinetic energy balance and subtract from (2.4c) to obtain a balance equation for the internal energy.
Thanks to the mass balance equation, for any function ψ

∂t(ρψ) + div(ρψu) = ρ∂tψ + ρu ·∇ψ.

Using twice this identity and then the momentum balance equation, we have for 1 ≤ i ≤ d:

1

2
∂t(ρu

2
i ) +

1

2
div(ρu2i u) = ρ ui∂tui + ρuiu ·∇ui = ui

[
∂t(ρui) + div(ρuiu)

]
= −ui∂ip,
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so, summing for i = 1 to d, we establish the kinetic energy balance:

1

2
∂t(ρ|u|2) +

1

2
div(ρ|u|2u) = u ·

[
∂t(ρu) + div(ρu⊗ u)

]
= −u ·∇p.

Substituting the expression of the total energy in (2.4c), yields

∂t(ρe) + div(ρeu) +
1

2
∂t(ρ|u|2) +

1

2
div(ρ|u|2) + u ·∇p+ pdiv(u) = 0,

which, using the kinetic energy balance, gives the internal energy balance:

∂t(ρe) + div(ρeu) + pdiv(u) = 0. (2.8)

Using the linearity of the mass balance of the chemical species i, for any i ∈ I, we establish the
reactive energy balance:

∂t

[
ρ
(∑

i∈I

∆h0f,iyi
)]

+ div
[
ρ
(∑

i∈I

∆h0f,iyi
)
u
]
=

∑

i∈I

∆h0f,iω̇i = −ω̇θ. (2.9)

Then, the equality on the difference between internal and sensible enthalpy, h− hs =
∑

i∈I ∆h
0
f,iyi,

∂t(ρh) + div(ρhu) = ∂t(ρhs) + div(ρhsu)− ω̇θ,

substituting the expression for the total enthalpy, h = e+ p/ρ,

∂t(ρe) + ∂tp+ div(ρeu) + pdiv(u) + u ·∇p = ∂t(hs) + div(ρhsu)− ω̇θ,

and finally using the internal energy balance, we obtain the sensible enthalpy balance:

∂t(ρhs) + div(ρhsu)− ∂tp− u ·∇p = ω̇θ. (2.10)

The numerical resolution of the mathematical model is realized by a fractional step algorithm,
which employs a pressure correction technique for hydrodynamics in order to separate the resolution
of the momentum balance from the other equations of the Euler system. The semi-discretized version
of the algorithm is given by:

Reactive step:

1

δt
(ρnGn+1 − ρn−1Gn) + div(ρnGkun) + ρuuf |∇Gn+1| = 0. (2.11a)

1

δt

[
ρnyn+1

N − ρn−1ynN
]
+ div(ρnykNun) = 0. (2.11b)

1

δt
(ρnzn+1 − ρn−1zn) + div(ρnzkun) = 0. (2.11c)

1

δt

[
ρnyn+1

F − ρn−1ynF
]
+ div(ρnykFu

n) = νFWF ω̇(y
n+1
F , zn+1). (2.11d)

yn+1
O = 1 +

1

s
yn+1
F −

(
1 +

1

s

)
zn+1. (2.11e)

yn+1
F + yn+1

O + yn+1
N + yn+1

P = 1. (2.11f)
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Euler step:

1

δt
(ρnũn+1

i − ρn−1uni ) + div(ρnũn+1
i un) +

( ρn

ρn−1

)1/2
∂ip

n = 0, i = 1, . . . , d. (2.12a)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1

δt
ρn(un+1

i − ũn+1
i ) + ∂ip

n+1 −
( ρn

ρn−1

)1/2
∂ip

n = 0, i = 1, . . . , d,

1

δt
(ρn+1 − ρn) + div(ρn+1un+1) = 0,

1

δt

[
(ρhs)

n+1 − (ρhs)
n
]
+ div(ρhsu)

n+1 − 1

δt
(pn+1 − pn)− (u ·∇p)n+1 = ω̇n+1

θ + Sn+1,

pn+1 =
γ − 1

γ
ρn+1 hn+1

s .

(2.12b)

Thus the value of yn+1
O is deduced from yn+1

F and zn+1, which allows to express ω̇ as a function of
yn+1
F and zn+1, instead of yn+1

F and yn+1
O as suggested by Relation (2.7). The product mass fraction

yn+1
F is deduced from the relation yn+1

F + yn+1
O + yn+1

N + yn+1
P = 1. The updates of yO and yN are both

performed after (2.11d), so the term ω̇n+1
θ in the third relation of (2.12b) is fully defined.

The space dicretization is performed by a finite volume technique, using a staggered arrangement of
the unknowns (the scalar variables are approximated at the cell centers and the velocity components at
the face centers), using either a MAC scheme (for structured discretizations) or the degrees of freedom
of low-order non-conforming finite elements: Crouzeix-Raviart for simplicial cells and Rannacher-
Turek for quadrangles (d = 2) or hexahedra (d = 3). For Euler equations (i.e. Steps (2.12a)- (2.12b)),
upwinding is performed by building positivity-preserving convection operators, in the spirit of the so-
called Flux-Splitting methods, and only first-order upwinding is implemented. The pressure gradient
is built as the transpose (with respect to the L2 inner product) of the natural velocity divergence
operator. For the balance equations for the othe scalar unknowns, the time discretization is implicit
when first-order upwinding is used in the convection operator (in other words, k = n + 1 in (2.11a)-
(2.11d)) or explicit (k = n in (2.11a)-(2.11d)) when a higher order (of MUSCL type, cf. Appendix
2.A) flux or an anti-diffusive flux (cf. Appendix 2.B) is used.

Scheme properties – First, the positivity of the density is ensured by construction of the discrete
mass balance equation.

At the continuous level, the physical bounds of the mass fractions are preserved – with appropriate
boundary conditions – thanks to the mass balance equation, which permits to transform the chemical
species mass balance equations to transport equations, i.e.

∂t(ρyi) + div(ρyiu) = ρ(∂tyi + u ·∇yi) + yi
[
∂tρ+ div(ρu)

]
= ρ(∂tyi + u ·∇yi).

The same holds at the discrete level: building a discrete convection operator for the mass fractions
from the discrete mass balance equation yields the same physical bounds [54], under a CFL condition
if an explicit time approximation is used. Since the mass balance is solved only in the last step of the
algorithm, this leads to shift in time the densities in (2.11a)-(2.11d).

The positivity of the sensible energy stems from two essential arguments: first, a discrete analog
of the internal energy equation (2.8) may be obtained from the discrete sensible enthalpy balance,
by mimicking the continuous computation; second, this discrete relation may be shown to have only
positive solutions, once again thanks to the consistency of the discrete convection operator and the
mass balance. This holds provided that the equation is exothermic (ω̇θ ≥ 0) and thanks to the
non-negativity of Sn+1 (see below).
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In order to calculate correct shocks, it is crucial for the scheme to be consistent with the following
weak formulation of the problem:

∀φ ∈ C∞
c (Ω × [0, T )

)
,

∫ T

0

∫

Ω

[
ρ∂tφ+ ρu ·∇φ

]
dxdt+

∫

Ω
ρ0(x)φ(x, 0)dx = 0,

∫ T

0

∫

Ω

[
ρui∂tφ+ (ρuui) ·∇φ+ p∂iφ

]
dxdt

+

∫

Ω
ρ0(x)(ui)0(x)φ(x, 0)dx = 0, 1 ≤ i ≤ d,

∫ T

0

∫

Ω

[
ρE∂tφ+ (ρE + p)u ·∇φ

]
dxdt+

∫

Ω
ρ0(x)E0(x)φ(x, 0)dx = 0,

∫ T

0

∫

Ω

[
ρyi∂tφ+ ρyiu ·∇φ

]
dxdt+

∫ T

0

∫

Ω
ρ0(x)yi,0(x)φ(x, 0)dx

= −
∫ T

0

∫

Ω
ω̇iφdxdt, 1 ≤ i ≤ d,

p = (γ − 1)ρes.

(2.13)

Remark that this system contains the total energy balance equation and not the dicretized sensible
enthalpy balance equation. This is why a discrete equivalent of the internal energy balance (2.8) is
derived, with a particular time discretization of this latter quantity, which is unusual but suitable to
pass to the limit in the scheme (so as to get consistency in the Lax-Wendroff sense). We also observe
that the kinetic energy balance, obtained by taking the inner product of the discretized momentum
balance equation with ũn+1, features numerical (non-negative) dissipation terms which, in the presence
of shocks, do not tend to zero with the time and space steps; these remainders are compensated by
the corrective term Sn+1.

Finally, the integral of the total energy over the domain is conserved, which yields a stability result
for the scheme (irrespectively of the time and space step, for this relation; recall however that the
overall stability of the scheme needs a CFL condition if an explicit version of the convection operator
for chemical species is used). The main steps of the scheme analysis are listed in Table 2.1.

2.4 Meshes and unknowns

Let us simply clarify here that the degrees of freedom for the new (comparing to the previous chapter)
unknowns, i.e. the enthalpy, the mixture, fuel and neutral gas mass fractions and the flame indicator
are associated to the cells of the mesh M and are denoted by:

{
pK , ρK , hK , yF,K , yN,K , zK , GK , K ∈ M

}
,

since the rest of the space discretization is the same as the one presented in Chapter 1, Section 1.2.
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∂t(ρhs) + · · · = ω̇θ

↓ (algebraic manipulations)

∂t(ρes) + · · · = ω̇θ Implies the positivity of es (thanks to the sign of S and ω̇n+1
θ )

↓ (using the mass balance for the chemical species)

∂t(ρe) + · · · = 0

↓∫ T

0

∫

Ω
πMφ

[
∂t(ρe) + . . .

]

+πEφ
[
∂t(ρEk) + . . .

]
= 0

Allows to conclude to the consistency of the scheme, by pass-
ing to the limit in this equation, using the fact that the scheme
satisfies a discrete kinetic energy balance, and thanks to the
ad hoc corrective term S in the enthalpy balance.

Table 2.1: Main steps of the scheme analysis.

2.5 The scheme

2.5.1 Euler step

Pressure gradient scaling step – Solve for (∇̃p)n+1:

∀σ ∈ E , (∇̃p)n+1
σ =

( ρnDσ

ρn−1
Dσ

)1/2
(∇p)nσ. (2.14a)

Prediction step – Solve for ũn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt
(ρnDσ

ũn+1
σ,i − ρn−1

Dσ
unσ,i) + div(ρnũn+1

i un)σ + (∇̃p)n+1
σ,i = 0. (2.14b)

Correction step – Solve for ρn+1, pn+1 and un+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt
ρnDσ

(un+1
σ,i − ũn+1

σ,i ) + (∇p)n+1
σ,i − (∇̃p)n+1

σ,i = 0, (2.14c)

∀K ∈ M,
1

δt
(ρn+1

K − ρnK) + div(ρu)n+1
K = 0, (2.14d)

∀K ∈ M,
1

δt

[
ρn+1
K (hs)

n+1
K − ρnK (hs)

n
K

]
+ div(ρhsu)

n+1
K

− 1

δt
(pn+1

K − pnK)−
(
u ·∇p

)n+1

K
= (ω̇θ)

n+1
K + Sn+1

K ,
(2.14e)

∀K ∈ M, pn+1
K =

γ − 1

γ
(hs)

n+1
K ρn+1

K . (2.14f)

Then, ρ0 is computed by the mass balance equation (2.14d) and p0 is computed by the equation of
state (2.14f).

The discretization of the mass and momentum balance equations is the same as the one presented
in Chapter 1, Section 1.3 (apart the diffusion operators which are absent here), so we pass directly to
the discretization of the sensible enthalpy balance equation.
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2.5.1.1 Sensible enthalpy equation

The equation is discretised in such a way that the present enthalpy formulation is strictly equivalent
to the internal energy formulation of the energy balance equation used in [30]. Consequently, the term
−
(
u ·∇p

)
K

reads:

−
(
u ·∇p

)
K

=
1

|K|
∑

σ∈E(K)

|σ|uK,σ (pK − pσ),

where pσ is the upwind approximation of p at the face σ with respect to uK,σ. The reaction heat,
(ω̇θ)K , is written in the following way:

(ω̇θ)K = −
Ns∑

i=1

∆h0f,i (ω̇i)K =
(
νF WF ∆h0f,F + νOWO ∆h0f,O − νP WP ∆h0f,P

)
ω̇K .

The definition of ω̇K is given in Section 2.5.2.

The term SK is chosen to compensate the numerical dissipation terms appearing in the kinetic
energy balance, in the sense that a limit of a converging sequence of discrete solutions satisfies the
weak form of the conservative total energy balance (which is the only valid formulation of the energy
balance for Euler equations). It reads,

∀K ∈ M and n ∈ N, n ≤ N, Sn+1
K =

d∑

i=1

Sn+1
K,i , with Sn+1

K,i =
1

2
ρn−1
K

∑

σ∈E(K)∩E
(i)
S

|DK,σ|
δt

(ũn+1
σ,i −unσ,i)2.

Thus,
∑

K∈M

Sn+1
K =

d∑

i=1

∑

σ∈E
(i)
S

Rn+1
σ,i .

2.5.2 Reactive step

∀K ∈ M :

Flame position indicator computation – Solve for Gn+1:

1

δt
(ρnKG

n+1
K − ρn−1

K Gn
K) + div(ρnGkun)K + (ρnuu

n
f |∇G|)K = 0. (2.15a)

Reduced variable computation – Solve for zn+1:

1

δt
(ρnKz

n+1
K − ρn−1

K znK) + div(ρnzkun)K = 0. (2.15b)

Neutral gas mass fraction computation – Solve for yn+1
N :

1

δt

[
ρnK(yN )n+1

K − ρn−1
K (yN )nK

]
+ div(ρnykNun)K = 0. (2.15c)

Fuel mass fraction computation – Solve for yn+1
F :

1

δt

[
ρnK(yF )

n+1
K − ρn−1

K (yF )
n
K

]
+ div(ρnyn+1

F un)K = (ω̇F )
n+1
K . (2.15d)

Oxydant mass fraction computation – (yO)
n+1
K = 1 +

1

s
(yF )

n+1
K −

(
1 + 1

s

)
zn+1
K . (2.15e)

Product mass fraction computation – (yP )
n+1
K = 1− (yF )

n+1
K − (yO)

n+1
K − (yN )n+1

K . (2.15f)
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The initialization of the chemical variables is given by the mean values of the initial conditions
over the primal cells:

∀K ∈ M, G0
K =

1

|K|

∫

K
G0(x) dx, z0K =

1

|K|

∫

K
z0(x) dx, (yi)

0
K =

1

|K|

∫

K
(yi)0(x) dx, i = N,F,

where the reduced variable z is a linear combination of yF and yO, such that the balance equation
of z is homogeneous. Equations (2.15a)-(2.15d) may be solved sequentially, after the first iteration of
the hydrodynamics part of the algorithm, i.e. once (ρ0K)K∈M is calculated. In the fuel mass fraction
computation step, the reaction term is approximated as follows:

ω̇n+1
K = η

(
(yF )

n+1
K , (yO)

n+1
K

)
(0.5 −Gn+1

K )−.

The oxydant mass fraction, (yO)
n+1
K , may be expressed as a function of (yF )

n+1
K and zn+1

K ; since zn+1

is known at this step, equation (2.15d) may be solved for yn+1
F . Finally, yn+1

P is calculated directly
from the expression (2.15f) since, as it will be shown later (cf. Lemma 2.6.7), the sum of the mass
fractions is equal to 1 for n ∈ N, n ≤ N .

At the continuous level, the last term of equation (2.15a) may be written:

ρu uf |∇G| = a ·∇G = div(Ga)−Gdiv(a), with a = ρu uf
∇G

|∇G| .

Using an upwind finite volume discretization of both divergence terms in this relation, we get:

|K| (ρnu unf |∇G|)K =
∑

σ∈E(K)

|σ| (G̃n+1
σ −Gn+1

K )an
σ · nK,σ,

where G̃n+1
σ stands for the upwind approximation of Gn+1 on σ with respect to an · nK,σ. The flame

velocity on σ, an
σ, is evaluated as

an
σ = (ρu uf )

n
σ

(∇G)nσ
|(∇G)nσ |

,

where (ρu uf )
n
σ stands for an approximation of the product ρu uf on the face σ at tn (this product

being often constant in applications), and the gradient of G on σ = K|L is computed as:

(∇G)σ =
1

|K ∪ L|
[ ∑

σ′∈E(K)

|σ′| Ĝσ′ nK,σ′ +
∑

σ′∈E(L)

|σ′| Ĝσ′ nL,σ′

]
,

with Ĝσ′ a second order approximation of G at the barycenter of the face σ′.

2.6 Scheme properties

For any given family (xnK)K∈M ∈ R
M, where R

M is a shorthand for R
card(M), we introduce the

following notations:
x = max

K∈M
x0K , x = min

K∈M
x0K .

When no ambiguity arises, the notation xn will be used to refer to the family (xnK)K∈M. For example
xn > 1, means ∀K ∈ M, xnK > 1.

Lemma 2.6.1 (cf.[25]).
Let us suppose (2.14d) holds for any n ∈ N, n ≤ N , with ρ > 0. Then the linear system (2.14d) admits
a unique solution that satisfies ρn+1 > 0.
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Replacing the discrete analogue of the expresion for the sensible enthalpy, hs = es+p/ρ, in (2.14e),
leads to:

1

δt

[
ρn+1
K (es)

n+1
K − ρnK(es)

n
K

]
+ div(ρesu)

n+1
K + div(pu)n+1

K −
(
u ·∇p

)n+1

K
= (ω̇θ)

n+1
K + Sn+1

K . (2.16)

The obvious choice for div(pu)K is

div(pu)K =
1

|K|
∑

σ∈E(K)

|σ|uK,σpσ,

where pσ denotes the upwind approximation of p on the face σ, with respect to the velocity on the
face, uK,σ. Thus, by construction of the discrete operator

(
u · ∇p

)
, we obtain the discrete sensible

energy balance equation:

1

δt

[
ρn+1
K (es)

n+1
K − ρnK(es)

n
K

]
+ div(ρesu)

n+1
K + pn+1

K div(u)n+1
K = (ω̇θ)

n+1
K + Sn+1

K , (2.17)

where the convection operator on the primal cell is approached using the upwind choice with respect
to the flux for the discrete field es.

Lemma 2.6.2 (Positivity of the sensible energy, cf. [30]).
Let us suppose es > 0 and ω̇n

θ ≥ 0, for n ∈ N, n ≤ N . Then a solution to (2.14)-(2.15) satisfies for
any n ∈ N, n ≤ N and K ∈ M, (es)

n
K > 0.

From the discrete sensible energy balance, a discrete internal energy balance may be established.

Lemma 2.6.3 (Discrete internal energy balance).
A solution to (2.14)-(2.15) satisfies the following equality, for any K ∈ M and n ∈ N, n ≤ N :

1

δt

(
(ρe)n+1

K − (ρe)nK
)
+ d̃iv(ρeu)n+1

K + pn+1
K div(u)n+1

K = Sn+1
K , (2.18)

where
(ρe)n+1

K = ρn+1
K (es)

n+1
K + ρnK

∑

i∈I

∆h0f,i(yi)
n+1
K ,

d̃iv(ρeu)n+1
K = div

[
(ρes)

n+1un+1 + ρn
∑

i∈I

∆h0f,iy
n+1
i un

]
K
.

Proof. Multiplying the mass fraction balance equations by the corresponding formation enthalpy
(∆h0f,i)i∈I , then summing over i ∈ I, yields:

1

δt

∑

i∈I

∆h0f,i
(
ρnK(yi)

n+1
K − ρn+1

K (yi)
n
K

)
+ div

[
ρn

∑

i∈I

∆h0f,iy
n+1
i un

]
K

=
∑

i∈I

∆h0f,i(ω̇i)
n+1
K = (ω̇θ)

n+1
K .

(2.19)
Adding the obtained discrete analogue of the reactive energy equation (2.9) to the discrete sensible

energy, and using the above definitions for (ρe)n+1
K and d̃iv(ρeu)n+1

K , leads to the discrete internal
energy balance (2.18).

A discrete kinetic energy balance and a total energy balance conservation result, essentially related
to the hydrodynamics part of the problem, have already been established.

87



Lemma 2.6.4 (Discrete kinetic energy balance, cf. [30]).
A solution to (2.14)-(2.15) satisfies the following equality, for any K ∈ M and n ∈ N, n ≤ N :

|Dσ |
2δt

[
ρnDσ

(un+1
σ,i )2−ρn−1

Dσ
(unσ,i)

2
]
+
1

2

∑

ǫ∈Ē(Dσ)

Fn
σ,εũ

n+1
σ,i ũ

n+1
σ′,i +|Dσ |(∇p)n+1

σ,i u
n+1
σ,i = −Rn+1

σ,i −Pn+1
σ,i , (2.20)

where

Rn+1
σ,i =

|Dσ |ρn−1
Dσ

2δt
(ũn+1

σ,i − un+1
σ,i )2 and Pn+1

σ,i =
|Dσ |
2δtρnDσ

[(
(∇p)n+1

σ,i

)2 −
(
(∇̃p)n+1

σ,i

))2]
.

Lemma 2.6.5 (Total energy conservation, cf. [30]).
Let us suppose that e0s, ρ

0 and ρ−1 are positive. Then, a solution to (2.14)-(2.15) satisfies ρn+1 > 0,
en+1 > 0 and the following stability result:

En = E0,

where,

∀n ∈ N, n ≤ N, En =
∑

K∈M

|K|(ρe)nK +
1

2

d∑

i=1

∑

σ∈E
(i)
S

|Dσ |(unσ,i)2 + δt2
∑

σ∈Eint

|Dσ|
ρn−1
Dσ

|(∇p)nσ|2.

Let us now turn to the existence (and uniqueness) of solutions for the chemical variables, such as
in their stability properties. The following two results are proven – in a more general context, i.e. for
a problem where the mass diffusion is present – in Chapter 3, Section 3.4.

Lemma 2.6.6.
Let us suppose (2.14d) holds for any n ∈ N, n ≤ N , with ρ > 0. Then, for any n ∈ N, n ≤ N and
K ∈ M, the linear systems (2.15b) and (2.15c) admit unique solutions satisfying for any K ∈ M,
zn+1
K ∈ [z, z] and (yN )n+1

K ∈ [yN , yN ] respectively.

Proof. cf. Chapter 3, Section 3.4.

Lemma 2.6.7.
Let us suppose (2.14d) holds for any n ∈ N, n ≤ N , with ρ > 0. Let

(
(yi)

0
K

)
i∈I,K∈M

∈ R
4M be

given and such that
∑

i∈I(yi)
0
K = 1 for any K ∈ M. Then, for any n ∈ N, n ≤ N and K ∈ M,∑

i∈I(yi)
n+1
K = 1 and the linear systems corresponding to the chemical mass fractions admit at least

one solution satisfying yn+1
F ∈ [0, yF ], y

n+1
O ∈ [0, yO] and y

n+1
P ∈ [yP , 1].

Proof. cf. Chapter 3, Section 3.4.

Lemma 2.6.8 (Contact discontinuities).
Let us suppose the initial velocity and the initial pressure constant, u0 = u and p0 = p. Then, there
exists a solution to the scheme (2.14)-(2.15), given by, for any n ∈ N, n ≤ N , un = u and pn = p.
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Proof. Let us suppose for n ∈ N, n ≤ N , pn and un constant. The pressure gradient scaling step
(2.14a) gives immediately (∇̃p)n+1

σ = 0. Thus, ũn+1
σ = unσ verifies the prediction step (2.14b), and

for pn+1 = pn equation (2.14c) gives un+1
σ = ũn+1

σ . The mass balance equation (2.14d) becomes an
homogeneous transport equation for the density ρ with constant velocity u, thus, by the equation of
state (2.14f), the sensible enthalpy is also transported with constant velocity u. On the left hand side
of the sensinble enthalpy balance equation (2.14e), the only terms that survive are the ones associated
to the transport operator. Since Sn+1 vanishes, this implies that ω̇θ = 0.

To state and prove the consistency result, the discrete unknowns and the test functions need to be
associated to piecewise constant functions. Let SM(Ω × [0, T )) be the space of piecewisely constant
functions in K × [tn, tn+1), for any n ∈ N, n ≤ N and K ∈ M. For any function ψ ∈ L1(Ω × [0, T )),
its interpolate in SM(Ω × [0, T )) is defined by

ψM(x, t) =
∑

n∈N

∑

K∈M

ψn
K χK×[tn,tn+1)(x, t),

where ψn
K = 1/|K|

∫
Kψ(x, t

n) and χP is the characteristic function of the set P . To any discrete

family, (fnK)n∈N,n≤N
K∈M , the following fuction of SM(Ω× [0, T )) is naturally associated:

fM(x, t) =
∑

n∈N

∑

K∈M

fnK χK×[tn,tn+1)(x, t).

From here on, a function or a discrete family indexed by M will refer to the corresponding function
of SM(Ω× [0, T )). For any gM, the discrete L1([0, T ); BV(Ω)) and L1(Ω;BV([0, T ))) norms read:

‖gM‖BVx =
∑

n∈N

δt
∑

σ=K|L

|σ||gnK − gnL|, ‖gM‖BVt =
∑

K∈M

|K|
∑

n∈N

|gn+1
K − gnK |.

The space of piecewisely constant functions in Dσ × [tn, tn+1), for any n ∈ N, n ≤ N and σ ∈ E , is
denoted by SD(Ω × [0, T )). It is defined in analogy to SM(Ω × [0, T )), but the interpolates here are
defined by the mean value of the function over the primal edges, instead of the mean value over the
primal the dual cell. Thus, for any regular function ψ, its interpolate in SD(Ω× [0, T )) is defined by

ψD =
∑

n∈N

∑

σ∈Eint

ψn
σ χDσ×[tn,tn+1)(x, t),

where ψn
σ = 1/|σ|

∫
σψ(x, t

n). To any discrete family (fnσ )
n∈J0,N−1K
σ∈E , the following function of SD(Ω ×

[0, T )) is naturally associated:

fD =
∑

n∈N

∑

σ∈E

fnσ χDσ×[tn,tn+1)(x, t).

From here on, a function or discrete family indexed by D, will refer to the corresponding function of
SD(Ω × [0, T )). For any gD ∈ SD(Ω × [0, T )), its discrete L1([0, T ); BV0(Ω)) and L1(Ω;BV([0, T )))
norms read, respectively:

‖gD‖BVx =
∑

n∈N

δt
∑

ǫ=Dσ|Dσ′

hK |gnσ′ − gnσ |, ‖gD‖BVt =
∑

σ∈E

|Dσ |
∑

n∈N

|gn+1
σ − gnσ′ |.

Let L be a differential operator. The notations (Lfi)j , (i, j) ∈ {M,D}2, refer to the piecewise
constant functions associated to the family obtained by applying the discrete operator to the family
(fnK)n∈N,n≤N

K∈M if i = M, and (fnσ )
n∈N,n≤N
σ∈E if i = D. In the case where i = j, the index j will be dropped.

89



A result similar to the one to be announced in Theorem 2.6.1, has already been stated and proven
in [22] for non-reactive case, where it is shown that the limit of a sequence of discrete solutions, satisfies
the equation of state and the non-reactive (2.13). What changes here, is that the total energy equation
contains reactive terms. Before proceeding to the proof of the consistency theorem, let us state and
prove two preliminary results.

Lemma 2.6.9.
For any n ∈ N, n ≤ N , the following inequality holds:

‖div(ρu)nM‖L1(Ω) ≤ ‖ρnM‖∞‖un
D‖BVx + ‖ρnM‖BVx‖un

D‖∞.

Proof. The index n being the same for all variables, it will be dropped. By definition,

‖div(ρu)M‖L1(Ω) =
∑

K∈M

∣∣ ∑

σ∈E(K)

|σ|ρσuK,σ

∣∣.

Let us rewrite for any K ∈ M,

∑

σ∈E(K)

|σ|ρσuK,σ = ρK
∑

σ∈E(K)

|σ|uK,σ +
∑

σ∈E(K)

|σ|(ρσ − ρK)uK,σ = T1(K) + T2(K),

and since for any σ = K|L, ρσ ∈ JρK , ρLK,
∑

K∈M

|T1(K)| ≤
∑

K∈M

∑

σ∈E(K)

|σ| |ρK − ρL| |uK,σ| ≤ ‖u‖∞‖ρ‖BVx.

Given that for 1 ≤ i ≤ d and K ∈ M,
∑

σ∈E(K) |σ|nσ,i = 0, where nσ,i stands for the i-th component
of nK,σ, we obtain that

T2(K) = ρK
∑

σ∈E(K)

|σ|uσ · nK,σ = ρK

d∑

i=1

∑

σ∈E(K)

|σ|uσ,inσ,i

= ρK

d∑

i=1

∑

σ∈E(K)

|σ|
(
uσ,i −

1

M

∑

σ′∈E(K)

uσ′,i

)
nσ,i,

where M = card{σ ∈ E(K)}, thus,

∑

K∈M

|T2(K)| =
∑

K∈M

ρK

d∑

i=1

∑

σ′∈E(K)

∑

σ∈E(K)

|σ|
M

|uσ,i − uσ′,i| ≤ ‖ρ‖∞‖u‖BVx,

and finally,

‖div(ρu)M‖L1(Ω) =
∑

K∈M

|T1(K) + T2(K)| ≤ ‖ρM‖∞‖uD‖BVx + ‖ρM‖BVx‖uD‖∞.

Lemma 2.6.10.
Let (ρ0K)K∈M be the solution of (2.14d) for n = 0 and ρ0M(x) the associated piecewisely constant
function. Then, ρ0M(x) converges to ρ0(x) in Lp(Ω), 1 ≤ p <∞, when m→ ∞.
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Proof. Firstly, using (2.14d) and Lemma 2.6.9, we obtain

∫

Ω
|ρ0M − ρ0|dx ≤ δt

(
‖ρ0M‖∞‖u0

D‖BVx + ‖ρ0M‖BVx‖u0
D‖∞

)
,

thus ρ0M converges to ρ0 when m → ∞, and secondly, ρ0M is bounded in L∞(Ω), thus ρ0M converges
to ρ0 in Lp(Ω), 1 ≤ p <∞:

∫

Ω
|ρ0M − ρ0|pdx ≤ ‖ρ0M − ρ0‖p−1

∞ ‖ρ0M − ρ0‖L1(Ω), thus

‖ρ0M − ρ0‖Lp(Ω) ≤ ‖ρ0M − ρ0‖p−1/p
∞ ‖ρ0M − ρ0‖1/pL1(Ω)

m→∞−→ 0.

Theorem 2.6.1 (Consistency)
Let Ω ⊂ R

d be an open bounded domain and suppose initial conditions satisfying:

(ρ0, p0, h0s,u
0) ∈ (L∞(Ω)× BV(Ω)× L∞(Ω)× L∞(Ω)d).

Let (M(m), δt(m))m∈N be a sequence of discretizations in space and time, such that both the size of the
mesh, h(m), and the time step, δt(m), tend to zero when m→ ∞. Let (ρM, pM, (hs)M,uD, ũD)(m) be
the corresponding sequence of solutions. Suppose that this sequence verifies the following assertions:

(i) The sequence is uniformly bounded in L∞(Ω × [0, T ))5, i.e. there exists C ∈ R such that, for
m ∈ N and 0 ≤ n ≤ N ,

max
{
ρnK , p

n
K , (hs)

n
K

}
≤ C, ∀K ∈ M(m) and max

{
|un

σ|, |ũn
σ|
}
≤ C, ∀σ ∈ E(m).

(ii) The sequence satisfies the following BV-stability assumption,

lim
m→∞

(h+δt)
[
‖ρM‖BVx+‖pM‖BVx+‖(hs)M‖BVx+‖uD‖BVx+‖uD‖BVt+‖ũD‖BVx+‖ũD‖BVt

]
= 0.

(iii) The sequence converges in Lp(Ω×[0, T ))3+d, for 1 ≤ p <∞, to (ρ̄, p̄, h̄s, ū, ¯̃u) ∈ Lp(Ω×[0, T ))3+2d.

Then, ¯̃u = ū and the limit (ρ̄, p̄, h̄s, ū) satisfies (2.13).

Proof. The proof that follows is for the Ranacher Turek and Crouzeix Raviart discretisations, since
for the MAC discretisation the arguments are essentially the same.

The line proposed in [[22],[73]], to show that the “weak form” of the total energy equation is
respected by the scheme, follows three steps:

(i) multiply the discrete internal energy balance equation (which in the Euler case coincides with
the discrete internal energy equation (2.18)) by δtφn+1

K and sum over n ∈ N, n ≤ N andK ∈ M,

(ii) multiply the discrete kinetic energy balance equation (2.20) by δtφn+1
σ and sum over n ∈ N, n ≤

N , and σ ∈ E ,
(iii) show that the sum of the equations obtained in (i) and (ii) converges to the “weak form” of

the total energy equation, when m tends to infinity.

The only difference here, is the chemical fraction balance equations and that the discrete sensible
energy equation contains reaction terms. All these equations are multiplied by δtφn+1

K and summed
over n ∈ N, n ≤ N and K ∈ M.
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The chemical fraction balance equations become, for i ∈ I:

(Yi)
(m)
1 + (Yi)

(m)
2 = (Yi)

(m)
3

where

(Yi)
(m)
1 =

∑

n∈N

δt
∑

K∈M

|K|
δt

[
ρnK(yi)

n+1
K − ρn−1

K (yi)
n
K

]
φn+1
K ,

(Yi)
(m)
2 =

∑

n∈N

δt
∑

K∈M

∑

σ∈E(K)

Fn
K,σ(yi)

n+1
σ φn+1

K , (Yi)
(m)
3 = ζiνiWi

∑

n∈N

δt
∑

K∈M

ω̇n+1
K φn+1

K ,

with ζi denoting the sign of the source term for the i-th chemical species, thus −ζF = −ζO = ζP = 1
and ζN = 0. Recasting the summation on the first term yields:

(Yi)
(m)
1 =

∑

n∈N

∑

K∈M

|K|ρnK(yi)
n+1
K − ρn−1

K (yi)
n
K

]
φn+1
K

=
N∑

n=1

∑

K∈M

|K|ρn−1
K (yi)

n
Kφ

n
K −

∑

n∈N

∑

K∈M

|K|ρn−1
K (yi)

n
Kφ

n+1
K

=

N∑

n=0

δt
∑

K∈M

|K|ρn−1
K (yi)

n
K

φnK − φn+1
K

δt
−

∑

K∈M

|K|ρ−1
K (yi)

0
Kφ

0
K

= −
∫ T

0

∫

Ω
ρM (yi)M ∂tφM −

∫

Ω
ρ0M (y0i )M φ0M,

thus,

(Yi)
(m)
1

m→∞−→ −
∫ T

0

∫

Ω
ρ̄(x, t) ȳi(x, t) ∂tφ(x, t) dxdt−

∫

Ω
ρ0(x) yi,0(x)φ(x, 0) dx.

The second term reads:

(Yi)
(m)
2 =

∑

n∈N

δt
∑

K∈M

∑

σ∈E(K)

Fn
K,σ(yi)

n+1
σ φn+1

K =
∑

σ=K|L

ρnσ(yi)
n+1
σ un

σ · (φn+1
L − φn+1

K )nK,σ

= −
∑

n∈N

δt
∑

σ=K|L

[
|DK,σ|ρnK(yi)

n+1
K + |DL,σ|ρnL(yi)n+1

L

]
un
σ · |σ|

|Dσ|
(φn+1

L − φn+1
K )nK,σ

+
∑

n∈N

δt
∑

σ=K|L

[
|DK,σ|ρnK(yi)

n+1
K + |DL,σ|ρnL(yi)n+1

L − ρnσ(yi)
n
σ

]
un
σ · |σ|

|Dσ|
(φn+1

L − φn+1
K )nK,σ

= −
∫ T

0

∫

Ω
ρM (yi)M uD · (∇φM)D + (Ri)

(m)
2,2 .

Using the identity ab− cd = 1
2 (a− c)(b+ d) + (a+ c)(b− d) for any (a, b, c, d) ∈ R

4, and the fact that
ρnσ ∈

q
ρnK , ρ

n
L

y
, (yi)

n
σ ∈

q
(yi)

n
K , (yi)

n
L

y
for any σ = K|L and n ∈ N, n ≤ N , for any i ∈ I,

∣∣(Ri)
(m)
2,2

∣∣ = 1

2

∣∣∣∣
∑

n∈N

δt
∑

σ=K|L

(
|DK,σ|

[
(ρnK − ρnσ)((yi)

n+1
K + (yi)

n+1
σ ) + (ρnK + ρnσ)((yi)

n+1
K − (yi)

n+1
σ )

]

+|DL,σ|
[
(ρnL − ρnσ)((yi)

n+1
L + (yi)

n+1
σ ) + (ρnL + ρnσ)((yi)

n+1
L − (yi)

n+1
σ )

])
un
σ · (∇φM)n+1

σ

∣∣∣∣

≤ 1

2

∑

n∈N

δt
∑

σ=K|L

(
|DK,σ|

[
2‖ρM‖∞|(yi)n+1

K − (yi)
n+1
L |+ 2‖(yi)M‖∞|ρnK − ρnL|

])
‖u‖∞C∇φ

= C∇φ‖u‖∞
∑

n∈N

δt
∑

σ=K|L

|Dσ|
[
‖ρM‖∞|(yi)n+1

K − (yi)
n+1
L |+ ‖(yi)M‖∞|ρnK − ρnL|

]

≤ hC∇φ‖u‖∞
[
‖ρM‖∞‖(yi)M‖BVx + ‖(yi)M‖∞‖ρM‖BVx

] m→∞−→ 0,
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where ‖ · ‖∞ denotes the usual norm of the space L∞(Ω× [0, T )) and C∇φ ≥ ‖∇φ‖∞. Thus,

(Yi)
(m)
2

m→∞−→ −
∫ T

0

∫

Ω
ρ̄(x, t) ȳi(x, t) ū(x, t) ·∇φ(x, t) dxdt.

Finally, in what concerns the third term, since by hypothesis ω̇ is only a function of yF and yO, the
boundedness of the mass fractions implies, by continuity, the boundedness of ω̇, thus the dominated
convergence theorem allows the following passage to the limit:

∑

n∈N

δt
∑

K∈M

|K|ω̇n+1
K =

∫ T

δt

∫

Ω
ω̇M(x, t)φM(x, t) dxdt

m→∞−→
∫ T

0

∫

Ω
ω̇(x, t)φ(x, t) dxdt,

and

(Yi)
(m)
3

m→∞−→ ζiνiWi

∫ T

0

∫

Ω
ω̇(x, t)φ(x, t) dxdt,

which concludes the proof that the discrete chemical species balance equations converge to the weak
formulation of the continuous problem.

Let us now turn to the sensible energy equation, which reads:

E
(m)
1 + E

(m)
2 +E

(m)
3 = S(m),

where

E
(m)
1 =

∑

n∈N

δt
∑

K∈M

|K|
δt

[[
ρn+1
K (es)

n+1
K − ρnK(es)

n
K

]
+

∑

i∈I

∆h0f,i
[
ρnK(yi)

n+1
K − ρn−1

K (yi)
n
K

]]
φn+1
K

= E
(m)
1,1 + E

(m)
1,2 ,

E
(m)
2 =

∑

n∈N

δt
∑

K∈M

∑

σ∈E(K)

[
Fn+1
K,σ (es)

n+1
σ +

∑

i∈I

∆h0f,iF
n
K,σ(yi)

n+1
σ

]
φn+1
K = E

(m)
2,1 +E

(m)
2,2 ,

E
(m)
3 =

∑

n∈N

δt
∑

K∈M

|K|pn+1
K div(u)n+1

K φn+1
K , and S(m) =

∑

n∈N

δt
∑

K∈M

Sn
Kφ

n+1
K .

All non-reactive terms having been treated, we focus in showing that the reactive terms E
(m)
1,2

and E
(m)
2,2 converge to the correct limit, so that following the steps, (ii) and (iii), lead to the “weak

form” of the total energy equation. In fact, the reactive terms have already been treated above in the
consistency of the chemical fraction balance equations, since they may be rewritten as

E
(m)
1,2 =

∑

i∈I

∆h0f,i(Yi)
(m)
1 , and E

(m)
2,2 =

∑

i∈I

∆h0f,i(Yi)
(m)
2 ,

thus, it is immediate that they both converge to the expected limit:

E
(m)
1,2

m→∞−→ −
∑

i∈I

∆h0f,i

[ ∫ T

0

∫

Ω
ρ̄(x, t) ȳi(x, t) ∂tφ(x, t) dxdt+

∫

Ω
ρ0(x) yi,0(x)φ(x, 0) dx

]
,

E
(m)
2,2

m→∞−→ −
∑

i∈I

∆h0f,i

∫ T

0

∫

Ω
ρ̄(x, t) ȳi(x, t) ū(x, t) ·∇φ(x, t) dxdt.
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2.7 Numerical tests

At the continuous level, the boundedness of the chemical mass fractions formally implies that, when
ε → 0, the relaxed model converges to the asymptotic one. Indeed, integrating any of the reactive
species mass balance equations with respect to time and space, we observe that ||ω̇||L1(Ω×(0,T )) tends
to zero as ε, and thus two separate zones appear: a zone characterized by G < 0.5 and where the
reaction is complete, and a zone corresponding to G ≥ 0.5, where no reaction has occured.

A closed form of the solution of the Riemann problem for the asymptotic model is available [2].
In order to perform numerical tests, a Riemann problem with initial conditions such that the analytic
solution has the profile presented in Figure 2.1 is chosen. Moreover, the selected configuration imposes
zero amplitude for the contact discontinuity and the left non linear wave, thus the solution consists of
three different constant states: W∗

R,W
∗∗ and WR. The right state corresponds to a stoechiometric

mixture of hydrogen and air (so the molar fractions of Hydrogen, Oxygen and Nitrogen are 2/7, 1/7
and 4/7 respectively) at rest, at the pressure p = 9.9 104 Pa and the temperature T = 283◦ K. The
velocity is supposed to be zero in the left state, which is sufficient to determine the solution, supposing
that the initial discontinuity lies at x = 0; physically, this situation corresponds to the left part of a
(symetrical) constant velocity plane deflagration starting at x = 0.. The flame velocity is uf = 63 m/s
and the formation enthalpies are zero except for the product (i.e. steam), with ∆h0f,O = −13.255 106

J (Kg K)−1. The quantity ρu is the analytical density in the intermediate state (so the total velocity
of the flame brush is equal to the sum of uf and the material velocity after the reactive shock, see [2]).
The computation is initialized by the analytical solution at t = 0.002 and the final time is t = 0.005.
The computational domain is the interval (0, 4.5).

x

W

Precursor shock

Reactive shock

CD

NL wave
W⋆

R

W⋆⋆

W⋆

L

WR

WL

Figure 2.1: The analytic solution of the numerical test configuration.

The numerical tests performed aim at checking the convergence of the scheme to such a solution,
which in fact may result from two different properties: the convergence of the relaxed model to the
asymptotic model when ε tends to zero, and the convergence of the scheme towards a numerical
solution when the time and space steps tend to zero. To this purpose, we choose ε proportional to
the space step and make it tend to zero, with a constant CFL number. We test the scheme behaviour
with three different discretizations of the convection operator in the chemical mass species balances:
the standard upwind scheme, a MUSCL-like discretizatin which is an extension to variable density
flows of the scheme proposed in [67] and is described in Appendix 2.A, and a first-order anti-diffusive
scheme proposed in [17] and given in Apendix 2.B for the sake of completeness.

Results obtained at t = 0.005 with the upwind scheme, the MUSCL-like scheme and the anti-
diffusive scheme, for more and more refined meshes, are shown on Figures 2.2 and 2.3, Figures 2.4
and 2.5 and Figures 2.6 and 2.7 respectively, together with the analytical solution. The expected
convergence is indeed observed but, with the upwind discretization, the rate of convergence is poor.
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This seems to be due to the interaction between the numerical diffusion of the upwind scheme, which
artificially introduces unburnt reactive masses to the burnt zone, and the stiffness of the reaction term.
As expected in such a case, the results are significantly improved by the use of a less diffusive scheme
for the chemical species balance equations. Indeed, passing from the upwind to the MUSCL-like
and, last, the anti-diffusive discretization improves the accuracy of the scheme, as may be observed
in Figures 2.8 and 2.9, where the results obtained by the three discretizations for a regular mesh
composed of 500 cells are plotted together with the continuous solution. This observation is conforted
by the measures, in L1-norm, of the difference between the discrete and continuous solutions gathered
in the following table. Black values correspond to the errors obtained with the upwind discretization,
blue ones to the MUSCL discretization and the orange ones to the anti-diffusive scheme; we denote
by h0 = 4.5/250 the measure of the control volume of the least refined mesh. For every meshes and
variables, the anti-diffusive scheme is the most accurate and the upwind one the least accurate. The
calculated orders of convergence are respectively close to 0.5 and 1 for the upwind scheme, on one
part, and the MUSCL-like and anti-diffusive schemes, on the other part.

h ||p − pex||L1 × 10−4 ||u− uex||L1 × 10−2 ||ρ− ρex||L1 × 10

h0 16.5 7.26 4.59 2.17 1.56 1.07 7.69 3.71 2.74
h0/2 12.5 3.88 2.43 1.64 0.787 0.579 6.16 2.23 1.65
h0/4 9.66 2.05 1.38 1.23 0.471 0.371 4.73 1.26 0.913
h0/8 7.58 1.17 0.708 0.958 0.263 0.175 3.63 0.691 0.476
h0/20 5.78 0.673 0.375 0.728 0.160 0.103 2.77 0.382 0.267
h0/40 4.31 0.414 0.194 0.543 0.0786 0.0458 2.03 0.201 0.134

95



 0

 0.01

 0.02

 0.03

 0  1  2  3  4

 

n=250
n=500

n=1000
n=2000

exact

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4

 

n=250
n=500

n=1000
n=2000

exact

-100

 0

 100

 200

 300

 400

 0  1  2  3  4

 

n=250
n=500

n=1000
n=2000

exact

Figure 2.2: Upwind scheme – From top to bottom, fuel mass fraction, G and velocity at t = 0.005,
as a function of the space variable. Results obtained with more and more refined meshes (the label
n = num on the figures means that the mesh is a uniform grid with num cells) and exact solution.
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Figure 2.3: Upwind scheme – From top to bottom, pressure, temperature and density at t = 0.005,
as a function of the space variable. Results obtained with more and more refined meshes (the label
n = num on the figures means that the mesh is a uniform grid with num cells) and exact solution.
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Figure 2.4: MUSCL scheme – From top to bottom, fuel mass fraction, G and velocity at t = 0.005,
as a function of the space variable. Results obtained with more and more refined meshes (the label
n = num on the figures means that the mesh is a uniform grid with num cells) and exact solution.
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Figure 2.5: MUSCL scheme – From top to bottom, pressure, temperature and density at t = 0.005,
as a function of the space variable. Results obtained with more and more refined meshes (the label
n = num on the figures means that the mesh is a uniform grid with num cells) and exact solution.
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Figure 2.6: Anti-diffusive scheme – From top to bottom, fuel mass fraction, G and velocity at t = 0.005,
as a function of the space variable. Results obtained with more and more refined meshes (the label
n = num on the figures means that the mesh is a uniform grid with num cells) and exact solution.
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Figure 2.7: Anti-diffusive scheme – From top to bottom, pressure, temperature and density at t =
0.005, as a function of the space variable. Results obtained with more and more refined meshes (the
label n = num on the figures means that the mesh is a regular mesh composed of num cells) and
exact solution.
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Figure 2.8: Comparison of the solutions obtained with the upwind, MUSCL and anti-diffusive scheme
– From top to bottom, fuel mass fraction, G and velocity at t = 0.005, as a function of the space
variable. Results obtained with a regular mesh composed of n = 500 cells.
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Figure 2.9: Comparison of the solutions obtained with the upwind, MUSCL and anti-diffusive scheme
– From top to bottom, pressure, temperature and density at t = 0.005, as a function of the space
variable. Results obtained with a regular mesh composed of n = 500 cells.
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Appendix

2.A The MUSCL scheme

The MUSCL discretisation of the convection operators of the chemical species balance and G-equation
is inspired by the discretisation proposed in [67]. Let us use the following system of equations,

∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρuy) = 0,

in order to explain here the MUSCL discretization of the convection operator in the transport equation
of y.

The discretization of the above system reads:

∀K ∈ M,
ρn+1
K − ρnK

δt
+

1

|K|
∑

σ∈E(K)

Fn+1
K,σ = 0,

ρn+1
K yn+1

K − ρnKy
n
K

δt
+

1

|K|
∑

σ∈E(K)

Fn+1
K,σ y

n
σ = 0.

For any σ ∈ E , the procedure consists in three steps:

• Calculate a tentative value for yσ as a linear interpolate of nearby values.

• Calculate an interval for yσ which guarantees the stability of the scheme.

• Project the tentative value yσ to the stability interval.

For the tentative value of yσ, let us choose some real coefficients (ασ
K)K∈M such that

xσ =
∑

K∈M

ασ
KxK ,

∑

K∈M

ασ
K = 1.

The coefficients used in this interpolation are chosen in such a way that as little as possible of the
closest cells to σ take part. For example, for σ = K|L and if xK , xσ, xL are aligned, only two
non-zero coefficients exist in the family (ασ

K)K∈M, namely the ασ
K and ασ

K . Then, these coefficients
are used to calculate the tentative value of yσ by

yσ =
∑

K∈M

ασ
KyK .

The construction of the stability interval lies on the following hypothesis:

∀K ∈ M, ∀σ ∈ E(K) ∩ Eint, ∃βσK ∈ [0, 1] and Mσ
K ∈ M such that

yσ − yK =

∣∣∣∣∣∣

βσK(yK − yMσ
K
), if FK,σ ≥ 0,

βσK(yMσ
K
− yK), otherwise.

(2.21)
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Under this hypothesis and a CFL condition, the scheme preserves the initial of y.

Definition. Note that in this work the presence of Neumann homogeneous boundary conditions limits
our study to the internal faces, but what follows may be naturally generalized for non-homegneous
Dirichlet or/and Neumann boundary conditions.

Definition. The so-called CFL number reads for any n ∈ N, n ≤ N :

CFLn = max
K∈M

{ δt

|K|
∑

σ∈E(K)

∣∣un+1
K,σ

∣∣
}
.

Lemma 2.A.1.
Let us suppose that CFLn+1 ≤ 1. For K ∈ M, let us note by V(K) the set of cellsMσ

K , σ ∈ E(K) such
that (2.21) holds. Then ∀K ∈ M, the value of yn+1

K is a convex combination of {ynK , (ynM )M∈V(K)}.

Proof. Reordering the discretised form of the mass balance equation, gives:

ρnK = ρn+1
K +

δt

|K|
∑

σ∈E(K)

Fn+1
K,σ .

Replacing this expression of ρnK in the discrete balance equation of y and using the relations provided
by (2.21), yields:

ρn+1
K yn+1

K = ρnKy
n
K − δt

|K|
∑

σ∈E(K)

Fn+1
K,σ y

n
σ

= ρn+1
K ynK − δt

|K|
∑

σ∈E(K)

Fn+1
K,σ (ynσ − ynK)

= ρn+1
K ynK − δt

|K|
∑

σ∈E(K)

(
Fn+1
K,σ

)+
(ynσ − ynK) +

δt

|K|
∑

σ∈E(K)

(
Fn+1
K,σ

)−
(ynσ − ynK)

= ρn+1
K ynK − δt

|K|
∑

σ∈E(K)

(
Fn+1
K,σ

)+
βσK(ynK − ynMσ

K
) +

δt

|K|
∑

σ∈E(K)

(
Fn+1
K,σ

)−
(ynMσ

K
− ynK),

and since the discretization of the mass balance equation is such that ∀K ∈ M and n ∈ N, n ≤ N ,
ρn+1 > 0,

yn+1
K = ynK

(
1− δt

|K|
∑

σ∈E(K)

βσK
∣∣un+1

K,σ

∣∣
)
+

δt

|K|
∑

σ∈E(K)

ynMσ
K
βσK

∣∣un+1
K,σ

∣∣,

which concludes the proof under the hypothesis that CFL ≤ 1.

In order to construct the stability interval, we will use a stronger version of (2.21), which allows
us to be more precise in the choice of the control volumes Mσ

K , ∀K ∈ M and ∀σ ∈ E(K). Let σ ∈ E ,
let us denote by V − and V + the upstream and downstream cell separated by σ, and by Vσ(V

−) and
Vσ(V

+) two sets of neighbouring cells of V − and V + respectively, and let us suppose:

(H1)− there exists M ∈ Vσ(V
+) such that unσ ∈ |[unM , unM +

ζ+

2
(unV + − unM )]|,

(H2)− there exists M ∈ Vσ(V
−) such that unσ ∈ |[unV − , u

n
V − +

ζ−

2
(unV − − unM )]|,

where for a, b ∈ R, we denote by |[a, b]| the interval {αa + (1 − α)b, α ∈ [0, 1]}, and ζ+ and ζ− are
two numerical parameters lying in the interval [0, 2].
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Definition (1D case). Let us take the example of an interface σ separating Ki and Ki+1 in a 1D case
(see Figure 2.A.1 for the notations), with a uniform meshing and a positive advection velocity, so that
V − = Ki and V

+ = Ki+1. In 1D, a natural choice is Vσ(Ki) = {Ki−1} and Vσ(Ki+1) = {Ki}. On
Figure 2.A.1, we sketch: on the left, the admissible interval given by (H1) with ζ+ = 1 (green) and
ζ+ = 2 (orange); on the right, the admissible interval given by (H2) with ζ− = 1 (green) and ζ− = 2
(orange). The parameters ζ− and ζ+ may be seen as limiting the admissible slope between (xi, y

n
i )

and (xσ, y
n
σ) (with xi the abscissa of the mass centre of Ki and xσ the abscissa of σ), with respect to

a left and right slope, respectively. For ζ− = ζ+ = 1, one recognises the usual minmod limiter (e.g.
[29, Chapter III]). Note that, since, on the example depicted on Figure 2.A.1, the discrete function yn

has an extremum in Ki, the combination of the conditions (H1) and (H2) imposes that, as usual, the
only admissible value for ynσ is the upwind one.

Ki−1 Ki

b

y∗i−1

b

y∗i

(H2)

Ki Ki+1

b

y∗i

b

y∗i+1

(H1)

Figure 2.A.1: Conditions (H1) and (H2) in 1D.

(H1)-(H2) and (2.21) are linked in the following way: let K ∈ M and σ ∈ E(K). If Fn
K,σ ≤ 0, i.e.K

is the downstream cell for σ, denoted above by V +, since ζ+ ∈ [0, 2], condition (H1) yields that there
exists M ∈ M such that unσ ∈ |[unK , unM ]|, which is (2.21). Otherwise, i.e. if Fn

K,σ ≥ 0 and K is the

upstream cell for σ, denoted above by V −, condition (H2) yields that there exists M ∈ M such that
ynσ ∈ |[ynK , 2ynK − ynM ]|, so ynσ − ynK ∈ |[0, ynK − ynM ]|, which is once again (2.21).

Definition. For σ ∈ E , if V − ∈ Vσ(V
+), the upstream choice ynσ = ynV − always satisfies the conditions

(H1)-(H2), and is the only one to satisfy them if we choose ζ− = ζ+ = 0.

Finally, we need to precise the choice of the sets Vσ(V
−) and Vσ(V

+). Here, we just set Vσ(V
+) =

{V −}; such a choice guarantees that at least the upstream choice is in the intersection of the intervals
defined by (H1) and (H2), as explained in Remark 2.A. Vσ(V

−) may be defined in two different ways
(cf. Figure 2.A.2):

– as the “upstream cells” to V −, i.e. Vσ(V
−) = {L ∈ M, L shares a face σ with V − and FV −,σ <

0},

– when this makes (i.e. with a mesh obtained by Q1 mappings from the (0, 1)d reference element),
the opposite cells to σ in V − are chosen. Note that for a structured mesh, this choice allows to
recover the usual minmod limiter.
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V −
V +

F

(a)

V −
V +

F

(b)

Figure 2.A.2: Notations for the definition of the limitation process. In orange, control volumes of the
set Vσ(V

−) for σ = V −|V +, with a constant advection field F: upwind cells (a) or opposite cells (b).

2.B An anti-diffusive scheme

The scheme of Després-Lagoutière [17] for the constant velocity advection problem presents some
interesting proporties in one-dimensional (or structured multi-dimensional) space, among which is the
fact that it notably limits the numerical diffusion. In this work, in order to treat convection operators
of the chemical variables, which read in a simplified case

∂t(ρy) + div(ρyu) = 0,

we used the following generalization, which allows us to work in untructured meshes:

∀K ∈ M, yn+1
K =

ρn−1
K

ρnK
ynK +

δt

|K|
1

ρnK

∑

σ∈E(K)

Fn
K,σy

n
σ ,

where for σ = K|L and given that Fn
K,σ ≥ 0, at first we estimate ynσ = ynL and second, to ensure

stability, we project to the interval [ynK , y
n
K + 1

α
1−ν
ν (yK − yO)], where ν = δt/|K|, α is a numerical

parameter that depends on the space dimension and O ∈ M is the control volume which stands at
the opposite side of K with respect to L.
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Chapter 3

A model and a numerical scheme to

compute laminar flames in dust

suspensions

Abstract

We address in this paper a system of balance equations which models the low Mach number one-
dimensional reactive flow generated by the combustion of a dust suspension. This model features
rather general diffusion terms, with, in particular, mass diffusion coefficients which depend on the
local composition and differ in function of the considered chemical species. For the resolution of
this system, we develop a fractional step finite volume algorithm which preserves by construction the
stability properties of the continuous problem, namely the positivity of the chemical species mass
fractions, the fact that their sum is equal to one, and the non-decrease of the temperature, provided
that the chemical reaction is exothermic.

3.1 Introduction

We address in this paper a model for the combustion of dust suspensions. This model is dedicated to
the simulation of laminar flames, for which a one-dimensional representation, supposing a low Mach
number flow, is sufficient. Particular care has to be paid to the formulation of the diffusion fluxes,
since they determine the structure of the flame; in particular, the mass diffusion coefficients depend on
the local composition of the mixture, and differ from one chemical species to another. Consequently,
(standard) simplifications performed to derive the model will yield balance equations for the mass of
the chemical species which preserve the positivity of the mass fractions and the fact that their sum is
equal to 1, but do not satisfy a maximum principle (i.e. non-physical local accumulation of a species
can not be excluded). On the opposite, the energy balance equation does satisfy a maximum principle
so, provided that the chemical reaction is exothermic, the minimal temperature cannot decrease. The
aim of this chapter is to develop a fractional step finite volume scheme for the resolution for a model
that uses a rather general simplification for the mass diffusion coefficients, to show that it has at least
one solution and that any possible solution satisfies the above-mentionned physical bounds.

The exposition is structured as follows. The physical model is introduced in the next section, then
the scheme is given in Section 3.3. Its properties are analysed in Section 3.4.
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3.2 The physical model

We first give the balance equations, then the closure laws for the mass diffusion terms.

3.2.1 The system of balance equations

The flow is supposed to be governed by the balance equations modelling a variable density flow in the
asymptotic limit of low Mach number flows [61], namely the mass balance of the chemical species and
of the mixture, the enthalpy balance, and the momentum balance equations. For a one-dimensional
flow in such a quasi-incompressible situation, the role played by the mass and momentum balance
equations is quite different than in the multi-dimensional case: indeed, since, in one space dimension,
both the divergence and the gradient may be considered as transport operators, the velocity may be
seen as the solution of the mass balance equation, and the momentum balance yields the dynamic
pressure. Since this latter unknown does not appear in the other equations, its computation is of poor
interest, and the momentum balance equation may be disregarded; this is what we do in the following.
Except for this aspect, equations in this section are written in the usual multi-dimensional form.

The computational domain is denoted by Ω, and its boundary ∂Ω is supposed to be split in an
inflow part ∂ΩI (where the flow enters the domain, i.e. u ·n∂Ω < 0, with u the flow velocity and n∂Ω

the normal vector to ∂Ω outward Ω) and an outflow one ∂ΩO (where the flow leaves the domain, i.e.
u ·n∂Ω ≥ 0) of positive (d− 1)-measure, with ∂Ω = ∂ΩI ∪ ∂ΩO. The problem is supposed to be posed
over the time interval [0, T ].

Mass balance equations – The mass balance reads:

∂t(ρ) + div(ρu) = 0, (3.1)

where ρ stands for the fluid density. In the present quasi-incompressible model, this relation may
be seen as a constraint on the velocity (and even, in the present one-dimensional case, allows to
compute the velocity), while the density may be expressed from the other unknowns of the problem
(temperature and chemical species mass fractions) by the equation of state (see below). It must be
complemented by a initial condition for the velocity u0 and by the data of the velocity uI on the
inflow part of the domain boundary ∂ΩI , while the initial and inflow density, denoted by ρ0 and ρI
will be deduced from the initial and inflow temperature and composition of the flow. Thanks to the
formulation of the equation of state and natural bounds for the unknowns (see below), ρ0, ρI and ρ
are non negative.

Only four chemical species are supposed to be present in the flow, namely the dust, or fuel (denoted
by F ), the oxydant (O), the product (P ) of the reaction, and a neutral gas (N). We denote by I the
set I = {F,O,N,P} and the set of mass fractions of the chemical species in the flow reads {yi, i ∈ I}
(i.e. {yF , yO, yN , yP}). A one-step irreversible total chemical reaction is considered, which is written:

νFF + νOO +N → νPP +N,

where νF , νO and νP are the molar stoichiometric coefficients of the reaction. The system of the mass
balance equations for the chemical species reads:

∂t(ρyi) + div(ρyiu) + div(ji) = ω̇i, for i ∈ I, (3.2)

where yi, ji and ω̇i stand respectively for the mass fraction, the mass diffusion flux and the reaction
rate of the species i. System (3.2) must be complemented by initial and boundary conditions for
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(yi)i∈I . At the inflow boundary, the total flux (i.e. the sum of the convection and of the diffusion
fluxes) is prescribed and, at the outflow boundary, the diffusion flux is supposed to vanish:

on ∂ΩI , (ρyiu+ ji) · n∂Ω = (yi)I u · n∂Ω, (3.3a)

on ∂ΩO, ji · n∂Ω = 0. (3.3b)

The prescribed values of the mass fractions (yi)i∈I at the initial time and the quantities ((yi)I)i∈I
given on the inflow boundary lie in the interval [0, 1]. The reaction rate of each chemical species may
be written as:

ω̇F = −νFWF ω̇, ω̇O = −νOWO ω̇, ω̇P = νPWP ω̇ and ω̇N = 0,

whereWF , WO and WP stand for the molar masses of the fuel, oxydant and product respectively, and
ω̇ is a non-negative reaction rate, which is supposed to vanish when either yF = 0 or yO = 0. Under
these assumptions (positivity of the initial and boundary values, form of the reaction rate), with the
specific form of the diffusion fluxes ji, i ∈ I, considered here (see Section 3.2.2), Equation (3.2) only
has non-negative solutions.

Since νFWF + νOWO = νPWP , we have:

ω̇F + ω̇O + ω̇P = 0. (3.4)

In addition, the sum of the mass diffusion fluxes of the chemical species is supposed to vanish every-
where in Ω× (0, T ) (see once again Section 3.2.2):

∑

i∈I

ji = 0. (3.5)

Let the variable Σ stand for Σ =
∑

i∈I yi. Summing the chemical species mass balance equations (3.2)
and using relations (3.4) and (3.5) yields:

∂t(Σρ) + div(Σρu) + div(
∑

i∈I

ji) = ω̇F + ω̇O + ω̇P ,

and thus, by (3.4) and (3.5),
∂t(Σρ) + div(Σρu) = 0. (3.6)

We now suppose that the quantity Σ is precribed to 1 at the initial time and at the boundaries (i.e.
that

∑
i∈I(yi)0(x) = 1 a.e. in Ω and that

∑
i∈I(yi)I(x, t) = 1 a.e. in ∂ΩI × (0, T )). Then, thanks to

the mass balance equation (3.1), Σ = 1 is solution. Provided that the problem (3.6) is well posed (i.e.
admits only one solution), relation (3.6) thus implies that Σ(x, t) = 1 for any x ∈ Ω and t ∈ [0, T ].
Note that, together with the fact that yi ≥ 0, for i ∈ I, this implies that yi ≤ 1.

Energy balance – In the low Mach number approximation (i.e. neglecting the work of the pressure
forces because of the quasi-incompressibility of the flow) and disregarding the viscous dissipation, the
total enthalpy balance reads:

∂t(ρh) + div(ρhu) + div(q) = 0, (3.7)

where h is the so-called sensible+chemical enthalpy. This quantity is defined as the sum of the
enthalpies of the chemical species:

h =
∑

i∈I

yi hi, with hi = cp,i θ +∆h0f,i, for i ∈ I, (3.8)
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where θ stands for the temperature, cp,i for the specific heat of the species i (supposed to be constant)
and ∆h0f,i for the formation enthalpy at 0◦K. The enthalpy flux q is:

q = −λ∇θ +
∑

i∈I

hi ji (3.9)

with λ thermal conductivity. Substituting the expression (3.8) of h in (3.7) yields:

∑

i∈I

cp,i

[
∂t(ρyiθ) + div(ρyiθu) + div(θji)

]
+
∑

i∈I

∆h0f,i

[
∂t(ρyi) + div(ρyiu) + div(ji)

]
− div(λ∇θ) = 0.

Using the species conservation equations (3.2) leads to:

∑

i∈I

cp,i

[
∂t(ρyiθ) + div(ρyiθu) + div(θji)

]
+

∑

i∈I

∆h0f,i ω̇i − div(λ∇θ) = 0.

Let ω̇θ be the heat production rate due to the chemical reaction, defined by:

ω̇θ = −
∑

i∈I

∆h0f,i ω̇i. (3.10)

With this definition, we get the following form of the enthalpy balance:

∑

i∈I

cp,i

[
∂t(ρyiθ) + div(ρyiθu) + div(θji)

]
− div(λ∇θ) = ω̇θ. (3.11)

This equation must be complemented by a positive initial condition for the temperature and
boundary conditions. Once again, we assume a total flux condition at the inlet boundary, and that
the diffusion flux vanishes at the outlet boundary:

on ∂ΩI ,
∑

i∈I

cp,iθ(ρyiu+ ji) · n∂Ω =
∑

i∈I

cp,iθIρI (yi)Iu · n∂Ω, (3.12a)

on ∂ΩO, −λ∇θ · n∂Ω = 0 (and ji · n∂Ω = 0 by (3.3b)), (3.12b)

where θI stands for a positive function defined on ∂ΩI × (0, T ). Thanks to the species mass balance
equations (3.2), we can obtain the so-called non-conservative form of the enthalpy balance (3.11),
which reads:

[∑

i∈I

cp,iyi

]
ρ∂tθ +

[∑

i∈I

cp,i(ρyiu+ ji)
]
·∇θ − div(λ∇θ) + β ω̇ θ = ω̇θ, (3.13)

where the coefficient c̄p reads:

β = −νFWF (cp)F − νOWO(cp)O + νPWP (cp)P = νFWF

[
(cp)P − (cp)F

]
+ νOWO

[
(cp)P − (cp)O

]
.

Let θ > 0 be defined as the minimum value of θ0 on Ω and of θI on ∂ΩI × (0, T ). The first three terms
at the left-hand side of the relation (3.13) may be seen as a transport-diffusion operator applied to θ;
since this operator satisfies a maximum principle, supposing that the chemical reaction is exothermic
(i.e. ω̇θ ≥ 0) and that β ≤ 0, we obtain that θ(x, t) ≥ θ for a.e. (x, t) ∈ Ω × (0, T ). Still for an
exothermic reaction, if β > 0, only the non-negativity of θ is warranted.

Equation of state – Finally, we must give an equation of state to close the system. Let us denote
by ρi the density of the component i, let Is be the set of indices corresponding to solid species and Ig
the set of the indices corresponding to gaseous species (so Is ∪ Ig = {i ∈ I}). We suppose that the
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gas phase is a mixture of perfect gases. Assuming that the density of the solid phase is constant, the
usual mixture law reads:

ρ = ̺
(
θ, (yi)i∈I

)
=

1

Rθ

Pth

∑

i∈Ig

yi
Wi

+
∑

i∈Is

yi
ρi

, (3.14)

where R = 8.31451 JK−1mol−1 stands for the perfect gases constant and Pth is the so-called ther-
modynamic pressure. Since we assumed that the measure of ∂ΩO is positive (i.e. the computational
domain is not closed), this latter quantity is constant in time and space, and given by the initial state.
The initial and boundary values of the density are naturally supposed to satisfy the equation of state
applied to the initial and boundary values of the temperature and the mass fractions:

ρ0 = ̺
(
θ0, ((yi)0)i∈I

)
, ρI = ̺

(
θI , ((yi)I)i∈I

)
.

3.2.2 Expression of the chemical species diffusion fluxes

Since the size of the particles is large compared to the molecular Brownian motion ranges, we suppose
that the diffusion of dust vanishes, so the diffusion phenomena only occur in the gas phase. We define
the gas mass fraction as yg =

∑
i∈Ig

yi and, for i ∈ Ig, the mass fraction of the species i in the gas

phase as ỹi = yi/yg. A general expression of the diffusion fluxes reads:

for i ∈ Is, ji = 0 ; for i ∈ Ig, ji = −ρ
∑

j∈Ig

Di,j∇ỹj,

where the coefficients (Di,j)i,j∈Ig depend on the local mixture concentration (i.e. on the mass fractions
(ỹi)i∈Ig themselves). However, using a full tensor D and computing its coefficients is cost-consuming,
and, moreover, the complete data necessary to their accurate computation is usually not available.
This tensor is thus generally approximated. For instance, a ”quasi-diagonal” approximation to this
purpose for pure gaseous mixtures reads:

for i ∈ Ig, ji = jei + ỹiJ , jei = −ρDi
Wi

W
∇x̃i,

where x̃i stands for the molar mass fraction of the component i, so

x̃i = ỹi
W

Wi
, with

1

W
=

∑

i∈Ig

ỹi
Wi

. (3.15)

The quantity W is the so-called gaseous mixture molar mass. Complemented by a suitable expression
of the coefficient Di (see Equation (3.16) below), this formula is known as the Hirschfelder and Curtiss
approximation (see [28, 45] and [68, pp. 14-15]). The term ỹi J is a correction term added to ensure
that

∑
j∈Ig

jj = 0, and so a suitable expression for J reads J = −∑
j∈Ig

jej (note that, by definition,∑
i∈Ig

ỹi = 1). Under the Hirschfelder and Curtiss approximation, the diffusion coefficients read:

for i ∈ Ig, Di =
1− ỹi

∑

j∈Ig, j 6=i

x̃j
Dji

, (3.16)

where Dji is the binary diffusion coefficient of the species j into species i. Exploiting the expression
(3.15) of the molar fractions as a function of the mass fractions, we obtain the following expression
for the diffusion fluxes:

for i ∈ Ig, jei = −ρDi
1

yg
∇yi − ρDiyi

[
∇(

1

yg
) +

1

yg
∇(log(W ))

]
. (3.17)
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In this model, the operator yi 7→ D(yi) = div
(
j(yi)

)
can thus be split in two parts:

D(yi) = D1(yi) +D2(yi), D1(yi) = −div(ρDi
1

yg
∇yi), D2(yi) = −div(yiqd),

with:

qd = ρDi

[
∇(

1

yg
) +

1

yg
∇(log(W ))

]
− 1

yg
J . (3.18)

The operator D1 satisfies a maximum principle, while D2 is only positivity-preserving, since the
divergence of the vector qd is not zero in the general case. For instance, this means that, because
of the approximation made for the diffusion tensor, the dust mass fraction may locally exceed the
maximum of its initial and boundary values, which is of course unphysical (within the framework of
the present model, where a possible drift of the particles with respect to the bulk flow velocity is not
taken into account). Hopefully, the occurrence of this phenomenon may be limited in time and space.

3.2.3 Bounds for the unknowns

Let us now collect the different bounds for the unknowns that we mentioned in the previous sections:

mass fractions: 0 ≤ yi ≤ 1,
∑

i∈I

yi = 1

if qd = 0 (or div(qd) = 0), yF ≤ yF , yO ≤ yO, yP ≥ y
P
, y

N
≤ yN ≤ yN .

temperature: if ω̇θ ≥ 0, θ ≥ 0,

if ω̇θ ≥ 0 and β ≤ 0, θ ≥ θ.

3.3 The numerical scheme

For the resolution of the model equations, we define the variable z as follows:

z =
yF + s(1− yO)

1 + s
, s =

νFWF

νOWO

Note that, combining the fuel and the oxydant mass balance equations, the variable z satisfies a
homogeneous equation; for this reason, we replace the oxydant mass balance equation by the balance
equation for z (since, given the values of z and yF , we may deduce yO).

Let us consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), which we suppose
uniform. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step. We suppose that the
interval Ω is split in a family of control volumes (sub-intervals of Ω) which realizes a partition of Ω; we
denote these control volumes by (K)K∈M, where M is the set of all the control volumes of the mesh.
The scalar unknowns, i.e. the density, the mass fractions and the temperature, are associated to the
control volumes, and the corresponding unknowns read ρnK , (yi)

n
K , θnK for K ∈ M and 0 ≤ n ≤ N .

The velocity is discretized at faces of the mesh, which we denote by (σ)σ∈E , where E stands for the set
of all faces of the mesh, so the corresponding unknowns are unσ for σ ∈ E and 0 ≤ n ≤ N . The sets of
the internal faces, the external faces (i.e. the two faces located on the boundary of Ω) and the faces
of K are denoted by Eint, Eext and E(K) respectively, and the face separating two neighbour cells K
and L is denoted by K|L. For K ∈ M, xK stands for the mass center of K and, for σ = K|L ∈ Eint,
we define dσ by dσ = |xK − xL|. For short, we use indifferently ρn (resp. (yi)

n, θn, un) and (ρnK)K∈M

(resp. ((yi)
n
K)K∈M, (θnK)K∈M, (unσ)σ∈E ).
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Using the initial conditions, we define the following variables on the time level t0:

∀K ∈ M, ρ−1
K =

1

|K|

∫

K
ρ0(x) dx, θ0K =

1

|K|

∫

K
θ0(x) dx, (yi)

0
K =

1

|K|

∫

K
yi,0(x) dx for i ∈ I,

∀σ ∈ E , u0σ = u0(σ).

Then, we implement a fractional step algorithm, which consists in four steps, in order to calculate
recursively the unknowns ρn, ρn+1, (yi)

n+1
i∈I , θn+1 and un+1 for 0 ≤ n < N :

Reactive step:

∀K ∈ M :

Reduced variable computation – Solve for zn+1:

1

δt
(ρnKz

n+1
K − ρn−1

K znK) + div(ρnzkun)K = 0. (3.19a)

Neutral gas mass fraction computation – Solve for yn+1
N :

1

δt

[
ρnK(yN )n+1

K − ρn−1
K (yN )nK

]
+ div(ρnykNun)K = 0. (3.19b)

Fuel mass fraction computation – Solve for yn+1
F :

1

δt

[
ρnK(yF )

n+1
K − ρn−1

K (yF )
n
K

]
+ div(ρnyn+1

F un)K = (ω̇F )
n+1
K . (3.19c)

Oxydant mass fraction computation – (yO)
n+1
K = 1 +

1

s
(yF )

n+1
K − zn+1

K (1 + 1
s ). (3.19d)

Product mass fraction computation – (yP )
n+1
K = 1− (yF )

n+1
K − (yO)

n+1
K − (yN )n+1

K . (3.19e)

Hydrodynamics step:

Energy balance – Solve for θn+1:

∀K ∈ M,
∑

i∈I

cp,i

[ 1

δt

[
ρnK(yi)

n+1
K θn+1

K − ρn−1
K (yi)

n
Kθ

n
K

]
+ div

[
ρnyn+1

i θn+1un
]
K

(3.20a)

+ div
[
θn+1jni

]
K

]
− div(λ∇θn+1)K = (ω̇θ)

n+1
K .

Equation of state – ρn+1
K = ̺

(
θn+1
K , ((yi)

n+1
K )i∈I

)
, for K ∈ M. (3.20b)

Mass balance – Solve for un+1:

∀K ∈ M,
1

δt

[
ρn+1
K − ρnK

]
+ div

[
ρn+1un+1

]
K

= 0. (3.20c)

Let us define the function f : (yF , yO) 7→ min(yF/(νFWF ), yO/(νOWO)). From a practical point
of view, it is interesting to note that f(yF , yO) may be deduced from the value of z; indeed,

z =
yF + (1− yO)s

1 + s
⇔ yF

νFWF
− yO
νOWO

= z
( 1

νFWF
+

1

νOWO

)
− 1

νOWO
.

So, once the equation (3.19a) is solved for zn+1, f(yn+1
F , yn+1

O ) is known. But the function f vanishes
as soon as yF or yO vanishes; we thus have at hand the possibility to write a reactive term satisfying
this latter property (and so preserving the positivity of the mass fractions) while appearing in the
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algorithm as a linear quantity (thus avoiding to implement an iterative technique, like a Newton
algorithm, to cope with a nonlinear algebraic problem). So, either f appears in the expression of ω̇
and the expression that follows is exact, either we use it to linearize ω̇ in the time scale:

ω̇n+1 = ω̇(ynF , y
n
O)

f(yn+1
F , yn+1

O )

f(ynF , y
n
O)

.

This last technique is used in the applications presented hereafter.

Supposing the rest of the mass fractions given, the product mass fraction equation is equivalent to
the simple algebraic relation (3.19e), since, on the discrete level, the sum of all mass fractions is equal
to 1 (cf. Section 3.4, Theorem 3.4.1).

Equations (3.19b)-(3.20c) are resolved successively. We now give the expression of the fluxes
appearing in these relations.

Convection fluxes – The guideline for the definition of the convection fluxes is that we want
the numerical scheme to respect ”by construction” the physical bounds satisfied by the variables in
the continuous case. To this purpose, we first remark that an operator which satisfies a maximum
principle must vanish when applied to constant functions. Indeed, denoting by L such an operator, an
initially constant solution ξ to the equation ∂tξ+L(ξ) = 0 must remain constant, since the upper and
lower bounds of the solution have to be preserved (provided, of course, that boundary conditions are
consistent with this constant solution); this yields ∂tξ = 0 and so L(ξ) = 0. In fact, when L is a discrete
convection operator, using an upwind approximation of the unknown at the faces, this condition of
preservation is not only mandatory but also sufficient [54]. In the system under consideration, two
such convection operators have to be approximated, namely the convection operator for the species
mass balance equations and for the energy balance, and the fact that these operators vanish when
applied to constant functions is closely related to the fact that these equations may be recast under the
so-called non-conservative form thanks to the mixture mass balance and to the species mass balance,
respectively. So, let the convection fluxes in this latter relation read:

div
[
ρu

]
K

=
1

|K|
∑

σ∈E(K)

FK,σ.

We then define the convection fluxes in the species mass balance equations as:

div
[
ρyiu

]
K

=
1

|K|
∑

σ∈E(K)

FK,σ(yi)
up
σ ,

where (yi)
up
σ stands for the upwind approximation of yi on the face σ with respect to FK,σ. Similarly,

let the convection and diffusion fluxes in this equation be written as:

div
[
ρyiu

]
K
+ div

[
ji
]
K

=
1

|K|
∑

σ∈E(K)

GK,σ,

where, for short, we skip the index i for the flux GK,σ. Then, in the energy mass balance,

div
[
ρyiθu

]
K
+ div

[
θji

]
K

=
∑

σ∈E(K)

GK,σ θ
up
σ ,

where θupσ stands for the upwind approximation of θ on the face σ with respect to GK,σ. This upwind
discretization for yi and θ for an internal face σ = K|L is defined as follows:

(yi)
up
σ = (yi)K if FK,σ ≥ 0, (yi)

up
σ = (yi)L otherwise,

θupσ = θK if GK,σ ≥ 0, θupσ = θL otherwise.
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For an external face adjacent to K, lying on the outlet part of the boundary, we have (yi)
up
σ = (yi)K ,

which is consistent with the above definition since FK,σ is supposed to be non-negative, and θupσ = θK ,
which, once again, is consistent with the upwind definition on the internal faces since the mass species
diffusion flux is supposed to vanish, and so GK,σ = FK,σ (yi)

up
σ has the same sign as FK,σ, i.e. it is

also non-negative (provided that we are able to prove that the chemical species mass fractions remain
non negative, which is indeed done in Section 3.4 below). For an external face adjacent to K lying
on the inlet part of the boundary, both (yi)σ and θσ are computed as an approximation of the mass
fractions and the temperature prescribed on the boundary, and, by similar arguments, both FK,σ and
GK,σ are non-positive.

The mass flux through the face σ reads:

FK,σ = ρσuK,σ

where uK,σ stands for the value of the velocity oriented outward K, i.e. uK,σ = uσ if K is situated
”on the left part” of σ and uK,σ = −uσ otherwise, and ρσ stands for any reasonable approximation
of ρ on σ; here, we choose a centered approximation: ρσ = 1

2(ρK + ρL) for σ = K|L, ρσ = ρK for an
outlet external face adjacent to K and ρσ is computed from the equation of state as a function of the
data for the species mass fractions and the temperature for an inlet external face.

Diffusion fluxes – The mass diffusion fluxes vanish for the solid species. For the gaseous chemical
species, we have:

div
[
jni

]
K

=
1

|K|
∑

σ=K|L

(Ji)
n
K,σ.

Note that the sum is restricted to the internal faces of K since, by assumption, the diffusion fluxes
vanish at the boundaries (more precisely speaking, they are supposed to vanish at the outlet boundary
and the total flux is written as a convection flux at the inlet boundary, so already taken into account
in the definition of GK,σ above). For a scalar variable ξ and an internal face σ = K|L, let us define
−(∂xf(ξ))K,σ and {f(ξ)}σ as:

−
(
∂xf(ξ)

)
K,σ

=
1

dσ

(
f(ξK)− f(ξL)

)
and {f(ξ)}σ =

1

2

(
f(ξK) + f(ξL)

)
.

For i ∈ Ig, we then define (Jd
i )K,σ as:

(Jd
i )K,σ = −

{
ρDi

1

yg

}
σ
(∂xyi)K,σ. (3.21)

Note that, in this definition, the quantity {ρDi /yg}σ may be replaced by any reasonable approximation
of ρDi /yg on the face (so, for instance, by the harmonic mean of the cell aproximations of this
expression, which may possibly give more accurate results when it varies quickly from cell to cell).
Let us then introduce the following quantities:

(qi)K,σ = −
{
ρDi

}
σ

(
∂x(

1

yg
)
)
K,σ

−
{
ρDi

1

yg

}
σ

(
∂x(log(W ))

)
K,σ

, (Jc
i )K,σ = (qi)K,σ(yi)

up/qi
σ ,

where (yi)
up/qi
σ stands for the upwind approximation of yi at the face σ with respect to (qi)K,σ. Finally,

let us denote by qK,σ the following quantity:

qK,σ =
∑

i∈Ig

(Jd
i )K,σ + (Jc

i )K,σ.
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With this notation, the diffusion flux (Ji)K,σ reads:

(Ji)K,σ = (Jd
i )K,σ + (Jc

i )K,σ +
(yi)

up/q
σ

(yg)
up/q
σ

qK,σ,

where (yi)
up/q
σ and (yg)

up/q
σ stand for an upwind approximation at the face σ with respect to qK,σ of yi

and yg respectively. Note that this latter upwinding is performed with respect to the same quantity

for all the species, and thus
∑

i∈Ig
(yi)

up/q
σ = (yg)

up/q
σ .

The discrete heat diffusion term in the enthalpy energy balance reads:

−div[λ∇θn+1]K =
∑

σ=K|L

HK,σ, with HK,σ = λσ
(
∂xθ

)
K,σ

,

where λσ stands for an approximation of the diffusion coefficient λ on σ; for instance, if λ depends on
the temperature, a possible choice is λσ = {λ(θ)}σ .

3.4 Properties of the scheme

In this section we prove that the set of solutions of the scheme is not empty and that, at the

discrete level, the mass fractions, the temperature and the density preserve the same physical bounds
as at the continuous level.

Let us now introduce some notations. For any real valued function f we denote by f+ (re-
spectively f−) its positive part (respectively its negative part), i.e. f+ = max(f, 0) (respectively
f− = −min(f, 0)). M-matrices play a fundamental role in this section.

Definition. A ∈ Mn(R) is an M-matrix if and only if it verifies:

(a) All diagonal entries are positive, Aii > 0.

(b) All off-diagonal entries are non-positive, Aij ≤ 0 for i 6= j.

(c) It is strictly diagonally dominant, Aii > −∑
j 6=i

Aij .

Lemma 3.4.1 (M-matrix properties).
Let A be an M-matrix, the following results hold:

(i) A is invertible.

(ii) If x ∈ R
n is such that (Ax)i ≥ 0, for all i, then xi ≥ 0 for all i.

(iii) Let x, b ∈ R
n be such that (Ax)i = (

∑
j Aij)bi. Then, for all i, minj bj ≤ xi ≤ maxj bj.

Proof. (i) Let us suppose that ker(A) 6= {∅}: there exists x ∈ R
n, x 6= 0, such that Ax = 0. We

choose i such that xi = minj(xj). By hypothesis,

|xi| =
1

Aii

∣∣∣
∑

j 6=i

Aijxj

∣∣∣ ≤
∑

j 6=i |Aij |
Aii

max
j 6=i

|xj| < max
j 6=i

|xj |,

which is a contradiction, thus ker(A) = ∅ and A is invertible.

(ii) There exists i such that xi = minj xj and let us suppose xi < 0. The equation verified by
x reads:

Aiixi =
∑

j 6=i

|Aij |xj =
∑

j 6=i,
xj≥0

|Aij |xj +
∑

j 6=i,
xj<0

|Aij |xj ≥
∑

j 6=i,
xj<0

|Aij |xj ,
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and since both sides are negative

|xi| ≤

∑
j 6=i,
xj<0

|Aij |

Aii
|xj | < max

j 6=i,
xj<0

|xj |,

which is a contradiction, thus for all i, xi ≥ 0.

(iii) Let b = mini bi. Substracting the quantity
∑

j Aijb from the i-th line of the system Ax = b,
yields: ∑

j

Aij(xj − b) =
∑

j

Aij(bi − b).

The terms bi−b are all non-negative and since by hypothesis A is diagonally dominant, the right-hand
side is non-negative. If this holds for an arbitrary line i, it holds for all lines of the system, thus, by
(ii), xi ≥ b for all i. To prove that xi ≥ b for all i, where b = maxi bi, substract

∑
j Aijb from the i-th

line of Ax = b and follow the same steps.

Replacing equations (3.19a) and (3.19e) by their equivalents, the system of equations (3.19b)-
(3.19e) may be written in the following form:

∀i ∈ I, ∀K ∈ M, An+1
K · (yi)n+1 =

|K|
δt
ρn−1
K (yi)

n
K − (Di)

n+1
K · (yi)n + (ω̇i)

n+1
K . (3.22)

An+1
K denotes the K-th line of the discretized convection operator An+1, and An+1

K ·(yi)n+1 is the inner
product between these two vectors. In the same way, (Di)

n+1
K denotes the K-th line of the discretized

diffusion operator (Di)
n+1, and (Di)

n+1
K · (yi)n is the inner product between thsese two vectors.

Lemma 3.4.2 (Properties of the discrete operator An+1).
If for 0 ≤ n < N and for any K ∈ M, ρnK > 0, then An+1 is an invertible operator. Now consider the
system of equations:

An+1 · yn+1 = bn, with bnK =
|K|
δt
ρn−1
K ynK for K ∈ M,

and let us suppose that (3.20c) holds. Then, for allK ∈ M, minK∈M(yi)
n
K ≤ (yi)

n+1
K ≤ maxK∈M(yi)

n
K

(i.e. An+1 is “bound-preserving”).

Proof. For 0 ≤ n ≤ N and any K ∈ M, the only non-zero terms of the K-th line of An+1, read:

|K|
δt
ρnK + (Fn

K,σ)
+, on the diagonal,

−(Fn
L,σ)

+, on any column L such that σ = K|L.

It is straightforward that the diagonal entries are positive and the off-diagonal non-positive. Thanks to
the mass balance equation, the sum of the entries of An+1

K is equal to |K|/δt ρn−1
K > 0, thus An+1 is an

M-matrix and a unique solution exists for the chemical mass fraction balance equations. Furthermore,
the entries of An+1

K sum up to the coefficient of (yi)
n
K on the right-hand side and Lemma 3.4.1-(iii)

concludes the proof.

For 0 ≤ n ≤ N , let us define the so-called CFL-number by

CFLn = max(CFLn
D,CFL

n
ω̇),

118



where

CFLn
D = max

i∈I
max
K∈M

δt

|K| ρn−1
K (yi)nK

∑

σ=K|L

{
ρnDi

1

yng

}
σ

1

dσ
+

(
(qi)

n
K,σ

)+
+ (qnK,σ)

+

and

CFLn
ω̇ = max

K∈M

δt
∑

i cp,i(ω̇i)
n+1
K

ρn−1
K

∑
i cp,i(yi)

n
K

.

Let us also introduce the following quantity,

∀i ∈ I, ∀K ∈ M,
|K|
δt
ρn−1
K (yi)

n+ 1
2

K =
|K|
δt
ρn−1
K (yi)

n
K − (Di)

n+1
K · (yi)n,

and the neighbourhood of a cell K, denoted V(K), which is the set of cells sharing an edge with K.

Lemma 3.4.3.
For 0 ≤ n ≤ N , the following statements hold:

(i) If (qd)
n = 0, then for all i ∈ I and K ∈ M, min

K∈V(K)
(yi)

n
K ≤ (yi)

n+ 1
2

K ≤ max
K∈V(K)

ynK .

(ii) If (qd)
n 6= 0, then, under the condition CFLn

D ≤ 1, for all i ∈ I, (yi)n+
1
2 ≥ 0.

Proof. Ignoring the contribution of the reaction term, the right-hand side of the mass fraction balance
equations (3.22), reads:

∀i ∈ I, ∀K ∈ M,
|K|
δt
ρn−1
K (yi)

n+ 1
2

K =
|K|
δt
ρn−1
K (yi)

n
K +

∑

σ=K|L

{
ρDi

1

yg

}n

K,σ
(∂xyi)

n
K,σ + (qd)

n
K,σ(yi)

n
s ,

where

∀K ∈ M, ∀σ ∈ E(K), (qd)K,σ(yi)s = (qi)K,σ(yi)
up/qi
σ +

(yi)
up/q
σ

(yg)
up/q
σ

qK,σ.

(i) The right-hand side may be written in the following way:

∀i ∈ I, ∀K ∈ M,
|K|
δt
ρn−1
K (yi)

n+ 1
2

K =
∑

L∈V(K)

αn
L(yi)

n
L,

where
∑

L∈V(K) α
n
L = ρn−1

K |K|/δt, thus the result is straightforward in virtue of Lemma 3.4.2.

(ii) If CFL ≤ 1, the positivity of the right-hand side is guaranteed.

Lemma 3.4.4 (Boundedness of the chemical mass fractions).
For 0 ≤ n ≤ N , suppose that for all i ∈ I and K ∈ M, (yi)

n
K ≥ 0, CFLn

D ≤ 1 and that the discrete
mass balance (3.20c) is verified.

(i) For all i ∈ I and K ∈ M, (yi)
n+1
K ≥ 0.

(ii) Now let us suppose that qnd = 0 (in the sense that (qd)
n
K,σ = 0, K ∈ M, σ ∈ E(K)). Then

yn+1
F ≤ ynF , y

n+1
O ≤ ynO, y

n+1
P

≤ yn
P
and yn

N
≤ yn+1

N
≤ yn+1

N ≤ ynN .
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Proof. The mass fraction balance equations equivalently read:

∀i ∈ I, ∀K ∈ M,
( |K|
δt
ρnK + (Fn

K,σ)
+
)
(yi)

n+1
K −

∑

σ=K|L

(Fn
K,σ)

−(yi)
n+1
L

=
|K|
δt
ρn−1
K (yi)

n
K +

∑

σ=K|L

{
ρDi

1

yg

}n

K,σ
(∂xyi)

n
K,σ + (qd)K,σ(yi)

n
s + (ω̃i)

n+1
K ,

(3.23)

where

∀K ∈ M, ∀σ ∈ E(K), (qd)K,σ(yi)s = (qi)K,σ(yi)
up/qi
σ +

(yi)
up/q
σ

(yg)
up/q
σ

qK,σ,

and where for i ∈ I, ω̃n+1
i denotes the continuation of the i-th reaction rate for negative values of ynF

and ynO, defined by:

∀i ∈ I, ω̃n+1
i =

∣∣∣∣∣
0, if min{yF , yO}n+1 ≤ 0,

ω̇n+1
i , otherwise.

(i) For i ∈ {N,P}, given the non-negative sign of the reactive term and the condition CFLD ≤ 1,
the right-hand side is positive and the result is a direct application of Lemma 3.4.1-(ii). When the
reaction term may take negative values, i.e. for i ∈ {F,O}, let us rewrite:

for i = F or O, ω̃n+1
i =

∣∣∣∣∣∣∣∣

0, if min
{ yF
νFWF

,
yO

νFWF

}n+1
≤ 0,

yn+1
i

ω̇n+1
i

yn+1
i

, otherwise.

Passing this non-positive term on the left-hand side, the left-hand side operator becomes:

∀K ∈ M, Ãn+1
K = An+1

K +
(ω̇i)

n+1
K

(yi)
n+1
K

IK ,

where IK denotes the K-th line of the identity matrix. By definition of ω̃i, the terms added on
the diagonal of Ãn+1 are non-negative, thus Ãn+1 is an M-matrix and since the right hand side is
non-negative, any solution will be non-negative.

(ii) For all i ∈ I and K ∈ M, let us denote by (bi)
n
K the value of the right-hand side of (3.23) at

the time level tn, which may be written as:

(bi)
n
K =

∑

L∈V(K)

αn
L(yi)

n
L + (ω̃i)

n+1
K ,

where
∑

L∈V(K) α
n
L = |K|/δtρn−1

K , which is exactly the sum of the entries of An+1
K . Taking also into

consideration the sign of the reactive term and Lemma 3.4.2, the results are immediate.

Lemma 3.4.5.
For 0 ≤ n ≤ N , let us suppose that for all K ∈ M,

∑
i∈I(yi)

n
K = 1 and that (3.20c) holds. Then any

solution to the discrete chemical fraction balance equations satisfies for all K ∈ M,
∑

i∈I(yi)
n+1
K = 1.

Proof. Summing over i ∈ I the discrete chemical fraction balance equations, yields:

∀K ∈ M, An+1
K ·

(∑

i∈I

(yi)
n+1

)
=

|K|
δt
ρn−1
K

∑

i∈I

(yi)
n+1
K + div

(∑

i∈I

(ji)
n+1
K

)
+
∑

i∈I

(ω̇i)
n+1
K .

Let us recall that by construction, ∀K ∈ M,
∑

i∈I(ω̇i)
n+1
K = 0 and for all σ ∈ E(K),

∑
i∈I(ji)

n
K,σ = 0.

Thus, what remains on the right-hand side is the sum of the entries of the vector bn, where for all
K ∈ M, bnK =

∑
j (A

n+1
K )j . Applying the result of Lemma 3.4.2, concludes the proof.
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Now we may state and prove our main result. Some of its statements have already been treated,
but are also present here for the sake of clarity.

Theorem 3.4.1 (Existence and boundedness of solutions)
For 0 ≤ n ≤ N , let us suppose that for all i ∈ I and K ∈ M, (yi)

n
K ≥ 0,

∑
i∈I(yi)

n
K = 1 and

CFLn ≤ 1. Then, there exists at least one solution to (3.19)-(3.20), satisfying the following assertions:

(i) for any i ∈ I, (yi)n+1 ∈ [0, 1]; If, in addition, qnd = 0, then yn+1
F ≤ yF , y

n+1
O ≤ yO, y

n+1
P

≤ y
P

and y
N

≤ yn+1
N

≤ yn+1
N ≤ yN .

(ii) θn+1 ≥ 0;

(iii) if β ≤ 0, then θn+1 ≥ θ and 0 ≤ ρn+1 ≤ max
{Pth

Rθ
Wi, for i ∈ Ig ; ρi, for i ∈ Is

}
.

Proof. In the first place, let us suppose the existence of a solution and prove that the announced
bounds hold. We proceed by induction, supposing that the announced bounds hold at tn, 0 ≤ n ≤ N .

Assertion (i) – Under the assumption of existence of a solution, the positivity of (yi)
n+1
K for all

i ∈ I and K ∈ M is guaranteed by Lemma 3.4.4. Thus, the sdought bounds are guaranteed by
Lemma 3.4.5.

Assertion (ii) – Let us rewrite the linear system (3.20a) in the following form,

∑

i∈I

cp,iMn+1
K θn+1 =

∑

i∈I

cp,iρ
n−1
K (yi)

n
Kθ

n
K + (ω̇θ)

n+1
K .

For 0 ≤ n ≤ N and any K ∈ M, the only non-zero terms of the K-th line of Mn+1, read:

|K|
δt
ρnK(yi)

n+1
K + (Gn+1

K,σ )
+ +

λσ
dσ
, on the diagonal,

−(Gn+1
K,σ )

− − λσ
dσ
, on any column L such that σ = K|L.

The matrix Mn+1 has the same properties as the matrix An+1, since under the condition CFLn
ω̇ ≤ 1,

the sum over a line of the matrix is non-negative. Note also that for an exothermic chemical reaction,
such as the combustion, ∀K ∈ M, (ω̇θ)

n+1
K must be by definition non-negative. Thus, the sign of

the right-hand side is positive and since Mn+1 is an M-matrix, the temperature at tn+1 cannot be
negative.

Assertion (iii) – By the discrete equation of state, for all K ∈ M, ρn+1
K is non-negative since

neither of the elements of {(yi)n+1
K }i∈I and θn+1

K is negative. The upper bound for ρn+1 is obtained
from the same relation with a simple computation.

Let us now turn to the question of existence of a solution. For the density and temperature, it is
directly given by the invertibility of the associated linear operators. For the chemical mass fractions,
let us rewrite the corresponding systems in the following form,

∀i ∈ I, ∀K ∈ M,
|K|
δt

(ρnK(yi)
n+1
K − ρn−1

K (yi)
n
K) + div

[
ρnyn+1

i un
]
K
+ div

[
jni

]
= α(ω̃i)

n+1
K , (3.24)

where α is a real number lying in the interval [0, 1]. For α = 0 system (3.24) admits a unique solution,
(yn+1

N , yn+1
F , yn+1

O , yn+1
P ), thanks to the invertibility of the corresponding linear operators and let us

suppose the existence of a solution for α ∈ (0, 1]. For any value of α ∈ [0, 1], any solution is bounded in
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[0, 1]: firstly, for any value of α the solution is bounded below by 0 in virtue of Lemma 3.4.4. Secondly,
it is easy to check that for any α ∈ (0, 1] the solution is bounded above by 1, by summing over i ∈ I
equations (3.24) and exploiting the facts that for all K ∈ M the sum over i ∈ I of the reaction rates
vanishes, such a the sum over i ∈ I of the mass diffusion fluxes on the edges, and that the mass
balance must hold. We conclude to the existence of a solution (yn+1

N , yn+1
F , yn+1

O , yn+1
P ) ∈ [0, 1]4 for

α = 1 (i.e. for the discrete mass fraction balance equations) thanks to a topological degree argument
stated in the Appendix 3.A.

3.5 Numerical results

Computations presented in this section are performed with MATLAB for the primitive formulation
and by the open-source CALIF3S software developped at IRSN [6] for the flame-velocity model.

Data is chosen in order to check the scheme properties (i.e. to avoid unrealistic simplifications, as,
for instance, a same specific heat diffusion coefficient for all the chemical species), and to be in the
range of practical applications. The mixture is initially at rest, homogeneous and with an uniform
temperature:

(yF )0 = (yO)0 = 0.4, (yN )0 = 0.2, (yP )0 = 0, θ0 = 300◦K.

The reaction rate is given by the following Arrhenius law:

ω̇K = 104 yF yO e−900/θ. (3.25)

The molar masses of the chemical species are considered to be equal to 20 g/mol for all the species,
so the combustion reaction reads F + O +N −→ 2P +N , and the initial atmosphere composition is
stoichiometric. The binary mass diffusion coefficients are

DNO = 0.25 ∗ 10−5, DNP = 0.5 ∗ 10−5, and DOP = 10−5.

The temperature diffusion coefficient is λ = 0.005, the specific heat coefficients (J/(KgK)) are cp,N =
3. 103, cp,F = 1. 103, cp,O = 2. 103 and cp,P = 4. 103 and the formation enthalpies (J/Kg) are ∆h0f,N =

3. 106, ∆h0f,F = 1. 106, ∆h0f,O = −2. 106 and ∆h0f,P = −4. 106 (so the reaction is exothermic). The

fuel density is equal to 100 Kg/m3, and the density of the gaseous atmosphere is given by the ideal
gases law.

Flame profiles obtained with the Hirschfelder and Curtiss diffusion coefficients – We
first perform computations with mass diffusion coefficients calculated by the Hirschfelder and Curtis
approximation. To initiate the transient, the reaction ignition is forced at the left part of the domain;
then, the flame brush propagates to the right, while the solution progressively tends to a progressive
wave (i.e. the translation at a constant speed of a constant profile). This establishment is quite long
(for present computations, the final time is t = 2 s), and to capture this phenomena with a reasonable
number of cells, we use a mobile frame attached to the flame front (or, equivalently, we impose a
constant inlet flow rate of fresh gases at the right-hand section of the domain). However, the velocity
of the flame front is influenced by the mesh, so the frame velocity (or the inlet flowrate) depends on the
number of cells; to compare the established profiles, we thus have performed an abscissa translation
up to obtain solutions as close as possible.

Obtained results with various meshes are plotted on Figures 3.1 and 3.2. First, we observe that
numerical convergence (at least for an engineering point of view) is obtained for the coarsest mesh
except for the velocity, which, unfortunately, is an important quantity, since the plane flame laminar
velocity is a parameter often used to characterize the mixture, for instance to compute the turbulent
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flame velocity in the so-called TFC (for Turbulent Flame velocity Closure) deflagration mdels [85, 59].
For the velocity in the fresh gases, we obtain 3.343 cm/s, 3.017 cm/s 2.931 cm/s and 2.862 cm/s for
n = 500, n = 1000, n = 2000 and n = 4000 cells respectively, which suggests a first order convergence
of this parameter, since the difference between two successive meshes roughly varies as the space
step (of the coarsest or finest one, equivalently). Second, as expected, the expression of the mass
diffusion operator produces, with the chosen binary diffusion coefficients, rather large (up to around
25% locally) unphysical variations of the inert gases mass fractions, which should remain constant
in space and time. The temperature is larger in the burnt zone than in the fresh one (the reaction
is exothermic); however, we observe a small temperature decrease on the upstream side (i.e. near
the fresh zone) of the flame brush, which is not unconsistant with the theoretical study, since the β
parameter of Equation (3.13) is positive.

Since the profile in the interface does not vary in space and time up to a translation velocity up
(the velocity of the flame brush), we may write the usual jump conditions for the mixture mass balance
equation (3.1), to obtain:

(ρu − ρb) up = ρuuu − ρbub,

where ρb and ub (resp. ρu and uu) stand for the constant density and velocity in the burnt (resp.
unburnt) zone. Thanks to symetry conditions (due to the fact that the combustion takes place in an
atmosphere initially at rest), ub = 0 and we deduce from the previous relation that the flame velocity
is given by:

uf = up − uu =
ρb

ρu − ρb
uu.

The obtained flame velocity is equal to uf = 0.75 cm/s.

Comparison between the two formulas for the diffusion coefficients – We now assess the
influence of an approximation often done in practice, namely considering mass diffusion coefficients
which do not vary as a function of the mixture composition. To this purpose, we set these coefficients
to the average of their value calculated thanks to the Hirschfelder and Curtiss formula in the unburnt
and the burnt phase, under the hypothesis of a complete reaction. Obtained profiles are plotted on
Figures 3.3 and 3.4. They show a reasonably weak impact of the approximation. The flame velocity
for the constant mass diffusion coefficients is equal to 0.84 cm/s (to be compared with uf = 0.75 cm/s
for the Hirschfelder and Curtiss approximation).

Dependence on the magnitude of the reactive source and the thermal diffusion coefficient

– We now assess the influence of mass difusion, setting the mass diffusion coefficients to zero, an then
of the chemical reaction rate and the thermal diffusion coefficient. The established profiles obtained
with 1000 cells (when turning off the mass diffusion, the space convergence is obtained faster) are shown
on Figures 3.5 and 3.6. We first observe that the inert gases mass fraction (not shown here) is now
constant, which is consistent with the theoretical expectations (when the mass diffusion coefficients
are the same for all the chemical species, the scheme satisfies a discrete maximum principle). We then
collect the flame velocity and the flame brush thickness for various thermal diffusion coefficients and
reaction rates in the tables below. The flame brush thickness is evaluated as:

δf = x0.39 − x0.02

where, from the left to the right, x0.39 (respectively x0.02) stands for the first (respectively last) location
where the fuel mass fraction is greater that 0.39 (respectively, lower than 0.02).
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λ/2 λ 2λ

flame velocity (cm s−1) 2.02 2.82 3.95

flame brush thickness (mm) 0.76 1.04 1.44

ω̇/2 ω̇ 2 ω̇

flame velocity (cm s−1) 1.97 2.82 4.04

flame brush thickness (mm) 0.77 1.04 1.45

The flame velocity is much greater when the mass diffusion vanishes: compared to the diffusive
cases presented in the previous sections, uf is multiplied by a factor greater than 3. In addition, this
velocity is larger and larger when the thermal diffusion or the chemical reaction rate increase, with a
dependence which seems to be close to linear with respect to the square root of both these parameters.
The flame brush thickness seems to be roughly proportional to uf .
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Figure 3.1: Results obtained with the Hirschfelder and Curtiss formula for the diffusion coefficients –
From the top to the bottom, fuel, oxydant, product and neutral gas mass fractions obtained with 500
(green), 1000 (blue), 2000 (red) and 4000 (orange) cells.
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Figure 3.2: Results obtained with the Hirschfelder and Curtiss formula for the diffusion coefficients
– From the top to the bottom, temperature, density and velocity obtained with 500 (green), 1000
(blue), 2000 (red) and 4000 (orange) cells.
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Figure 3.3: Results obtained with the Hirschfelder and Curtiss formula (green) and with a mean value
(red) for the diffusion coefficients – From the top to the bottom, fuel, oxydant, product and neutral
gas mass fractions.
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Figure 3.4: Results obtained with the Hirschfelder and Curtiss formula (green) and with a mean value
(red) for the diffusion coefficients – From the top to the bottom, temperature, density and velocity.
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Figure 3.5: From the top to the bottom, fuel mass fraction, temperature, density and velocity travelling
profiles obtained with a constant thermal diffusion coefficient λ = 0.005, 2λ (blue) and λ/2 (red).
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Figure 3.6: From the top to the bottom, fuel mass fraction, temperature, density and velocity travelling
profiles obtained with ω̇ given by Equation (3.25) (green), 2 ω̇ (blue) and ω̇/2 (red).
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3.6 Comparison with an alternative approach

We compare in this section two descriptions of the combustion phenomenon:

– The first one is the model considered up to now in this chapter. It is obtained by collecting
the mass balance for the chemical species, the energy balance and the momentum balance for
the mixture; the reaction term ω̇ is expressed by a closure law depending of the temperature,
derived on the basis of physical arguments. This model will be refered to in the following of this
section as the primitive formulation.

– The second one is the model considered in the previous chapter. It relies on the assumption that
the solution consists in a travelling reaction thin interface (the so-called flame front) separating
a zone where the combustion is complete (the ”burnt zone”) from a zone where no combustion
yet occured (the ”fresh zone”). This representation offers the possibility to reduce the problem
to an explicit tracking of the front location, through the solution of a transport equation for a
color function G (G ∈ [0, 1], G < 0.5 in the burnt zone, G ≥ 0.5 in the fresh atmosphere); the
reaction term is governed by the value of G: ω̇ = 0 if G ≥ 0.5 and ω̇ is proportional to 1/τ
otherwise, where τ is a time-scale closely correlated to the flame front thickness (see Equation
(3.27) below for its actual expression). In the rest of this section, we will call this model as the
flame velocity formulation.

The first option is standard for the computation of laminar flames. Variants of the flame velocity
formulation are often chosen to compute turbulent deflagrations in industrial applications [66, 59],
for at least two reasons: first, it reduces the modelling of a complex physical phenomenon to the
construction of a suitable closure law for a quantity accessible through experiments, namely the
turbulent flame velocity (note, however, that the accurate prediction of this parameter turns to be in
practice a rather intricate task, not much easier than the estimation of an effective burning rate in
turbulent flows); second, specially in tri-dimensional situations, the mesh requirement for an accurate
solution of the flame velocity formulation is dramatically less stringent than for the primitive one.

The recall the transport equation governing the evolution of the level-set function G:

∂t(ρG) + div(ρGu) + ρuuf |∇G| = 0, (3.26)

associated to the initial conditions G = 0 at the location where the flame starts and G = 1 elsewhere.
The quantity ρu is a constant density, which, from a physical point of view, stands for a characteristic
value for the unburnt gases density, and uf is the flame brush velocity. The reactive term ω̇ is given
by:

ω̇ =
uf
δ
η(yF , yO) (G− 0.5)−, η(yF , yO) = f(yF , yO) = min(

yF
νFWF

,
yO

νOWO
), (3.27)

where δ is a quantity homogeneus to a length scale, which governs the thickness of the reaction zone.
Besides the addition of Equation (3.26) and the modification of the expression of ω̇, the other equations
of the primitive formulation are left unchanged.

The numerical algorithm differs from the scheme (3.19)-(3.20) for the primitive formulation by the
insertion, as a first step, of a dicrete analog of (3.26), with a discretization of G on the primal mesh
(so the associated discrete unknowns are (GK)K∈M), which we recall:

Solve for Gn+1:

∀K ∈ M,
1

δt

[
ρnKG

n+1
K − ρn−1

K Gn
K

]
+ div

[
ρnGn+1un

]
K
+ ρuuf |∇G|n+1

K = 0.

The discretization of the time derivative and convection terms is the same as for fuel mass fractions.
for the latst term, at the continuous level, we observe that:

|∇G| = ∇G

|∇G| ·∇G
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and the last term in (3.28) is approximated by writing:

|∇G|n+1
K = (Wn ·∇Gn+1)K ,

where W is an approximation of the advection field ∇G/|∇G| and we use the standard upwind finite
volume formulation of the transport operator (i.e. the formulation obtained by writing W · ∇G =
div(GW)−GdivW and using a usual finite volume discretization of the convection operator). In the
solution of this system of equations, the convection operators are discretized by an explicit MUSCL-like
technique, as described in [67].

We compare the profiles obtained with the flame velocity formulation with those obtained in the
previous section in the non-diffusive case. To this purpose, the obtained value for the flame velocity
is injected in the flame velocity model, and we choose the length δf to fit as closely as possible the
travelling profiles of the unknowns. Results for the fuel mass fraction and the temperature are given
on Figure 3.1. We observe that, as expected, the thickness of the combustion zone is scaled by δf and
that a reasonable agreement is obtained with δf = 0.2mm.
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Figure 3.1: From the top to the bottom, fuel mass fraction, temperature, density and velocity travelling
profiles obtained with the primitive formulation of the equations (red) and with the flame velocity
model, with δ = 0.1mm (green) and δ = 0.1mm (blue).
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Appendix

3.A A result from the topological degree theory

Theorem 3.A.1 (Application of the topological degree, finite dimensional case)
Let V be a finite dimensional vector space on R, ‖.‖ a norm on V , let f be a continuous function
from V to V and let R > 0. Let us assume that there exists a continuous function F : V × [0, 1] → V
satisfying:

(i) F (., 1) = f ,

(ii) ∀α ∈ [0, 1], if v ∈ V is such that F (v, α) = 0 then v ∈ BR = {v ∈ V ; ‖v‖ < R},
(iii) the topological degree of F (., 0) with respect to 0 and BR is equal to d0 6= 0.

Then the topological degree of F (., 1) with respect to 0 and to BR is also equal to d0 6= 0; consequently,
there exists at least a solution v ∈ BR such that f(v) = 0.

3.B On the Hirschfelder and Curtiss approximation

Hirschfelder and Curtiss model and Fick’s law for a binary mixture – In the case of a binary
gaseous mixture, the difusion flux for the first species reads (see Section 3.2.2):

je1 = −ρD1
W1

W
∇x1, with D1 =

1− y1
x2
D

,

whereD stands for the diffuxion coefficient for the species 1 in species 2. Using the fact that 1−y1 = y2
and that y2/x2 =W2/W , we thus get:

je1 = −ρDW1W2

W 2
∇x1. (3.29)

We have

x1 =
W

W1
y1,

thus

∇x1 =
W

W1
∇y1 +

1

W1
y1∇W. (3.30)

The mixture molar mass W is given by:

W =
1

y1
W1

+
y2
W2

,

with y2 = 1− y1, thus:

∇W =W 2
( 1

W2
− 1

W1

)
∇y1.
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Inserting in (3.30) yields:

∇x1 =
W 2

W1

( 1

W
+
( 1

W2
− 1

W1

)
y1

)
∇y1 =

W 2

W1

( y1
W1

+
y2
W2

+
y − 1

W2
− y − 1

W1

)
∇y1

=
W 2

W1

y1 + y2
W2

∇y1 =
W 2

W1W2
∇y1.

Inserting this expression in (3.29) yields:

je1 = −ρD∇y1.

In addition, since y1 + y2 = 1, we get that je1 + je2 = 0, so the corrective term J is equal to zero, and
j1 = je1 is given by the previous expression, which is exactly Fick’s law.

Another expression for the diffusion flux – For a species i in a gaseous mixture, the diffusion
flux given by the Hirschfelder and Curtiss model may be reformulated as:

jei = −ρ yi (1− yi)

xi (1− xi)
D̄i ∇xi with D̄i =

1− xi∑

j 6=i

xj
Dji

.

The diffusion coefficient D̄i is the harmonic mean value of the binary diffusion coefficients of the species
i in the species j 6= i.
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Appendix A

A Large Eddy Simulation model and

scheme

A.1 Navier-Stokes equations

The three dimensional Navier-Stokes system of equations under the enthalpy formulation, reads:

∂tρ+ div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) +∇p = divσ,

∂t(ρh) + div(ρhu) = ∂tp+ u ·∇p+ div(κ∇T ) + Φ,

p = ρRT,

(A.1)

where ∂tf and ∂if, i = 1, 2, 3, denote the partial derivatives of the function f with respect to the
time (t) and spatial (x = (x1, x2, x3)) coordinates. The unknowns are the density ρ, the velocity
u = (u1, u2, u3), the pressure p and the enthalpy h.

Under the Stoke’s hypothesis, the shear-stress tensor for a Newtonian fluid is given by:

σij = 2µ(T )
(
Sij −

1

3
δij

3∑

k=1

Tr(S)
)
,

where

Sij =
1

2
(∂jui + ∂iuj).

In this work the dynamic viscosity µ(T ) will be considered constant and will simply be denoted by µ.
The viscous dissipation is given by

Φ =

3∑

i=1

3∑

j=1

σij∂jui.

The gas constant is R = cp−cv, where cp and cv are the specific heat constants at constant pressure
and constant volume respectively. For air, R = 287.03 m2 s2 K. The temperature T is linked to the
enthalpy h through the relation

h = cpT,

The thermal conductivity may be expressed by κ = µcp/Pr, where the Prandtl number Pr is the ratio
of the kinematic viscosity ν = µ/ρ and the thermal diffusivity κ/(ρcp) and is assumed to be constant
equal to 0.72 for air.
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A.2 Filtering operator

Scales are separated using a scale high-pass filter which is also a low-pass filter in frequency. Filtering
is represented mathematically in the physical space as a convolution product. The resolved part φ(x, t)
of a space-time variable φ(x, t) is defined by

φ(x, t) =
1

∆3

1

τc

∫

R3

∫ +∞

−∞
G
(x− ξ

∆
,
t− τ

τc

)
φ(ξ, τ) dτ dξ,

where the convolution kernel G is characteristic of the filter used and is associated with the cut-off
scale in space ∆ and time τc.

To manipulate the Navier-Stokes equations after the filtering, the three properties given below are
required. The first one is satisfied by the convolution form of the filtering, while the latter ones depend
on the filtering function G.

• Linearity,
φ+ ψ = φ+ ψ.

• Consistency,

φ = φ ⇐⇒
∫

R3

∫ +∞

−∞
G(ξ, τ)dτ d3ξ = 1, if φ is constant.

• Commutation with differentiation,

∂sφ = ∂sφ, s = x, t.

Moreover, we assume that the space-time convolution kernel is obtained by tensorial extension of the
one-dimensional kernel, i.e.

G(ξ, τ) = Gt(τ)
3∏

i=1

Gi(ξi).

Since up to now there is no example of LES of compressible flow based on temporal filtering, we
restrict our discussion to spatial filtering. Mathematically, this additional restriction is expressed by

Gt(τ) = δ0(τ).

Nevertheless, one has to keep in mind that the spatial filtering implies a temporal filtering since the
dynamics of the Navier-Stokes equations make it possible to associate a characteristic time scale with
a length scale.

Most authors dealing with LES of compressible flows have used a change of variable in which
filtered variables are weighted by the density. Mathematically, this change of variables is written as

ρφ = ρ
ρφ

ρ
= ρφ̃. (A.2)

The (̃·) operator is linear but does not commute with the derivation operators.
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A.3 Filtering

Applying the filtering operator defined in (A.2) to the system (A.1), yields

∂tρ̄+ div(ρ̄ũ) = 0

∂t(ρ̄ũ) + div(ρ̄ũ⊗ ũ) +∇p̄− divσ̃ = −divτ + div(σ̄ − σ̂),

∂t(ρ̄h̃) + div(ρ̄h̃ũ)− ∂tp̄− ũ ·∇p̄+ divq̂ − Φ̂

= −
[
div

(
ρ̄cp(T̃u− T̃ ũ)

)
− (u ·∇p− ũ ·∇p̄)− (Φ̄− Φ̂) + div(q̄ − q̂)

]
,

p̄ = ρ̄RT̃ .

(A.3)

The subgrid scale (SGS) stress tensor reads

τij = ρ̄(ũiuj − ũiũj).

The filtered enthalpy h̃ is equal to cpT̃ and the filtered computable viscous dissipation Φ̂ is defined as

Φ̃ =

3∑

i=1

3∑

j=1

σ̂ij∂j ũi,

where

σ̂ij = 2µ(T̃ )
(
S̃ij −

1

3
δij

3∑

k=1

Tr(S̃)
)
,

which depends on the computable rate-of-strain tensor

S̃ij =
1

2

(
∂j ũi + ∂iũj

)
.

The computable heat flux is
q̂ = −κ(T̃ )∇T̃ .

Using the following decomposition of the filtered pressure-gradient velocity correlation

u ·∇p= div(pu)− pdivu

= div(ρRTu)− pdivu

= div(ρ̄RT̃ ũ) + div
(
ρ̄R(T̃u− T̃ ũ)

)
− pdivu

= p̄divũ+ ũ ·∇p̄+ div
(
ρ̄R(T̃u− T̃ ũ)

)
− pdivu

in (A.3), leads to the following form of the enthalpy balance equation:

∂tρ̄h̃+ div(ρ̄h̃ũ)− ∂tp̄− ũ ·∇p̄+ divq̂ − Φ̂ = −
[
div(cvQ) + Πdil − εv + div(q̄ − q̂)

]
.

In this last equation, the SGS temperature flux Q is defined by

Q = ρ̄(ũT − ũT̃ ),

the SGS pressure dilatation Πdil reads

Πdil = pdivu− p̄divũ

and the SGS viscous dissipation εv follows the expression

εv = Φ̄− Φ̂.
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A.4 Modelling choices

Following a Boussinesq type hypothesis, the deviatoric part of the stress tensor reads

τdij = τij −
1

3
δij

3∑

k=1

Tr(τ) = −2ρ̄νsgs(S̃ij −
1

3
δij

3∑

k=1

S̃kk).

The simplest expression for scalar subgrid kinematic viscosity νsgs is given by the Smagorinsky model:

νsgs = c2s∆
2|S̃|,

where

|S̃| =
(
2

3∑

i=1

3∑

j=1

S̃ij S̃ij
)1/2

, cs =
1

π

(3K0

2

)−3/4 ∼ 0.18,

with K0 the Kolmogorov constant, equal to 1.4. The modeling proposed by Yoshizawa for the isotropic
part of the SGS stress tensor reads

Tr(τ ) =
2

3
cI ρ̄∆

2|S̃|2,

where the value of the constant cI maximizing the correlation of the modeled stress with the exact
stress is 0.0066 according to Erleacher et al.

The SGS thermal conductivity κsgs is linked to the SGS dynamic visosity through the relation

κsgs =
µsgscp
Prsgs

,

where Prsgs is the SGS Prandtl number, chosen in the interval [0.3, 0.9]. The EDQNM theory gives a
value of 0.6 for this quantity. The temperature flux Q reads

Q = − ρ̄νsgs
Prsgs

∇T̃ .

The SGS viscous dissipation is modelled by

εv =
cερ̄k

3
2

∆
,

where k = 1
2Tr(τ) and cε is a constant (to be defined). Finally, in the enthalpy balance equation, the

SGS pressure-dilatation Πdil, the term (ũ · ∇p̄ − u ·∇p) and div(q̄ − q̂) are neglected, such as the
term div(σ̂ − σ̄) in the momentum balance equation.

A.5 The filtered equations

According to the above discussion, the final filtered model equations read

∂tρ̄+ div(ρ̄ũ) = 0

∂t(ρ̄ũ) + div(ρ̄ũ⊗ ũ) +∇p̄− divσ̂ = −divτ d +
2

3
∇k,

∂tρ̄h̃+ div(ρ̄h̃ũ)− ∂tp̄− ũ ·∇p̄+ divq̂ − Φ̂ = −div(cvQ),

p̄ =
γ − 1

γ
ρ̄h̃,

(A.4)
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where γ = cp/cv is the adiabatic index.

Replacing the enthalpy in the enthalpy balance equation by the expression h̃ = ẽ+ p̄/ρ̄, yields the
internal energy balance equation:

∂t(ρ̄ẽ) + div(ρ̄ẽũ) + div(p̄ũ)− ũ ·∇p̄+ div(q̂)− Φ̂ = −div(cvQ). (A.5)

The kinetic energy balance equation is obtaining by the inner product of the filtered momentum
balance equation with the filtered velocity:

1

2
∂t(ρ̄|ũ|2) +

1

2
div(ρ̄|ũ|2ũ) + ũ ·∇p̄− ũ · div(σ̂) = −ũ · div(τ d) +

2

3
ũ ·∇k, (A.6)

where k = 1
2Tr(τ ) is the subgrid energy. Summing equations (A.5) and (A.6) gives rise to the total

energy balance equation:

∂t(ρ̄Ẽ) + div(ρ̄Ẽũ) + div(p̄ũ)− div(σ̂ũ) + div(q̂) = ũ · div(τ d) +
2

3
ũ ·∇k − div(cvQ), (A.7)

where the total energy is defined by E = e+ 1
2 |ũ|2.

A.6 The pressure correction scheme

Let us consider a partition 0 = t0 < t1 < . . . < tN = T of the time interval (0, T ), which we suppose
uniform. Let δt = tn+1 − tn for n = 0, 1, . . . , N − 1 be the constant time step. In order to reduce the
notations, in what follows we will drop the notations corresponding to the operators of the filtering
process, for example ρK is the approximation of the mean value of ρ̄ over the control volume K ∈ M
and so on. The pressure correction scheme considered here consists in the two following steps:

Pressure gradient scaling step:

∀σ ∈ Eint, (∇P )n+1
σ =

( ρnDσ

ρn−1
Dσ

)1/2
(∇pn)σ. (A.8a)

Prediction step – Solve for vn+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt

(
ρnDσ

vn+1
σ,i − ρn−1

Dσ
unσ,i

)
+ div(ρnvn+1

i un)σ

−div
(
τ d(vn+1)

)
σ,i

+
2

3

(
∇k(vn+1)

)
σ,i

+ (∇P )n+1
σ,i = 0.

(A.8b)
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Correction step – Solve for pn+1, hn+1, ρn+1 and un+1:

For 1 ≤ i ≤ d, ∀σ ∈ E(i)
S ,

1

δt
ρnDσ

(un+1
σ,i − vn+1

σ,i ) + (∇pn+1)σ,i − (∇P )n+1
σ,i = 0, (A.8c)

∀K ∈ M,
1

δt
(ρn+1

K − ρnK) + div(ρn+1un+1)K = 0, (A.8d)

∀K ∈ M,
1

δt
(ρn+1

K hn+1
K − ρnKe

n
K) + div(ρn+1hn+1un+1)K − 1

δt
(pn+1

K − pnK)

−(un+1 ·∇pn+1)K + div(cvq
n+1)K =

(
τ (vn+1) : ∇vn+1

)
K
+ Sn+1

K ,

(A.8e)

∀K ∈ M, pn+1
K =

γ − 1

γ
ρn+1
K hn+1

K . (A.8f)
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